1 #include "qemu/osdep.h" 2 #include "target/arm/idau.h" 3 #include "trace.h" 4 #include "cpu.h" 5 #include "internals.h" 6 #include "exec/gdbstub.h" 7 #include "exec/helper-proto.h" 8 #include "qemu/host-utils.h" 9 #include "sysemu/arch_init.h" 10 #include "sysemu/sysemu.h" 11 #include "qemu/bitops.h" 12 #include "qemu/crc32c.h" 13 #include "exec/exec-all.h" 14 #include "exec/cpu_ldst.h" 15 #include "arm_ldst.h" 16 #include <zlib.h> /* For crc32 */ 17 #include "exec/semihost.h" 18 #include "sysemu/cpus.h" 19 #include "sysemu/kvm.h" 20 #include "fpu/softfloat.h" 21 #include "qemu/range.h" 22 #include "qapi/qapi-commands-target.h" 23 24 #define ARM_CPU_FREQ 1000000000 /* FIXME: 1 GHz, should be configurable */ 25 26 #ifndef CONFIG_USER_ONLY 27 /* Cacheability and shareability attributes for a memory access */ 28 typedef struct ARMCacheAttrs { 29 unsigned int attrs:8; /* as in the MAIR register encoding */ 30 unsigned int shareability:2; /* as in the SH field of the VMSAv8-64 PTEs */ 31 } ARMCacheAttrs; 32 33 static bool get_phys_addr(CPUARMState *env, target_ulong address, 34 MMUAccessType access_type, ARMMMUIdx mmu_idx, 35 hwaddr *phys_ptr, MemTxAttrs *attrs, int *prot, 36 target_ulong *page_size, 37 ARMMMUFaultInfo *fi, ARMCacheAttrs *cacheattrs); 38 39 static bool get_phys_addr_lpae(CPUARMState *env, target_ulong address, 40 MMUAccessType access_type, ARMMMUIdx mmu_idx, 41 hwaddr *phys_ptr, MemTxAttrs *txattrs, int *prot, 42 target_ulong *page_size_ptr, 43 ARMMMUFaultInfo *fi, ARMCacheAttrs *cacheattrs); 44 45 /* Security attributes for an address, as returned by v8m_security_lookup. */ 46 typedef struct V8M_SAttributes { 47 bool subpage; /* true if these attrs don't cover the whole TARGET_PAGE */ 48 bool ns; 49 bool nsc; 50 uint8_t sregion; 51 bool srvalid; 52 uint8_t iregion; 53 bool irvalid; 54 } V8M_SAttributes; 55 56 static void v8m_security_lookup(CPUARMState *env, uint32_t address, 57 MMUAccessType access_type, ARMMMUIdx mmu_idx, 58 V8M_SAttributes *sattrs); 59 #endif 60 61 static void switch_mode(CPUARMState *env, int mode); 62 63 static int vfp_gdb_get_reg(CPUARMState *env, uint8_t *buf, int reg) 64 { 65 int nregs; 66 67 /* VFP data registers are always little-endian. */ 68 nregs = arm_feature(env, ARM_FEATURE_VFP3) ? 32 : 16; 69 if (reg < nregs) { 70 stq_le_p(buf, *aa32_vfp_dreg(env, reg)); 71 return 8; 72 } 73 if (arm_feature(env, ARM_FEATURE_NEON)) { 74 /* Aliases for Q regs. */ 75 nregs += 16; 76 if (reg < nregs) { 77 uint64_t *q = aa32_vfp_qreg(env, reg - 32); 78 stq_le_p(buf, q[0]); 79 stq_le_p(buf + 8, q[1]); 80 return 16; 81 } 82 } 83 switch (reg - nregs) { 84 case 0: stl_p(buf, env->vfp.xregs[ARM_VFP_FPSID]); return 4; 85 case 1: stl_p(buf, vfp_get_fpscr(env)); return 4; 86 case 2: stl_p(buf, env->vfp.xregs[ARM_VFP_FPEXC]); return 4; 87 } 88 return 0; 89 } 90 91 static int vfp_gdb_set_reg(CPUARMState *env, uint8_t *buf, int reg) 92 { 93 int nregs; 94 95 nregs = arm_feature(env, ARM_FEATURE_VFP3) ? 32 : 16; 96 if (reg < nregs) { 97 *aa32_vfp_dreg(env, reg) = ldq_le_p(buf); 98 return 8; 99 } 100 if (arm_feature(env, ARM_FEATURE_NEON)) { 101 nregs += 16; 102 if (reg < nregs) { 103 uint64_t *q = aa32_vfp_qreg(env, reg - 32); 104 q[0] = ldq_le_p(buf); 105 q[1] = ldq_le_p(buf + 8); 106 return 16; 107 } 108 } 109 switch (reg - nregs) { 110 case 0: env->vfp.xregs[ARM_VFP_FPSID] = ldl_p(buf); return 4; 111 case 1: vfp_set_fpscr(env, ldl_p(buf)); return 4; 112 case 2: env->vfp.xregs[ARM_VFP_FPEXC] = ldl_p(buf) & (1 << 30); return 4; 113 } 114 return 0; 115 } 116 117 static int aarch64_fpu_gdb_get_reg(CPUARMState *env, uint8_t *buf, int reg) 118 { 119 switch (reg) { 120 case 0 ... 31: 121 /* 128 bit FP register */ 122 { 123 uint64_t *q = aa64_vfp_qreg(env, reg); 124 stq_le_p(buf, q[0]); 125 stq_le_p(buf + 8, q[1]); 126 return 16; 127 } 128 case 32: 129 /* FPSR */ 130 stl_p(buf, vfp_get_fpsr(env)); 131 return 4; 132 case 33: 133 /* FPCR */ 134 stl_p(buf, vfp_get_fpcr(env)); 135 return 4; 136 default: 137 return 0; 138 } 139 } 140 141 static int aarch64_fpu_gdb_set_reg(CPUARMState *env, uint8_t *buf, int reg) 142 { 143 switch (reg) { 144 case 0 ... 31: 145 /* 128 bit FP register */ 146 { 147 uint64_t *q = aa64_vfp_qreg(env, reg); 148 q[0] = ldq_le_p(buf); 149 q[1] = ldq_le_p(buf + 8); 150 return 16; 151 } 152 case 32: 153 /* FPSR */ 154 vfp_set_fpsr(env, ldl_p(buf)); 155 return 4; 156 case 33: 157 /* FPCR */ 158 vfp_set_fpcr(env, ldl_p(buf)); 159 return 4; 160 default: 161 return 0; 162 } 163 } 164 165 static uint64_t raw_read(CPUARMState *env, const ARMCPRegInfo *ri) 166 { 167 assert(ri->fieldoffset); 168 if (cpreg_field_is_64bit(ri)) { 169 return CPREG_FIELD64(env, ri); 170 } else { 171 return CPREG_FIELD32(env, ri); 172 } 173 } 174 175 static void raw_write(CPUARMState *env, const ARMCPRegInfo *ri, 176 uint64_t value) 177 { 178 assert(ri->fieldoffset); 179 if (cpreg_field_is_64bit(ri)) { 180 CPREG_FIELD64(env, ri) = value; 181 } else { 182 CPREG_FIELD32(env, ri) = value; 183 } 184 } 185 186 static void *raw_ptr(CPUARMState *env, const ARMCPRegInfo *ri) 187 { 188 return (char *)env + ri->fieldoffset; 189 } 190 191 uint64_t read_raw_cp_reg(CPUARMState *env, const ARMCPRegInfo *ri) 192 { 193 /* Raw read of a coprocessor register (as needed for migration, etc). */ 194 if (ri->type & ARM_CP_CONST) { 195 return ri->resetvalue; 196 } else if (ri->raw_readfn) { 197 return ri->raw_readfn(env, ri); 198 } else if (ri->readfn) { 199 return ri->readfn(env, ri); 200 } else { 201 return raw_read(env, ri); 202 } 203 } 204 205 static void write_raw_cp_reg(CPUARMState *env, const ARMCPRegInfo *ri, 206 uint64_t v) 207 { 208 /* Raw write of a coprocessor register (as needed for migration, etc). 209 * Note that constant registers are treated as write-ignored; the 210 * caller should check for success by whether a readback gives the 211 * value written. 212 */ 213 if (ri->type & ARM_CP_CONST) { 214 return; 215 } else if (ri->raw_writefn) { 216 ri->raw_writefn(env, ri, v); 217 } else if (ri->writefn) { 218 ri->writefn(env, ri, v); 219 } else { 220 raw_write(env, ri, v); 221 } 222 } 223 224 static int arm_gdb_get_sysreg(CPUARMState *env, uint8_t *buf, int reg) 225 { 226 ARMCPU *cpu = arm_env_get_cpu(env); 227 const ARMCPRegInfo *ri; 228 uint32_t key; 229 230 key = cpu->dyn_xml.cpregs_keys[reg]; 231 ri = get_arm_cp_reginfo(cpu->cp_regs, key); 232 if (ri) { 233 if (cpreg_field_is_64bit(ri)) { 234 return gdb_get_reg64(buf, (uint64_t)read_raw_cp_reg(env, ri)); 235 } else { 236 return gdb_get_reg32(buf, (uint32_t)read_raw_cp_reg(env, ri)); 237 } 238 } 239 return 0; 240 } 241 242 static int arm_gdb_set_sysreg(CPUARMState *env, uint8_t *buf, int reg) 243 { 244 return 0; 245 } 246 247 static bool raw_accessors_invalid(const ARMCPRegInfo *ri) 248 { 249 /* Return true if the regdef would cause an assertion if you called 250 * read_raw_cp_reg() or write_raw_cp_reg() on it (ie if it is a 251 * program bug for it not to have the NO_RAW flag). 252 * NB that returning false here doesn't necessarily mean that calling 253 * read/write_raw_cp_reg() is safe, because we can't distinguish "has 254 * read/write access functions which are safe for raw use" from "has 255 * read/write access functions which have side effects but has forgotten 256 * to provide raw access functions". 257 * The tests here line up with the conditions in read/write_raw_cp_reg() 258 * and assertions in raw_read()/raw_write(). 259 */ 260 if ((ri->type & ARM_CP_CONST) || 261 ri->fieldoffset || 262 ((ri->raw_writefn || ri->writefn) && (ri->raw_readfn || ri->readfn))) { 263 return false; 264 } 265 return true; 266 } 267 268 bool write_cpustate_to_list(ARMCPU *cpu) 269 { 270 /* Write the coprocessor state from cpu->env to the (index,value) list. */ 271 int i; 272 bool ok = true; 273 274 for (i = 0; i < cpu->cpreg_array_len; i++) { 275 uint32_t regidx = kvm_to_cpreg_id(cpu->cpreg_indexes[i]); 276 const ARMCPRegInfo *ri; 277 278 ri = get_arm_cp_reginfo(cpu->cp_regs, regidx); 279 if (!ri) { 280 ok = false; 281 continue; 282 } 283 if (ri->type & ARM_CP_NO_RAW) { 284 continue; 285 } 286 cpu->cpreg_values[i] = read_raw_cp_reg(&cpu->env, ri); 287 } 288 return ok; 289 } 290 291 bool write_list_to_cpustate(ARMCPU *cpu) 292 { 293 int i; 294 bool ok = true; 295 296 for (i = 0; i < cpu->cpreg_array_len; i++) { 297 uint32_t regidx = kvm_to_cpreg_id(cpu->cpreg_indexes[i]); 298 uint64_t v = cpu->cpreg_values[i]; 299 const ARMCPRegInfo *ri; 300 301 ri = get_arm_cp_reginfo(cpu->cp_regs, regidx); 302 if (!ri) { 303 ok = false; 304 continue; 305 } 306 if (ri->type & ARM_CP_NO_RAW) { 307 continue; 308 } 309 /* Write value and confirm it reads back as written 310 * (to catch read-only registers and partially read-only 311 * registers where the incoming migration value doesn't match) 312 */ 313 write_raw_cp_reg(&cpu->env, ri, v); 314 if (read_raw_cp_reg(&cpu->env, ri) != v) { 315 ok = false; 316 } 317 } 318 return ok; 319 } 320 321 static void add_cpreg_to_list(gpointer key, gpointer opaque) 322 { 323 ARMCPU *cpu = opaque; 324 uint64_t regidx; 325 const ARMCPRegInfo *ri; 326 327 regidx = *(uint32_t *)key; 328 ri = get_arm_cp_reginfo(cpu->cp_regs, regidx); 329 330 if (!(ri->type & (ARM_CP_NO_RAW|ARM_CP_ALIAS))) { 331 cpu->cpreg_indexes[cpu->cpreg_array_len] = cpreg_to_kvm_id(regidx); 332 /* The value array need not be initialized at this point */ 333 cpu->cpreg_array_len++; 334 } 335 } 336 337 static void count_cpreg(gpointer key, gpointer opaque) 338 { 339 ARMCPU *cpu = opaque; 340 uint64_t regidx; 341 const ARMCPRegInfo *ri; 342 343 regidx = *(uint32_t *)key; 344 ri = get_arm_cp_reginfo(cpu->cp_regs, regidx); 345 346 if (!(ri->type & (ARM_CP_NO_RAW|ARM_CP_ALIAS))) { 347 cpu->cpreg_array_len++; 348 } 349 } 350 351 static gint cpreg_key_compare(gconstpointer a, gconstpointer b) 352 { 353 uint64_t aidx = cpreg_to_kvm_id(*(uint32_t *)a); 354 uint64_t bidx = cpreg_to_kvm_id(*(uint32_t *)b); 355 356 if (aidx > bidx) { 357 return 1; 358 } 359 if (aidx < bidx) { 360 return -1; 361 } 362 return 0; 363 } 364 365 void init_cpreg_list(ARMCPU *cpu) 366 { 367 /* Initialise the cpreg_tuples[] array based on the cp_regs hash. 368 * Note that we require cpreg_tuples[] to be sorted by key ID. 369 */ 370 GList *keys; 371 int arraylen; 372 373 keys = g_hash_table_get_keys(cpu->cp_regs); 374 keys = g_list_sort(keys, cpreg_key_compare); 375 376 cpu->cpreg_array_len = 0; 377 378 g_list_foreach(keys, count_cpreg, cpu); 379 380 arraylen = cpu->cpreg_array_len; 381 cpu->cpreg_indexes = g_new(uint64_t, arraylen); 382 cpu->cpreg_values = g_new(uint64_t, arraylen); 383 cpu->cpreg_vmstate_indexes = g_new(uint64_t, arraylen); 384 cpu->cpreg_vmstate_values = g_new(uint64_t, arraylen); 385 cpu->cpreg_vmstate_array_len = cpu->cpreg_array_len; 386 cpu->cpreg_array_len = 0; 387 388 g_list_foreach(keys, add_cpreg_to_list, cpu); 389 390 assert(cpu->cpreg_array_len == arraylen); 391 392 g_list_free(keys); 393 } 394 395 /* 396 * Some registers are not accessible if EL3.NS=0 and EL3 is using AArch32 but 397 * they are accessible when EL3 is using AArch64 regardless of EL3.NS. 398 * 399 * access_el3_aa32ns: Used to check AArch32 register views. 400 * access_el3_aa32ns_aa64any: Used to check both AArch32/64 register views. 401 */ 402 static CPAccessResult access_el3_aa32ns(CPUARMState *env, 403 const ARMCPRegInfo *ri, 404 bool isread) 405 { 406 bool secure = arm_is_secure_below_el3(env); 407 408 assert(!arm_el_is_aa64(env, 3)); 409 if (secure) { 410 return CP_ACCESS_TRAP_UNCATEGORIZED; 411 } 412 return CP_ACCESS_OK; 413 } 414 415 static CPAccessResult access_el3_aa32ns_aa64any(CPUARMState *env, 416 const ARMCPRegInfo *ri, 417 bool isread) 418 { 419 if (!arm_el_is_aa64(env, 3)) { 420 return access_el3_aa32ns(env, ri, isread); 421 } 422 return CP_ACCESS_OK; 423 } 424 425 /* Some secure-only AArch32 registers trap to EL3 if used from 426 * Secure EL1 (but are just ordinary UNDEF in other non-EL3 contexts). 427 * Note that an access from Secure EL1 can only happen if EL3 is AArch64. 428 * We assume that the .access field is set to PL1_RW. 429 */ 430 static CPAccessResult access_trap_aa32s_el1(CPUARMState *env, 431 const ARMCPRegInfo *ri, 432 bool isread) 433 { 434 if (arm_current_el(env) == 3) { 435 return CP_ACCESS_OK; 436 } 437 if (arm_is_secure_below_el3(env)) { 438 return CP_ACCESS_TRAP_EL3; 439 } 440 /* This will be EL1 NS and EL2 NS, which just UNDEF */ 441 return CP_ACCESS_TRAP_UNCATEGORIZED; 442 } 443 444 /* Check for traps to "powerdown debug" registers, which are controlled 445 * by MDCR.TDOSA 446 */ 447 static CPAccessResult access_tdosa(CPUARMState *env, const ARMCPRegInfo *ri, 448 bool isread) 449 { 450 int el = arm_current_el(env); 451 bool mdcr_el2_tdosa = (env->cp15.mdcr_el2 & MDCR_TDOSA) || 452 (env->cp15.mdcr_el2 & MDCR_TDE) || 453 (arm_hcr_el2_eff(env) & HCR_TGE); 454 455 if (el < 2 && mdcr_el2_tdosa && !arm_is_secure_below_el3(env)) { 456 return CP_ACCESS_TRAP_EL2; 457 } 458 if (el < 3 && (env->cp15.mdcr_el3 & MDCR_TDOSA)) { 459 return CP_ACCESS_TRAP_EL3; 460 } 461 return CP_ACCESS_OK; 462 } 463 464 /* Check for traps to "debug ROM" registers, which are controlled 465 * by MDCR_EL2.TDRA for EL2 but by the more general MDCR_EL3.TDA for EL3. 466 */ 467 static CPAccessResult access_tdra(CPUARMState *env, const ARMCPRegInfo *ri, 468 bool isread) 469 { 470 int el = arm_current_el(env); 471 bool mdcr_el2_tdra = (env->cp15.mdcr_el2 & MDCR_TDRA) || 472 (env->cp15.mdcr_el2 & MDCR_TDE) || 473 (arm_hcr_el2_eff(env) & HCR_TGE); 474 475 if (el < 2 && mdcr_el2_tdra && !arm_is_secure_below_el3(env)) { 476 return CP_ACCESS_TRAP_EL2; 477 } 478 if (el < 3 && (env->cp15.mdcr_el3 & MDCR_TDA)) { 479 return CP_ACCESS_TRAP_EL3; 480 } 481 return CP_ACCESS_OK; 482 } 483 484 /* Check for traps to general debug registers, which are controlled 485 * by MDCR_EL2.TDA for EL2 and MDCR_EL3.TDA for EL3. 486 */ 487 static CPAccessResult access_tda(CPUARMState *env, const ARMCPRegInfo *ri, 488 bool isread) 489 { 490 int el = arm_current_el(env); 491 bool mdcr_el2_tda = (env->cp15.mdcr_el2 & MDCR_TDA) || 492 (env->cp15.mdcr_el2 & MDCR_TDE) || 493 (arm_hcr_el2_eff(env) & HCR_TGE); 494 495 if (el < 2 && mdcr_el2_tda && !arm_is_secure_below_el3(env)) { 496 return CP_ACCESS_TRAP_EL2; 497 } 498 if (el < 3 && (env->cp15.mdcr_el3 & MDCR_TDA)) { 499 return CP_ACCESS_TRAP_EL3; 500 } 501 return CP_ACCESS_OK; 502 } 503 504 /* Check for traps to performance monitor registers, which are controlled 505 * by MDCR_EL2.TPM for EL2 and MDCR_EL3.TPM for EL3. 506 */ 507 static CPAccessResult access_tpm(CPUARMState *env, const ARMCPRegInfo *ri, 508 bool isread) 509 { 510 int el = arm_current_el(env); 511 512 if (el < 2 && (env->cp15.mdcr_el2 & MDCR_TPM) 513 && !arm_is_secure_below_el3(env)) { 514 return CP_ACCESS_TRAP_EL2; 515 } 516 if (el < 3 && (env->cp15.mdcr_el3 & MDCR_TPM)) { 517 return CP_ACCESS_TRAP_EL3; 518 } 519 return CP_ACCESS_OK; 520 } 521 522 static void dacr_write(CPUARMState *env, const ARMCPRegInfo *ri, uint64_t value) 523 { 524 ARMCPU *cpu = arm_env_get_cpu(env); 525 526 raw_write(env, ri, value); 527 tlb_flush(CPU(cpu)); /* Flush TLB as domain not tracked in TLB */ 528 } 529 530 static void fcse_write(CPUARMState *env, const ARMCPRegInfo *ri, uint64_t value) 531 { 532 ARMCPU *cpu = arm_env_get_cpu(env); 533 534 if (raw_read(env, ri) != value) { 535 /* Unlike real hardware the qemu TLB uses virtual addresses, 536 * not modified virtual addresses, so this causes a TLB flush. 537 */ 538 tlb_flush(CPU(cpu)); 539 raw_write(env, ri, value); 540 } 541 } 542 543 static void contextidr_write(CPUARMState *env, const ARMCPRegInfo *ri, 544 uint64_t value) 545 { 546 ARMCPU *cpu = arm_env_get_cpu(env); 547 548 if (raw_read(env, ri) != value && !arm_feature(env, ARM_FEATURE_PMSA) 549 && !extended_addresses_enabled(env)) { 550 /* For VMSA (when not using the LPAE long descriptor page table 551 * format) this register includes the ASID, so do a TLB flush. 552 * For PMSA it is purely a process ID and no action is needed. 553 */ 554 tlb_flush(CPU(cpu)); 555 } 556 raw_write(env, ri, value); 557 } 558 559 /* IS variants of TLB operations must affect all cores */ 560 static void tlbiall_is_write(CPUARMState *env, const ARMCPRegInfo *ri, 561 uint64_t value) 562 { 563 CPUState *cs = ENV_GET_CPU(env); 564 565 tlb_flush_all_cpus_synced(cs); 566 } 567 568 static void tlbiasid_is_write(CPUARMState *env, const ARMCPRegInfo *ri, 569 uint64_t value) 570 { 571 CPUState *cs = ENV_GET_CPU(env); 572 573 tlb_flush_all_cpus_synced(cs); 574 } 575 576 static void tlbimva_is_write(CPUARMState *env, const ARMCPRegInfo *ri, 577 uint64_t value) 578 { 579 CPUState *cs = ENV_GET_CPU(env); 580 581 tlb_flush_page_all_cpus_synced(cs, value & TARGET_PAGE_MASK); 582 } 583 584 static void tlbimvaa_is_write(CPUARMState *env, const ARMCPRegInfo *ri, 585 uint64_t value) 586 { 587 CPUState *cs = ENV_GET_CPU(env); 588 589 tlb_flush_page_all_cpus_synced(cs, value & TARGET_PAGE_MASK); 590 } 591 592 /* 593 * Non-IS variants of TLB operations are upgraded to 594 * IS versions if we are at NS EL1 and HCR_EL2.FB is set to 595 * force broadcast of these operations. 596 */ 597 static bool tlb_force_broadcast(CPUARMState *env) 598 { 599 return (env->cp15.hcr_el2 & HCR_FB) && 600 arm_current_el(env) == 1 && arm_is_secure_below_el3(env); 601 } 602 603 static void tlbiall_write(CPUARMState *env, const ARMCPRegInfo *ri, 604 uint64_t value) 605 { 606 /* Invalidate all (TLBIALL) */ 607 ARMCPU *cpu = arm_env_get_cpu(env); 608 609 if (tlb_force_broadcast(env)) { 610 tlbiall_is_write(env, NULL, value); 611 return; 612 } 613 614 tlb_flush(CPU(cpu)); 615 } 616 617 static void tlbimva_write(CPUARMState *env, const ARMCPRegInfo *ri, 618 uint64_t value) 619 { 620 /* Invalidate single TLB entry by MVA and ASID (TLBIMVA) */ 621 ARMCPU *cpu = arm_env_get_cpu(env); 622 623 if (tlb_force_broadcast(env)) { 624 tlbimva_is_write(env, NULL, value); 625 return; 626 } 627 628 tlb_flush_page(CPU(cpu), value & TARGET_PAGE_MASK); 629 } 630 631 static void tlbiasid_write(CPUARMState *env, const ARMCPRegInfo *ri, 632 uint64_t value) 633 { 634 /* Invalidate by ASID (TLBIASID) */ 635 ARMCPU *cpu = arm_env_get_cpu(env); 636 637 if (tlb_force_broadcast(env)) { 638 tlbiasid_is_write(env, NULL, value); 639 return; 640 } 641 642 tlb_flush(CPU(cpu)); 643 } 644 645 static void tlbimvaa_write(CPUARMState *env, const ARMCPRegInfo *ri, 646 uint64_t value) 647 { 648 /* Invalidate single entry by MVA, all ASIDs (TLBIMVAA) */ 649 ARMCPU *cpu = arm_env_get_cpu(env); 650 651 if (tlb_force_broadcast(env)) { 652 tlbimvaa_is_write(env, NULL, value); 653 return; 654 } 655 656 tlb_flush_page(CPU(cpu), value & TARGET_PAGE_MASK); 657 } 658 659 static void tlbiall_nsnh_write(CPUARMState *env, const ARMCPRegInfo *ri, 660 uint64_t value) 661 { 662 CPUState *cs = ENV_GET_CPU(env); 663 664 tlb_flush_by_mmuidx(cs, 665 ARMMMUIdxBit_S12NSE1 | 666 ARMMMUIdxBit_S12NSE0 | 667 ARMMMUIdxBit_S2NS); 668 } 669 670 static void tlbiall_nsnh_is_write(CPUARMState *env, const ARMCPRegInfo *ri, 671 uint64_t value) 672 { 673 CPUState *cs = ENV_GET_CPU(env); 674 675 tlb_flush_by_mmuidx_all_cpus_synced(cs, 676 ARMMMUIdxBit_S12NSE1 | 677 ARMMMUIdxBit_S12NSE0 | 678 ARMMMUIdxBit_S2NS); 679 } 680 681 static void tlbiipas2_write(CPUARMState *env, const ARMCPRegInfo *ri, 682 uint64_t value) 683 { 684 /* Invalidate by IPA. This has to invalidate any structures that 685 * contain only stage 2 translation information, but does not need 686 * to apply to structures that contain combined stage 1 and stage 2 687 * translation information. 688 * This must NOP if EL2 isn't implemented or SCR_EL3.NS is zero. 689 */ 690 CPUState *cs = ENV_GET_CPU(env); 691 uint64_t pageaddr; 692 693 if (!arm_feature(env, ARM_FEATURE_EL2) || !(env->cp15.scr_el3 & SCR_NS)) { 694 return; 695 } 696 697 pageaddr = sextract64(value << 12, 0, 40); 698 699 tlb_flush_page_by_mmuidx(cs, pageaddr, ARMMMUIdxBit_S2NS); 700 } 701 702 static void tlbiipas2_is_write(CPUARMState *env, const ARMCPRegInfo *ri, 703 uint64_t value) 704 { 705 CPUState *cs = ENV_GET_CPU(env); 706 uint64_t pageaddr; 707 708 if (!arm_feature(env, ARM_FEATURE_EL2) || !(env->cp15.scr_el3 & SCR_NS)) { 709 return; 710 } 711 712 pageaddr = sextract64(value << 12, 0, 40); 713 714 tlb_flush_page_by_mmuidx_all_cpus_synced(cs, pageaddr, 715 ARMMMUIdxBit_S2NS); 716 } 717 718 static void tlbiall_hyp_write(CPUARMState *env, const ARMCPRegInfo *ri, 719 uint64_t value) 720 { 721 CPUState *cs = ENV_GET_CPU(env); 722 723 tlb_flush_by_mmuidx(cs, ARMMMUIdxBit_S1E2); 724 } 725 726 static void tlbiall_hyp_is_write(CPUARMState *env, const ARMCPRegInfo *ri, 727 uint64_t value) 728 { 729 CPUState *cs = ENV_GET_CPU(env); 730 731 tlb_flush_by_mmuidx_all_cpus_synced(cs, ARMMMUIdxBit_S1E2); 732 } 733 734 static void tlbimva_hyp_write(CPUARMState *env, const ARMCPRegInfo *ri, 735 uint64_t value) 736 { 737 CPUState *cs = ENV_GET_CPU(env); 738 uint64_t pageaddr = value & ~MAKE_64BIT_MASK(0, 12); 739 740 tlb_flush_page_by_mmuidx(cs, pageaddr, ARMMMUIdxBit_S1E2); 741 } 742 743 static void tlbimva_hyp_is_write(CPUARMState *env, const ARMCPRegInfo *ri, 744 uint64_t value) 745 { 746 CPUState *cs = ENV_GET_CPU(env); 747 uint64_t pageaddr = value & ~MAKE_64BIT_MASK(0, 12); 748 749 tlb_flush_page_by_mmuidx_all_cpus_synced(cs, pageaddr, 750 ARMMMUIdxBit_S1E2); 751 } 752 753 static const ARMCPRegInfo cp_reginfo[] = { 754 /* Define the secure and non-secure FCSE identifier CP registers 755 * separately because there is no secure bank in V8 (no _EL3). This allows 756 * the secure register to be properly reset and migrated. There is also no 757 * v8 EL1 version of the register so the non-secure instance stands alone. 758 */ 759 { .name = "FCSEIDR", 760 .cp = 15, .opc1 = 0, .crn = 13, .crm = 0, .opc2 = 0, 761 .access = PL1_RW, .secure = ARM_CP_SECSTATE_NS, 762 .fieldoffset = offsetof(CPUARMState, cp15.fcseidr_ns), 763 .resetvalue = 0, .writefn = fcse_write, .raw_writefn = raw_write, }, 764 { .name = "FCSEIDR_S", 765 .cp = 15, .opc1 = 0, .crn = 13, .crm = 0, .opc2 = 0, 766 .access = PL1_RW, .secure = ARM_CP_SECSTATE_S, 767 .fieldoffset = offsetof(CPUARMState, cp15.fcseidr_s), 768 .resetvalue = 0, .writefn = fcse_write, .raw_writefn = raw_write, }, 769 /* Define the secure and non-secure context identifier CP registers 770 * separately because there is no secure bank in V8 (no _EL3). This allows 771 * the secure register to be properly reset and migrated. In the 772 * non-secure case, the 32-bit register will have reset and migration 773 * disabled during registration as it is handled by the 64-bit instance. 774 */ 775 { .name = "CONTEXTIDR_EL1", .state = ARM_CP_STATE_BOTH, 776 .opc0 = 3, .opc1 = 0, .crn = 13, .crm = 0, .opc2 = 1, 777 .access = PL1_RW, .secure = ARM_CP_SECSTATE_NS, 778 .fieldoffset = offsetof(CPUARMState, cp15.contextidr_el[1]), 779 .resetvalue = 0, .writefn = contextidr_write, .raw_writefn = raw_write, }, 780 { .name = "CONTEXTIDR_S", .state = ARM_CP_STATE_AA32, 781 .cp = 15, .opc1 = 0, .crn = 13, .crm = 0, .opc2 = 1, 782 .access = PL1_RW, .secure = ARM_CP_SECSTATE_S, 783 .fieldoffset = offsetof(CPUARMState, cp15.contextidr_s), 784 .resetvalue = 0, .writefn = contextidr_write, .raw_writefn = raw_write, }, 785 REGINFO_SENTINEL 786 }; 787 788 static const ARMCPRegInfo not_v8_cp_reginfo[] = { 789 /* NB: Some of these registers exist in v8 but with more precise 790 * definitions that don't use CP_ANY wildcards (mostly in v8_cp_reginfo[]). 791 */ 792 /* MMU Domain access control / MPU write buffer control */ 793 { .name = "DACR", 794 .cp = 15, .opc1 = CP_ANY, .crn = 3, .crm = CP_ANY, .opc2 = CP_ANY, 795 .access = PL1_RW, .resetvalue = 0, 796 .writefn = dacr_write, .raw_writefn = raw_write, 797 .bank_fieldoffsets = { offsetoflow32(CPUARMState, cp15.dacr_s), 798 offsetoflow32(CPUARMState, cp15.dacr_ns) } }, 799 /* ARMv7 allocates a range of implementation defined TLB LOCKDOWN regs. 800 * For v6 and v5, these mappings are overly broad. 801 */ 802 { .name = "TLB_LOCKDOWN", .cp = 15, .crn = 10, .crm = 0, 803 .opc1 = CP_ANY, .opc2 = CP_ANY, .access = PL1_RW, .type = ARM_CP_NOP }, 804 { .name = "TLB_LOCKDOWN", .cp = 15, .crn = 10, .crm = 1, 805 .opc1 = CP_ANY, .opc2 = CP_ANY, .access = PL1_RW, .type = ARM_CP_NOP }, 806 { .name = "TLB_LOCKDOWN", .cp = 15, .crn = 10, .crm = 4, 807 .opc1 = CP_ANY, .opc2 = CP_ANY, .access = PL1_RW, .type = ARM_CP_NOP }, 808 { .name = "TLB_LOCKDOWN", .cp = 15, .crn = 10, .crm = 8, 809 .opc1 = CP_ANY, .opc2 = CP_ANY, .access = PL1_RW, .type = ARM_CP_NOP }, 810 /* Cache maintenance ops; some of this space may be overridden later. */ 811 { .name = "CACHEMAINT", .cp = 15, .crn = 7, .crm = CP_ANY, 812 .opc1 = 0, .opc2 = CP_ANY, .access = PL1_W, 813 .type = ARM_CP_NOP | ARM_CP_OVERRIDE }, 814 REGINFO_SENTINEL 815 }; 816 817 static const ARMCPRegInfo not_v6_cp_reginfo[] = { 818 /* Not all pre-v6 cores implemented this WFI, so this is slightly 819 * over-broad. 820 */ 821 { .name = "WFI_v5", .cp = 15, .crn = 7, .crm = 8, .opc1 = 0, .opc2 = 2, 822 .access = PL1_W, .type = ARM_CP_WFI }, 823 REGINFO_SENTINEL 824 }; 825 826 static const ARMCPRegInfo not_v7_cp_reginfo[] = { 827 /* Standard v6 WFI (also used in some pre-v6 cores); not in v7 (which 828 * is UNPREDICTABLE; we choose to NOP as most implementations do). 829 */ 830 { .name = "WFI_v6", .cp = 15, .crn = 7, .crm = 0, .opc1 = 0, .opc2 = 4, 831 .access = PL1_W, .type = ARM_CP_WFI }, 832 /* L1 cache lockdown. Not architectural in v6 and earlier but in practice 833 * implemented in 926, 946, 1026, 1136, 1176 and 11MPCore. StrongARM and 834 * OMAPCP will override this space. 835 */ 836 { .name = "DLOCKDOWN", .cp = 15, .crn = 9, .crm = 0, .opc1 = 0, .opc2 = 0, 837 .access = PL1_RW, .fieldoffset = offsetof(CPUARMState, cp15.c9_data), 838 .resetvalue = 0 }, 839 { .name = "ILOCKDOWN", .cp = 15, .crn = 9, .crm = 0, .opc1 = 0, .opc2 = 1, 840 .access = PL1_RW, .fieldoffset = offsetof(CPUARMState, cp15.c9_insn), 841 .resetvalue = 0 }, 842 /* v6 doesn't have the cache ID registers but Linux reads them anyway */ 843 { .name = "DUMMY", .cp = 15, .crn = 0, .crm = 0, .opc1 = 1, .opc2 = CP_ANY, 844 .access = PL1_R, .type = ARM_CP_CONST | ARM_CP_NO_RAW, 845 .resetvalue = 0 }, 846 /* We don't implement pre-v7 debug but most CPUs had at least a DBGDIDR; 847 * implementing it as RAZ means the "debug architecture version" bits 848 * will read as a reserved value, which should cause Linux to not try 849 * to use the debug hardware. 850 */ 851 { .name = "DBGDIDR", .cp = 14, .crn = 0, .crm = 0, .opc1 = 0, .opc2 = 0, 852 .access = PL0_R, .type = ARM_CP_CONST, .resetvalue = 0 }, 853 /* MMU TLB control. Note that the wildcarding means we cover not just 854 * the unified TLB ops but also the dside/iside/inner-shareable variants. 855 */ 856 { .name = "TLBIALL", .cp = 15, .crn = 8, .crm = CP_ANY, 857 .opc1 = CP_ANY, .opc2 = 0, .access = PL1_W, .writefn = tlbiall_write, 858 .type = ARM_CP_NO_RAW }, 859 { .name = "TLBIMVA", .cp = 15, .crn = 8, .crm = CP_ANY, 860 .opc1 = CP_ANY, .opc2 = 1, .access = PL1_W, .writefn = tlbimva_write, 861 .type = ARM_CP_NO_RAW }, 862 { .name = "TLBIASID", .cp = 15, .crn = 8, .crm = CP_ANY, 863 .opc1 = CP_ANY, .opc2 = 2, .access = PL1_W, .writefn = tlbiasid_write, 864 .type = ARM_CP_NO_RAW }, 865 { .name = "TLBIMVAA", .cp = 15, .crn = 8, .crm = CP_ANY, 866 .opc1 = CP_ANY, .opc2 = 3, .access = PL1_W, .writefn = tlbimvaa_write, 867 .type = ARM_CP_NO_RAW }, 868 { .name = "PRRR", .cp = 15, .crn = 10, .crm = 2, 869 .opc1 = 0, .opc2 = 0, .access = PL1_RW, .type = ARM_CP_NOP }, 870 { .name = "NMRR", .cp = 15, .crn = 10, .crm = 2, 871 .opc1 = 0, .opc2 = 1, .access = PL1_RW, .type = ARM_CP_NOP }, 872 REGINFO_SENTINEL 873 }; 874 875 static void cpacr_write(CPUARMState *env, const ARMCPRegInfo *ri, 876 uint64_t value) 877 { 878 uint32_t mask = 0; 879 880 /* In ARMv8 most bits of CPACR_EL1 are RES0. */ 881 if (!arm_feature(env, ARM_FEATURE_V8)) { 882 /* ARMv7 defines bits for unimplemented coprocessors as RAZ/WI. 883 * ASEDIS [31] and D32DIS [30] are both UNK/SBZP without VFP. 884 * TRCDIS [28] is RAZ/WI since we do not implement a trace macrocell. 885 */ 886 if (arm_feature(env, ARM_FEATURE_VFP)) { 887 /* VFP coprocessor: cp10 & cp11 [23:20] */ 888 mask |= (1 << 31) | (1 << 30) | (0xf << 20); 889 890 if (!arm_feature(env, ARM_FEATURE_NEON)) { 891 /* ASEDIS [31] bit is RAO/WI */ 892 value |= (1 << 31); 893 } 894 895 /* VFPv3 and upwards with NEON implement 32 double precision 896 * registers (D0-D31). 897 */ 898 if (!arm_feature(env, ARM_FEATURE_NEON) || 899 !arm_feature(env, ARM_FEATURE_VFP3)) { 900 /* D32DIS [30] is RAO/WI if D16-31 are not implemented. */ 901 value |= (1 << 30); 902 } 903 } 904 value &= mask; 905 } 906 env->cp15.cpacr_el1 = value; 907 } 908 909 static void cpacr_reset(CPUARMState *env, const ARMCPRegInfo *ri) 910 { 911 /* Call cpacr_write() so that we reset with the correct RAO bits set 912 * for our CPU features. 913 */ 914 cpacr_write(env, ri, 0); 915 } 916 917 static CPAccessResult cpacr_access(CPUARMState *env, const ARMCPRegInfo *ri, 918 bool isread) 919 { 920 if (arm_feature(env, ARM_FEATURE_V8)) { 921 /* Check if CPACR accesses are to be trapped to EL2 */ 922 if (arm_current_el(env) == 1 && 923 (env->cp15.cptr_el[2] & CPTR_TCPAC) && !arm_is_secure(env)) { 924 return CP_ACCESS_TRAP_EL2; 925 /* Check if CPACR accesses are to be trapped to EL3 */ 926 } else if (arm_current_el(env) < 3 && 927 (env->cp15.cptr_el[3] & CPTR_TCPAC)) { 928 return CP_ACCESS_TRAP_EL3; 929 } 930 } 931 932 return CP_ACCESS_OK; 933 } 934 935 static CPAccessResult cptr_access(CPUARMState *env, const ARMCPRegInfo *ri, 936 bool isread) 937 { 938 /* Check if CPTR accesses are set to trap to EL3 */ 939 if (arm_current_el(env) == 2 && (env->cp15.cptr_el[3] & CPTR_TCPAC)) { 940 return CP_ACCESS_TRAP_EL3; 941 } 942 943 return CP_ACCESS_OK; 944 } 945 946 static const ARMCPRegInfo v6_cp_reginfo[] = { 947 /* prefetch by MVA in v6, NOP in v7 */ 948 { .name = "MVA_prefetch", 949 .cp = 15, .crn = 7, .crm = 13, .opc1 = 0, .opc2 = 1, 950 .access = PL1_W, .type = ARM_CP_NOP }, 951 /* We need to break the TB after ISB to execute self-modifying code 952 * correctly and also to take any pending interrupts immediately. 953 * So use arm_cp_write_ignore() function instead of ARM_CP_NOP flag. 954 */ 955 { .name = "ISB", .cp = 15, .crn = 7, .crm = 5, .opc1 = 0, .opc2 = 4, 956 .access = PL0_W, .type = ARM_CP_NO_RAW, .writefn = arm_cp_write_ignore }, 957 { .name = "DSB", .cp = 15, .crn = 7, .crm = 10, .opc1 = 0, .opc2 = 4, 958 .access = PL0_W, .type = ARM_CP_NOP }, 959 { .name = "DMB", .cp = 15, .crn = 7, .crm = 10, .opc1 = 0, .opc2 = 5, 960 .access = PL0_W, .type = ARM_CP_NOP }, 961 { .name = "IFAR", .cp = 15, .crn = 6, .crm = 0, .opc1 = 0, .opc2 = 2, 962 .access = PL1_RW, 963 .bank_fieldoffsets = { offsetof(CPUARMState, cp15.ifar_s), 964 offsetof(CPUARMState, cp15.ifar_ns) }, 965 .resetvalue = 0, }, 966 /* Watchpoint Fault Address Register : should actually only be present 967 * for 1136, 1176, 11MPCore. 968 */ 969 { .name = "WFAR", .cp = 15, .crn = 6, .crm = 0, .opc1 = 0, .opc2 = 1, 970 .access = PL1_RW, .type = ARM_CP_CONST, .resetvalue = 0, }, 971 { .name = "CPACR", .state = ARM_CP_STATE_BOTH, .opc0 = 3, 972 .crn = 1, .crm = 0, .opc1 = 0, .opc2 = 2, .accessfn = cpacr_access, 973 .access = PL1_RW, .fieldoffset = offsetof(CPUARMState, cp15.cpacr_el1), 974 .resetfn = cpacr_reset, .writefn = cpacr_write }, 975 REGINFO_SENTINEL 976 }; 977 978 /* Definitions for the PMU registers */ 979 #define PMCRN_MASK 0xf800 980 #define PMCRN_SHIFT 11 981 #define PMCRLC 0x40 982 #define PMCRDP 0x10 983 #define PMCRD 0x8 984 #define PMCRC 0x4 985 #define PMCRP 0x2 986 #define PMCRE 0x1 987 988 #define PMXEVTYPER_P 0x80000000 989 #define PMXEVTYPER_U 0x40000000 990 #define PMXEVTYPER_NSK 0x20000000 991 #define PMXEVTYPER_NSU 0x10000000 992 #define PMXEVTYPER_NSH 0x08000000 993 #define PMXEVTYPER_M 0x04000000 994 #define PMXEVTYPER_MT 0x02000000 995 #define PMXEVTYPER_EVTCOUNT 0x0000ffff 996 #define PMXEVTYPER_MASK (PMXEVTYPER_P | PMXEVTYPER_U | PMXEVTYPER_NSK | \ 997 PMXEVTYPER_NSU | PMXEVTYPER_NSH | \ 998 PMXEVTYPER_M | PMXEVTYPER_MT | \ 999 PMXEVTYPER_EVTCOUNT) 1000 1001 #define PMCCFILTR 0xf8000000 1002 #define PMCCFILTR_M PMXEVTYPER_M 1003 #define PMCCFILTR_EL0 (PMCCFILTR | PMCCFILTR_M) 1004 1005 static inline uint32_t pmu_num_counters(CPUARMState *env) 1006 { 1007 return (env->cp15.c9_pmcr & PMCRN_MASK) >> PMCRN_SHIFT; 1008 } 1009 1010 /* Bits allowed to be set/cleared for PMCNTEN* and PMINTEN* */ 1011 static inline uint64_t pmu_counter_mask(CPUARMState *env) 1012 { 1013 return (1 << 31) | ((1 << pmu_num_counters(env)) - 1); 1014 } 1015 1016 typedef struct pm_event { 1017 uint16_t number; /* PMEVTYPER.evtCount is 16 bits wide */ 1018 /* If the event is supported on this CPU (used to generate PMCEID[01]) */ 1019 bool (*supported)(CPUARMState *); 1020 /* 1021 * Retrieve the current count of the underlying event. The programmed 1022 * counters hold a difference from the return value from this function 1023 */ 1024 uint64_t (*get_count)(CPUARMState *); 1025 /* 1026 * Return how many nanoseconds it will take (at a minimum) for count events 1027 * to occur. A negative value indicates the counter will never overflow, or 1028 * that the counter has otherwise arranged for the overflow bit to be set 1029 * and the PMU interrupt to be raised on overflow. 1030 */ 1031 int64_t (*ns_per_count)(uint64_t); 1032 } pm_event; 1033 1034 static bool event_always_supported(CPUARMState *env) 1035 { 1036 return true; 1037 } 1038 1039 static uint64_t swinc_get_count(CPUARMState *env) 1040 { 1041 /* 1042 * SW_INCR events are written directly to the pmevcntr's by writes to 1043 * PMSWINC, so there is no underlying count maintained by the PMU itself 1044 */ 1045 return 0; 1046 } 1047 1048 static int64_t swinc_ns_per(uint64_t ignored) 1049 { 1050 return -1; 1051 } 1052 1053 /* 1054 * Return the underlying cycle count for the PMU cycle counters. If we're in 1055 * usermode, simply return 0. 1056 */ 1057 static uint64_t cycles_get_count(CPUARMState *env) 1058 { 1059 #ifndef CONFIG_USER_ONLY 1060 return muldiv64(qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL), 1061 ARM_CPU_FREQ, NANOSECONDS_PER_SECOND); 1062 #else 1063 return cpu_get_host_ticks(); 1064 #endif 1065 } 1066 1067 #ifndef CONFIG_USER_ONLY 1068 static int64_t cycles_ns_per(uint64_t cycles) 1069 { 1070 return (ARM_CPU_FREQ / NANOSECONDS_PER_SECOND) * cycles; 1071 } 1072 1073 static bool instructions_supported(CPUARMState *env) 1074 { 1075 return use_icount == 1 /* Precise instruction counting */; 1076 } 1077 1078 static uint64_t instructions_get_count(CPUARMState *env) 1079 { 1080 return (uint64_t)cpu_get_icount_raw(); 1081 } 1082 1083 static int64_t instructions_ns_per(uint64_t icount) 1084 { 1085 return cpu_icount_to_ns((int64_t)icount); 1086 } 1087 #endif 1088 1089 static const pm_event pm_events[] = { 1090 { .number = 0x000, /* SW_INCR */ 1091 .supported = event_always_supported, 1092 .get_count = swinc_get_count, 1093 .ns_per_count = swinc_ns_per, 1094 }, 1095 #ifndef CONFIG_USER_ONLY 1096 { .number = 0x008, /* INST_RETIRED, Instruction architecturally executed */ 1097 .supported = instructions_supported, 1098 .get_count = instructions_get_count, 1099 .ns_per_count = instructions_ns_per, 1100 }, 1101 { .number = 0x011, /* CPU_CYCLES, Cycle */ 1102 .supported = event_always_supported, 1103 .get_count = cycles_get_count, 1104 .ns_per_count = cycles_ns_per, 1105 } 1106 #endif 1107 }; 1108 1109 /* 1110 * Note: Before increasing MAX_EVENT_ID beyond 0x3f into the 0x40xx range of 1111 * events (i.e. the statistical profiling extension), this implementation 1112 * should first be updated to something sparse instead of the current 1113 * supported_event_map[] array. 1114 */ 1115 #define MAX_EVENT_ID 0x11 1116 #define UNSUPPORTED_EVENT UINT16_MAX 1117 static uint16_t supported_event_map[MAX_EVENT_ID + 1]; 1118 1119 /* 1120 * Called upon CPU initialization to initialize PMCEID[01]_EL0 and build a map 1121 * of ARM event numbers to indices in our pm_events array. 1122 * 1123 * Note: Events in the 0x40XX range are not currently supported. 1124 */ 1125 void pmu_init(ARMCPU *cpu) 1126 { 1127 unsigned int i; 1128 1129 /* 1130 * Empty supported_event_map and cpu->pmceid[01] before adding supported 1131 * events to them 1132 */ 1133 for (i = 0; i < ARRAY_SIZE(supported_event_map); i++) { 1134 supported_event_map[i] = UNSUPPORTED_EVENT; 1135 } 1136 cpu->pmceid0 = 0; 1137 cpu->pmceid1 = 0; 1138 1139 for (i = 0; i < ARRAY_SIZE(pm_events); i++) { 1140 const pm_event *cnt = &pm_events[i]; 1141 assert(cnt->number <= MAX_EVENT_ID); 1142 /* We do not currently support events in the 0x40xx range */ 1143 assert(cnt->number <= 0x3f); 1144 1145 if (cnt->supported(&cpu->env)) { 1146 supported_event_map[cnt->number] = i; 1147 uint64_t event_mask = 1ULL << (cnt->number & 0x1f); 1148 if (cnt->number & 0x20) { 1149 cpu->pmceid1 |= event_mask; 1150 } else { 1151 cpu->pmceid0 |= event_mask; 1152 } 1153 } 1154 } 1155 } 1156 1157 /* 1158 * Check at runtime whether a PMU event is supported for the current machine 1159 */ 1160 static bool event_supported(uint16_t number) 1161 { 1162 if (number > MAX_EVENT_ID) { 1163 return false; 1164 } 1165 return supported_event_map[number] != UNSUPPORTED_EVENT; 1166 } 1167 1168 static CPAccessResult pmreg_access(CPUARMState *env, const ARMCPRegInfo *ri, 1169 bool isread) 1170 { 1171 /* Performance monitor registers user accessibility is controlled 1172 * by PMUSERENR. MDCR_EL2.TPM and MDCR_EL3.TPM allow configurable 1173 * trapping to EL2 or EL3 for other accesses. 1174 */ 1175 int el = arm_current_el(env); 1176 1177 if (el == 0 && !(env->cp15.c9_pmuserenr & 1)) { 1178 return CP_ACCESS_TRAP; 1179 } 1180 if (el < 2 && (env->cp15.mdcr_el2 & MDCR_TPM) 1181 && !arm_is_secure_below_el3(env)) { 1182 return CP_ACCESS_TRAP_EL2; 1183 } 1184 if (el < 3 && (env->cp15.mdcr_el3 & MDCR_TPM)) { 1185 return CP_ACCESS_TRAP_EL3; 1186 } 1187 1188 return CP_ACCESS_OK; 1189 } 1190 1191 static CPAccessResult pmreg_access_xevcntr(CPUARMState *env, 1192 const ARMCPRegInfo *ri, 1193 bool isread) 1194 { 1195 /* ER: event counter read trap control */ 1196 if (arm_feature(env, ARM_FEATURE_V8) 1197 && arm_current_el(env) == 0 1198 && (env->cp15.c9_pmuserenr & (1 << 3)) != 0 1199 && isread) { 1200 return CP_ACCESS_OK; 1201 } 1202 1203 return pmreg_access(env, ri, isread); 1204 } 1205 1206 static CPAccessResult pmreg_access_swinc(CPUARMState *env, 1207 const ARMCPRegInfo *ri, 1208 bool isread) 1209 { 1210 /* SW: software increment write trap control */ 1211 if (arm_feature(env, ARM_FEATURE_V8) 1212 && arm_current_el(env) == 0 1213 && (env->cp15.c9_pmuserenr & (1 << 1)) != 0 1214 && !isread) { 1215 return CP_ACCESS_OK; 1216 } 1217 1218 return pmreg_access(env, ri, isread); 1219 } 1220 1221 static CPAccessResult pmreg_access_selr(CPUARMState *env, 1222 const ARMCPRegInfo *ri, 1223 bool isread) 1224 { 1225 /* ER: event counter read trap control */ 1226 if (arm_feature(env, ARM_FEATURE_V8) 1227 && arm_current_el(env) == 0 1228 && (env->cp15.c9_pmuserenr & (1 << 3)) != 0) { 1229 return CP_ACCESS_OK; 1230 } 1231 1232 return pmreg_access(env, ri, isread); 1233 } 1234 1235 static CPAccessResult pmreg_access_ccntr(CPUARMState *env, 1236 const ARMCPRegInfo *ri, 1237 bool isread) 1238 { 1239 /* CR: cycle counter read trap control */ 1240 if (arm_feature(env, ARM_FEATURE_V8) 1241 && arm_current_el(env) == 0 1242 && (env->cp15.c9_pmuserenr & (1 << 2)) != 0 1243 && isread) { 1244 return CP_ACCESS_OK; 1245 } 1246 1247 return pmreg_access(env, ri, isread); 1248 } 1249 1250 /* Returns true if the counter (pass 31 for PMCCNTR) should count events using 1251 * the current EL, security state, and register configuration. 1252 */ 1253 static bool pmu_counter_enabled(CPUARMState *env, uint8_t counter) 1254 { 1255 uint64_t filter; 1256 bool e, p, u, nsk, nsu, nsh, m; 1257 bool enabled, prohibited, filtered; 1258 bool secure = arm_is_secure(env); 1259 int el = arm_current_el(env); 1260 uint8_t hpmn = env->cp15.mdcr_el2 & MDCR_HPMN; 1261 1262 if (!arm_feature(env, ARM_FEATURE_PMU)) { 1263 return false; 1264 } 1265 1266 if (!arm_feature(env, ARM_FEATURE_EL2) || 1267 (counter < hpmn || counter == 31)) { 1268 e = env->cp15.c9_pmcr & PMCRE; 1269 } else { 1270 e = env->cp15.mdcr_el2 & MDCR_HPME; 1271 } 1272 enabled = e && (env->cp15.c9_pmcnten & (1 << counter)); 1273 1274 if (!secure) { 1275 if (el == 2 && (counter < hpmn || counter == 31)) { 1276 prohibited = env->cp15.mdcr_el2 & MDCR_HPMD; 1277 } else { 1278 prohibited = false; 1279 } 1280 } else { 1281 prohibited = arm_feature(env, ARM_FEATURE_EL3) && 1282 (env->cp15.mdcr_el3 & MDCR_SPME); 1283 } 1284 1285 if (prohibited && counter == 31) { 1286 prohibited = env->cp15.c9_pmcr & PMCRDP; 1287 } 1288 1289 if (counter == 31) { 1290 filter = env->cp15.pmccfiltr_el0; 1291 } else { 1292 filter = env->cp15.c14_pmevtyper[counter]; 1293 } 1294 1295 p = filter & PMXEVTYPER_P; 1296 u = filter & PMXEVTYPER_U; 1297 nsk = arm_feature(env, ARM_FEATURE_EL3) && (filter & PMXEVTYPER_NSK); 1298 nsu = arm_feature(env, ARM_FEATURE_EL3) && (filter & PMXEVTYPER_NSU); 1299 nsh = arm_feature(env, ARM_FEATURE_EL2) && (filter & PMXEVTYPER_NSH); 1300 m = arm_el_is_aa64(env, 1) && 1301 arm_feature(env, ARM_FEATURE_EL3) && (filter & PMXEVTYPER_M); 1302 1303 if (el == 0) { 1304 filtered = secure ? u : u != nsu; 1305 } else if (el == 1) { 1306 filtered = secure ? p : p != nsk; 1307 } else if (el == 2) { 1308 filtered = !nsh; 1309 } else { /* EL3 */ 1310 filtered = m != p; 1311 } 1312 1313 if (counter != 31) { 1314 /* 1315 * If not checking PMCCNTR, ensure the counter is setup to an event we 1316 * support 1317 */ 1318 uint16_t event = filter & PMXEVTYPER_EVTCOUNT; 1319 if (!event_supported(event)) { 1320 return false; 1321 } 1322 } 1323 1324 return enabled && !prohibited && !filtered; 1325 } 1326 1327 static void pmu_update_irq(CPUARMState *env) 1328 { 1329 ARMCPU *cpu = arm_env_get_cpu(env); 1330 qemu_set_irq(cpu->pmu_interrupt, (env->cp15.c9_pmcr & PMCRE) && 1331 (env->cp15.c9_pminten & env->cp15.c9_pmovsr)); 1332 } 1333 1334 /* 1335 * Ensure c15_ccnt is the guest-visible count so that operations such as 1336 * enabling/disabling the counter or filtering, modifying the count itself, 1337 * etc. can be done logically. This is essentially a no-op if the counter is 1338 * not enabled at the time of the call. 1339 */ 1340 static void pmccntr_op_start(CPUARMState *env) 1341 { 1342 uint64_t cycles = cycles_get_count(env); 1343 1344 if (pmu_counter_enabled(env, 31)) { 1345 uint64_t eff_cycles = cycles; 1346 if (env->cp15.c9_pmcr & PMCRD) { 1347 /* Increment once every 64 processor clock cycles */ 1348 eff_cycles /= 64; 1349 } 1350 1351 uint64_t new_pmccntr = eff_cycles - env->cp15.c15_ccnt_delta; 1352 1353 uint64_t overflow_mask = env->cp15.c9_pmcr & PMCRLC ? \ 1354 1ull << 63 : 1ull << 31; 1355 if (env->cp15.c15_ccnt & ~new_pmccntr & overflow_mask) { 1356 env->cp15.c9_pmovsr |= (1 << 31); 1357 pmu_update_irq(env); 1358 } 1359 1360 env->cp15.c15_ccnt = new_pmccntr; 1361 } 1362 env->cp15.c15_ccnt_delta = cycles; 1363 } 1364 1365 /* 1366 * If PMCCNTR is enabled, recalculate the delta between the clock and the 1367 * guest-visible count. A call to pmccntr_op_finish should follow every call to 1368 * pmccntr_op_start. 1369 */ 1370 static void pmccntr_op_finish(CPUARMState *env) 1371 { 1372 if (pmu_counter_enabled(env, 31)) { 1373 #ifndef CONFIG_USER_ONLY 1374 /* Calculate when the counter will next overflow */ 1375 uint64_t remaining_cycles = -env->cp15.c15_ccnt; 1376 if (!(env->cp15.c9_pmcr & PMCRLC)) { 1377 remaining_cycles = (uint32_t)remaining_cycles; 1378 } 1379 int64_t overflow_in = cycles_ns_per(remaining_cycles); 1380 1381 if (overflow_in > 0) { 1382 int64_t overflow_at = qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL) + 1383 overflow_in; 1384 ARMCPU *cpu = arm_env_get_cpu(env); 1385 timer_mod_anticipate_ns(cpu->pmu_timer, overflow_at); 1386 } 1387 #endif 1388 1389 uint64_t prev_cycles = env->cp15.c15_ccnt_delta; 1390 if (env->cp15.c9_pmcr & PMCRD) { 1391 /* Increment once every 64 processor clock cycles */ 1392 prev_cycles /= 64; 1393 } 1394 env->cp15.c15_ccnt_delta = prev_cycles - env->cp15.c15_ccnt; 1395 } 1396 } 1397 1398 static void pmevcntr_op_start(CPUARMState *env, uint8_t counter) 1399 { 1400 1401 uint16_t event = env->cp15.c14_pmevtyper[counter] & PMXEVTYPER_EVTCOUNT; 1402 uint64_t count = 0; 1403 if (event_supported(event)) { 1404 uint16_t event_idx = supported_event_map[event]; 1405 count = pm_events[event_idx].get_count(env); 1406 } 1407 1408 if (pmu_counter_enabled(env, counter)) { 1409 uint32_t new_pmevcntr = count - env->cp15.c14_pmevcntr_delta[counter]; 1410 1411 if (env->cp15.c14_pmevcntr[counter] & ~new_pmevcntr & INT32_MIN) { 1412 env->cp15.c9_pmovsr |= (1 << counter); 1413 pmu_update_irq(env); 1414 } 1415 env->cp15.c14_pmevcntr[counter] = new_pmevcntr; 1416 } 1417 env->cp15.c14_pmevcntr_delta[counter] = count; 1418 } 1419 1420 static void pmevcntr_op_finish(CPUARMState *env, uint8_t counter) 1421 { 1422 if (pmu_counter_enabled(env, counter)) { 1423 #ifndef CONFIG_USER_ONLY 1424 uint16_t event = env->cp15.c14_pmevtyper[counter] & PMXEVTYPER_EVTCOUNT; 1425 uint16_t event_idx = supported_event_map[event]; 1426 uint64_t delta = UINT32_MAX - 1427 (uint32_t)env->cp15.c14_pmevcntr[counter] + 1; 1428 int64_t overflow_in = pm_events[event_idx].ns_per_count(delta); 1429 1430 if (overflow_in > 0) { 1431 int64_t overflow_at = qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL) + 1432 overflow_in; 1433 ARMCPU *cpu = arm_env_get_cpu(env); 1434 timer_mod_anticipate_ns(cpu->pmu_timer, overflow_at); 1435 } 1436 #endif 1437 1438 env->cp15.c14_pmevcntr_delta[counter] -= 1439 env->cp15.c14_pmevcntr[counter]; 1440 } 1441 } 1442 1443 void pmu_op_start(CPUARMState *env) 1444 { 1445 unsigned int i; 1446 pmccntr_op_start(env); 1447 for (i = 0; i < pmu_num_counters(env); i++) { 1448 pmevcntr_op_start(env, i); 1449 } 1450 } 1451 1452 void pmu_op_finish(CPUARMState *env) 1453 { 1454 unsigned int i; 1455 pmccntr_op_finish(env); 1456 for (i = 0; i < pmu_num_counters(env); i++) { 1457 pmevcntr_op_finish(env, i); 1458 } 1459 } 1460 1461 void pmu_pre_el_change(ARMCPU *cpu, void *ignored) 1462 { 1463 pmu_op_start(&cpu->env); 1464 } 1465 1466 void pmu_post_el_change(ARMCPU *cpu, void *ignored) 1467 { 1468 pmu_op_finish(&cpu->env); 1469 } 1470 1471 void arm_pmu_timer_cb(void *opaque) 1472 { 1473 ARMCPU *cpu = opaque; 1474 1475 /* 1476 * Update all the counter values based on the current underlying counts, 1477 * triggering interrupts to be raised, if necessary. pmu_op_finish() also 1478 * has the effect of setting the cpu->pmu_timer to the next earliest time a 1479 * counter may expire. 1480 */ 1481 pmu_op_start(&cpu->env); 1482 pmu_op_finish(&cpu->env); 1483 } 1484 1485 static void pmcr_write(CPUARMState *env, const ARMCPRegInfo *ri, 1486 uint64_t value) 1487 { 1488 pmu_op_start(env); 1489 1490 if (value & PMCRC) { 1491 /* The counter has been reset */ 1492 env->cp15.c15_ccnt = 0; 1493 } 1494 1495 if (value & PMCRP) { 1496 unsigned int i; 1497 for (i = 0; i < pmu_num_counters(env); i++) { 1498 env->cp15.c14_pmevcntr[i] = 0; 1499 } 1500 } 1501 1502 /* only the DP, X, D and E bits are writable */ 1503 env->cp15.c9_pmcr &= ~0x39; 1504 env->cp15.c9_pmcr |= (value & 0x39); 1505 1506 pmu_op_finish(env); 1507 } 1508 1509 static void pmswinc_write(CPUARMState *env, const ARMCPRegInfo *ri, 1510 uint64_t value) 1511 { 1512 unsigned int i; 1513 for (i = 0; i < pmu_num_counters(env); i++) { 1514 /* Increment a counter's count iff: */ 1515 if ((value & (1 << i)) && /* counter's bit is set */ 1516 /* counter is enabled and not filtered */ 1517 pmu_counter_enabled(env, i) && 1518 /* counter is SW_INCR */ 1519 (env->cp15.c14_pmevtyper[i] & PMXEVTYPER_EVTCOUNT) == 0x0) { 1520 pmevcntr_op_start(env, i); 1521 1522 /* 1523 * Detect if this write causes an overflow since we can't predict 1524 * PMSWINC overflows like we can for other events 1525 */ 1526 uint32_t new_pmswinc = env->cp15.c14_pmevcntr[i] + 1; 1527 1528 if (env->cp15.c14_pmevcntr[i] & ~new_pmswinc & INT32_MIN) { 1529 env->cp15.c9_pmovsr |= (1 << i); 1530 pmu_update_irq(env); 1531 } 1532 1533 env->cp15.c14_pmevcntr[i] = new_pmswinc; 1534 1535 pmevcntr_op_finish(env, i); 1536 } 1537 } 1538 } 1539 1540 static uint64_t pmccntr_read(CPUARMState *env, const ARMCPRegInfo *ri) 1541 { 1542 uint64_t ret; 1543 pmccntr_op_start(env); 1544 ret = env->cp15.c15_ccnt; 1545 pmccntr_op_finish(env); 1546 return ret; 1547 } 1548 1549 static void pmselr_write(CPUARMState *env, const ARMCPRegInfo *ri, 1550 uint64_t value) 1551 { 1552 /* The value of PMSELR.SEL affects the behavior of PMXEVTYPER and 1553 * PMXEVCNTR. We allow [0..31] to be written to PMSELR here; in the 1554 * meanwhile, we check PMSELR.SEL when PMXEVTYPER and PMXEVCNTR are 1555 * accessed. 1556 */ 1557 env->cp15.c9_pmselr = value & 0x1f; 1558 } 1559 1560 static void pmccntr_write(CPUARMState *env, const ARMCPRegInfo *ri, 1561 uint64_t value) 1562 { 1563 pmccntr_op_start(env); 1564 env->cp15.c15_ccnt = value; 1565 pmccntr_op_finish(env); 1566 } 1567 1568 static void pmccntr_write32(CPUARMState *env, const ARMCPRegInfo *ri, 1569 uint64_t value) 1570 { 1571 uint64_t cur_val = pmccntr_read(env, NULL); 1572 1573 pmccntr_write(env, ri, deposit64(cur_val, 0, 32, value)); 1574 } 1575 1576 static void pmccfiltr_write(CPUARMState *env, const ARMCPRegInfo *ri, 1577 uint64_t value) 1578 { 1579 pmccntr_op_start(env); 1580 env->cp15.pmccfiltr_el0 = value & PMCCFILTR_EL0; 1581 pmccntr_op_finish(env); 1582 } 1583 1584 static void pmccfiltr_write_a32(CPUARMState *env, const ARMCPRegInfo *ri, 1585 uint64_t value) 1586 { 1587 pmccntr_op_start(env); 1588 /* M is not accessible from AArch32 */ 1589 env->cp15.pmccfiltr_el0 = (env->cp15.pmccfiltr_el0 & PMCCFILTR_M) | 1590 (value & PMCCFILTR); 1591 pmccntr_op_finish(env); 1592 } 1593 1594 static uint64_t pmccfiltr_read_a32(CPUARMState *env, const ARMCPRegInfo *ri) 1595 { 1596 /* M is not visible in AArch32 */ 1597 return env->cp15.pmccfiltr_el0 & PMCCFILTR; 1598 } 1599 1600 static void pmcntenset_write(CPUARMState *env, const ARMCPRegInfo *ri, 1601 uint64_t value) 1602 { 1603 value &= pmu_counter_mask(env); 1604 env->cp15.c9_pmcnten |= value; 1605 } 1606 1607 static void pmcntenclr_write(CPUARMState *env, const ARMCPRegInfo *ri, 1608 uint64_t value) 1609 { 1610 value &= pmu_counter_mask(env); 1611 env->cp15.c9_pmcnten &= ~value; 1612 } 1613 1614 static void pmovsr_write(CPUARMState *env, const ARMCPRegInfo *ri, 1615 uint64_t value) 1616 { 1617 value &= pmu_counter_mask(env); 1618 env->cp15.c9_pmovsr &= ~value; 1619 pmu_update_irq(env); 1620 } 1621 1622 static void pmovsset_write(CPUARMState *env, const ARMCPRegInfo *ri, 1623 uint64_t value) 1624 { 1625 value &= pmu_counter_mask(env); 1626 env->cp15.c9_pmovsr |= value; 1627 pmu_update_irq(env); 1628 } 1629 1630 static void pmevtyper_write(CPUARMState *env, const ARMCPRegInfo *ri, 1631 uint64_t value, const uint8_t counter) 1632 { 1633 if (counter == 31) { 1634 pmccfiltr_write(env, ri, value); 1635 } else if (counter < pmu_num_counters(env)) { 1636 pmevcntr_op_start(env, counter); 1637 1638 /* 1639 * If this counter's event type is changing, store the current 1640 * underlying count for the new type in c14_pmevcntr_delta[counter] so 1641 * pmevcntr_op_finish has the correct baseline when it converts back to 1642 * a delta. 1643 */ 1644 uint16_t old_event = env->cp15.c14_pmevtyper[counter] & 1645 PMXEVTYPER_EVTCOUNT; 1646 uint16_t new_event = value & PMXEVTYPER_EVTCOUNT; 1647 if (old_event != new_event) { 1648 uint64_t count = 0; 1649 if (event_supported(new_event)) { 1650 uint16_t event_idx = supported_event_map[new_event]; 1651 count = pm_events[event_idx].get_count(env); 1652 } 1653 env->cp15.c14_pmevcntr_delta[counter] = count; 1654 } 1655 1656 env->cp15.c14_pmevtyper[counter] = value & PMXEVTYPER_MASK; 1657 pmevcntr_op_finish(env, counter); 1658 } 1659 /* Attempts to access PMXEVTYPER are CONSTRAINED UNPREDICTABLE when 1660 * PMSELR value is equal to or greater than the number of implemented 1661 * counters, but not equal to 0x1f. We opt to behave as a RAZ/WI. 1662 */ 1663 } 1664 1665 static uint64_t pmevtyper_read(CPUARMState *env, const ARMCPRegInfo *ri, 1666 const uint8_t counter) 1667 { 1668 if (counter == 31) { 1669 return env->cp15.pmccfiltr_el0; 1670 } else if (counter < pmu_num_counters(env)) { 1671 return env->cp15.c14_pmevtyper[counter]; 1672 } else { 1673 /* 1674 * We opt to behave as a RAZ/WI when attempts to access PMXEVTYPER 1675 * are CONSTRAINED UNPREDICTABLE. See comments in pmevtyper_write(). 1676 */ 1677 return 0; 1678 } 1679 } 1680 1681 static void pmevtyper_writefn(CPUARMState *env, const ARMCPRegInfo *ri, 1682 uint64_t value) 1683 { 1684 uint8_t counter = ((ri->crm & 3) << 3) | (ri->opc2 & 7); 1685 pmevtyper_write(env, ri, value, counter); 1686 } 1687 1688 static void pmevtyper_rawwrite(CPUARMState *env, const ARMCPRegInfo *ri, 1689 uint64_t value) 1690 { 1691 uint8_t counter = ((ri->crm & 3) << 3) | (ri->opc2 & 7); 1692 env->cp15.c14_pmevtyper[counter] = value; 1693 1694 /* 1695 * pmevtyper_rawwrite is called between a pair of pmu_op_start and 1696 * pmu_op_finish calls when loading saved state for a migration. Because 1697 * we're potentially updating the type of event here, the value written to 1698 * c14_pmevcntr_delta by the preceeding pmu_op_start call may be for a 1699 * different counter type. Therefore, we need to set this value to the 1700 * current count for the counter type we're writing so that pmu_op_finish 1701 * has the correct count for its calculation. 1702 */ 1703 uint16_t event = value & PMXEVTYPER_EVTCOUNT; 1704 if (event_supported(event)) { 1705 uint16_t event_idx = supported_event_map[event]; 1706 env->cp15.c14_pmevcntr_delta[counter] = 1707 pm_events[event_idx].get_count(env); 1708 } 1709 } 1710 1711 static uint64_t pmevtyper_readfn(CPUARMState *env, const ARMCPRegInfo *ri) 1712 { 1713 uint8_t counter = ((ri->crm & 3) << 3) | (ri->opc2 & 7); 1714 return pmevtyper_read(env, ri, counter); 1715 } 1716 1717 static void pmxevtyper_write(CPUARMState *env, const ARMCPRegInfo *ri, 1718 uint64_t value) 1719 { 1720 pmevtyper_write(env, ri, value, env->cp15.c9_pmselr & 31); 1721 } 1722 1723 static uint64_t pmxevtyper_read(CPUARMState *env, const ARMCPRegInfo *ri) 1724 { 1725 return pmevtyper_read(env, ri, env->cp15.c9_pmselr & 31); 1726 } 1727 1728 static void pmevcntr_write(CPUARMState *env, const ARMCPRegInfo *ri, 1729 uint64_t value, uint8_t counter) 1730 { 1731 if (counter < pmu_num_counters(env)) { 1732 pmevcntr_op_start(env, counter); 1733 env->cp15.c14_pmevcntr[counter] = value; 1734 pmevcntr_op_finish(env, counter); 1735 } 1736 /* 1737 * We opt to behave as a RAZ/WI when attempts to access PM[X]EVCNTR 1738 * are CONSTRAINED UNPREDICTABLE. 1739 */ 1740 } 1741 1742 static uint64_t pmevcntr_read(CPUARMState *env, const ARMCPRegInfo *ri, 1743 uint8_t counter) 1744 { 1745 if (counter < pmu_num_counters(env)) { 1746 uint64_t ret; 1747 pmevcntr_op_start(env, counter); 1748 ret = env->cp15.c14_pmevcntr[counter]; 1749 pmevcntr_op_finish(env, counter); 1750 return ret; 1751 } else { 1752 /* We opt to behave as a RAZ/WI when attempts to access PM[X]EVCNTR 1753 * are CONSTRAINED UNPREDICTABLE. */ 1754 return 0; 1755 } 1756 } 1757 1758 static void pmevcntr_writefn(CPUARMState *env, const ARMCPRegInfo *ri, 1759 uint64_t value) 1760 { 1761 uint8_t counter = ((ri->crm & 3) << 3) | (ri->opc2 & 7); 1762 pmevcntr_write(env, ri, value, counter); 1763 } 1764 1765 static uint64_t pmevcntr_readfn(CPUARMState *env, const ARMCPRegInfo *ri) 1766 { 1767 uint8_t counter = ((ri->crm & 3) << 3) | (ri->opc2 & 7); 1768 return pmevcntr_read(env, ri, counter); 1769 } 1770 1771 static void pmevcntr_rawwrite(CPUARMState *env, const ARMCPRegInfo *ri, 1772 uint64_t value) 1773 { 1774 uint8_t counter = ((ri->crm & 3) << 3) | (ri->opc2 & 7); 1775 assert(counter < pmu_num_counters(env)); 1776 env->cp15.c14_pmevcntr[counter] = value; 1777 pmevcntr_write(env, ri, value, counter); 1778 } 1779 1780 static uint64_t pmevcntr_rawread(CPUARMState *env, const ARMCPRegInfo *ri) 1781 { 1782 uint8_t counter = ((ri->crm & 3) << 3) | (ri->opc2 & 7); 1783 assert(counter < pmu_num_counters(env)); 1784 return env->cp15.c14_pmevcntr[counter]; 1785 } 1786 1787 static void pmxevcntr_write(CPUARMState *env, const ARMCPRegInfo *ri, 1788 uint64_t value) 1789 { 1790 pmevcntr_write(env, ri, value, env->cp15.c9_pmselr & 31); 1791 } 1792 1793 static uint64_t pmxevcntr_read(CPUARMState *env, const ARMCPRegInfo *ri) 1794 { 1795 return pmevcntr_read(env, ri, env->cp15.c9_pmselr & 31); 1796 } 1797 1798 static void pmuserenr_write(CPUARMState *env, const ARMCPRegInfo *ri, 1799 uint64_t value) 1800 { 1801 if (arm_feature(env, ARM_FEATURE_V8)) { 1802 env->cp15.c9_pmuserenr = value & 0xf; 1803 } else { 1804 env->cp15.c9_pmuserenr = value & 1; 1805 } 1806 } 1807 1808 static void pmintenset_write(CPUARMState *env, const ARMCPRegInfo *ri, 1809 uint64_t value) 1810 { 1811 /* We have no event counters so only the C bit can be changed */ 1812 value &= pmu_counter_mask(env); 1813 env->cp15.c9_pminten |= value; 1814 pmu_update_irq(env); 1815 } 1816 1817 static void pmintenclr_write(CPUARMState *env, const ARMCPRegInfo *ri, 1818 uint64_t value) 1819 { 1820 value &= pmu_counter_mask(env); 1821 env->cp15.c9_pminten &= ~value; 1822 pmu_update_irq(env); 1823 } 1824 1825 static void vbar_write(CPUARMState *env, const ARMCPRegInfo *ri, 1826 uint64_t value) 1827 { 1828 /* Note that even though the AArch64 view of this register has bits 1829 * [10:0] all RES0 we can only mask the bottom 5, to comply with the 1830 * architectural requirements for bits which are RES0 only in some 1831 * contexts. (ARMv8 would permit us to do no masking at all, but ARMv7 1832 * requires the bottom five bits to be RAZ/WI because they're UNK/SBZP.) 1833 */ 1834 raw_write(env, ri, value & ~0x1FULL); 1835 } 1836 1837 static void scr_write(CPUARMState *env, const ARMCPRegInfo *ri, uint64_t value) 1838 { 1839 /* Begin with base v8.0 state. */ 1840 uint32_t valid_mask = 0x3fff; 1841 ARMCPU *cpu = arm_env_get_cpu(env); 1842 1843 if (arm_el_is_aa64(env, 3)) { 1844 value |= SCR_FW | SCR_AW; /* these two bits are RES1. */ 1845 valid_mask &= ~SCR_NET; 1846 } else { 1847 valid_mask &= ~(SCR_RW | SCR_ST); 1848 } 1849 1850 if (!arm_feature(env, ARM_FEATURE_EL2)) { 1851 valid_mask &= ~SCR_HCE; 1852 1853 /* On ARMv7, SMD (or SCD as it is called in v7) is only 1854 * supported if EL2 exists. The bit is UNK/SBZP when 1855 * EL2 is unavailable. In QEMU ARMv7, we force it to always zero 1856 * when EL2 is unavailable. 1857 * On ARMv8, this bit is always available. 1858 */ 1859 if (arm_feature(env, ARM_FEATURE_V7) && 1860 !arm_feature(env, ARM_FEATURE_V8)) { 1861 valid_mask &= ~SCR_SMD; 1862 } 1863 } 1864 if (cpu_isar_feature(aa64_lor, cpu)) { 1865 valid_mask |= SCR_TLOR; 1866 } 1867 if (cpu_isar_feature(aa64_pauth, cpu)) { 1868 valid_mask |= SCR_API | SCR_APK; 1869 } 1870 1871 /* Clear all-context RES0 bits. */ 1872 value &= valid_mask; 1873 raw_write(env, ri, value); 1874 } 1875 1876 static uint64_t ccsidr_read(CPUARMState *env, const ARMCPRegInfo *ri) 1877 { 1878 ARMCPU *cpu = arm_env_get_cpu(env); 1879 1880 /* Acquire the CSSELR index from the bank corresponding to the CCSIDR 1881 * bank 1882 */ 1883 uint32_t index = A32_BANKED_REG_GET(env, csselr, 1884 ri->secure & ARM_CP_SECSTATE_S); 1885 1886 return cpu->ccsidr[index]; 1887 } 1888 1889 static void csselr_write(CPUARMState *env, const ARMCPRegInfo *ri, 1890 uint64_t value) 1891 { 1892 raw_write(env, ri, value & 0xf); 1893 } 1894 1895 static uint64_t isr_read(CPUARMState *env, const ARMCPRegInfo *ri) 1896 { 1897 CPUState *cs = ENV_GET_CPU(env); 1898 uint64_t hcr_el2 = arm_hcr_el2_eff(env); 1899 uint64_t ret = 0; 1900 1901 if (hcr_el2 & HCR_IMO) { 1902 if (cs->interrupt_request & CPU_INTERRUPT_VIRQ) { 1903 ret |= CPSR_I; 1904 } 1905 } else { 1906 if (cs->interrupt_request & CPU_INTERRUPT_HARD) { 1907 ret |= CPSR_I; 1908 } 1909 } 1910 1911 if (hcr_el2 & HCR_FMO) { 1912 if (cs->interrupt_request & CPU_INTERRUPT_VFIQ) { 1913 ret |= CPSR_F; 1914 } 1915 } else { 1916 if (cs->interrupt_request & CPU_INTERRUPT_FIQ) { 1917 ret |= CPSR_F; 1918 } 1919 } 1920 1921 /* External aborts are not possible in QEMU so A bit is always clear */ 1922 return ret; 1923 } 1924 1925 static const ARMCPRegInfo v7_cp_reginfo[] = { 1926 /* the old v6 WFI, UNPREDICTABLE in v7 but we choose to NOP */ 1927 { .name = "NOP", .cp = 15, .crn = 7, .crm = 0, .opc1 = 0, .opc2 = 4, 1928 .access = PL1_W, .type = ARM_CP_NOP }, 1929 /* Performance monitors are implementation defined in v7, 1930 * but with an ARM recommended set of registers, which we 1931 * follow. 1932 * 1933 * Performance registers fall into three categories: 1934 * (a) always UNDEF in PL0, RW in PL1 (PMINTENSET, PMINTENCLR) 1935 * (b) RO in PL0 (ie UNDEF on write), RW in PL1 (PMUSERENR) 1936 * (c) UNDEF in PL0 if PMUSERENR.EN==0, otherwise accessible (all others) 1937 * For the cases controlled by PMUSERENR we must set .access to PL0_RW 1938 * or PL0_RO as appropriate and then check PMUSERENR in the helper fn. 1939 */ 1940 { .name = "PMCNTENSET", .cp = 15, .crn = 9, .crm = 12, .opc1 = 0, .opc2 = 1, 1941 .access = PL0_RW, .type = ARM_CP_ALIAS, 1942 .fieldoffset = offsetoflow32(CPUARMState, cp15.c9_pmcnten), 1943 .writefn = pmcntenset_write, 1944 .accessfn = pmreg_access, 1945 .raw_writefn = raw_write }, 1946 { .name = "PMCNTENSET_EL0", .state = ARM_CP_STATE_AA64, 1947 .opc0 = 3, .opc1 = 3, .crn = 9, .crm = 12, .opc2 = 1, 1948 .access = PL0_RW, .accessfn = pmreg_access, 1949 .fieldoffset = offsetof(CPUARMState, cp15.c9_pmcnten), .resetvalue = 0, 1950 .writefn = pmcntenset_write, .raw_writefn = raw_write }, 1951 { .name = "PMCNTENCLR", .cp = 15, .crn = 9, .crm = 12, .opc1 = 0, .opc2 = 2, 1952 .access = PL0_RW, 1953 .fieldoffset = offsetoflow32(CPUARMState, cp15.c9_pmcnten), 1954 .accessfn = pmreg_access, 1955 .writefn = pmcntenclr_write, 1956 .type = ARM_CP_ALIAS }, 1957 { .name = "PMCNTENCLR_EL0", .state = ARM_CP_STATE_AA64, 1958 .opc0 = 3, .opc1 = 3, .crn = 9, .crm = 12, .opc2 = 2, 1959 .access = PL0_RW, .accessfn = pmreg_access, 1960 .type = ARM_CP_ALIAS, 1961 .fieldoffset = offsetof(CPUARMState, cp15.c9_pmcnten), 1962 .writefn = pmcntenclr_write }, 1963 { .name = "PMOVSR", .cp = 15, .crn = 9, .crm = 12, .opc1 = 0, .opc2 = 3, 1964 .access = PL0_RW, .type = ARM_CP_IO, 1965 .fieldoffset = offsetoflow32(CPUARMState, cp15.c9_pmovsr), 1966 .accessfn = pmreg_access, 1967 .writefn = pmovsr_write, 1968 .raw_writefn = raw_write }, 1969 { .name = "PMOVSCLR_EL0", .state = ARM_CP_STATE_AA64, 1970 .opc0 = 3, .opc1 = 3, .crn = 9, .crm = 12, .opc2 = 3, 1971 .access = PL0_RW, .accessfn = pmreg_access, 1972 .type = ARM_CP_ALIAS | ARM_CP_IO, 1973 .fieldoffset = offsetof(CPUARMState, cp15.c9_pmovsr), 1974 .writefn = pmovsr_write, 1975 .raw_writefn = raw_write }, 1976 { .name = "PMSWINC", .cp = 15, .crn = 9, .crm = 12, .opc1 = 0, .opc2 = 4, 1977 .access = PL0_W, .accessfn = pmreg_access_swinc, 1978 .type = ARM_CP_NO_RAW | ARM_CP_IO, 1979 .writefn = pmswinc_write }, 1980 { .name = "PMSWINC_EL0", .state = ARM_CP_STATE_AA64, 1981 .opc0 = 3, .opc1 = 3, .crn = 9, .crm = 12, .opc2 = 4, 1982 .access = PL0_W, .accessfn = pmreg_access_swinc, 1983 .type = ARM_CP_NO_RAW | ARM_CP_IO, 1984 .writefn = pmswinc_write }, 1985 { .name = "PMSELR", .cp = 15, .crn = 9, .crm = 12, .opc1 = 0, .opc2 = 5, 1986 .access = PL0_RW, .type = ARM_CP_ALIAS, 1987 .fieldoffset = offsetoflow32(CPUARMState, cp15.c9_pmselr), 1988 .accessfn = pmreg_access_selr, .writefn = pmselr_write, 1989 .raw_writefn = raw_write}, 1990 { .name = "PMSELR_EL0", .state = ARM_CP_STATE_AA64, 1991 .opc0 = 3, .opc1 = 3, .crn = 9, .crm = 12, .opc2 = 5, 1992 .access = PL0_RW, .accessfn = pmreg_access_selr, 1993 .fieldoffset = offsetof(CPUARMState, cp15.c9_pmselr), 1994 .writefn = pmselr_write, .raw_writefn = raw_write, }, 1995 { .name = "PMCCNTR", .cp = 15, .crn = 9, .crm = 13, .opc1 = 0, .opc2 = 0, 1996 .access = PL0_RW, .resetvalue = 0, .type = ARM_CP_ALIAS | ARM_CP_IO, 1997 .readfn = pmccntr_read, .writefn = pmccntr_write32, 1998 .accessfn = pmreg_access_ccntr }, 1999 { .name = "PMCCNTR_EL0", .state = ARM_CP_STATE_AA64, 2000 .opc0 = 3, .opc1 = 3, .crn = 9, .crm = 13, .opc2 = 0, 2001 .access = PL0_RW, .accessfn = pmreg_access_ccntr, 2002 .type = ARM_CP_IO, 2003 .fieldoffset = offsetof(CPUARMState, cp15.c15_ccnt), 2004 .readfn = pmccntr_read, .writefn = pmccntr_write, 2005 .raw_readfn = raw_read, .raw_writefn = raw_write, }, 2006 { .name = "PMCCFILTR", .cp = 15, .opc1 = 0, .crn = 14, .crm = 15, .opc2 = 7, 2007 .writefn = pmccfiltr_write_a32, .readfn = pmccfiltr_read_a32, 2008 .access = PL0_RW, .accessfn = pmreg_access, 2009 .type = ARM_CP_ALIAS | ARM_CP_IO, 2010 .resetvalue = 0, }, 2011 { .name = "PMCCFILTR_EL0", .state = ARM_CP_STATE_AA64, 2012 .opc0 = 3, .opc1 = 3, .crn = 14, .crm = 15, .opc2 = 7, 2013 .writefn = pmccfiltr_write, .raw_writefn = raw_write, 2014 .access = PL0_RW, .accessfn = pmreg_access, 2015 .type = ARM_CP_IO, 2016 .fieldoffset = offsetof(CPUARMState, cp15.pmccfiltr_el0), 2017 .resetvalue = 0, }, 2018 { .name = "PMXEVTYPER", .cp = 15, .crn = 9, .crm = 13, .opc1 = 0, .opc2 = 1, 2019 .access = PL0_RW, .type = ARM_CP_NO_RAW | ARM_CP_IO, 2020 .accessfn = pmreg_access, 2021 .writefn = pmxevtyper_write, .readfn = pmxevtyper_read }, 2022 { .name = "PMXEVTYPER_EL0", .state = ARM_CP_STATE_AA64, 2023 .opc0 = 3, .opc1 = 3, .crn = 9, .crm = 13, .opc2 = 1, 2024 .access = PL0_RW, .type = ARM_CP_NO_RAW | ARM_CP_IO, 2025 .accessfn = pmreg_access, 2026 .writefn = pmxevtyper_write, .readfn = pmxevtyper_read }, 2027 { .name = "PMXEVCNTR", .cp = 15, .crn = 9, .crm = 13, .opc1 = 0, .opc2 = 2, 2028 .access = PL0_RW, .type = ARM_CP_NO_RAW | ARM_CP_IO, 2029 .accessfn = pmreg_access_xevcntr, 2030 .writefn = pmxevcntr_write, .readfn = pmxevcntr_read }, 2031 { .name = "PMXEVCNTR_EL0", .state = ARM_CP_STATE_AA64, 2032 .opc0 = 3, .opc1 = 3, .crn = 9, .crm = 13, .opc2 = 2, 2033 .access = PL0_RW, .type = ARM_CP_NO_RAW | ARM_CP_IO, 2034 .accessfn = pmreg_access_xevcntr, 2035 .writefn = pmxevcntr_write, .readfn = pmxevcntr_read }, 2036 { .name = "PMUSERENR", .cp = 15, .crn = 9, .crm = 14, .opc1 = 0, .opc2 = 0, 2037 .access = PL0_R | PL1_RW, .accessfn = access_tpm, 2038 .fieldoffset = offsetoflow32(CPUARMState, cp15.c9_pmuserenr), 2039 .resetvalue = 0, 2040 .writefn = pmuserenr_write, .raw_writefn = raw_write }, 2041 { .name = "PMUSERENR_EL0", .state = ARM_CP_STATE_AA64, 2042 .opc0 = 3, .opc1 = 3, .crn = 9, .crm = 14, .opc2 = 0, 2043 .access = PL0_R | PL1_RW, .accessfn = access_tpm, .type = ARM_CP_ALIAS, 2044 .fieldoffset = offsetof(CPUARMState, cp15.c9_pmuserenr), 2045 .resetvalue = 0, 2046 .writefn = pmuserenr_write, .raw_writefn = raw_write }, 2047 { .name = "PMINTENSET", .cp = 15, .crn = 9, .crm = 14, .opc1 = 0, .opc2 = 1, 2048 .access = PL1_RW, .accessfn = access_tpm, 2049 .type = ARM_CP_ALIAS | ARM_CP_IO, 2050 .fieldoffset = offsetoflow32(CPUARMState, cp15.c9_pminten), 2051 .resetvalue = 0, 2052 .writefn = pmintenset_write, .raw_writefn = raw_write }, 2053 { .name = "PMINTENSET_EL1", .state = ARM_CP_STATE_AA64, 2054 .opc0 = 3, .opc1 = 0, .crn = 9, .crm = 14, .opc2 = 1, 2055 .access = PL1_RW, .accessfn = access_tpm, 2056 .type = ARM_CP_IO, 2057 .fieldoffset = offsetof(CPUARMState, cp15.c9_pminten), 2058 .writefn = pmintenset_write, .raw_writefn = raw_write, 2059 .resetvalue = 0x0 }, 2060 { .name = "PMINTENCLR", .cp = 15, .crn = 9, .crm = 14, .opc1 = 0, .opc2 = 2, 2061 .access = PL1_RW, .accessfn = access_tpm, 2062 .type = ARM_CP_ALIAS | ARM_CP_IO, 2063 .fieldoffset = offsetof(CPUARMState, cp15.c9_pminten), 2064 .writefn = pmintenclr_write, }, 2065 { .name = "PMINTENCLR_EL1", .state = ARM_CP_STATE_AA64, 2066 .opc0 = 3, .opc1 = 0, .crn = 9, .crm = 14, .opc2 = 2, 2067 .access = PL1_RW, .accessfn = access_tpm, 2068 .type = ARM_CP_ALIAS | ARM_CP_IO, 2069 .fieldoffset = offsetof(CPUARMState, cp15.c9_pminten), 2070 .writefn = pmintenclr_write }, 2071 { .name = "CCSIDR", .state = ARM_CP_STATE_BOTH, 2072 .opc0 = 3, .crn = 0, .crm = 0, .opc1 = 1, .opc2 = 0, 2073 .access = PL1_R, .readfn = ccsidr_read, .type = ARM_CP_NO_RAW }, 2074 { .name = "CSSELR", .state = ARM_CP_STATE_BOTH, 2075 .opc0 = 3, .crn = 0, .crm = 0, .opc1 = 2, .opc2 = 0, 2076 .access = PL1_RW, .writefn = csselr_write, .resetvalue = 0, 2077 .bank_fieldoffsets = { offsetof(CPUARMState, cp15.csselr_s), 2078 offsetof(CPUARMState, cp15.csselr_ns) } }, 2079 /* Auxiliary ID register: this actually has an IMPDEF value but for now 2080 * just RAZ for all cores: 2081 */ 2082 { .name = "AIDR", .state = ARM_CP_STATE_BOTH, 2083 .opc0 = 3, .opc1 = 1, .crn = 0, .crm = 0, .opc2 = 7, 2084 .access = PL1_R, .type = ARM_CP_CONST, .resetvalue = 0 }, 2085 /* Auxiliary fault status registers: these also are IMPDEF, and we 2086 * choose to RAZ/WI for all cores. 2087 */ 2088 { .name = "AFSR0_EL1", .state = ARM_CP_STATE_BOTH, 2089 .opc0 = 3, .opc1 = 0, .crn = 5, .crm = 1, .opc2 = 0, 2090 .access = PL1_RW, .type = ARM_CP_CONST, .resetvalue = 0 }, 2091 { .name = "AFSR1_EL1", .state = ARM_CP_STATE_BOTH, 2092 .opc0 = 3, .opc1 = 0, .crn = 5, .crm = 1, .opc2 = 1, 2093 .access = PL1_RW, .type = ARM_CP_CONST, .resetvalue = 0 }, 2094 /* MAIR can just read-as-written because we don't implement caches 2095 * and so don't need to care about memory attributes. 2096 */ 2097 { .name = "MAIR_EL1", .state = ARM_CP_STATE_AA64, 2098 .opc0 = 3, .opc1 = 0, .crn = 10, .crm = 2, .opc2 = 0, 2099 .access = PL1_RW, .fieldoffset = offsetof(CPUARMState, cp15.mair_el[1]), 2100 .resetvalue = 0 }, 2101 { .name = "MAIR_EL3", .state = ARM_CP_STATE_AA64, 2102 .opc0 = 3, .opc1 = 6, .crn = 10, .crm = 2, .opc2 = 0, 2103 .access = PL3_RW, .fieldoffset = offsetof(CPUARMState, cp15.mair_el[3]), 2104 .resetvalue = 0 }, 2105 /* For non-long-descriptor page tables these are PRRR and NMRR; 2106 * regardless they still act as reads-as-written for QEMU. 2107 */ 2108 /* MAIR0/1 are defined separately from their 64-bit counterpart which 2109 * allows them to assign the correct fieldoffset based on the endianness 2110 * handled in the field definitions. 2111 */ 2112 { .name = "MAIR0", .state = ARM_CP_STATE_AA32, 2113 .cp = 15, .opc1 = 0, .crn = 10, .crm = 2, .opc2 = 0, .access = PL1_RW, 2114 .bank_fieldoffsets = { offsetof(CPUARMState, cp15.mair0_s), 2115 offsetof(CPUARMState, cp15.mair0_ns) }, 2116 .resetfn = arm_cp_reset_ignore }, 2117 { .name = "MAIR1", .state = ARM_CP_STATE_AA32, 2118 .cp = 15, .opc1 = 0, .crn = 10, .crm = 2, .opc2 = 1, .access = PL1_RW, 2119 .bank_fieldoffsets = { offsetof(CPUARMState, cp15.mair1_s), 2120 offsetof(CPUARMState, cp15.mair1_ns) }, 2121 .resetfn = arm_cp_reset_ignore }, 2122 { .name = "ISR_EL1", .state = ARM_CP_STATE_BOTH, 2123 .opc0 = 3, .opc1 = 0, .crn = 12, .crm = 1, .opc2 = 0, 2124 .type = ARM_CP_NO_RAW, .access = PL1_R, .readfn = isr_read }, 2125 /* 32 bit ITLB invalidates */ 2126 { .name = "ITLBIALL", .cp = 15, .opc1 = 0, .crn = 8, .crm = 5, .opc2 = 0, 2127 .type = ARM_CP_NO_RAW, .access = PL1_W, .writefn = tlbiall_write }, 2128 { .name = "ITLBIMVA", .cp = 15, .opc1 = 0, .crn = 8, .crm = 5, .opc2 = 1, 2129 .type = ARM_CP_NO_RAW, .access = PL1_W, .writefn = tlbimva_write }, 2130 { .name = "ITLBIASID", .cp = 15, .opc1 = 0, .crn = 8, .crm = 5, .opc2 = 2, 2131 .type = ARM_CP_NO_RAW, .access = PL1_W, .writefn = tlbiasid_write }, 2132 /* 32 bit DTLB invalidates */ 2133 { .name = "DTLBIALL", .cp = 15, .opc1 = 0, .crn = 8, .crm = 6, .opc2 = 0, 2134 .type = ARM_CP_NO_RAW, .access = PL1_W, .writefn = tlbiall_write }, 2135 { .name = "DTLBIMVA", .cp = 15, .opc1 = 0, .crn = 8, .crm = 6, .opc2 = 1, 2136 .type = ARM_CP_NO_RAW, .access = PL1_W, .writefn = tlbimva_write }, 2137 { .name = "DTLBIASID", .cp = 15, .opc1 = 0, .crn = 8, .crm = 6, .opc2 = 2, 2138 .type = ARM_CP_NO_RAW, .access = PL1_W, .writefn = tlbiasid_write }, 2139 /* 32 bit TLB invalidates */ 2140 { .name = "TLBIALL", .cp = 15, .opc1 = 0, .crn = 8, .crm = 7, .opc2 = 0, 2141 .type = ARM_CP_NO_RAW, .access = PL1_W, .writefn = tlbiall_write }, 2142 { .name = "TLBIMVA", .cp = 15, .opc1 = 0, .crn = 8, .crm = 7, .opc2 = 1, 2143 .type = ARM_CP_NO_RAW, .access = PL1_W, .writefn = tlbimva_write }, 2144 { .name = "TLBIASID", .cp = 15, .opc1 = 0, .crn = 8, .crm = 7, .opc2 = 2, 2145 .type = ARM_CP_NO_RAW, .access = PL1_W, .writefn = tlbiasid_write }, 2146 { .name = "TLBIMVAA", .cp = 15, .opc1 = 0, .crn = 8, .crm = 7, .opc2 = 3, 2147 .type = ARM_CP_NO_RAW, .access = PL1_W, .writefn = tlbimvaa_write }, 2148 REGINFO_SENTINEL 2149 }; 2150 2151 static const ARMCPRegInfo v7mp_cp_reginfo[] = { 2152 /* 32 bit TLB invalidates, Inner Shareable */ 2153 { .name = "TLBIALLIS", .cp = 15, .opc1 = 0, .crn = 8, .crm = 3, .opc2 = 0, 2154 .type = ARM_CP_NO_RAW, .access = PL1_W, .writefn = tlbiall_is_write }, 2155 { .name = "TLBIMVAIS", .cp = 15, .opc1 = 0, .crn = 8, .crm = 3, .opc2 = 1, 2156 .type = ARM_CP_NO_RAW, .access = PL1_W, .writefn = tlbimva_is_write }, 2157 { .name = "TLBIASIDIS", .cp = 15, .opc1 = 0, .crn = 8, .crm = 3, .opc2 = 2, 2158 .type = ARM_CP_NO_RAW, .access = PL1_W, 2159 .writefn = tlbiasid_is_write }, 2160 { .name = "TLBIMVAAIS", .cp = 15, .opc1 = 0, .crn = 8, .crm = 3, .opc2 = 3, 2161 .type = ARM_CP_NO_RAW, .access = PL1_W, 2162 .writefn = tlbimvaa_is_write }, 2163 REGINFO_SENTINEL 2164 }; 2165 2166 static const ARMCPRegInfo pmovsset_cp_reginfo[] = { 2167 /* PMOVSSET is not implemented in v7 before v7ve */ 2168 { .name = "PMOVSSET", .cp = 15, .opc1 = 0, .crn = 9, .crm = 14, .opc2 = 3, 2169 .access = PL0_RW, .accessfn = pmreg_access, 2170 .type = ARM_CP_ALIAS | ARM_CP_IO, 2171 .fieldoffset = offsetoflow32(CPUARMState, cp15.c9_pmovsr), 2172 .writefn = pmovsset_write, 2173 .raw_writefn = raw_write }, 2174 { .name = "PMOVSSET_EL0", .state = ARM_CP_STATE_AA64, 2175 .opc0 = 3, .opc1 = 3, .crn = 9, .crm = 14, .opc2 = 3, 2176 .access = PL0_RW, .accessfn = pmreg_access, 2177 .type = ARM_CP_ALIAS | ARM_CP_IO, 2178 .fieldoffset = offsetof(CPUARMState, cp15.c9_pmovsr), 2179 .writefn = pmovsset_write, 2180 .raw_writefn = raw_write }, 2181 REGINFO_SENTINEL 2182 }; 2183 2184 static void teecr_write(CPUARMState *env, const ARMCPRegInfo *ri, 2185 uint64_t value) 2186 { 2187 value &= 1; 2188 env->teecr = value; 2189 } 2190 2191 static CPAccessResult teehbr_access(CPUARMState *env, const ARMCPRegInfo *ri, 2192 bool isread) 2193 { 2194 if (arm_current_el(env) == 0 && (env->teecr & 1)) { 2195 return CP_ACCESS_TRAP; 2196 } 2197 return CP_ACCESS_OK; 2198 } 2199 2200 static const ARMCPRegInfo t2ee_cp_reginfo[] = { 2201 { .name = "TEECR", .cp = 14, .crn = 0, .crm = 0, .opc1 = 6, .opc2 = 0, 2202 .access = PL1_RW, .fieldoffset = offsetof(CPUARMState, teecr), 2203 .resetvalue = 0, 2204 .writefn = teecr_write }, 2205 { .name = "TEEHBR", .cp = 14, .crn = 1, .crm = 0, .opc1 = 6, .opc2 = 0, 2206 .access = PL0_RW, .fieldoffset = offsetof(CPUARMState, teehbr), 2207 .accessfn = teehbr_access, .resetvalue = 0 }, 2208 REGINFO_SENTINEL 2209 }; 2210 2211 static const ARMCPRegInfo v6k_cp_reginfo[] = { 2212 { .name = "TPIDR_EL0", .state = ARM_CP_STATE_AA64, 2213 .opc0 = 3, .opc1 = 3, .opc2 = 2, .crn = 13, .crm = 0, 2214 .access = PL0_RW, 2215 .fieldoffset = offsetof(CPUARMState, cp15.tpidr_el[0]), .resetvalue = 0 }, 2216 { .name = "TPIDRURW", .cp = 15, .crn = 13, .crm = 0, .opc1 = 0, .opc2 = 2, 2217 .access = PL0_RW, 2218 .bank_fieldoffsets = { offsetoflow32(CPUARMState, cp15.tpidrurw_s), 2219 offsetoflow32(CPUARMState, cp15.tpidrurw_ns) }, 2220 .resetfn = arm_cp_reset_ignore }, 2221 { .name = "TPIDRRO_EL0", .state = ARM_CP_STATE_AA64, 2222 .opc0 = 3, .opc1 = 3, .opc2 = 3, .crn = 13, .crm = 0, 2223 .access = PL0_R|PL1_W, 2224 .fieldoffset = offsetof(CPUARMState, cp15.tpidrro_el[0]), 2225 .resetvalue = 0}, 2226 { .name = "TPIDRURO", .cp = 15, .crn = 13, .crm = 0, .opc1 = 0, .opc2 = 3, 2227 .access = PL0_R|PL1_W, 2228 .bank_fieldoffsets = { offsetoflow32(CPUARMState, cp15.tpidruro_s), 2229 offsetoflow32(CPUARMState, cp15.tpidruro_ns) }, 2230 .resetfn = arm_cp_reset_ignore }, 2231 { .name = "TPIDR_EL1", .state = ARM_CP_STATE_AA64, 2232 .opc0 = 3, .opc1 = 0, .opc2 = 4, .crn = 13, .crm = 0, 2233 .access = PL1_RW, 2234 .fieldoffset = offsetof(CPUARMState, cp15.tpidr_el[1]), .resetvalue = 0 }, 2235 { .name = "TPIDRPRW", .opc1 = 0, .cp = 15, .crn = 13, .crm = 0, .opc2 = 4, 2236 .access = PL1_RW, 2237 .bank_fieldoffsets = { offsetoflow32(CPUARMState, cp15.tpidrprw_s), 2238 offsetoflow32(CPUARMState, cp15.tpidrprw_ns) }, 2239 .resetvalue = 0 }, 2240 REGINFO_SENTINEL 2241 }; 2242 2243 #ifndef CONFIG_USER_ONLY 2244 2245 static CPAccessResult gt_cntfrq_access(CPUARMState *env, const ARMCPRegInfo *ri, 2246 bool isread) 2247 { 2248 /* CNTFRQ: not visible from PL0 if both PL0PCTEN and PL0VCTEN are zero. 2249 * Writable only at the highest implemented exception level. 2250 */ 2251 int el = arm_current_el(env); 2252 2253 switch (el) { 2254 case 0: 2255 if (!extract32(env->cp15.c14_cntkctl, 0, 2)) { 2256 return CP_ACCESS_TRAP; 2257 } 2258 break; 2259 case 1: 2260 if (!isread && ri->state == ARM_CP_STATE_AA32 && 2261 arm_is_secure_below_el3(env)) { 2262 /* Accesses from 32-bit Secure EL1 UNDEF (*not* trap to EL3!) */ 2263 return CP_ACCESS_TRAP_UNCATEGORIZED; 2264 } 2265 break; 2266 case 2: 2267 case 3: 2268 break; 2269 } 2270 2271 if (!isread && el < arm_highest_el(env)) { 2272 return CP_ACCESS_TRAP_UNCATEGORIZED; 2273 } 2274 2275 return CP_ACCESS_OK; 2276 } 2277 2278 static CPAccessResult gt_counter_access(CPUARMState *env, int timeridx, 2279 bool isread) 2280 { 2281 unsigned int cur_el = arm_current_el(env); 2282 bool secure = arm_is_secure(env); 2283 2284 /* CNT[PV]CT: not visible from PL0 if ELO[PV]CTEN is zero */ 2285 if (cur_el == 0 && 2286 !extract32(env->cp15.c14_cntkctl, timeridx, 1)) { 2287 return CP_ACCESS_TRAP; 2288 } 2289 2290 if (arm_feature(env, ARM_FEATURE_EL2) && 2291 timeridx == GTIMER_PHYS && !secure && cur_el < 2 && 2292 !extract32(env->cp15.cnthctl_el2, 0, 1)) { 2293 return CP_ACCESS_TRAP_EL2; 2294 } 2295 return CP_ACCESS_OK; 2296 } 2297 2298 static CPAccessResult gt_timer_access(CPUARMState *env, int timeridx, 2299 bool isread) 2300 { 2301 unsigned int cur_el = arm_current_el(env); 2302 bool secure = arm_is_secure(env); 2303 2304 /* CNT[PV]_CVAL, CNT[PV]_CTL, CNT[PV]_TVAL: not visible from PL0 if 2305 * EL0[PV]TEN is zero. 2306 */ 2307 if (cur_el == 0 && 2308 !extract32(env->cp15.c14_cntkctl, 9 - timeridx, 1)) { 2309 return CP_ACCESS_TRAP; 2310 } 2311 2312 if (arm_feature(env, ARM_FEATURE_EL2) && 2313 timeridx == GTIMER_PHYS && !secure && cur_el < 2 && 2314 !extract32(env->cp15.cnthctl_el2, 1, 1)) { 2315 return CP_ACCESS_TRAP_EL2; 2316 } 2317 return CP_ACCESS_OK; 2318 } 2319 2320 static CPAccessResult gt_pct_access(CPUARMState *env, 2321 const ARMCPRegInfo *ri, 2322 bool isread) 2323 { 2324 return gt_counter_access(env, GTIMER_PHYS, isread); 2325 } 2326 2327 static CPAccessResult gt_vct_access(CPUARMState *env, 2328 const ARMCPRegInfo *ri, 2329 bool isread) 2330 { 2331 return gt_counter_access(env, GTIMER_VIRT, isread); 2332 } 2333 2334 static CPAccessResult gt_ptimer_access(CPUARMState *env, const ARMCPRegInfo *ri, 2335 bool isread) 2336 { 2337 return gt_timer_access(env, GTIMER_PHYS, isread); 2338 } 2339 2340 static CPAccessResult gt_vtimer_access(CPUARMState *env, const ARMCPRegInfo *ri, 2341 bool isread) 2342 { 2343 return gt_timer_access(env, GTIMER_VIRT, isread); 2344 } 2345 2346 static CPAccessResult gt_stimer_access(CPUARMState *env, 2347 const ARMCPRegInfo *ri, 2348 bool isread) 2349 { 2350 /* The AArch64 register view of the secure physical timer is 2351 * always accessible from EL3, and configurably accessible from 2352 * Secure EL1. 2353 */ 2354 switch (arm_current_el(env)) { 2355 case 1: 2356 if (!arm_is_secure(env)) { 2357 return CP_ACCESS_TRAP; 2358 } 2359 if (!(env->cp15.scr_el3 & SCR_ST)) { 2360 return CP_ACCESS_TRAP_EL3; 2361 } 2362 return CP_ACCESS_OK; 2363 case 0: 2364 case 2: 2365 return CP_ACCESS_TRAP; 2366 case 3: 2367 return CP_ACCESS_OK; 2368 default: 2369 g_assert_not_reached(); 2370 } 2371 } 2372 2373 static uint64_t gt_get_countervalue(CPUARMState *env) 2374 { 2375 return qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL) / GTIMER_SCALE; 2376 } 2377 2378 static void gt_recalc_timer(ARMCPU *cpu, int timeridx) 2379 { 2380 ARMGenericTimer *gt = &cpu->env.cp15.c14_timer[timeridx]; 2381 2382 if (gt->ctl & 1) { 2383 /* Timer enabled: calculate and set current ISTATUS, irq, and 2384 * reset timer to when ISTATUS next has to change 2385 */ 2386 uint64_t offset = timeridx == GTIMER_VIRT ? 2387 cpu->env.cp15.cntvoff_el2 : 0; 2388 uint64_t count = gt_get_countervalue(&cpu->env); 2389 /* Note that this must be unsigned 64 bit arithmetic: */ 2390 int istatus = count - offset >= gt->cval; 2391 uint64_t nexttick; 2392 int irqstate; 2393 2394 gt->ctl = deposit32(gt->ctl, 2, 1, istatus); 2395 2396 irqstate = (istatus && !(gt->ctl & 2)); 2397 qemu_set_irq(cpu->gt_timer_outputs[timeridx], irqstate); 2398 2399 if (istatus) { 2400 /* Next transition is when count rolls back over to zero */ 2401 nexttick = UINT64_MAX; 2402 } else { 2403 /* Next transition is when we hit cval */ 2404 nexttick = gt->cval + offset; 2405 } 2406 /* Note that the desired next expiry time might be beyond the 2407 * signed-64-bit range of a QEMUTimer -- in this case we just 2408 * set the timer for as far in the future as possible. When the 2409 * timer expires we will reset the timer for any remaining period. 2410 */ 2411 if (nexttick > INT64_MAX / GTIMER_SCALE) { 2412 nexttick = INT64_MAX / GTIMER_SCALE; 2413 } 2414 timer_mod(cpu->gt_timer[timeridx], nexttick); 2415 trace_arm_gt_recalc(timeridx, irqstate, nexttick); 2416 } else { 2417 /* Timer disabled: ISTATUS and timer output always clear */ 2418 gt->ctl &= ~4; 2419 qemu_set_irq(cpu->gt_timer_outputs[timeridx], 0); 2420 timer_del(cpu->gt_timer[timeridx]); 2421 trace_arm_gt_recalc_disabled(timeridx); 2422 } 2423 } 2424 2425 static void gt_timer_reset(CPUARMState *env, const ARMCPRegInfo *ri, 2426 int timeridx) 2427 { 2428 ARMCPU *cpu = arm_env_get_cpu(env); 2429 2430 timer_del(cpu->gt_timer[timeridx]); 2431 } 2432 2433 static uint64_t gt_cnt_read(CPUARMState *env, const ARMCPRegInfo *ri) 2434 { 2435 return gt_get_countervalue(env); 2436 } 2437 2438 static uint64_t gt_virt_cnt_read(CPUARMState *env, const ARMCPRegInfo *ri) 2439 { 2440 return gt_get_countervalue(env) - env->cp15.cntvoff_el2; 2441 } 2442 2443 static void gt_cval_write(CPUARMState *env, const ARMCPRegInfo *ri, 2444 int timeridx, 2445 uint64_t value) 2446 { 2447 trace_arm_gt_cval_write(timeridx, value); 2448 env->cp15.c14_timer[timeridx].cval = value; 2449 gt_recalc_timer(arm_env_get_cpu(env), timeridx); 2450 } 2451 2452 static uint64_t gt_tval_read(CPUARMState *env, const ARMCPRegInfo *ri, 2453 int timeridx) 2454 { 2455 uint64_t offset = timeridx == GTIMER_VIRT ? env->cp15.cntvoff_el2 : 0; 2456 2457 return (uint32_t)(env->cp15.c14_timer[timeridx].cval - 2458 (gt_get_countervalue(env) - offset)); 2459 } 2460 2461 static void gt_tval_write(CPUARMState *env, const ARMCPRegInfo *ri, 2462 int timeridx, 2463 uint64_t value) 2464 { 2465 uint64_t offset = timeridx == GTIMER_VIRT ? env->cp15.cntvoff_el2 : 0; 2466 2467 trace_arm_gt_tval_write(timeridx, value); 2468 env->cp15.c14_timer[timeridx].cval = gt_get_countervalue(env) - offset + 2469 sextract64(value, 0, 32); 2470 gt_recalc_timer(arm_env_get_cpu(env), timeridx); 2471 } 2472 2473 static void gt_ctl_write(CPUARMState *env, const ARMCPRegInfo *ri, 2474 int timeridx, 2475 uint64_t value) 2476 { 2477 ARMCPU *cpu = arm_env_get_cpu(env); 2478 uint32_t oldval = env->cp15.c14_timer[timeridx].ctl; 2479 2480 trace_arm_gt_ctl_write(timeridx, value); 2481 env->cp15.c14_timer[timeridx].ctl = deposit64(oldval, 0, 2, value); 2482 if ((oldval ^ value) & 1) { 2483 /* Enable toggled */ 2484 gt_recalc_timer(cpu, timeridx); 2485 } else if ((oldval ^ value) & 2) { 2486 /* IMASK toggled: don't need to recalculate, 2487 * just set the interrupt line based on ISTATUS 2488 */ 2489 int irqstate = (oldval & 4) && !(value & 2); 2490 2491 trace_arm_gt_imask_toggle(timeridx, irqstate); 2492 qemu_set_irq(cpu->gt_timer_outputs[timeridx], irqstate); 2493 } 2494 } 2495 2496 static void gt_phys_timer_reset(CPUARMState *env, const ARMCPRegInfo *ri) 2497 { 2498 gt_timer_reset(env, ri, GTIMER_PHYS); 2499 } 2500 2501 static void gt_phys_cval_write(CPUARMState *env, const ARMCPRegInfo *ri, 2502 uint64_t value) 2503 { 2504 gt_cval_write(env, ri, GTIMER_PHYS, value); 2505 } 2506 2507 static uint64_t gt_phys_tval_read(CPUARMState *env, const ARMCPRegInfo *ri) 2508 { 2509 return gt_tval_read(env, ri, GTIMER_PHYS); 2510 } 2511 2512 static void gt_phys_tval_write(CPUARMState *env, const ARMCPRegInfo *ri, 2513 uint64_t value) 2514 { 2515 gt_tval_write(env, ri, GTIMER_PHYS, value); 2516 } 2517 2518 static void gt_phys_ctl_write(CPUARMState *env, const ARMCPRegInfo *ri, 2519 uint64_t value) 2520 { 2521 gt_ctl_write(env, ri, GTIMER_PHYS, value); 2522 } 2523 2524 static void gt_virt_timer_reset(CPUARMState *env, const ARMCPRegInfo *ri) 2525 { 2526 gt_timer_reset(env, ri, GTIMER_VIRT); 2527 } 2528 2529 static void gt_virt_cval_write(CPUARMState *env, const ARMCPRegInfo *ri, 2530 uint64_t value) 2531 { 2532 gt_cval_write(env, ri, GTIMER_VIRT, value); 2533 } 2534 2535 static uint64_t gt_virt_tval_read(CPUARMState *env, const ARMCPRegInfo *ri) 2536 { 2537 return gt_tval_read(env, ri, GTIMER_VIRT); 2538 } 2539 2540 static void gt_virt_tval_write(CPUARMState *env, const ARMCPRegInfo *ri, 2541 uint64_t value) 2542 { 2543 gt_tval_write(env, ri, GTIMER_VIRT, value); 2544 } 2545 2546 static void gt_virt_ctl_write(CPUARMState *env, const ARMCPRegInfo *ri, 2547 uint64_t value) 2548 { 2549 gt_ctl_write(env, ri, GTIMER_VIRT, value); 2550 } 2551 2552 static void gt_cntvoff_write(CPUARMState *env, const ARMCPRegInfo *ri, 2553 uint64_t value) 2554 { 2555 ARMCPU *cpu = arm_env_get_cpu(env); 2556 2557 trace_arm_gt_cntvoff_write(value); 2558 raw_write(env, ri, value); 2559 gt_recalc_timer(cpu, GTIMER_VIRT); 2560 } 2561 2562 static void gt_hyp_timer_reset(CPUARMState *env, const ARMCPRegInfo *ri) 2563 { 2564 gt_timer_reset(env, ri, GTIMER_HYP); 2565 } 2566 2567 static void gt_hyp_cval_write(CPUARMState *env, const ARMCPRegInfo *ri, 2568 uint64_t value) 2569 { 2570 gt_cval_write(env, ri, GTIMER_HYP, value); 2571 } 2572 2573 static uint64_t gt_hyp_tval_read(CPUARMState *env, const ARMCPRegInfo *ri) 2574 { 2575 return gt_tval_read(env, ri, GTIMER_HYP); 2576 } 2577 2578 static void gt_hyp_tval_write(CPUARMState *env, const ARMCPRegInfo *ri, 2579 uint64_t value) 2580 { 2581 gt_tval_write(env, ri, GTIMER_HYP, value); 2582 } 2583 2584 static void gt_hyp_ctl_write(CPUARMState *env, const ARMCPRegInfo *ri, 2585 uint64_t value) 2586 { 2587 gt_ctl_write(env, ri, GTIMER_HYP, value); 2588 } 2589 2590 static void gt_sec_timer_reset(CPUARMState *env, const ARMCPRegInfo *ri) 2591 { 2592 gt_timer_reset(env, ri, GTIMER_SEC); 2593 } 2594 2595 static void gt_sec_cval_write(CPUARMState *env, const ARMCPRegInfo *ri, 2596 uint64_t value) 2597 { 2598 gt_cval_write(env, ri, GTIMER_SEC, value); 2599 } 2600 2601 static uint64_t gt_sec_tval_read(CPUARMState *env, const ARMCPRegInfo *ri) 2602 { 2603 return gt_tval_read(env, ri, GTIMER_SEC); 2604 } 2605 2606 static void gt_sec_tval_write(CPUARMState *env, const ARMCPRegInfo *ri, 2607 uint64_t value) 2608 { 2609 gt_tval_write(env, ri, GTIMER_SEC, value); 2610 } 2611 2612 static void gt_sec_ctl_write(CPUARMState *env, const ARMCPRegInfo *ri, 2613 uint64_t value) 2614 { 2615 gt_ctl_write(env, ri, GTIMER_SEC, value); 2616 } 2617 2618 void arm_gt_ptimer_cb(void *opaque) 2619 { 2620 ARMCPU *cpu = opaque; 2621 2622 gt_recalc_timer(cpu, GTIMER_PHYS); 2623 } 2624 2625 void arm_gt_vtimer_cb(void *opaque) 2626 { 2627 ARMCPU *cpu = opaque; 2628 2629 gt_recalc_timer(cpu, GTIMER_VIRT); 2630 } 2631 2632 void arm_gt_htimer_cb(void *opaque) 2633 { 2634 ARMCPU *cpu = opaque; 2635 2636 gt_recalc_timer(cpu, GTIMER_HYP); 2637 } 2638 2639 void arm_gt_stimer_cb(void *opaque) 2640 { 2641 ARMCPU *cpu = opaque; 2642 2643 gt_recalc_timer(cpu, GTIMER_SEC); 2644 } 2645 2646 static const ARMCPRegInfo generic_timer_cp_reginfo[] = { 2647 /* Note that CNTFRQ is purely reads-as-written for the benefit 2648 * of software; writing it doesn't actually change the timer frequency. 2649 * Our reset value matches the fixed frequency we implement the timer at. 2650 */ 2651 { .name = "CNTFRQ", .cp = 15, .crn = 14, .crm = 0, .opc1 = 0, .opc2 = 0, 2652 .type = ARM_CP_ALIAS, 2653 .access = PL1_RW | PL0_R, .accessfn = gt_cntfrq_access, 2654 .fieldoffset = offsetoflow32(CPUARMState, cp15.c14_cntfrq), 2655 }, 2656 { .name = "CNTFRQ_EL0", .state = ARM_CP_STATE_AA64, 2657 .opc0 = 3, .opc1 = 3, .crn = 14, .crm = 0, .opc2 = 0, 2658 .access = PL1_RW | PL0_R, .accessfn = gt_cntfrq_access, 2659 .fieldoffset = offsetof(CPUARMState, cp15.c14_cntfrq), 2660 .resetvalue = (1000 * 1000 * 1000) / GTIMER_SCALE, 2661 }, 2662 /* overall control: mostly access permissions */ 2663 { .name = "CNTKCTL", .state = ARM_CP_STATE_BOTH, 2664 .opc0 = 3, .opc1 = 0, .crn = 14, .crm = 1, .opc2 = 0, 2665 .access = PL1_RW, 2666 .fieldoffset = offsetof(CPUARMState, cp15.c14_cntkctl), 2667 .resetvalue = 0, 2668 }, 2669 /* per-timer control */ 2670 { .name = "CNTP_CTL", .cp = 15, .crn = 14, .crm = 2, .opc1 = 0, .opc2 = 1, 2671 .secure = ARM_CP_SECSTATE_NS, 2672 .type = ARM_CP_IO | ARM_CP_ALIAS, .access = PL0_RW, 2673 .accessfn = gt_ptimer_access, 2674 .fieldoffset = offsetoflow32(CPUARMState, 2675 cp15.c14_timer[GTIMER_PHYS].ctl), 2676 .writefn = gt_phys_ctl_write, .raw_writefn = raw_write, 2677 }, 2678 { .name = "CNTP_CTL_S", 2679 .cp = 15, .crn = 14, .crm = 2, .opc1 = 0, .opc2 = 1, 2680 .secure = ARM_CP_SECSTATE_S, 2681 .type = ARM_CP_IO | ARM_CP_ALIAS, .access = PL0_RW, 2682 .accessfn = gt_ptimer_access, 2683 .fieldoffset = offsetoflow32(CPUARMState, 2684 cp15.c14_timer[GTIMER_SEC].ctl), 2685 .writefn = gt_sec_ctl_write, .raw_writefn = raw_write, 2686 }, 2687 { .name = "CNTP_CTL_EL0", .state = ARM_CP_STATE_AA64, 2688 .opc0 = 3, .opc1 = 3, .crn = 14, .crm = 2, .opc2 = 1, 2689 .type = ARM_CP_IO, .access = PL0_RW, 2690 .accessfn = gt_ptimer_access, 2691 .fieldoffset = offsetof(CPUARMState, cp15.c14_timer[GTIMER_PHYS].ctl), 2692 .resetvalue = 0, 2693 .writefn = gt_phys_ctl_write, .raw_writefn = raw_write, 2694 }, 2695 { .name = "CNTV_CTL", .cp = 15, .crn = 14, .crm = 3, .opc1 = 0, .opc2 = 1, 2696 .type = ARM_CP_IO | ARM_CP_ALIAS, .access = PL0_RW, 2697 .accessfn = gt_vtimer_access, 2698 .fieldoffset = offsetoflow32(CPUARMState, 2699 cp15.c14_timer[GTIMER_VIRT].ctl), 2700 .writefn = gt_virt_ctl_write, .raw_writefn = raw_write, 2701 }, 2702 { .name = "CNTV_CTL_EL0", .state = ARM_CP_STATE_AA64, 2703 .opc0 = 3, .opc1 = 3, .crn = 14, .crm = 3, .opc2 = 1, 2704 .type = ARM_CP_IO, .access = PL0_RW, 2705 .accessfn = gt_vtimer_access, 2706 .fieldoffset = offsetof(CPUARMState, cp15.c14_timer[GTIMER_VIRT].ctl), 2707 .resetvalue = 0, 2708 .writefn = gt_virt_ctl_write, .raw_writefn = raw_write, 2709 }, 2710 /* TimerValue views: a 32 bit downcounting view of the underlying state */ 2711 { .name = "CNTP_TVAL", .cp = 15, .crn = 14, .crm = 2, .opc1 = 0, .opc2 = 0, 2712 .secure = ARM_CP_SECSTATE_NS, 2713 .type = ARM_CP_NO_RAW | ARM_CP_IO, .access = PL0_RW, 2714 .accessfn = gt_ptimer_access, 2715 .readfn = gt_phys_tval_read, .writefn = gt_phys_tval_write, 2716 }, 2717 { .name = "CNTP_TVAL_S", 2718 .cp = 15, .crn = 14, .crm = 2, .opc1 = 0, .opc2 = 0, 2719 .secure = ARM_CP_SECSTATE_S, 2720 .type = ARM_CP_NO_RAW | ARM_CP_IO, .access = PL0_RW, 2721 .accessfn = gt_ptimer_access, 2722 .readfn = gt_sec_tval_read, .writefn = gt_sec_tval_write, 2723 }, 2724 { .name = "CNTP_TVAL_EL0", .state = ARM_CP_STATE_AA64, 2725 .opc0 = 3, .opc1 = 3, .crn = 14, .crm = 2, .opc2 = 0, 2726 .type = ARM_CP_NO_RAW | ARM_CP_IO, .access = PL0_RW, 2727 .accessfn = gt_ptimer_access, .resetfn = gt_phys_timer_reset, 2728 .readfn = gt_phys_tval_read, .writefn = gt_phys_tval_write, 2729 }, 2730 { .name = "CNTV_TVAL", .cp = 15, .crn = 14, .crm = 3, .opc1 = 0, .opc2 = 0, 2731 .type = ARM_CP_NO_RAW | ARM_CP_IO, .access = PL0_RW, 2732 .accessfn = gt_vtimer_access, 2733 .readfn = gt_virt_tval_read, .writefn = gt_virt_tval_write, 2734 }, 2735 { .name = "CNTV_TVAL_EL0", .state = ARM_CP_STATE_AA64, 2736 .opc0 = 3, .opc1 = 3, .crn = 14, .crm = 3, .opc2 = 0, 2737 .type = ARM_CP_NO_RAW | ARM_CP_IO, .access = PL0_RW, 2738 .accessfn = gt_vtimer_access, .resetfn = gt_virt_timer_reset, 2739 .readfn = gt_virt_tval_read, .writefn = gt_virt_tval_write, 2740 }, 2741 /* The counter itself */ 2742 { .name = "CNTPCT", .cp = 15, .crm = 14, .opc1 = 0, 2743 .access = PL0_R, .type = ARM_CP_64BIT | ARM_CP_NO_RAW | ARM_CP_IO, 2744 .accessfn = gt_pct_access, 2745 .readfn = gt_cnt_read, .resetfn = arm_cp_reset_ignore, 2746 }, 2747 { .name = "CNTPCT_EL0", .state = ARM_CP_STATE_AA64, 2748 .opc0 = 3, .opc1 = 3, .crn = 14, .crm = 0, .opc2 = 1, 2749 .access = PL0_R, .type = ARM_CP_NO_RAW | ARM_CP_IO, 2750 .accessfn = gt_pct_access, .readfn = gt_cnt_read, 2751 }, 2752 { .name = "CNTVCT", .cp = 15, .crm = 14, .opc1 = 1, 2753 .access = PL0_R, .type = ARM_CP_64BIT | ARM_CP_NO_RAW | ARM_CP_IO, 2754 .accessfn = gt_vct_access, 2755 .readfn = gt_virt_cnt_read, .resetfn = arm_cp_reset_ignore, 2756 }, 2757 { .name = "CNTVCT_EL0", .state = ARM_CP_STATE_AA64, 2758 .opc0 = 3, .opc1 = 3, .crn = 14, .crm = 0, .opc2 = 2, 2759 .access = PL0_R, .type = ARM_CP_NO_RAW | ARM_CP_IO, 2760 .accessfn = gt_vct_access, .readfn = gt_virt_cnt_read, 2761 }, 2762 /* Comparison value, indicating when the timer goes off */ 2763 { .name = "CNTP_CVAL", .cp = 15, .crm = 14, .opc1 = 2, 2764 .secure = ARM_CP_SECSTATE_NS, 2765 .access = PL0_RW, 2766 .type = ARM_CP_64BIT | ARM_CP_IO | ARM_CP_ALIAS, 2767 .fieldoffset = offsetof(CPUARMState, cp15.c14_timer[GTIMER_PHYS].cval), 2768 .accessfn = gt_ptimer_access, 2769 .writefn = gt_phys_cval_write, .raw_writefn = raw_write, 2770 }, 2771 { .name = "CNTP_CVAL_S", .cp = 15, .crm = 14, .opc1 = 2, 2772 .secure = ARM_CP_SECSTATE_S, 2773 .access = PL0_RW, 2774 .type = ARM_CP_64BIT | ARM_CP_IO | ARM_CP_ALIAS, 2775 .fieldoffset = offsetof(CPUARMState, cp15.c14_timer[GTIMER_SEC].cval), 2776 .accessfn = gt_ptimer_access, 2777 .writefn = gt_sec_cval_write, .raw_writefn = raw_write, 2778 }, 2779 { .name = "CNTP_CVAL_EL0", .state = ARM_CP_STATE_AA64, 2780 .opc0 = 3, .opc1 = 3, .crn = 14, .crm = 2, .opc2 = 2, 2781 .access = PL0_RW, 2782 .type = ARM_CP_IO, 2783 .fieldoffset = offsetof(CPUARMState, cp15.c14_timer[GTIMER_PHYS].cval), 2784 .resetvalue = 0, .accessfn = gt_ptimer_access, 2785 .writefn = gt_phys_cval_write, .raw_writefn = raw_write, 2786 }, 2787 { .name = "CNTV_CVAL", .cp = 15, .crm = 14, .opc1 = 3, 2788 .access = PL0_RW, 2789 .type = ARM_CP_64BIT | ARM_CP_IO | ARM_CP_ALIAS, 2790 .fieldoffset = offsetof(CPUARMState, cp15.c14_timer[GTIMER_VIRT].cval), 2791 .accessfn = gt_vtimer_access, 2792 .writefn = gt_virt_cval_write, .raw_writefn = raw_write, 2793 }, 2794 { .name = "CNTV_CVAL_EL0", .state = ARM_CP_STATE_AA64, 2795 .opc0 = 3, .opc1 = 3, .crn = 14, .crm = 3, .opc2 = 2, 2796 .access = PL0_RW, 2797 .type = ARM_CP_IO, 2798 .fieldoffset = offsetof(CPUARMState, cp15.c14_timer[GTIMER_VIRT].cval), 2799 .resetvalue = 0, .accessfn = gt_vtimer_access, 2800 .writefn = gt_virt_cval_write, .raw_writefn = raw_write, 2801 }, 2802 /* Secure timer -- this is actually restricted to only EL3 2803 * and configurably Secure-EL1 via the accessfn. 2804 */ 2805 { .name = "CNTPS_TVAL_EL1", .state = ARM_CP_STATE_AA64, 2806 .opc0 = 3, .opc1 = 7, .crn = 14, .crm = 2, .opc2 = 0, 2807 .type = ARM_CP_NO_RAW | ARM_CP_IO, .access = PL1_RW, 2808 .accessfn = gt_stimer_access, 2809 .readfn = gt_sec_tval_read, 2810 .writefn = gt_sec_tval_write, 2811 .resetfn = gt_sec_timer_reset, 2812 }, 2813 { .name = "CNTPS_CTL_EL1", .state = ARM_CP_STATE_AA64, 2814 .opc0 = 3, .opc1 = 7, .crn = 14, .crm = 2, .opc2 = 1, 2815 .type = ARM_CP_IO, .access = PL1_RW, 2816 .accessfn = gt_stimer_access, 2817 .fieldoffset = offsetof(CPUARMState, cp15.c14_timer[GTIMER_SEC].ctl), 2818 .resetvalue = 0, 2819 .writefn = gt_sec_ctl_write, .raw_writefn = raw_write, 2820 }, 2821 { .name = "CNTPS_CVAL_EL1", .state = ARM_CP_STATE_AA64, 2822 .opc0 = 3, .opc1 = 7, .crn = 14, .crm = 2, .opc2 = 2, 2823 .type = ARM_CP_IO, .access = PL1_RW, 2824 .accessfn = gt_stimer_access, 2825 .fieldoffset = offsetof(CPUARMState, cp15.c14_timer[GTIMER_SEC].cval), 2826 .writefn = gt_sec_cval_write, .raw_writefn = raw_write, 2827 }, 2828 REGINFO_SENTINEL 2829 }; 2830 2831 #else 2832 2833 /* In user-mode most of the generic timer registers are inaccessible 2834 * however modern kernels (4.12+) allow access to cntvct_el0 2835 */ 2836 2837 static uint64_t gt_virt_cnt_read(CPUARMState *env, const ARMCPRegInfo *ri) 2838 { 2839 /* Currently we have no support for QEMUTimer in linux-user so we 2840 * can't call gt_get_countervalue(env), instead we directly 2841 * call the lower level functions. 2842 */ 2843 return cpu_get_clock() / GTIMER_SCALE; 2844 } 2845 2846 static const ARMCPRegInfo generic_timer_cp_reginfo[] = { 2847 { .name = "CNTFRQ_EL0", .state = ARM_CP_STATE_AA64, 2848 .opc0 = 3, .opc1 = 3, .crn = 14, .crm = 0, .opc2 = 0, 2849 .type = ARM_CP_CONST, .access = PL0_R /* no PL1_RW in linux-user */, 2850 .fieldoffset = offsetof(CPUARMState, cp15.c14_cntfrq), 2851 .resetvalue = NANOSECONDS_PER_SECOND / GTIMER_SCALE, 2852 }, 2853 { .name = "CNTVCT_EL0", .state = ARM_CP_STATE_AA64, 2854 .opc0 = 3, .opc1 = 3, .crn = 14, .crm = 0, .opc2 = 2, 2855 .access = PL0_R, .type = ARM_CP_NO_RAW | ARM_CP_IO, 2856 .readfn = gt_virt_cnt_read, 2857 }, 2858 REGINFO_SENTINEL 2859 }; 2860 2861 #endif 2862 2863 static void par_write(CPUARMState *env, const ARMCPRegInfo *ri, uint64_t value) 2864 { 2865 if (arm_feature(env, ARM_FEATURE_LPAE)) { 2866 raw_write(env, ri, value); 2867 } else if (arm_feature(env, ARM_FEATURE_V7)) { 2868 raw_write(env, ri, value & 0xfffff6ff); 2869 } else { 2870 raw_write(env, ri, value & 0xfffff1ff); 2871 } 2872 } 2873 2874 #ifndef CONFIG_USER_ONLY 2875 /* get_phys_addr() isn't present for user-mode-only targets */ 2876 2877 static CPAccessResult ats_access(CPUARMState *env, const ARMCPRegInfo *ri, 2878 bool isread) 2879 { 2880 if (ri->opc2 & 4) { 2881 /* The ATS12NSO* operations must trap to EL3 if executed in 2882 * Secure EL1 (which can only happen if EL3 is AArch64). 2883 * They are simply UNDEF if executed from NS EL1. 2884 * They function normally from EL2 or EL3. 2885 */ 2886 if (arm_current_el(env) == 1) { 2887 if (arm_is_secure_below_el3(env)) { 2888 return CP_ACCESS_TRAP_UNCATEGORIZED_EL3; 2889 } 2890 return CP_ACCESS_TRAP_UNCATEGORIZED; 2891 } 2892 } 2893 return CP_ACCESS_OK; 2894 } 2895 2896 static uint64_t do_ats_write(CPUARMState *env, uint64_t value, 2897 MMUAccessType access_type, ARMMMUIdx mmu_idx) 2898 { 2899 hwaddr phys_addr; 2900 target_ulong page_size; 2901 int prot; 2902 bool ret; 2903 uint64_t par64; 2904 bool format64 = false; 2905 MemTxAttrs attrs = {}; 2906 ARMMMUFaultInfo fi = {}; 2907 ARMCacheAttrs cacheattrs = {}; 2908 2909 ret = get_phys_addr(env, value, access_type, mmu_idx, &phys_addr, &attrs, 2910 &prot, &page_size, &fi, &cacheattrs); 2911 2912 if (is_a64(env)) { 2913 format64 = true; 2914 } else if (arm_feature(env, ARM_FEATURE_LPAE)) { 2915 /* 2916 * ATS1Cxx: 2917 * * TTBCR.EAE determines whether the result is returned using the 2918 * 32-bit or the 64-bit PAR format 2919 * * Instructions executed in Hyp mode always use the 64bit format 2920 * 2921 * ATS1S2NSOxx uses the 64bit format if any of the following is true: 2922 * * The Non-secure TTBCR.EAE bit is set to 1 2923 * * The implementation includes EL2, and the value of HCR.VM is 1 2924 * 2925 * (Note that HCR.DC makes HCR.VM behave as if it is 1.) 2926 * 2927 * ATS1Hx always uses the 64bit format. 2928 */ 2929 format64 = arm_s1_regime_using_lpae_format(env, mmu_idx); 2930 2931 if (arm_feature(env, ARM_FEATURE_EL2)) { 2932 if (mmu_idx == ARMMMUIdx_S12NSE0 || mmu_idx == ARMMMUIdx_S12NSE1) { 2933 format64 |= env->cp15.hcr_el2 & (HCR_VM | HCR_DC); 2934 } else { 2935 format64 |= arm_current_el(env) == 2; 2936 } 2937 } 2938 } 2939 2940 if (format64) { 2941 /* Create a 64-bit PAR */ 2942 par64 = (1 << 11); /* LPAE bit always set */ 2943 if (!ret) { 2944 par64 |= phys_addr & ~0xfffULL; 2945 if (!attrs.secure) { 2946 par64 |= (1 << 9); /* NS */ 2947 } 2948 par64 |= (uint64_t)cacheattrs.attrs << 56; /* ATTR */ 2949 par64 |= cacheattrs.shareability << 7; /* SH */ 2950 } else { 2951 uint32_t fsr = arm_fi_to_lfsc(&fi); 2952 2953 par64 |= 1; /* F */ 2954 par64 |= (fsr & 0x3f) << 1; /* FS */ 2955 if (fi.stage2) { 2956 par64 |= (1 << 9); /* S */ 2957 } 2958 if (fi.s1ptw) { 2959 par64 |= (1 << 8); /* PTW */ 2960 } 2961 } 2962 } else { 2963 /* fsr is a DFSR/IFSR value for the short descriptor 2964 * translation table format (with WnR always clear). 2965 * Convert it to a 32-bit PAR. 2966 */ 2967 if (!ret) { 2968 /* We do not set any attribute bits in the PAR */ 2969 if (page_size == (1 << 24) 2970 && arm_feature(env, ARM_FEATURE_V7)) { 2971 par64 = (phys_addr & 0xff000000) | (1 << 1); 2972 } else { 2973 par64 = phys_addr & 0xfffff000; 2974 } 2975 if (!attrs.secure) { 2976 par64 |= (1 << 9); /* NS */ 2977 } 2978 } else { 2979 uint32_t fsr = arm_fi_to_sfsc(&fi); 2980 2981 par64 = ((fsr & (1 << 10)) >> 5) | ((fsr & (1 << 12)) >> 6) | 2982 ((fsr & 0xf) << 1) | 1; 2983 } 2984 } 2985 return par64; 2986 } 2987 2988 static void ats_write(CPUARMState *env, const ARMCPRegInfo *ri, uint64_t value) 2989 { 2990 MMUAccessType access_type = ri->opc2 & 1 ? MMU_DATA_STORE : MMU_DATA_LOAD; 2991 uint64_t par64; 2992 ARMMMUIdx mmu_idx; 2993 int el = arm_current_el(env); 2994 bool secure = arm_is_secure_below_el3(env); 2995 2996 switch (ri->opc2 & 6) { 2997 case 0: 2998 /* stage 1 current state PL1: ATS1CPR, ATS1CPW */ 2999 switch (el) { 3000 case 3: 3001 mmu_idx = ARMMMUIdx_S1E3; 3002 break; 3003 case 2: 3004 mmu_idx = ARMMMUIdx_S1NSE1; 3005 break; 3006 case 1: 3007 mmu_idx = secure ? ARMMMUIdx_S1SE1 : ARMMMUIdx_S1NSE1; 3008 break; 3009 default: 3010 g_assert_not_reached(); 3011 } 3012 break; 3013 case 2: 3014 /* stage 1 current state PL0: ATS1CUR, ATS1CUW */ 3015 switch (el) { 3016 case 3: 3017 mmu_idx = ARMMMUIdx_S1SE0; 3018 break; 3019 case 2: 3020 mmu_idx = ARMMMUIdx_S1NSE0; 3021 break; 3022 case 1: 3023 mmu_idx = secure ? ARMMMUIdx_S1SE0 : ARMMMUIdx_S1NSE0; 3024 break; 3025 default: 3026 g_assert_not_reached(); 3027 } 3028 break; 3029 case 4: 3030 /* stage 1+2 NonSecure PL1: ATS12NSOPR, ATS12NSOPW */ 3031 mmu_idx = ARMMMUIdx_S12NSE1; 3032 break; 3033 case 6: 3034 /* stage 1+2 NonSecure PL0: ATS12NSOUR, ATS12NSOUW */ 3035 mmu_idx = ARMMMUIdx_S12NSE0; 3036 break; 3037 default: 3038 g_assert_not_reached(); 3039 } 3040 3041 par64 = do_ats_write(env, value, access_type, mmu_idx); 3042 3043 A32_BANKED_CURRENT_REG_SET(env, par, par64); 3044 } 3045 3046 static void ats1h_write(CPUARMState *env, const ARMCPRegInfo *ri, 3047 uint64_t value) 3048 { 3049 MMUAccessType access_type = ri->opc2 & 1 ? MMU_DATA_STORE : MMU_DATA_LOAD; 3050 uint64_t par64; 3051 3052 par64 = do_ats_write(env, value, access_type, ARMMMUIdx_S1E2); 3053 3054 A32_BANKED_CURRENT_REG_SET(env, par, par64); 3055 } 3056 3057 static CPAccessResult at_s1e2_access(CPUARMState *env, const ARMCPRegInfo *ri, 3058 bool isread) 3059 { 3060 if (arm_current_el(env) == 3 && !(env->cp15.scr_el3 & SCR_NS)) { 3061 return CP_ACCESS_TRAP; 3062 } 3063 return CP_ACCESS_OK; 3064 } 3065 3066 static void ats_write64(CPUARMState *env, const ARMCPRegInfo *ri, 3067 uint64_t value) 3068 { 3069 MMUAccessType access_type = ri->opc2 & 1 ? MMU_DATA_STORE : MMU_DATA_LOAD; 3070 ARMMMUIdx mmu_idx; 3071 int secure = arm_is_secure_below_el3(env); 3072 3073 switch (ri->opc2 & 6) { 3074 case 0: 3075 switch (ri->opc1) { 3076 case 0: /* AT S1E1R, AT S1E1W */ 3077 mmu_idx = secure ? ARMMMUIdx_S1SE1 : ARMMMUIdx_S1NSE1; 3078 break; 3079 case 4: /* AT S1E2R, AT S1E2W */ 3080 mmu_idx = ARMMMUIdx_S1E2; 3081 break; 3082 case 6: /* AT S1E3R, AT S1E3W */ 3083 mmu_idx = ARMMMUIdx_S1E3; 3084 break; 3085 default: 3086 g_assert_not_reached(); 3087 } 3088 break; 3089 case 2: /* AT S1E0R, AT S1E0W */ 3090 mmu_idx = secure ? ARMMMUIdx_S1SE0 : ARMMMUIdx_S1NSE0; 3091 break; 3092 case 4: /* AT S12E1R, AT S12E1W */ 3093 mmu_idx = secure ? ARMMMUIdx_S1SE1 : ARMMMUIdx_S12NSE1; 3094 break; 3095 case 6: /* AT S12E0R, AT S12E0W */ 3096 mmu_idx = secure ? ARMMMUIdx_S1SE0 : ARMMMUIdx_S12NSE0; 3097 break; 3098 default: 3099 g_assert_not_reached(); 3100 } 3101 3102 env->cp15.par_el[1] = do_ats_write(env, value, access_type, mmu_idx); 3103 } 3104 #endif 3105 3106 static const ARMCPRegInfo vapa_cp_reginfo[] = { 3107 { .name = "PAR", .cp = 15, .crn = 7, .crm = 4, .opc1 = 0, .opc2 = 0, 3108 .access = PL1_RW, .resetvalue = 0, 3109 .bank_fieldoffsets = { offsetoflow32(CPUARMState, cp15.par_s), 3110 offsetoflow32(CPUARMState, cp15.par_ns) }, 3111 .writefn = par_write }, 3112 #ifndef CONFIG_USER_ONLY 3113 /* This underdecoding is safe because the reginfo is NO_RAW. */ 3114 { .name = "ATS", .cp = 15, .crn = 7, .crm = 8, .opc1 = 0, .opc2 = CP_ANY, 3115 .access = PL1_W, .accessfn = ats_access, 3116 .writefn = ats_write, .type = ARM_CP_NO_RAW }, 3117 #endif 3118 REGINFO_SENTINEL 3119 }; 3120 3121 /* Return basic MPU access permission bits. */ 3122 static uint32_t simple_mpu_ap_bits(uint32_t val) 3123 { 3124 uint32_t ret; 3125 uint32_t mask; 3126 int i; 3127 ret = 0; 3128 mask = 3; 3129 for (i = 0; i < 16; i += 2) { 3130 ret |= (val >> i) & mask; 3131 mask <<= 2; 3132 } 3133 return ret; 3134 } 3135 3136 /* Pad basic MPU access permission bits to extended format. */ 3137 static uint32_t extended_mpu_ap_bits(uint32_t val) 3138 { 3139 uint32_t ret; 3140 uint32_t mask; 3141 int i; 3142 ret = 0; 3143 mask = 3; 3144 for (i = 0; i < 16; i += 2) { 3145 ret |= (val & mask) << i; 3146 mask <<= 2; 3147 } 3148 return ret; 3149 } 3150 3151 static void pmsav5_data_ap_write(CPUARMState *env, const ARMCPRegInfo *ri, 3152 uint64_t value) 3153 { 3154 env->cp15.pmsav5_data_ap = extended_mpu_ap_bits(value); 3155 } 3156 3157 static uint64_t pmsav5_data_ap_read(CPUARMState *env, const ARMCPRegInfo *ri) 3158 { 3159 return simple_mpu_ap_bits(env->cp15.pmsav5_data_ap); 3160 } 3161 3162 static void pmsav5_insn_ap_write(CPUARMState *env, const ARMCPRegInfo *ri, 3163 uint64_t value) 3164 { 3165 env->cp15.pmsav5_insn_ap = extended_mpu_ap_bits(value); 3166 } 3167 3168 static uint64_t pmsav5_insn_ap_read(CPUARMState *env, const ARMCPRegInfo *ri) 3169 { 3170 return simple_mpu_ap_bits(env->cp15.pmsav5_insn_ap); 3171 } 3172 3173 static uint64_t pmsav7_read(CPUARMState *env, const ARMCPRegInfo *ri) 3174 { 3175 uint32_t *u32p = *(uint32_t **)raw_ptr(env, ri); 3176 3177 if (!u32p) { 3178 return 0; 3179 } 3180 3181 u32p += env->pmsav7.rnr[M_REG_NS]; 3182 return *u32p; 3183 } 3184 3185 static void pmsav7_write(CPUARMState *env, const ARMCPRegInfo *ri, 3186 uint64_t value) 3187 { 3188 ARMCPU *cpu = arm_env_get_cpu(env); 3189 uint32_t *u32p = *(uint32_t **)raw_ptr(env, ri); 3190 3191 if (!u32p) { 3192 return; 3193 } 3194 3195 u32p += env->pmsav7.rnr[M_REG_NS]; 3196 tlb_flush(CPU(cpu)); /* Mappings may have changed - purge! */ 3197 *u32p = value; 3198 } 3199 3200 static void pmsav7_rgnr_write(CPUARMState *env, const ARMCPRegInfo *ri, 3201 uint64_t value) 3202 { 3203 ARMCPU *cpu = arm_env_get_cpu(env); 3204 uint32_t nrgs = cpu->pmsav7_dregion; 3205 3206 if (value >= nrgs) { 3207 qemu_log_mask(LOG_GUEST_ERROR, 3208 "PMSAv7 RGNR write >= # supported regions, %" PRIu32 3209 " > %" PRIu32 "\n", (uint32_t)value, nrgs); 3210 return; 3211 } 3212 3213 raw_write(env, ri, value); 3214 } 3215 3216 static const ARMCPRegInfo pmsav7_cp_reginfo[] = { 3217 /* Reset for all these registers is handled in arm_cpu_reset(), 3218 * because the PMSAv7 is also used by M-profile CPUs, which do 3219 * not register cpregs but still need the state to be reset. 3220 */ 3221 { .name = "DRBAR", .cp = 15, .crn = 6, .opc1 = 0, .crm = 1, .opc2 = 0, 3222 .access = PL1_RW, .type = ARM_CP_NO_RAW, 3223 .fieldoffset = offsetof(CPUARMState, pmsav7.drbar), 3224 .readfn = pmsav7_read, .writefn = pmsav7_write, 3225 .resetfn = arm_cp_reset_ignore }, 3226 { .name = "DRSR", .cp = 15, .crn = 6, .opc1 = 0, .crm = 1, .opc2 = 2, 3227 .access = PL1_RW, .type = ARM_CP_NO_RAW, 3228 .fieldoffset = offsetof(CPUARMState, pmsav7.drsr), 3229 .readfn = pmsav7_read, .writefn = pmsav7_write, 3230 .resetfn = arm_cp_reset_ignore }, 3231 { .name = "DRACR", .cp = 15, .crn = 6, .opc1 = 0, .crm = 1, .opc2 = 4, 3232 .access = PL1_RW, .type = ARM_CP_NO_RAW, 3233 .fieldoffset = offsetof(CPUARMState, pmsav7.dracr), 3234 .readfn = pmsav7_read, .writefn = pmsav7_write, 3235 .resetfn = arm_cp_reset_ignore }, 3236 { .name = "RGNR", .cp = 15, .crn = 6, .opc1 = 0, .crm = 2, .opc2 = 0, 3237 .access = PL1_RW, 3238 .fieldoffset = offsetof(CPUARMState, pmsav7.rnr[M_REG_NS]), 3239 .writefn = pmsav7_rgnr_write, 3240 .resetfn = arm_cp_reset_ignore }, 3241 REGINFO_SENTINEL 3242 }; 3243 3244 static const ARMCPRegInfo pmsav5_cp_reginfo[] = { 3245 { .name = "DATA_AP", .cp = 15, .crn = 5, .crm = 0, .opc1 = 0, .opc2 = 0, 3246 .access = PL1_RW, .type = ARM_CP_ALIAS, 3247 .fieldoffset = offsetof(CPUARMState, cp15.pmsav5_data_ap), 3248 .readfn = pmsav5_data_ap_read, .writefn = pmsav5_data_ap_write, }, 3249 { .name = "INSN_AP", .cp = 15, .crn = 5, .crm = 0, .opc1 = 0, .opc2 = 1, 3250 .access = PL1_RW, .type = ARM_CP_ALIAS, 3251 .fieldoffset = offsetof(CPUARMState, cp15.pmsav5_insn_ap), 3252 .readfn = pmsav5_insn_ap_read, .writefn = pmsav5_insn_ap_write, }, 3253 { .name = "DATA_EXT_AP", .cp = 15, .crn = 5, .crm = 0, .opc1 = 0, .opc2 = 2, 3254 .access = PL1_RW, 3255 .fieldoffset = offsetof(CPUARMState, cp15.pmsav5_data_ap), 3256 .resetvalue = 0, }, 3257 { .name = "INSN_EXT_AP", .cp = 15, .crn = 5, .crm = 0, .opc1 = 0, .opc2 = 3, 3258 .access = PL1_RW, 3259 .fieldoffset = offsetof(CPUARMState, cp15.pmsav5_insn_ap), 3260 .resetvalue = 0, }, 3261 { .name = "DCACHE_CFG", .cp = 15, .crn = 2, .crm = 0, .opc1 = 0, .opc2 = 0, 3262 .access = PL1_RW, 3263 .fieldoffset = offsetof(CPUARMState, cp15.c2_data), .resetvalue = 0, }, 3264 { .name = "ICACHE_CFG", .cp = 15, .crn = 2, .crm = 0, .opc1 = 0, .opc2 = 1, 3265 .access = PL1_RW, 3266 .fieldoffset = offsetof(CPUARMState, cp15.c2_insn), .resetvalue = 0, }, 3267 /* Protection region base and size registers */ 3268 { .name = "946_PRBS0", .cp = 15, .crn = 6, .crm = 0, .opc1 = 0, 3269 .opc2 = CP_ANY, .access = PL1_RW, .resetvalue = 0, 3270 .fieldoffset = offsetof(CPUARMState, cp15.c6_region[0]) }, 3271 { .name = "946_PRBS1", .cp = 15, .crn = 6, .crm = 1, .opc1 = 0, 3272 .opc2 = CP_ANY, .access = PL1_RW, .resetvalue = 0, 3273 .fieldoffset = offsetof(CPUARMState, cp15.c6_region[1]) }, 3274 { .name = "946_PRBS2", .cp = 15, .crn = 6, .crm = 2, .opc1 = 0, 3275 .opc2 = CP_ANY, .access = PL1_RW, .resetvalue = 0, 3276 .fieldoffset = offsetof(CPUARMState, cp15.c6_region[2]) }, 3277 { .name = "946_PRBS3", .cp = 15, .crn = 6, .crm = 3, .opc1 = 0, 3278 .opc2 = CP_ANY, .access = PL1_RW, .resetvalue = 0, 3279 .fieldoffset = offsetof(CPUARMState, cp15.c6_region[3]) }, 3280 { .name = "946_PRBS4", .cp = 15, .crn = 6, .crm = 4, .opc1 = 0, 3281 .opc2 = CP_ANY, .access = PL1_RW, .resetvalue = 0, 3282 .fieldoffset = offsetof(CPUARMState, cp15.c6_region[4]) }, 3283 { .name = "946_PRBS5", .cp = 15, .crn = 6, .crm = 5, .opc1 = 0, 3284 .opc2 = CP_ANY, .access = PL1_RW, .resetvalue = 0, 3285 .fieldoffset = offsetof(CPUARMState, cp15.c6_region[5]) }, 3286 { .name = "946_PRBS6", .cp = 15, .crn = 6, .crm = 6, .opc1 = 0, 3287 .opc2 = CP_ANY, .access = PL1_RW, .resetvalue = 0, 3288 .fieldoffset = offsetof(CPUARMState, cp15.c6_region[6]) }, 3289 { .name = "946_PRBS7", .cp = 15, .crn = 6, .crm = 7, .opc1 = 0, 3290 .opc2 = CP_ANY, .access = PL1_RW, .resetvalue = 0, 3291 .fieldoffset = offsetof(CPUARMState, cp15.c6_region[7]) }, 3292 REGINFO_SENTINEL 3293 }; 3294 3295 static void vmsa_ttbcr_raw_write(CPUARMState *env, const ARMCPRegInfo *ri, 3296 uint64_t value) 3297 { 3298 TCR *tcr = raw_ptr(env, ri); 3299 int maskshift = extract32(value, 0, 3); 3300 3301 if (!arm_feature(env, ARM_FEATURE_V8)) { 3302 if (arm_feature(env, ARM_FEATURE_LPAE) && (value & TTBCR_EAE)) { 3303 /* Pre ARMv8 bits [21:19], [15:14] and [6:3] are UNK/SBZP when 3304 * using Long-desciptor translation table format */ 3305 value &= ~((7 << 19) | (3 << 14) | (0xf << 3)); 3306 } else if (arm_feature(env, ARM_FEATURE_EL3)) { 3307 /* In an implementation that includes the Security Extensions 3308 * TTBCR has additional fields PD0 [4] and PD1 [5] for 3309 * Short-descriptor translation table format. 3310 */ 3311 value &= TTBCR_PD1 | TTBCR_PD0 | TTBCR_N; 3312 } else { 3313 value &= TTBCR_N; 3314 } 3315 } 3316 3317 /* Update the masks corresponding to the TCR bank being written 3318 * Note that we always calculate mask and base_mask, but 3319 * they are only used for short-descriptor tables (ie if EAE is 0); 3320 * for long-descriptor tables the TCR fields are used differently 3321 * and the mask and base_mask values are meaningless. 3322 */ 3323 tcr->raw_tcr = value; 3324 tcr->mask = ~(((uint32_t)0xffffffffu) >> maskshift); 3325 tcr->base_mask = ~((uint32_t)0x3fffu >> maskshift); 3326 } 3327 3328 static void vmsa_ttbcr_write(CPUARMState *env, const ARMCPRegInfo *ri, 3329 uint64_t value) 3330 { 3331 ARMCPU *cpu = arm_env_get_cpu(env); 3332 TCR *tcr = raw_ptr(env, ri); 3333 3334 if (arm_feature(env, ARM_FEATURE_LPAE)) { 3335 /* With LPAE the TTBCR could result in a change of ASID 3336 * via the TTBCR.A1 bit, so do a TLB flush. 3337 */ 3338 tlb_flush(CPU(cpu)); 3339 } 3340 /* Preserve the high half of TCR_EL1, set via TTBCR2. */ 3341 value = deposit64(tcr->raw_tcr, 0, 32, value); 3342 vmsa_ttbcr_raw_write(env, ri, value); 3343 } 3344 3345 static void vmsa_ttbcr_reset(CPUARMState *env, const ARMCPRegInfo *ri) 3346 { 3347 TCR *tcr = raw_ptr(env, ri); 3348 3349 /* Reset both the TCR as well as the masks corresponding to the bank of 3350 * the TCR being reset. 3351 */ 3352 tcr->raw_tcr = 0; 3353 tcr->mask = 0; 3354 tcr->base_mask = 0xffffc000u; 3355 } 3356 3357 static void vmsa_tcr_el1_write(CPUARMState *env, const ARMCPRegInfo *ri, 3358 uint64_t value) 3359 { 3360 ARMCPU *cpu = arm_env_get_cpu(env); 3361 TCR *tcr = raw_ptr(env, ri); 3362 3363 /* For AArch64 the A1 bit could result in a change of ASID, so TLB flush. */ 3364 tlb_flush(CPU(cpu)); 3365 tcr->raw_tcr = value; 3366 } 3367 3368 static void vmsa_ttbr_write(CPUARMState *env, const ARMCPRegInfo *ri, 3369 uint64_t value) 3370 { 3371 /* If the ASID changes (with a 64-bit write), we must flush the TLB. */ 3372 if (cpreg_field_is_64bit(ri) && 3373 extract64(raw_read(env, ri) ^ value, 48, 16) != 0) { 3374 ARMCPU *cpu = arm_env_get_cpu(env); 3375 tlb_flush(CPU(cpu)); 3376 } 3377 raw_write(env, ri, value); 3378 } 3379 3380 static void vttbr_write(CPUARMState *env, const ARMCPRegInfo *ri, 3381 uint64_t value) 3382 { 3383 ARMCPU *cpu = arm_env_get_cpu(env); 3384 CPUState *cs = CPU(cpu); 3385 3386 /* Accesses to VTTBR may change the VMID so we must flush the TLB. */ 3387 if (raw_read(env, ri) != value) { 3388 tlb_flush_by_mmuidx(cs, 3389 ARMMMUIdxBit_S12NSE1 | 3390 ARMMMUIdxBit_S12NSE0 | 3391 ARMMMUIdxBit_S2NS); 3392 raw_write(env, ri, value); 3393 } 3394 } 3395 3396 static const ARMCPRegInfo vmsa_pmsa_cp_reginfo[] = { 3397 { .name = "DFSR", .cp = 15, .crn = 5, .crm = 0, .opc1 = 0, .opc2 = 0, 3398 .access = PL1_RW, .type = ARM_CP_ALIAS, 3399 .bank_fieldoffsets = { offsetoflow32(CPUARMState, cp15.dfsr_s), 3400 offsetoflow32(CPUARMState, cp15.dfsr_ns) }, }, 3401 { .name = "IFSR", .cp = 15, .crn = 5, .crm = 0, .opc1 = 0, .opc2 = 1, 3402 .access = PL1_RW, .resetvalue = 0, 3403 .bank_fieldoffsets = { offsetoflow32(CPUARMState, cp15.ifsr_s), 3404 offsetoflow32(CPUARMState, cp15.ifsr_ns) } }, 3405 { .name = "DFAR", .cp = 15, .opc1 = 0, .crn = 6, .crm = 0, .opc2 = 0, 3406 .access = PL1_RW, .resetvalue = 0, 3407 .bank_fieldoffsets = { offsetof(CPUARMState, cp15.dfar_s), 3408 offsetof(CPUARMState, cp15.dfar_ns) } }, 3409 { .name = "FAR_EL1", .state = ARM_CP_STATE_AA64, 3410 .opc0 = 3, .crn = 6, .crm = 0, .opc1 = 0, .opc2 = 0, 3411 .access = PL1_RW, .fieldoffset = offsetof(CPUARMState, cp15.far_el[1]), 3412 .resetvalue = 0, }, 3413 REGINFO_SENTINEL 3414 }; 3415 3416 static const ARMCPRegInfo vmsa_cp_reginfo[] = { 3417 { .name = "ESR_EL1", .state = ARM_CP_STATE_AA64, 3418 .opc0 = 3, .crn = 5, .crm = 2, .opc1 = 0, .opc2 = 0, 3419 .access = PL1_RW, 3420 .fieldoffset = offsetof(CPUARMState, cp15.esr_el[1]), .resetvalue = 0, }, 3421 { .name = "TTBR0_EL1", .state = ARM_CP_STATE_BOTH, 3422 .opc0 = 3, .opc1 = 0, .crn = 2, .crm = 0, .opc2 = 0, 3423 .access = PL1_RW, .writefn = vmsa_ttbr_write, .resetvalue = 0, 3424 .bank_fieldoffsets = { offsetof(CPUARMState, cp15.ttbr0_s), 3425 offsetof(CPUARMState, cp15.ttbr0_ns) } }, 3426 { .name = "TTBR1_EL1", .state = ARM_CP_STATE_BOTH, 3427 .opc0 = 3, .opc1 = 0, .crn = 2, .crm = 0, .opc2 = 1, 3428 .access = PL1_RW, .writefn = vmsa_ttbr_write, .resetvalue = 0, 3429 .bank_fieldoffsets = { offsetof(CPUARMState, cp15.ttbr1_s), 3430 offsetof(CPUARMState, cp15.ttbr1_ns) } }, 3431 { .name = "TCR_EL1", .state = ARM_CP_STATE_AA64, 3432 .opc0 = 3, .crn = 2, .crm = 0, .opc1 = 0, .opc2 = 2, 3433 .access = PL1_RW, .writefn = vmsa_tcr_el1_write, 3434 .resetfn = vmsa_ttbcr_reset, .raw_writefn = raw_write, 3435 .fieldoffset = offsetof(CPUARMState, cp15.tcr_el[1]) }, 3436 { .name = "TTBCR", .cp = 15, .crn = 2, .crm = 0, .opc1 = 0, .opc2 = 2, 3437 .access = PL1_RW, .type = ARM_CP_ALIAS, .writefn = vmsa_ttbcr_write, 3438 .raw_writefn = vmsa_ttbcr_raw_write, 3439 .bank_fieldoffsets = { offsetoflow32(CPUARMState, cp15.tcr_el[3]), 3440 offsetoflow32(CPUARMState, cp15.tcr_el[1])} }, 3441 REGINFO_SENTINEL 3442 }; 3443 3444 /* Note that unlike TTBCR, writing to TTBCR2 does not require flushing 3445 * qemu tlbs nor adjusting cached masks. 3446 */ 3447 static const ARMCPRegInfo ttbcr2_reginfo = { 3448 .name = "TTBCR2", .cp = 15, .opc1 = 0, .crn = 2, .crm = 0, .opc2 = 3, 3449 .access = PL1_RW, .type = ARM_CP_ALIAS, 3450 .bank_fieldoffsets = { offsetofhigh32(CPUARMState, cp15.tcr_el[3]), 3451 offsetofhigh32(CPUARMState, cp15.tcr_el[1]) }, 3452 }; 3453 3454 static void omap_ticonfig_write(CPUARMState *env, const ARMCPRegInfo *ri, 3455 uint64_t value) 3456 { 3457 env->cp15.c15_ticonfig = value & 0xe7; 3458 /* The OS_TYPE bit in this register changes the reported CPUID! */ 3459 env->cp15.c0_cpuid = (value & (1 << 5)) ? 3460 ARM_CPUID_TI915T : ARM_CPUID_TI925T; 3461 } 3462 3463 static void omap_threadid_write(CPUARMState *env, const ARMCPRegInfo *ri, 3464 uint64_t value) 3465 { 3466 env->cp15.c15_threadid = value & 0xffff; 3467 } 3468 3469 static void omap_wfi_write(CPUARMState *env, const ARMCPRegInfo *ri, 3470 uint64_t value) 3471 { 3472 /* Wait-for-interrupt (deprecated) */ 3473 cpu_interrupt(CPU(arm_env_get_cpu(env)), CPU_INTERRUPT_HALT); 3474 } 3475 3476 static void omap_cachemaint_write(CPUARMState *env, const ARMCPRegInfo *ri, 3477 uint64_t value) 3478 { 3479 /* On OMAP there are registers indicating the max/min index of dcache lines 3480 * containing a dirty line; cache flush operations have to reset these. 3481 */ 3482 env->cp15.c15_i_max = 0x000; 3483 env->cp15.c15_i_min = 0xff0; 3484 } 3485 3486 static const ARMCPRegInfo omap_cp_reginfo[] = { 3487 { .name = "DFSR", .cp = 15, .crn = 5, .crm = CP_ANY, 3488 .opc1 = CP_ANY, .opc2 = CP_ANY, .access = PL1_RW, .type = ARM_CP_OVERRIDE, 3489 .fieldoffset = offsetoflow32(CPUARMState, cp15.esr_el[1]), 3490 .resetvalue = 0, }, 3491 { .name = "", .cp = 15, .crn = 15, .crm = 0, .opc1 = 0, .opc2 = 0, 3492 .access = PL1_RW, .type = ARM_CP_NOP }, 3493 { .name = "TICONFIG", .cp = 15, .crn = 15, .crm = 1, .opc1 = 0, .opc2 = 0, 3494 .access = PL1_RW, 3495 .fieldoffset = offsetof(CPUARMState, cp15.c15_ticonfig), .resetvalue = 0, 3496 .writefn = omap_ticonfig_write }, 3497 { .name = "IMAX", .cp = 15, .crn = 15, .crm = 2, .opc1 = 0, .opc2 = 0, 3498 .access = PL1_RW, 3499 .fieldoffset = offsetof(CPUARMState, cp15.c15_i_max), .resetvalue = 0, }, 3500 { .name = "IMIN", .cp = 15, .crn = 15, .crm = 3, .opc1 = 0, .opc2 = 0, 3501 .access = PL1_RW, .resetvalue = 0xff0, 3502 .fieldoffset = offsetof(CPUARMState, cp15.c15_i_min) }, 3503 { .name = "THREADID", .cp = 15, .crn = 15, .crm = 4, .opc1 = 0, .opc2 = 0, 3504 .access = PL1_RW, 3505 .fieldoffset = offsetof(CPUARMState, cp15.c15_threadid), .resetvalue = 0, 3506 .writefn = omap_threadid_write }, 3507 { .name = "TI925T_STATUS", .cp = 15, .crn = 15, 3508 .crm = 8, .opc1 = 0, .opc2 = 0, .access = PL1_RW, 3509 .type = ARM_CP_NO_RAW, 3510 .readfn = arm_cp_read_zero, .writefn = omap_wfi_write, }, 3511 /* TODO: Peripheral port remap register: 3512 * On OMAP2 mcr p15, 0, rn, c15, c2, 4 sets up the interrupt controller 3513 * base address at $rn & ~0xfff and map size of 0x200 << ($rn & 0xfff), 3514 * when MMU is off. 3515 */ 3516 { .name = "OMAP_CACHEMAINT", .cp = 15, .crn = 7, .crm = CP_ANY, 3517 .opc1 = 0, .opc2 = CP_ANY, .access = PL1_W, 3518 .type = ARM_CP_OVERRIDE | ARM_CP_NO_RAW, 3519 .writefn = omap_cachemaint_write }, 3520 { .name = "C9", .cp = 15, .crn = 9, 3521 .crm = CP_ANY, .opc1 = CP_ANY, .opc2 = CP_ANY, .access = PL1_RW, 3522 .type = ARM_CP_CONST | ARM_CP_OVERRIDE, .resetvalue = 0 }, 3523 REGINFO_SENTINEL 3524 }; 3525 3526 static void xscale_cpar_write(CPUARMState *env, const ARMCPRegInfo *ri, 3527 uint64_t value) 3528 { 3529 env->cp15.c15_cpar = value & 0x3fff; 3530 } 3531 3532 static const ARMCPRegInfo xscale_cp_reginfo[] = { 3533 { .name = "XSCALE_CPAR", 3534 .cp = 15, .crn = 15, .crm = 1, .opc1 = 0, .opc2 = 0, .access = PL1_RW, 3535 .fieldoffset = offsetof(CPUARMState, cp15.c15_cpar), .resetvalue = 0, 3536 .writefn = xscale_cpar_write, }, 3537 { .name = "XSCALE_AUXCR", 3538 .cp = 15, .crn = 1, .crm = 0, .opc1 = 0, .opc2 = 1, .access = PL1_RW, 3539 .fieldoffset = offsetof(CPUARMState, cp15.c1_xscaleauxcr), 3540 .resetvalue = 0, }, 3541 /* XScale specific cache-lockdown: since we have no cache we NOP these 3542 * and hope the guest does not really rely on cache behaviour. 3543 */ 3544 { .name = "XSCALE_LOCK_ICACHE_LINE", 3545 .cp = 15, .opc1 = 0, .crn = 9, .crm = 1, .opc2 = 0, 3546 .access = PL1_W, .type = ARM_CP_NOP }, 3547 { .name = "XSCALE_UNLOCK_ICACHE", 3548 .cp = 15, .opc1 = 0, .crn = 9, .crm = 1, .opc2 = 1, 3549 .access = PL1_W, .type = ARM_CP_NOP }, 3550 { .name = "XSCALE_DCACHE_LOCK", 3551 .cp = 15, .opc1 = 0, .crn = 9, .crm = 2, .opc2 = 0, 3552 .access = PL1_RW, .type = ARM_CP_NOP }, 3553 { .name = "XSCALE_UNLOCK_DCACHE", 3554 .cp = 15, .opc1 = 0, .crn = 9, .crm = 2, .opc2 = 1, 3555 .access = PL1_W, .type = ARM_CP_NOP }, 3556 REGINFO_SENTINEL 3557 }; 3558 3559 static const ARMCPRegInfo dummy_c15_cp_reginfo[] = { 3560 /* RAZ/WI the whole crn=15 space, when we don't have a more specific 3561 * implementation of this implementation-defined space. 3562 * Ideally this should eventually disappear in favour of actually 3563 * implementing the correct behaviour for all cores. 3564 */ 3565 { .name = "C15_IMPDEF", .cp = 15, .crn = 15, 3566 .crm = CP_ANY, .opc1 = CP_ANY, .opc2 = CP_ANY, 3567 .access = PL1_RW, 3568 .type = ARM_CP_CONST | ARM_CP_NO_RAW | ARM_CP_OVERRIDE, 3569 .resetvalue = 0 }, 3570 REGINFO_SENTINEL 3571 }; 3572 3573 static const ARMCPRegInfo cache_dirty_status_cp_reginfo[] = { 3574 /* Cache status: RAZ because we have no cache so it's always clean */ 3575 { .name = "CDSR", .cp = 15, .crn = 7, .crm = 10, .opc1 = 0, .opc2 = 6, 3576 .access = PL1_R, .type = ARM_CP_CONST | ARM_CP_NO_RAW, 3577 .resetvalue = 0 }, 3578 REGINFO_SENTINEL 3579 }; 3580 3581 static const ARMCPRegInfo cache_block_ops_cp_reginfo[] = { 3582 /* We never have a a block transfer operation in progress */ 3583 { .name = "BXSR", .cp = 15, .crn = 7, .crm = 12, .opc1 = 0, .opc2 = 4, 3584 .access = PL0_R, .type = ARM_CP_CONST | ARM_CP_NO_RAW, 3585 .resetvalue = 0 }, 3586 /* The cache ops themselves: these all NOP for QEMU */ 3587 { .name = "IICR", .cp = 15, .crm = 5, .opc1 = 0, 3588 .access = PL1_W, .type = ARM_CP_NOP|ARM_CP_64BIT }, 3589 { .name = "IDCR", .cp = 15, .crm = 6, .opc1 = 0, 3590 .access = PL1_W, .type = ARM_CP_NOP|ARM_CP_64BIT }, 3591 { .name = "CDCR", .cp = 15, .crm = 12, .opc1 = 0, 3592 .access = PL0_W, .type = ARM_CP_NOP|ARM_CP_64BIT }, 3593 { .name = "PIR", .cp = 15, .crm = 12, .opc1 = 1, 3594 .access = PL0_W, .type = ARM_CP_NOP|ARM_CP_64BIT }, 3595 { .name = "PDR", .cp = 15, .crm = 12, .opc1 = 2, 3596 .access = PL0_W, .type = ARM_CP_NOP|ARM_CP_64BIT }, 3597 { .name = "CIDCR", .cp = 15, .crm = 14, .opc1 = 0, 3598 .access = PL1_W, .type = ARM_CP_NOP|ARM_CP_64BIT }, 3599 REGINFO_SENTINEL 3600 }; 3601 3602 static const ARMCPRegInfo cache_test_clean_cp_reginfo[] = { 3603 /* The cache test-and-clean instructions always return (1 << 30) 3604 * to indicate that there are no dirty cache lines. 3605 */ 3606 { .name = "TC_DCACHE", .cp = 15, .crn = 7, .crm = 10, .opc1 = 0, .opc2 = 3, 3607 .access = PL0_R, .type = ARM_CP_CONST | ARM_CP_NO_RAW, 3608 .resetvalue = (1 << 30) }, 3609 { .name = "TCI_DCACHE", .cp = 15, .crn = 7, .crm = 14, .opc1 = 0, .opc2 = 3, 3610 .access = PL0_R, .type = ARM_CP_CONST | ARM_CP_NO_RAW, 3611 .resetvalue = (1 << 30) }, 3612 REGINFO_SENTINEL 3613 }; 3614 3615 static const ARMCPRegInfo strongarm_cp_reginfo[] = { 3616 /* Ignore ReadBuffer accesses */ 3617 { .name = "C9_READBUFFER", .cp = 15, .crn = 9, 3618 .crm = CP_ANY, .opc1 = CP_ANY, .opc2 = CP_ANY, 3619 .access = PL1_RW, .resetvalue = 0, 3620 .type = ARM_CP_CONST | ARM_CP_OVERRIDE | ARM_CP_NO_RAW }, 3621 REGINFO_SENTINEL 3622 }; 3623 3624 static uint64_t midr_read(CPUARMState *env, const ARMCPRegInfo *ri) 3625 { 3626 ARMCPU *cpu = arm_env_get_cpu(env); 3627 unsigned int cur_el = arm_current_el(env); 3628 bool secure = arm_is_secure(env); 3629 3630 if (arm_feature(&cpu->env, ARM_FEATURE_EL2) && !secure && cur_el == 1) { 3631 return env->cp15.vpidr_el2; 3632 } 3633 return raw_read(env, ri); 3634 } 3635 3636 static uint64_t mpidr_read_val(CPUARMState *env) 3637 { 3638 ARMCPU *cpu = ARM_CPU(arm_env_get_cpu(env)); 3639 uint64_t mpidr = cpu->mp_affinity; 3640 3641 if (arm_feature(env, ARM_FEATURE_V7MP)) { 3642 mpidr |= (1U << 31); 3643 /* Cores which are uniprocessor (non-coherent) 3644 * but still implement the MP extensions set 3645 * bit 30. (For instance, Cortex-R5). 3646 */ 3647 if (cpu->mp_is_up) { 3648 mpidr |= (1u << 30); 3649 } 3650 } 3651 return mpidr; 3652 } 3653 3654 static uint64_t mpidr_read(CPUARMState *env, const ARMCPRegInfo *ri) 3655 { 3656 unsigned int cur_el = arm_current_el(env); 3657 bool secure = arm_is_secure(env); 3658 3659 if (arm_feature(env, ARM_FEATURE_EL2) && !secure && cur_el == 1) { 3660 return env->cp15.vmpidr_el2; 3661 } 3662 return mpidr_read_val(env); 3663 } 3664 3665 static const ARMCPRegInfo lpae_cp_reginfo[] = { 3666 /* NOP AMAIR0/1 */ 3667 { .name = "AMAIR0", .state = ARM_CP_STATE_BOTH, 3668 .opc0 = 3, .crn = 10, .crm = 3, .opc1 = 0, .opc2 = 0, 3669 .access = PL1_RW, .type = ARM_CP_CONST, 3670 .resetvalue = 0 }, 3671 /* AMAIR1 is mapped to AMAIR_EL1[63:32] */ 3672 { .name = "AMAIR1", .cp = 15, .crn = 10, .crm = 3, .opc1 = 0, .opc2 = 1, 3673 .access = PL1_RW, .type = ARM_CP_CONST, 3674 .resetvalue = 0 }, 3675 { .name = "PAR", .cp = 15, .crm = 7, .opc1 = 0, 3676 .access = PL1_RW, .type = ARM_CP_64BIT, .resetvalue = 0, 3677 .bank_fieldoffsets = { offsetof(CPUARMState, cp15.par_s), 3678 offsetof(CPUARMState, cp15.par_ns)} }, 3679 { .name = "TTBR0", .cp = 15, .crm = 2, .opc1 = 0, 3680 .access = PL1_RW, .type = ARM_CP_64BIT | ARM_CP_ALIAS, 3681 .bank_fieldoffsets = { offsetof(CPUARMState, cp15.ttbr0_s), 3682 offsetof(CPUARMState, cp15.ttbr0_ns) }, 3683 .writefn = vmsa_ttbr_write, }, 3684 { .name = "TTBR1", .cp = 15, .crm = 2, .opc1 = 1, 3685 .access = PL1_RW, .type = ARM_CP_64BIT | ARM_CP_ALIAS, 3686 .bank_fieldoffsets = { offsetof(CPUARMState, cp15.ttbr1_s), 3687 offsetof(CPUARMState, cp15.ttbr1_ns) }, 3688 .writefn = vmsa_ttbr_write, }, 3689 REGINFO_SENTINEL 3690 }; 3691 3692 static uint64_t aa64_fpcr_read(CPUARMState *env, const ARMCPRegInfo *ri) 3693 { 3694 return vfp_get_fpcr(env); 3695 } 3696 3697 static void aa64_fpcr_write(CPUARMState *env, const ARMCPRegInfo *ri, 3698 uint64_t value) 3699 { 3700 vfp_set_fpcr(env, value); 3701 } 3702 3703 static uint64_t aa64_fpsr_read(CPUARMState *env, const ARMCPRegInfo *ri) 3704 { 3705 return vfp_get_fpsr(env); 3706 } 3707 3708 static void aa64_fpsr_write(CPUARMState *env, const ARMCPRegInfo *ri, 3709 uint64_t value) 3710 { 3711 vfp_set_fpsr(env, value); 3712 } 3713 3714 static CPAccessResult aa64_daif_access(CPUARMState *env, const ARMCPRegInfo *ri, 3715 bool isread) 3716 { 3717 if (arm_current_el(env) == 0 && !(env->cp15.sctlr_el[1] & SCTLR_UMA)) { 3718 return CP_ACCESS_TRAP; 3719 } 3720 return CP_ACCESS_OK; 3721 } 3722 3723 static void aa64_daif_write(CPUARMState *env, const ARMCPRegInfo *ri, 3724 uint64_t value) 3725 { 3726 env->daif = value & PSTATE_DAIF; 3727 } 3728 3729 static CPAccessResult aa64_cacheop_access(CPUARMState *env, 3730 const ARMCPRegInfo *ri, 3731 bool isread) 3732 { 3733 /* Cache invalidate/clean: NOP, but EL0 must UNDEF unless 3734 * SCTLR_EL1.UCI is set. 3735 */ 3736 if (arm_current_el(env) == 0 && !(env->cp15.sctlr_el[1] & SCTLR_UCI)) { 3737 return CP_ACCESS_TRAP; 3738 } 3739 return CP_ACCESS_OK; 3740 } 3741 3742 /* See: D4.7.2 TLB maintenance requirements and the TLB maintenance instructions 3743 * Page D4-1736 (DDI0487A.b) 3744 */ 3745 3746 static void tlbi_aa64_vmalle1is_write(CPUARMState *env, const ARMCPRegInfo *ri, 3747 uint64_t value) 3748 { 3749 CPUState *cs = ENV_GET_CPU(env); 3750 bool sec = arm_is_secure_below_el3(env); 3751 3752 if (sec) { 3753 tlb_flush_by_mmuidx_all_cpus_synced(cs, 3754 ARMMMUIdxBit_S1SE1 | 3755 ARMMMUIdxBit_S1SE0); 3756 } else { 3757 tlb_flush_by_mmuidx_all_cpus_synced(cs, 3758 ARMMMUIdxBit_S12NSE1 | 3759 ARMMMUIdxBit_S12NSE0); 3760 } 3761 } 3762 3763 static void tlbi_aa64_vmalle1_write(CPUARMState *env, const ARMCPRegInfo *ri, 3764 uint64_t value) 3765 { 3766 CPUState *cs = ENV_GET_CPU(env); 3767 3768 if (tlb_force_broadcast(env)) { 3769 tlbi_aa64_vmalle1is_write(env, NULL, value); 3770 return; 3771 } 3772 3773 if (arm_is_secure_below_el3(env)) { 3774 tlb_flush_by_mmuidx(cs, 3775 ARMMMUIdxBit_S1SE1 | 3776 ARMMMUIdxBit_S1SE0); 3777 } else { 3778 tlb_flush_by_mmuidx(cs, 3779 ARMMMUIdxBit_S12NSE1 | 3780 ARMMMUIdxBit_S12NSE0); 3781 } 3782 } 3783 3784 static void tlbi_aa64_alle1_write(CPUARMState *env, const ARMCPRegInfo *ri, 3785 uint64_t value) 3786 { 3787 /* Note that the 'ALL' scope must invalidate both stage 1 and 3788 * stage 2 translations, whereas most other scopes only invalidate 3789 * stage 1 translations. 3790 */ 3791 ARMCPU *cpu = arm_env_get_cpu(env); 3792 CPUState *cs = CPU(cpu); 3793 3794 if (arm_is_secure_below_el3(env)) { 3795 tlb_flush_by_mmuidx(cs, 3796 ARMMMUIdxBit_S1SE1 | 3797 ARMMMUIdxBit_S1SE0); 3798 } else { 3799 if (arm_feature(env, ARM_FEATURE_EL2)) { 3800 tlb_flush_by_mmuidx(cs, 3801 ARMMMUIdxBit_S12NSE1 | 3802 ARMMMUIdxBit_S12NSE0 | 3803 ARMMMUIdxBit_S2NS); 3804 } else { 3805 tlb_flush_by_mmuidx(cs, 3806 ARMMMUIdxBit_S12NSE1 | 3807 ARMMMUIdxBit_S12NSE0); 3808 } 3809 } 3810 } 3811 3812 static void tlbi_aa64_alle2_write(CPUARMState *env, const ARMCPRegInfo *ri, 3813 uint64_t value) 3814 { 3815 ARMCPU *cpu = arm_env_get_cpu(env); 3816 CPUState *cs = CPU(cpu); 3817 3818 tlb_flush_by_mmuidx(cs, ARMMMUIdxBit_S1E2); 3819 } 3820 3821 static void tlbi_aa64_alle3_write(CPUARMState *env, const ARMCPRegInfo *ri, 3822 uint64_t value) 3823 { 3824 ARMCPU *cpu = arm_env_get_cpu(env); 3825 CPUState *cs = CPU(cpu); 3826 3827 tlb_flush_by_mmuidx(cs, ARMMMUIdxBit_S1E3); 3828 } 3829 3830 static void tlbi_aa64_alle1is_write(CPUARMState *env, const ARMCPRegInfo *ri, 3831 uint64_t value) 3832 { 3833 /* Note that the 'ALL' scope must invalidate both stage 1 and 3834 * stage 2 translations, whereas most other scopes only invalidate 3835 * stage 1 translations. 3836 */ 3837 CPUState *cs = ENV_GET_CPU(env); 3838 bool sec = arm_is_secure_below_el3(env); 3839 bool has_el2 = arm_feature(env, ARM_FEATURE_EL2); 3840 3841 if (sec) { 3842 tlb_flush_by_mmuidx_all_cpus_synced(cs, 3843 ARMMMUIdxBit_S1SE1 | 3844 ARMMMUIdxBit_S1SE0); 3845 } else if (has_el2) { 3846 tlb_flush_by_mmuidx_all_cpus_synced(cs, 3847 ARMMMUIdxBit_S12NSE1 | 3848 ARMMMUIdxBit_S12NSE0 | 3849 ARMMMUIdxBit_S2NS); 3850 } else { 3851 tlb_flush_by_mmuidx_all_cpus_synced(cs, 3852 ARMMMUIdxBit_S12NSE1 | 3853 ARMMMUIdxBit_S12NSE0); 3854 } 3855 } 3856 3857 static void tlbi_aa64_alle2is_write(CPUARMState *env, const ARMCPRegInfo *ri, 3858 uint64_t value) 3859 { 3860 CPUState *cs = ENV_GET_CPU(env); 3861 3862 tlb_flush_by_mmuidx_all_cpus_synced(cs, ARMMMUIdxBit_S1E2); 3863 } 3864 3865 static void tlbi_aa64_alle3is_write(CPUARMState *env, const ARMCPRegInfo *ri, 3866 uint64_t value) 3867 { 3868 CPUState *cs = ENV_GET_CPU(env); 3869 3870 tlb_flush_by_mmuidx_all_cpus_synced(cs, ARMMMUIdxBit_S1E3); 3871 } 3872 3873 static void tlbi_aa64_vae2_write(CPUARMState *env, const ARMCPRegInfo *ri, 3874 uint64_t value) 3875 { 3876 /* Invalidate by VA, EL2 3877 * Currently handles both VAE2 and VALE2, since we don't support 3878 * flush-last-level-only. 3879 */ 3880 ARMCPU *cpu = arm_env_get_cpu(env); 3881 CPUState *cs = CPU(cpu); 3882 uint64_t pageaddr = sextract64(value << 12, 0, 56); 3883 3884 tlb_flush_page_by_mmuidx(cs, pageaddr, ARMMMUIdxBit_S1E2); 3885 } 3886 3887 static void tlbi_aa64_vae3_write(CPUARMState *env, const ARMCPRegInfo *ri, 3888 uint64_t value) 3889 { 3890 /* Invalidate by VA, EL3 3891 * Currently handles both VAE3 and VALE3, since we don't support 3892 * flush-last-level-only. 3893 */ 3894 ARMCPU *cpu = arm_env_get_cpu(env); 3895 CPUState *cs = CPU(cpu); 3896 uint64_t pageaddr = sextract64(value << 12, 0, 56); 3897 3898 tlb_flush_page_by_mmuidx(cs, pageaddr, ARMMMUIdxBit_S1E3); 3899 } 3900 3901 static void tlbi_aa64_vae1is_write(CPUARMState *env, const ARMCPRegInfo *ri, 3902 uint64_t value) 3903 { 3904 ARMCPU *cpu = arm_env_get_cpu(env); 3905 CPUState *cs = CPU(cpu); 3906 bool sec = arm_is_secure_below_el3(env); 3907 uint64_t pageaddr = sextract64(value << 12, 0, 56); 3908 3909 if (sec) { 3910 tlb_flush_page_by_mmuidx_all_cpus_synced(cs, pageaddr, 3911 ARMMMUIdxBit_S1SE1 | 3912 ARMMMUIdxBit_S1SE0); 3913 } else { 3914 tlb_flush_page_by_mmuidx_all_cpus_synced(cs, pageaddr, 3915 ARMMMUIdxBit_S12NSE1 | 3916 ARMMMUIdxBit_S12NSE0); 3917 } 3918 } 3919 3920 static void tlbi_aa64_vae1_write(CPUARMState *env, const ARMCPRegInfo *ri, 3921 uint64_t value) 3922 { 3923 /* Invalidate by VA, EL1&0 (AArch64 version). 3924 * Currently handles all of VAE1, VAAE1, VAALE1 and VALE1, 3925 * since we don't support flush-for-specific-ASID-only or 3926 * flush-last-level-only. 3927 */ 3928 ARMCPU *cpu = arm_env_get_cpu(env); 3929 CPUState *cs = CPU(cpu); 3930 uint64_t pageaddr = sextract64(value << 12, 0, 56); 3931 3932 if (tlb_force_broadcast(env)) { 3933 tlbi_aa64_vae1is_write(env, NULL, value); 3934 return; 3935 } 3936 3937 if (arm_is_secure_below_el3(env)) { 3938 tlb_flush_page_by_mmuidx(cs, pageaddr, 3939 ARMMMUIdxBit_S1SE1 | 3940 ARMMMUIdxBit_S1SE0); 3941 } else { 3942 tlb_flush_page_by_mmuidx(cs, pageaddr, 3943 ARMMMUIdxBit_S12NSE1 | 3944 ARMMMUIdxBit_S12NSE0); 3945 } 3946 } 3947 3948 static void tlbi_aa64_vae2is_write(CPUARMState *env, const ARMCPRegInfo *ri, 3949 uint64_t value) 3950 { 3951 CPUState *cs = ENV_GET_CPU(env); 3952 uint64_t pageaddr = sextract64(value << 12, 0, 56); 3953 3954 tlb_flush_page_by_mmuidx_all_cpus_synced(cs, pageaddr, 3955 ARMMMUIdxBit_S1E2); 3956 } 3957 3958 static void tlbi_aa64_vae3is_write(CPUARMState *env, const ARMCPRegInfo *ri, 3959 uint64_t value) 3960 { 3961 CPUState *cs = ENV_GET_CPU(env); 3962 uint64_t pageaddr = sextract64(value << 12, 0, 56); 3963 3964 tlb_flush_page_by_mmuidx_all_cpus_synced(cs, pageaddr, 3965 ARMMMUIdxBit_S1E3); 3966 } 3967 3968 static void tlbi_aa64_ipas2e1_write(CPUARMState *env, const ARMCPRegInfo *ri, 3969 uint64_t value) 3970 { 3971 /* Invalidate by IPA. This has to invalidate any structures that 3972 * contain only stage 2 translation information, but does not need 3973 * to apply to structures that contain combined stage 1 and stage 2 3974 * translation information. 3975 * This must NOP if EL2 isn't implemented or SCR_EL3.NS is zero. 3976 */ 3977 ARMCPU *cpu = arm_env_get_cpu(env); 3978 CPUState *cs = CPU(cpu); 3979 uint64_t pageaddr; 3980 3981 if (!arm_feature(env, ARM_FEATURE_EL2) || !(env->cp15.scr_el3 & SCR_NS)) { 3982 return; 3983 } 3984 3985 pageaddr = sextract64(value << 12, 0, 48); 3986 3987 tlb_flush_page_by_mmuidx(cs, pageaddr, ARMMMUIdxBit_S2NS); 3988 } 3989 3990 static void tlbi_aa64_ipas2e1is_write(CPUARMState *env, const ARMCPRegInfo *ri, 3991 uint64_t value) 3992 { 3993 CPUState *cs = ENV_GET_CPU(env); 3994 uint64_t pageaddr; 3995 3996 if (!arm_feature(env, ARM_FEATURE_EL2) || !(env->cp15.scr_el3 & SCR_NS)) { 3997 return; 3998 } 3999 4000 pageaddr = sextract64(value << 12, 0, 48); 4001 4002 tlb_flush_page_by_mmuidx_all_cpus_synced(cs, pageaddr, 4003 ARMMMUIdxBit_S2NS); 4004 } 4005 4006 static CPAccessResult aa64_zva_access(CPUARMState *env, const ARMCPRegInfo *ri, 4007 bool isread) 4008 { 4009 /* We don't implement EL2, so the only control on DC ZVA is the 4010 * bit in the SCTLR which can prohibit access for EL0. 4011 */ 4012 if (arm_current_el(env) == 0 && !(env->cp15.sctlr_el[1] & SCTLR_DZE)) { 4013 return CP_ACCESS_TRAP; 4014 } 4015 return CP_ACCESS_OK; 4016 } 4017 4018 static uint64_t aa64_dczid_read(CPUARMState *env, const ARMCPRegInfo *ri) 4019 { 4020 ARMCPU *cpu = arm_env_get_cpu(env); 4021 int dzp_bit = 1 << 4; 4022 4023 /* DZP indicates whether DC ZVA access is allowed */ 4024 if (aa64_zva_access(env, NULL, false) == CP_ACCESS_OK) { 4025 dzp_bit = 0; 4026 } 4027 return cpu->dcz_blocksize | dzp_bit; 4028 } 4029 4030 static CPAccessResult sp_el0_access(CPUARMState *env, const ARMCPRegInfo *ri, 4031 bool isread) 4032 { 4033 if (!(env->pstate & PSTATE_SP)) { 4034 /* Access to SP_EL0 is undefined if it's being used as 4035 * the stack pointer. 4036 */ 4037 return CP_ACCESS_TRAP_UNCATEGORIZED; 4038 } 4039 return CP_ACCESS_OK; 4040 } 4041 4042 static uint64_t spsel_read(CPUARMState *env, const ARMCPRegInfo *ri) 4043 { 4044 return env->pstate & PSTATE_SP; 4045 } 4046 4047 static void spsel_write(CPUARMState *env, const ARMCPRegInfo *ri, uint64_t val) 4048 { 4049 update_spsel(env, val); 4050 } 4051 4052 static void sctlr_write(CPUARMState *env, const ARMCPRegInfo *ri, 4053 uint64_t value) 4054 { 4055 ARMCPU *cpu = arm_env_get_cpu(env); 4056 4057 if (raw_read(env, ri) == value) { 4058 /* Skip the TLB flush if nothing actually changed; Linux likes 4059 * to do a lot of pointless SCTLR writes. 4060 */ 4061 return; 4062 } 4063 4064 if (arm_feature(env, ARM_FEATURE_PMSA) && !cpu->has_mpu) { 4065 /* M bit is RAZ/WI for PMSA with no MPU implemented */ 4066 value &= ~SCTLR_M; 4067 } 4068 4069 raw_write(env, ri, value); 4070 /* ??? Lots of these bits are not implemented. */ 4071 /* This may enable/disable the MMU, so do a TLB flush. */ 4072 tlb_flush(CPU(cpu)); 4073 } 4074 4075 static CPAccessResult fpexc32_access(CPUARMState *env, const ARMCPRegInfo *ri, 4076 bool isread) 4077 { 4078 if ((env->cp15.cptr_el[2] & CPTR_TFP) && arm_current_el(env) == 2) { 4079 return CP_ACCESS_TRAP_FP_EL2; 4080 } 4081 if (env->cp15.cptr_el[3] & CPTR_TFP) { 4082 return CP_ACCESS_TRAP_FP_EL3; 4083 } 4084 return CP_ACCESS_OK; 4085 } 4086 4087 static void sdcr_write(CPUARMState *env, const ARMCPRegInfo *ri, 4088 uint64_t value) 4089 { 4090 env->cp15.mdcr_el3 = value & SDCR_VALID_MASK; 4091 } 4092 4093 static const ARMCPRegInfo v8_cp_reginfo[] = { 4094 /* Minimal set of EL0-visible registers. This will need to be expanded 4095 * significantly for system emulation of AArch64 CPUs. 4096 */ 4097 { .name = "NZCV", .state = ARM_CP_STATE_AA64, 4098 .opc0 = 3, .opc1 = 3, .opc2 = 0, .crn = 4, .crm = 2, 4099 .access = PL0_RW, .type = ARM_CP_NZCV }, 4100 { .name = "DAIF", .state = ARM_CP_STATE_AA64, 4101 .opc0 = 3, .opc1 = 3, .opc2 = 1, .crn = 4, .crm = 2, 4102 .type = ARM_CP_NO_RAW, 4103 .access = PL0_RW, .accessfn = aa64_daif_access, 4104 .fieldoffset = offsetof(CPUARMState, daif), 4105 .writefn = aa64_daif_write, .resetfn = arm_cp_reset_ignore }, 4106 { .name = "FPCR", .state = ARM_CP_STATE_AA64, 4107 .opc0 = 3, .opc1 = 3, .opc2 = 0, .crn = 4, .crm = 4, 4108 .access = PL0_RW, .type = ARM_CP_FPU | ARM_CP_SUPPRESS_TB_END, 4109 .readfn = aa64_fpcr_read, .writefn = aa64_fpcr_write }, 4110 { .name = "FPSR", .state = ARM_CP_STATE_AA64, 4111 .opc0 = 3, .opc1 = 3, .opc2 = 1, .crn = 4, .crm = 4, 4112 .access = PL0_RW, .type = ARM_CP_FPU | ARM_CP_SUPPRESS_TB_END, 4113 .readfn = aa64_fpsr_read, .writefn = aa64_fpsr_write }, 4114 { .name = "DCZID_EL0", .state = ARM_CP_STATE_AA64, 4115 .opc0 = 3, .opc1 = 3, .opc2 = 7, .crn = 0, .crm = 0, 4116 .access = PL0_R, .type = ARM_CP_NO_RAW, 4117 .readfn = aa64_dczid_read }, 4118 { .name = "DC_ZVA", .state = ARM_CP_STATE_AA64, 4119 .opc0 = 1, .opc1 = 3, .crn = 7, .crm = 4, .opc2 = 1, 4120 .access = PL0_W, .type = ARM_CP_DC_ZVA, 4121 #ifndef CONFIG_USER_ONLY 4122 /* Avoid overhead of an access check that always passes in user-mode */ 4123 .accessfn = aa64_zva_access, 4124 #endif 4125 }, 4126 { .name = "CURRENTEL", .state = ARM_CP_STATE_AA64, 4127 .opc0 = 3, .opc1 = 0, .opc2 = 2, .crn = 4, .crm = 2, 4128 .access = PL1_R, .type = ARM_CP_CURRENTEL }, 4129 /* Cache ops: all NOPs since we don't emulate caches */ 4130 { .name = "IC_IALLUIS", .state = ARM_CP_STATE_AA64, 4131 .opc0 = 1, .opc1 = 0, .crn = 7, .crm = 1, .opc2 = 0, 4132 .access = PL1_W, .type = ARM_CP_NOP }, 4133 { .name = "IC_IALLU", .state = ARM_CP_STATE_AA64, 4134 .opc0 = 1, .opc1 = 0, .crn = 7, .crm = 5, .opc2 = 0, 4135 .access = PL1_W, .type = ARM_CP_NOP }, 4136 { .name = "IC_IVAU", .state = ARM_CP_STATE_AA64, 4137 .opc0 = 1, .opc1 = 3, .crn = 7, .crm = 5, .opc2 = 1, 4138 .access = PL0_W, .type = ARM_CP_NOP, 4139 .accessfn = aa64_cacheop_access }, 4140 { .name = "DC_IVAC", .state = ARM_CP_STATE_AA64, 4141 .opc0 = 1, .opc1 = 0, .crn = 7, .crm = 6, .opc2 = 1, 4142 .access = PL1_W, .type = ARM_CP_NOP }, 4143 { .name = "DC_ISW", .state = ARM_CP_STATE_AA64, 4144 .opc0 = 1, .opc1 = 0, .crn = 7, .crm = 6, .opc2 = 2, 4145 .access = PL1_W, .type = ARM_CP_NOP }, 4146 { .name = "DC_CVAC", .state = ARM_CP_STATE_AA64, 4147 .opc0 = 1, .opc1 = 3, .crn = 7, .crm = 10, .opc2 = 1, 4148 .access = PL0_W, .type = ARM_CP_NOP, 4149 .accessfn = aa64_cacheop_access }, 4150 { .name = "DC_CSW", .state = ARM_CP_STATE_AA64, 4151 .opc0 = 1, .opc1 = 0, .crn = 7, .crm = 10, .opc2 = 2, 4152 .access = PL1_W, .type = ARM_CP_NOP }, 4153 { .name = "DC_CVAU", .state = ARM_CP_STATE_AA64, 4154 .opc0 = 1, .opc1 = 3, .crn = 7, .crm = 11, .opc2 = 1, 4155 .access = PL0_W, .type = ARM_CP_NOP, 4156 .accessfn = aa64_cacheop_access }, 4157 { .name = "DC_CIVAC", .state = ARM_CP_STATE_AA64, 4158 .opc0 = 1, .opc1 = 3, .crn = 7, .crm = 14, .opc2 = 1, 4159 .access = PL0_W, .type = ARM_CP_NOP, 4160 .accessfn = aa64_cacheop_access }, 4161 { .name = "DC_CISW", .state = ARM_CP_STATE_AA64, 4162 .opc0 = 1, .opc1 = 0, .crn = 7, .crm = 14, .opc2 = 2, 4163 .access = PL1_W, .type = ARM_CP_NOP }, 4164 /* TLBI operations */ 4165 { .name = "TLBI_VMALLE1IS", .state = ARM_CP_STATE_AA64, 4166 .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 3, .opc2 = 0, 4167 .access = PL1_W, .type = ARM_CP_NO_RAW, 4168 .writefn = tlbi_aa64_vmalle1is_write }, 4169 { .name = "TLBI_VAE1IS", .state = ARM_CP_STATE_AA64, 4170 .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 3, .opc2 = 1, 4171 .access = PL1_W, .type = ARM_CP_NO_RAW, 4172 .writefn = tlbi_aa64_vae1is_write }, 4173 { .name = "TLBI_ASIDE1IS", .state = ARM_CP_STATE_AA64, 4174 .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 3, .opc2 = 2, 4175 .access = PL1_W, .type = ARM_CP_NO_RAW, 4176 .writefn = tlbi_aa64_vmalle1is_write }, 4177 { .name = "TLBI_VAAE1IS", .state = ARM_CP_STATE_AA64, 4178 .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 3, .opc2 = 3, 4179 .access = PL1_W, .type = ARM_CP_NO_RAW, 4180 .writefn = tlbi_aa64_vae1is_write }, 4181 { .name = "TLBI_VALE1IS", .state = ARM_CP_STATE_AA64, 4182 .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 3, .opc2 = 5, 4183 .access = PL1_W, .type = ARM_CP_NO_RAW, 4184 .writefn = tlbi_aa64_vae1is_write }, 4185 { .name = "TLBI_VAALE1IS", .state = ARM_CP_STATE_AA64, 4186 .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 3, .opc2 = 7, 4187 .access = PL1_W, .type = ARM_CP_NO_RAW, 4188 .writefn = tlbi_aa64_vae1is_write }, 4189 { .name = "TLBI_VMALLE1", .state = ARM_CP_STATE_AA64, 4190 .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 7, .opc2 = 0, 4191 .access = PL1_W, .type = ARM_CP_NO_RAW, 4192 .writefn = tlbi_aa64_vmalle1_write }, 4193 { .name = "TLBI_VAE1", .state = ARM_CP_STATE_AA64, 4194 .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 7, .opc2 = 1, 4195 .access = PL1_W, .type = ARM_CP_NO_RAW, 4196 .writefn = tlbi_aa64_vae1_write }, 4197 { .name = "TLBI_ASIDE1", .state = ARM_CP_STATE_AA64, 4198 .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 7, .opc2 = 2, 4199 .access = PL1_W, .type = ARM_CP_NO_RAW, 4200 .writefn = tlbi_aa64_vmalle1_write }, 4201 { .name = "TLBI_VAAE1", .state = ARM_CP_STATE_AA64, 4202 .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 7, .opc2 = 3, 4203 .access = PL1_W, .type = ARM_CP_NO_RAW, 4204 .writefn = tlbi_aa64_vae1_write }, 4205 { .name = "TLBI_VALE1", .state = ARM_CP_STATE_AA64, 4206 .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 7, .opc2 = 5, 4207 .access = PL1_W, .type = ARM_CP_NO_RAW, 4208 .writefn = tlbi_aa64_vae1_write }, 4209 { .name = "TLBI_VAALE1", .state = ARM_CP_STATE_AA64, 4210 .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 7, .opc2 = 7, 4211 .access = PL1_W, .type = ARM_CP_NO_RAW, 4212 .writefn = tlbi_aa64_vae1_write }, 4213 { .name = "TLBI_IPAS2E1IS", .state = ARM_CP_STATE_AA64, 4214 .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 0, .opc2 = 1, 4215 .access = PL2_W, .type = ARM_CP_NO_RAW, 4216 .writefn = tlbi_aa64_ipas2e1is_write }, 4217 { .name = "TLBI_IPAS2LE1IS", .state = ARM_CP_STATE_AA64, 4218 .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 0, .opc2 = 5, 4219 .access = PL2_W, .type = ARM_CP_NO_RAW, 4220 .writefn = tlbi_aa64_ipas2e1is_write }, 4221 { .name = "TLBI_ALLE1IS", .state = ARM_CP_STATE_AA64, 4222 .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 3, .opc2 = 4, 4223 .access = PL2_W, .type = ARM_CP_NO_RAW, 4224 .writefn = tlbi_aa64_alle1is_write }, 4225 { .name = "TLBI_VMALLS12E1IS", .state = ARM_CP_STATE_AA64, 4226 .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 3, .opc2 = 6, 4227 .access = PL2_W, .type = ARM_CP_NO_RAW, 4228 .writefn = tlbi_aa64_alle1is_write }, 4229 { .name = "TLBI_IPAS2E1", .state = ARM_CP_STATE_AA64, 4230 .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 4, .opc2 = 1, 4231 .access = PL2_W, .type = ARM_CP_NO_RAW, 4232 .writefn = tlbi_aa64_ipas2e1_write }, 4233 { .name = "TLBI_IPAS2LE1", .state = ARM_CP_STATE_AA64, 4234 .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 4, .opc2 = 5, 4235 .access = PL2_W, .type = ARM_CP_NO_RAW, 4236 .writefn = tlbi_aa64_ipas2e1_write }, 4237 { .name = "TLBI_ALLE1", .state = ARM_CP_STATE_AA64, 4238 .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 7, .opc2 = 4, 4239 .access = PL2_W, .type = ARM_CP_NO_RAW, 4240 .writefn = tlbi_aa64_alle1_write }, 4241 { .name = "TLBI_VMALLS12E1", .state = ARM_CP_STATE_AA64, 4242 .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 7, .opc2 = 6, 4243 .access = PL2_W, .type = ARM_CP_NO_RAW, 4244 .writefn = tlbi_aa64_alle1is_write }, 4245 #ifndef CONFIG_USER_ONLY 4246 /* 64 bit address translation operations */ 4247 { .name = "AT_S1E1R", .state = ARM_CP_STATE_AA64, 4248 .opc0 = 1, .opc1 = 0, .crn = 7, .crm = 8, .opc2 = 0, 4249 .access = PL1_W, .type = ARM_CP_NO_RAW, .writefn = ats_write64 }, 4250 { .name = "AT_S1E1W", .state = ARM_CP_STATE_AA64, 4251 .opc0 = 1, .opc1 = 0, .crn = 7, .crm = 8, .opc2 = 1, 4252 .access = PL1_W, .type = ARM_CP_NO_RAW, .writefn = ats_write64 }, 4253 { .name = "AT_S1E0R", .state = ARM_CP_STATE_AA64, 4254 .opc0 = 1, .opc1 = 0, .crn = 7, .crm = 8, .opc2 = 2, 4255 .access = PL1_W, .type = ARM_CP_NO_RAW, .writefn = ats_write64 }, 4256 { .name = "AT_S1E0W", .state = ARM_CP_STATE_AA64, 4257 .opc0 = 1, .opc1 = 0, .crn = 7, .crm = 8, .opc2 = 3, 4258 .access = PL1_W, .type = ARM_CP_NO_RAW, .writefn = ats_write64 }, 4259 { .name = "AT_S12E1R", .state = ARM_CP_STATE_AA64, 4260 .opc0 = 1, .opc1 = 4, .crn = 7, .crm = 8, .opc2 = 4, 4261 .access = PL2_W, .type = ARM_CP_NO_RAW, .writefn = ats_write64 }, 4262 { .name = "AT_S12E1W", .state = ARM_CP_STATE_AA64, 4263 .opc0 = 1, .opc1 = 4, .crn = 7, .crm = 8, .opc2 = 5, 4264 .access = PL2_W, .type = ARM_CP_NO_RAW, .writefn = ats_write64 }, 4265 { .name = "AT_S12E0R", .state = ARM_CP_STATE_AA64, 4266 .opc0 = 1, .opc1 = 4, .crn = 7, .crm = 8, .opc2 = 6, 4267 .access = PL2_W, .type = ARM_CP_NO_RAW, .writefn = ats_write64 }, 4268 { .name = "AT_S12E0W", .state = ARM_CP_STATE_AA64, 4269 .opc0 = 1, .opc1 = 4, .crn = 7, .crm = 8, .opc2 = 7, 4270 .access = PL2_W, .type = ARM_CP_NO_RAW, .writefn = ats_write64 }, 4271 /* AT S1E2* are elsewhere as they UNDEF from EL3 if EL2 is not present */ 4272 { .name = "AT_S1E3R", .state = ARM_CP_STATE_AA64, 4273 .opc0 = 1, .opc1 = 6, .crn = 7, .crm = 8, .opc2 = 0, 4274 .access = PL3_W, .type = ARM_CP_NO_RAW, .writefn = ats_write64 }, 4275 { .name = "AT_S1E3W", .state = ARM_CP_STATE_AA64, 4276 .opc0 = 1, .opc1 = 6, .crn = 7, .crm = 8, .opc2 = 1, 4277 .access = PL3_W, .type = ARM_CP_NO_RAW, .writefn = ats_write64 }, 4278 { .name = "PAR_EL1", .state = ARM_CP_STATE_AA64, 4279 .type = ARM_CP_ALIAS, 4280 .opc0 = 3, .opc1 = 0, .crn = 7, .crm = 4, .opc2 = 0, 4281 .access = PL1_RW, .resetvalue = 0, 4282 .fieldoffset = offsetof(CPUARMState, cp15.par_el[1]), 4283 .writefn = par_write }, 4284 #endif 4285 /* TLB invalidate last level of translation table walk */ 4286 { .name = "TLBIMVALIS", .cp = 15, .opc1 = 0, .crn = 8, .crm = 3, .opc2 = 5, 4287 .type = ARM_CP_NO_RAW, .access = PL1_W, .writefn = tlbimva_is_write }, 4288 { .name = "TLBIMVAALIS", .cp = 15, .opc1 = 0, .crn = 8, .crm = 3, .opc2 = 7, 4289 .type = ARM_CP_NO_RAW, .access = PL1_W, 4290 .writefn = tlbimvaa_is_write }, 4291 { .name = "TLBIMVAL", .cp = 15, .opc1 = 0, .crn = 8, .crm = 7, .opc2 = 5, 4292 .type = ARM_CP_NO_RAW, .access = PL1_W, .writefn = tlbimva_write }, 4293 { .name = "TLBIMVAAL", .cp = 15, .opc1 = 0, .crn = 8, .crm = 7, .opc2 = 7, 4294 .type = ARM_CP_NO_RAW, .access = PL1_W, .writefn = tlbimvaa_write }, 4295 { .name = "TLBIMVALH", .cp = 15, .opc1 = 4, .crn = 8, .crm = 7, .opc2 = 5, 4296 .type = ARM_CP_NO_RAW, .access = PL2_W, 4297 .writefn = tlbimva_hyp_write }, 4298 { .name = "TLBIMVALHIS", 4299 .cp = 15, .opc1 = 4, .crn = 8, .crm = 3, .opc2 = 5, 4300 .type = ARM_CP_NO_RAW, .access = PL2_W, 4301 .writefn = tlbimva_hyp_is_write }, 4302 { .name = "TLBIIPAS2", 4303 .cp = 15, .opc1 = 4, .crn = 8, .crm = 4, .opc2 = 1, 4304 .type = ARM_CP_NO_RAW, .access = PL2_W, 4305 .writefn = tlbiipas2_write }, 4306 { .name = "TLBIIPAS2IS", 4307 .cp = 15, .opc1 = 4, .crn = 8, .crm = 0, .opc2 = 1, 4308 .type = ARM_CP_NO_RAW, .access = PL2_W, 4309 .writefn = tlbiipas2_is_write }, 4310 { .name = "TLBIIPAS2L", 4311 .cp = 15, .opc1 = 4, .crn = 8, .crm = 4, .opc2 = 5, 4312 .type = ARM_CP_NO_RAW, .access = PL2_W, 4313 .writefn = tlbiipas2_write }, 4314 { .name = "TLBIIPAS2LIS", 4315 .cp = 15, .opc1 = 4, .crn = 8, .crm = 0, .opc2 = 5, 4316 .type = ARM_CP_NO_RAW, .access = PL2_W, 4317 .writefn = tlbiipas2_is_write }, 4318 /* 32 bit cache operations */ 4319 { .name = "ICIALLUIS", .cp = 15, .opc1 = 0, .crn = 7, .crm = 1, .opc2 = 0, 4320 .type = ARM_CP_NOP, .access = PL1_W }, 4321 { .name = "BPIALLUIS", .cp = 15, .opc1 = 0, .crn = 7, .crm = 1, .opc2 = 6, 4322 .type = ARM_CP_NOP, .access = PL1_W }, 4323 { .name = "ICIALLU", .cp = 15, .opc1 = 0, .crn = 7, .crm = 5, .opc2 = 0, 4324 .type = ARM_CP_NOP, .access = PL1_W }, 4325 { .name = "ICIMVAU", .cp = 15, .opc1 = 0, .crn = 7, .crm = 5, .opc2 = 1, 4326 .type = ARM_CP_NOP, .access = PL1_W }, 4327 { .name = "BPIALL", .cp = 15, .opc1 = 0, .crn = 7, .crm = 5, .opc2 = 6, 4328 .type = ARM_CP_NOP, .access = PL1_W }, 4329 { .name = "BPIMVA", .cp = 15, .opc1 = 0, .crn = 7, .crm = 5, .opc2 = 7, 4330 .type = ARM_CP_NOP, .access = PL1_W }, 4331 { .name = "DCIMVAC", .cp = 15, .opc1 = 0, .crn = 7, .crm = 6, .opc2 = 1, 4332 .type = ARM_CP_NOP, .access = PL1_W }, 4333 { .name = "DCISW", .cp = 15, .opc1 = 0, .crn = 7, .crm = 6, .opc2 = 2, 4334 .type = ARM_CP_NOP, .access = PL1_W }, 4335 { .name = "DCCMVAC", .cp = 15, .opc1 = 0, .crn = 7, .crm = 10, .opc2 = 1, 4336 .type = ARM_CP_NOP, .access = PL1_W }, 4337 { .name = "DCCSW", .cp = 15, .opc1 = 0, .crn = 7, .crm = 10, .opc2 = 2, 4338 .type = ARM_CP_NOP, .access = PL1_W }, 4339 { .name = "DCCMVAU", .cp = 15, .opc1 = 0, .crn = 7, .crm = 11, .opc2 = 1, 4340 .type = ARM_CP_NOP, .access = PL1_W }, 4341 { .name = "DCCIMVAC", .cp = 15, .opc1 = 0, .crn = 7, .crm = 14, .opc2 = 1, 4342 .type = ARM_CP_NOP, .access = PL1_W }, 4343 { .name = "DCCISW", .cp = 15, .opc1 = 0, .crn = 7, .crm = 14, .opc2 = 2, 4344 .type = ARM_CP_NOP, .access = PL1_W }, 4345 /* MMU Domain access control / MPU write buffer control */ 4346 { .name = "DACR", .cp = 15, .opc1 = 0, .crn = 3, .crm = 0, .opc2 = 0, 4347 .access = PL1_RW, .resetvalue = 0, 4348 .writefn = dacr_write, .raw_writefn = raw_write, 4349 .bank_fieldoffsets = { offsetoflow32(CPUARMState, cp15.dacr_s), 4350 offsetoflow32(CPUARMState, cp15.dacr_ns) } }, 4351 { .name = "ELR_EL1", .state = ARM_CP_STATE_AA64, 4352 .type = ARM_CP_ALIAS, 4353 .opc0 = 3, .opc1 = 0, .crn = 4, .crm = 0, .opc2 = 1, 4354 .access = PL1_RW, 4355 .fieldoffset = offsetof(CPUARMState, elr_el[1]) }, 4356 { .name = "SPSR_EL1", .state = ARM_CP_STATE_AA64, 4357 .type = ARM_CP_ALIAS, 4358 .opc0 = 3, .opc1 = 0, .crn = 4, .crm = 0, .opc2 = 0, 4359 .access = PL1_RW, 4360 .fieldoffset = offsetof(CPUARMState, banked_spsr[BANK_SVC]) }, 4361 /* We rely on the access checks not allowing the guest to write to the 4362 * state field when SPSel indicates that it's being used as the stack 4363 * pointer. 4364 */ 4365 { .name = "SP_EL0", .state = ARM_CP_STATE_AA64, 4366 .opc0 = 3, .opc1 = 0, .crn = 4, .crm = 1, .opc2 = 0, 4367 .access = PL1_RW, .accessfn = sp_el0_access, 4368 .type = ARM_CP_ALIAS, 4369 .fieldoffset = offsetof(CPUARMState, sp_el[0]) }, 4370 { .name = "SP_EL1", .state = ARM_CP_STATE_AA64, 4371 .opc0 = 3, .opc1 = 4, .crn = 4, .crm = 1, .opc2 = 0, 4372 .access = PL2_RW, .type = ARM_CP_ALIAS, 4373 .fieldoffset = offsetof(CPUARMState, sp_el[1]) }, 4374 { .name = "SPSel", .state = ARM_CP_STATE_AA64, 4375 .opc0 = 3, .opc1 = 0, .crn = 4, .crm = 2, .opc2 = 0, 4376 .type = ARM_CP_NO_RAW, 4377 .access = PL1_RW, .readfn = spsel_read, .writefn = spsel_write }, 4378 { .name = "FPEXC32_EL2", .state = ARM_CP_STATE_AA64, 4379 .opc0 = 3, .opc1 = 4, .crn = 5, .crm = 3, .opc2 = 0, 4380 .type = ARM_CP_ALIAS, 4381 .fieldoffset = offsetof(CPUARMState, vfp.xregs[ARM_VFP_FPEXC]), 4382 .access = PL2_RW, .accessfn = fpexc32_access }, 4383 { .name = "DACR32_EL2", .state = ARM_CP_STATE_AA64, 4384 .opc0 = 3, .opc1 = 4, .crn = 3, .crm = 0, .opc2 = 0, 4385 .access = PL2_RW, .resetvalue = 0, 4386 .writefn = dacr_write, .raw_writefn = raw_write, 4387 .fieldoffset = offsetof(CPUARMState, cp15.dacr32_el2) }, 4388 { .name = "IFSR32_EL2", .state = ARM_CP_STATE_AA64, 4389 .opc0 = 3, .opc1 = 4, .crn = 5, .crm = 0, .opc2 = 1, 4390 .access = PL2_RW, .resetvalue = 0, 4391 .fieldoffset = offsetof(CPUARMState, cp15.ifsr32_el2) }, 4392 { .name = "SPSR_IRQ", .state = ARM_CP_STATE_AA64, 4393 .type = ARM_CP_ALIAS, 4394 .opc0 = 3, .opc1 = 4, .crn = 4, .crm = 3, .opc2 = 0, 4395 .access = PL2_RW, 4396 .fieldoffset = offsetof(CPUARMState, banked_spsr[BANK_IRQ]) }, 4397 { .name = "SPSR_ABT", .state = ARM_CP_STATE_AA64, 4398 .type = ARM_CP_ALIAS, 4399 .opc0 = 3, .opc1 = 4, .crn = 4, .crm = 3, .opc2 = 1, 4400 .access = PL2_RW, 4401 .fieldoffset = offsetof(CPUARMState, banked_spsr[BANK_ABT]) }, 4402 { .name = "SPSR_UND", .state = ARM_CP_STATE_AA64, 4403 .type = ARM_CP_ALIAS, 4404 .opc0 = 3, .opc1 = 4, .crn = 4, .crm = 3, .opc2 = 2, 4405 .access = PL2_RW, 4406 .fieldoffset = offsetof(CPUARMState, banked_spsr[BANK_UND]) }, 4407 { .name = "SPSR_FIQ", .state = ARM_CP_STATE_AA64, 4408 .type = ARM_CP_ALIAS, 4409 .opc0 = 3, .opc1 = 4, .crn = 4, .crm = 3, .opc2 = 3, 4410 .access = PL2_RW, 4411 .fieldoffset = offsetof(CPUARMState, banked_spsr[BANK_FIQ]) }, 4412 { .name = "MDCR_EL3", .state = ARM_CP_STATE_AA64, 4413 .opc0 = 3, .opc1 = 6, .crn = 1, .crm = 3, .opc2 = 1, 4414 .resetvalue = 0, 4415 .access = PL3_RW, .fieldoffset = offsetof(CPUARMState, cp15.mdcr_el3) }, 4416 { .name = "SDCR", .type = ARM_CP_ALIAS, 4417 .cp = 15, .opc1 = 0, .crn = 1, .crm = 3, .opc2 = 1, 4418 .access = PL1_RW, .accessfn = access_trap_aa32s_el1, 4419 .writefn = sdcr_write, 4420 .fieldoffset = offsetoflow32(CPUARMState, cp15.mdcr_el3) }, 4421 REGINFO_SENTINEL 4422 }; 4423 4424 /* Used to describe the behaviour of EL2 regs when EL2 does not exist. */ 4425 static const ARMCPRegInfo el3_no_el2_cp_reginfo[] = { 4426 { .name = "VBAR_EL2", .state = ARM_CP_STATE_BOTH, 4427 .opc0 = 3, .opc1 = 4, .crn = 12, .crm = 0, .opc2 = 0, 4428 .access = PL2_RW, 4429 .readfn = arm_cp_read_zero, .writefn = arm_cp_write_ignore }, 4430 { .name = "HCR_EL2", .state = ARM_CP_STATE_BOTH, 4431 .type = ARM_CP_NO_RAW, 4432 .opc0 = 3, .opc1 = 4, .crn = 1, .crm = 1, .opc2 = 0, 4433 .access = PL2_RW, 4434 .type = ARM_CP_CONST, .resetvalue = 0 }, 4435 { .name = "HACR_EL2", .state = ARM_CP_STATE_BOTH, 4436 .opc0 = 3, .opc1 = 4, .crn = 1, .crm = 1, .opc2 = 7, 4437 .access = PL2_RW, .type = ARM_CP_CONST, .resetvalue = 0 }, 4438 { .name = "ESR_EL2", .state = ARM_CP_STATE_BOTH, 4439 .opc0 = 3, .opc1 = 4, .crn = 5, .crm = 2, .opc2 = 0, 4440 .access = PL2_RW, 4441 .type = ARM_CP_CONST, .resetvalue = 0 }, 4442 { .name = "CPTR_EL2", .state = ARM_CP_STATE_BOTH, 4443 .opc0 = 3, .opc1 = 4, .crn = 1, .crm = 1, .opc2 = 2, 4444 .access = PL2_RW, .type = ARM_CP_CONST, .resetvalue = 0 }, 4445 { .name = "MAIR_EL2", .state = ARM_CP_STATE_BOTH, 4446 .opc0 = 3, .opc1 = 4, .crn = 10, .crm = 2, .opc2 = 0, 4447 .access = PL2_RW, .type = ARM_CP_CONST, 4448 .resetvalue = 0 }, 4449 { .name = "HMAIR1", .state = ARM_CP_STATE_AA32, 4450 .cp = 15, .opc1 = 4, .crn = 10, .crm = 2, .opc2 = 1, 4451 .access = PL2_RW, .type = ARM_CP_CONST, .resetvalue = 0 }, 4452 { .name = "AMAIR_EL2", .state = ARM_CP_STATE_BOTH, 4453 .opc0 = 3, .opc1 = 4, .crn = 10, .crm = 3, .opc2 = 0, 4454 .access = PL2_RW, .type = ARM_CP_CONST, 4455 .resetvalue = 0 }, 4456 { .name = "HAMAIR1", .state = ARM_CP_STATE_AA32, 4457 .cp = 15, .opc1 = 4, .crn = 10, .crm = 3, .opc2 = 1, 4458 .access = PL2_RW, .type = ARM_CP_CONST, 4459 .resetvalue = 0 }, 4460 { .name = "AFSR0_EL2", .state = ARM_CP_STATE_BOTH, 4461 .opc0 = 3, .opc1 = 4, .crn = 5, .crm = 1, .opc2 = 0, 4462 .access = PL2_RW, .type = ARM_CP_CONST, 4463 .resetvalue = 0 }, 4464 { .name = "AFSR1_EL2", .state = ARM_CP_STATE_BOTH, 4465 .opc0 = 3, .opc1 = 4, .crn = 5, .crm = 1, .opc2 = 1, 4466 .access = PL2_RW, .type = ARM_CP_CONST, 4467 .resetvalue = 0 }, 4468 { .name = "TCR_EL2", .state = ARM_CP_STATE_BOTH, 4469 .opc0 = 3, .opc1 = 4, .crn = 2, .crm = 0, .opc2 = 2, 4470 .access = PL2_RW, .type = ARM_CP_CONST, .resetvalue = 0 }, 4471 { .name = "VTCR_EL2", .state = ARM_CP_STATE_BOTH, 4472 .opc0 = 3, .opc1 = 4, .crn = 2, .crm = 1, .opc2 = 2, 4473 .access = PL2_RW, .accessfn = access_el3_aa32ns_aa64any, 4474 .type = ARM_CP_CONST, .resetvalue = 0 }, 4475 { .name = "VTTBR", .state = ARM_CP_STATE_AA32, 4476 .cp = 15, .opc1 = 6, .crm = 2, 4477 .access = PL2_RW, .accessfn = access_el3_aa32ns, 4478 .type = ARM_CP_CONST | ARM_CP_64BIT, .resetvalue = 0 }, 4479 { .name = "VTTBR_EL2", .state = ARM_CP_STATE_AA64, 4480 .opc0 = 3, .opc1 = 4, .crn = 2, .crm = 1, .opc2 = 0, 4481 .access = PL2_RW, .type = ARM_CP_CONST, .resetvalue = 0 }, 4482 { .name = "SCTLR_EL2", .state = ARM_CP_STATE_BOTH, 4483 .opc0 = 3, .opc1 = 4, .crn = 1, .crm = 0, .opc2 = 0, 4484 .access = PL2_RW, .type = ARM_CP_CONST, .resetvalue = 0 }, 4485 { .name = "TPIDR_EL2", .state = ARM_CP_STATE_BOTH, 4486 .opc0 = 3, .opc1 = 4, .crn = 13, .crm = 0, .opc2 = 2, 4487 .access = PL2_RW, .type = ARM_CP_CONST, .resetvalue = 0 }, 4488 { .name = "TTBR0_EL2", .state = ARM_CP_STATE_AA64, 4489 .opc0 = 3, .opc1 = 4, .crn = 2, .crm = 0, .opc2 = 0, 4490 .access = PL2_RW, .type = ARM_CP_CONST, .resetvalue = 0 }, 4491 { .name = "HTTBR", .cp = 15, .opc1 = 4, .crm = 2, 4492 .access = PL2_RW, .type = ARM_CP_64BIT | ARM_CP_CONST, 4493 .resetvalue = 0 }, 4494 { .name = "CNTHCTL_EL2", .state = ARM_CP_STATE_BOTH, 4495 .opc0 = 3, .opc1 = 4, .crn = 14, .crm = 1, .opc2 = 0, 4496 .access = PL2_RW, .type = ARM_CP_CONST, .resetvalue = 0 }, 4497 { .name = "CNTVOFF_EL2", .state = ARM_CP_STATE_AA64, 4498 .opc0 = 3, .opc1 = 4, .crn = 14, .crm = 0, .opc2 = 3, 4499 .access = PL2_RW, .type = ARM_CP_CONST, .resetvalue = 0 }, 4500 { .name = "CNTVOFF", .cp = 15, .opc1 = 4, .crm = 14, 4501 .access = PL2_RW, .type = ARM_CP_64BIT | ARM_CP_CONST, 4502 .resetvalue = 0 }, 4503 { .name = "CNTHP_CVAL_EL2", .state = ARM_CP_STATE_AA64, 4504 .opc0 = 3, .opc1 = 4, .crn = 14, .crm = 2, .opc2 = 2, 4505 .access = PL2_RW, .type = ARM_CP_CONST, .resetvalue = 0 }, 4506 { .name = "CNTHP_CVAL", .cp = 15, .opc1 = 6, .crm = 14, 4507 .access = PL2_RW, .type = ARM_CP_64BIT | ARM_CP_CONST, 4508 .resetvalue = 0 }, 4509 { .name = "CNTHP_TVAL_EL2", .state = ARM_CP_STATE_BOTH, 4510 .opc0 = 3, .opc1 = 4, .crn = 14, .crm = 2, .opc2 = 0, 4511 .access = PL2_RW, .type = ARM_CP_CONST, .resetvalue = 0 }, 4512 { .name = "CNTHP_CTL_EL2", .state = ARM_CP_STATE_BOTH, 4513 .opc0 = 3, .opc1 = 4, .crn = 14, .crm = 2, .opc2 = 1, 4514 .access = PL2_RW, .type = ARM_CP_CONST, .resetvalue = 0 }, 4515 { .name = "MDCR_EL2", .state = ARM_CP_STATE_BOTH, 4516 .opc0 = 3, .opc1 = 4, .crn = 1, .crm = 1, .opc2 = 1, 4517 .access = PL2_RW, .accessfn = access_tda, 4518 .type = ARM_CP_CONST, .resetvalue = 0 }, 4519 { .name = "HPFAR_EL2", .state = ARM_CP_STATE_BOTH, 4520 .opc0 = 3, .opc1 = 4, .crn = 6, .crm = 0, .opc2 = 4, 4521 .access = PL2_RW, .accessfn = access_el3_aa32ns_aa64any, 4522 .type = ARM_CP_CONST, .resetvalue = 0 }, 4523 { .name = "HSTR_EL2", .state = ARM_CP_STATE_BOTH, 4524 .opc0 = 3, .opc1 = 4, .crn = 1, .crm = 1, .opc2 = 3, 4525 .access = PL2_RW, .type = ARM_CP_CONST, .resetvalue = 0 }, 4526 { .name = "FAR_EL2", .state = ARM_CP_STATE_BOTH, 4527 .opc0 = 3, .opc1 = 4, .crn = 6, .crm = 0, .opc2 = 0, 4528 .access = PL2_RW, .type = ARM_CP_CONST, .resetvalue = 0 }, 4529 { .name = "HIFAR", .state = ARM_CP_STATE_AA32, 4530 .type = ARM_CP_CONST, 4531 .cp = 15, .opc1 = 4, .crn = 6, .crm = 0, .opc2 = 2, 4532 .access = PL2_RW, .resetvalue = 0 }, 4533 REGINFO_SENTINEL 4534 }; 4535 4536 /* Ditto, but for registers which exist in ARMv8 but not v7 */ 4537 static const ARMCPRegInfo el3_no_el2_v8_cp_reginfo[] = { 4538 { .name = "HCR2", .state = ARM_CP_STATE_AA32, 4539 .cp = 15, .opc1 = 4, .crn = 1, .crm = 1, .opc2 = 4, 4540 .access = PL2_RW, 4541 .type = ARM_CP_CONST, .resetvalue = 0 }, 4542 REGINFO_SENTINEL 4543 }; 4544 4545 static void hcr_write(CPUARMState *env, const ARMCPRegInfo *ri, uint64_t value) 4546 { 4547 ARMCPU *cpu = arm_env_get_cpu(env); 4548 uint64_t valid_mask = HCR_MASK; 4549 4550 if (arm_feature(env, ARM_FEATURE_EL3)) { 4551 valid_mask &= ~HCR_HCD; 4552 } else if (cpu->psci_conduit != QEMU_PSCI_CONDUIT_SMC) { 4553 /* Architecturally HCR.TSC is RES0 if EL3 is not implemented. 4554 * However, if we're using the SMC PSCI conduit then QEMU is 4555 * effectively acting like EL3 firmware and so the guest at 4556 * EL2 should retain the ability to prevent EL1 from being 4557 * able to make SMC calls into the ersatz firmware, so in 4558 * that case HCR.TSC should be read/write. 4559 */ 4560 valid_mask &= ~HCR_TSC; 4561 } 4562 if (cpu_isar_feature(aa64_lor, cpu)) { 4563 valid_mask |= HCR_TLOR; 4564 } 4565 if (cpu_isar_feature(aa64_pauth, cpu)) { 4566 valid_mask |= HCR_API | HCR_APK; 4567 } 4568 4569 /* Clear RES0 bits. */ 4570 value &= valid_mask; 4571 4572 /* These bits change the MMU setup: 4573 * HCR_VM enables stage 2 translation 4574 * HCR_PTW forbids certain page-table setups 4575 * HCR_DC Disables stage1 and enables stage2 translation 4576 */ 4577 if ((env->cp15.hcr_el2 ^ value) & (HCR_VM | HCR_PTW | HCR_DC)) { 4578 tlb_flush(CPU(cpu)); 4579 } 4580 env->cp15.hcr_el2 = value; 4581 4582 /* 4583 * Updates to VI and VF require us to update the status of 4584 * virtual interrupts, which are the logical OR of these bits 4585 * and the state of the input lines from the GIC. (This requires 4586 * that we have the iothread lock, which is done by marking the 4587 * reginfo structs as ARM_CP_IO.) 4588 * Note that if a write to HCR pends a VIRQ or VFIQ it is never 4589 * possible for it to be taken immediately, because VIRQ and 4590 * VFIQ are masked unless running at EL0 or EL1, and HCR 4591 * can only be written at EL2. 4592 */ 4593 g_assert(qemu_mutex_iothread_locked()); 4594 arm_cpu_update_virq(cpu); 4595 arm_cpu_update_vfiq(cpu); 4596 } 4597 4598 static void hcr_writehigh(CPUARMState *env, const ARMCPRegInfo *ri, 4599 uint64_t value) 4600 { 4601 /* Handle HCR2 write, i.e. write to high half of HCR_EL2 */ 4602 value = deposit64(env->cp15.hcr_el2, 32, 32, value); 4603 hcr_write(env, NULL, value); 4604 } 4605 4606 static void hcr_writelow(CPUARMState *env, const ARMCPRegInfo *ri, 4607 uint64_t value) 4608 { 4609 /* Handle HCR write, i.e. write to low half of HCR_EL2 */ 4610 value = deposit64(env->cp15.hcr_el2, 0, 32, value); 4611 hcr_write(env, NULL, value); 4612 } 4613 4614 /* 4615 * Return the effective value of HCR_EL2. 4616 * Bits that are not included here: 4617 * RW (read from SCR_EL3.RW as needed) 4618 */ 4619 uint64_t arm_hcr_el2_eff(CPUARMState *env) 4620 { 4621 uint64_t ret = env->cp15.hcr_el2; 4622 4623 if (arm_is_secure_below_el3(env)) { 4624 /* 4625 * "This register has no effect if EL2 is not enabled in the 4626 * current Security state". This is ARMv8.4-SecEL2 speak for 4627 * !(SCR_EL3.NS==1 || SCR_EL3.EEL2==1). 4628 * 4629 * Prior to that, the language was "In an implementation that 4630 * includes EL3, when the value of SCR_EL3.NS is 0 the PE behaves 4631 * as if this field is 0 for all purposes other than a direct 4632 * read or write access of HCR_EL2". With lots of enumeration 4633 * on a per-field basis. In current QEMU, this is condition 4634 * is arm_is_secure_below_el3. 4635 * 4636 * Since the v8.4 language applies to the entire register, and 4637 * appears to be backward compatible, use that. 4638 */ 4639 ret = 0; 4640 } else if (ret & HCR_TGE) { 4641 /* These bits are up-to-date as of ARMv8.4. */ 4642 if (ret & HCR_E2H) { 4643 ret &= ~(HCR_VM | HCR_FMO | HCR_IMO | HCR_AMO | 4644 HCR_BSU_MASK | HCR_DC | HCR_TWI | HCR_TWE | 4645 HCR_TID0 | HCR_TID2 | HCR_TPCP | HCR_TPU | 4646 HCR_TDZ | HCR_CD | HCR_ID | HCR_MIOCNCE); 4647 } else { 4648 ret |= HCR_FMO | HCR_IMO | HCR_AMO; 4649 } 4650 ret &= ~(HCR_SWIO | HCR_PTW | HCR_VF | HCR_VI | HCR_VSE | 4651 HCR_FB | HCR_TID1 | HCR_TID3 | HCR_TSC | HCR_TACR | 4652 HCR_TSW | HCR_TTLB | HCR_TVM | HCR_HCD | HCR_TRVM | 4653 HCR_TLOR); 4654 } 4655 4656 return ret; 4657 } 4658 4659 static const ARMCPRegInfo el2_cp_reginfo[] = { 4660 { .name = "HCR_EL2", .state = ARM_CP_STATE_AA64, 4661 .type = ARM_CP_IO, 4662 .opc0 = 3, .opc1 = 4, .crn = 1, .crm = 1, .opc2 = 0, 4663 .access = PL2_RW, .fieldoffset = offsetof(CPUARMState, cp15.hcr_el2), 4664 .writefn = hcr_write }, 4665 { .name = "HCR", .state = ARM_CP_STATE_AA32, 4666 .type = ARM_CP_ALIAS | ARM_CP_IO, 4667 .cp = 15, .opc1 = 4, .crn = 1, .crm = 1, .opc2 = 0, 4668 .access = PL2_RW, .fieldoffset = offsetof(CPUARMState, cp15.hcr_el2), 4669 .writefn = hcr_writelow }, 4670 { .name = "HACR_EL2", .state = ARM_CP_STATE_BOTH, 4671 .opc0 = 3, .opc1 = 4, .crn = 1, .crm = 1, .opc2 = 7, 4672 .access = PL2_RW, .type = ARM_CP_CONST, .resetvalue = 0 }, 4673 { .name = "ELR_EL2", .state = ARM_CP_STATE_AA64, 4674 .type = ARM_CP_ALIAS, 4675 .opc0 = 3, .opc1 = 4, .crn = 4, .crm = 0, .opc2 = 1, 4676 .access = PL2_RW, 4677 .fieldoffset = offsetof(CPUARMState, elr_el[2]) }, 4678 { .name = "ESR_EL2", .state = ARM_CP_STATE_BOTH, 4679 .opc0 = 3, .opc1 = 4, .crn = 5, .crm = 2, .opc2 = 0, 4680 .access = PL2_RW, .fieldoffset = offsetof(CPUARMState, cp15.esr_el[2]) }, 4681 { .name = "FAR_EL2", .state = ARM_CP_STATE_BOTH, 4682 .opc0 = 3, .opc1 = 4, .crn = 6, .crm = 0, .opc2 = 0, 4683 .access = PL2_RW, .fieldoffset = offsetof(CPUARMState, cp15.far_el[2]) }, 4684 { .name = "HIFAR", .state = ARM_CP_STATE_AA32, 4685 .type = ARM_CP_ALIAS, 4686 .cp = 15, .opc1 = 4, .crn = 6, .crm = 0, .opc2 = 2, 4687 .access = PL2_RW, 4688 .fieldoffset = offsetofhigh32(CPUARMState, cp15.far_el[2]) }, 4689 { .name = "SPSR_EL2", .state = ARM_CP_STATE_AA64, 4690 .type = ARM_CP_ALIAS, 4691 .opc0 = 3, .opc1 = 4, .crn = 4, .crm = 0, .opc2 = 0, 4692 .access = PL2_RW, 4693 .fieldoffset = offsetof(CPUARMState, banked_spsr[BANK_HYP]) }, 4694 { .name = "VBAR_EL2", .state = ARM_CP_STATE_BOTH, 4695 .opc0 = 3, .opc1 = 4, .crn = 12, .crm = 0, .opc2 = 0, 4696 .access = PL2_RW, .writefn = vbar_write, 4697 .fieldoffset = offsetof(CPUARMState, cp15.vbar_el[2]), 4698 .resetvalue = 0 }, 4699 { .name = "SP_EL2", .state = ARM_CP_STATE_AA64, 4700 .opc0 = 3, .opc1 = 6, .crn = 4, .crm = 1, .opc2 = 0, 4701 .access = PL3_RW, .type = ARM_CP_ALIAS, 4702 .fieldoffset = offsetof(CPUARMState, sp_el[2]) }, 4703 { .name = "CPTR_EL2", .state = ARM_CP_STATE_BOTH, 4704 .opc0 = 3, .opc1 = 4, .crn = 1, .crm = 1, .opc2 = 2, 4705 .access = PL2_RW, .accessfn = cptr_access, .resetvalue = 0, 4706 .fieldoffset = offsetof(CPUARMState, cp15.cptr_el[2]) }, 4707 { .name = "MAIR_EL2", .state = ARM_CP_STATE_BOTH, 4708 .opc0 = 3, .opc1 = 4, .crn = 10, .crm = 2, .opc2 = 0, 4709 .access = PL2_RW, .fieldoffset = offsetof(CPUARMState, cp15.mair_el[2]), 4710 .resetvalue = 0 }, 4711 { .name = "HMAIR1", .state = ARM_CP_STATE_AA32, 4712 .cp = 15, .opc1 = 4, .crn = 10, .crm = 2, .opc2 = 1, 4713 .access = PL2_RW, .type = ARM_CP_ALIAS, 4714 .fieldoffset = offsetofhigh32(CPUARMState, cp15.mair_el[2]) }, 4715 { .name = "AMAIR_EL2", .state = ARM_CP_STATE_BOTH, 4716 .opc0 = 3, .opc1 = 4, .crn = 10, .crm = 3, .opc2 = 0, 4717 .access = PL2_RW, .type = ARM_CP_CONST, 4718 .resetvalue = 0 }, 4719 /* HAMAIR1 is mapped to AMAIR_EL2[63:32] */ 4720 { .name = "HAMAIR1", .state = ARM_CP_STATE_AA32, 4721 .cp = 15, .opc1 = 4, .crn = 10, .crm = 3, .opc2 = 1, 4722 .access = PL2_RW, .type = ARM_CP_CONST, 4723 .resetvalue = 0 }, 4724 { .name = "AFSR0_EL2", .state = ARM_CP_STATE_BOTH, 4725 .opc0 = 3, .opc1 = 4, .crn = 5, .crm = 1, .opc2 = 0, 4726 .access = PL2_RW, .type = ARM_CP_CONST, 4727 .resetvalue = 0 }, 4728 { .name = "AFSR1_EL2", .state = ARM_CP_STATE_BOTH, 4729 .opc0 = 3, .opc1 = 4, .crn = 5, .crm = 1, .opc2 = 1, 4730 .access = PL2_RW, .type = ARM_CP_CONST, 4731 .resetvalue = 0 }, 4732 { .name = "TCR_EL2", .state = ARM_CP_STATE_BOTH, 4733 .opc0 = 3, .opc1 = 4, .crn = 2, .crm = 0, .opc2 = 2, 4734 .access = PL2_RW, 4735 /* no .writefn needed as this can't cause an ASID change; 4736 * no .raw_writefn or .resetfn needed as we never use mask/base_mask 4737 */ 4738 .fieldoffset = offsetof(CPUARMState, cp15.tcr_el[2]) }, 4739 { .name = "VTCR", .state = ARM_CP_STATE_AA32, 4740 .cp = 15, .opc1 = 4, .crn = 2, .crm = 1, .opc2 = 2, 4741 .type = ARM_CP_ALIAS, 4742 .access = PL2_RW, .accessfn = access_el3_aa32ns, 4743 .fieldoffset = offsetof(CPUARMState, cp15.vtcr_el2) }, 4744 { .name = "VTCR_EL2", .state = ARM_CP_STATE_AA64, 4745 .opc0 = 3, .opc1 = 4, .crn = 2, .crm = 1, .opc2 = 2, 4746 .access = PL2_RW, 4747 /* no .writefn needed as this can't cause an ASID change; 4748 * no .raw_writefn or .resetfn needed as we never use mask/base_mask 4749 */ 4750 .fieldoffset = offsetof(CPUARMState, cp15.vtcr_el2) }, 4751 { .name = "VTTBR", .state = ARM_CP_STATE_AA32, 4752 .cp = 15, .opc1 = 6, .crm = 2, 4753 .type = ARM_CP_64BIT | ARM_CP_ALIAS, 4754 .access = PL2_RW, .accessfn = access_el3_aa32ns, 4755 .fieldoffset = offsetof(CPUARMState, cp15.vttbr_el2), 4756 .writefn = vttbr_write }, 4757 { .name = "VTTBR_EL2", .state = ARM_CP_STATE_AA64, 4758 .opc0 = 3, .opc1 = 4, .crn = 2, .crm = 1, .opc2 = 0, 4759 .access = PL2_RW, .writefn = vttbr_write, 4760 .fieldoffset = offsetof(CPUARMState, cp15.vttbr_el2) }, 4761 { .name = "SCTLR_EL2", .state = ARM_CP_STATE_BOTH, 4762 .opc0 = 3, .opc1 = 4, .crn = 1, .crm = 0, .opc2 = 0, 4763 .access = PL2_RW, .raw_writefn = raw_write, .writefn = sctlr_write, 4764 .fieldoffset = offsetof(CPUARMState, cp15.sctlr_el[2]) }, 4765 { .name = "TPIDR_EL2", .state = ARM_CP_STATE_BOTH, 4766 .opc0 = 3, .opc1 = 4, .crn = 13, .crm = 0, .opc2 = 2, 4767 .access = PL2_RW, .resetvalue = 0, 4768 .fieldoffset = offsetof(CPUARMState, cp15.tpidr_el[2]) }, 4769 { .name = "TTBR0_EL2", .state = ARM_CP_STATE_AA64, 4770 .opc0 = 3, .opc1 = 4, .crn = 2, .crm = 0, .opc2 = 0, 4771 .access = PL2_RW, .resetvalue = 0, 4772 .fieldoffset = offsetof(CPUARMState, cp15.ttbr0_el[2]) }, 4773 { .name = "HTTBR", .cp = 15, .opc1 = 4, .crm = 2, 4774 .access = PL2_RW, .type = ARM_CP_64BIT | ARM_CP_ALIAS, 4775 .fieldoffset = offsetof(CPUARMState, cp15.ttbr0_el[2]) }, 4776 { .name = "TLBIALLNSNH", 4777 .cp = 15, .opc1 = 4, .crn = 8, .crm = 7, .opc2 = 4, 4778 .type = ARM_CP_NO_RAW, .access = PL2_W, 4779 .writefn = tlbiall_nsnh_write }, 4780 { .name = "TLBIALLNSNHIS", 4781 .cp = 15, .opc1 = 4, .crn = 8, .crm = 3, .opc2 = 4, 4782 .type = ARM_CP_NO_RAW, .access = PL2_W, 4783 .writefn = tlbiall_nsnh_is_write }, 4784 { .name = "TLBIALLH", .cp = 15, .opc1 = 4, .crn = 8, .crm = 7, .opc2 = 0, 4785 .type = ARM_CP_NO_RAW, .access = PL2_W, 4786 .writefn = tlbiall_hyp_write }, 4787 { .name = "TLBIALLHIS", .cp = 15, .opc1 = 4, .crn = 8, .crm = 3, .opc2 = 0, 4788 .type = ARM_CP_NO_RAW, .access = PL2_W, 4789 .writefn = tlbiall_hyp_is_write }, 4790 { .name = "TLBIMVAH", .cp = 15, .opc1 = 4, .crn = 8, .crm = 7, .opc2 = 1, 4791 .type = ARM_CP_NO_RAW, .access = PL2_W, 4792 .writefn = tlbimva_hyp_write }, 4793 { .name = "TLBIMVAHIS", .cp = 15, .opc1 = 4, .crn = 8, .crm = 3, .opc2 = 1, 4794 .type = ARM_CP_NO_RAW, .access = PL2_W, 4795 .writefn = tlbimva_hyp_is_write }, 4796 { .name = "TLBI_ALLE2", .state = ARM_CP_STATE_AA64, 4797 .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 7, .opc2 = 0, 4798 .type = ARM_CP_NO_RAW, .access = PL2_W, 4799 .writefn = tlbi_aa64_alle2_write }, 4800 { .name = "TLBI_VAE2", .state = ARM_CP_STATE_AA64, 4801 .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 7, .opc2 = 1, 4802 .type = ARM_CP_NO_RAW, .access = PL2_W, 4803 .writefn = tlbi_aa64_vae2_write }, 4804 { .name = "TLBI_VALE2", .state = ARM_CP_STATE_AA64, 4805 .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 7, .opc2 = 5, 4806 .access = PL2_W, .type = ARM_CP_NO_RAW, 4807 .writefn = tlbi_aa64_vae2_write }, 4808 { .name = "TLBI_ALLE2IS", .state = ARM_CP_STATE_AA64, 4809 .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 3, .opc2 = 0, 4810 .access = PL2_W, .type = ARM_CP_NO_RAW, 4811 .writefn = tlbi_aa64_alle2is_write }, 4812 { .name = "TLBI_VAE2IS", .state = ARM_CP_STATE_AA64, 4813 .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 3, .opc2 = 1, 4814 .type = ARM_CP_NO_RAW, .access = PL2_W, 4815 .writefn = tlbi_aa64_vae2is_write }, 4816 { .name = "TLBI_VALE2IS", .state = ARM_CP_STATE_AA64, 4817 .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 3, .opc2 = 5, 4818 .access = PL2_W, .type = ARM_CP_NO_RAW, 4819 .writefn = tlbi_aa64_vae2is_write }, 4820 #ifndef CONFIG_USER_ONLY 4821 /* Unlike the other EL2-related AT operations, these must 4822 * UNDEF from EL3 if EL2 is not implemented, which is why we 4823 * define them here rather than with the rest of the AT ops. 4824 */ 4825 { .name = "AT_S1E2R", .state = ARM_CP_STATE_AA64, 4826 .opc0 = 1, .opc1 = 4, .crn = 7, .crm = 8, .opc2 = 0, 4827 .access = PL2_W, .accessfn = at_s1e2_access, 4828 .type = ARM_CP_NO_RAW, .writefn = ats_write64 }, 4829 { .name = "AT_S1E2W", .state = ARM_CP_STATE_AA64, 4830 .opc0 = 1, .opc1 = 4, .crn = 7, .crm = 8, .opc2 = 1, 4831 .access = PL2_W, .accessfn = at_s1e2_access, 4832 .type = ARM_CP_NO_RAW, .writefn = ats_write64 }, 4833 /* The AArch32 ATS1H* operations are CONSTRAINED UNPREDICTABLE 4834 * if EL2 is not implemented; we choose to UNDEF. Behaviour at EL3 4835 * with SCR.NS == 0 outside Monitor mode is UNPREDICTABLE; we choose 4836 * to behave as if SCR.NS was 1. 4837 */ 4838 { .name = "ATS1HR", .cp = 15, .opc1 = 4, .crn = 7, .crm = 8, .opc2 = 0, 4839 .access = PL2_W, 4840 .writefn = ats1h_write, .type = ARM_CP_NO_RAW }, 4841 { .name = "ATS1HW", .cp = 15, .opc1 = 4, .crn = 7, .crm = 8, .opc2 = 1, 4842 .access = PL2_W, 4843 .writefn = ats1h_write, .type = ARM_CP_NO_RAW }, 4844 { .name = "CNTHCTL_EL2", .state = ARM_CP_STATE_BOTH, 4845 .opc0 = 3, .opc1 = 4, .crn = 14, .crm = 1, .opc2 = 0, 4846 /* ARMv7 requires bit 0 and 1 to reset to 1. ARMv8 defines the 4847 * reset values as IMPDEF. We choose to reset to 3 to comply with 4848 * both ARMv7 and ARMv8. 4849 */ 4850 .access = PL2_RW, .resetvalue = 3, 4851 .fieldoffset = offsetof(CPUARMState, cp15.cnthctl_el2) }, 4852 { .name = "CNTVOFF_EL2", .state = ARM_CP_STATE_AA64, 4853 .opc0 = 3, .opc1 = 4, .crn = 14, .crm = 0, .opc2 = 3, 4854 .access = PL2_RW, .type = ARM_CP_IO, .resetvalue = 0, 4855 .writefn = gt_cntvoff_write, 4856 .fieldoffset = offsetof(CPUARMState, cp15.cntvoff_el2) }, 4857 { .name = "CNTVOFF", .cp = 15, .opc1 = 4, .crm = 14, 4858 .access = PL2_RW, .type = ARM_CP_64BIT | ARM_CP_ALIAS | ARM_CP_IO, 4859 .writefn = gt_cntvoff_write, 4860 .fieldoffset = offsetof(CPUARMState, cp15.cntvoff_el2) }, 4861 { .name = "CNTHP_CVAL_EL2", .state = ARM_CP_STATE_AA64, 4862 .opc0 = 3, .opc1 = 4, .crn = 14, .crm = 2, .opc2 = 2, 4863 .fieldoffset = offsetof(CPUARMState, cp15.c14_timer[GTIMER_HYP].cval), 4864 .type = ARM_CP_IO, .access = PL2_RW, 4865 .writefn = gt_hyp_cval_write, .raw_writefn = raw_write }, 4866 { .name = "CNTHP_CVAL", .cp = 15, .opc1 = 6, .crm = 14, 4867 .fieldoffset = offsetof(CPUARMState, cp15.c14_timer[GTIMER_HYP].cval), 4868 .access = PL2_RW, .type = ARM_CP_64BIT | ARM_CP_IO, 4869 .writefn = gt_hyp_cval_write, .raw_writefn = raw_write }, 4870 { .name = "CNTHP_TVAL_EL2", .state = ARM_CP_STATE_BOTH, 4871 .opc0 = 3, .opc1 = 4, .crn = 14, .crm = 2, .opc2 = 0, 4872 .type = ARM_CP_NO_RAW | ARM_CP_IO, .access = PL2_RW, 4873 .resetfn = gt_hyp_timer_reset, 4874 .readfn = gt_hyp_tval_read, .writefn = gt_hyp_tval_write }, 4875 { .name = "CNTHP_CTL_EL2", .state = ARM_CP_STATE_BOTH, 4876 .type = ARM_CP_IO, 4877 .opc0 = 3, .opc1 = 4, .crn = 14, .crm = 2, .opc2 = 1, 4878 .access = PL2_RW, 4879 .fieldoffset = offsetof(CPUARMState, cp15.c14_timer[GTIMER_HYP].ctl), 4880 .resetvalue = 0, 4881 .writefn = gt_hyp_ctl_write, .raw_writefn = raw_write }, 4882 #endif 4883 /* The only field of MDCR_EL2 that has a defined architectural reset value 4884 * is MDCR_EL2.HPMN which should reset to the value of PMCR_EL0.N; but we 4885 * don't implement any PMU event counters, so using zero as a reset 4886 * value for MDCR_EL2 is okay 4887 */ 4888 { .name = "MDCR_EL2", .state = ARM_CP_STATE_BOTH, 4889 .opc0 = 3, .opc1 = 4, .crn = 1, .crm = 1, .opc2 = 1, 4890 .access = PL2_RW, .resetvalue = 0, 4891 .fieldoffset = offsetof(CPUARMState, cp15.mdcr_el2), }, 4892 { .name = "HPFAR", .state = ARM_CP_STATE_AA32, 4893 .cp = 15, .opc1 = 4, .crn = 6, .crm = 0, .opc2 = 4, 4894 .access = PL2_RW, .accessfn = access_el3_aa32ns, 4895 .fieldoffset = offsetof(CPUARMState, cp15.hpfar_el2) }, 4896 { .name = "HPFAR_EL2", .state = ARM_CP_STATE_AA64, 4897 .opc0 = 3, .opc1 = 4, .crn = 6, .crm = 0, .opc2 = 4, 4898 .access = PL2_RW, 4899 .fieldoffset = offsetof(CPUARMState, cp15.hpfar_el2) }, 4900 { .name = "HSTR_EL2", .state = ARM_CP_STATE_BOTH, 4901 .cp = 15, .opc0 = 3, .opc1 = 4, .crn = 1, .crm = 1, .opc2 = 3, 4902 .access = PL2_RW, 4903 .fieldoffset = offsetof(CPUARMState, cp15.hstr_el2) }, 4904 REGINFO_SENTINEL 4905 }; 4906 4907 static const ARMCPRegInfo el2_v8_cp_reginfo[] = { 4908 { .name = "HCR2", .state = ARM_CP_STATE_AA32, 4909 .type = ARM_CP_ALIAS | ARM_CP_IO, 4910 .cp = 15, .opc1 = 4, .crn = 1, .crm = 1, .opc2 = 4, 4911 .access = PL2_RW, 4912 .fieldoffset = offsetofhigh32(CPUARMState, cp15.hcr_el2), 4913 .writefn = hcr_writehigh }, 4914 REGINFO_SENTINEL 4915 }; 4916 4917 static CPAccessResult nsacr_access(CPUARMState *env, const ARMCPRegInfo *ri, 4918 bool isread) 4919 { 4920 /* The NSACR is RW at EL3, and RO for NS EL1 and NS EL2. 4921 * At Secure EL1 it traps to EL3. 4922 */ 4923 if (arm_current_el(env) == 3) { 4924 return CP_ACCESS_OK; 4925 } 4926 if (arm_is_secure_below_el3(env)) { 4927 return CP_ACCESS_TRAP_EL3; 4928 } 4929 /* Accesses from EL1 NS and EL2 NS are UNDEF for write but allow reads. */ 4930 if (isread) { 4931 return CP_ACCESS_OK; 4932 } 4933 return CP_ACCESS_TRAP_UNCATEGORIZED; 4934 } 4935 4936 static const ARMCPRegInfo el3_cp_reginfo[] = { 4937 { .name = "SCR_EL3", .state = ARM_CP_STATE_AA64, 4938 .opc0 = 3, .opc1 = 6, .crn = 1, .crm = 1, .opc2 = 0, 4939 .access = PL3_RW, .fieldoffset = offsetof(CPUARMState, cp15.scr_el3), 4940 .resetvalue = 0, .writefn = scr_write }, 4941 { .name = "SCR", .type = ARM_CP_ALIAS, 4942 .cp = 15, .opc1 = 0, .crn = 1, .crm = 1, .opc2 = 0, 4943 .access = PL1_RW, .accessfn = access_trap_aa32s_el1, 4944 .fieldoffset = offsetoflow32(CPUARMState, cp15.scr_el3), 4945 .writefn = scr_write }, 4946 { .name = "SDER32_EL3", .state = ARM_CP_STATE_AA64, 4947 .opc0 = 3, .opc1 = 6, .crn = 1, .crm = 1, .opc2 = 1, 4948 .access = PL3_RW, .resetvalue = 0, 4949 .fieldoffset = offsetof(CPUARMState, cp15.sder) }, 4950 { .name = "SDER", 4951 .cp = 15, .opc1 = 0, .crn = 1, .crm = 1, .opc2 = 1, 4952 .access = PL3_RW, .resetvalue = 0, 4953 .fieldoffset = offsetoflow32(CPUARMState, cp15.sder) }, 4954 { .name = "MVBAR", .cp = 15, .opc1 = 0, .crn = 12, .crm = 0, .opc2 = 1, 4955 .access = PL1_RW, .accessfn = access_trap_aa32s_el1, 4956 .writefn = vbar_write, .resetvalue = 0, 4957 .fieldoffset = offsetof(CPUARMState, cp15.mvbar) }, 4958 { .name = "TTBR0_EL3", .state = ARM_CP_STATE_AA64, 4959 .opc0 = 3, .opc1 = 6, .crn = 2, .crm = 0, .opc2 = 0, 4960 .access = PL3_RW, .resetvalue = 0, 4961 .fieldoffset = offsetof(CPUARMState, cp15.ttbr0_el[3]) }, 4962 { .name = "TCR_EL3", .state = ARM_CP_STATE_AA64, 4963 .opc0 = 3, .opc1 = 6, .crn = 2, .crm = 0, .opc2 = 2, 4964 .access = PL3_RW, 4965 /* no .writefn needed as this can't cause an ASID change; 4966 * we must provide a .raw_writefn and .resetfn because we handle 4967 * reset and migration for the AArch32 TTBCR(S), which might be 4968 * using mask and base_mask. 4969 */ 4970 .resetfn = vmsa_ttbcr_reset, .raw_writefn = vmsa_ttbcr_raw_write, 4971 .fieldoffset = offsetof(CPUARMState, cp15.tcr_el[3]) }, 4972 { .name = "ELR_EL3", .state = ARM_CP_STATE_AA64, 4973 .type = ARM_CP_ALIAS, 4974 .opc0 = 3, .opc1 = 6, .crn = 4, .crm = 0, .opc2 = 1, 4975 .access = PL3_RW, 4976 .fieldoffset = offsetof(CPUARMState, elr_el[3]) }, 4977 { .name = "ESR_EL3", .state = ARM_CP_STATE_AA64, 4978 .opc0 = 3, .opc1 = 6, .crn = 5, .crm = 2, .opc2 = 0, 4979 .access = PL3_RW, .fieldoffset = offsetof(CPUARMState, cp15.esr_el[3]) }, 4980 { .name = "FAR_EL3", .state = ARM_CP_STATE_AA64, 4981 .opc0 = 3, .opc1 = 6, .crn = 6, .crm = 0, .opc2 = 0, 4982 .access = PL3_RW, .fieldoffset = offsetof(CPUARMState, cp15.far_el[3]) }, 4983 { .name = "SPSR_EL3", .state = ARM_CP_STATE_AA64, 4984 .type = ARM_CP_ALIAS, 4985 .opc0 = 3, .opc1 = 6, .crn = 4, .crm = 0, .opc2 = 0, 4986 .access = PL3_RW, 4987 .fieldoffset = offsetof(CPUARMState, banked_spsr[BANK_MON]) }, 4988 { .name = "VBAR_EL3", .state = ARM_CP_STATE_AA64, 4989 .opc0 = 3, .opc1 = 6, .crn = 12, .crm = 0, .opc2 = 0, 4990 .access = PL3_RW, .writefn = vbar_write, 4991 .fieldoffset = offsetof(CPUARMState, cp15.vbar_el[3]), 4992 .resetvalue = 0 }, 4993 { .name = "CPTR_EL3", .state = ARM_CP_STATE_AA64, 4994 .opc0 = 3, .opc1 = 6, .crn = 1, .crm = 1, .opc2 = 2, 4995 .access = PL3_RW, .accessfn = cptr_access, .resetvalue = 0, 4996 .fieldoffset = offsetof(CPUARMState, cp15.cptr_el[3]) }, 4997 { .name = "TPIDR_EL3", .state = ARM_CP_STATE_AA64, 4998 .opc0 = 3, .opc1 = 6, .crn = 13, .crm = 0, .opc2 = 2, 4999 .access = PL3_RW, .resetvalue = 0, 5000 .fieldoffset = offsetof(CPUARMState, cp15.tpidr_el[3]) }, 5001 { .name = "AMAIR_EL3", .state = ARM_CP_STATE_AA64, 5002 .opc0 = 3, .opc1 = 6, .crn = 10, .crm = 3, .opc2 = 0, 5003 .access = PL3_RW, .type = ARM_CP_CONST, 5004 .resetvalue = 0 }, 5005 { .name = "AFSR0_EL3", .state = ARM_CP_STATE_BOTH, 5006 .opc0 = 3, .opc1 = 6, .crn = 5, .crm = 1, .opc2 = 0, 5007 .access = PL3_RW, .type = ARM_CP_CONST, 5008 .resetvalue = 0 }, 5009 { .name = "AFSR1_EL3", .state = ARM_CP_STATE_BOTH, 5010 .opc0 = 3, .opc1 = 6, .crn = 5, .crm = 1, .opc2 = 1, 5011 .access = PL3_RW, .type = ARM_CP_CONST, 5012 .resetvalue = 0 }, 5013 { .name = "TLBI_ALLE3IS", .state = ARM_CP_STATE_AA64, 5014 .opc0 = 1, .opc1 = 6, .crn = 8, .crm = 3, .opc2 = 0, 5015 .access = PL3_W, .type = ARM_CP_NO_RAW, 5016 .writefn = tlbi_aa64_alle3is_write }, 5017 { .name = "TLBI_VAE3IS", .state = ARM_CP_STATE_AA64, 5018 .opc0 = 1, .opc1 = 6, .crn = 8, .crm = 3, .opc2 = 1, 5019 .access = PL3_W, .type = ARM_CP_NO_RAW, 5020 .writefn = tlbi_aa64_vae3is_write }, 5021 { .name = "TLBI_VALE3IS", .state = ARM_CP_STATE_AA64, 5022 .opc0 = 1, .opc1 = 6, .crn = 8, .crm = 3, .opc2 = 5, 5023 .access = PL3_W, .type = ARM_CP_NO_RAW, 5024 .writefn = tlbi_aa64_vae3is_write }, 5025 { .name = "TLBI_ALLE3", .state = ARM_CP_STATE_AA64, 5026 .opc0 = 1, .opc1 = 6, .crn = 8, .crm = 7, .opc2 = 0, 5027 .access = PL3_W, .type = ARM_CP_NO_RAW, 5028 .writefn = tlbi_aa64_alle3_write }, 5029 { .name = "TLBI_VAE3", .state = ARM_CP_STATE_AA64, 5030 .opc0 = 1, .opc1 = 6, .crn = 8, .crm = 7, .opc2 = 1, 5031 .access = PL3_W, .type = ARM_CP_NO_RAW, 5032 .writefn = tlbi_aa64_vae3_write }, 5033 { .name = "TLBI_VALE3", .state = ARM_CP_STATE_AA64, 5034 .opc0 = 1, .opc1 = 6, .crn = 8, .crm = 7, .opc2 = 5, 5035 .access = PL3_W, .type = ARM_CP_NO_RAW, 5036 .writefn = tlbi_aa64_vae3_write }, 5037 REGINFO_SENTINEL 5038 }; 5039 5040 static CPAccessResult ctr_el0_access(CPUARMState *env, const ARMCPRegInfo *ri, 5041 bool isread) 5042 { 5043 /* Only accessible in EL0 if SCTLR.UCT is set (and only in AArch64, 5044 * but the AArch32 CTR has its own reginfo struct) 5045 */ 5046 if (arm_current_el(env) == 0 && !(env->cp15.sctlr_el[1] & SCTLR_UCT)) { 5047 return CP_ACCESS_TRAP; 5048 } 5049 return CP_ACCESS_OK; 5050 } 5051 5052 static void oslar_write(CPUARMState *env, const ARMCPRegInfo *ri, 5053 uint64_t value) 5054 { 5055 /* Writes to OSLAR_EL1 may update the OS lock status, which can be 5056 * read via a bit in OSLSR_EL1. 5057 */ 5058 int oslock; 5059 5060 if (ri->state == ARM_CP_STATE_AA32) { 5061 oslock = (value == 0xC5ACCE55); 5062 } else { 5063 oslock = value & 1; 5064 } 5065 5066 env->cp15.oslsr_el1 = deposit32(env->cp15.oslsr_el1, 1, 1, oslock); 5067 } 5068 5069 static const ARMCPRegInfo debug_cp_reginfo[] = { 5070 /* DBGDRAR, DBGDSAR: always RAZ since we don't implement memory mapped 5071 * debug components. The AArch64 version of DBGDRAR is named MDRAR_EL1; 5072 * unlike DBGDRAR it is never accessible from EL0. 5073 * DBGDSAR is deprecated and must RAZ from v8 anyway, so it has no AArch64 5074 * accessor. 5075 */ 5076 { .name = "DBGDRAR", .cp = 14, .crn = 1, .crm = 0, .opc1 = 0, .opc2 = 0, 5077 .access = PL0_R, .accessfn = access_tdra, 5078 .type = ARM_CP_CONST, .resetvalue = 0 }, 5079 { .name = "MDRAR_EL1", .state = ARM_CP_STATE_AA64, 5080 .opc0 = 2, .opc1 = 0, .crn = 1, .crm = 0, .opc2 = 0, 5081 .access = PL1_R, .accessfn = access_tdra, 5082 .type = ARM_CP_CONST, .resetvalue = 0 }, 5083 { .name = "DBGDSAR", .cp = 14, .crn = 2, .crm = 0, .opc1 = 0, .opc2 = 0, 5084 .access = PL0_R, .accessfn = access_tdra, 5085 .type = ARM_CP_CONST, .resetvalue = 0 }, 5086 /* Monitor debug system control register; the 32-bit alias is DBGDSCRext. */ 5087 { .name = "MDSCR_EL1", .state = ARM_CP_STATE_BOTH, 5088 .cp = 14, .opc0 = 2, .opc1 = 0, .crn = 0, .crm = 2, .opc2 = 2, 5089 .access = PL1_RW, .accessfn = access_tda, 5090 .fieldoffset = offsetof(CPUARMState, cp15.mdscr_el1), 5091 .resetvalue = 0 }, 5092 /* MDCCSR_EL0, aka DBGDSCRint. This is a read-only mirror of MDSCR_EL1. 5093 * We don't implement the configurable EL0 access. 5094 */ 5095 { .name = "MDCCSR_EL0", .state = ARM_CP_STATE_BOTH, 5096 .cp = 14, .opc0 = 2, .opc1 = 0, .crn = 0, .crm = 1, .opc2 = 0, 5097 .type = ARM_CP_ALIAS, 5098 .access = PL1_R, .accessfn = access_tda, 5099 .fieldoffset = offsetof(CPUARMState, cp15.mdscr_el1), }, 5100 { .name = "OSLAR_EL1", .state = ARM_CP_STATE_BOTH, 5101 .cp = 14, .opc0 = 2, .opc1 = 0, .crn = 1, .crm = 0, .opc2 = 4, 5102 .access = PL1_W, .type = ARM_CP_NO_RAW, 5103 .accessfn = access_tdosa, 5104 .writefn = oslar_write }, 5105 { .name = "OSLSR_EL1", .state = ARM_CP_STATE_BOTH, 5106 .cp = 14, .opc0 = 2, .opc1 = 0, .crn = 1, .crm = 1, .opc2 = 4, 5107 .access = PL1_R, .resetvalue = 10, 5108 .accessfn = access_tdosa, 5109 .fieldoffset = offsetof(CPUARMState, cp15.oslsr_el1) }, 5110 /* Dummy OSDLR_EL1: 32-bit Linux will read this */ 5111 { .name = "OSDLR_EL1", .state = ARM_CP_STATE_BOTH, 5112 .cp = 14, .opc0 = 2, .opc1 = 0, .crn = 1, .crm = 3, .opc2 = 4, 5113 .access = PL1_RW, .accessfn = access_tdosa, 5114 .type = ARM_CP_NOP }, 5115 /* Dummy DBGVCR: Linux wants to clear this on startup, but we don't 5116 * implement vector catch debug events yet. 5117 */ 5118 { .name = "DBGVCR", 5119 .cp = 14, .opc1 = 0, .crn = 0, .crm = 7, .opc2 = 0, 5120 .access = PL1_RW, .accessfn = access_tda, 5121 .type = ARM_CP_NOP }, 5122 /* Dummy DBGVCR32_EL2 (which is only for a 64-bit hypervisor 5123 * to save and restore a 32-bit guest's DBGVCR) 5124 */ 5125 { .name = "DBGVCR32_EL2", .state = ARM_CP_STATE_AA64, 5126 .opc0 = 2, .opc1 = 4, .crn = 0, .crm = 7, .opc2 = 0, 5127 .access = PL2_RW, .accessfn = access_tda, 5128 .type = ARM_CP_NOP }, 5129 /* Dummy MDCCINT_EL1, since we don't implement the Debug Communications 5130 * Channel but Linux may try to access this register. The 32-bit 5131 * alias is DBGDCCINT. 5132 */ 5133 { .name = "MDCCINT_EL1", .state = ARM_CP_STATE_BOTH, 5134 .cp = 14, .opc0 = 2, .opc1 = 0, .crn = 0, .crm = 2, .opc2 = 0, 5135 .access = PL1_RW, .accessfn = access_tda, 5136 .type = ARM_CP_NOP }, 5137 REGINFO_SENTINEL 5138 }; 5139 5140 static const ARMCPRegInfo debug_lpae_cp_reginfo[] = { 5141 /* 64 bit access versions of the (dummy) debug registers */ 5142 { .name = "DBGDRAR", .cp = 14, .crm = 1, .opc1 = 0, 5143 .access = PL0_R, .type = ARM_CP_CONST|ARM_CP_64BIT, .resetvalue = 0 }, 5144 { .name = "DBGDSAR", .cp = 14, .crm = 2, .opc1 = 0, 5145 .access = PL0_R, .type = ARM_CP_CONST|ARM_CP_64BIT, .resetvalue = 0 }, 5146 REGINFO_SENTINEL 5147 }; 5148 5149 /* Return the exception level to which exceptions should be taken 5150 * via SVEAccessTrap. If an exception should be routed through 5151 * AArch64.AdvSIMDFPAccessTrap, return 0; fp_exception_el should 5152 * take care of raising that exception. 5153 * C.f. the ARM pseudocode function CheckSVEEnabled. 5154 */ 5155 int sve_exception_el(CPUARMState *env, int el) 5156 { 5157 #ifndef CONFIG_USER_ONLY 5158 if (el <= 1) { 5159 bool disabled = false; 5160 5161 /* The CPACR.ZEN controls traps to EL1: 5162 * 0, 2 : trap EL0 and EL1 accesses 5163 * 1 : trap only EL0 accesses 5164 * 3 : trap no accesses 5165 */ 5166 if (!extract32(env->cp15.cpacr_el1, 16, 1)) { 5167 disabled = true; 5168 } else if (!extract32(env->cp15.cpacr_el1, 17, 1)) { 5169 disabled = el == 0; 5170 } 5171 if (disabled) { 5172 /* route_to_el2 */ 5173 return (arm_feature(env, ARM_FEATURE_EL2) 5174 && (arm_hcr_el2_eff(env) & HCR_TGE) ? 2 : 1); 5175 } 5176 5177 /* Check CPACR.FPEN. */ 5178 if (!extract32(env->cp15.cpacr_el1, 20, 1)) { 5179 disabled = true; 5180 } else if (!extract32(env->cp15.cpacr_el1, 21, 1)) { 5181 disabled = el == 0; 5182 } 5183 if (disabled) { 5184 return 0; 5185 } 5186 } 5187 5188 /* CPTR_EL2. Since TZ and TFP are positive, 5189 * they will be zero when EL2 is not present. 5190 */ 5191 if (el <= 2 && !arm_is_secure_below_el3(env)) { 5192 if (env->cp15.cptr_el[2] & CPTR_TZ) { 5193 return 2; 5194 } 5195 if (env->cp15.cptr_el[2] & CPTR_TFP) { 5196 return 0; 5197 } 5198 } 5199 5200 /* CPTR_EL3. Since EZ is negative we must check for EL3. */ 5201 if (arm_feature(env, ARM_FEATURE_EL3) 5202 && !(env->cp15.cptr_el[3] & CPTR_EZ)) { 5203 return 3; 5204 } 5205 #endif 5206 return 0; 5207 } 5208 5209 /* 5210 * Given that SVE is enabled, return the vector length for EL. 5211 */ 5212 uint32_t sve_zcr_len_for_el(CPUARMState *env, int el) 5213 { 5214 ARMCPU *cpu = arm_env_get_cpu(env); 5215 uint32_t zcr_len = cpu->sve_max_vq - 1; 5216 5217 if (el <= 1) { 5218 zcr_len = MIN(zcr_len, 0xf & (uint32_t)env->vfp.zcr_el[1]); 5219 } 5220 if (el < 2 && arm_feature(env, ARM_FEATURE_EL2)) { 5221 zcr_len = MIN(zcr_len, 0xf & (uint32_t)env->vfp.zcr_el[2]); 5222 } 5223 if (el < 3 && arm_feature(env, ARM_FEATURE_EL3)) { 5224 zcr_len = MIN(zcr_len, 0xf & (uint32_t)env->vfp.zcr_el[3]); 5225 } 5226 return zcr_len; 5227 } 5228 5229 static void zcr_write(CPUARMState *env, const ARMCPRegInfo *ri, 5230 uint64_t value) 5231 { 5232 int cur_el = arm_current_el(env); 5233 int old_len = sve_zcr_len_for_el(env, cur_el); 5234 int new_len; 5235 5236 /* Bits other than [3:0] are RAZ/WI. */ 5237 raw_write(env, ri, value & 0xf); 5238 5239 /* 5240 * Because we arrived here, we know both FP and SVE are enabled; 5241 * otherwise we would have trapped access to the ZCR_ELn register. 5242 */ 5243 new_len = sve_zcr_len_for_el(env, cur_el); 5244 if (new_len < old_len) { 5245 aarch64_sve_narrow_vq(env, new_len + 1); 5246 } 5247 } 5248 5249 static const ARMCPRegInfo zcr_el1_reginfo = { 5250 .name = "ZCR_EL1", .state = ARM_CP_STATE_AA64, 5251 .opc0 = 3, .opc1 = 0, .crn = 1, .crm = 2, .opc2 = 0, 5252 .access = PL1_RW, .type = ARM_CP_SVE, 5253 .fieldoffset = offsetof(CPUARMState, vfp.zcr_el[1]), 5254 .writefn = zcr_write, .raw_writefn = raw_write 5255 }; 5256 5257 static const ARMCPRegInfo zcr_el2_reginfo = { 5258 .name = "ZCR_EL2", .state = ARM_CP_STATE_AA64, 5259 .opc0 = 3, .opc1 = 4, .crn = 1, .crm = 2, .opc2 = 0, 5260 .access = PL2_RW, .type = ARM_CP_SVE, 5261 .fieldoffset = offsetof(CPUARMState, vfp.zcr_el[2]), 5262 .writefn = zcr_write, .raw_writefn = raw_write 5263 }; 5264 5265 static const ARMCPRegInfo zcr_no_el2_reginfo = { 5266 .name = "ZCR_EL2", .state = ARM_CP_STATE_AA64, 5267 .opc0 = 3, .opc1 = 4, .crn = 1, .crm = 2, .opc2 = 0, 5268 .access = PL2_RW, .type = ARM_CP_SVE, 5269 .readfn = arm_cp_read_zero, .writefn = arm_cp_write_ignore 5270 }; 5271 5272 static const ARMCPRegInfo zcr_el3_reginfo = { 5273 .name = "ZCR_EL3", .state = ARM_CP_STATE_AA64, 5274 .opc0 = 3, .opc1 = 6, .crn = 1, .crm = 2, .opc2 = 0, 5275 .access = PL3_RW, .type = ARM_CP_SVE, 5276 .fieldoffset = offsetof(CPUARMState, vfp.zcr_el[3]), 5277 .writefn = zcr_write, .raw_writefn = raw_write 5278 }; 5279 5280 void hw_watchpoint_update(ARMCPU *cpu, int n) 5281 { 5282 CPUARMState *env = &cpu->env; 5283 vaddr len = 0; 5284 vaddr wvr = env->cp15.dbgwvr[n]; 5285 uint64_t wcr = env->cp15.dbgwcr[n]; 5286 int mask; 5287 int flags = BP_CPU | BP_STOP_BEFORE_ACCESS; 5288 5289 if (env->cpu_watchpoint[n]) { 5290 cpu_watchpoint_remove_by_ref(CPU(cpu), env->cpu_watchpoint[n]); 5291 env->cpu_watchpoint[n] = NULL; 5292 } 5293 5294 if (!extract64(wcr, 0, 1)) { 5295 /* E bit clear : watchpoint disabled */ 5296 return; 5297 } 5298 5299 switch (extract64(wcr, 3, 2)) { 5300 case 0: 5301 /* LSC 00 is reserved and must behave as if the wp is disabled */ 5302 return; 5303 case 1: 5304 flags |= BP_MEM_READ; 5305 break; 5306 case 2: 5307 flags |= BP_MEM_WRITE; 5308 break; 5309 case 3: 5310 flags |= BP_MEM_ACCESS; 5311 break; 5312 } 5313 5314 /* Attempts to use both MASK and BAS fields simultaneously are 5315 * CONSTRAINED UNPREDICTABLE; we opt to ignore BAS in this case, 5316 * thus generating a watchpoint for every byte in the masked region. 5317 */ 5318 mask = extract64(wcr, 24, 4); 5319 if (mask == 1 || mask == 2) { 5320 /* Reserved values of MASK; we must act as if the mask value was 5321 * some non-reserved value, or as if the watchpoint were disabled. 5322 * We choose the latter. 5323 */ 5324 return; 5325 } else if (mask) { 5326 /* Watchpoint covers an aligned area up to 2GB in size */ 5327 len = 1ULL << mask; 5328 /* If masked bits in WVR are not zero it's CONSTRAINED UNPREDICTABLE 5329 * whether the watchpoint fires when the unmasked bits match; we opt 5330 * to generate the exceptions. 5331 */ 5332 wvr &= ~(len - 1); 5333 } else { 5334 /* Watchpoint covers bytes defined by the byte address select bits */ 5335 int bas = extract64(wcr, 5, 8); 5336 int basstart; 5337 5338 if (bas == 0) { 5339 /* This must act as if the watchpoint is disabled */ 5340 return; 5341 } 5342 5343 if (extract64(wvr, 2, 1)) { 5344 /* Deprecated case of an only 4-aligned address. BAS[7:4] are 5345 * ignored, and BAS[3:0] define which bytes to watch. 5346 */ 5347 bas &= 0xf; 5348 } 5349 /* The BAS bits are supposed to be programmed to indicate a contiguous 5350 * range of bytes. Otherwise it is CONSTRAINED UNPREDICTABLE whether 5351 * we fire for each byte in the word/doubleword addressed by the WVR. 5352 * We choose to ignore any non-zero bits after the first range of 1s. 5353 */ 5354 basstart = ctz32(bas); 5355 len = cto32(bas >> basstart); 5356 wvr += basstart; 5357 } 5358 5359 cpu_watchpoint_insert(CPU(cpu), wvr, len, flags, 5360 &env->cpu_watchpoint[n]); 5361 } 5362 5363 void hw_watchpoint_update_all(ARMCPU *cpu) 5364 { 5365 int i; 5366 CPUARMState *env = &cpu->env; 5367 5368 /* Completely clear out existing QEMU watchpoints and our array, to 5369 * avoid possible stale entries following migration load. 5370 */ 5371 cpu_watchpoint_remove_all(CPU(cpu), BP_CPU); 5372 memset(env->cpu_watchpoint, 0, sizeof(env->cpu_watchpoint)); 5373 5374 for (i = 0; i < ARRAY_SIZE(cpu->env.cpu_watchpoint); i++) { 5375 hw_watchpoint_update(cpu, i); 5376 } 5377 } 5378 5379 static void dbgwvr_write(CPUARMState *env, const ARMCPRegInfo *ri, 5380 uint64_t value) 5381 { 5382 ARMCPU *cpu = arm_env_get_cpu(env); 5383 int i = ri->crm; 5384 5385 /* Bits [63:49] are hardwired to the value of bit [48]; that is, the 5386 * register reads and behaves as if values written are sign extended. 5387 * Bits [1:0] are RES0. 5388 */ 5389 value = sextract64(value, 0, 49) & ~3ULL; 5390 5391 raw_write(env, ri, value); 5392 hw_watchpoint_update(cpu, i); 5393 } 5394 5395 static void dbgwcr_write(CPUARMState *env, const ARMCPRegInfo *ri, 5396 uint64_t value) 5397 { 5398 ARMCPU *cpu = arm_env_get_cpu(env); 5399 int i = ri->crm; 5400 5401 raw_write(env, ri, value); 5402 hw_watchpoint_update(cpu, i); 5403 } 5404 5405 void hw_breakpoint_update(ARMCPU *cpu, int n) 5406 { 5407 CPUARMState *env = &cpu->env; 5408 uint64_t bvr = env->cp15.dbgbvr[n]; 5409 uint64_t bcr = env->cp15.dbgbcr[n]; 5410 vaddr addr; 5411 int bt; 5412 int flags = BP_CPU; 5413 5414 if (env->cpu_breakpoint[n]) { 5415 cpu_breakpoint_remove_by_ref(CPU(cpu), env->cpu_breakpoint[n]); 5416 env->cpu_breakpoint[n] = NULL; 5417 } 5418 5419 if (!extract64(bcr, 0, 1)) { 5420 /* E bit clear : watchpoint disabled */ 5421 return; 5422 } 5423 5424 bt = extract64(bcr, 20, 4); 5425 5426 switch (bt) { 5427 case 4: /* unlinked address mismatch (reserved if AArch64) */ 5428 case 5: /* linked address mismatch (reserved if AArch64) */ 5429 qemu_log_mask(LOG_UNIMP, 5430 "arm: address mismatch breakpoint types not implemented\n"); 5431 return; 5432 case 0: /* unlinked address match */ 5433 case 1: /* linked address match */ 5434 { 5435 /* Bits [63:49] are hardwired to the value of bit [48]; that is, 5436 * we behave as if the register was sign extended. Bits [1:0] are 5437 * RES0. The BAS field is used to allow setting breakpoints on 16 5438 * bit wide instructions; it is CONSTRAINED UNPREDICTABLE whether 5439 * a bp will fire if the addresses covered by the bp and the addresses 5440 * covered by the insn overlap but the insn doesn't start at the 5441 * start of the bp address range. We choose to require the insn and 5442 * the bp to have the same address. The constraints on writing to 5443 * BAS enforced in dbgbcr_write mean we have only four cases: 5444 * 0b0000 => no breakpoint 5445 * 0b0011 => breakpoint on addr 5446 * 0b1100 => breakpoint on addr + 2 5447 * 0b1111 => breakpoint on addr 5448 * See also figure D2-3 in the v8 ARM ARM (DDI0487A.c). 5449 */ 5450 int bas = extract64(bcr, 5, 4); 5451 addr = sextract64(bvr, 0, 49) & ~3ULL; 5452 if (bas == 0) { 5453 return; 5454 } 5455 if (bas == 0xc) { 5456 addr += 2; 5457 } 5458 break; 5459 } 5460 case 2: /* unlinked context ID match */ 5461 case 8: /* unlinked VMID match (reserved if no EL2) */ 5462 case 10: /* unlinked context ID and VMID match (reserved if no EL2) */ 5463 qemu_log_mask(LOG_UNIMP, 5464 "arm: unlinked context breakpoint types not implemented\n"); 5465 return; 5466 case 9: /* linked VMID match (reserved if no EL2) */ 5467 case 11: /* linked context ID and VMID match (reserved if no EL2) */ 5468 case 3: /* linked context ID match */ 5469 default: 5470 /* We must generate no events for Linked context matches (unless 5471 * they are linked to by some other bp/wp, which is handled in 5472 * updates for the linking bp/wp). We choose to also generate no events 5473 * for reserved values. 5474 */ 5475 return; 5476 } 5477 5478 cpu_breakpoint_insert(CPU(cpu), addr, flags, &env->cpu_breakpoint[n]); 5479 } 5480 5481 void hw_breakpoint_update_all(ARMCPU *cpu) 5482 { 5483 int i; 5484 CPUARMState *env = &cpu->env; 5485 5486 /* Completely clear out existing QEMU breakpoints and our array, to 5487 * avoid possible stale entries following migration load. 5488 */ 5489 cpu_breakpoint_remove_all(CPU(cpu), BP_CPU); 5490 memset(env->cpu_breakpoint, 0, sizeof(env->cpu_breakpoint)); 5491 5492 for (i = 0; i < ARRAY_SIZE(cpu->env.cpu_breakpoint); i++) { 5493 hw_breakpoint_update(cpu, i); 5494 } 5495 } 5496 5497 static void dbgbvr_write(CPUARMState *env, const ARMCPRegInfo *ri, 5498 uint64_t value) 5499 { 5500 ARMCPU *cpu = arm_env_get_cpu(env); 5501 int i = ri->crm; 5502 5503 raw_write(env, ri, value); 5504 hw_breakpoint_update(cpu, i); 5505 } 5506 5507 static void dbgbcr_write(CPUARMState *env, const ARMCPRegInfo *ri, 5508 uint64_t value) 5509 { 5510 ARMCPU *cpu = arm_env_get_cpu(env); 5511 int i = ri->crm; 5512 5513 /* BAS[3] is a read-only copy of BAS[2], and BAS[1] a read-only 5514 * copy of BAS[0]. 5515 */ 5516 value = deposit64(value, 6, 1, extract64(value, 5, 1)); 5517 value = deposit64(value, 8, 1, extract64(value, 7, 1)); 5518 5519 raw_write(env, ri, value); 5520 hw_breakpoint_update(cpu, i); 5521 } 5522 5523 static void define_debug_regs(ARMCPU *cpu) 5524 { 5525 /* Define v7 and v8 architectural debug registers. 5526 * These are just dummy implementations for now. 5527 */ 5528 int i; 5529 int wrps, brps, ctx_cmps; 5530 ARMCPRegInfo dbgdidr = { 5531 .name = "DBGDIDR", .cp = 14, .crn = 0, .crm = 0, .opc1 = 0, .opc2 = 0, 5532 .access = PL0_R, .accessfn = access_tda, 5533 .type = ARM_CP_CONST, .resetvalue = cpu->dbgdidr, 5534 }; 5535 5536 /* Note that all these register fields hold "number of Xs minus 1". */ 5537 brps = extract32(cpu->dbgdidr, 24, 4); 5538 wrps = extract32(cpu->dbgdidr, 28, 4); 5539 ctx_cmps = extract32(cpu->dbgdidr, 20, 4); 5540 5541 assert(ctx_cmps <= brps); 5542 5543 /* The DBGDIDR and ID_AA64DFR0_EL1 define various properties 5544 * of the debug registers such as number of breakpoints; 5545 * check that if they both exist then they agree. 5546 */ 5547 if (arm_feature(&cpu->env, ARM_FEATURE_AARCH64)) { 5548 assert(extract32(cpu->id_aa64dfr0, 12, 4) == brps); 5549 assert(extract32(cpu->id_aa64dfr0, 20, 4) == wrps); 5550 assert(extract32(cpu->id_aa64dfr0, 28, 4) == ctx_cmps); 5551 } 5552 5553 define_one_arm_cp_reg(cpu, &dbgdidr); 5554 define_arm_cp_regs(cpu, debug_cp_reginfo); 5555 5556 if (arm_feature(&cpu->env, ARM_FEATURE_LPAE)) { 5557 define_arm_cp_regs(cpu, debug_lpae_cp_reginfo); 5558 } 5559 5560 for (i = 0; i < brps + 1; i++) { 5561 ARMCPRegInfo dbgregs[] = { 5562 { .name = "DBGBVR", .state = ARM_CP_STATE_BOTH, 5563 .cp = 14, .opc0 = 2, .opc1 = 0, .crn = 0, .crm = i, .opc2 = 4, 5564 .access = PL1_RW, .accessfn = access_tda, 5565 .fieldoffset = offsetof(CPUARMState, cp15.dbgbvr[i]), 5566 .writefn = dbgbvr_write, .raw_writefn = raw_write 5567 }, 5568 { .name = "DBGBCR", .state = ARM_CP_STATE_BOTH, 5569 .cp = 14, .opc0 = 2, .opc1 = 0, .crn = 0, .crm = i, .opc2 = 5, 5570 .access = PL1_RW, .accessfn = access_tda, 5571 .fieldoffset = offsetof(CPUARMState, cp15.dbgbcr[i]), 5572 .writefn = dbgbcr_write, .raw_writefn = raw_write 5573 }, 5574 REGINFO_SENTINEL 5575 }; 5576 define_arm_cp_regs(cpu, dbgregs); 5577 } 5578 5579 for (i = 0; i < wrps + 1; i++) { 5580 ARMCPRegInfo dbgregs[] = { 5581 { .name = "DBGWVR", .state = ARM_CP_STATE_BOTH, 5582 .cp = 14, .opc0 = 2, .opc1 = 0, .crn = 0, .crm = i, .opc2 = 6, 5583 .access = PL1_RW, .accessfn = access_tda, 5584 .fieldoffset = offsetof(CPUARMState, cp15.dbgwvr[i]), 5585 .writefn = dbgwvr_write, .raw_writefn = raw_write 5586 }, 5587 { .name = "DBGWCR", .state = ARM_CP_STATE_BOTH, 5588 .cp = 14, .opc0 = 2, .opc1 = 0, .crn = 0, .crm = i, .opc2 = 7, 5589 .access = PL1_RW, .accessfn = access_tda, 5590 .fieldoffset = offsetof(CPUARMState, cp15.dbgwcr[i]), 5591 .writefn = dbgwcr_write, .raw_writefn = raw_write 5592 }, 5593 REGINFO_SENTINEL 5594 }; 5595 define_arm_cp_regs(cpu, dbgregs); 5596 } 5597 } 5598 5599 /* We don't know until after realize whether there's a GICv3 5600 * attached, and that is what registers the gicv3 sysregs. 5601 * So we have to fill in the GIC fields in ID_PFR/ID_PFR1_EL1/ID_AA64PFR0_EL1 5602 * at runtime. 5603 */ 5604 static uint64_t id_pfr1_read(CPUARMState *env, const ARMCPRegInfo *ri) 5605 { 5606 ARMCPU *cpu = arm_env_get_cpu(env); 5607 uint64_t pfr1 = cpu->id_pfr1; 5608 5609 if (env->gicv3state) { 5610 pfr1 |= 1 << 28; 5611 } 5612 return pfr1; 5613 } 5614 5615 static uint64_t id_aa64pfr0_read(CPUARMState *env, const ARMCPRegInfo *ri) 5616 { 5617 ARMCPU *cpu = arm_env_get_cpu(env); 5618 uint64_t pfr0 = cpu->isar.id_aa64pfr0; 5619 5620 if (env->gicv3state) { 5621 pfr0 |= 1 << 24; 5622 } 5623 return pfr0; 5624 } 5625 5626 /* Shared logic between LORID and the rest of the LOR* registers. 5627 * Secure state has already been delt with. 5628 */ 5629 static CPAccessResult access_lor_ns(CPUARMState *env) 5630 { 5631 int el = arm_current_el(env); 5632 5633 if (el < 2 && (arm_hcr_el2_eff(env) & HCR_TLOR)) { 5634 return CP_ACCESS_TRAP_EL2; 5635 } 5636 if (el < 3 && (env->cp15.scr_el3 & SCR_TLOR)) { 5637 return CP_ACCESS_TRAP_EL3; 5638 } 5639 return CP_ACCESS_OK; 5640 } 5641 5642 static CPAccessResult access_lorid(CPUARMState *env, const ARMCPRegInfo *ri, 5643 bool isread) 5644 { 5645 if (arm_is_secure_below_el3(env)) { 5646 /* Access ok in secure mode. */ 5647 return CP_ACCESS_OK; 5648 } 5649 return access_lor_ns(env); 5650 } 5651 5652 static CPAccessResult access_lor_other(CPUARMState *env, 5653 const ARMCPRegInfo *ri, bool isread) 5654 { 5655 if (arm_is_secure_below_el3(env)) { 5656 /* Access denied in secure mode. */ 5657 return CP_ACCESS_TRAP; 5658 } 5659 return access_lor_ns(env); 5660 } 5661 5662 #ifdef TARGET_AARCH64 5663 static CPAccessResult access_pauth(CPUARMState *env, const ARMCPRegInfo *ri, 5664 bool isread) 5665 { 5666 int el = arm_current_el(env); 5667 5668 if (el < 2 && 5669 arm_feature(env, ARM_FEATURE_EL2) && 5670 !(arm_hcr_el2_eff(env) & HCR_APK)) { 5671 return CP_ACCESS_TRAP_EL2; 5672 } 5673 if (el < 3 && 5674 arm_feature(env, ARM_FEATURE_EL3) && 5675 !(env->cp15.scr_el3 & SCR_APK)) { 5676 return CP_ACCESS_TRAP_EL3; 5677 } 5678 return CP_ACCESS_OK; 5679 } 5680 5681 static const ARMCPRegInfo pauth_reginfo[] = { 5682 { .name = "APDAKEYLO_EL1", .state = ARM_CP_STATE_AA64, 5683 .opc0 = 3, .opc1 = 0, .crn = 2, .crm = 2, .opc2 = 0, 5684 .access = PL1_RW, .accessfn = access_pauth, 5685 .fieldoffset = offsetof(CPUARMState, apda_key.lo) }, 5686 { .name = "APDAKEYHI_EL1", .state = ARM_CP_STATE_AA64, 5687 .opc0 = 3, .opc1 = 0, .crn = 2, .crm = 2, .opc2 = 1, 5688 .access = PL1_RW, .accessfn = access_pauth, 5689 .fieldoffset = offsetof(CPUARMState, apda_key.hi) }, 5690 { .name = "APDBKEYLO_EL1", .state = ARM_CP_STATE_AA64, 5691 .opc0 = 3, .opc1 = 0, .crn = 2, .crm = 2, .opc2 = 2, 5692 .access = PL1_RW, .accessfn = access_pauth, 5693 .fieldoffset = offsetof(CPUARMState, apdb_key.lo) }, 5694 { .name = "APDBKEYHI_EL1", .state = ARM_CP_STATE_AA64, 5695 .opc0 = 3, .opc1 = 0, .crn = 2, .crm = 2, .opc2 = 3, 5696 .access = PL1_RW, .accessfn = access_pauth, 5697 .fieldoffset = offsetof(CPUARMState, apdb_key.hi) }, 5698 { .name = "APGAKEYLO_EL1", .state = ARM_CP_STATE_AA64, 5699 .opc0 = 3, .opc1 = 0, .crn = 2, .crm = 3, .opc2 = 0, 5700 .access = PL1_RW, .accessfn = access_pauth, 5701 .fieldoffset = offsetof(CPUARMState, apga_key.lo) }, 5702 { .name = "APGAKEYHI_EL1", .state = ARM_CP_STATE_AA64, 5703 .opc0 = 3, .opc1 = 0, .crn = 2, .crm = 3, .opc2 = 1, 5704 .access = PL1_RW, .accessfn = access_pauth, 5705 .fieldoffset = offsetof(CPUARMState, apga_key.hi) }, 5706 { .name = "APIAKEYLO_EL1", .state = ARM_CP_STATE_AA64, 5707 .opc0 = 3, .opc1 = 0, .crn = 2, .crm = 1, .opc2 = 0, 5708 .access = PL1_RW, .accessfn = access_pauth, 5709 .fieldoffset = offsetof(CPUARMState, apia_key.lo) }, 5710 { .name = "APIAKEYHI_EL1", .state = ARM_CP_STATE_AA64, 5711 .opc0 = 3, .opc1 = 0, .crn = 2, .crm = 1, .opc2 = 1, 5712 .access = PL1_RW, .accessfn = access_pauth, 5713 .fieldoffset = offsetof(CPUARMState, apia_key.hi) }, 5714 { .name = "APIBKEYLO_EL1", .state = ARM_CP_STATE_AA64, 5715 .opc0 = 3, .opc1 = 0, .crn = 2, .crm = 1, .opc2 = 2, 5716 .access = PL1_RW, .accessfn = access_pauth, 5717 .fieldoffset = offsetof(CPUARMState, apib_key.lo) }, 5718 { .name = "APIBKEYHI_EL1", .state = ARM_CP_STATE_AA64, 5719 .opc0 = 3, .opc1 = 0, .crn = 2, .crm = 1, .opc2 = 3, 5720 .access = PL1_RW, .accessfn = access_pauth, 5721 .fieldoffset = offsetof(CPUARMState, apib_key.hi) }, 5722 REGINFO_SENTINEL 5723 }; 5724 #endif 5725 5726 static CPAccessResult access_predinv(CPUARMState *env, const ARMCPRegInfo *ri, 5727 bool isread) 5728 { 5729 int el = arm_current_el(env); 5730 5731 if (el == 0) { 5732 uint64_t sctlr = arm_sctlr(env, el); 5733 if (!(sctlr & SCTLR_EnRCTX)) { 5734 return CP_ACCESS_TRAP; 5735 } 5736 } else if (el == 1) { 5737 uint64_t hcr = arm_hcr_el2_eff(env); 5738 if (hcr & HCR_NV) { 5739 return CP_ACCESS_TRAP_EL2; 5740 } 5741 } 5742 return CP_ACCESS_OK; 5743 } 5744 5745 static const ARMCPRegInfo predinv_reginfo[] = { 5746 { .name = "CFP_RCTX", .state = ARM_CP_STATE_AA64, 5747 .opc0 = 1, .opc1 = 3, .crn = 7, .crm = 3, .opc2 = 4, 5748 .type = ARM_CP_NOP, .access = PL0_W, .accessfn = access_predinv }, 5749 { .name = "DVP_RCTX", .state = ARM_CP_STATE_AA64, 5750 .opc0 = 1, .opc1 = 3, .crn = 7, .crm = 3, .opc2 = 5, 5751 .type = ARM_CP_NOP, .access = PL0_W, .accessfn = access_predinv }, 5752 { .name = "CPP_RCTX", .state = ARM_CP_STATE_AA64, 5753 .opc0 = 1, .opc1 = 3, .crn = 7, .crm = 3, .opc2 = 7, 5754 .type = ARM_CP_NOP, .access = PL0_W, .accessfn = access_predinv }, 5755 /* 5756 * Note the AArch32 opcodes have a different OPC1. 5757 */ 5758 { .name = "CFPRCTX", .state = ARM_CP_STATE_AA32, 5759 .cp = 15, .opc1 = 0, .crn = 7, .crm = 3, .opc2 = 4, 5760 .type = ARM_CP_NOP, .access = PL0_W, .accessfn = access_predinv }, 5761 { .name = "DVPRCTX", .state = ARM_CP_STATE_AA32, 5762 .cp = 15, .opc1 = 0, .crn = 7, .crm = 3, .opc2 = 5, 5763 .type = ARM_CP_NOP, .access = PL0_W, .accessfn = access_predinv }, 5764 { .name = "CPPRCTX", .state = ARM_CP_STATE_AA32, 5765 .cp = 15, .opc1 = 0, .crn = 7, .crm = 3, .opc2 = 7, 5766 .type = ARM_CP_NOP, .access = PL0_W, .accessfn = access_predinv }, 5767 REGINFO_SENTINEL 5768 }; 5769 5770 void register_cp_regs_for_features(ARMCPU *cpu) 5771 { 5772 /* Register all the coprocessor registers based on feature bits */ 5773 CPUARMState *env = &cpu->env; 5774 if (arm_feature(env, ARM_FEATURE_M)) { 5775 /* M profile has no coprocessor registers */ 5776 return; 5777 } 5778 5779 define_arm_cp_regs(cpu, cp_reginfo); 5780 if (!arm_feature(env, ARM_FEATURE_V8)) { 5781 /* Must go early as it is full of wildcards that may be 5782 * overridden by later definitions. 5783 */ 5784 define_arm_cp_regs(cpu, not_v8_cp_reginfo); 5785 } 5786 5787 if (arm_feature(env, ARM_FEATURE_V6)) { 5788 /* The ID registers all have impdef reset values */ 5789 ARMCPRegInfo v6_idregs[] = { 5790 { .name = "ID_PFR0", .state = ARM_CP_STATE_BOTH, 5791 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 1, .opc2 = 0, 5792 .access = PL1_R, .type = ARM_CP_CONST, 5793 .resetvalue = cpu->id_pfr0 }, 5794 /* ID_PFR1 is not a plain ARM_CP_CONST because we don't know 5795 * the value of the GIC field until after we define these regs. 5796 */ 5797 { .name = "ID_PFR1", .state = ARM_CP_STATE_BOTH, 5798 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 1, .opc2 = 1, 5799 .access = PL1_R, .type = ARM_CP_NO_RAW, 5800 .readfn = id_pfr1_read, 5801 .writefn = arm_cp_write_ignore }, 5802 { .name = "ID_DFR0", .state = ARM_CP_STATE_BOTH, 5803 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 1, .opc2 = 2, 5804 .access = PL1_R, .type = ARM_CP_CONST, 5805 .resetvalue = cpu->id_dfr0 }, 5806 { .name = "ID_AFR0", .state = ARM_CP_STATE_BOTH, 5807 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 1, .opc2 = 3, 5808 .access = PL1_R, .type = ARM_CP_CONST, 5809 .resetvalue = cpu->id_afr0 }, 5810 { .name = "ID_MMFR0", .state = ARM_CP_STATE_BOTH, 5811 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 1, .opc2 = 4, 5812 .access = PL1_R, .type = ARM_CP_CONST, 5813 .resetvalue = cpu->id_mmfr0 }, 5814 { .name = "ID_MMFR1", .state = ARM_CP_STATE_BOTH, 5815 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 1, .opc2 = 5, 5816 .access = PL1_R, .type = ARM_CP_CONST, 5817 .resetvalue = cpu->id_mmfr1 }, 5818 { .name = "ID_MMFR2", .state = ARM_CP_STATE_BOTH, 5819 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 1, .opc2 = 6, 5820 .access = PL1_R, .type = ARM_CP_CONST, 5821 .resetvalue = cpu->id_mmfr2 }, 5822 { .name = "ID_MMFR3", .state = ARM_CP_STATE_BOTH, 5823 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 1, .opc2 = 7, 5824 .access = PL1_R, .type = ARM_CP_CONST, 5825 .resetvalue = cpu->id_mmfr3 }, 5826 { .name = "ID_ISAR0", .state = ARM_CP_STATE_BOTH, 5827 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 2, .opc2 = 0, 5828 .access = PL1_R, .type = ARM_CP_CONST, 5829 .resetvalue = cpu->isar.id_isar0 }, 5830 { .name = "ID_ISAR1", .state = ARM_CP_STATE_BOTH, 5831 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 2, .opc2 = 1, 5832 .access = PL1_R, .type = ARM_CP_CONST, 5833 .resetvalue = cpu->isar.id_isar1 }, 5834 { .name = "ID_ISAR2", .state = ARM_CP_STATE_BOTH, 5835 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 2, .opc2 = 2, 5836 .access = PL1_R, .type = ARM_CP_CONST, 5837 .resetvalue = cpu->isar.id_isar2 }, 5838 { .name = "ID_ISAR3", .state = ARM_CP_STATE_BOTH, 5839 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 2, .opc2 = 3, 5840 .access = PL1_R, .type = ARM_CP_CONST, 5841 .resetvalue = cpu->isar.id_isar3 }, 5842 { .name = "ID_ISAR4", .state = ARM_CP_STATE_BOTH, 5843 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 2, .opc2 = 4, 5844 .access = PL1_R, .type = ARM_CP_CONST, 5845 .resetvalue = cpu->isar.id_isar4 }, 5846 { .name = "ID_ISAR5", .state = ARM_CP_STATE_BOTH, 5847 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 2, .opc2 = 5, 5848 .access = PL1_R, .type = ARM_CP_CONST, 5849 .resetvalue = cpu->isar.id_isar5 }, 5850 { .name = "ID_MMFR4", .state = ARM_CP_STATE_BOTH, 5851 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 2, .opc2 = 6, 5852 .access = PL1_R, .type = ARM_CP_CONST, 5853 .resetvalue = cpu->id_mmfr4 }, 5854 { .name = "ID_ISAR6", .state = ARM_CP_STATE_BOTH, 5855 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 2, .opc2 = 7, 5856 .access = PL1_R, .type = ARM_CP_CONST, 5857 .resetvalue = cpu->isar.id_isar6 }, 5858 REGINFO_SENTINEL 5859 }; 5860 define_arm_cp_regs(cpu, v6_idregs); 5861 define_arm_cp_regs(cpu, v6_cp_reginfo); 5862 } else { 5863 define_arm_cp_regs(cpu, not_v6_cp_reginfo); 5864 } 5865 if (arm_feature(env, ARM_FEATURE_V6K)) { 5866 define_arm_cp_regs(cpu, v6k_cp_reginfo); 5867 } 5868 if (arm_feature(env, ARM_FEATURE_V7MP) && 5869 !arm_feature(env, ARM_FEATURE_PMSA)) { 5870 define_arm_cp_regs(cpu, v7mp_cp_reginfo); 5871 } 5872 if (arm_feature(env, ARM_FEATURE_V7VE)) { 5873 define_arm_cp_regs(cpu, pmovsset_cp_reginfo); 5874 } 5875 if (arm_feature(env, ARM_FEATURE_V7)) { 5876 /* v7 performance monitor control register: same implementor 5877 * field as main ID register, and we implement four counters in 5878 * addition to the cycle count register. 5879 */ 5880 unsigned int i, pmcrn = 4; 5881 ARMCPRegInfo pmcr = { 5882 .name = "PMCR", .cp = 15, .crn = 9, .crm = 12, .opc1 = 0, .opc2 = 0, 5883 .access = PL0_RW, 5884 .type = ARM_CP_IO | ARM_CP_ALIAS, 5885 .fieldoffset = offsetoflow32(CPUARMState, cp15.c9_pmcr), 5886 .accessfn = pmreg_access, .writefn = pmcr_write, 5887 .raw_writefn = raw_write, 5888 }; 5889 ARMCPRegInfo pmcr64 = { 5890 .name = "PMCR_EL0", .state = ARM_CP_STATE_AA64, 5891 .opc0 = 3, .opc1 = 3, .crn = 9, .crm = 12, .opc2 = 0, 5892 .access = PL0_RW, .accessfn = pmreg_access, 5893 .type = ARM_CP_IO, 5894 .fieldoffset = offsetof(CPUARMState, cp15.c9_pmcr), 5895 .resetvalue = (cpu->midr & 0xff000000) | (pmcrn << PMCRN_SHIFT), 5896 .writefn = pmcr_write, .raw_writefn = raw_write, 5897 }; 5898 define_one_arm_cp_reg(cpu, &pmcr); 5899 define_one_arm_cp_reg(cpu, &pmcr64); 5900 for (i = 0; i < pmcrn; i++) { 5901 char *pmevcntr_name = g_strdup_printf("PMEVCNTR%d", i); 5902 char *pmevcntr_el0_name = g_strdup_printf("PMEVCNTR%d_EL0", i); 5903 char *pmevtyper_name = g_strdup_printf("PMEVTYPER%d", i); 5904 char *pmevtyper_el0_name = g_strdup_printf("PMEVTYPER%d_EL0", i); 5905 ARMCPRegInfo pmev_regs[] = { 5906 { .name = pmevcntr_name, .cp = 15, .crn = 14, 5907 .crm = 8 | (3 & (i >> 3)), .opc1 = 0, .opc2 = i & 7, 5908 .access = PL0_RW, .type = ARM_CP_IO | ARM_CP_ALIAS, 5909 .readfn = pmevcntr_readfn, .writefn = pmevcntr_writefn, 5910 .accessfn = pmreg_access }, 5911 { .name = pmevcntr_el0_name, .state = ARM_CP_STATE_AA64, 5912 .opc0 = 3, .opc1 = 3, .crn = 14, .crm = 8 | (3 & (i >> 3)), 5913 .opc2 = i & 7, .access = PL0_RW, .accessfn = pmreg_access, 5914 .type = ARM_CP_IO, 5915 .readfn = pmevcntr_readfn, .writefn = pmevcntr_writefn, 5916 .raw_readfn = pmevcntr_rawread, 5917 .raw_writefn = pmevcntr_rawwrite }, 5918 { .name = pmevtyper_name, .cp = 15, .crn = 14, 5919 .crm = 12 | (3 & (i >> 3)), .opc1 = 0, .opc2 = i & 7, 5920 .access = PL0_RW, .type = ARM_CP_IO | ARM_CP_ALIAS, 5921 .readfn = pmevtyper_readfn, .writefn = pmevtyper_writefn, 5922 .accessfn = pmreg_access }, 5923 { .name = pmevtyper_el0_name, .state = ARM_CP_STATE_AA64, 5924 .opc0 = 3, .opc1 = 3, .crn = 14, .crm = 12 | (3 & (i >> 3)), 5925 .opc2 = i & 7, .access = PL0_RW, .accessfn = pmreg_access, 5926 .type = ARM_CP_IO, 5927 .readfn = pmevtyper_readfn, .writefn = pmevtyper_writefn, 5928 .raw_writefn = pmevtyper_rawwrite }, 5929 REGINFO_SENTINEL 5930 }; 5931 define_arm_cp_regs(cpu, pmev_regs); 5932 g_free(pmevcntr_name); 5933 g_free(pmevcntr_el0_name); 5934 g_free(pmevtyper_name); 5935 g_free(pmevtyper_el0_name); 5936 } 5937 ARMCPRegInfo clidr = { 5938 .name = "CLIDR", .state = ARM_CP_STATE_BOTH, 5939 .opc0 = 3, .crn = 0, .crm = 0, .opc1 = 1, .opc2 = 1, 5940 .access = PL1_R, .type = ARM_CP_CONST, .resetvalue = cpu->clidr 5941 }; 5942 define_one_arm_cp_reg(cpu, &clidr); 5943 define_arm_cp_regs(cpu, v7_cp_reginfo); 5944 define_debug_regs(cpu); 5945 } else { 5946 define_arm_cp_regs(cpu, not_v7_cp_reginfo); 5947 } 5948 if (FIELD_EX32(cpu->id_dfr0, ID_DFR0, PERFMON) >= 4 && 5949 FIELD_EX32(cpu->id_dfr0, ID_DFR0, PERFMON) != 0xf) { 5950 ARMCPRegInfo v81_pmu_regs[] = { 5951 { .name = "PMCEID2", .state = ARM_CP_STATE_AA32, 5952 .cp = 15, .opc1 = 0, .crn = 9, .crm = 14, .opc2 = 4, 5953 .access = PL0_R, .accessfn = pmreg_access, .type = ARM_CP_CONST, 5954 .resetvalue = extract64(cpu->pmceid0, 32, 32) }, 5955 { .name = "PMCEID3", .state = ARM_CP_STATE_AA32, 5956 .cp = 15, .opc1 = 0, .crn = 9, .crm = 14, .opc2 = 5, 5957 .access = PL0_R, .accessfn = pmreg_access, .type = ARM_CP_CONST, 5958 .resetvalue = extract64(cpu->pmceid1, 32, 32) }, 5959 REGINFO_SENTINEL 5960 }; 5961 define_arm_cp_regs(cpu, v81_pmu_regs); 5962 } 5963 if (arm_feature(env, ARM_FEATURE_V8)) { 5964 /* AArch64 ID registers, which all have impdef reset values. 5965 * Note that within the ID register ranges the unused slots 5966 * must all RAZ, not UNDEF; future architecture versions may 5967 * define new registers here. 5968 */ 5969 ARMCPRegInfo v8_idregs[] = { 5970 /* ID_AA64PFR0_EL1 is not a plain ARM_CP_CONST because we don't 5971 * know the right value for the GIC field until after we 5972 * define these regs. 5973 */ 5974 { .name = "ID_AA64PFR0_EL1", .state = ARM_CP_STATE_AA64, 5975 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 4, .opc2 = 0, 5976 .access = PL1_R, .type = ARM_CP_NO_RAW, 5977 .readfn = id_aa64pfr0_read, 5978 .writefn = arm_cp_write_ignore }, 5979 { .name = "ID_AA64PFR1_EL1", .state = ARM_CP_STATE_AA64, 5980 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 4, .opc2 = 1, 5981 .access = PL1_R, .type = ARM_CP_CONST, 5982 .resetvalue = cpu->isar.id_aa64pfr1}, 5983 { .name = "ID_AA64PFR2_EL1_RESERVED", .state = ARM_CP_STATE_AA64, 5984 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 4, .opc2 = 2, 5985 .access = PL1_R, .type = ARM_CP_CONST, 5986 .resetvalue = 0 }, 5987 { .name = "ID_AA64PFR3_EL1_RESERVED", .state = ARM_CP_STATE_AA64, 5988 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 4, .opc2 = 3, 5989 .access = PL1_R, .type = ARM_CP_CONST, 5990 .resetvalue = 0 }, 5991 { .name = "ID_AA64ZFR0_EL1", .state = ARM_CP_STATE_AA64, 5992 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 4, .opc2 = 4, 5993 .access = PL1_R, .type = ARM_CP_CONST, 5994 /* At present, only SVEver == 0 is defined anyway. */ 5995 .resetvalue = 0 }, 5996 { .name = "ID_AA64PFR5_EL1_RESERVED", .state = ARM_CP_STATE_AA64, 5997 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 4, .opc2 = 5, 5998 .access = PL1_R, .type = ARM_CP_CONST, 5999 .resetvalue = 0 }, 6000 { .name = "ID_AA64PFR6_EL1_RESERVED", .state = ARM_CP_STATE_AA64, 6001 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 4, .opc2 = 6, 6002 .access = PL1_R, .type = ARM_CP_CONST, 6003 .resetvalue = 0 }, 6004 { .name = "ID_AA64PFR7_EL1_RESERVED", .state = ARM_CP_STATE_AA64, 6005 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 4, .opc2 = 7, 6006 .access = PL1_R, .type = ARM_CP_CONST, 6007 .resetvalue = 0 }, 6008 { .name = "ID_AA64DFR0_EL1", .state = ARM_CP_STATE_AA64, 6009 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 5, .opc2 = 0, 6010 .access = PL1_R, .type = ARM_CP_CONST, 6011 .resetvalue = cpu->id_aa64dfr0 }, 6012 { .name = "ID_AA64DFR1_EL1", .state = ARM_CP_STATE_AA64, 6013 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 5, .opc2 = 1, 6014 .access = PL1_R, .type = ARM_CP_CONST, 6015 .resetvalue = cpu->id_aa64dfr1 }, 6016 { .name = "ID_AA64DFR2_EL1_RESERVED", .state = ARM_CP_STATE_AA64, 6017 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 5, .opc2 = 2, 6018 .access = PL1_R, .type = ARM_CP_CONST, 6019 .resetvalue = 0 }, 6020 { .name = "ID_AA64DFR3_EL1_RESERVED", .state = ARM_CP_STATE_AA64, 6021 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 5, .opc2 = 3, 6022 .access = PL1_R, .type = ARM_CP_CONST, 6023 .resetvalue = 0 }, 6024 { .name = "ID_AA64AFR0_EL1", .state = ARM_CP_STATE_AA64, 6025 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 5, .opc2 = 4, 6026 .access = PL1_R, .type = ARM_CP_CONST, 6027 .resetvalue = cpu->id_aa64afr0 }, 6028 { .name = "ID_AA64AFR1_EL1", .state = ARM_CP_STATE_AA64, 6029 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 5, .opc2 = 5, 6030 .access = PL1_R, .type = ARM_CP_CONST, 6031 .resetvalue = cpu->id_aa64afr1 }, 6032 { .name = "ID_AA64AFR2_EL1_RESERVED", .state = ARM_CP_STATE_AA64, 6033 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 5, .opc2 = 6, 6034 .access = PL1_R, .type = ARM_CP_CONST, 6035 .resetvalue = 0 }, 6036 { .name = "ID_AA64AFR3_EL1_RESERVED", .state = ARM_CP_STATE_AA64, 6037 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 5, .opc2 = 7, 6038 .access = PL1_R, .type = ARM_CP_CONST, 6039 .resetvalue = 0 }, 6040 { .name = "ID_AA64ISAR0_EL1", .state = ARM_CP_STATE_AA64, 6041 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 6, .opc2 = 0, 6042 .access = PL1_R, .type = ARM_CP_CONST, 6043 .resetvalue = cpu->isar.id_aa64isar0 }, 6044 { .name = "ID_AA64ISAR1_EL1", .state = ARM_CP_STATE_AA64, 6045 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 6, .opc2 = 1, 6046 .access = PL1_R, .type = ARM_CP_CONST, 6047 .resetvalue = cpu->isar.id_aa64isar1 }, 6048 { .name = "ID_AA64ISAR2_EL1_RESERVED", .state = ARM_CP_STATE_AA64, 6049 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 6, .opc2 = 2, 6050 .access = PL1_R, .type = ARM_CP_CONST, 6051 .resetvalue = 0 }, 6052 { .name = "ID_AA64ISAR3_EL1_RESERVED", .state = ARM_CP_STATE_AA64, 6053 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 6, .opc2 = 3, 6054 .access = PL1_R, .type = ARM_CP_CONST, 6055 .resetvalue = 0 }, 6056 { .name = "ID_AA64ISAR4_EL1_RESERVED", .state = ARM_CP_STATE_AA64, 6057 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 6, .opc2 = 4, 6058 .access = PL1_R, .type = ARM_CP_CONST, 6059 .resetvalue = 0 }, 6060 { .name = "ID_AA64ISAR5_EL1_RESERVED", .state = ARM_CP_STATE_AA64, 6061 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 6, .opc2 = 5, 6062 .access = PL1_R, .type = ARM_CP_CONST, 6063 .resetvalue = 0 }, 6064 { .name = "ID_AA64ISAR6_EL1_RESERVED", .state = ARM_CP_STATE_AA64, 6065 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 6, .opc2 = 6, 6066 .access = PL1_R, .type = ARM_CP_CONST, 6067 .resetvalue = 0 }, 6068 { .name = "ID_AA64ISAR7_EL1_RESERVED", .state = ARM_CP_STATE_AA64, 6069 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 6, .opc2 = 7, 6070 .access = PL1_R, .type = ARM_CP_CONST, 6071 .resetvalue = 0 }, 6072 { .name = "ID_AA64MMFR0_EL1", .state = ARM_CP_STATE_AA64, 6073 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 7, .opc2 = 0, 6074 .access = PL1_R, .type = ARM_CP_CONST, 6075 .resetvalue = cpu->isar.id_aa64mmfr0 }, 6076 { .name = "ID_AA64MMFR1_EL1", .state = ARM_CP_STATE_AA64, 6077 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 7, .opc2 = 1, 6078 .access = PL1_R, .type = ARM_CP_CONST, 6079 .resetvalue = cpu->isar.id_aa64mmfr1 }, 6080 { .name = "ID_AA64MMFR2_EL1_RESERVED", .state = ARM_CP_STATE_AA64, 6081 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 7, .opc2 = 2, 6082 .access = PL1_R, .type = ARM_CP_CONST, 6083 .resetvalue = 0 }, 6084 { .name = "ID_AA64MMFR3_EL1_RESERVED", .state = ARM_CP_STATE_AA64, 6085 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 7, .opc2 = 3, 6086 .access = PL1_R, .type = ARM_CP_CONST, 6087 .resetvalue = 0 }, 6088 { .name = "ID_AA64MMFR4_EL1_RESERVED", .state = ARM_CP_STATE_AA64, 6089 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 7, .opc2 = 4, 6090 .access = PL1_R, .type = ARM_CP_CONST, 6091 .resetvalue = 0 }, 6092 { .name = "ID_AA64MMFR5_EL1_RESERVED", .state = ARM_CP_STATE_AA64, 6093 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 7, .opc2 = 5, 6094 .access = PL1_R, .type = ARM_CP_CONST, 6095 .resetvalue = 0 }, 6096 { .name = "ID_AA64MMFR6_EL1_RESERVED", .state = ARM_CP_STATE_AA64, 6097 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 7, .opc2 = 6, 6098 .access = PL1_R, .type = ARM_CP_CONST, 6099 .resetvalue = 0 }, 6100 { .name = "ID_AA64MMFR7_EL1_RESERVED", .state = ARM_CP_STATE_AA64, 6101 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 7, .opc2 = 7, 6102 .access = PL1_R, .type = ARM_CP_CONST, 6103 .resetvalue = 0 }, 6104 { .name = "MVFR0_EL1", .state = ARM_CP_STATE_AA64, 6105 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 3, .opc2 = 0, 6106 .access = PL1_R, .type = ARM_CP_CONST, 6107 .resetvalue = cpu->isar.mvfr0 }, 6108 { .name = "MVFR1_EL1", .state = ARM_CP_STATE_AA64, 6109 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 3, .opc2 = 1, 6110 .access = PL1_R, .type = ARM_CP_CONST, 6111 .resetvalue = cpu->isar.mvfr1 }, 6112 { .name = "MVFR2_EL1", .state = ARM_CP_STATE_AA64, 6113 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 3, .opc2 = 2, 6114 .access = PL1_R, .type = ARM_CP_CONST, 6115 .resetvalue = cpu->isar.mvfr2 }, 6116 { .name = "MVFR3_EL1_RESERVED", .state = ARM_CP_STATE_AA64, 6117 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 3, .opc2 = 3, 6118 .access = PL1_R, .type = ARM_CP_CONST, 6119 .resetvalue = 0 }, 6120 { .name = "MVFR4_EL1_RESERVED", .state = ARM_CP_STATE_AA64, 6121 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 3, .opc2 = 4, 6122 .access = PL1_R, .type = ARM_CP_CONST, 6123 .resetvalue = 0 }, 6124 { .name = "MVFR5_EL1_RESERVED", .state = ARM_CP_STATE_AA64, 6125 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 3, .opc2 = 5, 6126 .access = PL1_R, .type = ARM_CP_CONST, 6127 .resetvalue = 0 }, 6128 { .name = "MVFR6_EL1_RESERVED", .state = ARM_CP_STATE_AA64, 6129 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 3, .opc2 = 6, 6130 .access = PL1_R, .type = ARM_CP_CONST, 6131 .resetvalue = 0 }, 6132 { .name = "MVFR7_EL1_RESERVED", .state = ARM_CP_STATE_AA64, 6133 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 3, .opc2 = 7, 6134 .access = PL1_R, .type = ARM_CP_CONST, 6135 .resetvalue = 0 }, 6136 { .name = "PMCEID0", .state = ARM_CP_STATE_AA32, 6137 .cp = 15, .opc1 = 0, .crn = 9, .crm = 12, .opc2 = 6, 6138 .access = PL0_R, .accessfn = pmreg_access, .type = ARM_CP_CONST, 6139 .resetvalue = extract64(cpu->pmceid0, 0, 32) }, 6140 { .name = "PMCEID0_EL0", .state = ARM_CP_STATE_AA64, 6141 .opc0 = 3, .opc1 = 3, .crn = 9, .crm = 12, .opc2 = 6, 6142 .access = PL0_R, .accessfn = pmreg_access, .type = ARM_CP_CONST, 6143 .resetvalue = cpu->pmceid0 }, 6144 { .name = "PMCEID1", .state = ARM_CP_STATE_AA32, 6145 .cp = 15, .opc1 = 0, .crn = 9, .crm = 12, .opc2 = 7, 6146 .access = PL0_R, .accessfn = pmreg_access, .type = ARM_CP_CONST, 6147 .resetvalue = extract64(cpu->pmceid1, 0, 32) }, 6148 { .name = "PMCEID1_EL0", .state = ARM_CP_STATE_AA64, 6149 .opc0 = 3, .opc1 = 3, .crn = 9, .crm = 12, .opc2 = 7, 6150 .access = PL0_R, .accessfn = pmreg_access, .type = ARM_CP_CONST, 6151 .resetvalue = cpu->pmceid1 }, 6152 REGINFO_SENTINEL 6153 }; 6154 #ifdef CONFIG_USER_ONLY 6155 ARMCPRegUserSpaceInfo v8_user_idregs[] = { 6156 { .name = "ID_AA64PFR0_EL1", 6157 .exported_bits = 0x000f000f00ff0000, 6158 .fixed_bits = 0x0000000000000011 }, 6159 { .name = "ID_AA64PFR1_EL1", 6160 .exported_bits = 0x00000000000000f0 }, 6161 { .name = "ID_AA64PFR*_EL1_RESERVED", 6162 .is_glob = true }, 6163 { .name = "ID_AA64ZFR0_EL1" }, 6164 { .name = "ID_AA64MMFR0_EL1", 6165 .fixed_bits = 0x00000000ff000000 }, 6166 { .name = "ID_AA64MMFR1_EL1" }, 6167 { .name = "ID_AA64MMFR*_EL1_RESERVED", 6168 .is_glob = true }, 6169 { .name = "ID_AA64DFR0_EL1", 6170 .fixed_bits = 0x0000000000000006 }, 6171 { .name = "ID_AA64DFR1_EL1" }, 6172 { .name = "ID_AA64DFR*_EL1_RESERVED", 6173 .is_glob = true }, 6174 { .name = "ID_AA64AFR*", 6175 .is_glob = true }, 6176 { .name = "ID_AA64ISAR0_EL1", 6177 .exported_bits = 0x00fffffff0fffff0 }, 6178 { .name = "ID_AA64ISAR1_EL1", 6179 .exported_bits = 0x000000f0ffffffff }, 6180 { .name = "ID_AA64ISAR*_EL1_RESERVED", 6181 .is_glob = true }, 6182 REGUSERINFO_SENTINEL 6183 }; 6184 modify_arm_cp_regs(v8_idregs, v8_user_idregs); 6185 #endif 6186 /* RVBAR_EL1 is only implemented if EL1 is the highest EL */ 6187 if (!arm_feature(env, ARM_FEATURE_EL3) && 6188 !arm_feature(env, ARM_FEATURE_EL2)) { 6189 ARMCPRegInfo rvbar = { 6190 .name = "RVBAR_EL1", .state = ARM_CP_STATE_AA64, 6191 .opc0 = 3, .opc1 = 0, .crn = 12, .crm = 0, .opc2 = 1, 6192 .type = ARM_CP_CONST, .access = PL1_R, .resetvalue = cpu->rvbar 6193 }; 6194 define_one_arm_cp_reg(cpu, &rvbar); 6195 } 6196 define_arm_cp_regs(cpu, v8_idregs); 6197 define_arm_cp_regs(cpu, v8_cp_reginfo); 6198 } 6199 if (arm_feature(env, ARM_FEATURE_EL2)) { 6200 uint64_t vmpidr_def = mpidr_read_val(env); 6201 ARMCPRegInfo vpidr_regs[] = { 6202 { .name = "VPIDR", .state = ARM_CP_STATE_AA32, 6203 .cp = 15, .opc1 = 4, .crn = 0, .crm = 0, .opc2 = 0, 6204 .access = PL2_RW, .accessfn = access_el3_aa32ns, 6205 .resetvalue = cpu->midr, .type = ARM_CP_ALIAS, 6206 .fieldoffset = offsetoflow32(CPUARMState, cp15.vpidr_el2) }, 6207 { .name = "VPIDR_EL2", .state = ARM_CP_STATE_AA64, 6208 .opc0 = 3, .opc1 = 4, .crn = 0, .crm = 0, .opc2 = 0, 6209 .access = PL2_RW, .resetvalue = cpu->midr, 6210 .fieldoffset = offsetof(CPUARMState, cp15.vpidr_el2) }, 6211 { .name = "VMPIDR", .state = ARM_CP_STATE_AA32, 6212 .cp = 15, .opc1 = 4, .crn = 0, .crm = 0, .opc2 = 5, 6213 .access = PL2_RW, .accessfn = access_el3_aa32ns, 6214 .resetvalue = vmpidr_def, .type = ARM_CP_ALIAS, 6215 .fieldoffset = offsetoflow32(CPUARMState, cp15.vmpidr_el2) }, 6216 { .name = "VMPIDR_EL2", .state = ARM_CP_STATE_AA64, 6217 .opc0 = 3, .opc1 = 4, .crn = 0, .crm = 0, .opc2 = 5, 6218 .access = PL2_RW, 6219 .resetvalue = vmpidr_def, 6220 .fieldoffset = offsetof(CPUARMState, cp15.vmpidr_el2) }, 6221 REGINFO_SENTINEL 6222 }; 6223 define_arm_cp_regs(cpu, vpidr_regs); 6224 define_arm_cp_regs(cpu, el2_cp_reginfo); 6225 if (arm_feature(env, ARM_FEATURE_V8)) { 6226 define_arm_cp_regs(cpu, el2_v8_cp_reginfo); 6227 } 6228 /* RVBAR_EL2 is only implemented if EL2 is the highest EL */ 6229 if (!arm_feature(env, ARM_FEATURE_EL3)) { 6230 ARMCPRegInfo rvbar = { 6231 .name = "RVBAR_EL2", .state = ARM_CP_STATE_AA64, 6232 .opc0 = 3, .opc1 = 4, .crn = 12, .crm = 0, .opc2 = 1, 6233 .type = ARM_CP_CONST, .access = PL2_R, .resetvalue = cpu->rvbar 6234 }; 6235 define_one_arm_cp_reg(cpu, &rvbar); 6236 } 6237 } else { 6238 /* If EL2 is missing but higher ELs are enabled, we need to 6239 * register the no_el2 reginfos. 6240 */ 6241 if (arm_feature(env, ARM_FEATURE_EL3)) { 6242 /* When EL3 exists but not EL2, VPIDR and VMPIDR take the value 6243 * of MIDR_EL1 and MPIDR_EL1. 6244 */ 6245 ARMCPRegInfo vpidr_regs[] = { 6246 { .name = "VPIDR_EL2", .state = ARM_CP_STATE_BOTH, 6247 .opc0 = 3, .opc1 = 4, .crn = 0, .crm = 0, .opc2 = 0, 6248 .access = PL2_RW, .accessfn = access_el3_aa32ns_aa64any, 6249 .type = ARM_CP_CONST, .resetvalue = cpu->midr, 6250 .fieldoffset = offsetof(CPUARMState, cp15.vpidr_el2) }, 6251 { .name = "VMPIDR_EL2", .state = ARM_CP_STATE_BOTH, 6252 .opc0 = 3, .opc1 = 4, .crn = 0, .crm = 0, .opc2 = 5, 6253 .access = PL2_RW, .accessfn = access_el3_aa32ns_aa64any, 6254 .type = ARM_CP_NO_RAW, 6255 .writefn = arm_cp_write_ignore, .readfn = mpidr_read }, 6256 REGINFO_SENTINEL 6257 }; 6258 define_arm_cp_regs(cpu, vpidr_regs); 6259 define_arm_cp_regs(cpu, el3_no_el2_cp_reginfo); 6260 if (arm_feature(env, ARM_FEATURE_V8)) { 6261 define_arm_cp_regs(cpu, el3_no_el2_v8_cp_reginfo); 6262 } 6263 } 6264 } 6265 if (arm_feature(env, ARM_FEATURE_EL3)) { 6266 define_arm_cp_regs(cpu, el3_cp_reginfo); 6267 ARMCPRegInfo el3_regs[] = { 6268 { .name = "RVBAR_EL3", .state = ARM_CP_STATE_AA64, 6269 .opc0 = 3, .opc1 = 6, .crn = 12, .crm = 0, .opc2 = 1, 6270 .type = ARM_CP_CONST, .access = PL3_R, .resetvalue = cpu->rvbar }, 6271 { .name = "SCTLR_EL3", .state = ARM_CP_STATE_AA64, 6272 .opc0 = 3, .opc1 = 6, .crn = 1, .crm = 0, .opc2 = 0, 6273 .access = PL3_RW, 6274 .raw_writefn = raw_write, .writefn = sctlr_write, 6275 .fieldoffset = offsetof(CPUARMState, cp15.sctlr_el[3]), 6276 .resetvalue = cpu->reset_sctlr }, 6277 REGINFO_SENTINEL 6278 }; 6279 6280 define_arm_cp_regs(cpu, el3_regs); 6281 } 6282 /* The behaviour of NSACR is sufficiently various that we don't 6283 * try to describe it in a single reginfo: 6284 * if EL3 is 64 bit, then trap to EL3 from S EL1, 6285 * reads as constant 0xc00 from NS EL1 and NS EL2 6286 * if EL3 is 32 bit, then RW at EL3, RO at NS EL1 and NS EL2 6287 * if v7 without EL3, register doesn't exist 6288 * if v8 without EL3, reads as constant 0xc00 from NS EL1 and NS EL2 6289 */ 6290 if (arm_feature(env, ARM_FEATURE_EL3)) { 6291 if (arm_feature(env, ARM_FEATURE_AARCH64)) { 6292 ARMCPRegInfo nsacr = { 6293 .name = "NSACR", .type = ARM_CP_CONST, 6294 .cp = 15, .opc1 = 0, .crn = 1, .crm = 1, .opc2 = 2, 6295 .access = PL1_RW, .accessfn = nsacr_access, 6296 .resetvalue = 0xc00 6297 }; 6298 define_one_arm_cp_reg(cpu, &nsacr); 6299 } else { 6300 ARMCPRegInfo nsacr = { 6301 .name = "NSACR", 6302 .cp = 15, .opc1 = 0, .crn = 1, .crm = 1, .opc2 = 2, 6303 .access = PL3_RW | PL1_R, 6304 .resetvalue = 0, 6305 .fieldoffset = offsetof(CPUARMState, cp15.nsacr) 6306 }; 6307 define_one_arm_cp_reg(cpu, &nsacr); 6308 } 6309 } else { 6310 if (arm_feature(env, ARM_FEATURE_V8)) { 6311 ARMCPRegInfo nsacr = { 6312 .name = "NSACR", .type = ARM_CP_CONST, 6313 .cp = 15, .opc1 = 0, .crn = 1, .crm = 1, .opc2 = 2, 6314 .access = PL1_R, 6315 .resetvalue = 0xc00 6316 }; 6317 define_one_arm_cp_reg(cpu, &nsacr); 6318 } 6319 } 6320 6321 if (arm_feature(env, ARM_FEATURE_PMSA)) { 6322 if (arm_feature(env, ARM_FEATURE_V6)) { 6323 /* PMSAv6 not implemented */ 6324 assert(arm_feature(env, ARM_FEATURE_V7)); 6325 define_arm_cp_regs(cpu, vmsa_pmsa_cp_reginfo); 6326 define_arm_cp_regs(cpu, pmsav7_cp_reginfo); 6327 } else { 6328 define_arm_cp_regs(cpu, pmsav5_cp_reginfo); 6329 } 6330 } else { 6331 define_arm_cp_regs(cpu, vmsa_pmsa_cp_reginfo); 6332 define_arm_cp_regs(cpu, vmsa_cp_reginfo); 6333 /* TTCBR2 is introduced with ARMv8.2-A32HPD. */ 6334 if (FIELD_EX32(cpu->id_mmfr4, ID_MMFR4, HPDS) != 0) { 6335 define_one_arm_cp_reg(cpu, &ttbcr2_reginfo); 6336 } 6337 } 6338 if (arm_feature(env, ARM_FEATURE_THUMB2EE)) { 6339 define_arm_cp_regs(cpu, t2ee_cp_reginfo); 6340 } 6341 if (arm_feature(env, ARM_FEATURE_GENERIC_TIMER)) { 6342 define_arm_cp_regs(cpu, generic_timer_cp_reginfo); 6343 } 6344 if (arm_feature(env, ARM_FEATURE_VAPA)) { 6345 define_arm_cp_regs(cpu, vapa_cp_reginfo); 6346 } 6347 if (arm_feature(env, ARM_FEATURE_CACHE_TEST_CLEAN)) { 6348 define_arm_cp_regs(cpu, cache_test_clean_cp_reginfo); 6349 } 6350 if (arm_feature(env, ARM_FEATURE_CACHE_DIRTY_REG)) { 6351 define_arm_cp_regs(cpu, cache_dirty_status_cp_reginfo); 6352 } 6353 if (arm_feature(env, ARM_FEATURE_CACHE_BLOCK_OPS)) { 6354 define_arm_cp_regs(cpu, cache_block_ops_cp_reginfo); 6355 } 6356 if (arm_feature(env, ARM_FEATURE_OMAPCP)) { 6357 define_arm_cp_regs(cpu, omap_cp_reginfo); 6358 } 6359 if (arm_feature(env, ARM_FEATURE_STRONGARM)) { 6360 define_arm_cp_regs(cpu, strongarm_cp_reginfo); 6361 } 6362 if (arm_feature(env, ARM_FEATURE_XSCALE)) { 6363 define_arm_cp_regs(cpu, xscale_cp_reginfo); 6364 } 6365 if (arm_feature(env, ARM_FEATURE_DUMMY_C15_REGS)) { 6366 define_arm_cp_regs(cpu, dummy_c15_cp_reginfo); 6367 } 6368 if (arm_feature(env, ARM_FEATURE_LPAE)) { 6369 define_arm_cp_regs(cpu, lpae_cp_reginfo); 6370 } 6371 /* Slightly awkwardly, the OMAP and StrongARM cores need all of 6372 * cp15 crn=0 to be writes-ignored, whereas for other cores they should 6373 * be read-only (ie write causes UNDEF exception). 6374 */ 6375 { 6376 ARMCPRegInfo id_pre_v8_midr_cp_reginfo[] = { 6377 /* Pre-v8 MIDR space. 6378 * Note that the MIDR isn't a simple constant register because 6379 * of the TI925 behaviour where writes to another register can 6380 * cause the MIDR value to change. 6381 * 6382 * Unimplemented registers in the c15 0 0 0 space default to 6383 * MIDR. Define MIDR first as this entire space, then CTR, TCMTR 6384 * and friends override accordingly. 6385 */ 6386 { .name = "MIDR", 6387 .cp = 15, .crn = 0, .crm = 0, .opc1 = 0, .opc2 = CP_ANY, 6388 .access = PL1_R, .resetvalue = cpu->midr, 6389 .writefn = arm_cp_write_ignore, .raw_writefn = raw_write, 6390 .readfn = midr_read, 6391 .fieldoffset = offsetof(CPUARMState, cp15.c0_cpuid), 6392 .type = ARM_CP_OVERRIDE }, 6393 /* crn = 0 op1 = 0 crm = 3..7 : currently unassigned; we RAZ. */ 6394 { .name = "DUMMY", 6395 .cp = 15, .crn = 0, .crm = 3, .opc1 = 0, .opc2 = CP_ANY, 6396 .access = PL1_R, .type = ARM_CP_CONST, .resetvalue = 0 }, 6397 { .name = "DUMMY", 6398 .cp = 15, .crn = 0, .crm = 4, .opc1 = 0, .opc2 = CP_ANY, 6399 .access = PL1_R, .type = ARM_CP_CONST, .resetvalue = 0 }, 6400 { .name = "DUMMY", 6401 .cp = 15, .crn = 0, .crm = 5, .opc1 = 0, .opc2 = CP_ANY, 6402 .access = PL1_R, .type = ARM_CP_CONST, .resetvalue = 0 }, 6403 { .name = "DUMMY", 6404 .cp = 15, .crn = 0, .crm = 6, .opc1 = 0, .opc2 = CP_ANY, 6405 .access = PL1_R, .type = ARM_CP_CONST, .resetvalue = 0 }, 6406 { .name = "DUMMY", 6407 .cp = 15, .crn = 0, .crm = 7, .opc1 = 0, .opc2 = CP_ANY, 6408 .access = PL1_R, .type = ARM_CP_CONST, .resetvalue = 0 }, 6409 REGINFO_SENTINEL 6410 }; 6411 ARMCPRegInfo id_v8_midr_cp_reginfo[] = { 6412 { .name = "MIDR_EL1", .state = ARM_CP_STATE_BOTH, 6413 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 0, .opc2 = 0, 6414 .access = PL1_R, .type = ARM_CP_NO_RAW, .resetvalue = cpu->midr, 6415 .fieldoffset = offsetof(CPUARMState, cp15.c0_cpuid), 6416 .readfn = midr_read }, 6417 /* crn = 0 op1 = 0 crm = 0 op2 = 4,7 : AArch32 aliases of MIDR */ 6418 { .name = "MIDR", .type = ARM_CP_ALIAS | ARM_CP_CONST, 6419 .cp = 15, .crn = 0, .crm = 0, .opc1 = 0, .opc2 = 4, 6420 .access = PL1_R, .resetvalue = cpu->midr }, 6421 { .name = "MIDR", .type = ARM_CP_ALIAS | ARM_CP_CONST, 6422 .cp = 15, .crn = 0, .crm = 0, .opc1 = 0, .opc2 = 7, 6423 .access = PL1_R, .resetvalue = cpu->midr }, 6424 { .name = "REVIDR_EL1", .state = ARM_CP_STATE_BOTH, 6425 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 0, .opc2 = 6, 6426 .access = PL1_R, .type = ARM_CP_CONST, .resetvalue = cpu->revidr }, 6427 REGINFO_SENTINEL 6428 }; 6429 ARMCPRegInfo id_cp_reginfo[] = { 6430 /* These are common to v8 and pre-v8 */ 6431 { .name = "CTR", 6432 .cp = 15, .crn = 0, .crm = 0, .opc1 = 0, .opc2 = 1, 6433 .access = PL1_R, .type = ARM_CP_CONST, .resetvalue = cpu->ctr }, 6434 { .name = "CTR_EL0", .state = ARM_CP_STATE_AA64, 6435 .opc0 = 3, .opc1 = 3, .opc2 = 1, .crn = 0, .crm = 0, 6436 .access = PL0_R, .accessfn = ctr_el0_access, 6437 .type = ARM_CP_CONST, .resetvalue = cpu->ctr }, 6438 /* TCMTR and TLBTR exist in v8 but have no 64-bit versions */ 6439 { .name = "TCMTR", 6440 .cp = 15, .crn = 0, .crm = 0, .opc1 = 0, .opc2 = 2, 6441 .access = PL1_R, .type = ARM_CP_CONST, .resetvalue = 0 }, 6442 REGINFO_SENTINEL 6443 }; 6444 /* TLBTR is specific to VMSA */ 6445 ARMCPRegInfo id_tlbtr_reginfo = { 6446 .name = "TLBTR", 6447 .cp = 15, .crn = 0, .crm = 0, .opc1 = 0, .opc2 = 3, 6448 .access = PL1_R, .type = ARM_CP_CONST, .resetvalue = 0, 6449 }; 6450 /* MPUIR is specific to PMSA V6+ */ 6451 ARMCPRegInfo id_mpuir_reginfo = { 6452 .name = "MPUIR", 6453 .cp = 15, .crn = 0, .crm = 0, .opc1 = 0, .opc2 = 4, 6454 .access = PL1_R, .type = ARM_CP_CONST, 6455 .resetvalue = cpu->pmsav7_dregion << 8 6456 }; 6457 ARMCPRegInfo crn0_wi_reginfo = { 6458 .name = "CRN0_WI", .cp = 15, .crn = 0, .crm = CP_ANY, 6459 .opc1 = CP_ANY, .opc2 = CP_ANY, .access = PL1_W, 6460 .type = ARM_CP_NOP | ARM_CP_OVERRIDE 6461 }; 6462 #ifdef CONFIG_USER_ONLY 6463 ARMCPRegUserSpaceInfo id_v8_user_midr_cp_reginfo[] = { 6464 { .name = "MIDR_EL1", 6465 .exported_bits = 0x00000000ffffffff }, 6466 { .name = "REVIDR_EL1" }, 6467 REGUSERINFO_SENTINEL 6468 }; 6469 modify_arm_cp_regs(id_v8_midr_cp_reginfo, id_v8_user_midr_cp_reginfo); 6470 #endif 6471 if (arm_feature(env, ARM_FEATURE_OMAPCP) || 6472 arm_feature(env, ARM_FEATURE_STRONGARM)) { 6473 ARMCPRegInfo *r; 6474 /* Register the blanket "writes ignored" value first to cover the 6475 * whole space. Then update the specific ID registers to allow write 6476 * access, so that they ignore writes rather than causing them to 6477 * UNDEF. 6478 */ 6479 define_one_arm_cp_reg(cpu, &crn0_wi_reginfo); 6480 for (r = id_pre_v8_midr_cp_reginfo; 6481 r->type != ARM_CP_SENTINEL; r++) { 6482 r->access = PL1_RW; 6483 } 6484 for (r = id_cp_reginfo; r->type != ARM_CP_SENTINEL; r++) { 6485 r->access = PL1_RW; 6486 } 6487 id_mpuir_reginfo.access = PL1_RW; 6488 id_tlbtr_reginfo.access = PL1_RW; 6489 } 6490 if (arm_feature(env, ARM_FEATURE_V8)) { 6491 define_arm_cp_regs(cpu, id_v8_midr_cp_reginfo); 6492 } else { 6493 define_arm_cp_regs(cpu, id_pre_v8_midr_cp_reginfo); 6494 } 6495 define_arm_cp_regs(cpu, id_cp_reginfo); 6496 if (!arm_feature(env, ARM_FEATURE_PMSA)) { 6497 define_one_arm_cp_reg(cpu, &id_tlbtr_reginfo); 6498 } else if (arm_feature(env, ARM_FEATURE_V7)) { 6499 define_one_arm_cp_reg(cpu, &id_mpuir_reginfo); 6500 } 6501 } 6502 6503 if (arm_feature(env, ARM_FEATURE_MPIDR)) { 6504 ARMCPRegInfo mpidr_cp_reginfo[] = { 6505 { .name = "MPIDR_EL1", .state = ARM_CP_STATE_BOTH, 6506 .opc0 = 3, .crn = 0, .crm = 0, .opc1 = 0, .opc2 = 5, 6507 .access = PL1_R, .readfn = mpidr_read, .type = ARM_CP_NO_RAW }, 6508 REGINFO_SENTINEL 6509 }; 6510 #ifdef CONFIG_USER_ONLY 6511 ARMCPRegUserSpaceInfo mpidr_user_cp_reginfo[] = { 6512 { .name = "MPIDR_EL1", 6513 .fixed_bits = 0x0000000080000000 }, 6514 REGUSERINFO_SENTINEL 6515 }; 6516 modify_arm_cp_regs(mpidr_cp_reginfo, mpidr_user_cp_reginfo); 6517 #endif 6518 define_arm_cp_regs(cpu, mpidr_cp_reginfo); 6519 } 6520 6521 if (arm_feature(env, ARM_FEATURE_AUXCR)) { 6522 ARMCPRegInfo auxcr_reginfo[] = { 6523 { .name = "ACTLR_EL1", .state = ARM_CP_STATE_BOTH, 6524 .opc0 = 3, .opc1 = 0, .crn = 1, .crm = 0, .opc2 = 1, 6525 .access = PL1_RW, .type = ARM_CP_CONST, 6526 .resetvalue = cpu->reset_auxcr }, 6527 { .name = "ACTLR_EL2", .state = ARM_CP_STATE_BOTH, 6528 .opc0 = 3, .opc1 = 4, .crn = 1, .crm = 0, .opc2 = 1, 6529 .access = PL2_RW, .type = ARM_CP_CONST, 6530 .resetvalue = 0 }, 6531 { .name = "ACTLR_EL3", .state = ARM_CP_STATE_AA64, 6532 .opc0 = 3, .opc1 = 6, .crn = 1, .crm = 0, .opc2 = 1, 6533 .access = PL3_RW, .type = ARM_CP_CONST, 6534 .resetvalue = 0 }, 6535 REGINFO_SENTINEL 6536 }; 6537 define_arm_cp_regs(cpu, auxcr_reginfo); 6538 if (arm_feature(env, ARM_FEATURE_V8)) { 6539 /* HACTLR2 maps to ACTLR_EL2[63:32] and is not in ARMv7 */ 6540 ARMCPRegInfo hactlr2_reginfo = { 6541 .name = "HACTLR2", .state = ARM_CP_STATE_AA32, 6542 .cp = 15, .opc1 = 4, .crn = 1, .crm = 0, .opc2 = 3, 6543 .access = PL2_RW, .type = ARM_CP_CONST, 6544 .resetvalue = 0 6545 }; 6546 define_one_arm_cp_reg(cpu, &hactlr2_reginfo); 6547 } 6548 } 6549 6550 if (arm_feature(env, ARM_FEATURE_CBAR)) { 6551 if (arm_feature(env, ARM_FEATURE_AARCH64)) { 6552 /* 32 bit view is [31:18] 0...0 [43:32]. */ 6553 uint32_t cbar32 = (extract64(cpu->reset_cbar, 18, 14) << 18) 6554 | extract64(cpu->reset_cbar, 32, 12); 6555 ARMCPRegInfo cbar_reginfo[] = { 6556 { .name = "CBAR", 6557 .type = ARM_CP_CONST, 6558 .cp = 15, .crn = 15, .crm = 0, .opc1 = 4, .opc2 = 0, 6559 .access = PL1_R, .resetvalue = cpu->reset_cbar }, 6560 { .name = "CBAR_EL1", .state = ARM_CP_STATE_AA64, 6561 .type = ARM_CP_CONST, 6562 .opc0 = 3, .opc1 = 1, .crn = 15, .crm = 3, .opc2 = 0, 6563 .access = PL1_R, .resetvalue = cbar32 }, 6564 REGINFO_SENTINEL 6565 }; 6566 /* We don't implement a r/w 64 bit CBAR currently */ 6567 assert(arm_feature(env, ARM_FEATURE_CBAR_RO)); 6568 define_arm_cp_regs(cpu, cbar_reginfo); 6569 } else { 6570 ARMCPRegInfo cbar = { 6571 .name = "CBAR", 6572 .cp = 15, .crn = 15, .crm = 0, .opc1 = 4, .opc2 = 0, 6573 .access = PL1_R|PL3_W, .resetvalue = cpu->reset_cbar, 6574 .fieldoffset = offsetof(CPUARMState, 6575 cp15.c15_config_base_address) 6576 }; 6577 if (arm_feature(env, ARM_FEATURE_CBAR_RO)) { 6578 cbar.access = PL1_R; 6579 cbar.fieldoffset = 0; 6580 cbar.type = ARM_CP_CONST; 6581 } 6582 define_one_arm_cp_reg(cpu, &cbar); 6583 } 6584 } 6585 6586 if (arm_feature(env, ARM_FEATURE_VBAR)) { 6587 ARMCPRegInfo vbar_cp_reginfo[] = { 6588 { .name = "VBAR", .state = ARM_CP_STATE_BOTH, 6589 .opc0 = 3, .crn = 12, .crm = 0, .opc1 = 0, .opc2 = 0, 6590 .access = PL1_RW, .writefn = vbar_write, 6591 .bank_fieldoffsets = { offsetof(CPUARMState, cp15.vbar_s), 6592 offsetof(CPUARMState, cp15.vbar_ns) }, 6593 .resetvalue = 0 }, 6594 REGINFO_SENTINEL 6595 }; 6596 define_arm_cp_regs(cpu, vbar_cp_reginfo); 6597 } 6598 6599 /* Generic registers whose values depend on the implementation */ 6600 { 6601 ARMCPRegInfo sctlr = { 6602 .name = "SCTLR", .state = ARM_CP_STATE_BOTH, 6603 .opc0 = 3, .opc1 = 0, .crn = 1, .crm = 0, .opc2 = 0, 6604 .access = PL1_RW, 6605 .bank_fieldoffsets = { offsetof(CPUARMState, cp15.sctlr_s), 6606 offsetof(CPUARMState, cp15.sctlr_ns) }, 6607 .writefn = sctlr_write, .resetvalue = cpu->reset_sctlr, 6608 .raw_writefn = raw_write, 6609 }; 6610 if (arm_feature(env, ARM_FEATURE_XSCALE)) { 6611 /* Normally we would always end the TB on an SCTLR write, but Linux 6612 * arch/arm/mach-pxa/sleep.S expects two instructions following 6613 * an MMU enable to execute from cache. Imitate this behaviour. 6614 */ 6615 sctlr.type |= ARM_CP_SUPPRESS_TB_END; 6616 } 6617 define_one_arm_cp_reg(cpu, &sctlr); 6618 } 6619 6620 if (cpu_isar_feature(aa64_lor, cpu)) { 6621 /* 6622 * A trivial implementation of ARMv8.1-LOR leaves all of these 6623 * registers fixed at 0, which indicates that there are zero 6624 * supported Limited Ordering regions. 6625 */ 6626 static const ARMCPRegInfo lor_reginfo[] = { 6627 { .name = "LORSA_EL1", .state = ARM_CP_STATE_AA64, 6628 .opc0 = 3, .opc1 = 0, .crn = 10, .crm = 4, .opc2 = 0, 6629 .access = PL1_RW, .accessfn = access_lor_other, 6630 .type = ARM_CP_CONST, .resetvalue = 0 }, 6631 { .name = "LOREA_EL1", .state = ARM_CP_STATE_AA64, 6632 .opc0 = 3, .opc1 = 0, .crn = 10, .crm = 4, .opc2 = 1, 6633 .access = PL1_RW, .accessfn = access_lor_other, 6634 .type = ARM_CP_CONST, .resetvalue = 0 }, 6635 { .name = "LORN_EL1", .state = ARM_CP_STATE_AA64, 6636 .opc0 = 3, .opc1 = 0, .crn = 10, .crm = 4, .opc2 = 2, 6637 .access = PL1_RW, .accessfn = access_lor_other, 6638 .type = ARM_CP_CONST, .resetvalue = 0 }, 6639 { .name = "LORC_EL1", .state = ARM_CP_STATE_AA64, 6640 .opc0 = 3, .opc1 = 0, .crn = 10, .crm = 4, .opc2 = 3, 6641 .access = PL1_RW, .accessfn = access_lor_other, 6642 .type = ARM_CP_CONST, .resetvalue = 0 }, 6643 { .name = "LORID_EL1", .state = ARM_CP_STATE_AA64, 6644 .opc0 = 3, .opc1 = 0, .crn = 10, .crm = 4, .opc2 = 7, 6645 .access = PL1_R, .accessfn = access_lorid, 6646 .type = ARM_CP_CONST, .resetvalue = 0 }, 6647 REGINFO_SENTINEL 6648 }; 6649 define_arm_cp_regs(cpu, lor_reginfo); 6650 } 6651 6652 if (cpu_isar_feature(aa64_sve, cpu)) { 6653 define_one_arm_cp_reg(cpu, &zcr_el1_reginfo); 6654 if (arm_feature(env, ARM_FEATURE_EL2)) { 6655 define_one_arm_cp_reg(cpu, &zcr_el2_reginfo); 6656 } else { 6657 define_one_arm_cp_reg(cpu, &zcr_no_el2_reginfo); 6658 } 6659 if (arm_feature(env, ARM_FEATURE_EL3)) { 6660 define_one_arm_cp_reg(cpu, &zcr_el3_reginfo); 6661 } 6662 } 6663 6664 #ifdef TARGET_AARCH64 6665 if (cpu_isar_feature(aa64_pauth, cpu)) { 6666 define_arm_cp_regs(cpu, pauth_reginfo); 6667 } 6668 #endif 6669 6670 /* 6671 * While all v8.0 cpus support aarch64, QEMU does have configurations 6672 * that do not set ID_AA64ISAR1, e.g. user-only qemu-arm -cpu max, 6673 * which will set ID_ISAR6. 6674 */ 6675 if (arm_feature(&cpu->env, ARM_FEATURE_AARCH64) 6676 ? cpu_isar_feature(aa64_predinv, cpu) 6677 : cpu_isar_feature(aa32_predinv, cpu)) { 6678 define_arm_cp_regs(cpu, predinv_reginfo); 6679 } 6680 } 6681 6682 void arm_cpu_register_gdb_regs_for_features(ARMCPU *cpu) 6683 { 6684 CPUState *cs = CPU(cpu); 6685 CPUARMState *env = &cpu->env; 6686 6687 if (arm_feature(env, ARM_FEATURE_AARCH64)) { 6688 gdb_register_coprocessor(cs, aarch64_fpu_gdb_get_reg, 6689 aarch64_fpu_gdb_set_reg, 6690 34, "aarch64-fpu.xml", 0); 6691 } else if (arm_feature(env, ARM_FEATURE_NEON)) { 6692 gdb_register_coprocessor(cs, vfp_gdb_get_reg, vfp_gdb_set_reg, 6693 51, "arm-neon.xml", 0); 6694 } else if (arm_feature(env, ARM_FEATURE_VFP3)) { 6695 gdb_register_coprocessor(cs, vfp_gdb_get_reg, vfp_gdb_set_reg, 6696 35, "arm-vfp3.xml", 0); 6697 } else if (arm_feature(env, ARM_FEATURE_VFP)) { 6698 gdb_register_coprocessor(cs, vfp_gdb_get_reg, vfp_gdb_set_reg, 6699 19, "arm-vfp.xml", 0); 6700 } 6701 gdb_register_coprocessor(cs, arm_gdb_get_sysreg, arm_gdb_set_sysreg, 6702 arm_gen_dynamic_xml(cs), 6703 "system-registers.xml", 0); 6704 } 6705 6706 /* Sort alphabetically by type name, except for "any". */ 6707 static gint arm_cpu_list_compare(gconstpointer a, gconstpointer b) 6708 { 6709 ObjectClass *class_a = (ObjectClass *)a; 6710 ObjectClass *class_b = (ObjectClass *)b; 6711 const char *name_a, *name_b; 6712 6713 name_a = object_class_get_name(class_a); 6714 name_b = object_class_get_name(class_b); 6715 if (strcmp(name_a, "any-" TYPE_ARM_CPU) == 0) { 6716 return 1; 6717 } else if (strcmp(name_b, "any-" TYPE_ARM_CPU) == 0) { 6718 return -1; 6719 } else { 6720 return strcmp(name_a, name_b); 6721 } 6722 } 6723 6724 static void arm_cpu_list_entry(gpointer data, gpointer user_data) 6725 { 6726 ObjectClass *oc = data; 6727 CPUListState *s = user_data; 6728 const char *typename; 6729 char *name; 6730 6731 typename = object_class_get_name(oc); 6732 name = g_strndup(typename, strlen(typename) - strlen("-" TYPE_ARM_CPU)); 6733 (*s->cpu_fprintf)(s->file, " %s\n", 6734 name); 6735 g_free(name); 6736 } 6737 6738 void arm_cpu_list(FILE *f, fprintf_function cpu_fprintf) 6739 { 6740 CPUListState s = { 6741 .file = f, 6742 .cpu_fprintf = cpu_fprintf, 6743 }; 6744 GSList *list; 6745 6746 list = object_class_get_list(TYPE_ARM_CPU, false); 6747 list = g_slist_sort(list, arm_cpu_list_compare); 6748 (*cpu_fprintf)(f, "Available CPUs:\n"); 6749 g_slist_foreach(list, arm_cpu_list_entry, &s); 6750 g_slist_free(list); 6751 } 6752 6753 static void arm_cpu_add_definition(gpointer data, gpointer user_data) 6754 { 6755 ObjectClass *oc = data; 6756 CpuDefinitionInfoList **cpu_list = user_data; 6757 CpuDefinitionInfoList *entry; 6758 CpuDefinitionInfo *info; 6759 const char *typename; 6760 6761 typename = object_class_get_name(oc); 6762 info = g_malloc0(sizeof(*info)); 6763 info->name = g_strndup(typename, 6764 strlen(typename) - strlen("-" TYPE_ARM_CPU)); 6765 info->q_typename = g_strdup(typename); 6766 6767 entry = g_malloc0(sizeof(*entry)); 6768 entry->value = info; 6769 entry->next = *cpu_list; 6770 *cpu_list = entry; 6771 } 6772 6773 CpuDefinitionInfoList *qmp_query_cpu_definitions(Error **errp) 6774 { 6775 CpuDefinitionInfoList *cpu_list = NULL; 6776 GSList *list; 6777 6778 list = object_class_get_list(TYPE_ARM_CPU, false); 6779 g_slist_foreach(list, arm_cpu_add_definition, &cpu_list); 6780 g_slist_free(list); 6781 6782 return cpu_list; 6783 } 6784 6785 static void add_cpreg_to_hashtable(ARMCPU *cpu, const ARMCPRegInfo *r, 6786 void *opaque, int state, int secstate, 6787 int crm, int opc1, int opc2, 6788 const char *name) 6789 { 6790 /* Private utility function for define_one_arm_cp_reg_with_opaque(): 6791 * add a single reginfo struct to the hash table. 6792 */ 6793 uint32_t *key = g_new(uint32_t, 1); 6794 ARMCPRegInfo *r2 = g_memdup(r, sizeof(ARMCPRegInfo)); 6795 int is64 = (r->type & ARM_CP_64BIT) ? 1 : 0; 6796 int ns = (secstate & ARM_CP_SECSTATE_NS) ? 1 : 0; 6797 6798 r2->name = g_strdup(name); 6799 /* Reset the secure state to the specific incoming state. This is 6800 * necessary as the register may have been defined with both states. 6801 */ 6802 r2->secure = secstate; 6803 6804 if (r->bank_fieldoffsets[0] && r->bank_fieldoffsets[1]) { 6805 /* Register is banked (using both entries in array). 6806 * Overwriting fieldoffset as the array is only used to define 6807 * banked registers but later only fieldoffset is used. 6808 */ 6809 r2->fieldoffset = r->bank_fieldoffsets[ns]; 6810 } 6811 6812 if (state == ARM_CP_STATE_AA32) { 6813 if (r->bank_fieldoffsets[0] && r->bank_fieldoffsets[1]) { 6814 /* If the register is banked then we don't need to migrate or 6815 * reset the 32-bit instance in certain cases: 6816 * 6817 * 1) If the register has both 32-bit and 64-bit instances then we 6818 * can count on the 64-bit instance taking care of the 6819 * non-secure bank. 6820 * 2) If ARMv8 is enabled then we can count on a 64-bit version 6821 * taking care of the secure bank. This requires that separate 6822 * 32 and 64-bit definitions are provided. 6823 */ 6824 if ((r->state == ARM_CP_STATE_BOTH && ns) || 6825 (arm_feature(&cpu->env, ARM_FEATURE_V8) && !ns)) { 6826 r2->type |= ARM_CP_ALIAS; 6827 } 6828 } else if ((secstate != r->secure) && !ns) { 6829 /* The register is not banked so we only want to allow migration of 6830 * the non-secure instance. 6831 */ 6832 r2->type |= ARM_CP_ALIAS; 6833 } 6834 6835 if (r->state == ARM_CP_STATE_BOTH) { 6836 /* We assume it is a cp15 register if the .cp field is left unset. 6837 */ 6838 if (r2->cp == 0) { 6839 r2->cp = 15; 6840 } 6841 6842 #ifdef HOST_WORDS_BIGENDIAN 6843 if (r2->fieldoffset) { 6844 r2->fieldoffset += sizeof(uint32_t); 6845 } 6846 #endif 6847 } 6848 } 6849 if (state == ARM_CP_STATE_AA64) { 6850 /* To allow abbreviation of ARMCPRegInfo 6851 * definitions, we treat cp == 0 as equivalent to 6852 * the value for "standard guest-visible sysreg". 6853 * STATE_BOTH definitions are also always "standard 6854 * sysreg" in their AArch64 view (the .cp value may 6855 * be non-zero for the benefit of the AArch32 view). 6856 */ 6857 if (r->cp == 0 || r->state == ARM_CP_STATE_BOTH) { 6858 r2->cp = CP_REG_ARM64_SYSREG_CP; 6859 } 6860 *key = ENCODE_AA64_CP_REG(r2->cp, r2->crn, crm, 6861 r2->opc0, opc1, opc2); 6862 } else { 6863 *key = ENCODE_CP_REG(r2->cp, is64, ns, r2->crn, crm, opc1, opc2); 6864 } 6865 if (opaque) { 6866 r2->opaque = opaque; 6867 } 6868 /* reginfo passed to helpers is correct for the actual access, 6869 * and is never ARM_CP_STATE_BOTH: 6870 */ 6871 r2->state = state; 6872 /* Make sure reginfo passed to helpers for wildcarded regs 6873 * has the correct crm/opc1/opc2 for this reg, not CP_ANY: 6874 */ 6875 r2->crm = crm; 6876 r2->opc1 = opc1; 6877 r2->opc2 = opc2; 6878 /* By convention, for wildcarded registers only the first 6879 * entry is used for migration; the others are marked as 6880 * ALIAS so we don't try to transfer the register 6881 * multiple times. Special registers (ie NOP/WFI) are 6882 * never migratable and not even raw-accessible. 6883 */ 6884 if ((r->type & ARM_CP_SPECIAL)) { 6885 r2->type |= ARM_CP_NO_RAW; 6886 } 6887 if (((r->crm == CP_ANY) && crm != 0) || 6888 ((r->opc1 == CP_ANY) && opc1 != 0) || 6889 ((r->opc2 == CP_ANY) && opc2 != 0)) { 6890 r2->type |= ARM_CP_ALIAS | ARM_CP_NO_GDB; 6891 } 6892 6893 /* Check that raw accesses are either forbidden or handled. Note that 6894 * we can't assert this earlier because the setup of fieldoffset for 6895 * banked registers has to be done first. 6896 */ 6897 if (!(r2->type & ARM_CP_NO_RAW)) { 6898 assert(!raw_accessors_invalid(r2)); 6899 } 6900 6901 /* Overriding of an existing definition must be explicitly 6902 * requested. 6903 */ 6904 if (!(r->type & ARM_CP_OVERRIDE)) { 6905 ARMCPRegInfo *oldreg; 6906 oldreg = g_hash_table_lookup(cpu->cp_regs, key); 6907 if (oldreg && !(oldreg->type & ARM_CP_OVERRIDE)) { 6908 fprintf(stderr, "Register redefined: cp=%d %d bit " 6909 "crn=%d crm=%d opc1=%d opc2=%d, " 6910 "was %s, now %s\n", r2->cp, 32 + 32 * is64, 6911 r2->crn, r2->crm, r2->opc1, r2->opc2, 6912 oldreg->name, r2->name); 6913 g_assert_not_reached(); 6914 } 6915 } 6916 g_hash_table_insert(cpu->cp_regs, key, r2); 6917 } 6918 6919 6920 void define_one_arm_cp_reg_with_opaque(ARMCPU *cpu, 6921 const ARMCPRegInfo *r, void *opaque) 6922 { 6923 /* Define implementations of coprocessor registers. 6924 * We store these in a hashtable because typically 6925 * there are less than 150 registers in a space which 6926 * is 16*16*16*8*8 = 262144 in size. 6927 * Wildcarding is supported for the crm, opc1 and opc2 fields. 6928 * If a register is defined twice then the second definition is 6929 * used, so this can be used to define some generic registers and 6930 * then override them with implementation specific variations. 6931 * At least one of the original and the second definition should 6932 * include ARM_CP_OVERRIDE in its type bits -- this is just a guard 6933 * against accidental use. 6934 * 6935 * The state field defines whether the register is to be 6936 * visible in the AArch32 or AArch64 execution state. If the 6937 * state is set to ARM_CP_STATE_BOTH then we synthesise a 6938 * reginfo structure for the AArch32 view, which sees the lower 6939 * 32 bits of the 64 bit register. 6940 * 6941 * Only registers visible in AArch64 may set r->opc0; opc0 cannot 6942 * be wildcarded. AArch64 registers are always considered to be 64 6943 * bits; the ARM_CP_64BIT* flag applies only to the AArch32 view of 6944 * the register, if any. 6945 */ 6946 int crm, opc1, opc2, state; 6947 int crmmin = (r->crm == CP_ANY) ? 0 : r->crm; 6948 int crmmax = (r->crm == CP_ANY) ? 15 : r->crm; 6949 int opc1min = (r->opc1 == CP_ANY) ? 0 : r->opc1; 6950 int opc1max = (r->opc1 == CP_ANY) ? 7 : r->opc1; 6951 int opc2min = (r->opc2 == CP_ANY) ? 0 : r->opc2; 6952 int opc2max = (r->opc2 == CP_ANY) ? 7 : r->opc2; 6953 /* 64 bit registers have only CRm and Opc1 fields */ 6954 assert(!((r->type & ARM_CP_64BIT) && (r->opc2 || r->crn))); 6955 /* op0 only exists in the AArch64 encodings */ 6956 assert((r->state != ARM_CP_STATE_AA32) || (r->opc0 == 0)); 6957 /* AArch64 regs are all 64 bit so ARM_CP_64BIT is meaningless */ 6958 assert((r->state != ARM_CP_STATE_AA64) || !(r->type & ARM_CP_64BIT)); 6959 /* The AArch64 pseudocode CheckSystemAccess() specifies that op1 6960 * encodes a minimum access level for the register. We roll this 6961 * runtime check into our general permission check code, so check 6962 * here that the reginfo's specified permissions are strict enough 6963 * to encompass the generic architectural permission check. 6964 */ 6965 if (r->state != ARM_CP_STATE_AA32) { 6966 int mask = 0; 6967 switch (r->opc1) { 6968 case 0: 6969 /* min_EL EL1, but some accessible to EL0 via kernel ABI */ 6970 mask = PL0U_R | PL1_RW; 6971 break; 6972 case 1: case 2: 6973 /* min_EL EL1 */ 6974 mask = PL1_RW; 6975 break; 6976 case 3: 6977 /* min_EL EL0 */ 6978 mask = PL0_RW; 6979 break; 6980 case 4: 6981 /* min_EL EL2 */ 6982 mask = PL2_RW; 6983 break; 6984 case 5: 6985 /* unallocated encoding, so not possible */ 6986 assert(false); 6987 break; 6988 case 6: 6989 /* min_EL EL3 */ 6990 mask = PL3_RW; 6991 break; 6992 case 7: 6993 /* min_EL EL1, secure mode only (we don't check the latter) */ 6994 mask = PL1_RW; 6995 break; 6996 default: 6997 /* broken reginfo with out-of-range opc1 */ 6998 assert(false); 6999 break; 7000 } 7001 /* assert our permissions are not too lax (stricter is fine) */ 7002 assert((r->access & ~mask) == 0); 7003 } 7004 7005 /* Check that the register definition has enough info to handle 7006 * reads and writes if they are permitted. 7007 */ 7008 if (!(r->type & (ARM_CP_SPECIAL|ARM_CP_CONST))) { 7009 if (r->access & PL3_R) { 7010 assert((r->fieldoffset || 7011 (r->bank_fieldoffsets[0] && r->bank_fieldoffsets[1])) || 7012 r->readfn); 7013 } 7014 if (r->access & PL3_W) { 7015 assert((r->fieldoffset || 7016 (r->bank_fieldoffsets[0] && r->bank_fieldoffsets[1])) || 7017 r->writefn); 7018 } 7019 } 7020 /* Bad type field probably means missing sentinel at end of reg list */ 7021 assert(cptype_valid(r->type)); 7022 for (crm = crmmin; crm <= crmmax; crm++) { 7023 for (opc1 = opc1min; opc1 <= opc1max; opc1++) { 7024 for (opc2 = opc2min; opc2 <= opc2max; opc2++) { 7025 for (state = ARM_CP_STATE_AA32; 7026 state <= ARM_CP_STATE_AA64; state++) { 7027 if (r->state != state && r->state != ARM_CP_STATE_BOTH) { 7028 continue; 7029 } 7030 if (state == ARM_CP_STATE_AA32) { 7031 /* Under AArch32 CP registers can be common 7032 * (same for secure and non-secure world) or banked. 7033 */ 7034 char *name; 7035 7036 switch (r->secure) { 7037 case ARM_CP_SECSTATE_S: 7038 case ARM_CP_SECSTATE_NS: 7039 add_cpreg_to_hashtable(cpu, r, opaque, state, 7040 r->secure, crm, opc1, opc2, 7041 r->name); 7042 break; 7043 default: 7044 name = g_strdup_printf("%s_S", r->name); 7045 add_cpreg_to_hashtable(cpu, r, opaque, state, 7046 ARM_CP_SECSTATE_S, 7047 crm, opc1, opc2, name); 7048 g_free(name); 7049 add_cpreg_to_hashtable(cpu, r, opaque, state, 7050 ARM_CP_SECSTATE_NS, 7051 crm, opc1, opc2, r->name); 7052 break; 7053 } 7054 } else { 7055 /* AArch64 registers get mapped to non-secure instance 7056 * of AArch32 */ 7057 add_cpreg_to_hashtable(cpu, r, opaque, state, 7058 ARM_CP_SECSTATE_NS, 7059 crm, opc1, opc2, r->name); 7060 } 7061 } 7062 } 7063 } 7064 } 7065 } 7066 7067 void define_arm_cp_regs_with_opaque(ARMCPU *cpu, 7068 const ARMCPRegInfo *regs, void *opaque) 7069 { 7070 /* Define a whole list of registers */ 7071 const ARMCPRegInfo *r; 7072 for (r = regs; r->type != ARM_CP_SENTINEL; r++) { 7073 define_one_arm_cp_reg_with_opaque(cpu, r, opaque); 7074 } 7075 } 7076 7077 /* 7078 * Modify ARMCPRegInfo for access from userspace. 7079 * 7080 * This is a data driven modification directed by 7081 * ARMCPRegUserSpaceInfo. All registers become ARM_CP_CONST as 7082 * user-space cannot alter any values and dynamic values pertaining to 7083 * execution state are hidden from user space view anyway. 7084 */ 7085 void modify_arm_cp_regs(ARMCPRegInfo *regs, const ARMCPRegUserSpaceInfo *mods) 7086 { 7087 const ARMCPRegUserSpaceInfo *m; 7088 ARMCPRegInfo *r; 7089 7090 for (m = mods; m->name; m++) { 7091 GPatternSpec *pat = NULL; 7092 if (m->is_glob) { 7093 pat = g_pattern_spec_new(m->name); 7094 } 7095 for (r = regs; r->type != ARM_CP_SENTINEL; r++) { 7096 if (pat && g_pattern_match_string(pat, r->name)) { 7097 r->type = ARM_CP_CONST; 7098 r->access = PL0U_R; 7099 r->resetvalue = 0; 7100 /* continue */ 7101 } else if (strcmp(r->name, m->name) == 0) { 7102 r->type = ARM_CP_CONST; 7103 r->access = PL0U_R; 7104 r->resetvalue &= m->exported_bits; 7105 r->resetvalue |= m->fixed_bits; 7106 break; 7107 } 7108 } 7109 if (pat) { 7110 g_pattern_spec_free(pat); 7111 } 7112 } 7113 } 7114 7115 const ARMCPRegInfo *get_arm_cp_reginfo(GHashTable *cpregs, uint32_t encoded_cp) 7116 { 7117 return g_hash_table_lookup(cpregs, &encoded_cp); 7118 } 7119 7120 void arm_cp_write_ignore(CPUARMState *env, const ARMCPRegInfo *ri, 7121 uint64_t value) 7122 { 7123 /* Helper coprocessor write function for write-ignore registers */ 7124 } 7125 7126 uint64_t arm_cp_read_zero(CPUARMState *env, const ARMCPRegInfo *ri) 7127 { 7128 /* Helper coprocessor write function for read-as-zero registers */ 7129 return 0; 7130 } 7131 7132 void arm_cp_reset_ignore(CPUARMState *env, const ARMCPRegInfo *opaque) 7133 { 7134 /* Helper coprocessor reset function for do-nothing-on-reset registers */ 7135 } 7136 7137 static int bad_mode_switch(CPUARMState *env, int mode, CPSRWriteType write_type) 7138 { 7139 /* Return true if it is not valid for us to switch to 7140 * this CPU mode (ie all the UNPREDICTABLE cases in 7141 * the ARM ARM CPSRWriteByInstr pseudocode). 7142 */ 7143 7144 /* Changes to or from Hyp via MSR and CPS are illegal. */ 7145 if (write_type == CPSRWriteByInstr && 7146 ((env->uncached_cpsr & CPSR_M) == ARM_CPU_MODE_HYP || 7147 mode == ARM_CPU_MODE_HYP)) { 7148 return 1; 7149 } 7150 7151 switch (mode) { 7152 case ARM_CPU_MODE_USR: 7153 return 0; 7154 case ARM_CPU_MODE_SYS: 7155 case ARM_CPU_MODE_SVC: 7156 case ARM_CPU_MODE_ABT: 7157 case ARM_CPU_MODE_UND: 7158 case ARM_CPU_MODE_IRQ: 7159 case ARM_CPU_MODE_FIQ: 7160 /* Note that we don't implement the IMPDEF NSACR.RFR which in v7 7161 * allows FIQ mode to be Secure-only. (In v8 this doesn't exist.) 7162 */ 7163 /* If HCR.TGE is set then changes from Monitor to NS PL1 via MSR 7164 * and CPS are treated as illegal mode changes. 7165 */ 7166 if (write_type == CPSRWriteByInstr && 7167 (env->uncached_cpsr & CPSR_M) == ARM_CPU_MODE_MON && 7168 (arm_hcr_el2_eff(env) & HCR_TGE)) { 7169 return 1; 7170 } 7171 return 0; 7172 case ARM_CPU_MODE_HYP: 7173 return !arm_feature(env, ARM_FEATURE_EL2) 7174 || arm_current_el(env) < 2 || arm_is_secure_below_el3(env); 7175 case ARM_CPU_MODE_MON: 7176 return arm_current_el(env) < 3; 7177 default: 7178 return 1; 7179 } 7180 } 7181 7182 uint32_t cpsr_read(CPUARMState *env) 7183 { 7184 int ZF; 7185 ZF = (env->ZF == 0); 7186 return env->uncached_cpsr | (env->NF & 0x80000000) | (ZF << 30) | 7187 (env->CF << 29) | ((env->VF & 0x80000000) >> 3) | (env->QF << 27) 7188 | (env->thumb << 5) | ((env->condexec_bits & 3) << 25) 7189 | ((env->condexec_bits & 0xfc) << 8) 7190 | (env->GE << 16) | (env->daif & CPSR_AIF); 7191 } 7192 7193 void cpsr_write(CPUARMState *env, uint32_t val, uint32_t mask, 7194 CPSRWriteType write_type) 7195 { 7196 uint32_t changed_daif; 7197 7198 if (mask & CPSR_NZCV) { 7199 env->ZF = (~val) & CPSR_Z; 7200 env->NF = val; 7201 env->CF = (val >> 29) & 1; 7202 env->VF = (val << 3) & 0x80000000; 7203 } 7204 if (mask & CPSR_Q) 7205 env->QF = ((val & CPSR_Q) != 0); 7206 if (mask & CPSR_T) 7207 env->thumb = ((val & CPSR_T) != 0); 7208 if (mask & CPSR_IT_0_1) { 7209 env->condexec_bits &= ~3; 7210 env->condexec_bits |= (val >> 25) & 3; 7211 } 7212 if (mask & CPSR_IT_2_7) { 7213 env->condexec_bits &= 3; 7214 env->condexec_bits |= (val >> 8) & 0xfc; 7215 } 7216 if (mask & CPSR_GE) { 7217 env->GE = (val >> 16) & 0xf; 7218 } 7219 7220 /* In a V7 implementation that includes the security extensions but does 7221 * not include Virtualization Extensions the SCR.FW and SCR.AW bits control 7222 * whether non-secure software is allowed to change the CPSR_F and CPSR_A 7223 * bits respectively. 7224 * 7225 * In a V8 implementation, it is permitted for privileged software to 7226 * change the CPSR A/F bits regardless of the SCR.AW/FW bits. 7227 */ 7228 if (write_type != CPSRWriteRaw && !arm_feature(env, ARM_FEATURE_V8) && 7229 arm_feature(env, ARM_FEATURE_EL3) && 7230 !arm_feature(env, ARM_FEATURE_EL2) && 7231 !arm_is_secure(env)) { 7232 7233 changed_daif = (env->daif ^ val) & mask; 7234 7235 if (changed_daif & CPSR_A) { 7236 /* Check to see if we are allowed to change the masking of async 7237 * abort exceptions from a non-secure state. 7238 */ 7239 if (!(env->cp15.scr_el3 & SCR_AW)) { 7240 qemu_log_mask(LOG_GUEST_ERROR, 7241 "Ignoring attempt to switch CPSR_A flag from " 7242 "non-secure world with SCR.AW bit clear\n"); 7243 mask &= ~CPSR_A; 7244 } 7245 } 7246 7247 if (changed_daif & CPSR_F) { 7248 /* Check to see if we are allowed to change the masking of FIQ 7249 * exceptions from a non-secure state. 7250 */ 7251 if (!(env->cp15.scr_el3 & SCR_FW)) { 7252 qemu_log_mask(LOG_GUEST_ERROR, 7253 "Ignoring attempt to switch CPSR_F flag from " 7254 "non-secure world with SCR.FW bit clear\n"); 7255 mask &= ~CPSR_F; 7256 } 7257 7258 /* Check whether non-maskable FIQ (NMFI) support is enabled. 7259 * If this bit is set software is not allowed to mask 7260 * FIQs, but is allowed to set CPSR_F to 0. 7261 */ 7262 if ((A32_BANKED_CURRENT_REG_GET(env, sctlr) & SCTLR_NMFI) && 7263 (val & CPSR_F)) { 7264 qemu_log_mask(LOG_GUEST_ERROR, 7265 "Ignoring attempt to enable CPSR_F flag " 7266 "(non-maskable FIQ [NMFI] support enabled)\n"); 7267 mask &= ~CPSR_F; 7268 } 7269 } 7270 } 7271 7272 env->daif &= ~(CPSR_AIF & mask); 7273 env->daif |= val & CPSR_AIF & mask; 7274 7275 if (write_type != CPSRWriteRaw && 7276 ((env->uncached_cpsr ^ val) & mask & CPSR_M)) { 7277 if ((env->uncached_cpsr & CPSR_M) == ARM_CPU_MODE_USR) { 7278 /* Note that we can only get here in USR mode if this is a 7279 * gdb stub write; for this case we follow the architectural 7280 * behaviour for guest writes in USR mode of ignoring an attempt 7281 * to switch mode. (Those are caught by translate.c for writes 7282 * triggered by guest instructions.) 7283 */ 7284 mask &= ~CPSR_M; 7285 } else if (bad_mode_switch(env, val & CPSR_M, write_type)) { 7286 /* Attempt to switch to an invalid mode: this is UNPREDICTABLE in 7287 * v7, and has defined behaviour in v8: 7288 * + leave CPSR.M untouched 7289 * + allow changes to the other CPSR fields 7290 * + set PSTATE.IL 7291 * For user changes via the GDB stub, we don't set PSTATE.IL, 7292 * as this would be unnecessarily harsh for a user error. 7293 */ 7294 mask &= ~CPSR_M; 7295 if (write_type != CPSRWriteByGDBStub && 7296 arm_feature(env, ARM_FEATURE_V8)) { 7297 mask |= CPSR_IL; 7298 val |= CPSR_IL; 7299 } 7300 qemu_log_mask(LOG_GUEST_ERROR, 7301 "Illegal AArch32 mode switch attempt from %s to %s\n", 7302 aarch32_mode_name(env->uncached_cpsr), 7303 aarch32_mode_name(val)); 7304 } else { 7305 qemu_log_mask(CPU_LOG_INT, "%s %s to %s PC 0x%" PRIx32 "\n", 7306 write_type == CPSRWriteExceptionReturn ? 7307 "Exception return from AArch32" : 7308 "AArch32 mode switch from", 7309 aarch32_mode_name(env->uncached_cpsr), 7310 aarch32_mode_name(val), env->regs[15]); 7311 switch_mode(env, val & CPSR_M); 7312 } 7313 } 7314 mask &= ~CACHED_CPSR_BITS; 7315 env->uncached_cpsr = (env->uncached_cpsr & ~mask) | (val & mask); 7316 } 7317 7318 /* Sign/zero extend */ 7319 uint32_t HELPER(sxtb16)(uint32_t x) 7320 { 7321 uint32_t res; 7322 res = (uint16_t)(int8_t)x; 7323 res |= (uint32_t)(int8_t)(x >> 16) << 16; 7324 return res; 7325 } 7326 7327 uint32_t HELPER(uxtb16)(uint32_t x) 7328 { 7329 uint32_t res; 7330 res = (uint16_t)(uint8_t)x; 7331 res |= (uint32_t)(uint8_t)(x >> 16) << 16; 7332 return res; 7333 } 7334 7335 int32_t HELPER(sdiv)(int32_t num, int32_t den) 7336 { 7337 if (den == 0) 7338 return 0; 7339 if (num == INT_MIN && den == -1) 7340 return INT_MIN; 7341 return num / den; 7342 } 7343 7344 uint32_t HELPER(udiv)(uint32_t num, uint32_t den) 7345 { 7346 if (den == 0) 7347 return 0; 7348 return num / den; 7349 } 7350 7351 uint32_t HELPER(rbit)(uint32_t x) 7352 { 7353 return revbit32(x); 7354 } 7355 7356 #ifdef CONFIG_USER_ONLY 7357 7358 /* These should probably raise undefined insn exceptions. */ 7359 void HELPER(v7m_msr)(CPUARMState *env, uint32_t reg, uint32_t val) 7360 { 7361 ARMCPU *cpu = arm_env_get_cpu(env); 7362 7363 cpu_abort(CPU(cpu), "v7m_msr %d\n", reg); 7364 } 7365 7366 uint32_t HELPER(v7m_mrs)(CPUARMState *env, uint32_t reg) 7367 { 7368 ARMCPU *cpu = arm_env_get_cpu(env); 7369 7370 cpu_abort(CPU(cpu), "v7m_mrs %d\n", reg); 7371 return 0; 7372 } 7373 7374 void HELPER(v7m_bxns)(CPUARMState *env, uint32_t dest) 7375 { 7376 /* translate.c should never generate calls here in user-only mode */ 7377 g_assert_not_reached(); 7378 } 7379 7380 void HELPER(v7m_blxns)(CPUARMState *env, uint32_t dest) 7381 { 7382 /* translate.c should never generate calls here in user-only mode */ 7383 g_assert_not_reached(); 7384 } 7385 7386 uint32_t HELPER(v7m_tt)(CPUARMState *env, uint32_t addr, uint32_t op) 7387 { 7388 /* The TT instructions can be used by unprivileged code, but in 7389 * user-only emulation we don't have the MPU. 7390 * Luckily since we know we are NonSecure unprivileged (and that in 7391 * turn means that the A flag wasn't specified), all the bits in the 7392 * register must be zero: 7393 * IREGION: 0 because IRVALID is 0 7394 * IRVALID: 0 because NS 7395 * S: 0 because NS 7396 * NSRW: 0 because NS 7397 * NSR: 0 because NS 7398 * RW: 0 because unpriv and A flag not set 7399 * R: 0 because unpriv and A flag not set 7400 * SRVALID: 0 because NS 7401 * MRVALID: 0 because unpriv and A flag not set 7402 * SREGION: 0 becaus SRVALID is 0 7403 * MREGION: 0 because MRVALID is 0 7404 */ 7405 return 0; 7406 } 7407 7408 static void switch_mode(CPUARMState *env, int mode) 7409 { 7410 ARMCPU *cpu = arm_env_get_cpu(env); 7411 7412 if (mode != ARM_CPU_MODE_USR) { 7413 cpu_abort(CPU(cpu), "Tried to switch out of user mode\n"); 7414 } 7415 } 7416 7417 uint32_t arm_phys_excp_target_el(CPUState *cs, uint32_t excp_idx, 7418 uint32_t cur_el, bool secure) 7419 { 7420 return 1; 7421 } 7422 7423 void aarch64_sync_64_to_32(CPUARMState *env) 7424 { 7425 g_assert_not_reached(); 7426 } 7427 7428 #else 7429 7430 static void switch_mode(CPUARMState *env, int mode) 7431 { 7432 int old_mode; 7433 int i; 7434 7435 old_mode = env->uncached_cpsr & CPSR_M; 7436 if (mode == old_mode) 7437 return; 7438 7439 if (old_mode == ARM_CPU_MODE_FIQ) { 7440 memcpy (env->fiq_regs, env->regs + 8, 5 * sizeof(uint32_t)); 7441 memcpy (env->regs + 8, env->usr_regs, 5 * sizeof(uint32_t)); 7442 } else if (mode == ARM_CPU_MODE_FIQ) { 7443 memcpy (env->usr_regs, env->regs + 8, 5 * sizeof(uint32_t)); 7444 memcpy (env->regs + 8, env->fiq_regs, 5 * sizeof(uint32_t)); 7445 } 7446 7447 i = bank_number(old_mode); 7448 env->banked_r13[i] = env->regs[13]; 7449 env->banked_spsr[i] = env->spsr; 7450 7451 i = bank_number(mode); 7452 env->regs[13] = env->banked_r13[i]; 7453 env->spsr = env->banked_spsr[i]; 7454 7455 env->banked_r14[r14_bank_number(old_mode)] = env->regs[14]; 7456 env->regs[14] = env->banked_r14[r14_bank_number(mode)]; 7457 } 7458 7459 /* Physical Interrupt Target EL Lookup Table 7460 * 7461 * [ From ARM ARM section G1.13.4 (Table G1-15) ] 7462 * 7463 * The below multi-dimensional table is used for looking up the target 7464 * exception level given numerous condition criteria. Specifically, the 7465 * target EL is based on SCR and HCR routing controls as well as the 7466 * currently executing EL and secure state. 7467 * 7468 * Dimensions: 7469 * target_el_table[2][2][2][2][2][4] 7470 * | | | | | +--- Current EL 7471 * | | | | +------ Non-secure(0)/Secure(1) 7472 * | | | +--------- HCR mask override 7473 * | | +------------ SCR exec state control 7474 * | +--------------- SCR mask override 7475 * +------------------ 32-bit(0)/64-bit(1) EL3 7476 * 7477 * The table values are as such: 7478 * 0-3 = EL0-EL3 7479 * -1 = Cannot occur 7480 * 7481 * The ARM ARM target EL table includes entries indicating that an "exception 7482 * is not taken". The two cases where this is applicable are: 7483 * 1) An exception is taken from EL3 but the SCR does not have the exception 7484 * routed to EL3. 7485 * 2) An exception is taken from EL2 but the HCR does not have the exception 7486 * routed to EL2. 7487 * In these two cases, the below table contain a target of EL1. This value is 7488 * returned as it is expected that the consumer of the table data will check 7489 * for "target EL >= current EL" to ensure the exception is not taken. 7490 * 7491 * SCR HCR 7492 * 64 EA AMO From 7493 * BIT IRQ IMO Non-secure Secure 7494 * EL3 FIQ RW FMO EL0 EL1 EL2 EL3 EL0 EL1 EL2 EL3 7495 */ 7496 static const int8_t target_el_table[2][2][2][2][2][4] = { 7497 {{{{/* 0 0 0 0 */{ 1, 1, 2, -1 },{ 3, -1, -1, 3 },}, 7498 {/* 0 0 0 1 */{ 2, 2, 2, -1 },{ 3, -1, -1, 3 },},}, 7499 {{/* 0 0 1 0 */{ 1, 1, 2, -1 },{ 3, -1, -1, 3 },}, 7500 {/* 0 0 1 1 */{ 2, 2, 2, -1 },{ 3, -1, -1, 3 },},},}, 7501 {{{/* 0 1 0 0 */{ 3, 3, 3, -1 },{ 3, -1, -1, 3 },}, 7502 {/* 0 1 0 1 */{ 3, 3, 3, -1 },{ 3, -1, -1, 3 },},}, 7503 {{/* 0 1 1 0 */{ 3, 3, 3, -1 },{ 3, -1, -1, 3 },}, 7504 {/* 0 1 1 1 */{ 3, 3, 3, -1 },{ 3, -1, -1, 3 },},},},}, 7505 {{{{/* 1 0 0 0 */{ 1, 1, 2, -1 },{ 1, 1, -1, 1 },}, 7506 {/* 1 0 0 1 */{ 2, 2, 2, -1 },{ 1, 1, -1, 1 },},}, 7507 {{/* 1 0 1 0 */{ 1, 1, 1, -1 },{ 1, 1, -1, 1 },}, 7508 {/* 1 0 1 1 */{ 2, 2, 2, -1 },{ 1, 1, -1, 1 },},},}, 7509 {{{/* 1 1 0 0 */{ 3, 3, 3, -1 },{ 3, 3, -1, 3 },}, 7510 {/* 1 1 0 1 */{ 3, 3, 3, -1 },{ 3, 3, -1, 3 },},}, 7511 {{/* 1 1 1 0 */{ 3, 3, 3, -1 },{ 3, 3, -1, 3 },}, 7512 {/* 1 1 1 1 */{ 3, 3, 3, -1 },{ 3, 3, -1, 3 },},},},}, 7513 }; 7514 7515 /* 7516 * Determine the target EL for physical exceptions 7517 */ 7518 uint32_t arm_phys_excp_target_el(CPUState *cs, uint32_t excp_idx, 7519 uint32_t cur_el, bool secure) 7520 { 7521 CPUARMState *env = cs->env_ptr; 7522 bool rw; 7523 bool scr; 7524 bool hcr; 7525 int target_el; 7526 /* Is the highest EL AArch64? */ 7527 bool is64 = arm_feature(env, ARM_FEATURE_AARCH64); 7528 uint64_t hcr_el2; 7529 7530 if (arm_feature(env, ARM_FEATURE_EL3)) { 7531 rw = ((env->cp15.scr_el3 & SCR_RW) == SCR_RW); 7532 } else { 7533 /* Either EL2 is the highest EL (and so the EL2 register width 7534 * is given by is64); or there is no EL2 or EL3, in which case 7535 * the value of 'rw' does not affect the table lookup anyway. 7536 */ 7537 rw = is64; 7538 } 7539 7540 hcr_el2 = arm_hcr_el2_eff(env); 7541 switch (excp_idx) { 7542 case EXCP_IRQ: 7543 scr = ((env->cp15.scr_el3 & SCR_IRQ) == SCR_IRQ); 7544 hcr = hcr_el2 & HCR_IMO; 7545 break; 7546 case EXCP_FIQ: 7547 scr = ((env->cp15.scr_el3 & SCR_FIQ) == SCR_FIQ); 7548 hcr = hcr_el2 & HCR_FMO; 7549 break; 7550 default: 7551 scr = ((env->cp15.scr_el3 & SCR_EA) == SCR_EA); 7552 hcr = hcr_el2 & HCR_AMO; 7553 break; 7554 }; 7555 7556 /* Perform a table-lookup for the target EL given the current state */ 7557 target_el = target_el_table[is64][scr][rw][hcr][secure][cur_el]; 7558 7559 assert(target_el > 0); 7560 7561 return target_el; 7562 } 7563 7564 static bool v7m_stack_write(ARMCPU *cpu, uint32_t addr, uint32_t value, 7565 ARMMMUIdx mmu_idx, bool ignfault) 7566 { 7567 CPUState *cs = CPU(cpu); 7568 CPUARMState *env = &cpu->env; 7569 MemTxAttrs attrs = {}; 7570 MemTxResult txres; 7571 target_ulong page_size; 7572 hwaddr physaddr; 7573 int prot; 7574 ARMMMUFaultInfo fi = {}; 7575 bool secure = mmu_idx & ARM_MMU_IDX_M_S; 7576 int exc; 7577 bool exc_secure; 7578 7579 if (get_phys_addr(env, addr, MMU_DATA_STORE, mmu_idx, &physaddr, 7580 &attrs, &prot, &page_size, &fi, NULL)) { 7581 /* MPU/SAU lookup failed */ 7582 if (fi.type == ARMFault_QEMU_SFault) { 7583 qemu_log_mask(CPU_LOG_INT, 7584 "...SecureFault with SFSR.AUVIOL during stacking\n"); 7585 env->v7m.sfsr |= R_V7M_SFSR_AUVIOL_MASK | R_V7M_SFSR_SFARVALID_MASK; 7586 env->v7m.sfar = addr; 7587 exc = ARMV7M_EXCP_SECURE; 7588 exc_secure = false; 7589 } else { 7590 qemu_log_mask(CPU_LOG_INT, "...MemManageFault with CFSR.MSTKERR\n"); 7591 env->v7m.cfsr[secure] |= R_V7M_CFSR_MSTKERR_MASK; 7592 exc = ARMV7M_EXCP_MEM; 7593 exc_secure = secure; 7594 } 7595 goto pend_fault; 7596 } 7597 address_space_stl_le(arm_addressspace(cs, attrs), physaddr, value, 7598 attrs, &txres); 7599 if (txres != MEMTX_OK) { 7600 /* BusFault trying to write the data */ 7601 qemu_log_mask(CPU_LOG_INT, "...BusFault with BFSR.STKERR\n"); 7602 env->v7m.cfsr[M_REG_NS] |= R_V7M_CFSR_STKERR_MASK; 7603 exc = ARMV7M_EXCP_BUS; 7604 exc_secure = false; 7605 goto pend_fault; 7606 } 7607 return true; 7608 7609 pend_fault: 7610 /* By pending the exception at this point we are making 7611 * the IMPDEF choice "overridden exceptions pended" (see the 7612 * MergeExcInfo() pseudocode). The other choice would be to not 7613 * pend them now and then make a choice about which to throw away 7614 * later if we have two derived exceptions. 7615 * The only case when we must not pend the exception but instead 7616 * throw it away is if we are doing the push of the callee registers 7617 * and we've already generated a derived exception. Even in this 7618 * case we will still update the fault status registers. 7619 */ 7620 if (!ignfault) { 7621 armv7m_nvic_set_pending_derived(env->nvic, exc, exc_secure); 7622 } 7623 return false; 7624 } 7625 7626 static bool v7m_stack_read(ARMCPU *cpu, uint32_t *dest, uint32_t addr, 7627 ARMMMUIdx mmu_idx) 7628 { 7629 CPUState *cs = CPU(cpu); 7630 CPUARMState *env = &cpu->env; 7631 MemTxAttrs attrs = {}; 7632 MemTxResult txres; 7633 target_ulong page_size; 7634 hwaddr physaddr; 7635 int prot; 7636 ARMMMUFaultInfo fi = {}; 7637 bool secure = mmu_idx & ARM_MMU_IDX_M_S; 7638 int exc; 7639 bool exc_secure; 7640 uint32_t value; 7641 7642 if (get_phys_addr(env, addr, MMU_DATA_LOAD, mmu_idx, &physaddr, 7643 &attrs, &prot, &page_size, &fi, NULL)) { 7644 /* MPU/SAU lookup failed */ 7645 if (fi.type == ARMFault_QEMU_SFault) { 7646 qemu_log_mask(CPU_LOG_INT, 7647 "...SecureFault with SFSR.AUVIOL during unstack\n"); 7648 env->v7m.sfsr |= R_V7M_SFSR_AUVIOL_MASK | R_V7M_SFSR_SFARVALID_MASK; 7649 env->v7m.sfar = addr; 7650 exc = ARMV7M_EXCP_SECURE; 7651 exc_secure = false; 7652 } else { 7653 qemu_log_mask(CPU_LOG_INT, 7654 "...MemManageFault with CFSR.MUNSTKERR\n"); 7655 env->v7m.cfsr[secure] |= R_V7M_CFSR_MUNSTKERR_MASK; 7656 exc = ARMV7M_EXCP_MEM; 7657 exc_secure = secure; 7658 } 7659 goto pend_fault; 7660 } 7661 7662 value = address_space_ldl(arm_addressspace(cs, attrs), physaddr, 7663 attrs, &txres); 7664 if (txres != MEMTX_OK) { 7665 /* BusFault trying to read the data */ 7666 qemu_log_mask(CPU_LOG_INT, "...BusFault with BFSR.UNSTKERR\n"); 7667 env->v7m.cfsr[M_REG_NS] |= R_V7M_CFSR_UNSTKERR_MASK; 7668 exc = ARMV7M_EXCP_BUS; 7669 exc_secure = false; 7670 goto pend_fault; 7671 } 7672 7673 *dest = value; 7674 return true; 7675 7676 pend_fault: 7677 /* By pending the exception at this point we are making 7678 * the IMPDEF choice "overridden exceptions pended" (see the 7679 * MergeExcInfo() pseudocode). The other choice would be to not 7680 * pend them now and then make a choice about which to throw away 7681 * later if we have two derived exceptions. 7682 */ 7683 armv7m_nvic_set_pending(env->nvic, exc, exc_secure); 7684 return false; 7685 } 7686 7687 /* Write to v7M CONTROL.SPSEL bit for the specified security bank. 7688 * This may change the current stack pointer between Main and Process 7689 * stack pointers if it is done for the CONTROL register for the current 7690 * security state. 7691 */ 7692 static void write_v7m_control_spsel_for_secstate(CPUARMState *env, 7693 bool new_spsel, 7694 bool secstate) 7695 { 7696 bool old_is_psp = v7m_using_psp(env); 7697 7698 env->v7m.control[secstate] = 7699 deposit32(env->v7m.control[secstate], 7700 R_V7M_CONTROL_SPSEL_SHIFT, 7701 R_V7M_CONTROL_SPSEL_LENGTH, new_spsel); 7702 7703 if (secstate == env->v7m.secure) { 7704 bool new_is_psp = v7m_using_psp(env); 7705 uint32_t tmp; 7706 7707 if (old_is_psp != new_is_psp) { 7708 tmp = env->v7m.other_sp; 7709 env->v7m.other_sp = env->regs[13]; 7710 env->regs[13] = tmp; 7711 } 7712 } 7713 } 7714 7715 /* Write to v7M CONTROL.SPSEL bit. This may change the current 7716 * stack pointer between Main and Process stack pointers. 7717 */ 7718 static void write_v7m_control_spsel(CPUARMState *env, bool new_spsel) 7719 { 7720 write_v7m_control_spsel_for_secstate(env, new_spsel, env->v7m.secure); 7721 } 7722 7723 void write_v7m_exception(CPUARMState *env, uint32_t new_exc) 7724 { 7725 /* Write a new value to v7m.exception, thus transitioning into or out 7726 * of Handler mode; this may result in a change of active stack pointer. 7727 */ 7728 bool new_is_psp, old_is_psp = v7m_using_psp(env); 7729 uint32_t tmp; 7730 7731 env->v7m.exception = new_exc; 7732 7733 new_is_psp = v7m_using_psp(env); 7734 7735 if (old_is_psp != new_is_psp) { 7736 tmp = env->v7m.other_sp; 7737 env->v7m.other_sp = env->regs[13]; 7738 env->regs[13] = tmp; 7739 } 7740 } 7741 7742 /* Switch M profile security state between NS and S */ 7743 static void switch_v7m_security_state(CPUARMState *env, bool new_secstate) 7744 { 7745 uint32_t new_ss_msp, new_ss_psp; 7746 7747 if (env->v7m.secure == new_secstate) { 7748 return; 7749 } 7750 7751 /* All the banked state is accessed by looking at env->v7m.secure 7752 * except for the stack pointer; rearrange the SP appropriately. 7753 */ 7754 new_ss_msp = env->v7m.other_ss_msp; 7755 new_ss_psp = env->v7m.other_ss_psp; 7756 7757 if (v7m_using_psp(env)) { 7758 env->v7m.other_ss_psp = env->regs[13]; 7759 env->v7m.other_ss_msp = env->v7m.other_sp; 7760 } else { 7761 env->v7m.other_ss_msp = env->regs[13]; 7762 env->v7m.other_ss_psp = env->v7m.other_sp; 7763 } 7764 7765 env->v7m.secure = new_secstate; 7766 7767 if (v7m_using_psp(env)) { 7768 env->regs[13] = new_ss_psp; 7769 env->v7m.other_sp = new_ss_msp; 7770 } else { 7771 env->regs[13] = new_ss_msp; 7772 env->v7m.other_sp = new_ss_psp; 7773 } 7774 } 7775 7776 void HELPER(v7m_bxns)(CPUARMState *env, uint32_t dest) 7777 { 7778 /* Handle v7M BXNS: 7779 * - if the return value is a magic value, do exception return (like BX) 7780 * - otherwise bit 0 of the return value is the target security state 7781 */ 7782 uint32_t min_magic; 7783 7784 if (arm_feature(env, ARM_FEATURE_M_SECURITY)) { 7785 /* Covers FNC_RETURN and EXC_RETURN magic */ 7786 min_magic = FNC_RETURN_MIN_MAGIC; 7787 } else { 7788 /* EXC_RETURN magic only */ 7789 min_magic = EXC_RETURN_MIN_MAGIC; 7790 } 7791 7792 if (dest >= min_magic) { 7793 /* This is an exception return magic value; put it where 7794 * do_v7m_exception_exit() expects and raise EXCEPTION_EXIT. 7795 * Note that if we ever add gen_ss_advance() singlestep support to 7796 * M profile this should count as an "instruction execution complete" 7797 * event (compare gen_bx_excret_final_code()). 7798 */ 7799 env->regs[15] = dest & ~1; 7800 env->thumb = dest & 1; 7801 HELPER(exception_internal)(env, EXCP_EXCEPTION_EXIT); 7802 /* notreached */ 7803 } 7804 7805 /* translate.c should have made BXNS UNDEF unless we're secure */ 7806 assert(env->v7m.secure); 7807 7808 switch_v7m_security_state(env, dest & 1); 7809 env->thumb = 1; 7810 env->regs[15] = dest & ~1; 7811 } 7812 7813 void HELPER(v7m_blxns)(CPUARMState *env, uint32_t dest) 7814 { 7815 /* Handle v7M BLXNS: 7816 * - bit 0 of the destination address is the target security state 7817 */ 7818 7819 /* At this point regs[15] is the address just after the BLXNS */ 7820 uint32_t nextinst = env->regs[15] | 1; 7821 uint32_t sp = env->regs[13] - 8; 7822 uint32_t saved_psr; 7823 7824 /* translate.c will have made BLXNS UNDEF unless we're secure */ 7825 assert(env->v7m.secure); 7826 7827 if (dest & 1) { 7828 /* target is Secure, so this is just a normal BLX, 7829 * except that the low bit doesn't indicate Thumb/not. 7830 */ 7831 env->regs[14] = nextinst; 7832 env->thumb = 1; 7833 env->regs[15] = dest & ~1; 7834 return; 7835 } 7836 7837 /* Target is non-secure: first push a stack frame */ 7838 if (!QEMU_IS_ALIGNED(sp, 8)) { 7839 qemu_log_mask(LOG_GUEST_ERROR, 7840 "BLXNS with misaligned SP is UNPREDICTABLE\n"); 7841 } 7842 7843 if (sp < v7m_sp_limit(env)) { 7844 raise_exception(env, EXCP_STKOF, 0, 1); 7845 } 7846 7847 saved_psr = env->v7m.exception; 7848 if (env->v7m.control[M_REG_S] & R_V7M_CONTROL_SFPA_MASK) { 7849 saved_psr |= XPSR_SFPA; 7850 } 7851 7852 /* Note that these stores can throw exceptions on MPU faults */ 7853 cpu_stl_data(env, sp, nextinst); 7854 cpu_stl_data(env, sp + 4, saved_psr); 7855 7856 env->regs[13] = sp; 7857 env->regs[14] = 0xfeffffff; 7858 if (arm_v7m_is_handler_mode(env)) { 7859 /* Write a dummy value to IPSR, to avoid leaking the current secure 7860 * exception number to non-secure code. This is guaranteed not 7861 * to cause write_v7m_exception() to actually change stacks. 7862 */ 7863 write_v7m_exception(env, 1); 7864 } 7865 switch_v7m_security_state(env, 0); 7866 env->thumb = 1; 7867 env->regs[15] = dest; 7868 } 7869 7870 static uint32_t *get_v7m_sp_ptr(CPUARMState *env, bool secure, bool threadmode, 7871 bool spsel) 7872 { 7873 /* Return a pointer to the location where we currently store the 7874 * stack pointer for the requested security state and thread mode. 7875 * This pointer will become invalid if the CPU state is updated 7876 * such that the stack pointers are switched around (eg changing 7877 * the SPSEL control bit). 7878 * Compare the v8M ARM ARM pseudocode LookUpSP_with_security_mode(). 7879 * Unlike that pseudocode, we require the caller to pass us in the 7880 * SPSEL control bit value; this is because we also use this 7881 * function in handling of pushing of the callee-saves registers 7882 * part of the v8M stack frame (pseudocode PushCalleeStack()), 7883 * and in the tailchain codepath the SPSEL bit comes from the exception 7884 * return magic LR value from the previous exception. The pseudocode 7885 * opencodes the stack-selection in PushCalleeStack(), but we prefer 7886 * to make this utility function generic enough to do the job. 7887 */ 7888 bool want_psp = threadmode && spsel; 7889 7890 if (secure == env->v7m.secure) { 7891 if (want_psp == v7m_using_psp(env)) { 7892 return &env->regs[13]; 7893 } else { 7894 return &env->v7m.other_sp; 7895 } 7896 } else { 7897 if (want_psp) { 7898 return &env->v7m.other_ss_psp; 7899 } else { 7900 return &env->v7m.other_ss_msp; 7901 } 7902 } 7903 } 7904 7905 static bool arm_v7m_load_vector(ARMCPU *cpu, int exc, bool targets_secure, 7906 uint32_t *pvec) 7907 { 7908 CPUState *cs = CPU(cpu); 7909 CPUARMState *env = &cpu->env; 7910 MemTxResult result; 7911 uint32_t addr = env->v7m.vecbase[targets_secure] + exc * 4; 7912 uint32_t vector_entry; 7913 MemTxAttrs attrs = {}; 7914 ARMMMUIdx mmu_idx; 7915 bool exc_secure; 7916 7917 mmu_idx = arm_v7m_mmu_idx_for_secstate_and_priv(env, targets_secure, true); 7918 7919 /* We don't do a get_phys_addr() here because the rules for vector 7920 * loads are special: they always use the default memory map, and 7921 * the default memory map permits reads from all addresses. 7922 * Since there's no easy way to pass through to pmsav8_mpu_lookup() 7923 * that we want this special case which would always say "yes", 7924 * we just do the SAU lookup here followed by a direct physical load. 7925 */ 7926 attrs.secure = targets_secure; 7927 attrs.user = false; 7928 7929 if (arm_feature(env, ARM_FEATURE_M_SECURITY)) { 7930 V8M_SAttributes sattrs = {}; 7931 7932 v8m_security_lookup(env, addr, MMU_DATA_LOAD, mmu_idx, &sattrs); 7933 if (sattrs.ns) { 7934 attrs.secure = false; 7935 } else if (!targets_secure) { 7936 /* NS access to S memory */ 7937 goto load_fail; 7938 } 7939 } 7940 7941 vector_entry = address_space_ldl(arm_addressspace(cs, attrs), addr, 7942 attrs, &result); 7943 if (result != MEMTX_OK) { 7944 goto load_fail; 7945 } 7946 *pvec = vector_entry; 7947 return true; 7948 7949 load_fail: 7950 /* All vector table fetch fails are reported as HardFault, with 7951 * HFSR.VECTTBL and .FORCED set. (FORCED is set because 7952 * technically the underlying exception is a MemManage or BusFault 7953 * that is escalated to HardFault.) This is a terminal exception, 7954 * so we will either take the HardFault immediately or else enter 7955 * lockup (the latter case is handled in armv7m_nvic_set_pending_derived()). 7956 */ 7957 exc_secure = targets_secure || 7958 !(cpu->env.v7m.aircr & R_V7M_AIRCR_BFHFNMINS_MASK); 7959 env->v7m.hfsr |= R_V7M_HFSR_VECTTBL_MASK | R_V7M_HFSR_FORCED_MASK; 7960 armv7m_nvic_set_pending_derived(env->nvic, ARMV7M_EXCP_HARD, exc_secure); 7961 return false; 7962 } 7963 7964 static bool v7m_push_callee_stack(ARMCPU *cpu, uint32_t lr, bool dotailchain, 7965 bool ignore_faults) 7966 { 7967 /* For v8M, push the callee-saves register part of the stack frame. 7968 * Compare the v8M pseudocode PushCalleeStack(). 7969 * In the tailchaining case this may not be the current stack. 7970 */ 7971 CPUARMState *env = &cpu->env; 7972 uint32_t *frame_sp_p; 7973 uint32_t frameptr; 7974 ARMMMUIdx mmu_idx; 7975 bool stacked_ok; 7976 uint32_t limit; 7977 bool want_psp; 7978 7979 if (dotailchain) { 7980 bool mode = lr & R_V7M_EXCRET_MODE_MASK; 7981 bool priv = !(env->v7m.control[M_REG_S] & R_V7M_CONTROL_NPRIV_MASK) || 7982 !mode; 7983 7984 mmu_idx = arm_v7m_mmu_idx_for_secstate_and_priv(env, M_REG_S, priv); 7985 frame_sp_p = get_v7m_sp_ptr(env, M_REG_S, mode, 7986 lr & R_V7M_EXCRET_SPSEL_MASK); 7987 want_psp = mode && (lr & R_V7M_EXCRET_SPSEL_MASK); 7988 if (want_psp) { 7989 limit = env->v7m.psplim[M_REG_S]; 7990 } else { 7991 limit = env->v7m.msplim[M_REG_S]; 7992 } 7993 } else { 7994 mmu_idx = arm_mmu_idx(env); 7995 frame_sp_p = &env->regs[13]; 7996 limit = v7m_sp_limit(env); 7997 } 7998 7999 frameptr = *frame_sp_p - 0x28; 8000 if (frameptr < limit) { 8001 /* 8002 * Stack limit failure: set SP to the limit value, and generate 8003 * STKOF UsageFault. Stack pushes below the limit must not be 8004 * performed. It is IMPDEF whether pushes above the limit are 8005 * performed; we choose not to. 8006 */ 8007 qemu_log_mask(CPU_LOG_INT, 8008 "...STKOF during callee-saves register stacking\n"); 8009 env->v7m.cfsr[env->v7m.secure] |= R_V7M_CFSR_STKOF_MASK; 8010 armv7m_nvic_set_pending(env->nvic, ARMV7M_EXCP_USAGE, 8011 env->v7m.secure); 8012 *frame_sp_p = limit; 8013 return true; 8014 } 8015 8016 /* Write as much of the stack frame as we can. A write failure may 8017 * cause us to pend a derived exception. 8018 */ 8019 stacked_ok = 8020 v7m_stack_write(cpu, frameptr, 0xfefa125b, mmu_idx, ignore_faults) && 8021 v7m_stack_write(cpu, frameptr + 0x8, env->regs[4], mmu_idx, 8022 ignore_faults) && 8023 v7m_stack_write(cpu, frameptr + 0xc, env->regs[5], mmu_idx, 8024 ignore_faults) && 8025 v7m_stack_write(cpu, frameptr + 0x10, env->regs[6], mmu_idx, 8026 ignore_faults) && 8027 v7m_stack_write(cpu, frameptr + 0x14, env->regs[7], mmu_idx, 8028 ignore_faults) && 8029 v7m_stack_write(cpu, frameptr + 0x18, env->regs[8], mmu_idx, 8030 ignore_faults) && 8031 v7m_stack_write(cpu, frameptr + 0x1c, env->regs[9], mmu_idx, 8032 ignore_faults) && 8033 v7m_stack_write(cpu, frameptr + 0x20, env->regs[10], mmu_idx, 8034 ignore_faults) && 8035 v7m_stack_write(cpu, frameptr + 0x24, env->regs[11], mmu_idx, 8036 ignore_faults); 8037 8038 /* Update SP regardless of whether any of the stack accesses failed. */ 8039 *frame_sp_p = frameptr; 8040 8041 return !stacked_ok; 8042 } 8043 8044 static void v7m_exception_taken(ARMCPU *cpu, uint32_t lr, bool dotailchain, 8045 bool ignore_stackfaults) 8046 { 8047 /* Do the "take the exception" parts of exception entry, 8048 * but not the pushing of state to the stack. This is 8049 * similar to the pseudocode ExceptionTaken() function. 8050 */ 8051 CPUARMState *env = &cpu->env; 8052 uint32_t addr; 8053 bool targets_secure; 8054 int exc; 8055 bool push_failed = false; 8056 8057 armv7m_nvic_get_pending_irq_info(env->nvic, &exc, &targets_secure); 8058 qemu_log_mask(CPU_LOG_INT, "...taking pending %s exception %d\n", 8059 targets_secure ? "secure" : "nonsecure", exc); 8060 8061 if (arm_feature(env, ARM_FEATURE_V8)) { 8062 if (arm_feature(env, ARM_FEATURE_M_SECURITY) && 8063 (lr & R_V7M_EXCRET_S_MASK)) { 8064 /* The background code (the owner of the registers in the 8065 * exception frame) is Secure. This means it may either already 8066 * have or now needs to push callee-saves registers. 8067 */ 8068 if (targets_secure) { 8069 if (dotailchain && !(lr & R_V7M_EXCRET_ES_MASK)) { 8070 /* We took an exception from Secure to NonSecure 8071 * (which means the callee-saved registers got stacked) 8072 * and are now tailchaining to a Secure exception. 8073 * Clear DCRS so eventual return from this Secure 8074 * exception unstacks the callee-saved registers. 8075 */ 8076 lr &= ~R_V7M_EXCRET_DCRS_MASK; 8077 } 8078 } else { 8079 /* We're going to a non-secure exception; push the 8080 * callee-saves registers to the stack now, if they're 8081 * not already saved. 8082 */ 8083 if (lr & R_V7M_EXCRET_DCRS_MASK && 8084 !(dotailchain && !(lr & R_V7M_EXCRET_ES_MASK))) { 8085 push_failed = v7m_push_callee_stack(cpu, lr, dotailchain, 8086 ignore_stackfaults); 8087 } 8088 lr |= R_V7M_EXCRET_DCRS_MASK; 8089 } 8090 } 8091 8092 lr &= ~R_V7M_EXCRET_ES_MASK; 8093 if (targets_secure || !arm_feature(env, ARM_FEATURE_M_SECURITY)) { 8094 lr |= R_V7M_EXCRET_ES_MASK; 8095 } 8096 lr &= ~R_V7M_EXCRET_SPSEL_MASK; 8097 if (env->v7m.control[targets_secure] & R_V7M_CONTROL_SPSEL_MASK) { 8098 lr |= R_V7M_EXCRET_SPSEL_MASK; 8099 } 8100 8101 /* Clear registers if necessary to prevent non-secure exception 8102 * code being able to see register values from secure code. 8103 * Where register values become architecturally UNKNOWN we leave 8104 * them with their previous values. 8105 */ 8106 if (arm_feature(env, ARM_FEATURE_M_SECURITY)) { 8107 if (!targets_secure) { 8108 /* Always clear the caller-saved registers (they have been 8109 * pushed to the stack earlier in v7m_push_stack()). 8110 * Clear callee-saved registers if the background code is 8111 * Secure (in which case these regs were saved in 8112 * v7m_push_callee_stack()). 8113 */ 8114 int i; 8115 8116 for (i = 0; i < 13; i++) { 8117 /* r4..r11 are callee-saves, zero only if EXCRET.S == 1 */ 8118 if (i < 4 || i > 11 || (lr & R_V7M_EXCRET_S_MASK)) { 8119 env->regs[i] = 0; 8120 } 8121 } 8122 /* Clear EAPSR */ 8123 xpsr_write(env, 0, XPSR_NZCV | XPSR_Q | XPSR_GE | XPSR_IT); 8124 } 8125 } 8126 } 8127 8128 if (push_failed && !ignore_stackfaults) { 8129 /* Derived exception on callee-saves register stacking: 8130 * we might now want to take a different exception which 8131 * targets a different security state, so try again from the top. 8132 */ 8133 qemu_log_mask(CPU_LOG_INT, 8134 "...derived exception on callee-saves register stacking"); 8135 v7m_exception_taken(cpu, lr, true, true); 8136 return; 8137 } 8138 8139 if (!arm_v7m_load_vector(cpu, exc, targets_secure, &addr)) { 8140 /* Vector load failed: derived exception */ 8141 qemu_log_mask(CPU_LOG_INT, "...derived exception on vector table load"); 8142 v7m_exception_taken(cpu, lr, true, true); 8143 return; 8144 } 8145 8146 /* Now we've done everything that might cause a derived exception 8147 * we can go ahead and activate whichever exception we're going to 8148 * take (which might now be the derived exception). 8149 */ 8150 armv7m_nvic_acknowledge_irq(env->nvic); 8151 8152 /* Switch to target security state -- must do this before writing SPSEL */ 8153 switch_v7m_security_state(env, targets_secure); 8154 write_v7m_control_spsel(env, 0); 8155 arm_clear_exclusive(env); 8156 /* Clear IT bits */ 8157 env->condexec_bits = 0; 8158 env->regs[14] = lr; 8159 env->regs[15] = addr & 0xfffffffe; 8160 env->thumb = addr & 1; 8161 } 8162 8163 static bool v7m_push_stack(ARMCPU *cpu) 8164 { 8165 /* Do the "set up stack frame" part of exception entry, 8166 * similar to pseudocode PushStack(). 8167 * Return true if we generate a derived exception (and so 8168 * should ignore further stack faults trying to process 8169 * that derived exception.) 8170 */ 8171 bool stacked_ok; 8172 CPUARMState *env = &cpu->env; 8173 uint32_t xpsr = xpsr_read(env); 8174 uint32_t frameptr = env->regs[13]; 8175 ARMMMUIdx mmu_idx = arm_mmu_idx(env); 8176 8177 /* Align stack pointer if the guest wants that */ 8178 if ((frameptr & 4) && 8179 (env->v7m.ccr[env->v7m.secure] & R_V7M_CCR_STKALIGN_MASK)) { 8180 frameptr -= 4; 8181 xpsr |= XPSR_SPREALIGN; 8182 } 8183 8184 frameptr -= 0x20; 8185 8186 if (arm_feature(env, ARM_FEATURE_V8)) { 8187 uint32_t limit = v7m_sp_limit(env); 8188 8189 if (frameptr < limit) { 8190 /* 8191 * Stack limit failure: set SP to the limit value, and generate 8192 * STKOF UsageFault. Stack pushes below the limit must not be 8193 * performed. It is IMPDEF whether pushes above the limit are 8194 * performed; we choose not to. 8195 */ 8196 qemu_log_mask(CPU_LOG_INT, 8197 "...STKOF during stacking\n"); 8198 env->v7m.cfsr[env->v7m.secure] |= R_V7M_CFSR_STKOF_MASK; 8199 armv7m_nvic_set_pending(env->nvic, ARMV7M_EXCP_USAGE, 8200 env->v7m.secure); 8201 env->regs[13] = limit; 8202 return true; 8203 } 8204 } 8205 8206 /* Write as much of the stack frame as we can. If we fail a stack 8207 * write this will result in a derived exception being pended 8208 * (which may be taken in preference to the one we started with 8209 * if it has higher priority). 8210 */ 8211 stacked_ok = 8212 v7m_stack_write(cpu, frameptr, env->regs[0], mmu_idx, false) && 8213 v7m_stack_write(cpu, frameptr + 4, env->regs[1], mmu_idx, false) && 8214 v7m_stack_write(cpu, frameptr + 8, env->regs[2], mmu_idx, false) && 8215 v7m_stack_write(cpu, frameptr + 12, env->regs[3], mmu_idx, false) && 8216 v7m_stack_write(cpu, frameptr + 16, env->regs[12], mmu_idx, false) && 8217 v7m_stack_write(cpu, frameptr + 20, env->regs[14], mmu_idx, false) && 8218 v7m_stack_write(cpu, frameptr + 24, env->regs[15], mmu_idx, false) && 8219 v7m_stack_write(cpu, frameptr + 28, xpsr, mmu_idx, false); 8220 8221 /* Update SP regardless of whether any of the stack accesses failed. */ 8222 env->regs[13] = frameptr; 8223 8224 return !stacked_ok; 8225 } 8226 8227 static void do_v7m_exception_exit(ARMCPU *cpu) 8228 { 8229 CPUARMState *env = &cpu->env; 8230 uint32_t excret; 8231 uint32_t xpsr; 8232 bool ufault = false; 8233 bool sfault = false; 8234 bool return_to_sp_process; 8235 bool return_to_handler; 8236 bool rettobase = false; 8237 bool exc_secure = false; 8238 bool return_to_secure; 8239 8240 /* If we're not in Handler mode then jumps to magic exception-exit 8241 * addresses don't have magic behaviour. However for the v8M 8242 * security extensions the magic secure-function-return has to 8243 * work in thread mode too, so to avoid doing an extra check in 8244 * the generated code we allow exception-exit magic to also cause the 8245 * internal exception and bring us here in thread mode. Correct code 8246 * will never try to do this (the following insn fetch will always 8247 * fault) so we the overhead of having taken an unnecessary exception 8248 * doesn't matter. 8249 */ 8250 if (!arm_v7m_is_handler_mode(env)) { 8251 return; 8252 } 8253 8254 /* In the spec pseudocode ExceptionReturn() is called directly 8255 * from BXWritePC() and gets the full target PC value including 8256 * bit zero. In QEMU's implementation we treat it as a normal 8257 * jump-to-register (which is then caught later on), and so split 8258 * the target value up between env->regs[15] and env->thumb in 8259 * gen_bx(). Reconstitute it. 8260 */ 8261 excret = env->regs[15]; 8262 if (env->thumb) { 8263 excret |= 1; 8264 } 8265 8266 qemu_log_mask(CPU_LOG_INT, "Exception return: magic PC %" PRIx32 8267 " previous exception %d\n", 8268 excret, env->v7m.exception); 8269 8270 if ((excret & R_V7M_EXCRET_RES1_MASK) != R_V7M_EXCRET_RES1_MASK) { 8271 qemu_log_mask(LOG_GUEST_ERROR, "M profile: zero high bits in exception " 8272 "exit PC value 0x%" PRIx32 " are UNPREDICTABLE\n", 8273 excret); 8274 } 8275 8276 if (arm_feature(env, ARM_FEATURE_M_SECURITY)) { 8277 /* EXC_RETURN.ES validation check (R_SMFL). We must do this before 8278 * we pick which FAULTMASK to clear. 8279 */ 8280 if (!env->v7m.secure && 8281 ((excret & R_V7M_EXCRET_ES_MASK) || 8282 !(excret & R_V7M_EXCRET_DCRS_MASK))) { 8283 sfault = 1; 8284 /* For all other purposes, treat ES as 0 (R_HXSR) */ 8285 excret &= ~R_V7M_EXCRET_ES_MASK; 8286 } 8287 exc_secure = excret & R_V7M_EXCRET_ES_MASK; 8288 } 8289 8290 if (env->v7m.exception != ARMV7M_EXCP_NMI) { 8291 /* Auto-clear FAULTMASK on return from other than NMI. 8292 * If the security extension is implemented then this only 8293 * happens if the raw execution priority is >= 0; the 8294 * value of the ES bit in the exception return value indicates 8295 * which security state's faultmask to clear. (v8M ARM ARM R_KBNF.) 8296 */ 8297 if (arm_feature(env, ARM_FEATURE_M_SECURITY)) { 8298 if (armv7m_nvic_raw_execution_priority(env->nvic) >= 0) { 8299 env->v7m.faultmask[exc_secure] = 0; 8300 } 8301 } else { 8302 env->v7m.faultmask[M_REG_NS] = 0; 8303 } 8304 } 8305 8306 switch (armv7m_nvic_complete_irq(env->nvic, env->v7m.exception, 8307 exc_secure)) { 8308 case -1: 8309 /* attempt to exit an exception that isn't active */ 8310 ufault = true; 8311 break; 8312 case 0: 8313 /* still an irq active now */ 8314 break; 8315 case 1: 8316 /* we returned to base exception level, no nesting. 8317 * (In the pseudocode this is written using "NestedActivation != 1" 8318 * where we have 'rettobase == false'.) 8319 */ 8320 rettobase = true; 8321 break; 8322 default: 8323 g_assert_not_reached(); 8324 } 8325 8326 return_to_handler = !(excret & R_V7M_EXCRET_MODE_MASK); 8327 return_to_sp_process = excret & R_V7M_EXCRET_SPSEL_MASK; 8328 return_to_secure = arm_feature(env, ARM_FEATURE_M_SECURITY) && 8329 (excret & R_V7M_EXCRET_S_MASK); 8330 8331 if (arm_feature(env, ARM_FEATURE_V8)) { 8332 if (!arm_feature(env, ARM_FEATURE_M_SECURITY)) { 8333 /* UNPREDICTABLE if S == 1 or DCRS == 0 or ES == 1 (R_XLCP); 8334 * we choose to take the UsageFault. 8335 */ 8336 if ((excret & R_V7M_EXCRET_S_MASK) || 8337 (excret & R_V7M_EXCRET_ES_MASK) || 8338 !(excret & R_V7M_EXCRET_DCRS_MASK)) { 8339 ufault = true; 8340 } 8341 } 8342 if (excret & R_V7M_EXCRET_RES0_MASK) { 8343 ufault = true; 8344 } 8345 } else { 8346 /* For v7M we only recognize certain combinations of the low bits */ 8347 switch (excret & 0xf) { 8348 case 1: /* Return to Handler */ 8349 break; 8350 case 13: /* Return to Thread using Process stack */ 8351 case 9: /* Return to Thread using Main stack */ 8352 /* We only need to check NONBASETHRDENA for v7M, because in 8353 * v8M this bit does not exist (it is RES1). 8354 */ 8355 if (!rettobase && 8356 !(env->v7m.ccr[env->v7m.secure] & 8357 R_V7M_CCR_NONBASETHRDENA_MASK)) { 8358 ufault = true; 8359 } 8360 break; 8361 default: 8362 ufault = true; 8363 } 8364 } 8365 8366 /* 8367 * Set CONTROL.SPSEL from excret.SPSEL. Since we're still in 8368 * Handler mode (and will be until we write the new XPSR.Interrupt 8369 * field) this does not switch around the current stack pointer. 8370 * We must do this before we do any kind of tailchaining, including 8371 * for the derived exceptions on integrity check failures, or we will 8372 * give the guest an incorrect EXCRET.SPSEL value on exception entry. 8373 */ 8374 write_v7m_control_spsel_for_secstate(env, return_to_sp_process, exc_secure); 8375 8376 if (sfault) { 8377 env->v7m.sfsr |= R_V7M_SFSR_INVER_MASK; 8378 armv7m_nvic_set_pending(env->nvic, ARMV7M_EXCP_SECURE, false); 8379 qemu_log_mask(CPU_LOG_INT, "...taking SecureFault on existing " 8380 "stackframe: failed EXC_RETURN.ES validity check\n"); 8381 v7m_exception_taken(cpu, excret, true, false); 8382 return; 8383 } 8384 8385 if (ufault) { 8386 /* Bad exception return: instead of popping the exception 8387 * stack, directly take a usage fault on the current stack. 8388 */ 8389 env->v7m.cfsr[env->v7m.secure] |= R_V7M_CFSR_INVPC_MASK; 8390 armv7m_nvic_set_pending(env->nvic, ARMV7M_EXCP_USAGE, env->v7m.secure); 8391 qemu_log_mask(CPU_LOG_INT, "...taking UsageFault on existing " 8392 "stackframe: failed exception return integrity check\n"); 8393 v7m_exception_taken(cpu, excret, true, false); 8394 return; 8395 } 8396 8397 /* 8398 * Tailchaining: if there is currently a pending exception that 8399 * is high enough priority to preempt execution at the level we're 8400 * about to return to, then just directly take that exception now, 8401 * avoiding an unstack-and-then-stack. Note that now we have 8402 * deactivated the previous exception by calling armv7m_nvic_complete_irq() 8403 * our current execution priority is already the execution priority we are 8404 * returning to -- none of the state we would unstack or set based on 8405 * the EXCRET value affects it. 8406 */ 8407 if (armv7m_nvic_can_take_pending_exception(env->nvic)) { 8408 qemu_log_mask(CPU_LOG_INT, "...tailchaining to pending exception\n"); 8409 v7m_exception_taken(cpu, excret, true, false); 8410 return; 8411 } 8412 8413 switch_v7m_security_state(env, return_to_secure); 8414 8415 { 8416 /* The stack pointer we should be reading the exception frame from 8417 * depends on bits in the magic exception return type value (and 8418 * for v8M isn't necessarily the stack pointer we will eventually 8419 * end up resuming execution with). Get a pointer to the location 8420 * in the CPU state struct where the SP we need is currently being 8421 * stored; we will use and modify it in place. 8422 * We use this limited C variable scope so we don't accidentally 8423 * use 'frame_sp_p' after we do something that makes it invalid. 8424 */ 8425 uint32_t *frame_sp_p = get_v7m_sp_ptr(env, 8426 return_to_secure, 8427 !return_to_handler, 8428 return_to_sp_process); 8429 uint32_t frameptr = *frame_sp_p; 8430 bool pop_ok = true; 8431 ARMMMUIdx mmu_idx; 8432 bool return_to_priv = return_to_handler || 8433 !(env->v7m.control[return_to_secure] & R_V7M_CONTROL_NPRIV_MASK); 8434 8435 mmu_idx = arm_v7m_mmu_idx_for_secstate_and_priv(env, return_to_secure, 8436 return_to_priv); 8437 8438 if (!QEMU_IS_ALIGNED(frameptr, 8) && 8439 arm_feature(env, ARM_FEATURE_V8)) { 8440 qemu_log_mask(LOG_GUEST_ERROR, 8441 "M profile exception return with non-8-aligned SP " 8442 "for destination state is UNPREDICTABLE\n"); 8443 } 8444 8445 /* Do we need to pop callee-saved registers? */ 8446 if (return_to_secure && 8447 ((excret & R_V7M_EXCRET_ES_MASK) == 0 || 8448 (excret & R_V7M_EXCRET_DCRS_MASK) == 0)) { 8449 uint32_t expected_sig = 0xfefa125b; 8450 uint32_t actual_sig; 8451 8452 pop_ok = v7m_stack_read(cpu, &actual_sig, frameptr, mmu_idx); 8453 8454 if (pop_ok && expected_sig != actual_sig) { 8455 /* Take a SecureFault on the current stack */ 8456 env->v7m.sfsr |= R_V7M_SFSR_INVIS_MASK; 8457 armv7m_nvic_set_pending(env->nvic, ARMV7M_EXCP_SECURE, false); 8458 qemu_log_mask(CPU_LOG_INT, "...taking SecureFault on existing " 8459 "stackframe: failed exception return integrity " 8460 "signature check\n"); 8461 v7m_exception_taken(cpu, excret, true, false); 8462 return; 8463 } 8464 8465 pop_ok = pop_ok && 8466 v7m_stack_read(cpu, &env->regs[4], frameptr + 0x8, mmu_idx) && 8467 v7m_stack_read(cpu, &env->regs[5], frameptr + 0xc, mmu_idx) && 8468 v7m_stack_read(cpu, &env->regs[6], frameptr + 0x10, mmu_idx) && 8469 v7m_stack_read(cpu, &env->regs[7], frameptr + 0x14, mmu_idx) && 8470 v7m_stack_read(cpu, &env->regs[8], frameptr + 0x18, mmu_idx) && 8471 v7m_stack_read(cpu, &env->regs[9], frameptr + 0x1c, mmu_idx) && 8472 v7m_stack_read(cpu, &env->regs[10], frameptr + 0x20, mmu_idx) && 8473 v7m_stack_read(cpu, &env->regs[11], frameptr + 0x24, mmu_idx); 8474 8475 frameptr += 0x28; 8476 } 8477 8478 /* Pop registers */ 8479 pop_ok = pop_ok && 8480 v7m_stack_read(cpu, &env->regs[0], frameptr, mmu_idx) && 8481 v7m_stack_read(cpu, &env->regs[1], frameptr + 0x4, mmu_idx) && 8482 v7m_stack_read(cpu, &env->regs[2], frameptr + 0x8, mmu_idx) && 8483 v7m_stack_read(cpu, &env->regs[3], frameptr + 0xc, mmu_idx) && 8484 v7m_stack_read(cpu, &env->regs[12], frameptr + 0x10, mmu_idx) && 8485 v7m_stack_read(cpu, &env->regs[14], frameptr + 0x14, mmu_idx) && 8486 v7m_stack_read(cpu, &env->regs[15], frameptr + 0x18, mmu_idx) && 8487 v7m_stack_read(cpu, &xpsr, frameptr + 0x1c, mmu_idx); 8488 8489 if (!pop_ok) { 8490 /* v7m_stack_read() pended a fault, so take it (as a tail 8491 * chained exception on the same stack frame) 8492 */ 8493 qemu_log_mask(CPU_LOG_INT, "...derived exception on unstacking\n"); 8494 v7m_exception_taken(cpu, excret, true, false); 8495 return; 8496 } 8497 8498 /* Returning from an exception with a PC with bit 0 set is defined 8499 * behaviour on v8M (bit 0 is ignored), but for v7M it was specified 8500 * to be UNPREDICTABLE. In practice actual v7M hardware seems to ignore 8501 * the lsbit, and there are several RTOSes out there which incorrectly 8502 * assume the r15 in the stack frame should be a Thumb-style "lsbit 8503 * indicates ARM/Thumb" value, so ignore the bit on v7M as well, but 8504 * complain about the badly behaved guest. 8505 */ 8506 if (env->regs[15] & 1) { 8507 env->regs[15] &= ~1U; 8508 if (!arm_feature(env, ARM_FEATURE_V8)) { 8509 qemu_log_mask(LOG_GUEST_ERROR, 8510 "M profile return from interrupt with misaligned " 8511 "PC is UNPREDICTABLE on v7M\n"); 8512 } 8513 } 8514 8515 if (arm_feature(env, ARM_FEATURE_V8)) { 8516 /* For v8M we have to check whether the xPSR exception field 8517 * matches the EXCRET value for return to handler/thread 8518 * before we commit to changing the SP and xPSR. 8519 */ 8520 bool will_be_handler = (xpsr & XPSR_EXCP) != 0; 8521 if (return_to_handler != will_be_handler) { 8522 /* Take an INVPC UsageFault on the current stack. 8523 * By this point we will have switched to the security state 8524 * for the background state, so this UsageFault will target 8525 * that state. 8526 */ 8527 armv7m_nvic_set_pending(env->nvic, ARMV7M_EXCP_USAGE, 8528 env->v7m.secure); 8529 env->v7m.cfsr[env->v7m.secure] |= R_V7M_CFSR_INVPC_MASK; 8530 qemu_log_mask(CPU_LOG_INT, "...taking UsageFault on existing " 8531 "stackframe: failed exception return integrity " 8532 "check\n"); 8533 v7m_exception_taken(cpu, excret, true, false); 8534 return; 8535 } 8536 } 8537 8538 /* Commit to consuming the stack frame */ 8539 frameptr += 0x20; 8540 /* Undo stack alignment (the SPREALIGN bit indicates that the original 8541 * pre-exception SP was not 8-aligned and we added a padding word to 8542 * align it, so we undo this by ORing in the bit that increases it 8543 * from the current 8-aligned value to the 8-unaligned value. (Adding 4 8544 * would work too but a logical OR is how the pseudocode specifies it.) 8545 */ 8546 if (xpsr & XPSR_SPREALIGN) { 8547 frameptr |= 4; 8548 } 8549 *frame_sp_p = frameptr; 8550 } 8551 /* This xpsr_write() will invalidate frame_sp_p as it may switch stack */ 8552 xpsr_write(env, xpsr, ~XPSR_SPREALIGN); 8553 8554 /* The restored xPSR exception field will be zero if we're 8555 * resuming in Thread mode. If that doesn't match what the 8556 * exception return excret specified then this is a UsageFault. 8557 * v7M requires we make this check here; v8M did it earlier. 8558 */ 8559 if (return_to_handler != arm_v7m_is_handler_mode(env)) { 8560 /* Take an INVPC UsageFault by pushing the stack again; 8561 * we know we're v7M so this is never a Secure UsageFault. 8562 */ 8563 bool ignore_stackfaults; 8564 8565 assert(!arm_feature(env, ARM_FEATURE_V8)); 8566 armv7m_nvic_set_pending(env->nvic, ARMV7M_EXCP_USAGE, false); 8567 env->v7m.cfsr[env->v7m.secure] |= R_V7M_CFSR_INVPC_MASK; 8568 ignore_stackfaults = v7m_push_stack(cpu); 8569 qemu_log_mask(CPU_LOG_INT, "...taking UsageFault on new stackframe: " 8570 "failed exception return integrity check\n"); 8571 v7m_exception_taken(cpu, excret, false, ignore_stackfaults); 8572 return; 8573 } 8574 8575 /* Otherwise, we have a successful exception exit. */ 8576 arm_clear_exclusive(env); 8577 qemu_log_mask(CPU_LOG_INT, "...successful exception return\n"); 8578 } 8579 8580 static bool do_v7m_function_return(ARMCPU *cpu) 8581 { 8582 /* v8M security extensions magic function return. 8583 * We may either: 8584 * (1) throw an exception (longjump) 8585 * (2) return true if we successfully handled the function return 8586 * (3) return false if we failed a consistency check and have 8587 * pended a UsageFault that needs to be taken now 8588 * 8589 * At this point the magic return value is split between env->regs[15] 8590 * and env->thumb. We don't bother to reconstitute it because we don't 8591 * need it (all values are handled the same way). 8592 */ 8593 CPUARMState *env = &cpu->env; 8594 uint32_t newpc, newpsr, newpsr_exc; 8595 8596 qemu_log_mask(CPU_LOG_INT, "...really v7M secure function return\n"); 8597 8598 { 8599 bool threadmode, spsel; 8600 TCGMemOpIdx oi; 8601 ARMMMUIdx mmu_idx; 8602 uint32_t *frame_sp_p; 8603 uint32_t frameptr; 8604 8605 /* Pull the return address and IPSR from the Secure stack */ 8606 threadmode = !arm_v7m_is_handler_mode(env); 8607 spsel = env->v7m.control[M_REG_S] & R_V7M_CONTROL_SPSEL_MASK; 8608 8609 frame_sp_p = get_v7m_sp_ptr(env, true, threadmode, spsel); 8610 frameptr = *frame_sp_p; 8611 8612 /* These loads may throw an exception (for MPU faults). We want to 8613 * do them as secure, so work out what MMU index that is. 8614 */ 8615 mmu_idx = arm_v7m_mmu_idx_for_secstate(env, true); 8616 oi = make_memop_idx(MO_LE, arm_to_core_mmu_idx(mmu_idx)); 8617 newpc = helper_le_ldul_mmu(env, frameptr, oi, 0); 8618 newpsr = helper_le_ldul_mmu(env, frameptr + 4, oi, 0); 8619 8620 /* Consistency checks on new IPSR */ 8621 newpsr_exc = newpsr & XPSR_EXCP; 8622 if (!((env->v7m.exception == 0 && newpsr_exc == 0) || 8623 (env->v7m.exception == 1 && newpsr_exc != 0))) { 8624 /* Pend the fault and tell our caller to take it */ 8625 env->v7m.cfsr[env->v7m.secure] |= R_V7M_CFSR_INVPC_MASK; 8626 armv7m_nvic_set_pending(env->nvic, ARMV7M_EXCP_USAGE, 8627 env->v7m.secure); 8628 qemu_log_mask(CPU_LOG_INT, 8629 "...taking INVPC UsageFault: " 8630 "IPSR consistency check failed\n"); 8631 return false; 8632 } 8633 8634 *frame_sp_p = frameptr + 8; 8635 } 8636 8637 /* This invalidates frame_sp_p */ 8638 switch_v7m_security_state(env, true); 8639 env->v7m.exception = newpsr_exc; 8640 env->v7m.control[M_REG_S] &= ~R_V7M_CONTROL_SFPA_MASK; 8641 if (newpsr & XPSR_SFPA) { 8642 env->v7m.control[M_REG_S] |= R_V7M_CONTROL_SFPA_MASK; 8643 } 8644 xpsr_write(env, 0, XPSR_IT); 8645 env->thumb = newpc & 1; 8646 env->regs[15] = newpc & ~1; 8647 8648 qemu_log_mask(CPU_LOG_INT, "...function return successful\n"); 8649 return true; 8650 } 8651 8652 static void arm_log_exception(int idx) 8653 { 8654 if (qemu_loglevel_mask(CPU_LOG_INT)) { 8655 const char *exc = NULL; 8656 static const char * const excnames[] = { 8657 [EXCP_UDEF] = "Undefined Instruction", 8658 [EXCP_SWI] = "SVC", 8659 [EXCP_PREFETCH_ABORT] = "Prefetch Abort", 8660 [EXCP_DATA_ABORT] = "Data Abort", 8661 [EXCP_IRQ] = "IRQ", 8662 [EXCP_FIQ] = "FIQ", 8663 [EXCP_BKPT] = "Breakpoint", 8664 [EXCP_EXCEPTION_EXIT] = "QEMU v7M exception exit", 8665 [EXCP_KERNEL_TRAP] = "QEMU intercept of kernel commpage", 8666 [EXCP_HVC] = "Hypervisor Call", 8667 [EXCP_HYP_TRAP] = "Hypervisor Trap", 8668 [EXCP_SMC] = "Secure Monitor Call", 8669 [EXCP_VIRQ] = "Virtual IRQ", 8670 [EXCP_VFIQ] = "Virtual FIQ", 8671 [EXCP_SEMIHOST] = "Semihosting call", 8672 [EXCP_NOCP] = "v7M NOCP UsageFault", 8673 [EXCP_INVSTATE] = "v7M INVSTATE UsageFault", 8674 [EXCP_STKOF] = "v8M STKOF UsageFault", 8675 }; 8676 8677 if (idx >= 0 && idx < ARRAY_SIZE(excnames)) { 8678 exc = excnames[idx]; 8679 } 8680 if (!exc) { 8681 exc = "unknown"; 8682 } 8683 qemu_log_mask(CPU_LOG_INT, "Taking exception %d [%s]\n", idx, exc); 8684 } 8685 } 8686 8687 static bool v7m_read_half_insn(ARMCPU *cpu, ARMMMUIdx mmu_idx, 8688 uint32_t addr, uint16_t *insn) 8689 { 8690 /* Load a 16-bit portion of a v7M instruction, returning true on success, 8691 * or false on failure (in which case we will have pended the appropriate 8692 * exception). 8693 * We need to do the instruction fetch's MPU and SAU checks 8694 * like this because there is no MMU index that would allow 8695 * doing the load with a single function call. Instead we must 8696 * first check that the security attributes permit the load 8697 * and that they don't mismatch on the two halves of the instruction, 8698 * and then we do the load as a secure load (ie using the security 8699 * attributes of the address, not the CPU, as architecturally required). 8700 */ 8701 CPUState *cs = CPU(cpu); 8702 CPUARMState *env = &cpu->env; 8703 V8M_SAttributes sattrs = {}; 8704 MemTxAttrs attrs = {}; 8705 ARMMMUFaultInfo fi = {}; 8706 MemTxResult txres; 8707 target_ulong page_size; 8708 hwaddr physaddr; 8709 int prot; 8710 8711 v8m_security_lookup(env, addr, MMU_INST_FETCH, mmu_idx, &sattrs); 8712 if (!sattrs.nsc || sattrs.ns) { 8713 /* This must be the second half of the insn, and it straddles a 8714 * region boundary with the second half not being S&NSC. 8715 */ 8716 env->v7m.sfsr |= R_V7M_SFSR_INVEP_MASK; 8717 armv7m_nvic_set_pending(env->nvic, ARMV7M_EXCP_SECURE, false); 8718 qemu_log_mask(CPU_LOG_INT, 8719 "...really SecureFault with SFSR.INVEP\n"); 8720 return false; 8721 } 8722 if (get_phys_addr(env, addr, MMU_INST_FETCH, mmu_idx, 8723 &physaddr, &attrs, &prot, &page_size, &fi, NULL)) { 8724 /* the MPU lookup failed */ 8725 env->v7m.cfsr[env->v7m.secure] |= R_V7M_CFSR_IACCVIOL_MASK; 8726 armv7m_nvic_set_pending(env->nvic, ARMV7M_EXCP_MEM, env->v7m.secure); 8727 qemu_log_mask(CPU_LOG_INT, "...really MemManage with CFSR.IACCVIOL\n"); 8728 return false; 8729 } 8730 *insn = address_space_lduw_le(arm_addressspace(cs, attrs), physaddr, 8731 attrs, &txres); 8732 if (txres != MEMTX_OK) { 8733 env->v7m.cfsr[M_REG_NS] |= R_V7M_CFSR_IBUSERR_MASK; 8734 armv7m_nvic_set_pending(env->nvic, ARMV7M_EXCP_BUS, false); 8735 qemu_log_mask(CPU_LOG_INT, "...really BusFault with CFSR.IBUSERR\n"); 8736 return false; 8737 } 8738 return true; 8739 } 8740 8741 static bool v7m_handle_execute_nsc(ARMCPU *cpu) 8742 { 8743 /* Check whether this attempt to execute code in a Secure & NS-Callable 8744 * memory region is for an SG instruction; if so, then emulate the 8745 * effect of the SG instruction and return true. Otherwise pend 8746 * the correct kind of exception and return false. 8747 */ 8748 CPUARMState *env = &cpu->env; 8749 ARMMMUIdx mmu_idx; 8750 uint16_t insn; 8751 8752 /* We should never get here unless get_phys_addr_pmsav8() caused 8753 * an exception for NS executing in S&NSC memory. 8754 */ 8755 assert(!env->v7m.secure); 8756 assert(arm_feature(env, ARM_FEATURE_M_SECURITY)); 8757 8758 /* We want to do the MPU lookup as secure; work out what mmu_idx that is */ 8759 mmu_idx = arm_v7m_mmu_idx_for_secstate(env, true); 8760 8761 if (!v7m_read_half_insn(cpu, mmu_idx, env->regs[15], &insn)) { 8762 return false; 8763 } 8764 8765 if (!env->thumb) { 8766 goto gen_invep; 8767 } 8768 8769 if (insn != 0xe97f) { 8770 /* Not an SG instruction first half (we choose the IMPDEF 8771 * early-SG-check option). 8772 */ 8773 goto gen_invep; 8774 } 8775 8776 if (!v7m_read_half_insn(cpu, mmu_idx, env->regs[15] + 2, &insn)) { 8777 return false; 8778 } 8779 8780 if (insn != 0xe97f) { 8781 /* Not an SG instruction second half (yes, both halves of the SG 8782 * insn have the same hex value) 8783 */ 8784 goto gen_invep; 8785 } 8786 8787 /* OK, we have confirmed that we really have an SG instruction. 8788 * We know we're NS in S memory so don't need to repeat those checks. 8789 */ 8790 qemu_log_mask(CPU_LOG_INT, "...really an SG instruction at 0x%08" PRIx32 8791 ", executing it\n", env->regs[15]); 8792 env->regs[14] &= ~1; 8793 switch_v7m_security_state(env, true); 8794 xpsr_write(env, 0, XPSR_IT); 8795 env->regs[15] += 4; 8796 return true; 8797 8798 gen_invep: 8799 env->v7m.sfsr |= R_V7M_SFSR_INVEP_MASK; 8800 armv7m_nvic_set_pending(env->nvic, ARMV7M_EXCP_SECURE, false); 8801 qemu_log_mask(CPU_LOG_INT, 8802 "...really SecureFault with SFSR.INVEP\n"); 8803 return false; 8804 } 8805 8806 void arm_v7m_cpu_do_interrupt(CPUState *cs) 8807 { 8808 ARMCPU *cpu = ARM_CPU(cs); 8809 CPUARMState *env = &cpu->env; 8810 uint32_t lr; 8811 bool ignore_stackfaults; 8812 8813 arm_log_exception(cs->exception_index); 8814 8815 /* For exceptions we just mark as pending on the NVIC, and let that 8816 handle it. */ 8817 switch (cs->exception_index) { 8818 case EXCP_UDEF: 8819 armv7m_nvic_set_pending(env->nvic, ARMV7M_EXCP_USAGE, env->v7m.secure); 8820 env->v7m.cfsr[env->v7m.secure] |= R_V7M_CFSR_UNDEFINSTR_MASK; 8821 break; 8822 case EXCP_NOCP: 8823 armv7m_nvic_set_pending(env->nvic, ARMV7M_EXCP_USAGE, env->v7m.secure); 8824 env->v7m.cfsr[env->v7m.secure] |= R_V7M_CFSR_NOCP_MASK; 8825 break; 8826 case EXCP_INVSTATE: 8827 armv7m_nvic_set_pending(env->nvic, ARMV7M_EXCP_USAGE, env->v7m.secure); 8828 env->v7m.cfsr[env->v7m.secure] |= R_V7M_CFSR_INVSTATE_MASK; 8829 break; 8830 case EXCP_STKOF: 8831 armv7m_nvic_set_pending(env->nvic, ARMV7M_EXCP_USAGE, env->v7m.secure); 8832 env->v7m.cfsr[env->v7m.secure] |= R_V7M_CFSR_STKOF_MASK; 8833 break; 8834 case EXCP_SWI: 8835 /* The PC already points to the next instruction. */ 8836 armv7m_nvic_set_pending(env->nvic, ARMV7M_EXCP_SVC, env->v7m.secure); 8837 break; 8838 case EXCP_PREFETCH_ABORT: 8839 case EXCP_DATA_ABORT: 8840 /* Note that for M profile we don't have a guest facing FSR, but 8841 * the env->exception.fsr will be populated by the code that 8842 * raises the fault, in the A profile short-descriptor format. 8843 */ 8844 switch (env->exception.fsr & 0xf) { 8845 case M_FAKE_FSR_NSC_EXEC: 8846 /* Exception generated when we try to execute code at an address 8847 * which is marked as Secure & Non-Secure Callable and the CPU 8848 * is in the Non-Secure state. The only instruction which can 8849 * be executed like this is SG (and that only if both halves of 8850 * the SG instruction have the same security attributes.) 8851 * Everything else must generate an INVEP SecureFault, so we 8852 * emulate the SG instruction here. 8853 */ 8854 if (v7m_handle_execute_nsc(cpu)) { 8855 return; 8856 } 8857 break; 8858 case M_FAKE_FSR_SFAULT: 8859 /* Various flavours of SecureFault for attempts to execute or 8860 * access data in the wrong security state. 8861 */ 8862 switch (cs->exception_index) { 8863 case EXCP_PREFETCH_ABORT: 8864 if (env->v7m.secure) { 8865 env->v7m.sfsr |= R_V7M_SFSR_INVTRAN_MASK; 8866 qemu_log_mask(CPU_LOG_INT, 8867 "...really SecureFault with SFSR.INVTRAN\n"); 8868 } else { 8869 env->v7m.sfsr |= R_V7M_SFSR_INVEP_MASK; 8870 qemu_log_mask(CPU_LOG_INT, 8871 "...really SecureFault with SFSR.INVEP\n"); 8872 } 8873 break; 8874 case EXCP_DATA_ABORT: 8875 /* This must be an NS access to S memory */ 8876 env->v7m.sfsr |= R_V7M_SFSR_AUVIOL_MASK; 8877 qemu_log_mask(CPU_LOG_INT, 8878 "...really SecureFault with SFSR.AUVIOL\n"); 8879 break; 8880 } 8881 armv7m_nvic_set_pending(env->nvic, ARMV7M_EXCP_SECURE, false); 8882 break; 8883 case 0x8: /* External Abort */ 8884 switch (cs->exception_index) { 8885 case EXCP_PREFETCH_ABORT: 8886 env->v7m.cfsr[M_REG_NS] |= R_V7M_CFSR_IBUSERR_MASK; 8887 qemu_log_mask(CPU_LOG_INT, "...with CFSR.IBUSERR\n"); 8888 break; 8889 case EXCP_DATA_ABORT: 8890 env->v7m.cfsr[M_REG_NS] |= 8891 (R_V7M_CFSR_PRECISERR_MASK | R_V7M_CFSR_BFARVALID_MASK); 8892 env->v7m.bfar = env->exception.vaddress; 8893 qemu_log_mask(CPU_LOG_INT, 8894 "...with CFSR.PRECISERR and BFAR 0x%x\n", 8895 env->v7m.bfar); 8896 break; 8897 } 8898 armv7m_nvic_set_pending(env->nvic, ARMV7M_EXCP_BUS, false); 8899 break; 8900 default: 8901 /* All other FSR values are either MPU faults or "can't happen 8902 * for M profile" cases. 8903 */ 8904 switch (cs->exception_index) { 8905 case EXCP_PREFETCH_ABORT: 8906 env->v7m.cfsr[env->v7m.secure] |= R_V7M_CFSR_IACCVIOL_MASK; 8907 qemu_log_mask(CPU_LOG_INT, "...with CFSR.IACCVIOL\n"); 8908 break; 8909 case EXCP_DATA_ABORT: 8910 env->v7m.cfsr[env->v7m.secure] |= 8911 (R_V7M_CFSR_DACCVIOL_MASK | R_V7M_CFSR_MMARVALID_MASK); 8912 env->v7m.mmfar[env->v7m.secure] = env->exception.vaddress; 8913 qemu_log_mask(CPU_LOG_INT, 8914 "...with CFSR.DACCVIOL and MMFAR 0x%x\n", 8915 env->v7m.mmfar[env->v7m.secure]); 8916 break; 8917 } 8918 armv7m_nvic_set_pending(env->nvic, ARMV7M_EXCP_MEM, 8919 env->v7m.secure); 8920 break; 8921 } 8922 break; 8923 case EXCP_BKPT: 8924 if (semihosting_enabled()) { 8925 int nr; 8926 nr = arm_lduw_code(env, env->regs[15], arm_sctlr_b(env)) & 0xff; 8927 if (nr == 0xab) { 8928 env->regs[15] += 2; 8929 qemu_log_mask(CPU_LOG_INT, 8930 "...handling as semihosting call 0x%x\n", 8931 env->regs[0]); 8932 env->regs[0] = do_arm_semihosting(env); 8933 return; 8934 } 8935 } 8936 armv7m_nvic_set_pending(env->nvic, ARMV7M_EXCP_DEBUG, false); 8937 break; 8938 case EXCP_IRQ: 8939 break; 8940 case EXCP_EXCEPTION_EXIT: 8941 if (env->regs[15] < EXC_RETURN_MIN_MAGIC) { 8942 /* Must be v8M security extension function return */ 8943 assert(env->regs[15] >= FNC_RETURN_MIN_MAGIC); 8944 assert(arm_feature(env, ARM_FEATURE_M_SECURITY)); 8945 if (do_v7m_function_return(cpu)) { 8946 return; 8947 } 8948 } else { 8949 do_v7m_exception_exit(cpu); 8950 return; 8951 } 8952 break; 8953 default: 8954 cpu_abort(cs, "Unhandled exception 0x%x\n", cs->exception_index); 8955 return; /* Never happens. Keep compiler happy. */ 8956 } 8957 8958 if (arm_feature(env, ARM_FEATURE_V8)) { 8959 lr = R_V7M_EXCRET_RES1_MASK | 8960 R_V7M_EXCRET_DCRS_MASK | 8961 R_V7M_EXCRET_FTYPE_MASK; 8962 /* The S bit indicates whether we should return to Secure 8963 * or NonSecure (ie our current state). 8964 * The ES bit indicates whether we're taking this exception 8965 * to Secure or NonSecure (ie our target state). We set it 8966 * later, in v7m_exception_taken(). 8967 * The SPSEL bit is also set in v7m_exception_taken() for v8M. 8968 * This corresponds to the ARM ARM pseudocode for v8M setting 8969 * some LR bits in PushStack() and some in ExceptionTaken(); 8970 * the distinction matters for the tailchain cases where we 8971 * can take an exception without pushing the stack. 8972 */ 8973 if (env->v7m.secure) { 8974 lr |= R_V7M_EXCRET_S_MASK; 8975 } 8976 } else { 8977 lr = R_V7M_EXCRET_RES1_MASK | 8978 R_V7M_EXCRET_S_MASK | 8979 R_V7M_EXCRET_DCRS_MASK | 8980 R_V7M_EXCRET_FTYPE_MASK | 8981 R_V7M_EXCRET_ES_MASK; 8982 if (env->v7m.control[M_REG_NS] & R_V7M_CONTROL_SPSEL_MASK) { 8983 lr |= R_V7M_EXCRET_SPSEL_MASK; 8984 } 8985 } 8986 if (!arm_v7m_is_handler_mode(env)) { 8987 lr |= R_V7M_EXCRET_MODE_MASK; 8988 } 8989 8990 ignore_stackfaults = v7m_push_stack(cpu); 8991 v7m_exception_taken(cpu, lr, false, ignore_stackfaults); 8992 } 8993 8994 /* Function used to synchronize QEMU's AArch64 register set with AArch32 8995 * register set. This is necessary when switching between AArch32 and AArch64 8996 * execution state. 8997 */ 8998 void aarch64_sync_32_to_64(CPUARMState *env) 8999 { 9000 int i; 9001 uint32_t mode = env->uncached_cpsr & CPSR_M; 9002 9003 /* We can blanket copy R[0:7] to X[0:7] */ 9004 for (i = 0; i < 8; i++) { 9005 env->xregs[i] = env->regs[i]; 9006 } 9007 9008 /* Unless we are in FIQ mode, x8-x12 come from the user registers r8-r12. 9009 * Otherwise, they come from the banked user regs. 9010 */ 9011 if (mode == ARM_CPU_MODE_FIQ) { 9012 for (i = 8; i < 13; i++) { 9013 env->xregs[i] = env->usr_regs[i - 8]; 9014 } 9015 } else { 9016 for (i = 8; i < 13; i++) { 9017 env->xregs[i] = env->regs[i]; 9018 } 9019 } 9020 9021 /* Registers x13-x23 are the various mode SP and FP registers. Registers 9022 * r13 and r14 are only copied if we are in that mode, otherwise we copy 9023 * from the mode banked register. 9024 */ 9025 if (mode == ARM_CPU_MODE_USR || mode == ARM_CPU_MODE_SYS) { 9026 env->xregs[13] = env->regs[13]; 9027 env->xregs[14] = env->regs[14]; 9028 } else { 9029 env->xregs[13] = env->banked_r13[bank_number(ARM_CPU_MODE_USR)]; 9030 /* HYP is an exception in that it is copied from r14 */ 9031 if (mode == ARM_CPU_MODE_HYP) { 9032 env->xregs[14] = env->regs[14]; 9033 } else { 9034 env->xregs[14] = env->banked_r14[r14_bank_number(ARM_CPU_MODE_USR)]; 9035 } 9036 } 9037 9038 if (mode == ARM_CPU_MODE_HYP) { 9039 env->xregs[15] = env->regs[13]; 9040 } else { 9041 env->xregs[15] = env->banked_r13[bank_number(ARM_CPU_MODE_HYP)]; 9042 } 9043 9044 if (mode == ARM_CPU_MODE_IRQ) { 9045 env->xregs[16] = env->regs[14]; 9046 env->xregs[17] = env->regs[13]; 9047 } else { 9048 env->xregs[16] = env->banked_r14[r14_bank_number(ARM_CPU_MODE_IRQ)]; 9049 env->xregs[17] = env->banked_r13[bank_number(ARM_CPU_MODE_IRQ)]; 9050 } 9051 9052 if (mode == ARM_CPU_MODE_SVC) { 9053 env->xregs[18] = env->regs[14]; 9054 env->xregs[19] = env->regs[13]; 9055 } else { 9056 env->xregs[18] = env->banked_r14[r14_bank_number(ARM_CPU_MODE_SVC)]; 9057 env->xregs[19] = env->banked_r13[bank_number(ARM_CPU_MODE_SVC)]; 9058 } 9059 9060 if (mode == ARM_CPU_MODE_ABT) { 9061 env->xregs[20] = env->regs[14]; 9062 env->xregs[21] = env->regs[13]; 9063 } else { 9064 env->xregs[20] = env->banked_r14[r14_bank_number(ARM_CPU_MODE_ABT)]; 9065 env->xregs[21] = env->banked_r13[bank_number(ARM_CPU_MODE_ABT)]; 9066 } 9067 9068 if (mode == ARM_CPU_MODE_UND) { 9069 env->xregs[22] = env->regs[14]; 9070 env->xregs[23] = env->regs[13]; 9071 } else { 9072 env->xregs[22] = env->banked_r14[r14_bank_number(ARM_CPU_MODE_UND)]; 9073 env->xregs[23] = env->banked_r13[bank_number(ARM_CPU_MODE_UND)]; 9074 } 9075 9076 /* Registers x24-x30 are mapped to r8-r14 in FIQ mode. If we are in FIQ 9077 * mode, then we can copy from r8-r14. Otherwise, we copy from the 9078 * FIQ bank for r8-r14. 9079 */ 9080 if (mode == ARM_CPU_MODE_FIQ) { 9081 for (i = 24; i < 31; i++) { 9082 env->xregs[i] = env->regs[i - 16]; /* X[24:30] <- R[8:14] */ 9083 } 9084 } else { 9085 for (i = 24; i < 29; i++) { 9086 env->xregs[i] = env->fiq_regs[i - 24]; 9087 } 9088 env->xregs[29] = env->banked_r13[bank_number(ARM_CPU_MODE_FIQ)]; 9089 env->xregs[30] = env->banked_r14[r14_bank_number(ARM_CPU_MODE_FIQ)]; 9090 } 9091 9092 env->pc = env->regs[15]; 9093 } 9094 9095 /* Function used to synchronize QEMU's AArch32 register set with AArch64 9096 * register set. This is necessary when switching between AArch32 and AArch64 9097 * execution state. 9098 */ 9099 void aarch64_sync_64_to_32(CPUARMState *env) 9100 { 9101 int i; 9102 uint32_t mode = env->uncached_cpsr & CPSR_M; 9103 9104 /* We can blanket copy X[0:7] to R[0:7] */ 9105 for (i = 0; i < 8; i++) { 9106 env->regs[i] = env->xregs[i]; 9107 } 9108 9109 /* Unless we are in FIQ mode, r8-r12 come from the user registers x8-x12. 9110 * Otherwise, we copy x8-x12 into the banked user regs. 9111 */ 9112 if (mode == ARM_CPU_MODE_FIQ) { 9113 for (i = 8; i < 13; i++) { 9114 env->usr_regs[i - 8] = env->xregs[i]; 9115 } 9116 } else { 9117 for (i = 8; i < 13; i++) { 9118 env->regs[i] = env->xregs[i]; 9119 } 9120 } 9121 9122 /* Registers r13 & r14 depend on the current mode. 9123 * If we are in a given mode, we copy the corresponding x registers to r13 9124 * and r14. Otherwise, we copy the x register to the banked r13 and r14 9125 * for the mode. 9126 */ 9127 if (mode == ARM_CPU_MODE_USR || mode == ARM_CPU_MODE_SYS) { 9128 env->regs[13] = env->xregs[13]; 9129 env->regs[14] = env->xregs[14]; 9130 } else { 9131 env->banked_r13[bank_number(ARM_CPU_MODE_USR)] = env->xregs[13]; 9132 9133 /* HYP is an exception in that it does not have its own banked r14 but 9134 * shares the USR r14 9135 */ 9136 if (mode == ARM_CPU_MODE_HYP) { 9137 env->regs[14] = env->xregs[14]; 9138 } else { 9139 env->banked_r14[r14_bank_number(ARM_CPU_MODE_USR)] = env->xregs[14]; 9140 } 9141 } 9142 9143 if (mode == ARM_CPU_MODE_HYP) { 9144 env->regs[13] = env->xregs[15]; 9145 } else { 9146 env->banked_r13[bank_number(ARM_CPU_MODE_HYP)] = env->xregs[15]; 9147 } 9148 9149 if (mode == ARM_CPU_MODE_IRQ) { 9150 env->regs[14] = env->xregs[16]; 9151 env->regs[13] = env->xregs[17]; 9152 } else { 9153 env->banked_r14[r14_bank_number(ARM_CPU_MODE_IRQ)] = env->xregs[16]; 9154 env->banked_r13[bank_number(ARM_CPU_MODE_IRQ)] = env->xregs[17]; 9155 } 9156 9157 if (mode == ARM_CPU_MODE_SVC) { 9158 env->regs[14] = env->xregs[18]; 9159 env->regs[13] = env->xregs[19]; 9160 } else { 9161 env->banked_r14[r14_bank_number(ARM_CPU_MODE_SVC)] = env->xregs[18]; 9162 env->banked_r13[bank_number(ARM_CPU_MODE_SVC)] = env->xregs[19]; 9163 } 9164 9165 if (mode == ARM_CPU_MODE_ABT) { 9166 env->regs[14] = env->xregs[20]; 9167 env->regs[13] = env->xregs[21]; 9168 } else { 9169 env->banked_r14[r14_bank_number(ARM_CPU_MODE_ABT)] = env->xregs[20]; 9170 env->banked_r13[bank_number(ARM_CPU_MODE_ABT)] = env->xregs[21]; 9171 } 9172 9173 if (mode == ARM_CPU_MODE_UND) { 9174 env->regs[14] = env->xregs[22]; 9175 env->regs[13] = env->xregs[23]; 9176 } else { 9177 env->banked_r14[r14_bank_number(ARM_CPU_MODE_UND)] = env->xregs[22]; 9178 env->banked_r13[bank_number(ARM_CPU_MODE_UND)] = env->xregs[23]; 9179 } 9180 9181 /* Registers x24-x30 are mapped to r8-r14 in FIQ mode. If we are in FIQ 9182 * mode, then we can copy to r8-r14. Otherwise, we copy to the 9183 * FIQ bank for r8-r14. 9184 */ 9185 if (mode == ARM_CPU_MODE_FIQ) { 9186 for (i = 24; i < 31; i++) { 9187 env->regs[i - 16] = env->xregs[i]; /* X[24:30] -> R[8:14] */ 9188 } 9189 } else { 9190 for (i = 24; i < 29; i++) { 9191 env->fiq_regs[i - 24] = env->xregs[i]; 9192 } 9193 env->banked_r13[bank_number(ARM_CPU_MODE_FIQ)] = env->xregs[29]; 9194 env->banked_r14[r14_bank_number(ARM_CPU_MODE_FIQ)] = env->xregs[30]; 9195 } 9196 9197 env->regs[15] = env->pc; 9198 } 9199 9200 static void take_aarch32_exception(CPUARMState *env, int new_mode, 9201 uint32_t mask, uint32_t offset, 9202 uint32_t newpc) 9203 { 9204 /* Change the CPU state so as to actually take the exception. */ 9205 switch_mode(env, new_mode); 9206 /* 9207 * For exceptions taken to AArch32 we must clear the SS bit in both 9208 * PSTATE and in the old-state value we save to SPSR_<mode>, so zero it now. 9209 */ 9210 env->uncached_cpsr &= ~PSTATE_SS; 9211 env->spsr = cpsr_read(env); 9212 /* Clear IT bits. */ 9213 env->condexec_bits = 0; 9214 /* Switch to the new mode, and to the correct instruction set. */ 9215 env->uncached_cpsr = (env->uncached_cpsr & ~CPSR_M) | new_mode; 9216 /* Set new mode endianness */ 9217 env->uncached_cpsr &= ~CPSR_E; 9218 if (env->cp15.sctlr_el[arm_current_el(env)] & SCTLR_EE) { 9219 env->uncached_cpsr |= CPSR_E; 9220 } 9221 /* J and IL must always be cleared for exception entry */ 9222 env->uncached_cpsr &= ~(CPSR_IL | CPSR_J); 9223 env->daif |= mask; 9224 9225 if (new_mode == ARM_CPU_MODE_HYP) { 9226 env->thumb = (env->cp15.sctlr_el[2] & SCTLR_TE) != 0; 9227 env->elr_el[2] = env->regs[15]; 9228 } else { 9229 /* 9230 * this is a lie, as there was no c1_sys on V4T/V5, but who cares 9231 * and we should just guard the thumb mode on V4 9232 */ 9233 if (arm_feature(env, ARM_FEATURE_V4T)) { 9234 env->thumb = 9235 (A32_BANKED_CURRENT_REG_GET(env, sctlr) & SCTLR_TE) != 0; 9236 } 9237 env->regs[14] = env->regs[15] + offset; 9238 } 9239 env->regs[15] = newpc; 9240 } 9241 9242 static void arm_cpu_do_interrupt_aarch32_hyp(CPUState *cs) 9243 { 9244 /* 9245 * Handle exception entry to Hyp mode; this is sufficiently 9246 * different to entry to other AArch32 modes that we handle it 9247 * separately here. 9248 * 9249 * The vector table entry used is always the 0x14 Hyp mode entry point, 9250 * unless this is an UNDEF/HVC/abort taken from Hyp to Hyp. 9251 * The offset applied to the preferred return address is always zero 9252 * (see DDI0487C.a section G1.12.3). 9253 * PSTATE A/I/F masks are set based only on the SCR.EA/IRQ/FIQ values. 9254 */ 9255 uint32_t addr, mask; 9256 ARMCPU *cpu = ARM_CPU(cs); 9257 CPUARMState *env = &cpu->env; 9258 9259 switch (cs->exception_index) { 9260 case EXCP_UDEF: 9261 addr = 0x04; 9262 break; 9263 case EXCP_SWI: 9264 addr = 0x14; 9265 break; 9266 case EXCP_BKPT: 9267 /* Fall through to prefetch abort. */ 9268 case EXCP_PREFETCH_ABORT: 9269 env->cp15.ifar_s = env->exception.vaddress; 9270 qemu_log_mask(CPU_LOG_INT, "...with HIFAR 0x%x\n", 9271 (uint32_t)env->exception.vaddress); 9272 addr = 0x0c; 9273 break; 9274 case EXCP_DATA_ABORT: 9275 env->cp15.dfar_s = env->exception.vaddress; 9276 qemu_log_mask(CPU_LOG_INT, "...with HDFAR 0x%x\n", 9277 (uint32_t)env->exception.vaddress); 9278 addr = 0x10; 9279 break; 9280 case EXCP_IRQ: 9281 addr = 0x18; 9282 break; 9283 case EXCP_FIQ: 9284 addr = 0x1c; 9285 break; 9286 case EXCP_HVC: 9287 addr = 0x08; 9288 break; 9289 case EXCP_HYP_TRAP: 9290 addr = 0x14; 9291 default: 9292 cpu_abort(cs, "Unhandled exception 0x%x\n", cs->exception_index); 9293 } 9294 9295 if (cs->exception_index != EXCP_IRQ && cs->exception_index != EXCP_FIQ) { 9296 if (!arm_feature(env, ARM_FEATURE_V8)) { 9297 /* 9298 * QEMU syndrome values are v8-style. v7 has the IL bit 9299 * UNK/SBZP for "field not valid" cases, where v8 uses RES1. 9300 * If this is a v7 CPU, squash the IL bit in those cases. 9301 */ 9302 if (cs->exception_index == EXCP_PREFETCH_ABORT || 9303 (cs->exception_index == EXCP_DATA_ABORT && 9304 !(env->exception.syndrome & ARM_EL_ISV)) || 9305 syn_get_ec(env->exception.syndrome) == EC_UNCATEGORIZED) { 9306 env->exception.syndrome &= ~ARM_EL_IL; 9307 } 9308 } 9309 env->cp15.esr_el[2] = env->exception.syndrome; 9310 } 9311 9312 if (arm_current_el(env) != 2 && addr < 0x14) { 9313 addr = 0x14; 9314 } 9315 9316 mask = 0; 9317 if (!(env->cp15.scr_el3 & SCR_EA)) { 9318 mask |= CPSR_A; 9319 } 9320 if (!(env->cp15.scr_el3 & SCR_IRQ)) { 9321 mask |= CPSR_I; 9322 } 9323 if (!(env->cp15.scr_el3 & SCR_FIQ)) { 9324 mask |= CPSR_F; 9325 } 9326 9327 addr += env->cp15.hvbar; 9328 9329 take_aarch32_exception(env, ARM_CPU_MODE_HYP, mask, 0, addr); 9330 } 9331 9332 static void arm_cpu_do_interrupt_aarch32(CPUState *cs) 9333 { 9334 ARMCPU *cpu = ARM_CPU(cs); 9335 CPUARMState *env = &cpu->env; 9336 uint32_t addr; 9337 uint32_t mask; 9338 int new_mode; 9339 uint32_t offset; 9340 uint32_t moe; 9341 9342 /* If this is a debug exception we must update the DBGDSCR.MOE bits */ 9343 switch (syn_get_ec(env->exception.syndrome)) { 9344 case EC_BREAKPOINT: 9345 case EC_BREAKPOINT_SAME_EL: 9346 moe = 1; 9347 break; 9348 case EC_WATCHPOINT: 9349 case EC_WATCHPOINT_SAME_EL: 9350 moe = 10; 9351 break; 9352 case EC_AA32_BKPT: 9353 moe = 3; 9354 break; 9355 case EC_VECTORCATCH: 9356 moe = 5; 9357 break; 9358 default: 9359 moe = 0; 9360 break; 9361 } 9362 9363 if (moe) { 9364 env->cp15.mdscr_el1 = deposit64(env->cp15.mdscr_el1, 2, 4, moe); 9365 } 9366 9367 if (env->exception.target_el == 2) { 9368 arm_cpu_do_interrupt_aarch32_hyp(cs); 9369 return; 9370 } 9371 9372 switch (cs->exception_index) { 9373 case EXCP_UDEF: 9374 new_mode = ARM_CPU_MODE_UND; 9375 addr = 0x04; 9376 mask = CPSR_I; 9377 if (env->thumb) 9378 offset = 2; 9379 else 9380 offset = 4; 9381 break; 9382 case EXCP_SWI: 9383 new_mode = ARM_CPU_MODE_SVC; 9384 addr = 0x08; 9385 mask = CPSR_I; 9386 /* The PC already points to the next instruction. */ 9387 offset = 0; 9388 break; 9389 case EXCP_BKPT: 9390 /* Fall through to prefetch abort. */ 9391 case EXCP_PREFETCH_ABORT: 9392 A32_BANKED_CURRENT_REG_SET(env, ifsr, env->exception.fsr); 9393 A32_BANKED_CURRENT_REG_SET(env, ifar, env->exception.vaddress); 9394 qemu_log_mask(CPU_LOG_INT, "...with IFSR 0x%x IFAR 0x%x\n", 9395 env->exception.fsr, (uint32_t)env->exception.vaddress); 9396 new_mode = ARM_CPU_MODE_ABT; 9397 addr = 0x0c; 9398 mask = CPSR_A | CPSR_I; 9399 offset = 4; 9400 break; 9401 case EXCP_DATA_ABORT: 9402 A32_BANKED_CURRENT_REG_SET(env, dfsr, env->exception.fsr); 9403 A32_BANKED_CURRENT_REG_SET(env, dfar, env->exception.vaddress); 9404 qemu_log_mask(CPU_LOG_INT, "...with DFSR 0x%x DFAR 0x%x\n", 9405 env->exception.fsr, 9406 (uint32_t)env->exception.vaddress); 9407 new_mode = ARM_CPU_MODE_ABT; 9408 addr = 0x10; 9409 mask = CPSR_A | CPSR_I; 9410 offset = 8; 9411 break; 9412 case EXCP_IRQ: 9413 new_mode = ARM_CPU_MODE_IRQ; 9414 addr = 0x18; 9415 /* Disable IRQ and imprecise data aborts. */ 9416 mask = CPSR_A | CPSR_I; 9417 offset = 4; 9418 if (env->cp15.scr_el3 & SCR_IRQ) { 9419 /* IRQ routed to monitor mode */ 9420 new_mode = ARM_CPU_MODE_MON; 9421 mask |= CPSR_F; 9422 } 9423 break; 9424 case EXCP_FIQ: 9425 new_mode = ARM_CPU_MODE_FIQ; 9426 addr = 0x1c; 9427 /* Disable FIQ, IRQ and imprecise data aborts. */ 9428 mask = CPSR_A | CPSR_I | CPSR_F; 9429 if (env->cp15.scr_el3 & SCR_FIQ) { 9430 /* FIQ routed to monitor mode */ 9431 new_mode = ARM_CPU_MODE_MON; 9432 } 9433 offset = 4; 9434 break; 9435 case EXCP_VIRQ: 9436 new_mode = ARM_CPU_MODE_IRQ; 9437 addr = 0x18; 9438 /* Disable IRQ and imprecise data aborts. */ 9439 mask = CPSR_A | CPSR_I; 9440 offset = 4; 9441 break; 9442 case EXCP_VFIQ: 9443 new_mode = ARM_CPU_MODE_FIQ; 9444 addr = 0x1c; 9445 /* Disable FIQ, IRQ and imprecise data aborts. */ 9446 mask = CPSR_A | CPSR_I | CPSR_F; 9447 offset = 4; 9448 break; 9449 case EXCP_SMC: 9450 new_mode = ARM_CPU_MODE_MON; 9451 addr = 0x08; 9452 mask = CPSR_A | CPSR_I | CPSR_F; 9453 offset = 0; 9454 break; 9455 default: 9456 cpu_abort(cs, "Unhandled exception 0x%x\n", cs->exception_index); 9457 return; /* Never happens. Keep compiler happy. */ 9458 } 9459 9460 if (new_mode == ARM_CPU_MODE_MON) { 9461 addr += env->cp15.mvbar; 9462 } else if (A32_BANKED_CURRENT_REG_GET(env, sctlr) & SCTLR_V) { 9463 /* High vectors. When enabled, base address cannot be remapped. */ 9464 addr += 0xffff0000; 9465 } else { 9466 /* ARM v7 architectures provide a vector base address register to remap 9467 * the interrupt vector table. 9468 * This register is only followed in non-monitor mode, and is banked. 9469 * Note: only bits 31:5 are valid. 9470 */ 9471 addr += A32_BANKED_CURRENT_REG_GET(env, vbar); 9472 } 9473 9474 if ((env->uncached_cpsr & CPSR_M) == ARM_CPU_MODE_MON) { 9475 env->cp15.scr_el3 &= ~SCR_NS; 9476 } 9477 9478 take_aarch32_exception(env, new_mode, mask, offset, addr); 9479 } 9480 9481 /* Handle exception entry to a target EL which is using AArch64 */ 9482 static void arm_cpu_do_interrupt_aarch64(CPUState *cs) 9483 { 9484 ARMCPU *cpu = ARM_CPU(cs); 9485 CPUARMState *env = &cpu->env; 9486 unsigned int new_el = env->exception.target_el; 9487 target_ulong addr = env->cp15.vbar_el[new_el]; 9488 unsigned int new_mode = aarch64_pstate_mode(new_el, true); 9489 unsigned int cur_el = arm_current_el(env); 9490 9491 /* 9492 * Note that new_el can never be 0. If cur_el is 0, then 9493 * el0_a64 is is_a64(), else el0_a64 is ignored. 9494 */ 9495 aarch64_sve_change_el(env, cur_el, new_el, is_a64(env)); 9496 9497 if (cur_el < new_el) { 9498 /* Entry vector offset depends on whether the implemented EL 9499 * immediately lower than the target level is using AArch32 or AArch64 9500 */ 9501 bool is_aa64; 9502 9503 switch (new_el) { 9504 case 3: 9505 is_aa64 = (env->cp15.scr_el3 & SCR_RW) != 0; 9506 break; 9507 case 2: 9508 is_aa64 = (env->cp15.hcr_el2 & HCR_RW) != 0; 9509 break; 9510 case 1: 9511 is_aa64 = is_a64(env); 9512 break; 9513 default: 9514 g_assert_not_reached(); 9515 } 9516 9517 if (is_aa64) { 9518 addr += 0x400; 9519 } else { 9520 addr += 0x600; 9521 } 9522 } else if (pstate_read(env) & PSTATE_SP) { 9523 addr += 0x200; 9524 } 9525 9526 switch (cs->exception_index) { 9527 case EXCP_PREFETCH_ABORT: 9528 case EXCP_DATA_ABORT: 9529 env->cp15.far_el[new_el] = env->exception.vaddress; 9530 qemu_log_mask(CPU_LOG_INT, "...with FAR 0x%" PRIx64 "\n", 9531 env->cp15.far_el[new_el]); 9532 /* fall through */ 9533 case EXCP_BKPT: 9534 case EXCP_UDEF: 9535 case EXCP_SWI: 9536 case EXCP_HVC: 9537 case EXCP_HYP_TRAP: 9538 case EXCP_SMC: 9539 if (syn_get_ec(env->exception.syndrome) == EC_ADVSIMDFPACCESSTRAP) { 9540 /* 9541 * QEMU internal FP/SIMD syndromes from AArch32 include the 9542 * TA and coproc fields which are only exposed if the exception 9543 * is taken to AArch32 Hyp mode. Mask them out to get a valid 9544 * AArch64 format syndrome. 9545 */ 9546 env->exception.syndrome &= ~MAKE_64BIT_MASK(0, 20); 9547 } 9548 env->cp15.esr_el[new_el] = env->exception.syndrome; 9549 break; 9550 case EXCP_IRQ: 9551 case EXCP_VIRQ: 9552 addr += 0x80; 9553 break; 9554 case EXCP_FIQ: 9555 case EXCP_VFIQ: 9556 addr += 0x100; 9557 break; 9558 case EXCP_SEMIHOST: 9559 qemu_log_mask(CPU_LOG_INT, 9560 "...handling as semihosting call 0x%" PRIx64 "\n", 9561 env->xregs[0]); 9562 env->xregs[0] = do_arm_semihosting(env); 9563 return; 9564 default: 9565 cpu_abort(cs, "Unhandled exception 0x%x\n", cs->exception_index); 9566 } 9567 9568 if (is_a64(env)) { 9569 env->banked_spsr[aarch64_banked_spsr_index(new_el)] = pstate_read(env); 9570 aarch64_save_sp(env, arm_current_el(env)); 9571 env->elr_el[new_el] = env->pc; 9572 } else { 9573 env->banked_spsr[aarch64_banked_spsr_index(new_el)] = cpsr_read(env); 9574 env->elr_el[new_el] = env->regs[15]; 9575 9576 aarch64_sync_32_to_64(env); 9577 9578 env->condexec_bits = 0; 9579 } 9580 qemu_log_mask(CPU_LOG_INT, "...with ELR 0x%" PRIx64 "\n", 9581 env->elr_el[new_el]); 9582 9583 pstate_write(env, PSTATE_DAIF | new_mode); 9584 env->aarch64 = 1; 9585 aarch64_restore_sp(env, new_el); 9586 9587 env->pc = addr; 9588 9589 qemu_log_mask(CPU_LOG_INT, "...to EL%d PC 0x%" PRIx64 " PSTATE 0x%x\n", 9590 new_el, env->pc, pstate_read(env)); 9591 } 9592 9593 static inline bool check_for_semihosting(CPUState *cs) 9594 { 9595 /* Check whether this exception is a semihosting call; if so 9596 * then handle it and return true; otherwise return false. 9597 */ 9598 ARMCPU *cpu = ARM_CPU(cs); 9599 CPUARMState *env = &cpu->env; 9600 9601 if (is_a64(env)) { 9602 if (cs->exception_index == EXCP_SEMIHOST) { 9603 /* This is always the 64-bit semihosting exception. 9604 * The "is this usermode" and "is semihosting enabled" 9605 * checks have been done at translate time. 9606 */ 9607 qemu_log_mask(CPU_LOG_INT, 9608 "...handling as semihosting call 0x%" PRIx64 "\n", 9609 env->xregs[0]); 9610 env->xregs[0] = do_arm_semihosting(env); 9611 return true; 9612 } 9613 return false; 9614 } else { 9615 uint32_t imm; 9616 9617 /* Only intercept calls from privileged modes, to provide some 9618 * semblance of security. 9619 */ 9620 if (cs->exception_index != EXCP_SEMIHOST && 9621 (!semihosting_enabled() || 9622 ((env->uncached_cpsr & CPSR_M) == ARM_CPU_MODE_USR))) { 9623 return false; 9624 } 9625 9626 switch (cs->exception_index) { 9627 case EXCP_SEMIHOST: 9628 /* This is always a semihosting call; the "is this usermode" 9629 * and "is semihosting enabled" checks have been done at 9630 * translate time. 9631 */ 9632 break; 9633 case EXCP_SWI: 9634 /* Check for semihosting interrupt. */ 9635 if (env->thumb) { 9636 imm = arm_lduw_code(env, env->regs[15] - 2, arm_sctlr_b(env)) 9637 & 0xff; 9638 if (imm == 0xab) { 9639 break; 9640 } 9641 } else { 9642 imm = arm_ldl_code(env, env->regs[15] - 4, arm_sctlr_b(env)) 9643 & 0xffffff; 9644 if (imm == 0x123456) { 9645 break; 9646 } 9647 } 9648 return false; 9649 case EXCP_BKPT: 9650 /* See if this is a semihosting syscall. */ 9651 if (env->thumb) { 9652 imm = arm_lduw_code(env, env->regs[15], arm_sctlr_b(env)) 9653 & 0xff; 9654 if (imm == 0xab) { 9655 env->regs[15] += 2; 9656 break; 9657 } 9658 } 9659 return false; 9660 default: 9661 return false; 9662 } 9663 9664 qemu_log_mask(CPU_LOG_INT, 9665 "...handling as semihosting call 0x%x\n", 9666 env->regs[0]); 9667 env->regs[0] = do_arm_semihosting(env); 9668 return true; 9669 } 9670 } 9671 9672 /* Handle a CPU exception for A and R profile CPUs. 9673 * Do any appropriate logging, handle PSCI calls, and then hand off 9674 * to the AArch64-entry or AArch32-entry function depending on the 9675 * target exception level's register width. 9676 */ 9677 void arm_cpu_do_interrupt(CPUState *cs) 9678 { 9679 ARMCPU *cpu = ARM_CPU(cs); 9680 CPUARMState *env = &cpu->env; 9681 unsigned int new_el = env->exception.target_el; 9682 9683 assert(!arm_feature(env, ARM_FEATURE_M)); 9684 9685 arm_log_exception(cs->exception_index); 9686 qemu_log_mask(CPU_LOG_INT, "...from EL%d to EL%d\n", arm_current_el(env), 9687 new_el); 9688 if (qemu_loglevel_mask(CPU_LOG_INT) 9689 && !excp_is_internal(cs->exception_index)) { 9690 qemu_log_mask(CPU_LOG_INT, "...with ESR 0x%x/0x%" PRIx32 "\n", 9691 syn_get_ec(env->exception.syndrome), 9692 env->exception.syndrome); 9693 } 9694 9695 if (arm_is_psci_call(cpu, cs->exception_index)) { 9696 arm_handle_psci_call(cpu); 9697 qemu_log_mask(CPU_LOG_INT, "...handled as PSCI call\n"); 9698 return; 9699 } 9700 9701 /* Semihosting semantics depend on the register width of the 9702 * code that caused the exception, not the target exception level, 9703 * so must be handled here. 9704 */ 9705 if (check_for_semihosting(cs)) { 9706 return; 9707 } 9708 9709 /* Hooks may change global state so BQL should be held, also the 9710 * BQL needs to be held for any modification of 9711 * cs->interrupt_request. 9712 */ 9713 g_assert(qemu_mutex_iothread_locked()); 9714 9715 arm_call_pre_el_change_hook(cpu); 9716 9717 assert(!excp_is_internal(cs->exception_index)); 9718 if (arm_el_is_aa64(env, new_el)) { 9719 arm_cpu_do_interrupt_aarch64(cs); 9720 } else { 9721 arm_cpu_do_interrupt_aarch32(cs); 9722 } 9723 9724 arm_call_el_change_hook(cpu); 9725 9726 if (!kvm_enabled()) { 9727 cs->interrupt_request |= CPU_INTERRUPT_EXITTB; 9728 } 9729 } 9730 #endif /* !CONFIG_USER_ONLY */ 9731 9732 /* Return the exception level which controls this address translation regime */ 9733 static inline uint32_t regime_el(CPUARMState *env, ARMMMUIdx mmu_idx) 9734 { 9735 switch (mmu_idx) { 9736 case ARMMMUIdx_S2NS: 9737 case ARMMMUIdx_S1E2: 9738 return 2; 9739 case ARMMMUIdx_S1E3: 9740 return 3; 9741 case ARMMMUIdx_S1SE0: 9742 return arm_el_is_aa64(env, 3) ? 1 : 3; 9743 case ARMMMUIdx_S1SE1: 9744 case ARMMMUIdx_S1NSE0: 9745 case ARMMMUIdx_S1NSE1: 9746 case ARMMMUIdx_MPrivNegPri: 9747 case ARMMMUIdx_MUserNegPri: 9748 case ARMMMUIdx_MPriv: 9749 case ARMMMUIdx_MUser: 9750 case ARMMMUIdx_MSPrivNegPri: 9751 case ARMMMUIdx_MSUserNegPri: 9752 case ARMMMUIdx_MSPriv: 9753 case ARMMMUIdx_MSUser: 9754 return 1; 9755 default: 9756 g_assert_not_reached(); 9757 } 9758 } 9759 9760 #ifndef CONFIG_USER_ONLY 9761 9762 /* Return the SCTLR value which controls this address translation regime */ 9763 static inline uint32_t regime_sctlr(CPUARMState *env, ARMMMUIdx mmu_idx) 9764 { 9765 return env->cp15.sctlr_el[regime_el(env, mmu_idx)]; 9766 } 9767 9768 /* Return true if the specified stage of address translation is disabled */ 9769 static inline bool regime_translation_disabled(CPUARMState *env, 9770 ARMMMUIdx mmu_idx) 9771 { 9772 if (arm_feature(env, ARM_FEATURE_M)) { 9773 switch (env->v7m.mpu_ctrl[regime_is_secure(env, mmu_idx)] & 9774 (R_V7M_MPU_CTRL_ENABLE_MASK | R_V7M_MPU_CTRL_HFNMIENA_MASK)) { 9775 case R_V7M_MPU_CTRL_ENABLE_MASK: 9776 /* Enabled, but not for HardFault and NMI */ 9777 return mmu_idx & ARM_MMU_IDX_M_NEGPRI; 9778 case R_V7M_MPU_CTRL_ENABLE_MASK | R_V7M_MPU_CTRL_HFNMIENA_MASK: 9779 /* Enabled for all cases */ 9780 return false; 9781 case 0: 9782 default: 9783 /* HFNMIENA set and ENABLE clear is UNPREDICTABLE, but 9784 * we warned about that in armv7m_nvic.c when the guest set it. 9785 */ 9786 return true; 9787 } 9788 } 9789 9790 if (mmu_idx == ARMMMUIdx_S2NS) { 9791 /* HCR.DC means HCR.VM behaves as 1 */ 9792 return (env->cp15.hcr_el2 & (HCR_DC | HCR_VM)) == 0; 9793 } 9794 9795 if (env->cp15.hcr_el2 & HCR_TGE) { 9796 /* TGE means that NS EL0/1 act as if SCTLR_EL1.M is zero */ 9797 if (!regime_is_secure(env, mmu_idx) && regime_el(env, mmu_idx) == 1) { 9798 return true; 9799 } 9800 } 9801 9802 if ((env->cp15.hcr_el2 & HCR_DC) && 9803 (mmu_idx == ARMMMUIdx_S1NSE0 || mmu_idx == ARMMMUIdx_S1NSE1)) { 9804 /* HCR.DC means SCTLR_EL1.M behaves as 0 */ 9805 return true; 9806 } 9807 9808 return (regime_sctlr(env, mmu_idx) & SCTLR_M) == 0; 9809 } 9810 9811 static inline bool regime_translation_big_endian(CPUARMState *env, 9812 ARMMMUIdx mmu_idx) 9813 { 9814 return (regime_sctlr(env, mmu_idx) & SCTLR_EE) != 0; 9815 } 9816 9817 /* Return the TTBR associated with this translation regime */ 9818 static inline uint64_t regime_ttbr(CPUARMState *env, ARMMMUIdx mmu_idx, 9819 int ttbrn) 9820 { 9821 if (mmu_idx == ARMMMUIdx_S2NS) { 9822 return env->cp15.vttbr_el2; 9823 } 9824 if (ttbrn == 0) { 9825 return env->cp15.ttbr0_el[regime_el(env, mmu_idx)]; 9826 } else { 9827 return env->cp15.ttbr1_el[regime_el(env, mmu_idx)]; 9828 } 9829 } 9830 9831 #endif /* !CONFIG_USER_ONLY */ 9832 9833 /* Return the TCR controlling this translation regime */ 9834 static inline TCR *regime_tcr(CPUARMState *env, ARMMMUIdx mmu_idx) 9835 { 9836 if (mmu_idx == ARMMMUIdx_S2NS) { 9837 return &env->cp15.vtcr_el2; 9838 } 9839 return &env->cp15.tcr_el[regime_el(env, mmu_idx)]; 9840 } 9841 9842 /* Convert a possible stage1+2 MMU index into the appropriate 9843 * stage 1 MMU index 9844 */ 9845 static inline ARMMMUIdx stage_1_mmu_idx(ARMMMUIdx mmu_idx) 9846 { 9847 if (mmu_idx == ARMMMUIdx_S12NSE0 || mmu_idx == ARMMMUIdx_S12NSE1) { 9848 mmu_idx += (ARMMMUIdx_S1NSE0 - ARMMMUIdx_S12NSE0); 9849 } 9850 return mmu_idx; 9851 } 9852 9853 /* Return true if the translation regime is using LPAE format page tables */ 9854 static inline bool regime_using_lpae_format(CPUARMState *env, 9855 ARMMMUIdx mmu_idx) 9856 { 9857 int el = regime_el(env, mmu_idx); 9858 if (el == 2 || arm_el_is_aa64(env, el)) { 9859 return true; 9860 } 9861 if (arm_feature(env, ARM_FEATURE_LPAE) 9862 && (regime_tcr(env, mmu_idx)->raw_tcr & TTBCR_EAE)) { 9863 return true; 9864 } 9865 return false; 9866 } 9867 9868 /* Returns true if the stage 1 translation regime is using LPAE format page 9869 * tables. Used when raising alignment exceptions, whose FSR changes depending 9870 * on whether the long or short descriptor format is in use. */ 9871 bool arm_s1_regime_using_lpae_format(CPUARMState *env, ARMMMUIdx mmu_idx) 9872 { 9873 mmu_idx = stage_1_mmu_idx(mmu_idx); 9874 9875 return regime_using_lpae_format(env, mmu_idx); 9876 } 9877 9878 #ifndef CONFIG_USER_ONLY 9879 static inline bool regime_is_user(CPUARMState *env, ARMMMUIdx mmu_idx) 9880 { 9881 switch (mmu_idx) { 9882 case ARMMMUIdx_S1SE0: 9883 case ARMMMUIdx_S1NSE0: 9884 case ARMMMUIdx_MUser: 9885 case ARMMMUIdx_MSUser: 9886 case ARMMMUIdx_MUserNegPri: 9887 case ARMMMUIdx_MSUserNegPri: 9888 return true; 9889 default: 9890 return false; 9891 case ARMMMUIdx_S12NSE0: 9892 case ARMMMUIdx_S12NSE1: 9893 g_assert_not_reached(); 9894 } 9895 } 9896 9897 /* Translate section/page access permissions to page 9898 * R/W protection flags 9899 * 9900 * @env: CPUARMState 9901 * @mmu_idx: MMU index indicating required translation regime 9902 * @ap: The 3-bit access permissions (AP[2:0]) 9903 * @domain_prot: The 2-bit domain access permissions 9904 */ 9905 static inline int ap_to_rw_prot(CPUARMState *env, ARMMMUIdx mmu_idx, 9906 int ap, int domain_prot) 9907 { 9908 bool is_user = regime_is_user(env, mmu_idx); 9909 9910 if (domain_prot == 3) { 9911 return PAGE_READ | PAGE_WRITE; 9912 } 9913 9914 switch (ap) { 9915 case 0: 9916 if (arm_feature(env, ARM_FEATURE_V7)) { 9917 return 0; 9918 } 9919 switch (regime_sctlr(env, mmu_idx) & (SCTLR_S | SCTLR_R)) { 9920 case SCTLR_S: 9921 return is_user ? 0 : PAGE_READ; 9922 case SCTLR_R: 9923 return PAGE_READ; 9924 default: 9925 return 0; 9926 } 9927 case 1: 9928 return is_user ? 0 : PAGE_READ | PAGE_WRITE; 9929 case 2: 9930 if (is_user) { 9931 return PAGE_READ; 9932 } else { 9933 return PAGE_READ | PAGE_WRITE; 9934 } 9935 case 3: 9936 return PAGE_READ | PAGE_WRITE; 9937 case 4: /* Reserved. */ 9938 return 0; 9939 case 5: 9940 return is_user ? 0 : PAGE_READ; 9941 case 6: 9942 return PAGE_READ; 9943 case 7: 9944 if (!arm_feature(env, ARM_FEATURE_V6K)) { 9945 return 0; 9946 } 9947 return PAGE_READ; 9948 default: 9949 g_assert_not_reached(); 9950 } 9951 } 9952 9953 /* Translate section/page access permissions to page 9954 * R/W protection flags. 9955 * 9956 * @ap: The 2-bit simple AP (AP[2:1]) 9957 * @is_user: TRUE if accessing from PL0 9958 */ 9959 static inline int simple_ap_to_rw_prot_is_user(int ap, bool is_user) 9960 { 9961 switch (ap) { 9962 case 0: 9963 return is_user ? 0 : PAGE_READ | PAGE_WRITE; 9964 case 1: 9965 return PAGE_READ | PAGE_WRITE; 9966 case 2: 9967 return is_user ? 0 : PAGE_READ; 9968 case 3: 9969 return PAGE_READ; 9970 default: 9971 g_assert_not_reached(); 9972 } 9973 } 9974 9975 static inline int 9976 simple_ap_to_rw_prot(CPUARMState *env, ARMMMUIdx mmu_idx, int ap) 9977 { 9978 return simple_ap_to_rw_prot_is_user(ap, regime_is_user(env, mmu_idx)); 9979 } 9980 9981 /* Translate S2 section/page access permissions to protection flags 9982 * 9983 * @env: CPUARMState 9984 * @s2ap: The 2-bit stage2 access permissions (S2AP) 9985 * @xn: XN (execute-never) bit 9986 */ 9987 static int get_S2prot(CPUARMState *env, int s2ap, int xn) 9988 { 9989 int prot = 0; 9990 9991 if (s2ap & 1) { 9992 prot |= PAGE_READ; 9993 } 9994 if (s2ap & 2) { 9995 prot |= PAGE_WRITE; 9996 } 9997 if (!xn) { 9998 if (arm_el_is_aa64(env, 2) || prot & PAGE_READ) { 9999 prot |= PAGE_EXEC; 10000 } 10001 } 10002 return prot; 10003 } 10004 10005 /* Translate section/page access permissions to protection flags 10006 * 10007 * @env: CPUARMState 10008 * @mmu_idx: MMU index indicating required translation regime 10009 * @is_aa64: TRUE if AArch64 10010 * @ap: The 2-bit simple AP (AP[2:1]) 10011 * @ns: NS (non-secure) bit 10012 * @xn: XN (execute-never) bit 10013 * @pxn: PXN (privileged execute-never) bit 10014 */ 10015 static int get_S1prot(CPUARMState *env, ARMMMUIdx mmu_idx, bool is_aa64, 10016 int ap, int ns, int xn, int pxn) 10017 { 10018 bool is_user = regime_is_user(env, mmu_idx); 10019 int prot_rw, user_rw; 10020 bool have_wxn; 10021 int wxn = 0; 10022 10023 assert(mmu_idx != ARMMMUIdx_S2NS); 10024 10025 user_rw = simple_ap_to_rw_prot_is_user(ap, true); 10026 if (is_user) { 10027 prot_rw = user_rw; 10028 } else { 10029 prot_rw = simple_ap_to_rw_prot_is_user(ap, false); 10030 } 10031 10032 if (ns && arm_is_secure(env) && (env->cp15.scr_el3 & SCR_SIF)) { 10033 return prot_rw; 10034 } 10035 10036 /* TODO have_wxn should be replaced with 10037 * ARM_FEATURE_V8 || (ARM_FEATURE_V7 && ARM_FEATURE_EL2) 10038 * when ARM_FEATURE_EL2 starts getting set. For now we assume all LPAE 10039 * compatible processors have EL2, which is required for [U]WXN. 10040 */ 10041 have_wxn = arm_feature(env, ARM_FEATURE_LPAE); 10042 10043 if (have_wxn) { 10044 wxn = regime_sctlr(env, mmu_idx) & SCTLR_WXN; 10045 } 10046 10047 if (is_aa64) { 10048 switch (regime_el(env, mmu_idx)) { 10049 case 1: 10050 if (!is_user) { 10051 xn = pxn || (user_rw & PAGE_WRITE); 10052 } 10053 break; 10054 case 2: 10055 case 3: 10056 break; 10057 } 10058 } else if (arm_feature(env, ARM_FEATURE_V7)) { 10059 switch (regime_el(env, mmu_idx)) { 10060 case 1: 10061 case 3: 10062 if (is_user) { 10063 xn = xn || !(user_rw & PAGE_READ); 10064 } else { 10065 int uwxn = 0; 10066 if (have_wxn) { 10067 uwxn = regime_sctlr(env, mmu_idx) & SCTLR_UWXN; 10068 } 10069 xn = xn || !(prot_rw & PAGE_READ) || pxn || 10070 (uwxn && (user_rw & PAGE_WRITE)); 10071 } 10072 break; 10073 case 2: 10074 break; 10075 } 10076 } else { 10077 xn = wxn = 0; 10078 } 10079 10080 if (xn || (wxn && (prot_rw & PAGE_WRITE))) { 10081 return prot_rw; 10082 } 10083 return prot_rw | PAGE_EXEC; 10084 } 10085 10086 static bool get_level1_table_address(CPUARMState *env, ARMMMUIdx mmu_idx, 10087 uint32_t *table, uint32_t address) 10088 { 10089 /* Note that we can only get here for an AArch32 PL0/PL1 lookup */ 10090 TCR *tcr = regime_tcr(env, mmu_idx); 10091 10092 if (address & tcr->mask) { 10093 if (tcr->raw_tcr & TTBCR_PD1) { 10094 /* Translation table walk disabled for TTBR1 */ 10095 return false; 10096 } 10097 *table = regime_ttbr(env, mmu_idx, 1) & 0xffffc000; 10098 } else { 10099 if (tcr->raw_tcr & TTBCR_PD0) { 10100 /* Translation table walk disabled for TTBR0 */ 10101 return false; 10102 } 10103 *table = regime_ttbr(env, mmu_idx, 0) & tcr->base_mask; 10104 } 10105 *table |= (address >> 18) & 0x3ffc; 10106 return true; 10107 } 10108 10109 /* Translate a S1 pagetable walk through S2 if needed. */ 10110 static hwaddr S1_ptw_translate(CPUARMState *env, ARMMMUIdx mmu_idx, 10111 hwaddr addr, MemTxAttrs txattrs, 10112 ARMMMUFaultInfo *fi) 10113 { 10114 if ((mmu_idx == ARMMMUIdx_S1NSE0 || mmu_idx == ARMMMUIdx_S1NSE1) && 10115 !regime_translation_disabled(env, ARMMMUIdx_S2NS)) { 10116 target_ulong s2size; 10117 hwaddr s2pa; 10118 int s2prot; 10119 int ret; 10120 ARMCacheAttrs cacheattrs = {}; 10121 ARMCacheAttrs *pcacheattrs = NULL; 10122 10123 if (env->cp15.hcr_el2 & HCR_PTW) { 10124 /* 10125 * PTW means we must fault if this S1 walk touches S2 Device 10126 * memory; otherwise we don't care about the attributes and can 10127 * save the S2 translation the effort of computing them. 10128 */ 10129 pcacheattrs = &cacheattrs; 10130 } 10131 10132 ret = get_phys_addr_lpae(env, addr, 0, ARMMMUIdx_S2NS, &s2pa, 10133 &txattrs, &s2prot, &s2size, fi, pcacheattrs); 10134 if (ret) { 10135 assert(fi->type != ARMFault_None); 10136 fi->s2addr = addr; 10137 fi->stage2 = true; 10138 fi->s1ptw = true; 10139 return ~0; 10140 } 10141 if (pcacheattrs && (pcacheattrs->attrs & 0xf0) == 0) { 10142 /* Access was to Device memory: generate Permission fault */ 10143 fi->type = ARMFault_Permission; 10144 fi->s2addr = addr; 10145 fi->stage2 = true; 10146 fi->s1ptw = true; 10147 return ~0; 10148 } 10149 addr = s2pa; 10150 } 10151 return addr; 10152 } 10153 10154 /* All loads done in the course of a page table walk go through here. */ 10155 static uint32_t arm_ldl_ptw(CPUState *cs, hwaddr addr, bool is_secure, 10156 ARMMMUIdx mmu_idx, ARMMMUFaultInfo *fi) 10157 { 10158 ARMCPU *cpu = ARM_CPU(cs); 10159 CPUARMState *env = &cpu->env; 10160 MemTxAttrs attrs = {}; 10161 MemTxResult result = MEMTX_OK; 10162 AddressSpace *as; 10163 uint32_t data; 10164 10165 attrs.secure = is_secure; 10166 as = arm_addressspace(cs, attrs); 10167 addr = S1_ptw_translate(env, mmu_idx, addr, attrs, fi); 10168 if (fi->s1ptw) { 10169 return 0; 10170 } 10171 if (regime_translation_big_endian(env, mmu_idx)) { 10172 data = address_space_ldl_be(as, addr, attrs, &result); 10173 } else { 10174 data = address_space_ldl_le(as, addr, attrs, &result); 10175 } 10176 if (result == MEMTX_OK) { 10177 return data; 10178 } 10179 fi->type = ARMFault_SyncExternalOnWalk; 10180 fi->ea = arm_extabort_type(result); 10181 return 0; 10182 } 10183 10184 static uint64_t arm_ldq_ptw(CPUState *cs, hwaddr addr, bool is_secure, 10185 ARMMMUIdx mmu_idx, ARMMMUFaultInfo *fi) 10186 { 10187 ARMCPU *cpu = ARM_CPU(cs); 10188 CPUARMState *env = &cpu->env; 10189 MemTxAttrs attrs = {}; 10190 MemTxResult result = MEMTX_OK; 10191 AddressSpace *as; 10192 uint64_t data; 10193 10194 attrs.secure = is_secure; 10195 as = arm_addressspace(cs, attrs); 10196 addr = S1_ptw_translate(env, mmu_idx, addr, attrs, fi); 10197 if (fi->s1ptw) { 10198 return 0; 10199 } 10200 if (regime_translation_big_endian(env, mmu_idx)) { 10201 data = address_space_ldq_be(as, addr, attrs, &result); 10202 } else { 10203 data = address_space_ldq_le(as, addr, attrs, &result); 10204 } 10205 if (result == MEMTX_OK) { 10206 return data; 10207 } 10208 fi->type = ARMFault_SyncExternalOnWalk; 10209 fi->ea = arm_extabort_type(result); 10210 return 0; 10211 } 10212 10213 static bool get_phys_addr_v5(CPUARMState *env, uint32_t address, 10214 MMUAccessType access_type, ARMMMUIdx mmu_idx, 10215 hwaddr *phys_ptr, int *prot, 10216 target_ulong *page_size, 10217 ARMMMUFaultInfo *fi) 10218 { 10219 CPUState *cs = CPU(arm_env_get_cpu(env)); 10220 int level = 1; 10221 uint32_t table; 10222 uint32_t desc; 10223 int type; 10224 int ap; 10225 int domain = 0; 10226 int domain_prot; 10227 hwaddr phys_addr; 10228 uint32_t dacr; 10229 10230 /* Pagetable walk. */ 10231 /* Lookup l1 descriptor. */ 10232 if (!get_level1_table_address(env, mmu_idx, &table, address)) { 10233 /* Section translation fault if page walk is disabled by PD0 or PD1 */ 10234 fi->type = ARMFault_Translation; 10235 goto do_fault; 10236 } 10237 desc = arm_ldl_ptw(cs, table, regime_is_secure(env, mmu_idx), 10238 mmu_idx, fi); 10239 if (fi->type != ARMFault_None) { 10240 goto do_fault; 10241 } 10242 type = (desc & 3); 10243 domain = (desc >> 5) & 0x0f; 10244 if (regime_el(env, mmu_idx) == 1) { 10245 dacr = env->cp15.dacr_ns; 10246 } else { 10247 dacr = env->cp15.dacr_s; 10248 } 10249 domain_prot = (dacr >> (domain * 2)) & 3; 10250 if (type == 0) { 10251 /* Section translation fault. */ 10252 fi->type = ARMFault_Translation; 10253 goto do_fault; 10254 } 10255 if (type != 2) { 10256 level = 2; 10257 } 10258 if (domain_prot == 0 || domain_prot == 2) { 10259 fi->type = ARMFault_Domain; 10260 goto do_fault; 10261 } 10262 if (type == 2) { 10263 /* 1Mb section. */ 10264 phys_addr = (desc & 0xfff00000) | (address & 0x000fffff); 10265 ap = (desc >> 10) & 3; 10266 *page_size = 1024 * 1024; 10267 } else { 10268 /* Lookup l2 entry. */ 10269 if (type == 1) { 10270 /* Coarse pagetable. */ 10271 table = (desc & 0xfffffc00) | ((address >> 10) & 0x3fc); 10272 } else { 10273 /* Fine pagetable. */ 10274 table = (desc & 0xfffff000) | ((address >> 8) & 0xffc); 10275 } 10276 desc = arm_ldl_ptw(cs, table, regime_is_secure(env, mmu_idx), 10277 mmu_idx, fi); 10278 if (fi->type != ARMFault_None) { 10279 goto do_fault; 10280 } 10281 switch (desc & 3) { 10282 case 0: /* Page translation fault. */ 10283 fi->type = ARMFault_Translation; 10284 goto do_fault; 10285 case 1: /* 64k page. */ 10286 phys_addr = (desc & 0xffff0000) | (address & 0xffff); 10287 ap = (desc >> (4 + ((address >> 13) & 6))) & 3; 10288 *page_size = 0x10000; 10289 break; 10290 case 2: /* 4k page. */ 10291 phys_addr = (desc & 0xfffff000) | (address & 0xfff); 10292 ap = (desc >> (4 + ((address >> 9) & 6))) & 3; 10293 *page_size = 0x1000; 10294 break; 10295 case 3: /* 1k page, or ARMv6/XScale "extended small (4k) page" */ 10296 if (type == 1) { 10297 /* ARMv6/XScale extended small page format */ 10298 if (arm_feature(env, ARM_FEATURE_XSCALE) 10299 || arm_feature(env, ARM_FEATURE_V6)) { 10300 phys_addr = (desc & 0xfffff000) | (address & 0xfff); 10301 *page_size = 0x1000; 10302 } else { 10303 /* UNPREDICTABLE in ARMv5; we choose to take a 10304 * page translation fault. 10305 */ 10306 fi->type = ARMFault_Translation; 10307 goto do_fault; 10308 } 10309 } else { 10310 phys_addr = (desc & 0xfffffc00) | (address & 0x3ff); 10311 *page_size = 0x400; 10312 } 10313 ap = (desc >> 4) & 3; 10314 break; 10315 default: 10316 /* Never happens, but compiler isn't smart enough to tell. */ 10317 abort(); 10318 } 10319 } 10320 *prot = ap_to_rw_prot(env, mmu_idx, ap, domain_prot); 10321 *prot |= *prot ? PAGE_EXEC : 0; 10322 if (!(*prot & (1 << access_type))) { 10323 /* Access permission fault. */ 10324 fi->type = ARMFault_Permission; 10325 goto do_fault; 10326 } 10327 *phys_ptr = phys_addr; 10328 return false; 10329 do_fault: 10330 fi->domain = domain; 10331 fi->level = level; 10332 return true; 10333 } 10334 10335 static bool get_phys_addr_v6(CPUARMState *env, uint32_t address, 10336 MMUAccessType access_type, ARMMMUIdx mmu_idx, 10337 hwaddr *phys_ptr, MemTxAttrs *attrs, int *prot, 10338 target_ulong *page_size, ARMMMUFaultInfo *fi) 10339 { 10340 CPUState *cs = CPU(arm_env_get_cpu(env)); 10341 int level = 1; 10342 uint32_t table; 10343 uint32_t desc; 10344 uint32_t xn; 10345 uint32_t pxn = 0; 10346 int type; 10347 int ap; 10348 int domain = 0; 10349 int domain_prot; 10350 hwaddr phys_addr; 10351 uint32_t dacr; 10352 bool ns; 10353 10354 /* Pagetable walk. */ 10355 /* Lookup l1 descriptor. */ 10356 if (!get_level1_table_address(env, mmu_idx, &table, address)) { 10357 /* Section translation fault if page walk is disabled by PD0 or PD1 */ 10358 fi->type = ARMFault_Translation; 10359 goto do_fault; 10360 } 10361 desc = arm_ldl_ptw(cs, table, regime_is_secure(env, mmu_idx), 10362 mmu_idx, fi); 10363 if (fi->type != ARMFault_None) { 10364 goto do_fault; 10365 } 10366 type = (desc & 3); 10367 if (type == 0 || (type == 3 && !arm_feature(env, ARM_FEATURE_PXN))) { 10368 /* Section translation fault, or attempt to use the encoding 10369 * which is Reserved on implementations without PXN. 10370 */ 10371 fi->type = ARMFault_Translation; 10372 goto do_fault; 10373 } 10374 if ((type == 1) || !(desc & (1 << 18))) { 10375 /* Page or Section. */ 10376 domain = (desc >> 5) & 0x0f; 10377 } 10378 if (regime_el(env, mmu_idx) == 1) { 10379 dacr = env->cp15.dacr_ns; 10380 } else { 10381 dacr = env->cp15.dacr_s; 10382 } 10383 if (type == 1) { 10384 level = 2; 10385 } 10386 domain_prot = (dacr >> (domain * 2)) & 3; 10387 if (domain_prot == 0 || domain_prot == 2) { 10388 /* Section or Page domain fault */ 10389 fi->type = ARMFault_Domain; 10390 goto do_fault; 10391 } 10392 if (type != 1) { 10393 if (desc & (1 << 18)) { 10394 /* Supersection. */ 10395 phys_addr = (desc & 0xff000000) | (address & 0x00ffffff); 10396 phys_addr |= (uint64_t)extract32(desc, 20, 4) << 32; 10397 phys_addr |= (uint64_t)extract32(desc, 5, 4) << 36; 10398 *page_size = 0x1000000; 10399 } else { 10400 /* Section. */ 10401 phys_addr = (desc & 0xfff00000) | (address & 0x000fffff); 10402 *page_size = 0x100000; 10403 } 10404 ap = ((desc >> 10) & 3) | ((desc >> 13) & 4); 10405 xn = desc & (1 << 4); 10406 pxn = desc & 1; 10407 ns = extract32(desc, 19, 1); 10408 } else { 10409 if (arm_feature(env, ARM_FEATURE_PXN)) { 10410 pxn = (desc >> 2) & 1; 10411 } 10412 ns = extract32(desc, 3, 1); 10413 /* Lookup l2 entry. */ 10414 table = (desc & 0xfffffc00) | ((address >> 10) & 0x3fc); 10415 desc = arm_ldl_ptw(cs, table, regime_is_secure(env, mmu_idx), 10416 mmu_idx, fi); 10417 if (fi->type != ARMFault_None) { 10418 goto do_fault; 10419 } 10420 ap = ((desc >> 4) & 3) | ((desc >> 7) & 4); 10421 switch (desc & 3) { 10422 case 0: /* Page translation fault. */ 10423 fi->type = ARMFault_Translation; 10424 goto do_fault; 10425 case 1: /* 64k page. */ 10426 phys_addr = (desc & 0xffff0000) | (address & 0xffff); 10427 xn = desc & (1 << 15); 10428 *page_size = 0x10000; 10429 break; 10430 case 2: case 3: /* 4k page. */ 10431 phys_addr = (desc & 0xfffff000) | (address & 0xfff); 10432 xn = desc & 1; 10433 *page_size = 0x1000; 10434 break; 10435 default: 10436 /* Never happens, but compiler isn't smart enough to tell. */ 10437 abort(); 10438 } 10439 } 10440 if (domain_prot == 3) { 10441 *prot = PAGE_READ | PAGE_WRITE | PAGE_EXEC; 10442 } else { 10443 if (pxn && !regime_is_user(env, mmu_idx)) { 10444 xn = 1; 10445 } 10446 if (xn && access_type == MMU_INST_FETCH) { 10447 fi->type = ARMFault_Permission; 10448 goto do_fault; 10449 } 10450 10451 if (arm_feature(env, ARM_FEATURE_V6K) && 10452 (regime_sctlr(env, mmu_idx) & SCTLR_AFE)) { 10453 /* The simplified model uses AP[0] as an access control bit. */ 10454 if ((ap & 1) == 0) { 10455 /* Access flag fault. */ 10456 fi->type = ARMFault_AccessFlag; 10457 goto do_fault; 10458 } 10459 *prot = simple_ap_to_rw_prot(env, mmu_idx, ap >> 1); 10460 } else { 10461 *prot = ap_to_rw_prot(env, mmu_idx, ap, domain_prot); 10462 } 10463 if (*prot && !xn) { 10464 *prot |= PAGE_EXEC; 10465 } 10466 if (!(*prot & (1 << access_type))) { 10467 /* Access permission fault. */ 10468 fi->type = ARMFault_Permission; 10469 goto do_fault; 10470 } 10471 } 10472 if (ns) { 10473 /* The NS bit will (as required by the architecture) have no effect if 10474 * the CPU doesn't support TZ or this is a non-secure translation 10475 * regime, because the attribute will already be non-secure. 10476 */ 10477 attrs->secure = false; 10478 } 10479 *phys_ptr = phys_addr; 10480 return false; 10481 do_fault: 10482 fi->domain = domain; 10483 fi->level = level; 10484 return true; 10485 } 10486 10487 /* 10488 * check_s2_mmu_setup 10489 * @cpu: ARMCPU 10490 * @is_aa64: True if the translation regime is in AArch64 state 10491 * @startlevel: Suggested starting level 10492 * @inputsize: Bitsize of IPAs 10493 * @stride: Page-table stride (See the ARM ARM) 10494 * 10495 * Returns true if the suggested S2 translation parameters are OK and 10496 * false otherwise. 10497 */ 10498 static bool check_s2_mmu_setup(ARMCPU *cpu, bool is_aa64, int level, 10499 int inputsize, int stride) 10500 { 10501 const int grainsize = stride + 3; 10502 int startsizecheck; 10503 10504 /* Negative levels are never allowed. */ 10505 if (level < 0) { 10506 return false; 10507 } 10508 10509 startsizecheck = inputsize - ((3 - level) * stride + grainsize); 10510 if (startsizecheck < 1 || startsizecheck > stride + 4) { 10511 return false; 10512 } 10513 10514 if (is_aa64) { 10515 CPUARMState *env = &cpu->env; 10516 unsigned int pamax = arm_pamax(cpu); 10517 10518 switch (stride) { 10519 case 13: /* 64KB Pages. */ 10520 if (level == 0 || (level == 1 && pamax <= 42)) { 10521 return false; 10522 } 10523 break; 10524 case 11: /* 16KB Pages. */ 10525 if (level == 0 || (level == 1 && pamax <= 40)) { 10526 return false; 10527 } 10528 break; 10529 case 9: /* 4KB Pages. */ 10530 if (level == 0 && pamax <= 42) { 10531 return false; 10532 } 10533 break; 10534 default: 10535 g_assert_not_reached(); 10536 } 10537 10538 /* Inputsize checks. */ 10539 if (inputsize > pamax && 10540 (arm_el_is_aa64(env, 1) || inputsize > 40)) { 10541 /* This is CONSTRAINED UNPREDICTABLE and we choose to fault. */ 10542 return false; 10543 } 10544 } else { 10545 /* AArch32 only supports 4KB pages. Assert on that. */ 10546 assert(stride == 9); 10547 10548 if (level == 0) { 10549 return false; 10550 } 10551 } 10552 return true; 10553 } 10554 10555 /* Translate from the 4-bit stage 2 representation of 10556 * memory attributes (without cache-allocation hints) to 10557 * the 8-bit representation of the stage 1 MAIR registers 10558 * (which includes allocation hints). 10559 * 10560 * ref: shared/translation/attrs/S2AttrDecode() 10561 * .../S2ConvertAttrsHints() 10562 */ 10563 static uint8_t convert_stage2_attrs(CPUARMState *env, uint8_t s2attrs) 10564 { 10565 uint8_t hiattr = extract32(s2attrs, 2, 2); 10566 uint8_t loattr = extract32(s2attrs, 0, 2); 10567 uint8_t hihint = 0, lohint = 0; 10568 10569 if (hiattr != 0) { /* normal memory */ 10570 if ((env->cp15.hcr_el2 & HCR_CD) != 0) { /* cache disabled */ 10571 hiattr = loattr = 1; /* non-cacheable */ 10572 } else { 10573 if (hiattr != 1) { /* Write-through or write-back */ 10574 hihint = 3; /* RW allocate */ 10575 } 10576 if (loattr != 1) { /* Write-through or write-back */ 10577 lohint = 3; /* RW allocate */ 10578 } 10579 } 10580 } 10581 10582 return (hiattr << 6) | (hihint << 4) | (loattr << 2) | lohint; 10583 } 10584 #endif /* !CONFIG_USER_ONLY */ 10585 10586 ARMVAParameters aa64_va_parameters_both(CPUARMState *env, uint64_t va, 10587 ARMMMUIdx mmu_idx) 10588 { 10589 uint64_t tcr = regime_tcr(env, mmu_idx)->raw_tcr; 10590 uint32_t el = regime_el(env, mmu_idx); 10591 bool tbi, tbid, epd, hpd, using16k, using64k; 10592 int select, tsz; 10593 10594 /* 10595 * Bit 55 is always between the two regions, and is canonical for 10596 * determining if address tagging is enabled. 10597 */ 10598 select = extract64(va, 55, 1); 10599 10600 if (el > 1) { 10601 tsz = extract32(tcr, 0, 6); 10602 using64k = extract32(tcr, 14, 1); 10603 using16k = extract32(tcr, 15, 1); 10604 if (mmu_idx == ARMMMUIdx_S2NS) { 10605 /* VTCR_EL2 */ 10606 tbi = tbid = hpd = false; 10607 } else { 10608 tbi = extract32(tcr, 20, 1); 10609 hpd = extract32(tcr, 24, 1); 10610 tbid = extract32(tcr, 29, 1); 10611 } 10612 epd = false; 10613 } else if (!select) { 10614 tsz = extract32(tcr, 0, 6); 10615 epd = extract32(tcr, 7, 1); 10616 using64k = extract32(tcr, 14, 1); 10617 using16k = extract32(tcr, 15, 1); 10618 tbi = extract64(tcr, 37, 1); 10619 hpd = extract64(tcr, 41, 1); 10620 tbid = extract64(tcr, 51, 1); 10621 } else { 10622 int tg = extract32(tcr, 30, 2); 10623 using16k = tg == 1; 10624 using64k = tg == 3; 10625 tsz = extract32(tcr, 16, 6); 10626 epd = extract32(tcr, 23, 1); 10627 tbi = extract64(tcr, 38, 1); 10628 hpd = extract64(tcr, 42, 1); 10629 tbid = extract64(tcr, 52, 1); 10630 } 10631 tsz = MIN(tsz, 39); /* TODO: ARMv8.4-TTST */ 10632 tsz = MAX(tsz, 16); /* TODO: ARMv8.2-LVA */ 10633 10634 return (ARMVAParameters) { 10635 .tsz = tsz, 10636 .select = select, 10637 .tbi = tbi, 10638 .tbid = tbid, 10639 .epd = epd, 10640 .hpd = hpd, 10641 .using16k = using16k, 10642 .using64k = using64k, 10643 }; 10644 } 10645 10646 ARMVAParameters aa64_va_parameters(CPUARMState *env, uint64_t va, 10647 ARMMMUIdx mmu_idx, bool data) 10648 { 10649 ARMVAParameters ret = aa64_va_parameters_both(env, va, mmu_idx); 10650 10651 /* Present TBI as a composite with TBID. */ 10652 ret.tbi &= (data || !ret.tbid); 10653 return ret; 10654 } 10655 10656 #ifndef CONFIG_USER_ONLY 10657 static ARMVAParameters aa32_va_parameters(CPUARMState *env, uint32_t va, 10658 ARMMMUIdx mmu_idx) 10659 { 10660 uint64_t tcr = regime_tcr(env, mmu_idx)->raw_tcr; 10661 uint32_t el = regime_el(env, mmu_idx); 10662 int select, tsz; 10663 bool epd, hpd; 10664 10665 if (mmu_idx == ARMMMUIdx_S2NS) { 10666 /* VTCR */ 10667 bool sext = extract32(tcr, 4, 1); 10668 bool sign = extract32(tcr, 3, 1); 10669 10670 /* 10671 * If the sign-extend bit is not the same as t0sz[3], the result 10672 * is unpredictable. Flag this as a guest error. 10673 */ 10674 if (sign != sext) { 10675 qemu_log_mask(LOG_GUEST_ERROR, 10676 "AArch32: VTCR.S / VTCR.T0SZ[3] mismatch\n"); 10677 } 10678 tsz = sextract32(tcr, 0, 4) + 8; 10679 select = 0; 10680 hpd = false; 10681 epd = false; 10682 } else if (el == 2) { 10683 /* HTCR */ 10684 tsz = extract32(tcr, 0, 3); 10685 select = 0; 10686 hpd = extract64(tcr, 24, 1); 10687 epd = false; 10688 } else { 10689 int t0sz = extract32(tcr, 0, 3); 10690 int t1sz = extract32(tcr, 16, 3); 10691 10692 if (t1sz == 0) { 10693 select = va > (0xffffffffu >> t0sz); 10694 } else { 10695 /* Note that we will detect errors later. */ 10696 select = va >= ~(0xffffffffu >> t1sz); 10697 } 10698 if (!select) { 10699 tsz = t0sz; 10700 epd = extract32(tcr, 7, 1); 10701 hpd = extract64(tcr, 41, 1); 10702 } else { 10703 tsz = t1sz; 10704 epd = extract32(tcr, 23, 1); 10705 hpd = extract64(tcr, 42, 1); 10706 } 10707 /* For aarch32, hpd0 is not enabled without t2e as well. */ 10708 hpd &= extract32(tcr, 6, 1); 10709 } 10710 10711 return (ARMVAParameters) { 10712 .tsz = tsz, 10713 .select = select, 10714 .epd = epd, 10715 .hpd = hpd, 10716 }; 10717 } 10718 10719 static bool get_phys_addr_lpae(CPUARMState *env, target_ulong address, 10720 MMUAccessType access_type, ARMMMUIdx mmu_idx, 10721 hwaddr *phys_ptr, MemTxAttrs *txattrs, int *prot, 10722 target_ulong *page_size_ptr, 10723 ARMMMUFaultInfo *fi, ARMCacheAttrs *cacheattrs) 10724 { 10725 ARMCPU *cpu = arm_env_get_cpu(env); 10726 CPUState *cs = CPU(cpu); 10727 /* Read an LPAE long-descriptor translation table. */ 10728 ARMFaultType fault_type = ARMFault_Translation; 10729 uint32_t level; 10730 ARMVAParameters param; 10731 uint64_t ttbr; 10732 hwaddr descaddr, indexmask, indexmask_grainsize; 10733 uint32_t tableattrs; 10734 target_ulong page_size; 10735 uint32_t attrs; 10736 int32_t stride; 10737 int addrsize, inputsize; 10738 TCR *tcr = regime_tcr(env, mmu_idx); 10739 int ap, ns, xn, pxn; 10740 uint32_t el = regime_el(env, mmu_idx); 10741 bool ttbr1_valid; 10742 uint64_t descaddrmask; 10743 bool aarch64 = arm_el_is_aa64(env, el); 10744 bool guarded = false; 10745 10746 /* TODO: 10747 * This code does not handle the different format TCR for VTCR_EL2. 10748 * This code also does not support shareability levels. 10749 * Attribute and permission bit handling should also be checked when adding 10750 * support for those page table walks. 10751 */ 10752 if (aarch64) { 10753 param = aa64_va_parameters(env, address, mmu_idx, 10754 access_type != MMU_INST_FETCH); 10755 level = 0; 10756 /* If we are in 64-bit EL2 or EL3 then there is no TTBR1, so mark it 10757 * invalid. 10758 */ 10759 ttbr1_valid = (el < 2); 10760 addrsize = 64 - 8 * param.tbi; 10761 inputsize = 64 - param.tsz; 10762 } else { 10763 param = aa32_va_parameters(env, address, mmu_idx); 10764 level = 1; 10765 /* There is no TTBR1 for EL2 */ 10766 ttbr1_valid = (el != 2); 10767 addrsize = (mmu_idx == ARMMMUIdx_S2NS ? 40 : 32); 10768 inputsize = addrsize - param.tsz; 10769 } 10770 10771 /* 10772 * We determined the region when collecting the parameters, but we 10773 * have not yet validated that the address is valid for the region. 10774 * Extract the top bits and verify that they all match select. 10775 * 10776 * For aa32, if inputsize == addrsize, then we have selected the 10777 * region by exclusion in aa32_va_parameters and there is no more 10778 * validation to do here. 10779 */ 10780 if (inputsize < addrsize) { 10781 target_ulong top_bits = sextract64(address, inputsize, 10782 addrsize - inputsize); 10783 if (-top_bits != param.select || (param.select && !ttbr1_valid)) { 10784 /* The gap between the two regions is a Translation fault */ 10785 fault_type = ARMFault_Translation; 10786 goto do_fault; 10787 } 10788 } 10789 10790 if (param.using64k) { 10791 stride = 13; 10792 } else if (param.using16k) { 10793 stride = 11; 10794 } else { 10795 stride = 9; 10796 } 10797 10798 /* Note that QEMU ignores shareability and cacheability attributes, 10799 * so we don't need to do anything with the SH, ORGN, IRGN fields 10800 * in the TTBCR. Similarly, TTBCR:A1 selects whether we get the 10801 * ASID from TTBR0 or TTBR1, but QEMU's TLB doesn't currently 10802 * implement any ASID-like capability so we can ignore it (instead 10803 * we will always flush the TLB any time the ASID is changed). 10804 */ 10805 ttbr = regime_ttbr(env, mmu_idx, param.select); 10806 10807 /* Here we should have set up all the parameters for the translation: 10808 * inputsize, ttbr, epd, stride, tbi 10809 */ 10810 10811 if (param.epd) { 10812 /* Translation table walk disabled => Translation fault on TLB miss 10813 * Note: This is always 0 on 64-bit EL2 and EL3. 10814 */ 10815 goto do_fault; 10816 } 10817 10818 if (mmu_idx != ARMMMUIdx_S2NS) { 10819 /* The starting level depends on the virtual address size (which can 10820 * be up to 48 bits) and the translation granule size. It indicates 10821 * the number of strides (stride bits at a time) needed to 10822 * consume the bits of the input address. In the pseudocode this is: 10823 * level = 4 - RoundUp((inputsize - grainsize) / stride) 10824 * where their 'inputsize' is our 'inputsize', 'grainsize' is 10825 * our 'stride + 3' and 'stride' is our 'stride'. 10826 * Applying the usual "rounded up m/n is (m+n-1)/n" and simplifying: 10827 * = 4 - (inputsize - stride - 3 + stride - 1) / stride 10828 * = 4 - (inputsize - 4) / stride; 10829 */ 10830 level = 4 - (inputsize - 4) / stride; 10831 } else { 10832 /* For stage 2 translations the starting level is specified by the 10833 * VTCR_EL2.SL0 field (whose interpretation depends on the page size) 10834 */ 10835 uint32_t sl0 = extract32(tcr->raw_tcr, 6, 2); 10836 uint32_t startlevel; 10837 bool ok; 10838 10839 if (!aarch64 || stride == 9) { 10840 /* AArch32 or 4KB pages */ 10841 startlevel = 2 - sl0; 10842 } else { 10843 /* 16KB or 64KB pages */ 10844 startlevel = 3 - sl0; 10845 } 10846 10847 /* Check that the starting level is valid. */ 10848 ok = check_s2_mmu_setup(cpu, aarch64, startlevel, 10849 inputsize, stride); 10850 if (!ok) { 10851 fault_type = ARMFault_Translation; 10852 goto do_fault; 10853 } 10854 level = startlevel; 10855 } 10856 10857 indexmask_grainsize = (1ULL << (stride + 3)) - 1; 10858 indexmask = (1ULL << (inputsize - (stride * (4 - level)))) - 1; 10859 10860 /* Now we can extract the actual base address from the TTBR */ 10861 descaddr = extract64(ttbr, 0, 48); 10862 descaddr &= ~indexmask; 10863 10864 /* The address field in the descriptor goes up to bit 39 for ARMv7 10865 * but up to bit 47 for ARMv8, but we use the descaddrmask 10866 * up to bit 39 for AArch32, because we don't need other bits in that case 10867 * to construct next descriptor address (anyway they should be all zeroes). 10868 */ 10869 descaddrmask = ((1ull << (aarch64 ? 48 : 40)) - 1) & 10870 ~indexmask_grainsize; 10871 10872 /* Secure accesses start with the page table in secure memory and 10873 * can be downgraded to non-secure at any step. Non-secure accesses 10874 * remain non-secure. We implement this by just ORing in the NSTable/NS 10875 * bits at each step. 10876 */ 10877 tableattrs = regime_is_secure(env, mmu_idx) ? 0 : (1 << 4); 10878 for (;;) { 10879 uint64_t descriptor; 10880 bool nstable; 10881 10882 descaddr |= (address >> (stride * (4 - level))) & indexmask; 10883 descaddr &= ~7ULL; 10884 nstable = extract32(tableattrs, 4, 1); 10885 descriptor = arm_ldq_ptw(cs, descaddr, !nstable, mmu_idx, fi); 10886 if (fi->type != ARMFault_None) { 10887 goto do_fault; 10888 } 10889 10890 if (!(descriptor & 1) || 10891 (!(descriptor & 2) && (level == 3))) { 10892 /* Invalid, or the Reserved level 3 encoding */ 10893 goto do_fault; 10894 } 10895 descaddr = descriptor & descaddrmask; 10896 10897 if ((descriptor & 2) && (level < 3)) { 10898 /* Table entry. The top five bits are attributes which may 10899 * propagate down through lower levels of the table (and 10900 * which are all arranged so that 0 means "no effect", so 10901 * we can gather them up by ORing in the bits at each level). 10902 */ 10903 tableattrs |= extract64(descriptor, 59, 5); 10904 level++; 10905 indexmask = indexmask_grainsize; 10906 continue; 10907 } 10908 /* Block entry at level 1 or 2, or page entry at level 3. 10909 * These are basically the same thing, although the number 10910 * of bits we pull in from the vaddr varies. 10911 */ 10912 page_size = (1ULL << ((stride * (4 - level)) + 3)); 10913 descaddr |= (address & (page_size - 1)); 10914 /* Extract attributes from the descriptor */ 10915 attrs = extract64(descriptor, 2, 10) 10916 | (extract64(descriptor, 52, 12) << 10); 10917 10918 if (mmu_idx == ARMMMUIdx_S2NS) { 10919 /* Stage 2 table descriptors do not include any attribute fields */ 10920 break; 10921 } 10922 /* Merge in attributes from table descriptors */ 10923 attrs |= nstable << 3; /* NS */ 10924 guarded = extract64(descriptor, 50, 1); /* GP */ 10925 if (param.hpd) { 10926 /* HPD disables all the table attributes except NSTable. */ 10927 break; 10928 } 10929 attrs |= extract32(tableattrs, 0, 2) << 11; /* XN, PXN */ 10930 /* The sense of AP[1] vs APTable[0] is reversed, as APTable[0] == 1 10931 * means "force PL1 access only", which means forcing AP[1] to 0. 10932 */ 10933 attrs &= ~(extract32(tableattrs, 2, 1) << 4); /* !APT[0] => AP[1] */ 10934 attrs |= extract32(tableattrs, 3, 1) << 5; /* APT[1] => AP[2] */ 10935 break; 10936 } 10937 /* Here descaddr is the final physical address, and attributes 10938 * are all in attrs. 10939 */ 10940 fault_type = ARMFault_AccessFlag; 10941 if ((attrs & (1 << 8)) == 0) { 10942 /* Access flag */ 10943 goto do_fault; 10944 } 10945 10946 ap = extract32(attrs, 4, 2); 10947 xn = extract32(attrs, 12, 1); 10948 10949 if (mmu_idx == ARMMMUIdx_S2NS) { 10950 ns = true; 10951 *prot = get_S2prot(env, ap, xn); 10952 } else { 10953 ns = extract32(attrs, 3, 1); 10954 pxn = extract32(attrs, 11, 1); 10955 *prot = get_S1prot(env, mmu_idx, aarch64, ap, ns, xn, pxn); 10956 } 10957 10958 fault_type = ARMFault_Permission; 10959 if (!(*prot & (1 << access_type))) { 10960 goto do_fault; 10961 } 10962 10963 if (ns) { 10964 /* The NS bit will (as required by the architecture) have no effect if 10965 * the CPU doesn't support TZ or this is a non-secure translation 10966 * regime, because the attribute will already be non-secure. 10967 */ 10968 txattrs->secure = false; 10969 } 10970 /* When in aarch64 mode, and BTI is enabled, remember GP in the IOTLB. */ 10971 if (aarch64 && guarded && cpu_isar_feature(aa64_bti, cpu)) { 10972 txattrs->target_tlb_bit0 = true; 10973 } 10974 10975 if (cacheattrs != NULL) { 10976 if (mmu_idx == ARMMMUIdx_S2NS) { 10977 cacheattrs->attrs = convert_stage2_attrs(env, 10978 extract32(attrs, 0, 4)); 10979 } else { 10980 /* Index into MAIR registers for cache attributes */ 10981 uint8_t attrindx = extract32(attrs, 0, 3); 10982 uint64_t mair = env->cp15.mair_el[regime_el(env, mmu_idx)]; 10983 assert(attrindx <= 7); 10984 cacheattrs->attrs = extract64(mair, attrindx * 8, 8); 10985 } 10986 cacheattrs->shareability = extract32(attrs, 6, 2); 10987 } 10988 10989 *phys_ptr = descaddr; 10990 *page_size_ptr = page_size; 10991 return false; 10992 10993 do_fault: 10994 fi->type = fault_type; 10995 fi->level = level; 10996 /* Tag the error as S2 for failed S1 PTW at S2 or ordinary S2. */ 10997 fi->stage2 = fi->s1ptw || (mmu_idx == ARMMMUIdx_S2NS); 10998 return true; 10999 } 11000 11001 static inline void get_phys_addr_pmsav7_default(CPUARMState *env, 11002 ARMMMUIdx mmu_idx, 11003 int32_t address, int *prot) 11004 { 11005 if (!arm_feature(env, ARM_FEATURE_M)) { 11006 *prot = PAGE_READ | PAGE_WRITE; 11007 switch (address) { 11008 case 0xF0000000 ... 0xFFFFFFFF: 11009 if (regime_sctlr(env, mmu_idx) & SCTLR_V) { 11010 /* hivecs execing is ok */ 11011 *prot |= PAGE_EXEC; 11012 } 11013 break; 11014 case 0x00000000 ... 0x7FFFFFFF: 11015 *prot |= PAGE_EXEC; 11016 break; 11017 } 11018 } else { 11019 /* Default system address map for M profile cores. 11020 * The architecture specifies which regions are execute-never; 11021 * at the MPU level no other checks are defined. 11022 */ 11023 switch (address) { 11024 case 0x00000000 ... 0x1fffffff: /* ROM */ 11025 case 0x20000000 ... 0x3fffffff: /* SRAM */ 11026 case 0x60000000 ... 0x7fffffff: /* RAM */ 11027 case 0x80000000 ... 0x9fffffff: /* RAM */ 11028 *prot = PAGE_READ | PAGE_WRITE | PAGE_EXEC; 11029 break; 11030 case 0x40000000 ... 0x5fffffff: /* Peripheral */ 11031 case 0xa0000000 ... 0xbfffffff: /* Device */ 11032 case 0xc0000000 ... 0xdfffffff: /* Device */ 11033 case 0xe0000000 ... 0xffffffff: /* System */ 11034 *prot = PAGE_READ | PAGE_WRITE; 11035 break; 11036 default: 11037 g_assert_not_reached(); 11038 } 11039 } 11040 } 11041 11042 static bool pmsav7_use_background_region(ARMCPU *cpu, 11043 ARMMMUIdx mmu_idx, bool is_user) 11044 { 11045 /* Return true if we should use the default memory map as a 11046 * "background" region if there are no hits against any MPU regions. 11047 */ 11048 CPUARMState *env = &cpu->env; 11049 11050 if (is_user) { 11051 return false; 11052 } 11053 11054 if (arm_feature(env, ARM_FEATURE_M)) { 11055 return env->v7m.mpu_ctrl[regime_is_secure(env, mmu_idx)] 11056 & R_V7M_MPU_CTRL_PRIVDEFENA_MASK; 11057 } else { 11058 return regime_sctlr(env, mmu_idx) & SCTLR_BR; 11059 } 11060 } 11061 11062 static inline bool m_is_ppb_region(CPUARMState *env, uint32_t address) 11063 { 11064 /* True if address is in the M profile PPB region 0xe0000000 - 0xe00fffff */ 11065 return arm_feature(env, ARM_FEATURE_M) && 11066 extract32(address, 20, 12) == 0xe00; 11067 } 11068 11069 static inline bool m_is_system_region(CPUARMState *env, uint32_t address) 11070 { 11071 /* True if address is in the M profile system region 11072 * 0xe0000000 - 0xffffffff 11073 */ 11074 return arm_feature(env, ARM_FEATURE_M) && extract32(address, 29, 3) == 0x7; 11075 } 11076 11077 static bool get_phys_addr_pmsav7(CPUARMState *env, uint32_t address, 11078 MMUAccessType access_type, ARMMMUIdx mmu_idx, 11079 hwaddr *phys_ptr, int *prot, 11080 target_ulong *page_size, 11081 ARMMMUFaultInfo *fi) 11082 { 11083 ARMCPU *cpu = arm_env_get_cpu(env); 11084 int n; 11085 bool is_user = regime_is_user(env, mmu_idx); 11086 11087 *phys_ptr = address; 11088 *page_size = TARGET_PAGE_SIZE; 11089 *prot = 0; 11090 11091 if (regime_translation_disabled(env, mmu_idx) || 11092 m_is_ppb_region(env, address)) { 11093 /* MPU disabled or M profile PPB access: use default memory map. 11094 * The other case which uses the default memory map in the 11095 * v7M ARM ARM pseudocode is exception vector reads from the vector 11096 * table. In QEMU those accesses are done in arm_v7m_load_vector(), 11097 * which always does a direct read using address_space_ldl(), rather 11098 * than going via this function, so we don't need to check that here. 11099 */ 11100 get_phys_addr_pmsav7_default(env, mmu_idx, address, prot); 11101 } else { /* MPU enabled */ 11102 for (n = (int)cpu->pmsav7_dregion - 1; n >= 0; n--) { 11103 /* region search */ 11104 uint32_t base = env->pmsav7.drbar[n]; 11105 uint32_t rsize = extract32(env->pmsav7.drsr[n], 1, 5); 11106 uint32_t rmask; 11107 bool srdis = false; 11108 11109 if (!(env->pmsav7.drsr[n] & 0x1)) { 11110 continue; 11111 } 11112 11113 if (!rsize) { 11114 qemu_log_mask(LOG_GUEST_ERROR, 11115 "DRSR[%d]: Rsize field cannot be 0\n", n); 11116 continue; 11117 } 11118 rsize++; 11119 rmask = (1ull << rsize) - 1; 11120 11121 if (base & rmask) { 11122 qemu_log_mask(LOG_GUEST_ERROR, 11123 "DRBAR[%d]: 0x%" PRIx32 " misaligned " 11124 "to DRSR region size, mask = 0x%" PRIx32 "\n", 11125 n, base, rmask); 11126 continue; 11127 } 11128 11129 if (address < base || address > base + rmask) { 11130 /* 11131 * Address not in this region. We must check whether the 11132 * region covers addresses in the same page as our address. 11133 * In that case we must not report a size that covers the 11134 * whole page for a subsequent hit against a different MPU 11135 * region or the background region, because it would result in 11136 * incorrect TLB hits for subsequent accesses to addresses that 11137 * are in this MPU region. 11138 */ 11139 if (ranges_overlap(base, rmask, 11140 address & TARGET_PAGE_MASK, 11141 TARGET_PAGE_SIZE)) { 11142 *page_size = 1; 11143 } 11144 continue; 11145 } 11146 11147 /* Region matched */ 11148 11149 if (rsize >= 8) { /* no subregions for regions < 256 bytes */ 11150 int i, snd; 11151 uint32_t srdis_mask; 11152 11153 rsize -= 3; /* sub region size (power of 2) */ 11154 snd = ((address - base) >> rsize) & 0x7; 11155 srdis = extract32(env->pmsav7.drsr[n], snd + 8, 1); 11156 11157 srdis_mask = srdis ? 0x3 : 0x0; 11158 for (i = 2; i <= 8 && rsize < TARGET_PAGE_BITS; i *= 2) { 11159 /* This will check in groups of 2, 4 and then 8, whether 11160 * the subregion bits are consistent. rsize is incremented 11161 * back up to give the region size, considering consistent 11162 * adjacent subregions as one region. Stop testing if rsize 11163 * is already big enough for an entire QEMU page. 11164 */ 11165 int snd_rounded = snd & ~(i - 1); 11166 uint32_t srdis_multi = extract32(env->pmsav7.drsr[n], 11167 snd_rounded + 8, i); 11168 if (srdis_mask ^ srdis_multi) { 11169 break; 11170 } 11171 srdis_mask = (srdis_mask << i) | srdis_mask; 11172 rsize++; 11173 } 11174 } 11175 if (srdis) { 11176 continue; 11177 } 11178 if (rsize < TARGET_PAGE_BITS) { 11179 *page_size = 1 << rsize; 11180 } 11181 break; 11182 } 11183 11184 if (n == -1) { /* no hits */ 11185 if (!pmsav7_use_background_region(cpu, mmu_idx, is_user)) { 11186 /* background fault */ 11187 fi->type = ARMFault_Background; 11188 return true; 11189 } 11190 get_phys_addr_pmsav7_default(env, mmu_idx, address, prot); 11191 } else { /* a MPU hit! */ 11192 uint32_t ap = extract32(env->pmsav7.dracr[n], 8, 3); 11193 uint32_t xn = extract32(env->pmsav7.dracr[n], 12, 1); 11194 11195 if (m_is_system_region(env, address)) { 11196 /* System space is always execute never */ 11197 xn = 1; 11198 } 11199 11200 if (is_user) { /* User mode AP bit decoding */ 11201 switch (ap) { 11202 case 0: 11203 case 1: 11204 case 5: 11205 break; /* no access */ 11206 case 3: 11207 *prot |= PAGE_WRITE; 11208 /* fall through */ 11209 case 2: 11210 case 6: 11211 *prot |= PAGE_READ | PAGE_EXEC; 11212 break; 11213 case 7: 11214 /* for v7M, same as 6; for R profile a reserved value */ 11215 if (arm_feature(env, ARM_FEATURE_M)) { 11216 *prot |= PAGE_READ | PAGE_EXEC; 11217 break; 11218 } 11219 /* fall through */ 11220 default: 11221 qemu_log_mask(LOG_GUEST_ERROR, 11222 "DRACR[%d]: Bad value for AP bits: 0x%" 11223 PRIx32 "\n", n, ap); 11224 } 11225 } else { /* Priv. mode AP bits decoding */ 11226 switch (ap) { 11227 case 0: 11228 break; /* no access */ 11229 case 1: 11230 case 2: 11231 case 3: 11232 *prot |= PAGE_WRITE; 11233 /* fall through */ 11234 case 5: 11235 case 6: 11236 *prot |= PAGE_READ | PAGE_EXEC; 11237 break; 11238 case 7: 11239 /* for v7M, same as 6; for R profile a reserved value */ 11240 if (arm_feature(env, ARM_FEATURE_M)) { 11241 *prot |= PAGE_READ | PAGE_EXEC; 11242 break; 11243 } 11244 /* fall through */ 11245 default: 11246 qemu_log_mask(LOG_GUEST_ERROR, 11247 "DRACR[%d]: Bad value for AP bits: 0x%" 11248 PRIx32 "\n", n, ap); 11249 } 11250 } 11251 11252 /* execute never */ 11253 if (xn) { 11254 *prot &= ~PAGE_EXEC; 11255 } 11256 } 11257 } 11258 11259 fi->type = ARMFault_Permission; 11260 fi->level = 1; 11261 return !(*prot & (1 << access_type)); 11262 } 11263 11264 static bool v8m_is_sau_exempt(CPUARMState *env, 11265 uint32_t address, MMUAccessType access_type) 11266 { 11267 /* The architecture specifies that certain address ranges are 11268 * exempt from v8M SAU/IDAU checks. 11269 */ 11270 return 11271 (access_type == MMU_INST_FETCH && m_is_system_region(env, address)) || 11272 (address >= 0xe0000000 && address <= 0xe0002fff) || 11273 (address >= 0xe000e000 && address <= 0xe000efff) || 11274 (address >= 0xe002e000 && address <= 0xe002efff) || 11275 (address >= 0xe0040000 && address <= 0xe0041fff) || 11276 (address >= 0xe00ff000 && address <= 0xe00fffff); 11277 } 11278 11279 static void v8m_security_lookup(CPUARMState *env, uint32_t address, 11280 MMUAccessType access_type, ARMMMUIdx mmu_idx, 11281 V8M_SAttributes *sattrs) 11282 { 11283 /* Look up the security attributes for this address. Compare the 11284 * pseudocode SecurityCheck() function. 11285 * We assume the caller has zero-initialized *sattrs. 11286 */ 11287 ARMCPU *cpu = arm_env_get_cpu(env); 11288 int r; 11289 bool idau_exempt = false, idau_ns = true, idau_nsc = true; 11290 int idau_region = IREGION_NOTVALID; 11291 uint32_t addr_page_base = address & TARGET_PAGE_MASK; 11292 uint32_t addr_page_limit = addr_page_base + (TARGET_PAGE_SIZE - 1); 11293 11294 if (cpu->idau) { 11295 IDAUInterfaceClass *iic = IDAU_INTERFACE_GET_CLASS(cpu->idau); 11296 IDAUInterface *ii = IDAU_INTERFACE(cpu->idau); 11297 11298 iic->check(ii, address, &idau_region, &idau_exempt, &idau_ns, 11299 &idau_nsc); 11300 } 11301 11302 if (access_type == MMU_INST_FETCH && extract32(address, 28, 4) == 0xf) { 11303 /* 0xf0000000..0xffffffff is always S for insn fetches */ 11304 return; 11305 } 11306 11307 if (idau_exempt || v8m_is_sau_exempt(env, address, access_type)) { 11308 sattrs->ns = !regime_is_secure(env, mmu_idx); 11309 return; 11310 } 11311 11312 if (idau_region != IREGION_NOTVALID) { 11313 sattrs->irvalid = true; 11314 sattrs->iregion = idau_region; 11315 } 11316 11317 switch (env->sau.ctrl & 3) { 11318 case 0: /* SAU.ENABLE == 0, SAU.ALLNS == 0 */ 11319 break; 11320 case 2: /* SAU.ENABLE == 0, SAU.ALLNS == 1 */ 11321 sattrs->ns = true; 11322 break; 11323 default: /* SAU.ENABLE == 1 */ 11324 for (r = 0; r < cpu->sau_sregion; r++) { 11325 if (env->sau.rlar[r] & 1) { 11326 uint32_t base = env->sau.rbar[r] & ~0x1f; 11327 uint32_t limit = env->sau.rlar[r] | 0x1f; 11328 11329 if (base <= address && limit >= address) { 11330 if (base > addr_page_base || limit < addr_page_limit) { 11331 sattrs->subpage = true; 11332 } 11333 if (sattrs->srvalid) { 11334 /* If we hit in more than one region then we must report 11335 * as Secure, not NS-Callable, with no valid region 11336 * number info. 11337 */ 11338 sattrs->ns = false; 11339 sattrs->nsc = false; 11340 sattrs->sregion = 0; 11341 sattrs->srvalid = false; 11342 break; 11343 } else { 11344 if (env->sau.rlar[r] & 2) { 11345 sattrs->nsc = true; 11346 } else { 11347 sattrs->ns = true; 11348 } 11349 sattrs->srvalid = true; 11350 sattrs->sregion = r; 11351 } 11352 } else { 11353 /* 11354 * Address not in this region. We must check whether the 11355 * region covers addresses in the same page as our address. 11356 * In that case we must not report a size that covers the 11357 * whole page for a subsequent hit against a different MPU 11358 * region or the background region, because it would result 11359 * in incorrect TLB hits for subsequent accesses to 11360 * addresses that are in this MPU region. 11361 */ 11362 if (limit >= base && 11363 ranges_overlap(base, limit - base + 1, 11364 addr_page_base, 11365 TARGET_PAGE_SIZE)) { 11366 sattrs->subpage = true; 11367 } 11368 } 11369 } 11370 } 11371 break; 11372 } 11373 11374 /* 11375 * The IDAU will override the SAU lookup results if it specifies 11376 * higher security than the SAU does. 11377 */ 11378 if (!idau_ns) { 11379 if (sattrs->ns || (!idau_nsc && sattrs->nsc)) { 11380 sattrs->ns = false; 11381 sattrs->nsc = idau_nsc; 11382 } 11383 } 11384 } 11385 11386 static bool pmsav8_mpu_lookup(CPUARMState *env, uint32_t address, 11387 MMUAccessType access_type, ARMMMUIdx mmu_idx, 11388 hwaddr *phys_ptr, MemTxAttrs *txattrs, 11389 int *prot, bool *is_subpage, 11390 ARMMMUFaultInfo *fi, uint32_t *mregion) 11391 { 11392 /* Perform a PMSAv8 MPU lookup (without also doing the SAU check 11393 * that a full phys-to-virt translation does). 11394 * mregion is (if not NULL) set to the region number which matched, 11395 * or -1 if no region number is returned (MPU off, address did not 11396 * hit a region, address hit in multiple regions). 11397 * We set is_subpage to true if the region hit doesn't cover the 11398 * entire TARGET_PAGE the address is within. 11399 */ 11400 ARMCPU *cpu = arm_env_get_cpu(env); 11401 bool is_user = regime_is_user(env, mmu_idx); 11402 uint32_t secure = regime_is_secure(env, mmu_idx); 11403 int n; 11404 int matchregion = -1; 11405 bool hit = false; 11406 uint32_t addr_page_base = address & TARGET_PAGE_MASK; 11407 uint32_t addr_page_limit = addr_page_base + (TARGET_PAGE_SIZE - 1); 11408 11409 *is_subpage = false; 11410 *phys_ptr = address; 11411 *prot = 0; 11412 if (mregion) { 11413 *mregion = -1; 11414 } 11415 11416 /* Unlike the ARM ARM pseudocode, we don't need to check whether this 11417 * was an exception vector read from the vector table (which is always 11418 * done using the default system address map), because those accesses 11419 * are done in arm_v7m_load_vector(), which always does a direct 11420 * read using address_space_ldl(), rather than going via this function. 11421 */ 11422 if (regime_translation_disabled(env, mmu_idx)) { /* MPU disabled */ 11423 hit = true; 11424 } else if (m_is_ppb_region(env, address)) { 11425 hit = true; 11426 } else { 11427 if (pmsav7_use_background_region(cpu, mmu_idx, is_user)) { 11428 hit = true; 11429 } 11430 11431 for (n = (int)cpu->pmsav7_dregion - 1; n >= 0; n--) { 11432 /* region search */ 11433 /* Note that the base address is bits [31:5] from the register 11434 * with bits [4:0] all zeroes, but the limit address is bits 11435 * [31:5] from the register with bits [4:0] all ones. 11436 */ 11437 uint32_t base = env->pmsav8.rbar[secure][n] & ~0x1f; 11438 uint32_t limit = env->pmsav8.rlar[secure][n] | 0x1f; 11439 11440 if (!(env->pmsav8.rlar[secure][n] & 0x1)) { 11441 /* Region disabled */ 11442 continue; 11443 } 11444 11445 if (address < base || address > limit) { 11446 /* 11447 * Address not in this region. We must check whether the 11448 * region covers addresses in the same page as our address. 11449 * In that case we must not report a size that covers the 11450 * whole page for a subsequent hit against a different MPU 11451 * region or the background region, because it would result in 11452 * incorrect TLB hits for subsequent accesses to addresses that 11453 * are in this MPU region. 11454 */ 11455 if (limit >= base && 11456 ranges_overlap(base, limit - base + 1, 11457 addr_page_base, 11458 TARGET_PAGE_SIZE)) { 11459 *is_subpage = true; 11460 } 11461 continue; 11462 } 11463 11464 if (base > addr_page_base || limit < addr_page_limit) { 11465 *is_subpage = true; 11466 } 11467 11468 if (matchregion != -1) { 11469 /* Multiple regions match -- always a failure (unlike 11470 * PMSAv7 where highest-numbered-region wins) 11471 */ 11472 fi->type = ARMFault_Permission; 11473 fi->level = 1; 11474 return true; 11475 } 11476 11477 matchregion = n; 11478 hit = true; 11479 } 11480 } 11481 11482 if (!hit) { 11483 /* background fault */ 11484 fi->type = ARMFault_Background; 11485 return true; 11486 } 11487 11488 if (matchregion == -1) { 11489 /* hit using the background region */ 11490 get_phys_addr_pmsav7_default(env, mmu_idx, address, prot); 11491 } else { 11492 uint32_t ap = extract32(env->pmsav8.rbar[secure][matchregion], 1, 2); 11493 uint32_t xn = extract32(env->pmsav8.rbar[secure][matchregion], 0, 1); 11494 11495 if (m_is_system_region(env, address)) { 11496 /* System space is always execute never */ 11497 xn = 1; 11498 } 11499 11500 *prot = simple_ap_to_rw_prot(env, mmu_idx, ap); 11501 if (*prot && !xn) { 11502 *prot |= PAGE_EXEC; 11503 } 11504 /* We don't need to look the attribute up in the MAIR0/MAIR1 11505 * registers because that only tells us about cacheability. 11506 */ 11507 if (mregion) { 11508 *mregion = matchregion; 11509 } 11510 } 11511 11512 fi->type = ARMFault_Permission; 11513 fi->level = 1; 11514 return !(*prot & (1 << access_type)); 11515 } 11516 11517 11518 static bool get_phys_addr_pmsav8(CPUARMState *env, uint32_t address, 11519 MMUAccessType access_type, ARMMMUIdx mmu_idx, 11520 hwaddr *phys_ptr, MemTxAttrs *txattrs, 11521 int *prot, target_ulong *page_size, 11522 ARMMMUFaultInfo *fi) 11523 { 11524 uint32_t secure = regime_is_secure(env, mmu_idx); 11525 V8M_SAttributes sattrs = {}; 11526 bool ret; 11527 bool mpu_is_subpage; 11528 11529 if (arm_feature(env, ARM_FEATURE_M_SECURITY)) { 11530 v8m_security_lookup(env, address, access_type, mmu_idx, &sattrs); 11531 if (access_type == MMU_INST_FETCH) { 11532 /* Instruction fetches always use the MMU bank and the 11533 * transaction attribute determined by the fetch address, 11534 * regardless of CPU state. This is painful for QEMU 11535 * to handle, because it would mean we need to encode 11536 * into the mmu_idx not just the (user, negpri) information 11537 * for the current security state but also that for the 11538 * other security state, which would balloon the number 11539 * of mmu_idx values needed alarmingly. 11540 * Fortunately we can avoid this because it's not actually 11541 * possible to arbitrarily execute code from memory with 11542 * the wrong security attribute: it will always generate 11543 * an exception of some kind or another, apart from the 11544 * special case of an NS CPU executing an SG instruction 11545 * in S&NSC memory. So we always just fail the translation 11546 * here and sort things out in the exception handler 11547 * (including possibly emulating an SG instruction). 11548 */ 11549 if (sattrs.ns != !secure) { 11550 if (sattrs.nsc) { 11551 fi->type = ARMFault_QEMU_NSCExec; 11552 } else { 11553 fi->type = ARMFault_QEMU_SFault; 11554 } 11555 *page_size = sattrs.subpage ? 1 : TARGET_PAGE_SIZE; 11556 *phys_ptr = address; 11557 *prot = 0; 11558 return true; 11559 } 11560 } else { 11561 /* For data accesses we always use the MMU bank indicated 11562 * by the current CPU state, but the security attributes 11563 * might downgrade a secure access to nonsecure. 11564 */ 11565 if (sattrs.ns) { 11566 txattrs->secure = false; 11567 } else if (!secure) { 11568 /* NS access to S memory must fault. 11569 * Architecturally we should first check whether the 11570 * MPU information for this address indicates that we 11571 * are doing an unaligned access to Device memory, which 11572 * should generate a UsageFault instead. QEMU does not 11573 * currently check for that kind of unaligned access though. 11574 * If we added it we would need to do so as a special case 11575 * for M_FAKE_FSR_SFAULT in arm_v7m_cpu_do_interrupt(). 11576 */ 11577 fi->type = ARMFault_QEMU_SFault; 11578 *page_size = sattrs.subpage ? 1 : TARGET_PAGE_SIZE; 11579 *phys_ptr = address; 11580 *prot = 0; 11581 return true; 11582 } 11583 } 11584 } 11585 11586 ret = pmsav8_mpu_lookup(env, address, access_type, mmu_idx, phys_ptr, 11587 txattrs, prot, &mpu_is_subpage, fi, NULL); 11588 *page_size = sattrs.subpage || mpu_is_subpage ? 1 : TARGET_PAGE_SIZE; 11589 return ret; 11590 } 11591 11592 static bool get_phys_addr_pmsav5(CPUARMState *env, uint32_t address, 11593 MMUAccessType access_type, ARMMMUIdx mmu_idx, 11594 hwaddr *phys_ptr, int *prot, 11595 ARMMMUFaultInfo *fi) 11596 { 11597 int n; 11598 uint32_t mask; 11599 uint32_t base; 11600 bool is_user = regime_is_user(env, mmu_idx); 11601 11602 if (regime_translation_disabled(env, mmu_idx)) { 11603 /* MPU disabled. */ 11604 *phys_ptr = address; 11605 *prot = PAGE_READ | PAGE_WRITE | PAGE_EXEC; 11606 return false; 11607 } 11608 11609 *phys_ptr = address; 11610 for (n = 7; n >= 0; n--) { 11611 base = env->cp15.c6_region[n]; 11612 if ((base & 1) == 0) { 11613 continue; 11614 } 11615 mask = 1 << ((base >> 1) & 0x1f); 11616 /* Keep this shift separate from the above to avoid an 11617 (undefined) << 32. */ 11618 mask = (mask << 1) - 1; 11619 if (((base ^ address) & ~mask) == 0) { 11620 break; 11621 } 11622 } 11623 if (n < 0) { 11624 fi->type = ARMFault_Background; 11625 return true; 11626 } 11627 11628 if (access_type == MMU_INST_FETCH) { 11629 mask = env->cp15.pmsav5_insn_ap; 11630 } else { 11631 mask = env->cp15.pmsav5_data_ap; 11632 } 11633 mask = (mask >> (n * 4)) & 0xf; 11634 switch (mask) { 11635 case 0: 11636 fi->type = ARMFault_Permission; 11637 fi->level = 1; 11638 return true; 11639 case 1: 11640 if (is_user) { 11641 fi->type = ARMFault_Permission; 11642 fi->level = 1; 11643 return true; 11644 } 11645 *prot = PAGE_READ | PAGE_WRITE; 11646 break; 11647 case 2: 11648 *prot = PAGE_READ; 11649 if (!is_user) { 11650 *prot |= PAGE_WRITE; 11651 } 11652 break; 11653 case 3: 11654 *prot = PAGE_READ | PAGE_WRITE; 11655 break; 11656 case 5: 11657 if (is_user) { 11658 fi->type = ARMFault_Permission; 11659 fi->level = 1; 11660 return true; 11661 } 11662 *prot = PAGE_READ; 11663 break; 11664 case 6: 11665 *prot = PAGE_READ; 11666 break; 11667 default: 11668 /* Bad permission. */ 11669 fi->type = ARMFault_Permission; 11670 fi->level = 1; 11671 return true; 11672 } 11673 *prot |= PAGE_EXEC; 11674 return false; 11675 } 11676 11677 /* Combine either inner or outer cacheability attributes for normal 11678 * memory, according to table D4-42 and pseudocode procedure 11679 * CombineS1S2AttrHints() of ARM DDI 0487B.b (the ARMv8 ARM). 11680 * 11681 * NB: only stage 1 includes allocation hints (RW bits), leading to 11682 * some asymmetry. 11683 */ 11684 static uint8_t combine_cacheattr_nibble(uint8_t s1, uint8_t s2) 11685 { 11686 if (s1 == 4 || s2 == 4) { 11687 /* non-cacheable has precedence */ 11688 return 4; 11689 } else if (extract32(s1, 2, 2) == 0 || extract32(s1, 2, 2) == 2) { 11690 /* stage 1 write-through takes precedence */ 11691 return s1; 11692 } else if (extract32(s2, 2, 2) == 2) { 11693 /* stage 2 write-through takes precedence, but the allocation hint 11694 * is still taken from stage 1 11695 */ 11696 return (2 << 2) | extract32(s1, 0, 2); 11697 } else { /* write-back */ 11698 return s1; 11699 } 11700 } 11701 11702 /* Combine S1 and S2 cacheability/shareability attributes, per D4.5.4 11703 * and CombineS1S2Desc() 11704 * 11705 * @s1: Attributes from stage 1 walk 11706 * @s2: Attributes from stage 2 walk 11707 */ 11708 static ARMCacheAttrs combine_cacheattrs(ARMCacheAttrs s1, ARMCacheAttrs s2) 11709 { 11710 uint8_t s1lo = extract32(s1.attrs, 0, 4), s2lo = extract32(s2.attrs, 0, 4); 11711 uint8_t s1hi = extract32(s1.attrs, 4, 4), s2hi = extract32(s2.attrs, 4, 4); 11712 ARMCacheAttrs ret; 11713 11714 /* Combine shareability attributes (table D4-43) */ 11715 if (s1.shareability == 2 || s2.shareability == 2) { 11716 /* if either are outer-shareable, the result is outer-shareable */ 11717 ret.shareability = 2; 11718 } else if (s1.shareability == 3 || s2.shareability == 3) { 11719 /* if either are inner-shareable, the result is inner-shareable */ 11720 ret.shareability = 3; 11721 } else { 11722 /* both non-shareable */ 11723 ret.shareability = 0; 11724 } 11725 11726 /* Combine memory type and cacheability attributes */ 11727 if (s1hi == 0 || s2hi == 0) { 11728 /* Device has precedence over normal */ 11729 if (s1lo == 0 || s2lo == 0) { 11730 /* nGnRnE has precedence over anything */ 11731 ret.attrs = 0; 11732 } else if (s1lo == 4 || s2lo == 4) { 11733 /* non-Reordering has precedence over Reordering */ 11734 ret.attrs = 4; /* nGnRE */ 11735 } else if (s1lo == 8 || s2lo == 8) { 11736 /* non-Gathering has precedence over Gathering */ 11737 ret.attrs = 8; /* nGRE */ 11738 } else { 11739 ret.attrs = 0xc; /* GRE */ 11740 } 11741 11742 /* Any location for which the resultant memory type is any 11743 * type of Device memory is always treated as Outer Shareable. 11744 */ 11745 ret.shareability = 2; 11746 } else { /* Normal memory */ 11747 /* Outer/inner cacheability combine independently */ 11748 ret.attrs = combine_cacheattr_nibble(s1hi, s2hi) << 4 11749 | combine_cacheattr_nibble(s1lo, s2lo); 11750 11751 if (ret.attrs == 0x44) { 11752 /* Any location for which the resultant memory type is Normal 11753 * Inner Non-cacheable, Outer Non-cacheable is always treated 11754 * as Outer Shareable. 11755 */ 11756 ret.shareability = 2; 11757 } 11758 } 11759 11760 return ret; 11761 } 11762 11763 11764 /* get_phys_addr - get the physical address for this virtual address 11765 * 11766 * Find the physical address corresponding to the given virtual address, 11767 * by doing a translation table walk on MMU based systems or using the 11768 * MPU state on MPU based systems. 11769 * 11770 * Returns false if the translation was successful. Otherwise, phys_ptr, attrs, 11771 * prot and page_size may not be filled in, and the populated fsr value provides 11772 * information on why the translation aborted, in the format of a 11773 * DFSR/IFSR fault register, with the following caveats: 11774 * * we honour the short vs long DFSR format differences. 11775 * * the WnR bit is never set (the caller must do this). 11776 * * for PSMAv5 based systems we don't bother to return a full FSR format 11777 * value. 11778 * 11779 * @env: CPUARMState 11780 * @address: virtual address to get physical address for 11781 * @access_type: 0 for read, 1 for write, 2 for execute 11782 * @mmu_idx: MMU index indicating required translation regime 11783 * @phys_ptr: set to the physical address corresponding to the virtual address 11784 * @attrs: set to the memory transaction attributes to use 11785 * @prot: set to the permissions for the page containing phys_ptr 11786 * @page_size: set to the size of the page containing phys_ptr 11787 * @fi: set to fault info if the translation fails 11788 * @cacheattrs: (if non-NULL) set to the cacheability/shareability attributes 11789 */ 11790 static bool get_phys_addr(CPUARMState *env, target_ulong address, 11791 MMUAccessType access_type, ARMMMUIdx mmu_idx, 11792 hwaddr *phys_ptr, MemTxAttrs *attrs, int *prot, 11793 target_ulong *page_size, 11794 ARMMMUFaultInfo *fi, ARMCacheAttrs *cacheattrs) 11795 { 11796 if (mmu_idx == ARMMMUIdx_S12NSE0 || mmu_idx == ARMMMUIdx_S12NSE1) { 11797 /* Call ourselves recursively to do the stage 1 and then stage 2 11798 * translations. 11799 */ 11800 if (arm_feature(env, ARM_FEATURE_EL2)) { 11801 hwaddr ipa; 11802 int s2_prot; 11803 int ret; 11804 ARMCacheAttrs cacheattrs2 = {}; 11805 11806 ret = get_phys_addr(env, address, access_type, 11807 stage_1_mmu_idx(mmu_idx), &ipa, attrs, 11808 prot, page_size, fi, cacheattrs); 11809 11810 /* If S1 fails or S2 is disabled, return early. */ 11811 if (ret || regime_translation_disabled(env, ARMMMUIdx_S2NS)) { 11812 *phys_ptr = ipa; 11813 return ret; 11814 } 11815 11816 /* S1 is done. Now do S2 translation. */ 11817 ret = get_phys_addr_lpae(env, ipa, access_type, ARMMMUIdx_S2NS, 11818 phys_ptr, attrs, &s2_prot, 11819 page_size, fi, 11820 cacheattrs != NULL ? &cacheattrs2 : NULL); 11821 fi->s2addr = ipa; 11822 /* Combine the S1 and S2 perms. */ 11823 *prot &= s2_prot; 11824 11825 /* Combine the S1 and S2 cache attributes, if needed */ 11826 if (!ret && cacheattrs != NULL) { 11827 if (env->cp15.hcr_el2 & HCR_DC) { 11828 /* 11829 * HCR.DC forces the first stage attributes to 11830 * Normal Non-Shareable, 11831 * Inner Write-Back Read-Allocate Write-Allocate, 11832 * Outer Write-Back Read-Allocate Write-Allocate. 11833 */ 11834 cacheattrs->attrs = 0xff; 11835 cacheattrs->shareability = 0; 11836 } 11837 *cacheattrs = combine_cacheattrs(*cacheattrs, cacheattrs2); 11838 } 11839 11840 return ret; 11841 } else { 11842 /* 11843 * For non-EL2 CPUs a stage1+stage2 translation is just stage 1. 11844 */ 11845 mmu_idx = stage_1_mmu_idx(mmu_idx); 11846 } 11847 } 11848 11849 /* The page table entries may downgrade secure to non-secure, but 11850 * cannot upgrade an non-secure translation regime's attributes 11851 * to secure. 11852 */ 11853 attrs->secure = regime_is_secure(env, mmu_idx); 11854 attrs->user = regime_is_user(env, mmu_idx); 11855 11856 /* Fast Context Switch Extension. This doesn't exist at all in v8. 11857 * In v7 and earlier it affects all stage 1 translations. 11858 */ 11859 if (address < 0x02000000 && mmu_idx != ARMMMUIdx_S2NS 11860 && !arm_feature(env, ARM_FEATURE_V8)) { 11861 if (regime_el(env, mmu_idx) == 3) { 11862 address += env->cp15.fcseidr_s; 11863 } else { 11864 address += env->cp15.fcseidr_ns; 11865 } 11866 } 11867 11868 if (arm_feature(env, ARM_FEATURE_PMSA)) { 11869 bool ret; 11870 *page_size = TARGET_PAGE_SIZE; 11871 11872 if (arm_feature(env, ARM_FEATURE_V8)) { 11873 /* PMSAv8 */ 11874 ret = get_phys_addr_pmsav8(env, address, access_type, mmu_idx, 11875 phys_ptr, attrs, prot, page_size, fi); 11876 } else if (arm_feature(env, ARM_FEATURE_V7)) { 11877 /* PMSAv7 */ 11878 ret = get_phys_addr_pmsav7(env, address, access_type, mmu_idx, 11879 phys_ptr, prot, page_size, fi); 11880 } else { 11881 /* Pre-v7 MPU */ 11882 ret = get_phys_addr_pmsav5(env, address, access_type, mmu_idx, 11883 phys_ptr, prot, fi); 11884 } 11885 qemu_log_mask(CPU_LOG_MMU, "PMSA MPU lookup for %s at 0x%08" PRIx32 11886 " mmu_idx %u -> %s (prot %c%c%c)\n", 11887 access_type == MMU_DATA_LOAD ? "reading" : 11888 (access_type == MMU_DATA_STORE ? "writing" : "execute"), 11889 (uint32_t)address, mmu_idx, 11890 ret ? "Miss" : "Hit", 11891 *prot & PAGE_READ ? 'r' : '-', 11892 *prot & PAGE_WRITE ? 'w' : '-', 11893 *prot & PAGE_EXEC ? 'x' : '-'); 11894 11895 return ret; 11896 } 11897 11898 /* Definitely a real MMU, not an MPU */ 11899 11900 if (regime_translation_disabled(env, mmu_idx)) { 11901 /* MMU disabled. */ 11902 *phys_ptr = address; 11903 *prot = PAGE_READ | PAGE_WRITE | PAGE_EXEC; 11904 *page_size = TARGET_PAGE_SIZE; 11905 return 0; 11906 } 11907 11908 if (regime_using_lpae_format(env, mmu_idx)) { 11909 return get_phys_addr_lpae(env, address, access_type, mmu_idx, 11910 phys_ptr, attrs, prot, page_size, 11911 fi, cacheattrs); 11912 } else if (regime_sctlr(env, mmu_idx) & SCTLR_XP) { 11913 return get_phys_addr_v6(env, address, access_type, mmu_idx, 11914 phys_ptr, attrs, prot, page_size, fi); 11915 } else { 11916 return get_phys_addr_v5(env, address, access_type, mmu_idx, 11917 phys_ptr, prot, page_size, fi); 11918 } 11919 } 11920 11921 /* Walk the page table and (if the mapping exists) add the page 11922 * to the TLB. Return false on success, or true on failure. Populate 11923 * fsr with ARM DFSR/IFSR fault register format value on failure. 11924 */ 11925 bool arm_tlb_fill(CPUState *cs, vaddr address, 11926 MMUAccessType access_type, int mmu_idx, 11927 ARMMMUFaultInfo *fi) 11928 { 11929 ARMCPU *cpu = ARM_CPU(cs); 11930 CPUARMState *env = &cpu->env; 11931 hwaddr phys_addr; 11932 target_ulong page_size; 11933 int prot; 11934 int ret; 11935 MemTxAttrs attrs = {}; 11936 11937 ret = get_phys_addr(env, address, access_type, 11938 core_to_arm_mmu_idx(env, mmu_idx), &phys_addr, 11939 &attrs, &prot, &page_size, fi, NULL); 11940 if (!ret) { 11941 /* 11942 * Map a single [sub]page. Regions smaller than our declared 11943 * target page size are handled specially, so for those we 11944 * pass in the exact addresses. 11945 */ 11946 if (page_size >= TARGET_PAGE_SIZE) { 11947 phys_addr &= TARGET_PAGE_MASK; 11948 address &= TARGET_PAGE_MASK; 11949 } 11950 tlb_set_page_with_attrs(cs, address, phys_addr, attrs, 11951 prot, mmu_idx, page_size); 11952 return 0; 11953 } 11954 11955 return ret; 11956 } 11957 11958 hwaddr arm_cpu_get_phys_page_attrs_debug(CPUState *cs, vaddr addr, 11959 MemTxAttrs *attrs) 11960 { 11961 ARMCPU *cpu = ARM_CPU(cs); 11962 CPUARMState *env = &cpu->env; 11963 hwaddr phys_addr; 11964 target_ulong page_size; 11965 int prot; 11966 bool ret; 11967 ARMMMUFaultInfo fi = {}; 11968 ARMMMUIdx mmu_idx = arm_mmu_idx(env); 11969 11970 *attrs = (MemTxAttrs) {}; 11971 11972 ret = get_phys_addr(env, addr, 0, mmu_idx, &phys_addr, 11973 attrs, &prot, &page_size, &fi, NULL); 11974 11975 if (ret) { 11976 return -1; 11977 } 11978 return phys_addr; 11979 } 11980 11981 uint32_t HELPER(v7m_mrs)(CPUARMState *env, uint32_t reg) 11982 { 11983 uint32_t mask; 11984 unsigned el = arm_current_el(env); 11985 11986 /* First handle registers which unprivileged can read */ 11987 11988 switch (reg) { 11989 case 0 ... 7: /* xPSR sub-fields */ 11990 mask = 0; 11991 if ((reg & 1) && el) { 11992 mask |= XPSR_EXCP; /* IPSR (unpriv. reads as zero) */ 11993 } 11994 if (!(reg & 4)) { 11995 mask |= XPSR_NZCV | XPSR_Q; /* APSR */ 11996 } 11997 /* EPSR reads as zero */ 11998 return xpsr_read(env) & mask; 11999 break; 12000 case 20: /* CONTROL */ 12001 return env->v7m.control[env->v7m.secure]; 12002 case 0x94: /* CONTROL_NS */ 12003 /* We have to handle this here because unprivileged Secure code 12004 * can read the NS CONTROL register. 12005 */ 12006 if (!env->v7m.secure) { 12007 return 0; 12008 } 12009 return env->v7m.control[M_REG_NS]; 12010 } 12011 12012 if (el == 0) { 12013 return 0; /* unprivileged reads others as zero */ 12014 } 12015 12016 if (arm_feature(env, ARM_FEATURE_M_SECURITY)) { 12017 switch (reg) { 12018 case 0x88: /* MSP_NS */ 12019 if (!env->v7m.secure) { 12020 return 0; 12021 } 12022 return env->v7m.other_ss_msp; 12023 case 0x89: /* PSP_NS */ 12024 if (!env->v7m.secure) { 12025 return 0; 12026 } 12027 return env->v7m.other_ss_psp; 12028 case 0x8a: /* MSPLIM_NS */ 12029 if (!env->v7m.secure) { 12030 return 0; 12031 } 12032 return env->v7m.msplim[M_REG_NS]; 12033 case 0x8b: /* PSPLIM_NS */ 12034 if (!env->v7m.secure) { 12035 return 0; 12036 } 12037 return env->v7m.psplim[M_REG_NS]; 12038 case 0x90: /* PRIMASK_NS */ 12039 if (!env->v7m.secure) { 12040 return 0; 12041 } 12042 return env->v7m.primask[M_REG_NS]; 12043 case 0x91: /* BASEPRI_NS */ 12044 if (!env->v7m.secure) { 12045 return 0; 12046 } 12047 return env->v7m.basepri[M_REG_NS]; 12048 case 0x93: /* FAULTMASK_NS */ 12049 if (!env->v7m.secure) { 12050 return 0; 12051 } 12052 return env->v7m.faultmask[M_REG_NS]; 12053 case 0x98: /* SP_NS */ 12054 { 12055 /* This gives the non-secure SP selected based on whether we're 12056 * currently in handler mode or not, using the NS CONTROL.SPSEL. 12057 */ 12058 bool spsel = env->v7m.control[M_REG_NS] & R_V7M_CONTROL_SPSEL_MASK; 12059 12060 if (!env->v7m.secure) { 12061 return 0; 12062 } 12063 if (!arm_v7m_is_handler_mode(env) && spsel) { 12064 return env->v7m.other_ss_psp; 12065 } else { 12066 return env->v7m.other_ss_msp; 12067 } 12068 } 12069 default: 12070 break; 12071 } 12072 } 12073 12074 switch (reg) { 12075 case 8: /* MSP */ 12076 return v7m_using_psp(env) ? env->v7m.other_sp : env->regs[13]; 12077 case 9: /* PSP */ 12078 return v7m_using_psp(env) ? env->regs[13] : env->v7m.other_sp; 12079 case 10: /* MSPLIM */ 12080 if (!arm_feature(env, ARM_FEATURE_V8)) { 12081 goto bad_reg; 12082 } 12083 return env->v7m.msplim[env->v7m.secure]; 12084 case 11: /* PSPLIM */ 12085 if (!arm_feature(env, ARM_FEATURE_V8)) { 12086 goto bad_reg; 12087 } 12088 return env->v7m.psplim[env->v7m.secure]; 12089 case 16: /* PRIMASK */ 12090 return env->v7m.primask[env->v7m.secure]; 12091 case 17: /* BASEPRI */ 12092 case 18: /* BASEPRI_MAX */ 12093 return env->v7m.basepri[env->v7m.secure]; 12094 case 19: /* FAULTMASK */ 12095 return env->v7m.faultmask[env->v7m.secure]; 12096 default: 12097 bad_reg: 12098 qemu_log_mask(LOG_GUEST_ERROR, "Attempt to read unknown special" 12099 " register %d\n", reg); 12100 return 0; 12101 } 12102 } 12103 12104 void HELPER(v7m_msr)(CPUARMState *env, uint32_t maskreg, uint32_t val) 12105 { 12106 /* We're passed bits [11..0] of the instruction; extract 12107 * SYSm and the mask bits. 12108 * Invalid combinations of SYSm and mask are UNPREDICTABLE; 12109 * we choose to treat them as if the mask bits were valid. 12110 * NB that the pseudocode 'mask' variable is bits [11..10], 12111 * whereas ours is [11..8]. 12112 */ 12113 uint32_t mask = extract32(maskreg, 8, 4); 12114 uint32_t reg = extract32(maskreg, 0, 8); 12115 12116 if (arm_current_el(env) == 0 && reg > 7) { 12117 /* only xPSR sub-fields may be written by unprivileged */ 12118 return; 12119 } 12120 12121 if (arm_feature(env, ARM_FEATURE_M_SECURITY)) { 12122 switch (reg) { 12123 case 0x88: /* MSP_NS */ 12124 if (!env->v7m.secure) { 12125 return; 12126 } 12127 env->v7m.other_ss_msp = val; 12128 return; 12129 case 0x89: /* PSP_NS */ 12130 if (!env->v7m.secure) { 12131 return; 12132 } 12133 env->v7m.other_ss_psp = val; 12134 return; 12135 case 0x8a: /* MSPLIM_NS */ 12136 if (!env->v7m.secure) { 12137 return; 12138 } 12139 env->v7m.msplim[M_REG_NS] = val & ~7; 12140 return; 12141 case 0x8b: /* PSPLIM_NS */ 12142 if (!env->v7m.secure) { 12143 return; 12144 } 12145 env->v7m.psplim[M_REG_NS] = val & ~7; 12146 return; 12147 case 0x90: /* PRIMASK_NS */ 12148 if (!env->v7m.secure) { 12149 return; 12150 } 12151 env->v7m.primask[M_REG_NS] = val & 1; 12152 return; 12153 case 0x91: /* BASEPRI_NS */ 12154 if (!env->v7m.secure || !arm_feature(env, ARM_FEATURE_M_MAIN)) { 12155 return; 12156 } 12157 env->v7m.basepri[M_REG_NS] = val & 0xff; 12158 return; 12159 case 0x93: /* FAULTMASK_NS */ 12160 if (!env->v7m.secure || !arm_feature(env, ARM_FEATURE_M_MAIN)) { 12161 return; 12162 } 12163 env->v7m.faultmask[M_REG_NS] = val & 1; 12164 return; 12165 case 0x94: /* CONTROL_NS */ 12166 if (!env->v7m.secure) { 12167 return; 12168 } 12169 write_v7m_control_spsel_for_secstate(env, 12170 val & R_V7M_CONTROL_SPSEL_MASK, 12171 M_REG_NS); 12172 if (arm_feature(env, ARM_FEATURE_M_MAIN)) { 12173 env->v7m.control[M_REG_NS] &= ~R_V7M_CONTROL_NPRIV_MASK; 12174 env->v7m.control[M_REG_NS] |= val & R_V7M_CONTROL_NPRIV_MASK; 12175 } 12176 return; 12177 case 0x98: /* SP_NS */ 12178 { 12179 /* This gives the non-secure SP selected based on whether we're 12180 * currently in handler mode or not, using the NS CONTROL.SPSEL. 12181 */ 12182 bool spsel = env->v7m.control[M_REG_NS] & R_V7M_CONTROL_SPSEL_MASK; 12183 bool is_psp = !arm_v7m_is_handler_mode(env) && spsel; 12184 uint32_t limit; 12185 12186 if (!env->v7m.secure) { 12187 return; 12188 } 12189 12190 limit = is_psp ? env->v7m.psplim[false] : env->v7m.msplim[false]; 12191 12192 if (val < limit) { 12193 CPUState *cs = CPU(arm_env_get_cpu(env)); 12194 12195 cpu_restore_state(cs, GETPC(), true); 12196 raise_exception(env, EXCP_STKOF, 0, 1); 12197 } 12198 12199 if (is_psp) { 12200 env->v7m.other_ss_psp = val; 12201 } else { 12202 env->v7m.other_ss_msp = val; 12203 } 12204 return; 12205 } 12206 default: 12207 break; 12208 } 12209 } 12210 12211 switch (reg) { 12212 case 0 ... 7: /* xPSR sub-fields */ 12213 /* only APSR is actually writable */ 12214 if (!(reg & 4)) { 12215 uint32_t apsrmask = 0; 12216 12217 if (mask & 8) { 12218 apsrmask |= XPSR_NZCV | XPSR_Q; 12219 } 12220 if ((mask & 4) && arm_feature(env, ARM_FEATURE_THUMB_DSP)) { 12221 apsrmask |= XPSR_GE; 12222 } 12223 xpsr_write(env, val, apsrmask); 12224 } 12225 break; 12226 case 8: /* MSP */ 12227 if (v7m_using_psp(env)) { 12228 env->v7m.other_sp = val; 12229 } else { 12230 env->regs[13] = val; 12231 } 12232 break; 12233 case 9: /* PSP */ 12234 if (v7m_using_psp(env)) { 12235 env->regs[13] = val; 12236 } else { 12237 env->v7m.other_sp = val; 12238 } 12239 break; 12240 case 10: /* MSPLIM */ 12241 if (!arm_feature(env, ARM_FEATURE_V8)) { 12242 goto bad_reg; 12243 } 12244 env->v7m.msplim[env->v7m.secure] = val & ~7; 12245 break; 12246 case 11: /* PSPLIM */ 12247 if (!arm_feature(env, ARM_FEATURE_V8)) { 12248 goto bad_reg; 12249 } 12250 env->v7m.psplim[env->v7m.secure] = val & ~7; 12251 break; 12252 case 16: /* PRIMASK */ 12253 env->v7m.primask[env->v7m.secure] = val & 1; 12254 break; 12255 case 17: /* BASEPRI */ 12256 if (!arm_feature(env, ARM_FEATURE_M_MAIN)) { 12257 goto bad_reg; 12258 } 12259 env->v7m.basepri[env->v7m.secure] = val & 0xff; 12260 break; 12261 case 18: /* BASEPRI_MAX */ 12262 if (!arm_feature(env, ARM_FEATURE_M_MAIN)) { 12263 goto bad_reg; 12264 } 12265 val &= 0xff; 12266 if (val != 0 && (val < env->v7m.basepri[env->v7m.secure] 12267 || env->v7m.basepri[env->v7m.secure] == 0)) { 12268 env->v7m.basepri[env->v7m.secure] = val; 12269 } 12270 break; 12271 case 19: /* FAULTMASK */ 12272 if (!arm_feature(env, ARM_FEATURE_M_MAIN)) { 12273 goto bad_reg; 12274 } 12275 env->v7m.faultmask[env->v7m.secure] = val & 1; 12276 break; 12277 case 20: /* CONTROL */ 12278 /* Writing to the SPSEL bit only has an effect if we are in 12279 * thread mode; other bits can be updated by any privileged code. 12280 * write_v7m_control_spsel() deals with updating the SPSEL bit in 12281 * env->v7m.control, so we only need update the others. 12282 * For v7M, we must just ignore explicit writes to SPSEL in handler 12283 * mode; for v8M the write is permitted but will have no effect. 12284 */ 12285 if (arm_feature(env, ARM_FEATURE_V8) || 12286 !arm_v7m_is_handler_mode(env)) { 12287 write_v7m_control_spsel(env, (val & R_V7M_CONTROL_SPSEL_MASK) != 0); 12288 } 12289 if (arm_feature(env, ARM_FEATURE_M_MAIN)) { 12290 env->v7m.control[env->v7m.secure] &= ~R_V7M_CONTROL_NPRIV_MASK; 12291 env->v7m.control[env->v7m.secure] |= val & R_V7M_CONTROL_NPRIV_MASK; 12292 } 12293 break; 12294 default: 12295 bad_reg: 12296 qemu_log_mask(LOG_GUEST_ERROR, "Attempt to write unknown special" 12297 " register %d\n", reg); 12298 return; 12299 } 12300 } 12301 12302 uint32_t HELPER(v7m_tt)(CPUARMState *env, uint32_t addr, uint32_t op) 12303 { 12304 /* Implement the TT instruction. op is bits [7:6] of the insn. */ 12305 bool forceunpriv = op & 1; 12306 bool alt = op & 2; 12307 V8M_SAttributes sattrs = {}; 12308 uint32_t tt_resp; 12309 bool r, rw, nsr, nsrw, mrvalid; 12310 int prot; 12311 ARMMMUFaultInfo fi = {}; 12312 MemTxAttrs attrs = {}; 12313 hwaddr phys_addr; 12314 ARMMMUIdx mmu_idx; 12315 uint32_t mregion; 12316 bool targetpriv; 12317 bool targetsec = env->v7m.secure; 12318 bool is_subpage; 12319 12320 /* Work out what the security state and privilege level we're 12321 * interested in is... 12322 */ 12323 if (alt) { 12324 targetsec = !targetsec; 12325 } 12326 12327 if (forceunpriv) { 12328 targetpriv = false; 12329 } else { 12330 targetpriv = arm_v7m_is_handler_mode(env) || 12331 !(env->v7m.control[targetsec] & R_V7M_CONTROL_NPRIV_MASK); 12332 } 12333 12334 /* ...and then figure out which MMU index this is */ 12335 mmu_idx = arm_v7m_mmu_idx_for_secstate_and_priv(env, targetsec, targetpriv); 12336 12337 /* We know that the MPU and SAU don't care about the access type 12338 * for our purposes beyond that we don't want to claim to be 12339 * an insn fetch, so we arbitrarily call this a read. 12340 */ 12341 12342 /* MPU region info only available for privileged or if 12343 * inspecting the other MPU state. 12344 */ 12345 if (arm_current_el(env) != 0 || alt) { 12346 /* We can ignore the return value as prot is always set */ 12347 pmsav8_mpu_lookup(env, addr, MMU_DATA_LOAD, mmu_idx, 12348 &phys_addr, &attrs, &prot, &is_subpage, 12349 &fi, &mregion); 12350 if (mregion == -1) { 12351 mrvalid = false; 12352 mregion = 0; 12353 } else { 12354 mrvalid = true; 12355 } 12356 r = prot & PAGE_READ; 12357 rw = prot & PAGE_WRITE; 12358 } else { 12359 r = false; 12360 rw = false; 12361 mrvalid = false; 12362 mregion = 0; 12363 } 12364 12365 if (env->v7m.secure) { 12366 v8m_security_lookup(env, addr, MMU_DATA_LOAD, mmu_idx, &sattrs); 12367 nsr = sattrs.ns && r; 12368 nsrw = sattrs.ns && rw; 12369 } else { 12370 sattrs.ns = true; 12371 nsr = false; 12372 nsrw = false; 12373 } 12374 12375 tt_resp = (sattrs.iregion << 24) | 12376 (sattrs.irvalid << 23) | 12377 ((!sattrs.ns) << 22) | 12378 (nsrw << 21) | 12379 (nsr << 20) | 12380 (rw << 19) | 12381 (r << 18) | 12382 (sattrs.srvalid << 17) | 12383 (mrvalid << 16) | 12384 (sattrs.sregion << 8) | 12385 mregion; 12386 12387 return tt_resp; 12388 } 12389 12390 #endif 12391 12392 void HELPER(dc_zva)(CPUARMState *env, uint64_t vaddr_in) 12393 { 12394 /* Implement DC ZVA, which zeroes a fixed-length block of memory. 12395 * Note that we do not implement the (architecturally mandated) 12396 * alignment fault for attempts to use this on Device memory 12397 * (which matches the usual QEMU behaviour of not implementing either 12398 * alignment faults or any memory attribute handling). 12399 */ 12400 12401 ARMCPU *cpu = arm_env_get_cpu(env); 12402 uint64_t blocklen = 4 << cpu->dcz_blocksize; 12403 uint64_t vaddr = vaddr_in & ~(blocklen - 1); 12404 12405 #ifndef CONFIG_USER_ONLY 12406 { 12407 /* Slightly awkwardly, QEMU's TARGET_PAGE_SIZE may be less than 12408 * the block size so we might have to do more than one TLB lookup. 12409 * We know that in fact for any v8 CPU the page size is at least 4K 12410 * and the block size must be 2K or less, but TARGET_PAGE_SIZE is only 12411 * 1K as an artefact of legacy v5 subpage support being present in the 12412 * same QEMU executable. 12413 */ 12414 int maxidx = DIV_ROUND_UP(blocklen, TARGET_PAGE_SIZE); 12415 void *hostaddr[maxidx]; 12416 int try, i; 12417 unsigned mmu_idx = cpu_mmu_index(env, false); 12418 TCGMemOpIdx oi = make_memop_idx(MO_UB, mmu_idx); 12419 12420 for (try = 0; try < 2; try++) { 12421 12422 for (i = 0; i < maxidx; i++) { 12423 hostaddr[i] = tlb_vaddr_to_host(env, 12424 vaddr + TARGET_PAGE_SIZE * i, 12425 1, mmu_idx); 12426 if (!hostaddr[i]) { 12427 break; 12428 } 12429 } 12430 if (i == maxidx) { 12431 /* If it's all in the TLB it's fair game for just writing to; 12432 * we know we don't need to update dirty status, etc. 12433 */ 12434 for (i = 0; i < maxidx - 1; i++) { 12435 memset(hostaddr[i], 0, TARGET_PAGE_SIZE); 12436 } 12437 memset(hostaddr[i], 0, blocklen - (i * TARGET_PAGE_SIZE)); 12438 return; 12439 } 12440 /* OK, try a store and see if we can populate the tlb. This 12441 * might cause an exception if the memory isn't writable, 12442 * in which case we will longjmp out of here. We must for 12443 * this purpose use the actual register value passed to us 12444 * so that we get the fault address right. 12445 */ 12446 helper_ret_stb_mmu(env, vaddr_in, 0, oi, GETPC()); 12447 /* Now we can populate the other TLB entries, if any */ 12448 for (i = 0; i < maxidx; i++) { 12449 uint64_t va = vaddr + TARGET_PAGE_SIZE * i; 12450 if (va != (vaddr_in & TARGET_PAGE_MASK)) { 12451 helper_ret_stb_mmu(env, va, 0, oi, GETPC()); 12452 } 12453 } 12454 } 12455 12456 /* Slow path (probably attempt to do this to an I/O device or 12457 * similar, or clearing of a block of code we have translations 12458 * cached for). Just do a series of byte writes as the architecture 12459 * demands. It's not worth trying to use a cpu_physical_memory_map(), 12460 * memset(), unmap() sequence here because: 12461 * + we'd need to account for the blocksize being larger than a page 12462 * + the direct-RAM access case is almost always going to be dealt 12463 * with in the fastpath code above, so there's no speed benefit 12464 * + we would have to deal with the map returning NULL because the 12465 * bounce buffer was in use 12466 */ 12467 for (i = 0; i < blocklen; i++) { 12468 helper_ret_stb_mmu(env, vaddr + i, 0, oi, GETPC()); 12469 } 12470 } 12471 #else 12472 memset(g2h(vaddr), 0, blocklen); 12473 #endif 12474 } 12475 12476 /* Note that signed overflow is undefined in C. The following routines are 12477 careful to use unsigned types where modulo arithmetic is required. 12478 Failure to do so _will_ break on newer gcc. */ 12479 12480 /* Signed saturating arithmetic. */ 12481 12482 /* Perform 16-bit signed saturating addition. */ 12483 static inline uint16_t add16_sat(uint16_t a, uint16_t b) 12484 { 12485 uint16_t res; 12486 12487 res = a + b; 12488 if (((res ^ a) & 0x8000) && !((a ^ b) & 0x8000)) { 12489 if (a & 0x8000) 12490 res = 0x8000; 12491 else 12492 res = 0x7fff; 12493 } 12494 return res; 12495 } 12496 12497 /* Perform 8-bit signed saturating addition. */ 12498 static inline uint8_t add8_sat(uint8_t a, uint8_t b) 12499 { 12500 uint8_t res; 12501 12502 res = a + b; 12503 if (((res ^ a) & 0x80) && !((a ^ b) & 0x80)) { 12504 if (a & 0x80) 12505 res = 0x80; 12506 else 12507 res = 0x7f; 12508 } 12509 return res; 12510 } 12511 12512 /* Perform 16-bit signed saturating subtraction. */ 12513 static inline uint16_t sub16_sat(uint16_t a, uint16_t b) 12514 { 12515 uint16_t res; 12516 12517 res = a - b; 12518 if (((res ^ a) & 0x8000) && ((a ^ b) & 0x8000)) { 12519 if (a & 0x8000) 12520 res = 0x8000; 12521 else 12522 res = 0x7fff; 12523 } 12524 return res; 12525 } 12526 12527 /* Perform 8-bit signed saturating subtraction. */ 12528 static inline uint8_t sub8_sat(uint8_t a, uint8_t b) 12529 { 12530 uint8_t res; 12531 12532 res = a - b; 12533 if (((res ^ a) & 0x80) && ((a ^ b) & 0x80)) { 12534 if (a & 0x80) 12535 res = 0x80; 12536 else 12537 res = 0x7f; 12538 } 12539 return res; 12540 } 12541 12542 #define ADD16(a, b, n) RESULT(add16_sat(a, b), n, 16); 12543 #define SUB16(a, b, n) RESULT(sub16_sat(a, b), n, 16); 12544 #define ADD8(a, b, n) RESULT(add8_sat(a, b), n, 8); 12545 #define SUB8(a, b, n) RESULT(sub8_sat(a, b), n, 8); 12546 #define PFX q 12547 12548 #include "op_addsub.h" 12549 12550 /* Unsigned saturating arithmetic. */ 12551 static inline uint16_t add16_usat(uint16_t a, uint16_t b) 12552 { 12553 uint16_t res; 12554 res = a + b; 12555 if (res < a) 12556 res = 0xffff; 12557 return res; 12558 } 12559 12560 static inline uint16_t sub16_usat(uint16_t a, uint16_t b) 12561 { 12562 if (a > b) 12563 return a - b; 12564 else 12565 return 0; 12566 } 12567 12568 static inline uint8_t add8_usat(uint8_t a, uint8_t b) 12569 { 12570 uint8_t res; 12571 res = a + b; 12572 if (res < a) 12573 res = 0xff; 12574 return res; 12575 } 12576 12577 static inline uint8_t sub8_usat(uint8_t a, uint8_t b) 12578 { 12579 if (a > b) 12580 return a - b; 12581 else 12582 return 0; 12583 } 12584 12585 #define ADD16(a, b, n) RESULT(add16_usat(a, b), n, 16); 12586 #define SUB16(a, b, n) RESULT(sub16_usat(a, b), n, 16); 12587 #define ADD8(a, b, n) RESULT(add8_usat(a, b), n, 8); 12588 #define SUB8(a, b, n) RESULT(sub8_usat(a, b), n, 8); 12589 #define PFX uq 12590 12591 #include "op_addsub.h" 12592 12593 /* Signed modulo arithmetic. */ 12594 #define SARITH16(a, b, n, op) do { \ 12595 int32_t sum; \ 12596 sum = (int32_t)(int16_t)(a) op (int32_t)(int16_t)(b); \ 12597 RESULT(sum, n, 16); \ 12598 if (sum >= 0) \ 12599 ge |= 3 << (n * 2); \ 12600 } while(0) 12601 12602 #define SARITH8(a, b, n, op) do { \ 12603 int32_t sum; \ 12604 sum = (int32_t)(int8_t)(a) op (int32_t)(int8_t)(b); \ 12605 RESULT(sum, n, 8); \ 12606 if (sum >= 0) \ 12607 ge |= 1 << n; \ 12608 } while(0) 12609 12610 12611 #define ADD16(a, b, n) SARITH16(a, b, n, +) 12612 #define SUB16(a, b, n) SARITH16(a, b, n, -) 12613 #define ADD8(a, b, n) SARITH8(a, b, n, +) 12614 #define SUB8(a, b, n) SARITH8(a, b, n, -) 12615 #define PFX s 12616 #define ARITH_GE 12617 12618 #include "op_addsub.h" 12619 12620 /* Unsigned modulo arithmetic. */ 12621 #define ADD16(a, b, n) do { \ 12622 uint32_t sum; \ 12623 sum = (uint32_t)(uint16_t)(a) + (uint32_t)(uint16_t)(b); \ 12624 RESULT(sum, n, 16); \ 12625 if ((sum >> 16) == 1) \ 12626 ge |= 3 << (n * 2); \ 12627 } while(0) 12628 12629 #define ADD8(a, b, n) do { \ 12630 uint32_t sum; \ 12631 sum = (uint32_t)(uint8_t)(a) + (uint32_t)(uint8_t)(b); \ 12632 RESULT(sum, n, 8); \ 12633 if ((sum >> 8) == 1) \ 12634 ge |= 1 << n; \ 12635 } while(0) 12636 12637 #define SUB16(a, b, n) do { \ 12638 uint32_t sum; \ 12639 sum = (uint32_t)(uint16_t)(a) - (uint32_t)(uint16_t)(b); \ 12640 RESULT(sum, n, 16); \ 12641 if ((sum >> 16) == 0) \ 12642 ge |= 3 << (n * 2); \ 12643 } while(0) 12644 12645 #define SUB8(a, b, n) do { \ 12646 uint32_t sum; \ 12647 sum = (uint32_t)(uint8_t)(a) - (uint32_t)(uint8_t)(b); \ 12648 RESULT(sum, n, 8); \ 12649 if ((sum >> 8) == 0) \ 12650 ge |= 1 << n; \ 12651 } while(0) 12652 12653 #define PFX u 12654 #define ARITH_GE 12655 12656 #include "op_addsub.h" 12657 12658 /* Halved signed arithmetic. */ 12659 #define ADD16(a, b, n) \ 12660 RESULT(((int32_t)(int16_t)(a) + (int32_t)(int16_t)(b)) >> 1, n, 16) 12661 #define SUB16(a, b, n) \ 12662 RESULT(((int32_t)(int16_t)(a) - (int32_t)(int16_t)(b)) >> 1, n, 16) 12663 #define ADD8(a, b, n) \ 12664 RESULT(((int32_t)(int8_t)(a) + (int32_t)(int8_t)(b)) >> 1, n, 8) 12665 #define SUB8(a, b, n) \ 12666 RESULT(((int32_t)(int8_t)(a) - (int32_t)(int8_t)(b)) >> 1, n, 8) 12667 #define PFX sh 12668 12669 #include "op_addsub.h" 12670 12671 /* Halved unsigned arithmetic. */ 12672 #define ADD16(a, b, n) \ 12673 RESULT(((uint32_t)(uint16_t)(a) + (uint32_t)(uint16_t)(b)) >> 1, n, 16) 12674 #define SUB16(a, b, n) \ 12675 RESULT(((uint32_t)(uint16_t)(a) - (uint32_t)(uint16_t)(b)) >> 1, n, 16) 12676 #define ADD8(a, b, n) \ 12677 RESULT(((uint32_t)(uint8_t)(a) + (uint32_t)(uint8_t)(b)) >> 1, n, 8) 12678 #define SUB8(a, b, n) \ 12679 RESULT(((uint32_t)(uint8_t)(a) - (uint32_t)(uint8_t)(b)) >> 1, n, 8) 12680 #define PFX uh 12681 12682 #include "op_addsub.h" 12683 12684 static inline uint8_t do_usad(uint8_t a, uint8_t b) 12685 { 12686 if (a > b) 12687 return a - b; 12688 else 12689 return b - a; 12690 } 12691 12692 /* Unsigned sum of absolute byte differences. */ 12693 uint32_t HELPER(usad8)(uint32_t a, uint32_t b) 12694 { 12695 uint32_t sum; 12696 sum = do_usad(a, b); 12697 sum += do_usad(a >> 8, b >> 8); 12698 sum += do_usad(a >> 16, b >>16); 12699 sum += do_usad(a >> 24, b >> 24); 12700 return sum; 12701 } 12702 12703 /* For ARMv6 SEL instruction. */ 12704 uint32_t HELPER(sel_flags)(uint32_t flags, uint32_t a, uint32_t b) 12705 { 12706 uint32_t mask; 12707 12708 mask = 0; 12709 if (flags & 1) 12710 mask |= 0xff; 12711 if (flags & 2) 12712 mask |= 0xff00; 12713 if (flags & 4) 12714 mask |= 0xff0000; 12715 if (flags & 8) 12716 mask |= 0xff000000; 12717 return (a & mask) | (b & ~mask); 12718 } 12719 12720 /* CRC helpers. 12721 * The upper bytes of val (above the number specified by 'bytes') must have 12722 * been zeroed out by the caller. 12723 */ 12724 uint32_t HELPER(crc32)(uint32_t acc, uint32_t val, uint32_t bytes) 12725 { 12726 uint8_t buf[4]; 12727 12728 stl_le_p(buf, val); 12729 12730 /* zlib crc32 converts the accumulator and output to one's complement. */ 12731 return crc32(acc ^ 0xffffffff, buf, bytes) ^ 0xffffffff; 12732 } 12733 12734 uint32_t HELPER(crc32c)(uint32_t acc, uint32_t val, uint32_t bytes) 12735 { 12736 uint8_t buf[4]; 12737 12738 stl_le_p(buf, val); 12739 12740 /* Linux crc32c converts the output to one's complement. */ 12741 return crc32c(acc, buf, bytes) ^ 0xffffffff; 12742 } 12743 12744 /* Return the exception level to which FP-disabled exceptions should 12745 * be taken, or 0 if FP is enabled. 12746 */ 12747 int fp_exception_el(CPUARMState *env, int cur_el) 12748 { 12749 #ifndef CONFIG_USER_ONLY 12750 int fpen; 12751 12752 /* CPACR and the CPTR registers don't exist before v6, so FP is 12753 * always accessible 12754 */ 12755 if (!arm_feature(env, ARM_FEATURE_V6)) { 12756 return 0; 12757 } 12758 12759 /* The CPACR controls traps to EL1, or PL1 if we're 32 bit: 12760 * 0, 2 : trap EL0 and EL1/PL1 accesses 12761 * 1 : trap only EL0 accesses 12762 * 3 : trap no accesses 12763 */ 12764 fpen = extract32(env->cp15.cpacr_el1, 20, 2); 12765 switch (fpen) { 12766 case 0: 12767 case 2: 12768 if (cur_el == 0 || cur_el == 1) { 12769 /* Trap to PL1, which might be EL1 or EL3 */ 12770 if (arm_is_secure(env) && !arm_el_is_aa64(env, 3)) { 12771 return 3; 12772 } 12773 return 1; 12774 } 12775 if (cur_el == 3 && !is_a64(env)) { 12776 /* Secure PL1 running at EL3 */ 12777 return 3; 12778 } 12779 break; 12780 case 1: 12781 if (cur_el == 0) { 12782 return 1; 12783 } 12784 break; 12785 case 3: 12786 break; 12787 } 12788 12789 /* For the CPTR registers we don't need to guard with an ARM_FEATURE 12790 * check because zero bits in the registers mean "don't trap". 12791 */ 12792 12793 /* CPTR_EL2 : present in v7VE or v8 */ 12794 if (cur_el <= 2 && extract32(env->cp15.cptr_el[2], 10, 1) 12795 && !arm_is_secure_below_el3(env)) { 12796 /* Trap FP ops at EL2, NS-EL1 or NS-EL0 to EL2 */ 12797 return 2; 12798 } 12799 12800 /* CPTR_EL3 : present in v8 */ 12801 if (extract32(env->cp15.cptr_el[3], 10, 1)) { 12802 /* Trap all FP ops to EL3 */ 12803 return 3; 12804 } 12805 #endif 12806 return 0; 12807 } 12808 12809 ARMMMUIdx arm_v7m_mmu_idx_for_secstate_and_priv(CPUARMState *env, 12810 bool secstate, bool priv) 12811 { 12812 ARMMMUIdx mmu_idx = ARM_MMU_IDX_M; 12813 12814 if (priv) { 12815 mmu_idx |= ARM_MMU_IDX_M_PRIV; 12816 } 12817 12818 if (armv7m_nvic_neg_prio_requested(env->nvic, secstate)) { 12819 mmu_idx |= ARM_MMU_IDX_M_NEGPRI; 12820 } 12821 12822 if (secstate) { 12823 mmu_idx |= ARM_MMU_IDX_M_S; 12824 } 12825 12826 return mmu_idx; 12827 } 12828 12829 /* Return the MMU index for a v7M CPU in the specified security state */ 12830 ARMMMUIdx arm_v7m_mmu_idx_for_secstate(CPUARMState *env, bool secstate) 12831 { 12832 bool priv = arm_current_el(env) != 0; 12833 12834 return arm_v7m_mmu_idx_for_secstate_and_priv(env, secstate, priv); 12835 } 12836 12837 ARMMMUIdx arm_mmu_idx(CPUARMState *env) 12838 { 12839 int el; 12840 12841 if (arm_feature(env, ARM_FEATURE_M)) { 12842 return arm_v7m_mmu_idx_for_secstate(env, env->v7m.secure); 12843 } 12844 12845 el = arm_current_el(env); 12846 if (el < 2 && arm_is_secure_below_el3(env)) { 12847 return ARMMMUIdx_S1SE0 + el; 12848 } else { 12849 return ARMMMUIdx_S12NSE0 + el; 12850 } 12851 } 12852 12853 int cpu_mmu_index(CPUARMState *env, bool ifetch) 12854 { 12855 return arm_to_core_mmu_idx(arm_mmu_idx(env)); 12856 } 12857 12858 #ifndef CONFIG_USER_ONLY 12859 ARMMMUIdx arm_stage1_mmu_idx(CPUARMState *env) 12860 { 12861 return stage_1_mmu_idx(arm_mmu_idx(env)); 12862 } 12863 #endif 12864 12865 void cpu_get_tb_cpu_state(CPUARMState *env, target_ulong *pc, 12866 target_ulong *cs_base, uint32_t *pflags) 12867 { 12868 ARMMMUIdx mmu_idx = arm_mmu_idx(env); 12869 int current_el = arm_current_el(env); 12870 int fp_el = fp_exception_el(env, current_el); 12871 uint32_t flags = 0; 12872 12873 if (is_a64(env)) { 12874 ARMCPU *cpu = arm_env_get_cpu(env); 12875 uint64_t sctlr; 12876 12877 *pc = env->pc; 12878 flags = FIELD_DP32(flags, TBFLAG_ANY, AARCH64_STATE, 1); 12879 12880 /* Get control bits for tagged addresses. */ 12881 { 12882 ARMMMUIdx stage1 = stage_1_mmu_idx(mmu_idx); 12883 ARMVAParameters p0 = aa64_va_parameters_both(env, 0, stage1); 12884 int tbii, tbid; 12885 12886 /* FIXME: ARMv8.1-VHE S2 translation regime. */ 12887 if (regime_el(env, stage1) < 2) { 12888 ARMVAParameters p1 = aa64_va_parameters_both(env, -1, stage1); 12889 tbid = (p1.tbi << 1) | p0.tbi; 12890 tbii = tbid & ~((p1.tbid << 1) | p0.tbid); 12891 } else { 12892 tbid = p0.tbi; 12893 tbii = tbid & !p0.tbid; 12894 } 12895 12896 flags = FIELD_DP32(flags, TBFLAG_A64, TBII, tbii); 12897 flags = FIELD_DP32(flags, TBFLAG_A64, TBID, tbid); 12898 } 12899 12900 if (cpu_isar_feature(aa64_sve, cpu)) { 12901 int sve_el = sve_exception_el(env, current_el); 12902 uint32_t zcr_len; 12903 12904 /* If SVE is disabled, but FP is enabled, 12905 * then the effective len is 0. 12906 */ 12907 if (sve_el != 0 && fp_el == 0) { 12908 zcr_len = 0; 12909 } else { 12910 zcr_len = sve_zcr_len_for_el(env, current_el); 12911 } 12912 flags = FIELD_DP32(flags, TBFLAG_A64, SVEEXC_EL, sve_el); 12913 flags = FIELD_DP32(flags, TBFLAG_A64, ZCR_LEN, zcr_len); 12914 } 12915 12916 sctlr = arm_sctlr(env, current_el); 12917 12918 if (cpu_isar_feature(aa64_pauth, cpu)) { 12919 /* 12920 * In order to save space in flags, we record only whether 12921 * pauth is "inactive", meaning all insns are implemented as 12922 * a nop, or "active" when some action must be performed. 12923 * The decision of which action to take is left to a helper. 12924 */ 12925 if (sctlr & (SCTLR_EnIA | SCTLR_EnIB | SCTLR_EnDA | SCTLR_EnDB)) { 12926 flags = FIELD_DP32(flags, TBFLAG_A64, PAUTH_ACTIVE, 1); 12927 } 12928 } 12929 12930 if (cpu_isar_feature(aa64_bti, cpu)) { 12931 /* Note that SCTLR_EL[23].BT == SCTLR_BT1. */ 12932 if (sctlr & (current_el == 0 ? SCTLR_BT0 : SCTLR_BT1)) { 12933 flags = FIELD_DP32(flags, TBFLAG_A64, BT, 1); 12934 } 12935 flags = FIELD_DP32(flags, TBFLAG_A64, BTYPE, env->btype); 12936 } 12937 } else { 12938 *pc = env->regs[15]; 12939 flags = FIELD_DP32(flags, TBFLAG_A32, THUMB, env->thumb); 12940 flags = FIELD_DP32(flags, TBFLAG_A32, VECLEN, env->vfp.vec_len); 12941 flags = FIELD_DP32(flags, TBFLAG_A32, VECSTRIDE, env->vfp.vec_stride); 12942 flags = FIELD_DP32(flags, TBFLAG_A32, CONDEXEC, env->condexec_bits); 12943 flags = FIELD_DP32(flags, TBFLAG_A32, SCTLR_B, arm_sctlr_b(env)); 12944 flags = FIELD_DP32(flags, TBFLAG_A32, NS, !access_secure_reg(env)); 12945 if (env->vfp.xregs[ARM_VFP_FPEXC] & (1 << 30) 12946 || arm_el_is_aa64(env, 1)) { 12947 flags = FIELD_DP32(flags, TBFLAG_A32, VFPEN, 1); 12948 } 12949 flags = FIELD_DP32(flags, TBFLAG_A32, XSCALE_CPAR, env->cp15.c15_cpar); 12950 } 12951 12952 flags = FIELD_DP32(flags, TBFLAG_ANY, MMUIDX, arm_to_core_mmu_idx(mmu_idx)); 12953 12954 /* The SS_ACTIVE and PSTATE_SS bits correspond to the state machine 12955 * states defined in the ARM ARM for software singlestep: 12956 * SS_ACTIVE PSTATE.SS State 12957 * 0 x Inactive (the TB flag for SS is always 0) 12958 * 1 0 Active-pending 12959 * 1 1 Active-not-pending 12960 */ 12961 if (arm_singlestep_active(env)) { 12962 flags = FIELD_DP32(flags, TBFLAG_ANY, SS_ACTIVE, 1); 12963 if (is_a64(env)) { 12964 if (env->pstate & PSTATE_SS) { 12965 flags = FIELD_DP32(flags, TBFLAG_ANY, PSTATE_SS, 1); 12966 } 12967 } else { 12968 if (env->uncached_cpsr & PSTATE_SS) { 12969 flags = FIELD_DP32(flags, TBFLAG_ANY, PSTATE_SS, 1); 12970 } 12971 } 12972 } 12973 if (arm_cpu_data_is_big_endian(env)) { 12974 flags = FIELD_DP32(flags, TBFLAG_ANY, BE_DATA, 1); 12975 } 12976 flags = FIELD_DP32(flags, TBFLAG_ANY, FPEXC_EL, fp_el); 12977 12978 if (arm_v7m_is_handler_mode(env)) { 12979 flags = FIELD_DP32(flags, TBFLAG_A32, HANDLER, 1); 12980 } 12981 12982 /* v8M always applies stack limit checks unless CCR.STKOFHFNMIGN is 12983 * suppressing them because the requested execution priority is less than 0. 12984 */ 12985 if (arm_feature(env, ARM_FEATURE_V8) && 12986 arm_feature(env, ARM_FEATURE_M) && 12987 !((mmu_idx & ARM_MMU_IDX_M_NEGPRI) && 12988 (env->v7m.ccr[env->v7m.secure] & R_V7M_CCR_STKOFHFNMIGN_MASK))) { 12989 flags = FIELD_DP32(flags, TBFLAG_A32, STACKCHECK, 1); 12990 } 12991 12992 *pflags = flags; 12993 *cs_base = 0; 12994 } 12995 12996 #ifdef TARGET_AARCH64 12997 /* 12998 * The manual says that when SVE is enabled and VQ is widened the 12999 * implementation is allowed to zero the previously inaccessible 13000 * portion of the registers. The corollary to that is that when 13001 * SVE is enabled and VQ is narrowed we are also allowed to zero 13002 * the now inaccessible portion of the registers. 13003 * 13004 * The intent of this is that no predicate bit beyond VQ is ever set. 13005 * Which means that some operations on predicate registers themselves 13006 * may operate on full uint64_t or even unrolled across the maximum 13007 * uint64_t[4]. Performing 4 bits of host arithmetic unconditionally 13008 * may well be cheaper than conditionals to restrict the operation 13009 * to the relevant portion of a uint16_t[16]. 13010 */ 13011 void aarch64_sve_narrow_vq(CPUARMState *env, unsigned vq) 13012 { 13013 int i, j; 13014 uint64_t pmask; 13015 13016 assert(vq >= 1 && vq <= ARM_MAX_VQ); 13017 assert(vq <= arm_env_get_cpu(env)->sve_max_vq); 13018 13019 /* Zap the high bits of the zregs. */ 13020 for (i = 0; i < 32; i++) { 13021 memset(&env->vfp.zregs[i].d[2 * vq], 0, 16 * (ARM_MAX_VQ - vq)); 13022 } 13023 13024 /* Zap the high bits of the pregs and ffr. */ 13025 pmask = 0; 13026 if (vq & 3) { 13027 pmask = ~(-1ULL << (16 * (vq & 3))); 13028 } 13029 for (j = vq / 4; j < ARM_MAX_VQ / 4; j++) { 13030 for (i = 0; i < 17; ++i) { 13031 env->vfp.pregs[i].p[j] &= pmask; 13032 } 13033 pmask = 0; 13034 } 13035 } 13036 13037 /* 13038 * Notice a change in SVE vector size when changing EL. 13039 */ 13040 void aarch64_sve_change_el(CPUARMState *env, int old_el, 13041 int new_el, bool el0_a64) 13042 { 13043 ARMCPU *cpu = arm_env_get_cpu(env); 13044 int old_len, new_len; 13045 bool old_a64, new_a64; 13046 13047 /* Nothing to do if no SVE. */ 13048 if (!cpu_isar_feature(aa64_sve, cpu)) { 13049 return; 13050 } 13051 13052 /* Nothing to do if FP is disabled in either EL. */ 13053 if (fp_exception_el(env, old_el) || fp_exception_el(env, new_el)) { 13054 return; 13055 } 13056 13057 /* 13058 * DDI0584A.d sec 3.2: "If SVE instructions are disabled or trapped 13059 * at ELx, or not available because the EL is in AArch32 state, then 13060 * for all purposes other than a direct read, the ZCR_ELx.LEN field 13061 * has an effective value of 0". 13062 * 13063 * Consider EL2 (aa64, vq=4) -> EL0 (aa32) -> EL1 (aa64, vq=0). 13064 * If we ignore aa32 state, we would fail to see the vq4->vq0 transition 13065 * from EL2->EL1. Thus we go ahead and narrow when entering aa32 so that 13066 * we already have the correct register contents when encountering the 13067 * vq0->vq0 transition between EL0->EL1. 13068 */ 13069 old_a64 = old_el ? arm_el_is_aa64(env, old_el) : el0_a64; 13070 old_len = (old_a64 && !sve_exception_el(env, old_el) 13071 ? sve_zcr_len_for_el(env, old_el) : 0); 13072 new_a64 = new_el ? arm_el_is_aa64(env, new_el) : el0_a64; 13073 new_len = (new_a64 && !sve_exception_el(env, new_el) 13074 ? sve_zcr_len_for_el(env, new_el) : 0); 13075 13076 /* When changing vector length, clear inaccessible state. */ 13077 if (new_len < old_len) { 13078 aarch64_sve_narrow_vq(env, new_len + 1); 13079 } 13080 } 13081 #endif 13082