xref: /openbmc/qemu/target/arm/helper.c (revision bd8db7d905d19dcd514ace40f41580501c80d51f)
1 /*
2  * ARM generic helpers.
3  *
4  * This code is licensed under the GNU GPL v2 or later.
5  *
6  * SPDX-License-Identifier: GPL-2.0-or-later
7  */
8 
9 #include "qemu/osdep.h"
10 #include "qemu/log.h"
11 #include "trace.h"
12 #include "cpu.h"
13 #include "internals.h"
14 #include "exec/helper-proto.h"
15 #include "qemu/main-loop.h"
16 #include "qemu/timer.h"
17 #include "qemu/bitops.h"
18 #include "qemu/crc32c.h"
19 #include "qemu/qemu-print.h"
20 #include "exec/exec-all.h"
21 #include <zlib.h> /* For crc32 */
22 #include "hw/irq.h"
23 #include "sysemu/cpu-timers.h"
24 #include "sysemu/kvm.h"
25 #include "qapi/qapi-commands-machine-target.h"
26 #include "qapi/error.h"
27 #include "qemu/guest-random.h"
28 #ifdef CONFIG_TCG
29 #include "semihosting/common-semi.h"
30 #endif
31 #include "cpregs.h"
32 
33 #define ARM_CPU_FREQ 1000000000 /* FIXME: 1 GHz, should be configurable */
34 
35 static void switch_mode(CPUARMState *env, int mode);
36 
37 static uint64_t raw_read(CPUARMState *env, const ARMCPRegInfo *ri)
38 {
39     assert(ri->fieldoffset);
40     if (cpreg_field_is_64bit(ri)) {
41         return CPREG_FIELD64(env, ri);
42     } else {
43         return CPREG_FIELD32(env, ri);
44     }
45 }
46 
47 void raw_write(CPUARMState *env, const ARMCPRegInfo *ri, uint64_t value)
48 {
49     assert(ri->fieldoffset);
50     if (cpreg_field_is_64bit(ri)) {
51         CPREG_FIELD64(env, ri) = value;
52     } else {
53         CPREG_FIELD32(env, ri) = value;
54     }
55 }
56 
57 static void *raw_ptr(CPUARMState *env, const ARMCPRegInfo *ri)
58 {
59     return (char *)env + ri->fieldoffset;
60 }
61 
62 uint64_t read_raw_cp_reg(CPUARMState *env, const ARMCPRegInfo *ri)
63 {
64     /* Raw read of a coprocessor register (as needed for migration, etc). */
65     if (ri->type & ARM_CP_CONST) {
66         return ri->resetvalue;
67     } else if (ri->raw_readfn) {
68         return ri->raw_readfn(env, ri);
69     } else if (ri->readfn) {
70         return ri->readfn(env, ri);
71     } else {
72         return raw_read(env, ri);
73     }
74 }
75 
76 static void write_raw_cp_reg(CPUARMState *env, const ARMCPRegInfo *ri,
77                              uint64_t v)
78 {
79     /*
80      * Raw write of a coprocessor register (as needed for migration, etc).
81      * Note that constant registers are treated as write-ignored; the
82      * caller should check for success by whether a readback gives the
83      * value written.
84      */
85     if (ri->type & ARM_CP_CONST) {
86         return;
87     } else if (ri->raw_writefn) {
88         ri->raw_writefn(env, ri, v);
89     } else if (ri->writefn) {
90         ri->writefn(env, ri, v);
91     } else {
92         raw_write(env, ri, v);
93     }
94 }
95 
96 static bool raw_accessors_invalid(const ARMCPRegInfo *ri)
97 {
98    /*
99     * Return true if the regdef would cause an assertion if you called
100     * read_raw_cp_reg() or write_raw_cp_reg() on it (ie if it is a
101     * program bug for it not to have the NO_RAW flag).
102     * NB that returning false here doesn't necessarily mean that calling
103     * read/write_raw_cp_reg() is safe, because we can't distinguish "has
104     * read/write access functions which are safe for raw use" from "has
105     * read/write access functions which have side effects but has forgotten
106     * to provide raw access functions".
107     * The tests here line up with the conditions in read/write_raw_cp_reg()
108     * and assertions in raw_read()/raw_write().
109     */
110     if ((ri->type & ARM_CP_CONST) ||
111         ri->fieldoffset ||
112         ((ri->raw_writefn || ri->writefn) && (ri->raw_readfn || ri->readfn))) {
113         return false;
114     }
115     return true;
116 }
117 
118 bool write_cpustate_to_list(ARMCPU *cpu, bool kvm_sync)
119 {
120     /* Write the coprocessor state from cpu->env to the (index,value) list. */
121     int i;
122     bool ok = true;
123 
124     for (i = 0; i < cpu->cpreg_array_len; i++) {
125         uint32_t regidx = kvm_to_cpreg_id(cpu->cpreg_indexes[i]);
126         const ARMCPRegInfo *ri;
127         uint64_t newval;
128 
129         ri = get_arm_cp_reginfo(cpu->cp_regs, regidx);
130         if (!ri) {
131             ok = false;
132             continue;
133         }
134         if (ri->type & ARM_CP_NO_RAW) {
135             continue;
136         }
137 
138         newval = read_raw_cp_reg(&cpu->env, ri);
139         if (kvm_sync) {
140             /*
141              * Only sync if the previous list->cpustate sync succeeded.
142              * Rather than tracking the success/failure state for every
143              * item in the list, we just recheck "does the raw write we must
144              * have made in write_list_to_cpustate() read back OK" here.
145              */
146             uint64_t oldval = cpu->cpreg_values[i];
147 
148             if (oldval == newval) {
149                 continue;
150             }
151 
152             write_raw_cp_reg(&cpu->env, ri, oldval);
153             if (read_raw_cp_reg(&cpu->env, ri) != oldval) {
154                 continue;
155             }
156 
157             write_raw_cp_reg(&cpu->env, ri, newval);
158         }
159         cpu->cpreg_values[i] = newval;
160     }
161     return ok;
162 }
163 
164 bool write_list_to_cpustate(ARMCPU *cpu)
165 {
166     int i;
167     bool ok = true;
168 
169     for (i = 0; i < cpu->cpreg_array_len; i++) {
170         uint32_t regidx = kvm_to_cpreg_id(cpu->cpreg_indexes[i]);
171         uint64_t v = cpu->cpreg_values[i];
172         const ARMCPRegInfo *ri;
173 
174         ri = get_arm_cp_reginfo(cpu->cp_regs, regidx);
175         if (!ri) {
176             ok = false;
177             continue;
178         }
179         if (ri->type & ARM_CP_NO_RAW) {
180             continue;
181         }
182         /*
183          * Write value and confirm it reads back as written
184          * (to catch read-only registers and partially read-only
185          * registers where the incoming migration value doesn't match)
186          */
187         write_raw_cp_reg(&cpu->env, ri, v);
188         if (read_raw_cp_reg(&cpu->env, ri) != v) {
189             ok = false;
190         }
191     }
192     return ok;
193 }
194 
195 static void add_cpreg_to_list(gpointer key, gpointer opaque)
196 {
197     ARMCPU *cpu = opaque;
198     uint32_t regidx = (uintptr_t)key;
199     const ARMCPRegInfo *ri = get_arm_cp_reginfo(cpu->cp_regs, regidx);
200 
201     if (!(ri->type & (ARM_CP_NO_RAW | ARM_CP_ALIAS))) {
202         cpu->cpreg_indexes[cpu->cpreg_array_len] = cpreg_to_kvm_id(regidx);
203         /* The value array need not be initialized at this point */
204         cpu->cpreg_array_len++;
205     }
206 }
207 
208 static void count_cpreg(gpointer key, gpointer opaque)
209 {
210     ARMCPU *cpu = opaque;
211     const ARMCPRegInfo *ri;
212 
213     ri = g_hash_table_lookup(cpu->cp_regs, key);
214 
215     if (!(ri->type & (ARM_CP_NO_RAW | ARM_CP_ALIAS))) {
216         cpu->cpreg_array_len++;
217     }
218 }
219 
220 static gint cpreg_key_compare(gconstpointer a, gconstpointer b)
221 {
222     uint64_t aidx = cpreg_to_kvm_id((uintptr_t)a);
223     uint64_t bidx = cpreg_to_kvm_id((uintptr_t)b);
224 
225     if (aidx > bidx) {
226         return 1;
227     }
228     if (aidx < bidx) {
229         return -1;
230     }
231     return 0;
232 }
233 
234 void init_cpreg_list(ARMCPU *cpu)
235 {
236     /*
237      * Initialise the cpreg_tuples[] array based on the cp_regs hash.
238      * Note that we require cpreg_tuples[] to be sorted by key ID.
239      */
240     GList *keys;
241     int arraylen;
242 
243     keys = g_hash_table_get_keys(cpu->cp_regs);
244     keys = g_list_sort(keys, cpreg_key_compare);
245 
246     cpu->cpreg_array_len = 0;
247 
248     g_list_foreach(keys, count_cpreg, cpu);
249 
250     arraylen = cpu->cpreg_array_len;
251     cpu->cpreg_indexes = g_new(uint64_t, arraylen);
252     cpu->cpreg_values = g_new(uint64_t, arraylen);
253     cpu->cpreg_vmstate_indexes = g_new(uint64_t, arraylen);
254     cpu->cpreg_vmstate_values = g_new(uint64_t, arraylen);
255     cpu->cpreg_vmstate_array_len = cpu->cpreg_array_len;
256     cpu->cpreg_array_len = 0;
257 
258     g_list_foreach(keys, add_cpreg_to_list, cpu);
259 
260     assert(cpu->cpreg_array_len == arraylen);
261 
262     g_list_free(keys);
263 }
264 
265 /*
266  * Some registers are not accessible from AArch32 EL3 if SCR.NS == 0.
267  */
268 static CPAccessResult access_el3_aa32ns(CPUARMState *env,
269                                         const ARMCPRegInfo *ri,
270                                         bool isread)
271 {
272     if (!is_a64(env) && arm_current_el(env) == 3 &&
273         arm_is_secure_below_el3(env)) {
274         return CP_ACCESS_TRAP_UNCATEGORIZED;
275     }
276     return CP_ACCESS_OK;
277 }
278 
279 /*
280  * Some secure-only AArch32 registers trap to EL3 if used from
281  * Secure EL1 (but are just ordinary UNDEF in other non-EL3 contexts).
282  * Note that an access from Secure EL1 can only happen if EL3 is AArch64.
283  * We assume that the .access field is set to PL1_RW.
284  */
285 static CPAccessResult access_trap_aa32s_el1(CPUARMState *env,
286                                             const ARMCPRegInfo *ri,
287                                             bool isread)
288 {
289     if (arm_current_el(env) == 3) {
290         return CP_ACCESS_OK;
291     }
292     if (arm_is_secure_below_el3(env)) {
293         if (env->cp15.scr_el3 & SCR_EEL2) {
294             return CP_ACCESS_TRAP_EL2;
295         }
296         return CP_ACCESS_TRAP_EL3;
297     }
298     /* This will be EL1 NS and EL2 NS, which just UNDEF */
299     return CP_ACCESS_TRAP_UNCATEGORIZED;
300 }
301 
302 /*
303  * Check for traps to performance monitor registers, which are controlled
304  * by MDCR_EL2.TPM for EL2 and MDCR_EL3.TPM for EL3.
305  */
306 static CPAccessResult access_tpm(CPUARMState *env, const ARMCPRegInfo *ri,
307                                  bool isread)
308 {
309     int el = arm_current_el(env);
310     uint64_t mdcr_el2 = arm_mdcr_el2_eff(env);
311 
312     if (el < 2 && (mdcr_el2 & MDCR_TPM)) {
313         return CP_ACCESS_TRAP_EL2;
314     }
315     if (el < 3 && (env->cp15.mdcr_el3 & MDCR_TPM)) {
316         return CP_ACCESS_TRAP_EL3;
317     }
318     return CP_ACCESS_OK;
319 }
320 
321 /* Check for traps from EL1 due to HCR_EL2.TVM and HCR_EL2.TRVM.  */
322 static CPAccessResult access_tvm_trvm(CPUARMState *env, const ARMCPRegInfo *ri,
323                                       bool isread)
324 {
325     if (arm_current_el(env) == 1) {
326         uint64_t trap = isread ? HCR_TRVM : HCR_TVM;
327         if (arm_hcr_el2_eff(env) & trap) {
328             return CP_ACCESS_TRAP_EL2;
329         }
330     }
331     return CP_ACCESS_OK;
332 }
333 
334 /* Check for traps from EL1 due to HCR_EL2.TSW.  */
335 static CPAccessResult access_tsw(CPUARMState *env, const ARMCPRegInfo *ri,
336                                  bool isread)
337 {
338     if (arm_current_el(env) == 1 && (arm_hcr_el2_eff(env) & HCR_TSW)) {
339         return CP_ACCESS_TRAP_EL2;
340     }
341     return CP_ACCESS_OK;
342 }
343 
344 /* Check for traps from EL1 due to HCR_EL2.TACR.  */
345 static CPAccessResult access_tacr(CPUARMState *env, const ARMCPRegInfo *ri,
346                                   bool isread)
347 {
348     if (arm_current_el(env) == 1 && (arm_hcr_el2_eff(env) & HCR_TACR)) {
349         return CP_ACCESS_TRAP_EL2;
350     }
351     return CP_ACCESS_OK;
352 }
353 
354 /* Check for traps from EL1 due to HCR_EL2.TTLB. */
355 static CPAccessResult access_ttlb(CPUARMState *env, const ARMCPRegInfo *ri,
356                                   bool isread)
357 {
358     if (arm_current_el(env) == 1 && (arm_hcr_el2_eff(env) & HCR_TTLB)) {
359         return CP_ACCESS_TRAP_EL2;
360     }
361     return CP_ACCESS_OK;
362 }
363 
364 /* Check for traps from EL1 due to HCR_EL2.TTLB or TTLBIS. */
365 static CPAccessResult access_ttlbis(CPUARMState *env, const ARMCPRegInfo *ri,
366                                     bool isread)
367 {
368     if (arm_current_el(env) == 1 &&
369         (arm_hcr_el2_eff(env) & (HCR_TTLB | HCR_TTLBIS))) {
370         return CP_ACCESS_TRAP_EL2;
371     }
372     return CP_ACCESS_OK;
373 }
374 
375 #ifdef TARGET_AARCH64
376 /* Check for traps from EL1 due to HCR_EL2.TTLB or TTLBOS. */
377 static CPAccessResult access_ttlbos(CPUARMState *env, const ARMCPRegInfo *ri,
378                                     bool isread)
379 {
380     if (arm_current_el(env) == 1 &&
381         (arm_hcr_el2_eff(env) & (HCR_TTLB | HCR_TTLBOS))) {
382         return CP_ACCESS_TRAP_EL2;
383     }
384     return CP_ACCESS_OK;
385 }
386 #endif
387 
388 static void dacr_write(CPUARMState *env, const ARMCPRegInfo *ri, uint64_t value)
389 {
390     ARMCPU *cpu = env_archcpu(env);
391 
392     raw_write(env, ri, value);
393     tlb_flush(CPU(cpu)); /* Flush TLB as domain not tracked in TLB */
394 }
395 
396 static void fcse_write(CPUARMState *env, const ARMCPRegInfo *ri, uint64_t value)
397 {
398     ARMCPU *cpu = env_archcpu(env);
399 
400     if (raw_read(env, ri) != value) {
401         /*
402          * Unlike real hardware the qemu TLB uses virtual addresses,
403          * not modified virtual addresses, so this causes a TLB flush.
404          */
405         tlb_flush(CPU(cpu));
406         raw_write(env, ri, value);
407     }
408 }
409 
410 static void contextidr_write(CPUARMState *env, const ARMCPRegInfo *ri,
411                              uint64_t value)
412 {
413     ARMCPU *cpu = env_archcpu(env);
414 
415     if (raw_read(env, ri) != value && !arm_feature(env, ARM_FEATURE_PMSA)
416         && !extended_addresses_enabled(env)) {
417         /*
418          * For VMSA (when not using the LPAE long descriptor page table
419          * format) this register includes the ASID, so do a TLB flush.
420          * For PMSA it is purely a process ID and no action is needed.
421          */
422         tlb_flush(CPU(cpu));
423     }
424     raw_write(env, ri, value);
425 }
426 
427 static int alle1_tlbmask(CPUARMState *env)
428 {
429     /*
430      * Note that the 'ALL' scope must invalidate both stage 1 and
431      * stage 2 translations, whereas most other scopes only invalidate
432      * stage 1 translations.
433      */
434     return (ARMMMUIdxBit_E10_1 |
435             ARMMMUIdxBit_E10_1_PAN |
436             ARMMMUIdxBit_E10_0 |
437             ARMMMUIdxBit_Stage2 |
438             ARMMMUIdxBit_Stage2_S);
439 }
440 
441 
442 /* IS variants of TLB operations must affect all cores */
443 static void tlbiall_is_write(CPUARMState *env, const ARMCPRegInfo *ri,
444                              uint64_t value)
445 {
446     CPUState *cs = env_cpu(env);
447 
448     tlb_flush_all_cpus_synced(cs);
449 }
450 
451 static void tlbiasid_is_write(CPUARMState *env, const ARMCPRegInfo *ri,
452                              uint64_t value)
453 {
454     CPUState *cs = env_cpu(env);
455 
456     tlb_flush_all_cpus_synced(cs);
457 }
458 
459 static void tlbimva_is_write(CPUARMState *env, const ARMCPRegInfo *ri,
460                              uint64_t value)
461 {
462     CPUState *cs = env_cpu(env);
463 
464     tlb_flush_page_all_cpus_synced(cs, value & TARGET_PAGE_MASK);
465 }
466 
467 static void tlbimvaa_is_write(CPUARMState *env, const ARMCPRegInfo *ri,
468                              uint64_t value)
469 {
470     CPUState *cs = env_cpu(env);
471 
472     tlb_flush_page_all_cpus_synced(cs, value & TARGET_PAGE_MASK);
473 }
474 
475 /*
476  * Non-IS variants of TLB operations are upgraded to
477  * IS versions if we are at EL1 and HCR_EL2.FB is effectively set to
478  * force broadcast of these operations.
479  */
480 static bool tlb_force_broadcast(CPUARMState *env)
481 {
482     return arm_current_el(env) == 1 && (arm_hcr_el2_eff(env) & HCR_FB);
483 }
484 
485 static void tlbiall_write(CPUARMState *env, const ARMCPRegInfo *ri,
486                           uint64_t value)
487 {
488     /* Invalidate all (TLBIALL) */
489     CPUState *cs = env_cpu(env);
490 
491     if (tlb_force_broadcast(env)) {
492         tlb_flush_all_cpus_synced(cs);
493     } else {
494         tlb_flush(cs);
495     }
496 }
497 
498 static void tlbimva_write(CPUARMState *env, const ARMCPRegInfo *ri,
499                           uint64_t value)
500 {
501     /* Invalidate single TLB entry by MVA and ASID (TLBIMVA) */
502     CPUState *cs = env_cpu(env);
503 
504     value &= TARGET_PAGE_MASK;
505     if (tlb_force_broadcast(env)) {
506         tlb_flush_page_all_cpus_synced(cs, value);
507     } else {
508         tlb_flush_page(cs, value);
509     }
510 }
511 
512 static void tlbiasid_write(CPUARMState *env, const ARMCPRegInfo *ri,
513                            uint64_t value)
514 {
515     /* Invalidate by ASID (TLBIASID) */
516     CPUState *cs = env_cpu(env);
517 
518     if (tlb_force_broadcast(env)) {
519         tlb_flush_all_cpus_synced(cs);
520     } else {
521         tlb_flush(cs);
522     }
523 }
524 
525 static void tlbimvaa_write(CPUARMState *env, const ARMCPRegInfo *ri,
526                            uint64_t value)
527 {
528     /* Invalidate single entry by MVA, all ASIDs (TLBIMVAA) */
529     CPUState *cs = env_cpu(env);
530 
531     value &= TARGET_PAGE_MASK;
532     if (tlb_force_broadcast(env)) {
533         tlb_flush_page_all_cpus_synced(cs, value);
534     } else {
535         tlb_flush_page(cs, value);
536     }
537 }
538 
539 static void tlbiall_nsnh_write(CPUARMState *env, const ARMCPRegInfo *ri,
540                                uint64_t value)
541 {
542     CPUState *cs = env_cpu(env);
543 
544     tlb_flush_by_mmuidx(cs, alle1_tlbmask(env));
545 }
546 
547 static void tlbiall_nsnh_is_write(CPUARMState *env, const ARMCPRegInfo *ri,
548                                   uint64_t value)
549 {
550     CPUState *cs = env_cpu(env);
551 
552     tlb_flush_by_mmuidx_all_cpus_synced(cs, alle1_tlbmask(env));
553 }
554 
555 
556 static void tlbiall_hyp_write(CPUARMState *env, const ARMCPRegInfo *ri,
557                               uint64_t value)
558 {
559     CPUState *cs = env_cpu(env);
560 
561     tlb_flush_by_mmuidx(cs, ARMMMUIdxBit_E2);
562 }
563 
564 static void tlbiall_hyp_is_write(CPUARMState *env, const ARMCPRegInfo *ri,
565                                  uint64_t value)
566 {
567     CPUState *cs = env_cpu(env);
568 
569     tlb_flush_by_mmuidx_all_cpus_synced(cs, ARMMMUIdxBit_E2);
570 }
571 
572 static void tlbimva_hyp_write(CPUARMState *env, const ARMCPRegInfo *ri,
573                               uint64_t value)
574 {
575     CPUState *cs = env_cpu(env);
576     uint64_t pageaddr = value & ~MAKE_64BIT_MASK(0, 12);
577 
578     tlb_flush_page_by_mmuidx(cs, pageaddr, ARMMMUIdxBit_E2);
579 }
580 
581 static void tlbimva_hyp_is_write(CPUARMState *env, const ARMCPRegInfo *ri,
582                                  uint64_t value)
583 {
584     CPUState *cs = env_cpu(env);
585     uint64_t pageaddr = value & ~MAKE_64BIT_MASK(0, 12);
586 
587     tlb_flush_page_by_mmuidx_all_cpus_synced(cs, pageaddr,
588                                              ARMMMUIdxBit_E2);
589 }
590 
591 static void tlbiipas2_hyp_write(CPUARMState *env, const ARMCPRegInfo *ri,
592                                 uint64_t value)
593 {
594     CPUState *cs = env_cpu(env);
595     uint64_t pageaddr = (value & MAKE_64BIT_MASK(0, 28)) << 12;
596 
597     tlb_flush_page_by_mmuidx(cs, pageaddr, ARMMMUIdxBit_Stage2);
598 }
599 
600 static void tlbiipas2is_hyp_write(CPUARMState *env, const ARMCPRegInfo *ri,
601                                 uint64_t value)
602 {
603     CPUState *cs = env_cpu(env);
604     uint64_t pageaddr = (value & MAKE_64BIT_MASK(0, 28)) << 12;
605 
606     tlb_flush_page_by_mmuidx_all_cpus_synced(cs, pageaddr, ARMMMUIdxBit_Stage2);
607 }
608 
609 static const ARMCPRegInfo cp_reginfo[] = {
610     /*
611      * Define the secure and non-secure FCSE identifier CP registers
612      * separately because there is no secure bank in V8 (no _EL3).  This allows
613      * the secure register to be properly reset and migrated. There is also no
614      * v8 EL1 version of the register so the non-secure instance stands alone.
615      */
616     { .name = "FCSEIDR",
617       .cp = 15, .opc1 = 0, .crn = 13, .crm = 0, .opc2 = 0,
618       .access = PL1_RW, .secure = ARM_CP_SECSTATE_NS,
619       .fieldoffset = offsetof(CPUARMState, cp15.fcseidr_ns),
620       .resetvalue = 0, .writefn = fcse_write, .raw_writefn = raw_write, },
621     { .name = "FCSEIDR_S",
622       .cp = 15, .opc1 = 0, .crn = 13, .crm = 0, .opc2 = 0,
623       .access = PL1_RW, .secure = ARM_CP_SECSTATE_S,
624       .fieldoffset = offsetof(CPUARMState, cp15.fcseidr_s),
625       .resetvalue = 0, .writefn = fcse_write, .raw_writefn = raw_write, },
626     /*
627      * Define the secure and non-secure context identifier CP registers
628      * separately because there is no secure bank in V8 (no _EL3).  This allows
629      * the secure register to be properly reset and migrated.  In the
630      * non-secure case, the 32-bit register will have reset and migration
631      * disabled during registration as it is handled by the 64-bit instance.
632      */
633     { .name = "CONTEXTIDR_EL1", .state = ARM_CP_STATE_BOTH,
634       .opc0 = 3, .opc1 = 0, .crn = 13, .crm = 0, .opc2 = 1,
635       .access = PL1_RW, .accessfn = access_tvm_trvm,
636       .fgt = FGT_CONTEXTIDR_EL1,
637       .secure = ARM_CP_SECSTATE_NS,
638       .fieldoffset = offsetof(CPUARMState, cp15.contextidr_el[1]),
639       .resetvalue = 0, .writefn = contextidr_write, .raw_writefn = raw_write, },
640     { .name = "CONTEXTIDR_S", .state = ARM_CP_STATE_AA32,
641       .cp = 15, .opc1 = 0, .crn = 13, .crm = 0, .opc2 = 1,
642       .access = PL1_RW, .accessfn = access_tvm_trvm,
643       .secure = ARM_CP_SECSTATE_S,
644       .fieldoffset = offsetof(CPUARMState, cp15.contextidr_s),
645       .resetvalue = 0, .writefn = contextidr_write, .raw_writefn = raw_write, },
646 };
647 
648 static const ARMCPRegInfo not_v8_cp_reginfo[] = {
649     /*
650      * NB: Some of these registers exist in v8 but with more precise
651      * definitions that don't use CP_ANY wildcards (mostly in v8_cp_reginfo[]).
652      */
653     /* MMU Domain access control / MPU write buffer control */
654     { .name = "DACR",
655       .cp = 15, .opc1 = CP_ANY, .crn = 3, .crm = CP_ANY, .opc2 = CP_ANY,
656       .access = PL1_RW, .accessfn = access_tvm_trvm, .resetvalue = 0,
657       .writefn = dacr_write, .raw_writefn = raw_write,
658       .bank_fieldoffsets = { offsetoflow32(CPUARMState, cp15.dacr_s),
659                              offsetoflow32(CPUARMState, cp15.dacr_ns) } },
660     /*
661      * ARMv7 allocates a range of implementation defined TLB LOCKDOWN regs.
662      * For v6 and v5, these mappings are overly broad.
663      */
664     { .name = "TLB_LOCKDOWN", .cp = 15, .crn = 10, .crm = 0,
665       .opc1 = CP_ANY, .opc2 = CP_ANY, .access = PL1_RW, .type = ARM_CP_NOP },
666     { .name = "TLB_LOCKDOWN", .cp = 15, .crn = 10, .crm = 1,
667       .opc1 = CP_ANY, .opc2 = CP_ANY, .access = PL1_RW, .type = ARM_CP_NOP },
668     { .name = "TLB_LOCKDOWN", .cp = 15, .crn = 10, .crm = 4,
669       .opc1 = CP_ANY, .opc2 = CP_ANY, .access = PL1_RW, .type = ARM_CP_NOP },
670     { .name = "TLB_LOCKDOWN", .cp = 15, .crn = 10, .crm = 8,
671       .opc1 = CP_ANY, .opc2 = CP_ANY, .access = PL1_RW, .type = ARM_CP_NOP },
672     /* Cache maintenance ops; some of this space may be overridden later. */
673     { .name = "CACHEMAINT", .cp = 15, .crn = 7, .crm = CP_ANY,
674       .opc1 = 0, .opc2 = CP_ANY, .access = PL1_W,
675       .type = ARM_CP_NOP | ARM_CP_OVERRIDE },
676 };
677 
678 static const ARMCPRegInfo not_v6_cp_reginfo[] = {
679     /*
680      * Not all pre-v6 cores implemented this WFI, so this is slightly
681      * over-broad.
682      */
683     { .name = "WFI_v5", .cp = 15, .crn = 7, .crm = 8, .opc1 = 0, .opc2 = 2,
684       .access = PL1_W, .type = ARM_CP_WFI },
685 };
686 
687 static const ARMCPRegInfo not_v7_cp_reginfo[] = {
688     /*
689      * Standard v6 WFI (also used in some pre-v6 cores); not in v7 (which
690      * is UNPREDICTABLE; we choose to NOP as most implementations do).
691      */
692     { .name = "WFI_v6", .cp = 15, .crn = 7, .crm = 0, .opc1 = 0, .opc2 = 4,
693       .access = PL1_W, .type = ARM_CP_WFI },
694     /*
695      * L1 cache lockdown. Not architectural in v6 and earlier but in practice
696      * implemented in 926, 946, 1026, 1136, 1176 and 11MPCore. StrongARM and
697      * OMAPCP will override this space.
698      */
699     { .name = "DLOCKDOWN", .cp = 15, .crn = 9, .crm = 0, .opc1 = 0, .opc2 = 0,
700       .access = PL1_RW, .fieldoffset = offsetof(CPUARMState, cp15.c9_data),
701       .resetvalue = 0 },
702     { .name = "ILOCKDOWN", .cp = 15, .crn = 9, .crm = 0, .opc1 = 0, .opc2 = 1,
703       .access = PL1_RW, .fieldoffset = offsetof(CPUARMState, cp15.c9_insn),
704       .resetvalue = 0 },
705     /* v6 doesn't have the cache ID registers but Linux reads them anyway */
706     { .name = "DUMMY", .cp = 15, .crn = 0, .crm = 0, .opc1 = 1, .opc2 = CP_ANY,
707       .access = PL1_R, .type = ARM_CP_CONST | ARM_CP_NO_RAW,
708       .resetvalue = 0 },
709     /*
710      * We don't implement pre-v7 debug but most CPUs had at least a DBGDIDR;
711      * implementing it as RAZ means the "debug architecture version" bits
712      * will read as a reserved value, which should cause Linux to not try
713      * to use the debug hardware.
714      */
715     { .name = "DBGDIDR", .cp = 14, .crn = 0, .crm = 0, .opc1 = 0, .opc2 = 0,
716       .access = PL0_R, .type = ARM_CP_CONST, .resetvalue = 0 },
717     /*
718      * MMU TLB control. Note that the wildcarding means we cover not just
719      * the unified TLB ops but also the dside/iside/inner-shareable variants.
720      */
721     { .name = "TLBIALL", .cp = 15, .crn = 8, .crm = CP_ANY,
722       .opc1 = CP_ANY, .opc2 = 0, .access = PL1_W, .writefn = tlbiall_write,
723       .type = ARM_CP_NO_RAW },
724     { .name = "TLBIMVA", .cp = 15, .crn = 8, .crm = CP_ANY,
725       .opc1 = CP_ANY, .opc2 = 1, .access = PL1_W, .writefn = tlbimva_write,
726       .type = ARM_CP_NO_RAW },
727     { .name = "TLBIASID", .cp = 15, .crn = 8, .crm = CP_ANY,
728       .opc1 = CP_ANY, .opc2 = 2, .access = PL1_W, .writefn = tlbiasid_write,
729       .type = ARM_CP_NO_RAW },
730     { .name = "TLBIMVAA", .cp = 15, .crn = 8, .crm = CP_ANY,
731       .opc1 = CP_ANY, .opc2 = 3, .access = PL1_W, .writefn = tlbimvaa_write,
732       .type = ARM_CP_NO_RAW },
733     { .name = "PRRR", .cp = 15, .crn = 10, .crm = 2,
734       .opc1 = 0, .opc2 = 0, .access = PL1_RW, .type = ARM_CP_NOP },
735     { .name = "NMRR", .cp = 15, .crn = 10, .crm = 2,
736       .opc1 = 0, .opc2 = 1, .access = PL1_RW, .type = ARM_CP_NOP },
737 };
738 
739 static void cpacr_write(CPUARMState *env, const ARMCPRegInfo *ri,
740                         uint64_t value)
741 {
742     uint32_t mask = 0;
743 
744     /* In ARMv8 most bits of CPACR_EL1 are RES0. */
745     if (!arm_feature(env, ARM_FEATURE_V8)) {
746         /*
747          * ARMv7 defines bits for unimplemented coprocessors as RAZ/WI.
748          * ASEDIS [31] and D32DIS [30] are both UNK/SBZP without VFP.
749          * TRCDIS [28] is RAZ/WI since we do not implement a trace macrocell.
750          */
751         if (cpu_isar_feature(aa32_vfp_simd, env_archcpu(env))) {
752             /* VFP coprocessor: cp10 & cp11 [23:20] */
753             mask |= R_CPACR_ASEDIS_MASK |
754                     R_CPACR_D32DIS_MASK |
755                     R_CPACR_CP11_MASK |
756                     R_CPACR_CP10_MASK;
757 
758             if (!arm_feature(env, ARM_FEATURE_NEON)) {
759                 /* ASEDIS [31] bit is RAO/WI */
760                 value |= R_CPACR_ASEDIS_MASK;
761             }
762 
763             /*
764              * VFPv3 and upwards with NEON implement 32 double precision
765              * registers (D0-D31).
766              */
767             if (!cpu_isar_feature(aa32_simd_r32, env_archcpu(env))) {
768                 /* D32DIS [30] is RAO/WI if D16-31 are not implemented. */
769                 value |= R_CPACR_D32DIS_MASK;
770             }
771         }
772         value &= mask;
773     }
774 
775     /*
776      * For A-profile AArch32 EL3 (but not M-profile secure mode), if NSACR.CP10
777      * is 0 then CPACR.{CP11,CP10} ignore writes and read as 0b00.
778      */
779     if (arm_feature(env, ARM_FEATURE_EL3) && !arm_el_is_aa64(env, 3) &&
780         !arm_is_secure(env) && !extract32(env->cp15.nsacr, 10, 1)) {
781         mask = R_CPACR_CP11_MASK | R_CPACR_CP10_MASK;
782         value = (value & ~mask) | (env->cp15.cpacr_el1 & mask);
783     }
784 
785     env->cp15.cpacr_el1 = value;
786 }
787 
788 static uint64_t cpacr_read(CPUARMState *env, const ARMCPRegInfo *ri)
789 {
790     /*
791      * For A-profile AArch32 EL3 (but not M-profile secure mode), if NSACR.CP10
792      * is 0 then CPACR.{CP11,CP10} ignore writes and read as 0b00.
793      */
794     uint64_t value = env->cp15.cpacr_el1;
795 
796     if (arm_feature(env, ARM_FEATURE_EL3) && !arm_el_is_aa64(env, 3) &&
797         !arm_is_secure(env) && !extract32(env->cp15.nsacr, 10, 1)) {
798         value = ~(R_CPACR_CP11_MASK | R_CPACR_CP10_MASK);
799     }
800     return value;
801 }
802 
803 
804 static void cpacr_reset(CPUARMState *env, const ARMCPRegInfo *ri)
805 {
806     /*
807      * Call cpacr_write() so that we reset with the correct RAO bits set
808      * for our CPU features.
809      */
810     cpacr_write(env, ri, 0);
811 }
812 
813 static CPAccessResult cpacr_access(CPUARMState *env, const ARMCPRegInfo *ri,
814                                    bool isread)
815 {
816     if (arm_feature(env, ARM_FEATURE_V8)) {
817         /* Check if CPACR accesses are to be trapped to EL2 */
818         if (arm_current_el(env) == 1 && arm_is_el2_enabled(env) &&
819             FIELD_EX64(env->cp15.cptr_el[2], CPTR_EL2, TCPAC)) {
820             return CP_ACCESS_TRAP_EL2;
821         /* Check if CPACR accesses are to be trapped to EL3 */
822         } else if (arm_current_el(env) < 3 &&
823                    FIELD_EX64(env->cp15.cptr_el[3], CPTR_EL3, TCPAC)) {
824             return CP_ACCESS_TRAP_EL3;
825         }
826     }
827 
828     return CP_ACCESS_OK;
829 }
830 
831 static CPAccessResult cptr_access(CPUARMState *env, const ARMCPRegInfo *ri,
832                                   bool isread)
833 {
834     /* Check if CPTR accesses are set to trap to EL3 */
835     if (arm_current_el(env) == 2 &&
836         FIELD_EX64(env->cp15.cptr_el[3], CPTR_EL3, TCPAC)) {
837         return CP_ACCESS_TRAP_EL3;
838     }
839 
840     return CP_ACCESS_OK;
841 }
842 
843 static const ARMCPRegInfo v6_cp_reginfo[] = {
844     /* prefetch by MVA in v6, NOP in v7 */
845     { .name = "MVA_prefetch",
846       .cp = 15, .crn = 7, .crm = 13, .opc1 = 0, .opc2 = 1,
847       .access = PL1_W, .type = ARM_CP_NOP },
848     /*
849      * We need to break the TB after ISB to execute self-modifying code
850      * correctly and also to take any pending interrupts immediately.
851      * So use arm_cp_write_ignore() function instead of ARM_CP_NOP flag.
852      */
853     { .name = "ISB", .cp = 15, .crn = 7, .crm = 5, .opc1 = 0, .opc2 = 4,
854       .access = PL0_W, .type = ARM_CP_NO_RAW, .writefn = arm_cp_write_ignore },
855     { .name = "DSB", .cp = 15, .crn = 7, .crm = 10, .opc1 = 0, .opc2 = 4,
856       .access = PL0_W, .type = ARM_CP_NOP },
857     { .name = "DMB", .cp = 15, .crn = 7, .crm = 10, .opc1 = 0, .opc2 = 5,
858       .access = PL0_W, .type = ARM_CP_NOP },
859     { .name = "IFAR", .cp = 15, .crn = 6, .crm = 0, .opc1 = 0, .opc2 = 2,
860       .access = PL1_RW, .accessfn = access_tvm_trvm,
861       .bank_fieldoffsets = { offsetof(CPUARMState, cp15.ifar_s),
862                              offsetof(CPUARMState, cp15.ifar_ns) },
863       .resetvalue = 0, },
864     /*
865      * Watchpoint Fault Address Register : should actually only be present
866      * for 1136, 1176, 11MPCore.
867      */
868     { .name = "WFAR", .cp = 15, .crn = 6, .crm = 0, .opc1 = 0, .opc2 = 1,
869       .access = PL1_RW, .type = ARM_CP_CONST, .resetvalue = 0, },
870     { .name = "CPACR", .state = ARM_CP_STATE_BOTH, .opc0 = 3,
871       .crn = 1, .crm = 0, .opc1 = 0, .opc2 = 2, .accessfn = cpacr_access,
872       .fgt = FGT_CPACR_EL1,
873       .access = PL1_RW, .fieldoffset = offsetof(CPUARMState, cp15.cpacr_el1),
874       .resetfn = cpacr_reset, .writefn = cpacr_write, .readfn = cpacr_read },
875 };
876 
877 typedef struct pm_event {
878     uint16_t number; /* PMEVTYPER.evtCount is 16 bits wide */
879     /* If the event is supported on this CPU (used to generate PMCEID[01]) */
880     bool (*supported)(CPUARMState *);
881     /*
882      * Retrieve the current count of the underlying event. The programmed
883      * counters hold a difference from the return value from this function
884      */
885     uint64_t (*get_count)(CPUARMState *);
886     /*
887      * Return how many nanoseconds it will take (at a minimum) for count events
888      * to occur. A negative value indicates the counter will never overflow, or
889      * that the counter has otherwise arranged for the overflow bit to be set
890      * and the PMU interrupt to be raised on overflow.
891      */
892     int64_t (*ns_per_count)(uint64_t);
893 } pm_event;
894 
895 static bool event_always_supported(CPUARMState *env)
896 {
897     return true;
898 }
899 
900 static uint64_t swinc_get_count(CPUARMState *env)
901 {
902     /*
903      * SW_INCR events are written directly to the pmevcntr's by writes to
904      * PMSWINC, so there is no underlying count maintained by the PMU itself
905      */
906     return 0;
907 }
908 
909 static int64_t swinc_ns_per(uint64_t ignored)
910 {
911     return -1;
912 }
913 
914 /*
915  * Return the underlying cycle count for the PMU cycle counters. If we're in
916  * usermode, simply return 0.
917  */
918 static uint64_t cycles_get_count(CPUARMState *env)
919 {
920 #ifndef CONFIG_USER_ONLY
921     return muldiv64(qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL),
922                    ARM_CPU_FREQ, NANOSECONDS_PER_SECOND);
923 #else
924     return cpu_get_host_ticks();
925 #endif
926 }
927 
928 #ifndef CONFIG_USER_ONLY
929 static int64_t cycles_ns_per(uint64_t cycles)
930 {
931     return (ARM_CPU_FREQ / NANOSECONDS_PER_SECOND) * cycles;
932 }
933 
934 static bool instructions_supported(CPUARMState *env)
935 {
936     return icount_enabled() == 1; /* Precise instruction counting */
937 }
938 
939 static uint64_t instructions_get_count(CPUARMState *env)
940 {
941     return (uint64_t)icount_get_raw();
942 }
943 
944 static int64_t instructions_ns_per(uint64_t icount)
945 {
946     return icount_to_ns((int64_t)icount);
947 }
948 #endif
949 
950 static bool pmuv3p1_events_supported(CPUARMState *env)
951 {
952     /* For events which are supported in any v8.1 PMU */
953     return cpu_isar_feature(any_pmuv3p1, env_archcpu(env));
954 }
955 
956 static bool pmuv3p4_events_supported(CPUARMState *env)
957 {
958     /* For events which are supported in any v8.1 PMU */
959     return cpu_isar_feature(any_pmuv3p4, env_archcpu(env));
960 }
961 
962 static uint64_t zero_event_get_count(CPUARMState *env)
963 {
964     /* For events which on QEMU never fire, so their count is always zero */
965     return 0;
966 }
967 
968 static int64_t zero_event_ns_per(uint64_t cycles)
969 {
970     /* An event which never fires can never overflow */
971     return -1;
972 }
973 
974 static const pm_event pm_events[] = {
975     { .number = 0x000, /* SW_INCR */
976       .supported = event_always_supported,
977       .get_count = swinc_get_count,
978       .ns_per_count = swinc_ns_per,
979     },
980 #ifndef CONFIG_USER_ONLY
981     { .number = 0x008, /* INST_RETIRED, Instruction architecturally executed */
982       .supported = instructions_supported,
983       .get_count = instructions_get_count,
984       .ns_per_count = instructions_ns_per,
985     },
986     { .number = 0x011, /* CPU_CYCLES, Cycle */
987       .supported = event_always_supported,
988       .get_count = cycles_get_count,
989       .ns_per_count = cycles_ns_per,
990     },
991 #endif
992     { .number = 0x023, /* STALL_FRONTEND */
993       .supported = pmuv3p1_events_supported,
994       .get_count = zero_event_get_count,
995       .ns_per_count = zero_event_ns_per,
996     },
997     { .number = 0x024, /* STALL_BACKEND */
998       .supported = pmuv3p1_events_supported,
999       .get_count = zero_event_get_count,
1000       .ns_per_count = zero_event_ns_per,
1001     },
1002     { .number = 0x03c, /* STALL */
1003       .supported = pmuv3p4_events_supported,
1004       .get_count = zero_event_get_count,
1005       .ns_per_count = zero_event_ns_per,
1006     },
1007 };
1008 
1009 /*
1010  * Note: Before increasing MAX_EVENT_ID beyond 0x3f into the 0x40xx range of
1011  * events (i.e. the statistical profiling extension), this implementation
1012  * should first be updated to something sparse instead of the current
1013  * supported_event_map[] array.
1014  */
1015 #define MAX_EVENT_ID 0x3c
1016 #define UNSUPPORTED_EVENT UINT16_MAX
1017 static uint16_t supported_event_map[MAX_EVENT_ID + 1];
1018 
1019 /*
1020  * Called upon CPU initialization to initialize PMCEID[01]_EL0 and build a map
1021  * of ARM event numbers to indices in our pm_events array.
1022  *
1023  * Note: Events in the 0x40XX range are not currently supported.
1024  */
1025 void pmu_init(ARMCPU *cpu)
1026 {
1027     unsigned int i;
1028 
1029     /*
1030      * Empty supported_event_map and cpu->pmceid[01] before adding supported
1031      * events to them
1032      */
1033     for (i = 0; i < ARRAY_SIZE(supported_event_map); i++) {
1034         supported_event_map[i] = UNSUPPORTED_EVENT;
1035     }
1036     cpu->pmceid0 = 0;
1037     cpu->pmceid1 = 0;
1038 
1039     for (i = 0; i < ARRAY_SIZE(pm_events); i++) {
1040         const pm_event *cnt = &pm_events[i];
1041         assert(cnt->number <= MAX_EVENT_ID);
1042         /* We do not currently support events in the 0x40xx range */
1043         assert(cnt->number <= 0x3f);
1044 
1045         if (cnt->supported(&cpu->env)) {
1046             supported_event_map[cnt->number] = i;
1047             uint64_t event_mask = 1ULL << (cnt->number & 0x1f);
1048             if (cnt->number & 0x20) {
1049                 cpu->pmceid1 |= event_mask;
1050             } else {
1051                 cpu->pmceid0 |= event_mask;
1052             }
1053         }
1054     }
1055 }
1056 
1057 /*
1058  * Check at runtime whether a PMU event is supported for the current machine
1059  */
1060 static bool event_supported(uint16_t number)
1061 {
1062     if (number > MAX_EVENT_ID) {
1063         return false;
1064     }
1065     return supported_event_map[number] != UNSUPPORTED_EVENT;
1066 }
1067 
1068 static CPAccessResult pmreg_access(CPUARMState *env, const ARMCPRegInfo *ri,
1069                                    bool isread)
1070 {
1071     /*
1072      * Performance monitor registers user accessibility is controlled
1073      * by PMUSERENR. MDCR_EL2.TPM and MDCR_EL3.TPM allow configurable
1074      * trapping to EL2 or EL3 for other accesses.
1075      */
1076     int el = arm_current_el(env);
1077     uint64_t mdcr_el2 = arm_mdcr_el2_eff(env);
1078 
1079     if (el == 0 && !(env->cp15.c9_pmuserenr & 1)) {
1080         return CP_ACCESS_TRAP;
1081     }
1082     if (el < 2 && (mdcr_el2 & MDCR_TPM)) {
1083         return CP_ACCESS_TRAP_EL2;
1084     }
1085     if (el < 3 && (env->cp15.mdcr_el3 & MDCR_TPM)) {
1086         return CP_ACCESS_TRAP_EL3;
1087     }
1088 
1089     return CP_ACCESS_OK;
1090 }
1091 
1092 static CPAccessResult pmreg_access_xevcntr(CPUARMState *env,
1093                                            const ARMCPRegInfo *ri,
1094                                            bool isread)
1095 {
1096     /* ER: event counter read trap control */
1097     if (arm_feature(env, ARM_FEATURE_V8)
1098         && arm_current_el(env) == 0
1099         && (env->cp15.c9_pmuserenr & (1 << 3)) != 0
1100         && isread) {
1101         return CP_ACCESS_OK;
1102     }
1103 
1104     return pmreg_access(env, ri, isread);
1105 }
1106 
1107 static CPAccessResult pmreg_access_swinc(CPUARMState *env,
1108                                          const ARMCPRegInfo *ri,
1109                                          bool isread)
1110 {
1111     /* SW: software increment write trap control */
1112     if (arm_feature(env, ARM_FEATURE_V8)
1113         && arm_current_el(env) == 0
1114         && (env->cp15.c9_pmuserenr & (1 << 1)) != 0
1115         && !isread) {
1116         return CP_ACCESS_OK;
1117     }
1118 
1119     return pmreg_access(env, ri, isread);
1120 }
1121 
1122 static CPAccessResult pmreg_access_selr(CPUARMState *env,
1123                                         const ARMCPRegInfo *ri,
1124                                         bool isread)
1125 {
1126     /* ER: event counter read trap control */
1127     if (arm_feature(env, ARM_FEATURE_V8)
1128         && arm_current_el(env) == 0
1129         && (env->cp15.c9_pmuserenr & (1 << 3)) != 0) {
1130         return CP_ACCESS_OK;
1131     }
1132 
1133     return pmreg_access(env, ri, isread);
1134 }
1135 
1136 static CPAccessResult pmreg_access_ccntr(CPUARMState *env,
1137                                          const ARMCPRegInfo *ri,
1138                                          bool isread)
1139 {
1140     /* CR: cycle counter read trap control */
1141     if (arm_feature(env, ARM_FEATURE_V8)
1142         && arm_current_el(env) == 0
1143         && (env->cp15.c9_pmuserenr & (1 << 2)) != 0
1144         && isread) {
1145         return CP_ACCESS_OK;
1146     }
1147 
1148     return pmreg_access(env, ri, isread);
1149 }
1150 
1151 /*
1152  * Bits in MDCR_EL2 and MDCR_EL3 which pmu_counter_enabled() looks at.
1153  * We use these to decide whether we need to wrap a write to MDCR_EL2
1154  * or MDCR_EL3 in pmu_op_start()/pmu_op_finish() calls.
1155  */
1156 #define MDCR_EL2_PMU_ENABLE_BITS \
1157     (MDCR_HPME | MDCR_HPMD | MDCR_HPMN | MDCR_HCCD | MDCR_HLP)
1158 #define MDCR_EL3_PMU_ENABLE_BITS (MDCR_SPME | MDCR_SCCD)
1159 
1160 /*
1161  * Returns true if the counter (pass 31 for PMCCNTR) should count events using
1162  * the current EL, security state, and register configuration.
1163  */
1164 static bool pmu_counter_enabled(CPUARMState *env, uint8_t counter)
1165 {
1166     uint64_t filter;
1167     bool e, p, u, nsk, nsu, nsh, m;
1168     bool enabled, prohibited = false, filtered;
1169     bool secure = arm_is_secure(env);
1170     int el = arm_current_el(env);
1171     uint64_t mdcr_el2 = arm_mdcr_el2_eff(env);
1172     uint8_t hpmn = mdcr_el2 & MDCR_HPMN;
1173 
1174     if (!arm_feature(env, ARM_FEATURE_PMU)) {
1175         return false;
1176     }
1177 
1178     if (!arm_feature(env, ARM_FEATURE_EL2) ||
1179             (counter < hpmn || counter == 31)) {
1180         e = env->cp15.c9_pmcr & PMCRE;
1181     } else {
1182         e = mdcr_el2 & MDCR_HPME;
1183     }
1184     enabled = e && (env->cp15.c9_pmcnten & (1 << counter));
1185 
1186     /* Is event counting prohibited? */
1187     if (el == 2 && (counter < hpmn || counter == 31)) {
1188         prohibited = mdcr_el2 & MDCR_HPMD;
1189     }
1190     if (secure) {
1191         prohibited = prohibited || !(env->cp15.mdcr_el3 & MDCR_SPME);
1192     }
1193 
1194     if (counter == 31) {
1195         /*
1196          * The cycle counter defaults to running. PMCR.DP says "disable
1197          * the cycle counter when event counting is prohibited".
1198          * Some MDCR bits disable the cycle counter specifically.
1199          */
1200         prohibited = prohibited && env->cp15.c9_pmcr & PMCRDP;
1201         if (cpu_isar_feature(any_pmuv3p5, env_archcpu(env))) {
1202             if (secure) {
1203                 prohibited = prohibited || (env->cp15.mdcr_el3 & MDCR_SCCD);
1204             }
1205             if (el == 2) {
1206                 prohibited = prohibited || (mdcr_el2 & MDCR_HCCD);
1207             }
1208         }
1209     }
1210 
1211     if (counter == 31) {
1212         filter = env->cp15.pmccfiltr_el0;
1213     } else {
1214         filter = env->cp15.c14_pmevtyper[counter];
1215     }
1216 
1217     p   = filter & PMXEVTYPER_P;
1218     u   = filter & PMXEVTYPER_U;
1219     nsk = arm_feature(env, ARM_FEATURE_EL3) && (filter & PMXEVTYPER_NSK);
1220     nsu = arm_feature(env, ARM_FEATURE_EL3) && (filter & PMXEVTYPER_NSU);
1221     nsh = arm_feature(env, ARM_FEATURE_EL2) && (filter & PMXEVTYPER_NSH);
1222     m   = arm_el_is_aa64(env, 1) &&
1223               arm_feature(env, ARM_FEATURE_EL3) && (filter & PMXEVTYPER_M);
1224 
1225     if (el == 0) {
1226         filtered = secure ? u : u != nsu;
1227     } else if (el == 1) {
1228         filtered = secure ? p : p != nsk;
1229     } else if (el == 2) {
1230         filtered = !nsh;
1231     } else { /* EL3 */
1232         filtered = m != p;
1233     }
1234 
1235     if (counter != 31) {
1236         /*
1237          * If not checking PMCCNTR, ensure the counter is setup to an event we
1238          * support
1239          */
1240         uint16_t event = filter & PMXEVTYPER_EVTCOUNT;
1241         if (!event_supported(event)) {
1242             return false;
1243         }
1244     }
1245 
1246     return enabled && !prohibited && !filtered;
1247 }
1248 
1249 static void pmu_update_irq(CPUARMState *env)
1250 {
1251     ARMCPU *cpu = env_archcpu(env);
1252     qemu_set_irq(cpu->pmu_interrupt, (env->cp15.c9_pmcr & PMCRE) &&
1253             (env->cp15.c9_pminten & env->cp15.c9_pmovsr));
1254 }
1255 
1256 static bool pmccntr_clockdiv_enabled(CPUARMState *env)
1257 {
1258     /*
1259      * Return true if the clock divider is enabled and the cycle counter
1260      * is supposed to tick only once every 64 clock cycles. This is
1261      * controlled by PMCR.D, but if PMCR.LC is set to enable the long
1262      * (64-bit) cycle counter PMCR.D has no effect.
1263      */
1264     return (env->cp15.c9_pmcr & (PMCRD | PMCRLC)) == PMCRD;
1265 }
1266 
1267 static bool pmevcntr_is_64_bit(CPUARMState *env, int counter)
1268 {
1269     /* Return true if the specified event counter is configured to be 64 bit */
1270 
1271     /* This isn't intended to be used with the cycle counter */
1272     assert(counter < 31);
1273 
1274     if (!cpu_isar_feature(any_pmuv3p5, env_archcpu(env))) {
1275         return false;
1276     }
1277 
1278     if (arm_feature(env, ARM_FEATURE_EL2)) {
1279         /*
1280          * MDCR_EL2.HLP still applies even when EL2 is disabled in the
1281          * current security state, so we don't use arm_mdcr_el2_eff() here.
1282          */
1283         bool hlp = env->cp15.mdcr_el2 & MDCR_HLP;
1284         int hpmn = env->cp15.mdcr_el2 & MDCR_HPMN;
1285 
1286         if (hpmn != 0 && counter >= hpmn) {
1287             return hlp;
1288         }
1289     }
1290     return env->cp15.c9_pmcr & PMCRLP;
1291 }
1292 
1293 /*
1294  * Ensure c15_ccnt is the guest-visible count so that operations such as
1295  * enabling/disabling the counter or filtering, modifying the count itself,
1296  * etc. can be done logically. This is essentially a no-op if the counter is
1297  * not enabled at the time of the call.
1298  */
1299 static void pmccntr_op_start(CPUARMState *env)
1300 {
1301     uint64_t cycles = cycles_get_count(env);
1302 
1303     if (pmu_counter_enabled(env, 31)) {
1304         uint64_t eff_cycles = cycles;
1305         if (pmccntr_clockdiv_enabled(env)) {
1306             eff_cycles /= 64;
1307         }
1308 
1309         uint64_t new_pmccntr = eff_cycles - env->cp15.c15_ccnt_delta;
1310 
1311         uint64_t overflow_mask = env->cp15.c9_pmcr & PMCRLC ? \
1312                                  1ull << 63 : 1ull << 31;
1313         if (env->cp15.c15_ccnt & ~new_pmccntr & overflow_mask) {
1314             env->cp15.c9_pmovsr |= (1ULL << 31);
1315             pmu_update_irq(env);
1316         }
1317 
1318         env->cp15.c15_ccnt = new_pmccntr;
1319     }
1320     env->cp15.c15_ccnt_delta = cycles;
1321 }
1322 
1323 /*
1324  * If PMCCNTR is enabled, recalculate the delta between the clock and the
1325  * guest-visible count. A call to pmccntr_op_finish should follow every call to
1326  * pmccntr_op_start.
1327  */
1328 static void pmccntr_op_finish(CPUARMState *env)
1329 {
1330     if (pmu_counter_enabled(env, 31)) {
1331 #ifndef CONFIG_USER_ONLY
1332         /* Calculate when the counter will next overflow */
1333         uint64_t remaining_cycles = -env->cp15.c15_ccnt;
1334         if (!(env->cp15.c9_pmcr & PMCRLC)) {
1335             remaining_cycles = (uint32_t)remaining_cycles;
1336         }
1337         int64_t overflow_in = cycles_ns_per(remaining_cycles);
1338 
1339         if (overflow_in > 0) {
1340             int64_t overflow_at;
1341 
1342             if (!sadd64_overflow(qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL),
1343                                  overflow_in, &overflow_at)) {
1344                 ARMCPU *cpu = env_archcpu(env);
1345                 timer_mod_anticipate_ns(cpu->pmu_timer, overflow_at);
1346             }
1347         }
1348 #endif
1349 
1350         uint64_t prev_cycles = env->cp15.c15_ccnt_delta;
1351         if (pmccntr_clockdiv_enabled(env)) {
1352             prev_cycles /= 64;
1353         }
1354         env->cp15.c15_ccnt_delta = prev_cycles - env->cp15.c15_ccnt;
1355     }
1356 }
1357 
1358 static void pmevcntr_op_start(CPUARMState *env, uint8_t counter)
1359 {
1360 
1361     uint16_t event = env->cp15.c14_pmevtyper[counter] & PMXEVTYPER_EVTCOUNT;
1362     uint64_t count = 0;
1363     if (event_supported(event)) {
1364         uint16_t event_idx = supported_event_map[event];
1365         count = pm_events[event_idx].get_count(env);
1366     }
1367 
1368     if (pmu_counter_enabled(env, counter)) {
1369         uint64_t new_pmevcntr = count - env->cp15.c14_pmevcntr_delta[counter];
1370         uint64_t overflow_mask = pmevcntr_is_64_bit(env, counter) ?
1371             1ULL << 63 : 1ULL << 31;
1372 
1373         if (env->cp15.c14_pmevcntr[counter] & ~new_pmevcntr & overflow_mask) {
1374             env->cp15.c9_pmovsr |= (1 << counter);
1375             pmu_update_irq(env);
1376         }
1377         env->cp15.c14_pmevcntr[counter] = new_pmevcntr;
1378     }
1379     env->cp15.c14_pmevcntr_delta[counter] = count;
1380 }
1381 
1382 static void pmevcntr_op_finish(CPUARMState *env, uint8_t counter)
1383 {
1384     if (pmu_counter_enabled(env, counter)) {
1385 #ifndef CONFIG_USER_ONLY
1386         uint16_t event = env->cp15.c14_pmevtyper[counter] & PMXEVTYPER_EVTCOUNT;
1387         uint16_t event_idx = supported_event_map[event];
1388         uint64_t delta = -(env->cp15.c14_pmevcntr[counter] + 1);
1389         int64_t overflow_in;
1390 
1391         if (!pmevcntr_is_64_bit(env, counter)) {
1392             delta = (uint32_t)delta;
1393         }
1394         overflow_in = pm_events[event_idx].ns_per_count(delta);
1395 
1396         if (overflow_in > 0) {
1397             int64_t overflow_at;
1398 
1399             if (!sadd64_overflow(qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL),
1400                                  overflow_in, &overflow_at)) {
1401                 ARMCPU *cpu = env_archcpu(env);
1402                 timer_mod_anticipate_ns(cpu->pmu_timer, overflow_at);
1403             }
1404         }
1405 #endif
1406 
1407         env->cp15.c14_pmevcntr_delta[counter] -=
1408             env->cp15.c14_pmevcntr[counter];
1409     }
1410 }
1411 
1412 void pmu_op_start(CPUARMState *env)
1413 {
1414     unsigned int i;
1415     pmccntr_op_start(env);
1416     for (i = 0; i < pmu_num_counters(env); i++) {
1417         pmevcntr_op_start(env, i);
1418     }
1419 }
1420 
1421 void pmu_op_finish(CPUARMState *env)
1422 {
1423     unsigned int i;
1424     pmccntr_op_finish(env);
1425     for (i = 0; i < pmu_num_counters(env); i++) {
1426         pmevcntr_op_finish(env, i);
1427     }
1428 }
1429 
1430 void pmu_pre_el_change(ARMCPU *cpu, void *ignored)
1431 {
1432     pmu_op_start(&cpu->env);
1433 }
1434 
1435 void pmu_post_el_change(ARMCPU *cpu, void *ignored)
1436 {
1437     pmu_op_finish(&cpu->env);
1438 }
1439 
1440 void arm_pmu_timer_cb(void *opaque)
1441 {
1442     ARMCPU *cpu = opaque;
1443 
1444     /*
1445      * Update all the counter values based on the current underlying counts,
1446      * triggering interrupts to be raised, if necessary. pmu_op_finish() also
1447      * has the effect of setting the cpu->pmu_timer to the next earliest time a
1448      * counter may expire.
1449      */
1450     pmu_op_start(&cpu->env);
1451     pmu_op_finish(&cpu->env);
1452 }
1453 
1454 static void pmcr_write(CPUARMState *env, const ARMCPRegInfo *ri,
1455                        uint64_t value)
1456 {
1457     pmu_op_start(env);
1458 
1459     if (value & PMCRC) {
1460         /* The counter has been reset */
1461         env->cp15.c15_ccnt = 0;
1462     }
1463 
1464     if (value & PMCRP) {
1465         unsigned int i;
1466         for (i = 0; i < pmu_num_counters(env); i++) {
1467             env->cp15.c14_pmevcntr[i] = 0;
1468         }
1469     }
1470 
1471     env->cp15.c9_pmcr &= ~PMCR_WRITABLE_MASK;
1472     env->cp15.c9_pmcr |= (value & PMCR_WRITABLE_MASK);
1473 
1474     pmu_op_finish(env);
1475 }
1476 
1477 static void pmswinc_write(CPUARMState *env, const ARMCPRegInfo *ri,
1478                           uint64_t value)
1479 {
1480     unsigned int i;
1481     uint64_t overflow_mask, new_pmswinc;
1482 
1483     for (i = 0; i < pmu_num_counters(env); i++) {
1484         /* Increment a counter's count iff: */
1485         if ((value & (1 << i)) && /* counter's bit is set */
1486                 /* counter is enabled and not filtered */
1487                 pmu_counter_enabled(env, i) &&
1488                 /* counter is SW_INCR */
1489                 (env->cp15.c14_pmevtyper[i] & PMXEVTYPER_EVTCOUNT) == 0x0) {
1490             pmevcntr_op_start(env, i);
1491 
1492             /*
1493              * Detect if this write causes an overflow since we can't predict
1494              * PMSWINC overflows like we can for other events
1495              */
1496             new_pmswinc = env->cp15.c14_pmevcntr[i] + 1;
1497 
1498             overflow_mask = pmevcntr_is_64_bit(env, i) ?
1499                 1ULL << 63 : 1ULL << 31;
1500 
1501             if (env->cp15.c14_pmevcntr[i] & ~new_pmswinc & overflow_mask) {
1502                 env->cp15.c9_pmovsr |= (1 << i);
1503                 pmu_update_irq(env);
1504             }
1505 
1506             env->cp15.c14_pmevcntr[i] = new_pmswinc;
1507 
1508             pmevcntr_op_finish(env, i);
1509         }
1510     }
1511 }
1512 
1513 static uint64_t pmccntr_read(CPUARMState *env, const ARMCPRegInfo *ri)
1514 {
1515     uint64_t ret;
1516     pmccntr_op_start(env);
1517     ret = env->cp15.c15_ccnt;
1518     pmccntr_op_finish(env);
1519     return ret;
1520 }
1521 
1522 static void pmselr_write(CPUARMState *env, const ARMCPRegInfo *ri,
1523                          uint64_t value)
1524 {
1525     /*
1526      * The value of PMSELR.SEL affects the behavior of PMXEVTYPER and
1527      * PMXEVCNTR. We allow [0..31] to be written to PMSELR here; in the
1528      * meanwhile, we check PMSELR.SEL when PMXEVTYPER and PMXEVCNTR are
1529      * accessed.
1530      */
1531     env->cp15.c9_pmselr = value & 0x1f;
1532 }
1533 
1534 static void pmccntr_write(CPUARMState *env, const ARMCPRegInfo *ri,
1535                         uint64_t value)
1536 {
1537     pmccntr_op_start(env);
1538     env->cp15.c15_ccnt = value;
1539     pmccntr_op_finish(env);
1540 }
1541 
1542 static void pmccntr_write32(CPUARMState *env, const ARMCPRegInfo *ri,
1543                             uint64_t value)
1544 {
1545     uint64_t cur_val = pmccntr_read(env, NULL);
1546 
1547     pmccntr_write(env, ri, deposit64(cur_val, 0, 32, value));
1548 }
1549 
1550 static void pmccfiltr_write(CPUARMState *env, const ARMCPRegInfo *ri,
1551                             uint64_t value)
1552 {
1553     pmccntr_op_start(env);
1554     env->cp15.pmccfiltr_el0 = value & PMCCFILTR_EL0;
1555     pmccntr_op_finish(env);
1556 }
1557 
1558 static void pmccfiltr_write_a32(CPUARMState *env, const ARMCPRegInfo *ri,
1559                             uint64_t value)
1560 {
1561     pmccntr_op_start(env);
1562     /* M is not accessible from AArch32 */
1563     env->cp15.pmccfiltr_el0 = (env->cp15.pmccfiltr_el0 & PMCCFILTR_M) |
1564         (value & PMCCFILTR);
1565     pmccntr_op_finish(env);
1566 }
1567 
1568 static uint64_t pmccfiltr_read_a32(CPUARMState *env, const ARMCPRegInfo *ri)
1569 {
1570     /* M is not visible in AArch32 */
1571     return env->cp15.pmccfiltr_el0 & PMCCFILTR;
1572 }
1573 
1574 static void pmcntenset_write(CPUARMState *env, const ARMCPRegInfo *ri,
1575                             uint64_t value)
1576 {
1577     pmu_op_start(env);
1578     value &= pmu_counter_mask(env);
1579     env->cp15.c9_pmcnten |= value;
1580     pmu_op_finish(env);
1581 }
1582 
1583 static void pmcntenclr_write(CPUARMState *env, const ARMCPRegInfo *ri,
1584                              uint64_t value)
1585 {
1586     pmu_op_start(env);
1587     value &= pmu_counter_mask(env);
1588     env->cp15.c9_pmcnten &= ~value;
1589     pmu_op_finish(env);
1590 }
1591 
1592 static void pmovsr_write(CPUARMState *env, const ARMCPRegInfo *ri,
1593                          uint64_t value)
1594 {
1595     value &= pmu_counter_mask(env);
1596     env->cp15.c9_pmovsr &= ~value;
1597     pmu_update_irq(env);
1598 }
1599 
1600 static void pmovsset_write(CPUARMState *env, const ARMCPRegInfo *ri,
1601                          uint64_t value)
1602 {
1603     value &= pmu_counter_mask(env);
1604     env->cp15.c9_pmovsr |= value;
1605     pmu_update_irq(env);
1606 }
1607 
1608 static void pmevtyper_write(CPUARMState *env, const ARMCPRegInfo *ri,
1609                              uint64_t value, const uint8_t counter)
1610 {
1611     if (counter == 31) {
1612         pmccfiltr_write(env, ri, value);
1613     } else if (counter < pmu_num_counters(env)) {
1614         pmevcntr_op_start(env, counter);
1615 
1616         /*
1617          * If this counter's event type is changing, store the current
1618          * underlying count for the new type in c14_pmevcntr_delta[counter] so
1619          * pmevcntr_op_finish has the correct baseline when it converts back to
1620          * a delta.
1621          */
1622         uint16_t old_event = env->cp15.c14_pmevtyper[counter] &
1623             PMXEVTYPER_EVTCOUNT;
1624         uint16_t new_event = value & PMXEVTYPER_EVTCOUNT;
1625         if (old_event != new_event) {
1626             uint64_t count = 0;
1627             if (event_supported(new_event)) {
1628                 uint16_t event_idx = supported_event_map[new_event];
1629                 count = pm_events[event_idx].get_count(env);
1630             }
1631             env->cp15.c14_pmevcntr_delta[counter] = count;
1632         }
1633 
1634         env->cp15.c14_pmevtyper[counter] = value & PMXEVTYPER_MASK;
1635         pmevcntr_op_finish(env, counter);
1636     }
1637     /*
1638      * Attempts to access PMXEVTYPER are CONSTRAINED UNPREDICTABLE when
1639      * PMSELR value is equal to or greater than the number of implemented
1640      * counters, but not equal to 0x1f. We opt to behave as a RAZ/WI.
1641      */
1642 }
1643 
1644 static uint64_t pmevtyper_read(CPUARMState *env, const ARMCPRegInfo *ri,
1645                                const uint8_t counter)
1646 {
1647     if (counter == 31) {
1648         return env->cp15.pmccfiltr_el0;
1649     } else if (counter < pmu_num_counters(env)) {
1650         return env->cp15.c14_pmevtyper[counter];
1651     } else {
1652       /*
1653        * We opt to behave as a RAZ/WI when attempts to access PMXEVTYPER
1654        * are CONSTRAINED UNPREDICTABLE. See comments in pmevtyper_write().
1655        */
1656         return 0;
1657     }
1658 }
1659 
1660 static void pmevtyper_writefn(CPUARMState *env, const ARMCPRegInfo *ri,
1661                               uint64_t value)
1662 {
1663     uint8_t counter = ((ri->crm & 3) << 3) | (ri->opc2 & 7);
1664     pmevtyper_write(env, ri, value, counter);
1665 }
1666 
1667 static void pmevtyper_rawwrite(CPUARMState *env, const ARMCPRegInfo *ri,
1668                                uint64_t value)
1669 {
1670     uint8_t counter = ((ri->crm & 3) << 3) | (ri->opc2 & 7);
1671     env->cp15.c14_pmevtyper[counter] = value;
1672 
1673     /*
1674      * pmevtyper_rawwrite is called between a pair of pmu_op_start and
1675      * pmu_op_finish calls when loading saved state for a migration. Because
1676      * we're potentially updating the type of event here, the value written to
1677      * c14_pmevcntr_delta by the preceeding pmu_op_start call may be for a
1678      * different counter type. Therefore, we need to set this value to the
1679      * current count for the counter type we're writing so that pmu_op_finish
1680      * has the correct count for its calculation.
1681      */
1682     uint16_t event = value & PMXEVTYPER_EVTCOUNT;
1683     if (event_supported(event)) {
1684         uint16_t event_idx = supported_event_map[event];
1685         env->cp15.c14_pmevcntr_delta[counter] =
1686             pm_events[event_idx].get_count(env);
1687     }
1688 }
1689 
1690 static uint64_t pmevtyper_readfn(CPUARMState *env, const ARMCPRegInfo *ri)
1691 {
1692     uint8_t counter = ((ri->crm & 3) << 3) | (ri->opc2 & 7);
1693     return pmevtyper_read(env, ri, counter);
1694 }
1695 
1696 static void pmxevtyper_write(CPUARMState *env, const ARMCPRegInfo *ri,
1697                              uint64_t value)
1698 {
1699     pmevtyper_write(env, ri, value, env->cp15.c9_pmselr & 31);
1700 }
1701 
1702 static uint64_t pmxevtyper_read(CPUARMState *env, const ARMCPRegInfo *ri)
1703 {
1704     return pmevtyper_read(env, ri, env->cp15.c9_pmselr & 31);
1705 }
1706 
1707 static void pmevcntr_write(CPUARMState *env, const ARMCPRegInfo *ri,
1708                              uint64_t value, uint8_t counter)
1709 {
1710     if (!cpu_isar_feature(any_pmuv3p5, env_archcpu(env))) {
1711         /* Before FEAT_PMUv3p5, top 32 bits of event counters are RES0 */
1712         value &= MAKE_64BIT_MASK(0, 32);
1713     }
1714     if (counter < pmu_num_counters(env)) {
1715         pmevcntr_op_start(env, counter);
1716         env->cp15.c14_pmevcntr[counter] = value;
1717         pmevcntr_op_finish(env, counter);
1718     }
1719     /*
1720      * We opt to behave as a RAZ/WI when attempts to access PM[X]EVCNTR
1721      * are CONSTRAINED UNPREDICTABLE.
1722      */
1723 }
1724 
1725 static uint64_t pmevcntr_read(CPUARMState *env, const ARMCPRegInfo *ri,
1726                               uint8_t counter)
1727 {
1728     if (counter < pmu_num_counters(env)) {
1729         uint64_t ret;
1730         pmevcntr_op_start(env, counter);
1731         ret = env->cp15.c14_pmevcntr[counter];
1732         pmevcntr_op_finish(env, counter);
1733         if (!cpu_isar_feature(any_pmuv3p5, env_archcpu(env))) {
1734             /* Before FEAT_PMUv3p5, top 32 bits of event counters are RES0 */
1735             ret &= MAKE_64BIT_MASK(0, 32);
1736         }
1737         return ret;
1738     } else {
1739       /*
1740        * We opt to behave as a RAZ/WI when attempts to access PM[X]EVCNTR
1741        * are CONSTRAINED UNPREDICTABLE.
1742        */
1743         return 0;
1744     }
1745 }
1746 
1747 static void pmevcntr_writefn(CPUARMState *env, const ARMCPRegInfo *ri,
1748                              uint64_t value)
1749 {
1750     uint8_t counter = ((ri->crm & 3) << 3) | (ri->opc2 & 7);
1751     pmevcntr_write(env, ri, value, counter);
1752 }
1753 
1754 static uint64_t pmevcntr_readfn(CPUARMState *env, const ARMCPRegInfo *ri)
1755 {
1756     uint8_t counter = ((ri->crm & 3) << 3) | (ri->opc2 & 7);
1757     return pmevcntr_read(env, ri, counter);
1758 }
1759 
1760 static void pmevcntr_rawwrite(CPUARMState *env, const ARMCPRegInfo *ri,
1761                              uint64_t value)
1762 {
1763     uint8_t counter = ((ri->crm & 3) << 3) | (ri->opc2 & 7);
1764     assert(counter < pmu_num_counters(env));
1765     env->cp15.c14_pmevcntr[counter] = value;
1766     pmevcntr_write(env, ri, value, counter);
1767 }
1768 
1769 static uint64_t pmevcntr_rawread(CPUARMState *env, const ARMCPRegInfo *ri)
1770 {
1771     uint8_t counter = ((ri->crm & 3) << 3) | (ri->opc2 & 7);
1772     assert(counter < pmu_num_counters(env));
1773     return env->cp15.c14_pmevcntr[counter];
1774 }
1775 
1776 static void pmxevcntr_write(CPUARMState *env, const ARMCPRegInfo *ri,
1777                              uint64_t value)
1778 {
1779     pmevcntr_write(env, ri, value, env->cp15.c9_pmselr & 31);
1780 }
1781 
1782 static uint64_t pmxevcntr_read(CPUARMState *env, const ARMCPRegInfo *ri)
1783 {
1784     return pmevcntr_read(env, ri, env->cp15.c9_pmselr & 31);
1785 }
1786 
1787 static void pmuserenr_write(CPUARMState *env, const ARMCPRegInfo *ri,
1788                             uint64_t value)
1789 {
1790     if (arm_feature(env, ARM_FEATURE_V8)) {
1791         env->cp15.c9_pmuserenr = value & 0xf;
1792     } else {
1793         env->cp15.c9_pmuserenr = value & 1;
1794     }
1795 }
1796 
1797 static void pmintenset_write(CPUARMState *env, const ARMCPRegInfo *ri,
1798                              uint64_t value)
1799 {
1800     /* We have no event counters so only the C bit can be changed */
1801     value &= pmu_counter_mask(env);
1802     env->cp15.c9_pminten |= value;
1803     pmu_update_irq(env);
1804 }
1805 
1806 static void pmintenclr_write(CPUARMState *env, const ARMCPRegInfo *ri,
1807                              uint64_t value)
1808 {
1809     value &= pmu_counter_mask(env);
1810     env->cp15.c9_pminten &= ~value;
1811     pmu_update_irq(env);
1812 }
1813 
1814 static void vbar_write(CPUARMState *env, const ARMCPRegInfo *ri,
1815                        uint64_t value)
1816 {
1817     /*
1818      * Note that even though the AArch64 view of this register has bits
1819      * [10:0] all RES0 we can only mask the bottom 5, to comply with the
1820      * architectural requirements for bits which are RES0 only in some
1821      * contexts. (ARMv8 would permit us to do no masking at all, but ARMv7
1822      * requires the bottom five bits to be RAZ/WI because they're UNK/SBZP.)
1823      */
1824     raw_write(env, ri, value & ~0x1FULL);
1825 }
1826 
1827 static void scr_write(CPUARMState *env, const ARMCPRegInfo *ri, uint64_t value)
1828 {
1829     /* Begin with base v8.0 state.  */
1830     uint64_t valid_mask = 0x3fff;
1831     ARMCPU *cpu = env_archcpu(env);
1832     uint64_t changed;
1833 
1834     /*
1835      * Because SCR_EL3 is the "real" cpreg and SCR is the alias, reset always
1836      * passes the reginfo for SCR_EL3, which has type ARM_CP_STATE_AA64.
1837      * Instead, choose the format based on the mode of EL3.
1838      */
1839     if (arm_el_is_aa64(env, 3)) {
1840         value |= SCR_FW | SCR_AW;      /* RES1 */
1841         valid_mask &= ~SCR_NET;        /* RES0 */
1842 
1843         if (!cpu_isar_feature(aa64_aa32_el1, cpu) &&
1844             !cpu_isar_feature(aa64_aa32_el2, cpu)) {
1845             value |= SCR_RW;           /* RAO/WI */
1846         }
1847         if (cpu_isar_feature(aa64_ras, cpu)) {
1848             valid_mask |= SCR_TERR;
1849         }
1850         if (cpu_isar_feature(aa64_lor, cpu)) {
1851             valid_mask |= SCR_TLOR;
1852         }
1853         if (cpu_isar_feature(aa64_pauth, cpu)) {
1854             valid_mask |= SCR_API | SCR_APK;
1855         }
1856         if (cpu_isar_feature(aa64_sel2, cpu)) {
1857             valid_mask |= SCR_EEL2;
1858         }
1859         if (cpu_isar_feature(aa64_mte, cpu)) {
1860             valid_mask |= SCR_ATA;
1861         }
1862         if (cpu_isar_feature(aa64_scxtnum, cpu)) {
1863             valid_mask |= SCR_ENSCXT;
1864         }
1865         if (cpu_isar_feature(aa64_doublefault, cpu)) {
1866             valid_mask |= SCR_EASE | SCR_NMEA;
1867         }
1868         if (cpu_isar_feature(aa64_sme, cpu)) {
1869             valid_mask |= SCR_ENTP2;
1870         }
1871         if (cpu_isar_feature(aa64_hcx, cpu)) {
1872             valid_mask |= SCR_HXEN;
1873         }
1874         if (cpu_isar_feature(aa64_fgt, cpu)) {
1875             valid_mask |= SCR_FGTEN;
1876         }
1877     } else {
1878         valid_mask &= ~(SCR_RW | SCR_ST);
1879         if (cpu_isar_feature(aa32_ras, cpu)) {
1880             valid_mask |= SCR_TERR;
1881         }
1882     }
1883 
1884     if (!arm_feature(env, ARM_FEATURE_EL2)) {
1885         valid_mask &= ~SCR_HCE;
1886 
1887         /*
1888          * On ARMv7, SMD (or SCD as it is called in v7) is only
1889          * supported if EL2 exists. The bit is UNK/SBZP when
1890          * EL2 is unavailable. In QEMU ARMv7, we force it to always zero
1891          * when EL2 is unavailable.
1892          * On ARMv8, this bit is always available.
1893          */
1894         if (arm_feature(env, ARM_FEATURE_V7) &&
1895             !arm_feature(env, ARM_FEATURE_V8)) {
1896             valid_mask &= ~SCR_SMD;
1897         }
1898     }
1899 
1900     /* Clear all-context RES0 bits.  */
1901     value &= valid_mask;
1902     changed = env->cp15.scr_el3 ^ value;
1903     env->cp15.scr_el3 = value;
1904 
1905     /*
1906      * If SCR_EL3.NS changes, i.e. arm_is_secure_below_el3, then
1907      * we must invalidate all TLBs below EL3.
1908      */
1909     if (changed & SCR_NS) {
1910         tlb_flush_by_mmuidx(env_cpu(env), (ARMMMUIdxBit_E10_0 |
1911                                            ARMMMUIdxBit_E20_0 |
1912                                            ARMMMUIdxBit_E10_1 |
1913                                            ARMMMUIdxBit_E20_2 |
1914                                            ARMMMUIdxBit_E10_1_PAN |
1915                                            ARMMMUIdxBit_E20_2_PAN |
1916                                            ARMMMUIdxBit_E2));
1917     }
1918 }
1919 
1920 static void scr_reset(CPUARMState *env, const ARMCPRegInfo *ri)
1921 {
1922     /*
1923      * scr_write will set the RES1 bits on an AArch64-only CPU.
1924      * The reset value will be 0x30 on an AArch64-only CPU and 0 otherwise.
1925      */
1926     scr_write(env, ri, 0);
1927 }
1928 
1929 static CPAccessResult access_tid4(CPUARMState *env,
1930                                   const ARMCPRegInfo *ri,
1931                                   bool isread)
1932 {
1933     if (arm_current_el(env) == 1 &&
1934         (arm_hcr_el2_eff(env) & (HCR_TID2 | HCR_TID4))) {
1935         return CP_ACCESS_TRAP_EL2;
1936     }
1937 
1938     return CP_ACCESS_OK;
1939 }
1940 
1941 static uint64_t ccsidr_read(CPUARMState *env, const ARMCPRegInfo *ri)
1942 {
1943     ARMCPU *cpu = env_archcpu(env);
1944 
1945     /*
1946      * Acquire the CSSELR index from the bank corresponding to the CCSIDR
1947      * bank
1948      */
1949     uint32_t index = A32_BANKED_REG_GET(env, csselr,
1950                                         ri->secure & ARM_CP_SECSTATE_S);
1951 
1952     return cpu->ccsidr[index];
1953 }
1954 
1955 static void csselr_write(CPUARMState *env, const ARMCPRegInfo *ri,
1956                          uint64_t value)
1957 {
1958     raw_write(env, ri, value & 0xf);
1959 }
1960 
1961 static uint64_t isr_read(CPUARMState *env, const ARMCPRegInfo *ri)
1962 {
1963     CPUState *cs = env_cpu(env);
1964     bool el1 = arm_current_el(env) == 1;
1965     uint64_t hcr_el2 = el1 ? arm_hcr_el2_eff(env) : 0;
1966     uint64_t ret = 0;
1967 
1968     if (hcr_el2 & HCR_IMO) {
1969         if (cs->interrupt_request & CPU_INTERRUPT_VIRQ) {
1970             ret |= CPSR_I;
1971         }
1972     } else {
1973         if (cs->interrupt_request & CPU_INTERRUPT_HARD) {
1974             ret |= CPSR_I;
1975         }
1976     }
1977 
1978     if (hcr_el2 & HCR_FMO) {
1979         if (cs->interrupt_request & CPU_INTERRUPT_VFIQ) {
1980             ret |= CPSR_F;
1981         }
1982     } else {
1983         if (cs->interrupt_request & CPU_INTERRUPT_FIQ) {
1984             ret |= CPSR_F;
1985         }
1986     }
1987 
1988     if (hcr_el2 & HCR_AMO) {
1989         if (cs->interrupt_request & CPU_INTERRUPT_VSERR) {
1990             ret |= CPSR_A;
1991         }
1992     }
1993 
1994     return ret;
1995 }
1996 
1997 static CPAccessResult access_aa64_tid1(CPUARMState *env, const ARMCPRegInfo *ri,
1998                                        bool isread)
1999 {
2000     if (arm_current_el(env) == 1 && (arm_hcr_el2_eff(env) & HCR_TID1)) {
2001         return CP_ACCESS_TRAP_EL2;
2002     }
2003 
2004     return CP_ACCESS_OK;
2005 }
2006 
2007 static CPAccessResult access_aa32_tid1(CPUARMState *env, const ARMCPRegInfo *ri,
2008                                        bool isread)
2009 {
2010     if (arm_feature(env, ARM_FEATURE_V8)) {
2011         return access_aa64_tid1(env, ri, isread);
2012     }
2013 
2014     return CP_ACCESS_OK;
2015 }
2016 
2017 static const ARMCPRegInfo v7_cp_reginfo[] = {
2018     /* the old v6 WFI, UNPREDICTABLE in v7 but we choose to NOP */
2019     { .name = "NOP", .cp = 15, .crn = 7, .crm = 0, .opc1 = 0, .opc2 = 4,
2020       .access = PL1_W, .type = ARM_CP_NOP },
2021     /*
2022      * Performance monitors are implementation defined in v7,
2023      * but with an ARM recommended set of registers, which we
2024      * follow.
2025      *
2026      * Performance registers fall into three categories:
2027      *  (a) always UNDEF in PL0, RW in PL1 (PMINTENSET, PMINTENCLR)
2028      *  (b) RO in PL0 (ie UNDEF on write), RW in PL1 (PMUSERENR)
2029      *  (c) UNDEF in PL0 if PMUSERENR.EN==0, otherwise accessible (all others)
2030      * For the cases controlled by PMUSERENR we must set .access to PL0_RW
2031      * or PL0_RO as appropriate and then check PMUSERENR in the helper fn.
2032      */
2033     { .name = "PMCNTENSET", .cp = 15, .crn = 9, .crm = 12, .opc1 = 0, .opc2 = 1,
2034       .access = PL0_RW, .type = ARM_CP_ALIAS | ARM_CP_IO,
2035       .fieldoffset = offsetoflow32(CPUARMState, cp15.c9_pmcnten),
2036       .writefn = pmcntenset_write,
2037       .accessfn = pmreg_access,
2038       .raw_writefn = raw_write },
2039     { .name = "PMCNTENSET_EL0", .state = ARM_CP_STATE_AA64, .type = ARM_CP_IO,
2040       .opc0 = 3, .opc1 = 3, .crn = 9, .crm = 12, .opc2 = 1,
2041       .access = PL0_RW, .accessfn = pmreg_access,
2042       .fieldoffset = offsetof(CPUARMState, cp15.c9_pmcnten), .resetvalue = 0,
2043       .writefn = pmcntenset_write, .raw_writefn = raw_write },
2044     { .name = "PMCNTENCLR", .cp = 15, .crn = 9, .crm = 12, .opc1 = 0, .opc2 = 2,
2045       .access = PL0_RW,
2046       .fieldoffset = offsetoflow32(CPUARMState, cp15.c9_pmcnten),
2047       .accessfn = pmreg_access,
2048       .writefn = pmcntenclr_write,
2049       .type = ARM_CP_ALIAS | ARM_CP_IO },
2050     { .name = "PMCNTENCLR_EL0", .state = ARM_CP_STATE_AA64,
2051       .opc0 = 3, .opc1 = 3, .crn = 9, .crm = 12, .opc2 = 2,
2052       .access = PL0_RW, .accessfn = pmreg_access,
2053       .type = ARM_CP_ALIAS | ARM_CP_IO,
2054       .fieldoffset = offsetof(CPUARMState, cp15.c9_pmcnten),
2055       .writefn = pmcntenclr_write },
2056     { .name = "PMOVSR", .cp = 15, .crn = 9, .crm = 12, .opc1 = 0, .opc2 = 3,
2057       .access = PL0_RW, .type = ARM_CP_IO,
2058       .fieldoffset = offsetoflow32(CPUARMState, cp15.c9_pmovsr),
2059       .accessfn = pmreg_access,
2060       .writefn = pmovsr_write,
2061       .raw_writefn = raw_write },
2062     { .name = "PMOVSCLR_EL0", .state = ARM_CP_STATE_AA64,
2063       .opc0 = 3, .opc1 = 3, .crn = 9, .crm = 12, .opc2 = 3,
2064       .access = PL0_RW, .accessfn = pmreg_access,
2065       .type = ARM_CP_ALIAS | ARM_CP_IO,
2066       .fieldoffset = offsetof(CPUARMState, cp15.c9_pmovsr),
2067       .writefn = pmovsr_write,
2068       .raw_writefn = raw_write },
2069     { .name = "PMSWINC", .cp = 15, .crn = 9, .crm = 12, .opc1 = 0, .opc2 = 4,
2070       .access = PL0_W, .accessfn = pmreg_access_swinc,
2071       .type = ARM_CP_NO_RAW | ARM_CP_IO,
2072       .writefn = pmswinc_write },
2073     { .name = "PMSWINC_EL0", .state = ARM_CP_STATE_AA64,
2074       .opc0 = 3, .opc1 = 3, .crn = 9, .crm = 12, .opc2 = 4,
2075       .access = PL0_W, .accessfn = pmreg_access_swinc,
2076       .type = ARM_CP_NO_RAW | ARM_CP_IO,
2077       .writefn = pmswinc_write },
2078     { .name = "PMSELR", .cp = 15, .crn = 9, .crm = 12, .opc1 = 0, .opc2 = 5,
2079       .access = PL0_RW, .type = ARM_CP_ALIAS,
2080       .fieldoffset = offsetoflow32(CPUARMState, cp15.c9_pmselr),
2081       .accessfn = pmreg_access_selr, .writefn = pmselr_write,
2082       .raw_writefn = raw_write},
2083     { .name = "PMSELR_EL0", .state = ARM_CP_STATE_AA64,
2084       .opc0 = 3, .opc1 = 3, .crn = 9, .crm = 12, .opc2 = 5,
2085       .access = PL0_RW, .accessfn = pmreg_access_selr,
2086       .fieldoffset = offsetof(CPUARMState, cp15.c9_pmselr),
2087       .writefn = pmselr_write, .raw_writefn = raw_write, },
2088     { .name = "PMCCNTR", .cp = 15, .crn = 9, .crm = 13, .opc1 = 0, .opc2 = 0,
2089       .access = PL0_RW, .resetvalue = 0, .type = ARM_CP_ALIAS | ARM_CP_IO,
2090       .readfn = pmccntr_read, .writefn = pmccntr_write32,
2091       .accessfn = pmreg_access_ccntr },
2092     { .name = "PMCCNTR_EL0", .state = ARM_CP_STATE_AA64,
2093       .opc0 = 3, .opc1 = 3, .crn = 9, .crm = 13, .opc2 = 0,
2094       .access = PL0_RW, .accessfn = pmreg_access_ccntr,
2095       .type = ARM_CP_IO,
2096       .fieldoffset = offsetof(CPUARMState, cp15.c15_ccnt),
2097       .readfn = pmccntr_read, .writefn = pmccntr_write,
2098       .raw_readfn = raw_read, .raw_writefn = raw_write, },
2099     { .name = "PMCCFILTR", .cp = 15, .opc1 = 0, .crn = 14, .crm = 15, .opc2 = 7,
2100       .writefn = pmccfiltr_write_a32, .readfn = pmccfiltr_read_a32,
2101       .access = PL0_RW, .accessfn = pmreg_access,
2102       .type = ARM_CP_ALIAS | ARM_CP_IO,
2103       .resetvalue = 0, },
2104     { .name = "PMCCFILTR_EL0", .state = ARM_CP_STATE_AA64,
2105       .opc0 = 3, .opc1 = 3, .crn = 14, .crm = 15, .opc2 = 7,
2106       .writefn = pmccfiltr_write, .raw_writefn = raw_write,
2107       .access = PL0_RW, .accessfn = pmreg_access,
2108       .type = ARM_CP_IO,
2109       .fieldoffset = offsetof(CPUARMState, cp15.pmccfiltr_el0),
2110       .resetvalue = 0, },
2111     { .name = "PMXEVTYPER", .cp = 15, .crn = 9, .crm = 13, .opc1 = 0, .opc2 = 1,
2112       .access = PL0_RW, .type = ARM_CP_NO_RAW | ARM_CP_IO,
2113       .accessfn = pmreg_access,
2114       .writefn = pmxevtyper_write, .readfn = pmxevtyper_read },
2115     { .name = "PMXEVTYPER_EL0", .state = ARM_CP_STATE_AA64,
2116       .opc0 = 3, .opc1 = 3, .crn = 9, .crm = 13, .opc2 = 1,
2117       .access = PL0_RW, .type = ARM_CP_NO_RAW | ARM_CP_IO,
2118       .accessfn = pmreg_access,
2119       .writefn = pmxevtyper_write, .readfn = pmxevtyper_read },
2120     { .name = "PMXEVCNTR", .cp = 15, .crn = 9, .crm = 13, .opc1 = 0, .opc2 = 2,
2121       .access = PL0_RW, .type = ARM_CP_NO_RAW | ARM_CP_IO,
2122       .accessfn = pmreg_access_xevcntr,
2123       .writefn = pmxevcntr_write, .readfn = pmxevcntr_read },
2124     { .name = "PMXEVCNTR_EL0", .state = ARM_CP_STATE_AA64,
2125       .opc0 = 3, .opc1 = 3, .crn = 9, .crm = 13, .opc2 = 2,
2126       .access = PL0_RW, .type = ARM_CP_NO_RAW | ARM_CP_IO,
2127       .accessfn = pmreg_access_xevcntr,
2128       .writefn = pmxevcntr_write, .readfn = pmxevcntr_read },
2129     { .name = "PMUSERENR", .cp = 15, .crn = 9, .crm = 14, .opc1 = 0, .opc2 = 0,
2130       .access = PL0_R | PL1_RW, .accessfn = access_tpm,
2131       .fieldoffset = offsetoflow32(CPUARMState, cp15.c9_pmuserenr),
2132       .resetvalue = 0,
2133       .writefn = pmuserenr_write, .raw_writefn = raw_write },
2134     { .name = "PMUSERENR_EL0", .state = ARM_CP_STATE_AA64,
2135       .opc0 = 3, .opc1 = 3, .crn = 9, .crm = 14, .opc2 = 0,
2136       .access = PL0_R | PL1_RW, .accessfn = access_tpm, .type = ARM_CP_ALIAS,
2137       .fieldoffset = offsetof(CPUARMState, cp15.c9_pmuserenr),
2138       .resetvalue = 0,
2139       .writefn = pmuserenr_write, .raw_writefn = raw_write },
2140     { .name = "PMINTENSET", .cp = 15, .crn = 9, .crm = 14, .opc1 = 0, .opc2 = 1,
2141       .access = PL1_RW, .accessfn = access_tpm,
2142       .type = ARM_CP_ALIAS | ARM_CP_IO,
2143       .fieldoffset = offsetoflow32(CPUARMState, cp15.c9_pminten),
2144       .resetvalue = 0,
2145       .writefn = pmintenset_write, .raw_writefn = raw_write },
2146     { .name = "PMINTENSET_EL1", .state = ARM_CP_STATE_AA64,
2147       .opc0 = 3, .opc1 = 0, .crn = 9, .crm = 14, .opc2 = 1,
2148       .access = PL1_RW, .accessfn = access_tpm,
2149       .type = ARM_CP_IO,
2150       .fieldoffset = offsetof(CPUARMState, cp15.c9_pminten),
2151       .writefn = pmintenset_write, .raw_writefn = raw_write,
2152       .resetvalue = 0x0 },
2153     { .name = "PMINTENCLR", .cp = 15, .crn = 9, .crm = 14, .opc1 = 0, .opc2 = 2,
2154       .access = PL1_RW, .accessfn = access_tpm,
2155       .type = ARM_CP_ALIAS | ARM_CP_IO | ARM_CP_NO_RAW,
2156       .fieldoffset = offsetof(CPUARMState, cp15.c9_pminten),
2157       .writefn = pmintenclr_write, },
2158     { .name = "PMINTENCLR_EL1", .state = ARM_CP_STATE_AA64,
2159       .opc0 = 3, .opc1 = 0, .crn = 9, .crm = 14, .opc2 = 2,
2160       .access = PL1_RW, .accessfn = access_tpm,
2161       .type = ARM_CP_ALIAS | ARM_CP_IO | ARM_CP_NO_RAW,
2162       .fieldoffset = offsetof(CPUARMState, cp15.c9_pminten),
2163       .writefn = pmintenclr_write },
2164     { .name = "CCSIDR", .state = ARM_CP_STATE_BOTH,
2165       .opc0 = 3, .crn = 0, .crm = 0, .opc1 = 1, .opc2 = 0,
2166       .access = PL1_R,
2167       .accessfn = access_tid4,
2168       .fgt = FGT_CCSIDR_EL1,
2169       .readfn = ccsidr_read, .type = ARM_CP_NO_RAW },
2170     { .name = "CSSELR", .state = ARM_CP_STATE_BOTH,
2171       .opc0 = 3, .crn = 0, .crm = 0, .opc1 = 2, .opc2 = 0,
2172       .access = PL1_RW,
2173       .accessfn = access_tid4,
2174       .fgt = FGT_CSSELR_EL1,
2175       .writefn = csselr_write, .resetvalue = 0,
2176       .bank_fieldoffsets = { offsetof(CPUARMState, cp15.csselr_s),
2177                              offsetof(CPUARMState, cp15.csselr_ns) } },
2178     /*
2179      * Auxiliary ID register: this actually has an IMPDEF value but for now
2180      * just RAZ for all cores:
2181      */
2182     { .name = "AIDR", .state = ARM_CP_STATE_BOTH,
2183       .opc0 = 3, .opc1 = 1, .crn = 0, .crm = 0, .opc2 = 7,
2184       .access = PL1_R, .type = ARM_CP_CONST,
2185       .accessfn = access_aa64_tid1,
2186       .fgt = FGT_AIDR_EL1,
2187       .resetvalue = 0 },
2188     /*
2189      * Auxiliary fault status registers: these also are IMPDEF, and we
2190      * choose to RAZ/WI for all cores.
2191      */
2192     { .name = "AFSR0_EL1", .state = ARM_CP_STATE_BOTH,
2193       .opc0 = 3, .opc1 = 0, .crn = 5, .crm = 1, .opc2 = 0,
2194       .access = PL1_RW, .accessfn = access_tvm_trvm,
2195       .fgt = FGT_AFSR0_EL1,
2196       .type = ARM_CP_CONST, .resetvalue = 0 },
2197     { .name = "AFSR1_EL1", .state = ARM_CP_STATE_BOTH,
2198       .opc0 = 3, .opc1 = 0, .crn = 5, .crm = 1, .opc2 = 1,
2199       .access = PL1_RW, .accessfn = access_tvm_trvm,
2200       .fgt = FGT_AFSR1_EL1,
2201       .type = ARM_CP_CONST, .resetvalue = 0 },
2202     /*
2203      * MAIR can just read-as-written because we don't implement caches
2204      * and so don't need to care about memory attributes.
2205      */
2206     { .name = "MAIR_EL1", .state = ARM_CP_STATE_AA64,
2207       .opc0 = 3, .opc1 = 0, .crn = 10, .crm = 2, .opc2 = 0,
2208       .access = PL1_RW, .accessfn = access_tvm_trvm,
2209       .fgt = FGT_MAIR_EL1,
2210       .fieldoffset = offsetof(CPUARMState, cp15.mair_el[1]),
2211       .resetvalue = 0 },
2212     { .name = "MAIR_EL3", .state = ARM_CP_STATE_AA64,
2213       .opc0 = 3, .opc1 = 6, .crn = 10, .crm = 2, .opc2 = 0,
2214       .access = PL3_RW, .fieldoffset = offsetof(CPUARMState, cp15.mair_el[3]),
2215       .resetvalue = 0 },
2216     /*
2217      * For non-long-descriptor page tables these are PRRR and NMRR;
2218      * regardless they still act as reads-as-written for QEMU.
2219      */
2220      /*
2221       * MAIR0/1 are defined separately from their 64-bit counterpart which
2222       * allows them to assign the correct fieldoffset based on the endianness
2223       * handled in the field definitions.
2224       */
2225     { .name = "MAIR0", .state = ARM_CP_STATE_AA32,
2226       .cp = 15, .opc1 = 0, .crn = 10, .crm = 2, .opc2 = 0,
2227       .access = PL1_RW, .accessfn = access_tvm_trvm,
2228       .bank_fieldoffsets = { offsetof(CPUARMState, cp15.mair0_s),
2229                              offsetof(CPUARMState, cp15.mair0_ns) },
2230       .resetfn = arm_cp_reset_ignore },
2231     { .name = "MAIR1", .state = ARM_CP_STATE_AA32,
2232       .cp = 15, .opc1 = 0, .crn = 10, .crm = 2, .opc2 = 1,
2233       .access = PL1_RW, .accessfn = access_tvm_trvm,
2234       .bank_fieldoffsets = { offsetof(CPUARMState, cp15.mair1_s),
2235                              offsetof(CPUARMState, cp15.mair1_ns) },
2236       .resetfn = arm_cp_reset_ignore },
2237     { .name = "ISR_EL1", .state = ARM_CP_STATE_BOTH,
2238       .opc0 = 3, .opc1 = 0, .crn = 12, .crm = 1, .opc2 = 0,
2239       .fgt = FGT_ISR_EL1,
2240       .type = ARM_CP_NO_RAW, .access = PL1_R, .readfn = isr_read },
2241     /* 32 bit ITLB invalidates */
2242     { .name = "ITLBIALL", .cp = 15, .opc1 = 0, .crn = 8, .crm = 5, .opc2 = 0,
2243       .type = ARM_CP_NO_RAW, .access = PL1_W, .accessfn = access_ttlb,
2244       .writefn = tlbiall_write },
2245     { .name = "ITLBIMVA", .cp = 15, .opc1 = 0, .crn = 8, .crm = 5, .opc2 = 1,
2246       .type = ARM_CP_NO_RAW, .access = PL1_W, .accessfn = access_ttlb,
2247       .writefn = tlbimva_write },
2248     { .name = "ITLBIASID", .cp = 15, .opc1 = 0, .crn = 8, .crm = 5, .opc2 = 2,
2249       .type = ARM_CP_NO_RAW, .access = PL1_W, .accessfn = access_ttlb,
2250       .writefn = tlbiasid_write },
2251     /* 32 bit DTLB invalidates */
2252     { .name = "DTLBIALL", .cp = 15, .opc1 = 0, .crn = 8, .crm = 6, .opc2 = 0,
2253       .type = ARM_CP_NO_RAW, .access = PL1_W, .accessfn = access_ttlb,
2254       .writefn = tlbiall_write },
2255     { .name = "DTLBIMVA", .cp = 15, .opc1 = 0, .crn = 8, .crm = 6, .opc2 = 1,
2256       .type = ARM_CP_NO_RAW, .access = PL1_W, .accessfn = access_ttlb,
2257       .writefn = tlbimva_write },
2258     { .name = "DTLBIASID", .cp = 15, .opc1 = 0, .crn = 8, .crm = 6, .opc2 = 2,
2259       .type = ARM_CP_NO_RAW, .access = PL1_W, .accessfn = access_ttlb,
2260       .writefn = tlbiasid_write },
2261     /* 32 bit TLB invalidates */
2262     { .name = "TLBIALL", .cp = 15, .opc1 = 0, .crn = 8, .crm = 7, .opc2 = 0,
2263       .type = ARM_CP_NO_RAW, .access = PL1_W, .accessfn = access_ttlb,
2264       .writefn = tlbiall_write },
2265     { .name = "TLBIMVA", .cp = 15, .opc1 = 0, .crn = 8, .crm = 7, .opc2 = 1,
2266       .type = ARM_CP_NO_RAW, .access = PL1_W, .accessfn = access_ttlb,
2267       .writefn = tlbimva_write },
2268     { .name = "TLBIASID", .cp = 15, .opc1 = 0, .crn = 8, .crm = 7, .opc2 = 2,
2269       .type = ARM_CP_NO_RAW, .access = PL1_W, .accessfn = access_ttlb,
2270       .writefn = tlbiasid_write },
2271     { .name = "TLBIMVAA", .cp = 15, .opc1 = 0, .crn = 8, .crm = 7, .opc2 = 3,
2272       .type = ARM_CP_NO_RAW, .access = PL1_W, .accessfn = access_ttlb,
2273       .writefn = tlbimvaa_write },
2274 };
2275 
2276 static const ARMCPRegInfo v7mp_cp_reginfo[] = {
2277     /* 32 bit TLB invalidates, Inner Shareable */
2278     { .name = "TLBIALLIS", .cp = 15, .opc1 = 0, .crn = 8, .crm = 3, .opc2 = 0,
2279       .type = ARM_CP_NO_RAW, .access = PL1_W, .accessfn = access_ttlbis,
2280       .writefn = tlbiall_is_write },
2281     { .name = "TLBIMVAIS", .cp = 15, .opc1 = 0, .crn = 8, .crm = 3, .opc2 = 1,
2282       .type = ARM_CP_NO_RAW, .access = PL1_W, .accessfn = access_ttlbis,
2283       .writefn = tlbimva_is_write },
2284     { .name = "TLBIASIDIS", .cp = 15, .opc1 = 0, .crn = 8, .crm = 3, .opc2 = 2,
2285       .type = ARM_CP_NO_RAW, .access = PL1_W, .accessfn = access_ttlbis,
2286       .writefn = tlbiasid_is_write },
2287     { .name = "TLBIMVAAIS", .cp = 15, .opc1 = 0, .crn = 8, .crm = 3, .opc2 = 3,
2288       .type = ARM_CP_NO_RAW, .access = PL1_W, .accessfn = access_ttlbis,
2289       .writefn = tlbimvaa_is_write },
2290 };
2291 
2292 static const ARMCPRegInfo pmovsset_cp_reginfo[] = {
2293     /* PMOVSSET is not implemented in v7 before v7ve */
2294     { .name = "PMOVSSET", .cp = 15, .opc1 = 0, .crn = 9, .crm = 14, .opc2 = 3,
2295       .access = PL0_RW, .accessfn = pmreg_access,
2296       .type = ARM_CP_ALIAS | ARM_CP_IO,
2297       .fieldoffset = offsetoflow32(CPUARMState, cp15.c9_pmovsr),
2298       .writefn = pmovsset_write,
2299       .raw_writefn = raw_write },
2300     { .name = "PMOVSSET_EL0", .state = ARM_CP_STATE_AA64,
2301       .opc0 = 3, .opc1 = 3, .crn = 9, .crm = 14, .opc2 = 3,
2302       .access = PL0_RW, .accessfn = pmreg_access,
2303       .type = ARM_CP_ALIAS | ARM_CP_IO,
2304       .fieldoffset = offsetof(CPUARMState, cp15.c9_pmovsr),
2305       .writefn = pmovsset_write,
2306       .raw_writefn = raw_write },
2307 };
2308 
2309 static void teecr_write(CPUARMState *env, const ARMCPRegInfo *ri,
2310                         uint64_t value)
2311 {
2312     value &= 1;
2313     env->teecr = value;
2314 }
2315 
2316 static CPAccessResult teecr_access(CPUARMState *env, const ARMCPRegInfo *ri,
2317                                    bool isread)
2318 {
2319     /*
2320      * HSTR.TTEE only exists in v7A, not v8A, but v8A doesn't have T2EE
2321      * at all, so we don't need to check whether we're v8A.
2322      */
2323     if (arm_current_el(env) < 2 && !arm_is_secure_below_el3(env) &&
2324         (env->cp15.hstr_el2 & HSTR_TTEE)) {
2325         return CP_ACCESS_TRAP_EL2;
2326     }
2327     return CP_ACCESS_OK;
2328 }
2329 
2330 static CPAccessResult teehbr_access(CPUARMState *env, const ARMCPRegInfo *ri,
2331                                     bool isread)
2332 {
2333     if (arm_current_el(env) == 0 && (env->teecr & 1)) {
2334         return CP_ACCESS_TRAP;
2335     }
2336     return teecr_access(env, ri, isread);
2337 }
2338 
2339 static const ARMCPRegInfo t2ee_cp_reginfo[] = {
2340     { .name = "TEECR", .cp = 14, .crn = 0, .crm = 0, .opc1 = 6, .opc2 = 0,
2341       .access = PL1_RW, .fieldoffset = offsetof(CPUARMState, teecr),
2342       .resetvalue = 0,
2343       .writefn = teecr_write, .accessfn = teecr_access },
2344     { .name = "TEEHBR", .cp = 14, .crn = 1, .crm = 0, .opc1 = 6, .opc2 = 0,
2345       .access = PL0_RW, .fieldoffset = offsetof(CPUARMState, teehbr),
2346       .accessfn = teehbr_access, .resetvalue = 0 },
2347 };
2348 
2349 static const ARMCPRegInfo v6k_cp_reginfo[] = {
2350     { .name = "TPIDR_EL0", .state = ARM_CP_STATE_AA64,
2351       .opc0 = 3, .opc1 = 3, .opc2 = 2, .crn = 13, .crm = 0,
2352       .access = PL0_RW,
2353       .fgt = FGT_TPIDR_EL0,
2354       .fieldoffset = offsetof(CPUARMState, cp15.tpidr_el[0]), .resetvalue = 0 },
2355     { .name = "TPIDRURW", .cp = 15, .crn = 13, .crm = 0, .opc1 = 0, .opc2 = 2,
2356       .access = PL0_RW,
2357       .fgt = FGT_TPIDR_EL0,
2358       .bank_fieldoffsets = { offsetoflow32(CPUARMState, cp15.tpidrurw_s),
2359                              offsetoflow32(CPUARMState, cp15.tpidrurw_ns) },
2360       .resetfn = arm_cp_reset_ignore },
2361     { .name = "TPIDRRO_EL0", .state = ARM_CP_STATE_AA64,
2362       .opc0 = 3, .opc1 = 3, .opc2 = 3, .crn = 13, .crm = 0,
2363       .access = PL0_R | PL1_W,
2364       .fgt = FGT_TPIDRRO_EL0,
2365       .fieldoffset = offsetof(CPUARMState, cp15.tpidrro_el[0]),
2366       .resetvalue = 0},
2367     { .name = "TPIDRURO", .cp = 15, .crn = 13, .crm = 0, .opc1 = 0, .opc2 = 3,
2368       .access = PL0_R | PL1_W,
2369       .fgt = FGT_TPIDRRO_EL0,
2370       .bank_fieldoffsets = { offsetoflow32(CPUARMState, cp15.tpidruro_s),
2371                              offsetoflow32(CPUARMState, cp15.tpidruro_ns) },
2372       .resetfn = arm_cp_reset_ignore },
2373     { .name = "TPIDR_EL1", .state = ARM_CP_STATE_AA64,
2374       .opc0 = 3, .opc1 = 0, .opc2 = 4, .crn = 13, .crm = 0,
2375       .access = PL1_RW,
2376       .fgt = FGT_TPIDR_EL1,
2377       .fieldoffset = offsetof(CPUARMState, cp15.tpidr_el[1]), .resetvalue = 0 },
2378     { .name = "TPIDRPRW", .opc1 = 0, .cp = 15, .crn = 13, .crm = 0, .opc2 = 4,
2379       .access = PL1_RW,
2380       .bank_fieldoffsets = { offsetoflow32(CPUARMState, cp15.tpidrprw_s),
2381                              offsetoflow32(CPUARMState, cp15.tpidrprw_ns) },
2382       .resetvalue = 0 },
2383 };
2384 
2385 #ifndef CONFIG_USER_ONLY
2386 
2387 static CPAccessResult gt_cntfrq_access(CPUARMState *env, const ARMCPRegInfo *ri,
2388                                        bool isread)
2389 {
2390     /*
2391      * CNTFRQ: not visible from PL0 if both PL0PCTEN and PL0VCTEN are zero.
2392      * Writable only at the highest implemented exception level.
2393      */
2394     int el = arm_current_el(env);
2395     uint64_t hcr;
2396     uint32_t cntkctl;
2397 
2398     switch (el) {
2399     case 0:
2400         hcr = arm_hcr_el2_eff(env);
2401         if ((hcr & (HCR_E2H | HCR_TGE)) == (HCR_E2H | HCR_TGE)) {
2402             cntkctl = env->cp15.cnthctl_el2;
2403         } else {
2404             cntkctl = env->cp15.c14_cntkctl;
2405         }
2406         if (!extract32(cntkctl, 0, 2)) {
2407             return CP_ACCESS_TRAP;
2408         }
2409         break;
2410     case 1:
2411         if (!isread && ri->state == ARM_CP_STATE_AA32 &&
2412             arm_is_secure_below_el3(env)) {
2413             /* Accesses from 32-bit Secure EL1 UNDEF (*not* trap to EL3!) */
2414             return CP_ACCESS_TRAP_UNCATEGORIZED;
2415         }
2416         break;
2417     case 2:
2418     case 3:
2419         break;
2420     }
2421 
2422     if (!isread && el < arm_highest_el(env)) {
2423         return CP_ACCESS_TRAP_UNCATEGORIZED;
2424     }
2425 
2426     return CP_ACCESS_OK;
2427 }
2428 
2429 static CPAccessResult gt_counter_access(CPUARMState *env, int timeridx,
2430                                         bool isread)
2431 {
2432     unsigned int cur_el = arm_current_el(env);
2433     bool has_el2 = arm_is_el2_enabled(env);
2434     uint64_t hcr = arm_hcr_el2_eff(env);
2435 
2436     switch (cur_el) {
2437     case 0:
2438         /* If HCR_EL2.<E2H,TGE> == '11': check CNTHCTL_EL2.EL0[PV]CTEN. */
2439         if ((hcr & (HCR_E2H | HCR_TGE)) == (HCR_E2H | HCR_TGE)) {
2440             return (extract32(env->cp15.cnthctl_el2, timeridx, 1)
2441                     ? CP_ACCESS_OK : CP_ACCESS_TRAP_EL2);
2442         }
2443 
2444         /* CNT[PV]CT: not visible from PL0 if EL0[PV]CTEN is zero */
2445         if (!extract32(env->cp15.c14_cntkctl, timeridx, 1)) {
2446             return CP_ACCESS_TRAP;
2447         }
2448 
2449         /* If HCR_EL2.<E2H,TGE> == '10': check CNTHCTL_EL2.EL1PCTEN. */
2450         if (hcr & HCR_E2H) {
2451             if (timeridx == GTIMER_PHYS &&
2452                 !extract32(env->cp15.cnthctl_el2, 10, 1)) {
2453                 return CP_ACCESS_TRAP_EL2;
2454             }
2455         } else {
2456             /* If HCR_EL2.<E2H> == 0: check CNTHCTL_EL2.EL1PCEN. */
2457             if (has_el2 && timeridx == GTIMER_PHYS &&
2458                 !extract32(env->cp15.cnthctl_el2, 1, 1)) {
2459                 return CP_ACCESS_TRAP_EL2;
2460             }
2461         }
2462         break;
2463 
2464     case 1:
2465         /* Check CNTHCTL_EL2.EL1PCTEN, which changes location based on E2H. */
2466         if (has_el2 && timeridx == GTIMER_PHYS &&
2467             (hcr & HCR_E2H
2468              ? !extract32(env->cp15.cnthctl_el2, 10, 1)
2469              : !extract32(env->cp15.cnthctl_el2, 0, 1))) {
2470             return CP_ACCESS_TRAP_EL2;
2471         }
2472         break;
2473     }
2474     return CP_ACCESS_OK;
2475 }
2476 
2477 static CPAccessResult gt_timer_access(CPUARMState *env, int timeridx,
2478                                       bool isread)
2479 {
2480     unsigned int cur_el = arm_current_el(env);
2481     bool has_el2 = arm_is_el2_enabled(env);
2482     uint64_t hcr = arm_hcr_el2_eff(env);
2483 
2484     switch (cur_el) {
2485     case 0:
2486         if ((hcr & (HCR_E2H | HCR_TGE)) == (HCR_E2H | HCR_TGE)) {
2487             /* If HCR_EL2.<E2H,TGE> == '11': check CNTHCTL_EL2.EL0[PV]TEN. */
2488             return (extract32(env->cp15.cnthctl_el2, 9 - timeridx, 1)
2489                     ? CP_ACCESS_OK : CP_ACCESS_TRAP_EL2);
2490         }
2491 
2492         /*
2493          * CNT[PV]_CVAL, CNT[PV]_CTL, CNT[PV]_TVAL: not visible from
2494          * EL0 if EL0[PV]TEN is zero.
2495          */
2496         if (!extract32(env->cp15.c14_cntkctl, 9 - timeridx, 1)) {
2497             return CP_ACCESS_TRAP;
2498         }
2499         /* fall through */
2500 
2501     case 1:
2502         if (has_el2 && timeridx == GTIMER_PHYS) {
2503             if (hcr & HCR_E2H) {
2504                 /* If HCR_EL2.<E2H,TGE> == '10': check CNTHCTL_EL2.EL1PTEN. */
2505                 if (!extract32(env->cp15.cnthctl_el2, 11, 1)) {
2506                     return CP_ACCESS_TRAP_EL2;
2507                 }
2508             } else {
2509                 /* If HCR_EL2.<E2H> == 0: check CNTHCTL_EL2.EL1PCEN. */
2510                 if (!extract32(env->cp15.cnthctl_el2, 1, 1)) {
2511                     return CP_ACCESS_TRAP_EL2;
2512                 }
2513             }
2514         }
2515         break;
2516     }
2517     return CP_ACCESS_OK;
2518 }
2519 
2520 static CPAccessResult gt_pct_access(CPUARMState *env,
2521                                     const ARMCPRegInfo *ri,
2522                                     bool isread)
2523 {
2524     return gt_counter_access(env, GTIMER_PHYS, isread);
2525 }
2526 
2527 static CPAccessResult gt_vct_access(CPUARMState *env,
2528                                     const ARMCPRegInfo *ri,
2529                                     bool isread)
2530 {
2531     return gt_counter_access(env, GTIMER_VIRT, isread);
2532 }
2533 
2534 static CPAccessResult gt_ptimer_access(CPUARMState *env, const ARMCPRegInfo *ri,
2535                                        bool isread)
2536 {
2537     return gt_timer_access(env, GTIMER_PHYS, isread);
2538 }
2539 
2540 static CPAccessResult gt_vtimer_access(CPUARMState *env, const ARMCPRegInfo *ri,
2541                                        bool isread)
2542 {
2543     return gt_timer_access(env, GTIMER_VIRT, isread);
2544 }
2545 
2546 static CPAccessResult gt_stimer_access(CPUARMState *env,
2547                                        const ARMCPRegInfo *ri,
2548                                        bool isread)
2549 {
2550     /*
2551      * The AArch64 register view of the secure physical timer is
2552      * always accessible from EL3, and configurably accessible from
2553      * Secure EL1.
2554      */
2555     switch (arm_current_el(env)) {
2556     case 1:
2557         if (!arm_is_secure(env)) {
2558             return CP_ACCESS_TRAP;
2559         }
2560         if (!(env->cp15.scr_el3 & SCR_ST)) {
2561             return CP_ACCESS_TRAP_EL3;
2562         }
2563         return CP_ACCESS_OK;
2564     case 0:
2565     case 2:
2566         return CP_ACCESS_TRAP;
2567     case 3:
2568         return CP_ACCESS_OK;
2569     default:
2570         g_assert_not_reached();
2571     }
2572 }
2573 
2574 static uint64_t gt_get_countervalue(CPUARMState *env)
2575 {
2576     ARMCPU *cpu = env_archcpu(env);
2577 
2578     return qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL) / gt_cntfrq_period_ns(cpu);
2579 }
2580 
2581 static void gt_recalc_timer(ARMCPU *cpu, int timeridx)
2582 {
2583     ARMGenericTimer *gt = &cpu->env.cp15.c14_timer[timeridx];
2584 
2585     if (gt->ctl & 1) {
2586         /*
2587          * Timer enabled: calculate and set current ISTATUS, irq, and
2588          * reset timer to when ISTATUS next has to change
2589          */
2590         uint64_t offset = timeridx == GTIMER_VIRT ?
2591                                       cpu->env.cp15.cntvoff_el2 : 0;
2592         uint64_t count = gt_get_countervalue(&cpu->env);
2593         /* Note that this must be unsigned 64 bit arithmetic: */
2594         int istatus = count - offset >= gt->cval;
2595         uint64_t nexttick;
2596         int irqstate;
2597 
2598         gt->ctl = deposit32(gt->ctl, 2, 1, istatus);
2599 
2600         irqstate = (istatus && !(gt->ctl & 2));
2601         qemu_set_irq(cpu->gt_timer_outputs[timeridx], irqstate);
2602 
2603         if (istatus) {
2604             /* Next transition is when count rolls back over to zero */
2605             nexttick = UINT64_MAX;
2606         } else {
2607             /* Next transition is when we hit cval */
2608             nexttick = gt->cval + offset;
2609         }
2610         /*
2611          * Note that the desired next expiry time might be beyond the
2612          * signed-64-bit range of a QEMUTimer -- in this case we just
2613          * set the timer for as far in the future as possible. When the
2614          * timer expires we will reset the timer for any remaining period.
2615          */
2616         if (nexttick > INT64_MAX / gt_cntfrq_period_ns(cpu)) {
2617             timer_mod_ns(cpu->gt_timer[timeridx], INT64_MAX);
2618         } else {
2619             timer_mod(cpu->gt_timer[timeridx], nexttick);
2620         }
2621         trace_arm_gt_recalc(timeridx, irqstate, nexttick);
2622     } else {
2623         /* Timer disabled: ISTATUS and timer output always clear */
2624         gt->ctl &= ~4;
2625         qemu_set_irq(cpu->gt_timer_outputs[timeridx], 0);
2626         timer_del(cpu->gt_timer[timeridx]);
2627         trace_arm_gt_recalc_disabled(timeridx);
2628     }
2629 }
2630 
2631 static void gt_timer_reset(CPUARMState *env, const ARMCPRegInfo *ri,
2632                            int timeridx)
2633 {
2634     ARMCPU *cpu = env_archcpu(env);
2635 
2636     timer_del(cpu->gt_timer[timeridx]);
2637 }
2638 
2639 static uint64_t gt_cnt_read(CPUARMState *env, const ARMCPRegInfo *ri)
2640 {
2641     return gt_get_countervalue(env);
2642 }
2643 
2644 static uint64_t gt_virt_cnt_offset(CPUARMState *env)
2645 {
2646     uint64_t hcr;
2647 
2648     switch (arm_current_el(env)) {
2649     case 2:
2650         hcr = arm_hcr_el2_eff(env);
2651         if (hcr & HCR_E2H) {
2652             return 0;
2653         }
2654         break;
2655     case 0:
2656         hcr = arm_hcr_el2_eff(env);
2657         if ((hcr & (HCR_E2H | HCR_TGE)) == (HCR_E2H | HCR_TGE)) {
2658             return 0;
2659         }
2660         break;
2661     }
2662 
2663     return env->cp15.cntvoff_el2;
2664 }
2665 
2666 static uint64_t gt_virt_cnt_read(CPUARMState *env, const ARMCPRegInfo *ri)
2667 {
2668     return gt_get_countervalue(env) - gt_virt_cnt_offset(env);
2669 }
2670 
2671 static void gt_cval_write(CPUARMState *env, const ARMCPRegInfo *ri,
2672                           int timeridx,
2673                           uint64_t value)
2674 {
2675     trace_arm_gt_cval_write(timeridx, value);
2676     env->cp15.c14_timer[timeridx].cval = value;
2677     gt_recalc_timer(env_archcpu(env), timeridx);
2678 }
2679 
2680 static uint64_t gt_tval_read(CPUARMState *env, const ARMCPRegInfo *ri,
2681                              int timeridx)
2682 {
2683     uint64_t offset = 0;
2684 
2685     switch (timeridx) {
2686     case GTIMER_VIRT:
2687     case GTIMER_HYPVIRT:
2688         offset = gt_virt_cnt_offset(env);
2689         break;
2690     }
2691 
2692     return (uint32_t)(env->cp15.c14_timer[timeridx].cval -
2693                       (gt_get_countervalue(env) - offset));
2694 }
2695 
2696 static void gt_tval_write(CPUARMState *env, const ARMCPRegInfo *ri,
2697                           int timeridx,
2698                           uint64_t value)
2699 {
2700     uint64_t offset = 0;
2701 
2702     switch (timeridx) {
2703     case GTIMER_VIRT:
2704     case GTIMER_HYPVIRT:
2705         offset = gt_virt_cnt_offset(env);
2706         break;
2707     }
2708 
2709     trace_arm_gt_tval_write(timeridx, value);
2710     env->cp15.c14_timer[timeridx].cval = gt_get_countervalue(env) - offset +
2711                                          sextract64(value, 0, 32);
2712     gt_recalc_timer(env_archcpu(env), timeridx);
2713 }
2714 
2715 static void gt_ctl_write(CPUARMState *env, const ARMCPRegInfo *ri,
2716                          int timeridx,
2717                          uint64_t value)
2718 {
2719     ARMCPU *cpu = env_archcpu(env);
2720     uint32_t oldval = env->cp15.c14_timer[timeridx].ctl;
2721 
2722     trace_arm_gt_ctl_write(timeridx, value);
2723     env->cp15.c14_timer[timeridx].ctl = deposit64(oldval, 0, 2, value);
2724     if ((oldval ^ value) & 1) {
2725         /* Enable toggled */
2726         gt_recalc_timer(cpu, timeridx);
2727     } else if ((oldval ^ value) & 2) {
2728         /*
2729          * IMASK toggled: don't need to recalculate,
2730          * just set the interrupt line based on ISTATUS
2731          */
2732         int irqstate = (oldval & 4) && !(value & 2);
2733 
2734         trace_arm_gt_imask_toggle(timeridx, irqstate);
2735         qemu_set_irq(cpu->gt_timer_outputs[timeridx], irqstate);
2736     }
2737 }
2738 
2739 static void gt_phys_timer_reset(CPUARMState *env, const ARMCPRegInfo *ri)
2740 {
2741     gt_timer_reset(env, ri, GTIMER_PHYS);
2742 }
2743 
2744 static void gt_phys_cval_write(CPUARMState *env, const ARMCPRegInfo *ri,
2745                                uint64_t value)
2746 {
2747     gt_cval_write(env, ri, GTIMER_PHYS, value);
2748 }
2749 
2750 static uint64_t gt_phys_tval_read(CPUARMState *env, const ARMCPRegInfo *ri)
2751 {
2752     return gt_tval_read(env, ri, GTIMER_PHYS);
2753 }
2754 
2755 static void gt_phys_tval_write(CPUARMState *env, const ARMCPRegInfo *ri,
2756                                uint64_t value)
2757 {
2758     gt_tval_write(env, ri, GTIMER_PHYS, value);
2759 }
2760 
2761 static void gt_phys_ctl_write(CPUARMState *env, const ARMCPRegInfo *ri,
2762                               uint64_t value)
2763 {
2764     gt_ctl_write(env, ri, GTIMER_PHYS, value);
2765 }
2766 
2767 static int gt_phys_redir_timeridx(CPUARMState *env)
2768 {
2769     switch (arm_mmu_idx(env)) {
2770     case ARMMMUIdx_E20_0:
2771     case ARMMMUIdx_E20_2:
2772     case ARMMMUIdx_E20_2_PAN:
2773         return GTIMER_HYP;
2774     default:
2775         return GTIMER_PHYS;
2776     }
2777 }
2778 
2779 static int gt_virt_redir_timeridx(CPUARMState *env)
2780 {
2781     switch (arm_mmu_idx(env)) {
2782     case ARMMMUIdx_E20_0:
2783     case ARMMMUIdx_E20_2:
2784     case ARMMMUIdx_E20_2_PAN:
2785         return GTIMER_HYPVIRT;
2786     default:
2787         return GTIMER_VIRT;
2788     }
2789 }
2790 
2791 static uint64_t gt_phys_redir_cval_read(CPUARMState *env,
2792                                         const ARMCPRegInfo *ri)
2793 {
2794     int timeridx = gt_phys_redir_timeridx(env);
2795     return env->cp15.c14_timer[timeridx].cval;
2796 }
2797 
2798 static void gt_phys_redir_cval_write(CPUARMState *env, const ARMCPRegInfo *ri,
2799                                      uint64_t value)
2800 {
2801     int timeridx = gt_phys_redir_timeridx(env);
2802     gt_cval_write(env, ri, timeridx, value);
2803 }
2804 
2805 static uint64_t gt_phys_redir_tval_read(CPUARMState *env,
2806                                         const ARMCPRegInfo *ri)
2807 {
2808     int timeridx = gt_phys_redir_timeridx(env);
2809     return gt_tval_read(env, ri, timeridx);
2810 }
2811 
2812 static void gt_phys_redir_tval_write(CPUARMState *env, const ARMCPRegInfo *ri,
2813                                      uint64_t value)
2814 {
2815     int timeridx = gt_phys_redir_timeridx(env);
2816     gt_tval_write(env, ri, timeridx, value);
2817 }
2818 
2819 static uint64_t gt_phys_redir_ctl_read(CPUARMState *env,
2820                                        const ARMCPRegInfo *ri)
2821 {
2822     int timeridx = gt_phys_redir_timeridx(env);
2823     return env->cp15.c14_timer[timeridx].ctl;
2824 }
2825 
2826 static void gt_phys_redir_ctl_write(CPUARMState *env, const ARMCPRegInfo *ri,
2827                                     uint64_t value)
2828 {
2829     int timeridx = gt_phys_redir_timeridx(env);
2830     gt_ctl_write(env, ri, timeridx, value);
2831 }
2832 
2833 static void gt_virt_timer_reset(CPUARMState *env, const ARMCPRegInfo *ri)
2834 {
2835     gt_timer_reset(env, ri, GTIMER_VIRT);
2836 }
2837 
2838 static void gt_virt_cval_write(CPUARMState *env, const ARMCPRegInfo *ri,
2839                                uint64_t value)
2840 {
2841     gt_cval_write(env, ri, GTIMER_VIRT, value);
2842 }
2843 
2844 static uint64_t gt_virt_tval_read(CPUARMState *env, const ARMCPRegInfo *ri)
2845 {
2846     return gt_tval_read(env, ri, GTIMER_VIRT);
2847 }
2848 
2849 static void gt_virt_tval_write(CPUARMState *env, const ARMCPRegInfo *ri,
2850                                uint64_t value)
2851 {
2852     gt_tval_write(env, ri, GTIMER_VIRT, value);
2853 }
2854 
2855 static void gt_virt_ctl_write(CPUARMState *env, const ARMCPRegInfo *ri,
2856                               uint64_t value)
2857 {
2858     gt_ctl_write(env, ri, GTIMER_VIRT, value);
2859 }
2860 
2861 static void gt_cntvoff_write(CPUARMState *env, const ARMCPRegInfo *ri,
2862                               uint64_t value)
2863 {
2864     ARMCPU *cpu = env_archcpu(env);
2865 
2866     trace_arm_gt_cntvoff_write(value);
2867     raw_write(env, ri, value);
2868     gt_recalc_timer(cpu, GTIMER_VIRT);
2869 }
2870 
2871 static uint64_t gt_virt_redir_cval_read(CPUARMState *env,
2872                                         const ARMCPRegInfo *ri)
2873 {
2874     int timeridx = gt_virt_redir_timeridx(env);
2875     return env->cp15.c14_timer[timeridx].cval;
2876 }
2877 
2878 static void gt_virt_redir_cval_write(CPUARMState *env, const ARMCPRegInfo *ri,
2879                                      uint64_t value)
2880 {
2881     int timeridx = gt_virt_redir_timeridx(env);
2882     gt_cval_write(env, ri, timeridx, value);
2883 }
2884 
2885 static uint64_t gt_virt_redir_tval_read(CPUARMState *env,
2886                                         const ARMCPRegInfo *ri)
2887 {
2888     int timeridx = gt_virt_redir_timeridx(env);
2889     return gt_tval_read(env, ri, timeridx);
2890 }
2891 
2892 static void gt_virt_redir_tval_write(CPUARMState *env, const ARMCPRegInfo *ri,
2893                                      uint64_t value)
2894 {
2895     int timeridx = gt_virt_redir_timeridx(env);
2896     gt_tval_write(env, ri, timeridx, value);
2897 }
2898 
2899 static uint64_t gt_virt_redir_ctl_read(CPUARMState *env,
2900                                        const ARMCPRegInfo *ri)
2901 {
2902     int timeridx = gt_virt_redir_timeridx(env);
2903     return env->cp15.c14_timer[timeridx].ctl;
2904 }
2905 
2906 static void gt_virt_redir_ctl_write(CPUARMState *env, const ARMCPRegInfo *ri,
2907                                     uint64_t value)
2908 {
2909     int timeridx = gt_virt_redir_timeridx(env);
2910     gt_ctl_write(env, ri, timeridx, value);
2911 }
2912 
2913 static void gt_hyp_timer_reset(CPUARMState *env, const ARMCPRegInfo *ri)
2914 {
2915     gt_timer_reset(env, ri, GTIMER_HYP);
2916 }
2917 
2918 static void gt_hyp_cval_write(CPUARMState *env, const ARMCPRegInfo *ri,
2919                               uint64_t value)
2920 {
2921     gt_cval_write(env, ri, GTIMER_HYP, value);
2922 }
2923 
2924 static uint64_t gt_hyp_tval_read(CPUARMState *env, const ARMCPRegInfo *ri)
2925 {
2926     return gt_tval_read(env, ri, GTIMER_HYP);
2927 }
2928 
2929 static void gt_hyp_tval_write(CPUARMState *env, const ARMCPRegInfo *ri,
2930                               uint64_t value)
2931 {
2932     gt_tval_write(env, ri, GTIMER_HYP, value);
2933 }
2934 
2935 static void gt_hyp_ctl_write(CPUARMState *env, const ARMCPRegInfo *ri,
2936                               uint64_t value)
2937 {
2938     gt_ctl_write(env, ri, GTIMER_HYP, value);
2939 }
2940 
2941 static void gt_sec_timer_reset(CPUARMState *env, const ARMCPRegInfo *ri)
2942 {
2943     gt_timer_reset(env, ri, GTIMER_SEC);
2944 }
2945 
2946 static void gt_sec_cval_write(CPUARMState *env, const ARMCPRegInfo *ri,
2947                               uint64_t value)
2948 {
2949     gt_cval_write(env, ri, GTIMER_SEC, value);
2950 }
2951 
2952 static uint64_t gt_sec_tval_read(CPUARMState *env, const ARMCPRegInfo *ri)
2953 {
2954     return gt_tval_read(env, ri, GTIMER_SEC);
2955 }
2956 
2957 static void gt_sec_tval_write(CPUARMState *env, const ARMCPRegInfo *ri,
2958                               uint64_t value)
2959 {
2960     gt_tval_write(env, ri, GTIMER_SEC, value);
2961 }
2962 
2963 static void gt_sec_ctl_write(CPUARMState *env, const ARMCPRegInfo *ri,
2964                               uint64_t value)
2965 {
2966     gt_ctl_write(env, ri, GTIMER_SEC, value);
2967 }
2968 
2969 static void gt_hv_timer_reset(CPUARMState *env, const ARMCPRegInfo *ri)
2970 {
2971     gt_timer_reset(env, ri, GTIMER_HYPVIRT);
2972 }
2973 
2974 static void gt_hv_cval_write(CPUARMState *env, const ARMCPRegInfo *ri,
2975                              uint64_t value)
2976 {
2977     gt_cval_write(env, ri, GTIMER_HYPVIRT, value);
2978 }
2979 
2980 static uint64_t gt_hv_tval_read(CPUARMState *env, const ARMCPRegInfo *ri)
2981 {
2982     return gt_tval_read(env, ri, GTIMER_HYPVIRT);
2983 }
2984 
2985 static void gt_hv_tval_write(CPUARMState *env, const ARMCPRegInfo *ri,
2986                              uint64_t value)
2987 {
2988     gt_tval_write(env, ri, GTIMER_HYPVIRT, value);
2989 }
2990 
2991 static void gt_hv_ctl_write(CPUARMState *env, const ARMCPRegInfo *ri,
2992                             uint64_t value)
2993 {
2994     gt_ctl_write(env, ri, GTIMER_HYPVIRT, value);
2995 }
2996 
2997 void arm_gt_ptimer_cb(void *opaque)
2998 {
2999     ARMCPU *cpu = opaque;
3000 
3001     gt_recalc_timer(cpu, GTIMER_PHYS);
3002 }
3003 
3004 void arm_gt_vtimer_cb(void *opaque)
3005 {
3006     ARMCPU *cpu = opaque;
3007 
3008     gt_recalc_timer(cpu, GTIMER_VIRT);
3009 }
3010 
3011 void arm_gt_htimer_cb(void *opaque)
3012 {
3013     ARMCPU *cpu = opaque;
3014 
3015     gt_recalc_timer(cpu, GTIMER_HYP);
3016 }
3017 
3018 void arm_gt_stimer_cb(void *opaque)
3019 {
3020     ARMCPU *cpu = opaque;
3021 
3022     gt_recalc_timer(cpu, GTIMER_SEC);
3023 }
3024 
3025 void arm_gt_hvtimer_cb(void *opaque)
3026 {
3027     ARMCPU *cpu = opaque;
3028 
3029     gt_recalc_timer(cpu, GTIMER_HYPVIRT);
3030 }
3031 
3032 static void arm_gt_cntfrq_reset(CPUARMState *env, const ARMCPRegInfo *opaque)
3033 {
3034     ARMCPU *cpu = env_archcpu(env);
3035 
3036     cpu->env.cp15.c14_cntfrq = cpu->gt_cntfrq_hz;
3037 }
3038 
3039 static const ARMCPRegInfo generic_timer_cp_reginfo[] = {
3040     /*
3041      * Note that CNTFRQ is purely reads-as-written for the benefit
3042      * of software; writing it doesn't actually change the timer frequency.
3043      * Our reset value matches the fixed frequency we implement the timer at.
3044      */
3045     { .name = "CNTFRQ", .cp = 15, .crn = 14, .crm = 0, .opc1 = 0, .opc2 = 0,
3046       .type = ARM_CP_ALIAS,
3047       .access = PL1_RW | PL0_R, .accessfn = gt_cntfrq_access,
3048       .fieldoffset = offsetoflow32(CPUARMState, cp15.c14_cntfrq),
3049     },
3050     { .name = "CNTFRQ_EL0", .state = ARM_CP_STATE_AA64,
3051       .opc0 = 3, .opc1 = 3, .crn = 14, .crm = 0, .opc2 = 0,
3052       .access = PL1_RW | PL0_R, .accessfn = gt_cntfrq_access,
3053       .fieldoffset = offsetof(CPUARMState, cp15.c14_cntfrq),
3054       .resetfn = arm_gt_cntfrq_reset,
3055     },
3056     /* overall control: mostly access permissions */
3057     { .name = "CNTKCTL", .state = ARM_CP_STATE_BOTH,
3058       .opc0 = 3, .opc1 = 0, .crn = 14, .crm = 1, .opc2 = 0,
3059       .access = PL1_RW,
3060       .fieldoffset = offsetof(CPUARMState, cp15.c14_cntkctl),
3061       .resetvalue = 0,
3062     },
3063     /* per-timer control */
3064     { .name = "CNTP_CTL", .cp = 15, .crn = 14, .crm = 2, .opc1 = 0, .opc2 = 1,
3065       .secure = ARM_CP_SECSTATE_NS,
3066       .type = ARM_CP_IO | ARM_CP_ALIAS, .access = PL0_RW,
3067       .accessfn = gt_ptimer_access,
3068       .fieldoffset = offsetoflow32(CPUARMState,
3069                                    cp15.c14_timer[GTIMER_PHYS].ctl),
3070       .readfn = gt_phys_redir_ctl_read, .raw_readfn = raw_read,
3071       .writefn = gt_phys_redir_ctl_write, .raw_writefn = raw_write,
3072     },
3073     { .name = "CNTP_CTL_S",
3074       .cp = 15, .crn = 14, .crm = 2, .opc1 = 0, .opc2 = 1,
3075       .secure = ARM_CP_SECSTATE_S,
3076       .type = ARM_CP_IO | ARM_CP_ALIAS, .access = PL0_RW,
3077       .accessfn = gt_ptimer_access,
3078       .fieldoffset = offsetoflow32(CPUARMState,
3079                                    cp15.c14_timer[GTIMER_SEC].ctl),
3080       .writefn = gt_sec_ctl_write, .raw_writefn = raw_write,
3081     },
3082     { .name = "CNTP_CTL_EL0", .state = ARM_CP_STATE_AA64,
3083       .opc0 = 3, .opc1 = 3, .crn = 14, .crm = 2, .opc2 = 1,
3084       .type = ARM_CP_IO, .access = PL0_RW,
3085       .accessfn = gt_ptimer_access,
3086       .fieldoffset = offsetof(CPUARMState, cp15.c14_timer[GTIMER_PHYS].ctl),
3087       .resetvalue = 0,
3088       .readfn = gt_phys_redir_ctl_read, .raw_readfn = raw_read,
3089       .writefn = gt_phys_redir_ctl_write, .raw_writefn = raw_write,
3090     },
3091     { .name = "CNTV_CTL", .cp = 15, .crn = 14, .crm = 3, .opc1 = 0, .opc2 = 1,
3092       .type = ARM_CP_IO | ARM_CP_ALIAS, .access = PL0_RW,
3093       .accessfn = gt_vtimer_access,
3094       .fieldoffset = offsetoflow32(CPUARMState,
3095                                    cp15.c14_timer[GTIMER_VIRT].ctl),
3096       .readfn = gt_virt_redir_ctl_read, .raw_readfn = raw_read,
3097       .writefn = gt_virt_redir_ctl_write, .raw_writefn = raw_write,
3098     },
3099     { .name = "CNTV_CTL_EL0", .state = ARM_CP_STATE_AA64,
3100       .opc0 = 3, .opc1 = 3, .crn = 14, .crm = 3, .opc2 = 1,
3101       .type = ARM_CP_IO, .access = PL0_RW,
3102       .accessfn = gt_vtimer_access,
3103       .fieldoffset = offsetof(CPUARMState, cp15.c14_timer[GTIMER_VIRT].ctl),
3104       .resetvalue = 0,
3105       .readfn = gt_virt_redir_ctl_read, .raw_readfn = raw_read,
3106       .writefn = gt_virt_redir_ctl_write, .raw_writefn = raw_write,
3107     },
3108     /* TimerValue views: a 32 bit downcounting view of the underlying state */
3109     { .name = "CNTP_TVAL", .cp = 15, .crn = 14, .crm = 2, .opc1 = 0, .opc2 = 0,
3110       .secure = ARM_CP_SECSTATE_NS,
3111       .type = ARM_CP_NO_RAW | ARM_CP_IO, .access = PL0_RW,
3112       .accessfn = gt_ptimer_access,
3113       .readfn = gt_phys_redir_tval_read, .writefn = gt_phys_redir_tval_write,
3114     },
3115     { .name = "CNTP_TVAL_S",
3116       .cp = 15, .crn = 14, .crm = 2, .opc1 = 0, .opc2 = 0,
3117       .secure = ARM_CP_SECSTATE_S,
3118       .type = ARM_CP_NO_RAW | ARM_CP_IO, .access = PL0_RW,
3119       .accessfn = gt_ptimer_access,
3120       .readfn = gt_sec_tval_read, .writefn = gt_sec_tval_write,
3121     },
3122     { .name = "CNTP_TVAL_EL0", .state = ARM_CP_STATE_AA64,
3123       .opc0 = 3, .opc1 = 3, .crn = 14, .crm = 2, .opc2 = 0,
3124       .type = ARM_CP_NO_RAW | ARM_CP_IO, .access = PL0_RW,
3125       .accessfn = gt_ptimer_access, .resetfn = gt_phys_timer_reset,
3126       .readfn = gt_phys_redir_tval_read, .writefn = gt_phys_redir_tval_write,
3127     },
3128     { .name = "CNTV_TVAL", .cp = 15, .crn = 14, .crm = 3, .opc1 = 0, .opc2 = 0,
3129       .type = ARM_CP_NO_RAW | ARM_CP_IO, .access = PL0_RW,
3130       .accessfn = gt_vtimer_access,
3131       .readfn = gt_virt_redir_tval_read, .writefn = gt_virt_redir_tval_write,
3132     },
3133     { .name = "CNTV_TVAL_EL0", .state = ARM_CP_STATE_AA64,
3134       .opc0 = 3, .opc1 = 3, .crn = 14, .crm = 3, .opc2 = 0,
3135       .type = ARM_CP_NO_RAW | ARM_CP_IO, .access = PL0_RW,
3136       .accessfn = gt_vtimer_access, .resetfn = gt_virt_timer_reset,
3137       .readfn = gt_virt_redir_tval_read, .writefn = gt_virt_redir_tval_write,
3138     },
3139     /* The counter itself */
3140     { .name = "CNTPCT", .cp = 15, .crm = 14, .opc1 = 0,
3141       .access = PL0_R, .type = ARM_CP_64BIT | ARM_CP_NO_RAW | ARM_CP_IO,
3142       .accessfn = gt_pct_access,
3143       .readfn = gt_cnt_read, .resetfn = arm_cp_reset_ignore,
3144     },
3145     { .name = "CNTPCT_EL0", .state = ARM_CP_STATE_AA64,
3146       .opc0 = 3, .opc1 = 3, .crn = 14, .crm = 0, .opc2 = 1,
3147       .access = PL0_R, .type = ARM_CP_NO_RAW | ARM_CP_IO,
3148       .accessfn = gt_pct_access, .readfn = gt_cnt_read,
3149     },
3150     { .name = "CNTVCT", .cp = 15, .crm = 14, .opc1 = 1,
3151       .access = PL0_R, .type = ARM_CP_64BIT | ARM_CP_NO_RAW | ARM_CP_IO,
3152       .accessfn = gt_vct_access,
3153       .readfn = gt_virt_cnt_read, .resetfn = arm_cp_reset_ignore,
3154     },
3155     { .name = "CNTVCT_EL0", .state = ARM_CP_STATE_AA64,
3156       .opc0 = 3, .opc1 = 3, .crn = 14, .crm = 0, .opc2 = 2,
3157       .access = PL0_R, .type = ARM_CP_NO_RAW | ARM_CP_IO,
3158       .accessfn = gt_vct_access, .readfn = gt_virt_cnt_read,
3159     },
3160     /* Comparison value, indicating when the timer goes off */
3161     { .name = "CNTP_CVAL", .cp = 15, .crm = 14, .opc1 = 2,
3162       .secure = ARM_CP_SECSTATE_NS,
3163       .access = PL0_RW,
3164       .type = ARM_CP_64BIT | ARM_CP_IO | ARM_CP_ALIAS,
3165       .fieldoffset = offsetof(CPUARMState, cp15.c14_timer[GTIMER_PHYS].cval),
3166       .accessfn = gt_ptimer_access,
3167       .readfn = gt_phys_redir_cval_read, .raw_readfn = raw_read,
3168       .writefn = gt_phys_redir_cval_write, .raw_writefn = raw_write,
3169     },
3170     { .name = "CNTP_CVAL_S", .cp = 15, .crm = 14, .opc1 = 2,
3171       .secure = ARM_CP_SECSTATE_S,
3172       .access = PL0_RW,
3173       .type = ARM_CP_64BIT | ARM_CP_IO | ARM_CP_ALIAS,
3174       .fieldoffset = offsetof(CPUARMState, cp15.c14_timer[GTIMER_SEC].cval),
3175       .accessfn = gt_ptimer_access,
3176       .writefn = gt_sec_cval_write, .raw_writefn = raw_write,
3177     },
3178     { .name = "CNTP_CVAL_EL0", .state = ARM_CP_STATE_AA64,
3179       .opc0 = 3, .opc1 = 3, .crn = 14, .crm = 2, .opc2 = 2,
3180       .access = PL0_RW,
3181       .type = ARM_CP_IO,
3182       .fieldoffset = offsetof(CPUARMState, cp15.c14_timer[GTIMER_PHYS].cval),
3183       .resetvalue = 0, .accessfn = gt_ptimer_access,
3184       .readfn = gt_phys_redir_cval_read, .raw_readfn = raw_read,
3185       .writefn = gt_phys_redir_cval_write, .raw_writefn = raw_write,
3186     },
3187     { .name = "CNTV_CVAL", .cp = 15, .crm = 14, .opc1 = 3,
3188       .access = PL0_RW,
3189       .type = ARM_CP_64BIT | ARM_CP_IO | ARM_CP_ALIAS,
3190       .fieldoffset = offsetof(CPUARMState, cp15.c14_timer[GTIMER_VIRT].cval),
3191       .accessfn = gt_vtimer_access,
3192       .readfn = gt_virt_redir_cval_read, .raw_readfn = raw_read,
3193       .writefn = gt_virt_redir_cval_write, .raw_writefn = raw_write,
3194     },
3195     { .name = "CNTV_CVAL_EL0", .state = ARM_CP_STATE_AA64,
3196       .opc0 = 3, .opc1 = 3, .crn = 14, .crm = 3, .opc2 = 2,
3197       .access = PL0_RW,
3198       .type = ARM_CP_IO,
3199       .fieldoffset = offsetof(CPUARMState, cp15.c14_timer[GTIMER_VIRT].cval),
3200       .resetvalue = 0, .accessfn = gt_vtimer_access,
3201       .readfn = gt_virt_redir_cval_read, .raw_readfn = raw_read,
3202       .writefn = gt_virt_redir_cval_write, .raw_writefn = raw_write,
3203     },
3204     /*
3205      * Secure timer -- this is actually restricted to only EL3
3206      * and configurably Secure-EL1 via the accessfn.
3207      */
3208     { .name = "CNTPS_TVAL_EL1", .state = ARM_CP_STATE_AA64,
3209       .opc0 = 3, .opc1 = 7, .crn = 14, .crm = 2, .opc2 = 0,
3210       .type = ARM_CP_NO_RAW | ARM_CP_IO, .access = PL1_RW,
3211       .accessfn = gt_stimer_access,
3212       .readfn = gt_sec_tval_read,
3213       .writefn = gt_sec_tval_write,
3214       .resetfn = gt_sec_timer_reset,
3215     },
3216     { .name = "CNTPS_CTL_EL1", .state = ARM_CP_STATE_AA64,
3217       .opc0 = 3, .opc1 = 7, .crn = 14, .crm = 2, .opc2 = 1,
3218       .type = ARM_CP_IO, .access = PL1_RW,
3219       .accessfn = gt_stimer_access,
3220       .fieldoffset = offsetof(CPUARMState, cp15.c14_timer[GTIMER_SEC].ctl),
3221       .resetvalue = 0,
3222       .writefn = gt_sec_ctl_write, .raw_writefn = raw_write,
3223     },
3224     { .name = "CNTPS_CVAL_EL1", .state = ARM_CP_STATE_AA64,
3225       .opc0 = 3, .opc1 = 7, .crn = 14, .crm = 2, .opc2 = 2,
3226       .type = ARM_CP_IO, .access = PL1_RW,
3227       .accessfn = gt_stimer_access,
3228       .fieldoffset = offsetof(CPUARMState, cp15.c14_timer[GTIMER_SEC].cval),
3229       .writefn = gt_sec_cval_write, .raw_writefn = raw_write,
3230     },
3231 };
3232 
3233 static CPAccessResult e2h_access(CPUARMState *env, const ARMCPRegInfo *ri,
3234                                  bool isread)
3235 {
3236     if (!(arm_hcr_el2_eff(env) & HCR_E2H)) {
3237         return CP_ACCESS_TRAP;
3238     }
3239     return CP_ACCESS_OK;
3240 }
3241 
3242 #else
3243 
3244 /*
3245  * In user-mode most of the generic timer registers are inaccessible
3246  * however modern kernels (4.12+) allow access to cntvct_el0
3247  */
3248 
3249 static uint64_t gt_virt_cnt_read(CPUARMState *env, const ARMCPRegInfo *ri)
3250 {
3251     ARMCPU *cpu = env_archcpu(env);
3252 
3253     /*
3254      * Currently we have no support for QEMUTimer in linux-user so we
3255      * can't call gt_get_countervalue(env), instead we directly
3256      * call the lower level functions.
3257      */
3258     return cpu_get_clock() / gt_cntfrq_period_ns(cpu);
3259 }
3260 
3261 static const ARMCPRegInfo generic_timer_cp_reginfo[] = {
3262     { .name = "CNTFRQ_EL0", .state = ARM_CP_STATE_AA64,
3263       .opc0 = 3, .opc1 = 3, .crn = 14, .crm = 0, .opc2 = 0,
3264       .type = ARM_CP_CONST, .access = PL0_R /* no PL1_RW in linux-user */,
3265       .fieldoffset = offsetof(CPUARMState, cp15.c14_cntfrq),
3266       .resetvalue = NANOSECONDS_PER_SECOND / GTIMER_SCALE,
3267     },
3268     { .name = "CNTVCT_EL0", .state = ARM_CP_STATE_AA64,
3269       .opc0 = 3, .opc1 = 3, .crn = 14, .crm = 0, .opc2 = 2,
3270       .access = PL0_R, .type = ARM_CP_NO_RAW | ARM_CP_IO,
3271       .readfn = gt_virt_cnt_read,
3272     },
3273 };
3274 
3275 #endif
3276 
3277 static void par_write(CPUARMState *env, const ARMCPRegInfo *ri, uint64_t value)
3278 {
3279     if (arm_feature(env, ARM_FEATURE_LPAE)) {
3280         raw_write(env, ri, value);
3281     } else if (arm_feature(env, ARM_FEATURE_V7)) {
3282         raw_write(env, ri, value & 0xfffff6ff);
3283     } else {
3284         raw_write(env, ri, value & 0xfffff1ff);
3285     }
3286 }
3287 
3288 #ifndef CONFIG_USER_ONLY
3289 /* get_phys_addr() isn't present for user-mode-only targets */
3290 
3291 static CPAccessResult ats_access(CPUARMState *env, const ARMCPRegInfo *ri,
3292                                  bool isread)
3293 {
3294     if (ri->opc2 & 4) {
3295         /*
3296          * The ATS12NSO* operations must trap to EL3 or EL2 if executed in
3297          * Secure EL1 (which can only happen if EL3 is AArch64).
3298          * They are simply UNDEF if executed from NS EL1.
3299          * They function normally from EL2 or EL3.
3300          */
3301         if (arm_current_el(env) == 1) {
3302             if (arm_is_secure_below_el3(env)) {
3303                 if (env->cp15.scr_el3 & SCR_EEL2) {
3304                     return CP_ACCESS_TRAP_EL2;
3305                 }
3306                 return CP_ACCESS_TRAP_EL3;
3307             }
3308             return CP_ACCESS_TRAP_UNCATEGORIZED;
3309         }
3310     }
3311     return CP_ACCESS_OK;
3312 }
3313 
3314 #ifdef CONFIG_TCG
3315 static uint64_t do_ats_write(CPUARMState *env, uint64_t value,
3316                              MMUAccessType access_type, ARMMMUIdx mmu_idx,
3317                              bool is_secure)
3318 {
3319     bool ret;
3320     uint64_t par64;
3321     bool format64 = false;
3322     ARMMMUFaultInfo fi = {};
3323     GetPhysAddrResult res = {};
3324 
3325     ret = get_phys_addr_with_secure(env, value, access_type, mmu_idx,
3326                                     is_secure, &res, &fi);
3327 
3328     /*
3329      * ATS operations only do S1 or S1+S2 translations, so we never
3330      * have to deal with the ARMCacheAttrs format for S2 only.
3331      */
3332     assert(!res.cacheattrs.is_s2_format);
3333 
3334     if (ret) {
3335         /*
3336          * Some kinds of translation fault must cause exceptions rather
3337          * than being reported in the PAR.
3338          */
3339         int current_el = arm_current_el(env);
3340         int target_el;
3341         uint32_t syn, fsr, fsc;
3342         bool take_exc = false;
3343 
3344         if (fi.s1ptw && current_el == 1
3345             && arm_mmu_idx_is_stage1_of_2(mmu_idx)) {
3346             /*
3347              * Synchronous stage 2 fault on an access made as part of the
3348              * translation table walk for AT S1E0* or AT S1E1* insn
3349              * executed from NS EL1. If this is a synchronous external abort
3350              * and SCR_EL3.EA == 1, then we take a synchronous external abort
3351              * to EL3. Otherwise the fault is taken as an exception to EL2,
3352              * and HPFAR_EL2 holds the faulting IPA.
3353              */
3354             if (fi.type == ARMFault_SyncExternalOnWalk &&
3355                 (env->cp15.scr_el3 & SCR_EA)) {
3356                 target_el = 3;
3357             } else {
3358                 env->cp15.hpfar_el2 = extract64(fi.s2addr, 12, 47) << 4;
3359                 if (arm_is_secure_below_el3(env) && fi.s1ns) {
3360                     env->cp15.hpfar_el2 |= HPFAR_NS;
3361                 }
3362                 target_el = 2;
3363             }
3364             take_exc = true;
3365         } else if (fi.type == ARMFault_SyncExternalOnWalk) {
3366             /*
3367              * Synchronous external aborts during a translation table walk
3368              * are taken as Data Abort exceptions.
3369              */
3370             if (fi.stage2) {
3371                 if (current_el == 3) {
3372                     target_el = 3;
3373                 } else {
3374                     target_el = 2;
3375                 }
3376             } else {
3377                 target_el = exception_target_el(env);
3378             }
3379             take_exc = true;
3380         }
3381 
3382         if (take_exc) {
3383             /* Construct FSR and FSC using same logic as arm_deliver_fault() */
3384             if (target_el == 2 || arm_el_is_aa64(env, target_el) ||
3385                 arm_s1_regime_using_lpae_format(env, mmu_idx)) {
3386                 fsr = arm_fi_to_lfsc(&fi);
3387                 fsc = extract32(fsr, 0, 6);
3388             } else {
3389                 fsr = arm_fi_to_sfsc(&fi);
3390                 fsc = 0x3f;
3391             }
3392             /*
3393              * Report exception with ESR indicating a fault due to a
3394              * translation table walk for a cache maintenance instruction.
3395              */
3396             syn = syn_data_abort_no_iss(current_el == target_el, 0,
3397                                         fi.ea, 1, fi.s1ptw, 1, fsc);
3398             env->exception.vaddress = value;
3399             env->exception.fsr = fsr;
3400             raise_exception(env, EXCP_DATA_ABORT, syn, target_el);
3401         }
3402     }
3403 
3404     if (is_a64(env)) {
3405         format64 = true;
3406     } else if (arm_feature(env, ARM_FEATURE_LPAE)) {
3407         /*
3408          * ATS1Cxx:
3409          * * TTBCR.EAE determines whether the result is returned using the
3410          *   32-bit or the 64-bit PAR format
3411          * * Instructions executed in Hyp mode always use the 64bit format
3412          *
3413          * ATS1S2NSOxx uses the 64bit format if any of the following is true:
3414          * * The Non-secure TTBCR.EAE bit is set to 1
3415          * * The implementation includes EL2, and the value of HCR.VM is 1
3416          *
3417          * (Note that HCR.DC makes HCR.VM behave as if it is 1.)
3418          *
3419          * ATS1Hx always uses the 64bit format.
3420          */
3421         format64 = arm_s1_regime_using_lpae_format(env, mmu_idx);
3422 
3423         if (arm_feature(env, ARM_FEATURE_EL2)) {
3424             if (mmu_idx == ARMMMUIdx_E10_0 ||
3425                 mmu_idx == ARMMMUIdx_E10_1 ||
3426                 mmu_idx == ARMMMUIdx_E10_1_PAN) {
3427                 format64 |= env->cp15.hcr_el2 & (HCR_VM | HCR_DC);
3428             } else {
3429                 format64 |= arm_current_el(env) == 2;
3430             }
3431         }
3432     }
3433 
3434     if (format64) {
3435         /* Create a 64-bit PAR */
3436         par64 = (1 << 11); /* LPAE bit always set */
3437         if (!ret) {
3438             par64 |= res.f.phys_addr & ~0xfffULL;
3439             if (!res.f.attrs.secure) {
3440                 par64 |= (1 << 9); /* NS */
3441             }
3442             par64 |= (uint64_t)res.cacheattrs.attrs << 56; /* ATTR */
3443             par64 |= res.cacheattrs.shareability << 7; /* SH */
3444         } else {
3445             uint32_t fsr = arm_fi_to_lfsc(&fi);
3446 
3447             par64 |= 1; /* F */
3448             par64 |= (fsr & 0x3f) << 1; /* FS */
3449             if (fi.stage2) {
3450                 par64 |= (1 << 9); /* S */
3451             }
3452             if (fi.s1ptw) {
3453                 par64 |= (1 << 8); /* PTW */
3454             }
3455         }
3456     } else {
3457         /*
3458          * fsr is a DFSR/IFSR value for the short descriptor
3459          * translation table format (with WnR always clear).
3460          * Convert it to a 32-bit PAR.
3461          */
3462         if (!ret) {
3463             /* We do not set any attribute bits in the PAR */
3464             if (res.f.lg_page_size == 24
3465                 && arm_feature(env, ARM_FEATURE_V7)) {
3466                 par64 = (res.f.phys_addr & 0xff000000) | (1 << 1);
3467             } else {
3468                 par64 = res.f.phys_addr & 0xfffff000;
3469             }
3470             if (!res.f.attrs.secure) {
3471                 par64 |= (1 << 9); /* NS */
3472             }
3473         } else {
3474             uint32_t fsr = arm_fi_to_sfsc(&fi);
3475 
3476             par64 = ((fsr & (1 << 10)) >> 5) | ((fsr & (1 << 12)) >> 6) |
3477                     ((fsr & 0xf) << 1) | 1;
3478         }
3479     }
3480     return par64;
3481 }
3482 #endif /* CONFIG_TCG */
3483 
3484 static void ats_write(CPUARMState *env, const ARMCPRegInfo *ri, uint64_t value)
3485 {
3486 #ifdef CONFIG_TCG
3487     MMUAccessType access_type = ri->opc2 & 1 ? MMU_DATA_STORE : MMU_DATA_LOAD;
3488     uint64_t par64;
3489     ARMMMUIdx mmu_idx;
3490     int el = arm_current_el(env);
3491     bool secure = arm_is_secure_below_el3(env);
3492 
3493     switch (ri->opc2 & 6) {
3494     case 0:
3495         /* stage 1 current state PL1: ATS1CPR, ATS1CPW, ATS1CPRP, ATS1CPWP */
3496         switch (el) {
3497         case 3:
3498             mmu_idx = ARMMMUIdx_E3;
3499             secure = true;
3500             break;
3501         case 2:
3502             g_assert(!secure);  /* ARMv8.4-SecEL2 is 64-bit only */
3503             /* fall through */
3504         case 1:
3505             if (ri->crm == 9 && (env->uncached_cpsr & CPSR_PAN)) {
3506                 mmu_idx = ARMMMUIdx_Stage1_E1_PAN;
3507             } else {
3508                 mmu_idx = ARMMMUIdx_Stage1_E1;
3509             }
3510             break;
3511         default:
3512             g_assert_not_reached();
3513         }
3514         break;
3515     case 2:
3516         /* stage 1 current state PL0: ATS1CUR, ATS1CUW */
3517         switch (el) {
3518         case 3:
3519             mmu_idx = ARMMMUIdx_E10_0;
3520             secure = true;
3521             break;
3522         case 2:
3523             g_assert(!secure);  /* ARMv8.4-SecEL2 is 64-bit only */
3524             mmu_idx = ARMMMUIdx_Stage1_E0;
3525             break;
3526         case 1:
3527             mmu_idx = ARMMMUIdx_Stage1_E0;
3528             break;
3529         default:
3530             g_assert_not_reached();
3531         }
3532         break;
3533     case 4:
3534         /* stage 1+2 NonSecure PL1: ATS12NSOPR, ATS12NSOPW */
3535         mmu_idx = ARMMMUIdx_E10_1;
3536         secure = false;
3537         break;
3538     case 6:
3539         /* stage 1+2 NonSecure PL0: ATS12NSOUR, ATS12NSOUW */
3540         mmu_idx = ARMMMUIdx_E10_0;
3541         secure = false;
3542         break;
3543     default:
3544         g_assert_not_reached();
3545     }
3546 
3547     par64 = do_ats_write(env, value, access_type, mmu_idx, secure);
3548 
3549     A32_BANKED_CURRENT_REG_SET(env, par, par64);
3550 #else
3551     /* Handled by hardware accelerator. */
3552     g_assert_not_reached();
3553 #endif /* CONFIG_TCG */
3554 }
3555 
3556 static void ats1h_write(CPUARMState *env, const ARMCPRegInfo *ri,
3557                         uint64_t value)
3558 {
3559 #ifdef CONFIG_TCG
3560     MMUAccessType access_type = ri->opc2 & 1 ? MMU_DATA_STORE : MMU_DATA_LOAD;
3561     uint64_t par64;
3562 
3563     /* There is no SecureEL2 for AArch32. */
3564     par64 = do_ats_write(env, value, access_type, ARMMMUIdx_E2, false);
3565 
3566     A32_BANKED_CURRENT_REG_SET(env, par, par64);
3567 #else
3568     /* Handled by hardware accelerator. */
3569     g_assert_not_reached();
3570 #endif /* CONFIG_TCG */
3571 }
3572 
3573 static CPAccessResult at_s1e2_access(CPUARMState *env, const ARMCPRegInfo *ri,
3574                                      bool isread)
3575 {
3576     if (arm_current_el(env) == 3 &&
3577         !(env->cp15.scr_el3 & (SCR_NS | SCR_EEL2))) {
3578         return CP_ACCESS_TRAP;
3579     }
3580     return CP_ACCESS_OK;
3581 }
3582 
3583 static void ats_write64(CPUARMState *env, const ARMCPRegInfo *ri,
3584                         uint64_t value)
3585 {
3586 #ifdef CONFIG_TCG
3587     MMUAccessType access_type = ri->opc2 & 1 ? MMU_DATA_STORE : MMU_DATA_LOAD;
3588     ARMMMUIdx mmu_idx;
3589     int secure = arm_is_secure_below_el3(env);
3590     uint64_t hcr_el2 = arm_hcr_el2_eff(env);
3591     bool regime_e20 = (hcr_el2 & (HCR_E2H | HCR_TGE)) == (HCR_E2H | HCR_TGE);
3592 
3593     switch (ri->opc2 & 6) {
3594     case 0:
3595         switch (ri->opc1) {
3596         case 0: /* AT S1E1R, AT S1E1W, AT S1E1RP, AT S1E1WP */
3597             if (ri->crm == 9 && (env->pstate & PSTATE_PAN)) {
3598                 mmu_idx = regime_e20 ?
3599                           ARMMMUIdx_E20_2_PAN : ARMMMUIdx_Stage1_E1_PAN;
3600             } else {
3601                 mmu_idx = regime_e20 ? ARMMMUIdx_E20_2 : ARMMMUIdx_Stage1_E1;
3602             }
3603             break;
3604         case 4: /* AT S1E2R, AT S1E2W */
3605             mmu_idx = hcr_el2 & HCR_E2H ? ARMMMUIdx_E20_2 : ARMMMUIdx_E2;
3606             break;
3607         case 6: /* AT S1E3R, AT S1E3W */
3608             mmu_idx = ARMMMUIdx_E3;
3609             secure = true;
3610             break;
3611         default:
3612             g_assert_not_reached();
3613         }
3614         break;
3615     case 2: /* AT S1E0R, AT S1E0W */
3616         mmu_idx = regime_e20 ? ARMMMUIdx_E20_0 : ARMMMUIdx_Stage1_E0;
3617         break;
3618     case 4: /* AT S12E1R, AT S12E1W */
3619         mmu_idx = regime_e20 ? ARMMMUIdx_E20_2 : ARMMMUIdx_E10_1;
3620         break;
3621     case 6: /* AT S12E0R, AT S12E0W */
3622         mmu_idx = regime_e20 ? ARMMMUIdx_E20_0 : ARMMMUIdx_E10_0;
3623         break;
3624     default:
3625         g_assert_not_reached();
3626     }
3627 
3628     env->cp15.par_el[1] = do_ats_write(env, value, access_type,
3629                                        mmu_idx, secure);
3630 #else
3631     /* Handled by hardware accelerator. */
3632     g_assert_not_reached();
3633 #endif /* CONFIG_TCG */
3634 }
3635 #endif
3636 
3637 static const ARMCPRegInfo vapa_cp_reginfo[] = {
3638     { .name = "PAR", .cp = 15, .crn = 7, .crm = 4, .opc1 = 0, .opc2 = 0,
3639       .access = PL1_RW, .resetvalue = 0,
3640       .bank_fieldoffsets = { offsetoflow32(CPUARMState, cp15.par_s),
3641                              offsetoflow32(CPUARMState, cp15.par_ns) },
3642       .writefn = par_write },
3643 #ifndef CONFIG_USER_ONLY
3644     /* This underdecoding is safe because the reginfo is NO_RAW. */
3645     { .name = "ATS", .cp = 15, .crn = 7, .crm = 8, .opc1 = 0, .opc2 = CP_ANY,
3646       .access = PL1_W, .accessfn = ats_access,
3647       .writefn = ats_write, .type = ARM_CP_NO_RAW | ARM_CP_RAISES_EXC },
3648 #endif
3649 };
3650 
3651 /* Return basic MPU access permission bits.  */
3652 static uint32_t simple_mpu_ap_bits(uint32_t val)
3653 {
3654     uint32_t ret;
3655     uint32_t mask;
3656     int i;
3657     ret = 0;
3658     mask = 3;
3659     for (i = 0; i < 16; i += 2) {
3660         ret |= (val >> i) & mask;
3661         mask <<= 2;
3662     }
3663     return ret;
3664 }
3665 
3666 /* Pad basic MPU access permission bits to extended format.  */
3667 static uint32_t extended_mpu_ap_bits(uint32_t val)
3668 {
3669     uint32_t ret;
3670     uint32_t mask;
3671     int i;
3672     ret = 0;
3673     mask = 3;
3674     for (i = 0; i < 16; i += 2) {
3675         ret |= (val & mask) << i;
3676         mask <<= 2;
3677     }
3678     return ret;
3679 }
3680 
3681 static void pmsav5_data_ap_write(CPUARMState *env, const ARMCPRegInfo *ri,
3682                                  uint64_t value)
3683 {
3684     env->cp15.pmsav5_data_ap = extended_mpu_ap_bits(value);
3685 }
3686 
3687 static uint64_t pmsav5_data_ap_read(CPUARMState *env, const ARMCPRegInfo *ri)
3688 {
3689     return simple_mpu_ap_bits(env->cp15.pmsav5_data_ap);
3690 }
3691 
3692 static void pmsav5_insn_ap_write(CPUARMState *env, const ARMCPRegInfo *ri,
3693                                  uint64_t value)
3694 {
3695     env->cp15.pmsav5_insn_ap = extended_mpu_ap_bits(value);
3696 }
3697 
3698 static uint64_t pmsav5_insn_ap_read(CPUARMState *env, const ARMCPRegInfo *ri)
3699 {
3700     return simple_mpu_ap_bits(env->cp15.pmsav5_insn_ap);
3701 }
3702 
3703 static uint64_t pmsav7_read(CPUARMState *env, const ARMCPRegInfo *ri)
3704 {
3705     uint32_t *u32p = *(uint32_t **)raw_ptr(env, ri);
3706 
3707     if (!u32p) {
3708         return 0;
3709     }
3710 
3711     u32p += env->pmsav7.rnr[M_REG_NS];
3712     return *u32p;
3713 }
3714 
3715 static void pmsav7_write(CPUARMState *env, const ARMCPRegInfo *ri,
3716                          uint64_t value)
3717 {
3718     ARMCPU *cpu = env_archcpu(env);
3719     uint32_t *u32p = *(uint32_t **)raw_ptr(env, ri);
3720 
3721     if (!u32p) {
3722         return;
3723     }
3724 
3725     u32p += env->pmsav7.rnr[M_REG_NS];
3726     tlb_flush(CPU(cpu)); /* Mappings may have changed - purge! */
3727     *u32p = value;
3728 }
3729 
3730 static void pmsav7_rgnr_write(CPUARMState *env, const ARMCPRegInfo *ri,
3731                               uint64_t value)
3732 {
3733     ARMCPU *cpu = env_archcpu(env);
3734     uint32_t nrgs = cpu->pmsav7_dregion;
3735 
3736     if (value >= nrgs) {
3737         qemu_log_mask(LOG_GUEST_ERROR,
3738                       "PMSAv7 RGNR write >= # supported regions, %" PRIu32
3739                       " > %" PRIu32 "\n", (uint32_t)value, nrgs);
3740         return;
3741     }
3742 
3743     raw_write(env, ri, value);
3744 }
3745 
3746 static void prbar_write(CPUARMState *env, const ARMCPRegInfo *ri,
3747                           uint64_t value)
3748 {
3749     ARMCPU *cpu = env_archcpu(env);
3750 
3751     tlb_flush(CPU(cpu)); /* Mappings may have changed - purge! */
3752     env->pmsav8.rbar[M_REG_NS][env->pmsav7.rnr[M_REG_NS]] = value;
3753 }
3754 
3755 static uint64_t prbar_read(CPUARMState *env, const ARMCPRegInfo *ri)
3756 {
3757     return env->pmsav8.rbar[M_REG_NS][env->pmsav7.rnr[M_REG_NS]];
3758 }
3759 
3760 static void prlar_write(CPUARMState *env, const ARMCPRegInfo *ri,
3761                           uint64_t value)
3762 {
3763     ARMCPU *cpu = env_archcpu(env);
3764 
3765     tlb_flush(CPU(cpu)); /* Mappings may have changed - purge! */
3766     env->pmsav8.rlar[M_REG_NS][env->pmsav7.rnr[M_REG_NS]] = value;
3767 }
3768 
3769 static uint64_t prlar_read(CPUARMState *env, const ARMCPRegInfo *ri)
3770 {
3771     return env->pmsav8.rlar[M_REG_NS][env->pmsav7.rnr[M_REG_NS]];
3772 }
3773 
3774 static void prselr_write(CPUARMState *env, const ARMCPRegInfo *ri,
3775                            uint64_t value)
3776 {
3777     ARMCPU *cpu = env_archcpu(env);
3778 
3779     /*
3780      * Ignore writes that would select not implemented region.
3781      * This is architecturally UNPREDICTABLE.
3782      */
3783     if (value >= cpu->pmsav7_dregion) {
3784         return;
3785     }
3786 
3787     env->pmsav7.rnr[M_REG_NS] = value;
3788 }
3789 
3790 static void hprbar_write(CPUARMState *env, const ARMCPRegInfo *ri,
3791                           uint64_t value)
3792 {
3793     ARMCPU *cpu = env_archcpu(env);
3794 
3795     tlb_flush(CPU(cpu)); /* Mappings may have changed - purge! */
3796     env->pmsav8.hprbar[env->pmsav8.hprselr] = value;
3797 }
3798 
3799 static uint64_t hprbar_read(CPUARMState *env, const ARMCPRegInfo *ri)
3800 {
3801     return env->pmsav8.hprbar[env->pmsav8.hprselr];
3802 }
3803 
3804 static void hprlar_write(CPUARMState *env, const ARMCPRegInfo *ri,
3805                           uint64_t value)
3806 {
3807     ARMCPU *cpu = env_archcpu(env);
3808 
3809     tlb_flush(CPU(cpu)); /* Mappings may have changed - purge! */
3810     env->pmsav8.hprlar[env->pmsav8.hprselr] = value;
3811 }
3812 
3813 static uint64_t hprlar_read(CPUARMState *env, const ARMCPRegInfo *ri)
3814 {
3815     return env->pmsav8.hprlar[env->pmsav8.hprselr];
3816 }
3817 
3818 static void hprenr_write(CPUARMState *env, const ARMCPRegInfo *ri,
3819                           uint64_t value)
3820 {
3821     uint32_t n;
3822     uint32_t bit;
3823     ARMCPU *cpu = env_archcpu(env);
3824 
3825     /* Ignore writes to unimplemented regions */
3826     int rmax = MIN(cpu->pmsav8r_hdregion, 32);
3827     value &= MAKE_64BIT_MASK(0, rmax);
3828 
3829     tlb_flush(CPU(cpu)); /* Mappings may have changed - purge! */
3830 
3831     /* Register alias is only valid for first 32 indexes */
3832     for (n = 0; n < rmax; ++n) {
3833         bit = extract32(value, n, 1);
3834         env->pmsav8.hprlar[n] = deposit32(
3835                     env->pmsav8.hprlar[n], 0, 1, bit);
3836     }
3837 }
3838 
3839 static uint64_t hprenr_read(CPUARMState *env, const ARMCPRegInfo *ri)
3840 {
3841     uint32_t n;
3842     uint32_t result = 0x0;
3843     ARMCPU *cpu = env_archcpu(env);
3844 
3845     /* Register alias is only valid for first 32 indexes */
3846     for (n = 0; n < MIN(cpu->pmsav8r_hdregion, 32); ++n) {
3847         if (env->pmsav8.hprlar[n] & 0x1) {
3848             result |= (0x1 << n);
3849         }
3850     }
3851     return result;
3852 }
3853 
3854 static void hprselr_write(CPUARMState *env, const ARMCPRegInfo *ri,
3855                            uint64_t value)
3856 {
3857     ARMCPU *cpu = env_archcpu(env);
3858 
3859     /*
3860      * Ignore writes that would select not implemented region.
3861      * This is architecturally UNPREDICTABLE.
3862      */
3863     if (value >= cpu->pmsav8r_hdregion) {
3864         return;
3865     }
3866 
3867     env->pmsav8.hprselr = value;
3868 }
3869 
3870 static void pmsav8r_regn_write(CPUARMState *env, const ARMCPRegInfo *ri,
3871                           uint64_t value)
3872 {
3873     ARMCPU *cpu = env_archcpu(env);
3874     uint8_t index = (extract32(ri->opc0, 0, 1) << 4) |
3875                     (extract32(ri->crm, 0, 3) << 1) | extract32(ri->opc2, 2, 1);
3876 
3877     tlb_flush(CPU(cpu)); /* Mappings may have changed - purge! */
3878 
3879     if (ri->opc1 & 4) {
3880         if (index >= cpu->pmsav8r_hdregion) {
3881             return;
3882         }
3883         if (ri->opc2 & 0x1) {
3884             env->pmsav8.hprlar[index] = value;
3885         } else {
3886             env->pmsav8.hprbar[index] = value;
3887         }
3888     } else {
3889         if (index >= cpu->pmsav7_dregion) {
3890             return;
3891         }
3892         if (ri->opc2 & 0x1) {
3893             env->pmsav8.rlar[M_REG_NS][index] = value;
3894         } else {
3895             env->pmsav8.rbar[M_REG_NS][index] = value;
3896         }
3897     }
3898 }
3899 
3900 static uint64_t pmsav8r_regn_read(CPUARMState *env, const ARMCPRegInfo *ri)
3901 {
3902     ARMCPU *cpu = env_archcpu(env);
3903     uint8_t index = (extract32(ri->opc0, 0, 1) << 4) |
3904                     (extract32(ri->crm, 0, 3) << 1) | extract32(ri->opc2, 2, 1);
3905 
3906     if (ri->opc1 & 4) {
3907         if (index >= cpu->pmsav8r_hdregion) {
3908             return 0x0;
3909         }
3910         if (ri->opc2 & 0x1) {
3911             return env->pmsav8.hprlar[index];
3912         } else {
3913             return env->pmsav8.hprbar[index];
3914         }
3915     } else {
3916         if (index >= cpu->pmsav7_dregion) {
3917             return 0x0;
3918         }
3919         if (ri->opc2 & 0x1) {
3920             return env->pmsav8.rlar[M_REG_NS][index];
3921         } else {
3922             return env->pmsav8.rbar[M_REG_NS][index];
3923         }
3924     }
3925 }
3926 
3927 static const ARMCPRegInfo pmsav8r_cp_reginfo[] = {
3928     { .name = "PRBAR",
3929       .cp = 15, .opc1 = 0, .crn = 6, .crm = 3, .opc2 = 0,
3930       .access = PL1_RW, .type = ARM_CP_NO_RAW,
3931       .accessfn = access_tvm_trvm,
3932       .readfn = prbar_read, .writefn = prbar_write },
3933     { .name = "PRLAR",
3934       .cp = 15, .opc1 = 0, .crn = 6, .crm = 3, .opc2 = 1,
3935       .access = PL1_RW, .type = ARM_CP_NO_RAW,
3936       .accessfn = access_tvm_trvm,
3937       .readfn = prlar_read, .writefn = prlar_write },
3938     { .name = "PRSELR", .resetvalue = 0,
3939       .cp = 15, .opc1 = 0, .crn = 6, .crm = 2, .opc2 = 1,
3940       .access = PL1_RW, .accessfn = access_tvm_trvm,
3941       .writefn = prselr_write,
3942       .fieldoffset = offsetof(CPUARMState, pmsav7.rnr[M_REG_NS]) },
3943     { .name = "HPRBAR", .resetvalue = 0,
3944       .cp = 15, .opc1 = 4, .crn = 6, .crm = 3, .opc2 = 0,
3945       .access = PL2_RW, .type = ARM_CP_NO_RAW,
3946       .readfn = hprbar_read, .writefn = hprbar_write },
3947     { .name = "HPRLAR",
3948       .cp = 15, .opc1 = 4, .crn = 6, .crm = 3, .opc2 = 1,
3949       .access = PL2_RW, .type = ARM_CP_NO_RAW,
3950       .readfn = hprlar_read, .writefn = hprlar_write },
3951     { .name = "HPRSELR", .resetvalue = 0,
3952       .cp = 15, .opc1 = 4, .crn = 6, .crm = 2, .opc2 = 1,
3953       .access = PL2_RW,
3954       .writefn = hprselr_write,
3955       .fieldoffset = offsetof(CPUARMState, pmsav8.hprselr) },
3956     { .name = "HPRENR",
3957       .cp = 15, .opc1 = 4, .crn = 6, .crm = 1, .opc2 = 1,
3958       .access = PL2_RW, .type = ARM_CP_NO_RAW,
3959       .readfn = hprenr_read, .writefn = hprenr_write },
3960 };
3961 
3962 static const ARMCPRegInfo pmsav7_cp_reginfo[] = {
3963     /*
3964      * Reset for all these registers is handled in arm_cpu_reset(),
3965      * because the PMSAv7 is also used by M-profile CPUs, which do
3966      * not register cpregs but still need the state to be reset.
3967      */
3968     { .name = "DRBAR", .cp = 15, .crn = 6, .opc1 = 0, .crm = 1, .opc2 = 0,
3969       .access = PL1_RW, .type = ARM_CP_NO_RAW,
3970       .fieldoffset = offsetof(CPUARMState, pmsav7.drbar),
3971       .readfn = pmsav7_read, .writefn = pmsav7_write,
3972       .resetfn = arm_cp_reset_ignore },
3973     { .name = "DRSR", .cp = 15, .crn = 6, .opc1 = 0, .crm = 1, .opc2 = 2,
3974       .access = PL1_RW, .type = ARM_CP_NO_RAW,
3975       .fieldoffset = offsetof(CPUARMState, pmsav7.drsr),
3976       .readfn = pmsav7_read, .writefn = pmsav7_write,
3977       .resetfn = arm_cp_reset_ignore },
3978     { .name = "DRACR", .cp = 15, .crn = 6, .opc1 = 0, .crm = 1, .opc2 = 4,
3979       .access = PL1_RW, .type = ARM_CP_NO_RAW,
3980       .fieldoffset = offsetof(CPUARMState, pmsav7.dracr),
3981       .readfn = pmsav7_read, .writefn = pmsav7_write,
3982       .resetfn = arm_cp_reset_ignore },
3983     { .name = "RGNR", .cp = 15, .crn = 6, .opc1 = 0, .crm = 2, .opc2 = 0,
3984       .access = PL1_RW,
3985       .fieldoffset = offsetof(CPUARMState, pmsav7.rnr[M_REG_NS]),
3986       .writefn = pmsav7_rgnr_write,
3987       .resetfn = arm_cp_reset_ignore },
3988 };
3989 
3990 static const ARMCPRegInfo pmsav5_cp_reginfo[] = {
3991     { .name = "DATA_AP", .cp = 15, .crn = 5, .crm = 0, .opc1 = 0, .opc2 = 0,
3992       .access = PL1_RW, .type = ARM_CP_ALIAS,
3993       .fieldoffset = offsetof(CPUARMState, cp15.pmsav5_data_ap),
3994       .readfn = pmsav5_data_ap_read, .writefn = pmsav5_data_ap_write, },
3995     { .name = "INSN_AP", .cp = 15, .crn = 5, .crm = 0, .opc1 = 0, .opc2 = 1,
3996       .access = PL1_RW, .type = ARM_CP_ALIAS,
3997       .fieldoffset = offsetof(CPUARMState, cp15.pmsav5_insn_ap),
3998       .readfn = pmsav5_insn_ap_read, .writefn = pmsav5_insn_ap_write, },
3999     { .name = "DATA_EXT_AP", .cp = 15, .crn = 5, .crm = 0, .opc1 = 0, .opc2 = 2,
4000       .access = PL1_RW,
4001       .fieldoffset = offsetof(CPUARMState, cp15.pmsav5_data_ap),
4002       .resetvalue = 0, },
4003     { .name = "INSN_EXT_AP", .cp = 15, .crn = 5, .crm = 0, .opc1 = 0, .opc2 = 3,
4004       .access = PL1_RW,
4005       .fieldoffset = offsetof(CPUARMState, cp15.pmsav5_insn_ap),
4006       .resetvalue = 0, },
4007     { .name = "DCACHE_CFG", .cp = 15, .crn = 2, .crm = 0, .opc1 = 0, .opc2 = 0,
4008       .access = PL1_RW,
4009       .fieldoffset = offsetof(CPUARMState, cp15.c2_data), .resetvalue = 0, },
4010     { .name = "ICACHE_CFG", .cp = 15, .crn = 2, .crm = 0, .opc1 = 0, .opc2 = 1,
4011       .access = PL1_RW,
4012       .fieldoffset = offsetof(CPUARMState, cp15.c2_insn), .resetvalue = 0, },
4013     /* Protection region base and size registers */
4014     { .name = "946_PRBS0", .cp = 15, .crn = 6, .crm = 0, .opc1 = 0,
4015       .opc2 = CP_ANY, .access = PL1_RW, .resetvalue = 0,
4016       .fieldoffset = offsetof(CPUARMState, cp15.c6_region[0]) },
4017     { .name = "946_PRBS1", .cp = 15, .crn = 6, .crm = 1, .opc1 = 0,
4018       .opc2 = CP_ANY, .access = PL1_RW, .resetvalue = 0,
4019       .fieldoffset = offsetof(CPUARMState, cp15.c6_region[1]) },
4020     { .name = "946_PRBS2", .cp = 15, .crn = 6, .crm = 2, .opc1 = 0,
4021       .opc2 = CP_ANY, .access = PL1_RW, .resetvalue = 0,
4022       .fieldoffset = offsetof(CPUARMState, cp15.c6_region[2]) },
4023     { .name = "946_PRBS3", .cp = 15, .crn = 6, .crm = 3, .opc1 = 0,
4024       .opc2 = CP_ANY, .access = PL1_RW, .resetvalue = 0,
4025       .fieldoffset = offsetof(CPUARMState, cp15.c6_region[3]) },
4026     { .name = "946_PRBS4", .cp = 15, .crn = 6, .crm = 4, .opc1 = 0,
4027       .opc2 = CP_ANY, .access = PL1_RW, .resetvalue = 0,
4028       .fieldoffset = offsetof(CPUARMState, cp15.c6_region[4]) },
4029     { .name = "946_PRBS5", .cp = 15, .crn = 6, .crm = 5, .opc1 = 0,
4030       .opc2 = CP_ANY, .access = PL1_RW, .resetvalue = 0,
4031       .fieldoffset = offsetof(CPUARMState, cp15.c6_region[5]) },
4032     { .name = "946_PRBS6", .cp = 15, .crn = 6, .crm = 6, .opc1 = 0,
4033       .opc2 = CP_ANY, .access = PL1_RW, .resetvalue = 0,
4034       .fieldoffset = offsetof(CPUARMState, cp15.c6_region[6]) },
4035     { .name = "946_PRBS7", .cp = 15, .crn = 6, .crm = 7, .opc1 = 0,
4036       .opc2 = CP_ANY, .access = PL1_RW, .resetvalue = 0,
4037       .fieldoffset = offsetof(CPUARMState, cp15.c6_region[7]) },
4038 };
4039 
4040 static void vmsa_ttbcr_write(CPUARMState *env, const ARMCPRegInfo *ri,
4041                              uint64_t value)
4042 {
4043     ARMCPU *cpu = env_archcpu(env);
4044 
4045     if (!arm_feature(env, ARM_FEATURE_V8)) {
4046         if (arm_feature(env, ARM_FEATURE_LPAE) && (value & TTBCR_EAE)) {
4047             /*
4048              * Pre ARMv8 bits [21:19], [15:14] and [6:3] are UNK/SBZP when
4049              * using Long-descriptor translation table format
4050              */
4051             value &= ~((7 << 19) | (3 << 14) | (0xf << 3));
4052         } else if (arm_feature(env, ARM_FEATURE_EL3)) {
4053             /*
4054              * In an implementation that includes the Security Extensions
4055              * TTBCR has additional fields PD0 [4] and PD1 [5] for
4056              * Short-descriptor translation table format.
4057              */
4058             value &= TTBCR_PD1 | TTBCR_PD0 | TTBCR_N;
4059         } else {
4060             value &= TTBCR_N;
4061         }
4062     }
4063 
4064     if (arm_feature(env, ARM_FEATURE_LPAE)) {
4065         /*
4066          * With LPAE the TTBCR could result in a change of ASID
4067          * via the TTBCR.A1 bit, so do a TLB flush.
4068          */
4069         tlb_flush(CPU(cpu));
4070     }
4071     raw_write(env, ri, value);
4072 }
4073 
4074 static void vmsa_tcr_el12_write(CPUARMState *env, const ARMCPRegInfo *ri,
4075                                uint64_t value)
4076 {
4077     ARMCPU *cpu = env_archcpu(env);
4078 
4079     /* For AArch64 the A1 bit could result in a change of ASID, so TLB flush. */
4080     tlb_flush(CPU(cpu));
4081     raw_write(env, ri, value);
4082 }
4083 
4084 static void vmsa_ttbr_write(CPUARMState *env, const ARMCPRegInfo *ri,
4085                             uint64_t value)
4086 {
4087     /* If the ASID changes (with a 64-bit write), we must flush the TLB.  */
4088     if (cpreg_field_is_64bit(ri) &&
4089         extract64(raw_read(env, ri) ^ value, 48, 16) != 0) {
4090         ARMCPU *cpu = env_archcpu(env);
4091         tlb_flush(CPU(cpu));
4092     }
4093     raw_write(env, ri, value);
4094 }
4095 
4096 static void vmsa_tcr_ttbr_el2_write(CPUARMState *env, const ARMCPRegInfo *ri,
4097                                     uint64_t value)
4098 {
4099     /*
4100      * If we are running with E2&0 regime, then an ASID is active.
4101      * Flush if that might be changing.  Note we're not checking
4102      * TCR_EL2.A1 to know if this is really the TTBRx_EL2 that
4103      * holds the active ASID, only checking the field that might.
4104      */
4105     if (extract64(raw_read(env, ri) ^ value, 48, 16) &&
4106         (arm_hcr_el2_eff(env) & HCR_E2H)) {
4107         uint16_t mask = ARMMMUIdxBit_E20_2 |
4108                         ARMMMUIdxBit_E20_2_PAN |
4109                         ARMMMUIdxBit_E20_0;
4110         tlb_flush_by_mmuidx(env_cpu(env), mask);
4111     }
4112     raw_write(env, ri, value);
4113 }
4114 
4115 static void vttbr_write(CPUARMState *env, const ARMCPRegInfo *ri,
4116                         uint64_t value)
4117 {
4118     ARMCPU *cpu = env_archcpu(env);
4119     CPUState *cs = CPU(cpu);
4120 
4121     /*
4122      * A change in VMID to the stage2 page table (Stage2) invalidates
4123      * the stage2 and combined stage 1&2 tlbs (EL10_1 and EL10_0).
4124      */
4125     if (extract64(raw_read(env, ri) ^ value, 48, 16) != 0) {
4126         tlb_flush_by_mmuidx(cs, alle1_tlbmask(env));
4127     }
4128     raw_write(env, ri, value);
4129 }
4130 
4131 static const ARMCPRegInfo vmsa_pmsa_cp_reginfo[] = {
4132     { .name = "DFSR", .cp = 15, .crn = 5, .crm = 0, .opc1 = 0, .opc2 = 0,
4133       .access = PL1_RW, .accessfn = access_tvm_trvm, .type = ARM_CP_ALIAS,
4134       .bank_fieldoffsets = { offsetoflow32(CPUARMState, cp15.dfsr_s),
4135                              offsetoflow32(CPUARMState, cp15.dfsr_ns) }, },
4136     { .name = "IFSR", .cp = 15, .crn = 5, .crm = 0, .opc1 = 0, .opc2 = 1,
4137       .access = PL1_RW, .accessfn = access_tvm_trvm, .resetvalue = 0,
4138       .bank_fieldoffsets = { offsetoflow32(CPUARMState, cp15.ifsr_s),
4139                              offsetoflow32(CPUARMState, cp15.ifsr_ns) } },
4140     { .name = "DFAR", .cp = 15, .opc1 = 0, .crn = 6, .crm = 0, .opc2 = 0,
4141       .access = PL1_RW, .accessfn = access_tvm_trvm, .resetvalue = 0,
4142       .bank_fieldoffsets = { offsetof(CPUARMState, cp15.dfar_s),
4143                              offsetof(CPUARMState, cp15.dfar_ns) } },
4144     { .name = "FAR_EL1", .state = ARM_CP_STATE_AA64,
4145       .opc0 = 3, .crn = 6, .crm = 0, .opc1 = 0, .opc2 = 0,
4146       .access = PL1_RW, .accessfn = access_tvm_trvm,
4147       .fgt = FGT_FAR_EL1,
4148       .fieldoffset = offsetof(CPUARMState, cp15.far_el[1]),
4149       .resetvalue = 0, },
4150 };
4151 
4152 static const ARMCPRegInfo vmsa_cp_reginfo[] = {
4153     { .name = "ESR_EL1", .state = ARM_CP_STATE_AA64,
4154       .opc0 = 3, .crn = 5, .crm = 2, .opc1 = 0, .opc2 = 0,
4155       .access = PL1_RW, .accessfn = access_tvm_trvm,
4156       .fgt = FGT_ESR_EL1,
4157       .fieldoffset = offsetof(CPUARMState, cp15.esr_el[1]), .resetvalue = 0, },
4158     { .name = "TTBR0_EL1", .state = ARM_CP_STATE_BOTH,
4159       .opc0 = 3, .opc1 = 0, .crn = 2, .crm = 0, .opc2 = 0,
4160       .access = PL1_RW, .accessfn = access_tvm_trvm,
4161       .fgt = FGT_TTBR0_EL1,
4162       .writefn = vmsa_ttbr_write, .resetvalue = 0,
4163       .bank_fieldoffsets = { offsetof(CPUARMState, cp15.ttbr0_s),
4164                              offsetof(CPUARMState, cp15.ttbr0_ns) } },
4165     { .name = "TTBR1_EL1", .state = ARM_CP_STATE_BOTH,
4166       .opc0 = 3, .opc1 = 0, .crn = 2, .crm = 0, .opc2 = 1,
4167       .access = PL1_RW, .accessfn = access_tvm_trvm,
4168       .fgt = FGT_TTBR1_EL1,
4169       .writefn = vmsa_ttbr_write, .resetvalue = 0,
4170       .bank_fieldoffsets = { offsetof(CPUARMState, cp15.ttbr1_s),
4171                              offsetof(CPUARMState, cp15.ttbr1_ns) } },
4172     { .name = "TCR_EL1", .state = ARM_CP_STATE_AA64,
4173       .opc0 = 3, .crn = 2, .crm = 0, .opc1 = 0, .opc2 = 2,
4174       .access = PL1_RW, .accessfn = access_tvm_trvm,
4175       .fgt = FGT_TCR_EL1,
4176       .writefn = vmsa_tcr_el12_write,
4177       .raw_writefn = raw_write,
4178       .resetvalue = 0,
4179       .fieldoffset = offsetof(CPUARMState, cp15.tcr_el[1]) },
4180     { .name = "TTBCR", .cp = 15, .crn = 2, .crm = 0, .opc1 = 0, .opc2 = 2,
4181       .access = PL1_RW, .accessfn = access_tvm_trvm,
4182       .type = ARM_CP_ALIAS, .writefn = vmsa_ttbcr_write,
4183       .raw_writefn = raw_write,
4184       .bank_fieldoffsets = { offsetoflow32(CPUARMState, cp15.tcr_el[3]),
4185                              offsetoflow32(CPUARMState, cp15.tcr_el[1])} },
4186 };
4187 
4188 /*
4189  * Note that unlike TTBCR, writing to TTBCR2 does not require flushing
4190  * qemu tlbs nor adjusting cached masks.
4191  */
4192 static const ARMCPRegInfo ttbcr2_reginfo = {
4193     .name = "TTBCR2", .cp = 15, .opc1 = 0, .crn = 2, .crm = 0, .opc2 = 3,
4194     .access = PL1_RW, .accessfn = access_tvm_trvm,
4195     .type = ARM_CP_ALIAS,
4196     .bank_fieldoffsets = {
4197         offsetofhigh32(CPUARMState, cp15.tcr_el[3]),
4198         offsetofhigh32(CPUARMState, cp15.tcr_el[1]),
4199     },
4200 };
4201 
4202 static void omap_ticonfig_write(CPUARMState *env, const ARMCPRegInfo *ri,
4203                                 uint64_t value)
4204 {
4205     env->cp15.c15_ticonfig = value & 0xe7;
4206     /* The OS_TYPE bit in this register changes the reported CPUID! */
4207     env->cp15.c0_cpuid = (value & (1 << 5)) ?
4208         ARM_CPUID_TI915T : ARM_CPUID_TI925T;
4209 }
4210 
4211 static void omap_threadid_write(CPUARMState *env, const ARMCPRegInfo *ri,
4212                                 uint64_t value)
4213 {
4214     env->cp15.c15_threadid = value & 0xffff;
4215 }
4216 
4217 static void omap_wfi_write(CPUARMState *env, const ARMCPRegInfo *ri,
4218                            uint64_t value)
4219 {
4220     /* Wait-for-interrupt (deprecated) */
4221     cpu_interrupt(env_cpu(env), CPU_INTERRUPT_HALT);
4222 }
4223 
4224 static void omap_cachemaint_write(CPUARMState *env, const ARMCPRegInfo *ri,
4225                                   uint64_t value)
4226 {
4227     /*
4228      * On OMAP there are registers indicating the max/min index of dcache lines
4229      * containing a dirty line; cache flush operations have to reset these.
4230      */
4231     env->cp15.c15_i_max = 0x000;
4232     env->cp15.c15_i_min = 0xff0;
4233 }
4234 
4235 static const ARMCPRegInfo omap_cp_reginfo[] = {
4236     { .name = "DFSR", .cp = 15, .crn = 5, .crm = CP_ANY,
4237       .opc1 = CP_ANY, .opc2 = CP_ANY, .access = PL1_RW, .type = ARM_CP_OVERRIDE,
4238       .fieldoffset = offsetoflow32(CPUARMState, cp15.esr_el[1]),
4239       .resetvalue = 0, },
4240     { .name = "", .cp = 15, .crn = 15, .crm = 0, .opc1 = 0, .opc2 = 0,
4241       .access = PL1_RW, .type = ARM_CP_NOP },
4242     { .name = "TICONFIG", .cp = 15, .crn = 15, .crm = 1, .opc1 = 0, .opc2 = 0,
4243       .access = PL1_RW,
4244       .fieldoffset = offsetof(CPUARMState, cp15.c15_ticonfig), .resetvalue = 0,
4245       .writefn = omap_ticonfig_write },
4246     { .name = "IMAX", .cp = 15, .crn = 15, .crm = 2, .opc1 = 0, .opc2 = 0,
4247       .access = PL1_RW,
4248       .fieldoffset = offsetof(CPUARMState, cp15.c15_i_max), .resetvalue = 0, },
4249     { .name = "IMIN", .cp = 15, .crn = 15, .crm = 3, .opc1 = 0, .opc2 = 0,
4250       .access = PL1_RW, .resetvalue = 0xff0,
4251       .fieldoffset = offsetof(CPUARMState, cp15.c15_i_min) },
4252     { .name = "THREADID", .cp = 15, .crn = 15, .crm = 4, .opc1 = 0, .opc2 = 0,
4253       .access = PL1_RW,
4254       .fieldoffset = offsetof(CPUARMState, cp15.c15_threadid), .resetvalue = 0,
4255       .writefn = omap_threadid_write },
4256     { .name = "TI925T_STATUS", .cp = 15, .crn = 15,
4257       .crm = 8, .opc1 = 0, .opc2 = 0, .access = PL1_RW,
4258       .type = ARM_CP_NO_RAW,
4259       .readfn = arm_cp_read_zero, .writefn = omap_wfi_write, },
4260     /*
4261      * TODO: Peripheral port remap register:
4262      * On OMAP2 mcr p15, 0, rn, c15, c2, 4 sets up the interrupt controller
4263      * base address at $rn & ~0xfff and map size of 0x200 << ($rn & 0xfff),
4264      * when MMU is off.
4265      */
4266     { .name = "OMAP_CACHEMAINT", .cp = 15, .crn = 7, .crm = CP_ANY,
4267       .opc1 = 0, .opc2 = CP_ANY, .access = PL1_W,
4268       .type = ARM_CP_OVERRIDE | ARM_CP_NO_RAW,
4269       .writefn = omap_cachemaint_write },
4270     { .name = "C9", .cp = 15, .crn = 9,
4271       .crm = CP_ANY, .opc1 = CP_ANY, .opc2 = CP_ANY, .access = PL1_RW,
4272       .type = ARM_CP_CONST | ARM_CP_OVERRIDE, .resetvalue = 0 },
4273 };
4274 
4275 static void xscale_cpar_write(CPUARMState *env, const ARMCPRegInfo *ri,
4276                               uint64_t value)
4277 {
4278     env->cp15.c15_cpar = value & 0x3fff;
4279 }
4280 
4281 static const ARMCPRegInfo xscale_cp_reginfo[] = {
4282     { .name = "XSCALE_CPAR",
4283       .cp = 15, .crn = 15, .crm = 1, .opc1 = 0, .opc2 = 0, .access = PL1_RW,
4284       .fieldoffset = offsetof(CPUARMState, cp15.c15_cpar), .resetvalue = 0,
4285       .writefn = xscale_cpar_write, },
4286     { .name = "XSCALE_AUXCR",
4287       .cp = 15, .crn = 1, .crm = 0, .opc1 = 0, .opc2 = 1, .access = PL1_RW,
4288       .fieldoffset = offsetof(CPUARMState, cp15.c1_xscaleauxcr),
4289       .resetvalue = 0, },
4290     /*
4291      * XScale specific cache-lockdown: since we have no cache we NOP these
4292      * and hope the guest does not really rely on cache behaviour.
4293      */
4294     { .name = "XSCALE_LOCK_ICACHE_LINE",
4295       .cp = 15, .opc1 = 0, .crn = 9, .crm = 1, .opc2 = 0,
4296       .access = PL1_W, .type = ARM_CP_NOP },
4297     { .name = "XSCALE_UNLOCK_ICACHE",
4298       .cp = 15, .opc1 = 0, .crn = 9, .crm = 1, .opc2 = 1,
4299       .access = PL1_W, .type = ARM_CP_NOP },
4300     { .name = "XSCALE_DCACHE_LOCK",
4301       .cp = 15, .opc1 = 0, .crn = 9, .crm = 2, .opc2 = 0,
4302       .access = PL1_RW, .type = ARM_CP_NOP },
4303     { .name = "XSCALE_UNLOCK_DCACHE",
4304       .cp = 15, .opc1 = 0, .crn = 9, .crm = 2, .opc2 = 1,
4305       .access = PL1_W, .type = ARM_CP_NOP },
4306 };
4307 
4308 static const ARMCPRegInfo dummy_c15_cp_reginfo[] = {
4309     /*
4310      * RAZ/WI the whole crn=15 space, when we don't have a more specific
4311      * implementation of this implementation-defined space.
4312      * Ideally this should eventually disappear in favour of actually
4313      * implementing the correct behaviour for all cores.
4314      */
4315     { .name = "C15_IMPDEF", .cp = 15, .crn = 15,
4316       .crm = CP_ANY, .opc1 = CP_ANY, .opc2 = CP_ANY,
4317       .access = PL1_RW,
4318       .type = ARM_CP_CONST | ARM_CP_NO_RAW | ARM_CP_OVERRIDE,
4319       .resetvalue = 0 },
4320 };
4321 
4322 static const ARMCPRegInfo cache_dirty_status_cp_reginfo[] = {
4323     /* Cache status: RAZ because we have no cache so it's always clean */
4324     { .name = "CDSR", .cp = 15, .crn = 7, .crm = 10, .opc1 = 0, .opc2 = 6,
4325       .access = PL1_R, .type = ARM_CP_CONST | ARM_CP_NO_RAW,
4326       .resetvalue = 0 },
4327 };
4328 
4329 static const ARMCPRegInfo cache_block_ops_cp_reginfo[] = {
4330     /* We never have a block transfer operation in progress */
4331     { .name = "BXSR", .cp = 15, .crn = 7, .crm = 12, .opc1 = 0, .opc2 = 4,
4332       .access = PL0_R, .type = ARM_CP_CONST | ARM_CP_NO_RAW,
4333       .resetvalue = 0 },
4334     /* The cache ops themselves: these all NOP for QEMU */
4335     { .name = "IICR", .cp = 15, .crm = 5, .opc1 = 0,
4336       .access = PL1_W, .type = ARM_CP_NOP | ARM_CP_64BIT },
4337     { .name = "IDCR", .cp = 15, .crm = 6, .opc1 = 0,
4338       .access = PL1_W, .type = ARM_CP_NOP | ARM_CP_64BIT },
4339     { .name = "CDCR", .cp = 15, .crm = 12, .opc1 = 0,
4340       .access = PL0_W, .type = ARM_CP_NOP | ARM_CP_64BIT },
4341     { .name = "PIR", .cp = 15, .crm = 12, .opc1 = 1,
4342       .access = PL0_W, .type = ARM_CP_NOP | ARM_CP_64BIT },
4343     { .name = "PDR", .cp = 15, .crm = 12, .opc1 = 2,
4344       .access = PL0_W, .type = ARM_CP_NOP | ARM_CP_64BIT },
4345     { .name = "CIDCR", .cp = 15, .crm = 14, .opc1 = 0,
4346       .access = PL1_W, .type = ARM_CP_NOP | ARM_CP_64BIT },
4347 };
4348 
4349 static const ARMCPRegInfo cache_test_clean_cp_reginfo[] = {
4350     /*
4351      * The cache test-and-clean instructions always return (1 << 30)
4352      * to indicate that there are no dirty cache lines.
4353      */
4354     { .name = "TC_DCACHE", .cp = 15, .crn = 7, .crm = 10, .opc1 = 0, .opc2 = 3,
4355       .access = PL0_R, .type = ARM_CP_CONST | ARM_CP_NO_RAW,
4356       .resetvalue = (1 << 30) },
4357     { .name = "TCI_DCACHE", .cp = 15, .crn = 7, .crm = 14, .opc1 = 0, .opc2 = 3,
4358       .access = PL0_R, .type = ARM_CP_CONST | ARM_CP_NO_RAW,
4359       .resetvalue = (1 << 30) },
4360 };
4361 
4362 static const ARMCPRegInfo strongarm_cp_reginfo[] = {
4363     /* Ignore ReadBuffer accesses */
4364     { .name = "C9_READBUFFER", .cp = 15, .crn = 9,
4365       .crm = CP_ANY, .opc1 = CP_ANY, .opc2 = CP_ANY,
4366       .access = PL1_RW, .resetvalue = 0,
4367       .type = ARM_CP_CONST | ARM_CP_OVERRIDE | ARM_CP_NO_RAW },
4368 };
4369 
4370 static uint64_t midr_read(CPUARMState *env, const ARMCPRegInfo *ri)
4371 {
4372     unsigned int cur_el = arm_current_el(env);
4373 
4374     if (arm_is_el2_enabled(env) && cur_el == 1) {
4375         return env->cp15.vpidr_el2;
4376     }
4377     return raw_read(env, ri);
4378 }
4379 
4380 static uint64_t mpidr_read_val(CPUARMState *env)
4381 {
4382     ARMCPU *cpu = env_archcpu(env);
4383     uint64_t mpidr = cpu->mp_affinity;
4384 
4385     if (arm_feature(env, ARM_FEATURE_V7MP)) {
4386         mpidr |= (1U << 31);
4387         /*
4388          * Cores which are uniprocessor (non-coherent)
4389          * but still implement the MP extensions set
4390          * bit 30. (For instance, Cortex-R5).
4391          */
4392         if (cpu->mp_is_up) {
4393             mpidr |= (1u << 30);
4394         }
4395     }
4396     return mpidr;
4397 }
4398 
4399 static uint64_t mpidr_read(CPUARMState *env, const ARMCPRegInfo *ri)
4400 {
4401     unsigned int cur_el = arm_current_el(env);
4402 
4403     if (arm_is_el2_enabled(env) && cur_el == 1) {
4404         return env->cp15.vmpidr_el2;
4405     }
4406     return mpidr_read_val(env);
4407 }
4408 
4409 static const ARMCPRegInfo lpae_cp_reginfo[] = {
4410     /* NOP AMAIR0/1 */
4411     { .name = "AMAIR0", .state = ARM_CP_STATE_BOTH,
4412       .opc0 = 3, .crn = 10, .crm = 3, .opc1 = 0, .opc2 = 0,
4413       .access = PL1_RW, .accessfn = access_tvm_trvm,
4414       .fgt = FGT_AMAIR_EL1,
4415       .type = ARM_CP_CONST, .resetvalue = 0 },
4416     /* AMAIR1 is mapped to AMAIR_EL1[63:32] */
4417     { .name = "AMAIR1", .cp = 15, .crn = 10, .crm = 3, .opc1 = 0, .opc2 = 1,
4418       .access = PL1_RW, .accessfn = access_tvm_trvm,
4419       .type = ARM_CP_CONST, .resetvalue = 0 },
4420     { .name = "PAR", .cp = 15, .crm = 7, .opc1 = 0,
4421       .access = PL1_RW, .type = ARM_CP_64BIT, .resetvalue = 0,
4422       .bank_fieldoffsets = { offsetof(CPUARMState, cp15.par_s),
4423                              offsetof(CPUARMState, cp15.par_ns)} },
4424     { .name = "TTBR0", .cp = 15, .crm = 2, .opc1 = 0,
4425       .access = PL1_RW, .accessfn = access_tvm_trvm,
4426       .type = ARM_CP_64BIT | ARM_CP_ALIAS,
4427       .bank_fieldoffsets = { offsetof(CPUARMState, cp15.ttbr0_s),
4428                              offsetof(CPUARMState, cp15.ttbr0_ns) },
4429       .writefn = vmsa_ttbr_write, },
4430     { .name = "TTBR1", .cp = 15, .crm = 2, .opc1 = 1,
4431       .access = PL1_RW, .accessfn = access_tvm_trvm,
4432       .type = ARM_CP_64BIT | ARM_CP_ALIAS,
4433       .bank_fieldoffsets = { offsetof(CPUARMState, cp15.ttbr1_s),
4434                              offsetof(CPUARMState, cp15.ttbr1_ns) },
4435       .writefn = vmsa_ttbr_write, },
4436 };
4437 
4438 static uint64_t aa64_fpcr_read(CPUARMState *env, const ARMCPRegInfo *ri)
4439 {
4440     return vfp_get_fpcr(env);
4441 }
4442 
4443 static void aa64_fpcr_write(CPUARMState *env, const ARMCPRegInfo *ri,
4444                             uint64_t value)
4445 {
4446     vfp_set_fpcr(env, value);
4447 }
4448 
4449 static uint64_t aa64_fpsr_read(CPUARMState *env, const ARMCPRegInfo *ri)
4450 {
4451     return vfp_get_fpsr(env);
4452 }
4453 
4454 static void aa64_fpsr_write(CPUARMState *env, const ARMCPRegInfo *ri,
4455                             uint64_t value)
4456 {
4457     vfp_set_fpsr(env, value);
4458 }
4459 
4460 static CPAccessResult aa64_daif_access(CPUARMState *env, const ARMCPRegInfo *ri,
4461                                        bool isread)
4462 {
4463     if (arm_current_el(env) == 0 && !(arm_sctlr(env, 0) & SCTLR_UMA)) {
4464         return CP_ACCESS_TRAP;
4465     }
4466     return CP_ACCESS_OK;
4467 }
4468 
4469 static void aa64_daif_write(CPUARMState *env, const ARMCPRegInfo *ri,
4470                             uint64_t value)
4471 {
4472     env->daif = value & PSTATE_DAIF;
4473 }
4474 
4475 static uint64_t aa64_pan_read(CPUARMState *env, const ARMCPRegInfo *ri)
4476 {
4477     return env->pstate & PSTATE_PAN;
4478 }
4479 
4480 static void aa64_pan_write(CPUARMState *env, const ARMCPRegInfo *ri,
4481                            uint64_t value)
4482 {
4483     env->pstate = (env->pstate & ~PSTATE_PAN) | (value & PSTATE_PAN);
4484 }
4485 
4486 static const ARMCPRegInfo pan_reginfo = {
4487     .name = "PAN", .state = ARM_CP_STATE_AA64,
4488     .opc0 = 3, .opc1 = 0, .crn = 4, .crm = 2, .opc2 = 3,
4489     .type = ARM_CP_NO_RAW, .access = PL1_RW,
4490     .readfn = aa64_pan_read, .writefn = aa64_pan_write
4491 };
4492 
4493 static uint64_t aa64_uao_read(CPUARMState *env, const ARMCPRegInfo *ri)
4494 {
4495     return env->pstate & PSTATE_UAO;
4496 }
4497 
4498 static void aa64_uao_write(CPUARMState *env, const ARMCPRegInfo *ri,
4499                            uint64_t value)
4500 {
4501     env->pstate = (env->pstate & ~PSTATE_UAO) | (value & PSTATE_UAO);
4502 }
4503 
4504 static const ARMCPRegInfo uao_reginfo = {
4505     .name = "UAO", .state = ARM_CP_STATE_AA64,
4506     .opc0 = 3, .opc1 = 0, .crn = 4, .crm = 2, .opc2 = 4,
4507     .type = ARM_CP_NO_RAW, .access = PL1_RW,
4508     .readfn = aa64_uao_read, .writefn = aa64_uao_write
4509 };
4510 
4511 static uint64_t aa64_dit_read(CPUARMState *env, const ARMCPRegInfo *ri)
4512 {
4513     return env->pstate & PSTATE_DIT;
4514 }
4515 
4516 static void aa64_dit_write(CPUARMState *env, const ARMCPRegInfo *ri,
4517                            uint64_t value)
4518 {
4519     env->pstate = (env->pstate & ~PSTATE_DIT) | (value & PSTATE_DIT);
4520 }
4521 
4522 static const ARMCPRegInfo dit_reginfo = {
4523     .name = "DIT", .state = ARM_CP_STATE_AA64,
4524     .opc0 = 3, .opc1 = 3, .crn = 4, .crm = 2, .opc2 = 5,
4525     .type = ARM_CP_NO_RAW, .access = PL0_RW,
4526     .readfn = aa64_dit_read, .writefn = aa64_dit_write
4527 };
4528 
4529 static uint64_t aa64_ssbs_read(CPUARMState *env, const ARMCPRegInfo *ri)
4530 {
4531     return env->pstate & PSTATE_SSBS;
4532 }
4533 
4534 static void aa64_ssbs_write(CPUARMState *env, const ARMCPRegInfo *ri,
4535                            uint64_t value)
4536 {
4537     env->pstate = (env->pstate & ~PSTATE_SSBS) | (value & PSTATE_SSBS);
4538 }
4539 
4540 static const ARMCPRegInfo ssbs_reginfo = {
4541     .name = "SSBS", .state = ARM_CP_STATE_AA64,
4542     .opc0 = 3, .opc1 = 3, .crn = 4, .crm = 2, .opc2 = 6,
4543     .type = ARM_CP_NO_RAW, .access = PL0_RW,
4544     .readfn = aa64_ssbs_read, .writefn = aa64_ssbs_write
4545 };
4546 
4547 static CPAccessResult aa64_cacheop_poc_access(CPUARMState *env,
4548                                               const ARMCPRegInfo *ri,
4549                                               bool isread)
4550 {
4551     /* Cache invalidate/clean to Point of Coherency or Persistence...  */
4552     switch (arm_current_el(env)) {
4553     case 0:
4554         /* ... EL0 must UNDEF unless SCTLR_EL1.UCI is set.  */
4555         if (!(arm_sctlr(env, 0) & SCTLR_UCI)) {
4556             return CP_ACCESS_TRAP;
4557         }
4558         /* fall through */
4559     case 1:
4560         /* ... EL1 must trap to EL2 if HCR_EL2.TPCP is set.  */
4561         if (arm_hcr_el2_eff(env) & HCR_TPCP) {
4562             return CP_ACCESS_TRAP_EL2;
4563         }
4564         break;
4565     }
4566     return CP_ACCESS_OK;
4567 }
4568 
4569 static CPAccessResult do_cacheop_pou_access(CPUARMState *env, uint64_t hcrflags)
4570 {
4571     /* Cache invalidate/clean to Point of Unification... */
4572     switch (arm_current_el(env)) {
4573     case 0:
4574         /* ... EL0 must UNDEF unless SCTLR_EL1.UCI is set.  */
4575         if (!(arm_sctlr(env, 0) & SCTLR_UCI)) {
4576             return CP_ACCESS_TRAP;
4577         }
4578         /* fall through */
4579     case 1:
4580         /* ... EL1 must trap to EL2 if relevant HCR_EL2 flags are set.  */
4581         if (arm_hcr_el2_eff(env) & hcrflags) {
4582             return CP_ACCESS_TRAP_EL2;
4583         }
4584         break;
4585     }
4586     return CP_ACCESS_OK;
4587 }
4588 
4589 static CPAccessResult access_ticab(CPUARMState *env, const ARMCPRegInfo *ri,
4590                                    bool isread)
4591 {
4592     return do_cacheop_pou_access(env, HCR_TICAB | HCR_TPU);
4593 }
4594 
4595 static CPAccessResult access_tocu(CPUARMState *env, const ARMCPRegInfo *ri,
4596                                   bool isread)
4597 {
4598     return do_cacheop_pou_access(env, HCR_TOCU | HCR_TPU);
4599 }
4600 
4601 /*
4602  * See: D4.7.2 TLB maintenance requirements and the TLB maintenance instructions
4603  * Page D4-1736 (DDI0487A.b)
4604  */
4605 
4606 static int vae1_tlbmask(CPUARMState *env)
4607 {
4608     uint64_t hcr = arm_hcr_el2_eff(env);
4609     uint16_t mask;
4610 
4611     if ((hcr & (HCR_E2H | HCR_TGE)) == (HCR_E2H | HCR_TGE)) {
4612         mask = ARMMMUIdxBit_E20_2 |
4613                ARMMMUIdxBit_E20_2_PAN |
4614                ARMMMUIdxBit_E20_0;
4615     } else {
4616         mask = ARMMMUIdxBit_E10_1 |
4617                ARMMMUIdxBit_E10_1_PAN |
4618                ARMMMUIdxBit_E10_0;
4619     }
4620     return mask;
4621 }
4622 
4623 /* Return 56 if TBI is enabled, 64 otherwise. */
4624 static int tlbbits_for_regime(CPUARMState *env, ARMMMUIdx mmu_idx,
4625                               uint64_t addr)
4626 {
4627     uint64_t tcr = regime_tcr(env, mmu_idx);
4628     int tbi = aa64_va_parameter_tbi(tcr, mmu_idx);
4629     int select = extract64(addr, 55, 1);
4630 
4631     return (tbi >> select) & 1 ? 56 : 64;
4632 }
4633 
4634 static int vae1_tlbbits(CPUARMState *env, uint64_t addr)
4635 {
4636     uint64_t hcr = arm_hcr_el2_eff(env);
4637     ARMMMUIdx mmu_idx;
4638 
4639     /* Only the regime of the mmu_idx below is significant. */
4640     if ((hcr & (HCR_E2H | HCR_TGE)) == (HCR_E2H | HCR_TGE)) {
4641         mmu_idx = ARMMMUIdx_E20_0;
4642     } else {
4643         mmu_idx = ARMMMUIdx_E10_0;
4644     }
4645 
4646     return tlbbits_for_regime(env, mmu_idx, addr);
4647 }
4648 
4649 static void tlbi_aa64_vmalle1is_write(CPUARMState *env, const ARMCPRegInfo *ri,
4650                                       uint64_t value)
4651 {
4652     CPUState *cs = env_cpu(env);
4653     int mask = vae1_tlbmask(env);
4654 
4655     tlb_flush_by_mmuidx_all_cpus_synced(cs, mask);
4656 }
4657 
4658 static void tlbi_aa64_vmalle1_write(CPUARMState *env, const ARMCPRegInfo *ri,
4659                                     uint64_t value)
4660 {
4661     CPUState *cs = env_cpu(env);
4662     int mask = vae1_tlbmask(env);
4663 
4664     if (tlb_force_broadcast(env)) {
4665         tlb_flush_by_mmuidx_all_cpus_synced(cs, mask);
4666     } else {
4667         tlb_flush_by_mmuidx(cs, mask);
4668     }
4669 }
4670 
4671 static int e2_tlbmask(CPUARMState *env)
4672 {
4673     return (ARMMMUIdxBit_E20_0 |
4674             ARMMMUIdxBit_E20_2 |
4675             ARMMMUIdxBit_E20_2_PAN |
4676             ARMMMUIdxBit_E2);
4677 }
4678 
4679 static void tlbi_aa64_alle1_write(CPUARMState *env, const ARMCPRegInfo *ri,
4680                                   uint64_t value)
4681 {
4682     CPUState *cs = env_cpu(env);
4683     int mask = alle1_tlbmask(env);
4684 
4685     tlb_flush_by_mmuidx(cs, mask);
4686 }
4687 
4688 static void tlbi_aa64_alle2_write(CPUARMState *env, const ARMCPRegInfo *ri,
4689                                   uint64_t value)
4690 {
4691     CPUState *cs = env_cpu(env);
4692     int mask = e2_tlbmask(env);
4693 
4694     tlb_flush_by_mmuidx(cs, mask);
4695 }
4696 
4697 static void tlbi_aa64_alle3_write(CPUARMState *env, const ARMCPRegInfo *ri,
4698                                   uint64_t value)
4699 {
4700     ARMCPU *cpu = env_archcpu(env);
4701     CPUState *cs = CPU(cpu);
4702 
4703     tlb_flush_by_mmuidx(cs, ARMMMUIdxBit_E3);
4704 }
4705 
4706 static void tlbi_aa64_alle1is_write(CPUARMState *env, const ARMCPRegInfo *ri,
4707                                     uint64_t value)
4708 {
4709     CPUState *cs = env_cpu(env);
4710     int mask = alle1_tlbmask(env);
4711 
4712     tlb_flush_by_mmuidx_all_cpus_synced(cs, mask);
4713 }
4714 
4715 static void tlbi_aa64_alle2is_write(CPUARMState *env, const ARMCPRegInfo *ri,
4716                                     uint64_t value)
4717 {
4718     CPUState *cs = env_cpu(env);
4719     int mask = e2_tlbmask(env);
4720 
4721     tlb_flush_by_mmuidx_all_cpus_synced(cs, mask);
4722 }
4723 
4724 static void tlbi_aa64_alle3is_write(CPUARMState *env, const ARMCPRegInfo *ri,
4725                                     uint64_t value)
4726 {
4727     CPUState *cs = env_cpu(env);
4728 
4729     tlb_flush_by_mmuidx_all_cpus_synced(cs, ARMMMUIdxBit_E3);
4730 }
4731 
4732 static void tlbi_aa64_vae2_write(CPUARMState *env, const ARMCPRegInfo *ri,
4733                                  uint64_t value)
4734 {
4735     /*
4736      * Invalidate by VA, EL2
4737      * Currently handles both VAE2 and VALE2, since we don't support
4738      * flush-last-level-only.
4739      */
4740     CPUState *cs = env_cpu(env);
4741     int mask = e2_tlbmask(env);
4742     uint64_t pageaddr = sextract64(value << 12, 0, 56);
4743 
4744     tlb_flush_page_by_mmuidx(cs, pageaddr, mask);
4745 }
4746 
4747 static void tlbi_aa64_vae3_write(CPUARMState *env, const ARMCPRegInfo *ri,
4748                                  uint64_t value)
4749 {
4750     /*
4751      * Invalidate by VA, EL3
4752      * Currently handles both VAE3 and VALE3, since we don't support
4753      * flush-last-level-only.
4754      */
4755     ARMCPU *cpu = env_archcpu(env);
4756     CPUState *cs = CPU(cpu);
4757     uint64_t pageaddr = sextract64(value << 12, 0, 56);
4758 
4759     tlb_flush_page_by_mmuidx(cs, pageaddr, ARMMMUIdxBit_E3);
4760 }
4761 
4762 static void tlbi_aa64_vae1is_write(CPUARMState *env, const ARMCPRegInfo *ri,
4763                                    uint64_t value)
4764 {
4765     CPUState *cs = env_cpu(env);
4766     int mask = vae1_tlbmask(env);
4767     uint64_t pageaddr = sextract64(value << 12, 0, 56);
4768     int bits = vae1_tlbbits(env, pageaddr);
4769 
4770     tlb_flush_page_bits_by_mmuidx_all_cpus_synced(cs, pageaddr, mask, bits);
4771 }
4772 
4773 static void tlbi_aa64_vae1_write(CPUARMState *env, const ARMCPRegInfo *ri,
4774                                  uint64_t value)
4775 {
4776     /*
4777      * Invalidate by VA, EL1&0 (AArch64 version).
4778      * Currently handles all of VAE1, VAAE1, VAALE1 and VALE1,
4779      * since we don't support flush-for-specific-ASID-only or
4780      * flush-last-level-only.
4781      */
4782     CPUState *cs = env_cpu(env);
4783     int mask = vae1_tlbmask(env);
4784     uint64_t pageaddr = sextract64(value << 12, 0, 56);
4785     int bits = vae1_tlbbits(env, pageaddr);
4786 
4787     if (tlb_force_broadcast(env)) {
4788         tlb_flush_page_bits_by_mmuidx_all_cpus_synced(cs, pageaddr, mask, bits);
4789     } else {
4790         tlb_flush_page_bits_by_mmuidx(cs, pageaddr, mask, bits);
4791     }
4792 }
4793 
4794 static void tlbi_aa64_vae2is_write(CPUARMState *env, const ARMCPRegInfo *ri,
4795                                    uint64_t value)
4796 {
4797     CPUState *cs = env_cpu(env);
4798     uint64_t pageaddr = sextract64(value << 12, 0, 56);
4799     int bits = tlbbits_for_regime(env, ARMMMUIdx_E2, pageaddr);
4800 
4801     tlb_flush_page_bits_by_mmuidx_all_cpus_synced(cs, pageaddr,
4802                                                   ARMMMUIdxBit_E2, bits);
4803 }
4804 
4805 static void tlbi_aa64_vae3is_write(CPUARMState *env, const ARMCPRegInfo *ri,
4806                                    uint64_t value)
4807 {
4808     CPUState *cs = env_cpu(env);
4809     uint64_t pageaddr = sextract64(value << 12, 0, 56);
4810     int bits = tlbbits_for_regime(env, ARMMMUIdx_E3, pageaddr);
4811 
4812     tlb_flush_page_bits_by_mmuidx_all_cpus_synced(cs, pageaddr,
4813                                                   ARMMMUIdxBit_E3, bits);
4814 }
4815 
4816 static int ipas2e1_tlbmask(CPUARMState *env, int64_t value)
4817 {
4818     /*
4819      * The MSB of value is the NS field, which only applies if SEL2
4820      * is implemented and SCR_EL3.NS is not set (i.e. in secure mode).
4821      */
4822     return (value >= 0
4823             && cpu_isar_feature(aa64_sel2, env_archcpu(env))
4824             && arm_is_secure_below_el3(env)
4825             ? ARMMMUIdxBit_Stage2_S
4826             : ARMMMUIdxBit_Stage2);
4827 }
4828 
4829 static void tlbi_aa64_ipas2e1_write(CPUARMState *env, const ARMCPRegInfo *ri,
4830                                     uint64_t value)
4831 {
4832     CPUState *cs = env_cpu(env);
4833     int mask = ipas2e1_tlbmask(env, value);
4834     uint64_t pageaddr = sextract64(value << 12, 0, 56);
4835 
4836     if (tlb_force_broadcast(env)) {
4837         tlb_flush_page_by_mmuidx_all_cpus_synced(cs, pageaddr, mask);
4838     } else {
4839         tlb_flush_page_by_mmuidx(cs, pageaddr, mask);
4840     }
4841 }
4842 
4843 static void tlbi_aa64_ipas2e1is_write(CPUARMState *env, const ARMCPRegInfo *ri,
4844                                       uint64_t value)
4845 {
4846     CPUState *cs = env_cpu(env);
4847     int mask = ipas2e1_tlbmask(env, value);
4848     uint64_t pageaddr = sextract64(value << 12, 0, 56);
4849 
4850     tlb_flush_page_by_mmuidx_all_cpus_synced(cs, pageaddr, mask);
4851 }
4852 
4853 #ifdef TARGET_AARCH64
4854 typedef struct {
4855     uint64_t base;
4856     uint64_t length;
4857 } TLBIRange;
4858 
4859 static ARMGranuleSize tlbi_range_tg_to_gran_size(int tg)
4860 {
4861     /*
4862      * Note that the TLBI range TG field encoding differs from both
4863      * TG0 and TG1 encodings.
4864      */
4865     switch (tg) {
4866     case 1:
4867         return Gran4K;
4868     case 2:
4869         return Gran16K;
4870     case 3:
4871         return Gran64K;
4872     default:
4873         return GranInvalid;
4874     }
4875 }
4876 
4877 static TLBIRange tlbi_aa64_get_range(CPUARMState *env, ARMMMUIdx mmuidx,
4878                                      uint64_t value)
4879 {
4880     unsigned int page_size_granule, page_shift, num, scale, exponent;
4881     /* Extract one bit to represent the va selector in use. */
4882     uint64_t select = sextract64(value, 36, 1);
4883     ARMVAParameters param = aa64_va_parameters(env, select, mmuidx, true);
4884     TLBIRange ret = { };
4885     ARMGranuleSize gran;
4886 
4887     page_size_granule = extract64(value, 46, 2);
4888     gran = tlbi_range_tg_to_gran_size(page_size_granule);
4889 
4890     /* The granule encoded in value must match the granule in use. */
4891     if (gran != param.gran) {
4892         qemu_log_mask(LOG_GUEST_ERROR, "Invalid tlbi page size granule %d\n",
4893                       page_size_granule);
4894         return ret;
4895     }
4896 
4897     page_shift = arm_granule_bits(gran);
4898     num = extract64(value, 39, 5);
4899     scale = extract64(value, 44, 2);
4900     exponent = (5 * scale) + 1;
4901 
4902     ret.length = (num + 1) << (exponent + page_shift);
4903 
4904     if (param.select) {
4905         ret.base = sextract64(value, 0, 37);
4906     } else {
4907         ret.base = extract64(value, 0, 37);
4908     }
4909     if (param.ds) {
4910         /*
4911          * With DS=1, BaseADDR is always shifted 16 so that it is able
4912          * to address all 52 va bits.  The input address is perforce
4913          * aligned on a 64k boundary regardless of translation granule.
4914          */
4915         page_shift = 16;
4916     }
4917     ret.base <<= page_shift;
4918 
4919     return ret;
4920 }
4921 
4922 static void do_rvae_write(CPUARMState *env, uint64_t value,
4923                           int idxmap, bool synced)
4924 {
4925     ARMMMUIdx one_idx = ARM_MMU_IDX_A | ctz32(idxmap);
4926     TLBIRange range;
4927     int bits;
4928 
4929     range = tlbi_aa64_get_range(env, one_idx, value);
4930     bits = tlbbits_for_regime(env, one_idx, range.base);
4931 
4932     if (synced) {
4933         tlb_flush_range_by_mmuidx_all_cpus_synced(env_cpu(env),
4934                                                   range.base,
4935                                                   range.length,
4936                                                   idxmap,
4937                                                   bits);
4938     } else {
4939         tlb_flush_range_by_mmuidx(env_cpu(env), range.base,
4940                                   range.length, idxmap, bits);
4941     }
4942 }
4943 
4944 static void tlbi_aa64_rvae1_write(CPUARMState *env,
4945                                   const ARMCPRegInfo *ri,
4946                                   uint64_t value)
4947 {
4948     /*
4949      * Invalidate by VA range, EL1&0.
4950      * Currently handles all of RVAE1, RVAAE1, RVAALE1 and RVALE1,
4951      * since we don't support flush-for-specific-ASID-only or
4952      * flush-last-level-only.
4953      */
4954 
4955     do_rvae_write(env, value, vae1_tlbmask(env),
4956                   tlb_force_broadcast(env));
4957 }
4958 
4959 static void tlbi_aa64_rvae1is_write(CPUARMState *env,
4960                                     const ARMCPRegInfo *ri,
4961                                     uint64_t value)
4962 {
4963     /*
4964      * Invalidate by VA range, Inner/Outer Shareable EL1&0.
4965      * Currently handles all of RVAE1IS, RVAE1OS, RVAAE1IS, RVAAE1OS,
4966      * RVAALE1IS, RVAALE1OS, RVALE1IS and RVALE1OS, since we don't support
4967      * flush-for-specific-ASID-only, flush-last-level-only or inner/outer
4968      * shareable specific flushes.
4969      */
4970 
4971     do_rvae_write(env, value, vae1_tlbmask(env), true);
4972 }
4973 
4974 static int vae2_tlbmask(CPUARMState *env)
4975 {
4976     return ARMMMUIdxBit_E2;
4977 }
4978 
4979 static void tlbi_aa64_rvae2_write(CPUARMState *env,
4980                                   const ARMCPRegInfo *ri,
4981                                   uint64_t value)
4982 {
4983     /*
4984      * Invalidate by VA range, EL2.
4985      * Currently handles all of RVAE2 and RVALE2,
4986      * since we don't support flush-for-specific-ASID-only or
4987      * flush-last-level-only.
4988      */
4989 
4990     do_rvae_write(env, value, vae2_tlbmask(env),
4991                   tlb_force_broadcast(env));
4992 
4993 
4994 }
4995 
4996 static void tlbi_aa64_rvae2is_write(CPUARMState *env,
4997                                     const ARMCPRegInfo *ri,
4998                                     uint64_t value)
4999 {
5000     /*
5001      * Invalidate by VA range, Inner/Outer Shareable, EL2.
5002      * Currently handles all of RVAE2IS, RVAE2OS, RVALE2IS and RVALE2OS,
5003      * since we don't support flush-for-specific-ASID-only,
5004      * flush-last-level-only or inner/outer shareable specific flushes.
5005      */
5006 
5007     do_rvae_write(env, value, vae2_tlbmask(env), true);
5008 
5009 }
5010 
5011 static void tlbi_aa64_rvae3_write(CPUARMState *env,
5012                                   const ARMCPRegInfo *ri,
5013                                   uint64_t value)
5014 {
5015     /*
5016      * Invalidate by VA range, EL3.
5017      * Currently handles all of RVAE3 and RVALE3,
5018      * since we don't support flush-for-specific-ASID-only or
5019      * flush-last-level-only.
5020      */
5021 
5022     do_rvae_write(env, value, ARMMMUIdxBit_E3, tlb_force_broadcast(env));
5023 }
5024 
5025 static void tlbi_aa64_rvae3is_write(CPUARMState *env,
5026                                     const ARMCPRegInfo *ri,
5027                                     uint64_t value)
5028 {
5029     /*
5030      * Invalidate by VA range, EL3, Inner/Outer Shareable.
5031      * Currently handles all of RVAE3IS, RVAE3OS, RVALE3IS and RVALE3OS,
5032      * since we don't support flush-for-specific-ASID-only,
5033      * flush-last-level-only or inner/outer specific flushes.
5034      */
5035 
5036     do_rvae_write(env, value, ARMMMUIdxBit_E3, true);
5037 }
5038 
5039 static void tlbi_aa64_ripas2e1_write(CPUARMState *env, const ARMCPRegInfo *ri,
5040                                      uint64_t value)
5041 {
5042     do_rvae_write(env, value, ipas2e1_tlbmask(env, value),
5043                   tlb_force_broadcast(env));
5044 }
5045 
5046 static void tlbi_aa64_ripas2e1is_write(CPUARMState *env,
5047                                        const ARMCPRegInfo *ri,
5048                                        uint64_t value)
5049 {
5050     do_rvae_write(env, value, ipas2e1_tlbmask(env, value), true);
5051 }
5052 #endif
5053 
5054 static CPAccessResult aa64_zva_access(CPUARMState *env, const ARMCPRegInfo *ri,
5055                                       bool isread)
5056 {
5057     int cur_el = arm_current_el(env);
5058 
5059     if (cur_el < 2) {
5060         uint64_t hcr = arm_hcr_el2_eff(env);
5061 
5062         if (cur_el == 0) {
5063             if ((hcr & (HCR_E2H | HCR_TGE)) == (HCR_E2H | HCR_TGE)) {
5064                 if (!(env->cp15.sctlr_el[2] & SCTLR_DZE)) {
5065                     return CP_ACCESS_TRAP_EL2;
5066                 }
5067             } else {
5068                 if (!(env->cp15.sctlr_el[1] & SCTLR_DZE)) {
5069                     return CP_ACCESS_TRAP;
5070                 }
5071                 if (hcr & HCR_TDZ) {
5072                     return CP_ACCESS_TRAP_EL2;
5073                 }
5074             }
5075         } else if (hcr & HCR_TDZ) {
5076             return CP_ACCESS_TRAP_EL2;
5077         }
5078     }
5079     return CP_ACCESS_OK;
5080 }
5081 
5082 static uint64_t aa64_dczid_read(CPUARMState *env, const ARMCPRegInfo *ri)
5083 {
5084     ARMCPU *cpu = env_archcpu(env);
5085     int dzp_bit = 1 << 4;
5086 
5087     /* DZP indicates whether DC ZVA access is allowed */
5088     if (aa64_zva_access(env, NULL, false) == CP_ACCESS_OK) {
5089         dzp_bit = 0;
5090     }
5091     return cpu->dcz_blocksize | dzp_bit;
5092 }
5093 
5094 static CPAccessResult sp_el0_access(CPUARMState *env, const ARMCPRegInfo *ri,
5095                                     bool isread)
5096 {
5097     if (!(env->pstate & PSTATE_SP)) {
5098         /*
5099          * Access to SP_EL0 is undefined if it's being used as
5100          * the stack pointer.
5101          */
5102         return CP_ACCESS_TRAP_UNCATEGORIZED;
5103     }
5104     return CP_ACCESS_OK;
5105 }
5106 
5107 static uint64_t spsel_read(CPUARMState *env, const ARMCPRegInfo *ri)
5108 {
5109     return env->pstate & PSTATE_SP;
5110 }
5111 
5112 static void spsel_write(CPUARMState *env, const ARMCPRegInfo *ri, uint64_t val)
5113 {
5114     update_spsel(env, val);
5115 }
5116 
5117 static void sctlr_write(CPUARMState *env, const ARMCPRegInfo *ri,
5118                         uint64_t value)
5119 {
5120     ARMCPU *cpu = env_archcpu(env);
5121 
5122     if (arm_feature(env, ARM_FEATURE_PMSA) && !cpu->has_mpu) {
5123         /* M bit is RAZ/WI for PMSA with no MPU implemented */
5124         value &= ~SCTLR_M;
5125     }
5126 
5127     /* ??? Lots of these bits are not implemented.  */
5128 
5129     if (ri->state == ARM_CP_STATE_AA64 && !cpu_isar_feature(aa64_mte, cpu)) {
5130         if (ri->opc1 == 6) { /* SCTLR_EL3 */
5131             value &= ~(SCTLR_ITFSB | SCTLR_TCF | SCTLR_ATA);
5132         } else {
5133             value &= ~(SCTLR_ITFSB | SCTLR_TCF0 | SCTLR_TCF |
5134                        SCTLR_ATA0 | SCTLR_ATA);
5135         }
5136     }
5137 
5138     if (raw_read(env, ri) == value) {
5139         /*
5140          * Skip the TLB flush if nothing actually changed; Linux likes
5141          * to do a lot of pointless SCTLR writes.
5142          */
5143         return;
5144     }
5145 
5146     raw_write(env, ri, value);
5147 
5148     /* This may enable/disable the MMU, so do a TLB flush.  */
5149     tlb_flush(CPU(cpu));
5150 
5151     if (ri->type & ARM_CP_SUPPRESS_TB_END) {
5152         /*
5153          * Normally we would always end the TB on an SCTLR write; see the
5154          * comment in ARMCPRegInfo sctlr initialization below for why Xscale
5155          * is special.  Setting ARM_CP_SUPPRESS_TB_END also stops the rebuild
5156          * of hflags from the translator, so do it here.
5157          */
5158         arm_rebuild_hflags(env);
5159     }
5160 }
5161 
5162 static void mdcr_el3_write(CPUARMState *env, const ARMCPRegInfo *ri,
5163                            uint64_t value)
5164 {
5165     /*
5166      * Some MDCR_EL3 bits affect whether PMU counters are running:
5167      * if we are trying to change any of those then we must
5168      * bracket this update with PMU start/finish calls.
5169      */
5170     bool pmu_op = (env->cp15.mdcr_el3 ^ value) & MDCR_EL3_PMU_ENABLE_BITS;
5171 
5172     if (pmu_op) {
5173         pmu_op_start(env);
5174     }
5175     env->cp15.mdcr_el3 = value;
5176     if (pmu_op) {
5177         pmu_op_finish(env);
5178     }
5179 }
5180 
5181 static void sdcr_write(CPUARMState *env, const ARMCPRegInfo *ri,
5182                        uint64_t value)
5183 {
5184     /* Not all bits defined for MDCR_EL3 exist in the AArch32 SDCR */
5185     mdcr_el3_write(env, ri, value & SDCR_VALID_MASK);
5186 }
5187 
5188 static void mdcr_el2_write(CPUARMState *env, const ARMCPRegInfo *ri,
5189                            uint64_t value)
5190 {
5191     /*
5192      * Some MDCR_EL2 bits affect whether PMU counters are running:
5193      * if we are trying to change any of those then we must
5194      * bracket this update with PMU start/finish calls.
5195      */
5196     bool pmu_op = (env->cp15.mdcr_el2 ^ value) & MDCR_EL2_PMU_ENABLE_BITS;
5197 
5198     if (pmu_op) {
5199         pmu_op_start(env);
5200     }
5201     env->cp15.mdcr_el2 = value;
5202     if (pmu_op) {
5203         pmu_op_finish(env);
5204     }
5205 }
5206 
5207 static const ARMCPRegInfo v8_cp_reginfo[] = {
5208     /*
5209      * Minimal set of EL0-visible registers. This will need to be expanded
5210      * significantly for system emulation of AArch64 CPUs.
5211      */
5212     { .name = "NZCV", .state = ARM_CP_STATE_AA64,
5213       .opc0 = 3, .opc1 = 3, .opc2 = 0, .crn = 4, .crm = 2,
5214       .access = PL0_RW, .type = ARM_CP_NZCV },
5215     { .name = "DAIF", .state = ARM_CP_STATE_AA64,
5216       .opc0 = 3, .opc1 = 3, .opc2 = 1, .crn = 4, .crm = 2,
5217       .type = ARM_CP_NO_RAW,
5218       .access = PL0_RW, .accessfn = aa64_daif_access,
5219       .fieldoffset = offsetof(CPUARMState, daif),
5220       .writefn = aa64_daif_write, .resetfn = arm_cp_reset_ignore },
5221     { .name = "FPCR", .state = ARM_CP_STATE_AA64,
5222       .opc0 = 3, .opc1 = 3, .opc2 = 0, .crn = 4, .crm = 4,
5223       .access = PL0_RW, .type = ARM_CP_FPU | ARM_CP_SUPPRESS_TB_END,
5224       .readfn = aa64_fpcr_read, .writefn = aa64_fpcr_write },
5225     { .name = "FPSR", .state = ARM_CP_STATE_AA64,
5226       .opc0 = 3, .opc1 = 3, .opc2 = 1, .crn = 4, .crm = 4,
5227       .access = PL0_RW, .type = ARM_CP_FPU | ARM_CP_SUPPRESS_TB_END,
5228       .readfn = aa64_fpsr_read, .writefn = aa64_fpsr_write },
5229     { .name = "DCZID_EL0", .state = ARM_CP_STATE_AA64,
5230       .opc0 = 3, .opc1 = 3, .opc2 = 7, .crn = 0, .crm = 0,
5231       .access = PL0_R, .type = ARM_CP_NO_RAW,
5232       .fgt = FGT_DCZID_EL0,
5233       .readfn = aa64_dczid_read },
5234     { .name = "DC_ZVA", .state = ARM_CP_STATE_AA64,
5235       .opc0 = 1, .opc1 = 3, .crn = 7, .crm = 4, .opc2 = 1,
5236       .access = PL0_W, .type = ARM_CP_DC_ZVA,
5237 #ifndef CONFIG_USER_ONLY
5238       /* Avoid overhead of an access check that always passes in user-mode */
5239       .accessfn = aa64_zva_access,
5240 #endif
5241     },
5242     { .name = "CURRENTEL", .state = ARM_CP_STATE_AA64,
5243       .opc0 = 3, .opc1 = 0, .opc2 = 2, .crn = 4, .crm = 2,
5244       .access = PL1_R, .type = ARM_CP_CURRENTEL },
5245     /* Cache ops: all NOPs since we don't emulate caches */
5246     { .name = "IC_IALLUIS", .state = ARM_CP_STATE_AA64,
5247       .opc0 = 1, .opc1 = 0, .crn = 7, .crm = 1, .opc2 = 0,
5248       .access = PL1_W, .type = ARM_CP_NOP,
5249       .accessfn = access_ticab },
5250     { .name = "IC_IALLU", .state = ARM_CP_STATE_AA64,
5251       .opc0 = 1, .opc1 = 0, .crn = 7, .crm = 5, .opc2 = 0,
5252       .access = PL1_W, .type = ARM_CP_NOP,
5253       .accessfn = access_tocu },
5254     { .name = "IC_IVAU", .state = ARM_CP_STATE_AA64,
5255       .opc0 = 1, .opc1 = 3, .crn = 7, .crm = 5, .opc2 = 1,
5256       .access = PL0_W, .type = ARM_CP_NOP,
5257       .accessfn = access_tocu },
5258     { .name = "DC_IVAC", .state = ARM_CP_STATE_AA64,
5259       .opc0 = 1, .opc1 = 0, .crn = 7, .crm = 6, .opc2 = 1,
5260       .access = PL1_W, .accessfn = aa64_cacheop_poc_access,
5261       .type = ARM_CP_NOP },
5262     { .name = "DC_ISW", .state = ARM_CP_STATE_AA64,
5263       .opc0 = 1, .opc1 = 0, .crn = 7, .crm = 6, .opc2 = 2,
5264       .access = PL1_W, .accessfn = access_tsw, .type = ARM_CP_NOP },
5265     { .name = "DC_CVAC", .state = ARM_CP_STATE_AA64,
5266       .opc0 = 1, .opc1 = 3, .crn = 7, .crm = 10, .opc2 = 1,
5267       .access = PL0_W, .type = ARM_CP_NOP,
5268       .accessfn = aa64_cacheop_poc_access },
5269     { .name = "DC_CSW", .state = ARM_CP_STATE_AA64,
5270       .opc0 = 1, .opc1 = 0, .crn = 7, .crm = 10, .opc2 = 2,
5271       .access = PL1_W, .accessfn = access_tsw, .type = ARM_CP_NOP },
5272     { .name = "DC_CVAU", .state = ARM_CP_STATE_AA64,
5273       .opc0 = 1, .opc1 = 3, .crn = 7, .crm = 11, .opc2 = 1,
5274       .access = PL0_W, .type = ARM_CP_NOP,
5275       .accessfn = access_tocu },
5276     { .name = "DC_CIVAC", .state = ARM_CP_STATE_AA64,
5277       .opc0 = 1, .opc1 = 3, .crn = 7, .crm = 14, .opc2 = 1,
5278       .access = PL0_W, .type = ARM_CP_NOP,
5279       .accessfn = aa64_cacheop_poc_access },
5280     { .name = "DC_CISW", .state = ARM_CP_STATE_AA64,
5281       .opc0 = 1, .opc1 = 0, .crn = 7, .crm = 14, .opc2 = 2,
5282       .access = PL1_W, .accessfn = access_tsw, .type = ARM_CP_NOP },
5283     /* TLBI operations */
5284     { .name = "TLBI_VMALLE1IS", .state = ARM_CP_STATE_AA64,
5285       .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 3, .opc2 = 0,
5286       .access = PL1_W, .accessfn = access_ttlbis, .type = ARM_CP_NO_RAW,
5287       .writefn = tlbi_aa64_vmalle1is_write },
5288     { .name = "TLBI_VAE1IS", .state = ARM_CP_STATE_AA64,
5289       .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 3, .opc2 = 1,
5290       .access = PL1_W, .accessfn = access_ttlbis, .type = ARM_CP_NO_RAW,
5291       .writefn = tlbi_aa64_vae1is_write },
5292     { .name = "TLBI_ASIDE1IS", .state = ARM_CP_STATE_AA64,
5293       .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 3, .opc2 = 2,
5294       .access = PL1_W, .accessfn = access_ttlbis, .type = ARM_CP_NO_RAW,
5295       .writefn = tlbi_aa64_vmalle1is_write },
5296     { .name = "TLBI_VAAE1IS", .state = ARM_CP_STATE_AA64,
5297       .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 3, .opc2 = 3,
5298       .access = PL1_W, .accessfn = access_ttlbis, .type = ARM_CP_NO_RAW,
5299       .writefn = tlbi_aa64_vae1is_write },
5300     { .name = "TLBI_VALE1IS", .state = ARM_CP_STATE_AA64,
5301       .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 3, .opc2 = 5,
5302       .access = PL1_W, .accessfn = access_ttlbis, .type = ARM_CP_NO_RAW,
5303       .writefn = tlbi_aa64_vae1is_write },
5304     { .name = "TLBI_VAALE1IS", .state = ARM_CP_STATE_AA64,
5305       .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 3, .opc2 = 7,
5306       .access = PL1_W, .accessfn = access_ttlbis, .type = ARM_CP_NO_RAW,
5307       .writefn = tlbi_aa64_vae1is_write },
5308     { .name = "TLBI_VMALLE1", .state = ARM_CP_STATE_AA64,
5309       .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 7, .opc2 = 0,
5310       .access = PL1_W, .accessfn = access_ttlb, .type = ARM_CP_NO_RAW,
5311       .writefn = tlbi_aa64_vmalle1_write },
5312     { .name = "TLBI_VAE1", .state = ARM_CP_STATE_AA64,
5313       .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 7, .opc2 = 1,
5314       .access = PL1_W, .accessfn = access_ttlb, .type = ARM_CP_NO_RAW,
5315       .writefn = tlbi_aa64_vae1_write },
5316     { .name = "TLBI_ASIDE1", .state = ARM_CP_STATE_AA64,
5317       .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 7, .opc2 = 2,
5318       .access = PL1_W, .accessfn = access_ttlb, .type = ARM_CP_NO_RAW,
5319       .writefn = tlbi_aa64_vmalle1_write },
5320     { .name = "TLBI_VAAE1", .state = ARM_CP_STATE_AA64,
5321       .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 7, .opc2 = 3,
5322       .access = PL1_W, .accessfn = access_ttlb, .type = ARM_CP_NO_RAW,
5323       .writefn = tlbi_aa64_vae1_write },
5324     { .name = "TLBI_VALE1", .state = ARM_CP_STATE_AA64,
5325       .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 7, .opc2 = 5,
5326       .access = PL1_W, .accessfn = access_ttlb, .type = ARM_CP_NO_RAW,
5327       .writefn = tlbi_aa64_vae1_write },
5328     { .name = "TLBI_VAALE1", .state = ARM_CP_STATE_AA64,
5329       .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 7, .opc2 = 7,
5330       .access = PL1_W, .accessfn = access_ttlb, .type = ARM_CP_NO_RAW,
5331       .writefn = tlbi_aa64_vae1_write },
5332     { .name = "TLBI_IPAS2E1IS", .state = ARM_CP_STATE_AA64,
5333       .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 0, .opc2 = 1,
5334       .access = PL2_W, .type = ARM_CP_NO_RAW,
5335       .writefn = tlbi_aa64_ipas2e1is_write },
5336     { .name = "TLBI_IPAS2LE1IS", .state = ARM_CP_STATE_AA64,
5337       .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 0, .opc2 = 5,
5338       .access = PL2_W, .type = ARM_CP_NO_RAW,
5339       .writefn = tlbi_aa64_ipas2e1is_write },
5340     { .name = "TLBI_ALLE1IS", .state = ARM_CP_STATE_AA64,
5341       .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 3, .opc2 = 4,
5342       .access = PL2_W, .type = ARM_CP_NO_RAW,
5343       .writefn = tlbi_aa64_alle1is_write },
5344     { .name = "TLBI_VMALLS12E1IS", .state = ARM_CP_STATE_AA64,
5345       .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 3, .opc2 = 6,
5346       .access = PL2_W, .type = ARM_CP_NO_RAW,
5347       .writefn = tlbi_aa64_alle1is_write },
5348     { .name = "TLBI_IPAS2E1", .state = ARM_CP_STATE_AA64,
5349       .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 4, .opc2 = 1,
5350       .access = PL2_W, .type = ARM_CP_NO_RAW,
5351       .writefn = tlbi_aa64_ipas2e1_write },
5352     { .name = "TLBI_IPAS2LE1", .state = ARM_CP_STATE_AA64,
5353       .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 4, .opc2 = 5,
5354       .access = PL2_W, .type = ARM_CP_NO_RAW,
5355       .writefn = tlbi_aa64_ipas2e1_write },
5356     { .name = "TLBI_ALLE1", .state = ARM_CP_STATE_AA64,
5357       .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 7, .opc2 = 4,
5358       .access = PL2_W, .type = ARM_CP_NO_RAW,
5359       .writefn = tlbi_aa64_alle1_write },
5360     { .name = "TLBI_VMALLS12E1", .state = ARM_CP_STATE_AA64,
5361       .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 7, .opc2 = 6,
5362       .access = PL2_W, .type = ARM_CP_NO_RAW,
5363       .writefn = tlbi_aa64_alle1is_write },
5364 #ifndef CONFIG_USER_ONLY
5365     /* 64 bit address translation operations */
5366     { .name = "AT_S1E1R", .state = ARM_CP_STATE_AA64,
5367       .opc0 = 1, .opc1 = 0, .crn = 7, .crm = 8, .opc2 = 0,
5368       .access = PL1_W, .type = ARM_CP_NO_RAW | ARM_CP_RAISES_EXC,
5369       .writefn = ats_write64 },
5370     { .name = "AT_S1E1W", .state = ARM_CP_STATE_AA64,
5371       .opc0 = 1, .opc1 = 0, .crn = 7, .crm = 8, .opc2 = 1,
5372       .access = PL1_W, .type = ARM_CP_NO_RAW | ARM_CP_RAISES_EXC,
5373       .writefn = ats_write64 },
5374     { .name = "AT_S1E0R", .state = ARM_CP_STATE_AA64,
5375       .opc0 = 1, .opc1 = 0, .crn = 7, .crm = 8, .opc2 = 2,
5376       .access = PL1_W, .type = ARM_CP_NO_RAW | ARM_CP_RAISES_EXC,
5377       .writefn = ats_write64 },
5378     { .name = "AT_S1E0W", .state = ARM_CP_STATE_AA64,
5379       .opc0 = 1, .opc1 = 0, .crn = 7, .crm = 8, .opc2 = 3,
5380       .access = PL1_W, .type = ARM_CP_NO_RAW | ARM_CP_RAISES_EXC,
5381       .writefn = ats_write64 },
5382     { .name = "AT_S12E1R", .state = ARM_CP_STATE_AA64,
5383       .opc0 = 1, .opc1 = 4, .crn = 7, .crm = 8, .opc2 = 4,
5384       .access = PL2_W, .type = ARM_CP_NO_RAW | ARM_CP_RAISES_EXC,
5385       .writefn = ats_write64 },
5386     { .name = "AT_S12E1W", .state = ARM_CP_STATE_AA64,
5387       .opc0 = 1, .opc1 = 4, .crn = 7, .crm = 8, .opc2 = 5,
5388       .access = PL2_W, .type = ARM_CP_NO_RAW | ARM_CP_RAISES_EXC,
5389       .writefn = ats_write64 },
5390     { .name = "AT_S12E0R", .state = ARM_CP_STATE_AA64,
5391       .opc0 = 1, .opc1 = 4, .crn = 7, .crm = 8, .opc2 = 6,
5392       .access = PL2_W, .type = ARM_CP_NO_RAW | ARM_CP_RAISES_EXC,
5393       .writefn = ats_write64 },
5394     { .name = "AT_S12E0W", .state = ARM_CP_STATE_AA64,
5395       .opc0 = 1, .opc1 = 4, .crn = 7, .crm = 8, .opc2 = 7,
5396       .access = PL2_W, .type = ARM_CP_NO_RAW | ARM_CP_RAISES_EXC,
5397       .writefn = ats_write64 },
5398     /* AT S1E2* are elsewhere as they UNDEF from EL3 if EL2 is not present */
5399     { .name = "AT_S1E3R", .state = ARM_CP_STATE_AA64,
5400       .opc0 = 1, .opc1 = 6, .crn = 7, .crm = 8, .opc2 = 0,
5401       .access = PL3_W, .type = ARM_CP_NO_RAW | ARM_CP_RAISES_EXC,
5402       .writefn = ats_write64 },
5403     { .name = "AT_S1E3W", .state = ARM_CP_STATE_AA64,
5404       .opc0 = 1, .opc1 = 6, .crn = 7, .crm = 8, .opc2 = 1,
5405       .access = PL3_W, .type = ARM_CP_NO_RAW | ARM_CP_RAISES_EXC,
5406       .writefn = ats_write64 },
5407     { .name = "PAR_EL1", .state = ARM_CP_STATE_AA64,
5408       .type = ARM_CP_ALIAS,
5409       .opc0 = 3, .opc1 = 0, .crn = 7, .crm = 4, .opc2 = 0,
5410       .access = PL1_RW, .resetvalue = 0,
5411       .fgt = FGT_PAR_EL1,
5412       .fieldoffset = offsetof(CPUARMState, cp15.par_el[1]),
5413       .writefn = par_write },
5414 #endif
5415     /* TLB invalidate last level of translation table walk */
5416     { .name = "TLBIMVALIS", .cp = 15, .opc1 = 0, .crn = 8, .crm = 3, .opc2 = 5,
5417       .type = ARM_CP_NO_RAW, .access = PL1_W, .accessfn = access_ttlbis,
5418       .writefn = tlbimva_is_write },
5419     { .name = "TLBIMVAALIS", .cp = 15, .opc1 = 0, .crn = 8, .crm = 3, .opc2 = 7,
5420       .type = ARM_CP_NO_RAW, .access = PL1_W, .accessfn = access_ttlbis,
5421       .writefn = tlbimvaa_is_write },
5422     { .name = "TLBIMVAL", .cp = 15, .opc1 = 0, .crn = 8, .crm = 7, .opc2 = 5,
5423       .type = ARM_CP_NO_RAW, .access = PL1_W, .accessfn = access_ttlb,
5424       .writefn = tlbimva_write },
5425     { .name = "TLBIMVAAL", .cp = 15, .opc1 = 0, .crn = 8, .crm = 7, .opc2 = 7,
5426       .type = ARM_CP_NO_RAW, .access = PL1_W, .accessfn = access_ttlb,
5427       .writefn = tlbimvaa_write },
5428     { .name = "TLBIMVALH", .cp = 15, .opc1 = 4, .crn = 8, .crm = 7, .opc2 = 5,
5429       .type = ARM_CP_NO_RAW, .access = PL2_W,
5430       .writefn = tlbimva_hyp_write },
5431     { .name = "TLBIMVALHIS",
5432       .cp = 15, .opc1 = 4, .crn = 8, .crm = 3, .opc2 = 5,
5433       .type = ARM_CP_NO_RAW, .access = PL2_W,
5434       .writefn = tlbimva_hyp_is_write },
5435     { .name = "TLBIIPAS2",
5436       .cp = 15, .opc1 = 4, .crn = 8, .crm = 4, .opc2 = 1,
5437       .type = ARM_CP_NO_RAW, .access = PL2_W,
5438       .writefn = tlbiipas2_hyp_write },
5439     { .name = "TLBIIPAS2IS",
5440       .cp = 15, .opc1 = 4, .crn = 8, .crm = 0, .opc2 = 1,
5441       .type = ARM_CP_NO_RAW, .access = PL2_W,
5442       .writefn = tlbiipas2is_hyp_write },
5443     { .name = "TLBIIPAS2L",
5444       .cp = 15, .opc1 = 4, .crn = 8, .crm = 4, .opc2 = 5,
5445       .type = ARM_CP_NO_RAW, .access = PL2_W,
5446       .writefn = tlbiipas2_hyp_write },
5447     { .name = "TLBIIPAS2LIS",
5448       .cp = 15, .opc1 = 4, .crn = 8, .crm = 0, .opc2 = 5,
5449       .type = ARM_CP_NO_RAW, .access = PL2_W,
5450       .writefn = tlbiipas2is_hyp_write },
5451     /* 32 bit cache operations */
5452     { .name = "ICIALLUIS", .cp = 15, .opc1 = 0, .crn = 7, .crm = 1, .opc2 = 0,
5453       .type = ARM_CP_NOP, .access = PL1_W, .accessfn = access_ticab },
5454     { .name = "BPIALLUIS", .cp = 15, .opc1 = 0, .crn = 7, .crm = 1, .opc2 = 6,
5455       .type = ARM_CP_NOP, .access = PL1_W },
5456     { .name = "ICIALLU", .cp = 15, .opc1 = 0, .crn = 7, .crm = 5, .opc2 = 0,
5457       .type = ARM_CP_NOP, .access = PL1_W, .accessfn = access_tocu },
5458     { .name = "ICIMVAU", .cp = 15, .opc1 = 0, .crn = 7, .crm = 5, .opc2 = 1,
5459       .type = ARM_CP_NOP, .access = PL1_W, .accessfn = access_tocu },
5460     { .name = "BPIALL", .cp = 15, .opc1 = 0, .crn = 7, .crm = 5, .opc2 = 6,
5461       .type = ARM_CP_NOP, .access = PL1_W },
5462     { .name = "BPIMVA", .cp = 15, .opc1 = 0, .crn = 7, .crm = 5, .opc2 = 7,
5463       .type = ARM_CP_NOP, .access = PL1_W },
5464     { .name = "DCIMVAC", .cp = 15, .opc1 = 0, .crn = 7, .crm = 6, .opc2 = 1,
5465       .type = ARM_CP_NOP, .access = PL1_W, .accessfn = aa64_cacheop_poc_access },
5466     { .name = "DCISW", .cp = 15, .opc1 = 0, .crn = 7, .crm = 6, .opc2 = 2,
5467       .type = ARM_CP_NOP, .access = PL1_W, .accessfn = access_tsw },
5468     { .name = "DCCMVAC", .cp = 15, .opc1 = 0, .crn = 7, .crm = 10, .opc2 = 1,
5469       .type = ARM_CP_NOP, .access = PL1_W, .accessfn = aa64_cacheop_poc_access },
5470     { .name = "DCCSW", .cp = 15, .opc1 = 0, .crn = 7, .crm = 10, .opc2 = 2,
5471       .type = ARM_CP_NOP, .access = PL1_W, .accessfn = access_tsw },
5472     { .name = "DCCMVAU", .cp = 15, .opc1 = 0, .crn = 7, .crm = 11, .opc2 = 1,
5473       .type = ARM_CP_NOP, .access = PL1_W, .accessfn = access_tocu },
5474     { .name = "DCCIMVAC", .cp = 15, .opc1 = 0, .crn = 7, .crm = 14, .opc2 = 1,
5475       .type = ARM_CP_NOP, .access = PL1_W, .accessfn = aa64_cacheop_poc_access },
5476     { .name = "DCCISW", .cp = 15, .opc1 = 0, .crn = 7, .crm = 14, .opc2 = 2,
5477       .type = ARM_CP_NOP, .access = PL1_W, .accessfn = access_tsw },
5478     /* MMU Domain access control / MPU write buffer control */
5479     { .name = "DACR", .cp = 15, .opc1 = 0, .crn = 3, .crm = 0, .opc2 = 0,
5480       .access = PL1_RW, .accessfn = access_tvm_trvm, .resetvalue = 0,
5481       .writefn = dacr_write, .raw_writefn = raw_write,
5482       .bank_fieldoffsets = { offsetoflow32(CPUARMState, cp15.dacr_s),
5483                              offsetoflow32(CPUARMState, cp15.dacr_ns) } },
5484     { .name = "ELR_EL1", .state = ARM_CP_STATE_AA64,
5485       .type = ARM_CP_ALIAS,
5486       .opc0 = 3, .opc1 = 0, .crn = 4, .crm = 0, .opc2 = 1,
5487       .access = PL1_RW,
5488       .fieldoffset = offsetof(CPUARMState, elr_el[1]) },
5489     { .name = "SPSR_EL1", .state = ARM_CP_STATE_AA64,
5490       .type = ARM_CP_ALIAS,
5491       .opc0 = 3, .opc1 = 0, .crn = 4, .crm = 0, .opc2 = 0,
5492       .access = PL1_RW,
5493       .fieldoffset = offsetof(CPUARMState, banked_spsr[BANK_SVC]) },
5494     /*
5495      * We rely on the access checks not allowing the guest to write to the
5496      * state field when SPSel indicates that it's being used as the stack
5497      * pointer.
5498      */
5499     { .name = "SP_EL0", .state = ARM_CP_STATE_AA64,
5500       .opc0 = 3, .opc1 = 0, .crn = 4, .crm = 1, .opc2 = 0,
5501       .access = PL1_RW, .accessfn = sp_el0_access,
5502       .type = ARM_CP_ALIAS,
5503       .fieldoffset = offsetof(CPUARMState, sp_el[0]) },
5504     { .name = "SP_EL1", .state = ARM_CP_STATE_AA64,
5505       .opc0 = 3, .opc1 = 4, .crn = 4, .crm = 1, .opc2 = 0,
5506       .access = PL2_RW, .type = ARM_CP_ALIAS | ARM_CP_EL3_NO_EL2_KEEP,
5507       .fieldoffset = offsetof(CPUARMState, sp_el[1]) },
5508     { .name = "SPSel", .state = ARM_CP_STATE_AA64,
5509       .opc0 = 3, .opc1 = 0, .crn = 4, .crm = 2, .opc2 = 0,
5510       .type = ARM_CP_NO_RAW,
5511       .access = PL1_RW, .readfn = spsel_read, .writefn = spsel_write },
5512     { .name = "FPEXC32_EL2", .state = ARM_CP_STATE_AA64,
5513       .opc0 = 3, .opc1 = 4, .crn = 5, .crm = 3, .opc2 = 0,
5514       .access = PL2_RW,
5515       .type = ARM_CP_ALIAS | ARM_CP_FPU | ARM_CP_EL3_NO_EL2_KEEP,
5516       .fieldoffset = offsetof(CPUARMState, vfp.xregs[ARM_VFP_FPEXC]) },
5517     { .name = "DACR32_EL2", .state = ARM_CP_STATE_AA64,
5518       .opc0 = 3, .opc1 = 4, .crn = 3, .crm = 0, .opc2 = 0,
5519       .access = PL2_RW, .resetvalue = 0, .type = ARM_CP_EL3_NO_EL2_KEEP,
5520       .writefn = dacr_write, .raw_writefn = raw_write,
5521       .fieldoffset = offsetof(CPUARMState, cp15.dacr32_el2) },
5522     { .name = "IFSR32_EL2", .state = ARM_CP_STATE_AA64,
5523       .opc0 = 3, .opc1 = 4, .crn = 5, .crm = 0, .opc2 = 1,
5524       .access = PL2_RW, .resetvalue = 0, .type = ARM_CP_EL3_NO_EL2_KEEP,
5525       .fieldoffset = offsetof(CPUARMState, cp15.ifsr32_el2) },
5526     { .name = "SPSR_IRQ", .state = ARM_CP_STATE_AA64,
5527       .type = ARM_CP_ALIAS,
5528       .opc0 = 3, .opc1 = 4, .crn = 4, .crm = 3, .opc2 = 0,
5529       .access = PL2_RW,
5530       .fieldoffset = offsetof(CPUARMState, banked_spsr[BANK_IRQ]) },
5531     { .name = "SPSR_ABT", .state = ARM_CP_STATE_AA64,
5532       .type = ARM_CP_ALIAS,
5533       .opc0 = 3, .opc1 = 4, .crn = 4, .crm = 3, .opc2 = 1,
5534       .access = PL2_RW,
5535       .fieldoffset = offsetof(CPUARMState, banked_spsr[BANK_ABT]) },
5536     { .name = "SPSR_UND", .state = ARM_CP_STATE_AA64,
5537       .type = ARM_CP_ALIAS,
5538       .opc0 = 3, .opc1 = 4, .crn = 4, .crm = 3, .opc2 = 2,
5539       .access = PL2_RW,
5540       .fieldoffset = offsetof(CPUARMState, banked_spsr[BANK_UND]) },
5541     { .name = "SPSR_FIQ", .state = ARM_CP_STATE_AA64,
5542       .type = ARM_CP_ALIAS,
5543       .opc0 = 3, .opc1 = 4, .crn = 4, .crm = 3, .opc2 = 3,
5544       .access = PL2_RW,
5545       .fieldoffset = offsetof(CPUARMState, banked_spsr[BANK_FIQ]) },
5546     { .name = "MDCR_EL3", .state = ARM_CP_STATE_AA64,
5547       .type = ARM_CP_IO,
5548       .opc0 = 3, .opc1 = 6, .crn = 1, .crm = 3, .opc2 = 1,
5549       .resetvalue = 0,
5550       .access = PL3_RW,
5551       .writefn = mdcr_el3_write,
5552       .fieldoffset = offsetof(CPUARMState, cp15.mdcr_el3) },
5553     { .name = "SDCR", .type = ARM_CP_ALIAS | ARM_CP_IO,
5554       .cp = 15, .opc1 = 0, .crn = 1, .crm = 3, .opc2 = 1,
5555       .access = PL1_RW, .accessfn = access_trap_aa32s_el1,
5556       .writefn = sdcr_write,
5557       .fieldoffset = offsetoflow32(CPUARMState, cp15.mdcr_el3) },
5558 };
5559 
5560 static void do_hcr_write(CPUARMState *env, uint64_t value, uint64_t valid_mask)
5561 {
5562     ARMCPU *cpu = env_archcpu(env);
5563 
5564     if (arm_feature(env, ARM_FEATURE_V8)) {
5565         valid_mask |= MAKE_64BIT_MASK(0, 34);  /* ARMv8.0 */
5566     } else {
5567         valid_mask |= MAKE_64BIT_MASK(0, 28);  /* ARMv7VE */
5568     }
5569 
5570     if (arm_feature(env, ARM_FEATURE_EL3)) {
5571         valid_mask &= ~HCR_HCD;
5572     } else if (cpu->psci_conduit != QEMU_PSCI_CONDUIT_SMC) {
5573         /*
5574          * Architecturally HCR.TSC is RES0 if EL3 is not implemented.
5575          * However, if we're using the SMC PSCI conduit then QEMU is
5576          * effectively acting like EL3 firmware and so the guest at
5577          * EL2 should retain the ability to prevent EL1 from being
5578          * able to make SMC calls into the ersatz firmware, so in
5579          * that case HCR.TSC should be read/write.
5580          */
5581         valid_mask &= ~HCR_TSC;
5582     }
5583 
5584     if (arm_feature(env, ARM_FEATURE_AARCH64)) {
5585         if (cpu_isar_feature(aa64_vh, cpu)) {
5586             valid_mask |= HCR_E2H;
5587         }
5588         if (cpu_isar_feature(aa64_ras, cpu)) {
5589             valid_mask |= HCR_TERR | HCR_TEA;
5590         }
5591         if (cpu_isar_feature(aa64_lor, cpu)) {
5592             valid_mask |= HCR_TLOR;
5593         }
5594         if (cpu_isar_feature(aa64_pauth, cpu)) {
5595             valid_mask |= HCR_API | HCR_APK;
5596         }
5597         if (cpu_isar_feature(aa64_mte, cpu)) {
5598             valid_mask |= HCR_ATA | HCR_DCT | HCR_TID5;
5599         }
5600         if (cpu_isar_feature(aa64_scxtnum, cpu)) {
5601             valid_mask |= HCR_ENSCXT;
5602         }
5603         if (cpu_isar_feature(aa64_fwb, cpu)) {
5604             valid_mask |= HCR_FWB;
5605         }
5606     }
5607 
5608     if (cpu_isar_feature(any_evt, cpu)) {
5609         valid_mask |= HCR_TTLBIS | HCR_TTLBOS | HCR_TICAB | HCR_TOCU | HCR_TID4;
5610     } else if (cpu_isar_feature(any_half_evt, cpu)) {
5611         valid_mask |= HCR_TICAB | HCR_TOCU | HCR_TID4;
5612     }
5613 
5614     /* Clear RES0 bits.  */
5615     value &= valid_mask;
5616 
5617     /*
5618      * These bits change the MMU setup:
5619      * HCR_VM enables stage 2 translation
5620      * HCR_PTW forbids certain page-table setups
5621      * HCR_DC disables stage1 and enables stage2 translation
5622      * HCR_DCT enables tagging on (disabled) stage1 translation
5623      * HCR_FWB changes the interpretation of stage2 descriptor bits
5624      */
5625     if ((env->cp15.hcr_el2 ^ value) &
5626         (HCR_VM | HCR_PTW | HCR_DC | HCR_DCT | HCR_FWB)) {
5627         tlb_flush(CPU(cpu));
5628     }
5629     env->cp15.hcr_el2 = value;
5630 
5631     /*
5632      * Updates to VI and VF require us to update the status of
5633      * virtual interrupts, which are the logical OR of these bits
5634      * and the state of the input lines from the GIC. (This requires
5635      * that we have the iothread lock, which is done by marking the
5636      * reginfo structs as ARM_CP_IO.)
5637      * Note that if a write to HCR pends a VIRQ or VFIQ it is never
5638      * possible for it to be taken immediately, because VIRQ and
5639      * VFIQ are masked unless running at EL0 or EL1, and HCR
5640      * can only be written at EL2.
5641      */
5642     g_assert(qemu_mutex_iothread_locked());
5643     arm_cpu_update_virq(cpu);
5644     arm_cpu_update_vfiq(cpu);
5645     arm_cpu_update_vserr(cpu);
5646 }
5647 
5648 static void hcr_write(CPUARMState *env, const ARMCPRegInfo *ri, uint64_t value)
5649 {
5650     do_hcr_write(env, value, 0);
5651 }
5652 
5653 static void hcr_writehigh(CPUARMState *env, const ARMCPRegInfo *ri,
5654                           uint64_t value)
5655 {
5656     /* Handle HCR2 write, i.e. write to high half of HCR_EL2 */
5657     value = deposit64(env->cp15.hcr_el2, 32, 32, value);
5658     do_hcr_write(env, value, MAKE_64BIT_MASK(0, 32));
5659 }
5660 
5661 static void hcr_writelow(CPUARMState *env, const ARMCPRegInfo *ri,
5662                          uint64_t value)
5663 {
5664     /* Handle HCR write, i.e. write to low half of HCR_EL2 */
5665     value = deposit64(env->cp15.hcr_el2, 0, 32, value);
5666     do_hcr_write(env, value, MAKE_64BIT_MASK(32, 32));
5667 }
5668 
5669 /*
5670  * Return the effective value of HCR_EL2, at the given security state.
5671  * Bits that are not included here:
5672  * RW       (read from SCR_EL3.RW as needed)
5673  */
5674 uint64_t arm_hcr_el2_eff_secstate(CPUARMState *env, bool secure)
5675 {
5676     uint64_t ret = env->cp15.hcr_el2;
5677 
5678     if (!arm_is_el2_enabled_secstate(env, secure)) {
5679         /*
5680          * "This register has no effect if EL2 is not enabled in the
5681          * current Security state".  This is ARMv8.4-SecEL2 speak for
5682          * !(SCR_EL3.NS==1 || SCR_EL3.EEL2==1).
5683          *
5684          * Prior to that, the language was "In an implementation that
5685          * includes EL3, when the value of SCR_EL3.NS is 0 the PE behaves
5686          * as if this field is 0 for all purposes other than a direct
5687          * read or write access of HCR_EL2".  With lots of enumeration
5688          * on a per-field basis.  In current QEMU, this is condition
5689          * is arm_is_secure_below_el3.
5690          *
5691          * Since the v8.4 language applies to the entire register, and
5692          * appears to be backward compatible, use that.
5693          */
5694         return 0;
5695     }
5696 
5697     /*
5698      * For a cpu that supports both aarch64 and aarch32, we can set bits
5699      * in HCR_EL2 (e.g. via EL3) that are RES0 when we enter EL2 as aa32.
5700      * Ignore all of the bits in HCR+HCR2 that are not valid for aarch32.
5701      */
5702     if (!arm_el_is_aa64(env, 2)) {
5703         uint64_t aa32_valid;
5704 
5705         /*
5706          * These bits are up-to-date as of ARMv8.6.
5707          * For HCR, it's easiest to list just the 2 bits that are invalid.
5708          * For HCR2, list those that are valid.
5709          */
5710         aa32_valid = MAKE_64BIT_MASK(0, 32) & ~(HCR_RW | HCR_TDZ);
5711         aa32_valid |= (HCR_CD | HCR_ID | HCR_TERR | HCR_TEA | HCR_MIOCNCE |
5712                        HCR_TID4 | HCR_TICAB | HCR_TOCU | HCR_TTLBIS);
5713         ret &= aa32_valid;
5714     }
5715 
5716     if (ret & HCR_TGE) {
5717         /* These bits are up-to-date as of ARMv8.6.  */
5718         if (ret & HCR_E2H) {
5719             ret &= ~(HCR_VM | HCR_FMO | HCR_IMO | HCR_AMO |
5720                      HCR_BSU_MASK | HCR_DC | HCR_TWI | HCR_TWE |
5721                      HCR_TID0 | HCR_TID2 | HCR_TPCP | HCR_TPU |
5722                      HCR_TDZ | HCR_CD | HCR_ID | HCR_MIOCNCE |
5723                      HCR_TID4 | HCR_TICAB | HCR_TOCU | HCR_ENSCXT |
5724                      HCR_TTLBIS | HCR_TTLBOS | HCR_TID5);
5725         } else {
5726             ret |= HCR_FMO | HCR_IMO | HCR_AMO;
5727         }
5728         ret &= ~(HCR_SWIO | HCR_PTW | HCR_VF | HCR_VI | HCR_VSE |
5729                  HCR_FB | HCR_TID1 | HCR_TID3 | HCR_TSC | HCR_TACR |
5730                  HCR_TSW | HCR_TTLB | HCR_TVM | HCR_HCD | HCR_TRVM |
5731                  HCR_TLOR);
5732     }
5733 
5734     return ret;
5735 }
5736 
5737 uint64_t arm_hcr_el2_eff(CPUARMState *env)
5738 {
5739     return arm_hcr_el2_eff_secstate(env, arm_is_secure_below_el3(env));
5740 }
5741 
5742 /*
5743  * Corresponds to ARM pseudocode function ELIsInHost().
5744  */
5745 bool el_is_in_host(CPUARMState *env, int el)
5746 {
5747     uint64_t mask;
5748 
5749     /*
5750      * Since we only care about E2H and TGE, we can skip arm_hcr_el2_eff().
5751      * Perform the simplest bit tests first, and validate EL2 afterward.
5752      */
5753     if (el & 1) {
5754         return false; /* EL1 or EL3 */
5755     }
5756 
5757     /*
5758      * Note that hcr_write() checks isar_feature_aa64_vh(),
5759      * aka HaveVirtHostExt(), in allowing HCR_E2H to be set.
5760      */
5761     mask = el ? HCR_E2H : HCR_E2H | HCR_TGE;
5762     if ((env->cp15.hcr_el2 & mask) != mask) {
5763         return false;
5764     }
5765 
5766     /* TGE and/or E2H set: double check those bits are currently legal. */
5767     return arm_is_el2_enabled(env) && arm_el_is_aa64(env, 2);
5768 }
5769 
5770 static void hcrx_write(CPUARMState *env, const ARMCPRegInfo *ri,
5771                        uint64_t value)
5772 {
5773     uint64_t valid_mask = 0;
5774 
5775     /* No features adding bits to HCRX are implemented. */
5776 
5777     /* Clear RES0 bits.  */
5778     env->cp15.hcrx_el2 = value & valid_mask;
5779 }
5780 
5781 static CPAccessResult access_hxen(CPUARMState *env, const ARMCPRegInfo *ri,
5782                                   bool isread)
5783 {
5784     if (arm_current_el(env) < 3
5785         && arm_feature(env, ARM_FEATURE_EL3)
5786         && !(env->cp15.scr_el3 & SCR_HXEN)) {
5787         return CP_ACCESS_TRAP_EL3;
5788     }
5789     return CP_ACCESS_OK;
5790 }
5791 
5792 static const ARMCPRegInfo hcrx_el2_reginfo = {
5793     .name = "HCRX_EL2", .state = ARM_CP_STATE_AA64,
5794     .opc0 = 3, .opc1 = 4, .crn = 1, .crm = 2, .opc2 = 2,
5795     .access = PL2_RW, .writefn = hcrx_write, .accessfn = access_hxen,
5796     .fieldoffset = offsetof(CPUARMState, cp15.hcrx_el2),
5797 };
5798 
5799 /* Return the effective value of HCRX_EL2.  */
5800 uint64_t arm_hcrx_el2_eff(CPUARMState *env)
5801 {
5802     /*
5803      * The bits in this register behave as 0 for all purposes other than
5804      * direct reads of the register if:
5805      *   - EL2 is not enabled in the current security state,
5806      *   - SCR_EL3.HXEn is 0.
5807      */
5808     if (!arm_is_el2_enabled(env)
5809         || (arm_feature(env, ARM_FEATURE_EL3)
5810             && !(env->cp15.scr_el3 & SCR_HXEN))) {
5811         return 0;
5812     }
5813     return env->cp15.hcrx_el2;
5814 }
5815 
5816 static void cptr_el2_write(CPUARMState *env, const ARMCPRegInfo *ri,
5817                            uint64_t value)
5818 {
5819     /*
5820      * For A-profile AArch32 EL3, if NSACR.CP10
5821      * is 0 then HCPTR.{TCP11,TCP10} ignore writes and read as 1.
5822      */
5823     if (arm_feature(env, ARM_FEATURE_EL3) && !arm_el_is_aa64(env, 3) &&
5824         !arm_is_secure(env) && !extract32(env->cp15.nsacr, 10, 1)) {
5825         uint64_t mask = R_HCPTR_TCP11_MASK | R_HCPTR_TCP10_MASK;
5826         value = (value & ~mask) | (env->cp15.cptr_el[2] & mask);
5827     }
5828     env->cp15.cptr_el[2] = value;
5829 }
5830 
5831 static uint64_t cptr_el2_read(CPUARMState *env, const ARMCPRegInfo *ri)
5832 {
5833     /*
5834      * For A-profile AArch32 EL3, if NSACR.CP10
5835      * is 0 then HCPTR.{TCP11,TCP10} ignore writes and read as 1.
5836      */
5837     uint64_t value = env->cp15.cptr_el[2];
5838 
5839     if (arm_feature(env, ARM_FEATURE_EL3) && !arm_el_is_aa64(env, 3) &&
5840         !arm_is_secure(env) && !extract32(env->cp15.nsacr, 10, 1)) {
5841         value |= R_HCPTR_TCP11_MASK | R_HCPTR_TCP10_MASK;
5842     }
5843     return value;
5844 }
5845 
5846 static const ARMCPRegInfo el2_cp_reginfo[] = {
5847     { .name = "HCR_EL2", .state = ARM_CP_STATE_AA64,
5848       .type = ARM_CP_IO,
5849       .opc0 = 3, .opc1 = 4, .crn = 1, .crm = 1, .opc2 = 0,
5850       .access = PL2_RW, .fieldoffset = offsetof(CPUARMState, cp15.hcr_el2),
5851       .writefn = hcr_write },
5852     { .name = "HCR", .state = ARM_CP_STATE_AA32,
5853       .type = ARM_CP_ALIAS | ARM_CP_IO,
5854       .cp = 15, .opc1 = 4, .crn = 1, .crm = 1, .opc2 = 0,
5855       .access = PL2_RW, .fieldoffset = offsetof(CPUARMState, cp15.hcr_el2),
5856       .writefn = hcr_writelow },
5857     { .name = "HACR_EL2", .state = ARM_CP_STATE_BOTH,
5858       .opc0 = 3, .opc1 = 4, .crn = 1, .crm = 1, .opc2 = 7,
5859       .access = PL2_RW, .type = ARM_CP_CONST, .resetvalue = 0 },
5860     { .name = "ELR_EL2", .state = ARM_CP_STATE_AA64,
5861       .type = ARM_CP_ALIAS,
5862       .opc0 = 3, .opc1 = 4, .crn = 4, .crm = 0, .opc2 = 1,
5863       .access = PL2_RW,
5864       .fieldoffset = offsetof(CPUARMState, elr_el[2]) },
5865     { .name = "ESR_EL2", .state = ARM_CP_STATE_BOTH,
5866       .opc0 = 3, .opc1 = 4, .crn = 5, .crm = 2, .opc2 = 0,
5867       .access = PL2_RW, .fieldoffset = offsetof(CPUARMState, cp15.esr_el[2]) },
5868     { .name = "FAR_EL2", .state = ARM_CP_STATE_BOTH,
5869       .opc0 = 3, .opc1 = 4, .crn = 6, .crm = 0, .opc2 = 0,
5870       .access = PL2_RW, .fieldoffset = offsetof(CPUARMState, cp15.far_el[2]) },
5871     { .name = "HIFAR", .state = ARM_CP_STATE_AA32,
5872       .type = ARM_CP_ALIAS,
5873       .cp = 15, .opc1 = 4, .crn = 6, .crm = 0, .opc2 = 2,
5874       .access = PL2_RW,
5875       .fieldoffset = offsetofhigh32(CPUARMState, cp15.far_el[2]) },
5876     { .name = "SPSR_EL2", .state = ARM_CP_STATE_AA64,
5877       .type = ARM_CP_ALIAS,
5878       .opc0 = 3, .opc1 = 4, .crn = 4, .crm = 0, .opc2 = 0,
5879       .access = PL2_RW,
5880       .fieldoffset = offsetof(CPUARMState, banked_spsr[BANK_HYP]) },
5881     { .name = "VBAR_EL2", .state = ARM_CP_STATE_BOTH,
5882       .opc0 = 3, .opc1 = 4, .crn = 12, .crm = 0, .opc2 = 0,
5883       .access = PL2_RW, .writefn = vbar_write,
5884       .fieldoffset = offsetof(CPUARMState, cp15.vbar_el[2]),
5885       .resetvalue = 0 },
5886     { .name = "SP_EL2", .state = ARM_CP_STATE_AA64,
5887       .opc0 = 3, .opc1 = 6, .crn = 4, .crm = 1, .opc2 = 0,
5888       .access = PL3_RW, .type = ARM_CP_ALIAS,
5889       .fieldoffset = offsetof(CPUARMState, sp_el[2]) },
5890     { .name = "CPTR_EL2", .state = ARM_CP_STATE_BOTH,
5891       .opc0 = 3, .opc1 = 4, .crn = 1, .crm = 1, .opc2 = 2,
5892       .access = PL2_RW, .accessfn = cptr_access, .resetvalue = 0,
5893       .fieldoffset = offsetof(CPUARMState, cp15.cptr_el[2]),
5894       .readfn = cptr_el2_read, .writefn = cptr_el2_write },
5895     { .name = "MAIR_EL2", .state = ARM_CP_STATE_BOTH,
5896       .opc0 = 3, .opc1 = 4, .crn = 10, .crm = 2, .opc2 = 0,
5897       .access = PL2_RW, .fieldoffset = offsetof(CPUARMState, cp15.mair_el[2]),
5898       .resetvalue = 0 },
5899     { .name = "HMAIR1", .state = ARM_CP_STATE_AA32,
5900       .cp = 15, .opc1 = 4, .crn = 10, .crm = 2, .opc2 = 1,
5901       .access = PL2_RW, .type = ARM_CP_ALIAS,
5902       .fieldoffset = offsetofhigh32(CPUARMState, cp15.mair_el[2]) },
5903     { .name = "AMAIR_EL2", .state = ARM_CP_STATE_BOTH,
5904       .opc0 = 3, .opc1 = 4, .crn = 10, .crm = 3, .opc2 = 0,
5905       .access = PL2_RW, .type = ARM_CP_CONST,
5906       .resetvalue = 0 },
5907     /* HAMAIR1 is mapped to AMAIR_EL2[63:32] */
5908     { .name = "HAMAIR1", .state = ARM_CP_STATE_AA32,
5909       .cp = 15, .opc1 = 4, .crn = 10, .crm = 3, .opc2 = 1,
5910       .access = PL2_RW, .type = ARM_CP_CONST,
5911       .resetvalue = 0 },
5912     { .name = "AFSR0_EL2", .state = ARM_CP_STATE_BOTH,
5913       .opc0 = 3, .opc1 = 4, .crn = 5, .crm = 1, .opc2 = 0,
5914       .access = PL2_RW, .type = ARM_CP_CONST,
5915       .resetvalue = 0 },
5916     { .name = "AFSR1_EL2", .state = ARM_CP_STATE_BOTH,
5917       .opc0 = 3, .opc1 = 4, .crn = 5, .crm = 1, .opc2 = 1,
5918       .access = PL2_RW, .type = ARM_CP_CONST,
5919       .resetvalue = 0 },
5920     { .name = "TCR_EL2", .state = ARM_CP_STATE_BOTH,
5921       .opc0 = 3, .opc1 = 4, .crn = 2, .crm = 0, .opc2 = 2,
5922       .access = PL2_RW, .writefn = vmsa_tcr_el12_write,
5923       .fieldoffset = offsetof(CPUARMState, cp15.tcr_el[2]) },
5924     { .name = "VTCR", .state = ARM_CP_STATE_AA32,
5925       .cp = 15, .opc1 = 4, .crn = 2, .crm = 1, .opc2 = 2,
5926       .type = ARM_CP_ALIAS,
5927       .access = PL2_RW, .accessfn = access_el3_aa32ns,
5928       .fieldoffset = offsetoflow32(CPUARMState, cp15.vtcr_el2) },
5929     { .name = "VTCR_EL2", .state = ARM_CP_STATE_AA64,
5930       .opc0 = 3, .opc1 = 4, .crn = 2, .crm = 1, .opc2 = 2,
5931       .access = PL2_RW,
5932       /* no .writefn needed as this can't cause an ASID change */
5933       .fieldoffset = offsetof(CPUARMState, cp15.vtcr_el2) },
5934     { .name = "VTTBR", .state = ARM_CP_STATE_AA32,
5935       .cp = 15, .opc1 = 6, .crm = 2,
5936       .type = ARM_CP_64BIT | ARM_CP_ALIAS,
5937       .access = PL2_RW, .accessfn = access_el3_aa32ns,
5938       .fieldoffset = offsetof(CPUARMState, cp15.vttbr_el2),
5939       .writefn = vttbr_write },
5940     { .name = "VTTBR_EL2", .state = ARM_CP_STATE_AA64,
5941       .opc0 = 3, .opc1 = 4, .crn = 2, .crm = 1, .opc2 = 0,
5942       .access = PL2_RW, .writefn = vttbr_write,
5943       .fieldoffset = offsetof(CPUARMState, cp15.vttbr_el2) },
5944     { .name = "SCTLR_EL2", .state = ARM_CP_STATE_BOTH,
5945       .opc0 = 3, .opc1 = 4, .crn = 1, .crm = 0, .opc2 = 0,
5946       .access = PL2_RW, .raw_writefn = raw_write, .writefn = sctlr_write,
5947       .fieldoffset = offsetof(CPUARMState, cp15.sctlr_el[2]) },
5948     { .name = "TPIDR_EL2", .state = ARM_CP_STATE_BOTH,
5949       .opc0 = 3, .opc1 = 4, .crn = 13, .crm = 0, .opc2 = 2,
5950       .access = PL2_RW, .resetvalue = 0,
5951       .fieldoffset = offsetof(CPUARMState, cp15.tpidr_el[2]) },
5952     { .name = "TTBR0_EL2", .state = ARM_CP_STATE_AA64,
5953       .opc0 = 3, .opc1 = 4, .crn = 2, .crm = 0, .opc2 = 0,
5954       .access = PL2_RW, .resetvalue = 0, .writefn = vmsa_tcr_ttbr_el2_write,
5955       .fieldoffset = offsetof(CPUARMState, cp15.ttbr0_el[2]) },
5956     { .name = "HTTBR", .cp = 15, .opc1 = 4, .crm = 2,
5957       .access = PL2_RW, .type = ARM_CP_64BIT | ARM_CP_ALIAS,
5958       .fieldoffset = offsetof(CPUARMState, cp15.ttbr0_el[2]) },
5959     { .name = "TLBIALLNSNH",
5960       .cp = 15, .opc1 = 4, .crn = 8, .crm = 7, .opc2 = 4,
5961       .type = ARM_CP_NO_RAW, .access = PL2_W,
5962       .writefn = tlbiall_nsnh_write },
5963     { .name = "TLBIALLNSNHIS",
5964       .cp = 15, .opc1 = 4, .crn = 8, .crm = 3, .opc2 = 4,
5965       .type = ARM_CP_NO_RAW, .access = PL2_W,
5966       .writefn = tlbiall_nsnh_is_write },
5967     { .name = "TLBIALLH", .cp = 15, .opc1 = 4, .crn = 8, .crm = 7, .opc2 = 0,
5968       .type = ARM_CP_NO_RAW, .access = PL2_W,
5969       .writefn = tlbiall_hyp_write },
5970     { .name = "TLBIALLHIS", .cp = 15, .opc1 = 4, .crn = 8, .crm = 3, .opc2 = 0,
5971       .type = ARM_CP_NO_RAW, .access = PL2_W,
5972       .writefn = tlbiall_hyp_is_write },
5973     { .name = "TLBIMVAH", .cp = 15, .opc1 = 4, .crn = 8, .crm = 7, .opc2 = 1,
5974       .type = ARM_CP_NO_RAW, .access = PL2_W,
5975       .writefn = tlbimva_hyp_write },
5976     { .name = "TLBIMVAHIS", .cp = 15, .opc1 = 4, .crn = 8, .crm = 3, .opc2 = 1,
5977       .type = ARM_CP_NO_RAW, .access = PL2_W,
5978       .writefn = tlbimva_hyp_is_write },
5979     { .name = "TLBI_ALLE2", .state = ARM_CP_STATE_AA64,
5980       .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 7, .opc2 = 0,
5981       .access = PL2_W, .type = ARM_CP_NO_RAW | ARM_CP_EL3_NO_EL2_UNDEF,
5982       .writefn = tlbi_aa64_alle2_write },
5983     { .name = "TLBI_VAE2", .state = ARM_CP_STATE_AA64,
5984       .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 7, .opc2 = 1,
5985       .access = PL2_W, .type = ARM_CP_NO_RAW | ARM_CP_EL3_NO_EL2_UNDEF,
5986       .writefn = tlbi_aa64_vae2_write },
5987     { .name = "TLBI_VALE2", .state = ARM_CP_STATE_AA64,
5988       .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 7, .opc2 = 5,
5989       .access = PL2_W, .type = ARM_CP_NO_RAW | ARM_CP_EL3_NO_EL2_UNDEF,
5990       .writefn = tlbi_aa64_vae2_write },
5991     { .name = "TLBI_ALLE2IS", .state = ARM_CP_STATE_AA64,
5992       .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 3, .opc2 = 0,
5993       .access = PL2_W, .type = ARM_CP_NO_RAW | ARM_CP_EL3_NO_EL2_UNDEF,
5994       .writefn = tlbi_aa64_alle2is_write },
5995     { .name = "TLBI_VAE2IS", .state = ARM_CP_STATE_AA64,
5996       .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 3, .opc2 = 1,
5997       .access = PL2_W, .type = ARM_CP_NO_RAW | ARM_CP_EL3_NO_EL2_UNDEF,
5998       .writefn = tlbi_aa64_vae2is_write },
5999     { .name = "TLBI_VALE2IS", .state = ARM_CP_STATE_AA64,
6000       .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 3, .opc2 = 5,
6001       .access = PL2_W, .type = ARM_CP_NO_RAW | ARM_CP_EL3_NO_EL2_UNDEF,
6002       .writefn = tlbi_aa64_vae2is_write },
6003 #ifndef CONFIG_USER_ONLY
6004     /*
6005      * Unlike the other EL2-related AT operations, these must
6006      * UNDEF from EL3 if EL2 is not implemented, which is why we
6007      * define them here rather than with the rest of the AT ops.
6008      */
6009     { .name = "AT_S1E2R", .state = ARM_CP_STATE_AA64,
6010       .opc0 = 1, .opc1 = 4, .crn = 7, .crm = 8, .opc2 = 0,
6011       .access = PL2_W, .accessfn = at_s1e2_access,
6012       .type = ARM_CP_NO_RAW | ARM_CP_RAISES_EXC | ARM_CP_EL3_NO_EL2_UNDEF,
6013       .writefn = ats_write64 },
6014     { .name = "AT_S1E2W", .state = ARM_CP_STATE_AA64,
6015       .opc0 = 1, .opc1 = 4, .crn = 7, .crm = 8, .opc2 = 1,
6016       .access = PL2_W, .accessfn = at_s1e2_access,
6017       .type = ARM_CP_NO_RAW | ARM_CP_RAISES_EXC | ARM_CP_EL3_NO_EL2_UNDEF,
6018       .writefn = ats_write64 },
6019     /*
6020      * The AArch32 ATS1H* operations are CONSTRAINED UNPREDICTABLE
6021      * if EL2 is not implemented; we choose to UNDEF. Behaviour at EL3
6022      * with SCR.NS == 0 outside Monitor mode is UNPREDICTABLE; we choose
6023      * to behave as if SCR.NS was 1.
6024      */
6025     { .name = "ATS1HR", .cp = 15, .opc1 = 4, .crn = 7, .crm = 8, .opc2 = 0,
6026       .access = PL2_W,
6027       .writefn = ats1h_write, .type = ARM_CP_NO_RAW | ARM_CP_RAISES_EXC },
6028     { .name = "ATS1HW", .cp = 15, .opc1 = 4, .crn = 7, .crm = 8, .opc2 = 1,
6029       .access = PL2_W,
6030       .writefn = ats1h_write, .type = ARM_CP_NO_RAW | ARM_CP_RAISES_EXC },
6031     { .name = "CNTHCTL_EL2", .state = ARM_CP_STATE_BOTH,
6032       .opc0 = 3, .opc1 = 4, .crn = 14, .crm = 1, .opc2 = 0,
6033       /*
6034        * ARMv7 requires bit 0 and 1 to reset to 1. ARMv8 defines the
6035        * reset values as IMPDEF. We choose to reset to 3 to comply with
6036        * both ARMv7 and ARMv8.
6037        */
6038       .access = PL2_RW, .resetvalue = 3,
6039       .fieldoffset = offsetof(CPUARMState, cp15.cnthctl_el2) },
6040     { .name = "CNTVOFF_EL2", .state = ARM_CP_STATE_AA64,
6041       .opc0 = 3, .opc1 = 4, .crn = 14, .crm = 0, .opc2 = 3,
6042       .access = PL2_RW, .type = ARM_CP_IO, .resetvalue = 0,
6043       .writefn = gt_cntvoff_write,
6044       .fieldoffset = offsetof(CPUARMState, cp15.cntvoff_el2) },
6045     { .name = "CNTVOFF", .cp = 15, .opc1 = 4, .crm = 14,
6046       .access = PL2_RW, .type = ARM_CP_64BIT | ARM_CP_ALIAS | ARM_CP_IO,
6047       .writefn = gt_cntvoff_write,
6048       .fieldoffset = offsetof(CPUARMState, cp15.cntvoff_el2) },
6049     { .name = "CNTHP_CVAL_EL2", .state = ARM_CP_STATE_AA64,
6050       .opc0 = 3, .opc1 = 4, .crn = 14, .crm = 2, .opc2 = 2,
6051       .fieldoffset = offsetof(CPUARMState, cp15.c14_timer[GTIMER_HYP].cval),
6052       .type = ARM_CP_IO, .access = PL2_RW,
6053       .writefn = gt_hyp_cval_write, .raw_writefn = raw_write },
6054     { .name = "CNTHP_CVAL", .cp = 15, .opc1 = 6, .crm = 14,
6055       .fieldoffset = offsetof(CPUARMState, cp15.c14_timer[GTIMER_HYP].cval),
6056       .access = PL2_RW, .type = ARM_CP_64BIT | ARM_CP_IO,
6057       .writefn = gt_hyp_cval_write, .raw_writefn = raw_write },
6058     { .name = "CNTHP_TVAL_EL2", .state = ARM_CP_STATE_BOTH,
6059       .opc0 = 3, .opc1 = 4, .crn = 14, .crm = 2, .opc2 = 0,
6060       .type = ARM_CP_NO_RAW | ARM_CP_IO, .access = PL2_RW,
6061       .resetfn = gt_hyp_timer_reset,
6062       .readfn = gt_hyp_tval_read, .writefn = gt_hyp_tval_write },
6063     { .name = "CNTHP_CTL_EL2", .state = ARM_CP_STATE_BOTH,
6064       .type = ARM_CP_IO,
6065       .opc0 = 3, .opc1 = 4, .crn = 14, .crm = 2, .opc2 = 1,
6066       .access = PL2_RW,
6067       .fieldoffset = offsetof(CPUARMState, cp15.c14_timer[GTIMER_HYP].ctl),
6068       .resetvalue = 0,
6069       .writefn = gt_hyp_ctl_write, .raw_writefn = raw_write },
6070 #endif
6071     { .name = "HPFAR", .state = ARM_CP_STATE_AA32,
6072       .cp = 15, .opc1 = 4, .crn = 6, .crm = 0, .opc2 = 4,
6073       .access = PL2_RW, .accessfn = access_el3_aa32ns,
6074       .fieldoffset = offsetof(CPUARMState, cp15.hpfar_el2) },
6075     { .name = "HPFAR_EL2", .state = ARM_CP_STATE_AA64,
6076       .opc0 = 3, .opc1 = 4, .crn = 6, .crm = 0, .opc2 = 4,
6077       .access = PL2_RW,
6078       .fieldoffset = offsetof(CPUARMState, cp15.hpfar_el2) },
6079     { .name = "HSTR_EL2", .state = ARM_CP_STATE_BOTH,
6080       .cp = 15, .opc0 = 3, .opc1 = 4, .crn = 1, .crm = 1, .opc2 = 3,
6081       .access = PL2_RW,
6082       .fieldoffset = offsetof(CPUARMState, cp15.hstr_el2) },
6083 };
6084 
6085 static const ARMCPRegInfo el2_v8_cp_reginfo[] = {
6086     { .name = "HCR2", .state = ARM_CP_STATE_AA32,
6087       .type = ARM_CP_ALIAS | ARM_CP_IO,
6088       .cp = 15, .opc1 = 4, .crn = 1, .crm = 1, .opc2 = 4,
6089       .access = PL2_RW,
6090       .fieldoffset = offsetofhigh32(CPUARMState, cp15.hcr_el2),
6091       .writefn = hcr_writehigh },
6092 };
6093 
6094 static CPAccessResult sel2_access(CPUARMState *env, const ARMCPRegInfo *ri,
6095                                   bool isread)
6096 {
6097     if (arm_current_el(env) == 3 || arm_is_secure_below_el3(env)) {
6098         return CP_ACCESS_OK;
6099     }
6100     return CP_ACCESS_TRAP_UNCATEGORIZED;
6101 }
6102 
6103 static const ARMCPRegInfo el2_sec_cp_reginfo[] = {
6104     { .name = "VSTTBR_EL2", .state = ARM_CP_STATE_AA64,
6105       .opc0 = 3, .opc1 = 4, .crn = 2, .crm = 6, .opc2 = 0,
6106       .access = PL2_RW, .accessfn = sel2_access,
6107       .fieldoffset = offsetof(CPUARMState, cp15.vsttbr_el2) },
6108     { .name = "VSTCR_EL2", .state = ARM_CP_STATE_AA64,
6109       .opc0 = 3, .opc1 = 4, .crn = 2, .crm = 6, .opc2 = 2,
6110       .access = PL2_RW, .accessfn = sel2_access,
6111       .fieldoffset = offsetof(CPUARMState, cp15.vstcr_el2) },
6112 };
6113 
6114 static CPAccessResult nsacr_access(CPUARMState *env, const ARMCPRegInfo *ri,
6115                                    bool isread)
6116 {
6117     /*
6118      * The NSACR is RW at EL3, and RO for NS EL1 and NS EL2.
6119      * At Secure EL1 it traps to EL3 or EL2.
6120      */
6121     if (arm_current_el(env) == 3) {
6122         return CP_ACCESS_OK;
6123     }
6124     if (arm_is_secure_below_el3(env)) {
6125         if (env->cp15.scr_el3 & SCR_EEL2) {
6126             return CP_ACCESS_TRAP_EL2;
6127         }
6128         return CP_ACCESS_TRAP_EL3;
6129     }
6130     /* Accesses from EL1 NS and EL2 NS are UNDEF for write but allow reads. */
6131     if (isread) {
6132         return CP_ACCESS_OK;
6133     }
6134     return CP_ACCESS_TRAP_UNCATEGORIZED;
6135 }
6136 
6137 static const ARMCPRegInfo el3_cp_reginfo[] = {
6138     { .name = "SCR_EL3", .state = ARM_CP_STATE_AA64,
6139       .opc0 = 3, .opc1 = 6, .crn = 1, .crm = 1, .opc2 = 0,
6140       .access = PL3_RW, .fieldoffset = offsetof(CPUARMState, cp15.scr_el3),
6141       .resetfn = scr_reset, .writefn = scr_write },
6142     { .name = "SCR",  .type = ARM_CP_ALIAS | ARM_CP_NEWEL,
6143       .cp = 15, .opc1 = 0, .crn = 1, .crm = 1, .opc2 = 0,
6144       .access = PL1_RW, .accessfn = access_trap_aa32s_el1,
6145       .fieldoffset = offsetoflow32(CPUARMState, cp15.scr_el3),
6146       .writefn = scr_write },
6147     { .name = "SDER32_EL3", .state = ARM_CP_STATE_AA64,
6148       .opc0 = 3, .opc1 = 6, .crn = 1, .crm = 1, .opc2 = 1,
6149       .access = PL3_RW, .resetvalue = 0,
6150       .fieldoffset = offsetof(CPUARMState, cp15.sder) },
6151     { .name = "SDER",
6152       .cp = 15, .opc1 = 0, .crn = 1, .crm = 1, .opc2 = 1,
6153       .access = PL3_RW, .resetvalue = 0,
6154       .fieldoffset = offsetoflow32(CPUARMState, cp15.sder) },
6155     { .name = "MVBAR", .cp = 15, .opc1 = 0, .crn = 12, .crm = 0, .opc2 = 1,
6156       .access = PL1_RW, .accessfn = access_trap_aa32s_el1,
6157       .writefn = vbar_write, .resetvalue = 0,
6158       .fieldoffset = offsetof(CPUARMState, cp15.mvbar) },
6159     { .name = "TTBR0_EL3", .state = ARM_CP_STATE_AA64,
6160       .opc0 = 3, .opc1 = 6, .crn = 2, .crm = 0, .opc2 = 0,
6161       .access = PL3_RW, .resetvalue = 0,
6162       .fieldoffset = offsetof(CPUARMState, cp15.ttbr0_el[3]) },
6163     { .name = "TCR_EL3", .state = ARM_CP_STATE_AA64,
6164       .opc0 = 3, .opc1 = 6, .crn = 2, .crm = 0, .opc2 = 2,
6165       .access = PL3_RW,
6166       /* no .writefn needed as this can't cause an ASID change */
6167       .resetvalue = 0,
6168       .fieldoffset = offsetof(CPUARMState, cp15.tcr_el[3]) },
6169     { .name = "ELR_EL3", .state = ARM_CP_STATE_AA64,
6170       .type = ARM_CP_ALIAS,
6171       .opc0 = 3, .opc1 = 6, .crn = 4, .crm = 0, .opc2 = 1,
6172       .access = PL3_RW,
6173       .fieldoffset = offsetof(CPUARMState, elr_el[3]) },
6174     { .name = "ESR_EL3", .state = ARM_CP_STATE_AA64,
6175       .opc0 = 3, .opc1 = 6, .crn = 5, .crm = 2, .opc2 = 0,
6176       .access = PL3_RW, .fieldoffset = offsetof(CPUARMState, cp15.esr_el[3]) },
6177     { .name = "FAR_EL3", .state = ARM_CP_STATE_AA64,
6178       .opc0 = 3, .opc1 = 6, .crn = 6, .crm = 0, .opc2 = 0,
6179       .access = PL3_RW, .fieldoffset = offsetof(CPUARMState, cp15.far_el[3]) },
6180     { .name = "SPSR_EL3", .state = ARM_CP_STATE_AA64,
6181       .type = ARM_CP_ALIAS,
6182       .opc0 = 3, .opc1 = 6, .crn = 4, .crm = 0, .opc2 = 0,
6183       .access = PL3_RW,
6184       .fieldoffset = offsetof(CPUARMState, banked_spsr[BANK_MON]) },
6185     { .name = "VBAR_EL3", .state = ARM_CP_STATE_AA64,
6186       .opc0 = 3, .opc1 = 6, .crn = 12, .crm = 0, .opc2 = 0,
6187       .access = PL3_RW, .writefn = vbar_write,
6188       .fieldoffset = offsetof(CPUARMState, cp15.vbar_el[3]),
6189       .resetvalue = 0 },
6190     { .name = "CPTR_EL3", .state = ARM_CP_STATE_AA64,
6191       .opc0 = 3, .opc1 = 6, .crn = 1, .crm = 1, .opc2 = 2,
6192       .access = PL3_RW, .accessfn = cptr_access, .resetvalue = 0,
6193       .fieldoffset = offsetof(CPUARMState, cp15.cptr_el[3]) },
6194     { .name = "TPIDR_EL3", .state = ARM_CP_STATE_AA64,
6195       .opc0 = 3, .opc1 = 6, .crn = 13, .crm = 0, .opc2 = 2,
6196       .access = PL3_RW, .resetvalue = 0,
6197       .fieldoffset = offsetof(CPUARMState, cp15.tpidr_el[3]) },
6198     { .name = "AMAIR_EL3", .state = ARM_CP_STATE_AA64,
6199       .opc0 = 3, .opc1 = 6, .crn = 10, .crm = 3, .opc2 = 0,
6200       .access = PL3_RW, .type = ARM_CP_CONST,
6201       .resetvalue = 0 },
6202     { .name = "AFSR0_EL3", .state = ARM_CP_STATE_BOTH,
6203       .opc0 = 3, .opc1 = 6, .crn = 5, .crm = 1, .opc2 = 0,
6204       .access = PL3_RW, .type = ARM_CP_CONST,
6205       .resetvalue = 0 },
6206     { .name = "AFSR1_EL3", .state = ARM_CP_STATE_BOTH,
6207       .opc0 = 3, .opc1 = 6, .crn = 5, .crm = 1, .opc2 = 1,
6208       .access = PL3_RW, .type = ARM_CP_CONST,
6209       .resetvalue = 0 },
6210     { .name = "TLBI_ALLE3IS", .state = ARM_CP_STATE_AA64,
6211       .opc0 = 1, .opc1 = 6, .crn = 8, .crm = 3, .opc2 = 0,
6212       .access = PL3_W, .type = ARM_CP_NO_RAW,
6213       .writefn = tlbi_aa64_alle3is_write },
6214     { .name = "TLBI_VAE3IS", .state = ARM_CP_STATE_AA64,
6215       .opc0 = 1, .opc1 = 6, .crn = 8, .crm = 3, .opc2 = 1,
6216       .access = PL3_W, .type = ARM_CP_NO_RAW,
6217       .writefn = tlbi_aa64_vae3is_write },
6218     { .name = "TLBI_VALE3IS", .state = ARM_CP_STATE_AA64,
6219       .opc0 = 1, .opc1 = 6, .crn = 8, .crm = 3, .opc2 = 5,
6220       .access = PL3_W, .type = ARM_CP_NO_RAW,
6221       .writefn = tlbi_aa64_vae3is_write },
6222     { .name = "TLBI_ALLE3", .state = ARM_CP_STATE_AA64,
6223       .opc0 = 1, .opc1 = 6, .crn = 8, .crm = 7, .opc2 = 0,
6224       .access = PL3_W, .type = ARM_CP_NO_RAW,
6225       .writefn = tlbi_aa64_alle3_write },
6226     { .name = "TLBI_VAE3", .state = ARM_CP_STATE_AA64,
6227       .opc0 = 1, .opc1 = 6, .crn = 8, .crm = 7, .opc2 = 1,
6228       .access = PL3_W, .type = ARM_CP_NO_RAW,
6229       .writefn = tlbi_aa64_vae3_write },
6230     { .name = "TLBI_VALE3", .state = ARM_CP_STATE_AA64,
6231       .opc0 = 1, .opc1 = 6, .crn = 8, .crm = 7, .opc2 = 5,
6232       .access = PL3_W, .type = ARM_CP_NO_RAW,
6233       .writefn = tlbi_aa64_vae3_write },
6234 };
6235 
6236 #ifndef CONFIG_USER_ONLY
6237 /* Test if system register redirection is to occur in the current state.  */
6238 static bool redirect_for_e2h(CPUARMState *env)
6239 {
6240     return arm_current_el(env) == 2 && (arm_hcr_el2_eff(env) & HCR_E2H);
6241 }
6242 
6243 static uint64_t el2_e2h_read(CPUARMState *env, const ARMCPRegInfo *ri)
6244 {
6245     CPReadFn *readfn;
6246 
6247     if (redirect_for_e2h(env)) {
6248         /* Switch to the saved EL2 version of the register.  */
6249         ri = ri->opaque;
6250         readfn = ri->readfn;
6251     } else {
6252         readfn = ri->orig_readfn;
6253     }
6254     if (readfn == NULL) {
6255         readfn = raw_read;
6256     }
6257     return readfn(env, ri);
6258 }
6259 
6260 static void el2_e2h_write(CPUARMState *env, const ARMCPRegInfo *ri,
6261                           uint64_t value)
6262 {
6263     CPWriteFn *writefn;
6264 
6265     if (redirect_for_e2h(env)) {
6266         /* Switch to the saved EL2 version of the register.  */
6267         ri = ri->opaque;
6268         writefn = ri->writefn;
6269     } else {
6270         writefn = ri->orig_writefn;
6271     }
6272     if (writefn == NULL) {
6273         writefn = raw_write;
6274     }
6275     writefn(env, ri, value);
6276 }
6277 
6278 static void define_arm_vh_e2h_redirects_aliases(ARMCPU *cpu)
6279 {
6280     struct E2HAlias {
6281         uint32_t src_key, dst_key, new_key;
6282         const char *src_name, *dst_name, *new_name;
6283         bool (*feature)(const ARMISARegisters *id);
6284     };
6285 
6286 #define K(op0, op1, crn, crm, op2) \
6287     ENCODE_AA64_CP_REG(CP_REG_ARM64_SYSREG_CP, crn, crm, op0, op1, op2)
6288 
6289     static const struct E2HAlias aliases[] = {
6290         { K(3, 0,  1, 0, 0), K(3, 4,  1, 0, 0), K(3, 5, 1, 0, 0),
6291           "SCTLR", "SCTLR_EL2", "SCTLR_EL12" },
6292         { K(3, 0,  1, 0, 2), K(3, 4,  1, 1, 2), K(3, 5, 1, 0, 2),
6293           "CPACR", "CPTR_EL2", "CPACR_EL12" },
6294         { K(3, 0,  2, 0, 0), K(3, 4,  2, 0, 0), K(3, 5, 2, 0, 0),
6295           "TTBR0_EL1", "TTBR0_EL2", "TTBR0_EL12" },
6296         { K(3, 0,  2, 0, 1), K(3, 4,  2, 0, 1), K(3, 5, 2, 0, 1),
6297           "TTBR1_EL1", "TTBR1_EL2", "TTBR1_EL12" },
6298         { K(3, 0,  2, 0, 2), K(3, 4,  2, 0, 2), K(3, 5, 2, 0, 2),
6299           "TCR_EL1", "TCR_EL2", "TCR_EL12" },
6300         { K(3, 0,  4, 0, 0), K(3, 4,  4, 0, 0), K(3, 5, 4, 0, 0),
6301           "SPSR_EL1", "SPSR_EL2", "SPSR_EL12" },
6302         { K(3, 0,  4, 0, 1), K(3, 4,  4, 0, 1), K(3, 5, 4, 0, 1),
6303           "ELR_EL1", "ELR_EL2", "ELR_EL12" },
6304         { K(3, 0,  5, 1, 0), K(3, 4,  5, 1, 0), K(3, 5, 5, 1, 0),
6305           "AFSR0_EL1", "AFSR0_EL2", "AFSR0_EL12" },
6306         { K(3, 0,  5, 1, 1), K(3, 4,  5, 1, 1), K(3, 5, 5, 1, 1),
6307           "AFSR1_EL1", "AFSR1_EL2", "AFSR1_EL12" },
6308         { K(3, 0,  5, 2, 0), K(3, 4,  5, 2, 0), K(3, 5, 5, 2, 0),
6309           "ESR_EL1", "ESR_EL2", "ESR_EL12" },
6310         { K(3, 0,  6, 0, 0), K(3, 4,  6, 0, 0), K(3, 5, 6, 0, 0),
6311           "FAR_EL1", "FAR_EL2", "FAR_EL12" },
6312         { K(3, 0, 10, 2, 0), K(3, 4, 10, 2, 0), K(3, 5, 10, 2, 0),
6313           "MAIR_EL1", "MAIR_EL2", "MAIR_EL12" },
6314         { K(3, 0, 10, 3, 0), K(3, 4, 10, 3, 0), K(3, 5, 10, 3, 0),
6315           "AMAIR0", "AMAIR_EL2", "AMAIR_EL12" },
6316         { K(3, 0, 12, 0, 0), K(3, 4, 12, 0, 0), K(3, 5, 12, 0, 0),
6317           "VBAR", "VBAR_EL2", "VBAR_EL12" },
6318         { K(3, 0, 13, 0, 1), K(3, 4, 13, 0, 1), K(3, 5, 13, 0, 1),
6319           "CONTEXTIDR_EL1", "CONTEXTIDR_EL2", "CONTEXTIDR_EL12" },
6320         { K(3, 0, 14, 1, 0), K(3, 4, 14, 1, 0), K(3, 5, 14, 1, 0),
6321           "CNTKCTL", "CNTHCTL_EL2", "CNTKCTL_EL12" },
6322 
6323         /*
6324          * Note that redirection of ZCR is mentioned in the description
6325          * of ZCR_EL2, and aliasing in the description of ZCR_EL1, but
6326          * not in the summary table.
6327          */
6328         { K(3, 0,  1, 2, 0), K(3, 4,  1, 2, 0), K(3, 5, 1, 2, 0),
6329           "ZCR_EL1", "ZCR_EL2", "ZCR_EL12", isar_feature_aa64_sve },
6330         { K(3, 0,  1, 2, 6), K(3, 4,  1, 2, 6), K(3, 5, 1, 2, 6),
6331           "SMCR_EL1", "SMCR_EL2", "SMCR_EL12", isar_feature_aa64_sme },
6332 
6333         { K(3, 0,  5, 6, 0), K(3, 4,  5, 6, 0), K(3, 5, 5, 6, 0),
6334           "TFSR_EL1", "TFSR_EL2", "TFSR_EL12", isar_feature_aa64_mte },
6335 
6336         { K(3, 0, 13, 0, 7), K(3, 4, 13, 0, 7), K(3, 5, 13, 0, 7),
6337           "SCXTNUM_EL1", "SCXTNUM_EL2", "SCXTNUM_EL12",
6338           isar_feature_aa64_scxtnum },
6339 
6340         /* TODO: ARMv8.2-SPE -- PMSCR_EL2 */
6341         /* TODO: ARMv8.4-Trace -- TRFCR_EL2 */
6342     };
6343 #undef K
6344 
6345     size_t i;
6346 
6347     for (i = 0; i < ARRAY_SIZE(aliases); i++) {
6348         const struct E2HAlias *a = &aliases[i];
6349         ARMCPRegInfo *src_reg, *dst_reg, *new_reg;
6350         bool ok;
6351 
6352         if (a->feature && !a->feature(&cpu->isar)) {
6353             continue;
6354         }
6355 
6356         src_reg = g_hash_table_lookup(cpu->cp_regs,
6357                                       (gpointer)(uintptr_t)a->src_key);
6358         dst_reg = g_hash_table_lookup(cpu->cp_regs,
6359                                       (gpointer)(uintptr_t)a->dst_key);
6360         g_assert(src_reg != NULL);
6361         g_assert(dst_reg != NULL);
6362 
6363         /* Cross-compare names to detect typos in the keys.  */
6364         g_assert(strcmp(src_reg->name, a->src_name) == 0);
6365         g_assert(strcmp(dst_reg->name, a->dst_name) == 0);
6366 
6367         /* None of the core system registers use opaque; we will.  */
6368         g_assert(src_reg->opaque == NULL);
6369 
6370         /* Create alias before redirection so we dup the right data. */
6371         new_reg = g_memdup(src_reg, sizeof(ARMCPRegInfo));
6372 
6373         new_reg->name = a->new_name;
6374         new_reg->type |= ARM_CP_ALIAS;
6375         /* Remove PL1/PL0 access, leaving PL2/PL3 R/W in place.  */
6376         new_reg->access &= PL2_RW | PL3_RW;
6377 
6378         ok = g_hash_table_insert(cpu->cp_regs,
6379                                  (gpointer)(uintptr_t)a->new_key, new_reg);
6380         g_assert(ok);
6381 
6382         src_reg->opaque = dst_reg;
6383         src_reg->orig_readfn = src_reg->readfn ?: raw_read;
6384         src_reg->orig_writefn = src_reg->writefn ?: raw_write;
6385         if (!src_reg->raw_readfn) {
6386             src_reg->raw_readfn = raw_read;
6387         }
6388         if (!src_reg->raw_writefn) {
6389             src_reg->raw_writefn = raw_write;
6390         }
6391         src_reg->readfn = el2_e2h_read;
6392         src_reg->writefn = el2_e2h_write;
6393     }
6394 }
6395 #endif
6396 
6397 static CPAccessResult ctr_el0_access(CPUARMState *env, const ARMCPRegInfo *ri,
6398                                      bool isread)
6399 {
6400     int cur_el = arm_current_el(env);
6401 
6402     if (cur_el < 2) {
6403         uint64_t hcr = arm_hcr_el2_eff(env);
6404 
6405         if (cur_el == 0) {
6406             if ((hcr & (HCR_E2H | HCR_TGE)) == (HCR_E2H | HCR_TGE)) {
6407                 if (!(env->cp15.sctlr_el[2] & SCTLR_UCT)) {
6408                     return CP_ACCESS_TRAP_EL2;
6409                 }
6410             } else {
6411                 if (!(env->cp15.sctlr_el[1] & SCTLR_UCT)) {
6412                     return CP_ACCESS_TRAP;
6413                 }
6414                 if (hcr & HCR_TID2) {
6415                     return CP_ACCESS_TRAP_EL2;
6416                 }
6417             }
6418         } else if (hcr & HCR_TID2) {
6419             return CP_ACCESS_TRAP_EL2;
6420         }
6421     }
6422 
6423     if (arm_current_el(env) < 2 && arm_hcr_el2_eff(env) & HCR_TID2) {
6424         return CP_ACCESS_TRAP_EL2;
6425     }
6426 
6427     return CP_ACCESS_OK;
6428 }
6429 
6430 /*
6431  * Check for traps to RAS registers, which are controlled
6432  * by HCR_EL2.TERR and SCR_EL3.TERR.
6433  */
6434 static CPAccessResult access_terr(CPUARMState *env, const ARMCPRegInfo *ri,
6435                                   bool isread)
6436 {
6437     int el = arm_current_el(env);
6438 
6439     if (el < 2 && (arm_hcr_el2_eff(env) & HCR_TERR)) {
6440         return CP_ACCESS_TRAP_EL2;
6441     }
6442     if (el < 3 && (env->cp15.scr_el3 & SCR_TERR)) {
6443         return CP_ACCESS_TRAP_EL3;
6444     }
6445     return CP_ACCESS_OK;
6446 }
6447 
6448 static uint64_t disr_read(CPUARMState *env, const ARMCPRegInfo *ri)
6449 {
6450     int el = arm_current_el(env);
6451 
6452     if (el < 2 && (arm_hcr_el2_eff(env) & HCR_AMO)) {
6453         return env->cp15.vdisr_el2;
6454     }
6455     if (el < 3 && (env->cp15.scr_el3 & SCR_EA)) {
6456         return 0; /* RAZ/WI */
6457     }
6458     return env->cp15.disr_el1;
6459 }
6460 
6461 static void disr_write(CPUARMState *env, const ARMCPRegInfo *ri, uint64_t val)
6462 {
6463     int el = arm_current_el(env);
6464 
6465     if (el < 2 && (arm_hcr_el2_eff(env) & HCR_AMO)) {
6466         env->cp15.vdisr_el2 = val;
6467         return;
6468     }
6469     if (el < 3 && (env->cp15.scr_el3 & SCR_EA)) {
6470         return; /* RAZ/WI */
6471     }
6472     env->cp15.disr_el1 = val;
6473 }
6474 
6475 /*
6476  * Minimal RAS implementation with no Error Records.
6477  * Which means that all of the Error Record registers:
6478  *   ERXADDR_EL1
6479  *   ERXCTLR_EL1
6480  *   ERXFR_EL1
6481  *   ERXMISC0_EL1
6482  *   ERXMISC1_EL1
6483  *   ERXMISC2_EL1
6484  *   ERXMISC3_EL1
6485  *   ERXPFGCDN_EL1  (RASv1p1)
6486  *   ERXPFGCTL_EL1  (RASv1p1)
6487  *   ERXPFGF_EL1    (RASv1p1)
6488  *   ERXSTATUS_EL1
6489  * and
6490  *   ERRSELR_EL1
6491  * may generate UNDEFINED, which is the effect we get by not
6492  * listing them at all.
6493  *
6494  * These registers have fine-grained trap bits, but UNDEF-to-EL1
6495  * is higher priority than FGT-to-EL2 so we do not need to list them
6496  * in order to check for an FGT.
6497  */
6498 static const ARMCPRegInfo minimal_ras_reginfo[] = {
6499     { .name = "DISR_EL1", .state = ARM_CP_STATE_BOTH,
6500       .opc0 = 3, .opc1 = 0, .crn = 12, .crm = 1, .opc2 = 1,
6501       .access = PL1_RW, .fieldoffset = offsetof(CPUARMState, cp15.disr_el1),
6502       .readfn = disr_read, .writefn = disr_write, .raw_writefn = raw_write },
6503     { .name = "ERRIDR_EL1", .state = ARM_CP_STATE_BOTH,
6504       .opc0 = 3, .opc1 = 0, .crn = 5, .crm = 3, .opc2 = 0,
6505       .access = PL1_R, .accessfn = access_terr,
6506       .fgt = FGT_ERRIDR_EL1,
6507       .type = ARM_CP_CONST, .resetvalue = 0 },
6508     { .name = "VDISR_EL2", .state = ARM_CP_STATE_BOTH,
6509       .opc0 = 3, .opc1 = 4, .crn = 12, .crm = 1, .opc2 = 1,
6510       .access = PL2_RW, .fieldoffset = offsetof(CPUARMState, cp15.vdisr_el2) },
6511     { .name = "VSESR_EL2", .state = ARM_CP_STATE_BOTH,
6512       .opc0 = 3, .opc1 = 4, .crn = 5, .crm = 2, .opc2 = 3,
6513       .access = PL2_RW, .fieldoffset = offsetof(CPUARMState, cp15.vsesr_el2) },
6514 };
6515 
6516 /*
6517  * Return the exception level to which exceptions should be taken
6518  * via SVEAccessTrap.  This excludes the check for whether the exception
6519  * should be routed through AArch64.AdvSIMDFPAccessTrap.  That can easily
6520  * be found by testing 0 < fp_exception_el < sve_exception_el.
6521  *
6522  * C.f. the ARM pseudocode function CheckSVEEnabled.  Note that the
6523  * pseudocode does *not* separate out the FP trap checks, but has them
6524  * all in one function.
6525  */
6526 int sve_exception_el(CPUARMState *env, int el)
6527 {
6528 #ifndef CONFIG_USER_ONLY
6529     if (el <= 1 && !el_is_in_host(env, el)) {
6530         switch (FIELD_EX64(env->cp15.cpacr_el1, CPACR_EL1, ZEN)) {
6531         case 1:
6532             if (el != 0) {
6533                 break;
6534             }
6535             /* fall through */
6536         case 0:
6537         case 2:
6538             return 1;
6539         }
6540     }
6541 
6542     if (el <= 2 && arm_is_el2_enabled(env)) {
6543         /* CPTR_EL2 changes format with HCR_EL2.E2H (regardless of TGE). */
6544         if (env->cp15.hcr_el2 & HCR_E2H) {
6545             switch (FIELD_EX64(env->cp15.cptr_el[2], CPTR_EL2, ZEN)) {
6546             case 1:
6547                 if (el != 0 || !(env->cp15.hcr_el2 & HCR_TGE)) {
6548                     break;
6549                 }
6550                 /* fall through */
6551             case 0:
6552             case 2:
6553                 return 2;
6554             }
6555         } else {
6556             if (FIELD_EX64(env->cp15.cptr_el[2], CPTR_EL2, TZ)) {
6557                 return 2;
6558             }
6559         }
6560     }
6561 
6562     /* CPTR_EL3.  Since EZ is negative we must check for EL3.  */
6563     if (arm_feature(env, ARM_FEATURE_EL3)
6564         && !FIELD_EX64(env->cp15.cptr_el[3], CPTR_EL3, EZ)) {
6565         return 3;
6566     }
6567 #endif
6568     return 0;
6569 }
6570 
6571 /*
6572  * Return the exception level to which exceptions should be taken for SME.
6573  * C.f. the ARM pseudocode function CheckSMEAccess.
6574  */
6575 int sme_exception_el(CPUARMState *env, int el)
6576 {
6577 #ifndef CONFIG_USER_ONLY
6578     if (el <= 1 && !el_is_in_host(env, el)) {
6579         switch (FIELD_EX64(env->cp15.cpacr_el1, CPACR_EL1, SMEN)) {
6580         case 1:
6581             if (el != 0) {
6582                 break;
6583             }
6584             /* fall through */
6585         case 0:
6586         case 2:
6587             return 1;
6588         }
6589     }
6590 
6591     if (el <= 2 && arm_is_el2_enabled(env)) {
6592         /* CPTR_EL2 changes format with HCR_EL2.E2H (regardless of TGE). */
6593         if (env->cp15.hcr_el2 & HCR_E2H) {
6594             switch (FIELD_EX64(env->cp15.cptr_el[2], CPTR_EL2, SMEN)) {
6595             case 1:
6596                 if (el != 0 || !(env->cp15.hcr_el2 & HCR_TGE)) {
6597                     break;
6598                 }
6599                 /* fall through */
6600             case 0:
6601             case 2:
6602                 return 2;
6603             }
6604         } else {
6605             if (FIELD_EX64(env->cp15.cptr_el[2], CPTR_EL2, TSM)) {
6606                 return 2;
6607             }
6608         }
6609     }
6610 
6611     /* CPTR_EL3.  Since ESM is negative we must check for EL3.  */
6612     if (arm_feature(env, ARM_FEATURE_EL3)
6613         && !FIELD_EX64(env->cp15.cptr_el[3], CPTR_EL3, ESM)) {
6614         return 3;
6615     }
6616 #endif
6617     return 0;
6618 }
6619 
6620 /* This corresponds to the ARM pseudocode function IsFullA64Enabled(). */
6621 static bool sme_fa64(CPUARMState *env, int el)
6622 {
6623     if (!cpu_isar_feature(aa64_sme_fa64, env_archcpu(env))) {
6624         return false;
6625     }
6626 
6627     if (el <= 1 && !el_is_in_host(env, el)) {
6628         if (!FIELD_EX64(env->vfp.smcr_el[1], SMCR, FA64)) {
6629             return false;
6630         }
6631     }
6632     if (el <= 2 && arm_is_el2_enabled(env)) {
6633         if (!FIELD_EX64(env->vfp.smcr_el[2], SMCR, FA64)) {
6634             return false;
6635         }
6636     }
6637     if (arm_feature(env, ARM_FEATURE_EL3)) {
6638         if (!FIELD_EX64(env->vfp.smcr_el[3], SMCR, FA64)) {
6639             return false;
6640         }
6641     }
6642 
6643     return true;
6644 }
6645 
6646 /*
6647  * Given that SVE is enabled, return the vector length for EL.
6648  */
6649 uint32_t sve_vqm1_for_el_sm(CPUARMState *env, int el, bool sm)
6650 {
6651     ARMCPU *cpu = env_archcpu(env);
6652     uint64_t *cr = env->vfp.zcr_el;
6653     uint32_t map = cpu->sve_vq.map;
6654     uint32_t len = ARM_MAX_VQ - 1;
6655 
6656     if (sm) {
6657         cr = env->vfp.smcr_el;
6658         map = cpu->sme_vq.map;
6659     }
6660 
6661     if (el <= 1 && !el_is_in_host(env, el)) {
6662         len = MIN(len, 0xf & (uint32_t)cr[1]);
6663     }
6664     if (el <= 2 && arm_feature(env, ARM_FEATURE_EL2)) {
6665         len = MIN(len, 0xf & (uint32_t)cr[2]);
6666     }
6667     if (arm_feature(env, ARM_FEATURE_EL3)) {
6668         len = MIN(len, 0xf & (uint32_t)cr[3]);
6669     }
6670 
6671     map &= MAKE_64BIT_MASK(0, len + 1);
6672     if (map != 0) {
6673         return 31 - clz32(map);
6674     }
6675 
6676     /* Bit 0 is always set for Normal SVE -- not so for Streaming SVE. */
6677     assert(sm);
6678     return ctz32(cpu->sme_vq.map);
6679 }
6680 
6681 uint32_t sve_vqm1_for_el(CPUARMState *env, int el)
6682 {
6683     return sve_vqm1_for_el_sm(env, el, FIELD_EX64(env->svcr, SVCR, SM));
6684 }
6685 
6686 static void zcr_write(CPUARMState *env, const ARMCPRegInfo *ri,
6687                       uint64_t value)
6688 {
6689     int cur_el = arm_current_el(env);
6690     int old_len = sve_vqm1_for_el(env, cur_el);
6691     int new_len;
6692 
6693     /* Bits other than [3:0] are RAZ/WI.  */
6694     QEMU_BUILD_BUG_ON(ARM_MAX_VQ > 16);
6695     raw_write(env, ri, value & 0xf);
6696 
6697     /*
6698      * Because we arrived here, we know both FP and SVE are enabled;
6699      * otherwise we would have trapped access to the ZCR_ELn register.
6700      */
6701     new_len = sve_vqm1_for_el(env, cur_el);
6702     if (new_len < old_len) {
6703         aarch64_sve_narrow_vq(env, new_len + 1);
6704     }
6705 }
6706 
6707 static const ARMCPRegInfo zcr_reginfo[] = {
6708     { .name = "ZCR_EL1", .state = ARM_CP_STATE_AA64,
6709       .opc0 = 3, .opc1 = 0, .crn = 1, .crm = 2, .opc2 = 0,
6710       .access = PL1_RW, .type = ARM_CP_SVE,
6711       .fieldoffset = offsetof(CPUARMState, vfp.zcr_el[1]),
6712       .writefn = zcr_write, .raw_writefn = raw_write },
6713     { .name = "ZCR_EL2", .state = ARM_CP_STATE_AA64,
6714       .opc0 = 3, .opc1 = 4, .crn = 1, .crm = 2, .opc2 = 0,
6715       .access = PL2_RW, .type = ARM_CP_SVE,
6716       .fieldoffset = offsetof(CPUARMState, vfp.zcr_el[2]),
6717       .writefn = zcr_write, .raw_writefn = raw_write },
6718     { .name = "ZCR_EL3", .state = ARM_CP_STATE_AA64,
6719       .opc0 = 3, .opc1 = 6, .crn = 1, .crm = 2, .opc2 = 0,
6720       .access = PL3_RW, .type = ARM_CP_SVE,
6721       .fieldoffset = offsetof(CPUARMState, vfp.zcr_el[3]),
6722       .writefn = zcr_write, .raw_writefn = raw_write },
6723 };
6724 
6725 #ifdef TARGET_AARCH64
6726 static CPAccessResult access_tpidr2(CPUARMState *env, const ARMCPRegInfo *ri,
6727                                     bool isread)
6728 {
6729     int el = arm_current_el(env);
6730 
6731     if (el == 0) {
6732         uint64_t sctlr = arm_sctlr(env, el);
6733         if (!(sctlr & SCTLR_EnTP2)) {
6734             return CP_ACCESS_TRAP;
6735         }
6736     }
6737     /* TODO: FEAT_FGT */
6738     if (el < 3
6739         && arm_feature(env, ARM_FEATURE_EL3)
6740         && !(env->cp15.scr_el3 & SCR_ENTP2)) {
6741         return CP_ACCESS_TRAP_EL3;
6742     }
6743     return CP_ACCESS_OK;
6744 }
6745 
6746 static CPAccessResult access_esm(CPUARMState *env, const ARMCPRegInfo *ri,
6747                                  bool isread)
6748 {
6749     /* TODO: FEAT_FGT for SMPRI_EL1 but not SMPRIMAP_EL2 */
6750     if (arm_current_el(env) < 3
6751         && arm_feature(env, ARM_FEATURE_EL3)
6752         && !FIELD_EX64(env->cp15.cptr_el[3], CPTR_EL3, ESM)) {
6753         return CP_ACCESS_TRAP_EL3;
6754     }
6755     return CP_ACCESS_OK;
6756 }
6757 
6758 /* ResetSVEState */
6759 static void arm_reset_sve_state(CPUARMState *env)
6760 {
6761     memset(env->vfp.zregs, 0, sizeof(env->vfp.zregs));
6762     /* Recall that FFR is stored as pregs[16]. */
6763     memset(env->vfp.pregs, 0, sizeof(env->vfp.pregs));
6764     vfp_set_fpcr(env, 0x0800009f);
6765 }
6766 
6767 void aarch64_set_svcr(CPUARMState *env, uint64_t new, uint64_t mask)
6768 {
6769     uint64_t change = (env->svcr ^ new) & mask;
6770 
6771     if (change == 0) {
6772         return;
6773     }
6774     env->svcr ^= change;
6775 
6776     if (change & R_SVCR_SM_MASK) {
6777         arm_reset_sve_state(env);
6778     }
6779 
6780     /*
6781      * ResetSMEState.
6782      *
6783      * SetPSTATE_ZA zeros on enable and disable.  We can zero this only
6784      * on enable: while disabled, the storage is inaccessible and the
6785      * value does not matter.  We're not saving the storage in vmstate
6786      * when disabled either.
6787      */
6788     if (change & new & R_SVCR_ZA_MASK) {
6789         memset(env->zarray, 0, sizeof(env->zarray));
6790     }
6791 
6792     arm_rebuild_hflags(env);
6793 }
6794 
6795 static void svcr_write(CPUARMState *env, const ARMCPRegInfo *ri,
6796                        uint64_t value)
6797 {
6798     aarch64_set_svcr(env, value, -1);
6799 }
6800 
6801 static void smcr_write(CPUARMState *env, const ARMCPRegInfo *ri,
6802                        uint64_t value)
6803 {
6804     int cur_el = arm_current_el(env);
6805     int old_len = sve_vqm1_for_el(env, cur_el);
6806     int new_len;
6807 
6808     QEMU_BUILD_BUG_ON(ARM_MAX_VQ > R_SMCR_LEN_MASK + 1);
6809     value &= R_SMCR_LEN_MASK | R_SMCR_FA64_MASK;
6810     raw_write(env, ri, value);
6811 
6812     /*
6813      * Note that it is CONSTRAINED UNPREDICTABLE what happens to ZA storage
6814      * when SVL is widened (old values kept, or zeros).  Choose to keep the
6815      * current values for simplicity.  But for QEMU internals, we must still
6816      * apply the narrower SVL to the Zregs and Pregs -- see the comment
6817      * above aarch64_sve_narrow_vq.
6818      */
6819     new_len = sve_vqm1_for_el(env, cur_el);
6820     if (new_len < old_len) {
6821         aarch64_sve_narrow_vq(env, new_len + 1);
6822     }
6823 }
6824 
6825 static const ARMCPRegInfo sme_reginfo[] = {
6826     { .name = "TPIDR2_EL0", .state = ARM_CP_STATE_AA64,
6827       .opc0 = 3, .opc1 = 3, .crn = 13, .crm = 0, .opc2 = 5,
6828       .access = PL0_RW, .accessfn = access_tpidr2,
6829       .fgt = FGT_NTPIDR2_EL0,
6830       .fieldoffset = offsetof(CPUARMState, cp15.tpidr2_el0) },
6831     { .name = "SVCR", .state = ARM_CP_STATE_AA64,
6832       .opc0 = 3, .opc1 = 3, .crn = 4, .crm = 2, .opc2 = 2,
6833       .access = PL0_RW, .type = ARM_CP_SME,
6834       .fieldoffset = offsetof(CPUARMState, svcr),
6835       .writefn = svcr_write, .raw_writefn = raw_write },
6836     { .name = "SMCR_EL1", .state = ARM_CP_STATE_AA64,
6837       .opc0 = 3, .opc1 = 0, .crn = 1, .crm = 2, .opc2 = 6,
6838       .access = PL1_RW, .type = ARM_CP_SME,
6839       .fieldoffset = offsetof(CPUARMState, vfp.smcr_el[1]),
6840       .writefn = smcr_write, .raw_writefn = raw_write },
6841     { .name = "SMCR_EL2", .state = ARM_CP_STATE_AA64,
6842       .opc0 = 3, .opc1 = 4, .crn = 1, .crm = 2, .opc2 = 6,
6843       .access = PL2_RW, .type = ARM_CP_SME,
6844       .fieldoffset = offsetof(CPUARMState, vfp.smcr_el[2]),
6845       .writefn = smcr_write, .raw_writefn = raw_write },
6846     { .name = "SMCR_EL3", .state = ARM_CP_STATE_AA64,
6847       .opc0 = 3, .opc1 = 6, .crn = 1, .crm = 2, .opc2 = 6,
6848       .access = PL3_RW, .type = ARM_CP_SME,
6849       .fieldoffset = offsetof(CPUARMState, vfp.smcr_el[3]),
6850       .writefn = smcr_write, .raw_writefn = raw_write },
6851     { .name = "SMIDR_EL1", .state = ARM_CP_STATE_AA64,
6852       .opc0 = 3, .opc1 = 1, .crn = 0, .crm = 0, .opc2 = 6,
6853       .access = PL1_R, .accessfn = access_aa64_tid1,
6854       /*
6855        * IMPLEMENTOR = 0 (software)
6856        * REVISION    = 0 (implementation defined)
6857        * SMPS        = 0 (no streaming execution priority in QEMU)
6858        * AFFINITY    = 0 (streaming sve mode not shared with other PEs)
6859        */
6860       .type = ARM_CP_CONST, .resetvalue = 0, },
6861     /*
6862      * Because SMIDR_EL1.SMPS is 0, SMPRI_EL1 and SMPRIMAP_EL2 are RES 0.
6863      */
6864     { .name = "SMPRI_EL1", .state = ARM_CP_STATE_AA64,
6865       .opc0 = 3, .opc1 = 0, .crn = 1, .crm = 2, .opc2 = 4,
6866       .access = PL1_RW, .accessfn = access_esm,
6867       .fgt = FGT_NSMPRI_EL1,
6868       .type = ARM_CP_CONST, .resetvalue = 0 },
6869     { .name = "SMPRIMAP_EL2", .state = ARM_CP_STATE_AA64,
6870       .opc0 = 3, .opc1 = 4, .crn = 1, .crm = 2, .opc2 = 5,
6871       .access = PL2_RW, .accessfn = access_esm,
6872       .type = ARM_CP_CONST, .resetvalue = 0 },
6873 };
6874 #endif /* TARGET_AARCH64 */
6875 
6876 static void define_pmu_regs(ARMCPU *cpu)
6877 {
6878     /*
6879      * v7 performance monitor control register: same implementor
6880      * field as main ID register, and we implement four counters in
6881      * addition to the cycle count register.
6882      */
6883     unsigned int i, pmcrn = pmu_num_counters(&cpu->env);
6884     ARMCPRegInfo pmcr = {
6885         .name = "PMCR", .cp = 15, .crn = 9, .crm = 12, .opc1 = 0, .opc2 = 0,
6886         .access = PL0_RW,
6887         .type = ARM_CP_IO | ARM_CP_ALIAS,
6888         .fieldoffset = offsetoflow32(CPUARMState, cp15.c9_pmcr),
6889         .accessfn = pmreg_access, .writefn = pmcr_write,
6890         .raw_writefn = raw_write,
6891     };
6892     ARMCPRegInfo pmcr64 = {
6893         .name = "PMCR_EL0", .state = ARM_CP_STATE_AA64,
6894         .opc0 = 3, .opc1 = 3, .crn = 9, .crm = 12, .opc2 = 0,
6895         .access = PL0_RW, .accessfn = pmreg_access,
6896         .type = ARM_CP_IO,
6897         .fieldoffset = offsetof(CPUARMState, cp15.c9_pmcr),
6898         .resetvalue = cpu->isar.reset_pmcr_el0,
6899         .writefn = pmcr_write, .raw_writefn = raw_write,
6900     };
6901 
6902     define_one_arm_cp_reg(cpu, &pmcr);
6903     define_one_arm_cp_reg(cpu, &pmcr64);
6904     for (i = 0; i < pmcrn; i++) {
6905         char *pmevcntr_name = g_strdup_printf("PMEVCNTR%d", i);
6906         char *pmevcntr_el0_name = g_strdup_printf("PMEVCNTR%d_EL0", i);
6907         char *pmevtyper_name = g_strdup_printf("PMEVTYPER%d", i);
6908         char *pmevtyper_el0_name = g_strdup_printf("PMEVTYPER%d_EL0", i);
6909         ARMCPRegInfo pmev_regs[] = {
6910             { .name = pmevcntr_name, .cp = 15, .crn = 14,
6911               .crm = 8 | (3 & (i >> 3)), .opc1 = 0, .opc2 = i & 7,
6912               .access = PL0_RW, .type = ARM_CP_IO | ARM_CP_ALIAS,
6913               .readfn = pmevcntr_readfn, .writefn = pmevcntr_writefn,
6914               .accessfn = pmreg_access_xevcntr },
6915             { .name = pmevcntr_el0_name, .state = ARM_CP_STATE_AA64,
6916               .opc0 = 3, .opc1 = 3, .crn = 14, .crm = 8 | (3 & (i >> 3)),
6917               .opc2 = i & 7, .access = PL0_RW, .accessfn = pmreg_access_xevcntr,
6918               .type = ARM_CP_IO,
6919               .readfn = pmevcntr_readfn, .writefn = pmevcntr_writefn,
6920               .raw_readfn = pmevcntr_rawread,
6921               .raw_writefn = pmevcntr_rawwrite },
6922             { .name = pmevtyper_name, .cp = 15, .crn = 14,
6923               .crm = 12 | (3 & (i >> 3)), .opc1 = 0, .opc2 = i & 7,
6924               .access = PL0_RW, .type = ARM_CP_IO | ARM_CP_ALIAS,
6925               .readfn = pmevtyper_readfn, .writefn = pmevtyper_writefn,
6926               .accessfn = pmreg_access },
6927             { .name = pmevtyper_el0_name, .state = ARM_CP_STATE_AA64,
6928               .opc0 = 3, .opc1 = 3, .crn = 14, .crm = 12 | (3 & (i >> 3)),
6929               .opc2 = i & 7, .access = PL0_RW, .accessfn = pmreg_access,
6930               .type = ARM_CP_IO,
6931               .readfn = pmevtyper_readfn, .writefn = pmevtyper_writefn,
6932               .raw_writefn = pmevtyper_rawwrite },
6933         };
6934         define_arm_cp_regs(cpu, pmev_regs);
6935         g_free(pmevcntr_name);
6936         g_free(pmevcntr_el0_name);
6937         g_free(pmevtyper_name);
6938         g_free(pmevtyper_el0_name);
6939     }
6940     if (cpu_isar_feature(aa32_pmuv3p1, cpu)) {
6941         ARMCPRegInfo v81_pmu_regs[] = {
6942             { .name = "PMCEID2", .state = ARM_CP_STATE_AA32,
6943               .cp = 15, .opc1 = 0, .crn = 9, .crm = 14, .opc2 = 4,
6944               .access = PL0_R, .accessfn = pmreg_access, .type = ARM_CP_CONST,
6945               .resetvalue = extract64(cpu->pmceid0, 32, 32) },
6946             { .name = "PMCEID3", .state = ARM_CP_STATE_AA32,
6947               .cp = 15, .opc1 = 0, .crn = 9, .crm = 14, .opc2 = 5,
6948               .access = PL0_R, .accessfn = pmreg_access, .type = ARM_CP_CONST,
6949               .resetvalue = extract64(cpu->pmceid1, 32, 32) },
6950         };
6951         define_arm_cp_regs(cpu, v81_pmu_regs);
6952     }
6953     if (cpu_isar_feature(any_pmuv3p4, cpu)) {
6954         static const ARMCPRegInfo v84_pmmir = {
6955             .name = "PMMIR_EL1", .state = ARM_CP_STATE_BOTH,
6956             .opc0 = 3, .opc1 = 0, .crn = 9, .crm = 14, .opc2 = 6,
6957             .access = PL1_R, .accessfn = pmreg_access, .type = ARM_CP_CONST,
6958             .resetvalue = 0
6959         };
6960         define_one_arm_cp_reg(cpu, &v84_pmmir);
6961     }
6962 }
6963 
6964 /*
6965  * We don't know until after realize whether there's a GICv3
6966  * attached, and that is what registers the gicv3 sysregs.
6967  * So we have to fill in the GIC fields in ID_PFR/ID_PFR1_EL1/ID_AA64PFR0_EL1
6968  * at runtime.
6969  */
6970 static uint64_t id_pfr1_read(CPUARMState *env, const ARMCPRegInfo *ri)
6971 {
6972     ARMCPU *cpu = env_archcpu(env);
6973     uint64_t pfr1 = cpu->isar.id_pfr1;
6974 
6975     if (env->gicv3state) {
6976         pfr1 |= 1 << 28;
6977     }
6978     return pfr1;
6979 }
6980 
6981 #ifndef CONFIG_USER_ONLY
6982 static uint64_t id_aa64pfr0_read(CPUARMState *env, const ARMCPRegInfo *ri)
6983 {
6984     ARMCPU *cpu = env_archcpu(env);
6985     uint64_t pfr0 = cpu->isar.id_aa64pfr0;
6986 
6987     if (env->gicv3state) {
6988         pfr0 |= 1 << 24;
6989     }
6990     return pfr0;
6991 }
6992 #endif
6993 
6994 /*
6995  * Shared logic between LORID and the rest of the LOR* registers.
6996  * Secure state exclusion has already been dealt with.
6997  */
6998 static CPAccessResult access_lor_ns(CPUARMState *env,
6999                                     const ARMCPRegInfo *ri, bool isread)
7000 {
7001     int el = arm_current_el(env);
7002 
7003     if (el < 2 && (arm_hcr_el2_eff(env) & HCR_TLOR)) {
7004         return CP_ACCESS_TRAP_EL2;
7005     }
7006     if (el < 3 && (env->cp15.scr_el3 & SCR_TLOR)) {
7007         return CP_ACCESS_TRAP_EL3;
7008     }
7009     return CP_ACCESS_OK;
7010 }
7011 
7012 static CPAccessResult access_lor_other(CPUARMState *env,
7013                                        const ARMCPRegInfo *ri, bool isread)
7014 {
7015     if (arm_is_secure_below_el3(env)) {
7016         /* Access denied in secure mode.  */
7017         return CP_ACCESS_TRAP;
7018     }
7019     return access_lor_ns(env, ri, isread);
7020 }
7021 
7022 /*
7023  * A trivial implementation of ARMv8.1-LOR leaves all of these
7024  * registers fixed at 0, which indicates that there are zero
7025  * supported Limited Ordering regions.
7026  */
7027 static const ARMCPRegInfo lor_reginfo[] = {
7028     { .name = "LORSA_EL1", .state = ARM_CP_STATE_AA64,
7029       .opc0 = 3, .opc1 = 0, .crn = 10, .crm = 4, .opc2 = 0,
7030       .access = PL1_RW, .accessfn = access_lor_other,
7031       .fgt = FGT_LORSA_EL1,
7032       .type = ARM_CP_CONST, .resetvalue = 0 },
7033     { .name = "LOREA_EL1", .state = ARM_CP_STATE_AA64,
7034       .opc0 = 3, .opc1 = 0, .crn = 10, .crm = 4, .opc2 = 1,
7035       .access = PL1_RW, .accessfn = access_lor_other,
7036       .fgt = FGT_LOREA_EL1,
7037       .type = ARM_CP_CONST, .resetvalue = 0 },
7038     { .name = "LORN_EL1", .state = ARM_CP_STATE_AA64,
7039       .opc0 = 3, .opc1 = 0, .crn = 10, .crm = 4, .opc2 = 2,
7040       .access = PL1_RW, .accessfn = access_lor_other,
7041       .fgt = FGT_LORN_EL1,
7042       .type = ARM_CP_CONST, .resetvalue = 0 },
7043     { .name = "LORC_EL1", .state = ARM_CP_STATE_AA64,
7044       .opc0 = 3, .opc1 = 0, .crn = 10, .crm = 4, .opc2 = 3,
7045       .access = PL1_RW, .accessfn = access_lor_other,
7046       .fgt = FGT_LORC_EL1,
7047       .type = ARM_CP_CONST, .resetvalue = 0 },
7048     { .name = "LORID_EL1", .state = ARM_CP_STATE_AA64,
7049       .opc0 = 3, .opc1 = 0, .crn = 10, .crm = 4, .opc2 = 7,
7050       .access = PL1_R, .accessfn = access_lor_ns,
7051       .fgt = FGT_LORID_EL1,
7052       .type = ARM_CP_CONST, .resetvalue = 0 },
7053 };
7054 
7055 #ifdef TARGET_AARCH64
7056 static CPAccessResult access_pauth(CPUARMState *env, const ARMCPRegInfo *ri,
7057                                    bool isread)
7058 {
7059     int el = arm_current_el(env);
7060 
7061     if (el < 2 &&
7062         arm_is_el2_enabled(env) &&
7063         !(arm_hcr_el2_eff(env) & HCR_APK)) {
7064         return CP_ACCESS_TRAP_EL2;
7065     }
7066     if (el < 3 &&
7067         arm_feature(env, ARM_FEATURE_EL3) &&
7068         !(env->cp15.scr_el3 & SCR_APK)) {
7069         return CP_ACCESS_TRAP_EL3;
7070     }
7071     return CP_ACCESS_OK;
7072 }
7073 
7074 static const ARMCPRegInfo pauth_reginfo[] = {
7075     { .name = "APDAKEYLO_EL1", .state = ARM_CP_STATE_AA64,
7076       .opc0 = 3, .opc1 = 0, .crn = 2, .crm = 2, .opc2 = 0,
7077       .access = PL1_RW, .accessfn = access_pauth,
7078       .fgt = FGT_APDAKEY,
7079       .fieldoffset = offsetof(CPUARMState, keys.apda.lo) },
7080     { .name = "APDAKEYHI_EL1", .state = ARM_CP_STATE_AA64,
7081       .opc0 = 3, .opc1 = 0, .crn = 2, .crm = 2, .opc2 = 1,
7082       .access = PL1_RW, .accessfn = access_pauth,
7083       .fgt = FGT_APDAKEY,
7084       .fieldoffset = offsetof(CPUARMState, keys.apda.hi) },
7085     { .name = "APDBKEYLO_EL1", .state = ARM_CP_STATE_AA64,
7086       .opc0 = 3, .opc1 = 0, .crn = 2, .crm = 2, .opc2 = 2,
7087       .access = PL1_RW, .accessfn = access_pauth,
7088       .fgt = FGT_APDBKEY,
7089       .fieldoffset = offsetof(CPUARMState, keys.apdb.lo) },
7090     { .name = "APDBKEYHI_EL1", .state = ARM_CP_STATE_AA64,
7091       .opc0 = 3, .opc1 = 0, .crn = 2, .crm = 2, .opc2 = 3,
7092       .access = PL1_RW, .accessfn = access_pauth,
7093       .fgt = FGT_APDBKEY,
7094       .fieldoffset = offsetof(CPUARMState, keys.apdb.hi) },
7095     { .name = "APGAKEYLO_EL1", .state = ARM_CP_STATE_AA64,
7096       .opc0 = 3, .opc1 = 0, .crn = 2, .crm = 3, .opc2 = 0,
7097       .access = PL1_RW, .accessfn = access_pauth,
7098       .fgt = FGT_APGAKEY,
7099       .fieldoffset = offsetof(CPUARMState, keys.apga.lo) },
7100     { .name = "APGAKEYHI_EL1", .state = ARM_CP_STATE_AA64,
7101       .opc0 = 3, .opc1 = 0, .crn = 2, .crm = 3, .opc2 = 1,
7102       .access = PL1_RW, .accessfn = access_pauth,
7103       .fgt = FGT_APGAKEY,
7104       .fieldoffset = offsetof(CPUARMState, keys.apga.hi) },
7105     { .name = "APIAKEYLO_EL1", .state = ARM_CP_STATE_AA64,
7106       .opc0 = 3, .opc1 = 0, .crn = 2, .crm = 1, .opc2 = 0,
7107       .access = PL1_RW, .accessfn = access_pauth,
7108       .fgt = FGT_APIAKEY,
7109       .fieldoffset = offsetof(CPUARMState, keys.apia.lo) },
7110     { .name = "APIAKEYHI_EL1", .state = ARM_CP_STATE_AA64,
7111       .opc0 = 3, .opc1 = 0, .crn = 2, .crm = 1, .opc2 = 1,
7112       .access = PL1_RW, .accessfn = access_pauth,
7113       .fgt = FGT_APIAKEY,
7114       .fieldoffset = offsetof(CPUARMState, keys.apia.hi) },
7115     { .name = "APIBKEYLO_EL1", .state = ARM_CP_STATE_AA64,
7116       .opc0 = 3, .opc1 = 0, .crn = 2, .crm = 1, .opc2 = 2,
7117       .access = PL1_RW, .accessfn = access_pauth,
7118       .fgt = FGT_APIBKEY,
7119       .fieldoffset = offsetof(CPUARMState, keys.apib.lo) },
7120     { .name = "APIBKEYHI_EL1", .state = ARM_CP_STATE_AA64,
7121       .opc0 = 3, .opc1 = 0, .crn = 2, .crm = 1, .opc2 = 3,
7122       .access = PL1_RW, .accessfn = access_pauth,
7123       .fgt = FGT_APIBKEY,
7124       .fieldoffset = offsetof(CPUARMState, keys.apib.hi) },
7125 };
7126 
7127 static const ARMCPRegInfo tlbirange_reginfo[] = {
7128     { .name = "TLBI_RVAE1IS", .state = ARM_CP_STATE_AA64,
7129       .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 2, .opc2 = 1,
7130       .access = PL1_W, .accessfn = access_ttlbis, .type = ARM_CP_NO_RAW,
7131       .writefn = tlbi_aa64_rvae1is_write },
7132     { .name = "TLBI_RVAAE1IS", .state = ARM_CP_STATE_AA64,
7133       .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 2, .opc2 = 3,
7134       .access = PL1_W, .accessfn = access_ttlbis, .type = ARM_CP_NO_RAW,
7135       .writefn = tlbi_aa64_rvae1is_write },
7136    { .name = "TLBI_RVALE1IS", .state = ARM_CP_STATE_AA64,
7137       .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 2, .opc2 = 5,
7138       .access = PL1_W, .accessfn = access_ttlbis, .type = ARM_CP_NO_RAW,
7139       .writefn = tlbi_aa64_rvae1is_write },
7140     { .name = "TLBI_RVAALE1IS", .state = ARM_CP_STATE_AA64,
7141       .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 2, .opc2 = 7,
7142       .access = PL1_W, .accessfn = access_ttlbis, .type = ARM_CP_NO_RAW,
7143       .writefn = tlbi_aa64_rvae1is_write },
7144     { .name = "TLBI_RVAE1OS", .state = ARM_CP_STATE_AA64,
7145       .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 5, .opc2 = 1,
7146       .access = PL1_W, .accessfn = access_ttlbos, .type = ARM_CP_NO_RAW,
7147       .writefn = tlbi_aa64_rvae1is_write },
7148     { .name = "TLBI_RVAAE1OS", .state = ARM_CP_STATE_AA64,
7149       .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 5, .opc2 = 3,
7150       .access = PL1_W, .accessfn = access_ttlbos, .type = ARM_CP_NO_RAW,
7151       .writefn = tlbi_aa64_rvae1is_write },
7152    { .name = "TLBI_RVALE1OS", .state = ARM_CP_STATE_AA64,
7153       .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 5, .opc2 = 5,
7154       .access = PL1_W, .accessfn = access_ttlbos, .type = ARM_CP_NO_RAW,
7155       .writefn = tlbi_aa64_rvae1is_write },
7156     { .name = "TLBI_RVAALE1OS", .state = ARM_CP_STATE_AA64,
7157       .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 5, .opc2 = 7,
7158       .access = PL1_W, .accessfn = access_ttlbos, .type = ARM_CP_NO_RAW,
7159       .writefn = tlbi_aa64_rvae1is_write },
7160     { .name = "TLBI_RVAE1", .state = ARM_CP_STATE_AA64,
7161       .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 6, .opc2 = 1,
7162       .access = PL1_W, .accessfn = access_ttlb, .type = ARM_CP_NO_RAW,
7163       .writefn = tlbi_aa64_rvae1_write },
7164     { .name = "TLBI_RVAAE1", .state = ARM_CP_STATE_AA64,
7165       .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 6, .opc2 = 3,
7166       .access = PL1_W, .accessfn = access_ttlb, .type = ARM_CP_NO_RAW,
7167       .writefn = tlbi_aa64_rvae1_write },
7168    { .name = "TLBI_RVALE1", .state = ARM_CP_STATE_AA64,
7169       .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 6, .opc2 = 5,
7170       .access = PL1_W, .accessfn = access_ttlb, .type = ARM_CP_NO_RAW,
7171       .writefn = tlbi_aa64_rvae1_write },
7172     { .name = "TLBI_RVAALE1", .state = ARM_CP_STATE_AA64,
7173       .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 6, .opc2 = 7,
7174       .access = PL1_W, .accessfn = access_ttlb, .type = ARM_CP_NO_RAW,
7175       .writefn = tlbi_aa64_rvae1_write },
7176     { .name = "TLBI_RIPAS2E1IS", .state = ARM_CP_STATE_AA64,
7177       .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 0, .opc2 = 2,
7178       .access = PL2_W, .type = ARM_CP_NO_RAW,
7179       .writefn = tlbi_aa64_ripas2e1is_write },
7180     { .name = "TLBI_RIPAS2LE1IS", .state = ARM_CP_STATE_AA64,
7181       .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 0, .opc2 = 6,
7182       .access = PL2_W, .type = ARM_CP_NO_RAW,
7183       .writefn = tlbi_aa64_ripas2e1is_write },
7184     { .name = "TLBI_RVAE2IS", .state = ARM_CP_STATE_AA64,
7185       .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 2, .opc2 = 1,
7186       .access = PL2_W, .type = ARM_CP_NO_RAW | ARM_CP_EL3_NO_EL2_UNDEF,
7187       .writefn = tlbi_aa64_rvae2is_write },
7188    { .name = "TLBI_RVALE2IS", .state = ARM_CP_STATE_AA64,
7189       .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 2, .opc2 = 5,
7190       .access = PL2_W, .type = ARM_CP_NO_RAW | ARM_CP_EL3_NO_EL2_UNDEF,
7191       .writefn = tlbi_aa64_rvae2is_write },
7192     { .name = "TLBI_RIPAS2E1", .state = ARM_CP_STATE_AA64,
7193       .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 4, .opc2 = 2,
7194       .access = PL2_W, .type = ARM_CP_NO_RAW,
7195       .writefn = tlbi_aa64_ripas2e1_write },
7196     { .name = "TLBI_RIPAS2LE1", .state = ARM_CP_STATE_AA64,
7197       .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 4, .opc2 = 6,
7198       .access = PL2_W, .type = ARM_CP_NO_RAW,
7199       .writefn = tlbi_aa64_ripas2e1_write },
7200    { .name = "TLBI_RVAE2OS", .state = ARM_CP_STATE_AA64,
7201       .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 5, .opc2 = 1,
7202       .access = PL2_W, .type = ARM_CP_NO_RAW | ARM_CP_EL3_NO_EL2_UNDEF,
7203       .writefn = tlbi_aa64_rvae2is_write },
7204    { .name = "TLBI_RVALE2OS", .state = ARM_CP_STATE_AA64,
7205       .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 5, .opc2 = 5,
7206       .access = PL2_W, .type = ARM_CP_NO_RAW | ARM_CP_EL3_NO_EL2_UNDEF,
7207       .writefn = tlbi_aa64_rvae2is_write },
7208     { .name = "TLBI_RVAE2", .state = ARM_CP_STATE_AA64,
7209       .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 6, .opc2 = 1,
7210       .access = PL2_W, .type = ARM_CP_NO_RAW | ARM_CP_EL3_NO_EL2_UNDEF,
7211       .writefn = tlbi_aa64_rvae2_write },
7212    { .name = "TLBI_RVALE2", .state = ARM_CP_STATE_AA64,
7213       .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 6, .opc2 = 5,
7214       .access = PL2_W, .type = ARM_CP_NO_RAW | ARM_CP_EL3_NO_EL2_UNDEF,
7215       .writefn = tlbi_aa64_rvae2_write },
7216    { .name = "TLBI_RVAE3IS", .state = ARM_CP_STATE_AA64,
7217       .opc0 = 1, .opc1 = 6, .crn = 8, .crm = 2, .opc2 = 1,
7218       .access = PL3_W, .type = ARM_CP_NO_RAW,
7219       .writefn = tlbi_aa64_rvae3is_write },
7220    { .name = "TLBI_RVALE3IS", .state = ARM_CP_STATE_AA64,
7221       .opc0 = 1, .opc1 = 6, .crn = 8, .crm = 2, .opc2 = 5,
7222       .access = PL3_W, .type = ARM_CP_NO_RAW,
7223       .writefn = tlbi_aa64_rvae3is_write },
7224    { .name = "TLBI_RVAE3OS", .state = ARM_CP_STATE_AA64,
7225       .opc0 = 1, .opc1 = 6, .crn = 8, .crm = 5, .opc2 = 1,
7226       .access = PL3_W, .type = ARM_CP_NO_RAW,
7227       .writefn = tlbi_aa64_rvae3is_write },
7228    { .name = "TLBI_RVALE3OS", .state = ARM_CP_STATE_AA64,
7229       .opc0 = 1, .opc1 = 6, .crn = 8, .crm = 5, .opc2 = 5,
7230       .access = PL3_W, .type = ARM_CP_NO_RAW,
7231       .writefn = tlbi_aa64_rvae3is_write },
7232    { .name = "TLBI_RVAE3", .state = ARM_CP_STATE_AA64,
7233       .opc0 = 1, .opc1 = 6, .crn = 8, .crm = 6, .opc2 = 1,
7234       .access = PL3_W, .type = ARM_CP_NO_RAW,
7235       .writefn = tlbi_aa64_rvae3_write },
7236    { .name = "TLBI_RVALE3", .state = ARM_CP_STATE_AA64,
7237       .opc0 = 1, .opc1 = 6, .crn = 8, .crm = 6, .opc2 = 5,
7238       .access = PL3_W, .type = ARM_CP_NO_RAW,
7239       .writefn = tlbi_aa64_rvae3_write },
7240 };
7241 
7242 static const ARMCPRegInfo tlbios_reginfo[] = {
7243     { .name = "TLBI_VMALLE1OS", .state = ARM_CP_STATE_AA64,
7244       .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 1, .opc2 = 0,
7245       .access = PL1_W, .accessfn = access_ttlbos, .type = ARM_CP_NO_RAW,
7246       .writefn = tlbi_aa64_vmalle1is_write },
7247     { .name = "TLBI_VAE1OS", .state = ARM_CP_STATE_AA64,
7248       .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 1, .opc2 = 1,
7249       .access = PL1_W, .accessfn = access_ttlbos, .type = ARM_CP_NO_RAW,
7250       .writefn = tlbi_aa64_vae1is_write },
7251     { .name = "TLBI_ASIDE1OS", .state = ARM_CP_STATE_AA64,
7252       .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 1, .opc2 = 2,
7253       .access = PL1_W, .accessfn = access_ttlbos, .type = ARM_CP_NO_RAW,
7254       .writefn = tlbi_aa64_vmalle1is_write },
7255     { .name = "TLBI_VAAE1OS", .state = ARM_CP_STATE_AA64,
7256       .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 1, .opc2 = 3,
7257       .access = PL1_W, .accessfn = access_ttlbos, .type = ARM_CP_NO_RAW,
7258       .writefn = tlbi_aa64_vae1is_write },
7259     { .name = "TLBI_VALE1OS", .state = ARM_CP_STATE_AA64,
7260       .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 1, .opc2 = 5,
7261       .access = PL1_W, .accessfn = access_ttlbos, .type = ARM_CP_NO_RAW,
7262       .writefn = tlbi_aa64_vae1is_write },
7263     { .name = "TLBI_VAALE1OS", .state = ARM_CP_STATE_AA64,
7264       .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 1, .opc2 = 7,
7265       .access = PL1_W, .accessfn = access_ttlbos, .type = ARM_CP_NO_RAW,
7266       .writefn = tlbi_aa64_vae1is_write },
7267     { .name = "TLBI_ALLE2OS", .state = ARM_CP_STATE_AA64,
7268       .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 1, .opc2 = 0,
7269       .access = PL2_W, .type = ARM_CP_NO_RAW | ARM_CP_EL3_NO_EL2_UNDEF,
7270       .writefn = tlbi_aa64_alle2is_write },
7271     { .name = "TLBI_VAE2OS", .state = ARM_CP_STATE_AA64,
7272       .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 1, .opc2 = 1,
7273       .access = PL2_W, .type = ARM_CP_NO_RAW | ARM_CP_EL3_NO_EL2_UNDEF,
7274       .writefn = tlbi_aa64_vae2is_write },
7275    { .name = "TLBI_ALLE1OS", .state = ARM_CP_STATE_AA64,
7276       .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 1, .opc2 = 4,
7277       .access = PL2_W, .type = ARM_CP_NO_RAW,
7278       .writefn = tlbi_aa64_alle1is_write },
7279     { .name = "TLBI_VALE2OS", .state = ARM_CP_STATE_AA64,
7280       .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 1, .opc2 = 5,
7281       .access = PL2_W, .type = ARM_CP_NO_RAW | ARM_CP_EL3_NO_EL2_UNDEF,
7282       .writefn = tlbi_aa64_vae2is_write },
7283     { .name = "TLBI_VMALLS12E1OS", .state = ARM_CP_STATE_AA64,
7284       .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 1, .opc2 = 6,
7285       .access = PL2_W, .type = ARM_CP_NO_RAW,
7286       .writefn = tlbi_aa64_alle1is_write },
7287     { .name = "TLBI_IPAS2E1OS", .state = ARM_CP_STATE_AA64,
7288       .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 4, .opc2 = 0,
7289       .access = PL2_W, .type = ARM_CP_NOP },
7290     { .name = "TLBI_RIPAS2E1OS", .state = ARM_CP_STATE_AA64,
7291       .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 4, .opc2 = 3,
7292       .access = PL2_W, .type = ARM_CP_NOP },
7293     { .name = "TLBI_IPAS2LE1OS", .state = ARM_CP_STATE_AA64,
7294       .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 4, .opc2 = 4,
7295       .access = PL2_W, .type = ARM_CP_NOP },
7296     { .name = "TLBI_RIPAS2LE1OS", .state = ARM_CP_STATE_AA64,
7297       .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 4, .opc2 = 7,
7298       .access = PL2_W, .type = ARM_CP_NOP },
7299     { .name = "TLBI_ALLE3OS", .state = ARM_CP_STATE_AA64,
7300       .opc0 = 1, .opc1 = 6, .crn = 8, .crm = 1, .opc2 = 0,
7301       .access = PL3_W, .type = ARM_CP_NO_RAW,
7302       .writefn = tlbi_aa64_alle3is_write },
7303     { .name = "TLBI_VAE3OS", .state = ARM_CP_STATE_AA64,
7304       .opc0 = 1, .opc1 = 6, .crn = 8, .crm = 1, .opc2 = 1,
7305       .access = PL3_W, .type = ARM_CP_NO_RAW,
7306       .writefn = tlbi_aa64_vae3is_write },
7307     { .name = "TLBI_VALE3OS", .state = ARM_CP_STATE_AA64,
7308       .opc0 = 1, .opc1 = 6, .crn = 8, .crm = 1, .opc2 = 5,
7309       .access = PL3_W, .type = ARM_CP_NO_RAW,
7310       .writefn = tlbi_aa64_vae3is_write },
7311 };
7312 
7313 static uint64_t rndr_readfn(CPUARMState *env, const ARMCPRegInfo *ri)
7314 {
7315     Error *err = NULL;
7316     uint64_t ret;
7317 
7318     /* Success sets NZCV = 0000.  */
7319     env->NF = env->CF = env->VF = 0, env->ZF = 1;
7320 
7321     if (qemu_guest_getrandom(&ret, sizeof(ret), &err) < 0) {
7322         /*
7323          * ??? Failed, for unknown reasons in the crypto subsystem.
7324          * The best we can do is log the reason and return the
7325          * timed-out indication to the guest.  There is no reason
7326          * we know to expect this failure to be transitory, so the
7327          * guest may well hang retrying the operation.
7328          */
7329         qemu_log_mask(LOG_UNIMP, "%s: Crypto failure: %s",
7330                       ri->name, error_get_pretty(err));
7331         error_free(err);
7332 
7333         env->ZF = 0; /* NZCF = 0100 */
7334         return 0;
7335     }
7336     return ret;
7337 }
7338 
7339 /* We do not support re-seeding, so the two registers operate the same.  */
7340 static const ARMCPRegInfo rndr_reginfo[] = {
7341     { .name = "RNDR", .state = ARM_CP_STATE_AA64,
7342       .type = ARM_CP_NO_RAW | ARM_CP_SUPPRESS_TB_END | ARM_CP_IO,
7343       .opc0 = 3, .opc1 = 3, .crn = 2, .crm = 4, .opc2 = 0,
7344       .access = PL0_R, .readfn = rndr_readfn },
7345     { .name = "RNDRRS", .state = ARM_CP_STATE_AA64,
7346       .type = ARM_CP_NO_RAW | ARM_CP_SUPPRESS_TB_END | ARM_CP_IO,
7347       .opc0 = 3, .opc1 = 3, .crn = 2, .crm = 4, .opc2 = 1,
7348       .access = PL0_R, .readfn = rndr_readfn },
7349 };
7350 
7351 #ifndef CONFIG_USER_ONLY
7352 static void dccvap_writefn(CPUARMState *env, const ARMCPRegInfo *opaque,
7353                           uint64_t value)
7354 {
7355     ARMCPU *cpu = env_archcpu(env);
7356     /* CTR_EL0 System register -> DminLine, bits [19:16] */
7357     uint64_t dline_size = 4 << ((cpu->ctr >> 16) & 0xF);
7358     uint64_t vaddr_in = (uint64_t) value;
7359     uint64_t vaddr = vaddr_in & ~(dline_size - 1);
7360     void *haddr;
7361     int mem_idx = cpu_mmu_index(env, false);
7362 
7363     /* This won't be crossing page boundaries */
7364     haddr = probe_read(env, vaddr, dline_size, mem_idx, GETPC());
7365     if (haddr) {
7366 
7367         ram_addr_t offset;
7368         MemoryRegion *mr;
7369 
7370         /* RCU lock is already being held */
7371         mr = memory_region_from_host(haddr, &offset);
7372 
7373         if (mr) {
7374             memory_region_writeback(mr, offset, dline_size);
7375         }
7376     }
7377 }
7378 
7379 static const ARMCPRegInfo dcpop_reg[] = {
7380     { .name = "DC_CVAP", .state = ARM_CP_STATE_AA64,
7381       .opc0 = 1, .opc1 = 3, .crn = 7, .crm = 12, .opc2 = 1,
7382       .access = PL0_W, .type = ARM_CP_NO_RAW | ARM_CP_SUPPRESS_TB_END,
7383       .accessfn = aa64_cacheop_poc_access, .writefn = dccvap_writefn },
7384 };
7385 
7386 static const ARMCPRegInfo dcpodp_reg[] = {
7387     { .name = "DC_CVADP", .state = ARM_CP_STATE_AA64,
7388       .opc0 = 1, .opc1 = 3, .crn = 7, .crm = 13, .opc2 = 1,
7389       .access = PL0_W, .type = ARM_CP_NO_RAW | ARM_CP_SUPPRESS_TB_END,
7390       .accessfn = aa64_cacheop_poc_access, .writefn = dccvap_writefn },
7391 };
7392 #endif /*CONFIG_USER_ONLY*/
7393 
7394 static CPAccessResult access_aa64_tid5(CPUARMState *env, const ARMCPRegInfo *ri,
7395                                        bool isread)
7396 {
7397     if ((arm_current_el(env) < 2) && (arm_hcr_el2_eff(env) & HCR_TID5)) {
7398         return CP_ACCESS_TRAP_EL2;
7399     }
7400 
7401     return CP_ACCESS_OK;
7402 }
7403 
7404 static CPAccessResult access_mte(CPUARMState *env, const ARMCPRegInfo *ri,
7405                                  bool isread)
7406 {
7407     int el = arm_current_el(env);
7408 
7409     if (el < 2 && arm_is_el2_enabled(env)) {
7410         uint64_t hcr = arm_hcr_el2_eff(env);
7411         if (!(hcr & HCR_ATA) && (!(hcr & HCR_E2H) || !(hcr & HCR_TGE))) {
7412             return CP_ACCESS_TRAP_EL2;
7413         }
7414     }
7415     if (el < 3 &&
7416         arm_feature(env, ARM_FEATURE_EL3) &&
7417         !(env->cp15.scr_el3 & SCR_ATA)) {
7418         return CP_ACCESS_TRAP_EL3;
7419     }
7420     return CP_ACCESS_OK;
7421 }
7422 
7423 static uint64_t tco_read(CPUARMState *env, const ARMCPRegInfo *ri)
7424 {
7425     return env->pstate & PSTATE_TCO;
7426 }
7427 
7428 static void tco_write(CPUARMState *env, const ARMCPRegInfo *ri, uint64_t val)
7429 {
7430     env->pstate = (env->pstate & ~PSTATE_TCO) | (val & PSTATE_TCO);
7431 }
7432 
7433 static const ARMCPRegInfo mte_reginfo[] = {
7434     { .name = "TFSRE0_EL1", .state = ARM_CP_STATE_AA64,
7435       .opc0 = 3, .opc1 = 0, .crn = 5, .crm = 6, .opc2 = 1,
7436       .access = PL1_RW, .accessfn = access_mte,
7437       .fieldoffset = offsetof(CPUARMState, cp15.tfsr_el[0]) },
7438     { .name = "TFSR_EL1", .state = ARM_CP_STATE_AA64,
7439       .opc0 = 3, .opc1 = 0, .crn = 5, .crm = 6, .opc2 = 0,
7440       .access = PL1_RW, .accessfn = access_mte,
7441       .fieldoffset = offsetof(CPUARMState, cp15.tfsr_el[1]) },
7442     { .name = "TFSR_EL2", .state = ARM_CP_STATE_AA64,
7443       .opc0 = 3, .opc1 = 4, .crn = 5, .crm = 6, .opc2 = 0,
7444       .access = PL2_RW, .accessfn = access_mte,
7445       .fieldoffset = offsetof(CPUARMState, cp15.tfsr_el[2]) },
7446     { .name = "TFSR_EL3", .state = ARM_CP_STATE_AA64,
7447       .opc0 = 3, .opc1 = 6, .crn = 5, .crm = 6, .opc2 = 0,
7448       .access = PL3_RW,
7449       .fieldoffset = offsetof(CPUARMState, cp15.tfsr_el[3]) },
7450     { .name = "RGSR_EL1", .state = ARM_CP_STATE_AA64,
7451       .opc0 = 3, .opc1 = 0, .crn = 1, .crm = 0, .opc2 = 5,
7452       .access = PL1_RW, .accessfn = access_mte,
7453       .fieldoffset = offsetof(CPUARMState, cp15.rgsr_el1) },
7454     { .name = "GCR_EL1", .state = ARM_CP_STATE_AA64,
7455       .opc0 = 3, .opc1 = 0, .crn = 1, .crm = 0, .opc2 = 6,
7456       .access = PL1_RW, .accessfn = access_mte,
7457       .fieldoffset = offsetof(CPUARMState, cp15.gcr_el1) },
7458     { .name = "GMID_EL1", .state = ARM_CP_STATE_AA64,
7459       .opc0 = 3, .opc1 = 1, .crn = 0, .crm = 0, .opc2 = 4,
7460       .access = PL1_R, .accessfn = access_aa64_tid5,
7461       .type = ARM_CP_CONST, .resetvalue = GMID_EL1_BS },
7462     { .name = "TCO", .state = ARM_CP_STATE_AA64,
7463       .opc0 = 3, .opc1 = 3, .crn = 4, .crm = 2, .opc2 = 7,
7464       .type = ARM_CP_NO_RAW,
7465       .access = PL0_RW, .readfn = tco_read, .writefn = tco_write },
7466     { .name = "DC_IGVAC", .state = ARM_CP_STATE_AA64,
7467       .opc0 = 1, .opc1 = 0, .crn = 7, .crm = 6, .opc2 = 3,
7468       .type = ARM_CP_NOP, .access = PL1_W,
7469       .accessfn = aa64_cacheop_poc_access },
7470     { .name = "DC_IGSW", .state = ARM_CP_STATE_AA64,
7471       .opc0 = 1, .opc1 = 0, .crn = 7, .crm = 6, .opc2 = 4,
7472       .type = ARM_CP_NOP, .access = PL1_W, .accessfn = access_tsw },
7473     { .name = "DC_IGDVAC", .state = ARM_CP_STATE_AA64,
7474       .opc0 = 1, .opc1 = 0, .crn = 7, .crm = 6, .opc2 = 5,
7475       .type = ARM_CP_NOP, .access = PL1_W,
7476       .accessfn = aa64_cacheop_poc_access },
7477     { .name = "DC_IGDSW", .state = ARM_CP_STATE_AA64,
7478       .opc0 = 1, .opc1 = 0, .crn = 7, .crm = 6, .opc2 = 6,
7479       .type = ARM_CP_NOP, .access = PL1_W, .accessfn = access_tsw },
7480     { .name = "DC_CGSW", .state = ARM_CP_STATE_AA64,
7481       .opc0 = 1, .opc1 = 0, .crn = 7, .crm = 10, .opc2 = 4,
7482       .type = ARM_CP_NOP, .access = PL1_W, .accessfn = access_tsw },
7483     { .name = "DC_CGDSW", .state = ARM_CP_STATE_AA64,
7484       .opc0 = 1, .opc1 = 0, .crn = 7, .crm = 10, .opc2 = 6,
7485       .type = ARM_CP_NOP, .access = PL1_W, .accessfn = access_tsw },
7486     { .name = "DC_CIGSW", .state = ARM_CP_STATE_AA64,
7487       .opc0 = 1, .opc1 = 0, .crn = 7, .crm = 14, .opc2 = 4,
7488       .type = ARM_CP_NOP, .access = PL1_W, .accessfn = access_tsw },
7489     { .name = "DC_CIGDSW", .state = ARM_CP_STATE_AA64,
7490       .opc0 = 1, .opc1 = 0, .crn = 7, .crm = 14, .opc2 = 6,
7491       .type = ARM_CP_NOP, .access = PL1_W, .accessfn = access_tsw },
7492 };
7493 
7494 static const ARMCPRegInfo mte_tco_ro_reginfo[] = {
7495     { .name = "TCO", .state = ARM_CP_STATE_AA64,
7496       .opc0 = 3, .opc1 = 3, .crn = 4, .crm = 2, .opc2 = 7,
7497       .type = ARM_CP_CONST, .access = PL0_RW, },
7498 };
7499 
7500 static const ARMCPRegInfo mte_el0_cacheop_reginfo[] = {
7501     { .name = "DC_CGVAC", .state = ARM_CP_STATE_AA64,
7502       .opc0 = 1, .opc1 = 3, .crn = 7, .crm = 10, .opc2 = 3,
7503       .type = ARM_CP_NOP, .access = PL0_W,
7504       .accessfn = aa64_cacheop_poc_access },
7505     { .name = "DC_CGDVAC", .state = ARM_CP_STATE_AA64,
7506       .opc0 = 1, .opc1 = 3, .crn = 7, .crm = 10, .opc2 = 5,
7507       .type = ARM_CP_NOP, .access = PL0_W,
7508       .accessfn = aa64_cacheop_poc_access },
7509     { .name = "DC_CGVAP", .state = ARM_CP_STATE_AA64,
7510       .opc0 = 1, .opc1 = 3, .crn = 7, .crm = 12, .opc2 = 3,
7511       .type = ARM_CP_NOP, .access = PL0_W,
7512       .accessfn = aa64_cacheop_poc_access },
7513     { .name = "DC_CGDVAP", .state = ARM_CP_STATE_AA64,
7514       .opc0 = 1, .opc1 = 3, .crn = 7, .crm = 12, .opc2 = 5,
7515       .type = ARM_CP_NOP, .access = PL0_W,
7516       .accessfn = aa64_cacheop_poc_access },
7517     { .name = "DC_CGVADP", .state = ARM_CP_STATE_AA64,
7518       .opc0 = 1, .opc1 = 3, .crn = 7, .crm = 13, .opc2 = 3,
7519       .type = ARM_CP_NOP, .access = PL0_W,
7520       .accessfn = aa64_cacheop_poc_access },
7521     { .name = "DC_CGDVADP", .state = ARM_CP_STATE_AA64,
7522       .opc0 = 1, .opc1 = 3, .crn = 7, .crm = 13, .opc2 = 5,
7523       .type = ARM_CP_NOP, .access = PL0_W,
7524       .accessfn = aa64_cacheop_poc_access },
7525     { .name = "DC_CIGVAC", .state = ARM_CP_STATE_AA64,
7526       .opc0 = 1, .opc1 = 3, .crn = 7, .crm = 14, .opc2 = 3,
7527       .type = ARM_CP_NOP, .access = PL0_W,
7528       .accessfn = aa64_cacheop_poc_access },
7529     { .name = "DC_CIGDVAC", .state = ARM_CP_STATE_AA64,
7530       .opc0 = 1, .opc1 = 3, .crn = 7, .crm = 14, .opc2 = 5,
7531       .type = ARM_CP_NOP, .access = PL0_W,
7532       .accessfn = aa64_cacheop_poc_access },
7533     { .name = "DC_GVA", .state = ARM_CP_STATE_AA64,
7534       .opc0 = 1, .opc1 = 3, .crn = 7, .crm = 4, .opc2 = 3,
7535       .access = PL0_W, .type = ARM_CP_DC_GVA,
7536 #ifndef CONFIG_USER_ONLY
7537       /* Avoid overhead of an access check that always passes in user-mode */
7538       .accessfn = aa64_zva_access,
7539 #endif
7540     },
7541     { .name = "DC_GZVA", .state = ARM_CP_STATE_AA64,
7542       .opc0 = 1, .opc1 = 3, .crn = 7, .crm = 4, .opc2 = 4,
7543       .access = PL0_W, .type = ARM_CP_DC_GZVA,
7544 #ifndef CONFIG_USER_ONLY
7545       /* Avoid overhead of an access check that always passes in user-mode */
7546       .accessfn = aa64_zva_access,
7547 #endif
7548     },
7549 };
7550 
7551 static CPAccessResult access_scxtnum(CPUARMState *env, const ARMCPRegInfo *ri,
7552                                      bool isread)
7553 {
7554     uint64_t hcr = arm_hcr_el2_eff(env);
7555     int el = arm_current_el(env);
7556 
7557     if (el == 0 && !((hcr & HCR_E2H) && (hcr & HCR_TGE))) {
7558         if (env->cp15.sctlr_el[1] & SCTLR_TSCXT) {
7559             if (hcr & HCR_TGE) {
7560                 return CP_ACCESS_TRAP_EL2;
7561             }
7562             return CP_ACCESS_TRAP;
7563         }
7564     } else if (el < 2 && (env->cp15.sctlr_el[2] & SCTLR_TSCXT)) {
7565         return CP_ACCESS_TRAP_EL2;
7566     }
7567     if (el < 2 && arm_is_el2_enabled(env) && !(hcr & HCR_ENSCXT)) {
7568         return CP_ACCESS_TRAP_EL2;
7569     }
7570     if (el < 3
7571         && arm_feature(env, ARM_FEATURE_EL3)
7572         && !(env->cp15.scr_el3 & SCR_ENSCXT)) {
7573         return CP_ACCESS_TRAP_EL3;
7574     }
7575     return CP_ACCESS_OK;
7576 }
7577 
7578 static const ARMCPRegInfo scxtnum_reginfo[] = {
7579     { .name = "SCXTNUM_EL0", .state = ARM_CP_STATE_AA64,
7580       .opc0 = 3, .opc1 = 3, .crn = 13, .crm = 0, .opc2 = 7,
7581       .access = PL0_RW, .accessfn = access_scxtnum,
7582       .fgt = FGT_SCXTNUM_EL0,
7583       .fieldoffset = offsetof(CPUARMState, scxtnum_el[0]) },
7584     { .name = "SCXTNUM_EL1", .state = ARM_CP_STATE_AA64,
7585       .opc0 = 3, .opc1 = 0, .crn = 13, .crm = 0, .opc2 = 7,
7586       .access = PL1_RW, .accessfn = access_scxtnum,
7587       .fgt = FGT_SCXTNUM_EL1,
7588       .fieldoffset = offsetof(CPUARMState, scxtnum_el[1]) },
7589     { .name = "SCXTNUM_EL2", .state = ARM_CP_STATE_AA64,
7590       .opc0 = 3, .opc1 = 4, .crn = 13, .crm = 0, .opc2 = 7,
7591       .access = PL2_RW, .accessfn = access_scxtnum,
7592       .fieldoffset = offsetof(CPUARMState, scxtnum_el[2]) },
7593     { .name = "SCXTNUM_EL3", .state = ARM_CP_STATE_AA64,
7594       .opc0 = 3, .opc1 = 6, .crn = 13, .crm = 0, .opc2 = 7,
7595       .access = PL3_RW,
7596       .fieldoffset = offsetof(CPUARMState, scxtnum_el[3]) },
7597 };
7598 
7599 static CPAccessResult access_fgt(CPUARMState *env, const ARMCPRegInfo *ri,
7600                                  bool isread)
7601 {
7602     if (arm_current_el(env) == 2 &&
7603         arm_feature(env, ARM_FEATURE_EL3) && !(env->cp15.scr_el3 & SCR_FGTEN)) {
7604         return CP_ACCESS_TRAP_EL3;
7605     }
7606     return CP_ACCESS_OK;
7607 }
7608 
7609 static const ARMCPRegInfo fgt_reginfo[] = {
7610     { .name = "HFGRTR_EL2", .state = ARM_CP_STATE_AA64,
7611       .opc0 = 3, .opc1 = 4, .crn = 1, .crm = 1, .opc2 = 4,
7612       .access = PL2_RW, .accessfn = access_fgt,
7613       .fieldoffset = offsetof(CPUARMState, cp15.fgt_read[FGTREG_HFGRTR]) },
7614     { .name = "HFGWTR_EL2", .state = ARM_CP_STATE_AA64,
7615       .opc0 = 3, .opc1 = 4, .crn = 1, .crm = 1, .opc2 = 5,
7616       .access = PL2_RW, .accessfn = access_fgt,
7617       .fieldoffset = offsetof(CPUARMState, cp15.fgt_write[FGTREG_HFGWTR]) },
7618     { .name = "HDFGRTR_EL2", .state = ARM_CP_STATE_AA64,
7619       .opc0 = 3, .opc1 = 4, .crn = 3, .crm = 1, .opc2 = 4,
7620       .access = PL2_RW, .accessfn = access_fgt,
7621       .fieldoffset = offsetof(CPUARMState, cp15.fgt_read[FGTREG_HDFGRTR]) },
7622     { .name = "HDFGWTR_EL2", .state = ARM_CP_STATE_AA64,
7623       .opc0 = 3, .opc1 = 4, .crn = 3, .crm = 1, .opc2 = 5,
7624       .access = PL2_RW, .accessfn = access_fgt,
7625       .fieldoffset = offsetof(CPUARMState, cp15.fgt_write[FGTREG_HDFGWTR]) },
7626     { .name = "HFGITR_EL2", .state = ARM_CP_STATE_AA64,
7627       .opc0 = 3, .opc1 = 4, .crn = 1, .crm = 1, .opc2 = 6,
7628       .access = PL2_RW, .accessfn = access_fgt,
7629       .fieldoffset = offsetof(CPUARMState, cp15.fgt_exec[FGTREG_HFGITR]) },
7630 };
7631 #endif /* TARGET_AARCH64 */
7632 
7633 static CPAccessResult access_predinv(CPUARMState *env, const ARMCPRegInfo *ri,
7634                                      bool isread)
7635 {
7636     int el = arm_current_el(env);
7637 
7638     if (el == 0) {
7639         uint64_t sctlr = arm_sctlr(env, el);
7640         if (!(sctlr & SCTLR_EnRCTX)) {
7641             return CP_ACCESS_TRAP;
7642         }
7643     } else if (el == 1) {
7644         uint64_t hcr = arm_hcr_el2_eff(env);
7645         if (hcr & HCR_NV) {
7646             return CP_ACCESS_TRAP_EL2;
7647         }
7648     }
7649     return CP_ACCESS_OK;
7650 }
7651 
7652 static const ARMCPRegInfo predinv_reginfo[] = {
7653     { .name = "CFP_RCTX", .state = ARM_CP_STATE_AA64,
7654       .opc0 = 1, .opc1 = 3, .crn = 7, .crm = 3, .opc2 = 4,
7655       .type = ARM_CP_NOP, .access = PL0_W, .accessfn = access_predinv },
7656     { .name = "DVP_RCTX", .state = ARM_CP_STATE_AA64,
7657       .opc0 = 1, .opc1 = 3, .crn = 7, .crm = 3, .opc2 = 5,
7658       .type = ARM_CP_NOP, .access = PL0_W, .accessfn = access_predinv },
7659     { .name = "CPP_RCTX", .state = ARM_CP_STATE_AA64,
7660       .opc0 = 1, .opc1 = 3, .crn = 7, .crm = 3, .opc2 = 7,
7661       .type = ARM_CP_NOP, .access = PL0_W, .accessfn = access_predinv },
7662     /*
7663      * Note the AArch32 opcodes have a different OPC1.
7664      */
7665     { .name = "CFPRCTX", .state = ARM_CP_STATE_AA32,
7666       .cp = 15, .opc1 = 0, .crn = 7, .crm = 3, .opc2 = 4,
7667       .type = ARM_CP_NOP, .access = PL0_W, .accessfn = access_predinv },
7668     { .name = "DVPRCTX", .state = ARM_CP_STATE_AA32,
7669       .cp = 15, .opc1 = 0, .crn = 7, .crm = 3, .opc2 = 5,
7670       .type = ARM_CP_NOP, .access = PL0_W, .accessfn = access_predinv },
7671     { .name = "CPPRCTX", .state = ARM_CP_STATE_AA32,
7672       .cp = 15, .opc1 = 0, .crn = 7, .crm = 3, .opc2 = 7,
7673       .type = ARM_CP_NOP, .access = PL0_W, .accessfn = access_predinv },
7674 };
7675 
7676 static uint64_t ccsidr2_read(CPUARMState *env, const ARMCPRegInfo *ri)
7677 {
7678     /* Read the high 32 bits of the current CCSIDR */
7679     return extract64(ccsidr_read(env, ri), 32, 32);
7680 }
7681 
7682 static const ARMCPRegInfo ccsidr2_reginfo[] = {
7683     { .name = "CCSIDR2", .state = ARM_CP_STATE_BOTH,
7684       .opc0 = 3, .opc1 = 1, .crn = 0, .crm = 0, .opc2 = 2,
7685       .access = PL1_R,
7686       .accessfn = access_tid4,
7687       .readfn = ccsidr2_read, .type = ARM_CP_NO_RAW },
7688 };
7689 
7690 static CPAccessResult access_aa64_tid3(CPUARMState *env, const ARMCPRegInfo *ri,
7691                                        bool isread)
7692 {
7693     if ((arm_current_el(env) < 2) && (arm_hcr_el2_eff(env) & HCR_TID3)) {
7694         return CP_ACCESS_TRAP_EL2;
7695     }
7696 
7697     return CP_ACCESS_OK;
7698 }
7699 
7700 static CPAccessResult access_aa32_tid3(CPUARMState *env, const ARMCPRegInfo *ri,
7701                                        bool isread)
7702 {
7703     if (arm_feature(env, ARM_FEATURE_V8)) {
7704         return access_aa64_tid3(env, ri, isread);
7705     }
7706 
7707     return CP_ACCESS_OK;
7708 }
7709 
7710 static CPAccessResult access_jazelle(CPUARMState *env, const ARMCPRegInfo *ri,
7711                                      bool isread)
7712 {
7713     if (arm_current_el(env) == 1 && (arm_hcr_el2_eff(env) & HCR_TID0)) {
7714         return CP_ACCESS_TRAP_EL2;
7715     }
7716 
7717     return CP_ACCESS_OK;
7718 }
7719 
7720 static CPAccessResult access_joscr_jmcr(CPUARMState *env,
7721                                         const ARMCPRegInfo *ri, bool isread)
7722 {
7723     /*
7724      * HSTR.TJDBX traps JOSCR and JMCR accesses, but it exists only
7725      * in v7A, not in v8A.
7726      */
7727     if (!arm_feature(env, ARM_FEATURE_V8) &&
7728         arm_current_el(env) < 2 && !arm_is_secure_below_el3(env) &&
7729         (env->cp15.hstr_el2 & HSTR_TJDBX)) {
7730         return CP_ACCESS_TRAP_EL2;
7731     }
7732     return CP_ACCESS_OK;
7733 }
7734 
7735 static const ARMCPRegInfo jazelle_regs[] = {
7736     { .name = "JIDR",
7737       .cp = 14, .crn = 0, .crm = 0, .opc1 = 7, .opc2 = 0,
7738       .access = PL1_R, .accessfn = access_jazelle,
7739       .type = ARM_CP_CONST, .resetvalue = 0 },
7740     { .name = "JOSCR",
7741       .cp = 14, .crn = 1, .crm = 0, .opc1 = 7, .opc2 = 0,
7742       .accessfn = access_joscr_jmcr,
7743       .access = PL1_RW, .type = ARM_CP_CONST, .resetvalue = 0 },
7744     { .name = "JMCR",
7745       .cp = 14, .crn = 2, .crm = 0, .opc1 = 7, .opc2 = 0,
7746       .accessfn = access_joscr_jmcr,
7747       .access = PL1_RW, .type = ARM_CP_CONST, .resetvalue = 0 },
7748 };
7749 
7750 static const ARMCPRegInfo contextidr_el2 = {
7751     .name = "CONTEXTIDR_EL2", .state = ARM_CP_STATE_AA64,
7752     .opc0 = 3, .opc1 = 4, .crn = 13, .crm = 0, .opc2 = 1,
7753     .access = PL2_RW,
7754     .fieldoffset = offsetof(CPUARMState, cp15.contextidr_el[2])
7755 };
7756 
7757 static const ARMCPRegInfo vhe_reginfo[] = {
7758     { .name = "TTBR1_EL2", .state = ARM_CP_STATE_AA64,
7759       .opc0 = 3, .opc1 = 4, .crn = 2, .crm = 0, .opc2 = 1,
7760       .access = PL2_RW, .writefn = vmsa_tcr_ttbr_el2_write,
7761       .fieldoffset = offsetof(CPUARMState, cp15.ttbr1_el[2]) },
7762 #ifndef CONFIG_USER_ONLY
7763     { .name = "CNTHV_CVAL_EL2", .state = ARM_CP_STATE_AA64,
7764       .opc0 = 3, .opc1 = 4, .crn = 14, .crm = 3, .opc2 = 2,
7765       .fieldoffset =
7766         offsetof(CPUARMState, cp15.c14_timer[GTIMER_HYPVIRT].cval),
7767       .type = ARM_CP_IO, .access = PL2_RW,
7768       .writefn = gt_hv_cval_write, .raw_writefn = raw_write },
7769     { .name = "CNTHV_TVAL_EL2", .state = ARM_CP_STATE_BOTH,
7770       .opc0 = 3, .opc1 = 4, .crn = 14, .crm = 3, .opc2 = 0,
7771       .type = ARM_CP_NO_RAW | ARM_CP_IO, .access = PL2_RW,
7772       .resetfn = gt_hv_timer_reset,
7773       .readfn = gt_hv_tval_read, .writefn = gt_hv_tval_write },
7774     { .name = "CNTHV_CTL_EL2", .state = ARM_CP_STATE_BOTH,
7775       .type = ARM_CP_IO,
7776       .opc0 = 3, .opc1 = 4, .crn = 14, .crm = 3, .opc2 = 1,
7777       .access = PL2_RW,
7778       .fieldoffset = offsetof(CPUARMState, cp15.c14_timer[GTIMER_HYPVIRT].ctl),
7779       .writefn = gt_hv_ctl_write, .raw_writefn = raw_write },
7780     { .name = "CNTP_CTL_EL02", .state = ARM_CP_STATE_AA64,
7781       .opc0 = 3, .opc1 = 5, .crn = 14, .crm = 2, .opc2 = 1,
7782       .type = ARM_CP_IO | ARM_CP_ALIAS,
7783       .access = PL2_RW, .accessfn = e2h_access,
7784       .fieldoffset = offsetof(CPUARMState, cp15.c14_timer[GTIMER_PHYS].ctl),
7785       .writefn = gt_phys_ctl_write, .raw_writefn = raw_write },
7786     { .name = "CNTV_CTL_EL02", .state = ARM_CP_STATE_AA64,
7787       .opc0 = 3, .opc1 = 5, .crn = 14, .crm = 3, .opc2 = 1,
7788       .type = ARM_CP_IO | ARM_CP_ALIAS,
7789       .access = PL2_RW, .accessfn = e2h_access,
7790       .fieldoffset = offsetof(CPUARMState, cp15.c14_timer[GTIMER_VIRT].ctl),
7791       .writefn = gt_virt_ctl_write, .raw_writefn = raw_write },
7792     { .name = "CNTP_TVAL_EL02", .state = ARM_CP_STATE_AA64,
7793       .opc0 = 3, .opc1 = 5, .crn = 14, .crm = 2, .opc2 = 0,
7794       .type = ARM_CP_NO_RAW | ARM_CP_IO | ARM_CP_ALIAS,
7795       .access = PL2_RW, .accessfn = e2h_access,
7796       .readfn = gt_phys_tval_read, .writefn = gt_phys_tval_write },
7797     { .name = "CNTV_TVAL_EL02", .state = ARM_CP_STATE_AA64,
7798       .opc0 = 3, .opc1 = 5, .crn = 14, .crm = 3, .opc2 = 0,
7799       .type = ARM_CP_NO_RAW | ARM_CP_IO | ARM_CP_ALIAS,
7800       .access = PL2_RW, .accessfn = e2h_access,
7801       .readfn = gt_virt_tval_read, .writefn = gt_virt_tval_write },
7802     { .name = "CNTP_CVAL_EL02", .state = ARM_CP_STATE_AA64,
7803       .opc0 = 3, .opc1 = 5, .crn = 14, .crm = 2, .opc2 = 2,
7804       .type = ARM_CP_IO | ARM_CP_ALIAS,
7805       .fieldoffset = offsetof(CPUARMState, cp15.c14_timer[GTIMER_PHYS].cval),
7806       .access = PL2_RW, .accessfn = e2h_access,
7807       .writefn = gt_phys_cval_write, .raw_writefn = raw_write },
7808     { .name = "CNTV_CVAL_EL02", .state = ARM_CP_STATE_AA64,
7809       .opc0 = 3, .opc1 = 5, .crn = 14, .crm = 3, .opc2 = 2,
7810       .type = ARM_CP_IO | ARM_CP_ALIAS,
7811       .fieldoffset = offsetof(CPUARMState, cp15.c14_timer[GTIMER_VIRT].cval),
7812       .access = PL2_RW, .accessfn = e2h_access,
7813       .writefn = gt_virt_cval_write, .raw_writefn = raw_write },
7814 #endif
7815 };
7816 
7817 #ifndef CONFIG_USER_ONLY
7818 static const ARMCPRegInfo ats1e1_reginfo[] = {
7819     { .name = "AT_S1E1RP", .state = ARM_CP_STATE_AA64,
7820       .opc0 = 1, .opc1 = 0, .crn = 7, .crm = 9, .opc2 = 0,
7821       .access = PL1_W, .type = ARM_CP_NO_RAW | ARM_CP_RAISES_EXC,
7822       .writefn = ats_write64 },
7823     { .name = "AT_S1E1WP", .state = ARM_CP_STATE_AA64,
7824       .opc0 = 1, .opc1 = 0, .crn = 7, .crm = 9, .opc2 = 1,
7825       .access = PL1_W, .type = ARM_CP_NO_RAW | ARM_CP_RAISES_EXC,
7826       .writefn = ats_write64 },
7827 };
7828 
7829 static const ARMCPRegInfo ats1cp_reginfo[] = {
7830     { .name = "ATS1CPRP",
7831       .cp = 15, .opc1 = 0, .crn = 7, .crm = 9, .opc2 = 0,
7832       .access = PL1_W, .type = ARM_CP_NO_RAW | ARM_CP_RAISES_EXC,
7833       .writefn = ats_write },
7834     { .name = "ATS1CPWP",
7835       .cp = 15, .opc1 = 0, .crn = 7, .crm = 9, .opc2 = 1,
7836       .access = PL1_W, .type = ARM_CP_NO_RAW | ARM_CP_RAISES_EXC,
7837       .writefn = ats_write },
7838 };
7839 #endif
7840 
7841 /*
7842  * ACTLR2 and HACTLR2 map to ACTLR_EL1[63:32] and
7843  * ACTLR_EL2[63:32]. They exist only if the ID_MMFR4.AC2 field
7844  * is non-zero, which is never for ARMv7, optionally in ARMv8
7845  * and mandatorily for ARMv8.2 and up.
7846  * ACTLR2 is banked for S and NS if EL3 is AArch32. Since QEMU's
7847  * implementation is RAZ/WI we can ignore this detail, as we
7848  * do for ACTLR.
7849  */
7850 static const ARMCPRegInfo actlr2_hactlr2_reginfo[] = {
7851     { .name = "ACTLR2", .state = ARM_CP_STATE_AA32,
7852       .cp = 15, .opc1 = 0, .crn = 1, .crm = 0, .opc2 = 3,
7853       .access = PL1_RW, .accessfn = access_tacr,
7854       .type = ARM_CP_CONST, .resetvalue = 0 },
7855     { .name = "HACTLR2", .state = ARM_CP_STATE_AA32,
7856       .cp = 15, .opc1 = 4, .crn = 1, .crm = 0, .opc2 = 3,
7857       .access = PL2_RW, .type = ARM_CP_CONST,
7858       .resetvalue = 0 },
7859 };
7860 
7861 void register_cp_regs_for_features(ARMCPU *cpu)
7862 {
7863     /* Register all the coprocessor registers based on feature bits */
7864     CPUARMState *env = &cpu->env;
7865     if (arm_feature(env, ARM_FEATURE_M)) {
7866         /* M profile has no coprocessor registers */
7867         return;
7868     }
7869 
7870     define_arm_cp_regs(cpu, cp_reginfo);
7871     if (!arm_feature(env, ARM_FEATURE_V8)) {
7872         /*
7873          * Must go early as it is full of wildcards that may be
7874          * overridden by later definitions.
7875          */
7876         define_arm_cp_regs(cpu, not_v8_cp_reginfo);
7877     }
7878 
7879     if (arm_feature(env, ARM_FEATURE_V6)) {
7880         /* The ID registers all have impdef reset values */
7881         ARMCPRegInfo v6_idregs[] = {
7882             { .name = "ID_PFR0", .state = ARM_CP_STATE_BOTH,
7883               .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 1, .opc2 = 0,
7884               .access = PL1_R, .type = ARM_CP_CONST,
7885               .accessfn = access_aa32_tid3,
7886               .resetvalue = cpu->isar.id_pfr0 },
7887             /*
7888              * ID_PFR1 is not a plain ARM_CP_CONST because we don't know
7889              * the value of the GIC field until after we define these regs.
7890              */
7891             { .name = "ID_PFR1", .state = ARM_CP_STATE_BOTH,
7892               .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 1, .opc2 = 1,
7893               .access = PL1_R, .type = ARM_CP_NO_RAW,
7894               .accessfn = access_aa32_tid3,
7895               .readfn = id_pfr1_read,
7896               .writefn = arm_cp_write_ignore },
7897             { .name = "ID_DFR0", .state = ARM_CP_STATE_BOTH,
7898               .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 1, .opc2 = 2,
7899               .access = PL1_R, .type = ARM_CP_CONST,
7900               .accessfn = access_aa32_tid3,
7901               .resetvalue = cpu->isar.id_dfr0 },
7902             { .name = "ID_AFR0", .state = ARM_CP_STATE_BOTH,
7903               .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 1, .opc2 = 3,
7904               .access = PL1_R, .type = ARM_CP_CONST,
7905               .accessfn = access_aa32_tid3,
7906               .resetvalue = cpu->id_afr0 },
7907             { .name = "ID_MMFR0", .state = ARM_CP_STATE_BOTH,
7908               .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 1, .opc2 = 4,
7909               .access = PL1_R, .type = ARM_CP_CONST,
7910               .accessfn = access_aa32_tid3,
7911               .resetvalue = cpu->isar.id_mmfr0 },
7912             { .name = "ID_MMFR1", .state = ARM_CP_STATE_BOTH,
7913               .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 1, .opc2 = 5,
7914               .access = PL1_R, .type = ARM_CP_CONST,
7915               .accessfn = access_aa32_tid3,
7916               .resetvalue = cpu->isar.id_mmfr1 },
7917             { .name = "ID_MMFR2", .state = ARM_CP_STATE_BOTH,
7918               .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 1, .opc2 = 6,
7919               .access = PL1_R, .type = ARM_CP_CONST,
7920               .accessfn = access_aa32_tid3,
7921               .resetvalue = cpu->isar.id_mmfr2 },
7922             { .name = "ID_MMFR3", .state = ARM_CP_STATE_BOTH,
7923               .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 1, .opc2 = 7,
7924               .access = PL1_R, .type = ARM_CP_CONST,
7925               .accessfn = access_aa32_tid3,
7926               .resetvalue = cpu->isar.id_mmfr3 },
7927             { .name = "ID_ISAR0", .state = ARM_CP_STATE_BOTH,
7928               .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 2, .opc2 = 0,
7929               .access = PL1_R, .type = ARM_CP_CONST,
7930               .accessfn = access_aa32_tid3,
7931               .resetvalue = cpu->isar.id_isar0 },
7932             { .name = "ID_ISAR1", .state = ARM_CP_STATE_BOTH,
7933               .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 2, .opc2 = 1,
7934               .access = PL1_R, .type = ARM_CP_CONST,
7935               .accessfn = access_aa32_tid3,
7936               .resetvalue = cpu->isar.id_isar1 },
7937             { .name = "ID_ISAR2", .state = ARM_CP_STATE_BOTH,
7938               .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 2, .opc2 = 2,
7939               .access = PL1_R, .type = ARM_CP_CONST,
7940               .accessfn = access_aa32_tid3,
7941               .resetvalue = cpu->isar.id_isar2 },
7942             { .name = "ID_ISAR3", .state = ARM_CP_STATE_BOTH,
7943               .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 2, .opc2 = 3,
7944               .access = PL1_R, .type = ARM_CP_CONST,
7945               .accessfn = access_aa32_tid3,
7946               .resetvalue = cpu->isar.id_isar3 },
7947             { .name = "ID_ISAR4", .state = ARM_CP_STATE_BOTH,
7948               .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 2, .opc2 = 4,
7949               .access = PL1_R, .type = ARM_CP_CONST,
7950               .accessfn = access_aa32_tid3,
7951               .resetvalue = cpu->isar.id_isar4 },
7952             { .name = "ID_ISAR5", .state = ARM_CP_STATE_BOTH,
7953               .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 2, .opc2 = 5,
7954               .access = PL1_R, .type = ARM_CP_CONST,
7955               .accessfn = access_aa32_tid3,
7956               .resetvalue = cpu->isar.id_isar5 },
7957             { .name = "ID_MMFR4", .state = ARM_CP_STATE_BOTH,
7958               .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 2, .opc2 = 6,
7959               .access = PL1_R, .type = ARM_CP_CONST,
7960               .accessfn = access_aa32_tid3,
7961               .resetvalue = cpu->isar.id_mmfr4 },
7962             { .name = "ID_ISAR6", .state = ARM_CP_STATE_BOTH,
7963               .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 2, .opc2 = 7,
7964               .access = PL1_R, .type = ARM_CP_CONST,
7965               .accessfn = access_aa32_tid3,
7966               .resetvalue = cpu->isar.id_isar6 },
7967         };
7968         define_arm_cp_regs(cpu, v6_idregs);
7969         define_arm_cp_regs(cpu, v6_cp_reginfo);
7970     } else {
7971         define_arm_cp_regs(cpu, not_v6_cp_reginfo);
7972     }
7973     if (arm_feature(env, ARM_FEATURE_V6K)) {
7974         define_arm_cp_regs(cpu, v6k_cp_reginfo);
7975     }
7976     if (arm_feature(env, ARM_FEATURE_V7MP) &&
7977         !arm_feature(env, ARM_FEATURE_PMSA)) {
7978         define_arm_cp_regs(cpu, v7mp_cp_reginfo);
7979     }
7980     if (arm_feature(env, ARM_FEATURE_V7VE)) {
7981         define_arm_cp_regs(cpu, pmovsset_cp_reginfo);
7982     }
7983     if (arm_feature(env, ARM_FEATURE_V7)) {
7984         ARMCPRegInfo clidr = {
7985             .name = "CLIDR", .state = ARM_CP_STATE_BOTH,
7986             .opc0 = 3, .crn = 0, .crm = 0, .opc1 = 1, .opc2 = 1,
7987             .access = PL1_R, .type = ARM_CP_CONST,
7988             .accessfn = access_tid4,
7989             .fgt = FGT_CLIDR_EL1,
7990             .resetvalue = cpu->clidr
7991         };
7992         define_one_arm_cp_reg(cpu, &clidr);
7993         define_arm_cp_regs(cpu, v7_cp_reginfo);
7994         define_debug_regs(cpu);
7995         define_pmu_regs(cpu);
7996     } else {
7997         define_arm_cp_regs(cpu, not_v7_cp_reginfo);
7998     }
7999     if (arm_feature(env, ARM_FEATURE_V8)) {
8000         /*
8001          * v8 ID registers, which all have impdef reset values.
8002          * Note that within the ID register ranges the unused slots
8003          * must all RAZ, not UNDEF; future architecture versions may
8004          * define new registers here.
8005          * ID registers which are AArch64 views of the AArch32 ID registers
8006          * which already existed in v6 and v7 are handled elsewhere,
8007          * in v6_idregs[].
8008          */
8009         int i;
8010         ARMCPRegInfo v8_idregs[] = {
8011             /*
8012              * ID_AA64PFR0_EL1 is not a plain ARM_CP_CONST in system
8013              * emulation because we don't know the right value for the
8014              * GIC field until after we define these regs.
8015              */
8016             { .name = "ID_AA64PFR0_EL1", .state = ARM_CP_STATE_AA64,
8017               .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 4, .opc2 = 0,
8018               .access = PL1_R,
8019 #ifdef CONFIG_USER_ONLY
8020               .type = ARM_CP_CONST,
8021               .resetvalue = cpu->isar.id_aa64pfr0
8022 #else
8023               .type = ARM_CP_NO_RAW,
8024               .accessfn = access_aa64_tid3,
8025               .readfn = id_aa64pfr0_read,
8026               .writefn = arm_cp_write_ignore
8027 #endif
8028             },
8029             { .name = "ID_AA64PFR1_EL1", .state = ARM_CP_STATE_AA64,
8030               .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 4, .opc2 = 1,
8031               .access = PL1_R, .type = ARM_CP_CONST,
8032               .accessfn = access_aa64_tid3,
8033               .resetvalue = cpu->isar.id_aa64pfr1},
8034             { .name = "ID_AA64PFR2_EL1_RESERVED", .state = ARM_CP_STATE_AA64,
8035               .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 4, .opc2 = 2,
8036               .access = PL1_R, .type = ARM_CP_CONST,
8037               .accessfn = access_aa64_tid3,
8038               .resetvalue = 0 },
8039             { .name = "ID_AA64PFR3_EL1_RESERVED", .state = ARM_CP_STATE_AA64,
8040               .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 4, .opc2 = 3,
8041               .access = PL1_R, .type = ARM_CP_CONST,
8042               .accessfn = access_aa64_tid3,
8043               .resetvalue = 0 },
8044             { .name = "ID_AA64ZFR0_EL1", .state = ARM_CP_STATE_AA64,
8045               .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 4, .opc2 = 4,
8046               .access = PL1_R, .type = ARM_CP_CONST,
8047               .accessfn = access_aa64_tid3,
8048               .resetvalue = cpu->isar.id_aa64zfr0 },
8049             { .name = "ID_AA64SMFR0_EL1", .state = ARM_CP_STATE_AA64,
8050               .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 4, .opc2 = 5,
8051               .access = PL1_R, .type = ARM_CP_CONST,
8052               .accessfn = access_aa64_tid3,
8053               .resetvalue = cpu->isar.id_aa64smfr0 },
8054             { .name = "ID_AA64PFR6_EL1_RESERVED", .state = ARM_CP_STATE_AA64,
8055               .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 4, .opc2 = 6,
8056               .access = PL1_R, .type = ARM_CP_CONST,
8057               .accessfn = access_aa64_tid3,
8058               .resetvalue = 0 },
8059             { .name = "ID_AA64PFR7_EL1_RESERVED", .state = ARM_CP_STATE_AA64,
8060               .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 4, .opc2 = 7,
8061               .access = PL1_R, .type = ARM_CP_CONST,
8062               .accessfn = access_aa64_tid3,
8063               .resetvalue = 0 },
8064             { .name = "ID_AA64DFR0_EL1", .state = ARM_CP_STATE_AA64,
8065               .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 5, .opc2 = 0,
8066               .access = PL1_R, .type = ARM_CP_CONST,
8067               .accessfn = access_aa64_tid3,
8068               .resetvalue = cpu->isar.id_aa64dfr0 },
8069             { .name = "ID_AA64DFR1_EL1", .state = ARM_CP_STATE_AA64,
8070               .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 5, .opc2 = 1,
8071               .access = PL1_R, .type = ARM_CP_CONST,
8072               .accessfn = access_aa64_tid3,
8073               .resetvalue = cpu->isar.id_aa64dfr1 },
8074             { .name = "ID_AA64DFR2_EL1_RESERVED", .state = ARM_CP_STATE_AA64,
8075               .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 5, .opc2 = 2,
8076               .access = PL1_R, .type = ARM_CP_CONST,
8077               .accessfn = access_aa64_tid3,
8078               .resetvalue = 0 },
8079             { .name = "ID_AA64DFR3_EL1_RESERVED", .state = ARM_CP_STATE_AA64,
8080               .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 5, .opc2 = 3,
8081               .access = PL1_R, .type = ARM_CP_CONST,
8082               .accessfn = access_aa64_tid3,
8083               .resetvalue = 0 },
8084             { .name = "ID_AA64AFR0_EL1", .state = ARM_CP_STATE_AA64,
8085               .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 5, .opc2 = 4,
8086               .access = PL1_R, .type = ARM_CP_CONST,
8087               .accessfn = access_aa64_tid3,
8088               .resetvalue = cpu->id_aa64afr0 },
8089             { .name = "ID_AA64AFR1_EL1", .state = ARM_CP_STATE_AA64,
8090               .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 5, .opc2 = 5,
8091               .access = PL1_R, .type = ARM_CP_CONST,
8092               .accessfn = access_aa64_tid3,
8093               .resetvalue = cpu->id_aa64afr1 },
8094             { .name = "ID_AA64AFR2_EL1_RESERVED", .state = ARM_CP_STATE_AA64,
8095               .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 5, .opc2 = 6,
8096               .access = PL1_R, .type = ARM_CP_CONST,
8097               .accessfn = access_aa64_tid3,
8098               .resetvalue = 0 },
8099             { .name = "ID_AA64AFR3_EL1_RESERVED", .state = ARM_CP_STATE_AA64,
8100               .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 5, .opc2 = 7,
8101               .access = PL1_R, .type = ARM_CP_CONST,
8102               .accessfn = access_aa64_tid3,
8103               .resetvalue = 0 },
8104             { .name = "ID_AA64ISAR0_EL1", .state = ARM_CP_STATE_AA64,
8105               .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 6, .opc2 = 0,
8106               .access = PL1_R, .type = ARM_CP_CONST,
8107               .accessfn = access_aa64_tid3,
8108               .resetvalue = cpu->isar.id_aa64isar0 },
8109             { .name = "ID_AA64ISAR1_EL1", .state = ARM_CP_STATE_AA64,
8110               .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 6, .opc2 = 1,
8111               .access = PL1_R, .type = ARM_CP_CONST,
8112               .accessfn = access_aa64_tid3,
8113               .resetvalue = cpu->isar.id_aa64isar1 },
8114             { .name = "ID_AA64ISAR2_EL1_RESERVED", .state = ARM_CP_STATE_AA64,
8115               .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 6, .opc2 = 2,
8116               .access = PL1_R, .type = ARM_CP_CONST,
8117               .accessfn = access_aa64_tid3,
8118               .resetvalue = 0 },
8119             { .name = "ID_AA64ISAR3_EL1_RESERVED", .state = ARM_CP_STATE_AA64,
8120               .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 6, .opc2 = 3,
8121               .access = PL1_R, .type = ARM_CP_CONST,
8122               .accessfn = access_aa64_tid3,
8123               .resetvalue = 0 },
8124             { .name = "ID_AA64ISAR4_EL1_RESERVED", .state = ARM_CP_STATE_AA64,
8125               .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 6, .opc2 = 4,
8126               .access = PL1_R, .type = ARM_CP_CONST,
8127               .accessfn = access_aa64_tid3,
8128               .resetvalue = 0 },
8129             { .name = "ID_AA64ISAR5_EL1_RESERVED", .state = ARM_CP_STATE_AA64,
8130               .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 6, .opc2 = 5,
8131               .access = PL1_R, .type = ARM_CP_CONST,
8132               .accessfn = access_aa64_tid3,
8133               .resetvalue = 0 },
8134             { .name = "ID_AA64ISAR6_EL1_RESERVED", .state = ARM_CP_STATE_AA64,
8135               .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 6, .opc2 = 6,
8136               .access = PL1_R, .type = ARM_CP_CONST,
8137               .accessfn = access_aa64_tid3,
8138               .resetvalue = 0 },
8139             { .name = "ID_AA64ISAR7_EL1_RESERVED", .state = ARM_CP_STATE_AA64,
8140               .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 6, .opc2 = 7,
8141               .access = PL1_R, .type = ARM_CP_CONST,
8142               .accessfn = access_aa64_tid3,
8143               .resetvalue = 0 },
8144             { .name = "ID_AA64MMFR0_EL1", .state = ARM_CP_STATE_AA64,
8145               .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 7, .opc2 = 0,
8146               .access = PL1_R, .type = ARM_CP_CONST,
8147               .accessfn = access_aa64_tid3,
8148               .resetvalue = cpu->isar.id_aa64mmfr0 },
8149             { .name = "ID_AA64MMFR1_EL1", .state = ARM_CP_STATE_AA64,
8150               .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 7, .opc2 = 1,
8151               .access = PL1_R, .type = ARM_CP_CONST,
8152               .accessfn = access_aa64_tid3,
8153               .resetvalue = cpu->isar.id_aa64mmfr1 },
8154             { .name = "ID_AA64MMFR2_EL1", .state = ARM_CP_STATE_AA64,
8155               .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 7, .opc2 = 2,
8156               .access = PL1_R, .type = ARM_CP_CONST,
8157               .accessfn = access_aa64_tid3,
8158               .resetvalue = cpu->isar.id_aa64mmfr2 },
8159             { .name = "ID_AA64MMFR3_EL1_RESERVED", .state = ARM_CP_STATE_AA64,
8160               .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 7, .opc2 = 3,
8161               .access = PL1_R, .type = ARM_CP_CONST,
8162               .accessfn = access_aa64_tid3,
8163               .resetvalue = 0 },
8164             { .name = "ID_AA64MMFR4_EL1_RESERVED", .state = ARM_CP_STATE_AA64,
8165               .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 7, .opc2 = 4,
8166               .access = PL1_R, .type = ARM_CP_CONST,
8167               .accessfn = access_aa64_tid3,
8168               .resetvalue = 0 },
8169             { .name = "ID_AA64MMFR5_EL1_RESERVED", .state = ARM_CP_STATE_AA64,
8170               .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 7, .opc2 = 5,
8171               .access = PL1_R, .type = ARM_CP_CONST,
8172               .accessfn = access_aa64_tid3,
8173               .resetvalue = 0 },
8174             { .name = "ID_AA64MMFR6_EL1_RESERVED", .state = ARM_CP_STATE_AA64,
8175               .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 7, .opc2 = 6,
8176               .access = PL1_R, .type = ARM_CP_CONST,
8177               .accessfn = access_aa64_tid3,
8178               .resetvalue = 0 },
8179             { .name = "ID_AA64MMFR7_EL1_RESERVED", .state = ARM_CP_STATE_AA64,
8180               .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 7, .opc2 = 7,
8181               .access = PL1_R, .type = ARM_CP_CONST,
8182               .accessfn = access_aa64_tid3,
8183               .resetvalue = 0 },
8184             { .name = "MVFR0_EL1", .state = ARM_CP_STATE_AA64,
8185               .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 3, .opc2 = 0,
8186               .access = PL1_R, .type = ARM_CP_CONST,
8187               .accessfn = access_aa64_tid3,
8188               .resetvalue = cpu->isar.mvfr0 },
8189             { .name = "MVFR1_EL1", .state = ARM_CP_STATE_AA64,
8190               .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 3, .opc2 = 1,
8191               .access = PL1_R, .type = ARM_CP_CONST,
8192               .accessfn = access_aa64_tid3,
8193               .resetvalue = cpu->isar.mvfr1 },
8194             { .name = "MVFR2_EL1", .state = ARM_CP_STATE_AA64,
8195               .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 3, .opc2 = 2,
8196               .access = PL1_R, .type = ARM_CP_CONST,
8197               .accessfn = access_aa64_tid3,
8198               .resetvalue = cpu->isar.mvfr2 },
8199             /*
8200              * "0, c0, c3, {0,1,2}" are the encodings corresponding to
8201              * AArch64 MVFR[012]_EL1. Define the STATE_AA32 encoding
8202              * as RAZ, since it is in the "reserved for future ID
8203              * registers, RAZ" part of the AArch32 encoding space.
8204              */
8205             { .name = "RES_0_C0_C3_0", .state = ARM_CP_STATE_AA32,
8206               .cp = 15, .opc1 = 0, .crn = 0, .crm = 3, .opc2 = 0,
8207               .access = PL1_R, .type = ARM_CP_CONST,
8208               .accessfn = access_aa64_tid3,
8209               .resetvalue = 0 },
8210             { .name = "RES_0_C0_C3_1", .state = ARM_CP_STATE_AA32,
8211               .cp = 15, .opc1 = 0, .crn = 0, .crm = 3, .opc2 = 1,
8212               .access = PL1_R, .type = ARM_CP_CONST,
8213               .accessfn = access_aa64_tid3,
8214               .resetvalue = 0 },
8215             { .name = "RES_0_C0_C3_2", .state = ARM_CP_STATE_AA32,
8216               .cp = 15, .opc1 = 0, .crn = 0, .crm = 3, .opc2 = 2,
8217               .access = PL1_R, .type = ARM_CP_CONST,
8218               .accessfn = access_aa64_tid3,
8219               .resetvalue = 0 },
8220             /*
8221              * Other encodings in "0, c0, c3, ..." are STATE_BOTH because
8222              * they're also RAZ for AArch64, and in v8 are gradually
8223              * being filled with AArch64-view-of-AArch32-ID-register
8224              * for new ID registers.
8225              */
8226             { .name = "RES_0_C0_C3_3", .state = ARM_CP_STATE_BOTH,
8227               .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 3, .opc2 = 3,
8228               .access = PL1_R, .type = ARM_CP_CONST,
8229               .accessfn = access_aa64_tid3,
8230               .resetvalue = 0 },
8231             { .name = "ID_PFR2", .state = ARM_CP_STATE_BOTH,
8232               .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 3, .opc2 = 4,
8233               .access = PL1_R, .type = ARM_CP_CONST,
8234               .accessfn = access_aa64_tid3,
8235               .resetvalue = cpu->isar.id_pfr2 },
8236             { .name = "ID_DFR1", .state = ARM_CP_STATE_BOTH,
8237               .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 3, .opc2 = 5,
8238               .access = PL1_R, .type = ARM_CP_CONST,
8239               .accessfn = access_aa64_tid3,
8240               .resetvalue = cpu->isar.id_dfr1 },
8241             { .name = "ID_MMFR5", .state = ARM_CP_STATE_BOTH,
8242               .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 3, .opc2 = 6,
8243               .access = PL1_R, .type = ARM_CP_CONST,
8244               .accessfn = access_aa64_tid3,
8245               .resetvalue = cpu->isar.id_mmfr5 },
8246             { .name = "RES_0_C0_C3_7", .state = ARM_CP_STATE_BOTH,
8247               .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 3, .opc2 = 7,
8248               .access = PL1_R, .type = ARM_CP_CONST,
8249               .accessfn = access_aa64_tid3,
8250               .resetvalue = 0 },
8251             { .name = "PMCEID0", .state = ARM_CP_STATE_AA32,
8252               .cp = 15, .opc1 = 0, .crn = 9, .crm = 12, .opc2 = 6,
8253               .access = PL0_R, .accessfn = pmreg_access, .type = ARM_CP_CONST,
8254               .resetvalue = extract64(cpu->pmceid0, 0, 32) },
8255             { .name = "PMCEID0_EL0", .state = ARM_CP_STATE_AA64,
8256               .opc0 = 3, .opc1 = 3, .crn = 9, .crm = 12, .opc2 = 6,
8257               .access = PL0_R, .accessfn = pmreg_access, .type = ARM_CP_CONST,
8258               .resetvalue = cpu->pmceid0 },
8259             { .name = "PMCEID1", .state = ARM_CP_STATE_AA32,
8260               .cp = 15, .opc1 = 0, .crn = 9, .crm = 12, .opc2 = 7,
8261               .access = PL0_R, .accessfn = pmreg_access, .type = ARM_CP_CONST,
8262               .resetvalue = extract64(cpu->pmceid1, 0, 32) },
8263             { .name = "PMCEID1_EL0", .state = ARM_CP_STATE_AA64,
8264               .opc0 = 3, .opc1 = 3, .crn = 9, .crm = 12, .opc2 = 7,
8265               .access = PL0_R, .accessfn = pmreg_access, .type = ARM_CP_CONST,
8266               .resetvalue = cpu->pmceid1 },
8267         };
8268 #ifdef CONFIG_USER_ONLY
8269         static const ARMCPRegUserSpaceInfo v8_user_idregs[] = {
8270             { .name = "ID_AA64PFR0_EL1",
8271               .exported_bits = R_ID_AA64PFR0_FP_MASK |
8272                                R_ID_AA64PFR0_ADVSIMD_MASK |
8273                                R_ID_AA64PFR0_SVE_MASK |
8274                                R_ID_AA64PFR0_DIT_MASK,
8275               .fixed_bits = (0x1u << R_ID_AA64PFR0_EL0_SHIFT) |
8276                             (0x1u << R_ID_AA64PFR0_EL1_SHIFT) },
8277             { .name = "ID_AA64PFR1_EL1",
8278               .exported_bits = R_ID_AA64PFR1_BT_MASK |
8279                                R_ID_AA64PFR1_SSBS_MASK |
8280                                R_ID_AA64PFR1_MTE_MASK |
8281                                R_ID_AA64PFR1_SME_MASK },
8282             { .name = "ID_AA64PFR*_EL1_RESERVED",
8283               .is_glob = true },
8284             { .name = "ID_AA64ZFR0_EL1",
8285               .exported_bits = R_ID_AA64ZFR0_SVEVER_MASK |
8286                                R_ID_AA64ZFR0_AES_MASK |
8287                                R_ID_AA64ZFR0_BITPERM_MASK |
8288                                R_ID_AA64ZFR0_BFLOAT16_MASK |
8289                                R_ID_AA64ZFR0_SHA3_MASK |
8290                                R_ID_AA64ZFR0_SM4_MASK |
8291                                R_ID_AA64ZFR0_I8MM_MASK |
8292                                R_ID_AA64ZFR0_F32MM_MASK |
8293                                R_ID_AA64ZFR0_F64MM_MASK },
8294             { .name = "ID_AA64SMFR0_EL1",
8295               .exported_bits = R_ID_AA64SMFR0_F32F32_MASK |
8296                                R_ID_AA64SMFR0_B16F32_MASK |
8297                                R_ID_AA64SMFR0_F16F32_MASK |
8298                                R_ID_AA64SMFR0_I8I32_MASK |
8299                                R_ID_AA64SMFR0_F64F64_MASK |
8300                                R_ID_AA64SMFR0_I16I64_MASK |
8301                                R_ID_AA64SMFR0_FA64_MASK },
8302             { .name = "ID_AA64MMFR0_EL1",
8303               .exported_bits = R_ID_AA64MMFR0_ECV_MASK,
8304               .fixed_bits = (0xfu << R_ID_AA64MMFR0_TGRAN64_SHIFT) |
8305                             (0xfu << R_ID_AA64MMFR0_TGRAN4_SHIFT) },
8306             { .name = "ID_AA64MMFR1_EL1",
8307               .exported_bits = R_ID_AA64MMFR1_AFP_MASK },
8308             { .name = "ID_AA64MMFR2_EL1",
8309               .exported_bits = R_ID_AA64MMFR2_AT_MASK },
8310             { .name = "ID_AA64MMFR*_EL1_RESERVED",
8311               .is_glob = true },
8312             { .name = "ID_AA64DFR0_EL1",
8313               .fixed_bits = (0x6u << R_ID_AA64DFR0_DEBUGVER_SHIFT) },
8314             { .name = "ID_AA64DFR1_EL1" },
8315             { .name = "ID_AA64DFR*_EL1_RESERVED",
8316               .is_glob = true },
8317             { .name = "ID_AA64AFR*",
8318               .is_glob = true },
8319             { .name = "ID_AA64ISAR0_EL1",
8320               .exported_bits = R_ID_AA64ISAR0_AES_MASK |
8321                                R_ID_AA64ISAR0_SHA1_MASK |
8322                                R_ID_AA64ISAR0_SHA2_MASK |
8323                                R_ID_AA64ISAR0_CRC32_MASK |
8324                                R_ID_AA64ISAR0_ATOMIC_MASK |
8325                                R_ID_AA64ISAR0_RDM_MASK |
8326                                R_ID_AA64ISAR0_SHA3_MASK |
8327                                R_ID_AA64ISAR0_SM3_MASK |
8328                                R_ID_AA64ISAR0_SM4_MASK |
8329                                R_ID_AA64ISAR0_DP_MASK |
8330                                R_ID_AA64ISAR0_FHM_MASK |
8331                                R_ID_AA64ISAR0_TS_MASK |
8332                                R_ID_AA64ISAR0_RNDR_MASK },
8333             { .name = "ID_AA64ISAR1_EL1",
8334               .exported_bits = R_ID_AA64ISAR1_DPB_MASK |
8335                                R_ID_AA64ISAR1_APA_MASK |
8336                                R_ID_AA64ISAR1_API_MASK |
8337                                R_ID_AA64ISAR1_JSCVT_MASK |
8338                                R_ID_AA64ISAR1_FCMA_MASK |
8339                                R_ID_AA64ISAR1_LRCPC_MASK |
8340                                R_ID_AA64ISAR1_GPA_MASK |
8341                                R_ID_AA64ISAR1_GPI_MASK |
8342                                R_ID_AA64ISAR1_FRINTTS_MASK |
8343                                R_ID_AA64ISAR1_SB_MASK |
8344                                R_ID_AA64ISAR1_BF16_MASK |
8345                                R_ID_AA64ISAR1_DGH_MASK |
8346                                R_ID_AA64ISAR1_I8MM_MASK },
8347             { .name = "ID_AA64ISAR2_EL1",
8348               .exported_bits = R_ID_AA64ISAR2_WFXT_MASK |
8349                                R_ID_AA64ISAR2_RPRES_MASK |
8350                                R_ID_AA64ISAR2_GPA3_MASK |
8351                                R_ID_AA64ISAR2_APA3_MASK },
8352             { .name = "ID_AA64ISAR*_EL1_RESERVED",
8353               .is_glob = true },
8354         };
8355         modify_arm_cp_regs(v8_idregs, v8_user_idregs);
8356 #endif
8357         /* RVBAR_EL1 is only implemented if EL1 is the highest EL */
8358         if (!arm_feature(env, ARM_FEATURE_EL3) &&
8359             !arm_feature(env, ARM_FEATURE_EL2)) {
8360             ARMCPRegInfo rvbar = {
8361                 .name = "RVBAR_EL1", .state = ARM_CP_STATE_BOTH,
8362                 .opc0 = 3, .opc1 = 0, .crn = 12, .crm = 0, .opc2 = 1,
8363                 .access = PL1_R,
8364                 .fieldoffset = offsetof(CPUARMState, cp15.rvbar),
8365             };
8366             define_one_arm_cp_reg(cpu, &rvbar);
8367         }
8368         define_arm_cp_regs(cpu, v8_idregs);
8369         define_arm_cp_regs(cpu, v8_cp_reginfo);
8370 
8371         for (i = 4; i < 16; i++) {
8372             /*
8373              * Encodings in "0, c0, {c4-c7}, {0-7}" are RAZ for AArch32.
8374              * For pre-v8 cores there are RAZ patterns for these in
8375              * id_pre_v8_midr_cp_reginfo[]; for v8 we do that here.
8376              * v8 extends the "must RAZ" part of the ID register space
8377              * to also cover c0, 0, c{8-15}, {0-7}.
8378              * These are STATE_AA32 because in the AArch64 sysreg space
8379              * c4-c7 is where the AArch64 ID registers live (and we've
8380              * already defined those in v8_idregs[]), and c8-c15 are not
8381              * "must RAZ" for AArch64.
8382              */
8383             g_autofree char *name = g_strdup_printf("RES_0_C0_C%d_X", i);
8384             ARMCPRegInfo v8_aa32_raz_idregs = {
8385                 .name = name,
8386                 .state = ARM_CP_STATE_AA32,
8387                 .cp = 15, .opc1 = 0, .crn = 0, .crm = i, .opc2 = CP_ANY,
8388                 .access = PL1_R, .type = ARM_CP_CONST,
8389                 .accessfn = access_aa64_tid3,
8390                 .resetvalue = 0 };
8391             define_one_arm_cp_reg(cpu, &v8_aa32_raz_idregs);
8392         }
8393     }
8394 
8395     /*
8396      * Register the base EL2 cpregs.
8397      * Pre v8, these registers are implemented only as part of the
8398      * Virtualization Extensions (EL2 present).  Beginning with v8,
8399      * if EL2 is missing but EL3 is enabled, mostly these become
8400      * RES0 from EL3, with some specific exceptions.
8401      */
8402     if (arm_feature(env, ARM_FEATURE_EL2)
8403         || (arm_feature(env, ARM_FEATURE_EL3)
8404             && arm_feature(env, ARM_FEATURE_V8))) {
8405         uint64_t vmpidr_def = mpidr_read_val(env);
8406         ARMCPRegInfo vpidr_regs[] = {
8407             { .name = "VPIDR", .state = ARM_CP_STATE_AA32,
8408               .cp = 15, .opc1 = 4, .crn = 0, .crm = 0, .opc2 = 0,
8409               .access = PL2_RW, .accessfn = access_el3_aa32ns,
8410               .resetvalue = cpu->midr,
8411               .type = ARM_CP_ALIAS | ARM_CP_EL3_NO_EL2_C_NZ,
8412               .fieldoffset = offsetoflow32(CPUARMState, cp15.vpidr_el2) },
8413             { .name = "VPIDR_EL2", .state = ARM_CP_STATE_AA64,
8414               .opc0 = 3, .opc1 = 4, .crn = 0, .crm = 0, .opc2 = 0,
8415               .access = PL2_RW, .resetvalue = cpu->midr,
8416               .type = ARM_CP_EL3_NO_EL2_C_NZ,
8417               .fieldoffset = offsetof(CPUARMState, cp15.vpidr_el2) },
8418             { .name = "VMPIDR", .state = ARM_CP_STATE_AA32,
8419               .cp = 15, .opc1 = 4, .crn = 0, .crm = 0, .opc2 = 5,
8420               .access = PL2_RW, .accessfn = access_el3_aa32ns,
8421               .resetvalue = vmpidr_def,
8422               .type = ARM_CP_ALIAS | ARM_CP_EL3_NO_EL2_C_NZ,
8423               .fieldoffset = offsetoflow32(CPUARMState, cp15.vmpidr_el2) },
8424             { .name = "VMPIDR_EL2", .state = ARM_CP_STATE_AA64,
8425               .opc0 = 3, .opc1 = 4, .crn = 0, .crm = 0, .opc2 = 5,
8426               .access = PL2_RW, .resetvalue = vmpidr_def,
8427               .type = ARM_CP_EL3_NO_EL2_C_NZ,
8428               .fieldoffset = offsetof(CPUARMState, cp15.vmpidr_el2) },
8429         };
8430         /*
8431          * The only field of MDCR_EL2 that has a defined architectural reset
8432          * value is MDCR_EL2.HPMN which should reset to the value of PMCR_EL0.N.
8433          */
8434         ARMCPRegInfo mdcr_el2 = {
8435             .name = "MDCR_EL2", .state = ARM_CP_STATE_BOTH, .type = ARM_CP_IO,
8436             .opc0 = 3, .opc1 = 4, .crn = 1, .crm = 1, .opc2 = 1,
8437             .writefn = mdcr_el2_write,
8438             .access = PL2_RW, .resetvalue = pmu_num_counters(env),
8439             .fieldoffset = offsetof(CPUARMState, cp15.mdcr_el2),
8440         };
8441         define_one_arm_cp_reg(cpu, &mdcr_el2);
8442         define_arm_cp_regs(cpu, vpidr_regs);
8443         define_arm_cp_regs(cpu, el2_cp_reginfo);
8444         if (arm_feature(env, ARM_FEATURE_V8)) {
8445             define_arm_cp_regs(cpu, el2_v8_cp_reginfo);
8446         }
8447         if (cpu_isar_feature(aa64_sel2, cpu)) {
8448             define_arm_cp_regs(cpu, el2_sec_cp_reginfo);
8449         }
8450         /* RVBAR_EL2 is only implemented if EL2 is the highest EL */
8451         if (!arm_feature(env, ARM_FEATURE_EL3)) {
8452             ARMCPRegInfo rvbar[] = {
8453                 {
8454                     .name = "RVBAR_EL2", .state = ARM_CP_STATE_AA64,
8455                     .opc0 = 3, .opc1 = 4, .crn = 12, .crm = 0, .opc2 = 1,
8456                     .access = PL2_R,
8457                     .fieldoffset = offsetof(CPUARMState, cp15.rvbar),
8458                 },
8459                 {   .name = "RVBAR", .type = ARM_CP_ALIAS,
8460                     .cp = 15, .opc1 = 0, .crn = 12, .crm = 0, .opc2 = 1,
8461                     .access = PL2_R,
8462                     .fieldoffset = offsetof(CPUARMState, cp15.rvbar),
8463                 },
8464             };
8465             define_arm_cp_regs(cpu, rvbar);
8466         }
8467     }
8468 
8469     /* Register the base EL3 cpregs. */
8470     if (arm_feature(env, ARM_FEATURE_EL3)) {
8471         define_arm_cp_regs(cpu, el3_cp_reginfo);
8472         ARMCPRegInfo el3_regs[] = {
8473             { .name = "RVBAR_EL3", .state = ARM_CP_STATE_AA64,
8474               .opc0 = 3, .opc1 = 6, .crn = 12, .crm = 0, .opc2 = 1,
8475               .access = PL3_R,
8476               .fieldoffset = offsetof(CPUARMState, cp15.rvbar),
8477             },
8478             { .name = "SCTLR_EL3", .state = ARM_CP_STATE_AA64,
8479               .opc0 = 3, .opc1 = 6, .crn = 1, .crm = 0, .opc2 = 0,
8480               .access = PL3_RW,
8481               .raw_writefn = raw_write, .writefn = sctlr_write,
8482               .fieldoffset = offsetof(CPUARMState, cp15.sctlr_el[3]),
8483               .resetvalue = cpu->reset_sctlr },
8484         };
8485 
8486         define_arm_cp_regs(cpu, el3_regs);
8487     }
8488     /*
8489      * The behaviour of NSACR is sufficiently various that we don't
8490      * try to describe it in a single reginfo:
8491      *  if EL3 is 64 bit, then trap to EL3 from S EL1,
8492      *     reads as constant 0xc00 from NS EL1 and NS EL2
8493      *  if EL3 is 32 bit, then RW at EL3, RO at NS EL1 and NS EL2
8494      *  if v7 without EL3, register doesn't exist
8495      *  if v8 without EL3, reads as constant 0xc00 from NS EL1 and NS EL2
8496      */
8497     if (arm_feature(env, ARM_FEATURE_EL3)) {
8498         if (arm_feature(env, ARM_FEATURE_AARCH64)) {
8499             static const ARMCPRegInfo nsacr = {
8500                 .name = "NSACR", .type = ARM_CP_CONST,
8501                 .cp = 15, .opc1 = 0, .crn = 1, .crm = 1, .opc2 = 2,
8502                 .access = PL1_RW, .accessfn = nsacr_access,
8503                 .resetvalue = 0xc00
8504             };
8505             define_one_arm_cp_reg(cpu, &nsacr);
8506         } else {
8507             static const ARMCPRegInfo nsacr = {
8508                 .name = "NSACR",
8509                 .cp = 15, .opc1 = 0, .crn = 1, .crm = 1, .opc2 = 2,
8510                 .access = PL3_RW | PL1_R,
8511                 .resetvalue = 0,
8512                 .fieldoffset = offsetof(CPUARMState, cp15.nsacr)
8513             };
8514             define_one_arm_cp_reg(cpu, &nsacr);
8515         }
8516     } else {
8517         if (arm_feature(env, ARM_FEATURE_V8)) {
8518             static const ARMCPRegInfo nsacr = {
8519                 .name = "NSACR", .type = ARM_CP_CONST,
8520                 .cp = 15, .opc1 = 0, .crn = 1, .crm = 1, .opc2 = 2,
8521                 .access = PL1_R,
8522                 .resetvalue = 0xc00
8523             };
8524             define_one_arm_cp_reg(cpu, &nsacr);
8525         }
8526     }
8527 
8528     if (arm_feature(env, ARM_FEATURE_PMSA)) {
8529         if (arm_feature(env, ARM_FEATURE_V6)) {
8530             /* PMSAv6 not implemented */
8531             assert(arm_feature(env, ARM_FEATURE_V7));
8532             define_arm_cp_regs(cpu, vmsa_pmsa_cp_reginfo);
8533             define_arm_cp_regs(cpu, pmsav7_cp_reginfo);
8534         } else {
8535             define_arm_cp_regs(cpu, pmsav5_cp_reginfo);
8536         }
8537     } else {
8538         define_arm_cp_regs(cpu, vmsa_pmsa_cp_reginfo);
8539         define_arm_cp_regs(cpu, vmsa_cp_reginfo);
8540         /* TTCBR2 is introduced with ARMv8.2-AA32HPD.  */
8541         if (cpu_isar_feature(aa32_hpd, cpu)) {
8542             define_one_arm_cp_reg(cpu, &ttbcr2_reginfo);
8543         }
8544     }
8545     if (arm_feature(env, ARM_FEATURE_THUMB2EE)) {
8546         define_arm_cp_regs(cpu, t2ee_cp_reginfo);
8547     }
8548     if (arm_feature(env, ARM_FEATURE_GENERIC_TIMER)) {
8549         define_arm_cp_regs(cpu, generic_timer_cp_reginfo);
8550     }
8551     if (arm_feature(env, ARM_FEATURE_VAPA)) {
8552         define_arm_cp_regs(cpu, vapa_cp_reginfo);
8553     }
8554     if (arm_feature(env, ARM_FEATURE_CACHE_TEST_CLEAN)) {
8555         define_arm_cp_regs(cpu, cache_test_clean_cp_reginfo);
8556     }
8557     if (arm_feature(env, ARM_FEATURE_CACHE_DIRTY_REG)) {
8558         define_arm_cp_regs(cpu, cache_dirty_status_cp_reginfo);
8559     }
8560     if (arm_feature(env, ARM_FEATURE_CACHE_BLOCK_OPS)) {
8561         define_arm_cp_regs(cpu, cache_block_ops_cp_reginfo);
8562     }
8563     if (arm_feature(env, ARM_FEATURE_OMAPCP)) {
8564         define_arm_cp_regs(cpu, omap_cp_reginfo);
8565     }
8566     if (arm_feature(env, ARM_FEATURE_STRONGARM)) {
8567         define_arm_cp_regs(cpu, strongarm_cp_reginfo);
8568     }
8569     if (arm_feature(env, ARM_FEATURE_XSCALE)) {
8570         define_arm_cp_regs(cpu, xscale_cp_reginfo);
8571     }
8572     if (arm_feature(env, ARM_FEATURE_DUMMY_C15_REGS)) {
8573         define_arm_cp_regs(cpu, dummy_c15_cp_reginfo);
8574     }
8575     if (arm_feature(env, ARM_FEATURE_LPAE)) {
8576         define_arm_cp_regs(cpu, lpae_cp_reginfo);
8577     }
8578     if (cpu_isar_feature(aa32_jazelle, cpu)) {
8579         define_arm_cp_regs(cpu, jazelle_regs);
8580     }
8581     /*
8582      * Slightly awkwardly, the OMAP and StrongARM cores need all of
8583      * cp15 crn=0 to be writes-ignored, whereas for other cores they should
8584      * be read-only (ie write causes UNDEF exception).
8585      */
8586     {
8587         ARMCPRegInfo id_pre_v8_midr_cp_reginfo[] = {
8588             /*
8589              * Pre-v8 MIDR space.
8590              * Note that the MIDR isn't a simple constant register because
8591              * of the TI925 behaviour where writes to another register can
8592              * cause the MIDR value to change.
8593              *
8594              * Unimplemented registers in the c15 0 0 0 space default to
8595              * MIDR. Define MIDR first as this entire space, then CTR, TCMTR
8596              * and friends override accordingly.
8597              */
8598             { .name = "MIDR",
8599               .cp = 15, .crn = 0, .crm = 0, .opc1 = 0, .opc2 = CP_ANY,
8600               .access = PL1_R, .resetvalue = cpu->midr,
8601               .writefn = arm_cp_write_ignore, .raw_writefn = raw_write,
8602               .readfn = midr_read,
8603               .fieldoffset = offsetof(CPUARMState, cp15.c0_cpuid),
8604               .type = ARM_CP_OVERRIDE },
8605             /* crn = 0 op1 = 0 crm = 3..7 : currently unassigned; we RAZ. */
8606             { .name = "DUMMY",
8607               .cp = 15, .crn = 0, .crm = 3, .opc1 = 0, .opc2 = CP_ANY,
8608               .access = PL1_R, .type = ARM_CP_CONST, .resetvalue = 0 },
8609             { .name = "DUMMY",
8610               .cp = 15, .crn = 0, .crm = 4, .opc1 = 0, .opc2 = CP_ANY,
8611               .access = PL1_R, .type = ARM_CP_CONST, .resetvalue = 0 },
8612             { .name = "DUMMY",
8613               .cp = 15, .crn = 0, .crm = 5, .opc1 = 0, .opc2 = CP_ANY,
8614               .access = PL1_R, .type = ARM_CP_CONST, .resetvalue = 0 },
8615             { .name = "DUMMY",
8616               .cp = 15, .crn = 0, .crm = 6, .opc1 = 0, .opc2 = CP_ANY,
8617               .access = PL1_R, .type = ARM_CP_CONST, .resetvalue = 0 },
8618             { .name = "DUMMY",
8619               .cp = 15, .crn = 0, .crm = 7, .opc1 = 0, .opc2 = CP_ANY,
8620               .access = PL1_R, .type = ARM_CP_CONST, .resetvalue = 0 },
8621         };
8622         ARMCPRegInfo id_v8_midr_cp_reginfo[] = {
8623             { .name = "MIDR_EL1", .state = ARM_CP_STATE_BOTH,
8624               .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 0, .opc2 = 0,
8625               .access = PL1_R, .type = ARM_CP_NO_RAW, .resetvalue = cpu->midr,
8626               .fgt = FGT_MIDR_EL1,
8627               .fieldoffset = offsetof(CPUARMState, cp15.c0_cpuid),
8628               .readfn = midr_read },
8629             /* crn = 0 op1 = 0 crm = 0 op2 = 7 : AArch32 aliases of MIDR */
8630             { .name = "MIDR", .type = ARM_CP_ALIAS | ARM_CP_CONST,
8631               .cp = 15, .crn = 0, .crm = 0, .opc1 = 0, .opc2 = 7,
8632               .access = PL1_R, .resetvalue = cpu->midr },
8633             { .name = "REVIDR_EL1", .state = ARM_CP_STATE_BOTH,
8634               .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 0, .opc2 = 6,
8635               .access = PL1_R,
8636               .accessfn = access_aa64_tid1,
8637               .fgt = FGT_REVIDR_EL1,
8638               .type = ARM_CP_CONST, .resetvalue = cpu->revidr },
8639         };
8640         ARMCPRegInfo id_v8_midr_alias_cp_reginfo = {
8641             .name = "MIDR", .type = ARM_CP_ALIAS | ARM_CP_CONST,
8642             .cp = 15, .crn = 0, .crm = 0, .opc1 = 0, .opc2 = 4,
8643             .access = PL1_R, .resetvalue = cpu->midr
8644         };
8645         ARMCPRegInfo id_cp_reginfo[] = {
8646             /* These are common to v8 and pre-v8 */
8647             { .name = "CTR",
8648               .cp = 15, .crn = 0, .crm = 0, .opc1 = 0, .opc2 = 1,
8649               .access = PL1_R, .accessfn = ctr_el0_access,
8650               .type = ARM_CP_CONST, .resetvalue = cpu->ctr },
8651             { .name = "CTR_EL0", .state = ARM_CP_STATE_AA64,
8652               .opc0 = 3, .opc1 = 3, .opc2 = 1, .crn = 0, .crm = 0,
8653               .access = PL0_R, .accessfn = ctr_el0_access,
8654               .fgt = FGT_CTR_EL0,
8655               .type = ARM_CP_CONST, .resetvalue = cpu->ctr },
8656             /* TCMTR and TLBTR exist in v8 but have no 64-bit versions */
8657             { .name = "TCMTR",
8658               .cp = 15, .crn = 0, .crm = 0, .opc1 = 0, .opc2 = 2,
8659               .access = PL1_R,
8660               .accessfn = access_aa32_tid1,
8661               .type = ARM_CP_CONST, .resetvalue = 0 },
8662         };
8663         /* TLBTR is specific to VMSA */
8664         ARMCPRegInfo id_tlbtr_reginfo = {
8665               .name = "TLBTR",
8666               .cp = 15, .crn = 0, .crm = 0, .opc1 = 0, .opc2 = 3,
8667               .access = PL1_R,
8668               .accessfn = access_aa32_tid1,
8669               .type = ARM_CP_CONST, .resetvalue = 0,
8670         };
8671         /* MPUIR is specific to PMSA V6+ */
8672         ARMCPRegInfo id_mpuir_reginfo = {
8673               .name = "MPUIR",
8674               .cp = 15, .crn = 0, .crm = 0, .opc1 = 0, .opc2 = 4,
8675               .access = PL1_R, .type = ARM_CP_CONST,
8676               .resetvalue = cpu->pmsav7_dregion << 8
8677         };
8678         /* HMPUIR is specific to PMSA V8 */
8679         ARMCPRegInfo id_hmpuir_reginfo = {
8680             .name = "HMPUIR",
8681             .cp = 15, .opc1 = 4, .crn = 0, .crm = 0, .opc2 = 4,
8682             .access = PL2_R, .type = ARM_CP_CONST,
8683             .resetvalue = cpu->pmsav8r_hdregion
8684         };
8685         static const ARMCPRegInfo crn0_wi_reginfo = {
8686             .name = "CRN0_WI", .cp = 15, .crn = 0, .crm = CP_ANY,
8687             .opc1 = CP_ANY, .opc2 = CP_ANY, .access = PL1_W,
8688             .type = ARM_CP_NOP | ARM_CP_OVERRIDE
8689         };
8690 #ifdef CONFIG_USER_ONLY
8691         static const ARMCPRegUserSpaceInfo id_v8_user_midr_cp_reginfo[] = {
8692             { .name = "MIDR_EL1",
8693               .exported_bits = R_MIDR_EL1_REVISION_MASK |
8694                                R_MIDR_EL1_PARTNUM_MASK |
8695                                R_MIDR_EL1_ARCHITECTURE_MASK |
8696                                R_MIDR_EL1_VARIANT_MASK |
8697                                R_MIDR_EL1_IMPLEMENTER_MASK },
8698             { .name = "REVIDR_EL1" },
8699         };
8700         modify_arm_cp_regs(id_v8_midr_cp_reginfo, id_v8_user_midr_cp_reginfo);
8701 #endif
8702         if (arm_feature(env, ARM_FEATURE_OMAPCP) ||
8703             arm_feature(env, ARM_FEATURE_STRONGARM)) {
8704             size_t i;
8705             /*
8706              * Register the blanket "writes ignored" value first to cover the
8707              * whole space. Then update the specific ID registers to allow write
8708              * access, so that they ignore writes rather than causing them to
8709              * UNDEF.
8710              */
8711             define_one_arm_cp_reg(cpu, &crn0_wi_reginfo);
8712             for (i = 0; i < ARRAY_SIZE(id_pre_v8_midr_cp_reginfo); ++i) {
8713                 id_pre_v8_midr_cp_reginfo[i].access = PL1_RW;
8714             }
8715             for (i = 0; i < ARRAY_SIZE(id_cp_reginfo); ++i) {
8716                 id_cp_reginfo[i].access = PL1_RW;
8717             }
8718             id_mpuir_reginfo.access = PL1_RW;
8719             id_tlbtr_reginfo.access = PL1_RW;
8720         }
8721         if (arm_feature(env, ARM_FEATURE_V8)) {
8722             define_arm_cp_regs(cpu, id_v8_midr_cp_reginfo);
8723             if (!arm_feature(env, ARM_FEATURE_PMSA)) {
8724                 define_one_arm_cp_reg(cpu, &id_v8_midr_alias_cp_reginfo);
8725             }
8726         } else {
8727             define_arm_cp_regs(cpu, id_pre_v8_midr_cp_reginfo);
8728         }
8729         define_arm_cp_regs(cpu, id_cp_reginfo);
8730         if (!arm_feature(env, ARM_FEATURE_PMSA)) {
8731             define_one_arm_cp_reg(cpu, &id_tlbtr_reginfo);
8732         } else if (arm_feature(env, ARM_FEATURE_PMSA) &&
8733                    arm_feature(env, ARM_FEATURE_V8)) {
8734             uint32_t i = 0;
8735             char *tmp_string;
8736 
8737             define_one_arm_cp_reg(cpu, &id_mpuir_reginfo);
8738             define_one_arm_cp_reg(cpu, &id_hmpuir_reginfo);
8739             define_arm_cp_regs(cpu, pmsav8r_cp_reginfo);
8740 
8741             /* Register alias is only valid for first 32 indexes */
8742             for (i = 0; i < MIN(cpu->pmsav7_dregion, 32); ++i) {
8743                 uint8_t crm = 0b1000 | extract32(i, 1, 3);
8744                 uint8_t opc1 = extract32(i, 4, 1);
8745                 uint8_t opc2 = extract32(i, 0, 1) << 2;
8746 
8747                 tmp_string = g_strdup_printf("PRBAR%u", i);
8748                 ARMCPRegInfo tmp_prbarn_reginfo = {
8749                     .name = tmp_string, .type = ARM_CP_ALIAS | ARM_CP_NO_RAW,
8750                     .cp = 15, .opc1 = opc1, .crn = 6, .crm = crm, .opc2 = opc2,
8751                     .access = PL1_RW, .resetvalue = 0,
8752                     .accessfn = access_tvm_trvm,
8753                     .writefn = pmsav8r_regn_write, .readfn = pmsav8r_regn_read
8754                 };
8755                 define_one_arm_cp_reg(cpu, &tmp_prbarn_reginfo);
8756                 g_free(tmp_string);
8757 
8758                 opc2 = extract32(i, 0, 1) << 2 | 0x1;
8759                 tmp_string = g_strdup_printf("PRLAR%u", i);
8760                 ARMCPRegInfo tmp_prlarn_reginfo = {
8761                     .name = tmp_string, .type = ARM_CP_ALIAS | ARM_CP_NO_RAW,
8762                     .cp = 15, .opc1 = opc1, .crn = 6, .crm = crm, .opc2 = opc2,
8763                     .access = PL1_RW, .resetvalue = 0,
8764                     .accessfn = access_tvm_trvm,
8765                     .writefn = pmsav8r_regn_write, .readfn = pmsav8r_regn_read
8766                 };
8767                 define_one_arm_cp_reg(cpu, &tmp_prlarn_reginfo);
8768                 g_free(tmp_string);
8769             }
8770 
8771             /* Register alias is only valid for first 32 indexes */
8772             for (i = 0; i < MIN(cpu->pmsav8r_hdregion, 32); ++i) {
8773                 uint8_t crm = 0b1000 | extract32(i, 1, 3);
8774                 uint8_t opc1 = 0b100 | extract32(i, 4, 1);
8775                 uint8_t opc2 = extract32(i, 0, 1) << 2;
8776 
8777                 tmp_string = g_strdup_printf("HPRBAR%u", i);
8778                 ARMCPRegInfo tmp_hprbarn_reginfo = {
8779                     .name = tmp_string,
8780                     .type = ARM_CP_NO_RAW,
8781                     .cp = 15, .opc1 = opc1, .crn = 6, .crm = crm, .opc2 = opc2,
8782                     .access = PL2_RW, .resetvalue = 0,
8783                     .writefn = pmsav8r_regn_write, .readfn = pmsav8r_regn_read
8784                 };
8785                 define_one_arm_cp_reg(cpu, &tmp_hprbarn_reginfo);
8786                 g_free(tmp_string);
8787 
8788                 opc2 = extract32(i, 0, 1) << 2 | 0x1;
8789                 tmp_string = g_strdup_printf("HPRLAR%u", i);
8790                 ARMCPRegInfo tmp_hprlarn_reginfo = {
8791                     .name = tmp_string,
8792                     .type = ARM_CP_NO_RAW,
8793                     .cp = 15, .opc1 = opc1, .crn = 6, .crm = crm, .opc2 = opc2,
8794                     .access = PL2_RW, .resetvalue = 0,
8795                     .writefn = pmsav8r_regn_write, .readfn = pmsav8r_regn_read
8796                 };
8797                 define_one_arm_cp_reg(cpu, &tmp_hprlarn_reginfo);
8798                 g_free(tmp_string);
8799             }
8800         } else if (arm_feature(env, ARM_FEATURE_V7)) {
8801             define_one_arm_cp_reg(cpu, &id_mpuir_reginfo);
8802         }
8803     }
8804 
8805     if (arm_feature(env, ARM_FEATURE_MPIDR)) {
8806         ARMCPRegInfo mpidr_cp_reginfo[] = {
8807             { .name = "MPIDR_EL1", .state = ARM_CP_STATE_BOTH,
8808               .opc0 = 3, .crn = 0, .crm = 0, .opc1 = 0, .opc2 = 5,
8809               .fgt = FGT_MPIDR_EL1,
8810               .access = PL1_R, .readfn = mpidr_read, .type = ARM_CP_NO_RAW },
8811         };
8812 #ifdef CONFIG_USER_ONLY
8813         static const ARMCPRegUserSpaceInfo mpidr_user_cp_reginfo[] = {
8814             { .name = "MPIDR_EL1",
8815               .fixed_bits = 0x0000000080000000 },
8816         };
8817         modify_arm_cp_regs(mpidr_cp_reginfo, mpidr_user_cp_reginfo);
8818 #endif
8819         define_arm_cp_regs(cpu, mpidr_cp_reginfo);
8820     }
8821 
8822     if (arm_feature(env, ARM_FEATURE_AUXCR)) {
8823         ARMCPRegInfo auxcr_reginfo[] = {
8824             { .name = "ACTLR_EL1", .state = ARM_CP_STATE_BOTH,
8825               .opc0 = 3, .opc1 = 0, .crn = 1, .crm = 0, .opc2 = 1,
8826               .access = PL1_RW, .accessfn = access_tacr,
8827               .type = ARM_CP_CONST, .resetvalue = cpu->reset_auxcr },
8828             { .name = "ACTLR_EL2", .state = ARM_CP_STATE_BOTH,
8829               .opc0 = 3, .opc1 = 4, .crn = 1, .crm = 0, .opc2 = 1,
8830               .access = PL2_RW, .type = ARM_CP_CONST,
8831               .resetvalue = 0 },
8832             { .name = "ACTLR_EL3", .state = ARM_CP_STATE_AA64,
8833               .opc0 = 3, .opc1 = 6, .crn = 1, .crm = 0, .opc2 = 1,
8834               .access = PL3_RW, .type = ARM_CP_CONST,
8835               .resetvalue = 0 },
8836         };
8837         define_arm_cp_regs(cpu, auxcr_reginfo);
8838         if (cpu_isar_feature(aa32_ac2, cpu)) {
8839             define_arm_cp_regs(cpu, actlr2_hactlr2_reginfo);
8840         }
8841     }
8842 
8843     if (arm_feature(env, ARM_FEATURE_CBAR)) {
8844         /*
8845          * CBAR is IMPDEF, but common on Arm Cortex-A implementations.
8846          * There are two flavours:
8847          *  (1) older 32-bit only cores have a simple 32-bit CBAR
8848          *  (2) 64-bit cores have a 64-bit CBAR visible to AArch64, plus a
8849          *      32-bit register visible to AArch32 at a different encoding
8850          *      to the "flavour 1" register and with the bits rearranged to
8851          *      be able to squash a 64-bit address into the 32-bit view.
8852          * We distinguish the two via the ARM_FEATURE_AARCH64 flag, but
8853          * in future if we support AArch32-only configs of some of the
8854          * AArch64 cores we might need to add a specific feature flag
8855          * to indicate cores with "flavour 2" CBAR.
8856          */
8857         if (arm_feature(env, ARM_FEATURE_AARCH64)) {
8858             /* 32 bit view is [31:18] 0...0 [43:32]. */
8859             uint32_t cbar32 = (extract64(cpu->reset_cbar, 18, 14) << 18)
8860                 | extract64(cpu->reset_cbar, 32, 12);
8861             ARMCPRegInfo cbar_reginfo[] = {
8862                 { .name = "CBAR",
8863                   .type = ARM_CP_CONST,
8864                   .cp = 15, .crn = 15, .crm = 3, .opc1 = 1, .opc2 = 0,
8865                   .access = PL1_R, .resetvalue = cbar32 },
8866                 { .name = "CBAR_EL1", .state = ARM_CP_STATE_AA64,
8867                   .type = ARM_CP_CONST,
8868                   .opc0 = 3, .opc1 = 1, .crn = 15, .crm = 3, .opc2 = 0,
8869                   .access = PL1_R, .resetvalue = cpu->reset_cbar },
8870             };
8871             /* We don't implement a r/w 64 bit CBAR currently */
8872             assert(arm_feature(env, ARM_FEATURE_CBAR_RO));
8873             define_arm_cp_regs(cpu, cbar_reginfo);
8874         } else {
8875             ARMCPRegInfo cbar = {
8876                 .name = "CBAR",
8877                 .cp = 15, .crn = 15, .crm = 0, .opc1 = 4, .opc2 = 0,
8878                 .access = PL1_R | PL3_W, .resetvalue = cpu->reset_cbar,
8879                 .fieldoffset = offsetof(CPUARMState,
8880                                         cp15.c15_config_base_address)
8881             };
8882             if (arm_feature(env, ARM_FEATURE_CBAR_RO)) {
8883                 cbar.access = PL1_R;
8884                 cbar.fieldoffset = 0;
8885                 cbar.type = ARM_CP_CONST;
8886             }
8887             define_one_arm_cp_reg(cpu, &cbar);
8888         }
8889     }
8890 
8891     if (arm_feature(env, ARM_FEATURE_VBAR)) {
8892         static const ARMCPRegInfo vbar_cp_reginfo[] = {
8893             { .name = "VBAR", .state = ARM_CP_STATE_BOTH,
8894               .opc0 = 3, .crn = 12, .crm = 0, .opc1 = 0, .opc2 = 0,
8895               .access = PL1_RW, .writefn = vbar_write,
8896               .fgt = FGT_VBAR_EL1,
8897               .bank_fieldoffsets = { offsetof(CPUARMState, cp15.vbar_s),
8898                                      offsetof(CPUARMState, cp15.vbar_ns) },
8899               .resetvalue = 0 },
8900         };
8901         define_arm_cp_regs(cpu, vbar_cp_reginfo);
8902     }
8903 
8904     /* Generic registers whose values depend on the implementation */
8905     {
8906         ARMCPRegInfo sctlr = {
8907             .name = "SCTLR", .state = ARM_CP_STATE_BOTH,
8908             .opc0 = 3, .opc1 = 0, .crn = 1, .crm = 0, .opc2 = 0,
8909             .access = PL1_RW, .accessfn = access_tvm_trvm,
8910             .fgt = FGT_SCTLR_EL1,
8911             .bank_fieldoffsets = { offsetof(CPUARMState, cp15.sctlr_s),
8912                                    offsetof(CPUARMState, cp15.sctlr_ns) },
8913             .writefn = sctlr_write, .resetvalue = cpu->reset_sctlr,
8914             .raw_writefn = raw_write,
8915         };
8916         if (arm_feature(env, ARM_FEATURE_XSCALE)) {
8917             /*
8918              * Normally we would always end the TB on an SCTLR write, but Linux
8919              * arch/arm/mach-pxa/sleep.S expects two instructions following
8920              * an MMU enable to execute from cache.  Imitate this behaviour.
8921              */
8922             sctlr.type |= ARM_CP_SUPPRESS_TB_END;
8923         }
8924         define_one_arm_cp_reg(cpu, &sctlr);
8925 
8926         if (arm_feature(env, ARM_FEATURE_PMSA) &&
8927             arm_feature(env, ARM_FEATURE_V8)) {
8928             ARMCPRegInfo vsctlr = {
8929                 .name = "VSCTLR", .state = ARM_CP_STATE_AA32,
8930                 .cp = 15, .opc1 = 4, .crn = 2, .crm = 0, .opc2 = 0,
8931                 .access = PL2_RW, .resetvalue = 0x0,
8932                 .fieldoffset = offsetoflow32(CPUARMState, cp15.vsctlr),
8933             };
8934             define_one_arm_cp_reg(cpu, &vsctlr);
8935         }
8936     }
8937 
8938     if (cpu_isar_feature(aa64_lor, cpu)) {
8939         define_arm_cp_regs(cpu, lor_reginfo);
8940     }
8941     if (cpu_isar_feature(aa64_pan, cpu)) {
8942         define_one_arm_cp_reg(cpu, &pan_reginfo);
8943     }
8944 #ifndef CONFIG_USER_ONLY
8945     if (cpu_isar_feature(aa64_ats1e1, cpu)) {
8946         define_arm_cp_regs(cpu, ats1e1_reginfo);
8947     }
8948     if (cpu_isar_feature(aa32_ats1e1, cpu)) {
8949         define_arm_cp_regs(cpu, ats1cp_reginfo);
8950     }
8951 #endif
8952     if (cpu_isar_feature(aa64_uao, cpu)) {
8953         define_one_arm_cp_reg(cpu, &uao_reginfo);
8954     }
8955 
8956     if (cpu_isar_feature(aa64_dit, cpu)) {
8957         define_one_arm_cp_reg(cpu, &dit_reginfo);
8958     }
8959     if (cpu_isar_feature(aa64_ssbs, cpu)) {
8960         define_one_arm_cp_reg(cpu, &ssbs_reginfo);
8961     }
8962     if (cpu_isar_feature(any_ras, cpu)) {
8963         define_arm_cp_regs(cpu, minimal_ras_reginfo);
8964     }
8965 
8966     if (cpu_isar_feature(aa64_vh, cpu) ||
8967         cpu_isar_feature(aa64_debugv8p2, cpu)) {
8968         define_one_arm_cp_reg(cpu, &contextidr_el2);
8969     }
8970     if (arm_feature(env, ARM_FEATURE_EL2) && cpu_isar_feature(aa64_vh, cpu)) {
8971         define_arm_cp_regs(cpu, vhe_reginfo);
8972     }
8973 
8974     if (cpu_isar_feature(aa64_sve, cpu)) {
8975         define_arm_cp_regs(cpu, zcr_reginfo);
8976     }
8977 
8978     if (cpu_isar_feature(aa64_hcx, cpu)) {
8979         define_one_arm_cp_reg(cpu, &hcrx_el2_reginfo);
8980     }
8981 
8982 #ifdef TARGET_AARCH64
8983     if (cpu_isar_feature(aa64_sme, cpu)) {
8984         define_arm_cp_regs(cpu, sme_reginfo);
8985     }
8986     if (cpu_isar_feature(aa64_pauth, cpu)) {
8987         define_arm_cp_regs(cpu, pauth_reginfo);
8988     }
8989     if (cpu_isar_feature(aa64_rndr, cpu)) {
8990         define_arm_cp_regs(cpu, rndr_reginfo);
8991     }
8992     if (cpu_isar_feature(aa64_tlbirange, cpu)) {
8993         define_arm_cp_regs(cpu, tlbirange_reginfo);
8994     }
8995     if (cpu_isar_feature(aa64_tlbios, cpu)) {
8996         define_arm_cp_regs(cpu, tlbios_reginfo);
8997     }
8998 #ifndef CONFIG_USER_ONLY
8999     /* Data Cache clean instructions up to PoP */
9000     if (cpu_isar_feature(aa64_dcpop, cpu)) {
9001         define_one_arm_cp_reg(cpu, dcpop_reg);
9002 
9003         if (cpu_isar_feature(aa64_dcpodp, cpu)) {
9004             define_one_arm_cp_reg(cpu, dcpodp_reg);
9005         }
9006     }
9007 #endif /*CONFIG_USER_ONLY*/
9008 
9009     /*
9010      * If full MTE is enabled, add all of the system registers.
9011      * If only "instructions available at EL0" are enabled,
9012      * then define only a RAZ/WI version of PSTATE.TCO.
9013      */
9014     if (cpu_isar_feature(aa64_mte, cpu)) {
9015         define_arm_cp_regs(cpu, mte_reginfo);
9016         define_arm_cp_regs(cpu, mte_el0_cacheop_reginfo);
9017     } else if (cpu_isar_feature(aa64_mte_insn_reg, cpu)) {
9018         define_arm_cp_regs(cpu, mte_tco_ro_reginfo);
9019         define_arm_cp_regs(cpu, mte_el0_cacheop_reginfo);
9020     }
9021 
9022     if (cpu_isar_feature(aa64_scxtnum, cpu)) {
9023         define_arm_cp_regs(cpu, scxtnum_reginfo);
9024     }
9025 
9026     if (cpu_isar_feature(aa64_fgt, cpu)) {
9027         define_arm_cp_regs(cpu, fgt_reginfo);
9028     }
9029 #endif
9030 
9031     if (cpu_isar_feature(any_predinv, cpu)) {
9032         define_arm_cp_regs(cpu, predinv_reginfo);
9033     }
9034 
9035     if (cpu_isar_feature(any_ccidx, cpu)) {
9036         define_arm_cp_regs(cpu, ccsidr2_reginfo);
9037     }
9038 
9039 #ifndef CONFIG_USER_ONLY
9040     /*
9041      * Register redirections and aliases must be done last,
9042      * after the registers from the other extensions have been defined.
9043      */
9044     if (arm_feature(env, ARM_FEATURE_EL2) && cpu_isar_feature(aa64_vh, cpu)) {
9045         define_arm_vh_e2h_redirects_aliases(cpu);
9046     }
9047 #endif
9048 }
9049 
9050 /* Sort alphabetically by type name, except for "any". */
9051 static gint arm_cpu_list_compare(gconstpointer a, gconstpointer b)
9052 {
9053     ObjectClass *class_a = (ObjectClass *)a;
9054     ObjectClass *class_b = (ObjectClass *)b;
9055     const char *name_a, *name_b;
9056 
9057     name_a = object_class_get_name(class_a);
9058     name_b = object_class_get_name(class_b);
9059     if (strcmp(name_a, "any-" TYPE_ARM_CPU) == 0) {
9060         return 1;
9061     } else if (strcmp(name_b, "any-" TYPE_ARM_CPU) == 0) {
9062         return -1;
9063     } else {
9064         return strcmp(name_a, name_b);
9065     }
9066 }
9067 
9068 static void arm_cpu_list_entry(gpointer data, gpointer user_data)
9069 {
9070     ObjectClass *oc = data;
9071     CPUClass *cc = CPU_CLASS(oc);
9072     const char *typename;
9073     char *name;
9074 
9075     typename = object_class_get_name(oc);
9076     name = g_strndup(typename, strlen(typename) - strlen("-" TYPE_ARM_CPU));
9077     if (cc->deprecation_note) {
9078         qemu_printf("  %s (deprecated)\n", name);
9079     } else {
9080         qemu_printf("  %s\n", name);
9081     }
9082     g_free(name);
9083 }
9084 
9085 void arm_cpu_list(void)
9086 {
9087     GSList *list;
9088 
9089     list = object_class_get_list(TYPE_ARM_CPU, false);
9090     list = g_slist_sort(list, arm_cpu_list_compare);
9091     qemu_printf("Available CPUs:\n");
9092     g_slist_foreach(list, arm_cpu_list_entry, NULL);
9093     g_slist_free(list);
9094 }
9095 
9096 static void arm_cpu_add_definition(gpointer data, gpointer user_data)
9097 {
9098     ObjectClass *oc = data;
9099     CpuDefinitionInfoList **cpu_list = user_data;
9100     CpuDefinitionInfo *info;
9101     const char *typename;
9102 
9103     typename = object_class_get_name(oc);
9104     info = g_malloc0(sizeof(*info));
9105     info->name = g_strndup(typename,
9106                            strlen(typename) - strlen("-" TYPE_ARM_CPU));
9107     info->q_typename = g_strdup(typename);
9108 
9109     QAPI_LIST_PREPEND(*cpu_list, info);
9110 }
9111 
9112 CpuDefinitionInfoList *qmp_query_cpu_definitions(Error **errp)
9113 {
9114     CpuDefinitionInfoList *cpu_list = NULL;
9115     GSList *list;
9116 
9117     list = object_class_get_list(TYPE_ARM_CPU, false);
9118     g_slist_foreach(list, arm_cpu_add_definition, &cpu_list);
9119     g_slist_free(list);
9120 
9121     return cpu_list;
9122 }
9123 
9124 /*
9125  * Private utility function for define_one_arm_cp_reg_with_opaque():
9126  * add a single reginfo struct to the hash table.
9127  */
9128 static void add_cpreg_to_hashtable(ARMCPU *cpu, const ARMCPRegInfo *r,
9129                                    void *opaque, CPState state,
9130                                    CPSecureState secstate,
9131                                    int crm, int opc1, int opc2,
9132                                    const char *name)
9133 {
9134     CPUARMState *env = &cpu->env;
9135     uint32_t key;
9136     ARMCPRegInfo *r2;
9137     bool is64 = r->type & ARM_CP_64BIT;
9138     bool ns = secstate & ARM_CP_SECSTATE_NS;
9139     int cp = r->cp;
9140     size_t name_len;
9141     bool make_const;
9142 
9143     switch (state) {
9144     case ARM_CP_STATE_AA32:
9145         /* We assume it is a cp15 register if the .cp field is left unset. */
9146         if (cp == 0 && r->state == ARM_CP_STATE_BOTH) {
9147             cp = 15;
9148         }
9149         key = ENCODE_CP_REG(cp, is64, ns, r->crn, crm, opc1, opc2);
9150         break;
9151     case ARM_CP_STATE_AA64:
9152         /*
9153          * To allow abbreviation of ARMCPRegInfo definitions, we treat
9154          * cp == 0 as equivalent to the value for "standard guest-visible
9155          * sysreg".  STATE_BOTH definitions are also always "standard sysreg"
9156          * in their AArch64 view (the .cp value may be non-zero for the
9157          * benefit of the AArch32 view).
9158          */
9159         if (cp == 0 || r->state == ARM_CP_STATE_BOTH) {
9160             cp = CP_REG_ARM64_SYSREG_CP;
9161         }
9162         key = ENCODE_AA64_CP_REG(cp, r->crn, crm, r->opc0, opc1, opc2);
9163         break;
9164     default:
9165         g_assert_not_reached();
9166     }
9167 
9168     /* Overriding of an existing definition must be explicitly requested. */
9169     if (!(r->type & ARM_CP_OVERRIDE)) {
9170         const ARMCPRegInfo *oldreg = get_arm_cp_reginfo(cpu->cp_regs, key);
9171         if (oldreg) {
9172             assert(oldreg->type & ARM_CP_OVERRIDE);
9173         }
9174     }
9175 
9176     /*
9177      * Eliminate registers that are not present because the EL is missing.
9178      * Doing this here makes it easier to put all registers for a given
9179      * feature into the same ARMCPRegInfo array and define them all at once.
9180      */
9181     make_const = false;
9182     if (arm_feature(env, ARM_FEATURE_EL3)) {
9183         /*
9184          * An EL2 register without EL2 but with EL3 is (usually) RES0.
9185          * See rule RJFFP in section D1.1.3 of DDI0487H.a.
9186          */
9187         int min_el = ctz32(r->access) / 2;
9188         if (min_el == 2 && !arm_feature(env, ARM_FEATURE_EL2)) {
9189             if (r->type & ARM_CP_EL3_NO_EL2_UNDEF) {
9190                 return;
9191             }
9192             make_const = !(r->type & ARM_CP_EL3_NO_EL2_KEEP);
9193         }
9194     } else {
9195         CPAccessRights max_el = (arm_feature(env, ARM_FEATURE_EL2)
9196                                  ? PL2_RW : PL1_RW);
9197         if ((r->access & max_el) == 0) {
9198             return;
9199         }
9200     }
9201 
9202     /* Combine cpreg and name into one allocation. */
9203     name_len = strlen(name) + 1;
9204     r2 = g_malloc(sizeof(*r2) + name_len);
9205     *r2 = *r;
9206     r2->name = memcpy(r2 + 1, name, name_len);
9207 
9208     /*
9209      * Update fields to match the instantiation, overwiting wildcards
9210      * such as CP_ANY, ARM_CP_STATE_BOTH, or ARM_CP_SECSTATE_BOTH.
9211      */
9212     r2->cp = cp;
9213     r2->crm = crm;
9214     r2->opc1 = opc1;
9215     r2->opc2 = opc2;
9216     r2->state = state;
9217     r2->secure = secstate;
9218     if (opaque) {
9219         r2->opaque = opaque;
9220     }
9221 
9222     if (make_const) {
9223         /* This should not have been a very special register to begin. */
9224         int old_special = r2->type & ARM_CP_SPECIAL_MASK;
9225         assert(old_special == 0 || old_special == ARM_CP_NOP);
9226         /*
9227          * Set the special function to CONST, retaining the other flags.
9228          * This is important for e.g. ARM_CP_SVE so that we still
9229          * take the SVE trap if CPTR_EL3.EZ == 0.
9230          */
9231         r2->type = (r2->type & ~ARM_CP_SPECIAL_MASK) | ARM_CP_CONST;
9232         /*
9233          * Usually, these registers become RES0, but there are a few
9234          * special cases like VPIDR_EL2 which have a constant non-zero
9235          * value with writes ignored.
9236          */
9237         if (!(r->type & ARM_CP_EL3_NO_EL2_C_NZ)) {
9238             r2->resetvalue = 0;
9239         }
9240         /*
9241          * ARM_CP_CONST has precedence, so removing the callbacks and
9242          * offsets are not strictly necessary, but it is potentially
9243          * less confusing to debug later.
9244          */
9245         r2->readfn = NULL;
9246         r2->writefn = NULL;
9247         r2->raw_readfn = NULL;
9248         r2->raw_writefn = NULL;
9249         r2->resetfn = NULL;
9250         r2->fieldoffset = 0;
9251         r2->bank_fieldoffsets[0] = 0;
9252         r2->bank_fieldoffsets[1] = 0;
9253     } else {
9254         bool isbanked = r->bank_fieldoffsets[0] && r->bank_fieldoffsets[1];
9255 
9256         if (isbanked) {
9257             /*
9258              * Register is banked (using both entries in array).
9259              * Overwriting fieldoffset as the array is only used to define
9260              * banked registers but later only fieldoffset is used.
9261              */
9262             r2->fieldoffset = r->bank_fieldoffsets[ns];
9263         }
9264         if (state == ARM_CP_STATE_AA32) {
9265             if (isbanked) {
9266                 /*
9267                  * If the register is banked then we don't need to migrate or
9268                  * reset the 32-bit instance in certain cases:
9269                  *
9270                  * 1) If the register has both 32-bit and 64-bit instances
9271                  *    then we can count on the 64-bit instance taking care
9272                  *    of the non-secure bank.
9273                  * 2) If ARMv8 is enabled then we can count on a 64-bit
9274                  *    version taking care of the secure bank.  This requires
9275                  *    that separate 32 and 64-bit definitions are provided.
9276                  */
9277                 if ((r->state == ARM_CP_STATE_BOTH && ns) ||
9278                     (arm_feature(env, ARM_FEATURE_V8) && !ns)) {
9279                     r2->type |= ARM_CP_ALIAS;
9280                 }
9281             } else if ((secstate != r->secure) && !ns) {
9282                 /*
9283                  * The register is not banked so we only want to allow
9284                  * migration of the non-secure instance.
9285                  */
9286                 r2->type |= ARM_CP_ALIAS;
9287             }
9288 
9289             if (HOST_BIG_ENDIAN &&
9290                 r->state == ARM_CP_STATE_BOTH && r2->fieldoffset) {
9291                 r2->fieldoffset += sizeof(uint32_t);
9292             }
9293         }
9294     }
9295 
9296     /*
9297      * By convention, for wildcarded registers only the first
9298      * entry is used for migration; the others are marked as
9299      * ALIAS so we don't try to transfer the register
9300      * multiple times. Special registers (ie NOP/WFI) are
9301      * never migratable and not even raw-accessible.
9302      */
9303     if (r2->type & ARM_CP_SPECIAL_MASK) {
9304         r2->type |= ARM_CP_NO_RAW;
9305     }
9306     if (((r->crm == CP_ANY) && crm != 0) ||
9307         ((r->opc1 == CP_ANY) && opc1 != 0) ||
9308         ((r->opc2 == CP_ANY) && opc2 != 0)) {
9309         r2->type |= ARM_CP_ALIAS | ARM_CP_NO_GDB;
9310     }
9311 
9312     /*
9313      * Check that raw accesses are either forbidden or handled. Note that
9314      * we can't assert this earlier because the setup of fieldoffset for
9315      * banked registers has to be done first.
9316      */
9317     if (!(r2->type & ARM_CP_NO_RAW)) {
9318         assert(!raw_accessors_invalid(r2));
9319     }
9320 
9321     g_hash_table_insert(cpu->cp_regs, (gpointer)(uintptr_t)key, r2);
9322 }
9323 
9324 
9325 void define_one_arm_cp_reg_with_opaque(ARMCPU *cpu,
9326                                        const ARMCPRegInfo *r, void *opaque)
9327 {
9328     /*
9329      * Define implementations of coprocessor registers.
9330      * We store these in a hashtable because typically
9331      * there are less than 150 registers in a space which
9332      * is 16*16*16*8*8 = 262144 in size.
9333      * Wildcarding is supported for the crm, opc1 and opc2 fields.
9334      * If a register is defined twice then the second definition is
9335      * used, so this can be used to define some generic registers and
9336      * then override them with implementation specific variations.
9337      * At least one of the original and the second definition should
9338      * include ARM_CP_OVERRIDE in its type bits -- this is just a guard
9339      * against accidental use.
9340      *
9341      * The state field defines whether the register is to be
9342      * visible in the AArch32 or AArch64 execution state. If the
9343      * state is set to ARM_CP_STATE_BOTH then we synthesise a
9344      * reginfo structure for the AArch32 view, which sees the lower
9345      * 32 bits of the 64 bit register.
9346      *
9347      * Only registers visible in AArch64 may set r->opc0; opc0 cannot
9348      * be wildcarded. AArch64 registers are always considered to be 64
9349      * bits; the ARM_CP_64BIT* flag applies only to the AArch32 view of
9350      * the register, if any.
9351      */
9352     int crm, opc1, opc2;
9353     int crmmin = (r->crm == CP_ANY) ? 0 : r->crm;
9354     int crmmax = (r->crm == CP_ANY) ? 15 : r->crm;
9355     int opc1min = (r->opc1 == CP_ANY) ? 0 : r->opc1;
9356     int opc1max = (r->opc1 == CP_ANY) ? 7 : r->opc1;
9357     int opc2min = (r->opc2 == CP_ANY) ? 0 : r->opc2;
9358     int opc2max = (r->opc2 == CP_ANY) ? 7 : r->opc2;
9359     CPState state;
9360 
9361     /* 64 bit registers have only CRm and Opc1 fields */
9362     assert(!((r->type & ARM_CP_64BIT) && (r->opc2 || r->crn)));
9363     /* op0 only exists in the AArch64 encodings */
9364     assert((r->state != ARM_CP_STATE_AA32) || (r->opc0 == 0));
9365     /* AArch64 regs are all 64 bit so ARM_CP_64BIT is meaningless */
9366     assert((r->state != ARM_CP_STATE_AA64) || !(r->type & ARM_CP_64BIT));
9367     /*
9368      * This API is only for Arm's system coprocessors (14 and 15) or
9369      * (M-profile or v7A-and-earlier only) for implementation defined
9370      * coprocessors in the range 0..7.  Our decode assumes this, since
9371      * 8..13 can be used for other insns including VFP and Neon. See
9372      * valid_cp() in translate.c.  Assert here that we haven't tried
9373      * to use an invalid coprocessor number.
9374      */
9375     switch (r->state) {
9376     case ARM_CP_STATE_BOTH:
9377         /* 0 has a special meaning, but otherwise the same rules as AA32. */
9378         if (r->cp == 0) {
9379             break;
9380         }
9381         /* fall through */
9382     case ARM_CP_STATE_AA32:
9383         if (arm_feature(&cpu->env, ARM_FEATURE_V8) &&
9384             !arm_feature(&cpu->env, ARM_FEATURE_M)) {
9385             assert(r->cp >= 14 && r->cp <= 15);
9386         } else {
9387             assert(r->cp < 8 || (r->cp >= 14 && r->cp <= 15));
9388         }
9389         break;
9390     case ARM_CP_STATE_AA64:
9391         assert(r->cp == 0 || r->cp == CP_REG_ARM64_SYSREG_CP);
9392         break;
9393     default:
9394         g_assert_not_reached();
9395     }
9396     /*
9397      * The AArch64 pseudocode CheckSystemAccess() specifies that op1
9398      * encodes a minimum access level for the register. We roll this
9399      * runtime check into our general permission check code, so check
9400      * here that the reginfo's specified permissions are strict enough
9401      * to encompass the generic architectural permission check.
9402      */
9403     if (r->state != ARM_CP_STATE_AA32) {
9404         CPAccessRights mask;
9405         switch (r->opc1) {
9406         case 0:
9407             /* min_EL EL1, but some accessible to EL0 via kernel ABI */
9408             mask = PL0U_R | PL1_RW;
9409             break;
9410         case 1: case 2:
9411             /* min_EL EL1 */
9412             mask = PL1_RW;
9413             break;
9414         case 3:
9415             /* min_EL EL0 */
9416             mask = PL0_RW;
9417             break;
9418         case 4:
9419         case 5:
9420             /* min_EL EL2 */
9421             mask = PL2_RW;
9422             break;
9423         case 6:
9424             /* min_EL EL3 */
9425             mask = PL3_RW;
9426             break;
9427         case 7:
9428             /* min_EL EL1, secure mode only (we don't check the latter) */
9429             mask = PL1_RW;
9430             break;
9431         default:
9432             /* broken reginfo with out-of-range opc1 */
9433             g_assert_not_reached();
9434         }
9435         /* assert our permissions are not too lax (stricter is fine) */
9436         assert((r->access & ~mask) == 0);
9437     }
9438 
9439     /*
9440      * Check that the register definition has enough info to handle
9441      * reads and writes if they are permitted.
9442      */
9443     if (!(r->type & (ARM_CP_SPECIAL_MASK | ARM_CP_CONST))) {
9444         if (r->access & PL3_R) {
9445             assert((r->fieldoffset ||
9446                    (r->bank_fieldoffsets[0] && r->bank_fieldoffsets[1])) ||
9447                    r->readfn);
9448         }
9449         if (r->access & PL3_W) {
9450             assert((r->fieldoffset ||
9451                    (r->bank_fieldoffsets[0] && r->bank_fieldoffsets[1])) ||
9452                    r->writefn);
9453         }
9454     }
9455 
9456     for (crm = crmmin; crm <= crmmax; crm++) {
9457         for (opc1 = opc1min; opc1 <= opc1max; opc1++) {
9458             for (opc2 = opc2min; opc2 <= opc2max; opc2++) {
9459                 for (state = ARM_CP_STATE_AA32;
9460                      state <= ARM_CP_STATE_AA64; state++) {
9461                     if (r->state != state && r->state != ARM_CP_STATE_BOTH) {
9462                         continue;
9463                     }
9464                     if (state == ARM_CP_STATE_AA32) {
9465                         /*
9466                          * Under AArch32 CP registers can be common
9467                          * (same for secure and non-secure world) or banked.
9468                          */
9469                         char *name;
9470 
9471                         switch (r->secure) {
9472                         case ARM_CP_SECSTATE_S:
9473                         case ARM_CP_SECSTATE_NS:
9474                             add_cpreg_to_hashtable(cpu, r, opaque, state,
9475                                                    r->secure, crm, opc1, opc2,
9476                                                    r->name);
9477                             break;
9478                         case ARM_CP_SECSTATE_BOTH:
9479                             name = g_strdup_printf("%s_S", r->name);
9480                             add_cpreg_to_hashtable(cpu, r, opaque, state,
9481                                                    ARM_CP_SECSTATE_S,
9482                                                    crm, opc1, opc2, name);
9483                             g_free(name);
9484                             add_cpreg_to_hashtable(cpu, r, opaque, state,
9485                                                    ARM_CP_SECSTATE_NS,
9486                                                    crm, opc1, opc2, r->name);
9487                             break;
9488                         default:
9489                             g_assert_not_reached();
9490                         }
9491                     } else {
9492                         /*
9493                          * AArch64 registers get mapped to non-secure instance
9494                          * of AArch32
9495                          */
9496                         add_cpreg_to_hashtable(cpu, r, opaque, state,
9497                                                ARM_CP_SECSTATE_NS,
9498                                                crm, opc1, opc2, r->name);
9499                     }
9500                 }
9501             }
9502         }
9503     }
9504 }
9505 
9506 /* Define a whole list of registers */
9507 void define_arm_cp_regs_with_opaque_len(ARMCPU *cpu, const ARMCPRegInfo *regs,
9508                                         void *opaque, size_t len)
9509 {
9510     size_t i;
9511     for (i = 0; i < len; ++i) {
9512         define_one_arm_cp_reg_with_opaque(cpu, regs + i, opaque);
9513     }
9514 }
9515 
9516 /*
9517  * Modify ARMCPRegInfo for access from userspace.
9518  *
9519  * This is a data driven modification directed by
9520  * ARMCPRegUserSpaceInfo. All registers become ARM_CP_CONST as
9521  * user-space cannot alter any values and dynamic values pertaining to
9522  * execution state are hidden from user space view anyway.
9523  */
9524 void modify_arm_cp_regs_with_len(ARMCPRegInfo *regs, size_t regs_len,
9525                                  const ARMCPRegUserSpaceInfo *mods,
9526                                  size_t mods_len)
9527 {
9528     for (size_t mi = 0; mi < mods_len; ++mi) {
9529         const ARMCPRegUserSpaceInfo *m = mods + mi;
9530         GPatternSpec *pat = NULL;
9531 
9532         if (m->is_glob) {
9533             pat = g_pattern_spec_new(m->name);
9534         }
9535         for (size_t ri = 0; ri < regs_len; ++ri) {
9536             ARMCPRegInfo *r = regs + ri;
9537 
9538             if (pat && g_pattern_match_string(pat, r->name)) {
9539                 r->type = ARM_CP_CONST;
9540                 r->access = PL0U_R;
9541                 r->resetvalue = 0;
9542                 /* continue */
9543             } else if (strcmp(r->name, m->name) == 0) {
9544                 r->type = ARM_CP_CONST;
9545                 r->access = PL0U_R;
9546                 r->resetvalue &= m->exported_bits;
9547                 r->resetvalue |= m->fixed_bits;
9548                 break;
9549             }
9550         }
9551         if (pat) {
9552             g_pattern_spec_free(pat);
9553         }
9554     }
9555 }
9556 
9557 const ARMCPRegInfo *get_arm_cp_reginfo(GHashTable *cpregs, uint32_t encoded_cp)
9558 {
9559     return g_hash_table_lookup(cpregs, (gpointer)(uintptr_t)encoded_cp);
9560 }
9561 
9562 void arm_cp_write_ignore(CPUARMState *env, const ARMCPRegInfo *ri,
9563                          uint64_t value)
9564 {
9565     /* Helper coprocessor write function for write-ignore registers */
9566 }
9567 
9568 uint64_t arm_cp_read_zero(CPUARMState *env, const ARMCPRegInfo *ri)
9569 {
9570     /* Helper coprocessor write function for read-as-zero registers */
9571     return 0;
9572 }
9573 
9574 void arm_cp_reset_ignore(CPUARMState *env, const ARMCPRegInfo *opaque)
9575 {
9576     /* Helper coprocessor reset function for do-nothing-on-reset registers */
9577 }
9578 
9579 static int bad_mode_switch(CPUARMState *env, int mode, CPSRWriteType write_type)
9580 {
9581     /*
9582      * Return true if it is not valid for us to switch to
9583      * this CPU mode (ie all the UNPREDICTABLE cases in
9584      * the ARM ARM CPSRWriteByInstr pseudocode).
9585      */
9586 
9587     /* Changes to or from Hyp via MSR and CPS are illegal. */
9588     if (write_type == CPSRWriteByInstr &&
9589         ((env->uncached_cpsr & CPSR_M) == ARM_CPU_MODE_HYP ||
9590          mode == ARM_CPU_MODE_HYP)) {
9591         return 1;
9592     }
9593 
9594     switch (mode) {
9595     case ARM_CPU_MODE_USR:
9596         return 0;
9597     case ARM_CPU_MODE_SYS:
9598     case ARM_CPU_MODE_SVC:
9599     case ARM_CPU_MODE_ABT:
9600     case ARM_CPU_MODE_UND:
9601     case ARM_CPU_MODE_IRQ:
9602     case ARM_CPU_MODE_FIQ:
9603         /*
9604          * Note that we don't implement the IMPDEF NSACR.RFR which in v7
9605          * allows FIQ mode to be Secure-only. (In v8 this doesn't exist.)
9606          */
9607         /*
9608          * If HCR.TGE is set then changes from Monitor to NS PL1 via MSR
9609          * and CPS are treated as illegal mode changes.
9610          */
9611         if (write_type == CPSRWriteByInstr &&
9612             (env->uncached_cpsr & CPSR_M) == ARM_CPU_MODE_MON &&
9613             (arm_hcr_el2_eff(env) & HCR_TGE)) {
9614             return 1;
9615         }
9616         return 0;
9617     case ARM_CPU_MODE_HYP:
9618         return !arm_is_el2_enabled(env) || arm_current_el(env) < 2;
9619     case ARM_CPU_MODE_MON:
9620         return arm_current_el(env) < 3;
9621     default:
9622         return 1;
9623     }
9624 }
9625 
9626 uint32_t cpsr_read(CPUARMState *env)
9627 {
9628     int ZF;
9629     ZF = (env->ZF == 0);
9630     return env->uncached_cpsr | (env->NF & 0x80000000) | (ZF << 30) |
9631         (env->CF << 29) | ((env->VF & 0x80000000) >> 3) | (env->QF << 27)
9632         | (env->thumb << 5) | ((env->condexec_bits & 3) << 25)
9633         | ((env->condexec_bits & 0xfc) << 8)
9634         | (env->GE << 16) | (env->daif & CPSR_AIF);
9635 }
9636 
9637 void cpsr_write(CPUARMState *env, uint32_t val, uint32_t mask,
9638                 CPSRWriteType write_type)
9639 {
9640     uint32_t changed_daif;
9641     bool rebuild_hflags = (write_type != CPSRWriteRaw) &&
9642         (mask & (CPSR_M | CPSR_E | CPSR_IL));
9643 
9644     if (mask & CPSR_NZCV) {
9645         env->ZF = (~val) & CPSR_Z;
9646         env->NF = val;
9647         env->CF = (val >> 29) & 1;
9648         env->VF = (val << 3) & 0x80000000;
9649     }
9650     if (mask & CPSR_Q) {
9651         env->QF = ((val & CPSR_Q) != 0);
9652     }
9653     if (mask & CPSR_T) {
9654         env->thumb = ((val & CPSR_T) != 0);
9655     }
9656     if (mask & CPSR_IT_0_1) {
9657         env->condexec_bits &= ~3;
9658         env->condexec_bits |= (val >> 25) & 3;
9659     }
9660     if (mask & CPSR_IT_2_7) {
9661         env->condexec_bits &= 3;
9662         env->condexec_bits |= (val >> 8) & 0xfc;
9663     }
9664     if (mask & CPSR_GE) {
9665         env->GE = (val >> 16) & 0xf;
9666     }
9667 
9668     /*
9669      * In a V7 implementation that includes the security extensions but does
9670      * not include Virtualization Extensions the SCR.FW and SCR.AW bits control
9671      * whether non-secure software is allowed to change the CPSR_F and CPSR_A
9672      * bits respectively.
9673      *
9674      * In a V8 implementation, it is permitted for privileged software to
9675      * change the CPSR A/F bits regardless of the SCR.AW/FW bits.
9676      */
9677     if (write_type != CPSRWriteRaw && !arm_feature(env, ARM_FEATURE_V8) &&
9678         arm_feature(env, ARM_FEATURE_EL3) &&
9679         !arm_feature(env, ARM_FEATURE_EL2) &&
9680         !arm_is_secure(env)) {
9681 
9682         changed_daif = (env->daif ^ val) & mask;
9683 
9684         if (changed_daif & CPSR_A) {
9685             /*
9686              * Check to see if we are allowed to change the masking of async
9687              * abort exceptions from a non-secure state.
9688              */
9689             if (!(env->cp15.scr_el3 & SCR_AW)) {
9690                 qemu_log_mask(LOG_GUEST_ERROR,
9691                               "Ignoring attempt to switch CPSR_A flag from "
9692                               "non-secure world with SCR.AW bit clear\n");
9693                 mask &= ~CPSR_A;
9694             }
9695         }
9696 
9697         if (changed_daif & CPSR_F) {
9698             /*
9699              * Check to see if we are allowed to change the masking of FIQ
9700              * exceptions from a non-secure state.
9701              */
9702             if (!(env->cp15.scr_el3 & SCR_FW)) {
9703                 qemu_log_mask(LOG_GUEST_ERROR,
9704                               "Ignoring attempt to switch CPSR_F flag from "
9705                               "non-secure world with SCR.FW bit clear\n");
9706                 mask &= ~CPSR_F;
9707             }
9708 
9709             /*
9710              * Check whether non-maskable FIQ (NMFI) support is enabled.
9711              * If this bit is set software is not allowed to mask
9712              * FIQs, but is allowed to set CPSR_F to 0.
9713              */
9714             if ((A32_BANKED_CURRENT_REG_GET(env, sctlr) & SCTLR_NMFI) &&
9715                 (val & CPSR_F)) {
9716                 qemu_log_mask(LOG_GUEST_ERROR,
9717                               "Ignoring attempt to enable CPSR_F flag "
9718                               "(non-maskable FIQ [NMFI] support enabled)\n");
9719                 mask &= ~CPSR_F;
9720             }
9721         }
9722     }
9723 
9724     env->daif &= ~(CPSR_AIF & mask);
9725     env->daif |= val & CPSR_AIF & mask;
9726 
9727     if (write_type != CPSRWriteRaw &&
9728         ((env->uncached_cpsr ^ val) & mask & CPSR_M)) {
9729         if ((env->uncached_cpsr & CPSR_M) == ARM_CPU_MODE_USR) {
9730             /*
9731              * Note that we can only get here in USR mode if this is a
9732              * gdb stub write; for this case we follow the architectural
9733              * behaviour for guest writes in USR mode of ignoring an attempt
9734              * to switch mode. (Those are caught by translate.c for writes
9735              * triggered by guest instructions.)
9736              */
9737             mask &= ~CPSR_M;
9738         } else if (bad_mode_switch(env, val & CPSR_M, write_type)) {
9739             /*
9740              * Attempt to switch to an invalid mode: this is UNPREDICTABLE in
9741              * v7, and has defined behaviour in v8:
9742              *  + leave CPSR.M untouched
9743              *  + allow changes to the other CPSR fields
9744              *  + set PSTATE.IL
9745              * For user changes via the GDB stub, we don't set PSTATE.IL,
9746              * as this would be unnecessarily harsh for a user error.
9747              */
9748             mask &= ~CPSR_M;
9749             if (write_type != CPSRWriteByGDBStub &&
9750                 arm_feature(env, ARM_FEATURE_V8)) {
9751                 mask |= CPSR_IL;
9752                 val |= CPSR_IL;
9753             }
9754             qemu_log_mask(LOG_GUEST_ERROR,
9755                           "Illegal AArch32 mode switch attempt from %s to %s\n",
9756                           aarch32_mode_name(env->uncached_cpsr),
9757                           aarch32_mode_name(val));
9758         } else {
9759             qemu_log_mask(CPU_LOG_INT, "%s %s to %s PC 0x%" PRIx32 "\n",
9760                           write_type == CPSRWriteExceptionReturn ?
9761                           "Exception return from AArch32" :
9762                           "AArch32 mode switch from",
9763                           aarch32_mode_name(env->uncached_cpsr),
9764                           aarch32_mode_name(val), env->regs[15]);
9765             switch_mode(env, val & CPSR_M);
9766         }
9767     }
9768     mask &= ~CACHED_CPSR_BITS;
9769     env->uncached_cpsr = (env->uncached_cpsr & ~mask) | (val & mask);
9770     if (rebuild_hflags) {
9771         arm_rebuild_hflags(env);
9772     }
9773 }
9774 
9775 /* Sign/zero extend */
9776 uint32_t HELPER(sxtb16)(uint32_t x)
9777 {
9778     uint32_t res;
9779     res = (uint16_t)(int8_t)x;
9780     res |= (uint32_t)(int8_t)(x >> 16) << 16;
9781     return res;
9782 }
9783 
9784 static void handle_possible_div0_trap(CPUARMState *env, uintptr_t ra)
9785 {
9786     /*
9787      * Take a division-by-zero exception if necessary; otherwise return
9788      * to get the usual non-trapping division behaviour (result of 0)
9789      */
9790     if (arm_feature(env, ARM_FEATURE_M)
9791         && (env->v7m.ccr[env->v7m.secure] & R_V7M_CCR_DIV_0_TRP_MASK)) {
9792         raise_exception_ra(env, EXCP_DIVBYZERO, 0, 1, ra);
9793     }
9794 }
9795 
9796 uint32_t HELPER(uxtb16)(uint32_t x)
9797 {
9798     uint32_t res;
9799     res = (uint16_t)(uint8_t)x;
9800     res |= (uint32_t)(uint8_t)(x >> 16) << 16;
9801     return res;
9802 }
9803 
9804 int32_t HELPER(sdiv)(CPUARMState *env, int32_t num, int32_t den)
9805 {
9806     if (den == 0) {
9807         handle_possible_div0_trap(env, GETPC());
9808         return 0;
9809     }
9810     if (num == INT_MIN && den == -1) {
9811         return INT_MIN;
9812     }
9813     return num / den;
9814 }
9815 
9816 uint32_t HELPER(udiv)(CPUARMState *env, uint32_t num, uint32_t den)
9817 {
9818     if (den == 0) {
9819         handle_possible_div0_trap(env, GETPC());
9820         return 0;
9821     }
9822     return num / den;
9823 }
9824 
9825 uint32_t HELPER(rbit)(uint32_t x)
9826 {
9827     return revbit32(x);
9828 }
9829 
9830 #ifdef CONFIG_USER_ONLY
9831 
9832 static void switch_mode(CPUARMState *env, int mode)
9833 {
9834     ARMCPU *cpu = env_archcpu(env);
9835 
9836     if (mode != ARM_CPU_MODE_USR) {
9837         cpu_abort(CPU(cpu), "Tried to switch out of user mode\n");
9838     }
9839 }
9840 
9841 uint32_t arm_phys_excp_target_el(CPUState *cs, uint32_t excp_idx,
9842                                  uint32_t cur_el, bool secure)
9843 {
9844     return 1;
9845 }
9846 
9847 void aarch64_sync_64_to_32(CPUARMState *env)
9848 {
9849     g_assert_not_reached();
9850 }
9851 
9852 #else
9853 
9854 static void switch_mode(CPUARMState *env, int mode)
9855 {
9856     int old_mode;
9857     int i;
9858 
9859     old_mode = env->uncached_cpsr & CPSR_M;
9860     if (mode == old_mode) {
9861         return;
9862     }
9863 
9864     if (old_mode == ARM_CPU_MODE_FIQ) {
9865         memcpy(env->fiq_regs, env->regs + 8, 5 * sizeof(uint32_t));
9866         memcpy(env->regs + 8, env->usr_regs, 5 * sizeof(uint32_t));
9867     } else if (mode == ARM_CPU_MODE_FIQ) {
9868         memcpy(env->usr_regs, env->regs + 8, 5 * sizeof(uint32_t));
9869         memcpy(env->regs + 8, env->fiq_regs, 5 * sizeof(uint32_t));
9870     }
9871 
9872     i = bank_number(old_mode);
9873     env->banked_r13[i] = env->regs[13];
9874     env->banked_spsr[i] = env->spsr;
9875 
9876     i = bank_number(mode);
9877     env->regs[13] = env->banked_r13[i];
9878     env->spsr = env->banked_spsr[i];
9879 
9880     env->banked_r14[r14_bank_number(old_mode)] = env->regs[14];
9881     env->regs[14] = env->banked_r14[r14_bank_number(mode)];
9882 }
9883 
9884 /*
9885  * Physical Interrupt Target EL Lookup Table
9886  *
9887  * [ From ARM ARM section G1.13.4 (Table G1-15) ]
9888  *
9889  * The below multi-dimensional table is used for looking up the target
9890  * exception level given numerous condition criteria.  Specifically, the
9891  * target EL is based on SCR and HCR routing controls as well as the
9892  * currently executing EL and secure state.
9893  *
9894  *    Dimensions:
9895  *    target_el_table[2][2][2][2][2][4]
9896  *                    |  |  |  |  |  +--- Current EL
9897  *                    |  |  |  |  +------ Non-secure(0)/Secure(1)
9898  *                    |  |  |  +--------- HCR mask override
9899  *                    |  |  +------------ SCR exec state control
9900  *                    |  +--------------- SCR mask override
9901  *                    +------------------ 32-bit(0)/64-bit(1) EL3
9902  *
9903  *    The table values are as such:
9904  *    0-3 = EL0-EL3
9905  *     -1 = Cannot occur
9906  *
9907  * The ARM ARM target EL table includes entries indicating that an "exception
9908  * is not taken".  The two cases where this is applicable are:
9909  *    1) An exception is taken from EL3 but the SCR does not have the exception
9910  *    routed to EL3.
9911  *    2) An exception is taken from EL2 but the HCR does not have the exception
9912  *    routed to EL2.
9913  * In these two cases, the below table contain a target of EL1.  This value is
9914  * returned as it is expected that the consumer of the table data will check
9915  * for "target EL >= current EL" to ensure the exception is not taken.
9916  *
9917  *            SCR     HCR
9918  *         64  EA     AMO                 From
9919  *        BIT IRQ     IMO      Non-secure         Secure
9920  *        EL3 FIQ  RW FMO   EL0 EL1 EL2 EL3   EL0 EL1 EL2 EL3
9921  */
9922 static const int8_t target_el_table[2][2][2][2][2][4] = {
9923     {{{{/* 0   0   0   0 */{ 1,  1,  2, -1 },{ 3, -1, -1,  3 },},
9924        {/* 0   0   0   1 */{ 2,  2,  2, -1 },{ 3, -1, -1,  3 },},},
9925       {{/* 0   0   1   0 */{ 1,  1,  2, -1 },{ 3, -1, -1,  3 },},
9926        {/* 0   0   1   1 */{ 2,  2,  2, -1 },{ 3, -1, -1,  3 },},},},
9927      {{{/* 0   1   0   0 */{ 3,  3,  3, -1 },{ 3, -1, -1,  3 },},
9928        {/* 0   1   0   1 */{ 3,  3,  3, -1 },{ 3, -1, -1,  3 },},},
9929       {{/* 0   1   1   0 */{ 3,  3,  3, -1 },{ 3, -1, -1,  3 },},
9930        {/* 0   1   1   1 */{ 3,  3,  3, -1 },{ 3, -1, -1,  3 },},},},},
9931     {{{{/* 1   0   0   0 */{ 1,  1,  2, -1 },{ 1,  1, -1,  1 },},
9932        {/* 1   0   0   1 */{ 2,  2,  2, -1 },{ 2,  2, -1,  1 },},},
9933       {{/* 1   0   1   0 */{ 1,  1,  1, -1 },{ 1,  1,  1,  1 },},
9934        {/* 1   0   1   1 */{ 2,  2,  2, -1 },{ 2,  2,  2,  1 },},},},
9935      {{{/* 1   1   0   0 */{ 3,  3,  3, -1 },{ 3,  3, -1,  3 },},
9936        {/* 1   1   0   1 */{ 3,  3,  3, -1 },{ 3,  3, -1,  3 },},},
9937       {{/* 1   1   1   0 */{ 3,  3,  3, -1 },{ 3,  3,  3,  3 },},
9938        {/* 1   1   1   1 */{ 3,  3,  3, -1 },{ 3,  3,  3,  3 },},},},},
9939 };
9940 
9941 /*
9942  * Determine the target EL for physical exceptions
9943  */
9944 uint32_t arm_phys_excp_target_el(CPUState *cs, uint32_t excp_idx,
9945                                  uint32_t cur_el, bool secure)
9946 {
9947     CPUARMState *env = cs->env_ptr;
9948     bool rw;
9949     bool scr;
9950     bool hcr;
9951     int target_el;
9952     /* Is the highest EL AArch64? */
9953     bool is64 = arm_feature(env, ARM_FEATURE_AARCH64);
9954     uint64_t hcr_el2;
9955 
9956     if (arm_feature(env, ARM_FEATURE_EL3)) {
9957         rw = ((env->cp15.scr_el3 & SCR_RW) == SCR_RW);
9958     } else {
9959         /*
9960          * Either EL2 is the highest EL (and so the EL2 register width
9961          * is given by is64); or there is no EL2 or EL3, in which case
9962          * the value of 'rw' does not affect the table lookup anyway.
9963          */
9964         rw = is64;
9965     }
9966 
9967     hcr_el2 = arm_hcr_el2_eff(env);
9968     switch (excp_idx) {
9969     case EXCP_IRQ:
9970         scr = ((env->cp15.scr_el3 & SCR_IRQ) == SCR_IRQ);
9971         hcr = hcr_el2 & HCR_IMO;
9972         break;
9973     case EXCP_FIQ:
9974         scr = ((env->cp15.scr_el3 & SCR_FIQ) == SCR_FIQ);
9975         hcr = hcr_el2 & HCR_FMO;
9976         break;
9977     default:
9978         scr = ((env->cp15.scr_el3 & SCR_EA) == SCR_EA);
9979         hcr = hcr_el2 & HCR_AMO;
9980         break;
9981     };
9982 
9983     /*
9984      * For these purposes, TGE and AMO/IMO/FMO both force the
9985      * interrupt to EL2.  Fold TGE into the bit extracted above.
9986      */
9987     hcr |= (hcr_el2 & HCR_TGE) != 0;
9988 
9989     /* Perform a table-lookup for the target EL given the current state */
9990     target_el = target_el_table[is64][scr][rw][hcr][secure][cur_el];
9991 
9992     assert(target_el > 0);
9993 
9994     return target_el;
9995 }
9996 
9997 void arm_log_exception(CPUState *cs)
9998 {
9999     int idx = cs->exception_index;
10000 
10001     if (qemu_loglevel_mask(CPU_LOG_INT)) {
10002         const char *exc = NULL;
10003         static const char * const excnames[] = {
10004             [EXCP_UDEF] = "Undefined Instruction",
10005             [EXCP_SWI] = "SVC",
10006             [EXCP_PREFETCH_ABORT] = "Prefetch Abort",
10007             [EXCP_DATA_ABORT] = "Data Abort",
10008             [EXCP_IRQ] = "IRQ",
10009             [EXCP_FIQ] = "FIQ",
10010             [EXCP_BKPT] = "Breakpoint",
10011             [EXCP_EXCEPTION_EXIT] = "QEMU v7M exception exit",
10012             [EXCP_KERNEL_TRAP] = "QEMU intercept of kernel commpage",
10013             [EXCP_HVC] = "Hypervisor Call",
10014             [EXCP_HYP_TRAP] = "Hypervisor Trap",
10015             [EXCP_SMC] = "Secure Monitor Call",
10016             [EXCP_VIRQ] = "Virtual IRQ",
10017             [EXCP_VFIQ] = "Virtual FIQ",
10018             [EXCP_SEMIHOST] = "Semihosting call",
10019             [EXCP_NOCP] = "v7M NOCP UsageFault",
10020             [EXCP_INVSTATE] = "v7M INVSTATE UsageFault",
10021             [EXCP_STKOF] = "v8M STKOF UsageFault",
10022             [EXCP_LAZYFP] = "v7M exception during lazy FP stacking",
10023             [EXCP_LSERR] = "v8M LSERR UsageFault",
10024             [EXCP_UNALIGNED] = "v7M UNALIGNED UsageFault",
10025             [EXCP_DIVBYZERO] = "v7M DIVBYZERO UsageFault",
10026             [EXCP_VSERR] = "Virtual SERR",
10027         };
10028 
10029         if (idx >= 0 && idx < ARRAY_SIZE(excnames)) {
10030             exc = excnames[idx];
10031         }
10032         if (!exc) {
10033             exc = "unknown";
10034         }
10035         qemu_log_mask(CPU_LOG_INT, "Taking exception %d [%s] on CPU %d\n",
10036                       idx, exc, cs->cpu_index);
10037     }
10038 }
10039 
10040 /*
10041  * Function used to synchronize QEMU's AArch64 register set with AArch32
10042  * register set.  This is necessary when switching between AArch32 and AArch64
10043  * execution state.
10044  */
10045 void aarch64_sync_32_to_64(CPUARMState *env)
10046 {
10047     int i;
10048     uint32_t mode = env->uncached_cpsr & CPSR_M;
10049 
10050     /* We can blanket copy R[0:7] to X[0:7] */
10051     for (i = 0; i < 8; i++) {
10052         env->xregs[i] = env->regs[i];
10053     }
10054 
10055     /*
10056      * Unless we are in FIQ mode, x8-x12 come from the user registers r8-r12.
10057      * Otherwise, they come from the banked user regs.
10058      */
10059     if (mode == ARM_CPU_MODE_FIQ) {
10060         for (i = 8; i < 13; i++) {
10061             env->xregs[i] = env->usr_regs[i - 8];
10062         }
10063     } else {
10064         for (i = 8; i < 13; i++) {
10065             env->xregs[i] = env->regs[i];
10066         }
10067     }
10068 
10069     /*
10070      * Registers x13-x23 are the various mode SP and FP registers. Registers
10071      * r13 and r14 are only copied if we are in that mode, otherwise we copy
10072      * from the mode banked register.
10073      */
10074     if (mode == ARM_CPU_MODE_USR || mode == ARM_CPU_MODE_SYS) {
10075         env->xregs[13] = env->regs[13];
10076         env->xregs[14] = env->regs[14];
10077     } else {
10078         env->xregs[13] = env->banked_r13[bank_number(ARM_CPU_MODE_USR)];
10079         /* HYP is an exception in that it is copied from r14 */
10080         if (mode == ARM_CPU_MODE_HYP) {
10081             env->xregs[14] = env->regs[14];
10082         } else {
10083             env->xregs[14] = env->banked_r14[r14_bank_number(ARM_CPU_MODE_USR)];
10084         }
10085     }
10086 
10087     if (mode == ARM_CPU_MODE_HYP) {
10088         env->xregs[15] = env->regs[13];
10089     } else {
10090         env->xregs[15] = env->banked_r13[bank_number(ARM_CPU_MODE_HYP)];
10091     }
10092 
10093     if (mode == ARM_CPU_MODE_IRQ) {
10094         env->xregs[16] = env->regs[14];
10095         env->xregs[17] = env->regs[13];
10096     } else {
10097         env->xregs[16] = env->banked_r14[r14_bank_number(ARM_CPU_MODE_IRQ)];
10098         env->xregs[17] = env->banked_r13[bank_number(ARM_CPU_MODE_IRQ)];
10099     }
10100 
10101     if (mode == ARM_CPU_MODE_SVC) {
10102         env->xregs[18] = env->regs[14];
10103         env->xregs[19] = env->regs[13];
10104     } else {
10105         env->xregs[18] = env->banked_r14[r14_bank_number(ARM_CPU_MODE_SVC)];
10106         env->xregs[19] = env->banked_r13[bank_number(ARM_CPU_MODE_SVC)];
10107     }
10108 
10109     if (mode == ARM_CPU_MODE_ABT) {
10110         env->xregs[20] = env->regs[14];
10111         env->xregs[21] = env->regs[13];
10112     } else {
10113         env->xregs[20] = env->banked_r14[r14_bank_number(ARM_CPU_MODE_ABT)];
10114         env->xregs[21] = env->banked_r13[bank_number(ARM_CPU_MODE_ABT)];
10115     }
10116 
10117     if (mode == ARM_CPU_MODE_UND) {
10118         env->xregs[22] = env->regs[14];
10119         env->xregs[23] = env->regs[13];
10120     } else {
10121         env->xregs[22] = env->banked_r14[r14_bank_number(ARM_CPU_MODE_UND)];
10122         env->xregs[23] = env->banked_r13[bank_number(ARM_CPU_MODE_UND)];
10123     }
10124 
10125     /*
10126      * Registers x24-x30 are mapped to r8-r14 in FIQ mode.  If we are in FIQ
10127      * mode, then we can copy from r8-r14.  Otherwise, we copy from the
10128      * FIQ bank for r8-r14.
10129      */
10130     if (mode == ARM_CPU_MODE_FIQ) {
10131         for (i = 24; i < 31; i++) {
10132             env->xregs[i] = env->regs[i - 16];   /* X[24:30] <- R[8:14] */
10133         }
10134     } else {
10135         for (i = 24; i < 29; i++) {
10136             env->xregs[i] = env->fiq_regs[i - 24];
10137         }
10138         env->xregs[29] = env->banked_r13[bank_number(ARM_CPU_MODE_FIQ)];
10139         env->xregs[30] = env->banked_r14[r14_bank_number(ARM_CPU_MODE_FIQ)];
10140     }
10141 
10142     env->pc = env->regs[15];
10143 }
10144 
10145 /*
10146  * Function used to synchronize QEMU's AArch32 register set with AArch64
10147  * register set.  This is necessary when switching between AArch32 and AArch64
10148  * execution state.
10149  */
10150 void aarch64_sync_64_to_32(CPUARMState *env)
10151 {
10152     int i;
10153     uint32_t mode = env->uncached_cpsr & CPSR_M;
10154 
10155     /* We can blanket copy X[0:7] to R[0:7] */
10156     for (i = 0; i < 8; i++) {
10157         env->regs[i] = env->xregs[i];
10158     }
10159 
10160     /*
10161      * Unless we are in FIQ mode, r8-r12 come from the user registers x8-x12.
10162      * Otherwise, we copy x8-x12 into the banked user regs.
10163      */
10164     if (mode == ARM_CPU_MODE_FIQ) {
10165         for (i = 8; i < 13; i++) {
10166             env->usr_regs[i - 8] = env->xregs[i];
10167         }
10168     } else {
10169         for (i = 8; i < 13; i++) {
10170             env->regs[i] = env->xregs[i];
10171         }
10172     }
10173 
10174     /*
10175      * Registers r13 & r14 depend on the current mode.
10176      * If we are in a given mode, we copy the corresponding x registers to r13
10177      * and r14.  Otherwise, we copy the x register to the banked r13 and r14
10178      * for the mode.
10179      */
10180     if (mode == ARM_CPU_MODE_USR || mode == ARM_CPU_MODE_SYS) {
10181         env->regs[13] = env->xregs[13];
10182         env->regs[14] = env->xregs[14];
10183     } else {
10184         env->banked_r13[bank_number(ARM_CPU_MODE_USR)] = env->xregs[13];
10185 
10186         /*
10187          * HYP is an exception in that it does not have its own banked r14 but
10188          * shares the USR r14
10189          */
10190         if (mode == ARM_CPU_MODE_HYP) {
10191             env->regs[14] = env->xregs[14];
10192         } else {
10193             env->banked_r14[r14_bank_number(ARM_CPU_MODE_USR)] = env->xregs[14];
10194         }
10195     }
10196 
10197     if (mode == ARM_CPU_MODE_HYP) {
10198         env->regs[13] = env->xregs[15];
10199     } else {
10200         env->banked_r13[bank_number(ARM_CPU_MODE_HYP)] = env->xregs[15];
10201     }
10202 
10203     if (mode == ARM_CPU_MODE_IRQ) {
10204         env->regs[14] = env->xregs[16];
10205         env->regs[13] = env->xregs[17];
10206     } else {
10207         env->banked_r14[r14_bank_number(ARM_CPU_MODE_IRQ)] = env->xregs[16];
10208         env->banked_r13[bank_number(ARM_CPU_MODE_IRQ)] = env->xregs[17];
10209     }
10210 
10211     if (mode == ARM_CPU_MODE_SVC) {
10212         env->regs[14] = env->xregs[18];
10213         env->regs[13] = env->xregs[19];
10214     } else {
10215         env->banked_r14[r14_bank_number(ARM_CPU_MODE_SVC)] = env->xregs[18];
10216         env->banked_r13[bank_number(ARM_CPU_MODE_SVC)] = env->xregs[19];
10217     }
10218 
10219     if (mode == ARM_CPU_MODE_ABT) {
10220         env->regs[14] = env->xregs[20];
10221         env->regs[13] = env->xregs[21];
10222     } else {
10223         env->banked_r14[r14_bank_number(ARM_CPU_MODE_ABT)] = env->xregs[20];
10224         env->banked_r13[bank_number(ARM_CPU_MODE_ABT)] = env->xregs[21];
10225     }
10226 
10227     if (mode == ARM_CPU_MODE_UND) {
10228         env->regs[14] = env->xregs[22];
10229         env->regs[13] = env->xregs[23];
10230     } else {
10231         env->banked_r14[r14_bank_number(ARM_CPU_MODE_UND)] = env->xregs[22];
10232         env->banked_r13[bank_number(ARM_CPU_MODE_UND)] = env->xregs[23];
10233     }
10234 
10235     /*
10236      * Registers x24-x30 are mapped to r8-r14 in FIQ mode.  If we are in FIQ
10237      * mode, then we can copy to r8-r14.  Otherwise, we copy to the
10238      * FIQ bank for r8-r14.
10239      */
10240     if (mode == ARM_CPU_MODE_FIQ) {
10241         for (i = 24; i < 31; i++) {
10242             env->regs[i - 16] = env->xregs[i];   /* X[24:30] -> R[8:14] */
10243         }
10244     } else {
10245         for (i = 24; i < 29; i++) {
10246             env->fiq_regs[i - 24] = env->xregs[i];
10247         }
10248         env->banked_r13[bank_number(ARM_CPU_MODE_FIQ)] = env->xregs[29];
10249         env->banked_r14[r14_bank_number(ARM_CPU_MODE_FIQ)] = env->xregs[30];
10250     }
10251 
10252     env->regs[15] = env->pc;
10253 }
10254 
10255 static void take_aarch32_exception(CPUARMState *env, int new_mode,
10256                                    uint32_t mask, uint32_t offset,
10257                                    uint32_t newpc)
10258 {
10259     int new_el;
10260 
10261     /* Change the CPU state so as to actually take the exception. */
10262     switch_mode(env, new_mode);
10263 
10264     /*
10265      * For exceptions taken to AArch32 we must clear the SS bit in both
10266      * PSTATE and in the old-state value we save to SPSR_<mode>, so zero it now.
10267      */
10268     env->pstate &= ~PSTATE_SS;
10269     env->spsr = cpsr_read(env);
10270     /* Clear IT bits.  */
10271     env->condexec_bits = 0;
10272     /* Switch to the new mode, and to the correct instruction set.  */
10273     env->uncached_cpsr = (env->uncached_cpsr & ~CPSR_M) | new_mode;
10274 
10275     /* This must be after mode switching. */
10276     new_el = arm_current_el(env);
10277 
10278     /* Set new mode endianness */
10279     env->uncached_cpsr &= ~CPSR_E;
10280     if (env->cp15.sctlr_el[new_el] & SCTLR_EE) {
10281         env->uncached_cpsr |= CPSR_E;
10282     }
10283     /* J and IL must always be cleared for exception entry */
10284     env->uncached_cpsr &= ~(CPSR_IL | CPSR_J);
10285     env->daif |= mask;
10286 
10287     if (cpu_isar_feature(aa32_ssbs, env_archcpu(env))) {
10288         if (env->cp15.sctlr_el[new_el] & SCTLR_DSSBS_32) {
10289             env->uncached_cpsr |= CPSR_SSBS;
10290         } else {
10291             env->uncached_cpsr &= ~CPSR_SSBS;
10292         }
10293     }
10294 
10295     if (new_mode == ARM_CPU_MODE_HYP) {
10296         env->thumb = (env->cp15.sctlr_el[2] & SCTLR_TE) != 0;
10297         env->elr_el[2] = env->regs[15];
10298     } else {
10299         /* CPSR.PAN is normally preserved preserved unless...  */
10300         if (cpu_isar_feature(aa32_pan, env_archcpu(env))) {
10301             switch (new_el) {
10302             case 3:
10303                 if (!arm_is_secure_below_el3(env)) {
10304                     /* ... the target is EL3, from non-secure state.  */
10305                     env->uncached_cpsr &= ~CPSR_PAN;
10306                     break;
10307                 }
10308                 /* ... the target is EL3, from secure state ... */
10309                 /* fall through */
10310             case 1:
10311                 /* ... the target is EL1 and SCTLR.SPAN is 0.  */
10312                 if (!(env->cp15.sctlr_el[new_el] & SCTLR_SPAN)) {
10313                     env->uncached_cpsr |= CPSR_PAN;
10314                 }
10315                 break;
10316             }
10317         }
10318         /*
10319          * this is a lie, as there was no c1_sys on V4T/V5, but who cares
10320          * and we should just guard the thumb mode on V4
10321          */
10322         if (arm_feature(env, ARM_FEATURE_V4T)) {
10323             env->thumb =
10324                 (A32_BANKED_CURRENT_REG_GET(env, sctlr) & SCTLR_TE) != 0;
10325         }
10326         env->regs[14] = env->regs[15] + offset;
10327     }
10328     env->regs[15] = newpc;
10329     arm_rebuild_hflags(env);
10330 }
10331 
10332 static void arm_cpu_do_interrupt_aarch32_hyp(CPUState *cs)
10333 {
10334     /*
10335      * Handle exception entry to Hyp mode; this is sufficiently
10336      * different to entry to other AArch32 modes that we handle it
10337      * separately here.
10338      *
10339      * The vector table entry used is always the 0x14 Hyp mode entry point,
10340      * unless this is an UNDEF/SVC/HVC/abort taken from Hyp to Hyp.
10341      * The offset applied to the preferred return address is always zero
10342      * (see DDI0487C.a section G1.12.3).
10343      * PSTATE A/I/F masks are set based only on the SCR.EA/IRQ/FIQ values.
10344      */
10345     uint32_t addr, mask;
10346     ARMCPU *cpu = ARM_CPU(cs);
10347     CPUARMState *env = &cpu->env;
10348 
10349     switch (cs->exception_index) {
10350     case EXCP_UDEF:
10351         addr = 0x04;
10352         break;
10353     case EXCP_SWI:
10354         addr = 0x08;
10355         break;
10356     case EXCP_BKPT:
10357         /* Fall through to prefetch abort.  */
10358     case EXCP_PREFETCH_ABORT:
10359         env->cp15.ifar_s = env->exception.vaddress;
10360         qemu_log_mask(CPU_LOG_INT, "...with HIFAR 0x%x\n",
10361                       (uint32_t)env->exception.vaddress);
10362         addr = 0x0c;
10363         break;
10364     case EXCP_DATA_ABORT:
10365         env->cp15.dfar_s = env->exception.vaddress;
10366         qemu_log_mask(CPU_LOG_INT, "...with HDFAR 0x%x\n",
10367                       (uint32_t)env->exception.vaddress);
10368         addr = 0x10;
10369         break;
10370     case EXCP_IRQ:
10371         addr = 0x18;
10372         break;
10373     case EXCP_FIQ:
10374         addr = 0x1c;
10375         break;
10376     case EXCP_HVC:
10377         addr = 0x08;
10378         break;
10379     case EXCP_HYP_TRAP:
10380         addr = 0x14;
10381         break;
10382     default:
10383         cpu_abort(cs, "Unhandled exception 0x%x\n", cs->exception_index);
10384     }
10385 
10386     if (cs->exception_index != EXCP_IRQ && cs->exception_index != EXCP_FIQ) {
10387         if (!arm_feature(env, ARM_FEATURE_V8)) {
10388             /*
10389              * QEMU syndrome values are v8-style. v7 has the IL bit
10390              * UNK/SBZP for "field not valid" cases, where v8 uses RES1.
10391              * If this is a v7 CPU, squash the IL bit in those cases.
10392              */
10393             if (cs->exception_index == EXCP_PREFETCH_ABORT ||
10394                 (cs->exception_index == EXCP_DATA_ABORT &&
10395                  !(env->exception.syndrome & ARM_EL_ISV)) ||
10396                 syn_get_ec(env->exception.syndrome) == EC_UNCATEGORIZED) {
10397                 env->exception.syndrome &= ~ARM_EL_IL;
10398             }
10399         }
10400         env->cp15.esr_el[2] = env->exception.syndrome;
10401     }
10402 
10403     if (arm_current_el(env) != 2 && addr < 0x14) {
10404         addr = 0x14;
10405     }
10406 
10407     mask = 0;
10408     if (!(env->cp15.scr_el3 & SCR_EA)) {
10409         mask |= CPSR_A;
10410     }
10411     if (!(env->cp15.scr_el3 & SCR_IRQ)) {
10412         mask |= CPSR_I;
10413     }
10414     if (!(env->cp15.scr_el3 & SCR_FIQ)) {
10415         mask |= CPSR_F;
10416     }
10417 
10418     addr += env->cp15.hvbar;
10419 
10420     take_aarch32_exception(env, ARM_CPU_MODE_HYP, mask, 0, addr);
10421 }
10422 
10423 static void arm_cpu_do_interrupt_aarch32(CPUState *cs)
10424 {
10425     ARMCPU *cpu = ARM_CPU(cs);
10426     CPUARMState *env = &cpu->env;
10427     uint32_t addr;
10428     uint32_t mask;
10429     int new_mode;
10430     uint32_t offset;
10431     uint32_t moe;
10432 
10433     /* If this is a debug exception we must update the DBGDSCR.MOE bits */
10434     switch (syn_get_ec(env->exception.syndrome)) {
10435     case EC_BREAKPOINT:
10436     case EC_BREAKPOINT_SAME_EL:
10437         moe = 1;
10438         break;
10439     case EC_WATCHPOINT:
10440     case EC_WATCHPOINT_SAME_EL:
10441         moe = 10;
10442         break;
10443     case EC_AA32_BKPT:
10444         moe = 3;
10445         break;
10446     case EC_VECTORCATCH:
10447         moe = 5;
10448         break;
10449     default:
10450         moe = 0;
10451         break;
10452     }
10453 
10454     if (moe) {
10455         env->cp15.mdscr_el1 = deposit64(env->cp15.mdscr_el1, 2, 4, moe);
10456     }
10457 
10458     if (env->exception.target_el == 2) {
10459         arm_cpu_do_interrupt_aarch32_hyp(cs);
10460         return;
10461     }
10462 
10463     switch (cs->exception_index) {
10464     case EXCP_UDEF:
10465         new_mode = ARM_CPU_MODE_UND;
10466         addr = 0x04;
10467         mask = CPSR_I;
10468         if (env->thumb) {
10469             offset = 2;
10470         } else {
10471             offset = 4;
10472         }
10473         break;
10474     case EXCP_SWI:
10475         new_mode = ARM_CPU_MODE_SVC;
10476         addr = 0x08;
10477         mask = CPSR_I;
10478         /* The PC already points to the next instruction.  */
10479         offset = 0;
10480         break;
10481     case EXCP_BKPT:
10482         /* Fall through to prefetch abort.  */
10483     case EXCP_PREFETCH_ABORT:
10484         A32_BANKED_CURRENT_REG_SET(env, ifsr, env->exception.fsr);
10485         A32_BANKED_CURRENT_REG_SET(env, ifar, env->exception.vaddress);
10486         qemu_log_mask(CPU_LOG_INT, "...with IFSR 0x%x IFAR 0x%x\n",
10487                       env->exception.fsr, (uint32_t)env->exception.vaddress);
10488         new_mode = ARM_CPU_MODE_ABT;
10489         addr = 0x0c;
10490         mask = CPSR_A | CPSR_I;
10491         offset = 4;
10492         break;
10493     case EXCP_DATA_ABORT:
10494         A32_BANKED_CURRENT_REG_SET(env, dfsr, env->exception.fsr);
10495         A32_BANKED_CURRENT_REG_SET(env, dfar, env->exception.vaddress);
10496         qemu_log_mask(CPU_LOG_INT, "...with DFSR 0x%x DFAR 0x%x\n",
10497                       env->exception.fsr,
10498                       (uint32_t)env->exception.vaddress);
10499         new_mode = ARM_CPU_MODE_ABT;
10500         addr = 0x10;
10501         mask = CPSR_A | CPSR_I;
10502         offset = 8;
10503         break;
10504     case EXCP_IRQ:
10505         new_mode = ARM_CPU_MODE_IRQ;
10506         addr = 0x18;
10507         /* Disable IRQ and imprecise data aborts.  */
10508         mask = CPSR_A | CPSR_I;
10509         offset = 4;
10510         if (env->cp15.scr_el3 & SCR_IRQ) {
10511             /* IRQ routed to monitor mode */
10512             new_mode = ARM_CPU_MODE_MON;
10513             mask |= CPSR_F;
10514         }
10515         break;
10516     case EXCP_FIQ:
10517         new_mode = ARM_CPU_MODE_FIQ;
10518         addr = 0x1c;
10519         /* Disable FIQ, IRQ and imprecise data aborts.  */
10520         mask = CPSR_A | CPSR_I | CPSR_F;
10521         if (env->cp15.scr_el3 & SCR_FIQ) {
10522             /* FIQ routed to monitor mode */
10523             new_mode = ARM_CPU_MODE_MON;
10524         }
10525         offset = 4;
10526         break;
10527     case EXCP_VIRQ:
10528         new_mode = ARM_CPU_MODE_IRQ;
10529         addr = 0x18;
10530         /* Disable IRQ and imprecise data aborts.  */
10531         mask = CPSR_A | CPSR_I;
10532         offset = 4;
10533         break;
10534     case EXCP_VFIQ:
10535         new_mode = ARM_CPU_MODE_FIQ;
10536         addr = 0x1c;
10537         /* Disable FIQ, IRQ and imprecise data aborts.  */
10538         mask = CPSR_A | CPSR_I | CPSR_F;
10539         offset = 4;
10540         break;
10541     case EXCP_VSERR:
10542         {
10543             /*
10544              * Note that this is reported as a data abort, but the DFAR
10545              * has an UNKNOWN value.  Construct the SError syndrome from
10546              * AET and ExT fields.
10547              */
10548             ARMMMUFaultInfo fi = { .type = ARMFault_AsyncExternal, };
10549 
10550             if (extended_addresses_enabled(env)) {
10551                 env->exception.fsr = arm_fi_to_lfsc(&fi);
10552             } else {
10553                 env->exception.fsr = arm_fi_to_sfsc(&fi);
10554             }
10555             env->exception.fsr |= env->cp15.vsesr_el2 & 0xd000;
10556             A32_BANKED_CURRENT_REG_SET(env, dfsr, env->exception.fsr);
10557             qemu_log_mask(CPU_LOG_INT, "...with IFSR 0x%x\n",
10558                           env->exception.fsr);
10559 
10560             new_mode = ARM_CPU_MODE_ABT;
10561             addr = 0x10;
10562             mask = CPSR_A | CPSR_I;
10563             offset = 8;
10564         }
10565         break;
10566     case EXCP_SMC:
10567         new_mode = ARM_CPU_MODE_MON;
10568         addr = 0x08;
10569         mask = CPSR_A | CPSR_I | CPSR_F;
10570         offset = 0;
10571         break;
10572     default:
10573         cpu_abort(cs, "Unhandled exception 0x%x\n", cs->exception_index);
10574         return; /* Never happens.  Keep compiler happy.  */
10575     }
10576 
10577     if (new_mode == ARM_CPU_MODE_MON) {
10578         addr += env->cp15.mvbar;
10579     } else if (A32_BANKED_CURRENT_REG_GET(env, sctlr) & SCTLR_V) {
10580         /* High vectors. When enabled, base address cannot be remapped. */
10581         addr += 0xffff0000;
10582     } else {
10583         /*
10584          * ARM v7 architectures provide a vector base address register to remap
10585          * the interrupt vector table.
10586          * This register is only followed in non-monitor mode, and is banked.
10587          * Note: only bits 31:5 are valid.
10588          */
10589         addr += A32_BANKED_CURRENT_REG_GET(env, vbar);
10590     }
10591 
10592     if ((env->uncached_cpsr & CPSR_M) == ARM_CPU_MODE_MON) {
10593         env->cp15.scr_el3 &= ~SCR_NS;
10594     }
10595 
10596     take_aarch32_exception(env, new_mode, mask, offset, addr);
10597 }
10598 
10599 static int aarch64_regnum(CPUARMState *env, int aarch32_reg)
10600 {
10601     /*
10602      * Return the register number of the AArch64 view of the AArch32
10603      * register @aarch32_reg. The CPUARMState CPSR is assumed to still
10604      * be that of the AArch32 mode the exception came from.
10605      */
10606     int mode = env->uncached_cpsr & CPSR_M;
10607 
10608     switch (aarch32_reg) {
10609     case 0 ... 7:
10610         return aarch32_reg;
10611     case 8 ... 12:
10612         return mode == ARM_CPU_MODE_FIQ ? aarch32_reg + 16 : aarch32_reg;
10613     case 13:
10614         switch (mode) {
10615         case ARM_CPU_MODE_USR:
10616         case ARM_CPU_MODE_SYS:
10617             return 13;
10618         case ARM_CPU_MODE_HYP:
10619             return 15;
10620         case ARM_CPU_MODE_IRQ:
10621             return 17;
10622         case ARM_CPU_MODE_SVC:
10623             return 19;
10624         case ARM_CPU_MODE_ABT:
10625             return 21;
10626         case ARM_CPU_MODE_UND:
10627             return 23;
10628         case ARM_CPU_MODE_FIQ:
10629             return 29;
10630         default:
10631             g_assert_not_reached();
10632         }
10633     case 14:
10634         switch (mode) {
10635         case ARM_CPU_MODE_USR:
10636         case ARM_CPU_MODE_SYS:
10637         case ARM_CPU_MODE_HYP:
10638             return 14;
10639         case ARM_CPU_MODE_IRQ:
10640             return 16;
10641         case ARM_CPU_MODE_SVC:
10642             return 18;
10643         case ARM_CPU_MODE_ABT:
10644             return 20;
10645         case ARM_CPU_MODE_UND:
10646             return 22;
10647         case ARM_CPU_MODE_FIQ:
10648             return 30;
10649         default:
10650             g_assert_not_reached();
10651         }
10652     case 15:
10653         return 31;
10654     default:
10655         g_assert_not_reached();
10656     }
10657 }
10658 
10659 static uint32_t cpsr_read_for_spsr_elx(CPUARMState *env)
10660 {
10661     uint32_t ret = cpsr_read(env);
10662 
10663     /* Move DIT to the correct location for SPSR_ELx */
10664     if (ret & CPSR_DIT) {
10665         ret &= ~CPSR_DIT;
10666         ret |= PSTATE_DIT;
10667     }
10668     /* Merge PSTATE.SS into SPSR_ELx */
10669     ret |= env->pstate & PSTATE_SS;
10670 
10671     return ret;
10672 }
10673 
10674 static bool syndrome_is_sync_extabt(uint32_t syndrome)
10675 {
10676     /* Return true if this syndrome value is a synchronous external abort */
10677     switch (syn_get_ec(syndrome)) {
10678     case EC_INSNABORT:
10679     case EC_INSNABORT_SAME_EL:
10680     case EC_DATAABORT:
10681     case EC_DATAABORT_SAME_EL:
10682         /* Look at fault status code for all the synchronous ext abort cases */
10683         switch (syndrome & 0x3f) {
10684         case 0x10:
10685         case 0x13:
10686         case 0x14:
10687         case 0x15:
10688         case 0x16:
10689         case 0x17:
10690             return true;
10691         default:
10692             return false;
10693         }
10694     default:
10695         return false;
10696     }
10697 }
10698 
10699 /* Handle exception entry to a target EL which is using AArch64 */
10700 static void arm_cpu_do_interrupt_aarch64(CPUState *cs)
10701 {
10702     ARMCPU *cpu = ARM_CPU(cs);
10703     CPUARMState *env = &cpu->env;
10704     unsigned int new_el = env->exception.target_el;
10705     target_ulong addr = env->cp15.vbar_el[new_el];
10706     unsigned int new_mode = aarch64_pstate_mode(new_el, true);
10707     unsigned int old_mode;
10708     unsigned int cur_el = arm_current_el(env);
10709     int rt;
10710 
10711     /*
10712      * Note that new_el can never be 0.  If cur_el is 0, then
10713      * el0_a64 is is_a64(), else el0_a64 is ignored.
10714      */
10715     aarch64_sve_change_el(env, cur_el, new_el, is_a64(env));
10716 
10717     if (cur_el < new_el) {
10718         /*
10719          * Entry vector offset depends on whether the implemented EL
10720          * immediately lower than the target level is using AArch32 or AArch64
10721          */
10722         bool is_aa64;
10723         uint64_t hcr;
10724 
10725         switch (new_el) {
10726         case 3:
10727             is_aa64 = (env->cp15.scr_el3 & SCR_RW) != 0;
10728             break;
10729         case 2:
10730             hcr = arm_hcr_el2_eff(env);
10731             if ((hcr & (HCR_E2H | HCR_TGE)) != (HCR_E2H | HCR_TGE)) {
10732                 is_aa64 = (hcr & HCR_RW) != 0;
10733                 break;
10734             }
10735             /* fall through */
10736         case 1:
10737             is_aa64 = is_a64(env);
10738             break;
10739         default:
10740             g_assert_not_reached();
10741         }
10742 
10743         if (is_aa64) {
10744             addr += 0x400;
10745         } else {
10746             addr += 0x600;
10747         }
10748     } else if (pstate_read(env) & PSTATE_SP) {
10749         addr += 0x200;
10750     }
10751 
10752     switch (cs->exception_index) {
10753     case EXCP_PREFETCH_ABORT:
10754     case EXCP_DATA_ABORT:
10755         /*
10756          * FEAT_DoubleFault allows synchronous external aborts taken to EL3
10757          * to be taken to the SError vector entrypoint.
10758          */
10759         if (new_el == 3 && (env->cp15.scr_el3 & SCR_EASE) &&
10760             syndrome_is_sync_extabt(env->exception.syndrome)) {
10761             addr += 0x180;
10762         }
10763         env->cp15.far_el[new_el] = env->exception.vaddress;
10764         qemu_log_mask(CPU_LOG_INT, "...with FAR 0x%" PRIx64 "\n",
10765                       env->cp15.far_el[new_el]);
10766         /* fall through */
10767     case EXCP_BKPT:
10768     case EXCP_UDEF:
10769     case EXCP_SWI:
10770     case EXCP_HVC:
10771     case EXCP_HYP_TRAP:
10772     case EXCP_SMC:
10773         switch (syn_get_ec(env->exception.syndrome)) {
10774         case EC_ADVSIMDFPACCESSTRAP:
10775             /*
10776              * QEMU internal FP/SIMD syndromes from AArch32 include the
10777              * TA and coproc fields which are only exposed if the exception
10778              * is taken to AArch32 Hyp mode. Mask them out to get a valid
10779              * AArch64 format syndrome.
10780              */
10781             env->exception.syndrome &= ~MAKE_64BIT_MASK(0, 20);
10782             break;
10783         case EC_CP14RTTRAP:
10784         case EC_CP15RTTRAP:
10785         case EC_CP14DTTRAP:
10786             /*
10787              * For a trap on AArch32 MRC/MCR/LDC/STC the Rt field is currently
10788              * the raw register field from the insn; when taking this to
10789              * AArch64 we must convert it to the AArch64 view of the register
10790              * number. Notice that we read a 4-bit AArch32 register number and
10791              * write back a 5-bit AArch64 one.
10792              */
10793             rt = extract32(env->exception.syndrome, 5, 4);
10794             rt = aarch64_regnum(env, rt);
10795             env->exception.syndrome = deposit32(env->exception.syndrome,
10796                                                 5, 5, rt);
10797             break;
10798         case EC_CP15RRTTRAP:
10799         case EC_CP14RRTTRAP:
10800             /* Similarly for MRRC/MCRR traps for Rt and Rt2 fields */
10801             rt = extract32(env->exception.syndrome, 5, 4);
10802             rt = aarch64_regnum(env, rt);
10803             env->exception.syndrome = deposit32(env->exception.syndrome,
10804                                                 5, 5, rt);
10805             rt = extract32(env->exception.syndrome, 10, 4);
10806             rt = aarch64_regnum(env, rt);
10807             env->exception.syndrome = deposit32(env->exception.syndrome,
10808                                                 10, 5, rt);
10809             break;
10810         }
10811         env->cp15.esr_el[new_el] = env->exception.syndrome;
10812         break;
10813     case EXCP_IRQ:
10814     case EXCP_VIRQ:
10815         addr += 0x80;
10816         break;
10817     case EXCP_FIQ:
10818     case EXCP_VFIQ:
10819         addr += 0x100;
10820         break;
10821     case EXCP_VSERR:
10822         addr += 0x180;
10823         /* Construct the SError syndrome from IDS and ISS fields. */
10824         env->exception.syndrome = syn_serror(env->cp15.vsesr_el2 & 0x1ffffff);
10825         env->cp15.esr_el[new_el] = env->exception.syndrome;
10826         break;
10827     default:
10828         cpu_abort(cs, "Unhandled exception 0x%x\n", cs->exception_index);
10829     }
10830 
10831     if (is_a64(env)) {
10832         old_mode = pstate_read(env);
10833         aarch64_save_sp(env, arm_current_el(env));
10834         env->elr_el[new_el] = env->pc;
10835     } else {
10836         old_mode = cpsr_read_for_spsr_elx(env);
10837         env->elr_el[new_el] = env->regs[15];
10838 
10839         aarch64_sync_32_to_64(env);
10840 
10841         env->condexec_bits = 0;
10842     }
10843     env->banked_spsr[aarch64_banked_spsr_index(new_el)] = old_mode;
10844 
10845     qemu_log_mask(CPU_LOG_INT, "...with ELR 0x%" PRIx64 "\n",
10846                   env->elr_el[new_el]);
10847 
10848     if (cpu_isar_feature(aa64_pan, cpu)) {
10849         /* The value of PSTATE.PAN is normally preserved, except when ... */
10850         new_mode |= old_mode & PSTATE_PAN;
10851         switch (new_el) {
10852         case 2:
10853             /* ... the target is EL2 with HCR_EL2.{E2H,TGE} == '11' ...  */
10854             if ((arm_hcr_el2_eff(env) & (HCR_E2H | HCR_TGE))
10855                 != (HCR_E2H | HCR_TGE)) {
10856                 break;
10857             }
10858             /* fall through */
10859         case 1:
10860             /* ... the target is EL1 ... */
10861             /* ... and SCTLR_ELx.SPAN == 0, then set to 1.  */
10862             if ((env->cp15.sctlr_el[new_el] & SCTLR_SPAN) == 0) {
10863                 new_mode |= PSTATE_PAN;
10864             }
10865             break;
10866         }
10867     }
10868     if (cpu_isar_feature(aa64_mte, cpu)) {
10869         new_mode |= PSTATE_TCO;
10870     }
10871 
10872     if (cpu_isar_feature(aa64_ssbs, cpu)) {
10873         if (env->cp15.sctlr_el[new_el] & SCTLR_DSSBS_64) {
10874             new_mode |= PSTATE_SSBS;
10875         } else {
10876             new_mode &= ~PSTATE_SSBS;
10877         }
10878     }
10879 
10880     pstate_write(env, PSTATE_DAIF | new_mode);
10881     env->aarch64 = true;
10882     aarch64_restore_sp(env, new_el);
10883     helper_rebuild_hflags_a64(env, new_el);
10884 
10885     env->pc = addr;
10886 
10887     qemu_log_mask(CPU_LOG_INT, "...to EL%d PC 0x%" PRIx64 " PSTATE 0x%x\n",
10888                   new_el, env->pc, pstate_read(env));
10889 }
10890 
10891 /*
10892  * Do semihosting call and set the appropriate return value. All the
10893  * permission and validity checks have been done at translate time.
10894  *
10895  * We only see semihosting exceptions in TCG only as they are not
10896  * trapped to the hypervisor in KVM.
10897  */
10898 #ifdef CONFIG_TCG
10899 static void handle_semihosting(CPUState *cs)
10900 {
10901     ARMCPU *cpu = ARM_CPU(cs);
10902     CPUARMState *env = &cpu->env;
10903 
10904     if (is_a64(env)) {
10905         qemu_log_mask(CPU_LOG_INT,
10906                       "...handling as semihosting call 0x%" PRIx64 "\n",
10907                       env->xregs[0]);
10908         do_common_semihosting(cs);
10909         env->pc += 4;
10910     } else {
10911         qemu_log_mask(CPU_LOG_INT,
10912                       "...handling as semihosting call 0x%x\n",
10913                       env->regs[0]);
10914         do_common_semihosting(cs);
10915         env->regs[15] += env->thumb ? 2 : 4;
10916     }
10917 }
10918 #endif
10919 
10920 /*
10921  * Handle a CPU exception for A and R profile CPUs.
10922  * Do any appropriate logging, handle PSCI calls, and then hand off
10923  * to the AArch64-entry or AArch32-entry function depending on the
10924  * target exception level's register width.
10925  *
10926  * Note: this is used for both TCG (as the do_interrupt tcg op),
10927  *       and KVM to re-inject guest debug exceptions, and to
10928  *       inject a Synchronous-External-Abort.
10929  */
10930 void arm_cpu_do_interrupt(CPUState *cs)
10931 {
10932     ARMCPU *cpu = ARM_CPU(cs);
10933     CPUARMState *env = &cpu->env;
10934     unsigned int new_el = env->exception.target_el;
10935 
10936     assert(!arm_feature(env, ARM_FEATURE_M));
10937 
10938     arm_log_exception(cs);
10939     qemu_log_mask(CPU_LOG_INT, "...from EL%d to EL%d\n", arm_current_el(env),
10940                   new_el);
10941     if (qemu_loglevel_mask(CPU_LOG_INT)
10942         && !excp_is_internal(cs->exception_index)) {
10943         qemu_log_mask(CPU_LOG_INT, "...with ESR 0x%x/0x%" PRIx32 "\n",
10944                       syn_get_ec(env->exception.syndrome),
10945                       env->exception.syndrome);
10946     }
10947 
10948     if (arm_is_psci_call(cpu, cs->exception_index)) {
10949         arm_handle_psci_call(cpu);
10950         qemu_log_mask(CPU_LOG_INT, "...handled as PSCI call\n");
10951         return;
10952     }
10953 
10954     /*
10955      * Semihosting semantics depend on the register width of the code
10956      * that caused the exception, not the target exception level, so
10957      * must be handled here.
10958      */
10959 #ifdef CONFIG_TCG
10960     if (cs->exception_index == EXCP_SEMIHOST) {
10961         handle_semihosting(cs);
10962         return;
10963     }
10964 #endif
10965 
10966     /*
10967      * Hooks may change global state so BQL should be held, also the
10968      * BQL needs to be held for any modification of
10969      * cs->interrupt_request.
10970      */
10971     g_assert(qemu_mutex_iothread_locked());
10972 
10973     arm_call_pre_el_change_hook(cpu);
10974 
10975     assert(!excp_is_internal(cs->exception_index));
10976     if (arm_el_is_aa64(env, new_el)) {
10977         arm_cpu_do_interrupt_aarch64(cs);
10978     } else {
10979         arm_cpu_do_interrupt_aarch32(cs);
10980     }
10981 
10982     arm_call_el_change_hook(cpu);
10983 
10984     if (!kvm_enabled()) {
10985         cs->interrupt_request |= CPU_INTERRUPT_EXITTB;
10986     }
10987 }
10988 #endif /* !CONFIG_USER_ONLY */
10989 
10990 uint64_t arm_sctlr(CPUARMState *env, int el)
10991 {
10992     /* Only EL0 needs to be adjusted for EL1&0 or EL2&0. */
10993     if (el == 0) {
10994         ARMMMUIdx mmu_idx = arm_mmu_idx_el(env, 0);
10995         el = mmu_idx == ARMMMUIdx_E20_0 ? 2 : 1;
10996     }
10997     return env->cp15.sctlr_el[el];
10998 }
10999 
11000 int aa64_va_parameter_tbi(uint64_t tcr, ARMMMUIdx mmu_idx)
11001 {
11002     if (regime_has_2_ranges(mmu_idx)) {
11003         return extract64(tcr, 37, 2);
11004     } else if (regime_is_stage2(mmu_idx)) {
11005         return 0; /* VTCR_EL2 */
11006     } else {
11007         /* Replicate the single TBI bit so we always have 2 bits.  */
11008         return extract32(tcr, 20, 1) * 3;
11009     }
11010 }
11011 
11012 int aa64_va_parameter_tbid(uint64_t tcr, ARMMMUIdx mmu_idx)
11013 {
11014     if (regime_has_2_ranges(mmu_idx)) {
11015         return extract64(tcr, 51, 2);
11016     } else if (regime_is_stage2(mmu_idx)) {
11017         return 0; /* VTCR_EL2 */
11018     } else {
11019         /* Replicate the single TBID bit so we always have 2 bits.  */
11020         return extract32(tcr, 29, 1) * 3;
11021     }
11022 }
11023 
11024 static int aa64_va_parameter_tcma(uint64_t tcr, ARMMMUIdx mmu_idx)
11025 {
11026     if (regime_has_2_ranges(mmu_idx)) {
11027         return extract64(tcr, 57, 2);
11028     } else {
11029         /* Replicate the single TCMA bit so we always have 2 bits.  */
11030         return extract32(tcr, 30, 1) * 3;
11031     }
11032 }
11033 
11034 static ARMGranuleSize tg0_to_gran_size(int tg)
11035 {
11036     switch (tg) {
11037     case 0:
11038         return Gran4K;
11039     case 1:
11040         return Gran64K;
11041     case 2:
11042         return Gran16K;
11043     default:
11044         return GranInvalid;
11045     }
11046 }
11047 
11048 static ARMGranuleSize tg1_to_gran_size(int tg)
11049 {
11050     switch (tg) {
11051     case 1:
11052         return Gran16K;
11053     case 2:
11054         return Gran4K;
11055     case 3:
11056         return Gran64K;
11057     default:
11058         return GranInvalid;
11059     }
11060 }
11061 
11062 static inline bool have4k(ARMCPU *cpu, bool stage2)
11063 {
11064     return stage2 ? cpu_isar_feature(aa64_tgran4_2, cpu)
11065         : cpu_isar_feature(aa64_tgran4, cpu);
11066 }
11067 
11068 static inline bool have16k(ARMCPU *cpu, bool stage2)
11069 {
11070     return stage2 ? cpu_isar_feature(aa64_tgran16_2, cpu)
11071         : cpu_isar_feature(aa64_tgran16, cpu);
11072 }
11073 
11074 static inline bool have64k(ARMCPU *cpu, bool stage2)
11075 {
11076     return stage2 ? cpu_isar_feature(aa64_tgran64_2, cpu)
11077         : cpu_isar_feature(aa64_tgran64, cpu);
11078 }
11079 
11080 static ARMGranuleSize sanitize_gran_size(ARMCPU *cpu, ARMGranuleSize gran,
11081                                          bool stage2)
11082 {
11083     switch (gran) {
11084     case Gran4K:
11085         if (have4k(cpu, stage2)) {
11086             return gran;
11087         }
11088         break;
11089     case Gran16K:
11090         if (have16k(cpu, stage2)) {
11091             return gran;
11092         }
11093         break;
11094     case Gran64K:
11095         if (have64k(cpu, stage2)) {
11096             return gran;
11097         }
11098         break;
11099     case GranInvalid:
11100         break;
11101     }
11102     /*
11103      * If the guest selects a granule size that isn't implemented,
11104      * the architecture requires that we behave as if it selected one
11105      * that is (with an IMPDEF choice of which one to pick). We choose
11106      * to implement the smallest supported granule size.
11107      */
11108     if (have4k(cpu, stage2)) {
11109         return Gran4K;
11110     }
11111     if (have16k(cpu, stage2)) {
11112         return Gran16K;
11113     }
11114     assert(have64k(cpu, stage2));
11115     return Gran64K;
11116 }
11117 
11118 ARMVAParameters aa64_va_parameters(CPUARMState *env, uint64_t va,
11119                                    ARMMMUIdx mmu_idx, bool data)
11120 {
11121     uint64_t tcr = regime_tcr(env, mmu_idx);
11122     bool epd, hpd, tsz_oob, ds, ha, hd;
11123     int select, tsz, tbi, max_tsz, min_tsz, ps, sh;
11124     ARMGranuleSize gran;
11125     ARMCPU *cpu = env_archcpu(env);
11126     bool stage2 = regime_is_stage2(mmu_idx);
11127 
11128     if (!regime_has_2_ranges(mmu_idx)) {
11129         select = 0;
11130         tsz = extract32(tcr, 0, 6);
11131         gran = tg0_to_gran_size(extract32(tcr, 14, 2));
11132         if (stage2) {
11133             /* VTCR_EL2 */
11134             hpd = false;
11135         } else {
11136             hpd = extract32(tcr, 24, 1);
11137         }
11138         epd = false;
11139         sh = extract32(tcr, 12, 2);
11140         ps = extract32(tcr, 16, 3);
11141         ha = extract32(tcr, 21, 1) && cpu_isar_feature(aa64_hafs, cpu);
11142         hd = extract32(tcr, 22, 1) && cpu_isar_feature(aa64_hdbs, cpu);
11143         ds = extract64(tcr, 32, 1);
11144     } else {
11145         bool e0pd;
11146 
11147         /*
11148          * Bit 55 is always between the two regions, and is canonical for
11149          * determining if address tagging is enabled.
11150          */
11151         select = extract64(va, 55, 1);
11152         if (!select) {
11153             tsz = extract32(tcr, 0, 6);
11154             gran = tg0_to_gran_size(extract32(tcr, 14, 2));
11155             epd = extract32(tcr, 7, 1);
11156             sh = extract32(tcr, 12, 2);
11157             hpd = extract64(tcr, 41, 1);
11158             e0pd = extract64(tcr, 55, 1);
11159         } else {
11160             tsz = extract32(tcr, 16, 6);
11161             gran = tg1_to_gran_size(extract32(tcr, 30, 2));
11162             epd = extract32(tcr, 23, 1);
11163             sh = extract32(tcr, 28, 2);
11164             hpd = extract64(tcr, 42, 1);
11165             e0pd = extract64(tcr, 56, 1);
11166         }
11167         ps = extract64(tcr, 32, 3);
11168         ha = extract64(tcr, 39, 1) && cpu_isar_feature(aa64_hafs, cpu);
11169         hd = extract64(tcr, 40, 1) && cpu_isar_feature(aa64_hdbs, cpu);
11170         ds = extract64(tcr, 59, 1);
11171 
11172         if (e0pd && cpu_isar_feature(aa64_e0pd, cpu) &&
11173             regime_is_user(env, mmu_idx)) {
11174             epd = true;
11175         }
11176     }
11177 
11178     gran = sanitize_gran_size(cpu, gran, stage2);
11179 
11180     if (cpu_isar_feature(aa64_st, cpu)) {
11181         max_tsz = 48 - (gran == Gran64K);
11182     } else {
11183         max_tsz = 39;
11184     }
11185 
11186     /*
11187      * DS is RES0 unless FEAT_LPA2 is supported for the given page size;
11188      * adjust the effective value of DS, as documented.
11189      */
11190     min_tsz = 16;
11191     if (gran == Gran64K) {
11192         if (cpu_isar_feature(aa64_lva, cpu)) {
11193             min_tsz = 12;
11194         }
11195         ds = false;
11196     } else if (ds) {
11197         if (regime_is_stage2(mmu_idx)) {
11198             if (gran == Gran16K) {
11199                 ds = cpu_isar_feature(aa64_tgran16_2_lpa2, cpu);
11200             } else {
11201                 ds = cpu_isar_feature(aa64_tgran4_2_lpa2, cpu);
11202             }
11203         } else {
11204             if (gran == Gran16K) {
11205                 ds = cpu_isar_feature(aa64_tgran16_lpa2, cpu);
11206             } else {
11207                 ds = cpu_isar_feature(aa64_tgran4_lpa2, cpu);
11208             }
11209         }
11210         if (ds) {
11211             min_tsz = 12;
11212         }
11213     }
11214 
11215     if (tsz > max_tsz) {
11216         tsz = max_tsz;
11217         tsz_oob = true;
11218     } else if (tsz < min_tsz) {
11219         tsz = min_tsz;
11220         tsz_oob = true;
11221     } else {
11222         tsz_oob = false;
11223     }
11224 
11225     /* Present TBI as a composite with TBID.  */
11226     tbi = aa64_va_parameter_tbi(tcr, mmu_idx);
11227     if (!data) {
11228         tbi &= ~aa64_va_parameter_tbid(tcr, mmu_idx);
11229     }
11230     tbi = (tbi >> select) & 1;
11231 
11232     return (ARMVAParameters) {
11233         .tsz = tsz,
11234         .ps = ps,
11235         .sh = sh,
11236         .select = select,
11237         .tbi = tbi,
11238         .epd = epd,
11239         .hpd = hpd,
11240         .tsz_oob = tsz_oob,
11241         .ds = ds,
11242         .ha = ha,
11243         .hd = ha && hd,
11244         .gran = gran,
11245     };
11246 }
11247 
11248 /*
11249  * Note that signed overflow is undefined in C.  The following routines are
11250  * careful to use unsigned types where modulo arithmetic is required.
11251  * Failure to do so _will_ break on newer gcc.
11252  */
11253 
11254 /* Signed saturating arithmetic.  */
11255 
11256 /* Perform 16-bit signed saturating addition.  */
11257 static inline uint16_t add16_sat(uint16_t a, uint16_t b)
11258 {
11259     uint16_t res;
11260 
11261     res = a + b;
11262     if (((res ^ a) & 0x8000) && !((a ^ b) & 0x8000)) {
11263         if (a & 0x8000) {
11264             res = 0x8000;
11265         } else {
11266             res = 0x7fff;
11267         }
11268     }
11269     return res;
11270 }
11271 
11272 /* Perform 8-bit signed saturating addition.  */
11273 static inline uint8_t add8_sat(uint8_t a, uint8_t b)
11274 {
11275     uint8_t res;
11276 
11277     res = a + b;
11278     if (((res ^ a) & 0x80) && !((a ^ b) & 0x80)) {
11279         if (a & 0x80) {
11280             res = 0x80;
11281         } else {
11282             res = 0x7f;
11283         }
11284     }
11285     return res;
11286 }
11287 
11288 /* Perform 16-bit signed saturating subtraction.  */
11289 static inline uint16_t sub16_sat(uint16_t a, uint16_t b)
11290 {
11291     uint16_t res;
11292 
11293     res = a - b;
11294     if (((res ^ a) & 0x8000) && ((a ^ b) & 0x8000)) {
11295         if (a & 0x8000) {
11296             res = 0x8000;
11297         } else {
11298             res = 0x7fff;
11299         }
11300     }
11301     return res;
11302 }
11303 
11304 /* Perform 8-bit signed saturating subtraction.  */
11305 static inline uint8_t sub8_sat(uint8_t a, uint8_t b)
11306 {
11307     uint8_t res;
11308 
11309     res = a - b;
11310     if (((res ^ a) & 0x80) && ((a ^ b) & 0x80)) {
11311         if (a & 0x80) {
11312             res = 0x80;
11313         } else {
11314             res = 0x7f;
11315         }
11316     }
11317     return res;
11318 }
11319 
11320 #define ADD16(a, b, n) RESULT(add16_sat(a, b), n, 16);
11321 #define SUB16(a, b, n) RESULT(sub16_sat(a, b), n, 16);
11322 #define ADD8(a, b, n)  RESULT(add8_sat(a, b), n, 8);
11323 #define SUB8(a, b, n)  RESULT(sub8_sat(a, b), n, 8);
11324 #define PFX q
11325 
11326 #include "op_addsub.h"
11327 
11328 /* Unsigned saturating arithmetic.  */
11329 static inline uint16_t add16_usat(uint16_t a, uint16_t b)
11330 {
11331     uint16_t res;
11332     res = a + b;
11333     if (res < a) {
11334         res = 0xffff;
11335     }
11336     return res;
11337 }
11338 
11339 static inline uint16_t sub16_usat(uint16_t a, uint16_t b)
11340 {
11341     if (a > b) {
11342         return a - b;
11343     } else {
11344         return 0;
11345     }
11346 }
11347 
11348 static inline uint8_t add8_usat(uint8_t a, uint8_t b)
11349 {
11350     uint8_t res;
11351     res = a + b;
11352     if (res < a) {
11353         res = 0xff;
11354     }
11355     return res;
11356 }
11357 
11358 static inline uint8_t sub8_usat(uint8_t a, uint8_t b)
11359 {
11360     if (a > b) {
11361         return a - b;
11362     } else {
11363         return 0;
11364     }
11365 }
11366 
11367 #define ADD16(a, b, n) RESULT(add16_usat(a, b), n, 16);
11368 #define SUB16(a, b, n) RESULT(sub16_usat(a, b), n, 16);
11369 #define ADD8(a, b, n)  RESULT(add8_usat(a, b), n, 8);
11370 #define SUB8(a, b, n)  RESULT(sub8_usat(a, b), n, 8);
11371 #define PFX uq
11372 
11373 #include "op_addsub.h"
11374 
11375 /* Signed modulo arithmetic.  */
11376 #define SARITH16(a, b, n, op) do { \
11377     int32_t sum; \
11378     sum = (int32_t)(int16_t)(a) op (int32_t)(int16_t)(b); \
11379     RESULT(sum, n, 16); \
11380     if (sum >= 0) \
11381         ge |= 3 << (n * 2); \
11382     } while (0)
11383 
11384 #define SARITH8(a, b, n, op) do { \
11385     int32_t sum; \
11386     sum = (int32_t)(int8_t)(a) op (int32_t)(int8_t)(b); \
11387     RESULT(sum, n, 8); \
11388     if (sum >= 0) \
11389         ge |= 1 << n; \
11390     } while (0)
11391 
11392 
11393 #define ADD16(a, b, n) SARITH16(a, b, n, +)
11394 #define SUB16(a, b, n) SARITH16(a, b, n, -)
11395 #define ADD8(a, b, n)  SARITH8(a, b, n, +)
11396 #define SUB8(a, b, n)  SARITH8(a, b, n, -)
11397 #define PFX s
11398 #define ARITH_GE
11399 
11400 #include "op_addsub.h"
11401 
11402 /* Unsigned modulo arithmetic.  */
11403 #define ADD16(a, b, n) do { \
11404     uint32_t sum; \
11405     sum = (uint32_t)(uint16_t)(a) + (uint32_t)(uint16_t)(b); \
11406     RESULT(sum, n, 16); \
11407     if ((sum >> 16) == 1) \
11408         ge |= 3 << (n * 2); \
11409     } while (0)
11410 
11411 #define ADD8(a, b, n) do { \
11412     uint32_t sum; \
11413     sum = (uint32_t)(uint8_t)(a) + (uint32_t)(uint8_t)(b); \
11414     RESULT(sum, n, 8); \
11415     if ((sum >> 8) == 1) \
11416         ge |= 1 << n; \
11417     } while (0)
11418 
11419 #define SUB16(a, b, n) do { \
11420     uint32_t sum; \
11421     sum = (uint32_t)(uint16_t)(a) - (uint32_t)(uint16_t)(b); \
11422     RESULT(sum, n, 16); \
11423     if ((sum >> 16) == 0) \
11424         ge |= 3 << (n * 2); \
11425     } while (0)
11426 
11427 #define SUB8(a, b, n) do { \
11428     uint32_t sum; \
11429     sum = (uint32_t)(uint8_t)(a) - (uint32_t)(uint8_t)(b); \
11430     RESULT(sum, n, 8); \
11431     if ((sum >> 8) == 0) \
11432         ge |= 1 << n; \
11433     } while (0)
11434 
11435 #define PFX u
11436 #define ARITH_GE
11437 
11438 #include "op_addsub.h"
11439 
11440 /* Halved signed arithmetic.  */
11441 #define ADD16(a, b, n) \
11442   RESULT(((int32_t)(int16_t)(a) + (int32_t)(int16_t)(b)) >> 1, n, 16)
11443 #define SUB16(a, b, n) \
11444   RESULT(((int32_t)(int16_t)(a) - (int32_t)(int16_t)(b)) >> 1, n, 16)
11445 #define ADD8(a, b, n) \
11446   RESULT(((int32_t)(int8_t)(a) + (int32_t)(int8_t)(b)) >> 1, n, 8)
11447 #define SUB8(a, b, n) \
11448   RESULT(((int32_t)(int8_t)(a) - (int32_t)(int8_t)(b)) >> 1, n, 8)
11449 #define PFX sh
11450 
11451 #include "op_addsub.h"
11452 
11453 /* Halved unsigned arithmetic.  */
11454 #define ADD16(a, b, n) \
11455   RESULT(((uint32_t)(uint16_t)(a) + (uint32_t)(uint16_t)(b)) >> 1, n, 16)
11456 #define SUB16(a, b, n) \
11457   RESULT(((uint32_t)(uint16_t)(a) - (uint32_t)(uint16_t)(b)) >> 1, n, 16)
11458 #define ADD8(a, b, n) \
11459   RESULT(((uint32_t)(uint8_t)(a) + (uint32_t)(uint8_t)(b)) >> 1, n, 8)
11460 #define SUB8(a, b, n) \
11461   RESULT(((uint32_t)(uint8_t)(a) - (uint32_t)(uint8_t)(b)) >> 1, n, 8)
11462 #define PFX uh
11463 
11464 #include "op_addsub.h"
11465 
11466 static inline uint8_t do_usad(uint8_t a, uint8_t b)
11467 {
11468     if (a > b) {
11469         return a - b;
11470     } else {
11471         return b - a;
11472     }
11473 }
11474 
11475 /* Unsigned sum of absolute byte differences.  */
11476 uint32_t HELPER(usad8)(uint32_t a, uint32_t b)
11477 {
11478     uint32_t sum;
11479     sum = do_usad(a, b);
11480     sum += do_usad(a >> 8, b >> 8);
11481     sum += do_usad(a >> 16, b >> 16);
11482     sum += do_usad(a >> 24, b >> 24);
11483     return sum;
11484 }
11485 
11486 /* For ARMv6 SEL instruction.  */
11487 uint32_t HELPER(sel_flags)(uint32_t flags, uint32_t a, uint32_t b)
11488 {
11489     uint32_t mask;
11490 
11491     mask = 0;
11492     if (flags & 1) {
11493         mask |= 0xff;
11494     }
11495     if (flags & 2) {
11496         mask |= 0xff00;
11497     }
11498     if (flags & 4) {
11499         mask |= 0xff0000;
11500     }
11501     if (flags & 8) {
11502         mask |= 0xff000000;
11503     }
11504     return (a & mask) | (b & ~mask);
11505 }
11506 
11507 /*
11508  * CRC helpers.
11509  * The upper bytes of val (above the number specified by 'bytes') must have
11510  * been zeroed out by the caller.
11511  */
11512 uint32_t HELPER(crc32)(uint32_t acc, uint32_t val, uint32_t bytes)
11513 {
11514     uint8_t buf[4];
11515 
11516     stl_le_p(buf, val);
11517 
11518     /* zlib crc32 converts the accumulator and output to one's complement.  */
11519     return crc32(acc ^ 0xffffffff, buf, bytes) ^ 0xffffffff;
11520 }
11521 
11522 uint32_t HELPER(crc32c)(uint32_t acc, uint32_t val, uint32_t bytes)
11523 {
11524     uint8_t buf[4];
11525 
11526     stl_le_p(buf, val);
11527 
11528     /* Linux crc32c converts the output to one's complement.  */
11529     return crc32c(acc, buf, bytes) ^ 0xffffffff;
11530 }
11531 
11532 /*
11533  * Return the exception level to which FP-disabled exceptions should
11534  * be taken, or 0 if FP is enabled.
11535  */
11536 int fp_exception_el(CPUARMState *env, int cur_el)
11537 {
11538 #ifndef CONFIG_USER_ONLY
11539     uint64_t hcr_el2;
11540 
11541     /*
11542      * CPACR and the CPTR registers don't exist before v6, so FP is
11543      * always accessible
11544      */
11545     if (!arm_feature(env, ARM_FEATURE_V6)) {
11546         return 0;
11547     }
11548 
11549     if (arm_feature(env, ARM_FEATURE_M)) {
11550         /* CPACR can cause a NOCP UsageFault taken to current security state */
11551         if (!v7m_cpacr_pass(env, env->v7m.secure, cur_el != 0)) {
11552             return 1;
11553         }
11554 
11555         if (arm_feature(env, ARM_FEATURE_M_SECURITY) && !env->v7m.secure) {
11556             if (!extract32(env->v7m.nsacr, 10, 1)) {
11557                 /* FP insns cause a NOCP UsageFault taken to Secure */
11558                 return 3;
11559             }
11560         }
11561 
11562         return 0;
11563     }
11564 
11565     hcr_el2 = arm_hcr_el2_eff(env);
11566 
11567     /*
11568      * The CPACR controls traps to EL1, or PL1 if we're 32 bit:
11569      * 0, 2 : trap EL0 and EL1/PL1 accesses
11570      * 1    : trap only EL0 accesses
11571      * 3    : trap no accesses
11572      * This register is ignored if E2H+TGE are both set.
11573      */
11574     if ((hcr_el2 & (HCR_E2H | HCR_TGE)) != (HCR_E2H | HCR_TGE)) {
11575         int fpen = FIELD_EX64(env->cp15.cpacr_el1, CPACR_EL1, FPEN);
11576 
11577         switch (fpen) {
11578         case 1:
11579             if (cur_el != 0) {
11580                 break;
11581             }
11582             /* fall through */
11583         case 0:
11584         case 2:
11585             /* Trap from Secure PL0 or PL1 to Secure PL1. */
11586             if (!arm_el_is_aa64(env, 3)
11587                 && (cur_el == 3 || arm_is_secure_below_el3(env))) {
11588                 return 3;
11589             }
11590             if (cur_el <= 1) {
11591                 return 1;
11592             }
11593             break;
11594         }
11595     }
11596 
11597     /*
11598      * The NSACR allows A-profile AArch32 EL3 and M-profile secure mode
11599      * to control non-secure access to the FPU. It doesn't have any
11600      * effect if EL3 is AArch64 or if EL3 doesn't exist at all.
11601      */
11602     if ((arm_feature(env, ARM_FEATURE_EL3) && !arm_el_is_aa64(env, 3) &&
11603          cur_el <= 2 && !arm_is_secure_below_el3(env))) {
11604         if (!extract32(env->cp15.nsacr, 10, 1)) {
11605             /* FP insns act as UNDEF */
11606             return cur_el == 2 ? 2 : 1;
11607         }
11608     }
11609 
11610     /*
11611      * CPTR_EL2 is present in v7VE or v8, and changes format
11612      * with HCR_EL2.E2H (regardless of TGE).
11613      */
11614     if (cur_el <= 2) {
11615         if (hcr_el2 & HCR_E2H) {
11616             switch (FIELD_EX64(env->cp15.cptr_el[2], CPTR_EL2, FPEN)) {
11617             case 1:
11618                 if (cur_el != 0 || !(hcr_el2 & HCR_TGE)) {
11619                     break;
11620                 }
11621                 /* fall through */
11622             case 0:
11623             case 2:
11624                 return 2;
11625             }
11626         } else if (arm_is_el2_enabled(env)) {
11627             if (FIELD_EX64(env->cp15.cptr_el[2], CPTR_EL2, TFP)) {
11628                 return 2;
11629             }
11630         }
11631     }
11632 
11633     /* CPTR_EL3 : present in v8 */
11634     if (FIELD_EX64(env->cp15.cptr_el[3], CPTR_EL3, TFP)) {
11635         /* Trap all FP ops to EL3 */
11636         return 3;
11637     }
11638 #endif
11639     return 0;
11640 }
11641 
11642 /* Return the exception level we're running at if this is our mmu_idx */
11643 int arm_mmu_idx_to_el(ARMMMUIdx mmu_idx)
11644 {
11645     if (mmu_idx & ARM_MMU_IDX_M) {
11646         return mmu_idx & ARM_MMU_IDX_M_PRIV;
11647     }
11648 
11649     switch (mmu_idx) {
11650     case ARMMMUIdx_E10_0:
11651     case ARMMMUIdx_E20_0:
11652         return 0;
11653     case ARMMMUIdx_E10_1:
11654     case ARMMMUIdx_E10_1_PAN:
11655         return 1;
11656     case ARMMMUIdx_E2:
11657     case ARMMMUIdx_E20_2:
11658     case ARMMMUIdx_E20_2_PAN:
11659         return 2;
11660     case ARMMMUIdx_E3:
11661         return 3;
11662     default:
11663         g_assert_not_reached();
11664     }
11665 }
11666 
11667 #ifndef CONFIG_TCG
11668 ARMMMUIdx arm_v7m_mmu_idx_for_secstate(CPUARMState *env, bool secstate)
11669 {
11670     g_assert_not_reached();
11671 }
11672 #endif
11673 
11674 static bool arm_pan_enabled(CPUARMState *env)
11675 {
11676     if (is_a64(env)) {
11677         return env->pstate & PSTATE_PAN;
11678     } else {
11679         return env->uncached_cpsr & CPSR_PAN;
11680     }
11681 }
11682 
11683 ARMMMUIdx arm_mmu_idx_el(CPUARMState *env, int el)
11684 {
11685     ARMMMUIdx idx;
11686     uint64_t hcr;
11687 
11688     if (arm_feature(env, ARM_FEATURE_M)) {
11689         return arm_v7m_mmu_idx_for_secstate(env, env->v7m.secure);
11690     }
11691 
11692     /* See ARM pseudo-function ELIsInHost.  */
11693     switch (el) {
11694     case 0:
11695         hcr = arm_hcr_el2_eff(env);
11696         if ((hcr & (HCR_E2H | HCR_TGE)) == (HCR_E2H | HCR_TGE)) {
11697             idx = ARMMMUIdx_E20_0;
11698         } else {
11699             idx = ARMMMUIdx_E10_0;
11700         }
11701         break;
11702     case 1:
11703         if (arm_pan_enabled(env)) {
11704             idx = ARMMMUIdx_E10_1_PAN;
11705         } else {
11706             idx = ARMMMUIdx_E10_1;
11707         }
11708         break;
11709     case 2:
11710         /* Note that TGE does not apply at EL2.  */
11711         if (arm_hcr_el2_eff(env) & HCR_E2H) {
11712             if (arm_pan_enabled(env)) {
11713                 idx = ARMMMUIdx_E20_2_PAN;
11714             } else {
11715                 idx = ARMMMUIdx_E20_2;
11716             }
11717         } else {
11718             idx = ARMMMUIdx_E2;
11719         }
11720         break;
11721     case 3:
11722         return ARMMMUIdx_E3;
11723     default:
11724         g_assert_not_reached();
11725     }
11726 
11727     return idx;
11728 }
11729 
11730 ARMMMUIdx arm_mmu_idx(CPUARMState *env)
11731 {
11732     return arm_mmu_idx_el(env, arm_current_el(env));
11733 }
11734 
11735 static CPUARMTBFlags rebuild_hflags_common(CPUARMState *env, int fp_el,
11736                                            ARMMMUIdx mmu_idx,
11737                                            CPUARMTBFlags flags)
11738 {
11739     DP_TBFLAG_ANY(flags, FPEXC_EL, fp_el);
11740     DP_TBFLAG_ANY(flags, MMUIDX, arm_to_core_mmu_idx(mmu_idx));
11741 
11742     if (arm_singlestep_active(env)) {
11743         DP_TBFLAG_ANY(flags, SS_ACTIVE, 1);
11744     }
11745 
11746     return flags;
11747 }
11748 
11749 static CPUARMTBFlags rebuild_hflags_common_32(CPUARMState *env, int fp_el,
11750                                               ARMMMUIdx mmu_idx,
11751                                               CPUARMTBFlags flags)
11752 {
11753     bool sctlr_b = arm_sctlr_b(env);
11754 
11755     if (sctlr_b) {
11756         DP_TBFLAG_A32(flags, SCTLR__B, 1);
11757     }
11758     if (arm_cpu_data_is_big_endian_a32(env, sctlr_b)) {
11759         DP_TBFLAG_ANY(flags, BE_DATA, 1);
11760     }
11761     DP_TBFLAG_A32(flags, NS, !access_secure_reg(env));
11762 
11763     return rebuild_hflags_common(env, fp_el, mmu_idx, flags);
11764 }
11765 
11766 static CPUARMTBFlags rebuild_hflags_m32(CPUARMState *env, int fp_el,
11767                                         ARMMMUIdx mmu_idx)
11768 {
11769     CPUARMTBFlags flags = {};
11770     uint32_t ccr = env->v7m.ccr[env->v7m.secure];
11771 
11772     /* Without HaveMainExt, CCR.UNALIGN_TRP is RES1. */
11773     if (ccr & R_V7M_CCR_UNALIGN_TRP_MASK) {
11774         DP_TBFLAG_ANY(flags, ALIGN_MEM, 1);
11775     }
11776 
11777     if (arm_v7m_is_handler_mode(env)) {
11778         DP_TBFLAG_M32(flags, HANDLER, 1);
11779     }
11780 
11781     /*
11782      * v8M always applies stack limit checks unless CCR.STKOFHFNMIGN
11783      * is suppressing them because the requested execution priority
11784      * is less than 0.
11785      */
11786     if (arm_feature(env, ARM_FEATURE_V8) &&
11787         !((mmu_idx & ARM_MMU_IDX_M_NEGPRI) &&
11788           (ccr & R_V7M_CCR_STKOFHFNMIGN_MASK))) {
11789         DP_TBFLAG_M32(flags, STACKCHECK, 1);
11790     }
11791 
11792     if (arm_feature(env, ARM_FEATURE_M_SECURITY) && env->v7m.secure) {
11793         DP_TBFLAG_M32(flags, SECURE, 1);
11794     }
11795 
11796     return rebuild_hflags_common_32(env, fp_el, mmu_idx, flags);
11797 }
11798 
11799 static CPUARMTBFlags rebuild_hflags_a32(CPUARMState *env, int fp_el,
11800                                         ARMMMUIdx mmu_idx)
11801 {
11802     CPUARMTBFlags flags = {};
11803     int el = arm_current_el(env);
11804 
11805     if (arm_sctlr(env, el) & SCTLR_A) {
11806         DP_TBFLAG_ANY(flags, ALIGN_MEM, 1);
11807     }
11808 
11809     if (arm_el_is_aa64(env, 1)) {
11810         DP_TBFLAG_A32(flags, VFPEN, 1);
11811     }
11812 
11813     if (el < 2 && env->cp15.hstr_el2 && arm_is_el2_enabled(env) &&
11814         (arm_hcr_el2_eff(env) & (HCR_E2H | HCR_TGE)) != (HCR_E2H | HCR_TGE)) {
11815         DP_TBFLAG_A32(flags, HSTR_ACTIVE, 1);
11816     }
11817 
11818     if (arm_fgt_active(env, el)) {
11819         DP_TBFLAG_ANY(flags, FGT_ACTIVE, 1);
11820     }
11821 
11822     if (env->uncached_cpsr & CPSR_IL) {
11823         DP_TBFLAG_ANY(flags, PSTATE__IL, 1);
11824     }
11825 
11826     /*
11827      * The SME exception we are testing for is raised via
11828      * AArch64.CheckFPAdvSIMDEnabled(), as called from
11829      * AArch32.CheckAdvSIMDOrFPEnabled().
11830      */
11831     if (el == 0
11832         && FIELD_EX64(env->svcr, SVCR, SM)
11833         && (!arm_is_el2_enabled(env)
11834             || (arm_el_is_aa64(env, 2) && !(env->cp15.hcr_el2 & HCR_TGE)))
11835         && arm_el_is_aa64(env, 1)
11836         && !sme_fa64(env, el)) {
11837         DP_TBFLAG_A32(flags, SME_TRAP_NONSTREAMING, 1);
11838     }
11839 
11840     return rebuild_hflags_common_32(env, fp_el, mmu_idx, flags);
11841 }
11842 
11843 static CPUARMTBFlags rebuild_hflags_a64(CPUARMState *env, int el, int fp_el,
11844                                         ARMMMUIdx mmu_idx)
11845 {
11846     CPUARMTBFlags flags = {};
11847     ARMMMUIdx stage1 = stage_1_mmu_idx(mmu_idx);
11848     uint64_t tcr = regime_tcr(env, mmu_idx);
11849     uint64_t sctlr;
11850     int tbii, tbid;
11851 
11852     DP_TBFLAG_ANY(flags, AARCH64_STATE, 1);
11853 
11854     /* Get control bits for tagged addresses.  */
11855     tbid = aa64_va_parameter_tbi(tcr, mmu_idx);
11856     tbii = tbid & ~aa64_va_parameter_tbid(tcr, mmu_idx);
11857 
11858     DP_TBFLAG_A64(flags, TBII, tbii);
11859     DP_TBFLAG_A64(flags, TBID, tbid);
11860 
11861     if (cpu_isar_feature(aa64_sve, env_archcpu(env))) {
11862         int sve_el = sve_exception_el(env, el);
11863 
11864         /*
11865          * If either FP or SVE are disabled, translator does not need len.
11866          * If SVE EL > FP EL, FP exception has precedence, and translator
11867          * does not need SVE EL.  Save potential re-translations by forcing
11868          * the unneeded data to zero.
11869          */
11870         if (fp_el != 0) {
11871             if (sve_el > fp_el) {
11872                 sve_el = 0;
11873             }
11874         } else if (sve_el == 0) {
11875             DP_TBFLAG_A64(flags, VL, sve_vqm1_for_el(env, el));
11876         }
11877         DP_TBFLAG_A64(flags, SVEEXC_EL, sve_el);
11878     }
11879     if (cpu_isar_feature(aa64_sme, env_archcpu(env))) {
11880         int sme_el = sme_exception_el(env, el);
11881         bool sm = FIELD_EX64(env->svcr, SVCR, SM);
11882 
11883         DP_TBFLAG_A64(flags, SMEEXC_EL, sme_el);
11884         if (sme_el == 0) {
11885             /* Similarly, do not compute SVL if SME is disabled. */
11886             int svl = sve_vqm1_for_el_sm(env, el, true);
11887             DP_TBFLAG_A64(flags, SVL, svl);
11888             if (sm) {
11889                 /* If SVE is disabled, we will not have set VL above. */
11890                 DP_TBFLAG_A64(flags, VL, svl);
11891             }
11892         }
11893         if (sm) {
11894             DP_TBFLAG_A64(flags, PSTATE_SM, 1);
11895             DP_TBFLAG_A64(flags, SME_TRAP_NONSTREAMING, !sme_fa64(env, el));
11896         }
11897         DP_TBFLAG_A64(flags, PSTATE_ZA, FIELD_EX64(env->svcr, SVCR, ZA));
11898     }
11899 
11900     sctlr = regime_sctlr(env, stage1);
11901 
11902     if (sctlr & SCTLR_A) {
11903         DP_TBFLAG_ANY(flags, ALIGN_MEM, 1);
11904     }
11905 
11906     if (arm_cpu_data_is_big_endian_a64(el, sctlr)) {
11907         DP_TBFLAG_ANY(flags, BE_DATA, 1);
11908     }
11909 
11910     if (cpu_isar_feature(aa64_pauth, env_archcpu(env))) {
11911         /*
11912          * In order to save space in flags, we record only whether
11913          * pauth is "inactive", meaning all insns are implemented as
11914          * a nop, or "active" when some action must be performed.
11915          * The decision of which action to take is left to a helper.
11916          */
11917         if (sctlr & (SCTLR_EnIA | SCTLR_EnIB | SCTLR_EnDA | SCTLR_EnDB)) {
11918             DP_TBFLAG_A64(flags, PAUTH_ACTIVE, 1);
11919         }
11920     }
11921 
11922     if (cpu_isar_feature(aa64_bti, env_archcpu(env))) {
11923         /* Note that SCTLR_EL[23].BT == SCTLR_BT1.  */
11924         if (sctlr & (el == 0 ? SCTLR_BT0 : SCTLR_BT1)) {
11925             DP_TBFLAG_A64(flags, BT, 1);
11926         }
11927     }
11928 
11929     /* Compute the condition for using AccType_UNPRIV for LDTR et al. */
11930     if (!(env->pstate & PSTATE_UAO)) {
11931         switch (mmu_idx) {
11932         case ARMMMUIdx_E10_1:
11933         case ARMMMUIdx_E10_1_PAN:
11934             /* TODO: ARMv8.3-NV */
11935             DP_TBFLAG_A64(flags, UNPRIV, 1);
11936             break;
11937         case ARMMMUIdx_E20_2:
11938         case ARMMMUIdx_E20_2_PAN:
11939             /*
11940              * Note that EL20_2 is gated by HCR_EL2.E2H == 1, but EL20_0 is
11941              * gated by HCR_EL2.<E2H,TGE> == '11', and so is LDTR.
11942              */
11943             if (env->cp15.hcr_el2 & HCR_TGE) {
11944                 DP_TBFLAG_A64(flags, UNPRIV, 1);
11945             }
11946             break;
11947         default:
11948             break;
11949         }
11950     }
11951 
11952     if (env->pstate & PSTATE_IL) {
11953         DP_TBFLAG_ANY(flags, PSTATE__IL, 1);
11954     }
11955 
11956     if (arm_fgt_active(env, el)) {
11957         DP_TBFLAG_ANY(flags, FGT_ACTIVE, 1);
11958     }
11959 
11960     if (cpu_isar_feature(aa64_mte, env_archcpu(env))) {
11961         /*
11962          * Set MTE_ACTIVE if any access may be Checked, and leave clear
11963          * if all accesses must be Unchecked:
11964          * 1) If no TBI, then there are no tags in the address to check,
11965          * 2) If Tag Check Override, then all accesses are Unchecked,
11966          * 3) If Tag Check Fail == 0, then Checked access have no effect,
11967          * 4) If no Allocation Tag Access, then all accesses are Unchecked.
11968          */
11969         if (allocation_tag_access_enabled(env, el, sctlr)) {
11970             DP_TBFLAG_A64(flags, ATA, 1);
11971             if (tbid
11972                 && !(env->pstate & PSTATE_TCO)
11973                 && (sctlr & (el == 0 ? SCTLR_TCF0 : SCTLR_TCF))) {
11974                 DP_TBFLAG_A64(flags, MTE_ACTIVE, 1);
11975             }
11976         }
11977         /* And again for unprivileged accesses, if required.  */
11978         if (EX_TBFLAG_A64(flags, UNPRIV)
11979             && tbid
11980             && !(env->pstate & PSTATE_TCO)
11981             && (sctlr & SCTLR_TCF0)
11982             && allocation_tag_access_enabled(env, 0, sctlr)) {
11983             DP_TBFLAG_A64(flags, MTE0_ACTIVE, 1);
11984         }
11985         /* Cache TCMA as well as TBI. */
11986         DP_TBFLAG_A64(flags, TCMA, aa64_va_parameter_tcma(tcr, mmu_idx));
11987     }
11988 
11989     return rebuild_hflags_common(env, fp_el, mmu_idx, flags);
11990 }
11991 
11992 static CPUARMTBFlags rebuild_hflags_internal(CPUARMState *env)
11993 {
11994     int el = arm_current_el(env);
11995     int fp_el = fp_exception_el(env, el);
11996     ARMMMUIdx mmu_idx = arm_mmu_idx_el(env, el);
11997 
11998     if (is_a64(env)) {
11999         return rebuild_hflags_a64(env, el, fp_el, mmu_idx);
12000     } else if (arm_feature(env, ARM_FEATURE_M)) {
12001         return rebuild_hflags_m32(env, fp_el, mmu_idx);
12002     } else {
12003         return rebuild_hflags_a32(env, fp_el, mmu_idx);
12004     }
12005 }
12006 
12007 void arm_rebuild_hflags(CPUARMState *env)
12008 {
12009     env->hflags = rebuild_hflags_internal(env);
12010 }
12011 
12012 /*
12013  * If we have triggered a EL state change we can't rely on the
12014  * translator having passed it to us, we need to recompute.
12015  */
12016 void HELPER(rebuild_hflags_m32_newel)(CPUARMState *env)
12017 {
12018     int el = arm_current_el(env);
12019     int fp_el = fp_exception_el(env, el);
12020     ARMMMUIdx mmu_idx = arm_mmu_idx_el(env, el);
12021 
12022     env->hflags = rebuild_hflags_m32(env, fp_el, mmu_idx);
12023 }
12024 
12025 void HELPER(rebuild_hflags_m32)(CPUARMState *env, int el)
12026 {
12027     int fp_el = fp_exception_el(env, el);
12028     ARMMMUIdx mmu_idx = arm_mmu_idx_el(env, el);
12029 
12030     env->hflags = rebuild_hflags_m32(env, fp_el, mmu_idx);
12031 }
12032 
12033 /*
12034  * If we have triggered a EL state change we can't rely on the
12035  * translator having passed it to us, we need to recompute.
12036  */
12037 void HELPER(rebuild_hflags_a32_newel)(CPUARMState *env)
12038 {
12039     int el = arm_current_el(env);
12040     int fp_el = fp_exception_el(env, el);
12041     ARMMMUIdx mmu_idx = arm_mmu_idx_el(env, el);
12042     env->hflags = rebuild_hflags_a32(env, fp_el, mmu_idx);
12043 }
12044 
12045 void HELPER(rebuild_hflags_a32)(CPUARMState *env, int el)
12046 {
12047     int fp_el = fp_exception_el(env, el);
12048     ARMMMUIdx mmu_idx = arm_mmu_idx_el(env, el);
12049 
12050     env->hflags = rebuild_hflags_a32(env, fp_el, mmu_idx);
12051 }
12052 
12053 void HELPER(rebuild_hflags_a64)(CPUARMState *env, int el)
12054 {
12055     int fp_el = fp_exception_el(env, el);
12056     ARMMMUIdx mmu_idx = arm_mmu_idx_el(env, el);
12057 
12058     env->hflags = rebuild_hflags_a64(env, el, fp_el, mmu_idx);
12059 }
12060 
12061 static inline void assert_hflags_rebuild_correctly(CPUARMState *env)
12062 {
12063 #ifdef CONFIG_DEBUG_TCG
12064     CPUARMTBFlags c = env->hflags;
12065     CPUARMTBFlags r = rebuild_hflags_internal(env);
12066 
12067     if (unlikely(c.flags != r.flags || c.flags2 != r.flags2)) {
12068         fprintf(stderr, "TCG hflags mismatch "
12069                         "(current:(0x%08x,0x" TARGET_FMT_lx ")"
12070                         " rebuilt:(0x%08x,0x" TARGET_FMT_lx ")\n",
12071                 c.flags, c.flags2, r.flags, r.flags2);
12072         abort();
12073     }
12074 #endif
12075 }
12076 
12077 static bool mve_no_pred(CPUARMState *env)
12078 {
12079     /*
12080      * Return true if there is definitely no predication of MVE
12081      * instructions by VPR or LTPSIZE. (Returning false even if there
12082      * isn't any predication is OK; generated code will just be
12083      * a little worse.)
12084      * If the CPU does not implement MVE then this TB flag is always 0.
12085      *
12086      * NOTE: if you change this logic, the "recalculate s->mve_no_pred"
12087      * logic in gen_update_fp_context() needs to be updated to match.
12088      *
12089      * We do not include the effect of the ECI bits here -- they are
12090      * tracked in other TB flags. This simplifies the logic for
12091      * "when did we emit code that changes the MVE_NO_PRED TB flag
12092      * and thus need to end the TB?".
12093      */
12094     if (cpu_isar_feature(aa32_mve, env_archcpu(env))) {
12095         return false;
12096     }
12097     if (env->v7m.vpr) {
12098         return false;
12099     }
12100     if (env->v7m.ltpsize < 4) {
12101         return false;
12102     }
12103     return true;
12104 }
12105 
12106 void cpu_get_tb_cpu_state(CPUARMState *env, target_ulong *pc,
12107                           target_ulong *cs_base, uint32_t *pflags)
12108 {
12109     CPUARMTBFlags flags;
12110 
12111     assert_hflags_rebuild_correctly(env);
12112     flags = env->hflags;
12113 
12114     if (EX_TBFLAG_ANY(flags, AARCH64_STATE)) {
12115         *pc = env->pc;
12116         if (cpu_isar_feature(aa64_bti, env_archcpu(env))) {
12117             DP_TBFLAG_A64(flags, BTYPE, env->btype);
12118         }
12119     } else {
12120         *pc = env->regs[15];
12121 
12122         if (arm_feature(env, ARM_FEATURE_M)) {
12123             if (arm_feature(env, ARM_FEATURE_M_SECURITY) &&
12124                 FIELD_EX32(env->v7m.fpccr[M_REG_S], V7M_FPCCR, S)
12125                 != env->v7m.secure) {
12126                 DP_TBFLAG_M32(flags, FPCCR_S_WRONG, 1);
12127             }
12128 
12129             if ((env->v7m.fpccr[env->v7m.secure] & R_V7M_FPCCR_ASPEN_MASK) &&
12130                 (!(env->v7m.control[M_REG_S] & R_V7M_CONTROL_FPCA_MASK) ||
12131                  (env->v7m.secure &&
12132                   !(env->v7m.control[M_REG_S] & R_V7M_CONTROL_SFPA_MASK)))) {
12133                 /*
12134                  * ASPEN is set, but FPCA/SFPA indicate that there is no
12135                  * active FP context; we must create a new FP context before
12136                  * executing any FP insn.
12137                  */
12138                 DP_TBFLAG_M32(flags, NEW_FP_CTXT_NEEDED, 1);
12139             }
12140 
12141             bool is_secure = env->v7m.fpccr[M_REG_S] & R_V7M_FPCCR_S_MASK;
12142             if (env->v7m.fpccr[is_secure] & R_V7M_FPCCR_LSPACT_MASK) {
12143                 DP_TBFLAG_M32(flags, LSPACT, 1);
12144             }
12145 
12146             if (mve_no_pred(env)) {
12147                 DP_TBFLAG_M32(flags, MVE_NO_PRED, 1);
12148             }
12149         } else {
12150             /*
12151              * Note that XSCALE_CPAR shares bits with VECSTRIDE.
12152              * Note that VECLEN+VECSTRIDE are RES0 for M-profile.
12153              */
12154             if (arm_feature(env, ARM_FEATURE_XSCALE)) {
12155                 DP_TBFLAG_A32(flags, XSCALE_CPAR, env->cp15.c15_cpar);
12156             } else {
12157                 DP_TBFLAG_A32(flags, VECLEN, env->vfp.vec_len);
12158                 DP_TBFLAG_A32(flags, VECSTRIDE, env->vfp.vec_stride);
12159             }
12160             if (env->vfp.xregs[ARM_VFP_FPEXC] & (1 << 30)) {
12161                 DP_TBFLAG_A32(flags, VFPEN, 1);
12162             }
12163         }
12164 
12165         DP_TBFLAG_AM32(flags, THUMB, env->thumb);
12166         DP_TBFLAG_AM32(flags, CONDEXEC, env->condexec_bits);
12167     }
12168 
12169     /*
12170      * The SS_ACTIVE and PSTATE_SS bits correspond to the state machine
12171      * states defined in the ARM ARM for software singlestep:
12172      *  SS_ACTIVE   PSTATE.SS   State
12173      *     0            x       Inactive (the TB flag for SS is always 0)
12174      *     1            0       Active-pending
12175      *     1            1       Active-not-pending
12176      * SS_ACTIVE is set in hflags; PSTATE__SS is computed every TB.
12177      */
12178     if (EX_TBFLAG_ANY(flags, SS_ACTIVE) && (env->pstate & PSTATE_SS)) {
12179         DP_TBFLAG_ANY(flags, PSTATE__SS, 1);
12180     }
12181 
12182     *pflags = flags.flags;
12183     *cs_base = flags.flags2;
12184 }
12185 
12186 #ifdef TARGET_AARCH64
12187 /*
12188  * The manual says that when SVE is enabled and VQ is widened the
12189  * implementation is allowed to zero the previously inaccessible
12190  * portion of the registers.  The corollary to that is that when
12191  * SVE is enabled and VQ is narrowed we are also allowed to zero
12192  * the now inaccessible portion of the registers.
12193  *
12194  * The intent of this is that no predicate bit beyond VQ is ever set.
12195  * Which means that some operations on predicate registers themselves
12196  * may operate on full uint64_t or even unrolled across the maximum
12197  * uint64_t[4].  Performing 4 bits of host arithmetic unconditionally
12198  * may well be cheaper than conditionals to restrict the operation
12199  * to the relevant portion of a uint16_t[16].
12200  */
12201 void aarch64_sve_narrow_vq(CPUARMState *env, unsigned vq)
12202 {
12203     int i, j;
12204     uint64_t pmask;
12205 
12206     assert(vq >= 1 && vq <= ARM_MAX_VQ);
12207     assert(vq <= env_archcpu(env)->sve_max_vq);
12208 
12209     /* Zap the high bits of the zregs.  */
12210     for (i = 0; i < 32; i++) {
12211         memset(&env->vfp.zregs[i].d[2 * vq], 0, 16 * (ARM_MAX_VQ - vq));
12212     }
12213 
12214     /* Zap the high bits of the pregs and ffr.  */
12215     pmask = 0;
12216     if (vq & 3) {
12217         pmask = ~(-1ULL << (16 * (vq & 3)));
12218     }
12219     for (j = vq / 4; j < ARM_MAX_VQ / 4; j++) {
12220         for (i = 0; i < 17; ++i) {
12221             env->vfp.pregs[i].p[j] &= pmask;
12222         }
12223         pmask = 0;
12224     }
12225 }
12226 
12227 static uint32_t sve_vqm1_for_el_sm_ena(CPUARMState *env, int el, bool sm)
12228 {
12229     int exc_el;
12230 
12231     if (sm) {
12232         exc_el = sme_exception_el(env, el);
12233     } else {
12234         exc_el = sve_exception_el(env, el);
12235     }
12236     if (exc_el) {
12237         return 0; /* disabled */
12238     }
12239     return sve_vqm1_for_el_sm(env, el, sm);
12240 }
12241 
12242 /*
12243  * Notice a change in SVE vector size when changing EL.
12244  */
12245 void aarch64_sve_change_el(CPUARMState *env, int old_el,
12246                            int new_el, bool el0_a64)
12247 {
12248     ARMCPU *cpu = env_archcpu(env);
12249     int old_len, new_len;
12250     bool old_a64, new_a64, sm;
12251 
12252     /* Nothing to do if no SVE.  */
12253     if (!cpu_isar_feature(aa64_sve, cpu)) {
12254         return;
12255     }
12256 
12257     /* Nothing to do if FP is disabled in either EL.  */
12258     if (fp_exception_el(env, old_el) || fp_exception_el(env, new_el)) {
12259         return;
12260     }
12261 
12262     old_a64 = old_el ? arm_el_is_aa64(env, old_el) : el0_a64;
12263     new_a64 = new_el ? arm_el_is_aa64(env, new_el) : el0_a64;
12264 
12265     /*
12266      * Both AArch64.TakeException and AArch64.ExceptionReturn
12267      * invoke ResetSVEState when taking an exception from, or
12268      * returning to, AArch32 state when PSTATE.SM is enabled.
12269      */
12270     sm = FIELD_EX64(env->svcr, SVCR, SM);
12271     if (old_a64 != new_a64 && sm) {
12272         arm_reset_sve_state(env);
12273         return;
12274     }
12275 
12276     /*
12277      * DDI0584A.d sec 3.2: "If SVE instructions are disabled or trapped
12278      * at ELx, or not available because the EL is in AArch32 state, then
12279      * for all purposes other than a direct read, the ZCR_ELx.LEN field
12280      * has an effective value of 0".
12281      *
12282      * Consider EL2 (aa64, vq=4) -> EL0 (aa32) -> EL1 (aa64, vq=0).
12283      * If we ignore aa32 state, we would fail to see the vq4->vq0 transition
12284      * from EL2->EL1.  Thus we go ahead and narrow when entering aa32 so that
12285      * we already have the correct register contents when encountering the
12286      * vq0->vq0 transition between EL0->EL1.
12287      */
12288     old_len = new_len = 0;
12289     if (old_a64) {
12290         old_len = sve_vqm1_for_el_sm_ena(env, old_el, sm);
12291     }
12292     if (new_a64) {
12293         new_len = sve_vqm1_for_el_sm_ena(env, new_el, sm);
12294     }
12295 
12296     /* When changing vector length, clear inaccessible state.  */
12297     if (new_len < old_len) {
12298         aarch64_sve_narrow_vq(env, new_len + 1);
12299     }
12300 }
12301 #endif
12302