1 /* 2 * ARM generic helpers. 3 * 4 * This code is licensed under the GNU GPL v2 or later. 5 * 6 * SPDX-License-Identifier: GPL-2.0-or-later 7 */ 8 9 #include "qemu/osdep.h" 10 #include "qemu/log.h" 11 #include "trace.h" 12 #include "cpu.h" 13 #include "internals.h" 14 #include "exec/helper-proto.h" 15 #include "qemu/main-loop.h" 16 #include "qemu/timer.h" 17 #include "qemu/bitops.h" 18 #include "qemu/crc32c.h" 19 #include "qemu/qemu-print.h" 20 #include "exec/exec-all.h" 21 #include <zlib.h> /* For crc32 */ 22 #include "hw/irq.h" 23 #include "sysemu/cpu-timers.h" 24 #include "sysemu/kvm.h" 25 #include "qapi/qapi-commands-machine-target.h" 26 #include "qapi/error.h" 27 #include "qemu/guest-random.h" 28 #ifdef CONFIG_TCG 29 #include "semihosting/common-semi.h" 30 #endif 31 #include "cpregs.h" 32 33 #define ARM_CPU_FREQ 1000000000 /* FIXME: 1 GHz, should be configurable */ 34 35 static void switch_mode(CPUARMState *env, int mode); 36 37 static uint64_t raw_read(CPUARMState *env, const ARMCPRegInfo *ri) 38 { 39 assert(ri->fieldoffset); 40 if (cpreg_field_is_64bit(ri)) { 41 return CPREG_FIELD64(env, ri); 42 } else { 43 return CPREG_FIELD32(env, ri); 44 } 45 } 46 47 void raw_write(CPUARMState *env, const ARMCPRegInfo *ri, uint64_t value) 48 { 49 assert(ri->fieldoffset); 50 if (cpreg_field_is_64bit(ri)) { 51 CPREG_FIELD64(env, ri) = value; 52 } else { 53 CPREG_FIELD32(env, ri) = value; 54 } 55 } 56 57 static void *raw_ptr(CPUARMState *env, const ARMCPRegInfo *ri) 58 { 59 return (char *)env + ri->fieldoffset; 60 } 61 62 uint64_t read_raw_cp_reg(CPUARMState *env, const ARMCPRegInfo *ri) 63 { 64 /* Raw read of a coprocessor register (as needed for migration, etc). */ 65 if (ri->type & ARM_CP_CONST) { 66 return ri->resetvalue; 67 } else if (ri->raw_readfn) { 68 return ri->raw_readfn(env, ri); 69 } else if (ri->readfn) { 70 return ri->readfn(env, ri); 71 } else { 72 return raw_read(env, ri); 73 } 74 } 75 76 static void write_raw_cp_reg(CPUARMState *env, const ARMCPRegInfo *ri, 77 uint64_t v) 78 { 79 /* 80 * Raw write of a coprocessor register (as needed for migration, etc). 81 * Note that constant registers are treated as write-ignored; the 82 * caller should check for success by whether a readback gives the 83 * value written. 84 */ 85 if (ri->type & ARM_CP_CONST) { 86 return; 87 } else if (ri->raw_writefn) { 88 ri->raw_writefn(env, ri, v); 89 } else if (ri->writefn) { 90 ri->writefn(env, ri, v); 91 } else { 92 raw_write(env, ri, v); 93 } 94 } 95 96 static bool raw_accessors_invalid(const ARMCPRegInfo *ri) 97 { 98 /* 99 * Return true if the regdef would cause an assertion if you called 100 * read_raw_cp_reg() or write_raw_cp_reg() on it (ie if it is a 101 * program bug for it not to have the NO_RAW flag). 102 * NB that returning false here doesn't necessarily mean that calling 103 * read/write_raw_cp_reg() is safe, because we can't distinguish "has 104 * read/write access functions which are safe for raw use" from "has 105 * read/write access functions which have side effects but has forgotten 106 * to provide raw access functions". 107 * The tests here line up with the conditions in read/write_raw_cp_reg() 108 * and assertions in raw_read()/raw_write(). 109 */ 110 if ((ri->type & ARM_CP_CONST) || 111 ri->fieldoffset || 112 ((ri->raw_writefn || ri->writefn) && (ri->raw_readfn || ri->readfn))) { 113 return false; 114 } 115 return true; 116 } 117 118 bool write_cpustate_to_list(ARMCPU *cpu, bool kvm_sync) 119 { 120 /* Write the coprocessor state from cpu->env to the (index,value) list. */ 121 int i; 122 bool ok = true; 123 124 for (i = 0; i < cpu->cpreg_array_len; i++) { 125 uint32_t regidx = kvm_to_cpreg_id(cpu->cpreg_indexes[i]); 126 const ARMCPRegInfo *ri; 127 uint64_t newval; 128 129 ri = get_arm_cp_reginfo(cpu->cp_regs, regidx); 130 if (!ri) { 131 ok = false; 132 continue; 133 } 134 if (ri->type & ARM_CP_NO_RAW) { 135 continue; 136 } 137 138 newval = read_raw_cp_reg(&cpu->env, ri); 139 if (kvm_sync) { 140 /* 141 * Only sync if the previous list->cpustate sync succeeded. 142 * Rather than tracking the success/failure state for every 143 * item in the list, we just recheck "does the raw write we must 144 * have made in write_list_to_cpustate() read back OK" here. 145 */ 146 uint64_t oldval = cpu->cpreg_values[i]; 147 148 if (oldval == newval) { 149 continue; 150 } 151 152 write_raw_cp_reg(&cpu->env, ri, oldval); 153 if (read_raw_cp_reg(&cpu->env, ri) != oldval) { 154 continue; 155 } 156 157 write_raw_cp_reg(&cpu->env, ri, newval); 158 } 159 cpu->cpreg_values[i] = newval; 160 } 161 return ok; 162 } 163 164 bool write_list_to_cpustate(ARMCPU *cpu) 165 { 166 int i; 167 bool ok = true; 168 169 for (i = 0; i < cpu->cpreg_array_len; i++) { 170 uint32_t regidx = kvm_to_cpreg_id(cpu->cpreg_indexes[i]); 171 uint64_t v = cpu->cpreg_values[i]; 172 const ARMCPRegInfo *ri; 173 174 ri = get_arm_cp_reginfo(cpu->cp_regs, regidx); 175 if (!ri) { 176 ok = false; 177 continue; 178 } 179 if (ri->type & ARM_CP_NO_RAW) { 180 continue; 181 } 182 /* 183 * Write value and confirm it reads back as written 184 * (to catch read-only registers and partially read-only 185 * registers where the incoming migration value doesn't match) 186 */ 187 write_raw_cp_reg(&cpu->env, ri, v); 188 if (read_raw_cp_reg(&cpu->env, ri) != v) { 189 ok = false; 190 } 191 } 192 return ok; 193 } 194 195 static void add_cpreg_to_list(gpointer key, gpointer opaque) 196 { 197 ARMCPU *cpu = opaque; 198 uint32_t regidx = (uintptr_t)key; 199 const ARMCPRegInfo *ri = get_arm_cp_reginfo(cpu->cp_regs, regidx); 200 201 if (!(ri->type & (ARM_CP_NO_RAW | ARM_CP_ALIAS))) { 202 cpu->cpreg_indexes[cpu->cpreg_array_len] = cpreg_to_kvm_id(regidx); 203 /* The value array need not be initialized at this point */ 204 cpu->cpreg_array_len++; 205 } 206 } 207 208 static void count_cpreg(gpointer key, gpointer opaque) 209 { 210 ARMCPU *cpu = opaque; 211 const ARMCPRegInfo *ri; 212 213 ri = g_hash_table_lookup(cpu->cp_regs, key); 214 215 if (!(ri->type & (ARM_CP_NO_RAW | ARM_CP_ALIAS))) { 216 cpu->cpreg_array_len++; 217 } 218 } 219 220 static gint cpreg_key_compare(gconstpointer a, gconstpointer b) 221 { 222 uint64_t aidx = cpreg_to_kvm_id((uintptr_t)a); 223 uint64_t bidx = cpreg_to_kvm_id((uintptr_t)b); 224 225 if (aidx > bidx) { 226 return 1; 227 } 228 if (aidx < bidx) { 229 return -1; 230 } 231 return 0; 232 } 233 234 void init_cpreg_list(ARMCPU *cpu) 235 { 236 /* 237 * Initialise the cpreg_tuples[] array based on the cp_regs hash. 238 * Note that we require cpreg_tuples[] to be sorted by key ID. 239 */ 240 GList *keys; 241 int arraylen; 242 243 keys = g_hash_table_get_keys(cpu->cp_regs); 244 keys = g_list_sort(keys, cpreg_key_compare); 245 246 cpu->cpreg_array_len = 0; 247 248 g_list_foreach(keys, count_cpreg, cpu); 249 250 arraylen = cpu->cpreg_array_len; 251 cpu->cpreg_indexes = g_new(uint64_t, arraylen); 252 cpu->cpreg_values = g_new(uint64_t, arraylen); 253 cpu->cpreg_vmstate_indexes = g_new(uint64_t, arraylen); 254 cpu->cpreg_vmstate_values = g_new(uint64_t, arraylen); 255 cpu->cpreg_vmstate_array_len = cpu->cpreg_array_len; 256 cpu->cpreg_array_len = 0; 257 258 g_list_foreach(keys, add_cpreg_to_list, cpu); 259 260 assert(cpu->cpreg_array_len == arraylen); 261 262 g_list_free(keys); 263 } 264 265 /* 266 * Some registers are not accessible from AArch32 EL3 if SCR.NS == 0. 267 */ 268 static CPAccessResult access_el3_aa32ns(CPUARMState *env, 269 const ARMCPRegInfo *ri, 270 bool isread) 271 { 272 if (!is_a64(env) && arm_current_el(env) == 3 && 273 arm_is_secure_below_el3(env)) { 274 return CP_ACCESS_TRAP_UNCATEGORIZED; 275 } 276 return CP_ACCESS_OK; 277 } 278 279 /* 280 * Some secure-only AArch32 registers trap to EL3 if used from 281 * Secure EL1 (but are just ordinary UNDEF in other non-EL3 contexts). 282 * Note that an access from Secure EL1 can only happen if EL3 is AArch64. 283 * We assume that the .access field is set to PL1_RW. 284 */ 285 static CPAccessResult access_trap_aa32s_el1(CPUARMState *env, 286 const ARMCPRegInfo *ri, 287 bool isread) 288 { 289 if (arm_current_el(env) == 3) { 290 return CP_ACCESS_OK; 291 } 292 if (arm_is_secure_below_el3(env)) { 293 if (env->cp15.scr_el3 & SCR_EEL2) { 294 return CP_ACCESS_TRAP_EL2; 295 } 296 return CP_ACCESS_TRAP_EL3; 297 } 298 /* This will be EL1 NS and EL2 NS, which just UNDEF */ 299 return CP_ACCESS_TRAP_UNCATEGORIZED; 300 } 301 302 /* 303 * Check for traps to performance monitor registers, which are controlled 304 * by MDCR_EL2.TPM for EL2 and MDCR_EL3.TPM for EL3. 305 */ 306 static CPAccessResult access_tpm(CPUARMState *env, const ARMCPRegInfo *ri, 307 bool isread) 308 { 309 int el = arm_current_el(env); 310 uint64_t mdcr_el2 = arm_mdcr_el2_eff(env); 311 312 if (el < 2 && (mdcr_el2 & MDCR_TPM)) { 313 return CP_ACCESS_TRAP_EL2; 314 } 315 if (el < 3 && (env->cp15.mdcr_el3 & MDCR_TPM)) { 316 return CP_ACCESS_TRAP_EL3; 317 } 318 return CP_ACCESS_OK; 319 } 320 321 /* Check for traps from EL1 due to HCR_EL2.TVM and HCR_EL2.TRVM. */ 322 static CPAccessResult access_tvm_trvm(CPUARMState *env, const ARMCPRegInfo *ri, 323 bool isread) 324 { 325 if (arm_current_el(env) == 1) { 326 uint64_t trap = isread ? HCR_TRVM : HCR_TVM; 327 if (arm_hcr_el2_eff(env) & trap) { 328 return CP_ACCESS_TRAP_EL2; 329 } 330 } 331 return CP_ACCESS_OK; 332 } 333 334 /* Check for traps from EL1 due to HCR_EL2.TSW. */ 335 static CPAccessResult access_tsw(CPUARMState *env, const ARMCPRegInfo *ri, 336 bool isread) 337 { 338 if (arm_current_el(env) == 1 && (arm_hcr_el2_eff(env) & HCR_TSW)) { 339 return CP_ACCESS_TRAP_EL2; 340 } 341 return CP_ACCESS_OK; 342 } 343 344 /* Check for traps from EL1 due to HCR_EL2.TACR. */ 345 static CPAccessResult access_tacr(CPUARMState *env, const ARMCPRegInfo *ri, 346 bool isread) 347 { 348 if (arm_current_el(env) == 1 && (arm_hcr_el2_eff(env) & HCR_TACR)) { 349 return CP_ACCESS_TRAP_EL2; 350 } 351 return CP_ACCESS_OK; 352 } 353 354 /* Check for traps from EL1 due to HCR_EL2.TTLB. */ 355 static CPAccessResult access_ttlb(CPUARMState *env, const ARMCPRegInfo *ri, 356 bool isread) 357 { 358 if (arm_current_el(env) == 1 && (arm_hcr_el2_eff(env) & HCR_TTLB)) { 359 return CP_ACCESS_TRAP_EL2; 360 } 361 return CP_ACCESS_OK; 362 } 363 364 /* Check for traps from EL1 due to HCR_EL2.TTLB or TTLBIS. */ 365 static CPAccessResult access_ttlbis(CPUARMState *env, const ARMCPRegInfo *ri, 366 bool isread) 367 { 368 if (arm_current_el(env) == 1 && 369 (arm_hcr_el2_eff(env) & (HCR_TTLB | HCR_TTLBIS))) { 370 return CP_ACCESS_TRAP_EL2; 371 } 372 return CP_ACCESS_OK; 373 } 374 375 #ifdef TARGET_AARCH64 376 /* Check for traps from EL1 due to HCR_EL2.TTLB or TTLBOS. */ 377 static CPAccessResult access_ttlbos(CPUARMState *env, const ARMCPRegInfo *ri, 378 bool isread) 379 { 380 if (arm_current_el(env) == 1 && 381 (arm_hcr_el2_eff(env) & (HCR_TTLB | HCR_TTLBOS))) { 382 return CP_ACCESS_TRAP_EL2; 383 } 384 return CP_ACCESS_OK; 385 } 386 #endif 387 388 static void dacr_write(CPUARMState *env, const ARMCPRegInfo *ri, uint64_t value) 389 { 390 ARMCPU *cpu = env_archcpu(env); 391 392 raw_write(env, ri, value); 393 tlb_flush(CPU(cpu)); /* Flush TLB as domain not tracked in TLB */ 394 } 395 396 static void fcse_write(CPUARMState *env, const ARMCPRegInfo *ri, uint64_t value) 397 { 398 ARMCPU *cpu = env_archcpu(env); 399 400 if (raw_read(env, ri) != value) { 401 /* 402 * Unlike real hardware the qemu TLB uses virtual addresses, 403 * not modified virtual addresses, so this causes a TLB flush. 404 */ 405 tlb_flush(CPU(cpu)); 406 raw_write(env, ri, value); 407 } 408 } 409 410 static void contextidr_write(CPUARMState *env, const ARMCPRegInfo *ri, 411 uint64_t value) 412 { 413 ARMCPU *cpu = env_archcpu(env); 414 415 if (raw_read(env, ri) != value && !arm_feature(env, ARM_FEATURE_PMSA) 416 && !extended_addresses_enabled(env)) { 417 /* 418 * For VMSA (when not using the LPAE long descriptor page table 419 * format) this register includes the ASID, so do a TLB flush. 420 * For PMSA it is purely a process ID and no action is needed. 421 */ 422 tlb_flush(CPU(cpu)); 423 } 424 raw_write(env, ri, value); 425 } 426 427 static int alle1_tlbmask(CPUARMState *env) 428 { 429 /* 430 * Note that the 'ALL' scope must invalidate both stage 1 and 431 * stage 2 translations, whereas most other scopes only invalidate 432 * stage 1 translations. 433 */ 434 return (ARMMMUIdxBit_E10_1 | 435 ARMMMUIdxBit_E10_1_PAN | 436 ARMMMUIdxBit_E10_0 | 437 ARMMMUIdxBit_Stage2 | 438 ARMMMUIdxBit_Stage2_S); 439 } 440 441 442 /* IS variants of TLB operations must affect all cores */ 443 static void tlbiall_is_write(CPUARMState *env, const ARMCPRegInfo *ri, 444 uint64_t value) 445 { 446 CPUState *cs = env_cpu(env); 447 448 tlb_flush_all_cpus_synced(cs); 449 } 450 451 static void tlbiasid_is_write(CPUARMState *env, const ARMCPRegInfo *ri, 452 uint64_t value) 453 { 454 CPUState *cs = env_cpu(env); 455 456 tlb_flush_all_cpus_synced(cs); 457 } 458 459 static void tlbimva_is_write(CPUARMState *env, const ARMCPRegInfo *ri, 460 uint64_t value) 461 { 462 CPUState *cs = env_cpu(env); 463 464 tlb_flush_page_all_cpus_synced(cs, value & TARGET_PAGE_MASK); 465 } 466 467 static void tlbimvaa_is_write(CPUARMState *env, const ARMCPRegInfo *ri, 468 uint64_t value) 469 { 470 CPUState *cs = env_cpu(env); 471 472 tlb_flush_page_all_cpus_synced(cs, value & TARGET_PAGE_MASK); 473 } 474 475 /* 476 * Non-IS variants of TLB operations are upgraded to 477 * IS versions if we are at EL1 and HCR_EL2.FB is effectively set to 478 * force broadcast of these operations. 479 */ 480 static bool tlb_force_broadcast(CPUARMState *env) 481 { 482 return arm_current_el(env) == 1 && (arm_hcr_el2_eff(env) & HCR_FB); 483 } 484 485 static void tlbiall_write(CPUARMState *env, const ARMCPRegInfo *ri, 486 uint64_t value) 487 { 488 /* Invalidate all (TLBIALL) */ 489 CPUState *cs = env_cpu(env); 490 491 if (tlb_force_broadcast(env)) { 492 tlb_flush_all_cpus_synced(cs); 493 } else { 494 tlb_flush(cs); 495 } 496 } 497 498 static void tlbimva_write(CPUARMState *env, const ARMCPRegInfo *ri, 499 uint64_t value) 500 { 501 /* Invalidate single TLB entry by MVA and ASID (TLBIMVA) */ 502 CPUState *cs = env_cpu(env); 503 504 value &= TARGET_PAGE_MASK; 505 if (tlb_force_broadcast(env)) { 506 tlb_flush_page_all_cpus_synced(cs, value); 507 } else { 508 tlb_flush_page(cs, value); 509 } 510 } 511 512 static void tlbiasid_write(CPUARMState *env, const ARMCPRegInfo *ri, 513 uint64_t value) 514 { 515 /* Invalidate by ASID (TLBIASID) */ 516 CPUState *cs = env_cpu(env); 517 518 if (tlb_force_broadcast(env)) { 519 tlb_flush_all_cpus_synced(cs); 520 } else { 521 tlb_flush(cs); 522 } 523 } 524 525 static void tlbimvaa_write(CPUARMState *env, const ARMCPRegInfo *ri, 526 uint64_t value) 527 { 528 /* Invalidate single entry by MVA, all ASIDs (TLBIMVAA) */ 529 CPUState *cs = env_cpu(env); 530 531 value &= TARGET_PAGE_MASK; 532 if (tlb_force_broadcast(env)) { 533 tlb_flush_page_all_cpus_synced(cs, value); 534 } else { 535 tlb_flush_page(cs, value); 536 } 537 } 538 539 static void tlbiall_nsnh_write(CPUARMState *env, const ARMCPRegInfo *ri, 540 uint64_t value) 541 { 542 CPUState *cs = env_cpu(env); 543 544 tlb_flush_by_mmuidx(cs, alle1_tlbmask(env)); 545 } 546 547 static void tlbiall_nsnh_is_write(CPUARMState *env, const ARMCPRegInfo *ri, 548 uint64_t value) 549 { 550 CPUState *cs = env_cpu(env); 551 552 tlb_flush_by_mmuidx_all_cpus_synced(cs, alle1_tlbmask(env)); 553 } 554 555 556 static void tlbiall_hyp_write(CPUARMState *env, const ARMCPRegInfo *ri, 557 uint64_t value) 558 { 559 CPUState *cs = env_cpu(env); 560 561 tlb_flush_by_mmuidx(cs, ARMMMUIdxBit_E2); 562 } 563 564 static void tlbiall_hyp_is_write(CPUARMState *env, const ARMCPRegInfo *ri, 565 uint64_t value) 566 { 567 CPUState *cs = env_cpu(env); 568 569 tlb_flush_by_mmuidx_all_cpus_synced(cs, ARMMMUIdxBit_E2); 570 } 571 572 static void tlbimva_hyp_write(CPUARMState *env, const ARMCPRegInfo *ri, 573 uint64_t value) 574 { 575 CPUState *cs = env_cpu(env); 576 uint64_t pageaddr = value & ~MAKE_64BIT_MASK(0, 12); 577 578 tlb_flush_page_by_mmuidx(cs, pageaddr, ARMMMUIdxBit_E2); 579 } 580 581 static void tlbimva_hyp_is_write(CPUARMState *env, const ARMCPRegInfo *ri, 582 uint64_t value) 583 { 584 CPUState *cs = env_cpu(env); 585 uint64_t pageaddr = value & ~MAKE_64BIT_MASK(0, 12); 586 587 tlb_flush_page_by_mmuidx_all_cpus_synced(cs, pageaddr, 588 ARMMMUIdxBit_E2); 589 } 590 591 static void tlbiipas2_hyp_write(CPUARMState *env, const ARMCPRegInfo *ri, 592 uint64_t value) 593 { 594 CPUState *cs = env_cpu(env); 595 uint64_t pageaddr = (value & MAKE_64BIT_MASK(0, 28)) << 12; 596 597 tlb_flush_page_by_mmuidx(cs, pageaddr, ARMMMUIdxBit_Stage2); 598 } 599 600 static void tlbiipas2is_hyp_write(CPUARMState *env, const ARMCPRegInfo *ri, 601 uint64_t value) 602 { 603 CPUState *cs = env_cpu(env); 604 uint64_t pageaddr = (value & MAKE_64BIT_MASK(0, 28)) << 12; 605 606 tlb_flush_page_by_mmuidx_all_cpus_synced(cs, pageaddr, ARMMMUIdxBit_Stage2); 607 } 608 609 static const ARMCPRegInfo cp_reginfo[] = { 610 /* 611 * Define the secure and non-secure FCSE identifier CP registers 612 * separately because there is no secure bank in V8 (no _EL3). This allows 613 * the secure register to be properly reset and migrated. There is also no 614 * v8 EL1 version of the register so the non-secure instance stands alone. 615 */ 616 { .name = "FCSEIDR", 617 .cp = 15, .opc1 = 0, .crn = 13, .crm = 0, .opc2 = 0, 618 .access = PL1_RW, .secure = ARM_CP_SECSTATE_NS, 619 .fieldoffset = offsetof(CPUARMState, cp15.fcseidr_ns), 620 .resetvalue = 0, .writefn = fcse_write, .raw_writefn = raw_write, }, 621 { .name = "FCSEIDR_S", 622 .cp = 15, .opc1 = 0, .crn = 13, .crm = 0, .opc2 = 0, 623 .access = PL1_RW, .secure = ARM_CP_SECSTATE_S, 624 .fieldoffset = offsetof(CPUARMState, cp15.fcseidr_s), 625 .resetvalue = 0, .writefn = fcse_write, .raw_writefn = raw_write, }, 626 /* 627 * Define the secure and non-secure context identifier CP registers 628 * separately because there is no secure bank in V8 (no _EL3). This allows 629 * the secure register to be properly reset and migrated. In the 630 * non-secure case, the 32-bit register will have reset and migration 631 * disabled during registration as it is handled by the 64-bit instance. 632 */ 633 { .name = "CONTEXTIDR_EL1", .state = ARM_CP_STATE_BOTH, 634 .opc0 = 3, .opc1 = 0, .crn = 13, .crm = 0, .opc2 = 1, 635 .access = PL1_RW, .accessfn = access_tvm_trvm, 636 .fgt = FGT_CONTEXTIDR_EL1, 637 .secure = ARM_CP_SECSTATE_NS, 638 .fieldoffset = offsetof(CPUARMState, cp15.contextidr_el[1]), 639 .resetvalue = 0, .writefn = contextidr_write, .raw_writefn = raw_write, }, 640 { .name = "CONTEXTIDR_S", .state = ARM_CP_STATE_AA32, 641 .cp = 15, .opc1 = 0, .crn = 13, .crm = 0, .opc2 = 1, 642 .access = PL1_RW, .accessfn = access_tvm_trvm, 643 .secure = ARM_CP_SECSTATE_S, 644 .fieldoffset = offsetof(CPUARMState, cp15.contextidr_s), 645 .resetvalue = 0, .writefn = contextidr_write, .raw_writefn = raw_write, }, 646 }; 647 648 static const ARMCPRegInfo not_v8_cp_reginfo[] = { 649 /* 650 * NB: Some of these registers exist in v8 but with more precise 651 * definitions that don't use CP_ANY wildcards (mostly in v8_cp_reginfo[]). 652 */ 653 /* MMU Domain access control / MPU write buffer control */ 654 { .name = "DACR", 655 .cp = 15, .opc1 = CP_ANY, .crn = 3, .crm = CP_ANY, .opc2 = CP_ANY, 656 .access = PL1_RW, .accessfn = access_tvm_trvm, .resetvalue = 0, 657 .writefn = dacr_write, .raw_writefn = raw_write, 658 .bank_fieldoffsets = { offsetoflow32(CPUARMState, cp15.dacr_s), 659 offsetoflow32(CPUARMState, cp15.dacr_ns) } }, 660 /* 661 * ARMv7 allocates a range of implementation defined TLB LOCKDOWN regs. 662 * For v6 and v5, these mappings are overly broad. 663 */ 664 { .name = "TLB_LOCKDOWN", .cp = 15, .crn = 10, .crm = 0, 665 .opc1 = CP_ANY, .opc2 = CP_ANY, .access = PL1_RW, .type = ARM_CP_NOP }, 666 { .name = "TLB_LOCKDOWN", .cp = 15, .crn = 10, .crm = 1, 667 .opc1 = CP_ANY, .opc2 = CP_ANY, .access = PL1_RW, .type = ARM_CP_NOP }, 668 { .name = "TLB_LOCKDOWN", .cp = 15, .crn = 10, .crm = 4, 669 .opc1 = CP_ANY, .opc2 = CP_ANY, .access = PL1_RW, .type = ARM_CP_NOP }, 670 { .name = "TLB_LOCKDOWN", .cp = 15, .crn = 10, .crm = 8, 671 .opc1 = CP_ANY, .opc2 = CP_ANY, .access = PL1_RW, .type = ARM_CP_NOP }, 672 /* Cache maintenance ops; some of this space may be overridden later. */ 673 { .name = "CACHEMAINT", .cp = 15, .crn = 7, .crm = CP_ANY, 674 .opc1 = 0, .opc2 = CP_ANY, .access = PL1_W, 675 .type = ARM_CP_NOP | ARM_CP_OVERRIDE }, 676 }; 677 678 static const ARMCPRegInfo not_v6_cp_reginfo[] = { 679 /* 680 * Not all pre-v6 cores implemented this WFI, so this is slightly 681 * over-broad. 682 */ 683 { .name = "WFI_v5", .cp = 15, .crn = 7, .crm = 8, .opc1 = 0, .opc2 = 2, 684 .access = PL1_W, .type = ARM_CP_WFI }, 685 }; 686 687 static const ARMCPRegInfo not_v7_cp_reginfo[] = { 688 /* 689 * Standard v6 WFI (also used in some pre-v6 cores); not in v7 (which 690 * is UNPREDICTABLE; we choose to NOP as most implementations do). 691 */ 692 { .name = "WFI_v6", .cp = 15, .crn = 7, .crm = 0, .opc1 = 0, .opc2 = 4, 693 .access = PL1_W, .type = ARM_CP_WFI }, 694 /* 695 * L1 cache lockdown. Not architectural in v6 and earlier but in practice 696 * implemented in 926, 946, 1026, 1136, 1176 and 11MPCore. StrongARM and 697 * OMAPCP will override this space. 698 */ 699 { .name = "DLOCKDOWN", .cp = 15, .crn = 9, .crm = 0, .opc1 = 0, .opc2 = 0, 700 .access = PL1_RW, .fieldoffset = offsetof(CPUARMState, cp15.c9_data), 701 .resetvalue = 0 }, 702 { .name = "ILOCKDOWN", .cp = 15, .crn = 9, .crm = 0, .opc1 = 0, .opc2 = 1, 703 .access = PL1_RW, .fieldoffset = offsetof(CPUARMState, cp15.c9_insn), 704 .resetvalue = 0 }, 705 /* v6 doesn't have the cache ID registers but Linux reads them anyway */ 706 { .name = "DUMMY", .cp = 15, .crn = 0, .crm = 0, .opc1 = 1, .opc2 = CP_ANY, 707 .access = PL1_R, .type = ARM_CP_CONST | ARM_CP_NO_RAW, 708 .resetvalue = 0 }, 709 /* 710 * We don't implement pre-v7 debug but most CPUs had at least a DBGDIDR; 711 * implementing it as RAZ means the "debug architecture version" bits 712 * will read as a reserved value, which should cause Linux to not try 713 * to use the debug hardware. 714 */ 715 { .name = "DBGDIDR", .cp = 14, .crn = 0, .crm = 0, .opc1 = 0, .opc2 = 0, 716 .access = PL0_R, .type = ARM_CP_CONST, .resetvalue = 0 }, 717 /* 718 * MMU TLB control. Note that the wildcarding means we cover not just 719 * the unified TLB ops but also the dside/iside/inner-shareable variants. 720 */ 721 { .name = "TLBIALL", .cp = 15, .crn = 8, .crm = CP_ANY, 722 .opc1 = CP_ANY, .opc2 = 0, .access = PL1_W, .writefn = tlbiall_write, 723 .type = ARM_CP_NO_RAW }, 724 { .name = "TLBIMVA", .cp = 15, .crn = 8, .crm = CP_ANY, 725 .opc1 = CP_ANY, .opc2 = 1, .access = PL1_W, .writefn = tlbimva_write, 726 .type = ARM_CP_NO_RAW }, 727 { .name = "TLBIASID", .cp = 15, .crn = 8, .crm = CP_ANY, 728 .opc1 = CP_ANY, .opc2 = 2, .access = PL1_W, .writefn = tlbiasid_write, 729 .type = ARM_CP_NO_RAW }, 730 { .name = "TLBIMVAA", .cp = 15, .crn = 8, .crm = CP_ANY, 731 .opc1 = CP_ANY, .opc2 = 3, .access = PL1_W, .writefn = tlbimvaa_write, 732 .type = ARM_CP_NO_RAW }, 733 { .name = "PRRR", .cp = 15, .crn = 10, .crm = 2, 734 .opc1 = 0, .opc2 = 0, .access = PL1_RW, .type = ARM_CP_NOP }, 735 { .name = "NMRR", .cp = 15, .crn = 10, .crm = 2, 736 .opc1 = 0, .opc2 = 1, .access = PL1_RW, .type = ARM_CP_NOP }, 737 }; 738 739 static void cpacr_write(CPUARMState *env, const ARMCPRegInfo *ri, 740 uint64_t value) 741 { 742 uint32_t mask = 0; 743 744 /* In ARMv8 most bits of CPACR_EL1 are RES0. */ 745 if (!arm_feature(env, ARM_FEATURE_V8)) { 746 /* 747 * ARMv7 defines bits for unimplemented coprocessors as RAZ/WI. 748 * ASEDIS [31] and D32DIS [30] are both UNK/SBZP without VFP. 749 * TRCDIS [28] is RAZ/WI since we do not implement a trace macrocell. 750 */ 751 if (cpu_isar_feature(aa32_vfp_simd, env_archcpu(env))) { 752 /* VFP coprocessor: cp10 & cp11 [23:20] */ 753 mask |= R_CPACR_ASEDIS_MASK | 754 R_CPACR_D32DIS_MASK | 755 R_CPACR_CP11_MASK | 756 R_CPACR_CP10_MASK; 757 758 if (!arm_feature(env, ARM_FEATURE_NEON)) { 759 /* ASEDIS [31] bit is RAO/WI */ 760 value |= R_CPACR_ASEDIS_MASK; 761 } 762 763 /* 764 * VFPv3 and upwards with NEON implement 32 double precision 765 * registers (D0-D31). 766 */ 767 if (!cpu_isar_feature(aa32_simd_r32, env_archcpu(env))) { 768 /* D32DIS [30] is RAO/WI if D16-31 are not implemented. */ 769 value |= R_CPACR_D32DIS_MASK; 770 } 771 } 772 value &= mask; 773 } 774 775 /* 776 * For A-profile AArch32 EL3 (but not M-profile secure mode), if NSACR.CP10 777 * is 0 then CPACR.{CP11,CP10} ignore writes and read as 0b00. 778 */ 779 if (arm_feature(env, ARM_FEATURE_EL3) && !arm_el_is_aa64(env, 3) && 780 !arm_is_secure(env) && !extract32(env->cp15.nsacr, 10, 1)) { 781 mask = R_CPACR_CP11_MASK | R_CPACR_CP10_MASK; 782 value = (value & ~mask) | (env->cp15.cpacr_el1 & mask); 783 } 784 785 env->cp15.cpacr_el1 = value; 786 } 787 788 static uint64_t cpacr_read(CPUARMState *env, const ARMCPRegInfo *ri) 789 { 790 /* 791 * For A-profile AArch32 EL3 (but not M-profile secure mode), if NSACR.CP10 792 * is 0 then CPACR.{CP11,CP10} ignore writes and read as 0b00. 793 */ 794 uint64_t value = env->cp15.cpacr_el1; 795 796 if (arm_feature(env, ARM_FEATURE_EL3) && !arm_el_is_aa64(env, 3) && 797 !arm_is_secure(env) && !extract32(env->cp15.nsacr, 10, 1)) { 798 value = ~(R_CPACR_CP11_MASK | R_CPACR_CP10_MASK); 799 } 800 return value; 801 } 802 803 804 static void cpacr_reset(CPUARMState *env, const ARMCPRegInfo *ri) 805 { 806 /* 807 * Call cpacr_write() so that we reset with the correct RAO bits set 808 * for our CPU features. 809 */ 810 cpacr_write(env, ri, 0); 811 } 812 813 static CPAccessResult cpacr_access(CPUARMState *env, const ARMCPRegInfo *ri, 814 bool isread) 815 { 816 if (arm_feature(env, ARM_FEATURE_V8)) { 817 /* Check if CPACR accesses are to be trapped to EL2 */ 818 if (arm_current_el(env) == 1 && arm_is_el2_enabled(env) && 819 FIELD_EX64(env->cp15.cptr_el[2], CPTR_EL2, TCPAC)) { 820 return CP_ACCESS_TRAP_EL2; 821 /* Check if CPACR accesses are to be trapped to EL3 */ 822 } else if (arm_current_el(env) < 3 && 823 FIELD_EX64(env->cp15.cptr_el[3], CPTR_EL3, TCPAC)) { 824 return CP_ACCESS_TRAP_EL3; 825 } 826 } 827 828 return CP_ACCESS_OK; 829 } 830 831 static CPAccessResult cptr_access(CPUARMState *env, const ARMCPRegInfo *ri, 832 bool isread) 833 { 834 /* Check if CPTR accesses are set to trap to EL3 */ 835 if (arm_current_el(env) == 2 && 836 FIELD_EX64(env->cp15.cptr_el[3], CPTR_EL3, TCPAC)) { 837 return CP_ACCESS_TRAP_EL3; 838 } 839 840 return CP_ACCESS_OK; 841 } 842 843 static const ARMCPRegInfo v6_cp_reginfo[] = { 844 /* prefetch by MVA in v6, NOP in v7 */ 845 { .name = "MVA_prefetch", 846 .cp = 15, .crn = 7, .crm = 13, .opc1 = 0, .opc2 = 1, 847 .access = PL1_W, .type = ARM_CP_NOP }, 848 /* 849 * We need to break the TB after ISB to execute self-modifying code 850 * correctly and also to take any pending interrupts immediately. 851 * So use arm_cp_write_ignore() function instead of ARM_CP_NOP flag. 852 */ 853 { .name = "ISB", .cp = 15, .crn = 7, .crm = 5, .opc1 = 0, .opc2 = 4, 854 .access = PL0_W, .type = ARM_CP_NO_RAW, .writefn = arm_cp_write_ignore }, 855 { .name = "DSB", .cp = 15, .crn = 7, .crm = 10, .opc1 = 0, .opc2 = 4, 856 .access = PL0_W, .type = ARM_CP_NOP }, 857 { .name = "DMB", .cp = 15, .crn = 7, .crm = 10, .opc1 = 0, .opc2 = 5, 858 .access = PL0_W, .type = ARM_CP_NOP }, 859 { .name = "IFAR", .cp = 15, .crn = 6, .crm = 0, .opc1 = 0, .opc2 = 2, 860 .access = PL1_RW, .accessfn = access_tvm_trvm, 861 .bank_fieldoffsets = { offsetof(CPUARMState, cp15.ifar_s), 862 offsetof(CPUARMState, cp15.ifar_ns) }, 863 .resetvalue = 0, }, 864 /* 865 * Watchpoint Fault Address Register : should actually only be present 866 * for 1136, 1176, 11MPCore. 867 */ 868 { .name = "WFAR", .cp = 15, .crn = 6, .crm = 0, .opc1 = 0, .opc2 = 1, 869 .access = PL1_RW, .type = ARM_CP_CONST, .resetvalue = 0, }, 870 { .name = "CPACR", .state = ARM_CP_STATE_BOTH, .opc0 = 3, 871 .crn = 1, .crm = 0, .opc1 = 0, .opc2 = 2, .accessfn = cpacr_access, 872 .fgt = FGT_CPACR_EL1, 873 .access = PL1_RW, .fieldoffset = offsetof(CPUARMState, cp15.cpacr_el1), 874 .resetfn = cpacr_reset, .writefn = cpacr_write, .readfn = cpacr_read }, 875 }; 876 877 typedef struct pm_event { 878 uint16_t number; /* PMEVTYPER.evtCount is 16 bits wide */ 879 /* If the event is supported on this CPU (used to generate PMCEID[01]) */ 880 bool (*supported)(CPUARMState *); 881 /* 882 * Retrieve the current count of the underlying event. The programmed 883 * counters hold a difference from the return value from this function 884 */ 885 uint64_t (*get_count)(CPUARMState *); 886 /* 887 * Return how many nanoseconds it will take (at a minimum) for count events 888 * to occur. A negative value indicates the counter will never overflow, or 889 * that the counter has otherwise arranged for the overflow bit to be set 890 * and the PMU interrupt to be raised on overflow. 891 */ 892 int64_t (*ns_per_count)(uint64_t); 893 } pm_event; 894 895 static bool event_always_supported(CPUARMState *env) 896 { 897 return true; 898 } 899 900 static uint64_t swinc_get_count(CPUARMState *env) 901 { 902 /* 903 * SW_INCR events are written directly to the pmevcntr's by writes to 904 * PMSWINC, so there is no underlying count maintained by the PMU itself 905 */ 906 return 0; 907 } 908 909 static int64_t swinc_ns_per(uint64_t ignored) 910 { 911 return -1; 912 } 913 914 /* 915 * Return the underlying cycle count for the PMU cycle counters. If we're in 916 * usermode, simply return 0. 917 */ 918 static uint64_t cycles_get_count(CPUARMState *env) 919 { 920 #ifndef CONFIG_USER_ONLY 921 return muldiv64(qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL), 922 ARM_CPU_FREQ, NANOSECONDS_PER_SECOND); 923 #else 924 return cpu_get_host_ticks(); 925 #endif 926 } 927 928 #ifndef CONFIG_USER_ONLY 929 static int64_t cycles_ns_per(uint64_t cycles) 930 { 931 return (ARM_CPU_FREQ / NANOSECONDS_PER_SECOND) * cycles; 932 } 933 934 static bool instructions_supported(CPUARMState *env) 935 { 936 return icount_enabled() == 1; /* Precise instruction counting */ 937 } 938 939 static uint64_t instructions_get_count(CPUARMState *env) 940 { 941 return (uint64_t)icount_get_raw(); 942 } 943 944 static int64_t instructions_ns_per(uint64_t icount) 945 { 946 return icount_to_ns((int64_t)icount); 947 } 948 #endif 949 950 static bool pmuv3p1_events_supported(CPUARMState *env) 951 { 952 /* For events which are supported in any v8.1 PMU */ 953 return cpu_isar_feature(any_pmuv3p1, env_archcpu(env)); 954 } 955 956 static bool pmuv3p4_events_supported(CPUARMState *env) 957 { 958 /* For events which are supported in any v8.1 PMU */ 959 return cpu_isar_feature(any_pmuv3p4, env_archcpu(env)); 960 } 961 962 static uint64_t zero_event_get_count(CPUARMState *env) 963 { 964 /* For events which on QEMU never fire, so their count is always zero */ 965 return 0; 966 } 967 968 static int64_t zero_event_ns_per(uint64_t cycles) 969 { 970 /* An event which never fires can never overflow */ 971 return -1; 972 } 973 974 static const pm_event pm_events[] = { 975 { .number = 0x000, /* SW_INCR */ 976 .supported = event_always_supported, 977 .get_count = swinc_get_count, 978 .ns_per_count = swinc_ns_per, 979 }, 980 #ifndef CONFIG_USER_ONLY 981 { .number = 0x008, /* INST_RETIRED, Instruction architecturally executed */ 982 .supported = instructions_supported, 983 .get_count = instructions_get_count, 984 .ns_per_count = instructions_ns_per, 985 }, 986 { .number = 0x011, /* CPU_CYCLES, Cycle */ 987 .supported = event_always_supported, 988 .get_count = cycles_get_count, 989 .ns_per_count = cycles_ns_per, 990 }, 991 #endif 992 { .number = 0x023, /* STALL_FRONTEND */ 993 .supported = pmuv3p1_events_supported, 994 .get_count = zero_event_get_count, 995 .ns_per_count = zero_event_ns_per, 996 }, 997 { .number = 0x024, /* STALL_BACKEND */ 998 .supported = pmuv3p1_events_supported, 999 .get_count = zero_event_get_count, 1000 .ns_per_count = zero_event_ns_per, 1001 }, 1002 { .number = 0x03c, /* STALL */ 1003 .supported = pmuv3p4_events_supported, 1004 .get_count = zero_event_get_count, 1005 .ns_per_count = zero_event_ns_per, 1006 }, 1007 }; 1008 1009 /* 1010 * Note: Before increasing MAX_EVENT_ID beyond 0x3f into the 0x40xx range of 1011 * events (i.e. the statistical profiling extension), this implementation 1012 * should first be updated to something sparse instead of the current 1013 * supported_event_map[] array. 1014 */ 1015 #define MAX_EVENT_ID 0x3c 1016 #define UNSUPPORTED_EVENT UINT16_MAX 1017 static uint16_t supported_event_map[MAX_EVENT_ID + 1]; 1018 1019 /* 1020 * Called upon CPU initialization to initialize PMCEID[01]_EL0 and build a map 1021 * of ARM event numbers to indices in our pm_events array. 1022 * 1023 * Note: Events in the 0x40XX range are not currently supported. 1024 */ 1025 void pmu_init(ARMCPU *cpu) 1026 { 1027 unsigned int i; 1028 1029 /* 1030 * Empty supported_event_map and cpu->pmceid[01] before adding supported 1031 * events to them 1032 */ 1033 for (i = 0; i < ARRAY_SIZE(supported_event_map); i++) { 1034 supported_event_map[i] = UNSUPPORTED_EVENT; 1035 } 1036 cpu->pmceid0 = 0; 1037 cpu->pmceid1 = 0; 1038 1039 for (i = 0; i < ARRAY_SIZE(pm_events); i++) { 1040 const pm_event *cnt = &pm_events[i]; 1041 assert(cnt->number <= MAX_EVENT_ID); 1042 /* We do not currently support events in the 0x40xx range */ 1043 assert(cnt->number <= 0x3f); 1044 1045 if (cnt->supported(&cpu->env)) { 1046 supported_event_map[cnt->number] = i; 1047 uint64_t event_mask = 1ULL << (cnt->number & 0x1f); 1048 if (cnt->number & 0x20) { 1049 cpu->pmceid1 |= event_mask; 1050 } else { 1051 cpu->pmceid0 |= event_mask; 1052 } 1053 } 1054 } 1055 } 1056 1057 /* 1058 * Check at runtime whether a PMU event is supported for the current machine 1059 */ 1060 static bool event_supported(uint16_t number) 1061 { 1062 if (number > MAX_EVENT_ID) { 1063 return false; 1064 } 1065 return supported_event_map[number] != UNSUPPORTED_EVENT; 1066 } 1067 1068 static CPAccessResult pmreg_access(CPUARMState *env, const ARMCPRegInfo *ri, 1069 bool isread) 1070 { 1071 /* 1072 * Performance monitor registers user accessibility is controlled 1073 * by PMUSERENR. MDCR_EL2.TPM and MDCR_EL3.TPM allow configurable 1074 * trapping to EL2 or EL3 for other accesses. 1075 */ 1076 int el = arm_current_el(env); 1077 uint64_t mdcr_el2 = arm_mdcr_el2_eff(env); 1078 1079 if (el == 0 && !(env->cp15.c9_pmuserenr & 1)) { 1080 return CP_ACCESS_TRAP; 1081 } 1082 if (el < 2 && (mdcr_el2 & MDCR_TPM)) { 1083 return CP_ACCESS_TRAP_EL2; 1084 } 1085 if (el < 3 && (env->cp15.mdcr_el3 & MDCR_TPM)) { 1086 return CP_ACCESS_TRAP_EL3; 1087 } 1088 1089 return CP_ACCESS_OK; 1090 } 1091 1092 static CPAccessResult pmreg_access_xevcntr(CPUARMState *env, 1093 const ARMCPRegInfo *ri, 1094 bool isread) 1095 { 1096 /* ER: event counter read trap control */ 1097 if (arm_feature(env, ARM_FEATURE_V8) 1098 && arm_current_el(env) == 0 1099 && (env->cp15.c9_pmuserenr & (1 << 3)) != 0 1100 && isread) { 1101 return CP_ACCESS_OK; 1102 } 1103 1104 return pmreg_access(env, ri, isread); 1105 } 1106 1107 static CPAccessResult pmreg_access_swinc(CPUARMState *env, 1108 const ARMCPRegInfo *ri, 1109 bool isread) 1110 { 1111 /* SW: software increment write trap control */ 1112 if (arm_feature(env, ARM_FEATURE_V8) 1113 && arm_current_el(env) == 0 1114 && (env->cp15.c9_pmuserenr & (1 << 1)) != 0 1115 && !isread) { 1116 return CP_ACCESS_OK; 1117 } 1118 1119 return pmreg_access(env, ri, isread); 1120 } 1121 1122 static CPAccessResult pmreg_access_selr(CPUARMState *env, 1123 const ARMCPRegInfo *ri, 1124 bool isread) 1125 { 1126 /* ER: event counter read trap control */ 1127 if (arm_feature(env, ARM_FEATURE_V8) 1128 && arm_current_el(env) == 0 1129 && (env->cp15.c9_pmuserenr & (1 << 3)) != 0) { 1130 return CP_ACCESS_OK; 1131 } 1132 1133 return pmreg_access(env, ri, isread); 1134 } 1135 1136 static CPAccessResult pmreg_access_ccntr(CPUARMState *env, 1137 const ARMCPRegInfo *ri, 1138 bool isread) 1139 { 1140 /* CR: cycle counter read trap control */ 1141 if (arm_feature(env, ARM_FEATURE_V8) 1142 && arm_current_el(env) == 0 1143 && (env->cp15.c9_pmuserenr & (1 << 2)) != 0 1144 && isread) { 1145 return CP_ACCESS_OK; 1146 } 1147 1148 return pmreg_access(env, ri, isread); 1149 } 1150 1151 /* 1152 * Bits in MDCR_EL2 and MDCR_EL3 which pmu_counter_enabled() looks at. 1153 * We use these to decide whether we need to wrap a write to MDCR_EL2 1154 * or MDCR_EL3 in pmu_op_start()/pmu_op_finish() calls. 1155 */ 1156 #define MDCR_EL2_PMU_ENABLE_BITS \ 1157 (MDCR_HPME | MDCR_HPMD | MDCR_HPMN | MDCR_HCCD | MDCR_HLP) 1158 #define MDCR_EL3_PMU_ENABLE_BITS (MDCR_SPME | MDCR_SCCD) 1159 1160 /* 1161 * Returns true if the counter (pass 31 for PMCCNTR) should count events using 1162 * the current EL, security state, and register configuration. 1163 */ 1164 static bool pmu_counter_enabled(CPUARMState *env, uint8_t counter) 1165 { 1166 uint64_t filter; 1167 bool e, p, u, nsk, nsu, nsh, m; 1168 bool enabled, prohibited = false, filtered; 1169 bool secure = arm_is_secure(env); 1170 int el = arm_current_el(env); 1171 uint64_t mdcr_el2 = arm_mdcr_el2_eff(env); 1172 uint8_t hpmn = mdcr_el2 & MDCR_HPMN; 1173 1174 if (!arm_feature(env, ARM_FEATURE_PMU)) { 1175 return false; 1176 } 1177 1178 if (!arm_feature(env, ARM_FEATURE_EL2) || 1179 (counter < hpmn || counter == 31)) { 1180 e = env->cp15.c9_pmcr & PMCRE; 1181 } else { 1182 e = mdcr_el2 & MDCR_HPME; 1183 } 1184 enabled = e && (env->cp15.c9_pmcnten & (1 << counter)); 1185 1186 /* Is event counting prohibited? */ 1187 if (el == 2 && (counter < hpmn || counter == 31)) { 1188 prohibited = mdcr_el2 & MDCR_HPMD; 1189 } 1190 if (secure) { 1191 prohibited = prohibited || !(env->cp15.mdcr_el3 & MDCR_SPME); 1192 } 1193 1194 if (counter == 31) { 1195 /* 1196 * The cycle counter defaults to running. PMCR.DP says "disable 1197 * the cycle counter when event counting is prohibited". 1198 * Some MDCR bits disable the cycle counter specifically. 1199 */ 1200 prohibited = prohibited && env->cp15.c9_pmcr & PMCRDP; 1201 if (cpu_isar_feature(any_pmuv3p5, env_archcpu(env))) { 1202 if (secure) { 1203 prohibited = prohibited || (env->cp15.mdcr_el3 & MDCR_SCCD); 1204 } 1205 if (el == 2) { 1206 prohibited = prohibited || (mdcr_el2 & MDCR_HCCD); 1207 } 1208 } 1209 } 1210 1211 if (counter == 31) { 1212 filter = env->cp15.pmccfiltr_el0; 1213 } else { 1214 filter = env->cp15.c14_pmevtyper[counter]; 1215 } 1216 1217 p = filter & PMXEVTYPER_P; 1218 u = filter & PMXEVTYPER_U; 1219 nsk = arm_feature(env, ARM_FEATURE_EL3) && (filter & PMXEVTYPER_NSK); 1220 nsu = arm_feature(env, ARM_FEATURE_EL3) && (filter & PMXEVTYPER_NSU); 1221 nsh = arm_feature(env, ARM_FEATURE_EL2) && (filter & PMXEVTYPER_NSH); 1222 m = arm_el_is_aa64(env, 1) && 1223 arm_feature(env, ARM_FEATURE_EL3) && (filter & PMXEVTYPER_M); 1224 1225 if (el == 0) { 1226 filtered = secure ? u : u != nsu; 1227 } else if (el == 1) { 1228 filtered = secure ? p : p != nsk; 1229 } else if (el == 2) { 1230 filtered = !nsh; 1231 } else { /* EL3 */ 1232 filtered = m != p; 1233 } 1234 1235 if (counter != 31) { 1236 /* 1237 * If not checking PMCCNTR, ensure the counter is setup to an event we 1238 * support 1239 */ 1240 uint16_t event = filter & PMXEVTYPER_EVTCOUNT; 1241 if (!event_supported(event)) { 1242 return false; 1243 } 1244 } 1245 1246 return enabled && !prohibited && !filtered; 1247 } 1248 1249 static void pmu_update_irq(CPUARMState *env) 1250 { 1251 ARMCPU *cpu = env_archcpu(env); 1252 qemu_set_irq(cpu->pmu_interrupt, (env->cp15.c9_pmcr & PMCRE) && 1253 (env->cp15.c9_pminten & env->cp15.c9_pmovsr)); 1254 } 1255 1256 static bool pmccntr_clockdiv_enabled(CPUARMState *env) 1257 { 1258 /* 1259 * Return true if the clock divider is enabled and the cycle counter 1260 * is supposed to tick only once every 64 clock cycles. This is 1261 * controlled by PMCR.D, but if PMCR.LC is set to enable the long 1262 * (64-bit) cycle counter PMCR.D has no effect. 1263 */ 1264 return (env->cp15.c9_pmcr & (PMCRD | PMCRLC)) == PMCRD; 1265 } 1266 1267 static bool pmevcntr_is_64_bit(CPUARMState *env, int counter) 1268 { 1269 /* Return true if the specified event counter is configured to be 64 bit */ 1270 1271 /* This isn't intended to be used with the cycle counter */ 1272 assert(counter < 31); 1273 1274 if (!cpu_isar_feature(any_pmuv3p5, env_archcpu(env))) { 1275 return false; 1276 } 1277 1278 if (arm_feature(env, ARM_FEATURE_EL2)) { 1279 /* 1280 * MDCR_EL2.HLP still applies even when EL2 is disabled in the 1281 * current security state, so we don't use arm_mdcr_el2_eff() here. 1282 */ 1283 bool hlp = env->cp15.mdcr_el2 & MDCR_HLP; 1284 int hpmn = env->cp15.mdcr_el2 & MDCR_HPMN; 1285 1286 if (hpmn != 0 && counter >= hpmn) { 1287 return hlp; 1288 } 1289 } 1290 return env->cp15.c9_pmcr & PMCRLP; 1291 } 1292 1293 /* 1294 * Ensure c15_ccnt is the guest-visible count so that operations such as 1295 * enabling/disabling the counter or filtering, modifying the count itself, 1296 * etc. can be done logically. This is essentially a no-op if the counter is 1297 * not enabled at the time of the call. 1298 */ 1299 static void pmccntr_op_start(CPUARMState *env) 1300 { 1301 uint64_t cycles = cycles_get_count(env); 1302 1303 if (pmu_counter_enabled(env, 31)) { 1304 uint64_t eff_cycles = cycles; 1305 if (pmccntr_clockdiv_enabled(env)) { 1306 eff_cycles /= 64; 1307 } 1308 1309 uint64_t new_pmccntr = eff_cycles - env->cp15.c15_ccnt_delta; 1310 1311 uint64_t overflow_mask = env->cp15.c9_pmcr & PMCRLC ? \ 1312 1ull << 63 : 1ull << 31; 1313 if (env->cp15.c15_ccnt & ~new_pmccntr & overflow_mask) { 1314 env->cp15.c9_pmovsr |= (1ULL << 31); 1315 pmu_update_irq(env); 1316 } 1317 1318 env->cp15.c15_ccnt = new_pmccntr; 1319 } 1320 env->cp15.c15_ccnt_delta = cycles; 1321 } 1322 1323 /* 1324 * If PMCCNTR is enabled, recalculate the delta between the clock and the 1325 * guest-visible count. A call to pmccntr_op_finish should follow every call to 1326 * pmccntr_op_start. 1327 */ 1328 static void pmccntr_op_finish(CPUARMState *env) 1329 { 1330 if (pmu_counter_enabled(env, 31)) { 1331 #ifndef CONFIG_USER_ONLY 1332 /* Calculate when the counter will next overflow */ 1333 uint64_t remaining_cycles = -env->cp15.c15_ccnt; 1334 if (!(env->cp15.c9_pmcr & PMCRLC)) { 1335 remaining_cycles = (uint32_t)remaining_cycles; 1336 } 1337 int64_t overflow_in = cycles_ns_per(remaining_cycles); 1338 1339 if (overflow_in > 0) { 1340 int64_t overflow_at; 1341 1342 if (!sadd64_overflow(qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL), 1343 overflow_in, &overflow_at)) { 1344 ARMCPU *cpu = env_archcpu(env); 1345 timer_mod_anticipate_ns(cpu->pmu_timer, overflow_at); 1346 } 1347 } 1348 #endif 1349 1350 uint64_t prev_cycles = env->cp15.c15_ccnt_delta; 1351 if (pmccntr_clockdiv_enabled(env)) { 1352 prev_cycles /= 64; 1353 } 1354 env->cp15.c15_ccnt_delta = prev_cycles - env->cp15.c15_ccnt; 1355 } 1356 } 1357 1358 static void pmevcntr_op_start(CPUARMState *env, uint8_t counter) 1359 { 1360 1361 uint16_t event = env->cp15.c14_pmevtyper[counter] & PMXEVTYPER_EVTCOUNT; 1362 uint64_t count = 0; 1363 if (event_supported(event)) { 1364 uint16_t event_idx = supported_event_map[event]; 1365 count = pm_events[event_idx].get_count(env); 1366 } 1367 1368 if (pmu_counter_enabled(env, counter)) { 1369 uint64_t new_pmevcntr = count - env->cp15.c14_pmevcntr_delta[counter]; 1370 uint64_t overflow_mask = pmevcntr_is_64_bit(env, counter) ? 1371 1ULL << 63 : 1ULL << 31; 1372 1373 if (env->cp15.c14_pmevcntr[counter] & ~new_pmevcntr & overflow_mask) { 1374 env->cp15.c9_pmovsr |= (1 << counter); 1375 pmu_update_irq(env); 1376 } 1377 env->cp15.c14_pmevcntr[counter] = new_pmevcntr; 1378 } 1379 env->cp15.c14_pmevcntr_delta[counter] = count; 1380 } 1381 1382 static void pmevcntr_op_finish(CPUARMState *env, uint8_t counter) 1383 { 1384 if (pmu_counter_enabled(env, counter)) { 1385 #ifndef CONFIG_USER_ONLY 1386 uint16_t event = env->cp15.c14_pmevtyper[counter] & PMXEVTYPER_EVTCOUNT; 1387 uint16_t event_idx = supported_event_map[event]; 1388 uint64_t delta = -(env->cp15.c14_pmevcntr[counter] + 1); 1389 int64_t overflow_in; 1390 1391 if (!pmevcntr_is_64_bit(env, counter)) { 1392 delta = (uint32_t)delta; 1393 } 1394 overflow_in = pm_events[event_idx].ns_per_count(delta); 1395 1396 if (overflow_in > 0) { 1397 int64_t overflow_at; 1398 1399 if (!sadd64_overflow(qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL), 1400 overflow_in, &overflow_at)) { 1401 ARMCPU *cpu = env_archcpu(env); 1402 timer_mod_anticipate_ns(cpu->pmu_timer, overflow_at); 1403 } 1404 } 1405 #endif 1406 1407 env->cp15.c14_pmevcntr_delta[counter] -= 1408 env->cp15.c14_pmevcntr[counter]; 1409 } 1410 } 1411 1412 void pmu_op_start(CPUARMState *env) 1413 { 1414 unsigned int i; 1415 pmccntr_op_start(env); 1416 for (i = 0; i < pmu_num_counters(env); i++) { 1417 pmevcntr_op_start(env, i); 1418 } 1419 } 1420 1421 void pmu_op_finish(CPUARMState *env) 1422 { 1423 unsigned int i; 1424 pmccntr_op_finish(env); 1425 for (i = 0; i < pmu_num_counters(env); i++) { 1426 pmevcntr_op_finish(env, i); 1427 } 1428 } 1429 1430 void pmu_pre_el_change(ARMCPU *cpu, void *ignored) 1431 { 1432 pmu_op_start(&cpu->env); 1433 } 1434 1435 void pmu_post_el_change(ARMCPU *cpu, void *ignored) 1436 { 1437 pmu_op_finish(&cpu->env); 1438 } 1439 1440 void arm_pmu_timer_cb(void *opaque) 1441 { 1442 ARMCPU *cpu = opaque; 1443 1444 /* 1445 * Update all the counter values based on the current underlying counts, 1446 * triggering interrupts to be raised, if necessary. pmu_op_finish() also 1447 * has the effect of setting the cpu->pmu_timer to the next earliest time a 1448 * counter may expire. 1449 */ 1450 pmu_op_start(&cpu->env); 1451 pmu_op_finish(&cpu->env); 1452 } 1453 1454 static void pmcr_write(CPUARMState *env, const ARMCPRegInfo *ri, 1455 uint64_t value) 1456 { 1457 pmu_op_start(env); 1458 1459 if (value & PMCRC) { 1460 /* The counter has been reset */ 1461 env->cp15.c15_ccnt = 0; 1462 } 1463 1464 if (value & PMCRP) { 1465 unsigned int i; 1466 for (i = 0; i < pmu_num_counters(env); i++) { 1467 env->cp15.c14_pmevcntr[i] = 0; 1468 } 1469 } 1470 1471 env->cp15.c9_pmcr &= ~PMCR_WRITABLE_MASK; 1472 env->cp15.c9_pmcr |= (value & PMCR_WRITABLE_MASK); 1473 1474 pmu_op_finish(env); 1475 } 1476 1477 static void pmswinc_write(CPUARMState *env, const ARMCPRegInfo *ri, 1478 uint64_t value) 1479 { 1480 unsigned int i; 1481 uint64_t overflow_mask, new_pmswinc; 1482 1483 for (i = 0; i < pmu_num_counters(env); i++) { 1484 /* Increment a counter's count iff: */ 1485 if ((value & (1 << i)) && /* counter's bit is set */ 1486 /* counter is enabled and not filtered */ 1487 pmu_counter_enabled(env, i) && 1488 /* counter is SW_INCR */ 1489 (env->cp15.c14_pmevtyper[i] & PMXEVTYPER_EVTCOUNT) == 0x0) { 1490 pmevcntr_op_start(env, i); 1491 1492 /* 1493 * Detect if this write causes an overflow since we can't predict 1494 * PMSWINC overflows like we can for other events 1495 */ 1496 new_pmswinc = env->cp15.c14_pmevcntr[i] + 1; 1497 1498 overflow_mask = pmevcntr_is_64_bit(env, i) ? 1499 1ULL << 63 : 1ULL << 31; 1500 1501 if (env->cp15.c14_pmevcntr[i] & ~new_pmswinc & overflow_mask) { 1502 env->cp15.c9_pmovsr |= (1 << i); 1503 pmu_update_irq(env); 1504 } 1505 1506 env->cp15.c14_pmevcntr[i] = new_pmswinc; 1507 1508 pmevcntr_op_finish(env, i); 1509 } 1510 } 1511 } 1512 1513 static uint64_t pmccntr_read(CPUARMState *env, const ARMCPRegInfo *ri) 1514 { 1515 uint64_t ret; 1516 pmccntr_op_start(env); 1517 ret = env->cp15.c15_ccnt; 1518 pmccntr_op_finish(env); 1519 return ret; 1520 } 1521 1522 static void pmselr_write(CPUARMState *env, const ARMCPRegInfo *ri, 1523 uint64_t value) 1524 { 1525 /* 1526 * The value of PMSELR.SEL affects the behavior of PMXEVTYPER and 1527 * PMXEVCNTR. We allow [0..31] to be written to PMSELR here; in the 1528 * meanwhile, we check PMSELR.SEL when PMXEVTYPER and PMXEVCNTR are 1529 * accessed. 1530 */ 1531 env->cp15.c9_pmselr = value & 0x1f; 1532 } 1533 1534 static void pmccntr_write(CPUARMState *env, const ARMCPRegInfo *ri, 1535 uint64_t value) 1536 { 1537 pmccntr_op_start(env); 1538 env->cp15.c15_ccnt = value; 1539 pmccntr_op_finish(env); 1540 } 1541 1542 static void pmccntr_write32(CPUARMState *env, const ARMCPRegInfo *ri, 1543 uint64_t value) 1544 { 1545 uint64_t cur_val = pmccntr_read(env, NULL); 1546 1547 pmccntr_write(env, ri, deposit64(cur_val, 0, 32, value)); 1548 } 1549 1550 static void pmccfiltr_write(CPUARMState *env, const ARMCPRegInfo *ri, 1551 uint64_t value) 1552 { 1553 pmccntr_op_start(env); 1554 env->cp15.pmccfiltr_el0 = value & PMCCFILTR_EL0; 1555 pmccntr_op_finish(env); 1556 } 1557 1558 static void pmccfiltr_write_a32(CPUARMState *env, const ARMCPRegInfo *ri, 1559 uint64_t value) 1560 { 1561 pmccntr_op_start(env); 1562 /* M is not accessible from AArch32 */ 1563 env->cp15.pmccfiltr_el0 = (env->cp15.pmccfiltr_el0 & PMCCFILTR_M) | 1564 (value & PMCCFILTR); 1565 pmccntr_op_finish(env); 1566 } 1567 1568 static uint64_t pmccfiltr_read_a32(CPUARMState *env, const ARMCPRegInfo *ri) 1569 { 1570 /* M is not visible in AArch32 */ 1571 return env->cp15.pmccfiltr_el0 & PMCCFILTR; 1572 } 1573 1574 static void pmcntenset_write(CPUARMState *env, const ARMCPRegInfo *ri, 1575 uint64_t value) 1576 { 1577 pmu_op_start(env); 1578 value &= pmu_counter_mask(env); 1579 env->cp15.c9_pmcnten |= value; 1580 pmu_op_finish(env); 1581 } 1582 1583 static void pmcntenclr_write(CPUARMState *env, const ARMCPRegInfo *ri, 1584 uint64_t value) 1585 { 1586 pmu_op_start(env); 1587 value &= pmu_counter_mask(env); 1588 env->cp15.c9_pmcnten &= ~value; 1589 pmu_op_finish(env); 1590 } 1591 1592 static void pmovsr_write(CPUARMState *env, const ARMCPRegInfo *ri, 1593 uint64_t value) 1594 { 1595 value &= pmu_counter_mask(env); 1596 env->cp15.c9_pmovsr &= ~value; 1597 pmu_update_irq(env); 1598 } 1599 1600 static void pmovsset_write(CPUARMState *env, const ARMCPRegInfo *ri, 1601 uint64_t value) 1602 { 1603 value &= pmu_counter_mask(env); 1604 env->cp15.c9_pmovsr |= value; 1605 pmu_update_irq(env); 1606 } 1607 1608 static void pmevtyper_write(CPUARMState *env, const ARMCPRegInfo *ri, 1609 uint64_t value, const uint8_t counter) 1610 { 1611 if (counter == 31) { 1612 pmccfiltr_write(env, ri, value); 1613 } else if (counter < pmu_num_counters(env)) { 1614 pmevcntr_op_start(env, counter); 1615 1616 /* 1617 * If this counter's event type is changing, store the current 1618 * underlying count for the new type in c14_pmevcntr_delta[counter] so 1619 * pmevcntr_op_finish has the correct baseline when it converts back to 1620 * a delta. 1621 */ 1622 uint16_t old_event = env->cp15.c14_pmevtyper[counter] & 1623 PMXEVTYPER_EVTCOUNT; 1624 uint16_t new_event = value & PMXEVTYPER_EVTCOUNT; 1625 if (old_event != new_event) { 1626 uint64_t count = 0; 1627 if (event_supported(new_event)) { 1628 uint16_t event_idx = supported_event_map[new_event]; 1629 count = pm_events[event_idx].get_count(env); 1630 } 1631 env->cp15.c14_pmevcntr_delta[counter] = count; 1632 } 1633 1634 env->cp15.c14_pmevtyper[counter] = value & PMXEVTYPER_MASK; 1635 pmevcntr_op_finish(env, counter); 1636 } 1637 /* 1638 * Attempts to access PMXEVTYPER are CONSTRAINED UNPREDICTABLE when 1639 * PMSELR value is equal to or greater than the number of implemented 1640 * counters, but not equal to 0x1f. We opt to behave as a RAZ/WI. 1641 */ 1642 } 1643 1644 static uint64_t pmevtyper_read(CPUARMState *env, const ARMCPRegInfo *ri, 1645 const uint8_t counter) 1646 { 1647 if (counter == 31) { 1648 return env->cp15.pmccfiltr_el0; 1649 } else if (counter < pmu_num_counters(env)) { 1650 return env->cp15.c14_pmevtyper[counter]; 1651 } else { 1652 /* 1653 * We opt to behave as a RAZ/WI when attempts to access PMXEVTYPER 1654 * are CONSTRAINED UNPREDICTABLE. See comments in pmevtyper_write(). 1655 */ 1656 return 0; 1657 } 1658 } 1659 1660 static void pmevtyper_writefn(CPUARMState *env, const ARMCPRegInfo *ri, 1661 uint64_t value) 1662 { 1663 uint8_t counter = ((ri->crm & 3) << 3) | (ri->opc2 & 7); 1664 pmevtyper_write(env, ri, value, counter); 1665 } 1666 1667 static void pmevtyper_rawwrite(CPUARMState *env, const ARMCPRegInfo *ri, 1668 uint64_t value) 1669 { 1670 uint8_t counter = ((ri->crm & 3) << 3) | (ri->opc2 & 7); 1671 env->cp15.c14_pmevtyper[counter] = value; 1672 1673 /* 1674 * pmevtyper_rawwrite is called between a pair of pmu_op_start and 1675 * pmu_op_finish calls when loading saved state for a migration. Because 1676 * we're potentially updating the type of event here, the value written to 1677 * c14_pmevcntr_delta by the preceeding pmu_op_start call may be for a 1678 * different counter type. Therefore, we need to set this value to the 1679 * current count for the counter type we're writing so that pmu_op_finish 1680 * has the correct count for its calculation. 1681 */ 1682 uint16_t event = value & PMXEVTYPER_EVTCOUNT; 1683 if (event_supported(event)) { 1684 uint16_t event_idx = supported_event_map[event]; 1685 env->cp15.c14_pmevcntr_delta[counter] = 1686 pm_events[event_idx].get_count(env); 1687 } 1688 } 1689 1690 static uint64_t pmevtyper_readfn(CPUARMState *env, const ARMCPRegInfo *ri) 1691 { 1692 uint8_t counter = ((ri->crm & 3) << 3) | (ri->opc2 & 7); 1693 return pmevtyper_read(env, ri, counter); 1694 } 1695 1696 static void pmxevtyper_write(CPUARMState *env, const ARMCPRegInfo *ri, 1697 uint64_t value) 1698 { 1699 pmevtyper_write(env, ri, value, env->cp15.c9_pmselr & 31); 1700 } 1701 1702 static uint64_t pmxevtyper_read(CPUARMState *env, const ARMCPRegInfo *ri) 1703 { 1704 return pmevtyper_read(env, ri, env->cp15.c9_pmselr & 31); 1705 } 1706 1707 static void pmevcntr_write(CPUARMState *env, const ARMCPRegInfo *ri, 1708 uint64_t value, uint8_t counter) 1709 { 1710 if (!cpu_isar_feature(any_pmuv3p5, env_archcpu(env))) { 1711 /* Before FEAT_PMUv3p5, top 32 bits of event counters are RES0 */ 1712 value &= MAKE_64BIT_MASK(0, 32); 1713 } 1714 if (counter < pmu_num_counters(env)) { 1715 pmevcntr_op_start(env, counter); 1716 env->cp15.c14_pmevcntr[counter] = value; 1717 pmevcntr_op_finish(env, counter); 1718 } 1719 /* 1720 * We opt to behave as a RAZ/WI when attempts to access PM[X]EVCNTR 1721 * are CONSTRAINED UNPREDICTABLE. 1722 */ 1723 } 1724 1725 static uint64_t pmevcntr_read(CPUARMState *env, const ARMCPRegInfo *ri, 1726 uint8_t counter) 1727 { 1728 if (counter < pmu_num_counters(env)) { 1729 uint64_t ret; 1730 pmevcntr_op_start(env, counter); 1731 ret = env->cp15.c14_pmevcntr[counter]; 1732 pmevcntr_op_finish(env, counter); 1733 if (!cpu_isar_feature(any_pmuv3p5, env_archcpu(env))) { 1734 /* Before FEAT_PMUv3p5, top 32 bits of event counters are RES0 */ 1735 ret &= MAKE_64BIT_MASK(0, 32); 1736 } 1737 return ret; 1738 } else { 1739 /* 1740 * We opt to behave as a RAZ/WI when attempts to access PM[X]EVCNTR 1741 * are CONSTRAINED UNPREDICTABLE. 1742 */ 1743 return 0; 1744 } 1745 } 1746 1747 static void pmevcntr_writefn(CPUARMState *env, const ARMCPRegInfo *ri, 1748 uint64_t value) 1749 { 1750 uint8_t counter = ((ri->crm & 3) << 3) | (ri->opc2 & 7); 1751 pmevcntr_write(env, ri, value, counter); 1752 } 1753 1754 static uint64_t pmevcntr_readfn(CPUARMState *env, const ARMCPRegInfo *ri) 1755 { 1756 uint8_t counter = ((ri->crm & 3) << 3) | (ri->opc2 & 7); 1757 return pmevcntr_read(env, ri, counter); 1758 } 1759 1760 static void pmevcntr_rawwrite(CPUARMState *env, const ARMCPRegInfo *ri, 1761 uint64_t value) 1762 { 1763 uint8_t counter = ((ri->crm & 3) << 3) | (ri->opc2 & 7); 1764 assert(counter < pmu_num_counters(env)); 1765 env->cp15.c14_pmevcntr[counter] = value; 1766 pmevcntr_write(env, ri, value, counter); 1767 } 1768 1769 static uint64_t pmevcntr_rawread(CPUARMState *env, const ARMCPRegInfo *ri) 1770 { 1771 uint8_t counter = ((ri->crm & 3) << 3) | (ri->opc2 & 7); 1772 assert(counter < pmu_num_counters(env)); 1773 return env->cp15.c14_pmevcntr[counter]; 1774 } 1775 1776 static void pmxevcntr_write(CPUARMState *env, const ARMCPRegInfo *ri, 1777 uint64_t value) 1778 { 1779 pmevcntr_write(env, ri, value, env->cp15.c9_pmselr & 31); 1780 } 1781 1782 static uint64_t pmxevcntr_read(CPUARMState *env, const ARMCPRegInfo *ri) 1783 { 1784 return pmevcntr_read(env, ri, env->cp15.c9_pmselr & 31); 1785 } 1786 1787 static void pmuserenr_write(CPUARMState *env, const ARMCPRegInfo *ri, 1788 uint64_t value) 1789 { 1790 if (arm_feature(env, ARM_FEATURE_V8)) { 1791 env->cp15.c9_pmuserenr = value & 0xf; 1792 } else { 1793 env->cp15.c9_pmuserenr = value & 1; 1794 } 1795 } 1796 1797 static void pmintenset_write(CPUARMState *env, const ARMCPRegInfo *ri, 1798 uint64_t value) 1799 { 1800 /* We have no event counters so only the C bit can be changed */ 1801 value &= pmu_counter_mask(env); 1802 env->cp15.c9_pminten |= value; 1803 pmu_update_irq(env); 1804 } 1805 1806 static void pmintenclr_write(CPUARMState *env, const ARMCPRegInfo *ri, 1807 uint64_t value) 1808 { 1809 value &= pmu_counter_mask(env); 1810 env->cp15.c9_pminten &= ~value; 1811 pmu_update_irq(env); 1812 } 1813 1814 static void vbar_write(CPUARMState *env, const ARMCPRegInfo *ri, 1815 uint64_t value) 1816 { 1817 /* 1818 * Note that even though the AArch64 view of this register has bits 1819 * [10:0] all RES0 we can only mask the bottom 5, to comply with the 1820 * architectural requirements for bits which are RES0 only in some 1821 * contexts. (ARMv8 would permit us to do no masking at all, but ARMv7 1822 * requires the bottom five bits to be RAZ/WI because they're UNK/SBZP.) 1823 */ 1824 raw_write(env, ri, value & ~0x1FULL); 1825 } 1826 1827 static void scr_write(CPUARMState *env, const ARMCPRegInfo *ri, uint64_t value) 1828 { 1829 /* Begin with base v8.0 state. */ 1830 uint64_t valid_mask = 0x3fff; 1831 ARMCPU *cpu = env_archcpu(env); 1832 uint64_t changed; 1833 1834 /* 1835 * Because SCR_EL3 is the "real" cpreg and SCR is the alias, reset always 1836 * passes the reginfo for SCR_EL3, which has type ARM_CP_STATE_AA64. 1837 * Instead, choose the format based on the mode of EL3. 1838 */ 1839 if (arm_el_is_aa64(env, 3)) { 1840 value |= SCR_FW | SCR_AW; /* RES1 */ 1841 valid_mask &= ~SCR_NET; /* RES0 */ 1842 1843 if (!cpu_isar_feature(aa64_aa32_el1, cpu) && 1844 !cpu_isar_feature(aa64_aa32_el2, cpu)) { 1845 value |= SCR_RW; /* RAO/WI */ 1846 } 1847 if (cpu_isar_feature(aa64_ras, cpu)) { 1848 valid_mask |= SCR_TERR; 1849 } 1850 if (cpu_isar_feature(aa64_lor, cpu)) { 1851 valid_mask |= SCR_TLOR; 1852 } 1853 if (cpu_isar_feature(aa64_pauth, cpu)) { 1854 valid_mask |= SCR_API | SCR_APK; 1855 } 1856 if (cpu_isar_feature(aa64_sel2, cpu)) { 1857 valid_mask |= SCR_EEL2; 1858 } 1859 if (cpu_isar_feature(aa64_mte, cpu)) { 1860 valid_mask |= SCR_ATA; 1861 } 1862 if (cpu_isar_feature(aa64_scxtnum, cpu)) { 1863 valid_mask |= SCR_ENSCXT; 1864 } 1865 if (cpu_isar_feature(aa64_doublefault, cpu)) { 1866 valid_mask |= SCR_EASE | SCR_NMEA; 1867 } 1868 if (cpu_isar_feature(aa64_sme, cpu)) { 1869 valid_mask |= SCR_ENTP2; 1870 } 1871 if (cpu_isar_feature(aa64_hcx, cpu)) { 1872 valid_mask |= SCR_HXEN; 1873 } 1874 if (cpu_isar_feature(aa64_fgt, cpu)) { 1875 valid_mask |= SCR_FGTEN; 1876 } 1877 } else { 1878 valid_mask &= ~(SCR_RW | SCR_ST); 1879 if (cpu_isar_feature(aa32_ras, cpu)) { 1880 valid_mask |= SCR_TERR; 1881 } 1882 } 1883 1884 if (!arm_feature(env, ARM_FEATURE_EL2)) { 1885 valid_mask &= ~SCR_HCE; 1886 1887 /* 1888 * On ARMv7, SMD (or SCD as it is called in v7) is only 1889 * supported if EL2 exists. The bit is UNK/SBZP when 1890 * EL2 is unavailable. In QEMU ARMv7, we force it to always zero 1891 * when EL2 is unavailable. 1892 * On ARMv8, this bit is always available. 1893 */ 1894 if (arm_feature(env, ARM_FEATURE_V7) && 1895 !arm_feature(env, ARM_FEATURE_V8)) { 1896 valid_mask &= ~SCR_SMD; 1897 } 1898 } 1899 1900 /* Clear all-context RES0 bits. */ 1901 value &= valid_mask; 1902 changed = env->cp15.scr_el3 ^ value; 1903 env->cp15.scr_el3 = value; 1904 1905 /* 1906 * If SCR_EL3.NS changes, i.e. arm_is_secure_below_el3, then 1907 * we must invalidate all TLBs below EL3. 1908 */ 1909 if (changed & SCR_NS) { 1910 tlb_flush_by_mmuidx(env_cpu(env), (ARMMMUIdxBit_E10_0 | 1911 ARMMMUIdxBit_E20_0 | 1912 ARMMMUIdxBit_E10_1 | 1913 ARMMMUIdxBit_E20_2 | 1914 ARMMMUIdxBit_E10_1_PAN | 1915 ARMMMUIdxBit_E20_2_PAN | 1916 ARMMMUIdxBit_E2)); 1917 } 1918 } 1919 1920 static void scr_reset(CPUARMState *env, const ARMCPRegInfo *ri) 1921 { 1922 /* 1923 * scr_write will set the RES1 bits on an AArch64-only CPU. 1924 * The reset value will be 0x30 on an AArch64-only CPU and 0 otherwise. 1925 */ 1926 scr_write(env, ri, 0); 1927 } 1928 1929 static CPAccessResult access_tid4(CPUARMState *env, 1930 const ARMCPRegInfo *ri, 1931 bool isread) 1932 { 1933 if (arm_current_el(env) == 1 && 1934 (arm_hcr_el2_eff(env) & (HCR_TID2 | HCR_TID4))) { 1935 return CP_ACCESS_TRAP_EL2; 1936 } 1937 1938 return CP_ACCESS_OK; 1939 } 1940 1941 static uint64_t ccsidr_read(CPUARMState *env, const ARMCPRegInfo *ri) 1942 { 1943 ARMCPU *cpu = env_archcpu(env); 1944 1945 /* 1946 * Acquire the CSSELR index from the bank corresponding to the CCSIDR 1947 * bank 1948 */ 1949 uint32_t index = A32_BANKED_REG_GET(env, csselr, 1950 ri->secure & ARM_CP_SECSTATE_S); 1951 1952 return cpu->ccsidr[index]; 1953 } 1954 1955 static void csselr_write(CPUARMState *env, const ARMCPRegInfo *ri, 1956 uint64_t value) 1957 { 1958 raw_write(env, ri, value & 0xf); 1959 } 1960 1961 static uint64_t isr_read(CPUARMState *env, const ARMCPRegInfo *ri) 1962 { 1963 CPUState *cs = env_cpu(env); 1964 bool el1 = arm_current_el(env) == 1; 1965 uint64_t hcr_el2 = el1 ? arm_hcr_el2_eff(env) : 0; 1966 uint64_t ret = 0; 1967 1968 if (hcr_el2 & HCR_IMO) { 1969 if (cs->interrupt_request & CPU_INTERRUPT_VIRQ) { 1970 ret |= CPSR_I; 1971 } 1972 } else { 1973 if (cs->interrupt_request & CPU_INTERRUPT_HARD) { 1974 ret |= CPSR_I; 1975 } 1976 } 1977 1978 if (hcr_el2 & HCR_FMO) { 1979 if (cs->interrupt_request & CPU_INTERRUPT_VFIQ) { 1980 ret |= CPSR_F; 1981 } 1982 } else { 1983 if (cs->interrupt_request & CPU_INTERRUPT_FIQ) { 1984 ret |= CPSR_F; 1985 } 1986 } 1987 1988 if (hcr_el2 & HCR_AMO) { 1989 if (cs->interrupt_request & CPU_INTERRUPT_VSERR) { 1990 ret |= CPSR_A; 1991 } 1992 } 1993 1994 return ret; 1995 } 1996 1997 static CPAccessResult access_aa64_tid1(CPUARMState *env, const ARMCPRegInfo *ri, 1998 bool isread) 1999 { 2000 if (arm_current_el(env) == 1 && (arm_hcr_el2_eff(env) & HCR_TID1)) { 2001 return CP_ACCESS_TRAP_EL2; 2002 } 2003 2004 return CP_ACCESS_OK; 2005 } 2006 2007 static CPAccessResult access_aa32_tid1(CPUARMState *env, const ARMCPRegInfo *ri, 2008 bool isread) 2009 { 2010 if (arm_feature(env, ARM_FEATURE_V8)) { 2011 return access_aa64_tid1(env, ri, isread); 2012 } 2013 2014 return CP_ACCESS_OK; 2015 } 2016 2017 static const ARMCPRegInfo v7_cp_reginfo[] = { 2018 /* the old v6 WFI, UNPREDICTABLE in v7 but we choose to NOP */ 2019 { .name = "NOP", .cp = 15, .crn = 7, .crm = 0, .opc1 = 0, .opc2 = 4, 2020 .access = PL1_W, .type = ARM_CP_NOP }, 2021 /* 2022 * Performance monitors are implementation defined in v7, 2023 * but with an ARM recommended set of registers, which we 2024 * follow. 2025 * 2026 * Performance registers fall into three categories: 2027 * (a) always UNDEF in PL0, RW in PL1 (PMINTENSET, PMINTENCLR) 2028 * (b) RO in PL0 (ie UNDEF on write), RW in PL1 (PMUSERENR) 2029 * (c) UNDEF in PL0 if PMUSERENR.EN==0, otherwise accessible (all others) 2030 * For the cases controlled by PMUSERENR we must set .access to PL0_RW 2031 * or PL0_RO as appropriate and then check PMUSERENR in the helper fn. 2032 */ 2033 { .name = "PMCNTENSET", .cp = 15, .crn = 9, .crm = 12, .opc1 = 0, .opc2 = 1, 2034 .access = PL0_RW, .type = ARM_CP_ALIAS | ARM_CP_IO, 2035 .fieldoffset = offsetoflow32(CPUARMState, cp15.c9_pmcnten), 2036 .writefn = pmcntenset_write, 2037 .accessfn = pmreg_access, 2038 .raw_writefn = raw_write }, 2039 { .name = "PMCNTENSET_EL0", .state = ARM_CP_STATE_AA64, .type = ARM_CP_IO, 2040 .opc0 = 3, .opc1 = 3, .crn = 9, .crm = 12, .opc2 = 1, 2041 .access = PL0_RW, .accessfn = pmreg_access, 2042 .fieldoffset = offsetof(CPUARMState, cp15.c9_pmcnten), .resetvalue = 0, 2043 .writefn = pmcntenset_write, .raw_writefn = raw_write }, 2044 { .name = "PMCNTENCLR", .cp = 15, .crn = 9, .crm = 12, .opc1 = 0, .opc2 = 2, 2045 .access = PL0_RW, 2046 .fieldoffset = offsetoflow32(CPUARMState, cp15.c9_pmcnten), 2047 .accessfn = pmreg_access, 2048 .writefn = pmcntenclr_write, 2049 .type = ARM_CP_ALIAS | ARM_CP_IO }, 2050 { .name = "PMCNTENCLR_EL0", .state = ARM_CP_STATE_AA64, 2051 .opc0 = 3, .opc1 = 3, .crn = 9, .crm = 12, .opc2 = 2, 2052 .access = PL0_RW, .accessfn = pmreg_access, 2053 .type = ARM_CP_ALIAS | ARM_CP_IO, 2054 .fieldoffset = offsetof(CPUARMState, cp15.c9_pmcnten), 2055 .writefn = pmcntenclr_write }, 2056 { .name = "PMOVSR", .cp = 15, .crn = 9, .crm = 12, .opc1 = 0, .opc2 = 3, 2057 .access = PL0_RW, .type = ARM_CP_IO, 2058 .fieldoffset = offsetoflow32(CPUARMState, cp15.c9_pmovsr), 2059 .accessfn = pmreg_access, 2060 .writefn = pmovsr_write, 2061 .raw_writefn = raw_write }, 2062 { .name = "PMOVSCLR_EL0", .state = ARM_CP_STATE_AA64, 2063 .opc0 = 3, .opc1 = 3, .crn = 9, .crm = 12, .opc2 = 3, 2064 .access = PL0_RW, .accessfn = pmreg_access, 2065 .type = ARM_CP_ALIAS | ARM_CP_IO, 2066 .fieldoffset = offsetof(CPUARMState, cp15.c9_pmovsr), 2067 .writefn = pmovsr_write, 2068 .raw_writefn = raw_write }, 2069 { .name = "PMSWINC", .cp = 15, .crn = 9, .crm = 12, .opc1 = 0, .opc2 = 4, 2070 .access = PL0_W, .accessfn = pmreg_access_swinc, 2071 .type = ARM_CP_NO_RAW | ARM_CP_IO, 2072 .writefn = pmswinc_write }, 2073 { .name = "PMSWINC_EL0", .state = ARM_CP_STATE_AA64, 2074 .opc0 = 3, .opc1 = 3, .crn = 9, .crm = 12, .opc2 = 4, 2075 .access = PL0_W, .accessfn = pmreg_access_swinc, 2076 .type = ARM_CP_NO_RAW | ARM_CP_IO, 2077 .writefn = pmswinc_write }, 2078 { .name = "PMSELR", .cp = 15, .crn = 9, .crm = 12, .opc1 = 0, .opc2 = 5, 2079 .access = PL0_RW, .type = ARM_CP_ALIAS, 2080 .fieldoffset = offsetoflow32(CPUARMState, cp15.c9_pmselr), 2081 .accessfn = pmreg_access_selr, .writefn = pmselr_write, 2082 .raw_writefn = raw_write}, 2083 { .name = "PMSELR_EL0", .state = ARM_CP_STATE_AA64, 2084 .opc0 = 3, .opc1 = 3, .crn = 9, .crm = 12, .opc2 = 5, 2085 .access = PL0_RW, .accessfn = pmreg_access_selr, 2086 .fieldoffset = offsetof(CPUARMState, cp15.c9_pmselr), 2087 .writefn = pmselr_write, .raw_writefn = raw_write, }, 2088 { .name = "PMCCNTR", .cp = 15, .crn = 9, .crm = 13, .opc1 = 0, .opc2 = 0, 2089 .access = PL0_RW, .resetvalue = 0, .type = ARM_CP_ALIAS | ARM_CP_IO, 2090 .readfn = pmccntr_read, .writefn = pmccntr_write32, 2091 .accessfn = pmreg_access_ccntr }, 2092 { .name = "PMCCNTR_EL0", .state = ARM_CP_STATE_AA64, 2093 .opc0 = 3, .opc1 = 3, .crn = 9, .crm = 13, .opc2 = 0, 2094 .access = PL0_RW, .accessfn = pmreg_access_ccntr, 2095 .type = ARM_CP_IO, 2096 .fieldoffset = offsetof(CPUARMState, cp15.c15_ccnt), 2097 .readfn = pmccntr_read, .writefn = pmccntr_write, 2098 .raw_readfn = raw_read, .raw_writefn = raw_write, }, 2099 { .name = "PMCCFILTR", .cp = 15, .opc1 = 0, .crn = 14, .crm = 15, .opc2 = 7, 2100 .writefn = pmccfiltr_write_a32, .readfn = pmccfiltr_read_a32, 2101 .access = PL0_RW, .accessfn = pmreg_access, 2102 .type = ARM_CP_ALIAS | ARM_CP_IO, 2103 .resetvalue = 0, }, 2104 { .name = "PMCCFILTR_EL0", .state = ARM_CP_STATE_AA64, 2105 .opc0 = 3, .opc1 = 3, .crn = 14, .crm = 15, .opc2 = 7, 2106 .writefn = pmccfiltr_write, .raw_writefn = raw_write, 2107 .access = PL0_RW, .accessfn = pmreg_access, 2108 .type = ARM_CP_IO, 2109 .fieldoffset = offsetof(CPUARMState, cp15.pmccfiltr_el0), 2110 .resetvalue = 0, }, 2111 { .name = "PMXEVTYPER", .cp = 15, .crn = 9, .crm = 13, .opc1 = 0, .opc2 = 1, 2112 .access = PL0_RW, .type = ARM_CP_NO_RAW | ARM_CP_IO, 2113 .accessfn = pmreg_access, 2114 .writefn = pmxevtyper_write, .readfn = pmxevtyper_read }, 2115 { .name = "PMXEVTYPER_EL0", .state = ARM_CP_STATE_AA64, 2116 .opc0 = 3, .opc1 = 3, .crn = 9, .crm = 13, .opc2 = 1, 2117 .access = PL0_RW, .type = ARM_CP_NO_RAW | ARM_CP_IO, 2118 .accessfn = pmreg_access, 2119 .writefn = pmxevtyper_write, .readfn = pmxevtyper_read }, 2120 { .name = "PMXEVCNTR", .cp = 15, .crn = 9, .crm = 13, .opc1 = 0, .opc2 = 2, 2121 .access = PL0_RW, .type = ARM_CP_NO_RAW | ARM_CP_IO, 2122 .accessfn = pmreg_access_xevcntr, 2123 .writefn = pmxevcntr_write, .readfn = pmxevcntr_read }, 2124 { .name = "PMXEVCNTR_EL0", .state = ARM_CP_STATE_AA64, 2125 .opc0 = 3, .opc1 = 3, .crn = 9, .crm = 13, .opc2 = 2, 2126 .access = PL0_RW, .type = ARM_CP_NO_RAW | ARM_CP_IO, 2127 .accessfn = pmreg_access_xevcntr, 2128 .writefn = pmxevcntr_write, .readfn = pmxevcntr_read }, 2129 { .name = "PMUSERENR", .cp = 15, .crn = 9, .crm = 14, .opc1 = 0, .opc2 = 0, 2130 .access = PL0_R | PL1_RW, .accessfn = access_tpm, 2131 .fieldoffset = offsetoflow32(CPUARMState, cp15.c9_pmuserenr), 2132 .resetvalue = 0, 2133 .writefn = pmuserenr_write, .raw_writefn = raw_write }, 2134 { .name = "PMUSERENR_EL0", .state = ARM_CP_STATE_AA64, 2135 .opc0 = 3, .opc1 = 3, .crn = 9, .crm = 14, .opc2 = 0, 2136 .access = PL0_R | PL1_RW, .accessfn = access_tpm, .type = ARM_CP_ALIAS, 2137 .fieldoffset = offsetof(CPUARMState, cp15.c9_pmuserenr), 2138 .resetvalue = 0, 2139 .writefn = pmuserenr_write, .raw_writefn = raw_write }, 2140 { .name = "PMINTENSET", .cp = 15, .crn = 9, .crm = 14, .opc1 = 0, .opc2 = 1, 2141 .access = PL1_RW, .accessfn = access_tpm, 2142 .type = ARM_CP_ALIAS | ARM_CP_IO, 2143 .fieldoffset = offsetoflow32(CPUARMState, cp15.c9_pminten), 2144 .resetvalue = 0, 2145 .writefn = pmintenset_write, .raw_writefn = raw_write }, 2146 { .name = "PMINTENSET_EL1", .state = ARM_CP_STATE_AA64, 2147 .opc0 = 3, .opc1 = 0, .crn = 9, .crm = 14, .opc2 = 1, 2148 .access = PL1_RW, .accessfn = access_tpm, 2149 .type = ARM_CP_IO, 2150 .fieldoffset = offsetof(CPUARMState, cp15.c9_pminten), 2151 .writefn = pmintenset_write, .raw_writefn = raw_write, 2152 .resetvalue = 0x0 }, 2153 { .name = "PMINTENCLR", .cp = 15, .crn = 9, .crm = 14, .opc1 = 0, .opc2 = 2, 2154 .access = PL1_RW, .accessfn = access_tpm, 2155 .type = ARM_CP_ALIAS | ARM_CP_IO | ARM_CP_NO_RAW, 2156 .fieldoffset = offsetof(CPUARMState, cp15.c9_pminten), 2157 .writefn = pmintenclr_write, }, 2158 { .name = "PMINTENCLR_EL1", .state = ARM_CP_STATE_AA64, 2159 .opc0 = 3, .opc1 = 0, .crn = 9, .crm = 14, .opc2 = 2, 2160 .access = PL1_RW, .accessfn = access_tpm, 2161 .type = ARM_CP_ALIAS | ARM_CP_IO | ARM_CP_NO_RAW, 2162 .fieldoffset = offsetof(CPUARMState, cp15.c9_pminten), 2163 .writefn = pmintenclr_write }, 2164 { .name = "CCSIDR", .state = ARM_CP_STATE_BOTH, 2165 .opc0 = 3, .crn = 0, .crm = 0, .opc1 = 1, .opc2 = 0, 2166 .access = PL1_R, 2167 .accessfn = access_tid4, 2168 .fgt = FGT_CCSIDR_EL1, 2169 .readfn = ccsidr_read, .type = ARM_CP_NO_RAW }, 2170 { .name = "CSSELR", .state = ARM_CP_STATE_BOTH, 2171 .opc0 = 3, .crn = 0, .crm = 0, .opc1 = 2, .opc2 = 0, 2172 .access = PL1_RW, 2173 .accessfn = access_tid4, 2174 .fgt = FGT_CSSELR_EL1, 2175 .writefn = csselr_write, .resetvalue = 0, 2176 .bank_fieldoffsets = { offsetof(CPUARMState, cp15.csselr_s), 2177 offsetof(CPUARMState, cp15.csselr_ns) } }, 2178 /* 2179 * Auxiliary ID register: this actually has an IMPDEF value but for now 2180 * just RAZ for all cores: 2181 */ 2182 { .name = "AIDR", .state = ARM_CP_STATE_BOTH, 2183 .opc0 = 3, .opc1 = 1, .crn = 0, .crm = 0, .opc2 = 7, 2184 .access = PL1_R, .type = ARM_CP_CONST, 2185 .accessfn = access_aa64_tid1, 2186 .fgt = FGT_AIDR_EL1, 2187 .resetvalue = 0 }, 2188 /* 2189 * Auxiliary fault status registers: these also are IMPDEF, and we 2190 * choose to RAZ/WI for all cores. 2191 */ 2192 { .name = "AFSR0_EL1", .state = ARM_CP_STATE_BOTH, 2193 .opc0 = 3, .opc1 = 0, .crn = 5, .crm = 1, .opc2 = 0, 2194 .access = PL1_RW, .accessfn = access_tvm_trvm, 2195 .fgt = FGT_AFSR0_EL1, 2196 .type = ARM_CP_CONST, .resetvalue = 0 }, 2197 { .name = "AFSR1_EL1", .state = ARM_CP_STATE_BOTH, 2198 .opc0 = 3, .opc1 = 0, .crn = 5, .crm = 1, .opc2 = 1, 2199 .access = PL1_RW, .accessfn = access_tvm_trvm, 2200 .fgt = FGT_AFSR1_EL1, 2201 .type = ARM_CP_CONST, .resetvalue = 0 }, 2202 /* 2203 * MAIR can just read-as-written because we don't implement caches 2204 * and so don't need to care about memory attributes. 2205 */ 2206 { .name = "MAIR_EL1", .state = ARM_CP_STATE_AA64, 2207 .opc0 = 3, .opc1 = 0, .crn = 10, .crm = 2, .opc2 = 0, 2208 .access = PL1_RW, .accessfn = access_tvm_trvm, 2209 .fgt = FGT_MAIR_EL1, 2210 .fieldoffset = offsetof(CPUARMState, cp15.mair_el[1]), 2211 .resetvalue = 0 }, 2212 { .name = "MAIR_EL3", .state = ARM_CP_STATE_AA64, 2213 .opc0 = 3, .opc1 = 6, .crn = 10, .crm = 2, .opc2 = 0, 2214 .access = PL3_RW, .fieldoffset = offsetof(CPUARMState, cp15.mair_el[3]), 2215 .resetvalue = 0 }, 2216 /* 2217 * For non-long-descriptor page tables these are PRRR and NMRR; 2218 * regardless they still act as reads-as-written for QEMU. 2219 */ 2220 /* 2221 * MAIR0/1 are defined separately from their 64-bit counterpart which 2222 * allows them to assign the correct fieldoffset based on the endianness 2223 * handled in the field definitions. 2224 */ 2225 { .name = "MAIR0", .state = ARM_CP_STATE_AA32, 2226 .cp = 15, .opc1 = 0, .crn = 10, .crm = 2, .opc2 = 0, 2227 .access = PL1_RW, .accessfn = access_tvm_trvm, 2228 .bank_fieldoffsets = { offsetof(CPUARMState, cp15.mair0_s), 2229 offsetof(CPUARMState, cp15.mair0_ns) }, 2230 .resetfn = arm_cp_reset_ignore }, 2231 { .name = "MAIR1", .state = ARM_CP_STATE_AA32, 2232 .cp = 15, .opc1 = 0, .crn = 10, .crm = 2, .opc2 = 1, 2233 .access = PL1_RW, .accessfn = access_tvm_trvm, 2234 .bank_fieldoffsets = { offsetof(CPUARMState, cp15.mair1_s), 2235 offsetof(CPUARMState, cp15.mair1_ns) }, 2236 .resetfn = arm_cp_reset_ignore }, 2237 { .name = "ISR_EL1", .state = ARM_CP_STATE_BOTH, 2238 .opc0 = 3, .opc1 = 0, .crn = 12, .crm = 1, .opc2 = 0, 2239 .fgt = FGT_ISR_EL1, 2240 .type = ARM_CP_NO_RAW, .access = PL1_R, .readfn = isr_read }, 2241 /* 32 bit ITLB invalidates */ 2242 { .name = "ITLBIALL", .cp = 15, .opc1 = 0, .crn = 8, .crm = 5, .opc2 = 0, 2243 .type = ARM_CP_NO_RAW, .access = PL1_W, .accessfn = access_ttlb, 2244 .writefn = tlbiall_write }, 2245 { .name = "ITLBIMVA", .cp = 15, .opc1 = 0, .crn = 8, .crm = 5, .opc2 = 1, 2246 .type = ARM_CP_NO_RAW, .access = PL1_W, .accessfn = access_ttlb, 2247 .writefn = tlbimva_write }, 2248 { .name = "ITLBIASID", .cp = 15, .opc1 = 0, .crn = 8, .crm = 5, .opc2 = 2, 2249 .type = ARM_CP_NO_RAW, .access = PL1_W, .accessfn = access_ttlb, 2250 .writefn = tlbiasid_write }, 2251 /* 32 bit DTLB invalidates */ 2252 { .name = "DTLBIALL", .cp = 15, .opc1 = 0, .crn = 8, .crm = 6, .opc2 = 0, 2253 .type = ARM_CP_NO_RAW, .access = PL1_W, .accessfn = access_ttlb, 2254 .writefn = tlbiall_write }, 2255 { .name = "DTLBIMVA", .cp = 15, .opc1 = 0, .crn = 8, .crm = 6, .opc2 = 1, 2256 .type = ARM_CP_NO_RAW, .access = PL1_W, .accessfn = access_ttlb, 2257 .writefn = tlbimva_write }, 2258 { .name = "DTLBIASID", .cp = 15, .opc1 = 0, .crn = 8, .crm = 6, .opc2 = 2, 2259 .type = ARM_CP_NO_RAW, .access = PL1_W, .accessfn = access_ttlb, 2260 .writefn = tlbiasid_write }, 2261 /* 32 bit TLB invalidates */ 2262 { .name = "TLBIALL", .cp = 15, .opc1 = 0, .crn = 8, .crm = 7, .opc2 = 0, 2263 .type = ARM_CP_NO_RAW, .access = PL1_W, .accessfn = access_ttlb, 2264 .writefn = tlbiall_write }, 2265 { .name = "TLBIMVA", .cp = 15, .opc1 = 0, .crn = 8, .crm = 7, .opc2 = 1, 2266 .type = ARM_CP_NO_RAW, .access = PL1_W, .accessfn = access_ttlb, 2267 .writefn = tlbimva_write }, 2268 { .name = "TLBIASID", .cp = 15, .opc1 = 0, .crn = 8, .crm = 7, .opc2 = 2, 2269 .type = ARM_CP_NO_RAW, .access = PL1_W, .accessfn = access_ttlb, 2270 .writefn = tlbiasid_write }, 2271 { .name = "TLBIMVAA", .cp = 15, .opc1 = 0, .crn = 8, .crm = 7, .opc2 = 3, 2272 .type = ARM_CP_NO_RAW, .access = PL1_W, .accessfn = access_ttlb, 2273 .writefn = tlbimvaa_write }, 2274 }; 2275 2276 static const ARMCPRegInfo v7mp_cp_reginfo[] = { 2277 /* 32 bit TLB invalidates, Inner Shareable */ 2278 { .name = "TLBIALLIS", .cp = 15, .opc1 = 0, .crn = 8, .crm = 3, .opc2 = 0, 2279 .type = ARM_CP_NO_RAW, .access = PL1_W, .accessfn = access_ttlbis, 2280 .writefn = tlbiall_is_write }, 2281 { .name = "TLBIMVAIS", .cp = 15, .opc1 = 0, .crn = 8, .crm = 3, .opc2 = 1, 2282 .type = ARM_CP_NO_RAW, .access = PL1_W, .accessfn = access_ttlbis, 2283 .writefn = tlbimva_is_write }, 2284 { .name = "TLBIASIDIS", .cp = 15, .opc1 = 0, .crn = 8, .crm = 3, .opc2 = 2, 2285 .type = ARM_CP_NO_RAW, .access = PL1_W, .accessfn = access_ttlbis, 2286 .writefn = tlbiasid_is_write }, 2287 { .name = "TLBIMVAAIS", .cp = 15, .opc1 = 0, .crn = 8, .crm = 3, .opc2 = 3, 2288 .type = ARM_CP_NO_RAW, .access = PL1_W, .accessfn = access_ttlbis, 2289 .writefn = tlbimvaa_is_write }, 2290 }; 2291 2292 static const ARMCPRegInfo pmovsset_cp_reginfo[] = { 2293 /* PMOVSSET is not implemented in v7 before v7ve */ 2294 { .name = "PMOVSSET", .cp = 15, .opc1 = 0, .crn = 9, .crm = 14, .opc2 = 3, 2295 .access = PL0_RW, .accessfn = pmreg_access, 2296 .type = ARM_CP_ALIAS | ARM_CP_IO, 2297 .fieldoffset = offsetoflow32(CPUARMState, cp15.c9_pmovsr), 2298 .writefn = pmovsset_write, 2299 .raw_writefn = raw_write }, 2300 { .name = "PMOVSSET_EL0", .state = ARM_CP_STATE_AA64, 2301 .opc0 = 3, .opc1 = 3, .crn = 9, .crm = 14, .opc2 = 3, 2302 .access = PL0_RW, .accessfn = pmreg_access, 2303 .type = ARM_CP_ALIAS | ARM_CP_IO, 2304 .fieldoffset = offsetof(CPUARMState, cp15.c9_pmovsr), 2305 .writefn = pmovsset_write, 2306 .raw_writefn = raw_write }, 2307 }; 2308 2309 static void teecr_write(CPUARMState *env, const ARMCPRegInfo *ri, 2310 uint64_t value) 2311 { 2312 value &= 1; 2313 env->teecr = value; 2314 } 2315 2316 static CPAccessResult teecr_access(CPUARMState *env, const ARMCPRegInfo *ri, 2317 bool isread) 2318 { 2319 /* 2320 * HSTR.TTEE only exists in v7A, not v8A, but v8A doesn't have T2EE 2321 * at all, so we don't need to check whether we're v8A. 2322 */ 2323 if (arm_current_el(env) < 2 && !arm_is_secure_below_el3(env) && 2324 (env->cp15.hstr_el2 & HSTR_TTEE)) { 2325 return CP_ACCESS_TRAP_EL2; 2326 } 2327 return CP_ACCESS_OK; 2328 } 2329 2330 static CPAccessResult teehbr_access(CPUARMState *env, const ARMCPRegInfo *ri, 2331 bool isread) 2332 { 2333 if (arm_current_el(env) == 0 && (env->teecr & 1)) { 2334 return CP_ACCESS_TRAP; 2335 } 2336 return teecr_access(env, ri, isread); 2337 } 2338 2339 static const ARMCPRegInfo t2ee_cp_reginfo[] = { 2340 { .name = "TEECR", .cp = 14, .crn = 0, .crm = 0, .opc1 = 6, .opc2 = 0, 2341 .access = PL1_RW, .fieldoffset = offsetof(CPUARMState, teecr), 2342 .resetvalue = 0, 2343 .writefn = teecr_write, .accessfn = teecr_access }, 2344 { .name = "TEEHBR", .cp = 14, .crn = 1, .crm = 0, .opc1 = 6, .opc2 = 0, 2345 .access = PL0_RW, .fieldoffset = offsetof(CPUARMState, teehbr), 2346 .accessfn = teehbr_access, .resetvalue = 0 }, 2347 }; 2348 2349 static const ARMCPRegInfo v6k_cp_reginfo[] = { 2350 { .name = "TPIDR_EL0", .state = ARM_CP_STATE_AA64, 2351 .opc0 = 3, .opc1 = 3, .opc2 = 2, .crn = 13, .crm = 0, 2352 .access = PL0_RW, 2353 .fgt = FGT_TPIDR_EL0, 2354 .fieldoffset = offsetof(CPUARMState, cp15.tpidr_el[0]), .resetvalue = 0 }, 2355 { .name = "TPIDRURW", .cp = 15, .crn = 13, .crm = 0, .opc1 = 0, .opc2 = 2, 2356 .access = PL0_RW, 2357 .fgt = FGT_TPIDR_EL0, 2358 .bank_fieldoffsets = { offsetoflow32(CPUARMState, cp15.tpidrurw_s), 2359 offsetoflow32(CPUARMState, cp15.tpidrurw_ns) }, 2360 .resetfn = arm_cp_reset_ignore }, 2361 { .name = "TPIDRRO_EL0", .state = ARM_CP_STATE_AA64, 2362 .opc0 = 3, .opc1 = 3, .opc2 = 3, .crn = 13, .crm = 0, 2363 .access = PL0_R | PL1_W, 2364 .fgt = FGT_TPIDRRO_EL0, 2365 .fieldoffset = offsetof(CPUARMState, cp15.tpidrro_el[0]), 2366 .resetvalue = 0}, 2367 { .name = "TPIDRURO", .cp = 15, .crn = 13, .crm = 0, .opc1 = 0, .opc2 = 3, 2368 .access = PL0_R | PL1_W, 2369 .fgt = FGT_TPIDRRO_EL0, 2370 .bank_fieldoffsets = { offsetoflow32(CPUARMState, cp15.tpidruro_s), 2371 offsetoflow32(CPUARMState, cp15.tpidruro_ns) }, 2372 .resetfn = arm_cp_reset_ignore }, 2373 { .name = "TPIDR_EL1", .state = ARM_CP_STATE_AA64, 2374 .opc0 = 3, .opc1 = 0, .opc2 = 4, .crn = 13, .crm = 0, 2375 .access = PL1_RW, 2376 .fgt = FGT_TPIDR_EL1, 2377 .fieldoffset = offsetof(CPUARMState, cp15.tpidr_el[1]), .resetvalue = 0 }, 2378 { .name = "TPIDRPRW", .opc1 = 0, .cp = 15, .crn = 13, .crm = 0, .opc2 = 4, 2379 .access = PL1_RW, 2380 .bank_fieldoffsets = { offsetoflow32(CPUARMState, cp15.tpidrprw_s), 2381 offsetoflow32(CPUARMState, cp15.tpidrprw_ns) }, 2382 .resetvalue = 0 }, 2383 }; 2384 2385 #ifndef CONFIG_USER_ONLY 2386 2387 static CPAccessResult gt_cntfrq_access(CPUARMState *env, const ARMCPRegInfo *ri, 2388 bool isread) 2389 { 2390 /* 2391 * CNTFRQ: not visible from PL0 if both PL0PCTEN and PL0VCTEN are zero. 2392 * Writable only at the highest implemented exception level. 2393 */ 2394 int el = arm_current_el(env); 2395 uint64_t hcr; 2396 uint32_t cntkctl; 2397 2398 switch (el) { 2399 case 0: 2400 hcr = arm_hcr_el2_eff(env); 2401 if ((hcr & (HCR_E2H | HCR_TGE)) == (HCR_E2H | HCR_TGE)) { 2402 cntkctl = env->cp15.cnthctl_el2; 2403 } else { 2404 cntkctl = env->cp15.c14_cntkctl; 2405 } 2406 if (!extract32(cntkctl, 0, 2)) { 2407 return CP_ACCESS_TRAP; 2408 } 2409 break; 2410 case 1: 2411 if (!isread && ri->state == ARM_CP_STATE_AA32 && 2412 arm_is_secure_below_el3(env)) { 2413 /* Accesses from 32-bit Secure EL1 UNDEF (*not* trap to EL3!) */ 2414 return CP_ACCESS_TRAP_UNCATEGORIZED; 2415 } 2416 break; 2417 case 2: 2418 case 3: 2419 break; 2420 } 2421 2422 if (!isread && el < arm_highest_el(env)) { 2423 return CP_ACCESS_TRAP_UNCATEGORIZED; 2424 } 2425 2426 return CP_ACCESS_OK; 2427 } 2428 2429 static CPAccessResult gt_counter_access(CPUARMState *env, int timeridx, 2430 bool isread) 2431 { 2432 unsigned int cur_el = arm_current_el(env); 2433 bool has_el2 = arm_is_el2_enabled(env); 2434 uint64_t hcr = arm_hcr_el2_eff(env); 2435 2436 switch (cur_el) { 2437 case 0: 2438 /* If HCR_EL2.<E2H,TGE> == '11': check CNTHCTL_EL2.EL0[PV]CTEN. */ 2439 if ((hcr & (HCR_E2H | HCR_TGE)) == (HCR_E2H | HCR_TGE)) { 2440 return (extract32(env->cp15.cnthctl_el2, timeridx, 1) 2441 ? CP_ACCESS_OK : CP_ACCESS_TRAP_EL2); 2442 } 2443 2444 /* CNT[PV]CT: not visible from PL0 if EL0[PV]CTEN is zero */ 2445 if (!extract32(env->cp15.c14_cntkctl, timeridx, 1)) { 2446 return CP_ACCESS_TRAP; 2447 } 2448 2449 /* If HCR_EL2.<E2H,TGE> == '10': check CNTHCTL_EL2.EL1PCTEN. */ 2450 if (hcr & HCR_E2H) { 2451 if (timeridx == GTIMER_PHYS && 2452 !extract32(env->cp15.cnthctl_el2, 10, 1)) { 2453 return CP_ACCESS_TRAP_EL2; 2454 } 2455 } else { 2456 /* If HCR_EL2.<E2H> == 0: check CNTHCTL_EL2.EL1PCEN. */ 2457 if (has_el2 && timeridx == GTIMER_PHYS && 2458 !extract32(env->cp15.cnthctl_el2, 1, 1)) { 2459 return CP_ACCESS_TRAP_EL2; 2460 } 2461 } 2462 break; 2463 2464 case 1: 2465 /* Check CNTHCTL_EL2.EL1PCTEN, which changes location based on E2H. */ 2466 if (has_el2 && timeridx == GTIMER_PHYS && 2467 (hcr & HCR_E2H 2468 ? !extract32(env->cp15.cnthctl_el2, 10, 1) 2469 : !extract32(env->cp15.cnthctl_el2, 0, 1))) { 2470 return CP_ACCESS_TRAP_EL2; 2471 } 2472 break; 2473 } 2474 return CP_ACCESS_OK; 2475 } 2476 2477 static CPAccessResult gt_timer_access(CPUARMState *env, int timeridx, 2478 bool isread) 2479 { 2480 unsigned int cur_el = arm_current_el(env); 2481 bool has_el2 = arm_is_el2_enabled(env); 2482 uint64_t hcr = arm_hcr_el2_eff(env); 2483 2484 switch (cur_el) { 2485 case 0: 2486 if ((hcr & (HCR_E2H | HCR_TGE)) == (HCR_E2H | HCR_TGE)) { 2487 /* If HCR_EL2.<E2H,TGE> == '11': check CNTHCTL_EL2.EL0[PV]TEN. */ 2488 return (extract32(env->cp15.cnthctl_el2, 9 - timeridx, 1) 2489 ? CP_ACCESS_OK : CP_ACCESS_TRAP_EL2); 2490 } 2491 2492 /* 2493 * CNT[PV]_CVAL, CNT[PV]_CTL, CNT[PV]_TVAL: not visible from 2494 * EL0 if EL0[PV]TEN is zero. 2495 */ 2496 if (!extract32(env->cp15.c14_cntkctl, 9 - timeridx, 1)) { 2497 return CP_ACCESS_TRAP; 2498 } 2499 /* fall through */ 2500 2501 case 1: 2502 if (has_el2 && timeridx == GTIMER_PHYS) { 2503 if (hcr & HCR_E2H) { 2504 /* If HCR_EL2.<E2H,TGE> == '10': check CNTHCTL_EL2.EL1PTEN. */ 2505 if (!extract32(env->cp15.cnthctl_el2, 11, 1)) { 2506 return CP_ACCESS_TRAP_EL2; 2507 } 2508 } else { 2509 /* If HCR_EL2.<E2H> == 0: check CNTHCTL_EL2.EL1PCEN. */ 2510 if (!extract32(env->cp15.cnthctl_el2, 1, 1)) { 2511 return CP_ACCESS_TRAP_EL2; 2512 } 2513 } 2514 } 2515 break; 2516 } 2517 return CP_ACCESS_OK; 2518 } 2519 2520 static CPAccessResult gt_pct_access(CPUARMState *env, 2521 const ARMCPRegInfo *ri, 2522 bool isread) 2523 { 2524 return gt_counter_access(env, GTIMER_PHYS, isread); 2525 } 2526 2527 static CPAccessResult gt_vct_access(CPUARMState *env, 2528 const ARMCPRegInfo *ri, 2529 bool isread) 2530 { 2531 return gt_counter_access(env, GTIMER_VIRT, isread); 2532 } 2533 2534 static CPAccessResult gt_ptimer_access(CPUARMState *env, const ARMCPRegInfo *ri, 2535 bool isread) 2536 { 2537 return gt_timer_access(env, GTIMER_PHYS, isread); 2538 } 2539 2540 static CPAccessResult gt_vtimer_access(CPUARMState *env, const ARMCPRegInfo *ri, 2541 bool isread) 2542 { 2543 return gt_timer_access(env, GTIMER_VIRT, isread); 2544 } 2545 2546 static CPAccessResult gt_stimer_access(CPUARMState *env, 2547 const ARMCPRegInfo *ri, 2548 bool isread) 2549 { 2550 /* 2551 * The AArch64 register view of the secure physical timer is 2552 * always accessible from EL3, and configurably accessible from 2553 * Secure EL1. 2554 */ 2555 switch (arm_current_el(env)) { 2556 case 1: 2557 if (!arm_is_secure(env)) { 2558 return CP_ACCESS_TRAP; 2559 } 2560 if (!(env->cp15.scr_el3 & SCR_ST)) { 2561 return CP_ACCESS_TRAP_EL3; 2562 } 2563 return CP_ACCESS_OK; 2564 case 0: 2565 case 2: 2566 return CP_ACCESS_TRAP; 2567 case 3: 2568 return CP_ACCESS_OK; 2569 default: 2570 g_assert_not_reached(); 2571 } 2572 } 2573 2574 static uint64_t gt_get_countervalue(CPUARMState *env) 2575 { 2576 ARMCPU *cpu = env_archcpu(env); 2577 2578 return qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL) / gt_cntfrq_period_ns(cpu); 2579 } 2580 2581 static void gt_recalc_timer(ARMCPU *cpu, int timeridx) 2582 { 2583 ARMGenericTimer *gt = &cpu->env.cp15.c14_timer[timeridx]; 2584 2585 if (gt->ctl & 1) { 2586 /* 2587 * Timer enabled: calculate and set current ISTATUS, irq, and 2588 * reset timer to when ISTATUS next has to change 2589 */ 2590 uint64_t offset = timeridx == GTIMER_VIRT ? 2591 cpu->env.cp15.cntvoff_el2 : 0; 2592 uint64_t count = gt_get_countervalue(&cpu->env); 2593 /* Note that this must be unsigned 64 bit arithmetic: */ 2594 int istatus = count - offset >= gt->cval; 2595 uint64_t nexttick; 2596 int irqstate; 2597 2598 gt->ctl = deposit32(gt->ctl, 2, 1, istatus); 2599 2600 irqstate = (istatus && !(gt->ctl & 2)); 2601 qemu_set_irq(cpu->gt_timer_outputs[timeridx], irqstate); 2602 2603 if (istatus) { 2604 /* Next transition is when count rolls back over to zero */ 2605 nexttick = UINT64_MAX; 2606 } else { 2607 /* Next transition is when we hit cval */ 2608 nexttick = gt->cval + offset; 2609 } 2610 /* 2611 * Note that the desired next expiry time might be beyond the 2612 * signed-64-bit range of a QEMUTimer -- in this case we just 2613 * set the timer for as far in the future as possible. When the 2614 * timer expires we will reset the timer for any remaining period. 2615 */ 2616 if (nexttick > INT64_MAX / gt_cntfrq_period_ns(cpu)) { 2617 timer_mod_ns(cpu->gt_timer[timeridx], INT64_MAX); 2618 } else { 2619 timer_mod(cpu->gt_timer[timeridx], nexttick); 2620 } 2621 trace_arm_gt_recalc(timeridx, irqstate, nexttick); 2622 } else { 2623 /* Timer disabled: ISTATUS and timer output always clear */ 2624 gt->ctl &= ~4; 2625 qemu_set_irq(cpu->gt_timer_outputs[timeridx], 0); 2626 timer_del(cpu->gt_timer[timeridx]); 2627 trace_arm_gt_recalc_disabled(timeridx); 2628 } 2629 } 2630 2631 static void gt_timer_reset(CPUARMState *env, const ARMCPRegInfo *ri, 2632 int timeridx) 2633 { 2634 ARMCPU *cpu = env_archcpu(env); 2635 2636 timer_del(cpu->gt_timer[timeridx]); 2637 } 2638 2639 static uint64_t gt_cnt_read(CPUARMState *env, const ARMCPRegInfo *ri) 2640 { 2641 return gt_get_countervalue(env); 2642 } 2643 2644 static uint64_t gt_virt_cnt_offset(CPUARMState *env) 2645 { 2646 uint64_t hcr; 2647 2648 switch (arm_current_el(env)) { 2649 case 2: 2650 hcr = arm_hcr_el2_eff(env); 2651 if (hcr & HCR_E2H) { 2652 return 0; 2653 } 2654 break; 2655 case 0: 2656 hcr = arm_hcr_el2_eff(env); 2657 if ((hcr & (HCR_E2H | HCR_TGE)) == (HCR_E2H | HCR_TGE)) { 2658 return 0; 2659 } 2660 break; 2661 } 2662 2663 return env->cp15.cntvoff_el2; 2664 } 2665 2666 static uint64_t gt_virt_cnt_read(CPUARMState *env, const ARMCPRegInfo *ri) 2667 { 2668 return gt_get_countervalue(env) - gt_virt_cnt_offset(env); 2669 } 2670 2671 static void gt_cval_write(CPUARMState *env, const ARMCPRegInfo *ri, 2672 int timeridx, 2673 uint64_t value) 2674 { 2675 trace_arm_gt_cval_write(timeridx, value); 2676 env->cp15.c14_timer[timeridx].cval = value; 2677 gt_recalc_timer(env_archcpu(env), timeridx); 2678 } 2679 2680 static uint64_t gt_tval_read(CPUARMState *env, const ARMCPRegInfo *ri, 2681 int timeridx) 2682 { 2683 uint64_t offset = 0; 2684 2685 switch (timeridx) { 2686 case GTIMER_VIRT: 2687 case GTIMER_HYPVIRT: 2688 offset = gt_virt_cnt_offset(env); 2689 break; 2690 } 2691 2692 return (uint32_t)(env->cp15.c14_timer[timeridx].cval - 2693 (gt_get_countervalue(env) - offset)); 2694 } 2695 2696 static void gt_tval_write(CPUARMState *env, const ARMCPRegInfo *ri, 2697 int timeridx, 2698 uint64_t value) 2699 { 2700 uint64_t offset = 0; 2701 2702 switch (timeridx) { 2703 case GTIMER_VIRT: 2704 case GTIMER_HYPVIRT: 2705 offset = gt_virt_cnt_offset(env); 2706 break; 2707 } 2708 2709 trace_arm_gt_tval_write(timeridx, value); 2710 env->cp15.c14_timer[timeridx].cval = gt_get_countervalue(env) - offset + 2711 sextract64(value, 0, 32); 2712 gt_recalc_timer(env_archcpu(env), timeridx); 2713 } 2714 2715 static void gt_ctl_write(CPUARMState *env, const ARMCPRegInfo *ri, 2716 int timeridx, 2717 uint64_t value) 2718 { 2719 ARMCPU *cpu = env_archcpu(env); 2720 uint32_t oldval = env->cp15.c14_timer[timeridx].ctl; 2721 2722 trace_arm_gt_ctl_write(timeridx, value); 2723 env->cp15.c14_timer[timeridx].ctl = deposit64(oldval, 0, 2, value); 2724 if ((oldval ^ value) & 1) { 2725 /* Enable toggled */ 2726 gt_recalc_timer(cpu, timeridx); 2727 } else if ((oldval ^ value) & 2) { 2728 /* 2729 * IMASK toggled: don't need to recalculate, 2730 * just set the interrupt line based on ISTATUS 2731 */ 2732 int irqstate = (oldval & 4) && !(value & 2); 2733 2734 trace_arm_gt_imask_toggle(timeridx, irqstate); 2735 qemu_set_irq(cpu->gt_timer_outputs[timeridx], irqstate); 2736 } 2737 } 2738 2739 static void gt_phys_timer_reset(CPUARMState *env, const ARMCPRegInfo *ri) 2740 { 2741 gt_timer_reset(env, ri, GTIMER_PHYS); 2742 } 2743 2744 static void gt_phys_cval_write(CPUARMState *env, const ARMCPRegInfo *ri, 2745 uint64_t value) 2746 { 2747 gt_cval_write(env, ri, GTIMER_PHYS, value); 2748 } 2749 2750 static uint64_t gt_phys_tval_read(CPUARMState *env, const ARMCPRegInfo *ri) 2751 { 2752 return gt_tval_read(env, ri, GTIMER_PHYS); 2753 } 2754 2755 static void gt_phys_tval_write(CPUARMState *env, const ARMCPRegInfo *ri, 2756 uint64_t value) 2757 { 2758 gt_tval_write(env, ri, GTIMER_PHYS, value); 2759 } 2760 2761 static void gt_phys_ctl_write(CPUARMState *env, const ARMCPRegInfo *ri, 2762 uint64_t value) 2763 { 2764 gt_ctl_write(env, ri, GTIMER_PHYS, value); 2765 } 2766 2767 static int gt_phys_redir_timeridx(CPUARMState *env) 2768 { 2769 switch (arm_mmu_idx(env)) { 2770 case ARMMMUIdx_E20_0: 2771 case ARMMMUIdx_E20_2: 2772 case ARMMMUIdx_E20_2_PAN: 2773 return GTIMER_HYP; 2774 default: 2775 return GTIMER_PHYS; 2776 } 2777 } 2778 2779 static int gt_virt_redir_timeridx(CPUARMState *env) 2780 { 2781 switch (arm_mmu_idx(env)) { 2782 case ARMMMUIdx_E20_0: 2783 case ARMMMUIdx_E20_2: 2784 case ARMMMUIdx_E20_2_PAN: 2785 return GTIMER_HYPVIRT; 2786 default: 2787 return GTIMER_VIRT; 2788 } 2789 } 2790 2791 static uint64_t gt_phys_redir_cval_read(CPUARMState *env, 2792 const ARMCPRegInfo *ri) 2793 { 2794 int timeridx = gt_phys_redir_timeridx(env); 2795 return env->cp15.c14_timer[timeridx].cval; 2796 } 2797 2798 static void gt_phys_redir_cval_write(CPUARMState *env, const ARMCPRegInfo *ri, 2799 uint64_t value) 2800 { 2801 int timeridx = gt_phys_redir_timeridx(env); 2802 gt_cval_write(env, ri, timeridx, value); 2803 } 2804 2805 static uint64_t gt_phys_redir_tval_read(CPUARMState *env, 2806 const ARMCPRegInfo *ri) 2807 { 2808 int timeridx = gt_phys_redir_timeridx(env); 2809 return gt_tval_read(env, ri, timeridx); 2810 } 2811 2812 static void gt_phys_redir_tval_write(CPUARMState *env, const ARMCPRegInfo *ri, 2813 uint64_t value) 2814 { 2815 int timeridx = gt_phys_redir_timeridx(env); 2816 gt_tval_write(env, ri, timeridx, value); 2817 } 2818 2819 static uint64_t gt_phys_redir_ctl_read(CPUARMState *env, 2820 const ARMCPRegInfo *ri) 2821 { 2822 int timeridx = gt_phys_redir_timeridx(env); 2823 return env->cp15.c14_timer[timeridx].ctl; 2824 } 2825 2826 static void gt_phys_redir_ctl_write(CPUARMState *env, const ARMCPRegInfo *ri, 2827 uint64_t value) 2828 { 2829 int timeridx = gt_phys_redir_timeridx(env); 2830 gt_ctl_write(env, ri, timeridx, value); 2831 } 2832 2833 static void gt_virt_timer_reset(CPUARMState *env, const ARMCPRegInfo *ri) 2834 { 2835 gt_timer_reset(env, ri, GTIMER_VIRT); 2836 } 2837 2838 static void gt_virt_cval_write(CPUARMState *env, const ARMCPRegInfo *ri, 2839 uint64_t value) 2840 { 2841 gt_cval_write(env, ri, GTIMER_VIRT, value); 2842 } 2843 2844 static uint64_t gt_virt_tval_read(CPUARMState *env, const ARMCPRegInfo *ri) 2845 { 2846 return gt_tval_read(env, ri, GTIMER_VIRT); 2847 } 2848 2849 static void gt_virt_tval_write(CPUARMState *env, const ARMCPRegInfo *ri, 2850 uint64_t value) 2851 { 2852 gt_tval_write(env, ri, GTIMER_VIRT, value); 2853 } 2854 2855 static void gt_virt_ctl_write(CPUARMState *env, const ARMCPRegInfo *ri, 2856 uint64_t value) 2857 { 2858 gt_ctl_write(env, ri, GTIMER_VIRT, value); 2859 } 2860 2861 static void gt_cntvoff_write(CPUARMState *env, const ARMCPRegInfo *ri, 2862 uint64_t value) 2863 { 2864 ARMCPU *cpu = env_archcpu(env); 2865 2866 trace_arm_gt_cntvoff_write(value); 2867 raw_write(env, ri, value); 2868 gt_recalc_timer(cpu, GTIMER_VIRT); 2869 } 2870 2871 static uint64_t gt_virt_redir_cval_read(CPUARMState *env, 2872 const ARMCPRegInfo *ri) 2873 { 2874 int timeridx = gt_virt_redir_timeridx(env); 2875 return env->cp15.c14_timer[timeridx].cval; 2876 } 2877 2878 static void gt_virt_redir_cval_write(CPUARMState *env, const ARMCPRegInfo *ri, 2879 uint64_t value) 2880 { 2881 int timeridx = gt_virt_redir_timeridx(env); 2882 gt_cval_write(env, ri, timeridx, value); 2883 } 2884 2885 static uint64_t gt_virt_redir_tval_read(CPUARMState *env, 2886 const ARMCPRegInfo *ri) 2887 { 2888 int timeridx = gt_virt_redir_timeridx(env); 2889 return gt_tval_read(env, ri, timeridx); 2890 } 2891 2892 static void gt_virt_redir_tval_write(CPUARMState *env, const ARMCPRegInfo *ri, 2893 uint64_t value) 2894 { 2895 int timeridx = gt_virt_redir_timeridx(env); 2896 gt_tval_write(env, ri, timeridx, value); 2897 } 2898 2899 static uint64_t gt_virt_redir_ctl_read(CPUARMState *env, 2900 const ARMCPRegInfo *ri) 2901 { 2902 int timeridx = gt_virt_redir_timeridx(env); 2903 return env->cp15.c14_timer[timeridx].ctl; 2904 } 2905 2906 static void gt_virt_redir_ctl_write(CPUARMState *env, const ARMCPRegInfo *ri, 2907 uint64_t value) 2908 { 2909 int timeridx = gt_virt_redir_timeridx(env); 2910 gt_ctl_write(env, ri, timeridx, value); 2911 } 2912 2913 static void gt_hyp_timer_reset(CPUARMState *env, const ARMCPRegInfo *ri) 2914 { 2915 gt_timer_reset(env, ri, GTIMER_HYP); 2916 } 2917 2918 static void gt_hyp_cval_write(CPUARMState *env, const ARMCPRegInfo *ri, 2919 uint64_t value) 2920 { 2921 gt_cval_write(env, ri, GTIMER_HYP, value); 2922 } 2923 2924 static uint64_t gt_hyp_tval_read(CPUARMState *env, const ARMCPRegInfo *ri) 2925 { 2926 return gt_tval_read(env, ri, GTIMER_HYP); 2927 } 2928 2929 static void gt_hyp_tval_write(CPUARMState *env, const ARMCPRegInfo *ri, 2930 uint64_t value) 2931 { 2932 gt_tval_write(env, ri, GTIMER_HYP, value); 2933 } 2934 2935 static void gt_hyp_ctl_write(CPUARMState *env, const ARMCPRegInfo *ri, 2936 uint64_t value) 2937 { 2938 gt_ctl_write(env, ri, GTIMER_HYP, value); 2939 } 2940 2941 static void gt_sec_timer_reset(CPUARMState *env, const ARMCPRegInfo *ri) 2942 { 2943 gt_timer_reset(env, ri, GTIMER_SEC); 2944 } 2945 2946 static void gt_sec_cval_write(CPUARMState *env, const ARMCPRegInfo *ri, 2947 uint64_t value) 2948 { 2949 gt_cval_write(env, ri, GTIMER_SEC, value); 2950 } 2951 2952 static uint64_t gt_sec_tval_read(CPUARMState *env, const ARMCPRegInfo *ri) 2953 { 2954 return gt_tval_read(env, ri, GTIMER_SEC); 2955 } 2956 2957 static void gt_sec_tval_write(CPUARMState *env, const ARMCPRegInfo *ri, 2958 uint64_t value) 2959 { 2960 gt_tval_write(env, ri, GTIMER_SEC, value); 2961 } 2962 2963 static void gt_sec_ctl_write(CPUARMState *env, const ARMCPRegInfo *ri, 2964 uint64_t value) 2965 { 2966 gt_ctl_write(env, ri, GTIMER_SEC, value); 2967 } 2968 2969 static void gt_hv_timer_reset(CPUARMState *env, const ARMCPRegInfo *ri) 2970 { 2971 gt_timer_reset(env, ri, GTIMER_HYPVIRT); 2972 } 2973 2974 static void gt_hv_cval_write(CPUARMState *env, const ARMCPRegInfo *ri, 2975 uint64_t value) 2976 { 2977 gt_cval_write(env, ri, GTIMER_HYPVIRT, value); 2978 } 2979 2980 static uint64_t gt_hv_tval_read(CPUARMState *env, const ARMCPRegInfo *ri) 2981 { 2982 return gt_tval_read(env, ri, GTIMER_HYPVIRT); 2983 } 2984 2985 static void gt_hv_tval_write(CPUARMState *env, const ARMCPRegInfo *ri, 2986 uint64_t value) 2987 { 2988 gt_tval_write(env, ri, GTIMER_HYPVIRT, value); 2989 } 2990 2991 static void gt_hv_ctl_write(CPUARMState *env, const ARMCPRegInfo *ri, 2992 uint64_t value) 2993 { 2994 gt_ctl_write(env, ri, GTIMER_HYPVIRT, value); 2995 } 2996 2997 void arm_gt_ptimer_cb(void *opaque) 2998 { 2999 ARMCPU *cpu = opaque; 3000 3001 gt_recalc_timer(cpu, GTIMER_PHYS); 3002 } 3003 3004 void arm_gt_vtimer_cb(void *opaque) 3005 { 3006 ARMCPU *cpu = opaque; 3007 3008 gt_recalc_timer(cpu, GTIMER_VIRT); 3009 } 3010 3011 void arm_gt_htimer_cb(void *opaque) 3012 { 3013 ARMCPU *cpu = opaque; 3014 3015 gt_recalc_timer(cpu, GTIMER_HYP); 3016 } 3017 3018 void arm_gt_stimer_cb(void *opaque) 3019 { 3020 ARMCPU *cpu = opaque; 3021 3022 gt_recalc_timer(cpu, GTIMER_SEC); 3023 } 3024 3025 void arm_gt_hvtimer_cb(void *opaque) 3026 { 3027 ARMCPU *cpu = opaque; 3028 3029 gt_recalc_timer(cpu, GTIMER_HYPVIRT); 3030 } 3031 3032 static void arm_gt_cntfrq_reset(CPUARMState *env, const ARMCPRegInfo *opaque) 3033 { 3034 ARMCPU *cpu = env_archcpu(env); 3035 3036 cpu->env.cp15.c14_cntfrq = cpu->gt_cntfrq_hz; 3037 } 3038 3039 static const ARMCPRegInfo generic_timer_cp_reginfo[] = { 3040 /* 3041 * Note that CNTFRQ is purely reads-as-written for the benefit 3042 * of software; writing it doesn't actually change the timer frequency. 3043 * Our reset value matches the fixed frequency we implement the timer at. 3044 */ 3045 { .name = "CNTFRQ", .cp = 15, .crn = 14, .crm = 0, .opc1 = 0, .opc2 = 0, 3046 .type = ARM_CP_ALIAS, 3047 .access = PL1_RW | PL0_R, .accessfn = gt_cntfrq_access, 3048 .fieldoffset = offsetoflow32(CPUARMState, cp15.c14_cntfrq), 3049 }, 3050 { .name = "CNTFRQ_EL0", .state = ARM_CP_STATE_AA64, 3051 .opc0 = 3, .opc1 = 3, .crn = 14, .crm = 0, .opc2 = 0, 3052 .access = PL1_RW | PL0_R, .accessfn = gt_cntfrq_access, 3053 .fieldoffset = offsetof(CPUARMState, cp15.c14_cntfrq), 3054 .resetfn = arm_gt_cntfrq_reset, 3055 }, 3056 /* overall control: mostly access permissions */ 3057 { .name = "CNTKCTL", .state = ARM_CP_STATE_BOTH, 3058 .opc0 = 3, .opc1 = 0, .crn = 14, .crm = 1, .opc2 = 0, 3059 .access = PL1_RW, 3060 .fieldoffset = offsetof(CPUARMState, cp15.c14_cntkctl), 3061 .resetvalue = 0, 3062 }, 3063 /* per-timer control */ 3064 { .name = "CNTP_CTL", .cp = 15, .crn = 14, .crm = 2, .opc1 = 0, .opc2 = 1, 3065 .secure = ARM_CP_SECSTATE_NS, 3066 .type = ARM_CP_IO | ARM_CP_ALIAS, .access = PL0_RW, 3067 .accessfn = gt_ptimer_access, 3068 .fieldoffset = offsetoflow32(CPUARMState, 3069 cp15.c14_timer[GTIMER_PHYS].ctl), 3070 .readfn = gt_phys_redir_ctl_read, .raw_readfn = raw_read, 3071 .writefn = gt_phys_redir_ctl_write, .raw_writefn = raw_write, 3072 }, 3073 { .name = "CNTP_CTL_S", 3074 .cp = 15, .crn = 14, .crm = 2, .opc1 = 0, .opc2 = 1, 3075 .secure = ARM_CP_SECSTATE_S, 3076 .type = ARM_CP_IO | ARM_CP_ALIAS, .access = PL0_RW, 3077 .accessfn = gt_ptimer_access, 3078 .fieldoffset = offsetoflow32(CPUARMState, 3079 cp15.c14_timer[GTIMER_SEC].ctl), 3080 .writefn = gt_sec_ctl_write, .raw_writefn = raw_write, 3081 }, 3082 { .name = "CNTP_CTL_EL0", .state = ARM_CP_STATE_AA64, 3083 .opc0 = 3, .opc1 = 3, .crn = 14, .crm = 2, .opc2 = 1, 3084 .type = ARM_CP_IO, .access = PL0_RW, 3085 .accessfn = gt_ptimer_access, 3086 .fieldoffset = offsetof(CPUARMState, cp15.c14_timer[GTIMER_PHYS].ctl), 3087 .resetvalue = 0, 3088 .readfn = gt_phys_redir_ctl_read, .raw_readfn = raw_read, 3089 .writefn = gt_phys_redir_ctl_write, .raw_writefn = raw_write, 3090 }, 3091 { .name = "CNTV_CTL", .cp = 15, .crn = 14, .crm = 3, .opc1 = 0, .opc2 = 1, 3092 .type = ARM_CP_IO | ARM_CP_ALIAS, .access = PL0_RW, 3093 .accessfn = gt_vtimer_access, 3094 .fieldoffset = offsetoflow32(CPUARMState, 3095 cp15.c14_timer[GTIMER_VIRT].ctl), 3096 .readfn = gt_virt_redir_ctl_read, .raw_readfn = raw_read, 3097 .writefn = gt_virt_redir_ctl_write, .raw_writefn = raw_write, 3098 }, 3099 { .name = "CNTV_CTL_EL0", .state = ARM_CP_STATE_AA64, 3100 .opc0 = 3, .opc1 = 3, .crn = 14, .crm = 3, .opc2 = 1, 3101 .type = ARM_CP_IO, .access = PL0_RW, 3102 .accessfn = gt_vtimer_access, 3103 .fieldoffset = offsetof(CPUARMState, cp15.c14_timer[GTIMER_VIRT].ctl), 3104 .resetvalue = 0, 3105 .readfn = gt_virt_redir_ctl_read, .raw_readfn = raw_read, 3106 .writefn = gt_virt_redir_ctl_write, .raw_writefn = raw_write, 3107 }, 3108 /* TimerValue views: a 32 bit downcounting view of the underlying state */ 3109 { .name = "CNTP_TVAL", .cp = 15, .crn = 14, .crm = 2, .opc1 = 0, .opc2 = 0, 3110 .secure = ARM_CP_SECSTATE_NS, 3111 .type = ARM_CP_NO_RAW | ARM_CP_IO, .access = PL0_RW, 3112 .accessfn = gt_ptimer_access, 3113 .readfn = gt_phys_redir_tval_read, .writefn = gt_phys_redir_tval_write, 3114 }, 3115 { .name = "CNTP_TVAL_S", 3116 .cp = 15, .crn = 14, .crm = 2, .opc1 = 0, .opc2 = 0, 3117 .secure = ARM_CP_SECSTATE_S, 3118 .type = ARM_CP_NO_RAW | ARM_CP_IO, .access = PL0_RW, 3119 .accessfn = gt_ptimer_access, 3120 .readfn = gt_sec_tval_read, .writefn = gt_sec_tval_write, 3121 }, 3122 { .name = "CNTP_TVAL_EL0", .state = ARM_CP_STATE_AA64, 3123 .opc0 = 3, .opc1 = 3, .crn = 14, .crm = 2, .opc2 = 0, 3124 .type = ARM_CP_NO_RAW | ARM_CP_IO, .access = PL0_RW, 3125 .accessfn = gt_ptimer_access, .resetfn = gt_phys_timer_reset, 3126 .readfn = gt_phys_redir_tval_read, .writefn = gt_phys_redir_tval_write, 3127 }, 3128 { .name = "CNTV_TVAL", .cp = 15, .crn = 14, .crm = 3, .opc1 = 0, .opc2 = 0, 3129 .type = ARM_CP_NO_RAW | ARM_CP_IO, .access = PL0_RW, 3130 .accessfn = gt_vtimer_access, 3131 .readfn = gt_virt_redir_tval_read, .writefn = gt_virt_redir_tval_write, 3132 }, 3133 { .name = "CNTV_TVAL_EL0", .state = ARM_CP_STATE_AA64, 3134 .opc0 = 3, .opc1 = 3, .crn = 14, .crm = 3, .opc2 = 0, 3135 .type = ARM_CP_NO_RAW | ARM_CP_IO, .access = PL0_RW, 3136 .accessfn = gt_vtimer_access, .resetfn = gt_virt_timer_reset, 3137 .readfn = gt_virt_redir_tval_read, .writefn = gt_virt_redir_tval_write, 3138 }, 3139 /* The counter itself */ 3140 { .name = "CNTPCT", .cp = 15, .crm = 14, .opc1 = 0, 3141 .access = PL0_R, .type = ARM_CP_64BIT | ARM_CP_NO_RAW | ARM_CP_IO, 3142 .accessfn = gt_pct_access, 3143 .readfn = gt_cnt_read, .resetfn = arm_cp_reset_ignore, 3144 }, 3145 { .name = "CNTPCT_EL0", .state = ARM_CP_STATE_AA64, 3146 .opc0 = 3, .opc1 = 3, .crn = 14, .crm = 0, .opc2 = 1, 3147 .access = PL0_R, .type = ARM_CP_NO_RAW | ARM_CP_IO, 3148 .accessfn = gt_pct_access, .readfn = gt_cnt_read, 3149 }, 3150 { .name = "CNTVCT", .cp = 15, .crm = 14, .opc1 = 1, 3151 .access = PL0_R, .type = ARM_CP_64BIT | ARM_CP_NO_RAW | ARM_CP_IO, 3152 .accessfn = gt_vct_access, 3153 .readfn = gt_virt_cnt_read, .resetfn = arm_cp_reset_ignore, 3154 }, 3155 { .name = "CNTVCT_EL0", .state = ARM_CP_STATE_AA64, 3156 .opc0 = 3, .opc1 = 3, .crn = 14, .crm = 0, .opc2 = 2, 3157 .access = PL0_R, .type = ARM_CP_NO_RAW | ARM_CP_IO, 3158 .accessfn = gt_vct_access, .readfn = gt_virt_cnt_read, 3159 }, 3160 /* Comparison value, indicating when the timer goes off */ 3161 { .name = "CNTP_CVAL", .cp = 15, .crm = 14, .opc1 = 2, 3162 .secure = ARM_CP_SECSTATE_NS, 3163 .access = PL0_RW, 3164 .type = ARM_CP_64BIT | ARM_CP_IO | ARM_CP_ALIAS, 3165 .fieldoffset = offsetof(CPUARMState, cp15.c14_timer[GTIMER_PHYS].cval), 3166 .accessfn = gt_ptimer_access, 3167 .readfn = gt_phys_redir_cval_read, .raw_readfn = raw_read, 3168 .writefn = gt_phys_redir_cval_write, .raw_writefn = raw_write, 3169 }, 3170 { .name = "CNTP_CVAL_S", .cp = 15, .crm = 14, .opc1 = 2, 3171 .secure = ARM_CP_SECSTATE_S, 3172 .access = PL0_RW, 3173 .type = ARM_CP_64BIT | ARM_CP_IO | ARM_CP_ALIAS, 3174 .fieldoffset = offsetof(CPUARMState, cp15.c14_timer[GTIMER_SEC].cval), 3175 .accessfn = gt_ptimer_access, 3176 .writefn = gt_sec_cval_write, .raw_writefn = raw_write, 3177 }, 3178 { .name = "CNTP_CVAL_EL0", .state = ARM_CP_STATE_AA64, 3179 .opc0 = 3, .opc1 = 3, .crn = 14, .crm = 2, .opc2 = 2, 3180 .access = PL0_RW, 3181 .type = ARM_CP_IO, 3182 .fieldoffset = offsetof(CPUARMState, cp15.c14_timer[GTIMER_PHYS].cval), 3183 .resetvalue = 0, .accessfn = gt_ptimer_access, 3184 .readfn = gt_phys_redir_cval_read, .raw_readfn = raw_read, 3185 .writefn = gt_phys_redir_cval_write, .raw_writefn = raw_write, 3186 }, 3187 { .name = "CNTV_CVAL", .cp = 15, .crm = 14, .opc1 = 3, 3188 .access = PL0_RW, 3189 .type = ARM_CP_64BIT | ARM_CP_IO | ARM_CP_ALIAS, 3190 .fieldoffset = offsetof(CPUARMState, cp15.c14_timer[GTIMER_VIRT].cval), 3191 .accessfn = gt_vtimer_access, 3192 .readfn = gt_virt_redir_cval_read, .raw_readfn = raw_read, 3193 .writefn = gt_virt_redir_cval_write, .raw_writefn = raw_write, 3194 }, 3195 { .name = "CNTV_CVAL_EL0", .state = ARM_CP_STATE_AA64, 3196 .opc0 = 3, .opc1 = 3, .crn = 14, .crm = 3, .opc2 = 2, 3197 .access = PL0_RW, 3198 .type = ARM_CP_IO, 3199 .fieldoffset = offsetof(CPUARMState, cp15.c14_timer[GTIMER_VIRT].cval), 3200 .resetvalue = 0, .accessfn = gt_vtimer_access, 3201 .readfn = gt_virt_redir_cval_read, .raw_readfn = raw_read, 3202 .writefn = gt_virt_redir_cval_write, .raw_writefn = raw_write, 3203 }, 3204 /* 3205 * Secure timer -- this is actually restricted to only EL3 3206 * and configurably Secure-EL1 via the accessfn. 3207 */ 3208 { .name = "CNTPS_TVAL_EL1", .state = ARM_CP_STATE_AA64, 3209 .opc0 = 3, .opc1 = 7, .crn = 14, .crm = 2, .opc2 = 0, 3210 .type = ARM_CP_NO_RAW | ARM_CP_IO, .access = PL1_RW, 3211 .accessfn = gt_stimer_access, 3212 .readfn = gt_sec_tval_read, 3213 .writefn = gt_sec_tval_write, 3214 .resetfn = gt_sec_timer_reset, 3215 }, 3216 { .name = "CNTPS_CTL_EL1", .state = ARM_CP_STATE_AA64, 3217 .opc0 = 3, .opc1 = 7, .crn = 14, .crm = 2, .opc2 = 1, 3218 .type = ARM_CP_IO, .access = PL1_RW, 3219 .accessfn = gt_stimer_access, 3220 .fieldoffset = offsetof(CPUARMState, cp15.c14_timer[GTIMER_SEC].ctl), 3221 .resetvalue = 0, 3222 .writefn = gt_sec_ctl_write, .raw_writefn = raw_write, 3223 }, 3224 { .name = "CNTPS_CVAL_EL1", .state = ARM_CP_STATE_AA64, 3225 .opc0 = 3, .opc1 = 7, .crn = 14, .crm = 2, .opc2 = 2, 3226 .type = ARM_CP_IO, .access = PL1_RW, 3227 .accessfn = gt_stimer_access, 3228 .fieldoffset = offsetof(CPUARMState, cp15.c14_timer[GTIMER_SEC].cval), 3229 .writefn = gt_sec_cval_write, .raw_writefn = raw_write, 3230 }, 3231 }; 3232 3233 static CPAccessResult e2h_access(CPUARMState *env, const ARMCPRegInfo *ri, 3234 bool isread) 3235 { 3236 if (!(arm_hcr_el2_eff(env) & HCR_E2H)) { 3237 return CP_ACCESS_TRAP; 3238 } 3239 return CP_ACCESS_OK; 3240 } 3241 3242 #else 3243 3244 /* 3245 * In user-mode most of the generic timer registers are inaccessible 3246 * however modern kernels (4.12+) allow access to cntvct_el0 3247 */ 3248 3249 static uint64_t gt_virt_cnt_read(CPUARMState *env, const ARMCPRegInfo *ri) 3250 { 3251 ARMCPU *cpu = env_archcpu(env); 3252 3253 /* 3254 * Currently we have no support for QEMUTimer in linux-user so we 3255 * can't call gt_get_countervalue(env), instead we directly 3256 * call the lower level functions. 3257 */ 3258 return cpu_get_clock() / gt_cntfrq_period_ns(cpu); 3259 } 3260 3261 static const ARMCPRegInfo generic_timer_cp_reginfo[] = { 3262 { .name = "CNTFRQ_EL0", .state = ARM_CP_STATE_AA64, 3263 .opc0 = 3, .opc1 = 3, .crn = 14, .crm = 0, .opc2 = 0, 3264 .type = ARM_CP_CONST, .access = PL0_R /* no PL1_RW in linux-user */, 3265 .fieldoffset = offsetof(CPUARMState, cp15.c14_cntfrq), 3266 .resetvalue = NANOSECONDS_PER_SECOND / GTIMER_SCALE, 3267 }, 3268 { .name = "CNTVCT_EL0", .state = ARM_CP_STATE_AA64, 3269 .opc0 = 3, .opc1 = 3, .crn = 14, .crm = 0, .opc2 = 2, 3270 .access = PL0_R, .type = ARM_CP_NO_RAW | ARM_CP_IO, 3271 .readfn = gt_virt_cnt_read, 3272 }, 3273 }; 3274 3275 #endif 3276 3277 static void par_write(CPUARMState *env, const ARMCPRegInfo *ri, uint64_t value) 3278 { 3279 if (arm_feature(env, ARM_FEATURE_LPAE)) { 3280 raw_write(env, ri, value); 3281 } else if (arm_feature(env, ARM_FEATURE_V7)) { 3282 raw_write(env, ri, value & 0xfffff6ff); 3283 } else { 3284 raw_write(env, ri, value & 0xfffff1ff); 3285 } 3286 } 3287 3288 #ifndef CONFIG_USER_ONLY 3289 /* get_phys_addr() isn't present for user-mode-only targets */ 3290 3291 static CPAccessResult ats_access(CPUARMState *env, const ARMCPRegInfo *ri, 3292 bool isread) 3293 { 3294 if (ri->opc2 & 4) { 3295 /* 3296 * The ATS12NSO* operations must trap to EL3 or EL2 if executed in 3297 * Secure EL1 (which can only happen if EL3 is AArch64). 3298 * They are simply UNDEF if executed from NS EL1. 3299 * They function normally from EL2 or EL3. 3300 */ 3301 if (arm_current_el(env) == 1) { 3302 if (arm_is_secure_below_el3(env)) { 3303 if (env->cp15.scr_el3 & SCR_EEL2) { 3304 return CP_ACCESS_TRAP_EL2; 3305 } 3306 return CP_ACCESS_TRAP_EL3; 3307 } 3308 return CP_ACCESS_TRAP_UNCATEGORIZED; 3309 } 3310 } 3311 return CP_ACCESS_OK; 3312 } 3313 3314 #ifdef CONFIG_TCG 3315 static uint64_t do_ats_write(CPUARMState *env, uint64_t value, 3316 MMUAccessType access_type, ARMMMUIdx mmu_idx, 3317 bool is_secure) 3318 { 3319 bool ret; 3320 uint64_t par64; 3321 bool format64 = false; 3322 ARMMMUFaultInfo fi = {}; 3323 GetPhysAddrResult res = {}; 3324 3325 ret = get_phys_addr_with_secure(env, value, access_type, mmu_idx, 3326 is_secure, &res, &fi); 3327 3328 /* 3329 * ATS operations only do S1 or S1+S2 translations, so we never 3330 * have to deal with the ARMCacheAttrs format for S2 only. 3331 */ 3332 assert(!res.cacheattrs.is_s2_format); 3333 3334 if (ret) { 3335 /* 3336 * Some kinds of translation fault must cause exceptions rather 3337 * than being reported in the PAR. 3338 */ 3339 int current_el = arm_current_el(env); 3340 int target_el; 3341 uint32_t syn, fsr, fsc; 3342 bool take_exc = false; 3343 3344 if (fi.s1ptw && current_el == 1 3345 && arm_mmu_idx_is_stage1_of_2(mmu_idx)) { 3346 /* 3347 * Synchronous stage 2 fault on an access made as part of the 3348 * translation table walk for AT S1E0* or AT S1E1* insn 3349 * executed from NS EL1. If this is a synchronous external abort 3350 * and SCR_EL3.EA == 1, then we take a synchronous external abort 3351 * to EL3. Otherwise the fault is taken as an exception to EL2, 3352 * and HPFAR_EL2 holds the faulting IPA. 3353 */ 3354 if (fi.type == ARMFault_SyncExternalOnWalk && 3355 (env->cp15.scr_el3 & SCR_EA)) { 3356 target_el = 3; 3357 } else { 3358 env->cp15.hpfar_el2 = extract64(fi.s2addr, 12, 47) << 4; 3359 if (arm_is_secure_below_el3(env) && fi.s1ns) { 3360 env->cp15.hpfar_el2 |= HPFAR_NS; 3361 } 3362 target_el = 2; 3363 } 3364 take_exc = true; 3365 } else if (fi.type == ARMFault_SyncExternalOnWalk) { 3366 /* 3367 * Synchronous external aborts during a translation table walk 3368 * are taken as Data Abort exceptions. 3369 */ 3370 if (fi.stage2) { 3371 if (current_el == 3) { 3372 target_el = 3; 3373 } else { 3374 target_el = 2; 3375 } 3376 } else { 3377 target_el = exception_target_el(env); 3378 } 3379 take_exc = true; 3380 } 3381 3382 if (take_exc) { 3383 /* Construct FSR and FSC using same logic as arm_deliver_fault() */ 3384 if (target_el == 2 || arm_el_is_aa64(env, target_el) || 3385 arm_s1_regime_using_lpae_format(env, mmu_idx)) { 3386 fsr = arm_fi_to_lfsc(&fi); 3387 fsc = extract32(fsr, 0, 6); 3388 } else { 3389 fsr = arm_fi_to_sfsc(&fi); 3390 fsc = 0x3f; 3391 } 3392 /* 3393 * Report exception with ESR indicating a fault due to a 3394 * translation table walk for a cache maintenance instruction. 3395 */ 3396 syn = syn_data_abort_no_iss(current_el == target_el, 0, 3397 fi.ea, 1, fi.s1ptw, 1, fsc); 3398 env->exception.vaddress = value; 3399 env->exception.fsr = fsr; 3400 raise_exception(env, EXCP_DATA_ABORT, syn, target_el); 3401 } 3402 } 3403 3404 if (is_a64(env)) { 3405 format64 = true; 3406 } else if (arm_feature(env, ARM_FEATURE_LPAE)) { 3407 /* 3408 * ATS1Cxx: 3409 * * TTBCR.EAE determines whether the result is returned using the 3410 * 32-bit or the 64-bit PAR format 3411 * * Instructions executed in Hyp mode always use the 64bit format 3412 * 3413 * ATS1S2NSOxx uses the 64bit format if any of the following is true: 3414 * * The Non-secure TTBCR.EAE bit is set to 1 3415 * * The implementation includes EL2, and the value of HCR.VM is 1 3416 * 3417 * (Note that HCR.DC makes HCR.VM behave as if it is 1.) 3418 * 3419 * ATS1Hx always uses the 64bit format. 3420 */ 3421 format64 = arm_s1_regime_using_lpae_format(env, mmu_idx); 3422 3423 if (arm_feature(env, ARM_FEATURE_EL2)) { 3424 if (mmu_idx == ARMMMUIdx_E10_0 || 3425 mmu_idx == ARMMMUIdx_E10_1 || 3426 mmu_idx == ARMMMUIdx_E10_1_PAN) { 3427 format64 |= env->cp15.hcr_el2 & (HCR_VM | HCR_DC); 3428 } else { 3429 format64 |= arm_current_el(env) == 2; 3430 } 3431 } 3432 } 3433 3434 if (format64) { 3435 /* Create a 64-bit PAR */ 3436 par64 = (1 << 11); /* LPAE bit always set */ 3437 if (!ret) { 3438 par64 |= res.f.phys_addr & ~0xfffULL; 3439 if (!res.f.attrs.secure) { 3440 par64 |= (1 << 9); /* NS */ 3441 } 3442 par64 |= (uint64_t)res.cacheattrs.attrs << 56; /* ATTR */ 3443 par64 |= res.cacheattrs.shareability << 7; /* SH */ 3444 } else { 3445 uint32_t fsr = arm_fi_to_lfsc(&fi); 3446 3447 par64 |= 1; /* F */ 3448 par64 |= (fsr & 0x3f) << 1; /* FS */ 3449 if (fi.stage2) { 3450 par64 |= (1 << 9); /* S */ 3451 } 3452 if (fi.s1ptw) { 3453 par64 |= (1 << 8); /* PTW */ 3454 } 3455 } 3456 } else { 3457 /* 3458 * fsr is a DFSR/IFSR value for the short descriptor 3459 * translation table format (with WnR always clear). 3460 * Convert it to a 32-bit PAR. 3461 */ 3462 if (!ret) { 3463 /* We do not set any attribute bits in the PAR */ 3464 if (res.f.lg_page_size == 24 3465 && arm_feature(env, ARM_FEATURE_V7)) { 3466 par64 = (res.f.phys_addr & 0xff000000) | (1 << 1); 3467 } else { 3468 par64 = res.f.phys_addr & 0xfffff000; 3469 } 3470 if (!res.f.attrs.secure) { 3471 par64 |= (1 << 9); /* NS */ 3472 } 3473 } else { 3474 uint32_t fsr = arm_fi_to_sfsc(&fi); 3475 3476 par64 = ((fsr & (1 << 10)) >> 5) | ((fsr & (1 << 12)) >> 6) | 3477 ((fsr & 0xf) << 1) | 1; 3478 } 3479 } 3480 return par64; 3481 } 3482 #endif /* CONFIG_TCG */ 3483 3484 static void ats_write(CPUARMState *env, const ARMCPRegInfo *ri, uint64_t value) 3485 { 3486 #ifdef CONFIG_TCG 3487 MMUAccessType access_type = ri->opc2 & 1 ? MMU_DATA_STORE : MMU_DATA_LOAD; 3488 uint64_t par64; 3489 ARMMMUIdx mmu_idx; 3490 int el = arm_current_el(env); 3491 bool secure = arm_is_secure_below_el3(env); 3492 3493 switch (ri->opc2 & 6) { 3494 case 0: 3495 /* stage 1 current state PL1: ATS1CPR, ATS1CPW, ATS1CPRP, ATS1CPWP */ 3496 switch (el) { 3497 case 3: 3498 mmu_idx = ARMMMUIdx_E3; 3499 secure = true; 3500 break; 3501 case 2: 3502 g_assert(!secure); /* ARMv8.4-SecEL2 is 64-bit only */ 3503 /* fall through */ 3504 case 1: 3505 if (ri->crm == 9 && (env->uncached_cpsr & CPSR_PAN)) { 3506 mmu_idx = ARMMMUIdx_Stage1_E1_PAN; 3507 } else { 3508 mmu_idx = ARMMMUIdx_Stage1_E1; 3509 } 3510 break; 3511 default: 3512 g_assert_not_reached(); 3513 } 3514 break; 3515 case 2: 3516 /* stage 1 current state PL0: ATS1CUR, ATS1CUW */ 3517 switch (el) { 3518 case 3: 3519 mmu_idx = ARMMMUIdx_E10_0; 3520 secure = true; 3521 break; 3522 case 2: 3523 g_assert(!secure); /* ARMv8.4-SecEL2 is 64-bit only */ 3524 mmu_idx = ARMMMUIdx_Stage1_E0; 3525 break; 3526 case 1: 3527 mmu_idx = ARMMMUIdx_Stage1_E0; 3528 break; 3529 default: 3530 g_assert_not_reached(); 3531 } 3532 break; 3533 case 4: 3534 /* stage 1+2 NonSecure PL1: ATS12NSOPR, ATS12NSOPW */ 3535 mmu_idx = ARMMMUIdx_E10_1; 3536 secure = false; 3537 break; 3538 case 6: 3539 /* stage 1+2 NonSecure PL0: ATS12NSOUR, ATS12NSOUW */ 3540 mmu_idx = ARMMMUIdx_E10_0; 3541 secure = false; 3542 break; 3543 default: 3544 g_assert_not_reached(); 3545 } 3546 3547 par64 = do_ats_write(env, value, access_type, mmu_idx, secure); 3548 3549 A32_BANKED_CURRENT_REG_SET(env, par, par64); 3550 #else 3551 /* Handled by hardware accelerator. */ 3552 g_assert_not_reached(); 3553 #endif /* CONFIG_TCG */ 3554 } 3555 3556 static void ats1h_write(CPUARMState *env, const ARMCPRegInfo *ri, 3557 uint64_t value) 3558 { 3559 #ifdef CONFIG_TCG 3560 MMUAccessType access_type = ri->opc2 & 1 ? MMU_DATA_STORE : MMU_DATA_LOAD; 3561 uint64_t par64; 3562 3563 /* There is no SecureEL2 for AArch32. */ 3564 par64 = do_ats_write(env, value, access_type, ARMMMUIdx_E2, false); 3565 3566 A32_BANKED_CURRENT_REG_SET(env, par, par64); 3567 #else 3568 /* Handled by hardware accelerator. */ 3569 g_assert_not_reached(); 3570 #endif /* CONFIG_TCG */ 3571 } 3572 3573 static CPAccessResult at_s1e2_access(CPUARMState *env, const ARMCPRegInfo *ri, 3574 bool isread) 3575 { 3576 if (arm_current_el(env) == 3 && 3577 !(env->cp15.scr_el3 & (SCR_NS | SCR_EEL2))) { 3578 return CP_ACCESS_TRAP; 3579 } 3580 return CP_ACCESS_OK; 3581 } 3582 3583 static void ats_write64(CPUARMState *env, const ARMCPRegInfo *ri, 3584 uint64_t value) 3585 { 3586 #ifdef CONFIG_TCG 3587 MMUAccessType access_type = ri->opc2 & 1 ? MMU_DATA_STORE : MMU_DATA_LOAD; 3588 ARMMMUIdx mmu_idx; 3589 int secure = arm_is_secure_below_el3(env); 3590 uint64_t hcr_el2 = arm_hcr_el2_eff(env); 3591 bool regime_e20 = (hcr_el2 & (HCR_E2H | HCR_TGE)) == (HCR_E2H | HCR_TGE); 3592 3593 switch (ri->opc2 & 6) { 3594 case 0: 3595 switch (ri->opc1) { 3596 case 0: /* AT S1E1R, AT S1E1W, AT S1E1RP, AT S1E1WP */ 3597 if (ri->crm == 9 && (env->pstate & PSTATE_PAN)) { 3598 mmu_idx = regime_e20 ? 3599 ARMMMUIdx_E20_2_PAN : ARMMMUIdx_Stage1_E1_PAN; 3600 } else { 3601 mmu_idx = regime_e20 ? ARMMMUIdx_E20_2 : ARMMMUIdx_Stage1_E1; 3602 } 3603 break; 3604 case 4: /* AT S1E2R, AT S1E2W */ 3605 mmu_idx = hcr_el2 & HCR_E2H ? ARMMMUIdx_E20_2 : ARMMMUIdx_E2; 3606 break; 3607 case 6: /* AT S1E3R, AT S1E3W */ 3608 mmu_idx = ARMMMUIdx_E3; 3609 secure = true; 3610 break; 3611 default: 3612 g_assert_not_reached(); 3613 } 3614 break; 3615 case 2: /* AT S1E0R, AT S1E0W */ 3616 mmu_idx = regime_e20 ? ARMMMUIdx_E20_0 : ARMMMUIdx_Stage1_E0; 3617 break; 3618 case 4: /* AT S12E1R, AT S12E1W */ 3619 mmu_idx = regime_e20 ? ARMMMUIdx_E20_2 : ARMMMUIdx_E10_1; 3620 break; 3621 case 6: /* AT S12E0R, AT S12E0W */ 3622 mmu_idx = regime_e20 ? ARMMMUIdx_E20_0 : ARMMMUIdx_E10_0; 3623 break; 3624 default: 3625 g_assert_not_reached(); 3626 } 3627 3628 env->cp15.par_el[1] = do_ats_write(env, value, access_type, 3629 mmu_idx, secure); 3630 #else 3631 /* Handled by hardware accelerator. */ 3632 g_assert_not_reached(); 3633 #endif /* CONFIG_TCG */ 3634 } 3635 #endif 3636 3637 static const ARMCPRegInfo vapa_cp_reginfo[] = { 3638 { .name = "PAR", .cp = 15, .crn = 7, .crm = 4, .opc1 = 0, .opc2 = 0, 3639 .access = PL1_RW, .resetvalue = 0, 3640 .bank_fieldoffsets = { offsetoflow32(CPUARMState, cp15.par_s), 3641 offsetoflow32(CPUARMState, cp15.par_ns) }, 3642 .writefn = par_write }, 3643 #ifndef CONFIG_USER_ONLY 3644 /* This underdecoding is safe because the reginfo is NO_RAW. */ 3645 { .name = "ATS", .cp = 15, .crn = 7, .crm = 8, .opc1 = 0, .opc2 = CP_ANY, 3646 .access = PL1_W, .accessfn = ats_access, 3647 .writefn = ats_write, .type = ARM_CP_NO_RAW | ARM_CP_RAISES_EXC }, 3648 #endif 3649 }; 3650 3651 /* Return basic MPU access permission bits. */ 3652 static uint32_t simple_mpu_ap_bits(uint32_t val) 3653 { 3654 uint32_t ret; 3655 uint32_t mask; 3656 int i; 3657 ret = 0; 3658 mask = 3; 3659 for (i = 0; i < 16; i += 2) { 3660 ret |= (val >> i) & mask; 3661 mask <<= 2; 3662 } 3663 return ret; 3664 } 3665 3666 /* Pad basic MPU access permission bits to extended format. */ 3667 static uint32_t extended_mpu_ap_bits(uint32_t val) 3668 { 3669 uint32_t ret; 3670 uint32_t mask; 3671 int i; 3672 ret = 0; 3673 mask = 3; 3674 for (i = 0; i < 16; i += 2) { 3675 ret |= (val & mask) << i; 3676 mask <<= 2; 3677 } 3678 return ret; 3679 } 3680 3681 static void pmsav5_data_ap_write(CPUARMState *env, const ARMCPRegInfo *ri, 3682 uint64_t value) 3683 { 3684 env->cp15.pmsav5_data_ap = extended_mpu_ap_bits(value); 3685 } 3686 3687 static uint64_t pmsav5_data_ap_read(CPUARMState *env, const ARMCPRegInfo *ri) 3688 { 3689 return simple_mpu_ap_bits(env->cp15.pmsav5_data_ap); 3690 } 3691 3692 static void pmsav5_insn_ap_write(CPUARMState *env, const ARMCPRegInfo *ri, 3693 uint64_t value) 3694 { 3695 env->cp15.pmsav5_insn_ap = extended_mpu_ap_bits(value); 3696 } 3697 3698 static uint64_t pmsav5_insn_ap_read(CPUARMState *env, const ARMCPRegInfo *ri) 3699 { 3700 return simple_mpu_ap_bits(env->cp15.pmsav5_insn_ap); 3701 } 3702 3703 static uint64_t pmsav7_read(CPUARMState *env, const ARMCPRegInfo *ri) 3704 { 3705 uint32_t *u32p = *(uint32_t **)raw_ptr(env, ri); 3706 3707 if (!u32p) { 3708 return 0; 3709 } 3710 3711 u32p += env->pmsav7.rnr[M_REG_NS]; 3712 return *u32p; 3713 } 3714 3715 static void pmsav7_write(CPUARMState *env, const ARMCPRegInfo *ri, 3716 uint64_t value) 3717 { 3718 ARMCPU *cpu = env_archcpu(env); 3719 uint32_t *u32p = *(uint32_t **)raw_ptr(env, ri); 3720 3721 if (!u32p) { 3722 return; 3723 } 3724 3725 u32p += env->pmsav7.rnr[M_REG_NS]; 3726 tlb_flush(CPU(cpu)); /* Mappings may have changed - purge! */ 3727 *u32p = value; 3728 } 3729 3730 static void pmsav7_rgnr_write(CPUARMState *env, const ARMCPRegInfo *ri, 3731 uint64_t value) 3732 { 3733 ARMCPU *cpu = env_archcpu(env); 3734 uint32_t nrgs = cpu->pmsav7_dregion; 3735 3736 if (value >= nrgs) { 3737 qemu_log_mask(LOG_GUEST_ERROR, 3738 "PMSAv7 RGNR write >= # supported regions, %" PRIu32 3739 " > %" PRIu32 "\n", (uint32_t)value, nrgs); 3740 return; 3741 } 3742 3743 raw_write(env, ri, value); 3744 } 3745 3746 static void prbar_write(CPUARMState *env, const ARMCPRegInfo *ri, 3747 uint64_t value) 3748 { 3749 ARMCPU *cpu = env_archcpu(env); 3750 3751 tlb_flush(CPU(cpu)); /* Mappings may have changed - purge! */ 3752 env->pmsav8.rbar[M_REG_NS][env->pmsav7.rnr[M_REG_NS]] = value; 3753 } 3754 3755 static uint64_t prbar_read(CPUARMState *env, const ARMCPRegInfo *ri) 3756 { 3757 return env->pmsav8.rbar[M_REG_NS][env->pmsav7.rnr[M_REG_NS]]; 3758 } 3759 3760 static void prlar_write(CPUARMState *env, const ARMCPRegInfo *ri, 3761 uint64_t value) 3762 { 3763 ARMCPU *cpu = env_archcpu(env); 3764 3765 tlb_flush(CPU(cpu)); /* Mappings may have changed - purge! */ 3766 env->pmsav8.rlar[M_REG_NS][env->pmsav7.rnr[M_REG_NS]] = value; 3767 } 3768 3769 static uint64_t prlar_read(CPUARMState *env, const ARMCPRegInfo *ri) 3770 { 3771 return env->pmsav8.rlar[M_REG_NS][env->pmsav7.rnr[M_REG_NS]]; 3772 } 3773 3774 static void prselr_write(CPUARMState *env, const ARMCPRegInfo *ri, 3775 uint64_t value) 3776 { 3777 ARMCPU *cpu = env_archcpu(env); 3778 3779 /* 3780 * Ignore writes that would select not implemented region. 3781 * This is architecturally UNPREDICTABLE. 3782 */ 3783 if (value >= cpu->pmsav7_dregion) { 3784 return; 3785 } 3786 3787 env->pmsav7.rnr[M_REG_NS] = value; 3788 } 3789 3790 static void hprbar_write(CPUARMState *env, const ARMCPRegInfo *ri, 3791 uint64_t value) 3792 { 3793 ARMCPU *cpu = env_archcpu(env); 3794 3795 tlb_flush(CPU(cpu)); /* Mappings may have changed - purge! */ 3796 env->pmsav8.hprbar[env->pmsav8.hprselr] = value; 3797 } 3798 3799 static uint64_t hprbar_read(CPUARMState *env, const ARMCPRegInfo *ri) 3800 { 3801 return env->pmsav8.hprbar[env->pmsav8.hprselr]; 3802 } 3803 3804 static void hprlar_write(CPUARMState *env, const ARMCPRegInfo *ri, 3805 uint64_t value) 3806 { 3807 ARMCPU *cpu = env_archcpu(env); 3808 3809 tlb_flush(CPU(cpu)); /* Mappings may have changed - purge! */ 3810 env->pmsav8.hprlar[env->pmsav8.hprselr] = value; 3811 } 3812 3813 static uint64_t hprlar_read(CPUARMState *env, const ARMCPRegInfo *ri) 3814 { 3815 return env->pmsav8.hprlar[env->pmsav8.hprselr]; 3816 } 3817 3818 static void hprenr_write(CPUARMState *env, const ARMCPRegInfo *ri, 3819 uint64_t value) 3820 { 3821 uint32_t n; 3822 uint32_t bit; 3823 ARMCPU *cpu = env_archcpu(env); 3824 3825 /* Ignore writes to unimplemented regions */ 3826 int rmax = MIN(cpu->pmsav8r_hdregion, 32); 3827 value &= MAKE_64BIT_MASK(0, rmax); 3828 3829 tlb_flush(CPU(cpu)); /* Mappings may have changed - purge! */ 3830 3831 /* Register alias is only valid for first 32 indexes */ 3832 for (n = 0; n < rmax; ++n) { 3833 bit = extract32(value, n, 1); 3834 env->pmsav8.hprlar[n] = deposit32( 3835 env->pmsav8.hprlar[n], 0, 1, bit); 3836 } 3837 } 3838 3839 static uint64_t hprenr_read(CPUARMState *env, const ARMCPRegInfo *ri) 3840 { 3841 uint32_t n; 3842 uint32_t result = 0x0; 3843 ARMCPU *cpu = env_archcpu(env); 3844 3845 /* Register alias is only valid for first 32 indexes */ 3846 for (n = 0; n < MIN(cpu->pmsav8r_hdregion, 32); ++n) { 3847 if (env->pmsav8.hprlar[n] & 0x1) { 3848 result |= (0x1 << n); 3849 } 3850 } 3851 return result; 3852 } 3853 3854 static void hprselr_write(CPUARMState *env, const ARMCPRegInfo *ri, 3855 uint64_t value) 3856 { 3857 ARMCPU *cpu = env_archcpu(env); 3858 3859 /* 3860 * Ignore writes that would select not implemented region. 3861 * This is architecturally UNPREDICTABLE. 3862 */ 3863 if (value >= cpu->pmsav8r_hdregion) { 3864 return; 3865 } 3866 3867 env->pmsav8.hprselr = value; 3868 } 3869 3870 static void pmsav8r_regn_write(CPUARMState *env, const ARMCPRegInfo *ri, 3871 uint64_t value) 3872 { 3873 ARMCPU *cpu = env_archcpu(env); 3874 uint8_t index = (extract32(ri->opc0, 0, 1) << 4) | 3875 (extract32(ri->crm, 0, 3) << 1) | extract32(ri->opc2, 2, 1); 3876 3877 tlb_flush(CPU(cpu)); /* Mappings may have changed - purge! */ 3878 3879 if (ri->opc1 & 4) { 3880 if (index >= cpu->pmsav8r_hdregion) { 3881 return; 3882 } 3883 if (ri->opc2 & 0x1) { 3884 env->pmsav8.hprlar[index] = value; 3885 } else { 3886 env->pmsav8.hprbar[index] = value; 3887 } 3888 } else { 3889 if (index >= cpu->pmsav7_dregion) { 3890 return; 3891 } 3892 if (ri->opc2 & 0x1) { 3893 env->pmsav8.rlar[M_REG_NS][index] = value; 3894 } else { 3895 env->pmsav8.rbar[M_REG_NS][index] = value; 3896 } 3897 } 3898 } 3899 3900 static uint64_t pmsav8r_regn_read(CPUARMState *env, const ARMCPRegInfo *ri) 3901 { 3902 ARMCPU *cpu = env_archcpu(env); 3903 uint8_t index = (extract32(ri->opc0, 0, 1) << 4) | 3904 (extract32(ri->crm, 0, 3) << 1) | extract32(ri->opc2, 2, 1); 3905 3906 if (ri->opc1 & 4) { 3907 if (index >= cpu->pmsav8r_hdregion) { 3908 return 0x0; 3909 } 3910 if (ri->opc2 & 0x1) { 3911 return env->pmsav8.hprlar[index]; 3912 } else { 3913 return env->pmsav8.hprbar[index]; 3914 } 3915 } else { 3916 if (index >= cpu->pmsav7_dregion) { 3917 return 0x0; 3918 } 3919 if (ri->opc2 & 0x1) { 3920 return env->pmsav8.rlar[M_REG_NS][index]; 3921 } else { 3922 return env->pmsav8.rbar[M_REG_NS][index]; 3923 } 3924 } 3925 } 3926 3927 static const ARMCPRegInfo pmsav8r_cp_reginfo[] = { 3928 { .name = "PRBAR", 3929 .cp = 15, .opc1 = 0, .crn = 6, .crm = 3, .opc2 = 0, 3930 .access = PL1_RW, .type = ARM_CP_NO_RAW, 3931 .accessfn = access_tvm_trvm, 3932 .readfn = prbar_read, .writefn = prbar_write }, 3933 { .name = "PRLAR", 3934 .cp = 15, .opc1 = 0, .crn = 6, .crm = 3, .opc2 = 1, 3935 .access = PL1_RW, .type = ARM_CP_NO_RAW, 3936 .accessfn = access_tvm_trvm, 3937 .readfn = prlar_read, .writefn = prlar_write }, 3938 { .name = "PRSELR", .resetvalue = 0, 3939 .cp = 15, .opc1 = 0, .crn = 6, .crm = 2, .opc2 = 1, 3940 .access = PL1_RW, .accessfn = access_tvm_trvm, 3941 .writefn = prselr_write, 3942 .fieldoffset = offsetof(CPUARMState, pmsav7.rnr[M_REG_NS]) }, 3943 { .name = "HPRBAR", .resetvalue = 0, 3944 .cp = 15, .opc1 = 4, .crn = 6, .crm = 3, .opc2 = 0, 3945 .access = PL2_RW, .type = ARM_CP_NO_RAW, 3946 .readfn = hprbar_read, .writefn = hprbar_write }, 3947 { .name = "HPRLAR", 3948 .cp = 15, .opc1 = 4, .crn = 6, .crm = 3, .opc2 = 1, 3949 .access = PL2_RW, .type = ARM_CP_NO_RAW, 3950 .readfn = hprlar_read, .writefn = hprlar_write }, 3951 { .name = "HPRSELR", .resetvalue = 0, 3952 .cp = 15, .opc1 = 4, .crn = 6, .crm = 2, .opc2 = 1, 3953 .access = PL2_RW, 3954 .writefn = hprselr_write, 3955 .fieldoffset = offsetof(CPUARMState, pmsav8.hprselr) }, 3956 { .name = "HPRENR", 3957 .cp = 15, .opc1 = 4, .crn = 6, .crm = 1, .opc2 = 1, 3958 .access = PL2_RW, .type = ARM_CP_NO_RAW, 3959 .readfn = hprenr_read, .writefn = hprenr_write }, 3960 }; 3961 3962 static const ARMCPRegInfo pmsav7_cp_reginfo[] = { 3963 /* 3964 * Reset for all these registers is handled in arm_cpu_reset(), 3965 * because the PMSAv7 is also used by M-profile CPUs, which do 3966 * not register cpregs but still need the state to be reset. 3967 */ 3968 { .name = "DRBAR", .cp = 15, .crn = 6, .opc1 = 0, .crm = 1, .opc2 = 0, 3969 .access = PL1_RW, .type = ARM_CP_NO_RAW, 3970 .fieldoffset = offsetof(CPUARMState, pmsav7.drbar), 3971 .readfn = pmsav7_read, .writefn = pmsav7_write, 3972 .resetfn = arm_cp_reset_ignore }, 3973 { .name = "DRSR", .cp = 15, .crn = 6, .opc1 = 0, .crm = 1, .opc2 = 2, 3974 .access = PL1_RW, .type = ARM_CP_NO_RAW, 3975 .fieldoffset = offsetof(CPUARMState, pmsav7.drsr), 3976 .readfn = pmsav7_read, .writefn = pmsav7_write, 3977 .resetfn = arm_cp_reset_ignore }, 3978 { .name = "DRACR", .cp = 15, .crn = 6, .opc1 = 0, .crm = 1, .opc2 = 4, 3979 .access = PL1_RW, .type = ARM_CP_NO_RAW, 3980 .fieldoffset = offsetof(CPUARMState, pmsav7.dracr), 3981 .readfn = pmsav7_read, .writefn = pmsav7_write, 3982 .resetfn = arm_cp_reset_ignore }, 3983 { .name = "RGNR", .cp = 15, .crn = 6, .opc1 = 0, .crm = 2, .opc2 = 0, 3984 .access = PL1_RW, 3985 .fieldoffset = offsetof(CPUARMState, pmsav7.rnr[M_REG_NS]), 3986 .writefn = pmsav7_rgnr_write, 3987 .resetfn = arm_cp_reset_ignore }, 3988 }; 3989 3990 static const ARMCPRegInfo pmsav5_cp_reginfo[] = { 3991 { .name = "DATA_AP", .cp = 15, .crn = 5, .crm = 0, .opc1 = 0, .opc2 = 0, 3992 .access = PL1_RW, .type = ARM_CP_ALIAS, 3993 .fieldoffset = offsetof(CPUARMState, cp15.pmsav5_data_ap), 3994 .readfn = pmsav5_data_ap_read, .writefn = pmsav5_data_ap_write, }, 3995 { .name = "INSN_AP", .cp = 15, .crn = 5, .crm = 0, .opc1 = 0, .opc2 = 1, 3996 .access = PL1_RW, .type = ARM_CP_ALIAS, 3997 .fieldoffset = offsetof(CPUARMState, cp15.pmsav5_insn_ap), 3998 .readfn = pmsav5_insn_ap_read, .writefn = pmsav5_insn_ap_write, }, 3999 { .name = "DATA_EXT_AP", .cp = 15, .crn = 5, .crm = 0, .opc1 = 0, .opc2 = 2, 4000 .access = PL1_RW, 4001 .fieldoffset = offsetof(CPUARMState, cp15.pmsav5_data_ap), 4002 .resetvalue = 0, }, 4003 { .name = "INSN_EXT_AP", .cp = 15, .crn = 5, .crm = 0, .opc1 = 0, .opc2 = 3, 4004 .access = PL1_RW, 4005 .fieldoffset = offsetof(CPUARMState, cp15.pmsav5_insn_ap), 4006 .resetvalue = 0, }, 4007 { .name = "DCACHE_CFG", .cp = 15, .crn = 2, .crm = 0, .opc1 = 0, .opc2 = 0, 4008 .access = PL1_RW, 4009 .fieldoffset = offsetof(CPUARMState, cp15.c2_data), .resetvalue = 0, }, 4010 { .name = "ICACHE_CFG", .cp = 15, .crn = 2, .crm = 0, .opc1 = 0, .opc2 = 1, 4011 .access = PL1_RW, 4012 .fieldoffset = offsetof(CPUARMState, cp15.c2_insn), .resetvalue = 0, }, 4013 /* Protection region base and size registers */ 4014 { .name = "946_PRBS0", .cp = 15, .crn = 6, .crm = 0, .opc1 = 0, 4015 .opc2 = CP_ANY, .access = PL1_RW, .resetvalue = 0, 4016 .fieldoffset = offsetof(CPUARMState, cp15.c6_region[0]) }, 4017 { .name = "946_PRBS1", .cp = 15, .crn = 6, .crm = 1, .opc1 = 0, 4018 .opc2 = CP_ANY, .access = PL1_RW, .resetvalue = 0, 4019 .fieldoffset = offsetof(CPUARMState, cp15.c6_region[1]) }, 4020 { .name = "946_PRBS2", .cp = 15, .crn = 6, .crm = 2, .opc1 = 0, 4021 .opc2 = CP_ANY, .access = PL1_RW, .resetvalue = 0, 4022 .fieldoffset = offsetof(CPUARMState, cp15.c6_region[2]) }, 4023 { .name = "946_PRBS3", .cp = 15, .crn = 6, .crm = 3, .opc1 = 0, 4024 .opc2 = CP_ANY, .access = PL1_RW, .resetvalue = 0, 4025 .fieldoffset = offsetof(CPUARMState, cp15.c6_region[3]) }, 4026 { .name = "946_PRBS4", .cp = 15, .crn = 6, .crm = 4, .opc1 = 0, 4027 .opc2 = CP_ANY, .access = PL1_RW, .resetvalue = 0, 4028 .fieldoffset = offsetof(CPUARMState, cp15.c6_region[4]) }, 4029 { .name = "946_PRBS5", .cp = 15, .crn = 6, .crm = 5, .opc1 = 0, 4030 .opc2 = CP_ANY, .access = PL1_RW, .resetvalue = 0, 4031 .fieldoffset = offsetof(CPUARMState, cp15.c6_region[5]) }, 4032 { .name = "946_PRBS6", .cp = 15, .crn = 6, .crm = 6, .opc1 = 0, 4033 .opc2 = CP_ANY, .access = PL1_RW, .resetvalue = 0, 4034 .fieldoffset = offsetof(CPUARMState, cp15.c6_region[6]) }, 4035 { .name = "946_PRBS7", .cp = 15, .crn = 6, .crm = 7, .opc1 = 0, 4036 .opc2 = CP_ANY, .access = PL1_RW, .resetvalue = 0, 4037 .fieldoffset = offsetof(CPUARMState, cp15.c6_region[7]) }, 4038 }; 4039 4040 static void vmsa_ttbcr_write(CPUARMState *env, const ARMCPRegInfo *ri, 4041 uint64_t value) 4042 { 4043 ARMCPU *cpu = env_archcpu(env); 4044 4045 if (!arm_feature(env, ARM_FEATURE_V8)) { 4046 if (arm_feature(env, ARM_FEATURE_LPAE) && (value & TTBCR_EAE)) { 4047 /* 4048 * Pre ARMv8 bits [21:19], [15:14] and [6:3] are UNK/SBZP when 4049 * using Long-descriptor translation table format 4050 */ 4051 value &= ~((7 << 19) | (3 << 14) | (0xf << 3)); 4052 } else if (arm_feature(env, ARM_FEATURE_EL3)) { 4053 /* 4054 * In an implementation that includes the Security Extensions 4055 * TTBCR has additional fields PD0 [4] and PD1 [5] for 4056 * Short-descriptor translation table format. 4057 */ 4058 value &= TTBCR_PD1 | TTBCR_PD0 | TTBCR_N; 4059 } else { 4060 value &= TTBCR_N; 4061 } 4062 } 4063 4064 if (arm_feature(env, ARM_FEATURE_LPAE)) { 4065 /* 4066 * With LPAE the TTBCR could result in a change of ASID 4067 * via the TTBCR.A1 bit, so do a TLB flush. 4068 */ 4069 tlb_flush(CPU(cpu)); 4070 } 4071 raw_write(env, ri, value); 4072 } 4073 4074 static void vmsa_tcr_el12_write(CPUARMState *env, const ARMCPRegInfo *ri, 4075 uint64_t value) 4076 { 4077 ARMCPU *cpu = env_archcpu(env); 4078 4079 /* For AArch64 the A1 bit could result in a change of ASID, so TLB flush. */ 4080 tlb_flush(CPU(cpu)); 4081 raw_write(env, ri, value); 4082 } 4083 4084 static void vmsa_ttbr_write(CPUARMState *env, const ARMCPRegInfo *ri, 4085 uint64_t value) 4086 { 4087 /* If the ASID changes (with a 64-bit write), we must flush the TLB. */ 4088 if (cpreg_field_is_64bit(ri) && 4089 extract64(raw_read(env, ri) ^ value, 48, 16) != 0) { 4090 ARMCPU *cpu = env_archcpu(env); 4091 tlb_flush(CPU(cpu)); 4092 } 4093 raw_write(env, ri, value); 4094 } 4095 4096 static void vmsa_tcr_ttbr_el2_write(CPUARMState *env, const ARMCPRegInfo *ri, 4097 uint64_t value) 4098 { 4099 /* 4100 * If we are running with E2&0 regime, then an ASID is active. 4101 * Flush if that might be changing. Note we're not checking 4102 * TCR_EL2.A1 to know if this is really the TTBRx_EL2 that 4103 * holds the active ASID, only checking the field that might. 4104 */ 4105 if (extract64(raw_read(env, ri) ^ value, 48, 16) && 4106 (arm_hcr_el2_eff(env) & HCR_E2H)) { 4107 uint16_t mask = ARMMMUIdxBit_E20_2 | 4108 ARMMMUIdxBit_E20_2_PAN | 4109 ARMMMUIdxBit_E20_0; 4110 tlb_flush_by_mmuidx(env_cpu(env), mask); 4111 } 4112 raw_write(env, ri, value); 4113 } 4114 4115 static void vttbr_write(CPUARMState *env, const ARMCPRegInfo *ri, 4116 uint64_t value) 4117 { 4118 ARMCPU *cpu = env_archcpu(env); 4119 CPUState *cs = CPU(cpu); 4120 4121 /* 4122 * A change in VMID to the stage2 page table (Stage2) invalidates 4123 * the stage2 and combined stage 1&2 tlbs (EL10_1 and EL10_0). 4124 */ 4125 if (extract64(raw_read(env, ri) ^ value, 48, 16) != 0) { 4126 tlb_flush_by_mmuidx(cs, alle1_tlbmask(env)); 4127 } 4128 raw_write(env, ri, value); 4129 } 4130 4131 static const ARMCPRegInfo vmsa_pmsa_cp_reginfo[] = { 4132 { .name = "DFSR", .cp = 15, .crn = 5, .crm = 0, .opc1 = 0, .opc2 = 0, 4133 .access = PL1_RW, .accessfn = access_tvm_trvm, .type = ARM_CP_ALIAS, 4134 .bank_fieldoffsets = { offsetoflow32(CPUARMState, cp15.dfsr_s), 4135 offsetoflow32(CPUARMState, cp15.dfsr_ns) }, }, 4136 { .name = "IFSR", .cp = 15, .crn = 5, .crm = 0, .opc1 = 0, .opc2 = 1, 4137 .access = PL1_RW, .accessfn = access_tvm_trvm, .resetvalue = 0, 4138 .bank_fieldoffsets = { offsetoflow32(CPUARMState, cp15.ifsr_s), 4139 offsetoflow32(CPUARMState, cp15.ifsr_ns) } }, 4140 { .name = "DFAR", .cp = 15, .opc1 = 0, .crn = 6, .crm = 0, .opc2 = 0, 4141 .access = PL1_RW, .accessfn = access_tvm_trvm, .resetvalue = 0, 4142 .bank_fieldoffsets = { offsetof(CPUARMState, cp15.dfar_s), 4143 offsetof(CPUARMState, cp15.dfar_ns) } }, 4144 { .name = "FAR_EL1", .state = ARM_CP_STATE_AA64, 4145 .opc0 = 3, .crn = 6, .crm = 0, .opc1 = 0, .opc2 = 0, 4146 .access = PL1_RW, .accessfn = access_tvm_trvm, 4147 .fgt = FGT_FAR_EL1, 4148 .fieldoffset = offsetof(CPUARMState, cp15.far_el[1]), 4149 .resetvalue = 0, }, 4150 }; 4151 4152 static const ARMCPRegInfo vmsa_cp_reginfo[] = { 4153 { .name = "ESR_EL1", .state = ARM_CP_STATE_AA64, 4154 .opc0 = 3, .crn = 5, .crm = 2, .opc1 = 0, .opc2 = 0, 4155 .access = PL1_RW, .accessfn = access_tvm_trvm, 4156 .fgt = FGT_ESR_EL1, 4157 .fieldoffset = offsetof(CPUARMState, cp15.esr_el[1]), .resetvalue = 0, }, 4158 { .name = "TTBR0_EL1", .state = ARM_CP_STATE_BOTH, 4159 .opc0 = 3, .opc1 = 0, .crn = 2, .crm = 0, .opc2 = 0, 4160 .access = PL1_RW, .accessfn = access_tvm_trvm, 4161 .fgt = FGT_TTBR0_EL1, 4162 .writefn = vmsa_ttbr_write, .resetvalue = 0, 4163 .bank_fieldoffsets = { offsetof(CPUARMState, cp15.ttbr0_s), 4164 offsetof(CPUARMState, cp15.ttbr0_ns) } }, 4165 { .name = "TTBR1_EL1", .state = ARM_CP_STATE_BOTH, 4166 .opc0 = 3, .opc1 = 0, .crn = 2, .crm = 0, .opc2 = 1, 4167 .access = PL1_RW, .accessfn = access_tvm_trvm, 4168 .fgt = FGT_TTBR1_EL1, 4169 .writefn = vmsa_ttbr_write, .resetvalue = 0, 4170 .bank_fieldoffsets = { offsetof(CPUARMState, cp15.ttbr1_s), 4171 offsetof(CPUARMState, cp15.ttbr1_ns) } }, 4172 { .name = "TCR_EL1", .state = ARM_CP_STATE_AA64, 4173 .opc0 = 3, .crn = 2, .crm = 0, .opc1 = 0, .opc2 = 2, 4174 .access = PL1_RW, .accessfn = access_tvm_trvm, 4175 .fgt = FGT_TCR_EL1, 4176 .writefn = vmsa_tcr_el12_write, 4177 .raw_writefn = raw_write, 4178 .resetvalue = 0, 4179 .fieldoffset = offsetof(CPUARMState, cp15.tcr_el[1]) }, 4180 { .name = "TTBCR", .cp = 15, .crn = 2, .crm = 0, .opc1 = 0, .opc2 = 2, 4181 .access = PL1_RW, .accessfn = access_tvm_trvm, 4182 .type = ARM_CP_ALIAS, .writefn = vmsa_ttbcr_write, 4183 .raw_writefn = raw_write, 4184 .bank_fieldoffsets = { offsetoflow32(CPUARMState, cp15.tcr_el[3]), 4185 offsetoflow32(CPUARMState, cp15.tcr_el[1])} }, 4186 }; 4187 4188 /* 4189 * Note that unlike TTBCR, writing to TTBCR2 does not require flushing 4190 * qemu tlbs nor adjusting cached masks. 4191 */ 4192 static const ARMCPRegInfo ttbcr2_reginfo = { 4193 .name = "TTBCR2", .cp = 15, .opc1 = 0, .crn = 2, .crm = 0, .opc2 = 3, 4194 .access = PL1_RW, .accessfn = access_tvm_trvm, 4195 .type = ARM_CP_ALIAS, 4196 .bank_fieldoffsets = { 4197 offsetofhigh32(CPUARMState, cp15.tcr_el[3]), 4198 offsetofhigh32(CPUARMState, cp15.tcr_el[1]), 4199 }, 4200 }; 4201 4202 static void omap_ticonfig_write(CPUARMState *env, const ARMCPRegInfo *ri, 4203 uint64_t value) 4204 { 4205 env->cp15.c15_ticonfig = value & 0xe7; 4206 /* The OS_TYPE bit in this register changes the reported CPUID! */ 4207 env->cp15.c0_cpuid = (value & (1 << 5)) ? 4208 ARM_CPUID_TI915T : ARM_CPUID_TI925T; 4209 } 4210 4211 static void omap_threadid_write(CPUARMState *env, const ARMCPRegInfo *ri, 4212 uint64_t value) 4213 { 4214 env->cp15.c15_threadid = value & 0xffff; 4215 } 4216 4217 static void omap_wfi_write(CPUARMState *env, const ARMCPRegInfo *ri, 4218 uint64_t value) 4219 { 4220 /* Wait-for-interrupt (deprecated) */ 4221 cpu_interrupt(env_cpu(env), CPU_INTERRUPT_HALT); 4222 } 4223 4224 static void omap_cachemaint_write(CPUARMState *env, const ARMCPRegInfo *ri, 4225 uint64_t value) 4226 { 4227 /* 4228 * On OMAP there are registers indicating the max/min index of dcache lines 4229 * containing a dirty line; cache flush operations have to reset these. 4230 */ 4231 env->cp15.c15_i_max = 0x000; 4232 env->cp15.c15_i_min = 0xff0; 4233 } 4234 4235 static const ARMCPRegInfo omap_cp_reginfo[] = { 4236 { .name = "DFSR", .cp = 15, .crn = 5, .crm = CP_ANY, 4237 .opc1 = CP_ANY, .opc2 = CP_ANY, .access = PL1_RW, .type = ARM_CP_OVERRIDE, 4238 .fieldoffset = offsetoflow32(CPUARMState, cp15.esr_el[1]), 4239 .resetvalue = 0, }, 4240 { .name = "", .cp = 15, .crn = 15, .crm = 0, .opc1 = 0, .opc2 = 0, 4241 .access = PL1_RW, .type = ARM_CP_NOP }, 4242 { .name = "TICONFIG", .cp = 15, .crn = 15, .crm = 1, .opc1 = 0, .opc2 = 0, 4243 .access = PL1_RW, 4244 .fieldoffset = offsetof(CPUARMState, cp15.c15_ticonfig), .resetvalue = 0, 4245 .writefn = omap_ticonfig_write }, 4246 { .name = "IMAX", .cp = 15, .crn = 15, .crm = 2, .opc1 = 0, .opc2 = 0, 4247 .access = PL1_RW, 4248 .fieldoffset = offsetof(CPUARMState, cp15.c15_i_max), .resetvalue = 0, }, 4249 { .name = "IMIN", .cp = 15, .crn = 15, .crm = 3, .opc1 = 0, .opc2 = 0, 4250 .access = PL1_RW, .resetvalue = 0xff0, 4251 .fieldoffset = offsetof(CPUARMState, cp15.c15_i_min) }, 4252 { .name = "THREADID", .cp = 15, .crn = 15, .crm = 4, .opc1 = 0, .opc2 = 0, 4253 .access = PL1_RW, 4254 .fieldoffset = offsetof(CPUARMState, cp15.c15_threadid), .resetvalue = 0, 4255 .writefn = omap_threadid_write }, 4256 { .name = "TI925T_STATUS", .cp = 15, .crn = 15, 4257 .crm = 8, .opc1 = 0, .opc2 = 0, .access = PL1_RW, 4258 .type = ARM_CP_NO_RAW, 4259 .readfn = arm_cp_read_zero, .writefn = omap_wfi_write, }, 4260 /* 4261 * TODO: Peripheral port remap register: 4262 * On OMAP2 mcr p15, 0, rn, c15, c2, 4 sets up the interrupt controller 4263 * base address at $rn & ~0xfff and map size of 0x200 << ($rn & 0xfff), 4264 * when MMU is off. 4265 */ 4266 { .name = "OMAP_CACHEMAINT", .cp = 15, .crn = 7, .crm = CP_ANY, 4267 .opc1 = 0, .opc2 = CP_ANY, .access = PL1_W, 4268 .type = ARM_CP_OVERRIDE | ARM_CP_NO_RAW, 4269 .writefn = omap_cachemaint_write }, 4270 { .name = "C9", .cp = 15, .crn = 9, 4271 .crm = CP_ANY, .opc1 = CP_ANY, .opc2 = CP_ANY, .access = PL1_RW, 4272 .type = ARM_CP_CONST | ARM_CP_OVERRIDE, .resetvalue = 0 }, 4273 }; 4274 4275 static void xscale_cpar_write(CPUARMState *env, const ARMCPRegInfo *ri, 4276 uint64_t value) 4277 { 4278 env->cp15.c15_cpar = value & 0x3fff; 4279 } 4280 4281 static const ARMCPRegInfo xscale_cp_reginfo[] = { 4282 { .name = "XSCALE_CPAR", 4283 .cp = 15, .crn = 15, .crm = 1, .opc1 = 0, .opc2 = 0, .access = PL1_RW, 4284 .fieldoffset = offsetof(CPUARMState, cp15.c15_cpar), .resetvalue = 0, 4285 .writefn = xscale_cpar_write, }, 4286 { .name = "XSCALE_AUXCR", 4287 .cp = 15, .crn = 1, .crm = 0, .opc1 = 0, .opc2 = 1, .access = PL1_RW, 4288 .fieldoffset = offsetof(CPUARMState, cp15.c1_xscaleauxcr), 4289 .resetvalue = 0, }, 4290 /* 4291 * XScale specific cache-lockdown: since we have no cache we NOP these 4292 * and hope the guest does not really rely on cache behaviour. 4293 */ 4294 { .name = "XSCALE_LOCK_ICACHE_LINE", 4295 .cp = 15, .opc1 = 0, .crn = 9, .crm = 1, .opc2 = 0, 4296 .access = PL1_W, .type = ARM_CP_NOP }, 4297 { .name = "XSCALE_UNLOCK_ICACHE", 4298 .cp = 15, .opc1 = 0, .crn = 9, .crm = 1, .opc2 = 1, 4299 .access = PL1_W, .type = ARM_CP_NOP }, 4300 { .name = "XSCALE_DCACHE_LOCK", 4301 .cp = 15, .opc1 = 0, .crn = 9, .crm = 2, .opc2 = 0, 4302 .access = PL1_RW, .type = ARM_CP_NOP }, 4303 { .name = "XSCALE_UNLOCK_DCACHE", 4304 .cp = 15, .opc1 = 0, .crn = 9, .crm = 2, .opc2 = 1, 4305 .access = PL1_W, .type = ARM_CP_NOP }, 4306 }; 4307 4308 static const ARMCPRegInfo dummy_c15_cp_reginfo[] = { 4309 /* 4310 * RAZ/WI the whole crn=15 space, when we don't have a more specific 4311 * implementation of this implementation-defined space. 4312 * Ideally this should eventually disappear in favour of actually 4313 * implementing the correct behaviour for all cores. 4314 */ 4315 { .name = "C15_IMPDEF", .cp = 15, .crn = 15, 4316 .crm = CP_ANY, .opc1 = CP_ANY, .opc2 = CP_ANY, 4317 .access = PL1_RW, 4318 .type = ARM_CP_CONST | ARM_CP_NO_RAW | ARM_CP_OVERRIDE, 4319 .resetvalue = 0 }, 4320 }; 4321 4322 static const ARMCPRegInfo cache_dirty_status_cp_reginfo[] = { 4323 /* Cache status: RAZ because we have no cache so it's always clean */ 4324 { .name = "CDSR", .cp = 15, .crn = 7, .crm = 10, .opc1 = 0, .opc2 = 6, 4325 .access = PL1_R, .type = ARM_CP_CONST | ARM_CP_NO_RAW, 4326 .resetvalue = 0 }, 4327 }; 4328 4329 static const ARMCPRegInfo cache_block_ops_cp_reginfo[] = { 4330 /* We never have a block transfer operation in progress */ 4331 { .name = "BXSR", .cp = 15, .crn = 7, .crm = 12, .opc1 = 0, .opc2 = 4, 4332 .access = PL0_R, .type = ARM_CP_CONST | ARM_CP_NO_RAW, 4333 .resetvalue = 0 }, 4334 /* The cache ops themselves: these all NOP for QEMU */ 4335 { .name = "IICR", .cp = 15, .crm = 5, .opc1 = 0, 4336 .access = PL1_W, .type = ARM_CP_NOP | ARM_CP_64BIT }, 4337 { .name = "IDCR", .cp = 15, .crm = 6, .opc1 = 0, 4338 .access = PL1_W, .type = ARM_CP_NOP | ARM_CP_64BIT }, 4339 { .name = "CDCR", .cp = 15, .crm = 12, .opc1 = 0, 4340 .access = PL0_W, .type = ARM_CP_NOP | ARM_CP_64BIT }, 4341 { .name = "PIR", .cp = 15, .crm = 12, .opc1 = 1, 4342 .access = PL0_W, .type = ARM_CP_NOP | ARM_CP_64BIT }, 4343 { .name = "PDR", .cp = 15, .crm = 12, .opc1 = 2, 4344 .access = PL0_W, .type = ARM_CP_NOP | ARM_CP_64BIT }, 4345 { .name = "CIDCR", .cp = 15, .crm = 14, .opc1 = 0, 4346 .access = PL1_W, .type = ARM_CP_NOP | ARM_CP_64BIT }, 4347 }; 4348 4349 static const ARMCPRegInfo cache_test_clean_cp_reginfo[] = { 4350 /* 4351 * The cache test-and-clean instructions always return (1 << 30) 4352 * to indicate that there are no dirty cache lines. 4353 */ 4354 { .name = "TC_DCACHE", .cp = 15, .crn = 7, .crm = 10, .opc1 = 0, .opc2 = 3, 4355 .access = PL0_R, .type = ARM_CP_CONST | ARM_CP_NO_RAW, 4356 .resetvalue = (1 << 30) }, 4357 { .name = "TCI_DCACHE", .cp = 15, .crn = 7, .crm = 14, .opc1 = 0, .opc2 = 3, 4358 .access = PL0_R, .type = ARM_CP_CONST | ARM_CP_NO_RAW, 4359 .resetvalue = (1 << 30) }, 4360 }; 4361 4362 static const ARMCPRegInfo strongarm_cp_reginfo[] = { 4363 /* Ignore ReadBuffer accesses */ 4364 { .name = "C9_READBUFFER", .cp = 15, .crn = 9, 4365 .crm = CP_ANY, .opc1 = CP_ANY, .opc2 = CP_ANY, 4366 .access = PL1_RW, .resetvalue = 0, 4367 .type = ARM_CP_CONST | ARM_CP_OVERRIDE | ARM_CP_NO_RAW }, 4368 }; 4369 4370 static uint64_t midr_read(CPUARMState *env, const ARMCPRegInfo *ri) 4371 { 4372 unsigned int cur_el = arm_current_el(env); 4373 4374 if (arm_is_el2_enabled(env) && cur_el == 1) { 4375 return env->cp15.vpidr_el2; 4376 } 4377 return raw_read(env, ri); 4378 } 4379 4380 static uint64_t mpidr_read_val(CPUARMState *env) 4381 { 4382 ARMCPU *cpu = env_archcpu(env); 4383 uint64_t mpidr = cpu->mp_affinity; 4384 4385 if (arm_feature(env, ARM_FEATURE_V7MP)) { 4386 mpidr |= (1U << 31); 4387 /* 4388 * Cores which are uniprocessor (non-coherent) 4389 * but still implement the MP extensions set 4390 * bit 30. (For instance, Cortex-R5). 4391 */ 4392 if (cpu->mp_is_up) { 4393 mpidr |= (1u << 30); 4394 } 4395 } 4396 return mpidr; 4397 } 4398 4399 static uint64_t mpidr_read(CPUARMState *env, const ARMCPRegInfo *ri) 4400 { 4401 unsigned int cur_el = arm_current_el(env); 4402 4403 if (arm_is_el2_enabled(env) && cur_el == 1) { 4404 return env->cp15.vmpidr_el2; 4405 } 4406 return mpidr_read_val(env); 4407 } 4408 4409 static const ARMCPRegInfo lpae_cp_reginfo[] = { 4410 /* NOP AMAIR0/1 */ 4411 { .name = "AMAIR0", .state = ARM_CP_STATE_BOTH, 4412 .opc0 = 3, .crn = 10, .crm = 3, .opc1 = 0, .opc2 = 0, 4413 .access = PL1_RW, .accessfn = access_tvm_trvm, 4414 .fgt = FGT_AMAIR_EL1, 4415 .type = ARM_CP_CONST, .resetvalue = 0 }, 4416 /* AMAIR1 is mapped to AMAIR_EL1[63:32] */ 4417 { .name = "AMAIR1", .cp = 15, .crn = 10, .crm = 3, .opc1 = 0, .opc2 = 1, 4418 .access = PL1_RW, .accessfn = access_tvm_trvm, 4419 .type = ARM_CP_CONST, .resetvalue = 0 }, 4420 { .name = "PAR", .cp = 15, .crm = 7, .opc1 = 0, 4421 .access = PL1_RW, .type = ARM_CP_64BIT, .resetvalue = 0, 4422 .bank_fieldoffsets = { offsetof(CPUARMState, cp15.par_s), 4423 offsetof(CPUARMState, cp15.par_ns)} }, 4424 { .name = "TTBR0", .cp = 15, .crm = 2, .opc1 = 0, 4425 .access = PL1_RW, .accessfn = access_tvm_trvm, 4426 .type = ARM_CP_64BIT | ARM_CP_ALIAS, 4427 .bank_fieldoffsets = { offsetof(CPUARMState, cp15.ttbr0_s), 4428 offsetof(CPUARMState, cp15.ttbr0_ns) }, 4429 .writefn = vmsa_ttbr_write, }, 4430 { .name = "TTBR1", .cp = 15, .crm = 2, .opc1 = 1, 4431 .access = PL1_RW, .accessfn = access_tvm_trvm, 4432 .type = ARM_CP_64BIT | ARM_CP_ALIAS, 4433 .bank_fieldoffsets = { offsetof(CPUARMState, cp15.ttbr1_s), 4434 offsetof(CPUARMState, cp15.ttbr1_ns) }, 4435 .writefn = vmsa_ttbr_write, }, 4436 }; 4437 4438 static uint64_t aa64_fpcr_read(CPUARMState *env, const ARMCPRegInfo *ri) 4439 { 4440 return vfp_get_fpcr(env); 4441 } 4442 4443 static void aa64_fpcr_write(CPUARMState *env, const ARMCPRegInfo *ri, 4444 uint64_t value) 4445 { 4446 vfp_set_fpcr(env, value); 4447 } 4448 4449 static uint64_t aa64_fpsr_read(CPUARMState *env, const ARMCPRegInfo *ri) 4450 { 4451 return vfp_get_fpsr(env); 4452 } 4453 4454 static void aa64_fpsr_write(CPUARMState *env, const ARMCPRegInfo *ri, 4455 uint64_t value) 4456 { 4457 vfp_set_fpsr(env, value); 4458 } 4459 4460 static CPAccessResult aa64_daif_access(CPUARMState *env, const ARMCPRegInfo *ri, 4461 bool isread) 4462 { 4463 if (arm_current_el(env) == 0 && !(arm_sctlr(env, 0) & SCTLR_UMA)) { 4464 return CP_ACCESS_TRAP; 4465 } 4466 return CP_ACCESS_OK; 4467 } 4468 4469 static void aa64_daif_write(CPUARMState *env, const ARMCPRegInfo *ri, 4470 uint64_t value) 4471 { 4472 env->daif = value & PSTATE_DAIF; 4473 } 4474 4475 static uint64_t aa64_pan_read(CPUARMState *env, const ARMCPRegInfo *ri) 4476 { 4477 return env->pstate & PSTATE_PAN; 4478 } 4479 4480 static void aa64_pan_write(CPUARMState *env, const ARMCPRegInfo *ri, 4481 uint64_t value) 4482 { 4483 env->pstate = (env->pstate & ~PSTATE_PAN) | (value & PSTATE_PAN); 4484 } 4485 4486 static const ARMCPRegInfo pan_reginfo = { 4487 .name = "PAN", .state = ARM_CP_STATE_AA64, 4488 .opc0 = 3, .opc1 = 0, .crn = 4, .crm = 2, .opc2 = 3, 4489 .type = ARM_CP_NO_RAW, .access = PL1_RW, 4490 .readfn = aa64_pan_read, .writefn = aa64_pan_write 4491 }; 4492 4493 static uint64_t aa64_uao_read(CPUARMState *env, const ARMCPRegInfo *ri) 4494 { 4495 return env->pstate & PSTATE_UAO; 4496 } 4497 4498 static void aa64_uao_write(CPUARMState *env, const ARMCPRegInfo *ri, 4499 uint64_t value) 4500 { 4501 env->pstate = (env->pstate & ~PSTATE_UAO) | (value & PSTATE_UAO); 4502 } 4503 4504 static const ARMCPRegInfo uao_reginfo = { 4505 .name = "UAO", .state = ARM_CP_STATE_AA64, 4506 .opc0 = 3, .opc1 = 0, .crn = 4, .crm = 2, .opc2 = 4, 4507 .type = ARM_CP_NO_RAW, .access = PL1_RW, 4508 .readfn = aa64_uao_read, .writefn = aa64_uao_write 4509 }; 4510 4511 static uint64_t aa64_dit_read(CPUARMState *env, const ARMCPRegInfo *ri) 4512 { 4513 return env->pstate & PSTATE_DIT; 4514 } 4515 4516 static void aa64_dit_write(CPUARMState *env, const ARMCPRegInfo *ri, 4517 uint64_t value) 4518 { 4519 env->pstate = (env->pstate & ~PSTATE_DIT) | (value & PSTATE_DIT); 4520 } 4521 4522 static const ARMCPRegInfo dit_reginfo = { 4523 .name = "DIT", .state = ARM_CP_STATE_AA64, 4524 .opc0 = 3, .opc1 = 3, .crn = 4, .crm = 2, .opc2 = 5, 4525 .type = ARM_CP_NO_RAW, .access = PL0_RW, 4526 .readfn = aa64_dit_read, .writefn = aa64_dit_write 4527 }; 4528 4529 static uint64_t aa64_ssbs_read(CPUARMState *env, const ARMCPRegInfo *ri) 4530 { 4531 return env->pstate & PSTATE_SSBS; 4532 } 4533 4534 static void aa64_ssbs_write(CPUARMState *env, const ARMCPRegInfo *ri, 4535 uint64_t value) 4536 { 4537 env->pstate = (env->pstate & ~PSTATE_SSBS) | (value & PSTATE_SSBS); 4538 } 4539 4540 static const ARMCPRegInfo ssbs_reginfo = { 4541 .name = "SSBS", .state = ARM_CP_STATE_AA64, 4542 .opc0 = 3, .opc1 = 3, .crn = 4, .crm = 2, .opc2 = 6, 4543 .type = ARM_CP_NO_RAW, .access = PL0_RW, 4544 .readfn = aa64_ssbs_read, .writefn = aa64_ssbs_write 4545 }; 4546 4547 static CPAccessResult aa64_cacheop_poc_access(CPUARMState *env, 4548 const ARMCPRegInfo *ri, 4549 bool isread) 4550 { 4551 /* Cache invalidate/clean to Point of Coherency or Persistence... */ 4552 switch (arm_current_el(env)) { 4553 case 0: 4554 /* ... EL0 must UNDEF unless SCTLR_EL1.UCI is set. */ 4555 if (!(arm_sctlr(env, 0) & SCTLR_UCI)) { 4556 return CP_ACCESS_TRAP; 4557 } 4558 /* fall through */ 4559 case 1: 4560 /* ... EL1 must trap to EL2 if HCR_EL2.TPCP is set. */ 4561 if (arm_hcr_el2_eff(env) & HCR_TPCP) { 4562 return CP_ACCESS_TRAP_EL2; 4563 } 4564 break; 4565 } 4566 return CP_ACCESS_OK; 4567 } 4568 4569 static CPAccessResult do_cacheop_pou_access(CPUARMState *env, uint64_t hcrflags) 4570 { 4571 /* Cache invalidate/clean to Point of Unification... */ 4572 switch (arm_current_el(env)) { 4573 case 0: 4574 /* ... EL0 must UNDEF unless SCTLR_EL1.UCI is set. */ 4575 if (!(arm_sctlr(env, 0) & SCTLR_UCI)) { 4576 return CP_ACCESS_TRAP; 4577 } 4578 /* fall through */ 4579 case 1: 4580 /* ... EL1 must trap to EL2 if relevant HCR_EL2 flags are set. */ 4581 if (arm_hcr_el2_eff(env) & hcrflags) { 4582 return CP_ACCESS_TRAP_EL2; 4583 } 4584 break; 4585 } 4586 return CP_ACCESS_OK; 4587 } 4588 4589 static CPAccessResult access_ticab(CPUARMState *env, const ARMCPRegInfo *ri, 4590 bool isread) 4591 { 4592 return do_cacheop_pou_access(env, HCR_TICAB | HCR_TPU); 4593 } 4594 4595 static CPAccessResult access_tocu(CPUARMState *env, const ARMCPRegInfo *ri, 4596 bool isread) 4597 { 4598 return do_cacheop_pou_access(env, HCR_TOCU | HCR_TPU); 4599 } 4600 4601 /* 4602 * See: D4.7.2 TLB maintenance requirements and the TLB maintenance instructions 4603 * Page D4-1736 (DDI0487A.b) 4604 */ 4605 4606 static int vae1_tlbmask(CPUARMState *env) 4607 { 4608 uint64_t hcr = arm_hcr_el2_eff(env); 4609 uint16_t mask; 4610 4611 if ((hcr & (HCR_E2H | HCR_TGE)) == (HCR_E2H | HCR_TGE)) { 4612 mask = ARMMMUIdxBit_E20_2 | 4613 ARMMMUIdxBit_E20_2_PAN | 4614 ARMMMUIdxBit_E20_0; 4615 } else { 4616 mask = ARMMMUIdxBit_E10_1 | 4617 ARMMMUIdxBit_E10_1_PAN | 4618 ARMMMUIdxBit_E10_0; 4619 } 4620 return mask; 4621 } 4622 4623 /* Return 56 if TBI is enabled, 64 otherwise. */ 4624 static int tlbbits_for_regime(CPUARMState *env, ARMMMUIdx mmu_idx, 4625 uint64_t addr) 4626 { 4627 uint64_t tcr = regime_tcr(env, mmu_idx); 4628 int tbi = aa64_va_parameter_tbi(tcr, mmu_idx); 4629 int select = extract64(addr, 55, 1); 4630 4631 return (tbi >> select) & 1 ? 56 : 64; 4632 } 4633 4634 static int vae1_tlbbits(CPUARMState *env, uint64_t addr) 4635 { 4636 uint64_t hcr = arm_hcr_el2_eff(env); 4637 ARMMMUIdx mmu_idx; 4638 4639 /* Only the regime of the mmu_idx below is significant. */ 4640 if ((hcr & (HCR_E2H | HCR_TGE)) == (HCR_E2H | HCR_TGE)) { 4641 mmu_idx = ARMMMUIdx_E20_0; 4642 } else { 4643 mmu_idx = ARMMMUIdx_E10_0; 4644 } 4645 4646 return tlbbits_for_regime(env, mmu_idx, addr); 4647 } 4648 4649 static void tlbi_aa64_vmalle1is_write(CPUARMState *env, const ARMCPRegInfo *ri, 4650 uint64_t value) 4651 { 4652 CPUState *cs = env_cpu(env); 4653 int mask = vae1_tlbmask(env); 4654 4655 tlb_flush_by_mmuidx_all_cpus_synced(cs, mask); 4656 } 4657 4658 static void tlbi_aa64_vmalle1_write(CPUARMState *env, const ARMCPRegInfo *ri, 4659 uint64_t value) 4660 { 4661 CPUState *cs = env_cpu(env); 4662 int mask = vae1_tlbmask(env); 4663 4664 if (tlb_force_broadcast(env)) { 4665 tlb_flush_by_mmuidx_all_cpus_synced(cs, mask); 4666 } else { 4667 tlb_flush_by_mmuidx(cs, mask); 4668 } 4669 } 4670 4671 static int e2_tlbmask(CPUARMState *env) 4672 { 4673 return (ARMMMUIdxBit_E20_0 | 4674 ARMMMUIdxBit_E20_2 | 4675 ARMMMUIdxBit_E20_2_PAN | 4676 ARMMMUIdxBit_E2); 4677 } 4678 4679 static void tlbi_aa64_alle1_write(CPUARMState *env, const ARMCPRegInfo *ri, 4680 uint64_t value) 4681 { 4682 CPUState *cs = env_cpu(env); 4683 int mask = alle1_tlbmask(env); 4684 4685 tlb_flush_by_mmuidx(cs, mask); 4686 } 4687 4688 static void tlbi_aa64_alle2_write(CPUARMState *env, const ARMCPRegInfo *ri, 4689 uint64_t value) 4690 { 4691 CPUState *cs = env_cpu(env); 4692 int mask = e2_tlbmask(env); 4693 4694 tlb_flush_by_mmuidx(cs, mask); 4695 } 4696 4697 static void tlbi_aa64_alle3_write(CPUARMState *env, const ARMCPRegInfo *ri, 4698 uint64_t value) 4699 { 4700 ARMCPU *cpu = env_archcpu(env); 4701 CPUState *cs = CPU(cpu); 4702 4703 tlb_flush_by_mmuidx(cs, ARMMMUIdxBit_E3); 4704 } 4705 4706 static void tlbi_aa64_alle1is_write(CPUARMState *env, const ARMCPRegInfo *ri, 4707 uint64_t value) 4708 { 4709 CPUState *cs = env_cpu(env); 4710 int mask = alle1_tlbmask(env); 4711 4712 tlb_flush_by_mmuidx_all_cpus_synced(cs, mask); 4713 } 4714 4715 static void tlbi_aa64_alle2is_write(CPUARMState *env, const ARMCPRegInfo *ri, 4716 uint64_t value) 4717 { 4718 CPUState *cs = env_cpu(env); 4719 int mask = e2_tlbmask(env); 4720 4721 tlb_flush_by_mmuidx_all_cpus_synced(cs, mask); 4722 } 4723 4724 static void tlbi_aa64_alle3is_write(CPUARMState *env, const ARMCPRegInfo *ri, 4725 uint64_t value) 4726 { 4727 CPUState *cs = env_cpu(env); 4728 4729 tlb_flush_by_mmuidx_all_cpus_synced(cs, ARMMMUIdxBit_E3); 4730 } 4731 4732 static void tlbi_aa64_vae2_write(CPUARMState *env, const ARMCPRegInfo *ri, 4733 uint64_t value) 4734 { 4735 /* 4736 * Invalidate by VA, EL2 4737 * Currently handles both VAE2 and VALE2, since we don't support 4738 * flush-last-level-only. 4739 */ 4740 CPUState *cs = env_cpu(env); 4741 int mask = e2_tlbmask(env); 4742 uint64_t pageaddr = sextract64(value << 12, 0, 56); 4743 4744 tlb_flush_page_by_mmuidx(cs, pageaddr, mask); 4745 } 4746 4747 static void tlbi_aa64_vae3_write(CPUARMState *env, const ARMCPRegInfo *ri, 4748 uint64_t value) 4749 { 4750 /* 4751 * Invalidate by VA, EL3 4752 * Currently handles both VAE3 and VALE3, since we don't support 4753 * flush-last-level-only. 4754 */ 4755 ARMCPU *cpu = env_archcpu(env); 4756 CPUState *cs = CPU(cpu); 4757 uint64_t pageaddr = sextract64(value << 12, 0, 56); 4758 4759 tlb_flush_page_by_mmuidx(cs, pageaddr, ARMMMUIdxBit_E3); 4760 } 4761 4762 static void tlbi_aa64_vae1is_write(CPUARMState *env, const ARMCPRegInfo *ri, 4763 uint64_t value) 4764 { 4765 CPUState *cs = env_cpu(env); 4766 int mask = vae1_tlbmask(env); 4767 uint64_t pageaddr = sextract64(value << 12, 0, 56); 4768 int bits = vae1_tlbbits(env, pageaddr); 4769 4770 tlb_flush_page_bits_by_mmuidx_all_cpus_synced(cs, pageaddr, mask, bits); 4771 } 4772 4773 static void tlbi_aa64_vae1_write(CPUARMState *env, const ARMCPRegInfo *ri, 4774 uint64_t value) 4775 { 4776 /* 4777 * Invalidate by VA, EL1&0 (AArch64 version). 4778 * Currently handles all of VAE1, VAAE1, VAALE1 and VALE1, 4779 * since we don't support flush-for-specific-ASID-only or 4780 * flush-last-level-only. 4781 */ 4782 CPUState *cs = env_cpu(env); 4783 int mask = vae1_tlbmask(env); 4784 uint64_t pageaddr = sextract64(value << 12, 0, 56); 4785 int bits = vae1_tlbbits(env, pageaddr); 4786 4787 if (tlb_force_broadcast(env)) { 4788 tlb_flush_page_bits_by_mmuidx_all_cpus_synced(cs, pageaddr, mask, bits); 4789 } else { 4790 tlb_flush_page_bits_by_mmuidx(cs, pageaddr, mask, bits); 4791 } 4792 } 4793 4794 static void tlbi_aa64_vae2is_write(CPUARMState *env, const ARMCPRegInfo *ri, 4795 uint64_t value) 4796 { 4797 CPUState *cs = env_cpu(env); 4798 uint64_t pageaddr = sextract64(value << 12, 0, 56); 4799 int bits = tlbbits_for_regime(env, ARMMMUIdx_E2, pageaddr); 4800 4801 tlb_flush_page_bits_by_mmuidx_all_cpus_synced(cs, pageaddr, 4802 ARMMMUIdxBit_E2, bits); 4803 } 4804 4805 static void tlbi_aa64_vae3is_write(CPUARMState *env, const ARMCPRegInfo *ri, 4806 uint64_t value) 4807 { 4808 CPUState *cs = env_cpu(env); 4809 uint64_t pageaddr = sextract64(value << 12, 0, 56); 4810 int bits = tlbbits_for_regime(env, ARMMMUIdx_E3, pageaddr); 4811 4812 tlb_flush_page_bits_by_mmuidx_all_cpus_synced(cs, pageaddr, 4813 ARMMMUIdxBit_E3, bits); 4814 } 4815 4816 static int ipas2e1_tlbmask(CPUARMState *env, int64_t value) 4817 { 4818 /* 4819 * The MSB of value is the NS field, which only applies if SEL2 4820 * is implemented and SCR_EL3.NS is not set (i.e. in secure mode). 4821 */ 4822 return (value >= 0 4823 && cpu_isar_feature(aa64_sel2, env_archcpu(env)) 4824 && arm_is_secure_below_el3(env) 4825 ? ARMMMUIdxBit_Stage2_S 4826 : ARMMMUIdxBit_Stage2); 4827 } 4828 4829 static void tlbi_aa64_ipas2e1_write(CPUARMState *env, const ARMCPRegInfo *ri, 4830 uint64_t value) 4831 { 4832 CPUState *cs = env_cpu(env); 4833 int mask = ipas2e1_tlbmask(env, value); 4834 uint64_t pageaddr = sextract64(value << 12, 0, 56); 4835 4836 if (tlb_force_broadcast(env)) { 4837 tlb_flush_page_by_mmuidx_all_cpus_synced(cs, pageaddr, mask); 4838 } else { 4839 tlb_flush_page_by_mmuidx(cs, pageaddr, mask); 4840 } 4841 } 4842 4843 static void tlbi_aa64_ipas2e1is_write(CPUARMState *env, const ARMCPRegInfo *ri, 4844 uint64_t value) 4845 { 4846 CPUState *cs = env_cpu(env); 4847 int mask = ipas2e1_tlbmask(env, value); 4848 uint64_t pageaddr = sextract64(value << 12, 0, 56); 4849 4850 tlb_flush_page_by_mmuidx_all_cpus_synced(cs, pageaddr, mask); 4851 } 4852 4853 #ifdef TARGET_AARCH64 4854 typedef struct { 4855 uint64_t base; 4856 uint64_t length; 4857 } TLBIRange; 4858 4859 static ARMGranuleSize tlbi_range_tg_to_gran_size(int tg) 4860 { 4861 /* 4862 * Note that the TLBI range TG field encoding differs from both 4863 * TG0 and TG1 encodings. 4864 */ 4865 switch (tg) { 4866 case 1: 4867 return Gran4K; 4868 case 2: 4869 return Gran16K; 4870 case 3: 4871 return Gran64K; 4872 default: 4873 return GranInvalid; 4874 } 4875 } 4876 4877 static TLBIRange tlbi_aa64_get_range(CPUARMState *env, ARMMMUIdx mmuidx, 4878 uint64_t value) 4879 { 4880 unsigned int page_size_granule, page_shift, num, scale, exponent; 4881 /* Extract one bit to represent the va selector in use. */ 4882 uint64_t select = sextract64(value, 36, 1); 4883 ARMVAParameters param = aa64_va_parameters(env, select, mmuidx, true); 4884 TLBIRange ret = { }; 4885 ARMGranuleSize gran; 4886 4887 page_size_granule = extract64(value, 46, 2); 4888 gran = tlbi_range_tg_to_gran_size(page_size_granule); 4889 4890 /* The granule encoded in value must match the granule in use. */ 4891 if (gran != param.gran) { 4892 qemu_log_mask(LOG_GUEST_ERROR, "Invalid tlbi page size granule %d\n", 4893 page_size_granule); 4894 return ret; 4895 } 4896 4897 page_shift = arm_granule_bits(gran); 4898 num = extract64(value, 39, 5); 4899 scale = extract64(value, 44, 2); 4900 exponent = (5 * scale) + 1; 4901 4902 ret.length = (num + 1) << (exponent + page_shift); 4903 4904 if (param.select) { 4905 ret.base = sextract64(value, 0, 37); 4906 } else { 4907 ret.base = extract64(value, 0, 37); 4908 } 4909 if (param.ds) { 4910 /* 4911 * With DS=1, BaseADDR is always shifted 16 so that it is able 4912 * to address all 52 va bits. The input address is perforce 4913 * aligned on a 64k boundary regardless of translation granule. 4914 */ 4915 page_shift = 16; 4916 } 4917 ret.base <<= page_shift; 4918 4919 return ret; 4920 } 4921 4922 static void do_rvae_write(CPUARMState *env, uint64_t value, 4923 int idxmap, bool synced) 4924 { 4925 ARMMMUIdx one_idx = ARM_MMU_IDX_A | ctz32(idxmap); 4926 TLBIRange range; 4927 int bits; 4928 4929 range = tlbi_aa64_get_range(env, one_idx, value); 4930 bits = tlbbits_for_regime(env, one_idx, range.base); 4931 4932 if (synced) { 4933 tlb_flush_range_by_mmuidx_all_cpus_synced(env_cpu(env), 4934 range.base, 4935 range.length, 4936 idxmap, 4937 bits); 4938 } else { 4939 tlb_flush_range_by_mmuidx(env_cpu(env), range.base, 4940 range.length, idxmap, bits); 4941 } 4942 } 4943 4944 static void tlbi_aa64_rvae1_write(CPUARMState *env, 4945 const ARMCPRegInfo *ri, 4946 uint64_t value) 4947 { 4948 /* 4949 * Invalidate by VA range, EL1&0. 4950 * Currently handles all of RVAE1, RVAAE1, RVAALE1 and RVALE1, 4951 * since we don't support flush-for-specific-ASID-only or 4952 * flush-last-level-only. 4953 */ 4954 4955 do_rvae_write(env, value, vae1_tlbmask(env), 4956 tlb_force_broadcast(env)); 4957 } 4958 4959 static void tlbi_aa64_rvae1is_write(CPUARMState *env, 4960 const ARMCPRegInfo *ri, 4961 uint64_t value) 4962 { 4963 /* 4964 * Invalidate by VA range, Inner/Outer Shareable EL1&0. 4965 * Currently handles all of RVAE1IS, RVAE1OS, RVAAE1IS, RVAAE1OS, 4966 * RVAALE1IS, RVAALE1OS, RVALE1IS and RVALE1OS, since we don't support 4967 * flush-for-specific-ASID-only, flush-last-level-only or inner/outer 4968 * shareable specific flushes. 4969 */ 4970 4971 do_rvae_write(env, value, vae1_tlbmask(env), true); 4972 } 4973 4974 static int vae2_tlbmask(CPUARMState *env) 4975 { 4976 return ARMMMUIdxBit_E2; 4977 } 4978 4979 static void tlbi_aa64_rvae2_write(CPUARMState *env, 4980 const ARMCPRegInfo *ri, 4981 uint64_t value) 4982 { 4983 /* 4984 * Invalidate by VA range, EL2. 4985 * Currently handles all of RVAE2 and RVALE2, 4986 * since we don't support flush-for-specific-ASID-only or 4987 * flush-last-level-only. 4988 */ 4989 4990 do_rvae_write(env, value, vae2_tlbmask(env), 4991 tlb_force_broadcast(env)); 4992 4993 4994 } 4995 4996 static void tlbi_aa64_rvae2is_write(CPUARMState *env, 4997 const ARMCPRegInfo *ri, 4998 uint64_t value) 4999 { 5000 /* 5001 * Invalidate by VA range, Inner/Outer Shareable, EL2. 5002 * Currently handles all of RVAE2IS, RVAE2OS, RVALE2IS and RVALE2OS, 5003 * since we don't support flush-for-specific-ASID-only, 5004 * flush-last-level-only or inner/outer shareable specific flushes. 5005 */ 5006 5007 do_rvae_write(env, value, vae2_tlbmask(env), true); 5008 5009 } 5010 5011 static void tlbi_aa64_rvae3_write(CPUARMState *env, 5012 const ARMCPRegInfo *ri, 5013 uint64_t value) 5014 { 5015 /* 5016 * Invalidate by VA range, EL3. 5017 * Currently handles all of RVAE3 and RVALE3, 5018 * since we don't support flush-for-specific-ASID-only or 5019 * flush-last-level-only. 5020 */ 5021 5022 do_rvae_write(env, value, ARMMMUIdxBit_E3, tlb_force_broadcast(env)); 5023 } 5024 5025 static void tlbi_aa64_rvae3is_write(CPUARMState *env, 5026 const ARMCPRegInfo *ri, 5027 uint64_t value) 5028 { 5029 /* 5030 * Invalidate by VA range, EL3, Inner/Outer Shareable. 5031 * Currently handles all of RVAE3IS, RVAE3OS, RVALE3IS and RVALE3OS, 5032 * since we don't support flush-for-specific-ASID-only, 5033 * flush-last-level-only or inner/outer specific flushes. 5034 */ 5035 5036 do_rvae_write(env, value, ARMMMUIdxBit_E3, true); 5037 } 5038 5039 static void tlbi_aa64_ripas2e1_write(CPUARMState *env, const ARMCPRegInfo *ri, 5040 uint64_t value) 5041 { 5042 do_rvae_write(env, value, ipas2e1_tlbmask(env, value), 5043 tlb_force_broadcast(env)); 5044 } 5045 5046 static void tlbi_aa64_ripas2e1is_write(CPUARMState *env, 5047 const ARMCPRegInfo *ri, 5048 uint64_t value) 5049 { 5050 do_rvae_write(env, value, ipas2e1_tlbmask(env, value), true); 5051 } 5052 #endif 5053 5054 static CPAccessResult aa64_zva_access(CPUARMState *env, const ARMCPRegInfo *ri, 5055 bool isread) 5056 { 5057 int cur_el = arm_current_el(env); 5058 5059 if (cur_el < 2) { 5060 uint64_t hcr = arm_hcr_el2_eff(env); 5061 5062 if (cur_el == 0) { 5063 if ((hcr & (HCR_E2H | HCR_TGE)) == (HCR_E2H | HCR_TGE)) { 5064 if (!(env->cp15.sctlr_el[2] & SCTLR_DZE)) { 5065 return CP_ACCESS_TRAP_EL2; 5066 } 5067 } else { 5068 if (!(env->cp15.sctlr_el[1] & SCTLR_DZE)) { 5069 return CP_ACCESS_TRAP; 5070 } 5071 if (hcr & HCR_TDZ) { 5072 return CP_ACCESS_TRAP_EL2; 5073 } 5074 } 5075 } else if (hcr & HCR_TDZ) { 5076 return CP_ACCESS_TRAP_EL2; 5077 } 5078 } 5079 return CP_ACCESS_OK; 5080 } 5081 5082 static uint64_t aa64_dczid_read(CPUARMState *env, const ARMCPRegInfo *ri) 5083 { 5084 ARMCPU *cpu = env_archcpu(env); 5085 int dzp_bit = 1 << 4; 5086 5087 /* DZP indicates whether DC ZVA access is allowed */ 5088 if (aa64_zva_access(env, NULL, false) == CP_ACCESS_OK) { 5089 dzp_bit = 0; 5090 } 5091 return cpu->dcz_blocksize | dzp_bit; 5092 } 5093 5094 static CPAccessResult sp_el0_access(CPUARMState *env, const ARMCPRegInfo *ri, 5095 bool isread) 5096 { 5097 if (!(env->pstate & PSTATE_SP)) { 5098 /* 5099 * Access to SP_EL0 is undefined if it's being used as 5100 * the stack pointer. 5101 */ 5102 return CP_ACCESS_TRAP_UNCATEGORIZED; 5103 } 5104 return CP_ACCESS_OK; 5105 } 5106 5107 static uint64_t spsel_read(CPUARMState *env, const ARMCPRegInfo *ri) 5108 { 5109 return env->pstate & PSTATE_SP; 5110 } 5111 5112 static void spsel_write(CPUARMState *env, const ARMCPRegInfo *ri, uint64_t val) 5113 { 5114 update_spsel(env, val); 5115 } 5116 5117 static void sctlr_write(CPUARMState *env, const ARMCPRegInfo *ri, 5118 uint64_t value) 5119 { 5120 ARMCPU *cpu = env_archcpu(env); 5121 5122 if (arm_feature(env, ARM_FEATURE_PMSA) && !cpu->has_mpu) { 5123 /* M bit is RAZ/WI for PMSA with no MPU implemented */ 5124 value &= ~SCTLR_M; 5125 } 5126 5127 /* ??? Lots of these bits are not implemented. */ 5128 5129 if (ri->state == ARM_CP_STATE_AA64 && !cpu_isar_feature(aa64_mte, cpu)) { 5130 if (ri->opc1 == 6) { /* SCTLR_EL3 */ 5131 value &= ~(SCTLR_ITFSB | SCTLR_TCF | SCTLR_ATA); 5132 } else { 5133 value &= ~(SCTLR_ITFSB | SCTLR_TCF0 | SCTLR_TCF | 5134 SCTLR_ATA0 | SCTLR_ATA); 5135 } 5136 } 5137 5138 if (raw_read(env, ri) == value) { 5139 /* 5140 * Skip the TLB flush if nothing actually changed; Linux likes 5141 * to do a lot of pointless SCTLR writes. 5142 */ 5143 return; 5144 } 5145 5146 raw_write(env, ri, value); 5147 5148 /* This may enable/disable the MMU, so do a TLB flush. */ 5149 tlb_flush(CPU(cpu)); 5150 5151 if (ri->type & ARM_CP_SUPPRESS_TB_END) { 5152 /* 5153 * Normally we would always end the TB on an SCTLR write; see the 5154 * comment in ARMCPRegInfo sctlr initialization below for why Xscale 5155 * is special. Setting ARM_CP_SUPPRESS_TB_END also stops the rebuild 5156 * of hflags from the translator, so do it here. 5157 */ 5158 arm_rebuild_hflags(env); 5159 } 5160 } 5161 5162 static void mdcr_el3_write(CPUARMState *env, const ARMCPRegInfo *ri, 5163 uint64_t value) 5164 { 5165 /* 5166 * Some MDCR_EL3 bits affect whether PMU counters are running: 5167 * if we are trying to change any of those then we must 5168 * bracket this update with PMU start/finish calls. 5169 */ 5170 bool pmu_op = (env->cp15.mdcr_el3 ^ value) & MDCR_EL3_PMU_ENABLE_BITS; 5171 5172 if (pmu_op) { 5173 pmu_op_start(env); 5174 } 5175 env->cp15.mdcr_el3 = value; 5176 if (pmu_op) { 5177 pmu_op_finish(env); 5178 } 5179 } 5180 5181 static void sdcr_write(CPUARMState *env, const ARMCPRegInfo *ri, 5182 uint64_t value) 5183 { 5184 /* Not all bits defined for MDCR_EL3 exist in the AArch32 SDCR */ 5185 mdcr_el3_write(env, ri, value & SDCR_VALID_MASK); 5186 } 5187 5188 static void mdcr_el2_write(CPUARMState *env, const ARMCPRegInfo *ri, 5189 uint64_t value) 5190 { 5191 /* 5192 * Some MDCR_EL2 bits affect whether PMU counters are running: 5193 * if we are trying to change any of those then we must 5194 * bracket this update with PMU start/finish calls. 5195 */ 5196 bool pmu_op = (env->cp15.mdcr_el2 ^ value) & MDCR_EL2_PMU_ENABLE_BITS; 5197 5198 if (pmu_op) { 5199 pmu_op_start(env); 5200 } 5201 env->cp15.mdcr_el2 = value; 5202 if (pmu_op) { 5203 pmu_op_finish(env); 5204 } 5205 } 5206 5207 static const ARMCPRegInfo v8_cp_reginfo[] = { 5208 /* 5209 * Minimal set of EL0-visible registers. This will need to be expanded 5210 * significantly for system emulation of AArch64 CPUs. 5211 */ 5212 { .name = "NZCV", .state = ARM_CP_STATE_AA64, 5213 .opc0 = 3, .opc1 = 3, .opc2 = 0, .crn = 4, .crm = 2, 5214 .access = PL0_RW, .type = ARM_CP_NZCV }, 5215 { .name = "DAIF", .state = ARM_CP_STATE_AA64, 5216 .opc0 = 3, .opc1 = 3, .opc2 = 1, .crn = 4, .crm = 2, 5217 .type = ARM_CP_NO_RAW, 5218 .access = PL0_RW, .accessfn = aa64_daif_access, 5219 .fieldoffset = offsetof(CPUARMState, daif), 5220 .writefn = aa64_daif_write, .resetfn = arm_cp_reset_ignore }, 5221 { .name = "FPCR", .state = ARM_CP_STATE_AA64, 5222 .opc0 = 3, .opc1 = 3, .opc2 = 0, .crn = 4, .crm = 4, 5223 .access = PL0_RW, .type = ARM_CP_FPU | ARM_CP_SUPPRESS_TB_END, 5224 .readfn = aa64_fpcr_read, .writefn = aa64_fpcr_write }, 5225 { .name = "FPSR", .state = ARM_CP_STATE_AA64, 5226 .opc0 = 3, .opc1 = 3, .opc2 = 1, .crn = 4, .crm = 4, 5227 .access = PL0_RW, .type = ARM_CP_FPU | ARM_CP_SUPPRESS_TB_END, 5228 .readfn = aa64_fpsr_read, .writefn = aa64_fpsr_write }, 5229 { .name = "DCZID_EL0", .state = ARM_CP_STATE_AA64, 5230 .opc0 = 3, .opc1 = 3, .opc2 = 7, .crn = 0, .crm = 0, 5231 .access = PL0_R, .type = ARM_CP_NO_RAW, 5232 .fgt = FGT_DCZID_EL0, 5233 .readfn = aa64_dczid_read }, 5234 { .name = "DC_ZVA", .state = ARM_CP_STATE_AA64, 5235 .opc0 = 1, .opc1 = 3, .crn = 7, .crm = 4, .opc2 = 1, 5236 .access = PL0_W, .type = ARM_CP_DC_ZVA, 5237 #ifndef CONFIG_USER_ONLY 5238 /* Avoid overhead of an access check that always passes in user-mode */ 5239 .accessfn = aa64_zva_access, 5240 #endif 5241 }, 5242 { .name = "CURRENTEL", .state = ARM_CP_STATE_AA64, 5243 .opc0 = 3, .opc1 = 0, .opc2 = 2, .crn = 4, .crm = 2, 5244 .access = PL1_R, .type = ARM_CP_CURRENTEL }, 5245 /* Cache ops: all NOPs since we don't emulate caches */ 5246 { .name = "IC_IALLUIS", .state = ARM_CP_STATE_AA64, 5247 .opc0 = 1, .opc1 = 0, .crn = 7, .crm = 1, .opc2 = 0, 5248 .access = PL1_W, .type = ARM_CP_NOP, 5249 .accessfn = access_ticab }, 5250 { .name = "IC_IALLU", .state = ARM_CP_STATE_AA64, 5251 .opc0 = 1, .opc1 = 0, .crn = 7, .crm = 5, .opc2 = 0, 5252 .access = PL1_W, .type = ARM_CP_NOP, 5253 .accessfn = access_tocu }, 5254 { .name = "IC_IVAU", .state = ARM_CP_STATE_AA64, 5255 .opc0 = 1, .opc1 = 3, .crn = 7, .crm = 5, .opc2 = 1, 5256 .access = PL0_W, .type = ARM_CP_NOP, 5257 .accessfn = access_tocu }, 5258 { .name = "DC_IVAC", .state = ARM_CP_STATE_AA64, 5259 .opc0 = 1, .opc1 = 0, .crn = 7, .crm = 6, .opc2 = 1, 5260 .access = PL1_W, .accessfn = aa64_cacheop_poc_access, 5261 .type = ARM_CP_NOP }, 5262 { .name = "DC_ISW", .state = ARM_CP_STATE_AA64, 5263 .opc0 = 1, .opc1 = 0, .crn = 7, .crm = 6, .opc2 = 2, 5264 .access = PL1_W, .accessfn = access_tsw, .type = ARM_CP_NOP }, 5265 { .name = "DC_CVAC", .state = ARM_CP_STATE_AA64, 5266 .opc0 = 1, .opc1 = 3, .crn = 7, .crm = 10, .opc2 = 1, 5267 .access = PL0_W, .type = ARM_CP_NOP, 5268 .accessfn = aa64_cacheop_poc_access }, 5269 { .name = "DC_CSW", .state = ARM_CP_STATE_AA64, 5270 .opc0 = 1, .opc1 = 0, .crn = 7, .crm = 10, .opc2 = 2, 5271 .access = PL1_W, .accessfn = access_tsw, .type = ARM_CP_NOP }, 5272 { .name = "DC_CVAU", .state = ARM_CP_STATE_AA64, 5273 .opc0 = 1, .opc1 = 3, .crn = 7, .crm = 11, .opc2 = 1, 5274 .access = PL0_W, .type = ARM_CP_NOP, 5275 .accessfn = access_tocu }, 5276 { .name = "DC_CIVAC", .state = ARM_CP_STATE_AA64, 5277 .opc0 = 1, .opc1 = 3, .crn = 7, .crm = 14, .opc2 = 1, 5278 .access = PL0_W, .type = ARM_CP_NOP, 5279 .accessfn = aa64_cacheop_poc_access }, 5280 { .name = "DC_CISW", .state = ARM_CP_STATE_AA64, 5281 .opc0 = 1, .opc1 = 0, .crn = 7, .crm = 14, .opc2 = 2, 5282 .access = PL1_W, .accessfn = access_tsw, .type = ARM_CP_NOP }, 5283 /* TLBI operations */ 5284 { .name = "TLBI_VMALLE1IS", .state = ARM_CP_STATE_AA64, 5285 .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 3, .opc2 = 0, 5286 .access = PL1_W, .accessfn = access_ttlbis, .type = ARM_CP_NO_RAW, 5287 .writefn = tlbi_aa64_vmalle1is_write }, 5288 { .name = "TLBI_VAE1IS", .state = ARM_CP_STATE_AA64, 5289 .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 3, .opc2 = 1, 5290 .access = PL1_W, .accessfn = access_ttlbis, .type = ARM_CP_NO_RAW, 5291 .writefn = tlbi_aa64_vae1is_write }, 5292 { .name = "TLBI_ASIDE1IS", .state = ARM_CP_STATE_AA64, 5293 .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 3, .opc2 = 2, 5294 .access = PL1_W, .accessfn = access_ttlbis, .type = ARM_CP_NO_RAW, 5295 .writefn = tlbi_aa64_vmalle1is_write }, 5296 { .name = "TLBI_VAAE1IS", .state = ARM_CP_STATE_AA64, 5297 .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 3, .opc2 = 3, 5298 .access = PL1_W, .accessfn = access_ttlbis, .type = ARM_CP_NO_RAW, 5299 .writefn = tlbi_aa64_vae1is_write }, 5300 { .name = "TLBI_VALE1IS", .state = ARM_CP_STATE_AA64, 5301 .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 3, .opc2 = 5, 5302 .access = PL1_W, .accessfn = access_ttlbis, .type = ARM_CP_NO_RAW, 5303 .writefn = tlbi_aa64_vae1is_write }, 5304 { .name = "TLBI_VAALE1IS", .state = ARM_CP_STATE_AA64, 5305 .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 3, .opc2 = 7, 5306 .access = PL1_W, .accessfn = access_ttlbis, .type = ARM_CP_NO_RAW, 5307 .writefn = tlbi_aa64_vae1is_write }, 5308 { .name = "TLBI_VMALLE1", .state = ARM_CP_STATE_AA64, 5309 .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 7, .opc2 = 0, 5310 .access = PL1_W, .accessfn = access_ttlb, .type = ARM_CP_NO_RAW, 5311 .writefn = tlbi_aa64_vmalle1_write }, 5312 { .name = "TLBI_VAE1", .state = ARM_CP_STATE_AA64, 5313 .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 7, .opc2 = 1, 5314 .access = PL1_W, .accessfn = access_ttlb, .type = ARM_CP_NO_RAW, 5315 .writefn = tlbi_aa64_vae1_write }, 5316 { .name = "TLBI_ASIDE1", .state = ARM_CP_STATE_AA64, 5317 .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 7, .opc2 = 2, 5318 .access = PL1_W, .accessfn = access_ttlb, .type = ARM_CP_NO_RAW, 5319 .writefn = tlbi_aa64_vmalle1_write }, 5320 { .name = "TLBI_VAAE1", .state = ARM_CP_STATE_AA64, 5321 .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 7, .opc2 = 3, 5322 .access = PL1_W, .accessfn = access_ttlb, .type = ARM_CP_NO_RAW, 5323 .writefn = tlbi_aa64_vae1_write }, 5324 { .name = "TLBI_VALE1", .state = ARM_CP_STATE_AA64, 5325 .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 7, .opc2 = 5, 5326 .access = PL1_W, .accessfn = access_ttlb, .type = ARM_CP_NO_RAW, 5327 .writefn = tlbi_aa64_vae1_write }, 5328 { .name = "TLBI_VAALE1", .state = ARM_CP_STATE_AA64, 5329 .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 7, .opc2 = 7, 5330 .access = PL1_W, .accessfn = access_ttlb, .type = ARM_CP_NO_RAW, 5331 .writefn = tlbi_aa64_vae1_write }, 5332 { .name = "TLBI_IPAS2E1IS", .state = ARM_CP_STATE_AA64, 5333 .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 0, .opc2 = 1, 5334 .access = PL2_W, .type = ARM_CP_NO_RAW, 5335 .writefn = tlbi_aa64_ipas2e1is_write }, 5336 { .name = "TLBI_IPAS2LE1IS", .state = ARM_CP_STATE_AA64, 5337 .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 0, .opc2 = 5, 5338 .access = PL2_W, .type = ARM_CP_NO_RAW, 5339 .writefn = tlbi_aa64_ipas2e1is_write }, 5340 { .name = "TLBI_ALLE1IS", .state = ARM_CP_STATE_AA64, 5341 .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 3, .opc2 = 4, 5342 .access = PL2_W, .type = ARM_CP_NO_RAW, 5343 .writefn = tlbi_aa64_alle1is_write }, 5344 { .name = "TLBI_VMALLS12E1IS", .state = ARM_CP_STATE_AA64, 5345 .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 3, .opc2 = 6, 5346 .access = PL2_W, .type = ARM_CP_NO_RAW, 5347 .writefn = tlbi_aa64_alle1is_write }, 5348 { .name = "TLBI_IPAS2E1", .state = ARM_CP_STATE_AA64, 5349 .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 4, .opc2 = 1, 5350 .access = PL2_W, .type = ARM_CP_NO_RAW, 5351 .writefn = tlbi_aa64_ipas2e1_write }, 5352 { .name = "TLBI_IPAS2LE1", .state = ARM_CP_STATE_AA64, 5353 .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 4, .opc2 = 5, 5354 .access = PL2_W, .type = ARM_CP_NO_RAW, 5355 .writefn = tlbi_aa64_ipas2e1_write }, 5356 { .name = "TLBI_ALLE1", .state = ARM_CP_STATE_AA64, 5357 .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 7, .opc2 = 4, 5358 .access = PL2_W, .type = ARM_CP_NO_RAW, 5359 .writefn = tlbi_aa64_alle1_write }, 5360 { .name = "TLBI_VMALLS12E1", .state = ARM_CP_STATE_AA64, 5361 .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 7, .opc2 = 6, 5362 .access = PL2_W, .type = ARM_CP_NO_RAW, 5363 .writefn = tlbi_aa64_alle1is_write }, 5364 #ifndef CONFIG_USER_ONLY 5365 /* 64 bit address translation operations */ 5366 { .name = "AT_S1E1R", .state = ARM_CP_STATE_AA64, 5367 .opc0 = 1, .opc1 = 0, .crn = 7, .crm = 8, .opc2 = 0, 5368 .access = PL1_W, .type = ARM_CP_NO_RAW | ARM_CP_RAISES_EXC, 5369 .writefn = ats_write64 }, 5370 { .name = "AT_S1E1W", .state = ARM_CP_STATE_AA64, 5371 .opc0 = 1, .opc1 = 0, .crn = 7, .crm = 8, .opc2 = 1, 5372 .access = PL1_W, .type = ARM_CP_NO_RAW | ARM_CP_RAISES_EXC, 5373 .writefn = ats_write64 }, 5374 { .name = "AT_S1E0R", .state = ARM_CP_STATE_AA64, 5375 .opc0 = 1, .opc1 = 0, .crn = 7, .crm = 8, .opc2 = 2, 5376 .access = PL1_W, .type = ARM_CP_NO_RAW | ARM_CP_RAISES_EXC, 5377 .writefn = ats_write64 }, 5378 { .name = "AT_S1E0W", .state = ARM_CP_STATE_AA64, 5379 .opc0 = 1, .opc1 = 0, .crn = 7, .crm = 8, .opc2 = 3, 5380 .access = PL1_W, .type = ARM_CP_NO_RAW | ARM_CP_RAISES_EXC, 5381 .writefn = ats_write64 }, 5382 { .name = "AT_S12E1R", .state = ARM_CP_STATE_AA64, 5383 .opc0 = 1, .opc1 = 4, .crn = 7, .crm = 8, .opc2 = 4, 5384 .access = PL2_W, .type = ARM_CP_NO_RAW | ARM_CP_RAISES_EXC, 5385 .writefn = ats_write64 }, 5386 { .name = "AT_S12E1W", .state = ARM_CP_STATE_AA64, 5387 .opc0 = 1, .opc1 = 4, .crn = 7, .crm = 8, .opc2 = 5, 5388 .access = PL2_W, .type = ARM_CP_NO_RAW | ARM_CP_RAISES_EXC, 5389 .writefn = ats_write64 }, 5390 { .name = "AT_S12E0R", .state = ARM_CP_STATE_AA64, 5391 .opc0 = 1, .opc1 = 4, .crn = 7, .crm = 8, .opc2 = 6, 5392 .access = PL2_W, .type = ARM_CP_NO_RAW | ARM_CP_RAISES_EXC, 5393 .writefn = ats_write64 }, 5394 { .name = "AT_S12E0W", .state = ARM_CP_STATE_AA64, 5395 .opc0 = 1, .opc1 = 4, .crn = 7, .crm = 8, .opc2 = 7, 5396 .access = PL2_W, .type = ARM_CP_NO_RAW | ARM_CP_RAISES_EXC, 5397 .writefn = ats_write64 }, 5398 /* AT S1E2* are elsewhere as they UNDEF from EL3 if EL2 is not present */ 5399 { .name = "AT_S1E3R", .state = ARM_CP_STATE_AA64, 5400 .opc0 = 1, .opc1 = 6, .crn = 7, .crm = 8, .opc2 = 0, 5401 .access = PL3_W, .type = ARM_CP_NO_RAW | ARM_CP_RAISES_EXC, 5402 .writefn = ats_write64 }, 5403 { .name = "AT_S1E3W", .state = ARM_CP_STATE_AA64, 5404 .opc0 = 1, .opc1 = 6, .crn = 7, .crm = 8, .opc2 = 1, 5405 .access = PL3_W, .type = ARM_CP_NO_RAW | ARM_CP_RAISES_EXC, 5406 .writefn = ats_write64 }, 5407 { .name = "PAR_EL1", .state = ARM_CP_STATE_AA64, 5408 .type = ARM_CP_ALIAS, 5409 .opc0 = 3, .opc1 = 0, .crn = 7, .crm = 4, .opc2 = 0, 5410 .access = PL1_RW, .resetvalue = 0, 5411 .fgt = FGT_PAR_EL1, 5412 .fieldoffset = offsetof(CPUARMState, cp15.par_el[1]), 5413 .writefn = par_write }, 5414 #endif 5415 /* TLB invalidate last level of translation table walk */ 5416 { .name = "TLBIMVALIS", .cp = 15, .opc1 = 0, .crn = 8, .crm = 3, .opc2 = 5, 5417 .type = ARM_CP_NO_RAW, .access = PL1_W, .accessfn = access_ttlbis, 5418 .writefn = tlbimva_is_write }, 5419 { .name = "TLBIMVAALIS", .cp = 15, .opc1 = 0, .crn = 8, .crm = 3, .opc2 = 7, 5420 .type = ARM_CP_NO_RAW, .access = PL1_W, .accessfn = access_ttlbis, 5421 .writefn = tlbimvaa_is_write }, 5422 { .name = "TLBIMVAL", .cp = 15, .opc1 = 0, .crn = 8, .crm = 7, .opc2 = 5, 5423 .type = ARM_CP_NO_RAW, .access = PL1_W, .accessfn = access_ttlb, 5424 .writefn = tlbimva_write }, 5425 { .name = "TLBIMVAAL", .cp = 15, .opc1 = 0, .crn = 8, .crm = 7, .opc2 = 7, 5426 .type = ARM_CP_NO_RAW, .access = PL1_W, .accessfn = access_ttlb, 5427 .writefn = tlbimvaa_write }, 5428 { .name = "TLBIMVALH", .cp = 15, .opc1 = 4, .crn = 8, .crm = 7, .opc2 = 5, 5429 .type = ARM_CP_NO_RAW, .access = PL2_W, 5430 .writefn = tlbimva_hyp_write }, 5431 { .name = "TLBIMVALHIS", 5432 .cp = 15, .opc1 = 4, .crn = 8, .crm = 3, .opc2 = 5, 5433 .type = ARM_CP_NO_RAW, .access = PL2_W, 5434 .writefn = tlbimva_hyp_is_write }, 5435 { .name = "TLBIIPAS2", 5436 .cp = 15, .opc1 = 4, .crn = 8, .crm = 4, .opc2 = 1, 5437 .type = ARM_CP_NO_RAW, .access = PL2_W, 5438 .writefn = tlbiipas2_hyp_write }, 5439 { .name = "TLBIIPAS2IS", 5440 .cp = 15, .opc1 = 4, .crn = 8, .crm = 0, .opc2 = 1, 5441 .type = ARM_CP_NO_RAW, .access = PL2_W, 5442 .writefn = tlbiipas2is_hyp_write }, 5443 { .name = "TLBIIPAS2L", 5444 .cp = 15, .opc1 = 4, .crn = 8, .crm = 4, .opc2 = 5, 5445 .type = ARM_CP_NO_RAW, .access = PL2_W, 5446 .writefn = tlbiipas2_hyp_write }, 5447 { .name = "TLBIIPAS2LIS", 5448 .cp = 15, .opc1 = 4, .crn = 8, .crm = 0, .opc2 = 5, 5449 .type = ARM_CP_NO_RAW, .access = PL2_W, 5450 .writefn = tlbiipas2is_hyp_write }, 5451 /* 32 bit cache operations */ 5452 { .name = "ICIALLUIS", .cp = 15, .opc1 = 0, .crn = 7, .crm = 1, .opc2 = 0, 5453 .type = ARM_CP_NOP, .access = PL1_W, .accessfn = access_ticab }, 5454 { .name = "BPIALLUIS", .cp = 15, .opc1 = 0, .crn = 7, .crm = 1, .opc2 = 6, 5455 .type = ARM_CP_NOP, .access = PL1_W }, 5456 { .name = "ICIALLU", .cp = 15, .opc1 = 0, .crn = 7, .crm = 5, .opc2 = 0, 5457 .type = ARM_CP_NOP, .access = PL1_W, .accessfn = access_tocu }, 5458 { .name = "ICIMVAU", .cp = 15, .opc1 = 0, .crn = 7, .crm = 5, .opc2 = 1, 5459 .type = ARM_CP_NOP, .access = PL1_W, .accessfn = access_tocu }, 5460 { .name = "BPIALL", .cp = 15, .opc1 = 0, .crn = 7, .crm = 5, .opc2 = 6, 5461 .type = ARM_CP_NOP, .access = PL1_W }, 5462 { .name = "BPIMVA", .cp = 15, .opc1 = 0, .crn = 7, .crm = 5, .opc2 = 7, 5463 .type = ARM_CP_NOP, .access = PL1_W }, 5464 { .name = "DCIMVAC", .cp = 15, .opc1 = 0, .crn = 7, .crm = 6, .opc2 = 1, 5465 .type = ARM_CP_NOP, .access = PL1_W, .accessfn = aa64_cacheop_poc_access }, 5466 { .name = "DCISW", .cp = 15, .opc1 = 0, .crn = 7, .crm = 6, .opc2 = 2, 5467 .type = ARM_CP_NOP, .access = PL1_W, .accessfn = access_tsw }, 5468 { .name = "DCCMVAC", .cp = 15, .opc1 = 0, .crn = 7, .crm = 10, .opc2 = 1, 5469 .type = ARM_CP_NOP, .access = PL1_W, .accessfn = aa64_cacheop_poc_access }, 5470 { .name = "DCCSW", .cp = 15, .opc1 = 0, .crn = 7, .crm = 10, .opc2 = 2, 5471 .type = ARM_CP_NOP, .access = PL1_W, .accessfn = access_tsw }, 5472 { .name = "DCCMVAU", .cp = 15, .opc1 = 0, .crn = 7, .crm = 11, .opc2 = 1, 5473 .type = ARM_CP_NOP, .access = PL1_W, .accessfn = access_tocu }, 5474 { .name = "DCCIMVAC", .cp = 15, .opc1 = 0, .crn = 7, .crm = 14, .opc2 = 1, 5475 .type = ARM_CP_NOP, .access = PL1_W, .accessfn = aa64_cacheop_poc_access }, 5476 { .name = "DCCISW", .cp = 15, .opc1 = 0, .crn = 7, .crm = 14, .opc2 = 2, 5477 .type = ARM_CP_NOP, .access = PL1_W, .accessfn = access_tsw }, 5478 /* MMU Domain access control / MPU write buffer control */ 5479 { .name = "DACR", .cp = 15, .opc1 = 0, .crn = 3, .crm = 0, .opc2 = 0, 5480 .access = PL1_RW, .accessfn = access_tvm_trvm, .resetvalue = 0, 5481 .writefn = dacr_write, .raw_writefn = raw_write, 5482 .bank_fieldoffsets = { offsetoflow32(CPUARMState, cp15.dacr_s), 5483 offsetoflow32(CPUARMState, cp15.dacr_ns) } }, 5484 { .name = "ELR_EL1", .state = ARM_CP_STATE_AA64, 5485 .type = ARM_CP_ALIAS, 5486 .opc0 = 3, .opc1 = 0, .crn = 4, .crm = 0, .opc2 = 1, 5487 .access = PL1_RW, 5488 .fieldoffset = offsetof(CPUARMState, elr_el[1]) }, 5489 { .name = "SPSR_EL1", .state = ARM_CP_STATE_AA64, 5490 .type = ARM_CP_ALIAS, 5491 .opc0 = 3, .opc1 = 0, .crn = 4, .crm = 0, .opc2 = 0, 5492 .access = PL1_RW, 5493 .fieldoffset = offsetof(CPUARMState, banked_spsr[BANK_SVC]) }, 5494 /* 5495 * We rely on the access checks not allowing the guest to write to the 5496 * state field when SPSel indicates that it's being used as the stack 5497 * pointer. 5498 */ 5499 { .name = "SP_EL0", .state = ARM_CP_STATE_AA64, 5500 .opc0 = 3, .opc1 = 0, .crn = 4, .crm = 1, .opc2 = 0, 5501 .access = PL1_RW, .accessfn = sp_el0_access, 5502 .type = ARM_CP_ALIAS, 5503 .fieldoffset = offsetof(CPUARMState, sp_el[0]) }, 5504 { .name = "SP_EL1", .state = ARM_CP_STATE_AA64, 5505 .opc0 = 3, .opc1 = 4, .crn = 4, .crm = 1, .opc2 = 0, 5506 .access = PL2_RW, .type = ARM_CP_ALIAS | ARM_CP_EL3_NO_EL2_KEEP, 5507 .fieldoffset = offsetof(CPUARMState, sp_el[1]) }, 5508 { .name = "SPSel", .state = ARM_CP_STATE_AA64, 5509 .opc0 = 3, .opc1 = 0, .crn = 4, .crm = 2, .opc2 = 0, 5510 .type = ARM_CP_NO_RAW, 5511 .access = PL1_RW, .readfn = spsel_read, .writefn = spsel_write }, 5512 { .name = "FPEXC32_EL2", .state = ARM_CP_STATE_AA64, 5513 .opc0 = 3, .opc1 = 4, .crn = 5, .crm = 3, .opc2 = 0, 5514 .access = PL2_RW, 5515 .type = ARM_CP_ALIAS | ARM_CP_FPU | ARM_CP_EL3_NO_EL2_KEEP, 5516 .fieldoffset = offsetof(CPUARMState, vfp.xregs[ARM_VFP_FPEXC]) }, 5517 { .name = "DACR32_EL2", .state = ARM_CP_STATE_AA64, 5518 .opc0 = 3, .opc1 = 4, .crn = 3, .crm = 0, .opc2 = 0, 5519 .access = PL2_RW, .resetvalue = 0, .type = ARM_CP_EL3_NO_EL2_KEEP, 5520 .writefn = dacr_write, .raw_writefn = raw_write, 5521 .fieldoffset = offsetof(CPUARMState, cp15.dacr32_el2) }, 5522 { .name = "IFSR32_EL2", .state = ARM_CP_STATE_AA64, 5523 .opc0 = 3, .opc1 = 4, .crn = 5, .crm = 0, .opc2 = 1, 5524 .access = PL2_RW, .resetvalue = 0, .type = ARM_CP_EL3_NO_EL2_KEEP, 5525 .fieldoffset = offsetof(CPUARMState, cp15.ifsr32_el2) }, 5526 { .name = "SPSR_IRQ", .state = ARM_CP_STATE_AA64, 5527 .type = ARM_CP_ALIAS, 5528 .opc0 = 3, .opc1 = 4, .crn = 4, .crm = 3, .opc2 = 0, 5529 .access = PL2_RW, 5530 .fieldoffset = offsetof(CPUARMState, banked_spsr[BANK_IRQ]) }, 5531 { .name = "SPSR_ABT", .state = ARM_CP_STATE_AA64, 5532 .type = ARM_CP_ALIAS, 5533 .opc0 = 3, .opc1 = 4, .crn = 4, .crm = 3, .opc2 = 1, 5534 .access = PL2_RW, 5535 .fieldoffset = offsetof(CPUARMState, banked_spsr[BANK_ABT]) }, 5536 { .name = "SPSR_UND", .state = ARM_CP_STATE_AA64, 5537 .type = ARM_CP_ALIAS, 5538 .opc0 = 3, .opc1 = 4, .crn = 4, .crm = 3, .opc2 = 2, 5539 .access = PL2_RW, 5540 .fieldoffset = offsetof(CPUARMState, banked_spsr[BANK_UND]) }, 5541 { .name = "SPSR_FIQ", .state = ARM_CP_STATE_AA64, 5542 .type = ARM_CP_ALIAS, 5543 .opc0 = 3, .opc1 = 4, .crn = 4, .crm = 3, .opc2 = 3, 5544 .access = PL2_RW, 5545 .fieldoffset = offsetof(CPUARMState, banked_spsr[BANK_FIQ]) }, 5546 { .name = "MDCR_EL3", .state = ARM_CP_STATE_AA64, 5547 .type = ARM_CP_IO, 5548 .opc0 = 3, .opc1 = 6, .crn = 1, .crm = 3, .opc2 = 1, 5549 .resetvalue = 0, 5550 .access = PL3_RW, 5551 .writefn = mdcr_el3_write, 5552 .fieldoffset = offsetof(CPUARMState, cp15.mdcr_el3) }, 5553 { .name = "SDCR", .type = ARM_CP_ALIAS | ARM_CP_IO, 5554 .cp = 15, .opc1 = 0, .crn = 1, .crm = 3, .opc2 = 1, 5555 .access = PL1_RW, .accessfn = access_trap_aa32s_el1, 5556 .writefn = sdcr_write, 5557 .fieldoffset = offsetoflow32(CPUARMState, cp15.mdcr_el3) }, 5558 }; 5559 5560 static void do_hcr_write(CPUARMState *env, uint64_t value, uint64_t valid_mask) 5561 { 5562 ARMCPU *cpu = env_archcpu(env); 5563 5564 if (arm_feature(env, ARM_FEATURE_V8)) { 5565 valid_mask |= MAKE_64BIT_MASK(0, 34); /* ARMv8.0 */ 5566 } else { 5567 valid_mask |= MAKE_64BIT_MASK(0, 28); /* ARMv7VE */ 5568 } 5569 5570 if (arm_feature(env, ARM_FEATURE_EL3)) { 5571 valid_mask &= ~HCR_HCD; 5572 } else if (cpu->psci_conduit != QEMU_PSCI_CONDUIT_SMC) { 5573 /* 5574 * Architecturally HCR.TSC is RES0 if EL3 is not implemented. 5575 * However, if we're using the SMC PSCI conduit then QEMU is 5576 * effectively acting like EL3 firmware and so the guest at 5577 * EL2 should retain the ability to prevent EL1 from being 5578 * able to make SMC calls into the ersatz firmware, so in 5579 * that case HCR.TSC should be read/write. 5580 */ 5581 valid_mask &= ~HCR_TSC; 5582 } 5583 5584 if (arm_feature(env, ARM_FEATURE_AARCH64)) { 5585 if (cpu_isar_feature(aa64_vh, cpu)) { 5586 valid_mask |= HCR_E2H; 5587 } 5588 if (cpu_isar_feature(aa64_ras, cpu)) { 5589 valid_mask |= HCR_TERR | HCR_TEA; 5590 } 5591 if (cpu_isar_feature(aa64_lor, cpu)) { 5592 valid_mask |= HCR_TLOR; 5593 } 5594 if (cpu_isar_feature(aa64_pauth, cpu)) { 5595 valid_mask |= HCR_API | HCR_APK; 5596 } 5597 if (cpu_isar_feature(aa64_mte, cpu)) { 5598 valid_mask |= HCR_ATA | HCR_DCT | HCR_TID5; 5599 } 5600 if (cpu_isar_feature(aa64_scxtnum, cpu)) { 5601 valid_mask |= HCR_ENSCXT; 5602 } 5603 if (cpu_isar_feature(aa64_fwb, cpu)) { 5604 valid_mask |= HCR_FWB; 5605 } 5606 } 5607 5608 if (cpu_isar_feature(any_evt, cpu)) { 5609 valid_mask |= HCR_TTLBIS | HCR_TTLBOS | HCR_TICAB | HCR_TOCU | HCR_TID4; 5610 } else if (cpu_isar_feature(any_half_evt, cpu)) { 5611 valid_mask |= HCR_TICAB | HCR_TOCU | HCR_TID4; 5612 } 5613 5614 /* Clear RES0 bits. */ 5615 value &= valid_mask; 5616 5617 /* 5618 * These bits change the MMU setup: 5619 * HCR_VM enables stage 2 translation 5620 * HCR_PTW forbids certain page-table setups 5621 * HCR_DC disables stage1 and enables stage2 translation 5622 * HCR_DCT enables tagging on (disabled) stage1 translation 5623 * HCR_FWB changes the interpretation of stage2 descriptor bits 5624 */ 5625 if ((env->cp15.hcr_el2 ^ value) & 5626 (HCR_VM | HCR_PTW | HCR_DC | HCR_DCT | HCR_FWB)) { 5627 tlb_flush(CPU(cpu)); 5628 } 5629 env->cp15.hcr_el2 = value; 5630 5631 /* 5632 * Updates to VI and VF require us to update the status of 5633 * virtual interrupts, which are the logical OR of these bits 5634 * and the state of the input lines from the GIC. (This requires 5635 * that we have the iothread lock, which is done by marking the 5636 * reginfo structs as ARM_CP_IO.) 5637 * Note that if a write to HCR pends a VIRQ or VFIQ it is never 5638 * possible for it to be taken immediately, because VIRQ and 5639 * VFIQ are masked unless running at EL0 or EL1, and HCR 5640 * can only be written at EL2. 5641 */ 5642 g_assert(qemu_mutex_iothread_locked()); 5643 arm_cpu_update_virq(cpu); 5644 arm_cpu_update_vfiq(cpu); 5645 arm_cpu_update_vserr(cpu); 5646 } 5647 5648 static void hcr_write(CPUARMState *env, const ARMCPRegInfo *ri, uint64_t value) 5649 { 5650 do_hcr_write(env, value, 0); 5651 } 5652 5653 static void hcr_writehigh(CPUARMState *env, const ARMCPRegInfo *ri, 5654 uint64_t value) 5655 { 5656 /* Handle HCR2 write, i.e. write to high half of HCR_EL2 */ 5657 value = deposit64(env->cp15.hcr_el2, 32, 32, value); 5658 do_hcr_write(env, value, MAKE_64BIT_MASK(0, 32)); 5659 } 5660 5661 static void hcr_writelow(CPUARMState *env, const ARMCPRegInfo *ri, 5662 uint64_t value) 5663 { 5664 /* Handle HCR write, i.e. write to low half of HCR_EL2 */ 5665 value = deposit64(env->cp15.hcr_el2, 0, 32, value); 5666 do_hcr_write(env, value, MAKE_64BIT_MASK(32, 32)); 5667 } 5668 5669 /* 5670 * Return the effective value of HCR_EL2, at the given security state. 5671 * Bits that are not included here: 5672 * RW (read from SCR_EL3.RW as needed) 5673 */ 5674 uint64_t arm_hcr_el2_eff_secstate(CPUARMState *env, bool secure) 5675 { 5676 uint64_t ret = env->cp15.hcr_el2; 5677 5678 if (!arm_is_el2_enabled_secstate(env, secure)) { 5679 /* 5680 * "This register has no effect if EL2 is not enabled in the 5681 * current Security state". This is ARMv8.4-SecEL2 speak for 5682 * !(SCR_EL3.NS==1 || SCR_EL3.EEL2==1). 5683 * 5684 * Prior to that, the language was "In an implementation that 5685 * includes EL3, when the value of SCR_EL3.NS is 0 the PE behaves 5686 * as if this field is 0 for all purposes other than a direct 5687 * read or write access of HCR_EL2". With lots of enumeration 5688 * on a per-field basis. In current QEMU, this is condition 5689 * is arm_is_secure_below_el3. 5690 * 5691 * Since the v8.4 language applies to the entire register, and 5692 * appears to be backward compatible, use that. 5693 */ 5694 return 0; 5695 } 5696 5697 /* 5698 * For a cpu that supports both aarch64 and aarch32, we can set bits 5699 * in HCR_EL2 (e.g. via EL3) that are RES0 when we enter EL2 as aa32. 5700 * Ignore all of the bits in HCR+HCR2 that are not valid for aarch32. 5701 */ 5702 if (!arm_el_is_aa64(env, 2)) { 5703 uint64_t aa32_valid; 5704 5705 /* 5706 * These bits are up-to-date as of ARMv8.6. 5707 * For HCR, it's easiest to list just the 2 bits that are invalid. 5708 * For HCR2, list those that are valid. 5709 */ 5710 aa32_valid = MAKE_64BIT_MASK(0, 32) & ~(HCR_RW | HCR_TDZ); 5711 aa32_valid |= (HCR_CD | HCR_ID | HCR_TERR | HCR_TEA | HCR_MIOCNCE | 5712 HCR_TID4 | HCR_TICAB | HCR_TOCU | HCR_TTLBIS); 5713 ret &= aa32_valid; 5714 } 5715 5716 if (ret & HCR_TGE) { 5717 /* These bits are up-to-date as of ARMv8.6. */ 5718 if (ret & HCR_E2H) { 5719 ret &= ~(HCR_VM | HCR_FMO | HCR_IMO | HCR_AMO | 5720 HCR_BSU_MASK | HCR_DC | HCR_TWI | HCR_TWE | 5721 HCR_TID0 | HCR_TID2 | HCR_TPCP | HCR_TPU | 5722 HCR_TDZ | HCR_CD | HCR_ID | HCR_MIOCNCE | 5723 HCR_TID4 | HCR_TICAB | HCR_TOCU | HCR_ENSCXT | 5724 HCR_TTLBIS | HCR_TTLBOS | HCR_TID5); 5725 } else { 5726 ret |= HCR_FMO | HCR_IMO | HCR_AMO; 5727 } 5728 ret &= ~(HCR_SWIO | HCR_PTW | HCR_VF | HCR_VI | HCR_VSE | 5729 HCR_FB | HCR_TID1 | HCR_TID3 | HCR_TSC | HCR_TACR | 5730 HCR_TSW | HCR_TTLB | HCR_TVM | HCR_HCD | HCR_TRVM | 5731 HCR_TLOR); 5732 } 5733 5734 return ret; 5735 } 5736 5737 uint64_t arm_hcr_el2_eff(CPUARMState *env) 5738 { 5739 return arm_hcr_el2_eff_secstate(env, arm_is_secure_below_el3(env)); 5740 } 5741 5742 /* 5743 * Corresponds to ARM pseudocode function ELIsInHost(). 5744 */ 5745 bool el_is_in_host(CPUARMState *env, int el) 5746 { 5747 uint64_t mask; 5748 5749 /* 5750 * Since we only care about E2H and TGE, we can skip arm_hcr_el2_eff(). 5751 * Perform the simplest bit tests first, and validate EL2 afterward. 5752 */ 5753 if (el & 1) { 5754 return false; /* EL1 or EL3 */ 5755 } 5756 5757 /* 5758 * Note that hcr_write() checks isar_feature_aa64_vh(), 5759 * aka HaveVirtHostExt(), in allowing HCR_E2H to be set. 5760 */ 5761 mask = el ? HCR_E2H : HCR_E2H | HCR_TGE; 5762 if ((env->cp15.hcr_el2 & mask) != mask) { 5763 return false; 5764 } 5765 5766 /* TGE and/or E2H set: double check those bits are currently legal. */ 5767 return arm_is_el2_enabled(env) && arm_el_is_aa64(env, 2); 5768 } 5769 5770 static void hcrx_write(CPUARMState *env, const ARMCPRegInfo *ri, 5771 uint64_t value) 5772 { 5773 uint64_t valid_mask = 0; 5774 5775 /* No features adding bits to HCRX are implemented. */ 5776 5777 /* Clear RES0 bits. */ 5778 env->cp15.hcrx_el2 = value & valid_mask; 5779 } 5780 5781 static CPAccessResult access_hxen(CPUARMState *env, const ARMCPRegInfo *ri, 5782 bool isread) 5783 { 5784 if (arm_current_el(env) < 3 5785 && arm_feature(env, ARM_FEATURE_EL3) 5786 && !(env->cp15.scr_el3 & SCR_HXEN)) { 5787 return CP_ACCESS_TRAP_EL3; 5788 } 5789 return CP_ACCESS_OK; 5790 } 5791 5792 static const ARMCPRegInfo hcrx_el2_reginfo = { 5793 .name = "HCRX_EL2", .state = ARM_CP_STATE_AA64, 5794 .opc0 = 3, .opc1 = 4, .crn = 1, .crm = 2, .opc2 = 2, 5795 .access = PL2_RW, .writefn = hcrx_write, .accessfn = access_hxen, 5796 .fieldoffset = offsetof(CPUARMState, cp15.hcrx_el2), 5797 }; 5798 5799 /* Return the effective value of HCRX_EL2. */ 5800 uint64_t arm_hcrx_el2_eff(CPUARMState *env) 5801 { 5802 /* 5803 * The bits in this register behave as 0 for all purposes other than 5804 * direct reads of the register if: 5805 * - EL2 is not enabled in the current security state, 5806 * - SCR_EL3.HXEn is 0. 5807 */ 5808 if (!arm_is_el2_enabled(env) 5809 || (arm_feature(env, ARM_FEATURE_EL3) 5810 && !(env->cp15.scr_el3 & SCR_HXEN))) { 5811 return 0; 5812 } 5813 return env->cp15.hcrx_el2; 5814 } 5815 5816 static void cptr_el2_write(CPUARMState *env, const ARMCPRegInfo *ri, 5817 uint64_t value) 5818 { 5819 /* 5820 * For A-profile AArch32 EL3, if NSACR.CP10 5821 * is 0 then HCPTR.{TCP11,TCP10} ignore writes and read as 1. 5822 */ 5823 if (arm_feature(env, ARM_FEATURE_EL3) && !arm_el_is_aa64(env, 3) && 5824 !arm_is_secure(env) && !extract32(env->cp15.nsacr, 10, 1)) { 5825 uint64_t mask = R_HCPTR_TCP11_MASK | R_HCPTR_TCP10_MASK; 5826 value = (value & ~mask) | (env->cp15.cptr_el[2] & mask); 5827 } 5828 env->cp15.cptr_el[2] = value; 5829 } 5830 5831 static uint64_t cptr_el2_read(CPUARMState *env, const ARMCPRegInfo *ri) 5832 { 5833 /* 5834 * For A-profile AArch32 EL3, if NSACR.CP10 5835 * is 0 then HCPTR.{TCP11,TCP10} ignore writes and read as 1. 5836 */ 5837 uint64_t value = env->cp15.cptr_el[2]; 5838 5839 if (arm_feature(env, ARM_FEATURE_EL3) && !arm_el_is_aa64(env, 3) && 5840 !arm_is_secure(env) && !extract32(env->cp15.nsacr, 10, 1)) { 5841 value |= R_HCPTR_TCP11_MASK | R_HCPTR_TCP10_MASK; 5842 } 5843 return value; 5844 } 5845 5846 static const ARMCPRegInfo el2_cp_reginfo[] = { 5847 { .name = "HCR_EL2", .state = ARM_CP_STATE_AA64, 5848 .type = ARM_CP_IO, 5849 .opc0 = 3, .opc1 = 4, .crn = 1, .crm = 1, .opc2 = 0, 5850 .access = PL2_RW, .fieldoffset = offsetof(CPUARMState, cp15.hcr_el2), 5851 .writefn = hcr_write }, 5852 { .name = "HCR", .state = ARM_CP_STATE_AA32, 5853 .type = ARM_CP_ALIAS | ARM_CP_IO, 5854 .cp = 15, .opc1 = 4, .crn = 1, .crm = 1, .opc2 = 0, 5855 .access = PL2_RW, .fieldoffset = offsetof(CPUARMState, cp15.hcr_el2), 5856 .writefn = hcr_writelow }, 5857 { .name = "HACR_EL2", .state = ARM_CP_STATE_BOTH, 5858 .opc0 = 3, .opc1 = 4, .crn = 1, .crm = 1, .opc2 = 7, 5859 .access = PL2_RW, .type = ARM_CP_CONST, .resetvalue = 0 }, 5860 { .name = "ELR_EL2", .state = ARM_CP_STATE_AA64, 5861 .type = ARM_CP_ALIAS, 5862 .opc0 = 3, .opc1 = 4, .crn = 4, .crm = 0, .opc2 = 1, 5863 .access = PL2_RW, 5864 .fieldoffset = offsetof(CPUARMState, elr_el[2]) }, 5865 { .name = "ESR_EL2", .state = ARM_CP_STATE_BOTH, 5866 .opc0 = 3, .opc1 = 4, .crn = 5, .crm = 2, .opc2 = 0, 5867 .access = PL2_RW, .fieldoffset = offsetof(CPUARMState, cp15.esr_el[2]) }, 5868 { .name = "FAR_EL2", .state = ARM_CP_STATE_BOTH, 5869 .opc0 = 3, .opc1 = 4, .crn = 6, .crm = 0, .opc2 = 0, 5870 .access = PL2_RW, .fieldoffset = offsetof(CPUARMState, cp15.far_el[2]) }, 5871 { .name = "HIFAR", .state = ARM_CP_STATE_AA32, 5872 .type = ARM_CP_ALIAS, 5873 .cp = 15, .opc1 = 4, .crn = 6, .crm = 0, .opc2 = 2, 5874 .access = PL2_RW, 5875 .fieldoffset = offsetofhigh32(CPUARMState, cp15.far_el[2]) }, 5876 { .name = "SPSR_EL2", .state = ARM_CP_STATE_AA64, 5877 .type = ARM_CP_ALIAS, 5878 .opc0 = 3, .opc1 = 4, .crn = 4, .crm = 0, .opc2 = 0, 5879 .access = PL2_RW, 5880 .fieldoffset = offsetof(CPUARMState, banked_spsr[BANK_HYP]) }, 5881 { .name = "VBAR_EL2", .state = ARM_CP_STATE_BOTH, 5882 .opc0 = 3, .opc1 = 4, .crn = 12, .crm = 0, .opc2 = 0, 5883 .access = PL2_RW, .writefn = vbar_write, 5884 .fieldoffset = offsetof(CPUARMState, cp15.vbar_el[2]), 5885 .resetvalue = 0 }, 5886 { .name = "SP_EL2", .state = ARM_CP_STATE_AA64, 5887 .opc0 = 3, .opc1 = 6, .crn = 4, .crm = 1, .opc2 = 0, 5888 .access = PL3_RW, .type = ARM_CP_ALIAS, 5889 .fieldoffset = offsetof(CPUARMState, sp_el[2]) }, 5890 { .name = "CPTR_EL2", .state = ARM_CP_STATE_BOTH, 5891 .opc0 = 3, .opc1 = 4, .crn = 1, .crm = 1, .opc2 = 2, 5892 .access = PL2_RW, .accessfn = cptr_access, .resetvalue = 0, 5893 .fieldoffset = offsetof(CPUARMState, cp15.cptr_el[2]), 5894 .readfn = cptr_el2_read, .writefn = cptr_el2_write }, 5895 { .name = "MAIR_EL2", .state = ARM_CP_STATE_BOTH, 5896 .opc0 = 3, .opc1 = 4, .crn = 10, .crm = 2, .opc2 = 0, 5897 .access = PL2_RW, .fieldoffset = offsetof(CPUARMState, cp15.mair_el[2]), 5898 .resetvalue = 0 }, 5899 { .name = "HMAIR1", .state = ARM_CP_STATE_AA32, 5900 .cp = 15, .opc1 = 4, .crn = 10, .crm = 2, .opc2 = 1, 5901 .access = PL2_RW, .type = ARM_CP_ALIAS, 5902 .fieldoffset = offsetofhigh32(CPUARMState, cp15.mair_el[2]) }, 5903 { .name = "AMAIR_EL2", .state = ARM_CP_STATE_BOTH, 5904 .opc0 = 3, .opc1 = 4, .crn = 10, .crm = 3, .opc2 = 0, 5905 .access = PL2_RW, .type = ARM_CP_CONST, 5906 .resetvalue = 0 }, 5907 /* HAMAIR1 is mapped to AMAIR_EL2[63:32] */ 5908 { .name = "HAMAIR1", .state = ARM_CP_STATE_AA32, 5909 .cp = 15, .opc1 = 4, .crn = 10, .crm = 3, .opc2 = 1, 5910 .access = PL2_RW, .type = ARM_CP_CONST, 5911 .resetvalue = 0 }, 5912 { .name = "AFSR0_EL2", .state = ARM_CP_STATE_BOTH, 5913 .opc0 = 3, .opc1 = 4, .crn = 5, .crm = 1, .opc2 = 0, 5914 .access = PL2_RW, .type = ARM_CP_CONST, 5915 .resetvalue = 0 }, 5916 { .name = "AFSR1_EL2", .state = ARM_CP_STATE_BOTH, 5917 .opc0 = 3, .opc1 = 4, .crn = 5, .crm = 1, .opc2 = 1, 5918 .access = PL2_RW, .type = ARM_CP_CONST, 5919 .resetvalue = 0 }, 5920 { .name = "TCR_EL2", .state = ARM_CP_STATE_BOTH, 5921 .opc0 = 3, .opc1 = 4, .crn = 2, .crm = 0, .opc2 = 2, 5922 .access = PL2_RW, .writefn = vmsa_tcr_el12_write, 5923 .fieldoffset = offsetof(CPUARMState, cp15.tcr_el[2]) }, 5924 { .name = "VTCR", .state = ARM_CP_STATE_AA32, 5925 .cp = 15, .opc1 = 4, .crn = 2, .crm = 1, .opc2 = 2, 5926 .type = ARM_CP_ALIAS, 5927 .access = PL2_RW, .accessfn = access_el3_aa32ns, 5928 .fieldoffset = offsetoflow32(CPUARMState, cp15.vtcr_el2) }, 5929 { .name = "VTCR_EL2", .state = ARM_CP_STATE_AA64, 5930 .opc0 = 3, .opc1 = 4, .crn = 2, .crm = 1, .opc2 = 2, 5931 .access = PL2_RW, 5932 /* no .writefn needed as this can't cause an ASID change */ 5933 .fieldoffset = offsetof(CPUARMState, cp15.vtcr_el2) }, 5934 { .name = "VTTBR", .state = ARM_CP_STATE_AA32, 5935 .cp = 15, .opc1 = 6, .crm = 2, 5936 .type = ARM_CP_64BIT | ARM_CP_ALIAS, 5937 .access = PL2_RW, .accessfn = access_el3_aa32ns, 5938 .fieldoffset = offsetof(CPUARMState, cp15.vttbr_el2), 5939 .writefn = vttbr_write }, 5940 { .name = "VTTBR_EL2", .state = ARM_CP_STATE_AA64, 5941 .opc0 = 3, .opc1 = 4, .crn = 2, .crm = 1, .opc2 = 0, 5942 .access = PL2_RW, .writefn = vttbr_write, 5943 .fieldoffset = offsetof(CPUARMState, cp15.vttbr_el2) }, 5944 { .name = "SCTLR_EL2", .state = ARM_CP_STATE_BOTH, 5945 .opc0 = 3, .opc1 = 4, .crn = 1, .crm = 0, .opc2 = 0, 5946 .access = PL2_RW, .raw_writefn = raw_write, .writefn = sctlr_write, 5947 .fieldoffset = offsetof(CPUARMState, cp15.sctlr_el[2]) }, 5948 { .name = "TPIDR_EL2", .state = ARM_CP_STATE_BOTH, 5949 .opc0 = 3, .opc1 = 4, .crn = 13, .crm = 0, .opc2 = 2, 5950 .access = PL2_RW, .resetvalue = 0, 5951 .fieldoffset = offsetof(CPUARMState, cp15.tpidr_el[2]) }, 5952 { .name = "TTBR0_EL2", .state = ARM_CP_STATE_AA64, 5953 .opc0 = 3, .opc1 = 4, .crn = 2, .crm = 0, .opc2 = 0, 5954 .access = PL2_RW, .resetvalue = 0, .writefn = vmsa_tcr_ttbr_el2_write, 5955 .fieldoffset = offsetof(CPUARMState, cp15.ttbr0_el[2]) }, 5956 { .name = "HTTBR", .cp = 15, .opc1 = 4, .crm = 2, 5957 .access = PL2_RW, .type = ARM_CP_64BIT | ARM_CP_ALIAS, 5958 .fieldoffset = offsetof(CPUARMState, cp15.ttbr0_el[2]) }, 5959 { .name = "TLBIALLNSNH", 5960 .cp = 15, .opc1 = 4, .crn = 8, .crm = 7, .opc2 = 4, 5961 .type = ARM_CP_NO_RAW, .access = PL2_W, 5962 .writefn = tlbiall_nsnh_write }, 5963 { .name = "TLBIALLNSNHIS", 5964 .cp = 15, .opc1 = 4, .crn = 8, .crm = 3, .opc2 = 4, 5965 .type = ARM_CP_NO_RAW, .access = PL2_W, 5966 .writefn = tlbiall_nsnh_is_write }, 5967 { .name = "TLBIALLH", .cp = 15, .opc1 = 4, .crn = 8, .crm = 7, .opc2 = 0, 5968 .type = ARM_CP_NO_RAW, .access = PL2_W, 5969 .writefn = tlbiall_hyp_write }, 5970 { .name = "TLBIALLHIS", .cp = 15, .opc1 = 4, .crn = 8, .crm = 3, .opc2 = 0, 5971 .type = ARM_CP_NO_RAW, .access = PL2_W, 5972 .writefn = tlbiall_hyp_is_write }, 5973 { .name = "TLBIMVAH", .cp = 15, .opc1 = 4, .crn = 8, .crm = 7, .opc2 = 1, 5974 .type = ARM_CP_NO_RAW, .access = PL2_W, 5975 .writefn = tlbimva_hyp_write }, 5976 { .name = "TLBIMVAHIS", .cp = 15, .opc1 = 4, .crn = 8, .crm = 3, .opc2 = 1, 5977 .type = ARM_CP_NO_RAW, .access = PL2_W, 5978 .writefn = tlbimva_hyp_is_write }, 5979 { .name = "TLBI_ALLE2", .state = ARM_CP_STATE_AA64, 5980 .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 7, .opc2 = 0, 5981 .access = PL2_W, .type = ARM_CP_NO_RAW | ARM_CP_EL3_NO_EL2_UNDEF, 5982 .writefn = tlbi_aa64_alle2_write }, 5983 { .name = "TLBI_VAE2", .state = ARM_CP_STATE_AA64, 5984 .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 7, .opc2 = 1, 5985 .access = PL2_W, .type = ARM_CP_NO_RAW | ARM_CP_EL3_NO_EL2_UNDEF, 5986 .writefn = tlbi_aa64_vae2_write }, 5987 { .name = "TLBI_VALE2", .state = ARM_CP_STATE_AA64, 5988 .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 7, .opc2 = 5, 5989 .access = PL2_W, .type = ARM_CP_NO_RAW | ARM_CP_EL3_NO_EL2_UNDEF, 5990 .writefn = tlbi_aa64_vae2_write }, 5991 { .name = "TLBI_ALLE2IS", .state = ARM_CP_STATE_AA64, 5992 .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 3, .opc2 = 0, 5993 .access = PL2_W, .type = ARM_CP_NO_RAW | ARM_CP_EL3_NO_EL2_UNDEF, 5994 .writefn = tlbi_aa64_alle2is_write }, 5995 { .name = "TLBI_VAE2IS", .state = ARM_CP_STATE_AA64, 5996 .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 3, .opc2 = 1, 5997 .access = PL2_W, .type = ARM_CP_NO_RAW | ARM_CP_EL3_NO_EL2_UNDEF, 5998 .writefn = tlbi_aa64_vae2is_write }, 5999 { .name = "TLBI_VALE2IS", .state = ARM_CP_STATE_AA64, 6000 .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 3, .opc2 = 5, 6001 .access = PL2_W, .type = ARM_CP_NO_RAW | ARM_CP_EL3_NO_EL2_UNDEF, 6002 .writefn = tlbi_aa64_vae2is_write }, 6003 #ifndef CONFIG_USER_ONLY 6004 /* 6005 * Unlike the other EL2-related AT operations, these must 6006 * UNDEF from EL3 if EL2 is not implemented, which is why we 6007 * define them here rather than with the rest of the AT ops. 6008 */ 6009 { .name = "AT_S1E2R", .state = ARM_CP_STATE_AA64, 6010 .opc0 = 1, .opc1 = 4, .crn = 7, .crm = 8, .opc2 = 0, 6011 .access = PL2_W, .accessfn = at_s1e2_access, 6012 .type = ARM_CP_NO_RAW | ARM_CP_RAISES_EXC | ARM_CP_EL3_NO_EL2_UNDEF, 6013 .writefn = ats_write64 }, 6014 { .name = "AT_S1E2W", .state = ARM_CP_STATE_AA64, 6015 .opc0 = 1, .opc1 = 4, .crn = 7, .crm = 8, .opc2 = 1, 6016 .access = PL2_W, .accessfn = at_s1e2_access, 6017 .type = ARM_CP_NO_RAW | ARM_CP_RAISES_EXC | ARM_CP_EL3_NO_EL2_UNDEF, 6018 .writefn = ats_write64 }, 6019 /* 6020 * The AArch32 ATS1H* operations are CONSTRAINED UNPREDICTABLE 6021 * if EL2 is not implemented; we choose to UNDEF. Behaviour at EL3 6022 * with SCR.NS == 0 outside Monitor mode is UNPREDICTABLE; we choose 6023 * to behave as if SCR.NS was 1. 6024 */ 6025 { .name = "ATS1HR", .cp = 15, .opc1 = 4, .crn = 7, .crm = 8, .opc2 = 0, 6026 .access = PL2_W, 6027 .writefn = ats1h_write, .type = ARM_CP_NO_RAW | ARM_CP_RAISES_EXC }, 6028 { .name = "ATS1HW", .cp = 15, .opc1 = 4, .crn = 7, .crm = 8, .opc2 = 1, 6029 .access = PL2_W, 6030 .writefn = ats1h_write, .type = ARM_CP_NO_RAW | ARM_CP_RAISES_EXC }, 6031 { .name = "CNTHCTL_EL2", .state = ARM_CP_STATE_BOTH, 6032 .opc0 = 3, .opc1 = 4, .crn = 14, .crm = 1, .opc2 = 0, 6033 /* 6034 * ARMv7 requires bit 0 and 1 to reset to 1. ARMv8 defines the 6035 * reset values as IMPDEF. We choose to reset to 3 to comply with 6036 * both ARMv7 and ARMv8. 6037 */ 6038 .access = PL2_RW, .resetvalue = 3, 6039 .fieldoffset = offsetof(CPUARMState, cp15.cnthctl_el2) }, 6040 { .name = "CNTVOFF_EL2", .state = ARM_CP_STATE_AA64, 6041 .opc0 = 3, .opc1 = 4, .crn = 14, .crm = 0, .opc2 = 3, 6042 .access = PL2_RW, .type = ARM_CP_IO, .resetvalue = 0, 6043 .writefn = gt_cntvoff_write, 6044 .fieldoffset = offsetof(CPUARMState, cp15.cntvoff_el2) }, 6045 { .name = "CNTVOFF", .cp = 15, .opc1 = 4, .crm = 14, 6046 .access = PL2_RW, .type = ARM_CP_64BIT | ARM_CP_ALIAS | ARM_CP_IO, 6047 .writefn = gt_cntvoff_write, 6048 .fieldoffset = offsetof(CPUARMState, cp15.cntvoff_el2) }, 6049 { .name = "CNTHP_CVAL_EL2", .state = ARM_CP_STATE_AA64, 6050 .opc0 = 3, .opc1 = 4, .crn = 14, .crm = 2, .opc2 = 2, 6051 .fieldoffset = offsetof(CPUARMState, cp15.c14_timer[GTIMER_HYP].cval), 6052 .type = ARM_CP_IO, .access = PL2_RW, 6053 .writefn = gt_hyp_cval_write, .raw_writefn = raw_write }, 6054 { .name = "CNTHP_CVAL", .cp = 15, .opc1 = 6, .crm = 14, 6055 .fieldoffset = offsetof(CPUARMState, cp15.c14_timer[GTIMER_HYP].cval), 6056 .access = PL2_RW, .type = ARM_CP_64BIT | ARM_CP_IO, 6057 .writefn = gt_hyp_cval_write, .raw_writefn = raw_write }, 6058 { .name = "CNTHP_TVAL_EL2", .state = ARM_CP_STATE_BOTH, 6059 .opc0 = 3, .opc1 = 4, .crn = 14, .crm = 2, .opc2 = 0, 6060 .type = ARM_CP_NO_RAW | ARM_CP_IO, .access = PL2_RW, 6061 .resetfn = gt_hyp_timer_reset, 6062 .readfn = gt_hyp_tval_read, .writefn = gt_hyp_tval_write }, 6063 { .name = "CNTHP_CTL_EL2", .state = ARM_CP_STATE_BOTH, 6064 .type = ARM_CP_IO, 6065 .opc0 = 3, .opc1 = 4, .crn = 14, .crm = 2, .opc2 = 1, 6066 .access = PL2_RW, 6067 .fieldoffset = offsetof(CPUARMState, cp15.c14_timer[GTIMER_HYP].ctl), 6068 .resetvalue = 0, 6069 .writefn = gt_hyp_ctl_write, .raw_writefn = raw_write }, 6070 #endif 6071 { .name = "HPFAR", .state = ARM_CP_STATE_AA32, 6072 .cp = 15, .opc1 = 4, .crn = 6, .crm = 0, .opc2 = 4, 6073 .access = PL2_RW, .accessfn = access_el3_aa32ns, 6074 .fieldoffset = offsetof(CPUARMState, cp15.hpfar_el2) }, 6075 { .name = "HPFAR_EL2", .state = ARM_CP_STATE_AA64, 6076 .opc0 = 3, .opc1 = 4, .crn = 6, .crm = 0, .opc2 = 4, 6077 .access = PL2_RW, 6078 .fieldoffset = offsetof(CPUARMState, cp15.hpfar_el2) }, 6079 { .name = "HSTR_EL2", .state = ARM_CP_STATE_BOTH, 6080 .cp = 15, .opc0 = 3, .opc1 = 4, .crn = 1, .crm = 1, .opc2 = 3, 6081 .access = PL2_RW, 6082 .fieldoffset = offsetof(CPUARMState, cp15.hstr_el2) }, 6083 }; 6084 6085 static const ARMCPRegInfo el2_v8_cp_reginfo[] = { 6086 { .name = "HCR2", .state = ARM_CP_STATE_AA32, 6087 .type = ARM_CP_ALIAS | ARM_CP_IO, 6088 .cp = 15, .opc1 = 4, .crn = 1, .crm = 1, .opc2 = 4, 6089 .access = PL2_RW, 6090 .fieldoffset = offsetofhigh32(CPUARMState, cp15.hcr_el2), 6091 .writefn = hcr_writehigh }, 6092 }; 6093 6094 static CPAccessResult sel2_access(CPUARMState *env, const ARMCPRegInfo *ri, 6095 bool isread) 6096 { 6097 if (arm_current_el(env) == 3 || arm_is_secure_below_el3(env)) { 6098 return CP_ACCESS_OK; 6099 } 6100 return CP_ACCESS_TRAP_UNCATEGORIZED; 6101 } 6102 6103 static const ARMCPRegInfo el2_sec_cp_reginfo[] = { 6104 { .name = "VSTTBR_EL2", .state = ARM_CP_STATE_AA64, 6105 .opc0 = 3, .opc1 = 4, .crn = 2, .crm = 6, .opc2 = 0, 6106 .access = PL2_RW, .accessfn = sel2_access, 6107 .fieldoffset = offsetof(CPUARMState, cp15.vsttbr_el2) }, 6108 { .name = "VSTCR_EL2", .state = ARM_CP_STATE_AA64, 6109 .opc0 = 3, .opc1 = 4, .crn = 2, .crm = 6, .opc2 = 2, 6110 .access = PL2_RW, .accessfn = sel2_access, 6111 .fieldoffset = offsetof(CPUARMState, cp15.vstcr_el2) }, 6112 }; 6113 6114 static CPAccessResult nsacr_access(CPUARMState *env, const ARMCPRegInfo *ri, 6115 bool isread) 6116 { 6117 /* 6118 * The NSACR is RW at EL3, and RO for NS EL1 and NS EL2. 6119 * At Secure EL1 it traps to EL3 or EL2. 6120 */ 6121 if (arm_current_el(env) == 3) { 6122 return CP_ACCESS_OK; 6123 } 6124 if (arm_is_secure_below_el3(env)) { 6125 if (env->cp15.scr_el3 & SCR_EEL2) { 6126 return CP_ACCESS_TRAP_EL2; 6127 } 6128 return CP_ACCESS_TRAP_EL3; 6129 } 6130 /* Accesses from EL1 NS and EL2 NS are UNDEF for write but allow reads. */ 6131 if (isread) { 6132 return CP_ACCESS_OK; 6133 } 6134 return CP_ACCESS_TRAP_UNCATEGORIZED; 6135 } 6136 6137 static const ARMCPRegInfo el3_cp_reginfo[] = { 6138 { .name = "SCR_EL3", .state = ARM_CP_STATE_AA64, 6139 .opc0 = 3, .opc1 = 6, .crn = 1, .crm = 1, .opc2 = 0, 6140 .access = PL3_RW, .fieldoffset = offsetof(CPUARMState, cp15.scr_el3), 6141 .resetfn = scr_reset, .writefn = scr_write }, 6142 { .name = "SCR", .type = ARM_CP_ALIAS | ARM_CP_NEWEL, 6143 .cp = 15, .opc1 = 0, .crn = 1, .crm = 1, .opc2 = 0, 6144 .access = PL1_RW, .accessfn = access_trap_aa32s_el1, 6145 .fieldoffset = offsetoflow32(CPUARMState, cp15.scr_el3), 6146 .writefn = scr_write }, 6147 { .name = "SDER32_EL3", .state = ARM_CP_STATE_AA64, 6148 .opc0 = 3, .opc1 = 6, .crn = 1, .crm = 1, .opc2 = 1, 6149 .access = PL3_RW, .resetvalue = 0, 6150 .fieldoffset = offsetof(CPUARMState, cp15.sder) }, 6151 { .name = "SDER", 6152 .cp = 15, .opc1 = 0, .crn = 1, .crm = 1, .opc2 = 1, 6153 .access = PL3_RW, .resetvalue = 0, 6154 .fieldoffset = offsetoflow32(CPUARMState, cp15.sder) }, 6155 { .name = "MVBAR", .cp = 15, .opc1 = 0, .crn = 12, .crm = 0, .opc2 = 1, 6156 .access = PL1_RW, .accessfn = access_trap_aa32s_el1, 6157 .writefn = vbar_write, .resetvalue = 0, 6158 .fieldoffset = offsetof(CPUARMState, cp15.mvbar) }, 6159 { .name = "TTBR0_EL3", .state = ARM_CP_STATE_AA64, 6160 .opc0 = 3, .opc1 = 6, .crn = 2, .crm = 0, .opc2 = 0, 6161 .access = PL3_RW, .resetvalue = 0, 6162 .fieldoffset = offsetof(CPUARMState, cp15.ttbr0_el[3]) }, 6163 { .name = "TCR_EL3", .state = ARM_CP_STATE_AA64, 6164 .opc0 = 3, .opc1 = 6, .crn = 2, .crm = 0, .opc2 = 2, 6165 .access = PL3_RW, 6166 /* no .writefn needed as this can't cause an ASID change */ 6167 .resetvalue = 0, 6168 .fieldoffset = offsetof(CPUARMState, cp15.tcr_el[3]) }, 6169 { .name = "ELR_EL3", .state = ARM_CP_STATE_AA64, 6170 .type = ARM_CP_ALIAS, 6171 .opc0 = 3, .opc1 = 6, .crn = 4, .crm = 0, .opc2 = 1, 6172 .access = PL3_RW, 6173 .fieldoffset = offsetof(CPUARMState, elr_el[3]) }, 6174 { .name = "ESR_EL3", .state = ARM_CP_STATE_AA64, 6175 .opc0 = 3, .opc1 = 6, .crn = 5, .crm = 2, .opc2 = 0, 6176 .access = PL3_RW, .fieldoffset = offsetof(CPUARMState, cp15.esr_el[3]) }, 6177 { .name = "FAR_EL3", .state = ARM_CP_STATE_AA64, 6178 .opc0 = 3, .opc1 = 6, .crn = 6, .crm = 0, .opc2 = 0, 6179 .access = PL3_RW, .fieldoffset = offsetof(CPUARMState, cp15.far_el[3]) }, 6180 { .name = "SPSR_EL3", .state = ARM_CP_STATE_AA64, 6181 .type = ARM_CP_ALIAS, 6182 .opc0 = 3, .opc1 = 6, .crn = 4, .crm = 0, .opc2 = 0, 6183 .access = PL3_RW, 6184 .fieldoffset = offsetof(CPUARMState, banked_spsr[BANK_MON]) }, 6185 { .name = "VBAR_EL3", .state = ARM_CP_STATE_AA64, 6186 .opc0 = 3, .opc1 = 6, .crn = 12, .crm = 0, .opc2 = 0, 6187 .access = PL3_RW, .writefn = vbar_write, 6188 .fieldoffset = offsetof(CPUARMState, cp15.vbar_el[3]), 6189 .resetvalue = 0 }, 6190 { .name = "CPTR_EL3", .state = ARM_CP_STATE_AA64, 6191 .opc0 = 3, .opc1 = 6, .crn = 1, .crm = 1, .opc2 = 2, 6192 .access = PL3_RW, .accessfn = cptr_access, .resetvalue = 0, 6193 .fieldoffset = offsetof(CPUARMState, cp15.cptr_el[3]) }, 6194 { .name = "TPIDR_EL3", .state = ARM_CP_STATE_AA64, 6195 .opc0 = 3, .opc1 = 6, .crn = 13, .crm = 0, .opc2 = 2, 6196 .access = PL3_RW, .resetvalue = 0, 6197 .fieldoffset = offsetof(CPUARMState, cp15.tpidr_el[3]) }, 6198 { .name = "AMAIR_EL3", .state = ARM_CP_STATE_AA64, 6199 .opc0 = 3, .opc1 = 6, .crn = 10, .crm = 3, .opc2 = 0, 6200 .access = PL3_RW, .type = ARM_CP_CONST, 6201 .resetvalue = 0 }, 6202 { .name = "AFSR0_EL3", .state = ARM_CP_STATE_BOTH, 6203 .opc0 = 3, .opc1 = 6, .crn = 5, .crm = 1, .opc2 = 0, 6204 .access = PL3_RW, .type = ARM_CP_CONST, 6205 .resetvalue = 0 }, 6206 { .name = "AFSR1_EL3", .state = ARM_CP_STATE_BOTH, 6207 .opc0 = 3, .opc1 = 6, .crn = 5, .crm = 1, .opc2 = 1, 6208 .access = PL3_RW, .type = ARM_CP_CONST, 6209 .resetvalue = 0 }, 6210 { .name = "TLBI_ALLE3IS", .state = ARM_CP_STATE_AA64, 6211 .opc0 = 1, .opc1 = 6, .crn = 8, .crm = 3, .opc2 = 0, 6212 .access = PL3_W, .type = ARM_CP_NO_RAW, 6213 .writefn = tlbi_aa64_alle3is_write }, 6214 { .name = "TLBI_VAE3IS", .state = ARM_CP_STATE_AA64, 6215 .opc0 = 1, .opc1 = 6, .crn = 8, .crm = 3, .opc2 = 1, 6216 .access = PL3_W, .type = ARM_CP_NO_RAW, 6217 .writefn = tlbi_aa64_vae3is_write }, 6218 { .name = "TLBI_VALE3IS", .state = ARM_CP_STATE_AA64, 6219 .opc0 = 1, .opc1 = 6, .crn = 8, .crm = 3, .opc2 = 5, 6220 .access = PL3_W, .type = ARM_CP_NO_RAW, 6221 .writefn = tlbi_aa64_vae3is_write }, 6222 { .name = "TLBI_ALLE3", .state = ARM_CP_STATE_AA64, 6223 .opc0 = 1, .opc1 = 6, .crn = 8, .crm = 7, .opc2 = 0, 6224 .access = PL3_W, .type = ARM_CP_NO_RAW, 6225 .writefn = tlbi_aa64_alle3_write }, 6226 { .name = "TLBI_VAE3", .state = ARM_CP_STATE_AA64, 6227 .opc0 = 1, .opc1 = 6, .crn = 8, .crm = 7, .opc2 = 1, 6228 .access = PL3_W, .type = ARM_CP_NO_RAW, 6229 .writefn = tlbi_aa64_vae3_write }, 6230 { .name = "TLBI_VALE3", .state = ARM_CP_STATE_AA64, 6231 .opc0 = 1, .opc1 = 6, .crn = 8, .crm = 7, .opc2 = 5, 6232 .access = PL3_W, .type = ARM_CP_NO_RAW, 6233 .writefn = tlbi_aa64_vae3_write }, 6234 }; 6235 6236 #ifndef CONFIG_USER_ONLY 6237 /* Test if system register redirection is to occur in the current state. */ 6238 static bool redirect_for_e2h(CPUARMState *env) 6239 { 6240 return arm_current_el(env) == 2 && (arm_hcr_el2_eff(env) & HCR_E2H); 6241 } 6242 6243 static uint64_t el2_e2h_read(CPUARMState *env, const ARMCPRegInfo *ri) 6244 { 6245 CPReadFn *readfn; 6246 6247 if (redirect_for_e2h(env)) { 6248 /* Switch to the saved EL2 version of the register. */ 6249 ri = ri->opaque; 6250 readfn = ri->readfn; 6251 } else { 6252 readfn = ri->orig_readfn; 6253 } 6254 if (readfn == NULL) { 6255 readfn = raw_read; 6256 } 6257 return readfn(env, ri); 6258 } 6259 6260 static void el2_e2h_write(CPUARMState *env, const ARMCPRegInfo *ri, 6261 uint64_t value) 6262 { 6263 CPWriteFn *writefn; 6264 6265 if (redirect_for_e2h(env)) { 6266 /* Switch to the saved EL2 version of the register. */ 6267 ri = ri->opaque; 6268 writefn = ri->writefn; 6269 } else { 6270 writefn = ri->orig_writefn; 6271 } 6272 if (writefn == NULL) { 6273 writefn = raw_write; 6274 } 6275 writefn(env, ri, value); 6276 } 6277 6278 static void define_arm_vh_e2h_redirects_aliases(ARMCPU *cpu) 6279 { 6280 struct E2HAlias { 6281 uint32_t src_key, dst_key, new_key; 6282 const char *src_name, *dst_name, *new_name; 6283 bool (*feature)(const ARMISARegisters *id); 6284 }; 6285 6286 #define K(op0, op1, crn, crm, op2) \ 6287 ENCODE_AA64_CP_REG(CP_REG_ARM64_SYSREG_CP, crn, crm, op0, op1, op2) 6288 6289 static const struct E2HAlias aliases[] = { 6290 { K(3, 0, 1, 0, 0), K(3, 4, 1, 0, 0), K(3, 5, 1, 0, 0), 6291 "SCTLR", "SCTLR_EL2", "SCTLR_EL12" }, 6292 { K(3, 0, 1, 0, 2), K(3, 4, 1, 1, 2), K(3, 5, 1, 0, 2), 6293 "CPACR", "CPTR_EL2", "CPACR_EL12" }, 6294 { K(3, 0, 2, 0, 0), K(3, 4, 2, 0, 0), K(3, 5, 2, 0, 0), 6295 "TTBR0_EL1", "TTBR0_EL2", "TTBR0_EL12" }, 6296 { K(3, 0, 2, 0, 1), K(3, 4, 2, 0, 1), K(3, 5, 2, 0, 1), 6297 "TTBR1_EL1", "TTBR1_EL2", "TTBR1_EL12" }, 6298 { K(3, 0, 2, 0, 2), K(3, 4, 2, 0, 2), K(3, 5, 2, 0, 2), 6299 "TCR_EL1", "TCR_EL2", "TCR_EL12" }, 6300 { K(3, 0, 4, 0, 0), K(3, 4, 4, 0, 0), K(3, 5, 4, 0, 0), 6301 "SPSR_EL1", "SPSR_EL2", "SPSR_EL12" }, 6302 { K(3, 0, 4, 0, 1), K(3, 4, 4, 0, 1), K(3, 5, 4, 0, 1), 6303 "ELR_EL1", "ELR_EL2", "ELR_EL12" }, 6304 { K(3, 0, 5, 1, 0), K(3, 4, 5, 1, 0), K(3, 5, 5, 1, 0), 6305 "AFSR0_EL1", "AFSR0_EL2", "AFSR0_EL12" }, 6306 { K(3, 0, 5, 1, 1), K(3, 4, 5, 1, 1), K(3, 5, 5, 1, 1), 6307 "AFSR1_EL1", "AFSR1_EL2", "AFSR1_EL12" }, 6308 { K(3, 0, 5, 2, 0), K(3, 4, 5, 2, 0), K(3, 5, 5, 2, 0), 6309 "ESR_EL1", "ESR_EL2", "ESR_EL12" }, 6310 { K(3, 0, 6, 0, 0), K(3, 4, 6, 0, 0), K(3, 5, 6, 0, 0), 6311 "FAR_EL1", "FAR_EL2", "FAR_EL12" }, 6312 { K(3, 0, 10, 2, 0), K(3, 4, 10, 2, 0), K(3, 5, 10, 2, 0), 6313 "MAIR_EL1", "MAIR_EL2", "MAIR_EL12" }, 6314 { K(3, 0, 10, 3, 0), K(3, 4, 10, 3, 0), K(3, 5, 10, 3, 0), 6315 "AMAIR0", "AMAIR_EL2", "AMAIR_EL12" }, 6316 { K(3, 0, 12, 0, 0), K(3, 4, 12, 0, 0), K(3, 5, 12, 0, 0), 6317 "VBAR", "VBAR_EL2", "VBAR_EL12" }, 6318 { K(3, 0, 13, 0, 1), K(3, 4, 13, 0, 1), K(3, 5, 13, 0, 1), 6319 "CONTEXTIDR_EL1", "CONTEXTIDR_EL2", "CONTEXTIDR_EL12" }, 6320 { K(3, 0, 14, 1, 0), K(3, 4, 14, 1, 0), K(3, 5, 14, 1, 0), 6321 "CNTKCTL", "CNTHCTL_EL2", "CNTKCTL_EL12" }, 6322 6323 /* 6324 * Note that redirection of ZCR is mentioned in the description 6325 * of ZCR_EL2, and aliasing in the description of ZCR_EL1, but 6326 * not in the summary table. 6327 */ 6328 { K(3, 0, 1, 2, 0), K(3, 4, 1, 2, 0), K(3, 5, 1, 2, 0), 6329 "ZCR_EL1", "ZCR_EL2", "ZCR_EL12", isar_feature_aa64_sve }, 6330 { K(3, 0, 1, 2, 6), K(3, 4, 1, 2, 6), K(3, 5, 1, 2, 6), 6331 "SMCR_EL1", "SMCR_EL2", "SMCR_EL12", isar_feature_aa64_sme }, 6332 6333 { K(3, 0, 5, 6, 0), K(3, 4, 5, 6, 0), K(3, 5, 5, 6, 0), 6334 "TFSR_EL1", "TFSR_EL2", "TFSR_EL12", isar_feature_aa64_mte }, 6335 6336 { K(3, 0, 13, 0, 7), K(3, 4, 13, 0, 7), K(3, 5, 13, 0, 7), 6337 "SCXTNUM_EL1", "SCXTNUM_EL2", "SCXTNUM_EL12", 6338 isar_feature_aa64_scxtnum }, 6339 6340 /* TODO: ARMv8.2-SPE -- PMSCR_EL2 */ 6341 /* TODO: ARMv8.4-Trace -- TRFCR_EL2 */ 6342 }; 6343 #undef K 6344 6345 size_t i; 6346 6347 for (i = 0; i < ARRAY_SIZE(aliases); i++) { 6348 const struct E2HAlias *a = &aliases[i]; 6349 ARMCPRegInfo *src_reg, *dst_reg, *new_reg; 6350 bool ok; 6351 6352 if (a->feature && !a->feature(&cpu->isar)) { 6353 continue; 6354 } 6355 6356 src_reg = g_hash_table_lookup(cpu->cp_regs, 6357 (gpointer)(uintptr_t)a->src_key); 6358 dst_reg = g_hash_table_lookup(cpu->cp_regs, 6359 (gpointer)(uintptr_t)a->dst_key); 6360 g_assert(src_reg != NULL); 6361 g_assert(dst_reg != NULL); 6362 6363 /* Cross-compare names to detect typos in the keys. */ 6364 g_assert(strcmp(src_reg->name, a->src_name) == 0); 6365 g_assert(strcmp(dst_reg->name, a->dst_name) == 0); 6366 6367 /* None of the core system registers use opaque; we will. */ 6368 g_assert(src_reg->opaque == NULL); 6369 6370 /* Create alias before redirection so we dup the right data. */ 6371 new_reg = g_memdup(src_reg, sizeof(ARMCPRegInfo)); 6372 6373 new_reg->name = a->new_name; 6374 new_reg->type |= ARM_CP_ALIAS; 6375 /* Remove PL1/PL0 access, leaving PL2/PL3 R/W in place. */ 6376 new_reg->access &= PL2_RW | PL3_RW; 6377 6378 ok = g_hash_table_insert(cpu->cp_regs, 6379 (gpointer)(uintptr_t)a->new_key, new_reg); 6380 g_assert(ok); 6381 6382 src_reg->opaque = dst_reg; 6383 src_reg->orig_readfn = src_reg->readfn ?: raw_read; 6384 src_reg->orig_writefn = src_reg->writefn ?: raw_write; 6385 if (!src_reg->raw_readfn) { 6386 src_reg->raw_readfn = raw_read; 6387 } 6388 if (!src_reg->raw_writefn) { 6389 src_reg->raw_writefn = raw_write; 6390 } 6391 src_reg->readfn = el2_e2h_read; 6392 src_reg->writefn = el2_e2h_write; 6393 } 6394 } 6395 #endif 6396 6397 static CPAccessResult ctr_el0_access(CPUARMState *env, const ARMCPRegInfo *ri, 6398 bool isread) 6399 { 6400 int cur_el = arm_current_el(env); 6401 6402 if (cur_el < 2) { 6403 uint64_t hcr = arm_hcr_el2_eff(env); 6404 6405 if (cur_el == 0) { 6406 if ((hcr & (HCR_E2H | HCR_TGE)) == (HCR_E2H | HCR_TGE)) { 6407 if (!(env->cp15.sctlr_el[2] & SCTLR_UCT)) { 6408 return CP_ACCESS_TRAP_EL2; 6409 } 6410 } else { 6411 if (!(env->cp15.sctlr_el[1] & SCTLR_UCT)) { 6412 return CP_ACCESS_TRAP; 6413 } 6414 if (hcr & HCR_TID2) { 6415 return CP_ACCESS_TRAP_EL2; 6416 } 6417 } 6418 } else if (hcr & HCR_TID2) { 6419 return CP_ACCESS_TRAP_EL2; 6420 } 6421 } 6422 6423 if (arm_current_el(env) < 2 && arm_hcr_el2_eff(env) & HCR_TID2) { 6424 return CP_ACCESS_TRAP_EL2; 6425 } 6426 6427 return CP_ACCESS_OK; 6428 } 6429 6430 /* 6431 * Check for traps to RAS registers, which are controlled 6432 * by HCR_EL2.TERR and SCR_EL3.TERR. 6433 */ 6434 static CPAccessResult access_terr(CPUARMState *env, const ARMCPRegInfo *ri, 6435 bool isread) 6436 { 6437 int el = arm_current_el(env); 6438 6439 if (el < 2 && (arm_hcr_el2_eff(env) & HCR_TERR)) { 6440 return CP_ACCESS_TRAP_EL2; 6441 } 6442 if (el < 3 && (env->cp15.scr_el3 & SCR_TERR)) { 6443 return CP_ACCESS_TRAP_EL3; 6444 } 6445 return CP_ACCESS_OK; 6446 } 6447 6448 static uint64_t disr_read(CPUARMState *env, const ARMCPRegInfo *ri) 6449 { 6450 int el = arm_current_el(env); 6451 6452 if (el < 2 && (arm_hcr_el2_eff(env) & HCR_AMO)) { 6453 return env->cp15.vdisr_el2; 6454 } 6455 if (el < 3 && (env->cp15.scr_el3 & SCR_EA)) { 6456 return 0; /* RAZ/WI */ 6457 } 6458 return env->cp15.disr_el1; 6459 } 6460 6461 static void disr_write(CPUARMState *env, const ARMCPRegInfo *ri, uint64_t val) 6462 { 6463 int el = arm_current_el(env); 6464 6465 if (el < 2 && (arm_hcr_el2_eff(env) & HCR_AMO)) { 6466 env->cp15.vdisr_el2 = val; 6467 return; 6468 } 6469 if (el < 3 && (env->cp15.scr_el3 & SCR_EA)) { 6470 return; /* RAZ/WI */ 6471 } 6472 env->cp15.disr_el1 = val; 6473 } 6474 6475 /* 6476 * Minimal RAS implementation with no Error Records. 6477 * Which means that all of the Error Record registers: 6478 * ERXADDR_EL1 6479 * ERXCTLR_EL1 6480 * ERXFR_EL1 6481 * ERXMISC0_EL1 6482 * ERXMISC1_EL1 6483 * ERXMISC2_EL1 6484 * ERXMISC3_EL1 6485 * ERXPFGCDN_EL1 (RASv1p1) 6486 * ERXPFGCTL_EL1 (RASv1p1) 6487 * ERXPFGF_EL1 (RASv1p1) 6488 * ERXSTATUS_EL1 6489 * and 6490 * ERRSELR_EL1 6491 * may generate UNDEFINED, which is the effect we get by not 6492 * listing them at all. 6493 * 6494 * These registers have fine-grained trap bits, but UNDEF-to-EL1 6495 * is higher priority than FGT-to-EL2 so we do not need to list them 6496 * in order to check for an FGT. 6497 */ 6498 static const ARMCPRegInfo minimal_ras_reginfo[] = { 6499 { .name = "DISR_EL1", .state = ARM_CP_STATE_BOTH, 6500 .opc0 = 3, .opc1 = 0, .crn = 12, .crm = 1, .opc2 = 1, 6501 .access = PL1_RW, .fieldoffset = offsetof(CPUARMState, cp15.disr_el1), 6502 .readfn = disr_read, .writefn = disr_write, .raw_writefn = raw_write }, 6503 { .name = "ERRIDR_EL1", .state = ARM_CP_STATE_BOTH, 6504 .opc0 = 3, .opc1 = 0, .crn = 5, .crm = 3, .opc2 = 0, 6505 .access = PL1_R, .accessfn = access_terr, 6506 .fgt = FGT_ERRIDR_EL1, 6507 .type = ARM_CP_CONST, .resetvalue = 0 }, 6508 { .name = "VDISR_EL2", .state = ARM_CP_STATE_BOTH, 6509 .opc0 = 3, .opc1 = 4, .crn = 12, .crm = 1, .opc2 = 1, 6510 .access = PL2_RW, .fieldoffset = offsetof(CPUARMState, cp15.vdisr_el2) }, 6511 { .name = "VSESR_EL2", .state = ARM_CP_STATE_BOTH, 6512 .opc0 = 3, .opc1 = 4, .crn = 5, .crm = 2, .opc2 = 3, 6513 .access = PL2_RW, .fieldoffset = offsetof(CPUARMState, cp15.vsesr_el2) }, 6514 }; 6515 6516 /* 6517 * Return the exception level to which exceptions should be taken 6518 * via SVEAccessTrap. This excludes the check for whether the exception 6519 * should be routed through AArch64.AdvSIMDFPAccessTrap. That can easily 6520 * be found by testing 0 < fp_exception_el < sve_exception_el. 6521 * 6522 * C.f. the ARM pseudocode function CheckSVEEnabled. Note that the 6523 * pseudocode does *not* separate out the FP trap checks, but has them 6524 * all in one function. 6525 */ 6526 int sve_exception_el(CPUARMState *env, int el) 6527 { 6528 #ifndef CONFIG_USER_ONLY 6529 if (el <= 1 && !el_is_in_host(env, el)) { 6530 switch (FIELD_EX64(env->cp15.cpacr_el1, CPACR_EL1, ZEN)) { 6531 case 1: 6532 if (el != 0) { 6533 break; 6534 } 6535 /* fall through */ 6536 case 0: 6537 case 2: 6538 return 1; 6539 } 6540 } 6541 6542 if (el <= 2 && arm_is_el2_enabled(env)) { 6543 /* CPTR_EL2 changes format with HCR_EL2.E2H (regardless of TGE). */ 6544 if (env->cp15.hcr_el2 & HCR_E2H) { 6545 switch (FIELD_EX64(env->cp15.cptr_el[2], CPTR_EL2, ZEN)) { 6546 case 1: 6547 if (el != 0 || !(env->cp15.hcr_el2 & HCR_TGE)) { 6548 break; 6549 } 6550 /* fall through */ 6551 case 0: 6552 case 2: 6553 return 2; 6554 } 6555 } else { 6556 if (FIELD_EX64(env->cp15.cptr_el[2], CPTR_EL2, TZ)) { 6557 return 2; 6558 } 6559 } 6560 } 6561 6562 /* CPTR_EL3. Since EZ is negative we must check for EL3. */ 6563 if (arm_feature(env, ARM_FEATURE_EL3) 6564 && !FIELD_EX64(env->cp15.cptr_el[3], CPTR_EL3, EZ)) { 6565 return 3; 6566 } 6567 #endif 6568 return 0; 6569 } 6570 6571 /* 6572 * Return the exception level to which exceptions should be taken for SME. 6573 * C.f. the ARM pseudocode function CheckSMEAccess. 6574 */ 6575 int sme_exception_el(CPUARMState *env, int el) 6576 { 6577 #ifndef CONFIG_USER_ONLY 6578 if (el <= 1 && !el_is_in_host(env, el)) { 6579 switch (FIELD_EX64(env->cp15.cpacr_el1, CPACR_EL1, SMEN)) { 6580 case 1: 6581 if (el != 0) { 6582 break; 6583 } 6584 /* fall through */ 6585 case 0: 6586 case 2: 6587 return 1; 6588 } 6589 } 6590 6591 if (el <= 2 && arm_is_el2_enabled(env)) { 6592 /* CPTR_EL2 changes format with HCR_EL2.E2H (regardless of TGE). */ 6593 if (env->cp15.hcr_el2 & HCR_E2H) { 6594 switch (FIELD_EX64(env->cp15.cptr_el[2], CPTR_EL2, SMEN)) { 6595 case 1: 6596 if (el != 0 || !(env->cp15.hcr_el2 & HCR_TGE)) { 6597 break; 6598 } 6599 /* fall through */ 6600 case 0: 6601 case 2: 6602 return 2; 6603 } 6604 } else { 6605 if (FIELD_EX64(env->cp15.cptr_el[2], CPTR_EL2, TSM)) { 6606 return 2; 6607 } 6608 } 6609 } 6610 6611 /* CPTR_EL3. Since ESM is negative we must check for EL3. */ 6612 if (arm_feature(env, ARM_FEATURE_EL3) 6613 && !FIELD_EX64(env->cp15.cptr_el[3], CPTR_EL3, ESM)) { 6614 return 3; 6615 } 6616 #endif 6617 return 0; 6618 } 6619 6620 /* This corresponds to the ARM pseudocode function IsFullA64Enabled(). */ 6621 static bool sme_fa64(CPUARMState *env, int el) 6622 { 6623 if (!cpu_isar_feature(aa64_sme_fa64, env_archcpu(env))) { 6624 return false; 6625 } 6626 6627 if (el <= 1 && !el_is_in_host(env, el)) { 6628 if (!FIELD_EX64(env->vfp.smcr_el[1], SMCR, FA64)) { 6629 return false; 6630 } 6631 } 6632 if (el <= 2 && arm_is_el2_enabled(env)) { 6633 if (!FIELD_EX64(env->vfp.smcr_el[2], SMCR, FA64)) { 6634 return false; 6635 } 6636 } 6637 if (arm_feature(env, ARM_FEATURE_EL3)) { 6638 if (!FIELD_EX64(env->vfp.smcr_el[3], SMCR, FA64)) { 6639 return false; 6640 } 6641 } 6642 6643 return true; 6644 } 6645 6646 /* 6647 * Given that SVE is enabled, return the vector length for EL. 6648 */ 6649 uint32_t sve_vqm1_for_el_sm(CPUARMState *env, int el, bool sm) 6650 { 6651 ARMCPU *cpu = env_archcpu(env); 6652 uint64_t *cr = env->vfp.zcr_el; 6653 uint32_t map = cpu->sve_vq.map; 6654 uint32_t len = ARM_MAX_VQ - 1; 6655 6656 if (sm) { 6657 cr = env->vfp.smcr_el; 6658 map = cpu->sme_vq.map; 6659 } 6660 6661 if (el <= 1 && !el_is_in_host(env, el)) { 6662 len = MIN(len, 0xf & (uint32_t)cr[1]); 6663 } 6664 if (el <= 2 && arm_feature(env, ARM_FEATURE_EL2)) { 6665 len = MIN(len, 0xf & (uint32_t)cr[2]); 6666 } 6667 if (arm_feature(env, ARM_FEATURE_EL3)) { 6668 len = MIN(len, 0xf & (uint32_t)cr[3]); 6669 } 6670 6671 map &= MAKE_64BIT_MASK(0, len + 1); 6672 if (map != 0) { 6673 return 31 - clz32(map); 6674 } 6675 6676 /* Bit 0 is always set for Normal SVE -- not so for Streaming SVE. */ 6677 assert(sm); 6678 return ctz32(cpu->sme_vq.map); 6679 } 6680 6681 uint32_t sve_vqm1_for_el(CPUARMState *env, int el) 6682 { 6683 return sve_vqm1_for_el_sm(env, el, FIELD_EX64(env->svcr, SVCR, SM)); 6684 } 6685 6686 static void zcr_write(CPUARMState *env, const ARMCPRegInfo *ri, 6687 uint64_t value) 6688 { 6689 int cur_el = arm_current_el(env); 6690 int old_len = sve_vqm1_for_el(env, cur_el); 6691 int new_len; 6692 6693 /* Bits other than [3:0] are RAZ/WI. */ 6694 QEMU_BUILD_BUG_ON(ARM_MAX_VQ > 16); 6695 raw_write(env, ri, value & 0xf); 6696 6697 /* 6698 * Because we arrived here, we know both FP and SVE are enabled; 6699 * otherwise we would have trapped access to the ZCR_ELn register. 6700 */ 6701 new_len = sve_vqm1_for_el(env, cur_el); 6702 if (new_len < old_len) { 6703 aarch64_sve_narrow_vq(env, new_len + 1); 6704 } 6705 } 6706 6707 static const ARMCPRegInfo zcr_reginfo[] = { 6708 { .name = "ZCR_EL1", .state = ARM_CP_STATE_AA64, 6709 .opc0 = 3, .opc1 = 0, .crn = 1, .crm = 2, .opc2 = 0, 6710 .access = PL1_RW, .type = ARM_CP_SVE, 6711 .fieldoffset = offsetof(CPUARMState, vfp.zcr_el[1]), 6712 .writefn = zcr_write, .raw_writefn = raw_write }, 6713 { .name = "ZCR_EL2", .state = ARM_CP_STATE_AA64, 6714 .opc0 = 3, .opc1 = 4, .crn = 1, .crm = 2, .opc2 = 0, 6715 .access = PL2_RW, .type = ARM_CP_SVE, 6716 .fieldoffset = offsetof(CPUARMState, vfp.zcr_el[2]), 6717 .writefn = zcr_write, .raw_writefn = raw_write }, 6718 { .name = "ZCR_EL3", .state = ARM_CP_STATE_AA64, 6719 .opc0 = 3, .opc1 = 6, .crn = 1, .crm = 2, .opc2 = 0, 6720 .access = PL3_RW, .type = ARM_CP_SVE, 6721 .fieldoffset = offsetof(CPUARMState, vfp.zcr_el[3]), 6722 .writefn = zcr_write, .raw_writefn = raw_write }, 6723 }; 6724 6725 #ifdef TARGET_AARCH64 6726 static CPAccessResult access_tpidr2(CPUARMState *env, const ARMCPRegInfo *ri, 6727 bool isread) 6728 { 6729 int el = arm_current_el(env); 6730 6731 if (el == 0) { 6732 uint64_t sctlr = arm_sctlr(env, el); 6733 if (!(sctlr & SCTLR_EnTP2)) { 6734 return CP_ACCESS_TRAP; 6735 } 6736 } 6737 /* TODO: FEAT_FGT */ 6738 if (el < 3 6739 && arm_feature(env, ARM_FEATURE_EL3) 6740 && !(env->cp15.scr_el3 & SCR_ENTP2)) { 6741 return CP_ACCESS_TRAP_EL3; 6742 } 6743 return CP_ACCESS_OK; 6744 } 6745 6746 static CPAccessResult access_esm(CPUARMState *env, const ARMCPRegInfo *ri, 6747 bool isread) 6748 { 6749 /* TODO: FEAT_FGT for SMPRI_EL1 but not SMPRIMAP_EL2 */ 6750 if (arm_current_el(env) < 3 6751 && arm_feature(env, ARM_FEATURE_EL3) 6752 && !FIELD_EX64(env->cp15.cptr_el[3], CPTR_EL3, ESM)) { 6753 return CP_ACCESS_TRAP_EL3; 6754 } 6755 return CP_ACCESS_OK; 6756 } 6757 6758 /* ResetSVEState */ 6759 static void arm_reset_sve_state(CPUARMState *env) 6760 { 6761 memset(env->vfp.zregs, 0, sizeof(env->vfp.zregs)); 6762 /* Recall that FFR is stored as pregs[16]. */ 6763 memset(env->vfp.pregs, 0, sizeof(env->vfp.pregs)); 6764 vfp_set_fpcr(env, 0x0800009f); 6765 } 6766 6767 void aarch64_set_svcr(CPUARMState *env, uint64_t new, uint64_t mask) 6768 { 6769 uint64_t change = (env->svcr ^ new) & mask; 6770 6771 if (change == 0) { 6772 return; 6773 } 6774 env->svcr ^= change; 6775 6776 if (change & R_SVCR_SM_MASK) { 6777 arm_reset_sve_state(env); 6778 } 6779 6780 /* 6781 * ResetSMEState. 6782 * 6783 * SetPSTATE_ZA zeros on enable and disable. We can zero this only 6784 * on enable: while disabled, the storage is inaccessible and the 6785 * value does not matter. We're not saving the storage in vmstate 6786 * when disabled either. 6787 */ 6788 if (change & new & R_SVCR_ZA_MASK) { 6789 memset(env->zarray, 0, sizeof(env->zarray)); 6790 } 6791 6792 arm_rebuild_hflags(env); 6793 } 6794 6795 static void svcr_write(CPUARMState *env, const ARMCPRegInfo *ri, 6796 uint64_t value) 6797 { 6798 aarch64_set_svcr(env, value, -1); 6799 } 6800 6801 static void smcr_write(CPUARMState *env, const ARMCPRegInfo *ri, 6802 uint64_t value) 6803 { 6804 int cur_el = arm_current_el(env); 6805 int old_len = sve_vqm1_for_el(env, cur_el); 6806 int new_len; 6807 6808 QEMU_BUILD_BUG_ON(ARM_MAX_VQ > R_SMCR_LEN_MASK + 1); 6809 value &= R_SMCR_LEN_MASK | R_SMCR_FA64_MASK; 6810 raw_write(env, ri, value); 6811 6812 /* 6813 * Note that it is CONSTRAINED UNPREDICTABLE what happens to ZA storage 6814 * when SVL is widened (old values kept, or zeros). Choose to keep the 6815 * current values for simplicity. But for QEMU internals, we must still 6816 * apply the narrower SVL to the Zregs and Pregs -- see the comment 6817 * above aarch64_sve_narrow_vq. 6818 */ 6819 new_len = sve_vqm1_for_el(env, cur_el); 6820 if (new_len < old_len) { 6821 aarch64_sve_narrow_vq(env, new_len + 1); 6822 } 6823 } 6824 6825 static const ARMCPRegInfo sme_reginfo[] = { 6826 { .name = "TPIDR2_EL0", .state = ARM_CP_STATE_AA64, 6827 .opc0 = 3, .opc1 = 3, .crn = 13, .crm = 0, .opc2 = 5, 6828 .access = PL0_RW, .accessfn = access_tpidr2, 6829 .fgt = FGT_NTPIDR2_EL0, 6830 .fieldoffset = offsetof(CPUARMState, cp15.tpidr2_el0) }, 6831 { .name = "SVCR", .state = ARM_CP_STATE_AA64, 6832 .opc0 = 3, .opc1 = 3, .crn = 4, .crm = 2, .opc2 = 2, 6833 .access = PL0_RW, .type = ARM_CP_SME, 6834 .fieldoffset = offsetof(CPUARMState, svcr), 6835 .writefn = svcr_write, .raw_writefn = raw_write }, 6836 { .name = "SMCR_EL1", .state = ARM_CP_STATE_AA64, 6837 .opc0 = 3, .opc1 = 0, .crn = 1, .crm = 2, .opc2 = 6, 6838 .access = PL1_RW, .type = ARM_CP_SME, 6839 .fieldoffset = offsetof(CPUARMState, vfp.smcr_el[1]), 6840 .writefn = smcr_write, .raw_writefn = raw_write }, 6841 { .name = "SMCR_EL2", .state = ARM_CP_STATE_AA64, 6842 .opc0 = 3, .opc1 = 4, .crn = 1, .crm = 2, .opc2 = 6, 6843 .access = PL2_RW, .type = ARM_CP_SME, 6844 .fieldoffset = offsetof(CPUARMState, vfp.smcr_el[2]), 6845 .writefn = smcr_write, .raw_writefn = raw_write }, 6846 { .name = "SMCR_EL3", .state = ARM_CP_STATE_AA64, 6847 .opc0 = 3, .opc1 = 6, .crn = 1, .crm = 2, .opc2 = 6, 6848 .access = PL3_RW, .type = ARM_CP_SME, 6849 .fieldoffset = offsetof(CPUARMState, vfp.smcr_el[3]), 6850 .writefn = smcr_write, .raw_writefn = raw_write }, 6851 { .name = "SMIDR_EL1", .state = ARM_CP_STATE_AA64, 6852 .opc0 = 3, .opc1 = 1, .crn = 0, .crm = 0, .opc2 = 6, 6853 .access = PL1_R, .accessfn = access_aa64_tid1, 6854 /* 6855 * IMPLEMENTOR = 0 (software) 6856 * REVISION = 0 (implementation defined) 6857 * SMPS = 0 (no streaming execution priority in QEMU) 6858 * AFFINITY = 0 (streaming sve mode not shared with other PEs) 6859 */ 6860 .type = ARM_CP_CONST, .resetvalue = 0, }, 6861 /* 6862 * Because SMIDR_EL1.SMPS is 0, SMPRI_EL1 and SMPRIMAP_EL2 are RES 0. 6863 */ 6864 { .name = "SMPRI_EL1", .state = ARM_CP_STATE_AA64, 6865 .opc0 = 3, .opc1 = 0, .crn = 1, .crm = 2, .opc2 = 4, 6866 .access = PL1_RW, .accessfn = access_esm, 6867 .fgt = FGT_NSMPRI_EL1, 6868 .type = ARM_CP_CONST, .resetvalue = 0 }, 6869 { .name = "SMPRIMAP_EL2", .state = ARM_CP_STATE_AA64, 6870 .opc0 = 3, .opc1 = 4, .crn = 1, .crm = 2, .opc2 = 5, 6871 .access = PL2_RW, .accessfn = access_esm, 6872 .type = ARM_CP_CONST, .resetvalue = 0 }, 6873 }; 6874 #endif /* TARGET_AARCH64 */ 6875 6876 static void define_pmu_regs(ARMCPU *cpu) 6877 { 6878 /* 6879 * v7 performance monitor control register: same implementor 6880 * field as main ID register, and we implement four counters in 6881 * addition to the cycle count register. 6882 */ 6883 unsigned int i, pmcrn = pmu_num_counters(&cpu->env); 6884 ARMCPRegInfo pmcr = { 6885 .name = "PMCR", .cp = 15, .crn = 9, .crm = 12, .opc1 = 0, .opc2 = 0, 6886 .access = PL0_RW, 6887 .type = ARM_CP_IO | ARM_CP_ALIAS, 6888 .fieldoffset = offsetoflow32(CPUARMState, cp15.c9_pmcr), 6889 .accessfn = pmreg_access, .writefn = pmcr_write, 6890 .raw_writefn = raw_write, 6891 }; 6892 ARMCPRegInfo pmcr64 = { 6893 .name = "PMCR_EL0", .state = ARM_CP_STATE_AA64, 6894 .opc0 = 3, .opc1 = 3, .crn = 9, .crm = 12, .opc2 = 0, 6895 .access = PL0_RW, .accessfn = pmreg_access, 6896 .type = ARM_CP_IO, 6897 .fieldoffset = offsetof(CPUARMState, cp15.c9_pmcr), 6898 .resetvalue = cpu->isar.reset_pmcr_el0, 6899 .writefn = pmcr_write, .raw_writefn = raw_write, 6900 }; 6901 6902 define_one_arm_cp_reg(cpu, &pmcr); 6903 define_one_arm_cp_reg(cpu, &pmcr64); 6904 for (i = 0; i < pmcrn; i++) { 6905 char *pmevcntr_name = g_strdup_printf("PMEVCNTR%d", i); 6906 char *pmevcntr_el0_name = g_strdup_printf("PMEVCNTR%d_EL0", i); 6907 char *pmevtyper_name = g_strdup_printf("PMEVTYPER%d", i); 6908 char *pmevtyper_el0_name = g_strdup_printf("PMEVTYPER%d_EL0", i); 6909 ARMCPRegInfo pmev_regs[] = { 6910 { .name = pmevcntr_name, .cp = 15, .crn = 14, 6911 .crm = 8 | (3 & (i >> 3)), .opc1 = 0, .opc2 = i & 7, 6912 .access = PL0_RW, .type = ARM_CP_IO | ARM_CP_ALIAS, 6913 .readfn = pmevcntr_readfn, .writefn = pmevcntr_writefn, 6914 .accessfn = pmreg_access_xevcntr }, 6915 { .name = pmevcntr_el0_name, .state = ARM_CP_STATE_AA64, 6916 .opc0 = 3, .opc1 = 3, .crn = 14, .crm = 8 | (3 & (i >> 3)), 6917 .opc2 = i & 7, .access = PL0_RW, .accessfn = pmreg_access_xevcntr, 6918 .type = ARM_CP_IO, 6919 .readfn = pmevcntr_readfn, .writefn = pmevcntr_writefn, 6920 .raw_readfn = pmevcntr_rawread, 6921 .raw_writefn = pmevcntr_rawwrite }, 6922 { .name = pmevtyper_name, .cp = 15, .crn = 14, 6923 .crm = 12 | (3 & (i >> 3)), .opc1 = 0, .opc2 = i & 7, 6924 .access = PL0_RW, .type = ARM_CP_IO | ARM_CP_ALIAS, 6925 .readfn = pmevtyper_readfn, .writefn = pmevtyper_writefn, 6926 .accessfn = pmreg_access }, 6927 { .name = pmevtyper_el0_name, .state = ARM_CP_STATE_AA64, 6928 .opc0 = 3, .opc1 = 3, .crn = 14, .crm = 12 | (3 & (i >> 3)), 6929 .opc2 = i & 7, .access = PL0_RW, .accessfn = pmreg_access, 6930 .type = ARM_CP_IO, 6931 .readfn = pmevtyper_readfn, .writefn = pmevtyper_writefn, 6932 .raw_writefn = pmevtyper_rawwrite }, 6933 }; 6934 define_arm_cp_regs(cpu, pmev_regs); 6935 g_free(pmevcntr_name); 6936 g_free(pmevcntr_el0_name); 6937 g_free(pmevtyper_name); 6938 g_free(pmevtyper_el0_name); 6939 } 6940 if (cpu_isar_feature(aa32_pmuv3p1, cpu)) { 6941 ARMCPRegInfo v81_pmu_regs[] = { 6942 { .name = "PMCEID2", .state = ARM_CP_STATE_AA32, 6943 .cp = 15, .opc1 = 0, .crn = 9, .crm = 14, .opc2 = 4, 6944 .access = PL0_R, .accessfn = pmreg_access, .type = ARM_CP_CONST, 6945 .resetvalue = extract64(cpu->pmceid0, 32, 32) }, 6946 { .name = "PMCEID3", .state = ARM_CP_STATE_AA32, 6947 .cp = 15, .opc1 = 0, .crn = 9, .crm = 14, .opc2 = 5, 6948 .access = PL0_R, .accessfn = pmreg_access, .type = ARM_CP_CONST, 6949 .resetvalue = extract64(cpu->pmceid1, 32, 32) }, 6950 }; 6951 define_arm_cp_regs(cpu, v81_pmu_regs); 6952 } 6953 if (cpu_isar_feature(any_pmuv3p4, cpu)) { 6954 static const ARMCPRegInfo v84_pmmir = { 6955 .name = "PMMIR_EL1", .state = ARM_CP_STATE_BOTH, 6956 .opc0 = 3, .opc1 = 0, .crn = 9, .crm = 14, .opc2 = 6, 6957 .access = PL1_R, .accessfn = pmreg_access, .type = ARM_CP_CONST, 6958 .resetvalue = 0 6959 }; 6960 define_one_arm_cp_reg(cpu, &v84_pmmir); 6961 } 6962 } 6963 6964 /* 6965 * We don't know until after realize whether there's a GICv3 6966 * attached, and that is what registers the gicv3 sysregs. 6967 * So we have to fill in the GIC fields in ID_PFR/ID_PFR1_EL1/ID_AA64PFR0_EL1 6968 * at runtime. 6969 */ 6970 static uint64_t id_pfr1_read(CPUARMState *env, const ARMCPRegInfo *ri) 6971 { 6972 ARMCPU *cpu = env_archcpu(env); 6973 uint64_t pfr1 = cpu->isar.id_pfr1; 6974 6975 if (env->gicv3state) { 6976 pfr1 |= 1 << 28; 6977 } 6978 return pfr1; 6979 } 6980 6981 #ifndef CONFIG_USER_ONLY 6982 static uint64_t id_aa64pfr0_read(CPUARMState *env, const ARMCPRegInfo *ri) 6983 { 6984 ARMCPU *cpu = env_archcpu(env); 6985 uint64_t pfr0 = cpu->isar.id_aa64pfr0; 6986 6987 if (env->gicv3state) { 6988 pfr0 |= 1 << 24; 6989 } 6990 return pfr0; 6991 } 6992 #endif 6993 6994 /* 6995 * Shared logic between LORID and the rest of the LOR* registers. 6996 * Secure state exclusion has already been dealt with. 6997 */ 6998 static CPAccessResult access_lor_ns(CPUARMState *env, 6999 const ARMCPRegInfo *ri, bool isread) 7000 { 7001 int el = arm_current_el(env); 7002 7003 if (el < 2 && (arm_hcr_el2_eff(env) & HCR_TLOR)) { 7004 return CP_ACCESS_TRAP_EL2; 7005 } 7006 if (el < 3 && (env->cp15.scr_el3 & SCR_TLOR)) { 7007 return CP_ACCESS_TRAP_EL3; 7008 } 7009 return CP_ACCESS_OK; 7010 } 7011 7012 static CPAccessResult access_lor_other(CPUARMState *env, 7013 const ARMCPRegInfo *ri, bool isread) 7014 { 7015 if (arm_is_secure_below_el3(env)) { 7016 /* Access denied in secure mode. */ 7017 return CP_ACCESS_TRAP; 7018 } 7019 return access_lor_ns(env, ri, isread); 7020 } 7021 7022 /* 7023 * A trivial implementation of ARMv8.1-LOR leaves all of these 7024 * registers fixed at 0, which indicates that there are zero 7025 * supported Limited Ordering regions. 7026 */ 7027 static const ARMCPRegInfo lor_reginfo[] = { 7028 { .name = "LORSA_EL1", .state = ARM_CP_STATE_AA64, 7029 .opc0 = 3, .opc1 = 0, .crn = 10, .crm = 4, .opc2 = 0, 7030 .access = PL1_RW, .accessfn = access_lor_other, 7031 .fgt = FGT_LORSA_EL1, 7032 .type = ARM_CP_CONST, .resetvalue = 0 }, 7033 { .name = "LOREA_EL1", .state = ARM_CP_STATE_AA64, 7034 .opc0 = 3, .opc1 = 0, .crn = 10, .crm = 4, .opc2 = 1, 7035 .access = PL1_RW, .accessfn = access_lor_other, 7036 .fgt = FGT_LOREA_EL1, 7037 .type = ARM_CP_CONST, .resetvalue = 0 }, 7038 { .name = "LORN_EL1", .state = ARM_CP_STATE_AA64, 7039 .opc0 = 3, .opc1 = 0, .crn = 10, .crm = 4, .opc2 = 2, 7040 .access = PL1_RW, .accessfn = access_lor_other, 7041 .fgt = FGT_LORN_EL1, 7042 .type = ARM_CP_CONST, .resetvalue = 0 }, 7043 { .name = "LORC_EL1", .state = ARM_CP_STATE_AA64, 7044 .opc0 = 3, .opc1 = 0, .crn = 10, .crm = 4, .opc2 = 3, 7045 .access = PL1_RW, .accessfn = access_lor_other, 7046 .fgt = FGT_LORC_EL1, 7047 .type = ARM_CP_CONST, .resetvalue = 0 }, 7048 { .name = "LORID_EL1", .state = ARM_CP_STATE_AA64, 7049 .opc0 = 3, .opc1 = 0, .crn = 10, .crm = 4, .opc2 = 7, 7050 .access = PL1_R, .accessfn = access_lor_ns, 7051 .fgt = FGT_LORID_EL1, 7052 .type = ARM_CP_CONST, .resetvalue = 0 }, 7053 }; 7054 7055 #ifdef TARGET_AARCH64 7056 static CPAccessResult access_pauth(CPUARMState *env, const ARMCPRegInfo *ri, 7057 bool isread) 7058 { 7059 int el = arm_current_el(env); 7060 7061 if (el < 2 && 7062 arm_is_el2_enabled(env) && 7063 !(arm_hcr_el2_eff(env) & HCR_APK)) { 7064 return CP_ACCESS_TRAP_EL2; 7065 } 7066 if (el < 3 && 7067 arm_feature(env, ARM_FEATURE_EL3) && 7068 !(env->cp15.scr_el3 & SCR_APK)) { 7069 return CP_ACCESS_TRAP_EL3; 7070 } 7071 return CP_ACCESS_OK; 7072 } 7073 7074 static const ARMCPRegInfo pauth_reginfo[] = { 7075 { .name = "APDAKEYLO_EL1", .state = ARM_CP_STATE_AA64, 7076 .opc0 = 3, .opc1 = 0, .crn = 2, .crm = 2, .opc2 = 0, 7077 .access = PL1_RW, .accessfn = access_pauth, 7078 .fgt = FGT_APDAKEY, 7079 .fieldoffset = offsetof(CPUARMState, keys.apda.lo) }, 7080 { .name = "APDAKEYHI_EL1", .state = ARM_CP_STATE_AA64, 7081 .opc0 = 3, .opc1 = 0, .crn = 2, .crm = 2, .opc2 = 1, 7082 .access = PL1_RW, .accessfn = access_pauth, 7083 .fgt = FGT_APDAKEY, 7084 .fieldoffset = offsetof(CPUARMState, keys.apda.hi) }, 7085 { .name = "APDBKEYLO_EL1", .state = ARM_CP_STATE_AA64, 7086 .opc0 = 3, .opc1 = 0, .crn = 2, .crm = 2, .opc2 = 2, 7087 .access = PL1_RW, .accessfn = access_pauth, 7088 .fgt = FGT_APDBKEY, 7089 .fieldoffset = offsetof(CPUARMState, keys.apdb.lo) }, 7090 { .name = "APDBKEYHI_EL1", .state = ARM_CP_STATE_AA64, 7091 .opc0 = 3, .opc1 = 0, .crn = 2, .crm = 2, .opc2 = 3, 7092 .access = PL1_RW, .accessfn = access_pauth, 7093 .fgt = FGT_APDBKEY, 7094 .fieldoffset = offsetof(CPUARMState, keys.apdb.hi) }, 7095 { .name = "APGAKEYLO_EL1", .state = ARM_CP_STATE_AA64, 7096 .opc0 = 3, .opc1 = 0, .crn = 2, .crm = 3, .opc2 = 0, 7097 .access = PL1_RW, .accessfn = access_pauth, 7098 .fgt = FGT_APGAKEY, 7099 .fieldoffset = offsetof(CPUARMState, keys.apga.lo) }, 7100 { .name = "APGAKEYHI_EL1", .state = ARM_CP_STATE_AA64, 7101 .opc0 = 3, .opc1 = 0, .crn = 2, .crm = 3, .opc2 = 1, 7102 .access = PL1_RW, .accessfn = access_pauth, 7103 .fgt = FGT_APGAKEY, 7104 .fieldoffset = offsetof(CPUARMState, keys.apga.hi) }, 7105 { .name = "APIAKEYLO_EL1", .state = ARM_CP_STATE_AA64, 7106 .opc0 = 3, .opc1 = 0, .crn = 2, .crm = 1, .opc2 = 0, 7107 .access = PL1_RW, .accessfn = access_pauth, 7108 .fgt = FGT_APIAKEY, 7109 .fieldoffset = offsetof(CPUARMState, keys.apia.lo) }, 7110 { .name = "APIAKEYHI_EL1", .state = ARM_CP_STATE_AA64, 7111 .opc0 = 3, .opc1 = 0, .crn = 2, .crm = 1, .opc2 = 1, 7112 .access = PL1_RW, .accessfn = access_pauth, 7113 .fgt = FGT_APIAKEY, 7114 .fieldoffset = offsetof(CPUARMState, keys.apia.hi) }, 7115 { .name = "APIBKEYLO_EL1", .state = ARM_CP_STATE_AA64, 7116 .opc0 = 3, .opc1 = 0, .crn = 2, .crm = 1, .opc2 = 2, 7117 .access = PL1_RW, .accessfn = access_pauth, 7118 .fgt = FGT_APIBKEY, 7119 .fieldoffset = offsetof(CPUARMState, keys.apib.lo) }, 7120 { .name = "APIBKEYHI_EL1", .state = ARM_CP_STATE_AA64, 7121 .opc0 = 3, .opc1 = 0, .crn = 2, .crm = 1, .opc2 = 3, 7122 .access = PL1_RW, .accessfn = access_pauth, 7123 .fgt = FGT_APIBKEY, 7124 .fieldoffset = offsetof(CPUARMState, keys.apib.hi) }, 7125 }; 7126 7127 static const ARMCPRegInfo tlbirange_reginfo[] = { 7128 { .name = "TLBI_RVAE1IS", .state = ARM_CP_STATE_AA64, 7129 .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 2, .opc2 = 1, 7130 .access = PL1_W, .accessfn = access_ttlbis, .type = ARM_CP_NO_RAW, 7131 .writefn = tlbi_aa64_rvae1is_write }, 7132 { .name = "TLBI_RVAAE1IS", .state = ARM_CP_STATE_AA64, 7133 .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 2, .opc2 = 3, 7134 .access = PL1_W, .accessfn = access_ttlbis, .type = ARM_CP_NO_RAW, 7135 .writefn = tlbi_aa64_rvae1is_write }, 7136 { .name = "TLBI_RVALE1IS", .state = ARM_CP_STATE_AA64, 7137 .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 2, .opc2 = 5, 7138 .access = PL1_W, .accessfn = access_ttlbis, .type = ARM_CP_NO_RAW, 7139 .writefn = tlbi_aa64_rvae1is_write }, 7140 { .name = "TLBI_RVAALE1IS", .state = ARM_CP_STATE_AA64, 7141 .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 2, .opc2 = 7, 7142 .access = PL1_W, .accessfn = access_ttlbis, .type = ARM_CP_NO_RAW, 7143 .writefn = tlbi_aa64_rvae1is_write }, 7144 { .name = "TLBI_RVAE1OS", .state = ARM_CP_STATE_AA64, 7145 .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 5, .opc2 = 1, 7146 .access = PL1_W, .accessfn = access_ttlbos, .type = ARM_CP_NO_RAW, 7147 .writefn = tlbi_aa64_rvae1is_write }, 7148 { .name = "TLBI_RVAAE1OS", .state = ARM_CP_STATE_AA64, 7149 .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 5, .opc2 = 3, 7150 .access = PL1_W, .accessfn = access_ttlbos, .type = ARM_CP_NO_RAW, 7151 .writefn = tlbi_aa64_rvae1is_write }, 7152 { .name = "TLBI_RVALE1OS", .state = ARM_CP_STATE_AA64, 7153 .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 5, .opc2 = 5, 7154 .access = PL1_W, .accessfn = access_ttlbos, .type = ARM_CP_NO_RAW, 7155 .writefn = tlbi_aa64_rvae1is_write }, 7156 { .name = "TLBI_RVAALE1OS", .state = ARM_CP_STATE_AA64, 7157 .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 5, .opc2 = 7, 7158 .access = PL1_W, .accessfn = access_ttlbos, .type = ARM_CP_NO_RAW, 7159 .writefn = tlbi_aa64_rvae1is_write }, 7160 { .name = "TLBI_RVAE1", .state = ARM_CP_STATE_AA64, 7161 .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 6, .opc2 = 1, 7162 .access = PL1_W, .accessfn = access_ttlb, .type = ARM_CP_NO_RAW, 7163 .writefn = tlbi_aa64_rvae1_write }, 7164 { .name = "TLBI_RVAAE1", .state = ARM_CP_STATE_AA64, 7165 .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 6, .opc2 = 3, 7166 .access = PL1_W, .accessfn = access_ttlb, .type = ARM_CP_NO_RAW, 7167 .writefn = tlbi_aa64_rvae1_write }, 7168 { .name = "TLBI_RVALE1", .state = ARM_CP_STATE_AA64, 7169 .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 6, .opc2 = 5, 7170 .access = PL1_W, .accessfn = access_ttlb, .type = ARM_CP_NO_RAW, 7171 .writefn = tlbi_aa64_rvae1_write }, 7172 { .name = "TLBI_RVAALE1", .state = ARM_CP_STATE_AA64, 7173 .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 6, .opc2 = 7, 7174 .access = PL1_W, .accessfn = access_ttlb, .type = ARM_CP_NO_RAW, 7175 .writefn = tlbi_aa64_rvae1_write }, 7176 { .name = "TLBI_RIPAS2E1IS", .state = ARM_CP_STATE_AA64, 7177 .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 0, .opc2 = 2, 7178 .access = PL2_W, .type = ARM_CP_NO_RAW, 7179 .writefn = tlbi_aa64_ripas2e1is_write }, 7180 { .name = "TLBI_RIPAS2LE1IS", .state = ARM_CP_STATE_AA64, 7181 .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 0, .opc2 = 6, 7182 .access = PL2_W, .type = ARM_CP_NO_RAW, 7183 .writefn = tlbi_aa64_ripas2e1is_write }, 7184 { .name = "TLBI_RVAE2IS", .state = ARM_CP_STATE_AA64, 7185 .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 2, .opc2 = 1, 7186 .access = PL2_W, .type = ARM_CP_NO_RAW | ARM_CP_EL3_NO_EL2_UNDEF, 7187 .writefn = tlbi_aa64_rvae2is_write }, 7188 { .name = "TLBI_RVALE2IS", .state = ARM_CP_STATE_AA64, 7189 .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 2, .opc2 = 5, 7190 .access = PL2_W, .type = ARM_CP_NO_RAW | ARM_CP_EL3_NO_EL2_UNDEF, 7191 .writefn = tlbi_aa64_rvae2is_write }, 7192 { .name = "TLBI_RIPAS2E1", .state = ARM_CP_STATE_AA64, 7193 .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 4, .opc2 = 2, 7194 .access = PL2_W, .type = ARM_CP_NO_RAW, 7195 .writefn = tlbi_aa64_ripas2e1_write }, 7196 { .name = "TLBI_RIPAS2LE1", .state = ARM_CP_STATE_AA64, 7197 .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 4, .opc2 = 6, 7198 .access = PL2_W, .type = ARM_CP_NO_RAW, 7199 .writefn = tlbi_aa64_ripas2e1_write }, 7200 { .name = "TLBI_RVAE2OS", .state = ARM_CP_STATE_AA64, 7201 .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 5, .opc2 = 1, 7202 .access = PL2_W, .type = ARM_CP_NO_RAW | ARM_CP_EL3_NO_EL2_UNDEF, 7203 .writefn = tlbi_aa64_rvae2is_write }, 7204 { .name = "TLBI_RVALE2OS", .state = ARM_CP_STATE_AA64, 7205 .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 5, .opc2 = 5, 7206 .access = PL2_W, .type = ARM_CP_NO_RAW | ARM_CP_EL3_NO_EL2_UNDEF, 7207 .writefn = tlbi_aa64_rvae2is_write }, 7208 { .name = "TLBI_RVAE2", .state = ARM_CP_STATE_AA64, 7209 .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 6, .opc2 = 1, 7210 .access = PL2_W, .type = ARM_CP_NO_RAW | ARM_CP_EL3_NO_EL2_UNDEF, 7211 .writefn = tlbi_aa64_rvae2_write }, 7212 { .name = "TLBI_RVALE2", .state = ARM_CP_STATE_AA64, 7213 .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 6, .opc2 = 5, 7214 .access = PL2_W, .type = ARM_CP_NO_RAW | ARM_CP_EL3_NO_EL2_UNDEF, 7215 .writefn = tlbi_aa64_rvae2_write }, 7216 { .name = "TLBI_RVAE3IS", .state = ARM_CP_STATE_AA64, 7217 .opc0 = 1, .opc1 = 6, .crn = 8, .crm = 2, .opc2 = 1, 7218 .access = PL3_W, .type = ARM_CP_NO_RAW, 7219 .writefn = tlbi_aa64_rvae3is_write }, 7220 { .name = "TLBI_RVALE3IS", .state = ARM_CP_STATE_AA64, 7221 .opc0 = 1, .opc1 = 6, .crn = 8, .crm = 2, .opc2 = 5, 7222 .access = PL3_W, .type = ARM_CP_NO_RAW, 7223 .writefn = tlbi_aa64_rvae3is_write }, 7224 { .name = "TLBI_RVAE3OS", .state = ARM_CP_STATE_AA64, 7225 .opc0 = 1, .opc1 = 6, .crn = 8, .crm = 5, .opc2 = 1, 7226 .access = PL3_W, .type = ARM_CP_NO_RAW, 7227 .writefn = tlbi_aa64_rvae3is_write }, 7228 { .name = "TLBI_RVALE3OS", .state = ARM_CP_STATE_AA64, 7229 .opc0 = 1, .opc1 = 6, .crn = 8, .crm = 5, .opc2 = 5, 7230 .access = PL3_W, .type = ARM_CP_NO_RAW, 7231 .writefn = tlbi_aa64_rvae3is_write }, 7232 { .name = "TLBI_RVAE3", .state = ARM_CP_STATE_AA64, 7233 .opc0 = 1, .opc1 = 6, .crn = 8, .crm = 6, .opc2 = 1, 7234 .access = PL3_W, .type = ARM_CP_NO_RAW, 7235 .writefn = tlbi_aa64_rvae3_write }, 7236 { .name = "TLBI_RVALE3", .state = ARM_CP_STATE_AA64, 7237 .opc0 = 1, .opc1 = 6, .crn = 8, .crm = 6, .opc2 = 5, 7238 .access = PL3_W, .type = ARM_CP_NO_RAW, 7239 .writefn = tlbi_aa64_rvae3_write }, 7240 }; 7241 7242 static const ARMCPRegInfo tlbios_reginfo[] = { 7243 { .name = "TLBI_VMALLE1OS", .state = ARM_CP_STATE_AA64, 7244 .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 1, .opc2 = 0, 7245 .access = PL1_W, .accessfn = access_ttlbos, .type = ARM_CP_NO_RAW, 7246 .writefn = tlbi_aa64_vmalle1is_write }, 7247 { .name = "TLBI_VAE1OS", .state = ARM_CP_STATE_AA64, 7248 .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 1, .opc2 = 1, 7249 .access = PL1_W, .accessfn = access_ttlbos, .type = ARM_CP_NO_RAW, 7250 .writefn = tlbi_aa64_vae1is_write }, 7251 { .name = "TLBI_ASIDE1OS", .state = ARM_CP_STATE_AA64, 7252 .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 1, .opc2 = 2, 7253 .access = PL1_W, .accessfn = access_ttlbos, .type = ARM_CP_NO_RAW, 7254 .writefn = tlbi_aa64_vmalle1is_write }, 7255 { .name = "TLBI_VAAE1OS", .state = ARM_CP_STATE_AA64, 7256 .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 1, .opc2 = 3, 7257 .access = PL1_W, .accessfn = access_ttlbos, .type = ARM_CP_NO_RAW, 7258 .writefn = tlbi_aa64_vae1is_write }, 7259 { .name = "TLBI_VALE1OS", .state = ARM_CP_STATE_AA64, 7260 .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 1, .opc2 = 5, 7261 .access = PL1_W, .accessfn = access_ttlbos, .type = ARM_CP_NO_RAW, 7262 .writefn = tlbi_aa64_vae1is_write }, 7263 { .name = "TLBI_VAALE1OS", .state = ARM_CP_STATE_AA64, 7264 .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 1, .opc2 = 7, 7265 .access = PL1_W, .accessfn = access_ttlbos, .type = ARM_CP_NO_RAW, 7266 .writefn = tlbi_aa64_vae1is_write }, 7267 { .name = "TLBI_ALLE2OS", .state = ARM_CP_STATE_AA64, 7268 .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 1, .opc2 = 0, 7269 .access = PL2_W, .type = ARM_CP_NO_RAW | ARM_CP_EL3_NO_EL2_UNDEF, 7270 .writefn = tlbi_aa64_alle2is_write }, 7271 { .name = "TLBI_VAE2OS", .state = ARM_CP_STATE_AA64, 7272 .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 1, .opc2 = 1, 7273 .access = PL2_W, .type = ARM_CP_NO_RAW | ARM_CP_EL3_NO_EL2_UNDEF, 7274 .writefn = tlbi_aa64_vae2is_write }, 7275 { .name = "TLBI_ALLE1OS", .state = ARM_CP_STATE_AA64, 7276 .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 1, .opc2 = 4, 7277 .access = PL2_W, .type = ARM_CP_NO_RAW, 7278 .writefn = tlbi_aa64_alle1is_write }, 7279 { .name = "TLBI_VALE2OS", .state = ARM_CP_STATE_AA64, 7280 .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 1, .opc2 = 5, 7281 .access = PL2_W, .type = ARM_CP_NO_RAW | ARM_CP_EL3_NO_EL2_UNDEF, 7282 .writefn = tlbi_aa64_vae2is_write }, 7283 { .name = "TLBI_VMALLS12E1OS", .state = ARM_CP_STATE_AA64, 7284 .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 1, .opc2 = 6, 7285 .access = PL2_W, .type = ARM_CP_NO_RAW, 7286 .writefn = tlbi_aa64_alle1is_write }, 7287 { .name = "TLBI_IPAS2E1OS", .state = ARM_CP_STATE_AA64, 7288 .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 4, .opc2 = 0, 7289 .access = PL2_W, .type = ARM_CP_NOP }, 7290 { .name = "TLBI_RIPAS2E1OS", .state = ARM_CP_STATE_AA64, 7291 .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 4, .opc2 = 3, 7292 .access = PL2_W, .type = ARM_CP_NOP }, 7293 { .name = "TLBI_IPAS2LE1OS", .state = ARM_CP_STATE_AA64, 7294 .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 4, .opc2 = 4, 7295 .access = PL2_W, .type = ARM_CP_NOP }, 7296 { .name = "TLBI_RIPAS2LE1OS", .state = ARM_CP_STATE_AA64, 7297 .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 4, .opc2 = 7, 7298 .access = PL2_W, .type = ARM_CP_NOP }, 7299 { .name = "TLBI_ALLE3OS", .state = ARM_CP_STATE_AA64, 7300 .opc0 = 1, .opc1 = 6, .crn = 8, .crm = 1, .opc2 = 0, 7301 .access = PL3_W, .type = ARM_CP_NO_RAW, 7302 .writefn = tlbi_aa64_alle3is_write }, 7303 { .name = "TLBI_VAE3OS", .state = ARM_CP_STATE_AA64, 7304 .opc0 = 1, .opc1 = 6, .crn = 8, .crm = 1, .opc2 = 1, 7305 .access = PL3_W, .type = ARM_CP_NO_RAW, 7306 .writefn = tlbi_aa64_vae3is_write }, 7307 { .name = "TLBI_VALE3OS", .state = ARM_CP_STATE_AA64, 7308 .opc0 = 1, .opc1 = 6, .crn = 8, .crm = 1, .opc2 = 5, 7309 .access = PL3_W, .type = ARM_CP_NO_RAW, 7310 .writefn = tlbi_aa64_vae3is_write }, 7311 }; 7312 7313 static uint64_t rndr_readfn(CPUARMState *env, const ARMCPRegInfo *ri) 7314 { 7315 Error *err = NULL; 7316 uint64_t ret; 7317 7318 /* Success sets NZCV = 0000. */ 7319 env->NF = env->CF = env->VF = 0, env->ZF = 1; 7320 7321 if (qemu_guest_getrandom(&ret, sizeof(ret), &err) < 0) { 7322 /* 7323 * ??? Failed, for unknown reasons in the crypto subsystem. 7324 * The best we can do is log the reason and return the 7325 * timed-out indication to the guest. There is no reason 7326 * we know to expect this failure to be transitory, so the 7327 * guest may well hang retrying the operation. 7328 */ 7329 qemu_log_mask(LOG_UNIMP, "%s: Crypto failure: %s", 7330 ri->name, error_get_pretty(err)); 7331 error_free(err); 7332 7333 env->ZF = 0; /* NZCF = 0100 */ 7334 return 0; 7335 } 7336 return ret; 7337 } 7338 7339 /* We do not support re-seeding, so the two registers operate the same. */ 7340 static const ARMCPRegInfo rndr_reginfo[] = { 7341 { .name = "RNDR", .state = ARM_CP_STATE_AA64, 7342 .type = ARM_CP_NO_RAW | ARM_CP_SUPPRESS_TB_END | ARM_CP_IO, 7343 .opc0 = 3, .opc1 = 3, .crn = 2, .crm = 4, .opc2 = 0, 7344 .access = PL0_R, .readfn = rndr_readfn }, 7345 { .name = "RNDRRS", .state = ARM_CP_STATE_AA64, 7346 .type = ARM_CP_NO_RAW | ARM_CP_SUPPRESS_TB_END | ARM_CP_IO, 7347 .opc0 = 3, .opc1 = 3, .crn = 2, .crm = 4, .opc2 = 1, 7348 .access = PL0_R, .readfn = rndr_readfn }, 7349 }; 7350 7351 #ifndef CONFIG_USER_ONLY 7352 static void dccvap_writefn(CPUARMState *env, const ARMCPRegInfo *opaque, 7353 uint64_t value) 7354 { 7355 ARMCPU *cpu = env_archcpu(env); 7356 /* CTR_EL0 System register -> DminLine, bits [19:16] */ 7357 uint64_t dline_size = 4 << ((cpu->ctr >> 16) & 0xF); 7358 uint64_t vaddr_in = (uint64_t) value; 7359 uint64_t vaddr = vaddr_in & ~(dline_size - 1); 7360 void *haddr; 7361 int mem_idx = cpu_mmu_index(env, false); 7362 7363 /* This won't be crossing page boundaries */ 7364 haddr = probe_read(env, vaddr, dline_size, mem_idx, GETPC()); 7365 if (haddr) { 7366 7367 ram_addr_t offset; 7368 MemoryRegion *mr; 7369 7370 /* RCU lock is already being held */ 7371 mr = memory_region_from_host(haddr, &offset); 7372 7373 if (mr) { 7374 memory_region_writeback(mr, offset, dline_size); 7375 } 7376 } 7377 } 7378 7379 static const ARMCPRegInfo dcpop_reg[] = { 7380 { .name = "DC_CVAP", .state = ARM_CP_STATE_AA64, 7381 .opc0 = 1, .opc1 = 3, .crn = 7, .crm = 12, .opc2 = 1, 7382 .access = PL0_W, .type = ARM_CP_NO_RAW | ARM_CP_SUPPRESS_TB_END, 7383 .accessfn = aa64_cacheop_poc_access, .writefn = dccvap_writefn }, 7384 }; 7385 7386 static const ARMCPRegInfo dcpodp_reg[] = { 7387 { .name = "DC_CVADP", .state = ARM_CP_STATE_AA64, 7388 .opc0 = 1, .opc1 = 3, .crn = 7, .crm = 13, .opc2 = 1, 7389 .access = PL0_W, .type = ARM_CP_NO_RAW | ARM_CP_SUPPRESS_TB_END, 7390 .accessfn = aa64_cacheop_poc_access, .writefn = dccvap_writefn }, 7391 }; 7392 #endif /*CONFIG_USER_ONLY*/ 7393 7394 static CPAccessResult access_aa64_tid5(CPUARMState *env, const ARMCPRegInfo *ri, 7395 bool isread) 7396 { 7397 if ((arm_current_el(env) < 2) && (arm_hcr_el2_eff(env) & HCR_TID5)) { 7398 return CP_ACCESS_TRAP_EL2; 7399 } 7400 7401 return CP_ACCESS_OK; 7402 } 7403 7404 static CPAccessResult access_mte(CPUARMState *env, const ARMCPRegInfo *ri, 7405 bool isread) 7406 { 7407 int el = arm_current_el(env); 7408 7409 if (el < 2 && arm_is_el2_enabled(env)) { 7410 uint64_t hcr = arm_hcr_el2_eff(env); 7411 if (!(hcr & HCR_ATA) && (!(hcr & HCR_E2H) || !(hcr & HCR_TGE))) { 7412 return CP_ACCESS_TRAP_EL2; 7413 } 7414 } 7415 if (el < 3 && 7416 arm_feature(env, ARM_FEATURE_EL3) && 7417 !(env->cp15.scr_el3 & SCR_ATA)) { 7418 return CP_ACCESS_TRAP_EL3; 7419 } 7420 return CP_ACCESS_OK; 7421 } 7422 7423 static uint64_t tco_read(CPUARMState *env, const ARMCPRegInfo *ri) 7424 { 7425 return env->pstate & PSTATE_TCO; 7426 } 7427 7428 static void tco_write(CPUARMState *env, const ARMCPRegInfo *ri, uint64_t val) 7429 { 7430 env->pstate = (env->pstate & ~PSTATE_TCO) | (val & PSTATE_TCO); 7431 } 7432 7433 static const ARMCPRegInfo mte_reginfo[] = { 7434 { .name = "TFSRE0_EL1", .state = ARM_CP_STATE_AA64, 7435 .opc0 = 3, .opc1 = 0, .crn = 5, .crm = 6, .opc2 = 1, 7436 .access = PL1_RW, .accessfn = access_mte, 7437 .fieldoffset = offsetof(CPUARMState, cp15.tfsr_el[0]) }, 7438 { .name = "TFSR_EL1", .state = ARM_CP_STATE_AA64, 7439 .opc0 = 3, .opc1 = 0, .crn = 5, .crm = 6, .opc2 = 0, 7440 .access = PL1_RW, .accessfn = access_mte, 7441 .fieldoffset = offsetof(CPUARMState, cp15.tfsr_el[1]) }, 7442 { .name = "TFSR_EL2", .state = ARM_CP_STATE_AA64, 7443 .opc0 = 3, .opc1 = 4, .crn = 5, .crm = 6, .opc2 = 0, 7444 .access = PL2_RW, .accessfn = access_mte, 7445 .fieldoffset = offsetof(CPUARMState, cp15.tfsr_el[2]) }, 7446 { .name = "TFSR_EL3", .state = ARM_CP_STATE_AA64, 7447 .opc0 = 3, .opc1 = 6, .crn = 5, .crm = 6, .opc2 = 0, 7448 .access = PL3_RW, 7449 .fieldoffset = offsetof(CPUARMState, cp15.tfsr_el[3]) }, 7450 { .name = "RGSR_EL1", .state = ARM_CP_STATE_AA64, 7451 .opc0 = 3, .opc1 = 0, .crn = 1, .crm = 0, .opc2 = 5, 7452 .access = PL1_RW, .accessfn = access_mte, 7453 .fieldoffset = offsetof(CPUARMState, cp15.rgsr_el1) }, 7454 { .name = "GCR_EL1", .state = ARM_CP_STATE_AA64, 7455 .opc0 = 3, .opc1 = 0, .crn = 1, .crm = 0, .opc2 = 6, 7456 .access = PL1_RW, .accessfn = access_mte, 7457 .fieldoffset = offsetof(CPUARMState, cp15.gcr_el1) }, 7458 { .name = "GMID_EL1", .state = ARM_CP_STATE_AA64, 7459 .opc0 = 3, .opc1 = 1, .crn = 0, .crm = 0, .opc2 = 4, 7460 .access = PL1_R, .accessfn = access_aa64_tid5, 7461 .type = ARM_CP_CONST, .resetvalue = GMID_EL1_BS }, 7462 { .name = "TCO", .state = ARM_CP_STATE_AA64, 7463 .opc0 = 3, .opc1 = 3, .crn = 4, .crm = 2, .opc2 = 7, 7464 .type = ARM_CP_NO_RAW, 7465 .access = PL0_RW, .readfn = tco_read, .writefn = tco_write }, 7466 { .name = "DC_IGVAC", .state = ARM_CP_STATE_AA64, 7467 .opc0 = 1, .opc1 = 0, .crn = 7, .crm = 6, .opc2 = 3, 7468 .type = ARM_CP_NOP, .access = PL1_W, 7469 .accessfn = aa64_cacheop_poc_access }, 7470 { .name = "DC_IGSW", .state = ARM_CP_STATE_AA64, 7471 .opc0 = 1, .opc1 = 0, .crn = 7, .crm = 6, .opc2 = 4, 7472 .type = ARM_CP_NOP, .access = PL1_W, .accessfn = access_tsw }, 7473 { .name = "DC_IGDVAC", .state = ARM_CP_STATE_AA64, 7474 .opc0 = 1, .opc1 = 0, .crn = 7, .crm = 6, .opc2 = 5, 7475 .type = ARM_CP_NOP, .access = PL1_W, 7476 .accessfn = aa64_cacheop_poc_access }, 7477 { .name = "DC_IGDSW", .state = ARM_CP_STATE_AA64, 7478 .opc0 = 1, .opc1 = 0, .crn = 7, .crm = 6, .opc2 = 6, 7479 .type = ARM_CP_NOP, .access = PL1_W, .accessfn = access_tsw }, 7480 { .name = "DC_CGSW", .state = ARM_CP_STATE_AA64, 7481 .opc0 = 1, .opc1 = 0, .crn = 7, .crm = 10, .opc2 = 4, 7482 .type = ARM_CP_NOP, .access = PL1_W, .accessfn = access_tsw }, 7483 { .name = "DC_CGDSW", .state = ARM_CP_STATE_AA64, 7484 .opc0 = 1, .opc1 = 0, .crn = 7, .crm = 10, .opc2 = 6, 7485 .type = ARM_CP_NOP, .access = PL1_W, .accessfn = access_tsw }, 7486 { .name = "DC_CIGSW", .state = ARM_CP_STATE_AA64, 7487 .opc0 = 1, .opc1 = 0, .crn = 7, .crm = 14, .opc2 = 4, 7488 .type = ARM_CP_NOP, .access = PL1_W, .accessfn = access_tsw }, 7489 { .name = "DC_CIGDSW", .state = ARM_CP_STATE_AA64, 7490 .opc0 = 1, .opc1 = 0, .crn = 7, .crm = 14, .opc2 = 6, 7491 .type = ARM_CP_NOP, .access = PL1_W, .accessfn = access_tsw }, 7492 }; 7493 7494 static const ARMCPRegInfo mte_tco_ro_reginfo[] = { 7495 { .name = "TCO", .state = ARM_CP_STATE_AA64, 7496 .opc0 = 3, .opc1 = 3, .crn = 4, .crm = 2, .opc2 = 7, 7497 .type = ARM_CP_CONST, .access = PL0_RW, }, 7498 }; 7499 7500 static const ARMCPRegInfo mte_el0_cacheop_reginfo[] = { 7501 { .name = "DC_CGVAC", .state = ARM_CP_STATE_AA64, 7502 .opc0 = 1, .opc1 = 3, .crn = 7, .crm = 10, .opc2 = 3, 7503 .type = ARM_CP_NOP, .access = PL0_W, 7504 .accessfn = aa64_cacheop_poc_access }, 7505 { .name = "DC_CGDVAC", .state = ARM_CP_STATE_AA64, 7506 .opc0 = 1, .opc1 = 3, .crn = 7, .crm = 10, .opc2 = 5, 7507 .type = ARM_CP_NOP, .access = PL0_W, 7508 .accessfn = aa64_cacheop_poc_access }, 7509 { .name = "DC_CGVAP", .state = ARM_CP_STATE_AA64, 7510 .opc0 = 1, .opc1 = 3, .crn = 7, .crm = 12, .opc2 = 3, 7511 .type = ARM_CP_NOP, .access = PL0_W, 7512 .accessfn = aa64_cacheop_poc_access }, 7513 { .name = "DC_CGDVAP", .state = ARM_CP_STATE_AA64, 7514 .opc0 = 1, .opc1 = 3, .crn = 7, .crm = 12, .opc2 = 5, 7515 .type = ARM_CP_NOP, .access = PL0_W, 7516 .accessfn = aa64_cacheop_poc_access }, 7517 { .name = "DC_CGVADP", .state = ARM_CP_STATE_AA64, 7518 .opc0 = 1, .opc1 = 3, .crn = 7, .crm = 13, .opc2 = 3, 7519 .type = ARM_CP_NOP, .access = PL0_W, 7520 .accessfn = aa64_cacheop_poc_access }, 7521 { .name = "DC_CGDVADP", .state = ARM_CP_STATE_AA64, 7522 .opc0 = 1, .opc1 = 3, .crn = 7, .crm = 13, .opc2 = 5, 7523 .type = ARM_CP_NOP, .access = PL0_W, 7524 .accessfn = aa64_cacheop_poc_access }, 7525 { .name = "DC_CIGVAC", .state = ARM_CP_STATE_AA64, 7526 .opc0 = 1, .opc1 = 3, .crn = 7, .crm = 14, .opc2 = 3, 7527 .type = ARM_CP_NOP, .access = PL0_W, 7528 .accessfn = aa64_cacheop_poc_access }, 7529 { .name = "DC_CIGDVAC", .state = ARM_CP_STATE_AA64, 7530 .opc0 = 1, .opc1 = 3, .crn = 7, .crm = 14, .opc2 = 5, 7531 .type = ARM_CP_NOP, .access = PL0_W, 7532 .accessfn = aa64_cacheop_poc_access }, 7533 { .name = "DC_GVA", .state = ARM_CP_STATE_AA64, 7534 .opc0 = 1, .opc1 = 3, .crn = 7, .crm = 4, .opc2 = 3, 7535 .access = PL0_W, .type = ARM_CP_DC_GVA, 7536 #ifndef CONFIG_USER_ONLY 7537 /* Avoid overhead of an access check that always passes in user-mode */ 7538 .accessfn = aa64_zva_access, 7539 #endif 7540 }, 7541 { .name = "DC_GZVA", .state = ARM_CP_STATE_AA64, 7542 .opc0 = 1, .opc1 = 3, .crn = 7, .crm = 4, .opc2 = 4, 7543 .access = PL0_W, .type = ARM_CP_DC_GZVA, 7544 #ifndef CONFIG_USER_ONLY 7545 /* Avoid overhead of an access check that always passes in user-mode */ 7546 .accessfn = aa64_zva_access, 7547 #endif 7548 }, 7549 }; 7550 7551 static CPAccessResult access_scxtnum(CPUARMState *env, const ARMCPRegInfo *ri, 7552 bool isread) 7553 { 7554 uint64_t hcr = arm_hcr_el2_eff(env); 7555 int el = arm_current_el(env); 7556 7557 if (el == 0 && !((hcr & HCR_E2H) && (hcr & HCR_TGE))) { 7558 if (env->cp15.sctlr_el[1] & SCTLR_TSCXT) { 7559 if (hcr & HCR_TGE) { 7560 return CP_ACCESS_TRAP_EL2; 7561 } 7562 return CP_ACCESS_TRAP; 7563 } 7564 } else if (el < 2 && (env->cp15.sctlr_el[2] & SCTLR_TSCXT)) { 7565 return CP_ACCESS_TRAP_EL2; 7566 } 7567 if (el < 2 && arm_is_el2_enabled(env) && !(hcr & HCR_ENSCXT)) { 7568 return CP_ACCESS_TRAP_EL2; 7569 } 7570 if (el < 3 7571 && arm_feature(env, ARM_FEATURE_EL3) 7572 && !(env->cp15.scr_el3 & SCR_ENSCXT)) { 7573 return CP_ACCESS_TRAP_EL3; 7574 } 7575 return CP_ACCESS_OK; 7576 } 7577 7578 static const ARMCPRegInfo scxtnum_reginfo[] = { 7579 { .name = "SCXTNUM_EL0", .state = ARM_CP_STATE_AA64, 7580 .opc0 = 3, .opc1 = 3, .crn = 13, .crm = 0, .opc2 = 7, 7581 .access = PL0_RW, .accessfn = access_scxtnum, 7582 .fgt = FGT_SCXTNUM_EL0, 7583 .fieldoffset = offsetof(CPUARMState, scxtnum_el[0]) }, 7584 { .name = "SCXTNUM_EL1", .state = ARM_CP_STATE_AA64, 7585 .opc0 = 3, .opc1 = 0, .crn = 13, .crm = 0, .opc2 = 7, 7586 .access = PL1_RW, .accessfn = access_scxtnum, 7587 .fgt = FGT_SCXTNUM_EL1, 7588 .fieldoffset = offsetof(CPUARMState, scxtnum_el[1]) }, 7589 { .name = "SCXTNUM_EL2", .state = ARM_CP_STATE_AA64, 7590 .opc0 = 3, .opc1 = 4, .crn = 13, .crm = 0, .opc2 = 7, 7591 .access = PL2_RW, .accessfn = access_scxtnum, 7592 .fieldoffset = offsetof(CPUARMState, scxtnum_el[2]) }, 7593 { .name = "SCXTNUM_EL3", .state = ARM_CP_STATE_AA64, 7594 .opc0 = 3, .opc1 = 6, .crn = 13, .crm = 0, .opc2 = 7, 7595 .access = PL3_RW, 7596 .fieldoffset = offsetof(CPUARMState, scxtnum_el[3]) }, 7597 }; 7598 7599 static CPAccessResult access_fgt(CPUARMState *env, const ARMCPRegInfo *ri, 7600 bool isread) 7601 { 7602 if (arm_current_el(env) == 2 && 7603 arm_feature(env, ARM_FEATURE_EL3) && !(env->cp15.scr_el3 & SCR_FGTEN)) { 7604 return CP_ACCESS_TRAP_EL3; 7605 } 7606 return CP_ACCESS_OK; 7607 } 7608 7609 static const ARMCPRegInfo fgt_reginfo[] = { 7610 { .name = "HFGRTR_EL2", .state = ARM_CP_STATE_AA64, 7611 .opc0 = 3, .opc1 = 4, .crn = 1, .crm = 1, .opc2 = 4, 7612 .access = PL2_RW, .accessfn = access_fgt, 7613 .fieldoffset = offsetof(CPUARMState, cp15.fgt_read[FGTREG_HFGRTR]) }, 7614 { .name = "HFGWTR_EL2", .state = ARM_CP_STATE_AA64, 7615 .opc0 = 3, .opc1 = 4, .crn = 1, .crm = 1, .opc2 = 5, 7616 .access = PL2_RW, .accessfn = access_fgt, 7617 .fieldoffset = offsetof(CPUARMState, cp15.fgt_write[FGTREG_HFGWTR]) }, 7618 { .name = "HDFGRTR_EL2", .state = ARM_CP_STATE_AA64, 7619 .opc0 = 3, .opc1 = 4, .crn = 3, .crm = 1, .opc2 = 4, 7620 .access = PL2_RW, .accessfn = access_fgt, 7621 .fieldoffset = offsetof(CPUARMState, cp15.fgt_read[FGTREG_HDFGRTR]) }, 7622 { .name = "HDFGWTR_EL2", .state = ARM_CP_STATE_AA64, 7623 .opc0 = 3, .opc1 = 4, .crn = 3, .crm = 1, .opc2 = 5, 7624 .access = PL2_RW, .accessfn = access_fgt, 7625 .fieldoffset = offsetof(CPUARMState, cp15.fgt_write[FGTREG_HDFGWTR]) }, 7626 { .name = "HFGITR_EL2", .state = ARM_CP_STATE_AA64, 7627 .opc0 = 3, .opc1 = 4, .crn = 1, .crm = 1, .opc2 = 6, 7628 .access = PL2_RW, .accessfn = access_fgt, 7629 .fieldoffset = offsetof(CPUARMState, cp15.fgt_exec[FGTREG_HFGITR]) }, 7630 }; 7631 #endif /* TARGET_AARCH64 */ 7632 7633 static CPAccessResult access_predinv(CPUARMState *env, const ARMCPRegInfo *ri, 7634 bool isread) 7635 { 7636 int el = arm_current_el(env); 7637 7638 if (el == 0) { 7639 uint64_t sctlr = arm_sctlr(env, el); 7640 if (!(sctlr & SCTLR_EnRCTX)) { 7641 return CP_ACCESS_TRAP; 7642 } 7643 } else if (el == 1) { 7644 uint64_t hcr = arm_hcr_el2_eff(env); 7645 if (hcr & HCR_NV) { 7646 return CP_ACCESS_TRAP_EL2; 7647 } 7648 } 7649 return CP_ACCESS_OK; 7650 } 7651 7652 static const ARMCPRegInfo predinv_reginfo[] = { 7653 { .name = "CFP_RCTX", .state = ARM_CP_STATE_AA64, 7654 .opc0 = 1, .opc1 = 3, .crn = 7, .crm = 3, .opc2 = 4, 7655 .type = ARM_CP_NOP, .access = PL0_W, .accessfn = access_predinv }, 7656 { .name = "DVP_RCTX", .state = ARM_CP_STATE_AA64, 7657 .opc0 = 1, .opc1 = 3, .crn = 7, .crm = 3, .opc2 = 5, 7658 .type = ARM_CP_NOP, .access = PL0_W, .accessfn = access_predinv }, 7659 { .name = "CPP_RCTX", .state = ARM_CP_STATE_AA64, 7660 .opc0 = 1, .opc1 = 3, .crn = 7, .crm = 3, .opc2 = 7, 7661 .type = ARM_CP_NOP, .access = PL0_W, .accessfn = access_predinv }, 7662 /* 7663 * Note the AArch32 opcodes have a different OPC1. 7664 */ 7665 { .name = "CFPRCTX", .state = ARM_CP_STATE_AA32, 7666 .cp = 15, .opc1 = 0, .crn = 7, .crm = 3, .opc2 = 4, 7667 .type = ARM_CP_NOP, .access = PL0_W, .accessfn = access_predinv }, 7668 { .name = "DVPRCTX", .state = ARM_CP_STATE_AA32, 7669 .cp = 15, .opc1 = 0, .crn = 7, .crm = 3, .opc2 = 5, 7670 .type = ARM_CP_NOP, .access = PL0_W, .accessfn = access_predinv }, 7671 { .name = "CPPRCTX", .state = ARM_CP_STATE_AA32, 7672 .cp = 15, .opc1 = 0, .crn = 7, .crm = 3, .opc2 = 7, 7673 .type = ARM_CP_NOP, .access = PL0_W, .accessfn = access_predinv }, 7674 }; 7675 7676 static uint64_t ccsidr2_read(CPUARMState *env, const ARMCPRegInfo *ri) 7677 { 7678 /* Read the high 32 bits of the current CCSIDR */ 7679 return extract64(ccsidr_read(env, ri), 32, 32); 7680 } 7681 7682 static const ARMCPRegInfo ccsidr2_reginfo[] = { 7683 { .name = "CCSIDR2", .state = ARM_CP_STATE_BOTH, 7684 .opc0 = 3, .opc1 = 1, .crn = 0, .crm = 0, .opc2 = 2, 7685 .access = PL1_R, 7686 .accessfn = access_tid4, 7687 .readfn = ccsidr2_read, .type = ARM_CP_NO_RAW }, 7688 }; 7689 7690 static CPAccessResult access_aa64_tid3(CPUARMState *env, const ARMCPRegInfo *ri, 7691 bool isread) 7692 { 7693 if ((arm_current_el(env) < 2) && (arm_hcr_el2_eff(env) & HCR_TID3)) { 7694 return CP_ACCESS_TRAP_EL2; 7695 } 7696 7697 return CP_ACCESS_OK; 7698 } 7699 7700 static CPAccessResult access_aa32_tid3(CPUARMState *env, const ARMCPRegInfo *ri, 7701 bool isread) 7702 { 7703 if (arm_feature(env, ARM_FEATURE_V8)) { 7704 return access_aa64_tid3(env, ri, isread); 7705 } 7706 7707 return CP_ACCESS_OK; 7708 } 7709 7710 static CPAccessResult access_jazelle(CPUARMState *env, const ARMCPRegInfo *ri, 7711 bool isread) 7712 { 7713 if (arm_current_el(env) == 1 && (arm_hcr_el2_eff(env) & HCR_TID0)) { 7714 return CP_ACCESS_TRAP_EL2; 7715 } 7716 7717 return CP_ACCESS_OK; 7718 } 7719 7720 static CPAccessResult access_joscr_jmcr(CPUARMState *env, 7721 const ARMCPRegInfo *ri, bool isread) 7722 { 7723 /* 7724 * HSTR.TJDBX traps JOSCR and JMCR accesses, but it exists only 7725 * in v7A, not in v8A. 7726 */ 7727 if (!arm_feature(env, ARM_FEATURE_V8) && 7728 arm_current_el(env) < 2 && !arm_is_secure_below_el3(env) && 7729 (env->cp15.hstr_el2 & HSTR_TJDBX)) { 7730 return CP_ACCESS_TRAP_EL2; 7731 } 7732 return CP_ACCESS_OK; 7733 } 7734 7735 static const ARMCPRegInfo jazelle_regs[] = { 7736 { .name = "JIDR", 7737 .cp = 14, .crn = 0, .crm = 0, .opc1 = 7, .opc2 = 0, 7738 .access = PL1_R, .accessfn = access_jazelle, 7739 .type = ARM_CP_CONST, .resetvalue = 0 }, 7740 { .name = "JOSCR", 7741 .cp = 14, .crn = 1, .crm = 0, .opc1 = 7, .opc2 = 0, 7742 .accessfn = access_joscr_jmcr, 7743 .access = PL1_RW, .type = ARM_CP_CONST, .resetvalue = 0 }, 7744 { .name = "JMCR", 7745 .cp = 14, .crn = 2, .crm = 0, .opc1 = 7, .opc2 = 0, 7746 .accessfn = access_joscr_jmcr, 7747 .access = PL1_RW, .type = ARM_CP_CONST, .resetvalue = 0 }, 7748 }; 7749 7750 static const ARMCPRegInfo contextidr_el2 = { 7751 .name = "CONTEXTIDR_EL2", .state = ARM_CP_STATE_AA64, 7752 .opc0 = 3, .opc1 = 4, .crn = 13, .crm = 0, .opc2 = 1, 7753 .access = PL2_RW, 7754 .fieldoffset = offsetof(CPUARMState, cp15.contextidr_el[2]) 7755 }; 7756 7757 static const ARMCPRegInfo vhe_reginfo[] = { 7758 { .name = "TTBR1_EL2", .state = ARM_CP_STATE_AA64, 7759 .opc0 = 3, .opc1 = 4, .crn = 2, .crm = 0, .opc2 = 1, 7760 .access = PL2_RW, .writefn = vmsa_tcr_ttbr_el2_write, 7761 .fieldoffset = offsetof(CPUARMState, cp15.ttbr1_el[2]) }, 7762 #ifndef CONFIG_USER_ONLY 7763 { .name = "CNTHV_CVAL_EL2", .state = ARM_CP_STATE_AA64, 7764 .opc0 = 3, .opc1 = 4, .crn = 14, .crm = 3, .opc2 = 2, 7765 .fieldoffset = 7766 offsetof(CPUARMState, cp15.c14_timer[GTIMER_HYPVIRT].cval), 7767 .type = ARM_CP_IO, .access = PL2_RW, 7768 .writefn = gt_hv_cval_write, .raw_writefn = raw_write }, 7769 { .name = "CNTHV_TVAL_EL2", .state = ARM_CP_STATE_BOTH, 7770 .opc0 = 3, .opc1 = 4, .crn = 14, .crm = 3, .opc2 = 0, 7771 .type = ARM_CP_NO_RAW | ARM_CP_IO, .access = PL2_RW, 7772 .resetfn = gt_hv_timer_reset, 7773 .readfn = gt_hv_tval_read, .writefn = gt_hv_tval_write }, 7774 { .name = "CNTHV_CTL_EL2", .state = ARM_CP_STATE_BOTH, 7775 .type = ARM_CP_IO, 7776 .opc0 = 3, .opc1 = 4, .crn = 14, .crm = 3, .opc2 = 1, 7777 .access = PL2_RW, 7778 .fieldoffset = offsetof(CPUARMState, cp15.c14_timer[GTIMER_HYPVIRT].ctl), 7779 .writefn = gt_hv_ctl_write, .raw_writefn = raw_write }, 7780 { .name = "CNTP_CTL_EL02", .state = ARM_CP_STATE_AA64, 7781 .opc0 = 3, .opc1 = 5, .crn = 14, .crm = 2, .opc2 = 1, 7782 .type = ARM_CP_IO | ARM_CP_ALIAS, 7783 .access = PL2_RW, .accessfn = e2h_access, 7784 .fieldoffset = offsetof(CPUARMState, cp15.c14_timer[GTIMER_PHYS].ctl), 7785 .writefn = gt_phys_ctl_write, .raw_writefn = raw_write }, 7786 { .name = "CNTV_CTL_EL02", .state = ARM_CP_STATE_AA64, 7787 .opc0 = 3, .opc1 = 5, .crn = 14, .crm = 3, .opc2 = 1, 7788 .type = ARM_CP_IO | ARM_CP_ALIAS, 7789 .access = PL2_RW, .accessfn = e2h_access, 7790 .fieldoffset = offsetof(CPUARMState, cp15.c14_timer[GTIMER_VIRT].ctl), 7791 .writefn = gt_virt_ctl_write, .raw_writefn = raw_write }, 7792 { .name = "CNTP_TVAL_EL02", .state = ARM_CP_STATE_AA64, 7793 .opc0 = 3, .opc1 = 5, .crn = 14, .crm = 2, .opc2 = 0, 7794 .type = ARM_CP_NO_RAW | ARM_CP_IO | ARM_CP_ALIAS, 7795 .access = PL2_RW, .accessfn = e2h_access, 7796 .readfn = gt_phys_tval_read, .writefn = gt_phys_tval_write }, 7797 { .name = "CNTV_TVAL_EL02", .state = ARM_CP_STATE_AA64, 7798 .opc0 = 3, .opc1 = 5, .crn = 14, .crm = 3, .opc2 = 0, 7799 .type = ARM_CP_NO_RAW | ARM_CP_IO | ARM_CP_ALIAS, 7800 .access = PL2_RW, .accessfn = e2h_access, 7801 .readfn = gt_virt_tval_read, .writefn = gt_virt_tval_write }, 7802 { .name = "CNTP_CVAL_EL02", .state = ARM_CP_STATE_AA64, 7803 .opc0 = 3, .opc1 = 5, .crn = 14, .crm = 2, .opc2 = 2, 7804 .type = ARM_CP_IO | ARM_CP_ALIAS, 7805 .fieldoffset = offsetof(CPUARMState, cp15.c14_timer[GTIMER_PHYS].cval), 7806 .access = PL2_RW, .accessfn = e2h_access, 7807 .writefn = gt_phys_cval_write, .raw_writefn = raw_write }, 7808 { .name = "CNTV_CVAL_EL02", .state = ARM_CP_STATE_AA64, 7809 .opc0 = 3, .opc1 = 5, .crn = 14, .crm = 3, .opc2 = 2, 7810 .type = ARM_CP_IO | ARM_CP_ALIAS, 7811 .fieldoffset = offsetof(CPUARMState, cp15.c14_timer[GTIMER_VIRT].cval), 7812 .access = PL2_RW, .accessfn = e2h_access, 7813 .writefn = gt_virt_cval_write, .raw_writefn = raw_write }, 7814 #endif 7815 }; 7816 7817 #ifndef CONFIG_USER_ONLY 7818 static const ARMCPRegInfo ats1e1_reginfo[] = { 7819 { .name = "AT_S1E1RP", .state = ARM_CP_STATE_AA64, 7820 .opc0 = 1, .opc1 = 0, .crn = 7, .crm = 9, .opc2 = 0, 7821 .access = PL1_W, .type = ARM_CP_NO_RAW | ARM_CP_RAISES_EXC, 7822 .writefn = ats_write64 }, 7823 { .name = "AT_S1E1WP", .state = ARM_CP_STATE_AA64, 7824 .opc0 = 1, .opc1 = 0, .crn = 7, .crm = 9, .opc2 = 1, 7825 .access = PL1_W, .type = ARM_CP_NO_RAW | ARM_CP_RAISES_EXC, 7826 .writefn = ats_write64 }, 7827 }; 7828 7829 static const ARMCPRegInfo ats1cp_reginfo[] = { 7830 { .name = "ATS1CPRP", 7831 .cp = 15, .opc1 = 0, .crn = 7, .crm = 9, .opc2 = 0, 7832 .access = PL1_W, .type = ARM_CP_NO_RAW | ARM_CP_RAISES_EXC, 7833 .writefn = ats_write }, 7834 { .name = "ATS1CPWP", 7835 .cp = 15, .opc1 = 0, .crn = 7, .crm = 9, .opc2 = 1, 7836 .access = PL1_W, .type = ARM_CP_NO_RAW | ARM_CP_RAISES_EXC, 7837 .writefn = ats_write }, 7838 }; 7839 #endif 7840 7841 /* 7842 * ACTLR2 and HACTLR2 map to ACTLR_EL1[63:32] and 7843 * ACTLR_EL2[63:32]. They exist only if the ID_MMFR4.AC2 field 7844 * is non-zero, which is never for ARMv7, optionally in ARMv8 7845 * and mandatorily for ARMv8.2 and up. 7846 * ACTLR2 is banked for S and NS if EL3 is AArch32. Since QEMU's 7847 * implementation is RAZ/WI we can ignore this detail, as we 7848 * do for ACTLR. 7849 */ 7850 static const ARMCPRegInfo actlr2_hactlr2_reginfo[] = { 7851 { .name = "ACTLR2", .state = ARM_CP_STATE_AA32, 7852 .cp = 15, .opc1 = 0, .crn = 1, .crm = 0, .opc2 = 3, 7853 .access = PL1_RW, .accessfn = access_tacr, 7854 .type = ARM_CP_CONST, .resetvalue = 0 }, 7855 { .name = "HACTLR2", .state = ARM_CP_STATE_AA32, 7856 .cp = 15, .opc1 = 4, .crn = 1, .crm = 0, .opc2 = 3, 7857 .access = PL2_RW, .type = ARM_CP_CONST, 7858 .resetvalue = 0 }, 7859 }; 7860 7861 void register_cp_regs_for_features(ARMCPU *cpu) 7862 { 7863 /* Register all the coprocessor registers based on feature bits */ 7864 CPUARMState *env = &cpu->env; 7865 if (arm_feature(env, ARM_FEATURE_M)) { 7866 /* M profile has no coprocessor registers */ 7867 return; 7868 } 7869 7870 define_arm_cp_regs(cpu, cp_reginfo); 7871 if (!arm_feature(env, ARM_FEATURE_V8)) { 7872 /* 7873 * Must go early as it is full of wildcards that may be 7874 * overridden by later definitions. 7875 */ 7876 define_arm_cp_regs(cpu, not_v8_cp_reginfo); 7877 } 7878 7879 if (arm_feature(env, ARM_FEATURE_V6)) { 7880 /* The ID registers all have impdef reset values */ 7881 ARMCPRegInfo v6_idregs[] = { 7882 { .name = "ID_PFR0", .state = ARM_CP_STATE_BOTH, 7883 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 1, .opc2 = 0, 7884 .access = PL1_R, .type = ARM_CP_CONST, 7885 .accessfn = access_aa32_tid3, 7886 .resetvalue = cpu->isar.id_pfr0 }, 7887 /* 7888 * ID_PFR1 is not a plain ARM_CP_CONST because we don't know 7889 * the value of the GIC field until after we define these regs. 7890 */ 7891 { .name = "ID_PFR1", .state = ARM_CP_STATE_BOTH, 7892 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 1, .opc2 = 1, 7893 .access = PL1_R, .type = ARM_CP_NO_RAW, 7894 .accessfn = access_aa32_tid3, 7895 .readfn = id_pfr1_read, 7896 .writefn = arm_cp_write_ignore }, 7897 { .name = "ID_DFR0", .state = ARM_CP_STATE_BOTH, 7898 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 1, .opc2 = 2, 7899 .access = PL1_R, .type = ARM_CP_CONST, 7900 .accessfn = access_aa32_tid3, 7901 .resetvalue = cpu->isar.id_dfr0 }, 7902 { .name = "ID_AFR0", .state = ARM_CP_STATE_BOTH, 7903 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 1, .opc2 = 3, 7904 .access = PL1_R, .type = ARM_CP_CONST, 7905 .accessfn = access_aa32_tid3, 7906 .resetvalue = cpu->id_afr0 }, 7907 { .name = "ID_MMFR0", .state = ARM_CP_STATE_BOTH, 7908 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 1, .opc2 = 4, 7909 .access = PL1_R, .type = ARM_CP_CONST, 7910 .accessfn = access_aa32_tid3, 7911 .resetvalue = cpu->isar.id_mmfr0 }, 7912 { .name = "ID_MMFR1", .state = ARM_CP_STATE_BOTH, 7913 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 1, .opc2 = 5, 7914 .access = PL1_R, .type = ARM_CP_CONST, 7915 .accessfn = access_aa32_tid3, 7916 .resetvalue = cpu->isar.id_mmfr1 }, 7917 { .name = "ID_MMFR2", .state = ARM_CP_STATE_BOTH, 7918 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 1, .opc2 = 6, 7919 .access = PL1_R, .type = ARM_CP_CONST, 7920 .accessfn = access_aa32_tid3, 7921 .resetvalue = cpu->isar.id_mmfr2 }, 7922 { .name = "ID_MMFR3", .state = ARM_CP_STATE_BOTH, 7923 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 1, .opc2 = 7, 7924 .access = PL1_R, .type = ARM_CP_CONST, 7925 .accessfn = access_aa32_tid3, 7926 .resetvalue = cpu->isar.id_mmfr3 }, 7927 { .name = "ID_ISAR0", .state = ARM_CP_STATE_BOTH, 7928 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 2, .opc2 = 0, 7929 .access = PL1_R, .type = ARM_CP_CONST, 7930 .accessfn = access_aa32_tid3, 7931 .resetvalue = cpu->isar.id_isar0 }, 7932 { .name = "ID_ISAR1", .state = ARM_CP_STATE_BOTH, 7933 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 2, .opc2 = 1, 7934 .access = PL1_R, .type = ARM_CP_CONST, 7935 .accessfn = access_aa32_tid3, 7936 .resetvalue = cpu->isar.id_isar1 }, 7937 { .name = "ID_ISAR2", .state = ARM_CP_STATE_BOTH, 7938 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 2, .opc2 = 2, 7939 .access = PL1_R, .type = ARM_CP_CONST, 7940 .accessfn = access_aa32_tid3, 7941 .resetvalue = cpu->isar.id_isar2 }, 7942 { .name = "ID_ISAR3", .state = ARM_CP_STATE_BOTH, 7943 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 2, .opc2 = 3, 7944 .access = PL1_R, .type = ARM_CP_CONST, 7945 .accessfn = access_aa32_tid3, 7946 .resetvalue = cpu->isar.id_isar3 }, 7947 { .name = "ID_ISAR4", .state = ARM_CP_STATE_BOTH, 7948 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 2, .opc2 = 4, 7949 .access = PL1_R, .type = ARM_CP_CONST, 7950 .accessfn = access_aa32_tid3, 7951 .resetvalue = cpu->isar.id_isar4 }, 7952 { .name = "ID_ISAR5", .state = ARM_CP_STATE_BOTH, 7953 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 2, .opc2 = 5, 7954 .access = PL1_R, .type = ARM_CP_CONST, 7955 .accessfn = access_aa32_tid3, 7956 .resetvalue = cpu->isar.id_isar5 }, 7957 { .name = "ID_MMFR4", .state = ARM_CP_STATE_BOTH, 7958 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 2, .opc2 = 6, 7959 .access = PL1_R, .type = ARM_CP_CONST, 7960 .accessfn = access_aa32_tid3, 7961 .resetvalue = cpu->isar.id_mmfr4 }, 7962 { .name = "ID_ISAR6", .state = ARM_CP_STATE_BOTH, 7963 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 2, .opc2 = 7, 7964 .access = PL1_R, .type = ARM_CP_CONST, 7965 .accessfn = access_aa32_tid3, 7966 .resetvalue = cpu->isar.id_isar6 }, 7967 }; 7968 define_arm_cp_regs(cpu, v6_idregs); 7969 define_arm_cp_regs(cpu, v6_cp_reginfo); 7970 } else { 7971 define_arm_cp_regs(cpu, not_v6_cp_reginfo); 7972 } 7973 if (arm_feature(env, ARM_FEATURE_V6K)) { 7974 define_arm_cp_regs(cpu, v6k_cp_reginfo); 7975 } 7976 if (arm_feature(env, ARM_FEATURE_V7MP) && 7977 !arm_feature(env, ARM_FEATURE_PMSA)) { 7978 define_arm_cp_regs(cpu, v7mp_cp_reginfo); 7979 } 7980 if (arm_feature(env, ARM_FEATURE_V7VE)) { 7981 define_arm_cp_regs(cpu, pmovsset_cp_reginfo); 7982 } 7983 if (arm_feature(env, ARM_FEATURE_V7)) { 7984 ARMCPRegInfo clidr = { 7985 .name = "CLIDR", .state = ARM_CP_STATE_BOTH, 7986 .opc0 = 3, .crn = 0, .crm = 0, .opc1 = 1, .opc2 = 1, 7987 .access = PL1_R, .type = ARM_CP_CONST, 7988 .accessfn = access_tid4, 7989 .fgt = FGT_CLIDR_EL1, 7990 .resetvalue = cpu->clidr 7991 }; 7992 define_one_arm_cp_reg(cpu, &clidr); 7993 define_arm_cp_regs(cpu, v7_cp_reginfo); 7994 define_debug_regs(cpu); 7995 define_pmu_regs(cpu); 7996 } else { 7997 define_arm_cp_regs(cpu, not_v7_cp_reginfo); 7998 } 7999 if (arm_feature(env, ARM_FEATURE_V8)) { 8000 /* 8001 * v8 ID registers, which all have impdef reset values. 8002 * Note that within the ID register ranges the unused slots 8003 * must all RAZ, not UNDEF; future architecture versions may 8004 * define new registers here. 8005 * ID registers which are AArch64 views of the AArch32 ID registers 8006 * which already existed in v6 and v7 are handled elsewhere, 8007 * in v6_idregs[]. 8008 */ 8009 int i; 8010 ARMCPRegInfo v8_idregs[] = { 8011 /* 8012 * ID_AA64PFR0_EL1 is not a plain ARM_CP_CONST in system 8013 * emulation because we don't know the right value for the 8014 * GIC field until after we define these regs. 8015 */ 8016 { .name = "ID_AA64PFR0_EL1", .state = ARM_CP_STATE_AA64, 8017 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 4, .opc2 = 0, 8018 .access = PL1_R, 8019 #ifdef CONFIG_USER_ONLY 8020 .type = ARM_CP_CONST, 8021 .resetvalue = cpu->isar.id_aa64pfr0 8022 #else 8023 .type = ARM_CP_NO_RAW, 8024 .accessfn = access_aa64_tid3, 8025 .readfn = id_aa64pfr0_read, 8026 .writefn = arm_cp_write_ignore 8027 #endif 8028 }, 8029 { .name = "ID_AA64PFR1_EL1", .state = ARM_CP_STATE_AA64, 8030 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 4, .opc2 = 1, 8031 .access = PL1_R, .type = ARM_CP_CONST, 8032 .accessfn = access_aa64_tid3, 8033 .resetvalue = cpu->isar.id_aa64pfr1}, 8034 { .name = "ID_AA64PFR2_EL1_RESERVED", .state = ARM_CP_STATE_AA64, 8035 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 4, .opc2 = 2, 8036 .access = PL1_R, .type = ARM_CP_CONST, 8037 .accessfn = access_aa64_tid3, 8038 .resetvalue = 0 }, 8039 { .name = "ID_AA64PFR3_EL1_RESERVED", .state = ARM_CP_STATE_AA64, 8040 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 4, .opc2 = 3, 8041 .access = PL1_R, .type = ARM_CP_CONST, 8042 .accessfn = access_aa64_tid3, 8043 .resetvalue = 0 }, 8044 { .name = "ID_AA64ZFR0_EL1", .state = ARM_CP_STATE_AA64, 8045 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 4, .opc2 = 4, 8046 .access = PL1_R, .type = ARM_CP_CONST, 8047 .accessfn = access_aa64_tid3, 8048 .resetvalue = cpu->isar.id_aa64zfr0 }, 8049 { .name = "ID_AA64SMFR0_EL1", .state = ARM_CP_STATE_AA64, 8050 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 4, .opc2 = 5, 8051 .access = PL1_R, .type = ARM_CP_CONST, 8052 .accessfn = access_aa64_tid3, 8053 .resetvalue = cpu->isar.id_aa64smfr0 }, 8054 { .name = "ID_AA64PFR6_EL1_RESERVED", .state = ARM_CP_STATE_AA64, 8055 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 4, .opc2 = 6, 8056 .access = PL1_R, .type = ARM_CP_CONST, 8057 .accessfn = access_aa64_tid3, 8058 .resetvalue = 0 }, 8059 { .name = "ID_AA64PFR7_EL1_RESERVED", .state = ARM_CP_STATE_AA64, 8060 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 4, .opc2 = 7, 8061 .access = PL1_R, .type = ARM_CP_CONST, 8062 .accessfn = access_aa64_tid3, 8063 .resetvalue = 0 }, 8064 { .name = "ID_AA64DFR0_EL1", .state = ARM_CP_STATE_AA64, 8065 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 5, .opc2 = 0, 8066 .access = PL1_R, .type = ARM_CP_CONST, 8067 .accessfn = access_aa64_tid3, 8068 .resetvalue = cpu->isar.id_aa64dfr0 }, 8069 { .name = "ID_AA64DFR1_EL1", .state = ARM_CP_STATE_AA64, 8070 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 5, .opc2 = 1, 8071 .access = PL1_R, .type = ARM_CP_CONST, 8072 .accessfn = access_aa64_tid3, 8073 .resetvalue = cpu->isar.id_aa64dfr1 }, 8074 { .name = "ID_AA64DFR2_EL1_RESERVED", .state = ARM_CP_STATE_AA64, 8075 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 5, .opc2 = 2, 8076 .access = PL1_R, .type = ARM_CP_CONST, 8077 .accessfn = access_aa64_tid3, 8078 .resetvalue = 0 }, 8079 { .name = "ID_AA64DFR3_EL1_RESERVED", .state = ARM_CP_STATE_AA64, 8080 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 5, .opc2 = 3, 8081 .access = PL1_R, .type = ARM_CP_CONST, 8082 .accessfn = access_aa64_tid3, 8083 .resetvalue = 0 }, 8084 { .name = "ID_AA64AFR0_EL1", .state = ARM_CP_STATE_AA64, 8085 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 5, .opc2 = 4, 8086 .access = PL1_R, .type = ARM_CP_CONST, 8087 .accessfn = access_aa64_tid3, 8088 .resetvalue = cpu->id_aa64afr0 }, 8089 { .name = "ID_AA64AFR1_EL1", .state = ARM_CP_STATE_AA64, 8090 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 5, .opc2 = 5, 8091 .access = PL1_R, .type = ARM_CP_CONST, 8092 .accessfn = access_aa64_tid3, 8093 .resetvalue = cpu->id_aa64afr1 }, 8094 { .name = "ID_AA64AFR2_EL1_RESERVED", .state = ARM_CP_STATE_AA64, 8095 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 5, .opc2 = 6, 8096 .access = PL1_R, .type = ARM_CP_CONST, 8097 .accessfn = access_aa64_tid3, 8098 .resetvalue = 0 }, 8099 { .name = "ID_AA64AFR3_EL1_RESERVED", .state = ARM_CP_STATE_AA64, 8100 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 5, .opc2 = 7, 8101 .access = PL1_R, .type = ARM_CP_CONST, 8102 .accessfn = access_aa64_tid3, 8103 .resetvalue = 0 }, 8104 { .name = "ID_AA64ISAR0_EL1", .state = ARM_CP_STATE_AA64, 8105 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 6, .opc2 = 0, 8106 .access = PL1_R, .type = ARM_CP_CONST, 8107 .accessfn = access_aa64_tid3, 8108 .resetvalue = cpu->isar.id_aa64isar0 }, 8109 { .name = "ID_AA64ISAR1_EL1", .state = ARM_CP_STATE_AA64, 8110 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 6, .opc2 = 1, 8111 .access = PL1_R, .type = ARM_CP_CONST, 8112 .accessfn = access_aa64_tid3, 8113 .resetvalue = cpu->isar.id_aa64isar1 }, 8114 { .name = "ID_AA64ISAR2_EL1_RESERVED", .state = ARM_CP_STATE_AA64, 8115 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 6, .opc2 = 2, 8116 .access = PL1_R, .type = ARM_CP_CONST, 8117 .accessfn = access_aa64_tid3, 8118 .resetvalue = 0 }, 8119 { .name = "ID_AA64ISAR3_EL1_RESERVED", .state = ARM_CP_STATE_AA64, 8120 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 6, .opc2 = 3, 8121 .access = PL1_R, .type = ARM_CP_CONST, 8122 .accessfn = access_aa64_tid3, 8123 .resetvalue = 0 }, 8124 { .name = "ID_AA64ISAR4_EL1_RESERVED", .state = ARM_CP_STATE_AA64, 8125 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 6, .opc2 = 4, 8126 .access = PL1_R, .type = ARM_CP_CONST, 8127 .accessfn = access_aa64_tid3, 8128 .resetvalue = 0 }, 8129 { .name = "ID_AA64ISAR5_EL1_RESERVED", .state = ARM_CP_STATE_AA64, 8130 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 6, .opc2 = 5, 8131 .access = PL1_R, .type = ARM_CP_CONST, 8132 .accessfn = access_aa64_tid3, 8133 .resetvalue = 0 }, 8134 { .name = "ID_AA64ISAR6_EL1_RESERVED", .state = ARM_CP_STATE_AA64, 8135 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 6, .opc2 = 6, 8136 .access = PL1_R, .type = ARM_CP_CONST, 8137 .accessfn = access_aa64_tid3, 8138 .resetvalue = 0 }, 8139 { .name = "ID_AA64ISAR7_EL1_RESERVED", .state = ARM_CP_STATE_AA64, 8140 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 6, .opc2 = 7, 8141 .access = PL1_R, .type = ARM_CP_CONST, 8142 .accessfn = access_aa64_tid3, 8143 .resetvalue = 0 }, 8144 { .name = "ID_AA64MMFR0_EL1", .state = ARM_CP_STATE_AA64, 8145 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 7, .opc2 = 0, 8146 .access = PL1_R, .type = ARM_CP_CONST, 8147 .accessfn = access_aa64_tid3, 8148 .resetvalue = cpu->isar.id_aa64mmfr0 }, 8149 { .name = "ID_AA64MMFR1_EL1", .state = ARM_CP_STATE_AA64, 8150 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 7, .opc2 = 1, 8151 .access = PL1_R, .type = ARM_CP_CONST, 8152 .accessfn = access_aa64_tid3, 8153 .resetvalue = cpu->isar.id_aa64mmfr1 }, 8154 { .name = "ID_AA64MMFR2_EL1", .state = ARM_CP_STATE_AA64, 8155 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 7, .opc2 = 2, 8156 .access = PL1_R, .type = ARM_CP_CONST, 8157 .accessfn = access_aa64_tid3, 8158 .resetvalue = cpu->isar.id_aa64mmfr2 }, 8159 { .name = "ID_AA64MMFR3_EL1_RESERVED", .state = ARM_CP_STATE_AA64, 8160 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 7, .opc2 = 3, 8161 .access = PL1_R, .type = ARM_CP_CONST, 8162 .accessfn = access_aa64_tid3, 8163 .resetvalue = 0 }, 8164 { .name = "ID_AA64MMFR4_EL1_RESERVED", .state = ARM_CP_STATE_AA64, 8165 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 7, .opc2 = 4, 8166 .access = PL1_R, .type = ARM_CP_CONST, 8167 .accessfn = access_aa64_tid3, 8168 .resetvalue = 0 }, 8169 { .name = "ID_AA64MMFR5_EL1_RESERVED", .state = ARM_CP_STATE_AA64, 8170 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 7, .opc2 = 5, 8171 .access = PL1_R, .type = ARM_CP_CONST, 8172 .accessfn = access_aa64_tid3, 8173 .resetvalue = 0 }, 8174 { .name = "ID_AA64MMFR6_EL1_RESERVED", .state = ARM_CP_STATE_AA64, 8175 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 7, .opc2 = 6, 8176 .access = PL1_R, .type = ARM_CP_CONST, 8177 .accessfn = access_aa64_tid3, 8178 .resetvalue = 0 }, 8179 { .name = "ID_AA64MMFR7_EL1_RESERVED", .state = ARM_CP_STATE_AA64, 8180 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 7, .opc2 = 7, 8181 .access = PL1_R, .type = ARM_CP_CONST, 8182 .accessfn = access_aa64_tid3, 8183 .resetvalue = 0 }, 8184 { .name = "MVFR0_EL1", .state = ARM_CP_STATE_AA64, 8185 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 3, .opc2 = 0, 8186 .access = PL1_R, .type = ARM_CP_CONST, 8187 .accessfn = access_aa64_tid3, 8188 .resetvalue = cpu->isar.mvfr0 }, 8189 { .name = "MVFR1_EL1", .state = ARM_CP_STATE_AA64, 8190 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 3, .opc2 = 1, 8191 .access = PL1_R, .type = ARM_CP_CONST, 8192 .accessfn = access_aa64_tid3, 8193 .resetvalue = cpu->isar.mvfr1 }, 8194 { .name = "MVFR2_EL1", .state = ARM_CP_STATE_AA64, 8195 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 3, .opc2 = 2, 8196 .access = PL1_R, .type = ARM_CP_CONST, 8197 .accessfn = access_aa64_tid3, 8198 .resetvalue = cpu->isar.mvfr2 }, 8199 /* 8200 * "0, c0, c3, {0,1,2}" are the encodings corresponding to 8201 * AArch64 MVFR[012]_EL1. Define the STATE_AA32 encoding 8202 * as RAZ, since it is in the "reserved for future ID 8203 * registers, RAZ" part of the AArch32 encoding space. 8204 */ 8205 { .name = "RES_0_C0_C3_0", .state = ARM_CP_STATE_AA32, 8206 .cp = 15, .opc1 = 0, .crn = 0, .crm = 3, .opc2 = 0, 8207 .access = PL1_R, .type = ARM_CP_CONST, 8208 .accessfn = access_aa64_tid3, 8209 .resetvalue = 0 }, 8210 { .name = "RES_0_C0_C3_1", .state = ARM_CP_STATE_AA32, 8211 .cp = 15, .opc1 = 0, .crn = 0, .crm = 3, .opc2 = 1, 8212 .access = PL1_R, .type = ARM_CP_CONST, 8213 .accessfn = access_aa64_tid3, 8214 .resetvalue = 0 }, 8215 { .name = "RES_0_C0_C3_2", .state = ARM_CP_STATE_AA32, 8216 .cp = 15, .opc1 = 0, .crn = 0, .crm = 3, .opc2 = 2, 8217 .access = PL1_R, .type = ARM_CP_CONST, 8218 .accessfn = access_aa64_tid3, 8219 .resetvalue = 0 }, 8220 /* 8221 * Other encodings in "0, c0, c3, ..." are STATE_BOTH because 8222 * they're also RAZ for AArch64, and in v8 are gradually 8223 * being filled with AArch64-view-of-AArch32-ID-register 8224 * for new ID registers. 8225 */ 8226 { .name = "RES_0_C0_C3_3", .state = ARM_CP_STATE_BOTH, 8227 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 3, .opc2 = 3, 8228 .access = PL1_R, .type = ARM_CP_CONST, 8229 .accessfn = access_aa64_tid3, 8230 .resetvalue = 0 }, 8231 { .name = "ID_PFR2", .state = ARM_CP_STATE_BOTH, 8232 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 3, .opc2 = 4, 8233 .access = PL1_R, .type = ARM_CP_CONST, 8234 .accessfn = access_aa64_tid3, 8235 .resetvalue = cpu->isar.id_pfr2 }, 8236 { .name = "ID_DFR1", .state = ARM_CP_STATE_BOTH, 8237 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 3, .opc2 = 5, 8238 .access = PL1_R, .type = ARM_CP_CONST, 8239 .accessfn = access_aa64_tid3, 8240 .resetvalue = cpu->isar.id_dfr1 }, 8241 { .name = "ID_MMFR5", .state = ARM_CP_STATE_BOTH, 8242 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 3, .opc2 = 6, 8243 .access = PL1_R, .type = ARM_CP_CONST, 8244 .accessfn = access_aa64_tid3, 8245 .resetvalue = cpu->isar.id_mmfr5 }, 8246 { .name = "RES_0_C0_C3_7", .state = ARM_CP_STATE_BOTH, 8247 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 3, .opc2 = 7, 8248 .access = PL1_R, .type = ARM_CP_CONST, 8249 .accessfn = access_aa64_tid3, 8250 .resetvalue = 0 }, 8251 { .name = "PMCEID0", .state = ARM_CP_STATE_AA32, 8252 .cp = 15, .opc1 = 0, .crn = 9, .crm = 12, .opc2 = 6, 8253 .access = PL0_R, .accessfn = pmreg_access, .type = ARM_CP_CONST, 8254 .resetvalue = extract64(cpu->pmceid0, 0, 32) }, 8255 { .name = "PMCEID0_EL0", .state = ARM_CP_STATE_AA64, 8256 .opc0 = 3, .opc1 = 3, .crn = 9, .crm = 12, .opc2 = 6, 8257 .access = PL0_R, .accessfn = pmreg_access, .type = ARM_CP_CONST, 8258 .resetvalue = cpu->pmceid0 }, 8259 { .name = "PMCEID1", .state = ARM_CP_STATE_AA32, 8260 .cp = 15, .opc1 = 0, .crn = 9, .crm = 12, .opc2 = 7, 8261 .access = PL0_R, .accessfn = pmreg_access, .type = ARM_CP_CONST, 8262 .resetvalue = extract64(cpu->pmceid1, 0, 32) }, 8263 { .name = "PMCEID1_EL0", .state = ARM_CP_STATE_AA64, 8264 .opc0 = 3, .opc1 = 3, .crn = 9, .crm = 12, .opc2 = 7, 8265 .access = PL0_R, .accessfn = pmreg_access, .type = ARM_CP_CONST, 8266 .resetvalue = cpu->pmceid1 }, 8267 }; 8268 #ifdef CONFIG_USER_ONLY 8269 static const ARMCPRegUserSpaceInfo v8_user_idregs[] = { 8270 { .name = "ID_AA64PFR0_EL1", 8271 .exported_bits = R_ID_AA64PFR0_FP_MASK | 8272 R_ID_AA64PFR0_ADVSIMD_MASK | 8273 R_ID_AA64PFR0_SVE_MASK | 8274 R_ID_AA64PFR0_DIT_MASK, 8275 .fixed_bits = (0x1u << R_ID_AA64PFR0_EL0_SHIFT) | 8276 (0x1u << R_ID_AA64PFR0_EL1_SHIFT) }, 8277 { .name = "ID_AA64PFR1_EL1", 8278 .exported_bits = R_ID_AA64PFR1_BT_MASK | 8279 R_ID_AA64PFR1_SSBS_MASK | 8280 R_ID_AA64PFR1_MTE_MASK | 8281 R_ID_AA64PFR1_SME_MASK }, 8282 { .name = "ID_AA64PFR*_EL1_RESERVED", 8283 .is_glob = true }, 8284 { .name = "ID_AA64ZFR0_EL1", 8285 .exported_bits = R_ID_AA64ZFR0_SVEVER_MASK | 8286 R_ID_AA64ZFR0_AES_MASK | 8287 R_ID_AA64ZFR0_BITPERM_MASK | 8288 R_ID_AA64ZFR0_BFLOAT16_MASK | 8289 R_ID_AA64ZFR0_SHA3_MASK | 8290 R_ID_AA64ZFR0_SM4_MASK | 8291 R_ID_AA64ZFR0_I8MM_MASK | 8292 R_ID_AA64ZFR0_F32MM_MASK | 8293 R_ID_AA64ZFR0_F64MM_MASK }, 8294 { .name = "ID_AA64SMFR0_EL1", 8295 .exported_bits = R_ID_AA64SMFR0_F32F32_MASK | 8296 R_ID_AA64SMFR0_B16F32_MASK | 8297 R_ID_AA64SMFR0_F16F32_MASK | 8298 R_ID_AA64SMFR0_I8I32_MASK | 8299 R_ID_AA64SMFR0_F64F64_MASK | 8300 R_ID_AA64SMFR0_I16I64_MASK | 8301 R_ID_AA64SMFR0_FA64_MASK }, 8302 { .name = "ID_AA64MMFR0_EL1", 8303 .exported_bits = R_ID_AA64MMFR0_ECV_MASK, 8304 .fixed_bits = (0xfu << R_ID_AA64MMFR0_TGRAN64_SHIFT) | 8305 (0xfu << R_ID_AA64MMFR0_TGRAN4_SHIFT) }, 8306 { .name = "ID_AA64MMFR1_EL1", 8307 .exported_bits = R_ID_AA64MMFR1_AFP_MASK }, 8308 { .name = "ID_AA64MMFR2_EL1", 8309 .exported_bits = R_ID_AA64MMFR2_AT_MASK }, 8310 { .name = "ID_AA64MMFR*_EL1_RESERVED", 8311 .is_glob = true }, 8312 { .name = "ID_AA64DFR0_EL1", 8313 .fixed_bits = (0x6u << R_ID_AA64DFR0_DEBUGVER_SHIFT) }, 8314 { .name = "ID_AA64DFR1_EL1" }, 8315 { .name = "ID_AA64DFR*_EL1_RESERVED", 8316 .is_glob = true }, 8317 { .name = "ID_AA64AFR*", 8318 .is_glob = true }, 8319 { .name = "ID_AA64ISAR0_EL1", 8320 .exported_bits = R_ID_AA64ISAR0_AES_MASK | 8321 R_ID_AA64ISAR0_SHA1_MASK | 8322 R_ID_AA64ISAR0_SHA2_MASK | 8323 R_ID_AA64ISAR0_CRC32_MASK | 8324 R_ID_AA64ISAR0_ATOMIC_MASK | 8325 R_ID_AA64ISAR0_RDM_MASK | 8326 R_ID_AA64ISAR0_SHA3_MASK | 8327 R_ID_AA64ISAR0_SM3_MASK | 8328 R_ID_AA64ISAR0_SM4_MASK | 8329 R_ID_AA64ISAR0_DP_MASK | 8330 R_ID_AA64ISAR0_FHM_MASK | 8331 R_ID_AA64ISAR0_TS_MASK | 8332 R_ID_AA64ISAR0_RNDR_MASK }, 8333 { .name = "ID_AA64ISAR1_EL1", 8334 .exported_bits = R_ID_AA64ISAR1_DPB_MASK | 8335 R_ID_AA64ISAR1_APA_MASK | 8336 R_ID_AA64ISAR1_API_MASK | 8337 R_ID_AA64ISAR1_JSCVT_MASK | 8338 R_ID_AA64ISAR1_FCMA_MASK | 8339 R_ID_AA64ISAR1_LRCPC_MASK | 8340 R_ID_AA64ISAR1_GPA_MASK | 8341 R_ID_AA64ISAR1_GPI_MASK | 8342 R_ID_AA64ISAR1_FRINTTS_MASK | 8343 R_ID_AA64ISAR1_SB_MASK | 8344 R_ID_AA64ISAR1_BF16_MASK | 8345 R_ID_AA64ISAR1_DGH_MASK | 8346 R_ID_AA64ISAR1_I8MM_MASK }, 8347 { .name = "ID_AA64ISAR2_EL1", 8348 .exported_bits = R_ID_AA64ISAR2_WFXT_MASK | 8349 R_ID_AA64ISAR2_RPRES_MASK | 8350 R_ID_AA64ISAR2_GPA3_MASK | 8351 R_ID_AA64ISAR2_APA3_MASK }, 8352 { .name = "ID_AA64ISAR*_EL1_RESERVED", 8353 .is_glob = true }, 8354 }; 8355 modify_arm_cp_regs(v8_idregs, v8_user_idregs); 8356 #endif 8357 /* RVBAR_EL1 is only implemented if EL1 is the highest EL */ 8358 if (!arm_feature(env, ARM_FEATURE_EL3) && 8359 !arm_feature(env, ARM_FEATURE_EL2)) { 8360 ARMCPRegInfo rvbar = { 8361 .name = "RVBAR_EL1", .state = ARM_CP_STATE_BOTH, 8362 .opc0 = 3, .opc1 = 0, .crn = 12, .crm = 0, .opc2 = 1, 8363 .access = PL1_R, 8364 .fieldoffset = offsetof(CPUARMState, cp15.rvbar), 8365 }; 8366 define_one_arm_cp_reg(cpu, &rvbar); 8367 } 8368 define_arm_cp_regs(cpu, v8_idregs); 8369 define_arm_cp_regs(cpu, v8_cp_reginfo); 8370 8371 for (i = 4; i < 16; i++) { 8372 /* 8373 * Encodings in "0, c0, {c4-c7}, {0-7}" are RAZ for AArch32. 8374 * For pre-v8 cores there are RAZ patterns for these in 8375 * id_pre_v8_midr_cp_reginfo[]; for v8 we do that here. 8376 * v8 extends the "must RAZ" part of the ID register space 8377 * to also cover c0, 0, c{8-15}, {0-7}. 8378 * These are STATE_AA32 because in the AArch64 sysreg space 8379 * c4-c7 is where the AArch64 ID registers live (and we've 8380 * already defined those in v8_idregs[]), and c8-c15 are not 8381 * "must RAZ" for AArch64. 8382 */ 8383 g_autofree char *name = g_strdup_printf("RES_0_C0_C%d_X", i); 8384 ARMCPRegInfo v8_aa32_raz_idregs = { 8385 .name = name, 8386 .state = ARM_CP_STATE_AA32, 8387 .cp = 15, .opc1 = 0, .crn = 0, .crm = i, .opc2 = CP_ANY, 8388 .access = PL1_R, .type = ARM_CP_CONST, 8389 .accessfn = access_aa64_tid3, 8390 .resetvalue = 0 }; 8391 define_one_arm_cp_reg(cpu, &v8_aa32_raz_idregs); 8392 } 8393 } 8394 8395 /* 8396 * Register the base EL2 cpregs. 8397 * Pre v8, these registers are implemented only as part of the 8398 * Virtualization Extensions (EL2 present). Beginning with v8, 8399 * if EL2 is missing but EL3 is enabled, mostly these become 8400 * RES0 from EL3, with some specific exceptions. 8401 */ 8402 if (arm_feature(env, ARM_FEATURE_EL2) 8403 || (arm_feature(env, ARM_FEATURE_EL3) 8404 && arm_feature(env, ARM_FEATURE_V8))) { 8405 uint64_t vmpidr_def = mpidr_read_val(env); 8406 ARMCPRegInfo vpidr_regs[] = { 8407 { .name = "VPIDR", .state = ARM_CP_STATE_AA32, 8408 .cp = 15, .opc1 = 4, .crn = 0, .crm = 0, .opc2 = 0, 8409 .access = PL2_RW, .accessfn = access_el3_aa32ns, 8410 .resetvalue = cpu->midr, 8411 .type = ARM_CP_ALIAS | ARM_CP_EL3_NO_EL2_C_NZ, 8412 .fieldoffset = offsetoflow32(CPUARMState, cp15.vpidr_el2) }, 8413 { .name = "VPIDR_EL2", .state = ARM_CP_STATE_AA64, 8414 .opc0 = 3, .opc1 = 4, .crn = 0, .crm = 0, .opc2 = 0, 8415 .access = PL2_RW, .resetvalue = cpu->midr, 8416 .type = ARM_CP_EL3_NO_EL2_C_NZ, 8417 .fieldoffset = offsetof(CPUARMState, cp15.vpidr_el2) }, 8418 { .name = "VMPIDR", .state = ARM_CP_STATE_AA32, 8419 .cp = 15, .opc1 = 4, .crn = 0, .crm = 0, .opc2 = 5, 8420 .access = PL2_RW, .accessfn = access_el3_aa32ns, 8421 .resetvalue = vmpidr_def, 8422 .type = ARM_CP_ALIAS | ARM_CP_EL3_NO_EL2_C_NZ, 8423 .fieldoffset = offsetoflow32(CPUARMState, cp15.vmpidr_el2) }, 8424 { .name = "VMPIDR_EL2", .state = ARM_CP_STATE_AA64, 8425 .opc0 = 3, .opc1 = 4, .crn = 0, .crm = 0, .opc2 = 5, 8426 .access = PL2_RW, .resetvalue = vmpidr_def, 8427 .type = ARM_CP_EL3_NO_EL2_C_NZ, 8428 .fieldoffset = offsetof(CPUARMState, cp15.vmpidr_el2) }, 8429 }; 8430 /* 8431 * The only field of MDCR_EL2 that has a defined architectural reset 8432 * value is MDCR_EL2.HPMN which should reset to the value of PMCR_EL0.N. 8433 */ 8434 ARMCPRegInfo mdcr_el2 = { 8435 .name = "MDCR_EL2", .state = ARM_CP_STATE_BOTH, .type = ARM_CP_IO, 8436 .opc0 = 3, .opc1 = 4, .crn = 1, .crm = 1, .opc2 = 1, 8437 .writefn = mdcr_el2_write, 8438 .access = PL2_RW, .resetvalue = pmu_num_counters(env), 8439 .fieldoffset = offsetof(CPUARMState, cp15.mdcr_el2), 8440 }; 8441 define_one_arm_cp_reg(cpu, &mdcr_el2); 8442 define_arm_cp_regs(cpu, vpidr_regs); 8443 define_arm_cp_regs(cpu, el2_cp_reginfo); 8444 if (arm_feature(env, ARM_FEATURE_V8)) { 8445 define_arm_cp_regs(cpu, el2_v8_cp_reginfo); 8446 } 8447 if (cpu_isar_feature(aa64_sel2, cpu)) { 8448 define_arm_cp_regs(cpu, el2_sec_cp_reginfo); 8449 } 8450 /* RVBAR_EL2 is only implemented if EL2 is the highest EL */ 8451 if (!arm_feature(env, ARM_FEATURE_EL3)) { 8452 ARMCPRegInfo rvbar[] = { 8453 { 8454 .name = "RVBAR_EL2", .state = ARM_CP_STATE_AA64, 8455 .opc0 = 3, .opc1 = 4, .crn = 12, .crm = 0, .opc2 = 1, 8456 .access = PL2_R, 8457 .fieldoffset = offsetof(CPUARMState, cp15.rvbar), 8458 }, 8459 { .name = "RVBAR", .type = ARM_CP_ALIAS, 8460 .cp = 15, .opc1 = 0, .crn = 12, .crm = 0, .opc2 = 1, 8461 .access = PL2_R, 8462 .fieldoffset = offsetof(CPUARMState, cp15.rvbar), 8463 }, 8464 }; 8465 define_arm_cp_regs(cpu, rvbar); 8466 } 8467 } 8468 8469 /* Register the base EL3 cpregs. */ 8470 if (arm_feature(env, ARM_FEATURE_EL3)) { 8471 define_arm_cp_regs(cpu, el3_cp_reginfo); 8472 ARMCPRegInfo el3_regs[] = { 8473 { .name = "RVBAR_EL3", .state = ARM_CP_STATE_AA64, 8474 .opc0 = 3, .opc1 = 6, .crn = 12, .crm = 0, .opc2 = 1, 8475 .access = PL3_R, 8476 .fieldoffset = offsetof(CPUARMState, cp15.rvbar), 8477 }, 8478 { .name = "SCTLR_EL3", .state = ARM_CP_STATE_AA64, 8479 .opc0 = 3, .opc1 = 6, .crn = 1, .crm = 0, .opc2 = 0, 8480 .access = PL3_RW, 8481 .raw_writefn = raw_write, .writefn = sctlr_write, 8482 .fieldoffset = offsetof(CPUARMState, cp15.sctlr_el[3]), 8483 .resetvalue = cpu->reset_sctlr }, 8484 }; 8485 8486 define_arm_cp_regs(cpu, el3_regs); 8487 } 8488 /* 8489 * The behaviour of NSACR is sufficiently various that we don't 8490 * try to describe it in a single reginfo: 8491 * if EL3 is 64 bit, then trap to EL3 from S EL1, 8492 * reads as constant 0xc00 from NS EL1 and NS EL2 8493 * if EL3 is 32 bit, then RW at EL3, RO at NS EL1 and NS EL2 8494 * if v7 without EL3, register doesn't exist 8495 * if v8 without EL3, reads as constant 0xc00 from NS EL1 and NS EL2 8496 */ 8497 if (arm_feature(env, ARM_FEATURE_EL3)) { 8498 if (arm_feature(env, ARM_FEATURE_AARCH64)) { 8499 static const ARMCPRegInfo nsacr = { 8500 .name = "NSACR", .type = ARM_CP_CONST, 8501 .cp = 15, .opc1 = 0, .crn = 1, .crm = 1, .opc2 = 2, 8502 .access = PL1_RW, .accessfn = nsacr_access, 8503 .resetvalue = 0xc00 8504 }; 8505 define_one_arm_cp_reg(cpu, &nsacr); 8506 } else { 8507 static const ARMCPRegInfo nsacr = { 8508 .name = "NSACR", 8509 .cp = 15, .opc1 = 0, .crn = 1, .crm = 1, .opc2 = 2, 8510 .access = PL3_RW | PL1_R, 8511 .resetvalue = 0, 8512 .fieldoffset = offsetof(CPUARMState, cp15.nsacr) 8513 }; 8514 define_one_arm_cp_reg(cpu, &nsacr); 8515 } 8516 } else { 8517 if (arm_feature(env, ARM_FEATURE_V8)) { 8518 static const ARMCPRegInfo nsacr = { 8519 .name = "NSACR", .type = ARM_CP_CONST, 8520 .cp = 15, .opc1 = 0, .crn = 1, .crm = 1, .opc2 = 2, 8521 .access = PL1_R, 8522 .resetvalue = 0xc00 8523 }; 8524 define_one_arm_cp_reg(cpu, &nsacr); 8525 } 8526 } 8527 8528 if (arm_feature(env, ARM_FEATURE_PMSA)) { 8529 if (arm_feature(env, ARM_FEATURE_V6)) { 8530 /* PMSAv6 not implemented */ 8531 assert(arm_feature(env, ARM_FEATURE_V7)); 8532 define_arm_cp_regs(cpu, vmsa_pmsa_cp_reginfo); 8533 define_arm_cp_regs(cpu, pmsav7_cp_reginfo); 8534 } else { 8535 define_arm_cp_regs(cpu, pmsav5_cp_reginfo); 8536 } 8537 } else { 8538 define_arm_cp_regs(cpu, vmsa_pmsa_cp_reginfo); 8539 define_arm_cp_regs(cpu, vmsa_cp_reginfo); 8540 /* TTCBR2 is introduced with ARMv8.2-AA32HPD. */ 8541 if (cpu_isar_feature(aa32_hpd, cpu)) { 8542 define_one_arm_cp_reg(cpu, &ttbcr2_reginfo); 8543 } 8544 } 8545 if (arm_feature(env, ARM_FEATURE_THUMB2EE)) { 8546 define_arm_cp_regs(cpu, t2ee_cp_reginfo); 8547 } 8548 if (arm_feature(env, ARM_FEATURE_GENERIC_TIMER)) { 8549 define_arm_cp_regs(cpu, generic_timer_cp_reginfo); 8550 } 8551 if (arm_feature(env, ARM_FEATURE_VAPA)) { 8552 define_arm_cp_regs(cpu, vapa_cp_reginfo); 8553 } 8554 if (arm_feature(env, ARM_FEATURE_CACHE_TEST_CLEAN)) { 8555 define_arm_cp_regs(cpu, cache_test_clean_cp_reginfo); 8556 } 8557 if (arm_feature(env, ARM_FEATURE_CACHE_DIRTY_REG)) { 8558 define_arm_cp_regs(cpu, cache_dirty_status_cp_reginfo); 8559 } 8560 if (arm_feature(env, ARM_FEATURE_CACHE_BLOCK_OPS)) { 8561 define_arm_cp_regs(cpu, cache_block_ops_cp_reginfo); 8562 } 8563 if (arm_feature(env, ARM_FEATURE_OMAPCP)) { 8564 define_arm_cp_regs(cpu, omap_cp_reginfo); 8565 } 8566 if (arm_feature(env, ARM_FEATURE_STRONGARM)) { 8567 define_arm_cp_regs(cpu, strongarm_cp_reginfo); 8568 } 8569 if (arm_feature(env, ARM_FEATURE_XSCALE)) { 8570 define_arm_cp_regs(cpu, xscale_cp_reginfo); 8571 } 8572 if (arm_feature(env, ARM_FEATURE_DUMMY_C15_REGS)) { 8573 define_arm_cp_regs(cpu, dummy_c15_cp_reginfo); 8574 } 8575 if (arm_feature(env, ARM_FEATURE_LPAE)) { 8576 define_arm_cp_regs(cpu, lpae_cp_reginfo); 8577 } 8578 if (cpu_isar_feature(aa32_jazelle, cpu)) { 8579 define_arm_cp_regs(cpu, jazelle_regs); 8580 } 8581 /* 8582 * Slightly awkwardly, the OMAP and StrongARM cores need all of 8583 * cp15 crn=0 to be writes-ignored, whereas for other cores they should 8584 * be read-only (ie write causes UNDEF exception). 8585 */ 8586 { 8587 ARMCPRegInfo id_pre_v8_midr_cp_reginfo[] = { 8588 /* 8589 * Pre-v8 MIDR space. 8590 * Note that the MIDR isn't a simple constant register because 8591 * of the TI925 behaviour where writes to another register can 8592 * cause the MIDR value to change. 8593 * 8594 * Unimplemented registers in the c15 0 0 0 space default to 8595 * MIDR. Define MIDR first as this entire space, then CTR, TCMTR 8596 * and friends override accordingly. 8597 */ 8598 { .name = "MIDR", 8599 .cp = 15, .crn = 0, .crm = 0, .opc1 = 0, .opc2 = CP_ANY, 8600 .access = PL1_R, .resetvalue = cpu->midr, 8601 .writefn = arm_cp_write_ignore, .raw_writefn = raw_write, 8602 .readfn = midr_read, 8603 .fieldoffset = offsetof(CPUARMState, cp15.c0_cpuid), 8604 .type = ARM_CP_OVERRIDE }, 8605 /* crn = 0 op1 = 0 crm = 3..7 : currently unassigned; we RAZ. */ 8606 { .name = "DUMMY", 8607 .cp = 15, .crn = 0, .crm = 3, .opc1 = 0, .opc2 = CP_ANY, 8608 .access = PL1_R, .type = ARM_CP_CONST, .resetvalue = 0 }, 8609 { .name = "DUMMY", 8610 .cp = 15, .crn = 0, .crm = 4, .opc1 = 0, .opc2 = CP_ANY, 8611 .access = PL1_R, .type = ARM_CP_CONST, .resetvalue = 0 }, 8612 { .name = "DUMMY", 8613 .cp = 15, .crn = 0, .crm = 5, .opc1 = 0, .opc2 = CP_ANY, 8614 .access = PL1_R, .type = ARM_CP_CONST, .resetvalue = 0 }, 8615 { .name = "DUMMY", 8616 .cp = 15, .crn = 0, .crm = 6, .opc1 = 0, .opc2 = CP_ANY, 8617 .access = PL1_R, .type = ARM_CP_CONST, .resetvalue = 0 }, 8618 { .name = "DUMMY", 8619 .cp = 15, .crn = 0, .crm = 7, .opc1 = 0, .opc2 = CP_ANY, 8620 .access = PL1_R, .type = ARM_CP_CONST, .resetvalue = 0 }, 8621 }; 8622 ARMCPRegInfo id_v8_midr_cp_reginfo[] = { 8623 { .name = "MIDR_EL1", .state = ARM_CP_STATE_BOTH, 8624 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 0, .opc2 = 0, 8625 .access = PL1_R, .type = ARM_CP_NO_RAW, .resetvalue = cpu->midr, 8626 .fgt = FGT_MIDR_EL1, 8627 .fieldoffset = offsetof(CPUARMState, cp15.c0_cpuid), 8628 .readfn = midr_read }, 8629 /* crn = 0 op1 = 0 crm = 0 op2 = 7 : AArch32 aliases of MIDR */ 8630 { .name = "MIDR", .type = ARM_CP_ALIAS | ARM_CP_CONST, 8631 .cp = 15, .crn = 0, .crm = 0, .opc1 = 0, .opc2 = 7, 8632 .access = PL1_R, .resetvalue = cpu->midr }, 8633 { .name = "REVIDR_EL1", .state = ARM_CP_STATE_BOTH, 8634 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 0, .opc2 = 6, 8635 .access = PL1_R, 8636 .accessfn = access_aa64_tid1, 8637 .fgt = FGT_REVIDR_EL1, 8638 .type = ARM_CP_CONST, .resetvalue = cpu->revidr }, 8639 }; 8640 ARMCPRegInfo id_v8_midr_alias_cp_reginfo = { 8641 .name = "MIDR", .type = ARM_CP_ALIAS | ARM_CP_CONST, 8642 .cp = 15, .crn = 0, .crm = 0, .opc1 = 0, .opc2 = 4, 8643 .access = PL1_R, .resetvalue = cpu->midr 8644 }; 8645 ARMCPRegInfo id_cp_reginfo[] = { 8646 /* These are common to v8 and pre-v8 */ 8647 { .name = "CTR", 8648 .cp = 15, .crn = 0, .crm = 0, .opc1 = 0, .opc2 = 1, 8649 .access = PL1_R, .accessfn = ctr_el0_access, 8650 .type = ARM_CP_CONST, .resetvalue = cpu->ctr }, 8651 { .name = "CTR_EL0", .state = ARM_CP_STATE_AA64, 8652 .opc0 = 3, .opc1 = 3, .opc2 = 1, .crn = 0, .crm = 0, 8653 .access = PL0_R, .accessfn = ctr_el0_access, 8654 .fgt = FGT_CTR_EL0, 8655 .type = ARM_CP_CONST, .resetvalue = cpu->ctr }, 8656 /* TCMTR and TLBTR exist in v8 but have no 64-bit versions */ 8657 { .name = "TCMTR", 8658 .cp = 15, .crn = 0, .crm = 0, .opc1 = 0, .opc2 = 2, 8659 .access = PL1_R, 8660 .accessfn = access_aa32_tid1, 8661 .type = ARM_CP_CONST, .resetvalue = 0 }, 8662 }; 8663 /* TLBTR is specific to VMSA */ 8664 ARMCPRegInfo id_tlbtr_reginfo = { 8665 .name = "TLBTR", 8666 .cp = 15, .crn = 0, .crm = 0, .opc1 = 0, .opc2 = 3, 8667 .access = PL1_R, 8668 .accessfn = access_aa32_tid1, 8669 .type = ARM_CP_CONST, .resetvalue = 0, 8670 }; 8671 /* MPUIR is specific to PMSA V6+ */ 8672 ARMCPRegInfo id_mpuir_reginfo = { 8673 .name = "MPUIR", 8674 .cp = 15, .crn = 0, .crm = 0, .opc1 = 0, .opc2 = 4, 8675 .access = PL1_R, .type = ARM_CP_CONST, 8676 .resetvalue = cpu->pmsav7_dregion << 8 8677 }; 8678 /* HMPUIR is specific to PMSA V8 */ 8679 ARMCPRegInfo id_hmpuir_reginfo = { 8680 .name = "HMPUIR", 8681 .cp = 15, .opc1 = 4, .crn = 0, .crm = 0, .opc2 = 4, 8682 .access = PL2_R, .type = ARM_CP_CONST, 8683 .resetvalue = cpu->pmsav8r_hdregion 8684 }; 8685 static const ARMCPRegInfo crn0_wi_reginfo = { 8686 .name = "CRN0_WI", .cp = 15, .crn = 0, .crm = CP_ANY, 8687 .opc1 = CP_ANY, .opc2 = CP_ANY, .access = PL1_W, 8688 .type = ARM_CP_NOP | ARM_CP_OVERRIDE 8689 }; 8690 #ifdef CONFIG_USER_ONLY 8691 static const ARMCPRegUserSpaceInfo id_v8_user_midr_cp_reginfo[] = { 8692 { .name = "MIDR_EL1", 8693 .exported_bits = R_MIDR_EL1_REVISION_MASK | 8694 R_MIDR_EL1_PARTNUM_MASK | 8695 R_MIDR_EL1_ARCHITECTURE_MASK | 8696 R_MIDR_EL1_VARIANT_MASK | 8697 R_MIDR_EL1_IMPLEMENTER_MASK }, 8698 { .name = "REVIDR_EL1" }, 8699 }; 8700 modify_arm_cp_regs(id_v8_midr_cp_reginfo, id_v8_user_midr_cp_reginfo); 8701 #endif 8702 if (arm_feature(env, ARM_FEATURE_OMAPCP) || 8703 arm_feature(env, ARM_FEATURE_STRONGARM)) { 8704 size_t i; 8705 /* 8706 * Register the blanket "writes ignored" value first to cover the 8707 * whole space. Then update the specific ID registers to allow write 8708 * access, so that they ignore writes rather than causing them to 8709 * UNDEF. 8710 */ 8711 define_one_arm_cp_reg(cpu, &crn0_wi_reginfo); 8712 for (i = 0; i < ARRAY_SIZE(id_pre_v8_midr_cp_reginfo); ++i) { 8713 id_pre_v8_midr_cp_reginfo[i].access = PL1_RW; 8714 } 8715 for (i = 0; i < ARRAY_SIZE(id_cp_reginfo); ++i) { 8716 id_cp_reginfo[i].access = PL1_RW; 8717 } 8718 id_mpuir_reginfo.access = PL1_RW; 8719 id_tlbtr_reginfo.access = PL1_RW; 8720 } 8721 if (arm_feature(env, ARM_FEATURE_V8)) { 8722 define_arm_cp_regs(cpu, id_v8_midr_cp_reginfo); 8723 if (!arm_feature(env, ARM_FEATURE_PMSA)) { 8724 define_one_arm_cp_reg(cpu, &id_v8_midr_alias_cp_reginfo); 8725 } 8726 } else { 8727 define_arm_cp_regs(cpu, id_pre_v8_midr_cp_reginfo); 8728 } 8729 define_arm_cp_regs(cpu, id_cp_reginfo); 8730 if (!arm_feature(env, ARM_FEATURE_PMSA)) { 8731 define_one_arm_cp_reg(cpu, &id_tlbtr_reginfo); 8732 } else if (arm_feature(env, ARM_FEATURE_PMSA) && 8733 arm_feature(env, ARM_FEATURE_V8)) { 8734 uint32_t i = 0; 8735 char *tmp_string; 8736 8737 define_one_arm_cp_reg(cpu, &id_mpuir_reginfo); 8738 define_one_arm_cp_reg(cpu, &id_hmpuir_reginfo); 8739 define_arm_cp_regs(cpu, pmsav8r_cp_reginfo); 8740 8741 /* Register alias is only valid for first 32 indexes */ 8742 for (i = 0; i < MIN(cpu->pmsav7_dregion, 32); ++i) { 8743 uint8_t crm = 0b1000 | extract32(i, 1, 3); 8744 uint8_t opc1 = extract32(i, 4, 1); 8745 uint8_t opc2 = extract32(i, 0, 1) << 2; 8746 8747 tmp_string = g_strdup_printf("PRBAR%u", i); 8748 ARMCPRegInfo tmp_prbarn_reginfo = { 8749 .name = tmp_string, .type = ARM_CP_ALIAS | ARM_CP_NO_RAW, 8750 .cp = 15, .opc1 = opc1, .crn = 6, .crm = crm, .opc2 = opc2, 8751 .access = PL1_RW, .resetvalue = 0, 8752 .accessfn = access_tvm_trvm, 8753 .writefn = pmsav8r_regn_write, .readfn = pmsav8r_regn_read 8754 }; 8755 define_one_arm_cp_reg(cpu, &tmp_prbarn_reginfo); 8756 g_free(tmp_string); 8757 8758 opc2 = extract32(i, 0, 1) << 2 | 0x1; 8759 tmp_string = g_strdup_printf("PRLAR%u", i); 8760 ARMCPRegInfo tmp_prlarn_reginfo = { 8761 .name = tmp_string, .type = ARM_CP_ALIAS | ARM_CP_NO_RAW, 8762 .cp = 15, .opc1 = opc1, .crn = 6, .crm = crm, .opc2 = opc2, 8763 .access = PL1_RW, .resetvalue = 0, 8764 .accessfn = access_tvm_trvm, 8765 .writefn = pmsav8r_regn_write, .readfn = pmsav8r_regn_read 8766 }; 8767 define_one_arm_cp_reg(cpu, &tmp_prlarn_reginfo); 8768 g_free(tmp_string); 8769 } 8770 8771 /* Register alias is only valid for first 32 indexes */ 8772 for (i = 0; i < MIN(cpu->pmsav8r_hdregion, 32); ++i) { 8773 uint8_t crm = 0b1000 | extract32(i, 1, 3); 8774 uint8_t opc1 = 0b100 | extract32(i, 4, 1); 8775 uint8_t opc2 = extract32(i, 0, 1) << 2; 8776 8777 tmp_string = g_strdup_printf("HPRBAR%u", i); 8778 ARMCPRegInfo tmp_hprbarn_reginfo = { 8779 .name = tmp_string, 8780 .type = ARM_CP_NO_RAW, 8781 .cp = 15, .opc1 = opc1, .crn = 6, .crm = crm, .opc2 = opc2, 8782 .access = PL2_RW, .resetvalue = 0, 8783 .writefn = pmsav8r_regn_write, .readfn = pmsav8r_regn_read 8784 }; 8785 define_one_arm_cp_reg(cpu, &tmp_hprbarn_reginfo); 8786 g_free(tmp_string); 8787 8788 opc2 = extract32(i, 0, 1) << 2 | 0x1; 8789 tmp_string = g_strdup_printf("HPRLAR%u", i); 8790 ARMCPRegInfo tmp_hprlarn_reginfo = { 8791 .name = tmp_string, 8792 .type = ARM_CP_NO_RAW, 8793 .cp = 15, .opc1 = opc1, .crn = 6, .crm = crm, .opc2 = opc2, 8794 .access = PL2_RW, .resetvalue = 0, 8795 .writefn = pmsav8r_regn_write, .readfn = pmsav8r_regn_read 8796 }; 8797 define_one_arm_cp_reg(cpu, &tmp_hprlarn_reginfo); 8798 g_free(tmp_string); 8799 } 8800 } else if (arm_feature(env, ARM_FEATURE_V7)) { 8801 define_one_arm_cp_reg(cpu, &id_mpuir_reginfo); 8802 } 8803 } 8804 8805 if (arm_feature(env, ARM_FEATURE_MPIDR)) { 8806 ARMCPRegInfo mpidr_cp_reginfo[] = { 8807 { .name = "MPIDR_EL1", .state = ARM_CP_STATE_BOTH, 8808 .opc0 = 3, .crn = 0, .crm = 0, .opc1 = 0, .opc2 = 5, 8809 .fgt = FGT_MPIDR_EL1, 8810 .access = PL1_R, .readfn = mpidr_read, .type = ARM_CP_NO_RAW }, 8811 }; 8812 #ifdef CONFIG_USER_ONLY 8813 static const ARMCPRegUserSpaceInfo mpidr_user_cp_reginfo[] = { 8814 { .name = "MPIDR_EL1", 8815 .fixed_bits = 0x0000000080000000 }, 8816 }; 8817 modify_arm_cp_regs(mpidr_cp_reginfo, mpidr_user_cp_reginfo); 8818 #endif 8819 define_arm_cp_regs(cpu, mpidr_cp_reginfo); 8820 } 8821 8822 if (arm_feature(env, ARM_FEATURE_AUXCR)) { 8823 ARMCPRegInfo auxcr_reginfo[] = { 8824 { .name = "ACTLR_EL1", .state = ARM_CP_STATE_BOTH, 8825 .opc0 = 3, .opc1 = 0, .crn = 1, .crm = 0, .opc2 = 1, 8826 .access = PL1_RW, .accessfn = access_tacr, 8827 .type = ARM_CP_CONST, .resetvalue = cpu->reset_auxcr }, 8828 { .name = "ACTLR_EL2", .state = ARM_CP_STATE_BOTH, 8829 .opc0 = 3, .opc1 = 4, .crn = 1, .crm = 0, .opc2 = 1, 8830 .access = PL2_RW, .type = ARM_CP_CONST, 8831 .resetvalue = 0 }, 8832 { .name = "ACTLR_EL3", .state = ARM_CP_STATE_AA64, 8833 .opc0 = 3, .opc1 = 6, .crn = 1, .crm = 0, .opc2 = 1, 8834 .access = PL3_RW, .type = ARM_CP_CONST, 8835 .resetvalue = 0 }, 8836 }; 8837 define_arm_cp_regs(cpu, auxcr_reginfo); 8838 if (cpu_isar_feature(aa32_ac2, cpu)) { 8839 define_arm_cp_regs(cpu, actlr2_hactlr2_reginfo); 8840 } 8841 } 8842 8843 if (arm_feature(env, ARM_FEATURE_CBAR)) { 8844 /* 8845 * CBAR is IMPDEF, but common on Arm Cortex-A implementations. 8846 * There are two flavours: 8847 * (1) older 32-bit only cores have a simple 32-bit CBAR 8848 * (2) 64-bit cores have a 64-bit CBAR visible to AArch64, plus a 8849 * 32-bit register visible to AArch32 at a different encoding 8850 * to the "flavour 1" register and with the bits rearranged to 8851 * be able to squash a 64-bit address into the 32-bit view. 8852 * We distinguish the two via the ARM_FEATURE_AARCH64 flag, but 8853 * in future if we support AArch32-only configs of some of the 8854 * AArch64 cores we might need to add a specific feature flag 8855 * to indicate cores with "flavour 2" CBAR. 8856 */ 8857 if (arm_feature(env, ARM_FEATURE_AARCH64)) { 8858 /* 32 bit view is [31:18] 0...0 [43:32]. */ 8859 uint32_t cbar32 = (extract64(cpu->reset_cbar, 18, 14) << 18) 8860 | extract64(cpu->reset_cbar, 32, 12); 8861 ARMCPRegInfo cbar_reginfo[] = { 8862 { .name = "CBAR", 8863 .type = ARM_CP_CONST, 8864 .cp = 15, .crn = 15, .crm = 3, .opc1 = 1, .opc2 = 0, 8865 .access = PL1_R, .resetvalue = cbar32 }, 8866 { .name = "CBAR_EL1", .state = ARM_CP_STATE_AA64, 8867 .type = ARM_CP_CONST, 8868 .opc0 = 3, .opc1 = 1, .crn = 15, .crm = 3, .opc2 = 0, 8869 .access = PL1_R, .resetvalue = cpu->reset_cbar }, 8870 }; 8871 /* We don't implement a r/w 64 bit CBAR currently */ 8872 assert(arm_feature(env, ARM_FEATURE_CBAR_RO)); 8873 define_arm_cp_regs(cpu, cbar_reginfo); 8874 } else { 8875 ARMCPRegInfo cbar = { 8876 .name = "CBAR", 8877 .cp = 15, .crn = 15, .crm = 0, .opc1 = 4, .opc2 = 0, 8878 .access = PL1_R | PL3_W, .resetvalue = cpu->reset_cbar, 8879 .fieldoffset = offsetof(CPUARMState, 8880 cp15.c15_config_base_address) 8881 }; 8882 if (arm_feature(env, ARM_FEATURE_CBAR_RO)) { 8883 cbar.access = PL1_R; 8884 cbar.fieldoffset = 0; 8885 cbar.type = ARM_CP_CONST; 8886 } 8887 define_one_arm_cp_reg(cpu, &cbar); 8888 } 8889 } 8890 8891 if (arm_feature(env, ARM_FEATURE_VBAR)) { 8892 static const ARMCPRegInfo vbar_cp_reginfo[] = { 8893 { .name = "VBAR", .state = ARM_CP_STATE_BOTH, 8894 .opc0 = 3, .crn = 12, .crm = 0, .opc1 = 0, .opc2 = 0, 8895 .access = PL1_RW, .writefn = vbar_write, 8896 .fgt = FGT_VBAR_EL1, 8897 .bank_fieldoffsets = { offsetof(CPUARMState, cp15.vbar_s), 8898 offsetof(CPUARMState, cp15.vbar_ns) }, 8899 .resetvalue = 0 }, 8900 }; 8901 define_arm_cp_regs(cpu, vbar_cp_reginfo); 8902 } 8903 8904 /* Generic registers whose values depend on the implementation */ 8905 { 8906 ARMCPRegInfo sctlr = { 8907 .name = "SCTLR", .state = ARM_CP_STATE_BOTH, 8908 .opc0 = 3, .opc1 = 0, .crn = 1, .crm = 0, .opc2 = 0, 8909 .access = PL1_RW, .accessfn = access_tvm_trvm, 8910 .fgt = FGT_SCTLR_EL1, 8911 .bank_fieldoffsets = { offsetof(CPUARMState, cp15.sctlr_s), 8912 offsetof(CPUARMState, cp15.sctlr_ns) }, 8913 .writefn = sctlr_write, .resetvalue = cpu->reset_sctlr, 8914 .raw_writefn = raw_write, 8915 }; 8916 if (arm_feature(env, ARM_FEATURE_XSCALE)) { 8917 /* 8918 * Normally we would always end the TB on an SCTLR write, but Linux 8919 * arch/arm/mach-pxa/sleep.S expects two instructions following 8920 * an MMU enable to execute from cache. Imitate this behaviour. 8921 */ 8922 sctlr.type |= ARM_CP_SUPPRESS_TB_END; 8923 } 8924 define_one_arm_cp_reg(cpu, &sctlr); 8925 8926 if (arm_feature(env, ARM_FEATURE_PMSA) && 8927 arm_feature(env, ARM_FEATURE_V8)) { 8928 ARMCPRegInfo vsctlr = { 8929 .name = "VSCTLR", .state = ARM_CP_STATE_AA32, 8930 .cp = 15, .opc1 = 4, .crn = 2, .crm = 0, .opc2 = 0, 8931 .access = PL2_RW, .resetvalue = 0x0, 8932 .fieldoffset = offsetoflow32(CPUARMState, cp15.vsctlr), 8933 }; 8934 define_one_arm_cp_reg(cpu, &vsctlr); 8935 } 8936 } 8937 8938 if (cpu_isar_feature(aa64_lor, cpu)) { 8939 define_arm_cp_regs(cpu, lor_reginfo); 8940 } 8941 if (cpu_isar_feature(aa64_pan, cpu)) { 8942 define_one_arm_cp_reg(cpu, &pan_reginfo); 8943 } 8944 #ifndef CONFIG_USER_ONLY 8945 if (cpu_isar_feature(aa64_ats1e1, cpu)) { 8946 define_arm_cp_regs(cpu, ats1e1_reginfo); 8947 } 8948 if (cpu_isar_feature(aa32_ats1e1, cpu)) { 8949 define_arm_cp_regs(cpu, ats1cp_reginfo); 8950 } 8951 #endif 8952 if (cpu_isar_feature(aa64_uao, cpu)) { 8953 define_one_arm_cp_reg(cpu, &uao_reginfo); 8954 } 8955 8956 if (cpu_isar_feature(aa64_dit, cpu)) { 8957 define_one_arm_cp_reg(cpu, &dit_reginfo); 8958 } 8959 if (cpu_isar_feature(aa64_ssbs, cpu)) { 8960 define_one_arm_cp_reg(cpu, &ssbs_reginfo); 8961 } 8962 if (cpu_isar_feature(any_ras, cpu)) { 8963 define_arm_cp_regs(cpu, minimal_ras_reginfo); 8964 } 8965 8966 if (cpu_isar_feature(aa64_vh, cpu) || 8967 cpu_isar_feature(aa64_debugv8p2, cpu)) { 8968 define_one_arm_cp_reg(cpu, &contextidr_el2); 8969 } 8970 if (arm_feature(env, ARM_FEATURE_EL2) && cpu_isar_feature(aa64_vh, cpu)) { 8971 define_arm_cp_regs(cpu, vhe_reginfo); 8972 } 8973 8974 if (cpu_isar_feature(aa64_sve, cpu)) { 8975 define_arm_cp_regs(cpu, zcr_reginfo); 8976 } 8977 8978 if (cpu_isar_feature(aa64_hcx, cpu)) { 8979 define_one_arm_cp_reg(cpu, &hcrx_el2_reginfo); 8980 } 8981 8982 #ifdef TARGET_AARCH64 8983 if (cpu_isar_feature(aa64_sme, cpu)) { 8984 define_arm_cp_regs(cpu, sme_reginfo); 8985 } 8986 if (cpu_isar_feature(aa64_pauth, cpu)) { 8987 define_arm_cp_regs(cpu, pauth_reginfo); 8988 } 8989 if (cpu_isar_feature(aa64_rndr, cpu)) { 8990 define_arm_cp_regs(cpu, rndr_reginfo); 8991 } 8992 if (cpu_isar_feature(aa64_tlbirange, cpu)) { 8993 define_arm_cp_regs(cpu, tlbirange_reginfo); 8994 } 8995 if (cpu_isar_feature(aa64_tlbios, cpu)) { 8996 define_arm_cp_regs(cpu, tlbios_reginfo); 8997 } 8998 #ifndef CONFIG_USER_ONLY 8999 /* Data Cache clean instructions up to PoP */ 9000 if (cpu_isar_feature(aa64_dcpop, cpu)) { 9001 define_one_arm_cp_reg(cpu, dcpop_reg); 9002 9003 if (cpu_isar_feature(aa64_dcpodp, cpu)) { 9004 define_one_arm_cp_reg(cpu, dcpodp_reg); 9005 } 9006 } 9007 #endif /*CONFIG_USER_ONLY*/ 9008 9009 /* 9010 * If full MTE is enabled, add all of the system registers. 9011 * If only "instructions available at EL0" are enabled, 9012 * then define only a RAZ/WI version of PSTATE.TCO. 9013 */ 9014 if (cpu_isar_feature(aa64_mte, cpu)) { 9015 define_arm_cp_regs(cpu, mte_reginfo); 9016 define_arm_cp_regs(cpu, mte_el0_cacheop_reginfo); 9017 } else if (cpu_isar_feature(aa64_mte_insn_reg, cpu)) { 9018 define_arm_cp_regs(cpu, mte_tco_ro_reginfo); 9019 define_arm_cp_regs(cpu, mte_el0_cacheop_reginfo); 9020 } 9021 9022 if (cpu_isar_feature(aa64_scxtnum, cpu)) { 9023 define_arm_cp_regs(cpu, scxtnum_reginfo); 9024 } 9025 9026 if (cpu_isar_feature(aa64_fgt, cpu)) { 9027 define_arm_cp_regs(cpu, fgt_reginfo); 9028 } 9029 #endif 9030 9031 if (cpu_isar_feature(any_predinv, cpu)) { 9032 define_arm_cp_regs(cpu, predinv_reginfo); 9033 } 9034 9035 if (cpu_isar_feature(any_ccidx, cpu)) { 9036 define_arm_cp_regs(cpu, ccsidr2_reginfo); 9037 } 9038 9039 #ifndef CONFIG_USER_ONLY 9040 /* 9041 * Register redirections and aliases must be done last, 9042 * after the registers from the other extensions have been defined. 9043 */ 9044 if (arm_feature(env, ARM_FEATURE_EL2) && cpu_isar_feature(aa64_vh, cpu)) { 9045 define_arm_vh_e2h_redirects_aliases(cpu); 9046 } 9047 #endif 9048 } 9049 9050 /* Sort alphabetically by type name, except for "any". */ 9051 static gint arm_cpu_list_compare(gconstpointer a, gconstpointer b) 9052 { 9053 ObjectClass *class_a = (ObjectClass *)a; 9054 ObjectClass *class_b = (ObjectClass *)b; 9055 const char *name_a, *name_b; 9056 9057 name_a = object_class_get_name(class_a); 9058 name_b = object_class_get_name(class_b); 9059 if (strcmp(name_a, "any-" TYPE_ARM_CPU) == 0) { 9060 return 1; 9061 } else if (strcmp(name_b, "any-" TYPE_ARM_CPU) == 0) { 9062 return -1; 9063 } else { 9064 return strcmp(name_a, name_b); 9065 } 9066 } 9067 9068 static void arm_cpu_list_entry(gpointer data, gpointer user_data) 9069 { 9070 ObjectClass *oc = data; 9071 CPUClass *cc = CPU_CLASS(oc); 9072 const char *typename; 9073 char *name; 9074 9075 typename = object_class_get_name(oc); 9076 name = g_strndup(typename, strlen(typename) - strlen("-" TYPE_ARM_CPU)); 9077 if (cc->deprecation_note) { 9078 qemu_printf(" %s (deprecated)\n", name); 9079 } else { 9080 qemu_printf(" %s\n", name); 9081 } 9082 g_free(name); 9083 } 9084 9085 void arm_cpu_list(void) 9086 { 9087 GSList *list; 9088 9089 list = object_class_get_list(TYPE_ARM_CPU, false); 9090 list = g_slist_sort(list, arm_cpu_list_compare); 9091 qemu_printf("Available CPUs:\n"); 9092 g_slist_foreach(list, arm_cpu_list_entry, NULL); 9093 g_slist_free(list); 9094 } 9095 9096 static void arm_cpu_add_definition(gpointer data, gpointer user_data) 9097 { 9098 ObjectClass *oc = data; 9099 CpuDefinitionInfoList **cpu_list = user_data; 9100 CpuDefinitionInfo *info; 9101 const char *typename; 9102 9103 typename = object_class_get_name(oc); 9104 info = g_malloc0(sizeof(*info)); 9105 info->name = g_strndup(typename, 9106 strlen(typename) - strlen("-" TYPE_ARM_CPU)); 9107 info->q_typename = g_strdup(typename); 9108 9109 QAPI_LIST_PREPEND(*cpu_list, info); 9110 } 9111 9112 CpuDefinitionInfoList *qmp_query_cpu_definitions(Error **errp) 9113 { 9114 CpuDefinitionInfoList *cpu_list = NULL; 9115 GSList *list; 9116 9117 list = object_class_get_list(TYPE_ARM_CPU, false); 9118 g_slist_foreach(list, arm_cpu_add_definition, &cpu_list); 9119 g_slist_free(list); 9120 9121 return cpu_list; 9122 } 9123 9124 /* 9125 * Private utility function for define_one_arm_cp_reg_with_opaque(): 9126 * add a single reginfo struct to the hash table. 9127 */ 9128 static void add_cpreg_to_hashtable(ARMCPU *cpu, const ARMCPRegInfo *r, 9129 void *opaque, CPState state, 9130 CPSecureState secstate, 9131 int crm, int opc1, int opc2, 9132 const char *name) 9133 { 9134 CPUARMState *env = &cpu->env; 9135 uint32_t key; 9136 ARMCPRegInfo *r2; 9137 bool is64 = r->type & ARM_CP_64BIT; 9138 bool ns = secstate & ARM_CP_SECSTATE_NS; 9139 int cp = r->cp; 9140 size_t name_len; 9141 bool make_const; 9142 9143 switch (state) { 9144 case ARM_CP_STATE_AA32: 9145 /* We assume it is a cp15 register if the .cp field is left unset. */ 9146 if (cp == 0 && r->state == ARM_CP_STATE_BOTH) { 9147 cp = 15; 9148 } 9149 key = ENCODE_CP_REG(cp, is64, ns, r->crn, crm, opc1, opc2); 9150 break; 9151 case ARM_CP_STATE_AA64: 9152 /* 9153 * To allow abbreviation of ARMCPRegInfo definitions, we treat 9154 * cp == 0 as equivalent to the value for "standard guest-visible 9155 * sysreg". STATE_BOTH definitions are also always "standard sysreg" 9156 * in their AArch64 view (the .cp value may be non-zero for the 9157 * benefit of the AArch32 view). 9158 */ 9159 if (cp == 0 || r->state == ARM_CP_STATE_BOTH) { 9160 cp = CP_REG_ARM64_SYSREG_CP; 9161 } 9162 key = ENCODE_AA64_CP_REG(cp, r->crn, crm, r->opc0, opc1, opc2); 9163 break; 9164 default: 9165 g_assert_not_reached(); 9166 } 9167 9168 /* Overriding of an existing definition must be explicitly requested. */ 9169 if (!(r->type & ARM_CP_OVERRIDE)) { 9170 const ARMCPRegInfo *oldreg = get_arm_cp_reginfo(cpu->cp_regs, key); 9171 if (oldreg) { 9172 assert(oldreg->type & ARM_CP_OVERRIDE); 9173 } 9174 } 9175 9176 /* 9177 * Eliminate registers that are not present because the EL is missing. 9178 * Doing this here makes it easier to put all registers for a given 9179 * feature into the same ARMCPRegInfo array and define them all at once. 9180 */ 9181 make_const = false; 9182 if (arm_feature(env, ARM_FEATURE_EL3)) { 9183 /* 9184 * An EL2 register without EL2 but with EL3 is (usually) RES0. 9185 * See rule RJFFP in section D1.1.3 of DDI0487H.a. 9186 */ 9187 int min_el = ctz32(r->access) / 2; 9188 if (min_el == 2 && !arm_feature(env, ARM_FEATURE_EL2)) { 9189 if (r->type & ARM_CP_EL3_NO_EL2_UNDEF) { 9190 return; 9191 } 9192 make_const = !(r->type & ARM_CP_EL3_NO_EL2_KEEP); 9193 } 9194 } else { 9195 CPAccessRights max_el = (arm_feature(env, ARM_FEATURE_EL2) 9196 ? PL2_RW : PL1_RW); 9197 if ((r->access & max_el) == 0) { 9198 return; 9199 } 9200 } 9201 9202 /* Combine cpreg and name into one allocation. */ 9203 name_len = strlen(name) + 1; 9204 r2 = g_malloc(sizeof(*r2) + name_len); 9205 *r2 = *r; 9206 r2->name = memcpy(r2 + 1, name, name_len); 9207 9208 /* 9209 * Update fields to match the instantiation, overwiting wildcards 9210 * such as CP_ANY, ARM_CP_STATE_BOTH, or ARM_CP_SECSTATE_BOTH. 9211 */ 9212 r2->cp = cp; 9213 r2->crm = crm; 9214 r2->opc1 = opc1; 9215 r2->opc2 = opc2; 9216 r2->state = state; 9217 r2->secure = secstate; 9218 if (opaque) { 9219 r2->opaque = opaque; 9220 } 9221 9222 if (make_const) { 9223 /* This should not have been a very special register to begin. */ 9224 int old_special = r2->type & ARM_CP_SPECIAL_MASK; 9225 assert(old_special == 0 || old_special == ARM_CP_NOP); 9226 /* 9227 * Set the special function to CONST, retaining the other flags. 9228 * This is important for e.g. ARM_CP_SVE so that we still 9229 * take the SVE trap if CPTR_EL3.EZ == 0. 9230 */ 9231 r2->type = (r2->type & ~ARM_CP_SPECIAL_MASK) | ARM_CP_CONST; 9232 /* 9233 * Usually, these registers become RES0, but there are a few 9234 * special cases like VPIDR_EL2 which have a constant non-zero 9235 * value with writes ignored. 9236 */ 9237 if (!(r->type & ARM_CP_EL3_NO_EL2_C_NZ)) { 9238 r2->resetvalue = 0; 9239 } 9240 /* 9241 * ARM_CP_CONST has precedence, so removing the callbacks and 9242 * offsets are not strictly necessary, but it is potentially 9243 * less confusing to debug later. 9244 */ 9245 r2->readfn = NULL; 9246 r2->writefn = NULL; 9247 r2->raw_readfn = NULL; 9248 r2->raw_writefn = NULL; 9249 r2->resetfn = NULL; 9250 r2->fieldoffset = 0; 9251 r2->bank_fieldoffsets[0] = 0; 9252 r2->bank_fieldoffsets[1] = 0; 9253 } else { 9254 bool isbanked = r->bank_fieldoffsets[0] && r->bank_fieldoffsets[1]; 9255 9256 if (isbanked) { 9257 /* 9258 * Register is banked (using both entries in array). 9259 * Overwriting fieldoffset as the array is only used to define 9260 * banked registers but later only fieldoffset is used. 9261 */ 9262 r2->fieldoffset = r->bank_fieldoffsets[ns]; 9263 } 9264 if (state == ARM_CP_STATE_AA32) { 9265 if (isbanked) { 9266 /* 9267 * If the register is banked then we don't need to migrate or 9268 * reset the 32-bit instance in certain cases: 9269 * 9270 * 1) If the register has both 32-bit and 64-bit instances 9271 * then we can count on the 64-bit instance taking care 9272 * of the non-secure bank. 9273 * 2) If ARMv8 is enabled then we can count on a 64-bit 9274 * version taking care of the secure bank. This requires 9275 * that separate 32 and 64-bit definitions are provided. 9276 */ 9277 if ((r->state == ARM_CP_STATE_BOTH && ns) || 9278 (arm_feature(env, ARM_FEATURE_V8) && !ns)) { 9279 r2->type |= ARM_CP_ALIAS; 9280 } 9281 } else if ((secstate != r->secure) && !ns) { 9282 /* 9283 * The register is not banked so we only want to allow 9284 * migration of the non-secure instance. 9285 */ 9286 r2->type |= ARM_CP_ALIAS; 9287 } 9288 9289 if (HOST_BIG_ENDIAN && 9290 r->state == ARM_CP_STATE_BOTH && r2->fieldoffset) { 9291 r2->fieldoffset += sizeof(uint32_t); 9292 } 9293 } 9294 } 9295 9296 /* 9297 * By convention, for wildcarded registers only the first 9298 * entry is used for migration; the others are marked as 9299 * ALIAS so we don't try to transfer the register 9300 * multiple times. Special registers (ie NOP/WFI) are 9301 * never migratable and not even raw-accessible. 9302 */ 9303 if (r2->type & ARM_CP_SPECIAL_MASK) { 9304 r2->type |= ARM_CP_NO_RAW; 9305 } 9306 if (((r->crm == CP_ANY) && crm != 0) || 9307 ((r->opc1 == CP_ANY) && opc1 != 0) || 9308 ((r->opc2 == CP_ANY) && opc2 != 0)) { 9309 r2->type |= ARM_CP_ALIAS | ARM_CP_NO_GDB; 9310 } 9311 9312 /* 9313 * Check that raw accesses are either forbidden or handled. Note that 9314 * we can't assert this earlier because the setup of fieldoffset for 9315 * banked registers has to be done first. 9316 */ 9317 if (!(r2->type & ARM_CP_NO_RAW)) { 9318 assert(!raw_accessors_invalid(r2)); 9319 } 9320 9321 g_hash_table_insert(cpu->cp_regs, (gpointer)(uintptr_t)key, r2); 9322 } 9323 9324 9325 void define_one_arm_cp_reg_with_opaque(ARMCPU *cpu, 9326 const ARMCPRegInfo *r, void *opaque) 9327 { 9328 /* 9329 * Define implementations of coprocessor registers. 9330 * We store these in a hashtable because typically 9331 * there are less than 150 registers in a space which 9332 * is 16*16*16*8*8 = 262144 in size. 9333 * Wildcarding is supported for the crm, opc1 and opc2 fields. 9334 * If a register is defined twice then the second definition is 9335 * used, so this can be used to define some generic registers and 9336 * then override them with implementation specific variations. 9337 * At least one of the original and the second definition should 9338 * include ARM_CP_OVERRIDE in its type bits -- this is just a guard 9339 * against accidental use. 9340 * 9341 * The state field defines whether the register is to be 9342 * visible in the AArch32 or AArch64 execution state. If the 9343 * state is set to ARM_CP_STATE_BOTH then we synthesise a 9344 * reginfo structure for the AArch32 view, which sees the lower 9345 * 32 bits of the 64 bit register. 9346 * 9347 * Only registers visible in AArch64 may set r->opc0; opc0 cannot 9348 * be wildcarded. AArch64 registers are always considered to be 64 9349 * bits; the ARM_CP_64BIT* flag applies only to the AArch32 view of 9350 * the register, if any. 9351 */ 9352 int crm, opc1, opc2; 9353 int crmmin = (r->crm == CP_ANY) ? 0 : r->crm; 9354 int crmmax = (r->crm == CP_ANY) ? 15 : r->crm; 9355 int opc1min = (r->opc1 == CP_ANY) ? 0 : r->opc1; 9356 int opc1max = (r->opc1 == CP_ANY) ? 7 : r->opc1; 9357 int opc2min = (r->opc2 == CP_ANY) ? 0 : r->opc2; 9358 int opc2max = (r->opc2 == CP_ANY) ? 7 : r->opc2; 9359 CPState state; 9360 9361 /* 64 bit registers have only CRm and Opc1 fields */ 9362 assert(!((r->type & ARM_CP_64BIT) && (r->opc2 || r->crn))); 9363 /* op0 only exists in the AArch64 encodings */ 9364 assert((r->state != ARM_CP_STATE_AA32) || (r->opc0 == 0)); 9365 /* AArch64 regs are all 64 bit so ARM_CP_64BIT is meaningless */ 9366 assert((r->state != ARM_CP_STATE_AA64) || !(r->type & ARM_CP_64BIT)); 9367 /* 9368 * This API is only for Arm's system coprocessors (14 and 15) or 9369 * (M-profile or v7A-and-earlier only) for implementation defined 9370 * coprocessors in the range 0..7. Our decode assumes this, since 9371 * 8..13 can be used for other insns including VFP and Neon. See 9372 * valid_cp() in translate.c. Assert here that we haven't tried 9373 * to use an invalid coprocessor number. 9374 */ 9375 switch (r->state) { 9376 case ARM_CP_STATE_BOTH: 9377 /* 0 has a special meaning, but otherwise the same rules as AA32. */ 9378 if (r->cp == 0) { 9379 break; 9380 } 9381 /* fall through */ 9382 case ARM_CP_STATE_AA32: 9383 if (arm_feature(&cpu->env, ARM_FEATURE_V8) && 9384 !arm_feature(&cpu->env, ARM_FEATURE_M)) { 9385 assert(r->cp >= 14 && r->cp <= 15); 9386 } else { 9387 assert(r->cp < 8 || (r->cp >= 14 && r->cp <= 15)); 9388 } 9389 break; 9390 case ARM_CP_STATE_AA64: 9391 assert(r->cp == 0 || r->cp == CP_REG_ARM64_SYSREG_CP); 9392 break; 9393 default: 9394 g_assert_not_reached(); 9395 } 9396 /* 9397 * The AArch64 pseudocode CheckSystemAccess() specifies that op1 9398 * encodes a minimum access level for the register. We roll this 9399 * runtime check into our general permission check code, so check 9400 * here that the reginfo's specified permissions are strict enough 9401 * to encompass the generic architectural permission check. 9402 */ 9403 if (r->state != ARM_CP_STATE_AA32) { 9404 CPAccessRights mask; 9405 switch (r->opc1) { 9406 case 0: 9407 /* min_EL EL1, but some accessible to EL0 via kernel ABI */ 9408 mask = PL0U_R | PL1_RW; 9409 break; 9410 case 1: case 2: 9411 /* min_EL EL1 */ 9412 mask = PL1_RW; 9413 break; 9414 case 3: 9415 /* min_EL EL0 */ 9416 mask = PL0_RW; 9417 break; 9418 case 4: 9419 case 5: 9420 /* min_EL EL2 */ 9421 mask = PL2_RW; 9422 break; 9423 case 6: 9424 /* min_EL EL3 */ 9425 mask = PL3_RW; 9426 break; 9427 case 7: 9428 /* min_EL EL1, secure mode only (we don't check the latter) */ 9429 mask = PL1_RW; 9430 break; 9431 default: 9432 /* broken reginfo with out-of-range opc1 */ 9433 g_assert_not_reached(); 9434 } 9435 /* assert our permissions are not too lax (stricter is fine) */ 9436 assert((r->access & ~mask) == 0); 9437 } 9438 9439 /* 9440 * Check that the register definition has enough info to handle 9441 * reads and writes if they are permitted. 9442 */ 9443 if (!(r->type & (ARM_CP_SPECIAL_MASK | ARM_CP_CONST))) { 9444 if (r->access & PL3_R) { 9445 assert((r->fieldoffset || 9446 (r->bank_fieldoffsets[0] && r->bank_fieldoffsets[1])) || 9447 r->readfn); 9448 } 9449 if (r->access & PL3_W) { 9450 assert((r->fieldoffset || 9451 (r->bank_fieldoffsets[0] && r->bank_fieldoffsets[1])) || 9452 r->writefn); 9453 } 9454 } 9455 9456 for (crm = crmmin; crm <= crmmax; crm++) { 9457 for (opc1 = opc1min; opc1 <= opc1max; opc1++) { 9458 for (opc2 = opc2min; opc2 <= opc2max; opc2++) { 9459 for (state = ARM_CP_STATE_AA32; 9460 state <= ARM_CP_STATE_AA64; state++) { 9461 if (r->state != state && r->state != ARM_CP_STATE_BOTH) { 9462 continue; 9463 } 9464 if (state == ARM_CP_STATE_AA32) { 9465 /* 9466 * Under AArch32 CP registers can be common 9467 * (same for secure and non-secure world) or banked. 9468 */ 9469 char *name; 9470 9471 switch (r->secure) { 9472 case ARM_CP_SECSTATE_S: 9473 case ARM_CP_SECSTATE_NS: 9474 add_cpreg_to_hashtable(cpu, r, opaque, state, 9475 r->secure, crm, opc1, opc2, 9476 r->name); 9477 break; 9478 case ARM_CP_SECSTATE_BOTH: 9479 name = g_strdup_printf("%s_S", r->name); 9480 add_cpreg_to_hashtable(cpu, r, opaque, state, 9481 ARM_CP_SECSTATE_S, 9482 crm, opc1, opc2, name); 9483 g_free(name); 9484 add_cpreg_to_hashtable(cpu, r, opaque, state, 9485 ARM_CP_SECSTATE_NS, 9486 crm, opc1, opc2, r->name); 9487 break; 9488 default: 9489 g_assert_not_reached(); 9490 } 9491 } else { 9492 /* 9493 * AArch64 registers get mapped to non-secure instance 9494 * of AArch32 9495 */ 9496 add_cpreg_to_hashtable(cpu, r, opaque, state, 9497 ARM_CP_SECSTATE_NS, 9498 crm, opc1, opc2, r->name); 9499 } 9500 } 9501 } 9502 } 9503 } 9504 } 9505 9506 /* Define a whole list of registers */ 9507 void define_arm_cp_regs_with_opaque_len(ARMCPU *cpu, const ARMCPRegInfo *regs, 9508 void *opaque, size_t len) 9509 { 9510 size_t i; 9511 for (i = 0; i < len; ++i) { 9512 define_one_arm_cp_reg_with_opaque(cpu, regs + i, opaque); 9513 } 9514 } 9515 9516 /* 9517 * Modify ARMCPRegInfo for access from userspace. 9518 * 9519 * This is a data driven modification directed by 9520 * ARMCPRegUserSpaceInfo. All registers become ARM_CP_CONST as 9521 * user-space cannot alter any values and dynamic values pertaining to 9522 * execution state are hidden from user space view anyway. 9523 */ 9524 void modify_arm_cp_regs_with_len(ARMCPRegInfo *regs, size_t regs_len, 9525 const ARMCPRegUserSpaceInfo *mods, 9526 size_t mods_len) 9527 { 9528 for (size_t mi = 0; mi < mods_len; ++mi) { 9529 const ARMCPRegUserSpaceInfo *m = mods + mi; 9530 GPatternSpec *pat = NULL; 9531 9532 if (m->is_glob) { 9533 pat = g_pattern_spec_new(m->name); 9534 } 9535 for (size_t ri = 0; ri < regs_len; ++ri) { 9536 ARMCPRegInfo *r = regs + ri; 9537 9538 if (pat && g_pattern_match_string(pat, r->name)) { 9539 r->type = ARM_CP_CONST; 9540 r->access = PL0U_R; 9541 r->resetvalue = 0; 9542 /* continue */ 9543 } else if (strcmp(r->name, m->name) == 0) { 9544 r->type = ARM_CP_CONST; 9545 r->access = PL0U_R; 9546 r->resetvalue &= m->exported_bits; 9547 r->resetvalue |= m->fixed_bits; 9548 break; 9549 } 9550 } 9551 if (pat) { 9552 g_pattern_spec_free(pat); 9553 } 9554 } 9555 } 9556 9557 const ARMCPRegInfo *get_arm_cp_reginfo(GHashTable *cpregs, uint32_t encoded_cp) 9558 { 9559 return g_hash_table_lookup(cpregs, (gpointer)(uintptr_t)encoded_cp); 9560 } 9561 9562 void arm_cp_write_ignore(CPUARMState *env, const ARMCPRegInfo *ri, 9563 uint64_t value) 9564 { 9565 /* Helper coprocessor write function for write-ignore registers */ 9566 } 9567 9568 uint64_t arm_cp_read_zero(CPUARMState *env, const ARMCPRegInfo *ri) 9569 { 9570 /* Helper coprocessor write function for read-as-zero registers */ 9571 return 0; 9572 } 9573 9574 void arm_cp_reset_ignore(CPUARMState *env, const ARMCPRegInfo *opaque) 9575 { 9576 /* Helper coprocessor reset function for do-nothing-on-reset registers */ 9577 } 9578 9579 static int bad_mode_switch(CPUARMState *env, int mode, CPSRWriteType write_type) 9580 { 9581 /* 9582 * Return true if it is not valid for us to switch to 9583 * this CPU mode (ie all the UNPREDICTABLE cases in 9584 * the ARM ARM CPSRWriteByInstr pseudocode). 9585 */ 9586 9587 /* Changes to or from Hyp via MSR and CPS are illegal. */ 9588 if (write_type == CPSRWriteByInstr && 9589 ((env->uncached_cpsr & CPSR_M) == ARM_CPU_MODE_HYP || 9590 mode == ARM_CPU_MODE_HYP)) { 9591 return 1; 9592 } 9593 9594 switch (mode) { 9595 case ARM_CPU_MODE_USR: 9596 return 0; 9597 case ARM_CPU_MODE_SYS: 9598 case ARM_CPU_MODE_SVC: 9599 case ARM_CPU_MODE_ABT: 9600 case ARM_CPU_MODE_UND: 9601 case ARM_CPU_MODE_IRQ: 9602 case ARM_CPU_MODE_FIQ: 9603 /* 9604 * Note that we don't implement the IMPDEF NSACR.RFR which in v7 9605 * allows FIQ mode to be Secure-only. (In v8 this doesn't exist.) 9606 */ 9607 /* 9608 * If HCR.TGE is set then changes from Monitor to NS PL1 via MSR 9609 * and CPS are treated as illegal mode changes. 9610 */ 9611 if (write_type == CPSRWriteByInstr && 9612 (env->uncached_cpsr & CPSR_M) == ARM_CPU_MODE_MON && 9613 (arm_hcr_el2_eff(env) & HCR_TGE)) { 9614 return 1; 9615 } 9616 return 0; 9617 case ARM_CPU_MODE_HYP: 9618 return !arm_is_el2_enabled(env) || arm_current_el(env) < 2; 9619 case ARM_CPU_MODE_MON: 9620 return arm_current_el(env) < 3; 9621 default: 9622 return 1; 9623 } 9624 } 9625 9626 uint32_t cpsr_read(CPUARMState *env) 9627 { 9628 int ZF; 9629 ZF = (env->ZF == 0); 9630 return env->uncached_cpsr | (env->NF & 0x80000000) | (ZF << 30) | 9631 (env->CF << 29) | ((env->VF & 0x80000000) >> 3) | (env->QF << 27) 9632 | (env->thumb << 5) | ((env->condexec_bits & 3) << 25) 9633 | ((env->condexec_bits & 0xfc) << 8) 9634 | (env->GE << 16) | (env->daif & CPSR_AIF); 9635 } 9636 9637 void cpsr_write(CPUARMState *env, uint32_t val, uint32_t mask, 9638 CPSRWriteType write_type) 9639 { 9640 uint32_t changed_daif; 9641 bool rebuild_hflags = (write_type != CPSRWriteRaw) && 9642 (mask & (CPSR_M | CPSR_E | CPSR_IL)); 9643 9644 if (mask & CPSR_NZCV) { 9645 env->ZF = (~val) & CPSR_Z; 9646 env->NF = val; 9647 env->CF = (val >> 29) & 1; 9648 env->VF = (val << 3) & 0x80000000; 9649 } 9650 if (mask & CPSR_Q) { 9651 env->QF = ((val & CPSR_Q) != 0); 9652 } 9653 if (mask & CPSR_T) { 9654 env->thumb = ((val & CPSR_T) != 0); 9655 } 9656 if (mask & CPSR_IT_0_1) { 9657 env->condexec_bits &= ~3; 9658 env->condexec_bits |= (val >> 25) & 3; 9659 } 9660 if (mask & CPSR_IT_2_7) { 9661 env->condexec_bits &= 3; 9662 env->condexec_bits |= (val >> 8) & 0xfc; 9663 } 9664 if (mask & CPSR_GE) { 9665 env->GE = (val >> 16) & 0xf; 9666 } 9667 9668 /* 9669 * In a V7 implementation that includes the security extensions but does 9670 * not include Virtualization Extensions the SCR.FW and SCR.AW bits control 9671 * whether non-secure software is allowed to change the CPSR_F and CPSR_A 9672 * bits respectively. 9673 * 9674 * In a V8 implementation, it is permitted for privileged software to 9675 * change the CPSR A/F bits regardless of the SCR.AW/FW bits. 9676 */ 9677 if (write_type != CPSRWriteRaw && !arm_feature(env, ARM_FEATURE_V8) && 9678 arm_feature(env, ARM_FEATURE_EL3) && 9679 !arm_feature(env, ARM_FEATURE_EL2) && 9680 !arm_is_secure(env)) { 9681 9682 changed_daif = (env->daif ^ val) & mask; 9683 9684 if (changed_daif & CPSR_A) { 9685 /* 9686 * Check to see if we are allowed to change the masking of async 9687 * abort exceptions from a non-secure state. 9688 */ 9689 if (!(env->cp15.scr_el3 & SCR_AW)) { 9690 qemu_log_mask(LOG_GUEST_ERROR, 9691 "Ignoring attempt to switch CPSR_A flag from " 9692 "non-secure world with SCR.AW bit clear\n"); 9693 mask &= ~CPSR_A; 9694 } 9695 } 9696 9697 if (changed_daif & CPSR_F) { 9698 /* 9699 * Check to see if we are allowed to change the masking of FIQ 9700 * exceptions from a non-secure state. 9701 */ 9702 if (!(env->cp15.scr_el3 & SCR_FW)) { 9703 qemu_log_mask(LOG_GUEST_ERROR, 9704 "Ignoring attempt to switch CPSR_F flag from " 9705 "non-secure world with SCR.FW bit clear\n"); 9706 mask &= ~CPSR_F; 9707 } 9708 9709 /* 9710 * Check whether non-maskable FIQ (NMFI) support is enabled. 9711 * If this bit is set software is not allowed to mask 9712 * FIQs, but is allowed to set CPSR_F to 0. 9713 */ 9714 if ((A32_BANKED_CURRENT_REG_GET(env, sctlr) & SCTLR_NMFI) && 9715 (val & CPSR_F)) { 9716 qemu_log_mask(LOG_GUEST_ERROR, 9717 "Ignoring attempt to enable CPSR_F flag " 9718 "(non-maskable FIQ [NMFI] support enabled)\n"); 9719 mask &= ~CPSR_F; 9720 } 9721 } 9722 } 9723 9724 env->daif &= ~(CPSR_AIF & mask); 9725 env->daif |= val & CPSR_AIF & mask; 9726 9727 if (write_type != CPSRWriteRaw && 9728 ((env->uncached_cpsr ^ val) & mask & CPSR_M)) { 9729 if ((env->uncached_cpsr & CPSR_M) == ARM_CPU_MODE_USR) { 9730 /* 9731 * Note that we can only get here in USR mode if this is a 9732 * gdb stub write; for this case we follow the architectural 9733 * behaviour for guest writes in USR mode of ignoring an attempt 9734 * to switch mode. (Those are caught by translate.c for writes 9735 * triggered by guest instructions.) 9736 */ 9737 mask &= ~CPSR_M; 9738 } else if (bad_mode_switch(env, val & CPSR_M, write_type)) { 9739 /* 9740 * Attempt to switch to an invalid mode: this is UNPREDICTABLE in 9741 * v7, and has defined behaviour in v8: 9742 * + leave CPSR.M untouched 9743 * + allow changes to the other CPSR fields 9744 * + set PSTATE.IL 9745 * For user changes via the GDB stub, we don't set PSTATE.IL, 9746 * as this would be unnecessarily harsh for a user error. 9747 */ 9748 mask &= ~CPSR_M; 9749 if (write_type != CPSRWriteByGDBStub && 9750 arm_feature(env, ARM_FEATURE_V8)) { 9751 mask |= CPSR_IL; 9752 val |= CPSR_IL; 9753 } 9754 qemu_log_mask(LOG_GUEST_ERROR, 9755 "Illegal AArch32 mode switch attempt from %s to %s\n", 9756 aarch32_mode_name(env->uncached_cpsr), 9757 aarch32_mode_name(val)); 9758 } else { 9759 qemu_log_mask(CPU_LOG_INT, "%s %s to %s PC 0x%" PRIx32 "\n", 9760 write_type == CPSRWriteExceptionReturn ? 9761 "Exception return from AArch32" : 9762 "AArch32 mode switch from", 9763 aarch32_mode_name(env->uncached_cpsr), 9764 aarch32_mode_name(val), env->regs[15]); 9765 switch_mode(env, val & CPSR_M); 9766 } 9767 } 9768 mask &= ~CACHED_CPSR_BITS; 9769 env->uncached_cpsr = (env->uncached_cpsr & ~mask) | (val & mask); 9770 if (rebuild_hflags) { 9771 arm_rebuild_hflags(env); 9772 } 9773 } 9774 9775 /* Sign/zero extend */ 9776 uint32_t HELPER(sxtb16)(uint32_t x) 9777 { 9778 uint32_t res; 9779 res = (uint16_t)(int8_t)x; 9780 res |= (uint32_t)(int8_t)(x >> 16) << 16; 9781 return res; 9782 } 9783 9784 static void handle_possible_div0_trap(CPUARMState *env, uintptr_t ra) 9785 { 9786 /* 9787 * Take a division-by-zero exception if necessary; otherwise return 9788 * to get the usual non-trapping division behaviour (result of 0) 9789 */ 9790 if (arm_feature(env, ARM_FEATURE_M) 9791 && (env->v7m.ccr[env->v7m.secure] & R_V7M_CCR_DIV_0_TRP_MASK)) { 9792 raise_exception_ra(env, EXCP_DIVBYZERO, 0, 1, ra); 9793 } 9794 } 9795 9796 uint32_t HELPER(uxtb16)(uint32_t x) 9797 { 9798 uint32_t res; 9799 res = (uint16_t)(uint8_t)x; 9800 res |= (uint32_t)(uint8_t)(x >> 16) << 16; 9801 return res; 9802 } 9803 9804 int32_t HELPER(sdiv)(CPUARMState *env, int32_t num, int32_t den) 9805 { 9806 if (den == 0) { 9807 handle_possible_div0_trap(env, GETPC()); 9808 return 0; 9809 } 9810 if (num == INT_MIN && den == -1) { 9811 return INT_MIN; 9812 } 9813 return num / den; 9814 } 9815 9816 uint32_t HELPER(udiv)(CPUARMState *env, uint32_t num, uint32_t den) 9817 { 9818 if (den == 0) { 9819 handle_possible_div0_trap(env, GETPC()); 9820 return 0; 9821 } 9822 return num / den; 9823 } 9824 9825 uint32_t HELPER(rbit)(uint32_t x) 9826 { 9827 return revbit32(x); 9828 } 9829 9830 #ifdef CONFIG_USER_ONLY 9831 9832 static void switch_mode(CPUARMState *env, int mode) 9833 { 9834 ARMCPU *cpu = env_archcpu(env); 9835 9836 if (mode != ARM_CPU_MODE_USR) { 9837 cpu_abort(CPU(cpu), "Tried to switch out of user mode\n"); 9838 } 9839 } 9840 9841 uint32_t arm_phys_excp_target_el(CPUState *cs, uint32_t excp_idx, 9842 uint32_t cur_el, bool secure) 9843 { 9844 return 1; 9845 } 9846 9847 void aarch64_sync_64_to_32(CPUARMState *env) 9848 { 9849 g_assert_not_reached(); 9850 } 9851 9852 #else 9853 9854 static void switch_mode(CPUARMState *env, int mode) 9855 { 9856 int old_mode; 9857 int i; 9858 9859 old_mode = env->uncached_cpsr & CPSR_M; 9860 if (mode == old_mode) { 9861 return; 9862 } 9863 9864 if (old_mode == ARM_CPU_MODE_FIQ) { 9865 memcpy(env->fiq_regs, env->regs + 8, 5 * sizeof(uint32_t)); 9866 memcpy(env->regs + 8, env->usr_regs, 5 * sizeof(uint32_t)); 9867 } else if (mode == ARM_CPU_MODE_FIQ) { 9868 memcpy(env->usr_regs, env->regs + 8, 5 * sizeof(uint32_t)); 9869 memcpy(env->regs + 8, env->fiq_regs, 5 * sizeof(uint32_t)); 9870 } 9871 9872 i = bank_number(old_mode); 9873 env->banked_r13[i] = env->regs[13]; 9874 env->banked_spsr[i] = env->spsr; 9875 9876 i = bank_number(mode); 9877 env->regs[13] = env->banked_r13[i]; 9878 env->spsr = env->banked_spsr[i]; 9879 9880 env->banked_r14[r14_bank_number(old_mode)] = env->regs[14]; 9881 env->regs[14] = env->banked_r14[r14_bank_number(mode)]; 9882 } 9883 9884 /* 9885 * Physical Interrupt Target EL Lookup Table 9886 * 9887 * [ From ARM ARM section G1.13.4 (Table G1-15) ] 9888 * 9889 * The below multi-dimensional table is used for looking up the target 9890 * exception level given numerous condition criteria. Specifically, the 9891 * target EL is based on SCR and HCR routing controls as well as the 9892 * currently executing EL and secure state. 9893 * 9894 * Dimensions: 9895 * target_el_table[2][2][2][2][2][4] 9896 * | | | | | +--- Current EL 9897 * | | | | +------ Non-secure(0)/Secure(1) 9898 * | | | +--------- HCR mask override 9899 * | | +------------ SCR exec state control 9900 * | +--------------- SCR mask override 9901 * +------------------ 32-bit(0)/64-bit(1) EL3 9902 * 9903 * The table values are as such: 9904 * 0-3 = EL0-EL3 9905 * -1 = Cannot occur 9906 * 9907 * The ARM ARM target EL table includes entries indicating that an "exception 9908 * is not taken". The two cases where this is applicable are: 9909 * 1) An exception is taken from EL3 but the SCR does not have the exception 9910 * routed to EL3. 9911 * 2) An exception is taken from EL2 but the HCR does not have the exception 9912 * routed to EL2. 9913 * In these two cases, the below table contain a target of EL1. This value is 9914 * returned as it is expected that the consumer of the table data will check 9915 * for "target EL >= current EL" to ensure the exception is not taken. 9916 * 9917 * SCR HCR 9918 * 64 EA AMO From 9919 * BIT IRQ IMO Non-secure Secure 9920 * EL3 FIQ RW FMO EL0 EL1 EL2 EL3 EL0 EL1 EL2 EL3 9921 */ 9922 static const int8_t target_el_table[2][2][2][2][2][4] = { 9923 {{{{/* 0 0 0 0 */{ 1, 1, 2, -1 },{ 3, -1, -1, 3 },}, 9924 {/* 0 0 0 1 */{ 2, 2, 2, -1 },{ 3, -1, -1, 3 },},}, 9925 {{/* 0 0 1 0 */{ 1, 1, 2, -1 },{ 3, -1, -1, 3 },}, 9926 {/* 0 0 1 1 */{ 2, 2, 2, -1 },{ 3, -1, -1, 3 },},},}, 9927 {{{/* 0 1 0 0 */{ 3, 3, 3, -1 },{ 3, -1, -1, 3 },}, 9928 {/* 0 1 0 1 */{ 3, 3, 3, -1 },{ 3, -1, -1, 3 },},}, 9929 {{/* 0 1 1 0 */{ 3, 3, 3, -1 },{ 3, -1, -1, 3 },}, 9930 {/* 0 1 1 1 */{ 3, 3, 3, -1 },{ 3, -1, -1, 3 },},},},}, 9931 {{{{/* 1 0 0 0 */{ 1, 1, 2, -1 },{ 1, 1, -1, 1 },}, 9932 {/* 1 0 0 1 */{ 2, 2, 2, -1 },{ 2, 2, -1, 1 },},}, 9933 {{/* 1 0 1 0 */{ 1, 1, 1, -1 },{ 1, 1, 1, 1 },}, 9934 {/* 1 0 1 1 */{ 2, 2, 2, -1 },{ 2, 2, 2, 1 },},},}, 9935 {{{/* 1 1 0 0 */{ 3, 3, 3, -1 },{ 3, 3, -1, 3 },}, 9936 {/* 1 1 0 1 */{ 3, 3, 3, -1 },{ 3, 3, -1, 3 },},}, 9937 {{/* 1 1 1 0 */{ 3, 3, 3, -1 },{ 3, 3, 3, 3 },}, 9938 {/* 1 1 1 1 */{ 3, 3, 3, -1 },{ 3, 3, 3, 3 },},},},}, 9939 }; 9940 9941 /* 9942 * Determine the target EL for physical exceptions 9943 */ 9944 uint32_t arm_phys_excp_target_el(CPUState *cs, uint32_t excp_idx, 9945 uint32_t cur_el, bool secure) 9946 { 9947 CPUARMState *env = cs->env_ptr; 9948 bool rw; 9949 bool scr; 9950 bool hcr; 9951 int target_el; 9952 /* Is the highest EL AArch64? */ 9953 bool is64 = arm_feature(env, ARM_FEATURE_AARCH64); 9954 uint64_t hcr_el2; 9955 9956 if (arm_feature(env, ARM_FEATURE_EL3)) { 9957 rw = ((env->cp15.scr_el3 & SCR_RW) == SCR_RW); 9958 } else { 9959 /* 9960 * Either EL2 is the highest EL (and so the EL2 register width 9961 * is given by is64); or there is no EL2 or EL3, in which case 9962 * the value of 'rw' does not affect the table lookup anyway. 9963 */ 9964 rw = is64; 9965 } 9966 9967 hcr_el2 = arm_hcr_el2_eff(env); 9968 switch (excp_idx) { 9969 case EXCP_IRQ: 9970 scr = ((env->cp15.scr_el3 & SCR_IRQ) == SCR_IRQ); 9971 hcr = hcr_el2 & HCR_IMO; 9972 break; 9973 case EXCP_FIQ: 9974 scr = ((env->cp15.scr_el3 & SCR_FIQ) == SCR_FIQ); 9975 hcr = hcr_el2 & HCR_FMO; 9976 break; 9977 default: 9978 scr = ((env->cp15.scr_el3 & SCR_EA) == SCR_EA); 9979 hcr = hcr_el2 & HCR_AMO; 9980 break; 9981 }; 9982 9983 /* 9984 * For these purposes, TGE and AMO/IMO/FMO both force the 9985 * interrupt to EL2. Fold TGE into the bit extracted above. 9986 */ 9987 hcr |= (hcr_el2 & HCR_TGE) != 0; 9988 9989 /* Perform a table-lookup for the target EL given the current state */ 9990 target_el = target_el_table[is64][scr][rw][hcr][secure][cur_el]; 9991 9992 assert(target_el > 0); 9993 9994 return target_el; 9995 } 9996 9997 void arm_log_exception(CPUState *cs) 9998 { 9999 int idx = cs->exception_index; 10000 10001 if (qemu_loglevel_mask(CPU_LOG_INT)) { 10002 const char *exc = NULL; 10003 static const char * const excnames[] = { 10004 [EXCP_UDEF] = "Undefined Instruction", 10005 [EXCP_SWI] = "SVC", 10006 [EXCP_PREFETCH_ABORT] = "Prefetch Abort", 10007 [EXCP_DATA_ABORT] = "Data Abort", 10008 [EXCP_IRQ] = "IRQ", 10009 [EXCP_FIQ] = "FIQ", 10010 [EXCP_BKPT] = "Breakpoint", 10011 [EXCP_EXCEPTION_EXIT] = "QEMU v7M exception exit", 10012 [EXCP_KERNEL_TRAP] = "QEMU intercept of kernel commpage", 10013 [EXCP_HVC] = "Hypervisor Call", 10014 [EXCP_HYP_TRAP] = "Hypervisor Trap", 10015 [EXCP_SMC] = "Secure Monitor Call", 10016 [EXCP_VIRQ] = "Virtual IRQ", 10017 [EXCP_VFIQ] = "Virtual FIQ", 10018 [EXCP_SEMIHOST] = "Semihosting call", 10019 [EXCP_NOCP] = "v7M NOCP UsageFault", 10020 [EXCP_INVSTATE] = "v7M INVSTATE UsageFault", 10021 [EXCP_STKOF] = "v8M STKOF UsageFault", 10022 [EXCP_LAZYFP] = "v7M exception during lazy FP stacking", 10023 [EXCP_LSERR] = "v8M LSERR UsageFault", 10024 [EXCP_UNALIGNED] = "v7M UNALIGNED UsageFault", 10025 [EXCP_DIVBYZERO] = "v7M DIVBYZERO UsageFault", 10026 [EXCP_VSERR] = "Virtual SERR", 10027 }; 10028 10029 if (idx >= 0 && idx < ARRAY_SIZE(excnames)) { 10030 exc = excnames[idx]; 10031 } 10032 if (!exc) { 10033 exc = "unknown"; 10034 } 10035 qemu_log_mask(CPU_LOG_INT, "Taking exception %d [%s] on CPU %d\n", 10036 idx, exc, cs->cpu_index); 10037 } 10038 } 10039 10040 /* 10041 * Function used to synchronize QEMU's AArch64 register set with AArch32 10042 * register set. This is necessary when switching between AArch32 and AArch64 10043 * execution state. 10044 */ 10045 void aarch64_sync_32_to_64(CPUARMState *env) 10046 { 10047 int i; 10048 uint32_t mode = env->uncached_cpsr & CPSR_M; 10049 10050 /* We can blanket copy R[0:7] to X[0:7] */ 10051 for (i = 0; i < 8; i++) { 10052 env->xregs[i] = env->regs[i]; 10053 } 10054 10055 /* 10056 * Unless we are in FIQ mode, x8-x12 come from the user registers r8-r12. 10057 * Otherwise, they come from the banked user regs. 10058 */ 10059 if (mode == ARM_CPU_MODE_FIQ) { 10060 for (i = 8; i < 13; i++) { 10061 env->xregs[i] = env->usr_regs[i - 8]; 10062 } 10063 } else { 10064 for (i = 8; i < 13; i++) { 10065 env->xregs[i] = env->regs[i]; 10066 } 10067 } 10068 10069 /* 10070 * Registers x13-x23 are the various mode SP and FP registers. Registers 10071 * r13 and r14 are only copied if we are in that mode, otherwise we copy 10072 * from the mode banked register. 10073 */ 10074 if (mode == ARM_CPU_MODE_USR || mode == ARM_CPU_MODE_SYS) { 10075 env->xregs[13] = env->regs[13]; 10076 env->xregs[14] = env->regs[14]; 10077 } else { 10078 env->xregs[13] = env->banked_r13[bank_number(ARM_CPU_MODE_USR)]; 10079 /* HYP is an exception in that it is copied from r14 */ 10080 if (mode == ARM_CPU_MODE_HYP) { 10081 env->xregs[14] = env->regs[14]; 10082 } else { 10083 env->xregs[14] = env->banked_r14[r14_bank_number(ARM_CPU_MODE_USR)]; 10084 } 10085 } 10086 10087 if (mode == ARM_CPU_MODE_HYP) { 10088 env->xregs[15] = env->regs[13]; 10089 } else { 10090 env->xregs[15] = env->banked_r13[bank_number(ARM_CPU_MODE_HYP)]; 10091 } 10092 10093 if (mode == ARM_CPU_MODE_IRQ) { 10094 env->xregs[16] = env->regs[14]; 10095 env->xregs[17] = env->regs[13]; 10096 } else { 10097 env->xregs[16] = env->banked_r14[r14_bank_number(ARM_CPU_MODE_IRQ)]; 10098 env->xregs[17] = env->banked_r13[bank_number(ARM_CPU_MODE_IRQ)]; 10099 } 10100 10101 if (mode == ARM_CPU_MODE_SVC) { 10102 env->xregs[18] = env->regs[14]; 10103 env->xregs[19] = env->regs[13]; 10104 } else { 10105 env->xregs[18] = env->banked_r14[r14_bank_number(ARM_CPU_MODE_SVC)]; 10106 env->xregs[19] = env->banked_r13[bank_number(ARM_CPU_MODE_SVC)]; 10107 } 10108 10109 if (mode == ARM_CPU_MODE_ABT) { 10110 env->xregs[20] = env->regs[14]; 10111 env->xregs[21] = env->regs[13]; 10112 } else { 10113 env->xregs[20] = env->banked_r14[r14_bank_number(ARM_CPU_MODE_ABT)]; 10114 env->xregs[21] = env->banked_r13[bank_number(ARM_CPU_MODE_ABT)]; 10115 } 10116 10117 if (mode == ARM_CPU_MODE_UND) { 10118 env->xregs[22] = env->regs[14]; 10119 env->xregs[23] = env->regs[13]; 10120 } else { 10121 env->xregs[22] = env->banked_r14[r14_bank_number(ARM_CPU_MODE_UND)]; 10122 env->xregs[23] = env->banked_r13[bank_number(ARM_CPU_MODE_UND)]; 10123 } 10124 10125 /* 10126 * Registers x24-x30 are mapped to r8-r14 in FIQ mode. If we are in FIQ 10127 * mode, then we can copy from r8-r14. Otherwise, we copy from the 10128 * FIQ bank for r8-r14. 10129 */ 10130 if (mode == ARM_CPU_MODE_FIQ) { 10131 for (i = 24; i < 31; i++) { 10132 env->xregs[i] = env->regs[i - 16]; /* X[24:30] <- R[8:14] */ 10133 } 10134 } else { 10135 for (i = 24; i < 29; i++) { 10136 env->xregs[i] = env->fiq_regs[i - 24]; 10137 } 10138 env->xregs[29] = env->banked_r13[bank_number(ARM_CPU_MODE_FIQ)]; 10139 env->xregs[30] = env->banked_r14[r14_bank_number(ARM_CPU_MODE_FIQ)]; 10140 } 10141 10142 env->pc = env->regs[15]; 10143 } 10144 10145 /* 10146 * Function used to synchronize QEMU's AArch32 register set with AArch64 10147 * register set. This is necessary when switching between AArch32 and AArch64 10148 * execution state. 10149 */ 10150 void aarch64_sync_64_to_32(CPUARMState *env) 10151 { 10152 int i; 10153 uint32_t mode = env->uncached_cpsr & CPSR_M; 10154 10155 /* We can blanket copy X[0:7] to R[0:7] */ 10156 for (i = 0; i < 8; i++) { 10157 env->regs[i] = env->xregs[i]; 10158 } 10159 10160 /* 10161 * Unless we are in FIQ mode, r8-r12 come from the user registers x8-x12. 10162 * Otherwise, we copy x8-x12 into the banked user regs. 10163 */ 10164 if (mode == ARM_CPU_MODE_FIQ) { 10165 for (i = 8; i < 13; i++) { 10166 env->usr_regs[i - 8] = env->xregs[i]; 10167 } 10168 } else { 10169 for (i = 8; i < 13; i++) { 10170 env->regs[i] = env->xregs[i]; 10171 } 10172 } 10173 10174 /* 10175 * Registers r13 & r14 depend on the current mode. 10176 * If we are in a given mode, we copy the corresponding x registers to r13 10177 * and r14. Otherwise, we copy the x register to the banked r13 and r14 10178 * for the mode. 10179 */ 10180 if (mode == ARM_CPU_MODE_USR || mode == ARM_CPU_MODE_SYS) { 10181 env->regs[13] = env->xregs[13]; 10182 env->regs[14] = env->xregs[14]; 10183 } else { 10184 env->banked_r13[bank_number(ARM_CPU_MODE_USR)] = env->xregs[13]; 10185 10186 /* 10187 * HYP is an exception in that it does not have its own banked r14 but 10188 * shares the USR r14 10189 */ 10190 if (mode == ARM_CPU_MODE_HYP) { 10191 env->regs[14] = env->xregs[14]; 10192 } else { 10193 env->banked_r14[r14_bank_number(ARM_CPU_MODE_USR)] = env->xregs[14]; 10194 } 10195 } 10196 10197 if (mode == ARM_CPU_MODE_HYP) { 10198 env->regs[13] = env->xregs[15]; 10199 } else { 10200 env->banked_r13[bank_number(ARM_CPU_MODE_HYP)] = env->xregs[15]; 10201 } 10202 10203 if (mode == ARM_CPU_MODE_IRQ) { 10204 env->regs[14] = env->xregs[16]; 10205 env->regs[13] = env->xregs[17]; 10206 } else { 10207 env->banked_r14[r14_bank_number(ARM_CPU_MODE_IRQ)] = env->xregs[16]; 10208 env->banked_r13[bank_number(ARM_CPU_MODE_IRQ)] = env->xregs[17]; 10209 } 10210 10211 if (mode == ARM_CPU_MODE_SVC) { 10212 env->regs[14] = env->xregs[18]; 10213 env->regs[13] = env->xregs[19]; 10214 } else { 10215 env->banked_r14[r14_bank_number(ARM_CPU_MODE_SVC)] = env->xregs[18]; 10216 env->banked_r13[bank_number(ARM_CPU_MODE_SVC)] = env->xregs[19]; 10217 } 10218 10219 if (mode == ARM_CPU_MODE_ABT) { 10220 env->regs[14] = env->xregs[20]; 10221 env->regs[13] = env->xregs[21]; 10222 } else { 10223 env->banked_r14[r14_bank_number(ARM_CPU_MODE_ABT)] = env->xregs[20]; 10224 env->banked_r13[bank_number(ARM_CPU_MODE_ABT)] = env->xregs[21]; 10225 } 10226 10227 if (mode == ARM_CPU_MODE_UND) { 10228 env->regs[14] = env->xregs[22]; 10229 env->regs[13] = env->xregs[23]; 10230 } else { 10231 env->banked_r14[r14_bank_number(ARM_CPU_MODE_UND)] = env->xregs[22]; 10232 env->banked_r13[bank_number(ARM_CPU_MODE_UND)] = env->xregs[23]; 10233 } 10234 10235 /* 10236 * Registers x24-x30 are mapped to r8-r14 in FIQ mode. If we are in FIQ 10237 * mode, then we can copy to r8-r14. Otherwise, we copy to the 10238 * FIQ bank for r8-r14. 10239 */ 10240 if (mode == ARM_CPU_MODE_FIQ) { 10241 for (i = 24; i < 31; i++) { 10242 env->regs[i - 16] = env->xregs[i]; /* X[24:30] -> R[8:14] */ 10243 } 10244 } else { 10245 for (i = 24; i < 29; i++) { 10246 env->fiq_regs[i - 24] = env->xregs[i]; 10247 } 10248 env->banked_r13[bank_number(ARM_CPU_MODE_FIQ)] = env->xregs[29]; 10249 env->banked_r14[r14_bank_number(ARM_CPU_MODE_FIQ)] = env->xregs[30]; 10250 } 10251 10252 env->regs[15] = env->pc; 10253 } 10254 10255 static void take_aarch32_exception(CPUARMState *env, int new_mode, 10256 uint32_t mask, uint32_t offset, 10257 uint32_t newpc) 10258 { 10259 int new_el; 10260 10261 /* Change the CPU state so as to actually take the exception. */ 10262 switch_mode(env, new_mode); 10263 10264 /* 10265 * For exceptions taken to AArch32 we must clear the SS bit in both 10266 * PSTATE and in the old-state value we save to SPSR_<mode>, so zero it now. 10267 */ 10268 env->pstate &= ~PSTATE_SS; 10269 env->spsr = cpsr_read(env); 10270 /* Clear IT bits. */ 10271 env->condexec_bits = 0; 10272 /* Switch to the new mode, and to the correct instruction set. */ 10273 env->uncached_cpsr = (env->uncached_cpsr & ~CPSR_M) | new_mode; 10274 10275 /* This must be after mode switching. */ 10276 new_el = arm_current_el(env); 10277 10278 /* Set new mode endianness */ 10279 env->uncached_cpsr &= ~CPSR_E; 10280 if (env->cp15.sctlr_el[new_el] & SCTLR_EE) { 10281 env->uncached_cpsr |= CPSR_E; 10282 } 10283 /* J and IL must always be cleared for exception entry */ 10284 env->uncached_cpsr &= ~(CPSR_IL | CPSR_J); 10285 env->daif |= mask; 10286 10287 if (cpu_isar_feature(aa32_ssbs, env_archcpu(env))) { 10288 if (env->cp15.sctlr_el[new_el] & SCTLR_DSSBS_32) { 10289 env->uncached_cpsr |= CPSR_SSBS; 10290 } else { 10291 env->uncached_cpsr &= ~CPSR_SSBS; 10292 } 10293 } 10294 10295 if (new_mode == ARM_CPU_MODE_HYP) { 10296 env->thumb = (env->cp15.sctlr_el[2] & SCTLR_TE) != 0; 10297 env->elr_el[2] = env->regs[15]; 10298 } else { 10299 /* CPSR.PAN is normally preserved preserved unless... */ 10300 if (cpu_isar_feature(aa32_pan, env_archcpu(env))) { 10301 switch (new_el) { 10302 case 3: 10303 if (!arm_is_secure_below_el3(env)) { 10304 /* ... the target is EL3, from non-secure state. */ 10305 env->uncached_cpsr &= ~CPSR_PAN; 10306 break; 10307 } 10308 /* ... the target is EL3, from secure state ... */ 10309 /* fall through */ 10310 case 1: 10311 /* ... the target is EL1 and SCTLR.SPAN is 0. */ 10312 if (!(env->cp15.sctlr_el[new_el] & SCTLR_SPAN)) { 10313 env->uncached_cpsr |= CPSR_PAN; 10314 } 10315 break; 10316 } 10317 } 10318 /* 10319 * this is a lie, as there was no c1_sys on V4T/V5, but who cares 10320 * and we should just guard the thumb mode on V4 10321 */ 10322 if (arm_feature(env, ARM_FEATURE_V4T)) { 10323 env->thumb = 10324 (A32_BANKED_CURRENT_REG_GET(env, sctlr) & SCTLR_TE) != 0; 10325 } 10326 env->regs[14] = env->regs[15] + offset; 10327 } 10328 env->regs[15] = newpc; 10329 arm_rebuild_hflags(env); 10330 } 10331 10332 static void arm_cpu_do_interrupt_aarch32_hyp(CPUState *cs) 10333 { 10334 /* 10335 * Handle exception entry to Hyp mode; this is sufficiently 10336 * different to entry to other AArch32 modes that we handle it 10337 * separately here. 10338 * 10339 * The vector table entry used is always the 0x14 Hyp mode entry point, 10340 * unless this is an UNDEF/SVC/HVC/abort taken from Hyp to Hyp. 10341 * The offset applied to the preferred return address is always zero 10342 * (see DDI0487C.a section G1.12.3). 10343 * PSTATE A/I/F masks are set based only on the SCR.EA/IRQ/FIQ values. 10344 */ 10345 uint32_t addr, mask; 10346 ARMCPU *cpu = ARM_CPU(cs); 10347 CPUARMState *env = &cpu->env; 10348 10349 switch (cs->exception_index) { 10350 case EXCP_UDEF: 10351 addr = 0x04; 10352 break; 10353 case EXCP_SWI: 10354 addr = 0x08; 10355 break; 10356 case EXCP_BKPT: 10357 /* Fall through to prefetch abort. */ 10358 case EXCP_PREFETCH_ABORT: 10359 env->cp15.ifar_s = env->exception.vaddress; 10360 qemu_log_mask(CPU_LOG_INT, "...with HIFAR 0x%x\n", 10361 (uint32_t)env->exception.vaddress); 10362 addr = 0x0c; 10363 break; 10364 case EXCP_DATA_ABORT: 10365 env->cp15.dfar_s = env->exception.vaddress; 10366 qemu_log_mask(CPU_LOG_INT, "...with HDFAR 0x%x\n", 10367 (uint32_t)env->exception.vaddress); 10368 addr = 0x10; 10369 break; 10370 case EXCP_IRQ: 10371 addr = 0x18; 10372 break; 10373 case EXCP_FIQ: 10374 addr = 0x1c; 10375 break; 10376 case EXCP_HVC: 10377 addr = 0x08; 10378 break; 10379 case EXCP_HYP_TRAP: 10380 addr = 0x14; 10381 break; 10382 default: 10383 cpu_abort(cs, "Unhandled exception 0x%x\n", cs->exception_index); 10384 } 10385 10386 if (cs->exception_index != EXCP_IRQ && cs->exception_index != EXCP_FIQ) { 10387 if (!arm_feature(env, ARM_FEATURE_V8)) { 10388 /* 10389 * QEMU syndrome values are v8-style. v7 has the IL bit 10390 * UNK/SBZP for "field not valid" cases, where v8 uses RES1. 10391 * If this is a v7 CPU, squash the IL bit in those cases. 10392 */ 10393 if (cs->exception_index == EXCP_PREFETCH_ABORT || 10394 (cs->exception_index == EXCP_DATA_ABORT && 10395 !(env->exception.syndrome & ARM_EL_ISV)) || 10396 syn_get_ec(env->exception.syndrome) == EC_UNCATEGORIZED) { 10397 env->exception.syndrome &= ~ARM_EL_IL; 10398 } 10399 } 10400 env->cp15.esr_el[2] = env->exception.syndrome; 10401 } 10402 10403 if (arm_current_el(env) != 2 && addr < 0x14) { 10404 addr = 0x14; 10405 } 10406 10407 mask = 0; 10408 if (!(env->cp15.scr_el3 & SCR_EA)) { 10409 mask |= CPSR_A; 10410 } 10411 if (!(env->cp15.scr_el3 & SCR_IRQ)) { 10412 mask |= CPSR_I; 10413 } 10414 if (!(env->cp15.scr_el3 & SCR_FIQ)) { 10415 mask |= CPSR_F; 10416 } 10417 10418 addr += env->cp15.hvbar; 10419 10420 take_aarch32_exception(env, ARM_CPU_MODE_HYP, mask, 0, addr); 10421 } 10422 10423 static void arm_cpu_do_interrupt_aarch32(CPUState *cs) 10424 { 10425 ARMCPU *cpu = ARM_CPU(cs); 10426 CPUARMState *env = &cpu->env; 10427 uint32_t addr; 10428 uint32_t mask; 10429 int new_mode; 10430 uint32_t offset; 10431 uint32_t moe; 10432 10433 /* If this is a debug exception we must update the DBGDSCR.MOE bits */ 10434 switch (syn_get_ec(env->exception.syndrome)) { 10435 case EC_BREAKPOINT: 10436 case EC_BREAKPOINT_SAME_EL: 10437 moe = 1; 10438 break; 10439 case EC_WATCHPOINT: 10440 case EC_WATCHPOINT_SAME_EL: 10441 moe = 10; 10442 break; 10443 case EC_AA32_BKPT: 10444 moe = 3; 10445 break; 10446 case EC_VECTORCATCH: 10447 moe = 5; 10448 break; 10449 default: 10450 moe = 0; 10451 break; 10452 } 10453 10454 if (moe) { 10455 env->cp15.mdscr_el1 = deposit64(env->cp15.mdscr_el1, 2, 4, moe); 10456 } 10457 10458 if (env->exception.target_el == 2) { 10459 arm_cpu_do_interrupt_aarch32_hyp(cs); 10460 return; 10461 } 10462 10463 switch (cs->exception_index) { 10464 case EXCP_UDEF: 10465 new_mode = ARM_CPU_MODE_UND; 10466 addr = 0x04; 10467 mask = CPSR_I; 10468 if (env->thumb) { 10469 offset = 2; 10470 } else { 10471 offset = 4; 10472 } 10473 break; 10474 case EXCP_SWI: 10475 new_mode = ARM_CPU_MODE_SVC; 10476 addr = 0x08; 10477 mask = CPSR_I; 10478 /* The PC already points to the next instruction. */ 10479 offset = 0; 10480 break; 10481 case EXCP_BKPT: 10482 /* Fall through to prefetch abort. */ 10483 case EXCP_PREFETCH_ABORT: 10484 A32_BANKED_CURRENT_REG_SET(env, ifsr, env->exception.fsr); 10485 A32_BANKED_CURRENT_REG_SET(env, ifar, env->exception.vaddress); 10486 qemu_log_mask(CPU_LOG_INT, "...with IFSR 0x%x IFAR 0x%x\n", 10487 env->exception.fsr, (uint32_t)env->exception.vaddress); 10488 new_mode = ARM_CPU_MODE_ABT; 10489 addr = 0x0c; 10490 mask = CPSR_A | CPSR_I; 10491 offset = 4; 10492 break; 10493 case EXCP_DATA_ABORT: 10494 A32_BANKED_CURRENT_REG_SET(env, dfsr, env->exception.fsr); 10495 A32_BANKED_CURRENT_REG_SET(env, dfar, env->exception.vaddress); 10496 qemu_log_mask(CPU_LOG_INT, "...with DFSR 0x%x DFAR 0x%x\n", 10497 env->exception.fsr, 10498 (uint32_t)env->exception.vaddress); 10499 new_mode = ARM_CPU_MODE_ABT; 10500 addr = 0x10; 10501 mask = CPSR_A | CPSR_I; 10502 offset = 8; 10503 break; 10504 case EXCP_IRQ: 10505 new_mode = ARM_CPU_MODE_IRQ; 10506 addr = 0x18; 10507 /* Disable IRQ and imprecise data aborts. */ 10508 mask = CPSR_A | CPSR_I; 10509 offset = 4; 10510 if (env->cp15.scr_el3 & SCR_IRQ) { 10511 /* IRQ routed to monitor mode */ 10512 new_mode = ARM_CPU_MODE_MON; 10513 mask |= CPSR_F; 10514 } 10515 break; 10516 case EXCP_FIQ: 10517 new_mode = ARM_CPU_MODE_FIQ; 10518 addr = 0x1c; 10519 /* Disable FIQ, IRQ and imprecise data aborts. */ 10520 mask = CPSR_A | CPSR_I | CPSR_F; 10521 if (env->cp15.scr_el3 & SCR_FIQ) { 10522 /* FIQ routed to monitor mode */ 10523 new_mode = ARM_CPU_MODE_MON; 10524 } 10525 offset = 4; 10526 break; 10527 case EXCP_VIRQ: 10528 new_mode = ARM_CPU_MODE_IRQ; 10529 addr = 0x18; 10530 /* Disable IRQ and imprecise data aborts. */ 10531 mask = CPSR_A | CPSR_I; 10532 offset = 4; 10533 break; 10534 case EXCP_VFIQ: 10535 new_mode = ARM_CPU_MODE_FIQ; 10536 addr = 0x1c; 10537 /* Disable FIQ, IRQ and imprecise data aborts. */ 10538 mask = CPSR_A | CPSR_I | CPSR_F; 10539 offset = 4; 10540 break; 10541 case EXCP_VSERR: 10542 { 10543 /* 10544 * Note that this is reported as a data abort, but the DFAR 10545 * has an UNKNOWN value. Construct the SError syndrome from 10546 * AET and ExT fields. 10547 */ 10548 ARMMMUFaultInfo fi = { .type = ARMFault_AsyncExternal, }; 10549 10550 if (extended_addresses_enabled(env)) { 10551 env->exception.fsr = arm_fi_to_lfsc(&fi); 10552 } else { 10553 env->exception.fsr = arm_fi_to_sfsc(&fi); 10554 } 10555 env->exception.fsr |= env->cp15.vsesr_el2 & 0xd000; 10556 A32_BANKED_CURRENT_REG_SET(env, dfsr, env->exception.fsr); 10557 qemu_log_mask(CPU_LOG_INT, "...with IFSR 0x%x\n", 10558 env->exception.fsr); 10559 10560 new_mode = ARM_CPU_MODE_ABT; 10561 addr = 0x10; 10562 mask = CPSR_A | CPSR_I; 10563 offset = 8; 10564 } 10565 break; 10566 case EXCP_SMC: 10567 new_mode = ARM_CPU_MODE_MON; 10568 addr = 0x08; 10569 mask = CPSR_A | CPSR_I | CPSR_F; 10570 offset = 0; 10571 break; 10572 default: 10573 cpu_abort(cs, "Unhandled exception 0x%x\n", cs->exception_index); 10574 return; /* Never happens. Keep compiler happy. */ 10575 } 10576 10577 if (new_mode == ARM_CPU_MODE_MON) { 10578 addr += env->cp15.mvbar; 10579 } else if (A32_BANKED_CURRENT_REG_GET(env, sctlr) & SCTLR_V) { 10580 /* High vectors. When enabled, base address cannot be remapped. */ 10581 addr += 0xffff0000; 10582 } else { 10583 /* 10584 * ARM v7 architectures provide a vector base address register to remap 10585 * the interrupt vector table. 10586 * This register is only followed in non-monitor mode, and is banked. 10587 * Note: only bits 31:5 are valid. 10588 */ 10589 addr += A32_BANKED_CURRENT_REG_GET(env, vbar); 10590 } 10591 10592 if ((env->uncached_cpsr & CPSR_M) == ARM_CPU_MODE_MON) { 10593 env->cp15.scr_el3 &= ~SCR_NS; 10594 } 10595 10596 take_aarch32_exception(env, new_mode, mask, offset, addr); 10597 } 10598 10599 static int aarch64_regnum(CPUARMState *env, int aarch32_reg) 10600 { 10601 /* 10602 * Return the register number of the AArch64 view of the AArch32 10603 * register @aarch32_reg. The CPUARMState CPSR is assumed to still 10604 * be that of the AArch32 mode the exception came from. 10605 */ 10606 int mode = env->uncached_cpsr & CPSR_M; 10607 10608 switch (aarch32_reg) { 10609 case 0 ... 7: 10610 return aarch32_reg; 10611 case 8 ... 12: 10612 return mode == ARM_CPU_MODE_FIQ ? aarch32_reg + 16 : aarch32_reg; 10613 case 13: 10614 switch (mode) { 10615 case ARM_CPU_MODE_USR: 10616 case ARM_CPU_MODE_SYS: 10617 return 13; 10618 case ARM_CPU_MODE_HYP: 10619 return 15; 10620 case ARM_CPU_MODE_IRQ: 10621 return 17; 10622 case ARM_CPU_MODE_SVC: 10623 return 19; 10624 case ARM_CPU_MODE_ABT: 10625 return 21; 10626 case ARM_CPU_MODE_UND: 10627 return 23; 10628 case ARM_CPU_MODE_FIQ: 10629 return 29; 10630 default: 10631 g_assert_not_reached(); 10632 } 10633 case 14: 10634 switch (mode) { 10635 case ARM_CPU_MODE_USR: 10636 case ARM_CPU_MODE_SYS: 10637 case ARM_CPU_MODE_HYP: 10638 return 14; 10639 case ARM_CPU_MODE_IRQ: 10640 return 16; 10641 case ARM_CPU_MODE_SVC: 10642 return 18; 10643 case ARM_CPU_MODE_ABT: 10644 return 20; 10645 case ARM_CPU_MODE_UND: 10646 return 22; 10647 case ARM_CPU_MODE_FIQ: 10648 return 30; 10649 default: 10650 g_assert_not_reached(); 10651 } 10652 case 15: 10653 return 31; 10654 default: 10655 g_assert_not_reached(); 10656 } 10657 } 10658 10659 static uint32_t cpsr_read_for_spsr_elx(CPUARMState *env) 10660 { 10661 uint32_t ret = cpsr_read(env); 10662 10663 /* Move DIT to the correct location for SPSR_ELx */ 10664 if (ret & CPSR_DIT) { 10665 ret &= ~CPSR_DIT; 10666 ret |= PSTATE_DIT; 10667 } 10668 /* Merge PSTATE.SS into SPSR_ELx */ 10669 ret |= env->pstate & PSTATE_SS; 10670 10671 return ret; 10672 } 10673 10674 static bool syndrome_is_sync_extabt(uint32_t syndrome) 10675 { 10676 /* Return true if this syndrome value is a synchronous external abort */ 10677 switch (syn_get_ec(syndrome)) { 10678 case EC_INSNABORT: 10679 case EC_INSNABORT_SAME_EL: 10680 case EC_DATAABORT: 10681 case EC_DATAABORT_SAME_EL: 10682 /* Look at fault status code for all the synchronous ext abort cases */ 10683 switch (syndrome & 0x3f) { 10684 case 0x10: 10685 case 0x13: 10686 case 0x14: 10687 case 0x15: 10688 case 0x16: 10689 case 0x17: 10690 return true; 10691 default: 10692 return false; 10693 } 10694 default: 10695 return false; 10696 } 10697 } 10698 10699 /* Handle exception entry to a target EL which is using AArch64 */ 10700 static void arm_cpu_do_interrupt_aarch64(CPUState *cs) 10701 { 10702 ARMCPU *cpu = ARM_CPU(cs); 10703 CPUARMState *env = &cpu->env; 10704 unsigned int new_el = env->exception.target_el; 10705 target_ulong addr = env->cp15.vbar_el[new_el]; 10706 unsigned int new_mode = aarch64_pstate_mode(new_el, true); 10707 unsigned int old_mode; 10708 unsigned int cur_el = arm_current_el(env); 10709 int rt; 10710 10711 /* 10712 * Note that new_el can never be 0. If cur_el is 0, then 10713 * el0_a64 is is_a64(), else el0_a64 is ignored. 10714 */ 10715 aarch64_sve_change_el(env, cur_el, new_el, is_a64(env)); 10716 10717 if (cur_el < new_el) { 10718 /* 10719 * Entry vector offset depends on whether the implemented EL 10720 * immediately lower than the target level is using AArch32 or AArch64 10721 */ 10722 bool is_aa64; 10723 uint64_t hcr; 10724 10725 switch (new_el) { 10726 case 3: 10727 is_aa64 = (env->cp15.scr_el3 & SCR_RW) != 0; 10728 break; 10729 case 2: 10730 hcr = arm_hcr_el2_eff(env); 10731 if ((hcr & (HCR_E2H | HCR_TGE)) != (HCR_E2H | HCR_TGE)) { 10732 is_aa64 = (hcr & HCR_RW) != 0; 10733 break; 10734 } 10735 /* fall through */ 10736 case 1: 10737 is_aa64 = is_a64(env); 10738 break; 10739 default: 10740 g_assert_not_reached(); 10741 } 10742 10743 if (is_aa64) { 10744 addr += 0x400; 10745 } else { 10746 addr += 0x600; 10747 } 10748 } else if (pstate_read(env) & PSTATE_SP) { 10749 addr += 0x200; 10750 } 10751 10752 switch (cs->exception_index) { 10753 case EXCP_PREFETCH_ABORT: 10754 case EXCP_DATA_ABORT: 10755 /* 10756 * FEAT_DoubleFault allows synchronous external aborts taken to EL3 10757 * to be taken to the SError vector entrypoint. 10758 */ 10759 if (new_el == 3 && (env->cp15.scr_el3 & SCR_EASE) && 10760 syndrome_is_sync_extabt(env->exception.syndrome)) { 10761 addr += 0x180; 10762 } 10763 env->cp15.far_el[new_el] = env->exception.vaddress; 10764 qemu_log_mask(CPU_LOG_INT, "...with FAR 0x%" PRIx64 "\n", 10765 env->cp15.far_el[new_el]); 10766 /* fall through */ 10767 case EXCP_BKPT: 10768 case EXCP_UDEF: 10769 case EXCP_SWI: 10770 case EXCP_HVC: 10771 case EXCP_HYP_TRAP: 10772 case EXCP_SMC: 10773 switch (syn_get_ec(env->exception.syndrome)) { 10774 case EC_ADVSIMDFPACCESSTRAP: 10775 /* 10776 * QEMU internal FP/SIMD syndromes from AArch32 include the 10777 * TA and coproc fields which are only exposed if the exception 10778 * is taken to AArch32 Hyp mode. Mask them out to get a valid 10779 * AArch64 format syndrome. 10780 */ 10781 env->exception.syndrome &= ~MAKE_64BIT_MASK(0, 20); 10782 break; 10783 case EC_CP14RTTRAP: 10784 case EC_CP15RTTRAP: 10785 case EC_CP14DTTRAP: 10786 /* 10787 * For a trap on AArch32 MRC/MCR/LDC/STC the Rt field is currently 10788 * the raw register field from the insn; when taking this to 10789 * AArch64 we must convert it to the AArch64 view of the register 10790 * number. Notice that we read a 4-bit AArch32 register number and 10791 * write back a 5-bit AArch64 one. 10792 */ 10793 rt = extract32(env->exception.syndrome, 5, 4); 10794 rt = aarch64_regnum(env, rt); 10795 env->exception.syndrome = deposit32(env->exception.syndrome, 10796 5, 5, rt); 10797 break; 10798 case EC_CP15RRTTRAP: 10799 case EC_CP14RRTTRAP: 10800 /* Similarly for MRRC/MCRR traps for Rt and Rt2 fields */ 10801 rt = extract32(env->exception.syndrome, 5, 4); 10802 rt = aarch64_regnum(env, rt); 10803 env->exception.syndrome = deposit32(env->exception.syndrome, 10804 5, 5, rt); 10805 rt = extract32(env->exception.syndrome, 10, 4); 10806 rt = aarch64_regnum(env, rt); 10807 env->exception.syndrome = deposit32(env->exception.syndrome, 10808 10, 5, rt); 10809 break; 10810 } 10811 env->cp15.esr_el[new_el] = env->exception.syndrome; 10812 break; 10813 case EXCP_IRQ: 10814 case EXCP_VIRQ: 10815 addr += 0x80; 10816 break; 10817 case EXCP_FIQ: 10818 case EXCP_VFIQ: 10819 addr += 0x100; 10820 break; 10821 case EXCP_VSERR: 10822 addr += 0x180; 10823 /* Construct the SError syndrome from IDS and ISS fields. */ 10824 env->exception.syndrome = syn_serror(env->cp15.vsesr_el2 & 0x1ffffff); 10825 env->cp15.esr_el[new_el] = env->exception.syndrome; 10826 break; 10827 default: 10828 cpu_abort(cs, "Unhandled exception 0x%x\n", cs->exception_index); 10829 } 10830 10831 if (is_a64(env)) { 10832 old_mode = pstate_read(env); 10833 aarch64_save_sp(env, arm_current_el(env)); 10834 env->elr_el[new_el] = env->pc; 10835 } else { 10836 old_mode = cpsr_read_for_spsr_elx(env); 10837 env->elr_el[new_el] = env->regs[15]; 10838 10839 aarch64_sync_32_to_64(env); 10840 10841 env->condexec_bits = 0; 10842 } 10843 env->banked_spsr[aarch64_banked_spsr_index(new_el)] = old_mode; 10844 10845 qemu_log_mask(CPU_LOG_INT, "...with ELR 0x%" PRIx64 "\n", 10846 env->elr_el[new_el]); 10847 10848 if (cpu_isar_feature(aa64_pan, cpu)) { 10849 /* The value of PSTATE.PAN is normally preserved, except when ... */ 10850 new_mode |= old_mode & PSTATE_PAN; 10851 switch (new_el) { 10852 case 2: 10853 /* ... the target is EL2 with HCR_EL2.{E2H,TGE} == '11' ... */ 10854 if ((arm_hcr_el2_eff(env) & (HCR_E2H | HCR_TGE)) 10855 != (HCR_E2H | HCR_TGE)) { 10856 break; 10857 } 10858 /* fall through */ 10859 case 1: 10860 /* ... the target is EL1 ... */ 10861 /* ... and SCTLR_ELx.SPAN == 0, then set to 1. */ 10862 if ((env->cp15.sctlr_el[new_el] & SCTLR_SPAN) == 0) { 10863 new_mode |= PSTATE_PAN; 10864 } 10865 break; 10866 } 10867 } 10868 if (cpu_isar_feature(aa64_mte, cpu)) { 10869 new_mode |= PSTATE_TCO; 10870 } 10871 10872 if (cpu_isar_feature(aa64_ssbs, cpu)) { 10873 if (env->cp15.sctlr_el[new_el] & SCTLR_DSSBS_64) { 10874 new_mode |= PSTATE_SSBS; 10875 } else { 10876 new_mode &= ~PSTATE_SSBS; 10877 } 10878 } 10879 10880 pstate_write(env, PSTATE_DAIF | new_mode); 10881 env->aarch64 = true; 10882 aarch64_restore_sp(env, new_el); 10883 helper_rebuild_hflags_a64(env, new_el); 10884 10885 env->pc = addr; 10886 10887 qemu_log_mask(CPU_LOG_INT, "...to EL%d PC 0x%" PRIx64 " PSTATE 0x%x\n", 10888 new_el, env->pc, pstate_read(env)); 10889 } 10890 10891 /* 10892 * Do semihosting call and set the appropriate return value. All the 10893 * permission and validity checks have been done at translate time. 10894 * 10895 * We only see semihosting exceptions in TCG only as they are not 10896 * trapped to the hypervisor in KVM. 10897 */ 10898 #ifdef CONFIG_TCG 10899 static void handle_semihosting(CPUState *cs) 10900 { 10901 ARMCPU *cpu = ARM_CPU(cs); 10902 CPUARMState *env = &cpu->env; 10903 10904 if (is_a64(env)) { 10905 qemu_log_mask(CPU_LOG_INT, 10906 "...handling as semihosting call 0x%" PRIx64 "\n", 10907 env->xregs[0]); 10908 do_common_semihosting(cs); 10909 env->pc += 4; 10910 } else { 10911 qemu_log_mask(CPU_LOG_INT, 10912 "...handling as semihosting call 0x%x\n", 10913 env->regs[0]); 10914 do_common_semihosting(cs); 10915 env->regs[15] += env->thumb ? 2 : 4; 10916 } 10917 } 10918 #endif 10919 10920 /* 10921 * Handle a CPU exception for A and R profile CPUs. 10922 * Do any appropriate logging, handle PSCI calls, and then hand off 10923 * to the AArch64-entry or AArch32-entry function depending on the 10924 * target exception level's register width. 10925 * 10926 * Note: this is used for both TCG (as the do_interrupt tcg op), 10927 * and KVM to re-inject guest debug exceptions, and to 10928 * inject a Synchronous-External-Abort. 10929 */ 10930 void arm_cpu_do_interrupt(CPUState *cs) 10931 { 10932 ARMCPU *cpu = ARM_CPU(cs); 10933 CPUARMState *env = &cpu->env; 10934 unsigned int new_el = env->exception.target_el; 10935 10936 assert(!arm_feature(env, ARM_FEATURE_M)); 10937 10938 arm_log_exception(cs); 10939 qemu_log_mask(CPU_LOG_INT, "...from EL%d to EL%d\n", arm_current_el(env), 10940 new_el); 10941 if (qemu_loglevel_mask(CPU_LOG_INT) 10942 && !excp_is_internal(cs->exception_index)) { 10943 qemu_log_mask(CPU_LOG_INT, "...with ESR 0x%x/0x%" PRIx32 "\n", 10944 syn_get_ec(env->exception.syndrome), 10945 env->exception.syndrome); 10946 } 10947 10948 if (arm_is_psci_call(cpu, cs->exception_index)) { 10949 arm_handle_psci_call(cpu); 10950 qemu_log_mask(CPU_LOG_INT, "...handled as PSCI call\n"); 10951 return; 10952 } 10953 10954 /* 10955 * Semihosting semantics depend on the register width of the code 10956 * that caused the exception, not the target exception level, so 10957 * must be handled here. 10958 */ 10959 #ifdef CONFIG_TCG 10960 if (cs->exception_index == EXCP_SEMIHOST) { 10961 handle_semihosting(cs); 10962 return; 10963 } 10964 #endif 10965 10966 /* 10967 * Hooks may change global state so BQL should be held, also the 10968 * BQL needs to be held for any modification of 10969 * cs->interrupt_request. 10970 */ 10971 g_assert(qemu_mutex_iothread_locked()); 10972 10973 arm_call_pre_el_change_hook(cpu); 10974 10975 assert(!excp_is_internal(cs->exception_index)); 10976 if (arm_el_is_aa64(env, new_el)) { 10977 arm_cpu_do_interrupt_aarch64(cs); 10978 } else { 10979 arm_cpu_do_interrupt_aarch32(cs); 10980 } 10981 10982 arm_call_el_change_hook(cpu); 10983 10984 if (!kvm_enabled()) { 10985 cs->interrupt_request |= CPU_INTERRUPT_EXITTB; 10986 } 10987 } 10988 #endif /* !CONFIG_USER_ONLY */ 10989 10990 uint64_t arm_sctlr(CPUARMState *env, int el) 10991 { 10992 /* Only EL0 needs to be adjusted for EL1&0 or EL2&0. */ 10993 if (el == 0) { 10994 ARMMMUIdx mmu_idx = arm_mmu_idx_el(env, 0); 10995 el = mmu_idx == ARMMMUIdx_E20_0 ? 2 : 1; 10996 } 10997 return env->cp15.sctlr_el[el]; 10998 } 10999 11000 int aa64_va_parameter_tbi(uint64_t tcr, ARMMMUIdx mmu_idx) 11001 { 11002 if (regime_has_2_ranges(mmu_idx)) { 11003 return extract64(tcr, 37, 2); 11004 } else if (regime_is_stage2(mmu_idx)) { 11005 return 0; /* VTCR_EL2 */ 11006 } else { 11007 /* Replicate the single TBI bit so we always have 2 bits. */ 11008 return extract32(tcr, 20, 1) * 3; 11009 } 11010 } 11011 11012 int aa64_va_parameter_tbid(uint64_t tcr, ARMMMUIdx mmu_idx) 11013 { 11014 if (regime_has_2_ranges(mmu_idx)) { 11015 return extract64(tcr, 51, 2); 11016 } else if (regime_is_stage2(mmu_idx)) { 11017 return 0; /* VTCR_EL2 */ 11018 } else { 11019 /* Replicate the single TBID bit so we always have 2 bits. */ 11020 return extract32(tcr, 29, 1) * 3; 11021 } 11022 } 11023 11024 static int aa64_va_parameter_tcma(uint64_t tcr, ARMMMUIdx mmu_idx) 11025 { 11026 if (regime_has_2_ranges(mmu_idx)) { 11027 return extract64(tcr, 57, 2); 11028 } else { 11029 /* Replicate the single TCMA bit so we always have 2 bits. */ 11030 return extract32(tcr, 30, 1) * 3; 11031 } 11032 } 11033 11034 static ARMGranuleSize tg0_to_gran_size(int tg) 11035 { 11036 switch (tg) { 11037 case 0: 11038 return Gran4K; 11039 case 1: 11040 return Gran64K; 11041 case 2: 11042 return Gran16K; 11043 default: 11044 return GranInvalid; 11045 } 11046 } 11047 11048 static ARMGranuleSize tg1_to_gran_size(int tg) 11049 { 11050 switch (tg) { 11051 case 1: 11052 return Gran16K; 11053 case 2: 11054 return Gran4K; 11055 case 3: 11056 return Gran64K; 11057 default: 11058 return GranInvalid; 11059 } 11060 } 11061 11062 static inline bool have4k(ARMCPU *cpu, bool stage2) 11063 { 11064 return stage2 ? cpu_isar_feature(aa64_tgran4_2, cpu) 11065 : cpu_isar_feature(aa64_tgran4, cpu); 11066 } 11067 11068 static inline bool have16k(ARMCPU *cpu, bool stage2) 11069 { 11070 return stage2 ? cpu_isar_feature(aa64_tgran16_2, cpu) 11071 : cpu_isar_feature(aa64_tgran16, cpu); 11072 } 11073 11074 static inline bool have64k(ARMCPU *cpu, bool stage2) 11075 { 11076 return stage2 ? cpu_isar_feature(aa64_tgran64_2, cpu) 11077 : cpu_isar_feature(aa64_tgran64, cpu); 11078 } 11079 11080 static ARMGranuleSize sanitize_gran_size(ARMCPU *cpu, ARMGranuleSize gran, 11081 bool stage2) 11082 { 11083 switch (gran) { 11084 case Gran4K: 11085 if (have4k(cpu, stage2)) { 11086 return gran; 11087 } 11088 break; 11089 case Gran16K: 11090 if (have16k(cpu, stage2)) { 11091 return gran; 11092 } 11093 break; 11094 case Gran64K: 11095 if (have64k(cpu, stage2)) { 11096 return gran; 11097 } 11098 break; 11099 case GranInvalid: 11100 break; 11101 } 11102 /* 11103 * If the guest selects a granule size that isn't implemented, 11104 * the architecture requires that we behave as if it selected one 11105 * that is (with an IMPDEF choice of which one to pick). We choose 11106 * to implement the smallest supported granule size. 11107 */ 11108 if (have4k(cpu, stage2)) { 11109 return Gran4K; 11110 } 11111 if (have16k(cpu, stage2)) { 11112 return Gran16K; 11113 } 11114 assert(have64k(cpu, stage2)); 11115 return Gran64K; 11116 } 11117 11118 ARMVAParameters aa64_va_parameters(CPUARMState *env, uint64_t va, 11119 ARMMMUIdx mmu_idx, bool data) 11120 { 11121 uint64_t tcr = regime_tcr(env, mmu_idx); 11122 bool epd, hpd, tsz_oob, ds, ha, hd; 11123 int select, tsz, tbi, max_tsz, min_tsz, ps, sh; 11124 ARMGranuleSize gran; 11125 ARMCPU *cpu = env_archcpu(env); 11126 bool stage2 = regime_is_stage2(mmu_idx); 11127 11128 if (!regime_has_2_ranges(mmu_idx)) { 11129 select = 0; 11130 tsz = extract32(tcr, 0, 6); 11131 gran = tg0_to_gran_size(extract32(tcr, 14, 2)); 11132 if (stage2) { 11133 /* VTCR_EL2 */ 11134 hpd = false; 11135 } else { 11136 hpd = extract32(tcr, 24, 1); 11137 } 11138 epd = false; 11139 sh = extract32(tcr, 12, 2); 11140 ps = extract32(tcr, 16, 3); 11141 ha = extract32(tcr, 21, 1) && cpu_isar_feature(aa64_hafs, cpu); 11142 hd = extract32(tcr, 22, 1) && cpu_isar_feature(aa64_hdbs, cpu); 11143 ds = extract64(tcr, 32, 1); 11144 } else { 11145 bool e0pd; 11146 11147 /* 11148 * Bit 55 is always between the two regions, and is canonical for 11149 * determining if address tagging is enabled. 11150 */ 11151 select = extract64(va, 55, 1); 11152 if (!select) { 11153 tsz = extract32(tcr, 0, 6); 11154 gran = tg0_to_gran_size(extract32(tcr, 14, 2)); 11155 epd = extract32(tcr, 7, 1); 11156 sh = extract32(tcr, 12, 2); 11157 hpd = extract64(tcr, 41, 1); 11158 e0pd = extract64(tcr, 55, 1); 11159 } else { 11160 tsz = extract32(tcr, 16, 6); 11161 gran = tg1_to_gran_size(extract32(tcr, 30, 2)); 11162 epd = extract32(tcr, 23, 1); 11163 sh = extract32(tcr, 28, 2); 11164 hpd = extract64(tcr, 42, 1); 11165 e0pd = extract64(tcr, 56, 1); 11166 } 11167 ps = extract64(tcr, 32, 3); 11168 ha = extract64(tcr, 39, 1) && cpu_isar_feature(aa64_hafs, cpu); 11169 hd = extract64(tcr, 40, 1) && cpu_isar_feature(aa64_hdbs, cpu); 11170 ds = extract64(tcr, 59, 1); 11171 11172 if (e0pd && cpu_isar_feature(aa64_e0pd, cpu) && 11173 regime_is_user(env, mmu_idx)) { 11174 epd = true; 11175 } 11176 } 11177 11178 gran = sanitize_gran_size(cpu, gran, stage2); 11179 11180 if (cpu_isar_feature(aa64_st, cpu)) { 11181 max_tsz = 48 - (gran == Gran64K); 11182 } else { 11183 max_tsz = 39; 11184 } 11185 11186 /* 11187 * DS is RES0 unless FEAT_LPA2 is supported for the given page size; 11188 * adjust the effective value of DS, as documented. 11189 */ 11190 min_tsz = 16; 11191 if (gran == Gran64K) { 11192 if (cpu_isar_feature(aa64_lva, cpu)) { 11193 min_tsz = 12; 11194 } 11195 ds = false; 11196 } else if (ds) { 11197 if (regime_is_stage2(mmu_idx)) { 11198 if (gran == Gran16K) { 11199 ds = cpu_isar_feature(aa64_tgran16_2_lpa2, cpu); 11200 } else { 11201 ds = cpu_isar_feature(aa64_tgran4_2_lpa2, cpu); 11202 } 11203 } else { 11204 if (gran == Gran16K) { 11205 ds = cpu_isar_feature(aa64_tgran16_lpa2, cpu); 11206 } else { 11207 ds = cpu_isar_feature(aa64_tgran4_lpa2, cpu); 11208 } 11209 } 11210 if (ds) { 11211 min_tsz = 12; 11212 } 11213 } 11214 11215 if (tsz > max_tsz) { 11216 tsz = max_tsz; 11217 tsz_oob = true; 11218 } else if (tsz < min_tsz) { 11219 tsz = min_tsz; 11220 tsz_oob = true; 11221 } else { 11222 tsz_oob = false; 11223 } 11224 11225 /* Present TBI as a composite with TBID. */ 11226 tbi = aa64_va_parameter_tbi(tcr, mmu_idx); 11227 if (!data) { 11228 tbi &= ~aa64_va_parameter_tbid(tcr, mmu_idx); 11229 } 11230 tbi = (tbi >> select) & 1; 11231 11232 return (ARMVAParameters) { 11233 .tsz = tsz, 11234 .ps = ps, 11235 .sh = sh, 11236 .select = select, 11237 .tbi = tbi, 11238 .epd = epd, 11239 .hpd = hpd, 11240 .tsz_oob = tsz_oob, 11241 .ds = ds, 11242 .ha = ha, 11243 .hd = ha && hd, 11244 .gran = gran, 11245 }; 11246 } 11247 11248 /* 11249 * Note that signed overflow is undefined in C. The following routines are 11250 * careful to use unsigned types where modulo arithmetic is required. 11251 * Failure to do so _will_ break on newer gcc. 11252 */ 11253 11254 /* Signed saturating arithmetic. */ 11255 11256 /* Perform 16-bit signed saturating addition. */ 11257 static inline uint16_t add16_sat(uint16_t a, uint16_t b) 11258 { 11259 uint16_t res; 11260 11261 res = a + b; 11262 if (((res ^ a) & 0x8000) && !((a ^ b) & 0x8000)) { 11263 if (a & 0x8000) { 11264 res = 0x8000; 11265 } else { 11266 res = 0x7fff; 11267 } 11268 } 11269 return res; 11270 } 11271 11272 /* Perform 8-bit signed saturating addition. */ 11273 static inline uint8_t add8_sat(uint8_t a, uint8_t b) 11274 { 11275 uint8_t res; 11276 11277 res = a + b; 11278 if (((res ^ a) & 0x80) && !((a ^ b) & 0x80)) { 11279 if (a & 0x80) { 11280 res = 0x80; 11281 } else { 11282 res = 0x7f; 11283 } 11284 } 11285 return res; 11286 } 11287 11288 /* Perform 16-bit signed saturating subtraction. */ 11289 static inline uint16_t sub16_sat(uint16_t a, uint16_t b) 11290 { 11291 uint16_t res; 11292 11293 res = a - b; 11294 if (((res ^ a) & 0x8000) && ((a ^ b) & 0x8000)) { 11295 if (a & 0x8000) { 11296 res = 0x8000; 11297 } else { 11298 res = 0x7fff; 11299 } 11300 } 11301 return res; 11302 } 11303 11304 /* Perform 8-bit signed saturating subtraction. */ 11305 static inline uint8_t sub8_sat(uint8_t a, uint8_t b) 11306 { 11307 uint8_t res; 11308 11309 res = a - b; 11310 if (((res ^ a) & 0x80) && ((a ^ b) & 0x80)) { 11311 if (a & 0x80) { 11312 res = 0x80; 11313 } else { 11314 res = 0x7f; 11315 } 11316 } 11317 return res; 11318 } 11319 11320 #define ADD16(a, b, n) RESULT(add16_sat(a, b), n, 16); 11321 #define SUB16(a, b, n) RESULT(sub16_sat(a, b), n, 16); 11322 #define ADD8(a, b, n) RESULT(add8_sat(a, b), n, 8); 11323 #define SUB8(a, b, n) RESULT(sub8_sat(a, b), n, 8); 11324 #define PFX q 11325 11326 #include "op_addsub.h" 11327 11328 /* Unsigned saturating arithmetic. */ 11329 static inline uint16_t add16_usat(uint16_t a, uint16_t b) 11330 { 11331 uint16_t res; 11332 res = a + b; 11333 if (res < a) { 11334 res = 0xffff; 11335 } 11336 return res; 11337 } 11338 11339 static inline uint16_t sub16_usat(uint16_t a, uint16_t b) 11340 { 11341 if (a > b) { 11342 return a - b; 11343 } else { 11344 return 0; 11345 } 11346 } 11347 11348 static inline uint8_t add8_usat(uint8_t a, uint8_t b) 11349 { 11350 uint8_t res; 11351 res = a + b; 11352 if (res < a) { 11353 res = 0xff; 11354 } 11355 return res; 11356 } 11357 11358 static inline uint8_t sub8_usat(uint8_t a, uint8_t b) 11359 { 11360 if (a > b) { 11361 return a - b; 11362 } else { 11363 return 0; 11364 } 11365 } 11366 11367 #define ADD16(a, b, n) RESULT(add16_usat(a, b), n, 16); 11368 #define SUB16(a, b, n) RESULT(sub16_usat(a, b), n, 16); 11369 #define ADD8(a, b, n) RESULT(add8_usat(a, b), n, 8); 11370 #define SUB8(a, b, n) RESULT(sub8_usat(a, b), n, 8); 11371 #define PFX uq 11372 11373 #include "op_addsub.h" 11374 11375 /* Signed modulo arithmetic. */ 11376 #define SARITH16(a, b, n, op) do { \ 11377 int32_t sum; \ 11378 sum = (int32_t)(int16_t)(a) op (int32_t)(int16_t)(b); \ 11379 RESULT(sum, n, 16); \ 11380 if (sum >= 0) \ 11381 ge |= 3 << (n * 2); \ 11382 } while (0) 11383 11384 #define SARITH8(a, b, n, op) do { \ 11385 int32_t sum; \ 11386 sum = (int32_t)(int8_t)(a) op (int32_t)(int8_t)(b); \ 11387 RESULT(sum, n, 8); \ 11388 if (sum >= 0) \ 11389 ge |= 1 << n; \ 11390 } while (0) 11391 11392 11393 #define ADD16(a, b, n) SARITH16(a, b, n, +) 11394 #define SUB16(a, b, n) SARITH16(a, b, n, -) 11395 #define ADD8(a, b, n) SARITH8(a, b, n, +) 11396 #define SUB8(a, b, n) SARITH8(a, b, n, -) 11397 #define PFX s 11398 #define ARITH_GE 11399 11400 #include "op_addsub.h" 11401 11402 /* Unsigned modulo arithmetic. */ 11403 #define ADD16(a, b, n) do { \ 11404 uint32_t sum; \ 11405 sum = (uint32_t)(uint16_t)(a) + (uint32_t)(uint16_t)(b); \ 11406 RESULT(sum, n, 16); \ 11407 if ((sum >> 16) == 1) \ 11408 ge |= 3 << (n * 2); \ 11409 } while (0) 11410 11411 #define ADD8(a, b, n) do { \ 11412 uint32_t sum; \ 11413 sum = (uint32_t)(uint8_t)(a) + (uint32_t)(uint8_t)(b); \ 11414 RESULT(sum, n, 8); \ 11415 if ((sum >> 8) == 1) \ 11416 ge |= 1 << n; \ 11417 } while (0) 11418 11419 #define SUB16(a, b, n) do { \ 11420 uint32_t sum; \ 11421 sum = (uint32_t)(uint16_t)(a) - (uint32_t)(uint16_t)(b); \ 11422 RESULT(sum, n, 16); \ 11423 if ((sum >> 16) == 0) \ 11424 ge |= 3 << (n * 2); \ 11425 } while (0) 11426 11427 #define SUB8(a, b, n) do { \ 11428 uint32_t sum; \ 11429 sum = (uint32_t)(uint8_t)(a) - (uint32_t)(uint8_t)(b); \ 11430 RESULT(sum, n, 8); \ 11431 if ((sum >> 8) == 0) \ 11432 ge |= 1 << n; \ 11433 } while (0) 11434 11435 #define PFX u 11436 #define ARITH_GE 11437 11438 #include "op_addsub.h" 11439 11440 /* Halved signed arithmetic. */ 11441 #define ADD16(a, b, n) \ 11442 RESULT(((int32_t)(int16_t)(a) + (int32_t)(int16_t)(b)) >> 1, n, 16) 11443 #define SUB16(a, b, n) \ 11444 RESULT(((int32_t)(int16_t)(a) - (int32_t)(int16_t)(b)) >> 1, n, 16) 11445 #define ADD8(a, b, n) \ 11446 RESULT(((int32_t)(int8_t)(a) + (int32_t)(int8_t)(b)) >> 1, n, 8) 11447 #define SUB8(a, b, n) \ 11448 RESULT(((int32_t)(int8_t)(a) - (int32_t)(int8_t)(b)) >> 1, n, 8) 11449 #define PFX sh 11450 11451 #include "op_addsub.h" 11452 11453 /* Halved unsigned arithmetic. */ 11454 #define ADD16(a, b, n) \ 11455 RESULT(((uint32_t)(uint16_t)(a) + (uint32_t)(uint16_t)(b)) >> 1, n, 16) 11456 #define SUB16(a, b, n) \ 11457 RESULT(((uint32_t)(uint16_t)(a) - (uint32_t)(uint16_t)(b)) >> 1, n, 16) 11458 #define ADD8(a, b, n) \ 11459 RESULT(((uint32_t)(uint8_t)(a) + (uint32_t)(uint8_t)(b)) >> 1, n, 8) 11460 #define SUB8(a, b, n) \ 11461 RESULT(((uint32_t)(uint8_t)(a) - (uint32_t)(uint8_t)(b)) >> 1, n, 8) 11462 #define PFX uh 11463 11464 #include "op_addsub.h" 11465 11466 static inline uint8_t do_usad(uint8_t a, uint8_t b) 11467 { 11468 if (a > b) { 11469 return a - b; 11470 } else { 11471 return b - a; 11472 } 11473 } 11474 11475 /* Unsigned sum of absolute byte differences. */ 11476 uint32_t HELPER(usad8)(uint32_t a, uint32_t b) 11477 { 11478 uint32_t sum; 11479 sum = do_usad(a, b); 11480 sum += do_usad(a >> 8, b >> 8); 11481 sum += do_usad(a >> 16, b >> 16); 11482 sum += do_usad(a >> 24, b >> 24); 11483 return sum; 11484 } 11485 11486 /* For ARMv6 SEL instruction. */ 11487 uint32_t HELPER(sel_flags)(uint32_t flags, uint32_t a, uint32_t b) 11488 { 11489 uint32_t mask; 11490 11491 mask = 0; 11492 if (flags & 1) { 11493 mask |= 0xff; 11494 } 11495 if (flags & 2) { 11496 mask |= 0xff00; 11497 } 11498 if (flags & 4) { 11499 mask |= 0xff0000; 11500 } 11501 if (flags & 8) { 11502 mask |= 0xff000000; 11503 } 11504 return (a & mask) | (b & ~mask); 11505 } 11506 11507 /* 11508 * CRC helpers. 11509 * The upper bytes of val (above the number specified by 'bytes') must have 11510 * been zeroed out by the caller. 11511 */ 11512 uint32_t HELPER(crc32)(uint32_t acc, uint32_t val, uint32_t bytes) 11513 { 11514 uint8_t buf[4]; 11515 11516 stl_le_p(buf, val); 11517 11518 /* zlib crc32 converts the accumulator and output to one's complement. */ 11519 return crc32(acc ^ 0xffffffff, buf, bytes) ^ 0xffffffff; 11520 } 11521 11522 uint32_t HELPER(crc32c)(uint32_t acc, uint32_t val, uint32_t bytes) 11523 { 11524 uint8_t buf[4]; 11525 11526 stl_le_p(buf, val); 11527 11528 /* Linux crc32c converts the output to one's complement. */ 11529 return crc32c(acc, buf, bytes) ^ 0xffffffff; 11530 } 11531 11532 /* 11533 * Return the exception level to which FP-disabled exceptions should 11534 * be taken, or 0 if FP is enabled. 11535 */ 11536 int fp_exception_el(CPUARMState *env, int cur_el) 11537 { 11538 #ifndef CONFIG_USER_ONLY 11539 uint64_t hcr_el2; 11540 11541 /* 11542 * CPACR and the CPTR registers don't exist before v6, so FP is 11543 * always accessible 11544 */ 11545 if (!arm_feature(env, ARM_FEATURE_V6)) { 11546 return 0; 11547 } 11548 11549 if (arm_feature(env, ARM_FEATURE_M)) { 11550 /* CPACR can cause a NOCP UsageFault taken to current security state */ 11551 if (!v7m_cpacr_pass(env, env->v7m.secure, cur_el != 0)) { 11552 return 1; 11553 } 11554 11555 if (arm_feature(env, ARM_FEATURE_M_SECURITY) && !env->v7m.secure) { 11556 if (!extract32(env->v7m.nsacr, 10, 1)) { 11557 /* FP insns cause a NOCP UsageFault taken to Secure */ 11558 return 3; 11559 } 11560 } 11561 11562 return 0; 11563 } 11564 11565 hcr_el2 = arm_hcr_el2_eff(env); 11566 11567 /* 11568 * The CPACR controls traps to EL1, or PL1 if we're 32 bit: 11569 * 0, 2 : trap EL0 and EL1/PL1 accesses 11570 * 1 : trap only EL0 accesses 11571 * 3 : trap no accesses 11572 * This register is ignored if E2H+TGE are both set. 11573 */ 11574 if ((hcr_el2 & (HCR_E2H | HCR_TGE)) != (HCR_E2H | HCR_TGE)) { 11575 int fpen = FIELD_EX64(env->cp15.cpacr_el1, CPACR_EL1, FPEN); 11576 11577 switch (fpen) { 11578 case 1: 11579 if (cur_el != 0) { 11580 break; 11581 } 11582 /* fall through */ 11583 case 0: 11584 case 2: 11585 /* Trap from Secure PL0 or PL1 to Secure PL1. */ 11586 if (!arm_el_is_aa64(env, 3) 11587 && (cur_el == 3 || arm_is_secure_below_el3(env))) { 11588 return 3; 11589 } 11590 if (cur_el <= 1) { 11591 return 1; 11592 } 11593 break; 11594 } 11595 } 11596 11597 /* 11598 * The NSACR allows A-profile AArch32 EL3 and M-profile secure mode 11599 * to control non-secure access to the FPU. It doesn't have any 11600 * effect if EL3 is AArch64 or if EL3 doesn't exist at all. 11601 */ 11602 if ((arm_feature(env, ARM_FEATURE_EL3) && !arm_el_is_aa64(env, 3) && 11603 cur_el <= 2 && !arm_is_secure_below_el3(env))) { 11604 if (!extract32(env->cp15.nsacr, 10, 1)) { 11605 /* FP insns act as UNDEF */ 11606 return cur_el == 2 ? 2 : 1; 11607 } 11608 } 11609 11610 /* 11611 * CPTR_EL2 is present in v7VE or v8, and changes format 11612 * with HCR_EL2.E2H (regardless of TGE). 11613 */ 11614 if (cur_el <= 2) { 11615 if (hcr_el2 & HCR_E2H) { 11616 switch (FIELD_EX64(env->cp15.cptr_el[2], CPTR_EL2, FPEN)) { 11617 case 1: 11618 if (cur_el != 0 || !(hcr_el2 & HCR_TGE)) { 11619 break; 11620 } 11621 /* fall through */ 11622 case 0: 11623 case 2: 11624 return 2; 11625 } 11626 } else if (arm_is_el2_enabled(env)) { 11627 if (FIELD_EX64(env->cp15.cptr_el[2], CPTR_EL2, TFP)) { 11628 return 2; 11629 } 11630 } 11631 } 11632 11633 /* CPTR_EL3 : present in v8 */ 11634 if (FIELD_EX64(env->cp15.cptr_el[3], CPTR_EL3, TFP)) { 11635 /* Trap all FP ops to EL3 */ 11636 return 3; 11637 } 11638 #endif 11639 return 0; 11640 } 11641 11642 /* Return the exception level we're running at if this is our mmu_idx */ 11643 int arm_mmu_idx_to_el(ARMMMUIdx mmu_idx) 11644 { 11645 if (mmu_idx & ARM_MMU_IDX_M) { 11646 return mmu_idx & ARM_MMU_IDX_M_PRIV; 11647 } 11648 11649 switch (mmu_idx) { 11650 case ARMMMUIdx_E10_0: 11651 case ARMMMUIdx_E20_0: 11652 return 0; 11653 case ARMMMUIdx_E10_1: 11654 case ARMMMUIdx_E10_1_PAN: 11655 return 1; 11656 case ARMMMUIdx_E2: 11657 case ARMMMUIdx_E20_2: 11658 case ARMMMUIdx_E20_2_PAN: 11659 return 2; 11660 case ARMMMUIdx_E3: 11661 return 3; 11662 default: 11663 g_assert_not_reached(); 11664 } 11665 } 11666 11667 #ifndef CONFIG_TCG 11668 ARMMMUIdx arm_v7m_mmu_idx_for_secstate(CPUARMState *env, bool secstate) 11669 { 11670 g_assert_not_reached(); 11671 } 11672 #endif 11673 11674 static bool arm_pan_enabled(CPUARMState *env) 11675 { 11676 if (is_a64(env)) { 11677 return env->pstate & PSTATE_PAN; 11678 } else { 11679 return env->uncached_cpsr & CPSR_PAN; 11680 } 11681 } 11682 11683 ARMMMUIdx arm_mmu_idx_el(CPUARMState *env, int el) 11684 { 11685 ARMMMUIdx idx; 11686 uint64_t hcr; 11687 11688 if (arm_feature(env, ARM_FEATURE_M)) { 11689 return arm_v7m_mmu_idx_for_secstate(env, env->v7m.secure); 11690 } 11691 11692 /* See ARM pseudo-function ELIsInHost. */ 11693 switch (el) { 11694 case 0: 11695 hcr = arm_hcr_el2_eff(env); 11696 if ((hcr & (HCR_E2H | HCR_TGE)) == (HCR_E2H | HCR_TGE)) { 11697 idx = ARMMMUIdx_E20_0; 11698 } else { 11699 idx = ARMMMUIdx_E10_0; 11700 } 11701 break; 11702 case 1: 11703 if (arm_pan_enabled(env)) { 11704 idx = ARMMMUIdx_E10_1_PAN; 11705 } else { 11706 idx = ARMMMUIdx_E10_1; 11707 } 11708 break; 11709 case 2: 11710 /* Note that TGE does not apply at EL2. */ 11711 if (arm_hcr_el2_eff(env) & HCR_E2H) { 11712 if (arm_pan_enabled(env)) { 11713 idx = ARMMMUIdx_E20_2_PAN; 11714 } else { 11715 idx = ARMMMUIdx_E20_2; 11716 } 11717 } else { 11718 idx = ARMMMUIdx_E2; 11719 } 11720 break; 11721 case 3: 11722 return ARMMMUIdx_E3; 11723 default: 11724 g_assert_not_reached(); 11725 } 11726 11727 return idx; 11728 } 11729 11730 ARMMMUIdx arm_mmu_idx(CPUARMState *env) 11731 { 11732 return arm_mmu_idx_el(env, arm_current_el(env)); 11733 } 11734 11735 static CPUARMTBFlags rebuild_hflags_common(CPUARMState *env, int fp_el, 11736 ARMMMUIdx mmu_idx, 11737 CPUARMTBFlags flags) 11738 { 11739 DP_TBFLAG_ANY(flags, FPEXC_EL, fp_el); 11740 DP_TBFLAG_ANY(flags, MMUIDX, arm_to_core_mmu_idx(mmu_idx)); 11741 11742 if (arm_singlestep_active(env)) { 11743 DP_TBFLAG_ANY(flags, SS_ACTIVE, 1); 11744 } 11745 11746 return flags; 11747 } 11748 11749 static CPUARMTBFlags rebuild_hflags_common_32(CPUARMState *env, int fp_el, 11750 ARMMMUIdx mmu_idx, 11751 CPUARMTBFlags flags) 11752 { 11753 bool sctlr_b = arm_sctlr_b(env); 11754 11755 if (sctlr_b) { 11756 DP_TBFLAG_A32(flags, SCTLR__B, 1); 11757 } 11758 if (arm_cpu_data_is_big_endian_a32(env, sctlr_b)) { 11759 DP_TBFLAG_ANY(flags, BE_DATA, 1); 11760 } 11761 DP_TBFLAG_A32(flags, NS, !access_secure_reg(env)); 11762 11763 return rebuild_hflags_common(env, fp_el, mmu_idx, flags); 11764 } 11765 11766 static CPUARMTBFlags rebuild_hflags_m32(CPUARMState *env, int fp_el, 11767 ARMMMUIdx mmu_idx) 11768 { 11769 CPUARMTBFlags flags = {}; 11770 uint32_t ccr = env->v7m.ccr[env->v7m.secure]; 11771 11772 /* Without HaveMainExt, CCR.UNALIGN_TRP is RES1. */ 11773 if (ccr & R_V7M_CCR_UNALIGN_TRP_MASK) { 11774 DP_TBFLAG_ANY(flags, ALIGN_MEM, 1); 11775 } 11776 11777 if (arm_v7m_is_handler_mode(env)) { 11778 DP_TBFLAG_M32(flags, HANDLER, 1); 11779 } 11780 11781 /* 11782 * v8M always applies stack limit checks unless CCR.STKOFHFNMIGN 11783 * is suppressing them because the requested execution priority 11784 * is less than 0. 11785 */ 11786 if (arm_feature(env, ARM_FEATURE_V8) && 11787 !((mmu_idx & ARM_MMU_IDX_M_NEGPRI) && 11788 (ccr & R_V7M_CCR_STKOFHFNMIGN_MASK))) { 11789 DP_TBFLAG_M32(flags, STACKCHECK, 1); 11790 } 11791 11792 if (arm_feature(env, ARM_FEATURE_M_SECURITY) && env->v7m.secure) { 11793 DP_TBFLAG_M32(flags, SECURE, 1); 11794 } 11795 11796 return rebuild_hflags_common_32(env, fp_el, mmu_idx, flags); 11797 } 11798 11799 static CPUARMTBFlags rebuild_hflags_a32(CPUARMState *env, int fp_el, 11800 ARMMMUIdx mmu_idx) 11801 { 11802 CPUARMTBFlags flags = {}; 11803 int el = arm_current_el(env); 11804 11805 if (arm_sctlr(env, el) & SCTLR_A) { 11806 DP_TBFLAG_ANY(flags, ALIGN_MEM, 1); 11807 } 11808 11809 if (arm_el_is_aa64(env, 1)) { 11810 DP_TBFLAG_A32(flags, VFPEN, 1); 11811 } 11812 11813 if (el < 2 && env->cp15.hstr_el2 && arm_is_el2_enabled(env) && 11814 (arm_hcr_el2_eff(env) & (HCR_E2H | HCR_TGE)) != (HCR_E2H | HCR_TGE)) { 11815 DP_TBFLAG_A32(flags, HSTR_ACTIVE, 1); 11816 } 11817 11818 if (arm_fgt_active(env, el)) { 11819 DP_TBFLAG_ANY(flags, FGT_ACTIVE, 1); 11820 } 11821 11822 if (env->uncached_cpsr & CPSR_IL) { 11823 DP_TBFLAG_ANY(flags, PSTATE__IL, 1); 11824 } 11825 11826 /* 11827 * The SME exception we are testing for is raised via 11828 * AArch64.CheckFPAdvSIMDEnabled(), as called from 11829 * AArch32.CheckAdvSIMDOrFPEnabled(). 11830 */ 11831 if (el == 0 11832 && FIELD_EX64(env->svcr, SVCR, SM) 11833 && (!arm_is_el2_enabled(env) 11834 || (arm_el_is_aa64(env, 2) && !(env->cp15.hcr_el2 & HCR_TGE))) 11835 && arm_el_is_aa64(env, 1) 11836 && !sme_fa64(env, el)) { 11837 DP_TBFLAG_A32(flags, SME_TRAP_NONSTREAMING, 1); 11838 } 11839 11840 return rebuild_hflags_common_32(env, fp_el, mmu_idx, flags); 11841 } 11842 11843 static CPUARMTBFlags rebuild_hflags_a64(CPUARMState *env, int el, int fp_el, 11844 ARMMMUIdx mmu_idx) 11845 { 11846 CPUARMTBFlags flags = {}; 11847 ARMMMUIdx stage1 = stage_1_mmu_idx(mmu_idx); 11848 uint64_t tcr = regime_tcr(env, mmu_idx); 11849 uint64_t sctlr; 11850 int tbii, tbid; 11851 11852 DP_TBFLAG_ANY(flags, AARCH64_STATE, 1); 11853 11854 /* Get control bits for tagged addresses. */ 11855 tbid = aa64_va_parameter_tbi(tcr, mmu_idx); 11856 tbii = tbid & ~aa64_va_parameter_tbid(tcr, mmu_idx); 11857 11858 DP_TBFLAG_A64(flags, TBII, tbii); 11859 DP_TBFLAG_A64(flags, TBID, tbid); 11860 11861 if (cpu_isar_feature(aa64_sve, env_archcpu(env))) { 11862 int sve_el = sve_exception_el(env, el); 11863 11864 /* 11865 * If either FP or SVE are disabled, translator does not need len. 11866 * If SVE EL > FP EL, FP exception has precedence, and translator 11867 * does not need SVE EL. Save potential re-translations by forcing 11868 * the unneeded data to zero. 11869 */ 11870 if (fp_el != 0) { 11871 if (sve_el > fp_el) { 11872 sve_el = 0; 11873 } 11874 } else if (sve_el == 0) { 11875 DP_TBFLAG_A64(flags, VL, sve_vqm1_for_el(env, el)); 11876 } 11877 DP_TBFLAG_A64(flags, SVEEXC_EL, sve_el); 11878 } 11879 if (cpu_isar_feature(aa64_sme, env_archcpu(env))) { 11880 int sme_el = sme_exception_el(env, el); 11881 bool sm = FIELD_EX64(env->svcr, SVCR, SM); 11882 11883 DP_TBFLAG_A64(flags, SMEEXC_EL, sme_el); 11884 if (sme_el == 0) { 11885 /* Similarly, do not compute SVL if SME is disabled. */ 11886 int svl = sve_vqm1_for_el_sm(env, el, true); 11887 DP_TBFLAG_A64(flags, SVL, svl); 11888 if (sm) { 11889 /* If SVE is disabled, we will not have set VL above. */ 11890 DP_TBFLAG_A64(flags, VL, svl); 11891 } 11892 } 11893 if (sm) { 11894 DP_TBFLAG_A64(flags, PSTATE_SM, 1); 11895 DP_TBFLAG_A64(flags, SME_TRAP_NONSTREAMING, !sme_fa64(env, el)); 11896 } 11897 DP_TBFLAG_A64(flags, PSTATE_ZA, FIELD_EX64(env->svcr, SVCR, ZA)); 11898 } 11899 11900 sctlr = regime_sctlr(env, stage1); 11901 11902 if (sctlr & SCTLR_A) { 11903 DP_TBFLAG_ANY(flags, ALIGN_MEM, 1); 11904 } 11905 11906 if (arm_cpu_data_is_big_endian_a64(el, sctlr)) { 11907 DP_TBFLAG_ANY(flags, BE_DATA, 1); 11908 } 11909 11910 if (cpu_isar_feature(aa64_pauth, env_archcpu(env))) { 11911 /* 11912 * In order to save space in flags, we record only whether 11913 * pauth is "inactive", meaning all insns are implemented as 11914 * a nop, or "active" when some action must be performed. 11915 * The decision of which action to take is left to a helper. 11916 */ 11917 if (sctlr & (SCTLR_EnIA | SCTLR_EnIB | SCTLR_EnDA | SCTLR_EnDB)) { 11918 DP_TBFLAG_A64(flags, PAUTH_ACTIVE, 1); 11919 } 11920 } 11921 11922 if (cpu_isar_feature(aa64_bti, env_archcpu(env))) { 11923 /* Note that SCTLR_EL[23].BT == SCTLR_BT1. */ 11924 if (sctlr & (el == 0 ? SCTLR_BT0 : SCTLR_BT1)) { 11925 DP_TBFLAG_A64(flags, BT, 1); 11926 } 11927 } 11928 11929 /* Compute the condition for using AccType_UNPRIV for LDTR et al. */ 11930 if (!(env->pstate & PSTATE_UAO)) { 11931 switch (mmu_idx) { 11932 case ARMMMUIdx_E10_1: 11933 case ARMMMUIdx_E10_1_PAN: 11934 /* TODO: ARMv8.3-NV */ 11935 DP_TBFLAG_A64(flags, UNPRIV, 1); 11936 break; 11937 case ARMMMUIdx_E20_2: 11938 case ARMMMUIdx_E20_2_PAN: 11939 /* 11940 * Note that EL20_2 is gated by HCR_EL2.E2H == 1, but EL20_0 is 11941 * gated by HCR_EL2.<E2H,TGE> == '11', and so is LDTR. 11942 */ 11943 if (env->cp15.hcr_el2 & HCR_TGE) { 11944 DP_TBFLAG_A64(flags, UNPRIV, 1); 11945 } 11946 break; 11947 default: 11948 break; 11949 } 11950 } 11951 11952 if (env->pstate & PSTATE_IL) { 11953 DP_TBFLAG_ANY(flags, PSTATE__IL, 1); 11954 } 11955 11956 if (arm_fgt_active(env, el)) { 11957 DP_TBFLAG_ANY(flags, FGT_ACTIVE, 1); 11958 } 11959 11960 if (cpu_isar_feature(aa64_mte, env_archcpu(env))) { 11961 /* 11962 * Set MTE_ACTIVE if any access may be Checked, and leave clear 11963 * if all accesses must be Unchecked: 11964 * 1) If no TBI, then there are no tags in the address to check, 11965 * 2) If Tag Check Override, then all accesses are Unchecked, 11966 * 3) If Tag Check Fail == 0, then Checked access have no effect, 11967 * 4) If no Allocation Tag Access, then all accesses are Unchecked. 11968 */ 11969 if (allocation_tag_access_enabled(env, el, sctlr)) { 11970 DP_TBFLAG_A64(flags, ATA, 1); 11971 if (tbid 11972 && !(env->pstate & PSTATE_TCO) 11973 && (sctlr & (el == 0 ? SCTLR_TCF0 : SCTLR_TCF))) { 11974 DP_TBFLAG_A64(flags, MTE_ACTIVE, 1); 11975 } 11976 } 11977 /* And again for unprivileged accesses, if required. */ 11978 if (EX_TBFLAG_A64(flags, UNPRIV) 11979 && tbid 11980 && !(env->pstate & PSTATE_TCO) 11981 && (sctlr & SCTLR_TCF0) 11982 && allocation_tag_access_enabled(env, 0, sctlr)) { 11983 DP_TBFLAG_A64(flags, MTE0_ACTIVE, 1); 11984 } 11985 /* Cache TCMA as well as TBI. */ 11986 DP_TBFLAG_A64(flags, TCMA, aa64_va_parameter_tcma(tcr, mmu_idx)); 11987 } 11988 11989 return rebuild_hflags_common(env, fp_el, mmu_idx, flags); 11990 } 11991 11992 static CPUARMTBFlags rebuild_hflags_internal(CPUARMState *env) 11993 { 11994 int el = arm_current_el(env); 11995 int fp_el = fp_exception_el(env, el); 11996 ARMMMUIdx mmu_idx = arm_mmu_idx_el(env, el); 11997 11998 if (is_a64(env)) { 11999 return rebuild_hflags_a64(env, el, fp_el, mmu_idx); 12000 } else if (arm_feature(env, ARM_FEATURE_M)) { 12001 return rebuild_hflags_m32(env, fp_el, mmu_idx); 12002 } else { 12003 return rebuild_hflags_a32(env, fp_el, mmu_idx); 12004 } 12005 } 12006 12007 void arm_rebuild_hflags(CPUARMState *env) 12008 { 12009 env->hflags = rebuild_hflags_internal(env); 12010 } 12011 12012 /* 12013 * If we have triggered a EL state change we can't rely on the 12014 * translator having passed it to us, we need to recompute. 12015 */ 12016 void HELPER(rebuild_hflags_m32_newel)(CPUARMState *env) 12017 { 12018 int el = arm_current_el(env); 12019 int fp_el = fp_exception_el(env, el); 12020 ARMMMUIdx mmu_idx = arm_mmu_idx_el(env, el); 12021 12022 env->hflags = rebuild_hflags_m32(env, fp_el, mmu_idx); 12023 } 12024 12025 void HELPER(rebuild_hflags_m32)(CPUARMState *env, int el) 12026 { 12027 int fp_el = fp_exception_el(env, el); 12028 ARMMMUIdx mmu_idx = arm_mmu_idx_el(env, el); 12029 12030 env->hflags = rebuild_hflags_m32(env, fp_el, mmu_idx); 12031 } 12032 12033 /* 12034 * If we have triggered a EL state change we can't rely on the 12035 * translator having passed it to us, we need to recompute. 12036 */ 12037 void HELPER(rebuild_hflags_a32_newel)(CPUARMState *env) 12038 { 12039 int el = arm_current_el(env); 12040 int fp_el = fp_exception_el(env, el); 12041 ARMMMUIdx mmu_idx = arm_mmu_idx_el(env, el); 12042 env->hflags = rebuild_hflags_a32(env, fp_el, mmu_idx); 12043 } 12044 12045 void HELPER(rebuild_hflags_a32)(CPUARMState *env, int el) 12046 { 12047 int fp_el = fp_exception_el(env, el); 12048 ARMMMUIdx mmu_idx = arm_mmu_idx_el(env, el); 12049 12050 env->hflags = rebuild_hflags_a32(env, fp_el, mmu_idx); 12051 } 12052 12053 void HELPER(rebuild_hflags_a64)(CPUARMState *env, int el) 12054 { 12055 int fp_el = fp_exception_el(env, el); 12056 ARMMMUIdx mmu_idx = arm_mmu_idx_el(env, el); 12057 12058 env->hflags = rebuild_hflags_a64(env, el, fp_el, mmu_idx); 12059 } 12060 12061 static inline void assert_hflags_rebuild_correctly(CPUARMState *env) 12062 { 12063 #ifdef CONFIG_DEBUG_TCG 12064 CPUARMTBFlags c = env->hflags; 12065 CPUARMTBFlags r = rebuild_hflags_internal(env); 12066 12067 if (unlikely(c.flags != r.flags || c.flags2 != r.flags2)) { 12068 fprintf(stderr, "TCG hflags mismatch " 12069 "(current:(0x%08x,0x" TARGET_FMT_lx ")" 12070 " rebuilt:(0x%08x,0x" TARGET_FMT_lx ")\n", 12071 c.flags, c.flags2, r.flags, r.flags2); 12072 abort(); 12073 } 12074 #endif 12075 } 12076 12077 static bool mve_no_pred(CPUARMState *env) 12078 { 12079 /* 12080 * Return true if there is definitely no predication of MVE 12081 * instructions by VPR or LTPSIZE. (Returning false even if there 12082 * isn't any predication is OK; generated code will just be 12083 * a little worse.) 12084 * If the CPU does not implement MVE then this TB flag is always 0. 12085 * 12086 * NOTE: if you change this logic, the "recalculate s->mve_no_pred" 12087 * logic in gen_update_fp_context() needs to be updated to match. 12088 * 12089 * We do not include the effect of the ECI bits here -- they are 12090 * tracked in other TB flags. This simplifies the logic for 12091 * "when did we emit code that changes the MVE_NO_PRED TB flag 12092 * and thus need to end the TB?". 12093 */ 12094 if (cpu_isar_feature(aa32_mve, env_archcpu(env))) { 12095 return false; 12096 } 12097 if (env->v7m.vpr) { 12098 return false; 12099 } 12100 if (env->v7m.ltpsize < 4) { 12101 return false; 12102 } 12103 return true; 12104 } 12105 12106 void cpu_get_tb_cpu_state(CPUARMState *env, target_ulong *pc, 12107 target_ulong *cs_base, uint32_t *pflags) 12108 { 12109 CPUARMTBFlags flags; 12110 12111 assert_hflags_rebuild_correctly(env); 12112 flags = env->hflags; 12113 12114 if (EX_TBFLAG_ANY(flags, AARCH64_STATE)) { 12115 *pc = env->pc; 12116 if (cpu_isar_feature(aa64_bti, env_archcpu(env))) { 12117 DP_TBFLAG_A64(flags, BTYPE, env->btype); 12118 } 12119 } else { 12120 *pc = env->regs[15]; 12121 12122 if (arm_feature(env, ARM_FEATURE_M)) { 12123 if (arm_feature(env, ARM_FEATURE_M_SECURITY) && 12124 FIELD_EX32(env->v7m.fpccr[M_REG_S], V7M_FPCCR, S) 12125 != env->v7m.secure) { 12126 DP_TBFLAG_M32(flags, FPCCR_S_WRONG, 1); 12127 } 12128 12129 if ((env->v7m.fpccr[env->v7m.secure] & R_V7M_FPCCR_ASPEN_MASK) && 12130 (!(env->v7m.control[M_REG_S] & R_V7M_CONTROL_FPCA_MASK) || 12131 (env->v7m.secure && 12132 !(env->v7m.control[M_REG_S] & R_V7M_CONTROL_SFPA_MASK)))) { 12133 /* 12134 * ASPEN is set, but FPCA/SFPA indicate that there is no 12135 * active FP context; we must create a new FP context before 12136 * executing any FP insn. 12137 */ 12138 DP_TBFLAG_M32(flags, NEW_FP_CTXT_NEEDED, 1); 12139 } 12140 12141 bool is_secure = env->v7m.fpccr[M_REG_S] & R_V7M_FPCCR_S_MASK; 12142 if (env->v7m.fpccr[is_secure] & R_V7M_FPCCR_LSPACT_MASK) { 12143 DP_TBFLAG_M32(flags, LSPACT, 1); 12144 } 12145 12146 if (mve_no_pred(env)) { 12147 DP_TBFLAG_M32(flags, MVE_NO_PRED, 1); 12148 } 12149 } else { 12150 /* 12151 * Note that XSCALE_CPAR shares bits with VECSTRIDE. 12152 * Note that VECLEN+VECSTRIDE are RES0 for M-profile. 12153 */ 12154 if (arm_feature(env, ARM_FEATURE_XSCALE)) { 12155 DP_TBFLAG_A32(flags, XSCALE_CPAR, env->cp15.c15_cpar); 12156 } else { 12157 DP_TBFLAG_A32(flags, VECLEN, env->vfp.vec_len); 12158 DP_TBFLAG_A32(flags, VECSTRIDE, env->vfp.vec_stride); 12159 } 12160 if (env->vfp.xregs[ARM_VFP_FPEXC] & (1 << 30)) { 12161 DP_TBFLAG_A32(flags, VFPEN, 1); 12162 } 12163 } 12164 12165 DP_TBFLAG_AM32(flags, THUMB, env->thumb); 12166 DP_TBFLAG_AM32(flags, CONDEXEC, env->condexec_bits); 12167 } 12168 12169 /* 12170 * The SS_ACTIVE and PSTATE_SS bits correspond to the state machine 12171 * states defined in the ARM ARM for software singlestep: 12172 * SS_ACTIVE PSTATE.SS State 12173 * 0 x Inactive (the TB flag for SS is always 0) 12174 * 1 0 Active-pending 12175 * 1 1 Active-not-pending 12176 * SS_ACTIVE is set in hflags; PSTATE__SS is computed every TB. 12177 */ 12178 if (EX_TBFLAG_ANY(flags, SS_ACTIVE) && (env->pstate & PSTATE_SS)) { 12179 DP_TBFLAG_ANY(flags, PSTATE__SS, 1); 12180 } 12181 12182 *pflags = flags.flags; 12183 *cs_base = flags.flags2; 12184 } 12185 12186 #ifdef TARGET_AARCH64 12187 /* 12188 * The manual says that when SVE is enabled and VQ is widened the 12189 * implementation is allowed to zero the previously inaccessible 12190 * portion of the registers. The corollary to that is that when 12191 * SVE is enabled and VQ is narrowed we are also allowed to zero 12192 * the now inaccessible portion of the registers. 12193 * 12194 * The intent of this is that no predicate bit beyond VQ is ever set. 12195 * Which means that some operations on predicate registers themselves 12196 * may operate on full uint64_t or even unrolled across the maximum 12197 * uint64_t[4]. Performing 4 bits of host arithmetic unconditionally 12198 * may well be cheaper than conditionals to restrict the operation 12199 * to the relevant portion of a uint16_t[16]. 12200 */ 12201 void aarch64_sve_narrow_vq(CPUARMState *env, unsigned vq) 12202 { 12203 int i, j; 12204 uint64_t pmask; 12205 12206 assert(vq >= 1 && vq <= ARM_MAX_VQ); 12207 assert(vq <= env_archcpu(env)->sve_max_vq); 12208 12209 /* Zap the high bits of the zregs. */ 12210 for (i = 0; i < 32; i++) { 12211 memset(&env->vfp.zregs[i].d[2 * vq], 0, 16 * (ARM_MAX_VQ - vq)); 12212 } 12213 12214 /* Zap the high bits of the pregs and ffr. */ 12215 pmask = 0; 12216 if (vq & 3) { 12217 pmask = ~(-1ULL << (16 * (vq & 3))); 12218 } 12219 for (j = vq / 4; j < ARM_MAX_VQ / 4; j++) { 12220 for (i = 0; i < 17; ++i) { 12221 env->vfp.pregs[i].p[j] &= pmask; 12222 } 12223 pmask = 0; 12224 } 12225 } 12226 12227 static uint32_t sve_vqm1_for_el_sm_ena(CPUARMState *env, int el, bool sm) 12228 { 12229 int exc_el; 12230 12231 if (sm) { 12232 exc_el = sme_exception_el(env, el); 12233 } else { 12234 exc_el = sve_exception_el(env, el); 12235 } 12236 if (exc_el) { 12237 return 0; /* disabled */ 12238 } 12239 return sve_vqm1_for_el_sm(env, el, sm); 12240 } 12241 12242 /* 12243 * Notice a change in SVE vector size when changing EL. 12244 */ 12245 void aarch64_sve_change_el(CPUARMState *env, int old_el, 12246 int new_el, bool el0_a64) 12247 { 12248 ARMCPU *cpu = env_archcpu(env); 12249 int old_len, new_len; 12250 bool old_a64, new_a64, sm; 12251 12252 /* Nothing to do if no SVE. */ 12253 if (!cpu_isar_feature(aa64_sve, cpu)) { 12254 return; 12255 } 12256 12257 /* Nothing to do if FP is disabled in either EL. */ 12258 if (fp_exception_el(env, old_el) || fp_exception_el(env, new_el)) { 12259 return; 12260 } 12261 12262 old_a64 = old_el ? arm_el_is_aa64(env, old_el) : el0_a64; 12263 new_a64 = new_el ? arm_el_is_aa64(env, new_el) : el0_a64; 12264 12265 /* 12266 * Both AArch64.TakeException and AArch64.ExceptionReturn 12267 * invoke ResetSVEState when taking an exception from, or 12268 * returning to, AArch32 state when PSTATE.SM is enabled. 12269 */ 12270 sm = FIELD_EX64(env->svcr, SVCR, SM); 12271 if (old_a64 != new_a64 && sm) { 12272 arm_reset_sve_state(env); 12273 return; 12274 } 12275 12276 /* 12277 * DDI0584A.d sec 3.2: "If SVE instructions are disabled or trapped 12278 * at ELx, or not available because the EL is in AArch32 state, then 12279 * for all purposes other than a direct read, the ZCR_ELx.LEN field 12280 * has an effective value of 0". 12281 * 12282 * Consider EL2 (aa64, vq=4) -> EL0 (aa32) -> EL1 (aa64, vq=0). 12283 * If we ignore aa32 state, we would fail to see the vq4->vq0 transition 12284 * from EL2->EL1. Thus we go ahead and narrow when entering aa32 so that 12285 * we already have the correct register contents when encountering the 12286 * vq0->vq0 transition between EL0->EL1. 12287 */ 12288 old_len = new_len = 0; 12289 if (old_a64) { 12290 old_len = sve_vqm1_for_el_sm_ena(env, old_el, sm); 12291 } 12292 if (new_a64) { 12293 new_len = sve_vqm1_for_el_sm_ena(env, new_el, sm); 12294 } 12295 12296 /* When changing vector length, clear inaccessible state. */ 12297 if (new_len < old_len) { 12298 aarch64_sve_narrow_vq(env, new_len + 1); 12299 } 12300 } 12301 #endif 12302