1 #include "qemu/osdep.h" 2 #include "trace.h" 3 #include "cpu.h" 4 #include "internals.h" 5 #include "exec/gdbstub.h" 6 #include "exec/helper-proto.h" 7 #include "qemu/host-utils.h" 8 #include "sysemu/arch_init.h" 9 #include "sysemu/sysemu.h" 10 #include "qemu/bitops.h" 11 #include "qemu/crc32c.h" 12 #include "exec/exec-all.h" 13 #include "exec/cpu_ldst.h" 14 #include "arm_ldst.h" 15 #include <zlib.h> /* For crc32 */ 16 #include "exec/semihost.h" 17 #include "sysemu/kvm.h" 18 19 #define ARM_CPU_FREQ 1000000000 /* FIXME: 1 GHz, should be configurable */ 20 21 #ifndef CONFIG_USER_ONLY 22 static bool get_phys_addr(CPUARMState *env, target_ulong address, 23 MMUAccessType access_type, ARMMMUIdx mmu_idx, 24 hwaddr *phys_ptr, MemTxAttrs *attrs, int *prot, 25 target_ulong *page_size, uint32_t *fsr, 26 ARMMMUFaultInfo *fi); 27 28 static bool get_phys_addr_lpae(CPUARMState *env, target_ulong address, 29 MMUAccessType access_type, ARMMMUIdx mmu_idx, 30 hwaddr *phys_ptr, MemTxAttrs *txattrs, int *prot, 31 target_ulong *page_size_ptr, uint32_t *fsr, 32 ARMMMUFaultInfo *fi); 33 34 /* Security attributes for an address, as returned by v8m_security_lookup. */ 35 typedef struct V8M_SAttributes { 36 bool ns; 37 bool nsc; 38 uint8_t sregion; 39 bool srvalid; 40 uint8_t iregion; 41 bool irvalid; 42 } V8M_SAttributes; 43 44 static void v8m_security_lookup(CPUARMState *env, uint32_t address, 45 MMUAccessType access_type, ARMMMUIdx mmu_idx, 46 V8M_SAttributes *sattrs); 47 48 /* Definitions for the PMCCNTR and PMCR registers */ 49 #define PMCRD 0x8 50 #define PMCRC 0x4 51 #define PMCRE 0x1 52 #endif 53 54 static int vfp_gdb_get_reg(CPUARMState *env, uint8_t *buf, int reg) 55 { 56 int nregs; 57 58 /* VFP data registers are always little-endian. */ 59 nregs = arm_feature(env, ARM_FEATURE_VFP3) ? 32 : 16; 60 if (reg < nregs) { 61 stfq_le_p(buf, env->vfp.regs[reg]); 62 return 8; 63 } 64 if (arm_feature(env, ARM_FEATURE_NEON)) { 65 /* Aliases for Q regs. */ 66 nregs += 16; 67 if (reg < nregs) { 68 stfq_le_p(buf, env->vfp.regs[(reg - 32) * 2]); 69 stfq_le_p(buf + 8, env->vfp.regs[(reg - 32) * 2 + 1]); 70 return 16; 71 } 72 } 73 switch (reg - nregs) { 74 case 0: stl_p(buf, env->vfp.xregs[ARM_VFP_FPSID]); return 4; 75 case 1: stl_p(buf, env->vfp.xregs[ARM_VFP_FPSCR]); return 4; 76 case 2: stl_p(buf, env->vfp.xregs[ARM_VFP_FPEXC]); return 4; 77 } 78 return 0; 79 } 80 81 static int vfp_gdb_set_reg(CPUARMState *env, uint8_t *buf, int reg) 82 { 83 int nregs; 84 85 nregs = arm_feature(env, ARM_FEATURE_VFP3) ? 32 : 16; 86 if (reg < nregs) { 87 env->vfp.regs[reg] = ldfq_le_p(buf); 88 return 8; 89 } 90 if (arm_feature(env, ARM_FEATURE_NEON)) { 91 nregs += 16; 92 if (reg < nregs) { 93 env->vfp.regs[(reg - 32) * 2] = ldfq_le_p(buf); 94 env->vfp.regs[(reg - 32) * 2 + 1] = ldfq_le_p(buf + 8); 95 return 16; 96 } 97 } 98 switch (reg - nregs) { 99 case 0: env->vfp.xregs[ARM_VFP_FPSID] = ldl_p(buf); return 4; 100 case 1: env->vfp.xregs[ARM_VFP_FPSCR] = ldl_p(buf); return 4; 101 case 2: env->vfp.xregs[ARM_VFP_FPEXC] = ldl_p(buf) & (1 << 30); return 4; 102 } 103 return 0; 104 } 105 106 static int aarch64_fpu_gdb_get_reg(CPUARMState *env, uint8_t *buf, int reg) 107 { 108 switch (reg) { 109 case 0 ... 31: 110 /* 128 bit FP register */ 111 stfq_le_p(buf, env->vfp.regs[reg * 2]); 112 stfq_le_p(buf + 8, env->vfp.regs[reg * 2 + 1]); 113 return 16; 114 case 32: 115 /* FPSR */ 116 stl_p(buf, vfp_get_fpsr(env)); 117 return 4; 118 case 33: 119 /* FPCR */ 120 stl_p(buf, vfp_get_fpcr(env)); 121 return 4; 122 default: 123 return 0; 124 } 125 } 126 127 static int aarch64_fpu_gdb_set_reg(CPUARMState *env, uint8_t *buf, int reg) 128 { 129 switch (reg) { 130 case 0 ... 31: 131 /* 128 bit FP register */ 132 env->vfp.regs[reg * 2] = ldfq_le_p(buf); 133 env->vfp.regs[reg * 2 + 1] = ldfq_le_p(buf + 8); 134 return 16; 135 case 32: 136 /* FPSR */ 137 vfp_set_fpsr(env, ldl_p(buf)); 138 return 4; 139 case 33: 140 /* FPCR */ 141 vfp_set_fpcr(env, ldl_p(buf)); 142 return 4; 143 default: 144 return 0; 145 } 146 } 147 148 static uint64_t raw_read(CPUARMState *env, const ARMCPRegInfo *ri) 149 { 150 assert(ri->fieldoffset); 151 if (cpreg_field_is_64bit(ri)) { 152 return CPREG_FIELD64(env, ri); 153 } else { 154 return CPREG_FIELD32(env, ri); 155 } 156 } 157 158 static void raw_write(CPUARMState *env, const ARMCPRegInfo *ri, 159 uint64_t value) 160 { 161 assert(ri->fieldoffset); 162 if (cpreg_field_is_64bit(ri)) { 163 CPREG_FIELD64(env, ri) = value; 164 } else { 165 CPREG_FIELD32(env, ri) = value; 166 } 167 } 168 169 static void *raw_ptr(CPUARMState *env, const ARMCPRegInfo *ri) 170 { 171 return (char *)env + ri->fieldoffset; 172 } 173 174 uint64_t read_raw_cp_reg(CPUARMState *env, const ARMCPRegInfo *ri) 175 { 176 /* Raw read of a coprocessor register (as needed for migration, etc). */ 177 if (ri->type & ARM_CP_CONST) { 178 return ri->resetvalue; 179 } else if (ri->raw_readfn) { 180 return ri->raw_readfn(env, ri); 181 } else if (ri->readfn) { 182 return ri->readfn(env, ri); 183 } else { 184 return raw_read(env, ri); 185 } 186 } 187 188 static void write_raw_cp_reg(CPUARMState *env, const ARMCPRegInfo *ri, 189 uint64_t v) 190 { 191 /* Raw write of a coprocessor register (as needed for migration, etc). 192 * Note that constant registers are treated as write-ignored; the 193 * caller should check for success by whether a readback gives the 194 * value written. 195 */ 196 if (ri->type & ARM_CP_CONST) { 197 return; 198 } else if (ri->raw_writefn) { 199 ri->raw_writefn(env, ri, v); 200 } else if (ri->writefn) { 201 ri->writefn(env, ri, v); 202 } else { 203 raw_write(env, ri, v); 204 } 205 } 206 207 static bool raw_accessors_invalid(const ARMCPRegInfo *ri) 208 { 209 /* Return true if the regdef would cause an assertion if you called 210 * read_raw_cp_reg() or write_raw_cp_reg() on it (ie if it is a 211 * program bug for it not to have the NO_RAW flag). 212 * NB that returning false here doesn't necessarily mean that calling 213 * read/write_raw_cp_reg() is safe, because we can't distinguish "has 214 * read/write access functions which are safe for raw use" from "has 215 * read/write access functions which have side effects but has forgotten 216 * to provide raw access functions". 217 * The tests here line up with the conditions in read/write_raw_cp_reg() 218 * and assertions in raw_read()/raw_write(). 219 */ 220 if ((ri->type & ARM_CP_CONST) || 221 ri->fieldoffset || 222 ((ri->raw_writefn || ri->writefn) && (ri->raw_readfn || ri->readfn))) { 223 return false; 224 } 225 return true; 226 } 227 228 bool write_cpustate_to_list(ARMCPU *cpu) 229 { 230 /* Write the coprocessor state from cpu->env to the (index,value) list. */ 231 int i; 232 bool ok = true; 233 234 for (i = 0; i < cpu->cpreg_array_len; i++) { 235 uint32_t regidx = kvm_to_cpreg_id(cpu->cpreg_indexes[i]); 236 const ARMCPRegInfo *ri; 237 238 ri = get_arm_cp_reginfo(cpu->cp_regs, regidx); 239 if (!ri) { 240 ok = false; 241 continue; 242 } 243 if (ri->type & ARM_CP_NO_RAW) { 244 continue; 245 } 246 cpu->cpreg_values[i] = read_raw_cp_reg(&cpu->env, ri); 247 } 248 return ok; 249 } 250 251 bool write_list_to_cpustate(ARMCPU *cpu) 252 { 253 int i; 254 bool ok = true; 255 256 for (i = 0; i < cpu->cpreg_array_len; i++) { 257 uint32_t regidx = kvm_to_cpreg_id(cpu->cpreg_indexes[i]); 258 uint64_t v = cpu->cpreg_values[i]; 259 const ARMCPRegInfo *ri; 260 261 ri = get_arm_cp_reginfo(cpu->cp_regs, regidx); 262 if (!ri) { 263 ok = false; 264 continue; 265 } 266 if (ri->type & ARM_CP_NO_RAW) { 267 continue; 268 } 269 /* Write value and confirm it reads back as written 270 * (to catch read-only registers and partially read-only 271 * registers where the incoming migration value doesn't match) 272 */ 273 write_raw_cp_reg(&cpu->env, ri, v); 274 if (read_raw_cp_reg(&cpu->env, ri) != v) { 275 ok = false; 276 } 277 } 278 return ok; 279 } 280 281 static void add_cpreg_to_list(gpointer key, gpointer opaque) 282 { 283 ARMCPU *cpu = opaque; 284 uint64_t regidx; 285 const ARMCPRegInfo *ri; 286 287 regidx = *(uint32_t *)key; 288 ri = get_arm_cp_reginfo(cpu->cp_regs, regidx); 289 290 if (!(ri->type & (ARM_CP_NO_RAW|ARM_CP_ALIAS))) { 291 cpu->cpreg_indexes[cpu->cpreg_array_len] = cpreg_to_kvm_id(regidx); 292 /* The value array need not be initialized at this point */ 293 cpu->cpreg_array_len++; 294 } 295 } 296 297 static void count_cpreg(gpointer key, gpointer opaque) 298 { 299 ARMCPU *cpu = opaque; 300 uint64_t regidx; 301 const ARMCPRegInfo *ri; 302 303 regidx = *(uint32_t *)key; 304 ri = get_arm_cp_reginfo(cpu->cp_regs, regidx); 305 306 if (!(ri->type & (ARM_CP_NO_RAW|ARM_CP_ALIAS))) { 307 cpu->cpreg_array_len++; 308 } 309 } 310 311 static gint cpreg_key_compare(gconstpointer a, gconstpointer b) 312 { 313 uint64_t aidx = cpreg_to_kvm_id(*(uint32_t *)a); 314 uint64_t bidx = cpreg_to_kvm_id(*(uint32_t *)b); 315 316 if (aidx > bidx) { 317 return 1; 318 } 319 if (aidx < bidx) { 320 return -1; 321 } 322 return 0; 323 } 324 325 void init_cpreg_list(ARMCPU *cpu) 326 { 327 /* Initialise the cpreg_tuples[] array based on the cp_regs hash. 328 * Note that we require cpreg_tuples[] to be sorted by key ID. 329 */ 330 GList *keys; 331 int arraylen; 332 333 keys = g_hash_table_get_keys(cpu->cp_regs); 334 keys = g_list_sort(keys, cpreg_key_compare); 335 336 cpu->cpreg_array_len = 0; 337 338 g_list_foreach(keys, count_cpreg, cpu); 339 340 arraylen = cpu->cpreg_array_len; 341 cpu->cpreg_indexes = g_new(uint64_t, arraylen); 342 cpu->cpreg_values = g_new(uint64_t, arraylen); 343 cpu->cpreg_vmstate_indexes = g_new(uint64_t, arraylen); 344 cpu->cpreg_vmstate_values = g_new(uint64_t, arraylen); 345 cpu->cpreg_vmstate_array_len = cpu->cpreg_array_len; 346 cpu->cpreg_array_len = 0; 347 348 g_list_foreach(keys, add_cpreg_to_list, cpu); 349 350 assert(cpu->cpreg_array_len == arraylen); 351 352 g_list_free(keys); 353 } 354 355 /* 356 * Some registers are not accessible if EL3.NS=0 and EL3 is using AArch32 but 357 * they are accessible when EL3 is using AArch64 regardless of EL3.NS. 358 * 359 * access_el3_aa32ns: Used to check AArch32 register views. 360 * access_el3_aa32ns_aa64any: Used to check both AArch32/64 register views. 361 */ 362 static CPAccessResult access_el3_aa32ns(CPUARMState *env, 363 const ARMCPRegInfo *ri, 364 bool isread) 365 { 366 bool secure = arm_is_secure_below_el3(env); 367 368 assert(!arm_el_is_aa64(env, 3)); 369 if (secure) { 370 return CP_ACCESS_TRAP_UNCATEGORIZED; 371 } 372 return CP_ACCESS_OK; 373 } 374 375 static CPAccessResult access_el3_aa32ns_aa64any(CPUARMState *env, 376 const ARMCPRegInfo *ri, 377 bool isread) 378 { 379 if (!arm_el_is_aa64(env, 3)) { 380 return access_el3_aa32ns(env, ri, isread); 381 } 382 return CP_ACCESS_OK; 383 } 384 385 /* Some secure-only AArch32 registers trap to EL3 if used from 386 * Secure EL1 (but are just ordinary UNDEF in other non-EL3 contexts). 387 * Note that an access from Secure EL1 can only happen if EL3 is AArch64. 388 * We assume that the .access field is set to PL1_RW. 389 */ 390 static CPAccessResult access_trap_aa32s_el1(CPUARMState *env, 391 const ARMCPRegInfo *ri, 392 bool isread) 393 { 394 if (arm_current_el(env) == 3) { 395 return CP_ACCESS_OK; 396 } 397 if (arm_is_secure_below_el3(env)) { 398 return CP_ACCESS_TRAP_EL3; 399 } 400 /* This will be EL1 NS and EL2 NS, which just UNDEF */ 401 return CP_ACCESS_TRAP_UNCATEGORIZED; 402 } 403 404 /* Check for traps to "powerdown debug" registers, which are controlled 405 * by MDCR.TDOSA 406 */ 407 static CPAccessResult access_tdosa(CPUARMState *env, const ARMCPRegInfo *ri, 408 bool isread) 409 { 410 int el = arm_current_el(env); 411 412 if (el < 2 && (env->cp15.mdcr_el2 & MDCR_TDOSA) 413 && !arm_is_secure_below_el3(env)) { 414 return CP_ACCESS_TRAP_EL2; 415 } 416 if (el < 3 && (env->cp15.mdcr_el3 & MDCR_TDOSA)) { 417 return CP_ACCESS_TRAP_EL3; 418 } 419 return CP_ACCESS_OK; 420 } 421 422 /* Check for traps to "debug ROM" registers, which are controlled 423 * by MDCR_EL2.TDRA for EL2 but by the more general MDCR_EL3.TDA for EL3. 424 */ 425 static CPAccessResult access_tdra(CPUARMState *env, const ARMCPRegInfo *ri, 426 bool isread) 427 { 428 int el = arm_current_el(env); 429 430 if (el < 2 && (env->cp15.mdcr_el2 & MDCR_TDRA) 431 && !arm_is_secure_below_el3(env)) { 432 return CP_ACCESS_TRAP_EL2; 433 } 434 if (el < 3 && (env->cp15.mdcr_el3 & MDCR_TDA)) { 435 return CP_ACCESS_TRAP_EL3; 436 } 437 return CP_ACCESS_OK; 438 } 439 440 /* Check for traps to general debug registers, which are controlled 441 * by MDCR_EL2.TDA for EL2 and MDCR_EL3.TDA for EL3. 442 */ 443 static CPAccessResult access_tda(CPUARMState *env, const ARMCPRegInfo *ri, 444 bool isread) 445 { 446 int el = arm_current_el(env); 447 448 if (el < 2 && (env->cp15.mdcr_el2 & MDCR_TDA) 449 && !arm_is_secure_below_el3(env)) { 450 return CP_ACCESS_TRAP_EL2; 451 } 452 if (el < 3 && (env->cp15.mdcr_el3 & MDCR_TDA)) { 453 return CP_ACCESS_TRAP_EL3; 454 } 455 return CP_ACCESS_OK; 456 } 457 458 /* Check for traps to performance monitor registers, which are controlled 459 * by MDCR_EL2.TPM for EL2 and MDCR_EL3.TPM for EL3. 460 */ 461 static CPAccessResult access_tpm(CPUARMState *env, const ARMCPRegInfo *ri, 462 bool isread) 463 { 464 int el = arm_current_el(env); 465 466 if (el < 2 && (env->cp15.mdcr_el2 & MDCR_TPM) 467 && !arm_is_secure_below_el3(env)) { 468 return CP_ACCESS_TRAP_EL2; 469 } 470 if (el < 3 && (env->cp15.mdcr_el3 & MDCR_TPM)) { 471 return CP_ACCESS_TRAP_EL3; 472 } 473 return CP_ACCESS_OK; 474 } 475 476 static void dacr_write(CPUARMState *env, const ARMCPRegInfo *ri, uint64_t value) 477 { 478 ARMCPU *cpu = arm_env_get_cpu(env); 479 480 raw_write(env, ri, value); 481 tlb_flush(CPU(cpu)); /* Flush TLB as domain not tracked in TLB */ 482 } 483 484 static void fcse_write(CPUARMState *env, const ARMCPRegInfo *ri, uint64_t value) 485 { 486 ARMCPU *cpu = arm_env_get_cpu(env); 487 488 if (raw_read(env, ri) != value) { 489 /* Unlike real hardware the qemu TLB uses virtual addresses, 490 * not modified virtual addresses, so this causes a TLB flush. 491 */ 492 tlb_flush(CPU(cpu)); 493 raw_write(env, ri, value); 494 } 495 } 496 497 static void contextidr_write(CPUARMState *env, const ARMCPRegInfo *ri, 498 uint64_t value) 499 { 500 ARMCPU *cpu = arm_env_get_cpu(env); 501 502 if (raw_read(env, ri) != value && !arm_feature(env, ARM_FEATURE_PMSA) 503 && !extended_addresses_enabled(env)) { 504 /* For VMSA (when not using the LPAE long descriptor page table 505 * format) this register includes the ASID, so do a TLB flush. 506 * For PMSA it is purely a process ID and no action is needed. 507 */ 508 tlb_flush(CPU(cpu)); 509 } 510 raw_write(env, ri, value); 511 } 512 513 static void tlbiall_write(CPUARMState *env, const ARMCPRegInfo *ri, 514 uint64_t value) 515 { 516 /* Invalidate all (TLBIALL) */ 517 ARMCPU *cpu = arm_env_get_cpu(env); 518 519 tlb_flush(CPU(cpu)); 520 } 521 522 static void tlbimva_write(CPUARMState *env, const ARMCPRegInfo *ri, 523 uint64_t value) 524 { 525 /* Invalidate single TLB entry by MVA and ASID (TLBIMVA) */ 526 ARMCPU *cpu = arm_env_get_cpu(env); 527 528 tlb_flush_page(CPU(cpu), value & TARGET_PAGE_MASK); 529 } 530 531 static void tlbiasid_write(CPUARMState *env, const ARMCPRegInfo *ri, 532 uint64_t value) 533 { 534 /* Invalidate by ASID (TLBIASID) */ 535 ARMCPU *cpu = arm_env_get_cpu(env); 536 537 tlb_flush(CPU(cpu)); 538 } 539 540 static void tlbimvaa_write(CPUARMState *env, const ARMCPRegInfo *ri, 541 uint64_t value) 542 { 543 /* Invalidate single entry by MVA, all ASIDs (TLBIMVAA) */ 544 ARMCPU *cpu = arm_env_get_cpu(env); 545 546 tlb_flush_page(CPU(cpu), value & TARGET_PAGE_MASK); 547 } 548 549 /* IS variants of TLB operations must affect all cores */ 550 static void tlbiall_is_write(CPUARMState *env, const ARMCPRegInfo *ri, 551 uint64_t value) 552 { 553 CPUState *cs = ENV_GET_CPU(env); 554 555 tlb_flush_all_cpus_synced(cs); 556 } 557 558 static void tlbiasid_is_write(CPUARMState *env, const ARMCPRegInfo *ri, 559 uint64_t value) 560 { 561 CPUState *cs = ENV_GET_CPU(env); 562 563 tlb_flush_all_cpus_synced(cs); 564 } 565 566 static void tlbimva_is_write(CPUARMState *env, const ARMCPRegInfo *ri, 567 uint64_t value) 568 { 569 CPUState *cs = ENV_GET_CPU(env); 570 571 tlb_flush_page_all_cpus_synced(cs, value & TARGET_PAGE_MASK); 572 } 573 574 static void tlbimvaa_is_write(CPUARMState *env, const ARMCPRegInfo *ri, 575 uint64_t value) 576 { 577 CPUState *cs = ENV_GET_CPU(env); 578 579 tlb_flush_page_all_cpus_synced(cs, value & TARGET_PAGE_MASK); 580 } 581 582 static void tlbiall_nsnh_write(CPUARMState *env, const ARMCPRegInfo *ri, 583 uint64_t value) 584 { 585 CPUState *cs = ENV_GET_CPU(env); 586 587 tlb_flush_by_mmuidx(cs, 588 ARMMMUIdxBit_S12NSE1 | 589 ARMMMUIdxBit_S12NSE0 | 590 ARMMMUIdxBit_S2NS); 591 } 592 593 static void tlbiall_nsnh_is_write(CPUARMState *env, const ARMCPRegInfo *ri, 594 uint64_t value) 595 { 596 CPUState *cs = ENV_GET_CPU(env); 597 598 tlb_flush_by_mmuidx_all_cpus_synced(cs, 599 ARMMMUIdxBit_S12NSE1 | 600 ARMMMUIdxBit_S12NSE0 | 601 ARMMMUIdxBit_S2NS); 602 } 603 604 static void tlbiipas2_write(CPUARMState *env, const ARMCPRegInfo *ri, 605 uint64_t value) 606 { 607 /* Invalidate by IPA. This has to invalidate any structures that 608 * contain only stage 2 translation information, but does not need 609 * to apply to structures that contain combined stage 1 and stage 2 610 * translation information. 611 * This must NOP if EL2 isn't implemented or SCR_EL3.NS is zero. 612 */ 613 CPUState *cs = ENV_GET_CPU(env); 614 uint64_t pageaddr; 615 616 if (!arm_feature(env, ARM_FEATURE_EL2) || !(env->cp15.scr_el3 & SCR_NS)) { 617 return; 618 } 619 620 pageaddr = sextract64(value << 12, 0, 40); 621 622 tlb_flush_page_by_mmuidx(cs, pageaddr, ARMMMUIdxBit_S2NS); 623 } 624 625 static void tlbiipas2_is_write(CPUARMState *env, const ARMCPRegInfo *ri, 626 uint64_t value) 627 { 628 CPUState *cs = ENV_GET_CPU(env); 629 uint64_t pageaddr; 630 631 if (!arm_feature(env, ARM_FEATURE_EL2) || !(env->cp15.scr_el3 & SCR_NS)) { 632 return; 633 } 634 635 pageaddr = sextract64(value << 12, 0, 40); 636 637 tlb_flush_page_by_mmuidx_all_cpus_synced(cs, pageaddr, 638 ARMMMUIdxBit_S2NS); 639 } 640 641 static void tlbiall_hyp_write(CPUARMState *env, const ARMCPRegInfo *ri, 642 uint64_t value) 643 { 644 CPUState *cs = ENV_GET_CPU(env); 645 646 tlb_flush_by_mmuidx(cs, ARMMMUIdxBit_S1E2); 647 } 648 649 static void tlbiall_hyp_is_write(CPUARMState *env, const ARMCPRegInfo *ri, 650 uint64_t value) 651 { 652 CPUState *cs = ENV_GET_CPU(env); 653 654 tlb_flush_by_mmuidx_all_cpus_synced(cs, ARMMMUIdxBit_S1E2); 655 } 656 657 static void tlbimva_hyp_write(CPUARMState *env, const ARMCPRegInfo *ri, 658 uint64_t value) 659 { 660 CPUState *cs = ENV_GET_CPU(env); 661 uint64_t pageaddr = value & ~MAKE_64BIT_MASK(0, 12); 662 663 tlb_flush_page_by_mmuidx(cs, pageaddr, ARMMMUIdxBit_S1E2); 664 } 665 666 static void tlbimva_hyp_is_write(CPUARMState *env, const ARMCPRegInfo *ri, 667 uint64_t value) 668 { 669 CPUState *cs = ENV_GET_CPU(env); 670 uint64_t pageaddr = value & ~MAKE_64BIT_MASK(0, 12); 671 672 tlb_flush_page_by_mmuidx_all_cpus_synced(cs, pageaddr, 673 ARMMMUIdxBit_S1E2); 674 } 675 676 static const ARMCPRegInfo cp_reginfo[] = { 677 /* Define the secure and non-secure FCSE identifier CP registers 678 * separately because there is no secure bank in V8 (no _EL3). This allows 679 * the secure register to be properly reset and migrated. There is also no 680 * v8 EL1 version of the register so the non-secure instance stands alone. 681 */ 682 { .name = "FCSEIDR(NS)", 683 .cp = 15, .opc1 = 0, .crn = 13, .crm = 0, .opc2 = 0, 684 .access = PL1_RW, .secure = ARM_CP_SECSTATE_NS, 685 .fieldoffset = offsetof(CPUARMState, cp15.fcseidr_ns), 686 .resetvalue = 0, .writefn = fcse_write, .raw_writefn = raw_write, }, 687 { .name = "FCSEIDR(S)", 688 .cp = 15, .opc1 = 0, .crn = 13, .crm = 0, .opc2 = 0, 689 .access = PL1_RW, .secure = ARM_CP_SECSTATE_S, 690 .fieldoffset = offsetof(CPUARMState, cp15.fcseidr_s), 691 .resetvalue = 0, .writefn = fcse_write, .raw_writefn = raw_write, }, 692 /* Define the secure and non-secure context identifier CP registers 693 * separately because there is no secure bank in V8 (no _EL3). This allows 694 * the secure register to be properly reset and migrated. In the 695 * non-secure case, the 32-bit register will have reset and migration 696 * disabled during registration as it is handled by the 64-bit instance. 697 */ 698 { .name = "CONTEXTIDR_EL1", .state = ARM_CP_STATE_BOTH, 699 .opc0 = 3, .opc1 = 0, .crn = 13, .crm = 0, .opc2 = 1, 700 .access = PL1_RW, .secure = ARM_CP_SECSTATE_NS, 701 .fieldoffset = offsetof(CPUARMState, cp15.contextidr_el[1]), 702 .resetvalue = 0, .writefn = contextidr_write, .raw_writefn = raw_write, }, 703 { .name = "CONTEXTIDR(S)", .state = ARM_CP_STATE_AA32, 704 .cp = 15, .opc1 = 0, .crn = 13, .crm = 0, .opc2 = 1, 705 .access = PL1_RW, .secure = ARM_CP_SECSTATE_S, 706 .fieldoffset = offsetof(CPUARMState, cp15.contextidr_s), 707 .resetvalue = 0, .writefn = contextidr_write, .raw_writefn = raw_write, }, 708 REGINFO_SENTINEL 709 }; 710 711 static const ARMCPRegInfo not_v8_cp_reginfo[] = { 712 /* NB: Some of these registers exist in v8 but with more precise 713 * definitions that don't use CP_ANY wildcards (mostly in v8_cp_reginfo[]). 714 */ 715 /* MMU Domain access control / MPU write buffer control */ 716 { .name = "DACR", 717 .cp = 15, .opc1 = CP_ANY, .crn = 3, .crm = CP_ANY, .opc2 = CP_ANY, 718 .access = PL1_RW, .resetvalue = 0, 719 .writefn = dacr_write, .raw_writefn = raw_write, 720 .bank_fieldoffsets = { offsetoflow32(CPUARMState, cp15.dacr_s), 721 offsetoflow32(CPUARMState, cp15.dacr_ns) } }, 722 /* ARMv7 allocates a range of implementation defined TLB LOCKDOWN regs. 723 * For v6 and v5, these mappings are overly broad. 724 */ 725 { .name = "TLB_LOCKDOWN", .cp = 15, .crn = 10, .crm = 0, 726 .opc1 = CP_ANY, .opc2 = CP_ANY, .access = PL1_RW, .type = ARM_CP_NOP }, 727 { .name = "TLB_LOCKDOWN", .cp = 15, .crn = 10, .crm = 1, 728 .opc1 = CP_ANY, .opc2 = CP_ANY, .access = PL1_RW, .type = ARM_CP_NOP }, 729 { .name = "TLB_LOCKDOWN", .cp = 15, .crn = 10, .crm = 4, 730 .opc1 = CP_ANY, .opc2 = CP_ANY, .access = PL1_RW, .type = ARM_CP_NOP }, 731 { .name = "TLB_LOCKDOWN", .cp = 15, .crn = 10, .crm = 8, 732 .opc1 = CP_ANY, .opc2 = CP_ANY, .access = PL1_RW, .type = ARM_CP_NOP }, 733 /* Cache maintenance ops; some of this space may be overridden later. */ 734 { .name = "CACHEMAINT", .cp = 15, .crn = 7, .crm = CP_ANY, 735 .opc1 = 0, .opc2 = CP_ANY, .access = PL1_W, 736 .type = ARM_CP_NOP | ARM_CP_OVERRIDE }, 737 REGINFO_SENTINEL 738 }; 739 740 static const ARMCPRegInfo not_v6_cp_reginfo[] = { 741 /* Not all pre-v6 cores implemented this WFI, so this is slightly 742 * over-broad. 743 */ 744 { .name = "WFI_v5", .cp = 15, .crn = 7, .crm = 8, .opc1 = 0, .opc2 = 2, 745 .access = PL1_W, .type = ARM_CP_WFI }, 746 REGINFO_SENTINEL 747 }; 748 749 static const ARMCPRegInfo not_v7_cp_reginfo[] = { 750 /* Standard v6 WFI (also used in some pre-v6 cores); not in v7 (which 751 * is UNPREDICTABLE; we choose to NOP as most implementations do). 752 */ 753 { .name = "WFI_v6", .cp = 15, .crn = 7, .crm = 0, .opc1 = 0, .opc2 = 4, 754 .access = PL1_W, .type = ARM_CP_WFI }, 755 /* L1 cache lockdown. Not architectural in v6 and earlier but in practice 756 * implemented in 926, 946, 1026, 1136, 1176 and 11MPCore. StrongARM and 757 * OMAPCP will override this space. 758 */ 759 { .name = "DLOCKDOWN", .cp = 15, .crn = 9, .crm = 0, .opc1 = 0, .opc2 = 0, 760 .access = PL1_RW, .fieldoffset = offsetof(CPUARMState, cp15.c9_data), 761 .resetvalue = 0 }, 762 { .name = "ILOCKDOWN", .cp = 15, .crn = 9, .crm = 0, .opc1 = 0, .opc2 = 1, 763 .access = PL1_RW, .fieldoffset = offsetof(CPUARMState, cp15.c9_insn), 764 .resetvalue = 0 }, 765 /* v6 doesn't have the cache ID registers but Linux reads them anyway */ 766 { .name = "DUMMY", .cp = 15, .crn = 0, .crm = 0, .opc1 = 1, .opc2 = CP_ANY, 767 .access = PL1_R, .type = ARM_CP_CONST | ARM_CP_NO_RAW, 768 .resetvalue = 0 }, 769 /* We don't implement pre-v7 debug but most CPUs had at least a DBGDIDR; 770 * implementing it as RAZ means the "debug architecture version" bits 771 * will read as a reserved value, which should cause Linux to not try 772 * to use the debug hardware. 773 */ 774 { .name = "DBGDIDR", .cp = 14, .crn = 0, .crm = 0, .opc1 = 0, .opc2 = 0, 775 .access = PL0_R, .type = ARM_CP_CONST, .resetvalue = 0 }, 776 /* MMU TLB control. Note that the wildcarding means we cover not just 777 * the unified TLB ops but also the dside/iside/inner-shareable variants. 778 */ 779 { .name = "TLBIALL", .cp = 15, .crn = 8, .crm = CP_ANY, 780 .opc1 = CP_ANY, .opc2 = 0, .access = PL1_W, .writefn = tlbiall_write, 781 .type = ARM_CP_NO_RAW }, 782 { .name = "TLBIMVA", .cp = 15, .crn = 8, .crm = CP_ANY, 783 .opc1 = CP_ANY, .opc2 = 1, .access = PL1_W, .writefn = tlbimva_write, 784 .type = ARM_CP_NO_RAW }, 785 { .name = "TLBIASID", .cp = 15, .crn = 8, .crm = CP_ANY, 786 .opc1 = CP_ANY, .opc2 = 2, .access = PL1_W, .writefn = tlbiasid_write, 787 .type = ARM_CP_NO_RAW }, 788 { .name = "TLBIMVAA", .cp = 15, .crn = 8, .crm = CP_ANY, 789 .opc1 = CP_ANY, .opc2 = 3, .access = PL1_W, .writefn = tlbimvaa_write, 790 .type = ARM_CP_NO_RAW }, 791 { .name = "PRRR", .cp = 15, .crn = 10, .crm = 2, 792 .opc1 = 0, .opc2 = 0, .access = PL1_RW, .type = ARM_CP_NOP }, 793 { .name = "NMRR", .cp = 15, .crn = 10, .crm = 2, 794 .opc1 = 0, .opc2 = 1, .access = PL1_RW, .type = ARM_CP_NOP }, 795 REGINFO_SENTINEL 796 }; 797 798 static void cpacr_write(CPUARMState *env, const ARMCPRegInfo *ri, 799 uint64_t value) 800 { 801 uint32_t mask = 0; 802 803 /* In ARMv8 most bits of CPACR_EL1 are RES0. */ 804 if (!arm_feature(env, ARM_FEATURE_V8)) { 805 /* ARMv7 defines bits for unimplemented coprocessors as RAZ/WI. 806 * ASEDIS [31] and D32DIS [30] are both UNK/SBZP without VFP. 807 * TRCDIS [28] is RAZ/WI since we do not implement a trace macrocell. 808 */ 809 if (arm_feature(env, ARM_FEATURE_VFP)) { 810 /* VFP coprocessor: cp10 & cp11 [23:20] */ 811 mask |= (1 << 31) | (1 << 30) | (0xf << 20); 812 813 if (!arm_feature(env, ARM_FEATURE_NEON)) { 814 /* ASEDIS [31] bit is RAO/WI */ 815 value |= (1 << 31); 816 } 817 818 /* VFPv3 and upwards with NEON implement 32 double precision 819 * registers (D0-D31). 820 */ 821 if (!arm_feature(env, ARM_FEATURE_NEON) || 822 !arm_feature(env, ARM_FEATURE_VFP3)) { 823 /* D32DIS [30] is RAO/WI if D16-31 are not implemented. */ 824 value |= (1 << 30); 825 } 826 } 827 value &= mask; 828 } 829 env->cp15.cpacr_el1 = value; 830 } 831 832 static CPAccessResult cpacr_access(CPUARMState *env, const ARMCPRegInfo *ri, 833 bool isread) 834 { 835 if (arm_feature(env, ARM_FEATURE_V8)) { 836 /* Check if CPACR accesses are to be trapped to EL2 */ 837 if (arm_current_el(env) == 1 && 838 (env->cp15.cptr_el[2] & CPTR_TCPAC) && !arm_is_secure(env)) { 839 return CP_ACCESS_TRAP_EL2; 840 /* Check if CPACR accesses are to be trapped to EL3 */ 841 } else if (arm_current_el(env) < 3 && 842 (env->cp15.cptr_el[3] & CPTR_TCPAC)) { 843 return CP_ACCESS_TRAP_EL3; 844 } 845 } 846 847 return CP_ACCESS_OK; 848 } 849 850 static CPAccessResult cptr_access(CPUARMState *env, const ARMCPRegInfo *ri, 851 bool isread) 852 { 853 /* Check if CPTR accesses are set to trap to EL3 */ 854 if (arm_current_el(env) == 2 && (env->cp15.cptr_el[3] & CPTR_TCPAC)) { 855 return CP_ACCESS_TRAP_EL3; 856 } 857 858 return CP_ACCESS_OK; 859 } 860 861 static const ARMCPRegInfo v6_cp_reginfo[] = { 862 /* prefetch by MVA in v6, NOP in v7 */ 863 { .name = "MVA_prefetch", 864 .cp = 15, .crn = 7, .crm = 13, .opc1 = 0, .opc2 = 1, 865 .access = PL1_W, .type = ARM_CP_NOP }, 866 /* We need to break the TB after ISB to execute self-modifying code 867 * correctly and also to take any pending interrupts immediately. 868 * So use arm_cp_write_ignore() function instead of ARM_CP_NOP flag. 869 */ 870 { .name = "ISB", .cp = 15, .crn = 7, .crm = 5, .opc1 = 0, .opc2 = 4, 871 .access = PL0_W, .type = ARM_CP_NO_RAW, .writefn = arm_cp_write_ignore }, 872 { .name = "DSB", .cp = 15, .crn = 7, .crm = 10, .opc1 = 0, .opc2 = 4, 873 .access = PL0_W, .type = ARM_CP_NOP }, 874 { .name = "DMB", .cp = 15, .crn = 7, .crm = 10, .opc1 = 0, .opc2 = 5, 875 .access = PL0_W, .type = ARM_CP_NOP }, 876 { .name = "IFAR", .cp = 15, .crn = 6, .crm = 0, .opc1 = 0, .opc2 = 2, 877 .access = PL1_RW, 878 .bank_fieldoffsets = { offsetof(CPUARMState, cp15.ifar_s), 879 offsetof(CPUARMState, cp15.ifar_ns) }, 880 .resetvalue = 0, }, 881 /* Watchpoint Fault Address Register : should actually only be present 882 * for 1136, 1176, 11MPCore. 883 */ 884 { .name = "WFAR", .cp = 15, .crn = 6, .crm = 0, .opc1 = 0, .opc2 = 1, 885 .access = PL1_RW, .type = ARM_CP_CONST, .resetvalue = 0, }, 886 { .name = "CPACR", .state = ARM_CP_STATE_BOTH, .opc0 = 3, 887 .crn = 1, .crm = 0, .opc1 = 0, .opc2 = 2, .accessfn = cpacr_access, 888 .access = PL1_RW, .fieldoffset = offsetof(CPUARMState, cp15.cpacr_el1), 889 .resetvalue = 0, .writefn = cpacr_write }, 890 REGINFO_SENTINEL 891 }; 892 893 static CPAccessResult pmreg_access(CPUARMState *env, const ARMCPRegInfo *ri, 894 bool isread) 895 { 896 /* Performance monitor registers user accessibility is controlled 897 * by PMUSERENR. MDCR_EL2.TPM and MDCR_EL3.TPM allow configurable 898 * trapping to EL2 or EL3 for other accesses. 899 */ 900 int el = arm_current_el(env); 901 902 if (el == 0 && !(env->cp15.c9_pmuserenr & 1)) { 903 return CP_ACCESS_TRAP; 904 } 905 if (el < 2 && (env->cp15.mdcr_el2 & MDCR_TPM) 906 && !arm_is_secure_below_el3(env)) { 907 return CP_ACCESS_TRAP_EL2; 908 } 909 if (el < 3 && (env->cp15.mdcr_el3 & MDCR_TPM)) { 910 return CP_ACCESS_TRAP_EL3; 911 } 912 913 return CP_ACCESS_OK; 914 } 915 916 static CPAccessResult pmreg_access_xevcntr(CPUARMState *env, 917 const ARMCPRegInfo *ri, 918 bool isread) 919 { 920 /* ER: event counter read trap control */ 921 if (arm_feature(env, ARM_FEATURE_V8) 922 && arm_current_el(env) == 0 923 && (env->cp15.c9_pmuserenr & (1 << 3)) != 0 924 && isread) { 925 return CP_ACCESS_OK; 926 } 927 928 return pmreg_access(env, ri, isread); 929 } 930 931 static CPAccessResult pmreg_access_swinc(CPUARMState *env, 932 const ARMCPRegInfo *ri, 933 bool isread) 934 { 935 /* SW: software increment write trap control */ 936 if (arm_feature(env, ARM_FEATURE_V8) 937 && arm_current_el(env) == 0 938 && (env->cp15.c9_pmuserenr & (1 << 1)) != 0 939 && !isread) { 940 return CP_ACCESS_OK; 941 } 942 943 return pmreg_access(env, ri, isread); 944 } 945 946 #ifndef CONFIG_USER_ONLY 947 948 static CPAccessResult pmreg_access_selr(CPUARMState *env, 949 const ARMCPRegInfo *ri, 950 bool isread) 951 { 952 /* ER: event counter read trap control */ 953 if (arm_feature(env, ARM_FEATURE_V8) 954 && arm_current_el(env) == 0 955 && (env->cp15.c9_pmuserenr & (1 << 3)) != 0) { 956 return CP_ACCESS_OK; 957 } 958 959 return pmreg_access(env, ri, isread); 960 } 961 962 static CPAccessResult pmreg_access_ccntr(CPUARMState *env, 963 const ARMCPRegInfo *ri, 964 bool isread) 965 { 966 /* CR: cycle counter read trap control */ 967 if (arm_feature(env, ARM_FEATURE_V8) 968 && arm_current_el(env) == 0 969 && (env->cp15.c9_pmuserenr & (1 << 2)) != 0 970 && isread) { 971 return CP_ACCESS_OK; 972 } 973 974 return pmreg_access(env, ri, isread); 975 } 976 977 static inline bool arm_ccnt_enabled(CPUARMState *env) 978 { 979 /* This does not support checking PMCCFILTR_EL0 register */ 980 981 if (!(env->cp15.c9_pmcr & PMCRE)) { 982 return false; 983 } 984 985 return true; 986 } 987 988 void pmccntr_sync(CPUARMState *env) 989 { 990 uint64_t temp_ticks; 991 992 temp_ticks = muldiv64(qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL), 993 ARM_CPU_FREQ, NANOSECONDS_PER_SECOND); 994 995 if (env->cp15.c9_pmcr & PMCRD) { 996 /* Increment once every 64 processor clock cycles */ 997 temp_ticks /= 64; 998 } 999 1000 if (arm_ccnt_enabled(env)) { 1001 env->cp15.c15_ccnt = temp_ticks - env->cp15.c15_ccnt; 1002 } 1003 } 1004 1005 static void pmcr_write(CPUARMState *env, const ARMCPRegInfo *ri, 1006 uint64_t value) 1007 { 1008 pmccntr_sync(env); 1009 1010 if (value & PMCRC) { 1011 /* The counter has been reset */ 1012 env->cp15.c15_ccnt = 0; 1013 } 1014 1015 /* only the DP, X, D and E bits are writable */ 1016 env->cp15.c9_pmcr &= ~0x39; 1017 env->cp15.c9_pmcr |= (value & 0x39); 1018 1019 pmccntr_sync(env); 1020 } 1021 1022 static uint64_t pmccntr_read(CPUARMState *env, const ARMCPRegInfo *ri) 1023 { 1024 uint64_t total_ticks; 1025 1026 if (!arm_ccnt_enabled(env)) { 1027 /* Counter is disabled, do not change value */ 1028 return env->cp15.c15_ccnt; 1029 } 1030 1031 total_ticks = muldiv64(qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL), 1032 ARM_CPU_FREQ, NANOSECONDS_PER_SECOND); 1033 1034 if (env->cp15.c9_pmcr & PMCRD) { 1035 /* Increment once every 64 processor clock cycles */ 1036 total_ticks /= 64; 1037 } 1038 return total_ticks - env->cp15.c15_ccnt; 1039 } 1040 1041 static void pmselr_write(CPUARMState *env, const ARMCPRegInfo *ri, 1042 uint64_t value) 1043 { 1044 /* The value of PMSELR.SEL affects the behavior of PMXEVTYPER and 1045 * PMXEVCNTR. We allow [0..31] to be written to PMSELR here; in the 1046 * meanwhile, we check PMSELR.SEL when PMXEVTYPER and PMXEVCNTR are 1047 * accessed. 1048 */ 1049 env->cp15.c9_pmselr = value & 0x1f; 1050 } 1051 1052 static void pmccntr_write(CPUARMState *env, const ARMCPRegInfo *ri, 1053 uint64_t value) 1054 { 1055 uint64_t total_ticks; 1056 1057 if (!arm_ccnt_enabled(env)) { 1058 /* Counter is disabled, set the absolute value */ 1059 env->cp15.c15_ccnt = value; 1060 return; 1061 } 1062 1063 total_ticks = muldiv64(qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL), 1064 ARM_CPU_FREQ, NANOSECONDS_PER_SECOND); 1065 1066 if (env->cp15.c9_pmcr & PMCRD) { 1067 /* Increment once every 64 processor clock cycles */ 1068 total_ticks /= 64; 1069 } 1070 env->cp15.c15_ccnt = total_ticks - value; 1071 } 1072 1073 static void pmccntr_write32(CPUARMState *env, const ARMCPRegInfo *ri, 1074 uint64_t value) 1075 { 1076 uint64_t cur_val = pmccntr_read(env, NULL); 1077 1078 pmccntr_write(env, ri, deposit64(cur_val, 0, 32, value)); 1079 } 1080 1081 #else /* CONFIG_USER_ONLY */ 1082 1083 void pmccntr_sync(CPUARMState *env) 1084 { 1085 } 1086 1087 #endif 1088 1089 static void pmccfiltr_write(CPUARMState *env, const ARMCPRegInfo *ri, 1090 uint64_t value) 1091 { 1092 pmccntr_sync(env); 1093 env->cp15.pmccfiltr_el0 = value & 0x7E000000; 1094 pmccntr_sync(env); 1095 } 1096 1097 static void pmcntenset_write(CPUARMState *env, const ARMCPRegInfo *ri, 1098 uint64_t value) 1099 { 1100 value &= (1 << 31); 1101 env->cp15.c9_pmcnten |= value; 1102 } 1103 1104 static void pmcntenclr_write(CPUARMState *env, const ARMCPRegInfo *ri, 1105 uint64_t value) 1106 { 1107 value &= (1 << 31); 1108 env->cp15.c9_pmcnten &= ~value; 1109 } 1110 1111 static void pmovsr_write(CPUARMState *env, const ARMCPRegInfo *ri, 1112 uint64_t value) 1113 { 1114 env->cp15.c9_pmovsr &= ~value; 1115 } 1116 1117 static void pmxevtyper_write(CPUARMState *env, const ARMCPRegInfo *ri, 1118 uint64_t value) 1119 { 1120 /* Attempts to access PMXEVTYPER are CONSTRAINED UNPREDICTABLE when 1121 * PMSELR value is equal to or greater than the number of implemented 1122 * counters, but not equal to 0x1f. We opt to behave as a RAZ/WI. 1123 */ 1124 if (env->cp15.c9_pmselr == 0x1f) { 1125 pmccfiltr_write(env, ri, value); 1126 } 1127 } 1128 1129 static uint64_t pmxevtyper_read(CPUARMState *env, const ARMCPRegInfo *ri) 1130 { 1131 /* We opt to behave as a RAZ/WI when attempts to access PMXEVTYPER 1132 * are CONSTRAINED UNPREDICTABLE. See comments in pmxevtyper_write(). 1133 */ 1134 if (env->cp15.c9_pmselr == 0x1f) { 1135 return env->cp15.pmccfiltr_el0; 1136 } else { 1137 return 0; 1138 } 1139 } 1140 1141 static void pmuserenr_write(CPUARMState *env, const ARMCPRegInfo *ri, 1142 uint64_t value) 1143 { 1144 if (arm_feature(env, ARM_FEATURE_V8)) { 1145 env->cp15.c9_pmuserenr = value & 0xf; 1146 } else { 1147 env->cp15.c9_pmuserenr = value & 1; 1148 } 1149 } 1150 1151 static void pmintenset_write(CPUARMState *env, const ARMCPRegInfo *ri, 1152 uint64_t value) 1153 { 1154 /* We have no event counters so only the C bit can be changed */ 1155 value &= (1 << 31); 1156 env->cp15.c9_pminten |= value; 1157 } 1158 1159 static void pmintenclr_write(CPUARMState *env, const ARMCPRegInfo *ri, 1160 uint64_t value) 1161 { 1162 value &= (1 << 31); 1163 env->cp15.c9_pminten &= ~value; 1164 } 1165 1166 static void vbar_write(CPUARMState *env, const ARMCPRegInfo *ri, 1167 uint64_t value) 1168 { 1169 /* Note that even though the AArch64 view of this register has bits 1170 * [10:0] all RES0 we can only mask the bottom 5, to comply with the 1171 * architectural requirements for bits which are RES0 only in some 1172 * contexts. (ARMv8 would permit us to do no masking at all, but ARMv7 1173 * requires the bottom five bits to be RAZ/WI because they're UNK/SBZP.) 1174 */ 1175 raw_write(env, ri, value & ~0x1FULL); 1176 } 1177 1178 static void scr_write(CPUARMState *env, const ARMCPRegInfo *ri, uint64_t value) 1179 { 1180 /* We only mask off bits that are RES0 both for AArch64 and AArch32. 1181 * For bits that vary between AArch32/64, code needs to check the 1182 * current execution mode before directly using the feature bit. 1183 */ 1184 uint32_t valid_mask = SCR_AARCH64_MASK | SCR_AARCH32_MASK; 1185 1186 if (!arm_feature(env, ARM_FEATURE_EL2)) { 1187 valid_mask &= ~SCR_HCE; 1188 1189 /* On ARMv7, SMD (or SCD as it is called in v7) is only 1190 * supported if EL2 exists. The bit is UNK/SBZP when 1191 * EL2 is unavailable. In QEMU ARMv7, we force it to always zero 1192 * when EL2 is unavailable. 1193 * On ARMv8, this bit is always available. 1194 */ 1195 if (arm_feature(env, ARM_FEATURE_V7) && 1196 !arm_feature(env, ARM_FEATURE_V8)) { 1197 valid_mask &= ~SCR_SMD; 1198 } 1199 } 1200 1201 /* Clear all-context RES0 bits. */ 1202 value &= valid_mask; 1203 raw_write(env, ri, value); 1204 } 1205 1206 static uint64_t ccsidr_read(CPUARMState *env, const ARMCPRegInfo *ri) 1207 { 1208 ARMCPU *cpu = arm_env_get_cpu(env); 1209 1210 /* Acquire the CSSELR index from the bank corresponding to the CCSIDR 1211 * bank 1212 */ 1213 uint32_t index = A32_BANKED_REG_GET(env, csselr, 1214 ri->secure & ARM_CP_SECSTATE_S); 1215 1216 return cpu->ccsidr[index]; 1217 } 1218 1219 static void csselr_write(CPUARMState *env, const ARMCPRegInfo *ri, 1220 uint64_t value) 1221 { 1222 raw_write(env, ri, value & 0xf); 1223 } 1224 1225 static uint64_t isr_read(CPUARMState *env, const ARMCPRegInfo *ri) 1226 { 1227 CPUState *cs = ENV_GET_CPU(env); 1228 uint64_t ret = 0; 1229 1230 if (cs->interrupt_request & CPU_INTERRUPT_HARD) { 1231 ret |= CPSR_I; 1232 } 1233 if (cs->interrupt_request & CPU_INTERRUPT_FIQ) { 1234 ret |= CPSR_F; 1235 } 1236 /* External aborts are not possible in QEMU so A bit is always clear */ 1237 return ret; 1238 } 1239 1240 static const ARMCPRegInfo v7_cp_reginfo[] = { 1241 /* the old v6 WFI, UNPREDICTABLE in v7 but we choose to NOP */ 1242 { .name = "NOP", .cp = 15, .crn = 7, .crm = 0, .opc1 = 0, .opc2 = 4, 1243 .access = PL1_W, .type = ARM_CP_NOP }, 1244 /* Performance monitors are implementation defined in v7, 1245 * but with an ARM recommended set of registers, which we 1246 * follow (although we don't actually implement any counters) 1247 * 1248 * Performance registers fall into three categories: 1249 * (a) always UNDEF in PL0, RW in PL1 (PMINTENSET, PMINTENCLR) 1250 * (b) RO in PL0 (ie UNDEF on write), RW in PL1 (PMUSERENR) 1251 * (c) UNDEF in PL0 if PMUSERENR.EN==0, otherwise accessible (all others) 1252 * For the cases controlled by PMUSERENR we must set .access to PL0_RW 1253 * or PL0_RO as appropriate and then check PMUSERENR in the helper fn. 1254 */ 1255 { .name = "PMCNTENSET", .cp = 15, .crn = 9, .crm = 12, .opc1 = 0, .opc2 = 1, 1256 .access = PL0_RW, .type = ARM_CP_ALIAS, 1257 .fieldoffset = offsetoflow32(CPUARMState, cp15.c9_pmcnten), 1258 .writefn = pmcntenset_write, 1259 .accessfn = pmreg_access, 1260 .raw_writefn = raw_write }, 1261 { .name = "PMCNTENSET_EL0", .state = ARM_CP_STATE_AA64, 1262 .opc0 = 3, .opc1 = 3, .crn = 9, .crm = 12, .opc2 = 1, 1263 .access = PL0_RW, .accessfn = pmreg_access, 1264 .fieldoffset = offsetof(CPUARMState, cp15.c9_pmcnten), .resetvalue = 0, 1265 .writefn = pmcntenset_write, .raw_writefn = raw_write }, 1266 { .name = "PMCNTENCLR", .cp = 15, .crn = 9, .crm = 12, .opc1 = 0, .opc2 = 2, 1267 .access = PL0_RW, 1268 .fieldoffset = offsetoflow32(CPUARMState, cp15.c9_pmcnten), 1269 .accessfn = pmreg_access, 1270 .writefn = pmcntenclr_write, 1271 .type = ARM_CP_ALIAS }, 1272 { .name = "PMCNTENCLR_EL0", .state = ARM_CP_STATE_AA64, 1273 .opc0 = 3, .opc1 = 3, .crn = 9, .crm = 12, .opc2 = 2, 1274 .access = PL0_RW, .accessfn = pmreg_access, 1275 .type = ARM_CP_ALIAS, 1276 .fieldoffset = offsetof(CPUARMState, cp15.c9_pmcnten), 1277 .writefn = pmcntenclr_write }, 1278 { .name = "PMOVSR", .cp = 15, .crn = 9, .crm = 12, .opc1 = 0, .opc2 = 3, 1279 .access = PL0_RW, .fieldoffset = offsetof(CPUARMState, cp15.c9_pmovsr), 1280 .accessfn = pmreg_access, 1281 .writefn = pmovsr_write, 1282 .raw_writefn = raw_write }, 1283 { .name = "PMOVSCLR_EL0", .state = ARM_CP_STATE_AA64, 1284 .opc0 = 3, .opc1 = 3, .crn = 9, .crm = 12, .opc2 = 3, 1285 .access = PL0_RW, .accessfn = pmreg_access, 1286 .type = ARM_CP_ALIAS, 1287 .fieldoffset = offsetof(CPUARMState, cp15.c9_pmovsr), 1288 .writefn = pmovsr_write, 1289 .raw_writefn = raw_write }, 1290 /* Unimplemented so WI. */ 1291 { .name = "PMSWINC", .cp = 15, .crn = 9, .crm = 12, .opc1 = 0, .opc2 = 4, 1292 .access = PL0_W, .accessfn = pmreg_access_swinc, .type = ARM_CP_NOP }, 1293 #ifndef CONFIG_USER_ONLY 1294 { .name = "PMSELR", .cp = 15, .crn = 9, .crm = 12, .opc1 = 0, .opc2 = 5, 1295 .access = PL0_RW, .type = ARM_CP_ALIAS, 1296 .fieldoffset = offsetoflow32(CPUARMState, cp15.c9_pmselr), 1297 .accessfn = pmreg_access_selr, .writefn = pmselr_write, 1298 .raw_writefn = raw_write}, 1299 { .name = "PMSELR_EL0", .state = ARM_CP_STATE_AA64, 1300 .opc0 = 3, .opc1 = 3, .crn = 9, .crm = 12, .opc2 = 5, 1301 .access = PL0_RW, .accessfn = pmreg_access_selr, 1302 .fieldoffset = offsetof(CPUARMState, cp15.c9_pmselr), 1303 .writefn = pmselr_write, .raw_writefn = raw_write, }, 1304 { .name = "PMCCNTR", .cp = 15, .crn = 9, .crm = 13, .opc1 = 0, .opc2 = 0, 1305 .access = PL0_RW, .resetvalue = 0, .type = ARM_CP_IO, 1306 .readfn = pmccntr_read, .writefn = pmccntr_write32, 1307 .accessfn = pmreg_access_ccntr }, 1308 { .name = "PMCCNTR_EL0", .state = ARM_CP_STATE_AA64, 1309 .opc0 = 3, .opc1 = 3, .crn = 9, .crm = 13, .opc2 = 0, 1310 .access = PL0_RW, .accessfn = pmreg_access_ccntr, 1311 .type = ARM_CP_IO, 1312 .readfn = pmccntr_read, .writefn = pmccntr_write, }, 1313 #endif 1314 { .name = "PMCCFILTR_EL0", .state = ARM_CP_STATE_AA64, 1315 .opc0 = 3, .opc1 = 3, .crn = 14, .crm = 15, .opc2 = 7, 1316 .writefn = pmccfiltr_write, 1317 .access = PL0_RW, .accessfn = pmreg_access, 1318 .type = ARM_CP_IO, 1319 .fieldoffset = offsetof(CPUARMState, cp15.pmccfiltr_el0), 1320 .resetvalue = 0, }, 1321 { .name = "PMXEVTYPER", .cp = 15, .crn = 9, .crm = 13, .opc1 = 0, .opc2 = 1, 1322 .access = PL0_RW, .type = ARM_CP_NO_RAW, .accessfn = pmreg_access, 1323 .writefn = pmxevtyper_write, .readfn = pmxevtyper_read }, 1324 { .name = "PMXEVTYPER_EL0", .state = ARM_CP_STATE_AA64, 1325 .opc0 = 3, .opc1 = 3, .crn = 9, .crm = 13, .opc2 = 1, 1326 .access = PL0_RW, .type = ARM_CP_NO_RAW, .accessfn = pmreg_access, 1327 .writefn = pmxevtyper_write, .readfn = pmxevtyper_read }, 1328 /* Unimplemented, RAZ/WI. */ 1329 { .name = "PMXEVCNTR", .cp = 15, .crn = 9, .crm = 13, .opc1 = 0, .opc2 = 2, 1330 .access = PL0_RW, .type = ARM_CP_CONST, .resetvalue = 0, 1331 .accessfn = pmreg_access_xevcntr }, 1332 { .name = "PMUSERENR", .cp = 15, .crn = 9, .crm = 14, .opc1 = 0, .opc2 = 0, 1333 .access = PL0_R | PL1_RW, .accessfn = access_tpm, 1334 .fieldoffset = offsetof(CPUARMState, cp15.c9_pmuserenr), 1335 .resetvalue = 0, 1336 .writefn = pmuserenr_write, .raw_writefn = raw_write }, 1337 { .name = "PMUSERENR_EL0", .state = ARM_CP_STATE_AA64, 1338 .opc0 = 3, .opc1 = 3, .crn = 9, .crm = 14, .opc2 = 0, 1339 .access = PL0_R | PL1_RW, .accessfn = access_tpm, .type = ARM_CP_ALIAS, 1340 .fieldoffset = offsetof(CPUARMState, cp15.c9_pmuserenr), 1341 .resetvalue = 0, 1342 .writefn = pmuserenr_write, .raw_writefn = raw_write }, 1343 { .name = "PMINTENSET", .cp = 15, .crn = 9, .crm = 14, .opc1 = 0, .opc2 = 1, 1344 .access = PL1_RW, .accessfn = access_tpm, 1345 .type = ARM_CP_ALIAS, 1346 .fieldoffset = offsetoflow32(CPUARMState, cp15.c9_pminten), 1347 .resetvalue = 0, 1348 .writefn = pmintenset_write, .raw_writefn = raw_write }, 1349 { .name = "PMINTENSET_EL1", .state = ARM_CP_STATE_AA64, 1350 .opc0 = 3, .opc1 = 0, .crn = 9, .crm = 14, .opc2 = 1, 1351 .access = PL1_RW, .accessfn = access_tpm, 1352 .type = ARM_CP_IO, 1353 .fieldoffset = offsetof(CPUARMState, cp15.c9_pminten), 1354 .writefn = pmintenset_write, .raw_writefn = raw_write, 1355 .resetvalue = 0x0 }, 1356 { .name = "PMINTENCLR", .cp = 15, .crn = 9, .crm = 14, .opc1 = 0, .opc2 = 2, 1357 .access = PL1_RW, .accessfn = access_tpm, .type = ARM_CP_ALIAS, 1358 .fieldoffset = offsetof(CPUARMState, cp15.c9_pminten), 1359 .writefn = pmintenclr_write, }, 1360 { .name = "PMINTENCLR_EL1", .state = ARM_CP_STATE_AA64, 1361 .opc0 = 3, .opc1 = 0, .crn = 9, .crm = 14, .opc2 = 2, 1362 .access = PL1_RW, .accessfn = access_tpm, .type = ARM_CP_ALIAS, 1363 .fieldoffset = offsetof(CPUARMState, cp15.c9_pminten), 1364 .writefn = pmintenclr_write }, 1365 { .name = "CCSIDR", .state = ARM_CP_STATE_BOTH, 1366 .opc0 = 3, .crn = 0, .crm = 0, .opc1 = 1, .opc2 = 0, 1367 .access = PL1_R, .readfn = ccsidr_read, .type = ARM_CP_NO_RAW }, 1368 { .name = "CSSELR", .state = ARM_CP_STATE_BOTH, 1369 .opc0 = 3, .crn = 0, .crm = 0, .opc1 = 2, .opc2 = 0, 1370 .access = PL1_RW, .writefn = csselr_write, .resetvalue = 0, 1371 .bank_fieldoffsets = { offsetof(CPUARMState, cp15.csselr_s), 1372 offsetof(CPUARMState, cp15.csselr_ns) } }, 1373 /* Auxiliary ID register: this actually has an IMPDEF value but for now 1374 * just RAZ for all cores: 1375 */ 1376 { .name = "AIDR", .state = ARM_CP_STATE_BOTH, 1377 .opc0 = 3, .opc1 = 1, .crn = 0, .crm = 0, .opc2 = 7, 1378 .access = PL1_R, .type = ARM_CP_CONST, .resetvalue = 0 }, 1379 /* Auxiliary fault status registers: these also are IMPDEF, and we 1380 * choose to RAZ/WI for all cores. 1381 */ 1382 { .name = "AFSR0_EL1", .state = ARM_CP_STATE_BOTH, 1383 .opc0 = 3, .opc1 = 0, .crn = 5, .crm = 1, .opc2 = 0, 1384 .access = PL1_RW, .type = ARM_CP_CONST, .resetvalue = 0 }, 1385 { .name = "AFSR1_EL1", .state = ARM_CP_STATE_BOTH, 1386 .opc0 = 3, .opc1 = 0, .crn = 5, .crm = 1, .opc2 = 1, 1387 .access = PL1_RW, .type = ARM_CP_CONST, .resetvalue = 0 }, 1388 /* MAIR can just read-as-written because we don't implement caches 1389 * and so don't need to care about memory attributes. 1390 */ 1391 { .name = "MAIR_EL1", .state = ARM_CP_STATE_AA64, 1392 .opc0 = 3, .opc1 = 0, .crn = 10, .crm = 2, .opc2 = 0, 1393 .access = PL1_RW, .fieldoffset = offsetof(CPUARMState, cp15.mair_el[1]), 1394 .resetvalue = 0 }, 1395 { .name = "MAIR_EL3", .state = ARM_CP_STATE_AA64, 1396 .opc0 = 3, .opc1 = 6, .crn = 10, .crm = 2, .opc2 = 0, 1397 .access = PL3_RW, .fieldoffset = offsetof(CPUARMState, cp15.mair_el[3]), 1398 .resetvalue = 0 }, 1399 /* For non-long-descriptor page tables these are PRRR and NMRR; 1400 * regardless they still act as reads-as-written for QEMU. 1401 */ 1402 /* MAIR0/1 are defined separately from their 64-bit counterpart which 1403 * allows them to assign the correct fieldoffset based on the endianness 1404 * handled in the field definitions. 1405 */ 1406 { .name = "MAIR0", .state = ARM_CP_STATE_AA32, 1407 .cp = 15, .opc1 = 0, .crn = 10, .crm = 2, .opc2 = 0, .access = PL1_RW, 1408 .bank_fieldoffsets = { offsetof(CPUARMState, cp15.mair0_s), 1409 offsetof(CPUARMState, cp15.mair0_ns) }, 1410 .resetfn = arm_cp_reset_ignore }, 1411 { .name = "MAIR1", .state = ARM_CP_STATE_AA32, 1412 .cp = 15, .opc1 = 0, .crn = 10, .crm = 2, .opc2 = 1, .access = PL1_RW, 1413 .bank_fieldoffsets = { offsetof(CPUARMState, cp15.mair1_s), 1414 offsetof(CPUARMState, cp15.mair1_ns) }, 1415 .resetfn = arm_cp_reset_ignore }, 1416 { .name = "ISR_EL1", .state = ARM_CP_STATE_BOTH, 1417 .opc0 = 3, .opc1 = 0, .crn = 12, .crm = 1, .opc2 = 0, 1418 .type = ARM_CP_NO_RAW, .access = PL1_R, .readfn = isr_read }, 1419 /* 32 bit ITLB invalidates */ 1420 { .name = "ITLBIALL", .cp = 15, .opc1 = 0, .crn = 8, .crm = 5, .opc2 = 0, 1421 .type = ARM_CP_NO_RAW, .access = PL1_W, .writefn = tlbiall_write }, 1422 { .name = "ITLBIMVA", .cp = 15, .opc1 = 0, .crn = 8, .crm = 5, .opc2 = 1, 1423 .type = ARM_CP_NO_RAW, .access = PL1_W, .writefn = tlbimva_write }, 1424 { .name = "ITLBIASID", .cp = 15, .opc1 = 0, .crn = 8, .crm = 5, .opc2 = 2, 1425 .type = ARM_CP_NO_RAW, .access = PL1_W, .writefn = tlbiasid_write }, 1426 /* 32 bit DTLB invalidates */ 1427 { .name = "DTLBIALL", .cp = 15, .opc1 = 0, .crn = 8, .crm = 6, .opc2 = 0, 1428 .type = ARM_CP_NO_RAW, .access = PL1_W, .writefn = tlbiall_write }, 1429 { .name = "DTLBIMVA", .cp = 15, .opc1 = 0, .crn = 8, .crm = 6, .opc2 = 1, 1430 .type = ARM_CP_NO_RAW, .access = PL1_W, .writefn = tlbimva_write }, 1431 { .name = "DTLBIASID", .cp = 15, .opc1 = 0, .crn = 8, .crm = 6, .opc2 = 2, 1432 .type = ARM_CP_NO_RAW, .access = PL1_W, .writefn = tlbiasid_write }, 1433 /* 32 bit TLB invalidates */ 1434 { .name = "TLBIALL", .cp = 15, .opc1 = 0, .crn = 8, .crm = 7, .opc2 = 0, 1435 .type = ARM_CP_NO_RAW, .access = PL1_W, .writefn = tlbiall_write }, 1436 { .name = "TLBIMVA", .cp = 15, .opc1 = 0, .crn = 8, .crm = 7, .opc2 = 1, 1437 .type = ARM_CP_NO_RAW, .access = PL1_W, .writefn = tlbimva_write }, 1438 { .name = "TLBIASID", .cp = 15, .opc1 = 0, .crn = 8, .crm = 7, .opc2 = 2, 1439 .type = ARM_CP_NO_RAW, .access = PL1_W, .writefn = tlbiasid_write }, 1440 { .name = "TLBIMVAA", .cp = 15, .opc1 = 0, .crn = 8, .crm = 7, .opc2 = 3, 1441 .type = ARM_CP_NO_RAW, .access = PL1_W, .writefn = tlbimvaa_write }, 1442 REGINFO_SENTINEL 1443 }; 1444 1445 static const ARMCPRegInfo v7mp_cp_reginfo[] = { 1446 /* 32 bit TLB invalidates, Inner Shareable */ 1447 { .name = "TLBIALLIS", .cp = 15, .opc1 = 0, .crn = 8, .crm = 3, .opc2 = 0, 1448 .type = ARM_CP_NO_RAW, .access = PL1_W, .writefn = tlbiall_is_write }, 1449 { .name = "TLBIMVAIS", .cp = 15, .opc1 = 0, .crn = 8, .crm = 3, .opc2 = 1, 1450 .type = ARM_CP_NO_RAW, .access = PL1_W, .writefn = tlbimva_is_write }, 1451 { .name = "TLBIASIDIS", .cp = 15, .opc1 = 0, .crn = 8, .crm = 3, .opc2 = 2, 1452 .type = ARM_CP_NO_RAW, .access = PL1_W, 1453 .writefn = tlbiasid_is_write }, 1454 { .name = "TLBIMVAAIS", .cp = 15, .opc1 = 0, .crn = 8, .crm = 3, .opc2 = 3, 1455 .type = ARM_CP_NO_RAW, .access = PL1_W, 1456 .writefn = tlbimvaa_is_write }, 1457 REGINFO_SENTINEL 1458 }; 1459 1460 static void teecr_write(CPUARMState *env, const ARMCPRegInfo *ri, 1461 uint64_t value) 1462 { 1463 value &= 1; 1464 env->teecr = value; 1465 } 1466 1467 static CPAccessResult teehbr_access(CPUARMState *env, const ARMCPRegInfo *ri, 1468 bool isread) 1469 { 1470 if (arm_current_el(env) == 0 && (env->teecr & 1)) { 1471 return CP_ACCESS_TRAP; 1472 } 1473 return CP_ACCESS_OK; 1474 } 1475 1476 static const ARMCPRegInfo t2ee_cp_reginfo[] = { 1477 { .name = "TEECR", .cp = 14, .crn = 0, .crm = 0, .opc1 = 6, .opc2 = 0, 1478 .access = PL1_RW, .fieldoffset = offsetof(CPUARMState, teecr), 1479 .resetvalue = 0, 1480 .writefn = teecr_write }, 1481 { .name = "TEEHBR", .cp = 14, .crn = 1, .crm = 0, .opc1 = 6, .opc2 = 0, 1482 .access = PL0_RW, .fieldoffset = offsetof(CPUARMState, teehbr), 1483 .accessfn = teehbr_access, .resetvalue = 0 }, 1484 REGINFO_SENTINEL 1485 }; 1486 1487 static const ARMCPRegInfo v6k_cp_reginfo[] = { 1488 { .name = "TPIDR_EL0", .state = ARM_CP_STATE_AA64, 1489 .opc0 = 3, .opc1 = 3, .opc2 = 2, .crn = 13, .crm = 0, 1490 .access = PL0_RW, 1491 .fieldoffset = offsetof(CPUARMState, cp15.tpidr_el[0]), .resetvalue = 0 }, 1492 { .name = "TPIDRURW", .cp = 15, .crn = 13, .crm = 0, .opc1 = 0, .opc2 = 2, 1493 .access = PL0_RW, 1494 .bank_fieldoffsets = { offsetoflow32(CPUARMState, cp15.tpidrurw_s), 1495 offsetoflow32(CPUARMState, cp15.tpidrurw_ns) }, 1496 .resetfn = arm_cp_reset_ignore }, 1497 { .name = "TPIDRRO_EL0", .state = ARM_CP_STATE_AA64, 1498 .opc0 = 3, .opc1 = 3, .opc2 = 3, .crn = 13, .crm = 0, 1499 .access = PL0_R|PL1_W, 1500 .fieldoffset = offsetof(CPUARMState, cp15.tpidrro_el[0]), 1501 .resetvalue = 0}, 1502 { .name = "TPIDRURO", .cp = 15, .crn = 13, .crm = 0, .opc1 = 0, .opc2 = 3, 1503 .access = PL0_R|PL1_W, 1504 .bank_fieldoffsets = { offsetoflow32(CPUARMState, cp15.tpidruro_s), 1505 offsetoflow32(CPUARMState, cp15.tpidruro_ns) }, 1506 .resetfn = arm_cp_reset_ignore }, 1507 { .name = "TPIDR_EL1", .state = ARM_CP_STATE_AA64, 1508 .opc0 = 3, .opc1 = 0, .opc2 = 4, .crn = 13, .crm = 0, 1509 .access = PL1_RW, 1510 .fieldoffset = offsetof(CPUARMState, cp15.tpidr_el[1]), .resetvalue = 0 }, 1511 { .name = "TPIDRPRW", .opc1 = 0, .cp = 15, .crn = 13, .crm = 0, .opc2 = 4, 1512 .access = PL1_RW, 1513 .bank_fieldoffsets = { offsetoflow32(CPUARMState, cp15.tpidrprw_s), 1514 offsetoflow32(CPUARMState, cp15.tpidrprw_ns) }, 1515 .resetvalue = 0 }, 1516 REGINFO_SENTINEL 1517 }; 1518 1519 #ifndef CONFIG_USER_ONLY 1520 1521 static CPAccessResult gt_cntfrq_access(CPUARMState *env, const ARMCPRegInfo *ri, 1522 bool isread) 1523 { 1524 /* CNTFRQ: not visible from PL0 if both PL0PCTEN and PL0VCTEN are zero. 1525 * Writable only at the highest implemented exception level. 1526 */ 1527 int el = arm_current_el(env); 1528 1529 switch (el) { 1530 case 0: 1531 if (!extract32(env->cp15.c14_cntkctl, 0, 2)) { 1532 return CP_ACCESS_TRAP; 1533 } 1534 break; 1535 case 1: 1536 if (!isread && ri->state == ARM_CP_STATE_AA32 && 1537 arm_is_secure_below_el3(env)) { 1538 /* Accesses from 32-bit Secure EL1 UNDEF (*not* trap to EL3!) */ 1539 return CP_ACCESS_TRAP_UNCATEGORIZED; 1540 } 1541 break; 1542 case 2: 1543 case 3: 1544 break; 1545 } 1546 1547 if (!isread && el < arm_highest_el(env)) { 1548 return CP_ACCESS_TRAP_UNCATEGORIZED; 1549 } 1550 1551 return CP_ACCESS_OK; 1552 } 1553 1554 static CPAccessResult gt_counter_access(CPUARMState *env, int timeridx, 1555 bool isread) 1556 { 1557 unsigned int cur_el = arm_current_el(env); 1558 bool secure = arm_is_secure(env); 1559 1560 /* CNT[PV]CT: not visible from PL0 if ELO[PV]CTEN is zero */ 1561 if (cur_el == 0 && 1562 !extract32(env->cp15.c14_cntkctl, timeridx, 1)) { 1563 return CP_ACCESS_TRAP; 1564 } 1565 1566 if (arm_feature(env, ARM_FEATURE_EL2) && 1567 timeridx == GTIMER_PHYS && !secure && cur_el < 2 && 1568 !extract32(env->cp15.cnthctl_el2, 0, 1)) { 1569 return CP_ACCESS_TRAP_EL2; 1570 } 1571 return CP_ACCESS_OK; 1572 } 1573 1574 static CPAccessResult gt_timer_access(CPUARMState *env, int timeridx, 1575 bool isread) 1576 { 1577 unsigned int cur_el = arm_current_el(env); 1578 bool secure = arm_is_secure(env); 1579 1580 /* CNT[PV]_CVAL, CNT[PV]_CTL, CNT[PV]_TVAL: not visible from PL0 if 1581 * EL0[PV]TEN is zero. 1582 */ 1583 if (cur_el == 0 && 1584 !extract32(env->cp15.c14_cntkctl, 9 - timeridx, 1)) { 1585 return CP_ACCESS_TRAP; 1586 } 1587 1588 if (arm_feature(env, ARM_FEATURE_EL2) && 1589 timeridx == GTIMER_PHYS && !secure && cur_el < 2 && 1590 !extract32(env->cp15.cnthctl_el2, 1, 1)) { 1591 return CP_ACCESS_TRAP_EL2; 1592 } 1593 return CP_ACCESS_OK; 1594 } 1595 1596 static CPAccessResult gt_pct_access(CPUARMState *env, 1597 const ARMCPRegInfo *ri, 1598 bool isread) 1599 { 1600 return gt_counter_access(env, GTIMER_PHYS, isread); 1601 } 1602 1603 static CPAccessResult gt_vct_access(CPUARMState *env, 1604 const ARMCPRegInfo *ri, 1605 bool isread) 1606 { 1607 return gt_counter_access(env, GTIMER_VIRT, isread); 1608 } 1609 1610 static CPAccessResult gt_ptimer_access(CPUARMState *env, const ARMCPRegInfo *ri, 1611 bool isread) 1612 { 1613 return gt_timer_access(env, GTIMER_PHYS, isread); 1614 } 1615 1616 static CPAccessResult gt_vtimer_access(CPUARMState *env, const ARMCPRegInfo *ri, 1617 bool isread) 1618 { 1619 return gt_timer_access(env, GTIMER_VIRT, isread); 1620 } 1621 1622 static CPAccessResult gt_stimer_access(CPUARMState *env, 1623 const ARMCPRegInfo *ri, 1624 bool isread) 1625 { 1626 /* The AArch64 register view of the secure physical timer is 1627 * always accessible from EL3, and configurably accessible from 1628 * Secure EL1. 1629 */ 1630 switch (arm_current_el(env)) { 1631 case 1: 1632 if (!arm_is_secure(env)) { 1633 return CP_ACCESS_TRAP; 1634 } 1635 if (!(env->cp15.scr_el3 & SCR_ST)) { 1636 return CP_ACCESS_TRAP_EL3; 1637 } 1638 return CP_ACCESS_OK; 1639 case 0: 1640 case 2: 1641 return CP_ACCESS_TRAP; 1642 case 3: 1643 return CP_ACCESS_OK; 1644 default: 1645 g_assert_not_reached(); 1646 } 1647 } 1648 1649 static uint64_t gt_get_countervalue(CPUARMState *env) 1650 { 1651 return qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL) / GTIMER_SCALE; 1652 } 1653 1654 static void gt_recalc_timer(ARMCPU *cpu, int timeridx) 1655 { 1656 ARMGenericTimer *gt = &cpu->env.cp15.c14_timer[timeridx]; 1657 1658 if (gt->ctl & 1) { 1659 /* Timer enabled: calculate and set current ISTATUS, irq, and 1660 * reset timer to when ISTATUS next has to change 1661 */ 1662 uint64_t offset = timeridx == GTIMER_VIRT ? 1663 cpu->env.cp15.cntvoff_el2 : 0; 1664 uint64_t count = gt_get_countervalue(&cpu->env); 1665 /* Note that this must be unsigned 64 bit arithmetic: */ 1666 int istatus = count - offset >= gt->cval; 1667 uint64_t nexttick; 1668 int irqstate; 1669 1670 gt->ctl = deposit32(gt->ctl, 2, 1, istatus); 1671 1672 irqstate = (istatus && !(gt->ctl & 2)); 1673 qemu_set_irq(cpu->gt_timer_outputs[timeridx], irqstate); 1674 1675 if (istatus) { 1676 /* Next transition is when count rolls back over to zero */ 1677 nexttick = UINT64_MAX; 1678 } else { 1679 /* Next transition is when we hit cval */ 1680 nexttick = gt->cval + offset; 1681 } 1682 /* Note that the desired next expiry time might be beyond the 1683 * signed-64-bit range of a QEMUTimer -- in this case we just 1684 * set the timer for as far in the future as possible. When the 1685 * timer expires we will reset the timer for any remaining period. 1686 */ 1687 if (nexttick > INT64_MAX / GTIMER_SCALE) { 1688 nexttick = INT64_MAX / GTIMER_SCALE; 1689 } 1690 timer_mod(cpu->gt_timer[timeridx], nexttick); 1691 trace_arm_gt_recalc(timeridx, irqstate, nexttick); 1692 } else { 1693 /* Timer disabled: ISTATUS and timer output always clear */ 1694 gt->ctl &= ~4; 1695 qemu_set_irq(cpu->gt_timer_outputs[timeridx], 0); 1696 timer_del(cpu->gt_timer[timeridx]); 1697 trace_arm_gt_recalc_disabled(timeridx); 1698 } 1699 } 1700 1701 static void gt_timer_reset(CPUARMState *env, const ARMCPRegInfo *ri, 1702 int timeridx) 1703 { 1704 ARMCPU *cpu = arm_env_get_cpu(env); 1705 1706 timer_del(cpu->gt_timer[timeridx]); 1707 } 1708 1709 static uint64_t gt_cnt_read(CPUARMState *env, const ARMCPRegInfo *ri) 1710 { 1711 return gt_get_countervalue(env); 1712 } 1713 1714 static uint64_t gt_virt_cnt_read(CPUARMState *env, const ARMCPRegInfo *ri) 1715 { 1716 return gt_get_countervalue(env) - env->cp15.cntvoff_el2; 1717 } 1718 1719 static void gt_cval_write(CPUARMState *env, const ARMCPRegInfo *ri, 1720 int timeridx, 1721 uint64_t value) 1722 { 1723 trace_arm_gt_cval_write(timeridx, value); 1724 env->cp15.c14_timer[timeridx].cval = value; 1725 gt_recalc_timer(arm_env_get_cpu(env), timeridx); 1726 } 1727 1728 static uint64_t gt_tval_read(CPUARMState *env, const ARMCPRegInfo *ri, 1729 int timeridx) 1730 { 1731 uint64_t offset = timeridx == GTIMER_VIRT ? env->cp15.cntvoff_el2 : 0; 1732 1733 return (uint32_t)(env->cp15.c14_timer[timeridx].cval - 1734 (gt_get_countervalue(env) - offset)); 1735 } 1736 1737 static void gt_tval_write(CPUARMState *env, const ARMCPRegInfo *ri, 1738 int timeridx, 1739 uint64_t value) 1740 { 1741 uint64_t offset = timeridx == GTIMER_VIRT ? env->cp15.cntvoff_el2 : 0; 1742 1743 trace_arm_gt_tval_write(timeridx, value); 1744 env->cp15.c14_timer[timeridx].cval = gt_get_countervalue(env) - offset + 1745 sextract64(value, 0, 32); 1746 gt_recalc_timer(arm_env_get_cpu(env), timeridx); 1747 } 1748 1749 static void gt_ctl_write(CPUARMState *env, const ARMCPRegInfo *ri, 1750 int timeridx, 1751 uint64_t value) 1752 { 1753 ARMCPU *cpu = arm_env_get_cpu(env); 1754 uint32_t oldval = env->cp15.c14_timer[timeridx].ctl; 1755 1756 trace_arm_gt_ctl_write(timeridx, value); 1757 env->cp15.c14_timer[timeridx].ctl = deposit64(oldval, 0, 2, value); 1758 if ((oldval ^ value) & 1) { 1759 /* Enable toggled */ 1760 gt_recalc_timer(cpu, timeridx); 1761 } else if ((oldval ^ value) & 2) { 1762 /* IMASK toggled: don't need to recalculate, 1763 * just set the interrupt line based on ISTATUS 1764 */ 1765 int irqstate = (oldval & 4) && !(value & 2); 1766 1767 trace_arm_gt_imask_toggle(timeridx, irqstate); 1768 qemu_set_irq(cpu->gt_timer_outputs[timeridx], irqstate); 1769 } 1770 } 1771 1772 static void gt_phys_timer_reset(CPUARMState *env, const ARMCPRegInfo *ri) 1773 { 1774 gt_timer_reset(env, ri, GTIMER_PHYS); 1775 } 1776 1777 static void gt_phys_cval_write(CPUARMState *env, const ARMCPRegInfo *ri, 1778 uint64_t value) 1779 { 1780 gt_cval_write(env, ri, GTIMER_PHYS, value); 1781 } 1782 1783 static uint64_t gt_phys_tval_read(CPUARMState *env, const ARMCPRegInfo *ri) 1784 { 1785 return gt_tval_read(env, ri, GTIMER_PHYS); 1786 } 1787 1788 static void gt_phys_tval_write(CPUARMState *env, const ARMCPRegInfo *ri, 1789 uint64_t value) 1790 { 1791 gt_tval_write(env, ri, GTIMER_PHYS, value); 1792 } 1793 1794 static void gt_phys_ctl_write(CPUARMState *env, const ARMCPRegInfo *ri, 1795 uint64_t value) 1796 { 1797 gt_ctl_write(env, ri, GTIMER_PHYS, value); 1798 } 1799 1800 static void gt_virt_timer_reset(CPUARMState *env, const ARMCPRegInfo *ri) 1801 { 1802 gt_timer_reset(env, ri, GTIMER_VIRT); 1803 } 1804 1805 static void gt_virt_cval_write(CPUARMState *env, const ARMCPRegInfo *ri, 1806 uint64_t value) 1807 { 1808 gt_cval_write(env, ri, GTIMER_VIRT, value); 1809 } 1810 1811 static uint64_t gt_virt_tval_read(CPUARMState *env, const ARMCPRegInfo *ri) 1812 { 1813 return gt_tval_read(env, ri, GTIMER_VIRT); 1814 } 1815 1816 static void gt_virt_tval_write(CPUARMState *env, const ARMCPRegInfo *ri, 1817 uint64_t value) 1818 { 1819 gt_tval_write(env, ri, GTIMER_VIRT, value); 1820 } 1821 1822 static void gt_virt_ctl_write(CPUARMState *env, const ARMCPRegInfo *ri, 1823 uint64_t value) 1824 { 1825 gt_ctl_write(env, ri, GTIMER_VIRT, value); 1826 } 1827 1828 static void gt_cntvoff_write(CPUARMState *env, const ARMCPRegInfo *ri, 1829 uint64_t value) 1830 { 1831 ARMCPU *cpu = arm_env_get_cpu(env); 1832 1833 trace_arm_gt_cntvoff_write(value); 1834 raw_write(env, ri, value); 1835 gt_recalc_timer(cpu, GTIMER_VIRT); 1836 } 1837 1838 static void gt_hyp_timer_reset(CPUARMState *env, const ARMCPRegInfo *ri) 1839 { 1840 gt_timer_reset(env, ri, GTIMER_HYP); 1841 } 1842 1843 static void gt_hyp_cval_write(CPUARMState *env, const ARMCPRegInfo *ri, 1844 uint64_t value) 1845 { 1846 gt_cval_write(env, ri, GTIMER_HYP, value); 1847 } 1848 1849 static uint64_t gt_hyp_tval_read(CPUARMState *env, const ARMCPRegInfo *ri) 1850 { 1851 return gt_tval_read(env, ri, GTIMER_HYP); 1852 } 1853 1854 static void gt_hyp_tval_write(CPUARMState *env, const ARMCPRegInfo *ri, 1855 uint64_t value) 1856 { 1857 gt_tval_write(env, ri, GTIMER_HYP, value); 1858 } 1859 1860 static void gt_hyp_ctl_write(CPUARMState *env, const ARMCPRegInfo *ri, 1861 uint64_t value) 1862 { 1863 gt_ctl_write(env, ri, GTIMER_HYP, value); 1864 } 1865 1866 static void gt_sec_timer_reset(CPUARMState *env, const ARMCPRegInfo *ri) 1867 { 1868 gt_timer_reset(env, ri, GTIMER_SEC); 1869 } 1870 1871 static void gt_sec_cval_write(CPUARMState *env, const ARMCPRegInfo *ri, 1872 uint64_t value) 1873 { 1874 gt_cval_write(env, ri, GTIMER_SEC, value); 1875 } 1876 1877 static uint64_t gt_sec_tval_read(CPUARMState *env, const ARMCPRegInfo *ri) 1878 { 1879 return gt_tval_read(env, ri, GTIMER_SEC); 1880 } 1881 1882 static void gt_sec_tval_write(CPUARMState *env, const ARMCPRegInfo *ri, 1883 uint64_t value) 1884 { 1885 gt_tval_write(env, ri, GTIMER_SEC, value); 1886 } 1887 1888 static void gt_sec_ctl_write(CPUARMState *env, const ARMCPRegInfo *ri, 1889 uint64_t value) 1890 { 1891 gt_ctl_write(env, ri, GTIMER_SEC, value); 1892 } 1893 1894 void arm_gt_ptimer_cb(void *opaque) 1895 { 1896 ARMCPU *cpu = opaque; 1897 1898 gt_recalc_timer(cpu, GTIMER_PHYS); 1899 } 1900 1901 void arm_gt_vtimer_cb(void *opaque) 1902 { 1903 ARMCPU *cpu = opaque; 1904 1905 gt_recalc_timer(cpu, GTIMER_VIRT); 1906 } 1907 1908 void arm_gt_htimer_cb(void *opaque) 1909 { 1910 ARMCPU *cpu = opaque; 1911 1912 gt_recalc_timer(cpu, GTIMER_HYP); 1913 } 1914 1915 void arm_gt_stimer_cb(void *opaque) 1916 { 1917 ARMCPU *cpu = opaque; 1918 1919 gt_recalc_timer(cpu, GTIMER_SEC); 1920 } 1921 1922 static const ARMCPRegInfo generic_timer_cp_reginfo[] = { 1923 /* Note that CNTFRQ is purely reads-as-written for the benefit 1924 * of software; writing it doesn't actually change the timer frequency. 1925 * Our reset value matches the fixed frequency we implement the timer at. 1926 */ 1927 { .name = "CNTFRQ", .cp = 15, .crn = 14, .crm = 0, .opc1 = 0, .opc2 = 0, 1928 .type = ARM_CP_ALIAS, 1929 .access = PL1_RW | PL0_R, .accessfn = gt_cntfrq_access, 1930 .fieldoffset = offsetoflow32(CPUARMState, cp15.c14_cntfrq), 1931 }, 1932 { .name = "CNTFRQ_EL0", .state = ARM_CP_STATE_AA64, 1933 .opc0 = 3, .opc1 = 3, .crn = 14, .crm = 0, .opc2 = 0, 1934 .access = PL1_RW | PL0_R, .accessfn = gt_cntfrq_access, 1935 .fieldoffset = offsetof(CPUARMState, cp15.c14_cntfrq), 1936 .resetvalue = (1000 * 1000 * 1000) / GTIMER_SCALE, 1937 }, 1938 /* overall control: mostly access permissions */ 1939 { .name = "CNTKCTL", .state = ARM_CP_STATE_BOTH, 1940 .opc0 = 3, .opc1 = 0, .crn = 14, .crm = 1, .opc2 = 0, 1941 .access = PL1_RW, 1942 .fieldoffset = offsetof(CPUARMState, cp15.c14_cntkctl), 1943 .resetvalue = 0, 1944 }, 1945 /* per-timer control */ 1946 { .name = "CNTP_CTL", .cp = 15, .crn = 14, .crm = 2, .opc1 = 0, .opc2 = 1, 1947 .secure = ARM_CP_SECSTATE_NS, 1948 .type = ARM_CP_IO | ARM_CP_ALIAS, .access = PL1_RW | PL0_R, 1949 .accessfn = gt_ptimer_access, 1950 .fieldoffset = offsetoflow32(CPUARMState, 1951 cp15.c14_timer[GTIMER_PHYS].ctl), 1952 .writefn = gt_phys_ctl_write, .raw_writefn = raw_write, 1953 }, 1954 { .name = "CNTP_CTL(S)", 1955 .cp = 15, .crn = 14, .crm = 2, .opc1 = 0, .opc2 = 1, 1956 .secure = ARM_CP_SECSTATE_S, 1957 .type = ARM_CP_IO | ARM_CP_ALIAS, .access = PL1_RW | PL0_R, 1958 .accessfn = gt_ptimer_access, 1959 .fieldoffset = offsetoflow32(CPUARMState, 1960 cp15.c14_timer[GTIMER_SEC].ctl), 1961 .writefn = gt_sec_ctl_write, .raw_writefn = raw_write, 1962 }, 1963 { .name = "CNTP_CTL_EL0", .state = ARM_CP_STATE_AA64, 1964 .opc0 = 3, .opc1 = 3, .crn = 14, .crm = 2, .opc2 = 1, 1965 .type = ARM_CP_IO, .access = PL1_RW | PL0_R, 1966 .accessfn = gt_ptimer_access, 1967 .fieldoffset = offsetof(CPUARMState, cp15.c14_timer[GTIMER_PHYS].ctl), 1968 .resetvalue = 0, 1969 .writefn = gt_phys_ctl_write, .raw_writefn = raw_write, 1970 }, 1971 { .name = "CNTV_CTL", .cp = 15, .crn = 14, .crm = 3, .opc1 = 0, .opc2 = 1, 1972 .type = ARM_CP_IO | ARM_CP_ALIAS, .access = PL1_RW | PL0_R, 1973 .accessfn = gt_vtimer_access, 1974 .fieldoffset = offsetoflow32(CPUARMState, 1975 cp15.c14_timer[GTIMER_VIRT].ctl), 1976 .writefn = gt_virt_ctl_write, .raw_writefn = raw_write, 1977 }, 1978 { .name = "CNTV_CTL_EL0", .state = ARM_CP_STATE_AA64, 1979 .opc0 = 3, .opc1 = 3, .crn = 14, .crm = 3, .opc2 = 1, 1980 .type = ARM_CP_IO, .access = PL1_RW | PL0_R, 1981 .accessfn = gt_vtimer_access, 1982 .fieldoffset = offsetof(CPUARMState, cp15.c14_timer[GTIMER_VIRT].ctl), 1983 .resetvalue = 0, 1984 .writefn = gt_virt_ctl_write, .raw_writefn = raw_write, 1985 }, 1986 /* TimerValue views: a 32 bit downcounting view of the underlying state */ 1987 { .name = "CNTP_TVAL", .cp = 15, .crn = 14, .crm = 2, .opc1 = 0, .opc2 = 0, 1988 .secure = ARM_CP_SECSTATE_NS, 1989 .type = ARM_CP_NO_RAW | ARM_CP_IO, .access = PL1_RW | PL0_R, 1990 .accessfn = gt_ptimer_access, 1991 .readfn = gt_phys_tval_read, .writefn = gt_phys_tval_write, 1992 }, 1993 { .name = "CNTP_TVAL(S)", 1994 .cp = 15, .crn = 14, .crm = 2, .opc1 = 0, .opc2 = 0, 1995 .secure = ARM_CP_SECSTATE_S, 1996 .type = ARM_CP_NO_RAW | ARM_CP_IO, .access = PL1_RW | PL0_R, 1997 .accessfn = gt_ptimer_access, 1998 .readfn = gt_sec_tval_read, .writefn = gt_sec_tval_write, 1999 }, 2000 { .name = "CNTP_TVAL_EL0", .state = ARM_CP_STATE_AA64, 2001 .opc0 = 3, .opc1 = 3, .crn = 14, .crm = 2, .opc2 = 0, 2002 .type = ARM_CP_NO_RAW | ARM_CP_IO, .access = PL1_RW | PL0_R, 2003 .accessfn = gt_ptimer_access, .resetfn = gt_phys_timer_reset, 2004 .readfn = gt_phys_tval_read, .writefn = gt_phys_tval_write, 2005 }, 2006 { .name = "CNTV_TVAL", .cp = 15, .crn = 14, .crm = 3, .opc1 = 0, .opc2 = 0, 2007 .type = ARM_CP_NO_RAW | ARM_CP_IO, .access = PL1_RW | PL0_R, 2008 .accessfn = gt_vtimer_access, 2009 .readfn = gt_virt_tval_read, .writefn = gt_virt_tval_write, 2010 }, 2011 { .name = "CNTV_TVAL_EL0", .state = ARM_CP_STATE_AA64, 2012 .opc0 = 3, .opc1 = 3, .crn = 14, .crm = 3, .opc2 = 0, 2013 .type = ARM_CP_NO_RAW | ARM_CP_IO, .access = PL1_RW | PL0_R, 2014 .accessfn = gt_vtimer_access, .resetfn = gt_virt_timer_reset, 2015 .readfn = gt_virt_tval_read, .writefn = gt_virt_tval_write, 2016 }, 2017 /* The counter itself */ 2018 { .name = "CNTPCT", .cp = 15, .crm = 14, .opc1 = 0, 2019 .access = PL0_R, .type = ARM_CP_64BIT | ARM_CP_NO_RAW | ARM_CP_IO, 2020 .accessfn = gt_pct_access, 2021 .readfn = gt_cnt_read, .resetfn = arm_cp_reset_ignore, 2022 }, 2023 { .name = "CNTPCT_EL0", .state = ARM_CP_STATE_AA64, 2024 .opc0 = 3, .opc1 = 3, .crn = 14, .crm = 0, .opc2 = 1, 2025 .access = PL0_R, .type = ARM_CP_NO_RAW | ARM_CP_IO, 2026 .accessfn = gt_pct_access, .readfn = gt_cnt_read, 2027 }, 2028 { .name = "CNTVCT", .cp = 15, .crm = 14, .opc1 = 1, 2029 .access = PL0_R, .type = ARM_CP_64BIT | ARM_CP_NO_RAW | ARM_CP_IO, 2030 .accessfn = gt_vct_access, 2031 .readfn = gt_virt_cnt_read, .resetfn = arm_cp_reset_ignore, 2032 }, 2033 { .name = "CNTVCT_EL0", .state = ARM_CP_STATE_AA64, 2034 .opc0 = 3, .opc1 = 3, .crn = 14, .crm = 0, .opc2 = 2, 2035 .access = PL0_R, .type = ARM_CP_NO_RAW | ARM_CP_IO, 2036 .accessfn = gt_vct_access, .readfn = gt_virt_cnt_read, 2037 }, 2038 /* Comparison value, indicating when the timer goes off */ 2039 { .name = "CNTP_CVAL", .cp = 15, .crm = 14, .opc1 = 2, 2040 .secure = ARM_CP_SECSTATE_NS, 2041 .access = PL1_RW | PL0_R, 2042 .type = ARM_CP_64BIT | ARM_CP_IO | ARM_CP_ALIAS, 2043 .fieldoffset = offsetof(CPUARMState, cp15.c14_timer[GTIMER_PHYS].cval), 2044 .accessfn = gt_ptimer_access, 2045 .writefn = gt_phys_cval_write, .raw_writefn = raw_write, 2046 }, 2047 { .name = "CNTP_CVAL(S)", .cp = 15, .crm = 14, .opc1 = 2, 2048 .secure = ARM_CP_SECSTATE_S, 2049 .access = PL1_RW | PL0_R, 2050 .type = ARM_CP_64BIT | ARM_CP_IO | ARM_CP_ALIAS, 2051 .fieldoffset = offsetof(CPUARMState, cp15.c14_timer[GTIMER_SEC].cval), 2052 .accessfn = gt_ptimer_access, 2053 .writefn = gt_sec_cval_write, .raw_writefn = raw_write, 2054 }, 2055 { .name = "CNTP_CVAL_EL0", .state = ARM_CP_STATE_AA64, 2056 .opc0 = 3, .opc1 = 3, .crn = 14, .crm = 2, .opc2 = 2, 2057 .access = PL1_RW | PL0_R, 2058 .type = ARM_CP_IO, 2059 .fieldoffset = offsetof(CPUARMState, cp15.c14_timer[GTIMER_PHYS].cval), 2060 .resetvalue = 0, .accessfn = gt_ptimer_access, 2061 .writefn = gt_phys_cval_write, .raw_writefn = raw_write, 2062 }, 2063 { .name = "CNTV_CVAL", .cp = 15, .crm = 14, .opc1 = 3, 2064 .access = PL1_RW | PL0_R, 2065 .type = ARM_CP_64BIT | ARM_CP_IO | ARM_CP_ALIAS, 2066 .fieldoffset = offsetof(CPUARMState, cp15.c14_timer[GTIMER_VIRT].cval), 2067 .accessfn = gt_vtimer_access, 2068 .writefn = gt_virt_cval_write, .raw_writefn = raw_write, 2069 }, 2070 { .name = "CNTV_CVAL_EL0", .state = ARM_CP_STATE_AA64, 2071 .opc0 = 3, .opc1 = 3, .crn = 14, .crm = 3, .opc2 = 2, 2072 .access = PL1_RW | PL0_R, 2073 .type = ARM_CP_IO, 2074 .fieldoffset = offsetof(CPUARMState, cp15.c14_timer[GTIMER_VIRT].cval), 2075 .resetvalue = 0, .accessfn = gt_vtimer_access, 2076 .writefn = gt_virt_cval_write, .raw_writefn = raw_write, 2077 }, 2078 /* Secure timer -- this is actually restricted to only EL3 2079 * and configurably Secure-EL1 via the accessfn. 2080 */ 2081 { .name = "CNTPS_TVAL_EL1", .state = ARM_CP_STATE_AA64, 2082 .opc0 = 3, .opc1 = 7, .crn = 14, .crm = 2, .opc2 = 0, 2083 .type = ARM_CP_NO_RAW | ARM_CP_IO, .access = PL1_RW, 2084 .accessfn = gt_stimer_access, 2085 .readfn = gt_sec_tval_read, 2086 .writefn = gt_sec_tval_write, 2087 .resetfn = gt_sec_timer_reset, 2088 }, 2089 { .name = "CNTPS_CTL_EL1", .state = ARM_CP_STATE_AA64, 2090 .opc0 = 3, .opc1 = 7, .crn = 14, .crm = 2, .opc2 = 1, 2091 .type = ARM_CP_IO, .access = PL1_RW, 2092 .accessfn = gt_stimer_access, 2093 .fieldoffset = offsetof(CPUARMState, cp15.c14_timer[GTIMER_SEC].ctl), 2094 .resetvalue = 0, 2095 .writefn = gt_sec_ctl_write, .raw_writefn = raw_write, 2096 }, 2097 { .name = "CNTPS_CVAL_EL1", .state = ARM_CP_STATE_AA64, 2098 .opc0 = 3, .opc1 = 7, .crn = 14, .crm = 2, .opc2 = 2, 2099 .type = ARM_CP_IO, .access = PL1_RW, 2100 .accessfn = gt_stimer_access, 2101 .fieldoffset = offsetof(CPUARMState, cp15.c14_timer[GTIMER_SEC].cval), 2102 .writefn = gt_sec_cval_write, .raw_writefn = raw_write, 2103 }, 2104 REGINFO_SENTINEL 2105 }; 2106 2107 #else 2108 /* In user-mode none of the generic timer registers are accessible, 2109 * and their implementation depends on QEMU_CLOCK_VIRTUAL and qdev gpio outputs, 2110 * so instead just don't register any of them. 2111 */ 2112 static const ARMCPRegInfo generic_timer_cp_reginfo[] = { 2113 REGINFO_SENTINEL 2114 }; 2115 2116 #endif 2117 2118 static void par_write(CPUARMState *env, const ARMCPRegInfo *ri, uint64_t value) 2119 { 2120 if (arm_feature(env, ARM_FEATURE_LPAE)) { 2121 raw_write(env, ri, value); 2122 } else if (arm_feature(env, ARM_FEATURE_V7)) { 2123 raw_write(env, ri, value & 0xfffff6ff); 2124 } else { 2125 raw_write(env, ri, value & 0xfffff1ff); 2126 } 2127 } 2128 2129 #ifndef CONFIG_USER_ONLY 2130 /* get_phys_addr() isn't present for user-mode-only targets */ 2131 2132 static CPAccessResult ats_access(CPUARMState *env, const ARMCPRegInfo *ri, 2133 bool isread) 2134 { 2135 if (ri->opc2 & 4) { 2136 /* The ATS12NSO* operations must trap to EL3 if executed in 2137 * Secure EL1 (which can only happen if EL3 is AArch64). 2138 * They are simply UNDEF if executed from NS EL1. 2139 * They function normally from EL2 or EL3. 2140 */ 2141 if (arm_current_el(env) == 1) { 2142 if (arm_is_secure_below_el3(env)) { 2143 return CP_ACCESS_TRAP_UNCATEGORIZED_EL3; 2144 } 2145 return CP_ACCESS_TRAP_UNCATEGORIZED; 2146 } 2147 } 2148 return CP_ACCESS_OK; 2149 } 2150 2151 static uint64_t do_ats_write(CPUARMState *env, uint64_t value, 2152 MMUAccessType access_type, ARMMMUIdx mmu_idx) 2153 { 2154 hwaddr phys_addr; 2155 target_ulong page_size; 2156 int prot; 2157 uint32_t fsr; 2158 bool ret; 2159 uint64_t par64; 2160 MemTxAttrs attrs = {}; 2161 ARMMMUFaultInfo fi = {}; 2162 2163 ret = get_phys_addr(env, value, access_type, mmu_idx, 2164 &phys_addr, &attrs, &prot, &page_size, &fsr, &fi); 2165 if (extended_addresses_enabled(env)) { 2166 /* fsr is a DFSR/IFSR value for the long descriptor 2167 * translation table format, but with WnR always clear. 2168 * Convert it to a 64-bit PAR. 2169 */ 2170 par64 = (1 << 11); /* LPAE bit always set */ 2171 if (!ret) { 2172 par64 |= phys_addr & ~0xfffULL; 2173 if (!attrs.secure) { 2174 par64 |= (1 << 9); /* NS */ 2175 } 2176 /* We don't set the ATTR or SH fields in the PAR. */ 2177 } else { 2178 par64 |= 1; /* F */ 2179 par64 |= (fsr & 0x3f) << 1; /* FS */ 2180 /* Note that S2WLK and FSTAGE are always zero, because we don't 2181 * implement virtualization and therefore there can't be a stage 2 2182 * fault. 2183 */ 2184 } 2185 } else { 2186 /* fsr is a DFSR/IFSR value for the short descriptor 2187 * translation table format (with WnR always clear). 2188 * Convert it to a 32-bit PAR. 2189 */ 2190 if (!ret) { 2191 /* We do not set any attribute bits in the PAR */ 2192 if (page_size == (1 << 24) 2193 && arm_feature(env, ARM_FEATURE_V7)) { 2194 par64 = (phys_addr & 0xff000000) | (1 << 1); 2195 } else { 2196 par64 = phys_addr & 0xfffff000; 2197 } 2198 if (!attrs.secure) { 2199 par64 |= (1 << 9); /* NS */ 2200 } 2201 } else { 2202 par64 = ((fsr & (1 << 10)) >> 5) | ((fsr & (1 << 12)) >> 6) | 2203 ((fsr & 0xf) << 1) | 1; 2204 } 2205 } 2206 return par64; 2207 } 2208 2209 static void ats_write(CPUARMState *env, const ARMCPRegInfo *ri, uint64_t value) 2210 { 2211 MMUAccessType access_type = ri->opc2 & 1 ? MMU_DATA_STORE : MMU_DATA_LOAD; 2212 uint64_t par64; 2213 ARMMMUIdx mmu_idx; 2214 int el = arm_current_el(env); 2215 bool secure = arm_is_secure_below_el3(env); 2216 2217 switch (ri->opc2 & 6) { 2218 case 0: 2219 /* stage 1 current state PL1: ATS1CPR, ATS1CPW */ 2220 switch (el) { 2221 case 3: 2222 mmu_idx = ARMMMUIdx_S1E3; 2223 break; 2224 case 2: 2225 mmu_idx = ARMMMUIdx_S1NSE1; 2226 break; 2227 case 1: 2228 mmu_idx = secure ? ARMMMUIdx_S1SE1 : ARMMMUIdx_S1NSE1; 2229 break; 2230 default: 2231 g_assert_not_reached(); 2232 } 2233 break; 2234 case 2: 2235 /* stage 1 current state PL0: ATS1CUR, ATS1CUW */ 2236 switch (el) { 2237 case 3: 2238 mmu_idx = ARMMMUIdx_S1SE0; 2239 break; 2240 case 2: 2241 mmu_idx = ARMMMUIdx_S1NSE0; 2242 break; 2243 case 1: 2244 mmu_idx = secure ? ARMMMUIdx_S1SE0 : ARMMMUIdx_S1NSE0; 2245 break; 2246 default: 2247 g_assert_not_reached(); 2248 } 2249 break; 2250 case 4: 2251 /* stage 1+2 NonSecure PL1: ATS12NSOPR, ATS12NSOPW */ 2252 mmu_idx = ARMMMUIdx_S12NSE1; 2253 break; 2254 case 6: 2255 /* stage 1+2 NonSecure PL0: ATS12NSOUR, ATS12NSOUW */ 2256 mmu_idx = ARMMMUIdx_S12NSE0; 2257 break; 2258 default: 2259 g_assert_not_reached(); 2260 } 2261 2262 par64 = do_ats_write(env, value, access_type, mmu_idx); 2263 2264 A32_BANKED_CURRENT_REG_SET(env, par, par64); 2265 } 2266 2267 static void ats1h_write(CPUARMState *env, const ARMCPRegInfo *ri, 2268 uint64_t value) 2269 { 2270 MMUAccessType access_type = ri->opc2 & 1 ? MMU_DATA_STORE : MMU_DATA_LOAD; 2271 uint64_t par64; 2272 2273 par64 = do_ats_write(env, value, access_type, ARMMMUIdx_S2NS); 2274 2275 A32_BANKED_CURRENT_REG_SET(env, par, par64); 2276 } 2277 2278 static CPAccessResult at_s1e2_access(CPUARMState *env, const ARMCPRegInfo *ri, 2279 bool isread) 2280 { 2281 if (arm_current_el(env) == 3 && !(env->cp15.scr_el3 & SCR_NS)) { 2282 return CP_ACCESS_TRAP; 2283 } 2284 return CP_ACCESS_OK; 2285 } 2286 2287 static void ats_write64(CPUARMState *env, const ARMCPRegInfo *ri, 2288 uint64_t value) 2289 { 2290 MMUAccessType access_type = ri->opc2 & 1 ? MMU_DATA_STORE : MMU_DATA_LOAD; 2291 ARMMMUIdx mmu_idx; 2292 int secure = arm_is_secure_below_el3(env); 2293 2294 switch (ri->opc2 & 6) { 2295 case 0: 2296 switch (ri->opc1) { 2297 case 0: /* AT S1E1R, AT S1E1W */ 2298 mmu_idx = secure ? ARMMMUIdx_S1SE1 : ARMMMUIdx_S1NSE1; 2299 break; 2300 case 4: /* AT S1E2R, AT S1E2W */ 2301 mmu_idx = ARMMMUIdx_S1E2; 2302 break; 2303 case 6: /* AT S1E3R, AT S1E3W */ 2304 mmu_idx = ARMMMUIdx_S1E3; 2305 break; 2306 default: 2307 g_assert_not_reached(); 2308 } 2309 break; 2310 case 2: /* AT S1E0R, AT S1E0W */ 2311 mmu_idx = secure ? ARMMMUIdx_S1SE0 : ARMMMUIdx_S1NSE0; 2312 break; 2313 case 4: /* AT S12E1R, AT S12E1W */ 2314 mmu_idx = secure ? ARMMMUIdx_S1SE1 : ARMMMUIdx_S12NSE1; 2315 break; 2316 case 6: /* AT S12E0R, AT S12E0W */ 2317 mmu_idx = secure ? ARMMMUIdx_S1SE0 : ARMMMUIdx_S12NSE0; 2318 break; 2319 default: 2320 g_assert_not_reached(); 2321 } 2322 2323 env->cp15.par_el[1] = do_ats_write(env, value, access_type, mmu_idx); 2324 } 2325 #endif 2326 2327 static const ARMCPRegInfo vapa_cp_reginfo[] = { 2328 { .name = "PAR", .cp = 15, .crn = 7, .crm = 4, .opc1 = 0, .opc2 = 0, 2329 .access = PL1_RW, .resetvalue = 0, 2330 .bank_fieldoffsets = { offsetoflow32(CPUARMState, cp15.par_s), 2331 offsetoflow32(CPUARMState, cp15.par_ns) }, 2332 .writefn = par_write }, 2333 #ifndef CONFIG_USER_ONLY 2334 /* This underdecoding is safe because the reginfo is NO_RAW. */ 2335 { .name = "ATS", .cp = 15, .crn = 7, .crm = 8, .opc1 = 0, .opc2 = CP_ANY, 2336 .access = PL1_W, .accessfn = ats_access, 2337 .writefn = ats_write, .type = ARM_CP_NO_RAW }, 2338 #endif 2339 REGINFO_SENTINEL 2340 }; 2341 2342 /* Return basic MPU access permission bits. */ 2343 static uint32_t simple_mpu_ap_bits(uint32_t val) 2344 { 2345 uint32_t ret; 2346 uint32_t mask; 2347 int i; 2348 ret = 0; 2349 mask = 3; 2350 for (i = 0; i < 16; i += 2) { 2351 ret |= (val >> i) & mask; 2352 mask <<= 2; 2353 } 2354 return ret; 2355 } 2356 2357 /* Pad basic MPU access permission bits to extended format. */ 2358 static uint32_t extended_mpu_ap_bits(uint32_t val) 2359 { 2360 uint32_t ret; 2361 uint32_t mask; 2362 int i; 2363 ret = 0; 2364 mask = 3; 2365 for (i = 0; i < 16; i += 2) { 2366 ret |= (val & mask) << i; 2367 mask <<= 2; 2368 } 2369 return ret; 2370 } 2371 2372 static void pmsav5_data_ap_write(CPUARMState *env, const ARMCPRegInfo *ri, 2373 uint64_t value) 2374 { 2375 env->cp15.pmsav5_data_ap = extended_mpu_ap_bits(value); 2376 } 2377 2378 static uint64_t pmsav5_data_ap_read(CPUARMState *env, const ARMCPRegInfo *ri) 2379 { 2380 return simple_mpu_ap_bits(env->cp15.pmsav5_data_ap); 2381 } 2382 2383 static void pmsav5_insn_ap_write(CPUARMState *env, const ARMCPRegInfo *ri, 2384 uint64_t value) 2385 { 2386 env->cp15.pmsav5_insn_ap = extended_mpu_ap_bits(value); 2387 } 2388 2389 static uint64_t pmsav5_insn_ap_read(CPUARMState *env, const ARMCPRegInfo *ri) 2390 { 2391 return simple_mpu_ap_bits(env->cp15.pmsav5_insn_ap); 2392 } 2393 2394 static uint64_t pmsav7_read(CPUARMState *env, const ARMCPRegInfo *ri) 2395 { 2396 uint32_t *u32p = *(uint32_t **)raw_ptr(env, ri); 2397 2398 if (!u32p) { 2399 return 0; 2400 } 2401 2402 u32p += env->pmsav7.rnr[M_REG_NS]; 2403 return *u32p; 2404 } 2405 2406 static void pmsav7_write(CPUARMState *env, const ARMCPRegInfo *ri, 2407 uint64_t value) 2408 { 2409 ARMCPU *cpu = arm_env_get_cpu(env); 2410 uint32_t *u32p = *(uint32_t **)raw_ptr(env, ri); 2411 2412 if (!u32p) { 2413 return; 2414 } 2415 2416 u32p += env->pmsav7.rnr[M_REG_NS]; 2417 tlb_flush(CPU(cpu)); /* Mappings may have changed - purge! */ 2418 *u32p = value; 2419 } 2420 2421 static void pmsav7_rgnr_write(CPUARMState *env, const ARMCPRegInfo *ri, 2422 uint64_t value) 2423 { 2424 ARMCPU *cpu = arm_env_get_cpu(env); 2425 uint32_t nrgs = cpu->pmsav7_dregion; 2426 2427 if (value >= nrgs) { 2428 qemu_log_mask(LOG_GUEST_ERROR, 2429 "PMSAv7 RGNR write >= # supported regions, %" PRIu32 2430 " > %" PRIu32 "\n", (uint32_t)value, nrgs); 2431 return; 2432 } 2433 2434 raw_write(env, ri, value); 2435 } 2436 2437 static const ARMCPRegInfo pmsav7_cp_reginfo[] = { 2438 /* Reset for all these registers is handled in arm_cpu_reset(), 2439 * because the PMSAv7 is also used by M-profile CPUs, which do 2440 * not register cpregs but still need the state to be reset. 2441 */ 2442 { .name = "DRBAR", .cp = 15, .crn = 6, .opc1 = 0, .crm = 1, .opc2 = 0, 2443 .access = PL1_RW, .type = ARM_CP_NO_RAW, 2444 .fieldoffset = offsetof(CPUARMState, pmsav7.drbar), 2445 .readfn = pmsav7_read, .writefn = pmsav7_write, 2446 .resetfn = arm_cp_reset_ignore }, 2447 { .name = "DRSR", .cp = 15, .crn = 6, .opc1 = 0, .crm = 1, .opc2 = 2, 2448 .access = PL1_RW, .type = ARM_CP_NO_RAW, 2449 .fieldoffset = offsetof(CPUARMState, pmsav7.drsr), 2450 .readfn = pmsav7_read, .writefn = pmsav7_write, 2451 .resetfn = arm_cp_reset_ignore }, 2452 { .name = "DRACR", .cp = 15, .crn = 6, .opc1 = 0, .crm = 1, .opc2 = 4, 2453 .access = PL1_RW, .type = ARM_CP_NO_RAW, 2454 .fieldoffset = offsetof(CPUARMState, pmsav7.dracr), 2455 .readfn = pmsav7_read, .writefn = pmsav7_write, 2456 .resetfn = arm_cp_reset_ignore }, 2457 { .name = "RGNR", .cp = 15, .crn = 6, .opc1 = 0, .crm = 2, .opc2 = 0, 2458 .access = PL1_RW, 2459 .fieldoffset = offsetof(CPUARMState, pmsav7.rnr[M_REG_NS]), 2460 .writefn = pmsav7_rgnr_write, 2461 .resetfn = arm_cp_reset_ignore }, 2462 REGINFO_SENTINEL 2463 }; 2464 2465 static const ARMCPRegInfo pmsav5_cp_reginfo[] = { 2466 { .name = "DATA_AP", .cp = 15, .crn = 5, .crm = 0, .opc1 = 0, .opc2 = 0, 2467 .access = PL1_RW, .type = ARM_CP_ALIAS, 2468 .fieldoffset = offsetof(CPUARMState, cp15.pmsav5_data_ap), 2469 .readfn = pmsav5_data_ap_read, .writefn = pmsav5_data_ap_write, }, 2470 { .name = "INSN_AP", .cp = 15, .crn = 5, .crm = 0, .opc1 = 0, .opc2 = 1, 2471 .access = PL1_RW, .type = ARM_CP_ALIAS, 2472 .fieldoffset = offsetof(CPUARMState, cp15.pmsav5_insn_ap), 2473 .readfn = pmsav5_insn_ap_read, .writefn = pmsav5_insn_ap_write, }, 2474 { .name = "DATA_EXT_AP", .cp = 15, .crn = 5, .crm = 0, .opc1 = 0, .opc2 = 2, 2475 .access = PL1_RW, 2476 .fieldoffset = offsetof(CPUARMState, cp15.pmsav5_data_ap), 2477 .resetvalue = 0, }, 2478 { .name = "INSN_EXT_AP", .cp = 15, .crn = 5, .crm = 0, .opc1 = 0, .opc2 = 3, 2479 .access = PL1_RW, 2480 .fieldoffset = offsetof(CPUARMState, cp15.pmsav5_insn_ap), 2481 .resetvalue = 0, }, 2482 { .name = "DCACHE_CFG", .cp = 15, .crn = 2, .crm = 0, .opc1 = 0, .opc2 = 0, 2483 .access = PL1_RW, 2484 .fieldoffset = offsetof(CPUARMState, cp15.c2_data), .resetvalue = 0, }, 2485 { .name = "ICACHE_CFG", .cp = 15, .crn = 2, .crm = 0, .opc1 = 0, .opc2 = 1, 2486 .access = PL1_RW, 2487 .fieldoffset = offsetof(CPUARMState, cp15.c2_insn), .resetvalue = 0, }, 2488 /* Protection region base and size registers */ 2489 { .name = "946_PRBS0", .cp = 15, .crn = 6, .crm = 0, .opc1 = 0, 2490 .opc2 = CP_ANY, .access = PL1_RW, .resetvalue = 0, 2491 .fieldoffset = offsetof(CPUARMState, cp15.c6_region[0]) }, 2492 { .name = "946_PRBS1", .cp = 15, .crn = 6, .crm = 1, .opc1 = 0, 2493 .opc2 = CP_ANY, .access = PL1_RW, .resetvalue = 0, 2494 .fieldoffset = offsetof(CPUARMState, cp15.c6_region[1]) }, 2495 { .name = "946_PRBS2", .cp = 15, .crn = 6, .crm = 2, .opc1 = 0, 2496 .opc2 = CP_ANY, .access = PL1_RW, .resetvalue = 0, 2497 .fieldoffset = offsetof(CPUARMState, cp15.c6_region[2]) }, 2498 { .name = "946_PRBS3", .cp = 15, .crn = 6, .crm = 3, .opc1 = 0, 2499 .opc2 = CP_ANY, .access = PL1_RW, .resetvalue = 0, 2500 .fieldoffset = offsetof(CPUARMState, cp15.c6_region[3]) }, 2501 { .name = "946_PRBS4", .cp = 15, .crn = 6, .crm = 4, .opc1 = 0, 2502 .opc2 = CP_ANY, .access = PL1_RW, .resetvalue = 0, 2503 .fieldoffset = offsetof(CPUARMState, cp15.c6_region[4]) }, 2504 { .name = "946_PRBS5", .cp = 15, .crn = 6, .crm = 5, .opc1 = 0, 2505 .opc2 = CP_ANY, .access = PL1_RW, .resetvalue = 0, 2506 .fieldoffset = offsetof(CPUARMState, cp15.c6_region[5]) }, 2507 { .name = "946_PRBS6", .cp = 15, .crn = 6, .crm = 6, .opc1 = 0, 2508 .opc2 = CP_ANY, .access = PL1_RW, .resetvalue = 0, 2509 .fieldoffset = offsetof(CPUARMState, cp15.c6_region[6]) }, 2510 { .name = "946_PRBS7", .cp = 15, .crn = 6, .crm = 7, .opc1 = 0, 2511 .opc2 = CP_ANY, .access = PL1_RW, .resetvalue = 0, 2512 .fieldoffset = offsetof(CPUARMState, cp15.c6_region[7]) }, 2513 REGINFO_SENTINEL 2514 }; 2515 2516 static void vmsa_ttbcr_raw_write(CPUARMState *env, const ARMCPRegInfo *ri, 2517 uint64_t value) 2518 { 2519 TCR *tcr = raw_ptr(env, ri); 2520 int maskshift = extract32(value, 0, 3); 2521 2522 if (!arm_feature(env, ARM_FEATURE_V8)) { 2523 if (arm_feature(env, ARM_FEATURE_LPAE) && (value & TTBCR_EAE)) { 2524 /* Pre ARMv8 bits [21:19], [15:14] and [6:3] are UNK/SBZP when 2525 * using Long-desciptor translation table format */ 2526 value &= ~((7 << 19) | (3 << 14) | (0xf << 3)); 2527 } else if (arm_feature(env, ARM_FEATURE_EL3)) { 2528 /* In an implementation that includes the Security Extensions 2529 * TTBCR has additional fields PD0 [4] and PD1 [5] for 2530 * Short-descriptor translation table format. 2531 */ 2532 value &= TTBCR_PD1 | TTBCR_PD0 | TTBCR_N; 2533 } else { 2534 value &= TTBCR_N; 2535 } 2536 } 2537 2538 /* Update the masks corresponding to the TCR bank being written 2539 * Note that we always calculate mask and base_mask, but 2540 * they are only used for short-descriptor tables (ie if EAE is 0); 2541 * for long-descriptor tables the TCR fields are used differently 2542 * and the mask and base_mask values are meaningless. 2543 */ 2544 tcr->raw_tcr = value; 2545 tcr->mask = ~(((uint32_t)0xffffffffu) >> maskshift); 2546 tcr->base_mask = ~((uint32_t)0x3fffu >> maskshift); 2547 } 2548 2549 static void vmsa_ttbcr_write(CPUARMState *env, const ARMCPRegInfo *ri, 2550 uint64_t value) 2551 { 2552 ARMCPU *cpu = arm_env_get_cpu(env); 2553 2554 if (arm_feature(env, ARM_FEATURE_LPAE)) { 2555 /* With LPAE the TTBCR could result in a change of ASID 2556 * via the TTBCR.A1 bit, so do a TLB flush. 2557 */ 2558 tlb_flush(CPU(cpu)); 2559 } 2560 vmsa_ttbcr_raw_write(env, ri, value); 2561 } 2562 2563 static void vmsa_ttbcr_reset(CPUARMState *env, const ARMCPRegInfo *ri) 2564 { 2565 TCR *tcr = raw_ptr(env, ri); 2566 2567 /* Reset both the TCR as well as the masks corresponding to the bank of 2568 * the TCR being reset. 2569 */ 2570 tcr->raw_tcr = 0; 2571 tcr->mask = 0; 2572 tcr->base_mask = 0xffffc000u; 2573 } 2574 2575 static void vmsa_tcr_el1_write(CPUARMState *env, const ARMCPRegInfo *ri, 2576 uint64_t value) 2577 { 2578 ARMCPU *cpu = arm_env_get_cpu(env); 2579 TCR *tcr = raw_ptr(env, ri); 2580 2581 /* For AArch64 the A1 bit could result in a change of ASID, so TLB flush. */ 2582 tlb_flush(CPU(cpu)); 2583 tcr->raw_tcr = value; 2584 } 2585 2586 static void vmsa_ttbr_write(CPUARMState *env, const ARMCPRegInfo *ri, 2587 uint64_t value) 2588 { 2589 /* 64 bit accesses to the TTBRs can change the ASID and so we 2590 * must flush the TLB. 2591 */ 2592 if (cpreg_field_is_64bit(ri)) { 2593 ARMCPU *cpu = arm_env_get_cpu(env); 2594 2595 tlb_flush(CPU(cpu)); 2596 } 2597 raw_write(env, ri, value); 2598 } 2599 2600 static void vttbr_write(CPUARMState *env, const ARMCPRegInfo *ri, 2601 uint64_t value) 2602 { 2603 ARMCPU *cpu = arm_env_get_cpu(env); 2604 CPUState *cs = CPU(cpu); 2605 2606 /* Accesses to VTTBR may change the VMID so we must flush the TLB. */ 2607 if (raw_read(env, ri) != value) { 2608 tlb_flush_by_mmuidx(cs, 2609 ARMMMUIdxBit_S12NSE1 | 2610 ARMMMUIdxBit_S12NSE0 | 2611 ARMMMUIdxBit_S2NS); 2612 raw_write(env, ri, value); 2613 } 2614 } 2615 2616 static const ARMCPRegInfo vmsa_pmsa_cp_reginfo[] = { 2617 { .name = "DFSR", .cp = 15, .crn = 5, .crm = 0, .opc1 = 0, .opc2 = 0, 2618 .access = PL1_RW, .type = ARM_CP_ALIAS, 2619 .bank_fieldoffsets = { offsetoflow32(CPUARMState, cp15.dfsr_s), 2620 offsetoflow32(CPUARMState, cp15.dfsr_ns) }, }, 2621 { .name = "IFSR", .cp = 15, .crn = 5, .crm = 0, .opc1 = 0, .opc2 = 1, 2622 .access = PL1_RW, .resetvalue = 0, 2623 .bank_fieldoffsets = { offsetoflow32(CPUARMState, cp15.ifsr_s), 2624 offsetoflow32(CPUARMState, cp15.ifsr_ns) } }, 2625 { .name = "DFAR", .cp = 15, .opc1 = 0, .crn = 6, .crm = 0, .opc2 = 0, 2626 .access = PL1_RW, .resetvalue = 0, 2627 .bank_fieldoffsets = { offsetof(CPUARMState, cp15.dfar_s), 2628 offsetof(CPUARMState, cp15.dfar_ns) } }, 2629 { .name = "FAR_EL1", .state = ARM_CP_STATE_AA64, 2630 .opc0 = 3, .crn = 6, .crm = 0, .opc1 = 0, .opc2 = 0, 2631 .access = PL1_RW, .fieldoffset = offsetof(CPUARMState, cp15.far_el[1]), 2632 .resetvalue = 0, }, 2633 REGINFO_SENTINEL 2634 }; 2635 2636 static const ARMCPRegInfo vmsa_cp_reginfo[] = { 2637 { .name = "ESR_EL1", .state = ARM_CP_STATE_AA64, 2638 .opc0 = 3, .crn = 5, .crm = 2, .opc1 = 0, .opc2 = 0, 2639 .access = PL1_RW, 2640 .fieldoffset = offsetof(CPUARMState, cp15.esr_el[1]), .resetvalue = 0, }, 2641 { .name = "TTBR0_EL1", .state = ARM_CP_STATE_BOTH, 2642 .opc0 = 3, .opc1 = 0, .crn = 2, .crm = 0, .opc2 = 0, 2643 .access = PL1_RW, .writefn = vmsa_ttbr_write, .resetvalue = 0, 2644 .bank_fieldoffsets = { offsetof(CPUARMState, cp15.ttbr0_s), 2645 offsetof(CPUARMState, cp15.ttbr0_ns) } }, 2646 { .name = "TTBR1_EL1", .state = ARM_CP_STATE_BOTH, 2647 .opc0 = 3, .opc1 = 0, .crn = 2, .crm = 0, .opc2 = 1, 2648 .access = PL1_RW, .writefn = vmsa_ttbr_write, .resetvalue = 0, 2649 .bank_fieldoffsets = { offsetof(CPUARMState, cp15.ttbr1_s), 2650 offsetof(CPUARMState, cp15.ttbr1_ns) } }, 2651 { .name = "TCR_EL1", .state = ARM_CP_STATE_AA64, 2652 .opc0 = 3, .crn = 2, .crm = 0, .opc1 = 0, .opc2 = 2, 2653 .access = PL1_RW, .writefn = vmsa_tcr_el1_write, 2654 .resetfn = vmsa_ttbcr_reset, .raw_writefn = raw_write, 2655 .fieldoffset = offsetof(CPUARMState, cp15.tcr_el[1]) }, 2656 { .name = "TTBCR", .cp = 15, .crn = 2, .crm = 0, .opc1 = 0, .opc2 = 2, 2657 .access = PL1_RW, .type = ARM_CP_ALIAS, .writefn = vmsa_ttbcr_write, 2658 .raw_writefn = vmsa_ttbcr_raw_write, 2659 .bank_fieldoffsets = { offsetoflow32(CPUARMState, cp15.tcr_el[3]), 2660 offsetoflow32(CPUARMState, cp15.tcr_el[1])} }, 2661 REGINFO_SENTINEL 2662 }; 2663 2664 static void omap_ticonfig_write(CPUARMState *env, const ARMCPRegInfo *ri, 2665 uint64_t value) 2666 { 2667 env->cp15.c15_ticonfig = value & 0xe7; 2668 /* The OS_TYPE bit in this register changes the reported CPUID! */ 2669 env->cp15.c0_cpuid = (value & (1 << 5)) ? 2670 ARM_CPUID_TI915T : ARM_CPUID_TI925T; 2671 } 2672 2673 static void omap_threadid_write(CPUARMState *env, const ARMCPRegInfo *ri, 2674 uint64_t value) 2675 { 2676 env->cp15.c15_threadid = value & 0xffff; 2677 } 2678 2679 static void omap_wfi_write(CPUARMState *env, const ARMCPRegInfo *ri, 2680 uint64_t value) 2681 { 2682 /* Wait-for-interrupt (deprecated) */ 2683 cpu_interrupt(CPU(arm_env_get_cpu(env)), CPU_INTERRUPT_HALT); 2684 } 2685 2686 static void omap_cachemaint_write(CPUARMState *env, const ARMCPRegInfo *ri, 2687 uint64_t value) 2688 { 2689 /* On OMAP there are registers indicating the max/min index of dcache lines 2690 * containing a dirty line; cache flush operations have to reset these. 2691 */ 2692 env->cp15.c15_i_max = 0x000; 2693 env->cp15.c15_i_min = 0xff0; 2694 } 2695 2696 static const ARMCPRegInfo omap_cp_reginfo[] = { 2697 { .name = "DFSR", .cp = 15, .crn = 5, .crm = CP_ANY, 2698 .opc1 = CP_ANY, .opc2 = CP_ANY, .access = PL1_RW, .type = ARM_CP_OVERRIDE, 2699 .fieldoffset = offsetoflow32(CPUARMState, cp15.esr_el[1]), 2700 .resetvalue = 0, }, 2701 { .name = "", .cp = 15, .crn = 15, .crm = 0, .opc1 = 0, .opc2 = 0, 2702 .access = PL1_RW, .type = ARM_CP_NOP }, 2703 { .name = "TICONFIG", .cp = 15, .crn = 15, .crm = 1, .opc1 = 0, .opc2 = 0, 2704 .access = PL1_RW, 2705 .fieldoffset = offsetof(CPUARMState, cp15.c15_ticonfig), .resetvalue = 0, 2706 .writefn = omap_ticonfig_write }, 2707 { .name = "IMAX", .cp = 15, .crn = 15, .crm = 2, .opc1 = 0, .opc2 = 0, 2708 .access = PL1_RW, 2709 .fieldoffset = offsetof(CPUARMState, cp15.c15_i_max), .resetvalue = 0, }, 2710 { .name = "IMIN", .cp = 15, .crn = 15, .crm = 3, .opc1 = 0, .opc2 = 0, 2711 .access = PL1_RW, .resetvalue = 0xff0, 2712 .fieldoffset = offsetof(CPUARMState, cp15.c15_i_min) }, 2713 { .name = "THREADID", .cp = 15, .crn = 15, .crm = 4, .opc1 = 0, .opc2 = 0, 2714 .access = PL1_RW, 2715 .fieldoffset = offsetof(CPUARMState, cp15.c15_threadid), .resetvalue = 0, 2716 .writefn = omap_threadid_write }, 2717 { .name = "TI925T_STATUS", .cp = 15, .crn = 15, 2718 .crm = 8, .opc1 = 0, .opc2 = 0, .access = PL1_RW, 2719 .type = ARM_CP_NO_RAW, 2720 .readfn = arm_cp_read_zero, .writefn = omap_wfi_write, }, 2721 /* TODO: Peripheral port remap register: 2722 * On OMAP2 mcr p15, 0, rn, c15, c2, 4 sets up the interrupt controller 2723 * base address at $rn & ~0xfff and map size of 0x200 << ($rn & 0xfff), 2724 * when MMU is off. 2725 */ 2726 { .name = "OMAP_CACHEMAINT", .cp = 15, .crn = 7, .crm = CP_ANY, 2727 .opc1 = 0, .opc2 = CP_ANY, .access = PL1_W, 2728 .type = ARM_CP_OVERRIDE | ARM_CP_NO_RAW, 2729 .writefn = omap_cachemaint_write }, 2730 { .name = "C9", .cp = 15, .crn = 9, 2731 .crm = CP_ANY, .opc1 = CP_ANY, .opc2 = CP_ANY, .access = PL1_RW, 2732 .type = ARM_CP_CONST | ARM_CP_OVERRIDE, .resetvalue = 0 }, 2733 REGINFO_SENTINEL 2734 }; 2735 2736 static void xscale_cpar_write(CPUARMState *env, const ARMCPRegInfo *ri, 2737 uint64_t value) 2738 { 2739 env->cp15.c15_cpar = value & 0x3fff; 2740 } 2741 2742 static const ARMCPRegInfo xscale_cp_reginfo[] = { 2743 { .name = "XSCALE_CPAR", 2744 .cp = 15, .crn = 15, .crm = 1, .opc1 = 0, .opc2 = 0, .access = PL1_RW, 2745 .fieldoffset = offsetof(CPUARMState, cp15.c15_cpar), .resetvalue = 0, 2746 .writefn = xscale_cpar_write, }, 2747 { .name = "XSCALE_AUXCR", 2748 .cp = 15, .crn = 1, .crm = 0, .opc1 = 0, .opc2 = 1, .access = PL1_RW, 2749 .fieldoffset = offsetof(CPUARMState, cp15.c1_xscaleauxcr), 2750 .resetvalue = 0, }, 2751 /* XScale specific cache-lockdown: since we have no cache we NOP these 2752 * and hope the guest does not really rely on cache behaviour. 2753 */ 2754 { .name = "XSCALE_LOCK_ICACHE_LINE", 2755 .cp = 15, .opc1 = 0, .crn = 9, .crm = 1, .opc2 = 0, 2756 .access = PL1_W, .type = ARM_CP_NOP }, 2757 { .name = "XSCALE_UNLOCK_ICACHE", 2758 .cp = 15, .opc1 = 0, .crn = 9, .crm = 1, .opc2 = 1, 2759 .access = PL1_W, .type = ARM_CP_NOP }, 2760 { .name = "XSCALE_DCACHE_LOCK", 2761 .cp = 15, .opc1 = 0, .crn = 9, .crm = 2, .opc2 = 0, 2762 .access = PL1_RW, .type = ARM_CP_NOP }, 2763 { .name = "XSCALE_UNLOCK_DCACHE", 2764 .cp = 15, .opc1 = 0, .crn = 9, .crm = 2, .opc2 = 1, 2765 .access = PL1_W, .type = ARM_CP_NOP }, 2766 REGINFO_SENTINEL 2767 }; 2768 2769 static const ARMCPRegInfo dummy_c15_cp_reginfo[] = { 2770 /* RAZ/WI the whole crn=15 space, when we don't have a more specific 2771 * implementation of this implementation-defined space. 2772 * Ideally this should eventually disappear in favour of actually 2773 * implementing the correct behaviour for all cores. 2774 */ 2775 { .name = "C15_IMPDEF", .cp = 15, .crn = 15, 2776 .crm = CP_ANY, .opc1 = CP_ANY, .opc2 = CP_ANY, 2777 .access = PL1_RW, 2778 .type = ARM_CP_CONST | ARM_CP_NO_RAW | ARM_CP_OVERRIDE, 2779 .resetvalue = 0 }, 2780 REGINFO_SENTINEL 2781 }; 2782 2783 static const ARMCPRegInfo cache_dirty_status_cp_reginfo[] = { 2784 /* Cache status: RAZ because we have no cache so it's always clean */ 2785 { .name = "CDSR", .cp = 15, .crn = 7, .crm = 10, .opc1 = 0, .opc2 = 6, 2786 .access = PL1_R, .type = ARM_CP_CONST | ARM_CP_NO_RAW, 2787 .resetvalue = 0 }, 2788 REGINFO_SENTINEL 2789 }; 2790 2791 static const ARMCPRegInfo cache_block_ops_cp_reginfo[] = { 2792 /* We never have a a block transfer operation in progress */ 2793 { .name = "BXSR", .cp = 15, .crn = 7, .crm = 12, .opc1 = 0, .opc2 = 4, 2794 .access = PL0_R, .type = ARM_CP_CONST | ARM_CP_NO_RAW, 2795 .resetvalue = 0 }, 2796 /* The cache ops themselves: these all NOP for QEMU */ 2797 { .name = "IICR", .cp = 15, .crm = 5, .opc1 = 0, 2798 .access = PL1_W, .type = ARM_CP_NOP|ARM_CP_64BIT }, 2799 { .name = "IDCR", .cp = 15, .crm = 6, .opc1 = 0, 2800 .access = PL1_W, .type = ARM_CP_NOP|ARM_CP_64BIT }, 2801 { .name = "CDCR", .cp = 15, .crm = 12, .opc1 = 0, 2802 .access = PL0_W, .type = ARM_CP_NOP|ARM_CP_64BIT }, 2803 { .name = "PIR", .cp = 15, .crm = 12, .opc1 = 1, 2804 .access = PL0_W, .type = ARM_CP_NOP|ARM_CP_64BIT }, 2805 { .name = "PDR", .cp = 15, .crm = 12, .opc1 = 2, 2806 .access = PL0_W, .type = ARM_CP_NOP|ARM_CP_64BIT }, 2807 { .name = "CIDCR", .cp = 15, .crm = 14, .opc1 = 0, 2808 .access = PL1_W, .type = ARM_CP_NOP|ARM_CP_64BIT }, 2809 REGINFO_SENTINEL 2810 }; 2811 2812 static const ARMCPRegInfo cache_test_clean_cp_reginfo[] = { 2813 /* The cache test-and-clean instructions always return (1 << 30) 2814 * to indicate that there are no dirty cache lines. 2815 */ 2816 { .name = "TC_DCACHE", .cp = 15, .crn = 7, .crm = 10, .opc1 = 0, .opc2 = 3, 2817 .access = PL0_R, .type = ARM_CP_CONST | ARM_CP_NO_RAW, 2818 .resetvalue = (1 << 30) }, 2819 { .name = "TCI_DCACHE", .cp = 15, .crn = 7, .crm = 14, .opc1 = 0, .opc2 = 3, 2820 .access = PL0_R, .type = ARM_CP_CONST | ARM_CP_NO_RAW, 2821 .resetvalue = (1 << 30) }, 2822 REGINFO_SENTINEL 2823 }; 2824 2825 static const ARMCPRegInfo strongarm_cp_reginfo[] = { 2826 /* Ignore ReadBuffer accesses */ 2827 { .name = "C9_READBUFFER", .cp = 15, .crn = 9, 2828 .crm = CP_ANY, .opc1 = CP_ANY, .opc2 = CP_ANY, 2829 .access = PL1_RW, .resetvalue = 0, 2830 .type = ARM_CP_CONST | ARM_CP_OVERRIDE | ARM_CP_NO_RAW }, 2831 REGINFO_SENTINEL 2832 }; 2833 2834 static uint64_t midr_read(CPUARMState *env, const ARMCPRegInfo *ri) 2835 { 2836 ARMCPU *cpu = arm_env_get_cpu(env); 2837 unsigned int cur_el = arm_current_el(env); 2838 bool secure = arm_is_secure(env); 2839 2840 if (arm_feature(&cpu->env, ARM_FEATURE_EL2) && !secure && cur_el == 1) { 2841 return env->cp15.vpidr_el2; 2842 } 2843 return raw_read(env, ri); 2844 } 2845 2846 static uint64_t mpidr_read_val(CPUARMState *env) 2847 { 2848 ARMCPU *cpu = ARM_CPU(arm_env_get_cpu(env)); 2849 uint64_t mpidr = cpu->mp_affinity; 2850 2851 if (arm_feature(env, ARM_FEATURE_V7MP)) { 2852 mpidr |= (1U << 31); 2853 /* Cores which are uniprocessor (non-coherent) 2854 * but still implement the MP extensions set 2855 * bit 30. (For instance, Cortex-R5). 2856 */ 2857 if (cpu->mp_is_up) { 2858 mpidr |= (1u << 30); 2859 } 2860 } 2861 return mpidr; 2862 } 2863 2864 static uint64_t mpidr_read(CPUARMState *env, const ARMCPRegInfo *ri) 2865 { 2866 unsigned int cur_el = arm_current_el(env); 2867 bool secure = arm_is_secure(env); 2868 2869 if (arm_feature(env, ARM_FEATURE_EL2) && !secure && cur_el == 1) { 2870 return env->cp15.vmpidr_el2; 2871 } 2872 return mpidr_read_val(env); 2873 } 2874 2875 static const ARMCPRegInfo mpidr_cp_reginfo[] = { 2876 { .name = "MPIDR", .state = ARM_CP_STATE_BOTH, 2877 .opc0 = 3, .crn = 0, .crm = 0, .opc1 = 0, .opc2 = 5, 2878 .access = PL1_R, .readfn = mpidr_read, .type = ARM_CP_NO_RAW }, 2879 REGINFO_SENTINEL 2880 }; 2881 2882 static const ARMCPRegInfo lpae_cp_reginfo[] = { 2883 /* NOP AMAIR0/1 */ 2884 { .name = "AMAIR0", .state = ARM_CP_STATE_BOTH, 2885 .opc0 = 3, .crn = 10, .crm = 3, .opc1 = 0, .opc2 = 0, 2886 .access = PL1_RW, .type = ARM_CP_CONST, 2887 .resetvalue = 0 }, 2888 /* AMAIR1 is mapped to AMAIR_EL1[63:32] */ 2889 { .name = "AMAIR1", .cp = 15, .crn = 10, .crm = 3, .opc1 = 0, .opc2 = 1, 2890 .access = PL1_RW, .type = ARM_CP_CONST, 2891 .resetvalue = 0 }, 2892 { .name = "PAR", .cp = 15, .crm = 7, .opc1 = 0, 2893 .access = PL1_RW, .type = ARM_CP_64BIT, .resetvalue = 0, 2894 .bank_fieldoffsets = { offsetof(CPUARMState, cp15.par_s), 2895 offsetof(CPUARMState, cp15.par_ns)} }, 2896 { .name = "TTBR0", .cp = 15, .crm = 2, .opc1 = 0, 2897 .access = PL1_RW, .type = ARM_CP_64BIT | ARM_CP_ALIAS, 2898 .bank_fieldoffsets = { offsetof(CPUARMState, cp15.ttbr0_s), 2899 offsetof(CPUARMState, cp15.ttbr0_ns) }, 2900 .writefn = vmsa_ttbr_write, }, 2901 { .name = "TTBR1", .cp = 15, .crm = 2, .opc1 = 1, 2902 .access = PL1_RW, .type = ARM_CP_64BIT | ARM_CP_ALIAS, 2903 .bank_fieldoffsets = { offsetof(CPUARMState, cp15.ttbr1_s), 2904 offsetof(CPUARMState, cp15.ttbr1_ns) }, 2905 .writefn = vmsa_ttbr_write, }, 2906 REGINFO_SENTINEL 2907 }; 2908 2909 static uint64_t aa64_fpcr_read(CPUARMState *env, const ARMCPRegInfo *ri) 2910 { 2911 return vfp_get_fpcr(env); 2912 } 2913 2914 static void aa64_fpcr_write(CPUARMState *env, const ARMCPRegInfo *ri, 2915 uint64_t value) 2916 { 2917 vfp_set_fpcr(env, value); 2918 } 2919 2920 static uint64_t aa64_fpsr_read(CPUARMState *env, const ARMCPRegInfo *ri) 2921 { 2922 return vfp_get_fpsr(env); 2923 } 2924 2925 static void aa64_fpsr_write(CPUARMState *env, const ARMCPRegInfo *ri, 2926 uint64_t value) 2927 { 2928 vfp_set_fpsr(env, value); 2929 } 2930 2931 static CPAccessResult aa64_daif_access(CPUARMState *env, const ARMCPRegInfo *ri, 2932 bool isread) 2933 { 2934 if (arm_current_el(env) == 0 && !(env->cp15.sctlr_el[1] & SCTLR_UMA)) { 2935 return CP_ACCESS_TRAP; 2936 } 2937 return CP_ACCESS_OK; 2938 } 2939 2940 static void aa64_daif_write(CPUARMState *env, const ARMCPRegInfo *ri, 2941 uint64_t value) 2942 { 2943 env->daif = value & PSTATE_DAIF; 2944 } 2945 2946 static CPAccessResult aa64_cacheop_access(CPUARMState *env, 2947 const ARMCPRegInfo *ri, 2948 bool isread) 2949 { 2950 /* Cache invalidate/clean: NOP, but EL0 must UNDEF unless 2951 * SCTLR_EL1.UCI is set. 2952 */ 2953 if (arm_current_el(env) == 0 && !(env->cp15.sctlr_el[1] & SCTLR_UCI)) { 2954 return CP_ACCESS_TRAP; 2955 } 2956 return CP_ACCESS_OK; 2957 } 2958 2959 /* See: D4.7.2 TLB maintenance requirements and the TLB maintenance instructions 2960 * Page D4-1736 (DDI0487A.b) 2961 */ 2962 2963 static void tlbi_aa64_vmalle1_write(CPUARMState *env, const ARMCPRegInfo *ri, 2964 uint64_t value) 2965 { 2966 CPUState *cs = ENV_GET_CPU(env); 2967 2968 if (arm_is_secure_below_el3(env)) { 2969 tlb_flush_by_mmuidx(cs, 2970 ARMMMUIdxBit_S1SE1 | 2971 ARMMMUIdxBit_S1SE0); 2972 } else { 2973 tlb_flush_by_mmuidx(cs, 2974 ARMMMUIdxBit_S12NSE1 | 2975 ARMMMUIdxBit_S12NSE0); 2976 } 2977 } 2978 2979 static void tlbi_aa64_vmalle1is_write(CPUARMState *env, const ARMCPRegInfo *ri, 2980 uint64_t value) 2981 { 2982 CPUState *cs = ENV_GET_CPU(env); 2983 bool sec = arm_is_secure_below_el3(env); 2984 2985 if (sec) { 2986 tlb_flush_by_mmuidx_all_cpus_synced(cs, 2987 ARMMMUIdxBit_S1SE1 | 2988 ARMMMUIdxBit_S1SE0); 2989 } else { 2990 tlb_flush_by_mmuidx_all_cpus_synced(cs, 2991 ARMMMUIdxBit_S12NSE1 | 2992 ARMMMUIdxBit_S12NSE0); 2993 } 2994 } 2995 2996 static void tlbi_aa64_alle1_write(CPUARMState *env, const ARMCPRegInfo *ri, 2997 uint64_t value) 2998 { 2999 /* Note that the 'ALL' scope must invalidate both stage 1 and 3000 * stage 2 translations, whereas most other scopes only invalidate 3001 * stage 1 translations. 3002 */ 3003 ARMCPU *cpu = arm_env_get_cpu(env); 3004 CPUState *cs = CPU(cpu); 3005 3006 if (arm_is_secure_below_el3(env)) { 3007 tlb_flush_by_mmuidx(cs, 3008 ARMMMUIdxBit_S1SE1 | 3009 ARMMMUIdxBit_S1SE0); 3010 } else { 3011 if (arm_feature(env, ARM_FEATURE_EL2)) { 3012 tlb_flush_by_mmuidx(cs, 3013 ARMMMUIdxBit_S12NSE1 | 3014 ARMMMUIdxBit_S12NSE0 | 3015 ARMMMUIdxBit_S2NS); 3016 } else { 3017 tlb_flush_by_mmuidx(cs, 3018 ARMMMUIdxBit_S12NSE1 | 3019 ARMMMUIdxBit_S12NSE0); 3020 } 3021 } 3022 } 3023 3024 static void tlbi_aa64_alle2_write(CPUARMState *env, const ARMCPRegInfo *ri, 3025 uint64_t value) 3026 { 3027 ARMCPU *cpu = arm_env_get_cpu(env); 3028 CPUState *cs = CPU(cpu); 3029 3030 tlb_flush_by_mmuidx(cs, ARMMMUIdxBit_S1E2); 3031 } 3032 3033 static void tlbi_aa64_alle3_write(CPUARMState *env, const ARMCPRegInfo *ri, 3034 uint64_t value) 3035 { 3036 ARMCPU *cpu = arm_env_get_cpu(env); 3037 CPUState *cs = CPU(cpu); 3038 3039 tlb_flush_by_mmuidx(cs, ARMMMUIdxBit_S1E3); 3040 } 3041 3042 static void tlbi_aa64_alle1is_write(CPUARMState *env, const ARMCPRegInfo *ri, 3043 uint64_t value) 3044 { 3045 /* Note that the 'ALL' scope must invalidate both stage 1 and 3046 * stage 2 translations, whereas most other scopes only invalidate 3047 * stage 1 translations. 3048 */ 3049 CPUState *cs = ENV_GET_CPU(env); 3050 bool sec = arm_is_secure_below_el3(env); 3051 bool has_el2 = arm_feature(env, ARM_FEATURE_EL2); 3052 3053 if (sec) { 3054 tlb_flush_by_mmuidx_all_cpus_synced(cs, 3055 ARMMMUIdxBit_S1SE1 | 3056 ARMMMUIdxBit_S1SE0); 3057 } else if (has_el2) { 3058 tlb_flush_by_mmuidx_all_cpus_synced(cs, 3059 ARMMMUIdxBit_S12NSE1 | 3060 ARMMMUIdxBit_S12NSE0 | 3061 ARMMMUIdxBit_S2NS); 3062 } else { 3063 tlb_flush_by_mmuidx_all_cpus_synced(cs, 3064 ARMMMUIdxBit_S12NSE1 | 3065 ARMMMUIdxBit_S12NSE0); 3066 } 3067 } 3068 3069 static void tlbi_aa64_alle2is_write(CPUARMState *env, const ARMCPRegInfo *ri, 3070 uint64_t value) 3071 { 3072 CPUState *cs = ENV_GET_CPU(env); 3073 3074 tlb_flush_by_mmuidx_all_cpus_synced(cs, ARMMMUIdxBit_S1E2); 3075 } 3076 3077 static void tlbi_aa64_alle3is_write(CPUARMState *env, const ARMCPRegInfo *ri, 3078 uint64_t value) 3079 { 3080 CPUState *cs = ENV_GET_CPU(env); 3081 3082 tlb_flush_by_mmuidx_all_cpus_synced(cs, ARMMMUIdxBit_S1E3); 3083 } 3084 3085 static void tlbi_aa64_vae1_write(CPUARMState *env, const ARMCPRegInfo *ri, 3086 uint64_t value) 3087 { 3088 /* Invalidate by VA, EL1&0 (AArch64 version). 3089 * Currently handles all of VAE1, VAAE1, VAALE1 and VALE1, 3090 * since we don't support flush-for-specific-ASID-only or 3091 * flush-last-level-only. 3092 */ 3093 ARMCPU *cpu = arm_env_get_cpu(env); 3094 CPUState *cs = CPU(cpu); 3095 uint64_t pageaddr = sextract64(value << 12, 0, 56); 3096 3097 if (arm_is_secure_below_el3(env)) { 3098 tlb_flush_page_by_mmuidx(cs, pageaddr, 3099 ARMMMUIdxBit_S1SE1 | 3100 ARMMMUIdxBit_S1SE0); 3101 } else { 3102 tlb_flush_page_by_mmuidx(cs, pageaddr, 3103 ARMMMUIdxBit_S12NSE1 | 3104 ARMMMUIdxBit_S12NSE0); 3105 } 3106 } 3107 3108 static void tlbi_aa64_vae2_write(CPUARMState *env, const ARMCPRegInfo *ri, 3109 uint64_t value) 3110 { 3111 /* Invalidate by VA, EL2 3112 * Currently handles both VAE2 and VALE2, since we don't support 3113 * flush-last-level-only. 3114 */ 3115 ARMCPU *cpu = arm_env_get_cpu(env); 3116 CPUState *cs = CPU(cpu); 3117 uint64_t pageaddr = sextract64(value << 12, 0, 56); 3118 3119 tlb_flush_page_by_mmuidx(cs, pageaddr, ARMMMUIdxBit_S1E2); 3120 } 3121 3122 static void tlbi_aa64_vae3_write(CPUARMState *env, const ARMCPRegInfo *ri, 3123 uint64_t value) 3124 { 3125 /* Invalidate by VA, EL3 3126 * Currently handles both VAE3 and VALE3, since we don't support 3127 * flush-last-level-only. 3128 */ 3129 ARMCPU *cpu = arm_env_get_cpu(env); 3130 CPUState *cs = CPU(cpu); 3131 uint64_t pageaddr = sextract64(value << 12, 0, 56); 3132 3133 tlb_flush_page_by_mmuidx(cs, pageaddr, ARMMMUIdxBit_S1E3); 3134 } 3135 3136 static void tlbi_aa64_vae1is_write(CPUARMState *env, const ARMCPRegInfo *ri, 3137 uint64_t value) 3138 { 3139 ARMCPU *cpu = arm_env_get_cpu(env); 3140 CPUState *cs = CPU(cpu); 3141 bool sec = arm_is_secure_below_el3(env); 3142 uint64_t pageaddr = sextract64(value << 12, 0, 56); 3143 3144 if (sec) { 3145 tlb_flush_page_by_mmuidx_all_cpus_synced(cs, pageaddr, 3146 ARMMMUIdxBit_S1SE1 | 3147 ARMMMUIdxBit_S1SE0); 3148 } else { 3149 tlb_flush_page_by_mmuidx_all_cpus_synced(cs, pageaddr, 3150 ARMMMUIdxBit_S12NSE1 | 3151 ARMMMUIdxBit_S12NSE0); 3152 } 3153 } 3154 3155 static void tlbi_aa64_vae2is_write(CPUARMState *env, const ARMCPRegInfo *ri, 3156 uint64_t value) 3157 { 3158 CPUState *cs = ENV_GET_CPU(env); 3159 uint64_t pageaddr = sextract64(value << 12, 0, 56); 3160 3161 tlb_flush_page_by_mmuidx_all_cpus_synced(cs, pageaddr, 3162 ARMMMUIdxBit_S1E2); 3163 } 3164 3165 static void tlbi_aa64_vae3is_write(CPUARMState *env, const ARMCPRegInfo *ri, 3166 uint64_t value) 3167 { 3168 CPUState *cs = ENV_GET_CPU(env); 3169 uint64_t pageaddr = sextract64(value << 12, 0, 56); 3170 3171 tlb_flush_page_by_mmuidx_all_cpus_synced(cs, pageaddr, 3172 ARMMMUIdxBit_S1E3); 3173 } 3174 3175 static void tlbi_aa64_ipas2e1_write(CPUARMState *env, const ARMCPRegInfo *ri, 3176 uint64_t value) 3177 { 3178 /* Invalidate by IPA. This has to invalidate any structures that 3179 * contain only stage 2 translation information, but does not need 3180 * to apply to structures that contain combined stage 1 and stage 2 3181 * translation information. 3182 * This must NOP if EL2 isn't implemented or SCR_EL3.NS is zero. 3183 */ 3184 ARMCPU *cpu = arm_env_get_cpu(env); 3185 CPUState *cs = CPU(cpu); 3186 uint64_t pageaddr; 3187 3188 if (!arm_feature(env, ARM_FEATURE_EL2) || !(env->cp15.scr_el3 & SCR_NS)) { 3189 return; 3190 } 3191 3192 pageaddr = sextract64(value << 12, 0, 48); 3193 3194 tlb_flush_page_by_mmuidx(cs, pageaddr, ARMMMUIdxBit_S2NS); 3195 } 3196 3197 static void tlbi_aa64_ipas2e1is_write(CPUARMState *env, const ARMCPRegInfo *ri, 3198 uint64_t value) 3199 { 3200 CPUState *cs = ENV_GET_CPU(env); 3201 uint64_t pageaddr; 3202 3203 if (!arm_feature(env, ARM_FEATURE_EL2) || !(env->cp15.scr_el3 & SCR_NS)) { 3204 return; 3205 } 3206 3207 pageaddr = sextract64(value << 12, 0, 48); 3208 3209 tlb_flush_page_by_mmuidx_all_cpus_synced(cs, pageaddr, 3210 ARMMMUIdxBit_S2NS); 3211 } 3212 3213 static CPAccessResult aa64_zva_access(CPUARMState *env, const ARMCPRegInfo *ri, 3214 bool isread) 3215 { 3216 /* We don't implement EL2, so the only control on DC ZVA is the 3217 * bit in the SCTLR which can prohibit access for EL0. 3218 */ 3219 if (arm_current_el(env) == 0 && !(env->cp15.sctlr_el[1] & SCTLR_DZE)) { 3220 return CP_ACCESS_TRAP; 3221 } 3222 return CP_ACCESS_OK; 3223 } 3224 3225 static uint64_t aa64_dczid_read(CPUARMState *env, const ARMCPRegInfo *ri) 3226 { 3227 ARMCPU *cpu = arm_env_get_cpu(env); 3228 int dzp_bit = 1 << 4; 3229 3230 /* DZP indicates whether DC ZVA access is allowed */ 3231 if (aa64_zva_access(env, NULL, false) == CP_ACCESS_OK) { 3232 dzp_bit = 0; 3233 } 3234 return cpu->dcz_blocksize | dzp_bit; 3235 } 3236 3237 static CPAccessResult sp_el0_access(CPUARMState *env, const ARMCPRegInfo *ri, 3238 bool isread) 3239 { 3240 if (!(env->pstate & PSTATE_SP)) { 3241 /* Access to SP_EL0 is undefined if it's being used as 3242 * the stack pointer. 3243 */ 3244 return CP_ACCESS_TRAP_UNCATEGORIZED; 3245 } 3246 return CP_ACCESS_OK; 3247 } 3248 3249 static uint64_t spsel_read(CPUARMState *env, const ARMCPRegInfo *ri) 3250 { 3251 return env->pstate & PSTATE_SP; 3252 } 3253 3254 static void spsel_write(CPUARMState *env, const ARMCPRegInfo *ri, uint64_t val) 3255 { 3256 update_spsel(env, val); 3257 } 3258 3259 static void sctlr_write(CPUARMState *env, const ARMCPRegInfo *ri, 3260 uint64_t value) 3261 { 3262 ARMCPU *cpu = arm_env_get_cpu(env); 3263 3264 if (raw_read(env, ri) == value) { 3265 /* Skip the TLB flush if nothing actually changed; Linux likes 3266 * to do a lot of pointless SCTLR writes. 3267 */ 3268 return; 3269 } 3270 3271 if (arm_feature(env, ARM_FEATURE_PMSA) && !cpu->has_mpu) { 3272 /* M bit is RAZ/WI for PMSA with no MPU implemented */ 3273 value &= ~SCTLR_M; 3274 } 3275 3276 raw_write(env, ri, value); 3277 /* ??? Lots of these bits are not implemented. */ 3278 /* This may enable/disable the MMU, so do a TLB flush. */ 3279 tlb_flush(CPU(cpu)); 3280 } 3281 3282 static CPAccessResult fpexc32_access(CPUARMState *env, const ARMCPRegInfo *ri, 3283 bool isread) 3284 { 3285 if ((env->cp15.cptr_el[2] & CPTR_TFP) && arm_current_el(env) == 2) { 3286 return CP_ACCESS_TRAP_FP_EL2; 3287 } 3288 if (env->cp15.cptr_el[3] & CPTR_TFP) { 3289 return CP_ACCESS_TRAP_FP_EL3; 3290 } 3291 return CP_ACCESS_OK; 3292 } 3293 3294 static void sdcr_write(CPUARMState *env, const ARMCPRegInfo *ri, 3295 uint64_t value) 3296 { 3297 env->cp15.mdcr_el3 = value & SDCR_VALID_MASK; 3298 } 3299 3300 static const ARMCPRegInfo v8_cp_reginfo[] = { 3301 /* Minimal set of EL0-visible registers. This will need to be expanded 3302 * significantly for system emulation of AArch64 CPUs. 3303 */ 3304 { .name = "NZCV", .state = ARM_CP_STATE_AA64, 3305 .opc0 = 3, .opc1 = 3, .opc2 = 0, .crn = 4, .crm = 2, 3306 .access = PL0_RW, .type = ARM_CP_NZCV }, 3307 { .name = "DAIF", .state = ARM_CP_STATE_AA64, 3308 .opc0 = 3, .opc1 = 3, .opc2 = 1, .crn = 4, .crm = 2, 3309 .type = ARM_CP_NO_RAW, 3310 .access = PL0_RW, .accessfn = aa64_daif_access, 3311 .fieldoffset = offsetof(CPUARMState, daif), 3312 .writefn = aa64_daif_write, .resetfn = arm_cp_reset_ignore }, 3313 { .name = "FPCR", .state = ARM_CP_STATE_AA64, 3314 .opc0 = 3, .opc1 = 3, .opc2 = 0, .crn = 4, .crm = 4, 3315 .access = PL0_RW, .readfn = aa64_fpcr_read, .writefn = aa64_fpcr_write }, 3316 { .name = "FPSR", .state = ARM_CP_STATE_AA64, 3317 .opc0 = 3, .opc1 = 3, .opc2 = 1, .crn = 4, .crm = 4, 3318 .access = PL0_RW, .readfn = aa64_fpsr_read, .writefn = aa64_fpsr_write }, 3319 { .name = "DCZID_EL0", .state = ARM_CP_STATE_AA64, 3320 .opc0 = 3, .opc1 = 3, .opc2 = 7, .crn = 0, .crm = 0, 3321 .access = PL0_R, .type = ARM_CP_NO_RAW, 3322 .readfn = aa64_dczid_read }, 3323 { .name = "DC_ZVA", .state = ARM_CP_STATE_AA64, 3324 .opc0 = 1, .opc1 = 3, .crn = 7, .crm = 4, .opc2 = 1, 3325 .access = PL0_W, .type = ARM_CP_DC_ZVA, 3326 #ifndef CONFIG_USER_ONLY 3327 /* Avoid overhead of an access check that always passes in user-mode */ 3328 .accessfn = aa64_zva_access, 3329 #endif 3330 }, 3331 { .name = "CURRENTEL", .state = ARM_CP_STATE_AA64, 3332 .opc0 = 3, .opc1 = 0, .opc2 = 2, .crn = 4, .crm = 2, 3333 .access = PL1_R, .type = ARM_CP_CURRENTEL }, 3334 /* Cache ops: all NOPs since we don't emulate caches */ 3335 { .name = "IC_IALLUIS", .state = ARM_CP_STATE_AA64, 3336 .opc0 = 1, .opc1 = 0, .crn = 7, .crm = 1, .opc2 = 0, 3337 .access = PL1_W, .type = ARM_CP_NOP }, 3338 { .name = "IC_IALLU", .state = ARM_CP_STATE_AA64, 3339 .opc0 = 1, .opc1 = 0, .crn = 7, .crm = 5, .opc2 = 0, 3340 .access = PL1_W, .type = ARM_CP_NOP }, 3341 { .name = "IC_IVAU", .state = ARM_CP_STATE_AA64, 3342 .opc0 = 1, .opc1 = 3, .crn = 7, .crm = 5, .opc2 = 1, 3343 .access = PL0_W, .type = ARM_CP_NOP, 3344 .accessfn = aa64_cacheop_access }, 3345 { .name = "DC_IVAC", .state = ARM_CP_STATE_AA64, 3346 .opc0 = 1, .opc1 = 0, .crn = 7, .crm = 6, .opc2 = 1, 3347 .access = PL1_W, .type = ARM_CP_NOP }, 3348 { .name = "DC_ISW", .state = ARM_CP_STATE_AA64, 3349 .opc0 = 1, .opc1 = 0, .crn = 7, .crm = 6, .opc2 = 2, 3350 .access = PL1_W, .type = ARM_CP_NOP }, 3351 { .name = "DC_CVAC", .state = ARM_CP_STATE_AA64, 3352 .opc0 = 1, .opc1 = 3, .crn = 7, .crm = 10, .opc2 = 1, 3353 .access = PL0_W, .type = ARM_CP_NOP, 3354 .accessfn = aa64_cacheop_access }, 3355 { .name = "DC_CSW", .state = ARM_CP_STATE_AA64, 3356 .opc0 = 1, .opc1 = 0, .crn = 7, .crm = 10, .opc2 = 2, 3357 .access = PL1_W, .type = ARM_CP_NOP }, 3358 { .name = "DC_CVAU", .state = ARM_CP_STATE_AA64, 3359 .opc0 = 1, .opc1 = 3, .crn = 7, .crm = 11, .opc2 = 1, 3360 .access = PL0_W, .type = ARM_CP_NOP, 3361 .accessfn = aa64_cacheop_access }, 3362 { .name = "DC_CIVAC", .state = ARM_CP_STATE_AA64, 3363 .opc0 = 1, .opc1 = 3, .crn = 7, .crm = 14, .opc2 = 1, 3364 .access = PL0_W, .type = ARM_CP_NOP, 3365 .accessfn = aa64_cacheop_access }, 3366 { .name = "DC_CISW", .state = ARM_CP_STATE_AA64, 3367 .opc0 = 1, .opc1 = 0, .crn = 7, .crm = 14, .opc2 = 2, 3368 .access = PL1_W, .type = ARM_CP_NOP }, 3369 /* TLBI operations */ 3370 { .name = "TLBI_VMALLE1IS", .state = ARM_CP_STATE_AA64, 3371 .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 3, .opc2 = 0, 3372 .access = PL1_W, .type = ARM_CP_NO_RAW, 3373 .writefn = tlbi_aa64_vmalle1is_write }, 3374 { .name = "TLBI_VAE1IS", .state = ARM_CP_STATE_AA64, 3375 .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 3, .opc2 = 1, 3376 .access = PL1_W, .type = ARM_CP_NO_RAW, 3377 .writefn = tlbi_aa64_vae1is_write }, 3378 { .name = "TLBI_ASIDE1IS", .state = ARM_CP_STATE_AA64, 3379 .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 3, .opc2 = 2, 3380 .access = PL1_W, .type = ARM_CP_NO_RAW, 3381 .writefn = tlbi_aa64_vmalle1is_write }, 3382 { .name = "TLBI_VAAE1IS", .state = ARM_CP_STATE_AA64, 3383 .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 3, .opc2 = 3, 3384 .access = PL1_W, .type = ARM_CP_NO_RAW, 3385 .writefn = tlbi_aa64_vae1is_write }, 3386 { .name = "TLBI_VALE1IS", .state = ARM_CP_STATE_AA64, 3387 .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 3, .opc2 = 5, 3388 .access = PL1_W, .type = ARM_CP_NO_RAW, 3389 .writefn = tlbi_aa64_vae1is_write }, 3390 { .name = "TLBI_VAALE1IS", .state = ARM_CP_STATE_AA64, 3391 .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 3, .opc2 = 7, 3392 .access = PL1_W, .type = ARM_CP_NO_RAW, 3393 .writefn = tlbi_aa64_vae1is_write }, 3394 { .name = "TLBI_VMALLE1", .state = ARM_CP_STATE_AA64, 3395 .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 7, .opc2 = 0, 3396 .access = PL1_W, .type = ARM_CP_NO_RAW, 3397 .writefn = tlbi_aa64_vmalle1_write }, 3398 { .name = "TLBI_VAE1", .state = ARM_CP_STATE_AA64, 3399 .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 7, .opc2 = 1, 3400 .access = PL1_W, .type = ARM_CP_NO_RAW, 3401 .writefn = tlbi_aa64_vae1_write }, 3402 { .name = "TLBI_ASIDE1", .state = ARM_CP_STATE_AA64, 3403 .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 7, .opc2 = 2, 3404 .access = PL1_W, .type = ARM_CP_NO_RAW, 3405 .writefn = tlbi_aa64_vmalle1_write }, 3406 { .name = "TLBI_VAAE1", .state = ARM_CP_STATE_AA64, 3407 .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 7, .opc2 = 3, 3408 .access = PL1_W, .type = ARM_CP_NO_RAW, 3409 .writefn = tlbi_aa64_vae1_write }, 3410 { .name = "TLBI_VALE1", .state = ARM_CP_STATE_AA64, 3411 .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 7, .opc2 = 5, 3412 .access = PL1_W, .type = ARM_CP_NO_RAW, 3413 .writefn = tlbi_aa64_vae1_write }, 3414 { .name = "TLBI_VAALE1", .state = ARM_CP_STATE_AA64, 3415 .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 7, .opc2 = 7, 3416 .access = PL1_W, .type = ARM_CP_NO_RAW, 3417 .writefn = tlbi_aa64_vae1_write }, 3418 { .name = "TLBI_IPAS2E1IS", .state = ARM_CP_STATE_AA64, 3419 .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 0, .opc2 = 1, 3420 .access = PL2_W, .type = ARM_CP_NO_RAW, 3421 .writefn = tlbi_aa64_ipas2e1is_write }, 3422 { .name = "TLBI_IPAS2LE1IS", .state = ARM_CP_STATE_AA64, 3423 .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 0, .opc2 = 5, 3424 .access = PL2_W, .type = ARM_CP_NO_RAW, 3425 .writefn = tlbi_aa64_ipas2e1is_write }, 3426 { .name = "TLBI_ALLE1IS", .state = ARM_CP_STATE_AA64, 3427 .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 3, .opc2 = 4, 3428 .access = PL2_W, .type = ARM_CP_NO_RAW, 3429 .writefn = tlbi_aa64_alle1is_write }, 3430 { .name = "TLBI_VMALLS12E1IS", .state = ARM_CP_STATE_AA64, 3431 .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 3, .opc2 = 6, 3432 .access = PL2_W, .type = ARM_CP_NO_RAW, 3433 .writefn = tlbi_aa64_alle1is_write }, 3434 { .name = "TLBI_IPAS2E1", .state = ARM_CP_STATE_AA64, 3435 .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 4, .opc2 = 1, 3436 .access = PL2_W, .type = ARM_CP_NO_RAW, 3437 .writefn = tlbi_aa64_ipas2e1_write }, 3438 { .name = "TLBI_IPAS2LE1", .state = ARM_CP_STATE_AA64, 3439 .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 4, .opc2 = 5, 3440 .access = PL2_W, .type = ARM_CP_NO_RAW, 3441 .writefn = tlbi_aa64_ipas2e1_write }, 3442 { .name = "TLBI_ALLE1", .state = ARM_CP_STATE_AA64, 3443 .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 7, .opc2 = 4, 3444 .access = PL2_W, .type = ARM_CP_NO_RAW, 3445 .writefn = tlbi_aa64_alle1_write }, 3446 { .name = "TLBI_VMALLS12E1", .state = ARM_CP_STATE_AA64, 3447 .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 7, .opc2 = 6, 3448 .access = PL2_W, .type = ARM_CP_NO_RAW, 3449 .writefn = tlbi_aa64_alle1is_write }, 3450 #ifndef CONFIG_USER_ONLY 3451 /* 64 bit address translation operations */ 3452 { .name = "AT_S1E1R", .state = ARM_CP_STATE_AA64, 3453 .opc0 = 1, .opc1 = 0, .crn = 7, .crm = 8, .opc2 = 0, 3454 .access = PL1_W, .type = ARM_CP_NO_RAW, .writefn = ats_write64 }, 3455 { .name = "AT_S1E1W", .state = ARM_CP_STATE_AA64, 3456 .opc0 = 1, .opc1 = 0, .crn = 7, .crm = 8, .opc2 = 1, 3457 .access = PL1_W, .type = ARM_CP_NO_RAW, .writefn = ats_write64 }, 3458 { .name = "AT_S1E0R", .state = ARM_CP_STATE_AA64, 3459 .opc0 = 1, .opc1 = 0, .crn = 7, .crm = 8, .opc2 = 2, 3460 .access = PL1_W, .type = ARM_CP_NO_RAW, .writefn = ats_write64 }, 3461 { .name = "AT_S1E0W", .state = ARM_CP_STATE_AA64, 3462 .opc0 = 1, .opc1 = 0, .crn = 7, .crm = 8, .opc2 = 3, 3463 .access = PL1_W, .type = ARM_CP_NO_RAW, .writefn = ats_write64 }, 3464 { .name = "AT_S12E1R", .state = ARM_CP_STATE_AA64, 3465 .opc0 = 1, .opc1 = 4, .crn = 7, .crm = 8, .opc2 = 4, 3466 .access = PL2_W, .type = ARM_CP_NO_RAW, .writefn = ats_write64 }, 3467 { .name = "AT_S12E1W", .state = ARM_CP_STATE_AA64, 3468 .opc0 = 1, .opc1 = 4, .crn = 7, .crm = 8, .opc2 = 5, 3469 .access = PL2_W, .type = ARM_CP_NO_RAW, .writefn = ats_write64 }, 3470 { .name = "AT_S12E0R", .state = ARM_CP_STATE_AA64, 3471 .opc0 = 1, .opc1 = 4, .crn = 7, .crm = 8, .opc2 = 6, 3472 .access = PL2_W, .type = ARM_CP_NO_RAW, .writefn = ats_write64 }, 3473 { .name = "AT_S12E0W", .state = ARM_CP_STATE_AA64, 3474 .opc0 = 1, .opc1 = 4, .crn = 7, .crm = 8, .opc2 = 7, 3475 .access = PL2_W, .type = ARM_CP_NO_RAW, .writefn = ats_write64 }, 3476 /* AT S1E2* are elsewhere as they UNDEF from EL3 if EL2 is not present */ 3477 { .name = "AT_S1E3R", .state = ARM_CP_STATE_AA64, 3478 .opc0 = 1, .opc1 = 6, .crn = 7, .crm = 8, .opc2 = 0, 3479 .access = PL3_W, .type = ARM_CP_NO_RAW, .writefn = ats_write64 }, 3480 { .name = "AT_S1E3W", .state = ARM_CP_STATE_AA64, 3481 .opc0 = 1, .opc1 = 6, .crn = 7, .crm = 8, .opc2 = 1, 3482 .access = PL3_W, .type = ARM_CP_NO_RAW, .writefn = ats_write64 }, 3483 { .name = "PAR_EL1", .state = ARM_CP_STATE_AA64, 3484 .type = ARM_CP_ALIAS, 3485 .opc0 = 3, .opc1 = 0, .crn = 7, .crm = 4, .opc2 = 0, 3486 .access = PL1_RW, .resetvalue = 0, 3487 .fieldoffset = offsetof(CPUARMState, cp15.par_el[1]), 3488 .writefn = par_write }, 3489 #endif 3490 /* TLB invalidate last level of translation table walk */ 3491 { .name = "TLBIMVALIS", .cp = 15, .opc1 = 0, .crn = 8, .crm = 3, .opc2 = 5, 3492 .type = ARM_CP_NO_RAW, .access = PL1_W, .writefn = tlbimva_is_write }, 3493 { .name = "TLBIMVAALIS", .cp = 15, .opc1 = 0, .crn = 8, .crm = 3, .opc2 = 7, 3494 .type = ARM_CP_NO_RAW, .access = PL1_W, 3495 .writefn = tlbimvaa_is_write }, 3496 { .name = "TLBIMVAL", .cp = 15, .opc1 = 0, .crn = 8, .crm = 7, .opc2 = 5, 3497 .type = ARM_CP_NO_RAW, .access = PL1_W, .writefn = tlbimva_write }, 3498 { .name = "TLBIMVAAL", .cp = 15, .opc1 = 0, .crn = 8, .crm = 7, .opc2 = 7, 3499 .type = ARM_CP_NO_RAW, .access = PL1_W, .writefn = tlbimvaa_write }, 3500 { .name = "TLBIMVALH", .cp = 15, .opc1 = 4, .crn = 8, .crm = 7, .opc2 = 5, 3501 .type = ARM_CP_NO_RAW, .access = PL2_W, 3502 .writefn = tlbimva_hyp_write }, 3503 { .name = "TLBIMVALHIS", 3504 .cp = 15, .opc1 = 4, .crn = 8, .crm = 3, .opc2 = 5, 3505 .type = ARM_CP_NO_RAW, .access = PL2_W, 3506 .writefn = tlbimva_hyp_is_write }, 3507 { .name = "TLBIIPAS2", 3508 .cp = 15, .opc1 = 4, .crn = 8, .crm = 4, .opc2 = 1, 3509 .type = ARM_CP_NO_RAW, .access = PL2_W, 3510 .writefn = tlbiipas2_write }, 3511 { .name = "TLBIIPAS2IS", 3512 .cp = 15, .opc1 = 4, .crn = 8, .crm = 0, .opc2 = 1, 3513 .type = ARM_CP_NO_RAW, .access = PL2_W, 3514 .writefn = tlbiipas2_is_write }, 3515 { .name = "TLBIIPAS2L", 3516 .cp = 15, .opc1 = 4, .crn = 8, .crm = 4, .opc2 = 5, 3517 .type = ARM_CP_NO_RAW, .access = PL2_W, 3518 .writefn = tlbiipas2_write }, 3519 { .name = "TLBIIPAS2LIS", 3520 .cp = 15, .opc1 = 4, .crn = 8, .crm = 0, .opc2 = 5, 3521 .type = ARM_CP_NO_RAW, .access = PL2_W, 3522 .writefn = tlbiipas2_is_write }, 3523 /* 32 bit cache operations */ 3524 { .name = "ICIALLUIS", .cp = 15, .opc1 = 0, .crn = 7, .crm = 1, .opc2 = 0, 3525 .type = ARM_CP_NOP, .access = PL1_W }, 3526 { .name = "BPIALLUIS", .cp = 15, .opc1 = 0, .crn = 7, .crm = 1, .opc2 = 6, 3527 .type = ARM_CP_NOP, .access = PL1_W }, 3528 { .name = "ICIALLU", .cp = 15, .opc1 = 0, .crn = 7, .crm = 5, .opc2 = 0, 3529 .type = ARM_CP_NOP, .access = PL1_W }, 3530 { .name = "ICIMVAU", .cp = 15, .opc1 = 0, .crn = 7, .crm = 5, .opc2 = 1, 3531 .type = ARM_CP_NOP, .access = PL1_W }, 3532 { .name = "BPIALL", .cp = 15, .opc1 = 0, .crn = 7, .crm = 5, .opc2 = 6, 3533 .type = ARM_CP_NOP, .access = PL1_W }, 3534 { .name = "BPIMVA", .cp = 15, .opc1 = 0, .crn = 7, .crm = 5, .opc2 = 7, 3535 .type = ARM_CP_NOP, .access = PL1_W }, 3536 { .name = "DCIMVAC", .cp = 15, .opc1 = 0, .crn = 7, .crm = 6, .opc2 = 1, 3537 .type = ARM_CP_NOP, .access = PL1_W }, 3538 { .name = "DCISW", .cp = 15, .opc1 = 0, .crn = 7, .crm = 6, .opc2 = 2, 3539 .type = ARM_CP_NOP, .access = PL1_W }, 3540 { .name = "DCCMVAC", .cp = 15, .opc1 = 0, .crn = 7, .crm = 10, .opc2 = 1, 3541 .type = ARM_CP_NOP, .access = PL1_W }, 3542 { .name = "DCCSW", .cp = 15, .opc1 = 0, .crn = 7, .crm = 10, .opc2 = 2, 3543 .type = ARM_CP_NOP, .access = PL1_W }, 3544 { .name = "DCCMVAU", .cp = 15, .opc1 = 0, .crn = 7, .crm = 11, .opc2 = 1, 3545 .type = ARM_CP_NOP, .access = PL1_W }, 3546 { .name = "DCCIMVAC", .cp = 15, .opc1 = 0, .crn = 7, .crm = 14, .opc2 = 1, 3547 .type = ARM_CP_NOP, .access = PL1_W }, 3548 { .name = "DCCISW", .cp = 15, .opc1 = 0, .crn = 7, .crm = 14, .opc2 = 2, 3549 .type = ARM_CP_NOP, .access = PL1_W }, 3550 /* MMU Domain access control / MPU write buffer control */ 3551 { .name = "DACR", .cp = 15, .opc1 = 0, .crn = 3, .crm = 0, .opc2 = 0, 3552 .access = PL1_RW, .resetvalue = 0, 3553 .writefn = dacr_write, .raw_writefn = raw_write, 3554 .bank_fieldoffsets = { offsetoflow32(CPUARMState, cp15.dacr_s), 3555 offsetoflow32(CPUARMState, cp15.dacr_ns) } }, 3556 { .name = "ELR_EL1", .state = ARM_CP_STATE_AA64, 3557 .type = ARM_CP_ALIAS, 3558 .opc0 = 3, .opc1 = 0, .crn = 4, .crm = 0, .opc2 = 1, 3559 .access = PL1_RW, 3560 .fieldoffset = offsetof(CPUARMState, elr_el[1]) }, 3561 { .name = "SPSR_EL1", .state = ARM_CP_STATE_AA64, 3562 .type = ARM_CP_ALIAS, 3563 .opc0 = 3, .opc1 = 0, .crn = 4, .crm = 0, .opc2 = 0, 3564 .access = PL1_RW, 3565 .fieldoffset = offsetof(CPUARMState, banked_spsr[BANK_SVC]) }, 3566 /* We rely on the access checks not allowing the guest to write to the 3567 * state field when SPSel indicates that it's being used as the stack 3568 * pointer. 3569 */ 3570 { .name = "SP_EL0", .state = ARM_CP_STATE_AA64, 3571 .opc0 = 3, .opc1 = 0, .crn = 4, .crm = 1, .opc2 = 0, 3572 .access = PL1_RW, .accessfn = sp_el0_access, 3573 .type = ARM_CP_ALIAS, 3574 .fieldoffset = offsetof(CPUARMState, sp_el[0]) }, 3575 { .name = "SP_EL1", .state = ARM_CP_STATE_AA64, 3576 .opc0 = 3, .opc1 = 4, .crn = 4, .crm = 1, .opc2 = 0, 3577 .access = PL2_RW, .type = ARM_CP_ALIAS, 3578 .fieldoffset = offsetof(CPUARMState, sp_el[1]) }, 3579 { .name = "SPSel", .state = ARM_CP_STATE_AA64, 3580 .opc0 = 3, .opc1 = 0, .crn = 4, .crm = 2, .opc2 = 0, 3581 .type = ARM_CP_NO_RAW, 3582 .access = PL1_RW, .readfn = spsel_read, .writefn = spsel_write }, 3583 { .name = "FPEXC32_EL2", .state = ARM_CP_STATE_AA64, 3584 .opc0 = 3, .opc1 = 4, .crn = 5, .crm = 3, .opc2 = 0, 3585 .type = ARM_CP_ALIAS, 3586 .fieldoffset = offsetof(CPUARMState, vfp.xregs[ARM_VFP_FPEXC]), 3587 .access = PL2_RW, .accessfn = fpexc32_access }, 3588 { .name = "DACR32_EL2", .state = ARM_CP_STATE_AA64, 3589 .opc0 = 3, .opc1 = 4, .crn = 3, .crm = 0, .opc2 = 0, 3590 .access = PL2_RW, .resetvalue = 0, 3591 .writefn = dacr_write, .raw_writefn = raw_write, 3592 .fieldoffset = offsetof(CPUARMState, cp15.dacr32_el2) }, 3593 { .name = "IFSR32_EL2", .state = ARM_CP_STATE_AA64, 3594 .opc0 = 3, .opc1 = 4, .crn = 5, .crm = 0, .opc2 = 1, 3595 .access = PL2_RW, .resetvalue = 0, 3596 .fieldoffset = offsetof(CPUARMState, cp15.ifsr32_el2) }, 3597 { .name = "SPSR_IRQ", .state = ARM_CP_STATE_AA64, 3598 .type = ARM_CP_ALIAS, 3599 .opc0 = 3, .opc1 = 4, .crn = 4, .crm = 3, .opc2 = 0, 3600 .access = PL2_RW, 3601 .fieldoffset = offsetof(CPUARMState, banked_spsr[BANK_IRQ]) }, 3602 { .name = "SPSR_ABT", .state = ARM_CP_STATE_AA64, 3603 .type = ARM_CP_ALIAS, 3604 .opc0 = 3, .opc1 = 4, .crn = 4, .crm = 3, .opc2 = 1, 3605 .access = PL2_RW, 3606 .fieldoffset = offsetof(CPUARMState, banked_spsr[BANK_ABT]) }, 3607 { .name = "SPSR_UND", .state = ARM_CP_STATE_AA64, 3608 .type = ARM_CP_ALIAS, 3609 .opc0 = 3, .opc1 = 4, .crn = 4, .crm = 3, .opc2 = 2, 3610 .access = PL2_RW, 3611 .fieldoffset = offsetof(CPUARMState, banked_spsr[BANK_UND]) }, 3612 { .name = "SPSR_FIQ", .state = ARM_CP_STATE_AA64, 3613 .type = ARM_CP_ALIAS, 3614 .opc0 = 3, .opc1 = 4, .crn = 4, .crm = 3, .opc2 = 3, 3615 .access = PL2_RW, 3616 .fieldoffset = offsetof(CPUARMState, banked_spsr[BANK_FIQ]) }, 3617 { .name = "MDCR_EL3", .state = ARM_CP_STATE_AA64, 3618 .opc0 = 3, .opc1 = 6, .crn = 1, .crm = 3, .opc2 = 1, 3619 .resetvalue = 0, 3620 .access = PL3_RW, .fieldoffset = offsetof(CPUARMState, cp15.mdcr_el3) }, 3621 { .name = "SDCR", .type = ARM_CP_ALIAS, 3622 .cp = 15, .opc1 = 0, .crn = 1, .crm = 3, .opc2 = 1, 3623 .access = PL1_RW, .accessfn = access_trap_aa32s_el1, 3624 .writefn = sdcr_write, 3625 .fieldoffset = offsetoflow32(CPUARMState, cp15.mdcr_el3) }, 3626 REGINFO_SENTINEL 3627 }; 3628 3629 /* Used to describe the behaviour of EL2 regs when EL2 does not exist. */ 3630 static const ARMCPRegInfo el3_no_el2_cp_reginfo[] = { 3631 { .name = "VBAR_EL2", .state = ARM_CP_STATE_AA64, 3632 .opc0 = 3, .opc1 = 4, .crn = 12, .crm = 0, .opc2 = 0, 3633 .access = PL2_RW, 3634 .readfn = arm_cp_read_zero, .writefn = arm_cp_write_ignore }, 3635 { .name = "HCR_EL2", .state = ARM_CP_STATE_AA64, 3636 .type = ARM_CP_NO_RAW, 3637 .opc0 = 3, .opc1 = 4, .crn = 1, .crm = 1, .opc2 = 0, 3638 .access = PL2_RW, 3639 .readfn = arm_cp_read_zero, .writefn = arm_cp_write_ignore }, 3640 { .name = "CPTR_EL2", .state = ARM_CP_STATE_BOTH, 3641 .opc0 = 3, .opc1 = 4, .crn = 1, .crm = 1, .opc2 = 2, 3642 .access = PL2_RW, .type = ARM_CP_CONST, .resetvalue = 0 }, 3643 { .name = "MAIR_EL2", .state = ARM_CP_STATE_BOTH, 3644 .opc0 = 3, .opc1 = 4, .crn = 10, .crm = 2, .opc2 = 0, 3645 .access = PL2_RW, .type = ARM_CP_CONST, 3646 .resetvalue = 0 }, 3647 { .name = "HMAIR1", .state = ARM_CP_STATE_AA32, 3648 .opc1 = 4, .crn = 10, .crm = 2, .opc2 = 1, 3649 .access = PL2_RW, .type = ARM_CP_CONST, .resetvalue = 0 }, 3650 { .name = "AMAIR_EL2", .state = ARM_CP_STATE_BOTH, 3651 .opc0 = 3, .opc1 = 4, .crn = 10, .crm = 3, .opc2 = 0, 3652 .access = PL2_RW, .type = ARM_CP_CONST, 3653 .resetvalue = 0 }, 3654 { .name = "HMAIR1", .state = ARM_CP_STATE_AA32, 3655 .opc1 = 4, .crn = 10, .crm = 3, .opc2 = 1, 3656 .access = PL2_RW, .type = ARM_CP_CONST, 3657 .resetvalue = 0 }, 3658 { .name = "AFSR0_EL2", .state = ARM_CP_STATE_BOTH, 3659 .opc0 = 3, .opc1 = 4, .crn = 5, .crm = 1, .opc2 = 0, 3660 .access = PL2_RW, .type = ARM_CP_CONST, 3661 .resetvalue = 0 }, 3662 { .name = "AFSR1_EL2", .state = ARM_CP_STATE_BOTH, 3663 .opc0 = 3, .opc1 = 4, .crn = 5, .crm = 1, .opc2 = 1, 3664 .access = PL2_RW, .type = ARM_CP_CONST, 3665 .resetvalue = 0 }, 3666 { .name = "TCR_EL2", .state = ARM_CP_STATE_BOTH, 3667 .opc0 = 3, .opc1 = 4, .crn = 2, .crm = 0, .opc2 = 2, 3668 .access = PL2_RW, .type = ARM_CP_CONST, .resetvalue = 0 }, 3669 { .name = "VTCR_EL2", .state = ARM_CP_STATE_BOTH, 3670 .opc0 = 3, .opc1 = 4, .crn = 2, .crm = 1, .opc2 = 2, 3671 .access = PL2_RW, .accessfn = access_el3_aa32ns_aa64any, 3672 .type = ARM_CP_CONST, .resetvalue = 0 }, 3673 { .name = "VTTBR", .state = ARM_CP_STATE_AA32, 3674 .cp = 15, .opc1 = 6, .crm = 2, 3675 .access = PL2_RW, .accessfn = access_el3_aa32ns, 3676 .type = ARM_CP_CONST | ARM_CP_64BIT, .resetvalue = 0 }, 3677 { .name = "VTTBR_EL2", .state = ARM_CP_STATE_AA64, 3678 .opc0 = 3, .opc1 = 4, .crn = 2, .crm = 1, .opc2 = 0, 3679 .access = PL2_RW, .type = ARM_CP_CONST, .resetvalue = 0 }, 3680 { .name = "SCTLR_EL2", .state = ARM_CP_STATE_BOTH, 3681 .opc0 = 3, .opc1 = 4, .crn = 1, .crm = 0, .opc2 = 0, 3682 .access = PL2_RW, .type = ARM_CP_CONST, .resetvalue = 0 }, 3683 { .name = "TPIDR_EL2", .state = ARM_CP_STATE_BOTH, 3684 .opc0 = 3, .opc1 = 4, .crn = 13, .crm = 0, .opc2 = 2, 3685 .access = PL2_RW, .type = ARM_CP_CONST, .resetvalue = 0 }, 3686 { .name = "TTBR0_EL2", .state = ARM_CP_STATE_AA64, 3687 .opc0 = 3, .opc1 = 4, .crn = 2, .crm = 0, .opc2 = 0, 3688 .access = PL2_RW, .type = ARM_CP_CONST, .resetvalue = 0 }, 3689 { .name = "HTTBR", .cp = 15, .opc1 = 4, .crm = 2, 3690 .access = PL2_RW, .type = ARM_CP_64BIT | ARM_CP_CONST, 3691 .resetvalue = 0 }, 3692 { .name = "CNTHCTL_EL2", .state = ARM_CP_STATE_BOTH, 3693 .opc0 = 3, .opc1 = 4, .crn = 14, .crm = 1, .opc2 = 0, 3694 .access = PL2_RW, .type = ARM_CP_CONST, .resetvalue = 0 }, 3695 { .name = "CNTVOFF_EL2", .state = ARM_CP_STATE_AA64, 3696 .opc0 = 3, .opc1 = 4, .crn = 14, .crm = 0, .opc2 = 3, 3697 .access = PL2_RW, .type = ARM_CP_CONST, .resetvalue = 0 }, 3698 { .name = "CNTVOFF", .cp = 15, .opc1 = 4, .crm = 14, 3699 .access = PL2_RW, .type = ARM_CP_64BIT | ARM_CP_CONST, 3700 .resetvalue = 0 }, 3701 { .name = "CNTHP_CVAL_EL2", .state = ARM_CP_STATE_AA64, 3702 .opc0 = 3, .opc1 = 4, .crn = 14, .crm = 2, .opc2 = 2, 3703 .access = PL2_RW, .type = ARM_CP_CONST, .resetvalue = 0 }, 3704 { .name = "CNTHP_CVAL", .cp = 15, .opc1 = 6, .crm = 14, 3705 .access = PL2_RW, .type = ARM_CP_64BIT | ARM_CP_CONST, 3706 .resetvalue = 0 }, 3707 { .name = "CNTHP_TVAL_EL2", .state = ARM_CP_STATE_BOTH, 3708 .opc0 = 3, .opc1 = 4, .crn = 14, .crm = 2, .opc2 = 0, 3709 .access = PL2_RW, .type = ARM_CP_CONST, .resetvalue = 0 }, 3710 { .name = "CNTHP_CTL_EL2", .state = ARM_CP_STATE_BOTH, 3711 .opc0 = 3, .opc1 = 4, .crn = 14, .crm = 2, .opc2 = 1, 3712 .access = PL2_RW, .type = ARM_CP_CONST, .resetvalue = 0 }, 3713 { .name = "MDCR_EL2", .state = ARM_CP_STATE_BOTH, 3714 .opc0 = 3, .opc1 = 4, .crn = 1, .crm = 1, .opc2 = 1, 3715 .access = PL2_RW, .accessfn = access_tda, 3716 .type = ARM_CP_CONST, .resetvalue = 0 }, 3717 { .name = "HPFAR_EL2", .state = ARM_CP_STATE_BOTH, 3718 .opc0 = 3, .opc1 = 4, .crn = 6, .crm = 0, .opc2 = 4, 3719 .access = PL2_RW, .accessfn = access_el3_aa32ns_aa64any, 3720 .type = ARM_CP_CONST, .resetvalue = 0 }, 3721 { .name = "HSTR_EL2", .state = ARM_CP_STATE_BOTH, 3722 .opc0 = 3, .opc1 = 4, .crn = 1, .crm = 1, .opc2 = 3, 3723 .access = PL2_RW, .type = ARM_CP_CONST, .resetvalue = 0 }, 3724 REGINFO_SENTINEL 3725 }; 3726 3727 static void hcr_write(CPUARMState *env, const ARMCPRegInfo *ri, uint64_t value) 3728 { 3729 ARMCPU *cpu = arm_env_get_cpu(env); 3730 uint64_t valid_mask = HCR_MASK; 3731 3732 if (arm_feature(env, ARM_FEATURE_EL3)) { 3733 valid_mask &= ~HCR_HCD; 3734 } else if (cpu->psci_conduit != QEMU_PSCI_CONDUIT_SMC) { 3735 /* Architecturally HCR.TSC is RES0 if EL3 is not implemented. 3736 * However, if we're using the SMC PSCI conduit then QEMU is 3737 * effectively acting like EL3 firmware and so the guest at 3738 * EL2 should retain the ability to prevent EL1 from being 3739 * able to make SMC calls into the ersatz firmware, so in 3740 * that case HCR.TSC should be read/write. 3741 */ 3742 valid_mask &= ~HCR_TSC; 3743 } 3744 3745 /* Clear RES0 bits. */ 3746 value &= valid_mask; 3747 3748 /* These bits change the MMU setup: 3749 * HCR_VM enables stage 2 translation 3750 * HCR_PTW forbids certain page-table setups 3751 * HCR_DC Disables stage1 and enables stage2 translation 3752 */ 3753 if ((raw_read(env, ri) ^ value) & (HCR_VM | HCR_PTW | HCR_DC)) { 3754 tlb_flush(CPU(cpu)); 3755 } 3756 raw_write(env, ri, value); 3757 } 3758 3759 static const ARMCPRegInfo el2_cp_reginfo[] = { 3760 { .name = "HCR_EL2", .state = ARM_CP_STATE_AA64, 3761 .opc0 = 3, .opc1 = 4, .crn = 1, .crm = 1, .opc2 = 0, 3762 .access = PL2_RW, .fieldoffset = offsetof(CPUARMState, cp15.hcr_el2), 3763 .writefn = hcr_write }, 3764 { .name = "ELR_EL2", .state = ARM_CP_STATE_AA64, 3765 .type = ARM_CP_ALIAS, 3766 .opc0 = 3, .opc1 = 4, .crn = 4, .crm = 0, .opc2 = 1, 3767 .access = PL2_RW, 3768 .fieldoffset = offsetof(CPUARMState, elr_el[2]) }, 3769 { .name = "ESR_EL2", .state = ARM_CP_STATE_AA64, 3770 .opc0 = 3, .opc1 = 4, .crn = 5, .crm = 2, .opc2 = 0, 3771 .access = PL2_RW, .fieldoffset = offsetof(CPUARMState, cp15.esr_el[2]) }, 3772 { .name = "FAR_EL2", .state = ARM_CP_STATE_AA64, 3773 .opc0 = 3, .opc1 = 4, .crn = 6, .crm = 0, .opc2 = 0, 3774 .access = PL2_RW, .fieldoffset = offsetof(CPUARMState, cp15.far_el[2]) }, 3775 { .name = "SPSR_EL2", .state = ARM_CP_STATE_AA64, 3776 .type = ARM_CP_ALIAS, 3777 .opc0 = 3, .opc1 = 4, .crn = 4, .crm = 0, .opc2 = 0, 3778 .access = PL2_RW, 3779 .fieldoffset = offsetof(CPUARMState, banked_spsr[BANK_HYP]) }, 3780 { .name = "VBAR_EL2", .state = ARM_CP_STATE_AA64, 3781 .opc0 = 3, .opc1 = 4, .crn = 12, .crm = 0, .opc2 = 0, 3782 .access = PL2_RW, .writefn = vbar_write, 3783 .fieldoffset = offsetof(CPUARMState, cp15.vbar_el[2]), 3784 .resetvalue = 0 }, 3785 { .name = "SP_EL2", .state = ARM_CP_STATE_AA64, 3786 .opc0 = 3, .opc1 = 6, .crn = 4, .crm = 1, .opc2 = 0, 3787 .access = PL3_RW, .type = ARM_CP_ALIAS, 3788 .fieldoffset = offsetof(CPUARMState, sp_el[2]) }, 3789 { .name = "CPTR_EL2", .state = ARM_CP_STATE_BOTH, 3790 .opc0 = 3, .opc1 = 4, .crn = 1, .crm = 1, .opc2 = 2, 3791 .access = PL2_RW, .accessfn = cptr_access, .resetvalue = 0, 3792 .fieldoffset = offsetof(CPUARMState, cp15.cptr_el[2]) }, 3793 { .name = "MAIR_EL2", .state = ARM_CP_STATE_BOTH, 3794 .opc0 = 3, .opc1 = 4, .crn = 10, .crm = 2, .opc2 = 0, 3795 .access = PL2_RW, .fieldoffset = offsetof(CPUARMState, cp15.mair_el[2]), 3796 .resetvalue = 0 }, 3797 { .name = "HMAIR1", .state = ARM_CP_STATE_AA32, 3798 .opc1 = 4, .crn = 10, .crm = 2, .opc2 = 1, 3799 .access = PL2_RW, .type = ARM_CP_ALIAS, 3800 .fieldoffset = offsetofhigh32(CPUARMState, cp15.mair_el[2]) }, 3801 { .name = "AMAIR_EL2", .state = ARM_CP_STATE_BOTH, 3802 .opc0 = 3, .opc1 = 4, .crn = 10, .crm = 3, .opc2 = 0, 3803 .access = PL2_RW, .type = ARM_CP_CONST, 3804 .resetvalue = 0 }, 3805 /* HAMAIR1 is mapped to AMAIR_EL2[63:32] */ 3806 { .name = "HMAIR1", .state = ARM_CP_STATE_AA32, 3807 .opc1 = 4, .crn = 10, .crm = 3, .opc2 = 1, 3808 .access = PL2_RW, .type = ARM_CP_CONST, 3809 .resetvalue = 0 }, 3810 { .name = "AFSR0_EL2", .state = ARM_CP_STATE_BOTH, 3811 .opc0 = 3, .opc1 = 4, .crn = 5, .crm = 1, .opc2 = 0, 3812 .access = PL2_RW, .type = ARM_CP_CONST, 3813 .resetvalue = 0 }, 3814 { .name = "AFSR1_EL2", .state = ARM_CP_STATE_BOTH, 3815 .opc0 = 3, .opc1 = 4, .crn = 5, .crm = 1, .opc2 = 1, 3816 .access = PL2_RW, .type = ARM_CP_CONST, 3817 .resetvalue = 0 }, 3818 { .name = "TCR_EL2", .state = ARM_CP_STATE_BOTH, 3819 .opc0 = 3, .opc1 = 4, .crn = 2, .crm = 0, .opc2 = 2, 3820 .access = PL2_RW, 3821 /* no .writefn needed as this can't cause an ASID change; 3822 * no .raw_writefn or .resetfn needed as we never use mask/base_mask 3823 */ 3824 .fieldoffset = offsetof(CPUARMState, cp15.tcr_el[2]) }, 3825 { .name = "VTCR", .state = ARM_CP_STATE_AA32, 3826 .cp = 15, .opc1 = 4, .crn = 2, .crm = 1, .opc2 = 2, 3827 .type = ARM_CP_ALIAS, 3828 .access = PL2_RW, .accessfn = access_el3_aa32ns, 3829 .fieldoffset = offsetof(CPUARMState, cp15.vtcr_el2) }, 3830 { .name = "VTCR_EL2", .state = ARM_CP_STATE_AA64, 3831 .opc0 = 3, .opc1 = 4, .crn = 2, .crm = 1, .opc2 = 2, 3832 .access = PL2_RW, 3833 /* no .writefn needed as this can't cause an ASID change; 3834 * no .raw_writefn or .resetfn needed as we never use mask/base_mask 3835 */ 3836 .fieldoffset = offsetof(CPUARMState, cp15.vtcr_el2) }, 3837 { .name = "VTTBR", .state = ARM_CP_STATE_AA32, 3838 .cp = 15, .opc1 = 6, .crm = 2, 3839 .type = ARM_CP_64BIT | ARM_CP_ALIAS, 3840 .access = PL2_RW, .accessfn = access_el3_aa32ns, 3841 .fieldoffset = offsetof(CPUARMState, cp15.vttbr_el2), 3842 .writefn = vttbr_write }, 3843 { .name = "VTTBR_EL2", .state = ARM_CP_STATE_AA64, 3844 .opc0 = 3, .opc1 = 4, .crn = 2, .crm = 1, .opc2 = 0, 3845 .access = PL2_RW, .writefn = vttbr_write, 3846 .fieldoffset = offsetof(CPUARMState, cp15.vttbr_el2) }, 3847 { .name = "SCTLR_EL2", .state = ARM_CP_STATE_BOTH, 3848 .opc0 = 3, .opc1 = 4, .crn = 1, .crm = 0, .opc2 = 0, 3849 .access = PL2_RW, .raw_writefn = raw_write, .writefn = sctlr_write, 3850 .fieldoffset = offsetof(CPUARMState, cp15.sctlr_el[2]) }, 3851 { .name = "TPIDR_EL2", .state = ARM_CP_STATE_BOTH, 3852 .opc0 = 3, .opc1 = 4, .crn = 13, .crm = 0, .opc2 = 2, 3853 .access = PL2_RW, .resetvalue = 0, 3854 .fieldoffset = offsetof(CPUARMState, cp15.tpidr_el[2]) }, 3855 { .name = "TTBR0_EL2", .state = ARM_CP_STATE_AA64, 3856 .opc0 = 3, .opc1 = 4, .crn = 2, .crm = 0, .opc2 = 0, 3857 .access = PL2_RW, .resetvalue = 0, 3858 .fieldoffset = offsetof(CPUARMState, cp15.ttbr0_el[2]) }, 3859 { .name = "HTTBR", .cp = 15, .opc1 = 4, .crm = 2, 3860 .access = PL2_RW, .type = ARM_CP_64BIT | ARM_CP_ALIAS, 3861 .fieldoffset = offsetof(CPUARMState, cp15.ttbr0_el[2]) }, 3862 { .name = "TLBIALLNSNH", 3863 .cp = 15, .opc1 = 4, .crn = 8, .crm = 7, .opc2 = 4, 3864 .type = ARM_CP_NO_RAW, .access = PL2_W, 3865 .writefn = tlbiall_nsnh_write }, 3866 { .name = "TLBIALLNSNHIS", 3867 .cp = 15, .opc1 = 4, .crn = 8, .crm = 3, .opc2 = 4, 3868 .type = ARM_CP_NO_RAW, .access = PL2_W, 3869 .writefn = tlbiall_nsnh_is_write }, 3870 { .name = "TLBIALLH", .cp = 15, .opc1 = 4, .crn = 8, .crm = 7, .opc2 = 0, 3871 .type = ARM_CP_NO_RAW, .access = PL2_W, 3872 .writefn = tlbiall_hyp_write }, 3873 { .name = "TLBIALLHIS", .cp = 15, .opc1 = 4, .crn = 8, .crm = 3, .opc2 = 0, 3874 .type = ARM_CP_NO_RAW, .access = PL2_W, 3875 .writefn = tlbiall_hyp_is_write }, 3876 { .name = "TLBIMVAH", .cp = 15, .opc1 = 4, .crn = 8, .crm = 7, .opc2 = 1, 3877 .type = ARM_CP_NO_RAW, .access = PL2_W, 3878 .writefn = tlbimva_hyp_write }, 3879 { .name = "TLBIMVAHIS", .cp = 15, .opc1 = 4, .crn = 8, .crm = 3, .opc2 = 1, 3880 .type = ARM_CP_NO_RAW, .access = PL2_W, 3881 .writefn = tlbimva_hyp_is_write }, 3882 { .name = "TLBI_ALLE2", .state = ARM_CP_STATE_AA64, 3883 .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 7, .opc2 = 0, 3884 .type = ARM_CP_NO_RAW, .access = PL2_W, 3885 .writefn = tlbi_aa64_alle2_write }, 3886 { .name = "TLBI_VAE2", .state = ARM_CP_STATE_AA64, 3887 .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 7, .opc2 = 1, 3888 .type = ARM_CP_NO_RAW, .access = PL2_W, 3889 .writefn = tlbi_aa64_vae2_write }, 3890 { .name = "TLBI_VALE2", .state = ARM_CP_STATE_AA64, 3891 .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 7, .opc2 = 5, 3892 .access = PL2_W, .type = ARM_CP_NO_RAW, 3893 .writefn = tlbi_aa64_vae2_write }, 3894 { .name = "TLBI_ALLE2IS", .state = ARM_CP_STATE_AA64, 3895 .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 3, .opc2 = 0, 3896 .access = PL2_W, .type = ARM_CP_NO_RAW, 3897 .writefn = tlbi_aa64_alle2is_write }, 3898 { .name = "TLBI_VAE2IS", .state = ARM_CP_STATE_AA64, 3899 .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 3, .opc2 = 1, 3900 .type = ARM_CP_NO_RAW, .access = PL2_W, 3901 .writefn = tlbi_aa64_vae2is_write }, 3902 { .name = "TLBI_VALE2IS", .state = ARM_CP_STATE_AA64, 3903 .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 3, .opc2 = 5, 3904 .access = PL2_W, .type = ARM_CP_NO_RAW, 3905 .writefn = tlbi_aa64_vae2is_write }, 3906 #ifndef CONFIG_USER_ONLY 3907 /* Unlike the other EL2-related AT operations, these must 3908 * UNDEF from EL3 if EL2 is not implemented, which is why we 3909 * define them here rather than with the rest of the AT ops. 3910 */ 3911 { .name = "AT_S1E2R", .state = ARM_CP_STATE_AA64, 3912 .opc0 = 1, .opc1 = 4, .crn = 7, .crm = 8, .opc2 = 0, 3913 .access = PL2_W, .accessfn = at_s1e2_access, 3914 .type = ARM_CP_NO_RAW, .writefn = ats_write64 }, 3915 { .name = "AT_S1E2W", .state = ARM_CP_STATE_AA64, 3916 .opc0 = 1, .opc1 = 4, .crn = 7, .crm = 8, .opc2 = 1, 3917 .access = PL2_W, .accessfn = at_s1e2_access, 3918 .type = ARM_CP_NO_RAW, .writefn = ats_write64 }, 3919 /* The AArch32 ATS1H* operations are CONSTRAINED UNPREDICTABLE 3920 * if EL2 is not implemented; we choose to UNDEF. Behaviour at EL3 3921 * with SCR.NS == 0 outside Monitor mode is UNPREDICTABLE; we choose 3922 * to behave as if SCR.NS was 1. 3923 */ 3924 { .name = "ATS1HR", .cp = 15, .opc1 = 4, .crn = 7, .crm = 8, .opc2 = 0, 3925 .access = PL2_W, 3926 .writefn = ats1h_write, .type = ARM_CP_NO_RAW }, 3927 { .name = "ATS1HW", .cp = 15, .opc1 = 4, .crn = 7, .crm = 8, .opc2 = 1, 3928 .access = PL2_W, 3929 .writefn = ats1h_write, .type = ARM_CP_NO_RAW }, 3930 { .name = "CNTHCTL_EL2", .state = ARM_CP_STATE_BOTH, 3931 .opc0 = 3, .opc1 = 4, .crn = 14, .crm = 1, .opc2 = 0, 3932 /* ARMv7 requires bit 0 and 1 to reset to 1. ARMv8 defines the 3933 * reset values as IMPDEF. We choose to reset to 3 to comply with 3934 * both ARMv7 and ARMv8. 3935 */ 3936 .access = PL2_RW, .resetvalue = 3, 3937 .fieldoffset = offsetof(CPUARMState, cp15.cnthctl_el2) }, 3938 { .name = "CNTVOFF_EL2", .state = ARM_CP_STATE_AA64, 3939 .opc0 = 3, .opc1 = 4, .crn = 14, .crm = 0, .opc2 = 3, 3940 .access = PL2_RW, .type = ARM_CP_IO, .resetvalue = 0, 3941 .writefn = gt_cntvoff_write, 3942 .fieldoffset = offsetof(CPUARMState, cp15.cntvoff_el2) }, 3943 { .name = "CNTVOFF", .cp = 15, .opc1 = 4, .crm = 14, 3944 .access = PL2_RW, .type = ARM_CP_64BIT | ARM_CP_ALIAS | ARM_CP_IO, 3945 .writefn = gt_cntvoff_write, 3946 .fieldoffset = offsetof(CPUARMState, cp15.cntvoff_el2) }, 3947 { .name = "CNTHP_CVAL_EL2", .state = ARM_CP_STATE_AA64, 3948 .opc0 = 3, .opc1 = 4, .crn = 14, .crm = 2, .opc2 = 2, 3949 .fieldoffset = offsetof(CPUARMState, cp15.c14_timer[GTIMER_HYP].cval), 3950 .type = ARM_CP_IO, .access = PL2_RW, 3951 .writefn = gt_hyp_cval_write, .raw_writefn = raw_write }, 3952 { .name = "CNTHP_CVAL", .cp = 15, .opc1 = 6, .crm = 14, 3953 .fieldoffset = offsetof(CPUARMState, cp15.c14_timer[GTIMER_HYP].cval), 3954 .access = PL2_RW, .type = ARM_CP_64BIT | ARM_CP_IO, 3955 .writefn = gt_hyp_cval_write, .raw_writefn = raw_write }, 3956 { .name = "CNTHP_TVAL_EL2", .state = ARM_CP_STATE_BOTH, 3957 .opc0 = 3, .opc1 = 4, .crn = 14, .crm = 2, .opc2 = 0, 3958 .type = ARM_CP_NO_RAW | ARM_CP_IO, .access = PL2_RW, 3959 .resetfn = gt_hyp_timer_reset, 3960 .readfn = gt_hyp_tval_read, .writefn = gt_hyp_tval_write }, 3961 { .name = "CNTHP_CTL_EL2", .state = ARM_CP_STATE_BOTH, 3962 .type = ARM_CP_IO, 3963 .opc0 = 3, .opc1 = 4, .crn = 14, .crm = 2, .opc2 = 1, 3964 .access = PL2_RW, 3965 .fieldoffset = offsetof(CPUARMState, cp15.c14_timer[GTIMER_HYP].ctl), 3966 .resetvalue = 0, 3967 .writefn = gt_hyp_ctl_write, .raw_writefn = raw_write }, 3968 #endif 3969 /* The only field of MDCR_EL2 that has a defined architectural reset value 3970 * is MDCR_EL2.HPMN which should reset to the value of PMCR_EL0.N; but we 3971 * don't impelment any PMU event counters, so using zero as a reset 3972 * value for MDCR_EL2 is okay 3973 */ 3974 { .name = "MDCR_EL2", .state = ARM_CP_STATE_BOTH, 3975 .opc0 = 3, .opc1 = 4, .crn = 1, .crm = 1, .opc2 = 1, 3976 .access = PL2_RW, .resetvalue = 0, 3977 .fieldoffset = offsetof(CPUARMState, cp15.mdcr_el2), }, 3978 { .name = "HPFAR", .state = ARM_CP_STATE_AA32, 3979 .cp = 15, .opc1 = 4, .crn = 6, .crm = 0, .opc2 = 4, 3980 .access = PL2_RW, .accessfn = access_el3_aa32ns, 3981 .fieldoffset = offsetof(CPUARMState, cp15.hpfar_el2) }, 3982 { .name = "HPFAR_EL2", .state = ARM_CP_STATE_AA64, 3983 .opc0 = 3, .opc1 = 4, .crn = 6, .crm = 0, .opc2 = 4, 3984 .access = PL2_RW, 3985 .fieldoffset = offsetof(CPUARMState, cp15.hpfar_el2) }, 3986 { .name = "HSTR_EL2", .state = ARM_CP_STATE_BOTH, 3987 .cp = 15, .opc0 = 3, .opc1 = 4, .crn = 1, .crm = 1, .opc2 = 3, 3988 .access = PL2_RW, 3989 .fieldoffset = offsetof(CPUARMState, cp15.hstr_el2) }, 3990 REGINFO_SENTINEL 3991 }; 3992 3993 static CPAccessResult nsacr_access(CPUARMState *env, const ARMCPRegInfo *ri, 3994 bool isread) 3995 { 3996 /* The NSACR is RW at EL3, and RO for NS EL1 and NS EL2. 3997 * At Secure EL1 it traps to EL3. 3998 */ 3999 if (arm_current_el(env) == 3) { 4000 return CP_ACCESS_OK; 4001 } 4002 if (arm_is_secure_below_el3(env)) { 4003 return CP_ACCESS_TRAP_EL3; 4004 } 4005 /* Accesses from EL1 NS and EL2 NS are UNDEF for write but allow reads. */ 4006 if (isread) { 4007 return CP_ACCESS_OK; 4008 } 4009 return CP_ACCESS_TRAP_UNCATEGORIZED; 4010 } 4011 4012 static const ARMCPRegInfo el3_cp_reginfo[] = { 4013 { .name = "SCR_EL3", .state = ARM_CP_STATE_AA64, 4014 .opc0 = 3, .opc1 = 6, .crn = 1, .crm = 1, .opc2 = 0, 4015 .access = PL3_RW, .fieldoffset = offsetof(CPUARMState, cp15.scr_el3), 4016 .resetvalue = 0, .writefn = scr_write }, 4017 { .name = "SCR", .type = ARM_CP_ALIAS, 4018 .cp = 15, .opc1 = 0, .crn = 1, .crm = 1, .opc2 = 0, 4019 .access = PL1_RW, .accessfn = access_trap_aa32s_el1, 4020 .fieldoffset = offsetoflow32(CPUARMState, cp15.scr_el3), 4021 .writefn = scr_write }, 4022 { .name = "SDER32_EL3", .state = ARM_CP_STATE_AA64, 4023 .opc0 = 3, .opc1 = 6, .crn = 1, .crm = 1, .opc2 = 1, 4024 .access = PL3_RW, .resetvalue = 0, 4025 .fieldoffset = offsetof(CPUARMState, cp15.sder) }, 4026 { .name = "SDER", 4027 .cp = 15, .opc1 = 0, .crn = 1, .crm = 1, .opc2 = 1, 4028 .access = PL3_RW, .resetvalue = 0, 4029 .fieldoffset = offsetoflow32(CPUARMState, cp15.sder) }, 4030 { .name = "MVBAR", .cp = 15, .opc1 = 0, .crn = 12, .crm = 0, .opc2 = 1, 4031 .access = PL1_RW, .accessfn = access_trap_aa32s_el1, 4032 .writefn = vbar_write, .resetvalue = 0, 4033 .fieldoffset = offsetof(CPUARMState, cp15.mvbar) }, 4034 { .name = "TTBR0_EL3", .state = ARM_CP_STATE_AA64, 4035 .opc0 = 3, .opc1 = 6, .crn = 2, .crm = 0, .opc2 = 0, 4036 .access = PL3_RW, .writefn = vmsa_ttbr_write, .resetvalue = 0, 4037 .fieldoffset = offsetof(CPUARMState, cp15.ttbr0_el[3]) }, 4038 { .name = "TCR_EL3", .state = ARM_CP_STATE_AA64, 4039 .opc0 = 3, .opc1 = 6, .crn = 2, .crm = 0, .opc2 = 2, 4040 .access = PL3_RW, 4041 /* no .writefn needed as this can't cause an ASID change; 4042 * we must provide a .raw_writefn and .resetfn because we handle 4043 * reset and migration for the AArch32 TTBCR(S), which might be 4044 * using mask and base_mask. 4045 */ 4046 .resetfn = vmsa_ttbcr_reset, .raw_writefn = vmsa_ttbcr_raw_write, 4047 .fieldoffset = offsetof(CPUARMState, cp15.tcr_el[3]) }, 4048 { .name = "ELR_EL3", .state = ARM_CP_STATE_AA64, 4049 .type = ARM_CP_ALIAS, 4050 .opc0 = 3, .opc1 = 6, .crn = 4, .crm = 0, .opc2 = 1, 4051 .access = PL3_RW, 4052 .fieldoffset = offsetof(CPUARMState, elr_el[3]) }, 4053 { .name = "ESR_EL3", .state = ARM_CP_STATE_AA64, 4054 .opc0 = 3, .opc1 = 6, .crn = 5, .crm = 2, .opc2 = 0, 4055 .access = PL3_RW, .fieldoffset = offsetof(CPUARMState, cp15.esr_el[3]) }, 4056 { .name = "FAR_EL3", .state = ARM_CP_STATE_AA64, 4057 .opc0 = 3, .opc1 = 6, .crn = 6, .crm = 0, .opc2 = 0, 4058 .access = PL3_RW, .fieldoffset = offsetof(CPUARMState, cp15.far_el[3]) }, 4059 { .name = "SPSR_EL3", .state = ARM_CP_STATE_AA64, 4060 .type = ARM_CP_ALIAS, 4061 .opc0 = 3, .opc1 = 6, .crn = 4, .crm = 0, .opc2 = 0, 4062 .access = PL3_RW, 4063 .fieldoffset = offsetof(CPUARMState, banked_spsr[BANK_MON]) }, 4064 { .name = "VBAR_EL3", .state = ARM_CP_STATE_AA64, 4065 .opc0 = 3, .opc1 = 6, .crn = 12, .crm = 0, .opc2 = 0, 4066 .access = PL3_RW, .writefn = vbar_write, 4067 .fieldoffset = offsetof(CPUARMState, cp15.vbar_el[3]), 4068 .resetvalue = 0 }, 4069 { .name = "CPTR_EL3", .state = ARM_CP_STATE_AA64, 4070 .opc0 = 3, .opc1 = 6, .crn = 1, .crm = 1, .opc2 = 2, 4071 .access = PL3_RW, .accessfn = cptr_access, .resetvalue = 0, 4072 .fieldoffset = offsetof(CPUARMState, cp15.cptr_el[3]) }, 4073 { .name = "TPIDR_EL3", .state = ARM_CP_STATE_AA64, 4074 .opc0 = 3, .opc1 = 6, .crn = 13, .crm = 0, .opc2 = 2, 4075 .access = PL3_RW, .resetvalue = 0, 4076 .fieldoffset = offsetof(CPUARMState, cp15.tpidr_el[3]) }, 4077 { .name = "AMAIR_EL3", .state = ARM_CP_STATE_AA64, 4078 .opc0 = 3, .opc1 = 6, .crn = 10, .crm = 3, .opc2 = 0, 4079 .access = PL3_RW, .type = ARM_CP_CONST, 4080 .resetvalue = 0 }, 4081 { .name = "AFSR0_EL3", .state = ARM_CP_STATE_BOTH, 4082 .opc0 = 3, .opc1 = 6, .crn = 5, .crm = 1, .opc2 = 0, 4083 .access = PL3_RW, .type = ARM_CP_CONST, 4084 .resetvalue = 0 }, 4085 { .name = "AFSR1_EL3", .state = ARM_CP_STATE_BOTH, 4086 .opc0 = 3, .opc1 = 6, .crn = 5, .crm = 1, .opc2 = 1, 4087 .access = PL3_RW, .type = ARM_CP_CONST, 4088 .resetvalue = 0 }, 4089 { .name = "TLBI_ALLE3IS", .state = ARM_CP_STATE_AA64, 4090 .opc0 = 1, .opc1 = 6, .crn = 8, .crm = 3, .opc2 = 0, 4091 .access = PL3_W, .type = ARM_CP_NO_RAW, 4092 .writefn = tlbi_aa64_alle3is_write }, 4093 { .name = "TLBI_VAE3IS", .state = ARM_CP_STATE_AA64, 4094 .opc0 = 1, .opc1 = 6, .crn = 8, .crm = 3, .opc2 = 1, 4095 .access = PL3_W, .type = ARM_CP_NO_RAW, 4096 .writefn = tlbi_aa64_vae3is_write }, 4097 { .name = "TLBI_VALE3IS", .state = ARM_CP_STATE_AA64, 4098 .opc0 = 1, .opc1 = 6, .crn = 8, .crm = 3, .opc2 = 5, 4099 .access = PL3_W, .type = ARM_CP_NO_RAW, 4100 .writefn = tlbi_aa64_vae3is_write }, 4101 { .name = "TLBI_ALLE3", .state = ARM_CP_STATE_AA64, 4102 .opc0 = 1, .opc1 = 6, .crn = 8, .crm = 7, .opc2 = 0, 4103 .access = PL3_W, .type = ARM_CP_NO_RAW, 4104 .writefn = tlbi_aa64_alle3_write }, 4105 { .name = "TLBI_VAE3", .state = ARM_CP_STATE_AA64, 4106 .opc0 = 1, .opc1 = 6, .crn = 8, .crm = 7, .opc2 = 1, 4107 .access = PL3_W, .type = ARM_CP_NO_RAW, 4108 .writefn = tlbi_aa64_vae3_write }, 4109 { .name = "TLBI_VALE3", .state = ARM_CP_STATE_AA64, 4110 .opc0 = 1, .opc1 = 6, .crn = 8, .crm = 7, .opc2 = 5, 4111 .access = PL3_W, .type = ARM_CP_NO_RAW, 4112 .writefn = tlbi_aa64_vae3_write }, 4113 REGINFO_SENTINEL 4114 }; 4115 4116 static CPAccessResult ctr_el0_access(CPUARMState *env, const ARMCPRegInfo *ri, 4117 bool isread) 4118 { 4119 /* Only accessible in EL0 if SCTLR.UCT is set (and only in AArch64, 4120 * but the AArch32 CTR has its own reginfo struct) 4121 */ 4122 if (arm_current_el(env) == 0 && !(env->cp15.sctlr_el[1] & SCTLR_UCT)) { 4123 return CP_ACCESS_TRAP; 4124 } 4125 return CP_ACCESS_OK; 4126 } 4127 4128 static void oslar_write(CPUARMState *env, const ARMCPRegInfo *ri, 4129 uint64_t value) 4130 { 4131 /* Writes to OSLAR_EL1 may update the OS lock status, which can be 4132 * read via a bit in OSLSR_EL1. 4133 */ 4134 int oslock; 4135 4136 if (ri->state == ARM_CP_STATE_AA32) { 4137 oslock = (value == 0xC5ACCE55); 4138 } else { 4139 oslock = value & 1; 4140 } 4141 4142 env->cp15.oslsr_el1 = deposit32(env->cp15.oslsr_el1, 1, 1, oslock); 4143 } 4144 4145 static const ARMCPRegInfo debug_cp_reginfo[] = { 4146 /* DBGDRAR, DBGDSAR: always RAZ since we don't implement memory mapped 4147 * debug components. The AArch64 version of DBGDRAR is named MDRAR_EL1; 4148 * unlike DBGDRAR it is never accessible from EL0. 4149 * DBGDSAR is deprecated and must RAZ from v8 anyway, so it has no AArch64 4150 * accessor. 4151 */ 4152 { .name = "DBGDRAR", .cp = 14, .crn = 1, .crm = 0, .opc1 = 0, .opc2 = 0, 4153 .access = PL0_R, .accessfn = access_tdra, 4154 .type = ARM_CP_CONST, .resetvalue = 0 }, 4155 { .name = "MDRAR_EL1", .state = ARM_CP_STATE_AA64, 4156 .opc0 = 2, .opc1 = 0, .crn = 1, .crm = 0, .opc2 = 0, 4157 .access = PL1_R, .accessfn = access_tdra, 4158 .type = ARM_CP_CONST, .resetvalue = 0 }, 4159 { .name = "DBGDSAR", .cp = 14, .crn = 2, .crm = 0, .opc1 = 0, .opc2 = 0, 4160 .access = PL0_R, .accessfn = access_tdra, 4161 .type = ARM_CP_CONST, .resetvalue = 0 }, 4162 /* Monitor debug system control register; the 32-bit alias is DBGDSCRext. */ 4163 { .name = "MDSCR_EL1", .state = ARM_CP_STATE_BOTH, 4164 .cp = 14, .opc0 = 2, .opc1 = 0, .crn = 0, .crm = 2, .opc2 = 2, 4165 .access = PL1_RW, .accessfn = access_tda, 4166 .fieldoffset = offsetof(CPUARMState, cp15.mdscr_el1), 4167 .resetvalue = 0 }, 4168 /* MDCCSR_EL0, aka DBGDSCRint. This is a read-only mirror of MDSCR_EL1. 4169 * We don't implement the configurable EL0 access. 4170 */ 4171 { .name = "MDCCSR_EL0", .state = ARM_CP_STATE_BOTH, 4172 .cp = 14, .opc0 = 2, .opc1 = 0, .crn = 0, .crm = 1, .opc2 = 0, 4173 .type = ARM_CP_ALIAS, 4174 .access = PL1_R, .accessfn = access_tda, 4175 .fieldoffset = offsetof(CPUARMState, cp15.mdscr_el1), }, 4176 { .name = "OSLAR_EL1", .state = ARM_CP_STATE_BOTH, 4177 .cp = 14, .opc0 = 2, .opc1 = 0, .crn = 1, .crm = 0, .opc2 = 4, 4178 .access = PL1_W, .type = ARM_CP_NO_RAW, 4179 .accessfn = access_tdosa, 4180 .writefn = oslar_write }, 4181 { .name = "OSLSR_EL1", .state = ARM_CP_STATE_BOTH, 4182 .cp = 14, .opc0 = 2, .opc1 = 0, .crn = 1, .crm = 1, .opc2 = 4, 4183 .access = PL1_R, .resetvalue = 10, 4184 .accessfn = access_tdosa, 4185 .fieldoffset = offsetof(CPUARMState, cp15.oslsr_el1) }, 4186 /* Dummy OSDLR_EL1: 32-bit Linux will read this */ 4187 { .name = "OSDLR_EL1", .state = ARM_CP_STATE_BOTH, 4188 .cp = 14, .opc0 = 2, .opc1 = 0, .crn = 1, .crm = 3, .opc2 = 4, 4189 .access = PL1_RW, .accessfn = access_tdosa, 4190 .type = ARM_CP_NOP }, 4191 /* Dummy DBGVCR: Linux wants to clear this on startup, but we don't 4192 * implement vector catch debug events yet. 4193 */ 4194 { .name = "DBGVCR", 4195 .cp = 14, .opc1 = 0, .crn = 0, .crm = 7, .opc2 = 0, 4196 .access = PL1_RW, .accessfn = access_tda, 4197 .type = ARM_CP_NOP }, 4198 /* Dummy DBGVCR32_EL2 (which is only for a 64-bit hypervisor 4199 * to save and restore a 32-bit guest's DBGVCR) 4200 */ 4201 { .name = "DBGVCR32_EL2", .state = ARM_CP_STATE_AA64, 4202 .opc0 = 2, .opc1 = 4, .crn = 0, .crm = 7, .opc2 = 0, 4203 .access = PL2_RW, .accessfn = access_tda, 4204 .type = ARM_CP_NOP }, 4205 /* Dummy MDCCINT_EL1, since we don't implement the Debug Communications 4206 * Channel but Linux may try to access this register. The 32-bit 4207 * alias is DBGDCCINT. 4208 */ 4209 { .name = "MDCCINT_EL1", .state = ARM_CP_STATE_BOTH, 4210 .cp = 14, .opc0 = 2, .opc1 = 0, .crn = 0, .crm = 2, .opc2 = 0, 4211 .access = PL1_RW, .accessfn = access_tda, 4212 .type = ARM_CP_NOP }, 4213 REGINFO_SENTINEL 4214 }; 4215 4216 static const ARMCPRegInfo debug_lpae_cp_reginfo[] = { 4217 /* 64 bit access versions of the (dummy) debug registers */ 4218 { .name = "DBGDRAR", .cp = 14, .crm = 1, .opc1 = 0, 4219 .access = PL0_R, .type = ARM_CP_CONST|ARM_CP_64BIT, .resetvalue = 0 }, 4220 { .name = "DBGDSAR", .cp = 14, .crm = 2, .opc1 = 0, 4221 .access = PL0_R, .type = ARM_CP_CONST|ARM_CP_64BIT, .resetvalue = 0 }, 4222 REGINFO_SENTINEL 4223 }; 4224 4225 void hw_watchpoint_update(ARMCPU *cpu, int n) 4226 { 4227 CPUARMState *env = &cpu->env; 4228 vaddr len = 0; 4229 vaddr wvr = env->cp15.dbgwvr[n]; 4230 uint64_t wcr = env->cp15.dbgwcr[n]; 4231 int mask; 4232 int flags = BP_CPU | BP_STOP_BEFORE_ACCESS; 4233 4234 if (env->cpu_watchpoint[n]) { 4235 cpu_watchpoint_remove_by_ref(CPU(cpu), env->cpu_watchpoint[n]); 4236 env->cpu_watchpoint[n] = NULL; 4237 } 4238 4239 if (!extract64(wcr, 0, 1)) { 4240 /* E bit clear : watchpoint disabled */ 4241 return; 4242 } 4243 4244 switch (extract64(wcr, 3, 2)) { 4245 case 0: 4246 /* LSC 00 is reserved and must behave as if the wp is disabled */ 4247 return; 4248 case 1: 4249 flags |= BP_MEM_READ; 4250 break; 4251 case 2: 4252 flags |= BP_MEM_WRITE; 4253 break; 4254 case 3: 4255 flags |= BP_MEM_ACCESS; 4256 break; 4257 } 4258 4259 /* Attempts to use both MASK and BAS fields simultaneously are 4260 * CONSTRAINED UNPREDICTABLE; we opt to ignore BAS in this case, 4261 * thus generating a watchpoint for every byte in the masked region. 4262 */ 4263 mask = extract64(wcr, 24, 4); 4264 if (mask == 1 || mask == 2) { 4265 /* Reserved values of MASK; we must act as if the mask value was 4266 * some non-reserved value, or as if the watchpoint were disabled. 4267 * We choose the latter. 4268 */ 4269 return; 4270 } else if (mask) { 4271 /* Watchpoint covers an aligned area up to 2GB in size */ 4272 len = 1ULL << mask; 4273 /* If masked bits in WVR are not zero it's CONSTRAINED UNPREDICTABLE 4274 * whether the watchpoint fires when the unmasked bits match; we opt 4275 * to generate the exceptions. 4276 */ 4277 wvr &= ~(len - 1); 4278 } else { 4279 /* Watchpoint covers bytes defined by the byte address select bits */ 4280 int bas = extract64(wcr, 5, 8); 4281 int basstart; 4282 4283 if (bas == 0) { 4284 /* This must act as if the watchpoint is disabled */ 4285 return; 4286 } 4287 4288 if (extract64(wvr, 2, 1)) { 4289 /* Deprecated case of an only 4-aligned address. BAS[7:4] are 4290 * ignored, and BAS[3:0] define which bytes to watch. 4291 */ 4292 bas &= 0xf; 4293 } 4294 /* The BAS bits are supposed to be programmed to indicate a contiguous 4295 * range of bytes. Otherwise it is CONSTRAINED UNPREDICTABLE whether 4296 * we fire for each byte in the word/doubleword addressed by the WVR. 4297 * We choose to ignore any non-zero bits after the first range of 1s. 4298 */ 4299 basstart = ctz32(bas); 4300 len = cto32(bas >> basstart); 4301 wvr += basstart; 4302 } 4303 4304 cpu_watchpoint_insert(CPU(cpu), wvr, len, flags, 4305 &env->cpu_watchpoint[n]); 4306 } 4307 4308 void hw_watchpoint_update_all(ARMCPU *cpu) 4309 { 4310 int i; 4311 CPUARMState *env = &cpu->env; 4312 4313 /* Completely clear out existing QEMU watchpoints and our array, to 4314 * avoid possible stale entries following migration load. 4315 */ 4316 cpu_watchpoint_remove_all(CPU(cpu), BP_CPU); 4317 memset(env->cpu_watchpoint, 0, sizeof(env->cpu_watchpoint)); 4318 4319 for (i = 0; i < ARRAY_SIZE(cpu->env.cpu_watchpoint); i++) { 4320 hw_watchpoint_update(cpu, i); 4321 } 4322 } 4323 4324 static void dbgwvr_write(CPUARMState *env, const ARMCPRegInfo *ri, 4325 uint64_t value) 4326 { 4327 ARMCPU *cpu = arm_env_get_cpu(env); 4328 int i = ri->crm; 4329 4330 /* Bits [63:49] are hardwired to the value of bit [48]; that is, the 4331 * register reads and behaves as if values written are sign extended. 4332 * Bits [1:0] are RES0. 4333 */ 4334 value = sextract64(value, 0, 49) & ~3ULL; 4335 4336 raw_write(env, ri, value); 4337 hw_watchpoint_update(cpu, i); 4338 } 4339 4340 static void dbgwcr_write(CPUARMState *env, const ARMCPRegInfo *ri, 4341 uint64_t value) 4342 { 4343 ARMCPU *cpu = arm_env_get_cpu(env); 4344 int i = ri->crm; 4345 4346 raw_write(env, ri, value); 4347 hw_watchpoint_update(cpu, i); 4348 } 4349 4350 void hw_breakpoint_update(ARMCPU *cpu, int n) 4351 { 4352 CPUARMState *env = &cpu->env; 4353 uint64_t bvr = env->cp15.dbgbvr[n]; 4354 uint64_t bcr = env->cp15.dbgbcr[n]; 4355 vaddr addr; 4356 int bt; 4357 int flags = BP_CPU; 4358 4359 if (env->cpu_breakpoint[n]) { 4360 cpu_breakpoint_remove_by_ref(CPU(cpu), env->cpu_breakpoint[n]); 4361 env->cpu_breakpoint[n] = NULL; 4362 } 4363 4364 if (!extract64(bcr, 0, 1)) { 4365 /* E bit clear : watchpoint disabled */ 4366 return; 4367 } 4368 4369 bt = extract64(bcr, 20, 4); 4370 4371 switch (bt) { 4372 case 4: /* unlinked address mismatch (reserved if AArch64) */ 4373 case 5: /* linked address mismatch (reserved if AArch64) */ 4374 qemu_log_mask(LOG_UNIMP, 4375 "arm: address mismatch breakpoint types not implemented"); 4376 return; 4377 case 0: /* unlinked address match */ 4378 case 1: /* linked address match */ 4379 { 4380 /* Bits [63:49] are hardwired to the value of bit [48]; that is, 4381 * we behave as if the register was sign extended. Bits [1:0] are 4382 * RES0. The BAS field is used to allow setting breakpoints on 16 4383 * bit wide instructions; it is CONSTRAINED UNPREDICTABLE whether 4384 * a bp will fire if the addresses covered by the bp and the addresses 4385 * covered by the insn overlap but the insn doesn't start at the 4386 * start of the bp address range. We choose to require the insn and 4387 * the bp to have the same address. The constraints on writing to 4388 * BAS enforced in dbgbcr_write mean we have only four cases: 4389 * 0b0000 => no breakpoint 4390 * 0b0011 => breakpoint on addr 4391 * 0b1100 => breakpoint on addr + 2 4392 * 0b1111 => breakpoint on addr 4393 * See also figure D2-3 in the v8 ARM ARM (DDI0487A.c). 4394 */ 4395 int bas = extract64(bcr, 5, 4); 4396 addr = sextract64(bvr, 0, 49) & ~3ULL; 4397 if (bas == 0) { 4398 return; 4399 } 4400 if (bas == 0xc) { 4401 addr += 2; 4402 } 4403 break; 4404 } 4405 case 2: /* unlinked context ID match */ 4406 case 8: /* unlinked VMID match (reserved if no EL2) */ 4407 case 10: /* unlinked context ID and VMID match (reserved if no EL2) */ 4408 qemu_log_mask(LOG_UNIMP, 4409 "arm: unlinked context breakpoint types not implemented"); 4410 return; 4411 case 9: /* linked VMID match (reserved if no EL2) */ 4412 case 11: /* linked context ID and VMID match (reserved if no EL2) */ 4413 case 3: /* linked context ID match */ 4414 default: 4415 /* We must generate no events for Linked context matches (unless 4416 * they are linked to by some other bp/wp, which is handled in 4417 * updates for the linking bp/wp). We choose to also generate no events 4418 * for reserved values. 4419 */ 4420 return; 4421 } 4422 4423 cpu_breakpoint_insert(CPU(cpu), addr, flags, &env->cpu_breakpoint[n]); 4424 } 4425 4426 void hw_breakpoint_update_all(ARMCPU *cpu) 4427 { 4428 int i; 4429 CPUARMState *env = &cpu->env; 4430 4431 /* Completely clear out existing QEMU breakpoints and our array, to 4432 * avoid possible stale entries following migration load. 4433 */ 4434 cpu_breakpoint_remove_all(CPU(cpu), BP_CPU); 4435 memset(env->cpu_breakpoint, 0, sizeof(env->cpu_breakpoint)); 4436 4437 for (i = 0; i < ARRAY_SIZE(cpu->env.cpu_breakpoint); i++) { 4438 hw_breakpoint_update(cpu, i); 4439 } 4440 } 4441 4442 static void dbgbvr_write(CPUARMState *env, const ARMCPRegInfo *ri, 4443 uint64_t value) 4444 { 4445 ARMCPU *cpu = arm_env_get_cpu(env); 4446 int i = ri->crm; 4447 4448 raw_write(env, ri, value); 4449 hw_breakpoint_update(cpu, i); 4450 } 4451 4452 static void dbgbcr_write(CPUARMState *env, const ARMCPRegInfo *ri, 4453 uint64_t value) 4454 { 4455 ARMCPU *cpu = arm_env_get_cpu(env); 4456 int i = ri->crm; 4457 4458 /* BAS[3] is a read-only copy of BAS[2], and BAS[1] a read-only 4459 * copy of BAS[0]. 4460 */ 4461 value = deposit64(value, 6, 1, extract64(value, 5, 1)); 4462 value = deposit64(value, 8, 1, extract64(value, 7, 1)); 4463 4464 raw_write(env, ri, value); 4465 hw_breakpoint_update(cpu, i); 4466 } 4467 4468 static void define_debug_regs(ARMCPU *cpu) 4469 { 4470 /* Define v7 and v8 architectural debug registers. 4471 * These are just dummy implementations for now. 4472 */ 4473 int i; 4474 int wrps, brps, ctx_cmps; 4475 ARMCPRegInfo dbgdidr = { 4476 .name = "DBGDIDR", .cp = 14, .crn = 0, .crm = 0, .opc1 = 0, .opc2 = 0, 4477 .access = PL0_R, .accessfn = access_tda, 4478 .type = ARM_CP_CONST, .resetvalue = cpu->dbgdidr, 4479 }; 4480 4481 /* Note that all these register fields hold "number of Xs minus 1". */ 4482 brps = extract32(cpu->dbgdidr, 24, 4); 4483 wrps = extract32(cpu->dbgdidr, 28, 4); 4484 ctx_cmps = extract32(cpu->dbgdidr, 20, 4); 4485 4486 assert(ctx_cmps <= brps); 4487 4488 /* The DBGDIDR and ID_AA64DFR0_EL1 define various properties 4489 * of the debug registers such as number of breakpoints; 4490 * check that if they both exist then they agree. 4491 */ 4492 if (arm_feature(&cpu->env, ARM_FEATURE_AARCH64)) { 4493 assert(extract32(cpu->id_aa64dfr0, 12, 4) == brps); 4494 assert(extract32(cpu->id_aa64dfr0, 20, 4) == wrps); 4495 assert(extract32(cpu->id_aa64dfr0, 28, 4) == ctx_cmps); 4496 } 4497 4498 define_one_arm_cp_reg(cpu, &dbgdidr); 4499 define_arm_cp_regs(cpu, debug_cp_reginfo); 4500 4501 if (arm_feature(&cpu->env, ARM_FEATURE_LPAE)) { 4502 define_arm_cp_regs(cpu, debug_lpae_cp_reginfo); 4503 } 4504 4505 for (i = 0; i < brps + 1; i++) { 4506 ARMCPRegInfo dbgregs[] = { 4507 { .name = "DBGBVR", .state = ARM_CP_STATE_BOTH, 4508 .cp = 14, .opc0 = 2, .opc1 = 0, .crn = 0, .crm = i, .opc2 = 4, 4509 .access = PL1_RW, .accessfn = access_tda, 4510 .fieldoffset = offsetof(CPUARMState, cp15.dbgbvr[i]), 4511 .writefn = dbgbvr_write, .raw_writefn = raw_write 4512 }, 4513 { .name = "DBGBCR", .state = ARM_CP_STATE_BOTH, 4514 .cp = 14, .opc0 = 2, .opc1 = 0, .crn = 0, .crm = i, .opc2 = 5, 4515 .access = PL1_RW, .accessfn = access_tda, 4516 .fieldoffset = offsetof(CPUARMState, cp15.dbgbcr[i]), 4517 .writefn = dbgbcr_write, .raw_writefn = raw_write 4518 }, 4519 REGINFO_SENTINEL 4520 }; 4521 define_arm_cp_regs(cpu, dbgregs); 4522 } 4523 4524 for (i = 0; i < wrps + 1; i++) { 4525 ARMCPRegInfo dbgregs[] = { 4526 { .name = "DBGWVR", .state = ARM_CP_STATE_BOTH, 4527 .cp = 14, .opc0 = 2, .opc1 = 0, .crn = 0, .crm = i, .opc2 = 6, 4528 .access = PL1_RW, .accessfn = access_tda, 4529 .fieldoffset = offsetof(CPUARMState, cp15.dbgwvr[i]), 4530 .writefn = dbgwvr_write, .raw_writefn = raw_write 4531 }, 4532 { .name = "DBGWCR", .state = ARM_CP_STATE_BOTH, 4533 .cp = 14, .opc0 = 2, .opc1 = 0, .crn = 0, .crm = i, .opc2 = 7, 4534 .access = PL1_RW, .accessfn = access_tda, 4535 .fieldoffset = offsetof(CPUARMState, cp15.dbgwcr[i]), 4536 .writefn = dbgwcr_write, .raw_writefn = raw_write 4537 }, 4538 REGINFO_SENTINEL 4539 }; 4540 define_arm_cp_regs(cpu, dbgregs); 4541 } 4542 } 4543 4544 void register_cp_regs_for_features(ARMCPU *cpu) 4545 { 4546 /* Register all the coprocessor registers based on feature bits */ 4547 CPUARMState *env = &cpu->env; 4548 if (arm_feature(env, ARM_FEATURE_M)) { 4549 /* M profile has no coprocessor registers */ 4550 return; 4551 } 4552 4553 define_arm_cp_regs(cpu, cp_reginfo); 4554 if (!arm_feature(env, ARM_FEATURE_V8)) { 4555 /* Must go early as it is full of wildcards that may be 4556 * overridden by later definitions. 4557 */ 4558 define_arm_cp_regs(cpu, not_v8_cp_reginfo); 4559 } 4560 4561 if (arm_feature(env, ARM_FEATURE_V6)) { 4562 /* The ID registers all have impdef reset values */ 4563 ARMCPRegInfo v6_idregs[] = { 4564 { .name = "ID_PFR0", .state = ARM_CP_STATE_BOTH, 4565 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 1, .opc2 = 0, 4566 .access = PL1_R, .type = ARM_CP_CONST, 4567 .resetvalue = cpu->id_pfr0 }, 4568 { .name = "ID_PFR1", .state = ARM_CP_STATE_BOTH, 4569 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 1, .opc2 = 1, 4570 .access = PL1_R, .type = ARM_CP_CONST, 4571 .resetvalue = cpu->id_pfr1 }, 4572 { .name = "ID_DFR0", .state = ARM_CP_STATE_BOTH, 4573 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 1, .opc2 = 2, 4574 .access = PL1_R, .type = ARM_CP_CONST, 4575 .resetvalue = cpu->id_dfr0 }, 4576 { .name = "ID_AFR0", .state = ARM_CP_STATE_BOTH, 4577 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 1, .opc2 = 3, 4578 .access = PL1_R, .type = ARM_CP_CONST, 4579 .resetvalue = cpu->id_afr0 }, 4580 { .name = "ID_MMFR0", .state = ARM_CP_STATE_BOTH, 4581 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 1, .opc2 = 4, 4582 .access = PL1_R, .type = ARM_CP_CONST, 4583 .resetvalue = cpu->id_mmfr0 }, 4584 { .name = "ID_MMFR1", .state = ARM_CP_STATE_BOTH, 4585 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 1, .opc2 = 5, 4586 .access = PL1_R, .type = ARM_CP_CONST, 4587 .resetvalue = cpu->id_mmfr1 }, 4588 { .name = "ID_MMFR2", .state = ARM_CP_STATE_BOTH, 4589 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 1, .opc2 = 6, 4590 .access = PL1_R, .type = ARM_CP_CONST, 4591 .resetvalue = cpu->id_mmfr2 }, 4592 { .name = "ID_MMFR3", .state = ARM_CP_STATE_BOTH, 4593 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 1, .opc2 = 7, 4594 .access = PL1_R, .type = ARM_CP_CONST, 4595 .resetvalue = cpu->id_mmfr3 }, 4596 { .name = "ID_ISAR0", .state = ARM_CP_STATE_BOTH, 4597 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 2, .opc2 = 0, 4598 .access = PL1_R, .type = ARM_CP_CONST, 4599 .resetvalue = cpu->id_isar0 }, 4600 { .name = "ID_ISAR1", .state = ARM_CP_STATE_BOTH, 4601 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 2, .opc2 = 1, 4602 .access = PL1_R, .type = ARM_CP_CONST, 4603 .resetvalue = cpu->id_isar1 }, 4604 { .name = "ID_ISAR2", .state = ARM_CP_STATE_BOTH, 4605 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 2, .opc2 = 2, 4606 .access = PL1_R, .type = ARM_CP_CONST, 4607 .resetvalue = cpu->id_isar2 }, 4608 { .name = "ID_ISAR3", .state = ARM_CP_STATE_BOTH, 4609 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 2, .opc2 = 3, 4610 .access = PL1_R, .type = ARM_CP_CONST, 4611 .resetvalue = cpu->id_isar3 }, 4612 { .name = "ID_ISAR4", .state = ARM_CP_STATE_BOTH, 4613 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 2, .opc2 = 4, 4614 .access = PL1_R, .type = ARM_CP_CONST, 4615 .resetvalue = cpu->id_isar4 }, 4616 { .name = "ID_ISAR5", .state = ARM_CP_STATE_BOTH, 4617 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 2, .opc2 = 5, 4618 .access = PL1_R, .type = ARM_CP_CONST, 4619 .resetvalue = cpu->id_isar5 }, 4620 { .name = "ID_MMFR4", .state = ARM_CP_STATE_BOTH, 4621 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 2, .opc2 = 6, 4622 .access = PL1_R, .type = ARM_CP_CONST, 4623 .resetvalue = cpu->id_mmfr4 }, 4624 /* 7 is as yet unallocated and must RAZ */ 4625 { .name = "ID_ISAR7_RESERVED", .state = ARM_CP_STATE_BOTH, 4626 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 2, .opc2 = 7, 4627 .access = PL1_R, .type = ARM_CP_CONST, 4628 .resetvalue = 0 }, 4629 REGINFO_SENTINEL 4630 }; 4631 define_arm_cp_regs(cpu, v6_idregs); 4632 define_arm_cp_regs(cpu, v6_cp_reginfo); 4633 } else { 4634 define_arm_cp_regs(cpu, not_v6_cp_reginfo); 4635 } 4636 if (arm_feature(env, ARM_FEATURE_V6K)) { 4637 define_arm_cp_regs(cpu, v6k_cp_reginfo); 4638 } 4639 if (arm_feature(env, ARM_FEATURE_V7MP) && 4640 !arm_feature(env, ARM_FEATURE_PMSA)) { 4641 define_arm_cp_regs(cpu, v7mp_cp_reginfo); 4642 } 4643 if (arm_feature(env, ARM_FEATURE_V7)) { 4644 /* v7 performance monitor control register: same implementor 4645 * field as main ID register, and we implement only the cycle 4646 * count register. 4647 */ 4648 #ifndef CONFIG_USER_ONLY 4649 ARMCPRegInfo pmcr = { 4650 .name = "PMCR", .cp = 15, .crn = 9, .crm = 12, .opc1 = 0, .opc2 = 0, 4651 .access = PL0_RW, 4652 .type = ARM_CP_IO | ARM_CP_ALIAS, 4653 .fieldoffset = offsetoflow32(CPUARMState, cp15.c9_pmcr), 4654 .accessfn = pmreg_access, .writefn = pmcr_write, 4655 .raw_writefn = raw_write, 4656 }; 4657 ARMCPRegInfo pmcr64 = { 4658 .name = "PMCR_EL0", .state = ARM_CP_STATE_AA64, 4659 .opc0 = 3, .opc1 = 3, .crn = 9, .crm = 12, .opc2 = 0, 4660 .access = PL0_RW, .accessfn = pmreg_access, 4661 .type = ARM_CP_IO, 4662 .fieldoffset = offsetof(CPUARMState, cp15.c9_pmcr), 4663 .resetvalue = cpu->midr & 0xff000000, 4664 .writefn = pmcr_write, .raw_writefn = raw_write, 4665 }; 4666 define_one_arm_cp_reg(cpu, &pmcr); 4667 define_one_arm_cp_reg(cpu, &pmcr64); 4668 #endif 4669 ARMCPRegInfo clidr = { 4670 .name = "CLIDR", .state = ARM_CP_STATE_BOTH, 4671 .opc0 = 3, .crn = 0, .crm = 0, .opc1 = 1, .opc2 = 1, 4672 .access = PL1_R, .type = ARM_CP_CONST, .resetvalue = cpu->clidr 4673 }; 4674 define_one_arm_cp_reg(cpu, &clidr); 4675 define_arm_cp_regs(cpu, v7_cp_reginfo); 4676 define_debug_regs(cpu); 4677 } else { 4678 define_arm_cp_regs(cpu, not_v7_cp_reginfo); 4679 } 4680 if (arm_feature(env, ARM_FEATURE_V8)) { 4681 /* AArch64 ID registers, which all have impdef reset values. 4682 * Note that within the ID register ranges the unused slots 4683 * must all RAZ, not UNDEF; future architecture versions may 4684 * define new registers here. 4685 */ 4686 ARMCPRegInfo v8_idregs[] = { 4687 { .name = "ID_AA64PFR0_EL1", .state = ARM_CP_STATE_AA64, 4688 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 4, .opc2 = 0, 4689 .access = PL1_R, .type = ARM_CP_CONST, 4690 .resetvalue = cpu->id_aa64pfr0 }, 4691 { .name = "ID_AA64PFR1_EL1", .state = ARM_CP_STATE_AA64, 4692 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 4, .opc2 = 1, 4693 .access = PL1_R, .type = ARM_CP_CONST, 4694 .resetvalue = cpu->id_aa64pfr1}, 4695 { .name = "ID_AA64PFR2_EL1_RESERVED", .state = ARM_CP_STATE_AA64, 4696 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 4, .opc2 = 2, 4697 .access = PL1_R, .type = ARM_CP_CONST, 4698 .resetvalue = 0 }, 4699 { .name = "ID_AA64PFR3_EL1_RESERVED", .state = ARM_CP_STATE_AA64, 4700 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 4, .opc2 = 3, 4701 .access = PL1_R, .type = ARM_CP_CONST, 4702 .resetvalue = 0 }, 4703 { .name = "ID_AA64PFR4_EL1_RESERVED", .state = ARM_CP_STATE_AA64, 4704 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 4, .opc2 = 4, 4705 .access = PL1_R, .type = ARM_CP_CONST, 4706 .resetvalue = 0 }, 4707 { .name = "ID_AA64PFR5_EL1_RESERVED", .state = ARM_CP_STATE_AA64, 4708 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 4, .opc2 = 5, 4709 .access = PL1_R, .type = ARM_CP_CONST, 4710 .resetvalue = 0 }, 4711 { .name = "ID_AA64PFR6_EL1_RESERVED", .state = ARM_CP_STATE_AA64, 4712 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 4, .opc2 = 6, 4713 .access = PL1_R, .type = ARM_CP_CONST, 4714 .resetvalue = 0 }, 4715 { .name = "ID_AA64PFR7_EL1_RESERVED", .state = ARM_CP_STATE_AA64, 4716 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 4, .opc2 = 7, 4717 .access = PL1_R, .type = ARM_CP_CONST, 4718 .resetvalue = 0 }, 4719 { .name = "ID_AA64DFR0_EL1", .state = ARM_CP_STATE_AA64, 4720 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 5, .opc2 = 0, 4721 .access = PL1_R, .type = ARM_CP_CONST, 4722 .resetvalue = cpu->id_aa64dfr0 }, 4723 { .name = "ID_AA64DFR1_EL1", .state = ARM_CP_STATE_AA64, 4724 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 5, .opc2 = 1, 4725 .access = PL1_R, .type = ARM_CP_CONST, 4726 .resetvalue = cpu->id_aa64dfr1 }, 4727 { .name = "ID_AA64DFR2_EL1_RESERVED", .state = ARM_CP_STATE_AA64, 4728 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 5, .opc2 = 2, 4729 .access = PL1_R, .type = ARM_CP_CONST, 4730 .resetvalue = 0 }, 4731 { .name = "ID_AA64DFR3_EL1_RESERVED", .state = ARM_CP_STATE_AA64, 4732 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 5, .opc2 = 3, 4733 .access = PL1_R, .type = ARM_CP_CONST, 4734 .resetvalue = 0 }, 4735 { .name = "ID_AA64AFR0_EL1", .state = ARM_CP_STATE_AA64, 4736 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 5, .opc2 = 4, 4737 .access = PL1_R, .type = ARM_CP_CONST, 4738 .resetvalue = cpu->id_aa64afr0 }, 4739 { .name = "ID_AA64AFR1_EL1", .state = ARM_CP_STATE_AA64, 4740 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 5, .opc2 = 5, 4741 .access = PL1_R, .type = ARM_CP_CONST, 4742 .resetvalue = cpu->id_aa64afr1 }, 4743 { .name = "ID_AA64AFR2_EL1_RESERVED", .state = ARM_CP_STATE_AA64, 4744 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 5, .opc2 = 6, 4745 .access = PL1_R, .type = ARM_CP_CONST, 4746 .resetvalue = 0 }, 4747 { .name = "ID_AA64AFR3_EL1_RESERVED", .state = ARM_CP_STATE_AA64, 4748 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 5, .opc2 = 7, 4749 .access = PL1_R, .type = ARM_CP_CONST, 4750 .resetvalue = 0 }, 4751 { .name = "ID_AA64ISAR0_EL1", .state = ARM_CP_STATE_AA64, 4752 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 6, .opc2 = 0, 4753 .access = PL1_R, .type = ARM_CP_CONST, 4754 .resetvalue = cpu->id_aa64isar0 }, 4755 { .name = "ID_AA64ISAR1_EL1", .state = ARM_CP_STATE_AA64, 4756 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 6, .opc2 = 1, 4757 .access = PL1_R, .type = ARM_CP_CONST, 4758 .resetvalue = cpu->id_aa64isar1 }, 4759 { .name = "ID_AA64ISAR2_EL1_RESERVED", .state = ARM_CP_STATE_AA64, 4760 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 6, .opc2 = 2, 4761 .access = PL1_R, .type = ARM_CP_CONST, 4762 .resetvalue = 0 }, 4763 { .name = "ID_AA64ISAR3_EL1_RESERVED", .state = ARM_CP_STATE_AA64, 4764 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 6, .opc2 = 3, 4765 .access = PL1_R, .type = ARM_CP_CONST, 4766 .resetvalue = 0 }, 4767 { .name = "ID_AA64ISAR4_EL1_RESERVED", .state = ARM_CP_STATE_AA64, 4768 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 6, .opc2 = 4, 4769 .access = PL1_R, .type = ARM_CP_CONST, 4770 .resetvalue = 0 }, 4771 { .name = "ID_AA64ISAR5_EL1_RESERVED", .state = ARM_CP_STATE_AA64, 4772 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 6, .opc2 = 5, 4773 .access = PL1_R, .type = ARM_CP_CONST, 4774 .resetvalue = 0 }, 4775 { .name = "ID_AA64ISAR6_EL1_RESERVED", .state = ARM_CP_STATE_AA64, 4776 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 6, .opc2 = 6, 4777 .access = PL1_R, .type = ARM_CP_CONST, 4778 .resetvalue = 0 }, 4779 { .name = "ID_AA64ISAR7_EL1_RESERVED", .state = ARM_CP_STATE_AA64, 4780 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 6, .opc2 = 7, 4781 .access = PL1_R, .type = ARM_CP_CONST, 4782 .resetvalue = 0 }, 4783 { .name = "ID_AA64MMFR0_EL1", .state = ARM_CP_STATE_AA64, 4784 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 7, .opc2 = 0, 4785 .access = PL1_R, .type = ARM_CP_CONST, 4786 .resetvalue = cpu->id_aa64mmfr0 }, 4787 { .name = "ID_AA64MMFR1_EL1", .state = ARM_CP_STATE_AA64, 4788 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 7, .opc2 = 1, 4789 .access = PL1_R, .type = ARM_CP_CONST, 4790 .resetvalue = cpu->id_aa64mmfr1 }, 4791 { .name = "ID_AA64MMFR2_EL1_RESERVED", .state = ARM_CP_STATE_AA64, 4792 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 7, .opc2 = 2, 4793 .access = PL1_R, .type = ARM_CP_CONST, 4794 .resetvalue = 0 }, 4795 { .name = "ID_AA64MMFR3_EL1_RESERVED", .state = ARM_CP_STATE_AA64, 4796 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 7, .opc2 = 3, 4797 .access = PL1_R, .type = ARM_CP_CONST, 4798 .resetvalue = 0 }, 4799 { .name = "ID_AA64MMFR4_EL1_RESERVED", .state = ARM_CP_STATE_AA64, 4800 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 7, .opc2 = 4, 4801 .access = PL1_R, .type = ARM_CP_CONST, 4802 .resetvalue = 0 }, 4803 { .name = "ID_AA64MMFR5_EL1_RESERVED", .state = ARM_CP_STATE_AA64, 4804 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 7, .opc2 = 5, 4805 .access = PL1_R, .type = ARM_CP_CONST, 4806 .resetvalue = 0 }, 4807 { .name = "ID_AA64MMFR6_EL1_RESERVED", .state = ARM_CP_STATE_AA64, 4808 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 7, .opc2 = 6, 4809 .access = PL1_R, .type = ARM_CP_CONST, 4810 .resetvalue = 0 }, 4811 { .name = "ID_AA64MMFR7_EL1_RESERVED", .state = ARM_CP_STATE_AA64, 4812 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 7, .opc2 = 7, 4813 .access = PL1_R, .type = ARM_CP_CONST, 4814 .resetvalue = 0 }, 4815 { .name = "MVFR0_EL1", .state = ARM_CP_STATE_AA64, 4816 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 3, .opc2 = 0, 4817 .access = PL1_R, .type = ARM_CP_CONST, 4818 .resetvalue = cpu->mvfr0 }, 4819 { .name = "MVFR1_EL1", .state = ARM_CP_STATE_AA64, 4820 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 3, .opc2 = 1, 4821 .access = PL1_R, .type = ARM_CP_CONST, 4822 .resetvalue = cpu->mvfr1 }, 4823 { .name = "MVFR2_EL1", .state = ARM_CP_STATE_AA64, 4824 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 3, .opc2 = 2, 4825 .access = PL1_R, .type = ARM_CP_CONST, 4826 .resetvalue = cpu->mvfr2 }, 4827 { .name = "MVFR3_EL1_RESERVED", .state = ARM_CP_STATE_AA64, 4828 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 3, .opc2 = 3, 4829 .access = PL1_R, .type = ARM_CP_CONST, 4830 .resetvalue = 0 }, 4831 { .name = "MVFR4_EL1_RESERVED", .state = ARM_CP_STATE_AA64, 4832 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 3, .opc2 = 4, 4833 .access = PL1_R, .type = ARM_CP_CONST, 4834 .resetvalue = 0 }, 4835 { .name = "MVFR5_EL1_RESERVED", .state = ARM_CP_STATE_AA64, 4836 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 3, .opc2 = 5, 4837 .access = PL1_R, .type = ARM_CP_CONST, 4838 .resetvalue = 0 }, 4839 { .name = "MVFR6_EL1_RESERVED", .state = ARM_CP_STATE_AA64, 4840 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 3, .opc2 = 6, 4841 .access = PL1_R, .type = ARM_CP_CONST, 4842 .resetvalue = 0 }, 4843 { .name = "MVFR7_EL1_RESERVED", .state = ARM_CP_STATE_AA64, 4844 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 3, .opc2 = 7, 4845 .access = PL1_R, .type = ARM_CP_CONST, 4846 .resetvalue = 0 }, 4847 { .name = "PMCEID0", .state = ARM_CP_STATE_AA32, 4848 .cp = 15, .opc1 = 0, .crn = 9, .crm = 12, .opc2 = 6, 4849 .access = PL0_R, .accessfn = pmreg_access, .type = ARM_CP_CONST, 4850 .resetvalue = cpu->pmceid0 }, 4851 { .name = "PMCEID0_EL0", .state = ARM_CP_STATE_AA64, 4852 .opc0 = 3, .opc1 = 3, .crn = 9, .crm = 12, .opc2 = 6, 4853 .access = PL0_R, .accessfn = pmreg_access, .type = ARM_CP_CONST, 4854 .resetvalue = cpu->pmceid0 }, 4855 { .name = "PMCEID1", .state = ARM_CP_STATE_AA32, 4856 .cp = 15, .opc1 = 0, .crn = 9, .crm = 12, .opc2 = 7, 4857 .access = PL0_R, .accessfn = pmreg_access, .type = ARM_CP_CONST, 4858 .resetvalue = cpu->pmceid1 }, 4859 { .name = "PMCEID1_EL0", .state = ARM_CP_STATE_AA64, 4860 .opc0 = 3, .opc1 = 3, .crn = 9, .crm = 12, .opc2 = 7, 4861 .access = PL0_R, .accessfn = pmreg_access, .type = ARM_CP_CONST, 4862 .resetvalue = cpu->pmceid1 }, 4863 REGINFO_SENTINEL 4864 }; 4865 /* RVBAR_EL1 is only implemented if EL1 is the highest EL */ 4866 if (!arm_feature(env, ARM_FEATURE_EL3) && 4867 !arm_feature(env, ARM_FEATURE_EL2)) { 4868 ARMCPRegInfo rvbar = { 4869 .name = "RVBAR_EL1", .state = ARM_CP_STATE_AA64, 4870 .opc0 = 3, .opc1 = 0, .crn = 12, .crm = 0, .opc2 = 1, 4871 .type = ARM_CP_CONST, .access = PL1_R, .resetvalue = cpu->rvbar 4872 }; 4873 define_one_arm_cp_reg(cpu, &rvbar); 4874 } 4875 define_arm_cp_regs(cpu, v8_idregs); 4876 define_arm_cp_regs(cpu, v8_cp_reginfo); 4877 } 4878 if (arm_feature(env, ARM_FEATURE_EL2)) { 4879 uint64_t vmpidr_def = mpidr_read_val(env); 4880 ARMCPRegInfo vpidr_regs[] = { 4881 { .name = "VPIDR", .state = ARM_CP_STATE_AA32, 4882 .cp = 15, .opc1 = 4, .crn = 0, .crm = 0, .opc2 = 0, 4883 .access = PL2_RW, .accessfn = access_el3_aa32ns, 4884 .resetvalue = cpu->midr, 4885 .fieldoffset = offsetof(CPUARMState, cp15.vpidr_el2) }, 4886 { .name = "VPIDR_EL2", .state = ARM_CP_STATE_AA64, 4887 .opc0 = 3, .opc1 = 4, .crn = 0, .crm = 0, .opc2 = 0, 4888 .access = PL2_RW, .resetvalue = cpu->midr, 4889 .fieldoffset = offsetof(CPUARMState, cp15.vpidr_el2) }, 4890 { .name = "VMPIDR", .state = ARM_CP_STATE_AA32, 4891 .cp = 15, .opc1 = 4, .crn = 0, .crm = 0, .opc2 = 5, 4892 .access = PL2_RW, .accessfn = access_el3_aa32ns, 4893 .resetvalue = vmpidr_def, 4894 .fieldoffset = offsetof(CPUARMState, cp15.vmpidr_el2) }, 4895 { .name = "VMPIDR_EL2", .state = ARM_CP_STATE_AA64, 4896 .opc0 = 3, .opc1 = 4, .crn = 0, .crm = 0, .opc2 = 5, 4897 .access = PL2_RW, 4898 .resetvalue = vmpidr_def, 4899 .fieldoffset = offsetof(CPUARMState, cp15.vmpidr_el2) }, 4900 REGINFO_SENTINEL 4901 }; 4902 define_arm_cp_regs(cpu, vpidr_regs); 4903 define_arm_cp_regs(cpu, el2_cp_reginfo); 4904 /* RVBAR_EL2 is only implemented if EL2 is the highest EL */ 4905 if (!arm_feature(env, ARM_FEATURE_EL3)) { 4906 ARMCPRegInfo rvbar = { 4907 .name = "RVBAR_EL2", .state = ARM_CP_STATE_AA64, 4908 .opc0 = 3, .opc1 = 4, .crn = 12, .crm = 0, .opc2 = 1, 4909 .type = ARM_CP_CONST, .access = PL2_R, .resetvalue = cpu->rvbar 4910 }; 4911 define_one_arm_cp_reg(cpu, &rvbar); 4912 } 4913 } else { 4914 /* If EL2 is missing but higher ELs are enabled, we need to 4915 * register the no_el2 reginfos. 4916 */ 4917 if (arm_feature(env, ARM_FEATURE_EL3)) { 4918 /* When EL3 exists but not EL2, VPIDR and VMPIDR take the value 4919 * of MIDR_EL1 and MPIDR_EL1. 4920 */ 4921 ARMCPRegInfo vpidr_regs[] = { 4922 { .name = "VPIDR_EL2", .state = ARM_CP_STATE_BOTH, 4923 .opc0 = 3, .opc1 = 4, .crn = 0, .crm = 0, .opc2 = 0, 4924 .access = PL2_RW, .accessfn = access_el3_aa32ns_aa64any, 4925 .type = ARM_CP_CONST, .resetvalue = cpu->midr, 4926 .fieldoffset = offsetof(CPUARMState, cp15.vpidr_el2) }, 4927 { .name = "VMPIDR_EL2", .state = ARM_CP_STATE_BOTH, 4928 .opc0 = 3, .opc1 = 4, .crn = 0, .crm = 0, .opc2 = 5, 4929 .access = PL2_RW, .accessfn = access_el3_aa32ns_aa64any, 4930 .type = ARM_CP_NO_RAW, 4931 .writefn = arm_cp_write_ignore, .readfn = mpidr_read }, 4932 REGINFO_SENTINEL 4933 }; 4934 define_arm_cp_regs(cpu, vpidr_regs); 4935 define_arm_cp_regs(cpu, el3_no_el2_cp_reginfo); 4936 } 4937 } 4938 if (arm_feature(env, ARM_FEATURE_EL3)) { 4939 define_arm_cp_regs(cpu, el3_cp_reginfo); 4940 ARMCPRegInfo el3_regs[] = { 4941 { .name = "RVBAR_EL3", .state = ARM_CP_STATE_AA64, 4942 .opc0 = 3, .opc1 = 6, .crn = 12, .crm = 0, .opc2 = 1, 4943 .type = ARM_CP_CONST, .access = PL3_R, .resetvalue = cpu->rvbar }, 4944 { .name = "SCTLR_EL3", .state = ARM_CP_STATE_AA64, 4945 .opc0 = 3, .opc1 = 6, .crn = 1, .crm = 0, .opc2 = 0, 4946 .access = PL3_RW, 4947 .raw_writefn = raw_write, .writefn = sctlr_write, 4948 .fieldoffset = offsetof(CPUARMState, cp15.sctlr_el[3]), 4949 .resetvalue = cpu->reset_sctlr }, 4950 REGINFO_SENTINEL 4951 }; 4952 4953 define_arm_cp_regs(cpu, el3_regs); 4954 } 4955 /* The behaviour of NSACR is sufficiently various that we don't 4956 * try to describe it in a single reginfo: 4957 * if EL3 is 64 bit, then trap to EL3 from S EL1, 4958 * reads as constant 0xc00 from NS EL1 and NS EL2 4959 * if EL3 is 32 bit, then RW at EL3, RO at NS EL1 and NS EL2 4960 * if v7 without EL3, register doesn't exist 4961 * if v8 without EL3, reads as constant 0xc00 from NS EL1 and NS EL2 4962 */ 4963 if (arm_feature(env, ARM_FEATURE_EL3)) { 4964 if (arm_feature(env, ARM_FEATURE_AARCH64)) { 4965 ARMCPRegInfo nsacr = { 4966 .name = "NSACR", .type = ARM_CP_CONST, 4967 .cp = 15, .opc1 = 0, .crn = 1, .crm = 1, .opc2 = 2, 4968 .access = PL1_RW, .accessfn = nsacr_access, 4969 .resetvalue = 0xc00 4970 }; 4971 define_one_arm_cp_reg(cpu, &nsacr); 4972 } else { 4973 ARMCPRegInfo nsacr = { 4974 .name = "NSACR", 4975 .cp = 15, .opc1 = 0, .crn = 1, .crm = 1, .opc2 = 2, 4976 .access = PL3_RW | PL1_R, 4977 .resetvalue = 0, 4978 .fieldoffset = offsetof(CPUARMState, cp15.nsacr) 4979 }; 4980 define_one_arm_cp_reg(cpu, &nsacr); 4981 } 4982 } else { 4983 if (arm_feature(env, ARM_FEATURE_V8)) { 4984 ARMCPRegInfo nsacr = { 4985 .name = "NSACR", .type = ARM_CP_CONST, 4986 .cp = 15, .opc1 = 0, .crn = 1, .crm = 1, .opc2 = 2, 4987 .access = PL1_R, 4988 .resetvalue = 0xc00 4989 }; 4990 define_one_arm_cp_reg(cpu, &nsacr); 4991 } 4992 } 4993 4994 if (arm_feature(env, ARM_FEATURE_PMSA)) { 4995 if (arm_feature(env, ARM_FEATURE_V6)) { 4996 /* PMSAv6 not implemented */ 4997 assert(arm_feature(env, ARM_FEATURE_V7)); 4998 define_arm_cp_regs(cpu, vmsa_pmsa_cp_reginfo); 4999 define_arm_cp_regs(cpu, pmsav7_cp_reginfo); 5000 } else { 5001 define_arm_cp_regs(cpu, pmsav5_cp_reginfo); 5002 } 5003 } else { 5004 define_arm_cp_regs(cpu, vmsa_pmsa_cp_reginfo); 5005 define_arm_cp_regs(cpu, vmsa_cp_reginfo); 5006 } 5007 if (arm_feature(env, ARM_FEATURE_THUMB2EE)) { 5008 define_arm_cp_regs(cpu, t2ee_cp_reginfo); 5009 } 5010 if (arm_feature(env, ARM_FEATURE_GENERIC_TIMER)) { 5011 define_arm_cp_regs(cpu, generic_timer_cp_reginfo); 5012 } 5013 if (arm_feature(env, ARM_FEATURE_VAPA)) { 5014 define_arm_cp_regs(cpu, vapa_cp_reginfo); 5015 } 5016 if (arm_feature(env, ARM_FEATURE_CACHE_TEST_CLEAN)) { 5017 define_arm_cp_regs(cpu, cache_test_clean_cp_reginfo); 5018 } 5019 if (arm_feature(env, ARM_FEATURE_CACHE_DIRTY_REG)) { 5020 define_arm_cp_regs(cpu, cache_dirty_status_cp_reginfo); 5021 } 5022 if (arm_feature(env, ARM_FEATURE_CACHE_BLOCK_OPS)) { 5023 define_arm_cp_regs(cpu, cache_block_ops_cp_reginfo); 5024 } 5025 if (arm_feature(env, ARM_FEATURE_OMAPCP)) { 5026 define_arm_cp_regs(cpu, omap_cp_reginfo); 5027 } 5028 if (arm_feature(env, ARM_FEATURE_STRONGARM)) { 5029 define_arm_cp_regs(cpu, strongarm_cp_reginfo); 5030 } 5031 if (arm_feature(env, ARM_FEATURE_XSCALE)) { 5032 define_arm_cp_regs(cpu, xscale_cp_reginfo); 5033 } 5034 if (arm_feature(env, ARM_FEATURE_DUMMY_C15_REGS)) { 5035 define_arm_cp_regs(cpu, dummy_c15_cp_reginfo); 5036 } 5037 if (arm_feature(env, ARM_FEATURE_LPAE)) { 5038 define_arm_cp_regs(cpu, lpae_cp_reginfo); 5039 } 5040 /* Slightly awkwardly, the OMAP and StrongARM cores need all of 5041 * cp15 crn=0 to be writes-ignored, whereas for other cores they should 5042 * be read-only (ie write causes UNDEF exception). 5043 */ 5044 { 5045 ARMCPRegInfo id_pre_v8_midr_cp_reginfo[] = { 5046 /* Pre-v8 MIDR space. 5047 * Note that the MIDR isn't a simple constant register because 5048 * of the TI925 behaviour where writes to another register can 5049 * cause the MIDR value to change. 5050 * 5051 * Unimplemented registers in the c15 0 0 0 space default to 5052 * MIDR. Define MIDR first as this entire space, then CTR, TCMTR 5053 * and friends override accordingly. 5054 */ 5055 { .name = "MIDR", 5056 .cp = 15, .crn = 0, .crm = 0, .opc1 = 0, .opc2 = CP_ANY, 5057 .access = PL1_R, .resetvalue = cpu->midr, 5058 .writefn = arm_cp_write_ignore, .raw_writefn = raw_write, 5059 .readfn = midr_read, 5060 .fieldoffset = offsetof(CPUARMState, cp15.c0_cpuid), 5061 .type = ARM_CP_OVERRIDE }, 5062 /* crn = 0 op1 = 0 crm = 3..7 : currently unassigned; we RAZ. */ 5063 { .name = "DUMMY", 5064 .cp = 15, .crn = 0, .crm = 3, .opc1 = 0, .opc2 = CP_ANY, 5065 .access = PL1_R, .type = ARM_CP_CONST, .resetvalue = 0 }, 5066 { .name = "DUMMY", 5067 .cp = 15, .crn = 0, .crm = 4, .opc1 = 0, .opc2 = CP_ANY, 5068 .access = PL1_R, .type = ARM_CP_CONST, .resetvalue = 0 }, 5069 { .name = "DUMMY", 5070 .cp = 15, .crn = 0, .crm = 5, .opc1 = 0, .opc2 = CP_ANY, 5071 .access = PL1_R, .type = ARM_CP_CONST, .resetvalue = 0 }, 5072 { .name = "DUMMY", 5073 .cp = 15, .crn = 0, .crm = 6, .opc1 = 0, .opc2 = CP_ANY, 5074 .access = PL1_R, .type = ARM_CP_CONST, .resetvalue = 0 }, 5075 { .name = "DUMMY", 5076 .cp = 15, .crn = 0, .crm = 7, .opc1 = 0, .opc2 = CP_ANY, 5077 .access = PL1_R, .type = ARM_CP_CONST, .resetvalue = 0 }, 5078 REGINFO_SENTINEL 5079 }; 5080 ARMCPRegInfo id_v8_midr_cp_reginfo[] = { 5081 { .name = "MIDR_EL1", .state = ARM_CP_STATE_BOTH, 5082 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 0, .opc2 = 0, 5083 .access = PL1_R, .type = ARM_CP_NO_RAW, .resetvalue = cpu->midr, 5084 .fieldoffset = offsetof(CPUARMState, cp15.c0_cpuid), 5085 .readfn = midr_read }, 5086 /* crn = 0 op1 = 0 crm = 0 op2 = 4,7 : AArch32 aliases of MIDR */ 5087 { .name = "MIDR", .type = ARM_CP_ALIAS | ARM_CP_CONST, 5088 .cp = 15, .crn = 0, .crm = 0, .opc1 = 0, .opc2 = 4, 5089 .access = PL1_R, .resetvalue = cpu->midr }, 5090 { .name = "MIDR", .type = ARM_CP_ALIAS | ARM_CP_CONST, 5091 .cp = 15, .crn = 0, .crm = 0, .opc1 = 0, .opc2 = 7, 5092 .access = PL1_R, .resetvalue = cpu->midr }, 5093 { .name = "REVIDR_EL1", .state = ARM_CP_STATE_BOTH, 5094 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 0, .opc2 = 6, 5095 .access = PL1_R, .type = ARM_CP_CONST, .resetvalue = cpu->revidr }, 5096 REGINFO_SENTINEL 5097 }; 5098 ARMCPRegInfo id_cp_reginfo[] = { 5099 /* These are common to v8 and pre-v8 */ 5100 { .name = "CTR", 5101 .cp = 15, .crn = 0, .crm = 0, .opc1 = 0, .opc2 = 1, 5102 .access = PL1_R, .type = ARM_CP_CONST, .resetvalue = cpu->ctr }, 5103 { .name = "CTR_EL0", .state = ARM_CP_STATE_AA64, 5104 .opc0 = 3, .opc1 = 3, .opc2 = 1, .crn = 0, .crm = 0, 5105 .access = PL0_R, .accessfn = ctr_el0_access, 5106 .type = ARM_CP_CONST, .resetvalue = cpu->ctr }, 5107 /* TCMTR and TLBTR exist in v8 but have no 64-bit versions */ 5108 { .name = "TCMTR", 5109 .cp = 15, .crn = 0, .crm = 0, .opc1 = 0, .opc2 = 2, 5110 .access = PL1_R, .type = ARM_CP_CONST, .resetvalue = 0 }, 5111 REGINFO_SENTINEL 5112 }; 5113 /* TLBTR is specific to VMSA */ 5114 ARMCPRegInfo id_tlbtr_reginfo = { 5115 .name = "TLBTR", 5116 .cp = 15, .crn = 0, .crm = 0, .opc1 = 0, .opc2 = 3, 5117 .access = PL1_R, .type = ARM_CP_CONST, .resetvalue = 0, 5118 }; 5119 /* MPUIR is specific to PMSA V6+ */ 5120 ARMCPRegInfo id_mpuir_reginfo = { 5121 .name = "MPUIR", 5122 .cp = 15, .crn = 0, .crm = 0, .opc1 = 0, .opc2 = 4, 5123 .access = PL1_R, .type = ARM_CP_CONST, 5124 .resetvalue = cpu->pmsav7_dregion << 8 5125 }; 5126 ARMCPRegInfo crn0_wi_reginfo = { 5127 .name = "CRN0_WI", .cp = 15, .crn = 0, .crm = CP_ANY, 5128 .opc1 = CP_ANY, .opc2 = CP_ANY, .access = PL1_W, 5129 .type = ARM_CP_NOP | ARM_CP_OVERRIDE 5130 }; 5131 if (arm_feature(env, ARM_FEATURE_OMAPCP) || 5132 arm_feature(env, ARM_FEATURE_STRONGARM)) { 5133 ARMCPRegInfo *r; 5134 /* Register the blanket "writes ignored" value first to cover the 5135 * whole space. Then update the specific ID registers to allow write 5136 * access, so that they ignore writes rather than causing them to 5137 * UNDEF. 5138 */ 5139 define_one_arm_cp_reg(cpu, &crn0_wi_reginfo); 5140 for (r = id_pre_v8_midr_cp_reginfo; 5141 r->type != ARM_CP_SENTINEL; r++) { 5142 r->access = PL1_RW; 5143 } 5144 for (r = id_cp_reginfo; r->type != ARM_CP_SENTINEL; r++) { 5145 r->access = PL1_RW; 5146 } 5147 id_tlbtr_reginfo.access = PL1_RW; 5148 id_tlbtr_reginfo.access = PL1_RW; 5149 } 5150 if (arm_feature(env, ARM_FEATURE_V8)) { 5151 define_arm_cp_regs(cpu, id_v8_midr_cp_reginfo); 5152 } else { 5153 define_arm_cp_regs(cpu, id_pre_v8_midr_cp_reginfo); 5154 } 5155 define_arm_cp_regs(cpu, id_cp_reginfo); 5156 if (!arm_feature(env, ARM_FEATURE_PMSA)) { 5157 define_one_arm_cp_reg(cpu, &id_tlbtr_reginfo); 5158 } else if (arm_feature(env, ARM_FEATURE_V7)) { 5159 define_one_arm_cp_reg(cpu, &id_mpuir_reginfo); 5160 } 5161 } 5162 5163 if (arm_feature(env, ARM_FEATURE_MPIDR)) { 5164 define_arm_cp_regs(cpu, mpidr_cp_reginfo); 5165 } 5166 5167 if (arm_feature(env, ARM_FEATURE_AUXCR)) { 5168 ARMCPRegInfo auxcr_reginfo[] = { 5169 { .name = "ACTLR_EL1", .state = ARM_CP_STATE_BOTH, 5170 .opc0 = 3, .opc1 = 0, .crn = 1, .crm = 0, .opc2 = 1, 5171 .access = PL1_RW, .type = ARM_CP_CONST, 5172 .resetvalue = cpu->reset_auxcr }, 5173 { .name = "ACTLR_EL2", .state = ARM_CP_STATE_BOTH, 5174 .opc0 = 3, .opc1 = 4, .crn = 1, .crm = 0, .opc2 = 1, 5175 .access = PL2_RW, .type = ARM_CP_CONST, 5176 .resetvalue = 0 }, 5177 { .name = "ACTLR_EL3", .state = ARM_CP_STATE_AA64, 5178 .opc0 = 3, .opc1 = 6, .crn = 1, .crm = 0, .opc2 = 1, 5179 .access = PL3_RW, .type = ARM_CP_CONST, 5180 .resetvalue = 0 }, 5181 REGINFO_SENTINEL 5182 }; 5183 define_arm_cp_regs(cpu, auxcr_reginfo); 5184 } 5185 5186 if (arm_feature(env, ARM_FEATURE_CBAR)) { 5187 if (arm_feature(env, ARM_FEATURE_AARCH64)) { 5188 /* 32 bit view is [31:18] 0...0 [43:32]. */ 5189 uint32_t cbar32 = (extract64(cpu->reset_cbar, 18, 14) << 18) 5190 | extract64(cpu->reset_cbar, 32, 12); 5191 ARMCPRegInfo cbar_reginfo[] = { 5192 { .name = "CBAR", 5193 .type = ARM_CP_CONST, 5194 .cp = 15, .crn = 15, .crm = 0, .opc1 = 4, .opc2 = 0, 5195 .access = PL1_R, .resetvalue = cpu->reset_cbar }, 5196 { .name = "CBAR_EL1", .state = ARM_CP_STATE_AA64, 5197 .type = ARM_CP_CONST, 5198 .opc0 = 3, .opc1 = 1, .crn = 15, .crm = 3, .opc2 = 0, 5199 .access = PL1_R, .resetvalue = cbar32 }, 5200 REGINFO_SENTINEL 5201 }; 5202 /* We don't implement a r/w 64 bit CBAR currently */ 5203 assert(arm_feature(env, ARM_FEATURE_CBAR_RO)); 5204 define_arm_cp_regs(cpu, cbar_reginfo); 5205 } else { 5206 ARMCPRegInfo cbar = { 5207 .name = "CBAR", 5208 .cp = 15, .crn = 15, .crm = 0, .opc1 = 4, .opc2 = 0, 5209 .access = PL1_R|PL3_W, .resetvalue = cpu->reset_cbar, 5210 .fieldoffset = offsetof(CPUARMState, 5211 cp15.c15_config_base_address) 5212 }; 5213 if (arm_feature(env, ARM_FEATURE_CBAR_RO)) { 5214 cbar.access = PL1_R; 5215 cbar.fieldoffset = 0; 5216 cbar.type = ARM_CP_CONST; 5217 } 5218 define_one_arm_cp_reg(cpu, &cbar); 5219 } 5220 } 5221 5222 if (arm_feature(env, ARM_FEATURE_VBAR)) { 5223 ARMCPRegInfo vbar_cp_reginfo[] = { 5224 { .name = "VBAR", .state = ARM_CP_STATE_BOTH, 5225 .opc0 = 3, .crn = 12, .crm = 0, .opc1 = 0, .opc2 = 0, 5226 .access = PL1_RW, .writefn = vbar_write, 5227 .bank_fieldoffsets = { offsetof(CPUARMState, cp15.vbar_s), 5228 offsetof(CPUARMState, cp15.vbar_ns) }, 5229 .resetvalue = 0 }, 5230 REGINFO_SENTINEL 5231 }; 5232 define_arm_cp_regs(cpu, vbar_cp_reginfo); 5233 } 5234 5235 /* Generic registers whose values depend on the implementation */ 5236 { 5237 ARMCPRegInfo sctlr = { 5238 .name = "SCTLR", .state = ARM_CP_STATE_BOTH, 5239 .opc0 = 3, .opc1 = 0, .crn = 1, .crm = 0, .opc2 = 0, 5240 .access = PL1_RW, 5241 .bank_fieldoffsets = { offsetof(CPUARMState, cp15.sctlr_s), 5242 offsetof(CPUARMState, cp15.sctlr_ns) }, 5243 .writefn = sctlr_write, .resetvalue = cpu->reset_sctlr, 5244 .raw_writefn = raw_write, 5245 }; 5246 if (arm_feature(env, ARM_FEATURE_XSCALE)) { 5247 /* Normally we would always end the TB on an SCTLR write, but Linux 5248 * arch/arm/mach-pxa/sleep.S expects two instructions following 5249 * an MMU enable to execute from cache. Imitate this behaviour. 5250 */ 5251 sctlr.type |= ARM_CP_SUPPRESS_TB_END; 5252 } 5253 define_one_arm_cp_reg(cpu, &sctlr); 5254 } 5255 } 5256 5257 void arm_cpu_register_gdb_regs_for_features(ARMCPU *cpu) 5258 { 5259 CPUState *cs = CPU(cpu); 5260 CPUARMState *env = &cpu->env; 5261 5262 if (arm_feature(env, ARM_FEATURE_AARCH64)) { 5263 gdb_register_coprocessor(cs, aarch64_fpu_gdb_get_reg, 5264 aarch64_fpu_gdb_set_reg, 5265 34, "aarch64-fpu.xml", 0); 5266 } else if (arm_feature(env, ARM_FEATURE_NEON)) { 5267 gdb_register_coprocessor(cs, vfp_gdb_get_reg, vfp_gdb_set_reg, 5268 51, "arm-neon.xml", 0); 5269 } else if (arm_feature(env, ARM_FEATURE_VFP3)) { 5270 gdb_register_coprocessor(cs, vfp_gdb_get_reg, vfp_gdb_set_reg, 5271 35, "arm-vfp3.xml", 0); 5272 } else if (arm_feature(env, ARM_FEATURE_VFP)) { 5273 gdb_register_coprocessor(cs, vfp_gdb_get_reg, vfp_gdb_set_reg, 5274 19, "arm-vfp.xml", 0); 5275 } 5276 } 5277 5278 /* Sort alphabetically by type name, except for "any". */ 5279 static gint arm_cpu_list_compare(gconstpointer a, gconstpointer b) 5280 { 5281 ObjectClass *class_a = (ObjectClass *)a; 5282 ObjectClass *class_b = (ObjectClass *)b; 5283 const char *name_a, *name_b; 5284 5285 name_a = object_class_get_name(class_a); 5286 name_b = object_class_get_name(class_b); 5287 if (strcmp(name_a, "any-" TYPE_ARM_CPU) == 0) { 5288 return 1; 5289 } else if (strcmp(name_b, "any-" TYPE_ARM_CPU) == 0) { 5290 return -1; 5291 } else { 5292 return strcmp(name_a, name_b); 5293 } 5294 } 5295 5296 static void arm_cpu_list_entry(gpointer data, gpointer user_data) 5297 { 5298 ObjectClass *oc = data; 5299 CPUListState *s = user_data; 5300 const char *typename; 5301 char *name; 5302 5303 typename = object_class_get_name(oc); 5304 name = g_strndup(typename, strlen(typename) - strlen("-" TYPE_ARM_CPU)); 5305 (*s->cpu_fprintf)(s->file, " %s\n", 5306 name); 5307 g_free(name); 5308 } 5309 5310 void arm_cpu_list(FILE *f, fprintf_function cpu_fprintf) 5311 { 5312 CPUListState s = { 5313 .file = f, 5314 .cpu_fprintf = cpu_fprintf, 5315 }; 5316 GSList *list; 5317 5318 list = object_class_get_list(TYPE_ARM_CPU, false); 5319 list = g_slist_sort(list, arm_cpu_list_compare); 5320 (*cpu_fprintf)(f, "Available CPUs:\n"); 5321 g_slist_foreach(list, arm_cpu_list_entry, &s); 5322 g_slist_free(list); 5323 #ifdef CONFIG_KVM 5324 /* The 'host' CPU type is dynamically registered only if KVM is 5325 * enabled, so we have to special-case it here: 5326 */ 5327 (*cpu_fprintf)(f, " host (only available in KVM mode)\n"); 5328 #endif 5329 } 5330 5331 static void arm_cpu_add_definition(gpointer data, gpointer user_data) 5332 { 5333 ObjectClass *oc = data; 5334 CpuDefinitionInfoList **cpu_list = user_data; 5335 CpuDefinitionInfoList *entry; 5336 CpuDefinitionInfo *info; 5337 const char *typename; 5338 5339 typename = object_class_get_name(oc); 5340 info = g_malloc0(sizeof(*info)); 5341 info->name = g_strndup(typename, 5342 strlen(typename) - strlen("-" TYPE_ARM_CPU)); 5343 info->q_typename = g_strdup(typename); 5344 5345 entry = g_malloc0(sizeof(*entry)); 5346 entry->value = info; 5347 entry->next = *cpu_list; 5348 *cpu_list = entry; 5349 } 5350 5351 CpuDefinitionInfoList *arch_query_cpu_definitions(Error **errp) 5352 { 5353 CpuDefinitionInfoList *cpu_list = NULL; 5354 GSList *list; 5355 5356 list = object_class_get_list(TYPE_ARM_CPU, false); 5357 g_slist_foreach(list, arm_cpu_add_definition, &cpu_list); 5358 g_slist_free(list); 5359 5360 return cpu_list; 5361 } 5362 5363 static void add_cpreg_to_hashtable(ARMCPU *cpu, const ARMCPRegInfo *r, 5364 void *opaque, int state, int secstate, 5365 int crm, int opc1, int opc2) 5366 { 5367 /* Private utility function for define_one_arm_cp_reg_with_opaque(): 5368 * add a single reginfo struct to the hash table. 5369 */ 5370 uint32_t *key = g_new(uint32_t, 1); 5371 ARMCPRegInfo *r2 = g_memdup(r, sizeof(ARMCPRegInfo)); 5372 int is64 = (r->type & ARM_CP_64BIT) ? 1 : 0; 5373 int ns = (secstate & ARM_CP_SECSTATE_NS) ? 1 : 0; 5374 5375 /* Reset the secure state to the specific incoming state. This is 5376 * necessary as the register may have been defined with both states. 5377 */ 5378 r2->secure = secstate; 5379 5380 if (r->bank_fieldoffsets[0] && r->bank_fieldoffsets[1]) { 5381 /* Register is banked (using both entries in array). 5382 * Overwriting fieldoffset as the array is only used to define 5383 * banked registers but later only fieldoffset is used. 5384 */ 5385 r2->fieldoffset = r->bank_fieldoffsets[ns]; 5386 } 5387 5388 if (state == ARM_CP_STATE_AA32) { 5389 if (r->bank_fieldoffsets[0] && r->bank_fieldoffsets[1]) { 5390 /* If the register is banked then we don't need to migrate or 5391 * reset the 32-bit instance in certain cases: 5392 * 5393 * 1) If the register has both 32-bit and 64-bit instances then we 5394 * can count on the 64-bit instance taking care of the 5395 * non-secure bank. 5396 * 2) If ARMv8 is enabled then we can count on a 64-bit version 5397 * taking care of the secure bank. This requires that separate 5398 * 32 and 64-bit definitions are provided. 5399 */ 5400 if ((r->state == ARM_CP_STATE_BOTH && ns) || 5401 (arm_feature(&cpu->env, ARM_FEATURE_V8) && !ns)) { 5402 r2->type |= ARM_CP_ALIAS; 5403 } 5404 } else if ((secstate != r->secure) && !ns) { 5405 /* The register is not banked so we only want to allow migration of 5406 * the non-secure instance. 5407 */ 5408 r2->type |= ARM_CP_ALIAS; 5409 } 5410 5411 if (r->state == ARM_CP_STATE_BOTH) { 5412 /* We assume it is a cp15 register if the .cp field is left unset. 5413 */ 5414 if (r2->cp == 0) { 5415 r2->cp = 15; 5416 } 5417 5418 #ifdef HOST_WORDS_BIGENDIAN 5419 if (r2->fieldoffset) { 5420 r2->fieldoffset += sizeof(uint32_t); 5421 } 5422 #endif 5423 } 5424 } 5425 if (state == ARM_CP_STATE_AA64) { 5426 /* To allow abbreviation of ARMCPRegInfo 5427 * definitions, we treat cp == 0 as equivalent to 5428 * the value for "standard guest-visible sysreg". 5429 * STATE_BOTH definitions are also always "standard 5430 * sysreg" in their AArch64 view (the .cp value may 5431 * be non-zero for the benefit of the AArch32 view). 5432 */ 5433 if (r->cp == 0 || r->state == ARM_CP_STATE_BOTH) { 5434 r2->cp = CP_REG_ARM64_SYSREG_CP; 5435 } 5436 *key = ENCODE_AA64_CP_REG(r2->cp, r2->crn, crm, 5437 r2->opc0, opc1, opc2); 5438 } else { 5439 *key = ENCODE_CP_REG(r2->cp, is64, ns, r2->crn, crm, opc1, opc2); 5440 } 5441 if (opaque) { 5442 r2->opaque = opaque; 5443 } 5444 /* reginfo passed to helpers is correct for the actual access, 5445 * and is never ARM_CP_STATE_BOTH: 5446 */ 5447 r2->state = state; 5448 /* Make sure reginfo passed to helpers for wildcarded regs 5449 * has the correct crm/opc1/opc2 for this reg, not CP_ANY: 5450 */ 5451 r2->crm = crm; 5452 r2->opc1 = opc1; 5453 r2->opc2 = opc2; 5454 /* By convention, for wildcarded registers only the first 5455 * entry is used for migration; the others are marked as 5456 * ALIAS so we don't try to transfer the register 5457 * multiple times. Special registers (ie NOP/WFI) are 5458 * never migratable and not even raw-accessible. 5459 */ 5460 if ((r->type & ARM_CP_SPECIAL)) { 5461 r2->type |= ARM_CP_NO_RAW; 5462 } 5463 if (((r->crm == CP_ANY) && crm != 0) || 5464 ((r->opc1 == CP_ANY) && opc1 != 0) || 5465 ((r->opc2 == CP_ANY) && opc2 != 0)) { 5466 r2->type |= ARM_CP_ALIAS; 5467 } 5468 5469 /* Check that raw accesses are either forbidden or handled. Note that 5470 * we can't assert this earlier because the setup of fieldoffset for 5471 * banked registers has to be done first. 5472 */ 5473 if (!(r2->type & ARM_CP_NO_RAW)) { 5474 assert(!raw_accessors_invalid(r2)); 5475 } 5476 5477 /* Overriding of an existing definition must be explicitly 5478 * requested. 5479 */ 5480 if (!(r->type & ARM_CP_OVERRIDE)) { 5481 ARMCPRegInfo *oldreg; 5482 oldreg = g_hash_table_lookup(cpu->cp_regs, key); 5483 if (oldreg && !(oldreg->type & ARM_CP_OVERRIDE)) { 5484 fprintf(stderr, "Register redefined: cp=%d %d bit " 5485 "crn=%d crm=%d opc1=%d opc2=%d, " 5486 "was %s, now %s\n", r2->cp, 32 + 32 * is64, 5487 r2->crn, r2->crm, r2->opc1, r2->opc2, 5488 oldreg->name, r2->name); 5489 g_assert_not_reached(); 5490 } 5491 } 5492 g_hash_table_insert(cpu->cp_regs, key, r2); 5493 } 5494 5495 5496 void define_one_arm_cp_reg_with_opaque(ARMCPU *cpu, 5497 const ARMCPRegInfo *r, void *opaque) 5498 { 5499 /* Define implementations of coprocessor registers. 5500 * We store these in a hashtable because typically 5501 * there are less than 150 registers in a space which 5502 * is 16*16*16*8*8 = 262144 in size. 5503 * Wildcarding is supported for the crm, opc1 and opc2 fields. 5504 * If a register is defined twice then the second definition is 5505 * used, so this can be used to define some generic registers and 5506 * then override them with implementation specific variations. 5507 * At least one of the original and the second definition should 5508 * include ARM_CP_OVERRIDE in its type bits -- this is just a guard 5509 * against accidental use. 5510 * 5511 * The state field defines whether the register is to be 5512 * visible in the AArch32 or AArch64 execution state. If the 5513 * state is set to ARM_CP_STATE_BOTH then we synthesise a 5514 * reginfo structure for the AArch32 view, which sees the lower 5515 * 32 bits of the 64 bit register. 5516 * 5517 * Only registers visible in AArch64 may set r->opc0; opc0 cannot 5518 * be wildcarded. AArch64 registers are always considered to be 64 5519 * bits; the ARM_CP_64BIT* flag applies only to the AArch32 view of 5520 * the register, if any. 5521 */ 5522 int crm, opc1, opc2, state; 5523 int crmmin = (r->crm == CP_ANY) ? 0 : r->crm; 5524 int crmmax = (r->crm == CP_ANY) ? 15 : r->crm; 5525 int opc1min = (r->opc1 == CP_ANY) ? 0 : r->opc1; 5526 int opc1max = (r->opc1 == CP_ANY) ? 7 : r->opc1; 5527 int opc2min = (r->opc2 == CP_ANY) ? 0 : r->opc2; 5528 int opc2max = (r->opc2 == CP_ANY) ? 7 : r->opc2; 5529 /* 64 bit registers have only CRm and Opc1 fields */ 5530 assert(!((r->type & ARM_CP_64BIT) && (r->opc2 || r->crn))); 5531 /* op0 only exists in the AArch64 encodings */ 5532 assert((r->state != ARM_CP_STATE_AA32) || (r->opc0 == 0)); 5533 /* AArch64 regs are all 64 bit so ARM_CP_64BIT is meaningless */ 5534 assert((r->state != ARM_CP_STATE_AA64) || !(r->type & ARM_CP_64BIT)); 5535 /* The AArch64 pseudocode CheckSystemAccess() specifies that op1 5536 * encodes a minimum access level for the register. We roll this 5537 * runtime check into our general permission check code, so check 5538 * here that the reginfo's specified permissions are strict enough 5539 * to encompass the generic architectural permission check. 5540 */ 5541 if (r->state != ARM_CP_STATE_AA32) { 5542 int mask = 0; 5543 switch (r->opc1) { 5544 case 0: case 1: case 2: 5545 /* min_EL EL1 */ 5546 mask = PL1_RW; 5547 break; 5548 case 3: 5549 /* min_EL EL0 */ 5550 mask = PL0_RW; 5551 break; 5552 case 4: 5553 /* min_EL EL2 */ 5554 mask = PL2_RW; 5555 break; 5556 case 5: 5557 /* unallocated encoding, so not possible */ 5558 assert(false); 5559 break; 5560 case 6: 5561 /* min_EL EL3 */ 5562 mask = PL3_RW; 5563 break; 5564 case 7: 5565 /* min_EL EL1, secure mode only (we don't check the latter) */ 5566 mask = PL1_RW; 5567 break; 5568 default: 5569 /* broken reginfo with out-of-range opc1 */ 5570 assert(false); 5571 break; 5572 } 5573 /* assert our permissions are not too lax (stricter is fine) */ 5574 assert((r->access & ~mask) == 0); 5575 } 5576 5577 /* Check that the register definition has enough info to handle 5578 * reads and writes if they are permitted. 5579 */ 5580 if (!(r->type & (ARM_CP_SPECIAL|ARM_CP_CONST))) { 5581 if (r->access & PL3_R) { 5582 assert((r->fieldoffset || 5583 (r->bank_fieldoffsets[0] && r->bank_fieldoffsets[1])) || 5584 r->readfn); 5585 } 5586 if (r->access & PL3_W) { 5587 assert((r->fieldoffset || 5588 (r->bank_fieldoffsets[0] && r->bank_fieldoffsets[1])) || 5589 r->writefn); 5590 } 5591 } 5592 /* Bad type field probably means missing sentinel at end of reg list */ 5593 assert(cptype_valid(r->type)); 5594 for (crm = crmmin; crm <= crmmax; crm++) { 5595 for (opc1 = opc1min; opc1 <= opc1max; opc1++) { 5596 for (opc2 = opc2min; opc2 <= opc2max; opc2++) { 5597 for (state = ARM_CP_STATE_AA32; 5598 state <= ARM_CP_STATE_AA64; state++) { 5599 if (r->state != state && r->state != ARM_CP_STATE_BOTH) { 5600 continue; 5601 } 5602 if (state == ARM_CP_STATE_AA32) { 5603 /* Under AArch32 CP registers can be common 5604 * (same for secure and non-secure world) or banked. 5605 */ 5606 switch (r->secure) { 5607 case ARM_CP_SECSTATE_S: 5608 case ARM_CP_SECSTATE_NS: 5609 add_cpreg_to_hashtable(cpu, r, opaque, state, 5610 r->secure, crm, opc1, opc2); 5611 break; 5612 default: 5613 add_cpreg_to_hashtable(cpu, r, opaque, state, 5614 ARM_CP_SECSTATE_S, 5615 crm, opc1, opc2); 5616 add_cpreg_to_hashtable(cpu, r, opaque, state, 5617 ARM_CP_SECSTATE_NS, 5618 crm, opc1, opc2); 5619 break; 5620 } 5621 } else { 5622 /* AArch64 registers get mapped to non-secure instance 5623 * of AArch32 */ 5624 add_cpreg_to_hashtable(cpu, r, opaque, state, 5625 ARM_CP_SECSTATE_NS, 5626 crm, opc1, opc2); 5627 } 5628 } 5629 } 5630 } 5631 } 5632 } 5633 5634 void define_arm_cp_regs_with_opaque(ARMCPU *cpu, 5635 const ARMCPRegInfo *regs, void *opaque) 5636 { 5637 /* Define a whole list of registers */ 5638 const ARMCPRegInfo *r; 5639 for (r = regs; r->type != ARM_CP_SENTINEL; r++) { 5640 define_one_arm_cp_reg_with_opaque(cpu, r, opaque); 5641 } 5642 } 5643 5644 const ARMCPRegInfo *get_arm_cp_reginfo(GHashTable *cpregs, uint32_t encoded_cp) 5645 { 5646 return g_hash_table_lookup(cpregs, &encoded_cp); 5647 } 5648 5649 void arm_cp_write_ignore(CPUARMState *env, const ARMCPRegInfo *ri, 5650 uint64_t value) 5651 { 5652 /* Helper coprocessor write function for write-ignore registers */ 5653 } 5654 5655 uint64_t arm_cp_read_zero(CPUARMState *env, const ARMCPRegInfo *ri) 5656 { 5657 /* Helper coprocessor write function for read-as-zero registers */ 5658 return 0; 5659 } 5660 5661 void arm_cp_reset_ignore(CPUARMState *env, const ARMCPRegInfo *opaque) 5662 { 5663 /* Helper coprocessor reset function for do-nothing-on-reset registers */ 5664 } 5665 5666 static int bad_mode_switch(CPUARMState *env, int mode, CPSRWriteType write_type) 5667 { 5668 /* Return true if it is not valid for us to switch to 5669 * this CPU mode (ie all the UNPREDICTABLE cases in 5670 * the ARM ARM CPSRWriteByInstr pseudocode). 5671 */ 5672 5673 /* Changes to or from Hyp via MSR and CPS are illegal. */ 5674 if (write_type == CPSRWriteByInstr && 5675 ((env->uncached_cpsr & CPSR_M) == ARM_CPU_MODE_HYP || 5676 mode == ARM_CPU_MODE_HYP)) { 5677 return 1; 5678 } 5679 5680 switch (mode) { 5681 case ARM_CPU_MODE_USR: 5682 return 0; 5683 case ARM_CPU_MODE_SYS: 5684 case ARM_CPU_MODE_SVC: 5685 case ARM_CPU_MODE_ABT: 5686 case ARM_CPU_MODE_UND: 5687 case ARM_CPU_MODE_IRQ: 5688 case ARM_CPU_MODE_FIQ: 5689 /* Note that we don't implement the IMPDEF NSACR.RFR which in v7 5690 * allows FIQ mode to be Secure-only. (In v8 this doesn't exist.) 5691 */ 5692 /* If HCR.TGE is set then changes from Monitor to NS PL1 via MSR 5693 * and CPS are treated as illegal mode changes. 5694 */ 5695 if (write_type == CPSRWriteByInstr && 5696 (env->cp15.hcr_el2 & HCR_TGE) && 5697 (env->uncached_cpsr & CPSR_M) == ARM_CPU_MODE_MON && 5698 !arm_is_secure_below_el3(env)) { 5699 return 1; 5700 } 5701 return 0; 5702 case ARM_CPU_MODE_HYP: 5703 return !arm_feature(env, ARM_FEATURE_EL2) 5704 || arm_current_el(env) < 2 || arm_is_secure(env); 5705 case ARM_CPU_MODE_MON: 5706 return arm_current_el(env) < 3; 5707 default: 5708 return 1; 5709 } 5710 } 5711 5712 uint32_t cpsr_read(CPUARMState *env) 5713 { 5714 int ZF; 5715 ZF = (env->ZF == 0); 5716 return env->uncached_cpsr | (env->NF & 0x80000000) | (ZF << 30) | 5717 (env->CF << 29) | ((env->VF & 0x80000000) >> 3) | (env->QF << 27) 5718 | (env->thumb << 5) | ((env->condexec_bits & 3) << 25) 5719 | ((env->condexec_bits & 0xfc) << 8) 5720 | (env->GE << 16) | (env->daif & CPSR_AIF); 5721 } 5722 5723 void cpsr_write(CPUARMState *env, uint32_t val, uint32_t mask, 5724 CPSRWriteType write_type) 5725 { 5726 uint32_t changed_daif; 5727 5728 if (mask & CPSR_NZCV) { 5729 env->ZF = (~val) & CPSR_Z; 5730 env->NF = val; 5731 env->CF = (val >> 29) & 1; 5732 env->VF = (val << 3) & 0x80000000; 5733 } 5734 if (mask & CPSR_Q) 5735 env->QF = ((val & CPSR_Q) != 0); 5736 if (mask & CPSR_T) 5737 env->thumb = ((val & CPSR_T) != 0); 5738 if (mask & CPSR_IT_0_1) { 5739 env->condexec_bits &= ~3; 5740 env->condexec_bits |= (val >> 25) & 3; 5741 } 5742 if (mask & CPSR_IT_2_7) { 5743 env->condexec_bits &= 3; 5744 env->condexec_bits |= (val >> 8) & 0xfc; 5745 } 5746 if (mask & CPSR_GE) { 5747 env->GE = (val >> 16) & 0xf; 5748 } 5749 5750 /* In a V7 implementation that includes the security extensions but does 5751 * not include Virtualization Extensions the SCR.FW and SCR.AW bits control 5752 * whether non-secure software is allowed to change the CPSR_F and CPSR_A 5753 * bits respectively. 5754 * 5755 * In a V8 implementation, it is permitted for privileged software to 5756 * change the CPSR A/F bits regardless of the SCR.AW/FW bits. 5757 */ 5758 if (write_type != CPSRWriteRaw && !arm_feature(env, ARM_FEATURE_V8) && 5759 arm_feature(env, ARM_FEATURE_EL3) && 5760 !arm_feature(env, ARM_FEATURE_EL2) && 5761 !arm_is_secure(env)) { 5762 5763 changed_daif = (env->daif ^ val) & mask; 5764 5765 if (changed_daif & CPSR_A) { 5766 /* Check to see if we are allowed to change the masking of async 5767 * abort exceptions from a non-secure state. 5768 */ 5769 if (!(env->cp15.scr_el3 & SCR_AW)) { 5770 qemu_log_mask(LOG_GUEST_ERROR, 5771 "Ignoring attempt to switch CPSR_A flag from " 5772 "non-secure world with SCR.AW bit clear\n"); 5773 mask &= ~CPSR_A; 5774 } 5775 } 5776 5777 if (changed_daif & CPSR_F) { 5778 /* Check to see if we are allowed to change the masking of FIQ 5779 * exceptions from a non-secure state. 5780 */ 5781 if (!(env->cp15.scr_el3 & SCR_FW)) { 5782 qemu_log_mask(LOG_GUEST_ERROR, 5783 "Ignoring attempt to switch CPSR_F flag from " 5784 "non-secure world with SCR.FW bit clear\n"); 5785 mask &= ~CPSR_F; 5786 } 5787 5788 /* Check whether non-maskable FIQ (NMFI) support is enabled. 5789 * If this bit is set software is not allowed to mask 5790 * FIQs, but is allowed to set CPSR_F to 0. 5791 */ 5792 if ((A32_BANKED_CURRENT_REG_GET(env, sctlr) & SCTLR_NMFI) && 5793 (val & CPSR_F)) { 5794 qemu_log_mask(LOG_GUEST_ERROR, 5795 "Ignoring attempt to enable CPSR_F flag " 5796 "(non-maskable FIQ [NMFI] support enabled)\n"); 5797 mask &= ~CPSR_F; 5798 } 5799 } 5800 } 5801 5802 env->daif &= ~(CPSR_AIF & mask); 5803 env->daif |= val & CPSR_AIF & mask; 5804 5805 if (write_type != CPSRWriteRaw && 5806 ((env->uncached_cpsr ^ val) & mask & CPSR_M)) { 5807 if ((env->uncached_cpsr & CPSR_M) == ARM_CPU_MODE_USR) { 5808 /* Note that we can only get here in USR mode if this is a 5809 * gdb stub write; for this case we follow the architectural 5810 * behaviour for guest writes in USR mode of ignoring an attempt 5811 * to switch mode. (Those are caught by translate.c for writes 5812 * triggered by guest instructions.) 5813 */ 5814 mask &= ~CPSR_M; 5815 } else if (bad_mode_switch(env, val & CPSR_M, write_type)) { 5816 /* Attempt to switch to an invalid mode: this is UNPREDICTABLE in 5817 * v7, and has defined behaviour in v8: 5818 * + leave CPSR.M untouched 5819 * + allow changes to the other CPSR fields 5820 * + set PSTATE.IL 5821 * For user changes via the GDB stub, we don't set PSTATE.IL, 5822 * as this would be unnecessarily harsh for a user error. 5823 */ 5824 mask &= ~CPSR_M; 5825 if (write_type != CPSRWriteByGDBStub && 5826 arm_feature(env, ARM_FEATURE_V8)) { 5827 mask |= CPSR_IL; 5828 val |= CPSR_IL; 5829 } 5830 } else { 5831 switch_mode(env, val & CPSR_M); 5832 } 5833 } 5834 mask &= ~CACHED_CPSR_BITS; 5835 env->uncached_cpsr = (env->uncached_cpsr & ~mask) | (val & mask); 5836 } 5837 5838 /* Sign/zero extend */ 5839 uint32_t HELPER(sxtb16)(uint32_t x) 5840 { 5841 uint32_t res; 5842 res = (uint16_t)(int8_t)x; 5843 res |= (uint32_t)(int8_t)(x >> 16) << 16; 5844 return res; 5845 } 5846 5847 uint32_t HELPER(uxtb16)(uint32_t x) 5848 { 5849 uint32_t res; 5850 res = (uint16_t)(uint8_t)x; 5851 res |= (uint32_t)(uint8_t)(x >> 16) << 16; 5852 return res; 5853 } 5854 5855 int32_t HELPER(sdiv)(int32_t num, int32_t den) 5856 { 5857 if (den == 0) 5858 return 0; 5859 if (num == INT_MIN && den == -1) 5860 return INT_MIN; 5861 return num / den; 5862 } 5863 5864 uint32_t HELPER(udiv)(uint32_t num, uint32_t den) 5865 { 5866 if (den == 0) 5867 return 0; 5868 return num / den; 5869 } 5870 5871 uint32_t HELPER(rbit)(uint32_t x) 5872 { 5873 return revbit32(x); 5874 } 5875 5876 #if defined(CONFIG_USER_ONLY) 5877 5878 /* These should probably raise undefined insn exceptions. */ 5879 void HELPER(v7m_msr)(CPUARMState *env, uint32_t reg, uint32_t val) 5880 { 5881 ARMCPU *cpu = arm_env_get_cpu(env); 5882 5883 cpu_abort(CPU(cpu), "v7m_msr %d\n", reg); 5884 } 5885 5886 uint32_t HELPER(v7m_mrs)(CPUARMState *env, uint32_t reg) 5887 { 5888 ARMCPU *cpu = arm_env_get_cpu(env); 5889 5890 cpu_abort(CPU(cpu), "v7m_mrs %d\n", reg); 5891 return 0; 5892 } 5893 5894 void HELPER(v7m_bxns)(CPUARMState *env, uint32_t dest) 5895 { 5896 /* translate.c should never generate calls here in user-only mode */ 5897 g_assert_not_reached(); 5898 } 5899 5900 void HELPER(v7m_blxns)(CPUARMState *env, uint32_t dest) 5901 { 5902 /* translate.c should never generate calls here in user-only mode */ 5903 g_assert_not_reached(); 5904 } 5905 5906 void switch_mode(CPUARMState *env, int mode) 5907 { 5908 ARMCPU *cpu = arm_env_get_cpu(env); 5909 5910 if (mode != ARM_CPU_MODE_USR) { 5911 cpu_abort(CPU(cpu), "Tried to switch out of user mode\n"); 5912 } 5913 } 5914 5915 uint32_t arm_phys_excp_target_el(CPUState *cs, uint32_t excp_idx, 5916 uint32_t cur_el, bool secure) 5917 { 5918 return 1; 5919 } 5920 5921 void aarch64_sync_64_to_32(CPUARMState *env) 5922 { 5923 g_assert_not_reached(); 5924 } 5925 5926 #else 5927 5928 void switch_mode(CPUARMState *env, int mode) 5929 { 5930 int old_mode; 5931 int i; 5932 5933 old_mode = env->uncached_cpsr & CPSR_M; 5934 if (mode == old_mode) 5935 return; 5936 5937 if (old_mode == ARM_CPU_MODE_FIQ) { 5938 memcpy (env->fiq_regs, env->regs + 8, 5 * sizeof(uint32_t)); 5939 memcpy (env->regs + 8, env->usr_regs, 5 * sizeof(uint32_t)); 5940 } else if (mode == ARM_CPU_MODE_FIQ) { 5941 memcpy (env->usr_regs, env->regs + 8, 5 * sizeof(uint32_t)); 5942 memcpy (env->regs + 8, env->fiq_regs, 5 * sizeof(uint32_t)); 5943 } 5944 5945 i = bank_number(old_mode); 5946 env->banked_r13[i] = env->regs[13]; 5947 env->banked_r14[i] = env->regs[14]; 5948 env->banked_spsr[i] = env->spsr; 5949 5950 i = bank_number(mode); 5951 env->regs[13] = env->banked_r13[i]; 5952 env->regs[14] = env->banked_r14[i]; 5953 env->spsr = env->banked_spsr[i]; 5954 } 5955 5956 /* Physical Interrupt Target EL Lookup Table 5957 * 5958 * [ From ARM ARM section G1.13.4 (Table G1-15) ] 5959 * 5960 * The below multi-dimensional table is used for looking up the target 5961 * exception level given numerous condition criteria. Specifically, the 5962 * target EL is based on SCR and HCR routing controls as well as the 5963 * currently executing EL and secure state. 5964 * 5965 * Dimensions: 5966 * target_el_table[2][2][2][2][2][4] 5967 * | | | | | +--- Current EL 5968 * | | | | +------ Non-secure(0)/Secure(1) 5969 * | | | +--------- HCR mask override 5970 * | | +------------ SCR exec state control 5971 * | +--------------- SCR mask override 5972 * +------------------ 32-bit(0)/64-bit(1) EL3 5973 * 5974 * The table values are as such: 5975 * 0-3 = EL0-EL3 5976 * -1 = Cannot occur 5977 * 5978 * The ARM ARM target EL table includes entries indicating that an "exception 5979 * is not taken". The two cases where this is applicable are: 5980 * 1) An exception is taken from EL3 but the SCR does not have the exception 5981 * routed to EL3. 5982 * 2) An exception is taken from EL2 but the HCR does not have the exception 5983 * routed to EL2. 5984 * In these two cases, the below table contain a target of EL1. This value is 5985 * returned as it is expected that the consumer of the table data will check 5986 * for "target EL >= current EL" to ensure the exception is not taken. 5987 * 5988 * SCR HCR 5989 * 64 EA AMO From 5990 * BIT IRQ IMO Non-secure Secure 5991 * EL3 FIQ RW FMO EL0 EL1 EL2 EL3 EL0 EL1 EL2 EL3 5992 */ 5993 static const int8_t target_el_table[2][2][2][2][2][4] = { 5994 {{{{/* 0 0 0 0 */{ 1, 1, 2, -1 },{ 3, -1, -1, 3 },}, 5995 {/* 0 0 0 1 */{ 2, 2, 2, -1 },{ 3, -1, -1, 3 },},}, 5996 {{/* 0 0 1 0 */{ 1, 1, 2, -1 },{ 3, -1, -1, 3 },}, 5997 {/* 0 0 1 1 */{ 2, 2, 2, -1 },{ 3, -1, -1, 3 },},},}, 5998 {{{/* 0 1 0 0 */{ 3, 3, 3, -1 },{ 3, -1, -1, 3 },}, 5999 {/* 0 1 0 1 */{ 3, 3, 3, -1 },{ 3, -1, -1, 3 },},}, 6000 {{/* 0 1 1 0 */{ 3, 3, 3, -1 },{ 3, -1, -1, 3 },}, 6001 {/* 0 1 1 1 */{ 3, 3, 3, -1 },{ 3, -1, -1, 3 },},},},}, 6002 {{{{/* 1 0 0 0 */{ 1, 1, 2, -1 },{ 1, 1, -1, 1 },}, 6003 {/* 1 0 0 1 */{ 2, 2, 2, -1 },{ 1, 1, -1, 1 },},}, 6004 {{/* 1 0 1 0 */{ 1, 1, 1, -1 },{ 1, 1, -1, 1 },}, 6005 {/* 1 0 1 1 */{ 2, 2, 2, -1 },{ 1, 1, -1, 1 },},},}, 6006 {{{/* 1 1 0 0 */{ 3, 3, 3, -1 },{ 3, 3, -1, 3 },}, 6007 {/* 1 1 0 1 */{ 3, 3, 3, -1 },{ 3, 3, -1, 3 },},}, 6008 {{/* 1 1 1 0 */{ 3, 3, 3, -1 },{ 3, 3, -1, 3 },}, 6009 {/* 1 1 1 1 */{ 3, 3, 3, -1 },{ 3, 3, -1, 3 },},},},}, 6010 }; 6011 6012 /* 6013 * Determine the target EL for physical exceptions 6014 */ 6015 uint32_t arm_phys_excp_target_el(CPUState *cs, uint32_t excp_idx, 6016 uint32_t cur_el, bool secure) 6017 { 6018 CPUARMState *env = cs->env_ptr; 6019 int rw; 6020 int scr; 6021 int hcr; 6022 int target_el; 6023 /* Is the highest EL AArch64? */ 6024 int is64 = arm_feature(env, ARM_FEATURE_AARCH64); 6025 6026 if (arm_feature(env, ARM_FEATURE_EL3)) { 6027 rw = ((env->cp15.scr_el3 & SCR_RW) == SCR_RW); 6028 } else { 6029 /* Either EL2 is the highest EL (and so the EL2 register width 6030 * is given by is64); or there is no EL2 or EL3, in which case 6031 * the value of 'rw' does not affect the table lookup anyway. 6032 */ 6033 rw = is64; 6034 } 6035 6036 switch (excp_idx) { 6037 case EXCP_IRQ: 6038 scr = ((env->cp15.scr_el3 & SCR_IRQ) == SCR_IRQ); 6039 hcr = ((env->cp15.hcr_el2 & HCR_IMO) == HCR_IMO); 6040 break; 6041 case EXCP_FIQ: 6042 scr = ((env->cp15.scr_el3 & SCR_FIQ) == SCR_FIQ); 6043 hcr = ((env->cp15.hcr_el2 & HCR_FMO) == HCR_FMO); 6044 break; 6045 default: 6046 scr = ((env->cp15.scr_el3 & SCR_EA) == SCR_EA); 6047 hcr = ((env->cp15.hcr_el2 & HCR_AMO) == HCR_AMO); 6048 break; 6049 }; 6050 6051 /* If HCR.TGE is set then HCR is treated as being 1 */ 6052 hcr |= ((env->cp15.hcr_el2 & HCR_TGE) == HCR_TGE); 6053 6054 /* Perform a table-lookup for the target EL given the current state */ 6055 target_el = target_el_table[is64][scr][rw][hcr][secure][cur_el]; 6056 6057 assert(target_el > 0); 6058 6059 return target_el; 6060 } 6061 6062 static void v7m_push(CPUARMState *env, uint32_t val) 6063 { 6064 CPUState *cs = CPU(arm_env_get_cpu(env)); 6065 6066 env->regs[13] -= 4; 6067 stl_phys(cs->as, env->regs[13], val); 6068 } 6069 6070 /* Return true if we're using the process stack pointer (not the MSP) */ 6071 static bool v7m_using_psp(CPUARMState *env) 6072 { 6073 /* Handler mode always uses the main stack; for thread mode 6074 * the CONTROL.SPSEL bit determines the answer. 6075 * Note that in v7M it is not possible to be in Handler mode with 6076 * CONTROL.SPSEL non-zero, but in v8M it is, so we must check both. 6077 */ 6078 return !arm_v7m_is_handler_mode(env) && 6079 env->v7m.control[env->v7m.secure] & R_V7M_CONTROL_SPSEL_MASK; 6080 } 6081 6082 /* Write to v7M CONTROL.SPSEL bit for the specified security bank. 6083 * This may change the current stack pointer between Main and Process 6084 * stack pointers if it is done for the CONTROL register for the current 6085 * security state. 6086 */ 6087 static void write_v7m_control_spsel_for_secstate(CPUARMState *env, 6088 bool new_spsel, 6089 bool secstate) 6090 { 6091 bool old_is_psp = v7m_using_psp(env); 6092 6093 env->v7m.control[secstate] = 6094 deposit32(env->v7m.control[secstate], 6095 R_V7M_CONTROL_SPSEL_SHIFT, 6096 R_V7M_CONTROL_SPSEL_LENGTH, new_spsel); 6097 6098 if (secstate == env->v7m.secure) { 6099 bool new_is_psp = v7m_using_psp(env); 6100 uint32_t tmp; 6101 6102 if (old_is_psp != new_is_psp) { 6103 tmp = env->v7m.other_sp; 6104 env->v7m.other_sp = env->regs[13]; 6105 env->regs[13] = tmp; 6106 } 6107 } 6108 } 6109 6110 /* Write to v7M CONTROL.SPSEL bit. This may change the current 6111 * stack pointer between Main and Process stack pointers. 6112 */ 6113 static void write_v7m_control_spsel(CPUARMState *env, bool new_spsel) 6114 { 6115 write_v7m_control_spsel_for_secstate(env, new_spsel, env->v7m.secure); 6116 } 6117 6118 void write_v7m_exception(CPUARMState *env, uint32_t new_exc) 6119 { 6120 /* Write a new value to v7m.exception, thus transitioning into or out 6121 * of Handler mode; this may result in a change of active stack pointer. 6122 */ 6123 bool new_is_psp, old_is_psp = v7m_using_psp(env); 6124 uint32_t tmp; 6125 6126 env->v7m.exception = new_exc; 6127 6128 new_is_psp = v7m_using_psp(env); 6129 6130 if (old_is_psp != new_is_psp) { 6131 tmp = env->v7m.other_sp; 6132 env->v7m.other_sp = env->regs[13]; 6133 env->regs[13] = tmp; 6134 } 6135 } 6136 6137 /* Switch M profile security state between NS and S */ 6138 static void switch_v7m_security_state(CPUARMState *env, bool new_secstate) 6139 { 6140 uint32_t new_ss_msp, new_ss_psp; 6141 6142 if (env->v7m.secure == new_secstate) { 6143 return; 6144 } 6145 6146 /* All the banked state is accessed by looking at env->v7m.secure 6147 * except for the stack pointer; rearrange the SP appropriately. 6148 */ 6149 new_ss_msp = env->v7m.other_ss_msp; 6150 new_ss_psp = env->v7m.other_ss_psp; 6151 6152 if (v7m_using_psp(env)) { 6153 env->v7m.other_ss_psp = env->regs[13]; 6154 env->v7m.other_ss_msp = env->v7m.other_sp; 6155 } else { 6156 env->v7m.other_ss_msp = env->regs[13]; 6157 env->v7m.other_ss_psp = env->v7m.other_sp; 6158 } 6159 6160 env->v7m.secure = new_secstate; 6161 6162 if (v7m_using_psp(env)) { 6163 env->regs[13] = new_ss_psp; 6164 env->v7m.other_sp = new_ss_msp; 6165 } else { 6166 env->regs[13] = new_ss_msp; 6167 env->v7m.other_sp = new_ss_psp; 6168 } 6169 } 6170 6171 void HELPER(v7m_bxns)(CPUARMState *env, uint32_t dest) 6172 { 6173 /* Handle v7M BXNS: 6174 * - if the return value is a magic value, do exception return (like BX) 6175 * - otherwise bit 0 of the return value is the target security state 6176 */ 6177 uint32_t min_magic; 6178 6179 if (arm_feature(env, ARM_FEATURE_M_SECURITY)) { 6180 /* Covers FNC_RETURN and EXC_RETURN magic */ 6181 min_magic = FNC_RETURN_MIN_MAGIC; 6182 } else { 6183 /* EXC_RETURN magic only */ 6184 min_magic = EXC_RETURN_MIN_MAGIC; 6185 } 6186 6187 if (dest >= min_magic) { 6188 /* This is an exception return magic value; put it where 6189 * do_v7m_exception_exit() expects and raise EXCEPTION_EXIT. 6190 * Note that if we ever add gen_ss_advance() singlestep support to 6191 * M profile this should count as an "instruction execution complete" 6192 * event (compare gen_bx_excret_final_code()). 6193 */ 6194 env->regs[15] = dest & ~1; 6195 env->thumb = dest & 1; 6196 HELPER(exception_internal)(env, EXCP_EXCEPTION_EXIT); 6197 /* notreached */ 6198 } 6199 6200 /* translate.c should have made BXNS UNDEF unless we're secure */ 6201 assert(env->v7m.secure); 6202 6203 switch_v7m_security_state(env, dest & 1); 6204 env->thumb = 1; 6205 env->regs[15] = dest & ~1; 6206 } 6207 6208 void HELPER(v7m_blxns)(CPUARMState *env, uint32_t dest) 6209 { 6210 /* Handle v7M BLXNS: 6211 * - bit 0 of the destination address is the target security state 6212 */ 6213 6214 /* At this point regs[15] is the address just after the BLXNS */ 6215 uint32_t nextinst = env->regs[15] | 1; 6216 uint32_t sp = env->regs[13] - 8; 6217 uint32_t saved_psr; 6218 6219 /* translate.c will have made BLXNS UNDEF unless we're secure */ 6220 assert(env->v7m.secure); 6221 6222 if (dest & 1) { 6223 /* target is Secure, so this is just a normal BLX, 6224 * except that the low bit doesn't indicate Thumb/not. 6225 */ 6226 env->regs[14] = nextinst; 6227 env->thumb = 1; 6228 env->regs[15] = dest & ~1; 6229 return; 6230 } 6231 6232 /* Target is non-secure: first push a stack frame */ 6233 if (!QEMU_IS_ALIGNED(sp, 8)) { 6234 qemu_log_mask(LOG_GUEST_ERROR, 6235 "BLXNS with misaligned SP is UNPREDICTABLE\n"); 6236 } 6237 6238 saved_psr = env->v7m.exception; 6239 if (env->v7m.control[M_REG_S] & R_V7M_CONTROL_SFPA_MASK) { 6240 saved_psr |= XPSR_SFPA; 6241 } 6242 6243 /* Note that these stores can throw exceptions on MPU faults */ 6244 cpu_stl_data(env, sp, nextinst); 6245 cpu_stl_data(env, sp + 4, saved_psr); 6246 6247 env->regs[13] = sp; 6248 env->regs[14] = 0xfeffffff; 6249 if (arm_v7m_is_handler_mode(env)) { 6250 /* Write a dummy value to IPSR, to avoid leaking the current secure 6251 * exception number to non-secure code. This is guaranteed not 6252 * to cause write_v7m_exception() to actually change stacks. 6253 */ 6254 write_v7m_exception(env, 1); 6255 } 6256 switch_v7m_security_state(env, 0); 6257 env->thumb = 1; 6258 env->regs[15] = dest; 6259 } 6260 6261 static uint32_t *get_v7m_sp_ptr(CPUARMState *env, bool secure, bool threadmode, 6262 bool spsel) 6263 { 6264 /* Return a pointer to the location where we currently store the 6265 * stack pointer for the requested security state and thread mode. 6266 * This pointer will become invalid if the CPU state is updated 6267 * such that the stack pointers are switched around (eg changing 6268 * the SPSEL control bit). 6269 * Compare the v8M ARM ARM pseudocode LookUpSP_with_security_mode(). 6270 * Unlike that pseudocode, we require the caller to pass us in the 6271 * SPSEL control bit value; this is because we also use this 6272 * function in handling of pushing of the callee-saves registers 6273 * part of the v8M stack frame (pseudocode PushCalleeStack()), 6274 * and in the tailchain codepath the SPSEL bit comes from the exception 6275 * return magic LR value from the previous exception. The pseudocode 6276 * opencodes the stack-selection in PushCalleeStack(), but we prefer 6277 * to make this utility function generic enough to do the job. 6278 */ 6279 bool want_psp = threadmode && spsel; 6280 6281 if (secure == env->v7m.secure) { 6282 if (want_psp == v7m_using_psp(env)) { 6283 return &env->regs[13]; 6284 } else { 6285 return &env->v7m.other_sp; 6286 } 6287 } else { 6288 if (want_psp) { 6289 return &env->v7m.other_ss_psp; 6290 } else { 6291 return &env->v7m.other_ss_msp; 6292 } 6293 } 6294 } 6295 6296 static uint32_t arm_v7m_load_vector(ARMCPU *cpu, bool targets_secure) 6297 { 6298 CPUState *cs = CPU(cpu); 6299 CPUARMState *env = &cpu->env; 6300 MemTxResult result; 6301 hwaddr vec = env->v7m.vecbase[targets_secure] + env->v7m.exception * 4; 6302 uint32_t addr; 6303 6304 addr = address_space_ldl(cs->as, vec, 6305 MEMTXATTRS_UNSPECIFIED, &result); 6306 if (result != MEMTX_OK) { 6307 /* Architecturally this should cause a HardFault setting HSFR.VECTTBL, 6308 * which would then be immediately followed by our failing to load 6309 * the entry vector for that HardFault, which is a Lockup case. 6310 * Since we don't model Lockup, we just report this guest error 6311 * via cpu_abort(). 6312 */ 6313 cpu_abort(cs, "Failed to read from %s exception vector table " 6314 "entry %08x\n", targets_secure ? "secure" : "nonsecure", 6315 (unsigned)vec); 6316 } 6317 return addr; 6318 } 6319 6320 static void v7m_push_callee_stack(ARMCPU *cpu, uint32_t lr, bool dotailchain) 6321 { 6322 /* For v8M, push the callee-saves register part of the stack frame. 6323 * Compare the v8M pseudocode PushCalleeStack(). 6324 * In the tailchaining case this may not be the current stack. 6325 */ 6326 CPUARMState *env = &cpu->env; 6327 CPUState *cs = CPU(cpu); 6328 uint32_t *frame_sp_p; 6329 uint32_t frameptr; 6330 6331 if (dotailchain) { 6332 frame_sp_p = get_v7m_sp_ptr(env, true, 6333 lr & R_V7M_EXCRET_MODE_MASK, 6334 lr & R_V7M_EXCRET_SPSEL_MASK); 6335 } else { 6336 frame_sp_p = &env->regs[13]; 6337 } 6338 6339 frameptr = *frame_sp_p - 0x28; 6340 6341 stl_phys(cs->as, frameptr, 0xfefa125b); 6342 stl_phys(cs->as, frameptr + 0x8, env->regs[4]); 6343 stl_phys(cs->as, frameptr + 0xc, env->regs[5]); 6344 stl_phys(cs->as, frameptr + 0x10, env->regs[6]); 6345 stl_phys(cs->as, frameptr + 0x14, env->regs[7]); 6346 stl_phys(cs->as, frameptr + 0x18, env->regs[8]); 6347 stl_phys(cs->as, frameptr + 0x1c, env->regs[9]); 6348 stl_phys(cs->as, frameptr + 0x20, env->regs[10]); 6349 stl_phys(cs->as, frameptr + 0x24, env->regs[11]); 6350 6351 *frame_sp_p = frameptr; 6352 } 6353 6354 static void v7m_exception_taken(ARMCPU *cpu, uint32_t lr, bool dotailchain) 6355 { 6356 /* Do the "take the exception" parts of exception entry, 6357 * but not the pushing of state to the stack. This is 6358 * similar to the pseudocode ExceptionTaken() function. 6359 */ 6360 CPUARMState *env = &cpu->env; 6361 uint32_t addr; 6362 bool targets_secure; 6363 6364 targets_secure = armv7m_nvic_acknowledge_irq(env->nvic); 6365 6366 if (arm_feature(env, ARM_FEATURE_V8)) { 6367 if (arm_feature(env, ARM_FEATURE_M_SECURITY) && 6368 (lr & R_V7M_EXCRET_S_MASK)) { 6369 /* The background code (the owner of the registers in the 6370 * exception frame) is Secure. This means it may either already 6371 * have or now needs to push callee-saves registers. 6372 */ 6373 if (targets_secure) { 6374 if (dotailchain && !(lr & R_V7M_EXCRET_ES_MASK)) { 6375 /* We took an exception from Secure to NonSecure 6376 * (which means the callee-saved registers got stacked) 6377 * and are now tailchaining to a Secure exception. 6378 * Clear DCRS so eventual return from this Secure 6379 * exception unstacks the callee-saved registers. 6380 */ 6381 lr &= ~R_V7M_EXCRET_DCRS_MASK; 6382 } 6383 } else { 6384 /* We're going to a non-secure exception; push the 6385 * callee-saves registers to the stack now, if they're 6386 * not already saved. 6387 */ 6388 if (lr & R_V7M_EXCRET_DCRS_MASK && 6389 !(dotailchain && (lr & R_V7M_EXCRET_ES_MASK))) { 6390 v7m_push_callee_stack(cpu, lr, dotailchain); 6391 } 6392 lr |= R_V7M_EXCRET_DCRS_MASK; 6393 } 6394 } 6395 6396 lr &= ~R_V7M_EXCRET_ES_MASK; 6397 if (targets_secure || !arm_feature(env, ARM_FEATURE_M_SECURITY)) { 6398 lr |= R_V7M_EXCRET_ES_MASK; 6399 } 6400 lr &= ~R_V7M_EXCRET_SPSEL_MASK; 6401 if (env->v7m.control[targets_secure] & R_V7M_CONTROL_SPSEL_MASK) { 6402 lr |= R_V7M_EXCRET_SPSEL_MASK; 6403 } 6404 6405 /* Clear registers if necessary to prevent non-secure exception 6406 * code being able to see register values from secure code. 6407 * Where register values become architecturally UNKNOWN we leave 6408 * them with their previous values. 6409 */ 6410 if (arm_feature(env, ARM_FEATURE_M_SECURITY)) { 6411 if (!targets_secure) { 6412 /* Always clear the caller-saved registers (they have been 6413 * pushed to the stack earlier in v7m_push_stack()). 6414 * Clear callee-saved registers if the background code is 6415 * Secure (in which case these regs were saved in 6416 * v7m_push_callee_stack()). 6417 */ 6418 int i; 6419 6420 for (i = 0; i < 13; i++) { 6421 /* r4..r11 are callee-saves, zero only if EXCRET.S == 1 */ 6422 if (i < 4 || i > 11 || (lr & R_V7M_EXCRET_S_MASK)) { 6423 env->regs[i] = 0; 6424 } 6425 } 6426 /* Clear EAPSR */ 6427 xpsr_write(env, 0, XPSR_NZCV | XPSR_Q | XPSR_GE | XPSR_IT); 6428 } 6429 } 6430 } 6431 6432 /* Switch to target security state -- must do this before writing SPSEL */ 6433 switch_v7m_security_state(env, targets_secure); 6434 write_v7m_control_spsel(env, 0); 6435 arm_clear_exclusive(env); 6436 /* Clear IT bits */ 6437 env->condexec_bits = 0; 6438 env->regs[14] = lr; 6439 addr = arm_v7m_load_vector(cpu, targets_secure); 6440 env->regs[15] = addr & 0xfffffffe; 6441 env->thumb = addr & 1; 6442 } 6443 6444 static void v7m_push_stack(ARMCPU *cpu) 6445 { 6446 /* Do the "set up stack frame" part of exception entry, 6447 * similar to pseudocode PushStack(). 6448 */ 6449 CPUARMState *env = &cpu->env; 6450 uint32_t xpsr = xpsr_read(env); 6451 6452 /* Align stack pointer if the guest wants that */ 6453 if ((env->regs[13] & 4) && 6454 (env->v7m.ccr[env->v7m.secure] & R_V7M_CCR_STKALIGN_MASK)) { 6455 env->regs[13] -= 4; 6456 xpsr |= XPSR_SPREALIGN; 6457 } 6458 /* Switch to the handler mode. */ 6459 v7m_push(env, xpsr); 6460 v7m_push(env, env->regs[15]); 6461 v7m_push(env, env->regs[14]); 6462 v7m_push(env, env->regs[12]); 6463 v7m_push(env, env->regs[3]); 6464 v7m_push(env, env->regs[2]); 6465 v7m_push(env, env->regs[1]); 6466 v7m_push(env, env->regs[0]); 6467 } 6468 6469 static void do_v7m_exception_exit(ARMCPU *cpu) 6470 { 6471 CPUARMState *env = &cpu->env; 6472 CPUState *cs = CPU(cpu); 6473 uint32_t excret; 6474 uint32_t xpsr; 6475 bool ufault = false; 6476 bool sfault = false; 6477 bool return_to_sp_process; 6478 bool return_to_handler; 6479 bool rettobase = false; 6480 bool exc_secure = false; 6481 bool return_to_secure; 6482 6483 /* If we're not in Handler mode then jumps to magic exception-exit 6484 * addresses don't have magic behaviour. However for the v8M 6485 * security extensions the magic secure-function-return has to 6486 * work in thread mode too, so to avoid doing an extra check in 6487 * the generated code we allow exception-exit magic to also cause the 6488 * internal exception and bring us here in thread mode. Correct code 6489 * will never try to do this (the following insn fetch will always 6490 * fault) so we the overhead of having taken an unnecessary exception 6491 * doesn't matter. 6492 */ 6493 if (!arm_v7m_is_handler_mode(env)) { 6494 return; 6495 } 6496 6497 /* In the spec pseudocode ExceptionReturn() is called directly 6498 * from BXWritePC() and gets the full target PC value including 6499 * bit zero. In QEMU's implementation we treat it as a normal 6500 * jump-to-register (which is then caught later on), and so split 6501 * the target value up between env->regs[15] and env->thumb in 6502 * gen_bx(). Reconstitute it. 6503 */ 6504 excret = env->regs[15]; 6505 if (env->thumb) { 6506 excret |= 1; 6507 } 6508 6509 qemu_log_mask(CPU_LOG_INT, "Exception return: magic PC %" PRIx32 6510 " previous exception %d\n", 6511 excret, env->v7m.exception); 6512 6513 if ((excret & R_V7M_EXCRET_RES1_MASK) != R_V7M_EXCRET_RES1_MASK) { 6514 qemu_log_mask(LOG_GUEST_ERROR, "M profile: zero high bits in exception " 6515 "exit PC value 0x%" PRIx32 " are UNPREDICTABLE\n", 6516 excret); 6517 } 6518 6519 if (arm_feature(env, ARM_FEATURE_M_SECURITY)) { 6520 /* EXC_RETURN.ES validation check (R_SMFL). We must do this before 6521 * we pick which FAULTMASK to clear. 6522 */ 6523 if (!env->v7m.secure && 6524 ((excret & R_V7M_EXCRET_ES_MASK) || 6525 !(excret & R_V7M_EXCRET_DCRS_MASK))) { 6526 sfault = 1; 6527 /* For all other purposes, treat ES as 0 (R_HXSR) */ 6528 excret &= ~R_V7M_EXCRET_ES_MASK; 6529 } 6530 } 6531 6532 if (env->v7m.exception != ARMV7M_EXCP_NMI) { 6533 /* Auto-clear FAULTMASK on return from other than NMI. 6534 * If the security extension is implemented then this only 6535 * happens if the raw execution priority is >= 0; the 6536 * value of the ES bit in the exception return value indicates 6537 * which security state's faultmask to clear. (v8M ARM ARM R_KBNF.) 6538 */ 6539 if (arm_feature(env, ARM_FEATURE_M_SECURITY)) { 6540 exc_secure = excret & R_V7M_EXCRET_ES_MASK; 6541 if (armv7m_nvic_raw_execution_priority(env->nvic) >= 0) { 6542 env->v7m.faultmask[exc_secure] = 0; 6543 } 6544 } else { 6545 env->v7m.faultmask[M_REG_NS] = 0; 6546 } 6547 } 6548 6549 switch (armv7m_nvic_complete_irq(env->nvic, env->v7m.exception, 6550 exc_secure)) { 6551 case -1: 6552 /* attempt to exit an exception that isn't active */ 6553 ufault = true; 6554 break; 6555 case 0: 6556 /* still an irq active now */ 6557 break; 6558 case 1: 6559 /* we returned to base exception level, no nesting. 6560 * (In the pseudocode this is written using "NestedActivation != 1" 6561 * where we have 'rettobase == false'.) 6562 */ 6563 rettobase = true; 6564 break; 6565 default: 6566 g_assert_not_reached(); 6567 } 6568 6569 return_to_handler = !(excret & R_V7M_EXCRET_MODE_MASK); 6570 return_to_sp_process = excret & R_V7M_EXCRET_SPSEL_MASK; 6571 return_to_secure = arm_feature(env, ARM_FEATURE_M_SECURITY) && 6572 (excret & R_V7M_EXCRET_S_MASK); 6573 6574 if (arm_feature(env, ARM_FEATURE_V8)) { 6575 if (!arm_feature(env, ARM_FEATURE_M_SECURITY)) { 6576 /* UNPREDICTABLE if S == 1 or DCRS == 0 or ES == 1 (R_XLCP); 6577 * we choose to take the UsageFault. 6578 */ 6579 if ((excret & R_V7M_EXCRET_S_MASK) || 6580 (excret & R_V7M_EXCRET_ES_MASK) || 6581 !(excret & R_V7M_EXCRET_DCRS_MASK)) { 6582 ufault = true; 6583 } 6584 } 6585 if (excret & R_V7M_EXCRET_RES0_MASK) { 6586 ufault = true; 6587 } 6588 } else { 6589 /* For v7M we only recognize certain combinations of the low bits */ 6590 switch (excret & 0xf) { 6591 case 1: /* Return to Handler */ 6592 break; 6593 case 13: /* Return to Thread using Process stack */ 6594 case 9: /* Return to Thread using Main stack */ 6595 /* We only need to check NONBASETHRDENA for v7M, because in 6596 * v8M this bit does not exist (it is RES1). 6597 */ 6598 if (!rettobase && 6599 !(env->v7m.ccr[env->v7m.secure] & 6600 R_V7M_CCR_NONBASETHRDENA_MASK)) { 6601 ufault = true; 6602 } 6603 break; 6604 default: 6605 ufault = true; 6606 } 6607 } 6608 6609 if (sfault) { 6610 env->v7m.sfsr |= R_V7M_SFSR_INVER_MASK; 6611 armv7m_nvic_set_pending(env->nvic, ARMV7M_EXCP_SECURE, false); 6612 v7m_exception_taken(cpu, excret, true); 6613 qemu_log_mask(CPU_LOG_INT, "...taking SecureFault on existing " 6614 "stackframe: failed EXC_RETURN.ES validity check\n"); 6615 return; 6616 } 6617 6618 if (ufault) { 6619 /* Bad exception return: instead of popping the exception 6620 * stack, directly take a usage fault on the current stack. 6621 */ 6622 env->v7m.cfsr[env->v7m.secure] |= R_V7M_CFSR_INVPC_MASK; 6623 armv7m_nvic_set_pending(env->nvic, ARMV7M_EXCP_USAGE, env->v7m.secure); 6624 v7m_exception_taken(cpu, excret, true); 6625 qemu_log_mask(CPU_LOG_INT, "...taking UsageFault on existing " 6626 "stackframe: failed exception return integrity check\n"); 6627 return; 6628 } 6629 6630 /* Set CONTROL.SPSEL from excret.SPSEL. Since we're still in 6631 * Handler mode (and will be until we write the new XPSR.Interrupt 6632 * field) this does not switch around the current stack pointer. 6633 */ 6634 write_v7m_control_spsel_for_secstate(env, return_to_sp_process, exc_secure); 6635 6636 switch_v7m_security_state(env, return_to_secure); 6637 6638 { 6639 /* The stack pointer we should be reading the exception frame from 6640 * depends on bits in the magic exception return type value (and 6641 * for v8M isn't necessarily the stack pointer we will eventually 6642 * end up resuming execution with). Get a pointer to the location 6643 * in the CPU state struct where the SP we need is currently being 6644 * stored; we will use and modify it in place. 6645 * We use this limited C variable scope so we don't accidentally 6646 * use 'frame_sp_p' after we do something that makes it invalid. 6647 */ 6648 uint32_t *frame_sp_p = get_v7m_sp_ptr(env, 6649 return_to_secure, 6650 !return_to_handler, 6651 return_to_sp_process); 6652 uint32_t frameptr = *frame_sp_p; 6653 6654 if (!QEMU_IS_ALIGNED(frameptr, 8) && 6655 arm_feature(env, ARM_FEATURE_V8)) { 6656 qemu_log_mask(LOG_GUEST_ERROR, 6657 "M profile exception return with non-8-aligned SP " 6658 "for destination state is UNPREDICTABLE\n"); 6659 } 6660 6661 /* Do we need to pop callee-saved registers? */ 6662 if (return_to_secure && 6663 ((excret & R_V7M_EXCRET_ES_MASK) == 0 || 6664 (excret & R_V7M_EXCRET_DCRS_MASK) == 0)) { 6665 uint32_t expected_sig = 0xfefa125b; 6666 uint32_t actual_sig = ldl_phys(cs->as, frameptr); 6667 6668 if (expected_sig != actual_sig) { 6669 /* Take a SecureFault on the current stack */ 6670 env->v7m.sfsr |= R_V7M_SFSR_INVIS_MASK; 6671 armv7m_nvic_set_pending(env->nvic, ARMV7M_EXCP_SECURE, false); 6672 v7m_exception_taken(cpu, excret, true); 6673 qemu_log_mask(CPU_LOG_INT, "...taking SecureFault on existing " 6674 "stackframe: failed exception return integrity " 6675 "signature check\n"); 6676 return; 6677 } 6678 6679 env->regs[4] = ldl_phys(cs->as, frameptr + 0x8); 6680 env->regs[5] = ldl_phys(cs->as, frameptr + 0xc); 6681 env->regs[6] = ldl_phys(cs->as, frameptr + 0x10); 6682 env->regs[7] = ldl_phys(cs->as, frameptr + 0x14); 6683 env->regs[8] = ldl_phys(cs->as, frameptr + 0x18); 6684 env->regs[9] = ldl_phys(cs->as, frameptr + 0x1c); 6685 env->regs[10] = ldl_phys(cs->as, frameptr + 0x20); 6686 env->regs[11] = ldl_phys(cs->as, frameptr + 0x24); 6687 6688 frameptr += 0x28; 6689 } 6690 6691 /* Pop registers. TODO: make these accesses use the correct 6692 * attributes and address space (S/NS, priv/unpriv) and handle 6693 * memory transaction failures. 6694 */ 6695 env->regs[0] = ldl_phys(cs->as, frameptr); 6696 env->regs[1] = ldl_phys(cs->as, frameptr + 0x4); 6697 env->regs[2] = ldl_phys(cs->as, frameptr + 0x8); 6698 env->regs[3] = ldl_phys(cs->as, frameptr + 0xc); 6699 env->regs[12] = ldl_phys(cs->as, frameptr + 0x10); 6700 env->regs[14] = ldl_phys(cs->as, frameptr + 0x14); 6701 env->regs[15] = ldl_phys(cs->as, frameptr + 0x18); 6702 6703 /* Returning from an exception with a PC with bit 0 set is defined 6704 * behaviour on v8M (bit 0 is ignored), but for v7M it was specified 6705 * to be UNPREDICTABLE. In practice actual v7M hardware seems to ignore 6706 * the lsbit, and there are several RTOSes out there which incorrectly 6707 * assume the r15 in the stack frame should be a Thumb-style "lsbit 6708 * indicates ARM/Thumb" value, so ignore the bit on v7M as well, but 6709 * complain about the badly behaved guest. 6710 */ 6711 if (env->regs[15] & 1) { 6712 env->regs[15] &= ~1U; 6713 if (!arm_feature(env, ARM_FEATURE_V8)) { 6714 qemu_log_mask(LOG_GUEST_ERROR, 6715 "M profile return from interrupt with misaligned " 6716 "PC is UNPREDICTABLE on v7M\n"); 6717 } 6718 } 6719 6720 xpsr = ldl_phys(cs->as, frameptr + 0x1c); 6721 6722 if (arm_feature(env, ARM_FEATURE_V8)) { 6723 /* For v8M we have to check whether the xPSR exception field 6724 * matches the EXCRET value for return to handler/thread 6725 * before we commit to changing the SP and xPSR. 6726 */ 6727 bool will_be_handler = (xpsr & XPSR_EXCP) != 0; 6728 if (return_to_handler != will_be_handler) { 6729 /* Take an INVPC UsageFault on the current stack. 6730 * By this point we will have switched to the security state 6731 * for the background state, so this UsageFault will target 6732 * that state. 6733 */ 6734 armv7m_nvic_set_pending(env->nvic, ARMV7M_EXCP_USAGE, 6735 env->v7m.secure); 6736 env->v7m.cfsr[env->v7m.secure] |= R_V7M_CFSR_INVPC_MASK; 6737 v7m_exception_taken(cpu, excret, true); 6738 qemu_log_mask(CPU_LOG_INT, "...taking UsageFault on existing " 6739 "stackframe: failed exception return integrity " 6740 "check\n"); 6741 return; 6742 } 6743 } 6744 6745 /* Commit to consuming the stack frame */ 6746 frameptr += 0x20; 6747 /* Undo stack alignment (the SPREALIGN bit indicates that the original 6748 * pre-exception SP was not 8-aligned and we added a padding word to 6749 * align it, so we undo this by ORing in the bit that increases it 6750 * from the current 8-aligned value to the 8-unaligned value. (Adding 4 6751 * would work too but a logical OR is how the pseudocode specifies it.) 6752 */ 6753 if (xpsr & XPSR_SPREALIGN) { 6754 frameptr |= 4; 6755 } 6756 *frame_sp_p = frameptr; 6757 } 6758 /* This xpsr_write() will invalidate frame_sp_p as it may switch stack */ 6759 xpsr_write(env, xpsr, ~XPSR_SPREALIGN); 6760 6761 /* The restored xPSR exception field will be zero if we're 6762 * resuming in Thread mode. If that doesn't match what the 6763 * exception return excret specified then this is a UsageFault. 6764 * v7M requires we make this check here; v8M did it earlier. 6765 */ 6766 if (return_to_handler != arm_v7m_is_handler_mode(env)) { 6767 /* Take an INVPC UsageFault by pushing the stack again; 6768 * we know we're v7M so this is never a Secure UsageFault. 6769 */ 6770 assert(!arm_feature(env, ARM_FEATURE_V8)); 6771 armv7m_nvic_set_pending(env->nvic, ARMV7M_EXCP_USAGE, false); 6772 env->v7m.cfsr[env->v7m.secure] |= R_V7M_CFSR_INVPC_MASK; 6773 v7m_push_stack(cpu); 6774 v7m_exception_taken(cpu, excret, false); 6775 qemu_log_mask(CPU_LOG_INT, "...taking UsageFault on new stackframe: " 6776 "failed exception return integrity check\n"); 6777 return; 6778 } 6779 6780 /* Otherwise, we have a successful exception exit. */ 6781 arm_clear_exclusive(env); 6782 qemu_log_mask(CPU_LOG_INT, "...successful exception return\n"); 6783 } 6784 6785 static bool do_v7m_function_return(ARMCPU *cpu) 6786 { 6787 /* v8M security extensions magic function return. 6788 * We may either: 6789 * (1) throw an exception (longjump) 6790 * (2) return true if we successfully handled the function return 6791 * (3) return false if we failed a consistency check and have 6792 * pended a UsageFault that needs to be taken now 6793 * 6794 * At this point the magic return value is split between env->regs[15] 6795 * and env->thumb. We don't bother to reconstitute it because we don't 6796 * need it (all values are handled the same way). 6797 */ 6798 CPUARMState *env = &cpu->env; 6799 uint32_t newpc, newpsr, newpsr_exc; 6800 6801 qemu_log_mask(CPU_LOG_INT, "...really v7M secure function return\n"); 6802 6803 { 6804 bool threadmode, spsel; 6805 TCGMemOpIdx oi; 6806 ARMMMUIdx mmu_idx; 6807 uint32_t *frame_sp_p; 6808 uint32_t frameptr; 6809 6810 /* Pull the return address and IPSR from the Secure stack */ 6811 threadmode = !arm_v7m_is_handler_mode(env); 6812 spsel = env->v7m.control[M_REG_S] & R_V7M_CONTROL_SPSEL_MASK; 6813 6814 frame_sp_p = get_v7m_sp_ptr(env, true, threadmode, spsel); 6815 frameptr = *frame_sp_p; 6816 6817 /* These loads may throw an exception (for MPU faults). We want to 6818 * do them as secure, so work out what MMU index that is. 6819 */ 6820 mmu_idx = arm_v7m_mmu_idx_for_secstate(env, true); 6821 oi = make_memop_idx(MO_LE, arm_to_core_mmu_idx(mmu_idx)); 6822 newpc = helper_le_ldul_mmu(env, frameptr, oi, 0); 6823 newpsr = helper_le_ldul_mmu(env, frameptr + 4, oi, 0); 6824 6825 /* Consistency checks on new IPSR */ 6826 newpsr_exc = newpsr & XPSR_EXCP; 6827 if (!((env->v7m.exception == 0 && newpsr_exc == 0) || 6828 (env->v7m.exception == 1 && newpsr_exc != 0))) { 6829 /* Pend the fault and tell our caller to take it */ 6830 env->v7m.cfsr[env->v7m.secure] |= R_V7M_CFSR_INVPC_MASK; 6831 armv7m_nvic_set_pending(env->nvic, ARMV7M_EXCP_USAGE, 6832 env->v7m.secure); 6833 qemu_log_mask(CPU_LOG_INT, 6834 "...taking INVPC UsageFault: " 6835 "IPSR consistency check failed\n"); 6836 return false; 6837 } 6838 6839 *frame_sp_p = frameptr + 8; 6840 } 6841 6842 /* This invalidates frame_sp_p */ 6843 switch_v7m_security_state(env, true); 6844 env->v7m.exception = newpsr_exc; 6845 env->v7m.control[M_REG_S] &= ~R_V7M_CONTROL_SFPA_MASK; 6846 if (newpsr & XPSR_SFPA) { 6847 env->v7m.control[M_REG_S] |= R_V7M_CONTROL_SFPA_MASK; 6848 } 6849 xpsr_write(env, 0, XPSR_IT); 6850 env->thumb = newpc & 1; 6851 env->regs[15] = newpc & ~1; 6852 6853 qemu_log_mask(CPU_LOG_INT, "...function return successful\n"); 6854 return true; 6855 } 6856 6857 static void arm_log_exception(int idx) 6858 { 6859 if (qemu_loglevel_mask(CPU_LOG_INT)) { 6860 const char *exc = NULL; 6861 static const char * const excnames[] = { 6862 [EXCP_UDEF] = "Undefined Instruction", 6863 [EXCP_SWI] = "SVC", 6864 [EXCP_PREFETCH_ABORT] = "Prefetch Abort", 6865 [EXCP_DATA_ABORT] = "Data Abort", 6866 [EXCP_IRQ] = "IRQ", 6867 [EXCP_FIQ] = "FIQ", 6868 [EXCP_BKPT] = "Breakpoint", 6869 [EXCP_EXCEPTION_EXIT] = "QEMU v7M exception exit", 6870 [EXCP_KERNEL_TRAP] = "QEMU intercept of kernel commpage", 6871 [EXCP_HVC] = "Hypervisor Call", 6872 [EXCP_HYP_TRAP] = "Hypervisor Trap", 6873 [EXCP_SMC] = "Secure Monitor Call", 6874 [EXCP_VIRQ] = "Virtual IRQ", 6875 [EXCP_VFIQ] = "Virtual FIQ", 6876 [EXCP_SEMIHOST] = "Semihosting call", 6877 [EXCP_NOCP] = "v7M NOCP UsageFault", 6878 [EXCP_INVSTATE] = "v7M INVSTATE UsageFault", 6879 }; 6880 6881 if (idx >= 0 && idx < ARRAY_SIZE(excnames)) { 6882 exc = excnames[idx]; 6883 } 6884 if (!exc) { 6885 exc = "unknown"; 6886 } 6887 qemu_log_mask(CPU_LOG_INT, "Taking exception %d [%s]\n", idx, exc); 6888 } 6889 } 6890 6891 static bool v7m_read_half_insn(ARMCPU *cpu, ARMMMUIdx mmu_idx, 6892 uint32_t addr, uint16_t *insn) 6893 { 6894 /* Load a 16-bit portion of a v7M instruction, returning true on success, 6895 * or false on failure (in which case we will have pended the appropriate 6896 * exception). 6897 * We need to do the instruction fetch's MPU and SAU checks 6898 * like this because there is no MMU index that would allow 6899 * doing the load with a single function call. Instead we must 6900 * first check that the security attributes permit the load 6901 * and that they don't mismatch on the two halves of the instruction, 6902 * and then we do the load as a secure load (ie using the security 6903 * attributes of the address, not the CPU, as architecturally required). 6904 */ 6905 CPUState *cs = CPU(cpu); 6906 CPUARMState *env = &cpu->env; 6907 V8M_SAttributes sattrs = {}; 6908 MemTxAttrs attrs = {}; 6909 ARMMMUFaultInfo fi = {}; 6910 MemTxResult txres; 6911 target_ulong page_size; 6912 hwaddr physaddr; 6913 int prot; 6914 uint32_t fsr; 6915 6916 v8m_security_lookup(env, addr, MMU_INST_FETCH, mmu_idx, &sattrs); 6917 if (!sattrs.nsc || sattrs.ns) { 6918 /* This must be the second half of the insn, and it straddles a 6919 * region boundary with the second half not being S&NSC. 6920 */ 6921 env->v7m.sfsr |= R_V7M_SFSR_INVEP_MASK; 6922 armv7m_nvic_set_pending(env->nvic, ARMV7M_EXCP_SECURE, false); 6923 qemu_log_mask(CPU_LOG_INT, 6924 "...really SecureFault with SFSR.INVEP\n"); 6925 return false; 6926 } 6927 if (get_phys_addr(env, addr, MMU_INST_FETCH, mmu_idx, 6928 &physaddr, &attrs, &prot, &page_size, &fsr, &fi)) { 6929 /* the MPU lookup failed */ 6930 env->v7m.cfsr[env->v7m.secure] |= R_V7M_CFSR_IACCVIOL_MASK; 6931 armv7m_nvic_set_pending(env->nvic, ARMV7M_EXCP_MEM, env->v7m.secure); 6932 qemu_log_mask(CPU_LOG_INT, "...really MemManage with CFSR.IACCVIOL\n"); 6933 return false; 6934 } 6935 *insn = address_space_lduw_le(arm_addressspace(cs, attrs), physaddr, 6936 attrs, &txres); 6937 if (txres != MEMTX_OK) { 6938 env->v7m.cfsr[M_REG_NS] |= R_V7M_CFSR_IBUSERR_MASK; 6939 armv7m_nvic_set_pending(env->nvic, ARMV7M_EXCP_BUS, false); 6940 qemu_log_mask(CPU_LOG_INT, "...really BusFault with CFSR.IBUSERR\n"); 6941 return false; 6942 } 6943 return true; 6944 } 6945 6946 static bool v7m_handle_execute_nsc(ARMCPU *cpu) 6947 { 6948 /* Check whether this attempt to execute code in a Secure & NS-Callable 6949 * memory region is for an SG instruction; if so, then emulate the 6950 * effect of the SG instruction and return true. Otherwise pend 6951 * the correct kind of exception and return false. 6952 */ 6953 CPUARMState *env = &cpu->env; 6954 ARMMMUIdx mmu_idx; 6955 uint16_t insn; 6956 6957 /* We should never get here unless get_phys_addr_pmsav8() caused 6958 * an exception for NS executing in S&NSC memory. 6959 */ 6960 assert(!env->v7m.secure); 6961 assert(arm_feature(env, ARM_FEATURE_M_SECURITY)); 6962 6963 /* We want to do the MPU lookup as secure; work out what mmu_idx that is */ 6964 mmu_idx = arm_v7m_mmu_idx_for_secstate(env, true); 6965 6966 if (!v7m_read_half_insn(cpu, mmu_idx, env->regs[15], &insn)) { 6967 return false; 6968 } 6969 6970 if (!env->thumb) { 6971 goto gen_invep; 6972 } 6973 6974 if (insn != 0xe97f) { 6975 /* Not an SG instruction first half (we choose the IMPDEF 6976 * early-SG-check option). 6977 */ 6978 goto gen_invep; 6979 } 6980 6981 if (!v7m_read_half_insn(cpu, mmu_idx, env->regs[15] + 2, &insn)) { 6982 return false; 6983 } 6984 6985 if (insn != 0xe97f) { 6986 /* Not an SG instruction second half (yes, both halves of the SG 6987 * insn have the same hex value) 6988 */ 6989 goto gen_invep; 6990 } 6991 6992 /* OK, we have confirmed that we really have an SG instruction. 6993 * We know we're NS in S memory so don't need to repeat those checks. 6994 */ 6995 qemu_log_mask(CPU_LOG_INT, "...really an SG instruction at 0x%08" PRIx32 6996 ", executing it\n", env->regs[15]); 6997 env->regs[14] &= ~1; 6998 switch_v7m_security_state(env, true); 6999 xpsr_write(env, 0, XPSR_IT); 7000 env->regs[15] += 4; 7001 return true; 7002 7003 gen_invep: 7004 env->v7m.sfsr |= R_V7M_SFSR_INVEP_MASK; 7005 armv7m_nvic_set_pending(env->nvic, ARMV7M_EXCP_SECURE, false); 7006 qemu_log_mask(CPU_LOG_INT, 7007 "...really SecureFault with SFSR.INVEP\n"); 7008 return false; 7009 } 7010 7011 void arm_v7m_cpu_do_interrupt(CPUState *cs) 7012 { 7013 ARMCPU *cpu = ARM_CPU(cs); 7014 CPUARMState *env = &cpu->env; 7015 uint32_t lr; 7016 7017 arm_log_exception(cs->exception_index); 7018 7019 /* For exceptions we just mark as pending on the NVIC, and let that 7020 handle it. */ 7021 switch (cs->exception_index) { 7022 case EXCP_UDEF: 7023 armv7m_nvic_set_pending(env->nvic, ARMV7M_EXCP_USAGE, env->v7m.secure); 7024 env->v7m.cfsr[env->v7m.secure] |= R_V7M_CFSR_UNDEFINSTR_MASK; 7025 break; 7026 case EXCP_NOCP: 7027 armv7m_nvic_set_pending(env->nvic, ARMV7M_EXCP_USAGE, env->v7m.secure); 7028 env->v7m.cfsr[env->v7m.secure] |= R_V7M_CFSR_NOCP_MASK; 7029 break; 7030 case EXCP_INVSTATE: 7031 armv7m_nvic_set_pending(env->nvic, ARMV7M_EXCP_USAGE, env->v7m.secure); 7032 env->v7m.cfsr[env->v7m.secure] |= R_V7M_CFSR_INVSTATE_MASK; 7033 break; 7034 case EXCP_SWI: 7035 /* The PC already points to the next instruction. */ 7036 armv7m_nvic_set_pending(env->nvic, ARMV7M_EXCP_SVC, env->v7m.secure); 7037 break; 7038 case EXCP_PREFETCH_ABORT: 7039 case EXCP_DATA_ABORT: 7040 /* Note that for M profile we don't have a guest facing FSR, but 7041 * the env->exception.fsr will be populated by the code that 7042 * raises the fault, in the A profile short-descriptor format. 7043 */ 7044 switch (env->exception.fsr & 0xf) { 7045 case M_FAKE_FSR_NSC_EXEC: 7046 /* Exception generated when we try to execute code at an address 7047 * which is marked as Secure & Non-Secure Callable and the CPU 7048 * is in the Non-Secure state. The only instruction which can 7049 * be executed like this is SG (and that only if both halves of 7050 * the SG instruction have the same security attributes.) 7051 * Everything else must generate an INVEP SecureFault, so we 7052 * emulate the SG instruction here. 7053 */ 7054 if (v7m_handle_execute_nsc(cpu)) { 7055 return; 7056 } 7057 break; 7058 case M_FAKE_FSR_SFAULT: 7059 /* Various flavours of SecureFault for attempts to execute or 7060 * access data in the wrong security state. 7061 */ 7062 switch (cs->exception_index) { 7063 case EXCP_PREFETCH_ABORT: 7064 if (env->v7m.secure) { 7065 env->v7m.sfsr |= R_V7M_SFSR_INVTRAN_MASK; 7066 qemu_log_mask(CPU_LOG_INT, 7067 "...really SecureFault with SFSR.INVTRAN\n"); 7068 } else { 7069 env->v7m.sfsr |= R_V7M_SFSR_INVEP_MASK; 7070 qemu_log_mask(CPU_LOG_INT, 7071 "...really SecureFault with SFSR.INVEP\n"); 7072 } 7073 break; 7074 case EXCP_DATA_ABORT: 7075 /* This must be an NS access to S memory */ 7076 env->v7m.sfsr |= R_V7M_SFSR_AUVIOL_MASK; 7077 qemu_log_mask(CPU_LOG_INT, 7078 "...really SecureFault with SFSR.AUVIOL\n"); 7079 break; 7080 } 7081 armv7m_nvic_set_pending(env->nvic, ARMV7M_EXCP_SECURE, false); 7082 break; 7083 case 0x8: /* External Abort */ 7084 switch (cs->exception_index) { 7085 case EXCP_PREFETCH_ABORT: 7086 env->v7m.cfsr[M_REG_NS] |= R_V7M_CFSR_IBUSERR_MASK; 7087 qemu_log_mask(CPU_LOG_INT, "...with CFSR.IBUSERR\n"); 7088 break; 7089 case EXCP_DATA_ABORT: 7090 env->v7m.cfsr[M_REG_NS] |= 7091 (R_V7M_CFSR_PRECISERR_MASK | R_V7M_CFSR_BFARVALID_MASK); 7092 env->v7m.bfar = env->exception.vaddress; 7093 qemu_log_mask(CPU_LOG_INT, 7094 "...with CFSR.PRECISERR and BFAR 0x%x\n", 7095 env->v7m.bfar); 7096 break; 7097 } 7098 armv7m_nvic_set_pending(env->nvic, ARMV7M_EXCP_BUS, false); 7099 break; 7100 default: 7101 /* All other FSR values are either MPU faults or "can't happen 7102 * for M profile" cases. 7103 */ 7104 switch (cs->exception_index) { 7105 case EXCP_PREFETCH_ABORT: 7106 env->v7m.cfsr[env->v7m.secure] |= R_V7M_CFSR_IACCVIOL_MASK; 7107 qemu_log_mask(CPU_LOG_INT, "...with CFSR.IACCVIOL\n"); 7108 break; 7109 case EXCP_DATA_ABORT: 7110 env->v7m.cfsr[env->v7m.secure] |= 7111 (R_V7M_CFSR_DACCVIOL_MASK | R_V7M_CFSR_MMARVALID_MASK); 7112 env->v7m.mmfar[env->v7m.secure] = env->exception.vaddress; 7113 qemu_log_mask(CPU_LOG_INT, 7114 "...with CFSR.DACCVIOL and MMFAR 0x%x\n", 7115 env->v7m.mmfar[env->v7m.secure]); 7116 break; 7117 } 7118 armv7m_nvic_set_pending(env->nvic, ARMV7M_EXCP_MEM, 7119 env->v7m.secure); 7120 break; 7121 } 7122 break; 7123 case EXCP_BKPT: 7124 if (semihosting_enabled()) { 7125 int nr; 7126 nr = arm_lduw_code(env, env->regs[15], arm_sctlr_b(env)) & 0xff; 7127 if (nr == 0xab) { 7128 env->regs[15] += 2; 7129 qemu_log_mask(CPU_LOG_INT, 7130 "...handling as semihosting call 0x%x\n", 7131 env->regs[0]); 7132 env->regs[0] = do_arm_semihosting(env); 7133 return; 7134 } 7135 } 7136 armv7m_nvic_set_pending(env->nvic, ARMV7M_EXCP_DEBUG, false); 7137 break; 7138 case EXCP_IRQ: 7139 break; 7140 case EXCP_EXCEPTION_EXIT: 7141 if (env->regs[15] < EXC_RETURN_MIN_MAGIC) { 7142 /* Must be v8M security extension function return */ 7143 assert(env->regs[15] >= FNC_RETURN_MIN_MAGIC); 7144 assert(arm_feature(env, ARM_FEATURE_M_SECURITY)); 7145 if (do_v7m_function_return(cpu)) { 7146 return; 7147 } 7148 } else { 7149 do_v7m_exception_exit(cpu); 7150 return; 7151 } 7152 break; 7153 default: 7154 cpu_abort(cs, "Unhandled exception 0x%x\n", cs->exception_index); 7155 return; /* Never happens. Keep compiler happy. */ 7156 } 7157 7158 if (arm_feature(env, ARM_FEATURE_V8)) { 7159 lr = R_V7M_EXCRET_RES1_MASK | 7160 R_V7M_EXCRET_DCRS_MASK | 7161 R_V7M_EXCRET_FTYPE_MASK; 7162 /* The S bit indicates whether we should return to Secure 7163 * or NonSecure (ie our current state). 7164 * The ES bit indicates whether we're taking this exception 7165 * to Secure or NonSecure (ie our target state). We set it 7166 * later, in v7m_exception_taken(). 7167 * The SPSEL bit is also set in v7m_exception_taken() for v8M. 7168 * This corresponds to the ARM ARM pseudocode for v8M setting 7169 * some LR bits in PushStack() and some in ExceptionTaken(); 7170 * the distinction matters for the tailchain cases where we 7171 * can take an exception without pushing the stack. 7172 */ 7173 if (env->v7m.secure) { 7174 lr |= R_V7M_EXCRET_S_MASK; 7175 } 7176 } else { 7177 lr = R_V7M_EXCRET_RES1_MASK | 7178 R_V7M_EXCRET_S_MASK | 7179 R_V7M_EXCRET_DCRS_MASK | 7180 R_V7M_EXCRET_FTYPE_MASK | 7181 R_V7M_EXCRET_ES_MASK; 7182 if (env->v7m.control[M_REG_NS] & R_V7M_CONTROL_SPSEL_MASK) { 7183 lr |= R_V7M_EXCRET_SPSEL_MASK; 7184 } 7185 } 7186 if (!arm_v7m_is_handler_mode(env)) { 7187 lr |= R_V7M_EXCRET_MODE_MASK; 7188 } 7189 7190 v7m_push_stack(cpu); 7191 v7m_exception_taken(cpu, lr, false); 7192 qemu_log_mask(CPU_LOG_INT, "... as %d\n", env->v7m.exception); 7193 } 7194 7195 /* Function used to synchronize QEMU's AArch64 register set with AArch32 7196 * register set. This is necessary when switching between AArch32 and AArch64 7197 * execution state. 7198 */ 7199 void aarch64_sync_32_to_64(CPUARMState *env) 7200 { 7201 int i; 7202 uint32_t mode = env->uncached_cpsr & CPSR_M; 7203 7204 /* We can blanket copy R[0:7] to X[0:7] */ 7205 for (i = 0; i < 8; i++) { 7206 env->xregs[i] = env->regs[i]; 7207 } 7208 7209 /* Unless we are in FIQ mode, x8-x12 come from the user registers r8-r12. 7210 * Otherwise, they come from the banked user regs. 7211 */ 7212 if (mode == ARM_CPU_MODE_FIQ) { 7213 for (i = 8; i < 13; i++) { 7214 env->xregs[i] = env->usr_regs[i - 8]; 7215 } 7216 } else { 7217 for (i = 8; i < 13; i++) { 7218 env->xregs[i] = env->regs[i]; 7219 } 7220 } 7221 7222 /* Registers x13-x23 are the various mode SP and FP registers. Registers 7223 * r13 and r14 are only copied if we are in that mode, otherwise we copy 7224 * from the mode banked register. 7225 */ 7226 if (mode == ARM_CPU_MODE_USR || mode == ARM_CPU_MODE_SYS) { 7227 env->xregs[13] = env->regs[13]; 7228 env->xregs[14] = env->regs[14]; 7229 } else { 7230 env->xregs[13] = env->banked_r13[bank_number(ARM_CPU_MODE_USR)]; 7231 /* HYP is an exception in that it is copied from r14 */ 7232 if (mode == ARM_CPU_MODE_HYP) { 7233 env->xregs[14] = env->regs[14]; 7234 } else { 7235 env->xregs[14] = env->banked_r14[bank_number(ARM_CPU_MODE_USR)]; 7236 } 7237 } 7238 7239 if (mode == ARM_CPU_MODE_HYP) { 7240 env->xregs[15] = env->regs[13]; 7241 } else { 7242 env->xregs[15] = env->banked_r13[bank_number(ARM_CPU_MODE_HYP)]; 7243 } 7244 7245 if (mode == ARM_CPU_MODE_IRQ) { 7246 env->xregs[16] = env->regs[14]; 7247 env->xregs[17] = env->regs[13]; 7248 } else { 7249 env->xregs[16] = env->banked_r14[bank_number(ARM_CPU_MODE_IRQ)]; 7250 env->xregs[17] = env->banked_r13[bank_number(ARM_CPU_MODE_IRQ)]; 7251 } 7252 7253 if (mode == ARM_CPU_MODE_SVC) { 7254 env->xregs[18] = env->regs[14]; 7255 env->xregs[19] = env->regs[13]; 7256 } else { 7257 env->xregs[18] = env->banked_r14[bank_number(ARM_CPU_MODE_SVC)]; 7258 env->xregs[19] = env->banked_r13[bank_number(ARM_CPU_MODE_SVC)]; 7259 } 7260 7261 if (mode == ARM_CPU_MODE_ABT) { 7262 env->xregs[20] = env->regs[14]; 7263 env->xregs[21] = env->regs[13]; 7264 } else { 7265 env->xregs[20] = env->banked_r14[bank_number(ARM_CPU_MODE_ABT)]; 7266 env->xregs[21] = env->banked_r13[bank_number(ARM_CPU_MODE_ABT)]; 7267 } 7268 7269 if (mode == ARM_CPU_MODE_UND) { 7270 env->xregs[22] = env->regs[14]; 7271 env->xregs[23] = env->regs[13]; 7272 } else { 7273 env->xregs[22] = env->banked_r14[bank_number(ARM_CPU_MODE_UND)]; 7274 env->xregs[23] = env->banked_r13[bank_number(ARM_CPU_MODE_UND)]; 7275 } 7276 7277 /* Registers x24-x30 are mapped to r8-r14 in FIQ mode. If we are in FIQ 7278 * mode, then we can copy from r8-r14. Otherwise, we copy from the 7279 * FIQ bank for r8-r14. 7280 */ 7281 if (mode == ARM_CPU_MODE_FIQ) { 7282 for (i = 24; i < 31; i++) { 7283 env->xregs[i] = env->regs[i - 16]; /* X[24:30] <- R[8:14] */ 7284 } 7285 } else { 7286 for (i = 24; i < 29; i++) { 7287 env->xregs[i] = env->fiq_regs[i - 24]; 7288 } 7289 env->xregs[29] = env->banked_r13[bank_number(ARM_CPU_MODE_FIQ)]; 7290 env->xregs[30] = env->banked_r14[bank_number(ARM_CPU_MODE_FIQ)]; 7291 } 7292 7293 env->pc = env->regs[15]; 7294 } 7295 7296 /* Function used to synchronize QEMU's AArch32 register set with AArch64 7297 * register set. This is necessary when switching between AArch32 and AArch64 7298 * execution state. 7299 */ 7300 void aarch64_sync_64_to_32(CPUARMState *env) 7301 { 7302 int i; 7303 uint32_t mode = env->uncached_cpsr & CPSR_M; 7304 7305 /* We can blanket copy X[0:7] to R[0:7] */ 7306 for (i = 0; i < 8; i++) { 7307 env->regs[i] = env->xregs[i]; 7308 } 7309 7310 /* Unless we are in FIQ mode, r8-r12 come from the user registers x8-x12. 7311 * Otherwise, we copy x8-x12 into the banked user regs. 7312 */ 7313 if (mode == ARM_CPU_MODE_FIQ) { 7314 for (i = 8; i < 13; i++) { 7315 env->usr_regs[i - 8] = env->xregs[i]; 7316 } 7317 } else { 7318 for (i = 8; i < 13; i++) { 7319 env->regs[i] = env->xregs[i]; 7320 } 7321 } 7322 7323 /* Registers r13 & r14 depend on the current mode. 7324 * If we are in a given mode, we copy the corresponding x registers to r13 7325 * and r14. Otherwise, we copy the x register to the banked r13 and r14 7326 * for the mode. 7327 */ 7328 if (mode == ARM_CPU_MODE_USR || mode == ARM_CPU_MODE_SYS) { 7329 env->regs[13] = env->xregs[13]; 7330 env->regs[14] = env->xregs[14]; 7331 } else { 7332 env->banked_r13[bank_number(ARM_CPU_MODE_USR)] = env->xregs[13]; 7333 7334 /* HYP is an exception in that it does not have its own banked r14 but 7335 * shares the USR r14 7336 */ 7337 if (mode == ARM_CPU_MODE_HYP) { 7338 env->regs[14] = env->xregs[14]; 7339 } else { 7340 env->banked_r14[bank_number(ARM_CPU_MODE_USR)] = env->xregs[14]; 7341 } 7342 } 7343 7344 if (mode == ARM_CPU_MODE_HYP) { 7345 env->regs[13] = env->xregs[15]; 7346 } else { 7347 env->banked_r13[bank_number(ARM_CPU_MODE_HYP)] = env->xregs[15]; 7348 } 7349 7350 if (mode == ARM_CPU_MODE_IRQ) { 7351 env->regs[14] = env->xregs[16]; 7352 env->regs[13] = env->xregs[17]; 7353 } else { 7354 env->banked_r14[bank_number(ARM_CPU_MODE_IRQ)] = env->xregs[16]; 7355 env->banked_r13[bank_number(ARM_CPU_MODE_IRQ)] = env->xregs[17]; 7356 } 7357 7358 if (mode == ARM_CPU_MODE_SVC) { 7359 env->regs[14] = env->xregs[18]; 7360 env->regs[13] = env->xregs[19]; 7361 } else { 7362 env->banked_r14[bank_number(ARM_CPU_MODE_SVC)] = env->xregs[18]; 7363 env->banked_r13[bank_number(ARM_CPU_MODE_SVC)] = env->xregs[19]; 7364 } 7365 7366 if (mode == ARM_CPU_MODE_ABT) { 7367 env->regs[14] = env->xregs[20]; 7368 env->regs[13] = env->xregs[21]; 7369 } else { 7370 env->banked_r14[bank_number(ARM_CPU_MODE_ABT)] = env->xregs[20]; 7371 env->banked_r13[bank_number(ARM_CPU_MODE_ABT)] = env->xregs[21]; 7372 } 7373 7374 if (mode == ARM_CPU_MODE_UND) { 7375 env->regs[14] = env->xregs[22]; 7376 env->regs[13] = env->xregs[23]; 7377 } else { 7378 env->banked_r14[bank_number(ARM_CPU_MODE_UND)] = env->xregs[22]; 7379 env->banked_r13[bank_number(ARM_CPU_MODE_UND)] = env->xregs[23]; 7380 } 7381 7382 /* Registers x24-x30 are mapped to r8-r14 in FIQ mode. If we are in FIQ 7383 * mode, then we can copy to r8-r14. Otherwise, we copy to the 7384 * FIQ bank for r8-r14. 7385 */ 7386 if (mode == ARM_CPU_MODE_FIQ) { 7387 for (i = 24; i < 31; i++) { 7388 env->regs[i - 16] = env->xregs[i]; /* X[24:30] -> R[8:14] */ 7389 } 7390 } else { 7391 for (i = 24; i < 29; i++) { 7392 env->fiq_regs[i - 24] = env->xregs[i]; 7393 } 7394 env->banked_r13[bank_number(ARM_CPU_MODE_FIQ)] = env->xregs[29]; 7395 env->banked_r14[bank_number(ARM_CPU_MODE_FIQ)] = env->xregs[30]; 7396 } 7397 7398 env->regs[15] = env->pc; 7399 } 7400 7401 static void arm_cpu_do_interrupt_aarch32(CPUState *cs) 7402 { 7403 ARMCPU *cpu = ARM_CPU(cs); 7404 CPUARMState *env = &cpu->env; 7405 uint32_t addr; 7406 uint32_t mask; 7407 int new_mode; 7408 uint32_t offset; 7409 uint32_t moe; 7410 7411 /* If this is a debug exception we must update the DBGDSCR.MOE bits */ 7412 switch (env->exception.syndrome >> ARM_EL_EC_SHIFT) { 7413 case EC_BREAKPOINT: 7414 case EC_BREAKPOINT_SAME_EL: 7415 moe = 1; 7416 break; 7417 case EC_WATCHPOINT: 7418 case EC_WATCHPOINT_SAME_EL: 7419 moe = 10; 7420 break; 7421 case EC_AA32_BKPT: 7422 moe = 3; 7423 break; 7424 case EC_VECTORCATCH: 7425 moe = 5; 7426 break; 7427 default: 7428 moe = 0; 7429 break; 7430 } 7431 7432 if (moe) { 7433 env->cp15.mdscr_el1 = deposit64(env->cp15.mdscr_el1, 2, 4, moe); 7434 } 7435 7436 /* TODO: Vectored interrupt controller. */ 7437 switch (cs->exception_index) { 7438 case EXCP_UDEF: 7439 new_mode = ARM_CPU_MODE_UND; 7440 addr = 0x04; 7441 mask = CPSR_I; 7442 if (env->thumb) 7443 offset = 2; 7444 else 7445 offset = 4; 7446 break; 7447 case EXCP_SWI: 7448 new_mode = ARM_CPU_MODE_SVC; 7449 addr = 0x08; 7450 mask = CPSR_I; 7451 /* The PC already points to the next instruction. */ 7452 offset = 0; 7453 break; 7454 case EXCP_BKPT: 7455 env->exception.fsr = 2; 7456 /* Fall through to prefetch abort. */ 7457 case EXCP_PREFETCH_ABORT: 7458 A32_BANKED_CURRENT_REG_SET(env, ifsr, env->exception.fsr); 7459 A32_BANKED_CURRENT_REG_SET(env, ifar, env->exception.vaddress); 7460 qemu_log_mask(CPU_LOG_INT, "...with IFSR 0x%x IFAR 0x%x\n", 7461 env->exception.fsr, (uint32_t)env->exception.vaddress); 7462 new_mode = ARM_CPU_MODE_ABT; 7463 addr = 0x0c; 7464 mask = CPSR_A | CPSR_I; 7465 offset = 4; 7466 break; 7467 case EXCP_DATA_ABORT: 7468 A32_BANKED_CURRENT_REG_SET(env, dfsr, env->exception.fsr); 7469 A32_BANKED_CURRENT_REG_SET(env, dfar, env->exception.vaddress); 7470 qemu_log_mask(CPU_LOG_INT, "...with DFSR 0x%x DFAR 0x%x\n", 7471 env->exception.fsr, 7472 (uint32_t)env->exception.vaddress); 7473 new_mode = ARM_CPU_MODE_ABT; 7474 addr = 0x10; 7475 mask = CPSR_A | CPSR_I; 7476 offset = 8; 7477 break; 7478 case EXCP_IRQ: 7479 new_mode = ARM_CPU_MODE_IRQ; 7480 addr = 0x18; 7481 /* Disable IRQ and imprecise data aborts. */ 7482 mask = CPSR_A | CPSR_I; 7483 offset = 4; 7484 if (env->cp15.scr_el3 & SCR_IRQ) { 7485 /* IRQ routed to monitor mode */ 7486 new_mode = ARM_CPU_MODE_MON; 7487 mask |= CPSR_F; 7488 } 7489 break; 7490 case EXCP_FIQ: 7491 new_mode = ARM_CPU_MODE_FIQ; 7492 addr = 0x1c; 7493 /* Disable FIQ, IRQ and imprecise data aborts. */ 7494 mask = CPSR_A | CPSR_I | CPSR_F; 7495 if (env->cp15.scr_el3 & SCR_FIQ) { 7496 /* FIQ routed to monitor mode */ 7497 new_mode = ARM_CPU_MODE_MON; 7498 } 7499 offset = 4; 7500 break; 7501 case EXCP_VIRQ: 7502 new_mode = ARM_CPU_MODE_IRQ; 7503 addr = 0x18; 7504 /* Disable IRQ and imprecise data aborts. */ 7505 mask = CPSR_A | CPSR_I; 7506 offset = 4; 7507 break; 7508 case EXCP_VFIQ: 7509 new_mode = ARM_CPU_MODE_FIQ; 7510 addr = 0x1c; 7511 /* Disable FIQ, IRQ and imprecise data aborts. */ 7512 mask = CPSR_A | CPSR_I | CPSR_F; 7513 offset = 4; 7514 break; 7515 case EXCP_SMC: 7516 new_mode = ARM_CPU_MODE_MON; 7517 addr = 0x08; 7518 mask = CPSR_A | CPSR_I | CPSR_F; 7519 offset = 0; 7520 break; 7521 default: 7522 cpu_abort(cs, "Unhandled exception 0x%x\n", cs->exception_index); 7523 return; /* Never happens. Keep compiler happy. */ 7524 } 7525 7526 if (new_mode == ARM_CPU_MODE_MON) { 7527 addr += env->cp15.mvbar; 7528 } else if (A32_BANKED_CURRENT_REG_GET(env, sctlr) & SCTLR_V) { 7529 /* High vectors. When enabled, base address cannot be remapped. */ 7530 addr += 0xffff0000; 7531 } else { 7532 /* ARM v7 architectures provide a vector base address register to remap 7533 * the interrupt vector table. 7534 * This register is only followed in non-monitor mode, and is banked. 7535 * Note: only bits 31:5 are valid. 7536 */ 7537 addr += A32_BANKED_CURRENT_REG_GET(env, vbar); 7538 } 7539 7540 if ((env->uncached_cpsr & CPSR_M) == ARM_CPU_MODE_MON) { 7541 env->cp15.scr_el3 &= ~SCR_NS; 7542 } 7543 7544 switch_mode (env, new_mode); 7545 /* For exceptions taken to AArch32 we must clear the SS bit in both 7546 * PSTATE and in the old-state value we save to SPSR_<mode>, so zero it now. 7547 */ 7548 env->uncached_cpsr &= ~PSTATE_SS; 7549 env->spsr = cpsr_read(env); 7550 /* Clear IT bits. */ 7551 env->condexec_bits = 0; 7552 /* Switch to the new mode, and to the correct instruction set. */ 7553 env->uncached_cpsr = (env->uncached_cpsr & ~CPSR_M) | new_mode; 7554 /* Set new mode endianness */ 7555 env->uncached_cpsr &= ~CPSR_E; 7556 if (env->cp15.sctlr_el[arm_current_el(env)] & SCTLR_EE) { 7557 env->uncached_cpsr |= CPSR_E; 7558 } 7559 env->daif |= mask; 7560 /* this is a lie, as the was no c1_sys on V4T/V5, but who cares 7561 * and we should just guard the thumb mode on V4 */ 7562 if (arm_feature(env, ARM_FEATURE_V4T)) { 7563 env->thumb = (A32_BANKED_CURRENT_REG_GET(env, sctlr) & SCTLR_TE) != 0; 7564 } 7565 env->regs[14] = env->regs[15] + offset; 7566 env->regs[15] = addr; 7567 } 7568 7569 /* Handle exception entry to a target EL which is using AArch64 */ 7570 static void arm_cpu_do_interrupt_aarch64(CPUState *cs) 7571 { 7572 ARMCPU *cpu = ARM_CPU(cs); 7573 CPUARMState *env = &cpu->env; 7574 unsigned int new_el = env->exception.target_el; 7575 target_ulong addr = env->cp15.vbar_el[new_el]; 7576 unsigned int new_mode = aarch64_pstate_mode(new_el, true); 7577 7578 if (arm_current_el(env) < new_el) { 7579 /* Entry vector offset depends on whether the implemented EL 7580 * immediately lower than the target level is using AArch32 or AArch64 7581 */ 7582 bool is_aa64; 7583 7584 switch (new_el) { 7585 case 3: 7586 is_aa64 = (env->cp15.scr_el3 & SCR_RW) != 0; 7587 break; 7588 case 2: 7589 is_aa64 = (env->cp15.hcr_el2 & HCR_RW) != 0; 7590 break; 7591 case 1: 7592 is_aa64 = is_a64(env); 7593 break; 7594 default: 7595 g_assert_not_reached(); 7596 } 7597 7598 if (is_aa64) { 7599 addr += 0x400; 7600 } else { 7601 addr += 0x600; 7602 } 7603 } else if (pstate_read(env) & PSTATE_SP) { 7604 addr += 0x200; 7605 } 7606 7607 switch (cs->exception_index) { 7608 case EXCP_PREFETCH_ABORT: 7609 case EXCP_DATA_ABORT: 7610 env->cp15.far_el[new_el] = env->exception.vaddress; 7611 qemu_log_mask(CPU_LOG_INT, "...with FAR 0x%" PRIx64 "\n", 7612 env->cp15.far_el[new_el]); 7613 /* fall through */ 7614 case EXCP_BKPT: 7615 case EXCP_UDEF: 7616 case EXCP_SWI: 7617 case EXCP_HVC: 7618 case EXCP_HYP_TRAP: 7619 case EXCP_SMC: 7620 env->cp15.esr_el[new_el] = env->exception.syndrome; 7621 break; 7622 case EXCP_IRQ: 7623 case EXCP_VIRQ: 7624 addr += 0x80; 7625 break; 7626 case EXCP_FIQ: 7627 case EXCP_VFIQ: 7628 addr += 0x100; 7629 break; 7630 case EXCP_SEMIHOST: 7631 qemu_log_mask(CPU_LOG_INT, 7632 "...handling as semihosting call 0x%" PRIx64 "\n", 7633 env->xregs[0]); 7634 env->xregs[0] = do_arm_semihosting(env); 7635 return; 7636 default: 7637 cpu_abort(cs, "Unhandled exception 0x%x\n", cs->exception_index); 7638 } 7639 7640 if (is_a64(env)) { 7641 env->banked_spsr[aarch64_banked_spsr_index(new_el)] = pstate_read(env); 7642 aarch64_save_sp(env, arm_current_el(env)); 7643 env->elr_el[new_el] = env->pc; 7644 } else { 7645 env->banked_spsr[aarch64_banked_spsr_index(new_el)] = cpsr_read(env); 7646 env->elr_el[new_el] = env->regs[15]; 7647 7648 aarch64_sync_32_to_64(env); 7649 7650 env->condexec_bits = 0; 7651 } 7652 qemu_log_mask(CPU_LOG_INT, "...with ELR 0x%" PRIx64 "\n", 7653 env->elr_el[new_el]); 7654 7655 pstate_write(env, PSTATE_DAIF | new_mode); 7656 env->aarch64 = 1; 7657 aarch64_restore_sp(env, new_el); 7658 7659 env->pc = addr; 7660 7661 qemu_log_mask(CPU_LOG_INT, "...to EL%d PC 0x%" PRIx64 " PSTATE 0x%x\n", 7662 new_el, env->pc, pstate_read(env)); 7663 } 7664 7665 static inline bool check_for_semihosting(CPUState *cs) 7666 { 7667 /* Check whether this exception is a semihosting call; if so 7668 * then handle it and return true; otherwise return false. 7669 */ 7670 ARMCPU *cpu = ARM_CPU(cs); 7671 CPUARMState *env = &cpu->env; 7672 7673 if (is_a64(env)) { 7674 if (cs->exception_index == EXCP_SEMIHOST) { 7675 /* This is always the 64-bit semihosting exception. 7676 * The "is this usermode" and "is semihosting enabled" 7677 * checks have been done at translate time. 7678 */ 7679 qemu_log_mask(CPU_LOG_INT, 7680 "...handling as semihosting call 0x%" PRIx64 "\n", 7681 env->xregs[0]); 7682 env->xregs[0] = do_arm_semihosting(env); 7683 return true; 7684 } 7685 return false; 7686 } else { 7687 uint32_t imm; 7688 7689 /* Only intercept calls from privileged modes, to provide some 7690 * semblance of security. 7691 */ 7692 if (cs->exception_index != EXCP_SEMIHOST && 7693 (!semihosting_enabled() || 7694 ((env->uncached_cpsr & CPSR_M) == ARM_CPU_MODE_USR))) { 7695 return false; 7696 } 7697 7698 switch (cs->exception_index) { 7699 case EXCP_SEMIHOST: 7700 /* This is always a semihosting call; the "is this usermode" 7701 * and "is semihosting enabled" checks have been done at 7702 * translate time. 7703 */ 7704 break; 7705 case EXCP_SWI: 7706 /* Check for semihosting interrupt. */ 7707 if (env->thumb) { 7708 imm = arm_lduw_code(env, env->regs[15] - 2, arm_sctlr_b(env)) 7709 & 0xff; 7710 if (imm == 0xab) { 7711 break; 7712 } 7713 } else { 7714 imm = arm_ldl_code(env, env->regs[15] - 4, arm_sctlr_b(env)) 7715 & 0xffffff; 7716 if (imm == 0x123456) { 7717 break; 7718 } 7719 } 7720 return false; 7721 case EXCP_BKPT: 7722 /* See if this is a semihosting syscall. */ 7723 if (env->thumb) { 7724 imm = arm_lduw_code(env, env->regs[15], arm_sctlr_b(env)) 7725 & 0xff; 7726 if (imm == 0xab) { 7727 env->regs[15] += 2; 7728 break; 7729 } 7730 } 7731 return false; 7732 default: 7733 return false; 7734 } 7735 7736 qemu_log_mask(CPU_LOG_INT, 7737 "...handling as semihosting call 0x%x\n", 7738 env->regs[0]); 7739 env->regs[0] = do_arm_semihosting(env); 7740 return true; 7741 } 7742 } 7743 7744 /* Handle a CPU exception for A and R profile CPUs. 7745 * Do any appropriate logging, handle PSCI calls, and then hand off 7746 * to the AArch64-entry or AArch32-entry function depending on the 7747 * target exception level's register width. 7748 */ 7749 void arm_cpu_do_interrupt(CPUState *cs) 7750 { 7751 ARMCPU *cpu = ARM_CPU(cs); 7752 CPUARMState *env = &cpu->env; 7753 unsigned int new_el = env->exception.target_el; 7754 7755 assert(!arm_feature(env, ARM_FEATURE_M)); 7756 7757 arm_log_exception(cs->exception_index); 7758 qemu_log_mask(CPU_LOG_INT, "...from EL%d to EL%d\n", arm_current_el(env), 7759 new_el); 7760 if (qemu_loglevel_mask(CPU_LOG_INT) 7761 && !excp_is_internal(cs->exception_index)) { 7762 qemu_log_mask(CPU_LOG_INT, "...with ESR 0x%x/0x%" PRIx32 "\n", 7763 env->exception.syndrome >> ARM_EL_EC_SHIFT, 7764 env->exception.syndrome); 7765 } 7766 7767 if (arm_is_psci_call(cpu, cs->exception_index)) { 7768 arm_handle_psci_call(cpu); 7769 qemu_log_mask(CPU_LOG_INT, "...handled as PSCI call\n"); 7770 return; 7771 } 7772 7773 /* Semihosting semantics depend on the register width of the 7774 * code that caused the exception, not the target exception level, 7775 * so must be handled here. 7776 */ 7777 if (check_for_semihosting(cs)) { 7778 return; 7779 } 7780 7781 assert(!excp_is_internal(cs->exception_index)); 7782 if (arm_el_is_aa64(env, new_el)) { 7783 arm_cpu_do_interrupt_aarch64(cs); 7784 } else { 7785 arm_cpu_do_interrupt_aarch32(cs); 7786 } 7787 7788 /* Hooks may change global state so BQL should be held, also the 7789 * BQL needs to be held for any modification of 7790 * cs->interrupt_request. 7791 */ 7792 g_assert(qemu_mutex_iothread_locked()); 7793 7794 arm_call_el_change_hook(cpu); 7795 7796 if (!kvm_enabled()) { 7797 cs->interrupt_request |= CPU_INTERRUPT_EXITTB; 7798 } 7799 } 7800 7801 /* Return the exception level which controls this address translation regime */ 7802 static inline uint32_t regime_el(CPUARMState *env, ARMMMUIdx mmu_idx) 7803 { 7804 switch (mmu_idx) { 7805 case ARMMMUIdx_S2NS: 7806 case ARMMMUIdx_S1E2: 7807 return 2; 7808 case ARMMMUIdx_S1E3: 7809 return 3; 7810 case ARMMMUIdx_S1SE0: 7811 return arm_el_is_aa64(env, 3) ? 1 : 3; 7812 case ARMMMUIdx_S1SE1: 7813 case ARMMMUIdx_S1NSE0: 7814 case ARMMMUIdx_S1NSE1: 7815 case ARMMMUIdx_MPriv: 7816 case ARMMMUIdx_MNegPri: 7817 case ARMMMUIdx_MUser: 7818 case ARMMMUIdx_MSPriv: 7819 case ARMMMUIdx_MSNegPri: 7820 case ARMMMUIdx_MSUser: 7821 return 1; 7822 default: 7823 g_assert_not_reached(); 7824 } 7825 } 7826 7827 /* Return the SCTLR value which controls this address translation regime */ 7828 static inline uint32_t regime_sctlr(CPUARMState *env, ARMMMUIdx mmu_idx) 7829 { 7830 return env->cp15.sctlr_el[regime_el(env, mmu_idx)]; 7831 } 7832 7833 /* Return true if the specified stage of address translation is disabled */ 7834 static inline bool regime_translation_disabled(CPUARMState *env, 7835 ARMMMUIdx mmu_idx) 7836 { 7837 if (arm_feature(env, ARM_FEATURE_M)) { 7838 switch (env->v7m.mpu_ctrl[regime_is_secure(env, mmu_idx)] & 7839 (R_V7M_MPU_CTRL_ENABLE_MASK | R_V7M_MPU_CTRL_HFNMIENA_MASK)) { 7840 case R_V7M_MPU_CTRL_ENABLE_MASK: 7841 /* Enabled, but not for HardFault and NMI */ 7842 return mmu_idx == ARMMMUIdx_MNegPri || 7843 mmu_idx == ARMMMUIdx_MSNegPri; 7844 case R_V7M_MPU_CTRL_ENABLE_MASK | R_V7M_MPU_CTRL_HFNMIENA_MASK: 7845 /* Enabled for all cases */ 7846 return false; 7847 case 0: 7848 default: 7849 /* HFNMIENA set and ENABLE clear is UNPREDICTABLE, but 7850 * we warned about that in armv7m_nvic.c when the guest set it. 7851 */ 7852 return true; 7853 } 7854 } 7855 7856 if (mmu_idx == ARMMMUIdx_S2NS) { 7857 return (env->cp15.hcr_el2 & HCR_VM) == 0; 7858 } 7859 return (regime_sctlr(env, mmu_idx) & SCTLR_M) == 0; 7860 } 7861 7862 static inline bool regime_translation_big_endian(CPUARMState *env, 7863 ARMMMUIdx mmu_idx) 7864 { 7865 return (regime_sctlr(env, mmu_idx) & SCTLR_EE) != 0; 7866 } 7867 7868 /* Return the TCR controlling this translation regime */ 7869 static inline TCR *regime_tcr(CPUARMState *env, ARMMMUIdx mmu_idx) 7870 { 7871 if (mmu_idx == ARMMMUIdx_S2NS) { 7872 return &env->cp15.vtcr_el2; 7873 } 7874 return &env->cp15.tcr_el[regime_el(env, mmu_idx)]; 7875 } 7876 7877 /* Convert a possible stage1+2 MMU index into the appropriate 7878 * stage 1 MMU index 7879 */ 7880 static inline ARMMMUIdx stage_1_mmu_idx(ARMMMUIdx mmu_idx) 7881 { 7882 if (mmu_idx == ARMMMUIdx_S12NSE0 || mmu_idx == ARMMMUIdx_S12NSE1) { 7883 mmu_idx += (ARMMMUIdx_S1NSE0 - ARMMMUIdx_S12NSE0); 7884 } 7885 return mmu_idx; 7886 } 7887 7888 /* Returns TBI0 value for current regime el */ 7889 uint32_t arm_regime_tbi0(CPUARMState *env, ARMMMUIdx mmu_idx) 7890 { 7891 TCR *tcr; 7892 uint32_t el; 7893 7894 /* For EL0 and EL1, TBI is controlled by stage 1's TCR, so convert 7895 * a stage 1+2 mmu index into the appropriate stage 1 mmu index. 7896 */ 7897 mmu_idx = stage_1_mmu_idx(mmu_idx); 7898 7899 tcr = regime_tcr(env, mmu_idx); 7900 el = regime_el(env, mmu_idx); 7901 7902 if (el > 1) { 7903 return extract64(tcr->raw_tcr, 20, 1); 7904 } else { 7905 return extract64(tcr->raw_tcr, 37, 1); 7906 } 7907 } 7908 7909 /* Returns TBI1 value for current regime el */ 7910 uint32_t arm_regime_tbi1(CPUARMState *env, ARMMMUIdx mmu_idx) 7911 { 7912 TCR *tcr; 7913 uint32_t el; 7914 7915 /* For EL0 and EL1, TBI is controlled by stage 1's TCR, so convert 7916 * a stage 1+2 mmu index into the appropriate stage 1 mmu index. 7917 */ 7918 mmu_idx = stage_1_mmu_idx(mmu_idx); 7919 7920 tcr = regime_tcr(env, mmu_idx); 7921 el = regime_el(env, mmu_idx); 7922 7923 if (el > 1) { 7924 return 0; 7925 } else { 7926 return extract64(tcr->raw_tcr, 38, 1); 7927 } 7928 } 7929 7930 /* Return the TTBR associated with this translation regime */ 7931 static inline uint64_t regime_ttbr(CPUARMState *env, ARMMMUIdx mmu_idx, 7932 int ttbrn) 7933 { 7934 if (mmu_idx == ARMMMUIdx_S2NS) { 7935 return env->cp15.vttbr_el2; 7936 } 7937 if (ttbrn == 0) { 7938 return env->cp15.ttbr0_el[regime_el(env, mmu_idx)]; 7939 } else { 7940 return env->cp15.ttbr1_el[regime_el(env, mmu_idx)]; 7941 } 7942 } 7943 7944 /* Return true if the translation regime is using LPAE format page tables */ 7945 static inline bool regime_using_lpae_format(CPUARMState *env, 7946 ARMMMUIdx mmu_idx) 7947 { 7948 int el = regime_el(env, mmu_idx); 7949 if (el == 2 || arm_el_is_aa64(env, el)) { 7950 return true; 7951 } 7952 if (arm_feature(env, ARM_FEATURE_LPAE) 7953 && (regime_tcr(env, mmu_idx)->raw_tcr & TTBCR_EAE)) { 7954 return true; 7955 } 7956 return false; 7957 } 7958 7959 /* Returns true if the stage 1 translation regime is using LPAE format page 7960 * tables. Used when raising alignment exceptions, whose FSR changes depending 7961 * on whether the long or short descriptor format is in use. */ 7962 bool arm_s1_regime_using_lpae_format(CPUARMState *env, ARMMMUIdx mmu_idx) 7963 { 7964 mmu_idx = stage_1_mmu_idx(mmu_idx); 7965 7966 return regime_using_lpae_format(env, mmu_idx); 7967 } 7968 7969 static inline bool regime_is_user(CPUARMState *env, ARMMMUIdx mmu_idx) 7970 { 7971 switch (mmu_idx) { 7972 case ARMMMUIdx_S1SE0: 7973 case ARMMMUIdx_S1NSE0: 7974 case ARMMMUIdx_MUser: 7975 return true; 7976 default: 7977 return false; 7978 case ARMMMUIdx_S12NSE0: 7979 case ARMMMUIdx_S12NSE1: 7980 g_assert_not_reached(); 7981 } 7982 } 7983 7984 /* Translate section/page access permissions to page 7985 * R/W protection flags 7986 * 7987 * @env: CPUARMState 7988 * @mmu_idx: MMU index indicating required translation regime 7989 * @ap: The 3-bit access permissions (AP[2:0]) 7990 * @domain_prot: The 2-bit domain access permissions 7991 */ 7992 static inline int ap_to_rw_prot(CPUARMState *env, ARMMMUIdx mmu_idx, 7993 int ap, int domain_prot) 7994 { 7995 bool is_user = regime_is_user(env, mmu_idx); 7996 7997 if (domain_prot == 3) { 7998 return PAGE_READ | PAGE_WRITE; 7999 } 8000 8001 switch (ap) { 8002 case 0: 8003 if (arm_feature(env, ARM_FEATURE_V7)) { 8004 return 0; 8005 } 8006 switch (regime_sctlr(env, mmu_idx) & (SCTLR_S | SCTLR_R)) { 8007 case SCTLR_S: 8008 return is_user ? 0 : PAGE_READ; 8009 case SCTLR_R: 8010 return PAGE_READ; 8011 default: 8012 return 0; 8013 } 8014 case 1: 8015 return is_user ? 0 : PAGE_READ | PAGE_WRITE; 8016 case 2: 8017 if (is_user) { 8018 return PAGE_READ; 8019 } else { 8020 return PAGE_READ | PAGE_WRITE; 8021 } 8022 case 3: 8023 return PAGE_READ | PAGE_WRITE; 8024 case 4: /* Reserved. */ 8025 return 0; 8026 case 5: 8027 return is_user ? 0 : PAGE_READ; 8028 case 6: 8029 return PAGE_READ; 8030 case 7: 8031 if (!arm_feature(env, ARM_FEATURE_V6K)) { 8032 return 0; 8033 } 8034 return PAGE_READ; 8035 default: 8036 g_assert_not_reached(); 8037 } 8038 } 8039 8040 /* Translate section/page access permissions to page 8041 * R/W protection flags. 8042 * 8043 * @ap: The 2-bit simple AP (AP[2:1]) 8044 * @is_user: TRUE if accessing from PL0 8045 */ 8046 static inline int simple_ap_to_rw_prot_is_user(int ap, bool is_user) 8047 { 8048 switch (ap) { 8049 case 0: 8050 return is_user ? 0 : PAGE_READ | PAGE_WRITE; 8051 case 1: 8052 return PAGE_READ | PAGE_WRITE; 8053 case 2: 8054 return is_user ? 0 : PAGE_READ; 8055 case 3: 8056 return PAGE_READ; 8057 default: 8058 g_assert_not_reached(); 8059 } 8060 } 8061 8062 static inline int 8063 simple_ap_to_rw_prot(CPUARMState *env, ARMMMUIdx mmu_idx, int ap) 8064 { 8065 return simple_ap_to_rw_prot_is_user(ap, regime_is_user(env, mmu_idx)); 8066 } 8067 8068 /* Translate S2 section/page access permissions to protection flags 8069 * 8070 * @env: CPUARMState 8071 * @s2ap: The 2-bit stage2 access permissions (S2AP) 8072 * @xn: XN (execute-never) bit 8073 */ 8074 static int get_S2prot(CPUARMState *env, int s2ap, int xn) 8075 { 8076 int prot = 0; 8077 8078 if (s2ap & 1) { 8079 prot |= PAGE_READ; 8080 } 8081 if (s2ap & 2) { 8082 prot |= PAGE_WRITE; 8083 } 8084 if (!xn) { 8085 if (arm_el_is_aa64(env, 2) || prot & PAGE_READ) { 8086 prot |= PAGE_EXEC; 8087 } 8088 } 8089 return prot; 8090 } 8091 8092 /* Translate section/page access permissions to protection flags 8093 * 8094 * @env: CPUARMState 8095 * @mmu_idx: MMU index indicating required translation regime 8096 * @is_aa64: TRUE if AArch64 8097 * @ap: The 2-bit simple AP (AP[2:1]) 8098 * @ns: NS (non-secure) bit 8099 * @xn: XN (execute-never) bit 8100 * @pxn: PXN (privileged execute-never) bit 8101 */ 8102 static int get_S1prot(CPUARMState *env, ARMMMUIdx mmu_idx, bool is_aa64, 8103 int ap, int ns, int xn, int pxn) 8104 { 8105 bool is_user = regime_is_user(env, mmu_idx); 8106 int prot_rw, user_rw; 8107 bool have_wxn; 8108 int wxn = 0; 8109 8110 assert(mmu_idx != ARMMMUIdx_S2NS); 8111 8112 user_rw = simple_ap_to_rw_prot_is_user(ap, true); 8113 if (is_user) { 8114 prot_rw = user_rw; 8115 } else { 8116 prot_rw = simple_ap_to_rw_prot_is_user(ap, false); 8117 } 8118 8119 if (ns && arm_is_secure(env) && (env->cp15.scr_el3 & SCR_SIF)) { 8120 return prot_rw; 8121 } 8122 8123 /* TODO have_wxn should be replaced with 8124 * ARM_FEATURE_V8 || (ARM_FEATURE_V7 && ARM_FEATURE_EL2) 8125 * when ARM_FEATURE_EL2 starts getting set. For now we assume all LPAE 8126 * compatible processors have EL2, which is required for [U]WXN. 8127 */ 8128 have_wxn = arm_feature(env, ARM_FEATURE_LPAE); 8129 8130 if (have_wxn) { 8131 wxn = regime_sctlr(env, mmu_idx) & SCTLR_WXN; 8132 } 8133 8134 if (is_aa64) { 8135 switch (regime_el(env, mmu_idx)) { 8136 case 1: 8137 if (!is_user) { 8138 xn = pxn || (user_rw & PAGE_WRITE); 8139 } 8140 break; 8141 case 2: 8142 case 3: 8143 break; 8144 } 8145 } else if (arm_feature(env, ARM_FEATURE_V7)) { 8146 switch (regime_el(env, mmu_idx)) { 8147 case 1: 8148 case 3: 8149 if (is_user) { 8150 xn = xn || !(user_rw & PAGE_READ); 8151 } else { 8152 int uwxn = 0; 8153 if (have_wxn) { 8154 uwxn = regime_sctlr(env, mmu_idx) & SCTLR_UWXN; 8155 } 8156 xn = xn || !(prot_rw & PAGE_READ) || pxn || 8157 (uwxn && (user_rw & PAGE_WRITE)); 8158 } 8159 break; 8160 case 2: 8161 break; 8162 } 8163 } else { 8164 xn = wxn = 0; 8165 } 8166 8167 if (xn || (wxn && (prot_rw & PAGE_WRITE))) { 8168 return prot_rw; 8169 } 8170 return prot_rw | PAGE_EXEC; 8171 } 8172 8173 static bool get_level1_table_address(CPUARMState *env, ARMMMUIdx mmu_idx, 8174 uint32_t *table, uint32_t address) 8175 { 8176 /* Note that we can only get here for an AArch32 PL0/PL1 lookup */ 8177 TCR *tcr = regime_tcr(env, mmu_idx); 8178 8179 if (address & tcr->mask) { 8180 if (tcr->raw_tcr & TTBCR_PD1) { 8181 /* Translation table walk disabled for TTBR1 */ 8182 return false; 8183 } 8184 *table = regime_ttbr(env, mmu_idx, 1) & 0xffffc000; 8185 } else { 8186 if (tcr->raw_tcr & TTBCR_PD0) { 8187 /* Translation table walk disabled for TTBR0 */ 8188 return false; 8189 } 8190 *table = regime_ttbr(env, mmu_idx, 0) & tcr->base_mask; 8191 } 8192 *table |= (address >> 18) & 0x3ffc; 8193 return true; 8194 } 8195 8196 /* Translate a S1 pagetable walk through S2 if needed. */ 8197 static hwaddr S1_ptw_translate(CPUARMState *env, ARMMMUIdx mmu_idx, 8198 hwaddr addr, MemTxAttrs txattrs, 8199 uint32_t *fsr, 8200 ARMMMUFaultInfo *fi) 8201 { 8202 if ((mmu_idx == ARMMMUIdx_S1NSE0 || mmu_idx == ARMMMUIdx_S1NSE1) && 8203 !regime_translation_disabled(env, ARMMMUIdx_S2NS)) { 8204 target_ulong s2size; 8205 hwaddr s2pa; 8206 int s2prot; 8207 int ret; 8208 8209 ret = get_phys_addr_lpae(env, addr, 0, ARMMMUIdx_S2NS, &s2pa, 8210 &txattrs, &s2prot, &s2size, fsr, fi); 8211 if (ret) { 8212 fi->s2addr = addr; 8213 fi->stage2 = true; 8214 fi->s1ptw = true; 8215 return ~0; 8216 } 8217 addr = s2pa; 8218 } 8219 return addr; 8220 } 8221 8222 /* All loads done in the course of a page table walk go through here. 8223 * TODO: rather than ignoring errors from physical memory reads (which 8224 * are external aborts in ARM terminology) we should propagate this 8225 * error out so that we can turn it into a Data Abort if this walk 8226 * was being done for a CPU load/store or an address translation instruction 8227 * (but not if it was for a debug access). 8228 */ 8229 static uint32_t arm_ldl_ptw(CPUState *cs, hwaddr addr, bool is_secure, 8230 ARMMMUIdx mmu_idx, uint32_t *fsr, 8231 ARMMMUFaultInfo *fi) 8232 { 8233 ARMCPU *cpu = ARM_CPU(cs); 8234 CPUARMState *env = &cpu->env; 8235 MemTxAttrs attrs = {}; 8236 AddressSpace *as; 8237 8238 attrs.secure = is_secure; 8239 as = arm_addressspace(cs, attrs); 8240 addr = S1_ptw_translate(env, mmu_idx, addr, attrs, fsr, fi); 8241 if (fi->s1ptw) { 8242 return 0; 8243 } 8244 if (regime_translation_big_endian(env, mmu_idx)) { 8245 return address_space_ldl_be(as, addr, attrs, NULL); 8246 } else { 8247 return address_space_ldl_le(as, addr, attrs, NULL); 8248 } 8249 } 8250 8251 static uint64_t arm_ldq_ptw(CPUState *cs, hwaddr addr, bool is_secure, 8252 ARMMMUIdx mmu_idx, uint32_t *fsr, 8253 ARMMMUFaultInfo *fi) 8254 { 8255 ARMCPU *cpu = ARM_CPU(cs); 8256 CPUARMState *env = &cpu->env; 8257 MemTxAttrs attrs = {}; 8258 AddressSpace *as; 8259 8260 attrs.secure = is_secure; 8261 as = arm_addressspace(cs, attrs); 8262 addr = S1_ptw_translate(env, mmu_idx, addr, attrs, fsr, fi); 8263 if (fi->s1ptw) { 8264 return 0; 8265 } 8266 if (regime_translation_big_endian(env, mmu_idx)) { 8267 return address_space_ldq_be(as, addr, attrs, NULL); 8268 } else { 8269 return address_space_ldq_le(as, addr, attrs, NULL); 8270 } 8271 } 8272 8273 static bool get_phys_addr_v5(CPUARMState *env, uint32_t address, 8274 MMUAccessType access_type, ARMMMUIdx mmu_idx, 8275 hwaddr *phys_ptr, int *prot, 8276 target_ulong *page_size, uint32_t *fsr, 8277 ARMMMUFaultInfo *fi) 8278 { 8279 CPUState *cs = CPU(arm_env_get_cpu(env)); 8280 int code; 8281 uint32_t table; 8282 uint32_t desc; 8283 int type; 8284 int ap; 8285 int domain = 0; 8286 int domain_prot; 8287 hwaddr phys_addr; 8288 uint32_t dacr; 8289 8290 /* Pagetable walk. */ 8291 /* Lookup l1 descriptor. */ 8292 if (!get_level1_table_address(env, mmu_idx, &table, address)) { 8293 /* Section translation fault if page walk is disabled by PD0 or PD1 */ 8294 code = 5; 8295 goto do_fault; 8296 } 8297 desc = arm_ldl_ptw(cs, table, regime_is_secure(env, mmu_idx), 8298 mmu_idx, fsr, fi); 8299 type = (desc & 3); 8300 domain = (desc >> 5) & 0x0f; 8301 if (regime_el(env, mmu_idx) == 1) { 8302 dacr = env->cp15.dacr_ns; 8303 } else { 8304 dacr = env->cp15.dacr_s; 8305 } 8306 domain_prot = (dacr >> (domain * 2)) & 3; 8307 if (type == 0) { 8308 /* Section translation fault. */ 8309 code = 5; 8310 goto do_fault; 8311 } 8312 if (domain_prot == 0 || domain_prot == 2) { 8313 if (type == 2) 8314 code = 9; /* Section domain fault. */ 8315 else 8316 code = 11; /* Page domain fault. */ 8317 goto do_fault; 8318 } 8319 if (type == 2) { 8320 /* 1Mb section. */ 8321 phys_addr = (desc & 0xfff00000) | (address & 0x000fffff); 8322 ap = (desc >> 10) & 3; 8323 code = 13; 8324 *page_size = 1024 * 1024; 8325 } else { 8326 /* Lookup l2 entry. */ 8327 if (type == 1) { 8328 /* Coarse pagetable. */ 8329 table = (desc & 0xfffffc00) | ((address >> 10) & 0x3fc); 8330 } else { 8331 /* Fine pagetable. */ 8332 table = (desc & 0xfffff000) | ((address >> 8) & 0xffc); 8333 } 8334 desc = arm_ldl_ptw(cs, table, regime_is_secure(env, mmu_idx), 8335 mmu_idx, fsr, fi); 8336 switch (desc & 3) { 8337 case 0: /* Page translation fault. */ 8338 code = 7; 8339 goto do_fault; 8340 case 1: /* 64k page. */ 8341 phys_addr = (desc & 0xffff0000) | (address & 0xffff); 8342 ap = (desc >> (4 + ((address >> 13) & 6))) & 3; 8343 *page_size = 0x10000; 8344 break; 8345 case 2: /* 4k page. */ 8346 phys_addr = (desc & 0xfffff000) | (address & 0xfff); 8347 ap = (desc >> (4 + ((address >> 9) & 6))) & 3; 8348 *page_size = 0x1000; 8349 break; 8350 case 3: /* 1k page, or ARMv6/XScale "extended small (4k) page" */ 8351 if (type == 1) { 8352 /* ARMv6/XScale extended small page format */ 8353 if (arm_feature(env, ARM_FEATURE_XSCALE) 8354 || arm_feature(env, ARM_FEATURE_V6)) { 8355 phys_addr = (desc & 0xfffff000) | (address & 0xfff); 8356 *page_size = 0x1000; 8357 } else { 8358 /* UNPREDICTABLE in ARMv5; we choose to take a 8359 * page translation fault. 8360 */ 8361 code = 7; 8362 goto do_fault; 8363 } 8364 } else { 8365 phys_addr = (desc & 0xfffffc00) | (address & 0x3ff); 8366 *page_size = 0x400; 8367 } 8368 ap = (desc >> 4) & 3; 8369 break; 8370 default: 8371 /* Never happens, but compiler isn't smart enough to tell. */ 8372 abort(); 8373 } 8374 code = 15; 8375 } 8376 *prot = ap_to_rw_prot(env, mmu_idx, ap, domain_prot); 8377 *prot |= *prot ? PAGE_EXEC : 0; 8378 if (!(*prot & (1 << access_type))) { 8379 /* Access permission fault. */ 8380 goto do_fault; 8381 } 8382 *phys_ptr = phys_addr; 8383 return false; 8384 do_fault: 8385 *fsr = code | (domain << 4); 8386 return true; 8387 } 8388 8389 static bool get_phys_addr_v6(CPUARMState *env, uint32_t address, 8390 MMUAccessType access_type, ARMMMUIdx mmu_idx, 8391 hwaddr *phys_ptr, MemTxAttrs *attrs, int *prot, 8392 target_ulong *page_size, uint32_t *fsr, 8393 ARMMMUFaultInfo *fi) 8394 { 8395 CPUState *cs = CPU(arm_env_get_cpu(env)); 8396 int code; 8397 uint32_t table; 8398 uint32_t desc; 8399 uint32_t xn; 8400 uint32_t pxn = 0; 8401 int type; 8402 int ap; 8403 int domain = 0; 8404 int domain_prot; 8405 hwaddr phys_addr; 8406 uint32_t dacr; 8407 bool ns; 8408 8409 /* Pagetable walk. */ 8410 /* Lookup l1 descriptor. */ 8411 if (!get_level1_table_address(env, mmu_idx, &table, address)) { 8412 /* Section translation fault if page walk is disabled by PD0 or PD1 */ 8413 code = 5; 8414 goto do_fault; 8415 } 8416 desc = arm_ldl_ptw(cs, table, regime_is_secure(env, mmu_idx), 8417 mmu_idx, fsr, fi); 8418 type = (desc & 3); 8419 if (type == 0 || (type == 3 && !arm_feature(env, ARM_FEATURE_PXN))) { 8420 /* Section translation fault, or attempt to use the encoding 8421 * which is Reserved on implementations without PXN. 8422 */ 8423 code = 5; 8424 goto do_fault; 8425 } 8426 if ((type == 1) || !(desc & (1 << 18))) { 8427 /* Page or Section. */ 8428 domain = (desc >> 5) & 0x0f; 8429 } 8430 if (regime_el(env, mmu_idx) == 1) { 8431 dacr = env->cp15.dacr_ns; 8432 } else { 8433 dacr = env->cp15.dacr_s; 8434 } 8435 domain_prot = (dacr >> (domain * 2)) & 3; 8436 if (domain_prot == 0 || domain_prot == 2) { 8437 if (type != 1) { 8438 code = 9; /* Section domain fault. */ 8439 } else { 8440 code = 11; /* Page domain fault. */ 8441 } 8442 goto do_fault; 8443 } 8444 if (type != 1) { 8445 if (desc & (1 << 18)) { 8446 /* Supersection. */ 8447 phys_addr = (desc & 0xff000000) | (address & 0x00ffffff); 8448 phys_addr |= (uint64_t)extract32(desc, 20, 4) << 32; 8449 phys_addr |= (uint64_t)extract32(desc, 5, 4) << 36; 8450 *page_size = 0x1000000; 8451 } else { 8452 /* Section. */ 8453 phys_addr = (desc & 0xfff00000) | (address & 0x000fffff); 8454 *page_size = 0x100000; 8455 } 8456 ap = ((desc >> 10) & 3) | ((desc >> 13) & 4); 8457 xn = desc & (1 << 4); 8458 pxn = desc & 1; 8459 code = 13; 8460 ns = extract32(desc, 19, 1); 8461 } else { 8462 if (arm_feature(env, ARM_FEATURE_PXN)) { 8463 pxn = (desc >> 2) & 1; 8464 } 8465 ns = extract32(desc, 3, 1); 8466 /* Lookup l2 entry. */ 8467 table = (desc & 0xfffffc00) | ((address >> 10) & 0x3fc); 8468 desc = arm_ldl_ptw(cs, table, regime_is_secure(env, mmu_idx), 8469 mmu_idx, fsr, fi); 8470 ap = ((desc >> 4) & 3) | ((desc >> 7) & 4); 8471 switch (desc & 3) { 8472 case 0: /* Page translation fault. */ 8473 code = 7; 8474 goto do_fault; 8475 case 1: /* 64k page. */ 8476 phys_addr = (desc & 0xffff0000) | (address & 0xffff); 8477 xn = desc & (1 << 15); 8478 *page_size = 0x10000; 8479 break; 8480 case 2: case 3: /* 4k page. */ 8481 phys_addr = (desc & 0xfffff000) | (address & 0xfff); 8482 xn = desc & 1; 8483 *page_size = 0x1000; 8484 break; 8485 default: 8486 /* Never happens, but compiler isn't smart enough to tell. */ 8487 abort(); 8488 } 8489 code = 15; 8490 } 8491 if (domain_prot == 3) { 8492 *prot = PAGE_READ | PAGE_WRITE | PAGE_EXEC; 8493 } else { 8494 if (pxn && !regime_is_user(env, mmu_idx)) { 8495 xn = 1; 8496 } 8497 if (xn && access_type == MMU_INST_FETCH) 8498 goto do_fault; 8499 8500 if (arm_feature(env, ARM_FEATURE_V6K) && 8501 (regime_sctlr(env, mmu_idx) & SCTLR_AFE)) { 8502 /* The simplified model uses AP[0] as an access control bit. */ 8503 if ((ap & 1) == 0) { 8504 /* Access flag fault. */ 8505 code = (code == 15) ? 6 : 3; 8506 goto do_fault; 8507 } 8508 *prot = simple_ap_to_rw_prot(env, mmu_idx, ap >> 1); 8509 } else { 8510 *prot = ap_to_rw_prot(env, mmu_idx, ap, domain_prot); 8511 } 8512 if (*prot && !xn) { 8513 *prot |= PAGE_EXEC; 8514 } 8515 if (!(*prot & (1 << access_type))) { 8516 /* Access permission fault. */ 8517 goto do_fault; 8518 } 8519 } 8520 if (ns) { 8521 /* The NS bit will (as required by the architecture) have no effect if 8522 * the CPU doesn't support TZ or this is a non-secure translation 8523 * regime, because the attribute will already be non-secure. 8524 */ 8525 attrs->secure = false; 8526 } 8527 *phys_ptr = phys_addr; 8528 return false; 8529 do_fault: 8530 *fsr = code | (domain << 4); 8531 return true; 8532 } 8533 8534 /* Fault type for long-descriptor MMU fault reporting; this corresponds 8535 * to bits [5..2] in the STATUS field in long-format DFSR/IFSR. 8536 */ 8537 typedef enum { 8538 translation_fault = 1, 8539 access_fault = 2, 8540 permission_fault = 3, 8541 } MMUFaultType; 8542 8543 /* 8544 * check_s2_mmu_setup 8545 * @cpu: ARMCPU 8546 * @is_aa64: True if the translation regime is in AArch64 state 8547 * @startlevel: Suggested starting level 8548 * @inputsize: Bitsize of IPAs 8549 * @stride: Page-table stride (See the ARM ARM) 8550 * 8551 * Returns true if the suggested S2 translation parameters are OK and 8552 * false otherwise. 8553 */ 8554 static bool check_s2_mmu_setup(ARMCPU *cpu, bool is_aa64, int level, 8555 int inputsize, int stride) 8556 { 8557 const int grainsize = stride + 3; 8558 int startsizecheck; 8559 8560 /* Negative levels are never allowed. */ 8561 if (level < 0) { 8562 return false; 8563 } 8564 8565 startsizecheck = inputsize - ((3 - level) * stride + grainsize); 8566 if (startsizecheck < 1 || startsizecheck > stride + 4) { 8567 return false; 8568 } 8569 8570 if (is_aa64) { 8571 CPUARMState *env = &cpu->env; 8572 unsigned int pamax = arm_pamax(cpu); 8573 8574 switch (stride) { 8575 case 13: /* 64KB Pages. */ 8576 if (level == 0 || (level == 1 && pamax <= 42)) { 8577 return false; 8578 } 8579 break; 8580 case 11: /* 16KB Pages. */ 8581 if (level == 0 || (level == 1 && pamax <= 40)) { 8582 return false; 8583 } 8584 break; 8585 case 9: /* 4KB Pages. */ 8586 if (level == 0 && pamax <= 42) { 8587 return false; 8588 } 8589 break; 8590 default: 8591 g_assert_not_reached(); 8592 } 8593 8594 /* Inputsize checks. */ 8595 if (inputsize > pamax && 8596 (arm_el_is_aa64(env, 1) || inputsize > 40)) { 8597 /* This is CONSTRAINED UNPREDICTABLE and we choose to fault. */ 8598 return false; 8599 } 8600 } else { 8601 /* AArch32 only supports 4KB pages. Assert on that. */ 8602 assert(stride == 9); 8603 8604 if (level == 0) { 8605 return false; 8606 } 8607 } 8608 return true; 8609 } 8610 8611 static bool get_phys_addr_lpae(CPUARMState *env, target_ulong address, 8612 MMUAccessType access_type, ARMMMUIdx mmu_idx, 8613 hwaddr *phys_ptr, MemTxAttrs *txattrs, int *prot, 8614 target_ulong *page_size_ptr, uint32_t *fsr, 8615 ARMMMUFaultInfo *fi) 8616 { 8617 ARMCPU *cpu = arm_env_get_cpu(env); 8618 CPUState *cs = CPU(cpu); 8619 /* Read an LPAE long-descriptor translation table. */ 8620 MMUFaultType fault_type = translation_fault; 8621 uint32_t level; 8622 uint32_t epd = 0; 8623 int32_t t0sz, t1sz; 8624 uint32_t tg; 8625 uint64_t ttbr; 8626 int ttbr_select; 8627 hwaddr descaddr, indexmask, indexmask_grainsize; 8628 uint32_t tableattrs; 8629 target_ulong page_size; 8630 uint32_t attrs; 8631 int32_t stride = 9; 8632 int32_t addrsize; 8633 int inputsize; 8634 int32_t tbi = 0; 8635 TCR *tcr = regime_tcr(env, mmu_idx); 8636 int ap, ns, xn, pxn; 8637 uint32_t el = regime_el(env, mmu_idx); 8638 bool ttbr1_valid = true; 8639 uint64_t descaddrmask; 8640 bool aarch64 = arm_el_is_aa64(env, el); 8641 8642 /* TODO: 8643 * This code does not handle the different format TCR for VTCR_EL2. 8644 * This code also does not support shareability levels. 8645 * Attribute and permission bit handling should also be checked when adding 8646 * support for those page table walks. 8647 */ 8648 if (aarch64) { 8649 level = 0; 8650 addrsize = 64; 8651 if (el > 1) { 8652 if (mmu_idx != ARMMMUIdx_S2NS) { 8653 tbi = extract64(tcr->raw_tcr, 20, 1); 8654 } 8655 } else { 8656 if (extract64(address, 55, 1)) { 8657 tbi = extract64(tcr->raw_tcr, 38, 1); 8658 } else { 8659 tbi = extract64(tcr->raw_tcr, 37, 1); 8660 } 8661 } 8662 tbi *= 8; 8663 8664 /* If we are in 64-bit EL2 or EL3 then there is no TTBR1, so mark it 8665 * invalid. 8666 */ 8667 if (el > 1) { 8668 ttbr1_valid = false; 8669 } 8670 } else { 8671 level = 1; 8672 addrsize = 32; 8673 /* There is no TTBR1 for EL2 */ 8674 if (el == 2) { 8675 ttbr1_valid = false; 8676 } 8677 } 8678 8679 /* Determine whether this address is in the region controlled by 8680 * TTBR0 or TTBR1 (or if it is in neither region and should fault). 8681 * This is a Non-secure PL0/1 stage 1 translation, so controlled by 8682 * TTBCR/TTBR0/TTBR1 in accordance with ARM ARM DDI0406C table B-32: 8683 */ 8684 if (aarch64) { 8685 /* AArch64 translation. */ 8686 t0sz = extract32(tcr->raw_tcr, 0, 6); 8687 t0sz = MIN(t0sz, 39); 8688 t0sz = MAX(t0sz, 16); 8689 } else if (mmu_idx != ARMMMUIdx_S2NS) { 8690 /* AArch32 stage 1 translation. */ 8691 t0sz = extract32(tcr->raw_tcr, 0, 3); 8692 } else { 8693 /* AArch32 stage 2 translation. */ 8694 bool sext = extract32(tcr->raw_tcr, 4, 1); 8695 bool sign = extract32(tcr->raw_tcr, 3, 1); 8696 /* Address size is 40-bit for a stage 2 translation, 8697 * and t0sz can be negative (from -8 to 7), 8698 * so we need to adjust it to use the TTBR selecting logic below. 8699 */ 8700 addrsize = 40; 8701 t0sz = sextract32(tcr->raw_tcr, 0, 4) + 8; 8702 8703 /* If the sign-extend bit is not the same as t0sz[3], the result 8704 * is unpredictable. Flag this as a guest error. */ 8705 if (sign != sext) { 8706 qemu_log_mask(LOG_GUEST_ERROR, 8707 "AArch32: VTCR.S / VTCR.T0SZ[3] mismatch\n"); 8708 } 8709 } 8710 t1sz = extract32(tcr->raw_tcr, 16, 6); 8711 if (aarch64) { 8712 t1sz = MIN(t1sz, 39); 8713 t1sz = MAX(t1sz, 16); 8714 } 8715 if (t0sz && !extract64(address, addrsize - t0sz, t0sz - tbi)) { 8716 /* there is a ttbr0 region and we are in it (high bits all zero) */ 8717 ttbr_select = 0; 8718 } else if (ttbr1_valid && t1sz && 8719 !extract64(~address, addrsize - t1sz, t1sz - tbi)) { 8720 /* there is a ttbr1 region and we are in it (high bits all one) */ 8721 ttbr_select = 1; 8722 } else if (!t0sz) { 8723 /* ttbr0 region is "everything not in the ttbr1 region" */ 8724 ttbr_select = 0; 8725 } else if (!t1sz && ttbr1_valid) { 8726 /* ttbr1 region is "everything not in the ttbr0 region" */ 8727 ttbr_select = 1; 8728 } else { 8729 /* in the gap between the two regions, this is a Translation fault */ 8730 fault_type = translation_fault; 8731 goto do_fault; 8732 } 8733 8734 /* Note that QEMU ignores shareability and cacheability attributes, 8735 * so we don't need to do anything with the SH, ORGN, IRGN fields 8736 * in the TTBCR. Similarly, TTBCR:A1 selects whether we get the 8737 * ASID from TTBR0 or TTBR1, but QEMU's TLB doesn't currently 8738 * implement any ASID-like capability so we can ignore it (instead 8739 * we will always flush the TLB any time the ASID is changed). 8740 */ 8741 if (ttbr_select == 0) { 8742 ttbr = regime_ttbr(env, mmu_idx, 0); 8743 if (el < 2) { 8744 epd = extract32(tcr->raw_tcr, 7, 1); 8745 } 8746 inputsize = addrsize - t0sz; 8747 8748 tg = extract32(tcr->raw_tcr, 14, 2); 8749 if (tg == 1) { /* 64KB pages */ 8750 stride = 13; 8751 } 8752 if (tg == 2) { /* 16KB pages */ 8753 stride = 11; 8754 } 8755 } else { 8756 /* We should only be here if TTBR1 is valid */ 8757 assert(ttbr1_valid); 8758 8759 ttbr = regime_ttbr(env, mmu_idx, 1); 8760 epd = extract32(tcr->raw_tcr, 23, 1); 8761 inputsize = addrsize - t1sz; 8762 8763 tg = extract32(tcr->raw_tcr, 30, 2); 8764 if (tg == 3) { /* 64KB pages */ 8765 stride = 13; 8766 } 8767 if (tg == 1) { /* 16KB pages */ 8768 stride = 11; 8769 } 8770 } 8771 8772 /* Here we should have set up all the parameters for the translation: 8773 * inputsize, ttbr, epd, stride, tbi 8774 */ 8775 8776 if (epd) { 8777 /* Translation table walk disabled => Translation fault on TLB miss 8778 * Note: This is always 0 on 64-bit EL2 and EL3. 8779 */ 8780 goto do_fault; 8781 } 8782 8783 if (mmu_idx != ARMMMUIdx_S2NS) { 8784 /* The starting level depends on the virtual address size (which can 8785 * be up to 48 bits) and the translation granule size. It indicates 8786 * the number of strides (stride bits at a time) needed to 8787 * consume the bits of the input address. In the pseudocode this is: 8788 * level = 4 - RoundUp((inputsize - grainsize) / stride) 8789 * where their 'inputsize' is our 'inputsize', 'grainsize' is 8790 * our 'stride + 3' and 'stride' is our 'stride'. 8791 * Applying the usual "rounded up m/n is (m+n-1)/n" and simplifying: 8792 * = 4 - (inputsize - stride - 3 + stride - 1) / stride 8793 * = 4 - (inputsize - 4) / stride; 8794 */ 8795 level = 4 - (inputsize - 4) / stride; 8796 } else { 8797 /* For stage 2 translations the starting level is specified by the 8798 * VTCR_EL2.SL0 field (whose interpretation depends on the page size) 8799 */ 8800 uint32_t sl0 = extract32(tcr->raw_tcr, 6, 2); 8801 uint32_t startlevel; 8802 bool ok; 8803 8804 if (!aarch64 || stride == 9) { 8805 /* AArch32 or 4KB pages */ 8806 startlevel = 2 - sl0; 8807 } else { 8808 /* 16KB or 64KB pages */ 8809 startlevel = 3 - sl0; 8810 } 8811 8812 /* Check that the starting level is valid. */ 8813 ok = check_s2_mmu_setup(cpu, aarch64, startlevel, 8814 inputsize, stride); 8815 if (!ok) { 8816 fault_type = translation_fault; 8817 goto do_fault; 8818 } 8819 level = startlevel; 8820 } 8821 8822 indexmask_grainsize = (1ULL << (stride + 3)) - 1; 8823 indexmask = (1ULL << (inputsize - (stride * (4 - level)))) - 1; 8824 8825 /* Now we can extract the actual base address from the TTBR */ 8826 descaddr = extract64(ttbr, 0, 48); 8827 descaddr &= ~indexmask; 8828 8829 /* The address field in the descriptor goes up to bit 39 for ARMv7 8830 * but up to bit 47 for ARMv8, but we use the descaddrmask 8831 * up to bit 39 for AArch32, because we don't need other bits in that case 8832 * to construct next descriptor address (anyway they should be all zeroes). 8833 */ 8834 descaddrmask = ((1ull << (aarch64 ? 48 : 40)) - 1) & 8835 ~indexmask_grainsize; 8836 8837 /* Secure accesses start with the page table in secure memory and 8838 * can be downgraded to non-secure at any step. Non-secure accesses 8839 * remain non-secure. We implement this by just ORing in the NSTable/NS 8840 * bits at each step. 8841 */ 8842 tableattrs = regime_is_secure(env, mmu_idx) ? 0 : (1 << 4); 8843 for (;;) { 8844 uint64_t descriptor; 8845 bool nstable; 8846 8847 descaddr |= (address >> (stride * (4 - level))) & indexmask; 8848 descaddr &= ~7ULL; 8849 nstable = extract32(tableattrs, 4, 1); 8850 descriptor = arm_ldq_ptw(cs, descaddr, !nstable, mmu_idx, fsr, fi); 8851 if (fi->s1ptw) { 8852 goto do_fault; 8853 } 8854 8855 if (!(descriptor & 1) || 8856 (!(descriptor & 2) && (level == 3))) { 8857 /* Invalid, or the Reserved level 3 encoding */ 8858 goto do_fault; 8859 } 8860 descaddr = descriptor & descaddrmask; 8861 8862 if ((descriptor & 2) && (level < 3)) { 8863 /* Table entry. The top five bits are attributes which may 8864 * propagate down through lower levels of the table (and 8865 * which are all arranged so that 0 means "no effect", so 8866 * we can gather them up by ORing in the bits at each level). 8867 */ 8868 tableattrs |= extract64(descriptor, 59, 5); 8869 level++; 8870 indexmask = indexmask_grainsize; 8871 continue; 8872 } 8873 /* Block entry at level 1 or 2, or page entry at level 3. 8874 * These are basically the same thing, although the number 8875 * of bits we pull in from the vaddr varies. 8876 */ 8877 page_size = (1ULL << ((stride * (4 - level)) + 3)); 8878 descaddr |= (address & (page_size - 1)); 8879 /* Extract attributes from the descriptor */ 8880 attrs = extract64(descriptor, 2, 10) 8881 | (extract64(descriptor, 52, 12) << 10); 8882 8883 if (mmu_idx == ARMMMUIdx_S2NS) { 8884 /* Stage 2 table descriptors do not include any attribute fields */ 8885 break; 8886 } 8887 /* Merge in attributes from table descriptors */ 8888 attrs |= extract32(tableattrs, 0, 2) << 11; /* XN, PXN */ 8889 attrs |= extract32(tableattrs, 3, 1) << 5; /* APTable[1] => AP[2] */ 8890 /* The sense of AP[1] vs APTable[0] is reversed, as APTable[0] == 1 8891 * means "force PL1 access only", which means forcing AP[1] to 0. 8892 */ 8893 if (extract32(tableattrs, 2, 1)) { 8894 attrs &= ~(1 << 4); 8895 } 8896 attrs |= nstable << 3; /* NS */ 8897 break; 8898 } 8899 /* Here descaddr is the final physical address, and attributes 8900 * are all in attrs. 8901 */ 8902 fault_type = access_fault; 8903 if ((attrs & (1 << 8)) == 0) { 8904 /* Access flag */ 8905 goto do_fault; 8906 } 8907 8908 ap = extract32(attrs, 4, 2); 8909 xn = extract32(attrs, 12, 1); 8910 8911 if (mmu_idx == ARMMMUIdx_S2NS) { 8912 ns = true; 8913 *prot = get_S2prot(env, ap, xn); 8914 } else { 8915 ns = extract32(attrs, 3, 1); 8916 pxn = extract32(attrs, 11, 1); 8917 *prot = get_S1prot(env, mmu_idx, aarch64, ap, ns, xn, pxn); 8918 } 8919 8920 fault_type = permission_fault; 8921 if (!(*prot & (1 << access_type))) { 8922 goto do_fault; 8923 } 8924 8925 if (ns) { 8926 /* The NS bit will (as required by the architecture) have no effect if 8927 * the CPU doesn't support TZ or this is a non-secure translation 8928 * regime, because the attribute will already be non-secure. 8929 */ 8930 txattrs->secure = false; 8931 } 8932 *phys_ptr = descaddr; 8933 *page_size_ptr = page_size; 8934 return false; 8935 8936 do_fault: 8937 /* Long-descriptor format IFSR/DFSR value */ 8938 *fsr = (1 << 9) | (fault_type << 2) | level; 8939 /* Tag the error as S2 for failed S1 PTW at S2 or ordinary S2. */ 8940 fi->stage2 = fi->s1ptw || (mmu_idx == ARMMMUIdx_S2NS); 8941 return true; 8942 } 8943 8944 static inline void get_phys_addr_pmsav7_default(CPUARMState *env, 8945 ARMMMUIdx mmu_idx, 8946 int32_t address, int *prot) 8947 { 8948 if (!arm_feature(env, ARM_FEATURE_M)) { 8949 *prot = PAGE_READ | PAGE_WRITE; 8950 switch (address) { 8951 case 0xF0000000 ... 0xFFFFFFFF: 8952 if (regime_sctlr(env, mmu_idx) & SCTLR_V) { 8953 /* hivecs execing is ok */ 8954 *prot |= PAGE_EXEC; 8955 } 8956 break; 8957 case 0x00000000 ... 0x7FFFFFFF: 8958 *prot |= PAGE_EXEC; 8959 break; 8960 } 8961 } else { 8962 /* Default system address map for M profile cores. 8963 * The architecture specifies which regions are execute-never; 8964 * at the MPU level no other checks are defined. 8965 */ 8966 switch (address) { 8967 case 0x00000000 ... 0x1fffffff: /* ROM */ 8968 case 0x20000000 ... 0x3fffffff: /* SRAM */ 8969 case 0x60000000 ... 0x7fffffff: /* RAM */ 8970 case 0x80000000 ... 0x9fffffff: /* RAM */ 8971 *prot = PAGE_READ | PAGE_WRITE | PAGE_EXEC; 8972 break; 8973 case 0x40000000 ... 0x5fffffff: /* Peripheral */ 8974 case 0xa0000000 ... 0xbfffffff: /* Device */ 8975 case 0xc0000000 ... 0xdfffffff: /* Device */ 8976 case 0xe0000000 ... 0xffffffff: /* System */ 8977 *prot = PAGE_READ | PAGE_WRITE; 8978 break; 8979 default: 8980 g_assert_not_reached(); 8981 } 8982 } 8983 } 8984 8985 static bool pmsav7_use_background_region(ARMCPU *cpu, 8986 ARMMMUIdx mmu_idx, bool is_user) 8987 { 8988 /* Return true if we should use the default memory map as a 8989 * "background" region if there are no hits against any MPU regions. 8990 */ 8991 CPUARMState *env = &cpu->env; 8992 8993 if (is_user) { 8994 return false; 8995 } 8996 8997 if (arm_feature(env, ARM_FEATURE_M)) { 8998 return env->v7m.mpu_ctrl[regime_is_secure(env, mmu_idx)] 8999 & R_V7M_MPU_CTRL_PRIVDEFENA_MASK; 9000 } else { 9001 return regime_sctlr(env, mmu_idx) & SCTLR_BR; 9002 } 9003 } 9004 9005 static inline bool m_is_ppb_region(CPUARMState *env, uint32_t address) 9006 { 9007 /* True if address is in the M profile PPB region 0xe0000000 - 0xe00fffff */ 9008 return arm_feature(env, ARM_FEATURE_M) && 9009 extract32(address, 20, 12) == 0xe00; 9010 } 9011 9012 static inline bool m_is_system_region(CPUARMState *env, uint32_t address) 9013 { 9014 /* True if address is in the M profile system region 9015 * 0xe0000000 - 0xffffffff 9016 */ 9017 return arm_feature(env, ARM_FEATURE_M) && extract32(address, 29, 3) == 0x7; 9018 } 9019 9020 static bool get_phys_addr_pmsav7(CPUARMState *env, uint32_t address, 9021 MMUAccessType access_type, ARMMMUIdx mmu_idx, 9022 hwaddr *phys_ptr, int *prot, uint32_t *fsr) 9023 { 9024 ARMCPU *cpu = arm_env_get_cpu(env); 9025 int n; 9026 bool is_user = regime_is_user(env, mmu_idx); 9027 9028 *phys_ptr = address; 9029 *prot = 0; 9030 9031 if (regime_translation_disabled(env, mmu_idx) || 9032 m_is_ppb_region(env, address)) { 9033 /* MPU disabled or M profile PPB access: use default memory map. 9034 * The other case which uses the default memory map in the 9035 * v7M ARM ARM pseudocode is exception vector reads from the vector 9036 * table. In QEMU those accesses are done in arm_v7m_load_vector(), 9037 * which always does a direct read using address_space_ldl(), rather 9038 * than going via this function, so we don't need to check that here. 9039 */ 9040 get_phys_addr_pmsav7_default(env, mmu_idx, address, prot); 9041 } else { /* MPU enabled */ 9042 for (n = (int)cpu->pmsav7_dregion - 1; n >= 0; n--) { 9043 /* region search */ 9044 uint32_t base = env->pmsav7.drbar[n]; 9045 uint32_t rsize = extract32(env->pmsav7.drsr[n], 1, 5); 9046 uint32_t rmask; 9047 bool srdis = false; 9048 9049 if (!(env->pmsav7.drsr[n] & 0x1)) { 9050 continue; 9051 } 9052 9053 if (!rsize) { 9054 qemu_log_mask(LOG_GUEST_ERROR, 9055 "DRSR[%d]: Rsize field cannot be 0\n", n); 9056 continue; 9057 } 9058 rsize++; 9059 rmask = (1ull << rsize) - 1; 9060 9061 if (base & rmask) { 9062 qemu_log_mask(LOG_GUEST_ERROR, 9063 "DRBAR[%d]: 0x%" PRIx32 " misaligned " 9064 "to DRSR region size, mask = 0x%" PRIx32 "\n", 9065 n, base, rmask); 9066 continue; 9067 } 9068 9069 if (address < base || address > base + rmask) { 9070 continue; 9071 } 9072 9073 /* Region matched */ 9074 9075 if (rsize >= 8) { /* no subregions for regions < 256 bytes */ 9076 int i, snd; 9077 uint32_t srdis_mask; 9078 9079 rsize -= 3; /* sub region size (power of 2) */ 9080 snd = ((address - base) >> rsize) & 0x7; 9081 srdis = extract32(env->pmsav7.drsr[n], snd + 8, 1); 9082 9083 srdis_mask = srdis ? 0x3 : 0x0; 9084 for (i = 2; i <= 8 && rsize < TARGET_PAGE_BITS; i *= 2) { 9085 /* This will check in groups of 2, 4 and then 8, whether 9086 * the subregion bits are consistent. rsize is incremented 9087 * back up to give the region size, considering consistent 9088 * adjacent subregions as one region. Stop testing if rsize 9089 * is already big enough for an entire QEMU page. 9090 */ 9091 int snd_rounded = snd & ~(i - 1); 9092 uint32_t srdis_multi = extract32(env->pmsav7.drsr[n], 9093 snd_rounded + 8, i); 9094 if (srdis_mask ^ srdis_multi) { 9095 break; 9096 } 9097 srdis_mask = (srdis_mask << i) | srdis_mask; 9098 rsize++; 9099 } 9100 } 9101 if (rsize < TARGET_PAGE_BITS) { 9102 qemu_log_mask(LOG_UNIMP, 9103 "DRSR[%d]: No support for MPU (sub)region " 9104 "alignment of %" PRIu32 " bits. Minimum is %d\n", 9105 n, rsize, TARGET_PAGE_BITS); 9106 continue; 9107 } 9108 if (srdis) { 9109 continue; 9110 } 9111 break; 9112 } 9113 9114 if (n == -1) { /* no hits */ 9115 if (!pmsav7_use_background_region(cpu, mmu_idx, is_user)) { 9116 /* background fault */ 9117 *fsr = 0; 9118 return true; 9119 } 9120 get_phys_addr_pmsav7_default(env, mmu_idx, address, prot); 9121 } else { /* a MPU hit! */ 9122 uint32_t ap = extract32(env->pmsav7.dracr[n], 8, 3); 9123 uint32_t xn = extract32(env->pmsav7.dracr[n], 12, 1); 9124 9125 if (m_is_system_region(env, address)) { 9126 /* System space is always execute never */ 9127 xn = 1; 9128 } 9129 9130 if (is_user) { /* User mode AP bit decoding */ 9131 switch (ap) { 9132 case 0: 9133 case 1: 9134 case 5: 9135 break; /* no access */ 9136 case 3: 9137 *prot |= PAGE_WRITE; 9138 /* fall through */ 9139 case 2: 9140 case 6: 9141 *prot |= PAGE_READ | PAGE_EXEC; 9142 break; 9143 default: 9144 qemu_log_mask(LOG_GUEST_ERROR, 9145 "DRACR[%d]: Bad value for AP bits: 0x%" 9146 PRIx32 "\n", n, ap); 9147 } 9148 } else { /* Priv. mode AP bits decoding */ 9149 switch (ap) { 9150 case 0: 9151 break; /* no access */ 9152 case 1: 9153 case 2: 9154 case 3: 9155 *prot |= PAGE_WRITE; 9156 /* fall through */ 9157 case 5: 9158 case 6: 9159 *prot |= PAGE_READ | PAGE_EXEC; 9160 break; 9161 default: 9162 qemu_log_mask(LOG_GUEST_ERROR, 9163 "DRACR[%d]: Bad value for AP bits: 0x%" 9164 PRIx32 "\n", n, ap); 9165 } 9166 } 9167 9168 /* execute never */ 9169 if (xn) { 9170 *prot &= ~PAGE_EXEC; 9171 } 9172 } 9173 } 9174 9175 *fsr = 0x00d; /* Permission fault */ 9176 return !(*prot & (1 << access_type)); 9177 } 9178 9179 static bool v8m_is_sau_exempt(CPUARMState *env, 9180 uint32_t address, MMUAccessType access_type) 9181 { 9182 /* The architecture specifies that certain address ranges are 9183 * exempt from v8M SAU/IDAU checks. 9184 */ 9185 return 9186 (access_type == MMU_INST_FETCH && m_is_system_region(env, address)) || 9187 (address >= 0xe0000000 && address <= 0xe0002fff) || 9188 (address >= 0xe000e000 && address <= 0xe000efff) || 9189 (address >= 0xe002e000 && address <= 0xe002efff) || 9190 (address >= 0xe0040000 && address <= 0xe0041fff) || 9191 (address >= 0xe00ff000 && address <= 0xe00fffff); 9192 } 9193 9194 static void v8m_security_lookup(CPUARMState *env, uint32_t address, 9195 MMUAccessType access_type, ARMMMUIdx mmu_idx, 9196 V8M_SAttributes *sattrs) 9197 { 9198 /* Look up the security attributes for this address. Compare the 9199 * pseudocode SecurityCheck() function. 9200 * We assume the caller has zero-initialized *sattrs. 9201 */ 9202 ARMCPU *cpu = arm_env_get_cpu(env); 9203 int r; 9204 9205 /* TODO: implement IDAU */ 9206 9207 if (access_type == MMU_INST_FETCH && extract32(address, 28, 4) == 0xf) { 9208 /* 0xf0000000..0xffffffff is always S for insn fetches */ 9209 return; 9210 } 9211 9212 if (v8m_is_sau_exempt(env, address, access_type)) { 9213 sattrs->ns = !regime_is_secure(env, mmu_idx); 9214 return; 9215 } 9216 9217 switch (env->sau.ctrl & 3) { 9218 case 0: /* SAU.ENABLE == 0, SAU.ALLNS == 0 */ 9219 break; 9220 case 2: /* SAU.ENABLE == 0, SAU.ALLNS == 1 */ 9221 sattrs->ns = true; 9222 break; 9223 default: /* SAU.ENABLE == 1 */ 9224 for (r = 0; r < cpu->sau_sregion; r++) { 9225 if (env->sau.rlar[r] & 1) { 9226 uint32_t base = env->sau.rbar[r] & ~0x1f; 9227 uint32_t limit = env->sau.rlar[r] | 0x1f; 9228 9229 if (base <= address && limit >= address) { 9230 if (sattrs->srvalid) { 9231 /* If we hit in more than one region then we must report 9232 * as Secure, not NS-Callable, with no valid region 9233 * number info. 9234 */ 9235 sattrs->ns = false; 9236 sattrs->nsc = false; 9237 sattrs->sregion = 0; 9238 sattrs->srvalid = false; 9239 break; 9240 } else { 9241 if (env->sau.rlar[r] & 2) { 9242 sattrs->nsc = true; 9243 } else { 9244 sattrs->ns = true; 9245 } 9246 sattrs->srvalid = true; 9247 sattrs->sregion = r; 9248 } 9249 } 9250 } 9251 } 9252 9253 /* TODO when we support the IDAU then it may override the result here */ 9254 break; 9255 } 9256 } 9257 9258 static bool get_phys_addr_pmsav8(CPUARMState *env, uint32_t address, 9259 MMUAccessType access_type, ARMMMUIdx mmu_idx, 9260 hwaddr *phys_ptr, MemTxAttrs *txattrs, 9261 int *prot, uint32_t *fsr) 9262 { 9263 ARMCPU *cpu = arm_env_get_cpu(env); 9264 bool is_user = regime_is_user(env, mmu_idx); 9265 uint32_t secure = regime_is_secure(env, mmu_idx); 9266 int n; 9267 int matchregion = -1; 9268 bool hit = false; 9269 V8M_SAttributes sattrs = {}; 9270 9271 *phys_ptr = address; 9272 *prot = 0; 9273 9274 if (arm_feature(env, ARM_FEATURE_M_SECURITY)) { 9275 v8m_security_lookup(env, address, access_type, mmu_idx, &sattrs); 9276 if (access_type == MMU_INST_FETCH) { 9277 /* Instruction fetches always use the MMU bank and the 9278 * transaction attribute determined by the fetch address, 9279 * regardless of CPU state. This is painful for QEMU 9280 * to handle, because it would mean we need to encode 9281 * into the mmu_idx not just the (user, negpri) information 9282 * for the current security state but also that for the 9283 * other security state, which would balloon the number 9284 * of mmu_idx values needed alarmingly. 9285 * Fortunately we can avoid this because it's not actually 9286 * possible to arbitrarily execute code from memory with 9287 * the wrong security attribute: it will always generate 9288 * an exception of some kind or another, apart from the 9289 * special case of an NS CPU executing an SG instruction 9290 * in S&NSC memory. So we always just fail the translation 9291 * here and sort things out in the exception handler 9292 * (including possibly emulating an SG instruction). 9293 */ 9294 if (sattrs.ns != !secure) { 9295 *fsr = sattrs.nsc ? M_FAKE_FSR_NSC_EXEC : M_FAKE_FSR_SFAULT; 9296 return true; 9297 } 9298 } else { 9299 /* For data accesses we always use the MMU bank indicated 9300 * by the current CPU state, but the security attributes 9301 * might downgrade a secure access to nonsecure. 9302 */ 9303 if (sattrs.ns) { 9304 txattrs->secure = false; 9305 } else if (!secure) { 9306 /* NS access to S memory must fault. 9307 * Architecturally we should first check whether the 9308 * MPU information for this address indicates that we 9309 * are doing an unaligned access to Device memory, which 9310 * should generate a UsageFault instead. QEMU does not 9311 * currently check for that kind of unaligned access though. 9312 * If we added it we would need to do so as a special case 9313 * for M_FAKE_FSR_SFAULT in arm_v7m_cpu_do_interrupt(). 9314 */ 9315 *fsr = M_FAKE_FSR_SFAULT; 9316 return true; 9317 } 9318 } 9319 } 9320 9321 /* Unlike the ARM ARM pseudocode, we don't need to check whether this 9322 * was an exception vector read from the vector table (which is always 9323 * done using the default system address map), because those accesses 9324 * are done in arm_v7m_load_vector(), which always does a direct 9325 * read using address_space_ldl(), rather than going via this function. 9326 */ 9327 if (regime_translation_disabled(env, mmu_idx)) { /* MPU disabled */ 9328 hit = true; 9329 } else if (m_is_ppb_region(env, address)) { 9330 hit = true; 9331 } else if (pmsav7_use_background_region(cpu, mmu_idx, is_user)) { 9332 hit = true; 9333 } else { 9334 for (n = (int)cpu->pmsav7_dregion - 1; n >= 0; n--) { 9335 /* region search */ 9336 /* Note that the base address is bits [31:5] from the register 9337 * with bits [4:0] all zeroes, but the limit address is bits 9338 * [31:5] from the register with bits [4:0] all ones. 9339 */ 9340 uint32_t base = env->pmsav8.rbar[secure][n] & ~0x1f; 9341 uint32_t limit = env->pmsav8.rlar[secure][n] | 0x1f; 9342 9343 if (!(env->pmsav8.rlar[secure][n] & 0x1)) { 9344 /* Region disabled */ 9345 continue; 9346 } 9347 9348 if (address < base || address > limit) { 9349 continue; 9350 } 9351 9352 if (hit) { 9353 /* Multiple regions match -- always a failure (unlike 9354 * PMSAv7 where highest-numbered-region wins) 9355 */ 9356 *fsr = 0x00d; /* permission fault */ 9357 return true; 9358 } 9359 9360 matchregion = n; 9361 hit = true; 9362 9363 if (base & ~TARGET_PAGE_MASK) { 9364 qemu_log_mask(LOG_UNIMP, 9365 "MPU_RBAR[%d]: No support for MPU region base" 9366 "address of 0x%" PRIx32 ". Minimum alignment is " 9367 "%d\n", 9368 n, base, TARGET_PAGE_BITS); 9369 continue; 9370 } 9371 if ((limit + 1) & ~TARGET_PAGE_MASK) { 9372 qemu_log_mask(LOG_UNIMP, 9373 "MPU_RBAR[%d]: No support for MPU region limit" 9374 "address of 0x%" PRIx32 ". Minimum alignment is " 9375 "%d\n", 9376 n, limit, TARGET_PAGE_BITS); 9377 continue; 9378 } 9379 } 9380 } 9381 9382 if (!hit) { 9383 /* background fault */ 9384 *fsr = 0; 9385 return true; 9386 } 9387 9388 if (matchregion == -1) { 9389 /* hit using the background region */ 9390 get_phys_addr_pmsav7_default(env, mmu_idx, address, prot); 9391 } else { 9392 uint32_t ap = extract32(env->pmsav8.rbar[secure][matchregion], 1, 2); 9393 uint32_t xn = extract32(env->pmsav8.rbar[secure][matchregion], 0, 1); 9394 9395 if (m_is_system_region(env, address)) { 9396 /* System space is always execute never */ 9397 xn = 1; 9398 } 9399 9400 *prot = simple_ap_to_rw_prot(env, mmu_idx, ap); 9401 if (*prot && !xn) { 9402 *prot |= PAGE_EXEC; 9403 } 9404 /* We don't need to look the attribute up in the MAIR0/MAIR1 9405 * registers because that only tells us about cacheability. 9406 */ 9407 } 9408 9409 *fsr = 0x00d; /* Permission fault */ 9410 return !(*prot & (1 << access_type)); 9411 } 9412 9413 static bool get_phys_addr_pmsav5(CPUARMState *env, uint32_t address, 9414 MMUAccessType access_type, ARMMMUIdx mmu_idx, 9415 hwaddr *phys_ptr, int *prot, uint32_t *fsr) 9416 { 9417 int n; 9418 uint32_t mask; 9419 uint32_t base; 9420 bool is_user = regime_is_user(env, mmu_idx); 9421 9422 if (regime_translation_disabled(env, mmu_idx)) { 9423 /* MPU disabled. */ 9424 *phys_ptr = address; 9425 *prot = PAGE_READ | PAGE_WRITE | PAGE_EXEC; 9426 return false; 9427 } 9428 9429 *phys_ptr = address; 9430 for (n = 7; n >= 0; n--) { 9431 base = env->cp15.c6_region[n]; 9432 if ((base & 1) == 0) { 9433 continue; 9434 } 9435 mask = 1 << ((base >> 1) & 0x1f); 9436 /* Keep this shift separate from the above to avoid an 9437 (undefined) << 32. */ 9438 mask = (mask << 1) - 1; 9439 if (((base ^ address) & ~mask) == 0) { 9440 break; 9441 } 9442 } 9443 if (n < 0) { 9444 *fsr = 2; 9445 return true; 9446 } 9447 9448 if (access_type == MMU_INST_FETCH) { 9449 mask = env->cp15.pmsav5_insn_ap; 9450 } else { 9451 mask = env->cp15.pmsav5_data_ap; 9452 } 9453 mask = (mask >> (n * 4)) & 0xf; 9454 switch (mask) { 9455 case 0: 9456 *fsr = 1; 9457 return true; 9458 case 1: 9459 if (is_user) { 9460 *fsr = 1; 9461 return true; 9462 } 9463 *prot = PAGE_READ | PAGE_WRITE; 9464 break; 9465 case 2: 9466 *prot = PAGE_READ; 9467 if (!is_user) { 9468 *prot |= PAGE_WRITE; 9469 } 9470 break; 9471 case 3: 9472 *prot = PAGE_READ | PAGE_WRITE; 9473 break; 9474 case 5: 9475 if (is_user) { 9476 *fsr = 1; 9477 return true; 9478 } 9479 *prot = PAGE_READ; 9480 break; 9481 case 6: 9482 *prot = PAGE_READ; 9483 break; 9484 default: 9485 /* Bad permission. */ 9486 *fsr = 1; 9487 return true; 9488 } 9489 *prot |= PAGE_EXEC; 9490 return false; 9491 } 9492 9493 /* get_phys_addr - get the physical address for this virtual address 9494 * 9495 * Find the physical address corresponding to the given virtual address, 9496 * by doing a translation table walk on MMU based systems or using the 9497 * MPU state on MPU based systems. 9498 * 9499 * Returns false if the translation was successful. Otherwise, phys_ptr, attrs, 9500 * prot and page_size may not be filled in, and the populated fsr value provides 9501 * information on why the translation aborted, in the format of a 9502 * DFSR/IFSR fault register, with the following caveats: 9503 * * we honour the short vs long DFSR format differences. 9504 * * the WnR bit is never set (the caller must do this). 9505 * * for PSMAv5 based systems we don't bother to return a full FSR format 9506 * value. 9507 * 9508 * @env: CPUARMState 9509 * @address: virtual address to get physical address for 9510 * @access_type: 0 for read, 1 for write, 2 for execute 9511 * @mmu_idx: MMU index indicating required translation regime 9512 * @phys_ptr: set to the physical address corresponding to the virtual address 9513 * @attrs: set to the memory transaction attributes to use 9514 * @prot: set to the permissions for the page containing phys_ptr 9515 * @page_size: set to the size of the page containing phys_ptr 9516 * @fsr: set to the DFSR/IFSR value on failure 9517 */ 9518 static bool get_phys_addr(CPUARMState *env, target_ulong address, 9519 MMUAccessType access_type, ARMMMUIdx mmu_idx, 9520 hwaddr *phys_ptr, MemTxAttrs *attrs, int *prot, 9521 target_ulong *page_size, uint32_t *fsr, 9522 ARMMMUFaultInfo *fi) 9523 { 9524 if (mmu_idx == ARMMMUIdx_S12NSE0 || mmu_idx == ARMMMUIdx_S12NSE1) { 9525 /* Call ourselves recursively to do the stage 1 and then stage 2 9526 * translations. 9527 */ 9528 if (arm_feature(env, ARM_FEATURE_EL2)) { 9529 hwaddr ipa; 9530 int s2_prot; 9531 int ret; 9532 9533 ret = get_phys_addr(env, address, access_type, 9534 stage_1_mmu_idx(mmu_idx), &ipa, attrs, 9535 prot, page_size, fsr, fi); 9536 9537 /* If S1 fails or S2 is disabled, return early. */ 9538 if (ret || regime_translation_disabled(env, ARMMMUIdx_S2NS)) { 9539 *phys_ptr = ipa; 9540 return ret; 9541 } 9542 9543 /* S1 is done. Now do S2 translation. */ 9544 ret = get_phys_addr_lpae(env, ipa, access_type, ARMMMUIdx_S2NS, 9545 phys_ptr, attrs, &s2_prot, 9546 page_size, fsr, fi); 9547 fi->s2addr = ipa; 9548 /* Combine the S1 and S2 perms. */ 9549 *prot &= s2_prot; 9550 return ret; 9551 } else { 9552 /* 9553 * For non-EL2 CPUs a stage1+stage2 translation is just stage 1. 9554 */ 9555 mmu_idx = stage_1_mmu_idx(mmu_idx); 9556 } 9557 } 9558 9559 /* The page table entries may downgrade secure to non-secure, but 9560 * cannot upgrade an non-secure translation regime's attributes 9561 * to secure. 9562 */ 9563 attrs->secure = regime_is_secure(env, mmu_idx); 9564 attrs->user = regime_is_user(env, mmu_idx); 9565 9566 /* Fast Context Switch Extension. This doesn't exist at all in v8. 9567 * In v7 and earlier it affects all stage 1 translations. 9568 */ 9569 if (address < 0x02000000 && mmu_idx != ARMMMUIdx_S2NS 9570 && !arm_feature(env, ARM_FEATURE_V8)) { 9571 if (regime_el(env, mmu_idx) == 3) { 9572 address += env->cp15.fcseidr_s; 9573 } else { 9574 address += env->cp15.fcseidr_ns; 9575 } 9576 } 9577 9578 if (arm_feature(env, ARM_FEATURE_PMSA)) { 9579 bool ret; 9580 *page_size = TARGET_PAGE_SIZE; 9581 9582 if (arm_feature(env, ARM_FEATURE_V8)) { 9583 /* PMSAv8 */ 9584 ret = get_phys_addr_pmsav8(env, address, access_type, mmu_idx, 9585 phys_ptr, attrs, prot, fsr); 9586 } else if (arm_feature(env, ARM_FEATURE_V7)) { 9587 /* PMSAv7 */ 9588 ret = get_phys_addr_pmsav7(env, address, access_type, mmu_idx, 9589 phys_ptr, prot, fsr); 9590 } else { 9591 /* Pre-v7 MPU */ 9592 ret = get_phys_addr_pmsav5(env, address, access_type, mmu_idx, 9593 phys_ptr, prot, fsr); 9594 } 9595 qemu_log_mask(CPU_LOG_MMU, "PMSA MPU lookup for %s at 0x%08" PRIx32 9596 " mmu_idx %u -> %s (prot %c%c%c)\n", 9597 access_type == MMU_DATA_LOAD ? "reading" : 9598 (access_type == MMU_DATA_STORE ? "writing" : "execute"), 9599 (uint32_t)address, mmu_idx, 9600 ret ? "Miss" : "Hit", 9601 *prot & PAGE_READ ? 'r' : '-', 9602 *prot & PAGE_WRITE ? 'w' : '-', 9603 *prot & PAGE_EXEC ? 'x' : '-'); 9604 9605 return ret; 9606 } 9607 9608 /* Definitely a real MMU, not an MPU */ 9609 9610 if (regime_translation_disabled(env, mmu_idx)) { 9611 /* MMU disabled. */ 9612 *phys_ptr = address; 9613 *prot = PAGE_READ | PAGE_WRITE | PAGE_EXEC; 9614 *page_size = TARGET_PAGE_SIZE; 9615 return 0; 9616 } 9617 9618 if (regime_using_lpae_format(env, mmu_idx)) { 9619 return get_phys_addr_lpae(env, address, access_type, mmu_idx, phys_ptr, 9620 attrs, prot, page_size, fsr, fi); 9621 } else if (regime_sctlr(env, mmu_idx) & SCTLR_XP) { 9622 return get_phys_addr_v6(env, address, access_type, mmu_idx, phys_ptr, 9623 attrs, prot, page_size, fsr, fi); 9624 } else { 9625 return get_phys_addr_v5(env, address, access_type, mmu_idx, phys_ptr, 9626 prot, page_size, fsr, fi); 9627 } 9628 } 9629 9630 /* Walk the page table and (if the mapping exists) add the page 9631 * to the TLB. Return false on success, or true on failure. Populate 9632 * fsr with ARM DFSR/IFSR fault register format value on failure. 9633 */ 9634 bool arm_tlb_fill(CPUState *cs, vaddr address, 9635 MMUAccessType access_type, int mmu_idx, uint32_t *fsr, 9636 ARMMMUFaultInfo *fi) 9637 { 9638 ARMCPU *cpu = ARM_CPU(cs); 9639 CPUARMState *env = &cpu->env; 9640 hwaddr phys_addr; 9641 target_ulong page_size; 9642 int prot; 9643 int ret; 9644 MemTxAttrs attrs = {}; 9645 9646 ret = get_phys_addr(env, address, access_type, 9647 core_to_arm_mmu_idx(env, mmu_idx), &phys_addr, 9648 &attrs, &prot, &page_size, fsr, fi); 9649 if (!ret) { 9650 /* Map a single [sub]page. */ 9651 phys_addr &= TARGET_PAGE_MASK; 9652 address &= TARGET_PAGE_MASK; 9653 tlb_set_page_with_attrs(cs, address, phys_addr, attrs, 9654 prot, mmu_idx, page_size); 9655 return 0; 9656 } 9657 9658 return ret; 9659 } 9660 9661 hwaddr arm_cpu_get_phys_page_attrs_debug(CPUState *cs, vaddr addr, 9662 MemTxAttrs *attrs) 9663 { 9664 ARMCPU *cpu = ARM_CPU(cs); 9665 CPUARMState *env = &cpu->env; 9666 hwaddr phys_addr; 9667 target_ulong page_size; 9668 int prot; 9669 bool ret; 9670 uint32_t fsr; 9671 ARMMMUFaultInfo fi = {}; 9672 ARMMMUIdx mmu_idx = core_to_arm_mmu_idx(env, cpu_mmu_index(env, false)); 9673 9674 *attrs = (MemTxAttrs) {}; 9675 9676 ret = get_phys_addr(env, addr, 0, mmu_idx, &phys_addr, 9677 attrs, &prot, &page_size, &fsr, &fi); 9678 9679 if (ret) { 9680 return -1; 9681 } 9682 return phys_addr; 9683 } 9684 9685 uint32_t HELPER(v7m_mrs)(CPUARMState *env, uint32_t reg) 9686 { 9687 uint32_t mask; 9688 unsigned el = arm_current_el(env); 9689 9690 /* First handle registers which unprivileged can read */ 9691 9692 switch (reg) { 9693 case 0 ... 7: /* xPSR sub-fields */ 9694 mask = 0; 9695 if ((reg & 1) && el) { 9696 mask |= XPSR_EXCP; /* IPSR (unpriv. reads as zero) */ 9697 } 9698 if (!(reg & 4)) { 9699 mask |= XPSR_NZCV | XPSR_Q; /* APSR */ 9700 } 9701 /* EPSR reads as zero */ 9702 return xpsr_read(env) & mask; 9703 break; 9704 case 20: /* CONTROL */ 9705 return env->v7m.control[env->v7m.secure]; 9706 case 0x94: /* CONTROL_NS */ 9707 /* We have to handle this here because unprivileged Secure code 9708 * can read the NS CONTROL register. 9709 */ 9710 if (!env->v7m.secure) { 9711 return 0; 9712 } 9713 return env->v7m.control[M_REG_NS]; 9714 } 9715 9716 if (el == 0) { 9717 return 0; /* unprivileged reads others as zero */ 9718 } 9719 9720 if (arm_feature(env, ARM_FEATURE_M_SECURITY)) { 9721 switch (reg) { 9722 case 0x88: /* MSP_NS */ 9723 if (!env->v7m.secure) { 9724 return 0; 9725 } 9726 return env->v7m.other_ss_msp; 9727 case 0x89: /* PSP_NS */ 9728 if (!env->v7m.secure) { 9729 return 0; 9730 } 9731 return env->v7m.other_ss_psp; 9732 case 0x90: /* PRIMASK_NS */ 9733 if (!env->v7m.secure) { 9734 return 0; 9735 } 9736 return env->v7m.primask[M_REG_NS]; 9737 case 0x91: /* BASEPRI_NS */ 9738 if (!env->v7m.secure) { 9739 return 0; 9740 } 9741 return env->v7m.basepri[M_REG_NS]; 9742 case 0x93: /* FAULTMASK_NS */ 9743 if (!env->v7m.secure) { 9744 return 0; 9745 } 9746 return env->v7m.faultmask[M_REG_NS]; 9747 case 0x98: /* SP_NS */ 9748 { 9749 /* This gives the non-secure SP selected based on whether we're 9750 * currently in handler mode or not, using the NS CONTROL.SPSEL. 9751 */ 9752 bool spsel = env->v7m.control[M_REG_NS] & R_V7M_CONTROL_SPSEL_MASK; 9753 9754 if (!env->v7m.secure) { 9755 return 0; 9756 } 9757 if (!arm_v7m_is_handler_mode(env) && spsel) { 9758 return env->v7m.other_ss_psp; 9759 } else { 9760 return env->v7m.other_ss_msp; 9761 } 9762 } 9763 default: 9764 break; 9765 } 9766 } 9767 9768 switch (reg) { 9769 case 8: /* MSP */ 9770 return (env->v7m.control[env->v7m.secure] & R_V7M_CONTROL_SPSEL_MASK) ? 9771 env->v7m.other_sp : env->regs[13]; 9772 case 9: /* PSP */ 9773 return (env->v7m.control[env->v7m.secure] & R_V7M_CONTROL_SPSEL_MASK) ? 9774 env->regs[13] : env->v7m.other_sp; 9775 case 16: /* PRIMASK */ 9776 return env->v7m.primask[env->v7m.secure]; 9777 case 17: /* BASEPRI */ 9778 case 18: /* BASEPRI_MAX */ 9779 return env->v7m.basepri[env->v7m.secure]; 9780 case 19: /* FAULTMASK */ 9781 return env->v7m.faultmask[env->v7m.secure]; 9782 default: 9783 qemu_log_mask(LOG_GUEST_ERROR, "Attempt to read unknown special" 9784 " register %d\n", reg); 9785 return 0; 9786 } 9787 } 9788 9789 void HELPER(v7m_msr)(CPUARMState *env, uint32_t maskreg, uint32_t val) 9790 { 9791 /* We're passed bits [11..0] of the instruction; extract 9792 * SYSm and the mask bits. 9793 * Invalid combinations of SYSm and mask are UNPREDICTABLE; 9794 * we choose to treat them as if the mask bits were valid. 9795 * NB that the pseudocode 'mask' variable is bits [11..10], 9796 * whereas ours is [11..8]. 9797 */ 9798 uint32_t mask = extract32(maskreg, 8, 4); 9799 uint32_t reg = extract32(maskreg, 0, 8); 9800 9801 if (arm_current_el(env) == 0 && reg > 7) { 9802 /* only xPSR sub-fields may be written by unprivileged */ 9803 return; 9804 } 9805 9806 if (arm_feature(env, ARM_FEATURE_M_SECURITY)) { 9807 switch (reg) { 9808 case 0x88: /* MSP_NS */ 9809 if (!env->v7m.secure) { 9810 return; 9811 } 9812 env->v7m.other_ss_msp = val; 9813 return; 9814 case 0x89: /* PSP_NS */ 9815 if (!env->v7m.secure) { 9816 return; 9817 } 9818 env->v7m.other_ss_psp = val; 9819 return; 9820 case 0x90: /* PRIMASK_NS */ 9821 if (!env->v7m.secure) { 9822 return; 9823 } 9824 env->v7m.primask[M_REG_NS] = val & 1; 9825 return; 9826 case 0x91: /* BASEPRI_NS */ 9827 if (!env->v7m.secure) { 9828 return; 9829 } 9830 env->v7m.basepri[M_REG_NS] = val & 0xff; 9831 return; 9832 case 0x93: /* FAULTMASK_NS */ 9833 if (!env->v7m.secure) { 9834 return; 9835 } 9836 env->v7m.faultmask[M_REG_NS] = val & 1; 9837 return; 9838 case 0x98: /* SP_NS */ 9839 { 9840 /* This gives the non-secure SP selected based on whether we're 9841 * currently in handler mode or not, using the NS CONTROL.SPSEL. 9842 */ 9843 bool spsel = env->v7m.control[M_REG_NS] & R_V7M_CONTROL_SPSEL_MASK; 9844 9845 if (!env->v7m.secure) { 9846 return; 9847 } 9848 if (!arm_v7m_is_handler_mode(env) && spsel) { 9849 env->v7m.other_ss_psp = val; 9850 } else { 9851 env->v7m.other_ss_msp = val; 9852 } 9853 return; 9854 } 9855 default: 9856 break; 9857 } 9858 } 9859 9860 switch (reg) { 9861 case 0 ... 7: /* xPSR sub-fields */ 9862 /* only APSR is actually writable */ 9863 if (!(reg & 4)) { 9864 uint32_t apsrmask = 0; 9865 9866 if (mask & 8) { 9867 apsrmask |= XPSR_NZCV | XPSR_Q; 9868 } 9869 if ((mask & 4) && arm_feature(env, ARM_FEATURE_THUMB_DSP)) { 9870 apsrmask |= XPSR_GE; 9871 } 9872 xpsr_write(env, val, apsrmask); 9873 } 9874 break; 9875 case 8: /* MSP */ 9876 if (env->v7m.control[env->v7m.secure] & R_V7M_CONTROL_SPSEL_MASK) { 9877 env->v7m.other_sp = val; 9878 } else { 9879 env->regs[13] = val; 9880 } 9881 break; 9882 case 9: /* PSP */ 9883 if (env->v7m.control[env->v7m.secure] & R_V7M_CONTROL_SPSEL_MASK) { 9884 env->regs[13] = val; 9885 } else { 9886 env->v7m.other_sp = val; 9887 } 9888 break; 9889 case 16: /* PRIMASK */ 9890 env->v7m.primask[env->v7m.secure] = val & 1; 9891 break; 9892 case 17: /* BASEPRI */ 9893 env->v7m.basepri[env->v7m.secure] = val & 0xff; 9894 break; 9895 case 18: /* BASEPRI_MAX */ 9896 val &= 0xff; 9897 if (val != 0 && (val < env->v7m.basepri[env->v7m.secure] 9898 || env->v7m.basepri[env->v7m.secure] == 0)) { 9899 env->v7m.basepri[env->v7m.secure] = val; 9900 } 9901 break; 9902 case 19: /* FAULTMASK */ 9903 env->v7m.faultmask[env->v7m.secure] = val & 1; 9904 break; 9905 case 20: /* CONTROL */ 9906 /* Writing to the SPSEL bit only has an effect if we are in 9907 * thread mode; other bits can be updated by any privileged code. 9908 * write_v7m_control_spsel() deals with updating the SPSEL bit in 9909 * env->v7m.control, so we only need update the others. 9910 */ 9911 if (!arm_v7m_is_handler_mode(env)) { 9912 write_v7m_control_spsel(env, (val & R_V7M_CONTROL_SPSEL_MASK) != 0); 9913 } 9914 env->v7m.control[env->v7m.secure] &= ~R_V7M_CONTROL_NPRIV_MASK; 9915 env->v7m.control[env->v7m.secure] |= val & R_V7M_CONTROL_NPRIV_MASK; 9916 break; 9917 default: 9918 qemu_log_mask(LOG_GUEST_ERROR, "Attempt to write unknown special" 9919 " register %d\n", reg); 9920 return; 9921 } 9922 } 9923 9924 #endif 9925 9926 void HELPER(dc_zva)(CPUARMState *env, uint64_t vaddr_in) 9927 { 9928 /* Implement DC ZVA, which zeroes a fixed-length block of memory. 9929 * Note that we do not implement the (architecturally mandated) 9930 * alignment fault for attempts to use this on Device memory 9931 * (which matches the usual QEMU behaviour of not implementing either 9932 * alignment faults or any memory attribute handling). 9933 */ 9934 9935 ARMCPU *cpu = arm_env_get_cpu(env); 9936 uint64_t blocklen = 4 << cpu->dcz_blocksize; 9937 uint64_t vaddr = vaddr_in & ~(blocklen - 1); 9938 9939 #ifndef CONFIG_USER_ONLY 9940 { 9941 /* Slightly awkwardly, QEMU's TARGET_PAGE_SIZE may be less than 9942 * the block size so we might have to do more than one TLB lookup. 9943 * We know that in fact for any v8 CPU the page size is at least 4K 9944 * and the block size must be 2K or less, but TARGET_PAGE_SIZE is only 9945 * 1K as an artefact of legacy v5 subpage support being present in the 9946 * same QEMU executable. 9947 */ 9948 int maxidx = DIV_ROUND_UP(blocklen, TARGET_PAGE_SIZE); 9949 void *hostaddr[maxidx]; 9950 int try, i; 9951 unsigned mmu_idx = cpu_mmu_index(env, false); 9952 TCGMemOpIdx oi = make_memop_idx(MO_UB, mmu_idx); 9953 9954 for (try = 0; try < 2; try++) { 9955 9956 for (i = 0; i < maxidx; i++) { 9957 hostaddr[i] = tlb_vaddr_to_host(env, 9958 vaddr + TARGET_PAGE_SIZE * i, 9959 1, mmu_idx); 9960 if (!hostaddr[i]) { 9961 break; 9962 } 9963 } 9964 if (i == maxidx) { 9965 /* If it's all in the TLB it's fair game for just writing to; 9966 * we know we don't need to update dirty status, etc. 9967 */ 9968 for (i = 0; i < maxidx - 1; i++) { 9969 memset(hostaddr[i], 0, TARGET_PAGE_SIZE); 9970 } 9971 memset(hostaddr[i], 0, blocklen - (i * TARGET_PAGE_SIZE)); 9972 return; 9973 } 9974 /* OK, try a store and see if we can populate the tlb. This 9975 * might cause an exception if the memory isn't writable, 9976 * in which case we will longjmp out of here. We must for 9977 * this purpose use the actual register value passed to us 9978 * so that we get the fault address right. 9979 */ 9980 helper_ret_stb_mmu(env, vaddr_in, 0, oi, GETPC()); 9981 /* Now we can populate the other TLB entries, if any */ 9982 for (i = 0; i < maxidx; i++) { 9983 uint64_t va = vaddr + TARGET_PAGE_SIZE * i; 9984 if (va != (vaddr_in & TARGET_PAGE_MASK)) { 9985 helper_ret_stb_mmu(env, va, 0, oi, GETPC()); 9986 } 9987 } 9988 } 9989 9990 /* Slow path (probably attempt to do this to an I/O device or 9991 * similar, or clearing of a block of code we have translations 9992 * cached for). Just do a series of byte writes as the architecture 9993 * demands. It's not worth trying to use a cpu_physical_memory_map(), 9994 * memset(), unmap() sequence here because: 9995 * + we'd need to account for the blocksize being larger than a page 9996 * + the direct-RAM access case is almost always going to be dealt 9997 * with in the fastpath code above, so there's no speed benefit 9998 * + we would have to deal with the map returning NULL because the 9999 * bounce buffer was in use 10000 */ 10001 for (i = 0; i < blocklen; i++) { 10002 helper_ret_stb_mmu(env, vaddr + i, 0, oi, GETPC()); 10003 } 10004 } 10005 #else 10006 memset(g2h(vaddr), 0, blocklen); 10007 #endif 10008 } 10009 10010 /* Note that signed overflow is undefined in C. The following routines are 10011 careful to use unsigned types where modulo arithmetic is required. 10012 Failure to do so _will_ break on newer gcc. */ 10013 10014 /* Signed saturating arithmetic. */ 10015 10016 /* Perform 16-bit signed saturating addition. */ 10017 static inline uint16_t add16_sat(uint16_t a, uint16_t b) 10018 { 10019 uint16_t res; 10020 10021 res = a + b; 10022 if (((res ^ a) & 0x8000) && !((a ^ b) & 0x8000)) { 10023 if (a & 0x8000) 10024 res = 0x8000; 10025 else 10026 res = 0x7fff; 10027 } 10028 return res; 10029 } 10030 10031 /* Perform 8-bit signed saturating addition. */ 10032 static inline uint8_t add8_sat(uint8_t a, uint8_t b) 10033 { 10034 uint8_t res; 10035 10036 res = a + b; 10037 if (((res ^ a) & 0x80) && !((a ^ b) & 0x80)) { 10038 if (a & 0x80) 10039 res = 0x80; 10040 else 10041 res = 0x7f; 10042 } 10043 return res; 10044 } 10045 10046 /* Perform 16-bit signed saturating subtraction. */ 10047 static inline uint16_t sub16_sat(uint16_t a, uint16_t b) 10048 { 10049 uint16_t res; 10050 10051 res = a - b; 10052 if (((res ^ a) & 0x8000) && ((a ^ b) & 0x8000)) { 10053 if (a & 0x8000) 10054 res = 0x8000; 10055 else 10056 res = 0x7fff; 10057 } 10058 return res; 10059 } 10060 10061 /* Perform 8-bit signed saturating subtraction. */ 10062 static inline uint8_t sub8_sat(uint8_t a, uint8_t b) 10063 { 10064 uint8_t res; 10065 10066 res = a - b; 10067 if (((res ^ a) & 0x80) && ((a ^ b) & 0x80)) { 10068 if (a & 0x80) 10069 res = 0x80; 10070 else 10071 res = 0x7f; 10072 } 10073 return res; 10074 } 10075 10076 #define ADD16(a, b, n) RESULT(add16_sat(a, b), n, 16); 10077 #define SUB16(a, b, n) RESULT(sub16_sat(a, b), n, 16); 10078 #define ADD8(a, b, n) RESULT(add8_sat(a, b), n, 8); 10079 #define SUB8(a, b, n) RESULT(sub8_sat(a, b), n, 8); 10080 #define PFX q 10081 10082 #include "op_addsub.h" 10083 10084 /* Unsigned saturating arithmetic. */ 10085 static inline uint16_t add16_usat(uint16_t a, uint16_t b) 10086 { 10087 uint16_t res; 10088 res = a + b; 10089 if (res < a) 10090 res = 0xffff; 10091 return res; 10092 } 10093 10094 static inline uint16_t sub16_usat(uint16_t a, uint16_t b) 10095 { 10096 if (a > b) 10097 return a - b; 10098 else 10099 return 0; 10100 } 10101 10102 static inline uint8_t add8_usat(uint8_t a, uint8_t b) 10103 { 10104 uint8_t res; 10105 res = a + b; 10106 if (res < a) 10107 res = 0xff; 10108 return res; 10109 } 10110 10111 static inline uint8_t sub8_usat(uint8_t a, uint8_t b) 10112 { 10113 if (a > b) 10114 return a - b; 10115 else 10116 return 0; 10117 } 10118 10119 #define ADD16(a, b, n) RESULT(add16_usat(a, b), n, 16); 10120 #define SUB16(a, b, n) RESULT(sub16_usat(a, b), n, 16); 10121 #define ADD8(a, b, n) RESULT(add8_usat(a, b), n, 8); 10122 #define SUB8(a, b, n) RESULT(sub8_usat(a, b), n, 8); 10123 #define PFX uq 10124 10125 #include "op_addsub.h" 10126 10127 /* Signed modulo arithmetic. */ 10128 #define SARITH16(a, b, n, op) do { \ 10129 int32_t sum; \ 10130 sum = (int32_t)(int16_t)(a) op (int32_t)(int16_t)(b); \ 10131 RESULT(sum, n, 16); \ 10132 if (sum >= 0) \ 10133 ge |= 3 << (n * 2); \ 10134 } while(0) 10135 10136 #define SARITH8(a, b, n, op) do { \ 10137 int32_t sum; \ 10138 sum = (int32_t)(int8_t)(a) op (int32_t)(int8_t)(b); \ 10139 RESULT(sum, n, 8); \ 10140 if (sum >= 0) \ 10141 ge |= 1 << n; \ 10142 } while(0) 10143 10144 10145 #define ADD16(a, b, n) SARITH16(a, b, n, +) 10146 #define SUB16(a, b, n) SARITH16(a, b, n, -) 10147 #define ADD8(a, b, n) SARITH8(a, b, n, +) 10148 #define SUB8(a, b, n) SARITH8(a, b, n, -) 10149 #define PFX s 10150 #define ARITH_GE 10151 10152 #include "op_addsub.h" 10153 10154 /* Unsigned modulo arithmetic. */ 10155 #define ADD16(a, b, n) do { \ 10156 uint32_t sum; \ 10157 sum = (uint32_t)(uint16_t)(a) + (uint32_t)(uint16_t)(b); \ 10158 RESULT(sum, n, 16); \ 10159 if ((sum >> 16) == 1) \ 10160 ge |= 3 << (n * 2); \ 10161 } while(0) 10162 10163 #define ADD8(a, b, n) do { \ 10164 uint32_t sum; \ 10165 sum = (uint32_t)(uint8_t)(a) + (uint32_t)(uint8_t)(b); \ 10166 RESULT(sum, n, 8); \ 10167 if ((sum >> 8) == 1) \ 10168 ge |= 1 << n; \ 10169 } while(0) 10170 10171 #define SUB16(a, b, n) do { \ 10172 uint32_t sum; \ 10173 sum = (uint32_t)(uint16_t)(a) - (uint32_t)(uint16_t)(b); \ 10174 RESULT(sum, n, 16); \ 10175 if ((sum >> 16) == 0) \ 10176 ge |= 3 << (n * 2); \ 10177 } while(0) 10178 10179 #define SUB8(a, b, n) do { \ 10180 uint32_t sum; \ 10181 sum = (uint32_t)(uint8_t)(a) - (uint32_t)(uint8_t)(b); \ 10182 RESULT(sum, n, 8); \ 10183 if ((sum >> 8) == 0) \ 10184 ge |= 1 << n; \ 10185 } while(0) 10186 10187 #define PFX u 10188 #define ARITH_GE 10189 10190 #include "op_addsub.h" 10191 10192 /* Halved signed arithmetic. */ 10193 #define ADD16(a, b, n) \ 10194 RESULT(((int32_t)(int16_t)(a) + (int32_t)(int16_t)(b)) >> 1, n, 16) 10195 #define SUB16(a, b, n) \ 10196 RESULT(((int32_t)(int16_t)(a) - (int32_t)(int16_t)(b)) >> 1, n, 16) 10197 #define ADD8(a, b, n) \ 10198 RESULT(((int32_t)(int8_t)(a) + (int32_t)(int8_t)(b)) >> 1, n, 8) 10199 #define SUB8(a, b, n) \ 10200 RESULT(((int32_t)(int8_t)(a) - (int32_t)(int8_t)(b)) >> 1, n, 8) 10201 #define PFX sh 10202 10203 #include "op_addsub.h" 10204 10205 /* Halved unsigned arithmetic. */ 10206 #define ADD16(a, b, n) \ 10207 RESULT(((uint32_t)(uint16_t)(a) + (uint32_t)(uint16_t)(b)) >> 1, n, 16) 10208 #define SUB16(a, b, n) \ 10209 RESULT(((uint32_t)(uint16_t)(a) - (uint32_t)(uint16_t)(b)) >> 1, n, 16) 10210 #define ADD8(a, b, n) \ 10211 RESULT(((uint32_t)(uint8_t)(a) + (uint32_t)(uint8_t)(b)) >> 1, n, 8) 10212 #define SUB8(a, b, n) \ 10213 RESULT(((uint32_t)(uint8_t)(a) - (uint32_t)(uint8_t)(b)) >> 1, n, 8) 10214 #define PFX uh 10215 10216 #include "op_addsub.h" 10217 10218 static inline uint8_t do_usad(uint8_t a, uint8_t b) 10219 { 10220 if (a > b) 10221 return a - b; 10222 else 10223 return b - a; 10224 } 10225 10226 /* Unsigned sum of absolute byte differences. */ 10227 uint32_t HELPER(usad8)(uint32_t a, uint32_t b) 10228 { 10229 uint32_t sum; 10230 sum = do_usad(a, b); 10231 sum += do_usad(a >> 8, b >> 8); 10232 sum += do_usad(a >> 16, b >>16); 10233 sum += do_usad(a >> 24, b >> 24); 10234 return sum; 10235 } 10236 10237 /* For ARMv6 SEL instruction. */ 10238 uint32_t HELPER(sel_flags)(uint32_t flags, uint32_t a, uint32_t b) 10239 { 10240 uint32_t mask; 10241 10242 mask = 0; 10243 if (flags & 1) 10244 mask |= 0xff; 10245 if (flags & 2) 10246 mask |= 0xff00; 10247 if (flags & 4) 10248 mask |= 0xff0000; 10249 if (flags & 8) 10250 mask |= 0xff000000; 10251 return (a & mask) | (b & ~mask); 10252 } 10253 10254 /* VFP support. We follow the convention used for VFP instructions: 10255 Single precision routines have a "s" suffix, double precision a 10256 "d" suffix. */ 10257 10258 /* Convert host exception flags to vfp form. */ 10259 static inline int vfp_exceptbits_from_host(int host_bits) 10260 { 10261 int target_bits = 0; 10262 10263 if (host_bits & float_flag_invalid) 10264 target_bits |= 1; 10265 if (host_bits & float_flag_divbyzero) 10266 target_bits |= 2; 10267 if (host_bits & float_flag_overflow) 10268 target_bits |= 4; 10269 if (host_bits & (float_flag_underflow | float_flag_output_denormal)) 10270 target_bits |= 8; 10271 if (host_bits & float_flag_inexact) 10272 target_bits |= 0x10; 10273 if (host_bits & float_flag_input_denormal) 10274 target_bits |= 0x80; 10275 return target_bits; 10276 } 10277 10278 uint32_t HELPER(vfp_get_fpscr)(CPUARMState *env) 10279 { 10280 int i; 10281 uint32_t fpscr; 10282 10283 fpscr = (env->vfp.xregs[ARM_VFP_FPSCR] & 0xffc8ffff) 10284 | (env->vfp.vec_len << 16) 10285 | (env->vfp.vec_stride << 20); 10286 i = get_float_exception_flags(&env->vfp.fp_status); 10287 i |= get_float_exception_flags(&env->vfp.standard_fp_status); 10288 fpscr |= vfp_exceptbits_from_host(i); 10289 return fpscr; 10290 } 10291 10292 uint32_t vfp_get_fpscr(CPUARMState *env) 10293 { 10294 return HELPER(vfp_get_fpscr)(env); 10295 } 10296 10297 /* Convert vfp exception flags to target form. */ 10298 static inline int vfp_exceptbits_to_host(int target_bits) 10299 { 10300 int host_bits = 0; 10301 10302 if (target_bits & 1) 10303 host_bits |= float_flag_invalid; 10304 if (target_bits & 2) 10305 host_bits |= float_flag_divbyzero; 10306 if (target_bits & 4) 10307 host_bits |= float_flag_overflow; 10308 if (target_bits & 8) 10309 host_bits |= float_flag_underflow; 10310 if (target_bits & 0x10) 10311 host_bits |= float_flag_inexact; 10312 if (target_bits & 0x80) 10313 host_bits |= float_flag_input_denormal; 10314 return host_bits; 10315 } 10316 10317 void HELPER(vfp_set_fpscr)(CPUARMState *env, uint32_t val) 10318 { 10319 int i; 10320 uint32_t changed; 10321 10322 changed = env->vfp.xregs[ARM_VFP_FPSCR]; 10323 env->vfp.xregs[ARM_VFP_FPSCR] = (val & 0xffc8ffff); 10324 env->vfp.vec_len = (val >> 16) & 7; 10325 env->vfp.vec_stride = (val >> 20) & 3; 10326 10327 changed ^= val; 10328 if (changed & (3 << 22)) { 10329 i = (val >> 22) & 3; 10330 switch (i) { 10331 case FPROUNDING_TIEEVEN: 10332 i = float_round_nearest_even; 10333 break; 10334 case FPROUNDING_POSINF: 10335 i = float_round_up; 10336 break; 10337 case FPROUNDING_NEGINF: 10338 i = float_round_down; 10339 break; 10340 case FPROUNDING_ZERO: 10341 i = float_round_to_zero; 10342 break; 10343 } 10344 set_float_rounding_mode(i, &env->vfp.fp_status); 10345 } 10346 if (changed & (1 << 24)) { 10347 set_flush_to_zero((val & (1 << 24)) != 0, &env->vfp.fp_status); 10348 set_flush_inputs_to_zero((val & (1 << 24)) != 0, &env->vfp.fp_status); 10349 } 10350 if (changed & (1 << 25)) 10351 set_default_nan_mode((val & (1 << 25)) != 0, &env->vfp.fp_status); 10352 10353 i = vfp_exceptbits_to_host(val); 10354 set_float_exception_flags(i, &env->vfp.fp_status); 10355 set_float_exception_flags(0, &env->vfp.standard_fp_status); 10356 } 10357 10358 void vfp_set_fpscr(CPUARMState *env, uint32_t val) 10359 { 10360 HELPER(vfp_set_fpscr)(env, val); 10361 } 10362 10363 #define VFP_HELPER(name, p) HELPER(glue(glue(vfp_,name),p)) 10364 10365 #define VFP_BINOP(name) \ 10366 float32 VFP_HELPER(name, s)(float32 a, float32 b, void *fpstp) \ 10367 { \ 10368 float_status *fpst = fpstp; \ 10369 return float32_ ## name(a, b, fpst); \ 10370 } \ 10371 float64 VFP_HELPER(name, d)(float64 a, float64 b, void *fpstp) \ 10372 { \ 10373 float_status *fpst = fpstp; \ 10374 return float64_ ## name(a, b, fpst); \ 10375 } 10376 VFP_BINOP(add) 10377 VFP_BINOP(sub) 10378 VFP_BINOP(mul) 10379 VFP_BINOP(div) 10380 VFP_BINOP(min) 10381 VFP_BINOP(max) 10382 VFP_BINOP(minnum) 10383 VFP_BINOP(maxnum) 10384 #undef VFP_BINOP 10385 10386 float32 VFP_HELPER(neg, s)(float32 a) 10387 { 10388 return float32_chs(a); 10389 } 10390 10391 float64 VFP_HELPER(neg, d)(float64 a) 10392 { 10393 return float64_chs(a); 10394 } 10395 10396 float32 VFP_HELPER(abs, s)(float32 a) 10397 { 10398 return float32_abs(a); 10399 } 10400 10401 float64 VFP_HELPER(abs, d)(float64 a) 10402 { 10403 return float64_abs(a); 10404 } 10405 10406 float32 VFP_HELPER(sqrt, s)(float32 a, CPUARMState *env) 10407 { 10408 return float32_sqrt(a, &env->vfp.fp_status); 10409 } 10410 10411 float64 VFP_HELPER(sqrt, d)(float64 a, CPUARMState *env) 10412 { 10413 return float64_sqrt(a, &env->vfp.fp_status); 10414 } 10415 10416 /* XXX: check quiet/signaling case */ 10417 #define DO_VFP_cmp(p, type) \ 10418 void VFP_HELPER(cmp, p)(type a, type b, CPUARMState *env) \ 10419 { \ 10420 uint32_t flags; \ 10421 switch(type ## _compare_quiet(a, b, &env->vfp.fp_status)) { \ 10422 case 0: flags = 0x6; break; \ 10423 case -1: flags = 0x8; break; \ 10424 case 1: flags = 0x2; break; \ 10425 default: case 2: flags = 0x3; break; \ 10426 } \ 10427 env->vfp.xregs[ARM_VFP_FPSCR] = (flags << 28) \ 10428 | (env->vfp.xregs[ARM_VFP_FPSCR] & 0x0fffffff); \ 10429 } \ 10430 void VFP_HELPER(cmpe, p)(type a, type b, CPUARMState *env) \ 10431 { \ 10432 uint32_t flags; \ 10433 switch(type ## _compare(a, b, &env->vfp.fp_status)) { \ 10434 case 0: flags = 0x6; break; \ 10435 case -1: flags = 0x8; break; \ 10436 case 1: flags = 0x2; break; \ 10437 default: case 2: flags = 0x3; break; \ 10438 } \ 10439 env->vfp.xregs[ARM_VFP_FPSCR] = (flags << 28) \ 10440 | (env->vfp.xregs[ARM_VFP_FPSCR] & 0x0fffffff); \ 10441 } 10442 DO_VFP_cmp(s, float32) 10443 DO_VFP_cmp(d, float64) 10444 #undef DO_VFP_cmp 10445 10446 /* Integer to float and float to integer conversions */ 10447 10448 #define CONV_ITOF(name, fsz, sign) \ 10449 float##fsz HELPER(name)(uint32_t x, void *fpstp) \ 10450 { \ 10451 float_status *fpst = fpstp; \ 10452 return sign##int32_to_##float##fsz((sign##int32_t)x, fpst); \ 10453 } 10454 10455 #define CONV_FTOI(name, fsz, sign, round) \ 10456 uint32_t HELPER(name)(float##fsz x, void *fpstp) \ 10457 { \ 10458 float_status *fpst = fpstp; \ 10459 if (float##fsz##_is_any_nan(x)) { \ 10460 float_raise(float_flag_invalid, fpst); \ 10461 return 0; \ 10462 } \ 10463 return float##fsz##_to_##sign##int32##round(x, fpst); \ 10464 } 10465 10466 #define FLOAT_CONVS(name, p, fsz, sign) \ 10467 CONV_ITOF(vfp_##name##to##p, fsz, sign) \ 10468 CONV_FTOI(vfp_to##name##p, fsz, sign, ) \ 10469 CONV_FTOI(vfp_to##name##z##p, fsz, sign, _round_to_zero) 10470 10471 FLOAT_CONVS(si, s, 32, ) 10472 FLOAT_CONVS(si, d, 64, ) 10473 FLOAT_CONVS(ui, s, 32, u) 10474 FLOAT_CONVS(ui, d, 64, u) 10475 10476 #undef CONV_ITOF 10477 #undef CONV_FTOI 10478 #undef FLOAT_CONVS 10479 10480 /* floating point conversion */ 10481 float64 VFP_HELPER(fcvtd, s)(float32 x, CPUARMState *env) 10482 { 10483 float64 r = float32_to_float64(x, &env->vfp.fp_status); 10484 /* ARM requires that S<->D conversion of any kind of NaN generates 10485 * a quiet NaN by forcing the most significant frac bit to 1. 10486 */ 10487 return float64_maybe_silence_nan(r, &env->vfp.fp_status); 10488 } 10489 10490 float32 VFP_HELPER(fcvts, d)(float64 x, CPUARMState *env) 10491 { 10492 float32 r = float64_to_float32(x, &env->vfp.fp_status); 10493 /* ARM requires that S<->D conversion of any kind of NaN generates 10494 * a quiet NaN by forcing the most significant frac bit to 1. 10495 */ 10496 return float32_maybe_silence_nan(r, &env->vfp.fp_status); 10497 } 10498 10499 /* VFP3 fixed point conversion. */ 10500 #define VFP_CONV_FIX_FLOAT(name, p, fsz, isz, itype) \ 10501 float##fsz HELPER(vfp_##name##to##p)(uint##isz##_t x, uint32_t shift, \ 10502 void *fpstp) \ 10503 { \ 10504 float_status *fpst = fpstp; \ 10505 float##fsz tmp; \ 10506 tmp = itype##_to_##float##fsz(x, fpst); \ 10507 return float##fsz##_scalbn(tmp, -(int)shift, fpst); \ 10508 } 10509 10510 /* Notice that we want only input-denormal exception flags from the 10511 * scalbn operation: the other possible flags (overflow+inexact if 10512 * we overflow to infinity, output-denormal) aren't correct for the 10513 * complete scale-and-convert operation. 10514 */ 10515 #define VFP_CONV_FLOAT_FIX_ROUND(name, p, fsz, isz, itype, round) \ 10516 uint##isz##_t HELPER(vfp_to##name##p##round)(float##fsz x, \ 10517 uint32_t shift, \ 10518 void *fpstp) \ 10519 { \ 10520 float_status *fpst = fpstp; \ 10521 int old_exc_flags = get_float_exception_flags(fpst); \ 10522 float##fsz tmp; \ 10523 if (float##fsz##_is_any_nan(x)) { \ 10524 float_raise(float_flag_invalid, fpst); \ 10525 return 0; \ 10526 } \ 10527 tmp = float##fsz##_scalbn(x, shift, fpst); \ 10528 old_exc_flags |= get_float_exception_flags(fpst) \ 10529 & float_flag_input_denormal; \ 10530 set_float_exception_flags(old_exc_flags, fpst); \ 10531 return float##fsz##_to_##itype##round(tmp, fpst); \ 10532 } 10533 10534 #define VFP_CONV_FIX(name, p, fsz, isz, itype) \ 10535 VFP_CONV_FIX_FLOAT(name, p, fsz, isz, itype) \ 10536 VFP_CONV_FLOAT_FIX_ROUND(name, p, fsz, isz, itype, _round_to_zero) \ 10537 VFP_CONV_FLOAT_FIX_ROUND(name, p, fsz, isz, itype, ) 10538 10539 #define VFP_CONV_FIX_A64(name, p, fsz, isz, itype) \ 10540 VFP_CONV_FIX_FLOAT(name, p, fsz, isz, itype) \ 10541 VFP_CONV_FLOAT_FIX_ROUND(name, p, fsz, isz, itype, ) 10542 10543 VFP_CONV_FIX(sh, d, 64, 64, int16) 10544 VFP_CONV_FIX(sl, d, 64, 64, int32) 10545 VFP_CONV_FIX_A64(sq, d, 64, 64, int64) 10546 VFP_CONV_FIX(uh, d, 64, 64, uint16) 10547 VFP_CONV_FIX(ul, d, 64, 64, uint32) 10548 VFP_CONV_FIX_A64(uq, d, 64, 64, uint64) 10549 VFP_CONV_FIX(sh, s, 32, 32, int16) 10550 VFP_CONV_FIX(sl, s, 32, 32, int32) 10551 VFP_CONV_FIX_A64(sq, s, 32, 64, int64) 10552 VFP_CONV_FIX(uh, s, 32, 32, uint16) 10553 VFP_CONV_FIX(ul, s, 32, 32, uint32) 10554 VFP_CONV_FIX_A64(uq, s, 32, 64, uint64) 10555 #undef VFP_CONV_FIX 10556 #undef VFP_CONV_FIX_FLOAT 10557 #undef VFP_CONV_FLOAT_FIX_ROUND 10558 10559 /* Set the current fp rounding mode and return the old one. 10560 * The argument is a softfloat float_round_ value. 10561 */ 10562 uint32_t HELPER(set_rmode)(uint32_t rmode, CPUARMState *env) 10563 { 10564 float_status *fp_status = &env->vfp.fp_status; 10565 10566 uint32_t prev_rmode = get_float_rounding_mode(fp_status); 10567 set_float_rounding_mode(rmode, fp_status); 10568 10569 return prev_rmode; 10570 } 10571 10572 /* Set the current fp rounding mode in the standard fp status and return 10573 * the old one. This is for NEON instructions that need to change the 10574 * rounding mode but wish to use the standard FPSCR values for everything 10575 * else. Always set the rounding mode back to the correct value after 10576 * modifying it. 10577 * The argument is a softfloat float_round_ value. 10578 */ 10579 uint32_t HELPER(set_neon_rmode)(uint32_t rmode, CPUARMState *env) 10580 { 10581 float_status *fp_status = &env->vfp.standard_fp_status; 10582 10583 uint32_t prev_rmode = get_float_rounding_mode(fp_status); 10584 set_float_rounding_mode(rmode, fp_status); 10585 10586 return prev_rmode; 10587 } 10588 10589 /* Half precision conversions. */ 10590 static float32 do_fcvt_f16_to_f32(uint32_t a, CPUARMState *env, float_status *s) 10591 { 10592 int ieee = (env->vfp.xregs[ARM_VFP_FPSCR] & (1 << 26)) == 0; 10593 float32 r = float16_to_float32(make_float16(a), ieee, s); 10594 if (ieee) { 10595 return float32_maybe_silence_nan(r, s); 10596 } 10597 return r; 10598 } 10599 10600 static uint32_t do_fcvt_f32_to_f16(float32 a, CPUARMState *env, float_status *s) 10601 { 10602 int ieee = (env->vfp.xregs[ARM_VFP_FPSCR] & (1 << 26)) == 0; 10603 float16 r = float32_to_float16(a, ieee, s); 10604 if (ieee) { 10605 r = float16_maybe_silence_nan(r, s); 10606 } 10607 return float16_val(r); 10608 } 10609 10610 float32 HELPER(neon_fcvt_f16_to_f32)(uint32_t a, CPUARMState *env) 10611 { 10612 return do_fcvt_f16_to_f32(a, env, &env->vfp.standard_fp_status); 10613 } 10614 10615 uint32_t HELPER(neon_fcvt_f32_to_f16)(float32 a, CPUARMState *env) 10616 { 10617 return do_fcvt_f32_to_f16(a, env, &env->vfp.standard_fp_status); 10618 } 10619 10620 float32 HELPER(vfp_fcvt_f16_to_f32)(uint32_t a, CPUARMState *env) 10621 { 10622 return do_fcvt_f16_to_f32(a, env, &env->vfp.fp_status); 10623 } 10624 10625 uint32_t HELPER(vfp_fcvt_f32_to_f16)(float32 a, CPUARMState *env) 10626 { 10627 return do_fcvt_f32_to_f16(a, env, &env->vfp.fp_status); 10628 } 10629 10630 float64 HELPER(vfp_fcvt_f16_to_f64)(uint32_t a, CPUARMState *env) 10631 { 10632 int ieee = (env->vfp.xregs[ARM_VFP_FPSCR] & (1 << 26)) == 0; 10633 float64 r = float16_to_float64(make_float16(a), ieee, &env->vfp.fp_status); 10634 if (ieee) { 10635 return float64_maybe_silence_nan(r, &env->vfp.fp_status); 10636 } 10637 return r; 10638 } 10639 10640 uint32_t HELPER(vfp_fcvt_f64_to_f16)(float64 a, CPUARMState *env) 10641 { 10642 int ieee = (env->vfp.xregs[ARM_VFP_FPSCR] & (1 << 26)) == 0; 10643 float16 r = float64_to_float16(a, ieee, &env->vfp.fp_status); 10644 if (ieee) { 10645 r = float16_maybe_silence_nan(r, &env->vfp.fp_status); 10646 } 10647 return float16_val(r); 10648 } 10649 10650 #define float32_two make_float32(0x40000000) 10651 #define float32_three make_float32(0x40400000) 10652 #define float32_one_point_five make_float32(0x3fc00000) 10653 10654 float32 HELPER(recps_f32)(float32 a, float32 b, CPUARMState *env) 10655 { 10656 float_status *s = &env->vfp.standard_fp_status; 10657 if ((float32_is_infinity(a) && float32_is_zero_or_denormal(b)) || 10658 (float32_is_infinity(b) && float32_is_zero_or_denormal(a))) { 10659 if (!(float32_is_zero(a) || float32_is_zero(b))) { 10660 float_raise(float_flag_input_denormal, s); 10661 } 10662 return float32_two; 10663 } 10664 return float32_sub(float32_two, float32_mul(a, b, s), s); 10665 } 10666 10667 float32 HELPER(rsqrts_f32)(float32 a, float32 b, CPUARMState *env) 10668 { 10669 float_status *s = &env->vfp.standard_fp_status; 10670 float32 product; 10671 if ((float32_is_infinity(a) && float32_is_zero_or_denormal(b)) || 10672 (float32_is_infinity(b) && float32_is_zero_or_denormal(a))) { 10673 if (!(float32_is_zero(a) || float32_is_zero(b))) { 10674 float_raise(float_flag_input_denormal, s); 10675 } 10676 return float32_one_point_five; 10677 } 10678 product = float32_mul(a, b, s); 10679 return float32_div(float32_sub(float32_three, product, s), float32_two, s); 10680 } 10681 10682 /* NEON helpers. */ 10683 10684 /* Constants 256 and 512 are used in some helpers; we avoid relying on 10685 * int->float conversions at run-time. */ 10686 #define float64_256 make_float64(0x4070000000000000LL) 10687 #define float64_512 make_float64(0x4080000000000000LL) 10688 #define float32_maxnorm make_float32(0x7f7fffff) 10689 #define float64_maxnorm make_float64(0x7fefffffffffffffLL) 10690 10691 /* Reciprocal functions 10692 * 10693 * The algorithm that must be used to calculate the estimate 10694 * is specified by the ARM ARM, see FPRecipEstimate() 10695 */ 10696 10697 static float64 recip_estimate(float64 a, float_status *real_fp_status) 10698 { 10699 /* These calculations mustn't set any fp exception flags, 10700 * so we use a local copy of the fp_status. 10701 */ 10702 float_status dummy_status = *real_fp_status; 10703 float_status *s = &dummy_status; 10704 /* q = (int)(a * 512.0) */ 10705 float64 q = float64_mul(float64_512, a, s); 10706 int64_t q_int = float64_to_int64_round_to_zero(q, s); 10707 10708 /* r = 1.0 / (((double)q + 0.5) / 512.0) */ 10709 q = int64_to_float64(q_int, s); 10710 q = float64_add(q, float64_half, s); 10711 q = float64_div(q, float64_512, s); 10712 q = float64_div(float64_one, q, s); 10713 10714 /* s = (int)(256.0 * r + 0.5) */ 10715 q = float64_mul(q, float64_256, s); 10716 q = float64_add(q, float64_half, s); 10717 q_int = float64_to_int64_round_to_zero(q, s); 10718 10719 /* return (double)s / 256.0 */ 10720 return float64_div(int64_to_float64(q_int, s), float64_256, s); 10721 } 10722 10723 /* Common wrapper to call recip_estimate */ 10724 static float64 call_recip_estimate(float64 num, int off, float_status *fpst) 10725 { 10726 uint64_t val64 = float64_val(num); 10727 uint64_t frac = extract64(val64, 0, 52); 10728 int64_t exp = extract64(val64, 52, 11); 10729 uint64_t sbit; 10730 float64 scaled, estimate; 10731 10732 /* Generate the scaled number for the estimate function */ 10733 if (exp == 0) { 10734 if (extract64(frac, 51, 1) == 0) { 10735 exp = -1; 10736 frac = extract64(frac, 0, 50) << 2; 10737 } else { 10738 frac = extract64(frac, 0, 51) << 1; 10739 } 10740 } 10741 10742 /* scaled = '0' : '01111111110' : fraction<51:44> : Zeros(44); */ 10743 scaled = make_float64((0x3feULL << 52) 10744 | extract64(frac, 44, 8) << 44); 10745 10746 estimate = recip_estimate(scaled, fpst); 10747 10748 /* Build new result */ 10749 val64 = float64_val(estimate); 10750 sbit = 0x8000000000000000ULL & val64; 10751 exp = off - exp; 10752 frac = extract64(val64, 0, 52); 10753 10754 if (exp == 0) { 10755 frac = 1ULL << 51 | extract64(frac, 1, 51); 10756 } else if (exp == -1) { 10757 frac = 1ULL << 50 | extract64(frac, 2, 50); 10758 exp = 0; 10759 } 10760 10761 return make_float64(sbit | (exp << 52) | frac); 10762 } 10763 10764 static bool round_to_inf(float_status *fpst, bool sign_bit) 10765 { 10766 switch (fpst->float_rounding_mode) { 10767 case float_round_nearest_even: /* Round to Nearest */ 10768 return true; 10769 case float_round_up: /* Round to +Inf */ 10770 return !sign_bit; 10771 case float_round_down: /* Round to -Inf */ 10772 return sign_bit; 10773 case float_round_to_zero: /* Round to Zero */ 10774 return false; 10775 } 10776 10777 g_assert_not_reached(); 10778 } 10779 10780 float32 HELPER(recpe_f32)(float32 input, void *fpstp) 10781 { 10782 float_status *fpst = fpstp; 10783 float32 f32 = float32_squash_input_denormal(input, fpst); 10784 uint32_t f32_val = float32_val(f32); 10785 uint32_t f32_sbit = 0x80000000ULL & f32_val; 10786 int32_t f32_exp = extract32(f32_val, 23, 8); 10787 uint32_t f32_frac = extract32(f32_val, 0, 23); 10788 float64 f64, r64; 10789 uint64_t r64_val; 10790 int64_t r64_exp; 10791 uint64_t r64_frac; 10792 10793 if (float32_is_any_nan(f32)) { 10794 float32 nan = f32; 10795 if (float32_is_signaling_nan(f32, fpst)) { 10796 float_raise(float_flag_invalid, fpst); 10797 nan = float32_maybe_silence_nan(f32, fpst); 10798 } 10799 if (fpst->default_nan_mode) { 10800 nan = float32_default_nan(fpst); 10801 } 10802 return nan; 10803 } else if (float32_is_infinity(f32)) { 10804 return float32_set_sign(float32_zero, float32_is_neg(f32)); 10805 } else if (float32_is_zero(f32)) { 10806 float_raise(float_flag_divbyzero, fpst); 10807 return float32_set_sign(float32_infinity, float32_is_neg(f32)); 10808 } else if ((f32_val & ~(1ULL << 31)) < (1ULL << 21)) { 10809 /* Abs(value) < 2.0^-128 */ 10810 float_raise(float_flag_overflow | float_flag_inexact, fpst); 10811 if (round_to_inf(fpst, f32_sbit)) { 10812 return float32_set_sign(float32_infinity, float32_is_neg(f32)); 10813 } else { 10814 return float32_set_sign(float32_maxnorm, float32_is_neg(f32)); 10815 } 10816 } else if (f32_exp >= 253 && fpst->flush_to_zero) { 10817 float_raise(float_flag_underflow, fpst); 10818 return float32_set_sign(float32_zero, float32_is_neg(f32)); 10819 } 10820 10821 10822 f64 = make_float64(((int64_t)(f32_exp) << 52) | (int64_t)(f32_frac) << 29); 10823 r64 = call_recip_estimate(f64, 253, fpst); 10824 r64_val = float64_val(r64); 10825 r64_exp = extract64(r64_val, 52, 11); 10826 r64_frac = extract64(r64_val, 0, 52); 10827 10828 /* result = sign : result_exp<7:0> : fraction<51:29>; */ 10829 return make_float32(f32_sbit | 10830 (r64_exp & 0xff) << 23 | 10831 extract64(r64_frac, 29, 24)); 10832 } 10833 10834 float64 HELPER(recpe_f64)(float64 input, void *fpstp) 10835 { 10836 float_status *fpst = fpstp; 10837 float64 f64 = float64_squash_input_denormal(input, fpst); 10838 uint64_t f64_val = float64_val(f64); 10839 uint64_t f64_sbit = 0x8000000000000000ULL & f64_val; 10840 int64_t f64_exp = extract64(f64_val, 52, 11); 10841 float64 r64; 10842 uint64_t r64_val; 10843 int64_t r64_exp; 10844 uint64_t r64_frac; 10845 10846 /* Deal with any special cases */ 10847 if (float64_is_any_nan(f64)) { 10848 float64 nan = f64; 10849 if (float64_is_signaling_nan(f64, fpst)) { 10850 float_raise(float_flag_invalid, fpst); 10851 nan = float64_maybe_silence_nan(f64, fpst); 10852 } 10853 if (fpst->default_nan_mode) { 10854 nan = float64_default_nan(fpst); 10855 } 10856 return nan; 10857 } else if (float64_is_infinity(f64)) { 10858 return float64_set_sign(float64_zero, float64_is_neg(f64)); 10859 } else if (float64_is_zero(f64)) { 10860 float_raise(float_flag_divbyzero, fpst); 10861 return float64_set_sign(float64_infinity, float64_is_neg(f64)); 10862 } else if ((f64_val & ~(1ULL << 63)) < (1ULL << 50)) { 10863 /* Abs(value) < 2.0^-1024 */ 10864 float_raise(float_flag_overflow | float_flag_inexact, fpst); 10865 if (round_to_inf(fpst, f64_sbit)) { 10866 return float64_set_sign(float64_infinity, float64_is_neg(f64)); 10867 } else { 10868 return float64_set_sign(float64_maxnorm, float64_is_neg(f64)); 10869 } 10870 } else if (f64_exp >= 2045 && fpst->flush_to_zero) { 10871 float_raise(float_flag_underflow, fpst); 10872 return float64_set_sign(float64_zero, float64_is_neg(f64)); 10873 } 10874 10875 r64 = call_recip_estimate(f64, 2045, fpst); 10876 r64_val = float64_val(r64); 10877 r64_exp = extract64(r64_val, 52, 11); 10878 r64_frac = extract64(r64_val, 0, 52); 10879 10880 /* result = sign : result_exp<10:0> : fraction<51:0> */ 10881 return make_float64(f64_sbit | 10882 ((r64_exp & 0x7ff) << 52) | 10883 r64_frac); 10884 } 10885 10886 /* The algorithm that must be used to calculate the estimate 10887 * is specified by the ARM ARM. 10888 */ 10889 static float64 recip_sqrt_estimate(float64 a, float_status *real_fp_status) 10890 { 10891 /* These calculations mustn't set any fp exception flags, 10892 * so we use a local copy of the fp_status. 10893 */ 10894 float_status dummy_status = *real_fp_status; 10895 float_status *s = &dummy_status; 10896 float64 q; 10897 int64_t q_int; 10898 10899 if (float64_lt(a, float64_half, s)) { 10900 /* range 0.25 <= a < 0.5 */ 10901 10902 /* a in units of 1/512 rounded down */ 10903 /* q0 = (int)(a * 512.0); */ 10904 q = float64_mul(float64_512, a, s); 10905 q_int = float64_to_int64_round_to_zero(q, s); 10906 10907 /* reciprocal root r */ 10908 /* r = 1.0 / sqrt(((double)q0 + 0.5) / 512.0); */ 10909 q = int64_to_float64(q_int, s); 10910 q = float64_add(q, float64_half, s); 10911 q = float64_div(q, float64_512, s); 10912 q = float64_sqrt(q, s); 10913 q = float64_div(float64_one, q, s); 10914 } else { 10915 /* range 0.5 <= a < 1.0 */ 10916 10917 /* a in units of 1/256 rounded down */ 10918 /* q1 = (int)(a * 256.0); */ 10919 q = float64_mul(float64_256, a, s); 10920 int64_t q_int = float64_to_int64_round_to_zero(q, s); 10921 10922 /* reciprocal root r */ 10923 /* r = 1.0 /sqrt(((double)q1 + 0.5) / 256); */ 10924 q = int64_to_float64(q_int, s); 10925 q = float64_add(q, float64_half, s); 10926 q = float64_div(q, float64_256, s); 10927 q = float64_sqrt(q, s); 10928 q = float64_div(float64_one, q, s); 10929 } 10930 /* r in units of 1/256 rounded to nearest */ 10931 /* s = (int)(256.0 * r + 0.5); */ 10932 10933 q = float64_mul(q, float64_256,s ); 10934 q = float64_add(q, float64_half, s); 10935 q_int = float64_to_int64_round_to_zero(q, s); 10936 10937 /* return (double)s / 256.0;*/ 10938 return float64_div(int64_to_float64(q_int, s), float64_256, s); 10939 } 10940 10941 float32 HELPER(rsqrte_f32)(float32 input, void *fpstp) 10942 { 10943 float_status *s = fpstp; 10944 float32 f32 = float32_squash_input_denormal(input, s); 10945 uint32_t val = float32_val(f32); 10946 uint32_t f32_sbit = 0x80000000 & val; 10947 int32_t f32_exp = extract32(val, 23, 8); 10948 uint32_t f32_frac = extract32(val, 0, 23); 10949 uint64_t f64_frac; 10950 uint64_t val64; 10951 int result_exp; 10952 float64 f64; 10953 10954 if (float32_is_any_nan(f32)) { 10955 float32 nan = f32; 10956 if (float32_is_signaling_nan(f32, s)) { 10957 float_raise(float_flag_invalid, s); 10958 nan = float32_maybe_silence_nan(f32, s); 10959 } 10960 if (s->default_nan_mode) { 10961 nan = float32_default_nan(s); 10962 } 10963 return nan; 10964 } else if (float32_is_zero(f32)) { 10965 float_raise(float_flag_divbyzero, s); 10966 return float32_set_sign(float32_infinity, float32_is_neg(f32)); 10967 } else if (float32_is_neg(f32)) { 10968 float_raise(float_flag_invalid, s); 10969 return float32_default_nan(s); 10970 } else if (float32_is_infinity(f32)) { 10971 return float32_zero; 10972 } 10973 10974 /* Scale and normalize to a double-precision value between 0.25 and 1.0, 10975 * preserving the parity of the exponent. */ 10976 10977 f64_frac = ((uint64_t) f32_frac) << 29; 10978 if (f32_exp == 0) { 10979 while (extract64(f64_frac, 51, 1) == 0) { 10980 f64_frac = f64_frac << 1; 10981 f32_exp = f32_exp-1; 10982 } 10983 f64_frac = extract64(f64_frac, 0, 51) << 1; 10984 } 10985 10986 if (extract64(f32_exp, 0, 1) == 0) { 10987 f64 = make_float64(((uint64_t) f32_sbit) << 32 10988 | (0x3feULL << 52) 10989 | f64_frac); 10990 } else { 10991 f64 = make_float64(((uint64_t) f32_sbit) << 32 10992 | (0x3fdULL << 52) 10993 | f64_frac); 10994 } 10995 10996 result_exp = (380 - f32_exp) / 2; 10997 10998 f64 = recip_sqrt_estimate(f64, s); 10999 11000 val64 = float64_val(f64); 11001 11002 val = ((result_exp & 0xff) << 23) 11003 | ((val64 >> 29) & 0x7fffff); 11004 return make_float32(val); 11005 } 11006 11007 float64 HELPER(rsqrte_f64)(float64 input, void *fpstp) 11008 { 11009 float_status *s = fpstp; 11010 float64 f64 = float64_squash_input_denormal(input, s); 11011 uint64_t val = float64_val(f64); 11012 uint64_t f64_sbit = 0x8000000000000000ULL & val; 11013 int64_t f64_exp = extract64(val, 52, 11); 11014 uint64_t f64_frac = extract64(val, 0, 52); 11015 int64_t result_exp; 11016 uint64_t result_frac; 11017 11018 if (float64_is_any_nan(f64)) { 11019 float64 nan = f64; 11020 if (float64_is_signaling_nan(f64, s)) { 11021 float_raise(float_flag_invalid, s); 11022 nan = float64_maybe_silence_nan(f64, s); 11023 } 11024 if (s->default_nan_mode) { 11025 nan = float64_default_nan(s); 11026 } 11027 return nan; 11028 } else if (float64_is_zero(f64)) { 11029 float_raise(float_flag_divbyzero, s); 11030 return float64_set_sign(float64_infinity, float64_is_neg(f64)); 11031 } else if (float64_is_neg(f64)) { 11032 float_raise(float_flag_invalid, s); 11033 return float64_default_nan(s); 11034 } else if (float64_is_infinity(f64)) { 11035 return float64_zero; 11036 } 11037 11038 /* Scale and normalize to a double-precision value between 0.25 and 1.0, 11039 * preserving the parity of the exponent. */ 11040 11041 if (f64_exp == 0) { 11042 while (extract64(f64_frac, 51, 1) == 0) { 11043 f64_frac = f64_frac << 1; 11044 f64_exp = f64_exp - 1; 11045 } 11046 f64_frac = extract64(f64_frac, 0, 51) << 1; 11047 } 11048 11049 if (extract64(f64_exp, 0, 1) == 0) { 11050 f64 = make_float64(f64_sbit 11051 | (0x3feULL << 52) 11052 | f64_frac); 11053 } else { 11054 f64 = make_float64(f64_sbit 11055 | (0x3fdULL << 52) 11056 | f64_frac); 11057 } 11058 11059 result_exp = (3068 - f64_exp) / 2; 11060 11061 f64 = recip_sqrt_estimate(f64, s); 11062 11063 result_frac = extract64(float64_val(f64), 0, 52); 11064 11065 return make_float64(f64_sbit | 11066 ((result_exp & 0x7ff) << 52) | 11067 result_frac); 11068 } 11069 11070 uint32_t HELPER(recpe_u32)(uint32_t a, void *fpstp) 11071 { 11072 float_status *s = fpstp; 11073 float64 f64; 11074 11075 if ((a & 0x80000000) == 0) { 11076 return 0xffffffff; 11077 } 11078 11079 f64 = make_float64((0x3feULL << 52) 11080 | ((int64_t)(a & 0x7fffffff) << 21)); 11081 11082 f64 = recip_estimate(f64, s); 11083 11084 return 0x80000000 | ((float64_val(f64) >> 21) & 0x7fffffff); 11085 } 11086 11087 uint32_t HELPER(rsqrte_u32)(uint32_t a, void *fpstp) 11088 { 11089 float_status *fpst = fpstp; 11090 float64 f64; 11091 11092 if ((a & 0xc0000000) == 0) { 11093 return 0xffffffff; 11094 } 11095 11096 if (a & 0x80000000) { 11097 f64 = make_float64((0x3feULL << 52) 11098 | ((uint64_t)(a & 0x7fffffff) << 21)); 11099 } else { /* bits 31-30 == '01' */ 11100 f64 = make_float64((0x3fdULL << 52) 11101 | ((uint64_t)(a & 0x3fffffff) << 22)); 11102 } 11103 11104 f64 = recip_sqrt_estimate(f64, fpst); 11105 11106 return 0x80000000 | ((float64_val(f64) >> 21) & 0x7fffffff); 11107 } 11108 11109 /* VFPv4 fused multiply-accumulate */ 11110 float32 VFP_HELPER(muladd, s)(float32 a, float32 b, float32 c, void *fpstp) 11111 { 11112 float_status *fpst = fpstp; 11113 return float32_muladd(a, b, c, 0, fpst); 11114 } 11115 11116 float64 VFP_HELPER(muladd, d)(float64 a, float64 b, float64 c, void *fpstp) 11117 { 11118 float_status *fpst = fpstp; 11119 return float64_muladd(a, b, c, 0, fpst); 11120 } 11121 11122 /* ARMv8 round to integral */ 11123 float32 HELPER(rints_exact)(float32 x, void *fp_status) 11124 { 11125 return float32_round_to_int(x, fp_status); 11126 } 11127 11128 float64 HELPER(rintd_exact)(float64 x, void *fp_status) 11129 { 11130 return float64_round_to_int(x, fp_status); 11131 } 11132 11133 float32 HELPER(rints)(float32 x, void *fp_status) 11134 { 11135 int old_flags = get_float_exception_flags(fp_status), new_flags; 11136 float32 ret; 11137 11138 ret = float32_round_to_int(x, fp_status); 11139 11140 /* Suppress any inexact exceptions the conversion produced */ 11141 if (!(old_flags & float_flag_inexact)) { 11142 new_flags = get_float_exception_flags(fp_status); 11143 set_float_exception_flags(new_flags & ~float_flag_inexact, fp_status); 11144 } 11145 11146 return ret; 11147 } 11148 11149 float64 HELPER(rintd)(float64 x, void *fp_status) 11150 { 11151 int old_flags = get_float_exception_flags(fp_status), new_flags; 11152 float64 ret; 11153 11154 ret = float64_round_to_int(x, fp_status); 11155 11156 new_flags = get_float_exception_flags(fp_status); 11157 11158 /* Suppress any inexact exceptions the conversion produced */ 11159 if (!(old_flags & float_flag_inexact)) { 11160 new_flags = get_float_exception_flags(fp_status); 11161 set_float_exception_flags(new_flags & ~float_flag_inexact, fp_status); 11162 } 11163 11164 return ret; 11165 } 11166 11167 /* Convert ARM rounding mode to softfloat */ 11168 int arm_rmode_to_sf(int rmode) 11169 { 11170 switch (rmode) { 11171 case FPROUNDING_TIEAWAY: 11172 rmode = float_round_ties_away; 11173 break; 11174 case FPROUNDING_ODD: 11175 /* FIXME: add support for TIEAWAY and ODD */ 11176 qemu_log_mask(LOG_UNIMP, "arm: unimplemented rounding mode: %d\n", 11177 rmode); 11178 case FPROUNDING_TIEEVEN: 11179 default: 11180 rmode = float_round_nearest_even; 11181 break; 11182 case FPROUNDING_POSINF: 11183 rmode = float_round_up; 11184 break; 11185 case FPROUNDING_NEGINF: 11186 rmode = float_round_down; 11187 break; 11188 case FPROUNDING_ZERO: 11189 rmode = float_round_to_zero; 11190 break; 11191 } 11192 return rmode; 11193 } 11194 11195 /* CRC helpers. 11196 * The upper bytes of val (above the number specified by 'bytes') must have 11197 * been zeroed out by the caller. 11198 */ 11199 uint32_t HELPER(crc32)(uint32_t acc, uint32_t val, uint32_t bytes) 11200 { 11201 uint8_t buf[4]; 11202 11203 stl_le_p(buf, val); 11204 11205 /* zlib crc32 converts the accumulator and output to one's complement. */ 11206 return crc32(acc ^ 0xffffffff, buf, bytes) ^ 0xffffffff; 11207 } 11208 11209 uint32_t HELPER(crc32c)(uint32_t acc, uint32_t val, uint32_t bytes) 11210 { 11211 uint8_t buf[4]; 11212 11213 stl_le_p(buf, val); 11214 11215 /* Linux crc32c converts the output to one's complement. */ 11216 return crc32c(acc, buf, bytes) ^ 0xffffffff; 11217 } 11218