1 #include "qemu/osdep.h" 2 #include "trace.h" 3 #include "cpu.h" 4 #include "internals.h" 5 #include "exec/gdbstub.h" 6 #include "exec/helper-proto.h" 7 #include "qemu/host-utils.h" 8 #include "sysemu/arch_init.h" 9 #include "sysemu/sysemu.h" 10 #include "qemu/bitops.h" 11 #include "qemu/crc32c.h" 12 #include "exec/exec-all.h" 13 #include "exec/cpu_ldst.h" 14 #include "arm_ldst.h" 15 #include <zlib.h> /* For crc32 */ 16 #include "exec/semihost.h" 17 #include "sysemu/kvm.h" 18 19 #define ARM_CPU_FREQ 1000000000 /* FIXME: 1 GHz, should be configurable */ 20 21 #ifndef CONFIG_USER_ONLY 22 static bool get_phys_addr(CPUARMState *env, target_ulong address, 23 int access_type, ARMMMUIdx mmu_idx, 24 hwaddr *phys_ptr, MemTxAttrs *attrs, int *prot, 25 target_ulong *page_size, uint32_t *fsr, 26 ARMMMUFaultInfo *fi); 27 28 static bool get_phys_addr_lpae(CPUARMState *env, target_ulong address, 29 int access_type, ARMMMUIdx mmu_idx, 30 hwaddr *phys_ptr, MemTxAttrs *txattrs, int *prot, 31 target_ulong *page_size_ptr, uint32_t *fsr, 32 ARMMMUFaultInfo *fi); 33 34 /* Definitions for the PMCCNTR and PMCR registers */ 35 #define PMCRD 0x8 36 #define PMCRC 0x4 37 #define PMCRE 0x1 38 #endif 39 40 static int vfp_gdb_get_reg(CPUARMState *env, uint8_t *buf, int reg) 41 { 42 int nregs; 43 44 /* VFP data registers are always little-endian. */ 45 nregs = arm_feature(env, ARM_FEATURE_VFP3) ? 32 : 16; 46 if (reg < nregs) { 47 stfq_le_p(buf, env->vfp.regs[reg]); 48 return 8; 49 } 50 if (arm_feature(env, ARM_FEATURE_NEON)) { 51 /* Aliases for Q regs. */ 52 nregs += 16; 53 if (reg < nregs) { 54 stfq_le_p(buf, env->vfp.regs[(reg - 32) * 2]); 55 stfq_le_p(buf + 8, env->vfp.regs[(reg - 32) * 2 + 1]); 56 return 16; 57 } 58 } 59 switch (reg - nregs) { 60 case 0: stl_p(buf, env->vfp.xregs[ARM_VFP_FPSID]); return 4; 61 case 1: stl_p(buf, env->vfp.xregs[ARM_VFP_FPSCR]); return 4; 62 case 2: stl_p(buf, env->vfp.xregs[ARM_VFP_FPEXC]); return 4; 63 } 64 return 0; 65 } 66 67 static int vfp_gdb_set_reg(CPUARMState *env, uint8_t *buf, int reg) 68 { 69 int nregs; 70 71 nregs = arm_feature(env, ARM_FEATURE_VFP3) ? 32 : 16; 72 if (reg < nregs) { 73 env->vfp.regs[reg] = ldfq_le_p(buf); 74 return 8; 75 } 76 if (arm_feature(env, ARM_FEATURE_NEON)) { 77 nregs += 16; 78 if (reg < nregs) { 79 env->vfp.regs[(reg - 32) * 2] = ldfq_le_p(buf); 80 env->vfp.regs[(reg - 32) * 2 + 1] = ldfq_le_p(buf + 8); 81 return 16; 82 } 83 } 84 switch (reg - nregs) { 85 case 0: env->vfp.xregs[ARM_VFP_FPSID] = ldl_p(buf); return 4; 86 case 1: env->vfp.xregs[ARM_VFP_FPSCR] = ldl_p(buf); return 4; 87 case 2: env->vfp.xregs[ARM_VFP_FPEXC] = ldl_p(buf) & (1 << 30); return 4; 88 } 89 return 0; 90 } 91 92 static int aarch64_fpu_gdb_get_reg(CPUARMState *env, uint8_t *buf, int reg) 93 { 94 switch (reg) { 95 case 0 ... 31: 96 /* 128 bit FP register */ 97 stfq_le_p(buf, env->vfp.regs[reg * 2]); 98 stfq_le_p(buf + 8, env->vfp.regs[reg * 2 + 1]); 99 return 16; 100 case 32: 101 /* FPSR */ 102 stl_p(buf, vfp_get_fpsr(env)); 103 return 4; 104 case 33: 105 /* FPCR */ 106 stl_p(buf, vfp_get_fpcr(env)); 107 return 4; 108 default: 109 return 0; 110 } 111 } 112 113 static int aarch64_fpu_gdb_set_reg(CPUARMState *env, uint8_t *buf, int reg) 114 { 115 switch (reg) { 116 case 0 ... 31: 117 /* 128 bit FP register */ 118 env->vfp.regs[reg * 2] = ldfq_le_p(buf); 119 env->vfp.regs[reg * 2 + 1] = ldfq_le_p(buf + 8); 120 return 16; 121 case 32: 122 /* FPSR */ 123 vfp_set_fpsr(env, ldl_p(buf)); 124 return 4; 125 case 33: 126 /* FPCR */ 127 vfp_set_fpcr(env, ldl_p(buf)); 128 return 4; 129 default: 130 return 0; 131 } 132 } 133 134 static uint64_t raw_read(CPUARMState *env, const ARMCPRegInfo *ri) 135 { 136 assert(ri->fieldoffset); 137 if (cpreg_field_is_64bit(ri)) { 138 return CPREG_FIELD64(env, ri); 139 } else { 140 return CPREG_FIELD32(env, ri); 141 } 142 } 143 144 static void raw_write(CPUARMState *env, const ARMCPRegInfo *ri, 145 uint64_t value) 146 { 147 assert(ri->fieldoffset); 148 if (cpreg_field_is_64bit(ri)) { 149 CPREG_FIELD64(env, ri) = value; 150 } else { 151 CPREG_FIELD32(env, ri) = value; 152 } 153 } 154 155 static void *raw_ptr(CPUARMState *env, const ARMCPRegInfo *ri) 156 { 157 return (char *)env + ri->fieldoffset; 158 } 159 160 uint64_t read_raw_cp_reg(CPUARMState *env, const ARMCPRegInfo *ri) 161 { 162 /* Raw read of a coprocessor register (as needed for migration, etc). */ 163 if (ri->type & ARM_CP_CONST) { 164 return ri->resetvalue; 165 } else if (ri->raw_readfn) { 166 return ri->raw_readfn(env, ri); 167 } else if (ri->readfn) { 168 return ri->readfn(env, ri); 169 } else { 170 return raw_read(env, ri); 171 } 172 } 173 174 static void write_raw_cp_reg(CPUARMState *env, const ARMCPRegInfo *ri, 175 uint64_t v) 176 { 177 /* Raw write of a coprocessor register (as needed for migration, etc). 178 * Note that constant registers are treated as write-ignored; the 179 * caller should check for success by whether a readback gives the 180 * value written. 181 */ 182 if (ri->type & ARM_CP_CONST) { 183 return; 184 } else if (ri->raw_writefn) { 185 ri->raw_writefn(env, ri, v); 186 } else if (ri->writefn) { 187 ri->writefn(env, ri, v); 188 } else { 189 raw_write(env, ri, v); 190 } 191 } 192 193 static bool raw_accessors_invalid(const ARMCPRegInfo *ri) 194 { 195 /* Return true if the regdef would cause an assertion if you called 196 * read_raw_cp_reg() or write_raw_cp_reg() on it (ie if it is a 197 * program bug for it not to have the NO_RAW flag). 198 * NB that returning false here doesn't necessarily mean that calling 199 * read/write_raw_cp_reg() is safe, because we can't distinguish "has 200 * read/write access functions which are safe for raw use" from "has 201 * read/write access functions which have side effects but has forgotten 202 * to provide raw access functions". 203 * The tests here line up with the conditions in read/write_raw_cp_reg() 204 * and assertions in raw_read()/raw_write(). 205 */ 206 if ((ri->type & ARM_CP_CONST) || 207 ri->fieldoffset || 208 ((ri->raw_writefn || ri->writefn) && (ri->raw_readfn || ri->readfn))) { 209 return false; 210 } 211 return true; 212 } 213 214 bool write_cpustate_to_list(ARMCPU *cpu) 215 { 216 /* Write the coprocessor state from cpu->env to the (index,value) list. */ 217 int i; 218 bool ok = true; 219 220 for (i = 0; i < cpu->cpreg_array_len; i++) { 221 uint32_t regidx = kvm_to_cpreg_id(cpu->cpreg_indexes[i]); 222 const ARMCPRegInfo *ri; 223 224 ri = get_arm_cp_reginfo(cpu->cp_regs, regidx); 225 if (!ri) { 226 ok = false; 227 continue; 228 } 229 if (ri->type & ARM_CP_NO_RAW) { 230 continue; 231 } 232 cpu->cpreg_values[i] = read_raw_cp_reg(&cpu->env, ri); 233 } 234 return ok; 235 } 236 237 bool write_list_to_cpustate(ARMCPU *cpu) 238 { 239 int i; 240 bool ok = true; 241 242 for (i = 0; i < cpu->cpreg_array_len; i++) { 243 uint32_t regidx = kvm_to_cpreg_id(cpu->cpreg_indexes[i]); 244 uint64_t v = cpu->cpreg_values[i]; 245 const ARMCPRegInfo *ri; 246 247 ri = get_arm_cp_reginfo(cpu->cp_regs, regidx); 248 if (!ri) { 249 ok = false; 250 continue; 251 } 252 if (ri->type & ARM_CP_NO_RAW) { 253 continue; 254 } 255 /* Write value and confirm it reads back as written 256 * (to catch read-only registers and partially read-only 257 * registers where the incoming migration value doesn't match) 258 */ 259 write_raw_cp_reg(&cpu->env, ri, v); 260 if (read_raw_cp_reg(&cpu->env, ri) != v) { 261 ok = false; 262 } 263 } 264 return ok; 265 } 266 267 static void add_cpreg_to_list(gpointer key, gpointer opaque) 268 { 269 ARMCPU *cpu = opaque; 270 uint64_t regidx; 271 const ARMCPRegInfo *ri; 272 273 regidx = *(uint32_t *)key; 274 ri = get_arm_cp_reginfo(cpu->cp_regs, regidx); 275 276 if (!(ri->type & (ARM_CP_NO_RAW|ARM_CP_ALIAS))) { 277 cpu->cpreg_indexes[cpu->cpreg_array_len] = cpreg_to_kvm_id(regidx); 278 /* The value array need not be initialized at this point */ 279 cpu->cpreg_array_len++; 280 } 281 } 282 283 static void count_cpreg(gpointer key, gpointer opaque) 284 { 285 ARMCPU *cpu = opaque; 286 uint64_t regidx; 287 const ARMCPRegInfo *ri; 288 289 regidx = *(uint32_t *)key; 290 ri = get_arm_cp_reginfo(cpu->cp_regs, regidx); 291 292 if (!(ri->type & (ARM_CP_NO_RAW|ARM_CP_ALIAS))) { 293 cpu->cpreg_array_len++; 294 } 295 } 296 297 static gint cpreg_key_compare(gconstpointer a, gconstpointer b) 298 { 299 uint64_t aidx = cpreg_to_kvm_id(*(uint32_t *)a); 300 uint64_t bidx = cpreg_to_kvm_id(*(uint32_t *)b); 301 302 if (aidx > bidx) { 303 return 1; 304 } 305 if (aidx < bidx) { 306 return -1; 307 } 308 return 0; 309 } 310 311 void init_cpreg_list(ARMCPU *cpu) 312 { 313 /* Initialise the cpreg_tuples[] array based on the cp_regs hash. 314 * Note that we require cpreg_tuples[] to be sorted by key ID. 315 */ 316 GList *keys; 317 int arraylen; 318 319 keys = g_hash_table_get_keys(cpu->cp_regs); 320 keys = g_list_sort(keys, cpreg_key_compare); 321 322 cpu->cpreg_array_len = 0; 323 324 g_list_foreach(keys, count_cpreg, cpu); 325 326 arraylen = cpu->cpreg_array_len; 327 cpu->cpreg_indexes = g_new(uint64_t, arraylen); 328 cpu->cpreg_values = g_new(uint64_t, arraylen); 329 cpu->cpreg_vmstate_indexes = g_new(uint64_t, arraylen); 330 cpu->cpreg_vmstate_values = g_new(uint64_t, arraylen); 331 cpu->cpreg_vmstate_array_len = cpu->cpreg_array_len; 332 cpu->cpreg_array_len = 0; 333 334 g_list_foreach(keys, add_cpreg_to_list, cpu); 335 336 assert(cpu->cpreg_array_len == arraylen); 337 338 g_list_free(keys); 339 } 340 341 /* 342 * Some registers are not accessible if EL3.NS=0 and EL3 is using AArch32 but 343 * they are accessible when EL3 is using AArch64 regardless of EL3.NS. 344 * 345 * access_el3_aa32ns: Used to check AArch32 register views. 346 * access_el3_aa32ns_aa64any: Used to check both AArch32/64 register views. 347 */ 348 static CPAccessResult access_el3_aa32ns(CPUARMState *env, 349 const ARMCPRegInfo *ri, 350 bool isread) 351 { 352 bool secure = arm_is_secure_below_el3(env); 353 354 assert(!arm_el_is_aa64(env, 3)); 355 if (secure) { 356 return CP_ACCESS_TRAP_UNCATEGORIZED; 357 } 358 return CP_ACCESS_OK; 359 } 360 361 static CPAccessResult access_el3_aa32ns_aa64any(CPUARMState *env, 362 const ARMCPRegInfo *ri, 363 bool isread) 364 { 365 if (!arm_el_is_aa64(env, 3)) { 366 return access_el3_aa32ns(env, ri, isread); 367 } 368 return CP_ACCESS_OK; 369 } 370 371 /* Some secure-only AArch32 registers trap to EL3 if used from 372 * Secure EL1 (but are just ordinary UNDEF in other non-EL3 contexts). 373 * Note that an access from Secure EL1 can only happen if EL3 is AArch64. 374 * We assume that the .access field is set to PL1_RW. 375 */ 376 static CPAccessResult access_trap_aa32s_el1(CPUARMState *env, 377 const ARMCPRegInfo *ri, 378 bool isread) 379 { 380 if (arm_current_el(env) == 3) { 381 return CP_ACCESS_OK; 382 } 383 if (arm_is_secure_below_el3(env)) { 384 return CP_ACCESS_TRAP_EL3; 385 } 386 /* This will be EL1 NS and EL2 NS, which just UNDEF */ 387 return CP_ACCESS_TRAP_UNCATEGORIZED; 388 } 389 390 /* Check for traps to "powerdown debug" registers, which are controlled 391 * by MDCR.TDOSA 392 */ 393 static CPAccessResult access_tdosa(CPUARMState *env, const ARMCPRegInfo *ri, 394 bool isread) 395 { 396 int el = arm_current_el(env); 397 398 if (el < 2 && (env->cp15.mdcr_el2 & MDCR_TDOSA) 399 && !arm_is_secure_below_el3(env)) { 400 return CP_ACCESS_TRAP_EL2; 401 } 402 if (el < 3 && (env->cp15.mdcr_el3 & MDCR_TDOSA)) { 403 return CP_ACCESS_TRAP_EL3; 404 } 405 return CP_ACCESS_OK; 406 } 407 408 /* Check for traps to "debug ROM" registers, which are controlled 409 * by MDCR_EL2.TDRA for EL2 but by the more general MDCR_EL3.TDA for EL3. 410 */ 411 static CPAccessResult access_tdra(CPUARMState *env, const ARMCPRegInfo *ri, 412 bool isread) 413 { 414 int el = arm_current_el(env); 415 416 if (el < 2 && (env->cp15.mdcr_el2 & MDCR_TDRA) 417 && !arm_is_secure_below_el3(env)) { 418 return CP_ACCESS_TRAP_EL2; 419 } 420 if (el < 3 && (env->cp15.mdcr_el3 & MDCR_TDA)) { 421 return CP_ACCESS_TRAP_EL3; 422 } 423 return CP_ACCESS_OK; 424 } 425 426 /* Check for traps to general debug registers, which are controlled 427 * by MDCR_EL2.TDA for EL2 and MDCR_EL3.TDA for EL3. 428 */ 429 static CPAccessResult access_tda(CPUARMState *env, const ARMCPRegInfo *ri, 430 bool isread) 431 { 432 int el = arm_current_el(env); 433 434 if (el < 2 && (env->cp15.mdcr_el2 & MDCR_TDA) 435 && !arm_is_secure_below_el3(env)) { 436 return CP_ACCESS_TRAP_EL2; 437 } 438 if (el < 3 && (env->cp15.mdcr_el3 & MDCR_TDA)) { 439 return CP_ACCESS_TRAP_EL3; 440 } 441 return CP_ACCESS_OK; 442 } 443 444 /* Check for traps to performance monitor registers, which are controlled 445 * by MDCR_EL2.TPM for EL2 and MDCR_EL3.TPM for EL3. 446 */ 447 static CPAccessResult access_tpm(CPUARMState *env, const ARMCPRegInfo *ri, 448 bool isread) 449 { 450 int el = arm_current_el(env); 451 452 if (el < 2 && (env->cp15.mdcr_el2 & MDCR_TPM) 453 && !arm_is_secure_below_el3(env)) { 454 return CP_ACCESS_TRAP_EL2; 455 } 456 if (el < 3 && (env->cp15.mdcr_el3 & MDCR_TPM)) { 457 return CP_ACCESS_TRAP_EL3; 458 } 459 return CP_ACCESS_OK; 460 } 461 462 static void dacr_write(CPUARMState *env, const ARMCPRegInfo *ri, uint64_t value) 463 { 464 ARMCPU *cpu = arm_env_get_cpu(env); 465 466 raw_write(env, ri, value); 467 tlb_flush(CPU(cpu)); /* Flush TLB as domain not tracked in TLB */ 468 } 469 470 static void fcse_write(CPUARMState *env, const ARMCPRegInfo *ri, uint64_t value) 471 { 472 ARMCPU *cpu = arm_env_get_cpu(env); 473 474 if (raw_read(env, ri) != value) { 475 /* Unlike real hardware the qemu TLB uses virtual addresses, 476 * not modified virtual addresses, so this causes a TLB flush. 477 */ 478 tlb_flush(CPU(cpu)); 479 raw_write(env, ri, value); 480 } 481 } 482 483 static void contextidr_write(CPUARMState *env, const ARMCPRegInfo *ri, 484 uint64_t value) 485 { 486 ARMCPU *cpu = arm_env_get_cpu(env); 487 488 if (raw_read(env, ri) != value && !arm_feature(env, ARM_FEATURE_MPU) 489 && !extended_addresses_enabled(env)) { 490 /* For VMSA (when not using the LPAE long descriptor page table 491 * format) this register includes the ASID, so do a TLB flush. 492 * For PMSA it is purely a process ID and no action is needed. 493 */ 494 tlb_flush(CPU(cpu)); 495 } 496 raw_write(env, ri, value); 497 } 498 499 static void tlbiall_write(CPUARMState *env, const ARMCPRegInfo *ri, 500 uint64_t value) 501 { 502 /* Invalidate all (TLBIALL) */ 503 ARMCPU *cpu = arm_env_get_cpu(env); 504 505 tlb_flush(CPU(cpu)); 506 } 507 508 static void tlbimva_write(CPUARMState *env, const ARMCPRegInfo *ri, 509 uint64_t value) 510 { 511 /* Invalidate single TLB entry by MVA and ASID (TLBIMVA) */ 512 ARMCPU *cpu = arm_env_get_cpu(env); 513 514 tlb_flush_page(CPU(cpu), value & TARGET_PAGE_MASK); 515 } 516 517 static void tlbiasid_write(CPUARMState *env, const ARMCPRegInfo *ri, 518 uint64_t value) 519 { 520 /* Invalidate by ASID (TLBIASID) */ 521 ARMCPU *cpu = arm_env_get_cpu(env); 522 523 tlb_flush(CPU(cpu)); 524 } 525 526 static void tlbimvaa_write(CPUARMState *env, const ARMCPRegInfo *ri, 527 uint64_t value) 528 { 529 /* Invalidate single entry by MVA, all ASIDs (TLBIMVAA) */ 530 ARMCPU *cpu = arm_env_get_cpu(env); 531 532 tlb_flush_page(CPU(cpu), value & TARGET_PAGE_MASK); 533 } 534 535 /* IS variants of TLB operations must affect all cores */ 536 static void tlbiall_is_write(CPUARMState *env, const ARMCPRegInfo *ri, 537 uint64_t value) 538 { 539 CPUState *other_cs; 540 541 CPU_FOREACH(other_cs) { 542 tlb_flush(other_cs); 543 } 544 } 545 546 static void tlbiasid_is_write(CPUARMState *env, const ARMCPRegInfo *ri, 547 uint64_t value) 548 { 549 CPUState *other_cs; 550 551 CPU_FOREACH(other_cs) { 552 tlb_flush(other_cs); 553 } 554 } 555 556 static void tlbimva_is_write(CPUARMState *env, const ARMCPRegInfo *ri, 557 uint64_t value) 558 { 559 CPUState *other_cs; 560 561 CPU_FOREACH(other_cs) { 562 tlb_flush_page(other_cs, value & TARGET_PAGE_MASK); 563 } 564 } 565 566 static void tlbimvaa_is_write(CPUARMState *env, const ARMCPRegInfo *ri, 567 uint64_t value) 568 { 569 CPUState *other_cs; 570 571 CPU_FOREACH(other_cs) { 572 tlb_flush_page(other_cs, value & TARGET_PAGE_MASK); 573 } 574 } 575 576 static void tlbiall_nsnh_write(CPUARMState *env, const ARMCPRegInfo *ri, 577 uint64_t value) 578 { 579 CPUState *cs = ENV_GET_CPU(env); 580 581 tlb_flush_by_mmuidx(cs, ARMMMUIdx_S12NSE1, ARMMMUIdx_S12NSE0, 582 ARMMMUIdx_S2NS, -1); 583 } 584 585 static void tlbiall_nsnh_is_write(CPUARMState *env, const ARMCPRegInfo *ri, 586 uint64_t value) 587 { 588 CPUState *other_cs; 589 590 CPU_FOREACH(other_cs) { 591 tlb_flush_by_mmuidx(other_cs, ARMMMUIdx_S12NSE1, 592 ARMMMUIdx_S12NSE0, ARMMMUIdx_S2NS, -1); 593 } 594 } 595 596 static void tlbiipas2_write(CPUARMState *env, const ARMCPRegInfo *ri, 597 uint64_t value) 598 { 599 /* Invalidate by IPA. This has to invalidate any structures that 600 * contain only stage 2 translation information, but does not need 601 * to apply to structures that contain combined stage 1 and stage 2 602 * translation information. 603 * This must NOP if EL2 isn't implemented or SCR_EL3.NS is zero. 604 */ 605 CPUState *cs = ENV_GET_CPU(env); 606 uint64_t pageaddr; 607 608 if (!arm_feature(env, ARM_FEATURE_EL2) || !(env->cp15.scr_el3 & SCR_NS)) { 609 return; 610 } 611 612 pageaddr = sextract64(value << 12, 0, 40); 613 614 tlb_flush_page_by_mmuidx(cs, pageaddr, ARMMMUIdx_S2NS, -1); 615 } 616 617 static void tlbiipas2_is_write(CPUARMState *env, const ARMCPRegInfo *ri, 618 uint64_t value) 619 { 620 CPUState *other_cs; 621 uint64_t pageaddr; 622 623 if (!arm_feature(env, ARM_FEATURE_EL2) || !(env->cp15.scr_el3 & SCR_NS)) { 624 return; 625 } 626 627 pageaddr = sextract64(value << 12, 0, 40); 628 629 CPU_FOREACH(other_cs) { 630 tlb_flush_page_by_mmuidx(other_cs, pageaddr, ARMMMUIdx_S2NS, -1); 631 } 632 } 633 634 static void tlbiall_hyp_write(CPUARMState *env, const ARMCPRegInfo *ri, 635 uint64_t value) 636 { 637 CPUState *cs = ENV_GET_CPU(env); 638 639 tlb_flush_by_mmuidx(cs, ARMMMUIdx_S1E2, -1); 640 } 641 642 static void tlbiall_hyp_is_write(CPUARMState *env, const ARMCPRegInfo *ri, 643 uint64_t value) 644 { 645 CPUState *other_cs; 646 647 CPU_FOREACH(other_cs) { 648 tlb_flush_by_mmuidx(other_cs, ARMMMUIdx_S1E2, -1); 649 } 650 } 651 652 static void tlbimva_hyp_write(CPUARMState *env, const ARMCPRegInfo *ri, 653 uint64_t value) 654 { 655 CPUState *cs = ENV_GET_CPU(env); 656 uint64_t pageaddr = value & ~MAKE_64BIT_MASK(0, 12); 657 658 tlb_flush_page_by_mmuidx(cs, pageaddr, ARMMMUIdx_S1E2, -1); 659 } 660 661 static void tlbimva_hyp_is_write(CPUARMState *env, const ARMCPRegInfo *ri, 662 uint64_t value) 663 { 664 CPUState *other_cs; 665 uint64_t pageaddr = value & ~MAKE_64BIT_MASK(0, 12); 666 667 CPU_FOREACH(other_cs) { 668 tlb_flush_page_by_mmuidx(other_cs, pageaddr, ARMMMUIdx_S1E2, -1); 669 } 670 } 671 672 static const ARMCPRegInfo cp_reginfo[] = { 673 /* Define the secure and non-secure FCSE identifier CP registers 674 * separately because there is no secure bank in V8 (no _EL3). This allows 675 * the secure register to be properly reset and migrated. There is also no 676 * v8 EL1 version of the register so the non-secure instance stands alone. 677 */ 678 { .name = "FCSEIDR(NS)", 679 .cp = 15, .opc1 = 0, .crn = 13, .crm = 0, .opc2 = 0, 680 .access = PL1_RW, .secure = ARM_CP_SECSTATE_NS, 681 .fieldoffset = offsetof(CPUARMState, cp15.fcseidr_ns), 682 .resetvalue = 0, .writefn = fcse_write, .raw_writefn = raw_write, }, 683 { .name = "FCSEIDR(S)", 684 .cp = 15, .opc1 = 0, .crn = 13, .crm = 0, .opc2 = 0, 685 .access = PL1_RW, .secure = ARM_CP_SECSTATE_S, 686 .fieldoffset = offsetof(CPUARMState, cp15.fcseidr_s), 687 .resetvalue = 0, .writefn = fcse_write, .raw_writefn = raw_write, }, 688 /* Define the secure and non-secure context identifier CP registers 689 * separately because there is no secure bank in V8 (no _EL3). This allows 690 * the secure register to be properly reset and migrated. In the 691 * non-secure case, the 32-bit register will have reset and migration 692 * disabled during registration as it is handled by the 64-bit instance. 693 */ 694 { .name = "CONTEXTIDR_EL1", .state = ARM_CP_STATE_BOTH, 695 .opc0 = 3, .opc1 = 0, .crn = 13, .crm = 0, .opc2 = 1, 696 .access = PL1_RW, .secure = ARM_CP_SECSTATE_NS, 697 .fieldoffset = offsetof(CPUARMState, cp15.contextidr_el[1]), 698 .resetvalue = 0, .writefn = contextidr_write, .raw_writefn = raw_write, }, 699 { .name = "CONTEXTIDR(S)", .state = ARM_CP_STATE_AA32, 700 .cp = 15, .opc1 = 0, .crn = 13, .crm = 0, .opc2 = 1, 701 .access = PL1_RW, .secure = ARM_CP_SECSTATE_S, 702 .fieldoffset = offsetof(CPUARMState, cp15.contextidr_s), 703 .resetvalue = 0, .writefn = contextidr_write, .raw_writefn = raw_write, }, 704 REGINFO_SENTINEL 705 }; 706 707 static const ARMCPRegInfo not_v8_cp_reginfo[] = { 708 /* NB: Some of these registers exist in v8 but with more precise 709 * definitions that don't use CP_ANY wildcards (mostly in v8_cp_reginfo[]). 710 */ 711 /* MMU Domain access control / MPU write buffer control */ 712 { .name = "DACR", 713 .cp = 15, .opc1 = CP_ANY, .crn = 3, .crm = CP_ANY, .opc2 = CP_ANY, 714 .access = PL1_RW, .resetvalue = 0, 715 .writefn = dacr_write, .raw_writefn = raw_write, 716 .bank_fieldoffsets = { offsetoflow32(CPUARMState, cp15.dacr_s), 717 offsetoflow32(CPUARMState, cp15.dacr_ns) } }, 718 /* ARMv7 allocates a range of implementation defined TLB LOCKDOWN regs. 719 * For v6 and v5, these mappings are overly broad. 720 */ 721 { .name = "TLB_LOCKDOWN", .cp = 15, .crn = 10, .crm = 0, 722 .opc1 = CP_ANY, .opc2 = CP_ANY, .access = PL1_RW, .type = ARM_CP_NOP }, 723 { .name = "TLB_LOCKDOWN", .cp = 15, .crn = 10, .crm = 1, 724 .opc1 = CP_ANY, .opc2 = CP_ANY, .access = PL1_RW, .type = ARM_CP_NOP }, 725 { .name = "TLB_LOCKDOWN", .cp = 15, .crn = 10, .crm = 4, 726 .opc1 = CP_ANY, .opc2 = CP_ANY, .access = PL1_RW, .type = ARM_CP_NOP }, 727 { .name = "TLB_LOCKDOWN", .cp = 15, .crn = 10, .crm = 8, 728 .opc1 = CP_ANY, .opc2 = CP_ANY, .access = PL1_RW, .type = ARM_CP_NOP }, 729 /* Cache maintenance ops; some of this space may be overridden later. */ 730 { .name = "CACHEMAINT", .cp = 15, .crn = 7, .crm = CP_ANY, 731 .opc1 = 0, .opc2 = CP_ANY, .access = PL1_W, 732 .type = ARM_CP_NOP | ARM_CP_OVERRIDE }, 733 REGINFO_SENTINEL 734 }; 735 736 static const ARMCPRegInfo not_v6_cp_reginfo[] = { 737 /* Not all pre-v6 cores implemented this WFI, so this is slightly 738 * over-broad. 739 */ 740 { .name = "WFI_v5", .cp = 15, .crn = 7, .crm = 8, .opc1 = 0, .opc2 = 2, 741 .access = PL1_W, .type = ARM_CP_WFI }, 742 REGINFO_SENTINEL 743 }; 744 745 static const ARMCPRegInfo not_v7_cp_reginfo[] = { 746 /* Standard v6 WFI (also used in some pre-v6 cores); not in v7 (which 747 * is UNPREDICTABLE; we choose to NOP as most implementations do). 748 */ 749 { .name = "WFI_v6", .cp = 15, .crn = 7, .crm = 0, .opc1 = 0, .opc2 = 4, 750 .access = PL1_W, .type = ARM_CP_WFI }, 751 /* L1 cache lockdown. Not architectural in v6 and earlier but in practice 752 * implemented in 926, 946, 1026, 1136, 1176 and 11MPCore. StrongARM and 753 * OMAPCP will override this space. 754 */ 755 { .name = "DLOCKDOWN", .cp = 15, .crn = 9, .crm = 0, .opc1 = 0, .opc2 = 0, 756 .access = PL1_RW, .fieldoffset = offsetof(CPUARMState, cp15.c9_data), 757 .resetvalue = 0 }, 758 { .name = "ILOCKDOWN", .cp = 15, .crn = 9, .crm = 0, .opc1 = 0, .opc2 = 1, 759 .access = PL1_RW, .fieldoffset = offsetof(CPUARMState, cp15.c9_insn), 760 .resetvalue = 0 }, 761 /* v6 doesn't have the cache ID registers but Linux reads them anyway */ 762 { .name = "DUMMY", .cp = 15, .crn = 0, .crm = 0, .opc1 = 1, .opc2 = CP_ANY, 763 .access = PL1_R, .type = ARM_CP_CONST | ARM_CP_NO_RAW, 764 .resetvalue = 0 }, 765 /* We don't implement pre-v7 debug but most CPUs had at least a DBGDIDR; 766 * implementing it as RAZ means the "debug architecture version" bits 767 * will read as a reserved value, which should cause Linux to not try 768 * to use the debug hardware. 769 */ 770 { .name = "DBGDIDR", .cp = 14, .crn = 0, .crm = 0, .opc1 = 0, .opc2 = 0, 771 .access = PL0_R, .type = ARM_CP_CONST, .resetvalue = 0 }, 772 /* MMU TLB control. Note that the wildcarding means we cover not just 773 * the unified TLB ops but also the dside/iside/inner-shareable variants. 774 */ 775 { .name = "TLBIALL", .cp = 15, .crn = 8, .crm = CP_ANY, 776 .opc1 = CP_ANY, .opc2 = 0, .access = PL1_W, .writefn = tlbiall_write, 777 .type = ARM_CP_NO_RAW }, 778 { .name = "TLBIMVA", .cp = 15, .crn = 8, .crm = CP_ANY, 779 .opc1 = CP_ANY, .opc2 = 1, .access = PL1_W, .writefn = tlbimva_write, 780 .type = ARM_CP_NO_RAW }, 781 { .name = "TLBIASID", .cp = 15, .crn = 8, .crm = CP_ANY, 782 .opc1 = CP_ANY, .opc2 = 2, .access = PL1_W, .writefn = tlbiasid_write, 783 .type = ARM_CP_NO_RAW }, 784 { .name = "TLBIMVAA", .cp = 15, .crn = 8, .crm = CP_ANY, 785 .opc1 = CP_ANY, .opc2 = 3, .access = PL1_W, .writefn = tlbimvaa_write, 786 .type = ARM_CP_NO_RAW }, 787 { .name = "PRRR", .cp = 15, .crn = 10, .crm = 2, 788 .opc1 = 0, .opc2 = 0, .access = PL1_RW, .type = ARM_CP_NOP }, 789 { .name = "NMRR", .cp = 15, .crn = 10, .crm = 2, 790 .opc1 = 0, .opc2 = 1, .access = PL1_RW, .type = ARM_CP_NOP }, 791 REGINFO_SENTINEL 792 }; 793 794 static void cpacr_write(CPUARMState *env, const ARMCPRegInfo *ri, 795 uint64_t value) 796 { 797 uint32_t mask = 0; 798 799 /* In ARMv8 most bits of CPACR_EL1 are RES0. */ 800 if (!arm_feature(env, ARM_FEATURE_V8)) { 801 /* ARMv7 defines bits for unimplemented coprocessors as RAZ/WI. 802 * ASEDIS [31] and D32DIS [30] are both UNK/SBZP without VFP. 803 * TRCDIS [28] is RAZ/WI since we do not implement a trace macrocell. 804 */ 805 if (arm_feature(env, ARM_FEATURE_VFP)) { 806 /* VFP coprocessor: cp10 & cp11 [23:20] */ 807 mask |= (1 << 31) | (1 << 30) | (0xf << 20); 808 809 if (!arm_feature(env, ARM_FEATURE_NEON)) { 810 /* ASEDIS [31] bit is RAO/WI */ 811 value |= (1 << 31); 812 } 813 814 /* VFPv3 and upwards with NEON implement 32 double precision 815 * registers (D0-D31). 816 */ 817 if (!arm_feature(env, ARM_FEATURE_NEON) || 818 !arm_feature(env, ARM_FEATURE_VFP3)) { 819 /* D32DIS [30] is RAO/WI if D16-31 are not implemented. */ 820 value |= (1 << 30); 821 } 822 } 823 value &= mask; 824 } 825 env->cp15.cpacr_el1 = value; 826 } 827 828 static CPAccessResult cpacr_access(CPUARMState *env, const ARMCPRegInfo *ri, 829 bool isread) 830 { 831 if (arm_feature(env, ARM_FEATURE_V8)) { 832 /* Check if CPACR accesses are to be trapped to EL2 */ 833 if (arm_current_el(env) == 1 && 834 (env->cp15.cptr_el[2] & CPTR_TCPAC) && !arm_is_secure(env)) { 835 return CP_ACCESS_TRAP_EL2; 836 /* Check if CPACR accesses are to be trapped to EL3 */ 837 } else if (arm_current_el(env) < 3 && 838 (env->cp15.cptr_el[3] & CPTR_TCPAC)) { 839 return CP_ACCESS_TRAP_EL3; 840 } 841 } 842 843 return CP_ACCESS_OK; 844 } 845 846 static CPAccessResult cptr_access(CPUARMState *env, const ARMCPRegInfo *ri, 847 bool isread) 848 { 849 /* Check if CPTR accesses are set to trap to EL3 */ 850 if (arm_current_el(env) == 2 && (env->cp15.cptr_el[3] & CPTR_TCPAC)) { 851 return CP_ACCESS_TRAP_EL3; 852 } 853 854 return CP_ACCESS_OK; 855 } 856 857 static const ARMCPRegInfo v6_cp_reginfo[] = { 858 /* prefetch by MVA in v6, NOP in v7 */ 859 { .name = "MVA_prefetch", 860 .cp = 15, .crn = 7, .crm = 13, .opc1 = 0, .opc2 = 1, 861 .access = PL1_W, .type = ARM_CP_NOP }, 862 /* We need to break the TB after ISB to execute self-modifying code 863 * correctly and also to take any pending interrupts immediately. 864 * So use arm_cp_write_ignore() function instead of ARM_CP_NOP flag. 865 */ 866 { .name = "ISB", .cp = 15, .crn = 7, .crm = 5, .opc1 = 0, .opc2 = 4, 867 .access = PL0_W, .type = ARM_CP_NO_RAW, .writefn = arm_cp_write_ignore }, 868 { .name = "DSB", .cp = 15, .crn = 7, .crm = 10, .opc1 = 0, .opc2 = 4, 869 .access = PL0_W, .type = ARM_CP_NOP }, 870 { .name = "DMB", .cp = 15, .crn = 7, .crm = 10, .opc1 = 0, .opc2 = 5, 871 .access = PL0_W, .type = ARM_CP_NOP }, 872 { .name = "IFAR", .cp = 15, .crn = 6, .crm = 0, .opc1 = 0, .opc2 = 2, 873 .access = PL1_RW, 874 .bank_fieldoffsets = { offsetof(CPUARMState, cp15.ifar_s), 875 offsetof(CPUARMState, cp15.ifar_ns) }, 876 .resetvalue = 0, }, 877 /* Watchpoint Fault Address Register : should actually only be present 878 * for 1136, 1176, 11MPCore. 879 */ 880 { .name = "WFAR", .cp = 15, .crn = 6, .crm = 0, .opc1 = 0, .opc2 = 1, 881 .access = PL1_RW, .type = ARM_CP_CONST, .resetvalue = 0, }, 882 { .name = "CPACR", .state = ARM_CP_STATE_BOTH, .opc0 = 3, 883 .crn = 1, .crm = 0, .opc1 = 0, .opc2 = 2, .accessfn = cpacr_access, 884 .access = PL1_RW, .fieldoffset = offsetof(CPUARMState, cp15.cpacr_el1), 885 .resetvalue = 0, .writefn = cpacr_write }, 886 REGINFO_SENTINEL 887 }; 888 889 static CPAccessResult pmreg_access(CPUARMState *env, const ARMCPRegInfo *ri, 890 bool isread) 891 { 892 /* Performance monitor registers user accessibility is controlled 893 * by PMUSERENR. MDCR_EL2.TPM and MDCR_EL3.TPM allow configurable 894 * trapping to EL2 or EL3 for other accesses. 895 */ 896 int el = arm_current_el(env); 897 898 if (el == 0 && !env->cp15.c9_pmuserenr) { 899 return CP_ACCESS_TRAP; 900 } 901 if (el < 2 && (env->cp15.mdcr_el2 & MDCR_TPM) 902 && !arm_is_secure_below_el3(env)) { 903 return CP_ACCESS_TRAP_EL2; 904 } 905 if (el < 3 && (env->cp15.mdcr_el3 & MDCR_TPM)) { 906 return CP_ACCESS_TRAP_EL3; 907 } 908 909 return CP_ACCESS_OK; 910 } 911 912 #ifndef CONFIG_USER_ONLY 913 914 static inline bool arm_ccnt_enabled(CPUARMState *env) 915 { 916 /* This does not support checking PMCCFILTR_EL0 register */ 917 918 if (!(env->cp15.c9_pmcr & PMCRE)) { 919 return false; 920 } 921 922 return true; 923 } 924 925 void pmccntr_sync(CPUARMState *env) 926 { 927 uint64_t temp_ticks; 928 929 temp_ticks = muldiv64(qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL), 930 ARM_CPU_FREQ, NANOSECONDS_PER_SECOND); 931 932 if (env->cp15.c9_pmcr & PMCRD) { 933 /* Increment once every 64 processor clock cycles */ 934 temp_ticks /= 64; 935 } 936 937 if (arm_ccnt_enabled(env)) { 938 env->cp15.c15_ccnt = temp_ticks - env->cp15.c15_ccnt; 939 } 940 } 941 942 static void pmcr_write(CPUARMState *env, const ARMCPRegInfo *ri, 943 uint64_t value) 944 { 945 pmccntr_sync(env); 946 947 if (value & PMCRC) { 948 /* The counter has been reset */ 949 env->cp15.c15_ccnt = 0; 950 } 951 952 /* only the DP, X, D and E bits are writable */ 953 env->cp15.c9_pmcr &= ~0x39; 954 env->cp15.c9_pmcr |= (value & 0x39); 955 956 pmccntr_sync(env); 957 } 958 959 static uint64_t pmccntr_read(CPUARMState *env, const ARMCPRegInfo *ri) 960 { 961 uint64_t total_ticks; 962 963 if (!arm_ccnt_enabled(env)) { 964 /* Counter is disabled, do not change value */ 965 return env->cp15.c15_ccnt; 966 } 967 968 total_ticks = muldiv64(qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL), 969 ARM_CPU_FREQ, NANOSECONDS_PER_SECOND); 970 971 if (env->cp15.c9_pmcr & PMCRD) { 972 /* Increment once every 64 processor clock cycles */ 973 total_ticks /= 64; 974 } 975 return total_ticks - env->cp15.c15_ccnt; 976 } 977 978 static void pmselr_write(CPUARMState *env, const ARMCPRegInfo *ri, 979 uint64_t value) 980 { 981 /* The value of PMSELR.SEL affects the behavior of PMXEVTYPER and 982 * PMXEVCNTR. We allow [0..31] to be written to PMSELR here; in the 983 * meanwhile, we check PMSELR.SEL when PMXEVTYPER and PMXEVCNTR are 984 * accessed. 985 */ 986 env->cp15.c9_pmselr = value & 0x1f; 987 } 988 989 static void pmccntr_write(CPUARMState *env, const ARMCPRegInfo *ri, 990 uint64_t value) 991 { 992 uint64_t total_ticks; 993 994 if (!arm_ccnt_enabled(env)) { 995 /* Counter is disabled, set the absolute value */ 996 env->cp15.c15_ccnt = value; 997 return; 998 } 999 1000 total_ticks = muldiv64(qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL), 1001 ARM_CPU_FREQ, NANOSECONDS_PER_SECOND); 1002 1003 if (env->cp15.c9_pmcr & PMCRD) { 1004 /* Increment once every 64 processor clock cycles */ 1005 total_ticks /= 64; 1006 } 1007 env->cp15.c15_ccnt = total_ticks - value; 1008 } 1009 1010 static void pmccntr_write32(CPUARMState *env, const ARMCPRegInfo *ri, 1011 uint64_t value) 1012 { 1013 uint64_t cur_val = pmccntr_read(env, NULL); 1014 1015 pmccntr_write(env, ri, deposit64(cur_val, 0, 32, value)); 1016 } 1017 1018 #else /* CONFIG_USER_ONLY */ 1019 1020 void pmccntr_sync(CPUARMState *env) 1021 { 1022 } 1023 1024 #endif 1025 1026 static void pmccfiltr_write(CPUARMState *env, const ARMCPRegInfo *ri, 1027 uint64_t value) 1028 { 1029 pmccntr_sync(env); 1030 env->cp15.pmccfiltr_el0 = value & 0x7E000000; 1031 pmccntr_sync(env); 1032 } 1033 1034 static void pmcntenset_write(CPUARMState *env, const ARMCPRegInfo *ri, 1035 uint64_t value) 1036 { 1037 value &= (1 << 31); 1038 env->cp15.c9_pmcnten |= value; 1039 } 1040 1041 static void pmcntenclr_write(CPUARMState *env, const ARMCPRegInfo *ri, 1042 uint64_t value) 1043 { 1044 value &= (1 << 31); 1045 env->cp15.c9_pmcnten &= ~value; 1046 } 1047 1048 static void pmovsr_write(CPUARMState *env, const ARMCPRegInfo *ri, 1049 uint64_t value) 1050 { 1051 env->cp15.c9_pmovsr &= ~value; 1052 } 1053 1054 static void pmxevtyper_write(CPUARMState *env, const ARMCPRegInfo *ri, 1055 uint64_t value) 1056 { 1057 /* Attempts to access PMXEVTYPER are CONSTRAINED UNPREDICTABLE when 1058 * PMSELR value is equal to or greater than the number of implemented 1059 * counters, but not equal to 0x1f. We opt to behave as a RAZ/WI. 1060 */ 1061 if (env->cp15.c9_pmselr == 0x1f) { 1062 pmccfiltr_write(env, ri, value); 1063 } 1064 } 1065 1066 static uint64_t pmxevtyper_read(CPUARMState *env, const ARMCPRegInfo *ri) 1067 { 1068 /* We opt to behave as a RAZ/WI when attempts to access PMXEVTYPER 1069 * are CONSTRAINED UNPREDICTABLE. See comments in pmxevtyper_write(). 1070 */ 1071 if (env->cp15.c9_pmselr == 0x1f) { 1072 return env->cp15.pmccfiltr_el0; 1073 } else { 1074 return 0; 1075 } 1076 } 1077 1078 static void pmuserenr_write(CPUARMState *env, const ARMCPRegInfo *ri, 1079 uint64_t value) 1080 { 1081 env->cp15.c9_pmuserenr = value & 1; 1082 } 1083 1084 static void pmintenset_write(CPUARMState *env, const ARMCPRegInfo *ri, 1085 uint64_t value) 1086 { 1087 /* We have no event counters so only the C bit can be changed */ 1088 value &= (1 << 31); 1089 env->cp15.c9_pminten |= value; 1090 } 1091 1092 static void pmintenclr_write(CPUARMState *env, const ARMCPRegInfo *ri, 1093 uint64_t value) 1094 { 1095 value &= (1 << 31); 1096 env->cp15.c9_pminten &= ~value; 1097 } 1098 1099 static void vbar_write(CPUARMState *env, const ARMCPRegInfo *ri, 1100 uint64_t value) 1101 { 1102 /* Note that even though the AArch64 view of this register has bits 1103 * [10:0] all RES0 we can only mask the bottom 5, to comply with the 1104 * architectural requirements for bits which are RES0 only in some 1105 * contexts. (ARMv8 would permit us to do no masking at all, but ARMv7 1106 * requires the bottom five bits to be RAZ/WI because they're UNK/SBZP.) 1107 */ 1108 raw_write(env, ri, value & ~0x1FULL); 1109 } 1110 1111 static void scr_write(CPUARMState *env, const ARMCPRegInfo *ri, uint64_t value) 1112 { 1113 /* We only mask off bits that are RES0 both for AArch64 and AArch32. 1114 * For bits that vary between AArch32/64, code needs to check the 1115 * current execution mode before directly using the feature bit. 1116 */ 1117 uint32_t valid_mask = SCR_AARCH64_MASK | SCR_AARCH32_MASK; 1118 1119 if (!arm_feature(env, ARM_FEATURE_EL2)) { 1120 valid_mask &= ~SCR_HCE; 1121 1122 /* On ARMv7, SMD (or SCD as it is called in v7) is only 1123 * supported if EL2 exists. The bit is UNK/SBZP when 1124 * EL2 is unavailable. In QEMU ARMv7, we force it to always zero 1125 * when EL2 is unavailable. 1126 * On ARMv8, this bit is always available. 1127 */ 1128 if (arm_feature(env, ARM_FEATURE_V7) && 1129 !arm_feature(env, ARM_FEATURE_V8)) { 1130 valid_mask &= ~SCR_SMD; 1131 } 1132 } 1133 1134 /* Clear all-context RES0 bits. */ 1135 value &= valid_mask; 1136 raw_write(env, ri, value); 1137 } 1138 1139 static uint64_t ccsidr_read(CPUARMState *env, const ARMCPRegInfo *ri) 1140 { 1141 ARMCPU *cpu = arm_env_get_cpu(env); 1142 1143 /* Acquire the CSSELR index from the bank corresponding to the CCSIDR 1144 * bank 1145 */ 1146 uint32_t index = A32_BANKED_REG_GET(env, csselr, 1147 ri->secure & ARM_CP_SECSTATE_S); 1148 1149 return cpu->ccsidr[index]; 1150 } 1151 1152 static void csselr_write(CPUARMState *env, const ARMCPRegInfo *ri, 1153 uint64_t value) 1154 { 1155 raw_write(env, ri, value & 0xf); 1156 } 1157 1158 static uint64_t isr_read(CPUARMState *env, const ARMCPRegInfo *ri) 1159 { 1160 CPUState *cs = ENV_GET_CPU(env); 1161 uint64_t ret = 0; 1162 1163 if (cs->interrupt_request & CPU_INTERRUPT_HARD) { 1164 ret |= CPSR_I; 1165 } 1166 if (cs->interrupt_request & CPU_INTERRUPT_FIQ) { 1167 ret |= CPSR_F; 1168 } 1169 /* External aborts are not possible in QEMU so A bit is always clear */ 1170 return ret; 1171 } 1172 1173 static const ARMCPRegInfo v7_cp_reginfo[] = { 1174 /* the old v6 WFI, UNPREDICTABLE in v7 but we choose to NOP */ 1175 { .name = "NOP", .cp = 15, .crn = 7, .crm = 0, .opc1 = 0, .opc2 = 4, 1176 .access = PL1_W, .type = ARM_CP_NOP }, 1177 /* Performance monitors are implementation defined in v7, 1178 * but with an ARM recommended set of registers, which we 1179 * follow (although we don't actually implement any counters) 1180 * 1181 * Performance registers fall into three categories: 1182 * (a) always UNDEF in PL0, RW in PL1 (PMINTENSET, PMINTENCLR) 1183 * (b) RO in PL0 (ie UNDEF on write), RW in PL1 (PMUSERENR) 1184 * (c) UNDEF in PL0 if PMUSERENR.EN==0, otherwise accessible (all others) 1185 * For the cases controlled by PMUSERENR we must set .access to PL0_RW 1186 * or PL0_RO as appropriate and then check PMUSERENR in the helper fn. 1187 */ 1188 { .name = "PMCNTENSET", .cp = 15, .crn = 9, .crm = 12, .opc1 = 0, .opc2 = 1, 1189 .access = PL0_RW, .type = ARM_CP_ALIAS, 1190 .fieldoffset = offsetoflow32(CPUARMState, cp15.c9_pmcnten), 1191 .writefn = pmcntenset_write, 1192 .accessfn = pmreg_access, 1193 .raw_writefn = raw_write }, 1194 { .name = "PMCNTENSET_EL0", .state = ARM_CP_STATE_AA64, 1195 .opc0 = 3, .opc1 = 3, .crn = 9, .crm = 12, .opc2 = 1, 1196 .access = PL0_RW, .accessfn = pmreg_access, 1197 .fieldoffset = offsetof(CPUARMState, cp15.c9_pmcnten), .resetvalue = 0, 1198 .writefn = pmcntenset_write, .raw_writefn = raw_write }, 1199 { .name = "PMCNTENCLR", .cp = 15, .crn = 9, .crm = 12, .opc1 = 0, .opc2 = 2, 1200 .access = PL0_RW, 1201 .fieldoffset = offsetoflow32(CPUARMState, cp15.c9_pmcnten), 1202 .accessfn = pmreg_access, 1203 .writefn = pmcntenclr_write, 1204 .type = ARM_CP_ALIAS }, 1205 { .name = "PMCNTENCLR_EL0", .state = ARM_CP_STATE_AA64, 1206 .opc0 = 3, .opc1 = 3, .crn = 9, .crm = 12, .opc2 = 2, 1207 .access = PL0_RW, .accessfn = pmreg_access, 1208 .type = ARM_CP_ALIAS, 1209 .fieldoffset = offsetof(CPUARMState, cp15.c9_pmcnten), 1210 .writefn = pmcntenclr_write }, 1211 { .name = "PMOVSR", .cp = 15, .crn = 9, .crm = 12, .opc1 = 0, .opc2 = 3, 1212 .access = PL0_RW, .fieldoffset = offsetof(CPUARMState, cp15.c9_pmovsr), 1213 .accessfn = pmreg_access, 1214 .writefn = pmovsr_write, 1215 .raw_writefn = raw_write }, 1216 { .name = "PMOVSCLR_EL0", .state = ARM_CP_STATE_AA64, 1217 .opc0 = 3, .opc1 = 3, .crn = 9, .crm = 12, .opc2 = 3, 1218 .access = PL0_RW, .accessfn = pmreg_access, 1219 .type = ARM_CP_ALIAS, 1220 .fieldoffset = offsetof(CPUARMState, cp15.c9_pmovsr), 1221 .writefn = pmovsr_write, 1222 .raw_writefn = raw_write }, 1223 /* Unimplemented so WI. */ 1224 { .name = "PMSWINC", .cp = 15, .crn = 9, .crm = 12, .opc1 = 0, .opc2 = 4, 1225 .access = PL0_W, .accessfn = pmreg_access, .type = ARM_CP_NOP }, 1226 #ifndef CONFIG_USER_ONLY 1227 { .name = "PMSELR", .cp = 15, .crn = 9, .crm = 12, .opc1 = 0, .opc2 = 5, 1228 .access = PL0_RW, .type = ARM_CP_ALIAS, 1229 .fieldoffset = offsetoflow32(CPUARMState, cp15.c9_pmselr), 1230 .accessfn = pmreg_access, .writefn = pmselr_write, 1231 .raw_writefn = raw_write}, 1232 { .name = "PMSELR_EL0", .state = ARM_CP_STATE_AA64, 1233 .opc0 = 3, .opc1 = 3, .crn = 9, .crm = 12, .opc2 = 5, 1234 .access = PL0_RW, .accessfn = pmreg_access, 1235 .fieldoffset = offsetof(CPUARMState, cp15.c9_pmselr), 1236 .writefn = pmselr_write, .raw_writefn = raw_write, }, 1237 { .name = "PMCCNTR", .cp = 15, .crn = 9, .crm = 13, .opc1 = 0, .opc2 = 0, 1238 .access = PL0_RW, .resetvalue = 0, .type = ARM_CP_IO, 1239 .readfn = pmccntr_read, .writefn = pmccntr_write32, 1240 .accessfn = pmreg_access }, 1241 { .name = "PMCCNTR_EL0", .state = ARM_CP_STATE_AA64, 1242 .opc0 = 3, .opc1 = 3, .crn = 9, .crm = 13, .opc2 = 0, 1243 .access = PL0_RW, .accessfn = pmreg_access, 1244 .type = ARM_CP_IO, 1245 .readfn = pmccntr_read, .writefn = pmccntr_write, }, 1246 #endif 1247 { .name = "PMCCFILTR_EL0", .state = ARM_CP_STATE_AA64, 1248 .opc0 = 3, .opc1 = 3, .crn = 14, .crm = 15, .opc2 = 7, 1249 .writefn = pmccfiltr_write, 1250 .access = PL0_RW, .accessfn = pmreg_access, 1251 .type = ARM_CP_IO, 1252 .fieldoffset = offsetof(CPUARMState, cp15.pmccfiltr_el0), 1253 .resetvalue = 0, }, 1254 { .name = "PMXEVTYPER", .cp = 15, .crn = 9, .crm = 13, .opc1 = 0, .opc2 = 1, 1255 .access = PL0_RW, .type = ARM_CP_NO_RAW, .accessfn = pmreg_access, 1256 .writefn = pmxevtyper_write, .readfn = pmxevtyper_read }, 1257 { .name = "PMXEVTYPER_EL0", .state = ARM_CP_STATE_AA64, 1258 .opc0 = 3, .opc1 = 3, .crn = 9, .crm = 13, .opc2 = 1, 1259 .access = PL0_RW, .type = ARM_CP_NO_RAW, .accessfn = pmreg_access, 1260 .writefn = pmxevtyper_write, .readfn = pmxevtyper_read }, 1261 /* Unimplemented, RAZ/WI. */ 1262 { .name = "PMXEVCNTR", .cp = 15, .crn = 9, .crm = 13, .opc1 = 0, .opc2 = 2, 1263 .access = PL0_RW, .type = ARM_CP_CONST, .resetvalue = 0, 1264 .accessfn = pmreg_access }, 1265 { .name = "PMUSERENR", .cp = 15, .crn = 9, .crm = 14, .opc1 = 0, .opc2 = 0, 1266 .access = PL0_R | PL1_RW, .accessfn = access_tpm, 1267 .fieldoffset = offsetof(CPUARMState, cp15.c9_pmuserenr), 1268 .resetvalue = 0, 1269 .writefn = pmuserenr_write, .raw_writefn = raw_write }, 1270 { .name = "PMUSERENR_EL0", .state = ARM_CP_STATE_AA64, 1271 .opc0 = 3, .opc1 = 3, .crn = 9, .crm = 14, .opc2 = 0, 1272 .access = PL0_R | PL1_RW, .accessfn = access_tpm, .type = ARM_CP_ALIAS, 1273 .fieldoffset = offsetof(CPUARMState, cp15.c9_pmuserenr), 1274 .resetvalue = 0, 1275 .writefn = pmuserenr_write, .raw_writefn = raw_write }, 1276 { .name = "PMINTENSET", .cp = 15, .crn = 9, .crm = 14, .opc1 = 0, .opc2 = 1, 1277 .access = PL1_RW, .accessfn = access_tpm, 1278 .type = ARM_CP_ALIAS, 1279 .fieldoffset = offsetoflow32(CPUARMState, cp15.c9_pminten), 1280 .resetvalue = 0, 1281 .writefn = pmintenset_write, .raw_writefn = raw_write }, 1282 { .name = "PMINTENSET_EL1", .state = ARM_CP_STATE_AA64, 1283 .opc0 = 3, .opc1 = 0, .crn = 9, .crm = 14, .opc2 = 1, 1284 .access = PL1_RW, .accessfn = access_tpm, 1285 .type = ARM_CP_IO, 1286 .fieldoffset = offsetof(CPUARMState, cp15.c9_pminten), 1287 .writefn = pmintenset_write, .raw_writefn = raw_write, 1288 .resetvalue = 0x0 }, 1289 { .name = "PMINTENCLR", .cp = 15, .crn = 9, .crm = 14, .opc1 = 0, .opc2 = 2, 1290 .access = PL1_RW, .accessfn = access_tpm, .type = ARM_CP_ALIAS, 1291 .fieldoffset = offsetof(CPUARMState, cp15.c9_pminten), 1292 .writefn = pmintenclr_write, }, 1293 { .name = "PMINTENCLR_EL1", .state = ARM_CP_STATE_AA64, 1294 .opc0 = 3, .opc1 = 0, .crn = 9, .crm = 14, .opc2 = 2, 1295 .access = PL1_RW, .accessfn = access_tpm, .type = ARM_CP_ALIAS, 1296 .fieldoffset = offsetof(CPUARMState, cp15.c9_pminten), 1297 .writefn = pmintenclr_write }, 1298 { .name = "CCSIDR", .state = ARM_CP_STATE_BOTH, 1299 .opc0 = 3, .crn = 0, .crm = 0, .opc1 = 1, .opc2 = 0, 1300 .access = PL1_R, .readfn = ccsidr_read, .type = ARM_CP_NO_RAW }, 1301 { .name = "CSSELR", .state = ARM_CP_STATE_BOTH, 1302 .opc0 = 3, .crn = 0, .crm = 0, .opc1 = 2, .opc2 = 0, 1303 .access = PL1_RW, .writefn = csselr_write, .resetvalue = 0, 1304 .bank_fieldoffsets = { offsetof(CPUARMState, cp15.csselr_s), 1305 offsetof(CPUARMState, cp15.csselr_ns) } }, 1306 /* Auxiliary ID register: this actually has an IMPDEF value but for now 1307 * just RAZ for all cores: 1308 */ 1309 { .name = "AIDR", .state = ARM_CP_STATE_BOTH, 1310 .opc0 = 3, .opc1 = 1, .crn = 0, .crm = 0, .opc2 = 7, 1311 .access = PL1_R, .type = ARM_CP_CONST, .resetvalue = 0 }, 1312 /* Auxiliary fault status registers: these also are IMPDEF, and we 1313 * choose to RAZ/WI for all cores. 1314 */ 1315 { .name = "AFSR0_EL1", .state = ARM_CP_STATE_BOTH, 1316 .opc0 = 3, .opc1 = 0, .crn = 5, .crm = 1, .opc2 = 0, 1317 .access = PL1_RW, .type = ARM_CP_CONST, .resetvalue = 0 }, 1318 { .name = "AFSR1_EL1", .state = ARM_CP_STATE_BOTH, 1319 .opc0 = 3, .opc1 = 0, .crn = 5, .crm = 1, .opc2 = 1, 1320 .access = PL1_RW, .type = ARM_CP_CONST, .resetvalue = 0 }, 1321 /* MAIR can just read-as-written because we don't implement caches 1322 * and so don't need to care about memory attributes. 1323 */ 1324 { .name = "MAIR_EL1", .state = ARM_CP_STATE_AA64, 1325 .opc0 = 3, .opc1 = 0, .crn = 10, .crm = 2, .opc2 = 0, 1326 .access = PL1_RW, .fieldoffset = offsetof(CPUARMState, cp15.mair_el[1]), 1327 .resetvalue = 0 }, 1328 { .name = "MAIR_EL3", .state = ARM_CP_STATE_AA64, 1329 .opc0 = 3, .opc1 = 6, .crn = 10, .crm = 2, .opc2 = 0, 1330 .access = PL3_RW, .fieldoffset = offsetof(CPUARMState, cp15.mair_el[3]), 1331 .resetvalue = 0 }, 1332 /* For non-long-descriptor page tables these are PRRR and NMRR; 1333 * regardless they still act as reads-as-written for QEMU. 1334 */ 1335 /* MAIR0/1 are defined separately from their 64-bit counterpart which 1336 * allows them to assign the correct fieldoffset based on the endianness 1337 * handled in the field definitions. 1338 */ 1339 { .name = "MAIR0", .state = ARM_CP_STATE_AA32, 1340 .cp = 15, .opc1 = 0, .crn = 10, .crm = 2, .opc2 = 0, .access = PL1_RW, 1341 .bank_fieldoffsets = { offsetof(CPUARMState, cp15.mair0_s), 1342 offsetof(CPUARMState, cp15.mair0_ns) }, 1343 .resetfn = arm_cp_reset_ignore }, 1344 { .name = "MAIR1", .state = ARM_CP_STATE_AA32, 1345 .cp = 15, .opc1 = 0, .crn = 10, .crm = 2, .opc2 = 1, .access = PL1_RW, 1346 .bank_fieldoffsets = { offsetof(CPUARMState, cp15.mair1_s), 1347 offsetof(CPUARMState, cp15.mair1_ns) }, 1348 .resetfn = arm_cp_reset_ignore }, 1349 { .name = "ISR_EL1", .state = ARM_CP_STATE_BOTH, 1350 .opc0 = 3, .opc1 = 0, .crn = 12, .crm = 1, .opc2 = 0, 1351 .type = ARM_CP_NO_RAW, .access = PL1_R, .readfn = isr_read }, 1352 /* 32 bit ITLB invalidates */ 1353 { .name = "ITLBIALL", .cp = 15, .opc1 = 0, .crn = 8, .crm = 5, .opc2 = 0, 1354 .type = ARM_CP_NO_RAW, .access = PL1_W, .writefn = tlbiall_write }, 1355 { .name = "ITLBIMVA", .cp = 15, .opc1 = 0, .crn = 8, .crm = 5, .opc2 = 1, 1356 .type = ARM_CP_NO_RAW, .access = PL1_W, .writefn = tlbimva_write }, 1357 { .name = "ITLBIASID", .cp = 15, .opc1 = 0, .crn = 8, .crm = 5, .opc2 = 2, 1358 .type = ARM_CP_NO_RAW, .access = PL1_W, .writefn = tlbiasid_write }, 1359 /* 32 bit DTLB invalidates */ 1360 { .name = "DTLBIALL", .cp = 15, .opc1 = 0, .crn = 8, .crm = 6, .opc2 = 0, 1361 .type = ARM_CP_NO_RAW, .access = PL1_W, .writefn = tlbiall_write }, 1362 { .name = "DTLBIMVA", .cp = 15, .opc1 = 0, .crn = 8, .crm = 6, .opc2 = 1, 1363 .type = ARM_CP_NO_RAW, .access = PL1_W, .writefn = tlbimva_write }, 1364 { .name = "DTLBIASID", .cp = 15, .opc1 = 0, .crn = 8, .crm = 6, .opc2 = 2, 1365 .type = ARM_CP_NO_RAW, .access = PL1_W, .writefn = tlbiasid_write }, 1366 /* 32 bit TLB invalidates */ 1367 { .name = "TLBIALL", .cp = 15, .opc1 = 0, .crn = 8, .crm = 7, .opc2 = 0, 1368 .type = ARM_CP_NO_RAW, .access = PL1_W, .writefn = tlbiall_write }, 1369 { .name = "TLBIMVA", .cp = 15, .opc1 = 0, .crn = 8, .crm = 7, .opc2 = 1, 1370 .type = ARM_CP_NO_RAW, .access = PL1_W, .writefn = tlbimva_write }, 1371 { .name = "TLBIASID", .cp = 15, .opc1 = 0, .crn = 8, .crm = 7, .opc2 = 2, 1372 .type = ARM_CP_NO_RAW, .access = PL1_W, .writefn = tlbiasid_write }, 1373 { .name = "TLBIMVAA", .cp = 15, .opc1 = 0, .crn = 8, .crm = 7, .opc2 = 3, 1374 .type = ARM_CP_NO_RAW, .access = PL1_W, .writefn = tlbimvaa_write }, 1375 REGINFO_SENTINEL 1376 }; 1377 1378 static const ARMCPRegInfo v7mp_cp_reginfo[] = { 1379 /* 32 bit TLB invalidates, Inner Shareable */ 1380 { .name = "TLBIALLIS", .cp = 15, .opc1 = 0, .crn = 8, .crm = 3, .opc2 = 0, 1381 .type = ARM_CP_NO_RAW, .access = PL1_W, .writefn = tlbiall_is_write }, 1382 { .name = "TLBIMVAIS", .cp = 15, .opc1 = 0, .crn = 8, .crm = 3, .opc2 = 1, 1383 .type = ARM_CP_NO_RAW, .access = PL1_W, .writefn = tlbimva_is_write }, 1384 { .name = "TLBIASIDIS", .cp = 15, .opc1 = 0, .crn = 8, .crm = 3, .opc2 = 2, 1385 .type = ARM_CP_NO_RAW, .access = PL1_W, 1386 .writefn = tlbiasid_is_write }, 1387 { .name = "TLBIMVAAIS", .cp = 15, .opc1 = 0, .crn = 8, .crm = 3, .opc2 = 3, 1388 .type = ARM_CP_NO_RAW, .access = PL1_W, 1389 .writefn = tlbimvaa_is_write }, 1390 REGINFO_SENTINEL 1391 }; 1392 1393 static void teecr_write(CPUARMState *env, const ARMCPRegInfo *ri, 1394 uint64_t value) 1395 { 1396 value &= 1; 1397 env->teecr = value; 1398 } 1399 1400 static CPAccessResult teehbr_access(CPUARMState *env, const ARMCPRegInfo *ri, 1401 bool isread) 1402 { 1403 if (arm_current_el(env) == 0 && (env->teecr & 1)) { 1404 return CP_ACCESS_TRAP; 1405 } 1406 return CP_ACCESS_OK; 1407 } 1408 1409 static const ARMCPRegInfo t2ee_cp_reginfo[] = { 1410 { .name = "TEECR", .cp = 14, .crn = 0, .crm = 0, .opc1 = 6, .opc2 = 0, 1411 .access = PL1_RW, .fieldoffset = offsetof(CPUARMState, teecr), 1412 .resetvalue = 0, 1413 .writefn = teecr_write }, 1414 { .name = "TEEHBR", .cp = 14, .crn = 1, .crm = 0, .opc1 = 6, .opc2 = 0, 1415 .access = PL0_RW, .fieldoffset = offsetof(CPUARMState, teehbr), 1416 .accessfn = teehbr_access, .resetvalue = 0 }, 1417 REGINFO_SENTINEL 1418 }; 1419 1420 static const ARMCPRegInfo v6k_cp_reginfo[] = { 1421 { .name = "TPIDR_EL0", .state = ARM_CP_STATE_AA64, 1422 .opc0 = 3, .opc1 = 3, .opc2 = 2, .crn = 13, .crm = 0, 1423 .access = PL0_RW, 1424 .fieldoffset = offsetof(CPUARMState, cp15.tpidr_el[0]), .resetvalue = 0 }, 1425 { .name = "TPIDRURW", .cp = 15, .crn = 13, .crm = 0, .opc1 = 0, .opc2 = 2, 1426 .access = PL0_RW, 1427 .bank_fieldoffsets = { offsetoflow32(CPUARMState, cp15.tpidrurw_s), 1428 offsetoflow32(CPUARMState, cp15.tpidrurw_ns) }, 1429 .resetfn = arm_cp_reset_ignore }, 1430 { .name = "TPIDRRO_EL0", .state = ARM_CP_STATE_AA64, 1431 .opc0 = 3, .opc1 = 3, .opc2 = 3, .crn = 13, .crm = 0, 1432 .access = PL0_R|PL1_W, 1433 .fieldoffset = offsetof(CPUARMState, cp15.tpidrro_el[0]), 1434 .resetvalue = 0}, 1435 { .name = "TPIDRURO", .cp = 15, .crn = 13, .crm = 0, .opc1 = 0, .opc2 = 3, 1436 .access = PL0_R|PL1_W, 1437 .bank_fieldoffsets = { offsetoflow32(CPUARMState, cp15.tpidruro_s), 1438 offsetoflow32(CPUARMState, cp15.tpidruro_ns) }, 1439 .resetfn = arm_cp_reset_ignore }, 1440 { .name = "TPIDR_EL1", .state = ARM_CP_STATE_AA64, 1441 .opc0 = 3, .opc1 = 0, .opc2 = 4, .crn = 13, .crm = 0, 1442 .access = PL1_RW, 1443 .fieldoffset = offsetof(CPUARMState, cp15.tpidr_el[1]), .resetvalue = 0 }, 1444 { .name = "TPIDRPRW", .opc1 = 0, .cp = 15, .crn = 13, .crm = 0, .opc2 = 4, 1445 .access = PL1_RW, 1446 .bank_fieldoffsets = { offsetoflow32(CPUARMState, cp15.tpidrprw_s), 1447 offsetoflow32(CPUARMState, cp15.tpidrprw_ns) }, 1448 .resetvalue = 0 }, 1449 REGINFO_SENTINEL 1450 }; 1451 1452 #ifndef CONFIG_USER_ONLY 1453 1454 static CPAccessResult gt_cntfrq_access(CPUARMState *env, const ARMCPRegInfo *ri, 1455 bool isread) 1456 { 1457 /* CNTFRQ: not visible from PL0 if both PL0PCTEN and PL0VCTEN are zero. 1458 * Writable only at the highest implemented exception level. 1459 */ 1460 int el = arm_current_el(env); 1461 1462 switch (el) { 1463 case 0: 1464 if (!extract32(env->cp15.c14_cntkctl, 0, 2)) { 1465 return CP_ACCESS_TRAP; 1466 } 1467 break; 1468 case 1: 1469 if (!isread && ri->state == ARM_CP_STATE_AA32 && 1470 arm_is_secure_below_el3(env)) { 1471 /* Accesses from 32-bit Secure EL1 UNDEF (*not* trap to EL3!) */ 1472 return CP_ACCESS_TRAP_UNCATEGORIZED; 1473 } 1474 break; 1475 case 2: 1476 case 3: 1477 break; 1478 } 1479 1480 if (!isread && el < arm_highest_el(env)) { 1481 return CP_ACCESS_TRAP_UNCATEGORIZED; 1482 } 1483 1484 return CP_ACCESS_OK; 1485 } 1486 1487 static CPAccessResult gt_counter_access(CPUARMState *env, int timeridx, 1488 bool isread) 1489 { 1490 unsigned int cur_el = arm_current_el(env); 1491 bool secure = arm_is_secure(env); 1492 1493 /* CNT[PV]CT: not visible from PL0 if ELO[PV]CTEN is zero */ 1494 if (cur_el == 0 && 1495 !extract32(env->cp15.c14_cntkctl, timeridx, 1)) { 1496 return CP_ACCESS_TRAP; 1497 } 1498 1499 if (arm_feature(env, ARM_FEATURE_EL2) && 1500 timeridx == GTIMER_PHYS && !secure && cur_el < 2 && 1501 !extract32(env->cp15.cnthctl_el2, 0, 1)) { 1502 return CP_ACCESS_TRAP_EL2; 1503 } 1504 return CP_ACCESS_OK; 1505 } 1506 1507 static CPAccessResult gt_timer_access(CPUARMState *env, int timeridx, 1508 bool isread) 1509 { 1510 unsigned int cur_el = arm_current_el(env); 1511 bool secure = arm_is_secure(env); 1512 1513 /* CNT[PV]_CVAL, CNT[PV]_CTL, CNT[PV]_TVAL: not visible from PL0 if 1514 * EL0[PV]TEN is zero. 1515 */ 1516 if (cur_el == 0 && 1517 !extract32(env->cp15.c14_cntkctl, 9 - timeridx, 1)) { 1518 return CP_ACCESS_TRAP; 1519 } 1520 1521 if (arm_feature(env, ARM_FEATURE_EL2) && 1522 timeridx == GTIMER_PHYS && !secure && cur_el < 2 && 1523 !extract32(env->cp15.cnthctl_el2, 1, 1)) { 1524 return CP_ACCESS_TRAP_EL2; 1525 } 1526 return CP_ACCESS_OK; 1527 } 1528 1529 static CPAccessResult gt_pct_access(CPUARMState *env, 1530 const ARMCPRegInfo *ri, 1531 bool isread) 1532 { 1533 return gt_counter_access(env, GTIMER_PHYS, isread); 1534 } 1535 1536 static CPAccessResult gt_vct_access(CPUARMState *env, 1537 const ARMCPRegInfo *ri, 1538 bool isread) 1539 { 1540 return gt_counter_access(env, GTIMER_VIRT, isread); 1541 } 1542 1543 static CPAccessResult gt_ptimer_access(CPUARMState *env, const ARMCPRegInfo *ri, 1544 bool isread) 1545 { 1546 return gt_timer_access(env, GTIMER_PHYS, isread); 1547 } 1548 1549 static CPAccessResult gt_vtimer_access(CPUARMState *env, const ARMCPRegInfo *ri, 1550 bool isread) 1551 { 1552 return gt_timer_access(env, GTIMER_VIRT, isread); 1553 } 1554 1555 static CPAccessResult gt_stimer_access(CPUARMState *env, 1556 const ARMCPRegInfo *ri, 1557 bool isread) 1558 { 1559 /* The AArch64 register view of the secure physical timer is 1560 * always accessible from EL3, and configurably accessible from 1561 * Secure EL1. 1562 */ 1563 switch (arm_current_el(env)) { 1564 case 1: 1565 if (!arm_is_secure(env)) { 1566 return CP_ACCESS_TRAP; 1567 } 1568 if (!(env->cp15.scr_el3 & SCR_ST)) { 1569 return CP_ACCESS_TRAP_EL3; 1570 } 1571 return CP_ACCESS_OK; 1572 case 0: 1573 case 2: 1574 return CP_ACCESS_TRAP; 1575 case 3: 1576 return CP_ACCESS_OK; 1577 default: 1578 g_assert_not_reached(); 1579 } 1580 } 1581 1582 static uint64_t gt_get_countervalue(CPUARMState *env) 1583 { 1584 return qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL) / GTIMER_SCALE; 1585 } 1586 1587 static void gt_recalc_timer(ARMCPU *cpu, int timeridx) 1588 { 1589 ARMGenericTimer *gt = &cpu->env.cp15.c14_timer[timeridx]; 1590 1591 if (gt->ctl & 1) { 1592 /* Timer enabled: calculate and set current ISTATUS, irq, and 1593 * reset timer to when ISTATUS next has to change 1594 */ 1595 uint64_t offset = timeridx == GTIMER_VIRT ? 1596 cpu->env.cp15.cntvoff_el2 : 0; 1597 uint64_t count = gt_get_countervalue(&cpu->env); 1598 /* Note that this must be unsigned 64 bit arithmetic: */ 1599 int istatus = count - offset >= gt->cval; 1600 uint64_t nexttick; 1601 int irqstate; 1602 1603 gt->ctl = deposit32(gt->ctl, 2, 1, istatus); 1604 1605 irqstate = (istatus && !(gt->ctl & 2)); 1606 qemu_set_irq(cpu->gt_timer_outputs[timeridx], irqstate); 1607 1608 if (istatus) { 1609 /* Next transition is when count rolls back over to zero */ 1610 nexttick = UINT64_MAX; 1611 } else { 1612 /* Next transition is when we hit cval */ 1613 nexttick = gt->cval + offset; 1614 } 1615 /* Note that the desired next expiry time might be beyond the 1616 * signed-64-bit range of a QEMUTimer -- in this case we just 1617 * set the timer for as far in the future as possible. When the 1618 * timer expires we will reset the timer for any remaining period. 1619 */ 1620 if (nexttick > INT64_MAX / GTIMER_SCALE) { 1621 nexttick = INT64_MAX / GTIMER_SCALE; 1622 } 1623 timer_mod(cpu->gt_timer[timeridx], nexttick); 1624 trace_arm_gt_recalc(timeridx, irqstate, nexttick); 1625 } else { 1626 /* Timer disabled: ISTATUS and timer output always clear */ 1627 gt->ctl &= ~4; 1628 qemu_set_irq(cpu->gt_timer_outputs[timeridx], 0); 1629 timer_del(cpu->gt_timer[timeridx]); 1630 trace_arm_gt_recalc_disabled(timeridx); 1631 } 1632 } 1633 1634 static void gt_timer_reset(CPUARMState *env, const ARMCPRegInfo *ri, 1635 int timeridx) 1636 { 1637 ARMCPU *cpu = arm_env_get_cpu(env); 1638 1639 timer_del(cpu->gt_timer[timeridx]); 1640 } 1641 1642 static uint64_t gt_cnt_read(CPUARMState *env, const ARMCPRegInfo *ri) 1643 { 1644 return gt_get_countervalue(env); 1645 } 1646 1647 static uint64_t gt_virt_cnt_read(CPUARMState *env, const ARMCPRegInfo *ri) 1648 { 1649 return gt_get_countervalue(env) - env->cp15.cntvoff_el2; 1650 } 1651 1652 static void gt_cval_write(CPUARMState *env, const ARMCPRegInfo *ri, 1653 int timeridx, 1654 uint64_t value) 1655 { 1656 trace_arm_gt_cval_write(timeridx, value); 1657 env->cp15.c14_timer[timeridx].cval = value; 1658 gt_recalc_timer(arm_env_get_cpu(env), timeridx); 1659 } 1660 1661 static uint64_t gt_tval_read(CPUARMState *env, const ARMCPRegInfo *ri, 1662 int timeridx) 1663 { 1664 uint64_t offset = timeridx == GTIMER_VIRT ? env->cp15.cntvoff_el2 : 0; 1665 1666 return (uint32_t)(env->cp15.c14_timer[timeridx].cval - 1667 (gt_get_countervalue(env) - offset)); 1668 } 1669 1670 static void gt_tval_write(CPUARMState *env, const ARMCPRegInfo *ri, 1671 int timeridx, 1672 uint64_t value) 1673 { 1674 uint64_t offset = timeridx == GTIMER_VIRT ? env->cp15.cntvoff_el2 : 0; 1675 1676 trace_arm_gt_tval_write(timeridx, value); 1677 env->cp15.c14_timer[timeridx].cval = gt_get_countervalue(env) - offset + 1678 sextract64(value, 0, 32); 1679 gt_recalc_timer(arm_env_get_cpu(env), timeridx); 1680 } 1681 1682 static void gt_ctl_write(CPUARMState *env, const ARMCPRegInfo *ri, 1683 int timeridx, 1684 uint64_t value) 1685 { 1686 ARMCPU *cpu = arm_env_get_cpu(env); 1687 uint32_t oldval = env->cp15.c14_timer[timeridx].ctl; 1688 1689 trace_arm_gt_ctl_write(timeridx, value); 1690 env->cp15.c14_timer[timeridx].ctl = deposit64(oldval, 0, 2, value); 1691 if ((oldval ^ value) & 1) { 1692 /* Enable toggled */ 1693 gt_recalc_timer(cpu, timeridx); 1694 } else if ((oldval ^ value) & 2) { 1695 /* IMASK toggled: don't need to recalculate, 1696 * just set the interrupt line based on ISTATUS 1697 */ 1698 int irqstate = (oldval & 4) && !(value & 2); 1699 1700 trace_arm_gt_imask_toggle(timeridx, irqstate); 1701 qemu_set_irq(cpu->gt_timer_outputs[timeridx], irqstate); 1702 } 1703 } 1704 1705 static void gt_phys_timer_reset(CPUARMState *env, const ARMCPRegInfo *ri) 1706 { 1707 gt_timer_reset(env, ri, GTIMER_PHYS); 1708 } 1709 1710 static void gt_phys_cval_write(CPUARMState *env, const ARMCPRegInfo *ri, 1711 uint64_t value) 1712 { 1713 gt_cval_write(env, ri, GTIMER_PHYS, value); 1714 } 1715 1716 static uint64_t gt_phys_tval_read(CPUARMState *env, const ARMCPRegInfo *ri) 1717 { 1718 return gt_tval_read(env, ri, GTIMER_PHYS); 1719 } 1720 1721 static void gt_phys_tval_write(CPUARMState *env, const ARMCPRegInfo *ri, 1722 uint64_t value) 1723 { 1724 gt_tval_write(env, ri, GTIMER_PHYS, value); 1725 } 1726 1727 static void gt_phys_ctl_write(CPUARMState *env, const ARMCPRegInfo *ri, 1728 uint64_t value) 1729 { 1730 gt_ctl_write(env, ri, GTIMER_PHYS, value); 1731 } 1732 1733 static void gt_virt_timer_reset(CPUARMState *env, const ARMCPRegInfo *ri) 1734 { 1735 gt_timer_reset(env, ri, GTIMER_VIRT); 1736 } 1737 1738 static void gt_virt_cval_write(CPUARMState *env, const ARMCPRegInfo *ri, 1739 uint64_t value) 1740 { 1741 gt_cval_write(env, ri, GTIMER_VIRT, value); 1742 } 1743 1744 static uint64_t gt_virt_tval_read(CPUARMState *env, const ARMCPRegInfo *ri) 1745 { 1746 return gt_tval_read(env, ri, GTIMER_VIRT); 1747 } 1748 1749 static void gt_virt_tval_write(CPUARMState *env, const ARMCPRegInfo *ri, 1750 uint64_t value) 1751 { 1752 gt_tval_write(env, ri, GTIMER_VIRT, value); 1753 } 1754 1755 static void gt_virt_ctl_write(CPUARMState *env, const ARMCPRegInfo *ri, 1756 uint64_t value) 1757 { 1758 gt_ctl_write(env, ri, GTIMER_VIRT, value); 1759 } 1760 1761 static void gt_cntvoff_write(CPUARMState *env, const ARMCPRegInfo *ri, 1762 uint64_t value) 1763 { 1764 ARMCPU *cpu = arm_env_get_cpu(env); 1765 1766 trace_arm_gt_cntvoff_write(value); 1767 raw_write(env, ri, value); 1768 gt_recalc_timer(cpu, GTIMER_VIRT); 1769 } 1770 1771 static void gt_hyp_timer_reset(CPUARMState *env, const ARMCPRegInfo *ri) 1772 { 1773 gt_timer_reset(env, ri, GTIMER_HYP); 1774 } 1775 1776 static void gt_hyp_cval_write(CPUARMState *env, const ARMCPRegInfo *ri, 1777 uint64_t value) 1778 { 1779 gt_cval_write(env, ri, GTIMER_HYP, value); 1780 } 1781 1782 static uint64_t gt_hyp_tval_read(CPUARMState *env, const ARMCPRegInfo *ri) 1783 { 1784 return gt_tval_read(env, ri, GTIMER_HYP); 1785 } 1786 1787 static void gt_hyp_tval_write(CPUARMState *env, const ARMCPRegInfo *ri, 1788 uint64_t value) 1789 { 1790 gt_tval_write(env, ri, GTIMER_HYP, value); 1791 } 1792 1793 static void gt_hyp_ctl_write(CPUARMState *env, const ARMCPRegInfo *ri, 1794 uint64_t value) 1795 { 1796 gt_ctl_write(env, ri, GTIMER_HYP, value); 1797 } 1798 1799 static void gt_sec_timer_reset(CPUARMState *env, const ARMCPRegInfo *ri) 1800 { 1801 gt_timer_reset(env, ri, GTIMER_SEC); 1802 } 1803 1804 static void gt_sec_cval_write(CPUARMState *env, const ARMCPRegInfo *ri, 1805 uint64_t value) 1806 { 1807 gt_cval_write(env, ri, GTIMER_SEC, value); 1808 } 1809 1810 static uint64_t gt_sec_tval_read(CPUARMState *env, const ARMCPRegInfo *ri) 1811 { 1812 return gt_tval_read(env, ri, GTIMER_SEC); 1813 } 1814 1815 static void gt_sec_tval_write(CPUARMState *env, const ARMCPRegInfo *ri, 1816 uint64_t value) 1817 { 1818 gt_tval_write(env, ri, GTIMER_SEC, value); 1819 } 1820 1821 static void gt_sec_ctl_write(CPUARMState *env, const ARMCPRegInfo *ri, 1822 uint64_t value) 1823 { 1824 gt_ctl_write(env, ri, GTIMER_SEC, value); 1825 } 1826 1827 void arm_gt_ptimer_cb(void *opaque) 1828 { 1829 ARMCPU *cpu = opaque; 1830 1831 gt_recalc_timer(cpu, GTIMER_PHYS); 1832 } 1833 1834 void arm_gt_vtimer_cb(void *opaque) 1835 { 1836 ARMCPU *cpu = opaque; 1837 1838 gt_recalc_timer(cpu, GTIMER_VIRT); 1839 } 1840 1841 void arm_gt_htimer_cb(void *opaque) 1842 { 1843 ARMCPU *cpu = opaque; 1844 1845 gt_recalc_timer(cpu, GTIMER_HYP); 1846 } 1847 1848 void arm_gt_stimer_cb(void *opaque) 1849 { 1850 ARMCPU *cpu = opaque; 1851 1852 gt_recalc_timer(cpu, GTIMER_SEC); 1853 } 1854 1855 static const ARMCPRegInfo generic_timer_cp_reginfo[] = { 1856 /* Note that CNTFRQ is purely reads-as-written for the benefit 1857 * of software; writing it doesn't actually change the timer frequency. 1858 * Our reset value matches the fixed frequency we implement the timer at. 1859 */ 1860 { .name = "CNTFRQ", .cp = 15, .crn = 14, .crm = 0, .opc1 = 0, .opc2 = 0, 1861 .type = ARM_CP_ALIAS, 1862 .access = PL1_RW | PL0_R, .accessfn = gt_cntfrq_access, 1863 .fieldoffset = offsetoflow32(CPUARMState, cp15.c14_cntfrq), 1864 }, 1865 { .name = "CNTFRQ_EL0", .state = ARM_CP_STATE_AA64, 1866 .opc0 = 3, .opc1 = 3, .crn = 14, .crm = 0, .opc2 = 0, 1867 .access = PL1_RW | PL0_R, .accessfn = gt_cntfrq_access, 1868 .fieldoffset = offsetof(CPUARMState, cp15.c14_cntfrq), 1869 .resetvalue = (1000 * 1000 * 1000) / GTIMER_SCALE, 1870 }, 1871 /* overall control: mostly access permissions */ 1872 { .name = "CNTKCTL", .state = ARM_CP_STATE_BOTH, 1873 .opc0 = 3, .opc1 = 0, .crn = 14, .crm = 1, .opc2 = 0, 1874 .access = PL1_RW, 1875 .fieldoffset = offsetof(CPUARMState, cp15.c14_cntkctl), 1876 .resetvalue = 0, 1877 }, 1878 /* per-timer control */ 1879 { .name = "CNTP_CTL", .cp = 15, .crn = 14, .crm = 2, .opc1 = 0, .opc2 = 1, 1880 .secure = ARM_CP_SECSTATE_NS, 1881 .type = ARM_CP_IO | ARM_CP_ALIAS, .access = PL1_RW | PL0_R, 1882 .accessfn = gt_ptimer_access, 1883 .fieldoffset = offsetoflow32(CPUARMState, 1884 cp15.c14_timer[GTIMER_PHYS].ctl), 1885 .writefn = gt_phys_ctl_write, .raw_writefn = raw_write, 1886 }, 1887 { .name = "CNTP_CTL(S)", 1888 .cp = 15, .crn = 14, .crm = 2, .opc1 = 0, .opc2 = 1, 1889 .secure = ARM_CP_SECSTATE_S, 1890 .type = ARM_CP_IO | ARM_CP_ALIAS, .access = PL1_RW | PL0_R, 1891 .accessfn = gt_ptimer_access, 1892 .fieldoffset = offsetoflow32(CPUARMState, 1893 cp15.c14_timer[GTIMER_SEC].ctl), 1894 .writefn = gt_sec_ctl_write, .raw_writefn = raw_write, 1895 }, 1896 { .name = "CNTP_CTL_EL0", .state = ARM_CP_STATE_AA64, 1897 .opc0 = 3, .opc1 = 3, .crn = 14, .crm = 2, .opc2 = 1, 1898 .type = ARM_CP_IO, .access = PL1_RW | PL0_R, 1899 .accessfn = gt_ptimer_access, 1900 .fieldoffset = offsetof(CPUARMState, cp15.c14_timer[GTIMER_PHYS].ctl), 1901 .resetvalue = 0, 1902 .writefn = gt_phys_ctl_write, .raw_writefn = raw_write, 1903 }, 1904 { .name = "CNTV_CTL", .cp = 15, .crn = 14, .crm = 3, .opc1 = 0, .opc2 = 1, 1905 .type = ARM_CP_IO | ARM_CP_ALIAS, .access = PL1_RW | PL0_R, 1906 .accessfn = gt_vtimer_access, 1907 .fieldoffset = offsetoflow32(CPUARMState, 1908 cp15.c14_timer[GTIMER_VIRT].ctl), 1909 .writefn = gt_virt_ctl_write, .raw_writefn = raw_write, 1910 }, 1911 { .name = "CNTV_CTL_EL0", .state = ARM_CP_STATE_AA64, 1912 .opc0 = 3, .opc1 = 3, .crn = 14, .crm = 3, .opc2 = 1, 1913 .type = ARM_CP_IO, .access = PL1_RW | PL0_R, 1914 .accessfn = gt_vtimer_access, 1915 .fieldoffset = offsetof(CPUARMState, cp15.c14_timer[GTIMER_VIRT].ctl), 1916 .resetvalue = 0, 1917 .writefn = gt_virt_ctl_write, .raw_writefn = raw_write, 1918 }, 1919 /* TimerValue views: a 32 bit downcounting view of the underlying state */ 1920 { .name = "CNTP_TVAL", .cp = 15, .crn = 14, .crm = 2, .opc1 = 0, .opc2 = 0, 1921 .secure = ARM_CP_SECSTATE_NS, 1922 .type = ARM_CP_NO_RAW | ARM_CP_IO, .access = PL1_RW | PL0_R, 1923 .accessfn = gt_ptimer_access, 1924 .readfn = gt_phys_tval_read, .writefn = gt_phys_tval_write, 1925 }, 1926 { .name = "CNTP_TVAL(S)", 1927 .cp = 15, .crn = 14, .crm = 2, .opc1 = 0, .opc2 = 0, 1928 .secure = ARM_CP_SECSTATE_S, 1929 .type = ARM_CP_NO_RAW | ARM_CP_IO, .access = PL1_RW | PL0_R, 1930 .accessfn = gt_ptimer_access, 1931 .readfn = gt_sec_tval_read, .writefn = gt_sec_tval_write, 1932 }, 1933 { .name = "CNTP_TVAL_EL0", .state = ARM_CP_STATE_AA64, 1934 .opc0 = 3, .opc1 = 3, .crn = 14, .crm = 2, .opc2 = 0, 1935 .type = ARM_CP_NO_RAW | ARM_CP_IO, .access = PL1_RW | PL0_R, 1936 .accessfn = gt_ptimer_access, .resetfn = gt_phys_timer_reset, 1937 .readfn = gt_phys_tval_read, .writefn = gt_phys_tval_write, 1938 }, 1939 { .name = "CNTV_TVAL", .cp = 15, .crn = 14, .crm = 3, .opc1 = 0, .opc2 = 0, 1940 .type = ARM_CP_NO_RAW | ARM_CP_IO, .access = PL1_RW | PL0_R, 1941 .accessfn = gt_vtimer_access, 1942 .readfn = gt_virt_tval_read, .writefn = gt_virt_tval_write, 1943 }, 1944 { .name = "CNTV_TVAL_EL0", .state = ARM_CP_STATE_AA64, 1945 .opc0 = 3, .opc1 = 3, .crn = 14, .crm = 3, .opc2 = 0, 1946 .type = ARM_CP_NO_RAW | ARM_CP_IO, .access = PL1_RW | PL0_R, 1947 .accessfn = gt_vtimer_access, .resetfn = gt_virt_timer_reset, 1948 .readfn = gt_virt_tval_read, .writefn = gt_virt_tval_write, 1949 }, 1950 /* The counter itself */ 1951 { .name = "CNTPCT", .cp = 15, .crm = 14, .opc1 = 0, 1952 .access = PL0_R, .type = ARM_CP_64BIT | ARM_CP_NO_RAW | ARM_CP_IO, 1953 .accessfn = gt_pct_access, 1954 .readfn = gt_cnt_read, .resetfn = arm_cp_reset_ignore, 1955 }, 1956 { .name = "CNTPCT_EL0", .state = ARM_CP_STATE_AA64, 1957 .opc0 = 3, .opc1 = 3, .crn = 14, .crm = 0, .opc2 = 1, 1958 .access = PL0_R, .type = ARM_CP_NO_RAW | ARM_CP_IO, 1959 .accessfn = gt_pct_access, .readfn = gt_cnt_read, 1960 }, 1961 { .name = "CNTVCT", .cp = 15, .crm = 14, .opc1 = 1, 1962 .access = PL0_R, .type = ARM_CP_64BIT | ARM_CP_NO_RAW | ARM_CP_IO, 1963 .accessfn = gt_vct_access, 1964 .readfn = gt_virt_cnt_read, .resetfn = arm_cp_reset_ignore, 1965 }, 1966 { .name = "CNTVCT_EL0", .state = ARM_CP_STATE_AA64, 1967 .opc0 = 3, .opc1 = 3, .crn = 14, .crm = 0, .opc2 = 2, 1968 .access = PL0_R, .type = ARM_CP_NO_RAW | ARM_CP_IO, 1969 .accessfn = gt_vct_access, .readfn = gt_virt_cnt_read, 1970 }, 1971 /* Comparison value, indicating when the timer goes off */ 1972 { .name = "CNTP_CVAL", .cp = 15, .crm = 14, .opc1 = 2, 1973 .secure = ARM_CP_SECSTATE_NS, 1974 .access = PL1_RW | PL0_R, 1975 .type = ARM_CP_64BIT | ARM_CP_IO | ARM_CP_ALIAS, 1976 .fieldoffset = offsetof(CPUARMState, cp15.c14_timer[GTIMER_PHYS].cval), 1977 .accessfn = gt_ptimer_access, 1978 .writefn = gt_phys_cval_write, .raw_writefn = raw_write, 1979 }, 1980 { .name = "CNTP_CVAL(S)", .cp = 15, .crm = 14, .opc1 = 2, 1981 .secure = ARM_CP_SECSTATE_S, 1982 .access = PL1_RW | PL0_R, 1983 .type = ARM_CP_64BIT | ARM_CP_IO | ARM_CP_ALIAS, 1984 .fieldoffset = offsetof(CPUARMState, cp15.c14_timer[GTIMER_SEC].cval), 1985 .accessfn = gt_ptimer_access, 1986 .writefn = gt_sec_cval_write, .raw_writefn = raw_write, 1987 }, 1988 { .name = "CNTP_CVAL_EL0", .state = ARM_CP_STATE_AA64, 1989 .opc0 = 3, .opc1 = 3, .crn = 14, .crm = 2, .opc2 = 2, 1990 .access = PL1_RW | PL0_R, 1991 .type = ARM_CP_IO, 1992 .fieldoffset = offsetof(CPUARMState, cp15.c14_timer[GTIMER_PHYS].cval), 1993 .resetvalue = 0, .accessfn = gt_ptimer_access, 1994 .writefn = gt_phys_cval_write, .raw_writefn = raw_write, 1995 }, 1996 { .name = "CNTV_CVAL", .cp = 15, .crm = 14, .opc1 = 3, 1997 .access = PL1_RW | PL0_R, 1998 .type = ARM_CP_64BIT | ARM_CP_IO | ARM_CP_ALIAS, 1999 .fieldoffset = offsetof(CPUARMState, cp15.c14_timer[GTIMER_VIRT].cval), 2000 .accessfn = gt_vtimer_access, 2001 .writefn = gt_virt_cval_write, .raw_writefn = raw_write, 2002 }, 2003 { .name = "CNTV_CVAL_EL0", .state = ARM_CP_STATE_AA64, 2004 .opc0 = 3, .opc1 = 3, .crn = 14, .crm = 3, .opc2 = 2, 2005 .access = PL1_RW | PL0_R, 2006 .type = ARM_CP_IO, 2007 .fieldoffset = offsetof(CPUARMState, cp15.c14_timer[GTIMER_VIRT].cval), 2008 .resetvalue = 0, .accessfn = gt_vtimer_access, 2009 .writefn = gt_virt_cval_write, .raw_writefn = raw_write, 2010 }, 2011 /* Secure timer -- this is actually restricted to only EL3 2012 * and configurably Secure-EL1 via the accessfn. 2013 */ 2014 { .name = "CNTPS_TVAL_EL1", .state = ARM_CP_STATE_AA64, 2015 .opc0 = 3, .opc1 = 7, .crn = 14, .crm = 2, .opc2 = 0, 2016 .type = ARM_CP_NO_RAW | ARM_CP_IO, .access = PL1_RW, 2017 .accessfn = gt_stimer_access, 2018 .readfn = gt_sec_tval_read, 2019 .writefn = gt_sec_tval_write, 2020 .resetfn = gt_sec_timer_reset, 2021 }, 2022 { .name = "CNTPS_CTL_EL1", .state = ARM_CP_STATE_AA64, 2023 .opc0 = 3, .opc1 = 7, .crn = 14, .crm = 2, .opc2 = 1, 2024 .type = ARM_CP_IO, .access = PL1_RW, 2025 .accessfn = gt_stimer_access, 2026 .fieldoffset = offsetof(CPUARMState, cp15.c14_timer[GTIMER_SEC].ctl), 2027 .resetvalue = 0, 2028 .writefn = gt_sec_ctl_write, .raw_writefn = raw_write, 2029 }, 2030 { .name = "CNTPS_CVAL_EL1", .state = ARM_CP_STATE_AA64, 2031 .opc0 = 3, .opc1 = 7, .crn = 14, .crm = 2, .opc2 = 2, 2032 .type = ARM_CP_IO, .access = PL1_RW, 2033 .accessfn = gt_stimer_access, 2034 .fieldoffset = offsetof(CPUARMState, cp15.c14_timer[GTIMER_SEC].cval), 2035 .writefn = gt_sec_cval_write, .raw_writefn = raw_write, 2036 }, 2037 REGINFO_SENTINEL 2038 }; 2039 2040 #else 2041 /* In user-mode none of the generic timer registers are accessible, 2042 * and their implementation depends on QEMU_CLOCK_VIRTUAL and qdev gpio outputs, 2043 * so instead just don't register any of them. 2044 */ 2045 static const ARMCPRegInfo generic_timer_cp_reginfo[] = { 2046 REGINFO_SENTINEL 2047 }; 2048 2049 #endif 2050 2051 static void par_write(CPUARMState *env, const ARMCPRegInfo *ri, uint64_t value) 2052 { 2053 if (arm_feature(env, ARM_FEATURE_LPAE)) { 2054 raw_write(env, ri, value); 2055 } else if (arm_feature(env, ARM_FEATURE_V7)) { 2056 raw_write(env, ri, value & 0xfffff6ff); 2057 } else { 2058 raw_write(env, ri, value & 0xfffff1ff); 2059 } 2060 } 2061 2062 #ifndef CONFIG_USER_ONLY 2063 /* get_phys_addr() isn't present for user-mode-only targets */ 2064 2065 static CPAccessResult ats_access(CPUARMState *env, const ARMCPRegInfo *ri, 2066 bool isread) 2067 { 2068 if (ri->opc2 & 4) { 2069 /* The ATS12NSO* operations must trap to EL3 if executed in 2070 * Secure EL1 (which can only happen if EL3 is AArch64). 2071 * They are simply UNDEF if executed from NS EL1. 2072 * They function normally from EL2 or EL3. 2073 */ 2074 if (arm_current_el(env) == 1) { 2075 if (arm_is_secure_below_el3(env)) { 2076 return CP_ACCESS_TRAP_UNCATEGORIZED_EL3; 2077 } 2078 return CP_ACCESS_TRAP_UNCATEGORIZED; 2079 } 2080 } 2081 return CP_ACCESS_OK; 2082 } 2083 2084 static uint64_t do_ats_write(CPUARMState *env, uint64_t value, 2085 int access_type, ARMMMUIdx mmu_idx) 2086 { 2087 hwaddr phys_addr; 2088 target_ulong page_size; 2089 int prot; 2090 uint32_t fsr; 2091 bool ret; 2092 uint64_t par64; 2093 MemTxAttrs attrs = {}; 2094 ARMMMUFaultInfo fi = {}; 2095 2096 ret = get_phys_addr(env, value, access_type, mmu_idx, 2097 &phys_addr, &attrs, &prot, &page_size, &fsr, &fi); 2098 if (extended_addresses_enabled(env)) { 2099 /* fsr is a DFSR/IFSR value for the long descriptor 2100 * translation table format, but with WnR always clear. 2101 * Convert it to a 64-bit PAR. 2102 */ 2103 par64 = (1 << 11); /* LPAE bit always set */ 2104 if (!ret) { 2105 par64 |= phys_addr & ~0xfffULL; 2106 if (!attrs.secure) { 2107 par64 |= (1 << 9); /* NS */ 2108 } 2109 /* We don't set the ATTR or SH fields in the PAR. */ 2110 } else { 2111 par64 |= 1; /* F */ 2112 par64 |= (fsr & 0x3f) << 1; /* FS */ 2113 /* Note that S2WLK and FSTAGE are always zero, because we don't 2114 * implement virtualization and therefore there can't be a stage 2 2115 * fault. 2116 */ 2117 } 2118 } else { 2119 /* fsr is a DFSR/IFSR value for the short descriptor 2120 * translation table format (with WnR always clear). 2121 * Convert it to a 32-bit PAR. 2122 */ 2123 if (!ret) { 2124 /* We do not set any attribute bits in the PAR */ 2125 if (page_size == (1 << 24) 2126 && arm_feature(env, ARM_FEATURE_V7)) { 2127 par64 = (phys_addr & 0xff000000) | (1 << 1); 2128 } else { 2129 par64 = phys_addr & 0xfffff000; 2130 } 2131 if (!attrs.secure) { 2132 par64 |= (1 << 9); /* NS */ 2133 } 2134 } else { 2135 par64 = ((fsr & (1 << 10)) >> 5) | ((fsr & (1 << 12)) >> 6) | 2136 ((fsr & 0xf) << 1) | 1; 2137 } 2138 } 2139 return par64; 2140 } 2141 2142 static void ats_write(CPUARMState *env, const ARMCPRegInfo *ri, uint64_t value) 2143 { 2144 int access_type = ri->opc2 & 1; 2145 uint64_t par64; 2146 ARMMMUIdx mmu_idx; 2147 int el = arm_current_el(env); 2148 bool secure = arm_is_secure_below_el3(env); 2149 2150 switch (ri->opc2 & 6) { 2151 case 0: 2152 /* stage 1 current state PL1: ATS1CPR, ATS1CPW */ 2153 switch (el) { 2154 case 3: 2155 mmu_idx = ARMMMUIdx_S1E3; 2156 break; 2157 case 2: 2158 mmu_idx = ARMMMUIdx_S1NSE1; 2159 break; 2160 case 1: 2161 mmu_idx = secure ? ARMMMUIdx_S1SE1 : ARMMMUIdx_S1NSE1; 2162 break; 2163 default: 2164 g_assert_not_reached(); 2165 } 2166 break; 2167 case 2: 2168 /* stage 1 current state PL0: ATS1CUR, ATS1CUW */ 2169 switch (el) { 2170 case 3: 2171 mmu_idx = ARMMMUIdx_S1SE0; 2172 break; 2173 case 2: 2174 mmu_idx = ARMMMUIdx_S1NSE0; 2175 break; 2176 case 1: 2177 mmu_idx = secure ? ARMMMUIdx_S1SE0 : ARMMMUIdx_S1NSE0; 2178 break; 2179 default: 2180 g_assert_not_reached(); 2181 } 2182 break; 2183 case 4: 2184 /* stage 1+2 NonSecure PL1: ATS12NSOPR, ATS12NSOPW */ 2185 mmu_idx = ARMMMUIdx_S12NSE1; 2186 break; 2187 case 6: 2188 /* stage 1+2 NonSecure PL0: ATS12NSOUR, ATS12NSOUW */ 2189 mmu_idx = ARMMMUIdx_S12NSE0; 2190 break; 2191 default: 2192 g_assert_not_reached(); 2193 } 2194 2195 par64 = do_ats_write(env, value, access_type, mmu_idx); 2196 2197 A32_BANKED_CURRENT_REG_SET(env, par, par64); 2198 } 2199 2200 static void ats1h_write(CPUARMState *env, const ARMCPRegInfo *ri, 2201 uint64_t value) 2202 { 2203 int access_type = ri->opc2 & 1; 2204 uint64_t par64; 2205 2206 par64 = do_ats_write(env, value, access_type, ARMMMUIdx_S2NS); 2207 2208 A32_BANKED_CURRENT_REG_SET(env, par, par64); 2209 } 2210 2211 static CPAccessResult at_s1e2_access(CPUARMState *env, const ARMCPRegInfo *ri, 2212 bool isread) 2213 { 2214 if (arm_current_el(env) == 3 && !(env->cp15.scr_el3 & SCR_NS)) { 2215 return CP_ACCESS_TRAP; 2216 } 2217 return CP_ACCESS_OK; 2218 } 2219 2220 static void ats_write64(CPUARMState *env, const ARMCPRegInfo *ri, 2221 uint64_t value) 2222 { 2223 int access_type = ri->opc2 & 1; 2224 ARMMMUIdx mmu_idx; 2225 int secure = arm_is_secure_below_el3(env); 2226 2227 switch (ri->opc2 & 6) { 2228 case 0: 2229 switch (ri->opc1) { 2230 case 0: /* AT S1E1R, AT S1E1W */ 2231 mmu_idx = secure ? ARMMMUIdx_S1SE1 : ARMMMUIdx_S1NSE1; 2232 break; 2233 case 4: /* AT S1E2R, AT S1E2W */ 2234 mmu_idx = ARMMMUIdx_S1E2; 2235 break; 2236 case 6: /* AT S1E3R, AT S1E3W */ 2237 mmu_idx = ARMMMUIdx_S1E3; 2238 break; 2239 default: 2240 g_assert_not_reached(); 2241 } 2242 break; 2243 case 2: /* AT S1E0R, AT S1E0W */ 2244 mmu_idx = secure ? ARMMMUIdx_S1SE0 : ARMMMUIdx_S1NSE0; 2245 break; 2246 case 4: /* AT S12E1R, AT S12E1W */ 2247 mmu_idx = secure ? ARMMMUIdx_S1SE1 : ARMMMUIdx_S12NSE1; 2248 break; 2249 case 6: /* AT S12E0R, AT S12E0W */ 2250 mmu_idx = secure ? ARMMMUIdx_S1SE0 : ARMMMUIdx_S12NSE0; 2251 break; 2252 default: 2253 g_assert_not_reached(); 2254 } 2255 2256 env->cp15.par_el[1] = do_ats_write(env, value, access_type, mmu_idx); 2257 } 2258 #endif 2259 2260 static const ARMCPRegInfo vapa_cp_reginfo[] = { 2261 { .name = "PAR", .cp = 15, .crn = 7, .crm = 4, .opc1 = 0, .opc2 = 0, 2262 .access = PL1_RW, .resetvalue = 0, 2263 .bank_fieldoffsets = { offsetoflow32(CPUARMState, cp15.par_s), 2264 offsetoflow32(CPUARMState, cp15.par_ns) }, 2265 .writefn = par_write }, 2266 #ifndef CONFIG_USER_ONLY 2267 /* This underdecoding is safe because the reginfo is NO_RAW. */ 2268 { .name = "ATS", .cp = 15, .crn = 7, .crm = 8, .opc1 = 0, .opc2 = CP_ANY, 2269 .access = PL1_W, .accessfn = ats_access, 2270 .writefn = ats_write, .type = ARM_CP_NO_RAW }, 2271 #endif 2272 REGINFO_SENTINEL 2273 }; 2274 2275 /* Return basic MPU access permission bits. */ 2276 static uint32_t simple_mpu_ap_bits(uint32_t val) 2277 { 2278 uint32_t ret; 2279 uint32_t mask; 2280 int i; 2281 ret = 0; 2282 mask = 3; 2283 for (i = 0; i < 16; i += 2) { 2284 ret |= (val >> i) & mask; 2285 mask <<= 2; 2286 } 2287 return ret; 2288 } 2289 2290 /* Pad basic MPU access permission bits to extended format. */ 2291 static uint32_t extended_mpu_ap_bits(uint32_t val) 2292 { 2293 uint32_t ret; 2294 uint32_t mask; 2295 int i; 2296 ret = 0; 2297 mask = 3; 2298 for (i = 0; i < 16; i += 2) { 2299 ret |= (val & mask) << i; 2300 mask <<= 2; 2301 } 2302 return ret; 2303 } 2304 2305 static void pmsav5_data_ap_write(CPUARMState *env, const ARMCPRegInfo *ri, 2306 uint64_t value) 2307 { 2308 env->cp15.pmsav5_data_ap = extended_mpu_ap_bits(value); 2309 } 2310 2311 static uint64_t pmsav5_data_ap_read(CPUARMState *env, const ARMCPRegInfo *ri) 2312 { 2313 return simple_mpu_ap_bits(env->cp15.pmsav5_data_ap); 2314 } 2315 2316 static void pmsav5_insn_ap_write(CPUARMState *env, const ARMCPRegInfo *ri, 2317 uint64_t value) 2318 { 2319 env->cp15.pmsav5_insn_ap = extended_mpu_ap_bits(value); 2320 } 2321 2322 static uint64_t pmsav5_insn_ap_read(CPUARMState *env, const ARMCPRegInfo *ri) 2323 { 2324 return simple_mpu_ap_bits(env->cp15.pmsav5_insn_ap); 2325 } 2326 2327 static uint64_t pmsav7_read(CPUARMState *env, const ARMCPRegInfo *ri) 2328 { 2329 uint32_t *u32p = *(uint32_t **)raw_ptr(env, ri); 2330 2331 if (!u32p) { 2332 return 0; 2333 } 2334 2335 u32p += env->cp15.c6_rgnr; 2336 return *u32p; 2337 } 2338 2339 static void pmsav7_write(CPUARMState *env, const ARMCPRegInfo *ri, 2340 uint64_t value) 2341 { 2342 ARMCPU *cpu = arm_env_get_cpu(env); 2343 uint32_t *u32p = *(uint32_t **)raw_ptr(env, ri); 2344 2345 if (!u32p) { 2346 return; 2347 } 2348 2349 u32p += env->cp15.c6_rgnr; 2350 tlb_flush(CPU(cpu)); /* Mappings may have changed - purge! */ 2351 *u32p = value; 2352 } 2353 2354 static void pmsav7_reset(CPUARMState *env, const ARMCPRegInfo *ri) 2355 { 2356 ARMCPU *cpu = arm_env_get_cpu(env); 2357 uint32_t *u32p = *(uint32_t **)raw_ptr(env, ri); 2358 2359 if (!u32p) { 2360 return; 2361 } 2362 2363 memset(u32p, 0, sizeof(*u32p) * cpu->pmsav7_dregion); 2364 } 2365 2366 static void pmsav7_rgnr_write(CPUARMState *env, const ARMCPRegInfo *ri, 2367 uint64_t value) 2368 { 2369 ARMCPU *cpu = arm_env_get_cpu(env); 2370 uint32_t nrgs = cpu->pmsav7_dregion; 2371 2372 if (value >= nrgs) { 2373 qemu_log_mask(LOG_GUEST_ERROR, 2374 "PMSAv7 RGNR write >= # supported regions, %" PRIu32 2375 " > %" PRIu32 "\n", (uint32_t)value, nrgs); 2376 return; 2377 } 2378 2379 raw_write(env, ri, value); 2380 } 2381 2382 static const ARMCPRegInfo pmsav7_cp_reginfo[] = { 2383 { .name = "DRBAR", .cp = 15, .crn = 6, .opc1 = 0, .crm = 1, .opc2 = 0, 2384 .access = PL1_RW, .type = ARM_CP_NO_RAW, 2385 .fieldoffset = offsetof(CPUARMState, pmsav7.drbar), 2386 .readfn = pmsav7_read, .writefn = pmsav7_write, .resetfn = pmsav7_reset }, 2387 { .name = "DRSR", .cp = 15, .crn = 6, .opc1 = 0, .crm = 1, .opc2 = 2, 2388 .access = PL1_RW, .type = ARM_CP_NO_RAW, 2389 .fieldoffset = offsetof(CPUARMState, pmsav7.drsr), 2390 .readfn = pmsav7_read, .writefn = pmsav7_write, .resetfn = pmsav7_reset }, 2391 { .name = "DRACR", .cp = 15, .crn = 6, .opc1 = 0, .crm = 1, .opc2 = 4, 2392 .access = PL1_RW, .type = ARM_CP_NO_RAW, 2393 .fieldoffset = offsetof(CPUARMState, pmsav7.dracr), 2394 .readfn = pmsav7_read, .writefn = pmsav7_write, .resetfn = pmsav7_reset }, 2395 { .name = "RGNR", .cp = 15, .crn = 6, .opc1 = 0, .crm = 2, .opc2 = 0, 2396 .access = PL1_RW, 2397 .fieldoffset = offsetof(CPUARMState, cp15.c6_rgnr), 2398 .writefn = pmsav7_rgnr_write }, 2399 REGINFO_SENTINEL 2400 }; 2401 2402 static const ARMCPRegInfo pmsav5_cp_reginfo[] = { 2403 { .name = "DATA_AP", .cp = 15, .crn = 5, .crm = 0, .opc1 = 0, .opc2 = 0, 2404 .access = PL1_RW, .type = ARM_CP_ALIAS, 2405 .fieldoffset = offsetof(CPUARMState, cp15.pmsav5_data_ap), 2406 .readfn = pmsav5_data_ap_read, .writefn = pmsav5_data_ap_write, }, 2407 { .name = "INSN_AP", .cp = 15, .crn = 5, .crm = 0, .opc1 = 0, .opc2 = 1, 2408 .access = PL1_RW, .type = ARM_CP_ALIAS, 2409 .fieldoffset = offsetof(CPUARMState, cp15.pmsav5_insn_ap), 2410 .readfn = pmsav5_insn_ap_read, .writefn = pmsav5_insn_ap_write, }, 2411 { .name = "DATA_EXT_AP", .cp = 15, .crn = 5, .crm = 0, .opc1 = 0, .opc2 = 2, 2412 .access = PL1_RW, 2413 .fieldoffset = offsetof(CPUARMState, cp15.pmsav5_data_ap), 2414 .resetvalue = 0, }, 2415 { .name = "INSN_EXT_AP", .cp = 15, .crn = 5, .crm = 0, .opc1 = 0, .opc2 = 3, 2416 .access = PL1_RW, 2417 .fieldoffset = offsetof(CPUARMState, cp15.pmsav5_insn_ap), 2418 .resetvalue = 0, }, 2419 { .name = "DCACHE_CFG", .cp = 15, .crn = 2, .crm = 0, .opc1 = 0, .opc2 = 0, 2420 .access = PL1_RW, 2421 .fieldoffset = offsetof(CPUARMState, cp15.c2_data), .resetvalue = 0, }, 2422 { .name = "ICACHE_CFG", .cp = 15, .crn = 2, .crm = 0, .opc1 = 0, .opc2 = 1, 2423 .access = PL1_RW, 2424 .fieldoffset = offsetof(CPUARMState, cp15.c2_insn), .resetvalue = 0, }, 2425 /* Protection region base and size registers */ 2426 { .name = "946_PRBS0", .cp = 15, .crn = 6, .crm = 0, .opc1 = 0, 2427 .opc2 = CP_ANY, .access = PL1_RW, .resetvalue = 0, 2428 .fieldoffset = offsetof(CPUARMState, cp15.c6_region[0]) }, 2429 { .name = "946_PRBS1", .cp = 15, .crn = 6, .crm = 1, .opc1 = 0, 2430 .opc2 = CP_ANY, .access = PL1_RW, .resetvalue = 0, 2431 .fieldoffset = offsetof(CPUARMState, cp15.c6_region[1]) }, 2432 { .name = "946_PRBS2", .cp = 15, .crn = 6, .crm = 2, .opc1 = 0, 2433 .opc2 = CP_ANY, .access = PL1_RW, .resetvalue = 0, 2434 .fieldoffset = offsetof(CPUARMState, cp15.c6_region[2]) }, 2435 { .name = "946_PRBS3", .cp = 15, .crn = 6, .crm = 3, .opc1 = 0, 2436 .opc2 = CP_ANY, .access = PL1_RW, .resetvalue = 0, 2437 .fieldoffset = offsetof(CPUARMState, cp15.c6_region[3]) }, 2438 { .name = "946_PRBS4", .cp = 15, .crn = 6, .crm = 4, .opc1 = 0, 2439 .opc2 = CP_ANY, .access = PL1_RW, .resetvalue = 0, 2440 .fieldoffset = offsetof(CPUARMState, cp15.c6_region[4]) }, 2441 { .name = "946_PRBS5", .cp = 15, .crn = 6, .crm = 5, .opc1 = 0, 2442 .opc2 = CP_ANY, .access = PL1_RW, .resetvalue = 0, 2443 .fieldoffset = offsetof(CPUARMState, cp15.c6_region[5]) }, 2444 { .name = "946_PRBS6", .cp = 15, .crn = 6, .crm = 6, .opc1 = 0, 2445 .opc2 = CP_ANY, .access = PL1_RW, .resetvalue = 0, 2446 .fieldoffset = offsetof(CPUARMState, cp15.c6_region[6]) }, 2447 { .name = "946_PRBS7", .cp = 15, .crn = 6, .crm = 7, .opc1 = 0, 2448 .opc2 = CP_ANY, .access = PL1_RW, .resetvalue = 0, 2449 .fieldoffset = offsetof(CPUARMState, cp15.c6_region[7]) }, 2450 REGINFO_SENTINEL 2451 }; 2452 2453 static void vmsa_ttbcr_raw_write(CPUARMState *env, const ARMCPRegInfo *ri, 2454 uint64_t value) 2455 { 2456 TCR *tcr = raw_ptr(env, ri); 2457 int maskshift = extract32(value, 0, 3); 2458 2459 if (!arm_feature(env, ARM_FEATURE_V8)) { 2460 if (arm_feature(env, ARM_FEATURE_LPAE) && (value & TTBCR_EAE)) { 2461 /* Pre ARMv8 bits [21:19], [15:14] and [6:3] are UNK/SBZP when 2462 * using Long-desciptor translation table format */ 2463 value &= ~((7 << 19) | (3 << 14) | (0xf << 3)); 2464 } else if (arm_feature(env, ARM_FEATURE_EL3)) { 2465 /* In an implementation that includes the Security Extensions 2466 * TTBCR has additional fields PD0 [4] and PD1 [5] for 2467 * Short-descriptor translation table format. 2468 */ 2469 value &= TTBCR_PD1 | TTBCR_PD0 | TTBCR_N; 2470 } else { 2471 value &= TTBCR_N; 2472 } 2473 } 2474 2475 /* Update the masks corresponding to the TCR bank being written 2476 * Note that we always calculate mask and base_mask, but 2477 * they are only used for short-descriptor tables (ie if EAE is 0); 2478 * for long-descriptor tables the TCR fields are used differently 2479 * and the mask and base_mask values are meaningless. 2480 */ 2481 tcr->raw_tcr = value; 2482 tcr->mask = ~(((uint32_t)0xffffffffu) >> maskshift); 2483 tcr->base_mask = ~((uint32_t)0x3fffu >> maskshift); 2484 } 2485 2486 static void vmsa_ttbcr_write(CPUARMState *env, const ARMCPRegInfo *ri, 2487 uint64_t value) 2488 { 2489 ARMCPU *cpu = arm_env_get_cpu(env); 2490 2491 if (arm_feature(env, ARM_FEATURE_LPAE)) { 2492 /* With LPAE the TTBCR could result in a change of ASID 2493 * via the TTBCR.A1 bit, so do a TLB flush. 2494 */ 2495 tlb_flush(CPU(cpu)); 2496 } 2497 vmsa_ttbcr_raw_write(env, ri, value); 2498 } 2499 2500 static void vmsa_ttbcr_reset(CPUARMState *env, const ARMCPRegInfo *ri) 2501 { 2502 TCR *tcr = raw_ptr(env, ri); 2503 2504 /* Reset both the TCR as well as the masks corresponding to the bank of 2505 * the TCR being reset. 2506 */ 2507 tcr->raw_tcr = 0; 2508 tcr->mask = 0; 2509 tcr->base_mask = 0xffffc000u; 2510 } 2511 2512 static void vmsa_tcr_el1_write(CPUARMState *env, const ARMCPRegInfo *ri, 2513 uint64_t value) 2514 { 2515 ARMCPU *cpu = arm_env_get_cpu(env); 2516 TCR *tcr = raw_ptr(env, ri); 2517 2518 /* For AArch64 the A1 bit could result in a change of ASID, so TLB flush. */ 2519 tlb_flush(CPU(cpu)); 2520 tcr->raw_tcr = value; 2521 } 2522 2523 static void vmsa_ttbr_write(CPUARMState *env, const ARMCPRegInfo *ri, 2524 uint64_t value) 2525 { 2526 /* 64 bit accesses to the TTBRs can change the ASID and so we 2527 * must flush the TLB. 2528 */ 2529 if (cpreg_field_is_64bit(ri)) { 2530 ARMCPU *cpu = arm_env_get_cpu(env); 2531 2532 tlb_flush(CPU(cpu)); 2533 } 2534 raw_write(env, ri, value); 2535 } 2536 2537 static void vttbr_write(CPUARMState *env, const ARMCPRegInfo *ri, 2538 uint64_t value) 2539 { 2540 ARMCPU *cpu = arm_env_get_cpu(env); 2541 CPUState *cs = CPU(cpu); 2542 2543 /* Accesses to VTTBR may change the VMID so we must flush the TLB. */ 2544 if (raw_read(env, ri) != value) { 2545 tlb_flush_by_mmuidx(cs, ARMMMUIdx_S12NSE1, ARMMMUIdx_S12NSE0, 2546 ARMMMUIdx_S2NS, -1); 2547 raw_write(env, ri, value); 2548 } 2549 } 2550 2551 static const ARMCPRegInfo vmsa_pmsa_cp_reginfo[] = { 2552 { .name = "DFSR", .cp = 15, .crn = 5, .crm = 0, .opc1 = 0, .opc2 = 0, 2553 .access = PL1_RW, .type = ARM_CP_ALIAS, 2554 .bank_fieldoffsets = { offsetoflow32(CPUARMState, cp15.dfsr_s), 2555 offsetoflow32(CPUARMState, cp15.dfsr_ns) }, }, 2556 { .name = "IFSR", .cp = 15, .crn = 5, .crm = 0, .opc1 = 0, .opc2 = 1, 2557 .access = PL1_RW, .resetvalue = 0, 2558 .bank_fieldoffsets = { offsetoflow32(CPUARMState, cp15.ifsr_s), 2559 offsetoflow32(CPUARMState, cp15.ifsr_ns) } }, 2560 { .name = "DFAR", .cp = 15, .opc1 = 0, .crn = 6, .crm = 0, .opc2 = 0, 2561 .access = PL1_RW, .resetvalue = 0, 2562 .bank_fieldoffsets = { offsetof(CPUARMState, cp15.dfar_s), 2563 offsetof(CPUARMState, cp15.dfar_ns) } }, 2564 { .name = "FAR_EL1", .state = ARM_CP_STATE_AA64, 2565 .opc0 = 3, .crn = 6, .crm = 0, .opc1 = 0, .opc2 = 0, 2566 .access = PL1_RW, .fieldoffset = offsetof(CPUARMState, cp15.far_el[1]), 2567 .resetvalue = 0, }, 2568 REGINFO_SENTINEL 2569 }; 2570 2571 static const ARMCPRegInfo vmsa_cp_reginfo[] = { 2572 { .name = "ESR_EL1", .state = ARM_CP_STATE_AA64, 2573 .opc0 = 3, .crn = 5, .crm = 2, .opc1 = 0, .opc2 = 0, 2574 .access = PL1_RW, 2575 .fieldoffset = offsetof(CPUARMState, cp15.esr_el[1]), .resetvalue = 0, }, 2576 { .name = "TTBR0_EL1", .state = ARM_CP_STATE_BOTH, 2577 .opc0 = 3, .opc1 = 0, .crn = 2, .crm = 0, .opc2 = 0, 2578 .access = PL1_RW, .writefn = vmsa_ttbr_write, .resetvalue = 0, 2579 .bank_fieldoffsets = { offsetof(CPUARMState, cp15.ttbr0_s), 2580 offsetof(CPUARMState, cp15.ttbr0_ns) } }, 2581 { .name = "TTBR1_EL1", .state = ARM_CP_STATE_BOTH, 2582 .opc0 = 3, .opc1 = 0, .crn = 2, .crm = 0, .opc2 = 1, 2583 .access = PL1_RW, .writefn = vmsa_ttbr_write, .resetvalue = 0, 2584 .bank_fieldoffsets = { offsetof(CPUARMState, cp15.ttbr1_s), 2585 offsetof(CPUARMState, cp15.ttbr1_ns) } }, 2586 { .name = "TCR_EL1", .state = ARM_CP_STATE_AA64, 2587 .opc0 = 3, .crn = 2, .crm = 0, .opc1 = 0, .opc2 = 2, 2588 .access = PL1_RW, .writefn = vmsa_tcr_el1_write, 2589 .resetfn = vmsa_ttbcr_reset, .raw_writefn = raw_write, 2590 .fieldoffset = offsetof(CPUARMState, cp15.tcr_el[1]) }, 2591 { .name = "TTBCR", .cp = 15, .crn = 2, .crm = 0, .opc1 = 0, .opc2 = 2, 2592 .access = PL1_RW, .type = ARM_CP_ALIAS, .writefn = vmsa_ttbcr_write, 2593 .raw_writefn = vmsa_ttbcr_raw_write, 2594 .bank_fieldoffsets = { offsetoflow32(CPUARMState, cp15.tcr_el[3]), 2595 offsetoflow32(CPUARMState, cp15.tcr_el[1])} }, 2596 REGINFO_SENTINEL 2597 }; 2598 2599 static void omap_ticonfig_write(CPUARMState *env, const ARMCPRegInfo *ri, 2600 uint64_t value) 2601 { 2602 env->cp15.c15_ticonfig = value & 0xe7; 2603 /* The OS_TYPE bit in this register changes the reported CPUID! */ 2604 env->cp15.c0_cpuid = (value & (1 << 5)) ? 2605 ARM_CPUID_TI915T : ARM_CPUID_TI925T; 2606 } 2607 2608 static void omap_threadid_write(CPUARMState *env, const ARMCPRegInfo *ri, 2609 uint64_t value) 2610 { 2611 env->cp15.c15_threadid = value & 0xffff; 2612 } 2613 2614 static void omap_wfi_write(CPUARMState *env, const ARMCPRegInfo *ri, 2615 uint64_t value) 2616 { 2617 /* Wait-for-interrupt (deprecated) */ 2618 cpu_interrupt(CPU(arm_env_get_cpu(env)), CPU_INTERRUPT_HALT); 2619 } 2620 2621 static void omap_cachemaint_write(CPUARMState *env, const ARMCPRegInfo *ri, 2622 uint64_t value) 2623 { 2624 /* On OMAP there are registers indicating the max/min index of dcache lines 2625 * containing a dirty line; cache flush operations have to reset these. 2626 */ 2627 env->cp15.c15_i_max = 0x000; 2628 env->cp15.c15_i_min = 0xff0; 2629 } 2630 2631 static const ARMCPRegInfo omap_cp_reginfo[] = { 2632 { .name = "DFSR", .cp = 15, .crn = 5, .crm = CP_ANY, 2633 .opc1 = CP_ANY, .opc2 = CP_ANY, .access = PL1_RW, .type = ARM_CP_OVERRIDE, 2634 .fieldoffset = offsetoflow32(CPUARMState, cp15.esr_el[1]), 2635 .resetvalue = 0, }, 2636 { .name = "", .cp = 15, .crn = 15, .crm = 0, .opc1 = 0, .opc2 = 0, 2637 .access = PL1_RW, .type = ARM_CP_NOP }, 2638 { .name = "TICONFIG", .cp = 15, .crn = 15, .crm = 1, .opc1 = 0, .opc2 = 0, 2639 .access = PL1_RW, 2640 .fieldoffset = offsetof(CPUARMState, cp15.c15_ticonfig), .resetvalue = 0, 2641 .writefn = omap_ticonfig_write }, 2642 { .name = "IMAX", .cp = 15, .crn = 15, .crm = 2, .opc1 = 0, .opc2 = 0, 2643 .access = PL1_RW, 2644 .fieldoffset = offsetof(CPUARMState, cp15.c15_i_max), .resetvalue = 0, }, 2645 { .name = "IMIN", .cp = 15, .crn = 15, .crm = 3, .opc1 = 0, .opc2 = 0, 2646 .access = PL1_RW, .resetvalue = 0xff0, 2647 .fieldoffset = offsetof(CPUARMState, cp15.c15_i_min) }, 2648 { .name = "THREADID", .cp = 15, .crn = 15, .crm = 4, .opc1 = 0, .opc2 = 0, 2649 .access = PL1_RW, 2650 .fieldoffset = offsetof(CPUARMState, cp15.c15_threadid), .resetvalue = 0, 2651 .writefn = omap_threadid_write }, 2652 { .name = "TI925T_STATUS", .cp = 15, .crn = 15, 2653 .crm = 8, .opc1 = 0, .opc2 = 0, .access = PL1_RW, 2654 .type = ARM_CP_NO_RAW, 2655 .readfn = arm_cp_read_zero, .writefn = omap_wfi_write, }, 2656 /* TODO: Peripheral port remap register: 2657 * On OMAP2 mcr p15, 0, rn, c15, c2, 4 sets up the interrupt controller 2658 * base address at $rn & ~0xfff and map size of 0x200 << ($rn & 0xfff), 2659 * when MMU is off. 2660 */ 2661 { .name = "OMAP_CACHEMAINT", .cp = 15, .crn = 7, .crm = CP_ANY, 2662 .opc1 = 0, .opc2 = CP_ANY, .access = PL1_W, 2663 .type = ARM_CP_OVERRIDE | ARM_CP_NO_RAW, 2664 .writefn = omap_cachemaint_write }, 2665 { .name = "C9", .cp = 15, .crn = 9, 2666 .crm = CP_ANY, .opc1 = CP_ANY, .opc2 = CP_ANY, .access = PL1_RW, 2667 .type = ARM_CP_CONST | ARM_CP_OVERRIDE, .resetvalue = 0 }, 2668 REGINFO_SENTINEL 2669 }; 2670 2671 static void xscale_cpar_write(CPUARMState *env, const ARMCPRegInfo *ri, 2672 uint64_t value) 2673 { 2674 env->cp15.c15_cpar = value & 0x3fff; 2675 } 2676 2677 static const ARMCPRegInfo xscale_cp_reginfo[] = { 2678 { .name = "XSCALE_CPAR", 2679 .cp = 15, .crn = 15, .crm = 1, .opc1 = 0, .opc2 = 0, .access = PL1_RW, 2680 .fieldoffset = offsetof(CPUARMState, cp15.c15_cpar), .resetvalue = 0, 2681 .writefn = xscale_cpar_write, }, 2682 { .name = "XSCALE_AUXCR", 2683 .cp = 15, .crn = 1, .crm = 0, .opc1 = 0, .opc2 = 1, .access = PL1_RW, 2684 .fieldoffset = offsetof(CPUARMState, cp15.c1_xscaleauxcr), 2685 .resetvalue = 0, }, 2686 /* XScale specific cache-lockdown: since we have no cache we NOP these 2687 * and hope the guest does not really rely on cache behaviour. 2688 */ 2689 { .name = "XSCALE_LOCK_ICACHE_LINE", 2690 .cp = 15, .opc1 = 0, .crn = 9, .crm = 1, .opc2 = 0, 2691 .access = PL1_W, .type = ARM_CP_NOP }, 2692 { .name = "XSCALE_UNLOCK_ICACHE", 2693 .cp = 15, .opc1 = 0, .crn = 9, .crm = 1, .opc2 = 1, 2694 .access = PL1_W, .type = ARM_CP_NOP }, 2695 { .name = "XSCALE_DCACHE_LOCK", 2696 .cp = 15, .opc1 = 0, .crn = 9, .crm = 2, .opc2 = 0, 2697 .access = PL1_RW, .type = ARM_CP_NOP }, 2698 { .name = "XSCALE_UNLOCK_DCACHE", 2699 .cp = 15, .opc1 = 0, .crn = 9, .crm = 2, .opc2 = 1, 2700 .access = PL1_W, .type = ARM_CP_NOP }, 2701 REGINFO_SENTINEL 2702 }; 2703 2704 static const ARMCPRegInfo dummy_c15_cp_reginfo[] = { 2705 /* RAZ/WI the whole crn=15 space, when we don't have a more specific 2706 * implementation of this implementation-defined space. 2707 * Ideally this should eventually disappear in favour of actually 2708 * implementing the correct behaviour for all cores. 2709 */ 2710 { .name = "C15_IMPDEF", .cp = 15, .crn = 15, 2711 .crm = CP_ANY, .opc1 = CP_ANY, .opc2 = CP_ANY, 2712 .access = PL1_RW, 2713 .type = ARM_CP_CONST | ARM_CP_NO_RAW | ARM_CP_OVERRIDE, 2714 .resetvalue = 0 }, 2715 REGINFO_SENTINEL 2716 }; 2717 2718 static const ARMCPRegInfo cache_dirty_status_cp_reginfo[] = { 2719 /* Cache status: RAZ because we have no cache so it's always clean */ 2720 { .name = "CDSR", .cp = 15, .crn = 7, .crm = 10, .opc1 = 0, .opc2 = 6, 2721 .access = PL1_R, .type = ARM_CP_CONST | ARM_CP_NO_RAW, 2722 .resetvalue = 0 }, 2723 REGINFO_SENTINEL 2724 }; 2725 2726 static const ARMCPRegInfo cache_block_ops_cp_reginfo[] = { 2727 /* We never have a a block transfer operation in progress */ 2728 { .name = "BXSR", .cp = 15, .crn = 7, .crm = 12, .opc1 = 0, .opc2 = 4, 2729 .access = PL0_R, .type = ARM_CP_CONST | ARM_CP_NO_RAW, 2730 .resetvalue = 0 }, 2731 /* The cache ops themselves: these all NOP for QEMU */ 2732 { .name = "IICR", .cp = 15, .crm = 5, .opc1 = 0, 2733 .access = PL1_W, .type = ARM_CP_NOP|ARM_CP_64BIT }, 2734 { .name = "IDCR", .cp = 15, .crm = 6, .opc1 = 0, 2735 .access = PL1_W, .type = ARM_CP_NOP|ARM_CP_64BIT }, 2736 { .name = "CDCR", .cp = 15, .crm = 12, .opc1 = 0, 2737 .access = PL0_W, .type = ARM_CP_NOP|ARM_CP_64BIT }, 2738 { .name = "PIR", .cp = 15, .crm = 12, .opc1 = 1, 2739 .access = PL0_W, .type = ARM_CP_NOP|ARM_CP_64BIT }, 2740 { .name = "PDR", .cp = 15, .crm = 12, .opc1 = 2, 2741 .access = PL0_W, .type = ARM_CP_NOP|ARM_CP_64BIT }, 2742 { .name = "CIDCR", .cp = 15, .crm = 14, .opc1 = 0, 2743 .access = PL1_W, .type = ARM_CP_NOP|ARM_CP_64BIT }, 2744 REGINFO_SENTINEL 2745 }; 2746 2747 static const ARMCPRegInfo cache_test_clean_cp_reginfo[] = { 2748 /* The cache test-and-clean instructions always return (1 << 30) 2749 * to indicate that there are no dirty cache lines. 2750 */ 2751 { .name = "TC_DCACHE", .cp = 15, .crn = 7, .crm = 10, .opc1 = 0, .opc2 = 3, 2752 .access = PL0_R, .type = ARM_CP_CONST | ARM_CP_NO_RAW, 2753 .resetvalue = (1 << 30) }, 2754 { .name = "TCI_DCACHE", .cp = 15, .crn = 7, .crm = 14, .opc1 = 0, .opc2 = 3, 2755 .access = PL0_R, .type = ARM_CP_CONST | ARM_CP_NO_RAW, 2756 .resetvalue = (1 << 30) }, 2757 REGINFO_SENTINEL 2758 }; 2759 2760 static const ARMCPRegInfo strongarm_cp_reginfo[] = { 2761 /* Ignore ReadBuffer accesses */ 2762 { .name = "C9_READBUFFER", .cp = 15, .crn = 9, 2763 .crm = CP_ANY, .opc1 = CP_ANY, .opc2 = CP_ANY, 2764 .access = PL1_RW, .resetvalue = 0, 2765 .type = ARM_CP_CONST | ARM_CP_OVERRIDE | ARM_CP_NO_RAW }, 2766 REGINFO_SENTINEL 2767 }; 2768 2769 static uint64_t midr_read(CPUARMState *env, const ARMCPRegInfo *ri) 2770 { 2771 ARMCPU *cpu = arm_env_get_cpu(env); 2772 unsigned int cur_el = arm_current_el(env); 2773 bool secure = arm_is_secure(env); 2774 2775 if (arm_feature(&cpu->env, ARM_FEATURE_EL2) && !secure && cur_el == 1) { 2776 return env->cp15.vpidr_el2; 2777 } 2778 return raw_read(env, ri); 2779 } 2780 2781 static uint64_t mpidr_read_val(CPUARMState *env) 2782 { 2783 ARMCPU *cpu = ARM_CPU(arm_env_get_cpu(env)); 2784 uint64_t mpidr = cpu->mp_affinity; 2785 2786 if (arm_feature(env, ARM_FEATURE_V7MP)) { 2787 mpidr |= (1U << 31); 2788 /* Cores which are uniprocessor (non-coherent) 2789 * but still implement the MP extensions set 2790 * bit 30. (For instance, Cortex-R5). 2791 */ 2792 if (cpu->mp_is_up) { 2793 mpidr |= (1u << 30); 2794 } 2795 } 2796 return mpidr; 2797 } 2798 2799 static uint64_t mpidr_read(CPUARMState *env, const ARMCPRegInfo *ri) 2800 { 2801 unsigned int cur_el = arm_current_el(env); 2802 bool secure = arm_is_secure(env); 2803 2804 if (arm_feature(env, ARM_FEATURE_EL2) && !secure && cur_el == 1) { 2805 return env->cp15.vmpidr_el2; 2806 } 2807 return mpidr_read_val(env); 2808 } 2809 2810 static const ARMCPRegInfo mpidr_cp_reginfo[] = { 2811 { .name = "MPIDR", .state = ARM_CP_STATE_BOTH, 2812 .opc0 = 3, .crn = 0, .crm = 0, .opc1 = 0, .opc2 = 5, 2813 .access = PL1_R, .readfn = mpidr_read, .type = ARM_CP_NO_RAW }, 2814 REGINFO_SENTINEL 2815 }; 2816 2817 static const ARMCPRegInfo lpae_cp_reginfo[] = { 2818 /* NOP AMAIR0/1 */ 2819 { .name = "AMAIR0", .state = ARM_CP_STATE_BOTH, 2820 .opc0 = 3, .crn = 10, .crm = 3, .opc1 = 0, .opc2 = 0, 2821 .access = PL1_RW, .type = ARM_CP_CONST, 2822 .resetvalue = 0 }, 2823 /* AMAIR1 is mapped to AMAIR_EL1[63:32] */ 2824 { .name = "AMAIR1", .cp = 15, .crn = 10, .crm = 3, .opc1 = 0, .opc2 = 1, 2825 .access = PL1_RW, .type = ARM_CP_CONST, 2826 .resetvalue = 0 }, 2827 { .name = "PAR", .cp = 15, .crm = 7, .opc1 = 0, 2828 .access = PL1_RW, .type = ARM_CP_64BIT, .resetvalue = 0, 2829 .bank_fieldoffsets = { offsetof(CPUARMState, cp15.par_s), 2830 offsetof(CPUARMState, cp15.par_ns)} }, 2831 { .name = "TTBR0", .cp = 15, .crm = 2, .opc1 = 0, 2832 .access = PL1_RW, .type = ARM_CP_64BIT | ARM_CP_ALIAS, 2833 .bank_fieldoffsets = { offsetof(CPUARMState, cp15.ttbr0_s), 2834 offsetof(CPUARMState, cp15.ttbr0_ns) }, 2835 .writefn = vmsa_ttbr_write, }, 2836 { .name = "TTBR1", .cp = 15, .crm = 2, .opc1 = 1, 2837 .access = PL1_RW, .type = ARM_CP_64BIT | ARM_CP_ALIAS, 2838 .bank_fieldoffsets = { offsetof(CPUARMState, cp15.ttbr1_s), 2839 offsetof(CPUARMState, cp15.ttbr1_ns) }, 2840 .writefn = vmsa_ttbr_write, }, 2841 REGINFO_SENTINEL 2842 }; 2843 2844 static uint64_t aa64_fpcr_read(CPUARMState *env, const ARMCPRegInfo *ri) 2845 { 2846 return vfp_get_fpcr(env); 2847 } 2848 2849 static void aa64_fpcr_write(CPUARMState *env, const ARMCPRegInfo *ri, 2850 uint64_t value) 2851 { 2852 vfp_set_fpcr(env, value); 2853 } 2854 2855 static uint64_t aa64_fpsr_read(CPUARMState *env, const ARMCPRegInfo *ri) 2856 { 2857 return vfp_get_fpsr(env); 2858 } 2859 2860 static void aa64_fpsr_write(CPUARMState *env, const ARMCPRegInfo *ri, 2861 uint64_t value) 2862 { 2863 vfp_set_fpsr(env, value); 2864 } 2865 2866 static CPAccessResult aa64_daif_access(CPUARMState *env, const ARMCPRegInfo *ri, 2867 bool isread) 2868 { 2869 if (arm_current_el(env) == 0 && !(env->cp15.sctlr_el[1] & SCTLR_UMA)) { 2870 return CP_ACCESS_TRAP; 2871 } 2872 return CP_ACCESS_OK; 2873 } 2874 2875 static void aa64_daif_write(CPUARMState *env, const ARMCPRegInfo *ri, 2876 uint64_t value) 2877 { 2878 env->daif = value & PSTATE_DAIF; 2879 } 2880 2881 static CPAccessResult aa64_cacheop_access(CPUARMState *env, 2882 const ARMCPRegInfo *ri, 2883 bool isread) 2884 { 2885 /* Cache invalidate/clean: NOP, but EL0 must UNDEF unless 2886 * SCTLR_EL1.UCI is set. 2887 */ 2888 if (arm_current_el(env) == 0 && !(env->cp15.sctlr_el[1] & SCTLR_UCI)) { 2889 return CP_ACCESS_TRAP; 2890 } 2891 return CP_ACCESS_OK; 2892 } 2893 2894 /* See: D4.7.2 TLB maintenance requirements and the TLB maintenance instructions 2895 * Page D4-1736 (DDI0487A.b) 2896 */ 2897 2898 static void tlbi_aa64_vmalle1_write(CPUARMState *env, const ARMCPRegInfo *ri, 2899 uint64_t value) 2900 { 2901 ARMCPU *cpu = arm_env_get_cpu(env); 2902 CPUState *cs = CPU(cpu); 2903 2904 if (arm_is_secure_below_el3(env)) { 2905 tlb_flush_by_mmuidx(cs, ARMMMUIdx_S1SE1, ARMMMUIdx_S1SE0, -1); 2906 } else { 2907 tlb_flush_by_mmuidx(cs, ARMMMUIdx_S12NSE1, ARMMMUIdx_S12NSE0, -1); 2908 } 2909 } 2910 2911 static void tlbi_aa64_vmalle1is_write(CPUARMState *env, const ARMCPRegInfo *ri, 2912 uint64_t value) 2913 { 2914 bool sec = arm_is_secure_below_el3(env); 2915 CPUState *other_cs; 2916 2917 CPU_FOREACH(other_cs) { 2918 if (sec) { 2919 tlb_flush_by_mmuidx(other_cs, ARMMMUIdx_S1SE1, ARMMMUIdx_S1SE0, -1); 2920 } else { 2921 tlb_flush_by_mmuidx(other_cs, ARMMMUIdx_S12NSE1, 2922 ARMMMUIdx_S12NSE0, -1); 2923 } 2924 } 2925 } 2926 2927 static void tlbi_aa64_alle1_write(CPUARMState *env, const ARMCPRegInfo *ri, 2928 uint64_t value) 2929 { 2930 /* Note that the 'ALL' scope must invalidate both stage 1 and 2931 * stage 2 translations, whereas most other scopes only invalidate 2932 * stage 1 translations. 2933 */ 2934 ARMCPU *cpu = arm_env_get_cpu(env); 2935 CPUState *cs = CPU(cpu); 2936 2937 if (arm_is_secure_below_el3(env)) { 2938 tlb_flush_by_mmuidx(cs, ARMMMUIdx_S1SE1, ARMMMUIdx_S1SE0, -1); 2939 } else { 2940 if (arm_feature(env, ARM_FEATURE_EL2)) { 2941 tlb_flush_by_mmuidx(cs, ARMMMUIdx_S12NSE1, ARMMMUIdx_S12NSE0, 2942 ARMMMUIdx_S2NS, -1); 2943 } else { 2944 tlb_flush_by_mmuidx(cs, ARMMMUIdx_S12NSE1, ARMMMUIdx_S12NSE0, -1); 2945 } 2946 } 2947 } 2948 2949 static void tlbi_aa64_alle2_write(CPUARMState *env, const ARMCPRegInfo *ri, 2950 uint64_t value) 2951 { 2952 ARMCPU *cpu = arm_env_get_cpu(env); 2953 CPUState *cs = CPU(cpu); 2954 2955 tlb_flush_by_mmuidx(cs, ARMMMUIdx_S1E2, -1); 2956 } 2957 2958 static void tlbi_aa64_alle3_write(CPUARMState *env, const ARMCPRegInfo *ri, 2959 uint64_t value) 2960 { 2961 ARMCPU *cpu = arm_env_get_cpu(env); 2962 CPUState *cs = CPU(cpu); 2963 2964 tlb_flush_by_mmuidx(cs, ARMMMUIdx_S1E3, -1); 2965 } 2966 2967 static void tlbi_aa64_alle1is_write(CPUARMState *env, const ARMCPRegInfo *ri, 2968 uint64_t value) 2969 { 2970 /* Note that the 'ALL' scope must invalidate both stage 1 and 2971 * stage 2 translations, whereas most other scopes only invalidate 2972 * stage 1 translations. 2973 */ 2974 bool sec = arm_is_secure_below_el3(env); 2975 bool has_el2 = arm_feature(env, ARM_FEATURE_EL2); 2976 CPUState *other_cs; 2977 2978 CPU_FOREACH(other_cs) { 2979 if (sec) { 2980 tlb_flush_by_mmuidx(other_cs, ARMMMUIdx_S1SE1, ARMMMUIdx_S1SE0, -1); 2981 } else if (has_el2) { 2982 tlb_flush_by_mmuidx(other_cs, ARMMMUIdx_S12NSE1, 2983 ARMMMUIdx_S12NSE0, ARMMMUIdx_S2NS, -1); 2984 } else { 2985 tlb_flush_by_mmuidx(other_cs, ARMMMUIdx_S12NSE1, 2986 ARMMMUIdx_S12NSE0, -1); 2987 } 2988 } 2989 } 2990 2991 static void tlbi_aa64_alle2is_write(CPUARMState *env, const ARMCPRegInfo *ri, 2992 uint64_t value) 2993 { 2994 CPUState *other_cs; 2995 2996 CPU_FOREACH(other_cs) { 2997 tlb_flush_by_mmuidx(other_cs, ARMMMUIdx_S1E2, -1); 2998 } 2999 } 3000 3001 static void tlbi_aa64_alle3is_write(CPUARMState *env, const ARMCPRegInfo *ri, 3002 uint64_t value) 3003 { 3004 CPUState *other_cs; 3005 3006 CPU_FOREACH(other_cs) { 3007 tlb_flush_by_mmuidx(other_cs, ARMMMUIdx_S1E3, -1); 3008 } 3009 } 3010 3011 static void tlbi_aa64_vae1_write(CPUARMState *env, const ARMCPRegInfo *ri, 3012 uint64_t value) 3013 { 3014 /* Invalidate by VA, EL1&0 (AArch64 version). 3015 * Currently handles all of VAE1, VAAE1, VAALE1 and VALE1, 3016 * since we don't support flush-for-specific-ASID-only or 3017 * flush-last-level-only. 3018 */ 3019 ARMCPU *cpu = arm_env_get_cpu(env); 3020 CPUState *cs = CPU(cpu); 3021 uint64_t pageaddr = sextract64(value << 12, 0, 56); 3022 3023 if (arm_is_secure_below_el3(env)) { 3024 tlb_flush_page_by_mmuidx(cs, pageaddr, ARMMMUIdx_S1SE1, 3025 ARMMMUIdx_S1SE0, -1); 3026 } else { 3027 tlb_flush_page_by_mmuidx(cs, pageaddr, ARMMMUIdx_S12NSE1, 3028 ARMMMUIdx_S12NSE0, -1); 3029 } 3030 } 3031 3032 static void tlbi_aa64_vae2_write(CPUARMState *env, const ARMCPRegInfo *ri, 3033 uint64_t value) 3034 { 3035 /* Invalidate by VA, EL2 3036 * Currently handles both VAE2 and VALE2, since we don't support 3037 * flush-last-level-only. 3038 */ 3039 ARMCPU *cpu = arm_env_get_cpu(env); 3040 CPUState *cs = CPU(cpu); 3041 uint64_t pageaddr = sextract64(value << 12, 0, 56); 3042 3043 tlb_flush_page_by_mmuidx(cs, pageaddr, ARMMMUIdx_S1E2, -1); 3044 } 3045 3046 static void tlbi_aa64_vae3_write(CPUARMState *env, const ARMCPRegInfo *ri, 3047 uint64_t value) 3048 { 3049 /* Invalidate by VA, EL3 3050 * Currently handles both VAE3 and VALE3, since we don't support 3051 * flush-last-level-only. 3052 */ 3053 ARMCPU *cpu = arm_env_get_cpu(env); 3054 CPUState *cs = CPU(cpu); 3055 uint64_t pageaddr = sextract64(value << 12, 0, 56); 3056 3057 tlb_flush_page_by_mmuidx(cs, pageaddr, ARMMMUIdx_S1E3, -1); 3058 } 3059 3060 static void tlbi_aa64_vae1is_write(CPUARMState *env, const ARMCPRegInfo *ri, 3061 uint64_t value) 3062 { 3063 bool sec = arm_is_secure_below_el3(env); 3064 CPUState *other_cs; 3065 uint64_t pageaddr = sextract64(value << 12, 0, 56); 3066 3067 CPU_FOREACH(other_cs) { 3068 if (sec) { 3069 tlb_flush_page_by_mmuidx(other_cs, pageaddr, ARMMMUIdx_S1SE1, 3070 ARMMMUIdx_S1SE0, -1); 3071 } else { 3072 tlb_flush_page_by_mmuidx(other_cs, pageaddr, ARMMMUIdx_S12NSE1, 3073 ARMMMUIdx_S12NSE0, -1); 3074 } 3075 } 3076 } 3077 3078 static void tlbi_aa64_vae2is_write(CPUARMState *env, const ARMCPRegInfo *ri, 3079 uint64_t value) 3080 { 3081 CPUState *other_cs; 3082 uint64_t pageaddr = sextract64(value << 12, 0, 56); 3083 3084 CPU_FOREACH(other_cs) { 3085 tlb_flush_page_by_mmuidx(other_cs, pageaddr, ARMMMUIdx_S1E2, -1); 3086 } 3087 } 3088 3089 static void tlbi_aa64_vae3is_write(CPUARMState *env, const ARMCPRegInfo *ri, 3090 uint64_t value) 3091 { 3092 CPUState *other_cs; 3093 uint64_t pageaddr = sextract64(value << 12, 0, 56); 3094 3095 CPU_FOREACH(other_cs) { 3096 tlb_flush_page_by_mmuidx(other_cs, pageaddr, ARMMMUIdx_S1E3, -1); 3097 } 3098 } 3099 3100 static void tlbi_aa64_ipas2e1_write(CPUARMState *env, const ARMCPRegInfo *ri, 3101 uint64_t value) 3102 { 3103 /* Invalidate by IPA. This has to invalidate any structures that 3104 * contain only stage 2 translation information, but does not need 3105 * to apply to structures that contain combined stage 1 and stage 2 3106 * translation information. 3107 * This must NOP if EL2 isn't implemented or SCR_EL3.NS is zero. 3108 */ 3109 ARMCPU *cpu = arm_env_get_cpu(env); 3110 CPUState *cs = CPU(cpu); 3111 uint64_t pageaddr; 3112 3113 if (!arm_feature(env, ARM_FEATURE_EL2) || !(env->cp15.scr_el3 & SCR_NS)) { 3114 return; 3115 } 3116 3117 pageaddr = sextract64(value << 12, 0, 48); 3118 3119 tlb_flush_page_by_mmuidx(cs, pageaddr, ARMMMUIdx_S2NS, -1); 3120 } 3121 3122 static void tlbi_aa64_ipas2e1is_write(CPUARMState *env, const ARMCPRegInfo *ri, 3123 uint64_t value) 3124 { 3125 CPUState *other_cs; 3126 uint64_t pageaddr; 3127 3128 if (!arm_feature(env, ARM_FEATURE_EL2) || !(env->cp15.scr_el3 & SCR_NS)) { 3129 return; 3130 } 3131 3132 pageaddr = sextract64(value << 12, 0, 48); 3133 3134 CPU_FOREACH(other_cs) { 3135 tlb_flush_page_by_mmuidx(other_cs, pageaddr, ARMMMUIdx_S2NS, -1); 3136 } 3137 } 3138 3139 static CPAccessResult aa64_zva_access(CPUARMState *env, const ARMCPRegInfo *ri, 3140 bool isread) 3141 { 3142 /* We don't implement EL2, so the only control on DC ZVA is the 3143 * bit in the SCTLR which can prohibit access for EL0. 3144 */ 3145 if (arm_current_el(env) == 0 && !(env->cp15.sctlr_el[1] & SCTLR_DZE)) { 3146 return CP_ACCESS_TRAP; 3147 } 3148 return CP_ACCESS_OK; 3149 } 3150 3151 static uint64_t aa64_dczid_read(CPUARMState *env, const ARMCPRegInfo *ri) 3152 { 3153 ARMCPU *cpu = arm_env_get_cpu(env); 3154 int dzp_bit = 1 << 4; 3155 3156 /* DZP indicates whether DC ZVA access is allowed */ 3157 if (aa64_zva_access(env, NULL, false) == CP_ACCESS_OK) { 3158 dzp_bit = 0; 3159 } 3160 return cpu->dcz_blocksize | dzp_bit; 3161 } 3162 3163 static CPAccessResult sp_el0_access(CPUARMState *env, const ARMCPRegInfo *ri, 3164 bool isread) 3165 { 3166 if (!(env->pstate & PSTATE_SP)) { 3167 /* Access to SP_EL0 is undefined if it's being used as 3168 * the stack pointer. 3169 */ 3170 return CP_ACCESS_TRAP_UNCATEGORIZED; 3171 } 3172 return CP_ACCESS_OK; 3173 } 3174 3175 static uint64_t spsel_read(CPUARMState *env, const ARMCPRegInfo *ri) 3176 { 3177 return env->pstate & PSTATE_SP; 3178 } 3179 3180 static void spsel_write(CPUARMState *env, const ARMCPRegInfo *ri, uint64_t val) 3181 { 3182 update_spsel(env, val); 3183 } 3184 3185 static void sctlr_write(CPUARMState *env, const ARMCPRegInfo *ri, 3186 uint64_t value) 3187 { 3188 ARMCPU *cpu = arm_env_get_cpu(env); 3189 3190 if (raw_read(env, ri) == value) { 3191 /* Skip the TLB flush if nothing actually changed; Linux likes 3192 * to do a lot of pointless SCTLR writes. 3193 */ 3194 return; 3195 } 3196 3197 raw_write(env, ri, value); 3198 /* ??? Lots of these bits are not implemented. */ 3199 /* This may enable/disable the MMU, so do a TLB flush. */ 3200 tlb_flush(CPU(cpu)); 3201 } 3202 3203 static CPAccessResult fpexc32_access(CPUARMState *env, const ARMCPRegInfo *ri, 3204 bool isread) 3205 { 3206 if ((env->cp15.cptr_el[2] & CPTR_TFP) && arm_current_el(env) == 2) { 3207 return CP_ACCESS_TRAP_FP_EL2; 3208 } 3209 if (env->cp15.cptr_el[3] & CPTR_TFP) { 3210 return CP_ACCESS_TRAP_FP_EL3; 3211 } 3212 return CP_ACCESS_OK; 3213 } 3214 3215 static void sdcr_write(CPUARMState *env, const ARMCPRegInfo *ri, 3216 uint64_t value) 3217 { 3218 env->cp15.mdcr_el3 = value & SDCR_VALID_MASK; 3219 } 3220 3221 static const ARMCPRegInfo v8_cp_reginfo[] = { 3222 /* Minimal set of EL0-visible registers. This will need to be expanded 3223 * significantly for system emulation of AArch64 CPUs. 3224 */ 3225 { .name = "NZCV", .state = ARM_CP_STATE_AA64, 3226 .opc0 = 3, .opc1 = 3, .opc2 = 0, .crn = 4, .crm = 2, 3227 .access = PL0_RW, .type = ARM_CP_NZCV }, 3228 { .name = "DAIF", .state = ARM_CP_STATE_AA64, 3229 .opc0 = 3, .opc1 = 3, .opc2 = 1, .crn = 4, .crm = 2, 3230 .type = ARM_CP_NO_RAW, 3231 .access = PL0_RW, .accessfn = aa64_daif_access, 3232 .fieldoffset = offsetof(CPUARMState, daif), 3233 .writefn = aa64_daif_write, .resetfn = arm_cp_reset_ignore }, 3234 { .name = "FPCR", .state = ARM_CP_STATE_AA64, 3235 .opc0 = 3, .opc1 = 3, .opc2 = 0, .crn = 4, .crm = 4, 3236 .access = PL0_RW, .readfn = aa64_fpcr_read, .writefn = aa64_fpcr_write }, 3237 { .name = "FPSR", .state = ARM_CP_STATE_AA64, 3238 .opc0 = 3, .opc1 = 3, .opc2 = 1, .crn = 4, .crm = 4, 3239 .access = PL0_RW, .readfn = aa64_fpsr_read, .writefn = aa64_fpsr_write }, 3240 { .name = "DCZID_EL0", .state = ARM_CP_STATE_AA64, 3241 .opc0 = 3, .opc1 = 3, .opc2 = 7, .crn = 0, .crm = 0, 3242 .access = PL0_R, .type = ARM_CP_NO_RAW, 3243 .readfn = aa64_dczid_read }, 3244 { .name = "DC_ZVA", .state = ARM_CP_STATE_AA64, 3245 .opc0 = 1, .opc1 = 3, .crn = 7, .crm = 4, .opc2 = 1, 3246 .access = PL0_W, .type = ARM_CP_DC_ZVA, 3247 #ifndef CONFIG_USER_ONLY 3248 /* Avoid overhead of an access check that always passes in user-mode */ 3249 .accessfn = aa64_zva_access, 3250 #endif 3251 }, 3252 { .name = "CURRENTEL", .state = ARM_CP_STATE_AA64, 3253 .opc0 = 3, .opc1 = 0, .opc2 = 2, .crn = 4, .crm = 2, 3254 .access = PL1_R, .type = ARM_CP_CURRENTEL }, 3255 /* Cache ops: all NOPs since we don't emulate caches */ 3256 { .name = "IC_IALLUIS", .state = ARM_CP_STATE_AA64, 3257 .opc0 = 1, .opc1 = 0, .crn = 7, .crm = 1, .opc2 = 0, 3258 .access = PL1_W, .type = ARM_CP_NOP }, 3259 { .name = "IC_IALLU", .state = ARM_CP_STATE_AA64, 3260 .opc0 = 1, .opc1 = 0, .crn = 7, .crm = 5, .opc2 = 0, 3261 .access = PL1_W, .type = ARM_CP_NOP }, 3262 { .name = "IC_IVAU", .state = ARM_CP_STATE_AA64, 3263 .opc0 = 1, .opc1 = 3, .crn = 7, .crm = 5, .opc2 = 1, 3264 .access = PL0_W, .type = ARM_CP_NOP, 3265 .accessfn = aa64_cacheop_access }, 3266 { .name = "DC_IVAC", .state = ARM_CP_STATE_AA64, 3267 .opc0 = 1, .opc1 = 0, .crn = 7, .crm = 6, .opc2 = 1, 3268 .access = PL1_W, .type = ARM_CP_NOP }, 3269 { .name = "DC_ISW", .state = ARM_CP_STATE_AA64, 3270 .opc0 = 1, .opc1 = 0, .crn = 7, .crm = 6, .opc2 = 2, 3271 .access = PL1_W, .type = ARM_CP_NOP }, 3272 { .name = "DC_CVAC", .state = ARM_CP_STATE_AA64, 3273 .opc0 = 1, .opc1 = 3, .crn = 7, .crm = 10, .opc2 = 1, 3274 .access = PL0_W, .type = ARM_CP_NOP, 3275 .accessfn = aa64_cacheop_access }, 3276 { .name = "DC_CSW", .state = ARM_CP_STATE_AA64, 3277 .opc0 = 1, .opc1 = 0, .crn = 7, .crm = 10, .opc2 = 2, 3278 .access = PL1_W, .type = ARM_CP_NOP }, 3279 { .name = "DC_CVAU", .state = ARM_CP_STATE_AA64, 3280 .opc0 = 1, .opc1 = 3, .crn = 7, .crm = 11, .opc2 = 1, 3281 .access = PL0_W, .type = ARM_CP_NOP, 3282 .accessfn = aa64_cacheop_access }, 3283 { .name = "DC_CIVAC", .state = ARM_CP_STATE_AA64, 3284 .opc0 = 1, .opc1 = 3, .crn = 7, .crm = 14, .opc2 = 1, 3285 .access = PL0_W, .type = ARM_CP_NOP, 3286 .accessfn = aa64_cacheop_access }, 3287 { .name = "DC_CISW", .state = ARM_CP_STATE_AA64, 3288 .opc0 = 1, .opc1 = 0, .crn = 7, .crm = 14, .opc2 = 2, 3289 .access = PL1_W, .type = ARM_CP_NOP }, 3290 /* TLBI operations */ 3291 { .name = "TLBI_VMALLE1IS", .state = ARM_CP_STATE_AA64, 3292 .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 3, .opc2 = 0, 3293 .access = PL1_W, .type = ARM_CP_NO_RAW, 3294 .writefn = tlbi_aa64_vmalle1is_write }, 3295 { .name = "TLBI_VAE1IS", .state = ARM_CP_STATE_AA64, 3296 .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 3, .opc2 = 1, 3297 .access = PL1_W, .type = ARM_CP_NO_RAW, 3298 .writefn = tlbi_aa64_vae1is_write }, 3299 { .name = "TLBI_ASIDE1IS", .state = ARM_CP_STATE_AA64, 3300 .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 3, .opc2 = 2, 3301 .access = PL1_W, .type = ARM_CP_NO_RAW, 3302 .writefn = tlbi_aa64_vmalle1is_write }, 3303 { .name = "TLBI_VAAE1IS", .state = ARM_CP_STATE_AA64, 3304 .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 3, .opc2 = 3, 3305 .access = PL1_W, .type = ARM_CP_NO_RAW, 3306 .writefn = tlbi_aa64_vae1is_write }, 3307 { .name = "TLBI_VALE1IS", .state = ARM_CP_STATE_AA64, 3308 .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 3, .opc2 = 5, 3309 .access = PL1_W, .type = ARM_CP_NO_RAW, 3310 .writefn = tlbi_aa64_vae1is_write }, 3311 { .name = "TLBI_VAALE1IS", .state = ARM_CP_STATE_AA64, 3312 .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 3, .opc2 = 7, 3313 .access = PL1_W, .type = ARM_CP_NO_RAW, 3314 .writefn = tlbi_aa64_vae1is_write }, 3315 { .name = "TLBI_VMALLE1", .state = ARM_CP_STATE_AA64, 3316 .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 7, .opc2 = 0, 3317 .access = PL1_W, .type = ARM_CP_NO_RAW, 3318 .writefn = tlbi_aa64_vmalle1_write }, 3319 { .name = "TLBI_VAE1", .state = ARM_CP_STATE_AA64, 3320 .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 7, .opc2 = 1, 3321 .access = PL1_W, .type = ARM_CP_NO_RAW, 3322 .writefn = tlbi_aa64_vae1_write }, 3323 { .name = "TLBI_ASIDE1", .state = ARM_CP_STATE_AA64, 3324 .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 7, .opc2 = 2, 3325 .access = PL1_W, .type = ARM_CP_NO_RAW, 3326 .writefn = tlbi_aa64_vmalle1_write }, 3327 { .name = "TLBI_VAAE1", .state = ARM_CP_STATE_AA64, 3328 .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 7, .opc2 = 3, 3329 .access = PL1_W, .type = ARM_CP_NO_RAW, 3330 .writefn = tlbi_aa64_vae1_write }, 3331 { .name = "TLBI_VALE1", .state = ARM_CP_STATE_AA64, 3332 .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 7, .opc2 = 5, 3333 .access = PL1_W, .type = ARM_CP_NO_RAW, 3334 .writefn = tlbi_aa64_vae1_write }, 3335 { .name = "TLBI_VAALE1", .state = ARM_CP_STATE_AA64, 3336 .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 7, .opc2 = 7, 3337 .access = PL1_W, .type = ARM_CP_NO_RAW, 3338 .writefn = tlbi_aa64_vae1_write }, 3339 { .name = "TLBI_IPAS2E1IS", .state = ARM_CP_STATE_AA64, 3340 .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 0, .opc2 = 1, 3341 .access = PL2_W, .type = ARM_CP_NO_RAW, 3342 .writefn = tlbi_aa64_ipas2e1is_write }, 3343 { .name = "TLBI_IPAS2LE1IS", .state = ARM_CP_STATE_AA64, 3344 .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 0, .opc2 = 5, 3345 .access = PL2_W, .type = ARM_CP_NO_RAW, 3346 .writefn = tlbi_aa64_ipas2e1is_write }, 3347 { .name = "TLBI_ALLE1IS", .state = ARM_CP_STATE_AA64, 3348 .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 3, .opc2 = 4, 3349 .access = PL2_W, .type = ARM_CP_NO_RAW, 3350 .writefn = tlbi_aa64_alle1is_write }, 3351 { .name = "TLBI_VMALLS12E1IS", .state = ARM_CP_STATE_AA64, 3352 .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 3, .opc2 = 6, 3353 .access = PL2_W, .type = ARM_CP_NO_RAW, 3354 .writefn = tlbi_aa64_alle1is_write }, 3355 { .name = "TLBI_IPAS2E1", .state = ARM_CP_STATE_AA64, 3356 .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 4, .opc2 = 1, 3357 .access = PL2_W, .type = ARM_CP_NO_RAW, 3358 .writefn = tlbi_aa64_ipas2e1_write }, 3359 { .name = "TLBI_IPAS2LE1", .state = ARM_CP_STATE_AA64, 3360 .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 4, .opc2 = 5, 3361 .access = PL2_W, .type = ARM_CP_NO_RAW, 3362 .writefn = tlbi_aa64_ipas2e1_write }, 3363 { .name = "TLBI_ALLE1", .state = ARM_CP_STATE_AA64, 3364 .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 7, .opc2 = 4, 3365 .access = PL2_W, .type = ARM_CP_NO_RAW, 3366 .writefn = tlbi_aa64_alle1_write }, 3367 { .name = "TLBI_VMALLS12E1", .state = ARM_CP_STATE_AA64, 3368 .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 7, .opc2 = 6, 3369 .access = PL2_W, .type = ARM_CP_NO_RAW, 3370 .writefn = tlbi_aa64_alle1is_write }, 3371 #ifndef CONFIG_USER_ONLY 3372 /* 64 bit address translation operations */ 3373 { .name = "AT_S1E1R", .state = ARM_CP_STATE_AA64, 3374 .opc0 = 1, .opc1 = 0, .crn = 7, .crm = 8, .opc2 = 0, 3375 .access = PL1_W, .type = ARM_CP_NO_RAW, .writefn = ats_write64 }, 3376 { .name = "AT_S1E1W", .state = ARM_CP_STATE_AA64, 3377 .opc0 = 1, .opc1 = 0, .crn = 7, .crm = 8, .opc2 = 1, 3378 .access = PL1_W, .type = ARM_CP_NO_RAW, .writefn = ats_write64 }, 3379 { .name = "AT_S1E0R", .state = ARM_CP_STATE_AA64, 3380 .opc0 = 1, .opc1 = 0, .crn = 7, .crm = 8, .opc2 = 2, 3381 .access = PL1_W, .type = ARM_CP_NO_RAW, .writefn = ats_write64 }, 3382 { .name = "AT_S1E0W", .state = ARM_CP_STATE_AA64, 3383 .opc0 = 1, .opc1 = 0, .crn = 7, .crm = 8, .opc2 = 3, 3384 .access = PL1_W, .type = ARM_CP_NO_RAW, .writefn = ats_write64 }, 3385 { .name = "AT_S12E1R", .state = ARM_CP_STATE_AA64, 3386 .opc0 = 1, .opc1 = 4, .crn = 7, .crm = 8, .opc2 = 4, 3387 .access = PL2_W, .type = ARM_CP_NO_RAW, .writefn = ats_write64 }, 3388 { .name = "AT_S12E1W", .state = ARM_CP_STATE_AA64, 3389 .opc0 = 1, .opc1 = 4, .crn = 7, .crm = 8, .opc2 = 5, 3390 .access = PL2_W, .type = ARM_CP_NO_RAW, .writefn = ats_write64 }, 3391 { .name = "AT_S12E0R", .state = ARM_CP_STATE_AA64, 3392 .opc0 = 1, .opc1 = 4, .crn = 7, .crm = 8, .opc2 = 6, 3393 .access = PL2_W, .type = ARM_CP_NO_RAW, .writefn = ats_write64 }, 3394 { .name = "AT_S12E0W", .state = ARM_CP_STATE_AA64, 3395 .opc0 = 1, .opc1 = 4, .crn = 7, .crm = 8, .opc2 = 7, 3396 .access = PL2_W, .type = ARM_CP_NO_RAW, .writefn = ats_write64 }, 3397 /* AT S1E2* are elsewhere as they UNDEF from EL3 if EL2 is not present */ 3398 { .name = "AT_S1E3R", .state = ARM_CP_STATE_AA64, 3399 .opc0 = 1, .opc1 = 6, .crn = 7, .crm = 8, .opc2 = 0, 3400 .access = PL3_W, .type = ARM_CP_NO_RAW, .writefn = ats_write64 }, 3401 { .name = "AT_S1E3W", .state = ARM_CP_STATE_AA64, 3402 .opc0 = 1, .opc1 = 6, .crn = 7, .crm = 8, .opc2 = 1, 3403 .access = PL3_W, .type = ARM_CP_NO_RAW, .writefn = ats_write64 }, 3404 { .name = "PAR_EL1", .state = ARM_CP_STATE_AA64, 3405 .type = ARM_CP_ALIAS, 3406 .opc0 = 3, .opc1 = 0, .crn = 7, .crm = 4, .opc2 = 0, 3407 .access = PL1_RW, .resetvalue = 0, 3408 .fieldoffset = offsetof(CPUARMState, cp15.par_el[1]), 3409 .writefn = par_write }, 3410 #endif 3411 /* TLB invalidate last level of translation table walk */ 3412 { .name = "TLBIMVALIS", .cp = 15, .opc1 = 0, .crn = 8, .crm = 3, .opc2 = 5, 3413 .type = ARM_CP_NO_RAW, .access = PL1_W, .writefn = tlbimva_is_write }, 3414 { .name = "TLBIMVAALIS", .cp = 15, .opc1 = 0, .crn = 8, .crm = 3, .opc2 = 7, 3415 .type = ARM_CP_NO_RAW, .access = PL1_W, 3416 .writefn = tlbimvaa_is_write }, 3417 { .name = "TLBIMVAL", .cp = 15, .opc1 = 0, .crn = 8, .crm = 7, .opc2 = 5, 3418 .type = ARM_CP_NO_RAW, .access = PL1_W, .writefn = tlbimva_write }, 3419 { .name = "TLBIMVAAL", .cp = 15, .opc1 = 0, .crn = 8, .crm = 7, .opc2 = 7, 3420 .type = ARM_CP_NO_RAW, .access = PL1_W, .writefn = tlbimvaa_write }, 3421 { .name = "TLBIMVALH", .cp = 15, .opc1 = 4, .crn = 8, .crm = 7, .opc2 = 5, 3422 .type = ARM_CP_NO_RAW, .access = PL2_W, 3423 .writefn = tlbimva_hyp_write }, 3424 { .name = "TLBIMVALHIS", 3425 .cp = 15, .opc1 = 4, .crn = 8, .crm = 3, .opc2 = 5, 3426 .type = ARM_CP_NO_RAW, .access = PL2_W, 3427 .writefn = tlbimva_hyp_is_write }, 3428 { .name = "TLBIIPAS2", 3429 .cp = 15, .opc1 = 4, .crn = 8, .crm = 4, .opc2 = 1, 3430 .type = ARM_CP_NO_RAW, .access = PL2_W, 3431 .writefn = tlbiipas2_write }, 3432 { .name = "TLBIIPAS2IS", 3433 .cp = 15, .opc1 = 4, .crn = 8, .crm = 0, .opc2 = 1, 3434 .type = ARM_CP_NO_RAW, .access = PL2_W, 3435 .writefn = tlbiipas2_is_write }, 3436 { .name = "TLBIIPAS2L", 3437 .cp = 15, .opc1 = 4, .crn = 8, .crm = 4, .opc2 = 5, 3438 .type = ARM_CP_NO_RAW, .access = PL2_W, 3439 .writefn = tlbiipas2_write }, 3440 { .name = "TLBIIPAS2LIS", 3441 .cp = 15, .opc1 = 4, .crn = 8, .crm = 0, .opc2 = 5, 3442 .type = ARM_CP_NO_RAW, .access = PL2_W, 3443 .writefn = tlbiipas2_is_write }, 3444 /* 32 bit cache operations */ 3445 { .name = "ICIALLUIS", .cp = 15, .opc1 = 0, .crn = 7, .crm = 1, .opc2 = 0, 3446 .type = ARM_CP_NOP, .access = PL1_W }, 3447 { .name = "BPIALLUIS", .cp = 15, .opc1 = 0, .crn = 7, .crm = 1, .opc2 = 6, 3448 .type = ARM_CP_NOP, .access = PL1_W }, 3449 { .name = "ICIALLU", .cp = 15, .opc1 = 0, .crn = 7, .crm = 5, .opc2 = 0, 3450 .type = ARM_CP_NOP, .access = PL1_W }, 3451 { .name = "ICIMVAU", .cp = 15, .opc1 = 0, .crn = 7, .crm = 5, .opc2 = 1, 3452 .type = ARM_CP_NOP, .access = PL1_W }, 3453 { .name = "BPIALL", .cp = 15, .opc1 = 0, .crn = 7, .crm = 5, .opc2 = 6, 3454 .type = ARM_CP_NOP, .access = PL1_W }, 3455 { .name = "BPIMVA", .cp = 15, .opc1 = 0, .crn = 7, .crm = 5, .opc2 = 7, 3456 .type = ARM_CP_NOP, .access = PL1_W }, 3457 { .name = "DCIMVAC", .cp = 15, .opc1 = 0, .crn = 7, .crm = 6, .opc2 = 1, 3458 .type = ARM_CP_NOP, .access = PL1_W }, 3459 { .name = "DCISW", .cp = 15, .opc1 = 0, .crn = 7, .crm = 6, .opc2 = 2, 3460 .type = ARM_CP_NOP, .access = PL1_W }, 3461 { .name = "DCCMVAC", .cp = 15, .opc1 = 0, .crn = 7, .crm = 10, .opc2 = 1, 3462 .type = ARM_CP_NOP, .access = PL1_W }, 3463 { .name = "DCCSW", .cp = 15, .opc1 = 0, .crn = 7, .crm = 10, .opc2 = 2, 3464 .type = ARM_CP_NOP, .access = PL1_W }, 3465 { .name = "DCCMVAU", .cp = 15, .opc1 = 0, .crn = 7, .crm = 11, .opc2 = 1, 3466 .type = ARM_CP_NOP, .access = PL1_W }, 3467 { .name = "DCCIMVAC", .cp = 15, .opc1 = 0, .crn = 7, .crm = 14, .opc2 = 1, 3468 .type = ARM_CP_NOP, .access = PL1_W }, 3469 { .name = "DCCISW", .cp = 15, .opc1 = 0, .crn = 7, .crm = 14, .opc2 = 2, 3470 .type = ARM_CP_NOP, .access = PL1_W }, 3471 /* MMU Domain access control / MPU write buffer control */ 3472 { .name = "DACR", .cp = 15, .opc1 = 0, .crn = 3, .crm = 0, .opc2 = 0, 3473 .access = PL1_RW, .resetvalue = 0, 3474 .writefn = dacr_write, .raw_writefn = raw_write, 3475 .bank_fieldoffsets = { offsetoflow32(CPUARMState, cp15.dacr_s), 3476 offsetoflow32(CPUARMState, cp15.dacr_ns) } }, 3477 { .name = "ELR_EL1", .state = ARM_CP_STATE_AA64, 3478 .type = ARM_CP_ALIAS, 3479 .opc0 = 3, .opc1 = 0, .crn = 4, .crm = 0, .opc2 = 1, 3480 .access = PL1_RW, 3481 .fieldoffset = offsetof(CPUARMState, elr_el[1]) }, 3482 { .name = "SPSR_EL1", .state = ARM_CP_STATE_AA64, 3483 .type = ARM_CP_ALIAS, 3484 .opc0 = 3, .opc1 = 0, .crn = 4, .crm = 0, .opc2 = 0, 3485 .access = PL1_RW, 3486 .fieldoffset = offsetof(CPUARMState, banked_spsr[BANK_SVC]) }, 3487 /* We rely on the access checks not allowing the guest to write to the 3488 * state field when SPSel indicates that it's being used as the stack 3489 * pointer. 3490 */ 3491 { .name = "SP_EL0", .state = ARM_CP_STATE_AA64, 3492 .opc0 = 3, .opc1 = 0, .crn = 4, .crm = 1, .opc2 = 0, 3493 .access = PL1_RW, .accessfn = sp_el0_access, 3494 .type = ARM_CP_ALIAS, 3495 .fieldoffset = offsetof(CPUARMState, sp_el[0]) }, 3496 { .name = "SP_EL1", .state = ARM_CP_STATE_AA64, 3497 .opc0 = 3, .opc1 = 4, .crn = 4, .crm = 1, .opc2 = 0, 3498 .access = PL2_RW, .type = ARM_CP_ALIAS, 3499 .fieldoffset = offsetof(CPUARMState, sp_el[1]) }, 3500 { .name = "SPSel", .state = ARM_CP_STATE_AA64, 3501 .opc0 = 3, .opc1 = 0, .crn = 4, .crm = 2, .opc2 = 0, 3502 .type = ARM_CP_NO_RAW, 3503 .access = PL1_RW, .readfn = spsel_read, .writefn = spsel_write }, 3504 { .name = "FPEXC32_EL2", .state = ARM_CP_STATE_AA64, 3505 .opc0 = 3, .opc1 = 4, .crn = 5, .crm = 3, .opc2 = 0, 3506 .type = ARM_CP_ALIAS, 3507 .fieldoffset = offsetof(CPUARMState, vfp.xregs[ARM_VFP_FPEXC]), 3508 .access = PL2_RW, .accessfn = fpexc32_access }, 3509 { .name = "DACR32_EL2", .state = ARM_CP_STATE_AA64, 3510 .opc0 = 3, .opc1 = 4, .crn = 3, .crm = 0, .opc2 = 0, 3511 .access = PL2_RW, .resetvalue = 0, 3512 .writefn = dacr_write, .raw_writefn = raw_write, 3513 .fieldoffset = offsetof(CPUARMState, cp15.dacr32_el2) }, 3514 { .name = "IFSR32_EL2", .state = ARM_CP_STATE_AA64, 3515 .opc0 = 3, .opc1 = 4, .crn = 5, .crm = 0, .opc2 = 1, 3516 .access = PL2_RW, .resetvalue = 0, 3517 .fieldoffset = offsetof(CPUARMState, cp15.ifsr32_el2) }, 3518 { .name = "SPSR_IRQ", .state = ARM_CP_STATE_AA64, 3519 .type = ARM_CP_ALIAS, 3520 .opc0 = 3, .opc1 = 4, .crn = 4, .crm = 3, .opc2 = 0, 3521 .access = PL2_RW, 3522 .fieldoffset = offsetof(CPUARMState, banked_spsr[BANK_IRQ]) }, 3523 { .name = "SPSR_ABT", .state = ARM_CP_STATE_AA64, 3524 .type = ARM_CP_ALIAS, 3525 .opc0 = 3, .opc1 = 4, .crn = 4, .crm = 3, .opc2 = 1, 3526 .access = PL2_RW, 3527 .fieldoffset = offsetof(CPUARMState, banked_spsr[BANK_ABT]) }, 3528 { .name = "SPSR_UND", .state = ARM_CP_STATE_AA64, 3529 .type = ARM_CP_ALIAS, 3530 .opc0 = 3, .opc1 = 4, .crn = 4, .crm = 3, .opc2 = 2, 3531 .access = PL2_RW, 3532 .fieldoffset = offsetof(CPUARMState, banked_spsr[BANK_UND]) }, 3533 { .name = "SPSR_FIQ", .state = ARM_CP_STATE_AA64, 3534 .type = ARM_CP_ALIAS, 3535 .opc0 = 3, .opc1 = 4, .crn = 4, .crm = 3, .opc2 = 3, 3536 .access = PL2_RW, 3537 .fieldoffset = offsetof(CPUARMState, banked_spsr[BANK_FIQ]) }, 3538 { .name = "MDCR_EL3", .state = ARM_CP_STATE_AA64, 3539 .opc0 = 3, .opc1 = 6, .crn = 1, .crm = 3, .opc2 = 1, 3540 .resetvalue = 0, 3541 .access = PL3_RW, .fieldoffset = offsetof(CPUARMState, cp15.mdcr_el3) }, 3542 { .name = "SDCR", .type = ARM_CP_ALIAS, 3543 .cp = 15, .opc1 = 0, .crn = 1, .crm = 3, .opc2 = 1, 3544 .access = PL1_RW, .accessfn = access_trap_aa32s_el1, 3545 .writefn = sdcr_write, 3546 .fieldoffset = offsetoflow32(CPUARMState, cp15.mdcr_el3) }, 3547 REGINFO_SENTINEL 3548 }; 3549 3550 /* Used to describe the behaviour of EL2 regs when EL2 does not exist. */ 3551 static const ARMCPRegInfo el3_no_el2_cp_reginfo[] = { 3552 { .name = "VBAR_EL2", .state = ARM_CP_STATE_AA64, 3553 .opc0 = 3, .opc1 = 4, .crn = 12, .crm = 0, .opc2 = 0, 3554 .access = PL2_RW, 3555 .readfn = arm_cp_read_zero, .writefn = arm_cp_write_ignore }, 3556 { .name = "HCR_EL2", .state = ARM_CP_STATE_AA64, 3557 .type = ARM_CP_NO_RAW, 3558 .opc0 = 3, .opc1 = 4, .crn = 1, .crm = 1, .opc2 = 0, 3559 .access = PL2_RW, 3560 .readfn = arm_cp_read_zero, .writefn = arm_cp_write_ignore }, 3561 { .name = "CPTR_EL2", .state = ARM_CP_STATE_BOTH, 3562 .opc0 = 3, .opc1 = 4, .crn = 1, .crm = 1, .opc2 = 2, 3563 .access = PL2_RW, .type = ARM_CP_CONST, .resetvalue = 0 }, 3564 { .name = "MAIR_EL2", .state = ARM_CP_STATE_BOTH, 3565 .opc0 = 3, .opc1 = 4, .crn = 10, .crm = 2, .opc2 = 0, 3566 .access = PL2_RW, .type = ARM_CP_CONST, 3567 .resetvalue = 0 }, 3568 { .name = "HMAIR1", .state = ARM_CP_STATE_AA32, 3569 .opc1 = 4, .crn = 10, .crm = 2, .opc2 = 1, 3570 .access = PL2_RW, .type = ARM_CP_CONST, .resetvalue = 0 }, 3571 { .name = "AMAIR_EL2", .state = ARM_CP_STATE_BOTH, 3572 .opc0 = 3, .opc1 = 4, .crn = 10, .crm = 3, .opc2 = 0, 3573 .access = PL2_RW, .type = ARM_CP_CONST, 3574 .resetvalue = 0 }, 3575 { .name = "HMAIR1", .state = ARM_CP_STATE_AA32, 3576 .opc1 = 4, .crn = 10, .crm = 3, .opc2 = 1, 3577 .access = PL2_RW, .type = ARM_CP_CONST, 3578 .resetvalue = 0 }, 3579 { .name = "AFSR0_EL2", .state = ARM_CP_STATE_BOTH, 3580 .opc0 = 3, .opc1 = 4, .crn = 5, .crm = 1, .opc2 = 0, 3581 .access = PL2_RW, .type = ARM_CP_CONST, 3582 .resetvalue = 0 }, 3583 { .name = "AFSR1_EL2", .state = ARM_CP_STATE_BOTH, 3584 .opc0 = 3, .opc1 = 4, .crn = 5, .crm = 1, .opc2 = 1, 3585 .access = PL2_RW, .type = ARM_CP_CONST, 3586 .resetvalue = 0 }, 3587 { .name = "TCR_EL2", .state = ARM_CP_STATE_BOTH, 3588 .opc0 = 3, .opc1 = 4, .crn = 2, .crm = 0, .opc2 = 2, 3589 .access = PL2_RW, .type = ARM_CP_CONST, .resetvalue = 0 }, 3590 { .name = "VTCR_EL2", .state = ARM_CP_STATE_BOTH, 3591 .opc0 = 3, .opc1 = 4, .crn = 2, .crm = 1, .opc2 = 2, 3592 .access = PL2_RW, .accessfn = access_el3_aa32ns_aa64any, 3593 .type = ARM_CP_CONST, .resetvalue = 0 }, 3594 { .name = "VTTBR", .state = ARM_CP_STATE_AA32, 3595 .cp = 15, .opc1 = 6, .crm = 2, 3596 .access = PL2_RW, .accessfn = access_el3_aa32ns, 3597 .type = ARM_CP_CONST | ARM_CP_64BIT, .resetvalue = 0 }, 3598 { .name = "VTTBR_EL2", .state = ARM_CP_STATE_AA64, 3599 .opc0 = 3, .opc1 = 4, .crn = 2, .crm = 1, .opc2 = 0, 3600 .access = PL2_RW, .type = ARM_CP_CONST, .resetvalue = 0 }, 3601 { .name = "SCTLR_EL2", .state = ARM_CP_STATE_BOTH, 3602 .opc0 = 3, .opc1 = 4, .crn = 1, .crm = 0, .opc2 = 0, 3603 .access = PL2_RW, .type = ARM_CP_CONST, .resetvalue = 0 }, 3604 { .name = "TPIDR_EL2", .state = ARM_CP_STATE_BOTH, 3605 .opc0 = 3, .opc1 = 4, .crn = 13, .crm = 0, .opc2 = 2, 3606 .access = PL2_RW, .type = ARM_CP_CONST, .resetvalue = 0 }, 3607 { .name = "TTBR0_EL2", .state = ARM_CP_STATE_AA64, 3608 .opc0 = 3, .opc1 = 4, .crn = 2, .crm = 0, .opc2 = 0, 3609 .access = PL2_RW, .type = ARM_CP_CONST, .resetvalue = 0 }, 3610 { .name = "HTTBR", .cp = 15, .opc1 = 4, .crm = 2, 3611 .access = PL2_RW, .type = ARM_CP_64BIT | ARM_CP_CONST, 3612 .resetvalue = 0 }, 3613 { .name = "CNTHCTL_EL2", .state = ARM_CP_STATE_BOTH, 3614 .opc0 = 3, .opc1 = 4, .crn = 14, .crm = 1, .opc2 = 0, 3615 .access = PL2_RW, .type = ARM_CP_CONST, .resetvalue = 0 }, 3616 { .name = "CNTVOFF_EL2", .state = ARM_CP_STATE_AA64, 3617 .opc0 = 3, .opc1 = 4, .crn = 14, .crm = 0, .opc2 = 3, 3618 .access = PL2_RW, .type = ARM_CP_CONST, .resetvalue = 0 }, 3619 { .name = "CNTVOFF", .cp = 15, .opc1 = 4, .crm = 14, 3620 .access = PL2_RW, .type = ARM_CP_64BIT | ARM_CP_CONST, 3621 .resetvalue = 0 }, 3622 { .name = "CNTHP_CVAL_EL2", .state = ARM_CP_STATE_AA64, 3623 .opc0 = 3, .opc1 = 4, .crn = 14, .crm = 2, .opc2 = 2, 3624 .access = PL2_RW, .type = ARM_CP_CONST, .resetvalue = 0 }, 3625 { .name = "CNTHP_CVAL", .cp = 15, .opc1 = 6, .crm = 14, 3626 .access = PL2_RW, .type = ARM_CP_64BIT | ARM_CP_CONST, 3627 .resetvalue = 0 }, 3628 { .name = "CNTHP_TVAL_EL2", .state = ARM_CP_STATE_BOTH, 3629 .opc0 = 3, .opc1 = 4, .crn = 14, .crm = 2, .opc2 = 0, 3630 .access = PL2_RW, .type = ARM_CP_CONST, .resetvalue = 0 }, 3631 { .name = "CNTHP_CTL_EL2", .state = ARM_CP_STATE_BOTH, 3632 .opc0 = 3, .opc1 = 4, .crn = 14, .crm = 2, .opc2 = 1, 3633 .access = PL2_RW, .type = ARM_CP_CONST, .resetvalue = 0 }, 3634 { .name = "MDCR_EL2", .state = ARM_CP_STATE_BOTH, 3635 .opc0 = 3, .opc1 = 4, .crn = 1, .crm = 1, .opc2 = 1, 3636 .access = PL2_RW, .accessfn = access_tda, 3637 .type = ARM_CP_CONST, .resetvalue = 0 }, 3638 { .name = "HPFAR_EL2", .state = ARM_CP_STATE_BOTH, 3639 .opc0 = 3, .opc1 = 4, .crn = 6, .crm = 0, .opc2 = 4, 3640 .access = PL2_RW, .accessfn = access_el3_aa32ns_aa64any, 3641 .type = ARM_CP_CONST, .resetvalue = 0 }, 3642 { .name = "HSTR_EL2", .state = ARM_CP_STATE_BOTH, 3643 .opc0 = 3, .opc1 = 4, .crn = 1, .crm = 1, .opc2 = 3, 3644 .access = PL2_RW, .type = ARM_CP_CONST, .resetvalue = 0 }, 3645 REGINFO_SENTINEL 3646 }; 3647 3648 static void hcr_write(CPUARMState *env, const ARMCPRegInfo *ri, uint64_t value) 3649 { 3650 ARMCPU *cpu = arm_env_get_cpu(env); 3651 uint64_t valid_mask = HCR_MASK; 3652 3653 if (arm_feature(env, ARM_FEATURE_EL3)) { 3654 valid_mask &= ~HCR_HCD; 3655 } else { 3656 valid_mask &= ~HCR_TSC; 3657 } 3658 3659 /* Clear RES0 bits. */ 3660 value &= valid_mask; 3661 3662 /* These bits change the MMU setup: 3663 * HCR_VM enables stage 2 translation 3664 * HCR_PTW forbids certain page-table setups 3665 * HCR_DC Disables stage1 and enables stage2 translation 3666 */ 3667 if ((raw_read(env, ri) ^ value) & (HCR_VM | HCR_PTW | HCR_DC)) { 3668 tlb_flush(CPU(cpu)); 3669 } 3670 raw_write(env, ri, value); 3671 } 3672 3673 static const ARMCPRegInfo el2_cp_reginfo[] = { 3674 { .name = "HCR_EL2", .state = ARM_CP_STATE_AA64, 3675 .opc0 = 3, .opc1 = 4, .crn = 1, .crm = 1, .opc2 = 0, 3676 .access = PL2_RW, .fieldoffset = offsetof(CPUARMState, cp15.hcr_el2), 3677 .writefn = hcr_write }, 3678 { .name = "ELR_EL2", .state = ARM_CP_STATE_AA64, 3679 .type = ARM_CP_ALIAS, 3680 .opc0 = 3, .opc1 = 4, .crn = 4, .crm = 0, .opc2 = 1, 3681 .access = PL2_RW, 3682 .fieldoffset = offsetof(CPUARMState, elr_el[2]) }, 3683 { .name = "ESR_EL2", .state = ARM_CP_STATE_AA64, 3684 .opc0 = 3, .opc1 = 4, .crn = 5, .crm = 2, .opc2 = 0, 3685 .access = PL2_RW, .fieldoffset = offsetof(CPUARMState, cp15.esr_el[2]) }, 3686 { .name = "FAR_EL2", .state = ARM_CP_STATE_AA64, 3687 .opc0 = 3, .opc1 = 4, .crn = 6, .crm = 0, .opc2 = 0, 3688 .access = PL2_RW, .fieldoffset = offsetof(CPUARMState, cp15.far_el[2]) }, 3689 { .name = "SPSR_EL2", .state = ARM_CP_STATE_AA64, 3690 .type = ARM_CP_ALIAS, 3691 .opc0 = 3, .opc1 = 4, .crn = 4, .crm = 0, .opc2 = 0, 3692 .access = PL2_RW, 3693 .fieldoffset = offsetof(CPUARMState, banked_spsr[BANK_HYP]) }, 3694 { .name = "VBAR_EL2", .state = ARM_CP_STATE_AA64, 3695 .opc0 = 3, .opc1 = 4, .crn = 12, .crm = 0, .opc2 = 0, 3696 .access = PL2_RW, .writefn = vbar_write, 3697 .fieldoffset = offsetof(CPUARMState, cp15.vbar_el[2]), 3698 .resetvalue = 0 }, 3699 { .name = "SP_EL2", .state = ARM_CP_STATE_AA64, 3700 .opc0 = 3, .opc1 = 6, .crn = 4, .crm = 1, .opc2 = 0, 3701 .access = PL3_RW, .type = ARM_CP_ALIAS, 3702 .fieldoffset = offsetof(CPUARMState, sp_el[2]) }, 3703 { .name = "CPTR_EL2", .state = ARM_CP_STATE_BOTH, 3704 .opc0 = 3, .opc1 = 4, .crn = 1, .crm = 1, .opc2 = 2, 3705 .access = PL2_RW, .accessfn = cptr_access, .resetvalue = 0, 3706 .fieldoffset = offsetof(CPUARMState, cp15.cptr_el[2]) }, 3707 { .name = "MAIR_EL2", .state = ARM_CP_STATE_BOTH, 3708 .opc0 = 3, .opc1 = 4, .crn = 10, .crm = 2, .opc2 = 0, 3709 .access = PL2_RW, .fieldoffset = offsetof(CPUARMState, cp15.mair_el[2]), 3710 .resetvalue = 0 }, 3711 { .name = "HMAIR1", .state = ARM_CP_STATE_AA32, 3712 .opc1 = 4, .crn = 10, .crm = 2, .opc2 = 1, 3713 .access = PL2_RW, .type = ARM_CP_ALIAS, 3714 .fieldoffset = offsetofhigh32(CPUARMState, cp15.mair_el[2]) }, 3715 { .name = "AMAIR_EL2", .state = ARM_CP_STATE_BOTH, 3716 .opc0 = 3, .opc1 = 4, .crn = 10, .crm = 3, .opc2 = 0, 3717 .access = PL2_RW, .type = ARM_CP_CONST, 3718 .resetvalue = 0 }, 3719 /* HAMAIR1 is mapped to AMAIR_EL2[63:32] */ 3720 { .name = "HMAIR1", .state = ARM_CP_STATE_AA32, 3721 .opc1 = 4, .crn = 10, .crm = 3, .opc2 = 1, 3722 .access = PL2_RW, .type = ARM_CP_CONST, 3723 .resetvalue = 0 }, 3724 { .name = "AFSR0_EL2", .state = ARM_CP_STATE_BOTH, 3725 .opc0 = 3, .opc1 = 4, .crn = 5, .crm = 1, .opc2 = 0, 3726 .access = PL2_RW, .type = ARM_CP_CONST, 3727 .resetvalue = 0 }, 3728 { .name = "AFSR1_EL2", .state = ARM_CP_STATE_BOTH, 3729 .opc0 = 3, .opc1 = 4, .crn = 5, .crm = 1, .opc2 = 1, 3730 .access = PL2_RW, .type = ARM_CP_CONST, 3731 .resetvalue = 0 }, 3732 { .name = "TCR_EL2", .state = ARM_CP_STATE_BOTH, 3733 .opc0 = 3, .opc1 = 4, .crn = 2, .crm = 0, .opc2 = 2, 3734 .access = PL2_RW, 3735 /* no .writefn needed as this can't cause an ASID change; 3736 * no .raw_writefn or .resetfn needed as we never use mask/base_mask 3737 */ 3738 .fieldoffset = offsetof(CPUARMState, cp15.tcr_el[2]) }, 3739 { .name = "VTCR", .state = ARM_CP_STATE_AA32, 3740 .cp = 15, .opc1 = 4, .crn = 2, .crm = 1, .opc2 = 2, 3741 .type = ARM_CP_ALIAS, 3742 .access = PL2_RW, .accessfn = access_el3_aa32ns, 3743 .fieldoffset = offsetof(CPUARMState, cp15.vtcr_el2) }, 3744 { .name = "VTCR_EL2", .state = ARM_CP_STATE_AA64, 3745 .opc0 = 3, .opc1 = 4, .crn = 2, .crm = 1, .opc2 = 2, 3746 .access = PL2_RW, 3747 /* no .writefn needed as this can't cause an ASID change; 3748 * no .raw_writefn or .resetfn needed as we never use mask/base_mask 3749 */ 3750 .fieldoffset = offsetof(CPUARMState, cp15.vtcr_el2) }, 3751 { .name = "VTTBR", .state = ARM_CP_STATE_AA32, 3752 .cp = 15, .opc1 = 6, .crm = 2, 3753 .type = ARM_CP_64BIT | ARM_CP_ALIAS, 3754 .access = PL2_RW, .accessfn = access_el3_aa32ns, 3755 .fieldoffset = offsetof(CPUARMState, cp15.vttbr_el2), 3756 .writefn = vttbr_write }, 3757 { .name = "VTTBR_EL2", .state = ARM_CP_STATE_AA64, 3758 .opc0 = 3, .opc1 = 4, .crn = 2, .crm = 1, .opc2 = 0, 3759 .access = PL2_RW, .writefn = vttbr_write, 3760 .fieldoffset = offsetof(CPUARMState, cp15.vttbr_el2) }, 3761 { .name = "SCTLR_EL2", .state = ARM_CP_STATE_BOTH, 3762 .opc0 = 3, .opc1 = 4, .crn = 1, .crm = 0, .opc2 = 0, 3763 .access = PL2_RW, .raw_writefn = raw_write, .writefn = sctlr_write, 3764 .fieldoffset = offsetof(CPUARMState, cp15.sctlr_el[2]) }, 3765 { .name = "TPIDR_EL2", .state = ARM_CP_STATE_BOTH, 3766 .opc0 = 3, .opc1 = 4, .crn = 13, .crm = 0, .opc2 = 2, 3767 .access = PL2_RW, .resetvalue = 0, 3768 .fieldoffset = offsetof(CPUARMState, cp15.tpidr_el[2]) }, 3769 { .name = "TTBR0_EL2", .state = ARM_CP_STATE_AA64, 3770 .opc0 = 3, .opc1 = 4, .crn = 2, .crm = 0, .opc2 = 0, 3771 .access = PL2_RW, .resetvalue = 0, 3772 .fieldoffset = offsetof(CPUARMState, cp15.ttbr0_el[2]) }, 3773 { .name = "HTTBR", .cp = 15, .opc1 = 4, .crm = 2, 3774 .access = PL2_RW, .type = ARM_CP_64BIT | ARM_CP_ALIAS, 3775 .fieldoffset = offsetof(CPUARMState, cp15.ttbr0_el[2]) }, 3776 { .name = "TLBIALLNSNH", 3777 .cp = 15, .opc1 = 4, .crn = 8, .crm = 7, .opc2 = 4, 3778 .type = ARM_CP_NO_RAW, .access = PL2_W, 3779 .writefn = tlbiall_nsnh_write }, 3780 { .name = "TLBIALLNSNHIS", 3781 .cp = 15, .opc1 = 4, .crn = 8, .crm = 3, .opc2 = 4, 3782 .type = ARM_CP_NO_RAW, .access = PL2_W, 3783 .writefn = tlbiall_nsnh_is_write }, 3784 { .name = "TLBIALLH", .cp = 15, .opc1 = 4, .crn = 8, .crm = 7, .opc2 = 0, 3785 .type = ARM_CP_NO_RAW, .access = PL2_W, 3786 .writefn = tlbiall_hyp_write }, 3787 { .name = "TLBIALLHIS", .cp = 15, .opc1 = 4, .crn = 8, .crm = 3, .opc2 = 0, 3788 .type = ARM_CP_NO_RAW, .access = PL2_W, 3789 .writefn = tlbiall_hyp_is_write }, 3790 { .name = "TLBIMVAH", .cp = 15, .opc1 = 4, .crn = 8, .crm = 7, .opc2 = 1, 3791 .type = ARM_CP_NO_RAW, .access = PL2_W, 3792 .writefn = tlbimva_hyp_write }, 3793 { .name = "TLBIMVAHIS", .cp = 15, .opc1 = 4, .crn = 8, .crm = 3, .opc2 = 1, 3794 .type = ARM_CP_NO_RAW, .access = PL2_W, 3795 .writefn = tlbimva_hyp_is_write }, 3796 { .name = "TLBI_ALLE2", .state = ARM_CP_STATE_AA64, 3797 .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 7, .opc2 = 0, 3798 .type = ARM_CP_NO_RAW, .access = PL2_W, 3799 .writefn = tlbi_aa64_alle2_write }, 3800 { .name = "TLBI_VAE2", .state = ARM_CP_STATE_AA64, 3801 .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 7, .opc2 = 1, 3802 .type = ARM_CP_NO_RAW, .access = PL2_W, 3803 .writefn = tlbi_aa64_vae2_write }, 3804 { .name = "TLBI_VALE2", .state = ARM_CP_STATE_AA64, 3805 .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 7, .opc2 = 5, 3806 .access = PL2_W, .type = ARM_CP_NO_RAW, 3807 .writefn = tlbi_aa64_vae2_write }, 3808 { .name = "TLBI_ALLE2IS", .state = ARM_CP_STATE_AA64, 3809 .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 3, .opc2 = 0, 3810 .access = PL2_W, .type = ARM_CP_NO_RAW, 3811 .writefn = tlbi_aa64_alle2is_write }, 3812 { .name = "TLBI_VAE2IS", .state = ARM_CP_STATE_AA64, 3813 .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 3, .opc2 = 1, 3814 .type = ARM_CP_NO_RAW, .access = PL2_W, 3815 .writefn = tlbi_aa64_vae2is_write }, 3816 { .name = "TLBI_VALE2IS", .state = ARM_CP_STATE_AA64, 3817 .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 3, .opc2 = 5, 3818 .access = PL2_W, .type = ARM_CP_NO_RAW, 3819 .writefn = tlbi_aa64_vae2is_write }, 3820 #ifndef CONFIG_USER_ONLY 3821 /* Unlike the other EL2-related AT operations, these must 3822 * UNDEF from EL3 if EL2 is not implemented, which is why we 3823 * define them here rather than with the rest of the AT ops. 3824 */ 3825 { .name = "AT_S1E2R", .state = ARM_CP_STATE_AA64, 3826 .opc0 = 1, .opc1 = 4, .crn = 7, .crm = 8, .opc2 = 0, 3827 .access = PL2_W, .accessfn = at_s1e2_access, 3828 .type = ARM_CP_NO_RAW, .writefn = ats_write64 }, 3829 { .name = "AT_S1E2W", .state = ARM_CP_STATE_AA64, 3830 .opc0 = 1, .opc1 = 4, .crn = 7, .crm = 8, .opc2 = 1, 3831 .access = PL2_W, .accessfn = at_s1e2_access, 3832 .type = ARM_CP_NO_RAW, .writefn = ats_write64 }, 3833 /* The AArch32 ATS1H* operations are CONSTRAINED UNPREDICTABLE 3834 * if EL2 is not implemented; we choose to UNDEF. Behaviour at EL3 3835 * with SCR.NS == 0 outside Monitor mode is UNPREDICTABLE; we choose 3836 * to behave as if SCR.NS was 1. 3837 */ 3838 { .name = "ATS1HR", .cp = 15, .opc1 = 4, .crn = 7, .crm = 8, .opc2 = 0, 3839 .access = PL2_W, 3840 .writefn = ats1h_write, .type = ARM_CP_NO_RAW }, 3841 { .name = "ATS1HW", .cp = 15, .opc1 = 4, .crn = 7, .crm = 8, .opc2 = 1, 3842 .access = PL2_W, 3843 .writefn = ats1h_write, .type = ARM_CP_NO_RAW }, 3844 { .name = "CNTHCTL_EL2", .state = ARM_CP_STATE_BOTH, 3845 .opc0 = 3, .opc1 = 4, .crn = 14, .crm = 1, .opc2 = 0, 3846 /* ARMv7 requires bit 0 and 1 to reset to 1. ARMv8 defines the 3847 * reset values as IMPDEF. We choose to reset to 3 to comply with 3848 * both ARMv7 and ARMv8. 3849 */ 3850 .access = PL2_RW, .resetvalue = 3, 3851 .fieldoffset = offsetof(CPUARMState, cp15.cnthctl_el2) }, 3852 { .name = "CNTVOFF_EL2", .state = ARM_CP_STATE_AA64, 3853 .opc0 = 3, .opc1 = 4, .crn = 14, .crm = 0, .opc2 = 3, 3854 .access = PL2_RW, .type = ARM_CP_IO, .resetvalue = 0, 3855 .writefn = gt_cntvoff_write, 3856 .fieldoffset = offsetof(CPUARMState, cp15.cntvoff_el2) }, 3857 { .name = "CNTVOFF", .cp = 15, .opc1 = 4, .crm = 14, 3858 .access = PL2_RW, .type = ARM_CP_64BIT | ARM_CP_ALIAS | ARM_CP_IO, 3859 .writefn = gt_cntvoff_write, 3860 .fieldoffset = offsetof(CPUARMState, cp15.cntvoff_el2) }, 3861 { .name = "CNTHP_CVAL_EL2", .state = ARM_CP_STATE_AA64, 3862 .opc0 = 3, .opc1 = 4, .crn = 14, .crm = 2, .opc2 = 2, 3863 .fieldoffset = offsetof(CPUARMState, cp15.c14_timer[GTIMER_HYP].cval), 3864 .type = ARM_CP_IO, .access = PL2_RW, 3865 .writefn = gt_hyp_cval_write, .raw_writefn = raw_write }, 3866 { .name = "CNTHP_CVAL", .cp = 15, .opc1 = 6, .crm = 14, 3867 .fieldoffset = offsetof(CPUARMState, cp15.c14_timer[GTIMER_HYP].cval), 3868 .access = PL2_RW, .type = ARM_CP_64BIT | ARM_CP_IO, 3869 .writefn = gt_hyp_cval_write, .raw_writefn = raw_write }, 3870 { .name = "CNTHP_TVAL_EL2", .state = ARM_CP_STATE_BOTH, 3871 .opc0 = 3, .opc1 = 4, .crn = 14, .crm = 2, .opc2 = 0, 3872 .type = ARM_CP_NO_RAW | ARM_CP_IO, .access = PL2_RW, 3873 .resetfn = gt_hyp_timer_reset, 3874 .readfn = gt_hyp_tval_read, .writefn = gt_hyp_tval_write }, 3875 { .name = "CNTHP_CTL_EL2", .state = ARM_CP_STATE_BOTH, 3876 .type = ARM_CP_IO, 3877 .opc0 = 3, .opc1 = 4, .crn = 14, .crm = 2, .opc2 = 1, 3878 .access = PL2_RW, 3879 .fieldoffset = offsetof(CPUARMState, cp15.c14_timer[GTIMER_HYP].ctl), 3880 .resetvalue = 0, 3881 .writefn = gt_hyp_ctl_write, .raw_writefn = raw_write }, 3882 #endif 3883 /* The only field of MDCR_EL2 that has a defined architectural reset value 3884 * is MDCR_EL2.HPMN which should reset to the value of PMCR_EL0.N; but we 3885 * don't impelment any PMU event counters, so using zero as a reset 3886 * value for MDCR_EL2 is okay 3887 */ 3888 { .name = "MDCR_EL2", .state = ARM_CP_STATE_BOTH, 3889 .opc0 = 3, .opc1 = 4, .crn = 1, .crm = 1, .opc2 = 1, 3890 .access = PL2_RW, .resetvalue = 0, 3891 .fieldoffset = offsetof(CPUARMState, cp15.mdcr_el2), }, 3892 { .name = "HPFAR", .state = ARM_CP_STATE_AA32, 3893 .cp = 15, .opc1 = 4, .crn = 6, .crm = 0, .opc2 = 4, 3894 .access = PL2_RW, .accessfn = access_el3_aa32ns, 3895 .fieldoffset = offsetof(CPUARMState, cp15.hpfar_el2) }, 3896 { .name = "HPFAR_EL2", .state = ARM_CP_STATE_AA64, 3897 .opc0 = 3, .opc1 = 4, .crn = 6, .crm = 0, .opc2 = 4, 3898 .access = PL2_RW, 3899 .fieldoffset = offsetof(CPUARMState, cp15.hpfar_el2) }, 3900 { .name = "HSTR_EL2", .state = ARM_CP_STATE_BOTH, 3901 .cp = 15, .opc0 = 3, .opc1 = 4, .crn = 1, .crm = 1, .opc2 = 3, 3902 .access = PL2_RW, 3903 .fieldoffset = offsetof(CPUARMState, cp15.hstr_el2) }, 3904 REGINFO_SENTINEL 3905 }; 3906 3907 static CPAccessResult nsacr_access(CPUARMState *env, const ARMCPRegInfo *ri, 3908 bool isread) 3909 { 3910 /* The NSACR is RW at EL3, and RO for NS EL1 and NS EL2. 3911 * At Secure EL1 it traps to EL3. 3912 */ 3913 if (arm_current_el(env) == 3) { 3914 return CP_ACCESS_OK; 3915 } 3916 if (arm_is_secure_below_el3(env)) { 3917 return CP_ACCESS_TRAP_EL3; 3918 } 3919 /* Accesses from EL1 NS and EL2 NS are UNDEF for write but allow reads. */ 3920 if (isread) { 3921 return CP_ACCESS_OK; 3922 } 3923 return CP_ACCESS_TRAP_UNCATEGORIZED; 3924 } 3925 3926 static const ARMCPRegInfo el3_cp_reginfo[] = { 3927 { .name = "SCR_EL3", .state = ARM_CP_STATE_AA64, 3928 .opc0 = 3, .opc1 = 6, .crn = 1, .crm = 1, .opc2 = 0, 3929 .access = PL3_RW, .fieldoffset = offsetof(CPUARMState, cp15.scr_el3), 3930 .resetvalue = 0, .writefn = scr_write }, 3931 { .name = "SCR", .type = ARM_CP_ALIAS, 3932 .cp = 15, .opc1 = 0, .crn = 1, .crm = 1, .opc2 = 0, 3933 .access = PL1_RW, .accessfn = access_trap_aa32s_el1, 3934 .fieldoffset = offsetoflow32(CPUARMState, cp15.scr_el3), 3935 .writefn = scr_write }, 3936 { .name = "SDER32_EL3", .state = ARM_CP_STATE_AA64, 3937 .opc0 = 3, .opc1 = 6, .crn = 1, .crm = 1, .opc2 = 1, 3938 .access = PL3_RW, .resetvalue = 0, 3939 .fieldoffset = offsetof(CPUARMState, cp15.sder) }, 3940 { .name = "SDER", 3941 .cp = 15, .opc1 = 0, .crn = 1, .crm = 1, .opc2 = 1, 3942 .access = PL3_RW, .resetvalue = 0, 3943 .fieldoffset = offsetoflow32(CPUARMState, cp15.sder) }, 3944 { .name = "MVBAR", .cp = 15, .opc1 = 0, .crn = 12, .crm = 0, .opc2 = 1, 3945 .access = PL1_RW, .accessfn = access_trap_aa32s_el1, 3946 .writefn = vbar_write, .resetvalue = 0, 3947 .fieldoffset = offsetof(CPUARMState, cp15.mvbar) }, 3948 { .name = "TTBR0_EL3", .state = ARM_CP_STATE_AA64, 3949 .opc0 = 3, .opc1 = 6, .crn = 2, .crm = 0, .opc2 = 0, 3950 .access = PL3_RW, .writefn = vmsa_ttbr_write, .resetvalue = 0, 3951 .fieldoffset = offsetof(CPUARMState, cp15.ttbr0_el[3]) }, 3952 { .name = "TCR_EL3", .state = ARM_CP_STATE_AA64, 3953 .opc0 = 3, .opc1 = 6, .crn = 2, .crm = 0, .opc2 = 2, 3954 .access = PL3_RW, 3955 /* no .writefn needed as this can't cause an ASID change; 3956 * we must provide a .raw_writefn and .resetfn because we handle 3957 * reset and migration for the AArch32 TTBCR(S), which might be 3958 * using mask and base_mask. 3959 */ 3960 .resetfn = vmsa_ttbcr_reset, .raw_writefn = vmsa_ttbcr_raw_write, 3961 .fieldoffset = offsetof(CPUARMState, cp15.tcr_el[3]) }, 3962 { .name = "ELR_EL3", .state = ARM_CP_STATE_AA64, 3963 .type = ARM_CP_ALIAS, 3964 .opc0 = 3, .opc1 = 6, .crn = 4, .crm = 0, .opc2 = 1, 3965 .access = PL3_RW, 3966 .fieldoffset = offsetof(CPUARMState, elr_el[3]) }, 3967 { .name = "ESR_EL3", .state = ARM_CP_STATE_AA64, 3968 .opc0 = 3, .opc1 = 6, .crn = 5, .crm = 2, .opc2 = 0, 3969 .access = PL3_RW, .fieldoffset = offsetof(CPUARMState, cp15.esr_el[3]) }, 3970 { .name = "FAR_EL3", .state = ARM_CP_STATE_AA64, 3971 .opc0 = 3, .opc1 = 6, .crn = 6, .crm = 0, .opc2 = 0, 3972 .access = PL3_RW, .fieldoffset = offsetof(CPUARMState, cp15.far_el[3]) }, 3973 { .name = "SPSR_EL3", .state = ARM_CP_STATE_AA64, 3974 .type = ARM_CP_ALIAS, 3975 .opc0 = 3, .opc1 = 6, .crn = 4, .crm = 0, .opc2 = 0, 3976 .access = PL3_RW, 3977 .fieldoffset = offsetof(CPUARMState, banked_spsr[BANK_MON]) }, 3978 { .name = "VBAR_EL3", .state = ARM_CP_STATE_AA64, 3979 .opc0 = 3, .opc1 = 6, .crn = 12, .crm = 0, .opc2 = 0, 3980 .access = PL3_RW, .writefn = vbar_write, 3981 .fieldoffset = offsetof(CPUARMState, cp15.vbar_el[3]), 3982 .resetvalue = 0 }, 3983 { .name = "CPTR_EL3", .state = ARM_CP_STATE_AA64, 3984 .opc0 = 3, .opc1 = 6, .crn = 1, .crm = 1, .opc2 = 2, 3985 .access = PL3_RW, .accessfn = cptr_access, .resetvalue = 0, 3986 .fieldoffset = offsetof(CPUARMState, cp15.cptr_el[3]) }, 3987 { .name = "TPIDR_EL3", .state = ARM_CP_STATE_AA64, 3988 .opc0 = 3, .opc1 = 6, .crn = 13, .crm = 0, .opc2 = 2, 3989 .access = PL3_RW, .resetvalue = 0, 3990 .fieldoffset = offsetof(CPUARMState, cp15.tpidr_el[3]) }, 3991 { .name = "AMAIR_EL3", .state = ARM_CP_STATE_AA64, 3992 .opc0 = 3, .opc1 = 6, .crn = 10, .crm = 3, .opc2 = 0, 3993 .access = PL3_RW, .type = ARM_CP_CONST, 3994 .resetvalue = 0 }, 3995 { .name = "AFSR0_EL3", .state = ARM_CP_STATE_BOTH, 3996 .opc0 = 3, .opc1 = 6, .crn = 5, .crm = 1, .opc2 = 0, 3997 .access = PL3_RW, .type = ARM_CP_CONST, 3998 .resetvalue = 0 }, 3999 { .name = "AFSR1_EL3", .state = ARM_CP_STATE_BOTH, 4000 .opc0 = 3, .opc1 = 6, .crn = 5, .crm = 1, .opc2 = 1, 4001 .access = PL3_RW, .type = ARM_CP_CONST, 4002 .resetvalue = 0 }, 4003 { .name = "TLBI_ALLE3IS", .state = ARM_CP_STATE_AA64, 4004 .opc0 = 1, .opc1 = 6, .crn = 8, .crm = 3, .opc2 = 0, 4005 .access = PL3_W, .type = ARM_CP_NO_RAW, 4006 .writefn = tlbi_aa64_alle3is_write }, 4007 { .name = "TLBI_VAE3IS", .state = ARM_CP_STATE_AA64, 4008 .opc0 = 1, .opc1 = 6, .crn = 8, .crm = 3, .opc2 = 1, 4009 .access = PL3_W, .type = ARM_CP_NO_RAW, 4010 .writefn = tlbi_aa64_vae3is_write }, 4011 { .name = "TLBI_VALE3IS", .state = ARM_CP_STATE_AA64, 4012 .opc0 = 1, .opc1 = 6, .crn = 8, .crm = 3, .opc2 = 5, 4013 .access = PL3_W, .type = ARM_CP_NO_RAW, 4014 .writefn = tlbi_aa64_vae3is_write }, 4015 { .name = "TLBI_ALLE3", .state = ARM_CP_STATE_AA64, 4016 .opc0 = 1, .opc1 = 6, .crn = 8, .crm = 7, .opc2 = 0, 4017 .access = PL3_W, .type = ARM_CP_NO_RAW, 4018 .writefn = tlbi_aa64_alle3_write }, 4019 { .name = "TLBI_VAE3", .state = ARM_CP_STATE_AA64, 4020 .opc0 = 1, .opc1 = 6, .crn = 8, .crm = 7, .opc2 = 1, 4021 .access = PL3_W, .type = ARM_CP_NO_RAW, 4022 .writefn = tlbi_aa64_vae3_write }, 4023 { .name = "TLBI_VALE3", .state = ARM_CP_STATE_AA64, 4024 .opc0 = 1, .opc1 = 6, .crn = 8, .crm = 7, .opc2 = 5, 4025 .access = PL3_W, .type = ARM_CP_NO_RAW, 4026 .writefn = tlbi_aa64_vae3_write }, 4027 REGINFO_SENTINEL 4028 }; 4029 4030 static CPAccessResult ctr_el0_access(CPUARMState *env, const ARMCPRegInfo *ri, 4031 bool isread) 4032 { 4033 /* Only accessible in EL0 if SCTLR.UCT is set (and only in AArch64, 4034 * but the AArch32 CTR has its own reginfo struct) 4035 */ 4036 if (arm_current_el(env) == 0 && !(env->cp15.sctlr_el[1] & SCTLR_UCT)) { 4037 return CP_ACCESS_TRAP; 4038 } 4039 return CP_ACCESS_OK; 4040 } 4041 4042 static void oslar_write(CPUARMState *env, const ARMCPRegInfo *ri, 4043 uint64_t value) 4044 { 4045 /* Writes to OSLAR_EL1 may update the OS lock status, which can be 4046 * read via a bit in OSLSR_EL1. 4047 */ 4048 int oslock; 4049 4050 if (ri->state == ARM_CP_STATE_AA32) { 4051 oslock = (value == 0xC5ACCE55); 4052 } else { 4053 oslock = value & 1; 4054 } 4055 4056 env->cp15.oslsr_el1 = deposit32(env->cp15.oslsr_el1, 1, 1, oslock); 4057 } 4058 4059 static const ARMCPRegInfo debug_cp_reginfo[] = { 4060 /* DBGDRAR, DBGDSAR: always RAZ since we don't implement memory mapped 4061 * debug components. The AArch64 version of DBGDRAR is named MDRAR_EL1; 4062 * unlike DBGDRAR it is never accessible from EL0. 4063 * DBGDSAR is deprecated and must RAZ from v8 anyway, so it has no AArch64 4064 * accessor. 4065 */ 4066 { .name = "DBGDRAR", .cp = 14, .crn = 1, .crm = 0, .opc1 = 0, .opc2 = 0, 4067 .access = PL0_R, .accessfn = access_tdra, 4068 .type = ARM_CP_CONST, .resetvalue = 0 }, 4069 { .name = "MDRAR_EL1", .state = ARM_CP_STATE_AA64, 4070 .opc0 = 2, .opc1 = 0, .crn = 1, .crm = 0, .opc2 = 0, 4071 .access = PL1_R, .accessfn = access_tdra, 4072 .type = ARM_CP_CONST, .resetvalue = 0 }, 4073 { .name = "DBGDSAR", .cp = 14, .crn = 2, .crm = 0, .opc1 = 0, .opc2 = 0, 4074 .access = PL0_R, .accessfn = access_tdra, 4075 .type = ARM_CP_CONST, .resetvalue = 0 }, 4076 /* Monitor debug system control register; the 32-bit alias is DBGDSCRext. */ 4077 { .name = "MDSCR_EL1", .state = ARM_CP_STATE_BOTH, 4078 .cp = 14, .opc0 = 2, .opc1 = 0, .crn = 0, .crm = 2, .opc2 = 2, 4079 .access = PL1_RW, .accessfn = access_tda, 4080 .fieldoffset = offsetof(CPUARMState, cp15.mdscr_el1), 4081 .resetvalue = 0 }, 4082 /* MDCCSR_EL0, aka DBGDSCRint. This is a read-only mirror of MDSCR_EL1. 4083 * We don't implement the configurable EL0 access. 4084 */ 4085 { .name = "MDCCSR_EL0", .state = ARM_CP_STATE_BOTH, 4086 .cp = 14, .opc0 = 2, .opc1 = 0, .crn = 0, .crm = 1, .opc2 = 0, 4087 .type = ARM_CP_ALIAS, 4088 .access = PL1_R, .accessfn = access_tda, 4089 .fieldoffset = offsetof(CPUARMState, cp15.mdscr_el1), }, 4090 { .name = "OSLAR_EL1", .state = ARM_CP_STATE_BOTH, 4091 .cp = 14, .opc0 = 2, .opc1 = 0, .crn = 1, .crm = 0, .opc2 = 4, 4092 .access = PL1_W, .type = ARM_CP_NO_RAW, 4093 .accessfn = access_tdosa, 4094 .writefn = oslar_write }, 4095 { .name = "OSLSR_EL1", .state = ARM_CP_STATE_BOTH, 4096 .cp = 14, .opc0 = 2, .opc1 = 0, .crn = 1, .crm = 1, .opc2 = 4, 4097 .access = PL1_R, .resetvalue = 10, 4098 .accessfn = access_tdosa, 4099 .fieldoffset = offsetof(CPUARMState, cp15.oslsr_el1) }, 4100 /* Dummy OSDLR_EL1: 32-bit Linux will read this */ 4101 { .name = "OSDLR_EL1", .state = ARM_CP_STATE_BOTH, 4102 .cp = 14, .opc0 = 2, .opc1 = 0, .crn = 1, .crm = 3, .opc2 = 4, 4103 .access = PL1_RW, .accessfn = access_tdosa, 4104 .type = ARM_CP_NOP }, 4105 /* Dummy DBGVCR: Linux wants to clear this on startup, but we don't 4106 * implement vector catch debug events yet. 4107 */ 4108 { .name = "DBGVCR", 4109 .cp = 14, .opc1 = 0, .crn = 0, .crm = 7, .opc2 = 0, 4110 .access = PL1_RW, .accessfn = access_tda, 4111 .type = ARM_CP_NOP }, 4112 /* Dummy DBGVCR32_EL2 (which is only for a 64-bit hypervisor 4113 * to save and restore a 32-bit guest's DBGVCR) 4114 */ 4115 { .name = "DBGVCR32_EL2", .state = ARM_CP_STATE_AA64, 4116 .opc0 = 2, .opc1 = 4, .crn = 0, .crm = 7, .opc2 = 0, 4117 .access = PL2_RW, .accessfn = access_tda, 4118 .type = ARM_CP_NOP }, 4119 /* Dummy MDCCINT_EL1, since we don't implement the Debug Communications 4120 * Channel but Linux may try to access this register. The 32-bit 4121 * alias is DBGDCCINT. 4122 */ 4123 { .name = "MDCCINT_EL1", .state = ARM_CP_STATE_BOTH, 4124 .cp = 14, .opc0 = 2, .opc1 = 0, .crn = 0, .crm = 2, .opc2 = 0, 4125 .access = PL1_RW, .accessfn = access_tda, 4126 .type = ARM_CP_NOP }, 4127 REGINFO_SENTINEL 4128 }; 4129 4130 static const ARMCPRegInfo debug_lpae_cp_reginfo[] = { 4131 /* 64 bit access versions of the (dummy) debug registers */ 4132 { .name = "DBGDRAR", .cp = 14, .crm = 1, .opc1 = 0, 4133 .access = PL0_R, .type = ARM_CP_CONST|ARM_CP_64BIT, .resetvalue = 0 }, 4134 { .name = "DBGDSAR", .cp = 14, .crm = 2, .opc1 = 0, 4135 .access = PL0_R, .type = ARM_CP_CONST|ARM_CP_64BIT, .resetvalue = 0 }, 4136 REGINFO_SENTINEL 4137 }; 4138 4139 void hw_watchpoint_update(ARMCPU *cpu, int n) 4140 { 4141 CPUARMState *env = &cpu->env; 4142 vaddr len = 0; 4143 vaddr wvr = env->cp15.dbgwvr[n]; 4144 uint64_t wcr = env->cp15.dbgwcr[n]; 4145 int mask; 4146 int flags = BP_CPU | BP_STOP_BEFORE_ACCESS; 4147 4148 if (env->cpu_watchpoint[n]) { 4149 cpu_watchpoint_remove_by_ref(CPU(cpu), env->cpu_watchpoint[n]); 4150 env->cpu_watchpoint[n] = NULL; 4151 } 4152 4153 if (!extract64(wcr, 0, 1)) { 4154 /* E bit clear : watchpoint disabled */ 4155 return; 4156 } 4157 4158 switch (extract64(wcr, 3, 2)) { 4159 case 0: 4160 /* LSC 00 is reserved and must behave as if the wp is disabled */ 4161 return; 4162 case 1: 4163 flags |= BP_MEM_READ; 4164 break; 4165 case 2: 4166 flags |= BP_MEM_WRITE; 4167 break; 4168 case 3: 4169 flags |= BP_MEM_ACCESS; 4170 break; 4171 } 4172 4173 /* Attempts to use both MASK and BAS fields simultaneously are 4174 * CONSTRAINED UNPREDICTABLE; we opt to ignore BAS in this case, 4175 * thus generating a watchpoint for every byte in the masked region. 4176 */ 4177 mask = extract64(wcr, 24, 4); 4178 if (mask == 1 || mask == 2) { 4179 /* Reserved values of MASK; we must act as if the mask value was 4180 * some non-reserved value, or as if the watchpoint were disabled. 4181 * We choose the latter. 4182 */ 4183 return; 4184 } else if (mask) { 4185 /* Watchpoint covers an aligned area up to 2GB in size */ 4186 len = 1ULL << mask; 4187 /* If masked bits in WVR are not zero it's CONSTRAINED UNPREDICTABLE 4188 * whether the watchpoint fires when the unmasked bits match; we opt 4189 * to generate the exceptions. 4190 */ 4191 wvr &= ~(len - 1); 4192 } else { 4193 /* Watchpoint covers bytes defined by the byte address select bits */ 4194 int bas = extract64(wcr, 5, 8); 4195 int basstart; 4196 4197 if (bas == 0) { 4198 /* This must act as if the watchpoint is disabled */ 4199 return; 4200 } 4201 4202 if (extract64(wvr, 2, 1)) { 4203 /* Deprecated case of an only 4-aligned address. BAS[7:4] are 4204 * ignored, and BAS[3:0] define which bytes to watch. 4205 */ 4206 bas &= 0xf; 4207 } 4208 /* The BAS bits are supposed to be programmed to indicate a contiguous 4209 * range of bytes. Otherwise it is CONSTRAINED UNPREDICTABLE whether 4210 * we fire for each byte in the word/doubleword addressed by the WVR. 4211 * We choose to ignore any non-zero bits after the first range of 1s. 4212 */ 4213 basstart = ctz32(bas); 4214 len = cto32(bas >> basstart); 4215 wvr += basstart; 4216 } 4217 4218 cpu_watchpoint_insert(CPU(cpu), wvr, len, flags, 4219 &env->cpu_watchpoint[n]); 4220 } 4221 4222 void hw_watchpoint_update_all(ARMCPU *cpu) 4223 { 4224 int i; 4225 CPUARMState *env = &cpu->env; 4226 4227 /* Completely clear out existing QEMU watchpoints and our array, to 4228 * avoid possible stale entries following migration load. 4229 */ 4230 cpu_watchpoint_remove_all(CPU(cpu), BP_CPU); 4231 memset(env->cpu_watchpoint, 0, sizeof(env->cpu_watchpoint)); 4232 4233 for (i = 0; i < ARRAY_SIZE(cpu->env.cpu_watchpoint); i++) { 4234 hw_watchpoint_update(cpu, i); 4235 } 4236 } 4237 4238 static void dbgwvr_write(CPUARMState *env, const ARMCPRegInfo *ri, 4239 uint64_t value) 4240 { 4241 ARMCPU *cpu = arm_env_get_cpu(env); 4242 int i = ri->crm; 4243 4244 /* Bits [63:49] are hardwired to the value of bit [48]; that is, the 4245 * register reads and behaves as if values written are sign extended. 4246 * Bits [1:0] are RES0. 4247 */ 4248 value = sextract64(value, 0, 49) & ~3ULL; 4249 4250 raw_write(env, ri, value); 4251 hw_watchpoint_update(cpu, i); 4252 } 4253 4254 static void dbgwcr_write(CPUARMState *env, const ARMCPRegInfo *ri, 4255 uint64_t value) 4256 { 4257 ARMCPU *cpu = arm_env_get_cpu(env); 4258 int i = ri->crm; 4259 4260 raw_write(env, ri, value); 4261 hw_watchpoint_update(cpu, i); 4262 } 4263 4264 void hw_breakpoint_update(ARMCPU *cpu, int n) 4265 { 4266 CPUARMState *env = &cpu->env; 4267 uint64_t bvr = env->cp15.dbgbvr[n]; 4268 uint64_t bcr = env->cp15.dbgbcr[n]; 4269 vaddr addr; 4270 int bt; 4271 int flags = BP_CPU; 4272 4273 if (env->cpu_breakpoint[n]) { 4274 cpu_breakpoint_remove_by_ref(CPU(cpu), env->cpu_breakpoint[n]); 4275 env->cpu_breakpoint[n] = NULL; 4276 } 4277 4278 if (!extract64(bcr, 0, 1)) { 4279 /* E bit clear : watchpoint disabled */ 4280 return; 4281 } 4282 4283 bt = extract64(bcr, 20, 4); 4284 4285 switch (bt) { 4286 case 4: /* unlinked address mismatch (reserved if AArch64) */ 4287 case 5: /* linked address mismatch (reserved if AArch64) */ 4288 qemu_log_mask(LOG_UNIMP, 4289 "arm: address mismatch breakpoint types not implemented"); 4290 return; 4291 case 0: /* unlinked address match */ 4292 case 1: /* linked address match */ 4293 { 4294 /* Bits [63:49] are hardwired to the value of bit [48]; that is, 4295 * we behave as if the register was sign extended. Bits [1:0] are 4296 * RES0. The BAS field is used to allow setting breakpoints on 16 4297 * bit wide instructions; it is CONSTRAINED UNPREDICTABLE whether 4298 * a bp will fire if the addresses covered by the bp and the addresses 4299 * covered by the insn overlap but the insn doesn't start at the 4300 * start of the bp address range. We choose to require the insn and 4301 * the bp to have the same address. The constraints on writing to 4302 * BAS enforced in dbgbcr_write mean we have only four cases: 4303 * 0b0000 => no breakpoint 4304 * 0b0011 => breakpoint on addr 4305 * 0b1100 => breakpoint on addr + 2 4306 * 0b1111 => breakpoint on addr 4307 * See also figure D2-3 in the v8 ARM ARM (DDI0487A.c). 4308 */ 4309 int bas = extract64(bcr, 5, 4); 4310 addr = sextract64(bvr, 0, 49) & ~3ULL; 4311 if (bas == 0) { 4312 return; 4313 } 4314 if (bas == 0xc) { 4315 addr += 2; 4316 } 4317 break; 4318 } 4319 case 2: /* unlinked context ID match */ 4320 case 8: /* unlinked VMID match (reserved if no EL2) */ 4321 case 10: /* unlinked context ID and VMID match (reserved if no EL2) */ 4322 qemu_log_mask(LOG_UNIMP, 4323 "arm: unlinked context breakpoint types not implemented"); 4324 return; 4325 case 9: /* linked VMID match (reserved if no EL2) */ 4326 case 11: /* linked context ID and VMID match (reserved if no EL2) */ 4327 case 3: /* linked context ID match */ 4328 default: 4329 /* We must generate no events for Linked context matches (unless 4330 * they are linked to by some other bp/wp, which is handled in 4331 * updates for the linking bp/wp). We choose to also generate no events 4332 * for reserved values. 4333 */ 4334 return; 4335 } 4336 4337 cpu_breakpoint_insert(CPU(cpu), addr, flags, &env->cpu_breakpoint[n]); 4338 } 4339 4340 void hw_breakpoint_update_all(ARMCPU *cpu) 4341 { 4342 int i; 4343 CPUARMState *env = &cpu->env; 4344 4345 /* Completely clear out existing QEMU breakpoints and our array, to 4346 * avoid possible stale entries following migration load. 4347 */ 4348 cpu_breakpoint_remove_all(CPU(cpu), BP_CPU); 4349 memset(env->cpu_breakpoint, 0, sizeof(env->cpu_breakpoint)); 4350 4351 for (i = 0; i < ARRAY_SIZE(cpu->env.cpu_breakpoint); i++) { 4352 hw_breakpoint_update(cpu, i); 4353 } 4354 } 4355 4356 static void dbgbvr_write(CPUARMState *env, const ARMCPRegInfo *ri, 4357 uint64_t value) 4358 { 4359 ARMCPU *cpu = arm_env_get_cpu(env); 4360 int i = ri->crm; 4361 4362 raw_write(env, ri, value); 4363 hw_breakpoint_update(cpu, i); 4364 } 4365 4366 static void dbgbcr_write(CPUARMState *env, const ARMCPRegInfo *ri, 4367 uint64_t value) 4368 { 4369 ARMCPU *cpu = arm_env_get_cpu(env); 4370 int i = ri->crm; 4371 4372 /* BAS[3] is a read-only copy of BAS[2], and BAS[1] a read-only 4373 * copy of BAS[0]. 4374 */ 4375 value = deposit64(value, 6, 1, extract64(value, 5, 1)); 4376 value = deposit64(value, 8, 1, extract64(value, 7, 1)); 4377 4378 raw_write(env, ri, value); 4379 hw_breakpoint_update(cpu, i); 4380 } 4381 4382 static void define_debug_regs(ARMCPU *cpu) 4383 { 4384 /* Define v7 and v8 architectural debug registers. 4385 * These are just dummy implementations for now. 4386 */ 4387 int i; 4388 int wrps, brps, ctx_cmps; 4389 ARMCPRegInfo dbgdidr = { 4390 .name = "DBGDIDR", .cp = 14, .crn = 0, .crm = 0, .opc1 = 0, .opc2 = 0, 4391 .access = PL0_R, .accessfn = access_tda, 4392 .type = ARM_CP_CONST, .resetvalue = cpu->dbgdidr, 4393 }; 4394 4395 /* Note that all these register fields hold "number of Xs minus 1". */ 4396 brps = extract32(cpu->dbgdidr, 24, 4); 4397 wrps = extract32(cpu->dbgdidr, 28, 4); 4398 ctx_cmps = extract32(cpu->dbgdidr, 20, 4); 4399 4400 assert(ctx_cmps <= brps); 4401 4402 /* The DBGDIDR and ID_AA64DFR0_EL1 define various properties 4403 * of the debug registers such as number of breakpoints; 4404 * check that if they both exist then they agree. 4405 */ 4406 if (arm_feature(&cpu->env, ARM_FEATURE_AARCH64)) { 4407 assert(extract32(cpu->id_aa64dfr0, 12, 4) == brps); 4408 assert(extract32(cpu->id_aa64dfr0, 20, 4) == wrps); 4409 assert(extract32(cpu->id_aa64dfr0, 28, 4) == ctx_cmps); 4410 } 4411 4412 define_one_arm_cp_reg(cpu, &dbgdidr); 4413 define_arm_cp_regs(cpu, debug_cp_reginfo); 4414 4415 if (arm_feature(&cpu->env, ARM_FEATURE_LPAE)) { 4416 define_arm_cp_regs(cpu, debug_lpae_cp_reginfo); 4417 } 4418 4419 for (i = 0; i < brps + 1; i++) { 4420 ARMCPRegInfo dbgregs[] = { 4421 { .name = "DBGBVR", .state = ARM_CP_STATE_BOTH, 4422 .cp = 14, .opc0 = 2, .opc1 = 0, .crn = 0, .crm = i, .opc2 = 4, 4423 .access = PL1_RW, .accessfn = access_tda, 4424 .fieldoffset = offsetof(CPUARMState, cp15.dbgbvr[i]), 4425 .writefn = dbgbvr_write, .raw_writefn = raw_write 4426 }, 4427 { .name = "DBGBCR", .state = ARM_CP_STATE_BOTH, 4428 .cp = 14, .opc0 = 2, .opc1 = 0, .crn = 0, .crm = i, .opc2 = 5, 4429 .access = PL1_RW, .accessfn = access_tda, 4430 .fieldoffset = offsetof(CPUARMState, cp15.dbgbcr[i]), 4431 .writefn = dbgbcr_write, .raw_writefn = raw_write 4432 }, 4433 REGINFO_SENTINEL 4434 }; 4435 define_arm_cp_regs(cpu, dbgregs); 4436 } 4437 4438 for (i = 0; i < wrps + 1; i++) { 4439 ARMCPRegInfo dbgregs[] = { 4440 { .name = "DBGWVR", .state = ARM_CP_STATE_BOTH, 4441 .cp = 14, .opc0 = 2, .opc1 = 0, .crn = 0, .crm = i, .opc2 = 6, 4442 .access = PL1_RW, .accessfn = access_tda, 4443 .fieldoffset = offsetof(CPUARMState, cp15.dbgwvr[i]), 4444 .writefn = dbgwvr_write, .raw_writefn = raw_write 4445 }, 4446 { .name = "DBGWCR", .state = ARM_CP_STATE_BOTH, 4447 .cp = 14, .opc0 = 2, .opc1 = 0, .crn = 0, .crm = i, .opc2 = 7, 4448 .access = PL1_RW, .accessfn = access_tda, 4449 .fieldoffset = offsetof(CPUARMState, cp15.dbgwcr[i]), 4450 .writefn = dbgwcr_write, .raw_writefn = raw_write 4451 }, 4452 REGINFO_SENTINEL 4453 }; 4454 define_arm_cp_regs(cpu, dbgregs); 4455 } 4456 } 4457 4458 void register_cp_regs_for_features(ARMCPU *cpu) 4459 { 4460 /* Register all the coprocessor registers based on feature bits */ 4461 CPUARMState *env = &cpu->env; 4462 if (arm_feature(env, ARM_FEATURE_M)) { 4463 /* M profile has no coprocessor registers */ 4464 return; 4465 } 4466 4467 define_arm_cp_regs(cpu, cp_reginfo); 4468 if (!arm_feature(env, ARM_FEATURE_V8)) { 4469 /* Must go early as it is full of wildcards that may be 4470 * overridden by later definitions. 4471 */ 4472 define_arm_cp_regs(cpu, not_v8_cp_reginfo); 4473 } 4474 4475 if (arm_feature(env, ARM_FEATURE_V6)) { 4476 /* The ID registers all have impdef reset values */ 4477 ARMCPRegInfo v6_idregs[] = { 4478 { .name = "ID_PFR0", .state = ARM_CP_STATE_BOTH, 4479 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 1, .opc2 = 0, 4480 .access = PL1_R, .type = ARM_CP_CONST, 4481 .resetvalue = cpu->id_pfr0 }, 4482 { .name = "ID_PFR1", .state = ARM_CP_STATE_BOTH, 4483 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 1, .opc2 = 1, 4484 .access = PL1_R, .type = ARM_CP_CONST, 4485 .resetvalue = cpu->id_pfr1 }, 4486 { .name = "ID_DFR0", .state = ARM_CP_STATE_BOTH, 4487 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 1, .opc2 = 2, 4488 .access = PL1_R, .type = ARM_CP_CONST, 4489 .resetvalue = cpu->id_dfr0 }, 4490 { .name = "ID_AFR0", .state = ARM_CP_STATE_BOTH, 4491 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 1, .opc2 = 3, 4492 .access = PL1_R, .type = ARM_CP_CONST, 4493 .resetvalue = cpu->id_afr0 }, 4494 { .name = "ID_MMFR0", .state = ARM_CP_STATE_BOTH, 4495 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 1, .opc2 = 4, 4496 .access = PL1_R, .type = ARM_CP_CONST, 4497 .resetvalue = cpu->id_mmfr0 }, 4498 { .name = "ID_MMFR1", .state = ARM_CP_STATE_BOTH, 4499 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 1, .opc2 = 5, 4500 .access = PL1_R, .type = ARM_CP_CONST, 4501 .resetvalue = cpu->id_mmfr1 }, 4502 { .name = "ID_MMFR2", .state = ARM_CP_STATE_BOTH, 4503 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 1, .opc2 = 6, 4504 .access = PL1_R, .type = ARM_CP_CONST, 4505 .resetvalue = cpu->id_mmfr2 }, 4506 { .name = "ID_MMFR3", .state = ARM_CP_STATE_BOTH, 4507 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 1, .opc2 = 7, 4508 .access = PL1_R, .type = ARM_CP_CONST, 4509 .resetvalue = cpu->id_mmfr3 }, 4510 { .name = "ID_ISAR0", .state = ARM_CP_STATE_BOTH, 4511 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 2, .opc2 = 0, 4512 .access = PL1_R, .type = ARM_CP_CONST, 4513 .resetvalue = cpu->id_isar0 }, 4514 { .name = "ID_ISAR1", .state = ARM_CP_STATE_BOTH, 4515 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 2, .opc2 = 1, 4516 .access = PL1_R, .type = ARM_CP_CONST, 4517 .resetvalue = cpu->id_isar1 }, 4518 { .name = "ID_ISAR2", .state = ARM_CP_STATE_BOTH, 4519 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 2, .opc2 = 2, 4520 .access = PL1_R, .type = ARM_CP_CONST, 4521 .resetvalue = cpu->id_isar2 }, 4522 { .name = "ID_ISAR3", .state = ARM_CP_STATE_BOTH, 4523 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 2, .opc2 = 3, 4524 .access = PL1_R, .type = ARM_CP_CONST, 4525 .resetvalue = cpu->id_isar3 }, 4526 { .name = "ID_ISAR4", .state = ARM_CP_STATE_BOTH, 4527 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 2, .opc2 = 4, 4528 .access = PL1_R, .type = ARM_CP_CONST, 4529 .resetvalue = cpu->id_isar4 }, 4530 { .name = "ID_ISAR5", .state = ARM_CP_STATE_BOTH, 4531 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 2, .opc2 = 5, 4532 .access = PL1_R, .type = ARM_CP_CONST, 4533 .resetvalue = cpu->id_isar5 }, 4534 { .name = "ID_MMFR4", .state = ARM_CP_STATE_BOTH, 4535 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 2, .opc2 = 6, 4536 .access = PL1_R, .type = ARM_CP_CONST, 4537 .resetvalue = cpu->id_mmfr4 }, 4538 /* 7 is as yet unallocated and must RAZ */ 4539 { .name = "ID_ISAR7_RESERVED", .state = ARM_CP_STATE_BOTH, 4540 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 2, .opc2 = 7, 4541 .access = PL1_R, .type = ARM_CP_CONST, 4542 .resetvalue = 0 }, 4543 REGINFO_SENTINEL 4544 }; 4545 define_arm_cp_regs(cpu, v6_idregs); 4546 define_arm_cp_regs(cpu, v6_cp_reginfo); 4547 } else { 4548 define_arm_cp_regs(cpu, not_v6_cp_reginfo); 4549 } 4550 if (arm_feature(env, ARM_FEATURE_V6K)) { 4551 define_arm_cp_regs(cpu, v6k_cp_reginfo); 4552 } 4553 if (arm_feature(env, ARM_FEATURE_V7MP) && 4554 !arm_feature(env, ARM_FEATURE_MPU)) { 4555 define_arm_cp_regs(cpu, v7mp_cp_reginfo); 4556 } 4557 if (arm_feature(env, ARM_FEATURE_V7)) { 4558 /* v7 performance monitor control register: same implementor 4559 * field as main ID register, and we implement only the cycle 4560 * count register. 4561 */ 4562 #ifndef CONFIG_USER_ONLY 4563 ARMCPRegInfo pmcr = { 4564 .name = "PMCR", .cp = 15, .crn = 9, .crm = 12, .opc1 = 0, .opc2 = 0, 4565 .access = PL0_RW, 4566 .type = ARM_CP_IO | ARM_CP_ALIAS, 4567 .fieldoffset = offsetoflow32(CPUARMState, cp15.c9_pmcr), 4568 .accessfn = pmreg_access, .writefn = pmcr_write, 4569 .raw_writefn = raw_write, 4570 }; 4571 ARMCPRegInfo pmcr64 = { 4572 .name = "PMCR_EL0", .state = ARM_CP_STATE_AA64, 4573 .opc0 = 3, .opc1 = 3, .crn = 9, .crm = 12, .opc2 = 0, 4574 .access = PL0_RW, .accessfn = pmreg_access, 4575 .type = ARM_CP_IO, 4576 .fieldoffset = offsetof(CPUARMState, cp15.c9_pmcr), 4577 .resetvalue = cpu->midr & 0xff000000, 4578 .writefn = pmcr_write, .raw_writefn = raw_write, 4579 }; 4580 define_one_arm_cp_reg(cpu, &pmcr); 4581 define_one_arm_cp_reg(cpu, &pmcr64); 4582 #endif 4583 ARMCPRegInfo clidr = { 4584 .name = "CLIDR", .state = ARM_CP_STATE_BOTH, 4585 .opc0 = 3, .crn = 0, .crm = 0, .opc1 = 1, .opc2 = 1, 4586 .access = PL1_R, .type = ARM_CP_CONST, .resetvalue = cpu->clidr 4587 }; 4588 define_one_arm_cp_reg(cpu, &clidr); 4589 define_arm_cp_regs(cpu, v7_cp_reginfo); 4590 define_debug_regs(cpu); 4591 } else { 4592 define_arm_cp_regs(cpu, not_v7_cp_reginfo); 4593 } 4594 if (arm_feature(env, ARM_FEATURE_V8)) { 4595 /* AArch64 ID registers, which all have impdef reset values. 4596 * Note that within the ID register ranges the unused slots 4597 * must all RAZ, not UNDEF; future architecture versions may 4598 * define new registers here. 4599 */ 4600 ARMCPRegInfo v8_idregs[] = { 4601 { .name = "ID_AA64PFR0_EL1", .state = ARM_CP_STATE_AA64, 4602 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 4, .opc2 = 0, 4603 .access = PL1_R, .type = ARM_CP_CONST, 4604 .resetvalue = cpu->id_aa64pfr0 }, 4605 { .name = "ID_AA64PFR1_EL1", .state = ARM_CP_STATE_AA64, 4606 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 4, .opc2 = 1, 4607 .access = PL1_R, .type = ARM_CP_CONST, 4608 .resetvalue = cpu->id_aa64pfr1}, 4609 { .name = "ID_AA64PFR2_EL1_RESERVED", .state = ARM_CP_STATE_AA64, 4610 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 4, .opc2 = 2, 4611 .access = PL1_R, .type = ARM_CP_CONST, 4612 .resetvalue = 0 }, 4613 { .name = "ID_AA64PFR3_EL1_RESERVED", .state = ARM_CP_STATE_AA64, 4614 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 4, .opc2 = 3, 4615 .access = PL1_R, .type = ARM_CP_CONST, 4616 .resetvalue = 0 }, 4617 { .name = "ID_AA64PFR4_EL1_RESERVED", .state = ARM_CP_STATE_AA64, 4618 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 4, .opc2 = 4, 4619 .access = PL1_R, .type = ARM_CP_CONST, 4620 .resetvalue = 0 }, 4621 { .name = "ID_AA64PFR5_EL1_RESERVED", .state = ARM_CP_STATE_AA64, 4622 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 4, .opc2 = 5, 4623 .access = PL1_R, .type = ARM_CP_CONST, 4624 .resetvalue = 0 }, 4625 { .name = "ID_AA64PFR6_EL1_RESERVED", .state = ARM_CP_STATE_AA64, 4626 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 4, .opc2 = 6, 4627 .access = PL1_R, .type = ARM_CP_CONST, 4628 .resetvalue = 0 }, 4629 { .name = "ID_AA64PFR7_EL1_RESERVED", .state = ARM_CP_STATE_AA64, 4630 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 4, .opc2 = 7, 4631 .access = PL1_R, .type = ARM_CP_CONST, 4632 .resetvalue = 0 }, 4633 { .name = "ID_AA64DFR0_EL1", .state = ARM_CP_STATE_AA64, 4634 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 5, .opc2 = 0, 4635 .access = PL1_R, .type = ARM_CP_CONST, 4636 .resetvalue = cpu->id_aa64dfr0 }, 4637 { .name = "ID_AA64DFR1_EL1", .state = ARM_CP_STATE_AA64, 4638 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 5, .opc2 = 1, 4639 .access = PL1_R, .type = ARM_CP_CONST, 4640 .resetvalue = cpu->id_aa64dfr1 }, 4641 { .name = "ID_AA64DFR2_EL1_RESERVED", .state = ARM_CP_STATE_AA64, 4642 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 5, .opc2 = 2, 4643 .access = PL1_R, .type = ARM_CP_CONST, 4644 .resetvalue = 0 }, 4645 { .name = "ID_AA64DFR3_EL1_RESERVED", .state = ARM_CP_STATE_AA64, 4646 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 5, .opc2 = 3, 4647 .access = PL1_R, .type = ARM_CP_CONST, 4648 .resetvalue = 0 }, 4649 { .name = "ID_AA64AFR0_EL1", .state = ARM_CP_STATE_AA64, 4650 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 5, .opc2 = 4, 4651 .access = PL1_R, .type = ARM_CP_CONST, 4652 .resetvalue = cpu->id_aa64afr0 }, 4653 { .name = "ID_AA64AFR1_EL1", .state = ARM_CP_STATE_AA64, 4654 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 5, .opc2 = 5, 4655 .access = PL1_R, .type = ARM_CP_CONST, 4656 .resetvalue = cpu->id_aa64afr1 }, 4657 { .name = "ID_AA64AFR2_EL1_RESERVED", .state = ARM_CP_STATE_AA64, 4658 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 5, .opc2 = 6, 4659 .access = PL1_R, .type = ARM_CP_CONST, 4660 .resetvalue = 0 }, 4661 { .name = "ID_AA64AFR3_EL1_RESERVED", .state = ARM_CP_STATE_AA64, 4662 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 5, .opc2 = 7, 4663 .access = PL1_R, .type = ARM_CP_CONST, 4664 .resetvalue = 0 }, 4665 { .name = "ID_AA64ISAR0_EL1", .state = ARM_CP_STATE_AA64, 4666 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 6, .opc2 = 0, 4667 .access = PL1_R, .type = ARM_CP_CONST, 4668 .resetvalue = cpu->id_aa64isar0 }, 4669 { .name = "ID_AA64ISAR1_EL1", .state = ARM_CP_STATE_AA64, 4670 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 6, .opc2 = 1, 4671 .access = PL1_R, .type = ARM_CP_CONST, 4672 .resetvalue = cpu->id_aa64isar1 }, 4673 { .name = "ID_AA64ISAR2_EL1_RESERVED", .state = ARM_CP_STATE_AA64, 4674 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 6, .opc2 = 2, 4675 .access = PL1_R, .type = ARM_CP_CONST, 4676 .resetvalue = 0 }, 4677 { .name = "ID_AA64ISAR3_EL1_RESERVED", .state = ARM_CP_STATE_AA64, 4678 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 6, .opc2 = 3, 4679 .access = PL1_R, .type = ARM_CP_CONST, 4680 .resetvalue = 0 }, 4681 { .name = "ID_AA64ISAR4_EL1_RESERVED", .state = ARM_CP_STATE_AA64, 4682 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 6, .opc2 = 4, 4683 .access = PL1_R, .type = ARM_CP_CONST, 4684 .resetvalue = 0 }, 4685 { .name = "ID_AA64ISAR5_EL1_RESERVED", .state = ARM_CP_STATE_AA64, 4686 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 6, .opc2 = 5, 4687 .access = PL1_R, .type = ARM_CP_CONST, 4688 .resetvalue = 0 }, 4689 { .name = "ID_AA64ISAR6_EL1_RESERVED", .state = ARM_CP_STATE_AA64, 4690 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 6, .opc2 = 6, 4691 .access = PL1_R, .type = ARM_CP_CONST, 4692 .resetvalue = 0 }, 4693 { .name = "ID_AA64ISAR7_EL1_RESERVED", .state = ARM_CP_STATE_AA64, 4694 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 6, .opc2 = 7, 4695 .access = PL1_R, .type = ARM_CP_CONST, 4696 .resetvalue = 0 }, 4697 { .name = "ID_AA64MMFR0_EL1", .state = ARM_CP_STATE_AA64, 4698 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 7, .opc2 = 0, 4699 .access = PL1_R, .type = ARM_CP_CONST, 4700 .resetvalue = cpu->id_aa64mmfr0 }, 4701 { .name = "ID_AA64MMFR1_EL1", .state = ARM_CP_STATE_AA64, 4702 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 7, .opc2 = 1, 4703 .access = PL1_R, .type = ARM_CP_CONST, 4704 .resetvalue = cpu->id_aa64mmfr1 }, 4705 { .name = "ID_AA64MMFR2_EL1_RESERVED", .state = ARM_CP_STATE_AA64, 4706 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 7, .opc2 = 2, 4707 .access = PL1_R, .type = ARM_CP_CONST, 4708 .resetvalue = 0 }, 4709 { .name = "ID_AA64MMFR3_EL1_RESERVED", .state = ARM_CP_STATE_AA64, 4710 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 7, .opc2 = 3, 4711 .access = PL1_R, .type = ARM_CP_CONST, 4712 .resetvalue = 0 }, 4713 { .name = "ID_AA64MMFR4_EL1_RESERVED", .state = ARM_CP_STATE_AA64, 4714 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 7, .opc2 = 4, 4715 .access = PL1_R, .type = ARM_CP_CONST, 4716 .resetvalue = 0 }, 4717 { .name = "ID_AA64MMFR5_EL1_RESERVED", .state = ARM_CP_STATE_AA64, 4718 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 7, .opc2 = 5, 4719 .access = PL1_R, .type = ARM_CP_CONST, 4720 .resetvalue = 0 }, 4721 { .name = "ID_AA64MMFR6_EL1_RESERVED", .state = ARM_CP_STATE_AA64, 4722 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 7, .opc2 = 6, 4723 .access = PL1_R, .type = ARM_CP_CONST, 4724 .resetvalue = 0 }, 4725 { .name = "ID_AA64MMFR7_EL1_RESERVED", .state = ARM_CP_STATE_AA64, 4726 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 7, .opc2 = 7, 4727 .access = PL1_R, .type = ARM_CP_CONST, 4728 .resetvalue = 0 }, 4729 { .name = "MVFR0_EL1", .state = ARM_CP_STATE_AA64, 4730 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 3, .opc2 = 0, 4731 .access = PL1_R, .type = ARM_CP_CONST, 4732 .resetvalue = cpu->mvfr0 }, 4733 { .name = "MVFR1_EL1", .state = ARM_CP_STATE_AA64, 4734 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 3, .opc2 = 1, 4735 .access = PL1_R, .type = ARM_CP_CONST, 4736 .resetvalue = cpu->mvfr1 }, 4737 { .name = "MVFR2_EL1", .state = ARM_CP_STATE_AA64, 4738 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 3, .opc2 = 2, 4739 .access = PL1_R, .type = ARM_CP_CONST, 4740 .resetvalue = cpu->mvfr2 }, 4741 { .name = "MVFR3_EL1_RESERVED", .state = ARM_CP_STATE_AA64, 4742 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 3, .opc2 = 3, 4743 .access = PL1_R, .type = ARM_CP_CONST, 4744 .resetvalue = 0 }, 4745 { .name = "MVFR4_EL1_RESERVED", .state = ARM_CP_STATE_AA64, 4746 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 3, .opc2 = 4, 4747 .access = PL1_R, .type = ARM_CP_CONST, 4748 .resetvalue = 0 }, 4749 { .name = "MVFR5_EL1_RESERVED", .state = ARM_CP_STATE_AA64, 4750 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 3, .opc2 = 5, 4751 .access = PL1_R, .type = ARM_CP_CONST, 4752 .resetvalue = 0 }, 4753 { .name = "MVFR6_EL1_RESERVED", .state = ARM_CP_STATE_AA64, 4754 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 3, .opc2 = 6, 4755 .access = PL1_R, .type = ARM_CP_CONST, 4756 .resetvalue = 0 }, 4757 { .name = "MVFR7_EL1_RESERVED", .state = ARM_CP_STATE_AA64, 4758 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 3, .opc2 = 7, 4759 .access = PL1_R, .type = ARM_CP_CONST, 4760 .resetvalue = 0 }, 4761 { .name = "PMCEID0", .state = ARM_CP_STATE_AA32, 4762 .cp = 15, .opc1 = 0, .crn = 9, .crm = 12, .opc2 = 6, 4763 .access = PL0_R, .accessfn = pmreg_access, .type = ARM_CP_CONST, 4764 .resetvalue = cpu->pmceid0 }, 4765 { .name = "PMCEID0_EL0", .state = ARM_CP_STATE_AA64, 4766 .opc0 = 3, .opc1 = 3, .crn = 9, .crm = 12, .opc2 = 6, 4767 .access = PL0_R, .accessfn = pmreg_access, .type = ARM_CP_CONST, 4768 .resetvalue = cpu->pmceid0 }, 4769 { .name = "PMCEID1", .state = ARM_CP_STATE_AA32, 4770 .cp = 15, .opc1 = 0, .crn = 9, .crm = 12, .opc2 = 7, 4771 .access = PL0_R, .accessfn = pmreg_access, .type = ARM_CP_CONST, 4772 .resetvalue = cpu->pmceid1 }, 4773 { .name = "PMCEID1_EL0", .state = ARM_CP_STATE_AA64, 4774 .opc0 = 3, .opc1 = 3, .crn = 9, .crm = 12, .opc2 = 7, 4775 .access = PL0_R, .accessfn = pmreg_access, .type = ARM_CP_CONST, 4776 .resetvalue = cpu->pmceid1 }, 4777 REGINFO_SENTINEL 4778 }; 4779 /* RVBAR_EL1 is only implemented if EL1 is the highest EL */ 4780 if (!arm_feature(env, ARM_FEATURE_EL3) && 4781 !arm_feature(env, ARM_FEATURE_EL2)) { 4782 ARMCPRegInfo rvbar = { 4783 .name = "RVBAR_EL1", .state = ARM_CP_STATE_AA64, 4784 .opc0 = 3, .opc1 = 0, .crn = 12, .crm = 0, .opc2 = 1, 4785 .type = ARM_CP_CONST, .access = PL1_R, .resetvalue = cpu->rvbar 4786 }; 4787 define_one_arm_cp_reg(cpu, &rvbar); 4788 } 4789 define_arm_cp_regs(cpu, v8_idregs); 4790 define_arm_cp_regs(cpu, v8_cp_reginfo); 4791 } 4792 if (arm_feature(env, ARM_FEATURE_EL2)) { 4793 uint64_t vmpidr_def = mpidr_read_val(env); 4794 ARMCPRegInfo vpidr_regs[] = { 4795 { .name = "VPIDR", .state = ARM_CP_STATE_AA32, 4796 .cp = 15, .opc1 = 4, .crn = 0, .crm = 0, .opc2 = 0, 4797 .access = PL2_RW, .accessfn = access_el3_aa32ns, 4798 .resetvalue = cpu->midr, 4799 .fieldoffset = offsetof(CPUARMState, cp15.vpidr_el2) }, 4800 { .name = "VPIDR_EL2", .state = ARM_CP_STATE_AA64, 4801 .opc0 = 3, .opc1 = 4, .crn = 0, .crm = 0, .opc2 = 0, 4802 .access = PL2_RW, .resetvalue = cpu->midr, 4803 .fieldoffset = offsetof(CPUARMState, cp15.vpidr_el2) }, 4804 { .name = "VMPIDR", .state = ARM_CP_STATE_AA32, 4805 .cp = 15, .opc1 = 4, .crn = 0, .crm = 0, .opc2 = 5, 4806 .access = PL2_RW, .accessfn = access_el3_aa32ns, 4807 .resetvalue = vmpidr_def, 4808 .fieldoffset = offsetof(CPUARMState, cp15.vmpidr_el2) }, 4809 { .name = "VMPIDR_EL2", .state = ARM_CP_STATE_AA64, 4810 .opc0 = 3, .opc1 = 4, .crn = 0, .crm = 0, .opc2 = 5, 4811 .access = PL2_RW, 4812 .resetvalue = vmpidr_def, 4813 .fieldoffset = offsetof(CPUARMState, cp15.vmpidr_el2) }, 4814 REGINFO_SENTINEL 4815 }; 4816 define_arm_cp_regs(cpu, vpidr_regs); 4817 define_arm_cp_regs(cpu, el2_cp_reginfo); 4818 /* RVBAR_EL2 is only implemented if EL2 is the highest EL */ 4819 if (!arm_feature(env, ARM_FEATURE_EL3)) { 4820 ARMCPRegInfo rvbar = { 4821 .name = "RVBAR_EL2", .state = ARM_CP_STATE_AA64, 4822 .opc0 = 3, .opc1 = 4, .crn = 12, .crm = 0, .opc2 = 1, 4823 .type = ARM_CP_CONST, .access = PL2_R, .resetvalue = cpu->rvbar 4824 }; 4825 define_one_arm_cp_reg(cpu, &rvbar); 4826 } 4827 } else { 4828 /* If EL2 is missing but higher ELs are enabled, we need to 4829 * register the no_el2 reginfos. 4830 */ 4831 if (arm_feature(env, ARM_FEATURE_EL3)) { 4832 /* When EL3 exists but not EL2, VPIDR and VMPIDR take the value 4833 * of MIDR_EL1 and MPIDR_EL1. 4834 */ 4835 ARMCPRegInfo vpidr_regs[] = { 4836 { .name = "VPIDR_EL2", .state = ARM_CP_STATE_BOTH, 4837 .opc0 = 3, .opc1 = 4, .crn = 0, .crm = 0, .opc2 = 0, 4838 .access = PL2_RW, .accessfn = access_el3_aa32ns_aa64any, 4839 .type = ARM_CP_CONST, .resetvalue = cpu->midr, 4840 .fieldoffset = offsetof(CPUARMState, cp15.vpidr_el2) }, 4841 { .name = "VMPIDR_EL2", .state = ARM_CP_STATE_BOTH, 4842 .opc0 = 3, .opc1 = 4, .crn = 0, .crm = 0, .opc2 = 5, 4843 .access = PL2_RW, .accessfn = access_el3_aa32ns_aa64any, 4844 .type = ARM_CP_NO_RAW, 4845 .writefn = arm_cp_write_ignore, .readfn = mpidr_read }, 4846 REGINFO_SENTINEL 4847 }; 4848 define_arm_cp_regs(cpu, vpidr_regs); 4849 define_arm_cp_regs(cpu, el3_no_el2_cp_reginfo); 4850 } 4851 } 4852 if (arm_feature(env, ARM_FEATURE_EL3)) { 4853 define_arm_cp_regs(cpu, el3_cp_reginfo); 4854 ARMCPRegInfo el3_regs[] = { 4855 { .name = "RVBAR_EL3", .state = ARM_CP_STATE_AA64, 4856 .opc0 = 3, .opc1 = 6, .crn = 12, .crm = 0, .opc2 = 1, 4857 .type = ARM_CP_CONST, .access = PL3_R, .resetvalue = cpu->rvbar }, 4858 { .name = "SCTLR_EL3", .state = ARM_CP_STATE_AA64, 4859 .opc0 = 3, .opc1 = 6, .crn = 1, .crm = 0, .opc2 = 0, 4860 .access = PL3_RW, 4861 .raw_writefn = raw_write, .writefn = sctlr_write, 4862 .fieldoffset = offsetof(CPUARMState, cp15.sctlr_el[3]), 4863 .resetvalue = cpu->reset_sctlr }, 4864 REGINFO_SENTINEL 4865 }; 4866 4867 define_arm_cp_regs(cpu, el3_regs); 4868 } 4869 /* The behaviour of NSACR is sufficiently various that we don't 4870 * try to describe it in a single reginfo: 4871 * if EL3 is 64 bit, then trap to EL3 from S EL1, 4872 * reads as constant 0xc00 from NS EL1 and NS EL2 4873 * if EL3 is 32 bit, then RW at EL3, RO at NS EL1 and NS EL2 4874 * if v7 without EL3, register doesn't exist 4875 * if v8 without EL3, reads as constant 0xc00 from NS EL1 and NS EL2 4876 */ 4877 if (arm_feature(env, ARM_FEATURE_EL3)) { 4878 if (arm_feature(env, ARM_FEATURE_AARCH64)) { 4879 ARMCPRegInfo nsacr = { 4880 .name = "NSACR", .type = ARM_CP_CONST, 4881 .cp = 15, .opc1 = 0, .crn = 1, .crm = 1, .opc2 = 2, 4882 .access = PL1_RW, .accessfn = nsacr_access, 4883 .resetvalue = 0xc00 4884 }; 4885 define_one_arm_cp_reg(cpu, &nsacr); 4886 } else { 4887 ARMCPRegInfo nsacr = { 4888 .name = "NSACR", 4889 .cp = 15, .opc1 = 0, .crn = 1, .crm = 1, .opc2 = 2, 4890 .access = PL3_RW | PL1_R, 4891 .resetvalue = 0, 4892 .fieldoffset = offsetof(CPUARMState, cp15.nsacr) 4893 }; 4894 define_one_arm_cp_reg(cpu, &nsacr); 4895 } 4896 } else { 4897 if (arm_feature(env, ARM_FEATURE_V8)) { 4898 ARMCPRegInfo nsacr = { 4899 .name = "NSACR", .type = ARM_CP_CONST, 4900 .cp = 15, .opc1 = 0, .crn = 1, .crm = 1, .opc2 = 2, 4901 .access = PL1_R, 4902 .resetvalue = 0xc00 4903 }; 4904 define_one_arm_cp_reg(cpu, &nsacr); 4905 } 4906 } 4907 4908 if (arm_feature(env, ARM_FEATURE_MPU)) { 4909 if (arm_feature(env, ARM_FEATURE_V6)) { 4910 /* PMSAv6 not implemented */ 4911 assert(arm_feature(env, ARM_FEATURE_V7)); 4912 define_arm_cp_regs(cpu, vmsa_pmsa_cp_reginfo); 4913 define_arm_cp_regs(cpu, pmsav7_cp_reginfo); 4914 } else { 4915 define_arm_cp_regs(cpu, pmsav5_cp_reginfo); 4916 } 4917 } else { 4918 define_arm_cp_regs(cpu, vmsa_pmsa_cp_reginfo); 4919 define_arm_cp_regs(cpu, vmsa_cp_reginfo); 4920 } 4921 if (arm_feature(env, ARM_FEATURE_THUMB2EE)) { 4922 define_arm_cp_regs(cpu, t2ee_cp_reginfo); 4923 } 4924 if (arm_feature(env, ARM_FEATURE_GENERIC_TIMER)) { 4925 define_arm_cp_regs(cpu, generic_timer_cp_reginfo); 4926 } 4927 if (arm_feature(env, ARM_FEATURE_VAPA)) { 4928 define_arm_cp_regs(cpu, vapa_cp_reginfo); 4929 } 4930 if (arm_feature(env, ARM_FEATURE_CACHE_TEST_CLEAN)) { 4931 define_arm_cp_regs(cpu, cache_test_clean_cp_reginfo); 4932 } 4933 if (arm_feature(env, ARM_FEATURE_CACHE_DIRTY_REG)) { 4934 define_arm_cp_regs(cpu, cache_dirty_status_cp_reginfo); 4935 } 4936 if (arm_feature(env, ARM_FEATURE_CACHE_BLOCK_OPS)) { 4937 define_arm_cp_regs(cpu, cache_block_ops_cp_reginfo); 4938 } 4939 if (arm_feature(env, ARM_FEATURE_OMAPCP)) { 4940 define_arm_cp_regs(cpu, omap_cp_reginfo); 4941 } 4942 if (arm_feature(env, ARM_FEATURE_STRONGARM)) { 4943 define_arm_cp_regs(cpu, strongarm_cp_reginfo); 4944 } 4945 if (arm_feature(env, ARM_FEATURE_XSCALE)) { 4946 define_arm_cp_regs(cpu, xscale_cp_reginfo); 4947 } 4948 if (arm_feature(env, ARM_FEATURE_DUMMY_C15_REGS)) { 4949 define_arm_cp_regs(cpu, dummy_c15_cp_reginfo); 4950 } 4951 if (arm_feature(env, ARM_FEATURE_LPAE)) { 4952 define_arm_cp_regs(cpu, lpae_cp_reginfo); 4953 } 4954 /* Slightly awkwardly, the OMAP and StrongARM cores need all of 4955 * cp15 crn=0 to be writes-ignored, whereas for other cores they should 4956 * be read-only (ie write causes UNDEF exception). 4957 */ 4958 { 4959 ARMCPRegInfo id_pre_v8_midr_cp_reginfo[] = { 4960 /* Pre-v8 MIDR space. 4961 * Note that the MIDR isn't a simple constant register because 4962 * of the TI925 behaviour where writes to another register can 4963 * cause the MIDR value to change. 4964 * 4965 * Unimplemented registers in the c15 0 0 0 space default to 4966 * MIDR. Define MIDR first as this entire space, then CTR, TCMTR 4967 * and friends override accordingly. 4968 */ 4969 { .name = "MIDR", 4970 .cp = 15, .crn = 0, .crm = 0, .opc1 = 0, .opc2 = CP_ANY, 4971 .access = PL1_R, .resetvalue = cpu->midr, 4972 .writefn = arm_cp_write_ignore, .raw_writefn = raw_write, 4973 .readfn = midr_read, 4974 .fieldoffset = offsetof(CPUARMState, cp15.c0_cpuid), 4975 .type = ARM_CP_OVERRIDE }, 4976 /* crn = 0 op1 = 0 crm = 3..7 : currently unassigned; we RAZ. */ 4977 { .name = "DUMMY", 4978 .cp = 15, .crn = 0, .crm = 3, .opc1 = 0, .opc2 = CP_ANY, 4979 .access = PL1_R, .type = ARM_CP_CONST, .resetvalue = 0 }, 4980 { .name = "DUMMY", 4981 .cp = 15, .crn = 0, .crm = 4, .opc1 = 0, .opc2 = CP_ANY, 4982 .access = PL1_R, .type = ARM_CP_CONST, .resetvalue = 0 }, 4983 { .name = "DUMMY", 4984 .cp = 15, .crn = 0, .crm = 5, .opc1 = 0, .opc2 = CP_ANY, 4985 .access = PL1_R, .type = ARM_CP_CONST, .resetvalue = 0 }, 4986 { .name = "DUMMY", 4987 .cp = 15, .crn = 0, .crm = 6, .opc1 = 0, .opc2 = CP_ANY, 4988 .access = PL1_R, .type = ARM_CP_CONST, .resetvalue = 0 }, 4989 { .name = "DUMMY", 4990 .cp = 15, .crn = 0, .crm = 7, .opc1 = 0, .opc2 = CP_ANY, 4991 .access = PL1_R, .type = ARM_CP_CONST, .resetvalue = 0 }, 4992 REGINFO_SENTINEL 4993 }; 4994 ARMCPRegInfo id_v8_midr_cp_reginfo[] = { 4995 { .name = "MIDR_EL1", .state = ARM_CP_STATE_BOTH, 4996 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 0, .opc2 = 0, 4997 .access = PL1_R, .type = ARM_CP_NO_RAW, .resetvalue = cpu->midr, 4998 .fieldoffset = offsetof(CPUARMState, cp15.c0_cpuid), 4999 .readfn = midr_read }, 5000 /* crn = 0 op1 = 0 crm = 0 op2 = 4,7 : AArch32 aliases of MIDR */ 5001 { .name = "MIDR", .type = ARM_CP_ALIAS | ARM_CP_CONST, 5002 .cp = 15, .crn = 0, .crm = 0, .opc1 = 0, .opc2 = 4, 5003 .access = PL1_R, .resetvalue = cpu->midr }, 5004 { .name = "MIDR", .type = ARM_CP_ALIAS | ARM_CP_CONST, 5005 .cp = 15, .crn = 0, .crm = 0, .opc1 = 0, .opc2 = 7, 5006 .access = PL1_R, .resetvalue = cpu->midr }, 5007 { .name = "REVIDR_EL1", .state = ARM_CP_STATE_BOTH, 5008 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 0, .opc2 = 6, 5009 .access = PL1_R, .type = ARM_CP_CONST, .resetvalue = cpu->revidr }, 5010 REGINFO_SENTINEL 5011 }; 5012 ARMCPRegInfo id_cp_reginfo[] = { 5013 /* These are common to v8 and pre-v8 */ 5014 { .name = "CTR", 5015 .cp = 15, .crn = 0, .crm = 0, .opc1 = 0, .opc2 = 1, 5016 .access = PL1_R, .type = ARM_CP_CONST, .resetvalue = cpu->ctr }, 5017 { .name = "CTR_EL0", .state = ARM_CP_STATE_AA64, 5018 .opc0 = 3, .opc1 = 3, .opc2 = 1, .crn = 0, .crm = 0, 5019 .access = PL0_R, .accessfn = ctr_el0_access, 5020 .type = ARM_CP_CONST, .resetvalue = cpu->ctr }, 5021 /* TCMTR and TLBTR exist in v8 but have no 64-bit versions */ 5022 { .name = "TCMTR", 5023 .cp = 15, .crn = 0, .crm = 0, .opc1 = 0, .opc2 = 2, 5024 .access = PL1_R, .type = ARM_CP_CONST, .resetvalue = 0 }, 5025 REGINFO_SENTINEL 5026 }; 5027 /* TLBTR is specific to VMSA */ 5028 ARMCPRegInfo id_tlbtr_reginfo = { 5029 .name = "TLBTR", 5030 .cp = 15, .crn = 0, .crm = 0, .opc1 = 0, .opc2 = 3, 5031 .access = PL1_R, .type = ARM_CP_CONST, .resetvalue = 0, 5032 }; 5033 /* MPUIR is specific to PMSA V6+ */ 5034 ARMCPRegInfo id_mpuir_reginfo = { 5035 .name = "MPUIR", 5036 .cp = 15, .crn = 0, .crm = 0, .opc1 = 0, .opc2 = 4, 5037 .access = PL1_R, .type = ARM_CP_CONST, 5038 .resetvalue = cpu->pmsav7_dregion << 8 5039 }; 5040 ARMCPRegInfo crn0_wi_reginfo = { 5041 .name = "CRN0_WI", .cp = 15, .crn = 0, .crm = CP_ANY, 5042 .opc1 = CP_ANY, .opc2 = CP_ANY, .access = PL1_W, 5043 .type = ARM_CP_NOP | ARM_CP_OVERRIDE 5044 }; 5045 if (arm_feature(env, ARM_FEATURE_OMAPCP) || 5046 arm_feature(env, ARM_FEATURE_STRONGARM)) { 5047 ARMCPRegInfo *r; 5048 /* Register the blanket "writes ignored" value first to cover the 5049 * whole space. Then update the specific ID registers to allow write 5050 * access, so that they ignore writes rather than causing them to 5051 * UNDEF. 5052 */ 5053 define_one_arm_cp_reg(cpu, &crn0_wi_reginfo); 5054 for (r = id_pre_v8_midr_cp_reginfo; 5055 r->type != ARM_CP_SENTINEL; r++) { 5056 r->access = PL1_RW; 5057 } 5058 for (r = id_cp_reginfo; r->type != ARM_CP_SENTINEL; r++) { 5059 r->access = PL1_RW; 5060 } 5061 id_tlbtr_reginfo.access = PL1_RW; 5062 id_tlbtr_reginfo.access = PL1_RW; 5063 } 5064 if (arm_feature(env, ARM_FEATURE_V8)) { 5065 define_arm_cp_regs(cpu, id_v8_midr_cp_reginfo); 5066 } else { 5067 define_arm_cp_regs(cpu, id_pre_v8_midr_cp_reginfo); 5068 } 5069 define_arm_cp_regs(cpu, id_cp_reginfo); 5070 if (!arm_feature(env, ARM_FEATURE_MPU)) { 5071 define_one_arm_cp_reg(cpu, &id_tlbtr_reginfo); 5072 } else if (arm_feature(env, ARM_FEATURE_V7)) { 5073 define_one_arm_cp_reg(cpu, &id_mpuir_reginfo); 5074 } 5075 } 5076 5077 if (arm_feature(env, ARM_FEATURE_MPIDR)) { 5078 define_arm_cp_regs(cpu, mpidr_cp_reginfo); 5079 } 5080 5081 if (arm_feature(env, ARM_FEATURE_AUXCR)) { 5082 ARMCPRegInfo auxcr_reginfo[] = { 5083 { .name = "ACTLR_EL1", .state = ARM_CP_STATE_BOTH, 5084 .opc0 = 3, .opc1 = 0, .crn = 1, .crm = 0, .opc2 = 1, 5085 .access = PL1_RW, .type = ARM_CP_CONST, 5086 .resetvalue = cpu->reset_auxcr }, 5087 { .name = "ACTLR_EL2", .state = ARM_CP_STATE_BOTH, 5088 .opc0 = 3, .opc1 = 4, .crn = 1, .crm = 0, .opc2 = 1, 5089 .access = PL2_RW, .type = ARM_CP_CONST, 5090 .resetvalue = 0 }, 5091 { .name = "ACTLR_EL3", .state = ARM_CP_STATE_AA64, 5092 .opc0 = 3, .opc1 = 6, .crn = 1, .crm = 0, .opc2 = 1, 5093 .access = PL3_RW, .type = ARM_CP_CONST, 5094 .resetvalue = 0 }, 5095 REGINFO_SENTINEL 5096 }; 5097 define_arm_cp_regs(cpu, auxcr_reginfo); 5098 } 5099 5100 if (arm_feature(env, ARM_FEATURE_CBAR)) { 5101 if (arm_feature(env, ARM_FEATURE_AARCH64)) { 5102 /* 32 bit view is [31:18] 0...0 [43:32]. */ 5103 uint32_t cbar32 = (extract64(cpu->reset_cbar, 18, 14) << 18) 5104 | extract64(cpu->reset_cbar, 32, 12); 5105 ARMCPRegInfo cbar_reginfo[] = { 5106 { .name = "CBAR", 5107 .type = ARM_CP_CONST, 5108 .cp = 15, .crn = 15, .crm = 0, .opc1 = 4, .opc2 = 0, 5109 .access = PL1_R, .resetvalue = cpu->reset_cbar }, 5110 { .name = "CBAR_EL1", .state = ARM_CP_STATE_AA64, 5111 .type = ARM_CP_CONST, 5112 .opc0 = 3, .opc1 = 1, .crn = 15, .crm = 3, .opc2 = 0, 5113 .access = PL1_R, .resetvalue = cbar32 }, 5114 REGINFO_SENTINEL 5115 }; 5116 /* We don't implement a r/w 64 bit CBAR currently */ 5117 assert(arm_feature(env, ARM_FEATURE_CBAR_RO)); 5118 define_arm_cp_regs(cpu, cbar_reginfo); 5119 } else { 5120 ARMCPRegInfo cbar = { 5121 .name = "CBAR", 5122 .cp = 15, .crn = 15, .crm = 0, .opc1 = 4, .opc2 = 0, 5123 .access = PL1_R|PL3_W, .resetvalue = cpu->reset_cbar, 5124 .fieldoffset = offsetof(CPUARMState, 5125 cp15.c15_config_base_address) 5126 }; 5127 if (arm_feature(env, ARM_FEATURE_CBAR_RO)) { 5128 cbar.access = PL1_R; 5129 cbar.fieldoffset = 0; 5130 cbar.type = ARM_CP_CONST; 5131 } 5132 define_one_arm_cp_reg(cpu, &cbar); 5133 } 5134 } 5135 5136 if (arm_feature(env, ARM_FEATURE_VBAR)) { 5137 ARMCPRegInfo vbar_cp_reginfo[] = { 5138 { .name = "VBAR", .state = ARM_CP_STATE_BOTH, 5139 .opc0 = 3, .crn = 12, .crm = 0, .opc1 = 0, .opc2 = 0, 5140 .access = PL1_RW, .writefn = vbar_write, 5141 .bank_fieldoffsets = { offsetof(CPUARMState, cp15.vbar_s), 5142 offsetof(CPUARMState, cp15.vbar_ns) }, 5143 .resetvalue = 0 }, 5144 REGINFO_SENTINEL 5145 }; 5146 define_arm_cp_regs(cpu, vbar_cp_reginfo); 5147 } 5148 5149 /* Generic registers whose values depend on the implementation */ 5150 { 5151 ARMCPRegInfo sctlr = { 5152 .name = "SCTLR", .state = ARM_CP_STATE_BOTH, 5153 .opc0 = 3, .opc1 = 0, .crn = 1, .crm = 0, .opc2 = 0, 5154 .access = PL1_RW, 5155 .bank_fieldoffsets = { offsetof(CPUARMState, cp15.sctlr_s), 5156 offsetof(CPUARMState, cp15.sctlr_ns) }, 5157 .writefn = sctlr_write, .resetvalue = cpu->reset_sctlr, 5158 .raw_writefn = raw_write, 5159 }; 5160 if (arm_feature(env, ARM_FEATURE_XSCALE)) { 5161 /* Normally we would always end the TB on an SCTLR write, but Linux 5162 * arch/arm/mach-pxa/sleep.S expects two instructions following 5163 * an MMU enable to execute from cache. Imitate this behaviour. 5164 */ 5165 sctlr.type |= ARM_CP_SUPPRESS_TB_END; 5166 } 5167 define_one_arm_cp_reg(cpu, &sctlr); 5168 } 5169 } 5170 5171 ARMCPU *cpu_arm_init(const char *cpu_model) 5172 { 5173 return ARM_CPU(cpu_generic_init(TYPE_ARM_CPU, cpu_model)); 5174 } 5175 5176 void arm_cpu_register_gdb_regs_for_features(ARMCPU *cpu) 5177 { 5178 CPUState *cs = CPU(cpu); 5179 CPUARMState *env = &cpu->env; 5180 5181 if (arm_feature(env, ARM_FEATURE_AARCH64)) { 5182 gdb_register_coprocessor(cs, aarch64_fpu_gdb_get_reg, 5183 aarch64_fpu_gdb_set_reg, 5184 34, "aarch64-fpu.xml", 0); 5185 } else if (arm_feature(env, ARM_FEATURE_NEON)) { 5186 gdb_register_coprocessor(cs, vfp_gdb_get_reg, vfp_gdb_set_reg, 5187 51, "arm-neon.xml", 0); 5188 } else if (arm_feature(env, ARM_FEATURE_VFP3)) { 5189 gdb_register_coprocessor(cs, vfp_gdb_get_reg, vfp_gdb_set_reg, 5190 35, "arm-vfp3.xml", 0); 5191 } else if (arm_feature(env, ARM_FEATURE_VFP)) { 5192 gdb_register_coprocessor(cs, vfp_gdb_get_reg, vfp_gdb_set_reg, 5193 19, "arm-vfp.xml", 0); 5194 } 5195 } 5196 5197 /* Sort alphabetically by type name, except for "any". */ 5198 static gint arm_cpu_list_compare(gconstpointer a, gconstpointer b) 5199 { 5200 ObjectClass *class_a = (ObjectClass *)a; 5201 ObjectClass *class_b = (ObjectClass *)b; 5202 const char *name_a, *name_b; 5203 5204 name_a = object_class_get_name(class_a); 5205 name_b = object_class_get_name(class_b); 5206 if (strcmp(name_a, "any-" TYPE_ARM_CPU) == 0) { 5207 return 1; 5208 } else if (strcmp(name_b, "any-" TYPE_ARM_CPU) == 0) { 5209 return -1; 5210 } else { 5211 return strcmp(name_a, name_b); 5212 } 5213 } 5214 5215 static void arm_cpu_list_entry(gpointer data, gpointer user_data) 5216 { 5217 ObjectClass *oc = data; 5218 CPUListState *s = user_data; 5219 const char *typename; 5220 char *name; 5221 5222 typename = object_class_get_name(oc); 5223 name = g_strndup(typename, strlen(typename) - strlen("-" TYPE_ARM_CPU)); 5224 (*s->cpu_fprintf)(s->file, " %s\n", 5225 name); 5226 g_free(name); 5227 } 5228 5229 void arm_cpu_list(FILE *f, fprintf_function cpu_fprintf) 5230 { 5231 CPUListState s = { 5232 .file = f, 5233 .cpu_fprintf = cpu_fprintf, 5234 }; 5235 GSList *list; 5236 5237 list = object_class_get_list(TYPE_ARM_CPU, false); 5238 list = g_slist_sort(list, arm_cpu_list_compare); 5239 (*cpu_fprintf)(f, "Available CPUs:\n"); 5240 g_slist_foreach(list, arm_cpu_list_entry, &s); 5241 g_slist_free(list); 5242 #ifdef CONFIG_KVM 5243 /* The 'host' CPU type is dynamically registered only if KVM is 5244 * enabled, so we have to special-case it here: 5245 */ 5246 (*cpu_fprintf)(f, " host (only available in KVM mode)\n"); 5247 #endif 5248 } 5249 5250 static void arm_cpu_add_definition(gpointer data, gpointer user_data) 5251 { 5252 ObjectClass *oc = data; 5253 CpuDefinitionInfoList **cpu_list = user_data; 5254 CpuDefinitionInfoList *entry; 5255 CpuDefinitionInfo *info; 5256 const char *typename; 5257 5258 typename = object_class_get_name(oc); 5259 info = g_malloc0(sizeof(*info)); 5260 info->name = g_strndup(typename, 5261 strlen(typename) - strlen("-" TYPE_ARM_CPU)); 5262 info->q_typename = g_strdup(typename); 5263 5264 entry = g_malloc0(sizeof(*entry)); 5265 entry->value = info; 5266 entry->next = *cpu_list; 5267 *cpu_list = entry; 5268 } 5269 5270 CpuDefinitionInfoList *arch_query_cpu_definitions(Error **errp) 5271 { 5272 CpuDefinitionInfoList *cpu_list = NULL; 5273 GSList *list; 5274 5275 list = object_class_get_list(TYPE_ARM_CPU, false); 5276 g_slist_foreach(list, arm_cpu_add_definition, &cpu_list); 5277 g_slist_free(list); 5278 5279 return cpu_list; 5280 } 5281 5282 static void add_cpreg_to_hashtable(ARMCPU *cpu, const ARMCPRegInfo *r, 5283 void *opaque, int state, int secstate, 5284 int crm, int opc1, int opc2) 5285 { 5286 /* Private utility function for define_one_arm_cp_reg_with_opaque(): 5287 * add a single reginfo struct to the hash table. 5288 */ 5289 uint32_t *key = g_new(uint32_t, 1); 5290 ARMCPRegInfo *r2 = g_memdup(r, sizeof(ARMCPRegInfo)); 5291 int is64 = (r->type & ARM_CP_64BIT) ? 1 : 0; 5292 int ns = (secstate & ARM_CP_SECSTATE_NS) ? 1 : 0; 5293 5294 /* Reset the secure state to the specific incoming state. This is 5295 * necessary as the register may have been defined with both states. 5296 */ 5297 r2->secure = secstate; 5298 5299 if (r->bank_fieldoffsets[0] && r->bank_fieldoffsets[1]) { 5300 /* Register is banked (using both entries in array). 5301 * Overwriting fieldoffset as the array is only used to define 5302 * banked registers but later only fieldoffset is used. 5303 */ 5304 r2->fieldoffset = r->bank_fieldoffsets[ns]; 5305 } 5306 5307 if (state == ARM_CP_STATE_AA32) { 5308 if (r->bank_fieldoffsets[0] && r->bank_fieldoffsets[1]) { 5309 /* If the register is banked then we don't need to migrate or 5310 * reset the 32-bit instance in certain cases: 5311 * 5312 * 1) If the register has both 32-bit and 64-bit instances then we 5313 * can count on the 64-bit instance taking care of the 5314 * non-secure bank. 5315 * 2) If ARMv8 is enabled then we can count on a 64-bit version 5316 * taking care of the secure bank. This requires that separate 5317 * 32 and 64-bit definitions are provided. 5318 */ 5319 if ((r->state == ARM_CP_STATE_BOTH && ns) || 5320 (arm_feature(&cpu->env, ARM_FEATURE_V8) && !ns)) { 5321 r2->type |= ARM_CP_ALIAS; 5322 } 5323 } else if ((secstate != r->secure) && !ns) { 5324 /* The register is not banked so we only want to allow migration of 5325 * the non-secure instance. 5326 */ 5327 r2->type |= ARM_CP_ALIAS; 5328 } 5329 5330 if (r->state == ARM_CP_STATE_BOTH) { 5331 /* We assume it is a cp15 register if the .cp field is left unset. 5332 */ 5333 if (r2->cp == 0) { 5334 r2->cp = 15; 5335 } 5336 5337 #ifdef HOST_WORDS_BIGENDIAN 5338 if (r2->fieldoffset) { 5339 r2->fieldoffset += sizeof(uint32_t); 5340 } 5341 #endif 5342 } 5343 } 5344 if (state == ARM_CP_STATE_AA64) { 5345 /* To allow abbreviation of ARMCPRegInfo 5346 * definitions, we treat cp == 0 as equivalent to 5347 * the value for "standard guest-visible sysreg". 5348 * STATE_BOTH definitions are also always "standard 5349 * sysreg" in their AArch64 view (the .cp value may 5350 * be non-zero for the benefit of the AArch32 view). 5351 */ 5352 if (r->cp == 0 || r->state == ARM_CP_STATE_BOTH) { 5353 r2->cp = CP_REG_ARM64_SYSREG_CP; 5354 } 5355 *key = ENCODE_AA64_CP_REG(r2->cp, r2->crn, crm, 5356 r2->opc0, opc1, opc2); 5357 } else { 5358 *key = ENCODE_CP_REG(r2->cp, is64, ns, r2->crn, crm, opc1, opc2); 5359 } 5360 if (opaque) { 5361 r2->opaque = opaque; 5362 } 5363 /* reginfo passed to helpers is correct for the actual access, 5364 * and is never ARM_CP_STATE_BOTH: 5365 */ 5366 r2->state = state; 5367 /* Make sure reginfo passed to helpers for wildcarded regs 5368 * has the correct crm/opc1/opc2 for this reg, not CP_ANY: 5369 */ 5370 r2->crm = crm; 5371 r2->opc1 = opc1; 5372 r2->opc2 = opc2; 5373 /* By convention, for wildcarded registers only the first 5374 * entry is used for migration; the others are marked as 5375 * ALIAS so we don't try to transfer the register 5376 * multiple times. Special registers (ie NOP/WFI) are 5377 * never migratable and not even raw-accessible. 5378 */ 5379 if ((r->type & ARM_CP_SPECIAL)) { 5380 r2->type |= ARM_CP_NO_RAW; 5381 } 5382 if (((r->crm == CP_ANY) && crm != 0) || 5383 ((r->opc1 == CP_ANY) && opc1 != 0) || 5384 ((r->opc2 == CP_ANY) && opc2 != 0)) { 5385 r2->type |= ARM_CP_ALIAS; 5386 } 5387 5388 /* Check that raw accesses are either forbidden or handled. Note that 5389 * we can't assert this earlier because the setup of fieldoffset for 5390 * banked registers has to be done first. 5391 */ 5392 if (!(r2->type & ARM_CP_NO_RAW)) { 5393 assert(!raw_accessors_invalid(r2)); 5394 } 5395 5396 /* Overriding of an existing definition must be explicitly 5397 * requested. 5398 */ 5399 if (!(r->type & ARM_CP_OVERRIDE)) { 5400 ARMCPRegInfo *oldreg; 5401 oldreg = g_hash_table_lookup(cpu->cp_regs, key); 5402 if (oldreg && !(oldreg->type & ARM_CP_OVERRIDE)) { 5403 fprintf(stderr, "Register redefined: cp=%d %d bit " 5404 "crn=%d crm=%d opc1=%d opc2=%d, " 5405 "was %s, now %s\n", r2->cp, 32 + 32 * is64, 5406 r2->crn, r2->crm, r2->opc1, r2->opc2, 5407 oldreg->name, r2->name); 5408 g_assert_not_reached(); 5409 } 5410 } 5411 g_hash_table_insert(cpu->cp_regs, key, r2); 5412 } 5413 5414 5415 void define_one_arm_cp_reg_with_opaque(ARMCPU *cpu, 5416 const ARMCPRegInfo *r, void *opaque) 5417 { 5418 /* Define implementations of coprocessor registers. 5419 * We store these in a hashtable because typically 5420 * there are less than 150 registers in a space which 5421 * is 16*16*16*8*8 = 262144 in size. 5422 * Wildcarding is supported for the crm, opc1 and opc2 fields. 5423 * If a register is defined twice then the second definition is 5424 * used, so this can be used to define some generic registers and 5425 * then override them with implementation specific variations. 5426 * At least one of the original and the second definition should 5427 * include ARM_CP_OVERRIDE in its type bits -- this is just a guard 5428 * against accidental use. 5429 * 5430 * The state field defines whether the register is to be 5431 * visible in the AArch32 or AArch64 execution state. If the 5432 * state is set to ARM_CP_STATE_BOTH then we synthesise a 5433 * reginfo structure for the AArch32 view, which sees the lower 5434 * 32 bits of the 64 bit register. 5435 * 5436 * Only registers visible in AArch64 may set r->opc0; opc0 cannot 5437 * be wildcarded. AArch64 registers are always considered to be 64 5438 * bits; the ARM_CP_64BIT* flag applies only to the AArch32 view of 5439 * the register, if any. 5440 */ 5441 int crm, opc1, opc2, state; 5442 int crmmin = (r->crm == CP_ANY) ? 0 : r->crm; 5443 int crmmax = (r->crm == CP_ANY) ? 15 : r->crm; 5444 int opc1min = (r->opc1 == CP_ANY) ? 0 : r->opc1; 5445 int opc1max = (r->opc1 == CP_ANY) ? 7 : r->opc1; 5446 int opc2min = (r->opc2 == CP_ANY) ? 0 : r->opc2; 5447 int opc2max = (r->opc2 == CP_ANY) ? 7 : r->opc2; 5448 /* 64 bit registers have only CRm and Opc1 fields */ 5449 assert(!((r->type & ARM_CP_64BIT) && (r->opc2 || r->crn))); 5450 /* op0 only exists in the AArch64 encodings */ 5451 assert((r->state != ARM_CP_STATE_AA32) || (r->opc0 == 0)); 5452 /* AArch64 regs are all 64 bit so ARM_CP_64BIT is meaningless */ 5453 assert((r->state != ARM_CP_STATE_AA64) || !(r->type & ARM_CP_64BIT)); 5454 /* The AArch64 pseudocode CheckSystemAccess() specifies that op1 5455 * encodes a minimum access level for the register. We roll this 5456 * runtime check into our general permission check code, so check 5457 * here that the reginfo's specified permissions are strict enough 5458 * to encompass the generic architectural permission check. 5459 */ 5460 if (r->state != ARM_CP_STATE_AA32) { 5461 int mask = 0; 5462 switch (r->opc1) { 5463 case 0: case 1: case 2: 5464 /* min_EL EL1 */ 5465 mask = PL1_RW; 5466 break; 5467 case 3: 5468 /* min_EL EL0 */ 5469 mask = PL0_RW; 5470 break; 5471 case 4: 5472 /* min_EL EL2 */ 5473 mask = PL2_RW; 5474 break; 5475 case 5: 5476 /* unallocated encoding, so not possible */ 5477 assert(false); 5478 break; 5479 case 6: 5480 /* min_EL EL3 */ 5481 mask = PL3_RW; 5482 break; 5483 case 7: 5484 /* min_EL EL1, secure mode only (we don't check the latter) */ 5485 mask = PL1_RW; 5486 break; 5487 default: 5488 /* broken reginfo with out-of-range opc1 */ 5489 assert(false); 5490 break; 5491 } 5492 /* assert our permissions are not too lax (stricter is fine) */ 5493 assert((r->access & ~mask) == 0); 5494 } 5495 5496 /* Check that the register definition has enough info to handle 5497 * reads and writes if they are permitted. 5498 */ 5499 if (!(r->type & (ARM_CP_SPECIAL|ARM_CP_CONST))) { 5500 if (r->access & PL3_R) { 5501 assert((r->fieldoffset || 5502 (r->bank_fieldoffsets[0] && r->bank_fieldoffsets[1])) || 5503 r->readfn); 5504 } 5505 if (r->access & PL3_W) { 5506 assert((r->fieldoffset || 5507 (r->bank_fieldoffsets[0] && r->bank_fieldoffsets[1])) || 5508 r->writefn); 5509 } 5510 } 5511 /* Bad type field probably means missing sentinel at end of reg list */ 5512 assert(cptype_valid(r->type)); 5513 for (crm = crmmin; crm <= crmmax; crm++) { 5514 for (opc1 = opc1min; opc1 <= opc1max; opc1++) { 5515 for (opc2 = opc2min; opc2 <= opc2max; opc2++) { 5516 for (state = ARM_CP_STATE_AA32; 5517 state <= ARM_CP_STATE_AA64; state++) { 5518 if (r->state != state && r->state != ARM_CP_STATE_BOTH) { 5519 continue; 5520 } 5521 if (state == ARM_CP_STATE_AA32) { 5522 /* Under AArch32 CP registers can be common 5523 * (same for secure and non-secure world) or banked. 5524 */ 5525 switch (r->secure) { 5526 case ARM_CP_SECSTATE_S: 5527 case ARM_CP_SECSTATE_NS: 5528 add_cpreg_to_hashtable(cpu, r, opaque, state, 5529 r->secure, crm, opc1, opc2); 5530 break; 5531 default: 5532 add_cpreg_to_hashtable(cpu, r, opaque, state, 5533 ARM_CP_SECSTATE_S, 5534 crm, opc1, opc2); 5535 add_cpreg_to_hashtable(cpu, r, opaque, state, 5536 ARM_CP_SECSTATE_NS, 5537 crm, opc1, opc2); 5538 break; 5539 } 5540 } else { 5541 /* AArch64 registers get mapped to non-secure instance 5542 * of AArch32 */ 5543 add_cpreg_to_hashtable(cpu, r, opaque, state, 5544 ARM_CP_SECSTATE_NS, 5545 crm, opc1, opc2); 5546 } 5547 } 5548 } 5549 } 5550 } 5551 } 5552 5553 void define_arm_cp_regs_with_opaque(ARMCPU *cpu, 5554 const ARMCPRegInfo *regs, void *opaque) 5555 { 5556 /* Define a whole list of registers */ 5557 const ARMCPRegInfo *r; 5558 for (r = regs; r->type != ARM_CP_SENTINEL; r++) { 5559 define_one_arm_cp_reg_with_opaque(cpu, r, opaque); 5560 } 5561 } 5562 5563 const ARMCPRegInfo *get_arm_cp_reginfo(GHashTable *cpregs, uint32_t encoded_cp) 5564 { 5565 return g_hash_table_lookup(cpregs, &encoded_cp); 5566 } 5567 5568 void arm_cp_write_ignore(CPUARMState *env, const ARMCPRegInfo *ri, 5569 uint64_t value) 5570 { 5571 /* Helper coprocessor write function for write-ignore registers */ 5572 } 5573 5574 uint64_t arm_cp_read_zero(CPUARMState *env, const ARMCPRegInfo *ri) 5575 { 5576 /* Helper coprocessor write function for read-as-zero registers */ 5577 return 0; 5578 } 5579 5580 void arm_cp_reset_ignore(CPUARMState *env, const ARMCPRegInfo *opaque) 5581 { 5582 /* Helper coprocessor reset function for do-nothing-on-reset registers */ 5583 } 5584 5585 static int bad_mode_switch(CPUARMState *env, int mode, CPSRWriteType write_type) 5586 { 5587 /* Return true if it is not valid for us to switch to 5588 * this CPU mode (ie all the UNPREDICTABLE cases in 5589 * the ARM ARM CPSRWriteByInstr pseudocode). 5590 */ 5591 5592 /* Changes to or from Hyp via MSR and CPS are illegal. */ 5593 if (write_type == CPSRWriteByInstr && 5594 ((env->uncached_cpsr & CPSR_M) == ARM_CPU_MODE_HYP || 5595 mode == ARM_CPU_MODE_HYP)) { 5596 return 1; 5597 } 5598 5599 switch (mode) { 5600 case ARM_CPU_MODE_USR: 5601 return 0; 5602 case ARM_CPU_MODE_SYS: 5603 case ARM_CPU_MODE_SVC: 5604 case ARM_CPU_MODE_ABT: 5605 case ARM_CPU_MODE_UND: 5606 case ARM_CPU_MODE_IRQ: 5607 case ARM_CPU_MODE_FIQ: 5608 /* Note that we don't implement the IMPDEF NSACR.RFR which in v7 5609 * allows FIQ mode to be Secure-only. (In v8 this doesn't exist.) 5610 */ 5611 /* If HCR.TGE is set then changes from Monitor to NS PL1 via MSR 5612 * and CPS are treated as illegal mode changes. 5613 */ 5614 if (write_type == CPSRWriteByInstr && 5615 (env->cp15.hcr_el2 & HCR_TGE) && 5616 (env->uncached_cpsr & CPSR_M) == ARM_CPU_MODE_MON && 5617 !arm_is_secure_below_el3(env)) { 5618 return 1; 5619 } 5620 return 0; 5621 case ARM_CPU_MODE_HYP: 5622 return !arm_feature(env, ARM_FEATURE_EL2) 5623 || arm_current_el(env) < 2 || arm_is_secure(env); 5624 case ARM_CPU_MODE_MON: 5625 return arm_current_el(env) < 3; 5626 default: 5627 return 1; 5628 } 5629 } 5630 5631 uint32_t cpsr_read(CPUARMState *env) 5632 { 5633 int ZF; 5634 ZF = (env->ZF == 0); 5635 return env->uncached_cpsr | (env->NF & 0x80000000) | (ZF << 30) | 5636 (env->CF << 29) | ((env->VF & 0x80000000) >> 3) | (env->QF << 27) 5637 | (env->thumb << 5) | ((env->condexec_bits & 3) << 25) 5638 | ((env->condexec_bits & 0xfc) << 8) 5639 | (env->GE << 16) | (env->daif & CPSR_AIF); 5640 } 5641 5642 void cpsr_write(CPUARMState *env, uint32_t val, uint32_t mask, 5643 CPSRWriteType write_type) 5644 { 5645 uint32_t changed_daif; 5646 5647 if (mask & CPSR_NZCV) { 5648 env->ZF = (~val) & CPSR_Z; 5649 env->NF = val; 5650 env->CF = (val >> 29) & 1; 5651 env->VF = (val << 3) & 0x80000000; 5652 } 5653 if (mask & CPSR_Q) 5654 env->QF = ((val & CPSR_Q) != 0); 5655 if (mask & CPSR_T) 5656 env->thumb = ((val & CPSR_T) != 0); 5657 if (mask & CPSR_IT_0_1) { 5658 env->condexec_bits &= ~3; 5659 env->condexec_bits |= (val >> 25) & 3; 5660 } 5661 if (mask & CPSR_IT_2_7) { 5662 env->condexec_bits &= 3; 5663 env->condexec_bits |= (val >> 8) & 0xfc; 5664 } 5665 if (mask & CPSR_GE) { 5666 env->GE = (val >> 16) & 0xf; 5667 } 5668 5669 /* In a V7 implementation that includes the security extensions but does 5670 * not include Virtualization Extensions the SCR.FW and SCR.AW bits control 5671 * whether non-secure software is allowed to change the CPSR_F and CPSR_A 5672 * bits respectively. 5673 * 5674 * In a V8 implementation, it is permitted for privileged software to 5675 * change the CPSR A/F bits regardless of the SCR.AW/FW bits. 5676 */ 5677 if (write_type != CPSRWriteRaw && !arm_feature(env, ARM_FEATURE_V8) && 5678 arm_feature(env, ARM_FEATURE_EL3) && 5679 !arm_feature(env, ARM_FEATURE_EL2) && 5680 !arm_is_secure(env)) { 5681 5682 changed_daif = (env->daif ^ val) & mask; 5683 5684 if (changed_daif & CPSR_A) { 5685 /* Check to see if we are allowed to change the masking of async 5686 * abort exceptions from a non-secure state. 5687 */ 5688 if (!(env->cp15.scr_el3 & SCR_AW)) { 5689 qemu_log_mask(LOG_GUEST_ERROR, 5690 "Ignoring attempt to switch CPSR_A flag from " 5691 "non-secure world with SCR.AW bit clear\n"); 5692 mask &= ~CPSR_A; 5693 } 5694 } 5695 5696 if (changed_daif & CPSR_F) { 5697 /* Check to see if we are allowed to change the masking of FIQ 5698 * exceptions from a non-secure state. 5699 */ 5700 if (!(env->cp15.scr_el3 & SCR_FW)) { 5701 qemu_log_mask(LOG_GUEST_ERROR, 5702 "Ignoring attempt to switch CPSR_F flag from " 5703 "non-secure world with SCR.FW bit clear\n"); 5704 mask &= ~CPSR_F; 5705 } 5706 5707 /* Check whether non-maskable FIQ (NMFI) support is enabled. 5708 * If this bit is set software is not allowed to mask 5709 * FIQs, but is allowed to set CPSR_F to 0. 5710 */ 5711 if ((A32_BANKED_CURRENT_REG_GET(env, sctlr) & SCTLR_NMFI) && 5712 (val & CPSR_F)) { 5713 qemu_log_mask(LOG_GUEST_ERROR, 5714 "Ignoring attempt to enable CPSR_F flag " 5715 "(non-maskable FIQ [NMFI] support enabled)\n"); 5716 mask &= ~CPSR_F; 5717 } 5718 } 5719 } 5720 5721 env->daif &= ~(CPSR_AIF & mask); 5722 env->daif |= val & CPSR_AIF & mask; 5723 5724 if (write_type != CPSRWriteRaw && 5725 ((env->uncached_cpsr ^ val) & mask & CPSR_M)) { 5726 if ((env->uncached_cpsr & CPSR_M) == ARM_CPU_MODE_USR) { 5727 /* Note that we can only get here in USR mode if this is a 5728 * gdb stub write; for this case we follow the architectural 5729 * behaviour for guest writes in USR mode of ignoring an attempt 5730 * to switch mode. (Those are caught by translate.c for writes 5731 * triggered by guest instructions.) 5732 */ 5733 mask &= ~CPSR_M; 5734 } else if (bad_mode_switch(env, val & CPSR_M, write_type)) { 5735 /* Attempt to switch to an invalid mode: this is UNPREDICTABLE in 5736 * v7, and has defined behaviour in v8: 5737 * + leave CPSR.M untouched 5738 * + allow changes to the other CPSR fields 5739 * + set PSTATE.IL 5740 * For user changes via the GDB stub, we don't set PSTATE.IL, 5741 * as this would be unnecessarily harsh for a user error. 5742 */ 5743 mask &= ~CPSR_M; 5744 if (write_type != CPSRWriteByGDBStub && 5745 arm_feature(env, ARM_FEATURE_V8)) { 5746 mask |= CPSR_IL; 5747 val |= CPSR_IL; 5748 } 5749 } else { 5750 switch_mode(env, val & CPSR_M); 5751 } 5752 } 5753 mask &= ~CACHED_CPSR_BITS; 5754 env->uncached_cpsr = (env->uncached_cpsr & ~mask) | (val & mask); 5755 } 5756 5757 /* Sign/zero extend */ 5758 uint32_t HELPER(sxtb16)(uint32_t x) 5759 { 5760 uint32_t res; 5761 res = (uint16_t)(int8_t)x; 5762 res |= (uint32_t)(int8_t)(x >> 16) << 16; 5763 return res; 5764 } 5765 5766 uint32_t HELPER(uxtb16)(uint32_t x) 5767 { 5768 uint32_t res; 5769 res = (uint16_t)(uint8_t)x; 5770 res |= (uint32_t)(uint8_t)(x >> 16) << 16; 5771 return res; 5772 } 5773 5774 int32_t HELPER(sdiv)(int32_t num, int32_t den) 5775 { 5776 if (den == 0) 5777 return 0; 5778 if (num == INT_MIN && den == -1) 5779 return INT_MIN; 5780 return num / den; 5781 } 5782 5783 uint32_t HELPER(udiv)(uint32_t num, uint32_t den) 5784 { 5785 if (den == 0) 5786 return 0; 5787 return num / den; 5788 } 5789 5790 uint32_t HELPER(rbit)(uint32_t x) 5791 { 5792 return revbit32(x); 5793 } 5794 5795 #if defined(CONFIG_USER_ONLY) 5796 5797 /* These should probably raise undefined insn exceptions. */ 5798 void HELPER(v7m_msr)(CPUARMState *env, uint32_t reg, uint32_t val) 5799 { 5800 ARMCPU *cpu = arm_env_get_cpu(env); 5801 5802 cpu_abort(CPU(cpu), "v7m_msr %d\n", reg); 5803 } 5804 5805 uint32_t HELPER(v7m_mrs)(CPUARMState *env, uint32_t reg) 5806 { 5807 ARMCPU *cpu = arm_env_get_cpu(env); 5808 5809 cpu_abort(CPU(cpu), "v7m_mrs %d\n", reg); 5810 return 0; 5811 } 5812 5813 void switch_mode(CPUARMState *env, int mode) 5814 { 5815 ARMCPU *cpu = arm_env_get_cpu(env); 5816 5817 if (mode != ARM_CPU_MODE_USR) { 5818 cpu_abort(CPU(cpu), "Tried to switch out of user mode\n"); 5819 } 5820 } 5821 5822 uint32_t arm_phys_excp_target_el(CPUState *cs, uint32_t excp_idx, 5823 uint32_t cur_el, bool secure) 5824 { 5825 return 1; 5826 } 5827 5828 void aarch64_sync_64_to_32(CPUARMState *env) 5829 { 5830 g_assert_not_reached(); 5831 } 5832 5833 #else 5834 5835 void switch_mode(CPUARMState *env, int mode) 5836 { 5837 int old_mode; 5838 int i; 5839 5840 old_mode = env->uncached_cpsr & CPSR_M; 5841 if (mode == old_mode) 5842 return; 5843 5844 if (old_mode == ARM_CPU_MODE_FIQ) { 5845 memcpy (env->fiq_regs, env->regs + 8, 5 * sizeof(uint32_t)); 5846 memcpy (env->regs + 8, env->usr_regs, 5 * sizeof(uint32_t)); 5847 } else if (mode == ARM_CPU_MODE_FIQ) { 5848 memcpy (env->usr_regs, env->regs + 8, 5 * sizeof(uint32_t)); 5849 memcpy (env->regs + 8, env->fiq_regs, 5 * sizeof(uint32_t)); 5850 } 5851 5852 i = bank_number(old_mode); 5853 env->banked_r13[i] = env->regs[13]; 5854 env->banked_r14[i] = env->regs[14]; 5855 env->banked_spsr[i] = env->spsr; 5856 5857 i = bank_number(mode); 5858 env->regs[13] = env->banked_r13[i]; 5859 env->regs[14] = env->banked_r14[i]; 5860 env->spsr = env->banked_spsr[i]; 5861 } 5862 5863 /* Physical Interrupt Target EL Lookup Table 5864 * 5865 * [ From ARM ARM section G1.13.4 (Table G1-15) ] 5866 * 5867 * The below multi-dimensional table is used for looking up the target 5868 * exception level given numerous condition criteria. Specifically, the 5869 * target EL is based on SCR and HCR routing controls as well as the 5870 * currently executing EL and secure state. 5871 * 5872 * Dimensions: 5873 * target_el_table[2][2][2][2][2][4] 5874 * | | | | | +--- Current EL 5875 * | | | | +------ Non-secure(0)/Secure(1) 5876 * | | | +--------- HCR mask override 5877 * | | +------------ SCR exec state control 5878 * | +--------------- SCR mask override 5879 * +------------------ 32-bit(0)/64-bit(1) EL3 5880 * 5881 * The table values are as such: 5882 * 0-3 = EL0-EL3 5883 * -1 = Cannot occur 5884 * 5885 * The ARM ARM target EL table includes entries indicating that an "exception 5886 * is not taken". The two cases where this is applicable are: 5887 * 1) An exception is taken from EL3 but the SCR does not have the exception 5888 * routed to EL3. 5889 * 2) An exception is taken from EL2 but the HCR does not have the exception 5890 * routed to EL2. 5891 * In these two cases, the below table contain a target of EL1. This value is 5892 * returned as it is expected that the consumer of the table data will check 5893 * for "target EL >= current EL" to ensure the exception is not taken. 5894 * 5895 * SCR HCR 5896 * 64 EA AMO From 5897 * BIT IRQ IMO Non-secure Secure 5898 * EL3 FIQ RW FMO EL0 EL1 EL2 EL3 EL0 EL1 EL2 EL3 5899 */ 5900 static const int8_t target_el_table[2][2][2][2][2][4] = { 5901 {{{{/* 0 0 0 0 */{ 1, 1, 2, -1 },{ 3, -1, -1, 3 },}, 5902 {/* 0 0 0 1 */{ 2, 2, 2, -1 },{ 3, -1, -1, 3 },},}, 5903 {{/* 0 0 1 0 */{ 1, 1, 2, -1 },{ 3, -1, -1, 3 },}, 5904 {/* 0 0 1 1 */{ 2, 2, 2, -1 },{ 3, -1, -1, 3 },},},}, 5905 {{{/* 0 1 0 0 */{ 3, 3, 3, -1 },{ 3, -1, -1, 3 },}, 5906 {/* 0 1 0 1 */{ 3, 3, 3, -1 },{ 3, -1, -1, 3 },},}, 5907 {{/* 0 1 1 0 */{ 3, 3, 3, -1 },{ 3, -1, -1, 3 },}, 5908 {/* 0 1 1 1 */{ 3, 3, 3, -1 },{ 3, -1, -1, 3 },},},},}, 5909 {{{{/* 1 0 0 0 */{ 1, 1, 2, -1 },{ 1, 1, -1, 1 },}, 5910 {/* 1 0 0 1 */{ 2, 2, 2, -1 },{ 1, 1, -1, 1 },},}, 5911 {{/* 1 0 1 0 */{ 1, 1, 1, -1 },{ 1, 1, -1, 1 },}, 5912 {/* 1 0 1 1 */{ 2, 2, 2, -1 },{ 1, 1, -1, 1 },},},}, 5913 {{{/* 1 1 0 0 */{ 3, 3, 3, -1 },{ 3, 3, -1, 3 },}, 5914 {/* 1 1 0 1 */{ 3, 3, 3, -1 },{ 3, 3, -1, 3 },},}, 5915 {{/* 1 1 1 0 */{ 3, 3, 3, -1 },{ 3, 3, -1, 3 },}, 5916 {/* 1 1 1 1 */{ 3, 3, 3, -1 },{ 3, 3, -1, 3 },},},},}, 5917 }; 5918 5919 /* 5920 * Determine the target EL for physical exceptions 5921 */ 5922 uint32_t arm_phys_excp_target_el(CPUState *cs, uint32_t excp_idx, 5923 uint32_t cur_el, bool secure) 5924 { 5925 CPUARMState *env = cs->env_ptr; 5926 int rw; 5927 int scr; 5928 int hcr; 5929 int target_el; 5930 /* Is the highest EL AArch64? */ 5931 int is64 = arm_feature(env, ARM_FEATURE_AARCH64); 5932 5933 if (arm_feature(env, ARM_FEATURE_EL3)) { 5934 rw = ((env->cp15.scr_el3 & SCR_RW) == SCR_RW); 5935 } else { 5936 /* Either EL2 is the highest EL (and so the EL2 register width 5937 * is given by is64); or there is no EL2 or EL3, in which case 5938 * the value of 'rw' does not affect the table lookup anyway. 5939 */ 5940 rw = is64; 5941 } 5942 5943 switch (excp_idx) { 5944 case EXCP_IRQ: 5945 scr = ((env->cp15.scr_el3 & SCR_IRQ) == SCR_IRQ); 5946 hcr = ((env->cp15.hcr_el2 & HCR_IMO) == HCR_IMO); 5947 break; 5948 case EXCP_FIQ: 5949 scr = ((env->cp15.scr_el3 & SCR_FIQ) == SCR_FIQ); 5950 hcr = ((env->cp15.hcr_el2 & HCR_FMO) == HCR_FMO); 5951 break; 5952 default: 5953 scr = ((env->cp15.scr_el3 & SCR_EA) == SCR_EA); 5954 hcr = ((env->cp15.hcr_el2 & HCR_AMO) == HCR_AMO); 5955 break; 5956 }; 5957 5958 /* If HCR.TGE is set then HCR is treated as being 1 */ 5959 hcr |= ((env->cp15.hcr_el2 & HCR_TGE) == HCR_TGE); 5960 5961 /* Perform a table-lookup for the target EL given the current state */ 5962 target_el = target_el_table[is64][scr][rw][hcr][secure][cur_el]; 5963 5964 assert(target_el > 0); 5965 5966 return target_el; 5967 } 5968 5969 static void v7m_push(CPUARMState *env, uint32_t val) 5970 { 5971 CPUState *cs = CPU(arm_env_get_cpu(env)); 5972 5973 env->regs[13] -= 4; 5974 stl_phys(cs->as, env->regs[13], val); 5975 } 5976 5977 static uint32_t v7m_pop(CPUARMState *env) 5978 { 5979 CPUState *cs = CPU(arm_env_get_cpu(env)); 5980 uint32_t val; 5981 5982 val = ldl_phys(cs->as, env->regs[13]); 5983 env->regs[13] += 4; 5984 return val; 5985 } 5986 5987 /* Switch to V7M main or process stack pointer. */ 5988 static void switch_v7m_sp(CPUARMState *env, bool new_spsel) 5989 { 5990 uint32_t tmp; 5991 bool old_spsel = env->v7m.control & R_V7M_CONTROL_SPSEL_MASK; 5992 5993 if (old_spsel != new_spsel) { 5994 tmp = env->v7m.other_sp; 5995 env->v7m.other_sp = env->regs[13]; 5996 env->regs[13] = tmp; 5997 5998 env->v7m.control = deposit32(env->v7m.control, 5999 R_V7M_CONTROL_SPSEL_SHIFT, 6000 R_V7M_CONTROL_SPSEL_LENGTH, new_spsel); 6001 } 6002 } 6003 6004 static void do_v7m_exception_exit(CPUARMState *env) 6005 { 6006 uint32_t type; 6007 uint32_t xpsr; 6008 6009 type = env->regs[15]; 6010 if (env->v7m.exception != ARMV7M_EXCP_NMI) { 6011 /* Auto-clear FAULTMASK on return from other than NMI */ 6012 env->daif &= ~PSTATE_F; 6013 } 6014 if (env->v7m.exception != 0) { 6015 armv7m_nvic_complete_irq(env->nvic, env->v7m.exception); 6016 } 6017 6018 /* Switch to the target stack. */ 6019 switch_v7m_sp(env, (type & 4) != 0); 6020 /* Pop registers. */ 6021 env->regs[0] = v7m_pop(env); 6022 env->regs[1] = v7m_pop(env); 6023 env->regs[2] = v7m_pop(env); 6024 env->regs[3] = v7m_pop(env); 6025 env->regs[12] = v7m_pop(env); 6026 env->regs[14] = v7m_pop(env); 6027 env->regs[15] = v7m_pop(env); 6028 if (env->regs[15] & 1) { 6029 qemu_log_mask(LOG_GUEST_ERROR, 6030 "M profile return from interrupt with misaligned " 6031 "PC is UNPREDICTABLE\n"); 6032 /* Actual hardware seems to ignore the lsbit, and there are several 6033 * RTOSes out there which incorrectly assume the r15 in the stack 6034 * frame should be a Thumb-style "lsbit indicates ARM/Thumb" value. 6035 */ 6036 env->regs[15] &= ~1U; 6037 } 6038 xpsr = v7m_pop(env); 6039 xpsr_write(env, xpsr, 0xfffffdff); 6040 /* Undo stack alignment. */ 6041 if (xpsr & 0x200) 6042 env->regs[13] |= 4; 6043 /* ??? The exception return type specifies Thread/Handler mode. However 6044 this is also implied by the xPSR value. Not sure what to do 6045 if there is a mismatch. */ 6046 /* ??? Likewise for mismatches between the CONTROL register and the stack 6047 pointer. */ 6048 } 6049 6050 static void arm_log_exception(int idx) 6051 { 6052 if (qemu_loglevel_mask(CPU_LOG_INT)) { 6053 const char *exc = NULL; 6054 6055 if (idx >= 0 && idx < ARRAY_SIZE(excnames)) { 6056 exc = excnames[idx]; 6057 } 6058 if (!exc) { 6059 exc = "unknown"; 6060 } 6061 qemu_log_mask(CPU_LOG_INT, "Taking exception %d [%s]\n", idx, exc); 6062 } 6063 } 6064 6065 static uint32_t arm_v7m_load_vector(ARMCPU *cpu) 6066 6067 { 6068 CPUState *cs = CPU(cpu); 6069 CPUARMState *env = &cpu->env; 6070 MemTxResult result; 6071 hwaddr vec = env->v7m.vecbase + env->v7m.exception * 4; 6072 uint32_t addr; 6073 6074 addr = address_space_ldl(cs->as, vec, 6075 MEMTXATTRS_UNSPECIFIED, &result); 6076 if (result != MEMTX_OK) { 6077 /* Architecturally this should cause a HardFault setting HSFR.VECTTBL, 6078 * which would then be immediately followed by our failing to load 6079 * the entry vector for that HardFault, which is a Lockup case. 6080 * Since we don't model Lockup, we just report this guest error 6081 * via cpu_abort(). 6082 */ 6083 cpu_abort(cs, "Failed to read from exception vector table " 6084 "entry %08x\n", (unsigned)vec); 6085 } 6086 return addr; 6087 } 6088 6089 void arm_v7m_cpu_do_interrupt(CPUState *cs) 6090 { 6091 ARMCPU *cpu = ARM_CPU(cs); 6092 CPUARMState *env = &cpu->env; 6093 uint32_t xpsr = xpsr_read(env); 6094 uint32_t lr; 6095 uint32_t addr; 6096 6097 arm_log_exception(cs->exception_index); 6098 6099 lr = 0xfffffff1; 6100 if (env->v7m.control & R_V7M_CONTROL_SPSEL_MASK) { 6101 lr |= 4; 6102 } 6103 if (env->v7m.exception == 0) 6104 lr |= 8; 6105 6106 /* For exceptions we just mark as pending on the NVIC, and let that 6107 handle it. */ 6108 /* TODO: Need to escalate if the current priority is higher than the 6109 one we're raising. */ 6110 switch (cs->exception_index) { 6111 case EXCP_UDEF: 6112 armv7m_nvic_set_pending(env->nvic, ARMV7M_EXCP_USAGE); 6113 env->v7m.cfsr |= R_V7M_CFSR_UNDEFINSTR_MASK; 6114 return; 6115 case EXCP_NOCP: 6116 armv7m_nvic_set_pending(env->nvic, ARMV7M_EXCP_USAGE); 6117 env->v7m.cfsr |= R_V7M_CFSR_NOCP_MASK; 6118 return; 6119 case EXCP_SWI: 6120 /* The PC already points to the next instruction. */ 6121 armv7m_nvic_set_pending(env->nvic, ARMV7M_EXCP_SVC); 6122 return; 6123 case EXCP_PREFETCH_ABORT: 6124 case EXCP_DATA_ABORT: 6125 /* TODO: if we implemented the MPU registers, this is where we 6126 * should set the MMFAR, etc from exception.fsr and exception.vaddress. 6127 */ 6128 armv7m_nvic_set_pending(env->nvic, ARMV7M_EXCP_MEM); 6129 return; 6130 case EXCP_BKPT: 6131 if (semihosting_enabled()) { 6132 int nr; 6133 nr = arm_lduw_code(env, env->regs[15], arm_sctlr_b(env)) & 0xff; 6134 if (nr == 0xab) { 6135 env->regs[15] += 2; 6136 qemu_log_mask(CPU_LOG_INT, 6137 "...handling as semihosting call 0x%x\n", 6138 env->regs[0]); 6139 env->regs[0] = do_arm_semihosting(env); 6140 return; 6141 } 6142 } 6143 armv7m_nvic_set_pending(env->nvic, ARMV7M_EXCP_DEBUG); 6144 return; 6145 case EXCP_IRQ: 6146 env->v7m.exception = armv7m_nvic_acknowledge_irq(env->nvic); 6147 break; 6148 case EXCP_EXCEPTION_EXIT: 6149 do_v7m_exception_exit(env); 6150 return; 6151 default: 6152 cpu_abort(cs, "Unhandled exception 0x%x\n", cs->exception_index); 6153 return; /* Never happens. Keep compiler happy. */ 6154 } 6155 6156 /* Align stack pointer if the guest wants that */ 6157 if ((env->regs[13] & 4) && (env->v7m.ccr & R_V7M_CCR_STKALIGN_MASK)) { 6158 env->regs[13] -= 4; 6159 xpsr |= 0x200; 6160 } 6161 /* Switch to the handler mode. */ 6162 v7m_push(env, xpsr); 6163 v7m_push(env, env->regs[15]); 6164 v7m_push(env, env->regs[14]); 6165 v7m_push(env, env->regs[12]); 6166 v7m_push(env, env->regs[3]); 6167 v7m_push(env, env->regs[2]); 6168 v7m_push(env, env->regs[1]); 6169 v7m_push(env, env->regs[0]); 6170 switch_v7m_sp(env, 0); 6171 /* Clear IT bits */ 6172 env->condexec_bits = 0; 6173 env->regs[14] = lr; 6174 addr = arm_v7m_load_vector(cpu); 6175 env->regs[15] = addr & 0xfffffffe; 6176 env->thumb = addr & 1; 6177 } 6178 6179 /* Function used to synchronize QEMU's AArch64 register set with AArch32 6180 * register set. This is necessary when switching between AArch32 and AArch64 6181 * execution state. 6182 */ 6183 void aarch64_sync_32_to_64(CPUARMState *env) 6184 { 6185 int i; 6186 uint32_t mode = env->uncached_cpsr & CPSR_M; 6187 6188 /* We can blanket copy R[0:7] to X[0:7] */ 6189 for (i = 0; i < 8; i++) { 6190 env->xregs[i] = env->regs[i]; 6191 } 6192 6193 /* Unless we are in FIQ mode, x8-x12 come from the user registers r8-r12. 6194 * Otherwise, they come from the banked user regs. 6195 */ 6196 if (mode == ARM_CPU_MODE_FIQ) { 6197 for (i = 8; i < 13; i++) { 6198 env->xregs[i] = env->usr_regs[i - 8]; 6199 } 6200 } else { 6201 for (i = 8; i < 13; i++) { 6202 env->xregs[i] = env->regs[i]; 6203 } 6204 } 6205 6206 /* Registers x13-x23 are the various mode SP and FP registers. Registers 6207 * r13 and r14 are only copied if we are in that mode, otherwise we copy 6208 * from the mode banked register. 6209 */ 6210 if (mode == ARM_CPU_MODE_USR || mode == ARM_CPU_MODE_SYS) { 6211 env->xregs[13] = env->regs[13]; 6212 env->xregs[14] = env->regs[14]; 6213 } else { 6214 env->xregs[13] = env->banked_r13[bank_number(ARM_CPU_MODE_USR)]; 6215 /* HYP is an exception in that it is copied from r14 */ 6216 if (mode == ARM_CPU_MODE_HYP) { 6217 env->xregs[14] = env->regs[14]; 6218 } else { 6219 env->xregs[14] = env->banked_r14[bank_number(ARM_CPU_MODE_USR)]; 6220 } 6221 } 6222 6223 if (mode == ARM_CPU_MODE_HYP) { 6224 env->xregs[15] = env->regs[13]; 6225 } else { 6226 env->xregs[15] = env->banked_r13[bank_number(ARM_CPU_MODE_HYP)]; 6227 } 6228 6229 if (mode == ARM_CPU_MODE_IRQ) { 6230 env->xregs[16] = env->regs[14]; 6231 env->xregs[17] = env->regs[13]; 6232 } else { 6233 env->xregs[16] = env->banked_r14[bank_number(ARM_CPU_MODE_IRQ)]; 6234 env->xregs[17] = env->banked_r13[bank_number(ARM_CPU_MODE_IRQ)]; 6235 } 6236 6237 if (mode == ARM_CPU_MODE_SVC) { 6238 env->xregs[18] = env->regs[14]; 6239 env->xregs[19] = env->regs[13]; 6240 } else { 6241 env->xregs[18] = env->banked_r14[bank_number(ARM_CPU_MODE_SVC)]; 6242 env->xregs[19] = env->banked_r13[bank_number(ARM_CPU_MODE_SVC)]; 6243 } 6244 6245 if (mode == ARM_CPU_MODE_ABT) { 6246 env->xregs[20] = env->regs[14]; 6247 env->xregs[21] = env->regs[13]; 6248 } else { 6249 env->xregs[20] = env->banked_r14[bank_number(ARM_CPU_MODE_ABT)]; 6250 env->xregs[21] = env->banked_r13[bank_number(ARM_CPU_MODE_ABT)]; 6251 } 6252 6253 if (mode == ARM_CPU_MODE_UND) { 6254 env->xregs[22] = env->regs[14]; 6255 env->xregs[23] = env->regs[13]; 6256 } else { 6257 env->xregs[22] = env->banked_r14[bank_number(ARM_CPU_MODE_UND)]; 6258 env->xregs[23] = env->banked_r13[bank_number(ARM_CPU_MODE_UND)]; 6259 } 6260 6261 /* Registers x24-x30 are mapped to r8-r14 in FIQ mode. If we are in FIQ 6262 * mode, then we can copy from r8-r14. Otherwise, we copy from the 6263 * FIQ bank for r8-r14. 6264 */ 6265 if (mode == ARM_CPU_MODE_FIQ) { 6266 for (i = 24; i < 31; i++) { 6267 env->xregs[i] = env->regs[i - 16]; /* X[24:30] <- R[8:14] */ 6268 } 6269 } else { 6270 for (i = 24; i < 29; i++) { 6271 env->xregs[i] = env->fiq_regs[i - 24]; 6272 } 6273 env->xregs[29] = env->banked_r13[bank_number(ARM_CPU_MODE_FIQ)]; 6274 env->xregs[30] = env->banked_r14[bank_number(ARM_CPU_MODE_FIQ)]; 6275 } 6276 6277 env->pc = env->regs[15]; 6278 } 6279 6280 /* Function used to synchronize QEMU's AArch32 register set with AArch64 6281 * register set. This is necessary when switching between AArch32 and AArch64 6282 * execution state. 6283 */ 6284 void aarch64_sync_64_to_32(CPUARMState *env) 6285 { 6286 int i; 6287 uint32_t mode = env->uncached_cpsr & CPSR_M; 6288 6289 /* We can blanket copy X[0:7] to R[0:7] */ 6290 for (i = 0; i < 8; i++) { 6291 env->regs[i] = env->xregs[i]; 6292 } 6293 6294 /* Unless we are in FIQ mode, r8-r12 come from the user registers x8-x12. 6295 * Otherwise, we copy x8-x12 into the banked user regs. 6296 */ 6297 if (mode == ARM_CPU_MODE_FIQ) { 6298 for (i = 8; i < 13; i++) { 6299 env->usr_regs[i - 8] = env->xregs[i]; 6300 } 6301 } else { 6302 for (i = 8; i < 13; i++) { 6303 env->regs[i] = env->xregs[i]; 6304 } 6305 } 6306 6307 /* Registers r13 & r14 depend on the current mode. 6308 * If we are in a given mode, we copy the corresponding x registers to r13 6309 * and r14. Otherwise, we copy the x register to the banked r13 and r14 6310 * for the mode. 6311 */ 6312 if (mode == ARM_CPU_MODE_USR || mode == ARM_CPU_MODE_SYS) { 6313 env->regs[13] = env->xregs[13]; 6314 env->regs[14] = env->xregs[14]; 6315 } else { 6316 env->banked_r13[bank_number(ARM_CPU_MODE_USR)] = env->xregs[13]; 6317 6318 /* HYP is an exception in that it does not have its own banked r14 but 6319 * shares the USR r14 6320 */ 6321 if (mode == ARM_CPU_MODE_HYP) { 6322 env->regs[14] = env->xregs[14]; 6323 } else { 6324 env->banked_r14[bank_number(ARM_CPU_MODE_USR)] = env->xregs[14]; 6325 } 6326 } 6327 6328 if (mode == ARM_CPU_MODE_HYP) { 6329 env->regs[13] = env->xregs[15]; 6330 } else { 6331 env->banked_r13[bank_number(ARM_CPU_MODE_HYP)] = env->xregs[15]; 6332 } 6333 6334 if (mode == ARM_CPU_MODE_IRQ) { 6335 env->regs[14] = env->xregs[16]; 6336 env->regs[13] = env->xregs[17]; 6337 } else { 6338 env->banked_r14[bank_number(ARM_CPU_MODE_IRQ)] = env->xregs[16]; 6339 env->banked_r13[bank_number(ARM_CPU_MODE_IRQ)] = env->xregs[17]; 6340 } 6341 6342 if (mode == ARM_CPU_MODE_SVC) { 6343 env->regs[14] = env->xregs[18]; 6344 env->regs[13] = env->xregs[19]; 6345 } else { 6346 env->banked_r14[bank_number(ARM_CPU_MODE_SVC)] = env->xregs[18]; 6347 env->banked_r13[bank_number(ARM_CPU_MODE_SVC)] = env->xregs[19]; 6348 } 6349 6350 if (mode == ARM_CPU_MODE_ABT) { 6351 env->regs[14] = env->xregs[20]; 6352 env->regs[13] = env->xregs[21]; 6353 } else { 6354 env->banked_r14[bank_number(ARM_CPU_MODE_ABT)] = env->xregs[20]; 6355 env->banked_r13[bank_number(ARM_CPU_MODE_ABT)] = env->xregs[21]; 6356 } 6357 6358 if (mode == ARM_CPU_MODE_UND) { 6359 env->regs[14] = env->xregs[22]; 6360 env->regs[13] = env->xregs[23]; 6361 } else { 6362 env->banked_r14[bank_number(ARM_CPU_MODE_UND)] = env->xregs[22]; 6363 env->banked_r13[bank_number(ARM_CPU_MODE_UND)] = env->xregs[23]; 6364 } 6365 6366 /* Registers x24-x30 are mapped to r8-r14 in FIQ mode. If we are in FIQ 6367 * mode, then we can copy to r8-r14. Otherwise, we copy to the 6368 * FIQ bank for r8-r14. 6369 */ 6370 if (mode == ARM_CPU_MODE_FIQ) { 6371 for (i = 24; i < 31; i++) { 6372 env->regs[i - 16] = env->xregs[i]; /* X[24:30] -> R[8:14] */ 6373 } 6374 } else { 6375 for (i = 24; i < 29; i++) { 6376 env->fiq_regs[i - 24] = env->xregs[i]; 6377 } 6378 env->banked_r13[bank_number(ARM_CPU_MODE_FIQ)] = env->xregs[29]; 6379 env->banked_r14[bank_number(ARM_CPU_MODE_FIQ)] = env->xregs[30]; 6380 } 6381 6382 env->regs[15] = env->pc; 6383 } 6384 6385 static void arm_cpu_do_interrupt_aarch32(CPUState *cs) 6386 { 6387 ARMCPU *cpu = ARM_CPU(cs); 6388 CPUARMState *env = &cpu->env; 6389 uint32_t addr; 6390 uint32_t mask; 6391 int new_mode; 6392 uint32_t offset; 6393 uint32_t moe; 6394 6395 /* If this is a debug exception we must update the DBGDSCR.MOE bits */ 6396 switch (env->exception.syndrome >> ARM_EL_EC_SHIFT) { 6397 case EC_BREAKPOINT: 6398 case EC_BREAKPOINT_SAME_EL: 6399 moe = 1; 6400 break; 6401 case EC_WATCHPOINT: 6402 case EC_WATCHPOINT_SAME_EL: 6403 moe = 10; 6404 break; 6405 case EC_AA32_BKPT: 6406 moe = 3; 6407 break; 6408 case EC_VECTORCATCH: 6409 moe = 5; 6410 break; 6411 default: 6412 moe = 0; 6413 break; 6414 } 6415 6416 if (moe) { 6417 env->cp15.mdscr_el1 = deposit64(env->cp15.mdscr_el1, 2, 4, moe); 6418 } 6419 6420 /* TODO: Vectored interrupt controller. */ 6421 switch (cs->exception_index) { 6422 case EXCP_UDEF: 6423 new_mode = ARM_CPU_MODE_UND; 6424 addr = 0x04; 6425 mask = CPSR_I; 6426 if (env->thumb) 6427 offset = 2; 6428 else 6429 offset = 4; 6430 break; 6431 case EXCP_SWI: 6432 new_mode = ARM_CPU_MODE_SVC; 6433 addr = 0x08; 6434 mask = CPSR_I; 6435 /* The PC already points to the next instruction. */ 6436 offset = 0; 6437 break; 6438 case EXCP_BKPT: 6439 env->exception.fsr = 2; 6440 /* Fall through to prefetch abort. */ 6441 case EXCP_PREFETCH_ABORT: 6442 A32_BANKED_CURRENT_REG_SET(env, ifsr, env->exception.fsr); 6443 A32_BANKED_CURRENT_REG_SET(env, ifar, env->exception.vaddress); 6444 qemu_log_mask(CPU_LOG_INT, "...with IFSR 0x%x IFAR 0x%x\n", 6445 env->exception.fsr, (uint32_t)env->exception.vaddress); 6446 new_mode = ARM_CPU_MODE_ABT; 6447 addr = 0x0c; 6448 mask = CPSR_A | CPSR_I; 6449 offset = 4; 6450 break; 6451 case EXCP_DATA_ABORT: 6452 A32_BANKED_CURRENT_REG_SET(env, dfsr, env->exception.fsr); 6453 A32_BANKED_CURRENT_REG_SET(env, dfar, env->exception.vaddress); 6454 qemu_log_mask(CPU_LOG_INT, "...with DFSR 0x%x DFAR 0x%x\n", 6455 env->exception.fsr, 6456 (uint32_t)env->exception.vaddress); 6457 new_mode = ARM_CPU_MODE_ABT; 6458 addr = 0x10; 6459 mask = CPSR_A | CPSR_I; 6460 offset = 8; 6461 break; 6462 case EXCP_IRQ: 6463 new_mode = ARM_CPU_MODE_IRQ; 6464 addr = 0x18; 6465 /* Disable IRQ and imprecise data aborts. */ 6466 mask = CPSR_A | CPSR_I; 6467 offset = 4; 6468 if (env->cp15.scr_el3 & SCR_IRQ) { 6469 /* IRQ routed to monitor mode */ 6470 new_mode = ARM_CPU_MODE_MON; 6471 mask |= CPSR_F; 6472 } 6473 break; 6474 case EXCP_FIQ: 6475 new_mode = ARM_CPU_MODE_FIQ; 6476 addr = 0x1c; 6477 /* Disable FIQ, IRQ and imprecise data aborts. */ 6478 mask = CPSR_A | CPSR_I | CPSR_F; 6479 if (env->cp15.scr_el3 & SCR_FIQ) { 6480 /* FIQ routed to monitor mode */ 6481 new_mode = ARM_CPU_MODE_MON; 6482 } 6483 offset = 4; 6484 break; 6485 case EXCP_VIRQ: 6486 new_mode = ARM_CPU_MODE_IRQ; 6487 addr = 0x18; 6488 /* Disable IRQ and imprecise data aborts. */ 6489 mask = CPSR_A | CPSR_I; 6490 offset = 4; 6491 break; 6492 case EXCP_VFIQ: 6493 new_mode = ARM_CPU_MODE_FIQ; 6494 addr = 0x1c; 6495 /* Disable FIQ, IRQ and imprecise data aborts. */ 6496 mask = CPSR_A | CPSR_I | CPSR_F; 6497 offset = 4; 6498 break; 6499 case EXCP_SMC: 6500 new_mode = ARM_CPU_MODE_MON; 6501 addr = 0x08; 6502 mask = CPSR_A | CPSR_I | CPSR_F; 6503 offset = 0; 6504 break; 6505 default: 6506 cpu_abort(cs, "Unhandled exception 0x%x\n", cs->exception_index); 6507 return; /* Never happens. Keep compiler happy. */ 6508 } 6509 6510 if (new_mode == ARM_CPU_MODE_MON) { 6511 addr += env->cp15.mvbar; 6512 } else if (A32_BANKED_CURRENT_REG_GET(env, sctlr) & SCTLR_V) { 6513 /* High vectors. When enabled, base address cannot be remapped. */ 6514 addr += 0xffff0000; 6515 } else { 6516 /* ARM v7 architectures provide a vector base address register to remap 6517 * the interrupt vector table. 6518 * This register is only followed in non-monitor mode, and is banked. 6519 * Note: only bits 31:5 are valid. 6520 */ 6521 addr += A32_BANKED_CURRENT_REG_GET(env, vbar); 6522 } 6523 6524 if ((env->uncached_cpsr & CPSR_M) == ARM_CPU_MODE_MON) { 6525 env->cp15.scr_el3 &= ~SCR_NS; 6526 } 6527 6528 switch_mode (env, new_mode); 6529 /* For exceptions taken to AArch32 we must clear the SS bit in both 6530 * PSTATE and in the old-state value we save to SPSR_<mode>, so zero it now. 6531 */ 6532 env->uncached_cpsr &= ~PSTATE_SS; 6533 env->spsr = cpsr_read(env); 6534 /* Clear IT bits. */ 6535 env->condexec_bits = 0; 6536 /* Switch to the new mode, and to the correct instruction set. */ 6537 env->uncached_cpsr = (env->uncached_cpsr & ~CPSR_M) | new_mode; 6538 /* Set new mode endianness */ 6539 env->uncached_cpsr &= ~CPSR_E; 6540 if (env->cp15.sctlr_el[arm_current_el(env)] & SCTLR_EE) { 6541 env->uncached_cpsr |= CPSR_E; 6542 } 6543 env->daif |= mask; 6544 /* this is a lie, as the was no c1_sys on V4T/V5, but who cares 6545 * and we should just guard the thumb mode on V4 */ 6546 if (arm_feature(env, ARM_FEATURE_V4T)) { 6547 env->thumb = (A32_BANKED_CURRENT_REG_GET(env, sctlr) & SCTLR_TE) != 0; 6548 } 6549 env->regs[14] = env->regs[15] + offset; 6550 env->regs[15] = addr; 6551 } 6552 6553 /* Handle exception entry to a target EL which is using AArch64 */ 6554 static void arm_cpu_do_interrupt_aarch64(CPUState *cs) 6555 { 6556 ARMCPU *cpu = ARM_CPU(cs); 6557 CPUARMState *env = &cpu->env; 6558 unsigned int new_el = env->exception.target_el; 6559 target_ulong addr = env->cp15.vbar_el[new_el]; 6560 unsigned int new_mode = aarch64_pstate_mode(new_el, true); 6561 6562 if (arm_current_el(env) < new_el) { 6563 /* Entry vector offset depends on whether the implemented EL 6564 * immediately lower than the target level is using AArch32 or AArch64 6565 */ 6566 bool is_aa64; 6567 6568 switch (new_el) { 6569 case 3: 6570 is_aa64 = (env->cp15.scr_el3 & SCR_RW) != 0; 6571 break; 6572 case 2: 6573 is_aa64 = (env->cp15.hcr_el2 & HCR_RW) != 0; 6574 break; 6575 case 1: 6576 is_aa64 = is_a64(env); 6577 break; 6578 default: 6579 g_assert_not_reached(); 6580 } 6581 6582 if (is_aa64) { 6583 addr += 0x400; 6584 } else { 6585 addr += 0x600; 6586 } 6587 } else if (pstate_read(env) & PSTATE_SP) { 6588 addr += 0x200; 6589 } 6590 6591 switch (cs->exception_index) { 6592 case EXCP_PREFETCH_ABORT: 6593 case EXCP_DATA_ABORT: 6594 env->cp15.far_el[new_el] = env->exception.vaddress; 6595 qemu_log_mask(CPU_LOG_INT, "...with FAR 0x%" PRIx64 "\n", 6596 env->cp15.far_el[new_el]); 6597 /* fall through */ 6598 case EXCP_BKPT: 6599 case EXCP_UDEF: 6600 case EXCP_SWI: 6601 case EXCP_HVC: 6602 case EXCP_HYP_TRAP: 6603 case EXCP_SMC: 6604 env->cp15.esr_el[new_el] = env->exception.syndrome; 6605 break; 6606 case EXCP_IRQ: 6607 case EXCP_VIRQ: 6608 addr += 0x80; 6609 break; 6610 case EXCP_FIQ: 6611 case EXCP_VFIQ: 6612 addr += 0x100; 6613 break; 6614 case EXCP_SEMIHOST: 6615 qemu_log_mask(CPU_LOG_INT, 6616 "...handling as semihosting call 0x%" PRIx64 "\n", 6617 env->xregs[0]); 6618 env->xregs[0] = do_arm_semihosting(env); 6619 return; 6620 default: 6621 cpu_abort(cs, "Unhandled exception 0x%x\n", cs->exception_index); 6622 } 6623 6624 if (is_a64(env)) { 6625 env->banked_spsr[aarch64_banked_spsr_index(new_el)] = pstate_read(env); 6626 aarch64_save_sp(env, arm_current_el(env)); 6627 env->elr_el[new_el] = env->pc; 6628 } else { 6629 env->banked_spsr[aarch64_banked_spsr_index(new_el)] = cpsr_read(env); 6630 env->elr_el[new_el] = env->regs[15]; 6631 6632 aarch64_sync_32_to_64(env); 6633 6634 env->condexec_bits = 0; 6635 } 6636 qemu_log_mask(CPU_LOG_INT, "...with ELR 0x%" PRIx64 "\n", 6637 env->elr_el[new_el]); 6638 6639 pstate_write(env, PSTATE_DAIF | new_mode); 6640 env->aarch64 = 1; 6641 aarch64_restore_sp(env, new_el); 6642 6643 env->pc = addr; 6644 6645 qemu_log_mask(CPU_LOG_INT, "...to EL%d PC 0x%" PRIx64 " PSTATE 0x%x\n", 6646 new_el, env->pc, pstate_read(env)); 6647 } 6648 6649 static inline bool check_for_semihosting(CPUState *cs) 6650 { 6651 /* Check whether this exception is a semihosting call; if so 6652 * then handle it and return true; otherwise return false. 6653 */ 6654 ARMCPU *cpu = ARM_CPU(cs); 6655 CPUARMState *env = &cpu->env; 6656 6657 if (is_a64(env)) { 6658 if (cs->exception_index == EXCP_SEMIHOST) { 6659 /* This is always the 64-bit semihosting exception. 6660 * The "is this usermode" and "is semihosting enabled" 6661 * checks have been done at translate time. 6662 */ 6663 qemu_log_mask(CPU_LOG_INT, 6664 "...handling as semihosting call 0x%" PRIx64 "\n", 6665 env->xregs[0]); 6666 env->xregs[0] = do_arm_semihosting(env); 6667 return true; 6668 } 6669 return false; 6670 } else { 6671 uint32_t imm; 6672 6673 /* Only intercept calls from privileged modes, to provide some 6674 * semblance of security. 6675 */ 6676 if (cs->exception_index != EXCP_SEMIHOST && 6677 (!semihosting_enabled() || 6678 ((env->uncached_cpsr & CPSR_M) == ARM_CPU_MODE_USR))) { 6679 return false; 6680 } 6681 6682 switch (cs->exception_index) { 6683 case EXCP_SEMIHOST: 6684 /* This is always a semihosting call; the "is this usermode" 6685 * and "is semihosting enabled" checks have been done at 6686 * translate time. 6687 */ 6688 break; 6689 case EXCP_SWI: 6690 /* Check for semihosting interrupt. */ 6691 if (env->thumb) { 6692 imm = arm_lduw_code(env, env->regs[15] - 2, arm_sctlr_b(env)) 6693 & 0xff; 6694 if (imm == 0xab) { 6695 break; 6696 } 6697 } else { 6698 imm = arm_ldl_code(env, env->regs[15] - 4, arm_sctlr_b(env)) 6699 & 0xffffff; 6700 if (imm == 0x123456) { 6701 break; 6702 } 6703 } 6704 return false; 6705 case EXCP_BKPT: 6706 /* See if this is a semihosting syscall. */ 6707 if (env->thumb) { 6708 imm = arm_lduw_code(env, env->regs[15], arm_sctlr_b(env)) 6709 & 0xff; 6710 if (imm == 0xab) { 6711 env->regs[15] += 2; 6712 break; 6713 } 6714 } 6715 return false; 6716 default: 6717 return false; 6718 } 6719 6720 qemu_log_mask(CPU_LOG_INT, 6721 "...handling as semihosting call 0x%x\n", 6722 env->regs[0]); 6723 env->regs[0] = do_arm_semihosting(env); 6724 return true; 6725 } 6726 } 6727 6728 /* Handle a CPU exception for A and R profile CPUs. 6729 * Do any appropriate logging, handle PSCI calls, and then hand off 6730 * to the AArch64-entry or AArch32-entry function depending on the 6731 * target exception level's register width. 6732 */ 6733 void arm_cpu_do_interrupt(CPUState *cs) 6734 { 6735 ARMCPU *cpu = ARM_CPU(cs); 6736 CPUARMState *env = &cpu->env; 6737 unsigned int new_el = env->exception.target_el; 6738 6739 assert(!arm_feature(env, ARM_FEATURE_M)); 6740 6741 arm_log_exception(cs->exception_index); 6742 qemu_log_mask(CPU_LOG_INT, "...from EL%d to EL%d\n", arm_current_el(env), 6743 new_el); 6744 if (qemu_loglevel_mask(CPU_LOG_INT) 6745 && !excp_is_internal(cs->exception_index)) { 6746 qemu_log_mask(CPU_LOG_INT, "...with ESR %x/0x%" PRIx32 "\n", 6747 env->exception.syndrome >> ARM_EL_EC_SHIFT, 6748 env->exception.syndrome); 6749 } 6750 6751 if (arm_is_psci_call(cpu, cs->exception_index)) { 6752 arm_handle_psci_call(cpu); 6753 qemu_log_mask(CPU_LOG_INT, "...handled as PSCI call\n"); 6754 return; 6755 } 6756 6757 /* Semihosting semantics depend on the register width of the 6758 * code that caused the exception, not the target exception level, 6759 * so must be handled here. 6760 */ 6761 if (check_for_semihosting(cs)) { 6762 return; 6763 } 6764 6765 assert(!excp_is_internal(cs->exception_index)); 6766 if (arm_el_is_aa64(env, new_el)) { 6767 arm_cpu_do_interrupt_aarch64(cs); 6768 } else { 6769 arm_cpu_do_interrupt_aarch32(cs); 6770 } 6771 6772 arm_call_el_change_hook(cpu); 6773 6774 if (!kvm_enabled()) { 6775 cs->interrupt_request |= CPU_INTERRUPT_EXITTB; 6776 } 6777 } 6778 6779 /* Return the exception level which controls this address translation regime */ 6780 static inline uint32_t regime_el(CPUARMState *env, ARMMMUIdx mmu_idx) 6781 { 6782 switch (mmu_idx) { 6783 case ARMMMUIdx_S2NS: 6784 case ARMMMUIdx_S1E2: 6785 return 2; 6786 case ARMMMUIdx_S1E3: 6787 return 3; 6788 case ARMMMUIdx_S1SE0: 6789 return arm_el_is_aa64(env, 3) ? 1 : 3; 6790 case ARMMMUIdx_S1SE1: 6791 case ARMMMUIdx_S1NSE0: 6792 case ARMMMUIdx_S1NSE1: 6793 return 1; 6794 default: 6795 g_assert_not_reached(); 6796 } 6797 } 6798 6799 /* Return true if this address translation regime is secure */ 6800 static inline bool regime_is_secure(CPUARMState *env, ARMMMUIdx mmu_idx) 6801 { 6802 switch (mmu_idx) { 6803 case ARMMMUIdx_S12NSE0: 6804 case ARMMMUIdx_S12NSE1: 6805 case ARMMMUIdx_S1NSE0: 6806 case ARMMMUIdx_S1NSE1: 6807 case ARMMMUIdx_S1E2: 6808 case ARMMMUIdx_S2NS: 6809 return false; 6810 case ARMMMUIdx_S1E3: 6811 case ARMMMUIdx_S1SE0: 6812 case ARMMMUIdx_S1SE1: 6813 return true; 6814 default: 6815 g_assert_not_reached(); 6816 } 6817 } 6818 6819 /* Return the SCTLR value which controls this address translation regime */ 6820 static inline uint32_t regime_sctlr(CPUARMState *env, ARMMMUIdx mmu_idx) 6821 { 6822 return env->cp15.sctlr_el[regime_el(env, mmu_idx)]; 6823 } 6824 6825 /* Return true if the specified stage of address translation is disabled */ 6826 static inline bool regime_translation_disabled(CPUARMState *env, 6827 ARMMMUIdx mmu_idx) 6828 { 6829 if (mmu_idx == ARMMMUIdx_S2NS) { 6830 return (env->cp15.hcr_el2 & HCR_VM) == 0; 6831 } 6832 return (regime_sctlr(env, mmu_idx) & SCTLR_M) == 0; 6833 } 6834 6835 static inline bool regime_translation_big_endian(CPUARMState *env, 6836 ARMMMUIdx mmu_idx) 6837 { 6838 return (regime_sctlr(env, mmu_idx) & SCTLR_EE) != 0; 6839 } 6840 6841 /* Return the TCR controlling this translation regime */ 6842 static inline TCR *regime_tcr(CPUARMState *env, ARMMMUIdx mmu_idx) 6843 { 6844 if (mmu_idx == ARMMMUIdx_S2NS) { 6845 return &env->cp15.vtcr_el2; 6846 } 6847 return &env->cp15.tcr_el[regime_el(env, mmu_idx)]; 6848 } 6849 6850 /* Returns TBI0 value for current regime el */ 6851 uint32_t arm_regime_tbi0(CPUARMState *env, ARMMMUIdx mmu_idx) 6852 { 6853 TCR *tcr; 6854 uint32_t el; 6855 6856 /* For EL0 and EL1, TBI is controlled by stage 1's TCR, so convert 6857 * a stage 1+2 mmu index into the appropriate stage 1 mmu index. 6858 */ 6859 if (mmu_idx == ARMMMUIdx_S12NSE0 || mmu_idx == ARMMMUIdx_S12NSE1) { 6860 mmu_idx += ARMMMUIdx_S1NSE0; 6861 } 6862 6863 tcr = regime_tcr(env, mmu_idx); 6864 el = regime_el(env, mmu_idx); 6865 6866 if (el > 1) { 6867 return extract64(tcr->raw_tcr, 20, 1); 6868 } else { 6869 return extract64(tcr->raw_tcr, 37, 1); 6870 } 6871 } 6872 6873 /* Returns TBI1 value for current regime el */ 6874 uint32_t arm_regime_tbi1(CPUARMState *env, ARMMMUIdx mmu_idx) 6875 { 6876 TCR *tcr; 6877 uint32_t el; 6878 6879 /* For EL0 and EL1, TBI is controlled by stage 1's TCR, so convert 6880 * a stage 1+2 mmu index into the appropriate stage 1 mmu index. 6881 */ 6882 if (mmu_idx == ARMMMUIdx_S12NSE0 || mmu_idx == ARMMMUIdx_S12NSE1) { 6883 mmu_idx += ARMMMUIdx_S1NSE0; 6884 } 6885 6886 tcr = regime_tcr(env, mmu_idx); 6887 el = regime_el(env, mmu_idx); 6888 6889 if (el > 1) { 6890 return 0; 6891 } else { 6892 return extract64(tcr->raw_tcr, 38, 1); 6893 } 6894 } 6895 6896 /* Return the TTBR associated with this translation regime */ 6897 static inline uint64_t regime_ttbr(CPUARMState *env, ARMMMUIdx mmu_idx, 6898 int ttbrn) 6899 { 6900 if (mmu_idx == ARMMMUIdx_S2NS) { 6901 return env->cp15.vttbr_el2; 6902 } 6903 if (ttbrn == 0) { 6904 return env->cp15.ttbr0_el[regime_el(env, mmu_idx)]; 6905 } else { 6906 return env->cp15.ttbr1_el[regime_el(env, mmu_idx)]; 6907 } 6908 } 6909 6910 /* Return true if the translation regime is using LPAE format page tables */ 6911 static inline bool regime_using_lpae_format(CPUARMState *env, 6912 ARMMMUIdx mmu_idx) 6913 { 6914 int el = regime_el(env, mmu_idx); 6915 if (el == 2 || arm_el_is_aa64(env, el)) { 6916 return true; 6917 } 6918 if (arm_feature(env, ARM_FEATURE_LPAE) 6919 && (regime_tcr(env, mmu_idx)->raw_tcr & TTBCR_EAE)) { 6920 return true; 6921 } 6922 return false; 6923 } 6924 6925 /* Returns true if the stage 1 translation regime is using LPAE format page 6926 * tables. Used when raising alignment exceptions, whose FSR changes depending 6927 * on whether the long or short descriptor format is in use. */ 6928 bool arm_s1_regime_using_lpae_format(CPUARMState *env, ARMMMUIdx mmu_idx) 6929 { 6930 if (mmu_idx == ARMMMUIdx_S12NSE0 || mmu_idx == ARMMMUIdx_S12NSE1) { 6931 mmu_idx += ARMMMUIdx_S1NSE0; 6932 } 6933 6934 return regime_using_lpae_format(env, mmu_idx); 6935 } 6936 6937 static inline bool regime_is_user(CPUARMState *env, ARMMMUIdx mmu_idx) 6938 { 6939 switch (mmu_idx) { 6940 case ARMMMUIdx_S1SE0: 6941 case ARMMMUIdx_S1NSE0: 6942 return true; 6943 default: 6944 return false; 6945 case ARMMMUIdx_S12NSE0: 6946 case ARMMMUIdx_S12NSE1: 6947 g_assert_not_reached(); 6948 } 6949 } 6950 6951 /* Translate section/page access permissions to page 6952 * R/W protection flags 6953 * 6954 * @env: CPUARMState 6955 * @mmu_idx: MMU index indicating required translation regime 6956 * @ap: The 3-bit access permissions (AP[2:0]) 6957 * @domain_prot: The 2-bit domain access permissions 6958 */ 6959 static inline int ap_to_rw_prot(CPUARMState *env, ARMMMUIdx mmu_idx, 6960 int ap, int domain_prot) 6961 { 6962 bool is_user = regime_is_user(env, mmu_idx); 6963 6964 if (domain_prot == 3) { 6965 return PAGE_READ | PAGE_WRITE; 6966 } 6967 6968 switch (ap) { 6969 case 0: 6970 if (arm_feature(env, ARM_FEATURE_V7)) { 6971 return 0; 6972 } 6973 switch (regime_sctlr(env, mmu_idx) & (SCTLR_S | SCTLR_R)) { 6974 case SCTLR_S: 6975 return is_user ? 0 : PAGE_READ; 6976 case SCTLR_R: 6977 return PAGE_READ; 6978 default: 6979 return 0; 6980 } 6981 case 1: 6982 return is_user ? 0 : PAGE_READ | PAGE_WRITE; 6983 case 2: 6984 if (is_user) { 6985 return PAGE_READ; 6986 } else { 6987 return PAGE_READ | PAGE_WRITE; 6988 } 6989 case 3: 6990 return PAGE_READ | PAGE_WRITE; 6991 case 4: /* Reserved. */ 6992 return 0; 6993 case 5: 6994 return is_user ? 0 : PAGE_READ; 6995 case 6: 6996 return PAGE_READ; 6997 case 7: 6998 if (!arm_feature(env, ARM_FEATURE_V6K)) { 6999 return 0; 7000 } 7001 return PAGE_READ; 7002 default: 7003 g_assert_not_reached(); 7004 } 7005 } 7006 7007 /* Translate section/page access permissions to page 7008 * R/W protection flags. 7009 * 7010 * @ap: The 2-bit simple AP (AP[2:1]) 7011 * @is_user: TRUE if accessing from PL0 7012 */ 7013 static inline int simple_ap_to_rw_prot_is_user(int ap, bool is_user) 7014 { 7015 switch (ap) { 7016 case 0: 7017 return is_user ? 0 : PAGE_READ | PAGE_WRITE; 7018 case 1: 7019 return PAGE_READ | PAGE_WRITE; 7020 case 2: 7021 return is_user ? 0 : PAGE_READ; 7022 case 3: 7023 return PAGE_READ; 7024 default: 7025 g_assert_not_reached(); 7026 } 7027 } 7028 7029 static inline int 7030 simple_ap_to_rw_prot(CPUARMState *env, ARMMMUIdx mmu_idx, int ap) 7031 { 7032 return simple_ap_to_rw_prot_is_user(ap, regime_is_user(env, mmu_idx)); 7033 } 7034 7035 /* Translate S2 section/page access permissions to protection flags 7036 * 7037 * @env: CPUARMState 7038 * @s2ap: The 2-bit stage2 access permissions (S2AP) 7039 * @xn: XN (execute-never) bit 7040 */ 7041 static int get_S2prot(CPUARMState *env, int s2ap, int xn) 7042 { 7043 int prot = 0; 7044 7045 if (s2ap & 1) { 7046 prot |= PAGE_READ; 7047 } 7048 if (s2ap & 2) { 7049 prot |= PAGE_WRITE; 7050 } 7051 if (!xn) { 7052 if (arm_el_is_aa64(env, 2) || prot & PAGE_READ) { 7053 prot |= PAGE_EXEC; 7054 } 7055 } 7056 return prot; 7057 } 7058 7059 /* Translate section/page access permissions to protection flags 7060 * 7061 * @env: CPUARMState 7062 * @mmu_idx: MMU index indicating required translation regime 7063 * @is_aa64: TRUE if AArch64 7064 * @ap: The 2-bit simple AP (AP[2:1]) 7065 * @ns: NS (non-secure) bit 7066 * @xn: XN (execute-never) bit 7067 * @pxn: PXN (privileged execute-never) bit 7068 */ 7069 static int get_S1prot(CPUARMState *env, ARMMMUIdx mmu_idx, bool is_aa64, 7070 int ap, int ns, int xn, int pxn) 7071 { 7072 bool is_user = regime_is_user(env, mmu_idx); 7073 int prot_rw, user_rw; 7074 bool have_wxn; 7075 int wxn = 0; 7076 7077 assert(mmu_idx != ARMMMUIdx_S2NS); 7078 7079 user_rw = simple_ap_to_rw_prot_is_user(ap, true); 7080 if (is_user) { 7081 prot_rw = user_rw; 7082 } else { 7083 prot_rw = simple_ap_to_rw_prot_is_user(ap, false); 7084 } 7085 7086 if (ns && arm_is_secure(env) && (env->cp15.scr_el3 & SCR_SIF)) { 7087 return prot_rw; 7088 } 7089 7090 /* TODO have_wxn should be replaced with 7091 * ARM_FEATURE_V8 || (ARM_FEATURE_V7 && ARM_FEATURE_EL2) 7092 * when ARM_FEATURE_EL2 starts getting set. For now we assume all LPAE 7093 * compatible processors have EL2, which is required for [U]WXN. 7094 */ 7095 have_wxn = arm_feature(env, ARM_FEATURE_LPAE); 7096 7097 if (have_wxn) { 7098 wxn = regime_sctlr(env, mmu_idx) & SCTLR_WXN; 7099 } 7100 7101 if (is_aa64) { 7102 switch (regime_el(env, mmu_idx)) { 7103 case 1: 7104 if (!is_user) { 7105 xn = pxn || (user_rw & PAGE_WRITE); 7106 } 7107 break; 7108 case 2: 7109 case 3: 7110 break; 7111 } 7112 } else if (arm_feature(env, ARM_FEATURE_V7)) { 7113 switch (regime_el(env, mmu_idx)) { 7114 case 1: 7115 case 3: 7116 if (is_user) { 7117 xn = xn || !(user_rw & PAGE_READ); 7118 } else { 7119 int uwxn = 0; 7120 if (have_wxn) { 7121 uwxn = regime_sctlr(env, mmu_idx) & SCTLR_UWXN; 7122 } 7123 xn = xn || !(prot_rw & PAGE_READ) || pxn || 7124 (uwxn && (user_rw & PAGE_WRITE)); 7125 } 7126 break; 7127 case 2: 7128 break; 7129 } 7130 } else { 7131 xn = wxn = 0; 7132 } 7133 7134 if (xn || (wxn && (prot_rw & PAGE_WRITE))) { 7135 return prot_rw; 7136 } 7137 return prot_rw | PAGE_EXEC; 7138 } 7139 7140 static bool get_level1_table_address(CPUARMState *env, ARMMMUIdx mmu_idx, 7141 uint32_t *table, uint32_t address) 7142 { 7143 /* Note that we can only get here for an AArch32 PL0/PL1 lookup */ 7144 TCR *tcr = regime_tcr(env, mmu_idx); 7145 7146 if (address & tcr->mask) { 7147 if (tcr->raw_tcr & TTBCR_PD1) { 7148 /* Translation table walk disabled for TTBR1 */ 7149 return false; 7150 } 7151 *table = regime_ttbr(env, mmu_idx, 1) & 0xffffc000; 7152 } else { 7153 if (tcr->raw_tcr & TTBCR_PD0) { 7154 /* Translation table walk disabled for TTBR0 */ 7155 return false; 7156 } 7157 *table = regime_ttbr(env, mmu_idx, 0) & tcr->base_mask; 7158 } 7159 *table |= (address >> 18) & 0x3ffc; 7160 return true; 7161 } 7162 7163 /* Translate a S1 pagetable walk through S2 if needed. */ 7164 static hwaddr S1_ptw_translate(CPUARMState *env, ARMMMUIdx mmu_idx, 7165 hwaddr addr, MemTxAttrs txattrs, 7166 uint32_t *fsr, 7167 ARMMMUFaultInfo *fi) 7168 { 7169 if ((mmu_idx == ARMMMUIdx_S1NSE0 || mmu_idx == ARMMMUIdx_S1NSE1) && 7170 !regime_translation_disabled(env, ARMMMUIdx_S2NS)) { 7171 target_ulong s2size; 7172 hwaddr s2pa; 7173 int s2prot; 7174 int ret; 7175 7176 ret = get_phys_addr_lpae(env, addr, 0, ARMMMUIdx_S2NS, &s2pa, 7177 &txattrs, &s2prot, &s2size, fsr, fi); 7178 if (ret) { 7179 fi->s2addr = addr; 7180 fi->stage2 = true; 7181 fi->s1ptw = true; 7182 return ~0; 7183 } 7184 addr = s2pa; 7185 } 7186 return addr; 7187 } 7188 7189 /* All loads done in the course of a page table walk go through here. 7190 * TODO: rather than ignoring errors from physical memory reads (which 7191 * are external aborts in ARM terminology) we should propagate this 7192 * error out so that we can turn it into a Data Abort if this walk 7193 * was being done for a CPU load/store or an address translation instruction 7194 * (but not if it was for a debug access). 7195 */ 7196 static uint32_t arm_ldl_ptw(CPUState *cs, hwaddr addr, bool is_secure, 7197 ARMMMUIdx mmu_idx, uint32_t *fsr, 7198 ARMMMUFaultInfo *fi) 7199 { 7200 ARMCPU *cpu = ARM_CPU(cs); 7201 CPUARMState *env = &cpu->env; 7202 MemTxAttrs attrs = {}; 7203 AddressSpace *as; 7204 7205 attrs.secure = is_secure; 7206 as = arm_addressspace(cs, attrs); 7207 addr = S1_ptw_translate(env, mmu_idx, addr, attrs, fsr, fi); 7208 if (fi->s1ptw) { 7209 return 0; 7210 } 7211 if (regime_translation_big_endian(env, mmu_idx)) { 7212 return address_space_ldl_be(as, addr, attrs, NULL); 7213 } else { 7214 return address_space_ldl_le(as, addr, attrs, NULL); 7215 } 7216 } 7217 7218 static uint64_t arm_ldq_ptw(CPUState *cs, hwaddr addr, bool is_secure, 7219 ARMMMUIdx mmu_idx, uint32_t *fsr, 7220 ARMMMUFaultInfo *fi) 7221 { 7222 ARMCPU *cpu = ARM_CPU(cs); 7223 CPUARMState *env = &cpu->env; 7224 MemTxAttrs attrs = {}; 7225 AddressSpace *as; 7226 7227 attrs.secure = is_secure; 7228 as = arm_addressspace(cs, attrs); 7229 addr = S1_ptw_translate(env, mmu_idx, addr, attrs, fsr, fi); 7230 if (fi->s1ptw) { 7231 return 0; 7232 } 7233 if (regime_translation_big_endian(env, mmu_idx)) { 7234 return address_space_ldq_be(as, addr, attrs, NULL); 7235 } else { 7236 return address_space_ldq_le(as, addr, attrs, NULL); 7237 } 7238 } 7239 7240 static bool get_phys_addr_v5(CPUARMState *env, uint32_t address, 7241 int access_type, ARMMMUIdx mmu_idx, 7242 hwaddr *phys_ptr, int *prot, 7243 target_ulong *page_size, uint32_t *fsr, 7244 ARMMMUFaultInfo *fi) 7245 { 7246 CPUState *cs = CPU(arm_env_get_cpu(env)); 7247 int code; 7248 uint32_t table; 7249 uint32_t desc; 7250 int type; 7251 int ap; 7252 int domain = 0; 7253 int domain_prot; 7254 hwaddr phys_addr; 7255 uint32_t dacr; 7256 7257 /* Pagetable walk. */ 7258 /* Lookup l1 descriptor. */ 7259 if (!get_level1_table_address(env, mmu_idx, &table, address)) { 7260 /* Section translation fault if page walk is disabled by PD0 or PD1 */ 7261 code = 5; 7262 goto do_fault; 7263 } 7264 desc = arm_ldl_ptw(cs, table, regime_is_secure(env, mmu_idx), 7265 mmu_idx, fsr, fi); 7266 type = (desc & 3); 7267 domain = (desc >> 5) & 0x0f; 7268 if (regime_el(env, mmu_idx) == 1) { 7269 dacr = env->cp15.dacr_ns; 7270 } else { 7271 dacr = env->cp15.dacr_s; 7272 } 7273 domain_prot = (dacr >> (domain * 2)) & 3; 7274 if (type == 0) { 7275 /* Section translation fault. */ 7276 code = 5; 7277 goto do_fault; 7278 } 7279 if (domain_prot == 0 || domain_prot == 2) { 7280 if (type == 2) 7281 code = 9; /* Section domain fault. */ 7282 else 7283 code = 11; /* Page domain fault. */ 7284 goto do_fault; 7285 } 7286 if (type == 2) { 7287 /* 1Mb section. */ 7288 phys_addr = (desc & 0xfff00000) | (address & 0x000fffff); 7289 ap = (desc >> 10) & 3; 7290 code = 13; 7291 *page_size = 1024 * 1024; 7292 } else { 7293 /* Lookup l2 entry. */ 7294 if (type == 1) { 7295 /* Coarse pagetable. */ 7296 table = (desc & 0xfffffc00) | ((address >> 10) & 0x3fc); 7297 } else { 7298 /* Fine pagetable. */ 7299 table = (desc & 0xfffff000) | ((address >> 8) & 0xffc); 7300 } 7301 desc = arm_ldl_ptw(cs, table, regime_is_secure(env, mmu_idx), 7302 mmu_idx, fsr, fi); 7303 switch (desc & 3) { 7304 case 0: /* Page translation fault. */ 7305 code = 7; 7306 goto do_fault; 7307 case 1: /* 64k page. */ 7308 phys_addr = (desc & 0xffff0000) | (address & 0xffff); 7309 ap = (desc >> (4 + ((address >> 13) & 6))) & 3; 7310 *page_size = 0x10000; 7311 break; 7312 case 2: /* 4k page. */ 7313 phys_addr = (desc & 0xfffff000) | (address & 0xfff); 7314 ap = (desc >> (4 + ((address >> 9) & 6))) & 3; 7315 *page_size = 0x1000; 7316 break; 7317 case 3: /* 1k page, or ARMv6/XScale "extended small (4k) page" */ 7318 if (type == 1) { 7319 /* ARMv6/XScale extended small page format */ 7320 if (arm_feature(env, ARM_FEATURE_XSCALE) 7321 || arm_feature(env, ARM_FEATURE_V6)) { 7322 phys_addr = (desc & 0xfffff000) | (address & 0xfff); 7323 *page_size = 0x1000; 7324 } else { 7325 /* UNPREDICTABLE in ARMv5; we choose to take a 7326 * page translation fault. 7327 */ 7328 code = 7; 7329 goto do_fault; 7330 } 7331 } else { 7332 phys_addr = (desc & 0xfffffc00) | (address & 0x3ff); 7333 *page_size = 0x400; 7334 } 7335 ap = (desc >> 4) & 3; 7336 break; 7337 default: 7338 /* Never happens, but compiler isn't smart enough to tell. */ 7339 abort(); 7340 } 7341 code = 15; 7342 } 7343 *prot = ap_to_rw_prot(env, mmu_idx, ap, domain_prot); 7344 *prot |= *prot ? PAGE_EXEC : 0; 7345 if (!(*prot & (1 << access_type))) { 7346 /* Access permission fault. */ 7347 goto do_fault; 7348 } 7349 *phys_ptr = phys_addr; 7350 return false; 7351 do_fault: 7352 *fsr = code | (domain << 4); 7353 return true; 7354 } 7355 7356 static bool get_phys_addr_v6(CPUARMState *env, uint32_t address, 7357 int access_type, ARMMMUIdx mmu_idx, 7358 hwaddr *phys_ptr, MemTxAttrs *attrs, int *prot, 7359 target_ulong *page_size, uint32_t *fsr, 7360 ARMMMUFaultInfo *fi) 7361 { 7362 CPUState *cs = CPU(arm_env_get_cpu(env)); 7363 int code; 7364 uint32_t table; 7365 uint32_t desc; 7366 uint32_t xn; 7367 uint32_t pxn = 0; 7368 int type; 7369 int ap; 7370 int domain = 0; 7371 int domain_prot; 7372 hwaddr phys_addr; 7373 uint32_t dacr; 7374 bool ns; 7375 7376 /* Pagetable walk. */ 7377 /* Lookup l1 descriptor. */ 7378 if (!get_level1_table_address(env, mmu_idx, &table, address)) { 7379 /* Section translation fault if page walk is disabled by PD0 or PD1 */ 7380 code = 5; 7381 goto do_fault; 7382 } 7383 desc = arm_ldl_ptw(cs, table, regime_is_secure(env, mmu_idx), 7384 mmu_idx, fsr, fi); 7385 type = (desc & 3); 7386 if (type == 0 || (type == 3 && !arm_feature(env, ARM_FEATURE_PXN))) { 7387 /* Section translation fault, or attempt to use the encoding 7388 * which is Reserved on implementations without PXN. 7389 */ 7390 code = 5; 7391 goto do_fault; 7392 } 7393 if ((type == 1) || !(desc & (1 << 18))) { 7394 /* Page or Section. */ 7395 domain = (desc >> 5) & 0x0f; 7396 } 7397 if (regime_el(env, mmu_idx) == 1) { 7398 dacr = env->cp15.dacr_ns; 7399 } else { 7400 dacr = env->cp15.dacr_s; 7401 } 7402 domain_prot = (dacr >> (domain * 2)) & 3; 7403 if (domain_prot == 0 || domain_prot == 2) { 7404 if (type != 1) { 7405 code = 9; /* Section domain fault. */ 7406 } else { 7407 code = 11; /* Page domain fault. */ 7408 } 7409 goto do_fault; 7410 } 7411 if (type != 1) { 7412 if (desc & (1 << 18)) { 7413 /* Supersection. */ 7414 phys_addr = (desc & 0xff000000) | (address & 0x00ffffff); 7415 phys_addr |= (uint64_t)extract32(desc, 20, 4) << 32; 7416 phys_addr |= (uint64_t)extract32(desc, 5, 4) << 36; 7417 *page_size = 0x1000000; 7418 } else { 7419 /* Section. */ 7420 phys_addr = (desc & 0xfff00000) | (address & 0x000fffff); 7421 *page_size = 0x100000; 7422 } 7423 ap = ((desc >> 10) & 3) | ((desc >> 13) & 4); 7424 xn = desc & (1 << 4); 7425 pxn = desc & 1; 7426 code = 13; 7427 ns = extract32(desc, 19, 1); 7428 } else { 7429 if (arm_feature(env, ARM_FEATURE_PXN)) { 7430 pxn = (desc >> 2) & 1; 7431 } 7432 ns = extract32(desc, 3, 1); 7433 /* Lookup l2 entry. */ 7434 table = (desc & 0xfffffc00) | ((address >> 10) & 0x3fc); 7435 desc = arm_ldl_ptw(cs, table, regime_is_secure(env, mmu_idx), 7436 mmu_idx, fsr, fi); 7437 ap = ((desc >> 4) & 3) | ((desc >> 7) & 4); 7438 switch (desc & 3) { 7439 case 0: /* Page translation fault. */ 7440 code = 7; 7441 goto do_fault; 7442 case 1: /* 64k page. */ 7443 phys_addr = (desc & 0xffff0000) | (address & 0xffff); 7444 xn = desc & (1 << 15); 7445 *page_size = 0x10000; 7446 break; 7447 case 2: case 3: /* 4k page. */ 7448 phys_addr = (desc & 0xfffff000) | (address & 0xfff); 7449 xn = desc & 1; 7450 *page_size = 0x1000; 7451 break; 7452 default: 7453 /* Never happens, but compiler isn't smart enough to tell. */ 7454 abort(); 7455 } 7456 code = 15; 7457 } 7458 if (domain_prot == 3) { 7459 *prot = PAGE_READ | PAGE_WRITE | PAGE_EXEC; 7460 } else { 7461 if (pxn && !regime_is_user(env, mmu_idx)) { 7462 xn = 1; 7463 } 7464 if (xn && access_type == 2) 7465 goto do_fault; 7466 7467 if (arm_feature(env, ARM_FEATURE_V6K) && 7468 (regime_sctlr(env, mmu_idx) & SCTLR_AFE)) { 7469 /* The simplified model uses AP[0] as an access control bit. */ 7470 if ((ap & 1) == 0) { 7471 /* Access flag fault. */ 7472 code = (code == 15) ? 6 : 3; 7473 goto do_fault; 7474 } 7475 *prot = simple_ap_to_rw_prot(env, mmu_idx, ap >> 1); 7476 } else { 7477 *prot = ap_to_rw_prot(env, mmu_idx, ap, domain_prot); 7478 } 7479 if (*prot && !xn) { 7480 *prot |= PAGE_EXEC; 7481 } 7482 if (!(*prot & (1 << access_type))) { 7483 /* Access permission fault. */ 7484 goto do_fault; 7485 } 7486 } 7487 if (ns) { 7488 /* The NS bit will (as required by the architecture) have no effect if 7489 * the CPU doesn't support TZ or this is a non-secure translation 7490 * regime, because the attribute will already be non-secure. 7491 */ 7492 attrs->secure = false; 7493 } 7494 *phys_ptr = phys_addr; 7495 return false; 7496 do_fault: 7497 *fsr = code | (domain << 4); 7498 return true; 7499 } 7500 7501 /* Fault type for long-descriptor MMU fault reporting; this corresponds 7502 * to bits [5..2] in the STATUS field in long-format DFSR/IFSR. 7503 */ 7504 typedef enum { 7505 translation_fault = 1, 7506 access_fault = 2, 7507 permission_fault = 3, 7508 } MMUFaultType; 7509 7510 /* 7511 * check_s2_mmu_setup 7512 * @cpu: ARMCPU 7513 * @is_aa64: True if the translation regime is in AArch64 state 7514 * @startlevel: Suggested starting level 7515 * @inputsize: Bitsize of IPAs 7516 * @stride: Page-table stride (See the ARM ARM) 7517 * 7518 * Returns true if the suggested S2 translation parameters are OK and 7519 * false otherwise. 7520 */ 7521 static bool check_s2_mmu_setup(ARMCPU *cpu, bool is_aa64, int level, 7522 int inputsize, int stride) 7523 { 7524 const int grainsize = stride + 3; 7525 int startsizecheck; 7526 7527 /* Negative levels are never allowed. */ 7528 if (level < 0) { 7529 return false; 7530 } 7531 7532 startsizecheck = inputsize - ((3 - level) * stride + grainsize); 7533 if (startsizecheck < 1 || startsizecheck > stride + 4) { 7534 return false; 7535 } 7536 7537 if (is_aa64) { 7538 CPUARMState *env = &cpu->env; 7539 unsigned int pamax = arm_pamax(cpu); 7540 7541 switch (stride) { 7542 case 13: /* 64KB Pages. */ 7543 if (level == 0 || (level == 1 && pamax <= 42)) { 7544 return false; 7545 } 7546 break; 7547 case 11: /* 16KB Pages. */ 7548 if (level == 0 || (level == 1 && pamax <= 40)) { 7549 return false; 7550 } 7551 break; 7552 case 9: /* 4KB Pages. */ 7553 if (level == 0 && pamax <= 42) { 7554 return false; 7555 } 7556 break; 7557 default: 7558 g_assert_not_reached(); 7559 } 7560 7561 /* Inputsize checks. */ 7562 if (inputsize > pamax && 7563 (arm_el_is_aa64(env, 1) || inputsize > 40)) { 7564 /* This is CONSTRAINED UNPREDICTABLE and we choose to fault. */ 7565 return false; 7566 } 7567 } else { 7568 /* AArch32 only supports 4KB pages. Assert on that. */ 7569 assert(stride == 9); 7570 7571 if (level == 0) { 7572 return false; 7573 } 7574 } 7575 return true; 7576 } 7577 7578 static bool get_phys_addr_lpae(CPUARMState *env, target_ulong address, 7579 int access_type, ARMMMUIdx mmu_idx, 7580 hwaddr *phys_ptr, MemTxAttrs *txattrs, int *prot, 7581 target_ulong *page_size_ptr, uint32_t *fsr, 7582 ARMMMUFaultInfo *fi) 7583 { 7584 ARMCPU *cpu = arm_env_get_cpu(env); 7585 CPUState *cs = CPU(cpu); 7586 /* Read an LPAE long-descriptor translation table. */ 7587 MMUFaultType fault_type = translation_fault; 7588 uint32_t level; 7589 uint32_t epd = 0; 7590 int32_t t0sz, t1sz; 7591 uint32_t tg; 7592 uint64_t ttbr; 7593 int ttbr_select; 7594 hwaddr descaddr, indexmask, indexmask_grainsize; 7595 uint32_t tableattrs; 7596 target_ulong page_size; 7597 uint32_t attrs; 7598 int32_t stride = 9; 7599 int32_t addrsize; 7600 int inputsize; 7601 int32_t tbi = 0; 7602 TCR *tcr = regime_tcr(env, mmu_idx); 7603 int ap, ns, xn, pxn; 7604 uint32_t el = regime_el(env, mmu_idx); 7605 bool ttbr1_valid = true; 7606 uint64_t descaddrmask; 7607 bool aarch64 = arm_el_is_aa64(env, el); 7608 7609 /* TODO: 7610 * This code does not handle the different format TCR for VTCR_EL2. 7611 * This code also does not support shareability levels. 7612 * Attribute and permission bit handling should also be checked when adding 7613 * support for those page table walks. 7614 */ 7615 if (aarch64) { 7616 level = 0; 7617 addrsize = 64; 7618 if (el > 1) { 7619 if (mmu_idx != ARMMMUIdx_S2NS) { 7620 tbi = extract64(tcr->raw_tcr, 20, 1); 7621 } 7622 } else { 7623 if (extract64(address, 55, 1)) { 7624 tbi = extract64(tcr->raw_tcr, 38, 1); 7625 } else { 7626 tbi = extract64(tcr->raw_tcr, 37, 1); 7627 } 7628 } 7629 tbi *= 8; 7630 7631 /* If we are in 64-bit EL2 or EL3 then there is no TTBR1, so mark it 7632 * invalid. 7633 */ 7634 if (el > 1) { 7635 ttbr1_valid = false; 7636 } 7637 } else { 7638 level = 1; 7639 addrsize = 32; 7640 /* There is no TTBR1 for EL2 */ 7641 if (el == 2) { 7642 ttbr1_valid = false; 7643 } 7644 } 7645 7646 /* Determine whether this address is in the region controlled by 7647 * TTBR0 or TTBR1 (or if it is in neither region and should fault). 7648 * This is a Non-secure PL0/1 stage 1 translation, so controlled by 7649 * TTBCR/TTBR0/TTBR1 in accordance with ARM ARM DDI0406C table B-32: 7650 */ 7651 if (aarch64) { 7652 /* AArch64 translation. */ 7653 t0sz = extract32(tcr->raw_tcr, 0, 6); 7654 t0sz = MIN(t0sz, 39); 7655 t0sz = MAX(t0sz, 16); 7656 } else if (mmu_idx != ARMMMUIdx_S2NS) { 7657 /* AArch32 stage 1 translation. */ 7658 t0sz = extract32(tcr->raw_tcr, 0, 3); 7659 } else { 7660 /* AArch32 stage 2 translation. */ 7661 bool sext = extract32(tcr->raw_tcr, 4, 1); 7662 bool sign = extract32(tcr->raw_tcr, 3, 1); 7663 /* Address size is 40-bit for a stage 2 translation, 7664 * and t0sz can be negative (from -8 to 7), 7665 * so we need to adjust it to use the TTBR selecting logic below. 7666 */ 7667 addrsize = 40; 7668 t0sz = sextract32(tcr->raw_tcr, 0, 4) + 8; 7669 7670 /* If the sign-extend bit is not the same as t0sz[3], the result 7671 * is unpredictable. Flag this as a guest error. */ 7672 if (sign != sext) { 7673 qemu_log_mask(LOG_GUEST_ERROR, 7674 "AArch32: VTCR.S / VTCR.T0SZ[3] mismatch\n"); 7675 } 7676 } 7677 t1sz = extract32(tcr->raw_tcr, 16, 6); 7678 if (aarch64) { 7679 t1sz = MIN(t1sz, 39); 7680 t1sz = MAX(t1sz, 16); 7681 } 7682 if (t0sz && !extract64(address, addrsize - t0sz, t0sz - tbi)) { 7683 /* there is a ttbr0 region and we are in it (high bits all zero) */ 7684 ttbr_select = 0; 7685 } else if (ttbr1_valid && t1sz && 7686 !extract64(~address, addrsize - t1sz, t1sz - tbi)) { 7687 /* there is a ttbr1 region and we are in it (high bits all one) */ 7688 ttbr_select = 1; 7689 } else if (!t0sz) { 7690 /* ttbr0 region is "everything not in the ttbr1 region" */ 7691 ttbr_select = 0; 7692 } else if (!t1sz && ttbr1_valid) { 7693 /* ttbr1 region is "everything not in the ttbr0 region" */ 7694 ttbr_select = 1; 7695 } else { 7696 /* in the gap between the two regions, this is a Translation fault */ 7697 fault_type = translation_fault; 7698 goto do_fault; 7699 } 7700 7701 /* Note that QEMU ignores shareability and cacheability attributes, 7702 * so we don't need to do anything with the SH, ORGN, IRGN fields 7703 * in the TTBCR. Similarly, TTBCR:A1 selects whether we get the 7704 * ASID from TTBR0 or TTBR1, but QEMU's TLB doesn't currently 7705 * implement any ASID-like capability so we can ignore it (instead 7706 * we will always flush the TLB any time the ASID is changed). 7707 */ 7708 if (ttbr_select == 0) { 7709 ttbr = regime_ttbr(env, mmu_idx, 0); 7710 if (el < 2) { 7711 epd = extract32(tcr->raw_tcr, 7, 1); 7712 } 7713 inputsize = addrsize - t0sz; 7714 7715 tg = extract32(tcr->raw_tcr, 14, 2); 7716 if (tg == 1) { /* 64KB pages */ 7717 stride = 13; 7718 } 7719 if (tg == 2) { /* 16KB pages */ 7720 stride = 11; 7721 } 7722 } else { 7723 /* We should only be here if TTBR1 is valid */ 7724 assert(ttbr1_valid); 7725 7726 ttbr = regime_ttbr(env, mmu_idx, 1); 7727 epd = extract32(tcr->raw_tcr, 23, 1); 7728 inputsize = addrsize - t1sz; 7729 7730 tg = extract32(tcr->raw_tcr, 30, 2); 7731 if (tg == 3) { /* 64KB pages */ 7732 stride = 13; 7733 } 7734 if (tg == 1) { /* 16KB pages */ 7735 stride = 11; 7736 } 7737 } 7738 7739 /* Here we should have set up all the parameters for the translation: 7740 * inputsize, ttbr, epd, stride, tbi 7741 */ 7742 7743 if (epd) { 7744 /* Translation table walk disabled => Translation fault on TLB miss 7745 * Note: This is always 0 on 64-bit EL2 and EL3. 7746 */ 7747 goto do_fault; 7748 } 7749 7750 if (mmu_idx != ARMMMUIdx_S2NS) { 7751 /* The starting level depends on the virtual address size (which can 7752 * be up to 48 bits) and the translation granule size. It indicates 7753 * the number of strides (stride bits at a time) needed to 7754 * consume the bits of the input address. In the pseudocode this is: 7755 * level = 4 - RoundUp((inputsize - grainsize) / stride) 7756 * where their 'inputsize' is our 'inputsize', 'grainsize' is 7757 * our 'stride + 3' and 'stride' is our 'stride'. 7758 * Applying the usual "rounded up m/n is (m+n-1)/n" and simplifying: 7759 * = 4 - (inputsize - stride - 3 + stride - 1) / stride 7760 * = 4 - (inputsize - 4) / stride; 7761 */ 7762 level = 4 - (inputsize - 4) / stride; 7763 } else { 7764 /* For stage 2 translations the starting level is specified by the 7765 * VTCR_EL2.SL0 field (whose interpretation depends on the page size) 7766 */ 7767 uint32_t sl0 = extract32(tcr->raw_tcr, 6, 2); 7768 uint32_t startlevel; 7769 bool ok; 7770 7771 if (!aarch64 || stride == 9) { 7772 /* AArch32 or 4KB pages */ 7773 startlevel = 2 - sl0; 7774 } else { 7775 /* 16KB or 64KB pages */ 7776 startlevel = 3 - sl0; 7777 } 7778 7779 /* Check that the starting level is valid. */ 7780 ok = check_s2_mmu_setup(cpu, aarch64, startlevel, 7781 inputsize, stride); 7782 if (!ok) { 7783 fault_type = translation_fault; 7784 goto do_fault; 7785 } 7786 level = startlevel; 7787 } 7788 7789 indexmask_grainsize = (1ULL << (stride + 3)) - 1; 7790 indexmask = (1ULL << (inputsize - (stride * (4 - level)))) - 1; 7791 7792 /* Now we can extract the actual base address from the TTBR */ 7793 descaddr = extract64(ttbr, 0, 48); 7794 descaddr &= ~indexmask; 7795 7796 /* The address field in the descriptor goes up to bit 39 for ARMv7 7797 * but up to bit 47 for ARMv8, but we use the descaddrmask 7798 * up to bit 39 for AArch32, because we don't need other bits in that case 7799 * to construct next descriptor address (anyway they should be all zeroes). 7800 */ 7801 descaddrmask = ((1ull << (aarch64 ? 48 : 40)) - 1) & 7802 ~indexmask_grainsize; 7803 7804 /* Secure accesses start with the page table in secure memory and 7805 * can be downgraded to non-secure at any step. Non-secure accesses 7806 * remain non-secure. We implement this by just ORing in the NSTable/NS 7807 * bits at each step. 7808 */ 7809 tableattrs = regime_is_secure(env, mmu_idx) ? 0 : (1 << 4); 7810 for (;;) { 7811 uint64_t descriptor; 7812 bool nstable; 7813 7814 descaddr |= (address >> (stride * (4 - level))) & indexmask; 7815 descaddr &= ~7ULL; 7816 nstable = extract32(tableattrs, 4, 1); 7817 descriptor = arm_ldq_ptw(cs, descaddr, !nstable, mmu_idx, fsr, fi); 7818 if (fi->s1ptw) { 7819 goto do_fault; 7820 } 7821 7822 if (!(descriptor & 1) || 7823 (!(descriptor & 2) && (level == 3))) { 7824 /* Invalid, or the Reserved level 3 encoding */ 7825 goto do_fault; 7826 } 7827 descaddr = descriptor & descaddrmask; 7828 7829 if ((descriptor & 2) && (level < 3)) { 7830 /* Table entry. The top five bits are attributes which may 7831 * propagate down through lower levels of the table (and 7832 * which are all arranged so that 0 means "no effect", so 7833 * we can gather them up by ORing in the bits at each level). 7834 */ 7835 tableattrs |= extract64(descriptor, 59, 5); 7836 level++; 7837 indexmask = indexmask_grainsize; 7838 continue; 7839 } 7840 /* Block entry at level 1 or 2, or page entry at level 3. 7841 * These are basically the same thing, although the number 7842 * of bits we pull in from the vaddr varies. 7843 */ 7844 page_size = (1ULL << ((stride * (4 - level)) + 3)); 7845 descaddr |= (address & (page_size - 1)); 7846 /* Extract attributes from the descriptor */ 7847 attrs = extract64(descriptor, 2, 10) 7848 | (extract64(descriptor, 52, 12) << 10); 7849 7850 if (mmu_idx == ARMMMUIdx_S2NS) { 7851 /* Stage 2 table descriptors do not include any attribute fields */ 7852 break; 7853 } 7854 /* Merge in attributes from table descriptors */ 7855 attrs |= extract32(tableattrs, 0, 2) << 11; /* XN, PXN */ 7856 attrs |= extract32(tableattrs, 3, 1) << 5; /* APTable[1] => AP[2] */ 7857 /* The sense of AP[1] vs APTable[0] is reversed, as APTable[0] == 1 7858 * means "force PL1 access only", which means forcing AP[1] to 0. 7859 */ 7860 if (extract32(tableattrs, 2, 1)) { 7861 attrs &= ~(1 << 4); 7862 } 7863 attrs |= nstable << 3; /* NS */ 7864 break; 7865 } 7866 /* Here descaddr is the final physical address, and attributes 7867 * are all in attrs. 7868 */ 7869 fault_type = access_fault; 7870 if ((attrs & (1 << 8)) == 0) { 7871 /* Access flag */ 7872 goto do_fault; 7873 } 7874 7875 ap = extract32(attrs, 4, 2); 7876 xn = extract32(attrs, 12, 1); 7877 7878 if (mmu_idx == ARMMMUIdx_S2NS) { 7879 ns = true; 7880 *prot = get_S2prot(env, ap, xn); 7881 } else { 7882 ns = extract32(attrs, 3, 1); 7883 pxn = extract32(attrs, 11, 1); 7884 *prot = get_S1prot(env, mmu_idx, aarch64, ap, ns, xn, pxn); 7885 } 7886 7887 fault_type = permission_fault; 7888 if (!(*prot & (1 << access_type))) { 7889 goto do_fault; 7890 } 7891 7892 if (ns) { 7893 /* The NS bit will (as required by the architecture) have no effect if 7894 * the CPU doesn't support TZ or this is a non-secure translation 7895 * regime, because the attribute will already be non-secure. 7896 */ 7897 txattrs->secure = false; 7898 } 7899 *phys_ptr = descaddr; 7900 *page_size_ptr = page_size; 7901 return false; 7902 7903 do_fault: 7904 /* Long-descriptor format IFSR/DFSR value */ 7905 *fsr = (1 << 9) | (fault_type << 2) | level; 7906 /* Tag the error as S2 for failed S1 PTW at S2 or ordinary S2. */ 7907 fi->stage2 = fi->s1ptw || (mmu_idx == ARMMMUIdx_S2NS); 7908 return true; 7909 } 7910 7911 static inline void get_phys_addr_pmsav7_default(CPUARMState *env, 7912 ARMMMUIdx mmu_idx, 7913 int32_t address, int *prot) 7914 { 7915 *prot = PAGE_READ | PAGE_WRITE; 7916 switch (address) { 7917 case 0xF0000000 ... 0xFFFFFFFF: 7918 if (regime_sctlr(env, mmu_idx) & SCTLR_V) { /* hivecs execing is ok */ 7919 *prot |= PAGE_EXEC; 7920 } 7921 break; 7922 case 0x00000000 ... 0x7FFFFFFF: 7923 *prot |= PAGE_EXEC; 7924 break; 7925 } 7926 7927 } 7928 7929 static bool get_phys_addr_pmsav7(CPUARMState *env, uint32_t address, 7930 int access_type, ARMMMUIdx mmu_idx, 7931 hwaddr *phys_ptr, int *prot, uint32_t *fsr) 7932 { 7933 ARMCPU *cpu = arm_env_get_cpu(env); 7934 int n; 7935 bool is_user = regime_is_user(env, mmu_idx); 7936 7937 *phys_ptr = address; 7938 *prot = 0; 7939 7940 if (regime_translation_disabled(env, mmu_idx)) { /* MPU disabled */ 7941 get_phys_addr_pmsav7_default(env, mmu_idx, address, prot); 7942 } else { /* MPU enabled */ 7943 for (n = (int)cpu->pmsav7_dregion - 1; n >= 0; n--) { 7944 /* region search */ 7945 uint32_t base = env->pmsav7.drbar[n]; 7946 uint32_t rsize = extract32(env->pmsav7.drsr[n], 1, 5); 7947 uint32_t rmask; 7948 bool srdis = false; 7949 7950 if (!(env->pmsav7.drsr[n] & 0x1)) { 7951 continue; 7952 } 7953 7954 if (!rsize) { 7955 qemu_log_mask(LOG_GUEST_ERROR, "DRSR.Rsize field can not be 0"); 7956 continue; 7957 } 7958 rsize++; 7959 rmask = (1ull << rsize) - 1; 7960 7961 if (base & rmask) { 7962 qemu_log_mask(LOG_GUEST_ERROR, "DRBAR %" PRIx32 " misaligned " 7963 "to DRSR region size, mask = %" PRIx32, 7964 base, rmask); 7965 continue; 7966 } 7967 7968 if (address < base || address > base + rmask) { 7969 continue; 7970 } 7971 7972 /* Region matched */ 7973 7974 if (rsize >= 8) { /* no subregions for regions < 256 bytes */ 7975 int i, snd; 7976 uint32_t srdis_mask; 7977 7978 rsize -= 3; /* sub region size (power of 2) */ 7979 snd = ((address - base) >> rsize) & 0x7; 7980 srdis = extract32(env->pmsav7.drsr[n], snd + 8, 1); 7981 7982 srdis_mask = srdis ? 0x3 : 0x0; 7983 for (i = 2; i <= 8 && rsize < TARGET_PAGE_BITS; i *= 2) { 7984 /* This will check in groups of 2, 4 and then 8, whether 7985 * the subregion bits are consistent. rsize is incremented 7986 * back up to give the region size, considering consistent 7987 * adjacent subregions as one region. Stop testing if rsize 7988 * is already big enough for an entire QEMU page. 7989 */ 7990 int snd_rounded = snd & ~(i - 1); 7991 uint32_t srdis_multi = extract32(env->pmsav7.drsr[n], 7992 snd_rounded + 8, i); 7993 if (srdis_mask ^ srdis_multi) { 7994 break; 7995 } 7996 srdis_mask = (srdis_mask << i) | srdis_mask; 7997 rsize++; 7998 } 7999 } 8000 if (rsize < TARGET_PAGE_BITS) { 8001 qemu_log_mask(LOG_UNIMP, "No support for MPU (sub)region" 8002 "alignment of %" PRIu32 " bits. Minimum is %d\n", 8003 rsize, TARGET_PAGE_BITS); 8004 continue; 8005 } 8006 if (srdis) { 8007 continue; 8008 } 8009 break; 8010 } 8011 8012 if (n == -1) { /* no hits */ 8013 if (cpu->pmsav7_dregion && 8014 (is_user || !(regime_sctlr(env, mmu_idx) & SCTLR_BR))) { 8015 /* background fault */ 8016 *fsr = 0; 8017 return true; 8018 } 8019 get_phys_addr_pmsav7_default(env, mmu_idx, address, prot); 8020 } else { /* a MPU hit! */ 8021 uint32_t ap = extract32(env->pmsav7.dracr[n], 8, 3); 8022 8023 if (is_user) { /* User mode AP bit decoding */ 8024 switch (ap) { 8025 case 0: 8026 case 1: 8027 case 5: 8028 break; /* no access */ 8029 case 3: 8030 *prot |= PAGE_WRITE; 8031 /* fall through */ 8032 case 2: 8033 case 6: 8034 *prot |= PAGE_READ | PAGE_EXEC; 8035 break; 8036 default: 8037 qemu_log_mask(LOG_GUEST_ERROR, 8038 "Bad value for AP bits in DRACR %" 8039 PRIx32 "\n", ap); 8040 } 8041 } else { /* Priv. mode AP bits decoding */ 8042 switch (ap) { 8043 case 0: 8044 break; /* no access */ 8045 case 1: 8046 case 2: 8047 case 3: 8048 *prot |= PAGE_WRITE; 8049 /* fall through */ 8050 case 5: 8051 case 6: 8052 *prot |= PAGE_READ | PAGE_EXEC; 8053 break; 8054 default: 8055 qemu_log_mask(LOG_GUEST_ERROR, 8056 "Bad value for AP bits in DRACR %" 8057 PRIx32 "\n", ap); 8058 } 8059 } 8060 8061 /* execute never */ 8062 if (env->pmsav7.dracr[n] & (1 << 12)) { 8063 *prot &= ~PAGE_EXEC; 8064 } 8065 } 8066 } 8067 8068 *fsr = 0x00d; /* Permission fault */ 8069 return !(*prot & (1 << access_type)); 8070 } 8071 8072 static bool get_phys_addr_pmsav5(CPUARMState *env, uint32_t address, 8073 int access_type, ARMMMUIdx mmu_idx, 8074 hwaddr *phys_ptr, int *prot, uint32_t *fsr) 8075 { 8076 int n; 8077 uint32_t mask; 8078 uint32_t base; 8079 bool is_user = regime_is_user(env, mmu_idx); 8080 8081 *phys_ptr = address; 8082 for (n = 7; n >= 0; n--) { 8083 base = env->cp15.c6_region[n]; 8084 if ((base & 1) == 0) { 8085 continue; 8086 } 8087 mask = 1 << ((base >> 1) & 0x1f); 8088 /* Keep this shift separate from the above to avoid an 8089 (undefined) << 32. */ 8090 mask = (mask << 1) - 1; 8091 if (((base ^ address) & ~mask) == 0) { 8092 break; 8093 } 8094 } 8095 if (n < 0) { 8096 *fsr = 2; 8097 return true; 8098 } 8099 8100 if (access_type == 2) { 8101 mask = env->cp15.pmsav5_insn_ap; 8102 } else { 8103 mask = env->cp15.pmsav5_data_ap; 8104 } 8105 mask = (mask >> (n * 4)) & 0xf; 8106 switch (mask) { 8107 case 0: 8108 *fsr = 1; 8109 return true; 8110 case 1: 8111 if (is_user) { 8112 *fsr = 1; 8113 return true; 8114 } 8115 *prot = PAGE_READ | PAGE_WRITE; 8116 break; 8117 case 2: 8118 *prot = PAGE_READ; 8119 if (!is_user) { 8120 *prot |= PAGE_WRITE; 8121 } 8122 break; 8123 case 3: 8124 *prot = PAGE_READ | PAGE_WRITE; 8125 break; 8126 case 5: 8127 if (is_user) { 8128 *fsr = 1; 8129 return true; 8130 } 8131 *prot = PAGE_READ; 8132 break; 8133 case 6: 8134 *prot = PAGE_READ; 8135 break; 8136 default: 8137 /* Bad permission. */ 8138 *fsr = 1; 8139 return true; 8140 } 8141 *prot |= PAGE_EXEC; 8142 return false; 8143 } 8144 8145 /* get_phys_addr - get the physical address for this virtual address 8146 * 8147 * Find the physical address corresponding to the given virtual address, 8148 * by doing a translation table walk on MMU based systems or using the 8149 * MPU state on MPU based systems. 8150 * 8151 * Returns false if the translation was successful. Otherwise, phys_ptr, attrs, 8152 * prot and page_size may not be filled in, and the populated fsr value provides 8153 * information on why the translation aborted, in the format of a 8154 * DFSR/IFSR fault register, with the following caveats: 8155 * * we honour the short vs long DFSR format differences. 8156 * * the WnR bit is never set (the caller must do this). 8157 * * for PSMAv5 based systems we don't bother to return a full FSR format 8158 * value. 8159 * 8160 * @env: CPUARMState 8161 * @address: virtual address to get physical address for 8162 * @access_type: 0 for read, 1 for write, 2 for execute 8163 * @mmu_idx: MMU index indicating required translation regime 8164 * @phys_ptr: set to the physical address corresponding to the virtual address 8165 * @attrs: set to the memory transaction attributes to use 8166 * @prot: set to the permissions for the page containing phys_ptr 8167 * @page_size: set to the size of the page containing phys_ptr 8168 * @fsr: set to the DFSR/IFSR value on failure 8169 */ 8170 static bool get_phys_addr(CPUARMState *env, target_ulong address, 8171 int access_type, ARMMMUIdx mmu_idx, 8172 hwaddr *phys_ptr, MemTxAttrs *attrs, int *prot, 8173 target_ulong *page_size, uint32_t *fsr, 8174 ARMMMUFaultInfo *fi) 8175 { 8176 if (mmu_idx == ARMMMUIdx_S12NSE0 || mmu_idx == ARMMMUIdx_S12NSE1) { 8177 /* Call ourselves recursively to do the stage 1 and then stage 2 8178 * translations. 8179 */ 8180 if (arm_feature(env, ARM_FEATURE_EL2)) { 8181 hwaddr ipa; 8182 int s2_prot; 8183 int ret; 8184 8185 ret = get_phys_addr(env, address, access_type, 8186 mmu_idx + ARMMMUIdx_S1NSE0, &ipa, attrs, 8187 prot, page_size, fsr, fi); 8188 8189 /* If S1 fails or S2 is disabled, return early. */ 8190 if (ret || regime_translation_disabled(env, ARMMMUIdx_S2NS)) { 8191 *phys_ptr = ipa; 8192 return ret; 8193 } 8194 8195 /* S1 is done. Now do S2 translation. */ 8196 ret = get_phys_addr_lpae(env, ipa, access_type, ARMMMUIdx_S2NS, 8197 phys_ptr, attrs, &s2_prot, 8198 page_size, fsr, fi); 8199 fi->s2addr = ipa; 8200 /* Combine the S1 and S2 perms. */ 8201 *prot &= s2_prot; 8202 return ret; 8203 } else { 8204 /* 8205 * For non-EL2 CPUs a stage1+stage2 translation is just stage 1. 8206 */ 8207 mmu_idx += ARMMMUIdx_S1NSE0; 8208 } 8209 } 8210 8211 /* The page table entries may downgrade secure to non-secure, but 8212 * cannot upgrade an non-secure translation regime's attributes 8213 * to secure. 8214 */ 8215 attrs->secure = regime_is_secure(env, mmu_idx); 8216 attrs->user = regime_is_user(env, mmu_idx); 8217 8218 /* Fast Context Switch Extension. This doesn't exist at all in v8. 8219 * In v7 and earlier it affects all stage 1 translations. 8220 */ 8221 if (address < 0x02000000 && mmu_idx != ARMMMUIdx_S2NS 8222 && !arm_feature(env, ARM_FEATURE_V8)) { 8223 if (regime_el(env, mmu_idx) == 3) { 8224 address += env->cp15.fcseidr_s; 8225 } else { 8226 address += env->cp15.fcseidr_ns; 8227 } 8228 } 8229 8230 /* pmsav7 has special handling for when MPU is disabled so call it before 8231 * the common MMU/MPU disabled check below. 8232 */ 8233 if (arm_feature(env, ARM_FEATURE_MPU) && 8234 arm_feature(env, ARM_FEATURE_V7)) { 8235 *page_size = TARGET_PAGE_SIZE; 8236 return get_phys_addr_pmsav7(env, address, access_type, mmu_idx, 8237 phys_ptr, prot, fsr); 8238 } 8239 8240 if (regime_translation_disabled(env, mmu_idx)) { 8241 /* MMU/MPU disabled. */ 8242 *phys_ptr = address; 8243 *prot = PAGE_READ | PAGE_WRITE | PAGE_EXEC; 8244 *page_size = TARGET_PAGE_SIZE; 8245 return 0; 8246 } 8247 8248 if (arm_feature(env, ARM_FEATURE_MPU)) { 8249 /* Pre-v7 MPU */ 8250 *page_size = TARGET_PAGE_SIZE; 8251 return get_phys_addr_pmsav5(env, address, access_type, mmu_idx, 8252 phys_ptr, prot, fsr); 8253 } 8254 8255 if (regime_using_lpae_format(env, mmu_idx)) { 8256 return get_phys_addr_lpae(env, address, access_type, mmu_idx, phys_ptr, 8257 attrs, prot, page_size, fsr, fi); 8258 } else if (regime_sctlr(env, mmu_idx) & SCTLR_XP) { 8259 return get_phys_addr_v6(env, address, access_type, mmu_idx, phys_ptr, 8260 attrs, prot, page_size, fsr, fi); 8261 } else { 8262 return get_phys_addr_v5(env, address, access_type, mmu_idx, phys_ptr, 8263 prot, page_size, fsr, fi); 8264 } 8265 } 8266 8267 /* Walk the page table and (if the mapping exists) add the page 8268 * to the TLB. Return false on success, or true on failure. Populate 8269 * fsr with ARM DFSR/IFSR fault register format value on failure. 8270 */ 8271 bool arm_tlb_fill(CPUState *cs, vaddr address, 8272 int access_type, int mmu_idx, uint32_t *fsr, 8273 ARMMMUFaultInfo *fi) 8274 { 8275 ARMCPU *cpu = ARM_CPU(cs); 8276 CPUARMState *env = &cpu->env; 8277 hwaddr phys_addr; 8278 target_ulong page_size; 8279 int prot; 8280 int ret; 8281 MemTxAttrs attrs = {}; 8282 8283 ret = get_phys_addr(env, address, access_type, mmu_idx, &phys_addr, 8284 &attrs, &prot, &page_size, fsr, fi); 8285 if (!ret) { 8286 /* Map a single [sub]page. */ 8287 phys_addr &= TARGET_PAGE_MASK; 8288 address &= TARGET_PAGE_MASK; 8289 tlb_set_page_with_attrs(cs, address, phys_addr, attrs, 8290 prot, mmu_idx, page_size); 8291 return 0; 8292 } 8293 8294 return ret; 8295 } 8296 8297 hwaddr arm_cpu_get_phys_page_attrs_debug(CPUState *cs, vaddr addr, 8298 MemTxAttrs *attrs) 8299 { 8300 ARMCPU *cpu = ARM_CPU(cs); 8301 CPUARMState *env = &cpu->env; 8302 hwaddr phys_addr; 8303 target_ulong page_size; 8304 int prot; 8305 bool ret; 8306 uint32_t fsr; 8307 ARMMMUFaultInfo fi = {}; 8308 8309 *attrs = (MemTxAttrs) {}; 8310 8311 ret = get_phys_addr(env, addr, 0, cpu_mmu_index(env, false), &phys_addr, 8312 attrs, &prot, &page_size, &fsr, &fi); 8313 8314 if (ret) { 8315 return -1; 8316 } 8317 return phys_addr; 8318 } 8319 8320 uint32_t HELPER(v7m_mrs)(CPUARMState *env, uint32_t reg) 8321 { 8322 uint32_t mask; 8323 unsigned el = arm_current_el(env); 8324 8325 /* First handle registers which unprivileged can read */ 8326 8327 switch (reg) { 8328 case 0 ... 7: /* xPSR sub-fields */ 8329 mask = 0; 8330 if ((reg & 1) && el) { 8331 mask |= 0x000001ff; /* IPSR (unpriv. reads as zero) */ 8332 } 8333 if (!(reg & 4)) { 8334 mask |= 0xf8000000; /* APSR */ 8335 } 8336 /* EPSR reads as zero */ 8337 return xpsr_read(env) & mask; 8338 break; 8339 case 20: /* CONTROL */ 8340 return env->v7m.control; 8341 } 8342 8343 if (el == 0) { 8344 return 0; /* unprivileged reads others as zero */ 8345 } 8346 8347 switch (reg) { 8348 case 8: /* MSP */ 8349 return (env->v7m.control & R_V7M_CONTROL_SPSEL_MASK) ? 8350 env->v7m.other_sp : env->regs[13]; 8351 case 9: /* PSP */ 8352 return (env->v7m.control & R_V7M_CONTROL_SPSEL_MASK) ? 8353 env->regs[13] : env->v7m.other_sp; 8354 case 16: /* PRIMASK */ 8355 return (env->daif & PSTATE_I) != 0; 8356 case 17: /* BASEPRI */ 8357 case 18: /* BASEPRI_MAX */ 8358 return env->v7m.basepri; 8359 case 19: /* FAULTMASK */ 8360 return (env->daif & PSTATE_F) != 0; 8361 default: 8362 qemu_log_mask(LOG_GUEST_ERROR, "Attempt to read unknown special" 8363 " register %d\n", reg); 8364 return 0; 8365 } 8366 } 8367 8368 void HELPER(v7m_msr)(CPUARMState *env, uint32_t reg, uint32_t val) 8369 { 8370 if (arm_current_el(env) == 0 && reg > 7) { 8371 /* only xPSR sub-fields may be written by unprivileged */ 8372 return; 8373 } 8374 8375 switch (reg) { 8376 case 0 ... 7: /* xPSR sub-fields */ 8377 /* only APSR is actually writable */ 8378 if (reg & 4) { 8379 xpsr_write(env, val, 0xf8000000); /* APSR */ 8380 } 8381 break; 8382 case 8: /* MSP */ 8383 if (env->v7m.control & R_V7M_CONTROL_SPSEL_MASK) { 8384 env->v7m.other_sp = val; 8385 } else { 8386 env->regs[13] = val; 8387 } 8388 break; 8389 case 9: /* PSP */ 8390 if (env->v7m.control & R_V7M_CONTROL_SPSEL_MASK) { 8391 env->regs[13] = val; 8392 } else { 8393 env->v7m.other_sp = val; 8394 } 8395 break; 8396 case 16: /* PRIMASK */ 8397 if (val & 1) { 8398 env->daif |= PSTATE_I; 8399 } else { 8400 env->daif &= ~PSTATE_I; 8401 } 8402 break; 8403 case 17: /* BASEPRI */ 8404 env->v7m.basepri = val & 0xff; 8405 break; 8406 case 18: /* BASEPRI_MAX */ 8407 val &= 0xff; 8408 if (val != 0 && (val < env->v7m.basepri || env->v7m.basepri == 0)) 8409 env->v7m.basepri = val; 8410 break; 8411 case 19: /* FAULTMASK */ 8412 if (val & 1) { 8413 env->daif |= PSTATE_F; 8414 } else { 8415 env->daif &= ~PSTATE_F; 8416 } 8417 break; 8418 case 20: /* CONTROL */ 8419 switch_v7m_sp(env, (val & R_V7M_CONTROL_SPSEL_MASK) != 0); 8420 env->v7m.control = val & (R_V7M_CONTROL_SPSEL_MASK | 8421 R_V7M_CONTROL_NPRIV_MASK); 8422 break; 8423 default: 8424 qemu_log_mask(LOG_GUEST_ERROR, "Attempt to write unknown special" 8425 " register %d\n", reg); 8426 return; 8427 } 8428 } 8429 8430 #endif 8431 8432 void HELPER(dc_zva)(CPUARMState *env, uint64_t vaddr_in) 8433 { 8434 /* Implement DC ZVA, which zeroes a fixed-length block of memory. 8435 * Note that we do not implement the (architecturally mandated) 8436 * alignment fault for attempts to use this on Device memory 8437 * (which matches the usual QEMU behaviour of not implementing either 8438 * alignment faults or any memory attribute handling). 8439 */ 8440 8441 ARMCPU *cpu = arm_env_get_cpu(env); 8442 uint64_t blocklen = 4 << cpu->dcz_blocksize; 8443 uint64_t vaddr = vaddr_in & ~(blocklen - 1); 8444 8445 #ifndef CONFIG_USER_ONLY 8446 { 8447 /* Slightly awkwardly, QEMU's TARGET_PAGE_SIZE may be less than 8448 * the block size so we might have to do more than one TLB lookup. 8449 * We know that in fact for any v8 CPU the page size is at least 4K 8450 * and the block size must be 2K or less, but TARGET_PAGE_SIZE is only 8451 * 1K as an artefact of legacy v5 subpage support being present in the 8452 * same QEMU executable. 8453 */ 8454 int maxidx = DIV_ROUND_UP(blocklen, TARGET_PAGE_SIZE); 8455 void *hostaddr[maxidx]; 8456 int try, i; 8457 unsigned mmu_idx = cpu_mmu_index(env, false); 8458 TCGMemOpIdx oi = make_memop_idx(MO_UB, mmu_idx); 8459 8460 for (try = 0; try < 2; try++) { 8461 8462 for (i = 0; i < maxidx; i++) { 8463 hostaddr[i] = tlb_vaddr_to_host(env, 8464 vaddr + TARGET_PAGE_SIZE * i, 8465 1, mmu_idx); 8466 if (!hostaddr[i]) { 8467 break; 8468 } 8469 } 8470 if (i == maxidx) { 8471 /* If it's all in the TLB it's fair game for just writing to; 8472 * we know we don't need to update dirty status, etc. 8473 */ 8474 for (i = 0; i < maxidx - 1; i++) { 8475 memset(hostaddr[i], 0, TARGET_PAGE_SIZE); 8476 } 8477 memset(hostaddr[i], 0, blocklen - (i * TARGET_PAGE_SIZE)); 8478 return; 8479 } 8480 /* OK, try a store and see if we can populate the tlb. This 8481 * might cause an exception if the memory isn't writable, 8482 * in which case we will longjmp out of here. We must for 8483 * this purpose use the actual register value passed to us 8484 * so that we get the fault address right. 8485 */ 8486 helper_ret_stb_mmu(env, vaddr_in, 0, oi, GETPC()); 8487 /* Now we can populate the other TLB entries, if any */ 8488 for (i = 0; i < maxidx; i++) { 8489 uint64_t va = vaddr + TARGET_PAGE_SIZE * i; 8490 if (va != (vaddr_in & TARGET_PAGE_MASK)) { 8491 helper_ret_stb_mmu(env, va, 0, oi, GETPC()); 8492 } 8493 } 8494 } 8495 8496 /* Slow path (probably attempt to do this to an I/O device or 8497 * similar, or clearing of a block of code we have translations 8498 * cached for). Just do a series of byte writes as the architecture 8499 * demands. It's not worth trying to use a cpu_physical_memory_map(), 8500 * memset(), unmap() sequence here because: 8501 * + we'd need to account for the blocksize being larger than a page 8502 * + the direct-RAM access case is almost always going to be dealt 8503 * with in the fastpath code above, so there's no speed benefit 8504 * + we would have to deal with the map returning NULL because the 8505 * bounce buffer was in use 8506 */ 8507 for (i = 0; i < blocklen; i++) { 8508 helper_ret_stb_mmu(env, vaddr + i, 0, oi, GETPC()); 8509 } 8510 } 8511 #else 8512 memset(g2h(vaddr), 0, blocklen); 8513 #endif 8514 } 8515 8516 /* Note that signed overflow is undefined in C. The following routines are 8517 careful to use unsigned types where modulo arithmetic is required. 8518 Failure to do so _will_ break on newer gcc. */ 8519 8520 /* Signed saturating arithmetic. */ 8521 8522 /* Perform 16-bit signed saturating addition. */ 8523 static inline uint16_t add16_sat(uint16_t a, uint16_t b) 8524 { 8525 uint16_t res; 8526 8527 res = a + b; 8528 if (((res ^ a) & 0x8000) && !((a ^ b) & 0x8000)) { 8529 if (a & 0x8000) 8530 res = 0x8000; 8531 else 8532 res = 0x7fff; 8533 } 8534 return res; 8535 } 8536 8537 /* Perform 8-bit signed saturating addition. */ 8538 static inline uint8_t add8_sat(uint8_t a, uint8_t b) 8539 { 8540 uint8_t res; 8541 8542 res = a + b; 8543 if (((res ^ a) & 0x80) && !((a ^ b) & 0x80)) { 8544 if (a & 0x80) 8545 res = 0x80; 8546 else 8547 res = 0x7f; 8548 } 8549 return res; 8550 } 8551 8552 /* Perform 16-bit signed saturating subtraction. */ 8553 static inline uint16_t sub16_sat(uint16_t a, uint16_t b) 8554 { 8555 uint16_t res; 8556 8557 res = a - b; 8558 if (((res ^ a) & 0x8000) && ((a ^ b) & 0x8000)) { 8559 if (a & 0x8000) 8560 res = 0x8000; 8561 else 8562 res = 0x7fff; 8563 } 8564 return res; 8565 } 8566 8567 /* Perform 8-bit signed saturating subtraction. */ 8568 static inline uint8_t sub8_sat(uint8_t a, uint8_t b) 8569 { 8570 uint8_t res; 8571 8572 res = a - b; 8573 if (((res ^ a) & 0x80) && ((a ^ b) & 0x80)) { 8574 if (a & 0x80) 8575 res = 0x80; 8576 else 8577 res = 0x7f; 8578 } 8579 return res; 8580 } 8581 8582 #define ADD16(a, b, n) RESULT(add16_sat(a, b), n, 16); 8583 #define SUB16(a, b, n) RESULT(sub16_sat(a, b), n, 16); 8584 #define ADD8(a, b, n) RESULT(add8_sat(a, b), n, 8); 8585 #define SUB8(a, b, n) RESULT(sub8_sat(a, b), n, 8); 8586 #define PFX q 8587 8588 #include "op_addsub.h" 8589 8590 /* Unsigned saturating arithmetic. */ 8591 static inline uint16_t add16_usat(uint16_t a, uint16_t b) 8592 { 8593 uint16_t res; 8594 res = a + b; 8595 if (res < a) 8596 res = 0xffff; 8597 return res; 8598 } 8599 8600 static inline uint16_t sub16_usat(uint16_t a, uint16_t b) 8601 { 8602 if (a > b) 8603 return a - b; 8604 else 8605 return 0; 8606 } 8607 8608 static inline uint8_t add8_usat(uint8_t a, uint8_t b) 8609 { 8610 uint8_t res; 8611 res = a + b; 8612 if (res < a) 8613 res = 0xff; 8614 return res; 8615 } 8616 8617 static inline uint8_t sub8_usat(uint8_t a, uint8_t b) 8618 { 8619 if (a > b) 8620 return a - b; 8621 else 8622 return 0; 8623 } 8624 8625 #define ADD16(a, b, n) RESULT(add16_usat(a, b), n, 16); 8626 #define SUB16(a, b, n) RESULT(sub16_usat(a, b), n, 16); 8627 #define ADD8(a, b, n) RESULT(add8_usat(a, b), n, 8); 8628 #define SUB8(a, b, n) RESULT(sub8_usat(a, b), n, 8); 8629 #define PFX uq 8630 8631 #include "op_addsub.h" 8632 8633 /* Signed modulo arithmetic. */ 8634 #define SARITH16(a, b, n, op) do { \ 8635 int32_t sum; \ 8636 sum = (int32_t)(int16_t)(a) op (int32_t)(int16_t)(b); \ 8637 RESULT(sum, n, 16); \ 8638 if (sum >= 0) \ 8639 ge |= 3 << (n * 2); \ 8640 } while(0) 8641 8642 #define SARITH8(a, b, n, op) do { \ 8643 int32_t sum; \ 8644 sum = (int32_t)(int8_t)(a) op (int32_t)(int8_t)(b); \ 8645 RESULT(sum, n, 8); \ 8646 if (sum >= 0) \ 8647 ge |= 1 << n; \ 8648 } while(0) 8649 8650 8651 #define ADD16(a, b, n) SARITH16(a, b, n, +) 8652 #define SUB16(a, b, n) SARITH16(a, b, n, -) 8653 #define ADD8(a, b, n) SARITH8(a, b, n, +) 8654 #define SUB8(a, b, n) SARITH8(a, b, n, -) 8655 #define PFX s 8656 #define ARITH_GE 8657 8658 #include "op_addsub.h" 8659 8660 /* Unsigned modulo arithmetic. */ 8661 #define ADD16(a, b, n) do { \ 8662 uint32_t sum; \ 8663 sum = (uint32_t)(uint16_t)(a) + (uint32_t)(uint16_t)(b); \ 8664 RESULT(sum, n, 16); \ 8665 if ((sum >> 16) == 1) \ 8666 ge |= 3 << (n * 2); \ 8667 } while(0) 8668 8669 #define ADD8(a, b, n) do { \ 8670 uint32_t sum; \ 8671 sum = (uint32_t)(uint8_t)(a) + (uint32_t)(uint8_t)(b); \ 8672 RESULT(sum, n, 8); \ 8673 if ((sum >> 8) == 1) \ 8674 ge |= 1 << n; \ 8675 } while(0) 8676 8677 #define SUB16(a, b, n) do { \ 8678 uint32_t sum; \ 8679 sum = (uint32_t)(uint16_t)(a) - (uint32_t)(uint16_t)(b); \ 8680 RESULT(sum, n, 16); \ 8681 if ((sum >> 16) == 0) \ 8682 ge |= 3 << (n * 2); \ 8683 } while(0) 8684 8685 #define SUB8(a, b, n) do { \ 8686 uint32_t sum; \ 8687 sum = (uint32_t)(uint8_t)(a) - (uint32_t)(uint8_t)(b); \ 8688 RESULT(sum, n, 8); \ 8689 if ((sum >> 8) == 0) \ 8690 ge |= 1 << n; \ 8691 } while(0) 8692 8693 #define PFX u 8694 #define ARITH_GE 8695 8696 #include "op_addsub.h" 8697 8698 /* Halved signed arithmetic. */ 8699 #define ADD16(a, b, n) \ 8700 RESULT(((int32_t)(int16_t)(a) + (int32_t)(int16_t)(b)) >> 1, n, 16) 8701 #define SUB16(a, b, n) \ 8702 RESULT(((int32_t)(int16_t)(a) - (int32_t)(int16_t)(b)) >> 1, n, 16) 8703 #define ADD8(a, b, n) \ 8704 RESULT(((int32_t)(int8_t)(a) + (int32_t)(int8_t)(b)) >> 1, n, 8) 8705 #define SUB8(a, b, n) \ 8706 RESULT(((int32_t)(int8_t)(a) - (int32_t)(int8_t)(b)) >> 1, n, 8) 8707 #define PFX sh 8708 8709 #include "op_addsub.h" 8710 8711 /* Halved unsigned arithmetic. */ 8712 #define ADD16(a, b, n) \ 8713 RESULT(((uint32_t)(uint16_t)(a) + (uint32_t)(uint16_t)(b)) >> 1, n, 16) 8714 #define SUB16(a, b, n) \ 8715 RESULT(((uint32_t)(uint16_t)(a) - (uint32_t)(uint16_t)(b)) >> 1, n, 16) 8716 #define ADD8(a, b, n) \ 8717 RESULT(((uint32_t)(uint8_t)(a) + (uint32_t)(uint8_t)(b)) >> 1, n, 8) 8718 #define SUB8(a, b, n) \ 8719 RESULT(((uint32_t)(uint8_t)(a) - (uint32_t)(uint8_t)(b)) >> 1, n, 8) 8720 #define PFX uh 8721 8722 #include "op_addsub.h" 8723 8724 static inline uint8_t do_usad(uint8_t a, uint8_t b) 8725 { 8726 if (a > b) 8727 return a - b; 8728 else 8729 return b - a; 8730 } 8731 8732 /* Unsigned sum of absolute byte differences. */ 8733 uint32_t HELPER(usad8)(uint32_t a, uint32_t b) 8734 { 8735 uint32_t sum; 8736 sum = do_usad(a, b); 8737 sum += do_usad(a >> 8, b >> 8); 8738 sum += do_usad(a >> 16, b >>16); 8739 sum += do_usad(a >> 24, b >> 24); 8740 return sum; 8741 } 8742 8743 /* For ARMv6 SEL instruction. */ 8744 uint32_t HELPER(sel_flags)(uint32_t flags, uint32_t a, uint32_t b) 8745 { 8746 uint32_t mask; 8747 8748 mask = 0; 8749 if (flags & 1) 8750 mask |= 0xff; 8751 if (flags & 2) 8752 mask |= 0xff00; 8753 if (flags & 4) 8754 mask |= 0xff0000; 8755 if (flags & 8) 8756 mask |= 0xff000000; 8757 return (a & mask) | (b & ~mask); 8758 } 8759 8760 /* VFP support. We follow the convention used for VFP instructions: 8761 Single precision routines have a "s" suffix, double precision a 8762 "d" suffix. */ 8763 8764 /* Convert host exception flags to vfp form. */ 8765 static inline int vfp_exceptbits_from_host(int host_bits) 8766 { 8767 int target_bits = 0; 8768 8769 if (host_bits & float_flag_invalid) 8770 target_bits |= 1; 8771 if (host_bits & float_flag_divbyzero) 8772 target_bits |= 2; 8773 if (host_bits & float_flag_overflow) 8774 target_bits |= 4; 8775 if (host_bits & (float_flag_underflow | float_flag_output_denormal)) 8776 target_bits |= 8; 8777 if (host_bits & float_flag_inexact) 8778 target_bits |= 0x10; 8779 if (host_bits & float_flag_input_denormal) 8780 target_bits |= 0x80; 8781 return target_bits; 8782 } 8783 8784 uint32_t HELPER(vfp_get_fpscr)(CPUARMState *env) 8785 { 8786 int i; 8787 uint32_t fpscr; 8788 8789 fpscr = (env->vfp.xregs[ARM_VFP_FPSCR] & 0xffc8ffff) 8790 | (env->vfp.vec_len << 16) 8791 | (env->vfp.vec_stride << 20); 8792 i = get_float_exception_flags(&env->vfp.fp_status); 8793 i |= get_float_exception_flags(&env->vfp.standard_fp_status); 8794 fpscr |= vfp_exceptbits_from_host(i); 8795 return fpscr; 8796 } 8797 8798 uint32_t vfp_get_fpscr(CPUARMState *env) 8799 { 8800 return HELPER(vfp_get_fpscr)(env); 8801 } 8802 8803 /* Convert vfp exception flags to target form. */ 8804 static inline int vfp_exceptbits_to_host(int target_bits) 8805 { 8806 int host_bits = 0; 8807 8808 if (target_bits & 1) 8809 host_bits |= float_flag_invalid; 8810 if (target_bits & 2) 8811 host_bits |= float_flag_divbyzero; 8812 if (target_bits & 4) 8813 host_bits |= float_flag_overflow; 8814 if (target_bits & 8) 8815 host_bits |= float_flag_underflow; 8816 if (target_bits & 0x10) 8817 host_bits |= float_flag_inexact; 8818 if (target_bits & 0x80) 8819 host_bits |= float_flag_input_denormal; 8820 return host_bits; 8821 } 8822 8823 void HELPER(vfp_set_fpscr)(CPUARMState *env, uint32_t val) 8824 { 8825 int i; 8826 uint32_t changed; 8827 8828 changed = env->vfp.xregs[ARM_VFP_FPSCR]; 8829 env->vfp.xregs[ARM_VFP_FPSCR] = (val & 0xffc8ffff); 8830 env->vfp.vec_len = (val >> 16) & 7; 8831 env->vfp.vec_stride = (val >> 20) & 3; 8832 8833 changed ^= val; 8834 if (changed & (3 << 22)) { 8835 i = (val >> 22) & 3; 8836 switch (i) { 8837 case FPROUNDING_TIEEVEN: 8838 i = float_round_nearest_even; 8839 break; 8840 case FPROUNDING_POSINF: 8841 i = float_round_up; 8842 break; 8843 case FPROUNDING_NEGINF: 8844 i = float_round_down; 8845 break; 8846 case FPROUNDING_ZERO: 8847 i = float_round_to_zero; 8848 break; 8849 } 8850 set_float_rounding_mode(i, &env->vfp.fp_status); 8851 } 8852 if (changed & (1 << 24)) { 8853 set_flush_to_zero((val & (1 << 24)) != 0, &env->vfp.fp_status); 8854 set_flush_inputs_to_zero((val & (1 << 24)) != 0, &env->vfp.fp_status); 8855 } 8856 if (changed & (1 << 25)) 8857 set_default_nan_mode((val & (1 << 25)) != 0, &env->vfp.fp_status); 8858 8859 i = vfp_exceptbits_to_host(val); 8860 set_float_exception_flags(i, &env->vfp.fp_status); 8861 set_float_exception_flags(0, &env->vfp.standard_fp_status); 8862 } 8863 8864 void vfp_set_fpscr(CPUARMState *env, uint32_t val) 8865 { 8866 HELPER(vfp_set_fpscr)(env, val); 8867 } 8868 8869 #define VFP_HELPER(name, p) HELPER(glue(glue(vfp_,name),p)) 8870 8871 #define VFP_BINOP(name) \ 8872 float32 VFP_HELPER(name, s)(float32 a, float32 b, void *fpstp) \ 8873 { \ 8874 float_status *fpst = fpstp; \ 8875 return float32_ ## name(a, b, fpst); \ 8876 } \ 8877 float64 VFP_HELPER(name, d)(float64 a, float64 b, void *fpstp) \ 8878 { \ 8879 float_status *fpst = fpstp; \ 8880 return float64_ ## name(a, b, fpst); \ 8881 } 8882 VFP_BINOP(add) 8883 VFP_BINOP(sub) 8884 VFP_BINOP(mul) 8885 VFP_BINOP(div) 8886 VFP_BINOP(min) 8887 VFP_BINOP(max) 8888 VFP_BINOP(minnum) 8889 VFP_BINOP(maxnum) 8890 #undef VFP_BINOP 8891 8892 float32 VFP_HELPER(neg, s)(float32 a) 8893 { 8894 return float32_chs(a); 8895 } 8896 8897 float64 VFP_HELPER(neg, d)(float64 a) 8898 { 8899 return float64_chs(a); 8900 } 8901 8902 float32 VFP_HELPER(abs, s)(float32 a) 8903 { 8904 return float32_abs(a); 8905 } 8906 8907 float64 VFP_HELPER(abs, d)(float64 a) 8908 { 8909 return float64_abs(a); 8910 } 8911 8912 float32 VFP_HELPER(sqrt, s)(float32 a, CPUARMState *env) 8913 { 8914 return float32_sqrt(a, &env->vfp.fp_status); 8915 } 8916 8917 float64 VFP_HELPER(sqrt, d)(float64 a, CPUARMState *env) 8918 { 8919 return float64_sqrt(a, &env->vfp.fp_status); 8920 } 8921 8922 /* XXX: check quiet/signaling case */ 8923 #define DO_VFP_cmp(p, type) \ 8924 void VFP_HELPER(cmp, p)(type a, type b, CPUARMState *env) \ 8925 { \ 8926 uint32_t flags; \ 8927 switch(type ## _compare_quiet(a, b, &env->vfp.fp_status)) { \ 8928 case 0: flags = 0x6; break; \ 8929 case -1: flags = 0x8; break; \ 8930 case 1: flags = 0x2; break; \ 8931 default: case 2: flags = 0x3; break; \ 8932 } \ 8933 env->vfp.xregs[ARM_VFP_FPSCR] = (flags << 28) \ 8934 | (env->vfp.xregs[ARM_VFP_FPSCR] & 0x0fffffff); \ 8935 } \ 8936 void VFP_HELPER(cmpe, p)(type a, type b, CPUARMState *env) \ 8937 { \ 8938 uint32_t flags; \ 8939 switch(type ## _compare(a, b, &env->vfp.fp_status)) { \ 8940 case 0: flags = 0x6; break; \ 8941 case -1: flags = 0x8; break; \ 8942 case 1: flags = 0x2; break; \ 8943 default: case 2: flags = 0x3; break; \ 8944 } \ 8945 env->vfp.xregs[ARM_VFP_FPSCR] = (flags << 28) \ 8946 | (env->vfp.xregs[ARM_VFP_FPSCR] & 0x0fffffff); \ 8947 } 8948 DO_VFP_cmp(s, float32) 8949 DO_VFP_cmp(d, float64) 8950 #undef DO_VFP_cmp 8951 8952 /* Integer to float and float to integer conversions */ 8953 8954 #define CONV_ITOF(name, fsz, sign) \ 8955 float##fsz HELPER(name)(uint32_t x, void *fpstp) \ 8956 { \ 8957 float_status *fpst = fpstp; \ 8958 return sign##int32_to_##float##fsz((sign##int32_t)x, fpst); \ 8959 } 8960 8961 #define CONV_FTOI(name, fsz, sign, round) \ 8962 uint32_t HELPER(name)(float##fsz x, void *fpstp) \ 8963 { \ 8964 float_status *fpst = fpstp; \ 8965 if (float##fsz##_is_any_nan(x)) { \ 8966 float_raise(float_flag_invalid, fpst); \ 8967 return 0; \ 8968 } \ 8969 return float##fsz##_to_##sign##int32##round(x, fpst); \ 8970 } 8971 8972 #define FLOAT_CONVS(name, p, fsz, sign) \ 8973 CONV_ITOF(vfp_##name##to##p, fsz, sign) \ 8974 CONV_FTOI(vfp_to##name##p, fsz, sign, ) \ 8975 CONV_FTOI(vfp_to##name##z##p, fsz, sign, _round_to_zero) 8976 8977 FLOAT_CONVS(si, s, 32, ) 8978 FLOAT_CONVS(si, d, 64, ) 8979 FLOAT_CONVS(ui, s, 32, u) 8980 FLOAT_CONVS(ui, d, 64, u) 8981 8982 #undef CONV_ITOF 8983 #undef CONV_FTOI 8984 #undef FLOAT_CONVS 8985 8986 /* floating point conversion */ 8987 float64 VFP_HELPER(fcvtd, s)(float32 x, CPUARMState *env) 8988 { 8989 float64 r = float32_to_float64(x, &env->vfp.fp_status); 8990 /* ARM requires that S<->D conversion of any kind of NaN generates 8991 * a quiet NaN by forcing the most significant frac bit to 1. 8992 */ 8993 return float64_maybe_silence_nan(r, &env->vfp.fp_status); 8994 } 8995 8996 float32 VFP_HELPER(fcvts, d)(float64 x, CPUARMState *env) 8997 { 8998 float32 r = float64_to_float32(x, &env->vfp.fp_status); 8999 /* ARM requires that S<->D conversion of any kind of NaN generates 9000 * a quiet NaN by forcing the most significant frac bit to 1. 9001 */ 9002 return float32_maybe_silence_nan(r, &env->vfp.fp_status); 9003 } 9004 9005 /* VFP3 fixed point conversion. */ 9006 #define VFP_CONV_FIX_FLOAT(name, p, fsz, isz, itype) \ 9007 float##fsz HELPER(vfp_##name##to##p)(uint##isz##_t x, uint32_t shift, \ 9008 void *fpstp) \ 9009 { \ 9010 float_status *fpst = fpstp; \ 9011 float##fsz tmp; \ 9012 tmp = itype##_to_##float##fsz(x, fpst); \ 9013 return float##fsz##_scalbn(tmp, -(int)shift, fpst); \ 9014 } 9015 9016 /* Notice that we want only input-denormal exception flags from the 9017 * scalbn operation: the other possible flags (overflow+inexact if 9018 * we overflow to infinity, output-denormal) aren't correct for the 9019 * complete scale-and-convert operation. 9020 */ 9021 #define VFP_CONV_FLOAT_FIX_ROUND(name, p, fsz, isz, itype, round) \ 9022 uint##isz##_t HELPER(vfp_to##name##p##round)(float##fsz x, \ 9023 uint32_t shift, \ 9024 void *fpstp) \ 9025 { \ 9026 float_status *fpst = fpstp; \ 9027 int old_exc_flags = get_float_exception_flags(fpst); \ 9028 float##fsz tmp; \ 9029 if (float##fsz##_is_any_nan(x)) { \ 9030 float_raise(float_flag_invalid, fpst); \ 9031 return 0; \ 9032 } \ 9033 tmp = float##fsz##_scalbn(x, shift, fpst); \ 9034 old_exc_flags |= get_float_exception_flags(fpst) \ 9035 & float_flag_input_denormal; \ 9036 set_float_exception_flags(old_exc_flags, fpst); \ 9037 return float##fsz##_to_##itype##round(tmp, fpst); \ 9038 } 9039 9040 #define VFP_CONV_FIX(name, p, fsz, isz, itype) \ 9041 VFP_CONV_FIX_FLOAT(name, p, fsz, isz, itype) \ 9042 VFP_CONV_FLOAT_FIX_ROUND(name, p, fsz, isz, itype, _round_to_zero) \ 9043 VFP_CONV_FLOAT_FIX_ROUND(name, p, fsz, isz, itype, ) 9044 9045 #define VFP_CONV_FIX_A64(name, p, fsz, isz, itype) \ 9046 VFP_CONV_FIX_FLOAT(name, p, fsz, isz, itype) \ 9047 VFP_CONV_FLOAT_FIX_ROUND(name, p, fsz, isz, itype, ) 9048 9049 VFP_CONV_FIX(sh, d, 64, 64, int16) 9050 VFP_CONV_FIX(sl, d, 64, 64, int32) 9051 VFP_CONV_FIX_A64(sq, d, 64, 64, int64) 9052 VFP_CONV_FIX(uh, d, 64, 64, uint16) 9053 VFP_CONV_FIX(ul, d, 64, 64, uint32) 9054 VFP_CONV_FIX_A64(uq, d, 64, 64, uint64) 9055 VFP_CONV_FIX(sh, s, 32, 32, int16) 9056 VFP_CONV_FIX(sl, s, 32, 32, int32) 9057 VFP_CONV_FIX_A64(sq, s, 32, 64, int64) 9058 VFP_CONV_FIX(uh, s, 32, 32, uint16) 9059 VFP_CONV_FIX(ul, s, 32, 32, uint32) 9060 VFP_CONV_FIX_A64(uq, s, 32, 64, uint64) 9061 #undef VFP_CONV_FIX 9062 #undef VFP_CONV_FIX_FLOAT 9063 #undef VFP_CONV_FLOAT_FIX_ROUND 9064 9065 /* Set the current fp rounding mode and return the old one. 9066 * The argument is a softfloat float_round_ value. 9067 */ 9068 uint32_t HELPER(set_rmode)(uint32_t rmode, CPUARMState *env) 9069 { 9070 float_status *fp_status = &env->vfp.fp_status; 9071 9072 uint32_t prev_rmode = get_float_rounding_mode(fp_status); 9073 set_float_rounding_mode(rmode, fp_status); 9074 9075 return prev_rmode; 9076 } 9077 9078 /* Set the current fp rounding mode in the standard fp status and return 9079 * the old one. This is for NEON instructions that need to change the 9080 * rounding mode but wish to use the standard FPSCR values for everything 9081 * else. Always set the rounding mode back to the correct value after 9082 * modifying it. 9083 * The argument is a softfloat float_round_ value. 9084 */ 9085 uint32_t HELPER(set_neon_rmode)(uint32_t rmode, CPUARMState *env) 9086 { 9087 float_status *fp_status = &env->vfp.standard_fp_status; 9088 9089 uint32_t prev_rmode = get_float_rounding_mode(fp_status); 9090 set_float_rounding_mode(rmode, fp_status); 9091 9092 return prev_rmode; 9093 } 9094 9095 /* Half precision conversions. */ 9096 static float32 do_fcvt_f16_to_f32(uint32_t a, CPUARMState *env, float_status *s) 9097 { 9098 int ieee = (env->vfp.xregs[ARM_VFP_FPSCR] & (1 << 26)) == 0; 9099 float32 r = float16_to_float32(make_float16(a), ieee, s); 9100 if (ieee) { 9101 return float32_maybe_silence_nan(r, s); 9102 } 9103 return r; 9104 } 9105 9106 static uint32_t do_fcvt_f32_to_f16(float32 a, CPUARMState *env, float_status *s) 9107 { 9108 int ieee = (env->vfp.xregs[ARM_VFP_FPSCR] & (1 << 26)) == 0; 9109 float16 r = float32_to_float16(a, ieee, s); 9110 if (ieee) { 9111 r = float16_maybe_silence_nan(r, s); 9112 } 9113 return float16_val(r); 9114 } 9115 9116 float32 HELPER(neon_fcvt_f16_to_f32)(uint32_t a, CPUARMState *env) 9117 { 9118 return do_fcvt_f16_to_f32(a, env, &env->vfp.standard_fp_status); 9119 } 9120 9121 uint32_t HELPER(neon_fcvt_f32_to_f16)(float32 a, CPUARMState *env) 9122 { 9123 return do_fcvt_f32_to_f16(a, env, &env->vfp.standard_fp_status); 9124 } 9125 9126 float32 HELPER(vfp_fcvt_f16_to_f32)(uint32_t a, CPUARMState *env) 9127 { 9128 return do_fcvt_f16_to_f32(a, env, &env->vfp.fp_status); 9129 } 9130 9131 uint32_t HELPER(vfp_fcvt_f32_to_f16)(float32 a, CPUARMState *env) 9132 { 9133 return do_fcvt_f32_to_f16(a, env, &env->vfp.fp_status); 9134 } 9135 9136 float64 HELPER(vfp_fcvt_f16_to_f64)(uint32_t a, CPUARMState *env) 9137 { 9138 int ieee = (env->vfp.xregs[ARM_VFP_FPSCR] & (1 << 26)) == 0; 9139 float64 r = float16_to_float64(make_float16(a), ieee, &env->vfp.fp_status); 9140 if (ieee) { 9141 return float64_maybe_silence_nan(r, &env->vfp.fp_status); 9142 } 9143 return r; 9144 } 9145 9146 uint32_t HELPER(vfp_fcvt_f64_to_f16)(float64 a, CPUARMState *env) 9147 { 9148 int ieee = (env->vfp.xregs[ARM_VFP_FPSCR] & (1 << 26)) == 0; 9149 float16 r = float64_to_float16(a, ieee, &env->vfp.fp_status); 9150 if (ieee) { 9151 r = float16_maybe_silence_nan(r, &env->vfp.fp_status); 9152 } 9153 return float16_val(r); 9154 } 9155 9156 #define float32_two make_float32(0x40000000) 9157 #define float32_three make_float32(0x40400000) 9158 #define float32_one_point_five make_float32(0x3fc00000) 9159 9160 float32 HELPER(recps_f32)(float32 a, float32 b, CPUARMState *env) 9161 { 9162 float_status *s = &env->vfp.standard_fp_status; 9163 if ((float32_is_infinity(a) && float32_is_zero_or_denormal(b)) || 9164 (float32_is_infinity(b) && float32_is_zero_or_denormal(a))) { 9165 if (!(float32_is_zero(a) || float32_is_zero(b))) { 9166 float_raise(float_flag_input_denormal, s); 9167 } 9168 return float32_two; 9169 } 9170 return float32_sub(float32_two, float32_mul(a, b, s), s); 9171 } 9172 9173 float32 HELPER(rsqrts_f32)(float32 a, float32 b, CPUARMState *env) 9174 { 9175 float_status *s = &env->vfp.standard_fp_status; 9176 float32 product; 9177 if ((float32_is_infinity(a) && float32_is_zero_or_denormal(b)) || 9178 (float32_is_infinity(b) && float32_is_zero_or_denormal(a))) { 9179 if (!(float32_is_zero(a) || float32_is_zero(b))) { 9180 float_raise(float_flag_input_denormal, s); 9181 } 9182 return float32_one_point_five; 9183 } 9184 product = float32_mul(a, b, s); 9185 return float32_div(float32_sub(float32_three, product, s), float32_two, s); 9186 } 9187 9188 /* NEON helpers. */ 9189 9190 /* Constants 256 and 512 are used in some helpers; we avoid relying on 9191 * int->float conversions at run-time. */ 9192 #define float64_256 make_float64(0x4070000000000000LL) 9193 #define float64_512 make_float64(0x4080000000000000LL) 9194 #define float32_maxnorm make_float32(0x7f7fffff) 9195 #define float64_maxnorm make_float64(0x7fefffffffffffffLL) 9196 9197 /* Reciprocal functions 9198 * 9199 * The algorithm that must be used to calculate the estimate 9200 * is specified by the ARM ARM, see FPRecipEstimate() 9201 */ 9202 9203 static float64 recip_estimate(float64 a, float_status *real_fp_status) 9204 { 9205 /* These calculations mustn't set any fp exception flags, 9206 * so we use a local copy of the fp_status. 9207 */ 9208 float_status dummy_status = *real_fp_status; 9209 float_status *s = &dummy_status; 9210 /* q = (int)(a * 512.0) */ 9211 float64 q = float64_mul(float64_512, a, s); 9212 int64_t q_int = float64_to_int64_round_to_zero(q, s); 9213 9214 /* r = 1.0 / (((double)q + 0.5) / 512.0) */ 9215 q = int64_to_float64(q_int, s); 9216 q = float64_add(q, float64_half, s); 9217 q = float64_div(q, float64_512, s); 9218 q = float64_div(float64_one, q, s); 9219 9220 /* s = (int)(256.0 * r + 0.5) */ 9221 q = float64_mul(q, float64_256, s); 9222 q = float64_add(q, float64_half, s); 9223 q_int = float64_to_int64_round_to_zero(q, s); 9224 9225 /* return (double)s / 256.0 */ 9226 return float64_div(int64_to_float64(q_int, s), float64_256, s); 9227 } 9228 9229 /* Common wrapper to call recip_estimate */ 9230 static float64 call_recip_estimate(float64 num, int off, float_status *fpst) 9231 { 9232 uint64_t val64 = float64_val(num); 9233 uint64_t frac = extract64(val64, 0, 52); 9234 int64_t exp = extract64(val64, 52, 11); 9235 uint64_t sbit; 9236 float64 scaled, estimate; 9237 9238 /* Generate the scaled number for the estimate function */ 9239 if (exp == 0) { 9240 if (extract64(frac, 51, 1) == 0) { 9241 exp = -1; 9242 frac = extract64(frac, 0, 50) << 2; 9243 } else { 9244 frac = extract64(frac, 0, 51) << 1; 9245 } 9246 } 9247 9248 /* scaled = '0' : '01111111110' : fraction<51:44> : Zeros(44); */ 9249 scaled = make_float64((0x3feULL << 52) 9250 | extract64(frac, 44, 8) << 44); 9251 9252 estimate = recip_estimate(scaled, fpst); 9253 9254 /* Build new result */ 9255 val64 = float64_val(estimate); 9256 sbit = 0x8000000000000000ULL & val64; 9257 exp = off - exp; 9258 frac = extract64(val64, 0, 52); 9259 9260 if (exp == 0) { 9261 frac = 1ULL << 51 | extract64(frac, 1, 51); 9262 } else if (exp == -1) { 9263 frac = 1ULL << 50 | extract64(frac, 2, 50); 9264 exp = 0; 9265 } 9266 9267 return make_float64(sbit | (exp << 52) | frac); 9268 } 9269 9270 static bool round_to_inf(float_status *fpst, bool sign_bit) 9271 { 9272 switch (fpst->float_rounding_mode) { 9273 case float_round_nearest_even: /* Round to Nearest */ 9274 return true; 9275 case float_round_up: /* Round to +Inf */ 9276 return !sign_bit; 9277 case float_round_down: /* Round to -Inf */ 9278 return sign_bit; 9279 case float_round_to_zero: /* Round to Zero */ 9280 return false; 9281 } 9282 9283 g_assert_not_reached(); 9284 } 9285 9286 float32 HELPER(recpe_f32)(float32 input, void *fpstp) 9287 { 9288 float_status *fpst = fpstp; 9289 float32 f32 = float32_squash_input_denormal(input, fpst); 9290 uint32_t f32_val = float32_val(f32); 9291 uint32_t f32_sbit = 0x80000000ULL & f32_val; 9292 int32_t f32_exp = extract32(f32_val, 23, 8); 9293 uint32_t f32_frac = extract32(f32_val, 0, 23); 9294 float64 f64, r64; 9295 uint64_t r64_val; 9296 int64_t r64_exp; 9297 uint64_t r64_frac; 9298 9299 if (float32_is_any_nan(f32)) { 9300 float32 nan = f32; 9301 if (float32_is_signaling_nan(f32, fpst)) { 9302 float_raise(float_flag_invalid, fpst); 9303 nan = float32_maybe_silence_nan(f32, fpst); 9304 } 9305 if (fpst->default_nan_mode) { 9306 nan = float32_default_nan(fpst); 9307 } 9308 return nan; 9309 } else if (float32_is_infinity(f32)) { 9310 return float32_set_sign(float32_zero, float32_is_neg(f32)); 9311 } else if (float32_is_zero(f32)) { 9312 float_raise(float_flag_divbyzero, fpst); 9313 return float32_set_sign(float32_infinity, float32_is_neg(f32)); 9314 } else if ((f32_val & ~(1ULL << 31)) < (1ULL << 21)) { 9315 /* Abs(value) < 2.0^-128 */ 9316 float_raise(float_flag_overflow | float_flag_inexact, fpst); 9317 if (round_to_inf(fpst, f32_sbit)) { 9318 return float32_set_sign(float32_infinity, float32_is_neg(f32)); 9319 } else { 9320 return float32_set_sign(float32_maxnorm, float32_is_neg(f32)); 9321 } 9322 } else if (f32_exp >= 253 && fpst->flush_to_zero) { 9323 float_raise(float_flag_underflow, fpst); 9324 return float32_set_sign(float32_zero, float32_is_neg(f32)); 9325 } 9326 9327 9328 f64 = make_float64(((int64_t)(f32_exp) << 52) | (int64_t)(f32_frac) << 29); 9329 r64 = call_recip_estimate(f64, 253, fpst); 9330 r64_val = float64_val(r64); 9331 r64_exp = extract64(r64_val, 52, 11); 9332 r64_frac = extract64(r64_val, 0, 52); 9333 9334 /* result = sign : result_exp<7:0> : fraction<51:29>; */ 9335 return make_float32(f32_sbit | 9336 (r64_exp & 0xff) << 23 | 9337 extract64(r64_frac, 29, 24)); 9338 } 9339 9340 float64 HELPER(recpe_f64)(float64 input, void *fpstp) 9341 { 9342 float_status *fpst = fpstp; 9343 float64 f64 = float64_squash_input_denormal(input, fpst); 9344 uint64_t f64_val = float64_val(f64); 9345 uint64_t f64_sbit = 0x8000000000000000ULL & f64_val; 9346 int64_t f64_exp = extract64(f64_val, 52, 11); 9347 float64 r64; 9348 uint64_t r64_val; 9349 int64_t r64_exp; 9350 uint64_t r64_frac; 9351 9352 /* Deal with any special cases */ 9353 if (float64_is_any_nan(f64)) { 9354 float64 nan = f64; 9355 if (float64_is_signaling_nan(f64, fpst)) { 9356 float_raise(float_flag_invalid, fpst); 9357 nan = float64_maybe_silence_nan(f64, fpst); 9358 } 9359 if (fpst->default_nan_mode) { 9360 nan = float64_default_nan(fpst); 9361 } 9362 return nan; 9363 } else if (float64_is_infinity(f64)) { 9364 return float64_set_sign(float64_zero, float64_is_neg(f64)); 9365 } else if (float64_is_zero(f64)) { 9366 float_raise(float_flag_divbyzero, fpst); 9367 return float64_set_sign(float64_infinity, float64_is_neg(f64)); 9368 } else if ((f64_val & ~(1ULL << 63)) < (1ULL << 50)) { 9369 /* Abs(value) < 2.0^-1024 */ 9370 float_raise(float_flag_overflow | float_flag_inexact, fpst); 9371 if (round_to_inf(fpst, f64_sbit)) { 9372 return float64_set_sign(float64_infinity, float64_is_neg(f64)); 9373 } else { 9374 return float64_set_sign(float64_maxnorm, float64_is_neg(f64)); 9375 } 9376 } else if (f64_exp >= 2045 && fpst->flush_to_zero) { 9377 float_raise(float_flag_underflow, fpst); 9378 return float64_set_sign(float64_zero, float64_is_neg(f64)); 9379 } 9380 9381 r64 = call_recip_estimate(f64, 2045, fpst); 9382 r64_val = float64_val(r64); 9383 r64_exp = extract64(r64_val, 52, 11); 9384 r64_frac = extract64(r64_val, 0, 52); 9385 9386 /* result = sign : result_exp<10:0> : fraction<51:0> */ 9387 return make_float64(f64_sbit | 9388 ((r64_exp & 0x7ff) << 52) | 9389 r64_frac); 9390 } 9391 9392 /* The algorithm that must be used to calculate the estimate 9393 * is specified by the ARM ARM. 9394 */ 9395 static float64 recip_sqrt_estimate(float64 a, float_status *real_fp_status) 9396 { 9397 /* These calculations mustn't set any fp exception flags, 9398 * so we use a local copy of the fp_status. 9399 */ 9400 float_status dummy_status = *real_fp_status; 9401 float_status *s = &dummy_status; 9402 float64 q; 9403 int64_t q_int; 9404 9405 if (float64_lt(a, float64_half, s)) { 9406 /* range 0.25 <= a < 0.5 */ 9407 9408 /* a in units of 1/512 rounded down */ 9409 /* q0 = (int)(a * 512.0); */ 9410 q = float64_mul(float64_512, a, s); 9411 q_int = float64_to_int64_round_to_zero(q, s); 9412 9413 /* reciprocal root r */ 9414 /* r = 1.0 / sqrt(((double)q0 + 0.5) / 512.0); */ 9415 q = int64_to_float64(q_int, s); 9416 q = float64_add(q, float64_half, s); 9417 q = float64_div(q, float64_512, s); 9418 q = float64_sqrt(q, s); 9419 q = float64_div(float64_one, q, s); 9420 } else { 9421 /* range 0.5 <= a < 1.0 */ 9422 9423 /* a in units of 1/256 rounded down */ 9424 /* q1 = (int)(a * 256.0); */ 9425 q = float64_mul(float64_256, a, s); 9426 int64_t q_int = float64_to_int64_round_to_zero(q, s); 9427 9428 /* reciprocal root r */ 9429 /* r = 1.0 /sqrt(((double)q1 + 0.5) / 256); */ 9430 q = int64_to_float64(q_int, s); 9431 q = float64_add(q, float64_half, s); 9432 q = float64_div(q, float64_256, s); 9433 q = float64_sqrt(q, s); 9434 q = float64_div(float64_one, q, s); 9435 } 9436 /* r in units of 1/256 rounded to nearest */ 9437 /* s = (int)(256.0 * r + 0.5); */ 9438 9439 q = float64_mul(q, float64_256,s ); 9440 q = float64_add(q, float64_half, s); 9441 q_int = float64_to_int64_round_to_zero(q, s); 9442 9443 /* return (double)s / 256.0;*/ 9444 return float64_div(int64_to_float64(q_int, s), float64_256, s); 9445 } 9446 9447 float32 HELPER(rsqrte_f32)(float32 input, void *fpstp) 9448 { 9449 float_status *s = fpstp; 9450 float32 f32 = float32_squash_input_denormal(input, s); 9451 uint32_t val = float32_val(f32); 9452 uint32_t f32_sbit = 0x80000000 & val; 9453 int32_t f32_exp = extract32(val, 23, 8); 9454 uint32_t f32_frac = extract32(val, 0, 23); 9455 uint64_t f64_frac; 9456 uint64_t val64; 9457 int result_exp; 9458 float64 f64; 9459 9460 if (float32_is_any_nan(f32)) { 9461 float32 nan = f32; 9462 if (float32_is_signaling_nan(f32, s)) { 9463 float_raise(float_flag_invalid, s); 9464 nan = float32_maybe_silence_nan(f32, s); 9465 } 9466 if (s->default_nan_mode) { 9467 nan = float32_default_nan(s); 9468 } 9469 return nan; 9470 } else if (float32_is_zero(f32)) { 9471 float_raise(float_flag_divbyzero, s); 9472 return float32_set_sign(float32_infinity, float32_is_neg(f32)); 9473 } else if (float32_is_neg(f32)) { 9474 float_raise(float_flag_invalid, s); 9475 return float32_default_nan(s); 9476 } else if (float32_is_infinity(f32)) { 9477 return float32_zero; 9478 } 9479 9480 /* Scale and normalize to a double-precision value between 0.25 and 1.0, 9481 * preserving the parity of the exponent. */ 9482 9483 f64_frac = ((uint64_t) f32_frac) << 29; 9484 if (f32_exp == 0) { 9485 while (extract64(f64_frac, 51, 1) == 0) { 9486 f64_frac = f64_frac << 1; 9487 f32_exp = f32_exp-1; 9488 } 9489 f64_frac = extract64(f64_frac, 0, 51) << 1; 9490 } 9491 9492 if (extract64(f32_exp, 0, 1) == 0) { 9493 f64 = make_float64(((uint64_t) f32_sbit) << 32 9494 | (0x3feULL << 52) 9495 | f64_frac); 9496 } else { 9497 f64 = make_float64(((uint64_t) f32_sbit) << 32 9498 | (0x3fdULL << 52) 9499 | f64_frac); 9500 } 9501 9502 result_exp = (380 - f32_exp) / 2; 9503 9504 f64 = recip_sqrt_estimate(f64, s); 9505 9506 val64 = float64_val(f64); 9507 9508 val = ((result_exp & 0xff) << 23) 9509 | ((val64 >> 29) & 0x7fffff); 9510 return make_float32(val); 9511 } 9512 9513 float64 HELPER(rsqrte_f64)(float64 input, void *fpstp) 9514 { 9515 float_status *s = fpstp; 9516 float64 f64 = float64_squash_input_denormal(input, s); 9517 uint64_t val = float64_val(f64); 9518 uint64_t f64_sbit = 0x8000000000000000ULL & val; 9519 int64_t f64_exp = extract64(val, 52, 11); 9520 uint64_t f64_frac = extract64(val, 0, 52); 9521 int64_t result_exp; 9522 uint64_t result_frac; 9523 9524 if (float64_is_any_nan(f64)) { 9525 float64 nan = f64; 9526 if (float64_is_signaling_nan(f64, s)) { 9527 float_raise(float_flag_invalid, s); 9528 nan = float64_maybe_silence_nan(f64, s); 9529 } 9530 if (s->default_nan_mode) { 9531 nan = float64_default_nan(s); 9532 } 9533 return nan; 9534 } else if (float64_is_zero(f64)) { 9535 float_raise(float_flag_divbyzero, s); 9536 return float64_set_sign(float64_infinity, float64_is_neg(f64)); 9537 } else if (float64_is_neg(f64)) { 9538 float_raise(float_flag_invalid, s); 9539 return float64_default_nan(s); 9540 } else if (float64_is_infinity(f64)) { 9541 return float64_zero; 9542 } 9543 9544 /* Scale and normalize to a double-precision value between 0.25 and 1.0, 9545 * preserving the parity of the exponent. */ 9546 9547 if (f64_exp == 0) { 9548 while (extract64(f64_frac, 51, 1) == 0) { 9549 f64_frac = f64_frac << 1; 9550 f64_exp = f64_exp - 1; 9551 } 9552 f64_frac = extract64(f64_frac, 0, 51) << 1; 9553 } 9554 9555 if (extract64(f64_exp, 0, 1) == 0) { 9556 f64 = make_float64(f64_sbit 9557 | (0x3feULL << 52) 9558 | f64_frac); 9559 } else { 9560 f64 = make_float64(f64_sbit 9561 | (0x3fdULL << 52) 9562 | f64_frac); 9563 } 9564 9565 result_exp = (3068 - f64_exp) / 2; 9566 9567 f64 = recip_sqrt_estimate(f64, s); 9568 9569 result_frac = extract64(float64_val(f64), 0, 52); 9570 9571 return make_float64(f64_sbit | 9572 ((result_exp & 0x7ff) << 52) | 9573 result_frac); 9574 } 9575 9576 uint32_t HELPER(recpe_u32)(uint32_t a, void *fpstp) 9577 { 9578 float_status *s = fpstp; 9579 float64 f64; 9580 9581 if ((a & 0x80000000) == 0) { 9582 return 0xffffffff; 9583 } 9584 9585 f64 = make_float64((0x3feULL << 52) 9586 | ((int64_t)(a & 0x7fffffff) << 21)); 9587 9588 f64 = recip_estimate(f64, s); 9589 9590 return 0x80000000 | ((float64_val(f64) >> 21) & 0x7fffffff); 9591 } 9592 9593 uint32_t HELPER(rsqrte_u32)(uint32_t a, void *fpstp) 9594 { 9595 float_status *fpst = fpstp; 9596 float64 f64; 9597 9598 if ((a & 0xc0000000) == 0) { 9599 return 0xffffffff; 9600 } 9601 9602 if (a & 0x80000000) { 9603 f64 = make_float64((0x3feULL << 52) 9604 | ((uint64_t)(a & 0x7fffffff) << 21)); 9605 } else { /* bits 31-30 == '01' */ 9606 f64 = make_float64((0x3fdULL << 52) 9607 | ((uint64_t)(a & 0x3fffffff) << 22)); 9608 } 9609 9610 f64 = recip_sqrt_estimate(f64, fpst); 9611 9612 return 0x80000000 | ((float64_val(f64) >> 21) & 0x7fffffff); 9613 } 9614 9615 /* VFPv4 fused multiply-accumulate */ 9616 float32 VFP_HELPER(muladd, s)(float32 a, float32 b, float32 c, void *fpstp) 9617 { 9618 float_status *fpst = fpstp; 9619 return float32_muladd(a, b, c, 0, fpst); 9620 } 9621 9622 float64 VFP_HELPER(muladd, d)(float64 a, float64 b, float64 c, void *fpstp) 9623 { 9624 float_status *fpst = fpstp; 9625 return float64_muladd(a, b, c, 0, fpst); 9626 } 9627 9628 /* ARMv8 round to integral */ 9629 float32 HELPER(rints_exact)(float32 x, void *fp_status) 9630 { 9631 return float32_round_to_int(x, fp_status); 9632 } 9633 9634 float64 HELPER(rintd_exact)(float64 x, void *fp_status) 9635 { 9636 return float64_round_to_int(x, fp_status); 9637 } 9638 9639 float32 HELPER(rints)(float32 x, void *fp_status) 9640 { 9641 int old_flags = get_float_exception_flags(fp_status), new_flags; 9642 float32 ret; 9643 9644 ret = float32_round_to_int(x, fp_status); 9645 9646 /* Suppress any inexact exceptions the conversion produced */ 9647 if (!(old_flags & float_flag_inexact)) { 9648 new_flags = get_float_exception_flags(fp_status); 9649 set_float_exception_flags(new_flags & ~float_flag_inexact, fp_status); 9650 } 9651 9652 return ret; 9653 } 9654 9655 float64 HELPER(rintd)(float64 x, void *fp_status) 9656 { 9657 int old_flags = get_float_exception_flags(fp_status), new_flags; 9658 float64 ret; 9659 9660 ret = float64_round_to_int(x, fp_status); 9661 9662 new_flags = get_float_exception_flags(fp_status); 9663 9664 /* Suppress any inexact exceptions the conversion produced */ 9665 if (!(old_flags & float_flag_inexact)) { 9666 new_flags = get_float_exception_flags(fp_status); 9667 set_float_exception_flags(new_flags & ~float_flag_inexact, fp_status); 9668 } 9669 9670 return ret; 9671 } 9672 9673 /* Convert ARM rounding mode to softfloat */ 9674 int arm_rmode_to_sf(int rmode) 9675 { 9676 switch (rmode) { 9677 case FPROUNDING_TIEAWAY: 9678 rmode = float_round_ties_away; 9679 break; 9680 case FPROUNDING_ODD: 9681 /* FIXME: add support for TIEAWAY and ODD */ 9682 qemu_log_mask(LOG_UNIMP, "arm: unimplemented rounding mode: %d\n", 9683 rmode); 9684 case FPROUNDING_TIEEVEN: 9685 default: 9686 rmode = float_round_nearest_even; 9687 break; 9688 case FPROUNDING_POSINF: 9689 rmode = float_round_up; 9690 break; 9691 case FPROUNDING_NEGINF: 9692 rmode = float_round_down; 9693 break; 9694 case FPROUNDING_ZERO: 9695 rmode = float_round_to_zero; 9696 break; 9697 } 9698 return rmode; 9699 } 9700 9701 /* CRC helpers. 9702 * The upper bytes of val (above the number specified by 'bytes') must have 9703 * been zeroed out by the caller. 9704 */ 9705 uint32_t HELPER(crc32)(uint32_t acc, uint32_t val, uint32_t bytes) 9706 { 9707 uint8_t buf[4]; 9708 9709 stl_le_p(buf, val); 9710 9711 /* zlib crc32 converts the accumulator and output to one's complement. */ 9712 return crc32(acc ^ 0xffffffff, buf, bytes) ^ 0xffffffff; 9713 } 9714 9715 uint32_t HELPER(crc32c)(uint32_t acc, uint32_t val, uint32_t bytes) 9716 { 9717 uint8_t buf[4]; 9718 9719 stl_le_p(buf, val); 9720 9721 /* Linux crc32c converts the output to one's complement. */ 9722 return crc32c(acc, buf, bytes) ^ 0xffffffff; 9723 } 9724