xref: /openbmc/qemu/target/arm/helper.c (revision c39f95dc)
1 #include "qemu/osdep.h"
2 #include "trace.h"
3 #include "cpu.h"
4 #include "internals.h"
5 #include "exec/gdbstub.h"
6 #include "exec/helper-proto.h"
7 #include "qemu/host-utils.h"
8 #include "sysemu/arch_init.h"
9 #include "sysemu/sysemu.h"
10 #include "qemu/bitops.h"
11 #include "qemu/crc32c.h"
12 #include "exec/exec-all.h"
13 #include "exec/cpu_ldst.h"
14 #include "arm_ldst.h"
15 #include <zlib.h> /* For crc32 */
16 #include "exec/semihost.h"
17 #include "sysemu/kvm.h"
18 
19 #define ARM_CPU_FREQ 1000000000 /* FIXME: 1 GHz, should be configurable */
20 
21 #ifndef CONFIG_USER_ONLY
22 static bool get_phys_addr(CPUARMState *env, target_ulong address,
23                           MMUAccessType access_type, ARMMMUIdx mmu_idx,
24                           hwaddr *phys_ptr, MemTxAttrs *attrs, int *prot,
25                           target_ulong *page_size, uint32_t *fsr,
26                           ARMMMUFaultInfo *fi);
27 
28 static bool get_phys_addr_lpae(CPUARMState *env, target_ulong address,
29                                MMUAccessType access_type, ARMMMUIdx mmu_idx,
30                                hwaddr *phys_ptr, MemTxAttrs *txattrs, int *prot,
31                                target_ulong *page_size_ptr, uint32_t *fsr,
32                                ARMMMUFaultInfo *fi);
33 
34 /* Security attributes for an address, as returned by v8m_security_lookup. */
35 typedef struct V8M_SAttributes {
36     bool ns;
37     bool nsc;
38     uint8_t sregion;
39     bool srvalid;
40     uint8_t iregion;
41     bool irvalid;
42 } V8M_SAttributes;
43 
44 static void v8m_security_lookup(CPUARMState *env, uint32_t address,
45                                 MMUAccessType access_type, ARMMMUIdx mmu_idx,
46                                 V8M_SAttributes *sattrs);
47 
48 /* Definitions for the PMCCNTR and PMCR registers */
49 #define PMCRD   0x8
50 #define PMCRC   0x4
51 #define PMCRE   0x1
52 #endif
53 
54 static int vfp_gdb_get_reg(CPUARMState *env, uint8_t *buf, int reg)
55 {
56     int nregs;
57 
58     /* VFP data registers are always little-endian.  */
59     nregs = arm_feature(env, ARM_FEATURE_VFP3) ? 32 : 16;
60     if (reg < nregs) {
61         stfq_le_p(buf, env->vfp.regs[reg]);
62         return 8;
63     }
64     if (arm_feature(env, ARM_FEATURE_NEON)) {
65         /* Aliases for Q regs.  */
66         nregs += 16;
67         if (reg < nregs) {
68             stfq_le_p(buf, env->vfp.regs[(reg - 32) * 2]);
69             stfq_le_p(buf + 8, env->vfp.regs[(reg - 32) * 2 + 1]);
70             return 16;
71         }
72     }
73     switch (reg - nregs) {
74     case 0: stl_p(buf, env->vfp.xregs[ARM_VFP_FPSID]); return 4;
75     case 1: stl_p(buf, env->vfp.xregs[ARM_VFP_FPSCR]); return 4;
76     case 2: stl_p(buf, env->vfp.xregs[ARM_VFP_FPEXC]); return 4;
77     }
78     return 0;
79 }
80 
81 static int vfp_gdb_set_reg(CPUARMState *env, uint8_t *buf, int reg)
82 {
83     int nregs;
84 
85     nregs = arm_feature(env, ARM_FEATURE_VFP3) ? 32 : 16;
86     if (reg < nregs) {
87         env->vfp.regs[reg] = ldfq_le_p(buf);
88         return 8;
89     }
90     if (arm_feature(env, ARM_FEATURE_NEON)) {
91         nregs += 16;
92         if (reg < nregs) {
93             env->vfp.regs[(reg - 32) * 2] = ldfq_le_p(buf);
94             env->vfp.regs[(reg - 32) * 2 + 1] = ldfq_le_p(buf + 8);
95             return 16;
96         }
97     }
98     switch (reg - nregs) {
99     case 0: env->vfp.xregs[ARM_VFP_FPSID] = ldl_p(buf); return 4;
100     case 1: env->vfp.xregs[ARM_VFP_FPSCR] = ldl_p(buf); return 4;
101     case 2: env->vfp.xregs[ARM_VFP_FPEXC] = ldl_p(buf) & (1 << 30); return 4;
102     }
103     return 0;
104 }
105 
106 static int aarch64_fpu_gdb_get_reg(CPUARMState *env, uint8_t *buf, int reg)
107 {
108     switch (reg) {
109     case 0 ... 31:
110         /* 128 bit FP register */
111         stfq_le_p(buf, env->vfp.regs[reg * 2]);
112         stfq_le_p(buf + 8, env->vfp.regs[reg * 2 + 1]);
113         return 16;
114     case 32:
115         /* FPSR */
116         stl_p(buf, vfp_get_fpsr(env));
117         return 4;
118     case 33:
119         /* FPCR */
120         stl_p(buf, vfp_get_fpcr(env));
121         return 4;
122     default:
123         return 0;
124     }
125 }
126 
127 static int aarch64_fpu_gdb_set_reg(CPUARMState *env, uint8_t *buf, int reg)
128 {
129     switch (reg) {
130     case 0 ... 31:
131         /* 128 bit FP register */
132         env->vfp.regs[reg * 2] = ldfq_le_p(buf);
133         env->vfp.regs[reg * 2 + 1] = ldfq_le_p(buf + 8);
134         return 16;
135     case 32:
136         /* FPSR */
137         vfp_set_fpsr(env, ldl_p(buf));
138         return 4;
139     case 33:
140         /* FPCR */
141         vfp_set_fpcr(env, ldl_p(buf));
142         return 4;
143     default:
144         return 0;
145     }
146 }
147 
148 static uint64_t raw_read(CPUARMState *env, const ARMCPRegInfo *ri)
149 {
150     assert(ri->fieldoffset);
151     if (cpreg_field_is_64bit(ri)) {
152         return CPREG_FIELD64(env, ri);
153     } else {
154         return CPREG_FIELD32(env, ri);
155     }
156 }
157 
158 static void raw_write(CPUARMState *env, const ARMCPRegInfo *ri,
159                       uint64_t value)
160 {
161     assert(ri->fieldoffset);
162     if (cpreg_field_is_64bit(ri)) {
163         CPREG_FIELD64(env, ri) = value;
164     } else {
165         CPREG_FIELD32(env, ri) = value;
166     }
167 }
168 
169 static void *raw_ptr(CPUARMState *env, const ARMCPRegInfo *ri)
170 {
171     return (char *)env + ri->fieldoffset;
172 }
173 
174 uint64_t read_raw_cp_reg(CPUARMState *env, const ARMCPRegInfo *ri)
175 {
176     /* Raw read of a coprocessor register (as needed for migration, etc). */
177     if (ri->type & ARM_CP_CONST) {
178         return ri->resetvalue;
179     } else if (ri->raw_readfn) {
180         return ri->raw_readfn(env, ri);
181     } else if (ri->readfn) {
182         return ri->readfn(env, ri);
183     } else {
184         return raw_read(env, ri);
185     }
186 }
187 
188 static void write_raw_cp_reg(CPUARMState *env, const ARMCPRegInfo *ri,
189                              uint64_t v)
190 {
191     /* Raw write of a coprocessor register (as needed for migration, etc).
192      * Note that constant registers are treated as write-ignored; the
193      * caller should check for success by whether a readback gives the
194      * value written.
195      */
196     if (ri->type & ARM_CP_CONST) {
197         return;
198     } else if (ri->raw_writefn) {
199         ri->raw_writefn(env, ri, v);
200     } else if (ri->writefn) {
201         ri->writefn(env, ri, v);
202     } else {
203         raw_write(env, ri, v);
204     }
205 }
206 
207 static bool raw_accessors_invalid(const ARMCPRegInfo *ri)
208 {
209    /* Return true if the regdef would cause an assertion if you called
210     * read_raw_cp_reg() or write_raw_cp_reg() on it (ie if it is a
211     * program bug for it not to have the NO_RAW flag).
212     * NB that returning false here doesn't necessarily mean that calling
213     * read/write_raw_cp_reg() is safe, because we can't distinguish "has
214     * read/write access functions which are safe for raw use" from "has
215     * read/write access functions which have side effects but has forgotten
216     * to provide raw access functions".
217     * The tests here line up with the conditions in read/write_raw_cp_reg()
218     * and assertions in raw_read()/raw_write().
219     */
220     if ((ri->type & ARM_CP_CONST) ||
221         ri->fieldoffset ||
222         ((ri->raw_writefn || ri->writefn) && (ri->raw_readfn || ri->readfn))) {
223         return false;
224     }
225     return true;
226 }
227 
228 bool write_cpustate_to_list(ARMCPU *cpu)
229 {
230     /* Write the coprocessor state from cpu->env to the (index,value) list. */
231     int i;
232     bool ok = true;
233 
234     for (i = 0; i < cpu->cpreg_array_len; i++) {
235         uint32_t regidx = kvm_to_cpreg_id(cpu->cpreg_indexes[i]);
236         const ARMCPRegInfo *ri;
237 
238         ri = get_arm_cp_reginfo(cpu->cp_regs, regidx);
239         if (!ri) {
240             ok = false;
241             continue;
242         }
243         if (ri->type & ARM_CP_NO_RAW) {
244             continue;
245         }
246         cpu->cpreg_values[i] = read_raw_cp_reg(&cpu->env, ri);
247     }
248     return ok;
249 }
250 
251 bool write_list_to_cpustate(ARMCPU *cpu)
252 {
253     int i;
254     bool ok = true;
255 
256     for (i = 0; i < cpu->cpreg_array_len; i++) {
257         uint32_t regidx = kvm_to_cpreg_id(cpu->cpreg_indexes[i]);
258         uint64_t v = cpu->cpreg_values[i];
259         const ARMCPRegInfo *ri;
260 
261         ri = get_arm_cp_reginfo(cpu->cp_regs, regidx);
262         if (!ri) {
263             ok = false;
264             continue;
265         }
266         if (ri->type & ARM_CP_NO_RAW) {
267             continue;
268         }
269         /* Write value and confirm it reads back as written
270          * (to catch read-only registers and partially read-only
271          * registers where the incoming migration value doesn't match)
272          */
273         write_raw_cp_reg(&cpu->env, ri, v);
274         if (read_raw_cp_reg(&cpu->env, ri) != v) {
275             ok = false;
276         }
277     }
278     return ok;
279 }
280 
281 static void add_cpreg_to_list(gpointer key, gpointer opaque)
282 {
283     ARMCPU *cpu = opaque;
284     uint64_t regidx;
285     const ARMCPRegInfo *ri;
286 
287     regidx = *(uint32_t *)key;
288     ri = get_arm_cp_reginfo(cpu->cp_regs, regidx);
289 
290     if (!(ri->type & (ARM_CP_NO_RAW|ARM_CP_ALIAS))) {
291         cpu->cpreg_indexes[cpu->cpreg_array_len] = cpreg_to_kvm_id(regidx);
292         /* The value array need not be initialized at this point */
293         cpu->cpreg_array_len++;
294     }
295 }
296 
297 static void count_cpreg(gpointer key, gpointer opaque)
298 {
299     ARMCPU *cpu = opaque;
300     uint64_t regidx;
301     const ARMCPRegInfo *ri;
302 
303     regidx = *(uint32_t *)key;
304     ri = get_arm_cp_reginfo(cpu->cp_regs, regidx);
305 
306     if (!(ri->type & (ARM_CP_NO_RAW|ARM_CP_ALIAS))) {
307         cpu->cpreg_array_len++;
308     }
309 }
310 
311 static gint cpreg_key_compare(gconstpointer a, gconstpointer b)
312 {
313     uint64_t aidx = cpreg_to_kvm_id(*(uint32_t *)a);
314     uint64_t bidx = cpreg_to_kvm_id(*(uint32_t *)b);
315 
316     if (aidx > bidx) {
317         return 1;
318     }
319     if (aidx < bidx) {
320         return -1;
321     }
322     return 0;
323 }
324 
325 void init_cpreg_list(ARMCPU *cpu)
326 {
327     /* Initialise the cpreg_tuples[] array based on the cp_regs hash.
328      * Note that we require cpreg_tuples[] to be sorted by key ID.
329      */
330     GList *keys;
331     int arraylen;
332 
333     keys = g_hash_table_get_keys(cpu->cp_regs);
334     keys = g_list_sort(keys, cpreg_key_compare);
335 
336     cpu->cpreg_array_len = 0;
337 
338     g_list_foreach(keys, count_cpreg, cpu);
339 
340     arraylen = cpu->cpreg_array_len;
341     cpu->cpreg_indexes = g_new(uint64_t, arraylen);
342     cpu->cpreg_values = g_new(uint64_t, arraylen);
343     cpu->cpreg_vmstate_indexes = g_new(uint64_t, arraylen);
344     cpu->cpreg_vmstate_values = g_new(uint64_t, arraylen);
345     cpu->cpreg_vmstate_array_len = cpu->cpreg_array_len;
346     cpu->cpreg_array_len = 0;
347 
348     g_list_foreach(keys, add_cpreg_to_list, cpu);
349 
350     assert(cpu->cpreg_array_len == arraylen);
351 
352     g_list_free(keys);
353 }
354 
355 /*
356  * Some registers are not accessible if EL3.NS=0 and EL3 is using AArch32 but
357  * they are accessible when EL3 is using AArch64 regardless of EL3.NS.
358  *
359  * access_el3_aa32ns: Used to check AArch32 register views.
360  * access_el3_aa32ns_aa64any: Used to check both AArch32/64 register views.
361  */
362 static CPAccessResult access_el3_aa32ns(CPUARMState *env,
363                                         const ARMCPRegInfo *ri,
364                                         bool isread)
365 {
366     bool secure = arm_is_secure_below_el3(env);
367 
368     assert(!arm_el_is_aa64(env, 3));
369     if (secure) {
370         return CP_ACCESS_TRAP_UNCATEGORIZED;
371     }
372     return CP_ACCESS_OK;
373 }
374 
375 static CPAccessResult access_el3_aa32ns_aa64any(CPUARMState *env,
376                                                 const ARMCPRegInfo *ri,
377                                                 bool isread)
378 {
379     if (!arm_el_is_aa64(env, 3)) {
380         return access_el3_aa32ns(env, ri, isread);
381     }
382     return CP_ACCESS_OK;
383 }
384 
385 /* Some secure-only AArch32 registers trap to EL3 if used from
386  * Secure EL1 (but are just ordinary UNDEF in other non-EL3 contexts).
387  * Note that an access from Secure EL1 can only happen if EL3 is AArch64.
388  * We assume that the .access field is set to PL1_RW.
389  */
390 static CPAccessResult access_trap_aa32s_el1(CPUARMState *env,
391                                             const ARMCPRegInfo *ri,
392                                             bool isread)
393 {
394     if (arm_current_el(env) == 3) {
395         return CP_ACCESS_OK;
396     }
397     if (arm_is_secure_below_el3(env)) {
398         return CP_ACCESS_TRAP_EL3;
399     }
400     /* This will be EL1 NS and EL2 NS, which just UNDEF */
401     return CP_ACCESS_TRAP_UNCATEGORIZED;
402 }
403 
404 /* Check for traps to "powerdown debug" registers, which are controlled
405  * by MDCR.TDOSA
406  */
407 static CPAccessResult access_tdosa(CPUARMState *env, const ARMCPRegInfo *ri,
408                                    bool isread)
409 {
410     int el = arm_current_el(env);
411 
412     if (el < 2 && (env->cp15.mdcr_el2 & MDCR_TDOSA)
413         && !arm_is_secure_below_el3(env)) {
414         return CP_ACCESS_TRAP_EL2;
415     }
416     if (el < 3 && (env->cp15.mdcr_el3 & MDCR_TDOSA)) {
417         return CP_ACCESS_TRAP_EL3;
418     }
419     return CP_ACCESS_OK;
420 }
421 
422 /* Check for traps to "debug ROM" registers, which are controlled
423  * by MDCR_EL2.TDRA for EL2 but by the more general MDCR_EL3.TDA for EL3.
424  */
425 static CPAccessResult access_tdra(CPUARMState *env, const ARMCPRegInfo *ri,
426                                   bool isread)
427 {
428     int el = arm_current_el(env);
429 
430     if (el < 2 && (env->cp15.mdcr_el2 & MDCR_TDRA)
431         && !arm_is_secure_below_el3(env)) {
432         return CP_ACCESS_TRAP_EL2;
433     }
434     if (el < 3 && (env->cp15.mdcr_el3 & MDCR_TDA)) {
435         return CP_ACCESS_TRAP_EL3;
436     }
437     return CP_ACCESS_OK;
438 }
439 
440 /* Check for traps to general debug registers, which are controlled
441  * by MDCR_EL2.TDA for EL2 and MDCR_EL3.TDA for EL3.
442  */
443 static CPAccessResult access_tda(CPUARMState *env, const ARMCPRegInfo *ri,
444                                   bool isread)
445 {
446     int el = arm_current_el(env);
447 
448     if (el < 2 && (env->cp15.mdcr_el2 & MDCR_TDA)
449         && !arm_is_secure_below_el3(env)) {
450         return CP_ACCESS_TRAP_EL2;
451     }
452     if (el < 3 && (env->cp15.mdcr_el3 & MDCR_TDA)) {
453         return CP_ACCESS_TRAP_EL3;
454     }
455     return CP_ACCESS_OK;
456 }
457 
458 /* Check for traps to performance monitor registers, which are controlled
459  * by MDCR_EL2.TPM for EL2 and MDCR_EL3.TPM for EL3.
460  */
461 static CPAccessResult access_tpm(CPUARMState *env, const ARMCPRegInfo *ri,
462                                  bool isread)
463 {
464     int el = arm_current_el(env);
465 
466     if (el < 2 && (env->cp15.mdcr_el2 & MDCR_TPM)
467         && !arm_is_secure_below_el3(env)) {
468         return CP_ACCESS_TRAP_EL2;
469     }
470     if (el < 3 && (env->cp15.mdcr_el3 & MDCR_TPM)) {
471         return CP_ACCESS_TRAP_EL3;
472     }
473     return CP_ACCESS_OK;
474 }
475 
476 static void dacr_write(CPUARMState *env, const ARMCPRegInfo *ri, uint64_t value)
477 {
478     ARMCPU *cpu = arm_env_get_cpu(env);
479 
480     raw_write(env, ri, value);
481     tlb_flush(CPU(cpu)); /* Flush TLB as domain not tracked in TLB */
482 }
483 
484 static void fcse_write(CPUARMState *env, const ARMCPRegInfo *ri, uint64_t value)
485 {
486     ARMCPU *cpu = arm_env_get_cpu(env);
487 
488     if (raw_read(env, ri) != value) {
489         /* Unlike real hardware the qemu TLB uses virtual addresses,
490          * not modified virtual addresses, so this causes a TLB flush.
491          */
492         tlb_flush(CPU(cpu));
493         raw_write(env, ri, value);
494     }
495 }
496 
497 static void contextidr_write(CPUARMState *env, const ARMCPRegInfo *ri,
498                              uint64_t value)
499 {
500     ARMCPU *cpu = arm_env_get_cpu(env);
501 
502     if (raw_read(env, ri) != value && !arm_feature(env, ARM_FEATURE_PMSA)
503         && !extended_addresses_enabled(env)) {
504         /* For VMSA (when not using the LPAE long descriptor page table
505          * format) this register includes the ASID, so do a TLB flush.
506          * For PMSA it is purely a process ID and no action is needed.
507          */
508         tlb_flush(CPU(cpu));
509     }
510     raw_write(env, ri, value);
511 }
512 
513 static void tlbiall_write(CPUARMState *env, const ARMCPRegInfo *ri,
514                           uint64_t value)
515 {
516     /* Invalidate all (TLBIALL) */
517     ARMCPU *cpu = arm_env_get_cpu(env);
518 
519     tlb_flush(CPU(cpu));
520 }
521 
522 static void tlbimva_write(CPUARMState *env, const ARMCPRegInfo *ri,
523                           uint64_t value)
524 {
525     /* Invalidate single TLB entry by MVA and ASID (TLBIMVA) */
526     ARMCPU *cpu = arm_env_get_cpu(env);
527 
528     tlb_flush_page(CPU(cpu), value & TARGET_PAGE_MASK);
529 }
530 
531 static void tlbiasid_write(CPUARMState *env, const ARMCPRegInfo *ri,
532                            uint64_t value)
533 {
534     /* Invalidate by ASID (TLBIASID) */
535     ARMCPU *cpu = arm_env_get_cpu(env);
536 
537     tlb_flush(CPU(cpu));
538 }
539 
540 static void tlbimvaa_write(CPUARMState *env, const ARMCPRegInfo *ri,
541                            uint64_t value)
542 {
543     /* Invalidate single entry by MVA, all ASIDs (TLBIMVAA) */
544     ARMCPU *cpu = arm_env_get_cpu(env);
545 
546     tlb_flush_page(CPU(cpu), value & TARGET_PAGE_MASK);
547 }
548 
549 /* IS variants of TLB operations must affect all cores */
550 static void tlbiall_is_write(CPUARMState *env, const ARMCPRegInfo *ri,
551                              uint64_t value)
552 {
553     CPUState *cs = ENV_GET_CPU(env);
554 
555     tlb_flush_all_cpus_synced(cs);
556 }
557 
558 static void tlbiasid_is_write(CPUARMState *env, const ARMCPRegInfo *ri,
559                              uint64_t value)
560 {
561     CPUState *cs = ENV_GET_CPU(env);
562 
563     tlb_flush_all_cpus_synced(cs);
564 }
565 
566 static void tlbimva_is_write(CPUARMState *env, const ARMCPRegInfo *ri,
567                              uint64_t value)
568 {
569     CPUState *cs = ENV_GET_CPU(env);
570 
571     tlb_flush_page_all_cpus_synced(cs, value & TARGET_PAGE_MASK);
572 }
573 
574 static void tlbimvaa_is_write(CPUARMState *env, const ARMCPRegInfo *ri,
575                              uint64_t value)
576 {
577     CPUState *cs = ENV_GET_CPU(env);
578 
579     tlb_flush_page_all_cpus_synced(cs, value & TARGET_PAGE_MASK);
580 }
581 
582 static void tlbiall_nsnh_write(CPUARMState *env, const ARMCPRegInfo *ri,
583                                uint64_t value)
584 {
585     CPUState *cs = ENV_GET_CPU(env);
586 
587     tlb_flush_by_mmuidx(cs,
588                         ARMMMUIdxBit_S12NSE1 |
589                         ARMMMUIdxBit_S12NSE0 |
590                         ARMMMUIdxBit_S2NS);
591 }
592 
593 static void tlbiall_nsnh_is_write(CPUARMState *env, const ARMCPRegInfo *ri,
594                                   uint64_t value)
595 {
596     CPUState *cs = ENV_GET_CPU(env);
597 
598     tlb_flush_by_mmuidx_all_cpus_synced(cs,
599                                         ARMMMUIdxBit_S12NSE1 |
600                                         ARMMMUIdxBit_S12NSE0 |
601                                         ARMMMUIdxBit_S2NS);
602 }
603 
604 static void tlbiipas2_write(CPUARMState *env, const ARMCPRegInfo *ri,
605                             uint64_t value)
606 {
607     /* Invalidate by IPA. This has to invalidate any structures that
608      * contain only stage 2 translation information, but does not need
609      * to apply to structures that contain combined stage 1 and stage 2
610      * translation information.
611      * This must NOP if EL2 isn't implemented or SCR_EL3.NS is zero.
612      */
613     CPUState *cs = ENV_GET_CPU(env);
614     uint64_t pageaddr;
615 
616     if (!arm_feature(env, ARM_FEATURE_EL2) || !(env->cp15.scr_el3 & SCR_NS)) {
617         return;
618     }
619 
620     pageaddr = sextract64(value << 12, 0, 40);
621 
622     tlb_flush_page_by_mmuidx(cs, pageaddr, ARMMMUIdxBit_S2NS);
623 }
624 
625 static void tlbiipas2_is_write(CPUARMState *env, const ARMCPRegInfo *ri,
626                                uint64_t value)
627 {
628     CPUState *cs = ENV_GET_CPU(env);
629     uint64_t pageaddr;
630 
631     if (!arm_feature(env, ARM_FEATURE_EL2) || !(env->cp15.scr_el3 & SCR_NS)) {
632         return;
633     }
634 
635     pageaddr = sextract64(value << 12, 0, 40);
636 
637     tlb_flush_page_by_mmuidx_all_cpus_synced(cs, pageaddr,
638                                              ARMMMUIdxBit_S2NS);
639 }
640 
641 static void tlbiall_hyp_write(CPUARMState *env, const ARMCPRegInfo *ri,
642                               uint64_t value)
643 {
644     CPUState *cs = ENV_GET_CPU(env);
645 
646     tlb_flush_by_mmuidx(cs, ARMMMUIdxBit_S1E2);
647 }
648 
649 static void tlbiall_hyp_is_write(CPUARMState *env, const ARMCPRegInfo *ri,
650                                  uint64_t value)
651 {
652     CPUState *cs = ENV_GET_CPU(env);
653 
654     tlb_flush_by_mmuidx_all_cpus_synced(cs, ARMMMUIdxBit_S1E2);
655 }
656 
657 static void tlbimva_hyp_write(CPUARMState *env, const ARMCPRegInfo *ri,
658                               uint64_t value)
659 {
660     CPUState *cs = ENV_GET_CPU(env);
661     uint64_t pageaddr = value & ~MAKE_64BIT_MASK(0, 12);
662 
663     tlb_flush_page_by_mmuidx(cs, pageaddr, ARMMMUIdxBit_S1E2);
664 }
665 
666 static void tlbimva_hyp_is_write(CPUARMState *env, const ARMCPRegInfo *ri,
667                                  uint64_t value)
668 {
669     CPUState *cs = ENV_GET_CPU(env);
670     uint64_t pageaddr = value & ~MAKE_64BIT_MASK(0, 12);
671 
672     tlb_flush_page_by_mmuidx_all_cpus_synced(cs, pageaddr,
673                                              ARMMMUIdxBit_S1E2);
674 }
675 
676 static const ARMCPRegInfo cp_reginfo[] = {
677     /* Define the secure and non-secure FCSE identifier CP registers
678      * separately because there is no secure bank in V8 (no _EL3).  This allows
679      * the secure register to be properly reset and migrated. There is also no
680      * v8 EL1 version of the register so the non-secure instance stands alone.
681      */
682     { .name = "FCSEIDR(NS)",
683       .cp = 15, .opc1 = 0, .crn = 13, .crm = 0, .opc2 = 0,
684       .access = PL1_RW, .secure = ARM_CP_SECSTATE_NS,
685       .fieldoffset = offsetof(CPUARMState, cp15.fcseidr_ns),
686       .resetvalue = 0, .writefn = fcse_write, .raw_writefn = raw_write, },
687     { .name = "FCSEIDR(S)",
688       .cp = 15, .opc1 = 0, .crn = 13, .crm = 0, .opc2 = 0,
689       .access = PL1_RW, .secure = ARM_CP_SECSTATE_S,
690       .fieldoffset = offsetof(CPUARMState, cp15.fcseidr_s),
691       .resetvalue = 0, .writefn = fcse_write, .raw_writefn = raw_write, },
692     /* Define the secure and non-secure context identifier CP registers
693      * separately because there is no secure bank in V8 (no _EL3).  This allows
694      * the secure register to be properly reset and migrated.  In the
695      * non-secure case, the 32-bit register will have reset and migration
696      * disabled during registration as it is handled by the 64-bit instance.
697      */
698     { .name = "CONTEXTIDR_EL1", .state = ARM_CP_STATE_BOTH,
699       .opc0 = 3, .opc1 = 0, .crn = 13, .crm = 0, .opc2 = 1,
700       .access = PL1_RW, .secure = ARM_CP_SECSTATE_NS,
701       .fieldoffset = offsetof(CPUARMState, cp15.contextidr_el[1]),
702       .resetvalue = 0, .writefn = contextidr_write, .raw_writefn = raw_write, },
703     { .name = "CONTEXTIDR(S)", .state = ARM_CP_STATE_AA32,
704       .cp = 15, .opc1 = 0, .crn = 13, .crm = 0, .opc2 = 1,
705       .access = PL1_RW, .secure = ARM_CP_SECSTATE_S,
706       .fieldoffset = offsetof(CPUARMState, cp15.contextidr_s),
707       .resetvalue = 0, .writefn = contextidr_write, .raw_writefn = raw_write, },
708     REGINFO_SENTINEL
709 };
710 
711 static const ARMCPRegInfo not_v8_cp_reginfo[] = {
712     /* NB: Some of these registers exist in v8 but with more precise
713      * definitions that don't use CP_ANY wildcards (mostly in v8_cp_reginfo[]).
714      */
715     /* MMU Domain access control / MPU write buffer control */
716     { .name = "DACR",
717       .cp = 15, .opc1 = CP_ANY, .crn = 3, .crm = CP_ANY, .opc2 = CP_ANY,
718       .access = PL1_RW, .resetvalue = 0,
719       .writefn = dacr_write, .raw_writefn = raw_write,
720       .bank_fieldoffsets = { offsetoflow32(CPUARMState, cp15.dacr_s),
721                              offsetoflow32(CPUARMState, cp15.dacr_ns) } },
722     /* ARMv7 allocates a range of implementation defined TLB LOCKDOWN regs.
723      * For v6 and v5, these mappings are overly broad.
724      */
725     { .name = "TLB_LOCKDOWN", .cp = 15, .crn = 10, .crm = 0,
726       .opc1 = CP_ANY, .opc2 = CP_ANY, .access = PL1_RW, .type = ARM_CP_NOP },
727     { .name = "TLB_LOCKDOWN", .cp = 15, .crn = 10, .crm = 1,
728       .opc1 = CP_ANY, .opc2 = CP_ANY, .access = PL1_RW, .type = ARM_CP_NOP },
729     { .name = "TLB_LOCKDOWN", .cp = 15, .crn = 10, .crm = 4,
730       .opc1 = CP_ANY, .opc2 = CP_ANY, .access = PL1_RW, .type = ARM_CP_NOP },
731     { .name = "TLB_LOCKDOWN", .cp = 15, .crn = 10, .crm = 8,
732       .opc1 = CP_ANY, .opc2 = CP_ANY, .access = PL1_RW, .type = ARM_CP_NOP },
733     /* Cache maintenance ops; some of this space may be overridden later. */
734     { .name = "CACHEMAINT", .cp = 15, .crn = 7, .crm = CP_ANY,
735       .opc1 = 0, .opc2 = CP_ANY, .access = PL1_W,
736       .type = ARM_CP_NOP | ARM_CP_OVERRIDE },
737     REGINFO_SENTINEL
738 };
739 
740 static const ARMCPRegInfo not_v6_cp_reginfo[] = {
741     /* Not all pre-v6 cores implemented this WFI, so this is slightly
742      * over-broad.
743      */
744     { .name = "WFI_v5", .cp = 15, .crn = 7, .crm = 8, .opc1 = 0, .opc2 = 2,
745       .access = PL1_W, .type = ARM_CP_WFI },
746     REGINFO_SENTINEL
747 };
748 
749 static const ARMCPRegInfo not_v7_cp_reginfo[] = {
750     /* Standard v6 WFI (also used in some pre-v6 cores); not in v7 (which
751      * is UNPREDICTABLE; we choose to NOP as most implementations do).
752      */
753     { .name = "WFI_v6", .cp = 15, .crn = 7, .crm = 0, .opc1 = 0, .opc2 = 4,
754       .access = PL1_W, .type = ARM_CP_WFI },
755     /* L1 cache lockdown. Not architectural in v6 and earlier but in practice
756      * implemented in 926, 946, 1026, 1136, 1176 and 11MPCore. StrongARM and
757      * OMAPCP will override this space.
758      */
759     { .name = "DLOCKDOWN", .cp = 15, .crn = 9, .crm = 0, .opc1 = 0, .opc2 = 0,
760       .access = PL1_RW, .fieldoffset = offsetof(CPUARMState, cp15.c9_data),
761       .resetvalue = 0 },
762     { .name = "ILOCKDOWN", .cp = 15, .crn = 9, .crm = 0, .opc1 = 0, .opc2 = 1,
763       .access = PL1_RW, .fieldoffset = offsetof(CPUARMState, cp15.c9_insn),
764       .resetvalue = 0 },
765     /* v6 doesn't have the cache ID registers but Linux reads them anyway */
766     { .name = "DUMMY", .cp = 15, .crn = 0, .crm = 0, .opc1 = 1, .opc2 = CP_ANY,
767       .access = PL1_R, .type = ARM_CP_CONST | ARM_CP_NO_RAW,
768       .resetvalue = 0 },
769     /* We don't implement pre-v7 debug but most CPUs had at least a DBGDIDR;
770      * implementing it as RAZ means the "debug architecture version" bits
771      * will read as a reserved value, which should cause Linux to not try
772      * to use the debug hardware.
773      */
774     { .name = "DBGDIDR", .cp = 14, .crn = 0, .crm = 0, .opc1 = 0, .opc2 = 0,
775       .access = PL0_R, .type = ARM_CP_CONST, .resetvalue = 0 },
776     /* MMU TLB control. Note that the wildcarding means we cover not just
777      * the unified TLB ops but also the dside/iside/inner-shareable variants.
778      */
779     { .name = "TLBIALL", .cp = 15, .crn = 8, .crm = CP_ANY,
780       .opc1 = CP_ANY, .opc2 = 0, .access = PL1_W, .writefn = tlbiall_write,
781       .type = ARM_CP_NO_RAW },
782     { .name = "TLBIMVA", .cp = 15, .crn = 8, .crm = CP_ANY,
783       .opc1 = CP_ANY, .opc2 = 1, .access = PL1_W, .writefn = tlbimva_write,
784       .type = ARM_CP_NO_RAW },
785     { .name = "TLBIASID", .cp = 15, .crn = 8, .crm = CP_ANY,
786       .opc1 = CP_ANY, .opc2 = 2, .access = PL1_W, .writefn = tlbiasid_write,
787       .type = ARM_CP_NO_RAW },
788     { .name = "TLBIMVAA", .cp = 15, .crn = 8, .crm = CP_ANY,
789       .opc1 = CP_ANY, .opc2 = 3, .access = PL1_W, .writefn = tlbimvaa_write,
790       .type = ARM_CP_NO_RAW },
791     { .name = "PRRR", .cp = 15, .crn = 10, .crm = 2,
792       .opc1 = 0, .opc2 = 0, .access = PL1_RW, .type = ARM_CP_NOP },
793     { .name = "NMRR", .cp = 15, .crn = 10, .crm = 2,
794       .opc1 = 0, .opc2 = 1, .access = PL1_RW, .type = ARM_CP_NOP },
795     REGINFO_SENTINEL
796 };
797 
798 static void cpacr_write(CPUARMState *env, const ARMCPRegInfo *ri,
799                         uint64_t value)
800 {
801     uint32_t mask = 0;
802 
803     /* In ARMv8 most bits of CPACR_EL1 are RES0. */
804     if (!arm_feature(env, ARM_FEATURE_V8)) {
805         /* ARMv7 defines bits for unimplemented coprocessors as RAZ/WI.
806          * ASEDIS [31] and D32DIS [30] are both UNK/SBZP without VFP.
807          * TRCDIS [28] is RAZ/WI since we do not implement a trace macrocell.
808          */
809         if (arm_feature(env, ARM_FEATURE_VFP)) {
810             /* VFP coprocessor: cp10 & cp11 [23:20] */
811             mask |= (1 << 31) | (1 << 30) | (0xf << 20);
812 
813             if (!arm_feature(env, ARM_FEATURE_NEON)) {
814                 /* ASEDIS [31] bit is RAO/WI */
815                 value |= (1 << 31);
816             }
817 
818             /* VFPv3 and upwards with NEON implement 32 double precision
819              * registers (D0-D31).
820              */
821             if (!arm_feature(env, ARM_FEATURE_NEON) ||
822                     !arm_feature(env, ARM_FEATURE_VFP3)) {
823                 /* D32DIS [30] is RAO/WI if D16-31 are not implemented. */
824                 value |= (1 << 30);
825             }
826         }
827         value &= mask;
828     }
829     env->cp15.cpacr_el1 = value;
830 }
831 
832 static CPAccessResult cpacr_access(CPUARMState *env, const ARMCPRegInfo *ri,
833                                    bool isread)
834 {
835     if (arm_feature(env, ARM_FEATURE_V8)) {
836         /* Check if CPACR accesses are to be trapped to EL2 */
837         if (arm_current_el(env) == 1 &&
838             (env->cp15.cptr_el[2] & CPTR_TCPAC) && !arm_is_secure(env)) {
839             return CP_ACCESS_TRAP_EL2;
840         /* Check if CPACR accesses are to be trapped to EL3 */
841         } else if (arm_current_el(env) < 3 &&
842                    (env->cp15.cptr_el[3] & CPTR_TCPAC)) {
843             return CP_ACCESS_TRAP_EL3;
844         }
845     }
846 
847     return CP_ACCESS_OK;
848 }
849 
850 static CPAccessResult cptr_access(CPUARMState *env, const ARMCPRegInfo *ri,
851                                   bool isread)
852 {
853     /* Check if CPTR accesses are set to trap to EL3 */
854     if (arm_current_el(env) == 2 && (env->cp15.cptr_el[3] & CPTR_TCPAC)) {
855         return CP_ACCESS_TRAP_EL3;
856     }
857 
858     return CP_ACCESS_OK;
859 }
860 
861 static const ARMCPRegInfo v6_cp_reginfo[] = {
862     /* prefetch by MVA in v6, NOP in v7 */
863     { .name = "MVA_prefetch",
864       .cp = 15, .crn = 7, .crm = 13, .opc1 = 0, .opc2 = 1,
865       .access = PL1_W, .type = ARM_CP_NOP },
866     /* We need to break the TB after ISB to execute self-modifying code
867      * correctly and also to take any pending interrupts immediately.
868      * So use arm_cp_write_ignore() function instead of ARM_CP_NOP flag.
869      */
870     { .name = "ISB", .cp = 15, .crn = 7, .crm = 5, .opc1 = 0, .opc2 = 4,
871       .access = PL0_W, .type = ARM_CP_NO_RAW, .writefn = arm_cp_write_ignore },
872     { .name = "DSB", .cp = 15, .crn = 7, .crm = 10, .opc1 = 0, .opc2 = 4,
873       .access = PL0_W, .type = ARM_CP_NOP },
874     { .name = "DMB", .cp = 15, .crn = 7, .crm = 10, .opc1 = 0, .opc2 = 5,
875       .access = PL0_W, .type = ARM_CP_NOP },
876     { .name = "IFAR", .cp = 15, .crn = 6, .crm = 0, .opc1 = 0, .opc2 = 2,
877       .access = PL1_RW,
878       .bank_fieldoffsets = { offsetof(CPUARMState, cp15.ifar_s),
879                              offsetof(CPUARMState, cp15.ifar_ns) },
880       .resetvalue = 0, },
881     /* Watchpoint Fault Address Register : should actually only be present
882      * for 1136, 1176, 11MPCore.
883      */
884     { .name = "WFAR", .cp = 15, .crn = 6, .crm = 0, .opc1 = 0, .opc2 = 1,
885       .access = PL1_RW, .type = ARM_CP_CONST, .resetvalue = 0, },
886     { .name = "CPACR", .state = ARM_CP_STATE_BOTH, .opc0 = 3,
887       .crn = 1, .crm = 0, .opc1 = 0, .opc2 = 2, .accessfn = cpacr_access,
888       .access = PL1_RW, .fieldoffset = offsetof(CPUARMState, cp15.cpacr_el1),
889       .resetvalue = 0, .writefn = cpacr_write },
890     REGINFO_SENTINEL
891 };
892 
893 static CPAccessResult pmreg_access(CPUARMState *env, const ARMCPRegInfo *ri,
894                                    bool isread)
895 {
896     /* Performance monitor registers user accessibility is controlled
897      * by PMUSERENR. MDCR_EL2.TPM and MDCR_EL3.TPM allow configurable
898      * trapping to EL2 or EL3 for other accesses.
899      */
900     int el = arm_current_el(env);
901 
902     if (el == 0 && !(env->cp15.c9_pmuserenr & 1)) {
903         return CP_ACCESS_TRAP;
904     }
905     if (el < 2 && (env->cp15.mdcr_el2 & MDCR_TPM)
906         && !arm_is_secure_below_el3(env)) {
907         return CP_ACCESS_TRAP_EL2;
908     }
909     if (el < 3 && (env->cp15.mdcr_el3 & MDCR_TPM)) {
910         return CP_ACCESS_TRAP_EL3;
911     }
912 
913     return CP_ACCESS_OK;
914 }
915 
916 static CPAccessResult pmreg_access_xevcntr(CPUARMState *env,
917                                            const ARMCPRegInfo *ri,
918                                            bool isread)
919 {
920     /* ER: event counter read trap control */
921     if (arm_feature(env, ARM_FEATURE_V8)
922         && arm_current_el(env) == 0
923         && (env->cp15.c9_pmuserenr & (1 << 3)) != 0
924         && isread) {
925         return CP_ACCESS_OK;
926     }
927 
928     return pmreg_access(env, ri, isread);
929 }
930 
931 static CPAccessResult pmreg_access_swinc(CPUARMState *env,
932                                          const ARMCPRegInfo *ri,
933                                          bool isread)
934 {
935     /* SW: software increment write trap control */
936     if (arm_feature(env, ARM_FEATURE_V8)
937         && arm_current_el(env) == 0
938         && (env->cp15.c9_pmuserenr & (1 << 1)) != 0
939         && !isread) {
940         return CP_ACCESS_OK;
941     }
942 
943     return pmreg_access(env, ri, isread);
944 }
945 
946 #ifndef CONFIG_USER_ONLY
947 
948 static CPAccessResult pmreg_access_selr(CPUARMState *env,
949                                         const ARMCPRegInfo *ri,
950                                         bool isread)
951 {
952     /* ER: event counter read trap control */
953     if (arm_feature(env, ARM_FEATURE_V8)
954         && arm_current_el(env) == 0
955         && (env->cp15.c9_pmuserenr & (1 << 3)) != 0) {
956         return CP_ACCESS_OK;
957     }
958 
959     return pmreg_access(env, ri, isread);
960 }
961 
962 static CPAccessResult pmreg_access_ccntr(CPUARMState *env,
963                                          const ARMCPRegInfo *ri,
964                                          bool isread)
965 {
966     /* CR: cycle counter read trap control */
967     if (arm_feature(env, ARM_FEATURE_V8)
968         && arm_current_el(env) == 0
969         && (env->cp15.c9_pmuserenr & (1 << 2)) != 0
970         && isread) {
971         return CP_ACCESS_OK;
972     }
973 
974     return pmreg_access(env, ri, isread);
975 }
976 
977 static inline bool arm_ccnt_enabled(CPUARMState *env)
978 {
979     /* This does not support checking PMCCFILTR_EL0 register */
980 
981     if (!(env->cp15.c9_pmcr & PMCRE)) {
982         return false;
983     }
984 
985     return true;
986 }
987 
988 void pmccntr_sync(CPUARMState *env)
989 {
990     uint64_t temp_ticks;
991 
992     temp_ticks = muldiv64(qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL),
993                           ARM_CPU_FREQ, NANOSECONDS_PER_SECOND);
994 
995     if (env->cp15.c9_pmcr & PMCRD) {
996         /* Increment once every 64 processor clock cycles */
997         temp_ticks /= 64;
998     }
999 
1000     if (arm_ccnt_enabled(env)) {
1001         env->cp15.c15_ccnt = temp_ticks - env->cp15.c15_ccnt;
1002     }
1003 }
1004 
1005 static void pmcr_write(CPUARMState *env, const ARMCPRegInfo *ri,
1006                        uint64_t value)
1007 {
1008     pmccntr_sync(env);
1009 
1010     if (value & PMCRC) {
1011         /* The counter has been reset */
1012         env->cp15.c15_ccnt = 0;
1013     }
1014 
1015     /* only the DP, X, D and E bits are writable */
1016     env->cp15.c9_pmcr &= ~0x39;
1017     env->cp15.c9_pmcr |= (value & 0x39);
1018 
1019     pmccntr_sync(env);
1020 }
1021 
1022 static uint64_t pmccntr_read(CPUARMState *env, const ARMCPRegInfo *ri)
1023 {
1024     uint64_t total_ticks;
1025 
1026     if (!arm_ccnt_enabled(env)) {
1027         /* Counter is disabled, do not change value */
1028         return env->cp15.c15_ccnt;
1029     }
1030 
1031     total_ticks = muldiv64(qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL),
1032                            ARM_CPU_FREQ, NANOSECONDS_PER_SECOND);
1033 
1034     if (env->cp15.c9_pmcr & PMCRD) {
1035         /* Increment once every 64 processor clock cycles */
1036         total_ticks /= 64;
1037     }
1038     return total_ticks - env->cp15.c15_ccnt;
1039 }
1040 
1041 static void pmselr_write(CPUARMState *env, const ARMCPRegInfo *ri,
1042                          uint64_t value)
1043 {
1044     /* The value of PMSELR.SEL affects the behavior of PMXEVTYPER and
1045      * PMXEVCNTR. We allow [0..31] to be written to PMSELR here; in the
1046      * meanwhile, we check PMSELR.SEL when PMXEVTYPER and PMXEVCNTR are
1047      * accessed.
1048      */
1049     env->cp15.c9_pmselr = value & 0x1f;
1050 }
1051 
1052 static void pmccntr_write(CPUARMState *env, const ARMCPRegInfo *ri,
1053                         uint64_t value)
1054 {
1055     uint64_t total_ticks;
1056 
1057     if (!arm_ccnt_enabled(env)) {
1058         /* Counter is disabled, set the absolute value */
1059         env->cp15.c15_ccnt = value;
1060         return;
1061     }
1062 
1063     total_ticks = muldiv64(qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL),
1064                            ARM_CPU_FREQ, NANOSECONDS_PER_SECOND);
1065 
1066     if (env->cp15.c9_pmcr & PMCRD) {
1067         /* Increment once every 64 processor clock cycles */
1068         total_ticks /= 64;
1069     }
1070     env->cp15.c15_ccnt = total_ticks - value;
1071 }
1072 
1073 static void pmccntr_write32(CPUARMState *env, const ARMCPRegInfo *ri,
1074                             uint64_t value)
1075 {
1076     uint64_t cur_val = pmccntr_read(env, NULL);
1077 
1078     pmccntr_write(env, ri, deposit64(cur_val, 0, 32, value));
1079 }
1080 
1081 #else /* CONFIG_USER_ONLY */
1082 
1083 void pmccntr_sync(CPUARMState *env)
1084 {
1085 }
1086 
1087 #endif
1088 
1089 static void pmccfiltr_write(CPUARMState *env, const ARMCPRegInfo *ri,
1090                             uint64_t value)
1091 {
1092     pmccntr_sync(env);
1093     env->cp15.pmccfiltr_el0 = value & 0x7E000000;
1094     pmccntr_sync(env);
1095 }
1096 
1097 static void pmcntenset_write(CPUARMState *env, const ARMCPRegInfo *ri,
1098                             uint64_t value)
1099 {
1100     value &= (1 << 31);
1101     env->cp15.c9_pmcnten |= value;
1102 }
1103 
1104 static void pmcntenclr_write(CPUARMState *env, const ARMCPRegInfo *ri,
1105                              uint64_t value)
1106 {
1107     value &= (1 << 31);
1108     env->cp15.c9_pmcnten &= ~value;
1109 }
1110 
1111 static void pmovsr_write(CPUARMState *env, const ARMCPRegInfo *ri,
1112                          uint64_t value)
1113 {
1114     env->cp15.c9_pmovsr &= ~value;
1115 }
1116 
1117 static void pmxevtyper_write(CPUARMState *env, const ARMCPRegInfo *ri,
1118                              uint64_t value)
1119 {
1120     /* Attempts to access PMXEVTYPER are CONSTRAINED UNPREDICTABLE when
1121      * PMSELR value is equal to or greater than the number of implemented
1122      * counters, but not equal to 0x1f. We opt to behave as a RAZ/WI.
1123      */
1124     if (env->cp15.c9_pmselr == 0x1f) {
1125         pmccfiltr_write(env, ri, value);
1126     }
1127 }
1128 
1129 static uint64_t pmxevtyper_read(CPUARMState *env, const ARMCPRegInfo *ri)
1130 {
1131     /* We opt to behave as a RAZ/WI when attempts to access PMXEVTYPER
1132      * are CONSTRAINED UNPREDICTABLE. See comments in pmxevtyper_write().
1133      */
1134     if (env->cp15.c9_pmselr == 0x1f) {
1135         return env->cp15.pmccfiltr_el0;
1136     } else {
1137         return 0;
1138     }
1139 }
1140 
1141 static void pmuserenr_write(CPUARMState *env, const ARMCPRegInfo *ri,
1142                             uint64_t value)
1143 {
1144     if (arm_feature(env, ARM_FEATURE_V8)) {
1145         env->cp15.c9_pmuserenr = value & 0xf;
1146     } else {
1147         env->cp15.c9_pmuserenr = value & 1;
1148     }
1149 }
1150 
1151 static void pmintenset_write(CPUARMState *env, const ARMCPRegInfo *ri,
1152                              uint64_t value)
1153 {
1154     /* We have no event counters so only the C bit can be changed */
1155     value &= (1 << 31);
1156     env->cp15.c9_pminten |= value;
1157 }
1158 
1159 static void pmintenclr_write(CPUARMState *env, const ARMCPRegInfo *ri,
1160                              uint64_t value)
1161 {
1162     value &= (1 << 31);
1163     env->cp15.c9_pminten &= ~value;
1164 }
1165 
1166 static void vbar_write(CPUARMState *env, const ARMCPRegInfo *ri,
1167                        uint64_t value)
1168 {
1169     /* Note that even though the AArch64 view of this register has bits
1170      * [10:0] all RES0 we can only mask the bottom 5, to comply with the
1171      * architectural requirements for bits which are RES0 only in some
1172      * contexts. (ARMv8 would permit us to do no masking at all, but ARMv7
1173      * requires the bottom five bits to be RAZ/WI because they're UNK/SBZP.)
1174      */
1175     raw_write(env, ri, value & ~0x1FULL);
1176 }
1177 
1178 static void scr_write(CPUARMState *env, const ARMCPRegInfo *ri, uint64_t value)
1179 {
1180     /* We only mask off bits that are RES0 both for AArch64 and AArch32.
1181      * For bits that vary between AArch32/64, code needs to check the
1182      * current execution mode before directly using the feature bit.
1183      */
1184     uint32_t valid_mask = SCR_AARCH64_MASK | SCR_AARCH32_MASK;
1185 
1186     if (!arm_feature(env, ARM_FEATURE_EL2)) {
1187         valid_mask &= ~SCR_HCE;
1188 
1189         /* On ARMv7, SMD (or SCD as it is called in v7) is only
1190          * supported if EL2 exists. The bit is UNK/SBZP when
1191          * EL2 is unavailable. In QEMU ARMv7, we force it to always zero
1192          * when EL2 is unavailable.
1193          * On ARMv8, this bit is always available.
1194          */
1195         if (arm_feature(env, ARM_FEATURE_V7) &&
1196             !arm_feature(env, ARM_FEATURE_V8)) {
1197             valid_mask &= ~SCR_SMD;
1198         }
1199     }
1200 
1201     /* Clear all-context RES0 bits.  */
1202     value &= valid_mask;
1203     raw_write(env, ri, value);
1204 }
1205 
1206 static uint64_t ccsidr_read(CPUARMState *env, const ARMCPRegInfo *ri)
1207 {
1208     ARMCPU *cpu = arm_env_get_cpu(env);
1209 
1210     /* Acquire the CSSELR index from the bank corresponding to the CCSIDR
1211      * bank
1212      */
1213     uint32_t index = A32_BANKED_REG_GET(env, csselr,
1214                                         ri->secure & ARM_CP_SECSTATE_S);
1215 
1216     return cpu->ccsidr[index];
1217 }
1218 
1219 static void csselr_write(CPUARMState *env, const ARMCPRegInfo *ri,
1220                          uint64_t value)
1221 {
1222     raw_write(env, ri, value & 0xf);
1223 }
1224 
1225 static uint64_t isr_read(CPUARMState *env, const ARMCPRegInfo *ri)
1226 {
1227     CPUState *cs = ENV_GET_CPU(env);
1228     uint64_t ret = 0;
1229 
1230     if (cs->interrupt_request & CPU_INTERRUPT_HARD) {
1231         ret |= CPSR_I;
1232     }
1233     if (cs->interrupt_request & CPU_INTERRUPT_FIQ) {
1234         ret |= CPSR_F;
1235     }
1236     /* External aborts are not possible in QEMU so A bit is always clear */
1237     return ret;
1238 }
1239 
1240 static const ARMCPRegInfo v7_cp_reginfo[] = {
1241     /* the old v6 WFI, UNPREDICTABLE in v7 but we choose to NOP */
1242     { .name = "NOP", .cp = 15, .crn = 7, .crm = 0, .opc1 = 0, .opc2 = 4,
1243       .access = PL1_W, .type = ARM_CP_NOP },
1244     /* Performance monitors are implementation defined in v7,
1245      * but with an ARM recommended set of registers, which we
1246      * follow (although we don't actually implement any counters)
1247      *
1248      * Performance registers fall into three categories:
1249      *  (a) always UNDEF in PL0, RW in PL1 (PMINTENSET, PMINTENCLR)
1250      *  (b) RO in PL0 (ie UNDEF on write), RW in PL1 (PMUSERENR)
1251      *  (c) UNDEF in PL0 if PMUSERENR.EN==0, otherwise accessible (all others)
1252      * For the cases controlled by PMUSERENR we must set .access to PL0_RW
1253      * or PL0_RO as appropriate and then check PMUSERENR in the helper fn.
1254      */
1255     { .name = "PMCNTENSET", .cp = 15, .crn = 9, .crm = 12, .opc1 = 0, .opc2 = 1,
1256       .access = PL0_RW, .type = ARM_CP_ALIAS,
1257       .fieldoffset = offsetoflow32(CPUARMState, cp15.c9_pmcnten),
1258       .writefn = pmcntenset_write,
1259       .accessfn = pmreg_access,
1260       .raw_writefn = raw_write },
1261     { .name = "PMCNTENSET_EL0", .state = ARM_CP_STATE_AA64,
1262       .opc0 = 3, .opc1 = 3, .crn = 9, .crm = 12, .opc2 = 1,
1263       .access = PL0_RW, .accessfn = pmreg_access,
1264       .fieldoffset = offsetof(CPUARMState, cp15.c9_pmcnten), .resetvalue = 0,
1265       .writefn = pmcntenset_write, .raw_writefn = raw_write },
1266     { .name = "PMCNTENCLR", .cp = 15, .crn = 9, .crm = 12, .opc1 = 0, .opc2 = 2,
1267       .access = PL0_RW,
1268       .fieldoffset = offsetoflow32(CPUARMState, cp15.c9_pmcnten),
1269       .accessfn = pmreg_access,
1270       .writefn = pmcntenclr_write,
1271       .type = ARM_CP_ALIAS },
1272     { .name = "PMCNTENCLR_EL0", .state = ARM_CP_STATE_AA64,
1273       .opc0 = 3, .opc1 = 3, .crn = 9, .crm = 12, .opc2 = 2,
1274       .access = PL0_RW, .accessfn = pmreg_access,
1275       .type = ARM_CP_ALIAS,
1276       .fieldoffset = offsetof(CPUARMState, cp15.c9_pmcnten),
1277       .writefn = pmcntenclr_write },
1278     { .name = "PMOVSR", .cp = 15, .crn = 9, .crm = 12, .opc1 = 0, .opc2 = 3,
1279       .access = PL0_RW, .fieldoffset = offsetof(CPUARMState, cp15.c9_pmovsr),
1280       .accessfn = pmreg_access,
1281       .writefn = pmovsr_write,
1282       .raw_writefn = raw_write },
1283     { .name = "PMOVSCLR_EL0", .state = ARM_CP_STATE_AA64,
1284       .opc0 = 3, .opc1 = 3, .crn = 9, .crm = 12, .opc2 = 3,
1285       .access = PL0_RW, .accessfn = pmreg_access,
1286       .type = ARM_CP_ALIAS,
1287       .fieldoffset = offsetof(CPUARMState, cp15.c9_pmovsr),
1288       .writefn = pmovsr_write,
1289       .raw_writefn = raw_write },
1290     /* Unimplemented so WI. */
1291     { .name = "PMSWINC", .cp = 15, .crn = 9, .crm = 12, .opc1 = 0, .opc2 = 4,
1292       .access = PL0_W, .accessfn = pmreg_access_swinc, .type = ARM_CP_NOP },
1293 #ifndef CONFIG_USER_ONLY
1294     { .name = "PMSELR", .cp = 15, .crn = 9, .crm = 12, .opc1 = 0, .opc2 = 5,
1295       .access = PL0_RW, .type = ARM_CP_ALIAS,
1296       .fieldoffset = offsetoflow32(CPUARMState, cp15.c9_pmselr),
1297       .accessfn = pmreg_access_selr, .writefn = pmselr_write,
1298       .raw_writefn = raw_write},
1299     { .name = "PMSELR_EL0", .state = ARM_CP_STATE_AA64,
1300       .opc0 = 3, .opc1 = 3, .crn = 9, .crm = 12, .opc2 = 5,
1301       .access = PL0_RW, .accessfn = pmreg_access_selr,
1302       .fieldoffset = offsetof(CPUARMState, cp15.c9_pmselr),
1303       .writefn = pmselr_write, .raw_writefn = raw_write, },
1304     { .name = "PMCCNTR", .cp = 15, .crn = 9, .crm = 13, .opc1 = 0, .opc2 = 0,
1305       .access = PL0_RW, .resetvalue = 0, .type = ARM_CP_IO,
1306       .readfn = pmccntr_read, .writefn = pmccntr_write32,
1307       .accessfn = pmreg_access_ccntr },
1308     { .name = "PMCCNTR_EL0", .state = ARM_CP_STATE_AA64,
1309       .opc0 = 3, .opc1 = 3, .crn = 9, .crm = 13, .opc2 = 0,
1310       .access = PL0_RW, .accessfn = pmreg_access_ccntr,
1311       .type = ARM_CP_IO,
1312       .readfn = pmccntr_read, .writefn = pmccntr_write, },
1313 #endif
1314     { .name = "PMCCFILTR_EL0", .state = ARM_CP_STATE_AA64,
1315       .opc0 = 3, .opc1 = 3, .crn = 14, .crm = 15, .opc2 = 7,
1316       .writefn = pmccfiltr_write,
1317       .access = PL0_RW, .accessfn = pmreg_access,
1318       .type = ARM_CP_IO,
1319       .fieldoffset = offsetof(CPUARMState, cp15.pmccfiltr_el0),
1320       .resetvalue = 0, },
1321     { .name = "PMXEVTYPER", .cp = 15, .crn = 9, .crm = 13, .opc1 = 0, .opc2 = 1,
1322       .access = PL0_RW, .type = ARM_CP_NO_RAW, .accessfn = pmreg_access,
1323       .writefn = pmxevtyper_write, .readfn = pmxevtyper_read },
1324     { .name = "PMXEVTYPER_EL0", .state = ARM_CP_STATE_AA64,
1325       .opc0 = 3, .opc1 = 3, .crn = 9, .crm = 13, .opc2 = 1,
1326       .access = PL0_RW, .type = ARM_CP_NO_RAW, .accessfn = pmreg_access,
1327       .writefn = pmxevtyper_write, .readfn = pmxevtyper_read },
1328     /* Unimplemented, RAZ/WI. */
1329     { .name = "PMXEVCNTR", .cp = 15, .crn = 9, .crm = 13, .opc1 = 0, .opc2 = 2,
1330       .access = PL0_RW, .type = ARM_CP_CONST, .resetvalue = 0,
1331       .accessfn = pmreg_access_xevcntr },
1332     { .name = "PMUSERENR", .cp = 15, .crn = 9, .crm = 14, .opc1 = 0, .opc2 = 0,
1333       .access = PL0_R | PL1_RW, .accessfn = access_tpm,
1334       .fieldoffset = offsetof(CPUARMState, cp15.c9_pmuserenr),
1335       .resetvalue = 0,
1336       .writefn = pmuserenr_write, .raw_writefn = raw_write },
1337     { .name = "PMUSERENR_EL0", .state = ARM_CP_STATE_AA64,
1338       .opc0 = 3, .opc1 = 3, .crn = 9, .crm = 14, .opc2 = 0,
1339       .access = PL0_R | PL1_RW, .accessfn = access_tpm, .type = ARM_CP_ALIAS,
1340       .fieldoffset = offsetof(CPUARMState, cp15.c9_pmuserenr),
1341       .resetvalue = 0,
1342       .writefn = pmuserenr_write, .raw_writefn = raw_write },
1343     { .name = "PMINTENSET", .cp = 15, .crn = 9, .crm = 14, .opc1 = 0, .opc2 = 1,
1344       .access = PL1_RW, .accessfn = access_tpm,
1345       .type = ARM_CP_ALIAS,
1346       .fieldoffset = offsetoflow32(CPUARMState, cp15.c9_pminten),
1347       .resetvalue = 0,
1348       .writefn = pmintenset_write, .raw_writefn = raw_write },
1349     { .name = "PMINTENSET_EL1", .state = ARM_CP_STATE_AA64,
1350       .opc0 = 3, .opc1 = 0, .crn = 9, .crm = 14, .opc2 = 1,
1351       .access = PL1_RW, .accessfn = access_tpm,
1352       .type = ARM_CP_IO,
1353       .fieldoffset = offsetof(CPUARMState, cp15.c9_pminten),
1354       .writefn = pmintenset_write, .raw_writefn = raw_write,
1355       .resetvalue = 0x0 },
1356     { .name = "PMINTENCLR", .cp = 15, .crn = 9, .crm = 14, .opc1 = 0, .opc2 = 2,
1357       .access = PL1_RW, .accessfn = access_tpm, .type = ARM_CP_ALIAS,
1358       .fieldoffset = offsetof(CPUARMState, cp15.c9_pminten),
1359       .writefn = pmintenclr_write, },
1360     { .name = "PMINTENCLR_EL1", .state = ARM_CP_STATE_AA64,
1361       .opc0 = 3, .opc1 = 0, .crn = 9, .crm = 14, .opc2 = 2,
1362       .access = PL1_RW, .accessfn = access_tpm, .type = ARM_CP_ALIAS,
1363       .fieldoffset = offsetof(CPUARMState, cp15.c9_pminten),
1364       .writefn = pmintenclr_write },
1365     { .name = "CCSIDR", .state = ARM_CP_STATE_BOTH,
1366       .opc0 = 3, .crn = 0, .crm = 0, .opc1 = 1, .opc2 = 0,
1367       .access = PL1_R, .readfn = ccsidr_read, .type = ARM_CP_NO_RAW },
1368     { .name = "CSSELR", .state = ARM_CP_STATE_BOTH,
1369       .opc0 = 3, .crn = 0, .crm = 0, .opc1 = 2, .opc2 = 0,
1370       .access = PL1_RW, .writefn = csselr_write, .resetvalue = 0,
1371       .bank_fieldoffsets = { offsetof(CPUARMState, cp15.csselr_s),
1372                              offsetof(CPUARMState, cp15.csselr_ns) } },
1373     /* Auxiliary ID register: this actually has an IMPDEF value but for now
1374      * just RAZ for all cores:
1375      */
1376     { .name = "AIDR", .state = ARM_CP_STATE_BOTH,
1377       .opc0 = 3, .opc1 = 1, .crn = 0, .crm = 0, .opc2 = 7,
1378       .access = PL1_R, .type = ARM_CP_CONST, .resetvalue = 0 },
1379     /* Auxiliary fault status registers: these also are IMPDEF, and we
1380      * choose to RAZ/WI for all cores.
1381      */
1382     { .name = "AFSR0_EL1", .state = ARM_CP_STATE_BOTH,
1383       .opc0 = 3, .opc1 = 0, .crn = 5, .crm = 1, .opc2 = 0,
1384       .access = PL1_RW, .type = ARM_CP_CONST, .resetvalue = 0 },
1385     { .name = "AFSR1_EL1", .state = ARM_CP_STATE_BOTH,
1386       .opc0 = 3, .opc1 = 0, .crn = 5, .crm = 1, .opc2 = 1,
1387       .access = PL1_RW, .type = ARM_CP_CONST, .resetvalue = 0 },
1388     /* MAIR can just read-as-written because we don't implement caches
1389      * and so don't need to care about memory attributes.
1390      */
1391     { .name = "MAIR_EL1", .state = ARM_CP_STATE_AA64,
1392       .opc0 = 3, .opc1 = 0, .crn = 10, .crm = 2, .opc2 = 0,
1393       .access = PL1_RW, .fieldoffset = offsetof(CPUARMState, cp15.mair_el[1]),
1394       .resetvalue = 0 },
1395     { .name = "MAIR_EL3", .state = ARM_CP_STATE_AA64,
1396       .opc0 = 3, .opc1 = 6, .crn = 10, .crm = 2, .opc2 = 0,
1397       .access = PL3_RW, .fieldoffset = offsetof(CPUARMState, cp15.mair_el[3]),
1398       .resetvalue = 0 },
1399     /* For non-long-descriptor page tables these are PRRR and NMRR;
1400      * regardless they still act as reads-as-written for QEMU.
1401      */
1402      /* MAIR0/1 are defined separately from their 64-bit counterpart which
1403       * allows them to assign the correct fieldoffset based on the endianness
1404       * handled in the field definitions.
1405       */
1406     { .name = "MAIR0", .state = ARM_CP_STATE_AA32,
1407       .cp = 15, .opc1 = 0, .crn = 10, .crm = 2, .opc2 = 0, .access = PL1_RW,
1408       .bank_fieldoffsets = { offsetof(CPUARMState, cp15.mair0_s),
1409                              offsetof(CPUARMState, cp15.mair0_ns) },
1410       .resetfn = arm_cp_reset_ignore },
1411     { .name = "MAIR1", .state = ARM_CP_STATE_AA32,
1412       .cp = 15, .opc1 = 0, .crn = 10, .crm = 2, .opc2 = 1, .access = PL1_RW,
1413       .bank_fieldoffsets = { offsetof(CPUARMState, cp15.mair1_s),
1414                              offsetof(CPUARMState, cp15.mair1_ns) },
1415       .resetfn = arm_cp_reset_ignore },
1416     { .name = "ISR_EL1", .state = ARM_CP_STATE_BOTH,
1417       .opc0 = 3, .opc1 = 0, .crn = 12, .crm = 1, .opc2 = 0,
1418       .type = ARM_CP_NO_RAW, .access = PL1_R, .readfn = isr_read },
1419     /* 32 bit ITLB invalidates */
1420     { .name = "ITLBIALL", .cp = 15, .opc1 = 0, .crn = 8, .crm = 5, .opc2 = 0,
1421       .type = ARM_CP_NO_RAW, .access = PL1_W, .writefn = tlbiall_write },
1422     { .name = "ITLBIMVA", .cp = 15, .opc1 = 0, .crn = 8, .crm = 5, .opc2 = 1,
1423       .type = ARM_CP_NO_RAW, .access = PL1_W, .writefn = tlbimva_write },
1424     { .name = "ITLBIASID", .cp = 15, .opc1 = 0, .crn = 8, .crm = 5, .opc2 = 2,
1425       .type = ARM_CP_NO_RAW, .access = PL1_W, .writefn = tlbiasid_write },
1426     /* 32 bit DTLB invalidates */
1427     { .name = "DTLBIALL", .cp = 15, .opc1 = 0, .crn = 8, .crm = 6, .opc2 = 0,
1428       .type = ARM_CP_NO_RAW, .access = PL1_W, .writefn = tlbiall_write },
1429     { .name = "DTLBIMVA", .cp = 15, .opc1 = 0, .crn = 8, .crm = 6, .opc2 = 1,
1430       .type = ARM_CP_NO_RAW, .access = PL1_W, .writefn = tlbimva_write },
1431     { .name = "DTLBIASID", .cp = 15, .opc1 = 0, .crn = 8, .crm = 6, .opc2 = 2,
1432       .type = ARM_CP_NO_RAW, .access = PL1_W, .writefn = tlbiasid_write },
1433     /* 32 bit TLB invalidates */
1434     { .name = "TLBIALL", .cp = 15, .opc1 = 0, .crn = 8, .crm = 7, .opc2 = 0,
1435       .type = ARM_CP_NO_RAW, .access = PL1_W, .writefn = tlbiall_write },
1436     { .name = "TLBIMVA", .cp = 15, .opc1 = 0, .crn = 8, .crm = 7, .opc2 = 1,
1437       .type = ARM_CP_NO_RAW, .access = PL1_W, .writefn = tlbimva_write },
1438     { .name = "TLBIASID", .cp = 15, .opc1 = 0, .crn = 8, .crm = 7, .opc2 = 2,
1439       .type = ARM_CP_NO_RAW, .access = PL1_W, .writefn = tlbiasid_write },
1440     { .name = "TLBIMVAA", .cp = 15, .opc1 = 0, .crn = 8, .crm = 7, .opc2 = 3,
1441       .type = ARM_CP_NO_RAW, .access = PL1_W, .writefn = tlbimvaa_write },
1442     REGINFO_SENTINEL
1443 };
1444 
1445 static const ARMCPRegInfo v7mp_cp_reginfo[] = {
1446     /* 32 bit TLB invalidates, Inner Shareable */
1447     { .name = "TLBIALLIS", .cp = 15, .opc1 = 0, .crn = 8, .crm = 3, .opc2 = 0,
1448       .type = ARM_CP_NO_RAW, .access = PL1_W, .writefn = tlbiall_is_write },
1449     { .name = "TLBIMVAIS", .cp = 15, .opc1 = 0, .crn = 8, .crm = 3, .opc2 = 1,
1450       .type = ARM_CP_NO_RAW, .access = PL1_W, .writefn = tlbimva_is_write },
1451     { .name = "TLBIASIDIS", .cp = 15, .opc1 = 0, .crn = 8, .crm = 3, .opc2 = 2,
1452       .type = ARM_CP_NO_RAW, .access = PL1_W,
1453       .writefn = tlbiasid_is_write },
1454     { .name = "TLBIMVAAIS", .cp = 15, .opc1 = 0, .crn = 8, .crm = 3, .opc2 = 3,
1455       .type = ARM_CP_NO_RAW, .access = PL1_W,
1456       .writefn = tlbimvaa_is_write },
1457     REGINFO_SENTINEL
1458 };
1459 
1460 static void teecr_write(CPUARMState *env, const ARMCPRegInfo *ri,
1461                         uint64_t value)
1462 {
1463     value &= 1;
1464     env->teecr = value;
1465 }
1466 
1467 static CPAccessResult teehbr_access(CPUARMState *env, const ARMCPRegInfo *ri,
1468                                     bool isread)
1469 {
1470     if (arm_current_el(env) == 0 && (env->teecr & 1)) {
1471         return CP_ACCESS_TRAP;
1472     }
1473     return CP_ACCESS_OK;
1474 }
1475 
1476 static const ARMCPRegInfo t2ee_cp_reginfo[] = {
1477     { .name = "TEECR", .cp = 14, .crn = 0, .crm = 0, .opc1 = 6, .opc2 = 0,
1478       .access = PL1_RW, .fieldoffset = offsetof(CPUARMState, teecr),
1479       .resetvalue = 0,
1480       .writefn = teecr_write },
1481     { .name = "TEEHBR", .cp = 14, .crn = 1, .crm = 0, .opc1 = 6, .opc2 = 0,
1482       .access = PL0_RW, .fieldoffset = offsetof(CPUARMState, teehbr),
1483       .accessfn = teehbr_access, .resetvalue = 0 },
1484     REGINFO_SENTINEL
1485 };
1486 
1487 static const ARMCPRegInfo v6k_cp_reginfo[] = {
1488     { .name = "TPIDR_EL0", .state = ARM_CP_STATE_AA64,
1489       .opc0 = 3, .opc1 = 3, .opc2 = 2, .crn = 13, .crm = 0,
1490       .access = PL0_RW,
1491       .fieldoffset = offsetof(CPUARMState, cp15.tpidr_el[0]), .resetvalue = 0 },
1492     { .name = "TPIDRURW", .cp = 15, .crn = 13, .crm = 0, .opc1 = 0, .opc2 = 2,
1493       .access = PL0_RW,
1494       .bank_fieldoffsets = { offsetoflow32(CPUARMState, cp15.tpidrurw_s),
1495                              offsetoflow32(CPUARMState, cp15.tpidrurw_ns) },
1496       .resetfn = arm_cp_reset_ignore },
1497     { .name = "TPIDRRO_EL0", .state = ARM_CP_STATE_AA64,
1498       .opc0 = 3, .opc1 = 3, .opc2 = 3, .crn = 13, .crm = 0,
1499       .access = PL0_R|PL1_W,
1500       .fieldoffset = offsetof(CPUARMState, cp15.tpidrro_el[0]),
1501       .resetvalue = 0},
1502     { .name = "TPIDRURO", .cp = 15, .crn = 13, .crm = 0, .opc1 = 0, .opc2 = 3,
1503       .access = PL0_R|PL1_W,
1504       .bank_fieldoffsets = { offsetoflow32(CPUARMState, cp15.tpidruro_s),
1505                              offsetoflow32(CPUARMState, cp15.tpidruro_ns) },
1506       .resetfn = arm_cp_reset_ignore },
1507     { .name = "TPIDR_EL1", .state = ARM_CP_STATE_AA64,
1508       .opc0 = 3, .opc1 = 0, .opc2 = 4, .crn = 13, .crm = 0,
1509       .access = PL1_RW,
1510       .fieldoffset = offsetof(CPUARMState, cp15.tpidr_el[1]), .resetvalue = 0 },
1511     { .name = "TPIDRPRW", .opc1 = 0, .cp = 15, .crn = 13, .crm = 0, .opc2 = 4,
1512       .access = PL1_RW,
1513       .bank_fieldoffsets = { offsetoflow32(CPUARMState, cp15.tpidrprw_s),
1514                              offsetoflow32(CPUARMState, cp15.tpidrprw_ns) },
1515       .resetvalue = 0 },
1516     REGINFO_SENTINEL
1517 };
1518 
1519 #ifndef CONFIG_USER_ONLY
1520 
1521 static CPAccessResult gt_cntfrq_access(CPUARMState *env, const ARMCPRegInfo *ri,
1522                                        bool isread)
1523 {
1524     /* CNTFRQ: not visible from PL0 if both PL0PCTEN and PL0VCTEN are zero.
1525      * Writable only at the highest implemented exception level.
1526      */
1527     int el = arm_current_el(env);
1528 
1529     switch (el) {
1530     case 0:
1531         if (!extract32(env->cp15.c14_cntkctl, 0, 2)) {
1532             return CP_ACCESS_TRAP;
1533         }
1534         break;
1535     case 1:
1536         if (!isread && ri->state == ARM_CP_STATE_AA32 &&
1537             arm_is_secure_below_el3(env)) {
1538             /* Accesses from 32-bit Secure EL1 UNDEF (*not* trap to EL3!) */
1539             return CP_ACCESS_TRAP_UNCATEGORIZED;
1540         }
1541         break;
1542     case 2:
1543     case 3:
1544         break;
1545     }
1546 
1547     if (!isread && el < arm_highest_el(env)) {
1548         return CP_ACCESS_TRAP_UNCATEGORIZED;
1549     }
1550 
1551     return CP_ACCESS_OK;
1552 }
1553 
1554 static CPAccessResult gt_counter_access(CPUARMState *env, int timeridx,
1555                                         bool isread)
1556 {
1557     unsigned int cur_el = arm_current_el(env);
1558     bool secure = arm_is_secure(env);
1559 
1560     /* CNT[PV]CT: not visible from PL0 if ELO[PV]CTEN is zero */
1561     if (cur_el == 0 &&
1562         !extract32(env->cp15.c14_cntkctl, timeridx, 1)) {
1563         return CP_ACCESS_TRAP;
1564     }
1565 
1566     if (arm_feature(env, ARM_FEATURE_EL2) &&
1567         timeridx == GTIMER_PHYS && !secure && cur_el < 2 &&
1568         !extract32(env->cp15.cnthctl_el2, 0, 1)) {
1569         return CP_ACCESS_TRAP_EL2;
1570     }
1571     return CP_ACCESS_OK;
1572 }
1573 
1574 static CPAccessResult gt_timer_access(CPUARMState *env, int timeridx,
1575                                       bool isread)
1576 {
1577     unsigned int cur_el = arm_current_el(env);
1578     bool secure = arm_is_secure(env);
1579 
1580     /* CNT[PV]_CVAL, CNT[PV]_CTL, CNT[PV]_TVAL: not visible from PL0 if
1581      * EL0[PV]TEN is zero.
1582      */
1583     if (cur_el == 0 &&
1584         !extract32(env->cp15.c14_cntkctl, 9 - timeridx, 1)) {
1585         return CP_ACCESS_TRAP;
1586     }
1587 
1588     if (arm_feature(env, ARM_FEATURE_EL2) &&
1589         timeridx == GTIMER_PHYS && !secure && cur_el < 2 &&
1590         !extract32(env->cp15.cnthctl_el2, 1, 1)) {
1591         return CP_ACCESS_TRAP_EL2;
1592     }
1593     return CP_ACCESS_OK;
1594 }
1595 
1596 static CPAccessResult gt_pct_access(CPUARMState *env,
1597                                     const ARMCPRegInfo *ri,
1598                                     bool isread)
1599 {
1600     return gt_counter_access(env, GTIMER_PHYS, isread);
1601 }
1602 
1603 static CPAccessResult gt_vct_access(CPUARMState *env,
1604                                     const ARMCPRegInfo *ri,
1605                                     bool isread)
1606 {
1607     return gt_counter_access(env, GTIMER_VIRT, isread);
1608 }
1609 
1610 static CPAccessResult gt_ptimer_access(CPUARMState *env, const ARMCPRegInfo *ri,
1611                                        bool isread)
1612 {
1613     return gt_timer_access(env, GTIMER_PHYS, isread);
1614 }
1615 
1616 static CPAccessResult gt_vtimer_access(CPUARMState *env, const ARMCPRegInfo *ri,
1617                                        bool isread)
1618 {
1619     return gt_timer_access(env, GTIMER_VIRT, isread);
1620 }
1621 
1622 static CPAccessResult gt_stimer_access(CPUARMState *env,
1623                                        const ARMCPRegInfo *ri,
1624                                        bool isread)
1625 {
1626     /* The AArch64 register view of the secure physical timer is
1627      * always accessible from EL3, and configurably accessible from
1628      * Secure EL1.
1629      */
1630     switch (arm_current_el(env)) {
1631     case 1:
1632         if (!arm_is_secure(env)) {
1633             return CP_ACCESS_TRAP;
1634         }
1635         if (!(env->cp15.scr_el3 & SCR_ST)) {
1636             return CP_ACCESS_TRAP_EL3;
1637         }
1638         return CP_ACCESS_OK;
1639     case 0:
1640     case 2:
1641         return CP_ACCESS_TRAP;
1642     case 3:
1643         return CP_ACCESS_OK;
1644     default:
1645         g_assert_not_reached();
1646     }
1647 }
1648 
1649 static uint64_t gt_get_countervalue(CPUARMState *env)
1650 {
1651     return qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL) / GTIMER_SCALE;
1652 }
1653 
1654 static void gt_recalc_timer(ARMCPU *cpu, int timeridx)
1655 {
1656     ARMGenericTimer *gt = &cpu->env.cp15.c14_timer[timeridx];
1657 
1658     if (gt->ctl & 1) {
1659         /* Timer enabled: calculate and set current ISTATUS, irq, and
1660          * reset timer to when ISTATUS next has to change
1661          */
1662         uint64_t offset = timeridx == GTIMER_VIRT ?
1663                                       cpu->env.cp15.cntvoff_el2 : 0;
1664         uint64_t count = gt_get_countervalue(&cpu->env);
1665         /* Note that this must be unsigned 64 bit arithmetic: */
1666         int istatus = count - offset >= gt->cval;
1667         uint64_t nexttick;
1668         int irqstate;
1669 
1670         gt->ctl = deposit32(gt->ctl, 2, 1, istatus);
1671 
1672         irqstate = (istatus && !(gt->ctl & 2));
1673         qemu_set_irq(cpu->gt_timer_outputs[timeridx], irqstate);
1674 
1675         if (istatus) {
1676             /* Next transition is when count rolls back over to zero */
1677             nexttick = UINT64_MAX;
1678         } else {
1679             /* Next transition is when we hit cval */
1680             nexttick = gt->cval + offset;
1681         }
1682         /* Note that the desired next expiry time might be beyond the
1683          * signed-64-bit range of a QEMUTimer -- in this case we just
1684          * set the timer for as far in the future as possible. When the
1685          * timer expires we will reset the timer for any remaining period.
1686          */
1687         if (nexttick > INT64_MAX / GTIMER_SCALE) {
1688             nexttick = INT64_MAX / GTIMER_SCALE;
1689         }
1690         timer_mod(cpu->gt_timer[timeridx], nexttick);
1691         trace_arm_gt_recalc(timeridx, irqstate, nexttick);
1692     } else {
1693         /* Timer disabled: ISTATUS and timer output always clear */
1694         gt->ctl &= ~4;
1695         qemu_set_irq(cpu->gt_timer_outputs[timeridx], 0);
1696         timer_del(cpu->gt_timer[timeridx]);
1697         trace_arm_gt_recalc_disabled(timeridx);
1698     }
1699 }
1700 
1701 static void gt_timer_reset(CPUARMState *env, const ARMCPRegInfo *ri,
1702                            int timeridx)
1703 {
1704     ARMCPU *cpu = arm_env_get_cpu(env);
1705 
1706     timer_del(cpu->gt_timer[timeridx]);
1707 }
1708 
1709 static uint64_t gt_cnt_read(CPUARMState *env, const ARMCPRegInfo *ri)
1710 {
1711     return gt_get_countervalue(env);
1712 }
1713 
1714 static uint64_t gt_virt_cnt_read(CPUARMState *env, const ARMCPRegInfo *ri)
1715 {
1716     return gt_get_countervalue(env) - env->cp15.cntvoff_el2;
1717 }
1718 
1719 static void gt_cval_write(CPUARMState *env, const ARMCPRegInfo *ri,
1720                           int timeridx,
1721                           uint64_t value)
1722 {
1723     trace_arm_gt_cval_write(timeridx, value);
1724     env->cp15.c14_timer[timeridx].cval = value;
1725     gt_recalc_timer(arm_env_get_cpu(env), timeridx);
1726 }
1727 
1728 static uint64_t gt_tval_read(CPUARMState *env, const ARMCPRegInfo *ri,
1729                              int timeridx)
1730 {
1731     uint64_t offset = timeridx == GTIMER_VIRT ? env->cp15.cntvoff_el2 : 0;
1732 
1733     return (uint32_t)(env->cp15.c14_timer[timeridx].cval -
1734                       (gt_get_countervalue(env) - offset));
1735 }
1736 
1737 static void gt_tval_write(CPUARMState *env, const ARMCPRegInfo *ri,
1738                           int timeridx,
1739                           uint64_t value)
1740 {
1741     uint64_t offset = timeridx == GTIMER_VIRT ? env->cp15.cntvoff_el2 : 0;
1742 
1743     trace_arm_gt_tval_write(timeridx, value);
1744     env->cp15.c14_timer[timeridx].cval = gt_get_countervalue(env) - offset +
1745                                          sextract64(value, 0, 32);
1746     gt_recalc_timer(arm_env_get_cpu(env), timeridx);
1747 }
1748 
1749 static void gt_ctl_write(CPUARMState *env, const ARMCPRegInfo *ri,
1750                          int timeridx,
1751                          uint64_t value)
1752 {
1753     ARMCPU *cpu = arm_env_get_cpu(env);
1754     uint32_t oldval = env->cp15.c14_timer[timeridx].ctl;
1755 
1756     trace_arm_gt_ctl_write(timeridx, value);
1757     env->cp15.c14_timer[timeridx].ctl = deposit64(oldval, 0, 2, value);
1758     if ((oldval ^ value) & 1) {
1759         /* Enable toggled */
1760         gt_recalc_timer(cpu, timeridx);
1761     } else if ((oldval ^ value) & 2) {
1762         /* IMASK toggled: don't need to recalculate,
1763          * just set the interrupt line based on ISTATUS
1764          */
1765         int irqstate = (oldval & 4) && !(value & 2);
1766 
1767         trace_arm_gt_imask_toggle(timeridx, irqstate);
1768         qemu_set_irq(cpu->gt_timer_outputs[timeridx], irqstate);
1769     }
1770 }
1771 
1772 static void gt_phys_timer_reset(CPUARMState *env, const ARMCPRegInfo *ri)
1773 {
1774     gt_timer_reset(env, ri, GTIMER_PHYS);
1775 }
1776 
1777 static void gt_phys_cval_write(CPUARMState *env, const ARMCPRegInfo *ri,
1778                                uint64_t value)
1779 {
1780     gt_cval_write(env, ri, GTIMER_PHYS, value);
1781 }
1782 
1783 static uint64_t gt_phys_tval_read(CPUARMState *env, const ARMCPRegInfo *ri)
1784 {
1785     return gt_tval_read(env, ri, GTIMER_PHYS);
1786 }
1787 
1788 static void gt_phys_tval_write(CPUARMState *env, const ARMCPRegInfo *ri,
1789                                uint64_t value)
1790 {
1791     gt_tval_write(env, ri, GTIMER_PHYS, value);
1792 }
1793 
1794 static void gt_phys_ctl_write(CPUARMState *env, const ARMCPRegInfo *ri,
1795                               uint64_t value)
1796 {
1797     gt_ctl_write(env, ri, GTIMER_PHYS, value);
1798 }
1799 
1800 static void gt_virt_timer_reset(CPUARMState *env, const ARMCPRegInfo *ri)
1801 {
1802     gt_timer_reset(env, ri, GTIMER_VIRT);
1803 }
1804 
1805 static void gt_virt_cval_write(CPUARMState *env, const ARMCPRegInfo *ri,
1806                                uint64_t value)
1807 {
1808     gt_cval_write(env, ri, GTIMER_VIRT, value);
1809 }
1810 
1811 static uint64_t gt_virt_tval_read(CPUARMState *env, const ARMCPRegInfo *ri)
1812 {
1813     return gt_tval_read(env, ri, GTIMER_VIRT);
1814 }
1815 
1816 static void gt_virt_tval_write(CPUARMState *env, const ARMCPRegInfo *ri,
1817                                uint64_t value)
1818 {
1819     gt_tval_write(env, ri, GTIMER_VIRT, value);
1820 }
1821 
1822 static void gt_virt_ctl_write(CPUARMState *env, const ARMCPRegInfo *ri,
1823                               uint64_t value)
1824 {
1825     gt_ctl_write(env, ri, GTIMER_VIRT, value);
1826 }
1827 
1828 static void gt_cntvoff_write(CPUARMState *env, const ARMCPRegInfo *ri,
1829                               uint64_t value)
1830 {
1831     ARMCPU *cpu = arm_env_get_cpu(env);
1832 
1833     trace_arm_gt_cntvoff_write(value);
1834     raw_write(env, ri, value);
1835     gt_recalc_timer(cpu, GTIMER_VIRT);
1836 }
1837 
1838 static void gt_hyp_timer_reset(CPUARMState *env, const ARMCPRegInfo *ri)
1839 {
1840     gt_timer_reset(env, ri, GTIMER_HYP);
1841 }
1842 
1843 static void gt_hyp_cval_write(CPUARMState *env, const ARMCPRegInfo *ri,
1844                               uint64_t value)
1845 {
1846     gt_cval_write(env, ri, GTIMER_HYP, value);
1847 }
1848 
1849 static uint64_t gt_hyp_tval_read(CPUARMState *env, const ARMCPRegInfo *ri)
1850 {
1851     return gt_tval_read(env, ri, GTIMER_HYP);
1852 }
1853 
1854 static void gt_hyp_tval_write(CPUARMState *env, const ARMCPRegInfo *ri,
1855                               uint64_t value)
1856 {
1857     gt_tval_write(env, ri, GTIMER_HYP, value);
1858 }
1859 
1860 static void gt_hyp_ctl_write(CPUARMState *env, const ARMCPRegInfo *ri,
1861                               uint64_t value)
1862 {
1863     gt_ctl_write(env, ri, GTIMER_HYP, value);
1864 }
1865 
1866 static void gt_sec_timer_reset(CPUARMState *env, const ARMCPRegInfo *ri)
1867 {
1868     gt_timer_reset(env, ri, GTIMER_SEC);
1869 }
1870 
1871 static void gt_sec_cval_write(CPUARMState *env, const ARMCPRegInfo *ri,
1872                               uint64_t value)
1873 {
1874     gt_cval_write(env, ri, GTIMER_SEC, value);
1875 }
1876 
1877 static uint64_t gt_sec_tval_read(CPUARMState *env, const ARMCPRegInfo *ri)
1878 {
1879     return gt_tval_read(env, ri, GTIMER_SEC);
1880 }
1881 
1882 static void gt_sec_tval_write(CPUARMState *env, const ARMCPRegInfo *ri,
1883                               uint64_t value)
1884 {
1885     gt_tval_write(env, ri, GTIMER_SEC, value);
1886 }
1887 
1888 static void gt_sec_ctl_write(CPUARMState *env, const ARMCPRegInfo *ri,
1889                               uint64_t value)
1890 {
1891     gt_ctl_write(env, ri, GTIMER_SEC, value);
1892 }
1893 
1894 void arm_gt_ptimer_cb(void *opaque)
1895 {
1896     ARMCPU *cpu = opaque;
1897 
1898     gt_recalc_timer(cpu, GTIMER_PHYS);
1899 }
1900 
1901 void arm_gt_vtimer_cb(void *opaque)
1902 {
1903     ARMCPU *cpu = opaque;
1904 
1905     gt_recalc_timer(cpu, GTIMER_VIRT);
1906 }
1907 
1908 void arm_gt_htimer_cb(void *opaque)
1909 {
1910     ARMCPU *cpu = opaque;
1911 
1912     gt_recalc_timer(cpu, GTIMER_HYP);
1913 }
1914 
1915 void arm_gt_stimer_cb(void *opaque)
1916 {
1917     ARMCPU *cpu = opaque;
1918 
1919     gt_recalc_timer(cpu, GTIMER_SEC);
1920 }
1921 
1922 static const ARMCPRegInfo generic_timer_cp_reginfo[] = {
1923     /* Note that CNTFRQ is purely reads-as-written for the benefit
1924      * of software; writing it doesn't actually change the timer frequency.
1925      * Our reset value matches the fixed frequency we implement the timer at.
1926      */
1927     { .name = "CNTFRQ", .cp = 15, .crn = 14, .crm = 0, .opc1 = 0, .opc2 = 0,
1928       .type = ARM_CP_ALIAS,
1929       .access = PL1_RW | PL0_R, .accessfn = gt_cntfrq_access,
1930       .fieldoffset = offsetoflow32(CPUARMState, cp15.c14_cntfrq),
1931     },
1932     { .name = "CNTFRQ_EL0", .state = ARM_CP_STATE_AA64,
1933       .opc0 = 3, .opc1 = 3, .crn = 14, .crm = 0, .opc2 = 0,
1934       .access = PL1_RW | PL0_R, .accessfn = gt_cntfrq_access,
1935       .fieldoffset = offsetof(CPUARMState, cp15.c14_cntfrq),
1936       .resetvalue = (1000 * 1000 * 1000) / GTIMER_SCALE,
1937     },
1938     /* overall control: mostly access permissions */
1939     { .name = "CNTKCTL", .state = ARM_CP_STATE_BOTH,
1940       .opc0 = 3, .opc1 = 0, .crn = 14, .crm = 1, .opc2 = 0,
1941       .access = PL1_RW,
1942       .fieldoffset = offsetof(CPUARMState, cp15.c14_cntkctl),
1943       .resetvalue = 0,
1944     },
1945     /* per-timer control */
1946     { .name = "CNTP_CTL", .cp = 15, .crn = 14, .crm = 2, .opc1 = 0, .opc2 = 1,
1947       .secure = ARM_CP_SECSTATE_NS,
1948       .type = ARM_CP_IO | ARM_CP_ALIAS, .access = PL1_RW | PL0_R,
1949       .accessfn = gt_ptimer_access,
1950       .fieldoffset = offsetoflow32(CPUARMState,
1951                                    cp15.c14_timer[GTIMER_PHYS].ctl),
1952       .writefn = gt_phys_ctl_write, .raw_writefn = raw_write,
1953     },
1954     { .name = "CNTP_CTL(S)",
1955       .cp = 15, .crn = 14, .crm = 2, .opc1 = 0, .opc2 = 1,
1956       .secure = ARM_CP_SECSTATE_S,
1957       .type = ARM_CP_IO | ARM_CP_ALIAS, .access = PL1_RW | PL0_R,
1958       .accessfn = gt_ptimer_access,
1959       .fieldoffset = offsetoflow32(CPUARMState,
1960                                    cp15.c14_timer[GTIMER_SEC].ctl),
1961       .writefn = gt_sec_ctl_write, .raw_writefn = raw_write,
1962     },
1963     { .name = "CNTP_CTL_EL0", .state = ARM_CP_STATE_AA64,
1964       .opc0 = 3, .opc1 = 3, .crn = 14, .crm = 2, .opc2 = 1,
1965       .type = ARM_CP_IO, .access = PL1_RW | PL0_R,
1966       .accessfn = gt_ptimer_access,
1967       .fieldoffset = offsetof(CPUARMState, cp15.c14_timer[GTIMER_PHYS].ctl),
1968       .resetvalue = 0,
1969       .writefn = gt_phys_ctl_write, .raw_writefn = raw_write,
1970     },
1971     { .name = "CNTV_CTL", .cp = 15, .crn = 14, .crm = 3, .opc1 = 0, .opc2 = 1,
1972       .type = ARM_CP_IO | ARM_CP_ALIAS, .access = PL1_RW | PL0_R,
1973       .accessfn = gt_vtimer_access,
1974       .fieldoffset = offsetoflow32(CPUARMState,
1975                                    cp15.c14_timer[GTIMER_VIRT].ctl),
1976       .writefn = gt_virt_ctl_write, .raw_writefn = raw_write,
1977     },
1978     { .name = "CNTV_CTL_EL0", .state = ARM_CP_STATE_AA64,
1979       .opc0 = 3, .opc1 = 3, .crn = 14, .crm = 3, .opc2 = 1,
1980       .type = ARM_CP_IO, .access = PL1_RW | PL0_R,
1981       .accessfn = gt_vtimer_access,
1982       .fieldoffset = offsetof(CPUARMState, cp15.c14_timer[GTIMER_VIRT].ctl),
1983       .resetvalue = 0,
1984       .writefn = gt_virt_ctl_write, .raw_writefn = raw_write,
1985     },
1986     /* TimerValue views: a 32 bit downcounting view of the underlying state */
1987     { .name = "CNTP_TVAL", .cp = 15, .crn = 14, .crm = 2, .opc1 = 0, .opc2 = 0,
1988       .secure = ARM_CP_SECSTATE_NS,
1989       .type = ARM_CP_NO_RAW | ARM_CP_IO, .access = PL1_RW | PL0_R,
1990       .accessfn = gt_ptimer_access,
1991       .readfn = gt_phys_tval_read, .writefn = gt_phys_tval_write,
1992     },
1993     { .name = "CNTP_TVAL(S)",
1994       .cp = 15, .crn = 14, .crm = 2, .opc1 = 0, .opc2 = 0,
1995       .secure = ARM_CP_SECSTATE_S,
1996       .type = ARM_CP_NO_RAW | ARM_CP_IO, .access = PL1_RW | PL0_R,
1997       .accessfn = gt_ptimer_access,
1998       .readfn = gt_sec_tval_read, .writefn = gt_sec_tval_write,
1999     },
2000     { .name = "CNTP_TVAL_EL0", .state = ARM_CP_STATE_AA64,
2001       .opc0 = 3, .opc1 = 3, .crn = 14, .crm = 2, .opc2 = 0,
2002       .type = ARM_CP_NO_RAW | ARM_CP_IO, .access = PL1_RW | PL0_R,
2003       .accessfn = gt_ptimer_access, .resetfn = gt_phys_timer_reset,
2004       .readfn = gt_phys_tval_read, .writefn = gt_phys_tval_write,
2005     },
2006     { .name = "CNTV_TVAL", .cp = 15, .crn = 14, .crm = 3, .opc1 = 0, .opc2 = 0,
2007       .type = ARM_CP_NO_RAW | ARM_CP_IO, .access = PL1_RW | PL0_R,
2008       .accessfn = gt_vtimer_access,
2009       .readfn = gt_virt_tval_read, .writefn = gt_virt_tval_write,
2010     },
2011     { .name = "CNTV_TVAL_EL0", .state = ARM_CP_STATE_AA64,
2012       .opc0 = 3, .opc1 = 3, .crn = 14, .crm = 3, .opc2 = 0,
2013       .type = ARM_CP_NO_RAW | ARM_CP_IO, .access = PL1_RW | PL0_R,
2014       .accessfn = gt_vtimer_access, .resetfn = gt_virt_timer_reset,
2015       .readfn = gt_virt_tval_read, .writefn = gt_virt_tval_write,
2016     },
2017     /* The counter itself */
2018     { .name = "CNTPCT", .cp = 15, .crm = 14, .opc1 = 0,
2019       .access = PL0_R, .type = ARM_CP_64BIT | ARM_CP_NO_RAW | ARM_CP_IO,
2020       .accessfn = gt_pct_access,
2021       .readfn = gt_cnt_read, .resetfn = arm_cp_reset_ignore,
2022     },
2023     { .name = "CNTPCT_EL0", .state = ARM_CP_STATE_AA64,
2024       .opc0 = 3, .opc1 = 3, .crn = 14, .crm = 0, .opc2 = 1,
2025       .access = PL0_R, .type = ARM_CP_NO_RAW | ARM_CP_IO,
2026       .accessfn = gt_pct_access, .readfn = gt_cnt_read,
2027     },
2028     { .name = "CNTVCT", .cp = 15, .crm = 14, .opc1 = 1,
2029       .access = PL0_R, .type = ARM_CP_64BIT | ARM_CP_NO_RAW | ARM_CP_IO,
2030       .accessfn = gt_vct_access,
2031       .readfn = gt_virt_cnt_read, .resetfn = arm_cp_reset_ignore,
2032     },
2033     { .name = "CNTVCT_EL0", .state = ARM_CP_STATE_AA64,
2034       .opc0 = 3, .opc1 = 3, .crn = 14, .crm = 0, .opc2 = 2,
2035       .access = PL0_R, .type = ARM_CP_NO_RAW | ARM_CP_IO,
2036       .accessfn = gt_vct_access, .readfn = gt_virt_cnt_read,
2037     },
2038     /* Comparison value, indicating when the timer goes off */
2039     { .name = "CNTP_CVAL", .cp = 15, .crm = 14, .opc1 = 2,
2040       .secure = ARM_CP_SECSTATE_NS,
2041       .access = PL1_RW | PL0_R,
2042       .type = ARM_CP_64BIT | ARM_CP_IO | ARM_CP_ALIAS,
2043       .fieldoffset = offsetof(CPUARMState, cp15.c14_timer[GTIMER_PHYS].cval),
2044       .accessfn = gt_ptimer_access,
2045       .writefn = gt_phys_cval_write, .raw_writefn = raw_write,
2046     },
2047     { .name = "CNTP_CVAL(S)", .cp = 15, .crm = 14, .opc1 = 2,
2048       .secure = ARM_CP_SECSTATE_S,
2049       .access = PL1_RW | PL0_R,
2050       .type = ARM_CP_64BIT | ARM_CP_IO | ARM_CP_ALIAS,
2051       .fieldoffset = offsetof(CPUARMState, cp15.c14_timer[GTIMER_SEC].cval),
2052       .accessfn = gt_ptimer_access,
2053       .writefn = gt_sec_cval_write, .raw_writefn = raw_write,
2054     },
2055     { .name = "CNTP_CVAL_EL0", .state = ARM_CP_STATE_AA64,
2056       .opc0 = 3, .opc1 = 3, .crn = 14, .crm = 2, .opc2 = 2,
2057       .access = PL1_RW | PL0_R,
2058       .type = ARM_CP_IO,
2059       .fieldoffset = offsetof(CPUARMState, cp15.c14_timer[GTIMER_PHYS].cval),
2060       .resetvalue = 0, .accessfn = gt_ptimer_access,
2061       .writefn = gt_phys_cval_write, .raw_writefn = raw_write,
2062     },
2063     { .name = "CNTV_CVAL", .cp = 15, .crm = 14, .opc1 = 3,
2064       .access = PL1_RW | PL0_R,
2065       .type = ARM_CP_64BIT | ARM_CP_IO | ARM_CP_ALIAS,
2066       .fieldoffset = offsetof(CPUARMState, cp15.c14_timer[GTIMER_VIRT].cval),
2067       .accessfn = gt_vtimer_access,
2068       .writefn = gt_virt_cval_write, .raw_writefn = raw_write,
2069     },
2070     { .name = "CNTV_CVAL_EL0", .state = ARM_CP_STATE_AA64,
2071       .opc0 = 3, .opc1 = 3, .crn = 14, .crm = 3, .opc2 = 2,
2072       .access = PL1_RW | PL0_R,
2073       .type = ARM_CP_IO,
2074       .fieldoffset = offsetof(CPUARMState, cp15.c14_timer[GTIMER_VIRT].cval),
2075       .resetvalue = 0, .accessfn = gt_vtimer_access,
2076       .writefn = gt_virt_cval_write, .raw_writefn = raw_write,
2077     },
2078     /* Secure timer -- this is actually restricted to only EL3
2079      * and configurably Secure-EL1 via the accessfn.
2080      */
2081     { .name = "CNTPS_TVAL_EL1", .state = ARM_CP_STATE_AA64,
2082       .opc0 = 3, .opc1 = 7, .crn = 14, .crm = 2, .opc2 = 0,
2083       .type = ARM_CP_NO_RAW | ARM_CP_IO, .access = PL1_RW,
2084       .accessfn = gt_stimer_access,
2085       .readfn = gt_sec_tval_read,
2086       .writefn = gt_sec_tval_write,
2087       .resetfn = gt_sec_timer_reset,
2088     },
2089     { .name = "CNTPS_CTL_EL1", .state = ARM_CP_STATE_AA64,
2090       .opc0 = 3, .opc1 = 7, .crn = 14, .crm = 2, .opc2 = 1,
2091       .type = ARM_CP_IO, .access = PL1_RW,
2092       .accessfn = gt_stimer_access,
2093       .fieldoffset = offsetof(CPUARMState, cp15.c14_timer[GTIMER_SEC].ctl),
2094       .resetvalue = 0,
2095       .writefn = gt_sec_ctl_write, .raw_writefn = raw_write,
2096     },
2097     { .name = "CNTPS_CVAL_EL1", .state = ARM_CP_STATE_AA64,
2098       .opc0 = 3, .opc1 = 7, .crn = 14, .crm = 2, .opc2 = 2,
2099       .type = ARM_CP_IO, .access = PL1_RW,
2100       .accessfn = gt_stimer_access,
2101       .fieldoffset = offsetof(CPUARMState, cp15.c14_timer[GTIMER_SEC].cval),
2102       .writefn = gt_sec_cval_write, .raw_writefn = raw_write,
2103     },
2104     REGINFO_SENTINEL
2105 };
2106 
2107 #else
2108 /* In user-mode none of the generic timer registers are accessible,
2109  * and their implementation depends on QEMU_CLOCK_VIRTUAL and qdev gpio outputs,
2110  * so instead just don't register any of them.
2111  */
2112 static const ARMCPRegInfo generic_timer_cp_reginfo[] = {
2113     REGINFO_SENTINEL
2114 };
2115 
2116 #endif
2117 
2118 static void par_write(CPUARMState *env, const ARMCPRegInfo *ri, uint64_t value)
2119 {
2120     if (arm_feature(env, ARM_FEATURE_LPAE)) {
2121         raw_write(env, ri, value);
2122     } else if (arm_feature(env, ARM_FEATURE_V7)) {
2123         raw_write(env, ri, value & 0xfffff6ff);
2124     } else {
2125         raw_write(env, ri, value & 0xfffff1ff);
2126     }
2127 }
2128 
2129 #ifndef CONFIG_USER_ONLY
2130 /* get_phys_addr() isn't present for user-mode-only targets */
2131 
2132 static CPAccessResult ats_access(CPUARMState *env, const ARMCPRegInfo *ri,
2133                                  bool isread)
2134 {
2135     if (ri->opc2 & 4) {
2136         /* The ATS12NSO* operations must trap to EL3 if executed in
2137          * Secure EL1 (which can only happen if EL3 is AArch64).
2138          * They are simply UNDEF if executed from NS EL1.
2139          * They function normally from EL2 or EL3.
2140          */
2141         if (arm_current_el(env) == 1) {
2142             if (arm_is_secure_below_el3(env)) {
2143                 return CP_ACCESS_TRAP_UNCATEGORIZED_EL3;
2144             }
2145             return CP_ACCESS_TRAP_UNCATEGORIZED;
2146         }
2147     }
2148     return CP_ACCESS_OK;
2149 }
2150 
2151 static uint64_t do_ats_write(CPUARMState *env, uint64_t value,
2152                              MMUAccessType access_type, ARMMMUIdx mmu_idx)
2153 {
2154     hwaddr phys_addr;
2155     target_ulong page_size;
2156     int prot;
2157     uint32_t fsr;
2158     bool ret;
2159     uint64_t par64;
2160     MemTxAttrs attrs = {};
2161     ARMMMUFaultInfo fi = {};
2162 
2163     ret = get_phys_addr(env, value, access_type, mmu_idx,
2164                         &phys_addr, &attrs, &prot, &page_size, &fsr, &fi);
2165     if (extended_addresses_enabled(env)) {
2166         /* fsr is a DFSR/IFSR value for the long descriptor
2167          * translation table format, but with WnR always clear.
2168          * Convert it to a 64-bit PAR.
2169          */
2170         par64 = (1 << 11); /* LPAE bit always set */
2171         if (!ret) {
2172             par64 |= phys_addr & ~0xfffULL;
2173             if (!attrs.secure) {
2174                 par64 |= (1 << 9); /* NS */
2175             }
2176             /* We don't set the ATTR or SH fields in the PAR. */
2177         } else {
2178             par64 |= 1; /* F */
2179             par64 |= (fsr & 0x3f) << 1; /* FS */
2180             /* Note that S2WLK and FSTAGE are always zero, because we don't
2181              * implement virtualization and therefore there can't be a stage 2
2182              * fault.
2183              */
2184         }
2185     } else {
2186         /* fsr is a DFSR/IFSR value for the short descriptor
2187          * translation table format (with WnR always clear).
2188          * Convert it to a 32-bit PAR.
2189          */
2190         if (!ret) {
2191             /* We do not set any attribute bits in the PAR */
2192             if (page_size == (1 << 24)
2193                 && arm_feature(env, ARM_FEATURE_V7)) {
2194                 par64 = (phys_addr & 0xff000000) | (1 << 1);
2195             } else {
2196                 par64 = phys_addr & 0xfffff000;
2197             }
2198             if (!attrs.secure) {
2199                 par64 |= (1 << 9); /* NS */
2200             }
2201         } else {
2202             par64 = ((fsr & (1 << 10)) >> 5) | ((fsr & (1 << 12)) >> 6) |
2203                     ((fsr & 0xf) << 1) | 1;
2204         }
2205     }
2206     return par64;
2207 }
2208 
2209 static void ats_write(CPUARMState *env, const ARMCPRegInfo *ri, uint64_t value)
2210 {
2211     MMUAccessType access_type = ri->opc2 & 1 ? MMU_DATA_STORE : MMU_DATA_LOAD;
2212     uint64_t par64;
2213     ARMMMUIdx mmu_idx;
2214     int el = arm_current_el(env);
2215     bool secure = arm_is_secure_below_el3(env);
2216 
2217     switch (ri->opc2 & 6) {
2218     case 0:
2219         /* stage 1 current state PL1: ATS1CPR, ATS1CPW */
2220         switch (el) {
2221         case 3:
2222             mmu_idx = ARMMMUIdx_S1E3;
2223             break;
2224         case 2:
2225             mmu_idx = ARMMMUIdx_S1NSE1;
2226             break;
2227         case 1:
2228             mmu_idx = secure ? ARMMMUIdx_S1SE1 : ARMMMUIdx_S1NSE1;
2229             break;
2230         default:
2231             g_assert_not_reached();
2232         }
2233         break;
2234     case 2:
2235         /* stage 1 current state PL0: ATS1CUR, ATS1CUW */
2236         switch (el) {
2237         case 3:
2238             mmu_idx = ARMMMUIdx_S1SE0;
2239             break;
2240         case 2:
2241             mmu_idx = ARMMMUIdx_S1NSE0;
2242             break;
2243         case 1:
2244             mmu_idx = secure ? ARMMMUIdx_S1SE0 : ARMMMUIdx_S1NSE0;
2245             break;
2246         default:
2247             g_assert_not_reached();
2248         }
2249         break;
2250     case 4:
2251         /* stage 1+2 NonSecure PL1: ATS12NSOPR, ATS12NSOPW */
2252         mmu_idx = ARMMMUIdx_S12NSE1;
2253         break;
2254     case 6:
2255         /* stage 1+2 NonSecure PL0: ATS12NSOUR, ATS12NSOUW */
2256         mmu_idx = ARMMMUIdx_S12NSE0;
2257         break;
2258     default:
2259         g_assert_not_reached();
2260     }
2261 
2262     par64 = do_ats_write(env, value, access_type, mmu_idx);
2263 
2264     A32_BANKED_CURRENT_REG_SET(env, par, par64);
2265 }
2266 
2267 static void ats1h_write(CPUARMState *env, const ARMCPRegInfo *ri,
2268                         uint64_t value)
2269 {
2270     MMUAccessType access_type = ri->opc2 & 1 ? MMU_DATA_STORE : MMU_DATA_LOAD;
2271     uint64_t par64;
2272 
2273     par64 = do_ats_write(env, value, access_type, ARMMMUIdx_S2NS);
2274 
2275     A32_BANKED_CURRENT_REG_SET(env, par, par64);
2276 }
2277 
2278 static CPAccessResult at_s1e2_access(CPUARMState *env, const ARMCPRegInfo *ri,
2279                                      bool isread)
2280 {
2281     if (arm_current_el(env) == 3 && !(env->cp15.scr_el3 & SCR_NS)) {
2282         return CP_ACCESS_TRAP;
2283     }
2284     return CP_ACCESS_OK;
2285 }
2286 
2287 static void ats_write64(CPUARMState *env, const ARMCPRegInfo *ri,
2288                         uint64_t value)
2289 {
2290     MMUAccessType access_type = ri->opc2 & 1 ? MMU_DATA_STORE : MMU_DATA_LOAD;
2291     ARMMMUIdx mmu_idx;
2292     int secure = arm_is_secure_below_el3(env);
2293 
2294     switch (ri->opc2 & 6) {
2295     case 0:
2296         switch (ri->opc1) {
2297         case 0: /* AT S1E1R, AT S1E1W */
2298             mmu_idx = secure ? ARMMMUIdx_S1SE1 : ARMMMUIdx_S1NSE1;
2299             break;
2300         case 4: /* AT S1E2R, AT S1E2W */
2301             mmu_idx = ARMMMUIdx_S1E2;
2302             break;
2303         case 6: /* AT S1E3R, AT S1E3W */
2304             mmu_idx = ARMMMUIdx_S1E3;
2305             break;
2306         default:
2307             g_assert_not_reached();
2308         }
2309         break;
2310     case 2: /* AT S1E0R, AT S1E0W */
2311         mmu_idx = secure ? ARMMMUIdx_S1SE0 : ARMMMUIdx_S1NSE0;
2312         break;
2313     case 4: /* AT S12E1R, AT S12E1W */
2314         mmu_idx = secure ? ARMMMUIdx_S1SE1 : ARMMMUIdx_S12NSE1;
2315         break;
2316     case 6: /* AT S12E0R, AT S12E0W */
2317         mmu_idx = secure ? ARMMMUIdx_S1SE0 : ARMMMUIdx_S12NSE0;
2318         break;
2319     default:
2320         g_assert_not_reached();
2321     }
2322 
2323     env->cp15.par_el[1] = do_ats_write(env, value, access_type, mmu_idx);
2324 }
2325 #endif
2326 
2327 static const ARMCPRegInfo vapa_cp_reginfo[] = {
2328     { .name = "PAR", .cp = 15, .crn = 7, .crm = 4, .opc1 = 0, .opc2 = 0,
2329       .access = PL1_RW, .resetvalue = 0,
2330       .bank_fieldoffsets = { offsetoflow32(CPUARMState, cp15.par_s),
2331                              offsetoflow32(CPUARMState, cp15.par_ns) },
2332       .writefn = par_write },
2333 #ifndef CONFIG_USER_ONLY
2334     /* This underdecoding is safe because the reginfo is NO_RAW. */
2335     { .name = "ATS", .cp = 15, .crn = 7, .crm = 8, .opc1 = 0, .opc2 = CP_ANY,
2336       .access = PL1_W, .accessfn = ats_access,
2337       .writefn = ats_write, .type = ARM_CP_NO_RAW },
2338 #endif
2339     REGINFO_SENTINEL
2340 };
2341 
2342 /* Return basic MPU access permission bits.  */
2343 static uint32_t simple_mpu_ap_bits(uint32_t val)
2344 {
2345     uint32_t ret;
2346     uint32_t mask;
2347     int i;
2348     ret = 0;
2349     mask = 3;
2350     for (i = 0; i < 16; i += 2) {
2351         ret |= (val >> i) & mask;
2352         mask <<= 2;
2353     }
2354     return ret;
2355 }
2356 
2357 /* Pad basic MPU access permission bits to extended format.  */
2358 static uint32_t extended_mpu_ap_bits(uint32_t val)
2359 {
2360     uint32_t ret;
2361     uint32_t mask;
2362     int i;
2363     ret = 0;
2364     mask = 3;
2365     for (i = 0; i < 16; i += 2) {
2366         ret |= (val & mask) << i;
2367         mask <<= 2;
2368     }
2369     return ret;
2370 }
2371 
2372 static void pmsav5_data_ap_write(CPUARMState *env, const ARMCPRegInfo *ri,
2373                                  uint64_t value)
2374 {
2375     env->cp15.pmsav5_data_ap = extended_mpu_ap_bits(value);
2376 }
2377 
2378 static uint64_t pmsav5_data_ap_read(CPUARMState *env, const ARMCPRegInfo *ri)
2379 {
2380     return simple_mpu_ap_bits(env->cp15.pmsav5_data_ap);
2381 }
2382 
2383 static void pmsav5_insn_ap_write(CPUARMState *env, const ARMCPRegInfo *ri,
2384                                  uint64_t value)
2385 {
2386     env->cp15.pmsav5_insn_ap = extended_mpu_ap_bits(value);
2387 }
2388 
2389 static uint64_t pmsav5_insn_ap_read(CPUARMState *env, const ARMCPRegInfo *ri)
2390 {
2391     return simple_mpu_ap_bits(env->cp15.pmsav5_insn_ap);
2392 }
2393 
2394 static uint64_t pmsav7_read(CPUARMState *env, const ARMCPRegInfo *ri)
2395 {
2396     uint32_t *u32p = *(uint32_t **)raw_ptr(env, ri);
2397 
2398     if (!u32p) {
2399         return 0;
2400     }
2401 
2402     u32p += env->pmsav7.rnr[M_REG_NS];
2403     return *u32p;
2404 }
2405 
2406 static void pmsav7_write(CPUARMState *env, const ARMCPRegInfo *ri,
2407                          uint64_t value)
2408 {
2409     ARMCPU *cpu = arm_env_get_cpu(env);
2410     uint32_t *u32p = *(uint32_t **)raw_ptr(env, ri);
2411 
2412     if (!u32p) {
2413         return;
2414     }
2415 
2416     u32p += env->pmsav7.rnr[M_REG_NS];
2417     tlb_flush(CPU(cpu)); /* Mappings may have changed - purge! */
2418     *u32p = value;
2419 }
2420 
2421 static void pmsav7_rgnr_write(CPUARMState *env, const ARMCPRegInfo *ri,
2422                               uint64_t value)
2423 {
2424     ARMCPU *cpu = arm_env_get_cpu(env);
2425     uint32_t nrgs = cpu->pmsav7_dregion;
2426 
2427     if (value >= nrgs) {
2428         qemu_log_mask(LOG_GUEST_ERROR,
2429                       "PMSAv7 RGNR write >= # supported regions, %" PRIu32
2430                       " > %" PRIu32 "\n", (uint32_t)value, nrgs);
2431         return;
2432     }
2433 
2434     raw_write(env, ri, value);
2435 }
2436 
2437 static const ARMCPRegInfo pmsav7_cp_reginfo[] = {
2438     /* Reset for all these registers is handled in arm_cpu_reset(),
2439      * because the PMSAv7 is also used by M-profile CPUs, which do
2440      * not register cpregs but still need the state to be reset.
2441      */
2442     { .name = "DRBAR", .cp = 15, .crn = 6, .opc1 = 0, .crm = 1, .opc2 = 0,
2443       .access = PL1_RW, .type = ARM_CP_NO_RAW,
2444       .fieldoffset = offsetof(CPUARMState, pmsav7.drbar),
2445       .readfn = pmsav7_read, .writefn = pmsav7_write,
2446       .resetfn = arm_cp_reset_ignore },
2447     { .name = "DRSR", .cp = 15, .crn = 6, .opc1 = 0, .crm = 1, .opc2 = 2,
2448       .access = PL1_RW, .type = ARM_CP_NO_RAW,
2449       .fieldoffset = offsetof(CPUARMState, pmsav7.drsr),
2450       .readfn = pmsav7_read, .writefn = pmsav7_write,
2451       .resetfn = arm_cp_reset_ignore },
2452     { .name = "DRACR", .cp = 15, .crn = 6, .opc1 = 0, .crm = 1, .opc2 = 4,
2453       .access = PL1_RW, .type = ARM_CP_NO_RAW,
2454       .fieldoffset = offsetof(CPUARMState, pmsav7.dracr),
2455       .readfn = pmsav7_read, .writefn = pmsav7_write,
2456       .resetfn = arm_cp_reset_ignore },
2457     { .name = "RGNR", .cp = 15, .crn = 6, .opc1 = 0, .crm = 2, .opc2 = 0,
2458       .access = PL1_RW,
2459       .fieldoffset = offsetof(CPUARMState, pmsav7.rnr[M_REG_NS]),
2460       .writefn = pmsav7_rgnr_write,
2461       .resetfn = arm_cp_reset_ignore },
2462     REGINFO_SENTINEL
2463 };
2464 
2465 static const ARMCPRegInfo pmsav5_cp_reginfo[] = {
2466     { .name = "DATA_AP", .cp = 15, .crn = 5, .crm = 0, .opc1 = 0, .opc2 = 0,
2467       .access = PL1_RW, .type = ARM_CP_ALIAS,
2468       .fieldoffset = offsetof(CPUARMState, cp15.pmsav5_data_ap),
2469       .readfn = pmsav5_data_ap_read, .writefn = pmsav5_data_ap_write, },
2470     { .name = "INSN_AP", .cp = 15, .crn = 5, .crm = 0, .opc1 = 0, .opc2 = 1,
2471       .access = PL1_RW, .type = ARM_CP_ALIAS,
2472       .fieldoffset = offsetof(CPUARMState, cp15.pmsav5_insn_ap),
2473       .readfn = pmsav5_insn_ap_read, .writefn = pmsav5_insn_ap_write, },
2474     { .name = "DATA_EXT_AP", .cp = 15, .crn = 5, .crm = 0, .opc1 = 0, .opc2 = 2,
2475       .access = PL1_RW,
2476       .fieldoffset = offsetof(CPUARMState, cp15.pmsav5_data_ap),
2477       .resetvalue = 0, },
2478     { .name = "INSN_EXT_AP", .cp = 15, .crn = 5, .crm = 0, .opc1 = 0, .opc2 = 3,
2479       .access = PL1_RW,
2480       .fieldoffset = offsetof(CPUARMState, cp15.pmsav5_insn_ap),
2481       .resetvalue = 0, },
2482     { .name = "DCACHE_CFG", .cp = 15, .crn = 2, .crm = 0, .opc1 = 0, .opc2 = 0,
2483       .access = PL1_RW,
2484       .fieldoffset = offsetof(CPUARMState, cp15.c2_data), .resetvalue = 0, },
2485     { .name = "ICACHE_CFG", .cp = 15, .crn = 2, .crm = 0, .opc1 = 0, .opc2 = 1,
2486       .access = PL1_RW,
2487       .fieldoffset = offsetof(CPUARMState, cp15.c2_insn), .resetvalue = 0, },
2488     /* Protection region base and size registers */
2489     { .name = "946_PRBS0", .cp = 15, .crn = 6, .crm = 0, .opc1 = 0,
2490       .opc2 = CP_ANY, .access = PL1_RW, .resetvalue = 0,
2491       .fieldoffset = offsetof(CPUARMState, cp15.c6_region[0]) },
2492     { .name = "946_PRBS1", .cp = 15, .crn = 6, .crm = 1, .opc1 = 0,
2493       .opc2 = CP_ANY, .access = PL1_RW, .resetvalue = 0,
2494       .fieldoffset = offsetof(CPUARMState, cp15.c6_region[1]) },
2495     { .name = "946_PRBS2", .cp = 15, .crn = 6, .crm = 2, .opc1 = 0,
2496       .opc2 = CP_ANY, .access = PL1_RW, .resetvalue = 0,
2497       .fieldoffset = offsetof(CPUARMState, cp15.c6_region[2]) },
2498     { .name = "946_PRBS3", .cp = 15, .crn = 6, .crm = 3, .opc1 = 0,
2499       .opc2 = CP_ANY, .access = PL1_RW, .resetvalue = 0,
2500       .fieldoffset = offsetof(CPUARMState, cp15.c6_region[3]) },
2501     { .name = "946_PRBS4", .cp = 15, .crn = 6, .crm = 4, .opc1 = 0,
2502       .opc2 = CP_ANY, .access = PL1_RW, .resetvalue = 0,
2503       .fieldoffset = offsetof(CPUARMState, cp15.c6_region[4]) },
2504     { .name = "946_PRBS5", .cp = 15, .crn = 6, .crm = 5, .opc1 = 0,
2505       .opc2 = CP_ANY, .access = PL1_RW, .resetvalue = 0,
2506       .fieldoffset = offsetof(CPUARMState, cp15.c6_region[5]) },
2507     { .name = "946_PRBS6", .cp = 15, .crn = 6, .crm = 6, .opc1 = 0,
2508       .opc2 = CP_ANY, .access = PL1_RW, .resetvalue = 0,
2509       .fieldoffset = offsetof(CPUARMState, cp15.c6_region[6]) },
2510     { .name = "946_PRBS7", .cp = 15, .crn = 6, .crm = 7, .opc1 = 0,
2511       .opc2 = CP_ANY, .access = PL1_RW, .resetvalue = 0,
2512       .fieldoffset = offsetof(CPUARMState, cp15.c6_region[7]) },
2513     REGINFO_SENTINEL
2514 };
2515 
2516 static void vmsa_ttbcr_raw_write(CPUARMState *env, const ARMCPRegInfo *ri,
2517                                  uint64_t value)
2518 {
2519     TCR *tcr = raw_ptr(env, ri);
2520     int maskshift = extract32(value, 0, 3);
2521 
2522     if (!arm_feature(env, ARM_FEATURE_V8)) {
2523         if (arm_feature(env, ARM_FEATURE_LPAE) && (value & TTBCR_EAE)) {
2524             /* Pre ARMv8 bits [21:19], [15:14] and [6:3] are UNK/SBZP when
2525              * using Long-desciptor translation table format */
2526             value &= ~((7 << 19) | (3 << 14) | (0xf << 3));
2527         } else if (arm_feature(env, ARM_FEATURE_EL3)) {
2528             /* In an implementation that includes the Security Extensions
2529              * TTBCR has additional fields PD0 [4] and PD1 [5] for
2530              * Short-descriptor translation table format.
2531              */
2532             value &= TTBCR_PD1 | TTBCR_PD0 | TTBCR_N;
2533         } else {
2534             value &= TTBCR_N;
2535         }
2536     }
2537 
2538     /* Update the masks corresponding to the TCR bank being written
2539      * Note that we always calculate mask and base_mask, but
2540      * they are only used for short-descriptor tables (ie if EAE is 0);
2541      * for long-descriptor tables the TCR fields are used differently
2542      * and the mask and base_mask values are meaningless.
2543      */
2544     tcr->raw_tcr = value;
2545     tcr->mask = ~(((uint32_t)0xffffffffu) >> maskshift);
2546     tcr->base_mask = ~((uint32_t)0x3fffu >> maskshift);
2547 }
2548 
2549 static void vmsa_ttbcr_write(CPUARMState *env, const ARMCPRegInfo *ri,
2550                              uint64_t value)
2551 {
2552     ARMCPU *cpu = arm_env_get_cpu(env);
2553 
2554     if (arm_feature(env, ARM_FEATURE_LPAE)) {
2555         /* With LPAE the TTBCR could result in a change of ASID
2556          * via the TTBCR.A1 bit, so do a TLB flush.
2557          */
2558         tlb_flush(CPU(cpu));
2559     }
2560     vmsa_ttbcr_raw_write(env, ri, value);
2561 }
2562 
2563 static void vmsa_ttbcr_reset(CPUARMState *env, const ARMCPRegInfo *ri)
2564 {
2565     TCR *tcr = raw_ptr(env, ri);
2566 
2567     /* Reset both the TCR as well as the masks corresponding to the bank of
2568      * the TCR being reset.
2569      */
2570     tcr->raw_tcr = 0;
2571     tcr->mask = 0;
2572     tcr->base_mask = 0xffffc000u;
2573 }
2574 
2575 static void vmsa_tcr_el1_write(CPUARMState *env, const ARMCPRegInfo *ri,
2576                                uint64_t value)
2577 {
2578     ARMCPU *cpu = arm_env_get_cpu(env);
2579     TCR *tcr = raw_ptr(env, ri);
2580 
2581     /* For AArch64 the A1 bit could result in a change of ASID, so TLB flush. */
2582     tlb_flush(CPU(cpu));
2583     tcr->raw_tcr = value;
2584 }
2585 
2586 static void vmsa_ttbr_write(CPUARMState *env, const ARMCPRegInfo *ri,
2587                             uint64_t value)
2588 {
2589     /* 64 bit accesses to the TTBRs can change the ASID and so we
2590      * must flush the TLB.
2591      */
2592     if (cpreg_field_is_64bit(ri)) {
2593         ARMCPU *cpu = arm_env_get_cpu(env);
2594 
2595         tlb_flush(CPU(cpu));
2596     }
2597     raw_write(env, ri, value);
2598 }
2599 
2600 static void vttbr_write(CPUARMState *env, const ARMCPRegInfo *ri,
2601                         uint64_t value)
2602 {
2603     ARMCPU *cpu = arm_env_get_cpu(env);
2604     CPUState *cs = CPU(cpu);
2605 
2606     /* Accesses to VTTBR may change the VMID so we must flush the TLB.  */
2607     if (raw_read(env, ri) != value) {
2608         tlb_flush_by_mmuidx(cs,
2609                             ARMMMUIdxBit_S12NSE1 |
2610                             ARMMMUIdxBit_S12NSE0 |
2611                             ARMMMUIdxBit_S2NS);
2612         raw_write(env, ri, value);
2613     }
2614 }
2615 
2616 static const ARMCPRegInfo vmsa_pmsa_cp_reginfo[] = {
2617     { .name = "DFSR", .cp = 15, .crn = 5, .crm = 0, .opc1 = 0, .opc2 = 0,
2618       .access = PL1_RW, .type = ARM_CP_ALIAS,
2619       .bank_fieldoffsets = { offsetoflow32(CPUARMState, cp15.dfsr_s),
2620                              offsetoflow32(CPUARMState, cp15.dfsr_ns) }, },
2621     { .name = "IFSR", .cp = 15, .crn = 5, .crm = 0, .opc1 = 0, .opc2 = 1,
2622       .access = PL1_RW, .resetvalue = 0,
2623       .bank_fieldoffsets = { offsetoflow32(CPUARMState, cp15.ifsr_s),
2624                              offsetoflow32(CPUARMState, cp15.ifsr_ns) } },
2625     { .name = "DFAR", .cp = 15, .opc1 = 0, .crn = 6, .crm = 0, .opc2 = 0,
2626       .access = PL1_RW, .resetvalue = 0,
2627       .bank_fieldoffsets = { offsetof(CPUARMState, cp15.dfar_s),
2628                              offsetof(CPUARMState, cp15.dfar_ns) } },
2629     { .name = "FAR_EL1", .state = ARM_CP_STATE_AA64,
2630       .opc0 = 3, .crn = 6, .crm = 0, .opc1 = 0, .opc2 = 0,
2631       .access = PL1_RW, .fieldoffset = offsetof(CPUARMState, cp15.far_el[1]),
2632       .resetvalue = 0, },
2633     REGINFO_SENTINEL
2634 };
2635 
2636 static const ARMCPRegInfo vmsa_cp_reginfo[] = {
2637     { .name = "ESR_EL1", .state = ARM_CP_STATE_AA64,
2638       .opc0 = 3, .crn = 5, .crm = 2, .opc1 = 0, .opc2 = 0,
2639       .access = PL1_RW,
2640       .fieldoffset = offsetof(CPUARMState, cp15.esr_el[1]), .resetvalue = 0, },
2641     { .name = "TTBR0_EL1", .state = ARM_CP_STATE_BOTH,
2642       .opc0 = 3, .opc1 = 0, .crn = 2, .crm = 0, .opc2 = 0,
2643       .access = PL1_RW, .writefn = vmsa_ttbr_write, .resetvalue = 0,
2644       .bank_fieldoffsets = { offsetof(CPUARMState, cp15.ttbr0_s),
2645                              offsetof(CPUARMState, cp15.ttbr0_ns) } },
2646     { .name = "TTBR1_EL1", .state = ARM_CP_STATE_BOTH,
2647       .opc0 = 3, .opc1 = 0, .crn = 2, .crm = 0, .opc2 = 1,
2648       .access = PL1_RW, .writefn = vmsa_ttbr_write, .resetvalue = 0,
2649       .bank_fieldoffsets = { offsetof(CPUARMState, cp15.ttbr1_s),
2650                              offsetof(CPUARMState, cp15.ttbr1_ns) } },
2651     { .name = "TCR_EL1", .state = ARM_CP_STATE_AA64,
2652       .opc0 = 3, .crn = 2, .crm = 0, .opc1 = 0, .opc2 = 2,
2653       .access = PL1_RW, .writefn = vmsa_tcr_el1_write,
2654       .resetfn = vmsa_ttbcr_reset, .raw_writefn = raw_write,
2655       .fieldoffset = offsetof(CPUARMState, cp15.tcr_el[1]) },
2656     { .name = "TTBCR", .cp = 15, .crn = 2, .crm = 0, .opc1 = 0, .opc2 = 2,
2657       .access = PL1_RW, .type = ARM_CP_ALIAS, .writefn = vmsa_ttbcr_write,
2658       .raw_writefn = vmsa_ttbcr_raw_write,
2659       .bank_fieldoffsets = { offsetoflow32(CPUARMState, cp15.tcr_el[3]),
2660                              offsetoflow32(CPUARMState, cp15.tcr_el[1])} },
2661     REGINFO_SENTINEL
2662 };
2663 
2664 static void omap_ticonfig_write(CPUARMState *env, const ARMCPRegInfo *ri,
2665                                 uint64_t value)
2666 {
2667     env->cp15.c15_ticonfig = value & 0xe7;
2668     /* The OS_TYPE bit in this register changes the reported CPUID! */
2669     env->cp15.c0_cpuid = (value & (1 << 5)) ?
2670         ARM_CPUID_TI915T : ARM_CPUID_TI925T;
2671 }
2672 
2673 static void omap_threadid_write(CPUARMState *env, const ARMCPRegInfo *ri,
2674                                 uint64_t value)
2675 {
2676     env->cp15.c15_threadid = value & 0xffff;
2677 }
2678 
2679 static void omap_wfi_write(CPUARMState *env, const ARMCPRegInfo *ri,
2680                            uint64_t value)
2681 {
2682     /* Wait-for-interrupt (deprecated) */
2683     cpu_interrupt(CPU(arm_env_get_cpu(env)), CPU_INTERRUPT_HALT);
2684 }
2685 
2686 static void omap_cachemaint_write(CPUARMState *env, const ARMCPRegInfo *ri,
2687                                   uint64_t value)
2688 {
2689     /* On OMAP there are registers indicating the max/min index of dcache lines
2690      * containing a dirty line; cache flush operations have to reset these.
2691      */
2692     env->cp15.c15_i_max = 0x000;
2693     env->cp15.c15_i_min = 0xff0;
2694 }
2695 
2696 static const ARMCPRegInfo omap_cp_reginfo[] = {
2697     { .name = "DFSR", .cp = 15, .crn = 5, .crm = CP_ANY,
2698       .opc1 = CP_ANY, .opc2 = CP_ANY, .access = PL1_RW, .type = ARM_CP_OVERRIDE,
2699       .fieldoffset = offsetoflow32(CPUARMState, cp15.esr_el[1]),
2700       .resetvalue = 0, },
2701     { .name = "", .cp = 15, .crn = 15, .crm = 0, .opc1 = 0, .opc2 = 0,
2702       .access = PL1_RW, .type = ARM_CP_NOP },
2703     { .name = "TICONFIG", .cp = 15, .crn = 15, .crm = 1, .opc1 = 0, .opc2 = 0,
2704       .access = PL1_RW,
2705       .fieldoffset = offsetof(CPUARMState, cp15.c15_ticonfig), .resetvalue = 0,
2706       .writefn = omap_ticonfig_write },
2707     { .name = "IMAX", .cp = 15, .crn = 15, .crm = 2, .opc1 = 0, .opc2 = 0,
2708       .access = PL1_RW,
2709       .fieldoffset = offsetof(CPUARMState, cp15.c15_i_max), .resetvalue = 0, },
2710     { .name = "IMIN", .cp = 15, .crn = 15, .crm = 3, .opc1 = 0, .opc2 = 0,
2711       .access = PL1_RW, .resetvalue = 0xff0,
2712       .fieldoffset = offsetof(CPUARMState, cp15.c15_i_min) },
2713     { .name = "THREADID", .cp = 15, .crn = 15, .crm = 4, .opc1 = 0, .opc2 = 0,
2714       .access = PL1_RW,
2715       .fieldoffset = offsetof(CPUARMState, cp15.c15_threadid), .resetvalue = 0,
2716       .writefn = omap_threadid_write },
2717     { .name = "TI925T_STATUS", .cp = 15, .crn = 15,
2718       .crm = 8, .opc1 = 0, .opc2 = 0, .access = PL1_RW,
2719       .type = ARM_CP_NO_RAW,
2720       .readfn = arm_cp_read_zero, .writefn = omap_wfi_write, },
2721     /* TODO: Peripheral port remap register:
2722      * On OMAP2 mcr p15, 0, rn, c15, c2, 4 sets up the interrupt controller
2723      * base address at $rn & ~0xfff and map size of 0x200 << ($rn & 0xfff),
2724      * when MMU is off.
2725      */
2726     { .name = "OMAP_CACHEMAINT", .cp = 15, .crn = 7, .crm = CP_ANY,
2727       .opc1 = 0, .opc2 = CP_ANY, .access = PL1_W,
2728       .type = ARM_CP_OVERRIDE | ARM_CP_NO_RAW,
2729       .writefn = omap_cachemaint_write },
2730     { .name = "C9", .cp = 15, .crn = 9,
2731       .crm = CP_ANY, .opc1 = CP_ANY, .opc2 = CP_ANY, .access = PL1_RW,
2732       .type = ARM_CP_CONST | ARM_CP_OVERRIDE, .resetvalue = 0 },
2733     REGINFO_SENTINEL
2734 };
2735 
2736 static void xscale_cpar_write(CPUARMState *env, const ARMCPRegInfo *ri,
2737                               uint64_t value)
2738 {
2739     env->cp15.c15_cpar = value & 0x3fff;
2740 }
2741 
2742 static const ARMCPRegInfo xscale_cp_reginfo[] = {
2743     { .name = "XSCALE_CPAR",
2744       .cp = 15, .crn = 15, .crm = 1, .opc1 = 0, .opc2 = 0, .access = PL1_RW,
2745       .fieldoffset = offsetof(CPUARMState, cp15.c15_cpar), .resetvalue = 0,
2746       .writefn = xscale_cpar_write, },
2747     { .name = "XSCALE_AUXCR",
2748       .cp = 15, .crn = 1, .crm = 0, .opc1 = 0, .opc2 = 1, .access = PL1_RW,
2749       .fieldoffset = offsetof(CPUARMState, cp15.c1_xscaleauxcr),
2750       .resetvalue = 0, },
2751     /* XScale specific cache-lockdown: since we have no cache we NOP these
2752      * and hope the guest does not really rely on cache behaviour.
2753      */
2754     { .name = "XSCALE_LOCK_ICACHE_LINE",
2755       .cp = 15, .opc1 = 0, .crn = 9, .crm = 1, .opc2 = 0,
2756       .access = PL1_W, .type = ARM_CP_NOP },
2757     { .name = "XSCALE_UNLOCK_ICACHE",
2758       .cp = 15, .opc1 = 0, .crn = 9, .crm = 1, .opc2 = 1,
2759       .access = PL1_W, .type = ARM_CP_NOP },
2760     { .name = "XSCALE_DCACHE_LOCK",
2761       .cp = 15, .opc1 = 0, .crn = 9, .crm = 2, .opc2 = 0,
2762       .access = PL1_RW, .type = ARM_CP_NOP },
2763     { .name = "XSCALE_UNLOCK_DCACHE",
2764       .cp = 15, .opc1 = 0, .crn = 9, .crm = 2, .opc2 = 1,
2765       .access = PL1_W, .type = ARM_CP_NOP },
2766     REGINFO_SENTINEL
2767 };
2768 
2769 static const ARMCPRegInfo dummy_c15_cp_reginfo[] = {
2770     /* RAZ/WI the whole crn=15 space, when we don't have a more specific
2771      * implementation of this implementation-defined space.
2772      * Ideally this should eventually disappear in favour of actually
2773      * implementing the correct behaviour for all cores.
2774      */
2775     { .name = "C15_IMPDEF", .cp = 15, .crn = 15,
2776       .crm = CP_ANY, .opc1 = CP_ANY, .opc2 = CP_ANY,
2777       .access = PL1_RW,
2778       .type = ARM_CP_CONST | ARM_CP_NO_RAW | ARM_CP_OVERRIDE,
2779       .resetvalue = 0 },
2780     REGINFO_SENTINEL
2781 };
2782 
2783 static const ARMCPRegInfo cache_dirty_status_cp_reginfo[] = {
2784     /* Cache status: RAZ because we have no cache so it's always clean */
2785     { .name = "CDSR", .cp = 15, .crn = 7, .crm = 10, .opc1 = 0, .opc2 = 6,
2786       .access = PL1_R, .type = ARM_CP_CONST | ARM_CP_NO_RAW,
2787       .resetvalue = 0 },
2788     REGINFO_SENTINEL
2789 };
2790 
2791 static const ARMCPRegInfo cache_block_ops_cp_reginfo[] = {
2792     /* We never have a a block transfer operation in progress */
2793     { .name = "BXSR", .cp = 15, .crn = 7, .crm = 12, .opc1 = 0, .opc2 = 4,
2794       .access = PL0_R, .type = ARM_CP_CONST | ARM_CP_NO_RAW,
2795       .resetvalue = 0 },
2796     /* The cache ops themselves: these all NOP for QEMU */
2797     { .name = "IICR", .cp = 15, .crm = 5, .opc1 = 0,
2798       .access = PL1_W, .type = ARM_CP_NOP|ARM_CP_64BIT },
2799     { .name = "IDCR", .cp = 15, .crm = 6, .opc1 = 0,
2800       .access = PL1_W, .type = ARM_CP_NOP|ARM_CP_64BIT },
2801     { .name = "CDCR", .cp = 15, .crm = 12, .opc1 = 0,
2802       .access = PL0_W, .type = ARM_CP_NOP|ARM_CP_64BIT },
2803     { .name = "PIR", .cp = 15, .crm = 12, .opc1 = 1,
2804       .access = PL0_W, .type = ARM_CP_NOP|ARM_CP_64BIT },
2805     { .name = "PDR", .cp = 15, .crm = 12, .opc1 = 2,
2806       .access = PL0_W, .type = ARM_CP_NOP|ARM_CP_64BIT },
2807     { .name = "CIDCR", .cp = 15, .crm = 14, .opc1 = 0,
2808       .access = PL1_W, .type = ARM_CP_NOP|ARM_CP_64BIT },
2809     REGINFO_SENTINEL
2810 };
2811 
2812 static const ARMCPRegInfo cache_test_clean_cp_reginfo[] = {
2813     /* The cache test-and-clean instructions always return (1 << 30)
2814      * to indicate that there are no dirty cache lines.
2815      */
2816     { .name = "TC_DCACHE", .cp = 15, .crn = 7, .crm = 10, .opc1 = 0, .opc2 = 3,
2817       .access = PL0_R, .type = ARM_CP_CONST | ARM_CP_NO_RAW,
2818       .resetvalue = (1 << 30) },
2819     { .name = "TCI_DCACHE", .cp = 15, .crn = 7, .crm = 14, .opc1 = 0, .opc2 = 3,
2820       .access = PL0_R, .type = ARM_CP_CONST | ARM_CP_NO_RAW,
2821       .resetvalue = (1 << 30) },
2822     REGINFO_SENTINEL
2823 };
2824 
2825 static const ARMCPRegInfo strongarm_cp_reginfo[] = {
2826     /* Ignore ReadBuffer accesses */
2827     { .name = "C9_READBUFFER", .cp = 15, .crn = 9,
2828       .crm = CP_ANY, .opc1 = CP_ANY, .opc2 = CP_ANY,
2829       .access = PL1_RW, .resetvalue = 0,
2830       .type = ARM_CP_CONST | ARM_CP_OVERRIDE | ARM_CP_NO_RAW },
2831     REGINFO_SENTINEL
2832 };
2833 
2834 static uint64_t midr_read(CPUARMState *env, const ARMCPRegInfo *ri)
2835 {
2836     ARMCPU *cpu = arm_env_get_cpu(env);
2837     unsigned int cur_el = arm_current_el(env);
2838     bool secure = arm_is_secure(env);
2839 
2840     if (arm_feature(&cpu->env, ARM_FEATURE_EL2) && !secure && cur_el == 1) {
2841         return env->cp15.vpidr_el2;
2842     }
2843     return raw_read(env, ri);
2844 }
2845 
2846 static uint64_t mpidr_read_val(CPUARMState *env)
2847 {
2848     ARMCPU *cpu = ARM_CPU(arm_env_get_cpu(env));
2849     uint64_t mpidr = cpu->mp_affinity;
2850 
2851     if (arm_feature(env, ARM_FEATURE_V7MP)) {
2852         mpidr |= (1U << 31);
2853         /* Cores which are uniprocessor (non-coherent)
2854          * but still implement the MP extensions set
2855          * bit 30. (For instance, Cortex-R5).
2856          */
2857         if (cpu->mp_is_up) {
2858             mpidr |= (1u << 30);
2859         }
2860     }
2861     return mpidr;
2862 }
2863 
2864 static uint64_t mpidr_read(CPUARMState *env, const ARMCPRegInfo *ri)
2865 {
2866     unsigned int cur_el = arm_current_el(env);
2867     bool secure = arm_is_secure(env);
2868 
2869     if (arm_feature(env, ARM_FEATURE_EL2) && !secure && cur_el == 1) {
2870         return env->cp15.vmpidr_el2;
2871     }
2872     return mpidr_read_val(env);
2873 }
2874 
2875 static const ARMCPRegInfo mpidr_cp_reginfo[] = {
2876     { .name = "MPIDR", .state = ARM_CP_STATE_BOTH,
2877       .opc0 = 3, .crn = 0, .crm = 0, .opc1 = 0, .opc2 = 5,
2878       .access = PL1_R, .readfn = mpidr_read, .type = ARM_CP_NO_RAW },
2879     REGINFO_SENTINEL
2880 };
2881 
2882 static const ARMCPRegInfo lpae_cp_reginfo[] = {
2883     /* NOP AMAIR0/1 */
2884     { .name = "AMAIR0", .state = ARM_CP_STATE_BOTH,
2885       .opc0 = 3, .crn = 10, .crm = 3, .opc1 = 0, .opc2 = 0,
2886       .access = PL1_RW, .type = ARM_CP_CONST,
2887       .resetvalue = 0 },
2888     /* AMAIR1 is mapped to AMAIR_EL1[63:32] */
2889     { .name = "AMAIR1", .cp = 15, .crn = 10, .crm = 3, .opc1 = 0, .opc2 = 1,
2890       .access = PL1_RW, .type = ARM_CP_CONST,
2891       .resetvalue = 0 },
2892     { .name = "PAR", .cp = 15, .crm = 7, .opc1 = 0,
2893       .access = PL1_RW, .type = ARM_CP_64BIT, .resetvalue = 0,
2894       .bank_fieldoffsets = { offsetof(CPUARMState, cp15.par_s),
2895                              offsetof(CPUARMState, cp15.par_ns)} },
2896     { .name = "TTBR0", .cp = 15, .crm = 2, .opc1 = 0,
2897       .access = PL1_RW, .type = ARM_CP_64BIT | ARM_CP_ALIAS,
2898       .bank_fieldoffsets = { offsetof(CPUARMState, cp15.ttbr0_s),
2899                              offsetof(CPUARMState, cp15.ttbr0_ns) },
2900       .writefn = vmsa_ttbr_write, },
2901     { .name = "TTBR1", .cp = 15, .crm = 2, .opc1 = 1,
2902       .access = PL1_RW, .type = ARM_CP_64BIT | ARM_CP_ALIAS,
2903       .bank_fieldoffsets = { offsetof(CPUARMState, cp15.ttbr1_s),
2904                              offsetof(CPUARMState, cp15.ttbr1_ns) },
2905       .writefn = vmsa_ttbr_write, },
2906     REGINFO_SENTINEL
2907 };
2908 
2909 static uint64_t aa64_fpcr_read(CPUARMState *env, const ARMCPRegInfo *ri)
2910 {
2911     return vfp_get_fpcr(env);
2912 }
2913 
2914 static void aa64_fpcr_write(CPUARMState *env, const ARMCPRegInfo *ri,
2915                             uint64_t value)
2916 {
2917     vfp_set_fpcr(env, value);
2918 }
2919 
2920 static uint64_t aa64_fpsr_read(CPUARMState *env, const ARMCPRegInfo *ri)
2921 {
2922     return vfp_get_fpsr(env);
2923 }
2924 
2925 static void aa64_fpsr_write(CPUARMState *env, const ARMCPRegInfo *ri,
2926                             uint64_t value)
2927 {
2928     vfp_set_fpsr(env, value);
2929 }
2930 
2931 static CPAccessResult aa64_daif_access(CPUARMState *env, const ARMCPRegInfo *ri,
2932                                        bool isread)
2933 {
2934     if (arm_current_el(env) == 0 && !(env->cp15.sctlr_el[1] & SCTLR_UMA)) {
2935         return CP_ACCESS_TRAP;
2936     }
2937     return CP_ACCESS_OK;
2938 }
2939 
2940 static void aa64_daif_write(CPUARMState *env, const ARMCPRegInfo *ri,
2941                             uint64_t value)
2942 {
2943     env->daif = value & PSTATE_DAIF;
2944 }
2945 
2946 static CPAccessResult aa64_cacheop_access(CPUARMState *env,
2947                                           const ARMCPRegInfo *ri,
2948                                           bool isread)
2949 {
2950     /* Cache invalidate/clean: NOP, but EL0 must UNDEF unless
2951      * SCTLR_EL1.UCI is set.
2952      */
2953     if (arm_current_el(env) == 0 && !(env->cp15.sctlr_el[1] & SCTLR_UCI)) {
2954         return CP_ACCESS_TRAP;
2955     }
2956     return CP_ACCESS_OK;
2957 }
2958 
2959 /* See: D4.7.2 TLB maintenance requirements and the TLB maintenance instructions
2960  * Page D4-1736 (DDI0487A.b)
2961  */
2962 
2963 static void tlbi_aa64_vmalle1_write(CPUARMState *env, const ARMCPRegInfo *ri,
2964                                     uint64_t value)
2965 {
2966     CPUState *cs = ENV_GET_CPU(env);
2967 
2968     if (arm_is_secure_below_el3(env)) {
2969         tlb_flush_by_mmuidx(cs,
2970                             ARMMMUIdxBit_S1SE1 |
2971                             ARMMMUIdxBit_S1SE0);
2972     } else {
2973         tlb_flush_by_mmuidx(cs,
2974                             ARMMMUIdxBit_S12NSE1 |
2975                             ARMMMUIdxBit_S12NSE0);
2976     }
2977 }
2978 
2979 static void tlbi_aa64_vmalle1is_write(CPUARMState *env, const ARMCPRegInfo *ri,
2980                                       uint64_t value)
2981 {
2982     CPUState *cs = ENV_GET_CPU(env);
2983     bool sec = arm_is_secure_below_el3(env);
2984 
2985     if (sec) {
2986         tlb_flush_by_mmuidx_all_cpus_synced(cs,
2987                                             ARMMMUIdxBit_S1SE1 |
2988                                             ARMMMUIdxBit_S1SE0);
2989     } else {
2990         tlb_flush_by_mmuidx_all_cpus_synced(cs,
2991                                             ARMMMUIdxBit_S12NSE1 |
2992                                             ARMMMUIdxBit_S12NSE0);
2993     }
2994 }
2995 
2996 static void tlbi_aa64_alle1_write(CPUARMState *env, const ARMCPRegInfo *ri,
2997                                   uint64_t value)
2998 {
2999     /* Note that the 'ALL' scope must invalidate both stage 1 and
3000      * stage 2 translations, whereas most other scopes only invalidate
3001      * stage 1 translations.
3002      */
3003     ARMCPU *cpu = arm_env_get_cpu(env);
3004     CPUState *cs = CPU(cpu);
3005 
3006     if (arm_is_secure_below_el3(env)) {
3007         tlb_flush_by_mmuidx(cs,
3008                             ARMMMUIdxBit_S1SE1 |
3009                             ARMMMUIdxBit_S1SE0);
3010     } else {
3011         if (arm_feature(env, ARM_FEATURE_EL2)) {
3012             tlb_flush_by_mmuidx(cs,
3013                                 ARMMMUIdxBit_S12NSE1 |
3014                                 ARMMMUIdxBit_S12NSE0 |
3015                                 ARMMMUIdxBit_S2NS);
3016         } else {
3017             tlb_flush_by_mmuidx(cs,
3018                                 ARMMMUIdxBit_S12NSE1 |
3019                                 ARMMMUIdxBit_S12NSE0);
3020         }
3021     }
3022 }
3023 
3024 static void tlbi_aa64_alle2_write(CPUARMState *env, const ARMCPRegInfo *ri,
3025                                   uint64_t value)
3026 {
3027     ARMCPU *cpu = arm_env_get_cpu(env);
3028     CPUState *cs = CPU(cpu);
3029 
3030     tlb_flush_by_mmuidx(cs, ARMMMUIdxBit_S1E2);
3031 }
3032 
3033 static void tlbi_aa64_alle3_write(CPUARMState *env, const ARMCPRegInfo *ri,
3034                                   uint64_t value)
3035 {
3036     ARMCPU *cpu = arm_env_get_cpu(env);
3037     CPUState *cs = CPU(cpu);
3038 
3039     tlb_flush_by_mmuidx(cs, ARMMMUIdxBit_S1E3);
3040 }
3041 
3042 static void tlbi_aa64_alle1is_write(CPUARMState *env, const ARMCPRegInfo *ri,
3043                                     uint64_t value)
3044 {
3045     /* Note that the 'ALL' scope must invalidate both stage 1 and
3046      * stage 2 translations, whereas most other scopes only invalidate
3047      * stage 1 translations.
3048      */
3049     CPUState *cs = ENV_GET_CPU(env);
3050     bool sec = arm_is_secure_below_el3(env);
3051     bool has_el2 = arm_feature(env, ARM_FEATURE_EL2);
3052 
3053     if (sec) {
3054         tlb_flush_by_mmuidx_all_cpus_synced(cs,
3055                                             ARMMMUIdxBit_S1SE1 |
3056                                             ARMMMUIdxBit_S1SE0);
3057     } else if (has_el2) {
3058         tlb_flush_by_mmuidx_all_cpus_synced(cs,
3059                                             ARMMMUIdxBit_S12NSE1 |
3060                                             ARMMMUIdxBit_S12NSE0 |
3061                                             ARMMMUIdxBit_S2NS);
3062     } else {
3063           tlb_flush_by_mmuidx_all_cpus_synced(cs,
3064                                               ARMMMUIdxBit_S12NSE1 |
3065                                               ARMMMUIdxBit_S12NSE0);
3066     }
3067 }
3068 
3069 static void tlbi_aa64_alle2is_write(CPUARMState *env, const ARMCPRegInfo *ri,
3070                                     uint64_t value)
3071 {
3072     CPUState *cs = ENV_GET_CPU(env);
3073 
3074     tlb_flush_by_mmuidx_all_cpus_synced(cs, ARMMMUIdxBit_S1E2);
3075 }
3076 
3077 static void tlbi_aa64_alle3is_write(CPUARMState *env, const ARMCPRegInfo *ri,
3078                                     uint64_t value)
3079 {
3080     CPUState *cs = ENV_GET_CPU(env);
3081 
3082     tlb_flush_by_mmuidx_all_cpus_synced(cs, ARMMMUIdxBit_S1E3);
3083 }
3084 
3085 static void tlbi_aa64_vae1_write(CPUARMState *env, const ARMCPRegInfo *ri,
3086                                  uint64_t value)
3087 {
3088     /* Invalidate by VA, EL1&0 (AArch64 version).
3089      * Currently handles all of VAE1, VAAE1, VAALE1 and VALE1,
3090      * since we don't support flush-for-specific-ASID-only or
3091      * flush-last-level-only.
3092      */
3093     ARMCPU *cpu = arm_env_get_cpu(env);
3094     CPUState *cs = CPU(cpu);
3095     uint64_t pageaddr = sextract64(value << 12, 0, 56);
3096 
3097     if (arm_is_secure_below_el3(env)) {
3098         tlb_flush_page_by_mmuidx(cs, pageaddr,
3099                                  ARMMMUIdxBit_S1SE1 |
3100                                  ARMMMUIdxBit_S1SE0);
3101     } else {
3102         tlb_flush_page_by_mmuidx(cs, pageaddr,
3103                                  ARMMMUIdxBit_S12NSE1 |
3104                                  ARMMMUIdxBit_S12NSE0);
3105     }
3106 }
3107 
3108 static void tlbi_aa64_vae2_write(CPUARMState *env, const ARMCPRegInfo *ri,
3109                                  uint64_t value)
3110 {
3111     /* Invalidate by VA, EL2
3112      * Currently handles both VAE2 and VALE2, since we don't support
3113      * flush-last-level-only.
3114      */
3115     ARMCPU *cpu = arm_env_get_cpu(env);
3116     CPUState *cs = CPU(cpu);
3117     uint64_t pageaddr = sextract64(value << 12, 0, 56);
3118 
3119     tlb_flush_page_by_mmuidx(cs, pageaddr, ARMMMUIdxBit_S1E2);
3120 }
3121 
3122 static void tlbi_aa64_vae3_write(CPUARMState *env, const ARMCPRegInfo *ri,
3123                                  uint64_t value)
3124 {
3125     /* Invalidate by VA, EL3
3126      * Currently handles both VAE3 and VALE3, since we don't support
3127      * flush-last-level-only.
3128      */
3129     ARMCPU *cpu = arm_env_get_cpu(env);
3130     CPUState *cs = CPU(cpu);
3131     uint64_t pageaddr = sextract64(value << 12, 0, 56);
3132 
3133     tlb_flush_page_by_mmuidx(cs, pageaddr, ARMMMUIdxBit_S1E3);
3134 }
3135 
3136 static void tlbi_aa64_vae1is_write(CPUARMState *env, const ARMCPRegInfo *ri,
3137                                    uint64_t value)
3138 {
3139     ARMCPU *cpu = arm_env_get_cpu(env);
3140     CPUState *cs = CPU(cpu);
3141     bool sec = arm_is_secure_below_el3(env);
3142     uint64_t pageaddr = sextract64(value << 12, 0, 56);
3143 
3144     if (sec) {
3145         tlb_flush_page_by_mmuidx_all_cpus_synced(cs, pageaddr,
3146                                                  ARMMMUIdxBit_S1SE1 |
3147                                                  ARMMMUIdxBit_S1SE0);
3148     } else {
3149         tlb_flush_page_by_mmuidx_all_cpus_synced(cs, pageaddr,
3150                                                  ARMMMUIdxBit_S12NSE1 |
3151                                                  ARMMMUIdxBit_S12NSE0);
3152     }
3153 }
3154 
3155 static void tlbi_aa64_vae2is_write(CPUARMState *env, const ARMCPRegInfo *ri,
3156                                    uint64_t value)
3157 {
3158     CPUState *cs = ENV_GET_CPU(env);
3159     uint64_t pageaddr = sextract64(value << 12, 0, 56);
3160 
3161     tlb_flush_page_by_mmuidx_all_cpus_synced(cs, pageaddr,
3162                                              ARMMMUIdxBit_S1E2);
3163 }
3164 
3165 static void tlbi_aa64_vae3is_write(CPUARMState *env, const ARMCPRegInfo *ri,
3166                                    uint64_t value)
3167 {
3168     CPUState *cs = ENV_GET_CPU(env);
3169     uint64_t pageaddr = sextract64(value << 12, 0, 56);
3170 
3171     tlb_flush_page_by_mmuidx_all_cpus_synced(cs, pageaddr,
3172                                              ARMMMUIdxBit_S1E3);
3173 }
3174 
3175 static void tlbi_aa64_ipas2e1_write(CPUARMState *env, const ARMCPRegInfo *ri,
3176                                     uint64_t value)
3177 {
3178     /* Invalidate by IPA. This has to invalidate any structures that
3179      * contain only stage 2 translation information, but does not need
3180      * to apply to structures that contain combined stage 1 and stage 2
3181      * translation information.
3182      * This must NOP if EL2 isn't implemented or SCR_EL3.NS is zero.
3183      */
3184     ARMCPU *cpu = arm_env_get_cpu(env);
3185     CPUState *cs = CPU(cpu);
3186     uint64_t pageaddr;
3187 
3188     if (!arm_feature(env, ARM_FEATURE_EL2) || !(env->cp15.scr_el3 & SCR_NS)) {
3189         return;
3190     }
3191 
3192     pageaddr = sextract64(value << 12, 0, 48);
3193 
3194     tlb_flush_page_by_mmuidx(cs, pageaddr, ARMMMUIdxBit_S2NS);
3195 }
3196 
3197 static void tlbi_aa64_ipas2e1is_write(CPUARMState *env, const ARMCPRegInfo *ri,
3198                                       uint64_t value)
3199 {
3200     CPUState *cs = ENV_GET_CPU(env);
3201     uint64_t pageaddr;
3202 
3203     if (!arm_feature(env, ARM_FEATURE_EL2) || !(env->cp15.scr_el3 & SCR_NS)) {
3204         return;
3205     }
3206 
3207     pageaddr = sextract64(value << 12, 0, 48);
3208 
3209     tlb_flush_page_by_mmuidx_all_cpus_synced(cs, pageaddr,
3210                                              ARMMMUIdxBit_S2NS);
3211 }
3212 
3213 static CPAccessResult aa64_zva_access(CPUARMState *env, const ARMCPRegInfo *ri,
3214                                       bool isread)
3215 {
3216     /* We don't implement EL2, so the only control on DC ZVA is the
3217      * bit in the SCTLR which can prohibit access for EL0.
3218      */
3219     if (arm_current_el(env) == 0 && !(env->cp15.sctlr_el[1] & SCTLR_DZE)) {
3220         return CP_ACCESS_TRAP;
3221     }
3222     return CP_ACCESS_OK;
3223 }
3224 
3225 static uint64_t aa64_dczid_read(CPUARMState *env, const ARMCPRegInfo *ri)
3226 {
3227     ARMCPU *cpu = arm_env_get_cpu(env);
3228     int dzp_bit = 1 << 4;
3229 
3230     /* DZP indicates whether DC ZVA access is allowed */
3231     if (aa64_zva_access(env, NULL, false) == CP_ACCESS_OK) {
3232         dzp_bit = 0;
3233     }
3234     return cpu->dcz_blocksize | dzp_bit;
3235 }
3236 
3237 static CPAccessResult sp_el0_access(CPUARMState *env, const ARMCPRegInfo *ri,
3238                                     bool isread)
3239 {
3240     if (!(env->pstate & PSTATE_SP)) {
3241         /* Access to SP_EL0 is undefined if it's being used as
3242          * the stack pointer.
3243          */
3244         return CP_ACCESS_TRAP_UNCATEGORIZED;
3245     }
3246     return CP_ACCESS_OK;
3247 }
3248 
3249 static uint64_t spsel_read(CPUARMState *env, const ARMCPRegInfo *ri)
3250 {
3251     return env->pstate & PSTATE_SP;
3252 }
3253 
3254 static void spsel_write(CPUARMState *env, const ARMCPRegInfo *ri, uint64_t val)
3255 {
3256     update_spsel(env, val);
3257 }
3258 
3259 static void sctlr_write(CPUARMState *env, const ARMCPRegInfo *ri,
3260                         uint64_t value)
3261 {
3262     ARMCPU *cpu = arm_env_get_cpu(env);
3263 
3264     if (raw_read(env, ri) == value) {
3265         /* Skip the TLB flush if nothing actually changed; Linux likes
3266          * to do a lot of pointless SCTLR writes.
3267          */
3268         return;
3269     }
3270 
3271     if (arm_feature(env, ARM_FEATURE_PMSA) && !cpu->has_mpu) {
3272         /* M bit is RAZ/WI for PMSA with no MPU implemented */
3273         value &= ~SCTLR_M;
3274     }
3275 
3276     raw_write(env, ri, value);
3277     /* ??? Lots of these bits are not implemented.  */
3278     /* This may enable/disable the MMU, so do a TLB flush.  */
3279     tlb_flush(CPU(cpu));
3280 }
3281 
3282 static CPAccessResult fpexc32_access(CPUARMState *env, const ARMCPRegInfo *ri,
3283                                      bool isread)
3284 {
3285     if ((env->cp15.cptr_el[2] & CPTR_TFP) && arm_current_el(env) == 2) {
3286         return CP_ACCESS_TRAP_FP_EL2;
3287     }
3288     if (env->cp15.cptr_el[3] & CPTR_TFP) {
3289         return CP_ACCESS_TRAP_FP_EL3;
3290     }
3291     return CP_ACCESS_OK;
3292 }
3293 
3294 static void sdcr_write(CPUARMState *env, const ARMCPRegInfo *ri,
3295                        uint64_t value)
3296 {
3297     env->cp15.mdcr_el3 = value & SDCR_VALID_MASK;
3298 }
3299 
3300 static const ARMCPRegInfo v8_cp_reginfo[] = {
3301     /* Minimal set of EL0-visible registers. This will need to be expanded
3302      * significantly for system emulation of AArch64 CPUs.
3303      */
3304     { .name = "NZCV", .state = ARM_CP_STATE_AA64,
3305       .opc0 = 3, .opc1 = 3, .opc2 = 0, .crn = 4, .crm = 2,
3306       .access = PL0_RW, .type = ARM_CP_NZCV },
3307     { .name = "DAIF", .state = ARM_CP_STATE_AA64,
3308       .opc0 = 3, .opc1 = 3, .opc2 = 1, .crn = 4, .crm = 2,
3309       .type = ARM_CP_NO_RAW,
3310       .access = PL0_RW, .accessfn = aa64_daif_access,
3311       .fieldoffset = offsetof(CPUARMState, daif),
3312       .writefn = aa64_daif_write, .resetfn = arm_cp_reset_ignore },
3313     { .name = "FPCR", .state = ARM_CP_STATE_AA64,
3314       .opc0 = 3, .opc1 = 3, .opc2 = 0, .crn = 4, .crm = 4,
3315       .access = PL0_RW, .readfn = aa64_fpcr_read, .writefn = aa64_fpcr_write },
3316     { .name = "FPSR", .state = ARM_CP_STATE_AA64,
3317       .opc0 = 3, .opc1 = 3, .opc2 = 1, .crn = 4, .crm = 4,
3318       .access = PL0_RW, .readfn = aa64_fpsr_read, .writefn = aa64_fpsr_write },
3319     { .name = "DCZID_EL0", .state = ARM_CP_STATE_AA64,
3320       .opc0 = 3, .opc1 = 3, .opc2 = 7, .crn = 0, .crm = 0,
3321       .access = PL0_R, .type = ARM_CP_NO_RAW,
3322       .readfn = aa64_dczid_read },
3323     { .name = "DC_ZVA", .state = ARM_CP_STATE_AA64,
3324       .opc0 = 1, .opc1 = 3, .crn = 7, .crm = 4, .opc2 = 1,
3325       .access = PL0_W, .type = ARM_CP_DC_ZVA,
3326 #ifndef CONFIG_USER_ONLY
3327       /* Avoid overhead of an access check that always passes in user-mode */
3328       .accessfn = aa64_zva_access,
3329 #endif
3330     },
3331     { .name = "CURRENTEL", .state = ARM_CP_STATE_AA64,
3332       .opc0 = 3, .opc1 = 0, .opc2 = 2, .crn = 4, .crm = 2,
3333       .access = PL1_R, .type = ARM_CP_CURRENTEL },
3334     /* Cache ops: all NOPs since we don't emulate caches */
3335     { .name = "IC_IALLUIS", .state = ARM_CP_STATE_AA64,
3336       .opc0 = 1, .opc1 = 0, .crn = 7, .crm = 1, .opc2 = 0,
3337       .access = PL1_W, .type = ARM_CP_NOP },
3338     { .name = "IC_IALLU", .state = ARM_CP_STATE_AA64,
3339       .opc0 = 1, .opc1 = 0, .crn = 7, .crm = 5, .opc2 = 0,
3340       .access = PL1_W, .type = ARM_CP_NOP },
3341     { .name = "IC_IVAU", .state = ARM_CP_STATE_AA64,
3342       .opc0 = 1, .opc1 = 3, .crn = 7, .crm = 5, .opc2 = 1,
3343       .access = PL0_W, .type = ARM_CP_NOP,
3344       .accessfn = aa64_cacheop_access },
3345     { .name = "DC_IVAC", .state = ARM_CP_STATE_AA64,
3346       .opc0 = 1, .opc1 = 0, .crn = 7, .crm = 6, .opc2 = 1,
3347       .access = PL1_W, .type = ARM_CP_NOP },
3348     { .name = "DC_ISW", .state = ARM_CP_STATE_AA64,
3349       .opc0 = 1, .opc1 = 0, .crn = 7, .crm = 6, .opc2 = 2,
3350       .access = PL1_W, .type = ARM_CP_NOP },
3351     { .name = "DC_CVAC", .state = ARM_CP_STATE_AA64,
3352       .opc0 = 1, .opc1 = 3, .crn = 7, .crm = 10, .opc2 = 1,
3353       .access = PL0_W, .type = ARM_CP_NOP,
3354       .accessfn = aa64_cacheop_access },
3355     { .name = "DC_CSW", .state = ARM_CP_STATE_AA64,
3356       .opc0 = 1, .opc1 = 0, .crn = 7, .crm = 10, .opc2 = 2,
3357       .access = PL1_W, .type = ARM_CP_NOP },
3358     { .name = "DC_CVAU", .state = ARM_CP_STATE_AA64,
3359       .opc0 = 1, .opc1 = 3, .crn = 7, .crm = 11, .opc2 = 1,
3360       .access = PL0_W, .type = ARM_CP_NOP,
3361       .accessfn = aa64_cacheop_access },
3362     { .name = "DC_CIVAC", .state = ARM_CP_STATE_AA64,
3363       .opc0 = 1, .opc1 = 3, .crn = 7, .crm = 14, .opc2 = 1,
3364       .access = PL0_W, .type = ARM_CP_NOP,
3365       .accessfn = aa64_cacheop_access },
3366     { .name = "DC_CISW", .state = ARM_CP_STATE_AA64,
3367       .opc0 = 1, .opc1 = 0, .crn = 7, .crm = 14, .opc2 = 2,
3368       .access = PL1_W, .type = ARM_CP_NOP },
3369     /* TLBI operations */
3370     { .name = "TLBI_VMALLE1IS", .state = ARM_CP_STATE_AA64,
3371       .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 3, .opc2 = 0,
3372       .access = PL1_W, .type = ARM_CP_NO_RAW,
3373       .writefn = tlbi_aa64_vmalle1is_write },
3374     { .name = "TLBI_VAE1IS", .state = ARM_CP_STATE_AA64,
3375       .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 3, .opc2 = 1,
3376       .access = PL1_W, .type = ARM_CP_NO_RAW,
3377       .writefn = tlbi_aa64_vae1is_write },
3378     { .name = "TLBI_ASIDE1IS", .state = ARM_CP_STATE_AA64,
3379       .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 3, .opc2 = 2,
3380       .access = PL1_W, .type = ARM_CP_NO_RAW,
3381       .writefn = tlbi_aa64_vmalle1is_write },
3382     { .name = "TLBI_VAAE1IS", .state = ARM_CP_STATE_AA64,
3383       .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 3, .opc2 = 3,
3384       .access = PL1_W, .type = ARM_CP_NO_RAW,
3385       .writefn = tlbi_aa64_vae1is_write },
3386     { .name = "TLBI_VALE1IS", .state = ARM_CP_STATE_AA64,
3387       .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 3, .opc2 = 5,
3388       .access = PL1_W, .type = ARM_CP_NO_RAW,
3389       .writefn = tlbi_aa64_vae1is_write },
3390     { .name = "TLBI_VAALE1IS", .state = ARM_CP_STATE_AA64,
3391       .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 3, .opc2 = 7,
3392       .access = PL1_W, .type = ARM_CP_NO_RAW,
3393       .writefn = tlbi_aa64_vae1is_write },
3394     { .name = "TLBI_VMALLE1", .state = ARM_CP_STATE_AA64,
3395       .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 7, .opc2 = 0,
3396       .access = PL1_W, .type = ARM_CP_NO_RAW,
3397       .writefn = tlbi_aa64_vmalle1_write },
3398     { .name = "TLBI_VAE1", .state = ARM_CP_STATE_AA64,
3399       .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 7, .opc2 = 1,
3400       .access = PL1_W, .type = ARM_CP_NO_RAW,
3401       .writefn = tlbi_aa64_vae1_write },
3402     { .name = "TLBI_ASIDE1", .state = ARM_CP_STATE_AA64,
3403       .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 7, .opc2 = 2,
3404       .access = PL1_W, .type = ARM_CP_NO_RAW,
3405       .writefn = tlbi_aa64_vmalle1_write },
3406     { .name = "TLBI_VAAE1", .state = ARM_CP_STATE_AA64,
3407       .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 7, .opc2 = 3,
3408       .access = PL1_W, .type = ARM_CP_NO_RAW,
3409       .writefn = tlbi_aa64_vae1_write },
3410     { .name = "TLBI_VALE1", .state = ARM_CP_STATE_AA64,
3411       .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 7, .opc2 = 5,
3412       .access = PL1_W, .type = ARM_CP_NO_RAW,
3413       .writefn = tlbi_aa64_vae1_write },
3414     { .name = "TLBI_VAALE1", .state = ARM_CP_STATE_AA64,
3415       .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 7, .opc2 = 7,
3416       .access = PL1_W, .type = ARM_CP_NO_RAW,
3417       .writefn = tlbi_aa64_vae1_write },
3418     { .name = "TLBI_IPAS2E1IS", .state = ARM_CP_STATE_AA64,
3419       .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 0, .opc2 = 1,
3420       .access = PL2_W, .type = ARM_CP_NO_RAW,
3421       .writefn = tlbi_aa64_ipas2e1is_write },
3422     { .name = "TLBI_IPAS2LE1IS", .state = ARM_CP_STATE_AA64,
3423       .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 0, .opc2 = 5,
3424       .access = PL2_W, .type = ARM_CP_NO_RAW,
3425       .writefn = tlbi_aa64_ipas2e1is_write },
3426     { .name = "TLBI_ALLE1IS", .state = ARM_CP_STATE_AA64,
3427       .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 3, .opc2 = 4,
3428       .access = PL2_W, .type = ARM_CP_NO_RAW,
3429       .writefn = tlbi_aa64_alle1is_write },
3430     { .name = "TLBI_VMALLS12E1IS", .state = ARM_CP_STATE_AA64,
3431       .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 3, .opc2 = 6,
3432       .access = PL2_W, .type = ARM_CP_NO_RAW,
3433       .writefn = tlbi_aa64_alle1is_write },
3434     { .name = "TLBI_IPAS2E1", .state = ARM_CP_STATE_AA64,
3435       .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 4, .opc2 = 1,
3436       .access = PL2_W, .type = ARM_CP_NO_RAW,
3437       .writefn = tlbi_aa64_ipas2e1_write },
3438     { .name = "TLBI_IPAS2LE1", .state = ARM_CP_STATE_AA64,
3439       .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 4, .opc2 = 5,
3440       .access = PL2_W, .type = ARM_CP_NO_RAW,
3441       .writefn = tlbi_aa64_ipas2e1_write },
3442     { .name = "TLBI_ALLE1", .state = ARM_CP_STATE_AA64,
3443       .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 7, .opc2 = 4,
3444       .access = PL2_W, .type = ARM_CP_NO_RAW,
3445       .writefn = tlbi_aa64_alle1_write },
3446     { .name = "TLBI_VMALLS12E1", .state = ARM_CP_STATE_AA64,
3447       .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 7, .opc2 = 6,
3448       .access = PL2_W, .type = ARM_CP_NO_RAW,
3449       .writefn = tlbi_aa64_alle1is_write },
3450 #ifndef CONFIG_USER_ONLY
3451     /* 64 bit address translation operations */
3452     { .name = "AT_S1E1R", .state = ARM_CP_STATE_AA64,
3453       .opc0 = 1, .opc1 = 0, .crn = 7, .crm = 8, .opc2 = 0,
3454       .access = PL1_W, .type = ARM_CP_NO_RAW, .writefn = ats_write64 },
3455     { .name = "AT_S1E1W", .state = ARM_CP_STATE_AA64,
3456       .opc0 = 1, .opc1 = 0, .crn = 7, .crm = 8, .opc2 = 1,
3457       .access = PL1_W, .type = ARM_CP_NO_RAW, .writefn = ats_write64 },
3458     { .name = "AT_S1E0R", .state = ARM_CP_STATE_AA64,
3459       .opc0 = 1, .opc1 = 0, .crn = 7, .crm = 8, .opc2 = 2,
3460       .access = PL1_W, .type = ARM_CP_NO_RAW, .writefn = ats_write64 },
3461     { .name = "AT_S1E0W", .state = ARM_CP_STATE_AA64,
3462       .opc0 = 1, .opc1 = 0, .crn = 7, .crm = 8, .opc2 = 3,
3463       .access = PL1_W, .type = ARM_CP_NO_RAW, .writefn = ats_write64 },
3464     { .name = "AT_S12E1R", .state = ARM_CP_STATE_AA64,
3465       .opc0 = 1, .opc1 = 4, .crn = 7, .crm = 8, .opc2 = 4,
3466       .access = PL2_W, .type = ARM_CP_NO_RAW, .writefn = ats_write64 },
3467     { .name = "AT_S12E1W", .state = ARM_CP_STATE_AA64,
3468       .opc0 = 1, .opc1 = 4, .crn = 7, .crm = 8, .opc2 = 5,
3469       .access = PL2_W, .type = ARM_CP_NO_RAW, .writefn = ats_write64 },
3470     { .name = "AT_S12E0R", .state = ARM_CP_STATE_AA64,
3471       .opc0 = 1, .opc1 = 4, .crn = 7, .crm = 8, .opc2 = 6,
3472       .access = PL2_W, .type = ARM_CP_NO_RAW, .writefn = ats_write64 },
3473     { .name = "AT_S12E0W", .state = ARM_CP_STATE_AA64,
3474       .opc0 = 1, .opc1 = 4, .crn = 7, .crm = 8, .opc2 = 7,
3475       .access = PL2_W, .type = ARM_CP_NO_RAW, .writefn = ats_write64 },
3476     /* AT S1E2* are elsewhere as they UNDEF from EL3 if EL2 is not present */
3477     { .name = "AT_S1E3R", .state = ARM_CP_STATE_AA64,
3478       .opc0 = 1, .opc1 = 6, .crn = 7, .crm = 8, .opc2 = 0,
3479       .access = PL3_W, .type = ARM_CP_NO_RAW, .writefn = ats_write64 },
3480     { .name = "AT_S1E3W", .state = ARM_CP_STATE_AA64,
3481       .opc0 = 1, .opc1 = 6, .crn = 7, .crm = 8, .opc2 = 1,
3482       .access = PL3_W, .type = ARM_CP_NO_RAW, .writefn = ats_write64 },
3483     { .name = "PAR_EL1", .state = ARM_CP_STATE_AA64,
3484       .type = ARM_CP_ALIAS,
3485       .opc0 = 3, .opc1 = 0, .crn = 7, .crm = 4, .opc2 = 0,
3486       .access = PL1_RW, .resetvalue = 0,
3487       .fieldoffset = offsetof(CPUARMState, cp15.par_el[1]),
3488       .writefn = par_write },
3489 #endif
3490     /* TLB invalidate last level of translation table walk */
3491     { .name = "TLBIMVALIS", .cp = 15, .opc1 = 0, .crn = 8, .crm = 3, .opc2 = 5,
3492       .type = ARM_CP_NO_RAW, .access = PL1_W, .writefn = tlbimva_is_write },
3493     { .name = "TLBIMVAALIS", .cp = 15, .opc1 = 0, .crn = 8, .crm = 3, .opc2 = 7,
3494       .type = ARM_CP_NO_RAW, .access = PL1_W,
3495       .writefn = tlbimvaa_is_write },
3496     { .name = "TLBIMVAL", .cp = 15, .opc1 = 0, .crn = 8, .crm = 7, .opc2 = 5,
3497       .type = ARM_CP_NO_RAW, .access = PL1_W, .writefn = tlbimva_write },
3498     { .name = "TLBIMVAAL", .cp = 15, .opc1 = 0, .crn = 8, .crm = 7, .opc2 = 7,
3499       .type = ARM_CP_NO_RAW, .access = PL1_W, .writefn = tlbimvaa_write },
3500     { .name = "TLBIMVALH", .cp = 15, .opc1 = 4, .crn = 8, .crm = 7, .opc2 = 5,
3501       .type = ARM_CP_NO_RAW, .access = PL2_W,
3502       .writefn = tlbimva_hyp_write },
3503     { .name = "TLBIMVALHIS",
3504       .cp = 15, .opc1 = 4, .crn = 8, .crm = 3, .opc2 = 5,
3505       .type = ARM_CP_NO_RAW, .access = PL2_W,
3506       .writefn = tlbimva_hyp_is_write },
3507     { .name = "TLBIIPAS2",
3508       .cp = 15, .opc1 = 4, .crn = 8, .crm = 4, .opc2 = 1,
3509       .type = ARM_CP_NO_RAW, .access = PL2_W,
3510       .writefn = tlbiipas2_write },
3511     { .name = "TLBIIPAS2IS",
3512       .cp = 15, .opc1 = 4, .crn = 8, .crm = 0, .opc2 = 1,
3513       .type = ARM_CP_NO_RAW, .access = PL2_W,
3514       .writefn = tlbiipas2_is_write },
3515     { .name = "TLBIIPAS2L",
3516       .cp = 15, .opc1 = 4, .crn = 8, .crm = 4, .opc2 = 5,
3517       .type = ARM_CP_NO_RAW, .access = PL2_W,
3518       .writefn = tlbiipas2_write },
3519     { .name = "TLBIIPAS2LIS",
3520       .cp = 15, .opc1 = 4, .crn = 8, .crm = 0, .opc2 = 5,
3521       .type = ARM_CP_NO_RAW, .access = PL2_W,
3522       .writefn = tlbiipas2_is_write },
3523     /* 32 bit cache operations */
3524     { .name = "ICIALLUIS", .cp = 15, .opc1 = 0, .crn = 7, .crm = 1, .opc2 = 0,
3525       .type = ARM_CP_NOP, .access = PL1_W },
3526     { .name = "BPIALLUIS", .cp = 15, .opc1 = 0, .crn = 7, .crm = 1, .opc2 = 6,
3527       .type = ARM_CP_NOP, .access = PL1_W },
3528     { .name = "ICIALLU", .cp = 15, .opc1 = 0, .crn = 7, .crm = 5, .opc2 = 0,
3529       .type = ARM_CP_NOP, .access = PL1_W },
3530     { .name = "ICIMVAU", .cp = 15, .opc1 = 0, .crn = 7, .crm = 5, .opc2 = 1,
3531       .type = ARM_CP_NOP, .access = PL1_W },
3532     { .name = "BPIALL", .cp = 15, .opc1 = 0, .crn = 7, .crm = 5, .opc2 = 6,
3533       .type = ARM_CP_NOP, .access = PL1_W },
3534     { .name = "BPIMVA", .cp = 15, .opc1 = 0, .crn = 7, .crm = 5, .opc2 = 7,
3535       .type = ARM_CP_NOP, .access = PL1_W },
3536     { .name = "DCIMVAC", .cp = 15, .opc1 = 0, .crn = 7, .crm = 6, .opc2 = 1,
3537       .type = ARM_CP_NOP, .access = PL1_W },
3538     { .name = "DCISW", .cp = 15, .opc1 = 0, .crn = 7, .crm = 6, .opc2 = 2,
3539       .type = ARM_CP_NOP, .access = PL1_W },
3540     { .name = "DCCMVAC", .cp = 15, .opc1 = 0, .crn = 7, .crm = 10, .opc2 = 1,
3541       .type = ARM_CP_NOP, .access = PL1_W },
3542     { .name = "DCCSW", .cp = 15, .opc1 = 0, .crn = 7, .crm = 10, .opc2 = 2,
3543       .type = ARM_CP_NOP, .access = PL1_W },
3544     { .name = "DCCMVAU", .cp = 15, .opc1 = 0, .crn = 7, .crm = 11, .opc2 = 1,
3545       .type = ARM_CP_NOP, .access = PL1_W },
3546     { .name = "DCCIMVAC", .cp = 15, .opc1 = 0, .crn = 7, .crm = 14, .opc2 = 1,
3547       .type = ARM_CP_NOP, .access = PL1_W },
3548     { .name = "DCCISW", .cp = 15, .opc1 = 0, .crn = 7, .crm = 14, .opc2 = 2,
3549       .type = ARM_CP_NOP, .access = PL1_W },
3550     /* MMU Domain access control / MPU write buffer control */
3551     { .name = "DACR", .cp = 15, .opc1 = 0, .crn = 3, .crm = 0, .opc2 = 0,
3552       .access = PL1_RW, .resetvalue = 0,
3553       .writefn = dacr_write, .raw_writefn = raw_write,
3554       .bank_fieldoffsets = { offsetoflow32(CPUARMState, cp15.dacr_s),
3555                              offsetoflow32(CPUARMState, cp15.dacr_ns) } },
3556     { .name = "ELR_EL1", .state = ARM_CP_STATE_AA64,
3557       .type = ARM_CP_ALIAS,
3558       .opc0 = 3, .opc1 = 0, .crn = 4, .crm = 0, .opc2 = 1,
3559       .access = PL1_RW,
3560       .fieldoffset = offsetof(CPUARMState, elr_el[1]) },
3561     { .name = "SPSR_EL1", .state = ARM_CP_STATE_AA64,
3562       .type = ARM_CP_ALIAS,
3563       .opc0 = 3, .opc1 = 0, .crn = 4, .crm = 0, .opc2 = 0,
3564       .access = PL1_RW,
3565       .fieldoffset = offsetof(CPUARMState, banked_spsr[BANK_SVC]) },
3566     /* We rely on the access checks not allowing the guest to write to the
3567      * state field when SPSel indicates that it's being used as the stack
3568      * pointer.
3569      */
3570     { .name = "SP_EL0", .state = ARM_CP_STATE_AA64,
3571       .opc0 = 3, .opc1 = 0, .crn = 4, .crm = 1, .opc2 = 0,
3572       .access = PL1_RW, .accessfn = sp_el0_access,
3573       .type = ARM_CP_ALIAS,
3574       .fieldoffset = offsetof(CPUARMState, sp_el[0]) },
3575     { .name = "SP_EL1", .state = ARM_CP_STATE_AA64,
3576       .opc0 = 3, .opc1 = 4, .crn = 4, .crm = 1, .opc2 = 0,
3577       .access = PL2_RW, .type = ARM_CP_ALIAS,
3578       .fieldoffset = offsetof(CPUARMState, sp_el[1]) },
3579     { .name = "SPSel", .state = ARM_CP_STATE_AA64,
3580       .opc0 = 3, .opc1 = 0, .crn = 4, .crm = 2, .opc2 = 0,
3581       .type = ARM_CP_NO_RAW,
3582       .access = PL1_RW, .readfn = spsel_read, .writefn = spsel_write },
3583     { .name = "FPEXC32_EL2", .state = ARM_CP_STATE_AA64,
3584       .opc0 = 3, .opc1 = 4, .crn = 5, .crm = 3, .opc2 = 0,
3585       .type = ARM_CP_ALIAS,
3586       .fieldoffset = offsetof(CPUARMState, vfp.xregs[ARM_VFP_FPEXC]),
3587       .access = PL2_RW, .accessfn = fpexc32_access },
3588     { .name = "DACR32_EL2", .state = ARM_CP_STATE_AA64,
3589       .opc0 = 3, .opc1 = 4, .crn = 3, .crm = 0, .opc2 = 0,
3590       .access = PL2_RW, .resetvalue = 0,
3591       .writefn = dacr_write, .raw_writefn = raw_write,
3592       .fieldoffset = offsetof(CPUARMState, cp15.dacr32_el2) },
3593     { .name = "IFSR32_EL2", .state = ARM_CP_STATE_AA64,
3594       .opc0 = 3, .opc1 = 4, .crn = 5, .crm = 0, .opc2 = 1,
3595       .access = PL2_RW, .resetvalue = 0,
3596       .fieldoffset = offsetof(CPUARMState, cp15.ifsr32_el2) },
3597     { .name = "SPSR_IRQ", .state = ARM_CP_STATE_AA64,
3598       .type = ARM_CP_ALIAS,
3599       .opc0 = 3, .opc1 = 4, .crn = 4, .crm = 3, .opc2 = 0,
3600       .access = PL2_RW,
3601       .fieldoffset = offsetof(CPUARMState, banked_spsr[BANK_IRQ]) },
3602     { .name = "SPSR_ABT", .state = ARM_CP_STATE_AA64,
3603       .type = ARM_CP_ALIAS,
3604       .opc0 = 3, .opc1 = 4, .crn = 4, .crm = 3, .opc2 = 1,
3605       .access = PL2_RW,
3606       .fieldoffset = offsetof(CPUARMState, banked_spsr[BANK_ABT]) },
3607     { .name = "SPSR_UND", .state = ARM_CP_STATE_AA64,
3608       .type = ARM_CP_ALIAS,
3609       .opc0 = 3, .opc1 = 4, .crn = 4, .crm = 3, .opc2 = 2,
3610       .access = PL2_RW,
3611       .fieldoffset = offsetof(CPUARMState, banked_spsr[BANK_UND]) },
3612     { .name = "SPSR_FIQ", .state = ARM_CP_STATE_AA64,
3613       .type = ARM_CP_ALIAS,
3614       .opc0 = 3, .opc1 = 4, .crn = 4, .crm = 3, .opc2 = 3,
3615       .access = PL2_RW,
3616       .fieldoffset = offsetof(CPUARMState, banked_spsr[BANK_FIQ]) },
3617     { .name = "MDCR_EL3", .state = ARM_CP_STATE_AA64,
3618       .opc0 = 3, .opc1 = 6, .crn = 1, .crm = 3, .opc2 = 1,
3619       .resetvalue = 0,
3620       .access = PL3_RW, .fieldoffset = offsetof(CPUARMState, cp15.mdcr_el3) },
3621     { .name = "SDCR", .type = ARM_CP_ALIAS,
3622       .cp = 15, .opc1 = 0, .crn = 1, .crm = 3, .opc2 = 1,
3623       .access = PL1_RW, .accessfn = access_trap_aa32s_el1,
3624       .writefn = sdcr_write,
3625       .fieldoffset = offsetoflow32(CPUARMState, cp15.mdcr_el3) },
3626     REGINFO_SENTINEL
3627 };
3628 
3629 /* Used to describe the behaviour of EL2 regs when EL2 does not exist.  */
3630 static const ARMCPRegInfo el3_no_el2_cp_reginfo[] = {
3631     { .name = "VBAR_EL2", .state = ARM_CP_STATE_AA64,
3632       .opc0 = 3, .opc1 = 4, .crn = 12, .crm = 0, .opc2 = 0,
3633       .access = PL2_RW,
3634       .readfn = arm_cp_read_zero, .writefn = arm_cp_write_ignore },
3635     { .name = "HCR_EL2", .state = ARM_CP_STATE_AA64,
3636       .type = ARM_CP_NO_RAW,
3637       .opc0 = 3, .opc1 = 4, .crn = 1, .crm = 1, .opc2 = 0,
3638       .access = PL2_RW,
3639       .readfn = arm_cp_read_zero, .writefn = arm_cp_write_ignore },
3640     { .name = "CPTR_EL2", .state = ARM_CP_STATE_BOTH,
3641       .opc0 = 3, .opc1 = 4, .crn = 1, .crm = 1, .opc2 = 2,
3642       .access = PL2_RW, .type = ARM_CP_CONST, .resetvalue = 0 },
3643     { .name = "MAIR_EL2", .state = ARM_CP_STATE_BOTH,
3644       .opc0 = 3, .opc1 = 4, .crn = 10, .crm = 2, .opc2 = 0,
3645       .access = PL2_RW, .type = ARM_CP_CONST,
3646       .resetvalue = 0 },
3647     { .name = "HMAIR1", .state = ARM_CP_STATE_AA32,
3648       .opc1 = 4, .crn = 10, .crm = 2, .opc2 = 1,
3649       .access = PL2_RW, .type = ARM_CP_CONST, .resetvalue = 0 },
3650     { .name = "AMAIR_EL2", .state = ARM_CP_STATE_BOTH,
3651       .opc0 = 3, .opc1 = 4, .crn = 10, .crm = 3, .opc2 = 0,
3652       .access = PL2_RW, .type = ARM_CP_CONST,
3653       .resetvalue = 0 },
3654     { .name = "HMAIR1", .state = ARM_CP_STATE_AA32,
3655       .opc1 = 4, .crn = 10, .crm = 3, .opc2 = 1,
3656       .access = PL2_RW, .type = ARM_CP_CONST,
3657       .resetvalue = 0 },
3658     { .name = "AFSR0_EL2", .state = ARM_CP_STATE_BOTH,
3659       .opc0 = 3, .opc1 = 4, .crn = 5, .crm = 1, .opc2 = 0,
3660       .access = PL2_RW, .type = ARM_CP_CONST,
3661       .resetvalue = 0 },
3662     { .name = "AFSR1_EL2", .state = ARM_CP_STATE_BOTH,
3663       .opc0 = 3, .opc1 = 4, .crn = 5, .crm = 1, .opc2 = 1,
3664       .access = PL2_RW, .type = ARM_CP_CONST,
3665       .resetvalue = 0 },
3666     { .name = "TCR_EL2", .state = ARM_CP_STATE_BOTH,
3667       .opc0 = 3, .opc1 = 4, .crn = 2, .crm = 0, .opc2 = 2,
3668       .access = PL2_RW, .type = ARM_CP_CONST, .resetvalue = 0 },
3669     { .name = "VTCR_EL2", .state = ARM_CP_STATE_BOTH,
3670       .opc0 = 3, .opc1 = 4, .crn = 2, .crm = 1, .opc2 = 2,
3671       .access = PL2_RW, .accessfn = access_el3_aa32ns_aa64any,
3672       .type = ARM_CP_CONST, .resetvalue = 0 },
3673     { .name = "VTTBR", .state = ARM_CP_STATE_AA32,
3674       .cp = 15, .opc1 = 6, .crm = 2,
3675       .access = PL2_RW, .accessfn = access_el3_aa32ns,
3676       .type = ARM_CP_CONST | ARM_CP_64BIT, .resetvalue = 0 },
3677     { .name = "VTTBR_EL2", .state = ARM_CP_STATE_AA64,
3678       .opc0 = 3, .opc1 = 4, .crn = 2, .crm = 1, .opc2 = 0,
3679       .access = PL2_RW, .type = ARM_CP_CONST, .resetvalue = 0 },
3680     { .name = "SCTLR_EL2", .state = ARM_CP_STATE_BOTH,
3681       .opc0 = 3, .opc1 = 4, .crn = 1, .crm = 0, .opc2 = 0,
3682       .access = PL2_RW, .type = ARM_CP_CONST, .resetvalue = 0 },
3683     { .name = "TPIDR_EL2", .state = ARM_CP_STATE_BOTH,
3684       .opc0 = 3, .opc1 = 4, .crn = 13, .crm = 0, .opc2 = 2,
3685       .access = PL2_RW, .type = ARM_CP_CONST, .resetvalue = 0 },
3686     { .name = "TTBR0_EL2", .state = ARM_CP_STATE_AA64,
3687       .opc0 = 3, .opc1 = 4, .crn = 2, .crm = 0, .opc2 = 0,
3688       .access = PL2_RW, .type = ARM_CP_CONST, .resetvalue = 0 },
3689     { .name = "HTTBR", .cp = 15, .opc1 = 4, .crm = 2,
3690       .access = PL2_RW, .type = ARM_CP_64BIT | ARM_CP_CONST,
3691       .resetvalue = 0 },
3692     { .name = "CNTHCTL_EL2", .state = ARM_CP_STATE_BOTH,
3693       .opc0 = 3, .opc1 = 4, .crn = 14, .crm = 1, .opc2 = 0,
3694       .access = PL2_RW, .type = ARM_CP_CONST, .resetvalue = 0 },
3695     { .name = "CNTVOFF_EL2", .state = ARM_CP_STATE_AA64,
3696       .opc0 = 3, .opc1 = 4, .crn = 14, .crm = 0, .opc2 = 3,
3697       .access = PL2_RW, .type = ARM_CP_CONST, .resetvalue = 0 },
3698     { .name = "CNTVOFF", .cp = 15, .opc1 = 4, .crm = 14,
3699       .access = PL2_RW, .type = ARM_CP_64BIT | ARM_CP_CONST,
3700       .resetvalue = 0 },
3701     { .name = "CNTHP_CVAL_EL2", .state = ARM_CP_STATE_AA64,
3702       .opc0 = 3, .opc1 = 4, .crn = 14, .crm = 2, .opc2 = 2,
3703       .access = PL2_RW, .type = ARM_CP_CONST, .resetvalue = 0 },
3704     { .name = "CNTHP_CVAL", .cp = 15, .opc1 = 6, .crm = 14,
3705       .access = PL2_RW, .type = ARM_CP_64BIT | ARM_CP_CONST,
3706       .resetvalue = 0 },
3707     { .name = "CNTHP_TVAL_EL2", .state = ARM_CP_STATE_BOTH,
3708       .opc0 = 3, .opc1 = 4, .crn = 14, .crm = 2, .opc2 = 0,
3709       .access = PL2_RW, .type = ARM_CP_CONST, .resetvalue = 0 },
3710     { .name = "CNTHP_CTL_EL2", .state = ARM_CP_STATE_BOTH,
3711       .opc0 = 3, .opc1 = 4, .crn = 14, .crm = 2, .opc2 = 1,
3712       .access = PL2_RW, .type = ARM_CP_CONST, .resetvalue = 0 },
3713     { .name = "MDCR_EL2", .state = ARM_CP_STATE_BOTH,
3714       .opc0 = 3, .opc1 = 4, .crn = 1, .crm = 1, .opc2 = 1,
3715       .access = PL2_RW, .accessfn = access_tda,
3716       .type = ARM_CP_CONST, .resetvalue = 0 },
3717     { .name = "HPFAR_EL2", .state = ARM_CP_STATE_BOTH,
3718       .opc0 = 3, .opc1 = 4, .crn = 6, .crm = 0, .opc2 = 4,
3719       .access = PL2_RW, .accessfn = access_el3_aa32ns_aa64any,
3720       .type = ARM_CP_CONST, .resetvalue = 0 },
3721     { .name = "HSTR_EL2", .state = ARM_CP_STATE_BOTH,
3722       .opc0 = 3, .opc1 = 4, .crn = 1, .crm = 1, .opc2 = 3,
3723       .access = PL2_RW, .type = ARM_CP_CONST, .resetvalue = 0 },
3724     REGINFO_SENTINEL
3725 };
3726 
3727 static void hcr_write(CPUARMState *env, const ARMCPRegInfo *ri, uint64_t value)
3728 {
3729     ARMCPU *cpu = arm_env_get_cpu(env);
3730     uint64_t valid_mask = HCR_MASK;
3731 
3732     if (arm_feature(env, ARM_FEATURE_EL3)) {
3733         valid_mask &= ~HCR_HCD;
3734     } else if (cpu->psci_conduit != QEMU_PSCI_CONDUIT_SMC) {
3735         /* Architecturally HCR.TSC is RES0 if EL3 is not implemented.
3736          * However, if we're using the SMC PSCI conduit then QEMU is
3737          * effectively acting like EL3 firmware and so the guest at
3738          * EL2 should retain the ability to prevent EL1 from being
3739          * able to make SMC calls into the ersatz firmware, so in
3740          * that case HCR.TSC should be read/write.
3741          */
3742         valid_mask &= ~HCR_TSC;
3743     }
3744 
3745     /* Clear RES0 bits.  */
3746     value &= valid_mask;
3747 
3748     /* These bits change the MMU setup:
3749      * HCR_VM enables stage 2 translation
3750      * HCR_PTW forbids certain page-table setups
3751      * HCR_DC Disables stage1 and enables stage2 translation
3752      */
3753     if ((raw_read(env, ri) ^ value) & (HCR_VM | HCR_PTW | HCR_DC)) {
3754         tlb_flush(CPU(cpu));
3755     }
3756     raw_write(env, ri, value);
3757 }
3758 
3759 static const ARMCPRegInfo el2_cp_reginfo[] = {
3760     { .name = "HCR_EL2", .state = ARM_CP_STATE_AA64,
3761       .opc0 = 3, .opc1 = 4, .crn = 1, .crm = 1, .opc2 = 0,
3762       .access = PL2_RW, .fieldoffset = offsetof(CPUARMState, cp15.hcr_el2),
3763       .writefn = hcr_write },
3764     { .name = "ELR_EL2", .state = ARM_CP_STATE_AA64,
3765       .type = ARM_CP_ALIAS,
3766       .opc0 = 3, .opc1 = 4, .crn = 4, .crm = 0, .opc2 = 1,
3767       .access = PL2_RW,
3768       .fieldoffset = offsetof(CPUARMState, elr_el[2]) },
3769     { .name = "ESR_EL2", .state = ARM_CP_STATE_AA64,
3770       .opc0 = 3, .opc1 = 4, .crn = 5, .crm = 2, .opc2 = 0,
3771       .access = PL2_RW, .fieldoffset = offsetof(CPUARMState, cp15.esr_el[2]) },
3772     { .name = "FAR_EL2", .state = ARM_CP_STATE_AA64,
3773       .opc0 = 3, .opc1 = 4, .crn = 6, .crm = 0, .opc2 = 0,
3774       .access = PL2_RW, .fieldoffset = offsetof(CPUARMState, cp15.far_el[2]) },
3775     { .name = "SPSR_EL2", .state = ARM_CP_STATE_AA64,
3776       .type = ARM_CP_ALIAS,
3777       .opc0 = 3, .opc1 = 4, .crn = 4, .crm = 0, .opc2 = 0,
3778       .access = PL2_RW,
3779       .fieldoffset = offsetof(CPUARMState, banked_spsr[BANK_HYP]) },
3780     { .name = "VBAR_EL2", .state = ARM_CP_STATE_AA64,
3781       .opc0 = 3, .opc1 = 4, .crn = 12, .crm = 0, .opc2 = 0,
3782       .access = PL2_RW, .writefn = vbar_write,
3783       .fieldoffset = offsetof(CPUARMState, cp15.vbar_el[2]),
3784       .resetvalue = 0 },
3785     { .name = "SP_EL2", .state = ARM_CP_STATE_AA64,
3786       .opc0 = 3, .opc1 = 6, .crn = 4, .crm = 1, .opc2 = 0,
3787       .access = PL3_RW, .type = ARM_CP_ALIAS,
3788       .fieldoffset = offsetof(CPUARMState, sp_el[2]) },
3789     { .name = "CPTR_EL2", .state = ARM_CP_STATE_BOTH,
3790       .opc0 = 3, .opc1 = 4, .crn = 1, .crm = 1, .opc2 = 2,
3791       .access = PL2_RW, .accessfn = cptr_access, .resetvalue = 0,
3792       .fieldoffset = offsetof(CPUARMState, cp15.cptr_el[2]) },
3793     { .name = "MAIR_EL2", .state = ARM_CP_STATE_BOTH,
3794       .opc0 = 3, .opc1 = 4, .crn = 10, .crm = 2, .opc2 = 0,
3795       .access = PL2_RW, .fieldoffset = offsetof(CPUARMState, cp15.mair_el[2]),
3796       .resetvalue = 0 },
3797     { .name = "HMAIR1", .state = ARM_CP_STATE_AA32,
3798       .opc1 = 4, .crn = 10, .crm = 2, .opc2 = 1,
3799       .access = PL2_RW, .type = ARM_CP_ALIAS,
3800       .fieldoffset = offsetofhigh32(CPUARMState, cp15.mair_el[2]) },
3801     { .name = "AMAIR_EL2", .state = ARM_CP_STATE_BOTH,
3802       .opc0 = 3, .opc1 = 4, .crn = 10, .crm = 3, .opc2 = 0,
3803       .access = PL2_RW, .type = ARM_CP_CONST,
3804       .resetvalue = 0 },
3805     /* HAMAIR1 is mapped to AMAIR_EL2[63:32] */
3806     { .name = "HMAIR1", .state = ARM_CP_STATE_AA32,
3807       .opc1 = 4, .crn = 10, .crm = 3, .opc2 = 1,
3808       .access = PL2_RW, .type = ARM_CP_CONST,
3809       .resetvalue = 0 },
3810     { .name = "AFSR0_EL2", .state = ARM_CP_STATE_BOTH,
3811       .opc0 = 3, .opc1 = 4, .crn = 5, .crm = 1, .opc2 = 0,
3812       .access = PL2_RW, .type = ARM_CP_CONST,
3813       .resetvalue = 0 },
3814     { .name = "AFSR1_EL2", .state = ARM_CP_STATE_BOTH,
3815       .opc0 = 3, .opc1 = 4, .crn = 5, .crm = 1, .opc2 = 1,
3816       .access = PL2_RW, .type = ARM_CP_CONST,
3817       .resetvalue = 0 },
3818     { .name = "TCR_EL2", .state = ARM_CP_STATE_BOTH,
3819       .opc0 = 3, .opc1 = 4, .crn = 2, .crm = 0, .opc2 = 2,
3820       .access = PL2_RW,
3821       /* no .writefn needed as this can't cause an ASID change;
3822        * no .raw_writefn or .resetfn needed as we never use mask/base_mask
3823        */
3824       .fieldoffset = offsetof(CPUARMState, cp15.tcr_el[2]) },
3825     { .name = "VTCR", .state = ARM_CP_STATE_AA32,
3826       .cp = 15, .opc1 = 4, .crn = 2, .crm = 1, .opc2 = 2,
3827       .type = ARM_CP_ALIAS,
3828       .access = PL2_RW, .accessfn = access_el3_aa32ns,
3829       .fieldoffset = offsetof(CPUARMState, cp15.vtcr_el2) },
3830     { .name = "VTCR_EL2", .state = ARM_CP_STATE_AA64,
3831       .opc0 = 3, .opc1 = 4, .crn = 2, .crm = 1, .opc2 = 2,
3832       .access = PL2_RW,
3833       /* no .writefn needed as this can't cause an ASID change;
3834        * no .raw_writefn or .resetfn needed as we never use mask/base_mask
3835        */
3836       .fieldoffset = offsetof(CPUARMState, cp15.vtcr_el2) },
3837     { .name = "VTTBR", .state = ARM_CP_STATE_AA32,
3838       .cp = 15, .opc1 = 6, .crm = 2,
3839       .type = ARM_CP_64BIT | ARM_CP_ALIAS,
3840       .access = PL2_RW, .accessfn = access_el3_aa32ns,
3841       .fieldoffset = offsetof(CPUARMState, cp15.vttbr_el2),
3842       .writefn = vttbr_write },
3843     { .name = "VTTBR_EL2", .state = ARM_CP_STATE_AA64,
3844       .opc0 = 3, .opc1 = 4, .crn = 2, .crm = 1, .opc2 = 0,
3845       .access = PL2_RW, .writefn = vttbr_write,
3846       .fieldoffset = offsetof(CPUARMState, cp15.vttbr_el2) },
3847     { .name = "SCTLR_EL2", .state = ARM_CP_STATE_BOTH,
3848       .opc0 = 3, .opc1 = 4, .crn = 1, .crm = 0, .opc2 = 0,
3849       .access = PL2_RW, .raw_writefn = raw_write, .writefn = sctlr_write,
3850       .fieldoffset = offsetof(CPUARMState, cp15.sctlr_el[2]) },
3851     { .name = "TPIDR_EL2", .state = ARM_CP_STATE_BOTH,
3852       .opc0 = 3, .opc1 = 4, .crn = 13, .crm = 0, .opc2 = 2,
3853       .access = PL2_RW, .resetvalue = 0,
3854       .fieldoffset = offsetof(CPUARMState, cp15.tpidr_el[2]) },
3855     { .name = "TTBR0_EL2", .state = ARM_CP_STATE_AA64,
3856       .opc0 = 3, .opc1 = 4, .crn = 2, .crm = 0, .opc2 = 0,
3857       .access = PL2_RW, .resetvalue = 0,
3858       .fieldoffset = offsetof(CPUARMState, cp15.ttbr0_el[2]) },
3859     { .name = "HTTBR", .cp = 15, .opc1 = 4, .crm = 2,
3860       .access = PL2_RW, .type = ARM_CP_64BIT | ARM_CP_ALIAS,
3861       .fieldoffset = offsetof(CPUARMState, cp15.ttbr0_el[2]) },
3862     { .name = "TLBIALLNSNH",
3863       .cp = 15, .opc1 = 4, .crn = 8, .crm = 7, .opc2 = 4,
3864       .type = ARM_CP_NO_RAW, .access = PL2_W,
3865       .writefn = tlbiall_nsnh_write },
3866     { .name = "TLBIALLNSNHIS",
3867       .cp = 15, .opc1 = 4, .crn = 8, .crm = 3, .opc2 = 4,
3868       .type = ARM_CP_NO_RAW, .access = PL2_W,
3869       .writefn = tlbiall_nsnh_is_write },
3870     { .name = "TLBIALLH", .cp = 15, .opc1 = 4, .crn = 8, .crm = 7, .opc2 = 0,
3871       .type = ARM_CP_NO_RAW, .access = PL2_W,
3872       .writefn = tlbiall_hyp_write },
3873     { .name = "TLBIALLHIS", .cp = 15, .opc1 = 4, .crn = 8, .crm = 3, .opc2 = 0,
3874       .type = ARM_CP_NO_RAW, .access = PL2_W,
3875       .writefn = tlbiall_hyp_is_write },
3876     { .name = "TLBIMVAH", .cp = 15, .opc1 = 4, .crn = 8, .crm = 7, .opc2 = 1,
3877       .type = ARM_CP_NO_RAW, .access = PL2_W,
3878       .writefn = tlbimva_hyp_write },
3879     { .name = "TLBIMVAHIS", .cp = 15, .opc1 = 4, .crn = 8, .crm = 3, .opc2 = 1,
3880       .type = ARM_CP_NO_RAW, .access = PL2_W,
3881       .writefn = tlbimva_hyp_is_write },
3882     { .name = "TLBI_ALLE2", .state = ARM_CP_STATE_AA64,
3883       .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 7, .opc2 = 0,
3884       .type = ARM_CP_NO_RAW, .access = PL2_W,
3885       .writefn = tlbi_aa64_alle2_write },
3886     { .name = "TLBI_VAE2", .state = ARM_CP_STATE_AA64,
3887       .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 7, .opc2 = 1,
3888       .type = ARM_CP_NO_RAW, .access = PL2_W,
3889       .writefn = tlbi_aa64_vae2_write },
3890     { .name = "TLBI_VALE2", .state = ARM_CP_STATE_AA64,
3891       .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 7, .opc2 = 5,
3892       .access = PL2_W, .type = ARM_CP_NO_RAW,
3893       .writefn = tlbi_aa64_vae2_write },
3894     { .name = "TLBI_ALLE2IS", .state = ARM_CP_STATE_AA64,
3895       .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 3, .opc2 = 0,
3896       .access = PL2_W, .type = ARM_CP_NO_RAW,
3897       .writefn = tlbi_aa64_alle2is_write },
3898     { .name = "TLBI_VAE2IS", .state = ARM_CP_STATE_AA64,
3899       .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 3, .opc2 = 1,
3900       .type = ARM_CP_NO_RAW, .access = PL2_W,
3901       .writefn = tlbi_aa64_vae2is_write },
3902     { .name = "TLBI_VALE2IS", .state = ARM_CP_STATE_AA64,
3903       .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 3, .opc2 = 5,
3904       .access = PL2_W, .type = ARM_CP_NO_RAW,
3905       .writefn = tlbi_aa64_vae2is_write },
3906 #ifndef CONFIG_USER_ONLY
3907     /* Unlike the other EL2-related AT operations, these must
3908      * UNDEF from EL3 if EL2 is not implemented, which is why we
3909      * define them here rather than with the rest of the AT ops.
3910      */
3911     { .name = "AT_S1E2R", .state = ARM_CP_STATE_AA64,
3912       .opc0 = 1, .opc1 = 4, .crn = 7, .crm = 8, .opc2 = 0,
3913       .access = PL2_W, .accessfn = at_s1e2_access,
3914       .type = ARM_CP_NO_RAW, .writefn = ats_write64 },
3915     { .name = "AT_S1E2W", .state = ARM_CP_STATE_AA64,
3916       .opc0 = 1, .opc1 = 4, .crn = 7, .crm = 8, .opc2 = 1,
3917       .access = PL2_W, .accessfn = at_s1e2_access,
3918       .type = ARM_CP_NO_RAW, .writefn = ats_write64 },
3919     /* The AArch32 ATS1H* operations are CONSTRAINED UNPREDICTABLE
3920      * if EL2 is not implemented; we choose to UNDEF. Behaviour at EL3
3921      * with SCR.NS == 0 outside Monitor mode is UNPREDICTABLE; we choose
3922      * to behave as if SCR.NS was 1.
3923      */
3924     { .name = "ATS1HR", .cp = 15, .opc1 = 4, .crn = 7, .crm = 8, .opc2 = 0,
3925       .access = PL2_W,
3926       .writefn = ats1h_write, .type = ARM_CP_NO_RAW },
3927     { .name = "ATS1HW", .cp = 15, .opc1 = 4, .crn = 7, .crm = 8, .opc2 = 1,
3928       .access = PL2_W,
3929       .writefn = ats1h_write, .type = ARM_CP_NO_RAW },
3930     { .name = "CNTHCTL_EL2", .state = ARM_CP_STATE_BOTH,
3931       .opc0 = 3, .opc1 = 4, .crn = 14, .crm = 1, .opc2 = 0,
3932       /* ARMv7 requires bit 0 and 1 to reset to 1. ARMv8 defines the
3933        * reset values as IMPDEF. We choose to reset to 3 to comply with
3934        * both ARMv7 and ARMv8.
3935        */
3936       .access = PL2_RW, .resetvalue = 3,
3937       .fieldoffset = offsetof(CPUARMState, cp15.cnthctl_el2) },
3938     { .name = "CNTVOFF_EL2", .state = ARM_CP_STATE_AA64,
3939       .opc0 = 3, .opc1 = 4, .crn = 14, .crm = 0, .opc2 = 3,
3940       .access = PL2_RW, .type = ARM_CP_IO, .resetvalue = 0,
3941       .writefn = gt_cntvoff_write,
3942       .fieldoffset = offsetof(CPUARMState, cp15.cntvoff_el2) },
3943     { .name = "CNTVOFF", .cp = 15, .opc1 = 4, .crm = 14,
3944       .access = PL2_RW, .type = ARM_CP_64BIT | ARM_CP_ALIAS | ARM_CP_IO,
3945       .writefn = gt_cntvoff_write,
3946       .fieldoffset = offsetof(CPUARMState, cp15.cntvoff_el2) },
3947     { .name = "CNTHP_CVAL_EL2", .state = ARM_CP_STATE_AA64,
3948       .opc0 = 3, .opc1 = 4, .crn = 14, .crm = 2, .opc2 = 2,
3949       .fieldoffset = offsetof(CPUARMState, cp15.c14_timer[GTIMER_HYP].cval),
3950       .type = ARM_CP_IO, .access = PL2_RW,
3951       .writefn = gt_hyp_cval_write, .raw_writefn = raw_write },
3952     { .name = "CNTHP_CVAL", .cp = 15, .opc1 = 6, .crm = 14,
3953       .fieldoffset = offsetof(CPUARMState, cp15.c14_timer[GTIMER_HYP].cval),
3954       .access = PL2_RW, .type = ARM_CP_64BIT | ARM_CP_IO,
3955       .writefn = gt_hyp_cval_write, .raw_writefn = raw_write },
3956     { .name = "CNTHP_TVAL_EL2", .state = ARM_CP_STATE_BOTH,
3957       .opc0 = 3, .opc1 = 4, .crn = 14, .crm = 2, .opc2 = 0,
3958       .type = ARM_CP_NO_RAW | ARM_CP_IO, .access = PL2_RW,
3959       .resetfn = gt_hyp_timer_reset,
3960       .readfn = gt_hyp_tval_read, .writefn = gt_hyp_tval_write },
3961     { .name = "CNTHP_CTL_EL2", .state = ARM_CP_STATE_BOTH,
3962       .type = ARM_CP_IO,
3963       .opc0 = 3, .opc1 = 4, .crn = 14, .crm = 2, .opc2 = 1,
3964       .access = PL2_RW,
3965       .fieldoffset = offsetof(CPUARMState, cp15.c14_timer[GTIMER_HYP].ctl),
3966       .resetvalue = 0,
3967       .writefn = gt_hyp_ctl_write, .raw_writefn = raw_write },
3968 #endif
3969     /* The only field of MDCR_EL2 that has a defined architectural reset value
3970      * is MDCR_EL2.HPMN which should reset to the value of PMCR_EL0.N; but we
3971      * don't impelment any PMU event counters, so using zero as a reset
3972      * value for MDCR_EL2 is okay
3973      */
3974     { .name = "MDCR_EL2", .state = ARM_CP_STATE_BOTH,
3975       .opc0 = 3, .opc1 = 4, .crn = 1, .crm = 1, .opc2 = 1,
3976       .access = PL2_RW, .resetvalue = 0,
3977       .fieldoffset = offsetof(CPUARMState, cp15.mdcr_el2), },
3978     { .name = "HPFAR", .state = ARM_CP_STATE_AA32,
3979       .cp = 15, .opc1 = 4, .crn = 6, .crm = 0, .opc2 = 4,
3980       .access = PL2_RW, .accessfn = access_el3_aa32ns,
3981       .fieldoffset = offsetof(CPUARMState, cp15.hpfar_el2) },
3982     { .name = "HPFAR_EL2", .state = ARM_CP_STATE_AA64,
3983       .opc0 = 3, .opc1 = 4, .crn = 6, .crm = 0, .opc2 = 4,
3984       .access = PL2_RW,
3985       .fieldoffset = offsetof(CPUARMState, cp15.hpfar_el2) },
3986     { .name = "HSTR_EL2", .state = ARM_CP_STATE_BOTH,
3987       .cp = 15, .opc0 = 3, .opc1 = 4, .crn = 1, .crm = 1, .opc2 = 3,
3988       .access = PL2_RW,
3989       .fieldoffset = offsetof(CPUARMState, cp15.hstr_el2) },
3990     REGINFO_SENTINEL
3991 };
3992 
3993 static CPAccessResult nsacr_access(CPUARMState *env, const ARMCPRegInfo *ri,
3994                                    bool isread)
3995 {
3996     /* The NSACR is RW at EL3, and RO for NS EL1 and NS EL2.
3997      * At Secure EL1 it traps to EL3.
3998      */
3999     if (arm_current_el(env) == 3) {
4000         return CP_ACCESS_OK;
4001     }
4002     if (arm_is_secure_below_el3(env)) {
4003         return CP_ACCESS_TRAP_EL3;
4004     }
4005     /* Accesses from EL1 NS and EL2 NS are UNDEF for write but allow reads. */
4006     if (isread) {
4007         return CP_ACCESS_OK;
4008     }
4009     return CP_ACCESS_TRAP_UNCATEGORIZED;
4010 }
4011 
4012 static const ARMCPRegInfo el3_cp_reginfo[] = {
4013     { .name = "SCR_EL3", .state = ARM_CP_STATE_AA64,
4014       .opc0 = 3, .opc1 = 6, .crn = 1, .crm = 1, .opc2 = 0,
4015       .access = PL3_RW, .fieldoffset = offsetof(CPUARMState, cp15.scr_el3),
4016       .resetvalue = 0, .writefn = scr_write },
4017     { .name = "SCR",  .type = ARM_CP_ALIAS,
4018       .cp = 15, .opc1 = 0, .crn = 1, .crm = 1, .opc2 = 0,
4019       .access = PL1_RW, .accessfn = access_trap_aa32s_el1,
4020       .fieldoffset = offsetoflow32(CPUARMState, cp15.scr_el3),
4021       .writefn = scr_write },
4022     { .name = "SDER32_EL3", .state = ARM_CP_STATE_AA64,
4023       .opc0 = 3, .opc1 = 6, .crn = 1, .crm = 1, .opc2 = 1,
4024       .access = PL3_RW, .resetvalue = 0,
4025       .fieldoffset = offsetof(CPUARMState, cp15.sder) },
4026     { .name = "SDER",
4027       .cp = 15, .opc1 = 0, .crn = 1, .crm = 1, .opc2 = 1,
4028       .access = PL3_RW, .resetvalue = 0,
4029       .fieldoffset = offsetoflow32(CPUARMState, cp15.sder) },
4030     { .name = "MVBAR", .cp = 15, .opc1 = 0, .crn = 12, .crm = 0, .opc2 = 1,
4031       .access = PL1_RW, .accessfn = access_trap_aa32s_el1,
4032       .writefn = vbar_write, .resetvalue = 0,
4033       .fieldoffset = offsetof(CPUARMState, cp15.mvbar) },
4034     { .name = "TTBR0_EL3", .state = ARM_CP_STATE_AA64,
4035       .opc0 = 3, .opc1 = 6, .crn = 2, .crm = 0, .opc2 = 0,
4036       .access = PL3_RW, .writefn = vmsa_ttbr_write, .resetvalue = 0,
4037       .fieldoffset = offsetof(CPUARMState, cp15.ttbr0_el[3]) },
4038     { .name = "TCR_EL3", .state = ARM_CP_STATE_AA64,
4039       .opc0 = 3, .opc1 = 6, .crn = 2, .crm = 0, .opc2 = 2,
4040       .access = PL3_RW,
4041       /* no .writefn needed as this can't cause an ASID change;
4042        * we must provide a .raw_writefn and .resetfn because we handle
4043        * reset and migration for the AArch32 TTBCR(S), which might be
4044        * using mask and base_mask.
4045        */
4046       .resetfn = vmsa_ttbcr_reset, .raw_writefn = vmsa_ttbcr_raw_write,
4047       .fieldoffset = offsetof(CPUARMState, cp15.tcr_el[3]) },
4048     { .name = "ELR_EL3", .state = ARM_CP_STATE_AA64,
4049       .type = ARM_CP_ALIAS,
4050       .opc0 = 3, .opc1 = 6, .crn = 4, .crm = 0, .opc2 = 1,
4051       .access = PL3_RW,
4052       .fieldoffset = offsetof(CPUARMState, elr_el[3]) },
4053     { .name = "ESR_EL3", .state = ARM_CP_STATE_AA64,
4054       .opc0 = 3, .opc1 = 6, .crn = 5, .crm = 2, .opc2 = 0,
4055       .access = PL3_RW, .fieldoffset = offsetof(CPUARMState, cp15.esr_el[3]) },
4056     { .name = "FAR_EL3", .state = ARM_CP_STATE_AA64,
4057       .opc0 = 3, .opc1 = 6, .crn = 6, .crm = 0, .opc2 = 0,
4058       .access = PL3_RW, .fieldoffset = offsetof(CPUARMState, cp15.far_el[3]) },
4059     { .name = "SPSR_EL3", .state = ARM_CP_STATE_AA64,
4060       .type = ARM_CP_ALIAS,
4061       .opc0 = 3, .opc1 = 6, .crn = 4, .crm = 0, .opc2 = 0,
4062       .access = PL3_RW,
4063       .fieldoffset = offsetof(CPUARMState, banked_spsr[BANK_MON]) },
4064     { .name = "VBAR_EL3", .state = ARM_CP_STATE_AA64,
4065       .opc0 = 3, .opc1 = 6, .crn = 12, .crm = 0, .opc2 = 0,
4066       .access = PL3_RW, .writefn = vbar_write,
4067       .fieldoffset = offsetof(CPUARMState, cp15.vbar_el[3]),
4068       .resetvalue = 0 },
4069     { .name = "CPTR_EL3", .state = ARM_CP_STATE_AA64,
4070       .opc0 = 3, .opc1 = 6, .crn = 1, .crm = 1, .opc2 = 2,
4071       .access = PL3_RW, .accessfn = cptr_access, .resetvalue = 0,
4072       .fieldoffset = offsetof(CPUARMState, cp15.cptr_el[3]) },
4073     { .name = "TPIDR_EL3", .state = ARM_CP_STATE_AA64,
4074       .opc0 = 3, .opc1 = 6, .crn = 13, .crm = 0, .opc2 = 2,
4075       .access = PL3_RW, .resetvalue = 0,
4076       .fieldoffset = offsetof(CPUARMState, cp15.tpidr_el[3]) },
4077     { .name = "AMAIR_EL3", .state = ARM_CP_STATE_AA64,
4078       .opc0 = 3, .opc1 = 6, .crn = 10, .crm = 3, .opc2 = 0,
4079       .access = PL3_RW, .type = ARM_CP_CONST,
4080       .resetvalue = 0 },
4081     { .name = "AFSR0_EL3", .state = ARM_CP_STATE_BOTH,
4082       .opc0 = 3, .opc1 = 6, .crn = 5, .crm = 1, .opc2 = 0,
4083       .access = PL3_RW, .type = ARM_CP_CONST,
4084       .resetvalue = 0 },
4085     { .name = "AFSR1_EL3", .state = ARM_CP_STATE_BOTH,
4086       .opc0 = 3, .opc1 = 6, .crn = 5, .crm = 1, .opc2 = 1,
4087       .access = PL3_RW, .type = ARM_CP_CONST,
4088       .resetvalue = 0 },
4089     { .name = "TLBI_ALLE3IS", .state = ARM_CP_STATE_AA64,
4090       .opc0 = 1, .opc1 = 6, .crn = 8, .crm = 3, .opc2 = 0,
4091       .access = PL3_W, .type = ARM_CP_NO_RAW,
4092       .writefn = tlbi_aa64_alle3is_write },
4093     { .name = "TLBI_VAE3IS", .state = ARM_CP_STATE_AA64,
4094       .opc0 = 1, .opc1 = 6, .crn = 8, .crm = 3, .opc2 = 1,
4095       .access = PL3_W, .type = ARM_CP_NO_RAW,
4096       .writefn = tlbi_aa64_vae3is_write },
4097     { .name = "TLBI_VALE3IS", .state = ARM_CP_STATE_AA64,
4098       .opc0 = 1, .opc1 = 6, .crn = 8, .crm = 3, .opc2 = 5,
4099       .access = PL3_W, .type = ARM_CP_NO_RAW,
4100       .writefn = tlbi_aa64_vae3is_write },
4101     { .name = "TLBI_ALLE3", .state = ARM_CP_STATE_AA64,
4102       .opc0 = 1, .opc1 = 6, .crn = 8, .crm = 7, .opc2 = 0,
4103       .access = PL3_W, .type = ARM_CP_NO_RAW,
4104       .writefn = tlbi_aa64_alle3_write },
4105     { .name = "TLBI_VAE3", .state = ARM_CP_STATE_AA64,
4106       .opc0 = 1, .opc1 = 6, .crn = 8, .crm = 7, .opc2 = 1,
4107       .access = PL3_W, .type = ARM_CP_NO_RAW,
4108       .writefn = tlbi_aa64_vae3_write },
4109     { .name = "TLBI_VALE3", .state = ARM_CP_STATE_AA64,
4110       .opc0 = 1, .opc1 = 6, .crn = 8, .crm = 7, .opc2 = 5,
4111       .access = PL3_W, .type = ARM_CP_NO_RAW,
4112       .writefn = tlbi_aa64_vae3_write },
4113     REGINFO_SENTINEL
4114 };
4115 
4116 static CPAccessResult ctr_el0_access(CPUARMState *env, const ARMCPRegInfo *ri,
4117                                      bool isread)
4118 {
4119     /* Only accessible in EL0 if SCTLR.UCT is set (and only in AArch64,
4120      * but the AArch32 CTR has its own reginfo struct)
4121      */
4122     if (arm_current_el(env) == 0 && !(env->cp15.sctlr_el[1] & SCTLR_UCT)) {
4123         return CP_ACCESS_TRAP;
4124     }
4125     return CP_ACCESS_OK;
4126 }
4127 
4128 static void oslar_write(CPUARMState *env, const ARMCPRegInfo *ri,
4129                         uint64_t value)
4130 {
4131     /* Writes to OSLAR_EL1 may update the OS lock status, which can be
4132      * read via a bit in OSLSR_EL1.
4133      */
4134     int oslock;
4135 
4136     if (ri->state == ARM_CP_STATE_AA32) {
4137         oslock = (value == 0xC5ACCE55);
4138     } else {
4139         oslock = value & 1;
4140     }
4141 
4142     env->cp15.oslsr_el1 = deposit32(env->cp15.oslsr_el1, 1, 1, oslock);
4143 }
4144 
4145 static const ARMCPRegInfo debug_cp_reginfo[] = {
4146     /* DBGDRAR, DBGDSAR: always RAZ since we don't implement memory mapped
4147      * debug components. The AArch64 version of DBGDRAR is named MDRAR_EL1;
4148      * unlike DBGDRAR it is never accessible from EL0.
4149      * DBGDSAR is deprecated and must RAZ from v8 anyway, so it has no AArch64
4150      * accessor.
4151      */
4152     { .name = "DBGDRAR", .cp = 14, .crn = 1, .crm = 0, .opc1 = 0, .opc2 = 0,
4153       .access = PL0_R, .accessfn = access_tdra,
4154       .type = ARM_CP_CONST, .resetvalue = 0 },
4155     { .name = "MDRAR_EL1", .state = ARM_CP_STATE_AA64,
4156       .opc0 = 2, .opc1 = 0, .crn = 1, .crm = 0, .opc2 = 0,
4157       .access = PL1_R, .accessfn = access_tdra,
4158       .type = ARM_CP_CONST, .resetvalue = 0 },
4159     { .name = "DBGDSAR", .cp = 14, .crn = 2, .crm = 0, .opc1 = 0, .opc2 = 0,
4160       .access = PL0_R, .accessfn = access_tdra,
4161       .type = ARM_CP_CONST, .resetvalue = 0 },
4162     /* Monitor debug system control register; the 32-bit alias is DBGDSCRext. */
4163     { .name = "MDSCR_EL1", .state = ARM_CP_STATE_BOTH,
4164       .cp = 14, .opc0 = 2, .opc1 = 0, .crn = 0, .crm = 2, .opc2 = 2,
4165       .access = PL1_RW, .accessfn = access_tda,
4166       .fieldoffset = offsetof(CPUARMState, cp15.mdscr_el1),
4167       .resetvalue = 0 },
4168     /* MDCCSR_EL0, aka DBGDSCRint. This is a read-only mirror of MDSCR_EL1.
4169      * We don't implement the configurable EL0 access.
4170      */
4171     { .name = "MDCCSR_EL0", .state = ARM_CP_STATE_BOTH,
4172       .cp = 14, .opc0 = 2, .opc1 = 0, .crn = 0, .crm = 1, .opc2 = 0,
4173       .type = ARM_CP_ALIAS,
4174       .access = PL1_R, .accessfn = access_tda,
4175       .fieldoffset = offsetof(CPUARMState, cp15.mdscr_el1), },
4176     { .name = "OSLAR_EL1", .state = ARM_CP_STATE_BOTH,
4177       .cp = 14, .opc0 = 2, .opc1 = 0, .crn = 1, .crm = 0, .opc2 = 4,
4178       .access = PL1_W, .type = ARM_CP_NO_RAW,
4179       .accessfn = access_tdosa,
4180       .writefn = oslar_write },
4181     { .name = "OSLSR_EL1", .state = ARM_CP_STATE_BOTH,
4182       .cp = 14, .opc0 = 2, .opc1 = 0, .crn = 1, .crm = 1, .opc2 = 4,
4183       .access = PL1_R, .resetvalue = 10,
4184       .accessfn = access_tdosa,
4185       .fieldoffset = offsetof(CPUARMState, cp15.oslsr_el1) },
4186     /* Dummy OSDLR_EL1: 32-bit Linux will read this */
4187     { .name = "OSDLR_EL1", .state = ARM_CP_STATE_BOTH,
4188       .cp = 14, .opc0 = 2, .opc1 = 0, .crn = 1, .crm = 3, .opc2 = 4,
4189       .access = PL1_RW, .accessfn = access_tdosa,
4190       .type = ARM_CP_NOP },
4191     /* Dummy DBGVCR: Linux wants to clear this on startup, but we don't
4192      * implement vector catch debug events yet.
4193      */
4194     { .name = "DBGVCR",
4195       .cp = 14, .opc1 = 0, .crn = 0, .crm = 7, .opc2 = 0,
4196       .access = PL1_RW, .accessfn = access_tda,
4197       .type = ARM_CP_NOP },
4198     /* Dummy DBGVCR32_EL2 (which is only for a 64-bit hypervisor
4199      * to save and restore a 32-bit guest's DBGVCR)
4200      */
4201     { .name = "DBGVCR32_EL2", .state = ARM_CP_STATE_AA64,
4202       .opc0 = 2, .opc1 = 4, .crn = 0, .crm = 7, .opc2 = 0,
4203       .access = PL2_RW, .accessfn = access_tda,
4204       .type = ARM_CP_NOP },
4205     /* Dummy MDCCINT_EL1, since we don't implement the Debug Communications
4206      * Channel but Linux may try to access this register. The 32-bit
4207      * alias is DBGDCCINT.
4208      */
4209     { .name = "MDCCINT_EL1", .state = ARM_CP_STATE_BOTH,
4210       .cp = 14, .opc0 = 2, .opc1 = 0, .crn = 0, .crm = 2, .opc2 = 0,
4211       .access = PL1_RW, .accessfn = access_tda,
4212       .type = ARM_CP_NOP },
4213     REGINFO_SENTINEL
4214 };
4215 
4216 static const ARMCPRegInfo debug_lpae_cp_reginfo[] = {
4217     /* 64 bit access versions of the (dummy) debug registers */
4218     { .name = "DBGDRAR", .cp = 14, .crm = 1, .opc1 = 0,
4219       .access = PL0_R, .type = ARM_CP_CONST|ARM_CP_64BIT, .resetvalue = 0 },
4220     { .name = "DBGDSAR", .cp = 14, .crm = 2, .opc1 = 0,
4221       .access = PL0_R, .type = ARM_CP_CONST|ARM_CP_64BIT, .resetvalue = 0 },
4222     REGINFO_SENTINEL
4223 };
4224 
4225 void hw_watchpoint_update(ARMCPU *cpu, int n)
4226 {
4227     CPUARMState *env = &cpu->env;
4228     vaddr len = 0;
4229     vaddr wvr = env->cp15.dbgwvr[n];
4230     uint64_t wcr = env->cp15.dbgwcr[n];
4231     int mask;
4232     int flags = BP_CPU | BP_STOP_BEFORE_ACCESS;
4233 
4234     if (env->cpu_watchpoint[n]) {
4235         cpu_watchpoint_remove_by_ref(CPU(cpu), env->cpu_watchpoint[n]);
4236         env->cpu_watchpoint[n] = NULL;
4237     }
4238 
4239     if (!extract64(wcr, 0, 1)) {
4240         /* E bit clear : watchpoint disabled */
4241         return;
4242     }
4243 
4244     switch (extract64(wcr, 3, 2)) {
4245     case 0:
4246         /* LSC 00 is reserved and must behave as if the wp is disabled */
4247         return;
4248     case 1:
4249         flags |= BP_MEM_READ;
4250         break;
4251     case 2:
4252         flags |= BP_MEM_WRITE;
4253         break;
4254     case 3:
4255         flags |= BP_MEM_ACCESS;
4256         break;
4257     }
4258 
4259     /* Attempts to use both MASK and BAS fields simultaneously are
4260      * CONSTRAINED UNPREDICTABLE; we opt to ignore BAS in this case,
4261      * thus generating a watchpoint for every byte in the masked region.
4262      */
4263     mask = extract64(wcr, 24, 4);
4264     if (mask == 1 || mask == 2) {
4265         /* Reserved values of MASK; we must act as if the mask value was
4266          * some non-reserved value, or as if the watchpoint were disabled.
4267          * We choose the latter.
4268          */
4269         return;
4270     } else if (mask) {
4271         /* Watchpoint covers an aligned area up to 2GB in size */
4272         len = 1ULL << mask;
4273         /* If masked bits in WVR are not zero it's CONSTRAINED UNPREDICTABLE
4274          * whether the watchpoint fires when the unmasked bits match; we opt
4275          * to generate the exceptions.
4276          */
4277         wvr &= ~(len - 1);
4278     } else {
4279         /* Watchpoint covers bytes defined by the byte address select bits */
4280         int bas = extract64(wcr, 5, 8);
4281         int basstart;
4282 
4283         if (bas == 0) {
4284             /* This must act as if the watchpoint is disabled */
4285             return;
4286         }
4287 
4288         if (extract64(wvr, 2, 1)) {
4289             /* Deprecated case of an only 4-aligned address. BAS[7:4] are
4290              * ignored, and BAS[3:0] define which bytes to watch.
4291              */
4292             bas &= 0xf;
4293         }
4294         /* The BAS bits are supposed to be programmed to indicate a contiguous
4295          * range of bytes. Otherwise it is CONSTRAINED UNPREDICTABLE whether
4296          * we fire for each byte in the word/doubleword addressed by the WVR.
4297          * We choose to ignore any non-zero bits after the first range of 1s.
4298          */
4299         basstart = ctz32(bas);
4300         len = cto32(bas >> basstart);
4301         wvr += basstart;
4302     }
4303 
4304     cpu_watchpoint_insert(CPU(cpu), wvr, len, flags,
4305                           &env->cpu_watchpoint[n]);
4306 }
4307 
4308 void hw_watchpoint_update_all(ARMCPU *cpu)
4309 {
4310     int i;
4311     CPUARMState *env = &cpu->env;
4312 
4313     /* Completely clear out existing QEMU watchpoints and our array, to
4314      * avoid possible stale entries following migration load.
4315      */
4316     cpu_watchpoint_remove_all(CPU(cpu), BP_CPU);
4317     memset(env->cpu_watchpoint, 0, sizeof(env->cpu_watchpoint));
4318 
4319     for (i = 0; i < ARRAY_SIZE(cpu->env.cpu_watchpoint); i++) {
4320         hw_watchpoint_update(cpu, i);
4321     }
4322 }
4323 
4324 static void dbgwvr_write(CPUARMState *env, const ARMCPRegInfo *ri,
4325                          uint64_t value)
4326 {
4327     ARMCPU *cpu = arm_env_get_cpu(env);
4328     int i = ri->crm;
4329 
4330     /* Bits [63:49] are hardwired to the value of bit [48]; that is, the
4331      * register reads and behaves as if values written are sign extended.
4332      * Bits [1:0] are RES0.
4333      */
4334     value = sextract64(value, 0, 49) & ~3ULL;
4335 
4336     raw_write(env, ri, value);
4337     hw_watchpoint_update(cpu, i);
4338 }
4339 
4340 static void dbgwcr_write(CPUARMState *env, const ARMCPRegInfo *ri,
4341                          uint64_t value)
4342 {
4343     ARMCPU *cpu = arm_env_get_cpu(env);
4344     int i = ri->crm;
4345 
4346     raw_write(env, ri, value);
4347     hw_watchpoint_update(cpu, i);
4348 }
4349 
4350 void hw_breakpoint_update(ARMCPU *cpu, int n)
4351 {
4352     CPUARMState *env = &cpu->env;
4353     uint64_t bvr = env->cp15.dbgbvr[n];
4354     uint64_t bcr = env->cp15.dbgbcr[n];
4355     vaddr addr;
4356     int bt;
4357     int flags = BP_CPU;
4358 
4359     if (env->cpu_breakpoint[n]) {
4360         cpu_breakpoint_remove_by_ref(CPU(cpu), env->cpu_breakpoint[n]);
4361         env->cpu_breakpoint[n] = NULL;
4362     }
4363 
4364     if (!extract64(bcr, 0, 1)) {
4365         /* E bit clear : watchpoint disabled */
4366         return;
4367     }
4368 
4369     bt = extract64(bcr, 20, 4);
4370 
4371     switch (bt) {
4372     case 4: /* unlinked address mismatch (reserved if AArch64) */
4373     case 5: /* linked address mismatch (reserved if AArch64) */
4374         qemu_log_mask(LOG_UNIMP,
4375                       "arm: address mismatch breakpoint types not implemented");
4376         return;
4377     case 0: /* unlinked address match */
4378     case 1: /* linked address match */
4379     {
4380         /* Bits [63:49] are hardwired to the value of bit [48]; that is,
4381          * we behave as if the register was sign extended. Bits [1:0] are
4382          * RES0. The BAS field is used to allow setting breakpoints on 16
4383          * bit wide instructions; it is CONSTRAINED UNPREDICTABLE whether
4384          * a bp will fire if the addresses covered by the bp and the addresses
4385          * covered by the insn overlap but the insn doesn't start at the
4386          * start of the bp address range. We choose to require the insn and
4387          * the bp to have the same address. The constraints on writing to
4388          * BAS enforced in dbgbcr_write mean we have only four cases:
4389          *  0b0000  => no breakpoint
4390          *  0b0011  => breakpoint on addr
4391          *  0b1100  => breakpoint on addr + 2
4392          *  0b1111  => breakpoint on addr
4393          * See also figure D2-3 in the v8 ARM ARM (DDI0487A.c).
4394          */
4395         int bas = extract64(bcr, 5, 4);
4396         addr = sextract64(bvr, 0, 49) & ~3ULL;
4397         if (bas == 0) {
4398             return;
4399         }
4400         if (bas == 0xc) {
4401             addr += 2;
4402         }
4403         break;
4404     }
4405     case 2: /* unlinked context ID match */
4406     case 8: /* unlinked VMID match (reserved if no EL2) */
4407     case 10: /* unlinked context ID and VMID match (reserved if no EL2) */
4408         qemu_log_mask(LOG_UNIMP,
4409                       "arm: unlinked context breakpoint types not implemented");
4410         return;
4411     case 9: /* linked VMID match (reserved if no EL2) */
4412     case 11: /* linked context ID and VMID match (reserved if no EL2) */
4413     case 3: /* linked context ID match */
4414     default:
4415         /* We must generate no events for Linked context matches (unless
4416          * they are linked to by some other bp/wp, which is handled in
4417          * updates for the linking bp/wp). We choose to also generate no events
4418          * for reserved values.
4419          */
4420         return;
4421     }
4422 
4423     cpu_breakpoint_insert(CPU(cpu), addr, flags, &env->cpu_breakpoint[n]);
4424 }
4425 
4426 void hw_breakpoint_update_all(ARMCPU *cpu)
4427 {
4428     int i;
4429     CPUARMState *env = &cpu->env;
4430 
4431     /* Completely clear out existing QEMU breakpoints and our array, to
4432      * avoid possible stale entries following migration load.
4433      */
4434     cpu_breakpoint_remove_all(CPU(cpu), BP_CPU);
4435     memset(env->cpu_breakpoint, 0, sizeof(env->cpu_breakpoint));
4436 
4437     for (i = 0; i < ARRAY_SIZE(cpu->env.cpu_breakpoint); i++) {
4438         hw_breakpoint_update(cpu, i);
4439     }
4440 }
4441 
4442 static void dbgbvr_write(CPUARMState *env, const ARMCPRegInfo *ri,
4443                          uint64_t value)
4444 {
4445     ARMCPU *cpu = arm_env_get_cpu(env);
4446     int i = ri->crm;
4447 
4448     raw_write(env, ri, value);
4449     hw_breakpoint_update(cpu, i);
4450 }
4451 
4452 static void dbgbcr_write(CPUARMState *env, const ARMCPRegInfo *ri,
4453                          uint64_t value)
4454 {
4455     ARMCPU *cpu = arm_env_get_cpu(env);
4456     int i = ri->crm;
4457 
4458     /* BAS[3] is a read-only copy of BAS[2], and BAS[1] a read-only
4459      * copy of BAS[0].
4460      */
4461     value = deposit64(value, 6, 1, extract64(value, 5, 1));
4462     value = deposit64(value, 8, 1, extract64(value, 7, 1));
4463 
4464     raw_write(env, ri, value);
4465     hw_breakpoint_update(cpu, i);
4466 }
4467 
4468 static void define_debug_regs(ARMCPU *cpu)
4469 {
4470     /* Define v7 and v8 architectural debug registers.
4471      * These are just dummy implementations for now.
4472      */
4473     int i;
4474     int wrps, brps, ctx_cmps;
4475     ARMCPRegInfo dbgdidr = {
4476         .name = "DBGDIDR", .cp = 14, .crn = 0, .crm = 0, .opc1 = 0, .opc2 = 0,
4477         .access = PL0_R, .accessfn = access_tda,
4478         .type = ARM_CP_CONST, .resetvalue = cpu->dbgdidr,
4479     };
4480 
4481     /* Note that all these register fields hold "number of Xs minus 1". */
4482     brps = extract32(cpu->dbgdidr, 24, 4);
4483     wrps = extract32(cpu->dbgdidr, 28, 4);
4484     ctx_cmps = extract32(cpu->dbgdidr, 20, 4);
4485 
4486     assert(ctx_cmps <= brps);
4487 
4488     /* The DBGDIDR and ID_AA64DFR0_EL1 define various properties
4489      * of the debug registers such as number of breakpoints;
4490      * check that if they both exist then they agree.
4491      */
4492     if (arm_feature(&cpu->env, ARM_FEATURE_AARCH64)) {
4493         assert(extract32(cpu->id_aa64dfr0, 12, 4) == brps);
4494         assert(extract32(cpu->id_aa64dfr0, 20, 4) == wrps);
4495         assert(extract32(cpu->id_aa64dfr0, 28, 4) == ctx_cmps);
4496     }
4497 
4498     define_one_arm_cp_reg(cpu, &dbgdidr);
4499     define_arm_cp_regs(cpu, debug_cp_reginfo);
4500 
4501     if (arm_feature(&cpu->env, ARM_FEATURE_LPAE)) {
4502         define_arm_cp_regs(cpu, debug_lpae_cp_reginfo);
4503     }
4504 
4505     for (i = 0; i < brps + 1; i++) {
4506         ARMCPRegInfo dbgregs[] = {
4507             { .name = "DBGBVR", .state = ARM_CP_STATE_BOTH,
4508               .cp = 14, .opc0 = 2, .opc1 = 0, .crn = 0, .crm = i, .opc2 = 4,
4509               .access = PL1_RW, .accessfn = access_tda,
4510               .fieldoffset = offsetof(CPUARMState, cp15.dbgbvr[i]),
4511               .writefn = dbgbvr_write, .raw_writefn = raw_write
4512             },
4513             { .name = "DBGBCR", .state = ARM_CP_STATE_BOTH,
4514               .cp = 14, .opc0 = 2, .opc1 = 0, .crn = 0, .crm = i, .opc2 = 5,
4515               .access = PL1_RW, .accessfn = access_tda,
4516               .fieldoffset = offsetof(CPUARMState, cp15.dbgbcr[i]),
4517               .writefn = dbgbcr_write, .raw_writefn = raw_write
4518             },
4519             REGINFO_SENTINEL
4520         };
4521         define_arm_cp_regs(cpu, dbgregs);
4522     }
4523 
4524     for (i = 0; i < wrps + 1; i++) {
4525         ARMCPRegInfo dbgregs[] = {
4526             { .name = "DBGWVR", .state = ARM_CP_STATE_BOTH,
4527               .cp = 14, .opc0 = 2, .opc1 = 0, .crn = 0, .crm = i, .opc2 = 6,
4528               .access = PL1_RW, .accessfn = access_tda,
4529               .fieldoffset = offsetof(CPUARMState, cp15.dbgwvr[i]),
4530               .writefn = dbgwvr_write, .raw_writefn = raw_write
4531             },
4532             { .name = "DBGWCR", .state = ARM_CP_STATE_BOTH,
4533               .cp = 14, .opc0 = 2, .opc1 = 0, .crn = 0, .crm = i, .opc2 = 7,
4534               .access = PL1_RW, .accessfn = access_tda,
4535               .fieldoffset = offsetof(CPUARMState, cp15.dbgwcr[i]),
4536               .writefn = dbgwcr_write, .raw_writefn = raw_write
4537             },
4538             REGINFO_SENTINEL
4539         };
4540         define_arm_cp_regs(cpu, dbgregs);
4541     }
4542 }
4543 
4544 void register_cp_regs_for_features(ARMCPU *cpu)
4545 {
4546     /* Register all the coprocessor registers based on feature bits */
4547     CPUARMState *env = &cpu->env;
4548     if (arm_feature(env, ARM_FEATURE_M)) {
4549         /* M profile has no coprocessor registers */
4550         return;
4551     }
4552 
4553     define_arm_cp_regs(cpu, cp_reginfo);
4554     if (!arm_feature(env, ARM_FEATURE_V8)) {
4555         /* Must go early as it is full of wildcards that may be
4556          * overridden by later definitions.
4557          */
4558         define_arm_cp_regs(cpu, not_v8_cp_reginfo);
4559     }
4560 
4561     if (arm_feature(env, ARM_FEATURE_V6)) {
4562         /* The ID registers all have impdef reset values */
4563         ARMCPRegInfo v6_idregs[] = {
4564             { .name = "ID_PFR0", .state = ARM_CP_STATE_BOTH,
4565               .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 1, .opc2 = 0,
4566               .access = PL1_R, .type = ARM_CP_CONST,
4567               .resetvalue = cpu->id_pfr0 },
4568             { .name = "ID_PFR1", .state = ARM_CP_STATE_BOTH,
4569               .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 1, .opc2 = 1,
4570               .access = PL1_R, .type = ARM_CP_CONST,
4571               .resetvalue = cpu->id_pfr1 },
4572             { .name = "ID_DFR0", .state = ARM_CP_STATE_BOTH,
4573               .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 1, .opc2 = 2,
4574               .access = PL1_R, .type = ARM_CP_CONST,
4575               .resetvalue = cpu->id_dfr0 },
4576             { .name = "ID_AFR0", .state = ARM_CP_STATE_BOTH,
4577               .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 1, .opc2 = 3,
4578               .access = PL1_R, .type = ARM_CP_CONST,
4579               .resetvalue = cpu->id_afr0 },
4580             { .name = "ID_MMFR0", .state = ARM_CP_STATE_BOTH,
4581               .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 1, .opc2 = 4,
4582               .access = PL1_R, .type = ARM_CP_CONST,
4583               .resetvalue = cpu->id_mmfr0 },
4584             { .name = "ID_MMFR1", .state = ARM_CP_STATE_BOTH,
4585               .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 1, .opc2 = 5,
4586               .access = PL1_R, .type = ARM_CP_CONST,
4587               .resetvalue = cpu->id_mmfr1 },
4588             { .name = "ID_MMFR2", .state = ARM_CP_STATE_BOTH,
4589               .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 1, .opc2 = 6,
4590               .access = PL1_R, .type = ARM_CP_CONST,
4591               .resetvalue = cpu->id_mmfr2 },
4592             { .name = "ID_MMFR3", .state = ARM_CP_STATE_BOTH,
4593               .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 1, .opc2 = 7,
4594               .access = PL1_R, .type = ARM_CP_CONST,
4595               .resetvalue = cpu->id_mmfr3 },
4596             { .name = "ID_ISAR0", .state = ARM_CP_STATE_BOTH,
4597               .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 2, .opc2 = 0,
4598               .access = PL1_R, .type = ARM_CP_CONST,
4599               .resetvalue = cpu->id_isar0 },
4600             { .name = "ID_ISAR1", .state = ARM_CP_STATE_BOTH,
4601               .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 2, .opc2 = 1,
4602               .access = PL1_R, .type = ARM_CP_CONST,
4603               .resetvalue = cpu->id_isar1 },
4604             { .name = "ID_ISAR2", .state = ARM_CP_STATE_BOTH,
4605               .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 2, .opc2 = 2,
4606               .access = PL1_R, .type = ARM_CP_CONST,
4607               .resetvalue = cpu->id_isar2 },
4608             { .name = "ID_ISAR3", .state = ARM_CP_STATE_BOTH,
4609               .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 2, .opc2 = 3,
4610               .access = PL1_R, .type = ARM_CP_CONST,
4611               .resetvalue = cpu->id_isar3 },
4612             { .name = "ID_ISAR4", .state = ARM_CP_STATE_BOTH,
4613               .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 2, .opc2 = 4,
4614               .access = PL1_R, .type = ARM_CP_CONST,
4615               .resetvalue = cpu->id_isar4 },
4616             { .name = "ID_ISAR5", .state = ARM_CP_STATE_BOTH,
4617               .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 2, .opc2 = 5,
4618               .access = PL1_R, .type = ARM_CP_CONST,
4619               .resetvalue = cpu->id_isar5 },
4620             { .name = "ID_MMFR4", .state = ARM_CP_STATE_BOTH,
4621               .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 2, .opc2 = 6,
4622               .access = PL1_R, .type = ARM_CP_CONST,
4623               .resetvalue = cpu->id_mmfr4 },
4624             /* 7 is as yet unallocated and must RAZ */
4625             { .name = "ID_ISAR7_RESERVED", .state = ARM_CP_STATE_BOTH,
4626               .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 2, .opc2 = 7,
4627               .access = PL1_R, .type = ARM_CP_CONST,
4628               .resetvalue = 0 },
4629             REGINFO_SENTINEL
4630         };
4631         define_arm_cp_regs(cpu, v6_idregs);
4632         define_arm_cp_regs(cpu, v6_cp_reginfo);
4633     } else {
4634         define_arm_cp_regs(cpu, not_v6_cp_reginfo);
4635     }
4636     if (arm_feature(env, ARM_FEATURE_V6K)) {
4637         define_arm_cp_regs(cpu, v6k_cp_reginfo);
4638     }
4639     if (arm_feature(env, ARM_FEATURE_V7MP) &&
4640         !arm_feature(env, ARM_FEATURE_PMSA)) {
4641         define_arm_cp_regs(cpu, v7mp_cp_reginfo);
4642     }
4643     if (arm_feature(env, ARM_FEATURE_V7)) {
4644         /* v7 performance monitor control register: same implementor
4645          * field as main ID register, and we implement only the cycle
4646          * count register.
4647          */
4648 #ifndef CONFIG_USER_ONLY
4649         ARMCPRegInfo pmcr = {
4650             .name = "PMCR", .cp = 15, .crn = 9, .crm = 12, .opc1 = 0, .opc2 = 0,
4651             .access = PL0_RW,
4652             .type = ARM_CP_IO | ARM_CP_ALIAS,
4653             .fieldoffset = offsetoflow32(CPUARMState, cp15.c9_pmcr),
4654             .accessfn = pmreg_access, .writefn = pmcr_write,
4655             .raw_writefn = raw_write,
4656         };
4657         ARMCPRegInfo pmcr64 = {
4658             .name = "PMCR_EL0", .state = ARM_CP_STATE_AA64,
4659             .opc0 = 3, .opc1 = 3, .crn = 9, .crm = 12, .opc2 = 0,
4660             .access = PL0_RW, .accessfn = pmreg_access,
4661             .type = ARM_CP_IO,
4662             .fieldoffset = offsetof(CPUARMState, cp15.c9_pmcr),
4663             .resetvalue = cpu->midr & 0xff000000,
4664             .writefn = pmcr_write, .raw_writefn = raw_write,
4665         };
4666         define_one_arm_cp_reg(cpu, &pmcr);
4667         define_one_arm_cp_reg(cpu, &pmcr64);
4668 #endif
4669         ARMCPRegInfo clidr = {
4670             .name = "CLIDR", .state = ARM_CP_STATE_BOTH,
4671             .opc0 = 3, .crn = 0, .crm = 0, .opc1 = 1, .opc2 = 1,
4672             .access = PL1_R, .type = ARM_CP_CONST, .resetvalue = cpu->clidr
4673         };
4674         define_one_arm_cp_reg(cpu, &clidr);
4675         define_arm_cp_regs(cpu, v7_cp_reginfo);
4676         define_debug_regs(cpu);
4677     } else {
4678         define_arm_cp_regs(cpu, not_v7_cp_reginfo);
4679     }
4680     if (arm_feature(env, ARM_FEATURE_V8)) {
4681         /* AArch64 ID registers, which all have impdef reset values.
4682          * Note that within the ID register ranges the unused slots
4683          * must all RAZ, not UNDEF; future architecture versions may
4684          * define new registers here.
4685          */
4686         ARMCPRegInfo v8_idregs[] = {
4687             { .name = "ID_AA64PFR0_EL1", .state = ARM_CP_STATE_AA64,
4688               .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 4, .opc2 = 0,
4689               .access = PL1_R, .type = ARM_CP_CONST,
4690               .resetvalue = cpu->id_aa64pfr0 },
4691             { .name = "ID_AA64PFR1_EL1", .state = ARM_CP_STATE_AA64,
4692               .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 4, .opc2 = 1,
4693               .access = PL1_R, .type = ARM_CP_CONST,
4694               .resetvalue = cpu->id_aa64pfr1},
4695             { .name = "ID_AA64PFR2_EL1_RESERVED", .state = ARM_CP_STATE_AA64,
4696               .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 4, .opc2 = 2,
4697               .access = PL1_R, .type = ARM_CP_CONST,
4698               .resetvalue = 0 },
4699             { .name = "ID_AA64PFR3_EL1_RESERVED", .state = ARM_CP_STATE_AA64,
4700               .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 4, .opc2 = 3,
4701               .access = PL1_R, .type = ARM_CP_CONST,
4702               .resetvalue = 0 },
4703             { .name = "ID_AA64PFR4_EL1_RESERVED", .state = ARM_CP_STATE_AA64,
4704               .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 4, .opc2 = 4,
4705               .access = PL1_R, .type = ARM_CP_CONST,
4706               .resetvalue = 0 },
4707             { .name = "ID_AA64PFR5_EL1_RESERVED", .state = ARM_CP_STATE_AA64,
4708               .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 4, .opc2 = 5,
4709               .access = PL1_R, .type = ARM_CP_CONST,
4710               .resetvalue = 0 },
4711             { .name = "ID_AA64PFR6_EL1_RESERVED", .state = ARM_CP_STATE_AA64,
4712               .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 4, .opc2 = 6,
4713               .access = PL1_R, .type = ARM_CP_CONST,
4714               .resetvalue = 0 },
4715             { .name = "ID_AA64PFR7_EL1_RESERVED", .state = ARM_CP_STATE_AA64,
4716               .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 4, .opc2 = 7,
4717               .access = PL1_R, .type = ARM_CP_CONST,
4718               .resetvalue = 0 },
4719             { .name = "ID_AA64DFR0_EL1", .state = ARM_CP_STATE_AA64,
4720               .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 5, .opc2 = 0,
4721               .access = PL1_R, .type = ARM_CP_CONST,
4722               .resetvalue = cpu->id_aa64dfr0 },
4723             { .name = "ID_AA64DFR1_EL1", .state = ARM_CP_STATE_AA64,
4724               .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 5, .opc2 = 1,
4725               .access = PL1_R, .type = ARM_CP_CONST,
4726               .resetvalue = cpu->id_aa64dfr1 },
4727             { .name = "ID_AA64DFR2_EL1_RESERVED", .state = ARM_CP_STATE_AA64,
4728               .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 5, .opc2 = 2,
4729               .access = PL1_R, .type = ARM_CP_CONST,
4730               .resetvalue = 0 },
4731             { .name = "ID_AA64DFR3_EL1_RESERVED", .state = ARM_CP_STATE_AA64,
4732               .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 5, .opc2 = 3,
4733               .access = PL1_R, .type = ARM_CP_CONST,
4734               .resetvalue = 0 },
4735             { .name = "ID_AA64AFR0_EL1", .state = ARM_CP_STATE_AA64,
4736               .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 5, .opc2 = 4,
4737               .access = PL1_R, .type = ARM_CP_CONST,
4738               .resetvalue = cpu->id_aa64afr0 },
4739             { .name = "ID_AA64AFR1_EL1", .state = ARM_CP_STATE_AA64,
4740               .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 5, .opc2 = 5,
4741               .access = PL1_R, .type = ARM_CP_CONST,
4742               .resetvalue = cpu->id_aa64afr1 },
4743             { .name = "ID_AA64AFR2_EL1_RESERVED", .state = ARM_CP_STATE_AA64,
4744               .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 5, .opc2 = 6,
4745               .access = PL1_R, .type = ARM_CP_CONST,
4746               .resetvalue = 0 },
4747             { .name = "ID_AA64AFR3_EL1_RESERVED", .state = ARM_CP_STATE_AA64,
4748               .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 5, .opc2 = 7,
4749               .access = PL1_R, .type = ARM_CP_CONST,
4750               .resetvalue = 0 },
4751             { .name = "ID_AA64ISAR0_EL1", .state = ARM_CP_STATE_AA64,
4752               .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 6, .opc2 = 0,
4753               .access = PL1_R, .type = ARM_CP_CONST,
4754               .resetvalue = cpu->id_aa64isar0 },
4755             { .name = "ID_AA64ISAR1_EL1", .state = ARM_CP_STATE_AA64,
4756               .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 6, .opc2 = 1,
4757               .access = PL1_R, .type = ARM_CP_CONST,
4758               .resetvalue = cpu->id_aa64isar1 },
4759             { .name = "ID_AA64ISAR2_EL1_RESERVED", .state = ARM_CP_STATE_AA64,
4760               .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 6, .opc2 = 2,
4761               .access = PL1_R, .type = ARM_CP_CONST,
4762               .resetvalue = 0 },
4763             { .name = "ID_AA64ISAR3_EL1_RESERVED", .state = ARM_CP_STATE_AA64,
4764               .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 6, .opc2 = 3,
4765               .access = PL1_R, .type = ARM_CP_CONST,
4766               .resetvalue = 0 },
4767             { .name = "ID_AA64ISAR4_EL1_RESERVED", .state = ARM_CP_STATE_AA64,
4768               .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 6, .opc2 = 4,
4769               .access = PL1_R, .type = ARM_CP_CONST,
4770               .resetvalue = 0 },
4771             { .name = "ID_AA64ISAR5_EL1_RESERVED", .state = ARM_CP_STATE_AA64,
4772               .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 6, .opc2 = 5,
4773               .access = PL1_R, .type = ARM_CP_CONST,
4774               .resetvalue = 0 },
4775             { .name = "ID_AA64ISAR6_EL1_RESERVED", .state = ARM_CP_STATE_AA64,
4776               .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 6, .opc2 = 6,
4777               .access = PL1_R, .type = ARM_CP_CONST,
4778               .resetvalue = 0 },
4779             { .name = "ID_AA64ISAR7_EL1_RESERVED", .state = ARM_CP_STATE_AA64,
4780               .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 6, .opc2 = 7,
4781               .access = PL1_R, .type = ARM_CP_CONST,
4782               .resetvalue = 0 },
4783             { .name = "ID_AA64MMFR0_EL1", .state = ARM_CP_STATE_AA64,
4784               .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 7, .opc2 = 0,
4785               .access = PL1_R, .type = ARM_CP_CONST,
4786               .resetvalue = cpu->id_aa64mmfr0 },
4787             { .name = "ID_AA64MMFR1_EL1", .state = ARM_CP_STATE_AA64,
4788               .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 7, .opc2 = 1,
4789               .access = PL1_R, .type = ARM_CP_CONST,
4790               .resetvalue = cpu->id_aa64mmfr1 },
4791             { .name = "ID_AA64MMFR2_EL1_RESERVED", .state = ARM_CP_STATE_AA64,
4792               .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 7, .opc2 = 2,
4793               .access = PL1_R, .type = ARM_CP_CONST,
4794               .resetvalue = 0 },
4795             { .name = "ID_AA64MMFR3_EL1_RESERVED", .state = ARM_CP_STATE_AA64,
4796               .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 7, .opc2 = 3,
4797               .access = PL1_R, .type = ARM_CP_CONST,
4798               .resetvalue = 0 },
4799             { .name = "ID_AA64MMFR4_EL1_RESERVED", .state = ARM_CP_STATE_AA64,
4800               .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 7, .opc2 = 4,
4801               .access = PL1_R, .type = ARM_CP_CONST,
4802               .resetvalue = 0 },
4803             { .name = "ID_AA64MMFR5_EL1_RESERVED", .state = ARM_CP_STATE_AA64,
4804               .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 7, .opc2 = 5,
4805               .access = PL1_R, .type = ARM_CP_CONST,
4806               .resetvalue = 0 },
4807             { .name = "ID_AA64MMFR6_EL1_RESERVED", .state = ARM_CP_STATE_AA64,
4808               .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 7, .opc2 = 6,
4809               .access = PL1_R, .type = ARM_CP_CONST,
4810               .resetvalue = 0 },
4811             { .name = "ID_AA64MMFR7_EL1_RESERVED", .state = ARM_CP_STATE_AA64,
4812               .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 7, .opc2 = 7,
4813               .access = PL1_R, .type = ARM_CP_CONST,
4814               .resetvalue = 0 },
4815             { .name = "MVFR0_EL1", .state = ARM_CP_STATE_AA64,
4816               .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 3, .opc2 = 0,
4817               .access = PL1_R, .type = ARM_CP_CONST,
4818               .resetvalue = cpu->mvfr0 },
4819             { .name = "MVFR1_EL1", .state = ARM_CP_STATE_AA64,
4820               .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 3, .opc2 = 1,
4821               .access = PL1_R, .type = ARM_CP_CONST,
4822               .resetvalue = cpu->mvfr1 },
4823             { .name = "MVFR2_EL1", .state = ARM_CP_STATE_AA64,
4824               .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 3, .opc2 = 2,
4825               .access = PL1_R, .type = ARM_CP_CONST,
4826               .resetvalue = cpu->mvfr2 },
4827             { .name = "MVFR3_EL1_RESERVED", .state = ARM_CP_STATE_AA64,
4828               .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 3, .opc2 = 3,
4829               .access = PL1_R, .type = ARM_CP_CONST,
4830               .resetvalue = 0 },
4831             { .name = "MVFR4_EL1_RESERVED", .state = ARM_CP_STATE_AA64,
4832               .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 3, .opc2 = 4,
4833               .access = PL1_R, .type = ARM_CP_CONST,
4834               .resetvalue = 0 },
4835             { .name = "MVFR5_EL1_RESERVED", .state = ARM_CP_STATE_AA64,
4836               .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 3, .opc2 = 5,
4837               .access = PL1_R, .type = ARM_CP_CONST,
4838               .resetvalue = 0 },
4839             { .name = "MVFR6_EL1_RESERVED", .state = ARM_CP_STATE_AA64,
4840               .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 3, .opc2 = 6,
4841               .access = PL1_R, .type = ARM_CP_CONST,
4842               .resetvalue = 0 },
4843             { .name = "MVFR7_EL1_RESERVED", .state = ARM_CP_STATE_AA64,
4844               .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 3, .opc2 = 7,
4845               .access = PL1_R, .type = ARM_CP_CONST,
4846               .resetvalue = 0 },
4847             { .name = "PMCEID0", .state = ARM_CP_STATE_AA32,
4848               .cp = 15, .opc1 = 0, .crn = 9, .crm = 12, .opc2 = 6,
4849               .access = PL0_R, .accessfn = pmreg_access, .type = ARM_CP_CONST,
4850               .resetvalue = cpu->pmceid0 },
4851             { .name = "PMCEID0_EL0", .state = ARM_CP_STATE_AA64,
4852               .opc0 = 3, .opc1 = 3, .crn = 9, .crm = 12, .opc2 = 6,
4853               .access = PL0_R, .accessfn = pmreg_access, .type = ARM_CP_CONST,
4854               .resetvalue = cpu->pmceid0 },
4855             { .name = "PMCEID1", .state = ARM_CP_STATE_AA32,
4856               .cp = 15, .opc1 = 0, .crn = 9, .crm = 12, .opc2 = 7,
4857               .access = PL0_R, .accessfn = pmreg_access, .type = ARM_CP_CONST,
4858               .resetvalue = cpu->pmceid1 },
4859             { .name = "PMCEID1_EL0", .state = ARM_CP_STATE_AA64,
4860               .opc0 = 3, .opc1 = 3, .crn = 9, .crm = 12, .opc2 = 7,
4861               .access = PL0_R, .accessfn = pmreg_access, .type = ARM_CP_CONST,
4862               .resetvalue = cpu->pmceid1 },
4863             REGINFO_SENTINEL
4864         };
4865         /* RVBAR_EL1 is only implemented if EL1 is the highest EL */
4866         if (!arm_feature(env, ARM_FEATURE_EL3) &&
4867             !arm_feature(env, ARM_FEATURE_EL2)) {
4868             ARMCPRegInfo rvbar = {
4869                 .name = "RVBAR_EL1", .state = ARM_CP_STATE_AA64,
4870                 .opc0 = 3, .opc1 = 0, .crn = 12, .crm = 0, .opc2 = 1,
4871                 .type = ARM_CP_CONST, .access = PL1_R, .resetvalue = cpu->rvbar
4872             };
4873             define_one_arm_cp_reg(cpu, &rvbar);
4874         }
4875         define_arm_cp_regs(cpu, v8_idregs);
4876         define_arm_cp_regs(cpu, v8_cp_reginfo);
4877     }
4878     if (arm_feature(env, ARM_FEATURE_EL2)) {
4879         uint64_t vmpidr_def = mpidr_read_val(env);
4880         ARMCPRegInfo vpidr_regs[] = {
4881             { .name = "VPIDR", .state = ARM_CP_STATE_AA32,
4882               .cp = 15, .opc1 = 4, .crn = 0, .crm = 0, .opc2 = 0,
4883               .access = PL2_RW, .accessfn = access_el3_aa32ns,
4884               .resetvalue = cpu->midr,
4885               .fieldoffset = offsetof(CPUARMState, cp15.vpidr_el2) },
4886             { .name = "VPIDR_EL2", .state = ARM_CP_STATE_AA64,
4887               .opc0 = 3, .opc1 = 4, .crn = 0, .crm = 0, .opc2 = 0,
4888               .access = PL2_RW, .resetvalue = cpu->midr,
4889               .fieldoffset = offsetof(CPUARMState, cp15.vpidr_el2) },
4890             { .name = "VMPIDR", .state = ARM_CP_STATE_AA32,
4891               .cp = 15, .opc1 = 4, .crn = 0, .crm = 0, .opc2 = 5,
4892               .access = PL2_RW, .accessfn = access_el3_aa32ns,
4893               .resetvalue = vmpidr_def,
4894               .fieldoffset = offsetof(CPUARMState, cp15.vmpidr_el2) },
4895             { .name = "VMPIDR_EL2", .state = ARM_CP_STATE_AA64,
4896               .opc0 = 3, .opc1 = 4, .crn = 0, .crm = 0, .opc2 = 5,
4897               .access = PL2_RW,
4898               .resetvalue = vmpidr_def,
4899               .fieldoffset = offsetof(CPUARMState, cp15.vmpidr_el2) },
4900             REGINFO_SENTINEL
4901         };
4902         define_arm_cp_regs(cpu, vpidr_regs);
4903         define_arm_cp_regs(cpu, el2_cp_reginfo);
4904         /* RVBAR_EL2 is only implemented if EL2 is the highest EL */
4905         if (!arm_feature(env, ARM_FEATURE_EL3)) {
4906             ARMCPRegInfo rvbar = {
4907                 .name = "RVBAR_EL2", .state = ARM_CP_STATE_AA64,
4908                 .opc0 = 3, .opc1 = 4, .crn = 12, .crm = 0, .opc2 = 1,
4909                 .type = ARM_CP_CONST, .access = PL2_R, .resetvalue = cpu->rvbar
4910             };
4911             define_one_arm_cp_reg(cpu, &rvbar);
4912         }
4913     } else {
4914         /* If EL2 is missing but higher ELs are enabled, we need to
4915          * register the no_el2 reginfos.
4916          */
4917         if (arm_feature(env, ARM_FEATURE_EL3)) {
4918             /* When EL3 exists but not EL2, VPIDR and VMPIDR take the value
4919              * of MIDR_EL1 and MPIDR_EL1.
4920              */
4921             ARMCPRegInfo vpidr_regs[] = {
4922                 { .name = "VPIDR_EL2", .state = ARM_CP_STATE_BOTH,
4923                   .opc0 = 3, .opc1 = 4, .crn = 0, .crm = 0, .opc2 = 0,
4924                   .access = PL2_RW, .accessfn = access_el3_aa32ns_aa64any,
4925                   .type = ARM_CP_CONST, .resetvalue = cpu->midr,
4926                   .fieldoffset = offsetof(CPUARMState, cp15.vpidr_el2) },
4927                 { .name = "VMPIDR_EL2", .state = ARM_CP_STATE_BOTH,
4928                   .opc0 = 3, .opc1 = 4, .crn = 0, .crm = 0, .opc2 = 5,
4929                   .access = PL2_RW, .accessfn = access_el3_aa32ns_aa64any,
4930                   .type = ARM_CP_NO_RAW,
4931                   .writefn = arm_cp_write_ignore, .readfn = mpidr_read },
4932                 REGINFO_SENTINEL
4933             };
4934             define_arm_cp_regs(cpu, vpidr_regs);
4935             define_arm_cp_regs(cpu, el3_no_el2_cp_reginfo);
4936         }
4937     }
4938     if (arm_feature(env, ARM_FEATURE_EL3)) {
4939         define_arm_cp_regs(cpu, el3_cp_reginfo);
4940         ARMCPRegInfo el3_regs[] = {
4941             { .name = "RVBAR_EL3", .state = ARM_CP_STATE_AA64,
4942               .opc0 = 3, .opc1 = 6, .crn = 12, .crm = 0, .opc2 = 1,
4943               .type = ARM_CP_CONST, .access = PL3_R, .resetvalue = cpu->rvbar },
4944             { .name = "SCTLR_EL3", .state = ARM_CP_STATE_AA64,
4945               .opc0 = 3, .opc1 = 6, .crn = 1, .crm = 0, .opc2 = 0,
4946               .access = PL3_RW,
4947               .raw_writefn = raw_write, .writefn = sctlr_write,
4948               .fieldoffset = offsetof(CPUARMState, cp15.sctlr_el[3]),
4949               .resetvalue = cpu->reset_sctlr },
4950             REGINFO_SENTINEL
4951         };
4952 
4953         define_arm_cp_regs(cpu, el3_regs);
4954     }
4955     /* The behaviour of NSACR is sufficiently various that we don't
4956      * try to describe it in a single reginfo:
4957      *  if EL3 is 64 bit, then trap to EL3 from S EL1,
4958      *     reads as constant 0xc00 from NS EL1 and NS EL2
4959      *  if EL3 is 32 bit, then RW at EL3, RO at NS EL1 and NS EL2
4960      *  if v7 without EL3, register doesn't exist
4961      *  if v8 without EL3, reads as constant 0xc00 from NS EL1 and NS EL2
4962      */
4963     if (arm_feature(env, ARM_FEATURE_EL3)) {
4964         if (arm_feature(env, ARM_FEATURE_AARCH64)) {
4965             ARMCPRegInfo nsacr = {
4966                 .name = "NSACR", .type = ARM_CP_CONST,
4967                 .cp = 15, .opc1 = 0, .crn = 1, .crm = 1, .opc2 = 2,
4968                 .access = PL1_RW, .accessfn = nsacr_access,
4969                 .resetvalue = 0xc00
4970             };
4971             define_one_arm_cp_reg(cpu, &nsacr);
4972         } else {
4973             ARMCPRegInfo nsacr = {
4974                 .name = "NSACR",
4975                 .cp = 15, .opc1 = 0, .crn = 1, .crm = 1, .opc2 = 2,
4976                 .access = PL3_RW | PL1_R,
4977                 .resetvalue = 0,
4978                 .fieldoffset = offsetof(CPUARMState, cp15.nsacr)
4979             };
4980             define_one_arm_cp_reg(cpu, &nsacr);
4981         }
4982     } else {
4983         if (arm_feature(env, ARM_FEATURE_V8)) {
4984             ARMCPRegInfo nsacr = {
4985                 .name = "NSACR", .type = ARM_CP_CONST,
4986                 .cp = 15, .opc1 = 0, .crn = 1, .crm = 1, .opc2 = 2,
4987                 .access = PL1_R,
4988                 .resetvalue = 0xc00
4989             };
4990             define_one_arm_cp_reg(cpu, &nsacr);
4991         }
4992     }
4993 
4994     if (arm_feature(env, ARM_FEATURE_PMSA)) {
4995         if (arm_feature(env, ARM_FEATURE_V6)) {
4996             /* PMSAv6 not implemented */
4997             assert(arm_feature(env, ARM_FEATURE_V7));
4998             define_arm_cp_regs(cpu, vmsa_pmsa_cp_reginfo);
4999             define_arm_cp_regs(cpu, pmsav7_cp_reginfo);
5000         } else {
5001             define_arm_cp_regs(cpu, pmsav5_cp_reginfo);
5002         }
5003     } else {
5004         define_arm_cp_regs(cpu, vmsa_pmsa_cp_reginfo);
5005         define_arm_cp_regs(cpu, vmsa_cp_reginfo);
5006     }
5007     if (arm_feature(env, ARM_FEATURE_THUMB2EE)) {
5008         define_arm_cp_regs(cpu, t2ee_cp_reginfo);
5009     }
5010     if (arm_feature(env, ARM_FEATURE_GENERIC_TIMER)) {
5011         define_arm_cp_regs(cpu, generic_timer_cp_reginfo);
5012     }
5013     if (arm_feature(env, ARM_FEATURE_VAPA)) {
5014         define_arm_cp_regs(cpu, vapa_cp_reginfo);
5015     }
5016     if (arm_feature(env, ARM_FEATURE_CACHE_TEST_CLEAN)) {
5017         define_arm_cp_regs(cpu, cache_test_clean_cp_reginfo);
5018     }
5019     if (arm_feature(env, ARM_FEATURE_CACHE_DIRTY_REG)) {
5020         define_arm_cp_regs(cpu, cache_dirty_status_cp_reginfo);
5021     }
5022     if (arm_feature(env, ARM_FEATURE_CACHE_BLOCK_OPS)) {
5023         define_arm_cp_regs(cpu, cache_block_ops_cp_reginfo);
5024     }
5025     if (arm_feature(env, ARM_FEATURE_OMAPCP)) {
5026         define_arm_cp_regs(cpu, omap_cp_reginfo);
5027     }
5028     if (arm_feature(env, ARM_FEATURE_STRONGARM)) {
5029         define_arm_cp_regs(cpu, strongarm_cp_reginfo);
5030     }
5031     if (arm_feature(env, ARM_FEATURE_XSCALE)) {
5032         define_arm_cp_regs(cpu, xscale_cp_reginfo);
5033     }
5034     if (arm_feature(env, ARM_FEATURE_DUMMY_C15_REGS)) {
5035         define_arm_cp_regs(cpu, dummy_c15_cp_reginfo);
5036     }
5037     if (arm_feature(env, ARM_FEATURE_LPAE)) {
5038         define_arm_cp_regs(cpu, lpae_cp_reginfo);
5039     }
5040     /* Slightly awkwardly, the OMAP and StrongARM cores need all of
5041      * cp15 crn=0 to be writes-ignored, whereas for other cores they should
5042      * be read-only (ie write causes UNDEF exception).
5043      */
5044     {
5045         ARMCPRegInfo id_pre_v8_midr_cp_reginfo[] = {
5046             /* Pre-v8 MIDR space.
5047              * Note that the MIDR isn't a simple constant register because
5048              * of the TI925 behaviour where writes to another register can
5049              * cause the MIDR value to change.
5050              *
5051              * Unimplemented registers in the c15 0 0 0 space default to
5052              * MIDR. Define MIDR first as this entire space, then CTR, TCMTR
5053              * and friends override accordingly.
5054              */
5055             { .name = "MIDR",
5056               .cp = 15, .crn = 0, .crm = 0, .opc1 = 0, .opc2 = CP_ANY,
5057               .access = PL1_R, .resetvalue = cpu->midr,
5058               .writefn = arm_cp_write_ignore, .raw_writefn = raw_write,
5059               .readfn = midr_read,
5060               .fieldoffset = offsetof(CPUARMState, cp15.c0_cpuid),
5061               .type = ARM_CP_OVERRIDE },
5062             /* crn = 0 op1 = 0 crm = 3..7 : currently unassigned; we RAZ. */
5063             { .name = "DUMMY",
5064               .cp = 15, .crn = 0, .crm = 3, .opc1 = 0, .opc2 = CP_ANY,
5065               .access = PL1_R, .type = ARM_CP_CONST, .resetvalue = 0 },
5066             { .name = "DUMMY",
5067               .cp = 15, .crn = 0, .crm = 4, .opc1 = 0, .opc2 = CP_ANY,
5068               .access = PL1_R, .type = ARM_CP_CONST, .resetvalue = 0 },
5069             { .name = "DUMMY",
5070               .cp = 15, .crn = 0, .crm = 5, .opc1 = 0, .opc2 = CP_ANY,
5071               .access = PL1_R, .type = ARM_CP_CONST, .resetvalue = 0 },
5072             { .name = "DUMMY",
5073               .cp = 15, .crn = 0, .crm = 6, .opc1 = 0, .opc2 = CP_ANY,
5074               .access = PL1_R, .type = ARM_CP_CONST, .resetvalue = 0 },
5075             { .name = "DUMMY",
5076               .cp = 15, .crn = 0, .crm = 7, .opc1 = 0, .opc2 = CP_ANY,
5077               .access = PL1_R, .type = ARM_CP_CONST, .resetvalue = 0 },
5078             REGINFO_SENTINEL
5079         };
5080         ARMCPRegInfo id_v8_midr_cp_reginfo[] = {
5081             { .name = "MIDR_EL1", .state = ARM_CP_STATE_BOTH,
5082               .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 0, .opc2 = 0,
5083               .access = PL1_R, .type = ARM_CP_NO_RAW, .resetvalue = cpu->midr,
5084               .fieldoffset = offsetof(CPUARMState, cp15.c0_cpuid),
5085               .readfn = midr_read },
5086             /* crn = 0 op1 = 0 crm = 0 op2 = 4,7 : AArch32 aliases of MIDR */
5087             { .name = "MIDR", .type = ARM_CP_ALIAS | ARM_CP_CONST,
5088               .cp = 15, .crn = 0, .crm = 0, .opc1 = 0, .opc2 = 4,
5089               .access = PL1_R, .resetvalue = cpu->midr },
5090             { .name = "MIDR", .type = ARM_CP_ALIAS | ARM_CP_CONST,
5091               .cp = 15, .crn = 0, .crm = 0, .opc1 = 0, .opc2 = 7,
5092               .access = PL1_R, .resetvalue = cpu->midr },
5093             { .name = "REVIDR_EL1", .state = ARM_CP_STATE_BOTH,
5094               .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 0, .opc2 = 6,
5095               .access = PL1_R, .type = ARM_CP_CONST, .resetvalue = cpu->revidr },
5096             REGINFO_SENTINEL
5097         };
5098         ARMCPRegInfo id_cp_reginfo[] = {
5099             /* These are common to v8 and pre-v8 */
5100             { .name = "CTR",
5101               .cp = 15, .crn = 0, .crm = 0, .opc1 = 0, .opc2 = 1,
5102               .access = PL1_R, .type = ARM_CP_CONST, .resetvalue = cpu->ctr },
5103             { .name = "CTR_EL0", .state = ARM_CP_STATE_AA64,
5104               .opc0 = 3, .opc1 = 3, .opc2 = 1, .crn = 0, .crm = 0,
5105               .access = PL0_R, .accessfn = ctr_el0_access,
5106               .type = ARM_CP_CONST, .resetvalue = cpu->ctr },
5107             /* TCMTR and TLBTR exist in v8 but have no 64-bit versions */
5108             { .name = "TCMTR",
5109               .cp = 15, .crn = 0, .crm = 0, .opc1 = 0, .opc2 = 2,
5110               .access = PL1_R, .type = ARM_CP_CONST, .resetvalue = 0 },
5111             REGINFO_SENTINEL
5112         };
5113         /* TLBTR is specific to VMSA */
5114         ARMCPRegInfo id_tlbtr_reginfo = {
5115               .name = "TLBTR",
5116               .cp = 15, .crn = 0, .crm = 0, .opc1 = 0, .opc2 = 3,
5117               .access = PL1_R, .type = ARM_CP_CONST, .resetvalue = 0,
5118         };
5119         /* MPUIR is specific to PMSA V6+ */
5120         ARMCPRegInfo id_mpuir_reginfo = {
5121               .name = "MPUIR",
5122               .cp = 15, .crn = 0, .crm = 0, .opc1 = 0, .opc2 = 4,
5123               .access = PL1_R, .type = ARM_CP_CONST,
5124               .resetvalue = cpu->pmsav7_dregion << 8
5125         };
5126         ARMCPRegInfo crn0_wi_reginfo = {
5127             .name = "CRN0_WI", .cp = 15, .crn = 0, .crm = CP_ANY,
5128             .opc1 = CP_ANY, .opc2 = CP_ANY, .access = PL1_W,
5129             .type = ARM_CP_NOP | ARM_CP_OVERRIDE
5130         };
5131         if (arm_feature(env, ARM_FEATURE_OMAPCP) ||
5132             arm_feature(env, ARM_FEATURE_STRONGARM)) {
5133             ARMCPRegInfo *r;
5134             /* Register the blanket "writes ignored" value first to cover the
5135              * whole space. Then update the specific ID registers to allow write
5136              * access, so that they ignore writes rather than causing them to
5137              * UNDEF.
5138              */
5139             define_one_arm_cp_reg(cpu, &crn0_wi_reginfo);
5140             for (r = id_pre_v8_midr_cp_reginfo;
5141                  r->type != ARM_CP_SENTINEL; r++) {
5142                 r->access = PL1_RW;
5143             }
5144             for (r = id_cp_reginfo; r->type != ARM_CP_SENTINEL; r++) {
5145                 r->access = PL1_RW;
5146             }
5147             id_tlbtr_reginfo.access = PL1_RW;
5148             id_tlbtr_reginfo.access = PL1_RW;
5149         }
5150         if (arm_feature(env, ARM_FEATURE_V8)) {
5151             define_arm_cp_regs(cpu, id_v8_midr_cp_reginfo);
5152         } else {
5153             define_arm_cp_regs(cpu, id_pre_v8_midr_cp_reginfo);
5154         }
5155         define_arm_cp_regs(cpu, id_cp_reginfo);
5156         if (!arm_feature(env, ARM_FEATURE_PMSA)) {
5157             define_one_arm_cp_reg(cpu, &id_tlbtr_reginfo);
5158         } else if (arm_feature(env, ARM_FEATURE_V7)) {
5159             define_one_arm_cp_reg(cpu, &id_mpuir_reginfo);
5160         }
5161     }
5162 
5163     if (arm_feature(env, ARM_FEATURE_MPIDR)) {
5164         define_arm_cp_regs(cpu, mpidr_cp_reginfo);
5165     }
5166 
5167     if (arm_feature(env, ARM_FEATURE_AUXCR)) {
5168         ARMCPRegInfo auxcr_reginfo[] = {
5169             { .name = "ACTLR_EL1", .state = ARM_CP_STATE_BOTH,
5170               .opc0 = 3, .opc1 = 0, .crn = 1, .crm = 0, .opc2 = 1,
5171               .access = PL1_RW, .type = ARM_CP_CONST,
5172               .resetvalue = cpu->reset_auxcr },
5173             { .name = "ACTLR_EL2", .state = ARM_CP_STATE_BOTH,
5174               .opc0 = 3, .opc1 = 4, .crn = 1, .crm = 0, .opc2 = 1,
5175               .access = PL2_RW, .type = ARM_CP_CONST,
5176               .resetvalue = 0 },
5177             { .name = "ACTLR_EL3", .state = ARM_CP_STATE_AA64,
5178               .opc0 = 3, .opc1 = 6, .crn = 1, .crm = 0, .opc2 = 1,
5179               .access = PL3_RW, .type = ARM_CP_CONST,
5180               .resetvalue = 0 },
5181             REGINFO_SENTINEL
5182         };
5183         define_arm_cp_regs(cpu, auxcr_reginfo);
5184     }
5185 
5186     if (arm_feature(env, ARM_FEATURE_CBAR)) {
5187         if (arm_feature(env, ARM_FEATURE_AARCH64)) {
5188             /* 32 bit view is [31:18] 0...0 [43:32]. */
5189             uint32_t cbar32 = (extract64(cpu->reset_cbar, 18, 14) << 18)
5190                 | extract64(cpu->reset_cbar, 32, 12);
5191             ARMCPRegInfo cbar_reginfo[] = {
5192                 { .name = "CBAR",
5193                   .type = ARM_CP_CONST,
5194                   .cp = 15, .crn = 15, .crm = 0, .opc1 = 4, .opc2 = 0,
5195                   .access = PL1_R, .resetvalue = cpu->reset_cbar },
5196                 { .name = "CBAR_EL1", .state = ARM_CP_STATE_AA64,
5197                   .type = ARM_CP_CONST,
5198                   .opc0 = 3, .opc1 = 1, .crn = 15, .crm = 3, .opc2 = 0,
5199                   .access = PL1_R, .resetvalue = cbar32 },
5200                 REGINFO_SENTINEL
5201             };
5202             /* We don't implement a r/w 64 bit CBAR currently */
5203             assert(arm_feature(env, ARM_FEATURE_CBAR_RO));
5204             define_arm_cp_regs(cpu, cbar_reginfo);
5205         } else {
5206             ARMCPRegInfo cbar = {
5207                 .name = "CBAR",
5208                 .cp = 15, .crn = 15, .crm = 0, .opc1 = 4, .opc2 = 0,
5209                 .access = PL1_R|PL3_W, .resetvalue = cpu->reset_cbar,
5210                 .fieldoffset = offsetof(CPUARMState,
5211                                         cp15.c15_config_base_address)
5212             };
5213             if (arm_feature(env, ARM_FEATURE_CBAR_RO)) {
5214                 cbar.access = PL1_R;
5215                 cbar.fieldoffset = 0;
5216                 cbar.type = ARM_CP_CONST;
5217             }
5218             define_one_arm_cp_reg(cpu, &cbar);
5219         }
5220     }
5221 
5222     if (arm_feature(env, ARM_FEATURE_VBAR)) {
5223         ARMCPRegInfo vbar_cp_reginfo[] = {
5224             { .name = "VBAR", .state = ARM_CP_STATE_BOTH,
5225               .opc0 = 3, .crn = 12, .crm = 0, .opc1 = 0, .opc2 = 0,
5226               .access = PL1_RW, .writefn = vbar_write,
5227               .bank_fieldoffsets = { offsetof(CPUARMState, cp15.vbar_s),
5228                                      offsetof(CPUARMState, cp15.vbar_ns) },
5229               .resetvalue = 0 },
5230             REGINFO_SENTINEL
5231         };
5232         define_arm_cp_regs(cpu, vbar_cp_reginfo);
5233     }
5234 
5235     /* Generic registers whose values depend on the implementation */
5236     {
5237         ARMCPRegInfo sctlr = {
5238             .name = "SCTLR", .state = ARM_CP_STATE_BOTH,
5239             .opc0 = 3, .opc1 = 0, .crn = 1, .crm = 0, .opc2 = 0,
5240             .access = PL1_RW,
5241             .bank_fieldoffsets = { offsetof(CPUARMState, cp15.sctlr_s),
5242                                    offsetof(CPUARMState, cp15.sctlr_ns) },
5243             .writefn = sctlr_write, .resetvalue = cpu->reset_sctlr,
5244             .raw_writefn = raw_write,
5245         };
5246         if (arm_feature(env, ARM_FEATURE_XSCALE)) {
5247             /* Normally we would always end the TB on an SCTLR write, but Linux
5248              * arch/arm/mach-pxa/sleep.S expects two instructions following
5249              * an MMU enable to execute from cache.  Imitate this behaviour.
5250              */
5251             sctlr.type |= ARM_CP_SUPPRESS_TB_END;
5252         }
5253         define_one_arm_cp_reg(cpu, &sctlr);
5254     }
5255 }
5256 
5257 void arm_cpu_register_gdb_regs_for_features(ARMCPU *cpu)
5258 {
5259     CPUState *cs = CPU(cpu);
5260     CPUARMState *env = &cpu->env;
5261 
5262     if (arm_feature(env, ARM_FEATURE_AARCH64)) {
5263         gdb_register_coprocessor(cs, aarch64_fpu_gdb_get_reg,
5264                                  aarch64_fpu_gdb_set_reg,
5265                                  34, "aarch64-fpu.xml", 0);
5266     } else if (arm_feature(env, ARM_FEATURE_NEON)) {
5267         gdb_register_coprocessor(cs, vfp_gdb_get_reg, vfp_gdb_set_reg,
5268                                  51, "arm-neon.xml", 0);
5269     } else if (arm_feature(env, ARM_FEATURE_VFP3)) {
5270         gdb_register_coprocessor(cs, vfp_gdb_get_reg, vfp_gdb_set_reg,
5271                                  35, "arm-vfp3.xml", 0);
5272     } else if (arm_feature(env, ARM_FEATURE_VFP)) {
5273         gdb_register_coprocessor(cs, vfp_gdb_get_reg, vfp_gdb_set_reg,
5274                                  19, "arm-vfp.xml", 0);
5275     }
5276 }
5277 
5278 /* Sort alphabetically by type name, except for "any". */
5279 static gint arm_cpu_list_compare(gconstpointer a, gconstpointer b)
5280 {
5281     ObjectClass *class_a = (ObjectClass *)a;
5282     ObjectClass *class_b = (ObjectClass *)b;
5283     const char *name_a, *name_b;
5284 
5285     name_a = object_class_get_name(class_a);
5286     name_b = object_class_get_name(class_b);
5287     if (strcmp(name_a, "any-" TYPE_ARM_CPU) == 0) {
5288         return 1;
5289     } else if (strcmp(name_b, "any-" TYPE_ARM_CPU) == 0) {
5290         return -1;
5291     } else {
5292         return strcmp(name_a, name_b);
5293     }
5294 }
5295 
5296 static void arm_cpu_list_entry(gpointer data, gpointer user_data)
5297 {
5298     ObjectClass *oc = data;
5299     CPUListState *s = user_data;
5300     const char *typename;
5301     char *name;
5302 
5303     typename = object_class_get_name(oc);
5304     name = g_strndup(typename, strlen(typename) - strlen("-" TYPE_ARM_CPU));
5305     (*s->cpu_fprintf)(s->file, "  %s\n",
5306                       name);
5307     g_free(name);
5308 }
5309 
5310 void arm_cpu_list(FILE *f, fprintf_function cpu_fprintf)
5311 {
5312     CPUListState s = {
5313         .file = f,
5314         .cpu_fprintf = cpu_fprintf,
5315     };
5316     GSList *list;
5317 
5318     list = object_class_get_list(TYPE_ARM_CPU, false);
5319     list = g_slist_sort(list, arm_cpu_list_compare);
5320     (*cpu_fprintf)(f, "Available CPUs:\n");
5321     g_slist_foreach(list, arm_cpu_list_entry, &s);
5322     g_slist_free(list);
5323 #ifdef CONFIG_KVM
5324     /* The 'host' CPU type is dynamically registered only if KVM is
5325      * enabled, so we have to special-case it here:
5326      */
5327     (*cpu_fprintf)(f, "  host (only available in KVM mode)\n");
5328 #endif
5329 }
5330 
5331 static void arm_cpu_add_definition(gpointer data, gpointer user_data)
5332 {
5333     ObjectClass *oc = data;
5334     CpuDefinitionInfoList **cpu_list = user_data;
5335     CpuDefinitionInfoList *entry;
5336     CpuDefinitionInfo *info;
5337     const char *typename;
5338 
5339     typename = object_class_get_name(oc);
5340     info = g_malloc0(sizeof(*info));
5341     info->name = g_strndup(typename,
5342                            strlen(typename) - strlen("-" TYPE_ARM_CPU));
5343     info->q_typename = g_strdup(typename);
5344 
5345     entry = g_malloc0(sizeof(*entry));
5346     entry->value = info;
5347     entry->next = *cpu_list;
5348     *cpu_list = entry;
5349 }
5350 
5351 CpuDefinitionInfoList *arch_query_cpu_definitions(Error **errp)
5352 {
5353     CpuDefinitionInfoList *cpu_list = NULL;
5354     GSList *list;
5355 
5356     list = object_class_get_list(TYPE_ARM_CPU, false);
5357     g_slist_foreach(list, arm_cpu_add_definition, &cpu_list);
5358     g_slist_free(list);
5359 
5360     return cpu_list;
5361 }
5362 
5363 static void add_cpreg_to_hashtable(ARMCPU *cpu, const ARMCPRegInfo *r,
5364                                    void *opaque, int state, int secstate,
5365                                    int crm, int opc1, int opc2)
5366 {
5367     /* Private utility function for define_one_arm_cp_reg_with_opaque():
5368      * add a single reginfo struct to the hash table.
5369      */
5370     uint32_t *key = g_new(uint32_t, 1);
5371     ARMCPRegInfo *r2 = g_memdup(r, sizeof(ARMCPRegInfo));
5372     int is64 = (r->type & ARM_CP_64BIT) ? 1 : 0;
5373     int ns = (secstate & ARM_CP_SECSTATE_NS) ? 1 : 0;
5374 
5375     /* Reset the secure state to the specific incoming state.  This is
5376      * necessary as the register may have been defined with both states.
5377      */
5378     r2->secure = secstate;
5379 
5380     if (r->bank_fieldoffsets[0] && r->bank_fieldoffsets[1]) {
5381         /* Register is banked (using both entries in array).
5382          * Overwriting fieldoffset as the array is only used to define
5383          * banked registers but later only fieldoffset is used.
5384          */
5385         r2->fieldoffset = r->bank_fieldoffsets[ns];
5386     }
5387 
5388     if (state == ARM_CP_STATE_AA32) {
5389         if (r->bank_fieldoffsets[0] && r->bank_fieldoffsets[1]) {
5390             /* If the register is banked then we don't need to migrate or
5391              * reset the 32-bit instance in certain cases:
5392              *
5393              * 1) If the register has both 32-bit and 64-bit instances then we
5394              *    can count on the 64-bit instance taking care of the
5395              *    non-secure bank.
5396              * 2) If ARMv8 is enabled then we can count on a 64-bit version
5397              *    taking care of the secure bank.  This requires that separate
5398              *    32 and 64-bit definitions are provided.
5399              */
5400             if ((r->state == ARM_CP_STATE_BOTH && ns) ||
5401                 (arm_feature(&cpu->env, ARM_FEATURE_V8) && !ns)) {
5402                 r2->type |= ARM_CP_ALIAS;
5403             }
5404         } else if ((secstate != r->secure) && !ns) {
5405             /* The register is not banked so we only want to allow migration of
5406              * the non-secure instance.
5407              */
5408             r2->type |= ARM_CP_ALIAS;
5409         }
5410 
5411         if (r->state == ARM_CP_STATE_BOTH) {
5412             /* We assume it is a cp15 register if the .cp field is left unset.
5413              */
5414             if (r2->cp == 0) {
5415                 r2->cp = 15;
5416             }
5417 
5418 #ifdef HOST_WORDS_BIGENDIAN
5419             if (r2->fieldoffset) {
5420                 r2->fieldoffset += sizeof(uint32_t);
5421             }
5422 #endif
5423         }
5424     }
5425     if (state == ARM_CP_STATE_AA64) {
5426         /* To allow abbreviation of ARMCPRegInfo
5427          * definitions, we treat cp == 0 as equivalent to
5428          * the value for "standard guest-visible sysreg".
5429          * STATE_BOTH definitions are also always "standard
5430          * sysreg" in their AArch64 view (the .cp value may
5431          * be non-zero for the benefit of the AArch32 view).
5432          */
5433         if (r->cp == 0 || r->state == ARM_CP_STATE_BOTH) {
5434             r2->cp = CP_REG_ARM64_SYSREG_CP;
5435         }
5436         *key = ENCODE_AA64_CP_REG(r2->cp, r2->crn, crm,
5437                                   r2->opc0, opc1, opc2);
5438     } else {
5439         *key = ENCODE_CP_REG(r2->cp, is64, ns, r2->crn, crm, opc1, opc2);
5440     }
5441     if (opaque) {
5442         r2->opaque = opaque;
5443     }
5444     /* reginfo passed to helpers is correct for the actual access,
5445      * and is never ARM_CP_STATE_BOTH:
5446      */
5447     r2->state = state;
5448     /* Make sure reginfo passed to helpers for wildcarded regs
5449      * has the correct crm/opc1/opc2 for this reg, not CP_ANY:
5450      */
5451     r2->crm = crm;
5452     r2->opc1 = opc1;
5453     r2->opc2 = opc2;
5454     /* By convention, for wildcarded registers only the first
5455      * entry is used for migration; the others are marked as
5456      * ALIAS so we don't try to transfer the register
5457      * multiple times. Special registers (ie NOP/WFI) are
5458      * never migratable and not even raw-accessible.
5459      */
5460     if ((r->type & ARM_CP_SPECIAL)) {
5461         r2->type |= ARM_CP_NO_RAW;
5462     }
5463     if (((r->crm == CP_ANY) && crm != 0) ||
5464         ((r->opc1 == CP_ANY) && opc1 != 0) ||
5465         ((r->opc2 == CP_ANY) && opc2 != 0)) {
5466         r2->type |= ARM_CP_ALIAS;
5467     }
5468 
5469     /* Check that raw accesses are either forbidden or handled. Note that
5470      * we can't assert this earlier because the setup of fieldoffset for
5471      * banked registers has to be done first.
5472      */
5473     if (!(r2->type & ARM_CP_NO_RAW)) {
5474         assert(!raw_accessors_invalid(r2));
5475     }
5476 
5477     /* Overriding of an existing definition must be explicitly
5478      * requested.
5479      */
5480     if (!(r->type & ARM_CP_OVERRIDE)) {
5481         ARMCPRegInfo *oldreg;
5482         oldreg = g_hash_table_lookup(cpu->cp_regs, key);
5483         if (oldreg && !(oldreg->type & ARM_CP_OVERRIDE)) {
5484             fprintf(stderr, "Register redefined: cp=%d %d bit "
5485                     "crn=%d crm=%d opc1=%d opc2=%d, "
5486                     "was %s, now %s\n", r2->cp, 32 + 32 * is64,
5487                     r2->crn, r2->crm, r2->opc1, r2->opc2,
5488                     oldreg->name, r2->name);
5489             g_assert_not_reached();
5490         }
5491     }
5492     g_hash_table_insert(cpu->cp_regs, key, r2);
5493 }
5494 
5495 
5496 void define_one_arm_cp_reg_with_opaque(ARMCPU *cpu,
5497                                        const ARMCPRegInfo *r, void *opaque)
5498 {
5499     /* Define implementations of coprocessor registers.
5500      * We store these in a hashtable because typically
5501      * there are less than 150 registers in a space which
5502      * is 16*16*16*8*8 = 262144 in size.
5503      * Wildcarding is supported for the crm, opc1 and opc2 fields.
5504      * If a register is defined twice then the second definition is
5505      * used, so this can be used to define some generic registers and
5506      * then override them with implementation specific variations.
5507      * At least one of the original and the second definition should
5508      * include ARM_CP_OVERRIDE in its type bits -- this is just a guard
5509      * against accidental use.
5510      *
5511      * The state field defines whether the register is to be
5512      * visible in the AArch32 or AArch64 execution state. If the
5513      * state is set to ARM_CP_STATE_BOTH then we synthesise a
5514      * reginfo structure for the AArch32 view, which sees the lower
5515      * 32 bits of the 64 bit register.
5516      *
5517      * Only registers visible in AArch64 may set r->opc0; opc0 cannot
5518      * be wildcarded. AArch64 registers are always considered to be 64
5519      * bits; the ARM_CP_64BIT* flag applies only to the AArch32 view of
5520      * the register, if any.
5521      */
5522     int crm, opc1, opc2, state;
5523     int crmmin = (r->crm == CP_ANY) ? 0 : r->crm;
5524     int crmmax = (r->crm == CP_ANY) ? 15 : r->crm;
5525     int opc1min = (r->opc1 == CP_ANY) ? 0 : r->opc1;
5526     int opc1max = (r->opc1 == CP_ANY) ? 7 : r->opc1;
5527     int opc2min = (r->opc2 == CP_ANY) ? 0 : r->opc2;
5528     int opc2max = (r->opc2 == CP_ANY) ? 7 : r->opc2;
5529     /* 64 bit registers have only CRm and Opc1 fields */
5530     assert(!((r->type & ARM_CP_64BIT) && (r->opc2 || r->crn)));
5531     /* op0 only exists in the AArch64 encodings */
5532     assert((r->state != ARM_CP_STATE_AA32) || (r->opc0 == 0));
5533     /* AArch64 regs are all 64 bit so ARM_CP_64BIT is meaningless */
5534     assert((r->state != ARM_CP_STATE_AA64) || !(r->type & ARM_CP_64BIT));
5535     /* The AArch64 pseudocode CheckSystemAccess() specifies that op1
5536      * encodes a minimum access level for the register. We roll this
5537      * runtime check into our general permission check code, so check
5538      * here that the reginfo's specified permissions are strict enough
5539      * to encompass the generic architectural permission check.
5540      */
5541     if (r->state != ARM_CP_STATE_AA32) {
5542         int mask = 0;
5543         switch (r->opc1) {
5544         case 0: case 1: case 2:
5545             /* min_EL EL1 */
5546             mask = PL1_RW;
5547             break;
5548         case 3:
5549             /* min_EL EL0 */
5550             mask = PL0_RW;
5551             break;
5552         case 4:
5553             /* min_EL EL2 */
5554             mask = PL2_RW;
5555             break;
5556         case 5:
5557             /* unallocated encoding, so not possible */
5558             assert(false);
5559             break;
5560         case 6:
5561             /* min_EL EL3 */
5562             mask = PL3_RW;
5563             break;
5564         case 7:
5565             /* min_EL EL1, secure mode only (we don't check the latter) */
5566             mask = PL1_RW;
5567             break;
5568         default:
5569             /* broken reginfo with out-of-range opc1 */
5570             assert(false);
5571             break;
5572         }
5573         /* assert our permissions are not too lax (stricter is fine) */
5574         assert((r->access & ~mask) == 0);
5575     }
5576 
5577     /* Check that the register definition has enough info to handle
5578      * reads and writes if they are permitted.
5579      */
5580     if (!(r->type & (ARM_CP_SPECIAL|ARM_CP_CONST))) {
5581         if (r->access & PL3_R) {
5582             assert((r->fieldoffset ||
5583                    (r->bank_fieldoffsets[0] && r->bank_fieldoffsets[1])) ||
5584                    r->readfn);
5585         }
5586         if (r->access & PL3_W) {
5587             assert((r->fieldoffset ||
5588                    (r->bank_fieldoffsets[0] && r->bank_fieldoffsets[1])) ||
5589                    r->writefn);
5590         }
5591     }
5592     /* Bad type field probably means missing sentinel at end of reg list */
5593     assert(cptype_valid(r->type));
5594     for (crm = crmmin; crm <= crmmax; crm++) {
5595         for (opc1 = opc1min; opc1 <= opc1max; opc1++) {
5596             for (opc2 = opc2min; opc2 <= opc2max; opc2++) {
5597                 for (state = ARM_CP_STATE_AA32;
5598                      state <= ARM_CP_STATE_AA64; state++) {
5599                     if (r->state != state && r->state != ARM_CP_STATE_BOTH) {
5600                         continue;
5601                     }
5602                     if (state == ARM_CP_STATE_AA32) {
5603                         /* Under AArch32 CP registers can be common
5604                          * (same for secure and non-secure world) or banked.
5605                          */
5606                         switch (r->secure) {
5607                         case ARM_CP_SECSTATE_S:
5608                         case ARM_CP_SECSTATE_NS:
5609                             add_cpreg_to_hashtable(cpu, r, opaque, state,
5610                                                    r->secure, crm, opc1, opc2);
5611                             break;
5612                         default:
5613                             add_cpreg_to_hashtable(cpu, r, opaque, state,
5614                                                    ARM_CP_SECSTATE_S,
5615                                                    crm, opc1, opc2);
5616                             add_cpreg_to_hashtable(cpu, r, opaque, state,
5617                                                    ARM_CP_SECSTATE_NS,
5618                                                    crm, opc1, opc2);
5619                             break;
5620                         }
5621                     } else {
5622                         /* AArch64 registers get mapped to non-secure instance
5623                          * of AArch32 */
5624                         add_cpreg_to_hashtable(cpu, r, opaque, state,
5625                                                ARM_CP_SECSTATE_NS,
5626                                                crm, opc1, opc2);
5627                     }
5628                 }
5629             }
5630         }
5631     }
5632 }
5633 
5634 void define_arm_cp_regs_with_opaque(ARMCPU *cpu,
5635                                     const ARMCPRegInfo *regs, void *opaque)
5636 {
5637     /* Define a whole list of registers */
5638     const ARMCPRegInfo *r;
5639     for (r = regs; r->type != ARM_CP_SENTINEL; r++) {
5640         define_one_arm_cp_reg_with_opaque(cpu, r, opaque);
5641     }
5642 }
5643 
5644 const ARMCPRegInfo *get_arm_cp_reginfo(GHashTable *cpregs, uint32_t encoded_cp)
5645 {
5646     return g_hash_table_lookup(cpregs, &encoded_cp);
5647 }
5648 
5649 void arm_cp_write_ignore(CPUARMState *env, const ARMCPRegInfo *ri,
5650                          uint64_t value)
5651 {
5652     /* Helper coprocessor write function for write-ignore registers */
5653 }
5654 
5655 uint64_t arm_cp_read_zero(CPUARMState *env, const ARMCPRegInfo *ri)
5656 {
5657     /* Helper coprocessor write function for read-as-zero registers */
5658     return 0;
5659 }
5660 
5661 void arm_cp_reset_ignore(CPUARMState *env, const ARMCPRegInfo *opaque)
5662 {
5663     /* Helper coprocessor reset function for do-nothing-on-reset registers */
5664 }
5665 
5666 static int bad_mode_switch(CPUARMState *env, int mode, CPSRWriteType write_type)
5667 {
5668     /* Return true if it is not valid for us to switch to
5669      * this CPU mode (ie all the UNPREDICTABLE cases in
5670      * the ARM ARM CPSRWriteByInstr pseudocode).
5671      */
5672 
5673     /* Changes to or from Hyp via MSR and CPS are illegal. */
5674     if (write_type == CPSRWriteByInstr &&
5675         ((env->uncached_cpsr & CPSR_M) == ARM_CPU_MODE_HYP ||
5676          mode == ARM_CPU_MODE_HYP)) {
5677         return 1;
5678     }
5679 
5680     switch (mode) {
5681     case ARM_CPU_MODE_USR:
5682         return 0;
5683     case ARM_CPU_MODE_SYS:
5684     case ARM_CPU_MODE_SVC:
5685     case ARM_CPU_MODE_ABT:
5686     case ARM_CPU_MODE_UND:
5687     case ARM_CPU_MODE_IRQ:
5688     case ARM_CPU_MODE_FIQ:
5689         /* Note that we don't implement the IMPDEF NSACR.RFR which in v7
5690          * allows FIQ mode to be Secure-only. (In v8 this doesn't exist.)
5691          */
5692         /* If HCR.TGE is set then changes from Monitor to NS PL1 via MSR
5693          * and CPS are treated as illegal mode changes.
5694          */
5695         if (write_type == CPSRWriteByInstr &&
5696             (env->cp15.hcr_el2 & HCR_TGE) &&
5697             (env->uncached_cpsr & CPSR_M) == ARM_CPU_MODE_MON &&
5698             !arm_is_secure_below_el3(env)) {
5699             return 1;
5700         }
5701         return 0;
5702     case ARM_CPU_MODE_HYP:
5703         return !arm_feature(env, ARM_FEATURE_EL2)
5704             || arm_current_el(env) < 2 || arm_is_secure(env);
5705     case ARM_CPU_MODE_MON:
5706         return arm_current_el(env) < 3;
5707     default:
5708         return 1;
5709     }
5710 }
5711 
5712 uint32_t cpsr_read(CPUARMState *env)
5713 {
5714     int ZF;
5715     ZF = (env->ZF == 0);
5716     return env->uncached_cpsr | (env->NF & 0x80000000) | (ZF << 30) |
5717         (env->CF << 29) | ((env->VF & 0x80000000) >> 3) | (env->QF << 27)
5718         | (env->thumb << 5) | ((env->condexec_bits & 3) << 25)
5719         | ((env->condexec_bits & 0xfc) << 8)
5720         | (env->GE << 16) | (env->daif & CPSR_AIF);
5721 }
5722 
5723 void cpsr_write(CPUARMState *env, uint32_t val, uint32_t mask,
5724                 CPSRWriteType write_type)
5725 {
5726     uint32_t changed_daif;
5727 
5728     if (mask & CPSR_NZCV) {
5729         env->ZF = (~val) & CPSR_Z;
5730         env->NF = val;
5731         env->CF = (val >> 29) & 1;
5732         env->VF = (val << 3) & 0x80000000;
5733     }
5734     if (mask & CPSR_Q)
5735         env->QF = ((val & CPSR_Q) != 0);
5736     if (mask & CPSR_T)
5737         env->thumb = ((val & CPSR_T) != 0);
5738     if (mask & CPSR_IT_0_1) {
5739         env->condexec_bits &= ~3;
5740         env->condexec_bits |= (val >> 25) & 3;
5741     }
5742     if (mask & CPSR_IT_2_7) {
5743         env->condexec_bits &= 3;
5744         env->condexec_bits |= (val >> 8) & 0xfc;
5745     }
5746     if (mask & CPSR_GE) {
5747         env->GE = (val >> 16) & 0xf;
5748     }
5749 
5750     /* In a V7 implementation that includes the security extensions but does
5751      * not include Virtualization Extensions the SCR.FW and SCR.AW bits control
5752      * whether non-secure software is allowed to change the CPSR_F and CPSR_A
5753      * bits respectively.
5754      *
5755      * In a V8 implementation, it is permitted for privileged software to
5756      * change the CPSR A/F bits regardless of the SCR.AW/FW bits.
5757      */
5758     if (write_type != CPSRWriteRaw && !arm_feature(env, ARM_FEATURE_V8) &&
5759         arm_feature(env, ARM_FEATURE_EL3) &&
5760         !arm_feature(env, ARM_FEATURE_EL2) &&
5761         !arm_is_secure(env)) {
5762 
5763         changed_daif = (env->daif ^ val) & mask;
5764 
5765         if (changed_daif & CPSR_A) {
5766             /* Check to see if we are allowed to change the masking of async
5767              * abort exceptions from a non-secure state.
5768              */
5769             if (!(env->cp15.scr_el3 & SCR_AW)) {
5770                 qemu_log_mask(LOG_GUEST_ERROR,
5771                               "Ignoring attempt to switch CPSR_A flag from "
5772                               "non-secure world with SCR.AW bit clear\n");
5773                 mask &= ~CPSR_A;
5774             }
5775         }
5776 
5777         if (changed_daif & CPSR_F) {
5778             /* Check to see if we are allowed to change the masking of FIQ
5779              * exceptions from a non-secure state.
5780              */
5781             if (!(env->cp15.scr_el3 & SCR_FW)) {
5782                 qemu_log_mask(LOG_GUEST_ERROR,
5783                               "Ignoring attempt to switch CPSR_F flag from "
5784                               "non-secure world with SCR.FW bit clear\n");
5785                 mask &= ~CPSR_F;
5786             }
5787 
5788             /* Check whether non-maskable FIQ (NMFI) support is enabled.
5789              * If this bit is set software is not allowed to mask
5790              * FIQs, but is allowed to set CPSR_F to 0.
5791              */
5792             if ((A32_BANKED_CURRENT_REG_GET(env, sctlr) & SCTLR_NMFI) &&
5793                 (val & CPSR_F)) {
5794                 qemu_log_mask(LOG_GUEST_ERROR,
5795                               "Ignoring attempt to enable CPSR_F flag "
5796                               "(non-maskable FIQ [NMFI] support enabled)\n");
5797                 mask &= ~CPSR_F;
5798             }
5799         }
5800     }
5801 
5802     env->daif &= ~(CPSR_AIF & mask);
5803     env->daif |= val & CPSR_AIF & mask;
5804 
5805     if (write_type != CPSRWriteRaw &&
5806         ((env->uncached_cpsr ^ val) & mask & CPSR_M)) {
5807         if ((env->uncached_cpsr & CPSR_M) == ARM_CPU_MODE_USR) {
5808             /* Note that we can only get here in USR mode if this is a
5809              * gdb stub write; for this case we follow the architectural
5810              * behaviour for guest writes in USR mode of ignoring an attempt
5811              * to switch mode. (Those are caught by translate.c for writes
5812              * triggered by guest instructions.)
5813              */
5814             mask &= ~CPSR_M;
5815         } else if (bad_mode_switch(env, val & CPSR_M, write_type)) {
5816             /* Attempt to switch to an invalid mode: this is UNPREDICTABLE in
5817              * v7, and has defined behaviour in v8:
5818              *  + leave CPSR.M untouched
5819              *  + allow changes to the other CPSR fields
5820              *  + set PSTATE.IL
5821              * For user changes via the GDB stub, we don't set PSTATE.IL,
5822              * as this would be unnecessarily harsh for a user error.
5823              */
5824             mask &= ~CPSR_M;
5825             if (write_type != CPSRWriteByGDBStub &&
5826                 arm_feature(env, ARM_FEATURE_V8)) {
5827                 mask |= CPSR_IL;
5828                 val |= CPSR_IL;
5829             }
5830         } else {
5831             switch_mode(env, val & CPSR_M);
5832         }
5833     }
5834     mask &= ~CACHED_CPSR_BITS;
5835     env->uncached_cpsr = (env->uncached_cpsr & ~mask) | (val & mask);
5836 }
5837 
5838 /* Sign/zero extend */
5839 uint32_t HELPER(sxtb16)(uint32_t x)
5840 {
5841     uint32_t res;
5842     res = (uint16_t)(int8_t)x;
5843     res |= (uint32_t)(int8_t)(x >> 16) << 16;
5844     return res;
5845 }
5846 
5847 uint32_t HELPER(uxtb16)(uint32_t x)
5848 {
5849     uint32_t res;
5850     res = (uint16_t)(uint8_t)x;
5851     res |= (uint32_t)(uint8_t)(x >> 16) << 16;
5852     return res;
5853 }
5854 
5855 int32_t HELPER(sdiv)(int32_t num, int32_t den)
5856 {
5857     if (den == 0)
5858       return 0;
5859     if (num == INT_MIN && den == -1)
5860       return INT_MIN;
5861     return num / den;
5862 }
5863 
5864 uint32_t HELPER(udiv)(uint32_t num, uint32_t den)
5865 {
5866     if (den == 0)
5867       return 0;
5868     return num / den;
5869 }
5870 
5871 uint32_t HELPER(rbit)(uint32_t x)
5872 {
5873     return revbit32(x);
5874 }
5875 
5876 #if defined(CONFIG_USER_ONLY)
5877 
5878 /* These should probably raise undefined insn exceptions.  */
5879 void HELPER(v7m_msr)(CPUARMState *env, uint32_t reg, uint32_t val)
5880 {
5881     ARMCPU *cpu = arm_env_get_cpu(env);
5882 
5883     cpu_abort(CPU(cpu), "v7m_msr %d\n", reg);
5884 }
5885 
5886 uint32_t HELPER(v7m_mrs)(CPUARMState *env, uint32_t reg)
5887 {
5888     ARMCPU *cpu = arm_env_get_cpu(env);
5889 
5890     cpu_abort(CPU(cpu), "v7m_mrs %d\n", reg);
5891     return 0;
5892 }
5893 
5894 void HELPER(v7m_bxns)(CPUARMState *env, uint32_t dest)
5895 {
5896     /* translate.c should never generate calls here in user-only mode */
5897     g_assert_not_reached();
5898 }
5899 
5900 void HELPER(v7m_blxns)(CPUARMState *env, uint32_t dest)
5901 {
5902     /* translate.c should never generate calls here in user-only mode */
5903     g_assert_not_reached();
5904 }
5905 
5906 void switch_mode(CPUARMState *env, int mode)
5907 {
5908     ARMCPU *cpu = arm_env_get_cpu(env);
5909 
5910     if (mode != ARM_CPU_MODE_USR) {
5911         cpu_abort(CPU(cpu), "Tried to switch out of user mode\n");
5912     }
5913 }
5914 
5915 uint32_t arm_phys_excp_target_el(CPUState *cs, uint32_t excp_idx,
5916                                  uint32_t cur_el, bool secure)
5917 {
5918     return 1;
5919 }
5920 
5921 void aarch64_sync_64_to_32(CPUARMState *env)
5922 {
5923     g_assert_not_reached();
5924 }
5925 
5926 #else
5927 
5928 void switch_mode(CPUARMState *env, int mode)
5929 {
5930     int old_mode;
5931     int i;
5932 
5933     old_mode = env->uncached_cpsr & CPSR_M;
5934     if (mode == old_mode)
5935         return;
5936 
5937     if (old_mode == ARM_CPU_MODE_FIQ) {
5938         memcpy (env->fiq_regs, env->regs + 8, 5 * sizeof(uint32_t));
5939         memcpy (env->regs + 8, env->usr_regs, 5 * sizeof(uint32_t));
5940     } else if (mode == ARM_CPU_MODE_FIQ) {
5941         memcpy (env->usr_regs, env->regs + 8, 5 * sizeof(uint32_t));
5942         memcpy (env->regs + 8, env->fiq_regs, 5 * sizeof(uint32_t));
5943     }
5944 
5945     i = bank_number(old_mode);
5946     env->banked_r13[i] = env->regs[13];
5947     env->banked_r14[i] = env->regs[14];
5948     env->banked_spsr[i] = env->spsr;
5949 
5950     i = bank_number(mode);
5951     env->regs[13] = env->banked_r13[i];
5952     env->regs[14] = env->banked_r14[i];
5953     env->spsr = env->banked_spsr[i];
5954 }
5955 
5956 /* Physical Interrupt Target EL Lookup Table
5957  *
5958  * [ From ARM ARM section G1.13.4 (Table G1-15) ]
5959  *
5960  * The below multi-dimensional table is used for looking up the target
5961  * exception level given numerous condition criteria.  Specifically, the
5962  * target EL is based on SCR and HCR routing controls as well as the
5963  * currently executing EL and secure state.
5964  *
5965  *    Dimensions:
5966  *    target_el_table[2][2][2][2][2][4]
5967  *                    |  |  |  |  |  +--- Current EL
5968  *                    |  |  |  |  +------ Non-secure(0)/Secure(1)
5969  *                    |  |  |  +--------- HCR mask override
5970  *                    |  |  +------------ SCR exec state control
5971  *                    |  +--------------- SCR mask override
5972  *                    +------------------ 32-bit(0)/64-bit(1) EL3
5973  *
5974  *    The table values are as such:
5975  *    0-3 = EL0-EL3
5976  *     -1 = Cannot occur
5977  *
5978  * The ARM ARM target EL table includes entries indicating that an "exception
5979  * is not taken".  The two cases where this is applicable are:
5980  *    1) An exception is taken from EL3 but the SCR does not have the exception
5981  *    routed to EL3.
5982  *    2) An exception is taken from EL2 but the HCR does not have the exception
5983  *    routed to EL2.
5984  * In these two cases, the below table contain a target of EL1.  This value is
5985  * returned as it is expected that the consumer of the table data will check
5986  * for "target EL >= current EL" to ensure the exception is not taken.
5987  *
5988  *            SCR     HCR
5989  *         64  EA     AMO                 From
5990  *        BIT IRQ     IMO      Non-secure         Secure
5991  *        EL3 FIQ  RW FMO   EL0 EL1 EL2 EL3   EL0 EL1 EL2 EL3
5992  */
5993 static const int8_t target_el_table[2][2][2][2][2][4] = {
5994     {{{{/* 0   0   0   0 */{ 1,  1,  2, -1 },{ 3, -1, -1,  3 },},
5995        {/* 0   0   0   1 */{ 2,  2,  2, -1 },{ 3, -1, -1,  3 },},},
5996       {{/* 0   0   1   0 */{ 1,  1,  2, -1 },{ 3, -1, -1,  3 },},
5997        {/* 0   0   1   1 */{ 2,  2,  2, -1 },{ 3, -1, -1,  3 },},},},
5998      {{{/* 0   1   0   0 */{ 3,  3,  3, -1 },{ 3, -1, -1,  3 },},
5999        {/* 0   1   0   1 */{ 3,  3,  3, -1 },{ 3, -1, -1,  3 },},},
6000       {{/* 0   1   1   0 */{ 3,  3,  3, -1 },{ 3, -1, -1,  3 },},
6001        {/* 0   1   1   1 */{ 3,  3,  3, -1 },{ 3, -1, -1,  3 },},},},},
6002     {{{{/* 1   0   0   0 */{ 1,  1,  2, -1 },{ 1,  1, -1,  1 },},
6003        {/* 1   0   0   1 */{ 2,  2,  2, -1 },{ 1,  1, -1,  1 },},},
6004       {{/* 1   0   1   0 */{ 1,  1,  1, -1 },{ 1,  1, -1,  1 },},
6005        {/* 1   0   1   1 */{ 2,  2,  2, -1 },{ 1,  1, -1,  1 },},},},
6006      {{{/* 1   1   0   0 */{ 3,  3,  3, -1 },{ 3,  3, -1,  3 },},
6007        {/* 1   1   0   1 */{ 3,  3,  3, -1 },{ 3,  3, -1,  3 },},},
6008       {{/* 1   1   1   0 */{ 3,  3,  3, -1 },{ 3,  3, -1,  3 },},
6009        {/* 1   1   1   1 */{ 3,  3,  3, -1 },{ 3,  3, -1,  3 },},},},},
6010 };
6011 
6012 /*
6013  * Determine the target EL for physical exceptions
6014  */
6015 uint32_t arm_phys_excp_target_el(CPUState *cs, uint32_t excp_idx,
6016                                  uint32_t cur_el, bool secure)
6017 {
6018     CPUARMState *env = cs->env_ptr;
6019     int rw;
6020     int scr;
6021     int hcr;
6022     int target_el;
6023     /* Is the highest EL AArch64? */
6024     int is64 = arm_feature(env, ARM_FEATURE_AARCH64);
6025 
6026     if (arm_feature(env, ARM_FEATURE_EL3)) {
6027         rw = ((env->cp15.scr_el3 & SCR_RW) == SCR_RW);
6028     } else {
6029         /* Either EL2 is the highest EL (and so the EL2 register width
6030          * is given by is64); or there is no EL2 or EL3, in which case
6031          * the value of 'rw' does not affect the table lookup anyway.
6032          */
6033         rw = is64;
6034     }
6035 
6036     switch (excp_idx) {
6037     case EXCP_IRQ:
6038         scr = ((env->cp15.scr_el3 & SCR_IRQ) == SCR_IRQ);
6039         hcr = ((env->cp15.hcr_el2 & HCR_IMO) == HCR_IMO);
6040         break;
6041     case EXCP_FIQ:
6042         scr = ((env->cp15.scr_el3 & SCR_FIQ) == SCR_FIQ);
6043         hcr = ((env->cp15.hcr_el2 & HCR_FMO) == HCR_FMO);
6044         break;
6045     default:
6046         scr = ((env->cp15.scr_el3 & SCR_EA) == SCR_EA);
6047         hcr = ((env->cp15.hcr_el2 & HCR_AMO) == HCR_AMO);
6048         break;
6049     };
6050 
6051     /* If HCR.TGE is set then HCR is treated as being 1 */
6052     hcr |= ((env->cp15.hcr_el2 & HCR_TGE) == HCR_TGE);
6053 
6054     /* Perform a table-lookup for the target EL given the current state */
6055     target_el = target_el_table[is64][scr][rw][hcr][secure][cur_el];
6056 
6057     assert(target_el > 0);
6058 
6059     return target_el;
6060 }
6061 
6062 static void v7m_push(CPUARMState *env, uint32_t val)
6063 {
6064     CPUState *cs = CPU(arm_env_get_cpu(env));
6065 
6066     env->regs[13] -= 4;
6067     stl_phys(cs->as, env->regs[13], val);
6068 }
6069 
6070 /* Return true if we're using the process stack pointer (not the MSP) */
6071 static bool v7m_using_psp(CPUARMState *env)
6072 {
6073     /* Handler mode always uses the main stack; for thread mode
6074      * the CONTROL.SPSEL bit determines the answer.
6075      * Note that in v7M it is not possible to be in Handler mode with
6076      * CONTROL.SPSEL non-zero, but in v8M it is, so we must check both.
6077      */
6078     return !arm_v7m_is_handler_mode(env) &&
6079         env->v7m.control[env->v7m.secure] & R_V7M_CONTROL_SPSEL_MASK;
6080 }
6081 
6082 /* Write to v7M CONTROL.SPSEL bit for the specified security bank.
6083  * This may change the current stack pointer between Main and Process
6084  * stack pointers if it is done for the CONTROL register for the current
6085  * security state.
6086  */
6087 static void write_v7m_control_spsel_for_secstate(CPUARMState *env,
6088                                                  bool new_spsel,
6089                                                  bool secstate)
6090 {
6091     bool old_is_psp = v7m_using_psp(env);
6092 
6093     env->v7m.control[secstate] =
6094         deposit32(env->v7m.control[secstate],
6095                   R_V7M_CONTROL_SPSEL_SHIFT,
6096                   R_V7M_CONTROL_SPSEL_LENGTH, new_spsel);
6097 
6098     if (secstate == env->v7m.secure) {
6099         bool new_is_psp = v7m_using_psp(env);
6100         uint32_t tmp;
6101 
6102         if (old_is_psp != new_is_psp) {
6103             tmp = env->v7m.other_sp;
6104             env->v7m.other_sp = env->regs[13];
6105             env->regs[13] = tmp;
6106         }
6107     }
6108 }
6109 
6110 /* Write to v7M CONTROL.SPSEL bit. This may change the current
6111  * stack pointer between Main and Process stack pointers.
6112  */
6113 static void write_v7m_control_spsel(CPUARMState *env, bool new_spsel)
6114 {
6115     write_v7m_control_spsel_for_secstate(env, new_spsel, env->v7m.secure);
6116 }
6117 
6118 void write_v7m_exception(CPUARMState *env, uint32_t new_exc)
6119 {
6120     /* Write a new value to v7m.exception, thus transitioning into or out
6121      * of Handler mode; this may result in a change of active stack pointer.
6122      */
6123     bool new_is_psp, old_is_psp = v7m_using_psp(env);
6124     uint32_t tmp;
6125 
6126     env->v7m.exception = new_exc;
6127 
6128     new_is_psp = v7m_using_psp(env);
6129 
6130     if (old_is_psp != new_is_psp) {
6131         tmp = env->v7m.other_sp;
6132         env->v7m.other_sp = env->regs[13];
6133         env->regs[13] = tmp;
6134     }
6135 }
6136 
6137 /* Switch M profile security state between NS and S */
6138 static void switch_v7m_security_state(CPUARMState *env, bool new_secstate)
6139 {
6140     uint32_t new_ss_msp, new_ss_psp;
6141 
6142     if (env->v7m.secure == new_secstate) {
6143         return;
6144     }
6145 
6146     /* All the banked state is accessed by looking at env->v7m.secure
6147      * except for the stack pointer; rearrange the SP appropriately.
6148      */
6149     new_ss_msp = env->v7m.other_ss_msp;
6150     new_ss_psp = env->v7m.other_ss_psp;
6151 
6152     if (v7m_using_psp(env)) {
6153         env->v7m.other_ss_psp = env->regs[13];
6154         env->v7m.other_ss_msp = env->v7m.other_sp;
6155     } else {
6156         env->v7m.other_ss_msp = env->regs[13];
6157         env->v7m.other_ss_psp = env->v7m.other_sp;
6158     }
6159 
6160     env->v7m.secure = new_secstate;
6161 
6162     if (v7m_using_psp(env)) {
6163         env->regs[13] = new_ss_psp;
6164         env->v7m.other_sp = new_ss_msp;
6165     } else {
6166         env->regs[13] = new_ss_msp;
6167         env->v7m.other_sp = new_ss_psp;
6168     }
6169 }
6170 
6171 void HELPER(v7m_bxns)(CPUARMState *env, uint32_t dest)
6172 {
6173     /* Handle v7M BXNS:
6174      *  - if the return value is a magic value, do exception return (like BX)
6175      *  - otherwise bit 0 of the return value is the target security state
6176      */
6177     uint32_t min_magic;
6178 
6179     if (arm_feature(env, ARM_FEATURE_M_SECURITY)) {
6180         /* Covers FNC_RETURN and EXC_RETURN magic */
6181         min_magic = FNC_RETURN_MIN_MAGIC;
6182     } else {
6183         /* EXC_RETURN magic only */
6184         min_magic = EXC_RETURN_MIN_MAGIC;
6185     }
6186 
6187     if (dest >= min_magic) {
6188         /* This is an exception return magic value; put it where
6189          * do_v7m_exception_exit() expects and raise EXCEPTION_EXIT.
6190          * Note that if we ever add gen_ss_advance() singlestep support to
6191          * M profile this should count as an "instruction execution complete"
6192          * event (compare gen_bx_excret_final_code()).
6193          */
6194         env->regs[15] = dest & ~1;
6195         env->thumb = dest & 1;
6196         HELPER(exception_internal)(env, EXCP_EXCEPTION_EXIT);
6197         /* notreached */
6198     }
6199 
6200     /* translate.c should have made BXNS UNDEF unless we're secure */
6201     assert(env->v7m.secure);
6202 
6203     switch_v7m_security_state(env, dest & 1);
6204     env->thumb = 1;
6205     env->regs[15] = dest & ~1;
6206 }
6207 
6208 void HELPER(v7m_blxns)(CPUARMState *env, uint32_t dest)
6209 {
6210     /* Handle v7M BLXNS:
6211      *  - bit 0 of the destination address is the target security state
6212      */
6213 
6214     /* At this point regs[15] is the address just after the BLXNS */
6215     uint32_t nextinst = env->regs[15] | 1;
6216     uint32_t sp = env->regs[13] - 8;
6217     uint32_t saved_psr;
6218 
6219     /* translate.c will have made BLXNS UNDEF unless we're secure */
6220     assert(env->v7m.secure);
6221 
6222     if (dest & 1) {
6223         /* target is Secure, so this is just a normal BLX,
6224          * except that the low bit doesn't indicate Thumb/not.
6225          */
6226         env->regs[14] = nextinst;
6227         env->thumb = 1;
6228         env->regs[15] = dest & ~1;
6229         return;
6230     }
6231 
6232     /* Target is non-secure: first push a stack frame */
6233     if (!QEMU_IS_ALIGNED(sp, 8)) {
6234         qemu_log_mask(LOG_GUEST_ERROR,
6235                       "BLXNS with misaligned SP is UNPREDICTABLE\n");
6236     }
6237 
6238     saved_psr = env->v7m.exception;
6239     if (env->v7m.control[M_REG_S] & R_V7M_CONTROL_SFPA_MASK) {
6240         saved_psr |= XPSR_SFPA;
6241     }
6242 
6243     /* Note that these stores can throw exceptions on MPU faults */
6244     cpu_stl_data(env, sp, nextinst);
6245     cpu_stl_data(env, sp + 4, saved_psr);
6246 
6247     env->regs[13] = sp;
6248     env->regs[14] = 0xfeffffff;
6249     if (arm_v7m_is_handler_mode(env)) {
6250         /* Write a dummy value to IPSR, to avoid leaking the current secure
6251          * exception number to non-secure code. This is guaranteed not
6252          * to cause write_v7m_exception() to actually change stacks.
6253          */
6254         write_v7m_exception(env, 1);
6255     }
6256     switch_v7m_security_state(env, 0);
6257     env->thumb = 1;
6258     env->regs[15] = dest;
6259 }
6260 
6261 static uint32_t *get_v7m_sp_ptr(CPUARMState *env, bool secure, bool threadmode,
6262                                 bool spsel)
6263 {
6264     /* Return a pointer to the location where we currently store the
6265      * stack pointer for the requested security state and thread mode.
6266      * This pointer will become invalid if the CPU state is updated
6267      * such that the stack pointers are switched around (eg changing
6268      * the SPSEL control bit).
6269      * Compare the v8M ARM ARM pseudocode LookUpSP_with_security_mode().
6270      * Unlike that pseudocode, we require the caller to pass us in the
6271      * SPSEL control bit value; this is because we also use this
6272      * function in handling of pushing of the callee-saves registers
6273      * part of the v8M stack frame (pseudocode PushCalleeStack()),
6274      * and in the tailchain codepath the SPSEL bit comes from the exception
6275      * return magic LR value from the previous exception. The pseudocode
6276      * opencodes the stack-selection in PushCalleeStack(), but we prefer
6277      * to make this utility function generic enough to do the job.
6278      */
6279     bool want_psp = threadmode && spsel;
6280 
6281     if (secure == env->v7m.secure) {
6282         if (want_psp == v7m_using_psp(env)) {
6283             return &env->regs[13];
6284         } else {
6285             return &env->v7m.other_sp;
6286         }
6287     } else {
6288         if (want_psp) {
6289             return &env->v7m.other_ss_psp;
6290         } else {
6291             return &env->v7m.other_ss_msp;
6292         }
6293     }
6294 }
6295 
6296 static uint32_t arm_v7m_load_vector(ARMCPU *cpu, bool targets_secure)
6297 {
6298     CPUState *cs = CPU(cpu);
6299     CPUARMState *env = &cpu->env;
6300     MemTxResult result;
6301     hwaddr vec = env->v7m.vecbase[targets_secure] + env->v7m.exception * 4;
6302     uint32_t addr;
6303 
6304     addr = address_space_ldl(cs->as, vec,
6305                              MEMTXATTRS_UNSPECIFIED, &result);
6306     if (result != MEMTX_OK) {
6307         /* Architecturally this should cause a HardFault setting HSFR.VECTTBL,
6308          * which would then be immediately followed by our failing to load
6309          * the entry vector for that HardFault, which is a Lockup case.
6310          * Since we don't model Lockup, we just report this guest error
6311          * via cpu_abort().
6312          */
6313         cpu_abort(cs, "Failed to read from %s exception vector table "
6314                   "entry %08x\n", targets_secure ? "secure" : "nonsecure",
6315                   (unsigned)vec);
6316     }
6317     return addr;
6318 }
6319 
6320 static void v7m_push_callee_stack(ARMCPU *cpu, uint32_t lr, bool dotailchain)
6321 {
6322     /* For v8M, push the callee-saves register part of the stack frame.
6323      * Compare the v8M pseudocode PushCalleeStack().
6324      * In the tailchaining case this may not be the current stack.
6325      */
6326     CPUARMState *env = &cpu->env;
6327     CPUState *cs = CPU(cpu);
6328     uint32_t *frame_sp_p;
6329     uint32_t frameptr;
6330 
6331     if (dotailchain) {
6332         frame_sp_p = get_v7m_sp_ptr(env, true,
6333                                     lr & R_V7M_EXCRET_MODE_MASK,
6334                                     lr & R_V7M_EXCRET_SPSEL_MASK);
6335     } else {
6336         frame_sp_p = &env->regs[13];
6337     }
6338 
6339     frameptr = *frame_sp_p - 0x28;
6340 
6341     stl_phys(cs->as, frameptr, 0xfefa125b);
6342     stl_phys(cs->as, frameptr + 0x8, env->regs[4]);
6343     stl_phys(cs->as, frameptr + 0xc, env->regs[5]);
6344     stl_phys(cs->as, frameptr + 0x10, env->regs[6]);
6345     stl_phys(cs->as, frameptr + 0x14, env->regs[7]);
6346     stl_phys(cs->as, frameptr + 0x18, env->regs[8]);
6347     stl_phys(cs->as, frameptr + 0x1c, env->regs[9]);
6348     stl_phys(cs->as, frameptr + 0x20, env->regs[10]);
6349     stl_phys(cs->as, frameptr + 0x24, env->regs[11]);
6350 
6351     *frame_sp_p = frameptr;
6352 }
6353 
6354 static void v7m_exception_taken(ARMCPU *cpu, uint32_t lr, bool dotailchain)
6355 {
6356     /* Do the "take the exception" parts of exception entry,
6357      * but not the pushing of state to the stack. This is
6358      * similar to the pseudocode ExceptionTaken() function.
6359      */
6360     CPUARMState *env = &cpu->env;
6361     uint32_t addr;
6362     bool targets_secure;
6363 
6364     targets_secure = armv7m_nvic_acknowledge_irq(env->nvic);
6365 
6366     if (arm_feature(env, ARM_FEATURE_V8)) {
6367         if (arm_feature(env, ARM_FEATURE_M_SECURITY) &&
6368             (lr & R_V7M_EXCRET_S_MASK)) {
6369             /* The background code (the owner of the registers in the
6370              * exception frame) is Secure. This means it may either already
6371              * have or now needs to push callee-saves registers.
6372              */
6373             if (targets_secure) {
6374                 if (dotailchain && !(lr & R_V7M_EXCRET_ES_MASK)) {
6375                     /* We took an exception from Secure to NonSecure
6376                      * (which means the callee-saved registers got stacked)
6377                      * and are now tailchaining to a Secure exception.
6378                      * Clear DCRS so eventual return from this Secure
6379                      * exception unstacks the callee-saved registers.
6380                      */
6381                     lr &= ~R_V7M_EXCRET_DCRS_MASK;
6382                 }
6383             } else {
6384                 /* We're going to a non-secure exception; push the
6385                  * callee-saves registers to the stack now, if they're
6386                  * not already saved.
6387                  */
6388                 if (lr & R_V7M_EXCRET_DCRS_MASK &&
6389                     !(dotailchain && (lr & R_V7M_EXCRET_ES_MASK))) {
6390                     v7m_push_callee_stack(cpu, lr, dotailchain);
6391                 }
6392                 lr |= R_V7M_EXCRET_DCRS_MASK;
6393             }
6394         }
6395 
6396         lr &= ~R_V7M_EXCRET_ES_MASK;
6397         if (targets_secure || !arm_feature(env, ARM_FEATURE_M_SECURITY)) {
6398             lr |= R_V7M_EXCRET_ES_MASK;
6399         }
6400         lr &= ~R_V7M_EXCRET_SPSEL_MASK;
6401         if (env->v7m.control[targets_secure] & R_V7M_CONTROL_SPSEL_MASK) {
6402             lr |= R_V7M_EXCRET_SPSEL_MASK;
6403         }
6404 
6405         /* Clear registers if necessary to prevent non-secure exception
6406          * code being able to see register values from secure code.
6407          * Where register values become architecturally UNKNOWN we leave
6408          * them with their previous values.
6409          */
6410         if (arm_feature(env, ARM_FEATURE_M_SECURITY)) {
6411             if (!targets_secure) {
6412                 /* Always clear the caller-saved registers (they have been
6413                  * pushed to the stack earlier in v7m_push_stack()).
6414                  * Clear callee-saved registers if the background code is
6415                  * Secure (in which case these regs were saved in
6416                  * v7m_push_callee_stack()).
6417                  */
6418                 int i;
6419 
6420                 for (i = 0; i < 13; i++) {
6421                     /* r4..r11 are callee-saves, zero only if EXCRET.S == 1 */
6422                     if (i < 4 || i > 11 || (lr & R_V7M_EXCRET_S_MASK)) {
6423                         env->regs[i] = 0;
6424                     }
6425                 }
6426                 /* Clear EAPSR */
6427                 xpsr_write(env, 0, XPSR_NZCV | XPSR_Q | XPSR_GE | XPSR_IT);
6428             }
6429         }
6430     }
6431 
6432     /* Switch to target security state -- must do this before writing SPSEL */
6433     switch_v7m_security_state(env, targets_secure);
6434     write_v7m_control_spsel(env, 0);
6435     arm_clear_exclusive(env);
6436     /* Clear IT bits */
6437     env->condexec_bits = 0;
6438     env->regs[14] = lr;
6439     addr = arm_v7m_load_vector(cpu, targets_secure);
6440     env->regs[15] = addr & 0xfffffffe;
6441     env->thumb = addr & 1;
6442 }
6443 
6444 static void v7m_push_stack(ARMCPU *cpu)
6445 {
6446     /* Do the "set up stack frame" part of exception entry,
6447      * similar to pseudocode PushStack().
6448      */
6449     CPUARMState *env = &cpu->env;
6450     uint32_t xpsr = xpsr_read(env);
6451 
6452     /* Align stack pointer if the guest wants that */
6453     if ((env->regs[13] & 4) &&
6454         (env->v7m.ccr[env->v7m.secure] & R_V7M_CCR_STKALIGN_MASK)) {
6455         env->regs[13] -= 4;
6456         xpsr |= XPSR_SPREALIGN;
6457     }
6458     /* Switch to the handler mode.  */
6459     v7m_push(env, xpsr);
6460     v7m_push(env, env->regs[15]);
6461     v7m_push(env, env->regs[14]);
6462     v7m_push(env, env->regs[12]);
6463     v7m_push(env, env->regs[3]);
6464     v7m_push(env, env->regs[2]);
6465     v7m_push(env, env->regs[1]);
6466     v7m_push(env, env->regs[0]);
6467 }
6468 
6469 static void do_v7m_exception_exit(ARMCPU *cpu)
6470 {
6471     CPUARMState *env = &cpu->env;
6472     CPUState *cs = CPU(cpu);
6473     uint32_t excret;
6474     uint32_t xpsr;
6475     bool ufault = false;
6476     bool sfault = false;
6477     bool return_to_sp_process;
6478     bool return_to_handler;
6479     bool rettobase = false;
6480     bool exc_secure = false;
6481     bool return_to_secure;
6482 
6483     /* If we're not in Handler mode then jumps to magic exception-exit
6484      * addresses don't have magic behaviour. However for the v8M
6485      * security extensions the magic secure-function-return has to
6486      * work in thread mode too, so to avoid doing an extra check in
6487      * the generated code we allow exception-exit magic to also cause the
6488      * internal exception and bring us here in thread mode. Correct code
6489      * will never try to do this (the following insn fetch will always
6490      * fault) so we the overhead of having taken an unnecessary exception
6491      * doesn't matter.
6492      */
6493     if (!arm_v7m_is_handler_mode(env)) {
6494         return;
6495     }
6496 
6497     /* In the spec pseudocode ExceptionReturn() is called directly
6498      * from BXWritePC() and gets the full target PC value including
6499      * bit zero. In QEMU's implementation we treat it as a normal
6500      * jump-to-register (which is then caught later on), and so split
6501      * the target value up between env->regs[15] and env->thumb in
6502      * gen_bx(). Reconstitute it.
6503      */
6504     excret = env->regs[15];
6505     if (env->thumb) {
6506         excret |= 1;
6507     }
6508 
6509     qemu_log_mask(CPU_LOG_INT, "Exception return: magic PC %" PRIx32
6510                   " previous exception %d\n",
6511                   excret, env->v7m.exception);
6512 
6513     if ((excret & R_V7M_EXCRET_RES1_MASK) != R_V7M_EXCRET_RES1_MASK) {
6514         qemu_log_mask(LOG_GUEST_ERROR, "M profile: zero high bits in exception "
6515                       "exit PC value 0x%" PRIx32 " are UNPREDICTABLE\n",
6516                       excret);
6517     }
6518 
6519     if (arm_feature(env, ARM_FEATURE_M_SECURITY)) {
6520         /* EXC_RETURN.ES validation check (R_SMFL). We must do this before
6521          * we pick which FAULTMASK to clear.
6522          */
6523         if (!env->v7m.secure &&
6524             ((excret & R_V7M_EXCRET_ES_MASK) ||
6525              !(excret & R_V7M_EXCRET_DCRS_MASK))) {
6526             sfault = 1;
6527             /* For all other purposes, treat ES as 0 (R_HXSR) */
6528             excret &= ~R_V7M_EXCRET_ES_MASK;
6529         }
6530     }
6531 
6532     if (env->v7m.exception != ARMV7M_EXCP_NMI) {
6533         /* Auto-clear FAULTMASK on return from other than NMI.
6534          * If the security extension is implemented then this only
6535          * happens if the raw execution priority is >= 0; the
6536          * value of the ES bit in the exception return value indicates
6537          * which security state's faultmask to clear. (v8M ARM ARM R_KBNF.)
6538          */
6539         if (arm_feature(env, ARM_FEATURE_M_SECURITY)) {
6540             exc_secure = excret & R_V7M_EXCRET_ES_MASK;
6541             if (armv7m_nvic_raw_execution_priority(env->nvic) >= 0) {
6542                 env->v7m.faultmask[exc_secure] = 0;
6543             }
6544         } else {
6545             env->v7m.faultmask[M_REG_NS] = 0;
6546         }
6547     }
6548 
6549     switch (armv7m_nvic_complete_irq(env->nvic, env->v7m.exception,
6550                                      exc_secure)) {
6551     case -1:
6552         /* attempt to exit an exception that isn't active */
6553         ufault = true;
6554         break;
6555     case 0:
6556         /* still an irq active now */
6557         break;
6558     case 1:
6559         /* we returned to base exception level, no nesting.
6560          * (In the pseudocode this is written using "NestedActivation != 1"
6561          * where we have 'rettobase == false'.)
6562          */
6563         rettobase = true;
6564         break;
6565     default:
6566         g_assert_not_reached();
6567     }
6568 
6569     return_to_handler = !(excret & R_V7M_EXCRET_MODE_MASK);
6570     return_to_sp_process = excret & R_V7M_EXCRET_SPSEL_MASK;
6571     return_to_secure = arm_feature(env, ARM_FEATURE_M_SECURITY) &&
6572         (excret & R_V7M_EXCRET_S_MASK);
6573 
6574     if (arm_feature(env, ARM_FEATURE_V8)) {
6575         if (!arm_feature(env, ARM_FEATURE_M_SECURITY)) {
6576             /* UNPREDICTABLE if S == 1 or DCRS == 0 or ES == 1 (R_XLCP);
6577              * we choose to take the UsageFault.
6578              */
6579             if ((excret & R_V7M_EXCRET_S_MASK) ||
6580                 (excret & R_V7M_EXCRET_ES_MASK) ||
6581                 !(excret & R_V7M_EXCRET_DCRS_MASK)) {
6582                 ufault = true;
6583             }
6584         }
6585         if (excret & R_V7M_EXCRET_RES0_MASK) {
6586             ufault = true;
6587         }
6588     } else {
6589         /* For v7M we only recognize certain combinations of the low bits */
6590         switch (excret & 0xf) {
6591         case 1: /* Return to Handler */
6592             break;
6593         case 13: /* Return to Thread using Process stack */
6594         case 9: /* Return to Thread using Main stack */
6595             /* We only need to check NONBASETHRDENA for v7M, because in
6596              * v8M this bit does not exist (it is RES1).
6597              */
6598             if (!rettobase &&
6599                 !(env->v7m.ccr[env->v7m.secure] &
6600                   R_V7M_CCR_NONBASETHRDENA_MASK)) {
6601                 ufault = true;
6602             }
6603             break;
6604         default:
6605             ufault = true;
6606         }
6607     }
6608 
6609     if (sfault) {
6610         env->v7m.sfsr |= R_V7M_SFSR_INVER_MASK;
6611         armv7m_nvic_set_pending(env->nvic, ARMV7M_EXCP_SECURE, false);
6612         v7m_exception_taken(cpu, excret, true);
6613         qemu_log_mask(CPU_LOG_INT, "...taking SecureFault on existing "
6614                       "stackframe: failed EXC_RETURN.ES validity check\n");
6615         return;
6616     }
6617 
6618     if (ufault) {
6619         /* Bad exception return: instead of popping the exception
6620          * stack, directly take a usage fault on the current stack.
6621          */
6622         env->v7m.cfsr[env->v7m.secure] |= R_V7M_CFSR_INVPC_MASK;
6623         armv7m_nvic_set_pending(env->nvic, ARMV7M_EXCP_USAGE, env->v7m.secure);
6624         v7m_exception_taken(cpu, excret, true);
6625         qemu_log_mask(CPU_LOG_INT, "...taking UsageFault on existing "
6626                       "stackframe: failed exception return integrity check\n");
6627         return;
6628     }
6629 
6630     /* Set CONTROL.SPSEL from excret.SPSEL. Since we're still in
6631      * Handler mode (and will be until we write the new XPSR.Interrupt
6632      * field) this does not switch around the current stack pointer.
6633      */
6634     write_v7m_control_spsel_for_secstate(env, return_to_sp_process, exc_secure);
6635 
6636     switch_v7m_security_state(env, return_to_secure);
6637 
6638     {
6639         /* The stack pointer we should be reading the exception frame from
6640          * depends on bits in the magic exception return type value (and
6641          * for v8M isn't necessarily the stack pointer we will eventually
6642          * end up resuming execution with). Get a pointer to the location
6643          * in the CPU state struct where the SP we need is currently being
6644          * stored; we will use and modify it in place.
6645          * We use this limited C variable scope so we don't accidentally
6646          * use 'frame_sp_p' after we do something that makes it invalid.
6647          */
6648         uint32_t *frame_sp_p = get_v7m_sp_ptr(env,
6649                                               return_to_secure,
6650                                               !return_to_handler,
6651                                               return_to_sp_process);
6652         uint32_t frameptr = *frame_sp_p;
6653 
6654         if (!QEMU_IS_ALIGNED(frameptr, 8) &&
6655             arm_feature(env, ARM_FEATURE_V8)) {
6656             qemu_log_mask(LOG_GUEST_ERROR,
6657                           "M profile exception return with non-8-aligned SP "
6658                           "for destination state is UNPREDICTABLE\n");
6659         }
6660 
6661         /* Do we need to pop callee-saved registers? */
6662         if (return_to_secure &&
6663             ((excret & R_V7M_EXCRET_ES_MASK) == 0 ||
6664              (excret & R_V7M_EXCRET_DCRS_MASK) == 0)) {
6665             uint32_t expected_sig = 0xfefa125b;
6666             uint32_t actual_sig = ldl_phys(cs->as, frameptr);
6667 
6668             if (expected_sig != actual_sig) {
6669                 /* Take a SecureFault on the current stack */
6670                 env->v7m.sfsr |= R_V7M_SFSR_INVIS_MASK;
6671                 armv7m_nvic_set_pending(env->nvic, ARMV7M_EXCP_SECURE, false);
6672                 v7m_exception_taken(cpu, excret, true);
6673                 qemu_log_mask(CPU_LOG_INT, "...taking SecureFault on existing "
6674                               "stackframe: failed exception return integrity "
6675                               "signature check\n");
6676                 return;
6677             }
6678 
6679             env->regs[4] = ldl_phys(cs->as, frameptr + 0x8);
6680             env->regs[5] = ldl_phys(cs->as, frameptr + 0xc);
6681             env->regs[6] = ldl_phys(cs->as, frameptr + 0x10);
6682             env->regs[7] = ldl_phys(cs->as, frameptr + 0x14);
6683             env->regs[8] = ldl_phys(cs->as, frameptr + 0x18);
6684             env->regs[9] = ldl_phys(cs->as, frameptr + 0x1c);
6685             env->regs[10] = ldl_phys(cs->as, frameptr + 0x20);
6686             env->regs[11] = ldl_phys(cs->as, frameptr + 0x24);
6687 
6688             frameptr += 0x28;
6689         }
6690 
6691         /* Pop registers. TODO: make these accesses use the correct
6692          * attributes and address space (S/NS, priv/unpriv) and handle
6693          * memory transaction failures.
6694          */
6695         env->regs[0] = ldl_phys(cs->as, frameptr);
6696         env->regs[1] = ldl_phys(cs->as, frameptr + 0x4);
6697         env->regs[2] = ldl_phys(cs->as, frameptr + 0x8);
6698         env->regs[3] = ldl_phys(cs->as, frameptr + 0xc);
6699         env->regs[12] = ldl_phys(cs->as, frameptr + 0x10);
6700         env->regs[14] = ldl_phys(cs->as, frameptr + 0x14);
6701         env->regs[15] = ldl_phys(cs->as, frameptr + 0x18);
6702 
6703         /* Returning from an exception with a PC with bit 0 set is defined
6704          * behaviour on v8M (bit 0 is ignored), but for v7M it was specified
6705          * to be UNPREDICTABLE. In practice actual v7M hardware seems to ignore
6706          * the lsbit, and there are several RTOSes out there which incorrectly
6707          * assume the r15 in the stack frame should be a Thumb-style "lsbit
6708          * indicates ARM/Thumb" value, so ignore the bit on v7M as well, but
6709          * complain about the badly behaved guest.
6710          */
6711         if (env->regs[15] & 1) {
6712             env->regs[15] &= ~1U;
6713             if (!arm_feature(env, ARM_FEATURE_V8)) {
6714                 qemu_log_mask(LOG_GUEST_ERROR,
6715                               "M profile return from interrupt with misaligned "
6716                               "PC is UNPREDICTABLE on v7M\n");
6717             }
6718         }
6719 
6720         xpsr = ldl_phys(cs->as, frameptr + 0x1c);
6721 
6722         if (arm_feature(env, ARM_FEATURE_V8)) {
6723             /* For v8M we have to check whether the xPSR exception field
6724              * matches the EXCRET value for return to handler/thread
6725              * before we commit to changing the SP and xPSR.
6726              */
6727             bool will_be_handler = (xpsr & XPSR_EXCP) != 0;
6728             if (return_to_handler != will_be_handler) {
6729                 /* Take an INVPC UsageFault on the current stack.
6730                  * By this point we will have switched to the security state
6731                  * for the background state, so this UsageFault will target
6732                  * that state.
6733                  */
6734                 armv7m_nvic_set_pending(env->nvic, ARMV7M_EXCP_USAGE,
6735                                         env->v7m.secure);
6736                 env->v7m.cfsr[env->v7m.secure] |= R_V7M_CFSR_INVPC_MASK;
6737                 v7m_exception_taken(cpu, excret, true);
6738                 qemu_log_mask(CPU_LOG_INT, "...taking UsageFault on existing "
6739                               "stackframe: failed exception return integrity "
6740                               "check\n");
6741                 return;
6742             }
6743         }
6744 
6745         /* Commit to consuming the stack frame */
6746         frameptr += 0x20;
6747         /* Undo stack alignment (the SPREALIGN bit indicates that the original
6748          * pre-exception SP was not 8-aligned and we added a padding word to
6749          * align it, so we undo this by ORing in the bit that increases it
6750          * from the current 8-aligned value to the 8-unaligned value. (Adding 4
6751          * would work too but a logical OR is how the pseudocode specifies it.)
6752          */
6753         if (xpsr & XPSR_SPREALIGN) {
6754             frameptr |= 4;
6755         }
6756         *frame_sp_p = frameptr;
6757     }
6758     /* This xpsr_write() will invalidate frame_sp_p as it may switch stack */
6759     xpsr_write(env, xpsr, ~XPSR_SPREALIGN);
6760 
6761     /* The restored xPSR exception field will be zero if we're
6762      * resuming in Thread mode. If that doesn't match what the
6763      * exception return excret specified then this is a UsageFault.
6764      * v7M requires we make this check here; v8M did it earlier.
6765      */
6766     if (return_to_handler != arm_v7m_is_handler_mode(env)) {
6767         /* Take an INVPC UsageFault by pushing the stack again;
6768          * we know we're v7M so this is never a Secure UsageFault.
6769          */
6770         assert(!arm_feature(env, ARM_FEATURE_V8));
6771         armv7m_nvic_set_pending(env->nvic, ARMV7M_EXCP_USAGE, false);
6772         env->v7m.cfsr[env->v7m.secure] |= R_V7M_CFSR_INVPC_MASK;
6773         v7m_push_stack(cpu);
6774         v7m_exception_taken(cpu, excret, false);
6775         qemu_log_mask(CPU_LOG_INT, "...taking UsageFault on new stackframe: "
6776                       "failed exception return integrity check\n");
6777         return;
6778     }
6779 
6780     /* Otherwise, we have a successful exception exit. */
6781     arm_clear_exclusive(env);
6782     qemu_log_mask(CPU_LOG_INT, "...successful exception return\n");
6783 }
6784 
6785 static bool do_v7m_function_return(ARMCPU *cpu)
6786 {
6787     /* v8M security extensions magic function return.
6788      * We may either:
6789      *  (1) throw an exception (longjump)
6790      *  (2) return true if we successfully handled the function return
6791      *  (3) return false if we failed a consistency check and have
6792      *      pended a UsageFault that needs to be taken now
6793      *
6794      * At this point the magic return value is split between env->regs[15]
6795      * and env->thumb. We don't bother to reconstitute it because we don't
6796      * need it (all values are handled the same way).
6797      */
6798     CPUARMState *env = &cpu->env;
6799     uint32_t newpc, newpsr, newpsr_exc;
6800 
6801     qemu_log_mask(CPU_LOG_INT, "...really v7M secure function return\n");
6802 
6803     {
6804         bool threadmode, spsel;
6805         TCGMemOpIdx oi;
6806         ARMMMUIdx mmu_idx;
6807         uint32_t *frame_sp_p;
6808         uint32_t frameptr;
6809 
6810         /* Pull the return address and IPSR from the Secure stack */
6811         threadmode = !arm_v7m_is_handler_mode(env);
6812         spsel = env->v7m.control[M_REG_S] & R_V7M_CONTROL_SPSEL_MASK;
6813 
6814         frame_sp_p = get_v7m_sp_ptr(env, true, threadmode, spsel);
6815         frameptr = *frame_sp_p;
6816 
6817         /* These loads may throw an exception (for MPU faults). We want to
6818          * do them as secure, so work out what MMU index that is.
6819          */
6820         mmu_idx = arm_v7m_mmu_idx_for_secstate(env, true);
6821         oi = make_memop_idx(MO_LE, arm_to_core_mmu_idx(mmu_idx));
6822         newpc = helper_le_ldul_mmu(env, frameptr, oi, 0);
6823         newpsr = helper_le_ldul_mmu(env, frameptr + 4, oi, 0);
6824 
6825         /* Consistency checks on new IPSR */
6826         newpsr_exc = newpsr & XPSR_EXCP;
6827         if (!((env->v7m.exception == 0 && newpsr_exc == 0) ||
6828               (env->v7m.exception == 1 && newpsr_exc != 0))) {
6829             /* Pend the fault and tell our caller to take it */
6830             env->v7m.cfsr[env->v7m.secure] |= R_V7M_CFSR_INVPC_MASK;
6831             armv7m_nvic_set_pending(env->nvic, ARMV7M_EXCP_USAGE,
6832                                     env->v7m.secure);
6833             qemu_log_mask(CPU_LOG_INT,
6834                           "...taking INVPC UsageFault: "
6835                           "IPSR consistency check failed\n");
6836             return false;
6837         }
6838 
6839         *frame_sp_p = frameptr + 8;
6840     }
6841 
6842     /* This invalidates frame_sp_p */
6843     switch_v7m_security_state(env, true);
6844     env->v7m.exception = newpsr_exc;
6845     env->v7m.control[M_REG_S] &= ~R_V7M_CONTROL_SFPA_MASK;
6846     if (newpsr & XPSR_SFPA) {
6847         env->v7m.control[M_REG_S] |= R_V7M_CONTROL_SFPA_MASK;
6848     }
6849     xpsr_write(env, 0, XPSR_IT);
6850     env->thumb = newpc & 1;
6851     env->regs[15] = newpc & ~1;
6852 
6853     qemu_log_mask(CPU_LOG_INT, "...function return successful\n");
6854     return true;
6855 }
6856 
6857 static void arm_log_exception(int idx)
6858 {
6859     if (qemu_loglevel_mask(CPU_LOG_INT)) {
6860         const char *exc = NULL;
6861         static const char * const excnames[] = {
6862             [EXCP_UDEF] = "Undefined Instruction",
6863             [EXCP_SWI] = "SVC",
6864             [EXCP_PREFETCH_ABORT] = "Prefetch Abort",
6865             [EXCP_DATA_ABORT] = "Data Abort",
6866             [EXCP_IRQ] = "IRQ",
6867             [EXCP_FIQ] = "FIQ",
6868             [EXCP_BKPT] = "Breakpoint",
6869             [EXCP_EXCEPTION_EXIT] = "QEMU v7M exception exit",
6870             [EXCP_KERNEL_TRAP] = "QEMU intercept of kernel commpage",
6871             [EXCP_HVC] = "Hypervisor Call",
6872             [EXCP_HYP_TRAP] = "Hypervisor Trap",
6873             [EXCP_SMC] = "Secure Monitor Call",
6874             [EXCP_VIRQ] = "Virtual IRQ",
6875             [EXCP_VFIQ] = "Virtual FIQ",
6876             [EXCP_SEMIHOST] = "Semihosting call",
6877             [EXCP_NOCP] = "v7M NOCP UsageFault",
6878             [EXCP_INVSTATE] = "v7M INVSTATE UsageFault",
6879         };
6880 
6881         if (idx >= 0 && idx < ARRAY_SIZE(excnames)) {
6882             exc = excnames[idx];
6883         }
6884         if (!exc) {
6885             exc = "unknown";
6886         }
6887         qemu_log_mask(CPU_LOG_INT, "Taking exception %d [%s]\n", idx, exc);
6888     }
6889 }
6890 
6891 static bool v7m_read_half_insn(ARMCPU *cpu, ARMMMUIdx mmu_idx,
6892                                uint32_t addr, uint16_t *insn)
6893 {
6894     /* Load a 16-bit portion of a v7M instruction, returning true on success,
6895      * or false on failure (in which case we will have pended the appropriate
6896      * exception).
6897      * We need to do the instruction fetch's MPU and SAU checks
6898      * like this because there is no MMU index that would allow
6899      * doing the load with a single function call. Instead we must
6900      * first check that the security attributes permit the load
6901      * and that they don't mismatch on the two halves of the instruction,
6902      * and then we do the load as a secure load (ie using the security
6903      * attributes of the address, not the CPU, as architecturally required).
6904      */
6905     CPUState *cs = CPU(cpu);
6906     CPUARMState *env = &cpu->env;
6907     V8M_SAttributes sattrs = {};
6908     MemTxAttrs attrs = {};
6909     ARMMMUFaultInfo fi = {};
6910     MemTxResult txres;
6911     target_ulong page_size;
6912     hwaddr physaddr;
6913     int prot;
6914     uint32_t fsr;
6915 
6916     v8m_security_lookup(env, addr, MMU_INST_FETCH, mmu_idx, &sattrs);
6917     if (!sattrs.nsc || sattrs.ns) {
6918         /* This must be the second half of the insn, and it straddles a
6919          * region boundary with the second half not being S&NSC.
6920          */
6921         env->v7m.sfsr |= R_V7M_SFSR_INVEP_MASK;
6922         armv7m_nvic_set_pending(env->nvic, ARMV7M_EXCP_SECURE, false);
6923         qemu_log_mask(CPU_LOG_INT,
6924                       "...really SecureFault with SFSR.INVEP\n");
6925         return false;
6926     }
6927     if (get_phys_addr(env, addr, MMU_INST_FETCH, mmu_idx,
6928                       &physaddr, &attrs, &prot, &page_size, &fsr, &fi)) {
6929         /* the MPU lookup failed */
6930         env->v7m.cfsr[env->v7m.secure] |= R_V7M_CFSR_IACCVIOL_MASK;
6931         armv7m_nvic_set_pending(env->nvic, ARMV7M_EXCP_MEM, env->v7m.secure);
6932         qemu_log_mask(CPU_LOG_INT, "...really MemManage with CFSR.IACCVIOL\n");
6933         return false;
6934     }
6935     *insn = address_space_lduw_le(arm_addressspace(cs, attrs), physaddr,
6936                                  attrs, &txres);
6937     if (txres != MEMTX_OK) {
6938         env->v7m.cfsr[M_REG_NS] |= R_V7M_CFSR_IBUSERR_MASK;
6939         armv7m_nvic_set_pending(env->nvic, ARMV7M_EXCP_BUS, false);
6940         qemu_log_mask(CPU_LOG_INT, "...really BusFault with CFSR.IBUSERR\n");
6941         return false;
6942     }
6943     return true;
6944 }
6945 
6946 static bool v7m_handle_execute_nsc(ARMCPU *cpu)
6947 {
6948     /* Check whether this attempt to execute code in a Secure & NS-Callable
6949      * memory region is for an SG instruction; if so, then emulate the
6950      * effect of the SG instruction and return true. Otherwise pend
6951      * the correct kind of exception and return false.
6952      */
6953     CPUARMState *env = &cpu->env;
6954     ARMMMUIdx mmu_idx;
6955     uint16_t insn;
6956 
6957     /* We should never get here unless get_phys_addr_pmsav8() caused
6958      * an exception for NS executing in S&NSC memory.
6959      */
6960     assert(!env->v7m.secure);
6961     assert(arm_feature(env, ARM_FEATURE_M_SECURITY));
6962 
6963     /* We want to do the MPU lookup as secure; work out what mmu_idx that is */
6964     mmu_idx = arm_v7m_mmu_idx_for_secstate(env, true);
6965 
6966     if (!v7m_read_half_insn(cpu, mmu_idx, env->regs[15], &insn)) {
6967         return false;
6968     }
6969 
6970     if (!env->thumb) {
6971         goto gen_invep;
6972     }
6973 
6974     if (insn != 0xe97f) {
6975         /* Not an SG instruction first half (we choose the IMPDEF
6976          * early-SG-check option).
6977          */
6978         goto gen_invep;
6979     }
6980 
6981     if (!v7m_read_half_insn(cpu, mmu_idx, env->regs[15] + 2, &insn)) {
6982         return false;
6983     }
6984 
6985     if (insn != 0xe97f) {
6986         /* Not an SG instruction second half (yes, both halves of the SG
6987          * insn have the same hex value)
6988          */
6989         goto gen_invep;
6990     }
6991 
6992     /* OK, we have confirmed that we really have an SG instruction.
6993      * We know we're NS in S memory so don't need to repeat those checks.
6994      */
6995     qemu_log_mask(CPU_LOG_INT, "...really an SG instruction at 0x%08" PRIx32
6996                   ", executing it\n", env->regs[15]);
6997     env->regs[14] &= ~1;
6998     switch_v7m_security_state(env, true);
6999     xpsr_write(env, 0, XPSR_IT);
7000     env->regs[15] += 4;
7001     return true;
7002 
7003 gen_invep:
7004     env->v7m.sfsr |= R_V7M_SFSR_INVEP_MASK;
7005     armv7m_nvic_set_pending(env->nvic, ARMV7M_EXCP_SECURE, false);
7006     qemu_log_mask(CPU_LOG_INT,
7007                   "...really SecureFault with SFSR.INVEP\n");
7008     return false;
7009 }
7010 
7011 void arm_v7m_cpu_do_interrupt(CPUState *cs)
7012 {
7013     ARMCPU *cpu = ARM_CPU(cs);
7014     CPUARMState *env = &cpu->env;
7015     uint32_t lr;
7016 
7017     arm_log_exception(cs->exception_index);
7018 
7019     /* For exceptions we just mark as pending on the NVIC, and let that
7020        handle it.  */
7021     switch (cs->exception_index) {
7022     case EXCP_UDEF:
7023         armv7m_nvic_set_pending(env->nvic, ARMV7M_EXCP_USAGE, env->v7m.secure);
7024         env->v7m.cfsr[env->v7m.secure] |= R_V7M_CFSR_UNDEFINSTR_MASK;
7025         break;
7026     case EXCP_NOCP:
7027         armv7m_nvic_set_pending(env->nvic, ARMV7M_EXCP_USAGE, env->v7m.secure);
7028         env->v7m.cfsr[env->v7m.secure] |= R_V7M_CFSR_NOCP_MASK;
7029         break;
7030     case EXCP_INVSTATE:
7031         armv7m_nvic_set_pending(env->nvic, ARMV7M_EXCP_USAGE, env->v7m.secure);
7032         env->v7m.cfsr[env->v7m.secure] |= R_V7M_CFSR_INVSTATE_MASK;
7033         break;
7034     case EXCP_SWI:
7035         /* The PC already points to the next instruction.  */
7036         armv7m_nvic_set_pending(env->nvic, ARMV7M_EXCP_SVC, env->v7m.secure);
7037         break;
7038     case EXCP_PREFETCH_ABORT:
7039     case EXCP_DATA_ABORT:
7040         /* Note that for M profile we don't have a guest facing FSR, but
7041          * the env->exception.fsr will be populated by the code that
7042          * raises the fault, in the A profile short-descriptor format.
7043          */
7044         switch (env->exception.fsr & 0xf) {
7045         case M_FAKE_FSR_NSC_EXEC:
7046             /* Exception generated when we try to execute code at an address
7047              * which is marked as Secure & Non-Secure Callable and the CPU
7048              * is in the Non-Secure state. The only instruction which can
7049              * be executed like this is SG (and that only if both halves of
7050              * the SG instruction have the same security attributes.)
7051              * Everything else must generate an INVEP SecureFault, so we
7052              * emulate the SG instruction here.
7053              */
7054             if (v7m_handle_execute_nsc(cpu)) {
7055                 return;
7056             }
7057             break;
7058         case M_FAKE_FSR_SFAULT:
7059             /* Various flavours of SecureFault for attempts to execute or
7060              * access data in the wrong security state.
7061              */
7062             switch (cs->exception_index) {
7063             case EXCP_PREFETCH_ABORT:
7064                 if (env->v7m.secure) {
7065                     env->v7m.sfsr |= R_V7M_SFSR_INVTRAN_MASK;
7066                     qemu_log_mask(CPU_LOG_INT,
7067                                   "...really SecureFault with SFSR.INVTRAN\n");
7068                 } else {
7069                     env->v7m.sfsr |= R_V7M_SFSR_INVEP_MASK;
7070                     qemu_log_mask(CPU_LOG_INT,
7071                                   "...really SecureFault with SFSR.INVEP\n");
7072                 }
7073                 break;
7074             case EXCP_DATA_ABORT:
7075                 /* This must be an NS access to S memory */
7076                 env->v7m.sfsr |= R_V7M_SFSR_AUVIOL_MASK;
7077                 qemu_log_mask(CPU_LOG_INT,
7078                               "...really SecureFault with SFSR.AUVIOL\n");
7079                 break;
7080             }
7081             armv7m_nvic_set_pending(env->nvic, ARMV7M_EXCP_SECURE, false);
7082             break;
7083         case 0x8: /* External Abort */
7084             switch (cs->exception_index) {
7085             case EXCP_PREFETCH_ABORT:
7086                 env->v7m.cfsr[M_REG_NS] |= R_V7M_CFSR_IBUSERR_MASK;
7087                 qemu_log_mask(CPU_LOG_INT, "...with CFSR.IBUSERR\n");
7088                 break;
7089             case EXCP_DATA_ABORT:
7090                 env->v7m.cfsr[M_REG_NS] |=
7091                     (R_V7M_CFSR_PRECISERR_MASK | R_V7M_CFSR_BFARVALID_MASK);
7092                 env->v7m.bfar = env->exception.vaddress;
7093                 qemu_log_mask(CPU_LOG_INT,
7094                               "...with CFSR.PRECISERR and BFAR 0x%x\n",
7095                               env->v7m.bfar);
7096                 break;
7097             }
7098             armv7m_nvic_set_pending(env->nvic, ARMV7M_EXCP_BUS, false);
7099             break;
7100         default:
7101             /* All other FSR values are either MPU faults or "can't happen
7102              * for M profile" cases.
7103              */
7104             switch (cs->exception_index) {
7105             case EXCP_PREFETCH_ABORT:
7106                 env->v7m.cfsr[env->v7m.secure] |= R_V7M_CFSR_IACCVIOL_MASK;
7107                 qemu_log_mask(CPU_LOG_INT, "...with CFSR.IACCVIOL\n");
7108                 break;
7109             case EXCP_DATA_ABORT:
7110                 env->v7m.cfsr[env->v7m.secure] |=
7111                     (R_V7M_CFSR_DACCVIOL_MASK | R_V7M_CFSR_MMARVALID_MASK);
7112                 env->v7m.mmfar[env->v7m.secure] = env->exception.vaddress;
7113                 qemu_log_mask(CPU_LOG_INT,
7114                               "...with CFSR.DACCVIOL and MMFAR 0x%x\n",
7115                               env->v7m.mmfar[env->v7m.secure]);
7116                 break;
7117             }
7118             armv7m_nvic_set_pending(env->nvic, ARMV7M_EXCP_MEM,
7119                                     env->v7m.secure);
7120             break;
7121         }
7122         break;
7123     case EXCP_BKPT:
7124         if (semihosting_enabled()) {
7125             int nr;
7126             nr = arm_lduw_code(env, env->regs[15], arm_sctlr_b(env)) & 0xff;
7127             if (nr == 0xab) {
7128                 env->regs[15] += 2;
7129                 qemu_log_mask(CPU_LOG_INT,
7130                               "...handling as semihosting call 0x%x\n",
7131                               env->regs[0]);
7132                 env->regs[0] = do_arm_semihosting(env);
7133                 return;
7134             }
7135         }
7136         armv7m_nvic_set_pending(env->nvic, ARMV7M_EXCP_DEBUG, false);
7137         break;
7138     case EXCP_IRQ:
7139         break;
7140     case EXCP_EXCEPTION_EXIT:
7141         if (env->regs[15] < EXC_RETURN_MIN_MAGIC) {
7142             /* Must be v8M security extension function return */
7143             assert(env->regs[15] >= FNC_RETURN_MIN_MAGIC);
7144             assert(arm_feature(env, ARM_FEATURE_M_SECURITY));
7145             if (do_v7m_function_return(cpu)) {
7146                 return;
7147             }
7148         } else {
7149             do_v7m_exception_exit(cpu);
7150             return;
7151         }
7152         break;
7153     default:
7154         cpu_abort(cs, "Unhandled exception 0x%x\n", cs->exception_index);
7155         return; /* Never happens.  Keep compiler happy.  */
7156     }
7157 
7158     if (arm_feature(env, ARM_FEATURE_V8)) {
7159         lr = R_V7M_EXCRET_RES1_MASK |
7160             R_V7M_EXCRET_DCRS_MASK |
7161             R_V7M_EXCRET_FTYPE_MASK;
7162         /* The S bit indicates whether we should return to Secure
7163          * or NonSecure (ie our current state).
7164          * The ES bit indicates whether we're taking this exception
7165          * to Secure or NonSecure (ie our target state). We set it
7166          * later, in v7m_exception_taken().
7167          * The SPSEL bit is also set in v7m_exception_taken() for v8M.
7168          * This corresponds to the ARM ARM pseudocode for v8M setting
7169          * some LR bits in PushStack() and some in ExceptionTaken();
7170          * the distinction matters for the tailchain cases where we
7171          * can take an exception without pushing the stack.
7172          */
7173         if (env->v7m.secure) {
7174             lr |= R_V7M_EXCRET_S_MASK;
7175         }
7176     } else {
7177         lr = R_V7M_EXCRET_RES1_MASK |
7178             R_V7M_EXCRET_S_MASK |
7179             R_V7M_EXCRET_DCRS_MASK |
7180             R_V7M_EXCRET_FTYPE_MASK |
7181             R_V7M_EXCRET_ES_MASK;
7182         if (env->v7m.control[M_REG_NS] & R_V7M_CONTROL_SPSEL_MASK) {
7183             lr |= R_V7M_EXCRET_SPSEL_MASK;
7184         }
7185     }
7186     if (!arm_v7m_is_handler_mode(env)) {
7187         lr |= R_V7M_EXCRET_MODE_MASK;
7188     }
7189 
7190     v7m_push_stack(cpu);
7191     v7m_exception_taken(cpu, lr, false);
7192     qemu_log_mask(CPU_LOG_INT, "... as %d\n", env->v7m.exception);
7193 }
7194 
7195 /* Function used to synchronize QEMU's AArch64 register set with AArch32
7196  * register set.  This is necessary when switching between AArch32 and AArch64
7197  * execution state.
7198  */
7199 void aarch64_sync_32_to_64(CPUARMState *env)
7200 {
7201     int i;
7202     uint32_t mode = env->uncached_cpsr & CPSR_M;
7203 
7204     /* We can blanket copy R[0:7] to X[0:7] */
7205     for (i = 0; i < 8; i++) {
7206         env->xregs[i] = env->regs[i];
7207     }
7208 
7209     /* Unless we are in FIQ mode, x8-x12 come from the user registers r8-r12.
7210      * Otherwise, they come from the banked user regs.
7211      */
7212     if (mode == ARM_CPU_MODE_FIQ) {
7213         for (i = 8; i < 13; i++) {
7214             env->xregs[i] = env->usr_regs[i - 8];
7215         }
7216     } else {
7217         for (i = 8; i < 13; i++) {
7218             env->xregs[i] = env->regs[i];
7219         }
7220     }
7221 
7222     /* Registers x13-x23 are the various mode SP and FP registers. Registers
7223      * r13 and r14 are only copied if we are in that mode, otherwise we copy
7224      * from the mode banked register.
7225      */
7226     if (mode == ARM_CPU_MODE_USR || mode == ARM_CPU_MODE_SYS) {
7227         env->xregs[13] = env->regs[13];
7228         env->xregs[14] = env->regs[14];
7229     } else {
7230         env->xregs[13] = env->banked_r13[bank_number(ARM_CPU_MODE_USR)];
7231         /* HYP is an exception in that it is copied from r14 */
7232         if (mode == ARM_CPU_MODE_HYP) {
7233             env->xregs[14] = env->regs[14];
7234         } else {
7235             env->xregs[14] = env->banked_r14[bank_number(ARM_CPU_MODE_USR)];
7236         }
7237     }
7238 
7239     if (mode == ARM_CPU_MODE_HYP) {
7240         env->xregs[15] = env->regs[13];
7241     } else {
7242         env->xregs[15] = env->banked_r13[bank_number(ARM_CPU_MODE_HYP)];
7243     }
7244 
7245     if (mode == ARM_CPU_MODE_IRQ) {
7246         env->xregs[16] = env->regs[14];
7247         env->xregs[17] = env->regs[13];
7248     } else {
7249         env->xregs[16] = env->banked_r14[bank_number(ARM_CPU_MODE_IRQ)];
7250         env->xregs[17] = env->banked_r13[bank_number(ARM_CPU_MODE_IRQ)];
7251     }
7252 
7253     if (mode == ARM_CPU_MODE_SVC) {
7254         env->xregs[18] = env->regs[14];
7255         env->xregs[19] = env->regs[13];
7256     } else {
7257         env->xregs[18] = env->banked_r14[bank_number(ARM_CPU_MODE_SVC)];
7258         env->xregs[19] = env->banked_r13[bank_number(ARM_CPU_MODE_SVC)];
7259     }
7260 
7261     if (mode == ARM_CPU_MODE_ABT) {
7262         env->xregs[20] = env->regs[14];
7263         env->xregs[21] = env->regs[13];
7264     } else {
7265         env->xregs[20] = env->banked_r14[bank_number(ARM_CPU_MODE_ABT)];
7266         env->xregs[21] = env->banked_r13[bank_number(ARM_CPU_MODE_ABT)];
7267     }
7268 
7269     if (mode == ARM_CPU_MODE_UND) {
7270         env->xregs[22] = env->regs[14];
7271         env->xregs[23] = env->regs[13];
7272     } else {
7273         env->xregs[22] = env->banked_r14[bank_number(ARM_CPU_MODE_UND)];
7274         env->xregs[23] = env->banked_r13[bank_number(ARM_CPU_MODE_UND)];
7275     }
7276 
7277     /* Registers x24-x30 are mapped to r8-r14 in FIQ mode.  If we are in FIQ
7278      * mode, then we can copy from r8-r14.  Otherwise, we copy from the
7279      * FIQ bank for r8-r14.
7280      */
7281     if (mode == ARM_CPU_MODE_FIQ) {
7282         for (i = 24; i < 31; i++) {
7283             env->xregs[i] = env->regs[i - 16];   /* X[24:30] <- R[8:14] */
7284         }
7285     } else {
7286         for (i = 24; i < 29; i++) {
7287             env->xregs[i] = env->fiq_regs[i - 24];
7288         }
7289         env->xregs[29] = env->banked_r13[bank_number(ARM_CPU_MODE_FIQ)];
7290         env->xregs[30] = env->banked_r14[bank_number(ARM_CPU_MODE_FIQ)];
7291     }
7292 
7293     env->pc = env->regs[15];
7294 }
7295 
7296 /* Function used to synchronize QEMU's AArch32 register set with AArch64
7297  * register set.  This is necessary when switching between AArch32 and AArch64
7298  * execution state.
7299  */
7300 void aarch64_sync_64_to_32(CPUARMState *env)
7301 {
7302     int i;
7303     uint32_t mode = env->uncached_cpsr & CPSR_M;
7304 
7305     /* We can blanket copy X[0:7] to R[0:7] */
7306     for (i = 0; i < 8; i++) {
7307         env->regs[i] = env->xregs[i];
7308     }
7309 
7310     /* Unless we are in FIQ mode, r8-r12 come from the user registers x8-x12.
7311      * Otherwise, we copy x8-x12 into the banked user regs.
7312      */
7313     if (mode == ARM_CPU_MODE_FIQ) {
7314         for (i = 8; i < 13; i++) {
7315             env->usr_regs[i - 8] = env->xregs[i];
7316         }
7317     } else {
7318         for (i = 8; i < 13; i++) {
7319             env->regs[i] = env->xregs[i];
7320         }
7321     }
7322 
7323     /* Registers r13 & r14 depend on the current mode.
7324      * If we are in a given mode, we copy the corresponding x registers to r13
7325      * and r14.  Otherwise, we copy the x register to the banked r13 and r14
7326      * for the mode.
7327      */
7328     if (mode == ARM_CPU_MODE_USR || mode == ARM_CPU_MODE_SYS) {
7329         env->regs[13] = env->xregs[13];
7330         env->regs[14] = env->xregs[14];
7331     } else {
7332         env->banked_r13[bank_number(ARM_CPU_MODE_USR)] = env->xregs[13];
7333 
7334         /* HYP is an exception in that it does not have its own banked r14 but
7335          * shares the USR r14
7336          */
7337         if (mode == ARM_CPU_MODE_HYP) {
7338             env->regs[14] = env->xregs[14];
7339         } else {
7340             env->banked_r14[bank_number(ARM_CPU_MODE_USR)] = env->xregs[14];
7341         }
7342     }
7343 
7344     if (mode == ARM_CPU_MODE_HYP) {
7345         env->regs[13] = env->xregs[15];
7346     } else {
7347         env->banked_r13[bank_number(ARM_CPU_MODE_HYP)] = env->xregs[15];
7348     }
7349 
7350     if (mode == ARM_CPU_MODE_IRQ) {
7351         env->regs[14] = env->xregs[16];
7352         env->regs[13] = env->xregs[17];
7353     } else {
7354         env->banked_r14[bank_number(ARM_CPU_MODE_IRQ)] = env->xregs[16];
7355         env->banked_r13[bank_number(ARM_CPU_MODE_IRQ)] = env->xregs[17];
7356     }
7357 
7358     if (mode == ARM_CPU_MODE_SVC) {
7359         env->regs[14] = env->xregs[18];
7360         env->regs[13] = env->xregs[19];
7361     } else {
7362         env->banked_r14[bank_number(ARM_CPU_MODE_SVC)] = env->xregs[18];
7363         env->banked_r13[bank_number(ARM_CPU_MODE_SVC)] = env->xregs[19];
7364     }
7365 
7366     if (mode == ARM_CPU_MODE_ABT) {
7367         env->regs[14] = env->xregs[20];
7368         env->regs[13] = env->xregs[21];
7369     } else {
7370         env->banked_r14[bank_number(ARM_CPU_MODE_ABT)] = env->xregs[20];
7371         env->banked_r13[bank_number(ARM_CPU_MODE_ABT)] = env->xregs[21];
7372     }
7373 
7374     if (mode == ARM_CPU_MODE_UND) {
7375         env->regs[14] = env->xregs[22];
7376         env->regs[13] = env->xregs[23];
7377     } else {
7378         env->banked_r14[bank_number(ARM_CPU_MODE_UND)] = env->xregs[22];
7379         env->banked_r13[bank_number(ARM_CPU_MODE_UND)] = env->xregs[23];
7380     }
7381 
7382     /* Registers x24-x30 are mapped to r8-r14 in FIQ mode.  If we are in FIQ
7383      * mode, then we can copy to r8-r14.  Otherwise, we copy to the
7384      * FIQ bank for r8-r14.
7385      */
7386     if (mode == ARM_CPU_MODE_FIQ) {
7387         for (i = 24; i < 31; i++) {
7388             env->regs[i - 16] = env->xregs[i];   /* X[24:30] -> R[8:14] */
7389         }
7390     } else {
7391         for (i = 24; i < 29; i++) {
7392             env->fiq_regs[i - 24] = env->xregs[i];
7393         }
7394         env->banked_r13[bank_number(ARM_CPU_MODE_FIQ)] = env->xregs[29];
7395         env->banked_r14[bank_number(ARM_CPU_MODE_FIQ)] = env->xregs[30];
7396     }
7397 
7398     env->regs[15] = env->pc;
7399 }
7400 
7401 static void arm_cpu_do_interrupt_aarch32(CPUState *cs)
7402 {
7403     ARMCPU *cpu = ARM_CPU(cs);
7404     CPUARMState *env = &cpu->env;
7405     uint32_t addr;
7406     uint32_t mask;
7407     int new_mode;
7408     uint32_t offset;
7409     uint32_t moe;
7410 
7411     /* If this is a debug exception we must update the DBGDSCR.MOE bits */
7412     switch (env->exception.syndrome >> ARM_EL_EC_SHIFT) {
7413     case EC_BREAKPOINT:
7414     case EC_BREAKPOINT_SAME_EL:
7415         moe = 1;
7416         break;
7417     case EC_WATCHPOINT:
7418     case EC_WATCHPOINT_SAME_EL:
7419         moe = 10;
7420         break;
7421     case EC_AA32_BKPT:
7422         moe = 3;
7423         break;
7424     case EC_VECTORCATCH:
7425         moe = 5;
7426         break;
7427     default:
7428         moe = 0;
7429         break;
7430     }
7431 
7432     if (moe) {
7433         env->cp15.mdscr_el1 = deposit64(env->cp15.mdscr_el1, 2, 4, moe);
7434     }
7435 
7436     /* TODO: Vectored interrupt controller.  */
7437     switch (cs->exception_index) {
7438     case EXCP_UDEF:
7439         new_mode = ARM_CPU_MODE_UND;
7440         addr = 0x04;
7441         mask = CPSR_I;
7442         if (env->thumb)
7443             offset = 2;
7444         else
7445             offset = 4;
7446         break;
7447     case EXCP_SWI:
7448         new_mode = ARM_CPU_MODE_SVC;
7449         addr = 0x08;
7450         mask = CPSR_I;
7451         /* The PC already points to the next instruction.  */
7452         offset = 0;
7453         break;
7454     case EXCP_BKPT:
7455         env->exception.fsr = 2;
7456         /* Fall through to prefetch abort.  */
7457     case EXCP_PREFETCH_ABORT:
7458         A32_BANKED_CURRENT_REG_SET(env, ifsr, env->exception.fsr);
7459         A32_BANKED_CURRENT_REG_SET(env, ifar, env->exception.vaddress);
7460         qemu_log_mask(CPU_LOG_INT, "...with IFSR 0x%x IFAR 0x%x\n",
7461                       env->exception.fsr, (uint32_t)env->exception.vaddress);
7462         new_mode = ARM_CPU_MODE_ABT;
7463         addr = 0x0c;
7464         mask = CPSR_A | CPSR_I;
7465         offset = 4;
7466         break;
7467     case EXCP_DATA_ABORT:
7468         A32_BANKED_CURRENT_REG_SET(env, dfsr, env->exception.fsr);
7469         A32_BANKED_CURRENT_REG_SET(env, dfar, env->exception.vaddress);
7470         qemu_log_mask(CPU_LOG_INT, "...with DFSR 0x%x DFAR 0x%x\n",
7471                       env->exception.fsr,
7472                       (uint32_t)env->exception.vaddress);
7473         new_mode = ARM_CPU_MODE_ABT;
7474         addr = 0x10;
7475         mask = CPSR_A | CPSR_I;
7476         offset = 8;
7477         break;
7478     case EXCP_IRQ:
7479         new_mode = ARM_CPU_MODE_IRQ;
7480         addr = 0x18;
7481         /* Disable IRQ and imprecise data aborts.  */
7482         mask = CPSR_A | CPSR_I;
7483         offset = 4;
7484         if (env->cp15.scr_el3 & SCR_IRQ) {
7485             /* IRQ routed to monitor mode */
7486             new_mode = ARM_CPU_MODE_MON;
7487             mask |= CPSR_F;
7488         }
7489         break;
7490     case EXCP_FIQ:
7491         new_mode = ARM_CPU_MODE_FIQ;
7492         addr = 0x1c;
7493         /* Disable FIQ, IRQ and imprecise data aborts.  */
7494         mask = CPSR_A | CPSR_I | CPSR_F;
7495         if (env->cp15.scr_el3 & SCR_FIQ) {
7496             /* FIQ routed to monitor mode */
7497             new_mode = ARM_CPU_MODE_MON;
7498         }
7499         offset = 4;
7500         break;
7501     case EXCP_VIRQ:
7502         new_mode = ARM_CPU_MODE_IRQ;
7503         addr = 0x18;
7504         /* Disable IRQ and imprecise data aborts.  */
7505         mask = CPSR_A | CPSR_I;
7506         offset = 4;
7507         break;
7508     case EXCP_VFIQ:
7509         new_mode = ARM_CPU_MODE_FIQ;
7510         addr = 0x1c;
7511         /* Disable FIQ, IRQ and imprecise data aborts.  */
7512         mask = CPSR_A | CPSR_I | CPSR_F;
7513         offset = 4;
7514         break;
7515     case EXCP_SMC:
7516         new_mode = ARM_CPU_MODE_MON;
7517         addr = 0x08;
7518         mask = CPSR_A | CPSR_I | CPSR_F;
7519         offset = 0;
7520         break;
7521     default:
7522         cpu_abort(cs, "Unhandled exception 0x%x\n", cs->exception_index);
7523         return; /* Never happens.  Keep compiler happy.  */
7524     }
7525 
7526     if (new_mode == ARM_CPU_MODE_MON) {
7527         addr += env->cp15.mvbar;
7528     } else if (A32_BANKED_CURRENT_REG_GET(env, sctlr) & SCTLR_V) {
7529         /* High vectors. When enabled, base address cannot be remapped. */
7530         addr += 0xffff0000;
7531     } else {
7532         /* ARM v7 architectures provide a vector base address register to remap
7533          * the interrupt vector table.
7534          * This register is only followed in non-monitor mode, and is banked.
7535          * Note: only bits 31:5 are valid.
7536          */
7537         addr += A32_BANKED_CURRENT_REG_GET(env, vbar);
7538     }
7539 
7540     if ((env->uncached_cpsr & CPSR_M) == ARM_CPU_MODE_MON) {
7541         env->cp15.scr_el3 &= ~SCR_NS;
7542     }
7543 
7544     switch_mode (env, new_mode);
7545     /* For exceptions taken to AArch32 we must clear the SS bit in both
7546      * PSTATE and in the old-state value we save to SPSR_<mode>, so zero it now.
7547      */
7548     env->uncached_cpsr &= ~PSTATE_SS;
7549     env->spsr = cpsr_read(env);
7550     /* Clear IT bits.  */
7551     env->condexec_bits = 0;
7552     /* Switch to the new mode, and to the correct instruction set.  */
7553     env->uncached_cpsr = (env->uncached_cpsr & ~CPSR_M) | new_mode;
7554     /* Set new mode endianness */
7555     env->uncached_cpsr &= ~CPSR_E;
7556     if (env->cp15.sctlr_el[arm_current_el(env)] & SCTLR_EE) {
7557         env->uncached_cpsr |= CPSR_E;
7558     }
7559     env->daif |= mask;
7560     /* this is a lie, as the was no c1_sys on V4T/V5, but who cares
7561      * and we should just guard the thumb mode on V4 */
7562     if (arm_feature(env, ARM_FEATURE_V4T)) {
7563         env->thumb = (A32_BANKED_CURRENT_REG_GET(env, sctlr) & SCTLR_TE) != 0;
7564     }
7565     env->regs[14] = env->regs[15] + offset;
7566     env->regs[15] = addr;
7567 }
7568 
7569 /* Handle exception entry to a target EL which is using AArch64 */
7570 static void arm_cpu_do_interrupt_aarch64(CPUState *cs)
7571 {
7572     ARMCPU *cpu = ARM_CPU(cs);
7573     CPUARMState *env = &cpu->env;
7574     unsigned int new_el = env->exception.target_el;
7575     target_ulong addr = env->cp15.vbar_el[new_el];
7576     unsigned int new_mode = aarch64_pstate_mode(new_el, true);
7577 
7578     if (arm_current_el(env) < new_el) {
7579         /* Entry vector offset depends on whether the implemented EL
7580          * immediately lower than the target level is using AArch32 or AArch64
7581          */
7582         bool is_aa64;
7583 
7584         switch (new_el) {
7585         case 3:
7586             is_aa64 = (env->cp15.scr_el3 & SCR_RW) != 0;
7587             break;
7588         case 2:
7589             is_aa64 = (env->cp15.hcr_el2 & HCR_RW) != 0;
7590             break;
7591         case 1:
7592             is_aa64 = is_a64(env);
7593             break;
7594         default:
7595             g_assert_not_reached();
7596         }
7597 
7598         if (is_aa64) {
7599             addr += 0x400;
7600         } else {
7601             addr += 0x600;
7602         }
7603     } else if (pstate_read(env) & PSTATE_SP) {
7604         addr += 0x200;
7605     }
7606 
7607     switch (cs->exception_index) {
7608     case EXCP_PREFETCH_ABORT:
7609     case EXCP_DATA_ABORT:
7610         env->cp15.far_el[new_el] = env->exception.vaddress;
7611         qemu_log_mask(CPU_LOG_INT, "...with FAR 0x%" PRIx64 "\n",
7612                       env->cp15.far_el[new_el]);
7613         /* fall through */
7614     case EXCP_BKPT:
7615     case EXCP_UDEF:
7616     case EXCP_SWI:
7617     case EXCP_HVC:
7618     case EXCP_HYP_TRAP:
7619     case EXCP_SMC:
7620         env->cp15.esr_el[new_el] = env->exception.syndrome;
7621         break;
7622     case EXCP_IRQ:
7623     case EXCP_VIRQ:
7624         addr += 0x80;
7625         break;
7626     case EXCP_FIQ:
7627     case EXCP_VFIQ:
7628         addr += 0x100;
7629         break;
7630     case EXCP_SEMIHOST:
7631         qemu_log_mask(CPU_LOG_INT,
7632                       "...handling as semihosting call 0x%" PRIx64 "\n",
7633                       env->xregs[0]);
7634         env->xregs[0] = do_arm_semihosting(env);
7635         return;
7636     default:
7637         cpu_abort(cs, "Unhandled exception 0x%x\n", cs->exception_index);
7638     }
7639 
7640     if (is_a64(env)) {
7641         env->banked_spsr[aarch64_banked_spsr_index(new_el)] = pstate_read(env);
7642         aarch64_save_sp(env, arm_current_el(env));
7643         env->elr_el[new_el] = env->pc;
7644     } else {
7645         env->banked_spsr[aarch64_banked_spsr_index(new_el)] = cpsr_read(env);
7646         env->elr_el[new_el] = env->regs[15];
7647 
7648         aarch64_sync_32_to_64(env);
7649 
7650         env->condexec_bits = 0;
7651     }
7652     qemu_log_mask(CPU_LOG_INT, "...with ELR 0x%" PRIx64 "\n",
7653                   env->elr_el[new_el]);
7654 
7655     pstate_write(env, PSTATE_DAIF | new_mode);
7656     env->aarch64 = 1;
7657     aarch64_restore_sp(env, new_el);
7658 
7659     env->pc = addr;
7660 
7661     qemu_log_mask(CPU_LOG_INT, "...to EL%d PC 0x%" PRIx64 " PSTATE 0x%x\n",
7662                   new_el, env->pc, pstate_read(env));
7663 }
7664 
7665 static inline bool check_for_semihosting(CPUState *cs)
7666 {
7667     /* Check whether this exception is a semihosting call; if so
7668      * then handle it and return true; otherwise return false.
7669      */
7670     ARMCPU *cpu = ARM_CPU(cs);
7671     CPUARMState *env = &cpu->env;
7672 
7673     if (is_a64(env)) {
7674         if (cs->exception_index == EXCP_SEMIHOST) {
7675             /* This is always the 64-bit semihosting exception.
7676              * The "is this usermode" and "is semihosting enabled"
7677              * checks have been done at translate time.
7678              */
7679             qemu_log_mask(CPU_LOG_INT,
7680                           "...handling as semihosting call 0x%" PRIx64 "\n",
7681                           env->xregs[0]);
7682             env->xregs[0] = do_arm_semihosting(env);
7683             return true;
7684         }
7685         return false;
7686     } else {
7687         uint32_t imm;
7688 
7689         /* Only intercept calls from privileged modes, to provide some
7690          * semblance of security.
7691          */
7692         if (cs->exception_index != EXCP_SEMIHOST &&
7693             (!semihosting_enabled() ||
7694              ((env->uncached_cpsr & CPSR_M) == ARM_CPU_MODE_USR))) {
7695             return false;
7696         }
7697 
7698         switch (cs->exception_index) {
7699         case EXCP_SEMIHOST:
7700             /* This is always a semihosting call; the "is this usermode"
7701              * and "is semihosting enabled" checks have been done at
7702              * translate time.
7703              */
7704             break;
7705         case EXCP_SWI:
7706             /* Check for semihosting interrupt.  */
7707             if (env->thumb) {
7708                 imm = arm_lduw_code(env, env->regs[15] - 2, arm_sctlr_b(env))
7709                     & 0xff;
7710                 if (imm == 0xab) {
7711                     break;
7712                 }
7713             } else {
7714                 imm = arm_ldl_code(env, env->regs[15] - 4, arm_sctlr_b(env))
7715                     & 0xffffff;
7716                 if (imm == 0x123456) {
7717                     break;
7718                 }
7719             }
7720             return false;
7721         case EXCP_BKPT:
7722             /* See if this is a semihosting syscall.  */
7723             if (env->thumb) {
7724                 imm = arm_lduw_code(env, env->regs[15], arm_sctlr_b(env))
7725                     & 0xff;
7726                 if (imm == 0xab) {
7727                     env->regs[15] += 2;
7728                     break;
7729                 }
7730             }
7731             return false;
7732         default:
7733             return false;
7734         }
7735 
7736         qemu_log_mask(CPU_LOG_INT,
7737                       "...handling as semihosting call 0x%x\n",
7738                       env->regs[0]);
7739         env->regs[0] = do_arm_semihosting(env);
7740         return true;
7741     }
7742 }
7743 
7744 /* Handle a CPU exception for A and R profile CPUs.
7745  * Do any appropriate logging, handle PSCI calls, and then hand off
7746  * to the AArch64-entry or AArch32-entry function depending on the
7747  * target exception level's register width.
7748  */
7749 void arm_cpu_do_interrupt(CPUState *cs)
7750 {
7751     ARMCPU *cpu = ARM_CPU(cs);
7752     CPUARMState *env = &cpu->env;
7753     unsigned int new_el = env->exception.target_el;
7754 
7755     assert(!arm_feature(env, ARM_FEATURE_M));
7756 
7757     arm_log_exception(cs->exception_index);
7758     qemu_log_mask(CPU_LOG_INT, "...from EL%d to EL%d\n", arm_current_el(env),
7759                   new_el);
7760     if (qemu_loglevel_mask(CPU_LOG_INT)
7761         && !excp_is_internal(cs->exception_index)) {
7762         qemu_log_mask(CPU_LOG_INT, "...with ESR 0x%x/0x%" PRIx32 "\n",
7763                       env->exception.syndrome >> ARM_EL_EC_SHIFT,
7764                       env->exception.syndrome);
7765     }
7766 
7767     if (arm_is_psci_call(cpu, cs->exception_index)) {
7768         arm_handle_psci_call(cpu);
7769         qemu_log_mask(CPU_LOG_INT, "...handled as PSCI call\n");
7770         return;
7771     }
7772 
7773     /* Semihosting semantics depend on the register width of the
7774      * code that caused the exception, not the target exception level,
7775      * so must be handled here.
7776      */
7777     if (check_for_semihosting(cs)) {
7778         return;
7779     }
7780 
7781     assert(!excp_is_internal(cs->exception_index));
7782     if (arm_el_is_aa64(env, new_el)) {
7783         arm_cpu_do_interrupt_aarch64(cs);
7784     } else {
7785         arm_cpu_do_interrupt_aarch32(cs);
7786     }
7787 
7788     /* Hooks may change global state so BQL should be held, also the
7789      * BQL needs to be held for any modification of
7790      * cs->interrupt_request.
7791      */
7792     g_assert(qemu_mutex_iothread_locked());
7793 
7794     arm_call_el_change_hook(cpu);
7795 
7796     if (!kvm_enabled()) {
7797         cs->interrupt_request |= CPU_INTERRUPT_EXITTB;
7798     }
7799 }
7800 
7801 /* Return the exception level which controls this address translation regime */
7802 static inline uint32_t regime_el(CPUARMState *env, ARMMMUIdx mmu_idx)
7803 {
7804     switch (mmu_idx) {
7805     case ARMMMUIdx_S2NS:
7806     case ARMMMUIdx_S1E2:
7807         return 2;
7808     case ARMMMUIdx_S1E3:
7809         return 3;
7810     case ARMMMUIdx_S1SE0:
7811         return arm_el_is_aa64(env, 3) ? 1 : 3;
7812     case ARMMMUIdx_S1SE1:
7813     case ARMMMUIdx_S1NSE0:
7814     case ARMMMUIdx_S1NSE1:
7815     case ARMMMUIdx_MPriv:
7816     case ARMMMUIdx_MNegPri:
7817     case ARMMMUIdx_MUser:
7818     case ARMMMUIdx_MSPriv:
7819     case ARMMMUIdx_MSNegPri:
7820     case ARMMMUIdx_MSUser:
7821         return 1;
7822     default:
7823         g_assert_not_reached();
7824     }
7825 }
7826 
7827 /* Return the SCTLR value which controls this address translation regime */
7828 static inline uint32_t regime_sctlr(CPUARMState *env, ARMMMUIdx mmu_idx)
7829 {
7830     return env->cp15.sctlr_el[regime_el(env, mmu_idx)];
7831 }
7832 
7833 /* Return true if the specified stage of address translation is disabled */
7834 static inline bool regime_translation_disabled(CPUARMState *env,
7835                                                ARMMMUIdx mmu_idx)
7836 {
7837     if (arm_feature(env, ARM_FEATURE_M)) {
7838         switch (env->v7m.mpu_ctrl[regime_is_secure(env, mmu_idx)] &
7839                 (R_V7M_MPU_CTRL_ENABLE_MASK | R_V7M_MPU_CTRL_HFNMIENA_MASK)) {
7840         case R_V7M_MPU_CTRL_ENABLE_MASK:
7841             /* Enabled, but not for HardFault and NMI */
7842             return mmu_idx == ARMMMUIdx_MNegPri ||
7843                 mmu_idx == ARMMMUIdx_MSNegPri;
7844         case R_V7M_MPU_CTRL_ENABLE_MASK | R_V7M_MPU_CTRL_HFNMIENA_MASK:
7845             /* Enabled for all cases */
7846             return false;
7847         case 0:
7848         default:
7849             /* HFNMIENA set and ENABLE clear is UNPREDICTABLE, but
7850              * we warned about that in armv7m_nvic.c when the guest set it.
7851              */
7852             return true;
7853         }
7854     }
7855 
7856     if (mmu_idx == ARMMMUIdx_S2NS) {
7857         return (env->cp15.hcr_el2 & HCR_VM) == 0;
7858     }
7859     return (regime_sctlr(env, mmu_idx) & SCTLR_M) == 0;
7860 }
7861 
7862 static inline bool regime_translation_big_endian(CPUARMState *env,
7863                                                  ARMMMUIdx mmu_idx)
7864 {
7865     return (regime_sctlr(env, mmu_idx) & SCTLR_EE) != 0;
7866 }
7867 
7868 /* Return the TCR controlling this translation regime */
7869 static inline TCR *regime_tcr(CPUARMState *env, ARMMMUIdx mmu_idx)
7870 {
7871     if (mmu_idx == ARMMMUIdx_S2NS) {
7872         return &env->cp15.vtcr_el2;
7873     }
7874     return &env->cp15.tcr_el[regime_el(env, mmu_idx)];
7875 }
7876 
7877 /* Convert a possible stage1+2 MMU index into the appropriate
7878  * stage 1 MMU index
7879  */
7880 static inline ARMMMUIdx stage_1_mmu_idx(ARMMMUIdx mmu_idx)
7881 {
7882     if (mmu_idx == ARMMMUIdx_S12NSE0 || mmu_idx == ARMMMUIdx_S12NSE1) {
7883         mmu_idx += (ARMMMUIdx_S1NSE0 - ARMMMUIdx_S12NSE0);
7884     }
7885     return mmu_idx;
7886 }
7887 
7888 /* Returns TBI0 value for current regime el */
7889 uint32_t arm_regime_tbi0(CPUARMState *env, ARMMMUIdx mmu_idx)
7890 {
7891     TCR *tcr;
7892     uint32_t el;
7893 
7894     /* For EL0 and EL1, TBI is controlled by stage 1's TCR, so convert
7895      * a stage 1+2 mmu index into the appropriate stage 1 mmu index.
7896      */
7897     mmu_idx = stage_1_mmu_idx(mmu_idx);
7898 
7899     tcr = regime_tcr(env, mmu_idx);
7900     el = regime_el(env, mmu_idx);
7901 
7902     if (el > 1) {
7903         return extract64(tcr->raw_tcr, 20, 1);
7904     } else {
7905         return extract64(tcr->raw_tcr, 37, 1);
7906     }
7907 }
7908 
7909 /* Returns TBI1 value for current regime el */
7910 uint32_t arm_regime_tbi1(CPUARMState *env, ARMMMUIdx mmu_idx)
7911 {
7912     TCR *tcr;
7913     uint32_t el;
7914 
7915     /* For EL0 and EL1, TBI is controlled by stage 1's TCR, so convert
7916      * a stage 1+2 mmu index into the appropriate stage 1 mmu index.
7917      */
7918     mmu_idx = stage_1_mmu_idx(mmu_idx);
7919 
7920     tcr = regime_tcr(env, mmu_idx);
7921     el = regime_el(env, mmu_idx);
7922 
7923     if (el > 1) {
7924         return 0;
7925     } else {
7926         return extract64(tcr->raw_tcr, 38, 1);
7927     }
7928 }
7929 
7930 /* Return the TTBR associated with this translation regime */
7931 static inline uint64_t regime_ttbr(CPUARMState *env, ARMMMUIdx mmu_idx,
7932                                    int ttbrn)
7933 {
7934     if (mmu_idx == ARMMMUIdx_S2NS) {
7935         return env->cp15.vttbr_el2;
7936     }
7937     if (ttbrn == 0) {
7938         return env->cp15.ttbr0_el[regime_el(env, mmu_idx)];
7939     } else {
7940         return env->cp15.ttbr1_el[regime_el(env, mmu_idx)];
7941     }
7942 }
7943 
7944 /* Return true if the translation regime is using LPAE format page tables */
7945 static inline bool regime_using_lpae_format(CPUARMState *env,
7946                                             ARMMMUIdx mmu_idx)
7947 {
7948     int el = regime_el(env, mmu_idx);
7949     if (el == 2 || arm_el_is_aa64(env, el)) {
7950         return true;
7951     }
7952     if (arm_feature(env, ARM_FEATURE_LPAE)
7953         && (regime_tcr(env, mmu_idx)->raw_tcr & TTBCR_EAE)) {
7954         return true;
7955     }
7956     return false;
7957 }
7958 
7959 /* Returns true if the stage 1 translation regime is using LPAE format page
7960  * tables. Used when raising alignment exceptions, whose FSR changes depending
7961  * on whether the long or short descriptor format is in use. */
7962 bool arm_s1_regime_using_lpae_format(CPUARMState *env, ARMMMUIdx mmu_idx)
7963 {
7964     mmu_idx = stage_1_mmu_idx(mmu_idx);
7965 
7966     return regime_using_lpae_format(env, mmu_idx);
7967 }
7968 
7969 static inline bool regime_is_user(CPUARMState *env, ARMMMUIdx mmu_idx)
7970 {
7971     switch (mmu_idx) {
7972     case ARMMMUIdx_S1SE0:
7973     case ARMMMUIdx_S1NSE0:
7974     case ARMMMUIdx_MUser:
7975         return true;
7976     default:
7977         return false;
7978     case ARMMMUIdx_S12NSE0:
7979     case ARMMMUIdx_S12NSE1:
7980         g_assert_not_reached();
7981     }
7982 }
7983 
7984 /* Translate section/page access permissions to page
7985  * R/W protection flags
7986  *
7987  * @env:         CPUARMState
7988  * @mmu_idx:     MMU index indicating required translation regime
7989  * @ap:          The 3-bit access permissions (AP[2:0])
7990  * @domain_prot: The 2-bit domain access permissions
7991  */
7992 static inline int ap_to_rw_prot(CPUARMState *env, ARMMMUIdx mmu_idx,
7993                                 int ap, int domain_prot)
7994 {
7995     bool is_user = regime_is_user(env, mmu_idx);
7996 
7997     if (domain_prot == 3) {
7998         return PAGE_READ | PAGE_WRITE;
7999     }
8000 
8001     switch (ap) {
8002     case 0:
8003         if (arm_feature(env, ARM_FEATURE_V7)) {
8004             return 0;
8005         }
8006         switch (regime_sctlr(env, mmu_idx) & (SCTLR_S | SCTLR_R)) {
8007         case SCTLR_S:
8008             return is_user ? 0 : PAGE_READ;
8009         case SCTLR_R:
8010             return PAGE_READ;
8011         default:
8012             return 0;
8013         }
8014     case 1:
8015         return is_user ? 0 : PAGE_READ | PAGE_WRITE;
8016     case 2:
8017         if (is_user) {
8018             return PAGE_READ;
8019         } else {
8020             return PAGE_READ | PAGE_WRITE;
8021         }
8022     case 3:
8023         return PAGE_READ | PAGE_WRITE;
8024     case 4: /* Reserved.  */
8025         return 0;
8026     case 5:
8027         return is_user ? 0 : PAGE_READ;
8028     case 6:
8029         return PAGE_READ;
8030     case 7:
8031         if (!arm_feature(env, ARM_FEATURE_V6K)) {
8032             return 0;
8033         }
8034         return PAGE_READ;
8035     default:
8036         g_assert_not_reached();
8037     }
8038 }
8039 
8040 /* Translate section/page access permissions to page
8041  * R/W protection flags.
8042  *
8043  * @ap:      The 2-bit simple AP (AP[2:1])
8044  * @is_user: TRUE if accessing from PL0
8045  */
8046 static inline int simple_ap_to_rw_prot_is_user(int ap, bool is_user)
8047 {
8048     switch (ap) {
8049     case 0:
8050         return is_user ? 0 : PAGE_READ | PAGE_WRITE;
8051     case 1:
8052         return PAGE_READ | PAGE_WRITE;
8053     case 2:
8054         return is_user ? 0 : PAGE_READ;
8055     case 3:
8056         return PAGE_READ;
8057     default:
8058         g_assert_not_reached();
8059     }
8060 }
8061 
8062 static inline int
8063 simple_ap_to_rw_prot(CPUARMState *env, ARMMMUIdx mmu_idx, int ap)
8064 {
8065     return simple_ap_to_rw_prot_is_user(ap, regime_is_user(env, mmu_idx));
8066 }
8067 
8068 /* Translate S2 section/page access permissions to protection flags
8069  *
8070  * @env:     CPUARMState
8071  * @s2ap:    The 2-bit stage2 access permissions (S2AP)
8072  * @xn:      XN (execute-never) bit
8073  */
8074 static int get_S2prot(CPUARMState *env, int s2ap, int xn)
8075 {
8076     int prot = 0;
8077 
8078     if (s2ap & 1) {
8079         prot |= PAGE_READ;
8080     }
8081     if (s2ap & 2) {
8082         prot |= PAGE_WRITE;
8083     }
8084     if (!xn) {
8085         if (arm_el_is_aa64(env, 2) || prot & PAGE_READ) {
8086             prot |= PAGE_EXEC;
8087         }
8088     }
8089     return prot;
8090 }
8091 
8092 /* Translate section/page access permissions to protection flags
8093  *
8094  * @env:     CPUARMState
8095  * @mmu_idx: MMU index indicating required translation regime
8096  * @is_aa64: TRUE if AArch64
8097  * @ap:      The 2-bit simple AP (AP[2:1])
8098  * @ns:      NS (non-secure) bit
8099  * @xn:      XN (execute-never) bit
8100  * @pxn:     PXN (privileged execute-never) bit
8101  */
8102 static int get_S1prot(CPUARMState *env, ARMMMUIdx mmu_idx, bool is_aa64,
8103                       int ap, int ns, int xn, int pxn)
8104 {
8105     bool is_user = regime_is_user(env, mmu_idx);
8106     int prot_rw, user_rw;
8107     bool have_wxn;
8108     int wxn = 0;
8109 
8110     assert(mmu_idx != ARMMMUIdx_S2NS);
8111 
8112     user_rw = simple_ap_to_rw_prot_is_user(ap, true);
8113     if (is_user) {
8114         prot_rw = user_rw;
8115     } else {
8116         prot_rw = simple_ap_to_rw_prot_is_user(ap, false);
8117     }
8118 
8119     if (ns && arm_is_secure(env) && (env->cp15.scr_el3 & SCR_SIF)) {
8120         return prot_rw;
8121     }
8122 
8123     /* TODO have_wxn should be replaced with
8124      *   ARM_FEATURE_V8 || (ARM_FEATURE_V7 && ARM_FEATURE_EL2)
8125      * when ARM_FEATURE_EL2 starts getting set. For now we assume all LPAE
8126      * compatible processors have EL2, which is required for [U]WXN.
8127      */
8128     have_wxn = arm_feature(env, ARM_FEATURE_LPAE);
8129 
8130     if (have_wxn) {
8131         wxn = regime_sctlr(env, mmu_idx) & SCTLR_WXN;
8132     }
8133 
8134     if (is_aa64) {
8135         switch (regime_el(env, mmu_idx)) {
8136         case 1:
8137             if (!is_user) {
8138                 xn = pxn || (user_rw & PAGE_WRITE);
8139             }
8140             break;
8141         case 2:
8142         case 3:
8143             break;
8144         }
8145     } else if (arm_feature(env, ARM_FEATURE_V7)) {
8146         switch (regime_el(env, mmu_idx)) {
8147         case 1:
8148         case 3:
8149             if (is_user) {
8150                 xn = xn || !(user_rw & PAGE_READ);
8151             } else {
8152                 int uwxn = 0;
8153                 if (have_wxn) {
8154                     uwxn = regime_sctlr(env, mmu_idx) & SCTLR_UWXN;
8155                 }
8156                 xn = xn || !(prot_rw & PAGE_READ) || pxn ||
8157                      (uwxn && (user_rw & PAGE_WRITE));
8158             }
8159             break;
8160         case 2:
8161             break;
8162         }
8163     } else {
8164         xn = wxn = 0;
8165     }
8166 
8167     if (xn || (wxn && (prot_rw & PAGE_WRITE))) {
8168         return prot_rw;
8169     }
8170     return prot_rw | PAGE_EXEC;
8171 }
8172 
8173 static bool get_level1_table_address(CPUARMState *env, ARMMMUIdx mmu_idx,
8174                                      uint32_t *table, uint32_t address)
8175 {
8176     /* Note that we can only get here for an AArch32 PL0/PL1 lookup */
8177     TCR *tcr = regime_tcr(env, mmu_idx);
8178 
8179     if (address & tcr->mask) {
8180         if (tcr->raw_tcr & TTBCR_PD1) {
8181             /* Translation table walk disabled for TTBR1 */
8182             return false;
8183         }
8184         *table = regime_ttbr(env, mmu_idx, 1) & 0xffffc000;
8185     } else {
8186         if (tcr->raw_tcr & TTBCR_PD0) {
8187             /* Translation table walk disabled for TTBR0 */
8188             return false;
8189         }
8190         *table = regime_ttbr(env, mmu_idx, 0) & tcr->base_mask;
8191     }
8192     *table |= (address >> 18) & 0x3ffc;
8193     return true;
8194 }
8195 
8196 /* Translate a S1 pagetable walk through S2 if needed.  */
8197 static hwaddr S1_ptw_translate(CPUARMState *env, ARMMMUIdx mmu_idx,
8198                                hwaddr addr, MemTxAttrs txattrs,
8199                                uint32_t *fsr,
8200                                ARMMMUFaultInfo *fi)
8201 {
8202     if ((mmu_idx == ARMMMUIdx_S1NSE0 || mmu_idx == ARMMMUIdx_S1NSE1) &&
8203         !regime_translation_disabled(env, ARMMMUIdx_S2NS)) {
8204         target_ulong s2size;
8205         hwaddr s2pa;
8206         int s2prot;
8207         int ret;
8208 
8209         ret = get_phys_addr_lpae(env, addr, 0, ARMMMUIdx_S2NS, &s2pa,
8210                                  &txattrs, &s2prot, &s2size, fsr, fi);
8211         if (ret) {
8212             fi->s2addr = addr;
8213             fi->stage2 = true;
8214             fi->s1ptw = true;
8215             return ~0;
8216         }
8217         addr = s2pa;
8218     }
8219     return addr;
8220 }
8221 
8222 /* All loads done in the course of a page table walk go through here.
8223  * TODO: rather than ignoring errors from physical memory reads (which
8224  * are external aborts in ARM terminology) we should propagate this
8225  * error out so that we can turn it into a Data Abort if this walk
8226  * was being done for a CPU load/store or an address translation instruction
8227  * (but not if it was for a debug access).
8228  */
8229 static uint32_t arm_ldl_ptw(CPUState *cs, hwaddr addr, bool is_secure,
8230                             ARMMMUIdx mmu_idx, uint32_t *fsr,
8231                             ARMMMUFaultInfo *fi)
8232 {
8233     ARMCPU *cpu = ARM_CPU(cs);
8234     CPUARMState *env = &cpu->env;
8235     MemTxAttrs attrs = {};
8236     AddressSpace *as;
8237 
8238     attrs.secure = is_secure;
8239     as = arm_addressspace(cs, attrs);
8240     addr = S1_ptw_translate(env, mmu_idx, addr, attrs, fsr, fi);
8241     if (fi->s1ptw) {
8242         return 0;
8243     }
8244     if (regime_translation_big_endian(env, mmu_idx)) {
8245         return address_space_ldl_be(as, addr, attrs, NULL);
8246     } else {
8247         return address_space_ldl_le(as, addr, attrs, NULL);
8248     }
8249 }
8250 
8251 static uint64_t arm_ldq_ptw(CPUState *cs, hwaddr addr, bool is_secure,
8252                             ARMMMUIdx mmu_idx, uint32_t *fsr,
8253                             ARMMMUFaultInfo *fi)
8254 {
8255     ARMCPU *cpu = ARM_CPU(cs);
8256     CPUARMState *env = &cpu->env;
8257     MemTxAttrs attrs = {};
8258     AddressSpace *as;
8259 
8260     attrs.secure = is_secure;
8261     as = arm_addressspace(cs, attrs);
8262     addr = S1_ptw_translate(env, mmu_idx, addr, attrs, fsr, fi);
8263     if (fi->s1ptw) {
8264         return 0;
8265     }
8266     if (regime_translation_big_endian(env, mmu_idx)) {
8267         return address_space_ldq_be(as, addr, attrs, NULL);
8268     } else {
8269         return address_space_ldq_le(as, addr, attrs, NULL);
8270     }
8271 }
8272 
8273 static bool get_phys_addr_v5(CPUARMState *env, uint32_t address,
8274                              MMUAccessType access_type, ARMMMUIdx mmu_idx,
8275                              hwaddr *phys_ptr, int *prot,
8276                              target_ulong *page_size, uint32_t *fsr,
8277                              ARMMMUFaultInfo *fi)
8278 {
8279     CPUState *cs = CPU(arm_env_get_cpu(env));
8280     int code;
8281     uint32_t table;
8282     uint32_t desc;
8283     int type;
8284     int ap;
8285     int domain = 0;
8286     int domain_prot;
8287     hwaddr phys_addr;
8288     uint32_t dacr;
8289 
8290     /* Pagetable walk.  */
8291     /* Lookup l1 descriptor.  */
8292     if (!get_level1_table_address(env, mmu_idx, &table, address)) {
8293         /* Section translation fault if page walk is disabled by PD0 or PD1 */
8294         code = 5;
8295         goto do_fault;
8296     }
8297     desc = arm_ldl_ptw(cs, table, regime_is_secure(env, mmu_idx),
8298                        mmu_idx, fsr, fi);
8299     type = (desc & 3);
8300     domain = (desc >> 5) & 0x0f;
8301     if (regime_el(env, mmu_idx) == 1) {
8302         dacr = env->cp15.dacr_ns;
8303     } else {
8304         dacr = env->cp15.dacr_s;
8305     }
8306     domain_prot = (dacr >> (domain * 2)) & 3;
8307     if (type == 0) {
8308         /* Section translation fault.  */
8309         code = 5;
8310         goto do_fault;
8311     }
8312     if (domain_prot == 0 || domain_prot == 2) {
8313         if (type == 2)
8314             code = 9; /* Section domain fault.  */
8315         else
8316             code = 11; /* Page domain fault.  */
8317         goto do_fault;
8318     }
8319     if (type == 2) {
8320         /* 1Mb section.  */
8321         phys_addr = (desc & 0xfff00000) | (address & 0x000fffff);
8322         ap = (desc >> 10) & 3;
8323         code = 13;
8324         *page_size = 1024 * 1024;
8325     } else {
8326         /* Lookup l2 entry.  */
8327         if (type == 1) {
8328             /* Coarse pagetable.  */
8329             table = (desc & 0xfffffc00) | ((address >> 10) & 0x3fc);
8330         } else {
8331             /* Fine pagetable.  */
8332             table = (desc & 0xfffff000) | ((address >> 8) & 0xffc);
8333         }
8334         desc = arm_ldl_ptw(cs, table, regime_is_secure(env, mmu_idx),
8335                            mmu_idx, fsr, fi);
8336         switch (desc & 3) {
8337         case 0: /* Page translation fault.  */
8338             code = 7;
8339             goto do_fault;
8340         case 1: /* 64k page.  */
8341             phys_addr = (desc & 0xffff0000) | (address & 0xffff);
8342             ap = (desc >> (4 + ((address >> 13) & 6))) & 3;
8343             *page_size = 0x10000;
8344             break;
8345         case 2: /* 4k page.  */
8346             phys_addr = (desc & 0xfffff000) | (address & 0xfff);
8347             ap = (desc >> (4 + ((address >> 9) & 6))) & 3;
8348             *page_size = 0x1000;
8349             break;
8350         case 3: /* 1k page, or ARMv6/XScale "extended small (4k) page" */
8351             if (type == 1) {
8352                 /* ARMv6/XScale extended small page format */
8353                 if (arm_feature(env, ARM_FEATURE_XSCALE)
8354                     || arm_feature(env, ARM_FEATURE_V6)) {
8355                     phys_addr = (desc & 0xfffff000) | (address & 0xfff);
8356                     *page_size = 0x1000;
8357                 } else {
8358                     /* UNPREDICTABLE in ARMv5; we choose to take a
8359                      * page translation fault.
8360                      */
8361                     code = 7;
8362                     goto do_fault;
8363                 }
8364             } else {
8365                 phys_addr = (desc & 0xfffffc00) | (address & 0x3ff);
8366                 *page_size = 0x400;
8367             }
8368             ap = (desc >> 4) & 3;
8369             break;
8370         default:
8371             /* Never happens, but compiler isn't smart enough to tell.  */
8372             abort();
8373         }
8374         code = 15;
8375     }
8376     *prot = ap_to_rw_prot(env, mmu_idx, ap, domain_prot);
8377     *prot |= *prot ? PAGE_EXEC : 0;
8378     if (!(*prot & (1 << access_type))) {
8379         /* Access permission fault.  */
8380         goto do_fault;
8381     }
8382     *phys_ptr = phys_addr;
8383     return false;
8384 do_fault:
8385     *fsr = code | (domain << 4);
8386     return true;
8387 }
8388 
8389 static bool get_phys_addr_v6(CPUARMState *env, uint32_t address,
8390                              MMUAccessType access_type, ARMMMUIdx mmu_idx,
8391                              hwaddr *phys_ptr, MemTxAttrs *attrs, int *prot,
8392                              target_ulong *page_size, uint32_t *fsr,
8393                              ARMMMUFaultInfo *fi)
8394 {
8395     CPUState *cs = CPU(arm_env_get_cpu(env));
8396     int code;
8397     uint32_t table;
8398     uint32_t desc;
8399     uint32_t xn;
8400     uint32_t pxn = 0;
8401     int type;
8402     int ap;
8403     int domain = 0;
8404     int domain_prot;
8405     hwaddr phys_addr;
8406     uint32_t dacr;
8407     bool ns;
8408 
8409     /* Pagetable walk.  */
8410     /* Lookup l1 descriptor.  */
8411     if (!get_level1_table_address(env, mmu_idx, &table, address)) {
8412         /* Section translation fault if page walk is disabled by PD0 or PD1 */
8413         code = 5;
8414         goto do_fault;
8415     }
8416     desc = arm_ldl_ptw(cs, table, regime_is_secure(env, mmu_idx),
8417                        mmu_idx, fsr, fi);
8418     type = (desc & 3);
8419     if (type == 0 || (type == 3 && !arm_feature(env, ARM_FEATURE_PXN))) {
8420         /* Section translation fault, or attempt to use the encoding
8421          * which is Reserved on implementations without PXN.
8422          */
8423         code = 5;
8424         goto do_fault;
8425     }
8426     if ((type == 1) || !(desc & (1 << 18))) {
8427         /* Page or Section.  */
8428         domain = (desc >> 5) & 0x0f;
8429     }
8430     if (regime_el(env, mmu_idx) == 1) {
8431         dacr = env->cp15.dacr_ns;
8432     } else {
8433         dacr = env->cp15.dacr_s;
8434     }
8435     domain_prot = (dacr >> (domain * 2)) & 3;
8436     if (domain_prot == 0 || domain_prot == 2) {
8437         if (type != 1) {
8438             code = 9; /* Section domain fault.  */
8439         } else {
8440             code = 11; /* Page domain fault.  */
8441         }
8442         goto do_fault;
8443     }
8444     if (type != 1) {
8445         if (desc & (1 << 18)) {
8446             /* Supersection.  */
8447             phys_addr = (desc & 0xff000000) | (address & 0x00ffffff);
8448             phys_addr |= (uint64_t)extract32(desc, 20, 4) << 32;
8449             phys_addr |= (uint64_t)extract32(desc, 5, 4) << 36;
8450             *page_size = 0x1000000;
8451         } else {
8452             /* Section.  */
8453             phys_addr = (desc & 0xfff00000) | (address & 0x000fffff);
8454             *page_size = 0x100000;
8455         }
8456         ap = ((desc >> 10) & 3) | ((desc >> 13) & 4);
8457         xn = desc & (1 << 4);
8458         pxn = desc & 1;
8459         code = 13;
8460         ns = extract32(desc, 19, 1);
8461     } else {
8462         if (arm_feature(env, ARM_FEATURE_PXN)) {
8463             pxn = (desc >> 2) & 1;
8464         }
8465         ns = extract32(desc, 3, 1);
8466         /* Lookup l2 entry.  */
8467         table = (desc & 0xfffffc00) | ((address >> 10) & 0x3fc);
8468         desc = arm_ldl_ptw(cs, table, regime_is_secure(env, mmu_idx),
8469                            mmu_idx, fsr, fi);
8470         ap = ((desc >> 4) & 3) | ((desc >> 7) & 4);
8471         switch (desc & 3) {
8472         case 0: /* Page translation fault.  */
8473             code = 7;
8474             goto do_fault;
8475         case 1: /* 64k page.  */
8476             phys_addr = (desc & 0xffff0000) | (address & 0xffff);
8477             xn = desc & (1 << 15);
8478             *page_size = 0x10000;
8479             break;
8480         case 2: case 3: /* 4k page.  */
8481             phys_addr = (desc & 0xfffff000) | (address & 0xfff);
8482             xn = desc & 1;
8483             *page_size = 0x1000;
8484             break;
8485         default:
8486             /* Never happens, but compiler isn't smart enough to tell.  */
8487             abort();
8488         }
8489         code = 15;
8490     }
8491     if (domain_prot == 3) {
8492         *prot = PAGE_READ | PAGE_WRITE | PAGE_EXEC;
8493     } else {
8494         if (pxn && !regime_is_user(env, mmu_idx)) {
8495             xn = 1;
8496         }
8497         if (xn && access_type == MMU_INST_FETCH)
8498             goto do_fault;
8499 
8500         if (arm_feature(env, ARM_FEATURE_V6K) &&
8501                 (regime_sctlr(env, mmu_idx) & SCTLR_AFE)) {
8502             /* The simplified model uses AP[0] as an access control bit.  */
8503             if ((ap & 1) == 0) {
8504                 /* Access flag fault.  */
8505                 code = (code == 15) ? 6 : 3;
8506                 goto do_fault;
8507             }
8508             *prot = simple_ap_to_rw_prot(env, mmu_idx, ap >> 1);
8509         } else {
8510             *prot = ap_to_rw_prot(env, mmu_idx, ap, domain_prot);
8511         }
8512         if (*prot && !xn) {
8513             *prot |= PAGE_EXEC;
8514         }
8515         if (!(*prot & (1 << access_type))) {
8516             /* Access permission fault.  */
8517             goto do_fault;
8518         }
8519     }
8520     if (ns) {
8521         /* The NS bit will (as required by the architecture) have no effect if
8522          * the CPU doesn't support TZ or this is a non-secure translation
8523          * regime, because the attribute will already be non-secure.
8524          */
8525         attrs->secure = false;
8526     }
8527     *phys_ptr = phys_addr;
8528     return false;
8529 do_fault:
8530     *fsr = code | (domain << 4);
8531     return true;
8532 }
8533 
8534 /* Fault type for long-descriptor MMU fault reporting; this corresponds
8535  * to bits [5..2] in the STATUS field in long-format DFSR/IFSR.
8536  */
8537 typedef enum {
8538     translation_fault = 1,
8539     access_fault = 2,
8540     permission_fault = 3,
8541 } MMUFaultType;
8542 
8543 /*
8544  * check_s2_mmu_setup
8545  * @cpu:        ARMCPU
8546  * @is_aa64:    True if the translation regime is in AArch64 state
8547  * @startlevel: Suggested starting level
8548  * @inputsize:  Bitsize of IPAs
8549  * @stride:     Page-table stride (See the ARM ARM)
8550  *
8551  * Returns true if the suggested S2 translation parameters are OK and
8552  * false otherwise.
8553  */
8554 static bool check_s2_mmu_setup(ARMCPU *cpu, bool is_aa64, int level,
8555                                int inputsize, int stride)
8556 {
8557     const int grainsize = stride + 3;
8558     int startsizecheck;
8559 
8560     /* Negative levels are never allowed.  */
8561     if (level < 0) {
8562         return false;
8563     }
8564 
8565     startsizecheck = inputsize - ((3 - level) * stride + grainsize);
8566     if (startsizecheck < 1 || startsizecheck > stride + 4) {
8567         return false;
8568     }
8569 
8570     if (is_aa64) {
8571         CPUARMState *env = &cpu->env;
8572         unsigned int pamax = arm_pamax(cpu);
8573 
8574         switch (stride) {
8575         case 13: /* 64KB Pages.  */
8576             if (level == 0 || (level == 1 && pamax <= 42)) {
8577                 return false;
8578             }
8579             break;
8580         case 11: /* 16KB Pages.  */
8581             if (level == 0 || (level == 1 && pamax <= 40)) {
8582                 return false;
8583             }
8584             break;
8585         case 9: /* 4KB Pages.  */
8586             if (level == 0 && pamax <= 42) {
8587                 return false;
8588             }
8589             break;
8590         default:
8591             g_assert_not_reached();
8592         }
8593 
8594         /* Inputsize checks.  */
8595         if (inputsize > pamax &&
8596             (arm_el_is_aa64(env, 1) || inputsize > 40)) {
8597             /* This is CONSTRAINED UNPREDICTABLE and we choose to fault.  */
8598             return false;
8599         }
8600     } else {
8601         /* AArch32 only supports 4KB pages. Assert on that.  */
8602         assert(stride == 9);
8603 
8604         if (level == 0) {
8605             return false;
8606         }
8607     }
8608     return true;
8609 }
8610 
8611 static bool get_phys_addr_lpae(CPUARMState *env, target_ulong address,
8612                                MMUAccessType access_type, ARMMMUIdx mmu_idx,
8613                                hwaddr *phys_ptr, MemTxAttrs *txattrs, int *prot,
8614                                target_ulong *page_size_ptr, uint32_t *fsr,
8615                                ARMMMUFaultInfo *fi)
8616 {
8617     ARMCPU *cpu = arm_env_get_cpu(env);
8618     CPUState *cs = CPU(cpu);
8619     /* Read an LPAE long-descriptor translation table. */
8620     MMUFaultType fault_type = translation_fault;
8621     uint32_t level;
8622     uint32_t epd = 0;
8623     int32_t t0sz, t1sz;
8624     uint32_t tg;
8625     uint64_t ttbr;
8626     int ttbr_select;
8627     hwaddr descaddr, indexmask, indexmask_grainsize;
8628     uint32_t tableattrs;
8629     target_ulong page_size;
8630     uint32_t attrs;
8631     int32_t stride = 9;
8632     int32_t addrsize;
8633     int inputsize;
8634     int32_t tbi = 0;
8635     TCR *tcr = regime_tcr(env, mmu_idx);
8636     int ap, ns, xn, pxn;
8637     uint32_t el = regime_el(env, mmu_idx);
8638     bool ttbr1_valid = true;
8639     uint64_t descaddrmask;
8640     bool aarch64 = arm_el_is_aa64(env, el);
8641 
8642     /* TODO:
8643      * This code does not handle the different format TCR for VTCR_EL2.
8644      * This code also does not support shareability levels.
8645      * Attribute and permission bit handling should also be checked when adding
8646      * support for those page table walks.
8647      */
8648     if (aarch64) {
8649         level = 0;
8650         addrsize = 64;
8651         if (el > 1) {
8652             if (mmu_idx != ARMMMUIdx_S2NS) {
8653                 tbi = extract64(tcr->raw_tcr, 20, 1);
8654             }
8655         } else {
8656             if (extract64(address, 55, 1)) {
8657                 tbi = extract64(tcr->raw_tcr, 38, 1);
8658             } else {
8659                 tbi = extract64(tcr->raw_tcr, 37, 1);
8660             }
8661         }
8662         tbi *= 8;
8663 
8664         /* If we are in 64-bit EL2 or EL3 then there is no TTBR1, so mark it
8665          * invalid.
8666          */
8667         if (el > 1) {
8668             ttbr1_valid = false;
8669         }
8670     } else {
8671         level = 1;
8672         addrsize = 32;
8673         /* There is no TTBR1 for EL2 */
8674         if (el == 2) {
8675             ttbr1_valid = false;
8676         }
8677     }
8678 
8679     /* Determine whether this address is in the region controlled by
8680      * TTBR0 or TTBR1 (or if it is in neither region and should fault).
8681      * This is a Non-secure PL0/1 stage 1 translation, so controlled by
8682      * TTBCR/TTBR0/TTBR1 in accordance with ARM ARM DDI0406C table B-32:
8683      */
8684     if (aarch64) {
8685         /* AArch64 translation.  */
8686         t0sz = extract32(tcr->raw_tcr, 0, 6);
8687         t0sz = MIN(t0sz, 39);
8688         t0sz = MAX(t0sz, 16);
8689     } else if (mmu_idx != ARMMMUIdx_S2NS) {
8690         /* AArch32 stage 1 translation.  */
8691         t0sz = extract32(tcr->raw_tcr, 0, 3);
8692     } else {
8693         /* AArch32 stage 2 translation.  */
8694         bool sext = extract32(tcr->raw_tcr, 4, 1);
8695         bool sign = extract32(tcr->raw_tcr, 3, 1);
8696         /* Address size is 40-bit for a stage 2 translation,
8697          * and t0sz can be negative (from -8 to 7),
8698          * so we need to adjust it to use the TTBR selecting logic below.
8699          */
8700         addrsize = 40;
8701         t0sz = sextract32(tcr->raw_tcr, 0, 4) + 8;
8702 
8703         /* If the sign-extend bit is not the same as t0sz[3], the result
8704          * is unpredictable. Flag this as a guest error.  */
8705         if (sign != sext) {
8706             qemu_log_mask(LOG_GUEST_ERROR,
8707                           "AArch32: VTCR.S / VTCR.T0SZ[3] mismatch\n");
8708         }
8709     }
8710     t1sz = extract32(tcr->raw_tcr, 16, 6);
8711     if (aarch64) {
8712         t1sz = MIN(t1sz, 39);
8713         t1sz = MAX(t1sz, 16);
8714     }
8715     if (t0sz && !extract64(address, addrsize - t0sz, t0sz - tbi)) {
8716         /* there is a ttbr0 region and we are in it (high bits all zero) */
8717         ttbr_select = 0;
8718     } else if (ttbr1_valid && t1sz &&
8719                !extract64(~address, addrsize - t1sz, t1sz - tbi)) {
8720         /* there is a ttbr1 region and we are in it (high bits all one) */
8721         ttbr_select = 1;
8722     } else if (!t0sz) {
8723         /* ttbr0 region is "everything not in the ttbr1 region" */
8724         ttbr_select = 0;
8725     } else if (!t1sz && ttbr1_valid) {
8726         /* ttbr1 region is "everything not in the ttbr0 region" */
8727         ttbr_select = 1;
8728     } else {
8729         /* in the gap between the two regions, this is a Translation fault */
8730         fault_type = translation_fault;
8731         goto do_fault;
8732     }
8733 
8734     /* Note that QEMU ignores shareability and cacheability attributes,
8735      * so we don't need to do anything with the SH, ORGN, IRGN fields
8736      * in the TTBCR.  Similarly, TTBCR:A1 selects whether we get the
8737      * ASID from TTBR0 or TTBR1, but QEMU's TLB doesn't currently
8738      * implement any ASID-like capability so we can ignore it (instead
8739      * we will always flush the TLB any time the ASID is changed).
8740      */
8741     if (ttbr_select == 0) {
8742         ttbr = regime_ttbr(env, mmu_idx, 0);
8743         if (el < 2) {
8744             epd = extract32(tcr->raw_tcr, 7, 1);
8745         }
8746         inputsize = addrsize - t0sz;
8747 
8748         tg = extract32(tcr->raw_tcr, 14, 2);
8749         if (tg == 1) { /* 64KB pages */
8750             stride = 13;
8751         }
8752         if (tg == 2) { /* 16KB pages */
8753             stride = 11;
8754         }
8755     } else {
8756         /* We should only be here if TTBR1 is valid */
8757         assert(ttbr1_valid);
8758 
8759         ttbr = regime_ttbr(env, mmu_idx, 1);
8760         epd = extract32(tcr->raw_tcr, 23, 1);
8761         inputsize = addrsize - t1sz;
8762 
8763         tg = extract32(tcr->raw_tcr, 30, 2);
8764         if (tg == 3)  { /* 64KB pages */
8765             stride = 13;
8766         }
8767         if (tg == 1) { /* 16KB pages */
8768             stride = 11;
8769         }
8770     }
8771 
8772     /* Here we should have set up all the parameters for the translation:
8773      * inputsize, ttbr, epd, stride, tbi
8774      */
8775 
8776     if (epd) {
8777         /* Translation table walk disabled => Translation fault on TLB miss
8778          * Note: This is always 0 on 64-bit EL2 and EL3.
8779          */
8780         goto do_fault;
8781     }
8782 
8783     if (mmu_idx != ARMMMUIdx_S2NS) {
8784         /* The starting level depends on the virtual address size (which can
8785          * be up to 48 bits) and the translation granule size. It indicates
8786          * the number of strides (stride bits at a time) needed to
8787          * consume the bits of the input address. In the pseudocode this is:
8788          *  level = 4 - RoundUp((inputsize - grainsize) / stride)
8789          * where their 'inputsize' is our 'inputsize', 'grainsize' is
8790          * our 'stride + 3' and 'stride' is our 'stride'.
8791          * Applying the usual "rounded up m/n is (m+n-1)/n" and simplifying:
8792          * = 4 - (inputsize - stride - 3 + stride - 1) / stride
8793          * = 4 - (inputsize - 4) / stride;
8794          */
8795         level = 4 - (inputsize - 4) / stride;
8796     } else {
8797         /* For stage 2 translations the starting level is specified by the
8798          * VTCR_EL2.SL0 field (whose interpretation depends on the page size)
8799          */
8800         uint32_t sl0 = extract32(tcr->raw_tcr, 6, 2);
8801         uint32_t startlevel;
8802         bool ok;
8803 
8804         if (!aarch64 || stride == 9) {
8805             /* AArch32 or 4KB pages */
8806             startlevel = 2 - sl0;
8807         } else {
8808             /* 16KB or 64KB pages */
8809             startlevel = 3 - sl0;
8810         }
8811 
8812         /* Check that the starting level is valid. */
8813         ok = check_s2_mmu_setup(cpu, aarch64, startlevel,
8814                                 inputsize, stride);
8815         if (!ok) {
8816             fault_type = translation_fault;
8817             goto do_fault;
8818         }
8819         level = startlevel;
8820     }
8821 
8822     indexmask_grainsize = (1ULL << (stride + 3)) - 1;
8823     indexmask = (1ULL << (inputsize - (stride * (4 - level)))) - 1;
8824 
8825     /* Now we can extract the actual base address from the TTBR */
8826     descaddr = extract64(ttbr, 0, 48);
8827     descaddr &= ~indexmask;
8828 
8829     /* The address field in the descriptor goes up to bit 39 for ARMv7
8830      * but up to bit 47 for ARMv8, but we use the descaddrmask
8831      * up to bit 39 for AArch32, because we don't need other bits in that case
8832      * to construct next descriptor address (anyway they should be all zeroes).
8833      */
8834     descaddrmask = ((1ull << (aarch64 ? 48 : 40)) - 1) &
8835                    ~indexmask_grainsize;
8836 
8837     /* Secure accesses start with the page table in secure memory and
8838      * can be downgraded to non-secure at any step. Non-secure accesses
8839      * remain non-secure. We implement this by just ORing in the NSTable/NS
8840      * bits at each step.
8841      */
8842     tableattrs = regime_is_secure(env, mmu_idx) ? 0 : (1 << 4);
8843     for (;;) {
8844         uint64_t descriptor;
8845         bool nstable;
8846 
8847         descaddr |= (address >> (stride * (4 - level))) & indexmask;
8848         descaddr &= ~7ULL;
8849         nstable = extract32(tableattrs, 4, 1);
8850         descriptor = arm_ldq_ptw(cs, descaddr, !nstable, mmu_idx, fsr, fi);
8851         if (fi->s1ptw) {
8852             goto do_fault;
8853         }
8854 
8855         if (!(descriptor & 1) ||
8856             (!(descriptor & 2) && (level == 3))) {
8857             /* Invalid, or the Reserved level 3 encoding */
8858             goto do_fault;
8859         }
8860         descaddr = descriptor & descaddrmask;
8861 
8862         if ((descriptor & 2) && (level < 3)) {
8863             /* Table entry. The top five bits are attributes which  may
8864              * propagate down through lower levels of the table (and
8865              * which are all arranged so that 0 means "no effect", so
8866              * we can gather them up by ORing in the bits at each level).
8867              */
8868             tableattrs |= extract64(descriptor, 59, 5);
8869             level++;
8870             indexmask = indexmask_grainsize;
8871             continue;
8872         }
8873         /* Block entry at level 1 or 2, or page entry at level 3.
8874          * These are basically the same thing, although the number
8875          * of bits we pull in from the vaddr varies.
8876          */
8877         page_size = (1ULL << ((stride * (4 - level)) + 3));
8878         descaddr |= (address & (page_size - 1));
8879         /* Extract attributes from the descriptor */
8880         attrs = extract64(descriptor, 2, 10)
8881             | (extract64(descriptor, 52, 12) << 10);
8882 
8883         if (mmu_idx == ARMMMUIdx_S2NS) {
8884             /* Stage 2 table descriptors do not include any attribute fields */
8885             break;
8886         }
8887         /* Merge in attributes from table descriptors */
8888         attrs |= extract32(tableattrs, 0, 2) << 11; /* XN, PXN */
8889         attrs |= extract32(tableattrs, 3, 1) << 5; /* APTable[1] => AP[2] */
8890         /* The sense of AP[1] vs APTable[0] is reversed, as APTable[0] == 1
8891          * means "force PL1 access only", which means forcing AP[1] to 0.
8892          */
8893         if (extract32(tableattrs, 2, 1)) {
8894             attrs &= ~(1 << 4);
8895         }
8896         attrs |= nstable << 3; /* NS */
8897         break;
8898     }
8899     /* Here descaddr is the final physical address, and attributes
8900      * are all in attrs.
8901      */
8902     fault_type = access_fault;
8903     if ((attrs & (1 << 8)) == 0) {
8904         /* Access flag */
8905         goto do_fault;
8906     }
8907 
8908     ap = extract32(attrs, 4, 2);
8909     xn = extract32(attrs, 12, 1);
8910 
8911     if (mmu_idx == ARMMMUIdx_S2NS) {
8912         ns = true;
8913         *prot = get_S2prot(env, ap, xn);
8914     } else {
8915         ns = extract32(attrs, 3, 1);
8916         pxn = extract32(attrs, 11, 1);
8917         *prot = get_S1prot(env, mmu_idx, aarch64, ap, ns, xn, pxn);
8918     }
8919 
8920     fault_type = permission_fault;
8921     if (!(*prot & (1 << access_type))) {
8922         goto do_fault;
8923     }
8924 
8925     if (ns) {
8926         /* The NS bit will (as required by the architecture) have no effect if
8927          * the CPU doesn't support TZ or this is a non-secure translation
8928          * regime, because the attribute will already be non-secure.
8929          */
8930         txattrs->secure = false;
8931     }
8932     *phys_ptr = descaddr;
8933     *page_size_ptr = page_size;
8934     return false;
8935 
8936 do_fault:
8937     /* Long-descriptor format IFSR/DFSR value */
8938     *fsr = (1 << 9) | (fault_type << 2) | level;
8939     /* Tag the error as S2 for failed S1 PTW at S2 or ordinary S2.  */
8940     fi->stage2 = fi->s1ptw || (mmu_idx == ARMMMUIdx_S2NS);
8941     return true;
8942 }
8943 
8944 static inline void get_phys_addr_pmsav7_default(CPUARMState *env,
8945                                                 ARMMMUIdx mmu_idx,
8946                                                 int32_t address, int *prot)
8947 {
8948     if (!arm_feature(env, ARM_FEATURE_M)) {
8949         *prot = PAGE_READ | PAGE_WRITE;
8950         switch (address) {
8951         case 0xF0000000 ... 0xFFFFFFFF:
8952             if (regime_sctlr(env, mmu_idx) & SCTLR_V) {
8953                 /* hivecs execing is ok */
8954                 *prot |= PAGE_EXEC;
8955             }
8956             break;
8957         case 0x00000000 ... 0x7FFFFFFF:
8958             *prot |= PAGE_EXEC;
8959             break;
8960         }
8961     } else {
8962         /* Default system address map for M profile cores.
8963          * The architecture specifies which regions are execute-never;
8964          * at the MPU level no other checks are defined.
8965          */
8966         switch (address) {
8967         case 0x00000000 ... 0x1fffffff: /* ROM */
8968         case 0x20000000 ... 0x3fffffff: /* SRAM */
8969         case 0x60000000 ... 0x7fffffff: /* RAM */
8970         case 0x80000000 ... 0x9fffffff: /* RAM */
8971             *prot = PAGE_READ | PAGE_WRITE | PAGE_EXEC;
8972             break;
8973         case 0x40000000 ... 0x5fffffff: /* Peripheral */
8974         case 0xa0000000 ... 0xbfffffff: /* Device */
8975         case 0xc0000000 ... 0xdfffffff: /* Device */
8976         case 0xe0000000 ... 0xffffffff: /* System */
8977             *prot = PAGE_READ | PAGE_WRITE;
8978             break;
8979         default:
8980             g_assert_not_reached();
8981         }
8982     }
8983 }
8984 
8985 static bool pmsav7_use_background_region(ARMCPU *cpu,
8986                                          ARMMMUIdx mmu_idx, bool is_user)
8987 {
8988     /* Return true if we should use the default memory map as a
8989      * "background" region if there are no hits against any MPU regions.
8990      */
8991     CPUARMState *env = &cpu->env;
8992 
8993     if (is_user) {
8994         return false;
8995     }
8996 
8997     if (arm_feature(env, ARM_FEATURE_M)) {
8998         return env->v7m.mpu_ctrl[regime_is_secure(env, mmu_idx)]
8999             & R_V7M_MPU_CTRL_PRIVDEFENA_MASK;
9000     } else {
9001         return regime_sctlr(env, mmu_idx) & SCTLR_BR;
9002     }
9003 }
9004 
9005 static inline bool m_is_ppb_region(CPUARMState *env, uint32_t address)
9006 {
9007     /* True if address is in the M profile PPB region 0xe0000000 - 0xe00fffff */
9008     return arm_feature(env, ARM_FEATURE_M) &&
9009         extract32(address, 20, 12) == 0xe00;
9010 }
9011 
9012 static inline bool m_is_system_region(CPUARMState *env, uint32_t address)
9013 {
9014     /* True if address is in the M profile system region
9015      * 0xe0000000 - 0xffffffff
9016      */
9017     return arm_feature(env, ARM_FEATURE_M) && extract32(address, 29, 3) == 0x7;
9018 }
9019 
9020 static bool get_phys_addr_pmsav7(CPUARMState *env, uint32_t address,
9021                                  MMUAccessType access_type, ARMMMUIdx mmu_idx,
9022                                  hwaddr *phys_ptr, int *prot, uint32_t *fsr)
9023 {
9024     ARMCPU *cpu = arm_env_get_cpu(env);
9025     int n;
9026     bool is_user = regime_is_user(env, mmu_idx);
9027 
9028     *phys_ptr = address;
9029     *prot = 0;
9030 
9031     if (regime_translation_disabled(env, mmu_idx) ||
9032         m_is_ppb_region(env, address)) {
9033         /* MPU disabled or M profile PPB access: use default memory map.
9034          * The other case which uses the default memory map in the
9035          * v7M ARM ARM pseudocode is exception vector reads from the vector
9036          * table. In QEMU those accesses are done in arm_v7m_load_vector(),
9037          * which always does a direct read using address_space_ldl(), rather
9038          * than going via this function, so we don't need to check that here.
9039          */
9040         get_phys_addr_pmsav7_default(env, mmu_idx, address, prot);
9041     } else { /* MPU enabled */
9042         for (n = (int)cpu->pmsav7_dregion - 1; n >= 0; n--) {
9043             /* region search */
9044             uint32_t base = env->pmsav7.drbar[n];
9045             uint32_t rsize = extract32(env->pmsav7.drsr[n], 1, 5);
9046             uint32_t rmask;
9047             bool srdis = false;
9048 
9049             if (!(env->pmsav7.drsr[n] & 0x1)) {
9050                 continue;
9051             }
9052 
9053             if (!rsize) {
9054                 qemu_log_mask(LOG_GUEST_ERROR,
9055                               "DRSR[%d]: Rsize field cannot be 0\n", n);
9056                 continue;
9057             }
9058             rsize++;
9059             rmask = (1ull << rsize) - 1;
9060 
9061             if (base & rmask) {
9062                 qemu_log_mask(LOG_GUEST_ERROR,
9063                               "DRBAR[%d]: 0x%" PRIx32 " misaligned "
9064                               "to DRSR region size, mask = 0x%" PRIx32 "\n",
9065                               n, base, rmask);
9066                 continue;
9067             }
9068 
9069             if (address < base || address > base + rmask) {
9070                 continue;
9071             }
9072 
9073             /* Region matched */
9074 
9075             if (rsize >= 8) { /* no subregions for regions < 256 bytes */
9076                 int i, snd;
9077                 uint32_t srdis_mask;
9078 
9079                 rsize -= 3; /* sub region size (power of 2) */
9080                 snd = ((address - base) >> rsize) & 0x7;
9081                 srdis = extract32(env->pmsav7.drsr[n], snd + 8, 1);
9082 
9083                 srdis_mask = srdis ? 0x3 : 0x0;
9084                 for (i = 2; i <= 8 && rsize < TARGET_PAGE_BITS; i *= 2) {
9085                     /* This will check in groups of 2, 4 and then 8, whether
9086                      * the subregion bits are consistent. rsize is incremented
9087                      * back up to give the region size, considering consistent
9088                      * adjacent subregions as one region. Stop testing if rsize
9089                      * is already big enough for an entire QEMU page.
9090                      */
9091                     int snd_rounded = snd & ~(i - 1);
9092                     uint32_t srdis_multi = extract32(env->pmsav7.drsr[n],
9093                                                      snd_rounded + 8, i);
9094                     if (srdis_mask ^ srdis_multi) {
9095                         break;
9096                     }
9097                     srdis_mask = (srdis_mask << i) | srdis_mask;
9098                     rsize++;
9099                 }
9100             }
9101             if (rsize < TARGET_PAGE_BITS) {
9102                 qemu_log_mask(LOG_UNIMP,
9103                               "DRSR[%d]: No support for MPU (sub)region "
9104                               "alignment of %" PRIu32 " bits. Minimum is %d\n",
9105                               n, rsize, TARGET_PAGE_BITS);
9106                 continue;
9107             }
9108             if (srdis) {
9109                 continue;
9110             }
9111             break;
9112         }
9113 
9114         if (n == -1) { /* no hits */
9115             if (!pmsav7_use_background_region(cpu, mmu_idx, is_user)) {
9116                 /* background fault */
9117                 *fsr = 0;
9118                 return true;
9119             }
9120             get_phys_addr_pmsav7_default(env, mmu_idx, address, prot);
9121         } else { /* a MPU hit! */
9122             uint32_t ap = extract32(env->pmsav7.dracr[n], 8, 3);
9123             uint32_t xn = extract32(env->pmsav7.dracr[n], 12, 1);
9124 
9125             if (m_is_system_region(env, address)) {
9126                 /* System space is always execute never */
9127                 xn = 1;
9128             }
9129 
9130             if (is_user) { /* User mode AP bit decoding */
9131                 switch (ap) {
9132                 case 0:
9133                 case 1:
9134                 case 5:
9135                     break; /* no access */
9136                 case 3:
9137                     *prot |= PAGE_WRITE;
9138                     /* fall through */
9139                 case 2:
9140                 case 6:
9141                     *prot |= PAGE_READ | PAGE_EXEC;
9142                     break;
9143                 default:
9144                     qemu_log_mask(LOG_GUEST_ERROR,
9145                                   "DRACR[%d]: Bad value for AP bits: 0x%"
9146                                   PRIx32 "\n", n, ap);
9147                 }
9148             } else { /* Priv. mode AP bits decoding */
9149                 switch (ap) {
9150                 case 0:
9151                     break; /* no access */
9152                 case 1:
9153                 case 2:
9154                 case 3:
9155                     *prot |= PAGE_WRITE;
9156                     /* fall through */
9157                 case 5:
9158                 case 6:
9159                     *prot |= PAGE_READ | PAGE_EXEC;
9160                     break;
9161                 default:
9162                     qemu_log_mask(LOG_GUEST_ERROR,
9163                                   "DRACR[%d]: Bad value for AP bits: 0x%"
9164                                   PRIx32 "\n", n, ap);
9165                 }
9166             }
9167 
9168             /* execute never */
9169             if (xn) {
9170                 *prot &= ~PAGE_EXEC;
9171             }
9172         }
9173     }
9174 
9175     *fsr = 0x00d; /* Permission fault */
9176     return !(*prot & (1 << access_type));
9177 }
9178 
9179 static bool v8m_is_sau_exempt(CPUARMState *env,
9180                               uint32_t address, MMUAccessType access_type)
9181 {
9182     /* The architecture specifies that certain address ranges are
9183      * exempt from v8M SAU/IDAU checks.
9184      */
9185     return
9186         (access_type == MMU_INST_FETCH && m_is_system_region(env, address)) ||
9187         (address >= 0xe0000000 && address <= 0xe0002fff) ||
9188         (address >= 0xe000e000 && address <= 0xe000efff) ||
9189         (address >= 0xe002e000 && address <= 0xe002efff) ||
9190         (address >= 0xe0040000 && address <= 0xe0041fff) ||
9191         (address >= 0xe00ff000 && address <= 0xe00fffff);
9192 }
9193 
9194 static void v8m_security_lookup(CPUARMState *env, uint32_t address,
9195                                 MMUAccessType access_type, ARMMMUIdx mmu_idx,
9196                                 V8M_SAttributes *sattrs)
9197 {
9198     /* Look up the security attributes for this address. Compare the
9199      * pseudocode SecurityCheck() function.
9200      * We assume the caller has zero-initialized *sattrs.
9201      */
9202     ARMCPU *cpu = arm_env_get_cpu(env);
9203     int r;
9204 
9205     /* TODO: implement IDAU */
9206 
9207     if (access_type == MMU_INST_FETCH && extract32(address, 28, 4) == 0xf) {
9208         /* 0xf0000000..0xffffffff is always S for insn fetches */
9209         return;
9210     }
9211 
9212     if (v8m_is_sau_exempt(env, address, access_type)) {
9213         sattrs->ns = !regime_is_secure(env, mmu_idx);
9214         return;
9215     }
9216 
9217     switch (env->sau.ctrl & 3) {
9218     case 0: /* SAU.ENABLE == 0, SAU.ALLNS == 0 */
9219         break;
9220     case 2: /* SAU.ENABLE == 0, SAU.ALLNS == 1 */
9221         sattrs->ns = true;
9222         break;
9223     default: /* SAU.ENABLE == 1 */
9224         for (r = 0; r < cpu->sau_sregion; r++) {
9225             if (env->sau.rlar[r] & 1) {
9226                 uint32_t base = env->sau.rbar[r] & ~0x1f;
9227                 uint32_t limit = env->sau.rlar[r] | 0x1f;
9228 
9229                 if (base <= address && limit >= address) {
9230                     if (sattrs->srvalid) {
9231                         /* If we hit in more than one region then we must report
9232                          * as Secure, not NS-Callable, with no valid region
9233                          * number info.
9234                          */
9235                         sattrs->ns = false;
9236                         sattrs->nsc = false;
9237                         sattrs->sregion = 0;
9238                         sattrs->srvalid = false;
9239                         break;
9240                     } else {
9241                         if (env->sau.rlar[r] & 2) {
9242                             sattrs->nsc = true;
9243                         } else {
9244                             sattrs->ns = true;
9245                         }
9246                         sattrs->srvalid = true;
9247                         sattrs->sregion = r;
9248                     }
9249                 }
9250             }
9251         }
9252 
9253         /* TODO when we support the IDAU then it may override the result here */
9254         break;
9255     }
9256 }
9257 
9258 static bool get_phys_addr_pmsav8(CPUARMState *env, uint32_t address,
9259                                  MMUAccessType access_type, ARMMMUIdx mmu_idx,
9260                                  hwaddr *phys_ptr, MemTxAttrs *txattrs,
9261                                  int *prot, uint32_t *fsr)
9262 {
9263     ARMCPU *cpu = arm_env_get_cpu(env);
9264     bool is_user = regime_is_user(env, mmu_idx);
9265     uint32_t secure = regime_is_secure(env, mmu_idx);
9266     int n;
9267     int matchregion = -1;
9268     bool hit = false;
9269     V8M_SAttributes sattrs = {};
9270 
9271     *phys_ptr = address;
9272     *prot = 0;
9273 
9274     if (arm_feature(env, ARM_FEATURE_M_SECURITY)) {
9275         v8m_security_lookup(env, address, access_type, mmu_idx, &sattrs);
9276         if (access_type == MMU_INST_FETCH) {
9277             /* Instruction fetches always use the MMU bank and the
9278              * transaction attribute determined by the fetch address,
9279              * regardless of CPU state. This is painful for QEMU
9280              * to handle, because it would mean we need to encode
9281              * into the mmu_idx not just the (user, negpri) information
9282              * for the current security state but also that for the
9283              * other security state, which would balloon the number
9284              * of mmu_idx values needed alarmingly.
9285              * Fortunately we can avoid this because it's not actually
9286              * possible to arbitrarily execute code from memory with
9287              * the wrong security attribute: it will always generate
9288              * an exception of some kind or another, apart from the
9289              * special case of an NS CPU executing an SG instruction
9290              * in S&NSC memory. So we always just fail the translation
9291              * here and sort things out in the exception handler
9292              * (including possibly emulating an SG instruction).
9293              */
9294             if (sattrs.ns != !secure) {
9295                 *fsr = sattrs.nsc ? M_FAKE_FSR_NSC_EXEC : M_FAKE_FSR_SFAULT;
9296                 return true;
9297             }
9298         } else {
9299             /* For data accesses we always use the MMU bank indicated
9300              * by the current CPU state, but the security attributes
9301              * might downgrade a secure access to nonsecure.
9302              */
9303             if (sattrs.ns) {
9304                 txattrs->secure = false;
9305             } else if (!secure) {
9306                 /* NS access to S memory must fault.
9307                  * Architecturally we should first check whether the
9308                  * MPU information for this address indicates that we
9309                  * are doing an unaligned access to Device memory, which
9310                  * should generate a UsageFault instead. QEMU does not
9311                  * currently check for that kind of unaligned access though.
9312                  * If we added it we would need to do so as a special case
9313                  * for M_FAKE_FSR_SFAULT in arm_v7m_cpu_do_interrupt().
9314                  */
9315                 *fsr = M_FAKE_FSR_SFAULT;
9316                 return true;
9317             }
9318         }
9319     }
9320 
9321     /* Unlike the ARM ARM pseudocode, we don't need to check whether this
9322      * was an exception vector read from the vector table (which is always
9323      * done using the default system address map), because those accesses
9324      * are done in arm_v7m_load_vector(), which always does a direct
9325      * read using address_space_ldl(), rather than going via this function.
9326      */
9327     if (regime_translation_disabled(env, mmu_idx)) { /* MPU disabled */
9328         hit = true;
9329     } else if (m_is_ppb_region(env, address)) {
9330         hit = true;
9331     } else if (pmsav7_use_background_region(cpu, mmu_idx, is_user)) {
9332         hit = true;
9333     } else {
9334         for (n = (int)cpu->pmsav7_dregion - 1; n >= 0; n--) {
9335             /* region search */
9336             /* Note that the base address is bits [31:5] from the register
9337              * with bits [4:0] all zeroes, but the limit address is bits
9338              * [31:5] from the register with bits [4:0] all ones.
9339              */
9340             uint32_t base = env->pmsav8.rbar[secure][n] & ~0x1f;
9341             uint32_t limit = env->pmsav8.rlar[secure][n] | 0x1f;
9342 
9343             if (!(env->pmsav8.rlar[secure][n] & 0x1)) {
9344                 /* Region disabled */
9345                 continue;
9346             }
9347 
9348             if (address < base || address > limit) {
9349                 continue;
9350             }
9351 
9352             if (hit) {
9353                 /* Multiple regions match -- always a failure (unlike
9354                  * PMSAv7 where highest-numbered-region wins)
9355                  */
9356                 *fsr = 0x00d; /* permission fault */
9357                 return true;
9358             }
9359 
9360             matchregion = n;
9361             hit = true;
9362 
9363             if (base & ~TARGET_PAGE_MASK) {
9364                 qemu_log_mask(LOG_UNIMP,
9365                               "MPU_RBAR[%d]: No support for MPU region base"
9366                               "address of 0x%" PRIx32 ". Minimum alignment is "
9367                               "%d\n",
9368                               n, base, TARGET_PAGE_BITS);
9369                 continue;
9370             }
9371             if ((limit + 1) & ~TARGET_PAGE_MASK) {
9372                 qemu_log_mask(LOG_UNIMP,
9373                               "MPU_RBAR[%d]: No support for MPU region limit"
9374                               "address of 0x%" PRIx32 ". Minimum alignment is "
9375                               "%d\n",
9376                               n, limit, TARGET_PAGE_BITS);
9377                 continue;
9378             }
9379         }
9380     }
9381 
9382     if (!hit) {
9383         /* background fault */
9384         *fsr = 0;
9385         return true;
9386     }
9387 
9388     if (matchregion == -1) {
9389         /* hit using the background region */
9390         get_phys_addr_pmsav7_default(env, mmu_idx, address, prot);
9391     } else {
9392         uint32_t ap = extract32(env->pmsav8.rbar[secure][matchregion], 1, 2);
9393         uint32_t xn = extract32(env->pmsav8.rbar[secure][matchregion], 0, 1);
9394 
9395         if (m_is_system_region(env, address)) {
9396             /* System space is always execute never */
9397             xn = 1;
9398         }
9399 
9400         *prot = simple_ap_to_rw_prot(env, mmu_idx, ap);
9401         if (*prot && !xn) {
9402             *prot |= PAGE_EXEC;
9403         }
9404         /* We don't need to look the attribute up in the MAIR0/MAIR1
9405          * registers because that only tells us about cacheability.
9406          */
9407     }
9408 
9409     *fsr = 0x00d; /* Permission fault */
9410     return !(*prot & (1 << access_type));
9411 }
9412 
9413 static bool get_phys_addr_pmsav5(CPUARMState *env, uint32_t address,
9414                                  MMUAccessType access_type, ARMMMUIdx mmu_idx,
9415                                  hwaddr *phys_ptr, int *prot, uint32_t *fsr)
9416 {
9417     int n;
9418     uint32_t mask;
9419     uint32_t base;
9420     bool is_user = regime_is_user(env, mmu_idx);
9421 
9422     if (regime_translation_disabled(env, mmu_idx)) {
9423         /* MPU disabled.  */
9424         *phys_ptr = address;
9425         *prot = PAGE_READ | PAGE_WRITE | PAGE_EXEC;
9426         return false;
9427     }
9428 
9429     *phys_ptr = address;
9430     for (n = 7; n >= 0; n--) {
9431         base = env->cp15.c6_region[n];
9432         if ((base & 1) == 0) {
9433             continue;
9434         }
9435         mask = 1 << ((base >> 1) & 0x1f);
9436         /* Keep this shift separate from the above to avoid an
9437            (undefined) << 32.  */
9438         mask = (mask << 1) - 1;
9439         if (((base ^ address) & ~mask) == 0) {
9440             break;
9441         }
9442     }
9443     if (n < 0) {
9444         *fsr = 2;
9445         return true;
9446     }
9447 
9448     if (access_type == MMU_INST_FETCH) {
9449         mask = env->cp15.pmsav5_insn_ap;
9450     } else {
9451         mask = env->cp15.pmsav5_data_ap;
9452     }
9453     mask = (mask >> (n * 4)) & 0xf;
9454     switch (mask) {
9455     case 0:
9456         *fsr = 1;
9457         return true;
9458     case 1:
9459         if (is_user) {
9460             *fsr = 1;
9461             return true;
9462         }
9463         *prot = PAGE_READ | PAGE_WRITE;
9464         break;
9465     case 2:
9466         *prot = PAGE_READ;
9467         if (!is_user) {
9468             *prot |= PAGE_WRITE;
9469         }
9470         break;
9471     case 3:
9472         *prot = PAGE_READ | PAGE_WRITE;
9473         break;
9474     case 5:
9475         if (is_user) {
9476             *fsr = 1;
9477             return true;
9478         }
9479         *prot = PAGE_READ;
9480         break;
9481     case 6:
9482         *prot = PAGE_READ;
9483         break;
9484     default:
9485         /* Bad permission.  */
9486         *fsr = 1;
9487         return true;
9488     }
9489     *prot |= PAGE_EXEC;
9490     return false;
9491 }
9492 
9493 /* get_phys_addr - get the physical address for this virtual address
9494  *
9495  * Find the physical address corresponding to the given virtual address,
9496  * by doing a translation table walk on MMU based systems or using the
9497  * MPU state on MPU based systems.
9498  *
9499  * Returns false if the translation was successful. Otherwise, phys_ptr, attrs,
9500  * prot and page_size may not be filled in, and the populated fsr value provides
9501  * information on why the translation aborted, in the format of a
9502  * DFSR/IFSR fault register, with the following caveats:
9503  *  * we honour the short vs long DFSR format differences.
9504  *  * the WnR bit is never set (the caller must do this).
9505  *  * for PSMAv5 based systems we don't bother to return a full FSR format
9506  *    value.
9507  *
9508  * @env: CPUARMState
9509  * @address: virtual address to get physical address for
9510  * @access_type: 0 for read, 1 for write, 2 for execute
9511  * @mmu_idx: MMU index indicating required translation regime
9512  * @phys_ptr: set to the physical address corresponding to the virtual address
9513  * @attrs: set to the memory transaction attributes to use
9514  * @prot: set to the permissions for the page containing phys_ptr
9515  * @page_size: set to the size of the page containing phys_ptr
9516  * @fsr: set to the DFSR/IFSR value on failure
9517  */
9518 static bool get_phys_addr(CPUARMState *env, target_ulong address,
9519                           MMUAccessType access_type, ARMMMUIdx mmu_idx,
9520                           hwaddr *phys_ptr, MemTxAttrs *attrs, int *prot,
9521                           target_ulong *page_size, uint32_t *fsr,
9522                           ARMMMUFaultInfo *fi)
9523 {
9524     if (mmu_idx == ARMMMUIdx_S12NSE0 || mmu_idx == ARMMMUIdx_S12NSE1) {
9525         /* Call ourselves recursively to do the stage 1 and then stage 2
9526          * translations.
9527          */
9528         if (arm_feature(env, ARM_FEATURE_EL2)) {
9529             hwaddr ipa;
9530             int s2_prot;
9531             int ret;
9532 
9533             ret = get_phys_addr(env, address, access_type,
9534                                 stage_1_mmu_idx(mmu_idx), &ipa, attrs,
9535                                 prot, page_size, fsr, fi);
9536 
9537             /* If S1 fails or S2 is disabled, return early.  */
9538             if (ret || regime_translation_disabled(env, ARMMMUIdx_S2NS)) {
9539                 *phys_ptr = ipa;
9540                 return ret;
9541             }
9542 
9543             /* S1 is done. Now do S2 translation.  */
9544             ret = get_phys_addr_lpae(env, ipa, access_type, ARMMMUIdx_S2NS,
9545                                      phys_ptr, attrs, &s2_prot,
9546                                      page_size, fsr, fi);
9547             fi->s2addr = ipa;
9548             /* Combine the S1 and S2 perms.  */
9549             *prot &= s2_prot;
9550             return ret;
9551         } else {
9552             /*
9553              * For non-EL2 CPUs a stage1+stage2 translation is just stage 1.
9554              */
9555             mmu_idx = stage_1_mmu_idx(mmu_idx);
9556         }
9557     }
9558 
9559     /* The page table entries may downgrade secure to non-secure, but
9560      * cannot upgrade an non-secure translation regime's attributes
9561      * to secure.
9562      */
9563     attrs->secure = regime_is_secure(env, mmu_idx);
9564     attrs->user = regime_is_user(env, mmu_idx);
9565 
9566     /* Fast Context Switch Extension. This doesn't exist at all in v8.
9567      * In v7 and earlier it affects all stage 1 translations.
9568      */
9569     if (address < 0x02000000 && mmu_idx != ARMMMUIdx_S2NS
9570         && !arm_feature(env, ARM_FEATURE_V8)) {
9571         if (regime_el(env, mmu_idx) == 3) {
9572             address += env->cp15.fcseidr_s;
9573         } else {
9574             address += env->cp15.fcseidr_ns;
9575         }
9576     }
9577 
9578     if (arm_feature(env, ARM_FEATURE_PMSA)) {
9579         bool ret;
9580         *page_size = TARGET_PAGE_SIZE;
9581 
9582         if (arm_feature(env, ARM_FEATURE_V8)) {
9583             /* PMSAv8 */
9584             ret = get_phys_addr_pmsav8(env, address, access_type, mmu_idx,
9585                                        phys_ptr, attrs, prot, fsr);
9586         } else if (arm_feature(env, ARM_FEATURE_V7)) {
9587             /* PMSAv7 */
9588             ret = get_phys_addr_pmsav7(env, address, access_type, mmu_idx,
9589                                        phys_ptr, prot, fsr);
9590         } else {
9591             /* Pre-v7 MPU */
9592             ret = get_phys_addr_pmsav5(env, address, access_type, mmu_idx,
9593                                        phys_ptr, prot, fsr);
9594         }
9595         qemu_log_mask(CPU_LOG_MMU, "PMSA MPU lookup for %s at 0x%08" PRIx32
9596                       " mmu_idx %u -> %s (prot %c%c%c)\n",
9597                       access_type == MMU_DATA_LOAD ? "reading" :
9598                       (access_type == MMU_DATA_STORE ? "writing" : "execute"),
9599                       (uint32_t)address, mmu_idx,
9600                       ret ? "Miss" : "Hit",
9601                       *prot & PAGE_READ ? 'r' : '-',
9602                       *prot & PAGE_WRITE ? 'w' : '-',
9603                       *prot & PAGE_EXEC ? 'x' : '-');
9604 
9605         return ret;
9606     }
9607 
9608     /* Definitely a real MMU, not an MPU */
9609 
9610     if (regime_translation_disabled(env, mmu_idx)) {
9611         /* MMU disabled. */
9612         *phys_ptr = address;
9613         *prot = PAGE_READ | PAGE_WRITE | PAGE_EXEC;
9614         *page_size = TARGET_PAGE_SIZE;
9615         return 0;
9616     }
9617 
9618     if (regime_using_lpae_format(env, mmu_idx)) {
9619         return get_phys_addr_lpae(env, address, access_type, mmu_idx, phys_ptr,
9620                                   attrs, prot, page_size, fsr, fi);
9621     } else if (regime_sctlr(env, mmu_idx) & SCTLR_XP) {
9622         return get_phys_addr_v6(env, address, access_type, mmu_idx, phys_ptr,
9623                                 attrs, prot, page_size, fsr, fi);
9624     } else {
9625         return get_phys_addr_v5(env, address, access_type, mmu_idx, phys_ptr,
9626                                 prot, page_size, fsr, fi);
9627     }
9628 }
9629 
9630 /* Walk the page table and (if the mapping exists) add the page
9631  * to the TLB. Return false on success, or true on failure. Populate
9632  * fsr with ARM DFSR/IFSR fault register format value on failure.
9633  */
9634 bool arm_tlb_fill(CPUState *cs, vaddr address,
9635                   MMUAccessType access_type, int mmu_idx, uint32_t *fsr,
9636                   ARMMMUFaultInfo *fi)
9637 {
9638     ARMCPU *cpu = ARM_CPU(cs);
9639     CPUARMState *env = &cpu->env;
9640     hwaddr phys_addr;
9641     target_ulong page_size;
9642     int prot;
9643     int ret;
9644     MemTxAttrs attrs = {};
9645 
9646     ret = get_phys_addr(env, address, access_type,
9647                         core_to_arm_mmu_idx(env, mmu_idx), &phys_addr,
9648                         &attrs, &prot, &page_size, fsr, fi);
9649     if (!ret) {
9650         /* Map a single [sub]page.  */
9651         phys_addr &= TARGET_PAGE_MASK;
9652         address &= TARGET_PAGE_MASK;
9653         tlb_set_page_with_attrs(cs, address, phys_addr, attrs,
9654                                 prot, mmu_idx, page_size);
9655         return 0;
9656     }
9657 
9658     return ret;
9659 }
9660 
9661 hwaddr arm_cpu_get_phys_page_attrs_debug(CPUState *cs, vaddr addr,
9662                                          MemTxAttrs *attrs)
9663 {
9664     ARMCPU *cpu = ARM_CPU(cs);
9665     CPUARMState *env = &cpu->env;
9666     hwaddr phys_addr;
9667     target_ulong page_size;
9668     int prot;
9669     bool ret;
9670     uint32_t fsr;
9671     ARMMMUFaultInfo fi = {};
9672     ARMMMUIdx mmu_idx = core_to_arm_mmu_idx(env, cpu_mmu_index(env, false));
9673 
9674     *attrs = (MemTxAttrs) {};
9675 
9676     ret = get_phys_addr(env, addr, 0, mmu_idx, &phys_addr,
9677                         attrs, &prot, &page_size, &fsr, &fi);
9678 
9679     if (ret) {
9680         return -1;
9681     }
9682     return phys_addr;
9683 }
9684 
9685 uint32_t HELPER(v7m_mrs)(CPUARMState *env, uint32_t reg)
9686 {
9687     uint32_t mask;
9688     unsigned el = arm_current_el(env);
9689 
9690     /* First handle registers which unprivileged can read */
9691 
9692     switch (reg) {
9693     case 0 ... 7: /* xPSR sub-fields */
9694         mask = 0;
9695         if ((reg & 1) && el) {
9696             mask |= XPSR_EXCP; /* IPSR (unpriv. reads as zero) */
9697         }
9698         if (!(reg & 4)) {
9699             mask |= XPSR_NZCV | XPSR_Q; /* APSR */
9700         }
9701         /* EPSR reads as zero */
9702         return xpsr_read(env) & mask;
9703         break;
9704     case 20: /* CONTROL */
9705         return env->v7m.control[env->v7m.secure];
9706     case 0x94: /* CONTROL_NS */
9707         /* We have to handle this here because unprivileged Secure code
9708          * can read the NS CONTROL register.
9709          */
9710         if (!env->v7m.secure) {
9711             return 0;
9712         }
9713         return env->v7m.control[M_REG_NS];
9714     }
9715 
9716     if (el == 0) {
9717         return 0; /* unprivileged reads others as zero */
9718     }
9719 
9720     if (arm_feature(env, ARM_FEATURE_M_SECURITY)) {
9721         switch (reg) {
9722         case 0x88: /* MSP_NS */
9723             if (!env->v7m.secure) {
9724                 return 0;
9725             }
9726             return env->v7m.other_ss_msp;
9727         case 0x89: /* PSP_NS */
9728             if (!env->v7m.secure) {
9729                 return 0;
9730             }
9731             return env->v7m.other_ss_psp;
9732         case 0x90: /* PRIMASK_NS */
9733             if (!env->v7m.secure) {
9734                 return 0;
9735             }
9736             return env->v7m.primask[M_REG_NS];
9737         case 0x91: /* BASEPRI_NS */
9738             if (!env->v7m.secure) {
9739                 return 0;
9740             }
9741             return env->v7m.basepri[M_REG_NS];
9742         case 0x93: /* FAULTMASK_NS */
9743             if (!env->v7m.secure) {
9744                 return 0;
9745             }
9746             return env->v7m.faultmask[M_REG_NS];
9747         case 0x98: /* SP_NS */
9748         {
9749             /* This gives the non-secure SP selected based on whether we're
9750              * currently in handler mode or not, using the NS CONTROL.SPSEL.
9751              */
9752             bool spsel = env->v7m.control[M_REG_NS] & R_V7M_CONTROL_SPSEL_MASK;
9753 
9754             if (!env->v7m.secure) {
9755                 return 0;
9756             }
9757             if (!arm_v7m_is_handler_mode(env) && spsel) {
9758                 return env->v7m.other_ss_psp;
9759             } else {
9760                 return env->v7m.other_ss_msp;
9761             }
9762         }
9763         default:
9764             break;
9765         }
9766     }
9767 
9768     switch (reg) {
9769     case 8: /* MSP */
9770         return (env->v7m.control[env->v7m.secure] & R_V7M_CONTROL_SPSEL_MASK) ?
9771             env->v7m.other_sp : env->regs[13];
9772     case 9: /* PSP */
9773         return (env->v7m.control[env->v7m.secure] & R_V7M_CONTROL_SPSEL_MASK) ?
9774             env->regs[13] : env->v7m.other_sp;
9775     case 16: /* PRIMASK */
9776         return env->v7m.primask[env->v7m.secure];
9777     case 17: /* BASEPRI */
9778     case 18: /* BASEPRI_MAX */
9779         return env->v7m.basepri[env->v7m.secure];
9780     case 19: /* FAULTMASK */
9781         return env->v7m.faultmask[env->v7m.secure];
9782     default:
9783         qemu_log_mask(LOG_GUEST_ERROR, "Attempt to read unknown special"
9784                                        " register %d\n", reg);
9785         return 0;
9786     }
9787 }
9788 
9789 void HELPER(v7m_msr)(CPUARMState *env, uint32_t maskreg, uint32_t val)
9790 {
9791     /* We're passed bits [11..0] of the instruction; extract
9792      * SYSm and the mask bits.
9793      * Invalid combinations of SYSm and mask are UNPREDICTABLE;
9794      * we choose to treat them as if the mask bits were valid.
9795      * NB that the pseudocode 'mask' variable is bits [11..10],
9796      * whereas ours is [11..8].
9797      */
9798     uint32_t mask = extract32(maskreg, 8, 4);
9799     uint32_t reg = extract32(maskreg, 0, 8);
9800 
9801     if (arm_current_el(env) == 0 && reg > 7) {
9802         /* only xPSR sub-fields may be written by unprivileged */
9803         return;
9804     }
9805 
9806     if (arm_feature(env, ARM_FEATURE_M_SECURITY)) {
9807         switch (reg) {
9808         case 0x88: /* MSP_NS */
9809             if (!env->v7m.secure) {
9810                 return;
9811             }
9812             env->v7m.other_ss_msp = val;
9813             return;
9814         case 0x89: /* PSP_NS */
9815             if (!env->v7m.secure) {
9816                 return;
9817             }
9818             env->v7m.other_ss_psp = val;
9819             return;
9820         case 0x90: /* PRIMASK_NS */
9821             if (!env->v7m.secure) {
9822                 return;
9823             }
9824             env->v7m.primask[M_REG_NS] = val & 1;
9825             return;
9826         case 0x91: /* BASEPRI_NS */
9827             if (!env->v7m.secure) {
9828                 return;
9829             }
9830             env->v7m.basepri[M_REG_NS] = val & 0xff;
9831             return;
9832         case 0x93: /* FAULTMASK_NS */
9833             if (!env->v7m.secure) {
9834                 return;
9835             }
9836             env->v7m.faultmask[M_REG_NS] = val & 1;
9837             return;
9838         case 0x98: /* SP_NS */
9839         {
9840             /* This gives the non-secure SP selected based on whether we're
9841              * currently in handler mode or not, using the NS CONTROL.SPSEL.
9842              */
9843             bool spsel = env->v7m.control[M_REG_NS] & R_V7M_CONTROL_SPSEL_MASK;
9844 
9845             if (!env->v7m.secure) {
9846                 return;
9847             }
9848             if (!arm_v7m_is_handler_mode(env) && spsel) {
9849                 env->v7m.other_ss_psp = val;
9850             } else {
9851                 env->v7m.other_ss_msp = val;
9852             }
9853             return;
9854         }
9855         default:
9856             break;
9857         }
9858     }
9859 
9860     switch (reg) {
9861     case 0 ... 7: /* xPSR sub-fields */
9862         /* only APSR is actually writable */
9863         if (!(reg & 4)) {
9864             uint32_t apsrmask = 0;
9865 
9866             if (mask & 8) {
9867                 apsrmask |= XPSR_NZCV | XPSR_Q;
9868             }
9869             if ((mask & 4) && arm_feature(env, ARM_FEATURE_THUMB_DSP)) {
9870                 apsrmask |= XPSR_GE;
9871             }
9872             xpsr_write(env, val, apsrmask);
9873         }
9874         break;
9875     case 8: /* MSP */
9876         if (env->v7m.control[env->v7m.secure] & R_V7M_CONTROL_SPSEL_MASK) {
9877             env->v7m.other_sp = val;
9878         } else {
9879             env->regs[13] = val;
9880         }
9881         break;
9882     case 9: /* PSP */
9883         if (env->v7m.control[env->v7m.secure] & R_V7M_CONTROL_SPSEL_MASK) {
9884             env->regs[13] = val;
9885         } else {
9886             env->v7m.other_sp = val;
9887         }
9888         break;
9889     case 16: /* PRIMASK */
9890         env->v7m.primask[env->v7m.secure] = val & 1;
9891         break;
9892     case 17: /* BASEPRI */
9893         env->v7m.basepri[env->v7m.secure] = val & 0xff;
9894         break;
9895     case 18: /* BASEPRI_MAX */
9896         val &= 0xff;
9897         if (val != 0 && (val < env->v7m.basepri[env->v7m.secure]
9898                          || env->v7m.basepri[env->v7m.secure] == 0)) {
9899             env->v7m.basepri[env->v7m.secure] = val;
9900         }
9901         break;
9902     case 19: /* FAULTMASK */
9903         env->v7m.faultmask[env->v7m.secure] = val & 1;
9904         break;
9905     case 20: /* CONTROL */
9906         /* Writing to the SPSEL bit only has an effect if we are in
9907          * thread mode; other bits can be updated by any privileged code.
9908          * write_v7m_control_spsel() deals with updating the SPSEL bit in
9909          * env->v7m.control, so we only need update the others.
9910          */
9911         if (!arm_v7m_is_handler_mode(env)) {
9912             write_v7m_control_spsel(env, (val & R_V7M_CONTROL_SPSEL_MASK) != 0);
9913         }
9914         env->v7m.control[env->v7m.secure] &= ~R_V7M_CONTROL_NPRIV_MASK;
9915         env->v7m.control[env->v7m.secure] |= val & R_V7M_CONTROL_NPRIV_MASK;
9916         break;
9917     default:
9918         qemu_log_mask(LOG_GUEST_ERROR, "Attempt to write unknown special"
9919                                        " register %d\n", reg);
9920         return;
9921     }
9922 }
9923 
9924 #endif
9925 
9926 void HELPER(dc_zva)(CPUARMState *env, uint64_t vaddr_in)
9927 {
9928     /* Implement DC ZVA, which zeroes a fixed-length block of memory.
9929      * Note that we do not implement the (architecturally mandated)
9930      * alignment fault for attempts to use this on Device memory
9931      * (which matches the usual QEMU behaviour of not implementing either
9932      * alignment faults or any memory attribute handling).
9933      */
9934 
9935     ARMCPU *cpu = arm_env_get_cpu(env);
9936     uint64_t blocklen = 4 << cpu->dcz_blocksize;
9937     uint64_t vaddr = vaddr_in & ~(blocklen - 1);
9938 
9939 #ifndef CONFIG_USER_ONLY
9940     {
9941         /* Slightly awkwardly, QEMU's TARGET_PAGE_SIZE may be less than
9942          * the block size so we might have to do more than one TLB lookup.
9943          * We know that in fact for any v8 CPU the page size is at least 4K
9944          * and the block size must be 2K or less, but TARGET_PAGE_SIZE is only
9945          * 1K as an artefact of legacy v5 subpage support being present in the
9946          * same QEMU executable.
9947          */
9948         int maxidx = DIV_ROUND_UP(blocklen, TARGET_PAGE_SIZE);
9949         void *hostaddr[maxidx];
9950         int try, i;
9951         unsigned mmu_idx = cpu_mmu_index(env, false);
9952         TCGMemOpIdx oi = make_memop_idx(MO_UB, mmu_idx);
9953 
9954         for (try = 0; try < 2; try++) {
9955 
9956             for (i = 0; i < maxidx; i++) {
9957                 hostaddr[i] = tlb_vaddr_to_host(env,
9958                                                 vaddr + TARGET_PAGE_SIZE * i,
9959                                                 1, mmu_idx);
9960                 if (!hostaddr[i]) {
9961                     break;
9962                 }
9963             }
9964             if (i == maxidx) {
9965                 /* If it's all in the TLB it's fair game for just writing to;
9966                  * we know we don't need to update dirty status, etc.
9967                  */
9968                 for (i = 0; i < maxidx - 1; i++) {
9969                     memset(hostaddr[i], 0, TARGET_PAGE_SIZE);
9970                 }
9971                 memset(hostaddr[i], 0, blocklen - (i * TARGET_PAGE_SIZE));
9972                 return;
9973             }
9974             /* OK, try a store and see if we can populate the tlb. This
9975              * might cause an exception if the memory isn't writable,
9976              * in which case we will longjmp out of here. We must for
9977              * this purpose use the actual register value passed to us
9978              * so that we get the fault address right.
9979              */
9980             helper_ret_stb_mmu(env, vaddr_in, 0, oi, GETPC());
9981             /* Now we can populate the other TLB entries, if any */
9982             for (i = 0; i < maxidx; i++) {
9983                 uint64_t va = vaddr + TARGET_PAGE_SIZE * i;
9984                 if (va != (vaddr_in & TARGET_PAGE_MASK)) {
9985                     helper_ret_stb_mmu(env, va, 0, oi, GETPC());
9986                 }
9987             }
9988         }
9989 
9990         /* Slow path (probably attempt to do this to an I/O device or
9991          * similar, or clearing of a block of code we have translations
9992          * cached for). Just do a series of byte writes as the architecture
9993          * demands. It's not worth trying to use a cpu_physical_memory_map(),
9994          * memset(), unmap() sequence here because:
9995          *  + we'd need to account for the blocksize being larger than a page
9996          *  + the direct-RAM access case is almost always going to be dealt
9997          *    with in the fastpath code above, so there's no speed benefit
9998          *  + we would have to deal with the map returning NULL because the
9999          *    bounce buffer was in use
10000          */
10001         for (i = 0; i < blocklen; i++) {
10002             helper_ret_stb_mmu(env, vaddr + i, 0, oi, GETPC());
10003         }
10004     }
10005 #else
10006     memset(g2h(vaddr), 0, blocklen);
10007 #endif
10008 }
10009 
10010 /* Note that signed overflow is undefined in C.  The following routines are
10011    careful to use unsigned types where modulo arithmetic is required.
10012    Failure to do so _will_ break on newer gcc.  */
10013 
10014 /* Signed saturating arithmetic.  */
10015 
10016 /* Perform 16-bit signed saturating addition.  */
10017 static inline uint16_t add16_sat(uint16_t a, uint16_t b)
10018 {
10019     uint16_t res;
10020 
10021     res = a + b;
10022     if (((res ^ a) & 0x8000) && !((a ^ b) & 0x8000)) {
10023         if (a & 0x8000)
10024             res = 0x8000;
10025         else
10026             res = 0x7fff;
10027     }
10028     return res;
10029 }
10030 
10031 /* Perform 8-bit signed saturating addition.  */
10032 static inline uint8_t add8_sat(uint8_t a, uint8_t b)
10033 {
10034     uint8_t res;
10035 
10036     res = a + b;
10037     if (((res ^ a) & 0x80) && !((a ^ b) & 0x80)) {
10038         if (a & 0x80)
10039             res = 0x80;
10040         else
10041             res = 0x7f;
10042     }
10043     return res;
10044 }
10045 
10046 /* Perform 16-bit signed saturating subtraction.  */
10047 static inline uint16_t sub16_sat(uint16_t a, uint16_t b)
10048 {
10049     uint16_t res;
10050 
10051     res = a - b;
10052     if (((res ^ a) & 0x8000) && ((a ^ b) & 0x8000)) {
10053         if (a & 0x8000)
10054             res = 0x8000;
10055         else
10056             res = 0x7fff;
10057     }
10058     return res;
10059 }
10060 
10061 /* Perform 8-bit signed saturating subtraction.  */
10062 static inline uint8_t sub8_sat(uint8_t a, uint8_t b)
10063 {
10064     uint8_t res;
10065 
10066     res = a - b;
10067     if (((res ^ a) & 0x80) && ((a ^ b) & 0x80)) {
10068         if (a & 0x80)
10069             res = 0x80;
10070         else
10071             res = 0x7f;
10072     }
10073     return res;
10074 }
10075 
10076 #define ADD16(a, b, n) RESULT(add16_sat(a, b), n, 16);
10077 #define SUB16(a, b, n) RESULT(sub16_sat(a, b), n, 16);
10078 #define ADD8(a, b, n)  RESULT(add8_sat(a, b), n, 8);
10079 #define SUB8(a, b, n)  RESULT(sub8_sat(a, b), n, 8);
10080 #define PFX q
10081 
10082 #include "op_addsub.h"
10083 
10084 /* Unsigned saturating arithmetic.  */
10085 static inline uint16_t add16_usat(uint16_t a, uint16_t b)
10086 {
10087     uint16_t res;
10088     res = a + b;
10089     if (res < a)
10090         res = 0xffff;
10091     return res;
10092 }
10093 
10094 static inline uint16_t sub16_usat(uint16_t a, uint16_t b)
10095 {
10096     if (a > b)
10097         return a - b;
10098     else
10099         return 0;
10100 }
10101 
10102 static inline uint8_t add8_usat(uint8_t a, uint8_t b)
10103 {
10104     uint8_t res;
10105     res = a + b;
10106     if (res < a)
10107         res = 0xff;
10108     return res;
10109 }
10110 
10111 static inline uint8_t sub8_usat(uint8_t a, uint8_t b)
10112 {
10113     if (a > b)
10114         return a - b;
10115     else
10116         return 0;
10117 }
10118 
10119 #define ADD16(a, b, n) RESULT(add16_usat(a, b), n, 16);
10120 #define SUB16(a, b, n) RESULT(sub16_usat(a, b), n, 16);
10121 #define ADD8(a, b, n)  RESULT(add8_usat(a, b), n, 8);
10122 #define SUB8(a, b, n)  RESULT(sub8_usat(a, b), n, 8);
10123 #define PFX uq
10124 
10125 #include "op_addsub.h"
10126 
10127 /* Signed modulo arithmetic.  */
10128 #define SARITH16(a, b, n, op) do { \
10129     int32_t sum; \
10130     sum = (int32_t)(int16_t)(a) op (int32_t)(int16_t)(b); \
10131     RESULT(sum, n, 16); \
10132     if (sum >= 0) \
10133         ge |= 3 << (n * 2); \
10134     } while(0)
10135 
10136 #define SARITH8(a, b, n, op) do { \
10137     int32_t sum; \
10138     sum = (int32_t)(int8_t)(a) op (int32_t)(int8_t)(b); \
10139     RESULT(sum, n, 8); \
10140     if (sum >= 0) \
10141         ge |= 1 << n; \
10142     } while(0)
10143 
10144 
10145 #define ADD16(a, b, n) SARITH16(a, b, n, +)
10146 #define SUB16(a, b, n) SARITH16(a, b, n, -)
10147 #define ADD8(a, b, n)  SARITH8(a, b, n, +)
10148 #define SUB8(a, b, n)  SARITH8(a, b, n, -)
10149 #define PFX s
10150 #define ARITH_GE
10151 
10152 #include "op_addsub.h"
10153 
10154 /* Unsigned modulo arithmetic.  */
10155 #define ADD16(a, b, n) do { \
10156     uint32_t sum; \
10157     sum = (uint32_t)(uint16_t)(a) + (uint32_t)(uint16_t)(b); \
10158     RESULT(sum, n, 16); \
10159     if ((sum >> 16) == 1) \
10160         ge |= 3 << (n * 2); \
10161     } while(0)
10162 
10163 #define ADD8(a, b, n) do { \
10164     uint32_t sum; \
10165     sum = (uint32_t)(uint8_t)(a) + (uint32_t)(uint8_t)(b); \
10166     RESULT(sum, n, 8); \
10167     if ((sum >> 8) == 1) \
10168         ge |= 1 << n; \
10169     } while(0)
10170 
10171 #define SUB16(a, b, n) do { \
10172     uint32_t sum; \
10173     sum = (uint32_t)(uint16_t)(a) - (uint32_t)(uint16_t)(b); \
10174     RESULT(sum, n, 16); \
10175     if ((sum >> 16) == 0) \
10176         ge |= 3 << (n * 2); \
10177     } while(0)
10178 
10179 #define SUB8(a, b, n) do { \
10180     uint32_t sum; \
10181     sum = (uint32_t)(uint8_t)(a) - (uint32_t)(uint8_t)(b); \
10182     RESULT(sum, n, 8); \
10183     if ((sum >> 8) == 0) \
10184         ge |= 1 << n; \
10185     } while(0)
10186 
10187 #define PFX u
10188 #define ARITH_GE
10189 
10190 #include "op_addsub.h"
10191 
10192 /* Halved signed arithmetic.  */
10193 #define ADD16(a, b, n) \
10194   RESULT(((int32_t)(int16_t)(a) + (int32_t)(int16_t)(b)) >> 1, n, 16)
10195 #define SUB16(a, b, n) \
10196   RESULT(((int32_t)(int16_t)(a) - (int32_t)(int16_t)(b)) >> 1, n, 16)
10197 #define ADD8(a, b, n) \
10198   RESULT(((int32_t)(int8_t)(a) + (int32_t)(int8_t)(b)) >> 1, n, 8)
10199 #define SUB8(a, b, n) \
10200   RESULT(((int32_t)(int8_t)(a) - (int32_t)(int8_t)(b)) >> 1, n, 8)
10201 #define PFX sh
10202 
10203 #include "op_addsub.h"
10204 
10205 /* Halved unsigned arithmetic.  */
10206 #define ADD16(a, b, n) \
10207   RESULT(((uint32_t)(uint16_t)(a) + (uint32_t)(uint16_t)(b)) >> 1, n, 16)
10208 #define SUB16(a, b, n) \
10209   RESULT(((uint32_t)(uint16_t)(a) - (uint32_t)(uint16_t)(b)) >> 1, n, 16)
10210 #define ADD8(a, b, n) \
10211   RESULT(((uint32_t)(uint8_t)(a) + (uint32_t)(uint8_t)(b)) >> 1, n, 8)
10212 #define SUB8(a, b, n) \
10213   RESULT(((uint32_t)(uint8_t)(a) - (uint32_t)(uint8_t)(b)) >> 1, n, 8)
10214 #define PFX uh
10215 
10216 #include "op_addsub.h"
10217 
10218 static inline uint8_t do_usad(uint8_t a, uint8_t b)
10219 {
10220     if (a > b)
10221         return a - b;
10222     else
10223         return b - a;
10224 }
10225 
10226 /* Unsigned sum of absolute byte differences.  */
10227 uint32_t HELPER(usad8)(uint32_t a, uint32_t b)
10228 {
10229     uint32_t sum;
10230     sum = do_usad(a, b);
10231     sum += do_usad(a >> 8, b >> 8);
10232     sum += do_usad(a >> 16, b >>16);
10233     sum += do_usad(a >> 24, b >> 24);
10234     return sum;
10235 }
10236 
10237 /* For ARMv6 SEL instruction.  */
10238 uint32_t HELPER(sel_flags)(uint32_t flags, uint32_t a, uint32_t b)
10239 {
10240     uint32_t mask;
10241 
10242     mask = 0;
10243     if (flags & 1)
10244         mask |= 0xff;
10245     if (flags & 2)
10246         mask |= 0xff00;
10247     if (flags & 4)
10248         mask |= 0xff0000;
10249     if (flags & 8)
10250         mask |= 0xff000000;
10251     return (a & mask) | (b & ~mask);
10252 }
10253 
10254 /* VFP support.  We follow the convention used for VFP instructions:
10255    Single precision routines have a "s" suffix, double precision a
10256    "d" suffix.  */
10257 
10258 /* Convert host exception flags to vfp form.  */
10259 static inline int vfp_exceptbits_from_host(int host_bits)
10260 {
10261     int target_bits = 0;
10262 
10263     if (host_bits & float_flag_invalid)
10264         target_bits |= 1;
10265     if (host_bits & float_flag_divbyzero)
10266         target_bits |= 2;
10267     if (host_bits & float_flag_overflow)
10268         target_bits |= 4;
10269     if (host_bits & (float_flag_underflow | float_flag_output_denormal))
10270         target_bits |= 8;
10271     if (host_bits & float_flag_inexact)
10272         target_bits |= 0x10;
10273     if (host_bits & float_flag_input_denormal)
10274         target_bits |= 0x80;
10275     return target_bits;
10276 }
10277 
10278 uint32_t HELPER(vfp_get_fpscr)(CPUARMState *env)
10279 {
10280     int i;
10281     uint32_t fpscr;
10282 
10283     fpscr = (env->vfp.xregs[ARM_VFP_FPSCR] & 0xffc8ffff)
10284             | (env->vfp.vec_len << 16)
10285             | (env->vfp.vec_stride << 20);
10286     i = get_float_exception_flags(&env->vfp.fp_status);
10287     i |= get_float_exception_flags(&env->vfp.standard_fp_status);
10288     fpscr |= vfp_exceptbits_from_host(i);
10289     return fpscr;
10290 }
10291 
10292 uint32_t vfp_get_fpscr(CPUARMState *env)
10293 {
10294     return HELPER(vfp_get_fpscr)(env);
10295 }
10296 
10297 /* Convert vfp exception flags to target form.  */
10298 static inline int vfp_exceptbits_to_host(int target_bits)
10299 {
10300     int host_bits = 0;
10301 
10302     if (target_bits & 1)
10303         host_bits |= float_flag_invalid;
10304     if (target_bits & 2)
10305         host_bits |= float_flag_divbyzero;
10306     if (target_bits & 4)
10307         host_bits |= float_flag_overflow;
10308     if (target_bits & 8)
10309         host_bits |= float_flag_underflow;
10310     if (target_bits & 0x10)
10311         host_bits |= float_flag_inexact;
10312     if (target_bits & 0x80)
10313         host_bits |= float_flag_input_denormal;
10314     return host_bits;
10315 }
10316 
10317 void HELPER(vfp_set_fpscr)(CPUARMState *env, uint32_t val)
10318 {
10319     int i;
10320     uint32_t changed;
10321 
10322     changed = env->vfp.xregs[ARM_VFP_FPSCR];
10323     env->vfp.xregs[ARM_VFP_FPSCR] = (val & 0xffc8ffff);
10324     env->vfp.vec_len = (val >> 16) & 7;
10325     env->vfp.vec_stride = (val >> 20) & 3;
10326 
10327     changed ^= val;
10328     if (changed & (3 << 22)) {
10329         i = (val >> 22) & 3;
10330         switch (i) {
10331         case FPROUNDING_TIEEVEN:
10332             i = float_round_nearest_even;
10333             break;
10334         case FPROUNDING_POSINF:
10335             i = float_round_up;
10336             break;
10337         case FPROUNDING_NEGINF:
10338             i = float_round_down;
10339             break;
10340         case FPROUNDING_ZERO:
10341             i = float_round_to_zero;
10342             break;
10343         }
10344         set_float_rounding_mode(i, &env->vfp.fp_status);
10345     }
10346     if (changed & (1 << 24)) {
10347         set_flush_to_zero((val & (1 << 24)) != 0, &env->vfp.fp_status);
10348         set_flush_inputs_to_zero((val & (1 << 24)) != 0, &env->vfp.fp_status);
10349     }
10350     if (changed & (1 << 25))
10351         set_default_nan_mode((val & (1 << 25)) != 0, &env->vfp.fp_status);
10352 
10353     i = vfp_exceptbits_to_host(val);
10354     set_float_exception_flags(i, &env->vfp.fp_status);
10355     set_float_exception_flags(0, &env->vfp.standard_fp_status);
10356 }
10357 
10358 void vfp_set_fpscr(CPUARMState *env, uint32_t val)
10359 {
10360     HELPER(vfp_set_fpscr)(env, val);
10361 }
10362 
10363 #define VFP_HELPER(name, p) HELPER(glue(glue(vfp_,name),p))
10364 
10365 #define VFP_BINOP(name) \
10366 float32 VFP_HELPER(name, s)(float32 a, float32 b, void *fpstp) \
10367 { \
10368     float_status *fpst = fpstp; \
10369     return float32_ ## name(a, b, fpst); \
10370 } \
10371 float64 VFP_HELPER(name, d)(float64 a, float64 b, void *fpstp) \
10372 { \
10373     float_status *fpst = fpstp; \
10374     return float64_ ## name(a, b, fpst); \
10375 }
10376 VFP_BINOP(add)
10377 VFP_BINOP(sub)
10378 VFP_BINOP(mul)
10379 VFP_BINOP(div)
10380 VFP_BINOP(min)
10381 VFP_BINOP(max)
10382 VFP_BINOP(minnum)
10383 VFP_BINOP(maxnum)
10384 #undef VFP_BINOP
10385 
10386 float32 VFP_HELPER(neg, s)(float32 a)
10387 {
10388     return float32_chs(a);
10389 }
10390 
10391 float64 VFP_HELPER(neg, d)(float64 a)
10392 {
10393     return float64_chs(a);
10394 }
10395 
10396 float32 VFP_HELPER(abs, s)(float32 a)
10397 {
10398     return float32_abs(a);
10399 }
10400 
10401 float64 VFP_HELPER(abs, d)(float64 a)
10402 {
10403     return float64_abs(a);
10404 }
10405 
10406 float32 VFP_HELPER(sqrt, s)(float32 a, CPUARMState *env)
10407 {
10408     return float32_sqrt(a, &env->vfp.fp_status);
10409 }
10410 
10411 float64 VFP_HELPER(sqrt, d)(float64 a, CPUARMState *env)
10412 {
10413     return float64_sqrt(a, &env->vfp.fp_status);
10414 }
10415 
10416 /* XXX: check quiet/signaling case */
10417 #define DO_VFP_cmp(p, type) \
10418 void VFP_HELPER(cmp, p)(type a, type b, CPUARMState *env)  \
10419 { \
10420     uint32_t flags; \
10421     switch(type ## _compare_quiet(a, b, &env->vfp.fp_status)) { \
10422     case 0: flags = 0x6; break; \
10423     case -1: flags = 0x8; break; \
10424     case 1: flags = 0x2; break; \
10425     default: case 2: flags = 0x3; break; \
10426     } \
10427     env->vfp.xregs[ARM_VFP_FPSCR] = (flags << 28) \
10428         | (env->vfp.xregs[ARM_VFP_FPSCR] & 0x0fffffff); \
10429 } \
10430 void VFP_HELPER(cmpe, p)(type a, type b, CPUARMState *env) \
10431 { \
10432     uint32_t flags; \
10433     switch(type ## _compare(a, b, &env->vfp.fp_status)) { \
10434     case 0: flags = 0x6; break; \
10435     case -1: flags = 0x8; break; \
10436     case 1: flags = 0x2; break; \
10437     default: case 2: flags = 0x3; break; \
10438     } \
10439     env->vfp.xregs[ARM_VFP_FPSCR] = (flags << 28) \
10440         | (env->vfp.xregs[ARM_VFP_FPSCR] & 0x0fffffff); \
10441 }
10442 DO_VFP_cmp(s, float32)
10443 DO_VFP_cmp(d, float64)
10444 #undef DO_VFP_cmp
10445 
10446 /* Integer to float and float to integer conversions */
10447 
10448 #define CONV_ITOF(name, fsz, sign) \
10449     float##fsz HELPER(name)(uint32_t x, void *fpstp) \
10450 { \
10451     float_status *fpst = fpstp; \
10452     return sign##int32_to_##float##fsz((sign##int32_t)x, fpst); \
10453 }
10454 
10455 #define CONV_FTOI(name, fsz, sign, round) \
10456 uint32_t HELPER(name)(float##fsz x, void *fpstp) \
10457 { \
10458     float_status *fpst = fpstp; \
10459     if (float##fsz##_is_any_nan(x)) { \
10460         float_raise(float_flag_invalid, fpst); \
10461         return 0; \
10462     } \
10463     return float##fsz##_to_##sign##int32##round(x, fpst); \
10464 }
10465 
10466 #define FLOAT_CONVS(name, p, fsz, sign) \
10467 CONV_ITOF(vfp_##name##to##p, fsz, sign) \
10468 CONV_FTOI(vfp_to##name##p, fsz, sign, ) \
10469 CONV_FTOI(vfp_to##name##z##p, fsz, sign, _round_to_zero)
10470 
10471 FLOAT_CONVS(si, s, 32, )
10472 FLOAT_CONVS(si, d, 64, )
10473 FLOAT_CONVS(ui, s, 32, u)
10474 FLOAT_CONVS(ui, d, 64, u)
10475 
10476 #undef CONV_ITOF
10477 #undef CONV_FTOI
10478 #undef FLOAT_CONVS
10479 
10480 /* floating point conversion */
10481 float64 VFP_HELPER(fcvtd, s)(float32 x, CPUARMState *env)
10482 {
10483     float64 r = float32_to_float64(x, &env->vfp.fp_status);
10484     /* ARM requires that S<->D conversion of any kind of NaN generates
10485      * a quiet NaN by forcing the most significant frac bit to 1.
10486      */
10487     return float64_maybe_silence_nan(r, &env->vfp.fp_status);
10488 }
10489 
10490 float32 VFP_HELPER(fcvts, d)(float64 x, CPUARMState *env)
10491 {
10492     float32 r =  float64_to_float32(x, &env->vfp.fp_status);
10493     /* ARM requires that S<->D conversion of any kind of NaN generates
10494      * a quiet NaN by forcing the most significant frac bit to 1.
10495      */
10496     return float32_maybe_silence_nan(r, &env->vfp.fp_status);
10497 }
10498 
10499 /* VFP3 fixed point conversion.  */
10500 #define VFP_CONV_FIX_FLOAT(name, p, fsz, isz, itype) \
10501 float##fsz HELPER(vfp_##name##to##p)(uint##isz##_t  x, uint32_t shift, \
10502                                      void *fpstp) \
10503 { \
10504     float_status *fpst = fpstp; \
10505     float##fsz tmp; \
10506     tmp = itype##_to_##float##fsz(x, fpst); \
10507     return float##fsz##_scalbn(tmp, -(int)shift, fpst); \
10508 }
10509 
10510 /* Notice that we want only input-denormal exception flags from the
10511  * scalbn operation: the other possible flags (overflow+inexact if
10512  * we overflow to infinity, output-denormal) aren't correct for the
10513  * complete scale-and-convert operation.
10514  */
10515 #define VFP_CONV_FLOAT_FIX_ROUND(name, p, fsz, isz, itype, round) \
10516 uint##isz##_t HELPER(vfp_to##name##p##round)(float##fsz x, \
10517                                              uint32_t shift, \
10518                                              void *fpstp) \
10519 { \
10520     float_status *fpst = fpstp; \
10521     int old_exc_flags = get_float_exception_flags(fpst); \
10522     float##fsz tmp; \
10523     if (float##fsz##_is_any_nan(x)) { \
10524         float_raise(float_flag_invalid, fpst); \
10525         return 0; \
10526     } \
10527     tmp = float##fsz##_scalbn(x, shift, fpst); \
10528     old_exc_flags |= get_float_exception_flags(fpst) \
10529         & float_flag_input_denormal; \
10530     set_float_exception_flags(old_exc_flags, fpst); \
10531     return float##fsz##_to_##itype##round(tmp, fpst); \
10532 }
10533 
10534 #define VFP_CONV_FIX(name, p, fsz, isz, itype)                   \
10535 VFP_CONV_FIX_FLOAT(name, p, fsz, isz, itype)                     \
10536 VFP_CONV_FLOAT_FIX_ROUND(name, p, fsz, isz, itype, _round_to_zero) \
10537 VFP_CONV_FLOAT_FIX_ROUND(name, p, fsz, isz, itype, )
10538 
10539 #define VFP_CONV_FIX_A64(name, p, fsz, isz, itype)               \
10540 VFP_CONV_FIX_FLOAT(name, p, fsz, isz, itype)                     \
10541 VFP_CONV_FLOAT_FIX_ROUND(name, p, fsz, isz, itype, )
10542 
10543 VFP_CONV_FIX(sh, d, 64, 64, int16)
10544 VFP_CONV_FIX(sl, d, 64, 64, int32)
10545 VFP_CONV_FIX_A64(sq, d, 64, 64, int64)
10546 VFP_CONV_FIX(uh, d, 64, 64, uint16)
10547 VFP_CONV_FIX(ul, d, 64, 64, uint32)
10548 VFP_CONV_FIX_A64(uq, d, 64, 64, uint64)
10549 VFP_CONV_FIX(sh, s, 32, 32, int16)
10550 VFP_CONV_FIX(sl, s, 32, 32, int32)
10551 VFP_CONV_FIX_A64(sq, s, 32, 64, int64)
10552 VFP_CONV_FIX(uh, s, 32, 32, uint16)
10553 VFP_CONV_FIX(ul, s, 32, 32, uint32)
10554 VFP_CONV_FIX_A64(uq, s, 32, 64, uint64)
10555 #undef VFP_CONV_FIX
10556 #undef VFP_CONV_FIX_FLOAT
10557 #undef VFP_CONV_FLOAT_FIX_ROUND
10558 
10559 /* Set the current fp rounding mode and return the old one.
10560  * The argument is a softfloat float_round_ value.
10561  */
10562 uint32_t HELPER(set_rmode)(uint32_t rmode, CPUARMState *env)
10563 {
10564     float_status *fp_status = &env->vfp.fp_status;
10565 
10566     uint32_t prev_rmode = get_float_rounding_mode(fp_status);
10567     set_float_rounding_mode(rmode, fp_status);
10568 
10569     return prev_rmode;
10570 }
10571 
10572 /* Set the current fp rounding mode in the standard fp status and return
10573  * the old one. This is for NEON instructions that need to change the
10574  * rounding mode but wish to use the standard FPSCR values for everything
10575  * else. Always set the rounding mode back to the correct value after
10576  * modifying it.
10577  * The argument is a softfloat float_round_ value.
10578  */
10579 uint32_t HELPER(set_neon_rmode)(uint32_t rmode, CPUARMState *env)
10580 {
10581     float_status *fp_status = &env->vfp.standard_fp_status;
10582 
10583     uint32_t prev_rmode = get_float_rounding_mode(fp_status);
10584     set_float_rounding_mode(rmode, fp_status);
10585 
10586     return prev_rmode;
10587 }
10588 
10589 /* Half precision conversions.  */
10590 static float32 do_fcvt_f16_to_f32(uint32_t a, CPUARMState *env, float_status *s)
10591 {
10592     int ieee = (env->vfp.xregs[ARM_VFP_FPSCR] & (1 << 26)) == 0;
10593     float32 r = float16_to_float32(make_float16(a), ieee, s);
10594     if (ieee) {
10595         return float32_maybe_silence_nan(r, s);
10596     }
10597     return r;
10598 }
10599 
10600 static uint32_t do_fcvt_f32_to_f16(float32 a, CPUARMState *env, float_status *s)
10601 {
10602     int ieee = (env->vfp.xregs[ARM_VFP_FPSCR] & (1 << 26)) == 0;
10603     float16 r = float32_to_float16(a, ieee, s);
10604     if (ieee) {
10605         r = float16_maybe_silence_nan(r, s);
10606     }
10607     return float16_val(r);
10608 }
10609 
10610 float32 HELPER(neon_fcvt_f16_to_f32)(uint32_t a, CPUARMState *env)
10611 {
10612     return do_fcvt_f16_to_f32(a, env, &env->vfp.standard_fp_status);
10613 }
10614 
10615 uint32_t HELPER(neon_fcvt_f32_to_f16)(float32 a, CPUARMState *env)
10616 {
10617     return do_fcvt_f32_to_f16(a, env, &env->vfp.standard_fp_status);
10618 }
10619 
10620 float32 HELPER(vfp_fcvt_f16_to_f32)(uint32_t a, CPUARMState *env)
10621 {
10622     return do_fcvt_f16_to_f32(a, env, &env->vfp.fp_status);
10623 }
10624 
10625 uint32_t HELPER(vfp_fcvt_f32_to_f16)(float32 a, CPUARMState *env)
10626 {
10627     return do_fcvt_f32_to_f16(a, env, &env->vfp.fp_status);
10628 }
10629 
10630 float64 HELPER(vfp_fcvt_f16_to_f64)(uint32_t a, CPUARMState *env)
10631 {
10632     int ieee = (env->vfp.xregs[ARM_VFP_FPSCR] & (1 << 26)) == 0;
10633     float64 r = float16_to_float64(make_float16(a), ieee, &env->vfp.fp_status);
10634     if (ieee) {
10635         return float64_maybe_silence_nan(r, &env->vfp.fp_status);
10636     }
10637     return r;
10638 }
10639 
10640 uint32_t HELPER(vfp_fcvt_f64_to_f16)(float64 a, CPUARMState *env)
10641 {
10642     int ieee = (env->vfp.xregs[ARM_VFP_FPSCR] & (1 << 26)) == 0;
10643     float16 r = float64_to_float16(a, ieee, &env->vfp.fp_status);
10644     if (ieee) {
10645         r = float16_maybe_silence_nan(r, &env->vfp.fp_status);
10646     }
10647     return float16_val(r);
10648 }
10649 
10650 #define float32_two make_float32(0x40000000)
10651 #define float32_three make_float32(0x40400000)
10652 #define float32_one_point_five make_float32(0x3fc00000)
10653 
10654 float32 HELPER(recps_f32)(float32 a, float32 b, CPUARMState *env)
10655 {
10656     float_status *s = &env->vfp.standard_fp_status;
10657     if ((float32_is_infinity(a) && float32_is_zero_or_denormal(b)) ||
10658         (float32_is_infinity(b) && float32_is_zero_or_denormal(a))) {
10659         if (!(float32_is_zero(a) || float32_is_zero(b))) {
10660             float_raise(float_flag_input_denormal, s);
10661         }
10662         return float32_two;
10663     }
10664     return float32_sub(float32_two, float32_mul(a, b, s), s);
10665 }
10666 
10667 float32 HELPER(rsqrts_f32)(float32 a, float32 b, CPUARMState *env)
10668 {
10669     float_status *s = &env->vfp.standard_fp_status;
10670     float32 product;
10671     if ((float32_is_infinity(a) && float32_is_zero_or_denormal(b)) ||
10672         (float32_is_infinity(b) && float32_is_zero_or_denormal(a))) {
10673         if (!(float32_is_zero(a) || float32_is_zero(b))) {
10674             float_raise(float_flag_input_denormal, s);
10675         }
10676         return float32_one_point_five;
10677     }
10678     product = float32_mul(a, b, s);
10679     return float32_div(float32_sub(float32_three, product, s), float32_two, s);
10680 }
10681 
10682 /* NEON helpers.  */
10683 
10684 /* Constants 256 and 512 are used in some helpers; we avoid relying on
10685  * int->float conversions at run-time.  */
10686 #define float64_256 make_float64(0x4070000000000000LL)
10687 #define float64_512 make_float64(0x4080000000000000LL)
10688 #define float32_maxnorm make_float32(0x7f7fffff)
10689 #define float64_maxnorm make_float64(0x7fefffffffffffffLL)
10690 
10691 /* Reciprocal functions
10692  *
10693  * The algorithm that must be used to calculate the estimate
10694  * is specified by the ARM ARM, see FPRecipEstimate()
10695  */
10696 
10697 static float64 recip_estimate(float64 a, float_status *real_fp_status)
10698 {
10699     /* These calculations mustn't set any fp exception flags,
10700      * so we use a local copy of the fp_status.
10701      */
10702     float_status dummy_status = *real_fp_status;
10703     float_status *s = &dummy_status;
10704     /* q = (int)(a * 512.0) */
10705     float64 q = float64_mul(float64_512, a, s);
10706     int64_t q_int = float64_to_int64_round_to_zero(q, s);
10707 
10708     /* r = 1.0 / (((double)q + 0.5) / 512.0) */
10709     q = int64_to_float64(q_int, s);
10710     q = float64_add(q, float64_half, s);
10711     q = float64_div(q, float64_512, s);
10712     q = float64_div(float64_one, q, s);
10713 
10714     /* s = (int)(256.0 * r + 0.5) */
10715     q = float64_mul(q, float64_256, s);
10716     q = float64_add(q, float64_half, s);
10717     q_int = float64_to_int64_round_to_zero(q, s);
10718 
10719     /* return (double)s / 256.0 */
10720     return float64_div(int64_to_float64(q_int, s), float64_256, s);
10721 }
10722 
10723 /* Common wrapper to call recip_estimate */
10724 static float64 call_recip_estimate(float64 num, int off, float_status *fpst)
10725 {
10726     uint64_t val64 = float64_val(num);
10727     uint64_t frac = extract64(val64, 0, 52);
10728     int64_t exp = extract64(val64, 52, 11);
10729     uint64_t sbit;
10730     float64 scaled, estimate;
10731 
10732     /* Generate the scaled number for the estimate function */
10733     if (exp == 0) {
10734         if (extract64(frac, 51, 1) == 0) {
10735             exp = -1;
10736             frac = extract64(frac, 0, 50) << 2;
10737         } else {
10738             frac = extract64(frac, 0, 51) << 1;
10739         }
10740     }
10741 
10742     /* scaled = '0' : '01111111110' : fraction<51:44> : Zeros(44); */
10743     scaled = make_float64((0x3feULL << 52)
10744                           | extract64(frac, 44, 8) << 44);
10745 
10746     estimate = recip_estimate(scaled, fpst);
10747 
10748     /* Build new result */
10749     val64 = float64_val(estimate);
10750     sbit = 0x8000000000000000ULL & val64;
10751     exp = off - exp;
10752     frac = extract64(val64, 0, 52);
10753 
10754     if (exp == 0) {
10755         frac = 1ULL << 51 | extract64(frac, 1, 51);
10756     } else if (exp == -1) {
10757         frac = 1ULL << 50 | extract64(frac, 2, 50);
10758         exp = 0;
10759     }
10760 
10761     return make_float64(sbit | (exp << 52) | frac);
10762 }
10763 
10764 static bool round_to_inf(float_status *fpst, bool sign_bit)
10765 {
10766     switch (fpst->float_rounding_mode) {
10767     case float_round_nearest_even: /* Round to Nearest */
10768         return true;
10769     case float_round_up: /* Round to +Inf */
10770         return !sign_bit;
10771     case float_round_down: /* Round to -Inf */
10772         return sign_bit;
10773     case float_round_to_zero: /* Round to Zero */
10774         return false;
10775     }
10776 
10777     g_assert_not_reached();
10778 }
10779 
10780 float32 HELPER(recpe_f32)(float32 input, void *fpstp)
10781 {
10782     float_status *fpst = fpstp;
10783     float32 f32 = float32_squash_input_denormal(input, fpst);
10784     uint32_t f32_val = float32_val(f32);
10785     uint32_t f32_sbit = 0x80000000ULL & f32_val;
10786     int32_t f32_exp = extract32(f32_val, 23, 8);
10787     uint32_t f32_frac = extract32(f32_val, 0, 23);
10788     float64 f64, r64;
10789     uint64_t r64_val;
10790     int64_t r64_exp;
10791     uint64_t r64_frac;
10792 
10793     if (float32_is_any_nan(f32)) {
10794         float32 nan = f32;
10795         if (float32_is_signaling_nan(f32, fpst)) {
10796             float_raise(float_flag_invalid, fpst);
10797             nan = float32_maybe_silence_nan(f32, fpst);
10798         }
10799         if (fpst->default_nan_mode) {
10800             nan =  float32_default_nan(fpst);
10801         }
10802         return nan;
10803     } else if (float32_is_infinity(f32)) {
10804         return float32_set_sign(float32_zero, float32_is_neg(f32));
10805     } else if (float32_is_zero(f32)) {
10806         float_raise(float_flag_divbyzero, fpst);
10807         return float32_set_sign(float32_infinity, float32_is_neg(f32));
10808     } else if ((f32_val & ~(1ULL << 31)) < (1ULL << 21)) {
10809         /* Abs(value) < 2.0^-128 */
10810         float_raise(float_flag_overflow | float_flag_inexact, fpst);
10811         if (round_to_inf(fpst, f32_sbit)) {
10812             return float32_set_sign(float32_infinity, float32_is_neg(f32));
10813         } else {
10814             return float32_set_sign(float32_maxnorm, float32_is_neg(f32));
10815         }
10816     } else if (f32_exp >= 253 && fpst->flush_to_zero) {
10817         float_raise(float_flag_underflow, fpst);
10818         return float32_set_sign(float32_zero, float32_is_neg(f32));
10819     }
10820 
10821 
10822     f64 = make_float64(((int64_t)(f32_exp) << 52) | (int64_t)(f32_frac) << 29);
10823     r64 = call_recip_estimate(f64, 253, fpst);
10824     r64_val = float64_val(r64);
10825     r64_exp = extract64(r64_val, 52, 11);
10826     r64_frac = extract64(r64_val, 0, 52);
10827 
10828     /* result = sign : result_exp<7:0> : fraction<51:29>; */
10829     return make_float32(f32_sbit |
10830                         (r64_exp & 0xff) << 23 |
10831                         extract64(r64_frac, 29, 24));
10832 }
10833 
10834 float64 HELPER(recpe_f64)(float64 input, void *fpstp)
10835 {
10836     float_status *fpst = fpstp;
10837     float64 f64 = float64_squash_input_denormal(input, fpst);
10838     uint64_t f64_val = float64_val(f64);
10839     uint64_t f64_sbit = 0x8000000000000000ULL & f64_val;
10840     int64_t f64_exp = extract64(f64_val, 52, 11);
10841     float64 r64;
10842     uint64_t r64_val;
10843     int64_t r64_exp;
10844     uint64_t r64_frac;
10845 
10846     /* Deal with any special cases */
10847     if (float64_is_any_nan(f64)) {
10848         float64 nan = f64;
10849         if (float64_is_signaling_nan(f64, fpst)) {
10850             float_raise(float_flag_invalid, fpst);
10851             nan = float64_maybe_silence_nan(f64, fpst);
10852         }
10853         if (fpst->default_nan_mode) {
10854             nan =  float64_default_nan(fpst);
10855         }
10856         return nan;
10857     } else if (float64_is_infinity(f64)) {
10858         return float64_set_sign(float64_zero, float64_is_neg(f64));
10859     } else if (float64_is_zero(f64)) {
10860         float_raise(float_flag_divbyzero, fpst);
10861         return float64_set_sign(float64_infinity, float64_is_neg(f64));
10862     } else if ((f64_val & ~(1ULL << 63)) < (1ULL << 50)) {
10863         /* Abs(value) < 2.0^-1024 */
10864         float_raise(float_flag_overflow | float_flag_inexact, fpst);
10865         if (round_to_inf(fpst, f64_sbit)) {
10866             return float64_set_sign(float64_infinity, float64_is_neg(f64));
10867         } else {
10868             return float64_set_sign(float64_maxnorm, float64_is_neg(f64));
10869         }
10870     } else if (f64_exp >= 2045 && fpst->flush_to_zero) {
10871         float_raise(float_flag_underflow, fpst);
10872         return float64_set_sign(float64_zero, float64_is_neg(f64));
10873     }
10874 
10875     r64 = call_recip_estimate(f64, 2045, fpst);
10876     r64_val = float64_val(r64);
10877     r64_exp = extract64(r64_val, 52, 11);
10878     r64_frac = extract64(r64_val, 0, 52);
10879 
10880     /* result = sign : result_exp<10:0> : fraction<51:0> */
10881     return make_float64(f64_sbit |
10882                         ((r64_exp & 0x7ff) << 52) |
10883                         r64_frac);
10884 }
10885 
10886 /* The algorithm that must be used to calculate the estimate
10887  * is specified by the ARM ARM.
10888  */
10889 static float64 recip_sqrt_estimate(float64 a, float_status *real_fp_status)
10890 {
10891     /* These calculations mustn't set any fp exception flags,
10892      * so we use a local copy of the fp_status.
10893      */
10894     float_status dummy_status = *real_fp_status;
10895     float_status *s = &dummy_status;
10896     float64 q;
10897     int64_t q_int;
10898 
10899     if (float64_lt(a, float64_half, s)) {
10900         /* range 0.25 <= a < 0.5 */
10901 
10902         /* a in units of 1/512 rounded down */
10903         /* q0 = (int)(a * 512.0);  */
10904         q = float64_mul(float64_512, a, s);
10905         q_int = float64_to_int64_round_to_zero(q, s);
10906 
10907         /* reciprocal root r */
10908         /* r = 1.0 / sqrt(((double)q0 + 0.5) / 512.0);  */
10909         q = int64_to_float64(q_int, s);
10910         q = float64_add(q, float64_half, s);
10911         q = float64_div(q, float64_512, s);
10912         q = float64_sqrt(q, s);
10913         q = float64_div(float64_one, q, s);
10914     } else {
10915         /* range 0.5 <= a < 1.0 */
10916 
10917         /* a in units of 1/256 rounded down */
10918         /* q1 = (int)(a * 256.0); */
10919         q = float64_mul(float64_256, a, s);
10920         int64_t q_int = float64_to_int64_round_to_zero(q, s);
10921 
10922         /* reciprocal root r */
10923         /* r = 1.0 /sqrt(((double)q1 + 0.5) / 256); */
10924         q = int64_to_float64(q_int, s);
10925         q = float64_add(q, float64_half, s);
10926         q = float64_div(q, float64_256, s);
10927         q = float64_sqrt(q, s);
10928         q = float64_div(float64_one, q, s);
10929     }
10930     /* r in units of 1/256 rounded to nearest */
10931     /* s = (int)(256.0 * r + 0.5); */
10932 
10933     q = float64_mul(q, float64_256,s );
10934     q = float64_add(q, float64_half, s);
10935     q_int = float64_to_int64_round_to_zero(q, s);
10936 
10937     /* return (double)s / 256.0;*/
10938     return float64_div(int64_to_float64(q_int, s), float64_256, s);
10939 }
10940 
10941 float32 HELPER(rsqrte_f32)(float32 input, void *fpstp)
10942 {
10943     float_status *s = fpstp;
10944     float32 f32 = float32_squash_input_denormal(input, s);
10945     uint32_t val = float32_val(f32);
10946     uint32_t f32_sbit = 0x80000000 & val;
10947     int32_t f32_exp = extract32(val, 23, 8);
10948     uint32_t f32_frac = extract32(val, 0, 23);
10949     uint64_t f64_frac;
10950     uint64_t val64;
10951     int result_exp;
10952     float64 f64;
10953 
10954     if (float32_is_any_nan(f32)) {
10955         float32 nan = f32;
10956         if (float32_is_signaling_nan(f32, s)) {
10957             float_raise(float_flag_invalid, s);
10958             nan = float32_maybe_silence_nan(f32, s);
10959         }
10960         if (s->default_nan_mode) {
10961             nan =  float32_default_nan(s);
10962         }
10963         return nan;
10964     } else if (float32_is_zero(f32)) {
10965         float_raise(float_flag_divbyzero, s);
10966         return float32_set_sign(float32_infinity, float32_is_neg(f32));
10967     } else if (float32_is_neg(f32)) {
10968         float_raise(float_flag_invalid, s);
10969         return float32_default_nan(s);
10970     } else if (float32_is_infinity(f32)) {
10971         return float32_zero;
10972     }
10973 
10974     /* Scale and normalize to a double-precision value between 0.25 and 1.0,
10975      * preserving the parity of the exponent.  */
10976 
10977     f64_frac = ((uint64_t) f32_frac) << 29;
10978     if (f32_exp == 0) {
10979         while (extract64(f64_frac, 51, 1) == 0) {
10980             f64_frac = f64_frac << 1;
10981             f32_exp = f32_exp-1;
10982         }
10983         f64_frac = extract64(f64_frac, 0, 51) << 1;
10984     }
10985 
10986     if (extract64(f32_exp, 0, 1) == 0) {
10987         f64 = make_float64(((uint64_t) f32_sbit) << 32
10988                            | (0x3feULL << 52)
10989                            | f64_frac);
10990     } else {
10991         f64 = make_float64(((uint64_t) f32_sbit) << 32
10992                            | (0x3fdULL << 52)
10993                            | f64_frac);
10994     }
10995 
10996     result_exp = (380 - f32_exp) / 2;
10997 
10998     f64 = recip_sqrt_estimate(f64, s);
10999 
11000     val64 = float64_val(f64);
11001 
11002     val = ((result_exp & 0xff) << 23)
11003         | ((val64 >> 29)  & 0x7fffff);
11004     return make_float32(val);
11005 }
11006 
11007 float64 HELPER(rsqrte_f64)(float64 input, void *fpstp)
11008 {
11009     float_status *s = fpstp;
11010     float64 f64 = float64_squash_input_denormal(input, s);
11011     uint64_t val = float64_val(f64);
11012     uint64_t f64_sbit = 0x8000000000000000ULL & val;
11013     int64_t f64_exp = extract64(val, 52, 11);
11014     uint64_t f64_frac = extract64(val, 0, 52);
11015     int64_t result_exp;
11016     uint64_t result_frac;
11017 
11018     if (float64_is_any_nan(f64)) {
11019         float64 nan = f64;
11020         if (float64_is_signaling_nan(f64, s)) {
11021             float_raise(float_flag_invalid, s);
11022             nan = float64_maybe_silence_nan(f64, s);
11023         }
11024         if (s->default_nan_mode) {
11025             nan =  float64_default_nan(s);
11026         }
11027         return nan;
11028     } else if (float64_is_zero(f64)) {
11029         float_raise(float_flag_divbyzero, s);
11030         return float64_set_sign(float64_infinity, float64_is_neg(f64));
11031     } else if (float64_is_neg(f64)) {
11032         float_raise(float_flag_invalid, s);
11033         return float64_default_nan(s);
11034     } else if (float64_is_infinity(f64)) {
11035         return float64_zero;
11036     }
11037 
11038     /* Scale and normalize to a double-precision value between 0.25 and 1.0,
11039      * preserving the parity of the exponent.  */
11040 
11041     if (f64_exp == 0) {
11042         while (extract64(f64_frac, 51, 1) == 0) {
11043             f64_frac = f64_frac << 1;
11044             f64_exp = f64_exp - 1;
11045         }
11046         f64_frac = extract64(f64_frac, 0, 51) << 1;
11047     }
11048 
11049     if (extract64(f64_exp, 0, 1) == 0) {
11050         f64 = make_float64(f64_sbit
11051                            | (0x3feULL << 52)
11052                            | f64_frac);
11053     } else {
11054         f64 = make_float64(f64_sbit
11055                            | (0x3fdULL << 52)
11056                            | f64_frac);
11057     }
11058 
11059     result_exp = (3068 - f64_exp) / 2;
11060 
11061     f64 = recip_sqrt_estimate(f64, s);
11062 
11063     result_frac = extract64(float64_val(f64), 0, 52);
11064 
11065     return make_float64(f64_sbit |
11066                         ((result_exp & 0x7ff) << 52) |
11067                         result_frac);
11068 }
11069 
11070 uint32_t HELPER(recpe_u32)(uint32_t a, void *fpstp)
11071 {
11072     float_status *s = fpstp;
11073     float64 f64;
11074 
11075     if ((a & 0x80000000) == 0) {
11076         return 0xffffffff;
11077     }
11078 
11079     f64 = make_float64((0x3feULL << 52)
11080                        | ((int64_t)(a & 0x7fffffff) << 21));
11081 
11082     f64 = recip_estimate(f64, s);
11083 
11084     return 0x80000000 | ((float64_val(f64) >> 21) & 0x7fffffff);
11085 }
11086 
11087 uint32_t HELPER(rsqrte_u32)(uint32_t a, void *fpstp)
11088 {
11089     float_status *fpst = fpstp;
11090     float64 f64;
11091 
11092     if ((a & 0xc0000000) == 0) {
11093         return 0xffffffff;
11094     }
11095 
11096     if (a & 0x80000000) {
11097         f64 = make_float64((0x3feULL << 52)
11098                            | ((uint64_t)(a & 0x7fffffff) << 21));
11099     } else { /* bits 31-30 == '01' */
11100         f64 = make_float64((0x3fdULL << 52)
11101                            | ((uint64_t)(a & 0x3fffffff) << 22));
11102     }
11103 
11104     f64 = recip_sqrt_estimate(f64, fpst);
11105 
11106     return 0x80000000 | ((float64_val(f64) >> 21) & 0x7fffffff);
11107 }
11108 
11109 /* VFPv4 fused multiply-accumulate */
11110 float32 VFP_HELPER(muladd, s)(float32 a, float32 b, float32 c, void *fpstp)
11111 {
11112     float_status *fpst = fpstp;
11113     return float32_muladd(a, b, c, 0, fpst);
11114 }
11115 
11116 float64 VFP_HELPER(muladd, d)(float64 a, float64 b, float64 c, void *fpstp)
11117 {
11118     float_status *fpst = fpstp;
11119     return float64_muladd(a, b, c, 0, fpst);
11120 }
11121 
11122 /* ARMv8 round to integral */
11123 float32 HELPER(rints_exact)(float32 x, void *fp_status)
11124 {
11125     return float32_round_to_int(x, fp_status);
11126 }
11127 
11128 float64 HELPER(rintd_exact)(float64 x, void *fp_status)
11129 {
11130     return float64_round_to_int(x, fp_status);
11131 }
11132 
11133 float32 HELPER(rints)(float32 x, void *fp_status)
11134 {
11135     int old_flags = get_float_exception_flags(fp_status), new_flags;
11136     float32 ret;
11137 
11138     ret = float32_round_to_int(x, fp_status);
11139 
11140     /* Suppress any inexact exceptions the conversion produced */
11141     if (!(old_flags & float_flag_inexact)) {
11142         new_flags = get_float_exception_flags(fp_status);
11143         set_float_exception_flags(new_flags & ~float_flag_inexact, fp_status);
11144     }
11145 
11146     return ret;
11147 }
11148 
11149 float64 HELPER(rintd)(float64 x, void *fp_status)
11150 {
11151     int old_flags = get_float_exception_flags(fp_status), new_flags;
11152     float64 ret;
11153 
11154     ret = float64_round_to_int(x, fp_status);
11155 
11156     new_flags = get_float_exception_flags(fp_status);
11157 
11158     /* Suppress any inexact exceptions the conversion produced */
11159     if (!(old_flags & float_flag_inexact)) {
11160         new_flags = get_float_exception_flags(fp_status);
11161         set_float_exception_flags(new_flags & ~float_flag_inexact, fp_status);
11162     }
11163 
11164     return ret;
11165 }
11166 
11167 /* Convert ARM rounding mode to softfloat */
11168 int arm_rmode_to_sf(int rmode)
11169 {
11170     switch (rmode) {
11171     case FPROUNDING_TIEAWAY:
11172         rmode = float_round_ties_away;
11173         break;
11174     case FPROUNDING_ODD:
11175         /* FIXME: add support for TIEAWAY and ODD */
11176         qemu_log_mask(LOG_UNIMP, "arm: unimplemented rounding mode: %d\n",
11177                       rmode);
11178     case FPROUNDING_TIEEVEN:
11179     default:
11180         rmode = float_round_nearest_even;
11181         break;
11182     case FPROUNDING_POSINF:
11183         rmode = float_round_up;
11184         break;
11185     case FPROUNDING_NEGINF:
11186         rmode = float_round_down;
11187         break;
11188     case FPROUNDING_ZERO:
11189         rmode = float_round_to_zero;
11190         break;
11191     }
11192     return rmode;
11193 }
11194 
11195 /* CRC helpers.
11196  * The upper bytes of val (above the number specified by 'bytes') must have
11197  * been zeroed out by the caller.
11198  */
11199 uint32_t HELPER(crc32)(uint32_t acc, uint32_t val, uint32_t bytes)
11200 {
11201     uint8_t buf[4];
11202 
11203     stl_le_p(buf, val);
11204 
11205     /* zlib crc32 converts the accumulator and output to one's complement.  */
11206     return crc32(acc ^ 0xffffffff, buf, bytes) ^ 0xffffffff;
11207 }
11208 
11209 uint32_t HELPER(crc32c)(uint32_t acc, uint32_t val, uint32_t bytes)
11210 {
11211     uint8_t buf[4];
11212 
11213     stl_le_p(buf, val);
11214 
11215     /* Linux crc32c converts the output to one's complement.  */
11216     return crc32c(acc, buf, bytes) ^ 0xffffffff;
11217 }
11218