1 /* 2 * ARM generic helpers. 3 * 4 * This code is licensed under the GNU GPL v2 or later. 5 * 6 * SPDX-License-Identifier: GPL-2.0-or-later 7 */ 8 9 #include "qemu/osdep.h" 10 #include "qemu/units.h" 11 #include "target/arm/idau.h" 12 #include "trace.h" 13 #include "cpu.h" 14 #include "internals.h" 15 #include "exec/gdbstub.h" 16 #include "exec/helper-proto.h" 17 #include "qemu/host-utils.h" 18 #include "qemu/main-loop.h" 19 #include "qemu/bitops.h" 20 #include "qemu/crc32c.h" 21 #include "qemu/qemu-print.h" 22 #include "exec/exec-all.h" 23 #include <zlib.h> /* For crc32 */ 24 #include "hw/irq.h" 25 #include "hw/semihosting/semihost.h" 26 #include "sysemu/cpus.h" 27 #include "sysemu/cpu-timers.h" 28 #include "sysemu/kvm.h" 29 #include "sysemu/tcg.h" 30 #include "qemu/range.h" 31 #include "qapi/qapi-commands-machine-target.h" 32 #include "qapi/error.h" 33 #include "qemu/guest-random.h" 34 #ifdef CONFIG_TCG 35 #include "arm_ldst.h" 36 #include "exec/cpu_ldst.h" 37 #endif 38 39 #define ARM_CPU_FREQ 1000000000 /* FIXME: 1 GHz, should be configurable */ 40 41 #ifndef CONFIG_USER_ONLY 42 43 static bool get_phys_addr_lpae(CPUARMState *env, uint64_t address, 44 MMUAccessType access_type, ARMMMUIdx mmu_idx, 45 bool s1_is_el0, 46 hwaddr *phys_ptr, MemTxAttrs *txattrs, int *prot, 47 target_ulong *page_size_ptr, 48 ARMMMUFaultInfo *fi, ARMCacheAttrs *cacheattrs) 49 __attribute__((nonnull)); 50 #endif 51 52 static void switch_mode(CPUARMState *env, int mode); 53 static int aa64_va_parameter_tbi(uint64_t tcr, ARMMMUIdx mmu_idx); 54 55 static int vfp_gdb_get_reg(CPUARMState *env, GByteArray *buf, int reg) 56 { 57 ARMCPU *cpu = env_archcpu(env); 58 int nregs = cpu_isar_feature(aa32_simd_r32, cpu) ? 32 : 16; 59 60 /* VFP data registers are always little-endian. */ 61 if (reg < nregs) { 62 return gdb_get_reg64(buf, *aa32_vfp_dreg(env, reg)); 63 } 64 if (arm_feature(env, ARM_FEATURE_NEON)) { 65 /* Aliases for Q regs. */ 66 nregs += 16; 67 if (reg < nregs) { 68 uint64_t *q = aa32_vfp_qreg(env, reg - 32); 69 return gdb_get_reg128(buf, q[0], q[1]); 70 } 71 } 72 switch (reg - nregs) { 73 case 0: return gdb_get_reg32(buf, env->vfp.xregs[ARM_VFP_FPSID]); break; 74 case 1: return gdb_get_reg32(buf, vfp_get_fpscr(env)); break; 75 case 2: return gdb_get_reg32(buf, env->vfp.xregs[ARM_VFP_FPEXC]); break; 76 } 77 return 0; 78 } 79 80 static int vfp_gdb_set_reg(CPUARMState *env, uint8_t *buf, int reg) 81 { 82 ARMCPU *cpu = env_archcpu(env); 83 int nregs = cpu_isar_feature(aa32_simd_r32, cpu) ? 32 : 16; 84 85 if (reg < nregs) { 86 *aa32_vfp_dreg(env, reg) = ldq_le_p(buf); 87 return 8; 88 } 89 if (arm_feature(env, ARM_FEATURE_NEON)) { 90 nregs += 16; 91 if (reg < nregs) { 92 uint64_t *q = aa32_vfp_qreg(env, reg - 32); 93 q[0] = ldq_le_p(buf); 94 q[1] = ldq_le_p(buf + 8); 95 return 16; 96 } 97 } 98 switch (reg - nregs) { 99 case 0: env->vfp.xregs[ARM_VFP_FPSID] = ldl_p(buf); return 4; 100 case 1: vfp_set_fpscr(env, ldl_p(buf)); return 4; 101 case 2: env->vfp.xregs[ARM_VFP_FPEXC] = ldl_p(buf) & (1 << 30); return 4; 102 } 103 return 0; 104 } 105 106 static int aarch64_fpu_gdb_get_reg(CPUARMState *env, GByteArray *buf, int reg) 107 { 108 switch (reg) { 109 case 0 ... 31: 110 { 111 /* 128 bit FP register - quads are in LE order */ 112 uint64_t *q = aa64_vfp_qreg(env, reg); 113 return gdb_get_reg128(buf, q[1], q[0]); 114 } 115 case 32: 116 /* FPSR */ 117 return gdb_get_reg32(buf, vfp_get_fpsr(env)); 118 case 33: 119 /* FPCR */ 120 return gdb_get_reg32(buf,vfp_get_fpcr(env)); 121 default: 122 return 0; 123 } 124 } 125 126 static int aarch64_fpu_gdb_set_reg(CPUARMState *env, uint8_t *buf, int reg) 127 { 128 switch (reg) { 129 case 0 ... 31: 130 /* 128 bit FP register */ 131 { 132 uint64_t *q = aa64_vfp_qreg(env, reg); 133 q[0] = ldq_le_p(buf); 134 q[1] = ldq_le_p(buf + 8); 135 return 16; 136 } 137 case 32: 138 /* FPSR */ 139 vfp_set_fpsr(env, ldl_p(buf)); 140 return 4; 141 case 33: 142 /* FPCR */ 143 vfp_set_fpcr(env, ldl_p(buf)); 144 return 4; 145 default: 146 return 0; 147 } 148 } 149 150 static uint64_t raw_read(CPUARMState *env, const ARMCPRegInfo *ri) 151 { 152 assert(ri->fieldoffset); 153 if (cpreg_field_is_64bit(ri)) { 154 return CPREG_FIELD64(env, ri); 155 } else { 156 return CPREG_FIELD32(env, ri); 157 } 158 } 159 160 static void raw_write(CPUARMState *env, const ARMCPRegInfo *ri, 161 uint64_t value) 162 { 163 assert(ri->fieldoffset); 164 if (cpreg_field_is_64bit(ri)) { 165 CPREG_FIELD64(env, ri) = value; 166 } else { 167 CPREG_FIELD32(env, ri) = value; 168 } 169 } 170 171 static void *raw_ptr(CPUARMState *env, const ARMCPRegInfo *ri) 172 { 173 return (char *)env + ri->fieldoffset; 174 } 175 176 uint64_t read_raw_cp_reg(CPUARMState *env, const ARMCPRegInfo *ri) 177 { 178 /* Raw read of a coprocessor register (as needed for migration, etc). */ 179 if (ri->type & ARM_CP_CONST) { 180 return ri->resetvalue; 181 } else if (ri->raw_readfn) { 182 return ri->raw_readfn(env, ri); 183 } else if (ri->readfn) { 184 return ri->readfn(env, ri); 185 } else { 186 return raw_read(env, ri); 187 } 188 } 189 190 static void write_raw_cp_reg(CPUARMState *env, const ARMCPRegInfo *ri, 191 uint64_t v) 192 { 193 /* Raw write of a coprocessor register (as needed for migration, etc). 194 * Note that constant registers are treated as write-ignored; the 195 * caller should check for success by whether a readback gives the 196 * value written. 197 */ 198 if (ri->type & ARM_CP_CONST) { 199 return; 200 } else if (ri->raw_writefn) { 201 ri->raw_writefn(env, ri, v); 202 } else if (ri->writefn) { 203 ri->writefn(env, ri, v); 204 } else { 205 raw_write(env, ri, v); 206 } 207 } 208 209 /** 210 * arm_get/set_gdb_*: get/set a gdb register 211 * @env: the CPU state 212 * @buf: a buffer to copy to/from 213 * @reg: register number (offset from start of group) 214 * 215 * We return the number of bytes copied 216 */ 217 218 static int arm_gdb_get_sysreg(CPUARMState *env, GByteArray *buf, int reg) 219 { 220 ARMCPU *cpu = env_archcpu(env); 221 const ARMCPRegInfo *ri; 222 uint32_t key; 223 224 key = cpu->dyn_sysreg_xml.data.cpregs.keys[reg]; 225 ri = get_arm_cp_reginfo(cpu->cp_regs, key); 226 if (ri) { 227 if (cpreg_field_is_64bit(ri)) { 228 return gdb_get_reg64(buf, (uint64_t)read_raw_cp_reg(env, ri)); 229 } else { 230 return gdb_get_reg32(buf, (uint32_t)read_raw_cp_reg(env, ri)); 231 } 232 } 233 return 0; 234 } 235 236 static int arm_gdb_set_sysreg(CPUARMState *env, uint8_t *buf, int reg) 237 { 238 return 0; 239 } 240 241 #ifdef TARGET_AARCH64 242 static int arm_gdb_get_svereg(CPUARMState *env, GByteArray *buf, int reg) 243 { 244 ARMCPU *cpu = env_archcpu(env); 245 246 switch (reg) { 247 /* The first 32 registers are the zregs */ 248 case 0 ... 31: 249 { 250 int vq, len = 0; 251 for (vq = 0; vq < cpu->sve_max_vq; vq++) { 252 len += gdb_get_reg128(buf, 253 env->vfp.zregs[reg].d[vq * 2 + 1], 254 env->vfp.zregs[reg].d[vq * 2]); 255 } 256 return len; 257 } 258 case 32: 259 return gdb_get_reg32(buf, vfp_get_fpsr(env)); 260 case 33: 261 return gdb_get_reg32(buf, vfp_get_fpcr(env)); 262 /* then 16 predicates and the ffr */ 263 case 34 ... 50: 264 { 265 int preg = reg - 34; 266 int vq, len = 0; 267 for (vq = 0; vq < cpu->sve_max_vq; vq = vq + 4) { 268 len += gdb_get_reg64(buf, env->vfp.pregs[preg].p[vq / 4]); 269 } 270 return len; 271 } 272 case 51: 273 { 274 /* 275 * We report in Vector Granules (VG) which is 64bit in a Z reg 276 * while the ZCR works in Vector Quads (VQ) which is 128bit chunks. 277 */ 278 int vq = sve_zcr_len_for_el(env, arm_current_el(env)) + 1; 279 return gdb_get_reg32(buf, vq * 2); 280 } 281 default: 282 /* gdbstub asked for something out our range */ 283 qemu_log_mask(LOG_UNIMP, "%s: out of range register %d", __func__, reg); 284 break; 285 } 286 287 return 0; 288 } 289 290 static int arm_gdb_set_svereg(CPUARMState *env, uint8_t *buf, int reg) 291 { 292 ARMCPU *cpu = env_archcpu(env); 293 294 /* The first 32 registers are the zregs */ 295 switch (reg) { 296 /* The first 32 registers are the zregs */ 297 case 0 ... 31: 298 { 299 int vq, len = 0; 300 uint64_t *p = (uint64_t *) buf; 301 for (vq = 0; vq < cpu->sve_max_vq; vq++) { 302 env->vfp.zregs[reg].d[vq * 2 + 1] = *p++; 303 env->vfp.zregs[reg].d[vq * 2] = *p++; 304 len += 16; 305 } 306 return len; 307 } 308 case 32: 309 vfp_set_fpsr(env, *(uint32_t *)buf); 310 return 4; 311 case 33: 312 vfp_set_fpcr(env, *(uint32_t *)buf); 313 return 4; 314 case 34 ... 50: 315 { 316 int preg = reg - 34; 317 int vq, len = 0; 318 uint64_t *p = (uint64_t *) buf; 319 for (vq = 0; vq < cpu->sve_max_vq; vq = vq + 4) { 320 env->vfp.pregs[preg].p[vq / 4] = *p++; 321 len += 8; 322 } 323 return len; 324 } 325 case 51: 326 /* cannot set vg via gdbstub */ 327 return 0; 328 default: 329 /* gdbstub asked for something out our range */ 330 break; 331 } 332 333 return 0; 334 } 335 #endif /* TARGET_AARCH64 */ 336 337 static bool raw_accessors_invalid(const ARMCPRegInfo *ri) 338 { 339 /* Return true if the regdef would cause an assertion if you called 340 * read_raw_cp_reg() or write_raw_cp_reg() on it (ie if it is a 341 * program bug for it not to have the NO_RAW flag). 342 * NB that returning false here doesn't necessarily mean that calling 343 * read/write_raw_cp_reg() is safe, because we can't distinguish "has 344 * read/write access functions which are safe for raw use" from "has 345 * read/write access functions which have side effects but has forgotten 346 * to provide raw access functions". 347 * The tests here line up with the conditions in read/write_raw_cp_reg() 348 * and assertions in raw_read()/raw_write(). 349 */ 350 if ((ri->type & ARM_CP_CONST) || 351 ri->fieldoffset || 352 ((ri->raw_writefn || ri->writefn) && (ri->raw_readfn || ri->readfn))) { 353 return false; 354 } 355 return true; 356 } 357 358 bool write_cpustate_to_list(ARMCPU *cpu, bool kvm_sync) 359 { 360 /* Write the coprocessor state from cpu->env to the (index,value) list. */ 361 int i; 362 bool ok = true; 363 364 for (i = 0; i < cpu->cpreg_array_len; i++) { 365 uint32_t regidx = kvm_to_cpreg_id(cpu->cpreg_indexes[i]); 366 const ARMCPRegInfo *ri; 367 uint64_t newval; 368 369 ri = get_arm_cp_reginfo(cpu->cp_regs, regidx); 370 if (!ri) { 371 ok = false; 372 continue; 373 } 374 if (ri->type & ARM_CP_NO_RAW) { 375 continue; 376 } 377 378 newval = read_raw_cp_reg(&cpu->env, ri); 379 if (kvm_sync) { 380 /* 381 * Only sync if the previous list->cpustate sync succeeded. 382 * Rather than tracking the success/failure state for every 383 * item in the list, we just recheck "does the raw write we must 384 * have made in write_list_to_cpustate() read back OK" here. 385 */ 386 uint64_t oldval = cpu->cpreg_values[i]; 387 388 if (oldval == newval) { 389 continue; 390 } 391 392 write_raw_cp_reg(&cpu->env, ri, oldval); 393 if (read_raw_cp_reg(&cpu->env, ri) != oldval) { 394 continue; 395 } 396 397 write_raw_cp_reg(&cpu->env, ri, newval); 398 } 399 cpu->cpreg_values[i] = newval; 400 } 401 return ok; 402 } 403 404 bool write_list_to_cpustate(ARMCPU *cpu) 405 { 406 int i; 407 bool ok = true; 408 409 for (i = 0; i < cpu->cpreg_array_len; i++) { 410 uint32_t regidx = kvm_to_cpreg_id(cpu->cpreg_indexes[i]); 411 uint64_t v = cpu->cpreg_values[i]; 412 const ARMCPRegInfo *ri; 413 414 ri = get_arm_cp_reginfo(cpu->cp_regs, regidx); 415 if (!ri) { 416 ok = false; 417 continue; 418 } 419 if (ri->type & ARM_CP_NO_RAW) { 420 continue; 421 } 422 /* Write value and confirm it reads back as written 423 * (to catch read-only registers and partially read-only 424 * registers where the incoming migration value doesn't match) 425 */ 426 write_raw_cp_reg(&cpu->env, ri, v); 427 if (read_raw_cp_reg(&cpu->env, ri) != v) { 428 ok = false; 429 } 430 } 431 return ok; 432 } 433 434 static void add_cpreg_to_list(gpointer key, gpointer opaque) 435 { 436 ARMCPU *cpu = opaque; 437 uint64_t regidx; 438 const ARMCPRegInfo *ri; 439 440 regidx = *(uint32_t *)key; 441 ri = get_arm_cp_reginfo(cpu->cp_regs, regidx); 442 443 if (!(ri->type & (ARM_CP_NO_RAW|ARM_CP_ALIAS))) { 444 cpu->cpreg_indexes[cpu->cpreg_array_len] = cpreg_to_kvm_id(regidx); 445 /* The value array need not be initialized at this point */ 446 cpu->cpreg_array_len++; 447 } 448 } 449 450 static void count_cpreg(gpointer key, gpointer opaque) 451 { 452 ARMCPU *cpu = opaque; 453 uint64_t regidx; 454 const ARMCPRegInfo *ri; 455 456 regidx = *(uint32_t *)key; 457 ri = get_arm_cp_reginfo(cpu->cp_regs, regidx); 458 459 if (!(ri->type & (ARM_CP_NO_RAW|ARM_CP_ALIAS))) { 460 cpu->cpreg_array_len++; 461 } 462 } 463 464 static gint cpreg_key_compare(gconstpointer a, gconstpointer b) 465 { 466 uint64_t aidx = cpreg_to_kvm_id(*(uint32_t *)a); 467 uint64_t bidx = cpreg_to_kvm_id(*(uint32_t *)b); 468 469 if (aidx > bidx) { 470 return 1; 471 } 472 if (aidx < bidx) { 473 return -1; 474 } 475 return 0; 476 } 477 478 void init_cpreg_list(ARMCPU *cpu) 479 { 480 /* Initialise the cpreg_tuples[] array based on the cp_regs hash. 481 * Note that we require cpreg_tuples[] to be sorted by key ID. 482 */ 483 GList *keys; 484 int arraylen; 485 486 keys = g_hash_table_get_keys(cpu->cp_regs); 487 keys = g_list_sort(keys, cpreg_key_compare); 488 489 cpu->cpreg_array_len = 0; 490 491 g_list_foreach(keys, count_cpreg, cpu); 492 493 arraylen = cpu->cpreg_array_len; 494 cpu->cpreg_indexes = g_new(uint64_t, arraylen); 495 cpu->cpreg_values = g_new(uint64_t, arraylen); 496 cpu->cpreg_vmstate_indexes = g_new(uint64_t, arraylen); 497 cpu->cpreg_vmstate_values = g_new(uint64_t, arraylen); 498 cpu->cpreg_vmstate_array_len = cpu->cpreg_array_len; 499 cpu->cpreg_array_len = 0; 500 501 g_list_foreach(keys, add_cpreg_to_list, cpu); 502 503 assert(cpu->cpreg_array_len == arraylen); 504 505 g_list_free(keys); 506 } 507 508 /* 509 * Some registers are not accessible from AArch32 EL3 if SCR.NS == 0. 510 */ 511 static CPAccessResult access_el3_aa32ns(CPUARMState *env, 512 const ARMCPRegInfo *ri, 513 bool isread) 514 { 515 if (!is_a64(env) && arm_current_el(env) == 3 && 516 arm_is_secure_below_el3(env)) { 517 return CP_ACCESS_TRAP_UNCATEGORIZED; 518 } 519 return CP_ACCESS_OK; 520 } 521 522 /* Some secure-only AArch32 registers trap to EL3 if used from 523 * Secure EL1 (but are just ordinary UNDEF in other non-EL3 contexts). 524 * Note that an access from Secure EL1 can only happen if EL3 is AArch64. 525 * We assume that the .access field is set to PL1_RW. 526 */ 527 static CPAccessResult access_trap_aa32s_el1(CPUARMState *env, 528 const ARMCPRegInfo *ri, 529 bool isread) 530 { 531 if (arm_current_el(env) == 3) { 532 return CP_ACCESS_OK; 533 } 534 if (arm_is_secure_below_el3(env)) { 535 return CP_ACCESS_TRAP_EL3; 536 } 537 /* This will be EL1 NS and EL2 NS, which just UNDEF */ 538 return CP_ACCESS_TRAP_UNCATEGORIZED; 539 } 540 541 /* Check for traps to "powerdown debug" registers, which are controlled 542 * by MDCR.TDOSA 543 */ 544 static CPAccessResult access_tdosa(CPUARMState *env, const ARMCPRegInfo *ri, 545 bool isread) 546 { 547 int el = arm_current_el(env); 548 bool mdcr_el2_tdosa = (env->cp15.mdcr_el2 & MDCR_TDOSA) || 549 (env->cp15.mdcr_el2 & MDCR_TDE) || 550 (arm_hcr_el2_eff(env) & HCR_TGE); 551 552 if (el < 2 && mdcr_el2_tdosa && !arm_is_secure_below_el3(env)) { 553 return CP_ACCESS_TRAP_EL2; 554 } 555 if (el < 3 && (env->cp15.mdcr_el3 & MDCR_TDOSA)) { 556 return CP_ACCESS_TRAP_EL3; 557 } 558 return CP_ACCESS_OK; 559 } 560 561 /* Check for traps to "debug ROM" registers, which are controlled 562 * by MDCR_EL2.TDRA for EL2 but by the more general MDCR_EL3.TDA for EL3. 563 */ 564 static CPAccessResult access_tdra(CPUARMState *env, const ARMCPRegInfo *ri, 565 bool isread) 566 { 567 int el = arm_current_el(env); 568 bool mdcr_el2_tdra = (env->cp15.mdcr_el2 & MDCR_TDRA) || 569 (env->cp15.mdcr_el2 & MDCR_TDE) || 570 (arm_hcr_el2_eff(env) & HCR_TGE); 571 572 if (el < 2 && mdcr_el2_tdra && !arm_is_secure_below_el3(env)) { 573 return CP_ACCESS_TRAP_EL2; 574 } 575 if (el < 3 && (env->cp15.mdcr_el3 & MDCR_TDA)) { 576 return CP_ACCESS_TRAP_EL3; 577 } 578 return CP_ACCESS_OK; 579 } 580 581 /* Check for traps to general debug registers, which are controlled 582 * by MDCR_EL2.TDA for EL2 and MDCR_EL3.TDA for EL3. 583 */ 584 static CPAccessResult access_tda(CPUARMState *env, const ARMCPRegInfo *ri, 585 bool isread) 586 { 587 int el = arm_current_el(env); 588 bool mdcr_el2_tda = (env->cp15.mdcr_el2 & MDCR_TDA) || 589 (env->cp15.mdcr_el2 & MDCR_TDE) || 590 (arm_hcr_el2_eff(env) & HCR_TGE); 591 592 if (el < 2 && mdcr_el2_tda && !arm_is_secure_below_el3(env)) { 593 return CP_ACCESS_TRAP_EL2; 594 } 595 if (el < 3 && (env->cp15.mdcr_el3 & MDCR_TDA)) { 596 return CP_ACCESS_TRAP_EL3; 597 } 598 return CP_ACCESS_OK; 599 } 600 601 /* Check for traps to performance monitor registers, which are controlled 602 * by MDCR_EL2.TPM for EL2 and MDCR_EL3.TPM for EL3. 603 */ 604 static CPAccessResult access_tpm(CPUARMState *env, const ARMCPRegInfo *ri, 605 bool isread) 606 { 607 int el = arm_current_el(env); 608 609 if (el < 2 && (env->cp15.mdcr_el2 & MDCR_TPM) 610 && !arm_is_secure_below_el3(env)) { 611 return CP_ACCESS_TRAP_EL2; 612 } 613 if (el < 3 && (env->cp15.mdcr_el3 & MDCR_TPM)) { 614 return CP_ACCESS_TRAP_EL3; 615 } 616 return CP_ACCESS_OK; 617 } 618 619 /* Check for traps from EL1 due to HCR_EL2.TVM and HCR_EL2.TRVM. */ 620 static CPAccessResult access_tvm_trvm(CPUARMState *env, const ARMCPRegInfo *ri, 621 bool isread) 622 { 623 if (arm_current_el(env) == 1) { 624 uint64_t trap = isread ? HCR_TRVM : HCR_TVM; 625 if (arm_hcr_el2_eff(env) & trap) { 626 return CP_ACCESS_TRAP_EL2; 627 } 628 } 629 return CP_ACCESS_OK; 630 } 631 632 /* Check for traps from EL1 due to HCR_EL2.TSW. */ 633 static CPAccessResult access_tsw(CPUARMState *env, const ARMCPRegInfo *ri, 634 bool isread) 635 { 636 if (arm_current_el(env) == 1 && (arm_hcr_el2_eff(env) & HCR_TSW)) { 637 return CP_ACCESS_TRAP_EL2; 638 } 639 return CP_ACCESS_OK; 640 } 641 642 /* Check for traps from EL1 due to HCR_EL2.TACR. */ 643 static CPAccessResult access_tacr(CPUARMState *env, const ARMCPRegInfo *ri, 644 bool isread) 645 { 646 if (arm_current_el(env) == 1 && (arm_hcr_el2_eff(env) & HCR_TACR)) { 647 return CP_ACCESS_TRAP_EL2; 648 } 649 return CP_ACCESS_OK; 650 } 651 652 /* Check for traps from EL1 due to HCR_EL2.TTLB. */ 653 static CPAccessResult access_ttlb(CPUARMState *env, const ARMCPRegInfo *ri, 654 bool isread) 655 { 656 if (arm_current_el(env) == 1 && (arm_hcr_el2_eff(env) & HCR_TTLB)) { 657 return CP_ACCESS_TRAP_EL2; 658 } 659 return CP_ACCESS_OK; 660 } 661 662 static void dacr_write(CPUARMState *env, const ARMCPRegInfo *ri, uint64_t value) 663 { 664 ARMCPU *cpu = env_archcpu(env); 665 666 raw_write(env, ri, value); 667 tlb_flush(CPU(cpu)); /* Flush TLB as domain not tracked in TLB */ 668 } 669 670 static void fcse_write(CPUARMState *env, const ARMCPRegInfo *ri, uint64_t value) 671 { 672 ARMCPU *cpu = env_archcpu(env); 673 674 if (raw_read(env, ri) != value) { 675 /* Unlike real hardware the qemu TLB uses virtual addresses, 676 * not modified virtual addresses, so this causes a TLB flush. 677 */ 678 tlb_flush(CPU(cpu)); 679 raw_write(env, ri, value); 680 } 681 } 682 683 static void contextidr_write(CPUARMState *env, const ARMCPRegInfo *ri, 684 uint64_t value) 685 { 686 ARMCPU *cpu = env_archcpu(env); 687 688 if (raw_read(env, ri) != value && !arm_feature(env, ARM_FEATURE_PMSA) 689 && !extended_addresses_enabled(env)) { 690 /* For VMSA (when not using the LPAE long descriptor page table 691 * format) this register includes the ASID, so do a TLB flush. 692 * For PMSA it is purely a process ID and no action is needed. 693 */ 694 tlb_flush(CPU(cpu)); 695 } 696 raw_write(env, ri, value); 697 } 698 699 /* IS variants of TLB operations must affect all cores */ 700 static void tlbiall_is_write(CPUARMState *env, const ARMCPRegInfo *ri, 701 uint64_t value) 702 { 703 CPUState *cs = env_cpu(env); 704 705 tlb_flush_all_cpus_synced(cs); 706 } 707 708 static void tlbiasid_is_write(CPUARMState *env, const ARMCPRegInfo *ri, 709 uint64_t value) 710 { 711 CPUState *cs = env_cpu(env); 712 713 tlb_flush_all_cpus_synced(cs); 714 } 715 716 static void tlbimva_is_write(CPUARMState *env, const ARMCPRegInfo *ri, 717 uint64_t value) 718 { 719 CPUState *cs = env_cpu(env); 720 721 tlb_flush_page_all_cpus_synced(cs, value & TARGET_PAGE_MASK); 722 } 723 724 static void tlbimvaa_is_write(CPUARMState *env, const ARMCPRegInfo *ri, 725 uint64_t value) 726 { 727 CPUState *cs = env_cpu(env); 728 729 tlb_flush_page_all_cpus_synced(cs, value & TARGET_PAGE_MASK); 730 } 731 732 /* 733 * Non-IS variants of TLB operations are upgraded to 734 * IS versions if we are at EL1 and HCR_EL2.FB is effectively set to 735 * force broadcast of these operations. 736 */ 737 static bool tlb_force_broadcast(CPUARMState *env) 738 { 739 return arm_current_el(env) == 1 && (arm_hcr_el2_eff(env) & HCR_FB); 740 } 741 742 static void tlbiall_write(CPUARMState *env, const ARMCPRegInfo *ri, 743 uint64_t value) 744 { 745 /* Invalidate all (TLBIALL) */ 746 CPUState *cs = env_cpu(env); 747 748 if (tlb_force_broadcast(env)) { 749 tlb_flush_all_cpus_synced(cs); 750 } else { 751 tlb_flush(cs); 752 } 753 } 754 755 static void tlbimva_write(CPUARMState *env, const ARMCPRegInfo *ri, 756 uint64_t value) 757 { 758 /* Invalidate single TLB entry by MVA and ASID (TLBIMVA) */ 759 CPUState *cs = env_cpu(env); 760 761 value &= TARGET_PAGE_MASK; 762 if (tlb_force_broadcast(env)) { 763 tlb_flush_page_all_cpus_synced(cs, value); 764 } else { 765 tlb_flush_page(cs, value); 766 } 767 } 768 769 static void tlbiasid_write(CPUARMState *env, const ARMCPRegInfo *ri, 770 uint64_t value) 771 { 772 /* Invalidate by ASID (TLBIASID) */ 773 CPUState *cs = env_cpu(env); 774 775 if (tlb_force_broadcast(env)) { 776 tlb_flush_all_cpus_synced(cs); 777 } else { 778 tlb_flush(cs); 779 } 780 } 781 782 static void tlbimvaa_write(CPUARMState *env, const ARMCPRegInfo *ri, 783 uint64_t value) 784 { 785 /* Invalidate single entry by MVA, all ASIDs (TLBIMVAA) */ 786 CPUState *cs = env_cpu(env); 787 788 value &= TARGET_PAGE_MASK; 789 if (tlb_force_broadcast(env)) { 790 tlb_flush_page_all_cpus_synced(cs, value); 791 } else { 792 tlb_flush_page(cs, value); 793 } 794 } 795 796 static void tlbiall_nsnh_write(CPUARMState *env, const ARMCPRegInfo *ri, 797 uint64_t value) 798 { 799 CPUState *cs = env_cpu(env); 800 801 tlb_flush_by_mmuidx(cs, 802 ARMMMUIdxBit_E10_1 | 803 ARMMMUIdxBit_E10_1_PAN | 804 ARMMMUIdxBit_E10_0); 805 } 806 807 static void tlbiall_nsnh_is_write(CPUARMState *env, const ARMCPRegInfo *ri, 808 uint64_t value) 809 { 810 CPUState *cs = env_cpu(env); 811 812 tlb_flush_by_mmuidx_all_cpus_synced(cs, 813 ARMMMUIdxBit_E10_1 | 814 ARMMMUIdxBit_E10_1_PAN | 815 ARMMMUIdxBit_E10_0); 816 } 817 818 819 static void tlbiall_hyp_write(CPUARMState *env, const ARMCPRegInfo *ri, 820 uint64_t value) 821 { 822 CPUState *cs = env_cpu(env); 823 824 tlb_flush_by_mmuidx(cs, ARMMMUIdxBit_E2); 825 } 826 827 static void tlbiall_hyp_is_write(CPUARMState *env, const ARMCPRegInfo *ri, 828 uint64_t value) 829 { 830 CPUState *cs = env_cpu(env); 831 832 tlb_flush_by_mmuidx_all_cpus_synced(cs, ARMMMUIdxBit_E2); 833 } 834 835 static void tlbimva_hyp_write(CPUARMState *env, const ARMCPRegInfo *ri, 836 uint64_t value) 837 { 838 CPUState *cs = env_cpu(env); 839 uint64_t pageaddr = value & ~MAKE_64BIT_MASK(0, 12); 840 841 tlb_flush_page_by_mmuidx(cs, pageaddr, ARMMMUIdxBit_E2); 842 } 843 844 static void tlbimva_hyp_is_write(CPUARMState *env, const ARMCPRegInfo *ri, 845 uint64_t value) 846 { 847 CPUState *cs = env_cpu(env); 848 uint64_t pageaddr = value & ~MAKE_64BIT_MASK(0, 12); 849 850 tlb_flush_page_by_mmuidx_all_cpus_synced(cs, pageaddr, 851 ARMMMUIdxBit_E2); 852 } 853 854 static const ARMCPRegInfo cp_reginfo[] = { 855 /* Define the secure and non-secure FCSE identifier CP registers 856 * separately because there is no secure bank in V8 (no _EL3). This allows 857 * the secure register to be properly reset and migrated. There is also no 858 * v8 EL1 version of the register so the non-secure instance stands alone. 859 */ 860 { .name = "FCSEIDR", 861 .cp = 15, .opc1 = 0, .crn = 13, .crm = 0, .opc2 = 0, 862 .access = PL1_RW, .secure = ARM_CP_SECSTATE_NS, 863 .fieldoffset = offsetof(CPUARMState, cp15.fcseidr_ns), 864 .resetvalue = 0, .writefn = fcse_write, .raw_writefn = raw_write, }, 865 { .name = "FCSEIDR_S", 866 .cp = 15, .opc1 = 0, .crn = 13, .crm = 0, .opc2 = 0, 867 .access = PL1_RW, .secure = ARM_CP_SECSTATE_S, 868 .fieldoffset = offsetof(CPUARMState, cp15.fcseidr_s), 869 .resetvalue = 0, .writefn = fcse_write, .raw_writefn = raw_write, }, 870 /* Define the secure and non-secure context identifier CP registers 871 * separately because there is no secure bank in V8 (no _EL3). This allows 872 * the secure register to be properly reset and migrated. In the 873 * non-secure case, the 32-bit register will have reset and migration 874 * disabled during registration as it is handled by the 64-bit instance. 875 */ 876 { .name = "CONTEXTIDR_EL1", .state = ARM_CP_STATE_BOTH, 877 .opc0 = 3, .opc1 = 0, .crn = 13, .crm = 0, .opc2 = 1, 878 .access = PL1_RW, .accessfn = access_tvm_trvm, 879 .secure = ARM_CP_SECSTATE_NS, 880 .fieldoffset = offsetof(CPUARMState, cp15.contextidr_el[1]), 881 .resetvalue = 0, .writefn = contextidr_write, .raw_writefn = raw_write, }, 882 { .name = "CONTEXTIDR_S", .state = ARM_CP_STATE_AA32, 883 .cp = 15, .opc1 = 0, .crn = 13, .crm = 0, .opc2 = 1, 884 .access = PL1_RW, .accessfn = access_tvm_trvm, 885 .secure = ARM_CP_SECSTATE_S, 886 .fieldoffset = offsetof(CPUARMState, cp15.contextidr_s), 887 .resetvalue = 0, .writefn = contextidr_write, .raw_writefn = raw_write, }, 888 REGINFO_SENTINEL 889 }; 890 891 static const ARMCPRegInfo not_v8_cp_reginfo[] = { 892 /* NB: Some of these registers exist in v8 but with more precise 893 * definitions that don't use CP_ANY wildcards (mostly in v8_cp_reginfo[]). 894 */ 895 /* MMU Domain access control / MPU write buffer control */ 896 { .name = "DACR", 897 .cp = 15, .opc1 = CP_ANY, .crn = 3, .crm = CP_ANY, .opc2 = CP_ANY, 898 .access = PL1_RW, .accessfn = access_tvm_trvm, .resetvalue = 0, 899 .writefn = dacr_write, .raw_writefn = raw_write, 900 .bank_fieldoffsets = { offsetoflow32(CPUARMState, cp15.dacr_s), 901 offsetoflow32(CPUARMState, cp15.dacr_ns) } }, 902 /* ARMv7 allocates a range of implementation defined TLB LOCKDOWN regs. 903 * For v6 and v5, these mappings are overly broad. 904 */ 905 { .name = "TLB_LOCKDOWN", .cp = 15, .crn = 10, .crm = 0, 906 .opc1 = CP_ANY, .opc2 = CP_ANY, .access = PL1_RW, .type = ARM_CP_NOP }, 907 { .name = "TLB_LOCKDOWN", .cp = 15, .crn = 10, .crm = 1, 908 .opc1 = CP_ANY, .opc2 = CP_ANY, .access = PL1_RW, .type = ARM_CP_NOP }, 909 { .name = "TLB_LOCKDOWN", .cp = 15, .crn = 10, .crm = 4, 910 .opc1 = CP_ANY, .opc2 = CP_ANY, .access = PL1_RW, .type = ARM_CP_NOP }, 911 { .name = "TLB_LOCKDOWN", .cp = 15, .crn = 10, .crm = 8, 912 .opc1 = CP_ANY, .opc2 = CP_ANY, .access = PL1_RW, .type = ARM_CP_NOP }, 913 /* Cache maintenance ops; some of this space may be overridden later. */ 914 { .name = "CACHEMAINT", .cp = 15, .crn = 7, .crm = CP_ANY, 915 .opc1 = 0, .opc2 = CP_ANY, .access = PL1_W, 916 .type = ARM_CP_NOP | ARM_CP_OVERRIDE }, 917 REGINFO_SENTINEL 918 }; 919 920 static const ARMCPRegInfo not_v6_cp_reginfo[] = { 921 /* Not all pre-v6 cores implemented this WFI, so this is slightly 922 * over-broad. 923 */ 924 { .name = "WFI_v5", .cp = 15, .crn = 7, .crm = 8, .opc1 = 0, .opc2 = 2, 925 .access = PL1_W, .type = ARM_CP_WFI }, 926 REGINFO_SENTINEL 927 }; 928 929 static const ARMCPRegInfo not_v7_cp_reginfo[] = { 930 /* Standard v6 WFI (also used in some pre-v6 cores); not in v7 (which 931 * is UNPREDICTABLE; we choose to NOP as most implementations do). 932 */ 933 { .name = "WFI_v6", .cp = 15, .crn = 7, .crm = 0, .opc1 = 0, .opc2 = 4, 934 .access = PL1_W, .type = ARM_CP_WFI }, 935 /* L1 cache lockdown. Not architectural in v6 and earlier but in practice 936 * implemented in 926, 946, 1026, 1136, 1176 and 11MPCore. StrongARM and 937 * OMAPCP will override this space. 938 */ 939 { .name = "DLOCKDOWN", .cp = 15, .crn = 9, .crm = 0, .opc1 = 0, .opc2 = 0, 940 .access = PL1_RW, .fieldoffset = offsetof(CPUARMState, cp15.c9_data), 941 .resetvalue = 0 }, 942 { .name = "ILOCKDOWN", .cp = 15, .crn = 9, .crm = 0, .opc1 = 0, .opc2 = 1, 943 .access = PL1_RW, .fieldoffset = offsetof(CPUARMState, cp15.c9_insn), 944 .resetvalue = 0 }, 945 /* v6 doesn't have the cache ID registers but Linux reads them anyway */ 946 { .name = "DUMMY", .cp = 15, .crn = 0, .crm = 0, .opc1 = 1, .opc2 = CP_ANY, 947 .access = PL1_R, .type = ARM_CP_CONST | ARM_CP_NO_RAW, 948 .resetvalue = 0 }, 949 /* We don't implement pre-v7 debug but most CPUs had at least a DBGDIDR; 950 * implementing it as RAZ means the "debug architecture version" bits 951 * will read as a reserved value, which should cause Linux to not try 952 * to use the debug hardware. 953 */ 954 { .name = "DBGDIDR", .cp = 14, .crn = 0, .crm = 0, .opc1 = 0, .opc2 = 0, 955 .access = PL0_R, .type = ARM_CP_CONST, .resetvalue = 0 }, 956 /* MMU TLB control. Note that the wildcarding means we cover not just 957 * the unified TLB ops but also the dside/iside/inner-shareable variants. 958 */ 959 { .name = "TLBIALL", .cp = 15, .crn = 8, .crm = CP_ANY, 960 .opc1 = CP_ANY, .opc2 = 0, .access = PL1_W, .writefn = tlbiall_write, 961 .type = ARM_CP_NO_RAW }, 962 { .name = "TLBIMVA", .cp = 15, .crn = 8, .crm = CP_ANY, 963 .opc1 = CP_ANY, .opc2 = 1, .access = PL1_W, .writefn = tlbimva_write, 964 .type = ARM_CP_NO_RAW }, 965 { .name = "TLBIASID", .cp = 15, .crn = 8, .crm = CP_ANY, 966 .opc1 = CP_ANY, .opc2 = 2, .access = PL1_W, .writefn = tlbiasid_write, 967 .type = ARM_CP_NO_RAW }, 968 { .name = "TLBIMVAA", .cp = 15, .crn = 8, .crm = CP_ANY, 969 .opc1 = CP_ANY, .opc2 = 3, .access = PL1_W, .writefn = tlbimvaa_write, 970 .type = ARM_CP_NO_RAW }, 971 { .name = "PRRR", .cp = 15, .crn = 10, .crm = 2, 972 .opc1 = 0, .opc2 = 0, .access = PL1_RW, .type = ARM_CP_NOP }, 973 { .name = "NMRR", .cp = 15, .crn = 10, .crm = 2, 974 .opc1 = 0, .opc2 = 1, .access = PL1_RW, .type = ARM_CP_NOP }, 975 REGINFO_SENTINEL 976 }; 977 978 static void cpacr_write(CPUARMState *env, const ARMCPRegInfo *ri, 979 uint64_t value) 980 { 981 uint32_t mask = 0; 982 983 /* In ARMv8 most bits of CPACR_EL1 are RES0. */ 984 if (!arm_feature(env, ARM_FEATURE_V8)) { 985 /* ARMv7 defines bits for unimplemented coprocessors as RAZ/WI. 986 * ASEDIS [31] and D32DIS [30] are both UNK/SBZP without VFP. 987 * TRCDIS [28] is RAZ/WI since we do not implement a trace macrocell. 988 */ 989 if (cpu_isar_feature(aa32_vfp_simd, env_archcpu(env))) { 990 /* VFP coprocessor: cp10 & cp11 [23:20] */ 991 mask |= (1 << 31) | (1 << 30) | (0xf << 20); 992 993 if (!arm_feature(env, ARM_FEATURE_NEON)) { 994 /* ASEDIS [31] bit is RAO/WI */ 995 value |= (1 << 31); 996 } 997 998 /* VFPv3 and upwards with NEON implement 32 double precision 999 * registers (D0-D31). 1000 */ 1001 if (!cpu_isar_feature(aa32_simd_r32, env_archcpu(env))) { 1002 /* D32DIS [30] is RAO/WI if D16-31 are not implemented. */ 1003 value |= (1 << 30); 1004 } 1005 } 1006 value &= mask; 1007 } 1008 1009 /* 1010 * For A-profile AArch32 EL3 (but not M-profile secure mode), if NSACR.CP10 1011 * is 0 then CPACR.{CP11,CP10} ignore writes and read as 0b00. 1012 */ 1013 if (arm_feature(env, ARM_FEATURE_EL3) && !arm_el_is_aa64(env, 3) && 1014 !arm_is_secure(env) && !extract32(env->cp15.nsacr, 10, 1)) { 1015 value &= ~(0xf << 20); 1016 value |= env->cp15.cpacr_el1 & (0xf << 20); 1017 } 1018 1019 env->cp15.cpacr_el1 = value; 1020 } 1021 1022 static uint64_t cpacr_read(CPUARMState *env, const ARMCPRegInfo *ri) 1023 { 1024 /* 1025 * For A-profile AArch32 EL3 (but not M-profile secure mode), if NSACR.CP10 1026 * is 0 then CPACR.{CP11,CP10} ignore writes and read as 0b00. 1027 */ 1028 uint64_t value = env->cp15.cpacr_el1; 1029 1030 if (arm_feature(env, ARM_FEATURE_EL3) && !arm_el_is_aa64(env, 3) && 1031 !arm_is_secure(env) && !extract32(env->cp15.nsacr, 10, 1)) { 1032 value &= ~(0xf << 20); 1033 } 1034 return value; 1035 } 1036 1037 1038 static void cpacr_reset(CPUARMState *env, const ARMCPRegInfo *ri) 1039 { 1040 /* Call cpacr_write() so that we reset with the correct RAO bits set 1041 * for our CPU features. 1042 */ 1043 cpacr_write(env, ri, 0); 1044 } 1045 1046 static CPAccessResult cpacr_access(CPUARMState *env, const ARMCPRegInfo *ri, 1047 bool isread) 1048 { 1049 if (arm_feature(env, ARM_FEATURE_V8)) { 1050 /* Check if CPACR accesses are to be trapped to EL2 */ 1051 if (arm_current_el(env) == 1 && 1052 (env->cp15.cptr_el[2] & CPTR_TCPAC) && !arm_is_secure(env)) { 1053 return CP_ACCESS_TRAP_EL2; 1054 /* Check if CPACR accesses are to be trapped to EL3 */ 1055 } else if (arm_current_el(env) < 3 && 1056 (env->cp15.cptr_el[3] & CPTR_TCPAC)) { 1057 return CP_ACCESS_TRAP_EL3; 1058 } 1059 } 1060 1061 return CP_ACCESS_OK; 1062 } 1063 1064 static CPAccessResult cptr_access(CPUARMState *env, const ARMCPRegInfo *ri, 1065 bool isread) 1066 { 1067 /* Check if CPTR accesses are set to trap to EL3 */ 1068 if (arm_current_el(env) == 2 && (env->cp15.cptr_el[3] & CPTR_TCPAC)) { 1069 return CP_ACCESS_TRAP_EL3; 1070 } 1071 1072 return CP_ACCESS_OK; 1073 } 1074 1075 static const ARMCPRegInfo v6_cp_reginfo[] = { 1076 /* prefetch by MVA in v6, NOP in v7 */ 1077 { .name = "MVA_prefetch", 1078 .cp = 15, .crn = 7, .crm = 13, .opc1 = 0, .opc2 = 1, 1079 .access = PL1_W, .type = ARM_CP_NOP }, 1080 /* We need to break the TB after ISB to execute self-modifying code 1081 * correctly and also to take any pending interrupts immediately. 1082 * So use arm_cp_write_ignore() function instead of ARM_CP_NOP flag. 1083 */ 1084 { .name = "ISB", .cp = 15, .crn = 7, .crm = 5, .opc1 = 0, .opc2 = 4, 1085 .access = PL0_W, .type = ARM_CP_NO_RAW, .writefn = arm_cp_write_ignore }, 1086 { .name = "DSB", .cp = 15, .crn = 7, .crm = 10, .opc1 = 0, .opc2 = 4, 1087 .access = PL0_W, .type = ARM_CP_NOP }, 1088 { .name = "DMB", .cp = 15, .crn = 7, .crm = 10, .opc1 = 0, .opc2 = 5, 1089 .access = PL0_W, .type = ARM_CP_NOP }, 1090 { .name = "IFAR", .cp = 15, .crn = 6, .crm = 0, .opc1 = 0, .opc2 = 2, 1091 .access = PL1_RW, .accessfn = access_tvm_trvm, 1092 .bank_fieldoffsets = { offsetof(CPUARMState, cp15.ifar_s), 1093 offsetof(CPUARMState, cp15.ifar_ns) }, 1094 .resetvalue = 0, }, 1095 /* Watchpoint Fault Address Register : should actually only be present 1096 * for 1136, 1176, 11MPCore. 1097 */ 1098 { .name = "WFAR", .cp = 15, .crn = 6, .crm = 0, .opc1 = 0, .opc2 = 1, 1099 .access = PL1_RW, .type = ARM_CP_CONST, .resetvalue = 0, }, 1100 { .name = "CPACR", .state = ARM_CP_STATE_BOTH, .opc0 = 3, 1101 .crn = 1, .crm = 0, .opc1 = 0, .opc2 = 2, .accessfn = cpacr_access, 1102 .access = PL1_RW, .fieldoffset = offsetof(CPUARMState, cp15.cpacr_el1), 1103 .resetfn = cpacr_reset, .writefn = cpacr_write, .readfn = cpacr_read }, 1104 REGINFO_SENTINEL 1105 }; 1106 1107 /* Definitions for the PMU registers */ 1108 #define PMCRN_MASK 0xf800 1109 #define PMCRN_SHIFT 11 1110 #define PMCRLC 0x40 1111 #define PMCRDP 0x20 1112 #define PMCRX 0x10 1113 #define PMCRD 0x8 1114 #define PMCRC 0x4 1115 #define PMCRP 0x2 1116 #define PMCRE 0x1 1117 /* 1118 * Mask of PMCR bits writeable by guest (not including WO bits like C, P, 1119 * which can be written as 1 to trigger behaviour but which stay RAZ). 1120 */ 1121 #define PMCR_WRITEABLE_MASK (PMCRLC | PMCRDP | PMCRX | PMCRD | PMCRE) 1122 1123 #define PMXEVTYPER_P 0x80000000 1124 #define PMXEVTYPER_U 0x40000000 1125 #define PMXEVTYPER_NSK 0x20000000 1126 #define PMXEVTYPER_NSU 0x10000000 1127 #define PMXEVTYPER_NSH 0x08000000 1128 #define PMXEVTYPER_M 0x04000000 1129 #define PMXEVTYPER_MT 0x02000000 1130 #define PMXEVTYPER_EVTCOUNT 0x0000ffff 1131 #define PMXEVTYPER_MASK (PMXEVTYPER_P | PMXEVTYPER_U | PMXEVTYPER_NSK | \ 1132 PMXEVTYPER_NSU | PMXEVTYPER_NSH | \ 1133 PMXEVTYPER_M | PMXEVTYPER_MT | \ 1134 PMXEVTYPER_EVTCOUNT) 1135 1136 #define PMCCFILTR 0xf8000000 1137 #define PMCCFILTR_M PMXEVTYPER_M 1138 #define PMCCFILTR_EL0 (PMCCFILTR | PMCCFILTR_M) 1139 1140 static inline uint32_t pmu_num_counters(CPUARMState *env) 1141 { 1142 return (env->cp15.c9_pmcr & PMCRN_MASK) >> PMCRN_SHIFT; 1143 } 1144 1145 /* Bits allowed to be set/cleared for PMCNTEN* and PMINTEN* */ 1146 static inline uint64_t pmu_counter_mask(CPUARMState *env) 1147 { 1148 return (1 << 31) | ((1 << pmu_num_counters(env)) - 1); 1149 } 1150 1151 typedef struct pm_event { 1152 uint16_t number; /* PMEVTYPER.evtCount is 16 bits wide */ 1153 /* If the event is supported on this CPU (used to generate PMCEID[01]) */ 1154 bool (*supported)(CPUARMState *); 1155 /* 1156 * Retrieve the current count of the underlying event. The programmed 1157 * counters hold a difference from the return value from this function 1158 */ 1159 uint64_t (*get_count)(CPUARMState *); 1160 /* 1161 * Return how many nanoseconds it will take (at a minimum) for count events 1162 * to occur. A negative value indicates the counter will never overflow, or 1163 * that the counter has otherwise arranged for the overflow bit to be set 1164 * and the PMU interrupt to be raised on overflow. 1165 */ 1166 int64_t (*ns_per_count)(uint64_t); 1167 } pm_event; 1168 1169 static bool event_always_supported(CPUARMState *env) 1170 { 1171 return true; 1172 } 1173 1174 static uint64_t swinc_get_count(CPUARMState *env) 1175 { 1176 /* 1177 * SW_INCR events are written directly to the pmevcntr's by writes to 1178 * PMSWINC, so there is no underlying count maintained by the PMU itself 1179 */ 1180 return 0; 1181 } 1182 1183 static int64_t swinc_ns_per(uint64_t ignored) 1184 { 1185 return -1; 1186 } 1187 1188 /* 1189 * Return the underlying cycle count for the PMU cycle counters. If we're in 1190 * usermode, simply return 0. 1191 */ 1192 static uint64_t cycles_get_count(CPUARMState *env) 1193 { 1194 #ifndef CONFIG_USER_ONLY 1195 return muldiv64(qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL), 1196 ARM_CPU_FREQ, NANOSECONDS_PER_SECOND); 1197 #else 1198 return cpu_get_host_ticks(); 1199 #endif 1200 } 1201 1202 #ifndef CONFIG_USER_ONLY 1203 static int64_t cycles_ns_per(uint64_t cycles) 1204 { 1205 return (ARM_CPU_FREQ / NANOSECONDS_PER_SECOND) * cycles; 1206 } 1207 1208 static bool instructions_supported(CPUARMState *env) 1209 { 1210 return icount_enabled() == 1; /* Precise instruction counting */ 1211 } 1212 1213 static uint64_t instructions_get_count(CPUARMState *env) 1214 { 1215 return (uint64_t)icount_get_raw(); 1216 } 1217 1218 static int64_t instructions_ns_per(uint64_t icount) 1219 { 1220 return icount_to_ns((int64_t)icount); 1221 } 1222 #endif 1223 1224 static bool pmu_8_1_events_supported(CPUARMState *env) 1225 { 1226 /* For events which are supported in any v8.1 PMU */ 1227 return cpu_isar_feature(any_pmu_8_1, env_archcpu(env)); 1228 } 1229 1230 static bool pmu_8_4_events_supported(CPUARMState *env) 1231 { 1232 /* For events which are supported in any v8.1 PMU */ 1233 return cpu_isar_feature(any_pmu_8_4, env_archcpu(env)); 1234 } 1235 1236 static uint64_t zero_event_get_count(CPUARMState *env) 1237 { 1238 /* For events which on QEMU never fire, so their count is always zero */ 1239 return 0; 1240 } 1241 1242 static int64_t zero_event_ns_per(uint64_t cycles) 1243 { 1244 /* An event which never fires can never overflow */ 1245 return -1; 1246 } 1247 1248 static const pm_event pm_events[] = { 1249 { .number = 0x000, /* SW_INCR */ 1250 .supported = event_always_supported, 1251 .get_count = swinc_get_count, 1252 .ns_per_count = swinc_ns_per, 1253 }, 1254 #ifndef CONFIG_USER_ONLY 1255 { .number = 0x008, /* INST_RETIRED, Instruction architecturally executed */ 1256 .supported = instructions_supported, 1257 .get_count = instructions_get_count, 1258 .ns_per_count = instructions_ns_per, 1259 }, 1260 { .number = 0x011, /* CPU_CYCLES, Cycle */ 1261 .supported = event_always_supported, 1262 .get_count = cycles_get_count, 1263 .ns_per_count = cycles_ns_per, 1264 }, 1265 #endif 1266 { .number = 0x023, /* STALL_FRONTEND */ 1267 .supported = pmu_8_1_events_supported, 1268 .get_count = zero_event_get_count, 1269 .ns_per_count = zero_event_ns_per, 1270 }, 1271 { .number = 0x024, /* STALL_BACKEND */ 1272 .supported = pmu_8_1_events_supported, 1273 .get_count = zero_event_get_count, 1274 .ns_per_count = zero_event_ns_per, 1275 }, 1276 { .number = 0x03c, /* STALL */ 1277 .supported = pmu_8_4_events_supported, 1278 .get_count = zero_event_get_count, 1279 .ns_per_count = zero_event_ns_per, 1280 }, 1281 }; 1282 1283 /* 1284 * Note: Before increasing MAX_EVENT_ID beyond 0x3f into the 0x40xx range of 1285 * events (i.e. the statistical profiling extension), this implementation 1286 * should first be updated to something sparse instead of the current 1287 * supported_event_map[] array. 1288 */ 1289 #define MAX_EVENT_ID 0x3c 1290 #define UNSUPPORTED_EVENT UINT16_MAX 1291 static uint16_t supported_event_map[MAX_EVENT_ID + 1]; 1292 1293 /* 1294 * Called upon CPU initialization to initialize PMCEID[01]_EL0 and build a map 1295 * of ARM event numbers to indices in our pm_events array. 1296 * 1297 * Note: Events in the 0x40XX range are not currently supported. 1298 */ 1299 void pmu_init(ARMCPU *cpu) 1300 { 1301 unsigned int i; 1302 1303 /* 1304 * Empty supported_event_map and cpu->pmceid[01] before adding supported 1305 * events to them 1306 */ 1307 for (i = 0; i < ARRAY_SIZE(supported_event_map); i++) { 1308 supported_event_map[i] = UNSUPPORTED_EVENT; 1309 } 1310 cpu->pmceid0 = 0; 1311 cpu->pmceid1 = 0; 1312 1313 for (i = 0; i < ARRAY_SIZE(pm_events); i++) { 1314 const pm_event *cnt = &pm_events[i]; 1315 assert(cnt->number <= MAX_EVENT_ID); 1316 /* We do not currently support events in the 0x40xx range */ 1317 assert(cnt->number <= 0x3f); 1318 1319 if (cnt->supported(&cpu->env)) { 1320 supported_event_map[cnt->number] = i; 1321 uint64_t event_mask = 1ULL << (cnt->number & 0x1f); 1322 if (cnt->number & 0x20) { 1323 cpu->pmceid1 |= event_mask; 1324 } else { 1325 cpu->pmceid0 |= event_mask; 1326 } 1327 } 1328 } 1329 } 1330 1331 /* 1332 * Check at runtime whether a PMU event is supported for the current machine 1333 */ 1334 static bool event_supported(uint16_t number) 1335 { 1336 if (number > MAX_EVENT_ID) { 1337 return false; 1338 } 1339 return supported_event_map[number] != UNSUPPORTED_EVENT; 1340 } 1341 1342 static CPAccessResult pmreg_access(CPUARMState *env, const ARMCPRegInfo *ri, 1343 bool isread) 1344 { 1345 /* Performance monitor registers user accessibility is controlled 1346 * by PMUSERENR. MDCR_EL2.TPM and MDCR_EL3.TPM allow configurable 1347 * trapping to EL2 or EL3 for other accesses. 1348 */ 1349 int el = arm_current_el(env); 1350 1351 if (el == 0 && !(env->cp15.c9_pmuserenr & 1)) { 1352 return CP_ACCESS_TRAP; 1353 } 1354 if (el < 2 && (env->cp15.mdcr_el2 & MDCR_TPM) 1355 && !arm_is_secure_below_el3(env)) { 1356 return CP_ACCESS_TRAP_EL2; 1357 } 1358 if (el < 3 && (env->cp15.mdcr_el3 & MDCR_TPM)) { 1359 return CP_ACCESS_TRAP_EL3; 1360 } 1361 1362 return CP_ACCESS_OK; 1363 } 1364 1365 static CPAccessResult pmreg_access_xevcntr(CPUARMState *env, 1366 const ARMCPRegInfo *ri, 1367 bool isread) 1368 { 1369 /* ER: event counter read trap control */ 1370 if (arm_feature(env, ARM_FEATURE_V8) 1371 && arm_current_el(env) == 0 1372 && (env->cp15.c9_pmuserenr & (1 << 3)) != 0 1373 && isread) { 1374 return CP_ACCESS_OK; 1375 } 1376 1377 return pmreg_access(env, ri, isread); 1378 } 1379 1380 static CPAccessResult pmreg_access_swinc(CPUARMState *env, 1381 const ARMCPRegInfo *ri, 1382 bool isread) 1383 { 1384 /* SW: software increment write trap control */ 1385 if (arm_feature(env, ARM_FEATURE_V8) 1386 && arm_current_el(env) == 0 1387 && (env->cp15.c9_pmuserenr & (1 << 1)) != 0 1388 && !isread) { 1389 return CP_ACCESS_OK; 1390 } 1391 1392 return pmreg_access(env, ri, isread); 1393 } 1394 1395 static CPAccessResult pmreg_access_selr(CPUARMState *env, 1396 const ARMCPRegInfo *ri, 1397 bool isread) 1398 { 1399 /* ER: event counter read trap control */ 1400 if (arm_feature(env, ARM_FEATURE_V8) 1401 && arm_current_el(env) == 0 1402 && (env->cp15.c9_pmuserenr & (1 << 3)) != 0) { 1403 return CP_ACCESS_OK; 1404 } 1405 1406 return pmreg_access(env, ri, isread); 1407 } 1408 1409 static CPAccessResult pmreg_access_ccntr(CPUARMState *env, 1410 const ARMCPRegInfo *ri, 1411 bool isread) 1412 { 1413 /* CR: cycle counter read trap control */ 1414 if (arm_feature(env, ARM_FEATURE_V8) 1415 && arm_current_el(env) == 0 1416 && (env->cp15.c9_pmuserenr & (1 << 2)) != 0 1417 && isread) { 1418 return CP_ACCESS_OK; 1419 } 1420 1421 return pmreg_access(env, ri, isread); 1422 } 1423 1424 /* Returns true if the counter (pass 31 for PMCCNTR) should count events using 1425 * the current EL, security state, and register configuration. 1426 */ 1427 static bool pmu_counter_enabled(CPUARMState *env, uint8_t counter) 1428 { 1429 uint64_t filter; 1430 bool e, p, u, nsk, nsu, nsh, m; 1431 bool enabled, prohibited, filtered; 1432 bool secure = arm_is_secure(env); 1433 int el = arm_current_el(env); 1434 uint8_t hpmn = env->cp15.mdcr_el2 & MDCR_HPMN; 1435 1436 if (!arm_feature(env, ARM_FEATURE_PMU)) { 1437 return false; 1438 } 1439 1440 if (!arm_feature(env, ARM_FEATURE_EL2) || 1441 (counter < hpmn || counter == 31)) { 1442 e = env->cp15.c9_pmcr & PMCRE; 1443 } else { 1444 e = env->cp15.mdcr_el2 & MDCR_HPME; 1445 } 1446 enabled = e && (env->cp15.c9_pmcnten & (1 << counter)); 1447 1448 if (!secure) { 1449 if (el == 2 && (counter < hpmn || counter == 31)) { 1450 prohibited = env->cp15.mdcr_el2 & MDCR_HPMD; 1451 } else { 1452 prohibited = false; 1453 } 1454 } else { 1455 prohibited = arm_feature(env, ARM_FEATURE_EL3) && 1456 !(env->cp15.mdcr_el3 & MDCR_SPME); 1457 } 1458 1459 if (prohibited && counter == 31) { 1460 prohibited = env->cp15.c9_pmcr & PMCRDP; 1461 } 1462 1463 if (counter == 31) { 1464 filter = env->cp15.pmccfiltr_el0; 1465 } else { 1466 filter = env->cp15.c14_pmevtyper[counter]; 1467 } 1468 1469 p = filter & PMXEVTYPER_P; 1470 u = filter & PMXEVTYPER_U; 1471 nsk = arm_feature(env, ARM_FEATURE_EL3) && (filter & PMXEVTYPER_NSK); 1472 nsu = arm_feature(env, ARM_FEATURE_EL3) && (filter & PMXEVTYPER_NSU); 1473 nsh = arm_feature(env, ARM_FEATURE_EL2) && (filter & PMXEVTYPER_NSH); 1474 m = arm_el_is_aa64(env, 1) && 1475 arm_feature(env, ARM_FEATURE_EL3) && (filter & PMXEVTYPER_M); 1476 1477 if (el == 0) { 1478 filtered = secure ? u : u != nsu; 1479 } else if (el == 1) { 1480 filtered = secure ? p : p != nsk; 1481 } else if (el == 2) { 1482 filtered = !nsh; 1483 } else { /* EL3 */ 1484 filtered = m != p; 1485 } 1486 1487 if (counter != 31) { 1488 /* 1489 * If not checking PMCCNTR, ensure the counter is setup to an event we 1490 * support 1491 */ 1492 uint16_t event = filter & PMXEVTYPER_EVTCOUNT; 1493 if (!event_supported(event)) { 1494 return false; 1495 } 1496 } 1497 1498 return enabled && !prohibited && !filtered; 1499 } 1500 1501 static void pmu_update_irq(CPUARMState *env) 1502 { 1503 ARMCPU *cpu = env_archcpu(env); 1504 qemu_set_irq(cpu->pmu_interrupt, (env->cp15.c9_pmcr & PMCRE) && 1505 (env->cp15.c9_pminten & env->cp15.c9_pmovsr)); 1506 } 1507 1508 /* 1509 * Ensure c15_ccnt is the guest-visible count so that operations such as 1510 * enabling/disabling the counter or filtering, modifying the count itself, 1511 * etc. can be done logically. This is essentially a no-op if the counter is 1512 * not enabled at the time of the call. 1513 */ 1514 static void pmccntr_op_start(CPUARMState *env) 1515 { 1516 uint64_t cycles = cycles_get_count(env); 1517 1518 if (pmu_counter_enabled(env, 31)) { 1519 uint64_t eff_cycles = cycles; 1520 if (env->cp15.c9_pmcr & PMCRD) { 1521 /* Increment once every 64 processor clock cycles */ 1522 eff_cycles /= 64; 1523 } 1524 1525 uint64_t new_pmccntr = eff_cycles - env->cp15.c15_ccnt_delta; 1526 1527 uint64_t overflow_mask = env->cp15.c9_pmcr & PMCRLC ? \ 1528 1ull << 63 : 1ull << 31; 1529 if (env->cp15.c15_ccnt & ~new_pmccntr & overflow_mask) { 1530 env->cp15.c9_pmovsr |= (1 << 31); 1531 pmu_update_irq(env); 1532 } 1533 1534 env->cp15.c15_ccnt = new_pmccntr; 1535 } 1536 env->cp15.c15_ccnt_delta = cycles; 1537 } 1538 1539 /* 1540 * If PMCCNTR is enabled, recalculate the delta between the clock and the 1541 * guest-visible count. A call to pmccntr_op_finish should follow every call to 1542 * pmccntr_op_start. 1543 */ 1544 static void pmccntr_op_finish(CPUARMState *env) 1545 { 1546 if (pmu_counter_enabled(env, 31)) { 1547 #ifndef CONFIG_USER_ONLY 1548 /* Calculate when the counter will next overflow */ 1549 uint64_t remaining_cycles = -env->cp15.c15_ccnt; 1550 if (!(env->cp15.c9_pmcr & PMCRLC)) { 1551 remaining_cycles = (uint32_t)remaining_cycles; 1552 } 1553 int64_t overflow_in = cycles_ns_per(remaining_cycles); 1554 1555 if (overflow_in > 0) { 1556 int64_t overflow_at = qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL) + 1557 overflow_in; 1558 ARMCPU *cpu = env_archcpu(env); 1559 timer_mod_anticipate_ns(cpu->pmu_timer, overflow_at); 1560 } 1561 #endif 1562 1563 uint64_t prev_cycles = env->cp15.c15_ccnt_delta; 1564 if (env->cp15.c9_pmcr & PMCRD) { 1565 /* Increment once every 64 processor clock cycles */ 1566 prev_cycles /= 64; 1567 } 1568 env->cp15.c15_ccnt_delta = prev_cycles - env->cp15.c15_ccnt; 1569 } 1570 } 1571 1572 static void pmevcntr_op_start(CPUARMState *env, uint8_t counter) 1573 { 1574 1575 uint16_t event = env->cp15.c14_pmevtyper[counter] & PMXEVTYPER_EVTCOUNT; 1576 uint64_t count = 0; 1577 if (event_supported(event)) { 1578 uint16_t event_idx = supported_event_map[event]; 1579 count = pm_events[event_idx].get_count(env); 1580 } 1581 1582 if (pmu_counter_enabled(env, counter)) { 1583 uint32_t new_pmevcntr = count - env->cp15.c14_pmevcntr_delta[counter]; 1584 1585 if (env->cp15.c14_pmevcntr[counter] & ~new_pmevcntr & INT32_MIN) { 1586 env->cp15.c9_pmovsr |= (1 << counter); 1587 pmu_update_irq(env); 1588 } 1589 env->cp15.c14_pmevcntr[counter] = new_pmevcntr; 1590 } 1591 env->cp15.c14_pmevcntr_delta[counter] = count; 1592 } 1593 1594 static void pmevcntr_op_finish(CPUARMState *env, uint8_t counter) 1595 { 1596 if (pmu_counter_enabled(env, counter)) { 1597 #ifndef CONFIG_USER_ONLY 1598 uint16_t event = env->cp15.c14_pmevtyper[counter] & PMXEVTYPER_EVTCOUNT; 1599 uint16_t event_idx = supported_event_map[event]; 1600 uint64_t delta = UINT32_MAX - 1601 (uint32_t)env->cp15.c14_pmevcntr[counter] + 1; 1602 int64_t overflow_in = pm_events[event_idx].ns_per_count(delta); 1603 1604 if (overflow_in > 0) { 1605 int64_t overflow_at = qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL) + 1606 overflow_in; 1607 ARMCPU *cpu = env_archcpu(env); 1608 timer_mod_anticipate_ns(cpu->pmu_timer, overflow_at); 1609 } 1610 #endif 1611 1612 env->cp15.c14_pmevcntr_delta[counter] -= 1613 env->cp15.c14_pmevcntr[counter]; 1614 } 1615 } 1616 1617 void pmu_op_start(CPUARMState *env) 1618 { 1619 unsigned int i; 1620 pmccntr_op_start(env); 1621 for (i = 0; i < pmu_num_counters(env); i++) { 1622 pmevcntr_op_start(env, i); 1623 } 1624 } 1625 1626 void pmu_op_finish(CPUARMState *env) 1627 { 1628 unsigned int i; 1629 pmccntr_op_finish(env); 1630 for (i = 0; i < pmu_num_counters(env); i++) { 1631 pmevcntr_op_finish(env, i); 1632 } 1633 } 1634 1635 void pmu_pre_el_change(ARMCPU *cpu, void *ignored) 1636 { 1637 pmu_op_start(&cpu->env); 1638 } 1639 1640 void pmu_post_el_change(ARMCPU *cpu, void *ignored) 1641 { 1642 pmu_op_finish(&cpu->env); 1643 } 1644 1645 void arm_pmu_timer_cb(void *opaque) 1646 { 1647 ARMCPU *cpu = opaque; 1648 1649 /* 1650 * Update all the counter values based on the current underlying counts, 1651 * triggering interrupts to be raised, if necessary. pmu_op_finish() also 1652 * has the effect of setting the cpu->pmu_timer to the next earliest time a 1653 * counter may expire. 1654 */ 1655 pmu_op_start(&cpu->env); 1656 pmu_op_finish(&cpu->env); 1657 } 1658 1659 static void pmcr_write(CPUARMState *env, const ARMCPRegInfo *ri, 1660 uint64_t value) 1661 { 1662 pmu_op_start(env); 1663 1664 if (value & PMCRC) { 1665 /* The counter has been reset */ 1666 env->cp15.c15_ccnt = 0; 1667 } 1668 1669 if (value & PMCRP) { 1670 unsigned int i; 1671 for (i = 0; i < pmu_num_counters(env); i++) { 1672 env->cp15.c14_pmevcntr[i] = 0; 1673 } 1674 } 1675 1676 env->cp15.c9_pmcr &= ~PMCR_WRITEABLE_MASK; 1677 env->cp15.c9_pmcr |= (value & PMCR_WRITEABLE_MASK); 1678 1679 pmu_op_finish(env); 1680 } 1681 1682 static void pmswinc_write(CPUARMState *env, const ARMCPRegInfo *ri, 1683 uint64_t value) 1684 { 1685 unsigned int i; 1686 for (i = 0; i < pmu_num_counters(env); i++) { 1687 /* Increment a counter's count iff: */ 1688 if ((value & (1 << i)) && /* counter's bit is set */ 1689 /* counter is enabled and not filtered */ 1690 pmu_counter_enabled(env, i) && 1691 /* counter is SW_INCR */ 1692 (env->cp15.c14_pmevtyper[i] & PMXEVTYPER_EVTCOUNT) == 0x0) { 1693 pmevcntr_op_start(env, i); 1694 1695 /* 1696 * Detect if this write causes an overflow since we can't predict 1697 * PMSWINC overflows like we can for other events 1698 */ 1699 uint32_t new_pmswinc = env->cp15.c14_pmevcntr[i] + 1; 1700 1701 if (env->cp15.c14_pmevcntr[i] & ~new_pmswinc & INT32_MIN) { 1702 env->cp15.c9_pmovsr |= (1 << i); 1703 pmu_update_irq(env); 1704 } 1705 1706 env->cp15.c14_pmevcntr[i] = new_pmswinc; 1707 1708 pmevcntr_op_finish(env, i); 1709 } 1710 } 1711 } 1712 1713 static uint64_t pmccntr_read(CPUARMState *env, const ARMCPRegInfo *ri) 1714 { 1715 uint64_t ret; 1716 pmccntr_op_start(env); 1717 ret = env->cp15.c15_ccnt; 1718 pmccntr_op_finish(env); 1719 return ret; 1720 } 1721 1722 static void pmselr_write(CPUARMState *env, const ARMCPRegInfo *ri, 1723 uint64_t value) 1724 { 1725 /* The value of PMSELR.SEL affects the behavior of PMXEVTYPER and 1726 * PMXEVCNTR. We allow [0..31] to be written to PMSELR here; in the 1727 * meanwhile, we check PMSELR.SEL when PMXEVTYPER and PMXEVCNTR are 1728 * accessed. 1729 */ 1730 env->cp15.c9_pmselr = value & 0x1f; 1731 } 1732 1733 static void pmccntr_write(CPUARMState *env, const ARMCPRegInfo *ri, 1734 uint64_t value) 1735 { 1736 pmccntr_op_start(env); 1737 env->cp15.c15_ccnt = value; 1738 pmccntr_op_finish(env); 1739 } 1740 1741 static void pmccntr_write32(CPUARMState *env, const ARMCPRegInfo *ri, 1742 uint64_t value) 1743 { 1744 uint64_t cur_val = pmccntr_read(env, NULL); 1745 1746 pmccntr_write(env, ri, deposit64(cur_val, 0, 32, value)); 1747 } 1748 1749 static void pmccfiltr_write(CPUARMState *env, const ARMCPRegInfo *ri, 1750 uint64_t value) 1751 { 1752 pmccntr_op_start(env); 1753 env->cp15.pmccfiltr_el0 = value & PMCCFILTR_EL0; 1754 pmccntr_op_finish(env); 1755 } 1756 1757 static void pmccfiltr_write_a32(CPUARMState *env, const ARMCPRegInfo *ri, 1758 uint64_t value) 1759 { 1760 pmccntr_op_start(env); 1761 /* M is not accessible from AArch32 */ 1762 env->cp15.pmccfiltr_el0 = (env->cp15.pmccfiltr_el0 & PMCCFILTR_M) | 1763 (value & PMCCFILTR); 1764 pmccntr_op_finish(env); 1765 } 1766 1767 static uint64_t pmccfiltr_read_a32(CPUARMState *env, const ARMCPRegInfo *ri) 1768 { 1769 /* M is not visible in AArch32 */ 1770 return env->cp15.pmccfiltr_el0 & PMCCFILTR; 1771 } 1772 1773 static void pmcntenset_write(CPUARMState *env, const ARMCPRegInfo *ri, 1774 uint64_t value) 1775 { 1776 value &= pmu_counter_mask(env); 1777 env->cp15.c9_pmcnten |= value; 1778 } 1779 1780 static void pmcntenclr_write(CPUARMState *env, const ARMCPRegInfo *ri, 1781 uint64_t value) 1782 { 1783 value &= pmu_counter_mask(env); 1784 env->cp15.c9_pmcnten &= ~value; 1785 } 1786 1787 static void pmovsr_write(CPUARMState *env, const ARMCPRegInfo *ri, 1788 uint64_t value) 1789 { 1790 value &= pmu_counter_mask(env); 1791 env->cp15.c9_pmovsr &= ~value; 1792 pmu_update_irq(env); 1793 } 1794 1795 static void pmovsset_write(CPUARMState *env, const ARMCPRegInfo *ri, 1796 uint64_t value) 1797 { 1798 value &= pmu_counter_mask(env); 1799 env->cp15.c9_pmovsr |= value; 1800 pmu_update_irq(env); 1801 } 1802 1803 static void pmevtyper_write(CPUARMState *env, const ARMCPRegInfo *ri, 1804 uint64_t value, const uint8_t counter) 1805 { 1806 if (counter == 31) { 1807 pmccfiltr_write(env, ri, value); 1808 } else if (counter < pmu_num_counters(env)) { 1809 pmevcntr_op_start(env, counter); 1810 1811 /* 1812 * If this counter's event type is changing, store the current 1813 * underlying count for the new type in c14_pmevcntr_delta[counter] so 1814 * pmevcntr_op_finish has the correct baseline when it converts back to 1815 * a delta. 1816 */ 1817 uint16_t old_event = env->cp15.c14_pmevtyper[counter] & 1818 PMXEVTYPER_EVTCOUNT; 1819 uint16_t new_event = value & PMXEVTYPER_EVTCOUNT; 1820 if (old_event != new_event) { 1821 uint64_t count = 0; 1822 if (event_supported(new_event)) { 1823 uint16_t event_idx = supported_event_map[new_event]; 1824 count = pm_events[event_idx].get_count(env); 1825 } 1826 env->cp15.c14_pmevcntr_delta[counter] = count; 1827 } 1828 1829 env->cp15.c14_pmevtyper[counter] = value & PMXEVTYPER_MASK; 1830 pmevcntr_op_finish(env, counter); 1831 } 1832 /* Attempts to access PMXEVTYPER are CONSTRAINED UNPREDICTABLE when 1833 * PMSELR value is equal to or greater than the number of implemented 1834 * counters, but not equal to 0x1f. We opt to behave as a RAZ/WI. 1835 */ 1836 } 1837 1838 static uint64_t pmevtyper_read(CPUARMState *env, const ARMCPRegInfo *ri, 1839 const uint8_t counter) 1840 { 1841 if (counter == 31) { 1842 return env->cp15.pmccfiltr_el0; 1843 } else if (counter < pmu_num_counters(env)) { 1844 return env->cp15.c14_pmevtyper[counter]; 1845 } else { 1846 /* 1847 * We opt to behave as a RAZ/WI when attempts to access PMXEVTYPER 1848 * are CONSTRAINED UNPREDICTABLE. See comments in pmevtyper_write(). 1849 */ 1850 return 0; 1851 } 1852 } 1853 1854 static void pmevtyper_writefn(CPUARMState *env, const ARMCPRegInfo *ri, 1855 uint64_t value) 1856 { 1857 uint8_t counter = ((ri->crm & 3) << 3) | (ri->opc2 & 7); 1858 pmevtyper_write(env, ri, value, counter); 1859 } 1860 1861 static void pmevtyper_rawwrite(CPUARMState *env, const ARMCPRegInfo *ri, 1862 uint64_t value) 1863 { 1864 uint8_t counter = ((ri->crm & 3) << 3) | (ri->opc2 & 7); 1865 env->cp15.c14_pmevtyper[counter] = value; 1866 1867 /* 1868 * pmevtyper_rawwrite is called between a pair of pmu_op_start and 1869 * pmu_op_finish calls when loading saved state for a migration. Because 1870 * we're potentially updating the type of event here, the value written to 1871 * c14_pmevcntr_delta by the preceeding pmu_op_start call may be for a 1872 * different counter type. Therefore, we need to set this value to the 1873 * current count for the counter type we're writing so that pmu_op_finish 1874 * has the correct count for its calculation. 1875 */ 1876 uint16_t event = value & PMXEVTYPER_EVTCOUNT; 1877 if (event_supported(event)) { 1878 uint16_t event_idx = supported_event_map[event]; 1879 env->cp15.c14_pmevcntr_delta[counter] = 1880 pm_events[event_idx].get_count(env); 1881 } 1882 } 1883 1884 static uint64_t pmevtyper_readfn(CPUARMState *env, const ARMCPRegInfo *ri) 1885 { 1886 uint8_t counter = ((ri->crm & 3) << 3) | (ri->opc2 & 7); 1887 return pmevtyper_read(env, ri, counter); 1888 } 1889 1890 static void pmxevtyper_write(CPUARMState *env, const ARMCPRegInfo *ri, 1891 uint64_t value) 1892 { 1893 pmevtyper_write(env, ri, value, env->cp15.c9_pmselr & 31); 1894 } 1895 1896 static uint64_t pmxevtyper_read(CPUARMState *env, const ARMCPRegInfo *ri) 1897 { 1898 return pmevtyper_read(env, ri, env->cp15.c9_pmselr & 31); 1899 } 1900 1901 static void pmevcntr_write(CPUARMState *env, const ARMCPRegInfo *ri, 1902 uint64_t value, uint8_t counter) 1903 { 1904 if (counter < pmu_num_counters(env)) { 1905 pmevcntr_op_start(env, counter); 1906 env->cp15.c14_pmevcntr[counter] = value; 1907 pmevcntr_op_finish(env, counter); 1908 } 1909 /* 1910 * We opt to behave as a RAZ/WI when attempts to access PM[X]EVCNTR 1911 * are CONSTRAINED UNPREDICTABLE. 1912 */ 1913 } 1914 1915 static uint64_t pmevcntr_read(CPUARMState *env, const ARMCPRegInfo *ri, 1916 uint8_t counter) 1917 { 1918 if (counter < pmu_num_counters(env)) { 1919 uint64_t ret; 1920 pmevcntr_op_start(env, counter); 1921 ret = env->cp15.c14_pmevcntr[counter]; 1922 pmevcntr_op_finish(env, counter); 1923 return ret; 1924 } else { 1925 /* We opt to behave as a RAZ/WI when attempts to access PM[X]EVCNTR 1926 * are CONSTRAINED UNPREDICTABLE. */ 1927 return 0; 1928 } 1929 } 1930 1931 static void pmevcntr_writefn(CPUARMState *env, const ARMCPRegInfo *ri, 1932 uint64_t value) 1933 { 1934 uint8_t counter = ((ri->crm & 3) << 3) | (ri->opc2 & 7); 1935 pmevcntr_write(env, ri, value, counter); 1936 } 1937 1938 static uint64_t pmevcntr_readfn(CPUARMState *env, const ARMCPRegInfo *ri) 1939 { 1940 uint8_t counter = ((ri->crm & 3) << 3) | (ri->opc2 & 7); 1941 return pmevcntr_read(env, ri, counter); 1942 } 1943 1944 static void pmevcntr_rawwrite(CPUARMState *env, const ARMCPRegInfo *ri, 1945 uint64_t value) 1946 { 1947 uint8_t counter = ((ri->crm & 3) << 3) | (ri->opc2 & 7); 1948 assert(counter < pmu_num_counters(env)); 1949 env->cp15.c14_pmevcntr[counter] = value; 1950 pmevcntr_write(env, ri, value, counter); 1951 } 1952 1953 static uint64_t pmevcntr_rawread(CPUARMState *env, const ARMCPRegInfo *ri) 1954 { 1955 uint8_t counter = ((ri->crm & 3) << 3) | (ri->opc2 & 7); 1956 assert(counter < pmu_num_counters(env)); 1957 return env->cp15.c14_pmevcntr[counter]; 1958 } 1959 1960 static void pmxevcntr_write(CPUARMState *env, const ARMCPRegInfo *ri, 1961 uint64_t value) 1962 { 1963 pmevcntr_write(env, ri, value, env->cp15.c9_pmselr & 31); 1964 } 1965 1966 static uint64_t pmxevcntr_read(CPUARMState *env, const ARMCPRegInfo *ri) 1967 { 1968 return pmevcntr_read(env, ri, env->cp15.c9_pmselr & 31); 1969 } 1970 1971 static void pmuserenr_write(CPUARMState *env, const ARMCPRegInfo *ri, 1972 uint64_t value) 1973 { 1974 if (arm_feature(env, ARM_FEATURE_V8)) { 1975 env->cp15.c9_pmuserenr = value & 0xf; 1976 } else { 1977 env->cp15.c9_pmuserenr = value & 1; 1978 } 1979 } 1980 1981 static void pmintenset_write(CPUARMState *env, const ARMCPRegInfo *ri, 1982 uint64_t value) 1983 { 1984 /* We have no event counters so only the C bit can be changed */ 1985 value &= pmu_counter_mask(env); 1986 env->cp15.c9_pminten |= value; 1987 pmu_update_irq(env); 1988 } 1989 1990 static void pmintenclr_write(CPUARMState *env, const ARMCPRegInfo *ri, 1991 uint64_t value) 1992 { 1993 value &= pmu_counter_mask(env); 1994 env->cp15.c9_pminten &= ~value; 1995 pmu_update_irq(env); 1996 } 1997 1998 static void vbar_write(CPUARMState *env, const ARMCPRegInfo *ri, 1999 uint64_t value) 2000 { 2001 /* Note that even though the AArch64 view of this register has bits 2002 * [10:0] all RES0 we can only mask the bottom 5, to comply with the 2003 * architectural requirements for bits which are RES0 only in some 2004 * contexts. (ARMv8 would permit us to do no masking at all, but ARMv7 2005 * requires the bottom five bits to be RAZ/WI because they're UNK/SBZP.) 2006 */ 2007 raw_write(env, ri, value & ~0x1FULL); 2008 } 2009 2010 static void scr_write(CPUARMState *env, const ARMCPRegInfo *ri, uint64_t value) 2011 { 2012 /* Begin with base v8.0 state. */ 2013 uint32_t valid_mask = 0x3fff; 2014 ARMCPU *cpu = env_archcpu(env); 2015 2016 if (ri->state == ARM_CP_STATE_AA64) { 2017 value |= SCR_FW | SCR_AW; /* these two bits are RES1. */ 2018 valid_mask &= ~SCR_NET; 2019 2020 if (cpu_isar_feature(aa64_lor, cpu)) { 2021 valid_mask |= SCR_TLOR; 2022 } 2023 if (cpu_isar_feature(aa64_pauth, cpu)) { 2024 valid_mask |= SCR_API | SCR_APK; 2025 } 2026 if (cpu_isar_feature(aa64_mte, cpu)) { 2027 valid_mask |= SCR_ATA; 2028 } 2029 } else { 2030 valid_mask &= ~(SCR_RW | SCR_ST); 2031 } 2032 2033 if (!arm_feature(env, ARM_FEATURE_EL2)) { 2034 valid_mask &= ~SCR_HCE; 2035 2036 /* On ARMv7, SMD (or SCD as it is called in v7) is only 2037 * supported if EL2 exists. The bit is UNK/SBZP when 2038 * EL2 is unavailable. In QEMU ARMv7, we force it to always zero 2039 * when EL2 is unavailable. 2040 * On ARMv8, this bit is always available. 2041 */ 2042 if (arm_feature(env, ARM_FEATURE_V7) && 2043 !arm_feature(env, ARM_FEATURE_V8)) { 2044 valid_mask &= ~SCR_SMD; 2045 } 2046 } 2047 2048 /* Clear all-context RES0 bits. */ 2049 value &= valid_mask; 2050 raw_write(env, ri, value); 2051 } 2052 2053 static CPAccessResult access_aa64_tid2(CPUARMState *env, 2054 const ARMCPRegInfo *ri, 2055 bool isread) 2056 { 2057 if (arm_current_el(env) == 1 && (arm_hcr_el2_eff(env) & HCR_TID2)) { 2058 return CP_ACCESS_TRAP_EL2; 2059 } 2060 2061 return CP_ACCESS_OK; 2062 } 2063 2064 static uint64_t ccsidr_read(CPUARMState *env, const ARMCPRegInfo *ri) 2065 { 2066 ARMCPU *cpu = env_archcpu(env); 2067 2068 /* Acquire the CSSELR index from the bank corresponding to the CCSIDR 2069 * bank 2070 */ 2071 uint32_t index = A32_BANKED_REG_GET(env, csselr, 2072 ri->secure & ARM_CP_SECSTATE_S); 2073 2074 return cpu->ccsidr[index]; 2075 } 2076 2077 static void csselr_write(CPUARMState *env, const ARMCPRegInfo *ri, 2078 uint64_t value) 2079 { 2080 raw_write(env, ri, value & 0xf); 2081 } 2082 2083 static uint64_t isr_read(CPUARMState *env, const ARMCPRegInfo *ri) 2084 { 2085 CPUState *cs = env_cpu(env); 2086 uint64_t hcr_el2 = arm_hcr_el2_eff(env); 2087 uint64_t ret = 0; 2088 bool allow_virt = (arm_current_el(env) == 1 && 2089 (!arm_is_secure_below_el3(env) || 2090 (env->cp15.scr_el3 & SCR_EEL2))); 2091 2092 if (allow_virt && (hcr_el2 & HCR_IMO)) { 2093 if (cs->interrupt_request & CPU_INTERRUPT_VIRQ) { 2094 ret |= CPSR_I; 2095 } 2096 } else { 2097 if (cs->interrupt_request & CPU_INTERRUPT_HARD) { 2098 ret |= CPSR_I; 2099 } 2100 } 2101 2102 if (allow_virt && (hcr_el2 & HCR_FMO)) { 2103 if (cs->interrupt_request & CPU_INTERRUPT_VFIQ) { 2104 ret |= CPSR_F; 2105 } 2106 } else { 2107 if (cs->interrupt_request & CPU_INTERRUPT_FIQ) { 2108 ret |= CPSR_F; 2109 } 2110 } 2111 2112 /* External aborts are not possible in QEMU so A bit is always clear */ 2113 return ret; 2114 } 2115 2116 static CPAccessResult access_aa64_tid1(CPUARMState *env, const ARMCPRegInfo *ri, 2117 bool isread) 2118 { 2119 if (arm_current_el(env) == 1 && (arm_hcr_el2_eff(env) & HCR_TID1)) { 2120 return CP_ACCESS_TRAP_EL2; 2121 } 2122 2123 return CP_ACCESS_OK; 2124 } 2125 2126 static CPAccessResult access_aa32_tid1(CPUARMState *env, const ARMCPRegInfo *ri, 2127 bool isread) 2128 { 2129 if (arm_feature(env, ARM_FEATURE_V8)) { 2130 return access_aa64_tid1(env, ri, isread); 2131 } 2132 2133 return CP_ACCESS_OK; 2134 } 2135 2136 static const ARMCPRegInfo v7_cp_reginfo[] = { 2137 /* the old v6 WFI, UNPREDICTABLE in v7 but we choose to NOP */ 2138 { .name = "NOP", .cp = 15, .crn = 7, .crm = 0, .opc1 = 0, .opc2 = 4, 2139 .access = PL1_W, .type = ARM_CP_NOP }, 2140 /* Performance monitors are implementation defined in v7, 2141 * but with an ARM recommended set of registers, which we 2142 * follow. 2143 * 2144 * Performance registers fall into three categories: 2145 * (a) always UNDEF in PL0, RW in PL1 (PMINTENSET, PMINTENCLR) 2146 * (b) RO in PL0 (ie UNDEF on write), RW in PL1 (PMUSERENR) 2147 * (c) UNDEF in PL0 if PMUSERENR.EN==0, otherwise accessible (all others) 2148 * For the cases controlled by PMUSERENR we must set .access to PL0_RW 2149 * or PL0_RO as appropriate and then check PMUSERENR in the helper fn. 2150 */ 2151 { .name = "PMCNTENSET", .cp = 15, .crn = 9, .crm = 12, .opc1 = 0, .opc2 = 1, 2152 .access = PL0_RW, .type = ARM_CP_ALIAS, 2153 .fieldoffset = offsetoflow32(CPUARMState, cp15.c9_pmcnten), 2154 .writefn = pmcntenset_write, 2155 .accessfn = pmreg_access, 2156 .raw_writefn = raw_write }, 2157 { .name = "PMCNTENSET_EL0", .state = ARM_CP_STATE_AA64, 2158 .opc0 = 3, .opc1 = 3, .crn = 9, .crm = 12, .opc2 = 1, 2159 .access = PL0_RW, .accessfn = pmreg_access, 2160 .fieldoffset = offsetof(CPUARMState, cp15.c9_pmcnten), .resetvalue = 0, 2161 .writefn = pmcntenset_write, .raw_writefn = raw_write }, 2162 { .name = "PMCNTENCLR", .cp = 15, .crn = 9, .crm = 12, .opc1 = 0, .opc2 = 2, 2163 .access = PL0_RW, 2164 .fieldoffset = offsetoflow32(CPUARMState, cp15.c9_pmcnten), 2165 .accessfn = pmreg_access, 2166 .writefn = pmcntenclr_write, 2167 .type = ARM_CP_ALIAS }, 2168 { .name = "PMCNTENCLR_EL0", .state = ARM_CP_STATE_AA64, 2169 .opc0 = 3, .opc1 = 3, .crn = 9, .crm = 12, .opc2 = 2, 2170 .access = PL0_RW, .accessfn = pmreg_access, 2171 .type = ARM_CP_ALIAS, 2172 .fieldoffset = offsetof(CPUARMState, cp15.c9_pmcnten), 2173 .writefn = pmcntenclr_write }, 2174 { .name = "PMOVSR", .cp = 15, .crn = 9, .crm = 12, .opc1 = 0, .opc2 = 3, 2175 .access = PL0_RW, .type = ARM_CP_IO, 2176 .fieldoffset = offsetoflow32(CPUARMState, cp15.c9_pmovsr), 2177 .accessfn = pmreg_access, 2178 .writefn = pmovsr_write, 2179 .raw_writefn = raw_write }, 2180 { .name = "PMOVSCLR_EL0", .state = ARM_CP_STATE_AA64, 2181 .opc0 = 3, .opc1 = 3, .crn = 9, .crm = 12, .opc2 = 3, 2182 .access = PL0_RW, .accessfn = pmreg_access, 2183 .type = ARM_CP_ALIAS | ARM_CP_IO, 2184 .fieldoffset = offsetof(CPUARMState, cp15.c9_pmovsr), 2185 .writefn = pmovsr_write, 2186 .raw_writefn = raw_write }, 2187 { .name = "PMSWINC", .cp = 15, .crn = 9, .crm = 12, .opc1 = 0, .opc2 = 4, 2188 .access = PL0_W, .accessfn = pmreg_access_swinc, 2189 .type = ARM_CP_NO_RAW | ARM_CP_IO, 2190 .writefn = pmswinc_write }, 2191 { .name = "PMSWINC_EL0", .state = ARM_CP_STATE_AA64, 2192 .opc0 = 3, .opc1 = 3, .crn = 9, .crm = 12, .opc2 = 4, 2193 .access = PL0_W, .accessfn = pmreg_access_swinc, 2194 .type = ARM_CP_NO_RAW | ARM_CP_IO, 2195 .writefn = pmswinc_write }, 2196 { .name = "PMSELR", .cp = 15, .crn = 9, .crm = 12, .opc1 = 0, .opc2 = 5, 2197 .access = PL0_RW, .type = ARM_CP_ALIAS, 2198 .fieldoffset = offsetoflow32(CPUARMState, cp15.c9_pmselr), 2199 .accessfn = pmreg_access_selr, .writefn = pmselr_write, 2200 .raw_writefn = raw_write}, 2201 { .name = "PMSELR_EL0", .state = ARM_CP_STATE_AA64, 2202 .opc0 = 3, .opc1 = 3, .crn = 9, .crm = 12, .opc2 = 5, 2203 .access = PL0_RW, .accessfn = pmreg_access_selr, 2204 .fieldoffset = offsetof(CPUARMState, cp15.c9_pmselr), 2205 .writefn = pmselr_write, .raw_writefn = raw_write, }, 2206 { .name = "PMCCNTR", .cp = 15, .crn = 9, .crm = 13, .opc1 = 0, .opc2 = 0, 2207 .access = PL0_RW, .resetvalue = 0, .type = ARM_CP_ALIAS | ARM_CP_IO, 2208 .readfn = pmccntr_read, .writefn = pmccntr_write32, 2209 .accessfn = pmreg_access_ccntr }, 2210 { .name = "PMCCNTR_EL0", .state = ARM_CP_STATE_AA64, 2211 .opc0 = 3, .opc1 = 3, .crn = 9, .crm = 13, .opc2 = 0, 2212 .access = PL0_RW, .accessfn = pmreg_access_ccntr, 2213 .type = ARM_CP_IO, 2214 .fieldoffset = offsetof(CPUARMState, cp15.c15_ccnt), 2215 .readfn = pmccntr_read, .writefn = pmccntr_write, 2216 .raw_readfn = raw_read, .raw_writefn = raw_write, }, 2217 { .name = "PMCCFILTR", .cp = 15, .opc1 = 0, .crn = 14, .crm = 15, .opc2 = 7, 2218 .writefn = pmccfiltr_write_a32, .readfn = pmccfiltr_read_a32, 2219 .access = PL0_RW, .accessfn = pmreg_access, 2220 .type = ARM_CP_ALIAS | ARM_CP_IO, 2221 .resetvalue = 0, }, 2222 { .name = "PMCCFILTR_EL0", .state = ARM_CP_STATE_AA64, 2223 .opc0 = 3, .opc1 = 3, .crn = 14, .crm = 15, .opc2 = 7, 2224 .writefn = pmccfiltr_write, .raw_writefn = raw_write, 2225 .access = PL0_RW, .accessfn = pmreg_access, 2226 .type = ARM_CP_IO, 2227 .fieldoffset = offsetof(CPUARMState, cp15.pmccfiltr_el0), 2228 .resetvalue = 0, }, 2229 { .name = "PMXEVTYPER", .cp = 15, .crn = 9, .crm = 13, .opc1 = 0, .opc2 = 1, 2230 .access = PL0_RW, .type = ARM_CP_NO_RAW | ARM_CP_IO, 2231 .accessfn = pmreg_access, 2232 .writefn = pmxevtyper_write, .readfn = pmxevtyper_read }, 2233 { .name = "PMXEVTYPER_EL0", .state = ARM_CP_STATE_AA64, 2234 .opc0 = 3, .opc1 = 3, .crn = 9, .crm = 13, .opc2 = 1, 2235 .access = PL0_RW, .type = ARM_CP_NO_RAW | ARM_CP_IO, 2236 .accessfn = pmreg_access, 2237 .writefn = pmxevtyper_write, .readfn = pmxevtyper_read }, 2238 { .name = "PMXEVCNTR", .cp = 15, .crn = 9, .crm = 13, .opc1 = 0, .opc2 = 2, 2239 .access = PL0_RW, .type = ARM_CP_NO_RAW | ARM_CP_IO, 2240 .accessfn = pmreg_access_xevcntr, 2241 .writefn = pmxevcntr_write, .readfn = pmxevcntr_read }, 2242 { .name = "PMXEVCNTR_EL0", .state = ARM_CP_STATE_AA64, 2243 .opc0 = 3, .opc1 = 3, .crn = 9, .crm = 13, .opc2 = 2, 2244 .access = PL0_RW, .type = ARM_CP_NO_RAW | ARM_CP_IO, 2245 .accessfn = pmreg_access_xevcntr, 2246 .writefn = pmxevcntr_write, .readfn = pmxevcntr_read }, 2247 { .name = "PMUSERENR", .cp = 15, .crn = 9, .crm = 14, .opc1 = 0, .opc2 = 0, 2248 .access = PL0_R | PL1_RW, .accessfn = access_tpm, 2249 .fieldoffset = offsetoflow32(CPUARMState, cp15.c9_pmuserenr), 2250 .resetvalue = 0, 2251 .writefn = pmuserenr_write, .raw_writefn = raw_write }, 2252 { .name = "PMUSERENR_EL0", .state = ARM_CP_STATE_AA64, 2253 .opc0 = 3, .opc1 = 3, .crn = 9, .crm = 14, .opc2 = 0, 2254 .access = PL0_R | PL1_RW, .accessfn = access_tpm, .type = ARM_CP_ALIAS, 2255 .fieldoffset = offsetof(CPUARMState, cp15.c9_pmuserenr), 2256 .resetvalue = 0, 2257 .writefn = pmuserenr_write, .raw_writefn = raw_write }, 2258 { .name = "PMINTENSET", .cp = 15, .crn = 9, .crm = 14, .opc1 = 0, .opc2 = 1, 2259 .access = PL1_RW, .accessfn = access_tpm, 2260 .type = ARM_CP_ALIAS | ARM_CP_IO, 2261 .fieldoffset = offsetoflow32(CPUARMState, cp15.c9_pminten), 2262 .resetvalue = 0, 2263 .writefn = pmintenset_write, .raw_writefn = raw_write }, 2264 { .name = "PMINTENSET_EL1", .state = ARM_CP_STATE_AA64, 2265 .opc0 = 3, .opc1 = 0, .crn = 9, .crm = 14, .opc2 = 1, 2266 .access = PL1_RW, .accessfn = access_tpm, 2267 .type = ARM_CP_IO, 2268 .fieldoffset = offsetof(CPUARMState, cp15.c9_pminten), 2269 .writefn = pmintenset_write, .raw_writefn = raw_write, 2270 .resetvalue = 0x0 }, 2271 { .name = "PMINTENCLR", .cp = 15, .crn = 9, .crm = 14, .opc1 = 0, .opc2 = 2, 2272 .access = PL1_RW, .accessfn = access_tpm, 2273 .type = ARM_CP_ALIAS | ARM_CP_IO | ARM_CP_NO_RAW, 2274 .fieldoffset = offsetof(CPUARMState, cp15.c9_pminten), 2275 .writefn = pmintenclr_write, }, 2276 { .name = "PMINTENCLR_EL1", .state = ARM_CP_STATE_AA64, 2277 .opc0 = 3, .opc1 = 0, .crn = 9, .crm = 14, .opc2 = 2, 2278 .access = PL1_RW, .accessfn = access_tpm, 2279 .type = ARM_CP_ALIAS | ARM_CP_IO | ARM_CP_NO_RAW, 2280 .fieldoffset = offsetof(CPUARMState, cp15.c9_pminten), 2281 .writefn = pmintenclr_write }, 2282 { .name = "CCSIDR", .state = ARM_CP_STATE_BOTH, 2283 .opc0 = 3, .crn = 0, .crm = 0, .opc1 = 1, .opc2 = 0, 2284 .access = PL1_R, 2285 .accessfn = access_aa64_tid2, 2286 .readfn = ccsidr_read, .type = ARM_CP_NO_RAW }, 2287 { .name = "CSSELR", .state = ARM_CP_STATE_BOTH, 2288 .opc0 = 3, .crn = 0, .crm = 0, .opc1 = 2, .opc2 = 0, 2289 .access = PL1_RW, 2290 .accessfn = access_aa64_tid2, 2291 .writefn = csselr_write, .resetvalue = 0, 2292 .bank_fieldoffsets = { offsetof(CPUARMState, cp15.csselr_s), 2293 offsetof(CPUARMState, cp15.csselr_ns) } }, 2294 /* Auxiliary ID register: this actually has an IMPDEF value but for now 2295 * just RAZ for all cores: 2296 */ 2297 { .name = "AIDR", .state = ARM_CP_STATE_BOTH, 2298 .opc0 = 3, .opc1 = 1, .crn = 0, .crm = 0, .opc2 = 7, 2299 .access = PL1_R, .type = ARM_CP_CONST, 2300 .accessfn = access_aa64_tid1, 2301 .resetvalue = 0 }, 2302 /* Auxiliary fault status registers: these also are IMPDEF, and we 2303 * choose to RAZ/WI for all cores. 2304 */ 2305 { .name = "AFSR0_EL1", .state = ARM_CP_STATE_BOTH, 2306 .opc0 = 3, .opc1 = 0, .crn = 5, .crm = 1, .opc2 = 0, 2307 .access = PL1_RW, .accessfn = access_tvm_trvm, 2308 .type = ARM_CP_CONST, .resetvalue = 0 }, 2309 { .name = "AFSR1_EL1", .state = ARM_CP_STATE_BOTH, 2310 .opc0 = 3, .opc1 = 0, .crn = 5, .crm = 1, .opc2 = 1, 2311 .access = PL1_RW, .accessfn = access_tvm_trvm, 2312 .type = ARM_CP_CONST, .resetvalue = 0 }, 2313 /* MAIR can just read-as-written because we don't implement caches 2314 * and so don't need to care about memory attributes. 2315 */ 2316 { .name = "MAIR_EL1", .state = ARM_CP_STATE_AA64, 2317 .opc0 = 3, .opc1 = 0, .crn = 10, .crm = 2, .opc2 = 0, 2318 .access = PL1_RW, .accessfn = access_tvm_trvm, 2319 .fieldoffset = offsetof(CPUARMState, cp15.mair_el[1]), 2320 .resetvalue = 0 }, 2321 { .name = "MAIR_EL3", .state = ARM_CP_STATE_AA64, 2322 .opc0 = 3, .opc1 = 6, .crn = 10, .crm = 2, .opc2 = 0, 2323 .access = PL3_RW, .fieldoffset = offsetof(CPUARMState, cp15.mair_el[3]), 2324 .resetvalue = 0 }, 2325 /* For non-long-descriptor page tables these are PRRR and NMRR; 2326 * regardless they still act as reads-as-written for QEMU. 2327 */ 2328 /* MAIR0/1 are defined separately from their 64-bit counterpart which 2329 * allows them to assign the correct fieldoffset based on the endianness 2330 * handled in the field definitions. 2331 */ 2332 { .name = "MAIR0", .state = ARM_CP_STATE_AA32, 2333 .cp = 15, .opc1 = 0, .crn = 10, .crm = 2, .opc2 = 0, 2334 .access = PL1_RW, .accessfn = access_tvm_trvm, 2335 .bank_fieldoffsets = { offsetof(CPUARMState, cp15.mair0_s), 2336 offsetof(CPUARMState, cp15.mair0_ns) }, 2337 .resetfn = arm_cp_reset_ignore }, 2338 { .name = "MAIR1", .state = ARM_CP_STATE_AA32, 2339 .cp = 15, .opc1 = 0, .crn = 10, .crm = 2, .opc2 = 1, 2340 .access = PL1_RW, .accessfn = access_tvm_trvm, 2341 .bank_fieldoffsets = { offsetof(CPUARMState, cp15.mair1_s), 2342 offsetof(CPUARMState, cp15.mair1_ns) }, 2343 .resetfn = arm_cp_reset_ignore }, 2344 { .name = "ISR_EL1", .state = ARM_CP_STATE_BOTH, 2345 .opc0 = 3, .opc1 = 0, .crn = 12, .crm = 1, .opc2 = 0, 2346 .type = ARM_CP_NO_RAW, .access = PL1_R, .readfn = isr_read }, 2347 /* 32 bit ITLB invalidates */ 2348 { .name = "ITLBIALL", .cp = 15, .opc1 = 0, .crn = 8, .crm = 5, .opc2 = 0, 2349 .type = ARM_CP_NO_RAW, .access = PL1_W, .accessfn = access_ttlb, 2350 .writefn = tlbiall_write }, 2351 { .name = "ITLBIMVA", .cp = 15, .opc1 = 0, .crn = 8, .crm = 5, .opc2 = 1, 2352 .type = ARM_CP_NO_RAW, .access = PL1_W, .accessfn = access_ttlb, 2353 .writefn = tlbimva_write }, 2354 { .name = "ITLBIASID", .cp = 15, .opc1 = 0, .crn = 8, .crm = 5, .opc2 = 2, 2355 .type = ARM_CP_NO_RAW, .access = PL1_W, .accessfn = access_ttlb, 2356 .writefn = tlbiasid_write }, 2357 /* 32 bit DTLB invalidates */ 2358 { .name = "DTLBIALL", .cp = 15, .opc1 = 0, .crn = 8, .crm = 6, .opc2 = 0, 2359 .type = ARM_CP_NO_RAW, .access = PL1_W, .accessfn = access_ttlb, 2360 .writefn = tlbiall_write }, 2361 { .name = "DTLBIMVA", .cp = 15, .opc1 = 0, .crn = 8, .crm = 6, .opc2 = 1, 2362 .type = ARM_CP_NO_RAW, .access = PL1_W, .accessfn = access_ttlb, 2363 .writefn = tlbimva_write }, 2364 { .name = "DTLBIASID", .cp = 15, .opc1 = 0, .crn = 8, .crm = 6, .opc2 = 2, 2365 .type = ARM_CP_NO_RAW, .access = PL1_W, .accessfn = access_ttlb, 2366 .writefn = tlbiasid_write }, 2367 /* 32 bit TLB invalidates */ 2368 { .name = "TLBIALL", .cp = 15, .opc1 = 0, .crn = 8, .crm = 7, .opc2 = 0, 2369 .type = ARM_CP_NO_RAW, .access = PL1_W, .accessfn = access_ttlb, 2370 .writefn = tlbiall_write }, 2371 { .name = "TLBIMVA", .cp = 15, .opc1 = 0, .crn = 8, .crm = 7, .opc2 = 1, 2372 .type = ARM_CP_NO_RAW, .access = PL1_W, .accessfn = access_ttlb, 2373 .writefn = tlbimva_write }, 2374 { .name = "TLBIASID", .cp = 15, .opc1 = 0, .crn = 8, .crm = 7, .opc2 = 2, 2375 .type = ARM_CP_NO_RAW, .access = PL1_W, .accessfn = access_ttlb, 2376 .writefn = tlbiasid_write }, 2377 { .name = "TLBIMVAA", .cp = 15, .opc1 = 0, .crn = 8, .crm = 7, .opc2 = 3, 2378 .type = ARM_CP_NO_RAW, .access = PL1_W, .accessfn = access_ttlb, 2379 .writefn = tlbimvaa_write }, 2380 REGINFO_SENTINEL 2381 }; 2382 2383 static const ARMCPRegInfo v7mp_cp_reginfo[] = { 2384 /* 32 bit TLB invalidates, Inner Shareable */ 2385 { .name = "TLBIALLIS", .cp = 15, .opc1 = 0, .crn = 8, .crm = 3, .opc2 = 0, 2386 .type = ARM_CP_NO_RAW, .access = PL1_W, .accessfn = access_ttlb, 2387 .writefn = tlbiall_is_write }, 2388 { .name = "TLBIMVAIS", .cp = 15, .opc1 = 0, .crn = 8, .crm = 3, .opc2 = 1, 2389 .type = ARM_CP_NO_RAW, .access = PL1_W, .accessfn = access_ttlb, 2390 .writefn = tlbimva_is_write }, 2391 { .name = "TLBIASIDIS", .cp = 15, .opc1 = 0, .crn = 8, .crm = 3, .opc2 = 2, 2392 .type = ARM_CP_NO_RAW, .access = PL1_W, .accessfn = access_ttlb, 2393 .writefn = tlbiasid_is_write }, 2394 { .name = "TLBIMVAAIS", .cp = 15, .opc1 = 0, .crn = 8, .crm = 3, .opc2 = 3, 2395 .type = ARM_CP_NO_RAW, .access = PL1_W, .accessfn = access_ttlb, 2396 .writefn = tlbimvaa_is_write }, 2397 REGINFO_SENTINEL 2398 }; 2399 2400 static const ARMCPRegInfo pmovsset_cp_reginfo[] = { 2401 /* PMOVSSET is not implemented in v7 before v7ve */ 2402 { .name = "PMOVSSET", .cp = 15, .opc1 = 0, .crn = 9, .crm = 14, .opc2 = 3, 2403 .access = PL0_RW, .accessfn = pmreg_access, 2404 .type = ARM_CP_ALIAS | ARM_CP_IO, 2405 .fieldoffset = offsetoflow32(CPUARMState, cp15.c9_pmovsr), 2406 .writefn = pmovsset_write, 2407 .raw_writefn = raw_write }, 2408 { .name = "PMOVSSET_EL0", .state = ARM_CP_STATE_AA64, 2409 .opc0 = 3, .opc1 = 3, .crn = 9, .crm = 14, .opc2 = 3, 2410 .access = PL0_RW, .accessfn = pmreg_access, 2411 .type = ARM_CP_ALIAS | ARM_CP_IO, 2412 .fieldoffset = offsetof(CPUARMState, cp15.c9_pmovsr), 2413 .writefn = pmovsset_write, 2414 .raw_writefn = raw_write }, 2415 REGINFO_SENTINEL 2416 }; 2417 2418 static void teecr_write(CPUARMState *env, const ARMCPRegInfo *ri, 2419 uint64_t value) 2420 { 2421 value &= 1; 2422 env->teecr = value; 2423 } 2424 2425 static CPAccessResult teehbr_access(CPUARMState *env, const ARMCPRegInfo *ri, 2426 bool isread) 2427 { 2428 if (arm_current_el(env) == 0 && (env->teecr & 1)) { 2429 return CP_ACCESS_TRAP; 2430 } 2431 return CP_ACCESS_OK; 2432 } 2433 2434 static const ARMCPRegInfo t2ee_cp_reginfo[] = { 2435 { .name = "TEECR", .cp = 14, .crn = 0, .crm = 0, .opc1 = 6, .opc2 = 0, 2436 .access = PL1_RW, .fieldoffset = offsetof(CPUARMState, teecr), 2437 .resetvalue = 0, 2438 .writefn = teecr_write }, 2439 { .name = "TEEHBR", .cp = 14, .crn = 1, .crm = 0, .opc1 = 6, .opc2 = 0, 2440 .access = PL0_RW, .fieldoffset = offsetof(CPUARMState, teehbr), 2441 .accessfn = teehbr_access, .resetvalue = 0 }, 2442 REGINFO_SENTINEL 2443 }; 2444 2445 static const ARMCPRegInfo v6k_cp_reginfo[] = { 2446 { .name = "TPIDR_EL0", .state = ARM_CP_STATE_AA64, 2447 .opc0 = 3, .opc1 = 3, .opc2 = 2, .crn = 13, .crm = 0, 2448 .access = PL0_RW, 2449 .fieldoffset = offsetof(CPUARMState, cp15.tpidr_el[0]), .resetvalue = 0 }, 2450 { .name = "TPIDRURW", .cp = 15, .crn = 13, .crm = 0, .opc1 = 0, .opc2 = 2, 2451 .access = PL0_RW, 2452 .bank_fieldoffsets = { offsetoflow32(CPUARMState, cp15.tpidrurw_s), 2453 offsetoflow32(CPUARMState, cp15.tpidrurw_ns) }, 2454 .resetfn = arm_cp_reset_ignore }, 2455 { .name = "TPIDRRO_EL0", .state = ARM_CP_STATE_AA64, 2456 .opc0 = 3, .opc1 = 3, .opc2 = 3, .crn = 13, .crm = 0, 2457 .access = PL0_R|PL1_W, 2458 .fieldoffset = offsetof(CPUARMState, cp15.tpidrro_el[0]), 2459 .resetvalue = 0}, 2460 { .name = "TPIDRURO", .cp = 15, .crn = 13, .crm = 0, .opc1 = 0, .opc2 = 3, 2461 .access = PL0_R|PL1_W, 2462 .bank_fieldoffsets = { offsetoflow32(CPUARMState, cp15.tpidruro_s), 2463 offsetoflow32(CPUARMState, cp15.tpidruro_ns) }, 2464 .resetfn = arm_cp_reset_ignore }, 2465 { .name = "TPIDR_EL1", .state = ARM_CP_STATE_AA64, 2466 .opc0 = 3, .opc1 = 0, .opc2 = 4, .crn = 13, .crm = 0, 2467 .access = PL1_RW, 2468 .fieldoffset = offsetof(CPUARMState, cp15.tpidr_el[1]), .resetvalue = 0 }, 2469 { .name = "TPIDRPRW", .opc1 = 0, .cp = 15, .crn = 13, .crm = 0, .opc2 = 4, 2470 .access = PL1_RW, 2471 .bank_fieldoffsets = { offsetoflow32(CPUARMState, cp15.tpidrprw_s), 2472 offsetoflow32(CPUARMState, cp15.tpidrprw_ns) }, 2473 .resetvalue = 0 }, 2474 REGINFO_SENTINEL 2475 }; 2476 2477 #ifndef CONFIG_USER_ONLY 2478 2479 static CPAccessResult gt_cntfrq_access(CPUARMState *env, const ARMCPRegInfo *ri, 2480 bool isread) 2481 { 2482 /* CNTFRQ: not visible from PL0 if both PL0PCTEN and PL0VCTEN are zero. 2483 * Writable only at the highest implemented exception level. 2484 */ 2485 int el = arm_current_el(env); 2486 uint64_t hcr; 2487 uint32_t cntkctl; 2488 2489 switch (el) { 2490 case 0: 2491 hcr = arm_hcr_el2_eff(env); 2492 if ((hcr & (HCR_E2H | HCR_TGE)) == (HCR_E2H | HCR_TGE)) { 2493 cntkctl = env->cp15.cnthctl_el2; 2494 } else { 2495 cntkctl = env->cp15.c14_cntkctl; 2496 } 2497 if (!extract32(cntkctl, 0, 2)) { 2498 return CP_ACCESS_TRAP; 2499 } 2500 break; 2501 case 1: 2502 if (!isread && ri->state == ARM_CP_STATE_AA32 && 2503 arm_is_secure_below_el3(env)) { 2504 /* Accesses from 32-bit Secure EL1 UNDEF (*not* trap to EL3!) */ 2505 return CP_ACCESS_TRAP_UNCATEGORIZED; 2506 } 2507 break; 2508 case 2: 2509 case 3: 2510 break; 2511 } 2512 2513 if (!isread && el < arm_highest_el(env)) { 2514 return CP_ACCESS_TRAP_UNCATEGORIZED; 2515 } 2516 2517 return CP_ACCESS_OK; 2518 } 2519 2520 static CPAccessResult gt_counter_access(CPUARMState *env, int timeridx, 2521 bool isread) 2522 { 2523 unsigned int cur_el = arm_current_el(env); 2524 bool secure = arm_is_secure(env); 2525 uint64_t hcr = arm_hcr_el2_eff(env); 2526 2527 switch (cur_el) { 2528 case 0: 2529 /* If HCR_EL2.<E2H,TGE> == '11': check CNTHCTL_EL2.EL0[PV]CTEN. */ 2530 if ((hcr & (HCR_E2H | HCR_TGE)) == (HCR_E2H | HCR_TGE)) { 2531 return (extract32(env->cp15.cnthctl_el2, timeridx, 1) 2532 ? CP_ACCESS_OK : CP_ACCESS_TRAP_EL2); 2533 } 2534 2535 /* CNT[PV]CT: not visible from PL0 if EL0[PV]CTEN is zero */ 2536 if (!extract32(env->cp15.c14_cntkctl, timeridx, 1)) { 2537 return CP_ACCESS_TRAP; 2538 } 2539 2540 /* If HCR_EL2.<E2H,TGE> == '10': check CNTHCTL_EL2.EL1PCTEN. */ 2541 if (hcr & HCR_E2H) { 2542 if (timeridx == GTIMER_PHYS && 2543 !extract32(env->cp15.cnthctl_el2, 10, 1)) { 2544 return CP_ACCESS_TRAP_EL2; 2545 } 2546 } else { 2547 /* If HCR_EL2.<E2H> == 0: check CNTHCTL_EL2.EL1PCEN. */ 2548 if (arm_feature(env, ARM_FEATURE_EL2) && 2549 timeridx == GTIMER_PHYS && !secure && 2550 !extract32(env->cp15.cnthctl_el2, 1, 1)) { 2551 return CP_ACCESS_TRAP_EL2; 2552 } 2553 } 2554 break; 2555 2556 case 1: 2557 /* Check CNTHCTL_EL2.EL1PCTEN, which changes location based on E2H. */ 2558 if (arm_feature(env, ARM_FEATURE_EL2) && 2559 timeridx == GTIMER_PHYS && !secure && 2560 (hcr & HCR_E2H 2561 ? !extract32(env->cp15.cnthctl_el2, 10, 1) 2562 : !extract32(env->cp15.cnthctl_el2, 0, 1))) { 2563 return CP_ACCESS_TRAP_EL2; 2564 } 2565 break; 2566 } 2567 return CP_ACCESS_OK; 2568 } 2569 2570 static CPAccessResult gt_timer_access(CPUARMState *env, int timeridx, 2571 bool isread) 2572 { 2573 unsigned int cur_el = arm_current_el(env); 2574 bool secure = arm_is_secure(env); 2575 uint64_t hcr = arm_hcr_el2_eff(env); 2576 2577 switch (cur_el) { 2578 case 0: 2579 if ((hcr & (HCR_E2H | HCR_TGE)) == (HCR_E2H | HCR_TGE)) { 2580 /* If HCR_EL2.<E2H,TGE> == '11': check CNTHCTL_EL2.EL0[PV]TEN. */ 2581 return (extract32(env->cp15.cnthctl_el2, 9 - timeridx, 1) 2582 ? CP_ACCESS_OK : CP_ACCESS_TRAP_EL2); 2583 } 2584 2585 /* 2586 * CNT[PV]_CVAL, CNT[PV]_CTL, CNT[PV]_TVAL: not visible from 2587 * EL0 if EL0[PV]TEN is zero. 2588 */ 2589 if (!extract32(env->cp15.c14_cntkctl, 9 - timeridx, 1)) { 2590 return CP_ACCESS_TRAP; 2591 } 2592 /* fall through */ 2593 2594 case 1: 2595 if (arm_feature(env, ARM_FEATURE_EL2) && 2596 timeridx == GTIMER_PHYS && !secure) { 2597 if (hcr & HCR_E2H) { 2598 /* If HCR_EL2.<E2H,TGE> == '10': check CNTHCTL_EL2.EL1PTEN. */ 2599 if (!extract32(env->cp15.cnthctl_el2, 11, 1)) { 2600 return CP_ACCESS_TRAP_EL2; 2601 } 2602 } else { 2603 /* If HCR_EL2.<E2H> == 0: check CNTHCTL_EL2.EL1PCEN. */ 2604 if (!extract32(env->cp15.cnthctl_el2, 1, 1)) { 2605 return CP_ACCESS_TRAP_EL2; 2606 } 2607 } 2608 } 2609 break; 2610 } 2611 return CP_ACCESS_OK; 2612 } 2613 2614 static CPAccessResult gt_pct_access(CPUARMState *env, 2615 const ARMCPRegInfo *ri, 2616 bool isread) 2617 { 2618 return gt_counter_access(env, GTIMER_PHYS, isread); 2619 } 2620 2621 static CPAccessResult gt_vct_access(CPUARMState *env, 2622 const ARMCPRegInfo *ri, 2623 bool isread) 2624 { 2625 return gt_counter_access(env, GTIMER_VIRT, isread); 2626 } 2627 2628 static CPAccessResult gt_ptimer_access(CPUARMState *env, const ARMCPRegInfo *ri, 2629 bool isread) 2630 { 2631 return gt_timer_access(env, GTIMER_PHYS, isread); 2632 } 2633 2634 static CPAccessResult gt_vtimer_access(CPUARMState *env, const ARMCPRegInfo *ri, 2635 bool isread) 2636 { 2637 return gt_timer_access(env, GTIMER_VIRT, isread); 2638 } 2639 2640 static CPAccessResult gt_stimer_access(CPUARMState *env, 2641 const ARMCPRegInfo *ri, 2642 bool isread) 2643 { 2644 /* The AArch64 register view of the secure physical timer is 2645 * always accessible from EL3, and configurably accessible from 2646 * Secure EL1. 2647 */ 2648 switch (arm_current_el(env)) { 2649 case 1: 2650 if (!arm_is_secure(env)) { 2651 return CP_ACCESS_TRAP; 2652 } 2653 if (!(env->cp15.scr_el3 & SCR_ST)) { 2654 return CP_ACCESS_TRAP_EL3; 2655 } 2656 return CP_ACCESS_OK; 2657 case 0: 2658 case 2: 2659 return CP_ACCESS_TRAP; 2660 case 3: 2661 return CP_ACCESS_OK; 2662 default: 2663 g_assert_not_reached(); 2664 } 2665 } 2666 2667 static uint64_t gt_get_countervalue(CPUARMState *env) 2668 { 2669 ARMCPU *cpu = env_archcpu(env); 2670 2671 return qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL) / gt_cntfrq_period_ns(cpu); 2672 } 2673 2674 static void gt_recalc_timer(ARMCPU *cpu, int timeridx) 2675 { 2676 ARMGenericTimer *gt = &cpu->env.cp15.c14_timer[timeridx]; 2677 2678 if (gt->ctl & 1) { 2679 /* Timer enabled: calculate and set current ISTATUS, irq, and 2680 * reset timer to when ISTATUS next has to change 2681 */ 2682 uint64_t offset = timeridx == GTIMER_VIRT ? 2683 cpu->env.cp15.cntvoff_el2 : 0; 2684 uint64_t count = gt_get_countervalue(&cpu->env); 2685 /* Note that this must be unsigned 64 bit arithmetic: */ 2686 int istatus = count - offset >= gt->cval; 2687 uint64_t nexttick; 2688 int irqstate; 2689 2690 gt->ctl = deposit32(gt->ctl, 2, 1, istatus); 2691 2692 irqstate = (istatus && !(gt->ctl & 2)); 2693 qemu_set_irq(cpu->gt_timer_outputs[timeridx], irqstate); 2694 2695 if (istatus) { 2696 /* Next transition is when count rolls back over to zero */ 2697 nexttick = UINT64_MAX; 2698 } else { 2699 /* Next transition is when we hit cval */ 2700 nexttick = gt->cval + offset; 2701 } 2702 /* Note that the desired next expiry time might be beyond the 2703 * signed-64-bit range of a QEMUTimer -- in this case we just 2704 * set the timer for as far in the future as possible. When the 2705 * timer expires we will reset the timer for any remaining period. 2706 */ 2707 if (nexttick > INT64_MAX / gt_cntfrq_period_ns(cpu)) { 2708 timer_mod_ns(cpu->gt_timer[timeridx], INT64_MAX); 2709 } else { 2710 timer_mod(cpu->gt_timer[timeridx], nexttick); 2711 } 2712 trace_arm_gt_recalc(timeridx, irqstate, nexttick); 2713 } else { 2714 /* Timer disabled: ISTATUS and timer output always clear */ 2715 gt->ctl &= ~4; 2716 qemu_set_irq(cpu->gt_timer_outputs[timeridx], 0); 2717 timer_del(cpu->gt_timer[timeridx]); 2718 trace_arm_gt_recalc_disabled(timeridx); 2719 } 2720 } 2721 2722 static void gt_timer_reset(CPUARMState *env, const ARMCPRegInfo *ri, 2723 int timeridx) 2724 { 2725 ARMCPU *cpu = env_archcpu(env); 2726 2727 timer_del(cpu->gt_timer[timeridx]); 2728 } 2729 2730 static uint64_t gt_cnt_read(CPUARMState *env, const ARMCPRegInfo *ri) 2731 { 2732 return gt_get_countervalue(env); 2733 } 2734 2735 static uint64_t gt_virt_cnt_offset(CPUARMState *env) 2736 { 2737 uint64_t hcr; 2738 2739 switch (arm_current_el(env)) { 2740 case 2: 2741 hcr = arm_hcr_el2_eff(env); 2742 if (hcr & HCR_E2H) { 2743 return 0; 2744 } 2745 break; 2746 case 0: 2747 hcr = arm_hcr_el2_eff(env); 2748 if ((hcr & (HCR_E2H | HCR_TGE)) == (HCR_E2H | HCR_TGE)) { 2749 return 0; 2750 } 2751 break; 2752 } 2753 2754 return env->cp15.cntvoff_el2; 2755 } 2756 2757 static uint64_t gt_virt_cnt_read(CPUARMState *env, const ARMCPRegInfo *ri) 2758 { 2759 return gt_get_countervalue(env) - gt_virt_cnt_offset(env); 2760 } 2761 2762 static void gt_cval_write(CPUARMState *env, const ARMCPRegInfo *ri, 2763 int timeridx, 2764 uint64_t value) 2765 { 2766 trace_arm_gt_cval_write(timeridx, value); 2767 env->cp15.c14_timer[timeridx].cval = value; 2768 gt_recalc_timer(env_archcpu(env), timeridx); 2769 } 2770 2771 static uint64_t gt_tval_read(CPUARMState *env, const ARMCPRegInfo *ri, 2772 int timeridx) 2773 { 2774 uint64_t offset = 0; 2775 2776 switch (timeridx) { 2777 case GTIMER_VIRT: 2778 case GTIMER_HYPVIRT: 2779 offset = gt_virt_cnt_offset(env); 2780 break; 2781 } 2782 2783 return (uint32_t)(env->cp15.c14_timer[timeridx].cval - 2784 (gt_get_countervalue(env) - offset)); 2785 } 2786 2787 static void gt_tval_write(CPUARMState *env, const ARMCPRegInfo *ri, 2788 int timeridx, 2789 uint64_t value) 2790 { 2791 uint64_t offset = 0; 2792 2793 switch (timeridx) { 2794 case GTIMER_VIRT: 2795 case GTIMER_HYPVIRT: 2796 offset = gt_virt_cnt_offset(env); 2797 break; 2798 } 2799 2800 trace_arm_gt_tval_write(timeridx, value); 2801 env->cp15.c14_timer[timeridx].cval = gt_get_countervalue(env) - offset + 2802 sextract64(value, 0, 32); 2803 gt_recalc_timer(env_archcpu(env), timeridx); 2804 } 2805 2806 static void gt_ctl_write(CPUARMState *env, const ARMCPRegInfo *ri, 2807 int timeridx, 2808 uint64_t value) 2809 { 2810 ARMCPU *cpu = env_archcpu(env); 2811 uint32_t oldval = env->cp15.c14_timer[timeridx].ctl; 2812 2813 trace_arm_gt_ctl_write(timeridx, value); 2814 env->cp15.c14_timer[timeridx].ctl = deposit64(oldval, 0, 2, value); 2815 if ((oldval ^ value) & 1) { 2816 /* Enable toggled */ 2817 gt_recalc_timer(cpu, timeridx); 2818 } else if ((oldval ^ value) & 2) { 2819 /* IMASK toggled: don't need to recalculate, 2820 * just set the interrupt line based on ISTATUS 2821 */ 2822 int irqstate = (oldval & 4) && !(value & 2); 2823 2824 trace_arm_gt_imask_toggle(timeridx, irqstate); 2825 qemu_set_irq(cpu->gt_timer_outputs[timeridx], irqstate); 2826 } 2827 } 2828 2829 static void gt_phys_timer_reset(CPUARMState *env, const ARMCPRegInfo *ri) 2830 { 2831 gt_timer_reset(env, ri, GTIMER_PHYS); 2832 } 2833 2834 static void gt_phys_cval_write(CPUARMState *env, const ARMCPRegInfo *ri, 2835 uint64_t value) 2836 { 2837 gt_cval_write(env, ri, GTIMER_PHYS, value); 2838 } 2839 2840 static uint64_t gt_phys_tval_read(CPUARMState *env, const ARMCPRegInfo *ri) 2841 { 2842 return gt_tval_read(env, ri, GTIMER_PHYS); 2843 } 2844 2845 static void gt_phys_tval_write(CPUARMState *env, const ARMCPRegInfo *ri, 2846 uint64_t value) 2847 { 2848 gt_tval_write(env, ri, GTIMER_PHYS, value); 2849 } 2850 2851 static void gt_phys_ctl_write(CPUARMState *env, const ARMCPRegInfo *ri, 2852 uint64_t value) 2853 { 2854 gt_ctl_write(env, ri, GTIMER_PHYS, value); 2855 } 2856 2857 static int gt_phys_redir_timeridx(CPUARMState *env) 2858 { 2859 switch (arm_mmu_idx(env)) { 2860 case ARMMMUIdx_E20_0: 2861 case ARMMMUIdx_E20_2: 2862 case ARMMMUIdx_E20_2_PAN: 2863 return GTIMER_HYP; 2864 default: 2865 return GTIMER_PHYS; 2866 } 2867 } 2868 2869 static int gt_virt_redir_timeridx(CPUARMState *env) 2870 { 2871 switch (arm_mmu_idx(env)) { 2872 case ARMMMUIdx_E20_0: 2873 case ARMMMUIdx_E20_2: 2874 case ARMMMUIdx_E20_2_PAN: 2875 return GTIMER_HYPVIRT; 2876 default: 2877 return GTIMER_VIRT; 2878 } 2879 } 2880 2881 static uint64_t gt_phys_redir_cval_read(CPUARMState *env, 2882 const ARMCPRegInfo *ri) 2883 { 2884 int timeridx = gt_phys_redir_timeridx(env); 2885 return env->cp15.c14_timer[timeridx].cval; 2886 } 2887 2888 static void gt_phys_redir_cval_write(CPUARMState *env, const ARMCPRegInfo *ri, 2889 uint64_t value) 2890 { 2891 int timeridx = gt_phys_redir_timeridx(env); 2892 gt_cval_write(env, ri, timeridx, value); 2893 } 2894 2895 static uint64_t gt_phys_redir_tval_read(CPUARMState *env, 2896 const ARMCPRegInfo *ri) 2897 { 2898 int timeridx = gt_phys_redir_timeridx(env); 2899 return gt_tval_read(env, ri, timeridx); 2900 } 2901 2902 static void gt_phys_redir_tval_write(CPUARMState *env, const ARMCPRegInfo *ri, 2903 uint64_t value) 2904 { 2905 int timeridx = gt_phys_redir_timeridx(env); 2906 gt_tval_write(env, ri, timeridx, value); 2907 } 2908 2909 static uint64_t gt_phys_redir_ctl_read(CPUARMState *env, 2910 const ARMCPRegInfo *ri) 2911 { 2912 int timeridx = gt_phys_redir_timeridx(env); 2913 return env->cp15.c14_timer[timeridx].ctl; 2914 } 2915 2916 static void gt_phys_redir_ctl_write(CPUARMState *env, const ARMCPRegInfo *ri, 2917 uint64_t value) 2918 { 2919 int timeridx = gt_phys_redir_timeridx(env); 2920 gt_ctl_write(env, ri, timeridx, value); 2921 } 2922 2923 static void gt_virt_timer_reset(CPUARMState *env, const ARMCPRegInfo *ri) 2924 { 2925 gt_timer_reset(env, ri, GTIMER_VIRT); 2926 } 2927 2928 static void gt_virt_cval_write(CPUARMState *env, const ARMCPRegInfo *ri, 2929 uint64_t value) 2930 { 2931 gt_cval_write(env, ri, GTIMER_VIRT, value); 2932 } 2933 2934 static uint64_t gt_virt_tval_read(CPUARMState *env, const ARMCPRegInfo *ri) 2935 { 2936 return gt_tval_read(env, ri, GTIMER_VIRT); 2937 } 2938 2939 static void gt_virt_tval_write(CPUARMState *env, const ARMCPRegInfo *ri, 2940 uint64_t value) 2941 { 2942 gt_tval_write(env, ri, GTIMER_VIRT, value); 2943 } 2944 2945 static void gt_virt_ctl_write(CPUARMState *env, const ARMCPRegInfo *ri, 2946 uint64_t value) 2947 { 2948 gt_ctl_write(env, ri, GTIMER_VIRT, value); 2949 } 2950 2951 static void gt_cntvoff_write(CPUARMState *env, const ARMCPRegInfo *ri, 2952 uint64_t value) 2953 { 2954 ARMCPU *cpu = env_archcpu(env); 2955 2956 trace_arm_gt_cntvoff_write(value); 2957 raw_write(env, ri, value); 2958 gt_recalc_timer(cpu, GTIMER_VIRT); 2959 } 2960 2961 static uint64_t gt_virt_redir_cval_read(CPUARMState *env, 2962 const ARMCPRegInfo *ri) 2963 { 2964 int timeridx = gt_virt_redir_timeridx(env); 2965 return env->cp15.c14_timer[timeridx].cval; 2966 } 2967 2968 static void gt_virt_redir_cval_write(CPUARMState *env, const ARMCPRegInfo *ri, 2969 uint64_t value) 2970 { 2971 int timeridx = gt_virt_redir_timeridx(env); 2972 gt_cval_write(env, ri, timeridx, value); 2973 } 2974 2975 static uint64_t gt_virt_redir_tval_read(CPUARMState *env, 2976 const ARMCPRegInfo *ri) 2977 { 2978 int timeridx = gt_virt_redir_timeridx(env); 2979 return gt_tval_read(env, ri, timeridx); 2980 } 2981 2982 static void gt_virt_redir_tval_write(CPUARMState *env, const ARMCPRegInfo *ri, 2983 uint64_t value) 2984 { 2985 int timeridx = gt_virt_redir_timeridx(env); 2986 gt_tval_write(env, ri, timeridx, value); 2987 } 2988 2989 static uint64_t gt_virt_redir_ctl_read(CPUARMState *env, 2990 const ARMCPRegInfo *ri) 2991 { 2992 int timeridx = gt_virt_redir_timeridx(env); 2993 return env->cp15.c14_timer[timeridx].ctl; 2994 } 2995 2996 static void gt_virt_redir_ctl_write(CPUARMState *env, const ARMCPRegInfo *ri, 2997 uint64_t value) 2998 { 2999 int timeridx = gt_virt_redir_timeridx(env); 3000 gt_ctl_write(env, ri, timeridx, value); 3001 } 3002 3003 static void gt_hyp_timer_reset(CPUARMState *env, const ARMCPRegInfo *ri) 3004 { 3005 gt_timer_reset(env, ri, GTIMER_HYP); 3006 } 3007 3008 static void gt_hyp_cval_write(CPUARMState *env, const ARMCPRegInfo *ri, 3009 uint64_t value) 3010 { 3011 gt_cval_write(env, ri, GTIMER_HYP, value); 3012 } 3013 3014 static uint64_t gt_hyp_tval_read(CPUARMState *env, const ARMCPRegInfo *ri) 3015 { 3016 return gt_tval_read(env, ri, GTIMER_HYP); 3017 } 3018 3019 static void gt_hyp_tval_write(CPUARMState *env, const ARMCPRegInfo *ri, 3020 uint64_t value) 3021 { 3022 gt_tval_write(env, ri, GTIMER_HYP, value); 3023 } 3024 3025 static void gt_hyp_ctl_write(CPUARMState *env, const ARMCPRegInfo *ri, 3026 uint64_t value) 3027 { 3028 gt_ctl_write(env, ri, GTIMER_HYP, value); 3029 } 3030 3031 static void gt_sec_timer_reset(CPUARMState *env, const ARMCPRegInfo *ri) 3032 { 3033 gt_timer_reset(env, ri, GTIMER_SEC); 3034 } 3035 3036 static void gt_sec_cval_write(CPUARMState *env, const ARMCPRegInfo *ri, 3037 uint64_t value) 3038 { 3039 gt_cval_write(env, ri, GTIMER_SEC, value); 3040 } 3041 3042 static uint64_t gt_sec_tval_read(CPUARMState *env, const ARMCPRegInfo *ri) 3043 { 3044 return gt_tval_read(env, ri, GTIMER_SEC); 3045 } 3046 3047 static void gt_sec_tval_write(CPUARMState *env, const ARMCPRegInfo *ri, 3048 uint64_t value) 3049 { 3050 gt_tval_write(env, ri, GTIMER_SEC, value); 3051 } 3052 3053 static void gt_sec_ctl_write(CPUARMState *env, const ARMCPRegInfo *ri, 3054 uint64_t value) 3055 { 3056 gt_ctl_write(env, ri, GTIMER_SEC, value); 3057 } 3058 3059 static void gt_hv_timer_reset(CPUARMState *env, const ARMCPRegInfo *ri) 3060 { 3061 gt_timer_reset(env, ri, GTIMER_HYPVIRT); 3062 } 3063 3064 static void gt_hv_cval_write(CPUARMState *env, const ARMCPRegInfo *ri, 3065 uint64_t value) 3066 { 3067 gt_cval_write(env, ri, GTIMER_HYPVIRT, value); 3068 } 3069 3070 static uint64_t gt_hv_tval_read(CPUARMState *env, const ARMCPRegInfo *ri) 3071 { 3072 return gt_tval_read(env, ri, GTIMER_HYPVIRT); 3073 } 3074 3075 static void gt_hv_tval_write(CPUARMState *env, const ARMCPRegInfo *ri, 3076 uint64_t value) 3077 { 3078 gt_tval_write(env, ri, GTIMER_HYPVIRT, value); 3079 } 3080 3081 static void gt_hv_ctl_write(CPUARMState *env, const ARMCPRegInfo *ri, 3082 uint64_t value) 3083 { 3084 gt_ctl_write(env, ri, GTIMER_HYPVIRT, value); 3085 } 3086 3087 void arm_gt_ptimer_cb(void *opaque) 3088 { 3089 ARMCPU *cpu = opaque; 3090 3091 gt_recalc_timer(cpu, GTIMER_PHYS); 3092 } 3093 3094 void arm_gt_vtimer_cb(void *opaque) 3095 { 3096 ARMCPU *cpu = opaque; 3097 3098 gt_recalc_timer(cpu, GTIMER_VIRT); 3099 } 3100 3101 void arm_gt_htimer_cb(void *opaque) 3102 { 3103 ARMCPU *cpu = opaque; 3104 3105 gt_recalc_timer(cpu, GTIMER_HYP); 3106 } 3107 3108 void arm_gt_stimer_cb(void *opaque) 3109 { 3110 ARMCPU *cpu = opaque; 3111 3112 gt_recalc_timer(cpu, GTIMER_SEC); 3113 } 3114 3115 void arm_gt_hvtimer_cb(void *opaque) 3116 { 3117 ARMCPU *cpu = opaque; 3118 3119 gt_recalc_timer(cpu, GTIMER_HYPVIRT); 3120 } 3121 3122 static void arm_gt_cntfrq_reset(CPUARMState *env, const ARMCPRegInfo *opaque) 3123 { 3124 ARMCPU *cpu = env_archcpu(env); 3125 3126 cpu->env.cp15.c14_cntfrq = cpu->gt_cntfrq_hz; 3127 } 3128 3129 static const ARMCPRegInfo generic_timer_cp_reginfo[] = { 3130 /* Note that CNTFRQ is purely reads-as-written for the benefit 3131 * of software; writing it doesn't actually change the timer frequency. 3132 * Our reset value matches the fixed frequency we implement the timer at. 3133 */ 3134 { .name = "CNTFRQ", .cp = 15, .crn = 14, .crm = 0, .opc1 = 0, .opc2 = 0, 3135 .type = ARM_CP_ALIAS, 3136 .access = PL1_RW | PL0_R, .accessfn = gt_cntfrq_access, 3137 .fieldoffset = offsetoflow32(CPUARMState, cp15.c14_cntfrq), 3138 }, 3139 { .name = "CNTFRQ_EL0", .state = ARM_CP_STATE_AA64, 3140 .opc0 = 3, .opc1 = 3, .crn = 14, .crm = 0, .opc2 = 0, 3141 .access = PL1_RW | PL0_R, .accessfn = gt_cntfrq_access, 3142 .fieldoffset = offsetof(CPUARMState, cp15.c14_cntfrq), 3143 .resetfn = arm_gt_cntfrq_reset, 3144 }, 3145 /* overall control: mostly access permissions */ 3146 { .name = "CNTKCTL", .state = ARM_CP_STATE_BOTH, 3147 .opc0 = 3, .opc1 = 0, .crn = 14, .crm = 1, .opc2 = 0, 3148 .access = PL1_RW, 3149 .fieldoffset = offsetof(CPUARMState, cp15.c14_cntkctl), 3150 .resetvalue = 0, 3151 }, 3152 /* per-timer control */ 3153 { .name = "CNTP_CTL", .cp = 15, .crn = 14, .crm = 2, .opc1 = 0, .opc2 = 1, 3154 .secure = ARM_CP_SECSTATE_NS, 3155 .type = ARM_CP_IO | ARM_CP_ALIAS, .access = PL0_RW, 3156 .accessfn = gt_ptimer_access, 3157 .fieldoffset = offsetoflow32(CPUARMState, 3158 cp15.c14_timer[GTIMER_PHYS].ctl), 3159 .readfn = gt_phys_redir_ctl_read, .raw_readfn = raw_read, 3160 .writefn = gt_phys_redir_ctl_write, .raw_writefn = raw_write, 3161 }, 3162 { .name = "CNTP_CTL_S", 3163 .cp = 15, .crn = 14, .crm = 2, .opc1 = 0, .opc2 = 1, 3164 .secure = ARM_CP_SECSTATE_S, 3165 .type = ARM_CP_IO | ARM_CP_ALIAS, .access = PL0_RW, 3166 .accessfn = gt_ptimer_access, 3167 .fieldoffset = offsetoflow32(CPUARMState, 3168 cp15.c14_timer[GTIMER_SEC].ctl), 3169 .writefn = gt_sec_ctl_write, .raw_writefn = raw_write, 3170 }, 3171 { .name = "CNTP_CTL_EL0", .state = ARM_CP_STATE_AA64, 3172 .opc0 = 3, .opc1 = 3, .crn = 14, .crm = 2, .opc2 = 1, 3173 .type = ARM_CP_IO, .access = PL0_RW, 3174 .accessfn = gt_ptimer_access, 3175 .fieldoffset = offsetof(CPUARMState, cp15.c14_timer[GTIMER_PHYS].ctl), 3176 .resetvalue = 0, 3177 .readfn = gt_phys_redir_ctl_read, .raw_readfn = raw_read, 3178 .writefn = gt_phys_redir_ctl_write, .raw_writefn = raw_write, 3179 }, 3180 { .name = "CNTV_CTL", .cp = 15, .crn = 14, .crm = 3, .opc1 = 0, .opc2 = 1, 3181 .type = ARM_CP_IO | ARM_CP_ALIAS, .access = PL0_RW, 3182 .accessfn = gt_vtimer_access, 3183 .fieldoffset = offsetoflow32(CPUARMState, 3184 cp15.c14_timer[GTIMER_VIRT].ctl), 3185 .readfn = gt_virt_redir_ctl_read, .raw_readfn = raw_read, 3186 .writefn = gt_virt_redir_ctl_write, .raw_writefn = raw_write, 3187 }, 3188 { .name = "CNTV_CTL_EL0", .state = ARM_CP_STATE_AA64, 3189 .opc0 = 3, .opc1 = 3, .crn = 14, .crm = 3, .opc2 = 1, 3190 .type = ARM_CP_IO, .access = PL0_RW, 3191 .accessfn = gt_vtimer_access, 3192 .fieldoffset = offsetof(CPUARMState, cp15.c14_timer[GTIMER_VIRT].ctl), 3193 .resetvalue = 0, 3194 .readfn = gt_virt_redir_ctl_read, .raw_readfn = raw_read, 3195 .writefn = gt_virt_redir_ctl_write, .raw_writefn = raw_write, 3196 }, 3197 /* TimerValue views: a 32 bit downcounting view of the underlying state */ 3198 { .name = "CNTP_TVAL", .cp = 15, .crn = 14, .crm = 2, .opc1 = 0, .opc2 = 0, 3199 .secure = ARM_CP_SECSTATE_NS, 3200 .type = ARM_CP_NO_RAW | ARM_CP_IO, .access = PL0_RW, 3201 .accessfn = gt_ptimer_access, 3202 .readfn = gt_phys_redir_tval_read, .writefn = gt_phys_redir_tval_write, 3203 }, 3204 { .name = "CNTP_TVAL_S", 3205 .cp = 15, .crn = 14, .crm = 2, .opc1 = 0, .opc2 = 0, 3206 .secure = ARM_CP_SECSTATE_S, 3207 .type = ARM_CP_NO_RAW | ARM_CP_IO, .access = PL0_RW, 3208 .accessfn = gt_ptimer_access, 3209 .readfn = gt_sec_tval_read, .writefn = gt_sec_tval_write, 3210 }, 3211 { .name = "CNTP_TVAL_EL0", .state = ARM_CP_STATE_AA64, 3212 .opc0 = 3, .opc1 = 3, .crn = 14, .crm = 2, .opc2 = 0, 3213 .type = ARM_CP_NO_RAW | ARM_CP_IO, .access = PL0_RW, 3214 .accessfn = gt_ptimer_access, .resetfn = gt_phys_timer_reset, 3215 .readfn = gt_phys_redir_tval_read, .writefn = gt_phys_redir_tval_write, 3216 }, 3217 { .name = "CNTV_TVAL", .cp = 15, .crn = 14, .crm = 3, .opc1 = 0, .opc2 = 0, 3218 .type = ARM_CP_NO_RAW | ARM_CP_IO, .access = PL0_RW, 3219 .accessfn = gt_vtimer_access, 3220 .readfn = gt_virt_redir_tval_read, .writefn = gt_virt_redir_tval_write, 3221 }, 3222 { .name = "CNTV_TVAL_EL0", .state = ARM_CP_STATE_AA64, 3223 .opc0 = 3, .opc1 = 3, .crn = 14, .crm = 3, .opc2 = 0, 3224 .type = ARM_CP_NO_RAW | ARM_CP_IO, .access = PL0_RW, 3225 .accessfn = gt_vtimer_access, .resetfn = gt_virt_timer_reset, 3226 .readfn = gt_virt_redir_tval_read, .writefn = gt_virt_redir_tval_write, 3227 }, 3228 /* The counter itself */ 3229 { .name = "CNTPCT", .cp = 15, .crm = 14, .opc1 = 0, 3230 .access = PL0_R, .type = ARM_CP_64BIT | ARM_CP_NO_RAW | ARM_CP_IO, 3231 .accessfn = gt_pct_access, 3232 .readfn = gt_cnt_read, .resetfn = arm_cp_reset_ignore, 3233 }, 3234 { .name = "CNTPCT_EL0", .state = ARM_CP_STATE_AA64, 3235 .opc0 = 3, .opc1 = 3, .crn = 14, .crm = 0, .opc2 = 1, 3236 .access = PL0_R, .type = ARM_CP_NO_RAW | ARM_CP_IO, 3237 .accessfn = gt_pct_access, .readfn = gt_cnt_read, 3238 }, 3239 { .name = "CNTVCT", .cp = 15, .crm = 14, .opc1 = 1, 3240 .access = PL0_R, .type = ARM_CP_64BIT | ARM_CP_NO_RAW | ARM_CP_IO, 3241 .accessfn = gt_vct_access, 3242 .readfn = gt_virt_cnt_read, .resetfn = arm_cp_reset_ignore, 3243 }, 3244 { .name = "CNTVCT_EL0", .state = ARM_CP_STATE_AA64, 3245 .opc0 = 3, .opc1 = 3, .crn = 14, .crm = 0, .opc2 = 2, 3246 .access = PL0_R, .type = ARM_CP_NO_RAW | ARM_CP_IO, 3247 .accessfn = gt_vct_access, .readfn = gt_virt_cnt_read, 3248 }, 3249 /* Comparison value, indicating when the timer goes off */ 3250 { .name = "CNTP_CVAL", .cp = 15, .crm = 14, .opc1 = 2, 3251 .secure = ARM_CP_SECSTATE_NS, 3252 .access = PL0_RW, 3253 .type = ARM_CP_64BIT | ARM_CP_IO | ARM_CP_ALIAS, 3254 .fieldoffset = offsetof(CPUARMState, cp15.c14_timer[GTIMER_PHYS].cval), 3255 .accessfn = gt_ptimer_access, 3256 .readfn = gt_phys_redir_cval_read, .raw_readfn = raw_read, 3257 .writefn = gt_phys_redir_cval_write, .raw_writefn = raw_write, 3258 }, 3259 { .name = "CNTP_CVAL_S", .cp = 15, .crm = 14, .opc1 = 2, 3260 .secure = ARM_CP_SECSTATE_S, 3261 .access = PL0_RW, 3262 .type = ARM_CP_64BIT | ARM_CP_IO | ARM_CP_ALIAS, 3263 .fieldoffset = offsetof(CPUARMState, cp15.c14_timer[GTIMER_SEC].cval), 3264 .accessfn = gt_ptimer_access, 3265 .writefn = gt_sec_cval_write, .raw_writefn = raw_write, 3266 }, 3267 { .name = "CNTP_CVAL_EL0", .state = ARM_CP_STATE_AA64, 3268 .opc0 = 3, .opc1 = 3, .crn = 14, .crm = 2, .opc2 = 2, 3269 .access = PL0_RW, 3270 .type = ARM_CP_IO, 3271 .fieldoffset = offsetof(CPUARMState, cp15.c14_timer[GTIMER_PHYS].cval), 3272 .resetvalue = 0, .accessfn = gt_ptimer_access, 3273 .readfn = gt_phys_redir_cval_read, .raw_readfn = raw_read, 3274 .writefn = gt_phys_redir_cval_write, .raw_writefn = raw_write, 3275 }, 3276 { .name = "CNTV_CVAL", .cp = 15, .crm = 14, .opc1 = 3, 3277 .access = PL0_RW, 3278 .type = ARM_CP_64BIT | ARM_CP_IO | ARM_CP_ALIAS, 3279 .fieldoffset = offsetof(CPUARMState, cp15.c14_timer[GTIMER_VIRT].cval), 3280 .accessfn = gt_vtimer_access, 3281 .readfn = gt_virt_redir_cval_read, .raw_readfn = raw_read, 3282 .writefn = gt_virt_redir_cval_write, .raw_writefn = raw_write, 3283 }, 3284 { .name = "CNTV_CVAL_EL0", .state = ARM_CP_STATE_AA64, 3285 .opc0 = 3, .opc1 = 3, .crn = 14, .crm = 3, .opc2 = 2, 3286 .access = PL0_RW, 3287 .type = ARM_CP_IO, 3288 .fieldoffset = offsetof(CPUARMState, cp15.c14_timer[GTIMER_VIRT].cval), 3289 .resetvalue = 0, .accessfn = gt_vtimer_access, 3290 .readfn = gt_virt_redir_cval_read, .raw_readfn = raw_read, 3291 .writefn = gt_virt_redir_cval_write, .raw_writefn = raw_write, 3292 }, 3293 /* Secure timer -- this is actually restricted to only EL3 3294 * and configurably Secure-EL1 via the accessfn. 3295 */ 3296 { .name = "CNTPS_TVAL_EL1", .state = ARM_CP_STATE_AA64, 3297 .opc0 = 3, .opc1 = 7, .crn = 14, .crm = 2, .opc2 = 0, 3298 .type = ARM_CP_NO_RAW | ARM_CP_IO, .access = PL1_RW, 3299 .accessfn = gt_stimer_access, 3300 .readfn = gt_sec_tval_read, 3301 .writefn = gt_sec_tval_write, 3302 .resetfn = gt_sec_timer_reset, 3303 }, 3304 { .name = "CNTPS_CTL_EL1", .state = ARM_CP_STATE_AA64, 3305 .opc0 = 3, .opc1 = 7, .crn = 14, .crm = 2, .opc2 = 1, 3306 .type = ARM_CP_IO, .access = PL1_RW, 3307 .accessfn = gt_stimer_access, 3308 .fieldoffset = offsetof(CPUARMState, cp15.c14_timer[GTIMER_SEC].ctl), 3309 .resetvalue = 0, 3310 .writefn = gt_sec_ctl_write, .raw_writefn = raw_write, 3311 }, 3312 { .name = "CNTPS_CVAL_EL1", .state = ARM_CP_STATE_AA64, 3313 .opc0 = 3, .opc1 = 7, .crn = 14, .crm = 2, .opc2 = 2, 3314 .type = ARM_CP_IO, .access = PL1_RW, 3315 .accessfn = gt_stimer_access, 3316 .fieldoffset = offsetof(CPUARMState, cp15.c14_timer[GTIMER_SEC].cval), 3317 .writefn = gt_sec_cval_write, .raw_writefn = raw_write, 3318 }, 3319 REGINFO_SENTINEL 3320 }; 3321 3322 static CPAccessResult e2h_access(CPUARMState *env, const ARMCPRegInfo *ri, 3323 bool isread) 3324 { 3325 if (!(arm_hcr_el2_eff(env) & HCR_E2H)) { 3326 return CP_ACCESS_TRAP; 3327 } 3328 return CP_ACCESS_OK; 3329 } 3330 3331 #else 3332 3333 /* In user-mode most of the generic timer registers are inaccessible 3334 * however modern kernels (4.12+) allow access to cntvct_el0 3335 */ 3336 3337 static uint64_t gt_virt_cnt_read(CPUARMState *env, const ARMCPRegInfo *ri) 3338 { 3339 ARMCPU *cpu = env_archcpu(env); 3340 3341 /* Currently we have no support for QEMUTimer in linux-user so we 3342 * can't call gt_get_countervalue(env), instead we directly 3343 * call the lower level functions. 3344 */ 3345 return cpu_get_clock() / gt_cntfrq_period_ns(cpu); 3346 } 3347 3348 static const ARMCPRegInfo generic_timer_cp_reginfo[] = { 3349 { .name = "CNTFRQ_EL0", .state = ARM_CP_STATE_AA64, 3350 .opc0 = 3, .opc1 = 3, .crn = 14, .crm = 0, .opc2 = 0, 3351 .type = ARM_CP_CONST, .access = PL0_R /* no PL1_RW in linux-user */, 3352 .fieldoffset = offsetof(CPUARMState, cp15.c14_cntfrq), 3353 .resetvalue = NANOSECONDS_PER_SECOND / GTIMER_SCALE, 3354 }, 3355 { .name = "CNTVCT_EL0", .state = ARM_CP_STATE_AA64, 3356 .opc0 = 3, .opc1 = 3, .crn = 14, .crm = 0, .opc2 = 2, 3357 .access = PL0_R, .type = ARM_CP_NO_RAW | ARM_CP_IO, 3358 .readfn = gt_virt_cnt_read, 3359 }, 3360 REGINFO_SENTINEL 3361 }; 3362 3363 #endif 3364 3365 static void par_write(CPUARMState *env, const ARMCPRegInfo *ri, uint64_t value) 3366 { 3367 if (arm_feature(env, ARM_FEATURE_LPAE)) { 3368 raw_write(env, ri, value); 3369 } else if (arm_feature(env, ARM_FEATURE_V7)) { 3370 raw_write(env, ri, value & 0xfffff6ff); 3371 } else { 3372 raw_write(env, ri, value & 0xfffff1ff); 3373 } 3374 } 3375 3376 #ifndef CONFIG_USER_ONLY 3377 /* get_phys_addr() isn't present for user-mode-only targets */ 3378 3379 static CPAccessResult ats_access(CPUARMState *env, const ARMCPRegInfo *ri, 3380 bool isread) 3381 { 3382 if (ri->opc2 & 4) { 3383 /* The ATS12NSO* operations must trap to EL3 if executed in 3384 * Secure EL1 (which can only happen if EL3 is AArch64). 3385 * They are simply UNDEF if executed from NS EL1. 3386 * They function normally from EL2 or EL3. 3387 */ 3388 if (arm_current_el(env) == 1) { 3389 if (arm_is_secure_below_el3(env)) { 3390 return CP_ACCESS_TRAP_UNCATEGORIZED_EL3; 3391 } 3392 return CP_ACCESS_TRAP_UNCATEGORIZED; 3393 } 3394 } 3395 return CP_ACCESS_OK; 3396 } 3397 3398 #ifdef CONFIG_TCG 3399 static uint64_t do_ats_write(CPUARMState *env, uint64_t value, 3400 MMUAccessType access_type, ARMMMUIdx mmu_idx) 3401 { 3402 hwaddr phys_addr; 3403 target_ulong page_size; 3404 int prot; 3405 bool ret; 3406 uint64_t par64; 3407 bool format64 = false; 3408 MemTxAttrs attrs = {}; 3409 ARMMMUFaultInfo fi = {}; 3410 ARMCacheAttrs cacheattrs = {}; 3411 3412 ret = get_phys_addr(env, value, access_type, mmu_idx, &phys_addr, &attrs, 3413 &prot, &page_size, &fi, &cacheattrs); 3414 3415 if (ret) { 3416 /* 3417 * Some kinds of translation fault must cause exceptions rather 3418 * than being reported in the PAR. 3419 */ 3420 int current_el = arm_current_el(env); 3421 int target_el; 3422 uint32_t syn, fsr, fsc; 3423 bool take_exc = false; 3424 3425 if (fi.s1ptw && current_el == 1 && !arm_is_secure(env) 3426 && arm_mmu_idx_is_stage1_of_2(mmu_idx)) { 3427 /* 3428 * Synchronous stage 2 fault on an access made as part of the 3429 * translation table walk for AT S1E0* or AT S1E1* insn 3430 * executed from NS EL1. If this is a synchronous external abort 3431 * and SCR_EL3.EA == 1, then we take a synchronous external abort 3432 * to EL3. Otherwise the fault is taken as an exception to EL2, 3433 * and HPFAR_EL2 holds the faulting IPA. 3434 */ 3435 if (fi.type == ARMFault_SyncExternalOnWalk && 3436 (env->cp15.scr_el3 & SCR_EA)) { 3437 target_el = 3; 3438 } else { 3439 env->cp15.hpfar_el2 = extract64(fi.s2addr, 12, 47) << 4; 3440 target_el = 2; 3441 } 3442 take_exc = true; 3443 } else if (fi.type == ARMFault_SyncExternalOnWalk) { 3444 /* 3445 * Synchronous external aborts during a translation table walk 3446 * are taken as Data Abort exceptions. 3447 */ 3448 if (fi.stage2) { 3449 if (current_el == 3) { 3450 target_el = 3; 3451 } else { 3452 target_el = 2; 3453 } 3454 } else { 3455 target_el = exception_target_el(env); 3456 } 3457 take_exc = true; 3458 } 3459 3460 if (take_exc) { 3461 /* Construct FSR and FSC using same logic as arm_deliver_fault() */ 3462 if (target_el == 2 || arm_el_is_aa64(env, target_el) || 3463 arm_s1_regime_using_lpae_format(env, mmu_idx)) { 3464 fsr = arm_fi_to_lfsc(&fi); 3465 fsc = extract32(fsr, 0, 6); 3466 } else { 3467 fsr = arm_fi_to_sfsc(&fi); 3468 fsc = 0x3f; 3469 } 3470 /* 3471 * Report exception with ESR indicating a fault due to a 3472 * translation table walk for a cache maintenance instruction. 3473 */ 3474 syn = syn_data_abort_no_iss(current_el == target_el, 0, 3475 fi.ea, 1, fi.s1ptw, 1, fsc); 3476 env->exception.vaddress = value; 3477 env->exception.fsr = fsr; 3478 raise_exception(env, EXCP_DATA_ABORT, syn, target_el); 3479 } 3480 } 3481 3482 if (is_a64(env)) { 3483 format64 = true; 3484 } else if (arm_feature(env, ARM_FEATURE_LPAE)) { 3485 /* 3486 * ATS1Cxx: 3487 * * TTBCR.EAE determines whether the result is returned using the 3488 * 32-bit or the 64-bit PAR format 3489 * * Instructions executed in Hyp mode always use the 64bit format 3490 * 3491 * ATS1S2NSOxx uses the 64bit format if any of the following is true: 3492 * * The Non-secure TTBCR.EAE bit is set to 1 3493 * * The implementation includes EL2, and the value of HCR.VM is 1 3494 * 3495 * (Note that HCR.DC makes HCR.VM behave as if it is 1.) 3496 * 3497 * ATS1Hx always uses the 64bit format. 3498 */ 3499 format64 = arm_s1_regime_using_lpae_format(env, mmu_idx); 3500 3501 if (arm_feature(env, ARM_FEATURE_EL2)) { 3502 if (mmu_idx == ARMMMUIdx_E10_0 || 3503 mmu_idx == ARMMMUIdx_E10_1 || 3504 mmu_idx == ARMMMUIdx_E10_1_PAN) { 3505 format64 |= env->cp15.hcr_el2 & (HCR_VM | HCR_DC); 3506 } else { 3507 format64 |= arm_current_el(env) == 2; 3508 } 3509 } 3510 } 3511 3512 if (format64) { 3513 /* Create a 64-bit PAR */ 3514 par64 = (1 << 11); /* LPAE bit always set */ 3515 if (!ret) { 3516 par64 |= phys_addr & ~0xfffULL; 3517 if (!attrs.secure) { 3518 par64 |= (1 << 9); /* NS */ 3519 } 3520 par64 |= (uint64_t)cacheattrs.attrs << 56; /* ATTR */ 3521 par64 |= cacheattrs.shareability << 7; /* SH */ 3522 } else { 3523 uint32_t fsr = arm_fi_to_lfsc(&fi); 3524 3525 par64 |= 1; /* F */ 3526 par64 |= (fsr & 0x3f) << 1; /* FS */ 3527 if (fi.stage2) { 3528 par64 |= (1 << 9); /* S */ 3529 } 3530 if (fi.s1ptw) { 3531 par64 |= (1 << 8); /* PTW */ 3532 } 3533 } 3534 } else { 3535 /* fsr is a DFSR/IFSR value for the short descriptor 3536 * translation table format (with WnR always clear). 3537 * Convert it to a 32-bit PAR. 3538 */ 3539 if (!ret) { 3540 /* We do not set any attribute bits in the PAR */ 3541 if (page_size == (1 << 24) 3542 && arm_feature(env, ARM_FEATURE_V7)) { 3543 par64 = (phys_addr & 0xff000000) | (1 << 1); 3544 } else { 3545 par64 = phys_addr & 0xfffff000; 3546 } 3547 if (!attrs.secure) { 3548 par64 |= (1 << 9); /* NS */ 3549 } 3550 } else { 3551 uint32_t fsr = arm_fi_to_sfsc(&fi); 3552 3553 par64 = ((fsr & (1 << 10)) >> 5) | ((fsr & (1 << 12)) >> 6) | 3554 ((fsr & 0xf) << 1) | 1; 3555 } 3556 } 3557 return par64; 3558 } 3559 #endif /* CONFIG_TCG */ 3560 3561 static void ats_write(CPUARMState *env, const ARMCPRegInfo *ri, uint64_t value) 3562 { 3563 #ifdef CONFIG_TCG 3564 MMUAccessType access_type = ri->opc2 & 1 ? MMU_DATA_STORE : MMU_DATA_LOAD; 3565 uint64_t par64; 3566 ARMMMUIdx mmu_idx; 3567 int el = arm_current_el(env); 3568 bool secure = arm_is_secure_below_el3(env); 3569 3570 switch (ri->opc2 & 6) { 3571 case 0: 3572 /* stage 1 current state PL1: ATS1CPR, ATS1CPW, ATS1CPRP, ATS1CPWP */ 3573 switch (el) { 3574 case 3: 3575 mmu_idx = ARMMMUIdx_SE3; 3576 break; 3577 case 2: 3578 g_assert(!secure); /* TODO: ARMv8.4-SecEL2 */ 3579 /* fall through */ 3580 case 1: 3581 if (ri->crm == 9 && (env->uncached_cpsr & CPSR_PAN)) { 3582 mmu_idx = (secure ? ARMMMUIdx_SE10_1_PAN 3583 : ARMMMUIdx_Stage1_E1_PAN); 3584 } else { 3585 mmu_idx = secure ? ARMMMUIdx_SE10_1 : ARMMMUIdx_Stage1_E1; 3586 } 3587 break; 3588 default: 3589 g_assert_not_reached(); 3590 } 3591 break; 3592 case 2: 3593 /* stage 1 current state PL0: ATS1CUR, ATS1CUW */ 3594 switch (el) { 3595 case 3: 3596 mmu_idx = ARMMMUIdx_SE10_0; 3597 break; 3598 case 2: 3599 mmu_idx = ARMMMUIdx_Stage1_E0; 3600 break; 3601 case 1: 3602 mmu_idx = secure ? ARMMMUIdx_SE10_0 : ARMMMUIdx_Stage1_E0; 3603 break; 3604 default: 3605 g_assert_not_reached(); 3606 } 3607 break; 3608 case 4: 3609 /* stage 1+2 NonSecure PL1: ATS12NSOPR, ATS12NSOPW */ 3610 mmu_idx = ARMMMUIdx_E10_1; 3611 break; 3612 case 6: 3613 /* stage 1+2 NonSecure PL0: ATS12NSOUR, ATS12NSOUW */ 3614 mmu_idx = ARMMMUIdx_E10_0; 3615 break; 3616 default: 3617 g_assert_not_reached(); 3618 } 3619 3620 par64 = do_ats_write(env, value, access_type, mmu_idx); 3621 3622 A32_BANKED_CURRENT_REG_SET(env, par, par64); 3623 #else 3624 /* Handled by hardware accelerator. */ 3625 g_assert_not_reached(); 3626 #endif /* CONFIG_TCG */ 3627 } 3628 3629 static void ats1h_write(CPUARMState *env, const ARMCPRegInfo *ri, 3630 uint64_t value) 3631 { 3632 #ifdef CONFIG_TCG 3633 MMUAccessType access_type = ri->opc2 & 1 ? MMU_DATA_STORE : MMU_DATA_LOAD; 3634 uint64_t par64; 3635 3636 par64 = do_ats_write(env, value, access_type, ARMMMUIdx_E2); 3637 3638 A32_BANKED_CURRENT_REG_SET(env, par, par64); 3639 #else 3640 /* Handled by hardware accelerator. */ 3641 g_assert_not_reached(); 3642 #endif /* CONFIG_TCG */ 3643 } 3644 3645 static CPAccessResult at_s1e2_access(CPUARMState *env, const ARMCPRegInfo *ri, 3646 bool isread) 3647 { 3648 if (arm_current_el(env) == 3 && !(env->cp15.scr_el3 & SCR_NS)) { 3649 return CP_ACCESS_TRAP; 3650 } 3651 return CP_ACCESS_OK; 3652 } 3653 3654 static void ats_write64(CPUARMState *env, const ARMCPRegInfo *ri, 3655 uint64_t value) 3656 { 3657 #ifdef CONFIG_TCG 3658 MMUAccessType access_type = ri->opc2 & 1 ? MMU_DATA_STORE : MMU_DATA_LOAD; 3659 ARMMMUIdx mmu_idx; 3660 int secure = arm_is_secure_below_el3(env); 3661 3662 switch (ri->opc2 & 6) { 3663 case 0: 3664 switch (ri->opc1) { 3665 case 0: /* AT S1E1R, AT S1E1W, AT S1E1RP, AT S1E1WP */ 3666 if (ri->crm == 9 && (env->pstate & PSTATE_PAN)) { 3667 mmu_idx = (secure ? ARMMMUIdx_SE10_1_PAN 3668 : ARMMMUIdx_Stage1_E1_PAN); 3669 } else { 3670 mmu_idx = secure ? ARMMMUIdx_SE10_1 : ARMMMUIdx_Stage1_E1; 3671 } 3672 break; 3673 case 4: /* AT S1E2R, AT S1E2W */ 3674 mmu_idx = ARMMMUIdx_E2; 3675 break; 3676 case 6: /* AT S1E3R, AT S1E3W */ 3677 mmu_idx = ARMMMUIdx_SE3; 3678 break; 3679 default: 3680 g_assert_not_reached(); 3681 } 3682 break; 3683 case 2: /* AT S1E0R, AT S1E0W */ 3684 mmu_idx = secure ? ARMMMUIdx_SE10_0 : ARMMMUIdx_Stage1_E0; 3685 break; 3686 case 4: /* AT S12E1R, AT S12E1W */ 3687 mmu_idx = secure ? ARMMMUIdx_SE10_1 : ARMMMUIdx_E10_1; 3688 break; 3689 case 6: /* AT S12E0R, AT S12E0W */ 3690 mmu_idx = secure ? ARMMMUIdx_SE10_0 : ARMMMUIdx_E10_0; 3691 break; 3692 default: 3693 g_assert_not_reached(); 3694 } 3695 3696 env->cp15.par_el[1] = do_ats_write(env, value, access_type, mmu_idx); 3697 #else 3698 /* Handled by hardware accelerator. */ 3699 g_assert_not_reached(); 3700 #endif /* CONFIG_TCG */ 3701 } 3702 #endif 3703 3704 static const ARMCPRegInfo vapa_cp_reginfo[] = { 3705 { .name = "PAR", .cp = 15, .crn = 7, .crm = 4, .opc1 = 0, .opc2 = 0, 3706 .access = PL1_RW, .resetvalue = 0, 3707 .bank_fieldoffsets = { offsetoflow32(CPUARMState, cp15.par_s), 3708 offsetoflow32(CPUARMState, cp15.par_ns) }, 3709 .writefn = par_write }, 3710 #ifndef CONFIG_USER_ONLY 3711 /* This underdecoding is safe because the reginfo is NO_RAW. */ 3712 { .name = "ATS", .cp = 15, .crn = 7, .crm = 8, .opc1 = 0, .opc2 = CP_ANY, 3713 .access = PL1_W, .accessfn = ats_access, 3714 .writefn = ats_write, .type = ARM_CP_NO_RAW | ARM_CP_RAISES_EXC }, 3715 #endif 3716 REGINFO_SENTINEL 3717 }; 3718 3719 /* Return basic MPU access permission bits. */ 3720 static uint32_t simple_mpu_ap_bits(uint32_t val) 3721 { 3722 uint32_t ret; 3723 uint32_t mask; 3724 int i; 3725 ret = 0; 3726 mask = 3; 3727 for (i = 0; i < 16; i += 2) { 3728 ret |= (val >> i) & mask; 3729 mask <<= 2; 3730 } 3731 return ret; 3732 } 3733 3734 /* Pad basic MPU access permission bits to extended format. */ 3735 static uint32_t extended_mpu_ap_bits(uint32_t val) 3736 { 3737 uint32_t ret; 3738 uint32_t mask; 3739 int i; 3740 ret = 0; 3741 mask = 3; 3742 for (i = 0; i < 16; i += 2) { 3743 ret |= (val & mask) << i; 3744 mask <<= 2; 3745 } 3746 return ret; 3747 } 3748 3749 static void pmsav5_data_ap_write(CPUARMState *env, const ARMCPRegInfo *ri, 3750 uint64_t value) 3751 { 3752 env->cp15.pmsav5_data_ap = extended_mpu_ap_bits(value); 3753 } 3754 3755 static uint64_t pmsav5_data_ap_read(CPUARMState *env, const ARMCPRegInfo *ri) 3756 { 3757 return simple_mpu_ap_bits(env->cp15.pmsav5_data_ap); 3758 } 3759 3760 static void pmsav5_insn_ap_write(CPUARMState *env, const ARMCPRegInfo *ri, 3761 uint64_t value) 3762 { 3763 env->cp15.pmsav5_insn_ap = extended_mpu_ap_bits(value); 3764 } 3765 3766 static uint64_t pmsav5_insn_ap_read(CPUARMState *env, const ARMCPRegInfo *ri) 3767 { 3768 return simple_mpu_ap_bits(env->cp15.pmsav5_insn_ap); 3769 } 3770 3771 static uint64_t pmsav7_read(CPUARMState *env, const ARMCPRegInfo *ri) 3772 { 3773 uint32_t *u32p = *(uint32_t **)raw_ptr(env, ri); 3774 3775 if (!u32p) { 3776 return 0; 3777 } 3778 3779 u32p += env->pmsav7.rnr[M_REG_NS]; 3780 return *u32p; 3781 } 3782 3783 static void pmsav7_write(CPUARMState *env, const ARMCPRegInfo *ri, 3784 uint64_t value) 3785 { 3786 ARMCPU *cpu = env_archcpu(env); 3787 uint32_t *u32p = *(uint32_t **)raw_ptr(env, ri); 3788 3789 if (!u32p) { 3790 return; 3791 } 3792 3793 u32p += env->pmsav7.rnr[M_REG_NS]; 3794 tlb_flush(CPU(cpu)); /* Mappings may have changed - purge! */ 3795 *u32p = value; 3796 } 3797 3798 static void pmsav7_rgnr_write(CPUARMState *env, const ARMCPRegInfo *ri, 3799 uint64_t value) 3800 { 3801 ARMCPU *cpu = env_archcpu(env); 3802 uint32_t nrgs = cpu->pmsav7_dregion; 3803 3804 if (value >= nrgs) { 3805 qemu_log_mask(LOG_GUEST_ERROR, 3806 "PMSAv7 RGNR write >= # supported regions, %" PRIu32 3807 " > %" PRIu32 "\n", (uint32_t)value, nrgs); 3808 return; 3809 } 3810 3811 raw_write(env, ri, value); 3812 } 3813 3814 static const ARMCPRegInfo pmsav7_cp_reginfo[] = { 3815 /* Reset for all these registers is handled in arm_cpu_reset(), 3816 * because the PMSAv7 is also used by M-profile CPUs, which do 3817 * not register cpregs but still need the state to be reset. 3818 */ 3819 { .name = "DRBAR", .cp = 15, .crn = 6, .opc1 = 0, .crm = 1, .opc2 = 0, 3820 .access = PL1_RW, .type = ARM_CP_NO_RAW, 3821 .fieldoffset = offsetof(CPUARMState, pmsav7.drbar), 3822 .readfn = pmsav7_read, .writefn = pmsav7_write, 3823 .resetfn = arm_cp_reset_ignore }, 3824 { .name = "DRSR", .cp = 15, .crn = 6, .opc1 = 0, .crm = 1, .opc2 = 2, 3825 .access = PL1_RW, .type = ARM_CP_NO_RAW, 3826 .fieldoffset = offsetof(CPUARMState, pmsav7.drsr), 3827 .readfn = pmsav7_read, .writefn = pmsav7_write, 3828 .resetfn = arm_cp_reset_ignore }, 3829 { .name = "DRACR", .cp = 15, .crn = 6, .opc1 = 0, .crm = 1, .opc2 = 4, 3830 .access = PL1_RW, .type = ARM_CP_NO_RAW, 3831 .fieldoffset = offsetof(CPUARMState, pmsav7.dracr), 3832 .readfn = pmsav7_read, .writefn = pmsav7_write, 3833 .resetfn = arm_cp_reset_ignore }, 3834 { .name = "RGNR", .cp = 15, .crn = 6, .opc1 = 0, .crm = 2, .opc2 = 0, 3835 .access = PL1_RW, 3836 .fieldoffset = offsetof(CPUARMState, pmsav7.rnr[M_REG_NS]), 3837 .writefn = pmsav7_rgnr_write, 3838 .resetfn = arm_cp_reset_ignore }, 3839 REGINFO_SENTINEL 3840 }; 3841 3842 static const ARMCPRegInfo pmsav5_cp_reginfo[] = { 3843 { .name = "DATA_AP", .cp = 15, .crn = 5, .crm = 0, .opc1 = 0, .opc2 = 0, 3844 .access = PL1_RW, .type = ARM_CP_ALIAS, 3845 .fieldoffset = offsetof(CPUARMState, cp15.pmsav5_data_ap), 3846 .readfn = pmsav5_data_ap_read, .writefn = pmsav5_data_ap_write, }, 3847 { .name = "INSN_AP", .cp = 15, .crn = 5, .crm = 0, .opc1 = 0, .opc2 = 1, 3848 .access = PL1_RW, .type = ARM_CP_ALIAS, 3849 .fieldoffset = offsetof(CPUARMState, cp15.pmsav5_insn_ap), 3850 .readfn = pmsav5_insn_ap_read, .writefn = pmsav5_insn_ap_write, }, 3851 { .name = "DATA_EXT_AP", .cp = 15, .crn = 5, .crm = 0, .opc1 = 0, .opc2 = 2, 3852 .access = PL1_RW, 3853 .fieldoffset = offsetof(CPUARMState, cp15.pmsav5_data_ap), 3854 .resetvalue = 0, }, 3855 { .name = "INSN_EXT_AP", .cp = 15, .crn = 5, .crm = 0, .opc1 = 0, .opc2 = 3, 3856 .access = PL1_RW, 3857 .fieldoffset = offsetof(CPUARMState, cp15.pmsav5_insn_ap), 3858 .resetvalue = 0, }, 3859 { .name = "DCACHE_CFG", .cp = 15, .crn = 2, .crm = 0, .opc1 = 0, .opc2 = 0, 3860 .access = PL1_RW, 3861 .fieldoffset = offsetof(CPUARMState, cp15.c2_data), .resetvalue = 0, }, 3862 { .name = "ICACHE_CFG", .cp = 15, .crn = 2, .crm = 0, .opc1 = 0, .opc2 = 1, 3863 .access = PL1_RW, 3864 .fieldoffset = offsetof(CPUARMState, cp15.c2_insn), .resetvalue = 0, }, 3865 /* Protection region base and size registers */ 3866 { .name = "946_PRBS0", .cp = 15, .crn = 6, .crm = 0, .opc1 = 0, 3867 .opc2 = CP_ANY, .access = PL1_RW, .resetvalue = 0, 3868 .fieldoffset = offsetof(CPUARMState, cp15.c6_region[0]) }, 3869 { .name = "946_PRBS1", .cp = 15, .crn = 6, .crm = 1, .opc1 = 0, 3870 .opc2 = CP_ANY, .access = PL1_RW, .resetvalue = 0, 3871 .fieldoffset = offsetof(CPUARMState, cp15.c6_region[1]) }, 3872 { .name = "946_PRBS2", .cp = 15, .crn = 6, .crm = 2, .opc1 = 0, 3873 .opc2 = CP_ANY, .access = PL1_RW, .resetvalue = 0, 3874 .fieldoffset = offsetof(CPUARMState, cp15.c6_region[2]) }, 3875 { .name = "946_PRBS3", .cp = 15, .crn = 6, .crm = 3, .opc1 = 0, 3876 .opc2 = CP_ANY, .access = PL1_RW, .resetvalue = 0, 3877 .fieldoffset = offsetof(CPUARMState, cp15.c6_region[3]) }, 3878 { .name = "946_PRBS4", .cp = 15, .crn = 6, .crm = 4, .opc1 = 0, 3879 .opc2 = CP_ANY, .access = PL1_RW, .resetvalue = 0, 3880 .fieldoffset = offsetof(CPUARMState, cp15.c6_region[4]) }, 3881 { .name = "946_PRBS5", .cp = 15, .crn = 6, .crm = 5, .opc1 = 0, 3882 .opc2 = CP_ANY, .access = PL1_RW, .resetvalue = 0, 3883 .fieldoffset = offsetof(CPUARMState, cp15.c6_region[5]) }, 3884 { .name = "946_PRBS6", .cp = 15, .crn = 6, .crm = 6, .opc1 = 0, 3885 .opc2 = CP_ANY, .access = PL1_RW, .resetvalue = 0, 3886 .fieldoffset = offsetof(CPUARMState, cp15.c6_region[6]) }, 3887 { .name = "946_PRBS7", .cp = 15, .crn = 6, .crm = 7, .opc1 = 0, 3888 .opc2 = CP_ANY, .access = PL1_RW, .resetvalue = 0, 3889 .fieldoffset = offsetof(CPUARMState, cp15.c6_region[7]) }, 3890 REGINFO_SENTINEL 3891 }; 3892 3893 static void vmsa_ttbcr_raw_write(CPUARMState *env, const ARMCPRegInfo *ri, 3894 uint64_t value) 3895 { 3896 TCR *tcr = raw_ptr(env, ri); 3897 int maskshift = extract32(value, 0, 3); 3898 3899 if (!arm_feature(env, ARM_FEATURE_V8)) { 3900 if (arm_feature(env, ARM_FEATURE_LPAE) && (value & TTBCR_EAE)) { 3901 /* Pre ARMv8 bits [21:19], [15:14] and [6:3] are UNK/SBZP when 3902 * using Long-desciptor translation table format */ 3903 value &= ~((7 << 19) | (3 << 14) | (0xf << 3)); 3904 } else if (arm_feature(env, ARM_FEATURE_EL3)) { 3905 /* In an implementation that includes the Security Extensions 3906 * TTBCR has additional fields PD0 [4] and PD1 [5] for 3907 * Short-descriptor translation table format. 3908 */ 3909 value &= TTBCR_PD1 | TTBCR_PD0 | TTBCR_N; 3910 } else { 3911 value &= TTBCR_N; 3912 } 3913 } 3914 3915 /* Update the masks corresponding to the TCR bank being written 3916 * Note that we always calculate mask and base_mask, but 3917 * they are only used for short-descriptor tables (ie if EAE is 0); 3918 * for long-descriptor tables the TCR fields are used differently 3919 * and the mask and base_mask values are meaningless. 3920 */ 3921 tcr->raw_tcr = value; 3922 tcr->mask = ~(((uint32_t)0xffffffffu) >> maskshift); 3923 tcr->base_mask = ~((uint32_t)0x3fffu >> maskshift); 3924 } 3925 3926 static void vmsa_ttbcr_write(CPUARMState *env, const ARMCPRegInfo *ri, 3927 uint64_t value) 3928 { 3929 ARMCPU *cpu = env_archcpu(env); 3930 TCR *tcr = raw_ptr(env, ri); 3931 3932 if (arm_feature(env, ARM_FEATURE_LPAE)) { 3933 /* With LPAE the TTBCR could result in a change of ASID 3934 * via the TTBCR.A1 bit, so do a TLB flush. 3935 */ 3936 tlb_flush(CPU(cpu)); 3937 } 3938 /* Preserve the high half of TCR_EL1, set via TTBCR2. */ 3939 value = deposit64(tcr->raw_tcr, 0, 32, value); 3940 vmsa_ttbcr_raw_write(env, ri, value); 3941 } 3942 3943 static void vmsa_ttbcr_reset(CPUARMState *env, const ARMCPRegInfo *ri) 3944 { 3945 TCR *tcr = raw_ptr(env, ri); 3946 3947 /* Reset both the TCR as well as the masks corresponding to the bank of 3948 * the TCR being reset. 3949 */ 3950 tcr->raw_tcr = 0; 3951 tcr->mask = 0; 3952 tcr->base_mask = 0xffffc000u; 3953 } 3954 3955 static void vmsa_tcr_el12_write(CPUARMState *env, const ARMCPRegInfo *ri, 3956 uint64_t value) 3957 { 3958 ARMCPU *cpu = env_archcpu(env); 3959 TCR *tcr = raw_ptr(env, ri); 3960 3961 /* For AArch64 the A1 bit could result in a change of ASID, so TLB flush. */ 3962 tlb_flush(CPU(cpu)); 3963 tcr->raw_tcr = value; 3964 } 3965 3966 static void vmsa_ttbr_write(CPUARMState *env, const ARMCPRegInfo *ri, 3967 uint64_t value) 3968 { 3969 /* If the ASID changes (with a 64-bit write), we must flush the TLB. */ 3970 if (cpreg_field_is_64bit(ri) && 3971 extract64(raw_read(env, ri) ^ value, 48, 16) != 0) { 3972 ARMCPU *cpu = env_archcpu(env); 3973 tlb_flush(CPU(cpu)); 3974 } 3975 raw_write(env, ri, value); 3976 } 3977 3978 static void vmsa_tcr_ttbr_el2_write(CPUARMState *env, const ARMCPRegInfo *ri, 3979 uint64_t value) 3980 { 3981 /* 3982 * If we are running with E2&0 regime, then an ASID is active. 3983 * Flush if that might be changing. Note we're not checking 3984 * TCR_EL2.A1 to know if this is really the TTBRx_EL2 that 3985 * holds the active ASID, only checking the field that might. 3986 */ 3987 if (extract64(raw_read(env, ri) ^ value, 48, 16) && 3988 (arm_hcr_el2_eff(env) & HCR_E2H)) { 3989 tlb_flush_by_mmuidx(env_cpu(env), 3990 ARMMMUIdxBit_E20_2 | 3991 ARMMMUIdxBit_E20_2_PAN | 3992 ARMMMUIdxBit_E20_0); 3993 } 3994 raw_write(env, ri, value); 3995 } 3996 3997 static void vttbr_write(CPUARMState *env, const ARMCPRegInfo *ri, 3998 uint64_t value) 3999 { 4000 ARMCPU *cpu = env_archcpu(env); 4001 CPUState *cs = CPU(cpu); 4002 4003 /* 4004 * A change in VMID to the stage2 page table (Stage2) invalidates 4005 * the combined stage 1&2 tlbs (EL10_1 and EL10_0). 4006 */ 4007 if (raw_read(env, ri) != value) { 4008 tlb_flush_by_mmuidx(cs, 4009 ARMMMUIdxBit_E10_1 | 4010 ARMMMUIdxBit_E10_1_PAN | 4011 ARMMMUIdxBit_E10_0); 4012 raw_write(env, ri, value); 4013 } 4014 } 4015 4016 static const ARMCPRegInfo vmsa_pmsa_cp_reginfo[] = { 4017 { .name = "DFSR", .cp = 15, .crn = 5, .crm = 0, .opc1 = 0, .opc2 = 0, 4018 .access = PL1_RW, .accessfn = access_tvm_trvm, .type = ARM_CP_ALIAS, 4019 .bank_fieldoffsets = { offsetoflow32(CPUARMState, cp15.dfsr_s), 4020 offsetoflow32(CPUARMState, cp15.dfsr_ns) }, }, 4021 { .name = "IFSR", .cp = 15, .crn = 5, .crm = 0, .opc1 = 0, .opc2 = 1, 4022 .access = PL1_RW, .accessfn = access_tvm_trvm, .resetvalue = 0, 4023 .bank_fieldoffsets = { offsetoflow32(CPUARMState, cp15.ifsr_s), 4024 offsetoflow32(CPUARMState, cp15.ifsr_ns) } }, 4025 { .name = "DFAR", .cp = 15, .opc1 = 0, .crn = 6, .crm = 0, .opc2 = 0, 4026 .access = PL1_RW, .accessfn = access_tvm_trvm, .resetvalue = 0, 4027 .bank_fieldoffsets = { offsetof(CPUARMState, cp15.dfar_s), 4028 offsetof(CPUARMState, cp15.dfar_ns) } }, 4029 { .name = "FAR_EL1", .state = ARM_CP_STATE_AA64, 4030 .opc0 = 3, .crn = 6, .crm = 0, .opc1 = 0, .opc2 = 0, 4031 .access = PL1_RW, .accessfn = access_tvm_trvm, 4032 .fieldoffset = offsetof(CPUARMState, cp15.far_el[1]), 4033 .resetvalue = 0, }, 4034 REGINFO_SENTINEL 4035 }; 4036 4037 static const ARMCPRegInfo vmsa_cp_reginfo[] = { 4038 { .name = "ESR_EL1", .state = ARM_CP_STATE_AA64, 4039 .opc0 = 3, .crn = 5, .crm = 2, .opc1 = 0, .opc2 = 0, 4040 .access = PL1_RW, .accessfn = access_tvm_trvm, 4041 .fieldoffset = offsetof(CPUARMState, cp15.esr_el[1]), .resetvalue = 0, }, 4042 { .name = "TTBR0_EL1", .state = ARM_CP_STATE_BOTH, 4043 .opc0 = 3, .opc1 = 0, .crn = 2, .crm = 0, .opc2 = 0, 4044 .access = PL1_RW, .accessfn = access_tvm_trvm, 4045 .writefn = vmsa_ttbr_write, .resetvalue = 0, 4046 .bank_fieldoffsets = { offsetof(CPUARMState, cp15.ttbr0_s), 4047 offsetof(CPUARMState, cp15.ttbr0_ns) } }, 4048 { .name = "TTBR1_EL1", .state = ARM_CP_STATE_BOTH, 4049 .opc0 = 3, .opc1 = 0, .crn = 2, .crm = 0, .opc2 = 1, 4050 .access = PL1_RW, .accessfn = access_tvm_trvm, 4051 .writefn = vmsa_ttbr_write, .resetvalue = 0, 4052 .bank_fieldoffsets = { offsetof(CPUARMState, cp15.ttbr1_s), 4053 offsetof(CPUARMState, cp15.ttbr1_ns) } }, 4054 { .name = "TCR_EL1", .state = ARM_CP_STATE_AA64, 4055 .opc0 = 3, .crn = 2, .crm = 0, .opc1 = 0, .opc2 = 2, 4056 .access = PL1_RW, .accessfn = access_tvm_trvm, 4057 .writefn = vmsa_tcr_el12_write, 4058 .resetfn = vmsa_ttbcr_reset, .raw_writefn = raw_write, 4059 .fieldoffset = offsetof(CPUARMState, cp15.tcr_el[1]) }, 4060 { .name = "TTBCR", .cp = 15, .crn = 2, .crm = 0, .opc1 = 0, .opc2 = 2, 4061 .access = PL1_RW, .accessfn = access_tvm_trvm, 4062 .type = ARM_CP_ALIAS, .writefn = vmsa_ttbcr_write, 4063 .raw_writefn = vmsa_ttbcr_raw_write, 4064 .bank_fieldoffsets = { offsetoflow32(CPUARMState, cp15.tcr_el[3]), 4065 offsetoflow32(CPUARMState, cp15.tcr_el[1])} }, 4066 REGINFO_SENTINEL 4067 }; 4068 4069 /* Note that unlike TTBCR, writing to TTBCR2 does not require flushing 4070 * qemu tlbs nor adjusting cached masks. 4071 */ 4072 static const ARMCPRegInfo ttbcr2_reginfo = { 4073 .name = "TTBCR2", .cp = 15, .opc1 = 0, .crn = 2, .crm = 0, .opc2 = 3, 4074 .access = PL1_RW, .accessfn = access_tvm_trvm, 4075 .type = ARM_CP_ALIAS, 4076 .bank_fieldoffsets = { offsetofhigh32(CPUARMState, cp15.tcr_el[3]), 4077 offsetofhigh32(CPUARMState, cp15.tcr_el[1]) }, 4078 }; 4079 4080 static void omap_ticonfig_write(CPUARMState *env, const ARMCPRegInfo *ri, 4081 uint64_t value) 4082 { 4083 env->cp15.c15_ticonfig = value & 0xe7; 4084 /* The OS_TYPE bit in this register changes the reported CPUID! */ 4085 env->cp15.c0_cpuid = (value & (1 << 5)) ? 4086 ARM_CPUID_TI915T : ARM_CPUID_TI925T; 4087 } 4088 4089 static void omap_threadid_write(CPUARMState *env, const ARMCPRegInfo *ri, 4090 uint64_t value) 4091 { 4092 env->cp15.c15_threadid = value & 0xffff; 4093 } 4094 4095 static void omap_wfi_write(CPUARMState *env, const ARMCPRegInfo *ri, 4096 uint64_t value) 4097 { 4098 /* Wait-for-interrupt (deprecated) */ 4099 cpu_interrupt(env_cpu(env), CPU_INTERRUPT_HALT); 4100 } 4101 4102 static void omap_cachemaint_write(CPUARMState *env, const ARMCPRegInfo *ri, 4103 uint64_t value) 4104 { 4105 /* On OMAP there are registers indicating the max/min index of dcache lines 4106 * containing a dirty line; cache flush operations have to reset these. 4107 */ 4108 env->cp15.c15_i_max = 0x000; 4109 env->cp15.c15_i_min = 0xff0; 4110 } 4111 4112 static const ARMCPRegInfo omap_cp_reginfo[] = { 4113 { .name = "DFSR", .cp = 15, .crn = 5, .crm = CP_ANY, 4114 .opc1 = CP_ANY, .opc2 = CP_ANY, .access = PL1_RW, .type = ARM_CP_OVERRIDE, 4115 .fieldoffset = offsetoflow32(CPUARMState, cp15.esr_el[1]), 4116 .resetvalue = 0, }, 4117 { .name = "", .cp = 15, .crn = 15, .crm = 0, .opc1 = 0, .opc2 = 0, 4118 .access = PL1_RW, .type = ARM_CP_NOP }, 4119 { .name = "TICONFIG", .cp = 15, .crn = 15, .crm = 1, .opc1 = 0, .opc2 = 0, 4120 .access = PL1_RW, 4121 .fieldoffset = offsetof(CPUARMState, cp15.c15_ticonfig), .resetvalue = 0, 4122 .writefn = omap_ticonfig_write }, 4123 { .name = "IMAX", .cp = 15, .crn = 15, .crm = 2, .opc1 = 0, .opc2 = 0, 4124 .access = PL1_RW, 4125 .fieldoffset = offsetof(CPUARMState, cp15.c15_i_max), .resetvalue = 0, }, 4126 { .name = "IMIN", .cp = 15, .crn = 15, .crm = 3, .opc1 = 0, .opc2 = 0, 4127 .access = PL1_RW, .resetvalue = 0xff0, 4128 .fieldoffset = offsetof(CPUARMState, cp15.c15_i_min) }, 4129 { .name = "THREADID", .cp = 15, .crn = 15, .crm = 4, .opc1 = 0, .opc2 = 0, 4130 .access = PL1_RW, 4131 .fieldoffset = offsetof(CPUARMState, cp15.c15_threadid), .resetvalue = 0, 4132 .writefn = omap_threadid_write }, 4133 { .name = "TI925T_STATUS", .cp = 15, .crn = 15, 4134 .crm = 8, .opc1 = 0, .opc2 = 0, .access = PL1_RW, 4135 .type = ARM_CP_NO_RAW, 4136 .readfn = arm_cp_read_zero, .writefn = omap_wfi_write, }, 4137 /* TODO: Peripheral port remap register: 4138 * On OMAP2 mcr p15, 0, rn, c15, c2, 4 sets up the interrupt controller 4139 * base address at $rn & ~0xfff and map size of 0x200 << ($rn & 0xfff), 4140 * when MMU is off. 4141 */ 4142 { .name = "OMAP_CACHEMAINT", .cp = 15, .crn = 7, .crm = CP_ANY, 4143 .opc1 = 0, .opc2 = CP_ANY, .access = PL1_W, 4144 .type = ARM_CP_OVERRIDE | ARM_CP_NO_RAW, 4145 .writefn = omap_cachemaint_write }, 4146 { .name = "C9", .cp = 15, .crn = 9, 4147 .crm = CP_ANY, .opc1 = CP_ANY, .opc2 = CP_ANY, .access = PL1_RW, 4148 .type = ARM_CP_CONST | ARM_CP_OVERRIDE, .resetvalue = 0 }, 4149 REGINFO_SENTINEL 4150 }; 4151 4152 static void xscale_cpar_write(CPUARMState *env, const ARMCPRegInfo *ri, 4153 uint64_t value) 4154 { 4155 env->cp15.c15_cpar = value & 0x3fff; 4156 } 4157 4158 static const ARMCPRegInfo xscale_cp_reginfo[] = { 4159 { .name = "XSCALE_CPAR", 4160 .cp = 15, .crn = 15, .crm = 1, .opc1 = 0, .opc2 = 0, .access = PL1_RW, 4161 .fieldoffset = offsetof(CPUARMState, cp15.c15_cpar), .resetvalue = 0, 4162 .writefn = xscale_cpar_write, }, 4163 { .name = "XSCALE_AUXCR", 4164 .cp = 15, .crn = 1, .crm = 0, .opc1 = 0, .opc2 = 1, .access = PL1_RW, 4165 .fieldoffset = offsetof(CPUARMState, cp15.c1_xscaleauxcr), 4166 .resetvalue = 0, }, 4167 /* XScale specific cache-lockdown: since we have no cache we NOP these 4168 * and hope the guest does not really rely on cache behaviour. 4169 */ 4170 { .name = "XSCALE_LOCK_ICACHE_LINE", 4171 .cp = 15, .opc1 = 0, .crn = 9, .crm = 1, .opc2 = 0, 4172 .access = PL1_W, .type = ARM_CP_NOP }, 4173 { .name = "XSCALE_UNLOCK_ICACHE", 4174 .cp = 15, .opc1 = 0, .crn = 9, .crm = 1, .opc2 = 1, 4175 .access = PL1_W, .type = ARM_CP_NOP }, 4176 { .name = "XSCALE_DCACHE_LOCK", 4177 .cp = 15, .opc1 = 0, .crn = 9, .crm = 2, .opc2 = 0, 4178 .access = PL1_RW, .type = ARM_CP_NOP }, 4179 { .name = "XSCALE_UNLOCK_DCACHE", 4180 .cp = 15, .opc1 = 0, .crn = 9, .crm = 2, .opc2 = 1, 4181 .access = PL1_W, .type = ARM_CP_NOP }, 4182 REGINFO_SENTINEL 4183 }; 4184 4185 static const ARMCPRegInfo dummy_c15_cp_reginfo[] = { 4186 /* RAZ/WI the whole crn=15 space, when we don't have a more specific 4187 * implementation of this implementation-defined space. 4188 * Ideally this should eventually disappear in favour of actually 4189 * implementing the correct behaviour for all cores. 4190 */ 4191 { .name = "C15_IMPDEF", .cp = 15, .crn = 15, 4192 .crm = CP_ANY, .opc1 = CP_ANY, .opc2 = CP_ANY, 4193 .access = PL1_RW, 4194 .type = ARM_CP_CONST | ARM_CP_NO_RAW | ARM_CP_OVERRIDE, 4195 .resetvalue = 0 }, 4196 REGINFO_SENTINEL 4197 }; 4198 4199 static const ARMCPRegInfo cache_dirty_status_cp_reginfo[] = { 4200 /* Cache status: RAZ because we have no cache so it's always clean */ 4201 { .name = "CDSR", .cp = 15, .crn = 7, .crm = 10, .opc1 = 0, .opc2 = 6, 4202 .access = PL1_R, .type = ARM_CP_CONST | ARM_CP_NO_RAW, 4203 .resetvalue = 0 }, 4204 REGINFO_SENTINEL 4205 }; 4206 4207 static const ARMCPRegInfo cache_block_ops_cp_reginfo[] = { 4208 /* We never have a a block transfer operation in progress */ 4209 { .name = "BXSR", .cp = 15, .crn = 7, .crm = 12, .opc1 = 0, .opc2 = 4, 4210 .access = PL0_R, .type = ARM_CP_CONST | ARM_CP_NO_RAW, 4211 .resetvalue = 0 }, 4212 /* The cache ops themselves: these all NOP for QEMU */ 4213 { .name = "IICR", .cp = 15, .crm = 5, .opc1 = 0, 4214 .access = PL1_W, .type = ARM_CP_NOP|ARM_CP_64BIT }, 4215 { .name = "IDCR", .cp = 15, .crm = 6, .opc1 = 0, 4216 .access = PL1_W, .type = ARM_CP_NOP|ARM_CP_64BIT }, 4217 { .name = "CDCR", .cp = 15, .crm = 12, .opc1 = 0, 4218 .access = PL0_W, .type = ARM_CP_NOP|ARM_CP_64BIT }, 4219 { .name = "PIR", .cp = 15, .crm = 12, .opc1 = 1, 4220 .access = PL0_W, .type = ARM_CP_NOP|ARM_CP_64BIT }, 4221 { .name = "PDR", .cp = 15, .crm = 12, .opc1 = 2, 4222 .access = PL0_W, .type = ARM_CP_NOP|ARM_CP_64BIT }, 4223 { .name = "CIDCR", .cp = 15, .crm = 14, .opc1 = 0, 4224 .access = PL1_W, .type = ARM_CP_NOP|ARM_CP_64BIT }, 4225 REGINFO_SENTINEL 4226 }; 4227 4228 static const ARMCPRegInfo cache_test_clean_cp_reginfo[] = { 4229 /* The cache test-and-clean instructions always return (1 << 30) 4230 * to indicate that there are no dirty cache lines. 4231 */ 4232 { .name = "TC_DCACHE", .cp = 15, .crn = 7, .crm = 10, .opc1 = 0, .opc2 = 3, 4233 .access = PL0_R, .type = ARM_CP_CONST | ARM_CP_NO_RAW, 4234 .resetvalue = (1 << 30) }, 4235 { .name = "TCI_DCACHE", .cp = 15, .crn = 7, .crm = 14, .opc1 = 0, .opc2 = 3, 4236 .access = PL0_R, .type = ARM_CP_CONST | ARM_CP_NO_RAW, 4237 .resetvalue = (1 << 30) }, 4238 REGINFO_SENTINEL 4239 }; 4240 4241 static const ARMCPRegInfo strongarm_cp_reginfo[] = { 4242 /* Ignore ReadBuffer accesses */ 4243 { .name = "C9_READBUFFER", .cp = 15, .crn = 9, 4244 .crm = CP_ANY, .opc1 = CP_ANY, .opc2 = CP_ANY, 4245 .access = PL1_RW, .resetvalue = 0, 4246 .type = ARM_CP_CONST | ARM_CP_OVERRIDE | ARM_CP_NO_RAW }, 4247 REGINFO_SENTINEL 4248 }; 4249 4250 static uint64_t midr_read(CPUARMState *env, const ARMCPRegInfo *ri) 4251 { 4252 ARMCPU *cpu = env_archcpu(env); 4253 unsigned int cur_el = arm_current_el(env); 4254 bool secure = arm_is_secure(env); 4255 4256 if (arm_feature(&cpu->env, ARM_FEATURE_EL2) && !secure && cur_el == 1) { 4257 return env->cp15.vpidr_el2; 4258 } 4259 return raw_read(env, ri); 4260 } 4261 4262 static uint64_t mpidr_read_val(CPUARMState *env) 4263 { 4264 ARMCPU *cpu = env_archcpu(env); 4265 uint64_t mpidr = cpu->mp_affinity; 4266 4267 if (arm_feature(env, ARM_FEATURE_V7MP)) { 4268 mpidr |= (1U << 31); 4269 /* Cores which are uniprocessor (non-coherent) 4270 * but still implement the MP extensions set 4271 * bit 30. (For instance, Cortex-R5). 4272 */ 4273 if (cpu->mp_is_up) { 4274 mpidr |= (1u << 30); 4275 } 4276 } 4277 return mpidr; 4278 } 4279 4280 static uint64_t mpidr_read(CPUARMState *env, const ARMCPRegInfo *ri) 4281 { 4282 unsigned int cur_el = arm_current_el(env); 4283 bool secure = arm_is_secure(env); 4284 4285 if (arm_feature(env, ARM_FEATURE_EL2) && !secure && cur_el == 1) { 4286 return env->cp15.vmpidr_el2; 4287 } 4288 return mpidr_read_val(env); 4289 } 4290 4291 static const ARMCPRegInfo lpae_cp_reginfo[] = { 4292 /* NOP AMAIR0/1 */ 4293 { .name = "AMAIR0", .state = ARM_CP_STATE_BOTH, 4294 .opc0 = 3, .crn = 10, .crm = 3, .opc1 = 0, .opc2 = 0, 4295 .access = PL1_RW, .accessfn = access_tvm_trvm, 4296 .type = ARM_CP_CONST, .resetvalue = 0 }, 4297 /* AMAIR1 is mapped to AMAIR_EL1[63:32] */ 4298 { .name = "AMAIR1", .cp = 15, .crn = 10, .crm = 3, .opc1 = 0, .opc2 = 1, 4299 .access = PL1_RW, .accessfn = access_tvm_trvm, 4300 .type = ARM_CP_CONST, .resetvalue = 0 }, 4301 { .name = "PAR", .cp = 15, .crm = 7, .opc1 = 0, 4302 .access = PL1_RW, .type = ARM_CP_64BIT, .resetvalue = 0, 4303 .bank_fieldoffsets = { offsetof(CPUARMState, cp15.par_s), 4304 offsetof(CPUARMState, cp15.par_ns)} }, 4305 { .name = "TTBR0", .cp = 15, .crm = 2, .opc1 = 0, 4306 .access = PL1_RW, .accessfn = access_tvm_trvm, 4307 .type = ARM_CP_64BIT | ARM_CP_ALIAS, 4308 .bank_fieldoffsets = { offsetof(CPUARMState, cp15.ttbr0_s), 4309 offsetof(CPUARMState, cp15.ttbr0_ns) }, 4310 .writefn = vmsa_ttbr_write, }, 4311 { .name = "TTBR1", .cp = 15, .crm = 2, .opc1 = 1, 4312 .access = PL1_RW, .accessfn = access_tvm_trvm, 4313 .type = ARM_CP_64BIT | ARM_CP_ALIAS, 4314 .bank_fieldoffsets = { offsetof(CPUARMState, cp15.ttbr1_s), 4315 offsetof(CPUARMState, cp15.ttbr1_ns) }, 4316 .writefn = vmsa_ttbr_write, }, 4317 REGINFO_SENTINEL 4318 }; 4319 4320 static uint64_t aa64_fpcr_read(CPUARMState *env, const ARMCPRegInfo *ri) 4321 { 4322 return vfp_get_fpcr(env); 4323 } 4324 4325 static void aa64_fpcr_write(CPUARMState *env, const ARMCPRegInfo *ri, 4326 uint64_t value) 4327 { 4328 vfp_set_fpcr(env, value); 4329 } 4330 4331 static uint64_t aa64_fpsr_read(CPUARMState *env, const ARMCPRegInfo *ri) 4332 { 4333 return vfp_get_fpsr(env); 4334 } 4335 4336 static void aa64_fpsr_write(CPUARMState *env, const ARMCPRegInfo *ri, 4337 uint64_t value) 4338 { 4339 vfp_set_fpsr(env, value); 4340 } 4341 4342 static CPAccessResult aa64_daif_access(CPUARMState *env, const ARMCPRegInfo *ri, 4343 bool isread) 4344 { 4345 if (arm_current_el(env) == 0 && !(arm_sctlr(env, 0) & SCTLR_UMA)) { 4346 return CP_ACCESS_TRAP; 4347 } 4348 return CP_ACCESS_OK; 4349 } 4350 4351 static void aa64_daif_write(CPUARMState *env, const ARMCPRegInfo *ri, 4352 uint64_t value) 4353 { 4354 env->daif = value & PSTATE_DAIF; 4355 } 4356 4357 static uint64_t aa64_pan_read(CPUARMState *env, const ARMCPRegInfo *ri) 4358 { 4359 return env->pstate & PSTATE_PAN; 4360 } 4361 4362 static void aa64_pan_write(CPUARMState *env, const ARMCPRegInfo *ri, 4363 uint64_t value) 4364 { 4365 env->pstate = (env->pstate & ~PSTATE_PAN) | (value & PSTATE_PAN); 4366 } 4367 4368 static const ARMCPRegInfo pan_reginfo = { 4369 .name = "PAN", .state = ARM_CP_STATE_AA64, 4370 .opc0 = 3, .opc1 = 0, .crn = 4, .crm = 2, .opc2 = 3, 4371 .type = ARM_CP_NO_RAW, .access = PL1_RW, 4372 .readfn = aa64_pan_read, .writefn = aa64_pan_write 4373 }; 4374 4375 static uint64_t aa64_uao_read(CPUARMState *env, const ARMCPRegInfo *ri) 4376 { 4377 return env->pstate & PSTATE_UAO; 4378 } 4379 4380 static void aa64_uao_write(CPUARMState *env, const ARMCPRegInfo *ri, 4381 uint64_t value) 4382 { 4383 env->pstate = (env->pstate & ~PSTATE_UAO) | (value & PSTATE_UAO); 4384 } 4385 4386 static const ARMCPRegInfo uao_reginfo = { 4387 .name = "UAO", .state = ARM_CP_STATE_AA64, 4388 .opc0 = 3, .opc1 = 0, .crn = 4, .crm = 2, .opc2 = 4, 4389 .type = ARM_CP_NO_RAW, .access = PL1_RW, 4390 .readfn = aa64_uao_read, .writefn = aa64_uao_write 4391 }; 4392 4393 static CPAccessResult aa64_cacheop_poc_access(CPUARMState *env, 4394 const ARMCPRegInfo *ri, 4395 bool isread) 4396 { 4397 /* Cache invalidate/clean to Point of Coherency or Persistence... */ 4398 switch (arm_current_el(env)) { 4399 case 0: 4400 /* ... EL0 must UNDEF unless SCTLR_EL1.UCI is set. */ 4401 if (!(arm_sctlr(env, 0) & SCTLR_UCI)) { 4402 return CP_ACCESS_TRAP; 4403 } 4404 /* fall through */ 4405 case 1: 4406 /* ... EL1 must trap to EL2 if HCR_EL2.TPCP is set. */ 4407 if (arm_hcr_el2_eff(env) & HCR_TPCP) { 4408 return CP_ACCESS_TRAP_EL2; 4409 } 4410 break; 4411 } 4412 return CP_ACCESS_OK; 4413 } 4414 4415 static CPAccessResult aa64_cacheop_pou_access(CPUARMState *env, 4416 const ARMCPRegInfo *ri, 4417 bool isread) 4418 { 4419 /* Cache invalidate/clean to Point of Unification... */ 4420 switch (arm_current_el(env)) { 4421 case 0: 4422 /* ... EL0 must UNDEF unless SCTLR_EL1.UCI is set. */ 4423 if (!(arm_sctlr(env, 0) & SCTLR_UCI)) { 4424 return CP_ACCESS_TRAP; 4425 } 4426 /* fall through */ 4427 case 1: 4428 /* ... EL1 must trap to EL2 if HCR_EL2.TPU is set. */ 4429 if (arm_hcr_el2_eff(env) & HCR_TPU) { 4430 return CP_ACCESS_TRAP_EL2; 4431 } 4432 break; 4433 } 4434 return CP_ACCESS_OK; 4435 } 4436 4437 /* See: D4.7.2 TLB maintenance requirements and the TLB maintenance instructions 4438 * Page D4-1736 (DDI0487A.b) 4439 */ 4440 4441 static int vae1_tlbmask(CPUARMState *env) 4442 { 4443 /* Since we exclude secure first, we may read HCR_EL2 directly. */ 4444 if (arm_is_secure_below_el3(env)) { 4445 return ARMMMUIdxBit_SE10_1 | 4446 ARMMMUIdxBit_SE10_1_PAN | 4447 ARMMMUIdxBit_SE10_0; 4448 } else if ((env->cp15.hcr_el2 & (HCR_E2H | HCR_TGE)) 4449 == (HCR_E2H | HCR_TGE)) { 4450 return ARMMMUIdxBit_E20_2 | 4451 ARMMMUIdxBit_E20_2_PAN | 4452 ARMMMUIdxBit_E20_0; 4453 } else { 4454 return ARMMMUIdxBit_E10_1 | 4455 ARMMMUIdxBit_E10_1_PAN | 4456 ARMMMUIdxBit_E10_0; 4457 } 4458 } 4459 4460 /* Return 56 if TBI is enabled, 64 otherwise. */ 4461 static int tlbbits_for_regime(CPUARMState *env, ARMMMUIdx mmu_idx, 4462 uint64_t addr) 4463 { 4464 uint64_t tcr = regime_tcr(env, mmu_idx)->raw_tcr; 4465 int tbi = aa64_va_parameter_tbi(tcr, mmu_idx); 4466 int select = extract64(addr, 55, 1); 4467 4468 return (tbi >> select) & 1 ? 56 : 64; 4469 } 4470 4471 static int vae1_tlbbits(CPUARMState *env, uint64_t addr) 4472 { 4473 ARMMMUIdx mmu_idx; 4474 4475 /* Only the regime of the mmu_idx below is significant. */ 4476 if (arm_is_secure_below_el3(env)) { 4477 mmu_idx = ARMMMUIdx_SE10_0; 4478 } else if ((env->cp15.hcr_el2 & (HCR_E2H | HCR_TGE)) 4479 == (HCR_E2H | HCR_TGE)) { 4480 mmu_idx = ARMMMUIdx_E20_0; 4481 } else { 4482 mmu_idx = ARMMMUIdx_E10_0; 4483 } 4484 return tlbbits_for_regime(env, mmu_idx, addr); 4485 } 4486 4487 static void tlbi_aa64_vmalle1is_write(CPUARMState *env, const ARMCPRegInfo *ri, 4488 uint64_t value) 4489 { 4490 CPUState *cs = env_cpu(env); 4491 int mask = vae1_tlbmask(env); 4492 4493 tlb_flush_by_mmuidx_all_cpus_synced(cs, mask); 4494 } 4495 4496 static void tlbi_aa64_vmalle1_write(CPUARMState *env, const ARMCPRegInfo *ri, 4497 uint64_t value) 4498 { 4499 CPUState *cs = env_cpu(env); 4500 int mask = vae1_tlbmask(env); 4501 4502 if (tlb_force_broadcast(env)) { 4503 tlb_flush_by_mmuidx_all_cpus_synced(cs, mask); 4504 } else { 4505 tlb_flush_by_mmuidx(cs, mask); 4506 } 4507 } 4508 4509 static int alle1_tlbmask(CPUARMState *env) 4510 { 4511 /* 4512 * Note that the 'ALL' scope must invalidate both stage 1 and 4513 * stage 2 translations, whereas most other scopes only invalidate 4514 * stage 1 translations. 4515 */ 4516 if (arm_is_secure_below_el3(env)) { 4517 return ARMMMUIdxBit_SE10_1 | 4518 ARMMMUIdxBit_SE10_1_PAN | 4519 ARMMMUIdxBit_SE10_0; 4520 } else { 4521 return ARMMMUIdxBit_E10_1 | 4522 ARMMMUIdxBit_E10_1_PAN | 4523 ARMMMUIdxBit_E10_0; 4524 } 4525 } 4526 4527 static int e2_tlbmask(CPUARMState *env) 4528 { 4529 /* TODO: ARMv8.4-SecEL2 */ 4530 return ARMMMUIdxBit_E20_0 | 4531 ARMMMUIdxBit_E20_2 | 4532 ARMMMUIdxBit_E20_2_PAN | 4533 ARMMMUIdxBit_E2; 4534 } 4535 4536 static void tlbi_aa64_alle1_write(CPUARMState *env, const ARMCPRegInfo *ri, 4537 uint64_t value) 4538 { 4539 CPUState *cs = env_cpu(env); 4540 int mask = alle1_tlbmask(env); 4541 4542 tlb_flush_by_mmuidx(cs, mask); 4543 } 4544 4545 static void tlbi_aa64_alle2_write(CPUARMState *env, const ARMCPRegInfo *ri, 4546 uint64_t value) 4547 { 4548 CPUState *cs = env_cpu(env); 4549 int mask = e2_tlbmask(env); 4550 4551 tlb_flush_by_mmuidx(cs, mask); 4552 } 4553 4554 static void tlbi_aa64_alle3_write(CPUARMState *env, const ARMCPRegInfo *ri, 4555 uint64_t value) 4556 { 4557 ARMCPU *cpu = env_archcpu(env); 4558 CPUState *cs = CPU(cpu); 4559 4560 tlb_flush_by_mmuidx(cs, ARMMMUIdxBit_SE3); 4561 } 4562 4563 static void tlbi_aa64_alle1is_write(CPUARMState *env, const ARMCPRegInfo *ri, 4564 uint64_t value) 4565 { 4566 CPUState *cs = env_cpu(env); 4567 int mask = alle1_tlbmask(env); 4568 4569 tlb_flush_by_mmuidx_all_cpus_synced(cs, mask); 4570 } 4571 4572 static void tlbi_aa64_alle2is_write(CPUARMState *env, const ARMCPRegInfo *ri, 4573 uint64_t value) 4574 { 4575 CPUState *cs = env_cpu(env); 4576 int mask = e2_tlbmask(env); 4577 4578 tlb_flush_by_mmuidx_all_cpus_synced(cs, mask); 4579 } 4580 4581 static void tlbi_aa64_alle3is_write(CPUARMState *env, const ARMCPRegInfo *ri, 4582 uint64_t value) 4583 { 4584 CPUState *cs = env_cpu(env); 4585 4586 tlb_flush_by_mmuidx_all_cpus_synced(cs, ARMMMUIdxBit_SE3); 4587 } 4588 4589 static void tlbi_aa64_vae2_write(CPUARMState *env, const ARMCPRegInfo *ri, 4590 uint64_t value) 4591 { 4592 /* Invalidate by VA, EL2 4593 * Currently handles both VAE2 and VALE2, since we don't support 4594 * flush-last-level-only. 4595 */ 4596 CPUState *cs = env_cpu(env); 4597 int mask = e2_tlbmask(env); 4598 uint64_t pageaddr = sextract64(value << 12, 0, 56); 4599 4600 tlb_flush_page_by_mmuidx(cs, pageaddr, mask); 4601 } 4602 4603 static void tlbi_aa64_vae3_write(CPUARMState *env, const ARMCPRegInfo *ri, 4604 uint64_t value) 4605 { 4606 /* Invalidate by VA, EL3 4607 * Currently handles both VAE3 and VALE3, since we don't support 4608 * flush-last-level-only. 4609 */ 4610 ARMCPU *cpu = env_archcpu(env); 4611 CPUState *cs = CPU(cpu); 4612 uint64_t pageaddr = sextract64(value << 12, 0, 56); 4613 4614 tlb_flush_page_by_mmuidx(cs, pageaddr, ARMMMUIdxBit_SE3); 4615 } 4616 4617 static void tlbi_aa64_vae1is_write(CPUARMState *env, const ARMCPRegInfo *ri, 4618 uint64_t value) 4619 { 4620 CPUState *cs = env_cpu(env); 4621 int mask = vae1_tlbmask(env); 4622 uint64_t pageaddr = sextract64(value << 12, 0, 56); 4623 int bits = vae1_tlbbits(env, pageaddr); 4624 4625 tlb_flush_page_bits_by_mmuidx_all_cpus_synced(cs, pageaddr, mask, bits); 4626 } 4627 4628 static void tlbi_aa64_vae1_write(CPUARMState *env, const ARMCPRegInfo *ri, 4629 uint64_t value) 4630 { 4631 /* Invalidate by VA, EL1&0 (AArch64 version). 4632 * Currently handles all of VAE1, VAAE1, VAALE1 and VALE1, 4633 * since we don't support flush-for-specific-ASID-only or 4634 * flush-last-level-only. 4635 */ 4636 CPUState *cs = env_cpu(env); 4637 int mask = vae1_tlbmask(env); 4638 uint64_t pageaddr = sextract64(value << 12, 0, 56); 4639 int bits = vae1_tlbbits(env, pageaddr); 4640 4641 if (tlb_force_broadcast(env)) { 4642 tlb_flush_page_bits_by_mmuidx_all_cpus_synced(cs, pageaddr, mask, bits); 4643 } else { 4644 tlb_flush_page_bits_by_mmuidx(cs, pageaddr, mask, bits); 4645 } 4646 } 4647 4648 static void tlbi_aa64_vae2is_write(CPUARMState *env, const ARMCPRegInfo *ri, 4649 uint64_t value) 4650 { 4651 CPUState *cs = env_cpu(env); 4652 uint64_t pageaddr = sextract64(value << 12, 0, 56); 4653 int bits = tlbbits_for_regime(env, ARMMMUIdx_E2, pageaddr); 4654 4655 tlb_flush_page_bits_by_mmuidx_all_cpus_synced(cs, pageaddr, 4656 ARMMMUIdxBit_E2, bits); 4657 } 4658 4659 static void tlbi_aa64_vae3is_write(CPUARMState *env, const ARMCPRegInfo *ri, 4660 uint64_t value) 4661 { 4662 CPUState *cs = env_cpu(env); 4663 uint64_t pageaddr = sextract64(value << 12, 0, 56); 4664 int bits = tlbbits_for_regime(env, ARMMMUIdx_SE3, pageaddr); 4665 4666 tlb_flush_page_bits_by_mmuidx_all_cpus_synced(cs, pageaddr, 4667 ARMMMUIdxBit_SE3, bits); 4668 } 4669 4670 static CPAccessResult aa64_zva_access(CPUARMState *env, const ARMCPRegInfo *ri, 4671 bool isread) 4672 { 4673 int cur_el = arm_current_el(env); 4674 4675 if (cur_el < 2) { 4676 uint64_t hcr = arm_hcr_el2_eff(env); 4677 4678 if (cur_el == 0) { 4679 if ((hcr & (HCR_E2H | HCR_TGE)) == (HCR_E2H | HCR_TGE)) { 4680 if (!(env->cp15.sctlr_el[2] & SCTLR_DZE)) { 4681 return CP_ACCESS_TRAP_EL2; 4682 } 4683 } else { 4684 if (!(env->cp15.sctlr_el[1] & SCTLR_DZE)) { 4685 return CP_ACCESS_TRAP; 4686 } 4687 if (hcr & HCR_TDZ) { 4688 return CP_ACCESS_TRAP_EL2; 4689 } 4690 } 4691 } else if (hcr & HCR_TDZ) { 4692 return CP_ACCESS_TRAP_EL2; 4693 } 4694 } 4695 return CP_ACCESS_OK; 4696 } 4697 4698 static uint64_t aa64_dczid_read(CPUARMState *env, const ARMCPRegInfo *ri) 4699 { 4700 ARMCPU *cpu = env_archcpu(env); 4701 int dzp_bit = 1 << 4; 4702 4703 /* DZP indicates whether DC ZVA access is allowed */ 4704 if (aa64_zva_access(env, NULL, false) == CP_ACCESS_OK) { 4705 dzp_bit = 0; 4706 } 4707 return cpu->dcz_blocksize | dzp_bit; 4708 } 4709 4710 static CPAccessResult sp_el0_access(CPUARMState *env, const ARMCPRegInfo *ri, 4711 bool isread) 4712 { 4713 if (!(env->pstate & PSTATE_SP)) { 4714 /* Access to SP_EL0 is undefined if it's being used as 4715 * the stack pointer. 4716 */ 4717 return CP_ACCESS_TRAP_UNCATEGORIZED; 4718 } 4719 return CP_ACCESS_OK; 4720 } 4721 4722 static uint64_t spsel_read(CPUARMState *env, const ARMCPRegInfo *ri) 4723 { 4724 return env->pstate & PSTATE_SP; 4725 } 4726 4727 static void spsel_write(CPUARMState *env, const ARMCPRegInfo *ri, uint64_t val) 4728 { 4729 update_spsel(env, val); 4730 } 4731 4732 static void sctlr_write(CPUARMState *env, const ARMCPRegInfo *ri, 4733 uint64_t value) 4734 { 4735 ARMCPU *cpu = env_archcpu(env); 4736 4737 if (arm_feature(env, ARM_FEATURE_PMSA) && !cpu->has_mpu) { 4738 /* M bit is RAZ/WI for PMSA with no MPU implemented */ 4739 value &= ~SCTLR_M; 4740 } 4741 4742 /* ??? Lots of these bits are not implemented. */ 4743 4744 if (ri->state == ARM_CP_STATE_AA64 && !cpu_isar_feature(aa64_mte, cpu)) { 4745 if (ri->opc1 == 6) { /* SCTLR_EL3 */ 4746 value &= ~(SCTLR_ITFSB | SCTLR_TCF | SCTLR_ATA); 4747 } else { 4748 value &= ~(SCTLR_ITFSB | SCTLR_TCF0 | SCTLR_TCF | 4749 SCTLR_ATA0 | SCTLR_ATA); 4750 } 4751 } 4752 4753 if (raw_read(env, ri) == value) { 4754 /* Skip the TLB flush if nothing actually changed; Linux likes 4755 * to do a lot of pointless SCTLR writes. 4756 */ 4757 return; 4758 } 4759 4760 raw_write(env, ri, value); 4761 4762 /* This may enable/disable the MMU, so do a TLB flush. */ 4763 tlb_flush(CPU(cpu)); 4764 4765 if (ri->type & ARM_CP_SUPPRESS_TB_END) { 4766 /* 4767 * Normally we would always end the TB on an SCTLR write; see the 4768 * comment in ARMCPRegInfo sctlr initialization below for why Xscale 4769 * is special. Setting ARM_CP_SUPPRESS_TB_END also stops the rebuild 4770 * of hflags from the translator, so do it here. 4771 */ 4772 arm_rebuild_hflags(env); 4773 } 4774 } 4775 4776 static CPAccessResult fpexc32_access(CPUARMState *env, const ARMCPRegInfo *ri, 4777 bool isread) 4778 { 4779 if ((env->cp15.cptr_el[2] & CPTR_TFP) && arm_current_el(env) == 2) { 4780 return CP_ACCESS_TRAP_FP_EL2; 4781 } 4782 if (env->cp15.cptr_el[3] & CPTR_TFP) { 4783 return CP_ACCESS_TRAP_FP_EL3; 4784 } 4785 return CP_ACCESS_OK; 4786 } 4787 4788 static void sdcr_write(CPUARMState *env, const ARMCPRegInfo *ri, 4789 uint64_t value) 4790 { 4791 env->cp15.mdcr_el3 = value & SDCR_VALID_MASK; 4792 } 4793 4794 static const ARMCPRegInfo v8_cp_reginfo[] = { 4795 /* Minimal set of EL0-visible registers. This will need to be expanded 4796 * significantly for system emulation of AArch64 CPUs. 4797 */ 4798 { .name = "NZCV", .state = ARM_CP_STATE_AA64, 4799 .opc0 = 3, .opc1 = 3, .opc2 = 0, .crn = 4, .crm = 2, 4800 .access = PL0_RW, .type = ARM_CP_NZCV }, 4801 { .name = "DAIF", .state = ARM_CP_STATE_AA64, 4802 .opc0 = 3, .opc1 = 3, .opc2 = 1, .crn = 4, .crm = 2, 4803 .type = ARM_CP_NO_RAW, 4804 .access = PL0_RW, .accessfn = aa64_daif_access, 4805 .fieldoffset = offsetof(CPUARMState, daif), 4806 .writefn = aa64_daif_write, .resetfn = arm_cp_reset_ignore }, 4807 { .name = "FPCR", .state = ARM_CP_STATE_AA64, 4808 .opc0 = 3, .opc1 = 3, .opc2 = 0, .crn = 4, .crm = 4, 4809 .access = PL0_RW, .type = ARM_CP_FPU | ARM_CP_SUPPRESS_TB_END, 4810 .readfn = aa64_fpcr_read, .writefn = aa64_fpcr_write }, 4811 { .name = "FPSR", .state = ARM_CP_STATE_AA64, 4812 .opc0 = 3, .opc1 = 3, .opc2 = 1, .crn = 4, .crm = 4, 4813 .access = PL0_RW, .type = ARM_CP_FPU | ARM_CP_SUPPRESS_TB_END, 4814 .readfn = aa64_fpsr_read, .writefn = aa64_fpsr_write }, 4815 { .name = "DCZID_EL0", .state = ARM_CP_STATE_AA64, 4816 .opc0 = 3, .opc1 = 3, .opc2 = 7, .crn = 0, .crm = 0, 4817 .access = PL0_R, .type = ARM_CP_NO_RAW, 4818 .readfn = aa64_dczid_read }, 4819 { .name = "DC_ZVA", .state = ARM_CP_STATE_AA64, 4820 .opc0 = 1, .opc1 = 3, .crn = 7, .crm = 4, .opc2 = 1, 4821 .access = PL0_W, .type = ARM_CP_DC_ZVA, 4822 #ifndef CONFIG_USER_ONLY 4823 /* Avoid overhead of an access check that always passes in user-mode */ 4824 .accessfn = aa64_zva_access, 4825 #endif 4826 }, 4827 { .name = "CURRENTEL", .state = ARM_CP_STATE_AA64, 4828 .opc0 = 3, .opc1 = 0, .opc2 = 2, .crn = 4, .crm = 2, 4829 .access = PL1_R, .type = ARM_CP_CURRENTEL }, 4830 /* Cache ops: all NOPs since we don't emulate caches */ 4831 { .name = "IC_IALLUIS", .state = ARM_CP_STATE_AA64, 4832 .opc0 = 1, .opc1 = 0, .crn = 7, .crm = 1, .opc2 = 0, 4833 .access = PL1_W, .type = ARM_CP_NOP, 4834 .accessfn = aa64_cacheop_pou_access }, 4835 { .name = "IC_IALLU", .state = ARM_CP_STATE_AA64, 4836 .opc0 = 1, .opc1 = 0, .crn = 7, .crm = 5, .opc2 = 0, 4837 .access = PL1_W, .type = ARM_CP_NOP, 4838 .accessfn = aa64_cacheop_pou_access }, 4839 { .name = "IC_IVAU", .state = ARM_CP_STATE_AA64, 4840 .opc0 = 1, .opc1 = 3, .crn = 7, .crm = 5, .opc2 = 1, 4841 .access = PL0_W, .type = ARM_CP_NOP, 4842 .accessfn = aa64_cacheop_pou_access }, 4843 { .name = "DC_IVAC", .state = ARM_CP_STATE_AA64, 4844 .opc0 = 1, .opc1 = 0, .crn = 7, .crm = 6, .opc2 = 1, 4845 .access = PL1_W, .accessfn = aa64_cacheop_poc_access, 4846 .type = ARM_CP_NOP }, 4847 { .name = "DC_ISW", .state = ARM_CP_STATE_AA64, 4848 .opc0 = 1, .opc1 = 0, .crn = 7, .crm = 6, .opc2 = 2, 4849 .access = PL1_W, .accessfn = access_tsw, .type = ARM_CP_NOP }, 4850 { .name = "DC_CVAC", .state = ARM_CP_STATE_AA64, 4851 .opc0 = 1, .opc1 = 3, .crn = 7, .crm = 10, .opc2 = 1, 4852 .access = PL0_W, .type = ARM_CP_NOP, 4853 .accessfn = aa64_cacheop_poc_access }, 4854 { .name = "DC_CSW", .state = ARM_CP_STATE_AA64, 4855 .opc0 = 1, .opc1 = 0, .crn = 7, .crm = 10, .opc2 = 2, 4856 .access = PL1_W, .accessfn = access_tsw, .type = ARM_CP_NOP }, 4857 { .name = "DC_CVAU", .state = ARM_CP_STATE_AA64, 4858 .opc0 = 1, .opc1 = 3, .crn = 7, .crm = 11, .opc2 = 1, 4859 .access = PL0_W, .type = ARM_CP_NOP, 4860 .accessfn = aa64_cacheop_pou_access }, 4861 { .name = "DC_CIVAC", .state = ARM_CP_STATE_AA64, 4862 .opc0 = 1, .opc1 = 3, .crn = 7, .crm = 14, .opc2 = 1, 4863 .access = PL0_W, .type = ARM_CP_NOP, 4864 .accessfn = aa64_cacheop_poc_access }, 4865 { .name = "DC_CISW", .state = ARM_CP_STATE_AA64, 4866 .opc0 = 1, .opc1 = 0, .crn = 7, .crm = 14, .opc2 = 2, 4867 .access = PL1_W, .accessfn = access_tsw, .type = ARM_CP_NOP }, 4868 /* TLBI operations */ 4869 { .name = "TLBI_VMALLE1IS", .state = ARM_CP_STATE_AA64, 4870 .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 3, .opc2 = 0, 4871 .access = PL1_W, .accessfn = access_ttlb, .type = ARM_CP_NO_RAW, 4872 .writefn = tlbi_aa64_vmalle1is_write }, 4873 { .name = "TLBI_VAE1IS", .state = ARM_CP_STATE_AA64, 4874 .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 3, .opc2 = 1, 4875 .access = PL1_W, .accessfn = access_ttlb, .type = ARM_CP_NO_RAW, 4876 .writefn = tlbi_aa64_vae1is_write }, 4877 { .name = "TLBI_ASIDE1IS", .state = ARM_CP_STATE_AA64, 4878 .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 3, .opc2 = 2, 4879 .access = PL1_W, .accessfn = access_ttlb, .type = ARM_CP_NO_RAW, 4880 .writefn = tlbi_aa64_vmalle1is_write }, 4881 { .name = "TLBI_VAAE1IS", .state = ARM_CP_STATE_AA64, 4882 .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 3, .opc2 = 3, 4883 .access = PL1_W, .accessfn = access_ttlb, .type = ARM_CP_NO_RAW, 4884 .writefn = tlbi_aa64_vae1is_write }, 4885 { .name = "TLBI_VALE1IS", .state = ARM_CP_STATE_AA64, 4886 .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 3, .opc2 = 5, 4887 .access = PL1_W, .accessfn = access_ttlb, .type = ARM_CP_NO_RAW, 4888 .writefn = tlbi_aa64_vae1is_write }, 4889 { .name = "TLBI_VAALE1IS", .state = ARM_CP_STATE_AA64, 4890 .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 3, .opc2 = 7, 4891 .access = PL1_W, .accessfn = access_ttlb, .type = ARM_CP_NO_RAW, 4892 .writefn = tlbi_aa64_vae1is_write }, 4893 { .name = "TLBI_VMALLE1", .state = ARM_CP_STATE_AA64, 4894 .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 7, .opc2 = 0, 4895 .access = PL1_W, .accessfn = access_ttlb, .type = ARM_CP_NO_RAW, 4896 .writefn = tlbi_aa64_vmalle1_write }, 4897 { .name = "TLBI_VAE1", .state = ARM_CP_STATE_AA64, 4898 .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 7, .opc2 = 1, 4899 .access = PL1_W, .accessfn = access_ttlb, .type = ARM_CP_NO_RAW, 4900 .writefn = tlbi_aa64_vae1_write }, 4901 { .name = "TLBI_ASIDE1", .state = ARM_CP_STATE_AA64, 4902 .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 7, .opc2 = 2, 4903 .access = PL1_W, .accessfn = access_ttlb, .type = ARM_CP_NO_RAW, 4904 .writefn = tlbi_aa64_vmalle1_write }, 4905 { .name = "TLBI_VAAE1", .state = ARM_CP_STATE_AA64, 4906 .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 7, .opc2 = 3, 4907 .access = PL1_W, .accessfn = access_ttlb, .type = ARM_CP_NO_RAW, 4908 .writefn = tlbi_aa64_vae1_write }, 4909 { .name = "TLBI_VALE1", .state = ARM_CP_STATE_AA64, 4910 .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 7, .opc2 = 5, 4911 .access = PL1_W, .accessfn = access_ttlb, .type = ARM_CP_NO_RAW, 4912 .writefn = tlbi_aa64_vae1_write }, 4913 { .name = "TLBI_VAALE1", .state = ARM_CP_STATE_AA64, 4914 .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 7, .opc2 = 7, 4915 .access = PL1_W, .accessfn = access_ttlb, .type = ARM_CP_NO_RAW, 4916 .writefn = tlbi_aa64_vae1_write }, 4917 { .name = "TLBI_IPAS2E1IS", .state = ARM_CP_STATE_AA64, 4918 .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 0, .opc2 = 1, 4919 .access = PL2_W, .type = ARM_CP_NOP }, 4920 { .name = "TLBI_IPAS2LE1IS", .state = ARM_CP_STATE_AA64, 4921 .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 0, .opc2 = 5, 4922 .access = PL2_W, .type = ARM_CP_NOP }, 4923 { .name = "TLBI_ALLE1IS", .state = ARM_CP_STATE_AA64, 4924 .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 3, .opc2 = 4, 4925 .access = PL2_W, .type = ARM_CP_NO_RAW, 4926 .writefn = tlbi_aa64_alle1is_write }, 4927 { .name = "TLBI_VMALLS12E1IS", .state = ARM_CP_STATE_AA64, 4928 .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 3, .opc2 = 6, 4929 .access = PL2_W, .type = ARM_CP_NO_RAW, 4930 .writefn = tlbi_aa64_alle1is_write }, 4931 { .name = "TLBI_IPAS2E1", .state = ARM_CP_STATE_AA64, 4932 .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 4, .opc2 = 1, 4933 .access = PL2_W, .type = ARM_CP_NOP }, 4934 { .name = "TLBI_IPAS2LE1", .state = ARM_CP_STATE_AA64, 4935 .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 4, .opc2 = 5, 4936 .access = PL2_W, .type = ARM_CP_NOP }, 4937 { .name = "TLBI_ALLE1", .state = ARM_CP_STATE_AA64, 4938 .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 7, .opc2 = 4, 4939 .access = PL2_W, .type = ARM_CP_NO_RAW, 4940 .writefn = tlbi_aa64_alle1_write }, 4941 { .name = "TLBI_VMALLS12E1", .state = ARM_CP_STATE_AA64, 4942 .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 7, .opc2 = 6, 4943 .access = PL2_W, .type = ARM_CP_NO_RAW, 4944 .writefn = tlbi_aa64_alle1is_write }, 4945 #ifndef CONFIG_USER_ONLY 4946 /* 64 bit address translation operations */ 4947 { .name = "AT_S1E1R", .state = ARM_CP_STATE_AA64, 4948 .opc0 = 1, .opc1 = 0, .crn = 7, .crm = 8, .opc2 = 0, 4949 .access = PL1_W, .type = ARM_CP_NO_RAW | ARM_CP_RAISES_EXC, 4950 .writefn = ats_write64 }, 4951 { .name = "AT_S1E1W", .state = ARM_CP_STATE_AA64, 4952 .opc0 = 1, .opc1 = 0, .crn = 7, .crm = 8, .opc2 = 1, 4953 .access = PL1_W, .type = ARM_CP_NO_RAW | ARM_CP_RAISES_EXC, 4954 .writefn = ats_write64 }, 4955 { .name = "AT_S1E0R", .state = ARM_CP_STATE_AA64, 4956 .opc0 = 1, .opc1 = 0, .crn = 7, .crm = 8, .opc2 = 2, 4957 .access = PL1_W, .type = ARM_CP_NO_RAW | ARM_CP_RAISES_EXC, 4958 .writefn = ats_write64 }, 4959 { .name = "AT_S1E0W", .state = ARM_CP_STATE_AA64, 4960 .opc0 = 1, .opc1 = 0, .crn = 7, .crm = 8, .opc2 = 3, 4961 .access = PL1_W, .type = ARM_CP_NO_RAW | ARM_CP_RAISES_EXC, 4962 .writefn = ats_write64 }, 4963 { .name = "AT_S12E1R", .state = ARM_CP_STATE_AA64, 4964 .opc0 = 1, .opc1 = 4, .crn = 7, .crm = 8, .opc2 = 4, 4965 .access = PL2_W, .type = ARM_CP_NO_RAW | ARM_CP_RAISES_EXC, 4966 .writefn = ats_write64 }, 4967 { .name = "AT_S12E1W", .state = ARM_CP_STATE_AA64, 4968 .opc0 = 1, .opc1 = 4, .crn = 7, .crm = 8, .opc2 = 5, 4969 .access = PL2_W, .type = ARM_CP_NO_RAW | ARM_CP_RAISES_EXC, 4970 .writefn = ats_write64 }, 4971 { .name = "AT_S12E0R", .state = ARM_CP_STATE_AA64, 4972 .opc0 = 1, .opc1 = 4, .crn = 7, .crm = 8, .opc2 = 6, 4973 .access = PL2_W, .type = ARM_CP_NO_RAW | ARM_CP_RAISES_EXC, 4974 .writefn = ats_write64 }, 4975 { .name = "AT_S12E0W", .state = ARM_CP_STATE_AA64, 4976 .opc0 = 1, .opc1 = 4, .crn = 7, .crm = 8, .opc2 = 7, 4977 .access = PL2_W, .type = ARM_CP_NO_RAW | ARM_CP_RAISES_EXC, 4978 .writefn = ats_write64 }, 4979 /* AT S1E2* are elsewhere as they UNDEF from EL3 if EL2 is not present */ 4980 { .name = "AT_S1E3R", .state = ARM_CP_STATE_AA64, 4981 .opc0 = 1, .opc1 = 6, .crn = 7, .crm = 8, .opc2 = 0, 4982 .access = PL3_W, .type = ARM_CP_NO_RAW | ARM_CP_RAISES_EXC, 4983 .writefn = ats_write64 }, 4984 { .name = "AT_S1E3W", .state = ARM_CP_STATE_AA64, 4985 .opc0 = 1, .opc1 = 6, .crn = 7, .crm = 8, .opc2 = 1, 4986 .access = PL3_W, .type = ARM_CP_NO_RAW | ARM_CP_RAISES_EXC, 4987 .writefn = ats_write64 }, 4988 { .name = "PAR_EL1", .state = ARM_CP_STATE_AA64, 4989 .type = ARM_CP_ALIAS, 4990 .opc0 = 3, .opc1 = 0, .crn = 7, .crm = 4, .opc2 = 0, 4991 .access = PL1_RW, .resetvalue = 0, 4992 .fieldoffset = offsetof(CPUARMState, cp15.par_el[1]), 4993 .writefn = par_write }, 4994 #endif 4995 /* TLB invalidate last level of translation table walk */ 4996 { .name = "TLBIMVALIS", .cp = 15, .opc1 = 0, .crn = 8, .crm = 3, .opc2 = 5, 4997 .type = ARM_CP_NO_RAW, .access = PL1_W, .accessfn = access_ttlb, 4998 .writefn = tlbimva_is_write }, 4999 { .name = "TLBIMVAALIS", .cp = 15, .opc1 = 0, .crn = 8, .crm = 3, .opc2 = 7, 5000 .type = ARM_CP_NO_RAW, .access = PL1_W, .accessfn = access_ttlb, 5001 .writefn = tlbimvaa_is_write }, 5002 { .name = "TLBIMVAL", .cp = 15, .opc1 = 0, .crn = 8, .crm = 7, .opc2 = 5, 5003 .type = ARM_CP_NO_RAW, .access = PL1_W, .accessfn = access_ttlb, 5004 .writefn = tlbimva_write }, 5005 { .name = "TLBIMVAAL", .cp = 15, .opc1 = 0, .crn = 8, .crm = 7, .opc2 = 7, 5006 .type = ARM_CP_NO_RAW, .access = PL1_W, .accessfn = access_ttlb, 5007 .writefn = tlbimvaa_write }, 5008 { .name = "TLBIMVALH", .cp = 15, .opc1 = 4, .crn = 8, .crm = 7, .opc2 = 5, 5009 .type = ARM_CP_NO_RAW, .access = PL2_W, 5010 .writefn = tlbimva_hyp_write }, 5011 { .name = "TLBIMVALHIS", 5012 .cp = 15, .opc1 = 4, .crn = 8, .crm = 3, .opc2 = 5, 5013 .type = ARM_CP_NO_RAW, .access = PL2_W, 5014 .writefn = tlbimva_hyp_is_write }, 5015 { .name = "TLBIIPAS2", 5016 .cp = 15, .opc1 = 4, .crn = 8, .crm = 4, .opc2 = 1, 5017 .type = ARM_CP_NOP, .access = PL2_W }, 5018 { .name = "TLBIIPAS2IS", 5019 .cp = 15, .opc1 = 4, .crn = 8, .crm = 0, .opc2 = 1, 5020 .type = ARM_CP_NOP, .access = PL2_W }, 5021 { .name = "TLBIIPAS2L", 5022 .cp = 15, .opc1 = 4, .crn = 8, .crm = 4, .opc2 = 5, 5023 .type = ARM_CP_NOP, .access = PL2_W }, 5024 { .name = "TLBIIPAS2LIS", 5025 .cp = 15, .opc1 = 4, .crn = 8, .crm = 0, .opc2 = 5, 5026 .type = ARM_CP_NOP, .access = PL2_W }, 5027 /* 32 bit cache operations */ 5028 { .name = "ICIALLUIS", .cp = 15, .opc1 = 0, .crn = 7, .crm = 1, .opc2 = 0, 5029 .type = ARM_CP_NOP, .access = PL1_W, .accessfn = aa64_cacheop_pou_access }, 5030 { .name = "BPIALLUIS", .cp = 15, .opc1 = 0, .crn = 7, .crm = 1, .opc2 = 6, 5031 .type = ARM_CP_NOP, .access = PL1_W }, 5032 { .name = "ICIALLU", .cp = 15, .opc1 = 0, .crn = 7, .crm = 5, .opc2 = 0, 5033 .type = ARM_CP_NOP, .access = PL1_W, .accessfn = aa64_cacheop_pou_access }, 5034 { .name = "ICIMVAU", .cp = 15, .opc1 = 0, .crn = 7, .crm = 5, .opc2 = 1, 5035 .type = ARM_CP_NOP, .access = PL1_W, .accessfn = aa64_cacheop_pou_access }, 5036 { .name = "BPIALL", .cp = 15, .opc1 = 0, .crn = 7, .crm = 5, .opc2 = 6, 5037 .type = ARM_CP_NOP, .access = PL1_W }, 5038 { .name = "BPIMVA", .cp = 15, .opc1 = 0, .crn = 7, .crm = 5, .opc2 = 7, 5039 .type = ARM_CP_NOP, .access = PL1_W }, 5040 { .name = "DCIMVAC", .cp = 15, .opc1 = 0, .crn = 7, .crm = 6, .opc2 = 1, 5041 .type = ARM_CP_NOP, .access = PL1_W, .accessfn = aa64_cacheop_poc_access }, 5042 { .name = "DCISW", .cp = 15, .opc1 = 0, .crn = 7, .crm = 6, .opc2 = 2, 5043 .type = ARM_CP_NOP, .access = PL1_W, .accessfn = access_tsw }, 5044 { .name = "DCCMVAC", .cp = 15, .opc1 = 0, .crn = 7, .crm = 10, .opc2 = 1, 5045 .type = ARM_CP_NOP, .access = PL1_W, .accessfn = aa64_cacheop_poc_access }, 5046 { .name = "DCCSW", .cp = 15, .opc1 = 0, .crn = 7, .crm = 10, .opc2 = 2, 5047 .type = ARM_CP_NOP, .access = PL1_W, .accessfn = access_tsw }, 5048 { .name = "DCCMVAU", .cp = 15, .opc1 = 0, .crn = 7, .crm = 11, .opc2 = 1, 5049 .type = ARM_CP_NOP, .access = PL1_W, .accessfn = aa64_cacheop_pou_access }, 5050 { .name = "DCCIMVAC", .cp = 15, .opc1 = 0, .crn = 7, .crm = 14, .opc2 = 1, 5051 .type = ARM_CP_NOP, .access = PL1_W, .accessfn = aa64_cacheop_poc_access }, 5052 { .name = "DCCISW", .cp = 15, .opc1 = 0, .crn = 7, .crm = 14, .opc2 = 2, 5053 .type = ARM_CP_NOP, .access = PL1_W, .accessfn = access_tsw }, 5054 /* MMU Domain access control / MPU write buffer control */ 5055 { .name = "DACR", .cp = 15, .opc1 = 0, .crn = 3, .crm = 0, .opc2 = 0, 5056 .access = PL1_RW, .accessfn = access_tvm_trvm, .resetvalue = 0, 5057 .writefn = dacr_write, .raw_writefn = raw_write, 5058 .bank_fieldoffsets = { offsetoflow32(CPUARMState, cp15.dacr_s), 5059 offsetoflow32(CPUARMState, cp15.dacr_ns) } }, 5060 { .name = "ELR_EL1", .state = ARM_CP_STATE_AA64, 5061 .type = ARM_CP_ALIAS, 5062 .opc0 = 3, .opc1 = 0, .crn = 4, .crm = 0, .opc2 = 1, 5063 .access = PL1_RW, 5064 .fieldoffset = offsetof(CPUARMState, elr_el[1]) }, 5065 { .name = "SPSR_EL1", .state = ARM_CP_STATE_AA64, 5066 .type = ARM_CP_ALIAS, 5067 .opc0 = 3, .opc1 = 0, .crn = 4, .crm = 0, .opc2 = 0, 5068 .access = PL1_RW, 5069 .fieldoffset = offsetof(CPUARMState, banked_spsr[BANK_SVC]) }, 5070 /* We rely on the access checks not allowing the guest to write to the 5071 * state field when SPSel indicates that it's being used as the stack 5072 * pointer. 5073 */ 5074 { .name = "SP_EL0", .state = ARM_CP_STATE_AA64, 5075 .opc0 = 3, .opc1 = 0, .crn = 4, .crm = 1, .opc2 = 0, 5076 .access = PL1_RW, .accessfn = sp_el0_access, 5077 .type = ARM_CP_ALIAS, 5078 .fieldoffset = offsetof(CPUARMState, sp_el[0]) }, 5079 { .name = "SP_EL1", .state = ARM_CP_STATE_AA64, 5080 .opc0 = 3, .opc1 = 4, .crn = 4, .crm = 1, .opc2 = 0, 5081 .access = PL2_RW, .type = ARM_CP_ALIAS, 5082 .fieldoffset = offsetof(CPUARMState, sp_el[1]) }, 5083 { .name = "SPSel", .state = ARM_CP_STATE_AA64, 5084 .opc0 = 3, .opc1 = 0, .crn = 4, .crm = 2, .opc2 = 0, 5085 .type = ARM_CP_NO_RAW, 5086 .access = PL1_RW, .readfn = spsel_read, .writefn = spsel_write }, 5087 { .name = "FPEXC32_EL2", .state = ARM_CP_STATE_AA64, 5088 .opc0 = 3, .opc1 = 4, .crn = 5, .crm = 3, .opc2 = 0, 5089 .type = ARM_CP_ALIAS, 5090 .fieldoffset = offsetof(CPUARMState, vfp.xregs[ARM_VFP_FPEXC]), 5091 .access = PL2_RW, .accessfn = fpexc32_access }, 5092 { .name = "DACR32_EL2", .state = ARM_CP_STATE_AA64, 5093 .opc0 = 3, .opc1 = 4, .crn = 3, .crm = 0, .opc2 = 0, 5094 .access = PL2_RW, .resetvalue = 0, 5095 .writefn = dacr_write, .raw_writefn = raw_write, 5096 .fieldoffset = offsetof(CPUARMState, cp15.dacr32_el2) }, 5097 { .name = "IFSR32_EL2", .state = ARM_CP_STATE_AA64, 5098 .opc0 = 3, .opc1 = 4, .crn = 5, .crm = 0, .opc2 = 1, 5099 .access = PL2_RW, .resetvalue = 0, 5100 .fieldoffset = offsetof(CPUARMState, cp15.ifsr32_el2) }, 5101 { .name = "SPSR_IRQ", .state = ARM_CP_STATE_AA64, 5102 .type = ARM_CP_ALIAS, 5103 .opc0 = 3, .opc1 = 4, .crn = 4, .crm = 3, .opc2 = 0, 5104 .access = PL2_RW, 5105 .fieldoffset = offsetof(CPUARMState, banked_spsr[BANK_IRQ]) }, 5106 { .name = "SPSR_ABT", .state = ARM_CP_STATE_AA64, 5107 .type = ARM_CP_ALIAS, 5108 .opc0 = 3, .opc1 = 4, .crn = 4, .crm = 3, .opc2 = 1, 5109 .access = PL2_RW, 5110 .fieldoffset = offsetof(CPUARMState, banked_spsr[BANK_ABT]) }, 5111 { .name = "SPSR_UND", .state = ARM_CP_STATE_AA64, 5112 .type = ARM_CP_ALIAS, 5113 .opc0 = 3, .opc1 = 4, .crn = 4, .crm = 3, .opc2 = 2, 5114 .access = PL2_RW, 5115 .fieldoffset = offsetof(CPUARMState, banked_spsr[BANK_UND]) }, 5116 { .name = "SPSR_FIQ", .state = ARM_CP_STATE_AA64, 5117 .type = ARM_CP_ALIAS, 5118 .opc0 = 3, .opc1 = 4, .crn = 4, .crm = 3, .opc2 = 3, 5119 .access = PL2_RW, 5120 .fieldoffset = offsetof(CPUARMState, banked_spsr[BANK_FIQ]) }, 5121 { .name = "MDCR_EL3", .state = ARM_CP_STATE_AA64, 5122 .opc0 = 3, .opc1 = 6, .crn = 1, .crm = 3, .opc2 = 1, 5123 .resetvalue = 0, 5124 .access = PL3_RW, .fieldoffset = offsetof(CPUARMState, cp15.mdcr_el3) }, 5125 { .name = "SDCR", .type = ARM_CP_ALIAS, 5126 .cp = 15, .opc1 = 0, .crn = 1, .crm = 3, .opc2 = 1, 5127 .access = PL1_RW, .accessfn = access_trap_aa32s_el1, 5128 .writefn = sdcr_write, 5129 .fieldoffset = offsetoflow32(CPUARMState, cp15.mdcr_el3) }, 5130 REGINFO_SENTINEL 5131 }; 5132 5133 /* Used to describe the behaviour of EL2 regs when EL2 does not exist. */ 5134 static const ARMCPRegInfo el3_no_el2_cp_reginfo[] = { 5135 { .name = "VBAR_EL2", .state = ARM_CP_STATE_BOTH, 5136 .opc0 = 3, .opc1 = 4, .crn = 12, .crm = 0, .opc2 = 0, 5137 .access = PL2_RW, 5138 .readfn = arm_cp_read_zero, .writefn = arm_cp_write_ignore }, 5139 { .name = "HCR_EL2", .state = ARM_CP_STATE_BOTH, 5140 .opc0 = 3, .opc1 = 4, .crn = 1, .crm = 1, .opc2 = 0, 5141 .access = PL2_RW, 5142 .type = ARM_CP_CONST, .resetvalue = 0 }, 5143 { .name = "HACR_EL2", .state = ARM_CP_STATE_BOTH, 5144 .opc0 = 3, .opc1 = 4, .crn = 1, .crm = 1, .opc2 = 7, 5145 .access = PL2_RW, .type = ARM_CP_CONST, .resetvalue = 0 }, 5146 { .name = "ESR_EL2", .state = ARM_CP_STATE_BOTH, 5147 .opc0 = 3, .opc1 = 4, .crn = 5, .crm = 2, .opc2 = 0, 5148 .access = PL2_RW, 5149 .type = ARM_CP_CONST, .resetvalue = 0 }, 5150 { .name = "CPTR_EL2", .state = ARM_CP_STATE_BOTH, 5151 .opc0 = 3, .opc1 = 4, .crn = 1, .crm = 1, .opc2 = 2, 5152 .access = PL2_RW, .type = ARM_CP_CONST, .resetvalue = 0 }, 5153 { .name = "MAIR_EL2", .state = ARM_CP_STATE_BOTH, 5154 .opc0 = 3, .opc1 = 4, .crn = 10, .crm = 2, .opc2 = 0, 5155 .access = PL2_RW, .type = ARM_CP_CONST, 5156 .resetvalue = 0 }, 5157 { .name = "HMAIR1", .state = ARM_CP_STATE_AA32, 5158 .cp = 15, .opc1 = 4, .crn = 10, .crm = 2, .opc2 = 1, 5159 .access = PL2_RW, .type = ARM_CP_CONST, .resetvalue = 0 }, 5160 { .name = "AMAIR_EL2", .state = ARM_CP_STATE_BOTH, 5161 .opc0 = 3, .opc1 = 4, .crn = 10, .crm = 3, .opc2 = 0, 5162 .access = PL2_RW, .type = ARM_CP_CONST, 5163 .resetvalue = 0 }, 5164 { .name = "HAMAIR1", .state = ARM_CP_STATE_AA32, 5165 .cp = 15, .opc1 = 4, .crn = 10, .crm = 3, .opc2 = 1, 5166 .access = PL2_RW, .type = ARM_CP_CONST, 5167 .resetvalue = 0 }, 5168 { .name = "AFSR0_EL2", .state = ARM_CP_STATE_BOTH, 5169 .opc0 = 3, .opc1 = 4, .crn = 5, .crm = 1, .opc2 = 0, 5170 .access = PL2_RW, .type = ARM_CP_CONST, 5171 .resetvalue = 0 }, 5172 { .name = "AFSR1_EL2", .state = ARM_CP_STATE_BOTH, 5173 .opc0 = 3, .opc1 = 4, .crn = 5, .crm = 1, .opc2 = 1, 5174 .access = PL2_RW, .type = ARM_CP_CONST, 5175 .resetvalue = 0 }, 5176 { .name = "TCR_EL2", .state = ARM_CP_STATE_BOTH, 5177 .opc0 = 3, .opc1 = 4, .crn = 2, .crm = 0, .opc2 = 2, 5178 .access = PL2_RW, .type = ARM_CP_CONST, .resetvalue = 0 }, 5179 { .name = "VTCR_EL2", .state = ARM_CP_STATE_BOTH, 5180 .opc0 = 3, .opc1 = 4, .crn = 2, .crm = 1, .opc2 = 2, 5181 .access = PL2_RW, .accessfn = access_el3_aa32ns, 5182 .type = ARM_CP_CONST, .resetvalue = 0 }, 5183 { .name = "VTTBR", .state = ARM_CP_STATE_AA32, 5184 .cp = 15, .opc1 = 6, .crm = 2, 5185 .access = PL2_RW, .accessfn = access_el3_aa32ns, 5186 .type = ARM_CP_CONST | ARM_CP_64BIT, .resetvalue = 0 }, 5187 { .name = "VTTBR_EL2", .state = ARM_CP_STATE_AA64, 5188 .opc0 = 3, .opc1 = 4, .crn = 2, .crm = 1, .opc2 = 0, 5189 .access = PL2_RW, .type = ARM_CP_CONST, .resetvalue = 0 }, 5190 { .name = "SCTLR_EL2", .state = ARM_CP_STATE_BOTH, 5191 .opc0 = 3, .opc1 = 4, .crn = 1, .crm = 0, .opc2 = 0, 5192 .access = PL2_RW, .type = ARM_CP_CONST, .resetvalue = 0 }, 5193 { .name = "TPIDR_EL2", .state = ARM_CP_STATE_BOTH, 5194 .opc0 = 3, .opc1 = 4, .crn = 13, .crm = 0, .opc2 = 2, 5195 .access = PL2_RW, .type = ARM_CP_CONST, .resetvalue = 0 }, 5196 { .name = "TTBR0_EL2", .state = ARM_CP_STATE_AA64, 5197 .opc0 = 3, .opc1 = 4, .crn = 2, .crm = 0, .opc2 = 0, 5198 .access = PL2_RW, .type = ARM_CP_CONST, .resetvalue = 0 }, 5199 { .name = "HTTBR", .cp = 15, .opc1 = 4, .crm = 2, 5200 .access = PL2_RW, .type = ARM_CP_64BIT | ARM_CP_CONST, 5201 .resetvalue = 0 }, 5202 { .name = "CNTHCTL_EL2", .state = ARM_CP_STATE_BOTH, 5203 .opc0 = 3, .opc1 = 4, .crn = 14, .crm = 1, .opc2 = 0, 5204 .access = PL2_RW, .type = ARM_CP_CONST, .resetvalue = 0 }, 5205 { .name = "CNTVOFF_EL2", .state = ARM_CP_STATE_AA64, 5206 .opc0 = 3, .opc1 = 4, .crn = 14, .crm = 0, .opc2 = 3, 5207 .access = PL2_RW, .type = ARM_CP_CONST, .resetvalue = 0 }, 5208 { .name = "CNTVOFF", .cp = 15, .opc1 = 4, .crm = 14, 5209 .access = PL2_RW, .type = ARM_CP_64BIT | ARM_CP_CONST, 5210 .resetvalue = 0 }, 5211 { .name = "CNTHP_CVAL_EL2", .state = ARM_CP_STATE_AA64, 5212 .opc0 = 3, .opc1 = 4, .crn = 14, .crm = 2, .opc2 = 2, 5213 .access = PL2_RW, .type = ARM_CP_CONST, .resetvalue = 0 }, 5214 { .name = "CNTHP_CVAL", .cp = 15, .opc1 = 6, .crm = 14, 5215 .access = PL2_RW, .type = ARM_CP_64BIT | ARM_CP_CONST, 5216 .resetvalue = 0 }, 5217 { .name = "CNTHP_TVAL_EL2", .state = ARM_CP_STATE_BOTH, 5218 .opc0 = 3, .opc1 = 4, .crn = 14, .crm = 2, .opc2 = 0, 5219 .access = PL2_RW, .type = ARM_CP_CONST, .resetvalue = 0 }, 5220 { .name = "CNTHP_CTL_EL2", .state = ARM_CP_STATE_BOTH, 5221 .opc0 = 3, .opc1 = 4, .crn = 14, .crm = 2, .opc2 = 1, 5222 .access = PL2_RW, .type = ARM_CP_CONST, .resetvalue = 0 }, 5223 { .name = "MDCR_EL2", .state = ARM_CP_STATE_BOTH, 5224 .opc0 = 3, .opc1 = 4, .crn = 1, .crm = 1, .opc2 = 1, 5225 .access = PL2_RW, .accessfn = access_tda, 5226 .type = ARM_CP_CONST, .resetvalue = 0 }, 5227 { .name = "HPFAR_EL2", .state = ARM_CP_STATE_BOTH, 5228 .opc0 = 3, .opc1 = 4, .crn = 6, .crm = 0, .opc2 = 4, 5229 .access = PL2_RW, .accessfn = access_el3_aa32ns, 5230 .type = ARM_CP_CONST, .resetvalue = 0 }, 5231 { .name = "HSTR_EL2", .state = ARM_CP_STATE_BOTH, 5232 .opc0 = 3, .opc1 = 4, .crn = 1, .crm = 1, .opc2 = 3, 5233 .access = PL2_RW, .type = ARM_CP_CONST, .resetvalue = 0 }, 5234 { .name = "FAR_EL2", .state = ARM_CP_STATE_BOTH, 5235 .opc0 = 3, .opc1 = 4, .crn = 6, .crm = 0, .opc2 = 0, 5236 .access = PL2_RW, .type = ARM_CP_CONST, .resetvalue = 0 }, 5237 { .name = "HIFAR", .state = ARM_CP_STATE_AA32, 5238 .type = ARM_CP_CONST, 5239 .cp = 15, .opc1 = 4, .crn = 6, .crm = 0, .opc2 = 2, 5240 .access = PL2_RW, .resetvalue = 0 }, 5241 REGINFO_SENTINEL 5242 }; 5243 5244 /* Ditto, but for registers which exist in ARMv8 but not v7 */ 5245 static const ARMCPRegInfo el3_no_el2_v8_cp_reginfo[] = { 5246 { .name = "HCR2", .state = ARM_CP_STATE_AA32, 5247 .cp = 15, .opc1 = 4, .crn = 1, .crm = 1, .opc2 = 4, 5248 .access = PL2_RW, 5249 .type = ARM_CP_CONST, .resetvalue = 0 }, 5250 REGINFO_SENTINEL 5251 }; 5252 5253 static void do_hcr_write(CPUARMState *env, uint64_t value, uint64_t valid_mask) 5254 { 5255 ARMCPU *cpu = env_archcpu(env); 5256 5257 if (arm_feature(env, ARM_FEATURE_V8)) { 5258 valid_mask |= MAKE_64BIT_MASK(0, 34); /* ARMv8.0 */ 5259 } else { 5260 valid_mask |= MAKE_64BIT_MASK(0, 28); /* ARMv7VE */ 5261 } 5262 5263 if (arm_feature(env, ARM_FEATURE_EL3)) { 5264 valid_mask &= ~HCR_HCD; 5265 } else if (cpu->psci_conduit != QEMU_PSCI_CONDUIT_SMC) { 5266 /* Architecturally HCR.TSC is RES0 if EL3 is not implemented. 5267 * However, if we're using the SMC PSCI conduit then QEMU is 5268 * effectively acting like EL3 firmware and so the guest at 5269 * EL2 should retain the ability to prevent EL1 from being 5270 * able to make SMC calls into the ersatz firmware, so in 5271 * that case HCR.TSC should be read/write. 5272 */ 5273 valid_mask &= ~HCR_TSC; 5274 } 5275 5276 if (arm_feature(env, ARM_FEATURE_AARCH64)) { 5277 if (cpu_isar_feature(aa64_vh, cpu)) { 5278 valid_mask |= HCR_E2H; 5279 } 5280 if (cpu_isar_feature(aa64_lor, cpu)) { 5281 valid_mask |= HCR_TLOR; 5282 } 5283 if (cpu_isar_feature(aa64_pauth, cpu)) { 5284 valid_mask |= HCR_API | HCR_APK; 5285 } 5286 if (cpu_isar_feature(aa64_mte, cpu)) { 5287 valid_mask |= HCR_ATA | HCR_DCT | HCR_TID5; 5288 } 5289 } 5290 5291 /* Clear RES0 bits. */ 5292 value &= valid_mask; 5293 5294 /* 5295 * These bits change the MMU setup: 5296 * HCR_VM enables stage 2 translation 5297 * HCR_PTW forbids certain page-table setups 5298 * HCR_DC disables stage1 and enables stage2 translation 5299 * HCR_DCT enables tagging on (disabled) stage1 translation 5300 */ 5301 if ((env->cp15.hcr_el2 ^ value) & (HCR_VM | HCR_PTW | HCR_DC | HCR_DCT)) { 5302 tlb_flush(CPU(cpu)); 5303 } 5304 env->cp15.hcr_el2 = value; 5305 5306 /* 5307 * Updates to VI and VF require us to update the status of 5308 * virtual interrupts, which are the logical OR of these bits 5309 * and the state of the input lines from the GIC. (This requires 5310 * that we have the iothread lock, which is done by marking the 5311 * reginfo structs as ARM_CP_IO.) 5312 * Note that if a write to HCR pends a VIRQ or VFIQ it is never 5313 * possible for it to be taken immediately, because VIRQ and 5314 * VFIQ are masked unless running at EL0 or EL1, and HCR 5315 * can only be written at EL2. 5316 */ 5317 g_assert(qemu_mutex_iothread_locked()); 5318 arm_cpu_update_virq(cpu); 5319 arm_cpu_update_vfiq(cpu); 5320 } 5321 5322 static void hcr_write(CPUARMState *env, const ARMCPRegInfo *ri, uint64_t value) 5323 { 5324 do_hcr_write(env, value, 0); 5325 } 5326 5327 static void hcr_writehigh(CPUARMState *env, const ARMCPRegInfo *ri, 5328 uint64_t value) 5329 { 5330 /* Handle HCR2 write, i.e. write to high half of HCR_EL2 */ 5331 value = deposit64(env->cp15.hcr_el2, 32, 32, value); 5332 do_hcr_write(env, value, MAKE_64BIT_MASK(0, 32)); 5333 } 5334 5335 static void hcr_writelow(CPUARMState *env, const ARMCPRegInfo *ri, 5336 uint64_t value) 5337 { 5338 /* Handle HCR write, i.e. write to low half of HCR_EL2 */ 5339 value = deposit64(env->cp15.hcr_el2, 0, 32, value); 5340 do_hcr_write(env, value, MAKE_64BIT_MASK(32, 32)); 5341 } 5342 5343 /* 5344 * Return the effective value of HCR_EL2. 5345 * Bits that are not included here: 5346 * RW (read from SCR_EL3.RW as needed) 5347 */ 5348 uint64_t arm_hcr_el2_eff(CPUARMState *env) 5349 { 5350 uint64_t ret = env->cp15.hcr_el2; 5351 5352 if (arm_is_secure_below_el3(env)) { 5353 /* 5354 * "This register has no effect if EL2 is not enabled in the 5355 * current Security state". This is ARMv8.4-SecEL2 speak for 5356 * !(SCR_EL3.NS==1 || SCR_EL3.EEL2==1). 5357 * 5358 * Prior to that, the language was "In an implementation that 5359 * includes EL3, when the value of SCR_EL3.NS is 0 the PE behaves 5360 * as if this field is 0 for all purposes other than a direct 5361 * read or write access of HCR_EL2". With lots of enumeration 5362 * on a per-field basis. In current QEMU, this is condition 5363 * is arm_is_secure_below_el3. 5364 * 5365 * Since the v8.4 language applies to the entire register, and 5366 * appears to be backward compatible, use that. 5367 */ 5368 return 0; 5369 } 5370 5371 /* 5372 * For a cpu that supports both aarch64 and aarch32, we can set bits 5373 * in HCR_EL2 (e.g. via EL3) that are RES0 when we enter EL2 as aa32. 5374 * Ignore all of the bits in HCR+HCR2 that are not valid for aarch32. 5375 */ 5376 if (!arm_el_is_aa64(env, 2)) { 5377 uint64_t aa32_valid; 5378 5379 /* 5380 * These bits are up-to-date as of ARMv8.6. 5381 * For HCR, it's easiest to list just the 2 bits that are invalid. 5382 * For HCR2, list those that are valid. 5383 */ 5384 aa32_valid = MAKE_64BIT_MASK(0, 32) & ~(HCR_RW | HCR_TDZ); 5385 aa32_valid |= (HCR_CD | HCR_ID | HCR_TERR | HCR_TEA | HCR_MIOCNCE | 5386 HCR_TID4 | HCR_TICAB | HCR_TOCU | HCR_TTLBIS); 5387 ret &= aa32_valid; 5388 } 5389 5390 if (ret & HCR_TGE) { 5391 /* These bits are up-to-date as of ARMv8.6. */ 5392 if (ret & HCR_E2H) { 5393 ret &= ~(HCR_VM | HCR_FMO | HCR_IMO | HCR_AMO | 5394 HCR_BSU_MASK | HCR_DC | HCR_TWI | HCR_TWE | 5395 HCR_TID0 | HCR_TID2 | HCR_TPCP | HCR_TPU | 5396 HCR_TDZ | HCR_CD | HCR_ID | HCR_MIOCNCE | 5397 HCR_TID4 | HCR_TICAB | HCR_TOCU | HCR_ENSCXT | 5398 HCR_TTLBIS | HCR_TTLBOS | HCR_TID5); 5399 } else { 5400 ret |= HCR_FMO | HCR_IMO | HCR_AMO; 5401 } 5402 ret &= ~(HCR_SWIO | HCR_PTW | HCR_VF | HCR_VI | HCR_VSE | 5403 HCR_FB | HCR_TID1 | HCR_TID3 | HCR_TSC | HCR_TACR | 5404 HCR_TSW | HCR_TTLB | HCR_TVM | HCR_HCD | HCR_TRVM | 5405 HCR_TLOR); 5406 } 5407 5408 return ret; 5409 } 5410 5411 static void cptr_el2_write(CPUARMState *env, const ARMCPRegInfo *ri, 5412 uint64_t value) 5413 { 5414 /* 5415 * For A-profile AArch32 EL3, if NSACR.CP10 5416 * is 0 then HCPTR.{TCP11,TCP10} ignore writes and read as 1. 5417 */ 5418 if (arm_feature(env, ARM_FEATURE_EL3) && !arm_el_is_aa64(env, 3) && 5419 !arm_is_secure(env) && !extract32(env->cp15.nsacr, 10, 1)) { 5420 value &= ~(0x3 << 10); 5421 value |= env->cp15.cptr_el[2] & (0x3 << 10); 5422 } 5423 env->cp15.cptr_el[2] = value; 5424 } 5425 5426 static uint64_t cptr_el2_read(CPUARMState *env, const ARMCPRegInfo *ri) 5427 { 5428 /* 5429 * For A-profile AArch32 EL3, if NSACR.CP10 5430 * is 0 then HCPTR.{TCP11,TCP10} ignore writes and read as 1. 5431 */ 5432 uint64_t value = env->cp15.cptr_el[2]; 5433 5434 if (arm_feature(env, ARM_FEATURE_EL3) && !arm_el_is_aa64(env, 3) && 5435 !arm_is_secure(env) && !extract32(env->cp15.nsacr, 10, 1)) { 5436 value |= 0x3 << 10; 5437 } 5438 return value; 5439 } 5440 5441 static const ARMCPRegInfo el2_cp_reginfo[] = { 5442 { .name = "HCR_EL2", .state = ARM_CP_STATE_AA64, 5443 .type = ARM_CP_IO, 5444 .opc0 = 3, .opc1 = 4, .crn = 1, .crm = 1, .opc2 = 0, 5445 .access = PL2_RW, .fieldoffset = offsetof(CPUARMState, cp15.hcr_el2), 5446 .writefn = hcr_write }, 5447 { .name = "HCR", .state = ARM_CP_STATE_AA32, 5448 .type = ARM_CP_ALIAS | ARM_CP_IO, 5449 .cp = 15, .opc1 = 4, .crn = 1, .crm = 1, .opc2 = 0, 5450 .access = PL2_RW, .fieldoffset = offsetof(CPUARMState, cp15.hcr_el2), 5451 .writefn = hcr_writelow }, 5452 { .name = "HACR_EL2", .state = ARM_CP_STATE_BOTH, 5453 .opc0 = 3, .opc1 = 4, .crn = 1, .crm = 1, .opc2 = 7, 5454 .access = PL2_RW, .type = ARM_CP_CONST, .resetvalue = 0 }, 5455 { .name = "ELR_EL2", .state = ARM_CP_STATE_AA64, 5456 .type = ARM_CP_ALIAS, 5457 .opc0 = 3, .opc1 = 4, .crn = 4, .crm = 0, .opc2 = 1, 5458 .access = PL2_RW, 5459 .fieldoffset = offsetof(CPUARMState, elr_el[2]) }, 5460 { .name = "ESR_EL2", .state = ARM_CP_STATE_BOTH, 5461 .opc0 = 3, .opc1 = 4, .crn = 5, .crm = 2, .opc2 = 0, 5462 .access = PL2_RW, .fieldoffset = offsetof(CPUARMState, cp15.esr_el[2]) }, 5463 { .name = "FAR_EL2", .state = ARM_CP_STATE_BOTH, 5464 .opc0 = 3, .opc1 = 4, .crn = 6, .crm = 0, .opc2 = 0, 5465 .access = PL2_RW, .fieldoffset = offsetof(CPUARMState, cp15.far_el[2]) }, 5466 { .name = "HIFAR", .state = ARM_CP_STATE_AA32, 5467 .type = ARM_CP_ALIAS, 5468 .cp = 15, .opc1 = 4, .crn = 6, .crm = 0, .opc2 = 2, 5469 .access = PL2_RW, 5470 .fieldoffset = offsetofhigh32(CPUARMState, cp15.far_el[2]) }, 5471 { .name = "SPSR_EL2", .state = ARM_CP_STATE_AA64, 5472 .type = ARM_CP_ALIAS, 5473 .opc0 = 3, .opc1 = 4, .crn = 4, .crm = 0, .opc2 = 0, 5474 .access = PL2_RW, 5475 .fieldoffset = offsetof(CPUARMState, banked_spsr[BANK_HYP]) }, 5476 { .name = "VBAR_EL2", .state = ARM_CP_STATE_BOTH, 5477 .opc0 = 3, .opc1 = 4, .crn = 12, .crm = 0, .opc2 = 0, 5478 .access = PL2_RW, .writefn = vbar_write, 5479 .fieldoffset = offsetof(CPUARMState, cp15.vbar_el[2]), 5480 .resetvalue = 0 }, 5481 { .name = "SP_EL2", .state = ARM_CP_STATE_AA64, 5482 .opc0 = 3, .opc1 = 6, .crn = 4, .crm = 1, .opc2 = 0, 5483 .access = PL3_RW, .type = ARM_CP_ALIAS, 5484 .fieldoffset = offsetof(CPUARMState, sp_el[2]) }, 5485 { .name = "CPTR_EL2", .state = ARM_CP_STATE_BOTH, 5486 .opc0 = 3, .opc1 = 4, .crn = 1, .crm = 1, .opc2 = 2, 5487 .access = PL2_RW, .accessfn = cptr_access, .resetvalue = 0, 5488 .fieldoffset = offsetof(CPUARMState, cp15.cptr_el[2]), 5489 .readfn = cptr_el2_read, .writefn = cptr_el2_write }, 5490 { .name = "MAIR_EL2", .state = ARM_CP_STATE_BOTH, 5491 .opc0 = 3, .opc1 = 4, .crn = 10, .crm = 2, .opc2 = 0, 5492 .access = PL2_RW, .fieldoffset = offsetof(CPUARMState, cp15.mair_el[2]), 5493 .resetvalue = 0 }, 5494 { .name = "HMAIR1", .state = ARM_CP_STATE_AA32, 5495 .cp = 15, .opc1 = 4, .crn = 10, .crm = 2, .opc2 = 1, 5496 .access = PL2_RW, .type = ARM_CP_ALIAS, 5497 .fieldoffset = offsetofhigh32(CPUARMState, cp15.mair_el[2]) }, 5498 { .name = "AMAIR_EL2", .state = ARM_CP_STATE_BOTH, 5499 .opc0 = 3, .opc1 = 4, .crn = 10, .crm = 3, .opc2 = 0, 5500 .access = PL2_RW, .type = ARM_CP_CONST, 5501 .resetvalue = 0 }, 5502 /* HAMAIR1 is mapped to AMAIR_EL2[63:32] */ 5503 { .name = "HAMAIR1", .state = ARM_CP_STATE_AA32, 5504 .cp = 15, .opc1 = 4, .crn = 10, .crm = 3, .opc2 = 1, 5505 .access = PL2_RW, .type = ARM_CP_CONST, 5506 .resetvalue = 0 }, 5507 { .name = "AFSR0_EL2", .state = ARM_CP_STATE_BOTH, 5508 .opc0 = 3, .opc1 = 4, .crn = 5, .crm = 1, .opc2 = 0, 5509 .access = PL2_RW, .type = ARM_CP_CONST, 5510 .resetvalue = 0 }, 5511 { .name = "AFSR1_EL2", .state = ARM_CP_STATE_BOTH, 5512 .opc0 = 3, .opc1 = 4, .crn = 5, .crm = 1, .opc2 = 1, 5513 .access = PL2_RW, .type = ARM_CP_CONST, 5514 .resetvalue = 0 }, 5515 { .name = "TCR_EL2", .state = ARM_CP_STATE_BOTH, 5516 .opc0 = 3, .opc1 = 4, .crn = 2, .crm = 0, .opc2 = 2, 5517 .access = PL2_RW, .writefn = vmsa_tcr_el12_write, 5518 /* no .raw_writefn or .resetfn needed as we never use mask/base_mask */ 5519 .fieldoffset = offsetof(CPUARMState, cp15.tcr_el[2]) }, 5520 { .name = "VTCR", .state = ARM_CP_STATE_AA32, 5521 .cp = 15, .opc1 = 4, .crn = 2, .crm = 1, .opc2 = 2, 5522 .type = ARM_CP_ALIAS, 5523 .access = PL2_RW, .accessfn = access_el3_aa32ns, 5524 .fieldoffset = offsetof(CPUARMState, cp15.vtcr_el2) }, 5525 { .name = "VTCR_EL2", .state = ARM_CP_STATE_AA64, 5526 .opc0 = 3, .opc1 = 4, .crn = 2, .crm = 1, .opc2 = 2, 5527 .access = PL2_RW, 5528 /* no .writefn needed as this can't cause an ASID change; 5529 * no .raw_writefn or .resetfn needed as we never use mask/base_mask 5530 */ 5531 .fieldoffset = offsetof(CPUARMState, cp15.vtcr_el2) }, 5532 { .name = "VTTBR", .state = ARM_CP_STATE_AA32, 5533 .cp = 15, .opc1 = 6, .crm = 2, 5534 .type = ARM_CP_64BIT | ARM_CP_ALIAS, 5535 .access = PL2_RW, .accessfn = access_el3_aa32ns, 5536 .fieldoffset = offsetof(CPUARMState, cp15.vttbr_el2), 5537 .writefn = vttbr_write }, 5538 { .name = "VTTBR_EL2", .state = ARM_CP_STATE_AA64, 5539 .opc0 = 3, .opc1 = 4, .crn = 2, .crm = 1, .opc2 = 0, 5540 .access = PL2_RW, .writefn = vttbr_write, 5541 .fieldoffset = offsetof(CPUARMState, cp15.vttbr_el2) }, 5542 { .name = "SCTLR_EL2", .state = ARM_CP_STATE_BOTH, 5543 .opc0 = 3, .opc1 = 4, .crn = 1, .crm = 0, .opc2 = 0, 5544 .access = PL2_RW, .raw_writefn = raw_write, .writefn = sctlr_write, 5545 .fieldoffset = offsetof(CPUARMState, cp15.sctlr_el[2]) }, 5546 { .name = "TPIDR_EL2", .state = ARM_CP_STATE_BOTH, 5547 .opc0 = 3, .opc1 = 4, .crn = 13, .crm = 0, .opc2 = 2, 5548 .access = PL2_RW, .resetvalue = 0, 5549 .fieldoffset = offsetof(CPUARMState, cp15.tpidr_el[2]) }, 5550 { .name = "TTBR0_EL2", .state = ARM_CP_STATE_AA64, 5551 .opc0 = 3, .opc1 = 4, .crn = 2, .crm = 0, .opc2 = 0, 5552 .access = PL2_RW, .resetvalue = 0, .writefn = vmsa_tcr_ttbr_el2_write, 5553 .fieldoffset = offsetof(CPUARMState, cp15.ttbr0_el[2]) }, 5554 { .name = "HTTBR", .cp = 15, .opc1 = 4, .crm = 2, 5555 .access = PL2_RW, .type = ARM_CP_64BIT | ARM_CP_ALIAS, 5556 .fieldoffset = offsetof(CPUARMState, cp15.ttbr0_el[2]) }, 5557 { .name = "TLBIALLNSNH", 5558 .cp = 15, .opc1 = 4, .crn = 8, .crm = 7, .opc2 = 4, 5559 .type = ARM_CP_NO_RAW, .access = PL2_W, 5560 .writefn = tlbiall_nsnh_write }, 5561 { .name = "TLBIALLNSNHIS", 5562 .cp = 15, .opc1 = 4, .crn = 8, .crm = 3, .opc2 = 4, 5563 .type = ARM_CP_NO_RAW, .access = PL2_W, 5564 .writefn = tlbiall_nsnh_is_write }, 5565 { .name = "TLBIALLH", .cp = 15, .opc1 = 4, .crn = 8, .crm = 7, .opc2 = 0, 5566 .type = ARM_CP_NO_RAW, .access = PL2_W, 5567 .writefn = tlbiall_hyp_write }, 5568 { .name = "TLBIALLHIS", .cp = 15, .opc1 = 4, .crn = 8, .crm = 3, .opc2 = 0, 5569 .type = ARM_CP_NO_RAW, .access = PL2_W, 5570 .writefn = tlbiall_hyp_is_write }, 5571 { .name = "TLBIMVAH", .cp = 15, .opc1 = 4, .crn = 8, .crm = 7, .opc2 = 1, 5572 .type = ARM_CP_NO_RAW, .access = PL2_W, 5573 .writefn = tlbimva_hyp_write }, 5574 { .name = "TLBIMVAHIS", .cp = 15, .opc1 = 4, .crn = 8, .crm = 3, .opc2 = 1, 5575 .type = ARM_CP_NO_RAW, .access = PL2_W, 5576 .writefn = tlbimva_hyp_is_write }, 5577 { .name = "TLBI_ALLE2", .state = ARM_CP_STATE_AA64, 5578 .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 7, .opc2 = 0, 5579 .type = ARM_CP_NO_RAW, .access = PL2_W, 5580 .writefn = tlbi_aa64_alle2_write }, 5581 { .name = "TLBI_VAE2", .state = ARM_CP_STATE_AA64, 5582 .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 7, .opc2 = 1, 5583 .type = ARM_CP_NO_RAW, .access = PL2_W, 5584 .writefn = tlbi_aa64_vae2_write }, 5585 { .name = "TLBI_VALE2", .state = ARM_CP_STATE_AA64, 5586 .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 7, .opc2 = 5, 5587 .access = PL2_W, .type = ARM_CP_NO_RAW, 5588 .writefn = tlbi_aa64_vae2_write }, 5589 { .name = "TLBI_ALLE2IS", .state = ARM_CP_STATE_AA64, 5590 .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 3, .opc2 = 0, 5591 .access = PL2_W, .type = ARM_CP_NO_RAW, 5592 .writefn = tlbi_aa64_alle2is_write }, 5593 { .name = "TLBI_VAE2IS", .state = ARM_CP_STATE_AA64, 5594 .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 3, .opc2 = 1, 5595 .type = ARM_CP_NO_RAW, .access = PL2_W, 5596 .writefn = tlbi_aa64_vae2is_write }, 5597 { .name = "TLBI_VALE2IS", .state = ARM_CP_STATE_AA64, 5598 .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 3, .opc2 = 5, 5599 .access = PL2_W, .type = ARM_CP_NO_RAW, 5600 .writefn = tlbi_aa64_vae2is_write }, 5601 #ifndef CONFIG_USER_ONLY 5602 /* Unlike the other EL2-related AT operations, these must 5603 * UNDEF from EL3 if EL2 is not implemented, which is why we 5604 * define them here rather than with the rest of the AT ops. 5605 */ 5606 { .name = "AT_S1E2R", .state = ARM_CP_STATE_AA64, 5607 .opc0 = 1, .opc1 = 4, .crn = 7, .crm = 8, .opc2 = 0, 5608 .access = PL2_W, .accessfn = at_s1e2_access, 5609 .type = ARM_CP_NO_RAW | ARM_CP_RAISES_EXC, .writefn = ats_write64 }, 5610 { .name = "AT_S1E2W", .state = ARM_CP_STATE_AA64, 5611 .opc0 = 1, .opc1 = 4, .crn = 7, .crm = 8, .opc2 = 1, 5612 .access = PL2_W, .accessfn = at_s1e2_access, 5613 .type = ARM_CP_NO_RAW | ARM_CP_RAISES_EXC, .writefn = ats_write64 }, 5614 /* The AArch32 ATS1H* operations are CONSTRAINED UNPREDICTABLE 5615 * if EL2 is not implemented; we choose to UNDEF. Behaviour at EL3 5616 * with SCR.NS == 0 outside Monitor mode is UNPREDICTABLE; we choose 5617 * to behave as if SCR.NS was 1. 5618 */ 5619 { .name = "ATS1HR", .cp = 15, .opc1 = 4, .crn = 7, .crm = 8, .opc2 = 0, 5620 .access = PL2_W, 5621 .writefn = ats1h_write, .type = ARM_CP_NO_RAW | ARM_CP_RAISES_EXC }, 5622 { .name = "ATS1HW", .cp = 15, .opc1 = 4, .crn = 7, .crm = 8, .opc2 = 1, 5623 .access = PL2_W, 5624 .writefn = ats1h_write, .type = ARM_CP_NO_RAW | ARM_CP_RAISES_EXC }, 5625 { .name = "CNTHCTL_EL2", .state = ARM_CP_STATE_BOTH, 5626 .opc0 = 3, .opc1 = 4, .crn = 14, .crm = 1, .opc2 = 0, 5627 /* ARMv7 requires bit 0 and 1 to reset to 1. ARMv8 defines the 5628 * reset values as IMPDEF. We choose to reset to 3 to comply with 5629 * both ARMv7 and ARMv8. 5630 */ 5631 .access = PL2_RW, .resetvalue = 3, 5632 .fieldoffset = offsetof(CPUARMState, cp15.cnthctl_el2) }, 5633 { .name = "CNTVOFF_EL2", .state = ARM_CP_STATE_AA64, 5634 .opc0 = 3, .opc1 = 4, .crn = 14, .crm = 0, .opc2 = 3, 5635 .access = PL2_RW, .type = ARM_CP_IO, .resetvalue = 0, 5636 .writefn = gt_cntvoff_write, 5637 .fieldoffset = offsetof(CPUARMState, cp15.cntvoff_el2) }, 5638 { .name = "CNTVOFF", .cp = 15, .opc1 = 4, .crm = 14, 5639 .access = PL2_RW, .type = ARM_CP_64BIT | ARM_CP_ALIAS | ARM_CP_IO, 5640 .writefn = gt_cntvoff_write, 5641 .fieldoffset = offsetof(CPUARMState, cp15.cntvoff_el2) }, 5642 { .name = "CNTHP_CVAL_EL2", .state = ARM_CP_STATE_AA64, 5643 .opc0 = 3, .opc1 = 4, .crn = 14, .crm = 2, .opc2 = 2, 5644 .fieldoffset = offsetof(CPUARMState, cp15.c14_timer[GTIMER_HYP].cval), 5645 .type = ARM_CP_IO, .access = PL2_RW, 5646 .writefn = gt_hyp_cval_write, .raw_writefn = raw_write }, 5647 { .name = "CNTHP_CVAL", .cp = 15, .opc1 = 6, .crm = 14, 5648 .fieldoffset = offsetof(CPUARMState, cp15.c14_timer[GTIMER_HYP].cval), 5649 .access = PL2_RW, .type = ARM_CP_64BIT | ARM_CP_IO, 5650 .writefn = gt_hyp_cval_write, .raw_writefn = raw_write }, 5651 { .name = "CNTHP_TVAL_EL2", .state = ARM_CP_STATE_BOTH, 5652 .opc0 = 3, .opc1 = 4, .crn = 14, .crm = 2, .opc2 = 0, 5653 .type = ARM_CP_NO_RAW | ARM_CP_IO, .access = PL2_RW, 5654 .resetfn = gt_hyp_timer_reset, 5655 .readfn = gt_hyp_tval_read, .writefn = gt_hyp_tval_write }, 5656 { .name = "CNTHP_CTL_EL2", .state = ARM_CP_STATE_BOTH, 5657 .type = ARM_CP_IO, 5658 .opc0 = 3, .opc1 = 4, .crn = 14, .crm = 2, .opc2 = 1, 5659 .access = PL2_RW, 5660 .fieldoffset = offsetof(CPUARMState, cp15.c14_timer[GTIMER_HYP].ctl), 5661 .resetvalue = 0, 5662 .writefn = gt_hyp_ctl_write, .raw_writefn = raw_write }, 5663 #endif 5664 /* The only field of MDCR_EL2 that has a defined architectural reset value 5665 * is MDCR_EL2.HPMN which should reset to the value of PMCR_EL0.N; but we 5666 * don't implement any PMU event counters, so using zero as a reset 5667 * value for MDCR_EL2 is okay 5668 */ 5669 { .name = "MDCR_EL2", .state = ARM_CP_STATE_BOTH, 5670 .opc0 = 3, .opc1 = 4, .crn = 1, .crm = 1, .opc2 = 1, 5671 .access = PL2_RW, .resetvalue = 0, 5672 .fieldoffset = offsetof(CPUARMState, cp15.mdcr_el2), }, 5673 { .name = "HPFAR", .state = ARM_CP_STATE_AA32, 5674 .cp = 15, .opc1 = 4, .crn = 6, .crm = 0, .opc2 = 4, 5675 .access = PL2_RW, .accessfn = access_el3_aa32ns, 5676 .fieldoffset = offsetof(CPUARMState, cp15.hpfar_el2) }, 5677 { .name = "HPFAR_EL2", .state = ARM_CP_STATE_AA64, 5678 .opc0 = 3, .opc1 = 4, .crn = 6, .crm = 0, .opc2 = 4, 5679 .access = PL2_RW, 5680 .fieldoffset = offsetof(CPUARMState, cp15.hpfar_el2) }, 5681 { .name = "HSTR_EL2", .state = ARM_CP_STATE_BOTH, 5682 .cp = 15, .opc0 = 3, .opc1 = 4, .crn = 1, .crm = 1, .opc2 = 3, 5683 .access = PL2_RW, 5684 .fieldoffset = offsetof(CPUARMState, cp15.hstr_el2) }, 5685 REGINFO_SENTINEL 5686 }; 5687 5688 static const ARMCPRegInfo el2_v8_cp_reginfo[] = { 5689 { .name = "HCR2", .state = ARM_CP_STATE_AA32, 5690 .type = ARM_CP_ALIAS | ARM_CP_IO, 5691 .cp = 15, .opc1 = 4, .crn = 1, .crm = 1, .opc2 = 4, 5692 .access = PL2_RW, 5693 .fieldoffset = offsetofhigh32(CPUARMState, cp15.hcr_el2), 5694 .writefn = hcr_writehigh }, 5695 REGINFO_SENTINEL 5696 }; 5697 5698 static CPAccessResult nsacr_access(CPUARMState *env, const ARMCPRegInfo *ri, 5699 bool isread) 5700 { 5701 /* The NSACR is RW at EL3, and RO for NS EL1 and NS EL2. 5702 * At Secure EL1 it traps to EL3. 5703 */ 5704 if (arm_current_el(env) == 3) { 5705 return CP_ACCESS_OK; 5706 } 5707 if (arm_is_secure_below_el3(env)) { 5708 return CP_ACCESS_TRAP_EL3; 5709 } 5710 /* Accesses from EL1 NS and EL2 NS are UNDEF for write but allow reads. */ 5711 if (isread) { 5712 return CP_ACCESS_OK; 5713 } 5714 return CP_ACCESS_TRAP_UNCATEGORIZED; 5715 } 5716 5717 static const ARMCPRegInfo el3_cp_reginfo[] = { 5718 { .name = "SCR_EL3", .state = ARM_CP_STATE_AA64, 5719 .opc0 = 3, .opc1 = 6, .crn = 1, .crm = 1, .opc2 = 0, 5720 .access = PL3_RW, .fieldoffset = offsetof(CPUARMState, cp15.scr_el3), 5721 .resetvalue = 0, .writefn = scr_write }, 5722 { .name = "SCR", .type = ARM_CP_ALIAS | ARM_CP_NEWEL, 5723 .cp = 15, .opc1 = 0, .crn = 1, .crm = 1, .opc2 = 0, 5724 .access = PL1_RW, .accessfn = access_trap_aa32s_el1, 5725 .fieldoffset = offsetoflow32(CPUARMState, cp15.scr_el3), 5726 .writefn = scr_write }, 5727 { .name = "SDER32_EL3", .state = ARM_CP_STATE_AA64, 5728 .opc0 = 3, .opc1 = 6, .crn = 1, .crm = 1, .opc2 = 1, 5729 .access = PL3_RW, .resetvalue = 0, 5730 .fieldoffset = offsetof(CPUARMState, cp15.sder) }, 5731 { .name = "SDER", 5732 .cp = 15, .opc1 = 0, .crn = 1, .crm = 1, .opc2 = 1, 5733 .access = PL3_RW, .resetvalue = 0, 5734 .fieldoffset = offsetoflow32(CPUARMState, cp15.sder) }, 5735 { .name = "MVBAR", .cp = 15, .opc1 = 0, .crn = 12, .crm = 0, .opc2 = 1, 5736 .access = PL1_RW, .accessfn = access_trap_aa32s_el1, 5737 .writefn = vbar_write, .resetvalue = 0, 5738 .fieldoffset = offsetof(CPUARMState, cp15.mvbar) }, 5739 { .name = "TTBR0_EL3", .state = ARM_CP_STATE_AA64, 5740 .opc0 = 3, .opc1 = 6, .crn = 2, .crm = 0, .opc2 = 0, 5741 .access = PL3_RW, .resetvalue = 0, 5742 .fieldoffset = offsetof(CPUARMState, cp15.ttbr0_el[3]) }, 5743 { .name = "TCR_EL3", .state = ARM_CP_STATE_AA64, 5744 .opc0 = 3, .opc1 = 6, .crn = 2, .crm = 0, .opc2 = 2, 5745 .access = PL3_RW, 5746 /* no .writefn needed as this can't cause an ASID change; 5747 * we must provide a .raw_writefn and .resetfn because we handle 5748 * reset and migration for the AArch32 TTBCR(S), which might be 5749 * using mask and base_mask. 5750 */ 5751 .resetfn = vmsa_ttbcr_reset, .raw_writefn = vmsa_ttbcr_raw_write, 5752 .fieldoffset = offsetof(CPUARMState, cp15.tcr_el[3]) }, 5753 { .name = "ELR_EL3", .state = ARM_CP_STATE_AA64, 5754 .type = ARM_CP_ALIAS, 5755 .opc0 = 3, .opc1 = 6, .crn = 4, .crm = 0, .opc2 = 1, 5756 .access = PL3_RW, 5757 .fieldoffset = offsetof(CPUARMState, elr_el[3]) }, 5758 { .name = "ESR_EL3", .state = ARM_CP_STATE_AA64, 5759 .opc0 = 3, .opc1 = 6, .crn = 5, .crm = 2, .opc2 = 0, 5760 .access = PL3_RW, .fieldoffset = offsetof(CPUARMState, cp15.esr_el[3]) }, 5761 { .name = "FAR_EL3", .state = ARM_CP_STATE_AA64, 5762 .opc0 = 3, .opc1 = 6, .crn = 6, .crm = 0, .opc2 = 0, 5763 .access = PL3_RW, .fieldoffset = offsetof(CPUARMState, cp15.far_el[3]) }, 5764 { .name = "SPSR_EL3", .state = ARM_CP_STATE_AA64, 5765 .type = ARM_CP_ALIAS, 5766 .opc0 = 3, .opc1 = 6, .crn = 4, .crm = 0, .opc2 = 0, 5767 .access = PL3_RW, 5768 .fieldoffset = offsetof(CPUARMState, banked_spsr[BANK_MON]) }, 5769 { .name = "VBAR_EL3", .state = ARM_CP_STATE_AA64, 5770 .opc0 = 3, .opc1 = 6, .crn = 12, .crm = 0, .opc2 = 0, 5771 .access = PL3_RW, .writefn = vbar_write, 5772 .fieldoffset = offsetof(CPUARMState, cp15.vbar_el[3]), 5773 .resetvalue = 0 }, 5774 { .name = "CPTR_EL3", .state = ARM_CP_STATE_AA64, 5775 .opc0 = 3, .opc1 = 6, .crn = 1, .crm = 1, .opc2 = 2, 5776 .access = PL3_RW, .accessfn = cptr_access, .resetvalue = 0, 5777 .fieldoffset = offsetof(CPUARMState, cp15.cptr_el[3]) }, 5778 { .name = "TPIDR_EL3", .state = ARM_CP_STATE_AA64, 5779 .opc0 = 3, .opc1 = 6, .crn = 13, .crm = 0, .opc2 = 2, 5780 .access = PL3_RW, .resetvalue = 0, 5781 .fieldoffset = offsetof(CPUARMState, cp15.tpidr_el[3]) }, 5782 { .name = "AMAIR_EL3", .state = ARM_CP_STATE_AA64, 5783 .opc0 = 3, .opc1 = 6, .crn = 10, .crm = 3, .opc2 = 0, 5784 .access = PL3_RW, .type = ARM_CP_CONST, 5785 .resetvalue = 0 }, 5786 { .name = "AFSR0_EL3", .state = ARM_CP_STATE_BOTH, 5787 .opc0 = 3, .opc1 = 6, .crn = 5, .crm = 1, .opc2 = 0, 5788 .access = PL3_RW, .type = ARM_CP_CONST, 5789 .resetvalue = 0 }, 5790 { .name = "AFSR1_EL3", .state = ARM_CP_STATE_BOTH, 5791 .opc0 = 3, .opc1 = 6, .crn = 5, .crm = 1, .opc2 = 1, 5792 .access = PL3_RW, .type = ARM_CP_CONST, 5793 .resetvalue = 0 }, 5794 { .name = "TLBI_ALLE3IS", .state = ARM_CP_STATE_AA64, 5795 .opc0 = 1, .opc1 = 6, .crn = 8, .crm = 3, .opc2 = 0, 5796 .access = PL3_W, .type = ARM_CP_NO_RAW, 5797 .writefn = tlbi_aa64_alle3is_write }, 5798 { .name = "TLBI_VAE3IS", .state = ARM_CP_STATE_AA64, 5799 .opc0 = 1, .opc1 = 6, .crn = 8, .crm = 3, .opc2 = 1, 5800 .access = PL3_W, .type = ARM_CP_NO_RAW, 5801 .writefn = tlbi_aa64_vae3is_write }, 5802 { .name = "TLBI_VALE3IS", .state = ARM_CP_STATE_AA64, 5803 .opc0 = 1, .opc1 = 6, .crn = 8, .crm = 3, .opc2 = 5, 5804 .access = PL3_W, .type = ARM_CP_NO_RAW, 5805 .writefn = tlbi_aa64_vae3is_write }, 5806 { .name = "TLBI_ALLE3", .state = ARM_CP_STATE_AA64, 5807 .opc0 = 1, .opc1 = 6, .crn = 8, .crm = 7, .opc2 = 0, 5808 .access = PL3_W, .type = ARM_CP_NO_RAW, 5809 .writefn = tlbi_aa64_alle3_write }, 5810 { .name = "TLBI_VAE3", .state = ARM_CP_STATE_AA64, 5811 .opc0 = 1, .opc1 = 6, .crn = 8, .crm = 7, .opc2 = 1, 5812 .access = PL3_W, .type = ARM_CP_NO_RAW, 5813 .writefn = tlbi_aa64_vae3_write }, 5814 { .name = "TLBI_VALE3", .state = ARM_CP_STATE_AA64, 5815 .opc0 = 1, .opc1 = 6, .crn = 8, .crm = 7, .opc2 = 5, 5816 .access = PL3_W, .type = ARM_CP_NO_RAW, 5817 .writefn = tlbi_aa64_vae3_write }, 5818 REGINFO_SENTINEL 5819 }; 5820 5821 #ifndef CONFIG_USER_ONLY 5822 /* Test if system register redirection is to occur in the current state. */ 5823 static bool redirect_for_e2h(CPUARMState *env) 5824 { 5825 return arm_current_el(env) == 2 && (arm_hcr_el2_eff(env) & HCR_E2H); 5826 } 5827 5828 static uint64_t el2_e2h_read(CPUARMState *env, const ARMCPRegInfo *ri) 5829 { 5830 CPReadFn *readfn; 5831 5832 if (redirect_for_e2h(env)) { 5833 /* Switch to the saved EL2 version of the register. */ 5834 ri = ri->opaque; 5835 readfn = ri->readfn; 5836 } else { 5837 readfn = ri->orig_readfn; 5838 } 5839 if (readfn == NULL) { 5840 readfn = raw_read; 5841 } 5842 return readfn(env, ri); 5843 } 5844 5845 static void el2_e2h_write(CPUARMState *env, const ARMCPRegInfo *ri, 5846 uint64_t value) 5847 { 5848 CPWriteFn *writefn; 5849 5850 if (redirect_for_e2h(env)) { 5851 /* Switch to the saved EL2 version of the register. */ 5852 ri = ri->opaque; 5853 writefn = ri->writefn; 5854 } else { 5855 writefn = ri->orig_writefn; 5856 } 5857 if (writefn == NULL) { 5858 writefn = raw_write; 5859 } 5860 writefn(env, ri, value); 5861 } 5862 5863 static void define_arm_vh_e2h_redirects_aliases(ARMCPU *cpu) 5864 { 5865 struct E2HAlias { 5866 uint32_t src_key, dst_key, new_key; 5867 const char *src_name, *dst_name, *new_name; 5868 bool (*feature)(const ARMISARegisters *id); 5869 }; 5870 5871 #define K(op0, op1, crn, crm, op2) \ 5872 ENCODE_AA64_CP_REG(CP_REG_ARM64_SYSREG_CP, crn, crm, op0, op1, op2) 5873 5874 static const struct E2HAlias aliases[] = { 5875 { K(3, 0, 1, 0, 0), K(3, 4, 1, 0, 0), K(3, 5, 1, 0, 0), 5876 "SCTLR", "SCTLR_EL2", "SCTLR_EL12" }, 5877 { K(3, 0, 1, 0, 2), K(3, 4, 1, 1, 2), K(3, 5, 1, 0, 2), 5878 "CPACR", "CPTR_EL2", "CPACR_EL12" }, 5879 { K(3, 0, 2, 0, 0), K(3, 4, 2, 0, 0), K(3, 5, 2, 0, 0), 5880 "TTBR0_EL1", "TTBR0_EL2", "TTBR0_EL12" }, 5881 { K(3, 0, 2, 0, 1), K(3, 4, 2, 0, 1), K(3, 5, 2, 0, 1), 5882 "TTBR1_EL1", "TTBR1_EL2", "TTBR1_EL12" }, 5883 { K(3, 0, 2, 0, 2), K(3, 4, 2, 0, 2), K(3, 5, 2, 0, 2), 5884 "TCR_EL1", "TCR_EL2", "TCR_EL12" }, 5885 { K(3, 0, 4, 0, 0), K(3, 4, 4, 0, 0), K(3, 5, 4, 0, 0), 5886 "SPSR_EL1", "SPSR_EL2", "SPSR_EL12" }, 5887 { K(3, 0, 4, 0, 1), K(3, 4, 4, 0, 1), K(3, 5, 4, 0, 1), 5888 "ELR_EL1", "ELR_EL2", "ELR_EL12" }, 5889 { K(3, 0, 5, 1, 0), K(3, 4, 5, 1, 0), K(3, 5, 5, 1, 0), 5890 "AFSR0_EL1", "AFSR0_EL2", "AFSR0_EL12" }, 5891 { K(3, 0, 5, 1, 1), K(3, 4, 5, 1, 1), K(3, 5, 5, 1, 1), 5892 "AFSR1_EL1", "AFSR1_EL2", "AFSR1_EL12" }, 5893 { K(3, 0, 5, 2, 0), K(3, 4, 5, 2, 0), K(3, 5, 5, 2, 0), 5894 "ESR_EL1", "ESR_EL2", "ESR_EL12" }, 5895 { K(3, 0, 6, 0, 0), K(3, 4, 6, 0, 0), K(3, 5, 6, 0, 0), 5896 "FAR_EL1", "FAR_EL2", "FAR_EL12" }, 5897 { K(3, 0, 10, 2, 0), K(3, 4, 10, 2, 0), K(3, 5, 10, 2, 0), 5898 "MAIR_EL1", "MAIR_EL2", "MAIR_EL12" }, 5899 { K(3, 0, 10, 3, 0), K(3, 4, 10, 3, 0), K(3, 5, 10, 3, 0), 5900 "AMAIR0", "AMAIR_EL2", "AMAIR_EL12" }, 5901 { K(3, 0, 12, 0, 0), K(3, 4, 12, 0, 0), K(3, 5, 12, 0, 0), 5902 "VBAR", "VBAR_EL2", "VBAR_EL12" }, 5903 { K(3, 0, 13, 0, 1), K(3, 4, 13, 0, 1), K(3, 5, 13, 0, 1), 5904 "CONTEXTIDR_EL1", "CONTEXTIDR_EL2", "CONTEXTIDR_EL12" }, 5905 { K(3, 0, 14, 1, 0), K(3, 4, 14, 1, 0), K(3, 5, 14, 1, 0), 5906 "CNTKCTL", "CNTHCTL_EL2", "CNTKCTL_EL12" }, 5907 5908 /* 5909 * Note that redirection of ZCR is mentioned in the description 5910 * of ZCR_EL2, and aliasing in the description of ZCR_EL1, but 5911 * not in the summary table. 5912 */ 5913 { K(3, 0, 1, 2, 0), K(3, 4, 1, 2, 0), K(3, 5, 1, 2, 0), 5914 "ZCR_EL1", "ZCR_EL2", "ZCR_EL12", isar_feature_aa64_sve }, 5915 5916 { K(3, 0, 5, 6, 0), K(3, 4, 5, 6, 0), K(3, 5, 5, 6, 0), 5917 "TFSR_EL1", "TFSR_EL2", "TFSR_EL12", isar_feature_aa64_mte }, 5918 5919 /* TODO: ARMv8.2-SPE -- PMSCR_EL2 */ 5920 /* TODO: ARMv8.4-Trace -- TRFCR_EL2 */ 5921 }; 5922 #undef K 5923 5924 size_t i; 5925 5926 for (i = 0; i < ARRAY_SIZE(aliases); i++) { 5927 const struct E2HAlias *a = &aliases[i]; 5928 ARMCPRegInfo *src_reg, *dst_reg; 5929 5930 if (a->feature && !a->feature(&cpu->isar)) { 5931 continue; 5932 } 5933 5934 src_reg = g_hash_table_lookup(cpu->cp_regs, &a->src_key); 5935 dst_reg = g_hash_table_lookup(cpu->cp_regs, &a->dst_key); 5936 g_assert(src_reg != NULL); 5937 g_assert(dst_reg != NULL); 5938 5939 /* Cross-compare names to detect typos in the keys. */ 5940 g_assert(strcmp(src_reg->name, a->src_name) == 0); 5941 g_assert(strcmp(dst_reg->name, a->dst_name) == 0); 5942 5943 /* None of the core system registers use opaque; we will. */ 5944 g_assert(src_reg->opaque == NULL); 5945 5946 /* Create alias before redirection so we dup the right data. */ 5947 if (a->new_key) { 5948 ARMCPRegInfo *new_reg = g_memdup(src_reg, sizeof(ARMCPRegInfo)); 5949 uint32_t *new_key = g_memdup(&a->new_key, sizeof(uint32_t)); 5950 bool ok; 5951 5952 new_reg->name = a->new_name; 5953 new_reg->type |= ARM_CP_ALIAS; 5954 /* Remove PL1/PL0 access, leaving PL2/PL3 R/W in place. */ 5955 new_reg->access &= PL2_RW | PL3_RW; 5956 5957 ok = g_hash_table_insert(cpu->cp_regs, new_key, new_reg); 5958 g_assert(ok); 5959 } 5960 5961 src_reg->opaque = dst_reg; 5962 src_reg->orig_readfn = src_reg->readfn ?: raw_read; 5963 src_reg->orig_writefn = src_reg->writefn ?: raw_write; 5964 if (!src_reg->raw_readfn) { 5965 src_reg->raw_readfn = raw_read; 5966 } 5967 if (!src_reg->raw_writefn) { 5968 src_reg->raw_writefn = raw_write; 5969 } 5970 src_reg->readfn = el2_e2h_read; 5971 src_reg->writefn = el2_e2h_write; 5972 } 5973 } 5974 #endif 5975 5976 static CPAccessResult ctr_el0_access(CPUARMState *env, const ARMCPRegInfo *ri, 5977 bool isread) 5978 { 5979 int cur_el = arm_current_el(env); 5980 5981 if (cur_el < 2) { 5982 uint64_t hcr = arm_hcr_el2_eff(env); 5983 5984 if (cur_el == 0) { 5985 if ((hcr & (HCR_E2H | HCR_TGE)) == (HCR_E2H | HCR_TGE)) { 5986 if (!(env->cp15.sctlr_el[2] & SCTLR_UCT)) { 5987 return CP_ACCESS_TRAP_EL2; 5988 } 5989 } else { 5990 if (!(env->cp15.sctlr_el[1] & SCTLR_UCT)) { 5991 return CP_ACCESS_TRAP; 5992 } 5993 if (hcr & HCR_TID2) { 5994 return CP_ACCESS_TRAP_EL2; 5995 } 5996 } 5997 } else if (hcr & HCR_TID2) { 5998 return CP_ACCESS_TRAP_EL2; 5999 } 6000 } 6001 6002 if (arm_current_el(env) < 2 && arm_hcr_el2_eff(env) & HCR_TID2) { 6003 return CP_ACCESS_TRAP_EL2; 6004 } 6005 6006 return CP_ACCESS_OK; 6007 } 6008 6009 static void oslar_write(CPUARMState *env, const ARMCPRegInfo *ri, 6010 uint64_t value) 6011 { 6012 /* Writes to OSLAR_EL1 may update the OS lock status, which can be 6013 * read via a bit in OSLSR_EL1. 6014 */ 6015 int oslock; 6016 6017 if (ri->state == ARM_CP_STATE_AA32) { 6018 oslock = (value == 0xC5ACCE55); 6019 } else { 6020 oslock = value & 1; 6021 } 6022 6023 env->cp15.oslsr_el1 = deposit32(env->cp15.oslsr_el1, 1, 1, oslock); 6024 } 6025 6026 static const ARMCPRegInfo debug_cp_reginfo[] = { 6027 /* DBGDRAR, DBGDSAR: always RAZ since we don't implement memory mapped 6028 * debug components. The AArch64 version of DBGDRAR is named MDRAR_EL1; 6029 * unlike DBGDRAR it is never accessible from EL0. 6030 * DBGDSAR is deprecated and must RAZ from v8 anyway, so it has no AArch64 6031 * accessor. 6032 */ 6033 { .name = "DBGDRAR", .cp = 14, .crn = 1, .crm = 0, .opc1 = 0, .opc2 = 0, 6034 .access = PL0_R, .accessfn = access_tdra, 6035 .type = ARM_CP_CONST, .resetvalue = 0 }, 6036 { .name = "MDRAR_EL1", .state = ARM_CP_STATE_AA64, 6037 .opc0 = 2, .opc1 = 0, .crn = 1, .crm = 0, .opc2 = 0, 6038 .access = PL1_R, .accessfn = access_tdra, 6039 .type = ARM_CP_CONST, .resetvalue = 0 }, 6040 { .name = "DBGDSAR", .cp = 14, .crn = 2, .crm = 0, .opc1 = 0, .opc2 = 0, 6041 .access = PL0_R, .accessfn = access_tdra, 6042 .type = ARM_CP_CONST, .resetvalue = 0 }, 6043 /* Monitor debug system control register; the 32-bit alias is DBGDSCRext. */ 6044 { .name = "MDSCR_EL1", .state = ARM_CP_STATE_BOTH, 6045 .cp = 14, .opc0 = 2, .opc1 = 0, .crn = 0, .crm = 2, .opc2 = 2, 6046 .access = PL1_RW, .accessfn = access_tda, 6047 .fieldoffset = offsetof(CPUARMState, cp15.mdscr_el1), 6048 .resetvalue = 0 }, 6049 /* MDCCSR_EL0, aka DBGDSCRint. This is a read-only mirror of MDSCR_EL1. 6050 * We don't implement the configurable EL0 access. 6051 */ 6052 { .name = "MDCCSR_EL0", .state = ARM_CP_STATE_BOTH, 6053 .cp = 14, .opc0 = 2, .opc1 = 0, .crn = 0, .crm = 1, .opc2 = 0, 6054 .type = ARM_CP_ALIAS, 6055 .access = PL1_R, .accessfn = access_tda, 6056 .fieldoffset = offsetof(CPUARMState, cp15.mdscr_el1), }, 6057 { .name = "OSLAR_EL1", .state = ARM_CP_STATE_BOTH, 6058 .cp = 14, .opc0 = 2, .opc1 = 0, .crn = 1, .crm = 0, .opc2 = 4, 6059 .access = PL1_W, .type = ARM_CP_NO_RAW, 6060 .accessfn = access_tdosa, 6061 .writefn = oslar_write }, 6062 { .name = "OSLSR_EL1", .state = ARM_CP_STATE_BOTH, 6063 .cp = 14, .opc0 = 2, .opc1 = 0, .crn = 1, .crm = 1, .opc2 = 4, 6064 .access = PL1_R, .resetvalue = 10, 6065 .accessfn = access_tdosa, 6066 .fieldoffset = offsetof(CPUARMState, cp15.oslsr_el1) }, 6067 /* Dummy OSDLR_EL1: 32-bit Linux will read this */ 6068 { .name = "OSDLR_EL1", .state = ARM_CP_STATE_BOTH, 6069 .cp = 14, .opc0 = 2, .opc1 = 0, .crn = 1, .crm = 3, .opc2 = 4, 6070 .access = PL1_RW, .accessfn = access_tdosa, 6071 .type = ARM_CP_NOP }, 6072 /* Dummy DBGVCR: Linux wants to clear this on startup, but we don't 6073 * implement vector catch debug events yet. 6074 */ 6075 { .name = "DBGVCR", 6076 .cp = 14, .opc1 = 0, .crn = 0, .crm = 7, .opc2 = 0, 6077 .access = PL1_RW, .accessfn = access_tda, 6078 .type = ARM_CP_NOP }, 6079 /* Dummy DBGVCR32_EL2 (which is only for a 64-bit hypervisor 6080 * to save and restore a 32-bit guest's DBGVCR) 6081 */ 6082 { .name = "DBGVCR32_EL2", .state = ARM_CP_STATE_AA64, 6083 .opc0 = 2, .opc1 = 4, .crn = 0, .crm = 7, .opc2 = 0, 6084 .access = PL2_RW, .accessfn = access_tda, 6085 .type = ARM_CP_NOP }, 6086 /* Dummy MDCCINT_EL1, since we don't implement the Debug Communications 6087 * Channel but Linux may try to access this register. The 32-bit 6088 * alias is DBGDCCINT. 6089 */ 6090 { .name = "MDCCINT_EL1", .state = ARM_CP_STATE_BOTH, 6091 .cp = 14, .opc0 = 2, .opc1 = 0, .crn = 0, .crm = 2, .opc2 = 0, 6092 .access = PL1_RW, .accessfn = access_tda, 6093 .type = ARM_CP_NOP }, 6094 REGINFO_SENTINEL 6095 }; 6096 6097 static const ARMCPRegInfo debug_lpae_cp_reginfo[] = { 6098 /* 64 bit access versions of the (dummy) debug registers */ 6099 { .name = "DBGDRAR", .cp = 14, .crm = 1, .opc1 = 0, 6100 .access = PL0_R, .type = ARM_CP_CONST|ARM_CP_64BIT, .resetvalue = 0 }, 6101 { .name = "DBGDSAR", .cp = 14, .crm = 2, .opc1 = 0, 6102 .access = PL0_R, .type = ARM_CP_CONST|ARM_CP_64BIT, .resetvalue = 0 }, 6103 REGINFO_SENTINEL 6104 }; 6105 6106 /* Return the exception level to which exceptions should be taken 6107 * via SVEAccessTrap. If an exception should be routed through 6108 * AArch64.AdvSIMDFPAccessTrap, return 0; fp_exception_el should 6109 * take care of raising that exception. 6110 * C.f. the ARM pseudocode function CheckSVEEnabled. 6111 */ 6112 int sve_exception_el(CPUARMState *env, int el) 6113 { 6114 #ifndef CONFIG_USER_ONLY 6115 uint64_t hcr_el2 = arm_hcr_el2_eff(env); 6116 6117 if (el <= 1 && (hcr_el2 & (HCR_E2H | HCR_TGE)) != (HCR_E2H | HCR_TGE)) { 6118 bool disabled = false; 6119 6120 /* The CPACR.ZEN controls traps to EL1: 6121 * 0, 2 : trap EL0 and EL1 accesses 6122 * 1 : trap only EL0 accesses 6123 * 3 : trap no accesses 6124 */ 6125 if (!extract32(env->cp15.cpacr_el1, 16, 1)) { 6126 disabled = true; 6127 } else if (!extract32(env->cp15.cpacr_el1, 17, 1)) { 6128 disabled = el == 0; 6129 } 6130 if (disabled) { 6131 /* route_to_el2 */ 6132 return hcr_el2 & HCR_TGE ? 2 : 1; 6133 } 6134 6135 /* Check CPACR.FPEN. */ 6136 if (!extract32(env->cp15.cpacr_el1, 20, 1)) { 6137 disabled = true; 6138 } else if (!extract32(env->cp15.cpacr_el1, 21, 1)) { 6139 disabled = el == 0; 6140 } 6141 if (disabled) { 6142 return 0; 6143 } 6144 } 6145 6146 /* CPTR_EL2. Since TZ and TFP are positive, 6147 * they will be zero when EL2 is not present. 6148 */ 6149 if (el <= 2 && !arm_is_secure_below_el3(env)) { 6150 if (env->cp15.cptr_el[2] & CPTR_TZ) { 6151 return 2; 6152 } 6153 if (env->cp15.cptr_el[2] & CPTR_TFP) { 6154 return 0; 6155 } 6156 } 6157 6158 /* CPTR_EL3. Since EZ is negative we must check for EL3. */ 6159 if (arm_feature(env, ARM_FEATURE_EL3) 6160 && !(env->cp15.cptr_el[3] & CPTR_EZ)) { 6161 return 3; 6162 } 6163 #endif 6164 return 0; 6165 } 6166 6167 static uint32_t sve_zcr_get_valid_len(ARMCPU *cpu, uint32_t start_len) 6168 { 6169 uint32_t end_len; 6170 6171 end_len = start_len &= 0xf; 6172 if (!test_bit(start_len, cpu->sve_vq_map)) { 6173 end_len = find_last_bit(cpu->sve_vq_map, start_len); 6174 assert(end_len < start_len); 6175 } 6176 return end_len; 6177 } 6178 6179 /* 6180 * Given that SVE is enabled, return the vector length for EL. 6181 */ 6182 uint32_t sve_zcr_len_for_el(CPUARMState *env, int el) 6183 { 6184 ARMCPU *cpu = env_archcpu(env); 6185 uint32_t zcr_len = cpu->sve_max_vq - 1; 6186 6187 if (el <= 1) { 6188 zcr_len = MIN(zcr_len, 0xf & (uint32_t)env->vfp.zcr_el[1]); 6189 } 6190 if (el <= 2 && arm_feature(env, ARM_FEATURE_EL2)) { 6191 zcr_len = MIN(zcr_len, 0xf & (uint32_t)env->vfp.zcr_el[2]); 6192 } 6193 if (arm_feature(env, ARM_FEATURE_EL3)) { 6194 zcr_len = MIN(zcr_len, 0xf & (uint32_t)env->vfp.zcr_el[3]); 6195 } 6196 6197 return sve_zcr_get_valid_len(cpu, zcr_len); 6198 } 6199 6200 static void zcr_write(CPUARMState *env, const ARMCPRegInfo *ri, 6201 uint64_t value) 6202 { 6203 int cur_el = arm_current_el(env); 6204 int old_len = sve_zcr_len_for_el(env, cur_el); 6205 int new_len; 6206 6207 /* Bits other than [3:0] are RAZ/WI. */ 6208 QEMU_BUILD_BUG_ON(ARM_MAX_VQ > 16); 6209 raw_write(env, ri, value & 0xf); 6210 6211 /* 6212 * Because we arrived here, we know both FP and SVE are enabled; 6213 * otherwise we would have trapped access to the ZCR_ELn register. 6214 */ 6215 new_len = sve_zcr_len_for_el(env, cur_el); 6216 if (new_len < old_len) { 6217 aarch64_sve_narrow_vq(env, new_len + 1); 6218 } 6219 } 6220 6221 static const ARMCPRegInfo zcr_el1_reginfo = { 6222 .name = "ZCR_EL1", .state = ARM_CP_STATE_AA64, 6223 .opc0 = 3, .opc1 = 0, .crn = 1, .crm = 2, .opc2 = 0, 6224 .access = PL1_RW, .type = ARM_CP_SVE, 6225 .fieldoffset = offsetof(CPUARMState, vfp.zcr_el[1]), 6226 .writefn = zcr_write, .raw_writefn = raw_write 6227 }; 6228 6229 static const ARMCPRegInfo zcr_el2_reginfo = { 6230 .name = "ZCR_EL2", .state = ARM_CP_STATE_AA64, 6231 .opc0 = 3, .opc1 = 4, .crn = 1, .crm = 2, .opc2 = 0, 6232 .access = PL2_RW, .type = ARM_CP_SVE, 6233 .fieldoffset = offsetof(CPUARMState, vfp.zcr_el[2]), 6234 .writefn = zcr_write, .raw_writefn = raw_write 6235 }; 6236 6237 static const ARMCPRegInfo zcr_no_el2_reginfo = { 6238 .name = "ZCR_EL2", .state = ARM_CP_STATE_AA64, 6239 .opc0 = 3, .opc1 = 4, .crn = 1, .crm = 2, .opc2 = 0, 6240 .access = PL2_RW, .type = ARM_CP_SVE, 6241 .readfn = arm_cp_read_zero, .writefn = arm_cp_write_ignore 6242 }; 6243 6244 static const ARMCPRegInfo zcr_el3_reginfo = { 6245 .name = "ZCR_EL3", .state = ARM_CP_STATE_AA64, 6246 .opc0 = 3, .opc1 = 6, .crn = 1, .crm = 2, .opc2 = 0, 6247 .access = PL3_RW, .type = ARM_CP_SVE, 6248 .fieldoffset = offsetof(CPUARMState, vfp.zcr_el[3]), 6249 .writefn = zcr_write, .raw_writefn = raw_write 6250 }; 6251 6252 void hw_watchpoint_update(ARMCPU *cpu, int n) 6253 { 6254 CPUARMState *env = &cpu->env; 6255 vaddr len = 0; 6256 vaddr wvr = env->cp15.dbgwvr[n]; 6257 uint64_t wcr = env->cp15.dbgwcr[n]; 6258 int mask; 6259 int flags = BP_CPU | BP_STOP_BEFORE_ACCESS; 6260 6261 if (env->cpu_watchpoint[n]) { 6262 cpu_watchpoint_remove_by_ref(CPU(cpu), env->cpu_watchpoint[n]); 6263 env->cpu_watchpoint[n] = NULL; 6264 } 6265 6266 if (!extract64(wcr, 0, 1)) { 6267 /* E bit clear : watchpoint disabled */ 6268 return; 6269 } 6270 6271 switch (extract64(wcr, 3, 2)) { 6272 case 0: 6273 /* LSC 00 is reserved and must behave as if the wp is disabled */ 6274 return; 6275 case 1: 6276 flags |= BP_MEM_READ; 6277 break; 6278 case 2: 6279 flags |= BP_MEM_WRITE; 6280 break; 6281 case 3: 6282 flags |= BP_MEM_ACCESS; 6283 break; 6284 } 6285 6286 /* Attempts to use both MASK and BAS fields simultaneously are 6287 * CONSTRAINED UNPREDICTABLE; we opt to ignore BAS in this case, 6288 * thus generating a watchpoint for every byte in the masked region. 6289 */ 6290 mask = extract64(wcr, 24, 4); 6291 if (mask == 1 || mask == 2) { 6292 /* Reserved values of MASK; we must act as if the mask value was 6293 * some non-reserved value, or as if the watchpoint were disabled. 6294 * We choose the latter. 6295 */ 6296 return; 6297 } else if (mask) { 6298 /* Watchpoint covers an aligned area up to 2GB in size */ 6299 len = 1ULL << mask; 6300 /* If masked bits in WVR are not zero it's CONSTRAINED UNPREDICTABLE 6301 * whether the watchpoint fires when the unmasked bits match; we opt 6302 * to generate the exceptions. 6303 */ 6304 wvr &= ~(len - 1); 6305 } else { 6306 /* Watchpoint covers bytes defined by the byte address select bits */ 6307 int bas = extract64(wcr, 5, 8); 6308 int basstart; 6309 6310 if (extract64(wvr, 2, 1)) { 6311 /* Deprecated case of an only 4-aligned address. BAS[7:4] are 6312 * ignored, and BAS[3:0] define which bytes to watch. 6313 */ 6314 bas &= 0xf; 6315 } 6316 6317 if (bas == 0) { 6318 /* This must act as if the watchpoint is disabled */ 6319 return; 6320 } 6321 6322 /* The BAS bits are supposed to be programmed to indicate a contiguous 6323 * range of bytes. Otherwise it is CONSTRAINED UNPREDICTABLE whether 6324 * we fire for each byte in the word/doubleword addressed by the WVR. 6325 * We choose to ignore any non-zero bits after the first range of 1s. 6326 */ 6327 basstart = ctz32(bas); 6328 len = cto32(bas >> basstart); 6329 wvr += basstart; 6330 } 6331 6332 cpu_watchpoint_insert(CPU(cpu), wvr, len, flags, 6333 &env->cpu_watchpoint[n]); 6334 } 6335 6336 void hw_watchpoint_update_all(ARMCPU *cpu) 6337 { 6338 int i; 6339 CPUARMState *env = &cpu->env; 6340 6341 /* Completely clear out existing QEMU watchpoints and our array, to 6342 * avoid possible stale entries following migration load. 6343 */ 6344 cpu_watchpoint_remove_all(CPU(cpu), BP_CPU); 6345 memset(env->cpu_watchpoint, 0, sizeof(env->cpu_watchpoint)); 6346 6347 for (i = 0; i < ARRAY_SIZE(cpu->env.cpu_watchpoint); i++) { 6348 hw_watchpoint_update(cpu, i); 6349 } 6350 } 6351 6352 static void dbgwvr_write(CPUARMState *env, const ARMCPRegInfo *ri, 6353 uint64_t value) 6354 { 6355 ARMCPU *cpu = env_archcpu(env); 6356 int i = ri->crm; 6357 6358 /* Bits [63:49] are hardwired to the value of bit [48]; that is, the 6359 * register reads and behaves as if values written are sign extended. 6360 * Bits [1:0] are RES0. 6361 */ 6362 value = sextract64(value, 0, 49) & ~3ULL; 6363 6364 raw_write(env, ri, value); 6365 hw_watchpoint_update(cpu, i); 6366 } 6367 6368 static void dbgwcr_write(CPUARMState *env, const ARMCPRegInfo *ri, 6369 uint64_t value) 6370 { 6371 ARMCPU *cpu = env_archcpu(env); 6372 int i = ri->crm; 6373 6374 raw_write(env, ri, value); 6375 hw_watchpoint_update(cpu, i); 6376 } 6377 6378 void hw_breakpoint_update(ARMCPU *cpu, int n) 6379 { 6380 CPUARMState *env = &cpu->env; 6381 uint64_t bvr = env->cp15.dbgbvr[n]; 6382 uint64_t bcr = env->cp15.dbgbcr[n]; 6383 vaddr addr; 6384 int bt; 6385 int flags = BP_CPU; 6386 6387 if (env->cpu_breakpoint[n]) { 6388 cpu_breakpoint_remove_by_ref(CPU(cpu), env->cpu_breakpoint[n]); 6389 env->cpu_breakpoint[n] = NULL; 6390 } 6391 6392 if (!extract64(bcr, 0, 1)) { 6393 /* E bit clear : watchpoint disabled */ 6394 return; 6395 } 6396 6397 bt = extract64(bcr, 20, 4); 6398 6399 switch (bt) { 6400 case 4: /* unlinked address mismatch (reserved if AArch64) */ 6401 case 5: /* linked address mismatch (reserved if AArch64) */ 6402 qemu_log_mask(LOG_UNIMP, 6403 "arm: address mismatch breakpoint types not implemented\n"); 6404 return; 6405 case 0: /* unlinked address match */ 6406 case 1: /* linked address match */ 6407 { 6408 /* Bits [63:49] are hardwired to the value of bit [48]; that is, 6409 * we behave as if the register was sign extended. Bits [1:0] are 6410 * RES0. The BAS field is used to allow setting breakpoints on 16 6411 * bit wide instructions; it is CONSTRAINED UNPREDICTABLE whether 6412 * a bp will fire if the addresses covered by the bp and the addresses 6413 * covered by the insn overlap but the insn doesn't start at the 6414 * start of the bp address range. We choose to require the insn and 6415 * the bp to have the same address. The constraints on writing to 6416 * BAS enforced in dbgbcr_write mean we have only four cases: 6417 * 0b0000 => no breakpoint 6418 * 0b0011 => breakpoint on addr 6419 * 0b1100 => breakpoint on addr + 2 6420 * 0b1111 => breakpoint on addr 6421 * See also figure D2-3 in the v8 ARM ARM (DDI0487A.c). 6422 */ 6423 int bas = extract64(bcr, 5, 4); 6424 addr = sextract64(bvr, 0, 49) & ~3ULL; 6425 if (bas == 0) { 6426 return; 6427 } 6428 if (bas == 0xc) { 6429 addr += 2; 6430 } 6431 break; 6432 } 6433 case 2: /* unlinked context ID match */ 6434 case 8: /* unlinked VMID match (reserved if no EL2) */ 6435 case 10: /* unlinked context ID and VMID match (reserved if no EL2) */ 6436 qemu_log_mask(LOG_UNIMP, 6437 "arm: unlinked context breakpoint types not implemented\n"); 6438 return; 6439 case 9: /* linked VMID match (reserved if no EL2) */ 6440 case 11: /* linked context ID and VMID match (reserved if no EL2) */ 6441 case 3: /* linked context ID match */ 6442 default: 6443 /* We must generate no events for Linked context matches (unless 6444 * they are linked to by some other bp/wp, which is handled in 6445 * updates for the linking bp/wp). We choose to also generate no events 6446 * for reserved values. 6447 */ 6448 return; 6449 } 6450 6451 cpu_breakpoint_insert(CPU(cpu), addr, flags, &env->cpu_breakpoint[n]); 6452 } 6453 6454 void hw_breakpoint_update_all(ARMCPU *cpu) 6455 { 6456 int i; 6457 CPUARMState *env = &cpu->env; 6458 6459 /* Completely clear out existing QEMU breakpoints and our array, to 6460 * avoid possible stale entries following migration load. 6461 */ 6462 cpu_breakpoint_remove_all(CPU(cpu), BP_CPU); 6463 memset(env->cpu_breakpoint, 0, sizeof(env->cpu_breakpoint)); 6464 6465 for (i = 0; i < ARRAY_SIZE(cpu->env.cpu_breakpoint); i++) { 6466 hw_breakpoint_update(cpu, i); 6467 } 6468 } 6469 6470 static void dbgbvr_write(CPUARMState *env, const ARMCPRegInfo *ri, 6471 uint64_t value) 6472 { 6473 ARMCPU *cpu = env_archcpu(env); 6474 int i = ri->crm; 6475 6476 raw_write(env, ri, value); 6477 hw_breakpoint_update(cpu, i); 6478 } 6479 6480 static void dbgbcr_write(CPUARMState *env, const ARMCPRegInfo *ri, 6481 uint64_t value) 6482 { 6483 ARMCPU *cpu = env_archcpu(env); 6484 int i = ri->crm; 6485 6486 /* BAS[3] is a read-only copy of BAS[2], and BAS[1] a read-only 6487 * copy of BAS[0]. 6488 */ 6489 value = deposit64(value, 6, 1, extract64(value, 5, 1)); 6490 value = deposit64(value, 8, 1, extract64(value, 7, 1)); 6491 6492 raw_write(env, ri, value); 6493 hw_breakpoint_update(cpu, i); 6494 } 6495 6496 static void define_debug_regs(ARMCPU *cpu) 6497 { 6498 /* Define v7 and v8 architectural debug registers. 6499 * These are just dummy implementations for now. 6500 */ 6501 int i; 6502 int wrps, brps, ctx_cmps; 6503 ARMCPRegInfo dbgdidr = { 6504 .name = "DBGDIDR", .cp = 14, .crn = 0, .crm = 0, .opc1 = 0, .opc2 = 0, 6505 .access = PL0_R, .accessfn = access_tda, 6506 .type = ARM_CP_CONST, .resetvalue = cpu->isar.dbgdidr, 6507 }; 6508 6509 /* Note that all these register fields hold "number of Xs minus 1". */ 6510 brps = arm_num_brps(cpu); 6511 wrps = arm_num_wrps(cpu); 6512 ctx_cmps = arm_num_ctx_cmps(cpu); 6513 6514 assert(ctx_cmps <= brps); 6515 6516 define_one_arm_cp_reg(cpu, &dbgdidr); 6517 define_arm_cp_regs(cpu, debug_cp_reginfo); 6518 6519 if (arm_feature(&cpu->env, ARM_FEATURE_LPAE)) { 6520 define_arm_cp_regs(cpu, debug_lpae_cp_reginfo); 6521 } 6522 6523 for (i = 0; i < brps; i++) { 6524 ARMCPRegInfo dbgregs[] = { 6525 { .name = "DBGBVR", .state = ARM_CP_STATE_BOTH, 6526 .cp = 14, .opc0 = 2, .opc1 = 0, .crn = 0, .crm = i, .opc2 = 4, 6527 .access = PL1_RW, .accessfn = access_tda, 6528 .fieldoffset = offsetof(CPUARMState, cp15.dbgbvr[i]), 6529 .writefn = dbgbvr_write, .raw_writefn = raw_write 6530 }, 6531 { .name = "DBGBCR", .state = ARM_CP_STATE_BOTH, 6532 .cp = 14, .opc0 = 2, .opc1 = 0, .crn = 0, .crm = i, .opc2 = 5, 6533 .access = PL1_RW, .accessfn = access_tda, 6534 .fieldoffset = offsetof(CPUARMState, cp15.dbgbcr[i]), 6535 .writefn = dbgbcr_write, .raw_writefn = raw_write 6536 }, 6537 REGINFO_SENTINEL 6538 }; 6539 define_arm_cp_regs(cpu, dbgregs); 6540 } 6541 6542 for (i = 0; i < wrps; i++) { 6543 ARMCPRegInfo dbgregs[] = { 6544 { .name = "DBGWVR", .state = ARM_CP_STATE_BOTH, 6545 .cp = 14, .opc0 = 2, .opc1 = 0, .crn = 0, .crm = i, .opc2 = 6, 6546 .access = PL1_RW, .accessfn = access_tda, 6547 .fieldoffset = offsetof(CPUARMState, cp15.dbgwvr[i]), 6548 .writefn = dbgwvr_write, .raw_writefn = raw_write 6549 }, 6550 { .name = "DBGWCR", .state = ARM_CP_STATE_BOTH, 6551 .cp = 14, .opc0 = 2, .opc1 = 0, .crn = 0, .crm = i, .opc2 = 7, 6552 .access = PL1_RW, .accessfn = access_tda, 6553 .fieldoffset = offsetof(CPUARMState, cp15.dbgwcr[i]), 6554 .writefn = dbgwcr_write, .raw_writefn = raw_write 6555 }, 6556 REGINFO_SENTINEL 6557 }; 6558 define_arm_cp_regs(cpu, dbgregs); 6559 } 6560 } 6561 6562 static void define_pmu_regs(ARMCPU *cpu) 6563 { 6564 /* 6565 * v7 performance monitor control register: same implementor 6566 * field as main ID register, and we implement four counters in 6567 * addition to the cycle count register. 6568 */ 6569 unsigned int i, pmcrn = 4; 6570 ARMCPRegInfo pmcr = { 6571 .name = "PMCR", .cp = 15, .crn = 9, .crm = 12, .opc1 = 0, .opc2 = 0, 6572 .access = PL0_RW, 6573 .type = ARM_CP_IO | ARM_CP_ALIAS, 6574 .fieldoffset = offsetoflow32(CPUARMState, cp15.c9_pmcr), 6575 .accessfn = pmreg_access, .writefn = pmcr_write, 6576 .raw_writefn = raw_write, 6577 }; 6578 ARMCPRegInfo pmcr64 = { 6579 .name = "PMCR_EL0", .state = ARM_CP_STATE_AA64, 6580 .opc0 = 3, .opc1 = 3, .crn = 9, .crm = 12, .opc2 = 0, 6581 .access = PL0_RW, .accessfn = pmreg_access, 6582 .type = ARM_CP_IO, 6583 .fieldoffset = offsetof(CPUARMState, cp15.c9_pmcr), 6584 .resetvalue = (cpu->midr & 0xff000000) | (pmcrn << PMCRN_SHIFT) | 6585 PMCRLC, 6586 .writefn = pmcr_write, .raw_writefn = raw_write, 6587 }; 6588 define_one_arm_cp_reg(cpu, &pmcr); 6589 define_one_arm_cp_reg(cpu, &pmcr64); 6590 for (i = 0; i < pmcrn; i++) { 6591 char *pmevcntr_name = g_strdup_printf("PMEVCNTR%d", i); 6592 char *pmevcntr_el0_name = g_strdup_printf("PMEVCNTR%d_EL0", i); 6593 char *pmevtyper_name = g_strdup_printf("PMEVTYPER%d", i); 6594 char *pmevtyper_el0_name = g_strdup_printf("PMEVTYPER%d_EL0", i); 6595 ARMCPRegInfo pmev_regs[] = { 6596 { .name = pmevcntr_name, .cp = 15, .crn = 14, 6597 .crm = 8 | (3 & (i >> 3)), .opc1 = 0, .opc2 = i & 7, 6598 .access = PL0_RW, .type = ARM_CP_IO | ARM_CP_ALIAS, 6599 .readfn = pmevcntr_readfn, .writefn = pmevcntr_writefn, 6600 .accessfn = pmreg_access }, 6601 { .name = pmevcntr_el0_name, .state = ARM_CP_STATE_AA64, 6602 .opc0 = 3, .opc1 = 3, .crn = 14, .crm = 8 | (3 & (i >> 3)), 6603 .opc2 = i & 7, .access = PL0_RW, .accessfn = pmreg_access, 6604 .type = ARM_CP_IO, 6605 .readfn = pmevcntr_readfn, .writefn = pmevcntr_writefn, 6606 .raw_readfn = pmevcntr_rawread, 6607 .raw_writefn = pmevcntr_rawwrite }, 6608 { .name = pmevtyper_name, .cp = 15, .crn = 14, 6609 .crm = 12 | (3 & (i >> 3)), .opc1 = 0, .opc2 = i & 7, 6610 .access = PL0_RW, .type = ARM_CP_IO | ARM_CP_ALIAS, 6611 .readfn = pmevtyper_readfn, .writefn = pmevtyper_writefn, 6612 .accessfn = pmreg_access }, 6613 { .name = pmevtyper_el0_name, .state = ARM_CP_STATE_AA64, 6614 .opc0 = 3, .opc1 = 3, .crn = 14, .crm = 12 | (3 & (i >> 3)), 6615 .opc2 = i & 7, .access = PL0_RW, .accessfn = pmreg_access, 6616 .type = ARM_CP_IO, 6617 .readfn = pmevtyper_readfn, .writefn = pmevtyper_writefn, 6618 .raw_writefn = pmevtyper_rawwrite }, 6619 REGINFO_SENTINEL 6620 }; 6621 define_arm_cp_regs(cpu, pmev_regs); 6622 g_free(pmevcntr_name); 6623 g_free(pmevcntr_el0_name); 6624 g_free(pmevtyper_name); 6625 g_free(pmevtyper_el0_name); 6626 } 6627 if (cpu_isar_feature(aa32_pmu_8_1, cpu)) { 6628 ARMCPRegInfo v81_pmu_regs[] = { 6629 { .name = "PMCEID2", .state = ARM_CP_STATE_AA32, 6630 .cp = 15, .opc1 = 0, .crn = 9, .crm = 14, .opc2 = 4, 6631 .access = PL0_R, .accessfn = pmreg_access, .type = ARM_CP_CONST, 6632 .resetvalue = extract64(cpu->pmceid0, 32, 32) }, 6633 { .name = "PMCEID3", .state = ARM_CP_STATE_AA32, 6634 .cp = 15, .opc1 = 0, .crn = 9, .crm = 14, .opc2 = 5, 6635 .access = PL0_R, .accessfn = pmreg_access, .type = ARM_CP_CONST, 6636 .resetvalue = extract64(cpu->pmceid1, 32, 32) }, 6637 REGINFO_SENTINEL 6638 }; 6639 define_arm_cp_regs(cpu, v81_pmu_regs); 6640 } 6641 if (cpu_isar_feature(any_pmu_8_4, cpu)) { 6642 static const ARMCPRegInfo v84_pmmir = { 6643 .name = "PMMIR_EL1", .state = ARM_CP_STATE_BOTH, 6644 .opc0 = 3, .opc1 = 0, .crn = 9, .crm = 14, .opc2 = 6, 6645 .access = PL1_R, .accessfn = pmreg_access, .type = ARM_CP_CONST, 6646 .resetvalue = 0 6647 }; 6648 define_one_arm_cp_reg(cpu, &v84_pmmir); 6649 } 6650 } 6651 6652 /* We don't know until after realize whether there's a GICv3 6653 * attached, and that is what registers the gicv3 sysregs. 6654 * So we have to fill in the GIC fields in ID_PFR/ID_PFR1_EL1/ID_AA64PFR0_EL1 6655 * at runtime. 6656 */ 6657 static uint64_t id_pfr1_read(CPUARMState *env, const ARMCPRegInfo *ri) 6658 { 6659 ARMCPU *cpu = env_archcpu(env); 6660 uint64_t pfr1 = cpu->isar.id_pfr1; 6661 6662 if (env->gicv3state) { 6663 pfr1 |= 1 << 28; 6664 } 6665 return pfr1; 6666 } 6667 6668 #ifndef CONFIG_USER_ONLY 6669 static uint64_t id_aa64pfr0_read(CPUARMState *env, const ARMCPRegInfo *ri) 6670 { 6671 ARMCPU *cpu = env_archcpu(env); 6672 uint64_t pfr0 = cpu->isar.id_aa64pfr0; 6673 6674 if (env->gicv3state) { 6675 pfr0 |= 1 << 24; 6676 } 6677 return pfr0; 6678 } 6679 #endif 6680 6681 /* Shared logic between LORID and the rest of the LOR* registers. 6682 * Secure state exclusion has already been dealt with. 6683 */ 6684 static CPAccessResult access_lor_ns(CPUARMState *env, 6685 const ARMCPRegInfo *ri, bool isread) 6686 { 6687 int el = arm_current_el(env); 6688 6689 if (el < 2 && (arm_hcr_el2_eff(env) & HCR_TLOR)) { 6690 return CP_ACCESS_TRAP_EL2; 6691 } 6692 if (el < 3 && (env->cp15.scr_el3 & SCR_TLOR)) { 6693 return CP_ACCESS_TRAP_EL3; 6694 } 6695 return CP_ACCESS_OK; 6696 } 6697 6698 static CPAccessResult access_lor_other(CPUARMState *env, 6699 const ARMCPRegInfo *ri, bool isread) 6700 { 6701 if (arm_is_secure_below_el3(env)) { 6702 /* Access denied in secure mode. */ 6703 return CP_ACCESS_TRAP; 6704 } 6705 return access_lor_ns(env, ri, isread); 6706 } 6707 6708 /* 6709 * A trivial implementation of ARMv8.1-LOR leaves all of these 6710 * registers fixed at 0, which indicates that there are zero 6711 * supported Limited Ordering regions. 6712 */ 6713 static const ARMCPRegInfo lor_reginfo[] = { 6714 { .name = "LORSA_EL1", .state = ARM_CP_STATE_AA64, 6715 .opc0 = 3, .opc1 = 0, .crn = 10, .crm = 4, .opc2 = 0, 6716 .access = PL1_RW, .accessfn = access_lor_other, 6717 .type = ARM_CP_CONST, .resetvalue = 0 }, 6718 { .name = "LOREA_EL1", .state = ARM_CP_STATE_AA64, 6719 .opc0 = 3, .opc1 = 0, .crn = 10, .crm = 4, .opc2 = 1, 6720 .access = PL1_RW, .accessfn = access_lor_other, 6721 .type = ARM_CP_CONST, .resetvalue = 0 }, 6722 { .name = "LORN_EL1", .state = ARM_CP_STATE_AA64, 6723 .opc0 = 3, .opc1 = 0, .crn = 10, .crm = 4, .opc2 = 2, 6724 .access = PL1_RW, .accessfn = access_lor_other, 6725 .type = ARM_CP_CONST, .resetvalue = 0 }, 6726 { .name = "LORC_EL1", .state = ARM_CP_STATE_AA64, 6727 .opc0 = 3, .opc1 = 0, .crn = 10, .crm = 4, .opc2 = 3, 6728 .access = PL1_RW, .accessfn = access_lor_other, 6729 .type = ARM_CP_CONST, .resetvalue = 0 }, 6730 { .name = "LORID_EL1", .state = ARM_CP_STATE_AA64, 6731 .opc0 = 3, .opc1 = 0, .crn = 10, .crm = 4, .opc2 = 7, 6732 .access = PL1_R, .accessfn = access_lor_ns, 6733 .type = ARM_CP_CONST, .resetvalue = 0 }, 6734 REGINFO_SENTINEL 6735 }; 6736 6737 #ifdef TARGET_AARCH64 6738 static CPAccessResult access_pauth(CPUARMState *env, const ARMCPRegInfo *ri, 6739 bool isread) 6740 { 6741 int el = arm_current_el(env); 6742 6743 if (el < 2 && 6744 arm_feature(env, ARM_FEATURE_EL2) && 6745 !(arm_hcr_el2_eff(env) & HCR_APK)) { 6746 return CP_ACCESS_TRAP_EL2; 6747 } 6748 if (el < 3 && 6749 arm_feature(env, ARM_FEATURE_EL3) && 6750 !(env->cp15.scr_el3 & SCR_APK)) { 6751 return CP_ACCESS_TRAP_EL3; 6752 } 6753 return CP_ACCESS_OK; 6754 } 6755 6756 static const ARMCPRegInfo pauth_reginfo[] = { 6757 { .name = "APDAKEYLO_EL1", .state = ARM_CP_STATE_AA64, 6758 .opc0 = 3, .opc1 = 0, .crn = 2, .crm = 2, .opc2 = 0, 6759 .access = PL1_RW, .accessfn = access_pauth, 6760 .fieldoffset = offsetof(CPUARMState, keys.apda.lo) }, 6761 { .name = "APDAKEYHI_EL1", .state = ARM_CP_STATE_AA64, 6762 .opc0 = 3, .opc1 = 0, .crn = 2, .crm = 2, .opc2 = 1, 6763 .access = PL1_RW, .accessfn = access_pauth, 6764 .fieldoffset = offsetof(CPUARMState, keys.apda.hi) }, 6765 { .name = "APDBKEYLO_EL1", .state = ARM_CP_STATE_AA64, 6766 .opc0 = 3, .opc1 = 0, .crn = 2, .crm = 2, .opc2 = 2, 6767 .access = PL1_RW, .accessfn = access_pauth, 6768 .fieldoffset = offsetof(CPUARMState, keys.apdb.lo) }, 6769 { .name = "APDBKEYHI_EL1", .state = ARM_CP_STATE_AA64, 6770 .opc0 = 3, .opc1 = 0, .crn = 2, .crm = 2, .opc2 = 3, 6771 .access = PL1_RW, .accessfn = access_pauth, 6772 .fieldoffset = offsetof(CPUARMState, keys.apdb.hi) }, 6773 { .name = "APGAKEYLO_EL1", .state = ARM_CP_STATE_AA64, 6774 .opc0 = 3, .opc1 = 0, .crn = 2, .crm = 3, .opc2 = 0, 6775 .access = PL1_RW, .accessfn = access_pauth, 6776 .fieldoffset = offsetof(CPUARMState, keys.apga.lo) }, 6777 { .name = "APGAKEYHI_EL1", .state = ARM_CP_STATE_AA64, 6778 .opc0 = 3, .opc1 = 0, .crn = 2, .crm = 3, .opc2 = 1, 6779 .access = PL1_RW, .accessfn = access_pauth, 6780 .fieldoffset = offsetof(CPUARMState, keys.apga.hi) }, 6781 { .name = "APIAKEYLO_EL1", .state = ARM_CP_STATE_AA64, 6782 .opc0 = 3, .opc1 = 0, .crn = 2, .crm = 1, .opc2 = 0, 6783 .access = PL1_RW, .accessfn = access_pauth, 6784 .fieldoffset = offsetof(CPUARMState, keys.apia.lo) }, 6785 { .name = "APIAKEYHI_EL1", .state = ARM_CP_STATE_AA64, 6786 .opc0 = 3, .opc1 = 0, .crn = 2, .crm = 1, .opc2 = 1, 6787 .access = PL1_RW, .accessfn = access_pauth, 6788 .fieldoffset = offsetof(CPUARMState, keys.apia.hi) }, 6789 { .name = "APIBKEYLO_EL1", .state = ARM_CP_STATE_AA64, 6790 .opc0 = 3, .opc1 = 0, .crn = 2, .crm = 1, .opc2 = 2, 6791 .access = PL1_RW, .accessfn = access_pauth, 6792 .fieldoffset = offsetof(CPUARMState, keys.apib.lo) }, 6793 { .name = "APIBKEYHI_EL1", .state = ARM_CP_STATE_AA64, 6794 .opc0 = 3, .opc1 = 0, .crn = 2, .crm = 1, .opc2 = 3, 6795 .access = PL1_RW, .accessfn = access_pauth, 6796 .fieldoffset = offsetof(CPUARMState, keys.apib.hi) }, 6797 REGINFO_SENTINEL 6798 }; 6799 6800 static uint64_t rndr_readfn(CPUARMState *env, const ARMCPRegInfo *ri) 6801 { 6802 Error *err = NULL; 6803 uint64_t ret; 6804 6805 /* Success sets NZCV = 0000. */ 6806 env->NF = env->CF = env->VF = 0, env->ZF = 1; 6807 6808 if (qemu_guest_getrandom(&ret, sizeof(ret), &err) < 0) { 6809 /* 6810 * ??? Failed, for unknown reasons in the crypto subsystem. 6811 * The best we can do is log the reason and return the 6812 * timed-out indication to the guest. There is no reason 6813 * we know to expect this failure to be transitory, so the 6814 * guest may well hang retrying the operation. 6815 */ 6816 qemu_log_mask(LOG_UNIMP, "%s: Crypto failure: %s", 6817 ri->name, error_get_pretty(err)); 6818 error_free(err); 6819 6820 env->ZF = 0; /* NZCF = 0100 */ 6821 return 0; 6822 } 6823 return ret; 6824 } 6825 6826 /* We do not support re-seeding, so the two registers operate the same. */ 6827 static const ARMCPRegInfo rndr_reginfo[] = { 6828 { .name = "RNDR", .state = ARM_CP_STATE_AA64, 6829 .type = ARM_CP_NO_RAW | ARM_CP_SUPPRESS_TB_END | ARM_CP_IO, 6830 .opc0 = 3, .opc1 = 3, .crn = 2, .crm = 4, .opc2 = 0, 6831 .access = PL0_R, .readfn = rndr_readfn }, 6832 { .name = "RNDRRS", .state = ARM_CP_STATE_AA64, 6833 .type = ARM_CP_NO_RAW | ARM_CP_SUPPRESS_TB_END | ARM_CP_IO, 6834 .opc0 = 3, .opc1 = 3, .crn = 2, .crm = 4, .opc2 = 1, 6835 .access = PL0_R, .readfn = rndr_readfn }, 6836 REGINFO_SENTINEL 6837 }; 6838 6839 #ifndef CONFIG_USER_ONLY 6840 static void dccvap_writefn(CPUARMState *env, const ARMCPRegInfo *opaque, 6841 uint64_t value) 6842 { 6843 ARMCPU *cpu = env_archcpu(env); 6844 /* CTR_EL0 System register -> DminLine, bits [19:16] */ 6845 uint64_t dline_size = 4 << ((cpu->ctr >> 16) & 0xF); 6846 uint64_t vaddr_in = (uint64_t) value; 6847 uint64_t vaddr = vaddr_in & ~(dline_size - 1); 6848 void *haddr; 6849 int mem_idx = cpu_mmu_index(env, false); 6850 6851 /* This won't be crossing page boundaries */ 6852 haddr = probe_read(env, vaddr, dline_size, mem_idx, GETPC()); 6853 if (haddr) { 6854 6855 ram_addr_t offset; 6856 MemoryRegion *mr; 6857 6858 /* RCU lock is already being held */ 6859 mr = memory_region_from_host(haddr, &offset); 6860 6861 if (mr) { 6862 memory_region_writeback(mr, offset, dline_size); 6863 } 6864 } 6865 } 6866 6867 static const ARMCPRegInfo dcpop_reg[] = { 6868 { .name = "DC_CVAP", .state = ARM_CP_STATE_AA64, 6869 .opc0 = 1, .opc1 = 3, .crn = 7, .crm = 12, .opc2 = 1, 6870 .access = PL0_W, .type = ARM_CP_NO_RAW | ARM_CP_SUPPRESS_TB_END, 6871 .accessfn = aa64_cacheop_poc_access, .writefn = dccvap_writefn }, 6872 REGINFO_SENTINEL 6873 }; 6874 6875 static const ARMCPRegInfo dcpodp_reg[] = { 6876 { .name = "DC_CVADP", .state = ARM_CP_STATE_AA64, 6877 .opc0 = 1, .opc1 = 3, .crn = 7, .crm = 13, .opc2 = 1, 6878 .access = PL0_W, .type = ARM_CP_NO_RAW | ARM_CP_SUPPRESS_TB_END, 6879 .accessfn = aa64_cacheop_poc_access, .writefn = dccvap_writefn }, 6880 REGINFO_SENTINEL 6881 }; 6882 #endif /*CONFIG_USER_ONLY*/ 6883 6884 static CPAccessResult access_aa64_tid5(CPUARMState *env, const ARMCPRegInfo *ri, 6885 bool isread) 6886 { 6887 if ((arm_current_el(env) < 2) && (arm_hcr_el2_eff(env) & HCR_TID5)) { 6888 return CP_ACCESS_TRAP_EL2; 6889 } 6890 6891 return CP_ACCESS_OK; 6892 } 6893 6894 static CPAccessResult access_mte(CPUARMState *env, const ARMCPRegInfo *ri, 6895 bool isread) 6896 { 6897 int el = arm_current_el(env); 6898 6899 if (el < 2 && arm_feature(env, ARM_FEATURE_EL2)) { 6900 uint64_t hcr = arm_hcr_el2_eff(env); 6901 if (!(hcr & HCR_ATA) && (!(hcr & HCR_E2H) || !(hcr & HCR_TGE))) { 6902 return CP_ACCESS_TRAP_EL2; 6903 } 6904 } 6905 if (el < 3 && 6906 arm_feature(env, ARM_FEATURE_EL3) && 6907 !(env->cp15.scr_el3 & SCR_ATA)) { 6908 return CP_ACCESS_TRAP_EL3; 6909 } 6910 return CP_ACCESS_OK; 6911 } 6912 6913 static uint64_t tco_read(CPUARMState *env, const ARMCPRegInfo *ri) 6914 { 6915 return env->pstate & PSTATE_TCO; 6916 } 6917 6918 static void tco_write(CPUARMState *env, const ARMCPRegInfo *ri, uint64_t val) 6919 { 6920 env->pstate = (env->pstate & ~PSTATE_TCO) | (val & PSTATE_TCO); 6921 } 6922 6923 static const ARMCPRegInfo mte_reginfo[] = { 6924 { .name = "TFSRE0_EL1", .state = ARM_CP_STATE_AA64, 6925 .opc0 = 3, .opc1 = 0, .crn = 5, .crm = 6, .opc2 = 1, 6926 .access = PL1_RW, .accessfn = access_mte, 6927 .fieldoffset = offsetof(CPUARMState, cp15.tfsr_el[0]) }, 6928 { .name = "TFSR_EL1", .state = ARM_CP_STATE_AA64, 6929 .opc0 = 3, .opc1 = 0, .crn = 5, .crm = 6, .opc2 = 0, 6930 .access = PL1_RW, .accessfn = access_mte, 6931 .fieldoffset = offsetof(CPUARMState, cp15.tfsr_el[1]) }, 6932 { .name = "TFSR_EL2", .state = ARM_CP_STATE_AA64, 6933 .opc0 = 3, .opc1 = 4, .crn = 5, .crm = 6, .opc2 = 0, 6934 .access = PL2_RW, .accessfn = access_mte, 6935 .fieldoffset = offsetof(CPUARMState, cp15.tfsr_el[2]) }, 6936 { .name = "TFSR_EL3", .state = ARM_CP_STATE_AA64, 6937 .opc0 = 3, .opc1 = 6, .crn = 5, .crm = 6, .opc2 = 0, 6938 .access = PL3_RW, 6939 .fieldoffset = offsetof(CPUARMState, cp15.tfsr_el[3]) }, 6940 { .name = "RGSR_EL1", .state = ARM_CP_STATE_AA64, 6941 .opc0 = 3, .opc1 = 0, .crn = 1, .crm = 0, .opc2 = 5, 6942 .access = PL1_RW, .accessfn = access_mte, 6943 .fieldoffset = offsetof(CPUARMState, cp15.rgsr_el1) }, 6944 { .name = "GCR_EL1", .state = ARM_CP_STATE_AA64, 6945 .opc0 = 3, .opc1 = 0, .crn = 1, .crm = 0, .opc2 = 6, 6946 .access = PL1_RW, .accessfn = access_mte, 6947 .fieldoffset = offsetof(CPUARMState, cp15.gcr_el1) }, 6948 { .name = "GMID_EL1", .state = ARM_CP_STATE_AA64, 6949 .opc0 = 3, .opc1 = 1, .crn = 0, .crm = 0, .opc2 = 4, 6950 .access = PL1_R, .accessfn = access_aa64_tid5, 6951 .type = ARM_CP_CONST, .resetvalue = GMID_EL1_BS }, 6952 { .name = "TCO", .state = ARM_CP_STATE_AA64, 6953 .opc0 = 3, .opc1 = 3, .crn = 4, .crm = 2, .opc2 = 7, 6954 .type = ARM_CP_NO_RAW, 6955 .access = PL0_RW, .readfn = tco_read, .writefn = tco_write }, 6956 { .name = "DC_IGVAC", .state = ARM_CP_STATE_AA64, 6957 .opc0 = 1, .opc1 = 0, .crn = 7, .crm = 6, .opc2 = 3, 6958 .type = ARM_CP_NOP, .access = PL1_W, 6959 .accessfn = aa64_cacheop_poc_access }, 6960 { .name = "DC_IGSW", .state = ARM_CP_STATE_AA64, 6961 .opc0 = 1, .opc1 = 0, .crn = 7, .crm = 6, .opc2 = 4, 6962 .type = ARM_CP_NOP, .access = PL1_W, .accessfn = access_tsw }, 6963 { .name = "DC_IGDVAC", .state = ARM_CP_STATE_AA64, 6964 .opc0 = 1, .opc1 = 0, .crn = 7, .crm = 6, .opc2 = 5, 6965 .type = ARM_CP_NOP, .access = PL1_W, 6966 .accessfn = aa64_cacheop_poc_access }, 6967 { .name = "DC_IGDSW", .state = ARM_CP_STATE_AA64, 6968 .opc0 = 1, .opc1 = 0, .crn = 7, .crm = 6, .opc2 = 6, 6969 .type = ARM_CP_NOP, .access = PL1_W, .accessfn = access_tsw }, 6970 { .name = "DC_CGSW", .state = ARM_CP_STATE_AA64, 6971 .opc0 = 1, .opc1 = 0, .crn = 7, .crm = 10, .opc2 = 4, 6972 .type = ARM_CP_NOP, .access = PL1_W, .accessfn = access_tsw }, 6973 { .name = "DC_CGDSW", .state = ARM_CP_STATE_AA64, 6974 .opc0 = 1, .opc1 = 0, .crn = 7, .crm = 10, .opc2 = 6, 6975 .type = ARM_CP_NOP, .access = PL1_W, .accessfn = access_tsw }, 6976 { .name = "DC_CIGSW", .state = ARM_CP_STATE_AA64, 6977 .opc0 = 1, .opc1 = 0, .crn = 7, .crm = 14, .opc2 = 4, 6978 .type = ARM_CP_NOP, .access = PL1_W, .accessfn = access_tsw }, 6979 { .name = "DC_CIGDSW", .state = ARM_CP_STATE_AA64, 6980 .opc0 = 1, .opc1 = 0, .crn = 7, .crm = 14, .opc2 = 6, 6981 .type = ARM_CP_NOP, .access = PL1_W, .accessfn = access_tsw }, 6982 REGINFO_SENTINEL 6983 }; 6984 6985 static const ARMCPRegInfo mte_tco_ro_reginfo[] = { 6986 { .name = "TCO", .state = ARM_CP_STATE_AA64, 6987 .opc0 = 3, .opc1 = 3, .crn = 4, .crm = 2, .opc2 = 7, 6988 .type = ARM_CP_CONST, .access = PL0_RW, }, 6989 REGINFO_SENTINEL 6990 }; 6991 6992 static const ARMCPRegInfo mte_el0_cacheop_reginfo[] = { 6993 { .name = "DC_CGVAC", .state = ARM_CP_STATE_AA64, 6994 .opc0 = 1, .opc1 = 3, .crn = 7, .crm = 10, .opc2 = 3, 6995 .type = ARM_CP_NOP, .access = PL0_W, 6996 .accessfn = aa64_cacheop_poc_access }, 6997 { .name = "DC_CGDVAC", .state = ARM_CP_STATE_AA64, 6998 .opc0 = 1, .opc1 = 3, .crn = 7, .crm = 10, .opc2 = 5, 6999 .type = ARM_CP_NOP, .access = PL0_W, 7000 .accessfn = aa64_cacheop_poc_access }, 7001 { .name = "DC_CGVAP", .state = ARM_CP_STATE_AA64, 7002 .opc0 = 1, .opc1 = 3, .crn = 7, .crm = 12, .opc2 = 3, 7003 .type = ARM_CP_NOP, .access = PL0_W, 7004 .accessfn = aa64_cacheop_poc_access }, 7005 { .name = "DC_CGDVAP", .state = ARM_CP_STATE_AA64, 7006 .opc0 = 1, .opc1 = 3, .crn = 7, .crm = 12, .opc2 = 5, 7007 .type = ARM_CP_NOP, .access = PL0_W, 7008 .accessfn = aa64_cacheop_poc_access }, 7009 { .name = "DC_CGVADP", .state = ARM_CP_STATE_AA64, 7010 .opc0 = 1, .opc1 = 3, .crn = 7, .crm = 13, .opc2 = 3, 7011 .type = ARM_CP_NOP, .access = PL0_W, 7012 .accessfn = aa64_cacheop_poc_access }, 7013 { .name = "DC_CGDVADP", .state = ARM_CP_STATE_AA64, 7014 .opc0 = 1, .opc1 = 3, .crn = 7, .crm = 13, .opc2 = 5, 7015 .type = ARM_CP_NOP, .access = PL0_W, 7016 .accessfn = aa64_cacheop_poc_access }, 7017 { .name = "DC_CIGVAC", .state = ARM_CP_STATE_AA64, 7018 .opc0 = 1, .opc1 = 3, .crn = 7, .crm = 14, .opc2 = 3, 7019 .type = ARM_CP_NOP, .access = PL0_W, 7020 .accessfn = aa64_cacheop_poc_access }, 7021 { .name = "DC_CIGDVAC", .state = ARM_CP_STATE_AA64, 7022 .opc0 = 1, .opc1 = 3, .crn = 7, .crm = 14, .opc2 = 5, 7023 .type = ARM_CP_NOP, .access = PL0_W, 7024 .accessfn = aa64_cacheop_poc_access }, 7025 { .name = "DC_GVA", .state = ARM_CP_STATE_AA64, 7026 .opc0 = 1, .opc1 = 3, .crn = 7, .crm = 4, .opc2 = 3, 7027 .access = PL0_W, .type = ARM_CP_DC_GVA, 7028 #ifndef CONFIG_USER_ONLY 7029 /* Avoid overhead of an access check that always passes in user-mode */ 7030 .accessfn = aa64_zva_access, 7031 #endif 7032 }, 7033 { .name = "DC_GZVA", .state = ARM_CP_STATE_AA64, 7034 .opc0 = 1, .opc1 = 3, .crn = 7, .crm = 4, .opc2 = 4, 7035 .access = PL0_W, .type = ARM_CP_DC_GZVA, 7036 #ifndef CONFIG_USER_ONLY 7037 /* Avoid overhead of an access check that always passes in user-mode */ 7038 .accessfn = aa64_zva_access, 7039 #endif 7040 }, 7041 REGINFO_SENTINEL 7042 }; 7043 7044 #endif 7045 7046 static CPAccessResult access_predinv(CPUARMState *env, const ARMCPRegInfo *ri, 7047 bool isread) 7048 { 7049 int el = arm_current_el(env); 7050 7051 if (el == 0) { 7052 uint64_t sctlr = arm_sctlr(env, el); 7053 if (!(sctlr & SCTLR_EnRCTX)) { 7054 return CP_ACCESS_TRAP; 7055 } 7056 } else if (el == 1) { 7057 uint64_t hcr = arm_hcr_el2_eff(env); 7058 if (hcr & HCR_NV) { 7059 return CP_ACCESS_TRAP_EL2; 7060 } 7061 } 7062 return CP_ACCESS_OK; 7063 } 7064 7065 static const ARMCPRegInfo predinv_reginfo[] = { 7066 { .name = "CFP_RCTX", .state = ARM_CP_STATE_AA64, 7067 .opc0 = 1, .opc1 = 3, .crn = 7, .crm = 3, .opc2 = 4, 7068 .type = ARM_CP_NOP, .access = PL0_W, .accessfn = access_predinv }, 7069 { .name = "DVP_RCTX", .state = ARM_CP_STATE_AA64, 7070 .opc0 = 1, .opc1 = 3, .crn = 7, .crm = 3, .opc2 = 5, 7071 .type = ARM_CP_NOP, .access = PL0_W, .accessfn = access_predinv }, 7072 { .name = "CPP_RCTX", .state = ARM_CP_STATE_AA64, 7073 .opc0 = 1, .opc1 = 3, .crn = 7, .crm = 3, .opc2 = 7, 7074 .type = ARM_CP_NOP, .access = PL0_W, .accessfn = access_predinv }, 7075 /* 7076 * Note the AArch32 opcodes have a different OPC1. 7077 */ 7078 { .name = "CFPRCTX", .state = ARM_CP_STATE_AA32, 7079 .cp = 15, .opc1 = 0, .crn = 7, .crm = 3, .opc2 = 4, 7080 .type = ARM_CP_NOP, .access = PL0_W, .accessfn = access_predinv }, 7081 { .name = "DVPRCTX", .state = ARM_CP_STATE_AA32, 7082 .cp = 15, .opc1 = 0, .crn = 7, .crm = 3, .opc2 = 5, 7083 .type = ARM_CP_NOP, .access = PL0_W, .accessfn = access_predinv }, 7084 { .name = "CPPRCTX", .state = ARM_CP_STATE_AA32, 7085 .cp = 15, .opc1 = 0, .crn = 7, .crm = 3, .opc2 = 7, 7086 .type = ARM_CP_NOP, .access = PL0_W, .accessfn = access_predinv }, 7087 REGINFO_SENTINEL 7088 }; 7089 7090 static uint64_t ccsidr2_read(CPUARMState *env, const ARMCPRegInfo *ri) 7091 { 7092 /* Read the high 32 bits of the current CCSIDR */ 7093 return extract64(ccsidr_read(env, ri), 32, 32); 7094 } 7095 7096 static const ARMCPRegInfo ccsidr2_reginfo[] = { 7097 { .name = "CCSIDR2", .state = ARM_CP_STATE_BOTH, 7098 .opc0 = 3, .opc1 = 1, .crn = 0, .crm = 0, .opc2 = 2, 7099 .access = PL1_R, 7100 .accessfn = access_aa64_tid2, 7101 .readfn = ccsidr2_read, .type = ARM_CP_NO_RAW }, 7102 REGINFO_SENTINEL 7103 }; 7104 7105 static CPAccessResult access_aa64_tid3(CPUARMState *env, const ARMCPRegInfo *ri, 7106 bool isread) 7107 { 7108 if ((arm_current_el(env) < 2) && (arm_hcr_el2_eff(env) & HCR_TID3)) { 7109 return CP_ACCESS_TRAP_EL2; 7110 } 7111 7112 return CP_ACCESS_OK; 7113 } 7114 7115 static CPAccessResult access_aa32_tid3(CPUARMState *env, const ARMCPRegInfo *ri, 7116 bool isread) 7117 { 7118 if (arm_feature(env, ARM_FEATURE_V8)) { 7119 return access_aa64_tid3(env, ri, isread); 7120 } 7121 7122 return CP_ACCESS_OK; 7123 } 7124 7125 static CPAccessResult access_jazelle(CPUARMState *env, const ARMCPRegInfo *ri, 7126 bool isread) 7127 { 7128 if (arm_current_el(env) == 1 && (arm_hcr_el2_eff(env) & HCR_TID0)) { 7129 return CP_ACCESS_TRAP_EL2; 7130 } 7131 7132 return CP_ACCESS_OK; 7133 } 7134 7135 static const ARMCPRegInfo jazelle_regs[] = { 7136 { .name = "JIDR", 7137 .cp = 14, .crn = 0, .crm = 0, .opc1 = 7, .opc2 = 0, 7138 .access = PL1_R, .accessfn = access_jazelle, 7139 .type = ARM_CP_CONST, .resetvalue = 0 }, 7140 { .name = "JOSCR", 7141 .cp = 14, .crn = 1, .crm = 0, .opc1 = 7, .opc2 = 0, 7142 .access = PL1_RW, .type = ARM_CP_CONST, .resetvalue = 0 }, 7143 { .name = "JMCR", 7144 .cp = 14, .crn = 2, .crm = 0, .opc1 = 7, .opc2 = 0, 7145 .access = PL1_RW, .type = ARM_CP_CONST, .resetvalue = 0 }, 7146 REGINFO_SENTINEL 7147 }; 7148 7149 static const ARMCPRegInfo vhe_reginfo[] = { 7150 { .name = "CONTEXTIDR_EL2", .state = ARM_CP_STATE_AA64, 7151 .opc0 = 3, .opc1 = 4, .crn = 13, .crm = 0, .opc2 = 1, 7152 .access = PL2_RW, 7153 .fieldoffset = offsetof(CPUARMState, cp15.contextidr_el[2]) }, 7154 { .name = "TTBR1_EL2", .state = ARM_CP_STATE_AA64, 7155 .opc0 = 3, .opc1 = 4, .crn = 2, .crm = 0, .opc2 = 1, 7156 .access = PL2_RW, .writefn = vmsa_tcr_ttbr_el2_write, 7157 .fieldoffset = offsetof(CPUARMState, cp15.ttbr1_el[2]) }, 7158 #ifndef CONFIG_USER_ONLY 7159 { .name = "CNTHV_CVAL_EL2", .state = ARM_CP_STATE_AA64, 7160 .opc0 = 3, .opc1 = 4, .crn = 14, .crm = 3, .opc2 = 2, 7161 .fieldoffset = 7162 offsetof(CPUARMState, cp15.c14_timer[GTIMER_HYPVIRT].cval), 7163 .type = ARM_CP_IO, .access = PL2_RW, 7164 .writefn = gt_hv_cval_write, .raw_writefn = raw_write }, 7165 { .name = "CNTHV_TVAL_EL2", .state = ARM_CP_STATE_BOTH, 7166 .opc0 = 3, .opc1 = 4, .crn = 14, .crm = 3, .opc2 = 0, 7167 .type = ARM_CP_NO_RAW | ARM_CP_IO, .access = PL2_RW, 7168 .resetfn = gt_hv_timer_reset, 7169 .readfn = gt_hv_tval_read, .writefn = gt_hv_tval_write }, 7170 { .name = "CNTHV_CTL_EL2", .state = ARM_CP_STATE_BOTH, 7171 .type = ARM_CP_IO, 7172 .opc0 = 3, .opc1 = 4, .crn = 14, .crm = 3, .opc2 = 1, 7173 .access = PL2_RW, 7174 .fieldoffset = offsetof(CPUARMState, cp15.c14_timer[GTIMER_HYPVIRT].ctl), 7175 .writefn = gt_hv_ctl_write, .raw_writefn = raw_write }, 7176 { .name = "CNTP_CTL_EL02", .state = ARM_CP_STATE_AA64, 7177 .opc0 = 3, .opc1 = 5, .crn = 14, .crm = 2, .opc2 = 1, 7178 .type = ARM_CP_IO | ARM_CP_ALIAS, 7179 .access = PL2_RW, .accessfn = e2h_access, 7180 .fieldoffset = offsetof(CPUARMState, cp15.c14_timer[GTIMER_PHYS].ctl), 7181 .writefn = gt_phys_ctl_write, .raw_writefn = raw_write }, 7182 { .name = "CNTV_CTL_EL02", .state = ARM_CP_STATE_AA64, 7183 .opc0 = 3, .opc1 = 5, .crn = 14, .crm = 3, .opc2 = 1, 7184 .type = ARM_CP_IO | ARM_CP_ALIAS, 7185 .access = PL2_RW, .accessfn = e2h_access, 7186 .fieldoffset = offsetof(CPUARMState, cp15.c14_timer[GTIMER_VIRT].ctl), 7187 .writefn = gt_virt_ctl_write, .raw_writefn = raw_write }, 7188 { .name = "CNTP_TVAL_EL02", .state = ARM_CP_STATE_AA64, 7189 .opc0 = 3, .opc1 = 5, .crn = 14, .crm = 2, .opc2 = 0, 7190 .type = ARM_CP_NO_RAW | ARM_CP_IO | ARM_CP_ALIAS, 7191 .access = PL2_RW, .accessfn = e2h_access, 7192 .readfn = gt_phys_tval_read, .writefn = gt_phys_tval_write }, 7193 { .name = "CNTV_TVAL_EL02", .state = ARM_CP_STATE_AA64, 7194 .opc0 = 3, .opc1 = 5, .crn = 14, .crm = 3, .opc2 = 0, 7195 .type = ARM_CP_NO_RAW | ARM_CP_IO | ARM_CP_ALIAS, 7196 .access = PL2_RW, .accessfn = e2h_access, 7197 .readfn = gt_virt_tval_read, .writefn = gt_virt_tval_write }, 7198 { .name = "CNTP_CVAL_EL02", .state = ARM_CP_STATE_AA64, 7199 .opc0 = 3, .opc1 = 5, .crn = 14, .crm = 2, .opc2 = 2, 7200 .type = ARM_CP_IO | ARM_CP_ALIAS, 7201 .fieldoffset = offsetof(CPUARMState, cp15.c14_timer[GTIMER_PHYS].cval), 7202 .access = PL2_RW, .accessfn = e2h_access, 7203 .writefn = gt_phys_cval_write, .raw_writefn = raw_write }, 7204 { .name = "CNTV_CVAL_EL02", .state = ARM_CP_STATE_AA64, 7205 .opc0 = 3, .opc1 = 5, .crn = 14, .crm = 3, .opc2 = 2, 7206 .type = ARM_CP_IO | ARM_CP_ALIAS, 7207 .fieldoffset = offsetof(CPUARMState, cp15.c14_timer[GTIMER_VIRT].cval), 7208 .access = PL2_RW, .accessfn = e2h_access, 7209 .writefn = gt_virt_cval_write, .raw_writefn = raw_write }, 7210 #endif 7211 REGINFO_SENTINEL 7212 }; 7213 7214 #ifndef CONFIG_USER_ONLY 7215 static const ARMCPRegInfo ats1e1_reginfo[] = { 7216 { .name = "AT_S1E1R", .state = ARM_CP_STATE_AA64, 7217 .opc0 = 1, .opc1 = 0, .crn = 7, .crm = 9, .opc2 = 0, 7218 .access = PL1_W, .type = ARM_CP_NO_RAW | ARM_CP_RAISES_EXC, 7219 .writefn = ats_write64 }, 7220 { .name = "AT_S1E1W", .state = ARM_CP_STATE_AA64, 7221 .opc0 = 1, .opc1 = 0, .crn = 7, .crm = 9, .opc2 = 1, 7222 .access = PL1_W, .type = ARM_CP_NO_RAW | ARM_CP_RAISES_EXC, 7223 .writefn = ats_write64 }, 7224 REGINFO_SENTINEL 7225 }; 7226 7227 static const ARMCPRegInfo ats1cp_reginfo[] = { 7228 { .name = "ATS1CPRP", 7229 .cp = 15, .opc1 = 0, .crn = 7, .crm = 9, .opc2 = 0, 7230 .access = PL1_W, .type = ARM_CP_NO_RAW | ARM_CP_RAISES_EXC, 7231 .writefn = ats_write }, 7232 { .name = "ATS1CPWP", 7233 .cp = 15, .opc1 = 0, .crn = 7, .crm = 9, .opc2 = 1, 7234 .access = PL1_W, .type = ARM_CP_NO_RAW | ARM_CP_RAISES_EXC, 7235 .writefn = ats_write }, 7236 REGINFO_SENTINEL 7237 }; 7238 #endif 7239 7240 /* 7241 * ACTLR2 and HACTLR2 map to ACTLR_EL1[63:32] and 7242 * ACTLR_EL2[63:32]. They exist only if the ID_MMFR4.AC2 field 7243 * is non-zero, which is never for ARMv7, optionally in ARMv8 7244 * and mandatorily for ARMv8.2 and up. 7245 * ACTLR2 is banked for S and NS if EL3 is AArch32. Since QEMU's 7246 * implementation is RAZ/WI we can ignore this detail, as we 7247 * do for ACTLR. 7248 */ 7249 static const ARMCPRegInfo actlr2_hactlr2_reginfo[] = { 7250 { .name = "ACTLR2", .state = ARM_CP_STATE_AA32, 7251 .cp = 15, .opc1 = 0, .crn = 1, .crm = 0, .opc2 = 3, 7252 .access = PL1_RW, .accessfn = access_tacr, 7253 .type = ARM_CP_CONST, .resetvalue = 0 }, 7254 { .name = "HACTLR2", .state = ARM_CP_STATE_AA32, 7255 .cp = 15, .opc1 = 4, .crn = 1, .crm = 0, .opc2 = 3, 7256 .access = PL2_RW, .type = ARM_CP_CONST, 7257 .resetvalue = 0 }, 7258 REGINFO_SENTINEL 7259 }; 7260 7261 void register_cp_regs_for_features(ARMCPU *cpu) 7262 { 7263 /* Register all the coprocessor registers based on feature bits */ 7264 CPUARMState *env = &cpu->env; 7265 if (arm_feature(env, ARM_FEATURE_M)) { 7266 /* M profile has no coprocessor registers */ 7267 return; 7268 } 7269 7270 define_arm_cp_regs(cpu, cp_reginfo); 7271 if (!arm_feature(env, ARM_FEATURE_V8)) { 7272 /* Must go early as it is full of wildcards that may be 7273 * overridden by later definitions. 7274 */ 7275 define_arm_cp_regs(cpu, not_v8_cp_reginfo); 7276 } 7277 7278 if (arm_feature(env, ARM_FEATURE_V6)) { 7279 /* The ID registers all have impdef reset values */ 7280 ARMCPRegInfo v6_idregs[] = { 7281 { .name = "ID_PFR0", .state = ARM_CP_STATE_BOTH, 7282 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 1, .opc2 = 0, 7283 .access = PL1_R, .type = ARM_CP_CONST, 7284 .accessfn = access_aa32_tid3, 7285 .resetvalue = cpu->isar.id_pfr0 }, 7286 /* ID_PFR1 is not a plain ARM_CP_CONST because we don't know 7287 * the value of the GIC field until after we define these regs. 7288 */ 7289 { .name = "ID_PFR1", .state = ARM_CP_STATE_BOTH, 7290 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 1, .opc2 = 1, 7291 .access = PL1_R, .type = ARM_CP_NO_RAW, 7292 .accessfn = access_aa32_tid3, 7293 .readfn = id_pfr1_read, 7294 .writefn = arm_cp_write_ignore }, 7295 { .name = "ID_DFR0", .state = ARM_CP_STATE_BOTH, 7296 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 1, .opc2 = 2, 7297 .access = PL1_R, .type = ARM_CP_CONST, 7298 .accessfn = access_aa32_tid3, 7299 .resetvalue = cpu->isar.id_dfr0 }, 7300 { .name = "ID_AFR0", .state = ARM_CP_STATE_BOTH, 7301 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 1, .opc2 = 3, 7302 .access = PL1_R, .type = ARM_CP_CONST, 7303 .accessfn = access_aa32_tid3, 7304 .resetvalue = cpu->id_afr0 }, 7305 { .name = "ID_MMFR0", .state = ARM_CP_STATE_BOTH, 7306 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 1, .opc2 = 4, 7307 .access = PL1_R, .type = ARM_CP_CONST, 7308 .accessfn = access_aa32_tid3, 7309 .resetvalue = cpu->isar.id_mmfr0 }, 7310 { .name = "ID_MMFR1", .state = ARM_CP_STATE_BOTH, 7311 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 1, .opc2 = 5, 7312 .access = PL1_R, .type = ARM_CP_CONST, 7313 .accessfn = access_aa32_tid3, 7314 .resetvalue = cpu->isar.id_mmfr1 }, 7315 { .name = "ID_MMFR2", .state = ARM_CP_STATE_BOTH, 7316 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 1, .opc2 = 6, 7317 .access = PL1_R, .type = ARM_CP_CONST, 7318 .accessfn = access_aa32_tid3, 7319 .resetvalue = cpu->isar.id_mmfr2 }, 7320 { .name = "ID_MMFR3", .state = ARM_CP_STATE_BOTH, 7321 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 1, .opc2 = 7, 7322 .access = PL1_R, .type = ARM_CP_CONST, 7323 .accessfn = access_aa32_tid3, 7324 .resetvalue = cpu->isar.id_mmfr3 }, 7325 { .name = "ID_ISAR0", .state = ARM_CP_STATE_BOTH, 7326 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 2, .opc2 = 0, 7327 .access = PL1_R, .type = ARM_CP_CONST, 7328 .accessfn = access_aa32_tid3, 7329 .resetvalue = cpu->isar.id_isar0 }, 7330 { .name = "ID_ISAR1", .state = ARM_CP_STATE_BOTH, 7331 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 2, .opc2 = 1, 7332 .access = PL1_R, .type = ARM_CP_CONST, 7333 .accessfn = access_aa32_tid3, 7334 .resetvalue = cpu->isar.id_isar1 }, 7335 { .name = "ID_ISAR2", .state = ARM_CP_STATE_BOTH, 7336 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 2, .opc2 = 2, 7337 .access = PL1_R, .type = ARM_CP_CONST, 7338 .accessfn = access_aa32_tid3, 7339 .resetvalue = cpu->isar.id_isar2 }, 7340 { .name = "ID_ISAR3", .state = ARM_CP_STATE_BOTH, 7341 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 2, .opc2 = 3, 7342 .access = PL1_R, .type = ARM_CP_CONST, 7343 .accessfn = access_aa32_tid3, 7344 .resetvalue = cpu->isar.id_isar3 }, 7345 { .name = "ID_ISAR4", .state = ARM_CP_STATE_BOTH, 7346 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 2, .opc2 = 4, 7347 .access = PL1_R, .type = ARM_CP_CONST, 7348 .accessfn = access_aa32_tid3, 7349 .resetvalue = cpu->isar.id_isar4 }, 7350 { .name = "ID_ISAR5", .state = ARM_CP_STATE_BOTH, 7351 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 2, .opc2 = 5, 7352 .access = PL1_R, .type = ARM_CP_CONST, 7353 .accessfn = access_aa32_tid3, 7354 .resetvalue = cpu->isar.id_isar5 }, 7355 { .name = "ID_MMFR4", .state = ARM_CP_STATE_BOTH, 7356 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 2, .opc2 = 6, 7357 .access = PL1_R, .type = ARM_CP_CONST, 7358 .accessfn = access_aa32_tid3, 7359 .resetvalue = cpu->isar.id_mmfr4 }, 7360 { .name = "ID_ISAR6", .state = ARM_CP_STATE_BOTH, 7361 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 2, .opc2 = 7, 7362 .access = PL1_R, .type = ARM_CP_CONST, 7363 .accessfn = access_aa32_tid3, 7364 .resetvalue = cpu->isar.id_isar6 }, 7365 REGINFO_SENTINEL 7366 }; 7367 define_arm_cp_regs(cpu, v6_idregs); 7368 define_arm_cp_regs(cpu, v6_cp_reginfo); 7369 } else { 7370 define_arm_cp_regs(cpu, not_v6_cp_reginfo); 7371 } 7372 if (arm_feature(env, ARM_FEATURE_V6K)) { 7373 define_arm_cp_regs(cpu, v6k_cp_reginfo); 7374 } 7375 if (arm_feature(env, ARM_FEATURE_V7MP) && 7376 !arm_feature(env, ARM_FEATURE_PMSA)) { 7377 define_arm_cp_regs(cpu, v7mp_cp_reginfo); 7378 } 7379 if (arm_feature(env, ARM_FEATURE_V7VE)) { 7380 define_arm_cp_regs(cpu, pmovsset_cp_reginfo); 7381 } 7382 if (arm_feature(env, ARM_FEATURE_V7)) { 7383 ARMCPRegInfo clidr = { 7384 .name = "CLIDR", .state = ARM_CP_STATE_BOTH, 7385 .opc0 = 3, .crn = 0, .crm = 0, .opc1 = 1, .opc2 = 1, 7386 .access = PL1_R, .type = ARM_CP_CONST, 7387 .accessfn = access_aa64_tid2, 7388 .resetvalue = cpu->clidr 7389 }; 7390 define_one_arm_cp_reg(cpu, &clidr); 7391 define_arm_cp_regs(cpu, v7_cp_reginfo); 7392 define_debug_regs(cpu); 7393 define_pmu_regs(cpu); 7394 } else { 7395 define_arm_cp_regs(cpu, not_v7_cp_reginfo); 7396 } 7397 if (arm_feature(env, ARM_FEATURE_V8)) { 7398 /* AArch64 ID registers, which all have impdef reset values. 7399 * Note that within the ID register ranges the unused slots 7400 * must all RAZ, not UNDEF; future architecture versions may 7401 * define new registers here. 7402 */ 7403 ARMCPRegInfo v8_idregs[] = { 7404 /* 7405 * ID_AA64PFR0_EL1 is not a plain ARM_CP_CONST in system 7406 * emulation because we don't know the right value for the 7407 * GIC field until after we define these regs. 7408 */ 7409 { .name = "ID_AA64PFR0_EL1", .state = ARM_CP_STATE_AA64, 7410 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 4, .opc2 = 0, 7411 .access = PL1_R, 7412 #ifdef CONFIG_USER_ONLY 7413 .type = ARM_CP_CONST, 7414 .resetvalue = cpu->isar.id_aa64pfr0 7415 #else 7416 .type = ARM_CP_NO_RAW, 7417 .accessfn = access_aa64_tid3, 7418 .readfn = id_aa64pfr0_read, 7419 .writefn = arm_cp_write_ignore 7420 #endif 7421 }, 7422 { .name = "ID_AA64PFR1_EL1", .state = ARM_CP_STATE_AA64, 7423 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 4, .opc2 = 1, 7424 .access = PL1_R, .type = ARM_CP_CONST, 7425 .accessfn = access_aa64_tid3, 7426 .resetvalue = cpu->isar.id_aa64pfr1}, 7427 { .name = "ID_AA64PFR2_EL1_RESERVED", .state = ARM_CP_STATE_AA64, 7428 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 4, .opc2 = 2, 7429 .access = PL1_R, .type = ARM_CP_CONST, 7430 .accessfn = access_aa64_tid3, 7431 .resetvalue = 0 }, 7432 { .name = "ID_AA64PFR3_EL1_RESERVED", .state = ARM_CP_STATE_AA64, 7433 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 4, .opc2 = 3, 7434 .access = PL1_R, .type = ARM_CP_CONST, 7435 .accessfn = access_aa64_tid3, 7436 .resetvalue = 0 }, 7437 { .name = "ID_AA64ZFR0_EL1", .state = ARM_CP_STATE_AA64, 7438 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 4, .opc2 = 4, 7439 .access = PL1_R, .type = ARM_CP_CONST, 7440 .accessfn = access_aa64_tid3, 7441 /* At present, only SVEver == 0 is defined anyway. */ 7442 .resetvalue = 0 }, 7443 { .name = "ID_AA64PFR5_EL1_RESERVED", .state = ARM_CP_STATE_AA64, 7444 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 4, .opc2 = 5, 7445 .access = PL1_R, .type = ARM_CP_CONST, 7446 .accessfn = access_aa64_tid3, 7447 .resetvalue = 0 }, 7448 { .name = "ID_AA64PFR6_EL1_RESERVED", .state = ARM_CP_STATE_AA64, 7449 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 4, .opc2 = 6, 7450 .access = PL1_R, .type = ARM_CP_CONST, 7451 .accessfn = access_aa64_tid3, 7452 .resetvalue = 0 }, 7453 { .name = "ID_AA64PFR7_EL1_RESERVED", .state = ARM_CP_STATE_AA64, 7454 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 4, .opc2 = 7, 7455 .access = PL1_R, .type = ARM_CP_CONST, 7456 .accessfn = access_aa64_tid3, 7457 .resetvalue = 0 }, 7458 { .name = "ID_AA64DFR0_EL1", .state = ARM_CP_STATE_AA64, 7459 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 5, .opc2 = 0, 7460 .access = PL1_R, .type = ARM_CP_CONST, 7461 .accessfn = access_aa64_tid3, 7462 .resetvalue = cpu->isar.id_aa64dfr0 }, 7463 { .name = "ID_AA64DFR1_EL1", .state = ARM_CP_STATE_AA64, 7464 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 5, .opc2 = 1, 7465 .access = PL1_R, .type = ARM_CP_CONST, 7466 .accessfn = access_aa64_tid3, 7467 .resetvalue = cpu->isar.id_aa64dfr1 }, 7468 { .name = "ID_AA64DFR2_EL1_RESERVED", .state = ARM_CP_STATE_AA64, 7469 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 5, .opc2 = 2, 7470 .access = PL1_R, .type = ARM_CP_CONST, 7471 .accessfn = access_aa64_tid3, 7472 .resetvalue = 0 }, 7473 { .name = "ID_AA64DFR3_EL1_RESERVED", .state = ARM_CP_STATE_AA64, 7474 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 5, .opc2 = 3, 7475 .access = PL1_R, .type = ARM_CP_CONST, 7476 .accessfn = access_aa64_tid3, 7477 .resetvalue = 0 }, 7478 { .name = "ID_AA64AFR0_EL1", .state = ARM_CP_STATE_AA64, 7479 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 5, .opc2 = 4, 7480 .access = PL1_R, .type = ARM_CP_CONST, 7481 .accessfn = access_aa64_tid3, 7482 .resetvalue = cpu->id_aa64afr0 }, 7483 { .name = "ID_AA64AFR1_EL1", .state = ARM_CP_STATE_AA64, 7484 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 5, .opc2 = 5, 7485 .access = PL1_R, .type = ARM_CP_CONST, 7486 .accessfn = access_aa64_tid3, 7487 .resetvalue = cpu->id_aa64afr1 }, 7488 { .name = "ID_AA64AFR2_EL1_RESERVED", .state = ARM_CP_STATE_AA64, 7489 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 5, .opc2 = 6, 7490 .access = PL1_R, .type = ARM_CP_CONST, 7491 .accessfn = access_aa64_tid3, 7492 .resetvalue = 0 }, 7493 { .name = "ID_AA64AFR3_EL1_RESERVED", .state = ARM_CP_STATE_AA64, 7494 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 5, .opc2 = 7, 7495 .access = PL1_R, .type = ARM_CP_CONST, 7496 .accessfn = access_aa64_tid3, 7497 .resetvalue = 0 }, 7498 { .name = "ID_AA64ISAR0_EL1", .state = ARM_CP_STATE_AA64, 7499 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 6, .opc2 = 0, 7500 .access = PL1_R, .type = ARM_CP_CONST, 7501 .accessfn = access_aa64_tid3, 7502 .resetvalue = cpu->isar.id_aa64isar0 }, 7503 { .name = "ID_AA64ISAR1_EL1", .state = ARM_CP_STATE_AA64, 7504 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 6, .opc2 = 1, 7505 .access = PL1_R, .type = ARM_CP_CONST, 7506 .accessfn = access_aa64_tid3, 7507 .resetvalue = cpu->isar.id_aa64isar1 }, 7508 { .name = "ID_AA64ISAR2_EL1_RESERVED", .state = ARM_CP_STATE_AA64, 7509 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 6, .opc2 = 2, 7510 .access = PL1_R, .type = ARM_CP_CONST, 7511 .accessfn = access_aa64_tid3, 7512 .resetvalue = 0 }, 7513 { .name = "ID_AA64ISAR3_EL1_RESERVED", .state = ARM_CP_STATE_AA64, 7514 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 6, .opc2 = 3, 7515 .access = PL1_R, .type = ARM_CP_CONST, 7516 .accessfn = access_aa64_tid3, 7517 .resetvalue = 0 }, 7518 { .name = "ID_AA64ISAR4_EL1_RESERVED", .state = ARM_CP_STATE_AA64, 7519 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 6, .opc2 = 4, 7520 .access = PL1_R, .type = ARM_CP_CONST, 7521 .accessfn = access_aa64_tid3, 7522 .resetvalue = 0 }, 7523 { .name = "ID_AA64ISAR5_EL1_RESERVED", .state = ARM_CP_STATE_AA64, 7524 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 6, .opc2 = 5, 7525 .access = PL1_R, .type = ARM_CP_CONST, 7526 .accessfn = access_aa64_tid3, 7527 .resetvalue = 0 }, 7528 { .name = "ID_AA64ISAR6_EL1_RESERVED", .state = ARM_CP_STATE_AA64, 7529 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 6, .opc2 = 6, 7530 .access = PL1_R, .type = ARM_CP_CONST, 7531 .accessfn = access_aa64_tid3, 7532 .resetvalue = 0 }, 7533 { .name = "ID_AA64ISAR7_EL1_RESERVED", .state = ARM_CP_STATE_AA64, 7534 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 6, .opc2 = 7, 7535 .access = PL1_R, .type = ARM_CP_CONST, 7536 .accessfn = access_aa64_tid3, 7537 .resetvalue = 0 }, 7538 { .name = "ID_AA64MMFR0_EL1", .state = ARM_CP_STATE_AA64, 7539 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 7, .opc2 = 0, 7540 .access = PL1_R, .type = ARM_CP_CONST, 7541 .accessfn = access_aa64_tid3, 7542 .resetvalue = cpu->isar.id_aa64mmfr0 }, 7543 { .name = "ID_AA64MMFR1_EL1", .state = ARM_CP_STATE_AA64, 7544 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 7, .opc2 = 1, 7545 .access = PL1_R, .type = ARM_CP_CONST, 7546 .accessfn = access_aa64_tid3, 7547 .resetvalue = cpu->isar.id_aa64mmfr1 }, 7548 { .name = "ID_AA64MMFR2_EL1", .state = ARM_CP_STATE_AA64, 7549 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 7, .opc2 = 2, 7550 .access = PL1_R, .type = ARM_CP_CONST, 7551 .accessfn = access_aa64_tid3, 7552 .resetvalue = cpu->isar.id_aa64mmfr2 }, 7553 { .name = "ID_AA64MMFR3_EL1_RESERVED", .state = ARM_CP_STATE_AA64, 7554 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 7, .opc2 = 3, 7555 .access = PL1_R, .type = ARM_CP_CONST, 7556 .accessfn = access_aa64_tid3, 7557 .resetvalue = 0 }, 7558 { .name = "ID_AA64MMFR4_EL1_RESERVED", .state = ARM_CP_STATE_AA64, 7559 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 7, .opc2 = 4, 7560 .access = PL1_R, .type = ARM_CP_CONST, 7561 .accessfn = access_aa64_tid3, 7562 .resetvalue = 0 }, 7563 { .name = "ID_AA64MMFR5_EL1_RESERVED", .state = ARM_CP_STATE_AA64, 7564 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 7, .opc2 = 5, 7565 .access = PL1_R, .type = ARM_CP_CONST, 7566 .accessfn = access_aa64_tid3, 7567 .resetvalue = 0 }, 7568 { .name = "ID_AA64MMFR6_EL1_RESERVED", .state = ARM_CP_STATE_AA64, 7569 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 7, .opc2 = 6, 7570 .access = PL1_R, .type = ARM_CP_CONST, 7571 .accessfn = access_aa64_tid3, 7572 .resetvalue = 0 }, 7573 { .name = "ID_AA64MMFR7_EL1_RESERVED", .state = ARM_CP_STATE_AA64, 7574 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 7, .opc2 = 7, 7575 .access = PL1_R, .type = ARM_CP_CONST, 7576 .accessfn = access_aa64_tid3, 7577 .resetvalue = 0 }, 7578 { .name = "MVFR0_EL1", .state = ARM_CP_STATE_AA64, 7579 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 3, .opc2 = 0, 7580 .access = PL1_R, .type = ARM_CP_CONST, 7581 .accessfn = access_aa64_tid3, 7582 .resetvalue = cpu->isar.mvfr0 }, 7583 { .name = "MVFR1_EL1", .state = ARM_CP_STATE_AA64, 7584 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 3, .opc2 = 1, 7585 .access = PL1_R, .type = ARM_CP_CONST, 7586 .accessfn = access_aa64_tid3, 7587 .resetvalue = cpu->isar.mvfr1 }, 7588 { .name = "MVFR2_EL1", .state = ARM_CP_STATE_AA64, 7589 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 3, .opc2 = 2, 7590 .access = PL1_R, .type = ARM_CP_CONST, 7591 .accessfn = access_aa64_tid3, 7592 .resetvalue = cpu->isar.mvfr2 }, 7593 { .name = "MVFR3_EL1_RESERVED", .state = ARM_CP_STATE_AA64, 7594 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 3, .opc2 = 3, 7595 .access = PL1_R, .type = ARM_CP_CONST, 7596 .accessfn = access_aa64_tid3, 7597 .resetvalue = 0 }, 7598 { .name = "MVFR4_EL1_RESERVED", .state = ARM_CP_STATE_AA64, 7599 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 3, .opc2 = 4, 7600 .access = PL1_R, .type = ARM_CP_CONST, 7601 .accessfn = access_aa64_tid3, 7602 .resetvalue = 0 }, 7603 { .name = "MVFR5_EL1_RESERVED", .state = ARM_CP_STATE_AA64, 7604 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 3, .opc2 = 5, 7605 .access = PL1_R, .type = ARM_CP_CONST, 7606 .accessfn = access_aa64_tid3, 7607 .resetvalue = 0 }, 7608 { .name = "MVFR6_EL1_RESERVED", .state = ARM_CP_STATE_AA64, 7609 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 3, .opc2 = 6, 7610 .access = PL1_R, .type = ARM_CP_CONST, 7611 .accessfn = access_aa64_tid3, 7612 .resetvalue = 0 }, 7613 { .name = "MVFR7_EL1_RESERVED", .state = ARM_CP_STATE_AA64, 7614 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 3, .opc2 = 7, 7615 .access = PL1_R, .type = ARM_CP_CONST, 7616 .accessfn = access_aa64_tid3, 7617 .resetvalue = 0 }, 7618 { .name = "PMCEID0", .state = ARM_CP_STATE_AA32, 7619 .cp = 15, .opc1 = 0, .crn = 9, .crm = 12, .opc2 = 6, 7620 .access = PL0_R, .accessfn = pmreg_access, .type = ARM_CP_CONST, 7621 .resetvalue = extract64(cpu->pmceid0, 0, 32) }, 7622 { .name = "PMCEID0_EL0", .state = ARM_CP_STATE_AA64, 7623 .opc0 = 3, .opc1 = 3, .crn = 9, .crm = 12, .opc2 = 6, 7624 .access = PL0_R, .accessfn = pmreg_access, .type = ARM_CP_CONST, 7625 .resetvalue = cpu->pmceid0 }, 7626 { .name = "PMCEID1", .state = ARM_CP_STATE_AA32, 7627 .cp = 15, .opc1 = 0, .crn = 9, .crm = 12, .opc2 = 7, 7628 .access = PL0_R, .accessfn = pmreg_access, .type = ARM_CP_CONST, 7629 .resetvalue = extract64(cpu->pmceid1, 0, 32) }, 7630 { .name = "PMCEID1_EL0", .state = ARM_CP_STATE_AA64, 7631 .opc0 = 3, .opc1 = 3, .crn = 9, .crm = 12, .opc2 = 7, 7632 .access = PL0_R, .accessfn = pmreg_access, .type = ARM_CP_CONST, 7633 .resetvalue = cpu->pmceid1 }, 7634 REGINFO_SENTINEL 7635 }; 7636 #ifdef CONFIG_USER_ONLY 7637 ARMCPRegUserSpaceInfo v8_user_idregs[] = { 7638 { .name = "ID_AA64PFR0_EL1", 7639 .exported_bits = 0x000f000f00ff0000, 7640 .fixed_bits = 0x0000000000000011 }, 7641 { .name = "ID_AA64PFR1_EL1", 7642 .exported_bits = 0x00000000000000f0 }, 7643 { .name = "ID_AA64PFR*_EL1_RESERVED", 7644 .is_glob = true }, 7645 { .name = "ID_AA64ZFR0_EL1" }, 7646 { .name = "ID_AA64MMFR0_EL1", 7647 .fixed_bits = 0x00000000ff000000 }, 7648 { .name = "ID_AA64MMFR1_EL1" }, 7649 { .name = "ID_AA64MMFR*_EL1_RESERVED", 7650 .is_glob = true }, 7651 { .name = "ID_AA64DFR0_EL1", 7652 .fixed_bits = 0x0000000000000006 }, 7653 { .name = "ID_AA64DFR1_EL1" }, 7654 { .name = "ID_AA64DFR*_EL1_RESERVED", 7655 .is_glob = true }, 7656 { .name = "ID_AA64AFR*", 7657 .is_glob = true }, 7658 { .name = "ID_AA64ISAR0_EL1", 7659 .exported_bits = 0x00fffffff0fffff0 }, 7660 { .name = "ID_AA64ISAR1_EL1", 7661 .exported_bits = 0x000000f0ffffffff }, 7662 { .name = "ID_AA64ISAR*_EL1_RESERVED", 7663 .is_glob = true }, 7664 REGUSERINFO_SENTINEL 7665 }; 7666 modify_arm_cp_regs(v8_idregs, v8_user_idregs); 7667 #endif 7668 /* RVBAR_EL1 is only implemented if EL1 is the highest EL */ 7669 if (!arm_feature(env, ARM_FEATURE_EL3) && 7670 !arm_feature(env, ARM_FEATURE_EL2)) { 7671 ARMCPRegInfo rvbar = { 7672 .name = "RVBAR_EL1", .state = ARM_CP_STATE_AA64, 7673 .opc0 = 3, .opc1 = 0, .crn = 12, .crm = 0, .opc2 = 1, 7674 .type = ARM_CP_CONST, .access = PL1_R, .resetvalue = cpu->rvbar 7675 }; 7676 define_one_arm_cp_reg(cpu, &rvbar); 7677 } 7678 define_arm_cp_regs(cpu, v8_idregs); 7679 define_arm_cp_regs(cpu, v8_cp_reginfo); 7680 } 7681 if (arm_feature(env, ARM_FEATURE_EL2)) { 7682 uint64_t vmpidr_def = mpidr_read_val(env); 7683 ARMCPRegInfo vpidr_regs[] = { 7684 { .name = "VPIDR", .state = ARM_CP_STATE_AA32, 7685 .cp = 15, .opc1 = 4, .crn = 0, .crm = 0, .opc2 = 0, 7686 .access = PL2_RW, .accessfn = access_el3_aa32ns, 7687 .resetvalue = cpu->midr, .type = ARM_CP_ALIAS, 7688 .fieldoffset = offsetoflow32(CPUARMState, cp15.vpidr_el2) }, 7689 { .name = "VPIDR_EL2", .state = ARM_CP_STATE_AA64, 7690 .opc0 = 3, .opc1 = 4, .crn = 0, .crm = 0, .opc2 = 0, 7691 .access = PL2_RW, .resetvalue = cpu->midr, 7692 .fieldoffset = offsetof(CPUARMState, cp15.vpidr_el2) }, 7693 { .name = "VMPIDR", .state = ARM_CP_STATE_AA32, 7694 .cp = 15, .opc1 = 4, .crn = 0, .crm = 0, .opc2 = 5, 7695 .access = PL2_RW, .accessfn = access_el3_aa32ns, 7696 .resetvalue = vmpidr_def, .type = ARM_CP_ALIAS, 7697 .fieldoffset = offsetoflow32(CPUARMState, cp15.vmpidr_el2) }, 7698 { .name = "VMPIDR_EL2", .state = ARM_CP_STATE_AA64, 7699 .opc0 = 3, .opc1 = 4, .crn = 0, .crm = 0, .opc2 = 5, 7700 .access = PL2_RW, 7701 .resetvalue = vmpidr_def, 7702 .fieldoffset = offsetof(CPUARMState, cp15.vmpidr_el2) }, 7703 REGINFO_SENTINEL 7704 }; 7705 define_arm_cp_regs(cpu, vpidr_regs); 7706 define_arm_cp_regs(cpu, el2_cp_reginfo); 7707 if (arm_feature(env, ARM_FEATURE_V8)) { 7708 define_arm_cp_regs(cpu, el2_v8_cp_reginfo); 7709 } 7710 /* RVBAR_EL2 is only implemented if EL2 is the highest EL */ 7711 if (!arm_feature(env, ARM_FEATURE_EL3)) { 7712 ARMCPRegInfo rvbar = { 7713 .name = "RVBAR_EL2", .state = ARM_CP_STATE_AA64, 7714 .opc0 = 3, .opc1 = 4, .crn = 12, .crm = 0, .opc2 = 1, 7715 .type = ARM_CP_CONST, .access = PL2_R, .resetvalue = cpu->rvbar 7716 }; 7717 define_one_arm_cp_reg(cpu, &rvbar); 7718 } 7719 } else { 7720 /* If EL2 is missing but higher ELs are enabled, we need to 7721 * register the no_el2 reginfos. 7722 */ 7723 if (arm_feature(env, ARM_FEATURE_EL3)) { 7724 /* When EL3 exists but not EL2, VPIDR and VMPIDR take the value 7725 * of MIDR_EL1 and MPIDR_EL1. 7726 */ 7727 ARMCPRegInfo vpidr_regs[] = { 7728 { .name = "VPIDR_EL2", .state = ARM_CP_STATE_BOTH, 7729 .opc0 = 3, .opc1 = 4, .crn = 0, .crm = 0, .opc2 = 0, 7730 .access = PL2_RW, .accessfn = access_el3_aa32ns, 7731 .type = ARM_CP_CONST, .resetvalue = cpu->midr, 7732 .fieldoffset = offsetof(CPUARMState, cp15.vpidr_el2) }, 7733 { .name = "VMPIDR_EL2", .state = ARM_CP_STATE_BOTH, 7734 .opc0 = 3, .opc1 = 4, .crn = 0, .crm = 0, .opc2 = 5, 7735 .access = PL2_RW, .accessfn = access_el3_aa32ns, 7736 .type = ARM_CP_NO_RAW, 7737 .writefn = arm_cp_write_ignore, .readfn = mpidr_read }, 7738 REGINFO_SENTINEL 7739 }; 7740 define_arm_cp_regs(cpu, vpidr_regs); 7741 define_arm_cp_regs(cpu, el3_no_el2_cp_reginfo); 7742 if (arm_feature(env, ARM_FEATURE_V8)) { 7743 define_arm_cp_regs(cpu, el3_no_el2_v8_cp_reginfo); 7744 } 7745 } 7746 } 7747 if (arm_feature(env, ARM_FEATURE_EL3)) { 7748 define_arm_cp_regs(cpu, el3_cp_reginfo); 7749 ARMCPRegInfo el3_regs[] = { 7750 { .name = "RVBAR_EL3", .state = ARM_CP_STATE_AA64, 7751 .opc0 = 3, .opc1 = 6, .crn = 12, .crm = 0, .opc2 = 1, 7752 .type = ARM_CP_CONST, .access = PL3_R, .resetvalue = cpu->rvbar }, 7753 { .name = "SCTLR_EL3", .state = ARM_CP_STATE_AA64, 7754 .opc0 = 3, .opc1 = 6, .crn = 1, .crm = 0, .opc2 = 0, 7755 .access = PL3_RW, 7756 .raw_writefn = raw_write, .writefn = sctlr_write, 7757 .fieldoffset = offsetof(CPUARMState, cp15.sctlr_el[3]), 7758 .resetvalue = cpu->reset_sctlr }, 7759 REGINFO_SENTINEL 7760 }; 7761 7762 define_arm_cp_regs(cpu, el3_regs); 7763 } 7764 /* The behaviour of NSACR is sufficiently various that we don't 7765 * try to describe it in a single reginfo: 7766 * if EL3 is 64 bit, then trap to EL3 from S EL1, 7767 * reads as constant 0xc00 from NS EL1 and NS EL2 7768 * if EL3 is 32 bit, then RW at EL3, RO at NS EL1 and NS EL2 7769 * if v7 without EL3, register doesn't exist 7770 * if v8 without EL3, reads as constant 0xc00 from NS EL1 and NS EL2 7771 */ 7772 if (arm_feature(env, ARM_FEATURE_EL3)) { 7773 if (arm_feature(env, ARM_FEATURE_AARCH64)) { 7774 ARMCPRegInfo nsacr = { 7775 .name = "NSACR", .type = ARM_CP_CONST, 7776 .cp = 15, .opc1 = 0, .crn = 1, .crm = 1, .opc2 = 2, 7777 .access = PL1_RW, .accessfn = nsacr_access, 7778 .resetvalue = 0xc00 7779 }; 7780 define_one_arm_cp_reg(cpu, &nsacr); 7781 } else { 7782 ARMCPRegInfo nsacr = { 7783 .name = "NSACR", 7784 .cp = 15, .opc1 = 0, .crn = 1, .crm = 1, .opc2 = 2, 7785 .access = PL3_RW | PL1_R, 7786 .resetvalue = 0, 7787 .fieldoffset = offsetof(CPUARMState, cp15.nsacr) 7788 }; 7789 define_one_arm_cp_reg(cpu, &nsacr); 7790 } 7791 } else { 7792 if (arm_feature(env, ARM_FEATURE_V8)) { 7793 ARMCPRegInfo nsacr = { 7794 .name = "NSACR", .type = ARM_CP_CONST, 7795 .cp = 15, .opc1 = 0, .crn = 1, .crm = 1, .opc2 = 2, 7796 .access = PL1_R, 7797 .resetvalue = 0xc00 7798 }; 7799 define_one_arm_cp_reg(cpu, &nsacr); 7800 } 7801 } 7802 7803 if (arm_feature(env, ARM_FEATURE_PMSA)) { 7804 if (arm_feature(env, ARM_FEATURE_V6)) { 7805 /* PMSAv6 not implemented */ 7806 assert(arm_feature(env, ARM_FEATURE_V7)); 7807 define_arm_cp_regs(cpu, vmsa_pmsa_cp_reginfo); 7808 define_arm_cp_regs(cpu, pmsav7_cp_reginfo); 7809 } else { 7810 define_arm_cp_regs(cpu, pmsav5_cp_reginfo); 7811 } 7812 } else { 7813 define_arm_cp_regs(cpu, vmsa_pmsa_cp_reginfo); 7814 define_arm_cp_regs(cpu, vmsa_cp_reginfo); 7815 /* TTCBR2 is introduced with ARMv8.2-AA32HPD. */ 7816 if (cpu_isar_feature(aa32_hpd, cpu)) { 7817 define_one_arm_cp_reg(cpu, &ttbcr2_reginfo); 7818 } 7819 } 7820 if (arm_feature(env, ARM_FEATURE_THUMB2EE)) { 7821 define_arm_cp_regs(cpu, t2ee_cp_reginfo); 7822 } 7823 if (arm_feature(env, ARM_FEATURE_GENERIC_TIMER)) { 7824 define_arm_cp_regs(cpu, generic_timer_cp_reginfo); 7825 } 7826 if (arm_feature(env, ARM_FEATURE_VAPA)) { 7827 define_arm_cp_regs(cpu, vapa_cp_reginfo); 7828 } 7829 if (arm_feature(env, ARM_FEATURE_CACHE_TEST_CLEAN)) { 7830 define_arm_cp_regs(cpu, cache_test_clean_cp_reginfo); 7831 } 7832 if (arm_feature(env, ARM_FEATURE_CACHE_DIRTY_REG)) { 7833 define_arm_cp_regs(cpu, cache_dirty_status_cp_reginfo); 7834 } 7835 if (arm_feature(env, ARM_FEATURE_CACHE_BLOCK_OPS)) { 7836 define_arm_cp_regs(cpu, cache_block_ops_cp_reginfo); 7837 } 7838 if (arm_feature(env, ARM_FEATURE_OMAPCP)) { 7839 define_arm_cp_regs(cpu, omap_cp_reginfo); 7840 } 7841 if (arm_feature(env, ARM_FEATURE_STRONGARM)) { 7842 define_arm_cp_regs(cpu, strongarm_cp_reginfo); 7843 } 7844 if (arm_feature(env, ARM_FEATURE_XSCALE)) { 7845 define_arm_cp_regs(cpu, xscale_cp_reginfo); 7846 } 7847 if (arm_feature(env, ARM_FEATURE_DUMMY_C15_REGS)) { 7848 define_arm_cp_regs(cpu, dummy_c15_cp_reginfo); 7849 } 7850 if (arm_feature(env, ARM_FEATURE_LPAE)) { 7851 define_arm_cp_regs(cpu, lpae_cp_reginfo); 7852 } 7853 if (cpu_isar_feature(aa32_jazelle, cpu)) { 7854 define_arm_cp_regs(cpu, jazelle_regs); 7855 } 7856 /* Slightly awkwardly, the OMAP and StrongARM cores need all of 7857 * cp15 crn=0 to be writes-ignored, whereas for other cores they should 7858 * be read-only (ie write causes UNDEF exception). 7859 */ 7860 { 7861 ARMCPRegInfo id_pre_v8_midr_cp_reginfo[] = { 7862 /* Pre-v8 MIDR space. 7863 * Note that the MIDR isn't a simple constant register because 7864 * of the TI925 behaviour where writes to another register can 7865 * cause the MIDR value to change. 7866 * 7867 * Unimplemented registers in the c15 0 0 0 space default to 7868 * MIDR. Define MIDR first as this entire space, then CTR, TCMTR 7869 * and friends override accordingly. 7870 */ 7871 { .name = "MIDR", 7872 .cp = 15, .crn = 0, .crm = 0, .opc1 = 0, .opc2 = CP_ANY, 7873 .access = PL1_R, .resetvalue = cpu->midr, 7874 .writefn = arm_cp_write_ignore, .raw_writefn = raw_write, 7875 .readfn = midr_read, 7876 .fieldoffset = offsetof(CPUARMState, cp15.c0_cpuid), 7877 .type = ARM_CP_OVERRIDE }, 7878 /* crn = 0 op1 = 0 crm = 3..7 : currently unassigned; we RAZ. */ 7879 { .name = "DUMMY", 7880 .cp = 15, .crn = 0, .crm = 3, .opc1 = 0, .opc2 = CP_ANY, 7881 .access = PL1_R, .type = ARM_CP_CONST, .resetvalue = 0 }, 7882 { .name = "DUMMY", 7883 .cp = 15, .crn = 0, .crm = 4, .opc1 = 0, .opc2 = CP_ANY, 7884 .access = PL1_R, .type = ARM_CP_CONST, .resetvalue = 0 }, 7885 { .name = "DUMMY", 7886 .cp = 15, .crn = 0, .crm = 5, .opc1 = 0, .opc2 = CP_ANY, 7887 .access = PL1_R, .type = ARM_CP_CONST, .resetvalue = 0 }, 7888 { .name = "DUMMY", 7889 .cp = 15, .crn = 0, .crm = 6, .opc1 = 0, .opc2 = CP_ANY, 7890 .access = PL1_R, .type = ARM_CP_CONST, .resetvalue = 0 }, 7891 { .name = "DUMMY", 7892 .cp = 15, .crn = 0, .crm = 7, .opc1 = 0, .opc2 = CP_ANY, 7893 .access = PL1_R, .type = ARM_CP_CONST, .resetvalue = 0 }, 7894 REGINFO_SENTINEL 7895 }; 7896 ARMCPRegInfo id_v8_midr_cp_reginfo[] = { 7897 { .name = "MIDR_EL1", .state = ARM_CP_STATE_BOTH, 7898 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 0, .opc2 = 0, 7899 .access = PL1_R, .type = ARM_CP_NO_RAW, .resetvalue = cpu->midr, 7900 .fieldoffset = offsetof(CPUARMState, cp15.c0_cpuid), 7901 .readfn = midr_read }, 7902 /* crn = 0 op1 = 0 crm = 0 op2 = 4,7 : AArch32 aliases of MIDR */ 7903 { .name = "MIDR", .type = ARM_CP_ALIAS | ARM_CP_CONST, 7904 .cp = 15, .crn = 0, .crm = 0, .opc1 = 0, .opc2 = 4, 7905 .access = PL1_R, .resetvalue = cpu->midr }, 7906 { .name = "MIDR", .type = ARM_CP_ALIAS | ARM_CP_CONST, 7907 .cp = 15, .crn = 0, .crm = 0, .opc1 = 0, .opc2 = 7, 7908 .access = PL1_R, .resetvalue = cpu->midr }, 7909 { .name = "REVIDR_EL1", .state = ARM_CP_STATE_BOTH, 7910 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 0, .opc2 = 6, 7911 .access = PL1_R, 7912 .accessfn = access_aa64_tid1, 7913 .type = ARM_CP_CONST, .resetvalue = cpu->revidr }, 7914 REGINFO_SENTINEL 7915 }; 7916 ARMCPRegInfo id_cp_reginfo[] = { 7917 /* These are common to v8 and pre-v8 */ 7918 { .name = "CTR", 7919 .cp = 15, .crn = 0, .crm = 0, .opc1 = 0, .opc2 = 1, 7920 .access = PL1_R, .accessfn = ctr_el0_access, 7921 .type = ARM_CP_CONST, .resetvalue = cpu->ctr }, 7922 { .name = "CTR_EL0", .state = ARM_CP_STATE_AA64, 7923 .opc0 = 3, .opc1 = 3, .opc2 = 1, .crn = 0, .crm = 0, 7924 .access = PL0_R, .accessfn = ctr_el0_access, 7925 .type = ARM_CP_CONST, .resetvalue = cpu->ctr }, 7926 /* TCMTR and TLBTR exist in v8 but have no 64-bit versions */ 7927 { .name = "TCMTR", 7928 .cp = 15, .crn = 0, .crm = 0, .opc1 = 0, .opc2 = 2, 7929 .access = PL1_R, 7930 .accessfn = access_aa32_tid1, 7931 .type = ARM_CP_CONST, .resetvalue = 0 }, 7932 REGINFO_SENTINEL 7933 }; 7934 /* TLBTR is specific to VMSA */ 7935 ARMCPRegInfo id_tlbtr_reginfo = { 7936 .name = "TLBTR", 7937 .cp = 15, .crn = 0, .crm = 0, .opc1 = 0, .opc2 = 3, 7938 .access = PL1_R, 7939 .accessfn = access_aa32_tid1, 7940 .type = ARM_CP_CONST, .resetvalue = 0, 7941 }; 7942 /* MPUIR is specific to PMSA V6+ */ 7943 ARMCPRegInfo id_mpuir_reginfo = { 7944 .name = "MPUIR", 7945 .cp = 15, .crn = 0, .crm = 0, .opc1 = 0, .opc2 = 4, 7946 .access = PL1_R, .type = ARM_CP_CONST, 7947 .resetvalue = cpu->pmsav7_dregion << 8 7948 }; 7949 ARMCPRegInfo crn0_wi_reginfo = { 7950 .name = "CRN0_WI", .cp = 15, .crn = 0, .crm = CP_ANY, 7951 .opc1 = CP_ANY, .opc2 = CP_ANY, .access = PL1_W, 7952 .type = ARM_CP_NOP | ARM_CP_OVERRIDE 7953 }; 7954 #ifdef CONFIG_USER_ONLY 7955 ARMCPRegUserSpaceInfo id_v8_user_midr_cp_reginfo[] = { 7956 { .name = "MIDR_EL1", 7957 .exported_bits = 0x00000000ffffffff }, 7958 { .name = "REVIDR_EL1" }, 7959 REGUSERINFO_SENTINEL 7960 }; 7961 modify_arm_cp_regs(id_v8_midr_cp_reginfo, id_v8_user_midr_cp_reginfo); 7962 #endif 7963 if (arm_feature(env, ARM_FEATURE_OMAPCP) || 7964 arm_feature(env, ARM_FEATURE_STRONGARM)) { 7965 ARMCPRegInfo *r; 7966 /* Register the blanket "writes ignored" value first to cover the 7967 * whole space. Then update the specific ID registers to allow write 7968 * access, so that they ignore writes rather than causing them to 7969 * UNDEF. 7970 */ 7971 define_one_arm_cp_reg(cpu, &crn0_wi_reginfo); 7972 for (r = id_pre_v8_midr_cp_reginfo; 7973 r->type != ARM_CP_SENTINEL; r++) { 7974 r->access = PL1_RW; 7975 } 7976 for (r = id_cp_reginfo; r->type != ARM_CP_SENTINEL; r++) { 7977 r->access = PL1_RW; 7978 } 7979 id_mpuir_reginfo.access = PL1_RW; 7980 id_tlbtr_reginfo.access = PL1_RW; 7981 } 7982 if (arm_feature(env, ARM_FEATURE_V8)) { 7983 define_arm_cp_regs(cpu, id_v8_midr_cp_reginfo); 7984 } else { 7985 define_arm_cp_regs(cpu, id_pre_v8_midr_cp_reginfo); 7986 } 7987 define_arm_cp_regs(cpu, id_cp_reginfo); 7988 if (!arm_feature(env, ARM_FEATURE_PMSA)) { 7989 define_one_arm_cp_reg(cpu, &id_tlbtr_reginfo); 7990 } else if (arm_feature(env, ARM_FEATURE_V7)) { 7991 define_one_arm_cp_reg(cpu, &id_mpuir_reginfo); 7992 } 7993 } 7994 7995 if (arm_feature(env, ARM_FEATURE_MPIDR)) { 7996 ARMCPRegInfo mpidr_cp_reginfo[] = { 7997 { .name = "MPIDR_EL1", .state = ARM_CP_STATE_BOTH, 7998 .opc0 = 3, .crn = 0, .crm = 0, .opc1 = 0, .opc2 = 5, 7999 .access = PL1_R, .readfn = mpidr_read, .type = ARM_CP_NO_RAW }, 8000 REGINFO_SENTINEL 8001 }; 8002 #ifdef CONFIG_USER_ONLY 8003 ARMCPRegUserSpaceInfo mpidr_user_cp_reginfo[] = { 8004 { .name = "MPIDR_EL1", 8005 .fixed_bits = 0x0000000080000000 }, 8006 REGUSERINFO_SENTINEL 8007 }; 8008 modify_arm_cp_regs(mpidr_cp_reginfo, mpidr_user_cp_reginfo); 8009 #endif 8010 define_arm_cp_regs(cpu, mpidr_cp_reginfo); 8011 } 8012 8013 if (arm_feature(env, ARM_FEATURE_AUXCR)) { 8014 ARMCPRegInfo auxcr_reginfo[] = { 8015 { .name = "ACTLR_EL1", .state = ARM_CP_STATE_BOTH, 8016 .opc0 = 3, .opc1 = 0, .crn = 1, .crm = 0, .opc2 = 1, 8017 .access = PL1_RW, .accessfn = access_tacr, 8018 .type = ARM_CP_CONST, .resetvalue = cpu->reset_auxcr }, 8019 { .name = "ACTLR_EL2", .state = ARM_CP_STATE_BOTH, 8020 .opc0 = 3, .opc1 = 4, .crn = 1, .crm = 0, .opc2 = 1, 8021 .access = PL2_RW, .type = ARM_CP_CONST, 8022 .resetvalue = 0 }, 8023 { .name = "ACTLR_EL3", .state = ARM_CP_STATE_AA64, 8024 .opc0 = 3, .opc1 = 6, .crn = 1, .crm = 0, .opc2 = 1, 8025 .access = PL3_RW, .type = ARM_CP_CONST, 8026 .resetvalue = 0 }, 8027 REGINFO_SENTINEL 8028 }; 8029 define_arm_cp_regs(cpu, auxcr_reginfo); 8030 if (cpu_isar_feature(aa32_ac2, cpu)) { 8031 define_arm_cp_regs(cpu, actlr2_hactlr2_reginfo); 8032 } 8033 } 8034 8035 if (arm_feature(env, ARM_FEATURE_CBAR)) { 8036 /* 8037 * CBAR is IMPDEF, but common on Arm Cortex-A implementations. 8038 * There are two flavours: 8039 * (1) older 32-bit only cores have a simple 32-bit CBAR 8040 * (2) 64-bit cores have a 64-bit CBAR visible to AArch64, plus a 8041 * 32-bit register visible to AArch32 at a different encoding 8042 * to the "flavour 1" register and with the bits rearranged to 8043 * be able to squash a 64-bit address into the 32-bit view. 8044 * We distinguish the two via the ARM_FEATURE_AARCH64 flag, but 8045 * in future if we support AArch32-only configs of some of the 8046 * AArch64 cores we might need to add a specific feature flag 8047 * to indicate cores with "flavour 2" CBAR. 8048 */ 8049 if (arm_feature(env, ARM_FEATURE_AARCH64)) { 8050 /* 32 bit view is [31:18] 0...0 [43:32]. */ 8051 uint32_t cbar32 = (extract64(cpu->reset_cbar, 18, 14) << 18) 8052 | extract64(cpu->reset_cbar, 32, 12); 8053 ARMCPRegInfo cbar_reginfo[] = { 8054 { .name = "CBAR", 8055 .type = ARM_CP_CONST, 8056 .cp = 15, .crn = 15, .crm = 3, .opc1 = 1, .opc2 = 0, 8057 .access = PL1_R, .resetvalue = cbar32 }, 8058 { .name = "CBAR_EL1", .state = ARM_CP_STATE_AA64, 8059 .type = ARM_CP_CONST, 8060 .opc0 = 3, .opc1 = 1, .crn = 15, .crm = 3, .opc2 = 0, 8061 .access = PL1_R, .resetvalue = cpu->reset_cbar }, 8062 REGINFO_SENTINEL 8063 }; 8064 /* We don't implement a r/w 64 bit CBAR currently */ 8065 assert(arm_feature(env, ARM_FEATURE_CBAR_RO)); 8066 define_arm_cp_regs(cpu, cbar_reginfo); 8067 } else { 8068 ARMCPRegInfo cbar = { 8069 .name = "CBAR", 8070 .cp = 15, .crn = 15, .crm = 0, .opc1 = 4, .opc2 = 0, 8071 .access = PL1_R|PL3_W, .resetvalue = cpu->reset_cbar, 8072 .fieldoffset = offsetof(CPUARMState, 8073 cp15.c15_config_base_address) 8074 }; 8075 if (arm_feature(env, ARM_FEATURE_CBAR_RO)) { 8076 cbar.access = PL1_R; 8077 cbar.fieldoffset = 0; 8078 cbar.type = ARM_CP_CONST; 8079 } 8080 define_one_arm_cp_reg(cpu, &cbar); 8081 } 8082 } 8083 8084 if (arm_feature(env, ARM_FEATURE_VBAR)) { 8085 ARMCPRegInfo vbar_cp_reginfo[] = { 8086 { .name = "VBAR", .state = ARM_CP_STATE_BOTH, 8087 .opc0 = 3, .crn = 12, .crm = 0, .opc1 = 0, .opc2 = 0, 8088 .access = PL1_RW, .writefn = vbar_write, 8089 .bank_fieldoffsets = { offsetof(CPUARMState, cp15.vbar_s), 8090 offsetof(CPUARMState, cp15.vbar_ns) }, 8091 .resetvalue = 0 }, 8092 REGINFO_SENTINEL 8093 }; 8094 define_arm_cp_regs(cpu, vbar_cp_reginfo); 8095 } 8096 8097 /* Generic registers whose values depend on the implementation */ 8098 { 8099 ARMCPRegInfo sctlr = { 8100 .name = "SCTLR", .state = ARM_CP_STATE_BOTH, 8101 .opc0 = 3, .opc1 = 0, .crn = 1, .crm = 0, .opc2 = 0, 8102 .access = PL1_RW, .accessfn = access_tvm_trvm, 8103 .bank_fieldoffsets = { offsetof(CPUARMState, cp15.sctlr_s), 8104 offsetof(CPUARMState, cp15.sctlr_ns) }, 8105 .writefn = sctlr_write, .resetvalue = cpu->reset_sctlr, 8106 .raw_writefn = raw_write, 8107 }; 8108 if (arm_feature(env, ARM_FEATURE_XSCALE)) { 8109 /* Normally we would always end the TB on an SCTLR write, but Linux 8110 * arch/arm/mach-pxa/sleep.S expects two instructions following 8111 * an MMU enable to execute from cache. Imitate this behaviour. 8112 */ 8113 sctlr.type |= ARM_CP_SUPPRESS_TB_END; 8114 } 8115 define_one_arm_cp_reg(cpu, &sctlr); 8116 } 8117 8118 if (cpu_isar_feature(aa64_lor, cpu)) { 8119 define_arm_cp_regs(cpu, lor_reginfo); 8120 } 8121 if (cpu_isar_feature(aa64_pan, cpu)) { 8122 define_one_arm_cp_reg(cpu, &pan_reginfo); 8123 } 8124 #ifndef CONFIG_USER_ONLY 8125 if (cpu_isar_feature(aa64_ats1e1, cpu)) { 8126 define_arm_cp_regs(cpu, ats1e1_reginfo); 8127 } 8128 if (cpu_isar_feature(aa32_ats1e1, cpu)) { 8129 define_arm_cp_regs(cpu, ats1cp_reginfo); 8130 } 8131 #endif 8132 if (cpu_isar_feature(aa64_uao, cpu)) { 8133 define_one_arm_cp_reg(cpu, &uao_reginfo); 8134 } 8135 8136 if (arm_feature(env, ARM_FEATURE_EL2) && cpu_isar_feature(aa64_vh, cpu)) { 8137 define_arm_cp_regs(cpu, vhe_reginfo); 8138 } 8139 8140 if (cpu_isar_feature(aa64_sve, cpu)) { 8141 define_one_arm_cp_reg(cpu, &zcr_el1_reginfo); 8142 if (arm_feature(env, ARM_FEATURE_EL2)) { 8143 define_one_arm_cp_reg(cpu, &zcr_el2_reginfo); 8144 } else { 8145 define_one_arm_cp_reg(cpu, &zcr_no_el2_reginfo); 8146 } 8147 if (arm_feature(env, ARM_FEATURE_EL3)) { 8148 define_one_arm_cp_reg(cpu, &zcr_el3_reginfo); 8149 } 8150 } 8151 8152 #ifdef TARGET_AARCH64 8153 if (cpu_isar_feature(aa64_pauth, cpu)) { 8154 define_arm_cp_regs(cpu, pauth_reginfo); 8155 } 8156 if (cpu_isar_feature(aa64_rndr, cpu)) { 8157 define_arm_cp_regs(cpu, rndr_reginfo); 8158 } 8159 #ifndef CONFIG_USER_ONLY 8160 /* Data Cache clean instructions up to PoP */ 8161 if (cpu_isar_feature(aa64_dcpop, cpu)) { 8162 define_one_arm_cp_reg(cpu, dcpop_reg); 8163 8164 if (cpu_isar_feature(aa64_dcpodp, cpu)) { 8165 define_one_arm_cp_reg(cpu, dcpodp_reg); 8166 } 8167 } 8168 #endif /*CONFIG_USER_ONLY*/ 8169 8170 /* 8171 * If full MTE is enabled, add all of the system registers. 8172 * If only "instructions available at EL0" are enabled, 8173 * then define only a RAZ/WI version of PSTATE.TCO. 8174 */ 8175 if (cpu_isar_feature(aa64_mte, cpu)) { 8176 define_arm_cp_regs(cpu, mte_reginfo); 8177 define_arm_cp_regs(cpu, mte_el0_cacheop_reginfo); 8178 } else if (cpu_isar_feature(aa64_mte_insn_reg, cpu)) { 8179 define_arm_cp_regs(cpu, mte_tco_ro_reginfo); 8180 define_arm_cp_regs(cpu, mte_el0_cacheop_reginfo); 8181 } 8182 #endif 8183 8184 if (cpu_isar_feature(any_predinv, cpu)) { 8185 define_arm_cp_regs(cpu, predinv_reginfo); 8186 } 8187 8188 if (cpu_isar_feature(any_ccidx, cpu)) { 8189 define_arm_cp_regs(cpu, ccsidr2_reginfo); 8190 } 8191 8192 #ifndef CONFIG_USER_ONLY 8193 /* 8194 * Register redirections and aliases must be done last, 8195 * after the registers from the other extensions have been defined. 8196 */ 8197 if (arm_feature(env, ARM_FEATURE_EL2) && cpu_isar_feature(aa64_vh, cpu)) { 8198 define_arm_vh_e2h_redirects_aliases(cpu); 8199 } 8200 #endif 8201 } 8202 8203 void arm_cpu_register_gdb_regs_for_features(ARMCPU *cpu) 8204 { 8205 CPUState *cs = CPU(cpu); 8206 CPUARMState *env = &cpu->env; 8207 8208 if (arm_feature(env, ARM_FEATURE_AARCH64)) { 8209 /* 8210 * The lower part of each SVE register aliases to the FPU 8211 * registers so we don't need to include both. 8212 */ 8213 #ifdef TARGET_AARCH64 8214 if (isar_feature_aa64_sve(&cpu->isar)) { 8215 gdb_register_coprocessor(cs, arm_gdb_get_svereg, arm_gdb_set_svereg, 8216 arm_gen_dynamic_svereg_xml(cs, cs->gdb_num_regs), 8217 "sve-registers.xml", 0); 8218 } else 8219 #endif 8220 { 8221 gdb_register_coprocessor(cs, aarch64_fpu_gdb_get_reg, 8222 aarch64_fpu_gdb_set_reg, 8223 34, "aarch64-fpu.xml", 0); 8224 } 8225 } else if (arm_feature(env, ARM_FEATURE_NEON)) { 8226 gdb_register_coprocessor(cs, vfp_gdb_get_reg, vfp_gdb_set_reg, 8227 51, "arm-neon.xml", 0); 8228 } else if (cpu_isar_feature(aa32_simd_r32, cpu)) { 8229 gdb_register_coprocessor(cs, vfp_gdb_get_reg, vfp_gdb_set_reg, 8230 35, "arm-vfp3.xml", 0); 8231 } else if (cpu_isar_feature(aa32_vfp_simd, cpu)) { 8232 gdb_register_coprocessor(cs, vfp_gdb_get_reg, vfp_gdb_set_reg, 8233 19, "arm-vfp.xml", 0); 8234 } 8235 gdb_register_coprocessor(cs, arm_gdb_get_sysreg, arm_gdb_set_sysreg, 8236 arm_gen_dynamic_sysreg_xml(cs, cs->gdb_num_regs), 8237 "system-registers.xml", 0); 8238 8239 } 8240 8241 /* Sort alphabetically by type name, except for "any". */ 8242 static gint arm_cpu_list_compare(gconstpointer a, gconstpointer b) 8243 { 8244 ObjectClass *class_a = (ObjectClass *)a; 8245 ObjectClass *class_b = (ObjectClass *)b; 8246 const char *name_a, *name_b; 8247 8248 name_a = object_class_get_name(class_a); 8249 name_b = object_class_get_name(class_b); 8250 if (strcmp(name_a, "any-" TYPE_ARM_CPU) == 0) { 8251 return 1; 8252 } else if (strcmp(name_b, "any-" TYPE_ARM_CPU) == 0) { 8253 return -1; 8254 } else { 8255 return strcmp(name_a, name_b); 8256 } 8257 } 8258 8259 static void arm_cpu_list_entry(gpointer data, gpointer user_data) 8260 { 8261 ObjectClass *oc = data; 8262 const char *typename; 8263 char *name; 8264 8265 typename = object_class_get_name(oc); 8266 name = g_strndup(typename, strlen(typename) - strlen("-" TYPE_ARM_CPU)); 8267 qemu_printf(" %s\n", name); 8268 g_free(name); 8269 } 8270 8271 void arm_cpu_list(void) 8272 { 8273 GSList *list; 8274 8275 list = object_class_get_list(TYPE_ARM_CPU, false); 8276 list = g_slist_sort(list, arm_cpu_list_compare); 8277 qemu_printf("Available CPUs:\n"); 8278 g_slist_foreach(list, arm_cpu_list_entry, NULL); 8279 g_slist_free(list); 8280 } 8281 8282 static void arm_cpu_add_definition(gpointer data, gpointer user_data) 8283 { 8284 ObjectClass *oc = data; 8285 CpuDefinitionInfoList **cpu_list = user_data; 8286 CpuDefinitionInfo *info; 8287 const char *typename; 8288 8289 typename = object_class_get_name(oc); 8290 info = g_malloc0(sizeof(*info)); 8291 info->name = g_strndup(typename, 8292 strlen(typename) - strlen("-" TYPE_ARM_CPU)); 8293 info->q_typename = g_strdup(typename); 8294 8295 QAPI_LIST_PREPEND(*cpu_list, info); 8296 } 8297 8298 CpuDefinitionInfoList *qmp_query_cpu_definitions(Error **errp) 8299 { 8300 CpuDefinitionInfoList *cpu_list = NULL; 8301 GSList *list; 8302 8303 list = object_class_get_list(TYPE_ARM_CPU, false); 8304 g_slist_foreach(list, arm_cpu_add_definition, &cpu_list); 8305 g_slist_free(list); 8306 8307 return cpu_list; 8308 } 8309 8310 static void add_cpreg_to_hashtable(ARMCPU *cpu, const ARMCPRegInfo *r, 8311 void *opaque, int state, int secstate, 8312 int crm, int opc1, int opc2, 8313 const char *name) 8314 { 8315 /* Private utility function for define_one_arm_cp_reg_with_opaque(): 8316 * add a single reginfo struct to the hash table. 8317 */ 8318 uint32_t *key = g_new(uint32_t, 1); 8319 ARMCPRegInfo *r2 = g_memdup(r, sizeof(ARMCPRegInfo)); 8320 int is64 = (r->type & ARM_CP_64BIT) ? 1 : 0; 8321 int ns = (secstate & ARM_CP_SECSTATE_NS) ? 1 : 0; 8322 8323 r2->name = g_strdup(name); 8324 /* Reset the secure state to the specific incoming state. This is 8325 * necessary as the register may have been defined with both states. 8326 */ 8327 r2->secure = secstate; 8328 8329 if (r->bank_fieldoffsets[0] && r->bank_fieldoffsets[1]) { 8330 /* Register is banked (using both entries in array). 8331 * Overwriting fieldoffset as the array is only used to define 8332 * banked registers but later only fieldoffset is used. 8333 */ 8334 r2->fieldoffset = r->bank_fieldoffsets[ns]; 8335 } 8336 8337 if (state == ARM_CP_STATE_AA32) { 8338 if (r->bank_fieldoffsets[0] && r->bank_fieldoffsets[1]) { 8339 /* If the register is banked then we don't need to migrate or 8340 * reset the 32-bit instance in certain cases: 8341 * 8342 * 1) If the register has both 32-bit and 64-bit instances then we 8343 * can count on the 64-bit instance taking care of the 8344 * non-secure bank. 8345 * 2) If ARMv8 is enabled then we can count on a 64-bit version 8346 * taking care of the secure bank. This requires that separate 8347 * 32 and 64-bit definitions are provided. 8348 */ 8349 if ((r->state == ARM_CP_STATE_BOTH && ns) || 8350 (arm_feature(&cpu->env, ARM_FEATURE_V8) && !ns)) { 8351 r2->type |= ARM_CP_ALIAS; 8352 } 8353 } else if ((secstate != r->secure) && !ns) { 8354 /* The register is not banked so we only want to allow migration of 8355 * the non-secure instance. 8356 */ 8357 r2->type |= ARM_CP_ALIAS; 8358 } 8359 8360 if (r->state == ARM_CP_STATE_BOTH) { 8361 /* We assume it is a cp15 register if the .cp field is left unset. 8362 */ 8363 if (r2->cp == 0) { 8364 r2->cp = 15; 8365 } 8366 8367 #ifdef HOST_WORDS_BIGENDIAN 8368 if (r2->fieldoffset) { 8369 r2->fieldoffset += sizeof(uint32_t); 8370 } 8371 #endif 8372 } 8373 } 8374 if (state == ARM_CP_STATE_AA64) { 8375 /* To allow abbreviation of ARMCPRegInfo 8376 * definitions, we treat cp == 0 as equivalent to 8377 * the value for "standard guest-visible sysreg". 8378 * STATE_BOTH definitions are also always "standard 8379 * sysreg" in their AArch64 view (the .cp value may 8380 * be non-zero for the benefit of the AArch32 view). 8381 */ 8382 if (r->cp == 0 || r->state == ARM_CP_STATE_BOTH) { 8383 r2->cp = CP_REG_ARM64_SYSREG_CP; 8384 } 8385 *key = ENCODE_AA64_CP_REG(r2->cp, r2->crn, crm, 8386 r2->opc0, opc1, opc2); 8387 } else { 8388 *key = ENCODE_CP_REG(r2->cp, is64, ns, r2->crn, crm, opc1, opc2); 8389 } 8390 if (opaque) { 8391 r2->opaque = opaque; 8392 } 8393 /* reginfo passed to helpers is correct for the actual access, 8394 * and is never ARM_CP_STATE_BOTH: 8395 */ 8396 r2->state = state; 8397 /* Make sure reginfo passed to helpers for wildcarded regs 8398 * has the correct crm/opc1/opc2 for this reg, not CP_ANY: 8399 */ 8400 r2->crm = crm; 8401 r2->opc1 = opc1; 8402 r2->opc2 = opc2; 8403 /* By convention, for wildcarded registers only the first 8404 * entry is used for migration; the others are marked as 8405 * ALIAS so we don't try to transfer the register 8406 * multiple times. Special registers (ie NOP/WFI) are 8407 * never migratable and not even raw-accessible. 8408 */ 8409 if ((r->type & ARM_CP_SPECIAL)) { 8410 r2->type |= ARM_CP_NO_RAW; 8411 } 8412 if (((r->crm == CP_ANY) && crm != 0) || 8413 ((r->opc1 == CP_ANY) && opc1 != 0) || 8414 ((r->opc2 == CP_ANY) && opc2 != 0)) { 8415 r2->type |= ARM_CP_ALIAS | ARM_CP_NO_GDB; 8416 } 8417 8418 /* Check that raw accesses are either forbidden or handled. Note that 8419 * we can't assert this earlier because the setup of fieldoffset for 8420 * banked registers has to be done first. 8421 */ 8422 if (!(r2->type & ARM_CP_NO_RAW)) { 8423 assert(!raw_accessors_invalid(r2)); 8424 } 8425 8426 /* Overriding of an existing definition must be explicitly 8427 * requested. 8428 */ 8429 if (!(r->type & ARM_CP_OVERRIDE)) { 8430 ARMCPRegInfo *oldreg; 8431 oldreg = g_hash_table_lookup(cpu->cp_regs, key); 8432 if (oldreg && !(oldreg->type & ARM_CP_OVERRIDE)) { 8433 fprintf(stderr, "Register redefined: cp=%d %d bit " 8434 "crn=%d crm=%d opc1=%d opc2=%d, " 8435 "was %s, now %s\n", r2->cp, 32 + 32 * is64, 8436 r2->crn, r2->crm, r2->opc1, r2->opc2, 8437 oldreg->name, r2->name); 8438 g_assert_not_reached(); 8439 } 8440 } 8441 g_hash_table_insert(cpu->cp_regs, key, r2); 8442 } 8443 8444 8445 void define_one_arm_cp_reg_with_opaque(ARMCPU *cpu, 8446 const ARMCPRegInfo *r, void *opaque) 8447 { 8448 /* Define implementations of coprocessor registers. 8449 * We store these in a hashtable because typically 8450 * there are less than 150 registers in a space which 8451 * is 16*16*16*8*8 = 262144 in size. 8452 * Wildcarding is supported for the crm, opc1 and opc2 fields. 8453 * If a register is defined twice then the second definition is 8454 * used, so this can be used to define some generic registers and 8455 * then override them with implementation specific variations. 8456 * At least one of the original and the second definition should 8457 * include ARM_CP_OVERRIDE in its type bits -- this is just a guard 8458 * against accidental use. 8459 * 8460 * The state field defines whether the register is to be 8461 * visible in the AArch32 or AArch64 execution state. If the 8462 * state is set to ARM_CP_STATE_BOTH then we synthesise a 8463 * reginfo structure for the AArch32 view, which sees the lower 8464 * 32 bits of the 64 bit register. 8465 * 8466 * Only registers visible in AArch64 may set r->opc0; opc0 cannot 8467 * be wildcarded. AArch64 registers are always considered to be 64 8468 * bits; the ARM_CP_64BIT* flag applies only to the AArch32 view of 8469 * the register, if any. 8470 */ 8471 int crm, opc1, opc2, state; 8472 int crmmin = (r->crm == CP_ANY) ? 0 : r->crm; 8473 int crmmax = (r->crm == CP_ANY) ? 15 : r->crm; 8474 int opc1min = (r->opc1 == CP_ANY) ? 0 : r->opc1; 8475 int opc1max = (r->opc1 == CP_ANY) ? 7 : r->opc1; 8476 int opc2min = (r->opc2 == CP_ANY) ? 0 : r->opc2; 8477 int opc2max = (r->opc2 == CP_ANY) ? 7 : r->opc2; 8478 /* 64 bit registers have only CRm and Opc1 fields */ 8479 assert(!((r->type & ARM_CP_64BIT) && (r->opc2 || r->crn))); 8480 /* op0 only exists in the AArch64 encodings */ 8481 assert((r->state != ARM_CP_STATE_AA32) || (r->opc0 == 0)); 8482 /* AArch64 regs are all 64 bit so ARM_CP_64BIT is meaningless */ 8483 assert((r->state != ARM_CP_STATE_AA64) || !(r->type & ARM_CP_64BIT)); 8484 /* 8485 * This API is only for Arm's system coprocessors (14 and 15) or 8486 * (M-profile or v7A-and-earlier only) for implementation defined 8487 * coprocessors in the range 0..7. Our decode assumes this, since 8488 * 8..13 can be used for other insns including VFP and Neon. See 8489 * valid_cp() in translate.c. Assert here that we haven't tried 8490 * to use an invalid coprocessor number. 8491 */ 8492 switch (r->state) { 8493 case ARM_CP_STATE_BOTH: 8494 /* 0 has a special meaning, but otherwise the same rules as AA32. */ 8495 if (r->cp == 0) { 8496 break; 8497 } 8498 /* fall through */ 8499 case ARM_CP_STATE_AA32: 8500 if (arm_feature(&cpu->env, ARM_FEATURE_V8) && 8501 !arm_feature(&cpu->env, ARM_FEATURE_M)) { 8502 assert(r->cp >= 14 && r->cp <= 15); 8503 } else { 8504 assert(r->cp < 8 || (r->cp >= 14 && r->cp <= 15)); 8505 } 8506 break; 8507 case ARM_CP_STATE_AA64: 8508 assert(r->cp == 0 || r->cp == CP_REG_ARM64_SYSREG_CP); 8509 break; 8510 default: 8511 g_assert_not_reached(); 8512 } 8513 /* The AArch64 pseudocode CheckSystemAccess() specifies that op1 8514 * encodes a minimum access level for the register. We roll this 8515 * runtime check into our general permission check code, so check 8516 * here that the reginfo's specified permissions are strict enough 8517 * to encompass the generic architectural permission check. 8518 */ 8519 if (r->state != ARM_CP_STATE_AA32) { 8520 int mask = 0; 8521 switch (r->opc1) { 8522 case 0: 8523 /* min_EL EL1, but some accessible to EL0 via kernel ABI */ 8524 mask = PL0U_R | PL1_RW; 8525 break; 8526 case 1: case 2: 8527 /* min_EL EL1 */ 8528 mask = PL1_RW; 8529 break; 8530 case 3: 8531 /* min_EL EL0 */ 8532 mask = PL0_RW; 8533 break; 8534 case 4: 8535 case 5: 8536 /* min_EL EL2 */ 8537 mask = PL2_RW; 8538 break; 8539 case 6: 8540 /* min_EL EL3 */ 8541 mask = PL3_RW; 8542 break; 8543 case 7: 8544 /* min_EL EL1, secure mode only (we don't check the latter) */ 8545 mask = PL1_RW; 8546 break; 8547 default: 8548 /* broken reginfo with out-of-range opc1 */ 8549 assert(false); 8550 break; 8551 } 8552 /* assert our permissions are not too lax (stricter is fine) */ 8553 assert((r->access & ~mask) == 0); 8554 } 8555 8556 /* Check that the register definition has enough info to handle 8557 * reads and writes if they are permitted. 8558 */ 8559 if (!(r->type & (ARM_CP_SPECIAL|ARM_CP_CONST))) { 8560 if (r->access & PL3_R) { 8561 assert((r->fieldoffset || 8562 (r->bank_fieldoffsets[0] && r->bank_fieldoffsets[1])) || 8563 r->readfn); 8564 } 8565 if (r->access & PL3_W) { 8566 assert((r->fieldoffset || 8567 (r->bank_fieldoffsets[0] && r->bank_fieldoffsets[1])) || 8568 r->writefn); 8569 } 8570 } 8571 /* Bad type field probably means missing sentinel at end of reg list */ 8572 assert(cptype_valid(r->type)); 8573 for (crm = crmmin; crm <= crmmax; crm++) { 8574 for (opc1 = opc1min; opc1 <= opc1max; opc1++) { 8575 for (opc2 = opc2min; opc2 <= opc2max; opc2++) { 8576 for (state = ARM_CP_STATE_AA32; 8577 state <= ARM_CP_STATE_AA64; state++) { 8578 if (r->state != state && r->state != ARM_CP_STATE_BOTH) { 8579 continue; 8580 } 8581 if (state == ARM_CP_STATE_AA32) { 8582 /* Under AArch32 CP registers can be common 8583 * (same for secure and non-secure world) or banked. 8584 */ 8585 char *name; 8586 8587 switch (r->secure) { 8588 case ARM_CP_SECSTATE_S: 8589 case ARM_CP_SECSTATE_NS: 8590 add_cpreg_to_hashtable(cpu, r, opaque, state, 8591 r->secure, crm, opc1, opc2, 8592 r->name); 8593 break; 8594 default: 8595 name = g_strdup_printf("%s_S", r->name); 8596 add_cpreg_to_hashtable(cpu, r, opaque, state, 8597 ARM_CP_SECSTATE_S, 8598 crm, opc1, opc2, name); 8599 g_free(name); 8600 add_cpreg_to_hashtable(cpu, r, opaque, state, 8601 ARM_CP_SECSTATE_NS, 8602 crm, opc1, opc2, r->name); 8603 break; 8604 } 8605 } else { 8606 /* AArch64 registers get mapped to non-secure instance 8607 * of AArch32 */ 8608 add_cpreg_to_hashtable(cpu, r, opaque, state, 8609 ARM_CP_SECSTATE_NS, 8610 crm, opc1, opc2, r->name); 8611 } 8612 } 8613 } 8614 } 8615 } 8616 } 8617 8618 void define_arm_cp_regs_with_opaque(ARMCPU *cpu, 8619 const ARMCPRegInfo *regs, void *opaque) 8620 { 8621 /* Define a whole list of registers */ 8622 const ARMCPRegInfo *r; 8623 for (r = regs; r->type != ARM_CP_SENTINEL; r++) { 8624 define_one_arm_cp_reg_with_opaque(cpu, r, opaque); 8625 } 8626 } 8627 8628 /* 8629 * Modify ARMCPRegInfo for access from userspace. 8630 * 8631 * This is a data driven modification directed by 8632 * ARMCPRegUserSpaceInfo. All registers become ARM_CP_CONST as 8633 * user-space cannot alter any values and dynamic values pertaining to 8634 * execution state are hidden from user space view anyway. 8635 */ 8636 void modify_arm_cp_regs(ARMCPRegInfo *regs, const ARMCPRegUserSpaceInfo *mods) 8637 { 8638 const ARMCPRegUserSpaceInfo *m; 8639 ARMCPRegInfo *r; 8640 8641 for (m = mods; m->name; m++) { 8642 GPatternSpec *pat = NULL; 8643 if (m->is_glob) { 8644 pat = g_pattern_spec_new(m->name); 8645 } 8646 for (r = regs; r->type != ARM_CP_SENTINEL; r++) { 8647 if (pat && g_pattern_match_string(pat, r->name)) { 8648 r->type = ARM_CP_CONST; 8649 r->access = PL0U_R; 8650 r->resetvalue = 0; 8651 /* continue */ 8652 } else if (strcmp(r->name, m->name) == 0) { 8653 r->type = ARM_CP_CONST; 8654 r->access = PL0U_R; 8655 r->resetvalue &= m->exported_bits; 8656 r->resetvalue |= m->fixed_bits; 8657 break; 8658 } 8659 } 8660 if (pat) { 8661 g_pattern_spec_free(pat); 8662 } 8663 } 8664 } 8665 8666 const ARMCPRegInfo *get_arm_cp_reginfo(GHashTable *cpregs, uint32_t encoded_cp) 8667 { 8668 return g_hash_table_lookup(cpregs, &encoded_cp); 8669 } 8670 8671 void arm_cp_write_ignore(CPUARMState *env, const ARMCPRegInfo *ri, 8672 uint64_t value) 8673 { 8674 /* Helper coprocessor write function for write-ignore registers */ 8675 } 8676 8677 uint64_t arm_cp_read_zero(CPUARMState *env, const ARMCPRegInfo *ri) 8678 { 8679 /* Helper coprocessor write function for read-as-zero registers */ 8680 return 0; 8681 } 8682 8683 void arm_cp_reset_ignore(CPUARMState *env, const ARMCPRegInfo *opaque) 8684 { 8685 /* Helper coprocessor reset function for do-nothing-on-reset registers */ 8686 } 8687 8688 static int bad_mode_switch(CPUARMState *env, int mode, CPSRWriteType write_type) 8689 { 8690 /* Return true if it is not valid for us to switch to 8691 * this CPU mode (ie all the UNPREDICTABLE cases in 8692 * the ARM ARM CPSRWriteByInstr pseudocode). 8693 */ 8694 8695 /* Changes to or from Hyp via MSR and CPS are illegal. */ 8696 if (write_type == CPSRWriteByInstr && 8697 ((env->uncached_cpsr & CPSR_M) == ARM_CPU_MODE_HYP || 8698 mode == ARM_CPU_MODE_HYP)) { 8699 return 1; 8700 } 8701 8702 switch (mode) { 8703 case ARM_CPU_MODE_USR: 8704 return 0; 8705 case ARM_CPU_MODE_SYS: 8706 case ARM_CPU_MODE_SVC: 8707 case ARM_CPU_MODE_ABT: 8708 case ARM_CPU_MODE_UND: 8709 case ARM_CPU_MODE_IRQ: 8710 case ARM_CPU_MODE_FIQ: 8711 /* Note that we don't implement the IMPDEF NSACR.RFR which in v7 8712 * allows FIQ mode to be Secure-only. (In v8 this doesn't exist.) 8713 */ 8714 /* If HCR.TGE is set then changes from Monitor to NS PL1 via MSR 8715 * and CPS are treated as illegal mode changes. 8716 */ 8717 if (write_type == CPSRWriteByInstr && 8718 (env->uncached_cpsr & CPSR_M) == ARM_CPU_MODE_MON && 8719 (arm_hcr_el2_eff(env) & HCR_TGE)) { 8720 return 1; 8721 } 8722 return 0; 8723 case ARM_CPU_MODE_HYP: 8724 return !arm_feature(env, ARM_FEATURE_EL2) 8725 || arm_current_el(env) < 2 || arm_is_secure_below_el3(env); 8726 case ARM_CPU_MODE_MON: 8727 return arm_current_el(env) < 3; 8728 default: 8729 return 1; 8730 } 8731 } 8732 8733 uint32_t cpsr_read(CPUARMState *env) 8734 { 8735 int ZF; 8736 ZF = (env->ZF == 0); 8737 return env->uncached_cpsr | (env->NF & 0x80000000) | (ZF << 30) | 8738 (env->CF << 29) | ((env->VF & 0x80000000) >> 3) | (env->QF << 27) 8739 | (env->thumb << 5) | ((env->condexec_bits & 3) << 25) 8740 | ((env->condexec_bits & 0xfc) << 8) 8741 | (env->GE << 16) | (env->daif & CPSR_AIF); 8742 } 8743 8744 void cpsr_write(CPUARMState *env, uint32_t val, uint32_t mask, 8745 CPSRWriteType write_type) 8746 { 8747 uint32_t changed_daif; 8748 8749 if (mask & CPSR_NZCV) { 8750 env->ZF = (~val) & CPSR_Z; 8751 env->NF = val; 8752 env->CF = (val >> 29) & 1; 8753 env->VF = (val << 3) & 0x80000000; 8754 } 8755 if (mask & CPSR_Q) 8756 env->QF = ((val & CPSR_Q) != 0); 8757 if (mask & CPSR_T) 8758 env->thumb = ((val & CPSR_T) != 0); 8759 if (mask & CPSR_IT_0_1) { 8760 env->condexec_bits &= ~3; 8761 env->condexec_bits |= (val >> 25) & 3; 8762 } 8763 if (mask & CPSR_IT_2_7) { 8764 env->condexec_bits &= 3; 8765 env->condexec_bits |= (val >> 8) & 0xfc; 8766 } 8767 if (mask & CPSR_GE) { 8768 env->GE = (val >> 16) & 0xf; 8769 } 8770 8771 /* In a V7 implementation that includes the security extensions but does 8772 * not include Virtualization Extensions the SCR.FW and SCR.AW bits control 8773 * whether non-secure software is allowed to change the CPSR_F and CPSR_A 8774 * bits respectively. 8775 * 8776 * In a V8 implementation, it is permitted for privileged software to 8777 * change the CPSR A/F bits regardless of the SCR.AW/FW bits. 8778 */ 8779 if (write_type != CPSRWriteRaw && !arm_feature(env, ARM_FEATURE_V8) && 8780 arm_feature(env, ARM_FEATURE_EL3) && 8781 !arm_feature(env, ARM_FEATURE_EL2) && 8782 !arm_is_secure(env)) { 8783 8784 changed_daif = (env->daif ^ val) & mask; 8785 8786 if (changed_daif & CPSR_A) { 8787 /* Check to see if we are allowed to change the masking of async 8788 * abort exceptions from a non-secure state. 8789 */ 8790 if (!(env->cp15.scr_el3 & SCR_AW)) { 8791 qemu_log_mask(LOG_GUEST_ERROR, 8792 "Ignoring attempt to switch CPSR_A flag from " 8793 "non-secure world with SCR.AW bit clear\n"); 8794 mask &= ~CPSR_A; 8795 } 8796 } 8797 8798 if (changed_daif & CPSR_F) { 8799 /* Check to see if we are allowed to change the masking of FIQ 8800 * exceptions from a non-secure state. 8801 */ 8802 if (!(env->cp15.scr_el3 & SCR_FW)) { 8803 qemu_log_mask(LOG_GUEST_ERROR, 8804 "Ignoring attempt to switch CPSR_F flag from " 8805 "non-secure world with SCR.FW bit clear\n"); 8806 mask &= ~CPSR_F; 8807 } 8808 8809 /* Check whether non-maskable FIQ (NMFI) support is enabled. 8810 * If this bit is set software is not allowed to mask 8811 * FIQs, but is allowed to set CPSR_F to 0. 8812 */ 8813 if ((A32_BANKED_CURRENT_REG_GET(env, sctlr) & SCTLR_NMFI) && 8814 (val & CPSR_F)) { 8815 qemu_log_mask(LOG_GUEST_ERROR, 8816 "Ignoring attempt to enable CPSR_F flag " 8817 "(non-maskable FIQ [NMFI] support enabled)\n"); 8818 mask &= ~CPSR_F; 8819 } 8820 } 8821 } 8822 8823 env->daif &= ~(CPSR_AIF & mask); 8824 env->daif |= val & CPSR_AIF & mask; 8825 8826 if (write_type != CPSRWriteRaw && 8827 ((env->uncached_cpsr ^ val) & mask & CPSR_M)) { 8828 if ((env->uncached_cpsr & CPSR_M) == ARM_CPU_MODE_USR) { 8829 /* Note that we can only get here in USR mode if this is a 8830 * gdb stub write; for this case we follow the architectural 8831 * behaviour for guest writes in USR mode of ignoring an attempt 8832 * to switch mode. (Those are caught by translate.c for writes 8833 * triggered by guest instructions.) 8834 */ 8835 mask &= ~CPSR_M; 8836 } else if (bad_mode_switch(env, val & CPSR_M, write_type)) { 8837 /* Attempt to switch to an invalid mode: this is UNPREDICTABLE in 8838 * v7, and has defined behaviour in v8: 8839 * + leave CPSR.M untouched 8840 * + allow changes to the other CPSR fields 8841 * + set PSTATE.IL 8842 * For user changes via the GDB stub, we don't set PSTATE.IL, 8843 * as this would be unnecessarily harsh for a user error. 8844 */ 8845 mask &= ~CPSR_M; 8846 if (write_type != CPSRWriteByGDBStub && 8847 arm_feature(env, ARM_FEATURE_V8)) { 8848 mask |= CPSR_IL; 8849 val |= CPSR_IL; 8850 } 8851 qemu_log_mask(LOG_GUEST_ERROR, 8852 "Illegal AArch32 mode switch attempt from %s to %s\n", 8853 aarch32_mode_name(env->uncached_cpsr), 8854 aarch32_mode_name(val)); 8855 } else { 8856 qemu_log_mask(CPU_LOG_INT, "%s %s to %s PC 0x%" PRIx32 "\n", 8857 write_type == CPSRWriteExceptionReturn ? 8858 "Exception return from AArch32" : 8859 "AArch32 mode switch from", 8860 aarch32_mode_name(env->uncached_cpsr), 8861 aarch32_mode_name(val), env->regs[15]); 8862 switch_mode(env, val & CPSR_M); 8863 } 8864 } 8865 mask &= ~CACHED_CPSR_BITS; 8866 env->uncached_cpsr = (env->uncached_cpsr & ~mask) | (val & mask); 8867 } 8868 8869 /* Sign/zero extend */ 8870 uint32_t HELPER(sxtb16)(uint32_t x) 8871 { 8872 uint32_t res; 8873 res = (uint16_t)(int8_t)x; 8874 res |= (uint32_t)(int8_t)(x >> 16) << 16; 8875 return res; 8876 } 8877 8878 uint32_t HELPER(uxtb16)(uint32_t x) 8879 { 8880 uint32_t res; 8881 res = (uint16_t)(uint8_t)x; 8882 res |= (uint32_t)(uint8_t)(x >> 16) << 16; 8883 return res; 8884 } 8885 8886 int32_t HELPER(sdiv)(int32_t num, int32_t den) 8887 { 8888 if (den == 0) 8889 return 0; 8890 if (num == INT_MIN && den == -1) 8891 return INT_MIN; 8892 return num / den; 8893 } 8894 8895 uint32_t HELPER(udiv)(uint32_t num, uint32_t den) 8896 { 8897 if (den == 0) 8898 return 0; 8899 return num / den; 8900 } 8901 8902 uint32_t HELPER(rbit)(uint32_t x) 8903 { 8904 return revbit32(x); 8905 } 8906 8907 #ifdef CONFIG_USER_ONLY 8908 8909 static void switch_mode(CPUARMState *env, int mode) 8910 { 8911 ARMCPU *cpu = env_archcpu(env); 8912 8913 if (mode != ARM_CPU_MODE_USR) { 8914 cpu_abort(CPU(cpu), "Tried to switch out of user mode\n"); 8915 } 8916 } 8917 8918 uint32_t arm_phys_excp_target_el(CPUState *cs, uint32_t excp_idx, 8919 uint32_t cur_el, bool secure) 8920 { 8921 return 1; 8922 } 8923 8924 void aarch64_sync_64_to_32(CPUARMState *env) 8925 { 8926 g_assert_not_reached(); 8927 } 8928 8929 #else 8930 8931 static void switch_mode(CPUARMState *env, int mode) 8932 { 8933 int old_mode; 8934 int i; 8935 8936 old_mode = env->uncached_cpsr & CPSR_M; 8937 if (mode == old_mode) 8938 return; 8939 8940 if (old_mode == ARM_CPU_MODE_FIQ) { 8941 memcpy (env->fiq_regs, env->regs + 8, 5 * sizeof(uint32_t)); 8942 memcpy (env->regs + 8, env->usr_regs, 5 * sizeof(uint32_t)); 8943 } else if (mode == ARM_CPU_MODE_FIQ) { 8944 memcpy (env->usr_regs, env->regs + 8, 5 * sizeof(uint32_t)); 8945 memcpy (env->regs + 8, env->fiq_regs, 5 * sizeof(uint32_t)); 8946 } 8947 8948 i = bank_number(old_mode); 8949 env->banked_r13[i] = env->regs[13]; 8950 env->banked_spsr[i] = env->spsr; 8951 8952 i = bank_number(mode); 8953 env->regs[13] = env->banked_r13[i]; 8954 env->spsr = env->banked_spsr[i]; 8955 8956 env->banked_r14[r14_bank_number(old_mode)] = env->regs[14]; 8957 env->regs[14] = env->banked_r14[r14_bank_number(mode)]; 8958 } 8959 8960 /* Physical Interrupt Target EL Lookup Table 8961 * 8962 * [ From ARM ARM section G1.13.4 (Table G1-15) ] 8963 * 8964 * The below multi-dimensional table is used for looking up the target 8965 * exception level given numerous condition criteria. Specifically, the 8966 * target EL is based on SCR and HCR routing controls as well as the 8967 * currently executing EL and secure state. 8968 * 8969 * Dimensions: 8970 * target_el_table[2][2][2][2][2][4] 8971 * | | | | | +--- Current EL 8972 * | | | | +------ Non-secure(0)/Secure(1) 8973 * | | | +--------- HCR mask override 8974 * | | +------------ SCR exec state control 8975 * | +--------------- SCR mask override 8976 * +------------------ 32-bit(0)/64-bit(1) EL3 8977 * 8978 * The table values are as such: 8979 * 0-3 = EL0-EL3 8980 * -1 = Cannot occur 8981 * 8982 * The ARM ARM target EL table includes entries indicating that an "exception 8983 * is not taken". The two cases where this is applicable are: 8984 * 1) An exception is taken from EL3 but the SCR does not have the exception 8985 * routed to EL3. 8986 * 2) An exception is taken from EL2 but the HCR does not have the exception 8987 * routed to EL2. 8988 * In these two cases, the below table contain a target of EL1. This value is 8989 * returned as it is expected that the consumer of the table data will check 8990 * for "target EL >= current EL" to ensure the exception is not taken. 8991 * 8992 * SCR HCR 8993 * 64 EA AMO From 8994 * BIT IRQ IMO Non-secure Secure 8995 * EL3 FIQ RW FMO EL0 EL1 EL2 EL3 EL0 EL1 EL2 EL3 8996 */ 8997 static const int8_t target_el_table[2][2][2][2][2][4] = { 8998 {{{{/* 0 0 0 0 */{ 1, 1, 2, -1 },{ 3, -1, -1, 3 },}, 8999 {/* 0 0 0 1 */{ 2, 2, 2, -1 },{ 3, -1, -1, 3 },},}, 9000 {{/* 0 0 1 0 */{ 1, 1, 2, -1 },{ 3, -1, -1, 3 },}, 9001 {/* 0 0 1 1 */{ 2, 2, 2, -1 },{ 3, -1, -1, 3 },},},}, 9002 {{{/* 0 1 0 0 */{ 3, 3, 3, -1 },{ 3, -1, -1, 3 },}, 9003 {/* 0 1 0 1 */{ 3, 3, 3, -1 },{ 3, -1, -1, 3 },},}, 9004 {{/* 0 1 1 0 */{ 3, 3, 3, -1 },{ 3, -1, -1, 3 },}, 9005 {/* 0 1 1 1 */{ 3, 3, 3, -1 },{ 3, -1, -1, 3 },},},},}, 9006 {{{{/* 1 0 0 0 */{ 1, 1, 2, -1 },{ 1, 1, -1, 1 },}, 9007 {/* 1 0 0 1 */{ 2, 2, 2, -1 },{ 1, 1, -1, 1 },},}, 9008 {{/* 1 0 1 0 */{ 1, 1, 1, -1 },{ 1, 1, -1, 1 },}, 9009 {/* 1 0 1 1 */{ 2, 2, 2, -1 },{ 1, 1, -1, 1 },},},}, 9010 {{{/* 1 1 0 0 */{ 3, 3, 3, -1 },{ 3, 3, -1, 3 },}, 9011 {/* 1 1 0 1 */{ 3, 3, 3, -1 },{ 3, 3, -1, 3 },},}, 9012 {{/* 1 1 1 0 */{ 3, 3, 3, -1 },{ 3, 3, -1, 3 },}, 9013 {/* 1 1 1 1 */{ 3, 3, 3, -1 },{ 3, 3, -1, 3 },},},},}, 9014 }; 9015 9016 /* 9017 * Determine the target EL for physical exceptions 9018 */ 9019 uint32_t arm_phys_excp_target_el(CPUState *cs, uint32_t excp_idx, 9020 uint32_t cur_el, bool secure) 9021 { 9022 CPUARMState *env = cs->env_ptr; 9023 bool rw; 9024 bool scr; 9025 bool hcr; 9026 int target_el; 9027 /* Is the highest EL AArch64? */ 9028 bool is64 = arm_feature(env, ARM_FEATURE_AARCH64); 9029 uint64_t hcr_el2; 9030 9031 if (arm_feature(env, ARM_FEATURE_EL3)) { 9032 rw = ((env->cp15.scr_el3 & SCR_RW) == SCR_RW); 9033 } else { 9034 /* Either EL2 is the highest EL (and so the EL2 register width 9035 * is given by is64); or there is no EL2 or EL3, in which case 9036 * the value of 'rw' does not affect the table lookup anyway. 9037 */ 9038 rw = is64; 9039 } 9040 9041 hcr_el2 = arm_hcr_el2_eff(env); 9042 switch (excp_idx) { 9043 case EXCP_IRQ: 9044 scr = ((env->cp15.scr_el3 & SCR_IRQ) == SCR_IRQ); 9045 hcr = hcr_el2 & HCR_IMO; 9046 break; 9047 case EXCP_FIQ: 9048 scr = ((env->cp15.scr_el3 & SCR_FIQ) == SCR_FIQ); 9049 hcr = hcr_el2 & HCR_FMO; 9050 break; 9051 default: 9052 scr = ((env->cp15.scr_el3 & SCR_EA) == SCR_EA); 9053 hcr = hcr_el2 & HCR_AMO; 9054 break; 9055 }; 9056 9057 /* 9058 * For these purposes, TGE and AMO/IMO/FMO both force the 9059 * interrupt to EL2. Fold TGE into the bit extracted above. 9060 */ 9061 hcr |= (hcr_el2 & HCR_TGE) != 0; 9062 9063 /* Perform a table-lookup for the target EL given the current state */ 9064 target_el = target_el_table[is64][scr][rw][hcr][secure][cur_el]; 9065 9066 assert(target_el > 0); 9067 9068 return target_el; 9069 } 9070 9071 void arm_log_exception(int idx) 9072 { 9073 if (qemu_loglevel_mask(CPU_LOG_INT)) { 9074 const char *exc = NULL; 9075 static const char * const excnames[] = { 9076 [EXCP_UDEF] = "Undefined Instruction", 9077 [EXCP_SWI] = "SVC", 9078 [EXCP_PREFETCH_ABORT] = "Prefetch Abort", 9079 [EXCP_DATA_ABORT] = "Data Abort", 9080 [EXCP_IRQ] = "IRQ", 9081 [EXCP_FIQ] = "FIQ", 9082 [EXCP_BKPT] = "Breakpoint", 9083 [EXCP_EXCEPTION_EXIT] = "QEMU v7M exception exit", 9084 [EXCP_KERNEL_TRAP] = "QEMU intercept of kernel commpage", 9085 [EXCP_HVC] = "Hypervisor Call", 9086 [EXCP_HYP_TRAP] = "Hypervisor Trap", 9087 [EXCP_SMC] = "Secure Monitor Call", 9088 [EXCP_VIRQ] = "Virtual IRQ", 9089 [EXCP_VFIQ] = "Virtual FIQ", 9090 [EXCP_SEMIHOST] = "Semihosting call", 9091 [EXCP_NOCP] = "v7M NOCP UsageFault", 9092 [EXCP_INVSTATE] = "v7M INVSTATE UsageFault", 9093 [EXCP_STKOF] = "v8M STKOF UsageFault", 9094 [EXCP_LAZYFP] = "v7M exception during lazy FP stacking", 9095 [EXCP_LSERR] = "v8M LSERR UsageFault", 9096 [EXCP_UNALIGNED] = "v7M UNALIGNED UsageFault", 9097 }; 9098 9099 if (idx >= 0 && idx < ARRAY_SIZE(excnames)) { 9100 exc = excnames[idx]; 9101 } 9102 if (!exc) { 9103 exc = "unknown"; 9104 } 9105 qemu_log_mask(CPU_LOG_INT, "Taking exception %d [%s]\n", idx, exc); 9106 } 9107 } 9108 9109 /* 9110 * Function used to synchronize QEMU's AArch64 register set with AArch32 9111 * register set. This is necessary when switching between AArch32 and AArch64 9112 * execution state. 9113 */ 9114 void aarch64_sync_32_to_64(CPUARMState *env) 9115 { 9116 int i; 9117 uint32_t mode = env->uncached_cpsr & CPSR_M; 9118 9119 /* We can blanket copy R[0:7] to X[0:7] */ 9120 for (i = 0; i < 8; i++) { 9121 env->xregs[i] = env->regs[i]; 9122 } 9123 9124 /* 9125 * Unless we are in FIQ mode, x8-x12 come from the user registers r8-r12. 9126 * Otherwise, they come from the banked user regs. 9127 */ 9128 if (mode == ARM_CPU_MODE_FIQ) { 9129 for (i = 8; i < 13; i++) { 9130 env->xregs[i] = env->usr_regs[i - 8]; 9131 } 9132 } else { 9133 for (i = 8; i < 13; i++) { 9134 env->xregs[i] = env->regs[i]; 9135 } 9136 } 9137 9138 /* 9139 * Registers x13-x23 are the various mode SP and FP registers. Registers 9140 * r13 and r14 are only copied if we are in that mode, otherwise we copy 9141 * from the mode banked register. 9142 */ 9143 if (mode == ARM_CPU_MODE_USR || mode == ARM_CPU_MODE_SYS) { 9144 env->xregs[13] = env->regs[13]; 9145 env->xregs[14] = env->regs[14]; 9146 } else { 9147 env->xregs[13] = env->banked_r13[bank_number(ARM_CPU_MODE_USR)]; 9148 /* HYP is an exception in that it is copied from r14 */ 9149 if (mode == ARM_CPU_MODE_HYP) { 9150 env->xregs[14] = env->regs[14]; 9151 } else { 9152 env->xregs[14] = env->banked_r14[r14_bank_number(ARM_CPU_MODE_USR)]; 9153 } 9154 } 9155 9156 if (mode == ARM_CPU_MODE_HYP) { 9157 env->xregs[15] = env->regs[13]; 9158 } else { 9159 env->xregs[15] = env->banked_r13[bank_number(ARM_CPU_MODE_HYP)]; 9160 } 9161 9162 if (mode == ARM_CPU_MODE_IRQ) { 9163 env->xregs[16] = env->regs[14]; 9164 env->xregs[17] = env->regs[13]; 9165 } else { 9166 env->xregs[16] = env->banked_r14[r14_bank_number(ARM_CPU_MODE_IRQ)]; 9167 env->xregs[17] = env->banked_r13[bank_number(ARM_CPU_MODE_IRQ)]; 9168 } 9169 9170 if (mode == ARM_CPU_MODE_SVC) { 9171 env->xregs[18] = env->regs[14]; 9172 env->xregs[19] = env->regs[13]; 9173 } else { 9174 env->xregs[18] = env->banked_r14[r14_bank_number(ARM_CPU_MODE_SVC)]; 9175 env->xregs[19] = env->banked_r13[bank_number(ARM_CPU_MODE_SVC)]; 9176 } 9177 9178 if (mode == ARM_CPU_MODE_ABT) { 9179 env->xregs[20] = env->regs[14]; 9180 env->xregs[21] = env->regs[13]; 9181 } else { 9182 env->xregs[20] = env->banked_r14[r14_bank_number(ARM_CPU_MODE_ABT)]; 9183 env->xregs[21] = env->banked_r13[bank_number(ARM_CPU_MODE_ABT)]; 9184 } 9185 9186 if (mode == ARM_CPU_MODE_UND) { 9187 env->xregs[22] = env->regs[14]; 9188 env->xregs[23] = env->regs[13]; 9189 } else { 9190 env->xregs[22] = env->banked_r14[r14_bank_number(ARM_CPU_MODE_UND)]; 9191 env->xregs[23] = env->banked_r13[bank_number(ARM_CPU_MODE_UND)]; 9192 } 9193 9194 /* 9195 * Registers x24-x30 are mapped to r8-r14 in FIQ mode. If we are in FIQ 9196 * mode, then we can copy from r8-r14. Otherwise, we copy from the 9197 * FIQ bank for r8-r14. 9198 */ 9199 if (mode == ARM_CPU_MODE_FIQ) { 9200 for (i = 24; i < 31; i++) { 9201 env->xregs[i] = env->regs[i - 16]; /* X[24:30] <- R[8:14] */ 9202 } 9203 } else { 9204 for (i = 24; i < 29; i++) { 9205 env->xregs[i] = env->fiq_regs[i - 24]; 9206 } 9207 env->xregs[29] = env->banked_r13[bank_number(ARM_CPU_MODE_FIQ)]; 9208 env->xregs[30] = env->banked_r14[r14_bank_number(ARM_CPU_MODE_FIQ)]; 9209 } 9210 9211 env->pc = env->regs[15]; 9212 } 9213 9214 /* 9215 * Function used to synchronize QEMU's AArch32 register set with AArch64 9216 * register set. This is necessary when switching between AArch32 and AArch64 9217 * execution state. 9218 */ 9219 void aarch64_sync_64_to_32(CPUARMState *env) 9220 { 9221 int i; 9222 uint32_t mode = env->uncached_cpsr & CPSR_M; 9223 9224 /* We can blanket copy X[0:7] to R[0:7] */ 9225 for (i = 0; i < 8; i++) { 9226 env->regs[i] = env->xregs[i]; 9227 } 9228 9229 /* 9230 * Unless we are in FIQ mode, r8-r12 come from the user registers x8-x12. 9231 * Otherwise, we copy x8-x12 into the banked user regs. 9232 */ 9233 if (mode == ARM_CPU_MODE_FIQ) { 9234 for (i = 8; i < 13; i++) { 9235 env->usr_regs[i - 8] = env->xregs[i]; 9236 } 9237 } else { 9238 for (i = 8; i < 13; i++) { 9239 env->regs[i] = env->xregs[i]; 9240 } 9241 } 9242 9243 /* 9244 * Registers r13 & r14 depend on the current mode. 9245 * If we are in a given mode, we copy the corresponding x registers to r13 9246 * and r14. Otherwise, we copy the x register to the banked r13 and r14 9247 * for the mode. 9248 */ 9249 if (mode == ARM_CPU_MODE_USR || mode == ARM_CPU_MODE_SYS) { 9250 env->regs[13] = env->xregs[13]; 9251 env->regs[14] = env->xregs[14]; 9252 } else { 9253 env->banked_r13[bank_number(ARM_CPU_MODE_USR)] = env->xregs[13]; 9254 9255 /* 9256 * HYP is an exception in that it does not have its own banked r14 but 9257 * shares the USR r14 9258 */ 9259 if (mode == ARM_CPU_MODE_HYP) { 9260 env->regs[14] = env->xregs[14]; 9261 } else { 9262 env->banked_r14[r14_bank_number(ARM_CPU_MODE_USR)] = env->xregs[14]; 9263 } 9264 } 9265 9266 if (mode == ARM_CPU_MODE_HYP) { 9267 env->regs[13] = env->xregs[15]; 9268 } else { 9269 env->banked_r13[bank_number(ARM_CPU_MODE_HYP)] = env->xregs[15]; 9270 } 9271 9272 if (mode == ARM_CPU_MODE_IRQ) { 9273 env->regs[14] = env->xregs[16]; 9274 env->regs[13] = env->xregs[17]; 9275 } else { 9276 env->banked_r14[r14_bank_number(ARM_CPU_MODE_IRQ)] = env->xregs[16]; 9277 env->banked_r13[bank_number(ARM_CPU_MODE_IRQ)] = env->xregs[17]; 9278 } 9279 9280 if (mode == ARM_CPU_MODE_SVC) { 9281 env->regs[14] = env->xregs[18]; 9282 env->regs[13] = env->xregs[19]; 9283 } else { 9284 env->banked_r14[r14_bank_number(ARM_CPU_MODE_SVC)] = env->xregs[18]; 9285 env->banked_r13[bank_number(ARM_CPU_MODE_SVC)] = env->xregs[19]; 9286 } 9287 9288 if (mode == ARM_CPU_MODE_ABT) { 9289 env->regs[14] = env->xregs[20]; 9290 env->regs[13] = env->xregs[21]; 9291 } else { 9292 env->banked_r14[r14_bank_number(ARM_CPU_MODE_ABT)] = env->xregs[20]; 9293 env->banked_r13[bank_number(ARM_CPU_MODE_ABT)] = env->xregs[21]; 9294 } 9295 9296 if (mode == ARM_CPU_MODE_UND) { 9297 env->regs[14] = env->xregs[22]; 9298 env->regs[13] = env->xregs[23]; 9299 } else { 9300 env->banked_r14[r14_bank_number(ARM_CPU_MODE_UND)] = env->xregs[22]; 9301 env->banked_r13[bank_number(ARM_CPU_MODE_UND)] = env->xregs[23]; 9302 } 9303 9304 /* Registers x24-x30 are mapped to r8-r14 in FIQ mode. If we are in FIQ 9305 * mode, then we can copy to r8-r14. Otherwise, we copy to the 9306 * FIQ bank for r8-r14. 9307 */ 9308 if (mode == ARM_CPU_MODE_FIQ) { 9309 for (i = 24; i < 31; i++) { 9310 env->regs[i - 16] = env->xregs[i]; /* X[24:30] -> R[8:14] */ 9311 } 9312 } else { 9313 for (i = 24; i < 29; i++) { 9314 env->fiq_regs[i - 24] = env->xregs[i]; 9315 } 9316 env->banked_r13[bank_number(ARM_CPU_MODE_FIQ)] = env->xregs[29]; 9317 env->banked_r14[r14_bank_number(ARM_CPU_MODE_FIQ)] = env->xregs[30]; 9318 } 9319 9320 env->regs[15] = env->pc; 9321 } 9322 9323 static void take_aarch32_exception(CPUARMState *env, int new_mode, 9324 uint32_t mask, uint32_t offset, 9325 uint32_t newpc) 9326 { 9327 int new_el; 9328 9329 /* Change the CPU state so as to actually take the exception. */ 9330 switch_mode(env, new_mode); 9331 9332 /* 9333 * For exceptions taken to AArch32 we must clear the SS bit in both 9334 * PSTATE and in the old-state value we save to SPSR_<mode>, so zero it now. 9335 */ 9336 env->uncached_cpsr &= ~PSTATE_SS; 9337 env->spsr = cpsr_read(env); 9338 /* Clear IT bits. */ 9339 env->condexec_bits = 0; 9340 /* Switch to the new mode, and to the correct instruction set. */ 9341 env->uncached_cpsr = (env->uncached_cpsr & ~CPSR_M) | new_mode; 9342 9343 /* This must be after mode switching. */ 9344 new_el = arm_current_el(env); 9345 9346 /* Set new mode endianness */ 9347 env->uncached_cpsr &= ~CPSR_E; 9348 if (env->cp15.sctlr_el[new_el] & SCTLR_EE) { 9349 env->uncached_cpsr |= CPSR_E; 9350 } 9351 /* J and IL must always be cleared for exception entry */ 9352 env->uncached_cpsr &= ~(CPSR_IL | CPSR_J); 9353 env->daif |= mask; 9354 9355 if (new_mode == ARM_CPU_MODE_HYP) { 9356 env->thumb = (env->cp15.sctlr_el[2] & SCTLR_TE) != 0; 9357 env->elr_el[2] = env->regs[15]; 9358 } else { 9359 /* CPSR.PAN is normally preserved preserved unless... */ 9360 if (cpu_isar_feature(aa32_pan, env_archcpu(env))) { 9361 switch (new_el) { 9362 case 3: 9363 if (!arm_is_secure_below_el3(env)) { 9364 /* ... the target is EL3, from non-secure state. */ 9365 env->uncached_cpsr &= ~CPSR_PAN; 9366 break; 9367 } 9368 /* ... the target is EL3, from secure state ... */ 9369 /* fall through */ 9370 case 1: 9371 /* ... the target is EL1 and SCTLR.SPAN is 0. */ 9372 if (!(env->cp15.sctlr_el[new_el] & SCTLR_SPAN)) { 9373 env->uncached_cpsr |= CPSR_PAN; 9374 } 9375 break; 9376 } 9377 } 9378 /* 9379 * this is a lie, as there was no c1_sys on V4T/V5, but who cares 9380 * and we should just guard the thumb mode on V4 9381 */ 9382 if (arm_feature(env, ARM_FEATURE_V4T)) { 9383 env->thumb = 9384 (A32_BANKED_CURRENT_REG_GET(env, sctlr) & SCTLR_TE) != 0; 9385 } 9386 env->regs[14] = env->regs[15] + offset; 9387 } 9388 env->regs[15] = newpc; 9389 arm_rebuild_hflags(env); 9390 } 9391 9392 static void arm_cpu_do_interrupt_aarch32_hyp(CPUState *cs) 9393 { 9394 /* 9395 * Handle exception entry to Hyp mode; this is sufficiently 9396 * different to entry to other AArch32 modes that we handle it 9397 * separately here. 9398 * 9399 * The vector table entry used is always the 0x14 Hyp mode entry point, 9400 * unless this is an UNDEF/HVC/abort taken from Hyp to Hyp. 9401 * The offset applied to the preferred return address is always zero 9402 * (see DDI0487C.a section G1.12.3). 9403 * PSTATE A/I/F masks are set based only on the SCR.EA/IRQ/FIQ values. 9404 */ 9405 uint32_t addr, mask; 9406 ARMCPU *cpu = ARM_CPU(cs); 9407 CPUARMState *env = &cpu->env; 9408 9409 switch (cs->exception_index) { 9410 case EXCP_UDEF: 9411 addr = 0x04; 9412 break; 9413 case EXCP_SWI: 9414 addr = 0x14; 9415 break; 9416 case EXCP_BKPT: 9417 /* Fall through to prefetch abort. */ 9418 case EXCP_PREFETCH_ABORT: 9419 env->cp15.ifar_s = env->exception.vaddress; 9420 qemu_log_mask(CPU_LOG_INT, "...with HIFAR 0x%x\n", 9421 (uint32_t)env->exception.vaddress); 9422 addr = 0x0c; 9423 break; 9424 case EXCP_DATA_ABORT: 9425 env->cp15.dfar_s = env->exception.vaddress; 9426 qemu_log_mask(CPU_LOG_INT, "...with HDFAR 0x%x\n", 9427 (uint32_t)env->exception.vaddress); 9428 addr = 0x10; 9429 break; 9430 case EXCP_IRQ: 9431 addr = 0x18; 9432 break; 9433 case EXCP_FIQ: 9434 addr = 0x1c; 9435 break; 9436 case EXCP_HVC: 9437 addr = 0x08; 9438 break; 9439 case EXCP_HYP_TRAP: 9440 addr = 0x14; 9441 break; 9442 default: 9443 cpu_abort(cs, "Unhandled exception 0x%x\n", cs->exception_index); 9444 } 9445 9446 if (cs->exception_index != EXCP_IRQ && cs->exception_index != EXCP_FIQ) { 9447 if (!arm_feature(env, ARM_FEATURE_V8)) { 9448 /* 9449 * QEMU syndrome values are v8-style. v7 has the IL bit 9450 * UNK/SBZP for "field not valid" cases, where v8 uses RES1. 9451 * If this is a v7 CPU, squash the IL bit in those cases. 9452 */ 9453 if (cs->exception_index == EXCP_PREFETCH_ABORT || 9454 (cs->exception_index == EXCP_DATA_ABORT && 9455 !(env->exception.syndrome & ARM_EL_ISV)) || 9456 syn_get_ec(env->exception.syndrome) == EC_UNCATEGORIZED) { 9457 env->exception.syndrome &= ~ARM_EL_IL; 9458 } 9459 } 9460 env->cp15.esr_el[2] = env->exception.syndrome; 9461 } 9462 9463 if (arm_current_el(env) != 2 && addr < 0x14) { 9464 addr = 0x14; 9465 } 9466 9467 mask = 0; 9468 if (!(env->cp15.scr_el3 & SCR_EA)) { 9469 mask |= CPSR_A; 9470 } 9471 if (!(env->cp15.scr_el3 & SCR_IRQ)) { 9472 mask |= CPSR_I; 9473 } 9474 if (!(env->cp15.scr_el3 & SCR_FIQ)) { 9475 mask |= CPSR_F; 9476 } 9477 9478 addr += env->cp15.hvbar; 9479 9480 take_aarch32_exception(env, ARM_CPU_MODE_HYP, mask, 0, addr); 9481 } 9482 9483 static void arm_cpu_do_interrupt_aarch32(CPUState *cs) 9484 { 9485 ARMCPU *cpu = ARM_CPU(cs); 9486 CPUARMState *env = &cpu->env; 9487 uint32_t addr; 9488 uint32_t mask; 9489 int new_mode; 9490 uint32_t offset; 9491 uint32_t moe; 9492 9493 /* If this is a debug exception we must update the DBGDSCR.MOE bits */ 9494 switch (syn_get_ec(env->exception.syndrome)) { 9495 case EC_BREAKPOINT: 9496 case EC_BREAKPOINT_SAME_EL: 9497 moe = 1; 9498 break; 9499 case EC_WATCHPOINT: 9500 case EC_WATCHPOINT_SAME_EL: 9501 moe = 10; 9502 break; 9503 case EC_AA32_BKPT: 9504 moe = 3; 9505 break; 9506 case EC_VECTORCATCH: 9507 moe = 5; 9508 break; 9509 default: 9510 moe = 0; 9511 break; 9512 } 9513 9514 if (moe) { 9515 env->cp15.mdscr_el1 = deposit64(env->cp15.mdscr_el1, 2, 4, moe); 9516 } 9517 9518 if (env->exception.target_el == 2) { 9519 arm_cpu_do_interrupt_aarch32_hyp(cs); 9520 return; 9521 } 9522 9523 switch (cs->exception_index) { 9524 case EXCP_UDEF: 9525 new_mode = ARM_CPU_MODE_UND; 9526 addr = 0x04; 9527 mask = CPSR_I; 9528 if (env->thumb) 9529 offset = 2; 9530 else 9531 offset = 4; 9532 break; 9533 case EXCP_SWI: 9534 new_mode = ARM_CPU_MODE_SVC; 9535 addr = 0x08; 9536 mask = CPSR_I; 9537 /* The PC already points to the next instruction. */ 9538 offset = 0; 9539 break; 9540 case EXCP_BKPT: 9541 /* Fall through to prefetch abort. */ 9542 case EXCP_PREFETCH_ABORT: 9543 A32_BANKED_CURRENT_REG_SET(env, ifsr, env->exception.fsr); 9544 A32_BANKED_CURRENT_REG_SET(env, ifar, env->exception.vaddress); 9545 qemu_log_mask(CPU_LOG_INT, "...with IFSR 0x%x IFAR 0x%x\n", 9546 env->exception.fsr, (uint32_t)env->exception.vaddress); 9547 new_mode = ARM_CPU_MODE_ABT; 9548 addr = 0x0c; 9549 mask = CPSR_A | CPSR_I; 9550 offset = 4; 9551 break; 9552 case EXCP_DATA_ABORT: 9553 A32_BANKED_CURRENT_REG_SET(env, dfsr, env->exception.fsr); 9554 A32_BANKED_CURRENT_REG_SET(env, dfar, env->exception.vaddress); 9555 qemu_log_mask(CPU_LOG_INT, "...with DFSR 0x%x DFAR 0x%x\n", 9556 env->exception.fsr, 9557 (uint32_t)env->exception.vaddress); 9558 new_mode = ARM_CPU_MODE_ABT; 9559 addr = 0x10; 9560 mask = CPSR_A | CPSR_I; 9561 offset = 8; 9562 break; 9563 case EXCP_IRQ: 9564 new_mode = ARM_CPU_MODE_IRQ; 9565 addr = 0x18; 9566 /* Disable IRQ and imprecise data aborts. */ 9567 mask = CPSR_A | CPSR_I; 9568 offset = 4; 9569 if (env->cp15.scr_el3 & SCR_IRQ) { 9570 /* IRQ routed to monitor mode */ 9571 new_mode = ARM_CPU_MODE_MON; 9572 mask |= CPSR_F; 9573 } 9574 break; 9575 case EXCP_FIQ: 9576 new_mode = ARM_CPU_MODE_FIQ; 9577 addr = 0x1c; 9578 /* Disable FIQ, IRQ and imprecise data aborts. */ 9579 mask = CPSR_A | CPSR_I | CPSR_F; 9580 if (env->cp15.scr_el3 & SCR_FIQ) { 9581 /* FIQ routed to monitor mode */ 9582 new_mode = ARM_CPU_MODE_MON; 9583 } 9584 offset = 4; 9585 break; 9586 case EXCP_VIRQ: 9587 new_mode = ARM_CPU_MODE_IRQ; 9588 addr = 0x18; 9589 /* Disable IRQ and imprecise data aborts. */ 9590 mask = CPSR_A | CPSR_I; 9591 offset = 4; 9592 break; 9593 case EXCP_VFIQ: 9594 new_mode = ARM_CPU_MODE_FIQ; 9595 addr = 0x1c; 9596 /* Disable FIQ, IRQ and imprecise data aborts. */ 9597 mask = CPSR_A | CPSR_I | CPSR_F; 9598 offset = 4; 9599 break; 9600 case EXCP_SMC: 9601 new_mode = ARM_CPU_MODE_MON; 9602 addr = 0x08; 9603 mask = CPSR_A | CPSR_I | CPSR_F; 9604 offset = 0; 9605 break; 9606 default: 9607 cpu_abort(cs, "Unhandled exception 0x%x\n", cs->exception_index); 9608 return; /* Never happens. Keep compiler happy. */ 9609 } 9610 9611 if (new_mode == ARM_CPU_MODE_MON) { 9612 addr += env->cp15.mvbar; 9613 } else if (A32_BANKED_CURRENT_REG_GET(env, sctlr) & SCTLR_V) { 9614 /* High vectors. When enabled, base address cannot be remapped. */ 9615 addr += 0xffff0000; 9616 } else { 9617 /* ARM v7 architectures provide a vector base address register to remap 9618 * the interrupt vector table. 9619 * This register is only followed in non-monitor mode, and is banked. 9620 * Note: only bits 31:5 are valid. 9621 */ 9622 addr += A32_BANKED_CURRENT_REG_GET(env, vbar); 9623 } 9624 9625 if ((env->uncached_cpsr & CPSR_M) == ARM_CPU_MODE_MON) { 9626 env->cp15.scr_el3 &= ~SCR_NS; 9627 } 9628 9629 take_aarch32_exception(env, new_mode, mask, offset, addr); 9630 } 9631 9632 static int aarch64_regnum(CPUARMState *env, int aarch32_reg) 9633 { 9634 /* 9635 * Return the register number of the AArch64 view of the AArch32 9636 * register @aarch32_reg. The CPUARMState CPSR is assumed to still 9637 * be that of the AArch32 mode the exception came from. 9638 */ 9639 int mode = env->uncached_cpsr & CPSR_M; 9640 9641 switch (aarch32_reg) { 9642 case 0 ... 7: 9643 return aarch32_reg; 9644 case 8 ... 12: 9645 return mode == ARM_CPU_MODE_FIQ ? aarch32_reg + 16 : aarch32_reg; 9646 case 13: 9647 switch (mode) { 9648 case ARM_CPU_MODE_USR: 9649 case ARM_CPU_MODE_SYS: 9650 return 13; 9651 case ARM_CPU_MODE_HYP: 9652 return 15; 9653 case ARM_CPU_MODE_IRQ: 9654 return 17; 9655 case ARM_CPU_MODE_SVC: 9656 return 19; 9657 case ARM_CPU_MODE_ABT: 9658 return 21; 9659 case ARM_CPU_MODE_UND: 9660 return 23; 9661 case ARM_CPU_MODE_FIQ: 9662 return 29; 9663 default: 9664 g_assert_not_reached(); 9665 } 9666 case 14: 9667 switch (mode) { 9668 case ARM_CPU_MODE_USR: 9669 case ARM_CPU_MODE_SYS: 9670 case ARM_CPU_MODE_HYP: 9671 return 14; 9672 case ARM_CPU_MODE_IRQ: 9673 return 16; 9674 case ARM_CPU_MODE_SVC: 9675 return 18; 9676 case ARM_CPU_MODE_ABT: 9677 return 20; 9678 case ARM_CPU_MODE_UND: 9679 return 22; 9680 case ARM_CPU_MODE_FIQ: 9681 return 30; 9682 default: 9683 g_assert_not_reached(); 9684 } 9685 case 15: 9686 return 31; 9687 default: 9688 g_assert_not_reached(); 9689 } 9690 } 9691 9692 /* Handle exception entry to a target EL which is using AArch64 */ 9693 static void arm_cpu_do_interrupt_aarch64(CPUState *cs) 9694 { 9695 ARMCPU *cpu = ARM_CPU(cs); 9696 CPUARMState *env = &cpu->env; 9697 unsigned int new_el = env->exception.target_el; 9698 target_ulong addr = env->cp15.vbar_el[new_el]; 9699 unsigned int new_mode = aarch64_pstate_mode(new_el, true); 9700 unsigned int old_mode; 9701 unsigned int cur_el = arm_current_el(env); 9702 int rt; 9703 9704 /* 9705 * Note that new_el can never be 0. If cur_el is 0, then 9706 * el0_a64 is is_a64(), else el0_a64 is ignored. 9707 */ 9708 aarch64_sve_change_el(env, cur_el, new_el, is_a64(env)); 9709 9710 if (cur_el < new_el) { 9711 /* Entry vector offset depends on whether the implemented EL 9712 * immediately lower than the target level is using AArch32 or AArch64 9713 */ 9714 bool is_aa64; 9715 uint64_t hcr; 9716 9717 switch (new_el) { 9718 case 3: 9719 is_aa64 = (env->cp15.scr_el3 & SCR_RW) != 0; 9720 break; 9721 case 2: 9722 hcr = arm_hcr_el2_eff(env); 9723 if ((hcr & (HCR_E2H | HCR_TGE)) != (HCR_E2H | HCR_TGE)) { 9724 is_aa64 = (hcr & HCR_RW) != 0; 9725 break; 9726 } 9727 /* fall through */ 9728 case 1: 9729 is_aa64 = is_a64(env); 9730 break; 9731 default: 9732 g_assert_not_reached(); 9733 } 9734 9735 if (is_aa64) { 9736 addr += 0x400; 9737 } else { 9738 addr += 0x600; 9739 } 9740 } else if (pstate_read(env) & PSTATE_SP) { 9741 addr += 0x200; 9742 } 9743 9744 switch (cs->exception_index) { 9745 case EXCP_PREFETCH_ABORT: 9746 case EXCP_DATA_ABORT: 9747 env->cp15.far_el[new_el] = env->exception.vaddress; 9748 qemu_log_mask(CPU_LOG_INT, "...with FAR 0x%" PRIx64 "\n", 9749 env->cp15.far_el[new_el]); 9750 /* fall through */ 9751 case EXCP_BKPT: 9752 case EXCP_UDEF: 9753 case EXCP_SWI: 9754 case EXCP_HVC: 9755 case EXCP_HYP_TRAP: 9756 case EXCP_SMC: 9757 switch (syn_get_ec(env->exception.syndrome)) { 9758 case EC_ADVSIMDFPACCESSTRAP: 9759 /* 9760 * QEMU internal FP/SIMD syndromes from AArch32 include the 9761 * TA and coproc fields which are only exposed if the exception 9762 * is taken to AArch32 Hyp mode. Mask them out to get a valid 9763 * AArch64 format syndrome. 9764 */ 9765 env->exception.syndrome &= ~MAKE_64BIT_MASK(0, 20); 9766 break; 9767 case EC_CP14RTTRAP: 9768 case EC_CP15RTTRAP: 9769 case EC_CP14DTTRAP: 9770 /* 9771 * For a trap on AArch32 MRC/MCR/LDC/STC the Rt field is currently 9772 * the raw register field from the insn; when taking this to 9773 * AArch64 we must convert it to the AArch64 view of the register 9774 * number. Notice that we read a 4-bit AArch32 register number and 9775 * write back a 5-bit AArch64 one. 9776 */ 9777 rt = extract32(env->exception.syndrome, 5, 4); 9778 rt = aarch64_regnum(env, rt); 9779 env->exception.syndrome = deposit32(env->exception.syndrome, 9780 5, 5, rt); 9781 break; 9782 case EC_CP15RRTTRAP: 9783 case EC_CP14RRTTRAP: 9784 /* Similarly for MRRC/MCRR traps for Rt and Rt2 fields */ 9785 rt = extract32(env->exception.syndrome, 5, 4); 9786 rt = aarch64_regnum(env, rt); 9787 env->exception.syndrome = deposit32(env->exception.syndrome, 9788 5, 5, rt); 9789 rt = extract32(env->exception.syndrome, 10, 4); 9790 rt = aarch64_regnum(env, rt); 9791 env->exception.syndrome = deposit32(env->exception.syndrome, 9792 10, 5, rt); 9793 break; 9794 } 9795 env->cp15.esr_el[new_el] = env->exception.syndrome; 9796 break; 9797 case EXCP_IRQ: 9798 case EXCP_VIRQ: 9799 addr += 0x80; 9800 break; 9801 case EXCP_FIQ: 9802 case EXCP_VFIQ: 9803 addr += 0x100; 9804 break; 9805 default: 9806 cpu_abort(cs, "Unhandled exception 0x%x\n", cs->exception_index); 9807 } 9808 9809 if (is_a64(env)) { 9810 old_mode = pstate_read(env); 9811 aarch64_save_sp(env, arm_current_el(env)); 9812 env->elr_el[new_el] = env->pc; 9813 } else { 9814 old_mode = cpsr_read(env); 9815 env->elr_el[new_el] = env->regs[15]; 9816 9817 aarch64_sync_32_to_64(env); 9818 9819 env->condexec_bits = 0; 9820 } 9821 env->banked_spsr[aarch64_banked_spsr_index(new_el)] = old_mode; 9822 9823 qemu_log_mask(CPU_LOG_INT, "...with ELR 0x%" PRIx64 "\n", 9824 env->elr_el[new_el]); 9825 9826 if (cpu_isar_feature(aa64_pan, cpu)) { 9827 /* The value of PSTATE.PAN is normally preserved, except when ... */ 9828 new_mode |= old_mode & PSTATE_PAN; 9829 switch (new_el) { 9830 case 2: 9831 /* ... the target is EL2 with HCR_EL2.{E2H,TGE} == '11' ... */ 9832 if ((arm_hcr_el2_eff(env) & (HCR_E2H | HCR_TGE)) 9833 != (HCR_E2H | HCR_TGE)) { 9834 break; 9835 } 9836 /* fall through */ 9837 case 1: 9838 /* ... the target is EL1 ... */ 9839 /* ... and SCTLR_ELx.SPAN == 0, then set to 1. */ 9840 if ((env->cp15.sctlr_el[new_el] & SCTLR_SPAN) == 0) { 9841 new_mode |= PSTATE_PAN; 9842 } 9843 break; 9844 } 9845 } 9846 if (cpu_isar_feature(aa64_mte, cpu)) { 9847 new_mode |= PSTATE_TCO; 9848 } 9849 9850 pstate_write(env, PSTATE_DAIF | new_mode); 9851 env->aarch64 = 1; 9852 aarch64_restore_sp(env, new_el); 9853 helper_rebuild_hflags_a64(env, new_el); 9854 9855 env->pc = addr; 9856 9857 qemu_log_mask(CPU_LOG_INT, "...to EL%d PC 0x%" PRIx64 " PSTATE 0x%x\n", 9858 new_el, env->pc, pstate_read(env)); 9859 } 9860 9861 /* 9862 * Do semihosting call and set the appropriate return value. All the 9863 * permission and validity checks have been done at translate time. 9864 * 9865 * We only see semihosting exceptions in TCG only as they are not 9866 * trapped to the hypervisor in KVM. 9867 */ 9868 #ifdef CONFIG_TCG 9869 static void handle_semihosting(CPUState *cs) 9870 { 9871 ARMCPU *cpu = ARM_CPU(cs); 9872 CPUARMState *env = &cpu->env; 9873 9874 if (is_a64(env)) { 9875 qemu_log_mask(CPU_LOG_INT, 9876 "...handling as semihosting call 0x%" PRIx64 "\n", 9877 env->xregs[0]); 9878 env->xregs[0] = do_arm_semihosting(env); 9879 env->pc += 4; 9880 } else { 9881 qemu_log_mask(CPU_LOG_INT, 9882 "...handling as semihosting call 0x%x\n", 9883 env->regs[0]); 9884 env->regs[0] = do_arm_semihosting(env); 9885 env->regs[15] += env->thumb ? 2 : 4; 9886 } 9887 } 9888 #endif 9889 9890 /* Handle a CPU exception for A and R profile CPUs. 9891 * Do any appropriate logging, handle PSCI calls, and then hand off 9892 * to the AArch64-entry or AArch32-entry function depending on the 9893 * target exception level's register width. 9894 */ 9895 void arm_cpu_do_interrupt(CPUState *cs) 9896 { 9897 ARMCPU *cpu = ARM_CPU(cs); 9898 CPUARMState *env = &cpu->env; 9899 unsigned int new_el = env->exception.target_el; 9900 9901 assert(!arm_feature(env, ARM_FEATURE_M)); 9902 9903 arm_log_exception(cs->exception_index); 9904 qemu_log_mask(CPU_LOG_INT, "...from EL%d to EL%d\n", arm_current_el(env), 9905 new_el); 9906 if (qemu_loglevel_mask(CPU_LOG_INT) 9907 && !excp_is_internal(cs->exception_index)) { 9908 qemu_log_mask(CPU_LOG_INT, "...with ESR 0x%x/0x%" PRIx32 "\n", 9909 syn_get_ec(env->exception.syndrome), 9910 env->exception.syndrome); 9911 } 9912 9913 if (arm_is_psci_call(cpu, cs->exception_index)) { 9914 arm_handle_psci_call(cpu); 9915 qemu_log_mask(CPU_LOG_INT, "...handled as PSCI call\n"); 9916 return; 9917 } 9918 9919 /* 9920 * Semihosting semantics depend on the register width of the code 9921 * that caused the exception, not the target exception level, so 9922 * must be handled here. 9923 */ 9924 #ifdef CONFIG_TCG 9925 if (cs->exception_index == EXCP_SEMIHOST) { 9926 handle_semihosting(cs); 9927 return; 9928 } 9929 #endif 9930 9931 /* Hooks may change global state so BQL should be held, also the 9932 * BQL needs to be held for any modification of 9933 * cs->interrupt_request. 9934 */ 9935 g_assert(qemu_mutex_iothread_locked()); 9936 9937 arm_call_pre_el_change_hook(cpu); 9938 9939 assert(!excp_is_internal(cs->exception_index)); 9940 if (arm_el_is_aa64(env, new_el)) { 9941 arm_cpu_do_interrupt_aarch64(cs); 9942 } else { 9943 arm_cpu_do_interrupt_aarch32(cs); 9944 } 9945 9946 arm_call_el_change_hook(cpu); 9947 9948 if (!kvm_enabled()) { 9949 cs->interrupt_request |= CPU_INTERRUPT_EXITTB; 9950 } 9951 } 9952 #endif /* !CONFIG_USER_ONLY */ 9953 9954 uint64_t arm_sctlr(CPUARMState *env, int el) 9955 { 9956 /* Only EL0 needs to be adjusted for EL1&0 or EL2&0. */ 9957 if (el == 0) { 9958 ARMMMUIdx mmu_idx = arm_mmu_idx_el(env, 0); 9959 el = (mmu_idx == ARMMMUIdx_E20_0 ? 2 : 1); 9960 } 9961 return env->cp15.sctlr_el[el]; 9962 } 9963 9964 /* Return the SCTLR value which controls this address translation regime */ 9965 static inline uint64_t regime_sctlr(CPUARMState *env, ARMMMUIdx mmu_idx) 9966 { 9967 return env->cp15.sctlr_el[regime_el(env, mmu_idx)]; 9968 } 9969 9970 #ifndef CONFIG_USER_ONLY 9971 9972 /* Return true if the specified stage of address translation is disabled */ 9973 static inline bool regime_translation_disabled(CPUARMState *env, 9974 ARMMMUIdx mmu_idx) 9975 { 9976 if (arm_feature(env, ARM_FEATURE_M)) { 9977 switch (env->v7m.mpu_ctrl[regime_is_secure(env, mmu_idx)] & 9978 (R_V7M_MPU_CTRL_ENABLE_MASK | R_V7M_MPU_CTRL_HFNMIENA_MASK)) { 9979 case R_V7M_MPU_CTRL_ENABLE_MASK: 9980 /* Enabled, but not for HardFault and NMI */ 9981 return mmu_idx & ARM_MMU_IDX_M_NEGPRI; 9982 case R_V7M_MPU_CTRL_ENABLE_MASK | R_V7M_MPU_CTRL_HFNMIENA_MASK: 9983 /* Enabled for all cases */ 9984 return false; 9985 case 0: 9986 default: 9987 /* HFNMIENA set and ENABLE clear is UNPREDICTABLE, but 9988 * we warned about that in armv7m_nvic.c when the guest set it. 9989 */ 9990 return true; 9991 } 9992 } 9993 9994 if (mmu_idx == ARMMMUIdx_Stage2) { 9995 /* HCR.DC means HCR.VM behaves as 1 */ 9996 return (env->cp15.hcr_el2 & (HCR_DC | HCR_VM)) == 0; 9997 } 9998 9999 if (env->cp15.hcr_el2 & HCR_TGE) { 10000 /* TGE means that NS EL0/1 act as if SCTLR_EL1.M is zero */ 10001 if (!regime_is_secure(env, mmu_idx) && regime_el(env, mmu_idx) == 1) { 10002 return true; 10003 } 10004 } 10005 10006 if ((env->cp15.hcr_el2 & HCR_DC) && arm_mmu_idx_is_stage1_of_2(mmu_idx)) { 10007 /* HCR.DC means SCTLR_EL1.M behaves as 0 */ 10008 return true; 10009 } 10010 10011 return (regime_sctlr(env, mmu_idx) & SCTLR_M) == 0; 10012 } 10013 10014 static inline bool regime_translation_big_endian(CPUARMState *env, 10015 ARMMMUIdx mmu_idx) 10016 { 10017 return (regime_sctlr(env, mmu_idx) & SCTLR_EE) != 0; 10018 } 10019 10020 /* Return the TTBR associated with this translation regime */ 10021 static inline uint64_t regime_ttbr(CPUARMState *env, ARMMMUIdx mmu_idx, 10022 int ttbrn) 10023 { 10024 if (mmu_idx == ARMMMUIdx_Stage2) { 10025 return env->cp15.vttbr_el2; 10026 } 10027 if (ttbrn == 0) { 10028 return env->cp15.ttbr0_el[regime_el(env, mmu_idx)]; 10029 } else { 10030 return env->cp15.ttbr1_el[regime_el(env, mmu_idx)]; 10031 } 10032 } 10033 10034 #endif /* !CONFIG_USER_ONLY */ 10035 10036 /* Convert a possible stage1+2 MMU index into the appropriate 10037 * stage 1 MMU index 10038 */ 10039 static inline ARMMMUIdx stage_1_mmu_idx(ARMMMUIdx mmu_idx) 10040 { 10041 switch (mmu_idx) { 10042 case ARMMMUIdx_E10_0: 10043 return ARMMMUIdx_Stage1_E0; 10044 case ARMMMUIdx_E10_1: 10045 return ARMMMUIdx_Stage1_E1; 10046 case ARMMMUIdx_E10_1_PAN: 10047 return ARMMMUIdx_Stage1_E1_PAN; 10048 default: 10049 return mmu_idx; 10050 } 10051 } 10052 10053 /* Return true if the translation regime is using LPAE format page tables */ 10054 static inline bool regime_using_lpae_format(CPUARMState *env, 10055 ARMMMUIdx mmu_idx) 10056 { 10057 int el = regime_el(env, mmu_idx); 10058 if (el == 2 || arm_el_is_aa64(env, el)) { 10059 return true; 10060 } 10061 if (arm_feature(env, ARM_FEATURE_LPAE) 10062 && (regime_tcr(env, mmu_idx)->raw_tcr & TTBCR_EAE)) { 10063 return true; 10064 } 10065 return false; 10066 } 10067 10068 /* Returns true if the stage 1 translation regime is using LPAE format page 10069 * tables. Used when raising alignment exceptions, whose FSR changes depending 10070 * on whether the long or short descriptor format is in use. */ 10071 bool arm_s1_regime_using_lpae_format(CPUARMState *env, ARMMMUIdx mmu_idx) 10072 { 10073 mmu_idx = stage_1_mmu_idx(mmu_idx); 10074 10075 return regime_using_lpae_format(env, mmu_idx); 10076 } 10077 10078 #ifndef CONFIG_USER_ONLY 10079 static inline bool regime_is_user(CPUARMState *env, ARMMMUIdx mmu_idx) 10080 { 10081 switch (mmu_idx) { 10082 case ARMMMUIdx_SE10_0: 10083 case ARMMMUIdx_E20_0: 10084 case ARMMMUIdx_Stage1_E0: 10085 case ARMMMUIdx_MUser: 10086 case ARMMMUIdx_MSUser: 10087 case ARMMMUIdx_MUserNegPri: 10088 case ARMMMUIdx_MSUserNegPri: 10089 return true; 10090 default: 10091 return false; 10092 case ARMMMUIdx_E10_0: 10093 case ARMMMUIdx_E10_1: 10094 case ARMMMUIdx_E10_1_PAN: 10095 g_assert_not_reached(); 10096 } 10097 } 10098 10099 /* Translate section/page access permissions to page 10100 * R/W protection flags 10101 * 10102 * @env: CPUARMState 10103 * @mmu_idx: MMU index indicating required translation regime 10104 * @ap: The 3-bit access permissions (AP[2:0]) 10105 * @domain_prot: The 2-bit domain access permissions 10106 */ 10107 static inline int ap_to_rw_prot(CPUARMState *env, ARMMMUIdx mmu_idx, 10108 int ap, int domain_prot) 10109 { 10110 bool is_user = regime_is_user(env, mmu_idx); 10111 10112 if (domain_prot == 3) { 10113 return PAGE_READ | PAGE_WRITE; 10114 } 10115 10116 switch (ap) { 10117 case 0: 10118 if (arm_feature(env, ARM_FEATURE_V7)) { 10119 return 0; 10120 } 10121 switch (regime_sctlr(env, mmu_idx) & (SCTLR_S | SCTLR_R)) { 10122 case SCTLR_S: 10123 return is_user ? 0 : PAGE_READ; 10124 case SCTLR_R: 10125 return PAGE_READ; 10126 default: 10127 return 0; 10128 } 10129 case 1: 10130 return is_user ? 0 : PAGE_READ | PAGE_WRITE; 10131 case 2: 10132 if (is_user) { 10133 return PAGE_READ; 10134 } else { 10135 return PAGE_READ | PAGE_WRITE; 10136 } 10137 case 3: 10138 return PAGE_READ | PAGE_WRITE; 10139 case 4: /* Reserved. */ 10140 return 0; 10141 case 5: 10142 return is_user ? 0 : PAGE_READ; 10143 case 6: 10144 return PAGE_READ; 10145 case 7: 10146 if (!arm_feature(env, ARM_FEATURE_V6K)) { 10147 return 0; 10148 } 10149 return PAGE_READ; 10150 default: 10151 g_assert_not_reached(); 10152 } 10153 } 10154 10155 /* Translate section/page access permissions to page 10156 * R/W protection flags. 10157 * 10158 * @ap: The 2-bit simple AP (AP[2:1]) 10159 * @is_user: TRUE if accessing from PL0 10160 */ 10161 static inline int simple_ap_to_rw_prot_is_user(int ap, bool is_user) 10162 { 10163 switch (ap) { 10164 case 0: 10165 return is_user ? 0 : PAGE_READ | PAGE_WRITE; 10166 case 1: 10167 return PAGE_READ | PAGE_WRITE; 10168 case 2: 10169 return is_user ? 0 : PAGE_READ; 10170 case 3: 10171 return PAGE_READ; 10172 default: 10173 g_assert_not_reached(); 10174 } 10175 } 10176 10177 static inline int 10178 simple_ap_to_rw_prot(CPUARMState *env, ARMMMUIdx mmu_idx, int ap) 10179 { 10180 return simple_ap_to_rw_prot_is_user(ap, regime_is_user(env, mmu_idx)); 10181 } 10182 10183 /* Translate S2 section/page access permissions to protection flags 10184 * 10185 * @env: CPUARMState 10186 * @s2ap: The 2-bit stage2 access permissions (S2AP) 10187 * @xn: XN (execute-never) bits 10188 * @s1_is_el0: true if this is S2 of an S1+2 walk for EL0 10189 */ 10190 static int get_S2prot(CPUARMState *env, int s2ap, int xn, bool s1_is_el0) 10191 { 10192 int prot = 0; 10193 10194 if (s2ap & 1) { 10195 prot |= PAGE_READ; 10196 } 10197 if (s2ap & 2) { 10198 prot |= PAGE_WRITE; 10199 } 10200 10201 if (cpu_isar_feature(any_tts2uxn, env_archcpu(env))) { 10202 switch (xn) { 10203 case 0: 10204 prot |= PAGE_EXEC; 10205 break; 10206 case 1: 10207 if (s1_is_el0) { 10208 prot |= PAGE_EXEC; 10209 } 10210 break; 10211 case 2: 10212 break; 10213 case 3: 10214 if (!s1_is_el0) { 10215 prot |= PAGE_EXEC; 10216 } 10217 break; 10218 default: 10219 g_assert_not_reached(); 10220 } 10221 } else { 10222 if (!extract32(xn, 1, 1)) { 10223 if (arm_el_is_aa64(env, 2) || prot & PAGE_READ) { 10224 prot |= PAGE_EXEC; 10225 } 10226 } 10227 } 10228 return prot; 10229 } 10230 10231 /* Translate section/page access permissions to protection flags 10232 * 10233 * @env: CPUARMState 10234 * @mmu_idx: MMU index indicating required translation regime 10235 * @is_aa64: TRUE if AArch64 10236 * @ap: The 2-bit simple AP (AP[2:1]) 10237 * @ns: NS (non-secure) bit 10238 * @xn: XN (execute-never) bit 10239 * @pxn: PXN (privileged execute-never) bit 10240 */ 10241 static int get_S1prot(CPUARMState *env, ARMMMUIdx mmu_idx, bool is_aa64, 10242 int ap, int ns, int xn, int pxn) 10243 { 10244 bool is_user = regime_is_user(env, mmu_idx); 10245 int prot_rw, user_rw; 10246 bool have_wxn; 10247 int wxn = 0; 10248 10249 assert(mmu_idx != ARMMMUIdx_Stage2); 10250 10251 user_rw = simple_ap_to_rw_prot_is_user(ap, true); 10252 if (is_user) { 10253 prot_rw = user_rw; 10254 } else { 10255 if (user_rw && regime_is_pan(env, mmu_idx)) { 10256 /* PAN forbids data accesses but doesn't affect insn fetch */ 10257 prot_rw = 0; 10258 } else { 10259 prot_rw = simple_ap_to_rw_prot_is_user(ap, false); 10260 } 10261 } 10262 10263 if (ns && arm_is_secure(env) && (env->cp15.scr_el3 & SCR_SIF)) { 10264 return prot_rw; 10265 } 10266 10267 /* TODO have_wxn should be replaced with 10268 * ARM_FEATURE_V8 || (ARM_FEATURE_V7 && ARM_FEATURE_EL2) 10269 * when ARM_FEATURE_EL2 starts getting set. For now we assume all LPAE 10270 * compatible processors have EL2, which is required for [U]WXN. 10271 */ 10272 have_wxn = arm_feature(env, ARM_FEATURE_LPAE); 10273 10274 if (have_wxn) { 10275 wxn = regime_sctlr(env, mmu_idx) & SCTLR_WXN; 10276 } 10277 10278 if (is_aa64) { 10279 if (regime_has_2_ranges(mmu_idx) && !is_user) { 10280 xn = pxn || (user_rw & PAGE_WRITE); 10281 } 10282 } else if (arm_feature(env, ARM_FEATURE_V7)) { 10283 switch (regime_el(env, mmu_idx)) { 10284 case 1: 10285 case 3: 10286 if (is_user) { 10287 xn = xn || !(user_rw & PAGE_READ); 10288 } else { 10289 int uwxn = 0; 10290 if (have_wxn) { 10291 uwxn = regime_sctlr(env, mmu_idx) & SCTLR_UWXN; 10292 } 10293 xn = xn || !(prot_rw & PAGE_READ) || pxn || 10294 (uwxn && (user_rw & PAGE_WRITE)); 10295 } 10296 break; 10297 case 2: 10298 break; 10299 } 10300 } else { 10301 xn = wxn = 0; 10302 } 10303 10304 if (xn || (wxn && (prot_rw & PAGE_WRITE))) { 10305 return prot_rw; 10306 } 10307 return prot_rw | PAGE_EXEC; 10308 } 10309 10310 static bool get_level1_table_address(CPUARMState *env, ARMMMUIdx mmu_idx, 10311 uint32_t *table, uint32_t address) 10312 { 10313 /* Note that we can only get here for an AArch32 PL0/PL1 lookup */ 10314 TCR *tcr = regime_tcr(env, mmu_idx); 10315 10316 if (address & tcr->mask) { 10317 if (tcr->raw_tcr & TTBCR_PD1) { 10318 /* Translation table walk disabled for TTBR1 */ 10319 return false; 10320 } 10321 *table = regime_ttbr(env, mmu_idx, 1) & 0xffffc000; 10322 } else { 10323 if (tcr->raw_tcr & TTBCR_PD0) { 10324 /* Translation table walk disabled for TTBR0 */ 10325 return false; 10326 } 10327 *table = regime_ttbr(env, mmu_idx, 0) & tcr->base_mask; 10328 } 10329 *table |= (address >> 18) & 0x3ffc; 10330 return true; 10331 } 10332 10333 /* Translate a S1 pagetable walk through S2 if needed. */ 10334 static hwaddr S1_ptw_translate(CPUARMState *env, ARMMMUIdx mmu_idx, 10335 hwaddr addr, MemTxAttrs txattrs, 10336 ARMMMUFaultInfo *fi) 10337 { 10338 if (arm_mmu_idx_is_stage1_of_2(mmu_idx) && 10339 !regime_translation_disabled(env, ARMMMUIdx_Stage2)) { 10340 target_ulong s2size; 10341 hwaddr s2pa; 10342 int s2prot; 10343 int ret; 10344 ARMCacheAttrs cacheattrs = {}; 10345 10346 ret = get_phys_addr_lpae(env, addr, MMU_DATA_LOAD, ARMMMUIdx_Stage2, 10347 false, 10348 &s2pa, &txattrs, &s2prot, &s2size, fi, 10349 &cacheattrs); 10350 if (ret) { 10351 assert(fi->type != ARMFault_None); 10352 fi->s2addr = addr; 10353 fi->stage2 = true; 10354 fi->s1ptw = true; 10355 return ~0; 10356 } 10357 if ((env->cp15.hcr_el2 & HCR_PTW) && (cacheattrs.attrs & 0xf0) == 0) { 10358 /* 10359 * PTW set and S1 walk touched S2 Device memory: 10360 * generate Permission fault. 10361 */ 10362 fi->type = ARMFault_Permission; 10363 fi->s2addr = addr; 10364 fi->stage2 = true; 10365 fi->s1ptw = true; 10366 return ~0; 10367 } 10368 addr = s2pa; 10369 } 10370 return addr; 10371 } 10372 10373 /* All loads done in the course of a page table walk go through here. */ 10374 static uint32_t arm_ldl_ptw(CPUState *cs, hwaddr addr, bool is_secure, 10375 ARMMMUIdx mmu_idx, ARMMMUFaultInfo *fi) 10376 { 10377 ARMCPU *cpu = ARM_CPU(cs); 10378 CPUARMState *env = &cpu->env; 10379 MemTxAttrs attrs = {}; 10380 MemTxResult result = MEMTX_OK; 10381 AddressSpace *as; 10382 uint32_t data; 10383 10384 attrs.secure = is_secure; 10385 as = arm_addressspace(cs, attrs); 10386 addr = S1_ptw_translate(env, mmu_idx, addr, attrs, fi); 10387 if (fi->s1ptw) { 10388 return 0; 10389 } 10390 if (regime_translation_big_endian(env, mmu_idx)) { 10391 data = address_space_ldl_be(as, addr, attrs, &result); 10392 } else { 10393 data = address_space_ldl_le(as, addr, attrs, &result); 10394 } 10395 if (result == MEMTX_OK) { 10396 return data; 10397 } 10398 fi->type = ARMFault_SyncExternalOnWalk; 10399 fi->ea = arm_extabort_type(result); 10400 return 0; 10401 } 10402 10403 static uint64_t arm_ldq_ptw(CPUState *cs, hwaddr addr, bool is_secure, 10404 ARMMMUIdx mmu_idx, ARMMMUFaultInfo *fi) 10405 { 10406 ARMCPU *cpu = ARM_CPU(cs); 10407 CPUARMState *env = &cpu->env; 10408 MemTxAttrs attrs = {}; 10409 MemTxResult result = MEMTX_OK; 10410 AddressSpace *as; 10411 uint64_t data; 10412 10413 attrs.secure = is_secure; 10414 as = arm_addressspace(cs, attrs); 10415 addr = S1_ptw_translate(env, mmu_idx, addr, attrs, fi); 10416 if (fi->s1ptw) { 10417 return 0; 10418 } 10419 if (regime_translation_big_endian(env, mmu_idx)) { 10420 data = address_space_ldq_be(as, addr, attrs, &result); 10421 } else { 10422 data = address_space_ldq_le(as, addr, attrs, &result); 10423 } 10424 if (result == MEMTX_OK) { 10425 return data; 10426 } 10427 fi->type = ARMFault_SyncExternalOnWalk; 10428 fi->ea = arm_extabort_type(result); 10429 return 0; 10430 } 10431 10432 static bool get_phys_addr_v5(CPUARMState *env, uint32_t address, 10433 MMUAccessType access_type, ARMMMUIdx mmu_idx, 10434 hwaddr *phys_ptr, int *prot, 10435 target_ulong *page_size, 10436 ARMMMUFaultInfo *fi) 10437 { 10438 CPUState *cs = env_cpu(env); 10439 int level = 1; 10440 uint32_t table; 10441 uint32_t desc; 10442 int type; 10443 int ap; 10444 int domain = 0; 10445 int domain_prot; 10446 hwaddr phys_addr; 10447 uint32_t dacr; 10448 10449 /* Pagetable walk. */ 10450 /* Lookup l1 descriptor. */ 10451 if (!get_level1_table_address(env, mmu_idx, &table, address)) { 10452 /* Section translation fault if page walk is disabled by PD0 or PD1 */ 10453 fi->type = ARMFault_Translation; 10454 goto do_fault; 10455 } 10456 desc = arm_ldl_ptw(cs, table, regime_is_secure(env, mmu_idx), 10457 mmu_idx, fi); 10458 if (fi->type != ARMFault_None) { 10459 goto do_fault; 10460 } 10461 type = (desc & 3); 10462 domain = (desc >> 5) & 0x0f; 10463 if (regime_el(env, mmu_idx) == 1) { 10464 dacr = env->cp15.dacr_ns; 10465 } else { 10466 dacr = env->cp15.dacr_s; 10467 } 10468 domain_prot = (dacr >> (domain * 2)) & 3; 10469 if (type == 0) { 10470 /* Section translation fault. */ 10471 fi->type = ARMFault_Translation; 10472 goto do_fault; 10473 } 10474 if (type != 2) { 10475 level = 2; 10476 } 10477 if (domain_prot == 0 || domain_prot == 2) { 10478 fi->type = ARMFault_Domain; 10479 goto do_fault; 10480 } 10481 if (type == 2) { 10482 /* 1Mb section. */ 10483 phys_addr = (desc & 0xfff00000) | (address & 0x000fffff); 10484 ap = (desc >> 10) & 3; 10485 *page_size = 1024 * 1024; 10486 } else { 10487 /* Lookup l2 entry. */ 10488 if (type == 1) { 10489 /* Coarse pagetable. */ 10490 table = (desc & 0xfffffc00) | ((address >> 10) & 0x3fc); 10491 } else { 10492 /* Fine pagetable. */ 10493 table = (desc & 0xfffff000) | ((address >> 8) & 0xffc); 10494 } 10495 desc = arm_ldl_ptw(cs, table, regime_is_secure(env, mmu_idx), 10496 mmu_idx, fi); 10497 if (fi->type != ARMFault_None) { 10498 goto do_fault; 10499 } 10500 switch (desc & 3) { 10501 case 0: /* Page translation fault. */ 10502 fi->type = ARMFault_Translation; 10503 goto do_fault; 10504 case 1: /* 64k page. */ 10505 phys_addr = (desc & 0xffff0000) | (address & 0xffff); 10506 ap = (desc >> (4 + ((address >> 13) & 6))) & 3; 10507 *page_size = 0x10000; 10508 break; 10509 case 2: /* 4k page. */ 10510 phys_addr = (desc & 0xfffff000) | (address & 0xfff); 10511 ap = (desc >> (4 + ((address >> 9) & 6))) & 3; 10512 *page_size = 0x1000; 10513 break; 10514 case 3: /* 1k page, or ARMv6/XScale "extended small (4k) page" */ 10515 if (type == 1) { 10516 /* ARMv6/XScale extended small page format */ 10517 if (arm_feature(env, ARM_FEATURE_XSCALE) 10518 || arm_feature(env, ARM_FEATURE_V6)) { 10519 phys_addr = (desc & 0xfffff000) | (address & 0xfff); 10520 *page_size = 0x1000; 10521 } else { 10522 /* UNPREDICTABLE in ARMv5; we choose to take a 10523 * page translation fault. 10524 */ 10525 fi->type = ARMFault_Translation; 10526 goto do_fault; 10527 } 10528 } else { 10529 phys_addr = (desc & 0xfffffc00) | (address & 0x3ff); 10530 *page_size = 0x400; 10531 } 10532 ap = (desc >> 4) & 3; 10533 break; 10534 default: 10535 /* Never happens, but compiler isn't smart enough to tell. */ 10536 abort(); 10537 } 10538 } 10539 *prot = ap_to_rw_prot(env, mmu_idx, ap, domain_prot); 10540 *prot |= *prot ? PAGE_EXEC : 0; 10541 if (!(*prot & (1 << access_type))) { 10542 /* Access permission fault. */ 10543 fi->type = ARMFault_Permission; 10544 goto do_fault; 10545 } 10546 *phys_ptr = phys_addr; 10547 return false; 10548 do_fault: 10549 fi->domain = domain; 10550 fi->level = level; 10551 return true; 10552 } 10553 10554 static bool get_phys_addr_v6(CPUARMState *env, uint32_t address, 10555 MMUAccessType access_type, ARMMMUIdx mmu_idx, 10556 hwaddr *phys_ptr, MemTxAttrs *attrs, int *prot, 10557 target_ulong *page_size, ARMMMUFaultInfo *fi) 10558 { 10559 CPUState *cs = env_cpu(env); 10560 ARMCPU *cpu = env_archcpu(env); 10561 int level = 1; 10562 uint32_t table; 10563 uint32_t desc; 10564 uint32_t xn; 10565 uint32_t pxn = 0; 10566 int type; 10567 int ap; 10568 int domain = 0; 10569 int domain_prot; 10570 hwaddr phys_addr; 10571 uint32_t dacr; 10572 bool ns; 10573 10574 /* Pagetable walk. */ 10575 /* Lookup l1 descriptor. */ 10576 if (!get_level1_table_address(env, mmu_idx, &table, address)) { 10577 /* Section translation fault if page walk is disabled by PD0 or PD1 */ 10578 fi->type = ARMFault_Translation; 10579 goto do_fault; 10580 } 10581 desc = arm_ldl_ptw(cs, table, regime_is_secure(env, mmu_idx), 10582 mmu_idx, fi); 10583 if (fi->type != ARMFault_None) { 10584 goto do_fault; 10585 } 10586 type = (desc & 3); 10587 if (type == 0 || (type == 3 && !cpu_isar_feature(aa32_pxn, cpu))) { 10588 /* Section translation fault, or attempt to use the encoding 10589 * which is Reserved on implementations without PXN. 10590 */ 10591 fi->type = ARMFault_Translation; 10592 goto do_fault; 10593 } 10594 if ((type == 1) || !(desc & (1 << 18))) { 10595 /* Page or Section. */ 10596 domain = (desc >> 5) & 0x0f; 10597 } 10598 if (regime_el(env, mmu_idx) == 1) { 10599 dacr = env->cp15.dacr_ns; 10600 } else { 10601 dacr = env->cp15.dacr_s; 10602 } 10603 if (type == 1) { 10604 level = 2; 10605 } 10606 domain_prot = (dacr >> (domain * 2)) & 3; 10607 if (domain_prot == 0 || domain_prot == 2) { 10608 /* Section or Page domain fault */ 10609 fi->type = ARMFault_Domain; 10610 goto do_fault; 10611 } 10612 if (type != 1) { 10613 if (desc & (1 << 18)) { 10614 /* Supersection. */ 10615 phys_addr = (desc & 0xff000000) | (address & 0x00ffffff); 10616 phys_addr |= (uint64_t)extract32(desc, 20, 4) << 32; 10617 phys_addr |= (uint64_t)extract32(desc, 5, 4) << 36; 10618 *page_size = 0x1000000; 10619 } else { 10620 /* Section. */ 10621 phys_addr = (desc & 0xfff00000) | (address & 0x000fffff); 10622 *page_size = 0x100000; 10623 } 10624 ap = ((desc >> 10) & 3) | ((desc >> 13) & 4); 10625 xn = desc & (1 << 4); 10626 pxn = desc & 1; 10627 ns = extract32(desc, 19, 1); 10628 } else { 10629 if (cpu_isar_feature(aa32_pxn, cpu)) { 10630 pxn = (desc >> 2) & 1; 10631 } 10632 ns = extract32(desc, 3, 1); 10633 /* Lookup l2 entry. */ 10634 table = (desc & 0xfffffc00) | ((address >> 10) & 0x3fc); 10635 desc = arm_ldl_ptw(cs, table, regime_is_secure(env, mmu_idx), 10636 mmu_idx, fi); 10637 if (fi->type != ARMFault_None) { 10638 goto do_fault; 10639 } 10640 ap = ((desc >> 4) & 3) | ((desc >> 7) & 4); 10641 switch (desc & 3) { 10642 case 0: /* Page translation fault. */ 10643 fi->type = ARMFault_Translation; 10644 goto do_fault; 10645 case 1: /* 64k page. */ 10646 phys_addr = (desc & 0xffff0000) | (address & 0xffff); 10647 xn = desc & (1 << 15); 10648 *page_size = 0x10000; 10649 break; 10650 case 2: case 3: /* 4k page. */ 10651 phys_addr = (desc & 0xfffff000) | (address & 0xfff); 10652 xn = desc & 1; 10653 *page_size = 0x1000; 10654 break; 10655 default: 10656 /* Never happens, but compiler isn't smart enough to tell. */ 10657 abort(); 10658 } 10659 } 10660 if (domain_prot == 3) { 10661 *prot = PAGE_READ | PAGE_WRITE | PAGE_EXEC; 10662 } else { 10663 if (pxn && !regime_is_user(env, mmu_idx)) { 10664 xn = 1; 10665 } 10666 if (xn && access_type == MMU_INST_FETCH) { 10667 fi->type = ARMFault_Permission; 10668 goto do_fault; 10669 } 10670 10671 if (arm_feature(env, ARM_FEATURE_V6K) && 10672 (regime_sctlr(env, mmu_idx) & SCTLR_AFE)) { 10673 /* The simplified model uses AP[0] as an access control bit. */ 10674 if ((ap & 1) == 0) { 10675 /* Access flag fault. */ 10676 fi->type = ARMFault_AccessFlag; 10677 goto do_fault; 10678 } 10679 *prot = simple_ap_to_rw_prot(env, mmu_idx, ap >> 1); 10680 } else { 10681 *prot = ap_to_rw_prot(env, mmu_idx, ap, domain_prot); 10682 } 10683 if (*prot && !xn) { 10684 *prot |= PAGE_EXEC; 10685 } 10686 if (!(*prot & (1 << access_type))) { 10687 /* Access permission fault. */ 10688 fi->type = ARMFault_Permission; 10689 goto do_fault; 10690 } 10691 } 10692 if (ns) { 10693 /* The NS bit will (as required by the architecture) have no effect if 10694 * the CPU doesn't support TZ or this is a non-secure translation 10695 * regime, because the attribute will already be non-secure. 10696 */ 10697 attrs->secure = false; 10698 } 10699 *phys_ptr = phys_addr; 10700 return false; 10701 do_fault: 10702 fi->domain = domain; 10703 fi->level = level; 10704 return true; 10705 } 10706 10707 /* 10708 * check_s2_mmu_setup 10709 * @cpu: ARMCPU 10710 * @is_aa64: True if the translation regime is in AArch64 state 10711 * @startlevel: Suggested starting level 10712 * @inputsize: Bitsize of IPAs 10713 * @stride: Page-table stride (See the ARM ARM) 10714 * 10715 * Returns true if the suggested S2 translation parameters are OK and 10716 * false otherwise. 10717 */ 10718 static bool check_s2_mmu_setup(ARMCPU *cpu, bool is_aa64, int level, 10719 int inputsize, int stride) 10720 { 10721 const int grainsize = stride + 3; 10722 int startsizecheck; 10723 10724 /* Negative levels are never allowed. */ 10725 if (level < 0) { 10726 return false; 10727 } 10728 10729 startsizecheck = inputsize - ((3 - level) * stride + grainsize); 10730 if (startsizecheck < 1 || startsizecheck > stride + 4) { 10731 return false; 10732 } 10733 10734 if (is_aa64) { 10735 CPUARMState *env = &cpu->env; 10736 unsigned int pamax = arm_pamax(cpu); 10737 10738 switch (stride) { 10739 case 13: /* 64KB Pages. */ 10740 if (level == 0 || (level == 1 && pamax <= 42)) { 10741 return false; 10742 } 10743 break; 10744 case 11: /* 16KB Pages. */ 10745 if (level == 0 || (level == 1 && pamax <= 40)) { 10746 return false; 10747 } 10748 break; 10749 case 9: /* 4KB Pages. */ 10750 if (level == 0 && pamax <= 42) { 10751 return false; 10752 } 10753 break; 10754 default: 10755 g_assert_not_reached(); 10756 } 10757 10758 /* Inputsize checks. */ 10759 if (inputsize > pamax && 10760 (arm_el_is_aa64(env, 1) || inputsize > 40)) { 10761 /* This is CONSTRAINED UNPREDICTABLE and we choose to fault. */ 10762 return false; 10763 } 10764 } else { 10765 /* AArch32 only supports 4KB pages. Assert on that. */ 10766 assert(stride == 9); 10767 10768 if (level == 0) { 10769 return false; 10770 } 10771 } 10772 return true; 10773 } 10774 10775 /* Translate from the 4-bit stage 2 representation of 10776 * memory attributes (without cache-allocation hints) to 10777 * the 8-bit representation of the stage 1 MAIR registers 10778 * (which includes allocation hints). 10779 * 10780 * ref: shared/translation/attrs/S2AttrDecode() 10781 * .../S2ConvertAttrsHints() 10782 */ 10783 static uint8_t convert_stage2_attrs(CPUARMState *env, uint8_t s2attrs) 10784 { 10785 uint8_t hiattr = extract32(s2attrs, 2, 2); 10786 uint8_t loattr = extract32(s2attrs, 0, 2); 10787 uint8_t hihint = 0, lohint = 0; 10788 10789 if (hiattr != 0) { /* normal memory */ 10790 if ((env->cp15.hcr_el2 & HCR_CD) != 0) { /* cache disabled */ 10791 hiattr = loattr = 1; /* non-cacheable */ 10792 } else { 10793 if (hiattr != 1) { /* Write-through or write-back */ 10794 hihint = 3; /* RW allocate */ 10795 } 10796 if (loattr != 1) { /* Write-through or write-back */ 10797 lohint = 3; /* RW allocate */ 10798 } 10799 } 10800 } 10801 10802 return (hiattr << 6) | (hihint << 4) | (loattr << 2) | lohint; 10803 } 10804 #endif /* !CONFIG_USER_ONLY */ 10805 10806 static int aa64_va_parameter_tbi(uint64_t tcr, ARMMMUIdx mmu_idx) 10807 { 10808 if (regime_has_2_ranges(mmu_idx)) { 10809 return extract64(tcr, 37, 2); 10810 } else if (mmu_idx == ARMMMUIdx_Stage2) { 10811 return 0; /* VTCR_EL2 */ 10812 } else { 10813 /* Replicate the single TBI bit so we always have 2 bits. */ 10814 return extract32(tcr, 20, 1) * 3; 10815 } 10816 } 10817 10818 static int aa64_va_parameter_tbid(uint64_t tcr, ARMMMUIdx mmu_idx) 10819 { 10820 if (regime_has_2_ranges(mmu_idx)) { 10821 return extract64(tcr, 51, 2); 10822 } else if (mmu_idx == ARMMMUIdx_Stage2) { 10823 return 0; /* VTCR_EL2 */ 10824 } else { 10825 /* Replicate the single TBID bit so we always have 2 bits. */ 10826 return extract32(tcr, 29, 1) * 3; 10827 } 10828 } 10829 10830 static int aa64_va_parameter_tcma(uint64_t tcr, ARMMMUIdx mmu_idx) 10831 { 10832 if (regime_has_2_ranges(mmu_idx)) { 10833 return extract64(tcr, 57, 2); 10834 } else { 10835 /* Replicate the single TCMA bit so we always have 2 bits. */ 10836 return extract32(tcr, 30, 1) * 3; 10837 } 10838 } 10839 10840 ARMVAParameters aa64_va_parameters(CPUARMState *env, uint64_t va, 10841 ARMMMUIdx mmu_idx, bool data) 10842 { 10843 uint64_t tcr = regime_tcr(env, mmu_idx)->raw_tcr; 10844 bool epd, hpd, using16k, using64k; 10845 int select, tsz, tbi, max_tsz; 10846 10847 if (!regime_has_2_ranges(mmu_idx)) { 10848 select = 0; 10849 tsz = extract32(tcr, 0, 6); 10850 using64k = extract32(tcr, 14, 1); 10851 using16k = extract32(tcr, 15, 1); 10852 if (mmu_idx == ARMMMUIdx_Stage2) { 10853 /* VTCR_EL2 */ 10854 hpd = false; 10855 } else { 10856 hpd = extract32(tcr, 24, 1); 10857 } 10858 epd = false; 10859 } else { 10860 /* 10861 * Bit 55 is always between the two regions, and is canonical for 10862 * determining if address tagging is enabled. 10863 */ 10864 select = extract64(va, 55, 1); 10865 if (!select) { 10866 tsz = extract32(tcr, 0, 6); 10867 epd = extract32(tcr, 7, 1); 10868 using64k = extract32(tcr, 14, 1); 10869 using16k = extract32(tcr, 15, 1); 10870 hpd = extract64(tcr, 41, 1); 10871 } else { 10872 int tg = extract32(tcr, 30, 2); 10873 using16k = tg == 1; 10874 using64k = tg == 3; 10875 tsz = extract32(tcr, 16, 6); 10876 epd = extract32(tcr, 23, 1); 10877 hpd = extract64(tcr, 42, 1); 10878 } 10879 } 10880 10881 if (cpu_isar_feature(aa64_st, env_archcpu(env))) { 10882 max_tsz = 48 - using64k; 10883 } else { 10884 max_tsz = 39; 10885 } 10886 10887 tsz = MIN(tsz, max_tsz); 10888 tsz = MAX(tsz, 16); /* TODO: ARMv8.2-LVA */ 10889 10890 /* Present TBI as a composite with TBID. */ 10891 tbi = aa64_va_parameter_tbi(tcr, mmu_idx); 10892 if (!data) { 10893 tbi &= ~aa64_va_parameter_tbid(tcr, mmu_idx); 10894 } 10895 tbi = (tbi >> select) & 1; 10896 10897 return (ARMVAParameters) { 10898 .tsz = tsz, 10899 .select = select, 10900 .tbi = tbi, 10901 .epd = epd, 10902 .hpd = hpd, 10903 .using16k = using16k, 10904 .using64k = using64k, 10905 }; 10906 } 10907 10908 #ifndef CONFIG_USER_ONLY 10909 static ARMVAParameters aa32_va_parameters(CPUARMState *env, uint32_t va, 10910 ARMMMUIdx mmu_idx) 10911 { 10912 uint64_t tcr = regime_tcr(env, mmu_idx)->raw_tcr; 10913 uint32_t el = regime_el(env, mmu_idx); 10914 int select, tsz; 10915 bool epd, hpd; 10916 10917 if (mmu_idx == ARMMMUIdx_Stage2) { 10918 /* VTCR */ 10919 bool sext = extract32(tcr, 4, 1); 10920 bool sign = extract32(tcr, 3, 1); 10921 10922 /* 10923 * If the sign-extend bit is not the same as t0sz[3], the result 10924 * is unpredictable. Flag this as a guest error. 10925 */ 10926 if (sign != sext) { 10927 qemu_log_mask(LOG_GUEST_ERROR, 10928 "AArch32: VTCR.S / VTCR.T0SZ[3] mismatch\n"); 10929 } 10930 tsz = sextract32(tcr, 0, 4) + 8; 10931 select = 0; 10932 hpd = false; 10933 epd = false; 10934 } else if (el == 2) { 10935 /* HTCR */ 10936 tsz = extract32(tcr, 0, 3); 10937 select = 0; 10938 hpd = extract64(tcr, 24, 1); 10939 epd = false; 10940 } else { 10941 int t0sz = extract32(tcr, 0, 3); 10942 int t1sz = extract32(tcr, 16, 3); 10943 10944 if (t1sz == 0) { 10945 select = va > (0xffffffffu >> t0sz); 10946 } else { 10947 /* Note that we will detect errors later. */ 10948 select = va >= ~(0xffffffffu >> t1sz); 10949 } 10950 if (!select) { 10951 tsz = t0sz; 10952 epd = extract32(tcr, 7, 1); 10953 hpd = extract64(tcr, 41, 1); 10954 } else { 10955 tsz = t1sz; 10956 epd = extract32(tcr, 23, 1); 10957 hpd = extract64(tcr, 42, 1); 10958 } 10959 /* For aarch32, hpd0 is not enabled without t2e as well. */ 10960 hpd &= extract32(tcr, 6, 1); 10961 } 10962 10963 return (ARMVAParameters) { 10964 .tsz = tsz, 10965 .select = select, 10966 .epd = epd, 10967 .hpd = hpd, 10968 }; 10969 } 10970 10971 /** 10972 * get_phys_addr_lpae: perform one stage of page table walk, LPAE format 10973 * 10974 * Returns false if the translation was successful. Otherwise, phys_ptr, attrs, 10975 * prot and page_size may not be filled in, and the populated fsr value provides 10976 * information on why the translation aborted, in the format of a long-format 10977 * DFSR/IFSR fault register, with the following caveats: 10978 * * the WnR bit is never set (the caller must do this). 10979 * 10980 * @env: CPUARMState 10981 * @address: virtual address to get physical address for 10982 * @access_type: MMU_DATA_LOAD, MMU_DATA_STORE or MMU_INST_FETCH 10983 * @mmu_idx: MMU index indicating required translation regime 10984 * @s1_is_el0: if @mmu_idx is ARMMMUIdx_Stage2 (so this is a stage 2 page table 10985 * walk), must be true if this is stage 2 of a stage 1+2 walk for an 10986 * EL0 access). If @mmu_idx is anything else, @s1_is_el0 is ignored. 10987 * @phys_ptr: set to the physical address corresponding to the virtual address 10988 * @attrs: set to the memory transaction attributes to use 10989 * @prot: set to the permissions for the page containing phys_ptr 10990 * @page_size_ptr: set to the size of the page containing phys_ptr 10991 * @fi: set to fault info if the translation fails 10992 * @cacheattrs: (if non-NULL) set to the cacheability/shareability attributes 10993 */ 10994 static bool get_phys_addr_lpae(CPUARMState *env, uint64_t address, 10995 MMUAccessType access_type, ARMMMUIdx mmu_idx, 10996 bool s1_is_el0, 10997 hwaddr *phys_ptr, MemTxAttrs *txattrs, int *prot, 10998 target_ulong *page_size_ptr, 10999 ARMMMUFaultInfo *fi, ARMCacheAttrs *cacheattrs) 11000 { 11001 ARMCPU *cpu = env_archcpu(env); 11002 CPUState *cs = CPU(cpu); 11003 /* Read an LPAE long-descriptor translation table. */ 11004 ARMFaultType fault_type = ARMFault_Translation; 11005 uint32_t level; 11006 ARMVAParameters param; 11007 uint64_t ttbr; 11008 hwaddr descaddr, indexmask, indexmask_grainsize; 11009 uint32_t tableattrs; 11010 target_ulong page_size; 11011 uint32_t attrs; 11012 int32_t stride; 11013 int addrsize, inputsize; 11014 TCR *tcr = regime_tcr(env, mmu_idx); 11015 int ap, ns, xn, pxn; 11016 uint32_t el = regime_el(env, mmu_idx); 11017 uint64_t descaddrmask; 11018 bool aarch64 = arm_el_is_aa64(env, el); 11019 bool guarded = false; 11020 11021 /* TODO: This code does not support shareability levels. */ 11022 if (aarch64) { 11023 param = aa64_va_parameters(env, address, mmu_idx, 11024 access_type != MMU_INST_FETCH); 11025 level = 0; 11026 addrsize = 64 - 8 * param.tbi; 11027 inputsize = 64 - param.tsz; 11028 } else { 11029 param = aa32_va_parameters(env, address, mmu_idx); 11030 level = 1; 11031 addrsize = (mmu_idx == ARMMMUIdx_Stage2 ? 40 : 32); 11032 inputsize = addrsize - param.tsz; 11033 } 11034 11035 /* 11036 * We determined the region when collecting the parameters, but we 11037 * have not yet validated that the address is valid for the region. 11038 * Extract the top bits and verify that they all match select. 11039 * 11040 * For aa32, if inputsize == addrsize, then we have selected the 11041 * region by exclusion in aa32_va_parameters and there is no more 11042 * validation to do here. 11043 */ 11044 if (inputsize < addrsize) { 11045 target_ulong top_bits = sextract64(address, inputsize, 11046 addrsize - inputsize); 11047 if (-top_bits != param.select) { 11048 /* The gap between the two regions is a Translation fault */ 11049 fault_type = ARMFault_Translation; 11050 goto do_fault; 11051 } 11052 } 11053 11054 if (param.using64k) { 11055 stride = 13; 11056 } else if (param.using16k) { 11057 stride = 11; 11058 } else { 11059 stride = 9; 11060 } 11061 11062 /* Note that QEMU ignores shareability and cacheability attributes, 11063 * so we don't need to do anything with the SH, ORGN, IRGN fields 11064 * in the TTBCR. Similarly, TTBCR:A1 selects whether we get the 11065 * ASID from TTBR0 or TTBR1, but QEMU's TLB doesn't currently 11066 * implement any ASID-like capability so we can ignore it (instead 11067 * we will always flush the TLB any time the ASID is changed). 11068 */ 11069 ttbr = regime_ttbr(env, mmu_idx, param.select); 11070 11071 /* Here we should have set up all the parameters for the translation: 11072 * inputsize, ttbr, epd, stride, tbi 11073 */ 11074 11075 if (param.epd) { 11076 /* Translation table walk disabled => Translation fault on TLB miss 11077 * Note: This is always 0 on 64-bit EL2 and EL3. 11078 */ 11079 goto do_fault; 11080 } 11081 11082 if (mmu_idx != ARMMMUIdx_Stage2) { 11083 /* The starting level depends on the virtual address size (which can 11084 * be up to 48 bits) and the translation granule size. It indicates 11085 * the number of strides (stride bits at a time) needed to 11086 * consume the bits of the input address. In the pseudocode this is: 11087 * level = 4 - RoundUp((inputsize - grainsize) / stride) 11088 * where their 'inputsize' is our 'inputsize', 'grainsize' is 11089 * our 'stride + 3' and 'stride' is our 'stride'. 11090 * Applying the usual "rounded up m/n is (m+n-1)/n" and simplifying: 11091 * = 4 - (inputsize - stride - 3 + stride - 1) / stride 11092 * = 4 - (inputsize - 4) / stride; 11093 */ 11094 level = 4 - (inputsize - 4) / stride; 11095 } else { 11096 /* For stage 2 translations the starting level is specified by the 11097 * VTCR_EL2.SL0 field (whose interpretation depends on the page size) 11098 */ 11099 uint32_t sl0 = extract32(tcr->raw_tcr, 6, 2); 11100 uint32_t startlevel; 11101 bool ok; 11102 11103 if (!aarch64 || stride == 9) { 11104 /* AArch32 or 4KB pages */ 11105 startlevel = 2 - sl0; 11106 11107 if (cpu_isar_feature(aa64_st, cpu)) { 11108 startlevel &= 3; 11109 } 11110 } else { 11111 /* 16KB or 64KB pages */ 11112 startlevel = 3 - sl0; 11113 } 11114 11115 /* Check that the starting level is valid. */ 11116 ok = check_s2_mmu_setup(cpu, aarch64, startlevel, 11117 inputsize, stride); 11118 if (!ok) { 11119 fault_type = ARMFault_Translation; 11120 goto do_fault; 11121 } 11122 level = startlevel; 11123 } 11124 11125 indexmask_grainsize = (1ULL << (stride + 3)) - 1; 11126 indexmask = (1ULL << (inputsize - (stride * (4 - level)))) - 1; 11127 11128 /* Now we can extract the actual base address from the TTBR */ 11129 descaddr = extract64(ttbr, 0, 48); 11130 /* 11131 * We rely on this masking to clear the RES0 bits at the bottom of the TTBR 11132 * and also to mask out CnP (bit 0) which could validly be non-zero. 11133 */ 11134 descaddr &= ~indexmask; 11135 11136 /* The address field in the descriptor goes up to bit 39 for ARMv7 11137 * but up to bit 47 for ARMv8, but we use the descaddrmask 11138 * up to bit 39 for AArch32, because we don't need other bits in that case 11139 * to construct next descriptor address (anyway they should be all zeroes). 11140 */ 11141 descaddrmask = ((1ull << (aarch64 ? 48 : 40)) - 1) & 11142 ~indexmask_grainsize; 11143 11144 /* Secure accesses start with the page table in secure memory and 11145 * can be downgraded to non-secure at any step. Non-secure accesses 11146 * remain non-secure. We implement this by just ORing in the NSTable/NS 11147 * bits at each step. 11148 */ 11149 tableattrs = regime_is_secure(env, mmu_idx) ? 0 : (1 << 4); 11150 for (;;) { 11151 uint64_t descriptor; 11152 bool nstable; 11153 11154 descaddr |= (address >> (stride * (4 - level))) & indexmask; 11155 descaddr &= ~7ULL; 11156 nstable = extract32(tableattrs, 4, 1); 11157 descriptor = arm_ldq_ptw(cs, descaddr, !nstable, mmu_idx, fi); 11158 if (fi->type != ARMFault_None) { 11159 goto do_fault; 11160 } 11161 11162 if (!(descriptor & 1) || 11163 (!(descriptor & 2) && (level == 3))) { 11164 /* Invalid, or the Reserved level 3 encoding */ 11165 goto do_fault; 11166 } 11167 descaddr = descriptor & descaddrmask; 11168 11169 if ((descriptor & 2) && (level < 3)) { 11170 /* Table entry. The top five bits are attributes which may 11171 * propagate down through lower levels of the table (and 11172 * which are all arranged so that 0 means "no effect", so 11173 * we can gather them up by ORing in the bits at each level). 11174 */ 11175 tableattrs |= extract64(descriptor, 59, 5); 11176 level++; 11177 indexmask = indexmask_grainsize; 11178 continue; 11179 } 11180 /* Block entry at level 1 or 2, or page entry at level 3. 11181 * These are basically the same thing, although the number 11182 * of bits we pull in from the vaddr varies. 11183 */ 11184 page_size = (1ULL << ((stride * (4 - level)) + 3)); 11185 descaddr |= (address & (page_size - 1)); 11186 /* Extract attributes from the descriptor */ 11187 attrs = extract64(descriptor, 2, 10) 11188 | (extract64(descriptor, 52, 12) << 10); 11189 11190 if (mmu_idx == ARMMMUIdx_Stage2) { 11191 /* Stage 2 table descriptors do not include any attribute fields */ 11192 break; 11193 } 11194 /* Merge in attributes from table descriptors */ 11195 attrs |= nstable << 3; /* NS */ 11196 guarded = extract64(descriptor, 50, 1); /* GP */ 11197 if (param.hpd) { 11198 /* HPD disables all the table attributes except NSTable. */ 11199 break; 11200 } 11201 attrs |= extract32(tableattrs, 0, 2) << 11; /* XN, PXN */ 11202 /* The sense of AP[1] vs APTable[0] is reversed, as APTable[0] == 1 11203 * means "force PL1 access only", which means forcing AP[1] to 0. 11204 */ 11205 attrs &= ~(extract32(tableattrs, 2, 1) << 4); /* !APT[0] => AP[1] */ 11206 attrs |= extract32(tableattrs, 3, 1) << 5; /* APT[1] => AP[2] */ 11207 break; 11208 } 11209 /* Here descaddr is the final physical address, and attributes 11210 * are all in attrs. 11211 */ 11212 fault_type = ARMFault_AccessFlag; 11213 if ((attrs & (1 << 8)) == 0) { 11214 /* Access flag */ 11215 goto do_fault; 11216 } 11217 11218 ap = extract32(attrs, 4, 2); 11219 11220 if (mmu_idx == ARMMMUIdx_Stage2) { 11221 ns = true; 11222 xn = extract32(attrs, 11, 2); 11223 *prot = get_S2prot(env, ap, xn, s1_is_el0); 11224 } else { 11225 ns = extract32(attrs, 3, 1); 11226 xn = extract32(attrs, 12, 1); 11227 pxn = extract32(attrs, 11, 1); 11228 *prot = get_S1prot(env, mmu_idx, aarch64, ap, ns, xn, pxn); 11229 } 11230 11231 fault_type = ARMFault_Permission; 11232 if (!(*prot & (1 << access_type))) { 11233 goto do_fault; 11234 } 11235 11236 if (ns) { 11237 /* The NS bit will (as required by the architecture) have no effect if 11238 * the CPU doesn't support TZ or this is a non-secure translation 11239 * regime, because the attribute will already be non-secure. 11240 */ 11241 txattrs->secure = false; 11242 } 11243 /* When in aarch64 mode, and BTI is enabled, remember GP in the IOTLB. */ 11244 if (aarch64 && guarded && cpu_isar_feature(aa64_bti, cpu)) { 11245 arm_tlb_bti_gp(txattrs) = true; 11246 } 11247 11248 if (mmu_idx == ARMMMUIdx_Stage2) { 11249 cacheattrs->attrs = convert_stage2_attrs(env, extract32(attrs, 0, 4)); 11250 } else { 11251 /* Index into MAIR registers for cache attributes */ 11252 uint8_t attrindx = extract32(attrs, 0, 3); 11253 uint64_t mair = env->cp15.mair_el[regime_el(env, mmu_idx)]; 11254 assert(attrindx <= 7); 11255 cacheattrs->attrs = extract64(mair, attrindx * 8, 8); 11256 } 11257 cacheattrs->shareability = extract32(attrs, 6, 2); 11258 11259 *phys_ptr = descaddr; 11260 *page_size_ptr = page_size; 11261 return false; 11262 11263 do_fault: 11264 fi->type = fault_type; 11265 fi->level = level; 11266 /* Tag the error as S2 for failed S1 PTW at S2 or ordinary S2. */ 11267 fi->stage2 = fi->s1ptw || (mmu_idx == ARMMMUIdx_Stage2); 11268 return true; 11269 } 11270 11271 static inline void get_phys_addr_pmsav7_default(CPUARMState *env, 11272 ARMMMUIdx mmu_idx, 11273 int32_t address, int *prot) 11274 { 11275 if (!arm_feature(env, ARM_FEATURE_M)) { 11276 *prot = PAGE_READ | PAGE_WRITE; 11277 switch (address) { 11278 case 0xF0000000 ... 0xFFFFFFFF: 11279 if (regime_sctlr(env, mmu_idx) & SCTLR_V) { 11280 /* hivecs execing is ok */ 11281 *prot |= PAGE_EXEC; 11282 } 11283 break; 11284 case 0x00000000 ... 0x7FFFFFFF: 11285 *prot |= PAGE_EXEC; 11286 break; 11287 } 11288 } else { 11289 /* Default system address map for M profile cores. 11290 * The architecture specifies which regions are execute-never; 11291 * at the MPU level no other checks are defined. 11292 */ 11293 switch (address) { 11294 case 0x00000000 ... 0x1fffffff: /* ROM */ 11295 case 0x20000000 ... 0x3fffffff: /* SRAM */ 11296 case 0x60000000 ... 0x7fffffff: /* RAM */ 11297 case 0x80000000 ... 0x9fffffff: /* RAM */ 11298 *prot = PAGE_READ | PAGE_WRITE | PAGE_EXEC; 11299 break; 11300 case 0x40000000 ... 0x5fffffff: /* Peripheral */ 11301 case 0xa0000000 ... 0xbfffffff: /* Device */ 11302 case 0xc0000000 ... 0xdfffffff: /* Device */ 11303 case 0xe0000000 ... 0xffffffff: /* System */ 11304 *prot = PAGE_READ | PAGE_WRITE; 11305 break; 11306 default: 11307 g_assert_not_reached(); 11308 } 11309 } 11310 } 11311 11312 static bool pmsav7_use_background_region(ARMCPU *cpu, 11313 ARMMMUIdx mmu_idx, bool is_user) 11314 { 11315 /* Return true if we should use the default memory map as a 11316 * "background" region if there are no hits against any MPU regions. 11317 */ 11318 CPUARMState *env = &cpu->env; 11319 11320 if (is_user) { 11321 return false; 11322 } 11323 11324 if (arm_feature(env, ARM_FEATURE_M)) { 11325 return env->v7m.mpu_ctrl[regime_is_secure(env, mmu_idx)] 11326 & R_V7M_MPU_CTRL_PRIVDEFENA_MASK; 11327 } else { 11328 return regime_sctlr(env, mmu_idx) & SCTLR_BR; 11329 } 11330 } 11331 11332 static inline bool m_is_ppb_region(CPUARMState *env, uint32_t address) 11333 { 11334 /* True if address is in the M profile PPB region 0xe0000000 - 0xe00fffff */ 11335 return arm_feature(env, ARM_FEATURE_M) && 11336 extract32(address, 20, 12) == 0xe00; 11337 } 11338 11339 static inline bool m_is_system_region(CPUARMState *env, uint32_t address) 11340 { 11341 /* True if address is in the M profile system region 11342 * 0xe0000000 - 0xffffffff 11343 */ 11344 return arm_feature(env, ARM_FEATURE_M) && extract32(address, 29, 3) == 0x7; 11345 } 11346 11347 static bool get_phys_addr_pmsav7(CPUARMState *env, uint32_t address, 11348 MMUAccessType access_type, ARMMMUIdx mmu_idx, 11349 hwaddr *phys_ptr, int *prot, 11350 target_ulong *page_size, 11351 ARMMMUFaultInfo *fi) 11352 { 11353 ARMCPU *cpu = env_archcpu(env); 11354 int n; 11355 bool is_user = regime_is_user(env, mmu_idx); 11356 11357 *phys_ptr = address; 11358 *page_size = TARGET_PAGE_SIZE; 11359 *prot = 0; 11360 11361 if (regime_translation_disabled(env, mmu_idx) || 11362 m_is_ppb_region(env, address)) { 11363 /* MPU disabled or M profile PPB access: use default memory map. 11364 * The other case which uses the default memory map in the 11365 * v7M ARM ARM pseudocode is exception vector reads from the vector 11366 * table. In QEMU those accesses are done in arm_v7m_load_vector(), 11367 * which always does a direct read using address_space_ldl(), rather 11368 * than going via this function, so we don't need to check that here. 11369 */ 11370 get_phys_addr_pmsav7_default(env, mmu_idx, address, prot); 11371 } else { /* MPU enabled */ 11372 for (n = (int)cpu->pmsav7_dregion - 1; n >= 0; n--) { 11373 /* region search */ 11374 uint32_t base = env->pmsav7.drbar[n]; 11375 uint32_t rsize = extract32(env->pmsav7.drsr[n], 1, 5); 11376 uint32_t rmask; 11377 bool srdis = false; 11378 11379 if (!(env->pmsav7.drsr[n] & 0x1)) { 11380 continue; 11381 } 11382 11383 if (!rsize) { 11384 qemu_log_mask(LOG_GUEST_ERROR, 11385 "DRSR[%d]: Rsize field cannot be 0\n", n); 11386 continue; 11387 } 11388 rsize++; 11389 rmask = (1ull << rsize) - 1; 11390 11391 if (base & rmask) { 11392 qemu_log_mask(LOG_GUEST_ERROR, 11393 "DRBAR[%d]: 0x%" PRIx32 " misaligned " 11394 "to DRSR region size, mask = 0x%" PRIx32 "\n", 11395 n, base, rmask); 11396 continue; 11397 } 11398 11399 if (address < base || address > base + rmask) { 11400 /* 11401 * Address not in this region. We must check whether the 11402 * region covers addresses in the same page as our address. 11403 * In that case we must not report a size that covers the 11404 * whole page for a subsequent hit against a different MPU 11405 * region or the background region, because it would result in 11406 * incorrect TLB hits for subsequent accesses to addresses that 11407 * are in this MPU region. 11408 */ 11409 if (ranges_overlap(base, rmask, 11410 address & TARGET_PAGE_MASK, 11411 TARGET_PAGE_SIZE)) { 11412 *page_size = 1; 11413 } 11414 continue; 11415 } 11416 11417 /* Region matched */ 11418 11419 if (rsize >= 8) { /* no subregions for regions < 256 bytes */ 11420 int i, snd; 11421 uint32_t srdis_mask; 11422 11423 rsize -= 3; /* sub region size (power of 2) */ 11424 snd = ((address - base) >> rsize) & 0x7; 11425 srdis = extract32(env->pmsav7.drsr[n], snd + 8, 1); 11426 11427 srdis_mask = srdis ? 0x3 : 0x0; 11428 for (i = 2; i <= 8 && rsize < TARGET_PAGE_BITS; i *= 2) { 11429 /* This will check in groups of 2, 4 and then 8, whether 11430 * the subregion bits are consistent. rsize is incremented 11431 * back up to give the region size, considering consistent 11432 * adjacent subregions as one region. Stop testing if rsize 11433 * is already big enough for an entire QEMU page. 11434 */ 11435 int snd_rounded = snd & ~(i - 1); 11436 uint32_t srdis_multi = extract32(env->pmsav7.drsr[n], 11437 snd_rounded + 8, i); 11438 if (srdis_mask ^ srdis_multi) { 11439 break; 11440 } 11441 srdis_mask = (srdis_mask << i) | srdis_mask; 11442 rsize++; 11443 } 11444 } 11445 if (srdis) { 11446 continue; 11447 } 11448 if (rsize < TARGET_PAGE_BITS) { 11449 *page_size = 1 << rsize; 11450 } 11451 break; 11452 } 11453 11454 if (n == -1) { /* no hits */ 11455 if (!pmsav7_use_background_region(cpu, mmu_idx, is_user)) { 11456 /* background fault */ 11457 fi->type = ARMFault_Background; 11458 return true; 11459 } 11460 get_phys_addr_pmsav7_default(env, mmu_idx, address, prot); 11461 } else { /* a MPU hit! */ 11462 uint32_t ap = extract32(env->pmsav7.dracr[n], 8, 3); 11463 uint32_t xn = extract32(env->pmsav7.dracr[n], 12, 1); 11464 11465 if (m_is_system_region(env, address)) { 11466 /* System space is always execute never */ 11467 xn = 1; 11468 } 11469 11470 if (is_user) { /* User mode AP bit decoding */ 11471 switch (ap) { 11472 case 0: 11473 case 1: 11474 case 5: 11475 break; /* no access */ 11476 case 3: 11477 *prot |= PAGE_WRITE; 11478 /* fall through */ 11479 case 2: 11480 case 6: 11481 *prot |= PAGE_READ | PAGE_EXEC; 11482 break; 11483 case 7: 11484 /* for v7M, same as 6; for R profile a reserved value */ 11485 if (arm_feature(env, ARM_FEATURE_M)) { 11486 *prot |= PAGE_READ | PAGE_EXEC; 11487 break; 11488 } 11489 /* fall through */ 11490 default: 11491 qemu_log_mask(LOG_GUEST_ERROR, 11492 "DRACR[%d]: Bad value for AP bits: 0x%" 11493 PRIx32 "\n", n, ap); 11494 } 11495 } else { /* Priv. mode AP bits decoding */ 11496 switch (ap) { 11497 case 0: 11498 break; /* no access */ 11499 case 1: 11500 case 2: 11501 case 3: 11502 *prot |= PAGE_WRITE; 11503 /* fall through */ 11504 case 5: 11505 case 6: 11506 *prot |= PAGE_READ | PAGE_EXEC; 11507 break; 11508 case 7: 11509 /* for v7M, same as 6; for R profile a reserved value */ 11510 if (arm_feature(env, ARM_FEATURE_M)) { 11511 *prot |= PAGE_READ | PAGE_EXEC; 11512 break; 11513 } 11514 /* fall through */ 11515 default: 11516 qemu_log_mask(LOG_GUEST_ERROR, 11517 "DRACR[%d]: Bad value for AP bits: 0x%" 11518 PRIx32 "\n", n, ap); 11519 } 11520 } 11521 11522 /* execute never */ 11523 if (xn) { 11524 *prot &= ~PAGE_EXEC; 11525 } 11526 } 11527 } 11528 11529 fi->type = ARMFault_Permission; 11530 fi->level = 1; 11531 return !(*prot & (1 << access_type)); 11532 } 11533 11534 static bool v8m_is_sau_exempt(CPUARMState *env, 11535 uint32_t address, MMUAccessType access_type) 11536 { 11537 /* The architecture specifies that certain address ranges are 11538 * exempt from v8M SAU/IDAU checks. 11539 */ 11540 return 11541 (access_type == MMU_INST_FETCH && m_is_system_region(env, address)) || 11542 (address >= 0xe0000000 && address <= 0xe0002fff) || 11543 (address >= 0xe000e000 && address <= 0xe000efff) || 11544 (address >= 0xe002e000 && address <= 0xe002efff) || 11545 (address >= 0xe0040000 && address <= 0xe0041fff) || 11546 (address >= 0xe00ff000 && address <= 0xe00fffff); 11547 } 11548 11549 void v8m_security_lookup(CPUARMState *env, uint32_t address, 11550 MMUAccessType access_type, ARMMMUIdx mmu_idx, 11551 V8M_SAttributes *sattrs) 11552 { 11553 /* Look up the security attributes for this address. Compare the 11554 * pseudocode SecurityCheck() function. 11555 * We assume the caller has zero-initialized *sattrs. 11556 */ 11557 ARMCPU *cpu = env_archcpu(env); 11558 int r; 11559 bool idau_exempt = false, idau_ns = true, idau_nsc = true; 11560 int idau_region = IREGION_NOTVALID; 11561 uint32_t addr_page_base = address & TARGET_PAGE_MASK; 11562 uint32_t addr_page_limit = addr_page_base + (TARGET_PAGE_SIZE - 1); 11563 11564 if (cpu->idau) { 11565 IDAUInterfaceClass *iic = IDAU_INTERFACE_GET_CLASS(cpu->idau); 11566 IDAUInterface *ii = IDAU_INTERFACE(cpu->idau); 11567 11568 iic->check(ii, address, &idau_region, &idau_exempt, &idau_ns, 11569 &idau_nsc); 11570 } 11571 11572 if (access_type == MMU_INST_FETCH && extract32(address, 28, 4) == 0xf) { 11573 /* 0xf0000000..0xffffffff is always S for insn fetches */ 11574 return; 11575 } 11576 11577 if (idau_exempt || v8m_is_sau_exempt(env, address, access_type)) { 11578 sattrs->ns = !regime_is_secure(env, mmu_idx); 11579 return; 11580 } 11581 11582 if (idau_region != IREGION_NOTVALID) { 11583 sattrs->irvalid = true; 11584 sattrs->iregion = idau_region; 11585 } 11586 11587 switch (env->sau.ctrl & 3) { 11588 case 0: /* SAU.ENABLE == 0, SAU.ALLNS == 0 */ 11589 break; 11590 case 2: /* SAU.ENABLE == 0, SAU.ALLNS == 1 */ 11591 sattrs->ns = true; 11592 break; 11593 default: /* SAU.ENABLE == 1 */ 11594 for (r = 0; r < cpu->sau_sregion; r++) { 11595 if (env->sau.rlar[r] & 1) { 11596 uint32_t base = env->sau.rbar[r] & ~0x1f; 11597 uint32_t limit = env->sau.rlar[r] | 0x1f; 11598 11599 if (base <= address && limit >= address) { 11600 if (base > addr_page_base || limit < addr_page_limit) { 11601 sattrs->subpage = true; 11602 } 11603 if (sattrs->srvalid) { 11604 /* If we hit in more than one region then we must report 11605 * as Secure, not NS-Callable, with no valid region 11606 * number info. 11607 */ 11608 sattrs->ns = false; 11609 sattrs->nsc = false; 11610 sattrs->sregion = 0; 11611 sattrs->srvalid = false; 11612 break; 11613 } else { 11614 if (env->sau.rlar[r] & 2) { 11615 sattrs->nsc = true; 11616 } else { 11617 sattrs->ns = true; 11618 } 11619 sattrs->srvalid = true; 11620 sattrs->sregion = r; 11621 } 11622 } else { 11623 /* 11624 * Address not in this region. We must check whether the 11625 * region covers addresses in the same page as our address. 11626 * In that case we must not report a size that covers the 11627 * whole page for a subsequent hit against a different MPU 11628 * region or the background region, because it would result 11629 * in incorrect TLB hits for subsequent accesses to 11630 * addresses that are in this MPU region. 11631 */ 11632 if (limit >= base && 11633 ranges_overlap(base, limit - base + 1, 11634 addr_page_base, 11635 TARGET_PAGE_SIZE)) { 11636 sattrs->subpage = true; 11637 } 11638 } 11639 } 11640 } 11641 break; 11642 } 11643 11644 /* 11645 * The IDAU will override the SAU lookup results if it specifies 11646 * higher security than the SAU does. 11647 */ 11648 if (!idau_ns) { 11649 if (sattrs->ns || (!idau_nsc && sattrs->nsc)) { 11650 sattrs->ns = false; 11651 sattrs->nsc = idau_nsc; 11652 } 11653 } 11654 } 11655 11656 bool pmsav8_mpu_lookup(CPUARMState *env, uint32_t address, 11657 MMUAccessType access_type, ARMMMUIdx mmu_idx, 11658 hwaddr *phys_ptr, MemTxAttrs *txattrs, 11659 int *prot, bool *is_subpage, 11660 ARMMMUFaultInfo *fi, uint32_t *mregion) 11661 { 11662 /* Perform a PMSAv8 MPU lookup (without also doing the SAU check 11663 * that a full phys-to-virt translation does). 11664 * mregion is (if not NULL) set to the region number which matched, 11665 * or -1 if no region number is returned (MPU off, address did not 11666 * hit a region, address hit in multiple regions). 11667 * We set is_subpage to true if the region hit doesn't cover the 11668 * entire TARGET_PAGE the address is within. 11669 */ 11670 ARMCPU *cpu = env_archcpu(env); 11671 bool is_user = regime_is_user(env, mmu_idx); 11672 uint32_t secure = regime_is_secure(env, mmu_idx); 11673 int n; 11674 int matchregion = -1; 11675 bool hit = false; 11676 uint32_t addr_page_base = address & TARGET_PAGE_MASK; 11677 uint32_t addr_page_limit = addr_page_base + (TARGET_PAGE_SIZE - 1); 11678 11679 *is_subpage = false; 11680 *phys_ptr = address; 11681 *prot = 0; 11682 if (mregion) { 11683 *mregion = -1; 11684 } 11685 11686 /* Unlike the ARM ARM pseudocode, we don't need to check whether this 11687 * was an exception vector read from the vector table (which is always 11688 * done using the default system address map), because those accesses 11689 * are done in arm_v7m_load_vector(), which always does a direct 11690 * read using address_space_ldl(), rather than going via this function. 11691 */ 11692 if (regime_translation_disabled(env, mmu_idx)) { /* MPU disabled */ 11693 hit = true; 11694 } else if (m_is_ppb_region(env, address)) { 11695 hit = true; 11696 } else { 11697 if (pmsav7_use_background_region(cpu, mmu_idx, is_user)) { 11698 hit = true; 11699 } 11700 11701 for (n = (int)cpu->pmsav7_dregion - 1; n >= 0; n--) { 11702 /* region search */ 11703 /* Note that the base address is bits [31:5] from the register 11704 * with bits [4:0] all zeroes, but the limit address is bits 11705 * [31:5] from the register with bits [4:0] all ones. 11706 */ 11707 uint32_t base = env->pmsav8.rbar[secure][n] & ~0x1f; 11708 uint32_t limit = env->pmsav8.rlar[secure][n] | 0x1f; 11709 11710 if (!(env->pmsav8.rlar[secure][n] & 0x1)) { 11711 /* Region disabled */ 11712 continue; 11713 } 11714 11715 if (address < base || address > limit) { 11716 /* 11717 * Address not in this region. We must check whether the 11718 * region covers addresses in the same page as our address. 11719 * In that case we must not report a size that covers the 11720 * whole page for a subsequent hit against a different MPU 11721 * region or the background region, because it would result in 11722 * incorrect TLB hits for subsequent accesses to addresses that 11723 * are in this MPU region. 11724 */ 11725 if (limit >= base && 11726 ranges_overlap(base, limit - base + 1, 11727 addr_page_base, 11728 TARGET_PAGE_SIZE)) { 11729 *is_subpage = true; 11730 } 11731 continue; 11732 } 11733 11734 if (base > addr_page_base || limit < addr_page_limit) { 11735 *is_subpage = true; 11736 } 11737 11738 if (matchregion != -1) { 11739 /* Multiple regions match -- always a failure (unlike 11740 * PMSAv7 where highest-numbered-region wins) 11741 */ 11742 fi->type = ARMFault_Permission; 11743 fi->level = 1; 11744 return true; 11745 } 11746 11747 matchregion = n; 11748 hit = true; 11749 } 11750 } 11751 11752 if (!hit) { 11753 /* background fault */ 11754 fi->type = ARMFault_Background; 11755 return true; 11756 } 11757 11758 if (matchregion == -1) { 11759 /* hit using the background region */ 11760 get_phys_addr_pmsav7_default(env, mmu_idx, address, prot); 11761 } else { 11762 uint32_t ap = extract32(env->pmsav8.rbar[secure][matchregion], 1, 2); 11763 uint32_t xn = extract32(env->pmsav8.rbar[secure][matchregion], 0, 1); 11764 bool pxn = false; 11765 11766 if (arm_feature(env, ARM_FEATURE_V8_1M)) { 11767 pxn = extract32(env->pmsav8.rlar[secure][matchregion], 4, 1); 11768 } 11769 11770 if (m_is_system_region(env, address)) { 11771 /* System space is always execute never */ 11772 xn = 1; 11773 } 11774 11775 *prot = simple_ap_to_rw_prot(env, mmu_idx, ap); 11776 if (*prot && !xn && !(pxn && !is_user)) { 11777 *prot |= PAGE_EXEC; 11778 } 11779 /* We don't need to look the attribute up in the MAIR0/MAIR1 11780 * registers because that only tells us about cacheability. 11781 */ 11782 if (mregion) { 11783 *mregion = matchregion; 11784 } 11785 } 11786 11787 fi->type = ARMFault_Permission; 11788 fi->level = 1; 11789 return !(*prot & (1 << access_type)); 11790 } 11791 11792 11793 static bool get_phys_addr_pmsav8(CPUARMState *env, uint32_t address, 11794 MMUAccessType access_type, ARMMMUIdx mmu_idx, 11795 hwaddr *phys_ptr, MemTxAttrs *txattrs, 11796 int *prot, target_ulong *page_size, 11797 ARMMMUFaultInfo *fi) 11798 { 11799 uint32_t secure = regime_is_secure(env, mmu_idx); 11800 V8M_SAttributes sattrs = {}; 11801 bool ret; 11802 bool mpu_is_subpage; 11803 11804 if (arm_feature(env, ARM_FEATURE_M_SECURITY)) { 11805 v8m_security_lookup(env, address, access_type, mmu_idx, &sattrs); 11806 if (access_type == MMU_INST_FETCH) { 11807 /* Instruction fetches always use the MMU bank and the 11808 * transaction attribute determined by the fetch address, 11809 * regardless of CPU state. This is painful for QEMU 11810 * to handle, because it would mean we need to encode 11811 * into the mmu_idx not just the (user, negpri) information 11812 * for the current security state but also that for the 11813 * other security state, which would balloon the number 11814 * of mmu_idx values needed alarmingly. 11815 * Fortunately we can avoid this because it's not actually 11816 * possible to arbitrarily execute code from memory with 11817 * the wrong security attribute: it will always generate 11818 * an exception of some kind or another, apart from the 11819 * special case of an NS CPU executing an SG instruction 11820 * in S&NSC memory. So we always just fail the translation 11821 * here and sort things out in the exception handler 11822 * (including possibly emulating an SG instruction). 11823 */ 11824 if (sattrs.ns != !secure) { 11825 if (sattrs.nsc) { 11826 fi->type = ARMFault_QEMU_NSCExec; 11827 } else { 11828 fi->type = ARMFault_QEMU_SFault; 11829 } 11830 *page_size = sattrs.subpage ? 1 : TARGET_PAGE_SIZE; 11831 *phys_ptr = address; 11832 *prot = 0; 11833 return true; 11834 } 11835 } else { 11836 /* For data accesses we always use the MMU bank indicated 11837 * by the current CPU state, but the security attributes 11838 * might downgrade a secure access to nonsecure. 11839 */ 11840 if (sattrs.ns) { 11841 txattrs->secure = false; 11842 } else if (!secure) { 11843 /* NS access to S memory must fault. 11844 * Architecturally we should first check whether the 11845 * MPU information for this address indicates that we 11846 * are doing an unaligned access to Device memory, which 11847 * should generate a UsageFault instead. QEMU does not 11848 * currently check for that kind of unaligned access though. 11849 * If we added it we would need to do so as a special case 11850 * for M_FAKE_FSR_SFAULT in arm_v7m_cpu_do_interrupt(). 11851 */ 11852 fi->type = ARMFault_QEMU_SFault; 11853 *page_size = sattrs.subpage ? 1 : TARGET_PAGE_SIZE; 11854 *phys_ptr = address; 11855 *prot = 0; 11856 return true; 11857 } 11858 } 11859 } 11860 11861 ret = pmsav8_mpu_lookup(env, address, access_type, mmu_idx, phys_ptr, 11862 txattrs, prot, &mpu_is_subpage, fi, NULL); 11863 *page_size = sattrs.subpage || mpu_is_subpage ? 1 : TARGET_PAGE_SIZE; 11864 return ret; 11865 } 11866 11867 static bool get_phys_addr_pmsav5(CPUARMState *env, uint32_t address, 11868 MMUAccessType access_type, ARMMMUIdx mmu_idx, 11869 hwaddr *phys_ptr, int *prot, 11870 ARMMMUFaultInfo *fi) 11871 { 11872 int n; 11873 uint32_t mask; 11874 uint32_t base; 11875 bool is_user = regime_is_user(env, mmu_idx); 11876 11877 if (regime_translation_disabled(env, mmu_idx)) { 11878 /* MPU disabled. */ 11879 *phys_ptr = address; 11880 *prot = PAGE_READ | PAGE_WRITE | PAGE_EXEC; 11881 return false; 11882 } 11883 11884 *phys_ptr = address; 11885 for (n = 7; n >= 0; n--) { 11886 base = env->cp15.c6_region[n]; 11887 if ((base & 1) == 0) { 11888 continue; 11889 } 11890 mask = 1 << ((base >> 1) & 0x1f); 11891 /* Keep this shift separate from the above to avoid an 11892 (undefined) << 32. */ 11893 mask = (mask << 1) - 1; 11894 if (((base ^ address) & ~mask) == 0) { 11895 break; 11896 } 11897 } 11898 if (n < 0) { 11899 fi->type = ARMFault_Background; 11900 return true; 11901 } 11902 11903 if (access_type == MMU_INST_FETCH) { 11904 mask = env->cp15.pmsav5_insn_ap; 11905 } else { 11906 mask = env->cp15.pmsav5_data_ap; 11907 } 11908 mask = (mask >> (n * 4)) & 0xf; 11909 switch (mask) { 11910 case 0: 11911 fi->type = ARMFault_Permission; 11912 fi->level = 1; 11913 return true; 11914 case 1: 11915 if (is_user) { 11916 fi->type = ARMFault_Permission; 11917 fi->level = 1; 11918 return true; 11919 } 11920 *prot = PAGE_READ | PAGE_WRITE; 11921 break; 11922 case 2: 11923 *prot = PAGE_READ; 11924 if (!is_user) { 11925 *prot |= PAGE_WRITE; 11926 } 11927 break; 11928 case 3: 11929 *prot = PAGE_READ | PAGE_WRITE; 11930 break; 11931 case 5: 11932 if (is_user) { 11933 fi->type = ARMFault_Permission; 11934 fi->level = 1; 11935 return true; 11936 } 11937 *prot = PAGE_READ; 11938 break; 11939 case 6: 11940 *prot = PAGE_READ; 11941 break; 11942 default: 11943 /* Bad permission. */ 11944 fi->type = ARMFault_Permission; 11945 fi->level = 1; 11946 return true; 11947 } 11948 *prot |= PAGE_EXEC; 11949 return false; 11950 } 11951 11952 /* Combine either inner or outer cacheability attributes for normal 11953 * memory, according to table D4-42 and pseudocode procedure 11954 * CombineS1S2AttrHints() of ARM DDI 0487B.b (the ARMv8 ARM). 11955 * 11956 * NB: only stage 1 includes allocation hints (RW bits), leading to 11957 * some asymmetry. 11958 */ 11959 static uint8_t combine_cacheattr_nibble(uint8_t s1, uint8_t s2) 11960 { 11961 if (s1 == 4 || s2 == 4) { 11962 /* non-cacheable has precedence */ 11963 return 4; 11964 } else if (extract32(s1, 2, 2) == 0 || extract32(s1, 2, 2) == 2) { 11965 /* stage 1 write-through takes precedence */ 11966 return s1; 11967 } else if (extract32(s2, 2, 2) == 2) { 11968 /* stage 2 write-through takes precedence, but the allocation hint 11969 * is still taken from stage 1 11970 */ 11971 return (2 << 2) | extract32(s1, 0, 2); 11972 } else { /* write-back */ 11973 return s1; 11974 } 11975 } 11976 11977 /* Combine S1 and S2 cacheability/shareability attributes, per D4.5.4 11978 * and CombineS1S2Desc() 11979 * 11980 * @s1: Attributes from stage 1 walk 11981 * @s2: Attributes from stage 2 walk 11982 */ 11983 static ARMCacheAttrs combine_cacheattrs(ARMCacheAttrs s1, ARMCacheAttrs s2) 11984 { 11985 uint8_t s1lo, s2lo, s1hi, s2hi; 11986 ARMCacheAttrs ret; 11987 bool tagged = false; 11988 11989 if (s1.attrs == 0xf0) { 11990 tagged = true; 11991 s1.attrs = 0xff; 11992 } 11993 11994 s1lo = extract32(s1.attrs, 0, 4); 11995 s2lo = extract32(s2.attrs, 0, 4); 11996 s1hi = extract32(s1.attrs, 4, 4); 11997 s2hi = extract32(s2.attrs, 4, 4); 11998 11999 /* Combine shareability attributes (table D4-43) */ 12000 if (s1.shareability == 2 || s2.shareability == 2) { 12001 /* if either are outer-shareable, the result is outer-shareable */ 12002 ret.shareability = 2; 12003 } else if (s1.shareability == 3 || s2.shareability == 3) { 12004 /* if either are inner-shareable, the result is inner-shareable */ 12005 ret.shareability = 3; 12006 } else { 12007 /* both non-shareable */ 12008 ret.shareability = 0; 12009 } 12010 12011 /* Combine memory type and cacheability attributes */ 12012 if (s1hi == 0 || s2hi == 0) { 12013 /* Device has precedence over normal */ 12014 if (s1lo == 0 || s2lo == 0) { 12015 /* nGnRnE has precedence over anything */ 12016 ret.attrs = 0; 12017 } else if (s1lo == 4 || s2lo == 4) { 12018 /* non-Reordering has precedence over Reordering */ 12019 ret.attrs = 4; /* nGnRE */ 12020 } else if (s1lo == 8 || s2lo == 8) { 12021 /* non-Gathering has precedence over Gathering */ 12022 ret.attrs = 8; /* nGRE */ 12023 } else { 12024 ret.attrs = 0xc; /* GRE */ 12025 } 12026 12027 /* Any location for which the resultant memory type is any 12028 * type of Device memory is always treated as Outer Shareable. 12029 */ 12030 ret.shareability = 2; 12031 } else { /* Normal memory */ 12032 /* Outer/inner cacheability combine independently */ 12033 ret.attrs = combine_cacheattr_nibble(s1hi, s2hi) << 4 12034 | combine_cacheattr_nibble(s1lo, s2lo); 12035 12036 if (ret.attrs == 0x44) { 12037 /* Any location for which the resultant memory type is Normal 12038 * Inner Non-cacheable, Outer Non-cacheable is always treated 12039 * as Outer Shareable. 12040 */ 12041 ret.shareability = 2; 12042 } 12043 } 12044 12045 /* TODO: CombineS1S2Desc does not consider transient, only WB, RWA. */ 12046 if (tagged && ret.attrs == 0xff) { 12047 ret.attrs = 0xf0; 12048 } 12049 12050 return ret; 12051 } 12052 12053 12054 /* get_phys_addr - get the physical address for this virtual address 12055 * 12056 * Find the physical address corresponding to the given virtual address, 12057 * by doing a translation table walk on MMU based systems or using the 12058 * MPU state on MPU based systems. 12059 * 12060 * Returns false if the translation was successful. Otherwise, phys_ptr, attrs, 12061 * prot and page_size may not be filled in, and the populated fsr value provides 12062 * information on why the translation aborted, in the format of a 12063 * DFSR/IFSR fault register, with the following caveats: 12064 * * we honour the short vs long DFSR format differences. 12065 * * the WnR bit is never set (the caller must do this). 12066 * * for PSMAv5 based systems we don't bother to return a full FSR format 12067 * value. 12068 * 12069 * @env: CPUARMState 12070 * @address: virtual address to get physical address for 12071 * @access_type: 0 for read, 1 for write, 2 for execute 12072 * @mmu_idx: MMU index indicating required translation regime 12073 * @phys_ptr: set to the physical address corresponding to the virtual address 12074 * @attrs: set to the memory transaction attributes to use 12075 * @prot: set to the permissions for the page containing phys_ptr 12076 * @page_size: set to the size of the page containing phys_ptr 12077 * @fi: set to fault info if the translation fails 12078 * @cacheattrs: (if non-NULL) set to the cacheability/shareability attributes 12079 */ 12080 bool get_phys_addr(CPUARMState *env, target_ulong address, 12081 MMUAccessType access_type, ARMMMUIdx mmu_idx, 12082 hwaddr *phys_ptr, MemTxAttrs *attrs, int *prot, 12083 target_ulong *page_size, 12084 ARMMMUFaultInfo *fi, ARMCacheAttrs *cacheattrs) 12085 { 12086 if (mmu_idx == ARMMMUIdx_E10_0 || 12087 mmu_idx == ARMMMUIdx_E10_1 || 12088 mmu_idx == ARMMMUIdx_E10_1_PAN) { 12089 /* Call ourselves recursively to do the stage 1 and then stage 2 12090 * translations. 12091 */ 12092 if (arm_feature(env, ARM_FEATURE_EL2)) { 12093 hwaddr ipa; 12094 int s2_prot; 12095 int ret; 12096 ARMCacheAttrs cacheattrs2 = {}; 12097 12098 ret = get_phys_addr(env, address, access_type, 12099 stage_1_mmu_idx(mmu_idx), &ipa, attrs, 12100 prot, page_size, fi, cacheattrs); 12101 12102 /* If S1 fails or S2 is disabled, return early. */ 12103 if (ret || regime_translation_disabled(env, ARMMMUIdx_Stage2)) { 12104 *phys_ptr = ipa; 12105 return ret; 12106 } 12107 12108 /* S1 is done. Now do S2 translation. */ 12109 ret = get_phys_addr_lpae(env, ipa, access_type, ARMMMUIdx_Stage2, 12110 mmu_idx == ARMMMUIdx_E10_0, 12111 phys_ptr, attrs, &s2_prot, 12112 page_size, fi, &cacheattrs2); 12113 fi->s2addr = ipa; 12114 /* Combine the S1 and S2 perms. */ 12115 *prot &= s2_prot; 12116 12117 /* If S2 fails, return early. */ 12118 if (ret) { 12119 return ret; 12120 } 12121 12122 /* Combine the S1 and S2 cache attributes. */ 12123 if (env->cp15.hcr_el2 & HCR_DC) { 12124 /* 12125 * HCR.DC forces the first stage attributes to 12126 * Normal Non-Shareable, 12127 * Inner Write-Back Read-Allocate Write-Allocate, 12128 * Outer Write-Back Read-Allocate Write-Allocate. 12129 * Do not overwrite Tagged within attrs. 12130 */ 12131 if (cacheattrs->attrs != 0xf0) { 12132 cacheattrs->attrs = 0xff; 12133 } 12134 cacheattrs->shareability = 0; 12135 } 12136 *cacheattrs = combine_cacheattrs(*cacheattrs, cacheattrs2); 12137 return 0; 12138 } else { 12139 /* 12140 * For non-EL2 CPUs a stage1+stage2 translation is just stage 1. 12141 */ 12142 mmu_idx = stage_1_mmu_idx(mmu_idx); 12143 } 12144 } 12145 12146 /* The page table entries may downgrade secure to non-secure, but 12147 * cannot upgrade an non-secure translation regime's attributes 12148 * to secure. 12149 */ 12150 attrs->secure = regime_is_secure(env, mmu_idx); 12151 attrs->user = regime_is_user(env, mmu_idx); 12152 12153 /* Fast Context Switch Extension. This doesn't exist at all in v8. 12154 * In v7 and earlier it affects all stage 1 translations. 12155 */ 12156 if (address < 0x02000000 && mmu_idx != ARMMMUIdx_Stage2 12157 && !arm_feature(env, ARM_FEATURE_V8)) { 12158 if (regime_el(env, mmu_idx) == 3) { 12159 address += env->cp15.fcseidr_s; 12160 } else { 12161 address += env->cp15.fcseidr_ns; 12162 } 12163 } 12164 12165 if (arm_feature(env, ARM_FEATURE_PMSA)) { 12166 bool ret; 12167 *page_size = TARGET_PAGE_SIZE; 12168 12169 if (arm_feature(env, ARM_FEATURE_V8)) { 12170 /* PMSAv8 */ 12171 ret = get_phys_addr_pmsav8(env, address, access_type, mmu_idx, 12172 phys_ptr, attrs, prot, page_size, fi); 12173 } else if (arm_feature(env, ARM_FEATURE_V7)) { 12174 /* PMSAv7 */ 12175 ret = get_phys_addr_pmsav7(env, address, access_type, mmu_idx, 12176 phys_ptr, prot, page_size, fi); 12177 } else { 12178 /* Pre-v7 MPU */ 12179 ret = get_phys_addr_pmsav5(env, address, access_type, mmu_idx, 12180 phys_ptr, prot, fi); 12181 } 12182 qemu_log_mask(CPU_LOG_MMU, "PMSA MPU lookup for %s at 0x%08" PRIx32 12183 " mmu_idx %u -> %s (prot %c%c%c)\n", 12184 access_type == MMU_DATA_LOAD ? "reading" : 12185 (access_type == MMU_DATA_STORE ? "writing" : "execute"), 12186 (uint32_t)address, mmu_idx, 12187 ret ? "Miss" : "Hit", 12188 *prot & PAGE_READ ? 'r' : '-', 12189 *prot & PAGE_WRITE ? 'w' : '-', 12190 *prot & PAGE_EXEC ? 'x' : '-'); 12191 12192 return ret; 12193 } 12194 12195 /* Definitely a real MMU, not an MPU */ 12196 12197 if (regime_translation_disabled(env, mmu_idx)) { 12198 uint64_t hcr; 12199 uint8_t memattr; 12200 12201 /* 12202 * MMU disabled. S1 addresses within aa64 translation regimes are 12203 * still checked for bounds -- see AArch64.TranslateAddressS1Off. 12204 */ 12205 if (mmu_idx != ARMMMUIdx_Stage2) { 12206 int r_el = regime_el(env, mmu_idx); 12207 if (arm_el_is_aa64(env, r_el)) { 12208 int pamax = arm_pamax(env_archcpu(env)); 12209 uint64_t tcr = env->cp15.tcr_el[r_el].raw_tcr; 12210 int addrtop, tbi; 12211 12212 tbi = aa64_va_parameter_tbi(tcr, mmu_idx); 12213 if (access_type == MMU_INST_FETCH) { 12214 tbi &= ~aa64_va_parameter_tbid(tcr, mmu_idx); 12215 } 12216 tbi = (tbi >> extract64(address, 55, 1)) & 1; 12217 addrtop = (tbi ? 55 : 63); 12218 12219 if (extract64(address, pamax, addrtop - pamax + 1) != 0) { 12220 fi->type = ARMFault_AddressSize; 12221 fi->level = 0; 12222 fi->stage2 = false; 12223 return 1; 12224 } 12225 12226 /* 12227 * When TBI is disabled, we've just validated that all of the 12228 * bits above PAMax are zero, so logically we only need to 12229 * clear the top byte for TBI. But it's clearer to follow 12230 * the pseudocode set of addrdesc.paddress. 12231 */ 12232 address = extract64(address, 0, 52); 12233 } 12234 } 12235 *phys_ptr = address; 12236 *prot = PAGE_READ | PAGE_WRITE | PAGE_EXEC; 12237 *page_size = TARGET_PAGE_SIZE; 12238 12239 /* Fill in cacheattr a-la AArch64.TranslateAddressS1Off. */ 12240 hcr = arm_hcr_el2_eff(env); 12241 cacheattrs->shareability = 0; 12242 if (hcr & HCR_DC) { 12243 if (hcr & HCR_DCT) { 12244 memattr = 0xf0; /* Tagged, Normal, WB, RWA */ 12245 } else { 12246 memattr = 0xff; /* Normal, WB, RWA */ 12247 } 12248 } else if (access_type == MMU_INST_FETCH) { 12249 if (regime_sctlr(env, mmu_idx) & SCTLR_I) { 12250 memattr = 0xee; /* Normal, WT, RA, NT */ 12251 } else { 12252 memattr = 0x44; /* Normal, NC, No */ 12253 } 12254 cacheattrs->shareability = 2; /* outer sharable */ 12255 } else { 12256 memattr = 0x00; /* Device, nGnRnE */ 12257 } 12258 cacheattrs->attrs = memattr; 12259 return 0; 12260 } 12261 12262 if (regime_using_lpae_format(env, mmu_idx)) { 12263 return get_phys_addr_lpae(env, address, access_type, mmu_idx, false, 12264 phys_ptr, attrs, prot, page_size, 12265 fi, cacheattrs); 12266 } else if (regime_sctlr(env, mmu_idx) & SCTLR_XP) { 12267 return get_phys_addr_v6(env, address, access_type, mmu_idx, 12268 phys_ptr, attrs, prot, page_size, fi); 12269 } else { 12270 return get_phys_addr_v5(env, address, access_type, mmu_idx, 12271 phys_ptr, prot, page_size, fi); 12272 } 12273 } 12274 12275 hwaddr arm_cpu_get_phys_page_attrs_debug(CPUState *cs, vaddr addr, 12276 MemTxAttrs *attrs) 12277 { 12278 ARMCPU *cpu = ARM_CPU(cs); 12279 CPUARMState *env = &cpu->env; 12280 hwaddr phys_addr; 12281 target_ulong page_size; 12282 int prot; 12283 bool ret; 12284 ARMMMUFaultInfo fi = {}; 12285 ARMMMUIdx mmu_idx = arm_mmu_idx(env); 12286 ARMCacheAttrs cacheattrs = {}; 12287 12288 *attrs = (MemTxAttrs) {}; 12289 12290 ret = get_phys_addr(env, addr, 0, mmu_idx, &phys_addr, 12291 attrs, &prot, &page_size, &fi, &cacheattrs); 12292 12293 if (ret) { 12294 return -1; 12295 } 12296 return phys_addr; 12297 } 12298 12299 #endif 12300 12301 /* Note that signed overflow is undefined in C. The following routines are 12302 careful to use unsigned types where modulo arithmetic is required. 12303 Failure to do so _will_ break on newer gcc. */ 12304 12305 /* Signed saturating arithmetic. */ 12306 12307 /* Perform 16-bit signed saturating addition. */ 12308 static inline uint16_t add16_sat(uint16_t a, uint16_t b) 12309 { 12310 uint16_t res; 12311 12312 res = a + b; 12313 if (((res ^ a) & 0x8000) && !((a ^ b) & 0x8000)) { 12314 if (a & 0x8000) 12315 res = 0x8000; 12316 else 12317 res = 0x7fff; 12318 } 12319 return res; 12320 } 12321 12322 /* Perform 8-bit signed saturating addition. */ 12323 static inline uint8_t add8_sat(uint8_t a, uint8_t b) 12324 { 12325 uint8_t res; 12326 12327 res = a + b; 12328 if (((res ^ a) & 0x80) && !((a ^ b) & 0x80)) { 12329 if (a & 0x80) 12330 res = 0x80; 12331 else 12332 res = 0x7f; 12333 } 12334 return res; 12335 } 12336 12337 /* Perform 16-bit signed saturating subtraction. */ 12338 static inline uint16_t sub16_sat(uint16_t a, uint16_t b) 12339 { 12340 uint16_t res; 12341 12342 res = a - b; 12343 if (((res ^ a) & 0x8000) && ((a ^ b) & 0x8000)) { 12344 if (a & 0x8000) 12345 res = 0x8000; 12346 else 12347 res = 0x7fff; 12348 } 12349 return res; 12350 } 12351 12352 /* Perform 8-bit signed saturating subtraction. */ 12353 static inline uint8_t sub8_sat(uint8_t a, uint8_t b) 12354 { 12355 uint8_t res; 12356 12357 res = a - b; 12358 if (((res ^ a) & 0x80) && ((a ^ b) & 0x80)) { 12359 if (a & 0x80) 12360 res = 0x80; 12361 else 12362 res = 0x7f; 12363 } 12364 return res; 12365 } 12366 12367 #define ADD16(a, b, n) RESULT(add16_sat(a, b), n, 16); 12368 #define SUB16(a, b, n) RESULT(sub16_sat(a, b), n, 16); 12369 #define ADD8(a, b, n) RESULT(add8_sat(a, b), n, 8); 12370 #define SUB8(a, b, n) RESULT(sub8_sat(a, b), n, 8); 12371 #define PFX q 12372 12373 #include "op_addsub.h" 12374 12375 /* Unsigned saturating arithmetic. */ 12376 static inline uint16_t add16_usat(uint16_t a, uint16_t b) 12377 { 12378 uint16_t res; 12379 res = a + b; 12380 if (res < a) 12381 res = 0xffff; 12382 return res; 12383 } 12384 12385 static inline uint16_t sub16_usat(uint16_t a, uint16_t b) 12386 { 12387 if (a > b) 12388 return a - b; 12389 else 12390 return 0; 12391 } 12392 12393 static inline uint8_t add8_usat(uint8_t a, uint8_t b) 12394 { 12395 uint8_t res; 12396 res = a + b; 12397 if (res < a) 12398 res = 0xff; 12399 return res; 12400 } 12401 12402 static inline uint8_t sub8_usat(uint8_t a, uint8_t b) 12403 { 12404 if (a > b) 12405 return a - b; 12406 else 12407 return 0; 12408 } 12409 12410 #define ADD16(a, b, n) RESULT(add16_usat(a, b), n, 16); 12411 #define SUB16(a, b, n) RESULT(sub16_usat(a, b), n, 16); 12412 #define ADD8(a, b, n) RESULT(add8_usat(a, b), n, 8); 12413 #define SUB8(a, b, n) RESULT(sub8_usat(a, b), n, 8); 12414 #define PFX uq 12415 12416 #include "op_addsub.h" 12417 12418 /* Signed modulo arithmetic. */ 12419 #define SARITH16(a, b, n, op) do { \ 12420 int32_t sum; \ 12421 sum = (int32_t)(int16_t)(a) op (int32_t)(int16_t)(b); \ 12422 RESULT(sum, n, 16); \ 12423 if (sum >= 0) \ 12424 ge |= 3 << (n * 2); \ 12425 } while(0) 12426 12427 #define SARITH8(a, b, n, op) do { \ 12428 int32_t sum; \ 12429 sum = (int32_t)(int8_t)(a) op (int32_t)(int8_t)(b); \ 12430 RESULT(sum, n, 8); \ 12431 if (sum >= 0) \ 12432 ge |= 1 << n; \ 12433 } while(0) 12434 12435 12436 #define ADD16(a, b, n) SARITH16(a, b, n, +) 12437 #define SUB16(a, b, n) SARITH16(a, b, n, -) 12438 #define ADD8(a, b, n) SARITH8(a, b, n, +) 12439 #define SUB8(a, b, n) SARITH8(a, b, n, -) 12440 #define PFX s 12441 #define ARITH_GE 12442 12443 #include "op_addsub.h" 12444 12445 /* Unsigned modulo arithmetic. */ 12446 #define ADD16(a, b, n) do { \ 12447 uint32_t sum; \ 12448 sum = (uint32_t)(uint16_t)(a) + (uint32_t)(uint16_t)(b); \ 12449 RESULT(sum, n, 16); \ 12450 if ((sum >> 16) == 1) \ 12451 ge |= 3 << (n * 2); \ 12452 } while(0) 12453 12454 #define ADD8(a, b, n) do { \ 12455 uint32_t sum; \ 12456 sum = (uint32_t)(uint8_t)(a) + (uint32_t)(uint8_t)(b); \ 12457 RESULT(sum, n, 8); \ 12458 if ((sum >> 8) == 1) \ 12459 ge |= 1 << n; \ 12460 } while(0) 12461 12462 #define SUB16(a, b, n) do { \ 12463 uint32_t sum; \ 12464 sum = (uint32_t)(uint16_t)(a) - (uint32_t)(uint16_t)(b); \ 12465 RESULT(sum, n, 16); \ 12466 if ((sum >> 16) == 0) \ 12467 ge |= 3 << (n * 2); \ 12468 } while(0) 12469 12470 #define SUB8(a, b, n) do { \ 12471 uint32_t sum; \ 12472 sum = (uint32_t)(uint8_t)(a) - (uint32_t)(uint8_t)(b); \ 12473 RESULT(sum, n, 8); \ 12474 if ((sum >> 8) == 0) \ 12475 ge |= 1 << n; \ 12476 } while(0) 12477 12478 #define PFX u 12479 #define ARITH_GE 12480 12481 #include "op_addsub.h" 12482 12483 /* Halved signed arithmetic. */ 12484 #define ADD16(a, b, n) \ 12485 RESULT(((int32_t)(int16_t)(a) + (int32_t)(int16_t)(b)) >> 1, n, 16) 12486 #define SUB16(a, b, n) \ 12487 RESULT(((int32_t)(int16_t)(a) - (int32_t)(int16_t)(b)) >> 1, n, 16) 12488 #define ADD8(a, b, n) \ 12489 RESULT(((int32_t)(int8_t)(a) + (int32_t)(int8_t)(b)) >> 1, n, 8) 12490 #define SUB8(a, b, n) \ 12491 RESULT(((int32_t)(int8_t)(a) - (int32_t)(int8_t)(b)) >> 1, n, 8) 12492 #define PFX sh 12493 12494 #include "op_addsub.h" 12495 12496 /* Halved unsigned arithmetic. */ 12497 #define ADD16(a, b, n) \ 12498 RESULT(((uint32_t)(uint16_t)(a) + (uint32_t)(uint16_t)(b)) >> 1, n, 16) 12499 #define SUB16(a, b, n) \ 12500 RESULT(((uint32_t)(uint16_t)(a) - (uint32_t)(uint16_t)(b)) >> 1, n, 16) 12501 #define ADD8(a, b, n) \ 12502 RESULT(((uint32_t)(uint8_t)(a) + (uint32_t)(uint8_t)(b)) >> 1, n, 8) 12503 #define SUB8(a, b, n) \ 12504 RESULT(((uint32_t)(uint8_t)(a) - (uint32_t)(uint8_t)(b)) >> 1, n, 8) 12505 #define PFX uh 12506 12507 #include "op_addsub.h" 12508 12509 static inline uint8_t do_usad(uint8_t a, uint8_t b) 12510 { 12511 if (a > b) 12512 return a - b; 12513 else 12514 return b - a; 12515 } 12516 12517 /* Unsigned sum of absolute byte differences. */ 12518 uint32_t HELPER(usad8)(uint32_t a, uint32_t b) 12519 { 12520 uint32_t sum; 12521 sum = do_usad(a, b); 12522 sum += do_usad(a >> 8, b >> 8); 12523 sum += do_usad(a >> 16, b >> 16); 12524 sum += do_usad(a >> 24, b >> 24); 12525 return sum; 12526 } 12527 12528 /* For ARMv6 SEL instruction. */ 12529 uint32_t HELPER(sel_flags)(uint32_t flags, uint32_t a, uint32_t b) 12530 { 12531 uint32_t mask; 12532 12533 mask = 0; 12534 if (flags & 1) 12535 mask |= 0xff; 12536 if (flags & 2) 12537 mask |= 0xff00; 12538 if (flags & 4) 12539 mask |= 0xff0000; 12540 if (flags & 8) 12541 mask |= 0xff000000; 12542 return (a & mask) | (b & ~mask); 12543 } 12544 12545 /* CRC helpers. 12546 * The upper bytes of val (above the number specified by 'bytes') must have 12547 * been zeroed out by the caller. 12548 */ 12549 uint32_t HELPER(crc32)(uint32_t acc, uint32_t val, uint32_t bytes) 12550 { 12551 uint8_t buf[4]; 12552 12553 stl_le_p(buf, val); 12554 12555 /* zlib crc32 converts the accumulator and output to one's complement. */ 12556 return crc32(acc ^ 0xffffffff, buf, bytes) ^ 0xffffffff; 12557 } 12558 12559 uint32_t HELPER(crc32c)(uint32_t acc, uint32_t val, uint32_t bytes) 12560 { 12561 uint8_t buf[4]; 12562 12563 stl_le_p(buf, val); 12564 12565 /* Linux crc32c converts the output to one's complement. */ 12566 return crc32c(acc, buf, bytes) ^ 0xffffffff; 12567 } 12568 12569 /* Return the exception level to which FP-disabled exceptions should 12570 * be taken, or 0 if FP is enabled. 12571 */ 12572 int fp_exception_el(CPUARMState *env, int cur_el) 12573 { 12574 #ifndef CONFIG_USER_ONLY 12575 /* CPACR and the CPTR registers don't exist before v6, so FP is 12576 * always accessible 12577 */ 12578 if (!arm_feature(env, ARM_FEATURE_V6)) { 12579 return 0; 12580 } 12581 12582 if (arm_feature(env, ARM_FEATURE_M)) { 12583 /* CPACR can cause a NOCP UsageFault taken to current security state */ 12584 if (!v7m_cpacr_pass(env, env->v7m.secure, cur_el != 0)) { 12585 return 1; 12586 } 12587 12588 if (arm_feature(env, ARM_FEATURE_M_SECURITY) && !env->v7m.secure) { 12589 if (!extract32(env->v7m.nsacr, 10, 1)) { 12590 /* FP insns cause a NOCP UsageFault taken to Secure */ 12591 return 3; 12592 } 12593 } 12594 12595 return 0; 12596 } 12597 12598 /* The CPACR controls traps to EL1, or PL1 if we're 32 bit: 12599 * 0, 2 : trap EL0 and EL1/PL1 accesses 12600 * 1 : trap only EL0 accesses 12601 * 3 : trap no accesses 12602 * This register is ignored if E2H+TGE are both set. 12603 */ 12604 if ((arm_hcr_el2_eff(env) & (HCR_E2H | HCR_TGE)) != (HCR_E2H | HCR_TGE)) { 12605 int fpen = extract32(env->cp15.cpacr_el1, 20, 2); 12606 12607 switch (fpen) { 12608 case 0: 12609 case 2: 12610 if (cur_el == 0 || cur_el == 1) { 12611 /* Trap to PL1, which might be EL1 or EL3 */ 12612 if (arm_is_secure(env) && !arm_el_is_aa64(env, 3)) { 12613 return 3; 12614 } 12615 return 1; 12616 } 12617 if (cur_el == 3 && !is_a64(env)) { 12618 /* Secure PL1 running at EL3 */ 12619 return 3; 12620 } 12621 break; 12622 case 1: 12623 if (cur_el == 0) { 12624 return 1; 12625 } 12626 break; 12627 case 3: 12628 break; 12629 } 12630 } 12631 12632 /* 12633 * The NSACR allows A-profile AArch32 EL3 and M-profile secure mode 12634 * to control non-secure access to the FPU. It doesn't have any 12635 * effect if EL3 is AArch64 or if EL3 doesn't exist at all. 12636 */ 12637 if ((arm_feature(env, ARM_FEATURE_EL3) && !arm_el_is_aa64(env, 3) && 12638 cur_el <= 2 && !arm_is_secure_below_el3(env))) { 12639 if (!extract32(env->cp15.nsacr, 10, 1)) { 12640 /* FP insns act as UNDEF */ 12641 return cur_el == 2 ? 2 : 1; 12642 } 12643 } 12644 12645 /* For the CPTR registers we don't need to guard with an ARM_FEATURE 12646 * check because zero bits in the registers mean "don't trap". 12647 */ 12648 12649 /* CPTR_EL2 : present in v7VE or v8 */ 12650 if (cur_el <= 2 && extract32(env->cp15.cptr_el[2], 10, 1) 12651 && !arm_is_secure_below_el3(env)) { 12652 /* Trap FP ops at EL2, NS-EL1 or NS-EL0 to EL2 */ 12653 return 2; 12654 } 12655 12656 /* CPTR_EL3 : present in v8 */ 12657 if (extract32(env->cp15.cptr_el[3], 10, 1)) { 12658 /* Trap all FP ops to EL3 */ 12659 return 3; 12660 } 12661 #endif 12662 return 0; 12663 } 12664 12665 /* Return the exception level we're running at if this is our mmu_idx */ 12666 int arm_mmu_idx_to_el(ARMMMUIdx mmu_idx) 12667 { 12668 if (mmu_idx & ARM_MMU_IDX_M) { 12669 return mmu_idx & ARM_MMU_IDX_M_PRIV; 12670 } 12671 12672 switch (mmu_idx) { 12673 case ARMMMUIdx_E10_0: 12674 case ARMMMUIdx_E20_0: 12675 case ARMMMUIdx_SE10_0: 12676 return 0; 12677 case ARMMMUIdx_E10_1: 12678 case ARMMMUIdx_E10_1_PAN: 12679 case ARMMMUIdx_SE10_1: 12680 case ARMMMUIdx_SE10_1_PAN: 12681 return 1; 12682 case ARMMMUIdx_E2: 12683 case ARMMMUIdx_E20_2: 12684 case ARMMMUIdx_E20_2_PAN: 12685 return 2; 12686 case ARMMMUIdx_SE3: 12687 return 3; 12688 default: 12689 g_assert_not_reached(); 12690 } 12691 } 12692 12693 #ifndef CONFIG_TCG 12694 ARMMMUIdx arm_v7m_mmu_idx_for_secstate(CPUARMState *env, bool secstate) 12695 { 12696 g_assert_not_reached(); 12697 } 12698 #endif 12699 12700 ARMMMUIdx arm_mmu_idx_el(CPUARMState *env, int el) 12701 { 12702 if (arm_feature(env, ARM_FEATURE_M)) { 12703 return arm_v7m_mmu_idx_for_secstate(env, env->v7m.secure); 12704 } 12705 12706 /* See ARM pseudo-function ELIsInHost. */ 12707 switch (el) { 12708 case 0: 12709 if (arm_is_secure_below_el3(env)) { 12710 return ARMMMUIdx_SE10_0; 12711 } 12712 if ((env->cp15.hcr_el2 & (HCR_E2H | HCR_TGE)) == (HCR_E2H | HCR_TGE) 12713 && arm_el_is_aa64(env, 2)) { 12714 return ARMMMUIdx_E20_0; 12715 } 12716 return ARMMMUIdx_E10_0; 12717 case 1: 12718 if (arm_is_secure_below_el3(env)) { 12719 if (env->pstate & PSTATE_PAN) { 12720 return ARMMMUIdx_SE10_1_PAN; 12721 } 12722 return ARMMMUIdx_SE10_1; 12723 } 12724 if (env->pstate & PSTATE_PAN) { 12725 return ARMMMUIdx_E10_1_PAN; 12726 } 12727 return ARMMMUIdx_E10_1; 12728 case 2: 12729 /* TODO: ARMv8.4-SecEL2 */ 12730 /* Note that TGE does not apply at EL2. */ 12731 if ((env->cp15.hcr_el2 & HCR_E2H) && arm_el_is_aa64(env, 2)) { 12732 if (env->pstate & PSTATE_PAN) { 12733 return ARMMMUIdx_E20_2_PAN; 12734 } 12735 return ARMMMUIdx_E20_2; 12736 } 12737 return ARMMMUIdx_E2; 12738 case 3: 12739 return ARMMMUIdx_SE3; 12740 default: 12741 g_assert_not_reached(); 12742 } 12743 } 12744 12745 ARMMMUIdx arm_mmu_idx(CPUARMState *env) 12746 { 12747 return arm_mmu_idx_el(env, arm_current_el(env)); 12748 } 12749 12750 #ifndef CONFIG_USER_ONLY 12751 ARMMMUIdx arm_stage1_mmu_idx(CPUARMState *env) 12752 { 12753 return stage_1_mmu_idx(arm_mmu_idx(env)); 12754 } 12755 #endif 12756 12757 static uint32_t rebuild_hflags_common(CPUARMState *env, int fp_el, 12758 ARMMMUIdx mmu_idx, uint32_t flags) 12759 { 12760 flags = FIELD_DP32(flags, TBFLAG_ANY, FPEXC_EL, fp_el); 12761 flags = FIELD_DP32(flags, TBFLAG_ANY, MMUIDX, 12762 arm_to_core_mmu_idx(mmu_idx)); 12763 12764 if (arm_singlestep_active(env)) { 12765 flags = FIELD_DP32(flags, TBFLAG_ANY, SS_ACTIVE, 1); 12766 } 12767 return flags; 12768 } 12769 12770 static uint32_t rebuild_hflags_common_32(CPUARMState *env, int fp_el, 12771 ARMMMUIdx mmu_idx, uint32_t flags) 12772 { 12773 bool sctlr_b = arm_sctlr_b(env); 12774 12775 if (sctlr_b) { 12776 flags = FIELD_DP32(flags, TBFLAG_A32, SCTLR_B, 1); 12777 } 12778 if (arm_cpu_data_is_big_endian_a32(env, sctlr_b)) { 12779 flags = FIELD_DP32(flags, TBFLAG_ANY, BE_DATA, 1); 12780 } 12781 flags = FIELD_DP32(flags, TBFLAG_A32, NS, !access_secure_reg(env)); 12782 12783 return rebuild_hflags_common(env, fp_el, mmu_idx, flags); 12784 } 12785 12786 static uint32_t rebuild_hflags_m32(CPUARMState *env, int fp_el, 12787 ARMMMUIdx mmu_idx) 12788 { 12789 uint32_t flags = 0; 12790 12791 if (arm_v7m_is_handler_mode(env)) { 12792 flags = FIELD_DP32(flags, TBFLAG_M32, HANDLER, 1); 12793 } 12794 12795 /* 12796 * v8M always applies stack limit checks unless CCR.STKOFHFNMIGN 12797 * is suppressing them because the requested execution priority 12798 * is less than 0. 12799 */ 12800 if (arm_feature(env, ARM_FEATURE_V8) && 12801 !((mmu_idx & ARM_MMU_IDX_M_NEGPRI) && 12802 (env->v7m.ccr[env->v7m.secure] & R_V7M_CCR_STKOFHFNMIGN_MASK))) { 12803 flags = FIELD_DP32(flags, TBFLAG_M32, STACKCHECK, 1); 12804 } 12805 12806 return rebuild_hflags_common_32(env, fp_el, mmu_idx, flags); 12807 } 12808 12809 static uint32_t rebuild_hflags_aprofile(CPUARMState *env) 12810 { 12811 int flags = 0; 12812 12813 flags = FIELD_DP32(flags, TBFLAG_ANY, DEBUG_TARGET_EL, 12814 arm_debug_target_el(env)); 12815 return flags; 12816 } 12817 12818 static uint32_t rebuild_hflags_a32(CPUARMState *env, int fp_el, 12819 ARMMMUIdx mmu_idx) 12820 { 12821 uint32_t flags = rebuild_hflags_aprofile(env); 12822 12823 if (arm_el_is_aa64(env, 1)) { 12824 flags = FIELD_DP32(flags, TBFLAG_A32, VFPEN, 1); 12825 } 12826 12827 if (arm_current_el(env) < 2 && env->cp15.hstr_el2 && 12828 (arm_hcr_el2_eff(env) & (HCR_E2H | HCR_TGE)) != (HCR_E2H | HCR_TGE)) { 12829 flags = FIELD_DP32(flags, TBFLAG_A32, HSTR_ACTIVE, 1); 12830 } 12831 12832 return rebuild_hflags_common_32(env, fp_el, mmu_idx, flags); 12833 } 12834 12835 static uint32_t rebuild_hflags_a64(CPUARMState *env, int el, int fp_el, 12836 ARMMMUIdx mmu_idx) 12837 { 12838 uint32_t flags = rebuild_hflags_aprofile(env); 12839 ARMMMUIdx stage1 = stage_1_mmu_idx(mmu_idx); 12840 uint64_t tcr = regime_tcr(env, mmu_idx)->raw_tcr; 12841 uint64_t sctlr; 12842 int tbii, tbid; 12843 12844 flags = FIELD_DP32(flags, TBFLAG_ANY, AARCH64_STATE, 1); 12845 12846 /* Get control bits for tagged addresses. */ 12847 tbid = aa64_va_parameter_tbi(tcr, mmu_idx); 12848 tbii = tbid & ~aa64_va_parameter_tbid(tcr, mmu_idx); 12849 12850 flags = FIELD_DP32(flags, TBFLAG_A64, TBII, tbii); 12851 flags = FIELD_DP32(flags, TBFLAG_A64, TBID, tbid); 12852 12853 if (cpu_isar_feature(aa64_sve, env_archcpu(env))) { 12854 int sve_el = sve_exception_el(env, el); 12855 uint32_t zcr_len; 12856 12857 /* 12858 * If SVE is disabled, but FP is enabled, 12859 * then the effective len is 0. 12860 */ 12861 if (sve_el != 0 && fp_el == 0) { 12862 zcr_len = 0; 12863 } else { 12864 zcr_len = sve_zcr_len_for_el(env, el); 12865 } 12866 flags = FIELD_DP32(flags, TBFLAG_A64, SVEEXC_EL, sve_el); 12867 flags = FIELD_DP32(flags, TBFLAG_A64, ZCR_LEN, zcr_len); 12868 } 12869 12870 sctlr = regime_sctlr(env, stage1); 12871 12872 if (arm_cpu_data_is_big_endian_a64(el, sctlr)) { 12873 flags = FIELD_DP32(flags, TBFLAG_ANY, BE_DATA, 1); 12874 } 12875 12876 if (cpu_isar_feature(aa64_pauth, env_archcpu(env))) { 12877 /* 12878 * In order to save space in flags, we record only whether 12879 * pauth is "inactive", meaning all insns are implemented as 12880 * a nop, or "active" when some action must be performed. 12881 * The decision of which action to take is left to a helper. 12882 */ 12883 if (sctlr & (SCTLR_EnIA | SCTLR_EnIB | SCTLR_EnDA | SCTLR_EnDB)) { 12884 flags = FIELD_DP32(flags, TBFLAG_A64, PAUTH_ACTIVE, 1); 12885 } 12886 } 12887 12888 if (cpu_isar_feature(aa64_bti, env_archcpu(env))) { 12889 /* Note that SCTLR_EL[23].BT == SCTLR_BT1. */ 12890 if (sctlr & (el == 0 ? SCTLR_BT0 : SCTLR_BT1)) { 12891 flags = FIELD_DP32(flags, TBFLAG_A64, BT, 1); 12892 } 12893 } 12894 12895 /* Compute the condition for using AccType_UNPRIV for LDTR et al. */ 12896 if (!(env->pstate & PSTATE_UAO)) { 12897 switch (mmu_idx) { 12898 case ARMMMUIdx_E10_1: 12899 case ARMMMUIdx_E10_1_PAN: 12900 case ARMMMUIdx_SE10_1: 12901 case ARMMMUIdx_SE10_1_PAN: 12902 /* TODO: ARMv8.3-NV */ 12903 flags = FIELD_DP32(flags, TBFLAG_A64, UNPRIV, 1); 12904 break; 12905 case ARMMMUIdx_E20_2: 12906 case ARMMMUIdx_E20_2_PAN: 12907 /* TODO: ARMv8.4-SecEL2 */ 12908 /* 12909 * Note that EL20_2 is gated by HCR_EL2.E2H == 1, but EL20_0 is 12910 * gated by HCR_EL2.<E2H,TGE> == '11', and so is LDTR. 12911 */ 12912 if (env->cp15.hcr_el2 & HCR_TGE) { 12913 flags = FIELD_DP32(flags, TBFLAG_A64, UNPRIV, 1); 12914 } 12915 break; 12916 default: 12917 break; 12918 } 12919 } 12920 12921 if (cpu_isar_feature(aa64_mte, env_archcpu(env))) { 12922 /* 12923 * Set MTE_ACTIVE if any access may be Checked, and leave clear 12924 * if all accesses must be Unchecked: 12925 * 1) If no TBI, then there are no tags in the address to check, 12926 * 2) If Tag Check Override, then all accesses are Unchecked, 12927 * 3) If Tag Check Fail == 0, then Checked access have no effect, 12928 * 4) If no Allocation Tag Access, then all accesses are Unchecked. 12929 */ 12930 if (allocation_tag_access_enabled(env, el, sctlr)) { 12931 flags = FIELD_DP32(flags, TBFLAG_A64, ATA, 1); 12932 if (tbid 12933 && !(env->pstate & PSTATE_TCO) 12934 && (sctlr & (el == 0 ? SCTLR_TCF0 : SCTLR_TCF))) { 12935 flags = FIELD_DP32(flags, TBFLAG_A64, MTE_ACTIVE, 1); 12936 } 12937 } 12938 /* And again for unprivileged accesses, if required. */ 12939 if (FIELD_EX32(flags, TBFLAG_A64, UNPRIV) 12940 && tbid 12941 && !(env->pstate & PSTATE_TCO) 12942 && (sctlr & SCTLR_TCF) 12943 && allocation_tag_access_enabled(env, 0, sctlr)) { 12944 flags = FIELD_DP32(flags, TBFLAG_A64, MTE0_ACTIVE, 1); 12945 } 12946 /* Cache TCMA as well as TBI. */ 12947 flags = FIELD_DP32(flags, TBFLAG_A64, TCMA, 12948 aa64_va_parameter_tcma(tcr, mmu_idx)); 12949 } 12950 12951 return rebuild_hflags_common(env, fp_el, mmu_idx, flags); 12952 } 12953 12954 static uint32_t rebuild_hflags_internal(CPUARMState *env) 12955 { 12956 int el = arm_current_el(env); 12957 int fp_el = fp_exception_el(env, el); 12958 ARMMMUIdx mmu_idx = arm_mmu_idx_el(env, el); 12959 12960 if (is_a64(env)) { 12961 return rebuild_hflags_a64(env, el, fp_el, mmu_idx); 12962 } else if (arm_feature(env, ARM_FEATURE_M)) { 12963 return rebuild_hflags_m32(env, fp_el, mmu_idx); 12964 } else { 12965 return rebuild_hflags_a32(env, fp_el, mmu_idx); 12966 } 12967 } 12968 12969 void arm_rebuild_hflags(CPUARMState *env) 12970 { 12971 env->hflags = rebuild_hflags_internal(env); 12972 } 12973 12974 /* 12975 * If we have triggered a EL state change we can't rely on the 12976 * translator having passed it to us, we need to recompute. 12977 */ 12978 void HELPER(rebuild_hflags_m32_newel)(CPUARMState *env) 12979 { 12980 int el = arm_current_el(env); 12981 int fp_el = fp_exception_el(env, el); 12982 ARMMMUIdx mmu_idx = arm_mmu_idx_el(env, el); 12983 env->hflags = rebuild_hflags_m32(env, fp_el, mmu_idx); 12984 } 12985 12986 void HELPER(rebuild_hflags_m32)(CPUARMState *env, int el) 12987 { 12988 int fp_el = fp_exception_el(env, el); 12989 ARMMMUIdx mmu_idx = arm_mmu_idx_el(env, el); 12990 12991 env->hflags = rebuild_hflags_m32(env, fp_el, mmu_idx); 12992 } 12993 12994 /* 12995 * If we have triggered a EL state change we can't rely on the 12996 * translator having passed it to us, we need to recompute. 12997 */ 12998 void HELPER(rebuild_hflags_a32_newel)(CPUARMState *env) 12999 { 13000 int el = arm_current_el(env); 13001 int fp_el = fp_exception_el(env, el); 13002 ARMMMUIdx mmu_idx = arm_mmu_idx_el(env, el); 13003 env->hflags = rebuild_hflags_a32(env, fp_el, mmu_idx); 13004 } 13005 13006 void HELPER(rebuild_hflags_a32)(CPUARMState *env, int el) 13007 { 13008 int fp_el = fp_exception_el(env, el); 13009 ARMMMUIdx mmu_idx = arm_mmu_idx_el(env, el); 13010 13011 env->hflags = rebuild_hflags_a32(env, fp_el, mmu_idx); 13012 } 13013 13014 void HELPER(rebuild_hflags_a64)(CPUARMState *env, int el) 13015 { 13016 int fp_el = fp_exception_el(env, el); 13017 ARMMMUIdx mmu_idx = arm_mmu_idx_el(env, el); 13018 13019 env->hflags = rebuild_hflags_a64(env, el, fp_el, mmu_idx); 13020 } 13021 13022 static inline void assert_hflags_rebuild_correctly(CPUARMState *env) 13023 { 13024 #ifdef CONFIG_DEBUG_TCG 13025 uint32_t env_flags_current = env->hflags; 13026 uint32_t env_flags_rebuilt = rebuild_hflags_internal(env); 13027 13028 if (unlikely(env_flags_current != env_flags_rebuilt)) { 13029 fprintf(stderr, "TCG hflags mismatch (current:0x%08x rebuilt:0x%08x)\n", 13030 env_flags_current, env_flags_rebuilt); 13031 abort(); 13032 } 13033 #endif 13034 } 13035 13036 void cpu_get_tb_cpu_state(CPUARMState *env, target_ulong *pc, 13037 target_ulong *cs_base, uint32_t *pflags) 13038 { 13039 uint32_t flags = env->hflags; 13040 uint32_t pstate_for_ss; 13041 13042 *cs_base = 0; 13043 assert_hflags_rebuild_correctly(env); 13044 13045 if (FIELD_EX32(flags, TBFLAG_ANY, AARCH64_STATE)) { 13046 *pc = env->pc; 13047 if (cpu_isar_feature(aa64_bti, env_archcpu(env))) { 13048 flags = FIELD_DP32(flags, TBFLAG_A64, BTYPE, env->btype); 13049 } 13050 pstate_for_ss = env->pstate; 13051 } else { 13052 *pc = env->regs[15]; 13053 13054 if (arm_feature(env, ARM_FEATURE_M)) { 13055 if (arm_feature(env, ARM_FEATURE_M_SECURITY) && 13056 FIELD_EX32(env->v7m.fpccr[M_REG_S], V7M_FPCCR, S) 13057 != env->v7m.secure) { 13058 flags = FIELD_DP32(flags, TBFLAG_M32, FPCCR_S_WRONG, 1); 13059 } 13060 13061 if ((env->v7m.fpccr[env->v7m.secure] & R_V7M_FPCCR_ASPEN_MASK) && 13062 (!(env->v7m.control[M_REG_S] & R_V7M_CONTROL_FPCA_MASK) || 13063 (env->v7m.secure && 13064 !(env->v7m.control[M_REG_S] & R_V7M_CONTROL_SFPA_MASK)))) { 13065 /* 13066 * ASPEN is set, but FPCA/SFPA indicate that there is no 13067 * active FP context; we must create a new FP context before 13068 * executing any FP insn. 13069 */ 13070 flags = FIELD_DP32(flags, TBFLAG_M32, NEW_FP_CTXT_NEEDED, 1); 13071 } 13072 13073 bool is_secure = env->v7m.fpccr[M_REG_S] & R_V7M_FPCCR_S_MASK; 13074 if (env->v7m.fpccr[is_secure] & R_V7M_FPCCR_LSPACT_MASK) { 13075 flags = FIELD_DP32(flags, TBFLAG_M32, LSPACT, 1); 13076 } 13077 } else { 13078 /* 13079 * Note that XSCALE_CPAR shares bits with VECSTRIDE. 13080 * Note that VECLEN+VECSTRIDE are RES0 for M-profile. 13081 */ 13082 if (arm_feature(env, ARM_FEATURE_XSCALE)) { 13083 flags = FIELD_DP32(flags, TBFLAG_A32, 13084 XSCALE_CPAR, env->cp15.c15_cpar); 13085 } else { 13086 flags = FIELD_DP32(flags, TBFLAG_A32, VECLEN, 13087 env->vfp.vec_len); 13088 flags = FIELD_DP32(flags, TBFLAG_A32, VECSTRIDE, 13089 env->vfp.vec_stride); 13090 } 13091 if (env->vfp.xregs[ARM_VFP_FPEXC] & (1 << 30)) { 13092 flags = FIELD_DP32(flags, TBFLAG_A32, VFPEN, 1); 13093 } 13094 } 13095 13096 flags = FIELD_DP32(flags, TBFLAG_AM32, THUMB, env->thumb); 13097 flags = FIELD_DP32(flags, TBFLAG_AM32, CONDEXEC, env->condexec_bits); 13098 pstate_for_ss = env->uncached_cpsr; 13099 } 13100 13101 /* 13102 * The SS_ACTIVE and PSTATE_SS bits correspond to the state machine 13103 * states defined in the ARM ARM for software singlestep: 13104 * SS_ACTIVE PSTATE.SS State 13105 * 0 x Inactive (the TB flag for SS is always 0) 13106 * 1 0 Active-pending 13107 * 1 1 Active-not-pending 13108 * SS_ACTIVE is set in hflags; PSTATE_SS is computed every TB. 13109 */ 13110 if (FIELD_EX32(flags, TBFLAG_ANY, SS_ACTIVE) && 13111 (pstate_for_ss & PSTATE_SS)) { 13112 flags = FIELD_DP32(flags, TBFLAG_ANY, PSTATE_SS, 1); 13113 } 13114 13115 *pflags = flags; 13116 } 13117 13118 #ifdef TARGET_AARCH64 13119 /* 13120 * The manual says that when SVE is enabled and VQ is widened the 13121 * implementation is allowed to zero the previously inaccessible 13122 * portion of the registers. The corollary to that is that when 13123 * SVE is enabled and VQ is narrowed we are also allowed to zero 13124 * the now inaccessible portion of the registers. 13125 * 13126 * The intent of this is that no predicate bit beyond VQ is ever set. 13127 * Which means that some operations on predicate registers themselves 13128 * may operate on full uint64_t or even unrolled across the maximum 13129 * uint64_t[4]. Performing 4 bits of host arithmetic unconditionally 13130 * may well be cheaper than conditionals to restrict the operation 13131 * to the relevant portion of a uint16_t[16]. 13132 */ 13133 void aarch64_sve_narrow_vq(CPUARMState *env, unsigned vq) 13134 { 13135 int i, j; 13136 uint64_t pmask; 13137 13138 assert(vq >= 1 && vq <= ARM_MAX_VQ); 13139 assert(vq <= env_archcpu(env)->sve_max_vq); 13140 13141 /* Zap the high bits of the zregs. */ 13142 for (i = 0; i < 32; i++) { 13143 memset(&env->vfp.zregs[i].d[2 * vq], 0, 16 * (ARM_MAX_VQ - vq)); 13144 } 13145 13146 /* Zap the high bits of the pregs and ffr. */ 13147 pmask = 0; 13148 if (vq & 3) { 13149 pmask = ~(-1ULL << (16 * (vq & 3))); 13150 } 13151 for (j = vq / 4; j < ARM_MAX_VQ / 4; j++) { 13152 for (i = 0; i < 17; ++i) { 13153 env->vfp.pregs[i].p[j] &= pmask; 13154 } 13155 pmask = 0; 13156 } 13157 } 13158 13159 /* 13160 * Notice a change in SVE vector size when changing EL. 13161 */ 13162 void aarch64_sve_change_el(CPUARMState *env, int old_el, 13163 int new_el, bool el0_a64) 13164 { 13165 ARMCPU *cpu = env_archcpu(env); 13166 int old_len, new_len; 13167 bool old_a64, new_a64; 13168 13169 /* Nothing to do if no SVE. */ 13170 if (!cpu_isar_feature(aa64_sve, cpu)) { 13171 return; 13172 } 13173 13174 /* Nothing to do if FP is disabled in either EL. */ 13175 if (fp_exception_el(env, old_el) || fp_exception_el(env, new_el)) { 13176 return; 13177 } 13178 13179 /* 13180 * DDI0584A.d sec 3.2: "If SVE instructions are disabled or trapped 13181 * at ELx, or not available because the EL is in AArch32 state, then 13182 * for all purposes other than a direct read, the ZCR_ELx.LEN field 13183 * has an effective value of 0". 13184 * 13185 * Consider EL2 (aa64, vq=4) -> EL0 (aa32) -> EL1 (aa64, vq=0). 13186 * If we ignore aa32 state, we would fail to see the vq4->vq0 transition 13187 * from EL2->EL1. Thus we go ahead and narrow when entering aa32 so that 13188 * we already have the correct register contents when encountering the 13189 * vq0->vq0 transition between EL0->EL1. 13190 */ 13191 old_a64 = old_el ? arm_el_is_aa64(env, old_el) : el0_a64; 13192 old_len = (old_a64 && !sve_exception_el(env, old_el) 13193 ? sve_zcr_len_for_el(env, old_el) : 0); 13194 new_a64 = new_el ? arm_el_is_aa64(env, new_el) : el0_a64; 13195 new_len = (new_a64 && !sve_exception_el(env, new_el) 13196 ? sve_zcr_len_for_el(env, new_el) : 0); 13197 13198 /* When changing vector length, clear inaccessible state. */ 13199 if (new_len < old_len) { 13200 aarch64_sve_narrow_vq(env, new_len + 1); 13201 } 13202 } 13203 #endif 13204