1 /* 2 * ARM generic helpers. 3 * 4 * This code is licensed under the GNU GPL v2 or later. 5 * 6 * SPDX-License-Identifier: GPL-2.0-or-later 7 */ 8 9 #include "qemu/osdep.h" 10 #include "qemu/units.h" 11 #include "target/arm/idau.h" 12 #include "trace.h" 13 #include "cpu.h" 14 #include "internals.h" 15 #include "exec/helper-proto.h" 16 #include "qemu/host-utils.h" 17 #include "qemu/main-loop.h" 18 #include "qemu/timer.h" 19 #include "qemu/bitops.h" 20 #include "qemu/crc32c.h" 21 #include "qemu/qemu-print.h" 22 #include "exec/exec-all.h" 23 #include <zlib.h> /* For crc32 */ 24 #include "hw/irq.h" 25 #include "semihosting/semihost.h" 26 #include "sysemu/cpus.h" 27 #include "sysemu/cpu-timers.h" 28 #include "sysemu/kvm.h" 29 #include "sysemu/tcg.h" 30 #include "qemu/range.h" 31 #include "qapi/qapi-commands-machine-target.h" 32 #include "qapi/error.h" 33 #include "qemu/guest-random.h" 34 #ifdef CONFIG_TCG 35 #include "arm_ldst.h" 36 #include "exec/cpu_ldst.h" 37 #include "semihosting/common-semi.h" 38 #endif 39 40 #define ARM_CPU_FREQ 1000000000 /* FIXME: 1 GHz, should be configurable */ 41 #define PMCR_NUM_COUNTERS 4 /* QEMU IMPDEF choice */ 42 43 #ifndef CONFIG_USER_ONLY 44 45 static bool get_phys_addr_lpae(CPUARMState *env, uint64_t address, 46 MMUAccessType access_type, ARMMMUIdx mmu_idx, 47 bool s1_is_el0, 48 hwaddr *phys_ptr, MemTxAttrs *txattrs, int *prot, 49 target_ulong *page_size_ptr, 50 ARMMMUFaultInfo *fi, ARMCacheAttrs *cacheattrs) 51 __attribute__((nonnull)); 52 #endif 53 54 static void switch_mode(CPUARMState *env, int mode); 55 static int aa64_va_parameter_tbi(uint64_t tcr, ARMMMUIdx mmu_idx); 56 57 static uint64_t raw_read(CPUARMState *env, const ARMCPRegInfo *ri) 58 { 59 assert(ri->fieldoffset); 60 if (cpreg_field_is_64bit(ri)) { 61 return CPREG_FIELD64(env, ri); 62 } else { 63 return CPREG_FIELD32(env, ri); 64 } 65 } 66 67 static void raw_write(CPUARMState *env, const ARMCPRegInfo *ri, 68 uint64_t value) 69 { 70 assert(ri->fieldoffset); 71 if (cpreg_field_is_64bit(ri)) { 72 CPREG_FIELD64(env, ri) = value; 73 } else { 74 CPREG_FIELD32(env, ri) = value; 75 } 76 } 77 78 static void *raw_ptr(CPUARMState *env, const ARMCPRegInfo *ri) 79 { 80 return (char *)env + ri->fieldoffset; 81 } 82 83 uint64_t read_raw_cp_reg(CPUARMState *env, const ARMCPRegInfo *ri) 84 { 85 /* Raw read of a coprocessor register (as needed for migration, etc). */ 86 if (ri->type & ARM_CP_CONST) { 87 return ri->resetvalue; 88 } else if (ri->raw_readfn) { 89 return ri->raw_readfn(env, ri); 90 } else if (ri->readfn) { 91 return ri->readfn(env, ri); 92 } else { 93 return raw_read(env, ri); 94 } 95 } 96 97 static void write_raw_cp_reg(CPUARMState *env, const ARMCPRegInfo *ri, 98 uint64_t v) 99 { 100 /* Raw write of a coprocessor register (as needed for migration, etc). 101 * Note that constant registers are treated as write-ignored; the 102 * caller should check for success by whether a readback gives the 103 * value written. 104 */ 105 if (ri->type & ARM_CP_CONST) { 106 return; 107 } else if (ri->raw_writefn) { 108 ri->raw_writefn(env, ri, v); 109 } else if (ri->writefn) { 110 ri->writefn(env, ri, v); 111 } else { 112 raw_write(env, ri, v); 113 } 114 } 115 116 static bool raw_accessors_invalid(const ARMCPRegInfo *ri) 117 { 118 /* Return true if the regdef would cause an assertion if you called 119 * read_raw_cp_reg() or write_raw_cp_reg() on it (ie if it is a 120 * program bug for it not to have the NO_RAW flag). 121 * NB that returning false here doesn't necessarily mean that calling 122 * read/write_raw_cp_reg() is safe, because we can't distinguish "has 123 * read/write access functions which are safe for raw use" from "has 124 * read/write access functions which have side effects but has forgotten 125 * to provide raw access functions". 126 * The tests here line up with the conditions in read/write_raw_cp_reg() 127 * and assertions in raw_read()/raw_write(). 128 */ 129 if ((ri->type & ARM_CP_CONST) || 130 ri->fieldoffset || 131 ((ri->raw_writefn || ri->writefn) && (ri->raw_readfn || ri->readfn))) { 132 return false; 133 } 134 return true; 135 } 136 137 bool write_cpustate_to_list(ARMCPU *cpu, bool kvm_sync) 138 { 139 /* Write the coprocessor state from cpu->env to the (index,value) list. */ 140 int i; 141 bool ok = true; 142 143 for (i = 0; i < cpu->cpreg_array_len; i++) { 144 uint32_t regidx = kvm_to_cpreg_id(cpu->cpreg_indexes[i]); 145 const ARMCPRegInfo *ri; 146 uint64_t newval; 147 148 ri = get_arm_cp_reginfo(cpu->cp_regs, regidx); 149 if (!ri) { 150 ok = false; 151 continue; 152 } 153 if (ri->type & ARM_CP_NO_RAW) { 154 continue; 155 } 156 157 newval = read_raw_cp_reg(&cpu->env, ri); 158 if (kvm_sync) { 159 /* 160 * Only sync if the previous list->cpustate sync succeeded. 161 * Rather than tracking the success/failure state for every 162 * item in the list, we just recheck "does the raw write we must 163 * have made in write_list_to_cpustate() read back OK" here. 164 */ 165 uint64_t oldval = cpu->cpreg_values[i]; 166 167 if (oldval == newval) { 168 continue; 169 } 170 171 write_raw_cp_reg(&cpu->env, ri, oldval); 172 if (read_raw_cp_reg(&cpu->env, ri) != oldval) { 173 continue; 174 } 175 176 write_raw_cp_reg(&cpu->env, ri, newval); 177 } 178 cpu->cpreg_values[i] = newval; 179 } 180 return ok; 181 } 182 183 bool write_list_to_cpustate(ARMCPU *cpu) 184 { 185 int i; 186 bool ok = true; 187 188 for (i = 0; i < cpu->cpreg_array_len; i++) { 189 uint32_t regidx = kvm_to_cpreg_id(cpu->cpreg_indexes[i]); 190 uint64_t v = cpu->cpreg_values[i]; 191 const ARMCPRegInfo *ri; 192 193 ri = get_arm_cp_reginfo(cpu->cp_regs, regidx); 194 if (!ri) { 195 ok = false; 196 continue; 197 } 198 if (ri->type & ARM_CP_NO_RAW) { 199 continue; 200 } 201 /* Write value and confirm it reads back as written 202 * (to catch read-only registers and partially read-only 203 * registers where the incoming migration value doesn't match) 204 */ 205 write_raw_cp_reg(&cpu->env, ri, v); 206 if (read_raw_cp_reg(&cpu->env, ri) != v) { 207 ok = false; 208 } 209 } 210 return ok; 211 } 212 213 static void add_cpreg_to_list(gpointer key, gpointer opaque) 214 { 215 ARMCPU *cpu = opaque; 216 uint64_t regidx; 217 const ARMCPRegInfo *ri; 218 219 regidx = *(uint32_t *)key; 220 ri = get_arm_cp_reginfo(cpu->cp_regs, regidx); 221 222 if (!(ri->type & (ARM_CP_NO_RAW|ARM_CP_ALIAS))) { 223 cpu->cpreg_indexes[cpu->cpreg_array_len] = cpreg_to_kvm_id(regidx); 224 /* The value array need not be initialized at this point */ 225 cpu->cpreg_array_len++; 226 } 227 } 228 229 static void count_cpreg(gpointer key, gpointer opaque) 230 { 231 ARMCPU *cpu = opaque; 232 uint64_t regidx; 233 const ARMCPRegInfo *ri; 234 235 regidx = *(uint32_t *)key; 236 ri = get_arm_cp_reginfo(cpu->cp_regs, regidx); 237 238 if (!(ri->type & (ARM_CP_NO_RAW|ARM_CP_ALIAS))) { 239 cpu->cpreg_array_len++; 240 } 241 } 242 243 static gint cpreg_key_compare(gconstpointer a, gconstpointer b) 244 { 245 uint64_t aidx = cpreg_to_kvm_id(*(uint32_t *)a); 246 uint64_t bidx = cpreg_to_kvm_id(*(uint32_t *)b); 247 248 if (aidx > bidx) { 249 return 1; 250 } 251 if (aidx < bidx) { 252 return -1; 253 } 254 return 0; 255 } 256 257 void init_cpreg_list(ARMCPU *cpu) 258 { 259 /* Initialise the cpreg_tuples[] array based on the cp_regs hash. 260 * Note that we require cpreg_tuples[] to be sorted by key ID. 261 */ 262 GList *keys; 263 int arraylen; 264 265 keys = g_hash_table_get_keys(cpu->cp_regs); 266 keys = g_list_sort(keys, cpreg_key_compare); 267 268 cpu->cpreg_array_len = 0; 269 270 g_list_foreach(keys, count_cpreg, cpu); 271 272 arraylen = cpu->cpreg_array_len; 273 cpu->cpreg_indexes = g_new(uint64_t, arraylen); 274 cpu->cpreg_values = g_new(uint64_t, arraylen); 275 cpu->cpreg_vmstate_indexes = g_new(uint64_t, arraylen); 276 cpu->cpreg_vmstate_values = g_new(uint64_t, arraylen); 277 cpu->cpreg_vmstate_array_len = cpu->cpreg_array_len; 278 cpu->cpreg_array_len = 0; 279 280 g_list_foreach(keys, add_cpreg_to_list, cpu); 281 282 assert(cpu->cpreg_array_len == arraylen); 283 284 g_list_free(keys); 285 } 286 287 /* 288 * Some registers are not accessible from AArch32 EL3 if SCR.NS == 0. 289 */ 290 static CPAccessResult access_el3_aa32ns(CPUARMState *env, 291 const ARMCPRegInfo *ri, 292 bool isread) 293 { 294 if (!is_a64(env) && arm_current_el(env) == 3 && 295 arm_is_secure_below_el3(env)) { 296 return CP_ACCESS_TRAP_UNCATEGORIZED; 297 } 298 return CP_ACCESS_OK; 299 } 300 301 /* Some secure-only AArch32 registers trap to EL3 if used from 302 * Secure EL1 (but are just ordinary UNDEF in other non-EL3 contexts). 303 * Note that an access from Secure EL1 can only happen if EL3 is AArch64. 304 * We assume that the .access field is set to PL1_RW. 305 */ 306 static CPAccessResult access_trap_aa32s_el1(CPUARMState *env, 307 const ARMCPRegInfo *ri, 308 bool isread) 309 { 310 if (arm_current_el(env) == 3) { 311 return CP_ACCESS_OK; 312 } 313 if (arm_is_secure_below_el3(env)) { 314 if (env->cp15.scr_el3 & SCR_EEL2) { 315 return CP_ACCESS_TRAP_EL2; 316 } 317 return CP_ACCESS_TRAP_EL3; 318 } 319 /* This will be EL1 NS and EL2 NS, which just UNDEF */ 320 return CP_ACCESS_TRAP_UNCATEGORIZED; 321 } 322 323 static uint64_t arm_mdcr_el2_eff(CPUARMState *env) 324 { 325 return arm_is_el2_enabled(env) ? env->cp15.mdcr_el2 : 0; 326 } 327 328 /* Check for traps to "powerdown debug" registers, which are controlled 329 * by MDCR.TDOSA 330 */ 331 static CPAccessResult access_tdosa(CPUARMState *env, const ARMCPRegInfo *ri, 332 bool isread) 333 { 334 int el = arm_current_el(env); 335 uint64_t mdcr_el2 = arm_mdcr_el2_eff(env); 336 bool mdcr_el2_tdosa = (mdcr_el2 & MDCR_TDOSA) || (mdcr_el2 & MDCR_TDE) || 337 (arm_hcr_el2_eff(env) & HCR_TGE); 338 339 if (el < 2 && mdcr_el2_tdosa) { 340 return CP_ACCESS_TRAP_EL2; 341 } 342 if (el < 3 && (env->cp15.mdcr_el3 & MDCR_TDOSA)) { 343 return CP_ACCESS_TRAP_EL3; 344 } 345 return CP_ACCESS_OK; 346 } 347 348 /* Check for traps to "debug ROM" registers, which are controlled 349 * by MDCR_EL2.TDRA for EL2 but by the more general MDCR_EL3.TDA for EL3. 350 */ 351 static CPAccessResult access_tdra(CPUARMState *env, const ARMCPRegInfo *ri, 352 bool isread) 353 { 354 int el = arm_current_el(env); 355 uint64_t mdcr_el2 = arm_mdcr_el2_eff(env); 356 bool mdcr_el2_tdra = (mdcr_el2 & MDCR_TDRA) || (mdcr_el2 & MDCR_TDE) || 357 (arm_hcr_el2_eff(env) & HCR_TGE); 358 359 if (el < 2 && mdcr_el2_tdra) { 360 return CP_ACCESS_TRAP_EL2; 361 } 362 if (el < 3 && (env->cp15.mdcr_el3 & MDCR_TDA)) { 363 return CP_ACCESS_TRAP_EL3; 364 } 365 return CP_ACCESS_OK; 366 } 367 368 /* Check for traps to general debug registers, which are controlled 369 * by MDCR_EL2.TDA for EL2 and MDCR_EL3.TDA for EL3. 370 */ 371 static CPAccessResult access_tda(CPUARMState *env, const ARMCPRegInfo *ri, 372 bool isread) 373 { 374 int el = arm_current_el(env); 375 uint64_t mdcr_el2 = arm_mdcr_el2_eff(env); 376 bool mdcr_el2_tda = (mdcr_el2 & MDCR_TDA) || (mdcr_el2 & MDCR_TDE) || 377 (arm_hcr_el2_eff(env) & HCR_TGE); 378 379 if (el < 2 && mdcr_el2_tda) { 380 return CP_ACCESS_TRAP_EL2; 381 } 382 if (el < 3 && (env->cp15.mdcr_el3 & MDCR_TDA)) { 383 return CP_ACCESS_TRAP_EL3; 384 } 385 return CP_ACCESS_OK; 386 } 387 388 /* Check for traps to performance monitor registers, which are controlled 389 * by MDCR_EL2.TPM for EL2 and MDCR_EL3.TPM for EL3. 390 */ 391 static CPAccessResult access_tpm(CPUARMState *env, const ARMCPRegInfo *ri, 392 bool isread) 393 { 394 int el = arm_current_el(env); 395 uint64_t mdcr_el2 = arm_mdcr_el2_eff(env); 396 397 if (el < 2 && (mdcr_el2 & MDCR_TPM)) { 398 return CP_ACCESS_TRAP_EL2; 399 } 400 if (el < 3 && (env->cp15.mdcr_el3 & MDCR_TPM)) { 401 return CP_ACCESS_TRAP_EL3; 402 } 403 return CP_ACCESS_OK; 404 } 405 406 /* Check for traps from EL1 due to HCR_EL2.TVM and HCR_EL2.TRVM. */ 407 static CPAccessResult access_tvm_trvm(CPUARMState *env, const ARMCPRegInfo *ri, 408 bool isread) 409 { 410 if (arm_current_el(env) == 1) { 411 uint64_t trap = isread ? HCR_TRVM : HCR_TVM; 412 if (arm_hcr_el2_eff(env) & trap) { 413 return CP_ACCESS_TRAP_EL2; 414 } 415 } 416 return CP_ACCESS_OK; 417 } 418 419 /* Check for traps from EL1 due to HCR_EL2.TSW. */ 420 static CPAccessResult access_tsw(CPUARMState *env, const ARMCPRegInfo *ri, 421 bool isread) 422 { 423 if (arm_current_el(env) == 1 && (arm_hcr_el2_eff(env) & HCR_TSW)) { 424 return CP_ACCESS_TRAP_EL2; 425 } 426 return CP_ACCESS_OK; 427 } 428 429 /* Check for traps from EL1 due to HCR_EL2.TACR. */ 430 static CPAccessResult access_tacr(CPUARMState *env, const ARMCPRegInfo *ri, 431 bool isread) 432 { 433 if (arm_current_el(env) == 1 && (arm_hcr_el2_eff(env) & HCR_TACR)) { 434 return CP_ACCESS_TRAP_EL2; 435 } 436 return CP_ACCESS_OK; 437 } 438 439 /* Check for traps from EL1 due to HCR_EL2.TTLB. */ 440 static CPAccessResult access_ttlb(CPUARMState *env, const ARMCPRegInfo *ri, 441 bool isread) 442 { 443 if (arm_current_el(env) == 1 && (arm_hcr_el2_eff(env) & HCR_TTLB)) { 444 return CP_ACCESS_TRAP_EL2; 445 } 446 return CP_ACCESS_OK; 447 } 448 449 static void dacr_write(CPUARMState *env, const ARMCPRegInfo *ri, uint64_t value) 450 { 451 ARMCPU *cpu = env_archcpu(env); 452 453 raw_write(env, ri, value); 454 tlb_flush(CPU(cpu)); /* Flush TLB as domain not tracked in TLB */ 455 } 456 457 static void fcse_write(CPUARMState *env, const ARMCPRegInfo *ri, uint64_t value) 458 { 459 ARMCPU *cpu = env_archcpu(env); 460 461 if (raw_read(env, ri) != value) { 462 /* Unlike real hardware the qemu TLB uses virtual addresses, 463 * not modified virtual addresses, so this causes a TLB flush. 464 */ 465 tlb_flush(CPU(cpu)); 466 raw_write(env, ri, value); 467 } 468 } 469 470 static void contextidr_write(CPUARMState *env, const ARMCPRegInfo *ri, 471 uint64_t value) 472 { 473 ARMCPU *cpu = env_archcpu(env); 474 475 if (raw_read(env, ri) != value && !arm_feature(env, ARM_FEATURE_PMSA) 476 && !extended_addresses_enabled(env)) { 477 /* For VMSA (when not using the LPAE long descriptor page table 478 * format) this register includes the ASID, so do a TLB flush. 479 * For PMSA it is purely a process ID and no action is needed. 480 */ 481 tlb_flush(CPU(cpu)); 482 } 483 raw_write(env, ri, value); 484 } 485 486 /* IS variants of TLB operations must affect all cores */ 487 static void tlbiall_is_write(CPUARMState *env, const ARMCPRegInfo *ri, 488 uint64_t value) 489 { 490 CPUState *cs = env_cpu(env); 491 492 tlb_flush_all_cpus_synced(cs); 493 } 494 495 static void tlbiasid_is_write(CPUARMState *env, const ARMCPRegInfo *ri, 496 uint64_t value) 497 { 498 CPUState *cs = env_cpu(env); 499 500 tlb_flush_all_cpus_synced(cs); 501 } 502 503 static void tlbimva_is_write(CPUARMState *env, const ARMCPRegInfo *ri, 504 uint64_t value) 505 { 506 CPUState *cs = env_cpu(env); 507 508 tlb_flush_page_all_cpus_synced(cs, value & TARGET_PAGE_MASK); 509 } 510 511 static void tlbimvaa_is_write(CPUARMState *env, const ARMCPRegInfo *ri, 512 uint64_t value) 513 { 514 CPUState *cs = env_cpu(env); 515 516 tlb_flush_page_all_cpus_synced(cs, value & TARGET_PAGE_MASK); 517 } 518 519 /* 520 * Non-IS variants of TLB operations are upgraded to 521 * IS versions if we are at EL1 and HCR_EL2.FB is effectively set to 522 * force broadcast of these operations. 523 */ 524 static bool tlb_force_broadcast(CPUARMState *env) 525 { 526 return arm_current_el(env) == 1 && (arm_hcr_el2_eff(env) & HCR_FB); 527 } 528 529 static void tlbiall_write(CPUARMState *env, const ARMCPRegInfo *ri, 530 uint64_t value) 531 { 532 /* Invalidate all (TLBIALL) */ 533 CPUState *cs = env_cpu(env); 534 535 if (tlb_force_broadcast(env)) { 536 tlb_flush_all_cpus_synced(cs); 537 } else { 538 tlb_flush(cs); 539 } 540 } 541 542 static void tlbimva_write(CPUARMState *env, const ARMCPRegInfo *ri, 543 uint64_t value) 544 { 545 /* Invalidate single TLB entry by MVA and ASID (TLBIMVA) */ 546 CPUState *cs = env_cpu(env); 547 548 value &= TARGET_PAGE_MASK; 549 if (tlb_force_broadcast(env)) { 550 tlb_flush_page_all_cpus_synced(cs, value); 551 } else { 552 tlb_flush_page(cs, value); 553 } 554 } 555 556 static void tlbiasid_write(CPUARMState *env, const ARMCPRegInfo *ri, 557 uint64_t value) 558 { 559 /* Invalidate by ASID (TLBIASID) */ 560 CPUState *cs = env_cpu(env); 561 562 if (tlb_force_broadcast(env)) { 563 tlb_flush_all_cpus_synced(cs); 564 } else { 565 tlb_flush(cs); 566 } 567 } 568 569 static void tlbimvaa_write(CPUARMState *env, const ARMCPRegInfo *ri, 570 uint64_t value) 571 { 572 /* Invalidate single entry by MVA, all ASIDs (TLBIMVAA) */ 573 CPUState *cs = env_cpu(env); 574 575 value &= TARGET_PAGE_MASK; 576 if (tlb_force_broadcast(env)) { 577 tlb_flush_page_all_cpus_synced(cs, value); 578 } else { 579 tlb_flush_page(cs, value); 580 } 581 } 582 583 static void tlbiall_nsnh_write(CPUARMState *env, const ARMCPRegInfo *ri, 584 uint64_t value) 585 { 586 CPUState *cs = env_cpu(env); 587 588 tlb_flush_by_mmuidx(cs, 589 ARMMMUIdxBit_E10_1 | 590 ARMMMUIdxBit_E10_1_PAN | 591 ARMMMUIdxBit_E10_0); 592 } 593 594 static void tlbiall_nsnh_is_write(CPUARMState *env, const ARMCPRegInfo *ri, 595 uint64_t value) 596 { 597 CPUState *cs = env_cpu(env); 598 599 tlb_flush_by_mmuidx_all_cpus_synced(cs, 600 ARMMMUIdxBit_E10_1 | 601 ARMMMUIdxBit_E10_1_PAN | 602 ARMMMUIdxBit_E10_0); 603 } 604 605 606 static void tlbiall_hyp_write(CPUARMState *env, const ARMCPRegInfo *ri, 607 uint64_t value) 608 { 609 CPUState *cs = env_cpu(env); 610 611 tlb_flush_by_mmuidx(cs, ARMMMUIdxBit_E2); 612 } 613 614 static void tlbiall_hyp_is_write(CPUARMState *env, const ARMCPRegInfo *ri, 615 uint64_t value) 616 { 617 CPUState *cs = env_cpu(env); 618 619 tlb_flush_by_mmuidx_all_cpus_synced(cs, ARMMMUIdxBit_E2); 620 } 621 622 static void tlbimva_hyp_write(CPUARMState *env, const ARMCPRegInfo *ri, 623 uint64_t value) 624 { 625 CPUState *cs = env_cpu(env); 626 uint64_t pageaddr = value & ~MAKE_64BIT_MASK(0, 12); 627 628 tlb_flush_page_by_mmuidx(cs, pageaddr, ARMMMUIdxBit_E2); 629 } 630 631 static void tlbimva_hyp_is_write(CPUARMState *env, const ARMCPRegInfo *ri, 632 uint64_t value) 633 { 634 CPUState *cs = env_cpu(env); 635 uint64_t pageaddr = value & ~MAKE_64BIT_MASK(0, 12); 636 637 tlb_flush_page_by_mmuidx_all_cpus_synced(cs, pageaddr, 638 ARMMMUIdxBit_E2); 639 } 640 641 static const ARMCPRegInfo cp_reginfo[] = { 642 /* Define the secure and non-secure FCSE identifier CP registers 643 * separately because there is no secure bank in V8 (no _EL3). This allows 644 * the secure register to be properly reset and migrated. There is also no 645 * v8 EL1 version of the register so the non-secure instance stands alone. 646 */ 647 { .name = "FCSEIDR", 648 .cp = 15, .opc1 = 0, .crn = 13, .crm = 0, .opc2 = 0, 649 .access = PL1_RW, .secure = ARM_CP_SECSTATE_NS, 650 .fieldoffset = offsetof(CPUARMState, cp15.fcseidr_ns), 651 .resetvalue = 0, .writefn = fcse_write, .raw_writefn = raw_write, }, 652 { .name = "FCSEIDR_S", 653 .cp = 15, .opc1 = 0, .crn = 13, .crm = 0, .opc2 = 0, 654 .access = PL1_RW, .secure = ARM_CP_SECSTATE_S, 655 .fieldoffset = offsetof(CPUARMState, cp15.fcseidr_s), 656 .resetvalue = 0, .writefn = fcse_write, .raw_writefn = raw_write, }, 657 /* Define the secure and non-secure context identifier CP registers 658 * separately because there is no secure bank in V8 (no _EL3). This allows 659 * the secure register to be properly reset and migrated. In the 660 * non-secure case, the 32-bit register will have reset and migration 661 * disabled during registration as it is handled by the 64-bit instance. 662 */ 663 { .name = "CONTEXTIDR_EL1", .state = ARM_CP_STATE_BOTH, 664 .opc0 = 3, .opc1 = 0, .crn = 13, .crm = 0, .opc2 = 1, 665 .access = PL1_RW, .accessfn = access_tvm_trvm, 666 .secure = ARM_CP_SECSTATE_NS, 667 .fieldoffset = offsetof(CPUARMState, cp15.contextidr_el[1]), 668 .resetvalue = 0, .writefn = contextidr_write, .raw_writefn = raw_write, }, 669 { .name = "CONTEXTIDR_S", .state = ARM_CP_STATE_AA32, 670 .cp = 15, .opc1 = 0, .crn = 13, .crm = 0, .opc2 = 1, 671 .access = PL1_RW, .accessfn = access_tvm_trvm, 672 .secure = ARM_CP_SECSTATE_S, 673 .fieldoffset = offsetof(CPUARMState, cp15.contextidr_s), 674 .resetvalue = 0, .writefn = contextidr_write, .raw_writefn = raw_write, }, 675 REGINFO_SENTINEL 676 }; 677 678 static const ARMCPRegInfo not_v8_cp_reginfo[] = { 679 /* NB: Some of these registers exist in v8 but with more precise 680 * definitions that don't use CP_ANY wildcards (mostly in v8_cp_reginfo[]). 681 */ 682 /* MMU Domain access control / MPU write buffer control */ 683 { .name = "DACR", 684 .cp = 15, .opc1 = CP_ANY, .crn = 3, .crm = CP_ANY, .opc2 = CP_ANY, 685 .access = PL1_RW, .accessfn = access_tvm_trvm, .resetvalue = 0, 686 .writefn = dacr_write, .raw_writefn = raw_write, 687 .bank_fieldoffsets = { offsetoflow32(CPUARMState, cp15.dacr_s), 688 offsetoflow32(CPUARMState, cp15.dacr_ns) } }, 689 /* ARMv7 allocates a range of implementation defined TLB LOCKDOWN regs. 690 * For v6 and v5, these mappings are overly broad. 691 */ 692 { .name = "TLB_LOCKDOWN", .cp = 15, .crn = 10, .crm = 0, 693 .opc1 = CP_ANY, .opc2 = CP_ANY, .access = PL1_RW, .type = ARM_CP_NOP }, 694 { .name = "TLB_LOCKDOWN", .cp = 15, .crn = 10, .crm = 1, 695 .opc1 = CP_ANY, .opc2 = CP_ANY, .access = PL1_RW, .type = ARM_CP_NOP }, 696 { .name = "TLB_LOCKDOWN", .cp = 15, .crn = 10, .crm = 4, 697 .opc1 = CP_ANY, .opc2 = CP_ANY, .access = PL1_RW, .type = ARM_CP_NOP }, 698 { .name = "TLB_LOCKDOWN", .cp = 15, .crn = 10, .crm = 8, 699 .opc1 = CP_ANY, .opc2 = CP_ANY, .access = PL1_RW, .type = ARM_CP_NOP }, 700 /* Cache maintenance ops; some of this space may be overridden later. */ 701 { .name = "CACHEMAINT", .cp = 15, .crn = 7, .crm = CP_ANY, 702 .opc1 = 0, .opc2 = CP_ANY, .access = PL1_W, 703 .type = ARM_CP_NOP | ARM_CP_OVERRIDE }, 704 REGINFO_SENTINEL 705 }; 706 707 static const ARMCPRegInfo not_v6_cp_reginfo[] = { 708 /* Not all pre-v6 cores implemented this WFI, so this is slightly 709 * over-broad. 710 */ 711 { .name = "WFI_v5", .cp = 15, .crn = 7, .crm = 8, .opc1 = 0, .opc2 = 2, 712 .access = PL1_W, .type = ARM_CP_WFI }, 713 REGINFO_SENTINEL 714 }; 715 716 static const ARMCPRegInfo not_v7_cp_reginfo[] = { 717 /* Standard v6 WFI (also used in some pre-v6 cores); not in v7 (which 718 * is UNPREDICTABLE; we choose to NOP as most implementations do). 719 */ 720 { .name = "WFI_v6", .cp = 15, .crn = 7, .crm = 0, .opc1 = 0, .opc2 = 4, 721 .access = PL1_W, .type = ARM_CP_WFI }, 722 /* L1 cache lockdown. Not architectural in v6 and earlier but in practice 723 * implemented in 926, 946, 1026, 1136, 1176 and 11MPCore. StrongARM and 724 * OMAPCP will override this space. 725 */ 726 { .name = "DLOCKDOWN", .cp = 15, .crn = 9, .crm = 0, .opc1 = 0, .opc2 = 0, 727 .access = PL1_RW, .fieldoffset = offsetof(CPUARMState, cp15.c9_data), 728 .resetvalue = 0 }, 729 { .name = "ILOCKDOWN", .cp = 15, .crn = 9, .crm = 0, .opc1 = 0, .opc2 = 1, 730 .access = PL1_RW, .fieldoffset = offsetof(CPUARMState, cp15.c9_insn), 731 .resetvalue = 0 }, 732 /* v6 doesn't have the cache ID registers but Linux reads them anyway */ 733 { .name = "DUMMY", .cp = 15, .crn = 0, .crm = 0, .opc1 = 1, .opc2 = CP_ANY, 734 .access = PL1_R, .type = ARM_CP_CONST | ARM_CP_NO_RAW, 735 .resetvalue = 0 }, 736 /* We don't implement pre-v7 debug but most CPUs had at least a DBGDIDR; 737 * implementing it as RAZ means the "debug architecture version" bits 738 * will read as a reserved value, which should cause Linux to not try 739 * to use the debug hardware. 740 */ 741 { .name = "DBGDIDR", .cp = 14, .crn = 0, .crm = 0, .opc1 = 0, .opc2 = 0, 742 .access = PL0_R, .type = ARM_CP_CONST, .resetvalue = 0 }, 743 /* MMU TLB control. Note that the wildcarding means we cover not just 744 * the unified TLB ops but also the dside/iside/inner-shareable variants. 745 */ 746 { .name = "TLBIALL", .cp = 15, .crn = 8, .crm = CP_ANY, 747 .opc1 = CP_ANY, .opc2 = 0, .access = PL1_W, .writefn = tlbiall_write, 748 .type = ARM_CP_NO_RAW }, 749 { .name = "TLBIMVA", .cp = 15, .crn = 8, .crm = CP_ANY, 750 .opc1 = CP_ANY, .opc2 = 1, .access = PL1_W, .writefn = tlbimva_write, 751 .type = ARM_CP_NO_RAW }, 752 { .name = "TLBIASID", .cp = 15, .crn = 8, .crm = CP_ANY, 753 .opc1 = CP_ANY, .opc2 = 2, .access = PL1_W, .writefn = tlbiasid_write, 754 .type = ARM_CP_NO_RAW }, 755 { .name = "TLBIMVAA", .cp = 15, .crn = 8, .crm = CP_ANY, 756 .opc1 = CP_ANY, .opc2 = 3, .access = PL1_W, .writefn = tlbimvaa_write, 757 .type = ARM_CP_NO_RAW }, 758 { .name = "PRRR", .cp = 15, .crn = 10, .crm = 2, 759 .opc1 = 0, .opc2 = 0, .access = PL1_RW, .type = ARM_CP_NOP }, 760 { .name = "NMRR", .cp = 15, .crn = 10, .crm = 2, 761 .opc1 = 0, .opc2 = 1, .access = PL1_RW, .type = ARM_CP_NOP }, 762 REGINFO_SENTINEL 763 }; 764 765 static void cpacr_write(CPUARMState *env, const ARMCPRegInfo *ri, 766 uint64_t value) 767 { 768 uint32_t mask = 0; 769 770 /* In ARMv8 most bits of CPACR_EL1 are RES0. */ 771 if (!arm_feature(env, ARM_FEATURE_V8)) { 772 /* ARMv7 defines bits for unimplemented coprocessors as RAZ/WI. 773 * ASEDIS [31] and D32DIS [30] are both UNK/SBZP without VFP. 774 * TRCDIS [28] is RAZ/WI since we do not implement a trace macrocell. 775 */ 776 if (cpu_isar_feature(aa32_vfp_simd, env_archcpu(env))) { 777 /* VFP coprocessor: cp10 & cp11 [23:20] */ 778 mask |= (1 << 31) | (1 << 30) | (0xf << 20); 779 780 if (!arm_feature(env, ARM_FEATURE_NEON)) { 781 /* ASEDIS [31] bit is RAO/WI */ 782 value |= (1 << 31); 783 } 784 785 /* VFPv3 and upwards with NEON implement 32 double precision 786 * registers (D0-D31). 787 */ 788 if (!cpu_isar_feature(aa32_simd_r32, env_archcpu(env))) { 789 /* D32DIS [30] is RAO/WI if D16-31 are not implemented. */ 790 value |= (1 << 30); 791 } 792 } 793 value &= mask; 794 } 795 796 /* 797 * For A-profile AArch32 EL3 (but not M-profile secure mode), if NSACR.CP10 798 * is 0 then CPACR.{CP11,CP10} ignore writes and read as 0b00. 799 */ 800 if (arm_feature(env, ARM_FEATURE_EL3) && !arm_el_is_aa64(env, 3) && 801 !arm_is_secure(env) && !extract32(env->cp15.nsacr, 10, 1)) { 802 value &= ~(0xf << 20); 803 value |= env->cp15.cpacr_el1 & (0xf << 20); 804 } 805 806 env->cp15.cpacr_el1 = value; 807 } 808 809 static uint64_t cpacr_read(CPUARMState *env, const ARMCPRegInfo *ri) 810 { 811 /* 812 * For A-profile AArch32 EL3 (but not M-profile secure mode), if NSACR.CP10 813 * is 0 then CPACR.{CP11,CP10} ignore writes and read as 0b00. 814 */ 815 uint64_t value = env->cp15.cpacr_el1; 816 817 if (arm_feature(env, ARM_FEATURE_EL3) && !arm_el_is_aa64(env, 3) && 818 !arm_is_secure(env) && !extract32(env->cp15.nsacr, 10, 1)) { 819 value &= ~(0xf << 20); 820 } 821 return value; 822 } 823 824 825 static void cpacr_reset(CPUARMState *env, const ARMCPRegInfo *ri) 826 { 827 /* Call cpacr_write() so that we reset with the correct RAO bits set 828 * for our CPU features. 829 */ 830 cpacr_write(env, ri, 0); 831 } 832 833 static CPAccessResult cpacr_access(CPUARMState *env, const ARMCPRegInfo *ri, 834 bool isread) 835 { 836 if (arm_feature(env, ARM_FEATURE_V8)) { 837 /* Check if CPACR accesses are to be trapped to EL2 */ 838 if (arm_current_el(env) == 1 && arm_is_el2_enabled(env) && 839 (env->cp15.cptr_el[2] & CPTR_TCPAC)) { 840 return CP_ACCESS_TRAP_EL2; 841 /* Check if CPACR accesses are to be trapped to EL3 */ 842 } else if (arm_current_el(env) < 3 && 843 (env->cp15.cptr_el[3] & CPTR_TCPAC)) { 844 return CP_ACCESS_TRAP_EL3; 845 } 846 } 847 848 return CP_ACCESS_OK; 849 } 850 851 static CPAccessResult cptr_access(CPUARMState *env, const ARMCPRegInfo *ri, 852 bool isread) 853 { 854 /* Check if CPTR accesses are set to trap to EL3 */ 855 if (arm_current_el(env) == 2 && (env->cp15.cptr_el[3] & CPTR_TCPAC)) { 856 return CP_ACCESS_TRAP_EL3; 857 } 858 859 return CP_ACCESS_OK; 860 } 861 862 static const ARMCPRegInfo v6_cp_reginfo[] = { 863 /* prefetch by MVA in v6, NOP in v7 */ 864 { .name = "MVA_prefetch", 865 .cp = 15, .crn = 7, .crm = 13, .opc1 = 0, .opc2 = 1, 866 .access = PL1_W, .type = ARM_CP_NOP }, 867 /* We need to break the TB after ISB to execute self-modifying code 868 * correctly and also to take any pending interrupts immediately. 869 * So use arm_cp_write_ignore() function instead of ARM_CP_NOP flag. 870 */ 871 { .name = "ISB", .cp = 15, .crn = 7, .crm = 5, .opc1 = 0, .opc2 = 4, 872 .access = PL0_W, .type = ARM_CP_NO_RAW, .writefn = arm_cp_write_ignore }, 873 { .name = "DSB", .cp = 15, .crn = 7, .crm = 10, .opc1 = 0, .opc2 = 4, 874 .access = PL0_W, .type = ARM_CP_NOP }, 875 { .name = "DMB", .cp = 15, .crn = 7, .crm = 10, .opc1 = 0, .opc2 = 5, 876 .access = PL0_W, .type = ARM_CP_NOP }, 877 { .name = "IFAR", .cp = 15, .crn = 6, .crm = 0, .opc1 = 0, .opc2 = 2, 878 .access = PL1_RW, .accessfn = access_tvm_trvm, 879 .bank_fieldoffsets = { offsetof(CPUARMState, cp15.ifar_s), 880 offsetof(CPUARMState, cp15.ifar_ns) }, 881 .resetvalue = 0, }, 882 /* Watchpoint Fault Address Register : should actually only be present 883 * for 1136, 1176, 11MPCore. 884 */ 885 { .name = "WFAR", .cp = 15, .crn = 6, .crm = 0, .opc1 = 0, .opc2 = 1, 886 .access = PL1_RW, .type = ARM_CP_CONST, .resetvalue = 0, }, 887 { .name = "CPACR", .state = ARM_CP_STATE_BOTH, .opc0 = 3, 888 .crn = 1, .crm = 0, .opc1 = 0, .opc2 = 2, .accessfn = cpacr_access, 889 .access = PL1_RW, .fieldoffset = offsetof(CPUARMState, cp15.cpacr_el1), 890 .resetfn = cpacr_reset, .writefn = cpacr_write, .readfn = cpacr_read }, 891 REGINFO_SENTINEL 892 }; 893 894 typedef struct pm_event { 895 uint16_t number; /* PMEVTYPER.evtCount is 16 bits wide */ 896 /* If the event is supported on this CPU (used to generate PMCEID[01]) */ 897 bool (*supported)(CPUARMState *); 898 /* 899 * Retrieve the current count of the underlying event. The programmed 900 * counters hold a difference from the return value from this function 901 */ 902 uint64_t (*get_count)(CPUARMState *); 903 /* 904 * Return how many nanoseconds it will take (at a minimum) for count events 905 * to occur. A negative value indicates the counter will never overflow, or 906 * that the counter has otherwise arranged for the overflow bit to be set 907 * and the PMU interrupt to be raised on overflow. 908 */ 909 int64_t (*ns_per_count)(uint64_t); 910 } pm_event; 911 912 static bool event_always_supported(CPUARMState *env) 913 { 914 return true; 915 } 916 917 static uint64_t swinc_get_count(CPUARMState *env) 918 { 919 /* 920 * SW_INCR events are written directly to the pmevcntr's by writes to 921 * PMSWINC, so there is no underlying count maintained by the PMU itself 922 */ 923 return 0; 924 } 925 926 static int64_t swinc_ns_per(uint64_t ignored) 927 { 928 return -1; 929 } 930 931 /* 932 * Return the underlying cycle count for the PMU cycle counters. If we're in 933 * usermode, simply return 0. 934 */ 935 static uint64_t cycles_get_count(CPUARMState *env) 936 { 937 #ifndef CONFIG_USER_ONLY 938 return muldiv64(qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL), 939 ARM_CPU_FREQ, NANOSECONDS_PER_SECOND); 940 #else 941 return cpu_get_host_ticks(); 942 #endif 943 } 944 945 #ifndef CONFIG_USER_ONLY 946 static int64_t cycles_ns_per(uint64_t cycles) 947 { 948 return (ARM_CPU_FREQ / NANOSECONDS_PER_SECOND) * cycles; 949 } 950 951 static bool instructions_supported(CPUARMState *env) 952 { 953 return icount_enabled() == 1; /* Precise instruction counting */ 954 } 955 956 static uint64_t instructions_get_count(CPUARMState *env) 957 { 958 return (uint64_t)icount_get_raw(); 959 } 960 961 static int64_t instructions_ns_per(uint64_t icount) 962 { 963 return icount_to_ns((int64_t)icount); 964 } 965 #endif 966 967 static bool pmu_8_1_events_supported(CPUARMState *env) 968 { 969 /* For events which are supported in any v8.1 PMU */ 970 return cpu_isar_feature(any_pmu_8_1, env_archcpu(env)); 971 } 972 973 static bool pmu_8_4_events_supported(CPUARMState *env) 974 { 975 /* For events which are supported in any v8.1 PMU */ 976 return cpu_isar_feature(any_pmu_8_4, env_archcpu(env)); 977 } 978 979 static uint64_t zero_event_get_count(CPUARMState *env) 980 { 981 /* For events which on QEMU never fire, so their count is always zero */ 982 return 0; 983 } 984 985 static int64_t zero_event_ns_per(uint64_t cycles) 986 { 987 /* An event which never fires can never overflow */ 988 return -1; 989 } 990 991 static const pm_event pm_events[] = { 992 { .number = 0x000, /* SW_INCR */ 993 .supported = event_always_supported, 994 .get_count = swinc_get_count, 995 .ns_per_count = swinc_ns_per, 996 }, 997 #ifndef CONFIG_USER_ONLY 998 { .number = 0x008, /* INST_RETIRED, Instruction architecturally executed */ 999 .supported = instructions_supported, 1000 .get_count = instructions_get_count, 1001 .ns_per_count = instructions_ns_per, 1002 }, 1003 { .number = 0x011, /* CPU_CYCLES, Cycle */ 1004 .supported = event_always_supported, 1005 .get_count = cycles_get_count, 1006 .ns_per_count = cycles_ns_per, 1007 }, 1008 #endif 1009 { .number = 0x023, /* STALL_FRONTEND */ 1010 .supported = pmu_8_1_events_supported, 1011 .get_count = zero_event_get_count, 1012 .ns_per_count = zero_event_ns_per, 1013 }, 1014 { .number = 0x024, /* STALL_BACKEND */ 1015 .supported = pmu_8_1_events_supported, 1016 .get_count = zero_event_get_count, 1017 .ns_per_count = zero_event_ns_per, 1018 }, 1019 { .number = 0x03c, /* STALL */ 1020 .supported = pmu_8_4_events_supported, 1021 .get_count = zero_event_get_count, 1022 .ns_per_count = zero_event_ns_per, 1023 }, 1024 }; 1025 1026 /* 1027 * Note: Before increasing MAX_EVENT_ID beyond 0x3f into the 0x40xx range of 1028 * events (i.e. the statistical profiling extension), this implementation 1029 * should first be updated to something sparse instead of the current 1030 * supported_event_map[] array. 1031 */ 1032 #define MAX_EVENT_ID 0x3c 1033 #define UNSUPPORTED_EVENT UINT16_MAX 1034 static uint16_t supported_event_map[MAX_EVENT_ID + 1]; 1035 1036 /* 1037 * Called upon CPU initialization to initialize PMCEID[01]_EL0 and build a map 1038 * of ARM event numbers to indices in our pm_events array. 1039 * 1040 * Note: Events in the 0x40XX range are not currently supported. 1041 */ 1042 void pmu_init(ARMCPU *cpu) 1043 { 1044 unsigned int i; 1045 1046 /* 1047 * Empty supported_event_map and cpu->pmceid[01] before adding supported 1048 * events to them 1049 */ 1050 for (i = 0; i < ARRAY_SIZE(supported_event_map); i++) { 1051 supported_event_map[i] = UNSUPPORTED_EVENT; 1052 } 1053 cpu->pmceid0 = 0; 1054 cpu->pmceid1 = 0; 1055 1056 for (i = 0; i < ARRAY_SIZE(pm_events); i++) { 1057 const pm_event *cnt = &pm_events[i]; 1058 assert(cnt->number <= MAX_EVENT_ID); 1059 /* We do not currently support events in the 0x40xx range */ 1060 assert(cnt->number <= 0x3f); 1061 1062 if (cnt->supported(&cpu->env)) { 1063 supported_event_map[cnt->number] = i; 1064 uint64_t event_mask = 1ULL << (cnt->number & 0x1f); 1065 if (cnt->number & 0x20) { 1066 cpu->pmceid1 |= event_mask; 1067 } else { 1068 cpu->pmceid0 |= event_mask; 1069 } 1070 } 1071 } 1072 } 1073 1074 /* 1075 * Check at runtime whether a PMU event is supported for the current machine 1076 */ 1077 static bool event_supported(uint16_t number) 1078 { 1079 if (number > MAX_EVENT_ID) { 1080 return false; 1081 } 1082 return supported_event_map[number] != UNSUPPORTED_EVENT; 1083 } 1084 1085 static CPAccessResult pmreg_access(CPUARMState *env, const ARMCPRegInfo *ri, 1086 bool isread) 1087 { 1088 /* Performance monitor registers user accessibility is controlled 1089 * by PMUSERENR. MDCR_EL2.TPM and MDCR_EL3.TPM allow configurable 1090 * trapping to EL2 or EL3 for other accesses. 1091 */ 1092 int el = arm_current_el(env); 1093 uint64_t mdcr_el2 = arm_mdcr_el2_eff(env); 1094 1095 if (el == 0 && !(env->cp15.c9_pmuserenr & 1)) { 1096 return CP_ACCESS_TRAP; 1097 } 1098 if (el < 2 && (mdcr_el2 & MDCR_TPM)) { 1099 return CP_ACCESS_TRAP_EL2; 1100 } 1101 if (el < 3 && (env->cp15.mdcr_el3 & MDCR_TPM)) { 1102 return CP_ACCESS_TRAP_EL3; 1103 } 1104 1105 return CP_ACCESS_OK; 1106 } 1107 1108 static CPAccessResult pmreg_access_xevcntr(CPUARMState *env, 1109 const ARMCPRegInfo *ri, 1110 bool isread) 1111 { 1112 /* ER: event counter read trap control */ 1113 if (arm_feature(env, ARM_FEATURE_V8) 1114 && arm_current_el(env) == 0 1115 && (env->cp15.c9_pmuserenr & (1 << 3)) != 0 1116 && isread) { 1117 return CP_ACCESS_OK; 1118 } 1119 1120 return pmreg_access(env, ri, isread); 1121 } 1122 1123 static CPAccessResult pmreg_access_swinc(CPUARMState *env, 1124 const ARMCPRegInfo *ri, 1125 bool isread) 1126 { 1127 /* SW: software increment write trap control */ 1128 if (arm_feature(env, ARM_FEATURE_V8) 1129 && arm_current_el(env) == 0 1130 && (env->cp15.c9_pmuserenr & (1 << 1)) != 0 1131 && !isread) { 1132 return CP_ACCESS_OK; 1133 } 1134 1135 return pmreg_access(env, ri, isread); 1136 } 1137 1138 static CPAccessResult pmreg_access_selr(CPUARMState *env, 1139 const ARMCPRegInfo *ri, 1140 bool isread) 1141 { 1142 /* ER: event counter read trap control */ 1143 if (arm_feature(env, ARM_FEATURE_V8) 1144 && arm_current_el(env) == 0 1145 && (env->cp15.c9_pmuserenr & (1 << 3)) != 0) { 1146 return CP_ACCESS_OK; 1147 } 1148 1149 return pmreg_access(env, ri, isread); 1150 } 1151 1152 static CPAccessResult pmreg_access_ccntr(CPUARMState *env, 1153 const ARMCPRegInfo *ri, 1154 bool isread) 1155 { 1156 /* CR: cycle counter read trap control */ 1157 if (arm_feature(env, ARM_FEATURE_V8) 1158 && arm_current_el(env) == 0 1159 && (env->cp15.c9_pmuserenr & (1 << 2)) != 0 1160 && isread) { 1161 return CP_ACCESS_OK; 1162 } 1163 1164 return pmreg_access(env, ri, isread); 1165 } 1166 1167 /* Returns true if the counter (pass 31 for PMCCNTR) should count events using 1168 * the current EL, security state, and register configuration. 1169 */ 1170 static bool pmu_counter_enabled(CPUARMState *env, uint8_t counter) 1171 { 1172 uint64_t filter; 1173 bool e, p, u, nsk, nsu, nsh, m; 1174 bool enabled, prohibited, filtered; 1175 bool secure = arm_is_secure(env); 1176 int el = arm_current_el(env); 1177 uint64_t mdcr_el2 = arm_mdcr_el2_eff(env); 1178 uint8_t hpmn = mdcr_el2 & MDCR_HPMN; 1179 1180 if (!arm_feature(env, ARM_FEATURE_PMU)) { 1181 return false; 1182 } 1183 1184 if (!arm_feature(env, ARM_FEATURE_EL2) || 1185 (counter < hpmn || counter == 31)) { 1186 e = env->cp15.c9_pmcr & PMCRE; 1187 } else { 1188 e = mdcr_el2 & MDCR_HPME; 1189 } 1190 enabled = e && (env->cp15.c9_pmcnten & (1 << counter)); 1191 1192 if (!secure) { 1193 if (el == 2 && (counter < hpmn || counter == 31)) { 1194 prohibited = mdcr_el2 & MDCR_HPMD; 1195 } else { 1196 prohibited = false; 1197 } 1198 } else { 1199 prohibited = arm_feature(env, ARM_FEATURE_EL3) && 1200 !(env->cp15.mdcr_el3 & MDCR_SPME); 1201 } 1202 1203 if (prohibited && counter == 31) { 1204 prohibited = env->cp15.c9_pmcr & PMCRDP; 1205 } 1206 1207 if (counter == 31) { 1208 filter = env->cp15.pmccfiltr_el0; 1209 } else { 1210 filter = env->cp15.c14_pmevtyper[counter]; 1211 } 1212 1213 p = filter & PMXEVTYPER_P; 1214 u = filter & PMXEVTYPER_U; 1215 nsk = arm_feature(env, ARM_FEATURE_EL3) && (filter & PMXEVTYPER_NSK); 1216 nsu = arm_feature(env, ARM_FEATURE_EL3) && (filter & PMXEVTYPER_NSU); 1217 nsh = arm_feature(env, ARM_FEATURE_EL2) && (filter & PMXEVTYPER_NSH); 1218 m = arm_el_is_aa64(env, 1) && 1219 arm_feature(env, ARM_FEATURE_EL3) && (filter & PMXEVTYPER_M); 1220 1221 if (el == 0) { 1222 filtered = secure ? u : u != nsu; 1223 } else if (el == 1) { 1224 filtered = secure ? p : p != nsk; 1225 } else if (el == 2) { 1226 filtered = !nsh; 1227 } else { /* EL3 */ 1228 filtered = m != p; 1229 } 1230 1231 if (counter != 31) { 1232 /* 1233 * If not checking PMCCNTR, ensure the counter is setup to an event we 1234 * support 1235 */ 1236 uint16_t event = filter & PMXEVTYPER_EVTCOUNT; 1237 if (!event_supported(event)) { 1238 return false; 1239 } 1240 } 1241 1242 return enabled && !prohibited && !filtered; 1243 } 1244 1245 static void pmu_update_irq(CPUARMState *env) 1246 { 1247 ARMCPU *cpu = env_archcpu(env); 1248 qemu_set_irq(cpu->pmu_interrupt, (env->cp15.c9_pmcr & PMCRE) && 1249 (env->cp15.c9_pminten & env->cp15.c9_pmovsr)); 1250 } 1251 1252 /* 1253 * Ensure c15_ccnt is the guest-visible count so that operations such as 1254 * enabling/disabling the counter or filtering, modifying the count itself, 1255 * etc. can be done logically. This is essentially a no-op if the counter is 1256 * not enabled at the time of the call. 1257 */ 1258 static void pmccntr_op_start(CPUARMState *env) 1259 { 1260 uint64_t cycles = cycles_get_count(env); 1261 1262 if (pmu_counter_enabled(env, 31)) { 1263 uint64_t eff_cycles = cycles; 1264 if (env->cp15.c9_pmcr & PMCRD) { 1265 /* Increment once every 64 processor clock cycles */ 1266 eff_cycles /= 64; 1267 } 1268 1269 uint64_t new_pmccntr = eff_cycles - env->cp15.c15_ccnt_delta; 1270 1271 uint64_t overflow_mask = env->cp15.c9_pmcr & PMCRLC ? \ 1272 1ull << 63 : 1ull << 31; 1273 if (env->cp15.c15_ccnt & ~new_pmccntr & overflow_mask) { 1274 env->cp15.c9_pmovsr |= (1 << 31); 1275 pmu_update_irq(env); 1276 } 1277 1278 env->cp15.c15_ccnt = new_pmccntr; 1279 } 1280 env->cp15.c15_ccnt_delta = cycles; 1281 } 1282 1283 /* 1284 * If PMCCNTR is enabled, recalculate the delta between the clock and the 1285 * guest-visible count. A call to pmccntr_op_finish should follow every call to 1286 * pmccntr_op_start. 1287 */ 1288 static void pmccntr_op_finish(CPUARMState *env) 1289 { 1290 if (pmu_counter_enabled(env, 31)) { 1291 #ifndef CONFIG_USER_ONLY 1292 /* Calculate when the counter will next overflow */ 1293 uint64_t remaining_cycles = -env->cp15.c15_ccnt; 1294 if (!(env->cp15.c9_pmcr & PMCRLC)) { 1295 remaining_cycles = (uint32_t)remaining_cycles; 1296 } 1297 int64_t overflow_in = cycles_ns_per(remaining_cycles); 1298 1299 if (overflow_in > 0) { 1300 int64_t overflow_at = qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL) + 1301 overflow_in; 1302 ARMCPU *cpu = env_archcpu(env); 1303 timer_mod_anticipate_ns(cpu->pmu_timer, overflow_at); 1304 } 1305 #endif 1306 1307 uint64_t prev_cycles = env->cp15.c15_ccnt_delta; 1308 if (env->cp15.c9_pmcr & PMCRD) { 1309 /* Increment once every 64 processor clock cycles */ 1310 prev_cycles /= 64; 1311 } 1312 env->cp15.c15_ccnt_delta = prev_cycles - env->cp15.c15_ccnt; 1313 } 1314 } 1315 1316 static void pmevcntr_op_start(CPUARMState *env, uint8_t counter) 1317 { 1318 1319 uint16_t event = env->cp15.c14_pmevtyper[counter] & PMXEVTYPER_EVTCOUNT; 1320 uint64_t count = 0; 1321 if (event_supported(event)) { 1322 uint16_t event_idx = supported_event_map[event]; 1323 count = pm_events[event_idx].get_count(env); 1324 } 1325 1326 if (pmu_counter_enabled(env, counter)) { 1327 uint32_t new_pmevcntr = count - env->cp15.c14_pmevcntr_delta[counter]; 1328 1329 if (env->cp15.c14_pmevcntr[counter] & ~new_pmevcntr & INT32_MIN) { 1330 env->cp15.c9_pmovsr |= (1 << counter); 1331 pmu_update_irq(env); 1332 } 1333 env->cp15.c14_pmevcntr[counter] = new_pmevcntr; 1334 } 1335 env->cp15.c14_pmevcntr_delta[counter] = count; 1336 } 1337 1338 static void pmevcntr_op_finish(CPUARMState *env, uint8_t counter) 1339 { 1340 if (pmu_counter_enabled(env, counter)) { 1341 #ifndef CONFIG_USER_ONLY 1342 uint16_t event = env->cp15.c14_pmevtyper[counter] & PMXEVTYPER_EVTCOUNT; 1343 uint16_t event_idx = supported_event_map[event]; 1344 uint64_t delta = UINT32_MAX - 1345 (uint32_t)env->cp15.c14_pmevcntr[counter] + 1; 1346 int64_t overflow_in = pm_events[event_idx].ns_per_count(delta); 1347 1348 if (overflow_in > 0) { 1349 int64_t overflow_at = qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL) + 1350 overflow_in; 1351 ARMCPU *cpu = env_archcpu(env); 1352 timer_mod_anticipate_ns(cpu->pmu_timer, overflow_at); 1353 } 1354 #endif 1355 1356 env->cp15.c14_pmevcntr_delta[counter] -= 1357 env->cp15.c14_pmevcntr[counter]; 1358 } 1359 } 1360 1361 void pmu_op_start(CPUARMState *env) 1362 { 1363 unsigned int i; 1364 pmccntr_op_start(env); 1365 for (i = 0; i < pmu_num_counters(env); i++) { 1366 pmevcntr_op_start(env, i); 1367 } 1368 } 1369 1370 void pmu_op_finish(CPUARMState *env) 1371 { 1372 unsigned int i; 1373 pmccntr_op_finish(env); 1374 for (i = 0; i < pmu_num_counters(env); i++) { 1375 pmevcntr_op_finish(env, i); 1376 } 1377 } 1378 1379 void pmu_pre_el_change(ARMCPU *cpu, void *ignored) 1380 { 1381 pmu_op_start(&cpu->env); 1382 } 1383 1384 void pmu_post_el_change(ARMCPU *cpu, void *ignored) 1385 { 1386 pmu_op_finish(&cpu->env); 1387 } 1388 1389 void arm_pmu_timer_cb(void *opaque) 1390 { 1391 ARMCPU *cpu = opaque; 1392 1393 /* 1394 * Update all the counter values based on the current underlying counts, 1395 * triggering interrupts to be raised, if necessary. pmu_op_finish() also 1396 * has the effect of setting the cpu->pmu_timer to the next earliest time a 1397 * counter may expire. 1398 */ 1399 pmu_op_start(&cpu->env); 1400 pmu_op_finish(&cpu->env); 1401 } 1402 1403 static void pmcr_write(CPUARMState *env, const ARMCPRegInfo *ri, 1404 uint64_t value) 1405 { 1406 pmu_op_start(env); 1407 1408 if (value & PMCRC) { 1409 /* The counter has been reset */ 1410 env->cp15.c15_ccnt = 0; 1411 } 1412 1413 if (value & PMCRP) { 1414 unsigned int i; 1415 for (i = 0; i < pmu_num_counters(env); i++) { 1416 env->cp15.c14_pmevcntr[i] = 0; 1417 } 1418 } 1419 1420 env->cp15.c9_pmcr &= ~PMCR_WRITEABLE_MASK; 1421 env->cp15.c9_pmcr |= (value & PMCR_WRITEABLE_MASK); 1422 1423 pmu_op_finish(env); 1424 } 1425 1426 static void pmswinc_write(CPUARMState *env, const ARMCPRegInfo *ri, 1427 uint64_t value) 1428 { 1429 unsigned int i; 1430 for (i = 0; i < pmu_num_counters(env); i++) { 1431 /* Increment a counter's count iff: */ 1432 if ((value & (1 << i)) && /* counter's bit is set */ 1433 /* counter is enabled and not filtered */ 1434 pmu_counter_enabled(env, i) && 1435 /* counter is SW_INCR */ 1436 (env->cp15.c14_pmevtyper[i] & PMXEVTYPER_EVTCOUNT) == 0x0) { 1437 pmevcntr_op_start(env, i); 1438 1439 /* 1440 * Detect if this write causes an overflow since we can't predict 1441 * PMSWINC overflows like we can for other events 1442 */ 1443 uint32_t new_pmswinc = env->cp15.c14_pmevcntr[i] + 1; 1444 1445 if (env->cp15.c14_pmevcntr[i] & ~new_pmswinc & INT32_MIN) { 1446 env->cp15.c9_pmovsr |= (1 << i); 1447 pmu_update_irq(env); 1448 } 1449 1450 env->cp15.c14_pmevcntr[i] = new_pmswinc; 1451 1452 pmevcntr_op_finish(env, i); 1453 } 1454 } 1455 } 1456 1457 static uint64_t pmccntr_read(CPUARMState *env, const ARMCPRegInfo *ri) 1458 { 1459 uint64_t ret; 1460 pmccntr_op_start(env); 1461 ret = env->cp15.c15_ccnt; 1462 pmccntr_op_finish(env); 1463 return ret; 1464 } 1465 1466 static void pmselr_write(CPUARMState *env, const ARMCPRegInfo *ri, 1467 uint64_t value) 1468 { 1469 /* The value of PMSELR.SEL affects the behavior of PMXEVTYPER and 1470 * PMXEVCNTR. We allow [0..31] to be written to PMSELR here; in the 1471 * meanwhile, we check PMSELR.SEL when PMXEVTYPER and PMXEVCNTR are 1472 * accessed. 1473 */ 1474 env->cp15.c9_pmselr = value & 0x1f; 1475 } 1476 1477 static void pmccntr_write(CPUARMState *env, const ARMCPRegInfo *ri, 1478 uint64_t value) 1479 { 1480 pmccntr_op_start(env); 1481 env->cp15.c15_ccnt = value; 1482 pmccntr_op_finish(env); 1483 } 1484 1485 static void pmccntr_write32(CPUARMState *env, const ARMCPRegInfo *ri, 1486 uint64_t value) 1487 { 1488 uint64_t cur_val = pmccntr_read(env, NULL); 1489 1490 pmccntr_write(env, ri, deposit64(cur_val, 0, 32, value)); 1491 } 1492 1493 static void pmccfiltr_write(CPUARMState *env, const ARMCPRegInfo *ri, 1494 uint64_t value) 1495 { 1496 pmccntr_op_start(env); 1497 env->cp15.pmccfiltr_el0 = value & PMCCFILTR_EL0; 1498 pmccntr_op_finish(env); 1499 } 1500 1501 static void pmccfiltr_write_a32(CPUARMState *env, const ARMCPRegInfo *ri, 1502 uint64_t value) 1503 { 1504 pmccntr_op_start(env); 1505 /* M is not accessible from AArch32 */ 1506 env->cp15.pmccfiltr_el0 = (env->cp15.pmccfiltr_el0 & PMCCFILTR_M) | 1507 (value & PMCCFILTR); 1508 pmccntr_op_finish(env); 1509 } 1510 1511 static uint64_t pmccfiltr_read_a32(CPUARMState *env, const ARMCPRegInfo *ri) 1512 { 1513 /* M is not visible in AArch32 */ 1514 return env->cp15.pmccfiltr_el0 & PMCCFILTR; 1515 } 1516 1517 static void pmcntenset_write(CPUARMState *env, const ARMCPRegInfo *ri, 1518 uint64_t value) 1519 { 1520 value &= pmu_counter_mask(env); 1521 env->cp15.c9_pmcnten |= value; 1522 } 1523 1524 static void pmcntenclr_write(CPUARMState *env, const ARMCPRegInfo *ri, 1525 uint64_t value) 1526 { 1527 value &= pmu_counter_mask(env); 1528 env->cp15.c9_pmcnten &= ~value; 1529 } 1530 1531 static void pmovsr_write(CPUARMState *env, const ARMCPRegInfo *ri, 1532 uint64_t value) 1533 { 1534 value &= pmu_counter_mask(env); 1535 env->cp15.c9_pmovsr &= ~value; 1536 pmu_update_irq(env); 1537 } 1538 1539 static void pmovsset_write(CPUARMState *env, const ARMCPRegInfo *ri, 1540 uint64_t value) 1541 { 1542 value &= pmu_counter_mask(env); 1543 env->cp15.c9_pmovsr |= value; 1544 pmu_update_irq(env); 1545 } 1546 1547 static void pmevtyper_write(CPUARMState *env, const ARMCPRegInfo *ri, 1548 uint64_t value, const uint8_t counter) 1549 { 1550 if (counter == 31) { 1551 pmccfiltr_write(env, ri, value); 1552 } else if (counter < pmu_num_counters(env)) { 1553 pmevcntr_op_start(env, counter); 1554 1555 /* 1556 * If this counter's event type is changing, store the current 1557 * underlying count for the new type in c14_pmevcntr_delta[counter] so 1558 * pmevcntr_op_finish has the correct baseline when it converts back to 1559 * a delta. 1560 */ 1561 uint16_t old_event = env->cp15.c14_pmevtyper[counter] & 1562 PMXEVTYPER_EVTCOUNT; 1563 uint16_t new_event = value & PMXEVTYPER_EVTCOUNT; 1564 if (old_event != new_event) { 1565 uint64_t count = 0; 1566 if (event_supported(new_event)) { 1567 uint16_t event_idx = supported_event_map[new_event]; 1568 count = pm_events[event_idx].get_count(env); 1569 } 1570 env->cp15.c14_pmevcntr_delta[counter] = count; 1571 } 1572 1573 env->cp15.c14_pmevtyper[counter] = value & PMXEVTYPER_MASK; 1574 pmevcntr_op_finish(env, counter); 1575 } 1576 /* Attempts to access PMXEVTYPER are CONSTRAINED UNPREDICTABLE when 1577 * PMSELR value is equal to or greater than the number of implemented 1578 * counters, but not equal to 0x1f. We opt to behave as a RAZ/WI. 1579 */ 1580 } 1581 1582 static uint64_t pmevtyper_read(CPUARMState *env, const ARMCPRegInfo *ri, 1583 const uint8_t counter) 1584 { 1585 if (counter == 31) { 1586 return env->cp15.pmccfiltr_el0; 1587 } else if (counter < pmu_num_counters(env)) { 1588 return env->cp15.c14_pmevtyper[counter]; 1589 } else { 1590 /* 1591 * We opt to behave as a RAZ/WI when attempts to access PMXEVTYPER 1592 * are CONSTRAINED UNPREDICTABLE. See comments in pmevtyper_write(). 1593 */ 1594 return 0; 1595 } 1596 } 1597 1598 static void pmevtyper_writefn(CPUARMState *env, const ARMCPRegInfo *ri, 1599 uint64_t value) 1600 { 1601 uint8_t counter = ((ri->crm & 3) << 3) | (ri->opc2 & 7); 1602 pmevtyper_write(env, ri, value, counter); 1603 } 1604 1605 static void pmevtyper_rawwrite(CPUARMState *env, const ARMCPRegInfo *ri, 1606 uint64_t value) 1607 { 1608 uint8_t counter = ((ri->crm & 3) << 3) | (ri->opc2 & 7); 1609 env->cp15.c14_pmevtyper[counter] = value; 1610 1611 /* 1612 * pmevtyper_rawwrite is called between a pair of pmu_op_start and 1613 * pmu_op_finish calls when loading saved state for a migration. Because 1614 * we're potentially updating the type of event here, the value written to 1615 * c14_pmevcntr_delta by the preceeding pmu_op_start call may be for a 1616 * different counter type. Therefore, we need to set this value to the 1617 * current count for the counter type we're writing so that pmu_op_finish 1618 * has the correct count for its calculation. 1619 */ 1620 uint16_t event = value & PMXEVTYPER_EVTCOUNT; 1621 if (event_supported(event)) { 1622 uint16_t event_idx = supported_event_map[event]; 1623 env->cp15.c14_pmevcntr_delta[counter] = 1624 pm_events[event_idx].get_count(env); 1625 } 1626 } 1627 1628 static uint64_t pmevtyper_readfn(CPUARMState *env, const ARMCPRegInfo *ri) 1629 { 1630 uint8_t counter = ((ri->crm & 3) << 3) | (ri->opc2 & 7); 1631 return pmevtyper_read(env, ri, counter); 1632 } 1633 1634 static void pmxevtyper_write(CPUARMState *env, const ARMCPRegInfo *ri, 1635 uint64_t value) 1636 { 1637 pmevtyper_write(env, ri, value, env->cp15.c9_pmselr & 31); 1638 } 1639 1640 static uint64_t pmxevtyper_read(CPUARMState *env, const ARMCPRegInfo *ri) 1641 { 1642 return pmevtyper_read(env, ri, env->cp15.c9_pmselr & 31); 1643 } 1644 1645 static void pmevcntr_write(CPUARMState *env, const ARMCPRegInfo *ri, 1646 uint64_t value, uint8_t counter) 1647 { 1648 if (counter < pmu_num_counters(env)) { 1649 pmevcntr_op_start(env, counter); 1650 env->cp15.c14_pmevcntr[counter] = value; 1651 pmevcntr_op_finish(env, counter); 1652 } 1653 /* 1654 * We opt to behave as a RAZ/WI when attempts to access PM[X]EVCNTR 1655 * are CONSTRAINED UNPREDICTABLE. 1656 */ 1657 } 1658 1659 static uint64_t pmevcntr_read(CPUARMState *env, const ARMCPRegInfo *ri, 1660 uint8_t counter) 1661 { 1662 if (counter < pmu_num_counters(env)) { 1663 uint64_t ret; 1664 pmevcntr_op_start(env, counter); 1665 ret = env->cp15.c14_pmevcntr[counter]; 1666 pmevcntr_op_finish(env, counter); 1667 return ret; 1668 } else { 1669 /* We opt to behave as a RAZ/WI when attempts to access PM[X]EVCNTR 1670 * are CONSTRAINED UNPREDICTABLE. */ 1671 return 0; 1672 } 1673 } 1674 1675 static void pmevcntr_writefn(CPUARMState *env, const ARMCPRegInfo *ri, 1676 uint64_t value) 1677 { 1678 uint8_t counter = ((ri->crm & 3) << 3) | (ri->opc2 & 7); 1679 pmevcntr_write(env, ri, value, counter); 1680 } 1681 1682 static uint64_t pmevcntr_readfn(CPUARMState *env, const ARMCPRegInfo *ri) 1683 { 1684 uint8_t counter = ((ri->crm & 3) << 3) | (ri->opc2 & 7); 1685 return pmevcntr_read(env, ri, counter); 1686 } 1687 1688 static void pmevcntr_rawwrite(CPUARMState *env, const ARMCPRegInfo *ri, 1689 uint64_t value) 1690 { 1691 uint8_t counter = ((ri->crm & 3) << 3) | (ri->opc2 & 7); 1692 assert(counter < pmu_num_counters(env)); 1693 env->cp15.c14_pmevcntr[counter] = value; 1694 pmevcntr_write(env, ri, value, counter); 1695 } 1696 1697 static uint64_t pmevcntr_rawread(CPUARMState *env, const ARMCPRegInfo *ri) 1698 { 1699 uint8_t counter = ((ri->crm & 3) << 3) | (ri->opc2 & 7); 1700 assert(counter < pmu_num_counters(env)); 1701 return env->cp15.c14_pmevcntr[counter]; 1702 } 1703 1704 static void pmxevcntr_write(CPUARMState *env, const ARMCPRegInfo *ri, 1705 uint64_t value) 1706 { 1707 pmevcntr_write(env, ri, value, env->cp15.c9_pmselr & 31); 1708 } 1709 1710 static uint64_t pmxevcntr_read(CPUARMState *env, const ARMCPRegInfo *ri) 1711 { 1712 return pmevcntr_read(env, ri, env->cp15.c9_pmselr & 31); 1713 } 1714 1715 static void pmuserenr_write(CPUARMState *env, const ARMCPRegInfo *ri, 1716 uint64_t value) 1717 { 1718 if (arm_feature(env, ARM_FEATURE_V8)) { 1719 env->cp15.c9_pmuserenr = value & 0xf; 1720 } else { 1721 env->cp15.c9_pmuserenr = value & 1; 1722 } 1723 } 1724 1725 static void pmintenset_write(CPUARMState *env, const ARMCPRegInfo *ri, 1726 uint64_t value) 1727 { 1728 /* We have no event counters so only the C bit can be changed */ 1729 value &= pmu_counter_mask(env); 1730 env->cp15.c9_pminten |= value; 1731 pmu_update_irq(env); 1732 } 1733 1734 static void pmintenclr_write(CPUARMState *env, const ARMCPRegInfo *ri, 1735 uint64_t value) 1736 { 1737 value &= pmu_counter_mask(env); 1738 env->cp15.c9_pminten &= ~value; 1739 pmu_update_irq(env); 1740 } 1741 1742 static void vbar_write(CPUARMState *env, const ARMCPRegInfo *ri, 1743 uint64_t value) 1744 { 1745 /* Note that even though the AArch64 view of this register has bits 1746 * [10:0] all RES0 we can only mask the bottom 5, to comply with the 1747 * architectural requirements for bits which are RES0 only in some 1748 * contexts. (ARMv8 would permit us to do no masking at all, but ARMv7 1749 * requires the bottom five bits to be RAZ/WI because they're UNK/SBZP.) 1750 */ 1751 raw_write(env, ri, value & ~0x1FULL); 1752 } 1753 1754 static void scr_write(CPUARMState *env, const ARMCPRegInfo *ri, uint64_t value) 1755 { 1756 /* Begin with base v8.0 state. */ 1757 uint32_t valid_mask = 0x3fff; 1758 ARMCPU *cpu = env_archcpu(env); 1759 1760 if (ri->state == ARM_CP_STATE_AA64) { 1761 if (arm_feature(env, ARM_FEATURE_AARCH64) && 1762 !cpu_isar_feature(aa64_aa32_el1, cpu)) { 1763 value |= SCR_FW | SCR_AW; /* these two bits are RES1. */ 1764 } 1765 valid_mask &= ~SCR_NET; 1766 1767 if (cpu_isar_feature(aa64_lor, cpu)) { 1768 valid_mask |= SCR_TLOR; 1769 } 1770 if (cpu_isar_feature(aa64_pauth, cpu)) { 1771 valid_mask |= SCR_API | SCR_APK; 1772 } 1773 if (cpu_isar_feature(aa64_sel2, cpu)) { 1774 valid_mask |= SCR_EEL2; 1775 } 1776 if (cpu_isar_feature(aa64_mte, cpu)) { 1777 valid_mask |= SCR_ATA; 1778 } 1779 } else { 1780 valid_mask &= ~(SCR_RW | SCR_ST); 1781 } 1782 1783 if (!arm_feature(env, ARM_FEATURE_EL2)) { 1784 valid_mask &= ~SCR_HCE; 1785 1786 /* On ARMv7, SMD (or SCD as it is called in v7) is only 1787 * supported if EL2 exists. The bit is UNK/SBZP when 1788 * EL2 is unavailable. In QEMU ARMv7, we force it to always zero 1789 * when EL2 is unavailable. 1790 * On ARMv8, this bit is always available. 1791 */ 1792 if (arm_feature(env, ARM_FEATURE_V7) && 1793 !arm_feature(env, ARM_FEATURE_V8)) { 1794 valid_mask &= ~SCR_SMD; 1795 } 1796 } 1797 1798 /* Clear all-context RES0 bits. */ 1799 value &= valid_mask; 1800 raw_write(env, ri, value); 1801 } 1802 1803 static void scr_reset(CPUARMState *env, const ARMCPRegInfo *ri) 1804 { 1805 /* 1806 * scr_write will set the RES1 bits on an AArch64-only CPU. 1807 * The reset value will be 0x30 on an AArch64-only CPU and 0 otherwise. 1808 */ 1809 scr_write(env, ri, 0); 1810 } 1811 1812 static CPAccessResult access_aa64_tid2(CPUARMState *env, 1813 const ARMCPRegInfo *ri, 1814 bool isread) 1815 { 1816 if (arm_current_el(env) == 1 && (arm_hcr_el2_eff(env) & HCR_TID2)) { 1817 return CP_ACCESS_TRAP_EL2; 1818 } 1819 1820 return CP_ACCESS_OK; 1821 } 1822 1823 static uint64_t ccsidr_read(CPUARMState *env, const ARMCPRegInfo *ri) 1824 { 1825 ARMCPU *cpu = env_archcpu(env); 1826 1827 /* Acquire the CSSELR index from the bank corresponding to the CCSIDR 1828 * bank 1829 */ 1830 uint32_t index = A32_BANKED_REG_GET(env, csselr, 1831 ri->secure & ARM_CP_SECSTATE_S); 1832 1833 return cpu->ccsidr[index]; 1834 } 1835 1836 static void csselr_write(CPUARMState *env, const ARMCPRegInfo *ri, 1837 uint64_t value) 1838 { 1839 raw_write(env, ri, value & 0xf); 1840 } 1841 1842 static uint64_t isr_read(CPUARMState *env, const ARMCPRegInfo *ri) 1843 { 1844 CPUState *cs = env_cpu(env); 1845 bool el1 = arm_current_el(env) == 1; 1846 uint64_t hcr_el2 = el1 ? arm_hcr_el2_eff(env) : 0; 1847 uint64_t ret = 0; 1848 1849 if (hcr_el2 & HCR_IMO) { 1850 if (cs->interrupt_request & CPU_INTERRUPT_VIRQ) { 1851 ret |= CPSR_I; 1852 } 1853 } else { 1854 if (cs->interrupt_request & CPU_INTERRUPT_HARD) { 1855 ret |= CPSR_I; 1856 } 1857 } 1858 1859 if (hcr_el2 & HCR_FMO) { 1860 if (cs->interrupt_request & CPU_INTERRUPT_VFIQ) { 1861 ret |= CPSR_F; 1862 } 1863 } else { 1864 if (cs->interrupt_request & CPU_INTERRUPT_FIQ) { 1865 ret |= CPSR_F; 1866 } 1867 } 1868 1869 /* External aborts are not possible in QEMU so A bit is always clear */ 1870 return ret; 1871 } 1872 1873 static CPAccessResult access_aa64_tid1(CPUARMState *env, const ARMCPRegInfo *ri, 1874 bool isread) 1875 { 1876 if (arm_current_el(env) == 1 && (arm_hcr_el2_eff(env) & HCR_TID1)) { 1877 return CP_ACCESS_TRAP_EL2; 1878 } 1879 1880 return CP_ACCESS_OK; 1881 } 1882 1883 static CPAccessResult access_aa32_tid1(CPUARMState *env, const ARMCPRegInfo *ri, 1884 bool isread) 1885 { 1886 if (arm_feature(env, ARM_FEATURE_V8)) { 1887 return access_aa64_tid1(env, ri, isread); 1888 } 1889 1890 return CP_ACCESS_OK; 1891 } 1892 1893 static const ARMCPRegInfo v7_cp_reginfo[] = { 1894 /* the old v6 WFI, UNPREDICTABLE in v7 but we choose to NOP */ 1895 { .name = "NOP", .cp = 15, .crn = 7, .crm = 0, .opc1 = 0, .opc2 = 4, 1896 .access = PL1_W, .type = ARM_CP_NOP }, 1897 /* Performance monitors are implementation defined in v7, 1898 * but with an ARM recommended set of registers, which we 1899 * follow. 1900 * 1901 * Performance registers fall into three categories: 1902 * (a) always UNDEF in PL0, RW in PL1 (PMINTENSET, PMINTENCLR) 1903 * (b) RO in PL0 (ie UNDEF on write), RW in PL1 (PMUSERENR) 1904 * (c) UNDEF in PL0 if PMUSERENR.EN==0, otherwise accessible (all others) 1905 * For the cases controlled by PMUSERENR we must set .access to PL0_RW 1906 * or PL0_RO as appropriate and then check PMUSERENR in the helper fn. 1907 */ 1908 { .name = "PMCNTENSET", .cp = 15, .crn = 9, .crm = 12, .opc1 = 0, .opc2 = 1, 1909 .access = PL0_RW, .type = ARM_CP_ALIAS, 1910 .fieldoffset = offsetoflow32(CPUARMState, cp15.c9_pmcnten), 1911 .writefn = pmcntenset_write, 1912 .accessfn = pmreg_access, 1913 .raw_writefn = raw_write }, 1914 { .name = "PMCNTENSET_EL0", .state = ARM_CP_STATE_AA64, 1915 .opc0 = 3, .opc1 = 3, .crn = 9, .crm = 12, .opc2 = 1, 1916 .access = PL0_RW, .accessfn = pmreg_access, 1917 .fieldoffset = offsetof(CPUARMState, cp15.c9_pmcnten), .resetvalue = 0, 1918 .writefn = pmcntenset_write, .raw_writefn = raw_write }, 1919 { .name = "PMCNTENCLR", .cp = 15, .crn = 9, .crm = 12, .opc1 = 0, .opc2 = 2, 1920 .access = PL0_RW, 1921 .fieldoffset = offsetoflow32(CPUARMState, cp15.c9_pmcnten), 1922 .accessfn = pmreg_access, 1923 .writefn = pmcntenclr_write, 1924 .type = ARM_CP_ALIAS }, 1925 { .name = "PMCNTENCLR_EL0", .state = ARM_CP_STATE_AA64, 1926 .opc0 = 3, .opc1 = 3, .crn = 9, .crm = 12, .opc2 = 2, 1927 .access = PL0_RW, .accessfn = pmreg_access, 1928 .type = ARM_CP_ALIAS, 1929 .fieldoffset = offsetof(CPUARMState, cp15.c9_pmcnten), 1930 .writefn = pmcntenclr_write }, 1931 { .name = "PMOVSR", .cp = 15, .crn = 9, .crm = 12, .opc1 = 0, .opc2 = 3, 1932 .access = PL0_RW, .type = ARM_CP_IO, 1933 .fieldoffset = offsetoflow32(CPUARMState, cp15.c9_pmovsr), 1934 .accessfn = pmreg_access, 1935 .writefn = pmovsr_write, 1936 .raw_writefn = raw_write }, 1937 { .name = "PMOVSCLR_EL0", .state = ARM_CP_STATE_AA64, 1938 .opc0 = 3, .opc1 = 3, .crn = 9, .crm = 12, .opc2 = 3, 1939 .access = PL0_RW, .accessfn = pmreg_access, 1940 .type = ARM_CP_ALIAS | ARM_CP_IO, 1941 .fieldoffset = offsetof(CPUARMState, cp15.c9_pmovsr), 1942 .writefn = pmovsr_write, 1943 .raw_writefn = raw_write }, 1944 { .name = "PMSWINC", .cp = 15, .crn = 9, .crm = 12, .opc1 = 0, .opc2 = 4, 1945 .access = PL0_W, .accessfn = pmreg_access_swinc, 1946 .type = ARM_CP_NO_RAW | ARM_CP_IO, 1947 .writefn = pmswinc_write }, 1948 { .name = "PMSWINC_EL0", .state = ARM_CP_STATE_AA64, 1949 .opc0 = 3, .opc1 = 3, .crn = 9, .crm = 12, .opc2 = 4, 1950 .access = PL0_W, .accessfn = pmreg_access_swinc, 1951 .type = ARM_CP_NO_RAW | ARM_CP_IO, 1952 .writefn = pmswinc_write }, 1953 { .name = "PMSELR", .cp = 15, .crn = 9, .crm = 12, .opc1 = 0, .opc2 = 5, 1954 .access = PL0_RW, .type = ARM_CP_ALIAS, 1955 .fieldoffset = offsetoflow32(CPUARMState, cp15.c9_pmselr), 1956 .accessfn = pmreg_access_selr, .writefn = pmselr_write, 1957 .raw_writefn = raw_write}, 1958 { .name = "PMSELR_EL0", .state = ARM_CP_STATE_AA64, 1959 .opc0 = 3, .opc1 = 3, .crn = 9, .crm = 12, .opc2 = 5, 1960 .access = PL0_RW, .accessfn = pmreg_access_selr, 1961 .fieldoffset = offsetof(CPUARMState, cp15.c9_pmselr), 1962 .writefn = pmselr_write, .raw_writefn = raw_write, }, 1963 { .name = "PMCCNTR", .cp = 15, .crn = 9, .crm = 13, .opc1 = 0, .opc2 = 0, 1964 .access = PL0_RW, .resetvalue = 0, .type = ARM_CP_ALIAS | ARM_CP_IO, 1965 .readfn = pmccntr_read, .writefn = pmccntr_write32, 1966 .accessfn = pmreg_access_ccntr }, 1967 { .name = "PMCCNTR_EL0", .state = ARM_CP_STATE_AA64, 1968 .opc0 = 3, .opc1 = 3, .crn = 9, .crm = 13, .opc2 = 0, 1969 .access = PL0_RW, .accessfn = pmreg_access_ccntr, 1970 .type = ARM_CP_IO, 1971 .fieldoffset = offsetof(CPUARMState, cp15.c15_ccnt), 1972 .readfn = pmccntr_read, .writefn = pmccntr_write, 1973 .raw_readfn = raw_read, .raw_writefn = raw_write, }, 1974 { .name = "PMCCFILTR", .cp = 15, .opc1 = 0, .crn = 14, .crm = 15, .opc2 = 7, 1975 .writefn = pmccfiltr_write_a32, .readfn = pmccfiltr_read_a32, 1976 .access = PL0_RW, .accessfn = pmreg_access, 1977 .type = ARM_CP_ALIAS | ARM_CP_IO, 1978 .resetvalue = 0, }, 1979 { .name = "PMCCFILTR_EL0", .state = ARM_CP_STATE_AA64, 1980 .opc0 = 3, .opc1 = 3, .crn = 14, .crm = 15, .opc2 = 7, 1981 .writefn = pmccfiltr_write, .raw_writefn = raw_write, 1982 .access = PL0_RW, .accessfn = pmreg_access, 1983 .type = ARM_CP_IO, 1984 .fieldoffset = offsetof(CPUARMState, cp15.pmccfiltr_el0), 1985 .resetvalue = 0, }, 1986 { .name = "PMXEVTYPER", .cp = 15, .crn = 9, .crm = 13, .opc1 = 0, .opc2 = 1, 1987 .access = PL0_RW, .type = ARM_CP_NO_RAW | ARM_CP_IO, 1988 .accessfn = pmreg_access, 1989 .writefn = pmxevtyper_write, .readfn = pmxevtyper_read }, 1990 { .name = "PMXEVTYPER_EL0", .state = ARM_CP_STATE_AA64, 1991 .opc0 = 3, .opc1 = 3, .crn = 9, .crm = 13, .opc2 = 1, 1992 .access = PL0_RW, .type = ARM_CP_NO_RAW | ARM_CP_IO, 1993 .accessfn = pmreg_access, 1994 .writefn = pmxevtyper_write, .readfn = pmxevtyper_read }, 1995 { .name = "PMXEVCNTR", .cp = 15, .crn = 9, .crm = 13, .opc1 = 0, .opc2 = 2, 1996 .access = PL0_RW, .type = ARM_CP_NO_RAW | ARM_CP_IO, 1997 .accessfn = pmreg_access_xevcntr, 1998 .writefn = pmxevcntr_write, .readfn = pmxevcntr_read }, 1999 { .name = "PMXEVCNTR_EL0", .state = ARM_CP_STATE_AA64, 2000 .opc0 = 3, .opc1 = 3, .crn = 9, .crm = 13, .opc2 = 2, 2001 .access = PL0_RW, .type = ARM_CP_NO_RAW | ARM_CP_IO, 2002 .accessfn = pmreg_access_xevcntr, 2003 .writefn = pmxevcntr_write, .readfn = pmxevcntr_read }, 2004 { .name = "PMUSERENR", .cp = 15, .crn = 9, .crm = 14, .opc1 = 0, .opc2 = 0, 2005 .access = PL0_R | PL1_RW, .accessfn = access_tpm, 2006 .fieldoffset = offsetoflow32(CPUARMState, cp15.c9_pmuserenr), 2007 .resetvalue = 0, 2008 .writefn = pmuserenr_write, .raw_writefn = raw_write }, 2009 { .name = "PMUSERENR_EL0", .state = ARM_CP_STATE_AA64, 2010 .opc0 = 3, .opc1 = 3, .crn = 9, .crm = 14, .opc2 = 0, 2011 .access = PL0_R | PL1_RW, .accessfn = access_tpm, .type = ARM_CP_ALIAS, 2012 .fieldoffset = offsetof(CPUARMState, cp15.c9_pmuserenr), 2013 .resetvalue = 0, 2014 .writefn = pmuserenr_write, .raw_writefn = raw_write }, 2015 { .name = "PMINTENSET", .cp = 15, .crn = 9, .crm = 14, .opc1 = 0, .opc2 = 1, 2016 .access = PL1_RW, .accessfn = access_tpm, 2017 .type = ARM_CP_ALIAS | ARM_CP_IO, 2018 .fieldoffset = offsetoflow32(CPUARMState, cp15.c9_pminten), 2019 .resetvalue = 0, 2020 .writefn = pmintenset_write, .raw_writefn = raw_write }, 2021 { .name = "PMINTENSET_EL1", .state = ARM_CP_STATE_AA64, 2022 .opc0 = 3, .opc1 = 0, .crn = 9, .crm = 14, .opc2 = 1, 2023 .access = PL1_RW, .accessfn = access_tpm, 2024 .type = ARM_CP_IO, 2025 .fieldoffset = offsetof(CPUARMState, cp15.c9_pminten), 2026 .writefn = pmintenset_write, .raw_writefn = raw_write, 2027 .resetvalue = 0x0 }, 2028 { .name = "PMINTENCLR", .cp = 15, .crn = 9, .crm = 14, .opc1 = 0, .opc2 = 2, 2029 .access = PL1_RW, .accessfn = access_tpm, 2030 .type = ARM_CP_ALIAS | ARM_CP_IO | ARM_CP_NO_RAW, 2031 .fieldoffset = offsetof(CPUARMState, cp15.c9_pminten), 2032 .writefn = pmintenclr_write, }, 2033 { .name = "PMINTENCLR_EL1", .state = ARM_CP_STATE_AA64, 2034 .opc0 = 3, .opc1 = 0, .crn = 9, .crm = 14, .opc2 = 2, 2035 .access = PL1_RW, .accessfn = access_tpm, 2036 .type = ARM_CP_ALIAS | ARM_CP_IO | ARM_CP_NO_RAW, 2037 .fieldoffset = offsetof(CPUARMState, cp15.c9_pminten), 2038 .writefn = pmintenclr_write }, 2039 { .name = "CCSIDR", .state = ARM_CP_STATE_BOTH, 2040 .opc0 = 3, .crn = 0, .crm = 0, .opc1 = 1, .opc2 = 0, 2041 .access = PL1_R, 2042 .accessfn = access_aa64_tid2, 2043 .readfn = ccsidr_read, .type = ARM_CP_NO_RAW }, 2044 { .name = "CSSELR", .state = ARM_CP_STATE_BOTH, 2045 .opc0 = 3, .crn = 0, .crm = 0, .opc1 = 2, .opc2 = 0, 2046 .access = PL1_RW, 2047 .accessfn = access_aa64_tid2, 2048 .writefn = csselr_write, .resetvalue = 0, 2049 .bank_fieldoffsets = { offsetof(CPUARMState, cp15.csselr_s), 2050 offsetof(CPUARMState, cp15.csselr_ns) } }, 2051 /* Auxiliary ID register: this actually has an IMPDEF value but for now 2052 * just RAZ for all cores: 2053 */ 2054 { .name = "AIDR", .state = ARM_CP_STATE_BOTH, 2055 .opc0 = 3, .opc1 = 1, .crn = 0, .crm = 0, .opc2 = 7, 2056 .access = PL1_R, .type = ARM_CP_CONST, 2057 .accessfn = access_aa64_tid1, 2058 .resetvalue = 0 }, 2059 /* Auxiliary fault status registers: these also are IMPDEF, and we 2060 * choose to RAZ/WI for all cores. 2061 */ 2062 { .name = "AFSR0_EL1", .state = ARM_CP_STATE_BOTH, 2063 .opc0 = 3, .opc1 = 0, .crn = 5, .crm = 1, .opc2 = 0, 2064 .access = PL1_RW, .accessfn = access_tvm_trvm, 2065 .type = ARM_CP_CONST, .resetvalue = 0 }, 2066 { .name = "AFSR1_EL1", .state = ARM_CP_STATE_BOTH, 2067 .opc0 = 3, .opc1 = 0, .crn = 5, .crm = 1, .opc2 = 1, 2068 .access = PL1_RW, .accessfn = access_tvm_trvm, 2069 .type = ARM_CP_CONST, .resetvalue = 0 }, 2070 /* MAIR can just read-as-written because we don't implement caches 2071 * and so don't need to care about memory attributes. 2072 */ 2073 { .name = "MAIR_EL1", .state = ARM_CP_STATE_AA64, 2074 .opc0 = 3, .opc1 = 0, .crn = 10, .crm = 2, .opc2 = 0, 2075 .access = PL1_RW, .accessfn = access_tvm_trvm, 2076 .fieldoffset = offsetof(CPUARMState, cp15.mair_el[1]), 2077 .resetvalue = 0 }, 2078 { .name = "MAIR_EL3", .state = ARM_CP_STATE_AA64, 2079 .opc0 = 3, .opc1 = 6, .crn = 10, .crm = 2, .opc2 = 0, 2080 .access = PL3_RW, .fieldoffset = offsetof(CPUARMState, cp15.mair_el[3]), 2081 .resetvalue = 0 }, 2082 /* For non-long-descriptor page tables these are PRRR and NMRR; 2083 * regardless they still act as reads-as-written for QEMU. 2084 */ 2085 /* MAIR0/1 are defined separately from their 64-bit counterpart which 2086 * allows them to assign the correct fieldoffset based on the endianness 2087 * handled in the field definitions. 2088 */ 2089 { .name = "MAIR0", .state = ARM_CP_STATE_AA32, 2090 .cp = 15, .opc1 = 0, .crn = 10, .crm = 2, .opc2 = 0, 2091 .access = PL1_RW, .accessfn = access_tvm_trvm, 2092 .bank_fieldoffsets = { offsetof(CPUARMState, cp15.mair0_s), 2093 offsetof(CPUARMState, cp15.mair0_ns) }, 2094 .resetfn = arm_cp_reset_ignore }, 2095 { .name = "MAIR1", .state = ARM_CP_STATE_AA32, 2096 .cp = 15, .opc1 = 0, .crn = 10, .crm = 2, .opc2 = 1, 2097 .access = PL1_RW, .accessfn = access_tvm_trvm, 2098 .bank_fieldoffsets = { offsetof(CPUARMState, cp15.mair1_s), 2099 offsetof(CPUARMState, cp15.mair1_ns) }, 2100 .resetfn = arm_cp_reset_ignore }, 2101 { .name = "ISR_EL1", .state = ARM_CP_STATE_BOTH, 2102 .opc0 = 3, .opc1 = 0, .crn = 12, .crm = 1, .opc2 = 0, 2103 .type = ARM_CP_NO_RAW, .access = PL1_R, .readfn = isr_read }, 2104 /* 32 bit ITLB invalidates */ 2105 { .name = "ITLBIALL", .cp = 15, .opc1 = 0, .crn = 8, .crm = 5, .opc2 = 0, 2106 .type = ARM_CP_NO_RAW, .access = PL1_W, .accessfn = access_ttlb, 2107 .writefn = tlbiall_write }, 2108 { .name = "ITLBIMVA", .cp = 15, .opc1 = 0, .crn = 8, .crm = 5, .opc2 = 1, 2109 .type = ARM_CP_NO_RAW, .access = PL1_W, .accessfn = access_ttlb, 2110 .writefn = tlbimva_write }, 2111 { .name = "ITLBIASID", .cp = 15, .opc1 = 0, .crn = 8, .crm = 5, .opc2 = 2, 2112 .type = ARM_CP_NO_RAW, .access = PL1_W, .accessfn = access_ttlb, 2113 .writefn = tlbiasid_write }, 2114 /* 32 bit DTLB invalidates */ 2115 { .name = "DTLBIALL", .cp = 15, .opc1 = 0, .crn = 8, .crm = 6, .opc2 = 0, 2116 .type = ARM_CP_NO_RAW, .access = PL1_W, .accessfn = access_ttlb, 2117 .writefn = tlbiall_write }, 2118 { .name = "DTLBIMVA", .cp = 15, .opc1 = 0, .crn = 8, .crm = 6, .opc2 = 1, 2119 .type = ARM_CP_NO_RAW, .access = PL1_W, .accessfn = access_ttlb, 2120 .writefn = tlbimva_write }, 2121 { .name = "DTLBIASID", .cp = 15, .opc1 = 0, .crn = 8, .crm = 6, .opc2 = 2, 2122 .type = ARM_CP_NO_RAW, .access = PL1_W, .accessfn = access_ttlb, 2123 .writefn = tlbiasid_write }, 2124 /* 32 bit TLB invalidates */ 2125 { .name = "TLBIALL", .cp = 15, .opc1 = 0, .crn = 8, .crm = 7, .opc2 = 0, 2126 .type = ARM_CP_NO_RAW, .access = PL1_W, .accessfn = access_ttlb, 2127 .writefn = tlbiall_write }, 2128 { .name = "TLBIMVA", .cp = 15, .opc1 = 0, .crn = 8, .crm = 7, .opc2 = 1, 2129 .type = ARM_CP_NO_RAW, .access = PL1_W, .accessfn = access_ttlb, 2130 .writefn = tlbimva_write }, 2131 { .name = "TLBIASID", .cp = 15, .opc1 = 0, .crn = 8, .crm = 7, .opc2 = 2, 2132 .type = ARM_CP_NO_RAW, .access = PL1_W, .accessfn = access_ttlb, 2133 .writefn = tlbiasid_write }, 2134 { .name = "TLBIMVAA", .cp = 15, .opc1 = 0, .crn = 8, .crm = 7, .opc2 = 3, 2135 .type = ARM_CP_NO_RAW, .access = PL1_W, .accessfn = access_ttlb, 2136 .writefn = tlbimvaa_write }, 2137 REGINFO_SENTINEL 2138 }; 2139 2140 static const ARMCPRegInfo v7mp_cp_reginfo[] = { 2141 /* 32 bit TLB invalidates, Inner Shareable */ 2142 { .name = "TLBIALLIS", .cp = 15, .opc1 = 0, .crn = 8, .crm = 3, .opc2 = 0, 2143 .type = ARM_CP_NO_RAW, .access = PL1_W, .accessfn = access_ttlb, 2144 .writefn = tlbiall_is_write }, 2145 { .name = "TLBIMVAIS", .cp = 15, .opc1 = 0, .crn = 8, .crm = 3, .opc2 = 1, 2146 .type = ARM_CP_NO_RAW, .access = PL1_W, .accessfn = access_ttlb, 2147 .writefn = tlbimva_is_write }, 2148 { .name = "TLBIASIDIS", .cp = 15, .opc1 = 0, .crn = 8, .crm = 3, .opc2 = 2, 2149 .type = ARM_CP_NO_RAW, .access = PL1_W, .accessfn = access_ttlb, 2150 .writefn = tlbiasid_is_write }, 2151 { .name = "TLBIMVAAIS", .cp = 15, .opc1 = 0, .crn = 8, .crm = 3, .opc2 = 3, 2152 .type = ARM_CP_NO_RAW, .access = PL1_W, .accessfn = access_ttlb, 2153 .writefn = tlbimvaa_is_write }, 2154 REGINFO_SENTINEL 2155 }; 2156 2157 static const ARMCPRegInfo pmovsset_cp_reginfo[] = { 2158 /* PMOVSSET is not implemented in v7 before v7ve */ 2159 { .name = "PMOVSSET", .cp = 15, .opc1 = 0, .crn = 9, .crm = 14, .opc2 = 3, 2160 .access = PL0_RW, .accessfn = pmreg_access, 2161 .type = ARM_CP_ALIAS | ARM_CP_IO, 2162 .fieldoffset = offsetoflow32(CPUARMState, cp15.c9_pmovsr), 2163 .writefn = pmovsset_write, 2164 .raw_writefn = raw_write }, 2165 { .name = "PMOVSSET_EL0", .state = ARM_CP_STATE_AA64, 2166 .opc0 = 3, .opc1 = 3, .crn = 9, .crm = 14, .opc2 = 3, 2167 .access = PL0_RW, .accessfn = pmreg_access, 2168 .type = ARM_CP_ALIAS | ARM_CP_IO, 2169 .fieldoffset = offsetof(CPUARMState, cp15.c9_pmovsr), 2170 .writefn = pmovsset_write, 2171 .raw_writefn = raw_write }, 2172 REGINFO_SENTINEL 2173 }; 2174 2175 static void teecr_write(CPUARMState *env, const ARMCPRegInfo *ri, 2176 uint64_t value) 2177 { 2178 value &= 1; 2179 env->teecr = value; 2180 } 2181 2182 static CPAccessResult teecr_access(CPUARMState *env, const ARMCPRegInfo *ri, 2183 bool isread) 2184 { 2185 /* 2186 * HSTR.TTEE only exists in v7A, not v8A, but v8A doesn't have T2EE 2187 * at all, so we don't need to check whether we're v8A. 2188 */ 2189 if (arm_current_el(env) < 2 && !arm_is_secure_below_el3(env) && 2190 (env->cp15.hstr_el2 & HSTR_TTEE)) { 2191 return CP_ACCESS_TRAP_EL2; 2192 } 2193 return CP_ACCESS_OK; 2194 } 2195 2196 static CPAccessResult teehbr_access(CPUARMState *env, const ARMCPRegInfo *ri, 2197 bool isread) 2198 { 2199 if (arm_current_el(env) == 0 && (env->teecr & 1)) { 2200 return CP_ACCESS_TRAP; 2201 } 2202 return teecr_access(env, ri, isread); 2203 } 2204 2205 static const ARMCPRegInfo t2ee_cp_reginfo[] = { 2206 { .name = "TEECR", .cp = 14, .crn = 0, .crm = 0, .opc1 = 6, .opc2 = 0, 2207 .access = PL1_RW, .fieldoffset = offsetof(CPUARMState, teecr), 2208 .resetvalue = 0, 2209 .writefn = teecr_write, .accessfn = teecr_access }, 2210 { .name = "TEEHBR", .cp = 14, .crn = 1, .crm = 0, .opc1 = 6, .opc2 = 0, 2211 .access = PL0_RW, .fieldoffset = offsetof(CPUARMState, teehbr), 2212 .accessfn = teehbr_access, .resetvalue = 0 }, 2213 REGINFO_SENTINEL 2214 }; 2215 2216 static const ARMCPRegInfo v6k_cp_reginfo[] = { 2217 { .name = "TPIDR_EL0", .state = ARM_CP_STATE_AA64, 2218 .opc0 = 3, .opc1 = 3, .opc2 = 2, .crn = 13, .crm = 0, 2219 .access = PL0_RW, 2220 .fieldoffset = offsetof(CPUARMState, cp15.tpidr_el[0]), .resetvalue = 0 }, 2221 { .name = "TPIDRURW", .cp = 15, .crn = 13, .crm = 0, .opc1 = 0, .opc2 = 2, 2222 .access = PL0_RW, 2223 .bank_fieldoffsets = { offsetoflow32(CPUARMState, cp15.tpidrurw_s), 2224 offsetoflow32(CPUARMState, cp15.tpidrurw_ns) }, 2225 .resetfn = arm_cp_reset_ignore }, 2226 { .name = "TPIDRRO_EL0", .state = ARM_CP_STATE_AA64, 2227 .opc0 = 3, .opc1 = 3, .opc2 = 3, .crn = 13, .crm = 0, 2228 .access = PL0_R|PL1_W, 2229 .fieldoffset = offsetof(CPUARMState, cp15.tpidrro_el[0]), 2230 .resetvalue = 0}, 2231 { .name = "TPIDRURO", .cp = 15, .crn = 13, .crm = 0, .opc1 = 0, .opc2 = 3, 2232 .access = PL0_R|PL1_W, 2233 .bank_fieldoffsets = { offsetoflow32(CPUARMState, cp15.tpidruro_s), 2234 offsetoflow32(CPUARMState, cp15.tpidruro_ns) }, 2235 .resetfn = arm_cp_reset_ignore }, 2236 { .name = "TPIDR_EL1", .state = ARM_CP_STATE_AA64, 2237 .opc0 = 3, .opc1 = 0, .opc2 = 4, .crn = 13, .crm = 0, 2238 .access = PL1_RW, 2239 .fieldoffset = offsetof(CPUARMState, cp15.tpidr_el[1]), .resetvalue = 0 }, 2240 { .name = "TPIDRPRW", .opc1 = 0, .cp = 15, .crn = 13, .crm = 0, .opc2 = 4, 2241 .access = PL1_RW, 2242 .bank_fieldoffsets = { offsetoflow32(CPUARMState, cp15.tpidrprw_s), 2243 offsetoflow32(CPUARMState, cp15.tpidrprw_ns) }, 2244 .resetvalue = 0 }, 2245 REGINFO_SENTINEL 2246 }; 2247 2248 #ifndef CONFIG_USER_ONLY 2249 2250 static CPAccessResult gt_cntfrq_access(CPUARMState *env, const ARMCPRegInfo *ri, 2251 bool isread) 2252 { 2253 /* CNTFRQ: not visible from PL0 if both PL0PCTEN and PL0VCTEN are zero. 2254 * Writable only at the highest implemented exception level. 2255 */ 2256 int el = arm_current_el(env); 2257 uint64_t hcr; 2258 uint32_t cntkctl; 2259 2260 switch (el) { 2261 case 0: 2262 hcr = arm_hcr_el2_eff(env); 2263 if ((hcr & (HCR_E2H | HCR_TGE)) == (HCR_E2H | HCR_TGE)) { 2264 cntkctl = env->cp15.cnthctl_el2; 2265 } else { 2266 cntkctl = env->cp15.c14_cntkctl; 2267 } 2268 if (!extract32(cntkctl, 0, 2)) { 2269 return CP_ACCESS_TRAP; 2270 } 2271 break; 2272 case 1: 2273 if (!isread && ri->state == ARM_CP_STATE_AA32 && 2274 arm_is_secure_below_el3(env)) { 2275 /* Accesses from 32-bit Secure EL1 UNDEF (*not* trap to EL3!) */ 2276 return CP_ACCESS_TRAP_UNCATEGORIZED; 2277 } 2278 break; 2279 case 2: 2280 case 3: 2281 break; 2282 } 2283 2284 if (!isread && el < arm_highest_el(env)) { 2285 return CP_ACCESS_TRAP_UNCATEGORIZED; 2286 } 2287 2288 return CP_ACCESS_OK; 2289 } 2290 2291 static CPAccessResult gt_counter_access(CPUARMState *env, int timeridx, 2292 bool isread) 2293 { 2294 unsigned int cur_el = arm_current_el(env); 2295 bool has_el2 = arm_is_el2_enabled(env); 2296 uint64_t hcr = arm_hcr_el2_eff(env); 2297 2298 switch (cur_el) { 2299 case 0: 2300 /* If HCR_EL2.<E2H,TGE> == '11': check CNTHCTL_EL2.EL0[PV]CTEN. */ 2301 if ((hcr & (HCR_E2H | HCR_TGE)) == (HCR_E2H | HCR_TGE)) { 2302 return (extract32(env->cp15.cnthctl_el2, timeridx, 1) 2303 ? CP_ACCESS_OK : CP_ACCESS_TRAP_EL2); 2304 } 2305 2306 /* CNT[PV]CT: not visible from PL0 if EL0[PV]CTEN is zero */ 2307 if (!extract32(env->cp15.c14_cntkctl, timeridx, 1)) { 2308 return CP_ACCESS_TRAP; 2309 } 2310 2311 /* If HCR_EL2.<E2H,TGE> == '10': check CNTHCTL_EL2.EL1PCTEN. */ 2312 if (hcr & HCR_E2H) { 2313 if (timeridx == GTIMER_PHYS && 2314 !extract32(env->cp15.cnthctl_el2, 10, 1)) { 2315 return CP_ACCESS_TRAP_EL2; 2316 } 2317 } else { 2318 /* If HCR_EL2.<E2H> == 0: check CNTHCTL_EL2.EL1PCEN. */ 2319 if (has_el2 && timeridx == GTIMER_PHYS && 2320 !extract32(env->cp15.cnthctl_el2, 1, 1)) { 2321 return CP_ACCESS_TRAP_EL2; 2322 } 2323 } 2324 break; 2325 2326 case 1: 2327 /* Check CNTHCTL_EL2.EL1PCTEN, which changes location based on E2H. */ 2328 if (has_el2 && timeridx == GTIMER_PHYS && 2329 (hcr & HCR_E2H 2330 ? !extract32(env->cp15.cnthctl_el2, 10, 1) 2331 : !extract32(env->cp15.cnthctl_el2, 0, 1))) { 2332 return CP_ACCESS_TRAP_EL2; 2333 } 2334 break; 2335 } 2336 return CP_ACCESS_OK; 2337 } 2338 2339 static CPAccessResult gt_timer_access(CPUARMState *env, int timeridx, 2340 bool isread) 2341 { 2342 unsigned int cur_el = arm_current_el(env); 2343 bool has_el2 = arm_is_el2_enabled(env); 2344 uint64_t hcr = arm_hcr_el2_eff(env); 2345 2346 switch (cur_el) { 2347 case 0: 2348 if ((hcr & (HCR_E2H | HCR_TGE)) == (HCR_E2H | HCR_TGE)) { 2349 /* If HCR_EL2.<E2H,TGE> == '11': check CNTHCTL_EL2.EL0[PV]TEN. */ 2350 return (extract32(env->cp15.cnthctl_el2, 9 - timeridx, 1) 2351 ? CP_ACCESS_OK : CP_ACCESS_TRAP_EL2); 2352 } 2353 2354 /* 2355 * CNT[PV]_CVAL, CNT[PV]_CTL, CNT[PV]_TVAL: not visible from 2356 * EL0 if EL0[PV]TEN is zero. 2357 */ 2358 if (!extract32(env->cp15.c14_cntkctl, 9 - timeridx, 1)) { 2359 return CP_ACCESS_TRAP; 2360 } 2361 /* fall through */ 2362 2363 case 1: 2364 if (has_el2 && timeridx == GTIMER_PHYS) { 2365 if (hcr & HCR_E2H) { 2366 /* If HCR_EL2.<E2H,TGE> == '10': check CNTHCTL_EL2.EL1PTEN. */ 2367 if (!extract32(env->cp15.cnthctl_el2, 11, 1)) { 2368 return CP_ACCESS_TRAP_EL2; 2369 } 2370 } else { 2371 /* If HCR_EL2.<E2H> == 0: check CNTHCTL_EL2.EL1PCEN. */ 2372 if (!extract32(env->cp15.cnthctl_el2, 1, 1)) { 2373 return CP_ACCESS_TRAP_EL2; 2374 } 2375 } 2376 } 2377 break; 2378 } 2379 return CP_ACCESS_OK; 2380 } 2381 2382 static CPAccessResult gt_pct_access(CPUARMState *env, 2383 const ARMCPRegInfo *ri, 2384 bool isread) 2385 { 2386 return gt_counter_access(env, GTIMER_PHYS, isread); 2387 } 2388 2389 static CPAccessResult gt_vct_access(CPUARMState *env, 2390 const ARMCPRegInfo *ri, 2391 bool isread) 2392 { 2393 return gt_counter_access(env, GTIMER_VIRT, isread); 2394 } 2395 2396 static CPAccessResult gt_ptimer_access(CPUARMState *env, const ARMCPRegInfo *ri, 2397 bool isread) 2398 { 2399 return gt_timer_access(env, GTIMER_PHYS, isread); 2400 } 2401 2402 static CPAccessResult gt_vtimer_access(CPUARMState *env, const ARMCPRegInfo *ri, 2403 bool isread) 2404 { 2405 return gt_timer_access(env, GTIMER_VIRT, isread); 2406 } 2407 2408 static CPAccessResult gt_stimer_access(CPUARMState *env, 2409 const ARMCPRegInfo *ri, 2410 bool isread) 2411 { 2412 /* The AArch64 register view of the secure physical timer is 2413 * always accessible from EL3, and configurably accessible from 2414 * Secure EL1. 2415 */ 2416 switch (arm_current_el(env)) { 2417 case 1: 2418 if (!arm_is_secure(env)) { 2419 return CP_ACCESS_TRAP; 2420 } 2421 if (!(env->cp15.scr_el3 & SCR_ST)) { 2422 return CP_ACCESS_TRAP_EL3; 2423 } 2424 return CP_ACCESS_OK; 2425 case 0: 2426 case 2: 2427 return CP_ACCESS_TRAP; 2428 case 3: 2429 return CP_ACCESS_OK; 2430 default: 2431 g_assert_not_reached(); 2432 } 2433 } 2434 2435 static uint64_t gt_get_countervalue(CPUARMState *env) 2436 { 2437 ARMCPU *cpu = env_archcpu(env); 2438 2439 return qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL) / gt_cntfrq_period_ns(cpu); 2440 } 2441 2442 static void gt_recalc_timer(ARMCPU *cpu, int timeridx) 2443 { 2444 ARMGenericTimer *gt = &cpu->env.cp15.c14_timer[timeridx]; 2445 2446 if (gt->ctl & 1) { 2447 /* Timer enabled: calculate and set current ISTATUS, irq, and 2448 * reset timer to when ISTATUS next has to change 2449 */ 2450 uint64_t offset = timeridx == GTIMER_VIRT ? 2451 cpu->env.cp15.cntvoff_el2 : 0; 2452 uint64_t count = gt_get_countervalue(&cpu->env); 2453 /* Note that this must be unsigned 64 bit arithmetic: */ 2454 int istatus = count - offset >= gt->cval; 2455 uint64_t nexttick; 2456 int irqstate; 2457 2458 gt->ctl = deposit32(gt->ctl, 2, 1, istatus); 2459 2460 irqstate = (istatus && !(gt->ctl & 2)); 2461 qemu_set_irq(cpu->gt_timer_outputs[timeridx], irqstate); 2462 2463 if (istatus) { 2464 /* Next transition is when count rolls back over to zero */ 2465 nexttick = UINT64_MAX; 2466 } else { 2467 /* Next transition is when we hit cval */ 2468 nexttick = gt->cval + offset; 2469 } 2470 /* Note that the desired next expiry time might be beyond the 2471 * signed-64-bit range of a QEMUTimer -- in this case we just 2472 * set the timer for as far in the future as possible. When the 2473 * timer expires we will reset the timer for any remaining period. 2474 */ 2475 if (nexttick > INT64_MAX / gt_cntfrq_period_ns(cpu)) { 2476 timer_mod_ns(cpu->gt_timer[timeridx], INT64_MAX); 2477 } else { 2478 timer_mod(cpu->gt_timer[timeridx], nexttick); 2479 } 2480 trace_arm_gt_recalc(timeridx, irqstate, nexttick); 2481 } else { 2482 /* Timer disabled: ISTATUS and timer output always clear */ 2483 gt->ctl &= ~4; 2484 qemu_set_irq(cpu->gt_timer_outputs[timeridx], 0); 2485 timer_del(cpu->gt_timer[timeridx]); 2486 trace_arm_gt_recalc_disabled(timeridx); 2487 } 2488 } 2489 2490 static void gt_timer_reset(CPUARMState *env, const ARMCPRegInfo *ri, 2491 int timeridx) 2492 { 2493 ARMCPU *cpu = env_archcpu(env); 2494 2495 timer_del(cpu->gt_timer[timeridx]); 2496 } 2497 2498 static uint64_t gt_cnt_read(CPUARMState *env, const ARMCPRegInfo *ri) 2499 { 2500 return gt_get_countervalue(env); 2501 } 2502 2503 static uint64_t gt_virt_cnt_offset(CPUARMState *env) 2504 { 2505 uint64_t hcr; 2506 2507 switch (arm_current_el(env)) { 2508 case 2: 2509 hcr = arm_hcr_el2_eff(env); 2510 if (hcr & HCR_E2H) { 2511 return 0; 2512 } 2513 break; 2514 case 0: 2515 hcr = arm_hcr_el2_eff(env); 2516 if ((hcr & (HCR_E2H | HCR_TGE)) == (HCR_E2H | HCR_TGE)) { 2517 return 0; 2518 } 2519 break; 2520 } 2521 2522 return env->cp15.cntvoff_el2; 2523 } 2524 2525 static uint64_t gt_virt_cnt_read(CPUARMState *env, const ARMCPRegInfo *ri) 2526 { 2527 return gt_get_countervalue(env) - gt_virt_cnt_offset(env); 2528 } 2529 2530 static void gt_cval_write(CPUARMState *env, const ARMCPRegInfo *ri, 2531 int timeridx, 2532 uint64_t value) 2533 { 2534 trace_arm_gt_cval_write(timeridx, value); 2535 env->cp15.c14_timer[timeridx].cval = value; 2536 gt_recalc_timer(env_archcpu(env), timeridx); 2537 } 2538 2539 static uint64_t gt_tval_read(CPUARMState *env, const ARMCPRegInfo *ri, 2540 int timeridx) 2541 { 2542 uint64_t offset = 0; 2543 2544 switch (timeridx) { 2545 case GTIMER_VIRT: 2546 case GTIMER_HYPVIRT: 2547 offset = gt_virt_cnt_offset(env); 2548 break; 2549 } 2550 2551 return (uint32_t)(env->cp15.c14_timer[timeridx].cval - 2552 (gt_get_countervalue(env) - offset)); 2553 } 2554 2555 static void gt_tval_write(CPUARMState *env, const ARMCPRegInfo *ri, 2556 int timeridx, 2557 uint64_t value) 2558 { 2559 uint64_t offset = 0; 2560 2561 switch (timeridx) { 2562 case GTIMER_VIRT: 2563 case GTIMER_HYPVIRT: 2564 offset = gt_virt_cnt_offset(env); 2565 break; 2566 } 2567 2568 trace_arm_gt_tval_write(timeridx, value); 2569 env->cp15.c14_timer[timeridx].cval = gt_get_countervalue(env) - offset + 2570 sextract64(value, 0, 32); 2571 gt_recalc_timer(env_archcpu(env), timeridx); 2572 } 2573 2574 static void gt_ctl_write(CPUARMState *env, const ARMCPRegInfo *ri, 2575 int timeridx, 2576 uint64_t value) 2577 { 2578 ARMCPU *cpu = env_archcpu(env); 2579 uint32_t oldval = env->cp15.c14_timer[timeridx].ctl; 2580 2581 trace_arm_gt_ctl_write(timeridx, value); 2582 env->cp15.c14_timer[timeridx].ctl = deposit64(oldval, 0, 2, value); 2583 if ((oldval ^ value) & 1) { 2584 /* Enable toggled */ 2585 gt_recalc_timer(cpu, timeridx); 2586 } else if ((oldval ^ value) & 2) { 2587 /* IMASK toggled: don't need to recalculate, 2588 * just set the interrupt line based on ISTATUS 2589 */ 2590 int irqstate = (oldval & 4) && !(value & 2); 2591 2592 trace_arm_gt_imask_toggle(timeridx, irqstate); 2593 qemu_set_irq(cpu->gt_timer_outputs[timeridx], irqstate); 2594 } 2595 } 2596 2597 static void gt_phys_timer_reset(CPUARMState *env, const ARMCPRegInfo *ri) 2598 { 2599 gt_timer_reset(env, ri, GTIMER_PHYS); 2600 } 2601 2602 static void gt_phys_cval_write(CPUARMState *env, const ARMCPRegInfo *ri, 2603 uint64_t value) 2604 { 2605 gt_cval_write(env, ri, GTIMER_PHYS, value); 2606 } 2607 2608 static uint64_t gt_phys_tval_read(CPUARMState *env, const ARMCPRegInfo *ri) 2609 { 2610 return gt_tval_read(env, ri, GTIMER_PHYS); 2611 } 2612 2613 static void gt_phys_tval_write(CPUARMState *env, const ARMCPRegInfo *ri, 2614 uint64_t value) 2615 { 2616 gt_tval_write(env, ri, GTIMER_PHYS, value); 2617 } 2618 2619 static void gt_phys_ctl_write(CPUARMState *env, const ARMCPRegInfo *ri, 2620 uint64_t value) 2621 { 2622 gt_ctl_write(env, ri, GTIMER_PHYS, value); 2623 } 2624 2625 static int gt_phys_redir_timeridx(CPUARMState *env) 2626 { 2627 switch (arm_mmu_idx(env)) { 2628 case ARMMMUIdx_E20_0: 2629 case ARMMMUIdx_E20_2: 2630 case ARMMMUIdx_E20_2_PAN: 2631 case ARMMMUIdx_SE20_0: 2632 case ARMMMUIdx_SE20_2: 2633 case ARMMMUIdx_SE20_2_PAN: 2634 return GTIMER_HYP; 2635 default: 2636 return GTIMER_PHYS; 2637 } 2638 } 2639 2640 static int gt_virt_redir_timeridx(CPUARMState *env) 2641 { 2642 switch (arm_mmu_idx(env)) { 2643 case ARMMMUIdx_E20_0: 2644 case ARMMMUIdx_E20_2: 2645 case ARMMMUIdx_E20_2_PAN: 2646 case ARMMMUIdx_SE20_0: 2647 case ARMMMUIdx_SE20_2: 2648 case ARMMMUIdx_SE20_2_PAN: 2649 return GTIMER_HYPVIRT; 2650 default: 2651 return GTIMER_VIRT; 2652 } 2653 } 2654 2655 static uint64_t gt_phys_redir_cval_read(CPUARMState *env, 2656 const ARMCPRegInfo *ri) 2657 { 2658 int timeridx = gt_phys_redir_timeridx(env); 2659 return env->cp15.c14_timer[timeridx].cval; 2660 } 2661 2662 static void gt_phys_redir_cval_write(CPUARMState *env, const ARMCPRegInfo *ri, 2663 uint64_t value) 2664 { 2665 int timeridx = gt_phys_redir_timeridx(env); 2666 gt_cval_write(env, ri, timeridx, value); 2667 } 2668 2669 static uint64_t gt_phys_redir_tval_read(CPUARMState *env, 2670 const ARMCPRegInfo *ri) 2671 { 2672 int timeridx = gt_phys_redir_timeridx(env); 2673 return gt_tval_read(env, ri, timeridx); 2674 } 2675 2676 static void gt_phys_redir_tval_write(CPUARMState *env, const ARMCPRegInfo *ri, 2677 uint64_t value) 2678 { 2679 int timeridx = gt_phys_redir_timeridx(env); 2680 gt_tval_write(env, ri, timeridx, value); 2681 } 2682 2683 static uint64_t gt_phys_redir_ctl_read(CPUARMState *env, 2684 const ARMCPRegInfo *ri) 2685 { 2686 int timeridx = gt_phys_redir_timeridx(env); 2687 return env->cp15.c14_timer[timeridx].ctl; 2688 } 2689 2690 static void gt_phys_redir_ctl_write(CPUARMState *env, const ARMCPRegInfo *ri, 2691 uint64_t value) 2692 { 2693 int timeridx = gt_phys_redir_timeridx(env); 2694 gt_ctl_write(env, ri, timeridx, value); 2695 } 2696 2697 static void gt_virt_timer_reset(CPUARMState *env, const ARMCPRegInfo *ri) 2698 { 2699 gt_timer_reset(env, ri, GTIMER_VIRT); 2700 } 2701 2702 static void gt_virt_cval_write(CPUARMState *env, const ARMCPRegInfo *ri, 2703 uint64_t value) 2704 { 2705 gt_cval_write(env, ri, GTIMER_VIRT, value); 2706 } 2707 2708 static uint64_t gt_virt_tval_read(CPUARMState *env, const ARMCPRegInfo *ri) 2709 { 2710 return gt_tval_read(env, ri, GTIMER_VIRT); 2711 } 2712 2713 static void gt_virt_tval_write(CPUARMState *env, const ARMCPRegInfo *ri, 2714 uint64_t value) 2715 { 2716 gt_tval_write(env, ri, GTIMER_VIRT, value); 2717 } 2718 2719 static void gt_virt_ctl_write(CPUARMState *env, const ARMCPRegInfo *ri, 2720 uint64_t value) 2721 { 2722 gt_ctl_write(env, ri, GTIMER_VIRT, value); 2723 } 2724 2725 static void gt_cntvoff_write(CPUARMState *env, const ARMCPRegInfo *ri, 2726 uint64_t value) 2727 { 2728 ARMCPU *cpu = env_archcpu(env); 2729 2730 trace_arm_gt_cntvoff_write(value); 2731 raw_write(env, ri, value); 2732 gt_recalc_timer(cpu, GTIMER_VIRT); 2733 } 2734 2735 static uint64_t gt_virt_redir_cval_read(CPUARMState *env, 2736 const ARMCPRegInfo *ri) 2737 { 2738 int timeridx = gt_virt_redir_timeridx(env); 2739 return env->cp15.c14_timer[timeridx].cval; 2740 } 2741 2742 static void gt_virt_redir_cval_write(CPUARMState *env, const ARMCPRegInfo *ri, 2743 uint64_t value) 2744 { 2745 int timeridx = gt_virt_redir_timeridx(env); 2746 gt_cval_write(env, ri, timeridx, value); 2747 } 2748 2749 static uint64_t gt_virt_redir_tval_read(CPUARMState *env, 2750 const ARMCPRegInfo *ri) 2751 { 2752 int timeridx = gt_virt_redir_timeridx(env); 2753 return gt_tval_read(env, ri, timeridx); 2754 } 2755 2756 static void gt_virt_redir_tval_write(CPUARMState *env, const ARMCPRegInfo *ri, 2757 uint64_t value) 2758 { 2759 int timeridx = gt_virt_redir_timeridx(env); 2760 gt_tval_write(env, ri, timeridx, value); 2761 } 2762 2763 static uint64_t gt_virt_redir_ctl_read(CPUARMState *env, 2764 const ARMCPRegInfo *ri) 2765 { 2766 int timeridx = gt_virt_redir_timeridx(env); 2767 return env->cp15.c14_timer[timeridx].ctl; 2768 } 2769 2770 static void gt_virt_redir_ctl_write(CPUARMState *env, const ARMCPRegInfo *ri, 2771 uint64_t value) 2772 { 2773 int timeridx = gt_virt_redir_timeridx(env); 2774 gt_ctl_write(env, ri, timeridx, value); 2775 } 2776 2777 static void gt_hyp_timer_reset(CPUARMState *env, const ARMCPRegInfo *ri) 2778 { 2779 gt_timer_reset(env, ri, GTIMER_HYP); 2780 } 2781 2782 static void gt_hyp_cval_write(CPUARMState *env, const ARMCPRegInfo *ri, 2783 uint64_t value) 2784 { 2785 gt_cval_write(env, ri, GTIMER_HYP, value); 2786 } 2787 2788 static uint64_t gt_hyp_tval_read(CPUARMState *env, const ARMCPRegInfo *ri) 2789 { 2790 return gt_tval_read(env, ri, GTIMER_HYP); 2791 } 2792 2793 static void gt_hyp_tval_write(CPUARMState *env, const ARMCPRegInfo *ri, 2794 uint64_t value) 2795 { 2796 gt_tval_write(env, ri, GTIMER_HYP, value); 2797 } 2798 2799 static void gt_hyp_ctl_write(CPUARMState *env, const ARMCPRegInfo *ri, 2800 uint64_t value) 2801 { 2802 gt_ctl_write(env, ri, GTIMER_HYP, value); 2803 } 2804 2805 static void gt_sec_timer_reset(CPUARMState *env, const ARMCPRegInfo *ri) 2806 { 2807 gt_timer_reset(env, ri, GTIMER_SEC); 2808 } 2809 2810 static void gt_sec_cval_write(CPUARMState *env, const ARMCPRegInfo *ri, 2811 uint64_t value) 2812 { 2813 gt_cval_write(env, ri, GTIMER_SEC, value); 2814 } 2815 2816 static uint64_t gt_sec_tval_read(CPUARMState *env, const ARMCPRegInfo *ri) 2817 { 2818 return gt_tval_read(env, ri, GTIMER_SEC); 2819 } 2820 2821 static void gt_sec_tval_write(CPUARMState *env, const ARMCPRegInfo *ri, 2822 uint64_t value) 2823 { 2824 gt_tval_write(env, ri, GTIMER_SEC, value); 2825 } 2826 2827 static void gt_sec_ctl_write(CPUARMState *env, const ARMCPRegInfo *ri, 2828 uint64_t value) 2829 { 2830 gt_ctl_write(env, ri, GTIMER_SEC, value); 2831 } 2832 2833 static void gt_hv_timer_reset(CPUARMState *env, const ARMCPRegInfo *ri) 2834 { 2835 gt_timer_reset(env, ri, GTIMER_HYPVIRT); 2836 } 2837 2838 static void gt_hv_cval_write(CPUARMState *env, const ARMCPRegInfo *ri, 2839 uint64_t value) 2840 { 2841 gt_cval_write(env, ri, GTIMER_HYPVIRT, value); 2842 } 2843 2844 static uint64_t gt_hv_tval_read(CPUARMState *env, const ARMCPRegInfo *ri) 2845 { 2846 return gt_tval_read(env, ri, GTIMER_HYPVIRT); 2847 } 2848 2849 static void gt_hv_tval_write(CPUARMState *env, const ARMCPRegInfo *ri, 2850 uint64_t value) 2851 { 2852 gt_tval_write(env, ri, GTIMER_HYPVIRT, value); 2853 } 2854 2855 static void gt_hv_ctl_write(CPUARMState *env, const ARMCPRegInfo *ri, 2856 uint64_t value) 2857 { 2858 gt_ctl_write(env, ri, GTIMER_HYPVIRT, value); 2859 } 2860 2861 void arm_gt_ptimer_cb(void *opaque) 2862 { 2863 ARMCPU *cpu = opaque; 2864 2865 gt_recalc_timer(cpu, GTIMER_PHYS); 2866 } 2867 2868 void arm_gt_vtimer_cb(void *opaque) 2869 { 2870 ARMCPU *cpu = opaque; 2871 2872 gt_recalc_timer(cpu, GTIMER_VIRT); 2873 } 2874 2875 void arm_gt_htimer_cb(void *opaque) 2876 { 2877 ARMCPU *cpu = opaque; 2878 2879 gt_recalc_timer(cpu, GTIMER_HYP); 2880 } 2881 2882 void arm_gt_stimer_cb(void *opaque) 2883 { 2884 ARMCPU *cpu = opaque; 2885 2886 gt_recalc_timer(cpu, GTIMER_SEC); 2887 } 2888 2889 void arm_gt_hvtimer_cb(void *opaque) 2890 { 2891 ARMCPU *cpu = opaque; 2892 2893 gt_recalc_timer(cpu, GTIMER_HYPVIRT); 2894 } 2895 2896 static void arm_gt_cntfrq_reset(CPUARMState *env, const ARMCPRegInfo *opaque) 2897 { 2898 ARMCPU *cpu = env_archcpu(env); 2899 2900 cpu->env.cp15.c14_cntfrq = cpu->gt_cntfrq_hz; 2901 } 2902 2903 static const ARMCPRegInfo generic_timer_cp_reginfo[] = { 2904 /* Note that CNTFRQ is purely reads-as-written for the benefit 2905 * of software; writing it doesn't actually change the timer frequency. 2906 * Our reset value matches the fixed frequency we implement the timer at. 2907 */ 2908 { .name = "CNTFRQ", .cp = 15, .crn = 14, .crm = 0, .opc1 = 0, .opc2 = 0, 2909 .type = ARM_CP_ALIAS, 2910 .access = PL1_RW | PL0_R, .accessfn = gt_cntfrq_access, 2911 .fieldoffset = offsetoflow32(CPUARMState, cp15.c14_cntfrq), 2912 }, 2913 { .name = "CNTFRQ_EL0", .state = ARM_CP_STATE_AA64, 2914 .opc0 = 3, .opc1 = 3, .crn = 14, .crm = 0, .opc2 = 0, 2915 .access = PL1_RW | PL0_R, .accessfn = gt_cntfrq_access, 2916 .fieldoffset = offsetof(CPUARMState, cp15.c14_cntfrq), 2917 .resetfn = arm_gt_cntfrq_reset, 2918 }, 2919 /* overall control: mostly access permissions */ 2920 { .name = "CNTKCTL", .state = ARM_CP_STATE_BOTH, 2921 .opc0 = 3, .opc1 = 0, .crn = 14, .crm = 1, .opc2 = 0, 2922 .access = PL1_RW, 2923 .fieldoffset = offsetof(CPUARMState, cp15.c14_cntkctl), 2924 .resetvalue = 0, 2925 }, 2926 /* per-timer control */ 2927 { .name = "CNTP_CTL", .cp = 15, .crn = 14, .crm = 2, .opc1 = 0, .opc2 = 1, 2928 .secure = ARM_CP_SECSTATE_NS, 2929 .type = ARM_CP_IO | ARM_CP_ALIAS, .access = PL0_RW, 2930 .accessfn = gt_ptimer_access, 2931 .fieldoffset = offsetoflow32(CPUARMState, 2932 cp15.c14_timer[GTIMER_PHYS].ctl), 2933 .readfn = gt_phys_redir_ctl_read, .raw_readfn = raw_read, 2934 .writefn = gt_phys_redir_ctl_write, .raw_writefn = raw_write, 2935 }, 2936 { .name = "CNTP_CTL_S", 2937 .cp = 15, .crn = 14, .crm = 2, .opc1 = 0, .opc2 = 1, 2938 .secure = ARM_CP_SECSTATE_S, 2939 .type = ARM_CP_IO | ARM_CP_ALIAS, .access = PL0_RW, 2940 .accessfn = gt_ptimer_access, 2941 .fieldoffset = offsetoflow32(CPUARMState, 2942 cp15.c14_timer[GTIMER_SEC].ctl), 2943 .writefn = gt_sec_ctl_write, .raw_writefn = raw_write, 2944 }, 2945 { .name = "CNTP_CTL_EL0", .state = ARM_CP_STATE_AA64, 2946 .opc0 = 3, .opc1 = 3, .crn = 14, .crm = 2, .opc2 = 1, 2947 .type = ARM_CP_IO, .access = PL0_RW, 2948 .accessfn = gt_ptimer_access, 2949 .fieldoffset = offsetof(CPUARMState, cp15.c14_timer[GTIMER_PHYS].ctl), 2950 .resetvalue = 0, 2951 .readfn = gt_phys_redir_ctl_read, .raw_readfn = raw_read, 2952 .writefn = gt_phys_redir_ctl_write, .raw_writefn = raw_write, 2953 }, 2954 { .name = "CNTV_CTL", .cp = 15, .crn = 14, .crm = 3, .opc1 = 0, .opc2 = 1, 2955 .type = ARM_CP_IO | ARM_CP_ALIAS, .access = PL0_RW, 2956 .accessfn = gt_vtimer_access, 2957 .fieldoffset = offsetoflow32(CPUARMState, 2958 cp15.c14_timer[GTIMER_VIRT].ctl), 2959 .readfn = gt_virt_redir_ctl_read, .raw_readfn = raw_read, 2960 .writefn = gt_virt_redir_ctl_write, .raw_writefn = raw_write, 2961 }, 2962 { .name = "CNTV_CTL_EL0", .state = ARM_CP_STATE_AA64, 2963 .opc0 = 3, .opc1 = 3, .crn = 14, .crm = 3, .opc2 = 1, 2964 .type = ARM_CP_IO, .access = PL0_RW, 2965 .accessfn = gt_vtimer_access, 2966 .fieldoffset = offsetof(CPUARMState, cp15.c14_timer[GTIMER_VIRT].ctl), 2967 .resetvalue = 0, 2968 .readfn = gt_virt_redir_ctl_read, .raw_readfn = raw_read, 2969 .writefn = gt_virt_redir_ctl_write, .raw_writefn = raw_write, 2970 }, 2971 /* TimerValue views: a 32 bit downcounting view of the underlying state */ 2972 { .name = "CNTP_TVAL", .cp = 15, .crn = 14, .crm = 2, .opc1 = 0, .opc2 = 0, 2973 .secure = ARM_CP_SECSTATE_NS, 2974 .type = ARM_CP_NO_RAW | ARM_CP_IO, .access = PL0_RW, 2975 .accessfn = gt_ptimer_access, 2976 .readfn = gt_phys_redir_tval_read, .writefn = gt_phys_redir_tval_write, 2977 }, 2978 { .name = "CNTP_TVAL_S", 2979 .cp = 15, .crn = 14, .crm = 2, .opc1 = 0, .opc2 = 0, 2980 .secure = ARM_CP_SECSTATE_S, 2981 .type = ARM_CP_NO_RAW | ARM_CP_IO, .access = PL0_RW, 2982 .accessfn = gt_ptimer_access, 2983 .readfn = gt_sec_tval_read, .writefn = gt_sec_tval_write, 2984 }, 2985 { .name = "CNTP_TVAL_EL0", .state = ARM_CP_STATE_AA64, 2986 .opc0 = 3, .opc1 = 3, .crn = 14, .crm = 2, .opc2 = 0, 2987 .type = ARM_CP_NO_RAW | ARM_CP_IO, .access = PL0_RW, 2988 .accessfn = gt_ptimer_access, .resetfn = gt_phys_timer_reset, 2989 .readfn = gt_phys_redir_tval_read, .writefn = gt_phys_redir_tval_write, 2990 }, 2991 { .name = "CNTV_TVAL", .cp = 15, .crn = 14, .crm = 3, .opc1 = 0, .opc2 = 0, 2992 .type = ARM_CP_NO_RAW | ARM_CP_IO, .access = PL0_RW, 2993 .accessfn = gt_vtimer_access, 2994 .readfn = gt_virt_redir_tval_read, .writefn = gt_virt_redir_tval_write, 2995 }, 2996 { .name = "CNTV_TVAL_EL0", .state = ARM_CP_STATE_AA64, 2997 .opc0 = 3, .opc1 = 3, .crn = 14, .crm = 3, .opc2 = 0, 2998 .type = ARM_CP_NO_RAW | ARM_CP_IO, .access = PL0_RW, 2999 .accessfn = gt_vtimer_access, .resetfn = gt_virt_timer_reset, 3000 .readfn = gt_virt_redir_tval_read, .writefn = gt_virt_redir_tval_write, 3001 }, 3002 /* The counter itself */ 3003 { .name = "CNTPCT", .cp = 15, .crm = 14, .opc1 = 0, 3004 .access = PL0_R, .type = ARM_CP_64BIT | ARM_CP_NO_RAW | ARM_CP_IO, 3005 .accessfn = gt_pct_access, 3006 .readfn = gt_cnt_read, .resetfn = arm_cp_reset_ignore, 3007 }, 3008 { .name = "CNTPCT_EL0", .state = ARM_CP_STATE_AA64, 3009 .opc0 = 3, .opc1 = 3, .crn = 14, .crm = 0, .opc2 = 1, 3010 .access = PL0_R, .type = ARM_CP_NO_RAW | ARM_CP_IO, 3011 .accessfn = gt_pct_access, .readfn = gt_cnt_read, 3012 }, 3013 { .name = "CNTVCT", .cp = 15, .crm = 14, .opc1 = 1, 3014 .access = PL0_R, .type = ARM_CP_64BIT | ARM_CP_NO_RAW | ARM_CP_IO, 3015 .accessfn = gt_vct_access, 3016 .readfn = gt_virt_cnt_read, .resetfn = arm_cp_reset_ignore, 3017 }, 3018 { .name = "CNTVCT_EL0", .state = ARM_CP_STATE_AA64, 3019 .opc0 = 3, .opc1 = 3, .crn = 14, .crm = 0, .opc2 = 2, 3020 .access = PL0_R, .type = ARM_CP_NO_RAW | ARM_CP_IO, 3021 .accessfn = gt_vct_access, .readfn = gt_virt_cnt_read, 3022 }, 3023 /* Comparison value, indicating when the timer goes off */ 3024 { .name = "CNTP_CVAL", .cp = 15, .crm = 14, .opc1 = 2, 3025 .secure = ARM_CP_SECSTATE_NS, 3026 .access = PL0_RW, 3027 .type = ARM_CP_64BIT | ARM_CP_IO | ARM_CP_ALIAS, 3028 .fieldoffset = offsetof(CPUARMState, cp15.c14_timer[GTIMER_PHYS].cval), 3029 .accessfn = gt_ptimer_access, 3030 .readfn = gt_phys_redir_cval_read, .raw_readfn = raw_read, 3031 .writefn = gt_phys_redir_cval_write, .raw_writefn = raw_write, 3032 }, 3033 { .name = "CNTP_CVAL_S", .cp = 15, .crm = 14, .opc1 = 2, 3034 .secure = ARM_CP_SECSTATE_S, 3035 .access = PL0_RW, 3036 .type = ARM_CP_64BIT | ARM_CP_IO | ARM_CP_ALIAS, 3037 .fieldoffset = offsetof(CPUARMState, cp15.c14_timer[GTIMER_SEC].cval), 3038 .accessfn = gt_ptimer_access, 3039 .writefn = gt_sec_cval_write, .raw_writefn = raw_write, 3040 }, 3041 { .name = "CNTP_CVAL_EL0", .state = ARM_CP_STATE_AA64, 3042 .opc0 = 3, .opc1 = 3, .crn = 14, .crm = 2, .opc2 = 2, 3043 .access = PL0_RW, 3044 .type = ARM_CP_IO, 3045 .fieldoffset = offsetof(CPUARMState, cp15.c14_timer[GTIMER_PHYS].cval), 3046 .resetvalue = 0, .accessfn = gt_ptimer_access, 3047 .readfn = gt_phys_redir_cval_read, .raw_readfn = raw_read, 3048 .writefn = gt_phys_redir_cval_write, .raw_writefn = raw_write, 3049 }, 3050 { .name = "CNTV_CVAL", .cp = 15, .crm = 14, .opc1 = 3, 3051 .access = PL0_RW, 3052 .type = ARM_CP_64BIT | ARM_CP_IO | ARM_CP_ALIAS, 3053 .fieldoffset = offsetof(CPUARMState, cp15.c14_timer[GTIMER_VIRT].cval), 3054 .accessfn = gt_vtimer_access, 3055 .readfn = gt_virt_redir_cval_read, .raw_readfn = raw_read, 3056 .writefn = gt_virt_redir_cval_write, .raw_writefn = raw_write, 3057 }, 3058 { .name = "CNTV_CVAL_EL0", .state = ARM_CP_STATE_AA64, 3059 .opc0 = 3, .opc1 = 3, .crn = 14, .crm = 3, .opc2 = 2, 3060 .access = PL0_RW, 3061 .type = ARM_CP_IO, 3062 .fieldoffset = offsetof(CPUARMState, cp15.c14_timer[GTIMER_VIRT].cval), 3063 .resetvalue = 0, .accessfn = gt_vtimer_access, 3064 .readfn = gt_virt_redir_cval_read, .raw_readfn = raw_read, 3065 .writefn = gt_virt_redir_cval_write, .raw_writefn = raw_write, 3066 }, 3067 /* Secure timer -- this is actually restricted to only EL3 3068 * and configurably Secure-EL1 via the accessfn. 3069 */ 3070 { .name = "CNTPS_TVAL_EL1", .state = ARM_CP_STATE_AA64, 3071 .opc0 = 3, .opc1 = 7, .crn = 14, .crm = 2, .opc2 = 0, 3072 .type = ARM_CP_NO_RAW | ARM_CP_IO, .access = PL1_RW, 3073 .accessfn = gt_stimer_access, 3074 .readfn = gt_sec_tval_read, 3075 .writefn = gt_sec_tval_write, 3076 .resetfn = gt_sec_timer_reset, 3077 }, 3078 { .name = "CNTPS_CTL_EL1", .state = ARM_CP_STATE_AA64, 3079 .opc0 = 3, .opc1 = 7, .crn = 14, .crm = 2, .opc2 = 1, 3080 .type = ARM_CP_IO, .access = PL1_RW, 3081 .accessfn = gt_stimer_access, 3082 .fieldoffset = offsetof(CPUARMState, cp15.c14_timer[GTIMER_SEC].ctl), 3083 .resetvalue = 0, 3084 .writefn = gt_sec_ctl_write, .raw_writefn = raw_write, 3085 }, 3086 { .name = "CNTPS_CVAL_EL1", .state = ARM_CP_STATE_AA64, 3087 .opc0 = 3, .opc1 = 7, .crn = 14, .crm = 2, .opc2 = 2, 3088 .type = ARM_CP_IO, .access = PL1_RW, 3089 .accessfn = gt_stimer_access, 3090 .fieldoffset = offsetof(CPUARMState, cp15.c14_timer[GTIMER_SEC].cval), 3091 .writefn = gt_sec_cval_write, .raw_writefn = raw_write, 3092 }, 3093 REGINFO_SENTINEL 3094 }; 3095 3096 static CPAccessResult e2h_access(CPUARMState *env, const ARMCPRegInfo *ri, 3097 bool isread) 3098 { 3099 if (!(arm_hcr_el2_eff(env) & HCR_E2H)) { 3100 return CP_ACCESS_TRAP; 3101 } 3102 return CP_ACCESS_OK; 3103 } 3104 3105 #else 3106 3107 /* In user-mode most of the generic timer registers are inaccessible 3108 * however modern kernels (4.12+) allow access to cntvct_el0 3109 */ 3110 3111 static uint64_t gt_virt_cnt_read(CPUARMState *env, const ARMCPRegInfo *ri) 3112 { 3113 ARMCPU *cpu = env_archcpu(env); 3114 3115 /* Currently we have no support for QEMUTimer in linux-user so we 3116 * can't call gt_get_countervalue(env), instead we directly 3117 * call the lower level functions. 3118 */ 3119 return cpu_get_clock() / gt_cntfrq_period_ns(cpu); 3120 } 3121 3122 static const ARMCPRegInfo generic_timer_cp_reginfo[] = { 3123 { .name = "CNTFRQ_EL0", .state = ARM_CP_STATE_AA64, 3124 .opc0 = 3, .opc1 = 3, .crn = 14, .crm = 0, .opc2 = 0, 3125 .type = ARM_CP_CONST, .access = PL0_R /* no PL1_RW in linux-user */, 3126 .fieldoffset = offsetof(CPUARMState, cp15.c14_cntfrq), 3127 .resetvalue = NANOSECONDS_PER_SECOND / GTIMER_SCALE, 3128 }, 3129 { .name = "CNTVCT_EL0", .state = ARM_CP_STATE_AA64, 3130 .opc0 = 3, .opc1 = 3, .crn = 14, .crm = 0, .opc2 = 2, 3131 .access = PL0_R, .type = ARM_CP_NO_RAW | ARM_CP_IO, 3132 .readfn = gt_virt_cnt_read, 3133 }, 3134 REGINFO_SENTINEL 3135 }; 3136 3137 #endif 3138 3139 static void par_write(CPUARMState *env, const ARMCPRegInfo *ri, uint64_t value) 3140 { 3141 if (arm_feature(env, ARM_FEATURE_LPAE)) { 3142 raw_write(env, ri, value); 3143 } else if (arm_feature(env, ARM_FEATURE_V7)) { 3144 raw_write(env, ri, value & 0xfffff6ff); 3145 } else { 3146 raw_write(env, ri, value & 0xfffff1ff); 3147 } 3148 } 3149 3150 #ifndef CONFIG_USER_ONLY 3151 /* get_phys_addr() isn't present for user-mode-only targets */ 3152 3153 static CPAccessResult ats_access(CPUARMState *env, const ARMCPRegInfo *ri, 3154 bool isread) 3155 { 3156 if (ri->opc2 & 4) { 3157 /* The ATS12NSO* operations must trap to EL3 or EL2 if executed in 3158 * Secure EL1 (which can only happen if EL3 is AArch64). 3159 * They are simply UNDEF if executed from NS EL1. 3160 * They function normally from EL2 or EL3. 3161 */ 3162 if (arm_current_el(env) == 1) { 3163 if (arm_is_secure_below_el3(env)) { 3164 if (env->cp15.scr_el3 & SCR_EEL2) { 3165 return CP_ACCESS_TRAP_UNCATEGORIZED_EL2; 3166 } 3167 return CP_ACCESS_TRAP_UNCATEGORIZED_EL3; 3168 } 3169 return CP_ACCESS_TRAP_UNCATEGORIZED; 3170 } 3171 } 3172 return CP_ACCESS_OK; 3173 } 3174 3175 #ifdef CONFIG_TCG 3176 static uint64_t do_ats_write(CPUARMState *env, uint64_t value, 3177 MMUAccessType access_type, ARMMMUIdx mmu_idx) 3178 { 3179 hwaddr phys_addr; 3180 target_ulong page_size; 3181 int prot; 3182 bool ret; 3183 uint64_t par64; 3184 bool format64 = false; 3185 MemTxAttrs attrs = {}; 3186 ARMMMUFaultInfo fi = {}; 3187 ARMCacheAttrs cacheattrs = {}; 3188 3189 ret = get_phys_addr(env, value, access_type, mmu_idx, &phys_addr, &attrs, 3190 &prot, &page_size, &fi, &cacheattrs); 3191 3192 if (ret) { 3193 /* 3194 * Some kinds of translation fault must cause exceptions rather 3195 * than being reported in the PAR. 3196 */ 3197 int current_el = arm_current_el(env); 3198 int target_el; 3199 uint32_t syn, fsr, fsc; 3200 bool take_exc = false; 3201 3202 if (fi.s1ptw && current_el == 1 3203 && arm_mmu_idx_is_stage1_of_2(mmu_idx)) { 3204 /* 3205 * Synchronous stage 2 fault on an access made as part of the 3206 * translation table walk for AT S1E0* or AT S1E1* insn 3207 * executed from NS EL1. If this is a synchronous external abort 3208 * and SCR_EL3.EA == 1, then we take a synchronous external abort 3209 * to EL3. Otherwise the fault is taken as an exception to EL2, 3210 * and HPFAR_EL2 holds the faulting IPA. 3211 */ 3212 if (fi.type == ARMFault_SyncExternalOnWalk && 3213 (env->cp15.scr_el3 & SCR_EA)) { 3214 target_el = 3; 3215 } else { 3216 env->cp15.hpfar_el2 = extract64(fi.s2addr, 12, 47) << 4; 3217 if (arm_is_secure_below_el3(env) && fi.s1ns) { 3218 env->cp15.hpfar_el2 |= HPFAR_NS; 3219 } 3220 target_el = 2; 3221 } 3222 take_exc = true; 3223 } else if (fi.type == ARMFault_SyncExternalOnWalk) { 3224 /* 3225 * Synchronous external aborts during a translation table walk 3226 * are taken as Data Abort exceptions. 3227 */ 3228 if (fi.stage2) { 3229 if (current_el == 3) { 3230 target_el = 3; 3231 } else { 3232 target_el = 2; 3233 } 3234 } else { 3235 target_el = exception_target_el(env); 3236 } 3237 take_exc = true; 3238 } 3239 3240 if (take_exc) { 3241 /* Construct FSR and FSC using same logic as arm_deliver_fault() */ 3242 if (target_el == 2 || arm_el_is_aa64(env, target_el) || 3243 arm_s1_regime_using_lpae_format(env, mmu_idx)) { 3244 fsr = arm_fi_to_lfsc(&fi); 3245 fsc = extract32(fsr, 0, 6); 3246 } else { 3247 fsr = arm_fi_to_sfsc(&fi); 3248 fsc = 0x3f; 3249 } 3250 /* 3251 * Report exception with ESR indicating a fault due to a 3252 * translation table walk for a cache maintenance instruction. 3253 */ 3254 syn = syn_data_abort_no_iss(current_el == target_el, 0, 3255 fi.ea, 1, fi.s1ptw, 1, fsc); 3256 env->exception.vaddress = value; 3257 env->exception.fsr = fsr; 3258 raise_exception(env, EXCP_DATA_ABORT, syn, target_el); 3259 } 3260 } 3261 3262 if (is_a64(env)) { 3263 format64 = true; 3264 } else if (arm_feature(env, ARM_FEATURE_LPAE)) { 3265 /* 3266 * ATS1Cxx: 3267 * * TTBCR.EAE determines whether the result is returned using the 3268 * 32-bit or the 64-bit PAR format 3269 * * Instructions executed in Hyp mode always use the 64bit format 3270 * 3271 * ATS1S2NSOxx uses the 64bit format if any of the following is true: 3272 * * The Non-secure TTBCR.EAE bit is set to 1 3273 * * The implementation includes EL2, and the value of HCR.VM is 1 3274 * 3275 * (Note that HCR.DC makes HCR.VM behave as if it is 1.) 3276 * 3277 * ATS1Hx always uses the 64bit format. 3278 */ 3279 format64 = arm_s1_regime_using_lpae_format(env, mmu_idx); 3280 3281 if (arm_feature(env, ARM_FEATURE_EL2)) { 3282 if (mmu_idx == ARMMMUIdx_E10_0 || 3283 mmu_idx == ARMMMUIdx_E10_1 || 3284 mmu_idx == ARMMMUIdx_E10_1_PAN) { 3285 format64 |= env->cp15.hcr_el2 & (HCR_VM | HCR_DC); 3286 } else { 3287 format64 |= arm_current_el(env) == 2; 3288 } 3289 } 3290 } 3291 3292 if (format64) { 3293 /* Create a 64-bit PAR */ 3294 par64 = (1 << 11); /* LPAE bit always set */ 3295 if (!ret) { 3296 par64 |= phys_addr & ~0xfffULL; 3297 if (!attrs.secure) { 3298 par64 |= (1 << 9); /* NS */ 3299 } 3300 par64 |= (uint64_t)cacheattrs.attrs << 56; /* ATTR */ 3301 par64 |= cacheattrs.shareability << 7; /* SH */ 3302 } else { 3303 uint32_t fsr = arm_fi_to_lfsc(&fi); 3304 3305 par64 |= 1; /* F */ 3306 par64 |= (fsr & 0x3f) << 1; /* FS */ 3307 if (fi.stage2) { 3308 par64 |= (1 << 9); /* S */ 3309 } 3310 if (fi.s1ptw) { 3311 par64 |= (1 << 8); /* PTW */ 3312 } 3313 } 3314 } else { 3315 /* fsr is a DFSR/IFSR value for the short descriptor 3316 * translation table format (with WnR always clear). 3317 * Convert it to a 32-bit PAR. 3318 */ 3319 if (!ret) { 3320 /* We do not set any attribute bits in the PAR */ 3321 if (page_size == (1 << 24) 3322 && arm_feature(env, ARM_FEATURE_V7)) { 3323 par64 = (phys_addr & 0xff000000) | (1 << 1); 3324 } else { 3325 par64 = phys_addr & 0xfffff000; 3326 } 3327 if (!attrs.secure) { 3328 par64 |= (1 << 9); /* NS */ 3329 } 3330 } else { 3331 uint32_t fsr = arm_fi_to_sfsc(&fi); 3332 3333 par64 = ((fsr & (1 << 10)) >> 5) | ((fsr & (1 << 12)) >> 6) | 3334 ((fsr & 0xf) << 1) | 1; 3335 } 3336 } 3337 return par64; 3338 } 3339 #endif /* CONFIG_TCG */ 3340 3341 static void ats_write(CPUARMState *env, const ARMCPRegInfo *ri, uint64_t value) 3342 { 3343 #ifdef CONFIG_TCG 3344 MMUAccessType access_type = ri->opc2 & 1 ? MMU_DATA_STORE : MMU_DATA_LOAD; 3345 uint64_t par64; 3346 ARMMMUIdx mmu_idx; 3347 int el = arm_current_el(env); 3348 bool secure = arm_is_secure_below_el3(env); 3349 3350 switch (ri->opc2 & 6) { 3351 case 0: 3352 /* stage 1 current state PL1: ATS1CPR, ATS1CPW, ATS1CPRP, ATS1CPWP */ 3353 switch (el) { 3354 case 3: 3355 mmu_idx = ARMMMUIdx_SE3; 3356 break; 3357 case 2: 3358 g_assert(!secure); /* ARMv8.4-SecEL2 is 64-bit only */ 3359 /* fall through */ 3360 case 1: 3361 if (ri->crm == 9 && (env->uncached_cpsr & CPSR_PAN)) { 3362 mmu_idx = (secure ? ARMMMUIdx_Stage1_SE1_PAN 3363 : ARMMMUIdx_Stage1_E1_PAN); 3364 } else { 3365 mmu_idx = secure ? ARMMMUIdx_Stage1_SE1 : ARMMMUIdx_Stage1_E1; 3366 } 3367 break; 3368 default: 3369 g_assert_not_reached(); 3370 } 3371 break; 3372 case 2: 3373 /* stage 1 current state PL0: ATS1CUR, ATS1CUW */ 3374 switch (el) { 3375 case 3: 3376 mmu_idx = ARMMMUIdx_SE10_0; 3377 break; 3378 case 2: 3379 g_assert(!secure); /* ARMv8.4-SecEL2 is 64-bit only */ 3380 mmu_idx = ARMMMUIdx_Stage1_E0; 3381 break; 3382 case 1: 3383 mmu_idx = secure ? ARMMMUIdx_Stage1_SE0 : ARMMMUIdx_Stage1_E0; 3384 break; 3385 default: 3386 g_assert_not_reached(); 3387 } 3388 break; 3389 case 4: 3390 /* stage 1+2 NonSecure PL1: ATS12NSOPR, ATS12NSOPW */ 3391 mmu_idx = ARMMMUIdx_E10_1; 3392 break; 3393 case 6: 3394 /* stage 1+2 NonSecure PL0: ATS12NSOUR, ATS12NSOUW */ 3395 mmu_idx = ARMMMUIdx_E10_0; 3396 break; 3397 default: 3398 g_assert_not_reached(); 3399 } 3400 3401 par64 = do_ats_write(env, value, access_type, mmu_idx); 3402 3403 A32_BANKED_CURRENT_REG_SET(env, par, par64); 3404 #else 3405 /* Handled by hardware accelerator. */ 3406 g_assert_not_reached(); 3407 #endif /* CONFIG_TCG */ 3408 } 3409 3410 static void ats1h_write(CPUARMState *env, const ARMCPRegInfo *ri, 3411 uint64_t value) 3412 { 3413 #ifdef CONFIG_TCG 3414 MMUAccessType access_type = ri->opc2 & 1 ? MMU_DATA_STORE : MMU_DATA_LOAD; 3415 uint64_t par64; 3416 3417 par64 = do_ats_write(env, value, access_type, ARMMMUIdx_E2); 3418 3419 A32_BANKED_CURRENT_REG_SET(env, par, par64); 3420 #else 3421 /* Handled by hardware accelerator. */ 3422 g_assert_not_reached(); 3423 #endif /* CONFIG_TCG */ 3424 } 3425 3426 static CPAccessResult at_s1e2_access(CPUARMState *env, const ARMCPRegInfo *ri, 3427 bool isread) 3428 { 3429 if (arm_current_el(env) == 3 && 3430 !(env->cp15.scr_el3 & (SCR_NS | SCR_EEL2))) { 3431 return CP_ACCESS_TRAP; 3432 } 3433 return CP_ACCESS_OK; 3434 } 3435 3436 static void ats_write64(CPUARMState *env, const ARMCPRegInfo *ri, 3437 uint64_t value) 3438 { 3439 #ifdef CONFIG_TCG 3440 MMUAccessType access_type = ri->opc2 & 1 ? MMU_DATA_STORE : MMU_DATA_LOAD; 3441 ARMMMUIdx mmu_idx; 3442 int secure = arm_is_secure_below_el3(env); 3443 3444 switch (ri->opc2 & 6) { 3445 case 0: 3446 switch (ri->opc1) { 3447 case 0: /* AT S1E1R, AT S1E1W, AT S1E1RP, AT S1E1WP */ 3448 if (ri->crm == 9 && (env->pstate & PSTATE_PAN)) { 3449 mmu_idx = (secure ? ARMMMUIdx_Stage1_SE1_PAN 3450 : ARMMMUIdx_Stage1_E1_PAN); 3451 } else { 3452 mmu_idx = secure ? ARMMMUIdx_Stage1_SE1 : ARMMMUIdx_Stage1_E1; 3453 } 3454 break; 3455 case 4: /* AT S1E2R, AT S1E2W */ 3456 mmu_idx = secure ? ARMMMUIdx_SE2 : ARMMMUIdx_E2; 3457 break; 3458 case 6: /* AT S1E3R, AT S1E3W */ 3459 mmu_idx = ARMMMUIdx_SE3; 3460 break; 3461 default: 3462 g_assert_not_reached(); 3463 } 3464 break; 3465 case 2: /* AT S1E0R, AT S1E0W */ 3466 mmu_idx = secure ? ARMMMUIdx_Stage1_SE0 : ARMMMUIdx_Stage1_E0; 3467 break; 3468 case 4: /* AT S12E1R, AT S12E1W */ 3469 mmu_idx = secure ? ARMMMUIdx_SE10_1 : ARMMMUIdx_E10_1; 3470 break; 3471 case 6: /* AT S12E0R, AT S12E0W */ 3472 mmu_idx = secure ? ARMMMUIdx_SE10_0 : ARMMMUIdx_E10_0; 3473 break; 3474 default: 3475 g_assert_not_reached(); 3476 } 3477 3478 env->cp15.par_el[1] = do_ats_write(env, value, access_type, mmu_idx); 3479 #else 3480 /* Handled by hardware accelerator. */ 3481 g_assert_not_reached(); 3482 #endif /* CONFIG_TCG */ 3483 } 3484 #endif 3485 3486 static const ARMCPRegInfo vapa_cp_reginfo[] = { 3487 { .name = "PAR", .cp = 15, .crn = 7, .crm = 4, .opc1 = 0, .opc2 = 0, 3488 .access = PL1_RW, .resetvalue = 0, 3489 .bank_fieldoffsets = { offsetoflow32(CPUARMState, cp15.par_s), 3490 offsetoflow32(CPUARMState, cp15.par_ns) }, 3491 .writefn = par_write }, 3492 #ifndef CONFIG_USER_ONLY 3493 /* This underdecoding is safe because the reginfo is NO_RAW. */ 3494 { .name = "ATS", .cp = 15, .crn = 7, .crm = 8, .opc1 = 0, .opc2 = CP_ANY, 3495 .access = PL1_W, .accessfn = ats_access, 3496 .writefn = ats_write, .type = ARM_CP_NO_RAW | ARM_CP_RAISES_EXC }, 3497 #endif 3498 REGINFO_SENTINEL 3499 }; 3500 3501 /* Return basic MPU access permission bits. */ 3502 static uint32_t simple_mpu_ap_bits(uint32_t val) 3503 { 3504 uint32_t ret; 3505 uint32_t mask; 3506 int i; 3507 ret = 0; 3508 mask = 3; 3509 for (i = 0; i < 16; i += 2) { 3510 ret |= (val >> i) & mask; 3511 mask <<= 2; 3512 } 3513 return ret; 3514 } 3515 3516 /* Pad basic MPU access permission bits to extended format. */ 3517 static uint32_t extended_mpu_ap_bits(uint32_t val) 3518 { 3519 uint32_t ret; 3520 uint32_t mask; 3521 int i; 3522 ret = 0; 3523 mask = 3; 3524 for (i = 0; i < 16; i += 2) { 3525 ret |= (val & mask) << i; 3526 mask <<= 2; 3527 } 3528 return ret; 3529 } 3530 3531 static void pmsav5_data_ap_write(CPUARMState *env, const ARMCPRegInfo *ri, 3532 uint64_t value) 3533 { 3534 env->cp15.pmsav5_data_ap = extended_mpu_ap_bits(value); 3535 } 3536 3537 static uint64_t pmsav5_data_ap_read(CPUARMState *env, const ARMCPRegInfo *ri) 3538 { 3539 return simple_mpu_ap_bits(env->cp15.pmsav5_data_ap); 3540 } 3541 3542 static void pmsav5_insn_ap_write(CPUARMState *env, const ARMCPRegInfo *ri, 3543 uint64_t value) 3544 { 3545 env->cp15.pmsav5_insn_ap = extended_mpu_ap_bits(value); 3546 } 3547 3548 static uint64_t pmsav5_insn_ap_read(CPUARMState *env, const ARMCPRegInfo *ri) 3549 { 3550 return simple_mpu_ap_bits(env->cp15.pmsav5_insn_ap); 3551 } 3552 3553 static uint64_t pmsav7_read(CPUARMState *env, const ARMCPRegInfo *ri) 3554 { 3555 uint32_t *u32p = *(uint32_t **)raw_ptr(env, ri); 3556 3557 if (!u32p) { 3558 return 0; 3559 } 3560 3561 u32p += env->pmsav7.rnr[M_REG_NS]; 3562 return *u32p; 3563 } 3564 3565 static void pmsav7_write(CPUARMState *env, const ARMCPRegInfo *ri, 3566 uint64_t value) 3567 { 3568 ARMCPU *cpu = env_archcpu(env); 3569 uint32_t *u32p = *(uint32_t **)raw_ptr(env, ri); 3570 3571 if (!u32p) { 3572 return; 3573 } 3574 3575 u32p += env->pmsav7.rnr[M_REG_NS]; 3576 tlb_flush(CPU(cpu)); /* Mappings may have changed - purge! */ 3577 *u32p = value; 3578 } 3579 3580 static void pmsav7_rgnr_write(CPUARMState *env, const ARMCPRegInfo *ri, 3581 uint64_t value) 3582 { 3583 ARMCPU *cpu = env_archcpu(env); 3584 uint32_t nrgs = cpu->pmsav7_dregion; 3585 3586 if (value >= nrgs) { 3587 qemu_log_mask(LOG_GUEST_ERROR, 3588 "PMSAv7 RGNR write >= # supported regions, %" PRIu32 3589 " > %" PRIu32 "\n", (uint32_t)value, nrgs); 3590 return; 3591 } 3592 3593 raw_write(env, ri, value); 3594 } 3595 3596 static const ARMCPRegInfo pmsav7_cp_reginfo[] = { 3597 /* Reset for all these registers is handled in arm_cpu_reset(), 3598 * because the PMSAv7 is also used by M-profile CPUs, which do 3599 * not register cpregs but still need the state to be reset. 3600 */ 3601 { .name = "DRBAR", .cp = 15, .crn = 6, .opc1 = 0, .crm = 1, .opc2 = 0, 3602 .access = PL1_RW, .type = ARM_CP_NO_RAW, 3603 .fieldoffset = offsetof(CPUARMState, pmsav7.drbar), 3604 .readfn = pmsav7_read, .writefn = pmsav7_write, 3605 .resetfn = arm_cp_reset_ignore }, 3606 { .name = "DRSR", .cp = 15, .crn = 6, .opc1 = 0, .crm = 1, .opc2 = 2, 3607 .access = PL1_RW, .type = ARM_CP_NO_RAW, 3608 .fieldoffset = offsetof(CPUARMState, pmsav7.drsr), 3609 .readfn = pmsav7_read, .writefn = pmsav7_write, 3610 .resetfn = arm_cp_reset_ignore }, 3611 { .name = "DRACR", .cp = 15, .crn = 6, .opc1 = 0, .crm = 1, .opc2 = 4, 3612 .access = PL1_RW, .type = ARM_CP_NO_RAW, 3613 .fieldoffset = offsetof(CPUARMState, pmsav7.dracr), 3614 .readfn = pmsav7_read, .writefn = pmsav7_write, 3615 .resetfn = arm_cp_reset_ignore }, 3616 { .name = "RGNR", .cp = 15, .crn = 6, .opc1 = 0, .crm = 2, .opc2 = 0, 3617 .access = PL1_RW, 3618 .fieldoffset = offsetof(CPUARMState, pmsav7.rnr[M_REG_NS]), 3619 .writefn = pmsav7_rgnr_write, 3620 .resetfn = arm_cp_reset_ignore }, 3621 REGINFO_SENTINEL 3622 }; 3623 3624 static const ARMCPRegInfo pmsav5_cp_reginfo[] = { 3625 { .name = "DATA_AP", .cp = 15, .crn = 5, .crm = 0, .opc1 = 0, .opc2 = 0, 3626 .access = PL1_RW, .type = ARM_CP_ALIAS, 3627 .fieldoffset = offsetof(CPUARMState, cp15.pmsav5_data_ap), 3628 .readfn = pmsav5_data_ap_read, .writefn = pmsav5_data_ap_write, }, 3629 { .name = "INSN_AP", .cp = 15, .crn = 5, .crm = 0, .opc1 = 0, .opc2 = 1, 3630 .access = PL1_RW, .type = ARM_CP_ALIAS, 3631 .fieldoffset = offsetof(CPUARMState, cp15.pmsav5_insn_ap), 3632 .readfn = pmsav5_insn_ap_read, .writefn = pmsav5_insn_ap_write, }, 3633 { .name = "DATA_EXT_AP", .cp = 15, .crn = 5, .crm = 0, .opc1 = 0, .opc2 = 2, 3634 .access = PL1_RW, 3635 .fieldoffset = offsetof(CPUARMState, cp15.pmsav5_data_ap), 3636 .resetvalue = 0, }, 3637 { .name = "INSN_EXT_AP", .cp = 15, .crn = 5, .crm = 0, .opc1 = 0, .opc2 = 3, 3638 .access = PL1_RW, 3639 .fieldoffset = offsetof(CPUARMState, cp15.pmsav5_insn_ap), 3640 .resetvalue = 0, }, 3641 { .name = "DCACHE_CFG", .cp = 15, .crn = 2, .crm = 0, .opc1 = 0, .opc2 = 0, 3642 .access = PL1_RW, 3643 .fieldoffset = offsetof(CPUARMState, cp15.c2_data), .resetvalue = 0, }, 3644 { .name = "ICACHE_CFG", .cp = 15, .crn = 2, .crm = 0, .opc1 = 0, .opc2 = 1, 3645 .access = PL1_RW, 3646 .fieldoffset = offsetof(CPUARMState, cp15.c2_insn), .resetvalue = 0, }, 3647 /* Protection region base and size registers */ 3648 { .name = "946_PRBS0", .cp = 15, .crn = 6, .crm = 0, .opc1 = 0, 3649 .opc2 = CP_ANY, .access = PL1_RW, .resetvalue = 0, 3650 .fieldoffset = offsetof(CPUARMState, cp15.c6_region[0]) }, 3651 { .name = "946_PRBS1", .cp = 15, .crn = 6, .crm = 1, .opc1 = 0, 3652 .opc2 = CP_ANY, .access = PL1_RW, .resetvalue = 0, 3653 .fieldoffset = offsetof(CPUARMState, cp15.c6_region[1]) }, 3654 { .name = "946_PRBS2", .cp = 15, .crn = 6, .crm = 2, .opc1 = 0, 3655 .opc2 = CP_ANY, .access = PL1_RW, .resetvalue = 0, 3656 .fieldoffset = offsetof(CPUARMState, cp15.c6_region[2]) }, 3657 { .name = "946_PRBS3", .cp = 15, .crn = 6, .crm = 3, .opc1 = 0, 3658 .opc2 = CP_ANY, .access = PL1_RW, .resetvalue = 0, 3659 .fieldoffset = offsetof(CPUARMState, cp15.c6_region[3]) }, 3660 { .name = "946_PRBS4", .cp = 15, .crn = 6, .crm = 4, .opc1 = 0, 3661 .opc2 = CP_ANY, .access = PL1_RW, .resetvalue = 0, 3662 .fieldoffset = offsetof(CPUARMState, cp15.c6_region[4]) }, 3663 { .name = "946_PRBS5", .cp = 15, .crn = 6, .crm = 5, .opc1 = 0, 3664 .opc2 = CP_ANY, .access = PL1_RW, .resetvalue = 0, 3665 .fieldoffset = offsetof(CPUARMState, cp15.c6_region[5]) }, 3666 { .name = "946_PRBS6", .cp = 15, .crn = 6, .crm = 6, .opc1 = 0, 3667 .opc2 = CP_ANY, .access = PL1_RW, .resetvalue = 0, 3668 .fieldoffset = offsetof(CPUARMState, cp15.c6_region[6]) }, 3669 { .name = "946_PRBS7", .cp = 15, .crn = 6, .crm = 7, .opc1 = 0, 3670 .opc2 = CP_ANY, .access = PL1_RW, .resetvalue = 0, 3671 .fieldoffset = offsetof(CPUARMState, cp15.c6_region[7]) }, 3672 REGINFO_SENTINEL 3673 }; 3674 3675 static void vmsa_ttbcr_raw_write(CPUARMState *env, const ARMCPRegInfo *ri, 3676 uint64_t value) 3677 { 3678 TCR *tcr = raw_ptr(env, ri); 3679 int maskshift = extract32(value, 0, 3); 3680 3681 if (!arm_feature(env, ARM_FEATURE_V8)) { 3682 if (arm_feature(env, ARM_FEATURE_LPAE) && (value & TTBCR_EAE)) { 3683 /* Pre ARMv8 bits [21:19], [15:14] and [6:3] are UNK/SBZP when 3684 * using Long-desciptor translation table format */ 3685 value &= ~((7 << 19) | (3 << 14) | (0xf << 3)); 3686 } else if (arm_feature(env, ARM_FEATURE_EL3)) { 3687 /* In an implementation that includes the Security Extensions 3688 * TTBCR has additional fields PD0 [4] and PD1 [5] for 3689 * Short-descriptor translation table format. 3690 */ 3691 value &= TTBCR_PD1 | TTBCR_PD0 | TTBCR_N; 3692 } else { 3693 value &= TTBCR_N; 3694 } 3695 } 3696 3697 /* Update the masks corresponding to the TCR bank being written 3698 * Note that we always calculate mask and base_mask, but 3699 * they are only used for short-descriptor tables (ie if EAE is 0); 3700 * for long-descriptor tables the TCR fields are used differently 3701 * and the mask and base_mask values are meaningless. 3702 */ 3703 tcr->raw_tcr = value; 3704 tcr->mask = ~(((uint32_t)0xffffffffu) >> maskshift); 3705 tcr->base_mask = ~((uint32_t)0x3fffu >> maskshift); 3706 } 3707 3708 static void vmsa_ttbcr_write(CPUARMState *env, const ARMCPRegInfo *ri, 3709 uint64_t value) 3710 { 3711 ARMCPU *cpu = env_archcpu(env); 3712 TCR *tcr = raw_ptr(env, ri); 3713 3714 if (arm_feature(env, ARM_FEATURE_LPAE)) { 3715 /* With LPAE the TTBCR could result in a change of ASID 3716 * via the TTBCR.A1 bit, so do a TLB flush. 3717 */ 3718 tlb_flush(CPU(cpu)); 3719 } 3720 /* Preserve the high half of TCR_EL1, set via TTBCR2. */ 3721 value = deposit64(tcr->raw_tcr, 0, 32, value); 3722 vmsa_ttbcr_raw_write(env, ri, value); 3723 } 3724 3725 static void vmsa_ttbcr_reset(CPUARMState *env, const ARMCPRegInfo *ri) 3726 { 3727 TCR *tcr = raw_ptr(env, ri); 3728 3729 /* Reset both the TCR as well as the masks corresponding to the bank of 3730 * the TCR being reset. 3731 */ 3732 tcr->raw_tcr = 0; 3733 tcr->mask = 0; 3734 tcr->base_mask = 0xffffc000u; 3735 } 3736 3737 static void vmsa_tcr_el12_write(CPUARMState *env, const ARMCPRegInfo *ri, 3738 uint64_t value) 3739 { 3740 ARMCPU *cpu = env_archcpu(env); 3741 TCR *tcr = raw_ptr(env, ri); 3742 3743 /* For AArch64 the A1 bit could result in a change of ASID, so TLB flush. */ 3744 tlb_flush(CPU(cpu)); 3745 tcr->raw_tcr = value; 3746 } 3747 3748 static void vmsa_ttbr_write(CPUARMState *env, const ARMCPRegInfo *ri, 3749 uint64_t value) 3750 { 3751 /* If the ASID changes (with a 64-bit write), we must flush the TLB. */ 3752 if (cpreg_field_is_64bit(ri) && 3753 extract64(raw_read(env, ri) ^ value, 48, 16) != 0) { 3754 ARMCPU *cpu = env_archcpu(env); 3755 tlb_flush(CPU(cpu)); 3756 } 3757 raw_write(env, ri, value); 3758 } 3759 3760 static void vmsa_tcr_ttbr_el2_write(CPUARMState *env, const ARMCPRegInfo *ri, 3761 uint64_t value) 3762 { 3763 /* 3764 * If we are running with E2&0 regime, then an ASID is active. 3765 * Flush if that might be changing. Note we're not checking 3766 * TCR_EL2.A1 to know if this is really the TTBRx_EL2 that 3767 * holds the active ASID, only checking the field that might. 3768 */ 3769 if (extract64(raw_read(env, ri) ^ value, 48, 16) && 3770 (arm_hcr_el2_eff(env) & HCR_E2H)) { 3771 uint16_t mask = ARMMMUIdxBit_E20_2 | 3772 ARMMMUIdxBit_E20_2_PAN | 3773 ARMMMUIdxBit_E20_0; 3774 3775 if (arm_is_secure_below_el3(env)) { 3776 mask >>= ARM_MMU_IDX_A_NS; 3777 } 3778 3779 tlb_flush_by_mmuidx(env_cpu(env), mask); 3780 } 3781 raw_write(env, ri, value); 3782 } 3783 3784 static void vttbr_write(CPUARMState *env, const ARMCPRegInfo *ri, 3785 uint64_t value) 3786 { 3787 ARMCPU *cpu = env_archcpu(env); 3788 CPUState *cs = CPU(cpu); 3789 3790 /* 3791 * A change in VMID to the stage2 page table (Stage2) invalidates 3792 * the combined stage 1&2 tlbs (EL10_1 and EL10_0). 3793 */ 3794 if (raw_read(env, ri) != value) { 3795 uint16_t mask = ARMMMUIdxBit_E10_1 | 3796 ARMMMUIdxBit_E10_1_PAN | 3797 ARMMMUIdxBit_E10_0; 3798 3799 if (arm_is_secure_below_el3(env)) { 3800 mask >>= ARM_MMU_IDX_A_NS; 3801 } 3802 3803 tlb_flush_by_mmuidx(cs, mask); 3804 raw_write(env, ri, value); 3805 } 3806 } 3807 3808 static const ARMCPRegInfo vmsa_pmsa_cp_reginfo[] = { 3809 { .name = "DFSR", .cp = 15, .crn = 5, .crm = 0, .opc1 = 0, .opc2 = 0, 3810 .access = PL1_RW, .accessfn = access_tvm_trvm, .type = ARM_CP_ALIAS, 3811 .bank_fieldoffsets = { offsetoflow32(CPUARMState, cp15.dfsr_s), 3812 offsetoflow32(CPUARMState, cp15.dfsr_ns) }, }, 3813 { .name = "IFSR", .cp = 15, .crn = 5, .crm = 0, .opc1 = 0, .opc2 = 1, 3814 .access = PL1_RW, .accessfn = access_tvm_trvm, .resetvalue = 0, 3815 .bank_fieldoffsets = { offsetoflow32(CPUARMState, cp15.ifsr_s), 3816 offsetoflow32(CPUARMState, cp15.ifsr_ns) } }, 3817 { .name = "DFAR", .cp = 15, .opc1 = 0, .crn = 6, .crm = 0, .opc2 = 0, 3818 .access = PL1_RW, .accessfn = access_tvm_trvm, .resetvalue = 0, 3819 .bank_fieldoffsets = { offsetof(CPUARMState, cp15.dfar_s), 3820 offsetof(CPUARMState, cp15.dfar_ns) } }, 3821 { .name = "FAR_EL1", .state = ARM_CP_STATE_AA64, 3822 .opc0 = 3, .crn = 6, .crm = 0, .opc1 = 0, .opc2 = 0, 3823 .access = PL1_RW, .accessfn = access_tvm_trvm, 3824 .fieldoffset = offsetof(CPUARMState, cp15.far_el[1]), 3825 .resetvalue = 0, }, 3826 REGINFO_SENTINEL 3827 }; 3828 3829 static const ARMCPRegInfo vmsa_cp_reginfo[] = { 3830 { .name = "ESR_EL1", .state = ARM_CP_STATE_AA64, 3831 .opc0 = 3, .crn = 5, .crm = 2, .opc1 = 0, .opc2 = 0, 3832 .access = PL1_RW, .accessfn = access_tvm_trvm, 3833 .fieldoffset = offsetof(CPUARMState, cp15.esr_el[1]), .resetvalue = 0, }, 3834 { .name = "TTBR0_EL1", .state = ARM_CP_STATE_BOTH, 3835 .opc0 = 3, .opc1 = 0, .crn = 2, .crm = 0, .opc2 = 0, 3836 .access = PL1_RW, .accessfn = access_tvm_trvm, 3837 .writefn = vmsa_ttbr_write, .resetvalue = 0, 3838 .bank_fieldoffsets = { offsetof(CPUARMState, cp15.ttbr0_s), 3839 offsetof(CPUARMState, cp15.ttbr0_ns) } }, 3840 { .name = "TTBR1_EL1", .state = ARM_CP_STATE_BOTH, 3841 .opc0 = 3, .opc1 = 0, .crn = 2, .crm = 0, .opc2 = 1, 3842 .access = PL1_RW, .accessfn = access_tvm_trvm, 3843 .writefn = vmsa_ttbr_write, .resetvalue = 0, 3844 .bank_fieldoffsets = { offsetof(CPUARMState, cp15.ttbr1_s), 3845 offsetof(CPUARMState, cp15.ttbr1_ns) } }, 3846 { .name = "TCR_EL1", .state = ARM_CP_STATE_AA64, 3847 .opc0 = 3, .crn = 2, .crm = 0, .opc1 = 0, .opc2 = 2, 3848 .access = PL1_RW, .accessfn = access_tvm_trvm, 3849 .writefn = vmsa_tcr_el12_write, 3850 .resetfn = vmsa_ttbcr_reset, .raw_writefn = raw_write, 3851 .fieldoffset = offsetof(CPUARMState, cp15.tcr_el[1]) }, 3852 { .name = "TTBCR", .cp = 15, .crn = 2, .crm = 0, .opc1 = 0, .opc2 = 2, 3853 .access = PL1_RW, .accessfn = access_tvm_trvm, 3854 .type = ARM_CP_ALIAS, .writefn = vmsa_ttbcr_write, 3855 .raw_writefn = vmsa_ttbcr_raw_write, 3856 /* No offsetoflow32 -- pass the entire TCR to writefn/raw_writefn. */ 3857 .bank_fieldoffsets = { offsetof(CPUARMState, cp15.tcr_el[3]), 3858 offsetof(CPUARMState, cp15.tcr_el[1])} }, 3859 REGINFO_SENTINEL 3860 }; 3861 3862 /* Note that unlike TTBCR, writing to TTBCR2 does not require flushing 3863 * qemu tlbs nor adjusting cached masks. 3864 */ 3865 static const ARMCPRegInfo ttbcr2_reginfo = { 3866 .name = "TTBCR2", .cp = 15, .opc1 = 0, .crn = 2, .crm = 0, .opc2 = 3, 3867 .access = PL1_RW, .accessfn = access_tvm_trvm, 3868 .type = ARM_CP_ALIAS, 3869 .bank_fieldoffsets = { 3870 offsetofhigh32(CPUARMState, cp15.tcr_el[3].raw_tcr), 3871 offsetofhigh32(CPUARMState, cp15.tcr_el[1].raw_tcr), 3872 }, 3873 }; 3874 3875 static void omap_ticonfig_write(CPUARMState *env, const ARMCPRegInfo *ri, 3876 uint64_t value) 3877 { 3878 env->cp15.c15_ticonfig = value & 0xe7; 3879 /* The OS_TYPE bit in this register changes the reported CPUID! */ 3880 env->cp15.c0_cpuid = (value & (1 << 5)) ? 3881 ARM_CPUID_TI915T : ARM_CPUID_TI925T; 3882 } 3883 3884 static void omap_threadid_write(CPUARMState *env, const ARMCPRegInfo *ri, 3885 uint64_t value) 3886 { 3887 env->cp15.c15_threadid = value & 0xffff; 3888 } 3889 3890 static void omap_wfi_write(CPUARMState *env, const ARMCPRegInfo *ri, 3891 uint64_t value) 3892 { 3893 /* Wait-for-interrupt (deprecated) */ 3894 cpu_interrupt(env_cpu(env), CPU_INTERRUPT_HALT); 3895 } 3896 3897 static void omap_cachemaint_write(CPUARMState *env, const ARMCPRegInfo *ri, 3898 uint64_t value) 3899 { 3900 /* On OMAP there are registers indicating the max/min index of dcache lines 3901 * containing a dirty line; cache flush operations have to reset these. 3902 */ 3903 env->cp15.c15_i_max = 0x000; 3904 env->cp15.c15_i_min = 0xff0; 3905 } 3906 3907 static const ARMCPRegInfo omap_cp_reginfo[] = { 3908 { .name = "DFSR", .cp = 15, .crn = 5, .crm = CP_ANY, 3909 .opc1 = CP_ANY, .opc2 = CP_ANY, .access = PL1_RW, .type = ARM_CP_OVERRIDE, 3910 .fieldoffset = offsetoflow32(CPUARMState, cp15.esr_el[1]), 3911 .resetvalue = 0, }, 3912 { .name = "", .cp = 15, .crn = 15, .crm = 0, .opc1 = 0, .opc2 = 0, 3913 .access = PL1_RW, .type = ARM_CP_NOP }, 3914 { .name = "TICONFIG", .cp = 15, .crn = 15, .crm = 1, .opc1 = 0, .opc2 = 0, 3915 .access = PL1_RW, 3916 .fieldoffset = offsetof(CPUARMState, cp15.c15_ticonfig), .resetvalue = 0, 3917 .writefn = omap_ticonfig_write }, 3918 { .name = "IMAX", .cp = 15, .crn = 15, .crm = 2, .opc1 = 0, .opc2 = 0, 3919 .access = PL1_RW, 3920 .fieldoffset = offsetof(CPUARMState, cp15.c15_i_max), .resetvalue = 0, }, 3921 { .name = "IMIN", .cp = 15, .crn = 15, .crm = 3, .opc1 = 0, .opc2 = 0, 3922 .access = PL1_RW, .resetvalue = 0xff0, 3923 .fieldoffset = offsetof(CPUARMState, cp15.c15_i_min) }, 3924 { .name = "THREADID", .cp = 15, .crn = 15, .crm = 4, .opc1 = 0, .opc2 = 0, 3925 .access = PL1_RW, 3926 .fieldoffset = offsetof(CPUARMState, cp15.c15_threadid), .resetvalue = 0, 3927 .writefn = omap_threadid_write }, 3928 { .name = "TI925T_STATUS", .cp = 15, .crn = 15, 3929 .crm = 8, .opc1 = 0, .opc2 = 0, .access = PL1_RW, 3930 .type = ARM_CP_NO_RAW, 3931 .readfn = arm_cp_read_zero, .writefn = omap_wfi_write, }, 3932 /* TODO: Peripheral port remap register: 3933 * On OMAP2 mcr p15, 0, rn, c15, c2, 4 sets up the interrupt controller 3934 * base address at $rn & ~0xfff and map size of 0x200 << ($rn & 0xfff), 3935 * when MMU is off. 3936 */ 3937 { .name = "OMAP_CACHEMAINT", .cp = 15, .crn = 7, .crm = CP_ANY, 3938 .opc1 = 0, .opc2 = CP_ANY, .access = PL1_W, 3939 .type = ARM_CP_OVERRIDE | ARM_CP_NO_RAW, 3940 .writefn = omap_cachemaint_write }, 3941 { .name = "C9", .cp = 15, .crn = 9, 3942 .crm = CP_ANY, .opc1 = CP_ANY, .opc2 = CP_ANY, .access = PL1_RW, 3943 .type = ARM_CP_CONST | ARM_CP_OVERRIDE, .resetvalue = 0 }, 3944 REGINFO_SENTINEL 3945 }; 3946 3947 static void xscale_cpar_write(CPUARMState *env, const ARMCPRegInfo *ri, 3948 uint64_t value) 3949 { 3950 env->cp15.c15_cpar = value & 0x3fff; 3951 } 3952 3953 static const ARMCPRegInfo xscale_cp_reginfo[] = { 3954 { .name = "XSCALE_CPAR", 3955 .cp = 15, .crn = 15, .crm = 1, .opc1 = 0, .opc2 = 0, .access = PL1_RW, 3956 .fieldoffset = offsetof(CPUARMState, cp15.c15_cpar), .resetvalue = 0, 3957 .writefn = xscale_cpar_write, }, 3958 { .name = "XSCALE_AUXCR", 3959 .cp = 15, .crn = 1, .crm = 0, .opc1 = 0, .opc2 = 1, .access = PL1_RW, 3960 .fieldoffset = offsetof(CPUARMState, cp15.c1_xscaleauxcr), 3961 .resetvalue = 0, }, 3962 /* XScale specific cache-lockdown: since we have no cache we NOP these 3963 * and hope the guest does not really rely on cache behaviour. 3964 */ 3965 { .name = "XSCALE_LOCK_ICACHE_LINE", 3966 .cp = 15, .opc1 = 0, .crn = 9, .crm = 1, .opc2 = 0, 3967 .access = PL1_W, .type = ARM_CP_NOP }, 3968 { .name = "XSCALE_UNLOCK_ICACHE", 3969 .cp = 15, .opc1 = 0, .crn = 9, .crm = 1, .opc2 = 1, 3970 .access = PL1_W, .type = ARM_CP_NOP }, 3971 { .name = "XSCALE_DCACHE_LOCK", 3972 .cp = 15, .opc1 = 0, .crn = 9, .crm = 2, .opc2 = 0, 3973 .access = PL1_RW, .type = ARM_CP_NOP }, 3974 { .name = "XSCALE_UNLOCK_DCACHE", 3975 .cp = 15, .opc1 = 0, .crn = 9, .crm = 2, .opc2 = 1, 3976 .access = PL1_W, .type = ARM_CP_NOP }, 3977 REGINFO_SENTINEL 3978 }; 3979 3980 static const ARMCPRegInfo dummy_c15_cp_reginfo[] = { 3981 /* RAZ/WI the whole crn=15 space, when we don't have a more specific 3982 * implementation of this implementation-defined space. 3983 * Ideally this should eventually disappear in favour of actually 3984 * implementing the correct behaviour for all cores. 3985 */ 3986 { .name = "C15_IMPDEF", .cp = 15, .crn = 15, 3987 .crm = CP_ANY, .opc1 = CP_ANY, .opc2 = CP_ANY, 3988 .access = PL1_RW, 3989 .type = ARM_CP_CONST | ARM_CP_NO_RAW | ARM_CP_OVERRIDE, 3990 .resetvalue = 0 }, 3991 REGINFO_SENTINEL 3992 }; 3993 3994 static const ARMCPRegInfo cache_dirty_status_cp_reginfo[] = { 3995 /* Cache status: RAZ because we have no cache so it's always clean */ 3996 { .name = "CDSR", .cp = 15, .crn = 7, .crm = 10, .opc1 = 0, .opc2 = 6, 3997 .access = PL1_R, .type = ARM_CP_CONST | ARM_CP_NO_RAW, 3998 .resetvalue = 0 }, 3999 REGINFO_SENTINEL 4000 }; 4001 4002 static const ARMCPRegInfo cache_block_ops_cp_reginfo[] = { 4003 /* We never have a a block transfer operation in progress */ 4004 { .name = "BXSR", .cp = 15, .crn = 7, .crm = 12, .opc1 = 0, .opc2 = 4, 4005 .access = PL0_R, .type = ARM_CP_CONST | ARM_CP_NO_RAW, 4006 .resetvalue = 0 }, 4007 /* The cache ops themselves: these all NOP for QEMU */ 4008 { .name = "IICR", .cp = 15, .crm = 5, .opc1 = 0, 4009 .access = PL1_W, .type = ARM_CP_NOP|ARM_CP_64BIT }, 4010 { .name = "IDCR", .cp = 15, .crm = 6, .opc1 = 0, 4011 .access = PL1_W, .type = ARM_CP_NOP|ARM_CP_64BIT }, 4012 { .name = "CDCR", .cp = 15, .crm = 12, .opc1 = 0, 4013 .access = PL0_W, .type = ARM_CP_NOP|ARM_CP_64BIT }, 4014 { .name = "PIR", .cp = 15, .crm = 12, .opc1 = 1, 4015 .access = PL0_W, .type = ARM_CP_NOP|ARM_CP_64BIT }, 4016 { .name = "PDR", .cp = 15, .crm = 12, .opc1 = 2, 4017 .access = PL0_W, .type = ARM_CP_NOP|ARM_CP_64BIT }, 4018 { .name = "CIDCR", .cp = 15, .crm = 14, .opc1 = 0, 4019 .access = PL1_W, .type = ARM_CP_NOP|ARM_CP_64BIT }, 4020 REGINFO_SENTINEL 4021 }; 4022 4023 static const ARMCPRegInfo cache_test_clean_cp_reginfo[] = { 4024 /* The cache test-and-clean instructions always return (1 << 30) 4025 * to indicate that there are no dirty cache lines. 4026 */ 4027 { .name = "TC_DCACHE", .cp = 15, .crn = 7, .crm = 10, .opc1 = 0, .opc2 = 3, 4028 .access = PL0_R, .type = ARM_CP_CONST | ARM_CP_NO_RAW, 4029 .resetvalue = (1 << 30) }, 4030 { .name = "TCI_DCACHE", .cp = 15, .crn = 7, .crm = 14, .opc1 = 0, .opc2 = 3, 4031 .access = PL0_R, .type = ARM_CP_CONST | ARM_CP_NO_RAW, 4032 .resetvalue = (1 << 30) }, 4033 REGINFO_SENTINEL 4034 }; 4035 4036 static const ARMCPRegInfo strongarm_cp_reginfo[] = { 4037 /* Ignore ReadBuffer accesses */ 4038 { .name = "C9_READBUFFER", .cp = 15, .crn = 9, 4039 .crm = CP_ANY, .opc1 = CP_ANY, .opc2 = CP_ANY, 4040 .access = PL1_RW, .resetvalue = 0, 4041 .type = ARM_CP_CONST | ARM_CP_OVERRIDE | ARM_CP_NO_RAW }, 4042 REGINFO_SENTINEL 4043 }; 4044 4045 static uint64_t midr_read(CPUARMState *env, const ARMCPRegInfo *ri) 4046 { 4047 unsigned int cur_el = arm_current_el(env); 4048 4049 if (arm_is_el2_enabled(env) && cur_el == 1) { 4050 return env->cp15.vpidr_el2; 4051 } 4052 return raw_read(env, ri); 4053 } 4054 4055 static uint64_t mpidr_read_val(CPUARMState *env) 4056 { 4057 ARMCPU *cpu = env_archcpu(env); 4058 uint64_t mpidr = cpu->mp_affinity; 4059 4060 if (arm_feature(env, ARM_FEATURE_V7MP)) { 4061 mpidr |= (1U << 31); 4062 /* Cores which are uniprocessor (non-coherent) 4063 * but still implement the MP extensions set 4064 * bit 30. (For instance, Cortex-R5). 4065 */ 4066 if (cpu->mp_is_up) { 4067 mpidr |= (1u << 30); 4068 } 4069 } 4070 return mpidr; 4071 } 4072 4073 static uint64_t mpidr_read(CPUARMState *env, const ARMCPRegInfo *ri) 4074 { 4075 unsigned int cur_el = arm_current_el(env); 4076 4077 if (arm_is_el2_enabled(env) && cur_el == 1) { 4078 return env->cp15.vmpidr_el2; 4079 } 4080 return mpidr_read_val(env); 4081 } 4082 4083 static const ARMCPRegInfo lpae_cp_reginfo[] = { 4084 /* NOP AMAIR0/1 */ 4085 { .name = "AMAIR0", .state = ARM_CP_STATE_BOTH, 4086 .opc0 = 3, .crn = 10, .crm = 3, .opc1 = 0, .opc2 = 0, 4087 .access = PL1_RW, .accessfn = access_tvm_trvm, 4088 .type = ARM_CP_CONST, .resetvalue = 0 }, 4089 /* AMAIR1 is mapped to AMAIR_EL1[63:32] */ 4090 { .name = "AMAIR1", .cp = 15, .crn = 10, .crm = 3, .opc1 = 0, .opc2 = 1, 4091 .access = PL1_RW, .accessfn = access_tvm_trvm, 4092 .type = ARM_CP_CONST, .resetvalue = 0 }, 4093 { .name = "PAR", .cp = 15, .crm = 7, .opc1 = 0, 4094 .access = PL1_RW, .type = ARM_CP_64BIT, .resetvalue = 0, 4095 .bank_fieldoffsets = { offsetof(CPUARMState, cp15.par_s), 4096 offsetof(CPUARMState, cp15.par_ns)} }, 4097 { .name = "TTBR0", .cp = 15, .crm = 2, .opc1 = 0, 4098 .access = PL1_RW, .accessfn = access_tvm_trvm, 4099 .type = ARM_CP_64BIT | ARM_CP_ALIAS, 4100 .bank_fieldoffsets = { offsetof(CPUARMState, cp15.ttbr0_s), 4101 offsetof(CPUARMState, cp15.ttbr0_ns) }, 4102 .writefn = vmsa_ttbr_write, }, 4103 { .name = "TTBR1", .cp = 15, .crm = 2, .opc1 = 1, 4104 .access = PL1_RW, .accessfn = access_tvm_trvm, 4105 .type = ARM_CP_64BIT | ARM_CP_ALIAS, 4106 .bank_fieldoffsets = { offsetof(CPUARMState, cp15.ttbr1_s), 4107 offsetof(CPUARMState, cp15.ttbr1_ns) }, 4108 .writefn = vmsa_ttbr_write, }, 4109 REGINFO_SENTINEL 4110 }; 4111 4112 static uint64_t aa64_fpcr_read(CPUARMState *env, const ARMCPRegInfo *ri) 4113 { 4114 return vfp_get_fpcr(env); 4115 } 4116 4117 static void aa64_fpcr_write(CPUARMState *env, const ARMCPRegInfo *ri, 4118 uint64_t value) 4119 { 4120 vfp_set_fpcr(env, value); 4121 } 4122 4123 static uint64_t aa64_fpsr_read(CPUARMState *env, const ARMCPRegInfo *ri) 4124 { 4125 return vfp_get_fpsr(env); 4126 } 4127 4128 static void aa64_fpsr_write(CPUARMState *env, const ARMCPRegInfo *ri, 4129 uint64_t value) 4130 { 4131 vfp_set_fpsr(env, value); 4132 } 4133 4134 static CPAccessResult aa64_daif_access(CPUARMState *env, const ARMCPRegInfo *ri, 4135 bool isread) 4136 { 4137 if (arm_current_el(env) == 0 && !(arm_sctlr(env, 0) & SCTLR_UMA)) { 4138 return CP_ACCESS_TRAP; 4139 } 4140 return CP_ACCESS_OK; 4141 } 4142 4143 static void aa64_daif_write(CPUARMState *env, const ARMCPRegInfo *ri, 4144 uint64_t value) 4145 { 4146 env->daif = value & PSTATE_DAIF; 4147 } 4148 4149 static uint64_t aa64_pan_read(CPUARMState *env, const ARMCPRegInfo *ri) 4150 { 4151 return env->pstate & PSTATE_PAN; 4152 } 4153 4154 static void aa64_pan_write(CPUARMState *env, const ARMCPRegInfo *ri, 4155 uint64_t value) 4156 { 4157 env->pstate = (env->pstate & ~PSTATE_PAN) | (value & PSTATE_PAN); 4158 } 4159 4160 static const ARMCPRegInfo pan_reginfo = { 4161 .name = "PAN", .state = ARM_CP_STATE_AA64, 4162 .opc0 = 3, .opc1 = 0, .crn = 4, .crm = 2, .opc2 = 3, 4163 .type = ARM_CP_NO_RAW, .access = PL1_RW, 4164 .readfn = aa64_pan_read, .writefn = aa64_pan_write 4165 }; 4166 4167 static uint64_t aa64_uao_read(CPUARMState *env, const ARMCPRegInfo *ri) 4168 { 4169 return env->pstate & PSTATE_UAO; 4170 } 4171 4172 static void aa64_uao_write(CPUARMState *env, const ARMCPRegInfo *ri, 4173 uint64_t value) 4174 { 4175 env->pstate = (env->pstate & ~PSTATE_UAO) | (value & PSTATE_UAO); 4176 } 4177 4178 static const ARMCPRegInfo uao_reginfo = { 4179 .name = "UAO", .state = ARM_CP_STATE_AA64, 4180 .opc0 = 3, .opc1 = 0, .crn = 4, .crm = 2, .opc2 = 4, 4181 .type = ARM_CP_NO_RAW, .access = PL1_RW, 4182 .readfn = aa64_uao_read, .writefn = aa64_uao_write 4183 }; 4184 4185 static uint64_t aa64_dit_read(CPUARMState *env, const ARMCPRegInfo *ri) 4186 { 4187 return env->pstate & PSTATE_DIT; 4188 } 4189 4190 static void aa64_dit_write(CPUARMState *env, const ARMCPRegInfo *ri, 4191 uint64_t value) 4192 { 4193 env->pstate = (env->pstate & ~PSTATE_DIT) | (value & PSTATE_DIT); 4194 } 4195 4196 static const ARMCPRegInfo dit_reginfo = { 4197 .name = "DIT", .state = ARM_CP_STATE_AA64, 4198 .opc0 = 3, .opc1 = 3, .crn = 4, .crm = 2, .opc2 = 5, 4199 .type = ARM_CP_NO_RAW, .access = PL0_RW, 4200 .readfn = aa64_dit_read, .writefn = aa64_dit_write 4201 }; 4202 4203 static uint64_t aa64_ssbs_read(CPUARMState *env, const ARMCPRegInfo *ri) 4204 { 4205 return env->pstate & PSTATE_SSBS; 4206 } 4207 4208 static void aa64_ssbs_write(CPUARMState *env, const ARMCPRegInfo *ri, 4209 uint64_t value) 4210 { 4211 env->pstate = (env->pstate & ~PSTATE_SSBS) | (value & PSTATE_SSBS); 4212 } 4213 4214 static const ARMCPRegInfo ssbs_reginfo = { 4215 .name = "SSBS", .state = ARM_CP_STATE_AA64, 4216 .opc0 = 3, .opc1 = 3, .crn = 4, .crm = 2, .opc2 = 6, 4217 .type = ARM_CP_NO_RAW, .access = PL0_RW, 4218 .readfn = aa64_ssbs_read, .writefn = aa64_ssbs_write 4219 }; 4220 4221 static CPAccessResult aa64_cacheop_poc_access(CPUARMState *env, 4222 const ARMCPRegInfo *ri, 4223 bool isread) 4224 { 4225 /* Cache invalidate/clean to Point of Coherency or Persistence... */ 4226 switch (arm_current_el(env)) { 4227 case 0: 4228 /* ... EL0 must UNDEF unless SCTLR_EL1.UCI is set. */ 4229 if (!(arm_sctlr(env, 0) & SCTLR_UCI)) { 4230 return CP_ACCESS_TRAP; 4231 } 4232 /* fall through */ 4233 case 1: 4234 /* ... EL1 must trap to EL2 if HCR_EL2.TPCP is set. */ 4235 if (arm_hcr_el2_eff(env) & HCR_TPCP) { 4236 return CP_ACCESS_TRAP_EL2; 4237 } 4238 break; 4239 } 4240 return CP_ACCESS_OK; 4241 } 4242 4243 static CPAccessResult aa64_cacheop_pou_access(CPUARMState *env, 4244 const ARMCPRegInfo *ri, 4245 bool isread) 4246 { 4247 /* Cache invalidate/clean to Point of Unification... */ 4248 switch (arm_current_el(env)) { 4249 case 0: 4250 /* ... EL0 must UNDEF unless SCTLR_EL1.UCI is set. */ 4251 if (!(arm_sctlr(env, 0) & SCTLR_UCI)) { 4252 return CP_ACCESS_TRAP; 4253 } 4254 /* fall through */ 4255 case 1: 4256 /* ... EL1 must trap to EL2 if HCR_EL2.TPU is set. */ 4257 if (arm_hcr_el2_eff(env) & HCR_TPU) { 4258 return CP_ACCESS_TRAP_EL2; 4259 } 4260 break; 4261 } 4262 return CP_ACCESS_OK; 4263 } 4264 4265 /* See: D4.7.2 TLB maintenance requirements and the TLB maintenance instructions 4266 * Page D4-1736 (DDI0487A.b) 4267 */ 4268 4269 static int vae1_tlbmask(CPUARMState *env) 4270 { 4271 uint64_t hcr = arm_hcr_el2_eff(env); 4272 uint16_t mask; 4273 4274 if ((hcr & (HCR_E2H | HCR_TGE)) == (HCR_E2H | HCR_TGE)) { 4275 mask = ARMMMUIdxBit_E20_2 | 4276 ARMMMUIdxBit_E20_2_PAN | 4277 ARMMMUIdxBit_E20_0; 4278 } else { 4279 mask = ARMMMUIdxBit_E10_1 | 4280 ARMMMUIdxBit_E10_1_PAN | 4281 ARMMMUIdxBit_E10_0; 4282 } 4283 4284 if (arm_is_secure_below_el3(env)) { 4285 mask >>= ARM_MMU_IDX_A_NS; 4286 } 4287 4288 return mask; 4289 } 4290 4291 /* Return 56 if TBI is enabled, 64 otherwise. */ 4292 static int tlbbits_for_regime(CPUARMState *env, ARMMMUIdx mmu_idx, 4293 uint64_t addr) 4294 { 4295 uint64_t tcr = regime_tcr(env, mmu_idx)->raw_tcr; 4296 int tbi = aa64_va_parameter_tbi(tcr, mmu_idx); 4297 int select = extract64(addr, 55, 1); 4298 4299 return (tbi >> select) & 1 ? 56 : 64; 4300 } 4301 4302 static int vae1_tlbbits(CPUARMState *env, uint64_t addr) 4303 { 4304 uint64_t hcr = arm_hcr_el2_eff(env); 4305 ARMMMUIdx mmu_idx; 4306 4307 /* Only the regime of the mmu_idx below is significant. */ 4308 if ((hcr & (HCR_E2H | HCR_TGE)) == (HCR_E2H | HCR_TGE)) { 4309 mmu_idx = ARMMMUIdx_E20_0; 4310 } else { 4311 mmu_idx = ARMMMUIdx_E10_0; 4312 } 4313 4314 if (arm_is_secure_below_el3(env)) { 4315 mmu_idx &= ~ARM_MMU_IDX_A_NS; 4316 } 4317 4318 return tlbbits_for_regime(env, mmu_idx, addr); 4319 } 4320 4321 static void tlbi_aa64_vmalle1is_write(CPUARMState *env, const ARMCPRegInfo *ri, 4322 uint64_t value) 4323 { 4324 CPUState *cs = env_cpu(env); 4325 int mask = vae1_tlbmask(env); 4326 4327 tlb_flush_by_mmuidx_all_cpus_synced(cs, mask); 4328 } 4329 4330 static void tlbi_aa64_vmalle1_write(CPUARMState *env, const ARMCPRegInfo *ri, 4331 uint64_t value) 4332 { 4333 CPUState *cs = env_cpu(env); 4334 int mask = vae1_tlbmask(env); 4335 4336 if (tlb_force_broadcast(env)) { 4337 tlb_flush_by_mmuidx_all_cpus_synced(cs, mask); 4338 } else { 4339 tlb_flush_by_mmuidx(cs, mask); 4340 } 4341 } 4342 4343 static int alle1_tlbmask(CPUARMState *env) 4344 { 4345 /* 4346 * Note that the 'ALL' scope must invalidate both stage 1 and 4347 * stage 2 translations, whereas most other scopes only invalidate 4348 * stage 1 translations. 4349 */ 4350 if (arm_is_secure_below_el3(env)) { 4351 return ARMMMUIdxBit_SE10_1 | 4352 ARMMMUIdxBit_SE10_1_PAN | 4353 ARMMMUIdxBit_SE10_0; 4354 } else { 4355 return ARMMMUIdxBit_E10_1 | 4356 ARMMMUIdxBit_E10_1_PAN | 4357 ARMMMUIdxBit_E10_0; 4358 } 4359 } 4360 4361 static int e2_tlbmask(CPUARMState *env) 4362 { 4363 if (arm_is_secure_below_el3(env)) { 4364 return ARMMMUIdxBit_SE20_0 | 4365 ARMMMUIdxBit_SE20_2 | 4366 ARMMMUIdxBit_SE20_2_PAN | 4367 ARMMMUIdxBit_SE2; 4368 } else { 4369 return ARMMMUIdxBit_E20_0 | 4370 ARMMMUIdxBit_E20_2 | 4371 ARMMMUIdxBit_E20_2_PAN | 4372 ARMMMUIdxBit_E2; 4373 } 4374 } 4375 4376 static void tlbi_aa64_alle1_write(CPUARMState *env, const ARMCPRegInfo *ri, 4377 uint64_t value) 4378 { 4379 CPUState *cs = env_cpu(env); 4380 int mask = alle1_tlbmask(env); 4381 4382 tlb_flush_by_mmuidx(cs, mask); 4383 } 4384 4385 static void tlbi_aa64_alle2_write(CPUARMState *env, const ARMCPRegInfo *ri, 4386 uint64_t value) 4387 { 4388 CPUState *cs = env_cpu(env); 4389 int mask = e2_tlbmask(env); 4390 4391 tlb_flush_by_mmuidx(cs, mask); 4392 } 4393 4394 static void tlbi_aa64_alle3_write(CPUARMState *env, const ARMCPRegInfo *ri, 4395 uint64_t value) 4396 { 4397 ARMCPU *cpu = env_archcpu(env); 4398 CPUState *cs = CPU(cpu); 4399 4400 tlb_flush_by_mmuidx(cs, ARMMMUIdxBit_SE3); 4401 } 4402 4403 static void tlbi_aa64_alle1is_write(CPUARMState *env, const ARMCPRegInfo *ri, 4404 uint64_t value) 4405 { 4406 CPUState *cs = env_cpu(env); 4407 int mask = alle1_tlbmask(env); 4408 4409 tlb_flush_by_mmuidx_all_cpus_synced(cs, mask); 4410 } 4411 4412 static void tlbi_aa64_alle2is_write(CPUARMState *env, const ARMCPRegInfo *ri, 4413 uint64_t value) 4414 { 4415 CPUState *cs = env_cpu(env); 4416 int mask = e2_tlbmask(env); 4417 4418 tlb_flush_by_mmuidx_all_cpus_synced(cs, mask); 4419 } 4420 4421 static void tlbi_aa64_alle3is_write(CPUARMState *env, const ARMCPRegInfo *ri, 4422 uint64_t value) 4423 { 4424 CPUState *cs = env_cpu(env); 4425 4426 tlb_flush_by_mmuidx_all_cpus_synced(cs, ARMMMUIdxBit_SE3); 4427 } 4428 4429 static void tlbi_aa64_vae2_write(CPUARMState *env, const ARMCPRegInfo *ri, 4430 uint64_t value) 4431 { 4432 /* Invalidate by VA, EL2 4433 * Currently handles both VAE2 and VALE2, since we don't support 4434 * flush-last-level-only. 4435 */ 4436 CPUState *cs = env_cpu(env); 4437 int mask = e2_tlbmask(env); 4438 uint64_t pageaddr = sextract64(value << 12, 0, 56); 4439 4440 tlb_flush_page_by_mmuidx(cs, pageaddr, mask); 4441 } 4442 4443 static void tlbi_aa64_vae3_write(CPUARMState *env, const ARMCPRegInfo *ri, 4444 uint64_t value) 4445 { 4446 /* Invalidate by VA, EL3 4447 * Currently handles both VAE3 and VALE3, since we don't support 4448 * flush-last-level-only. 4449 */ 4450 ARMCPU *cpu = env_archcpu(env); 4451 CPUState *cs = CPU(cpu); 4452 uint64_t pageaddr = sextract64(value << 12, 0, 56); 4453 4454 tlb_flush_page_by_mmuidx(cs, pageaddr, ARMMMUIdxBit_SE3); 4455 } 4456 4457 static void tlbi_aa64_vae1is_write(CPUARMState *env, const ARMCPRegInfo *ri, 4458 uint64_t value) 4459 { 4460 CPUState *cs = env_cpu(env); 4461 int mask = vae1_tlbmask(env); 4462 uint64_t pageaddr = sextract64(value << 12, 0, 56); 4463 int bits = vae1_tlbbits(env, pageaddr); 4464 4465 tlb_flush_page_bits_by_mmuidx_all_cpus_synced(cs, pageaddr, mask, bits); 4466 } 4467 4468 static void tlbi_aa64_vae1_write(CPUARMState *env, const ARMCPRegInfo *ri, 4469 uint64_t value) 4470 { 4471 /* Invalidate by VA, EL1&0 (AArch64 version). 4472 * Currently handles all of VAE1, VAAE1, VAALE1 and VALE1, 4473 * since we don't support flush-for-specific-ASID-only or 4474 * flush-last-level-only. 4475 */ 4476 CPUState *cs = env_cpu(env); 4477 int mask = vae1_tlbmask(env); 4478 uint64_t pageaddr = sextract64(value << 12, 0, 56); 4479 int bits = vae1_tlbbits(env, pageaddr); 4480 4481 if (tlb_force_broadcast(env)) { 4482 tlb_flush_page_bits_by_mmuidx_all_cpus_synced(cs, pageaddr, mask, bits); 4483 } else { 4484 tlb_flush_page_bits_by_mmuidx(cs, pageaddr, mask, bits); 4485 } 4486 } 4487 4488 static void tlbi_aa64_vae2is_write(CPUARMState *env, const ARMCPRegInfo *ri, 4489 uint64_t value) 4490 { 4491 CPUState *cs = env_cpu(env); 4492 uint64_t pageaddr = sextract64(value << 12, 0, 56); 4493 bool secure = arm_is_secure_below_el3(env); 4494 int mask = secure ? ARMMMUIdxBit_SE2 : ARMMMUIdxBit_E2; 4495 int bits = tlbbits_for_regime(env, secure ? ARMMMUIdx_SE2 : ARMMMUIdx_E2, 4496 pageaddr); 4497 4498 tlb_flush_page_bits_by_mmuidx_all_cpus_synced(cs, pageaddr, mask, bits); 4499 } 4500 4501 static void tlbi_aa64_vae3is_write(CPUARMState *env, const ARMCPRegInfo *ri, 4502 uint64_t value) 4503 { 4504 CPUState *cs = env_cpu(env); 4505 uint64_t pageaddr = sextract64(value << 12, 0, 56); 4506 int bits = tlbbits_for_regime(env, ARMMMUIdx_SE3, pageaddr); 4507 4508 tlb_flush_page_bits_by_mmuidx_all_cpus_synced(cs, pageaddr, 4509 ARMMMUIdxBit_SE3, bits); 4510 } 4511 4512 #ifdef TARGET_AARCH64 4513 static uint64_t tlbi_aa64_range_get_length(CPUARMState *env, 4514 uint64_t value) 4515 { 4516 unsigned int page_shift; 4517 unsigned int page_size_granule; 4518 uint64_t num; 4519 uint64_t scale; 4520 uint64_t exponent; 4521 uint64_t length; 4522 4523 num = extract64(value, 39, 5); 4524 scale = extract64(value, 44, 2); 4525 page_size_granule = extract64(value, 46, 2); 4526 4527 if (page_size_granule == 0) { 4528 qemu_log_mask(LOG_GUEST_ERROR, "Invalid page size granule %d\n", 4529 page_size_granule); 4530 return 0; 4531 } 4532 4533 page_shift = (page_size_granule - 1) * 2 + 12; 4534 4535 exponent = (5 * scale) + 1; 4536 length = (num + 1) << (exponent + page_shift); 4537 4538 return length; 4539 } 4540 4541 static uint64_t tlbi_aa64_range_get_base(CPUARMState *env, uint64_t value, 4542 bool two_ranges) 4543 { 4544 /* TODO: ARMv8.7 FEAT_LPA2 */ 4545 uint64_t pageaddr; 4546 4547 if (two_ranges) { 4548 pageaddr = sextract64(value, 0, 37) << TARGET_PAGE_BITS; 4549 } else { 4550 pageaddr = extract64(value, 0, 37) << TARGET_PAGE_BITS; 4551 } 4552 4553 return pageaddr; 4554 } 4555 4556 static void do_rvae_write(CPUARMState *env, uint64_t value, 4557 int idxmap, bool synced) 4558 { 4559 ARMMMUIdx one_idx = ARM_MMU_IDX_A | ctz32(idxmap); 4560 bool two_ranges = regime_has_2_ranges(one_idx); 4561 uint64_t baseaddr, length; 4562 int bits; 4563 4564 baseaddr = tlbi_aa64_range_get_base(env, value, two_ranges); 4565 length = tlbi_aa64_range_get_length(env, value); 4566 bits = tlbbits_for_regime(env, one_idx, baseaddr); 4567 4568 if (synced) { 4569 tlb_flush_range_by_mmuidx_all_cpus_synced(env_cpu(env), 4570 baseaddr, 4571 length, 4572 idxmap, 4573 bits); 4574 } else { 4575 tlb_flush_range_by_mmuidx(env_cpu(env), baseaddr, 4576 length, idxmap, bits); 4577 } 4578 } 4579 4580 static void tlbi_aa64_rvae1_write(CPUARMState *env, 4581 const ARMCPRegInfo *ri, 4582 uint64_t value) 4583 { 4584 /* 4585 * Invalidate by VA range, EL1&0. 4586 * Currently handles all of RVAE1, RVAAE1, RVAALE1 and RVALE1, 4587 * since we don't support flush-for-specific-ASID-only or 4588 * flush-last-level-only. 4589 */ 4590 4591 do_rvae_write(env, value, vae1_tlbmask(env), 4592 tlb_force_broadcast(env)); 4593 } 4594 4595 static void tlbi_aa64_rvae1is_write(CPUARMState *env, 4596 const ARMCPRegInfo *ri, 4597 uint64_t value) 4598 { 4599 /* 4600 * Invalidate by VA range, Inner/Outer Shareable EL1&0. 4601 * Currently handles all of RVAE1IS, RVAE1OS, RVAAE1IS, RVAAE1OS, 4602 * RVAALE1IS, RVAALE1OS, RVALE1IS and RVALE1OS, since we don't support 4603 * flush-for-specific-ASID-only, flush-last-level-only or inner/outer 4604 * shareable specific flushes. 4605 */ 4606 4607 do_rvae_write(env, value, vae1_tlbmask(env), true); 4608 } 4609 4610 static int vae2_tlbmask(CPUARMState *env) 4611 { 4612 return (arm_is_secure_below_el3(env) 4613 ? ARMMMUIdxBit_SE2 : ARMMMUIdxBit_E2); 4614 } 4615 4616 static void tlbi_aa64_rvae2_write(CPUARMState *env, 4617 const ARMCPRegInfo *ri, 4618 uint64_t value) 4619 { 4620 /* 4621 * Invalidate by VA range, EL2. 4622 * Currently handles all of RVAE2 and RVALE2, 4623 * since we don't support flush-for-specific-ASID-only or 4624 * flush-last-level-only. 4625 */ 4626 4627 do_rvae_write(env, value, vae2_tlbmask(env), 4628 tlb_force_broadcast(env)); 4629 4630 4631 } 4632 4633 static void tlbi_aa64_rvae2is_write(CPUARMState *env, 4634 const ARMCPRegInfo *ri, 4635 uint64_t value) 4636 { 4637 /* 4638 * Invalidate by VA range, Inner/Outer Shareable, EL2. 4639 * Currently handles all of RVAE2IS, RVAE2OS, RVALE2IS and RVALE2OS, 4640 * since we don't support flush-for-specific-ASID-only, 4641 * flush-last-level-only or inner/outer shareable specific flushes. 4642 */ 4643 4644 do_rvae_write(env, value, vae2_tlbmask(env), true); 4645 4646 } 4647 4648 static void tlbi_aa64_rvae3_write(CPUARMState *env, 4649 const ARMCPRegInfo *ri, 4650 uint64_t value) 4651 { 4652 /* 4653 * Invalidate by VA range, EL3. 4654 * Currently handles all of RVAE3 and RVALE3, 4655 * since we don't support flush-for-specific-ASID-only or 4656 * flush-last-level-only. 4657 */ 4658 4659 do_rvae_write(env, value, ARMMMUIdxBit_SE3, 4660 tlb_force_broadcast(env)); 4661 } 4662 4663 static void tlbi_aa64_rvae3is_write(CPUARMState *env, 4664 const ARMCPRegInfo *ri, 4665 uint64_t value) 4666 { 4667 /* 4668 * Invalidate by VA range, EL3, Inner/Outer Shareable. 4669 * Currently handles all of RVAE3IS, RVAE3OS, RVALE3IS and RVALE3OS, 4670 * since we don't support flush-for-specific-ASID-only, 4671 * flush-last-level-only or inner/outer specific flushes. 4672 */ 4673 4674 do_rvae_write(env, value, ARMMMUIdxBit_SE3, true); 4675 } 4676 #endif 4677 4678 static CPAccessResult aa64_zva_access(CPUARMState *env, const ARMCPRegInfo *ri, 4679 bool isread) 4680 { 4681 int cur_el = arm_current_el(env); 4682 4683 if (cur_el < 2) { 4684 uint64_t hcr = arm_hcr_el2_eff(env); 4685 4686 if (cur_el == 0) { 4687 if ((hcr & (HCR_E2H | HCR_TGE)) == (HCR_E2H | HCR_TGE)) { 4688 if (!(env->cp15.sctlr_el[2] & SCTLR_DZE)) { 4689 return CP_ACCESS_TRAP_EL2; 4690 } 4691 } else { 4692 if (!(env->cp15.sctlr_el[1] & SCTLR_DZE)) { 4693 return CP_ACCESS_TRAP; 4694 } 4695 if (hcr & HCR_TDZ) { 4696 return CP_ACCESS_TRAP_EL2; 4697 } 4698 } 4699 } else if (hcr & HCR_TDZ) { 4700 return CP_ACCESS_TRAP_EL2; 4701 } 4702 } 4703 return CP_ACCESS_OK; 4704 } 4705 4706 static uint64_t aa64_dczid_read(CPUARMState *env, const ARMCPRegInfo *ri) 4707 { 4708 ARMCPU *cpu = env_archcpu(env); 4709 int dzp_bit = 1 << 4; 4710 4711 /* DZP indicates whether DC ZVA access is allowed */ 4712 if (aa64_zva_access(env, NULL, false) == CP_ACCESS_OK) { 4713 dzp_bit = 0; 4714 } 4715 return cpu->dcz_blocksize | dzp_bit; 4716 } 4717 4718 static CPAccessResult sp_el0_access(CPUARMState *env, const ARMCPRegInfo *ri, 4719 bool isread) 4720 { 4721 if (!(env->pstate & PSTATE_SP)) { 4722 /* Access to SP_EL0 is undefined if it's being used as 4723 * the stack pointer. 4724 */ 4725 return CP_ACCESS_TRAP_UNCATEGORIZED; 4726 } 4727 return CP_ACCESS_OK; 4728 } 4729 4730 static uint64_t spsel_read(CPUARMState *env, const ARMCPRegInfo *ri) 4731 { 4732 return env->pstate & PSTATE_SP; 4733 } 4734 4735 static void spsel_write(CPUARMState *env, const ARMCPRegInfo *ri, uint64_t val) 4736 { 4737 update_spsel(env, val); 4738 } 4739 4740 static void sctlr_write(CPUARMState *env, const ARMCPRegInfo *ri, 4741 uint64_t value) 4742 { 4743 ARMCPU *cpu = env_archcpu(env); 4744 4745 if (arm_feature(env, ARM_FEATURE_PMSA) && !cpu->has_mpu) { 4746 /* M bit is RAZ/WI for PMSA with no MPU implemented */ 4747 value &= ~SCTLR_M; 4748 } 4749 4750 /* ??? Lots of these bits are not implemented. */ 4751 4752 if (ri->state == ARM_CP_STATE_AA64 && !cpu_isar_feature(aa64_mte, cpu)) { 4753 if (ri->opc1 == 6) { /* SCTLR_EL3 */ 4754 value &= ~(SCTLR_ITFSB | SCTLR_TCF | SCTLR_ATA); 4755 } else { 4756 value &= ~(SCTLR_ITFSB | SCTLR_TCF0 | SCTLR_TCF | 4757 SCTLR_ATA0 | SCTLR_ATA); 4758 } 4759 } 4760 4761 if (raw_read(env, ri) == value) { 4762 /* Skip the TLB flush if nothing actually changed; Linux likes 4763 * to do a lot of pointless SCTLR writes. 4764 */ 4765 return; 4766 } 4767 4768 raw_write(env, ri, value); 4769 4770 /* This may enable/disable the MMU, so do a TLB flush. */ 4771 tlb_flush(CPU(cpu)); 4772 4773 if (ri->type & ARM_CP_SUPPRESS_TB_END) { 4774 /* 4775 * Normally we would always end the TB on an SCTLR write; see the 4776 * comment in ARMCPRegInfo sctlr initialization below for why Xscale 4777 * is special. Setting ARM_CP_SUPPRESS_TB_END also stops the rebuild 4778 * of hflags from the translator, so do it here. 4779 */ 4780 arm_rebuild_hflags(env); 4781 } 4782 } 4783 4784 static CPAccessResult fpexc32_access(CPUARMState *env, const ARMCPRegInfo *ri, 4785 bool isread) 4786 { 4787 if ((env->cp15.cptr_el[2] & CPTR_TFP) && arm_current_el(env) == 2) { 4788 return CP_ACCESS_TRAP_FP_EL2; 4789 } 4790 if (env->cp15.cptr_el[3] & CPTR_TFP) { 4791 return CP_ACCESS_TRAP_FP_EL3; 4792 } 4793 return CP_ACCESS_OK; 4794 } 4795 4796 static void sdcr_write(CPUARMState *env, const ARMCPRegInfo *ri, 4797 uint64_t value) 4798 { 4799 env->cp15.mdcr_el3 = value & SDCR_VALID_MASK; 4800 } 4801 4802 static const ARMCPRegInfo v8_cp_reginfo[] = { 4803 /* Minimal set of EL0-visible registers. This will need to be expanded 4804 * significantly for system emulation of AArch64 CPUs. 4805 */ 4806 { .name = "NZCV", .state = ARM_CP_STATE_AA64, 4807 .opc0 = 3, .opc1 = 3, .opc2 = 0, .crn = 4, .crm = 2, 4808 .access = PL0_RW, .type = ARM_CP_NZCV }, 4809 { .name = "DAIF", .state = ARM_CP_STATE_AA64, 4810 .opc0 = 3, .opc1 = 3, .opc2 = 1, .crn = 4, .crm = 2, 4811 .type = ARM_CP_NO_RAW, 4812 .access = PL0_RW, .accessfn = aa64_daif_access, 4813 .fieldoffset = offsetof(CPUARMState, daif), 4814 .writefn = aa64_daif_write, .resetfn = arm_cp_reset_ignore }, 4815 { .name = "FPCR", .state = ARM_CP_STATE_AA64, 4816 .opc0 = 3, .opc1 = 3, .opc2 = 0, .crn = 4, .crm = 4, 4817 .access = PL0_RW, .type = ARM_CP_FPU | ARM_CP_SUPPRESS_TB_END, 4818 .readfn = aa64_fpcr_read, .writefn = aa64_fpcr_write }, 4819 { .name = "FPSR", .state = ARM_CP_STATE_AA64, 4820 .opc0 = 3, .opc1 = 3, .opc2 = 1, .crn = 4, .crm = 4, 4821 .access = PL0_RW, .type = ARM_CP_FPU | ARM_CP_SUPPRESS_TB_END, 4822 .readfn = aa64_fpsr_read, .writefn = aa64_fpsr_write }, 4823 { .name = "DCZID_EL0", .state = ARM_CP_STATE_AA64, 4824 .opc0 = 3, .opc1 = 3, .opc2 = 7, .crn = 0, .crm = 0, 4825 .access = PL0_R, .type = ARM_CP_NO_RAW, 4826 .readfn = aa64_dczid_read }, 4827 { .name = "DC_ZVA", .state = ARM_CP_STATE_AA64, 4828 .opc0 = 1, .opc1 = 3, .crn = 7, .crm = 4, .opc2 = 1, 4829 .access = PL0_W, .type = ARM_CP_DC_ZVA, 4830 #ifndef CONFIG_USER_ONLY 4831 /* Avoid overhead of an access check that always passes in user-mode */ 4832 .accessfn = aa64_zva_access, 4833 #endif 4834 }, 4835 { .name = "CURRENTEL", .state = ARM_CP_STATE_AA64, 4836 .opc0 = 3, .opc1 = 0, .opc2 = 2, .crn = 4, .crm = 2, 4837 .access = PL1_R, .type = ARM_CP_CURRENTEL }, 4838 /* Cache ops: all NOPs since we don't emulate caches */ 4839 { .name = "IC_IALLUIS", .state = ARM_CP_STATE_AA64, 4840 .opc0 = 1, .opc1 = 0, .crn = 7, .crm = 1, .opc2 = 0, 4841 .access = PL1_W, .type = ARM_CP_NOP, 4842 .accessfn = aa64_cacheop_pou_access }, 4843 { .name = "IC_IALLU", .state = ARM_CP_STATE_AA64, 4844 .opc0 = 1, .opc1 = 0, .crn = 7, .crm = 5, .opc2 = 0, 4845 .access = PL1_W, .type = ARM_CP_NOP, 4846 .accessfn = aa64_cacheop_pou_access }, 4847 { .name = "IC_IVAU", .state = ARM_CP_STATE_AA64, 4848 .opc0 = 1, .opc1 = 3, .crn = 7, .crm = 5, .opc2 = 1, 4849 .access = PL0_W, .type = ARM_CP_NOP, 4850 .accessfn = aa64_cacheop_pou_access }, 4851 { .name = "DC_IVAC", .state = ARM_CP_STATE_AA64, 4852 .opc0 = 1, .opc1 = 0, .crn = 7, .crm = 6, .opc2 = 1, 4853 .access = PL1_W, .accessfn = aa64_cacheop_poc_access, 4854 .type = ARM_CP_NOP }, 4855 { .name = "DC_ISW", .state = ARM_CP_STATE_AA64, 4856 .opc0 = 1, .opc1 = 0, .crn = 7, .crm = 6, .opc2 = 2, 4857 .access = PL1_W, .accessfn = access_tsw, .type = ARM_CP_NOP }, 4858 { .name = "DC_CVAC", .state = ARM_CP_STATE_AA64, 4859 .opc0 = 1, .opc1 = 3, .crn = 7, .crm = 10, .opc2 = 1, 4860 .access = PL0_W, .type = ARM_CP_NOP, 4861 .accessfn = aa64_cacheop_poc_access }, 4862 { .name = "DC_CSW", .state = ARM_CP_STATE_AA64, 4863 .opc0 = 1, .opc1 = 0, .crn = 7, .crm = 10, .opc2 = 2, 4864 .access = PL1_W, .accessfn = access_tsw, .type = ARM_CP_NOP }, 4865 { .name = "DC_CVAU", .state = ARM_CP_STATE_AA64, 4866 .opc0 = 1, .opc1 = 3, .crn = 7, .crm = 11, .opc2 = 1, 4867 .access = PL0_W, .type = ARM_CP_NOP, 4868 .accessfn = aa64_cacheop_pou_access }, 4869 { .name = "DC_CIVAC", .state = ARM_CP_STATE_AA64, 4870 .opc0 = 1, .opc1 = 3, .crn = 7, .crm = 14, .opc2 = 1, 4871 .access = PL0_W, .type = ARM_CP_NOP, 4872 .accessfn = aa64_cacheop_poc_access }, 4873 { .name = "DC_CISW", .state = ARM_CP_STATE_AA64, 4874 .opc0 = 1, .opc1 = 0, .crn = 7, .crm = 14, .opc2 = 2, 4875 .access = PL1_W, .accessfn = access_tsw, .type = ARM_CP_NOP }, 4876 /* TLBI operations */ 4877 { .name = "TLBI_VMALLE1IS", .state = ARM_CP_STATE_AA64, 4878 .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 3, .opc2 = 0, 4879 .access = PL1_W, .accessfn = access_ttlb, .type = ARM_CP_NO_RAW, 4880 .writefn = tlbi_aa64_vmalle1is_write }, 4881 { .name = "TLBI_VAE1IS", .state = ARM_CP_STATE_AA64, 4882 .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 3, .opc2 = 1, 4883 .access = PL1_W, .accessfn = access_ttlb, .type = ARM_CP_NO_RAW, 4884 .writefn = tlbi_aa64_vae1is_write }, 4885 { .name = "TLBI_ASIDE1IS", .state = ARM_CP_STATE_AA64, 4886 .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 3, .opc2 = 2, 4887 .access = PL1_W, .accessfn = access_ttlb, .type = ARM_CP_NO_RAW, 4888 .writefn = tlbi_aa64_vmalle1is_write }, 4889 { .name = "TLBI_VAAE1IS", .state = ARM_CP_STATE_AA64, 4890 .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 3, .opc2 = 3, 4891 .access = PL1_W, .accessfn = access_ttlb, .type = ARM_CP_NO_RAW, 4892 .writefn = tlbi_aa64_vae1is_write }, 4893 { .name = "TLBI_VALE1IS", .state = ARM_CP_STATE_AA64, 4894 .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 3, .opc2 = 5, 4895 .access = PL1_W, .accessfn = access_ttlb, .type = ARM_CP_NO_RAW, 4896 .writefn = tlbi_aa64_vae1is_write }, 4897 { .name = "TLBI_VAALE1IS", .state = ARM_CP_STATE_AA64, 4898 .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 3, .opc2 = 7, 4899 .access = PL1_W, .accessfn = access_ttlb, .type = ARM_CP_NO_RAW, 4900 .writefn = tlbi_aa64_vae1is_write }, 4901 { .name = "TLBI_VMALLE1", .state = ARM_CP_STATE_AA64, 4902 .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 7, .opc2 = 0, 4903 .access = PL1_W, .accessfn = access_ttlb, .type = ARM_CP_NO_RAW, 4904 .writefn = tlbi_aa64_vmalle1_write }, 4905 { .name = "TLBI_VAE1", .state = ARM_CP_STATE_AA64, 4906 .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 7, .opc2 = 1, 4907 .access = PL1_W, .accessfn = access_ttlb, .type = ARM_CP_NO_RAW, 4908 .writefn = tlbi_aa64_vae1_write }, 4909 { .name = "TLBI_ASIDE1", .state = ARM_CP_STATE_AA64, 4910 .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 7, .opc2 = 2, 4911 .access = PL1_W, .accessfn = access_ttlb, .type = ARM_CP_NO_RAW, 4912 .writefn = tlbi_aa64_vmalle1_write }, 4913 { .name = "TLBI_VAAE1", .state = ARM_CP_STATE_AA64, 4914 .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 7, .opc2 = 3, 4915 .access = PL1_W, .accessfn = access_ttlb, .type = ARM_CP_NO_RAW, 4916 .writefn = tlbi_aa64_vae1_write }, 4917 { .name = "TLBI_VALE1", .state = ARM_CP_STATE_AA64, 4918 .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 7, .opc2 = 5, 4919 .access = PL1_W, .accessfn = access_ttlb, .type = ARM_CP_NO_RAW, 4920 .writefn = tlbi_aa64_vae1_write }, 4921 { .name = "TLBI_VAALE1", .state = ARM_CP_STATE_AA64, 4922 .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 7, .opc2 = 7, 4923 .access = PL1_W, .accessfn = access_ttlb, .type = ARM_CP_NO_RAW, 4924 .writefn = tlbi_aa64_vae1_write }, 4925 { .name = "TLBI_IPAS2E1IS", .state = ARM_CP_STATE_AA64, 4926 .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 0, .opc2 = 1, 4927 .access = PL2_W, .type = ARM_CP_NOP }, 4928 { .name = "TLBI_IPAS2LE1IS", .state = ARM_CP_STATE_AA64, 4929 .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 0, .opc2 = 5, 4930 .access = PL2_W, .type = ARM_CP_NOP }, 4931 { .name = "TLBI_ALLE1IS", .state = ARM_CP_STATE_AA64, 4932 .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 3, .opc2 = 4, 4933 .access = PL2_W, .type = ARM_CP_NO_RAW, 4934 .writefn = tlbi_aa64_alle1is_write }, 4935 { .name = "TLBI_VMALLS12E1IS", .state = ARM_CP_STATE_AA64, 4936 .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 3, .opc2 = 6, 4937 .access = PL2_W, .type = ARM_CP_NO_RAW, 4938 .writefn = tlbi_aa64_alle1is_write }, 4939 { .name = "TLBI_IPAS2E1", .state = ARM_CP_STATE_AA64, 4940 .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 4, .opc2 = 1, 4941 .access = PL2_W, .type = ARM_CP_NOP }, 4942 { .name = "TLBI_IPAS2LE1", .state = ARM_CP_STATE_AA64, 4943 .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 4, .opc2 = 5, 4944 .access = PL2_W, .type = ARM_CP_NOP }, 4945 { .name = "TLBI_ALLE1", .state = ARM_CP_STATE_AA64, 4946 .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 7, .opc2 = 4, 4947 .access = PL2_W, .type = ARM_CP_NO_RAW, 4948 .writefn = tlbi_aa64_alle1_write }, 4949 { .name = "TLBI_VMALLS12E1", .state = ARM_CP_STATE_AA64, 4950 .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 7, .opc2 = 6, 4951 .access = PL2_W, .type = ARM_CP_NO_RAW, 4952 .writefn = tlbi_aa64_alle1is_write }, 4953 #ifndef CONFIG_USER_ONLY 4954 /* 64 bit address translation operations */ 4955 { .name = "AT_S1E1R", .state = ARM_CP_STATE_AA64, 4956 .opc0 = 1, .opc1 = 0, .crn = 7, .crm = 8, .opc2 = 0, 4957 .access = PL1_W, .type = ARM_CP_NO_RAW | ARM_CP_RAISES_EXC, 4958 .writefn = ats_write64 }, 4959 { .name = "AT_S1E1W", .state = ARM_CP_STATE_AA64, 4960 .opc0 = 1, .opc1 = 0, .crn = 7, .crm = 8, .opc2 = 1, 4961 .access = PL1_W, .type = ARM_CP_NO_RAW | ARM_CP_RAISES_EXC, 4962 .writefn = ats_write64 }, 4963 { .name = "AT_S1E0R", .state = ARM_CP_STATE_AA64, 4964 .opc0 = 1, .opc1 = 0, .crn = 7, .crm = 8, .opc2 = 2, 4965 .access = PL1_W, .type = ARM_CP_NO_RAW | ARM_CP_RAISES_EXC, 4966 .writefn = ats_write64 }, 4967 { .name = "AT_S1E0W", .state = ARM_CP_STATE_AA64, 4968 .opc0 = 1, .opc1 = 0, .crn = 7, .crm = 8, .opc2 = 3, 4969 .access = PL1_W, .type = ARM_CP_NO_RAW | ARM_CP_RAISES_EXC, 4970 .writefn = ats_write64 }, 4971 { .name = "AT_S12E1R", .state = ARM_CP_STATE_AA64, 4972 .opc0 = 1, .opc1 = 4, .crn = 7, .crm = 8, .opc2 = 4, 4973 .access = PL2_W, .type = ARM_CP_NO_RAW | ARM_CP_RAISES_EXC, 4974 .writefn = ats_write64 }, 4975 { .name = "AT_S12E1W", .state = ARM_CP_STATE_AA64, 4976 .opc0 = 1, .opc1 = 4, .crn = 7, .crm = 8, .opc2 = 5, 4977 .access = PL2_W, .type = ARM_CP_NO_RAW | ARM_CP_RAISES_EXC, 4978 .writefn = ats_write64 }, 4979 { .name = "AT_S12E0R", .state = ARM_CP_STATE_AA64, 4980 .opc0 = 1, .opc1 = 4, .crn = 7, .crm = 8, .opc2 = 6, 4981 .access = PL2_W, .type = ARM_CP_NO_RAW | ARM_CP_RAISES_EXC, 4982 .writefn = ats_write64 }, 4983 { .name = "AT_S12E0W", .state = ARM_CP_STATE_AA64, 4984 .opc0 = 1, .opc1 = 4, .crn = 7, .crm = 8, .opc2 = 7, 4985 .access = PL2_W, .type = ARM_CP_NO_RAW | ARM_CP_RAISES_EXC, 4986 .writefn = ats_write64 }, 4987 /* AT S1E2* are elsewhere as they UNDEF from EL3 if EL2 is not present */ 4988 { .name = "AT_S1E3R", .state = ARM_CP_STATE_AA64, 4989 .opc0 = 1, .opc1 = 6, .crn = 7, .crm = 8, .opc2 = 0, 4990 .access = PL3_W, .type = ARM_CP_NO_RAW | ARM_CP_RAISES_EXC, 4991 .writefn = ats_write64 }, 4992 { .name = "AT_S1E3W", .state = ARM_CP_STATE_AA64, 4993 .opc0 = 1, .opc1 = 6, .crn = 7, .crm = 8, .opc2 = 1, 4994 .access = PL3_W, .type = ARM_CP_NO_RAW | ARM_CP_RAISES_EXC, 4995 .writefn = ats_write64 }, 4996 { .name = "PAR_EL1", .state = ARM_CP_STATE_AA64, 4997 .type = ARM_CP_ALIAS, 4998 .opc0 = 3, .opc1 = 0, .crn = 7, .crm = 4, .opc2 = 0, 4999 .access = PL1_RW, .resetvalue = 0, 5000 .fieldoffset = offsetof(CPUARMState, cp15.par_el[1]), 5001 .writefn = par_write }, 5002 #endif 5003 /* TLB invalidate last level of translation table walk */ 5004 { .name = "TLBIMVALIS", .cp = 15, .opc1 = 0, .crn = 8, .crm = 3, .opc2 = 5, 5005 .type = ARM_CP_NO_RAW, .access = PL1_W, .accessfn = access_ttlb, 5006 .writefn = tlbimva_is_write }, 5007 { .name = "TLBIMVAALIS", .cp = 15, .opc1 = 0, .crn = 8, .crm = 3, .opc2 = 7, 5008 .type = ARM_CP_NO_RAW, .access = PL1_W, .accessfn = access_ttlb, 5009 .writefn = tlbimvaa_is_write }, 5010 { .name = "TLBIMVAL", .cp = 15, .opc1 = 0, .crn = 8, .crm = 7, .opc2 = 5, 5011 .type = ARM_CP_NO_RAW, .access = PL1_W, .accessfn = access_ttlb, 5012 .writefn = tlbimva_write }, 5013 { .name = "TLBIMVAAL", .cp = 15, .opc1 = 0, .crn = 8, .crm = 7, .opc2 = 7, 5014 .type = ARM_CP_NO_RAW, .access = PL1_W, .accessfn = access_ttlb, 5015 .writefn = tlbimvaa_write }, 5016 { .name = "TLBIMVALH", .cp = 15, .opc1 = 4, .crn = 8, .crm = 7, .opc2 = 5, 5017 .type = ARM_CP_NO_RAW, .access = PL2_W, 5018 .writefn = tlbimva_hyp_write }, 5019 { .name = "TLBIMVALHIS", 5020 .cp = 15, .opc1 = 4, .crn = 8, .crm = 3, .opc2 = 5, 5021 .type = ARM_CP_NO_RAW, .access = PL2_W, 5022 .writefn = tlbimva_hyp_is_write }, 5023 { .name = "TLBIIPAS2", 5024 .cp = 15, .opc1 = 4, .crn = 8, .crm = 4, .opc2 = 1, 5025 .type = ARM_CP_NOP, .access = PL2_W }, 5026 { .name = "TLBIIPAS2IS", 5027 .cp = 15, .opc1 = 4, .crn = 8, .crm = 0, .opc2 = 1, 5028 .type = ARM_CP_NOP, .access = PL2_W }, 5029 { .name = "TLBIIPAS2L", 5030 .cp = 15, .opc1 = 4, .crn = 8, .crm = 4, .opc2 = 5, 5031 .type = ARM_CP_NOP, .access = PL2_W }, 5032 { .name = "TLBIIPAS2LIS", 5033 .cp = 15, .opc1 = 4, .crn = 8, .crm = 0, .opc2 = 5, 5034 .type = ARM_CP_NOP, .access = PL2_W }, 5035 /* 32 bit cache operations */ 5036 { .name = "ICIALLUIS", .cp = 15, .opc1 = 0, .crn = 7, .crm = 1, .opc2 = 0, 5037 .type = ARM_CP_NOP, .access = PL1_W, .accessfn = aa64_cacheop_pou_access }, 5038 { .name = "BPIALLUIS", .cp = 15, .opc1 = 0, .crn = 7, .crm = 1, .opc2 = 6, 5039 .type = ARM_CP_NOP, .access = PL1_W }, 5040 { .name = "ICIALLU", .cp = 15, .opc1 = 0, .crn = 7, .crm = 5, .opc2 = 0, 5041 .type = ARM_CP_NOP, .access = PL1_W, .accessfn = aa64_cacheop_pou_access }, 5042 { .name = "ICIMVAU", .cp = 15, .opc1 = 0, .crn = 7, .crm = 5, .opc2 = 1, 5043 .type = ARM_CP_NOP, .access = PL1_W, .accessfn = aa64_cacheop_pou_access }, 5044 { .name = "BPIALL", .cp = 15, .opc1 = 0, .crn = 7, .crm = 5, .opc2 = 6, 5045 .type = ARM_CP_NOP, .access = PL1_W }, 5046 { .name = "BPIMVA", .cp = 15, .opc1 = 0, .crn = 7, .crm = 5, .opc2 = 7, 5047 .type = ARM_CP_NOP, .access = PL1_W }, 5048 { .name = "DCIMVAC", .cp = 15, .opc1 = 0, .crn = 7, .crm = 6, .opc2 = 1, 5049 .type = ARM_CP_NOP, .access = PL1_W, .accessfn = aa64_cacheop_poc_access }, 5050 { .name = "DCISW", .cp = 15, .opc1 = 0, .crn = 7, .crm = 6, .opc2 = 2, 5051 .type = ARM_CP_NOP, .access = PL1_W, .accessfn = access_tsw }, 5052 { .name = "DCCMVAC", .cp = 15, .opc1 = 0, .crn = 7, .crm = 10, .opc2 = 1, 5053 .type = ARM_CP_NOP, .access = PL1_W, .accessfn = aa64_cacheop_poc_access }, 5054 { .name = "DCCSW", .cp = 15, .opc1 = 0, .crn = 7, .crm = 10, .opc2 = 2, 5055 .type = ARM_CP_NOP, .access = PL1_W, .accessfn = access_tsw }, 5056 { .name = "DCCMVAU", .cp = 15, .opc1 = 0, .crn = 7, .crm = 11, .opc2 = 1, 5057 .type = ARM_CP_NOP, .access = PL1_W, .accessfn = aa64_cacheop_pou_access }, 5058 { .name = "DCCIMVAC", .cp = 15, .opc1 = 0, .crn = 7, .crm = 14, .opc2 = 1, 5059 .type = ARM_CP_NOP, .access = PL1_W, .accessfn = aa64_cacheop_poc_access }, 5060 { .name = "DCCISW", .cp = 15, .opc1 = 0, .crn = 7, .crm = 14, .opc2 = 2, 5061 .type = ARM_CP_NOP, .access = PL1_W, .accessfn = access_tsw }, 5062 /* MMU Domain access control / MPU write buffer control */ 5063 { .name = "DACR", .cp = 15, .opc1 = 0, .crn = 3, .crm = 0, .opc2 = 0, 5064 .access = PL1_RW, .accessfn = access_tvm_trvm, .resetvalue = 0, 5065 .writefn = dacr_write, .raw_writefn = raw_write, 5066 .bank_fieldoffsets = { offsetoflow32(CPUARMState, cp15.dacr_s), 5067 offsetoflow32(CPUARMState, cp15.dacr_ns) } }, 5068 { .name = "ELR_EL1", .state = ARM_CP_STATE_AA64, 5069 .type = ARM_CP_ALIAS, 5070 .opc0 = 3, .opc1 = 0, .crn = 4, .crm = 0, .opc2 = 1, 5071 .access = PL1_RW, 5072 .fieldoffset = offsetof(CPUARMState, elr_el[1]) }, 5073 { .name = "SPSR_EL1", .state = ARM_CP_STATE_AA64, 5074 .type = ARM_CP_ALIAS, 5075 .opc0 = 3, .opc1 = 0, .crn = 4, .crm = 0, .opc2 = 0, 5076 .access = PL1_RW, 5077 .fieldoffset = offsetof(CPUARMState, banked_spsr[BANK_SVC]) }, 5078 /* We rely on the access checks not allowing the guest to write to the 5079 * state field when SPSel indicates that it's being used as the stack 5080 * pointer. 5081 */ 5082 { .name = "SP_EL0", .state = ARM_CP_STATE_AA64, 5083 .opc0 = 3, .opc1 = 0, .crn = 4, .crm = 1, .opc2 = 0, 5084 .access = PL1_RW, .accessfn = sp_el0_access, 5085 .type = ARM_CP_ALIAS, 5086 .fieldoffset = offsetof(CPUARMState, sp_el[0]) }, 5087 { .name = "SP_EL1", .state = ARM_CP_STATE_AA64, 5088 .opc0 = 3, .opc1 = 4, .crn = 4, .crm = 1, .opc2 = 0, 5089 .access = PL2_RW, .type = ARM_CP_ALIAS, 5090 .fieldoffset = offsetof(CPUARMState, sp_el[1]) }, 5091 { .name = "SPSel", .state = ARM_CP_STATE_AA64, 5092 .opc0 = 3, .opc1 = 0, .crn = 4, .crm = 2, .opc2 = 0, 5093 .type = ARM_CP_NO_RAW, 5094 .access = PL1_RW, .readfn = spsel_read, .writefn = spsel_write }, 5095 { .name = "FPEXC32_EL2", .state = ARM_CP_STATE_AA64, 5096 .opc0 = 3, .opc1 = 4, .crn = 5, .crm = 3, .opc2 = 0, 5097 .type = ARM_CP_ALIAS, 5098 .fieldoffset = offsetof(CPUARMState, vfp.xregs[ARM_VFP_FPEXC]), 5099 .access = PL2_RW, .accessfn = fpexc32_access }, 5100 { .name = "DACR32_EL2", .state = ARM_CP_STATE_AA64, 5101 .opc0 = 3, .opc1 = 4, .crn = 3, .crm = 0, .opc2 = 0, 5102 .access = PL2_RW, .resetvalue = 0, 5103 .writefn = dacr_write, .raw_writefn = raw_write, 5104 .fieldoffset = offsetof(CPUARMState, cp15.dacr32_el2) }, 5105 { .name = "IFSR32_EL2", .state = ARM_CP_STATE_AA64, 5106 .opc0 = 3, .opc1 = 4, .crn = 5, .crm = 0, .opc2 = 1, 5107 .access = PL2_RW, .resetvalue = 0, 5108 .fieldoffset = offsetof(CPUARMState, cp15.ifsr32_el2) }, 5109 { .name = "SPSR_IRQ", .state = ARM_CP_STATE_AA64, 5110 .type = ARM_CP_ALIAS, 5111 .opc0 = 3, .opc1 = 4, .crn = 4, .crm = 3, .opc2 = 0, 5112 .access = PL2_RW, 5113 .fieldoffset = offsetof(CPUARMState, banked_spsr[BANK_IRQ]) }, 5114 { .name = "SPSR_ABT", .state = ARM_CP_STATE_AA64, 5115 .type = ARM_CP_ALIAS, 5116 .opc0 = 3, .opc1 = 4, .crn = 4, .crm = 3, .opc2 = 1, 5117 .access = PL2_RW, 5118 .fieldoffset = offsetof(CPUARMState, banked_spsr[BANK_ABT]) }, 5119 { .name = "SPSR_UND", .state = ARM_CP_STATE_AA64, 5120 .type = ARM_CP_ALIAS, 5121 .opc0 = 3, .opc1 = 4, .crn = 4, .crm = 3, .opc2 = 2, 5122 .access = PL2_RW, 5123 .fieldoffset = offsetof(CPUARMState, banked_spsr[BANK_UND]) }, 5124 { .name = "SPSR_FIQ", .state = ARM_CP_STATE_AA64, 5125 .type = ARM_CP_ALIAS, 5126 .opc0 = 3, .opc1 = 4, .crn = 4, .crm = 3, .opc2 = 3, 5127 .access = PL2_RW, 5128 .fieldoffset = offsetof(CPUARMState, banked_spsr[BANK_FIQ]) }, 5129 { .name = "MDCR_EL3", .state = ARM_CP_STATE_AA64, 5130 .opc0 = 3, .opc1 = 6, .crn = 1, .crm = 3, .opc2 = 1, 5131 .resetvalue = 0, 5132 .access = PL3_RW, .fieldoffset = offsetof(CPUARMState, cp15.mdcr_el3) }, 5133 { .name = "SDCR", .type = ARM_CP_ALIAS, 5134 .cp = 15, .opc1 = 0, .crn = 1, .crm = 3, .opc2 = 1, 5135 .access = PL1_RW, .accessfn = access_trap_aa32s_el1, 5136 .writefn = sdcr_write, 5137 .fieldoffset = offsetoflow32(CPUARMState, cp15.mdcr_el3) }, 5138 REGINFO_SENTINEL 5139 }; 5140 5141 /* Used to describe the behaviour of EL2 regs when EL2 does not exist. */ 5142 static const ARMCPRegInfo el3_no_el2_cp_reginfo[] = { 5143 { .name = "VBAR_EL2", .state = ARM_CP_STATE_BOTH, 5144 .opc0 = 3, .opc1 = 4, .crn = 12, .crm = 0, .opc2 = 0, 5145 .access = PL2_RW, 5146 .readfn = arm_cp_read_zero, .writefn = arm_cp_write_ignore }, 5147 { .name = "HCR_EL2", .state = ARM_CP_STATE_BOTH, 5148 .opc0 = 3, .opc1 = 4, .crn = 1, .crm = 1, .opc2 = 0, 5149 .access = PL2_RW, 5150 .type = ARM_CP_CONST, .resetvalue = 0 }, 5151 { .name = "HACR_EL2", .state = ARM_CP_STATE_BOTH, 5152 .opc0 = 3, .opc1 = 4, .crn = 1, .crm = 1, .opc2 = 7, 5153 .access = PL2_RW, .type = ARM_CP_CONST, .resetvalue = 0 }, 5154 { .name = "ESR_EL2", .state = ARM_CP_STATE_BOTH, 5155 .opc0 = 3, .opc1 = 4, .crn = 5, .crm = 2, .opc2 = 0, 5156 .access = PL2_RW, 5157 .type = ARM_CP_CONST, .resetvalue = 0 }, 5158 { .name = "CPTR_EL2", .state = ARM_CP_STATE_BOTH, 5159 .opc0 = 3, .opc1 = 4, .crn = 1, .crm = 1, .opc2 = 2, 5160 .access = PL2_RW, .type = ARM_CP_CONST, .resetvalue = 0 }, 5161 { .name = "MAIR_EL2", .state = ARM_CP_STATE_BOTH, 5162 .opc0 = 3, .opc1 = 4, .crn = 10, .crm = 2, .opc2 = 0, 5163 .access = PL2_RW, .type = ARM_CP_CONST, 5164 .resetvalue = 0 }, 5165 { .name = "HMAIR1", .state = ARM_CP_STATE_AA32, 5166 .cp = 15, .opc1 = 4, .crn = 10, .crm = 2, .opc2 = 1, 5167 .access = PL2_RW, .type = ARM_CP_CONST, .resetvalue = 0 }, 5168 { .name = "AMAIR_EL2", .state = ARM_CP_STATE_BOTH, 5169 .opc0 = 3, .opc1 = 4, .crn = 10, .crm = 3, .opc2 = 0, 5170 .access = PL2_RW, .type = ARM_CP_CONST, 5171 .resetvalue = 0 }, 5172 { .name = "HAMAIR1", .state = ARM_CP_STATE_AA32, 5173 .cp = 15, .opc1 = 4, .crn = 10, .crm = 3, .opc2 = 1, 5174 .access = PL2_RW, .type = ARM_CP_CONST, 5175 .resetvalue = 0 }, 5176 { .name = "AFSR0_EL2", .state = ARM_CP_STATE_BOTH, 5177 .opc0 = 3, .opc1 = 4, .crn = 5, .crm = 1, .opc2 = 0, 5178 .access = PL2_RW, .type = ARM_CP_CONST, 5179 .resetvalue = 0 }, 5180 { .name = "AFSR1_EL2", .state = ARM_CP_STATE_BOTH, 5181 .opc0 = 3, .opc1 = 4, .crn = 5, .crm = 1, .opc2 = 1, 5182 .access = PL2_RW, .type = ARM_CP_CONST, 5183 .resetvalue = 0 }, 5184 { .name = "TCR_EL2", .state = ARM_CP_STATE_BOTH, 5185 .opc0 = 3, .opc1 = 4, .crn = 2, .crm = 0, .opc2 = 2, 5186 .access = PL2_RW, .type = ARM_CP_CONST, .resetvalue = 0 }, 5187 { .name = "VTCR_EL2", .state = ARM_CP_STATE_BOTH, 5188 .opc0 = 3, .opc1 = 4, .crn = 2, .crm = 1, .opc2 = 2, 5189 .access = PL2_RW, .accessfn = access_el3_aa32ns, 5190 .type = ARM_CP_CONST, .resetvalue = 0 }, 5191 { .name = "VTTBR", .state = ARM_CP_STATE_AA32, 5192 .cp = 15, .opc1 = 6, .crm = 2, 5193 .access = PL2_RW, .accessfn = access_el3_aa32ns, 5194 .type = ARM_CP_CONST | ARM_CP_64BIT, .resetvalue = 0 }, 5195 { .name = "VTTBR_EL2", .state = ARM_CP_STATE_AA64, 5196 .opc0 = 3, .opc1 = 4, .crn = 2, .crm = 1, .opc2 = 0, 5197 .access = PL2_RW, .type = ARM_CP_CONST, .resetvalue = 0 }, 5198 { .name = "SCTLR_EL2", .state = ARM_CP_STATE_BOTH, 5199 .opc0 = 3, .opc1 = 4, .crn = 1, .crm = 0, .opc2 = 0, 5200 .access = PL2_RW, .type = ARM_CP_CONST, .resetvalue = 0 }, 5201 { .name = "TPIDR_EL2", .state = ARM_CP_STATE_BOTH, 5202 .opc0 = 3, .opc1 = 4, .crn = 13, .crm = 0, .opc2 = 2, 5203 .access = PL2_RW, .type = ARM_CP_CONST, .resetvalue = 0 }, 5204 { .name = "TTBR0_EL2", .state = ARM_CP_STATE_AA64, 5205 .opc0 = 3, .opc1 = 4, .crn = 2, .crm = 0, .opc2 = 0, 5206 .access = PL2_RW, .type = ARM_CP_CONST, .resetvalue = 0 }, 5207 { .name = "HTTBR", .cp = 15, .opc1 = 4, .crm = 2, 5208 .access = PL2_RW, .type = ARM_CP_64BIT | ARM_CP_CONST, 5209 .resetvalue = 0 }, 5210 { .name = "CNTHCTL_EL2", .state = ARM_CP_STATE_BOTH, 5211 .opc0 = 3, .opc1 = 4, .crn = 14, .crm = 1, .opc2 = 0, 5212 .access = PL2_RW, .type = ARM_CP_CONST, .resetvalue = 0 }, 5213 { .name = "CNTVOFF_EL2", .state = ARM_CP_STATE_AA64, 5214 .opc0 = 3, .opc1 = 4, .crn = 14, .crm = 0, .opc2 = 3, 5215 .access = PL2_RW, .type = ARM_CP_CONST, .resetvalue = 0 }, 5216 { .name = "CNTVOFF", .cp = 15, .opc1 = 4, .crm = 14, 5217 .access = PL2_RW, .type = ARM_CP_64BIT | ARM_CP_CONST, 5218 .resetvalue = 0 }, 5219 { .name = "CNTHP_CVAL_EL2", .state = ARM_CP_STATE_AA64, 5220 .opc0 = 3, .opc1 = 4, .crn = 14, .crm = 2, .opc2 = 2, 5221 .access = PL2_RW, .type = ARM_CP_CONST, .resetvalue = 0 }, 5222 { .name = "CNTHP_CVAL", .cp = 15, .opc1 = 6, .crm = 14, 5223 .access = PL2_RW, .type = ARM_CP_64BIT | ARM_CP_CONST, 5224 .resetvalue = 0 }, 5225 { .name = "CNTHP_TVAL_EL2", .state = ARM_CP_STATE_BOTH, 5226 .opc0 = 3, .opc1 = 4, .crn = 14, .crm = 2, .opc2 = 0, 5227 .access = PL2_RW, .type = ARM_CP_CONST, .resetvalue = 0 }, 5228 { .name = "CNTHP_CTL_EL2", .state = ARM_CP_STATE_BOTH, 5229 .opc0 = 3, .opc1 = 4, .crn = 14, .crm = 2, .opc2 = 1, 5230 .access = PL2_RW, .type = ARM_CP_CONST, .resetvalue = 0 }, 5231 { .name = "MDCR_EL2", .state = ARM_CP_STATE_BOTH, 5232 .opc0 = 3, .opc1 = 4, .crn = 1, .crm = 1, .opc2 = 1, 5233 .access = PL2_RW, .accessfn = access_tda, 5234 .type = ARM_CP_CONST, .resetvalue = 0 }, 5235 { .name = "HPFAR_EL2", .state = ARM_CP_STATE_BOTH, 5236 .opc0 = 3, .opc1 = 4, .crn = 6, .crm = 0, .opc2 = 4, 5237 .access = PL2_RW, .accessfn = access_el3_aa32ns, 5238 .type = ARM_CP_CONST, .resetvalue = 0 }, 5239 { .name = "HSTR_EL2", .state = ARM_CP_STATE_BOTH, 5240 .opc0 = 3, .opc1 = 4, .crn = 1, .crm = 1, .opc2 = 3, 5241 .access = PL2_RW, .type = ARM_CP_CONST, .resetvalue = 0 }, 5242 { .name = "FAR_EL2", .state = ARM_CP_STATE_BOTH, 5243 .opc0 = 3, .opc1 = 4, .crn = 6, .crm = 0, .opc2 = 0, 5244 .access = PL2_RW, .type = ARM_CP_CONST, .resetvalue = 0 }, 5245 { .name = "HIFAR", .state = ARM_CP_STATE_AA32, 5246 .type = ARM_CP_CONST, 5247 .cp = 15, .opc1 = 4, .crn = 6, .crm = 0, .opc2 = 2, 5248 .access = PL2_RW, .resetvalue = 0 }, 5249 REGINFO_SENTINEL 5250 }; 5251 5252 /* Ditto, but for registers which exist in ARMv8 but not v7 */ 5253 static const ARMCPRegInfo el3_no_el2_v8_cp_reginfo[] = { 5254 { .name = "HCR2", .state = ARM_CP_STATE_AA32, 5255 .cp = 15, .opc1 = 4, .crn = 1, .crm = 1, .opc2 = 4, 5256 .access = PL2_RW, 5257 .type = ARM_CP_CONST, .resetvalue = 0 }, 5258 REGINFO_SENTINEL 5259 }; 5260 5261 static void do_hcr_write(CPUARMState *env, uint64_t value, uint64_t valid_mask) 5262 { 5263 ARMCPU *cpu = env_archcpu(env); 5264 5265 if (arm_feature(env, ARM_FEATURE_V8)) { 5266 valid_mask |= MAKE_64BIT_MASK(0, 34); /* ARMv8.0 */ 5267 } else { 5268 valid_mask |= MAKE_64BIT_MASK(0, 28); /* ARMv7VE */ 5269 } 5270 5271 if (arm_feature(env, ARM_FEATURE_EL3)) { 5272 valid_mask &= ~HCR_HCD; 5273 } else if (cpu->psci_conduit != QEMU_PSCI_CONDUIT_SMC) { 5274 /* Architecturally HCR.TSC is RES0 if EL3 is not implemented. 5275 * However, if we're using the SMC PSCI conduit then QEMU is 5276 * effectively acting like EL3 firmware and so the guest at 5277 * EL2 should retain the ability to prevent EL1 from being 5278 * able to make SMC calls into the ersatz firmware, so in 5279 * that case HCR.TSC should be read/write. 5280 */ 5281 valid_mask &= ~HCR_TSC; 5282 } 5283 5284 if (arm_feature(env, ARM_FEATURE_AARCH64)) { 5285 if (cpu_isar_feature(aa64_vh, cpu)) { 5286 valid_mask |= HCR_E2H; 5287 } 5288 if (cpu_isar_feature(aa64_lor, cpu)) { 5289 valid_mask |= HCR_TLOR; 5290 } 5291 if (cpu_isar_feature(aa64_pauth, cpu)) { 5292 valid_mask |= HCR_API | HCR_APK; 5293 } 5294 if (cpu_isar_feature(aa64_mte, cpu)) { 5295 valid_mask |= HCR_ATA | HCR_DCT | HCR_TID5; 5296 } 5297 } 5298 5299 /* Clear RES0 bits. */ 5300 value &= valid_mask; 5301 5302 /* 5303 * These bits change the MMU setup: 5304 * HCR_VM enables stage 2 translation 5305 * HCR_PTW forbids certain page-table setups 5306 * HCR_DC disables stage1 and enables stage2 translation 5307 * HCR_DCT enables tagging on (disabled) stage1 translation 5308 */ 5309 if ((env->cp15.hcr_el2 ^ value) & (HCR_VM | HCR_PTW | HCR_DC | HCR_DCT)) { 5310 tlb_flush(CPU(cpu)); 5311 } 5312 env->cp15.hcr_el2 = value; 5313 5314 /* 5315 * Updates to VI and VF require us to update the status of 5316 * virtual interrupts, which are the logical OR of these bits 5317 * and the state of the input lines from the GIC. (This requires 5318 * that we have the iothread lock, which is done by marking the 5319 * reginfo structs as ARM_CP_IO.) 5320 * Note that if a write to HCR pends a VIRQ or VFIQ it is never 5321 * possible for it to be taken immediately, because VIRQ and 5322 * VFIQ are masked unless running at EL0 or EL1, and HCR 5323 * can only be written at EL2. 5324 */ 5325 g_assert(qemu_mutex_iothread_locked()); 5326 arm_cpu_update_virq(cpu); 5327 arm_cpu_update_vfiq(cpu); 5328 } 5329 5330 static void hcr_write(CPUARMState *env, const ARMCPRegInfo *ri, uint64_t value) 5331 { 5332 do_hcr_write(env, value, 0); 5333 } 5334 5335 static void hcr_writehigh(CPUARMState *env, const ARMCPRegInfo *ri, 5336 uint64_t value) 5337 { 5338 /* Handle HCR2 write, i.e. write to high half of HCR_EL2 */ 5339 value = deposit64(env->cp15.hcr_el2, 32, 32, value); 5340 do_hcr_write(env, value, MAKE_64BIT_MASK(0, 32)); 5341 } 5342 5343 static void hcr_writelow(CPUARMState *env, const ARMCPRegInfo *ri, 5344 uint64_t value) 5345 { 5346 /* Handle HCR write, i.e. write to low half of HCR_EL2 */ 5347 value = deposit64(env->cp15.hcr_el2, 0, 32, value); 5348 do_hcr_write(env, value, MAKE_64BIT_MASK(32, 32)); 5349 } 5350 5351 /* 5352 * Return the effective value of HCR_EL2. 5353 * Bits that are not included here: 5354 * RW (read from SCR_EL3.RW as needed) 5355 */ 5356 uint64_t arm_hcr_el2_eff(CPUARMState *env) 5357 { 5358 uint64_t ret = env->cp15.hcr_el2; 5359 5360 if (!arm_is_el2_enabled(env)) { 5361 /* 5362 * "This register has no effect if EL2 is not enabled in the 5363 * current Security state". This is ARMv8.4-SecEL2 speak for 5364 * !(SCR_EL3.NS==1 || SCR_EL3.EEL2==1). 5365 * 5366 * Prior to that, the language was "In an implementation that 5367 * includes EL3, when the value of SCR_EL3.NS is 0 the PE behaves 5368 * as if this field is 0 for all purposes other than a direct 5369 * read or write access of HCR_EL2". With lots of enumeration 5370 * on a per-field basis. In current QEMU, this is condition 5371 * is arm_is_secure_below_el3. 5372 * 5373 * Since the v8.4 language applies to the entire register, and 5374 * appears to be backward compatible, use that. 5375 */ 5376 return 0; 5377 } 5378 5379 /* 5380 * For a cpu that supports both aarch64 and aarch32, we can set bits 5381 * in HCR_EL2 (e.g. via EL3) that are RES0 when we enter EL2 as aa32. 5382 * Ignore all of the bits in HCR+HCR2 that are not valid for aarch32. 5383 */ 5384 if (!arm_el_is_aa64(env, 2)) { 5385 uint64_t aa32_valid; 5386 5387 /* 5388 * These bits are up-to-date as of ARMv8.6. 5389 * For HCR, it's easiest to list just the 2 bits that are invalid. 5390 * For HCR2, list those that are valid. 5391 */ 5392 aa32_valid = MAKE_64BIT_MASK(0, 32) & ~(HCR_RW | HCR_TDZ); 5393 aa32_valid |= (HCR_CD | HCR_ID | HCR_TERR | HCR_TEA | HCR_MIOCNCE | 5394 HCR_TID4 | HCR_TICAB | HCR_TOCU | HCR_TTLBIS); 5395 ret &= aa32_valid; 5396 } 5397 5398 if (ret & HCR_TGE) { 5399 /* These bits are up-to-date as of ARMv8.6. */ 5400 if (ret & HCR_E2H) { 5401 ret &= ~(HCR_VM | HCR_FMO | HCR_IMO | HCR_AMO | 5402 HCR_BSU_MASK | HCR_DC | HCR_TWI | HCR_TWE | 5403 HCR_TID0 | HCR_TID2 | HCR_TPCP | HCR_TPU | 5404 HCR_TDZ | HCR_CD | HCR_ID | HCR_MIOCNCE | 5405 HCR_TID4 | HCR_TICAB | HCR_TOCU | HCR_ENSCXT | 5406 HCR_TTLBIS | HCR_TTLBOS | HCR_TID5); 5407 } else { 5408 ret |= HCR_FMO | HCR_IMO | HCR_AMO; 5409 } 5410 ret &= ~(HCR_SWIO | HCR_PTW | HCR_VF | HCR_VI | HCR_VSE | 5411 HCR_FB | HCR_TID1 | HCR_TID3 | HCR_TSC | HCR_TACR | 5412 HCR_TSW | HCR_TTLB | HCR_TVM | HCR_HCD | HCR_TRVM | 5413 HCR_TLOR); 5414 } 5415 5416 return ret; 5417 } 5418 5419 static void cptr_el2_write(CPUARMState *env, const ARMCPRegInfo *ri, 5420 uint64_t value) 5421 { 5422 /* 5423 * For A-profile AArch32 EL3, if NSACR.CP10 5424 * is 0 then HCPTR.{TCP11,TCP10} ignore writes and read as 1. 5425 */ 5426 if (arm_feature(env, ARM_FEATURE_EL3) && !arm_el_is_aa64(env, 3) && 5427 !arm_is_secure(env) && !extract32(env->cp15.nsacr, 10, 1)) { 5428 value &= ~(0x3 << 10); 5429 value |= env->cp15.cptr_el[2] & (0x3 << 10); 5430 } 5431 env->cp15.cptr_el[2] = value; 5432 } 5433 5434 static uint64_t cptr_el2_read(CPUARMState *env, const ARMCPRegInfo *ri) 5435 { 5436 /* 5437 * For A-profile AArch32 EL3, if NSACR.CP10 5438 * is 0 then HCPTR.{TCP11,TCP10} ignore writes and read as 1. 5439 */ 5440 uint64_t value = env->cp15.cptr_el[2]; 5441 5442 if (arm_feature(env, ARM_FEATURE_EL3) && !arm_el_is_aa64(env, 3) && 5443 !arm_is_secure(env) && !extract32(env->cp15.nsacr, 10, 1)) { 5444 value |= 0x3 << 10; 5445 } 5446 return value; 5447 } 5448 5449 static const ARMCPRegInfo el2_cp_reginfo[] = { 5450 { .name = "HCR_EL2", .state = ARM_CP_STATE_AA64, 5451 .type = ARM_CP_IO, 5452 .opc0 = 3, .opc1 = 4, .crn = 1, .crm = 1, .opc2 = 0, 5453 .access = PL2_RW, .fieldoffset = offsetof(CPUARMState, cp15.hcr_el2), 5454 .writefn = hcr_write }, 5455 { .name = "HCR", .state = ARM_CP_STATE_AA32, 5456 .type = ARM_CP_ALIAS | ARM_CP_IO, 5457 .cp = 15, .opc1 = 4, .crn = 1, .crm = 1, .opc2 = 0, 5458 .access = PL2_RW, .fieldoffset = offsetof(CPUARMState, cp15.hcr_el2), 5459 .writefn = hcr_writelow }, 5460 { .name = "HACR_EL2", .state = ARM_CP_STATE_BOTH, 5461 .opc0 = 3, .opc1 = 4, .crn = 1, .crm = 1, .opc2 = 7, 5462 .access = PL2_RW, .type = ARM_CP_CONST, .resetvalue = 0 }, 5463 { .name = "ELR_EL2", .state = ARM_CP_STATE_AA64, 5464 .type = ARM_CP_ALIAS, 5465 .opc0 = 3, .opc1 = 4, .crn = 4, .crm = 0, .opc2 = 1, 5466 .access = PL2_RW, 5467 .fieldoffset = offsetof(CPUARMState, elr_el[2]) }, 5468 { .name = "ESR_EL2", .state = ARM_CP_STATE_BOTH, 5469 .opc0 = 3, .opc1 = 4, .crn = 5, .crm = 2, .opc2 = 0, 5470 .access = PL2_RW, .fieldoffset = offsetof(CPUARMState, cp15.esr_el[2]) }, 5471 { .name = "FAR_EL2", .state = ARM_CP_STATE_BOTH, 5472 .opc0 = 3, .opc1 = 4, .crn = 6, .crm = 0, .opc2 = 0, 5473 .access = PL2_RW, .fieldoffset = offsetof(CPUARMState, cp15.far_el[2]) }, 5474 { .name = "HIFAR", .state = ARM_CP_STATE_AA32, 5475 .type = ARM_CP_ALIAS, 5476 .cp = 15, .opc1 = 4, .crn = 6, .crm = 0, .opc2 = 2, 5477 .access = PL2_RW, 5478 .fieldoffset = offsetofhigh32(CPUARMState, cp15.far_el[2]) }, 5479 { .name = "SPSR_EL2", .state = ARM_CP_STATE_AA64, 5480 .type = ARM_CP_ALIAS, 5481 .opc0 = 3, .opc1 = 4, .crn = 4, .crm = 0, .opc2 = 0, 5482 .access = PL2_RW, 5483 .fieldoffset = offsetof(CPUARMState, banked_spsr[BANK_HYP]) }, 5484 { .name = "VBAR_EL2", .state = ARM_CP_STATE_BOTH, 5485 .opc0 = 3, .opc1 = 4, .crn = 12, .crm = 0, .opc2 = 0, 5486 .access = PL2_RW, .writefn = vbar_write, 5487 .fieldoffset = offsetof(CPUARMState, cp15.vbar_el[2]), 5488 .resetvalue = 0 }, 5489 { .name = "SP_EL2", .state = ARM_CP_STATE_AA64, 5490 .opc0 = 3, .opc1 = 6, .crn = 4, .crm = 1, .opc2 = 0, 5491 .access = PL3_RW, .type = ARM_CP_ALIAS, 5492 .fieldoffset = offsetof(CPUARMState, sp_el[2]) }, 5493 { .name = "CPTR_EL2", .state = ARM_CP_STATE_BOTH, 5494 .opc0 = 3, .opc1 = 4, .crn = 1, .crm = 1, .opc2 = 2, 5495 .access = PL2_RW, .accessfn = cptr_access, .resetvalue = 0, 5496 .fieldoffset = offsetof(CPUARMState, cp15.cptr_el[2]), 5497 .readfn = cptr_el2_read, .writefn = cptr_el2_write }, 5498 { .name = "MAIR_EL2", .state = ARM_CP_STATE_BOTH, 5499 .opc0 = 3, .opc1 = 4, .crn = 10, .crm = 2, .opc2 = 0, 5500 .access = PL2_RW, .fieldoffset = offsetof(CPUARMState, cp15.mair_el[2]), 5501 .resetvalue = 0 }, 5502 { .name = "HMAIR1", .state = ARM_CP_STATE_AA32, 5503 .cp = 15, .opc1 = 4, .crn = 10, .crm = 2, .opc2 = 1, 5504 .access = PL2_RW, .type = ARM_CP_ALIAS, 5505 .fieldoffset = offsetofhigh32(CPUARMState, cp15.mair_el[2]) }, 5506 { .name = "AMAIR_EL2", .state = ARM_CP_STATE_BOTH, 5507 .opc0 = 3, .opc1 = 4, .crn = 10, .crm = 3, .opc2 = 0, 5508 .access = PL2_RW, .type = ARM_CP_CONST, 5509 .resetvalue = 0 }, 5510 /* HAMAIR1 is mapped to AMAIR_EL2[63:32] */ 5511 { .name = "HAMAIR1", .state = ARM_CP_STATE_AA32, 5512 .cp = 15, .opc1 = 4, .crn = 10, .crm = 3, .opc2 = 1, 5513 .access = PL2_RW, .type = ARM_CP_CONST, 5514 .resetvalue = 0 }, 5515 { .name = "AFSR0_EL2", .state = ARM_CP_STATE_BOTH, 5516 .opc0 = 3, .opc1 = 4, .crn = 5, .crm = 1, .opc2 = 0, 5517 .access = PL2_RW, .type = ARM_CP_CONST, 5518 .resetvalue = 0 }, 5519 { .name = "AFSR1_EL2", .state = ARM_CP_STATE_BOTH, 5520 .opc0 = 3, .opc1 = 4, .crn = 5, .crm = 1, .opc2 = 1, 5521 .access = PL2_RW, .type = ARM_CP_CONST, 5522 .resetvalue = 0 }, 5523 { .name = "TCR_EL2", .state = ARM_CP_STATE_BOTH, 5524 .opc0 = 3, .opc1 = 4, .crn = 2, .crm = 0, .opc2 = 2, 5525 .access = PL2_RW, .writefn = vmsa_tcr_el12_write, 5526 /* no .raw_writefn or .resetfn needed as we never use mask/base_mask */ 5527 .fieldoffset = offsetof(CPUARMState, cp15.tcr_el[2]) }, 5528 { .name = "VTCR", .state = ARM_CP_STATE_AA32, 5529 .cp = 15, .opc1 = 4, .crn = 2, .crm = 1, .opc2 = 2, 5530 .type = ARM_CP_ALIAS, 5531 .access = PL2_RW, .accessfn = access_el3_aa32ns, 5532 .fieldoffset = offsetof(CPUARMState, cp15.vtcr_el2) }, 5533 { .name = "VTCR_EL2", .state = ARM_CP_STATE_AA64, 5534 .opc0 = 3, .opc1 = 4, .crn = 2, .crm = 1, .opc2 = 2, 5535 .access = PL2_RW, 5536 /* no .writefn needed as this can't cause an ASID change; 5537 * no .raw_writefn or .resetfn needed as we never use mask/base_mask 5538 */ 5539 .fieldoffset = offsetof(CPUARMState, cp15.vtcr_el2) }, 5540 { .name = "VTTBR", .state = ARM_CP_STATE_AA32, 5541 .cp = 15, .opc1 = 6, .crm = 2, 5542 .type = ARM_CP_64BIT | ARM_CP_ALIAS, 5543 .access = PL2_RW, .accessfn = access_el3_aa32ns, 5544 .fieldoffset = offsetof(CPUARMState, cp15.vttbr_el2), 5545 .writefn = vttbr_write }, 5546 { .name = "VTTBR_EL2", .state = ARM_CP_STATE_AA64, 5547 .opc0 = 3, .opc1 = 4, .crn = 2, .crm = 1, .opc2 = 0, 5548 .access = PL2_RW, .writefn = vttbr_write, 5549 .fieldoffset = offsetof(CPUARMState, cp15.vttbr_el2) }, 5550 { .name = "SCTLR_EL2", .state = ARM_CP_STATE_BOTH, 5551 .opc0 = 3, .opc1 = 4, .crn = 1, .crm = 0, .opc2 = 0, 5552 .access = PL2_RW, .raw_writefn = raw_write, .writefn = sctlr_write, 5553 .fieldoffset = offsetof(CPUARMState, cp15.sctlr_el[2]) }, 5554 { .name = "TPIDR_EL2", .state = ARM_CP_STATE_BOTH, 5555 .opc0 = 3, .opc1 = 4, .crn = 13, .crm = 0, .opc2 = 2, 5556 .access = PL2_RW, .resetvalue = 0, 5557 .fieldoffset = offsetof(CPUARMState, cp15.tpidr_el[2]) }, 5558 { .name = "TTBR0_EL2", .state = ARM_CP_STATE_AA64, 5559 .opc0 = 3, .opc1 = 4, .crn = 2, .crm = 0, .opc2 = 0, 5560 .access = PL2_RW, .resetvalue = 0, .writefn = vmsa_tcr_ttbr_el2_write, 5561 .fieldoffset = offsetof(CPUARMState, cp15.ttbr0_el[2]) }, 5562 { .name = "HTTBR", .cp = 15, .opc1 = 4, .crm = 2, 5563 .access = PL2_RW, .type = ARM_CP_64BIT | ARM_CP_ALIAS, 5564 .fieldoffset = offsetof(CPUARMState, cp15.ttbr0_el[2]) }, 5565 { .name = "TLBIALLNSNH", 5566 .cp = 15, .opc1 = 4, .crn = 8, .crm = 7, .opc2 = 4, 5567 .type = ARM_CP_NO_RAW, .access = PL2_W, 5568 .writefn = tlbiall_nsnh_write }, 5569 { .name = "TLBIALLNSNHIS", 5570 .cp = 15, .opc1 = 4, .crn = 8, .crm = 3, .opc2 = 4, 5571 .type = ARM_CP_NO_RAW, .access = PL2_W, 5572 .writefn = tlbiall_nsnh_is_write }, 5573 { .name = "TLBIALLH", .cp = 15, .opc1 = 4, .crn = 8, .crm = 7, .opc2 = 0, 5574 .type = ARM_CP_NO_RAW, .access = PL2_W, 5575 .writefn = tlbiall_hyp_write }, 5576 { .name = "TLBIALLHIS", .cp = 15, .opc1 = 4, .crn = 8, .crm = 3, .opc2 = 0, 5577 .type = ARM_CP_NO_RAW, .access = PL2_W, 5578 .writefn = tlbiall_hyp_is_write }, 5579 { .name = "TLBIMVAH", .cp = 15, .opc1 = 4, .crn = 8, .crm = 7, .opc2 = 1, 5580 .type = ARM_CP_NO_RAW, .access = PL2_W, 5581 .writefn = tlbimva_hyp_write }, 5582 { .name = "TLBIMVAHIS", .cp = 15, .opc1 = 4, .crn = 8, .crm = 3, .opc2 = 1, 5583 .type = ARM_CP_NO_RAW, .access = PL2_W, 5584 .writefn = tlbimva_hyp_is_write }, 5585 { .name = "TLBI_ALLE2", .state = ARM_CP_STATE_AA64, 5586 .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 7, .opc2 = 0, 5587 .type = ARM_CP_NO_RAW, .access = PL2_W, 5588 .writefn = tlbi_aa64_alle2_write }, 5589 { .name = "TLBI_VAE2", .state = ARM_CP_STATE_AA64, 5590 .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 7, .opc2 = 1, 5591 .type = ARM_CP_NO_RAW, .access = PL2_W, 5592 .writefn = tlbi_aa64_vae2_write }, 5593 { .name = "TLBI_VALE2", .state = ARM_CP_STATE_AA64, 5594 .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 7, .opc2 = 5, 5595 .access = PL2_W, .type = ARM_CP_NO_RAW, 5596 .writefn = tlbi_aa64_vae2_write }, 5597 { .name = "TLBI_ALLE2IS", .state = ARM_CP_STATE_AA64, 5598 .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 3, .opc2 = 0, 5599 .access = PL2_W, .type = ARM_CP_NO_RAW, 5600 .writefn = tlbi_aa64_alle2is_write }, 5601 { .name = "TLBI_VAE2IS", .state = ARM_CP_STATE_AA64, 5602 .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 3, .opc2 = 1, 5603 .type = ARM_CP_NO_RAW, .access = PL2_W, 5604 .writefn = tlbi_aa64_vae2is_write }, 5605 { .name = "TLBI_VALE2IS", .state = ARM_CP_STATE_AA64, 5606 .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 3, .opc2 = 5, 5607 .access = PL2_W, .type = ARM_CP_NO_RAW, 5608 .writefn = tlbi_aa64_vae2is_write }, 5609 #ifndef CONFIG_USER_ONLY 5610 /* Unlike the other EL2-related AT operations, these must 5611 * UNDEF from EL3 if EL2 is not implemented, which is why we 5612 * define them here rather than with the rest of the AT ops. 5613 */ 5614 { .name = "AT_S1E2R", .state = ARM_CP_STATE_AA64, 5615 .opc0 = 1, .opc1 = 4, .crn = 7, .crm = 8, .opc2 = 0, 5616 .access = PL2_W, .accessfn = at_s1e2_access, 5617 .type = ARM_CP_NO_RAW | ARM_CP_RAISES_EXC, .writefn = ats_write64 }, 5618 { .name = "AT_S1E2W", .state = ARM_CP_STATE_AA64, 5619 .opc0 = 1, .opc1 = 4, .crn = 7, .crm = 8, .opc2 = 1, 5620 .access = PL2_W, .accessfn = at_s1e2_access, 5621 .type = ARM_CP_NO_RAW | ARM_CP_RAISES_EXC, .writefn = ats_write64 }, 5622 /* The AArch32 ATS1H* operations are CONSTRAINED UNPREDICTABLE 5623 * if EL2 is not implemented; we choose to UNDEF. Behaviour at EL3 5624 * with SCR.NS == 0 outside Monitor mode is UNPREDICTABLE; we choose 5625 * to behave as if SCR.NS was 1. 5626 */ 5627 { .name = "ATS1HR", .cp = 15, .opc1 = 4, .crn = 7, .crm = 8, .opc2 = 0, 5628 .access = PL2_W, 5629 .writefn = ats1h_write, .type = ARM_CP_NO_RAW | ARM_CP_RAISES_EXC }, 5630 { .name = "ATS1HW", .cp = 15, .opc1 = 4, .crn = 7, .crm = 8, .opc2 = 1, 5631 .access = PL2_W, 5632 .writefn = ats1h_write, .type = ARM_CP_NO_RAW | ARM_CP_RAISES_EXC }, 5633 { .name = "CNTHCTL_EL2", .state = ARM_CP_STATE_BOTH, 5634 .opc0 = 3, .opc1 = 4, .crn = 14, .crm = 1, .opc2 = 0, 5635 /* ARMv7 requires bit 0 and 1 to reset to 1. ARMv8 defines the 5636 * reset values as IMPDEF. We choose to reset to 3 to comply with 5637 * both ARMv7 and ARMv8. 5638 */ 5639 .access = PL2_RW, .resetvalue = 3, 5640 .fieldoffset = offsetof(CPUARMState, cp15.cnthctl_el2) }, 5641 { .name = "CNTVOFF_EL2", .state = ARM_CP_STATE_AA64, 5642 .opc0 = 3, .opc1 = 4, .crn = 14, .crm = 0, .opc2 = 3, 5643 .access = PL2_RW, .type = ARM_CP_IO, .resetvalue = 0, 5644 .writefn = gt_cntvoff_write, 5645 .fieldoffset = offsetof(CPUARMState, cp15.cntvoff_el2) }, 5646 { .name = "CNTVOFF", .cp = 15, .opc1 = 4, .crm = 14, 5647 .access = PL2_RW, .type = ARM_CP_64BIT | ARM_CP_ALIAS | ARM_CP_IO, 5648 .writefn = gt_cntvoff_write, 5649 .fieldoffset = offsetof(CPUARMState, cp15.cntvoff_el2) }, 5650 { .name = "CNTHP_CVAL_EL2", .state = ARM_CP_STATE_AA64, 5651 .opc0 = 3, .opc1 = 4, .crn = 14, .crm = 2, .opc2 = 2, 5652 .fieldoffset = offsetof(CPUARMState, cp15.c14_timer[GTIMER_HYP].cval), 5653 .type = ARM_CP_IO, .access = PL2_RW, 5654 .writefn = gt_hyp_cval_write, .raw_writefn = raw_write }, 5655 { .name = "CNTHP_CVAL", .cp = 15, .opc1 = 6, .crm = 14, 5656 .fieldoffset = offsetof(CPUARMState, cp15.c14_timer[GTIMER_HYP].cval), 5657 .access = PL2_RW, .type = ARM_CP_64BIT | ARM_CP_IO, 5658 .writefn = gt_hyp_cval_write, .raw_writefn = raw_write }, 5659 { .name = "CNTHP_TVAL_EL2", .state = ARM_CP_STATE_BOTH, 5660 .opc0 = 3, .opc1 = 4, .crn = 14, .crm = 2, .opc2 = 0, 5661 .type = ARM_CP_NO_RAW | ARM_CP_IO, .access = PL2_RW, 5662 .resetfn = gt_hyp_timer_reset, 5663 .readfn = gt_hyp_tval_read, .writefn = gt_hyp_tval_write }, 5664 { .name = "CNTHP_CTL_EL2", .state = ARM_CP_STATE_BOTH, 5665 .type = ARM_CP_IO, 5666 .opc0 = 3, .opc1 = 4, .crn = 14, .crm = 2, .opc2 = 1, 5667 .access = PL2_RW, 5668 .fieldoffset = offsetof(CPUARMState, cp15.c14_timer[GTIMER_HYP].ctl), 5669 .resetvalue = 0, 5670 .writefn = gt_hyp_ctl_write, .raw_writefn = raw_write }, 5671 #endif 5672 /* The only field of MDCR_EL2 that has a defined architectural reset value 5673 * is MDCR_EL2.HPMN which should reset to the value of PMCR_EL0.N. 5674 */ 5675 { .name = "MDCR_EL2", .state = ARM_CP_STATE_BOTH, 5676 .opc0 = 3, .opc1 = 4, .crn = 1, .crm = 1, .opc2 = 1, 5677 .access = PL2_RW, .resetvalue = PMCR_NUM_COUNTERS, 5678 .fieldoffset = offsetof(CPUARMState, cp15.mdcr_el2), }, 5679 { .name = "HPFAR", .state = ARM_CP_STATE_AA32, 5680 .cp = 15, .opc1 = 4, .crn = 6, .crm = 0, .opc2 = 4, 5681 .access = PL2_RW, .accessfn = access_el3_aa32ns, 5682 .fieldoffset = offsetof(CPUARMState, cp15.hpfar_el2) }, 5683 { .name = "HPFAR_EL2", .state = ARM_CP_STATE_AA64, 5684 .opc0 = 3, .opc1 = 4, .crn = 6, .crm = 0, .opc2 = 4, 5685 .access = PL2_RW, 5686 .fieldoffset = offsetof(CPUARMState, cp15.hpfar_el2) }, 5687 { .name = "HSTR_EL2", .state = ARM_CP_STATE_BOTH, 5688 .cp = 15, .opc0 = 3, .opc1 = 4, .crn = 1, .crm = 1, .opc2 = 3, 5689 .access = PL2_RW, 5690 .fieldoffset = offsetof(CPUARMState, cp15.hstr_el2) }, 5691 REGINFO_SENTINEL 5692 }; 5693 5694 static const ARMCPRegInfo el2_v8_cp_reginfo[] = { 5695 { .name = "HCR2", .state = ARM_CP_STATE_AA32, 5696 .type = ARM_CP_ALIAS | ARM_CP_IO, 5697 .cp = 15, .opc1 = 4, .crn = 1, .crm = 1, .opc2 = 4, 5698 .access = PL2_RW, 5699 .fieldoffset = offsetofhigh32(CPUARMState, cp15.hcr_el2), 5700 .writefn = hcr_writehigh }, 5701 REGINFO_SENTINEL 5702 }; 5703 5704 static CPAccessResult sel2_access(CPUARMState *env, const ARMCPRegInfo *ri, 5705 bool isread) 5706 { 5707 if (arm_current_el(env) == 3 || arm_is_secure_below_el3(env)) { 5708 return CP_ACCESS_OK; 5709 } 5710 return CP_ACCESS_TRAP_UNCATEGORIZED; 5711 } 5712 5713 static const ARMCPRegInfo el2_sec_cp_reginfo[] = { 5714 { .name = "VSTTBR_EL2", .state = ARM_CP_STATE_AA64, 5715 .opc0 = 3, .opc1 = 4, .crn = 2, .crm = 6, .opc2 = 0, 5716 .access = PL2_RW, .accessfn = sel2_access, 5717 .fieldoffset = offsetof(CPUARMState, cp15.vsttbr_el2) }, 5718 { .name = "VSTCR_EL2", .state = ARM_CP_STATE_AA64, 5719 .opc0 = 3, .opc1 = 4, .crn = 2, .crm = 6, .opc2 = 2, 5720 .access = PL2_RW, .accessfn = sel2_access, 5721 .fieldoffset = offsetof(CPUARMState, cp15.vstcr_el2) }, 5722 REGINFO_SENTINEL 5723 }; 5724 5725 static CPAccessResult nsacr_access(CPUARMState *env, const ARMCPRegInfo *ri, 5726 bool isread) 5727 { 5728 /* The NSACR is RW at EL3, and RO for NS EL1 and NS EL2. 5729 * At Secure EL1 it traps to EL3 or EL2. 5730 */ 5731 if (arm_current_el(env) == 3) { 5732 return CP_ACCESS_OK; 5733 } 5734 if (arm_is_secure_below_el3(env)) { 5735 if (env->cp15.scr_el3 & SCR_EEL2) { 5736 return CP_ACCESS_TRAP_EL2; 5737 } 5738 return CP_ACCESS_TRAP_EL3; 5739 } 5740 /* Accesses from EL1 NS and EL2 NS are UNDEF for write but allow reads. */ 5741 if (isread) { 5742 return CP_ACCESS_OK; 5743 } 5744 return CP_ACCESS_TRAP_UNCATEGORIZED; 5745 } 5746 5747 static const ARMCPRegInfo el3_cp_reginfo[] = { 5748 { .name = "SCR_EL3", .state = ARM_CP_STATE_AA64, 5749 .opc0 = 3, .opc1 = 6, .crn = 1, .crm = 1, .opc2 = 0, 5750 .access = PL3_RW, .fieldoffset = offsetof(CPUARMState, cp15.scr_el3), 5751 .resetfn = scr_reset, .writefn = scr_write }, 5752 { .name = "SCR", .type = ARM_CP_ALIAS | ARM_CP_NEWEL, 5753 .cp = 15, .opc1 = 0, .crn = 1, .crm = 1, .opc2 = 0, 5754 .access = PL1_RW, .accessfn = access_trap_aa32s_el1, 5755 .fieldoffset = offsetoflow32(CPUARMState, cp15.scr_el3), 5756 .writefn = scr_write }, 5757 { .name = "SDER32_EL3", .state = ARM_CP_STATE_AA64, 5758 .opc0 = 3, .opc1 = 6, .crn = 1, .crm = 1, .opc2 = 1, 5759 .access = PL3_RW, .resetvalue = 0, 5760 .fieldoffset = offsetof(CPUARMState, cp15.sder) }, 5761 { .name = "SDER", 5762 .cp = 15, .opc1 = 0, .crn = 1, .crm = 1, .opc2 = 1, 5763 .access = PL3_RW, .resetvalue = 0, 5764 .fieldoffset = offsetoflow32(CPUARMState, cp15.sder) }, 5765 { .name = "MVBAR", .cp = 15, .opc1 = 0, .crn = 12, .crm = 0, .opc2 = 1, 5766 .access = PL1_RW, .accessfn = access_trap_aa32s_el1, 5767 .writefn = vbar_write, .resetvalue = 0, 5768 .fieldoffset = offsetof(CPUARMState, cp15.mvbar) }, 5769 { .name = "TTBR0_EL3", .state = ARM_CP_STATE_AA64, 5770 .opc0 = 3, .opc1 = 6, .crn = 2, .crm = 0, .opc2 = 0, 5771 .access = PL3_RW, .resetvalue = 0, 5772 .fieldoffset = offsetof(CPUARMState, cp15.ttbr0_el[3]) }, 5773 { .name = "TCR_EL3", .state = ARM_CP_STATE_AA64, 5774 .opc0 = 3, .opc1 = 6, .crn = 2, .crm = 0, .opc2 = 2, 5775 .access = PL3_RW, 5776 /* no .writefn needed as this can't cause an ASID change; 5777 * we must provide a .raw_writefn and .resetfn because we handle 5778 * reset and migration for the AArch32 TTBCR(S), which might be 5779 * using mask and base_mask. 5780 */ 5781 .resetfn = vmsa_ttbcr_reset, .raw_writefn = vmsa_ttbcr_raw_write, 5782 .fieldoffset = offsetof(CPUARMState, cp15.tcr_el[3]) }, 5783 { .name = "ELR_EL3", .state = ARM_CP_STATE_AA64, 5784 .type = ARM_CP_ALIAS, 5785 .opc0 = 3, .opc1 = 6, .crn = 4, .crm = 0, .opc2 = 1, 5786 .access = PL3_RW, 5787 .fieldoffset = offsetof(CPUARMState, elr_el[3]) }, 5788 { .name = "ESR_EL3", .state = ARM_CP_STATE_AA64, 5789 .opc0 = 3, .opc1 = 6, .crn = 5, .crm = 2, .opc2 = 0, 5790 .access = PL3_RW, .fieldoffset = offsetof(CPUARMState, cp15.esr_el[3]) }, 5791 { .name = "FAR_EL3", .state = ARM_CP_STATE_AA64, 5792 .opc0 = 3, .opc1 = 6, .crn = 6, .crm = 0, .opc2 = 0, 5793 .access = PL3_RW, .fieldoffset = offsetof(CPUARMState, cp15.far_el[3]) }, 5794 { .name = "SPSR_EL3", .state = ARM_CP_STATE_AA64, 5795 .type = ARM_CP_ALIAS, 5796 .opc0 = 3, .opc1 = 6, .crn = 4, .crm = 0, .opc2 = 0, 5797 .access = PL3_RW, 5798 .fieldoffset = offsetof(CPUARMState, banked_spsr[BANK_MON]) }, 5799 { .name = "VBAR_EL3", .state = ARM_CP_STATE_AA64, 5800 .opc0 = 3, .opc1 = 6, .crn = 12, .crm = 0, .opc2 = 0, 5801 .access = PL3_RW, .writefn = vbar_write, 5802 .fieldoffset = offsetof(CPUARMState, cp15.vbar_el[3]), 5803 .resetvalue = 0 }, 5804 { .name = "CPTR_EL3", .state = ARM_CP_STATE_AA64, 5805 .opc0 = 3, .opc1 = 6, .crn = 1, .crm = 1, .opc2 = 2, 5806 .access = PL3_RW, .accessfn = cptr_access, .resetvalue = 0, 5807 .fieldoffset = offsetof(CPUARMState, cp15.cptr_el[3]) }, 5808 { .name = "TPIDR_EL3", .state = ARM_CP_STATE_AA64, 5809 .opc0 = 3, .opc1 = 6, .crn = 13, .crm = 0, .opc2 = 2, 5810 .access = PL3_RW, .resetvalue = 0, 5811 .fieldoffset = offsetof(CPUARMState, cp15.tpidr_el[3]) }, 5812 { .name = "AMAIR_EL3", .state = ARM_CP_STATE_AA64, 5813 .opc0 = 3, .opc1 = 6, .crn = 10, .crm = 3, .opc2 = 0, 5814 .access = PL3_RW, .type = ARM_CP_CONST, 5815 .resetvalue = 0 }, 5816 { .name = "AFSR0_EL3", .state = ARM_CP_STATE_BOTH, 5817 .opc0 = 3, .opc1 = 6, .crn = 5, .crm = 1, .opc2 = 0, 5818 .access = PL3_RW, .type = ARM_CP_CONST, 5819 .resetvalue = 0 }, 5820 { .name = "AFSR1_EL3", .state = ARM_CP_STATE_BOTH, 5821 .opc0 = 3, .opc1 = 6, .crn = 5, .crm = 1, .opc2 = 1, 5822 .access = PL3_RW, .type = ARM_CP_CONST, 5823 .resetvalue = 0 }, 5824 { .name = "TLBI_ALLE3IS", .state = ARM_CP_STATE_AA64, 5825 .opc0 = 1, .opc1 = 6, .crn = 8, .crm = 3, .opc2 = 0, 5826 .access = PL3_W, .type = ARM_CP_NO_RAW, 5827 .writefn = tlbi_aa64_alle3is_write }, 5828 { .name = "TLBI_VAE3IS", .state = ARM_CP_STATE_AA64, 5829 .opc0 = 1, .opc1 = 6, .crn = 8, .crm = 3, .opc2 = 1, 5830 .access = PL3_W, .type = ARM_CP_NO_RAW, 5831 .writefn = tlbi_aa64_vae3is_write }, 5832 { .name = "TLBI_VALE3IS", .state = ARM_CP_STATE_AA64, 5833 .opc0 = 1, .opc1 = 6, .crn = 8, .crm = 3, .opc2 = 5, 5834 .access = PL3_W, .type = ARM_CP_NO_RAW, 5835 .writefn = tlbi_aa64_vae3is_write }, 5836 { .name = "TLBI_ALLE3", .state = ARM_CP_STATE_AA64, 5837 .opc0 = 1, .opc1 = 6, .crn = 8, .crm = 7, .opc2 = 0, 5838 .access = PL3_W, .type = ARM_CP_NO_RAW, 5839 .writefn = tlbi_aa64_alle3_write }, 5840 { .name = "TLBI_VAE3", .state = ARM_CP_STATE_AA64, 5841 .opc0 = 1, .opc1 = 6, .crn = 8, .crm = 7, .opc2 = 1, 5842 .access = PL3_W, .type = ARM_CP_NO_RAW, 5843 .writefn = tlbi_aa64_vae3_write }, 5844 { .name = "TLBI_VALE3", .state = ARM_CP_STATE_AA64, 5845 .opc0 = 1, .opc1 = 6, .crn = 8, .crm = 7, .opc2 = 5, 5846 .access = PL3_W, .type = ARM_CP_NO_RAW, 5847 .writefn = tlbi_aa64_vae3_write }, 5848 REGINFO_SENTINEL 5849 }; 5850 5851 #ifndef CONFIG_USER_ONLY 5852 /* Test if system register redirection is to occur in the current state. */ 5853 static bool redirect_for_e2h(CPUARMState *env) 5854 { 5855 return arm_current_el(env) == 2 && (arm_hcr_el2_eff(env) & HCR_E2H); 5856 } 5857 5858 static uint64_t el2_e2h_read(CPUARMState *env, const ARMCPRegInfo *ri) 5859 { 5860 CPReadFn *readfn; 5861 5862 if (redirect_for_e2h(env)) { 5863 /* Switch to the saved EL2 version of the register. */ 5864 ri = ri->opaque; 5865 readfn = ri->readfn; 5866 } else { 5867 readfn = ri->orig_readfn; 5868 } 5869 if (readfn == NULL) { 5870 readfn = raw_read; 5871 } 5872 return readfn(env, ri); 5873 } 5874 5875 static void el2_e2h_write(CPUARMState *env, const ARMCPRegInfo *ri, 5876 uint64_t value) 5877 { 5878 CPWriteFn *writefn; 5879 5880 if (redirect_for_e2h(env)) { 5881 /* Switch to the saved EL2 version of the register. */ 5882 ri = ri->opaque; 5883 writefn = ri->writefn; 5884 } else { 5885 writefn = ri->orig_writefn; 5886 } 5887 if (writefn == NULL) { 5888 writefn = raw_write; 5889 } 5890 writefn(env, ri, value); 5891 } 5892 5893 static void define_arm_vh_e2h_redirects_aliases(ARMCPU *cpu) 5894 { 5895 struct E2HAlias { 5896 uint32_t src_key, dst_key, new_key; 5897 const char *src_name, *dst_name, *new_name; 5898 bool (*feature)(const ARMISARegisters *id); 5899 }; 5900 5901 #define K(op0, op1, crn, crm, op2) \ 5902 ENCODE_AA64_CP_REG(CP_REG_ARM64_SYSREG_CP, crn, crm, op0, op1, op2) 5903 5904 static const struct E2HAlias aliases[] = { 5905 { K(3, 0, 1, 0, 0), K(3, 4, 1, 0, 0), K(3, 5, 1, 0, 0), 5906 "SCTLR", "SCTLR_EL2", "SCTLR_EL12" }, 5907 { K(3, 0, 1, 0, 2), K(3, 4, 1, 1, 2), K(3, 5, 1, 0, 2), 5908 "CPACR", "CPTR_EL2", "CPACR_EL12" }, 5909 { K(3, 0, 2, 0, 0), K(3, 4, 2, 0, 0), K(3, 5, 2, 0, 0), 5910 "TTBR0_EL1", "TTBR0_EL2", "TTBR0_EL12" }, 5911 { K(3, 0, 2, 0, 1), K(3, 4, 2, 0, 1), K(3, 5, 2, 0, 1), 5912 "TTBR1_EL1", "TTBR1_EL2", "TTBR1_EL12" }, 5913 { K(3, 0, 2, 0, 2), K(3, 4, 2, 0, 2), K(3, 5, 2, 0, 2), 5914 "TCR_EL1", "TCR_EL2", "TCR_EL12" }, 5915 { K(3, 0, 4, 0, 0), K(3, 4, 4, 0, 0), K(3, 5, 4, 0, 0), 5916 "SPSR_EL1", "SPSR_EL2", "SPSR_EL12" }, 5917 { K(3, 0, 4, 0, 1), K(3, 4, 4, 0, 1), K(3, 5, 4, 0, 1), 5918 "ELR_EL1", "ELR_EL2", "ELR_EL12" }, 5919 { K(3, 0, 5, 1, 0), K(3, 4, 5, 1, 0), K(3, 5, 5, 1, 0), 5920 "AFSR0_EL1", "AFSR0_EL2", "AFSR0_EL12" }, 5921 { K(3, 0, 5, 1, 1), K(3, 4, 5, 1, 1), K(3, 5, 5, 1, 1), 5922 "AFSR1_EL1", "AFSR1_EL2", "AFSR1_EL12" }, 5923 { K(3, 0, 5, 2, 0), K(3, 4, 5, 2, 0), K(3, 5, 5, 2, 0), 5924 "ESR_EL1", "ESR_EL2", "ESR_EL12" }, 5925 { K(3, 0, 6, 0, 0), K(3, 4, 6, 0, 0), K(3, 5, 6, 0, 0), 5926 "FAR_EL1", "FAR_EL2", "FAR_EL12" }, 5927 { K(3, 0, 10, 2, 0), K(3, 4, 10, 2, 0), K(3, 5, 10, 2, 0), 5928 "MAIR_EL1", "MAIR_EL2", "MAIR_EL12" }, 5929 { K(3, 0, 10, 3, 0), K(3, 4, 10, 3, 0), K(3, 5, 10, 3, 0), 5930 "AMAIR0", "AMAIR_EL2", "AMAIR_EL12" }, 5931 { K(3, 0, 12, 0, 0), K(3, 4, 12, 0, 0), K(3, 5, 12, 0, 0), 5932 "VBAR", "VBAR_EL2", "VBAR_EL12" }, 5933 { K(3, 0, 13, 0, 1), K(3, 4, 13, 0, 1), K(3, 5, 13, 0, 1), 5934 "CONTEXTIDR_EL1", "CONTEXTIDR_EL2", "CONTEXTIDR_EL12" }, 5935 { K(3, 0, 14, 1, 0), K(3, 4, 14, 1, 0), K(3, 5, 14, 1, 0), 5936 "CNTKCTL", "CNTHCTL_EL2", "CNTKCTL_EL12" }, 5937 5938 /* 5939 * Note that redirection of ZCR is mentioned in the description 5940 * of ZCR_EL2, and aliasing in the description of ZCR_EL1, but 5941 * not in the summary table. 5942 */ 5943 { K(3, 0, 1, 2, 0), K(3, 4, 1, 2, 0), K(3, 5, 1, 2, 0), 5944 "ZCR_EL1", "ZCR_EL2", "ZCR_EL12", isar_feature_aa64_sve }, 5945 5946 { K(3, 0, 5, 6, 0), K(3, 4, 5, 6, 0), K(3, 5, 5, 6, 0), 5947 "TFSR_EL1", "TFSR_EL2", "TFSR_EL12", isar_feature_aa64_mte }, 5948 5949 /* TODO: ARMv8.2-SPE -- PMSCR_EL2 */ 5950 /* TODO: ARMv8.4-Trace -- TRFCR_EL2 */ 5951 }; 5952 #undef K 5953 5954 size_t i; 5955 5956 for (i = 0; i < ARRAY_SIZE(aliases); i++) { 5957 const struct E2HAlias *a = &aliases[i]; 5958 ARMCPRegInfo *src_reg, *dst_reg; 5959 5960 if (a->feature && !a->feature(&cpu->isar)) { 5961 continue; 5962 } 5963 5964 src_reg = g_hash_table_lookup(cpu->cp_regs, &a->src_key); 5965 dst_reg = g_hash_table_lookup(cpu->cp_regs, &a->dst_key); 5966 g_assert(src_reg != NULL); 5967 g_assert(dst_reg != NULL); 5968 5969 /* Cross-compare names to detect typos in the keys. */ 5970 g_assert(strcmp(src_reg->name, a->src_name) == 0); 5971 g_assert(strcmp(dst_reg->name, a->dst_name) == 0); 5972 5973 /* None of the core system registers use opaque; we will. */ 5974 g_assert(src_reg->opaque == NULL); 5975 5976 /* Create alias before redirection so we dup the right data. */ 5977 if (a->new_key) { 5978 ARMCPRegInfo *new_reg = g_memdup(src_reg, sizeof(ARMCPRegInfo)); 5979 uint32_t *new_key = g_memdup(&a->new_key, sizeof(uint32_t)); 5980 bool ok; 5981 5982 new_reg->name = a->new_name; 5983 new_reg->type |= ARM_CP_ALIAS; 5984 /* Remove PL1/PL0 access, leaving PL2/PL3 R/W in place. */ 5985 new_reg->access &= PL2_RW | PL3_RW; 5986 5987 ok = g_hash_table_insert(cpu->cp_regs, new_key, new_reg); 5988 g_assert(ok); 5989 } 5990 5991 src_reg->opaque = dst_reg; 5992 src_reg->orig_readfn = src_reg->readfn ?: raw_read; 5993 src_reg->orig_writefn = src_reg->writefn ?: raw_write; 5994 if (!src_reg->raw_readfn) { 5995 src_reg->raw_readfn = raw_read; 5996 } 5997 if (!src_reg->raw_writefn) { 5998 src_reg->raw_writefn = raw_write; 5999 } 6000 src_reg->readfn = el2_e2h_read; 6001 src_reg->writefn = el2_e2h_write; 6002 } 6003 } 6004 #endif 6005 6006 static CPAccessResult ctr_el0_access(CPUARMState *env, const ARMCPRegInfo *ri, 6007 bool isread) 6008 { 6009 int cur_el = arm_current_el(env); 6010 6011 if (cur_el < 2) { 6012 uint64_t hcr = arm_hcr_el2_eff(env); 6013 6014 if (cur_el == 0) { 6015 if ((hcr & (HCR_E2H | HCR_TGE)) == (HCR_E2H | HCR_TGE)) { 6016 if (!(env->cp15.sctlr_el[2] & SCTLR_UCT)) { 6017 return CP_ACCESS_TRAP_EL2; 6018 } 6019 } else { 6020 if (!(env->cp15.sctlr_el[1] & SCTLR_UCT)) { 6021 return CP_ACCESS_TRAP; 6022 } 6023 if (hcr & HCR_TID2) { 6024 return CP_ACCESS_TRAP_EL2; 6025 } 6026 } 6027 } else if (hcr & HCR_TID2) { 6028 return CP_ACCESS_TRAP_EL2; 6029 } 6030 } 6031 6032 if (arm_current_el(env) < 2 && arm_hcr_el2_eff(env) & HCR_TID2) { 6033 return CP_ACCESS_TRAP_EL2; 6034 } 6035 6036 return CP_ACCESS_OK; 6037 } 6038 6039 static void oslar_write(CPUARMState *env, const ARMCPRegInfo *ri, 6040 uint64_t value) 6041 { 6042 /* Writes to OSLAR_EL1 may update the OS lock status, which can be 6043 * read via a bit in OSLSR_EL1. 6044 */ 6045 int oslock; 6046 6047 if (ri->state == ARM_CP_STATE_AA32) { 6048 oslock = (value == 0xC5ACCE55); 6049 } else { 6050 oslock = value & 1; 6051 } 6052 6053 env->cp15.oslsr_el1 = deposit32(env->cp15.oslsr_el1, 1, 1, oslock); 6054 } 6055 6056 static const ARMCPRegInfo debug_cp_reginfo[] = { 6057 /* DBGDRAR, DBGDSAR: always RAZ since we don't implement memory mapped 6058 * debug components. The AArch64 version of DBGDRAR is named MDRAR_EL1; 6059 * unlike DBGDRAR it is never accessible from EL0. 6060 * DBGDSAR is deprecated and must RAZ from v8 anyway, so it has no AArch64 6061 * accessor. 6062 */ 6063 { .name = "DBGDRAR", .cp = 14, .crn = 1, .crm = 0, .opc1 = 0, .opc2 = 0, 6064 .access = PL0_R, .accessfn = access_tdra, 6065 .type = ARM_CP_CONST, .resetvalue = 0 }, 6066 { .name = "MDRAR_EL1", .state = ARM_CP_STATE_AA64, 6067 .opc0 = 2, .opc1 = 0, .crn = 1, .crm = 0, .opc2 = 0, 6068 .access = PL1_R, .accessfn = access_tdra, 6069 .type = ARM_CP_CONST, .resetvalue = 0 }, 6070 { .name = "DBGDSAR", .cp = 14, .crn = 2, .crm = 0, .opc1 = 0, .opc2 = 0, 6071 .access = PL0_R, .accessfn = access_tdra, 6072 .type = ARM_CP_CONST, .resetvalue = 0 }, 6073 /* Monitor debug system control register; the 32-bit alias is DBGDSCRext. */ 6074 { .name = "MDSCR_EL1", .state = ARM_CP_STATE_BOTH, 6075 .cp = 14, .opc0 = 2, .opc1 = 0, .crn = 0, .crm = 2, .opc2 = 2, 6076 .access = PL1_RW, .accessfn = access_tda, 6077 .fieldoffset = offsetof(CPUARMState, cp15.mdscr_el1), 6078 .resetvalue = 0 }, 6079 /* 6080 * MDCCSR_EL0[30:29] map to EDSCR[30:29]. Simply RAZ as the external 6081 * Debug Communication Channel is not implemented. 6082 */ 6083 { .name = "MDCCSR_EL0", .state = ARM_CP_STATE_AA64, 6084 .opc0 = 2, .opc1 = 3, .crn = 0, .crm = 1, .opc2 = 0, 6085 .access = PL0_R, .accessfn = access_tda, 6086 .type = ARM_CP_CONST, .resetvalue = 0 }, 6087 /* 6088 * DBGDSCRint[15,12,5:2] map to MDSCR_EL1[15,12,5:2]. Map all bits as 6089 * it is unlikely a guest will care. 6090 * We don't implement the configurable EL0 access. 6091 */ 6092 { .name = "DBGDSCRint", .state = ARM_CP_STATE_AA32, 6093 .cp = 14, .opc1 = 0, .crn = 0, .crm = 1, .opc2 = 0, 6094 .type = ARM_CP_ALIAS, 6095 .access = PL1_R, .accessfn = access_tda, 6096 .fieldoffset = offsetof(CPUARMState, cp15.mdscr_el1), }, 6097 { .name = "OSLAR_EL1", .state = ARM_CP_STATE_BOTH, 6098 .cp = 14, .opc0 = 2, .opc1 = 0, .crn = 1, .crm = 0, .opc2 = 4, 6099 .access = PL1_W, .type = ARM_CP_NO_RAW, 6100 .accessfn = access_tdosa, 6101 .writefn = oslar_write }, 6102 { .name = "OSLSR_EL1", .state = ARM_CP_STATE_BOTH, 6103 .cp = 14, .opc0 = 2, .opc1 = 0, .crn = 1, .crm = 1, .opc2 = 4, 6104 .access = PL1_R, .resetvalue = 10, 6105 .accessfn = access_tdosa, 6106 .fieldoffset = offsetof(CPUARMState, cp15.oslsr_el1) }, 6107 /* Dummy OSDLR_EL1: 32-bit Linux will read this */ 6108 { .name = "OSDLR_EL1", .state = ARM_CP_STATE_BOTH, 6109 .cp = 14, .opc0 = 2, .opc1 = 0, .crn = 1, .crm = 3, .opc2 = 4, 6110 .access = PL1_RW, .accessfn = access_tdosa, 6111 .type = ARM_CP_NOP }, 6112 /* Dummy DBGVCR: Linux wants to clear this on startup, but we don't 6113 * implement vector catch debug events yet. 6114 */ 6115 { .name = "DBGVCR", 6116 .cp = 14, .opc1 = 0, .crn = 0, .crm = 7, .opc2 = 0, 6117 .access = PL1_RW, .accessfn = access_tda, 6118 .type = ARM_CP_NOP }, 6119 /* Dummy DBGVCR32_EL2 (which is only for a 64-bit hypervisor 6120 * to save and restore a 32-bit guest's DBGVCR) 6121 */ 6122 { .name = "DBGVCR32_EL2", .state = ARM_CP_STATE_AA64, 6123 .opc0 = 2, .opc1 = 4, .crn = 0, .crm = 7, .opc2 = 0, 6124 .access = PL2_RW, .accessfn = access_tda, 6125 .type = ARM_CP_NOP }, 6126 /* Dummy MDCCINT_EL1, since we don't implement the Debug Communications 6127 * Channel but Linux may try to access this register. The 32-bit 6128 * alias is DBGDCCINT. 6129 */ 6130 { .name = "MDCCINT_EL1", .state = ARM_CP_STATE_BOTH, 6131 .cp = 14, .opc0 = 2, .opc1 = 0, .crn = 0, .crm = 2, .opc2 = 0, 6132 .access = PL1_RW, .accessfn = access_tda, 6133 .type = ARM_CP_NOP }, 6134 REGINFO_SENTINEL 6135 }; 6136 6137 static const ARMCPRegInfo debug_lpae_cp_reginfo[] = { 6138 /* 64 bit access versions of the (dummy) debug registers */ 6139 { .name = "DBGDRAR", .cp = 14, .crm = 1, .opc1 = 0, 6140 .access = PL0_R, .type = ARM_CP_CONST|ARM_CP_64BIT, .resetvalue = 0 }, 6141 { .name = "DBGDSAR", .cp = 14, .crm = 2, .opc1 = 0, 6142 .access = PL0_R, .type = ARM_CP_CONST|ARM_CP_64BIT, .resetvalue = 0 }, 6143 REGINFO_SENTINEL 6144 }; 6145 6146 /* Return the exception level to which exceptions should be taken 6147 * via SVEAccessTrap. If an exception should be routed through 6148 * AArch64.AdvSIMDFPAccessTrap, return 0; fp_exception_el should 6149 * take care of raising that exception. 6150 * C.f. the ARM pseudocode function CheckSVEEnabled. 6151 */ 6152 int sve_exception_el(CPUARMState *env, int el) 6153 { 6154 #ifndef CONFIG_USER_ONLY 6155 uint64_t hcr_el2 = arm_hcr_el2_eff(env); 6156 6157 if (el <= 1 && (hcr_el2 & (HCR_E2H | HCR_TGE)) != (HCR_E2H | HCR_TGE)) { 6158 /* Check CPACR.ZEN. */ 6159 switch (extract32(env->cp15.cpacr_el1, 16, 2)) { 6160 case 1: 6161 if (el != 0) { 6162 break; 6163 } 6164 /* fall through */ 6165 case 0: 6166 case 2: 6167 /* route_to_el2 */ 6168 return hcr_el2 & HCR_TGE ? 2 : 1; 6169 } 6170 6171 /* Check CPACR.FPEN. */ 6172 switch (extract32(env->cp15.cpacr_el1, 20, 2)) { 6173 case 1: 6174 if (el != 0) { 6175 break; 6176 } 6177 /* fall through */ 6178 case 0: 6179 case 2: 6180 return 0; 6181 } 6182 } 6183 6184 /* 6185 * CPTR_EL2 changes format with HCR_EL2.E2H (regardless of TGE). 6186 */ 6187 if (el <= 2) { 6188 if (hcr_el2 & HCR_E2H) { 6189 /* Check CPTR_EL2.ZEN. */ 6190 switch (extract32(env->cp15.cptr_el[2], 16, 2)) { 6191 case 1: 6192 if (el != 0 || !(hcr_el2 & HCR_TGE)) { 6193 break; 6194 } 6195 /* fall through */ 6196 case 0: 6197 case 2: 6198 return 2; 6199 } 6200 6201 /* Check CPTR_EL2.FPEN. */ 6202 switch (extract32(env->cp15.cptr_el[2], 20, 2)) { 6203 case 1: 6204 if (el == 2 || !(hcr_el2 & HCR_TGE)) { 6205 break; 6206 } 6207 /* fall through */ 6208 case 0: 6209 case 2: 6210 return 0; 6211 } 6212 } else if (arm_is_el2_enabled(env)) { 6213 if (env->cp15.cptr_el[2] & CPTR_TZ) { 6214 return 2; 6215 } 6216 if (env->cp15.cptr_el[2] & CPTR_TFP) { 6217 return 0; 6218 } 6219 } 6220 } 6221 6222 /* CPTR_EL3. Since EZ is negative we must check for EL3. */ 6223 if (arm_feature(env, ARM_FEATURE_EL3) 6224 && !(env->cp15.cptr_el[3] & CPTR_EZ)) { 6225 return 3; 6226 } 6227 #endif 6228 return 0; 6229 } 6230 6231 uint32_t aarch64_sve_zcr_get_valid_len(ARMCPU *cpu, uint32_t start_len) 6232 { 6233 uint32_t end_len; 6234 6235 start_len = MIN(start_len, ARM_MAX_VQ - 1); 6236 end_len = start_len; 6237 6238 if (!test_bit(start_len, cpu->sve_vq_map)) { 6239 end_len = find_last_bit(cpu->sve_vq_map, start_len); 6240 assert(end_len < start_len); 6241 } 6242 return end_len; 6243 } 6244 6245 /* 6246 * Given that SVE is enabled, return the vector length for EL. 6247 */ 6248 uint32_t sve_zcr_len_for_el(CPUARMState *env, int el) 6249 { 6250 ARMCPU *cpu = env_archcpu(env); 6251 uint32_t zcr_len = cpu->sve_max_vq - 1; 6252 6253 if (el <= 1 && 6254 (arm_hcr_el2_eff(env) & (HCR_E2H | HCR_TGE)) != (HCR_E2H | HCR_TGE)) { 6255 zcr_len = MIN(zcr_len, 0xf & (uint32_t)env->vfp.zcr_el[1]); 6256 } 6257 if (el <= 2 && arm_feature(env, ARM_FEATURE_EL2)) { 6258 zcr_len = MIN(zcr_len, 0xf & (uint32_t)env->vfp.zcr_el[2]); 6259 } 6260 if (arm_feature(env, ARM_FEATURE_EL3)) { 6261 zcr_len = MIN(zcr_len, 0xf & (uint32_t)env->vfp.zcr_el[3]); 6262 } 6263 6264 return aarch64_sve_zcr_get_valid_len(cpu, zcr_len); 6265 } 6266 6267 static void zcr_write(CPUARMState *env, const ARMCPRegInfo *ri, 6268 uint64_t value) 6269 { 6270 int cur_el = arm_current_el(env); 6271 int old_len = sve_zcr_len_for_el(env, cur_el); 6272 int new_len; 6273 6274 /* Bits other than [3:0] are RAZ/WI. */ 6275 QEMU_BUILD_BUG_ON(ARM_MAX_VQ > 16); 6276 raw_write(env, ri, value & 0xf); 6277 6278 /* 6279 * Because we arrived here, we know both FP and SVE are enabled; 6280 * otherwise we would have trapped access to the ZCR_ELn register. 6281 */ 6282 new_len = sve_zcr_len_for_el(env, cur_el); 6283 if (new_len < old_len) { 6284 aarch64_sve_narrow_vq(env, new_len + 1); 6285 } 6286 } 6287 6288 static const ARMCPRegInfo zcr_el1_reginfo = { 6289 .name = "ZCR_EL1", .state = ARM_CP_STATE_AA64, 6290 .opc0 = 3, .opc1 = 0, .crn = 1, .crm = 2, .opc2 = 0, 6291 .access = PL1_RW, .type = ARM_CP_SVE, 6292 .fieldoffset = offsetof(CPUARMState, vfp.zcr_el[1]), 6293 .writefn = zcr_write, .raw_writefn = raw_write 6294 }; 6295 6296 static const ARMCPRegInfo zcr_el2_reginfo = { 6297 .name = "ZCR_EL2", .state = ARM_CP_STATE_AA64, 6298 .opc0 = 3, .opc1 = 4, .crn = 1, .crm = 2, .opc2 = 0, 6299 .access = PL2_RW, .type = ARM_CP_SVE, 6300 .fieldoffset = offsetof(CPUARMState, vfp.zcr_el[2]), 6301 .writefn = zcr_write, .raw_writefn = raw_write 6302 }; 6303 6304 static const ARMCPRegInfo zcr_no_el2_reginfo = { 6305 .name = "ZCR_EL2", .state = ARM_CP_STATE_AA64, 6306 .opc0 = 3, .opc1 = 4, .crn = 1, .crm = 2, .opc2 = 0, 6307 .access = PL2_RW, .type = ARM_CP_SVE, 6308 .readfn = arm_cp_read_zero, .writefn = arm_cp_write_ignore 6309 }; 6310 6311 static const ARMCPRegInfo zcr_el3_reginfo = { 6312 .name = "ZCR_EL3", .state = ARM_CP_STATE_AA64, 6313 .opc0 = 3, .opc1 = 6, .crn = 1, .crm = 2, .opc2 = 0, 6314 .access = PL3_RW, .type = ARM_CP_SVE, 6315 .fieldoffset = offsetof(CPUARMState, vfp.zcr_el[3]), 6316 .writefn = zcr_write, .raw_writefn = raw_write 6317 }; 6318 6319 void hw_watchpoint_update(ARMCPU *cpu, int n) 6320 { 6321 CPUARMState *env = &cpu->env; 6322 vaddr len = 0; 6323 vaddr wvr = env->cp15.dbgwvr[n]; 6324 uint64_t wcr = env->cp15.dbgwcr[n]; 6325 int mask; 6326 int flags = BP_CPU | BP_STOP_BEFORE_ACCESS; 6327 6328 if (env->cpu_watchpoint[n]) { 6329 cpu_watchpoint_remove_by_ref(CPU(cpu), env->cpu_watchpoint[n]); 6330 env->cpu_watchpoint[n] = NULL; 6331 } 6332 6333 if (!extract64(wcr, 0, 1)) { 6334 /* E bit clear : watchpoint disabled */ 6335 return; 6336 } 6337 6338 switch (extract64(wcr, 3, 2)) { 6339 case 0: 6340 /* LSC 00 is reserved and must behave as if the wp is disabled */ 6341 return; 6342 case 1: 6343 flags |= BP_MEM_READ; 6344 break; 6345 case 2: 6346 flags |= BP_MEM_WRITE; 6347 break; 6348 case 3: 6349 flags |= BP_MEM_ACCESS; 6350 break; 6351 } 6352 6353 /* Attempts to use both MASK and BAS fields simultaneously are 6354 * CONSTRAINED UNPREDICTABLE; we opt to ignore BAS in this case, 6355 * thus generating a watchpoint for every byte in the masked region. 6356 */ 6357 mask = extract64(wcr, 24, 4); 6358 if (mask == 1 || mask == 2) { 6359 /* Reserved values of MASK; we must act as if the mask value was 6360 * some non-reserved value, or as if the watchpoint were disabled. 6361 * We choose the latter. 6362 */ 6363 return; 6364 } else if (mask) { 6365 /* Watchpoint covers an aligned area up to 2GB in size */ 6366 len = 1ULL << mask; 6367 /* If masked bits in WVR are not zero it's CONSTRAINED UNPREDICTABLE 6368 * whether the watchpoint fires when the unmasked bits match; we opt 6369 * to generate the exceptions. 6370 */ 6371 wvr &= ~(len - 1); 6372 } else { 6373 /* Watchpoint covers bytes defined by the byte address select bits */ 6374 int bas = extract64(wcr, 5, 8); 6375 int basstart; 6376 6377 if (extract64(wvr, 2, 1)) { 6378 /* Deprecated case of an only 4-aligned address. BAS[7:4] are 6379 * ignored, and BAS[3:0] define which bytes to watch. 6380 */ 6381 bas &= 0xf; 6382 } 6383 6384 if (bas == 0) { 6385 /* This must act as if the watchpoint is disabled */ 6386 return; 6387 } 6388 6389 /* The BAS bits are supposed to be programmed to indicate a contiguous 6390 * range of bytes. Otherwise it is CONSTRAINED UNPREDICTABLE whether 6391 * we fire for each byte in the word/doubleword addressed by the WVR. 6392 * We choose to ignore any non-zero bits after the first range of 1s. 6393 */ 6394 basstart = ctz32(bas); 6395 len = cto32(bas >> basstart); 6396 wvr += basstart; 6397 } 6398 6399 cpu_watchpoint_insert(CPU(cpu), wvr, len, flags, 6400 &env->cpu_watchpoint[n]); 6401 } 6402 6403 void hw_watchpoint_update_all(ARMCPU *cpu) 6404 { 6405 int i; 6406 CPUARMState *env = &cpu->env; 6407 6408 /* Completely clear out existing QEMU watchpoints and our array, to 6409 * avoid possible stale entries following migration load. 6410 */ 6411 cpu_watchpoint_remove_all(CPU(cpu), BP_CPU); 6412 memset(env->cpu_watchpoint, 0, sizeof(env->cpu_watchpoint)); 6413 6414 for (i = 0; i < ARRAY_SIZE(cpu->env.cpu_watchpoint); i++) { 6415 hw_watchpoint_update(cpu, i); 6416 } 6417 } 6418 6419 static void dbgwvr_write(CPUARMState *env, const ARMCPRegInfo *ri, 6420 uint64_t value) 6421 { 6422 ARMCPU *cpu = env_archcpu(env); 6423 int i = ri->crm; 6424 6425 /* Bits [63:49] are hardwired to the value of bit [48]; that is, the 6426 * register reads and behaves as if values written are sign extended. 6427 * Bits [1:0] are RES0. 6428 */ 6429 value = sextract64(value, 0, 49) & ~3ULL; 6430 6431 raw_write(env, ri, value); 6432 hw_watchpoint_update(cpu, i); 6433 } 6434 6435 static void dbgwcr_write(CPUARMState *env, const ARMCPRegInfo *ri, 6436 uint64_t value) 6437 { 6438 ARMCPU *cpu = env_archcpu(env); 6439 int i = ri->crm; 6440 6441 raw_write(env, ri, value); 6442 hw_watchpoint_update(cpu, i); 6443 } 6444 6445 void hw_breakpoint_update(ARMCPU *cpu, int n) 6446 { 6447 CPUARMState *env = &cpu->env; 6448 uint64_t bvr = env->cp15.dbgbvr[n]; 6449 uint64_t bcr = env->cp15.dbgbcr[n]; 6450 vaddr addr; 6451 int bt; 6452 int flags = BP_CPU; 6453 6454 if (env->cpu_breakpoint[n]) { 6455 cpu_breakpoint_remove_by_ref(CPU(cpu), env->cpu_breakpoint[n]); 6456 env->cpu_breakpoint[n] = NULL; 6457 } 6458 6459 if (!extract64(bcr, 0, 1)) { 6460 /* E bit clear : watchpoint disabled */ 6461 return; 6462 } 6463 6464 bt = extract64(bcr, 20, 4); 6465 6466 switch (bt) { 6467 case 4: /* unlinked address mismatch (reserved if AArch64) */ 6468 case 5: /* linked address mismatch (reserved if AArch64) */ 6469 qemu_log_mask(LOG_UNIMP, 6470 "arm: address mismatch breakpoint types not implemented\n"); 6471 return; 6472 case 0: /* unlinked address match */ 6473 case 1: /* linked address match */ 6474 { 6475 /* Bits [63:49] are hardwired to the value of bit [48]; that is, 6476 * we behave as if the register was sign extended. Bits [1:0] are 6477 * RES0. The BAS field is used to allow setting breakpoints on 16 6478 * bit wide instructions; it is CONSTRAINED UNPREDICTABLE whether 6479 * a bp will fire if the addresses covered by the bp and the addresses 6480 * covered by the insn overlap but the insn doesn't start at the 6481 * start of the bp address range. We choose to require the insn and 6482 * the bp to have the same address. The constraints on writing to 6483 * BAS enforced in dbgbcr_write mean we have only four cases: 6484 * 0b0000 => no breakpoint 6485 * 0b0011 => breakpoint on addr 6486 * 0b1100 => breakpoint on addr + 2 6487 * 0b1111 => breakpoint on addr 6488 * See also figure D2-3 in the v8 ARM ARM (DDI0487A.c). 6489 */ 6490 int bas = extract64(bcr, 5, 4); 6491 addr = sextract64(bvr, 0, 49) & ~3ULL; 6492 if (bas == 0) { 6493 return; 6494 } 6495 if (bas == 0xc) { 6496 addr += 2; 6497 } 6498 break; 6499 } 6500 case 2: /* unlinked context ID match */ 6501 case 8: /* unlinked VMID match (reserved if no EL2) */ 6502 case 10: /* unlinked context ID and VMID match (reserved if no EL2) */ 6503 qemu_log_mask(LOG_UNIMP, 6504 "arm: unlinked context breakpoint types not implemented\n"); 6505 return; 6506 case 9: /* linked VMID match (reserved if no EL2) */ 6507 case 11: /* linked context ID and VMID match (reserved if no EL2) */ 6508 case 3: /* linked context ID match */ 6509 default: 6510 /* We must generate no events for Linked context matches (unless 6511 * they are linked to by some other bp/wp, which is handled in 6512 * updates for the linking bp/wp). We choose to also generate no events 6513 * for reserved values. 6514 */ 6515 return; 6516 } 6517 6518 cpu_breakpoint_insert(CPU(cpu), addr, flags, &env->cpu_breakpoint[n]); 6519 } 6520 6521 void hw_breakpoint_update_all(ARMCPU *cpu) 6522 { 6523 int i; 6524 CPUARMState *env = &cpu->env; 6525 6526 /* Completely clear out existing QEMU breakpoints and our array, to 6527 * avoid possible stale entries following migration load. 6528 */ 6529 cpu_breakpoint_remove_all(CPU(cpu), BP_CPU); 6530 memset(env->cpu_breakpoint, 0, sizeof(env->cpu_breakpoint)); 6531 6532 for (i = 0; i < ARRAY_SIZE(cpu->env.cpu_breakpoint); i++) { 6533 hw_breakpoint_update(cpu, i); 6534 } 6535 } 6536 6537 static void dbgbvr_write(CPUARMState *env, const ARMCPRegInfo *ri, 6538 uint64_t value) 6539 { 6540 ARMCPU *cpu = env_archcpu(env); 6541 int i = ri->crm; 6542 6543 raw_write(env, ri, value); 6544 hw_breakpoint_update(cpu, i); 6545 } 6546 6547 static void dbgbcr_write(CPUARMState *env, const ARMCPRegInfo *ri, 6548 uint64_t value) 6549 { 6550 ARMCPU *cpu = env_archcpu(env); 6551 int i = ri->crm; 6552 6553 /* BAS[3] is a read-only copy of BAS[2], and BAS[1] a read-only 6554 * copy of BAS[0]. 6555 */ 6556 value = deposit64(value, 6, 1, extract64(value, 5, 1)); 6557 value = deposit64(value, 8, 1, extract64(value, 7, 1)); 6558 6559 raw_write(env, ri, value); 6560 hw_breakpoint_update(cpu, i); 6561 } 6562 6563 static void define_debug_regs(ARMCPU *cpu) 6564 { 6565 /* Define v7 and v8 architectural debug registers. 6566 * These are just dummy implementations for now. 6567 */ 6568 int i; 6569 int wrps, brps, ctx_cmps; 6570 6571 /* 6572 * The Arm ARM says DBGDIDR is optional and deprecated if EL1 cannot 6573 * use AArch32. Given that bit 15 is RES1, if the value is 0 then 6574 * the register must not exist for this cpu. 6575 */ 6576 if (cpu->isar.dbgdidr != 0) { 6577 ARMCPRegInfo dbgdidr = { 6578 .name = "DBGDIDR", .cp = 14, .crn = 0, .crm = 0, 6579 .opc1 = 0, .opc2 = 0, 6580 .access = PL0_R, .accessfn = access_tda, 6581 .type = ARM_CP_CONST, .resetvalue = cpu->isar.dbgdidr, 6582 }; 6583 define_one_arm_cp_reg(cpu, &dbgdidr); 6584 } 6585 6586 /* Note that all these register fields hold "number of Xs minus 1". */ 6587 brps = arm_num_brps(cpu); 6588 wrps = arm_num_wrps(cpu); 6589 ctx_cmps = arm_num_ctx_cmps(cpu); 6590 6591 assert(ctx_cmps <= brps); 6592 6593 define_arm_cp_regs(cpu, debug_cp_reginfo); 6594 6595 if (arm_feature(&cpu->env, ARM_FEATURE_LPAE)) { 6596 define_arm_cp_regs(cpu, debug_lpae_cp_reginfo); 6597 } 6598 6599 for (i = 0; i < brps; i++) { 6600 ARMCPRegInfo dbgregs[] = { 6601 { .name = "DBGBVR", .state = ARM_CP_STATE_BOTH, 6602 .cp = 14, .opc0 = 2, .opc1 = 0, .crn = 0, .crm = i, .opc2 = 4, 6603 .access = PL1_RW, .accessfn = access_tda, 6604 .fieldoffset = offsetof(CPUARMState, cp15.dbgbvr[i]), 6605 .writefn = dbgbvr_write, .raw_writefn = raw_write 6606 }, 6607 { .name = "DBGBCR", .state = ARM_CP_STATE_BOTH, 6608 .cp = 14, .opc0 = 2, .opc1 = 0, .crn = 0, .crm = i, .opc2 = 5, 6609 .access = PL1_RW, .accessfn = access_tda, 6610 .fieldoffset = offsetof(CPUARMState, cp15.dbgbcr[i]), 6611 .writefn = dbgbcr_write, .raw_writefn = raw_write 6612 }, 6613 REGINFO_SENTINEL 6614 }; 6615 define_arm_cp_regs(cpu, dbgregs); 6616 } 6617 6618 for (i = 0; i < wrps; i++) { 6619 ARMCPRegInfo dbgregs[] = { 6620 { .name = "DBGWVR", .state = ARM_CP_STATE_BOTH, 6621 .cp = 14, .opc0 = 2, .opc1 = 0, .crn = 0, .crm = i, .opc2 = 6, 6622 .access = PL1_RW, .accessfn = access_tda, 6623 .fieldoffset = offsetof(CPUARMState, cp15.dbgwvr[i]), 6624 .writefn = dbgwvr_write, .raw_writefn = raw_write 6625 }, 6626 { .name = "DBGWCR", .state = ARM_CP_STATE_BOTH, 6627 .cp = 14, .opc0 = 2, .opc1 = 0, .crn = 0, .crm = i, .opc2 = 7, 6628 .access = PL1_RW, .accessfn = access_tda, 6629 .fieldoffset = offsetof(CPUARMState, cp15.dbgwcr[i]), 6630 .writefn = dbgwcr_write, .raw_writefn = raw_write 6631 }, 6632 REGINFO_SENTINEL 6633 }; 6634 define_arm_cp_regs(cpu, dbgregs); 6635 } 6636 } 6637 6638 static void define_pmu_regs(ARMCPU *cpu) 6639 { 6640 /* 6641 * v7 performance monitor control register: same implementor 6642 * field as main ID register, and we implement four counters in 6643 * addition to the cycle count register. 6644 */ 6645 unsigned int i, pmcrn = PMCR_NUM_COUNTERS; 6646 ARMCPRegInfo pmcr = { 6647 .name = "PMCR", .cp = 15, .crn = 9, .crm = 12, .opc1 = 0, .opc2 = 0, 6648 .access = PL0_RW, 6649 .type = ARM_CP_IO | ARM_CP_ALIAS, 6650 .fieldoffset = offsetoflow32(CPUARMState, cp15.c9_pmcr), 6651 .accessfn = pmreg_access, .writefn = pmcr_write, 6652 .raw_writefn = raw_write, 6653 }; 6654 ARMCPRegInfo pmcr64 = { 6655 .name = "PMCR_EL0", .state = ARM_CP_STATE_AA64, 6656 .opc0 = 3, .opc1 = 3, .crn = 9, .crm = 12, .opc2 = 0, 6657 .access = PL0_RW, .accessfn = pmreg_access, 6658 .type = ARM_CP_IO, 6659 .fieldoffset = offsetof(CPUARMState, cp15.c9_pmcr), 6660 .resetvalue = (cpu->midr & 0xff000000) | (pmcrn << PMCRN_SHIFT) | 6661 PMCRLC, 6662 .writefn = pmcr_write, .raw_writefn = raw_write, 6663 }; 6664 define_one_arm_cp_reg(cpu, &pmcr); 6665 define_one_arm_cp_reg(cpu, &pmcr64); 6666 for (i = 0; i < pmcrn; i++) { 6667 char *pmevcntr_name = g_strdup_printf("PMEVCNTR%d", i); 6668 char *pmevcntr_el0_name = g_strdup_printf("PMEVCNTR%d_EL0", i); 6669 char *pmevtyper_name = g_strdup_printf("PMEVTYPER%d", i); 6670 char *pmevtyper_el0_name = g_strdup_printf("PMEVTYPER%d_EL0", i); 6671 ARMCPRegInfo pmev_regs[] = { 6672 { .name = pmevcntr_name, .cp = 15, .crn = 14, 6673 .crm = 8 | (3 & (i >> 3)), .opc1 = 0, .opc2 = i & 7, 6674 .access = PL0_RW, .type = ARM_CP_IO | ARM_CP_ALIAS, 6675 .readfn = pmevcntr_readfn, .writefn = pmevcntr_writefn, 6676 .accessfn = pmreg_access }, 6677 { .name = pmevcntr_el0_name, .state = ARM_CP_STATE_AA64, 6678 .opc0 = 3, .opc1 = 3, .crn = 14, .crm = 8 | (3 & (i >> 3)), 6679 .opc2 = i & 7, .access = PL0_RW, .accessfn = pmreg_access, 6680 .type = ARM_CP_IO, 6681 .readfn = pmevcntr_readfn, .writefn = pmevcntr_writefn, 6682 .raw_readfn = pmevcntr_rawread, 6683 .raw_writefn = pmevcntr_rawwrite }, 6684 { .name = pmevtyper_name, .cp = 15, .crn = 14, 6685 .crm = 12 | (3 & (i >> 3)), .opc1 = 0, .opc2 = i & 7, 6686 .access = PL0_RW, .type = ARM_CP_IO | ARM_CP_ALIAS, 6687 .readfn = pmevtyper_readfn, .writefn = pmevtyper_writefn, 6688 .accessfn = pmreg_access }, 6689 { .name = pmevtyper_el0_name, .state = ARM_CP_STATE_AA64, 6690 .opc0 = 3, .opc1 = 3, .crn = 14, .crm = 12 | (3 & (i >> 3)), 6691 .opc2 = i & 7, .access = PL0_RW, .accessfn = pmreg_access, 6692 .type = ARM_CP_IO, 6693 .readfn = pmevtyper_readfn, .writefn = pmevtyper_writefn, 6694 .raw_writefn = pmevtyper_rawwrite }, 6695 REGINFO_SENTINEL 6696 }; 6697 define_arm_cp_regs(cpu, pmev_regs); 6698 g_free(pmevcntr_name); 6699 g_free(pmevcntr_el0_name); 6700 g_free(pmevtyper_name); 6701 g_free(pmevtyper_el0_name); 6702 } 6703 if (cpu_isar_feature(aa32_pmu_8_1, cpu)) { 6704 ARMCPRegInfo v81_pmu_regs[] = { 6705 { .name = "PMCEID2", .state = ARM_CP_STATE_AA32, 6706 .cp = 15, .opc1 = 0, .crn = 9, .crm = 14, .opc2 = 4, 6707 .access = PL0_R, .accessfn = pmreg_access, .type = ARM_CP_CONST, 6708 .resetvalue = extract64(cpu->pmceid0, 32, 32) }, 6709 { .name = "PMCEID3", .state = ARM_CP_STATE_AA32, 6710 .cp = 15, .opc1 = 0, .crn = 9, .crm = 14, .opc2 = 5, 6711 .access = PL0_R, .accessfn = pmreg_access, .type = ARM_CP_CONST, 6712 .resetvalue = extract64(cpu->pmceid1, 32, 32) }, 6713 REGINFO_SENTINEL 6714 }; 6715 define_arm_cp_regs(cpu, v81_pmu_regs); 6716 } 6717 if (cpu_isar_feature(any_pmu_8_4, cpu)) { 6718 static const ARMCPRegInfo v84_pmmir = { 6719 .name = "PMMIR_EL1", .state = ARM_CP_STATE_BOTH, 6720 .opc0 = 3, .opc1 = 0, .crn = 9, .crm = 14, .opc2 = 6, 6721 .access = PL1_R, .accessfn = pmreg_access, .type = ARM_CP_CONST, 6722 .resetvalue = 0 6723 }; 6724 define_one_arm_cp_reg(cpu, &v84_pmmir); 6725 } 6726 } 6727 6728 /* We don't know until after realize whether there's a GICv3 6729 * attached, and that is what registers the gicv3 sysregs. 6730 * So we have to fill in the GIC fields in ID_PFR/ID_PFR1_EL1/ID_AA64PFR0_EL1 6731 * at runtime. 6732 */ 6733 static uint64_t id_pfr1_read(CPUARMState *env, const ARMCPRegInfo *ri) 6734 { 6735 ARMCPU *cpu = env_archcpu(env); 6736 uint64_t pfr1 = cpu->isar.id_pfr1; 6737 6738 if (env->gicv3state) { 6739 pfr1 |= 1 << 28; 6740 } 6741 return pfr1; 6742 } 6743 6744 #ifndef CONFIG_USER_ONLY 6745 static uint64_t id_aa64pfr0_read(CPUARMState *env, const ARMCPRegInfo *ri) 6746 { 6747 ARMCPU *cpu = env_archcpu(env); 6748 uint64_t pfr0 = cpu->isar.id_aa64pfr0; 6749 6750 if (env->gicv3state) { 6751 pfr0 |= 1 << 24; 6752 } 6753 return pfr0; 6754 } 6755 #endif 6756 6757 /* Shared logic between LORID and the rest of the LOR* registers. 6758 * Secure state exclusion has already been dealt with. 6759 */ 6760 static CPAccessResult access_lor_ns(CPUARMState *env, 6761 const ARMCPRegInfo *ri, bool isread) 6762 { 6763 int el = arm_current_el(env); 6764 6765 if (el < 2 && (arm_hcr_el2_eff(env) & HCR_TLOR)) { 6766 return CP_ACCESS_TRAP_EL2; 6767 } 6768 if (el < 3 && (env->cp15.scr_el3 & SCR_TLOR)) { 6769 return CP_ACCESS_TRAP_EL3; 6770 } 6771 return CP_ACCESS_OK; 6772 } 6773 6774 static CPAccessResult access_lor_other(CPUARMState *env, 6775 const ARMCPRegInfo *ri, bool isread) 6776 { 6777 if (arm_is_secure_below_el3(env)) { 6778 /* Access denied in secure mode. */ 6779 return CP_ACCESS_TRAP; 6780 } 6781 return access_lor_ns(env, ri, isread); 6782 } 6783 6784 /* 6785 * A trivial implementation of ARMv8.1-LOR leaves all of these 6786 * registers fixed at 0, which indicates that there are zero 6787 * supported Limited Ordering regions. 6788 */ 6789 static const ARMCPRegInfo lor_reginfo[] = { 6790 { .name = "LORSA_EL1", .state = ARM_CP_STATE_AA64, 6791 .opc0 = 3, .opc1 = 0, .crn = 10, .crm = 4, .opc2 = 0, 6792 .access = PL1_RW, .accessfn = access_lor_other, 6793 .type = ARM_CP_CONST, .resetvalue = 0 }, 6794 { .name = "LOREA_EL1", .state = ARM_CP_STATE_AA64, 6795 .opc0 = 3, .opc1 = 0, .crn = 10, .crm = 4, .opc2 = 1, 6796 .access = PL1_RW, .accessfn = access_lor_other, 6797 .type = ARM_CP_CONST, .resetvalue = 0 }, 6798 { .name = "LORN_EL1", .state = ARM_CP_STATE_AA64, 6799 .opc0 = 3, .opc1 = 0, .crn = 10, .crm = 4, .opc2 = 2, 6800 .access = PL1_RW, .accessfn = access_lor_other, 6801 .type = ARM_CP_CONST, .resetvalue = 0 }, 6802 { .name = "LORC_EL1", .state = ARM_CP_STATE_AA64, 6803 .opc0 = 3, .opc1 = 0, .crn = 10, .crm = 4, .opc2 = 3, 6804 .access = PL1_RW, .accessfn = access_lor_other, 6805 .type = ARM_CP_CONST, .resetvalue = 0 }, 6806 { .name = "LORID_EL1", .state = ARM_CP_STATE_AA64, 6807 .opc0 = 3, .opc1 = 0, .crn = 10, .crm = 4, .opc2 = 7, 6808 .access = PL1_R, .accessfn = access_lor_ns, 6809 .type = ARM_CP_CONST, .resetvalue = 0 }, 6810 REGINFO_SENTINEL 6811 }; 6812 6813 #ifdef TARGET_AARCH64 6814 static CPAccessResult access_pauth(CPUARMState *env, const ARMCPRegInfo *ri, 6815 bool isread) 6816 { 6817 int el = arm_current_el(env); 6818 6819 if (el < 2 && 6820 arm_feature(env, ARM_FEATURE_EL2) && 6821 !(arm_hcr_el2_eff(env) & HCR_APK)) { 6822 return CP_ACCESS_TRAP_EL2; 6823 } 6824 if (el < 3 && 6825 arm_feature(env, ARM_FEATURE_EL3) && 6826 !(env->cp15.scr_el3 & SCR_APK)) { 6827 return CP_ACCESS_TRAP_EL3; 6828 } 6829 return CP_ACCESS_OK; 6830 } 6831 6832 static const ARMCPRegInfo pauth_reginfo[] = { 6833 { .name = "APDAKEYLO_EL1", .state = ARM_CP_STATE_AA64, 6834 .opc0 = 3, .opc1 = 0, .crn = 2, .crm = 2, .opc2 = 0, 6835 .access = PL1_RW, .accessfn = access_pauth, 6836 .fieldoffset = offsetof(CPUARMState, keys.apda.lo) }, 6837 { .name = "APDAKEYHI_EL1", .state = ARM_CP_STATE_AA64, 6838 .opc0 = 3, .opc1 = 0, .crn = 2, .crm = 2, .opc2 = 1, 6839 .access = PL1_RW, .accessfn = access_pauth, 6840 .fieldoffset = offsetof(CPUARMState, keys.apda.hi) }, 6841 { .name = "APDBKEYLO_EL1", .state = ARM_CP_STATE_AA64, 6842 .opc0 = 3, .opc1 = 0, .crn = 2, .crm = 2, .opc2 = 2, 6843 .access = PL1_RW, .accessfn = access_pauth, 6844 .fieldoffset = offsetof(CPUARMState, keys.apdb.lo) }, 6845 { .name = "APDBKEYHI_EL1", .state = ARM_CP_STATE_AA64, 6846 .opc0 = 3, .opc1 = 0, .crn = 2, .crm = 2, .opc2 = 3, 6847 .access = PL1_RW, .accessfn = access_pauth, 6848 .fieldoffset = offsetof(CPUARMState, keys.apdb.hi) }, 6849 { .name = "APGAKEYLO_EL1", .state = ARM_CP_STATE_AA64, 6850 .opc0 = 3, .opc1 = 0, .crn = 2, .crm = 3, .opc2 = 0, 6851 .access = PL1_RW, .accessfn = access_pauth, 6852 .fieldoffset = offsetof(CPUARMState, keys.apga.lo) }, 6853 { .name = "APGAKEYHI_EL1", .state = ARM_CP_STATE_AA64, 6854 .opc0 = 3, .opc1 = 0, .crn = 2, .crm = 3, .opc2 = 1, 6855 .access = PL1_RW, .accessfn = access_pauth, 6856 .fieldoffset = offsetof(CPUARMState, keys.apga.hi) }, 6857 { .name = "APIAKEYLO_EL1", .state = ARM_CP_STATE_AA64, 6858 .opc0 = 3, .opc1 = 0, .crn = 2, .crm = 1, .opc2 = 0, 6859 .access = PL1_RW, .accessfn = access_pauth, 6860 .fieldoffset = offsetof(CPUARMState, keys.apia.lo) }, 6861 { .name = "APIAKEYHI_EL1", .state = ARM_CP_STATE_AA64, 6862 .opc0 = 3, .opc1 = 0, .crn = 2, .crm = 1, .opc2 = 1, 6863 .access = PL1_RW, .accessfn = access_pauth, 6864 .fieldoffset = offsetof(CPUARMState, keys.apia.hi) }, 6865 { .name = "APIBKEYLO_EL1", .state = ARM_CP_STATE_AA64, 6866 .opc0 = 3, .opc1 = 0, .crn = 2, .crm = 1, .opc2 = 2, 6867 .access = PL1_RW, .accessfn = access_pauth, 6868 .fieldoffset = offsetof(CPUARMState, keys.apib.lo) }, 6869 { .name = "APIBKEYHI_EL1", .state = ARM_CP_STATE_AA64, 6870 .opc0 = 3, .opc1 = 0, .crn = 2, .crm = 1, .opc2 = 3, 6871 .access = PL1_RW, .accessfn = access_pauth, 6872 .fieldoffset = offsetof(CPUARMState, keys.apib.hi) }, 6873 REGINFO_SENTINEL 6874 }; 6875 6876 static const ARMCPRegInfo tlbirange_reginfo[] = { 6877 { .name = "TLBI_RVAE1IS", .state = ARM_CP_STATE_AA64, 6878 .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 2, .opc2 = 1, 6879 .access = PL1_W, .type = ARM_CP_NO_RAW, 6880 .writefn = tlbi_aa64_rvae1is_write }, 6881 { .name = "TLBI_RVAAE1IS", .state = ARM_CP_STATE_AA64, 6882 .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 2, .opc2 = 3, 6883 .access = PL1_W, .type = ARM_CP_NO_RAW, 6884 .writefn = tlbi_aa64_rvae1is_write }, 6885 { .name = "TLBI_RVALE1IS", .state = ARM_CP_STATE_AA64, 6886 .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 2, .opc2 = 5, 6887 .access = PL1_W, .type = ARM_CP_NO_RAW, 6888 .writefn = tlbi_aa64_rvae1is_write }, 6889 { .name = "TLBI_RVAALE1IS", .state = ARM_CP_STATE_AA64, 6890 .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 2, .opc2 = 7, 6891 .access = PL1_W, .type = ARM_CP_NO_RAW, 6892 .writefn = tlbi_aa64_rvae1is_write }, 6893 { .name = "TLBI_RVAE1OS", .state = ARM_CP_STATE_AA64, 6894 .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 5, .opc2 = 1, 6895 .access = PL1_W, .type = ARM_CP_NO_RAW, 6896 .writefn = tlbi_aa64_rvae1is_write }, 6897 { .name = "TLBI_RVAAE1OS", .state = ARM_CP_STATE_AA64, 6898 .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 5, .opc2 = 3, 6899 .access = PL1_W, .type = ARM_CP_NO_RAW, 6900 .writefn = tlbi_aa64_rvae1is_write }, 6901 { .name = "TLBI_RVALE1OS", .state = ARM_CP_STATE_AA64, 6902 .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 5, .opc2 = 5, 6903 .access = PL1_W, .type = ARM_CP_NO_RAW, 6904 .writefn = tlbi_aa64_rvae1is_write }, 6905 { .name = "TLBI_RVAALE1OS", .state = ARM_CP_STATE_AA64, 6906 .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 5, .opc2 = 7, 6907 .access = PL1_W, .type = ARM_CP_NO_RAW, 6908 .writefn = tlbi_aa64_rvae1is_write }, 6909 { .name = "TLBI_RVAE1", .state = ARM_CP_STATE_AA64, 6910 .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 6, .opc2 = 1, 6911 .access = PL1_W, .type = ARM_CP_NO_RAW, 6912 .writefn = tlbi_aa64_rvae1_write }, 6913 { .name = "TLBI_RVAAE1", .state = ARM_CP_STATE_AA64, 6914 .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 6, .opc2 = 3, 6915 .access = PL1_W, .type = ARM_CP_NO_RAW, 6916 .writefn = tlbi_aa64_rvae1_write }, 6917 { .name = "TLBI_RVALE1", .state = ARM_CP_STATE_AA64, 6918 .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 6, .opc2 = 5, 6919 .access = PL1_W, .type = ARM_CP_NO_RAW, 6920 .writefn = tlbi_aa64_rvae1_write }, 6921 { .name = "TLBI_RVAALE1", .state = ARM_CP_STATE_AA64, 6922 .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 6, .opc2 = 7, 6923 .access = PL1_W, .type = ARM_CP_NO_RAW, 6924 .writefn = tlbi_aa64_rvae1_write }, 6925 { .name = "TLBI_RIPAS2E1IS", .state = ARM_CP_STATE_AA64, 6926 .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 0, .opc2 = 2, 6927 .access = PL2_W, .type = ARM_CP_NOP }, 6928 { .name = "TLBI_RIPAS2LE1IS", .state = ARM_CP_STATE_AA64, 6929 .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 0, .opc2 = 6, 6930 .access = PL2_W, .type = ARM_CP_NOP }, 6931 { .name = "TLBI_RVAE2IS", .state = ARM_CP_STATE_AA64, 6932 .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 2, .opc2 = 1, 6933 .access = PL2_W, .type = ARM_CP_NO_RAW, 6934 .writefn = tlbi_aa64_rvae2is_write }, 6935 { .name = "TLBI_RVALE2IS", .state = ARM_CP_STATE_AA64, 6936 .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 2, .opc2 = 5, 6937 .access = PL2_W, .type = ARM_CP_NO_RAW, 6938 .writefn = tlbi_aa64_rvae2is_write }, 6939 { .name = "TLBI_RIPAS2E1", .state = ARM_CP_STATE_AA64, 6940 .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 4, .opc2 = 2, 6941 .access = PL2_W, .type = ARM_CP_NOP }, 6942 { .name = "TLBI_RIPAS2LE1", .state = ARM_CP_STATE_AA64, 6943 .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 4, .opc2 = 6, 6944 .access = PL2_W, .type = ARM_CP_NOP }, 6945 { .name = "TLBI_RVAE2OS", .state = ARM_CP_STATE_AA64, 6946 .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 5, .opc2 = 1, 6947 .access = PL2_W, .type = ARM_CP_NO_RAW, 6948 .writefn = tlbi_aa64_rvae2is_write }, 6949 { .name = "TLBI_RVALE2OS", .state = ARM_CP_STATE_AA64, 6950 .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 5, .opc2 = 5, 6951 .access = PL2_W, .type = ARM_CP_NO_RAW, 6952 .writefn = tlbi_aa64_rvae2is_write }, 6953 { .name = "TLBI_RVAE2", .state = ARM_CP_STATE_AA64, 6954 .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 6, .opc2 = 1, 6955 .access = PL2_W, .type = ARM_CP_NO_RAW, 6956 .writefn = tlbi_aa64_rvae2_write }, 6957 { .name = "TLBI_RVALE2", .state = ARM_CP_STATE_AA64, 6958 .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 6, .opc2 = 5, 6959 .access = PL2_W, .type = ARM_CP_NO_RAW, 6960 .writefn = tlbi_aa64_rvae2_write }, 6961 { .name = "TLBI_RVAE3IS", .state = ARM_CP_STATE_AA64, 6962 .opc0 = 1, .opc1 = 6, .crn = 8, .crm = 2, .opc2 = 1, 6963 .access = PL3_W, .type = ARM_CP_NO_RAW, 6964 .writefn = tlbi_aa64_rvae3is_write }, 6965 { .name = "TLBI_RVALE3IS", .state = ARM_CP_STATE_AA64, 6966 .opc0 = 1, .opc1 = 6, .crn = 8, .crm = 2, .opc2 = 5, 6967 .access = PL3_W, .type = ARM_CP_NO_RAW, 6968 .writefn = tlbi_aa64_rvae3is_write }, 6969 { .name = "TLBI_RVAE3OS", .state = ARM_CP_STATE_AA64, 6970 .opc0 = 1, .opc1 = 6, .crn = 8, .crm = 5, .opc2 = 1, 6971 .access = PL3_W, .type = ARM_CP_NO_RAW, 6972 .writefn = tlbi_aa64_rvae3is_write }, 6973 { .name = "TLBI_RVALE3OS", .state = ARM_CP_STATE_AA64, 6974 .opc0 = 1, .opc1 = 6, .crn = 8, .crm = 5, .opc2 = 5, 6975 .access = PL3_W, .type = ARM_CP_NO_RAW, 6976 .writefn = tlbi_aa64_rvae3is_write }, 6977 { .name = "TLBI_RVAE3", .state = ARM_CP_STATE_AA64, 6978 .opc0 = 1, .opc1 = 6, .crn = 8, .crm = 6, .opc2 = 1, 6979 .access = PL3_W, .type = ARM_CP_NO_RAW, 6980 .writefn = tlbi_aa64_rvae3_write }, 6981 { .name = "TLBI_RVALE3", .state = ARM_CP_STATE_AA64, 6982 .opc0 = 1, .opc1 = 6, .crn = 8, .crm = 6, .opc2 = 5, 6983 .access = PL3_W, .type = ARM_CP_NO_RAW, 6984 .writefn = tlbi_aa64_rvae3_write }, 6985 REGINFO_SENTINEL 6986 }; 6987 6988 static const ARMCPRegInfo tlbios_reginfo[] = { 6989 { .name = "TLBI_VMALLE1OS", .state = ARM_CP_STATE_AA64, 6990 .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 1, .opc2 = 0, 6991 .access = PL1_W, .type = ARM_CP_NO_RAW, 6992 .writefn = tlbi_aa64_vmalle1is_write }, 6993 { .name = "TLBI_VAE1OS", .state = ARM_CP_STATE_AA64, 6994 .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 1, .opc2 = 1, 6995 .access = PL1_W, .type = ARM_CP_NO_RAW, 6996 .writefn = tlbi_aa64_vae1is_write }, 6997 { .name = "TLBI_ASIDE1OS", .state = ARM_CP_STATE_AA64, 6998 .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 1, .opc2 = 2, 6999 .access = PL1_W, .type = ARM_CP_NO_RAW, 7000 .writefn = tlbi_aa64_vmalle1is_write }, 7001 { .name = "TLBI_VAAE1OS", .state = ARM_CP_STATE_AA64, 7002 .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 1, .opc2 = 3, 7003 .access = PL1_W, .type = ARM_CP_NO_RAW, 7004 .writefn = tlbi_aa64_vae1is_write }, 7005 { .name = "TLBI_VALE1OS", .state = ARM_CP_STATE_AA64, 7006 .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 1, .opc2 = 5, 7007 .access = PL1_W, .type = ARM_CP_NO_RAW, 7008 .writefn = tlbi_aa64_vae1is_write }, 7009 { .name = "TLBI_VAALE1OS", .state = ARM_CP_STATE_AA64, 7010 .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 1, .opc2 = 7, 7011 .access = PL1_W, .type = ARM_CP_NO_RAW, 7012 .writefn = tlbi_aa64_vae1is_write }, 7013 { .name = "TLBI_ALLE2OS", .state = ARM_CP_STATE_AA64, 7014 .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 1, .opc2 = 0, 7015 .access = PL2_W, .type = ARM_CP_NO_RAW, 7016 .writefn = tlbi_aa64_alle2is_write }, 7017 { .name = "TLBI_VAE2OS", .state = ARM_CP_STATE_AA64, 7018 .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 1, .opc2 = 1, 7019 .access = PL2_W, .type = ARM_CP_NO_RAW, 7020 .writefn = tlbi_aa64_vae2is_write }, 7021 { .name = "TLBI_ALLE1OS", .state = ARM_CP_STATE_AA64, 7022 .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 1, .opc2 = 4, 7023 .access = PL2_W, .type = ARM_CP_NO_RAW, 7024 .writefn = tlbi_aa64_alle1is_write }, 7025 { .name = "TLBI_VALE2OS", .state = ARM_CP_STATE_AA64, 7026 .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 1, .opc2 = 5, 7027 .access = PL2_W, .type = ARM_CP_NO_RAW, 7028 .writefn = tlbi_aa64_vae2is_write }, 7029 { .name = "TLBI_VMALLS12E1OS", .state = ARM_CP_STATE_AA64, 7030 .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 1, .opc2 = 6, 7031 .access = PL2_W, .type = ARM_CP_NO_RAW, 7032 .writefn = tlbi_aa64_alle1is_write }, 7033 { .name = "TLBI_IPAS2E1OS", .state = ARM_CP_STATE_AA64, 7034 .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 4, .opc2 = 0, 7035 .access = PL2_W, .type = ARM_CP_NOP }, 7036 { .name = "TLBI_RIPAS2E1OS", .state = ARM_CP_STATE_AA64, 7037 .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 4, .opc2 = 3, 7038 .access = PL2_W, .type = ARM_CP_NOP }, 7039 { .name = "TLBI_IPAS2LE1OS", .state = ARM_CP_STATE_AA64, 7040 .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 4, .opc2 = 4, 7041 .access = PL2_W, .type = ARM_CP_NOP }, 7042 { .name = "TLBI_RIPAS2LE1OS", .state = ARM_CP_STATE_AA64, 7043 .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 4, .opc2 = 7, 7044 .access = PL2_W, .type = ARM_CP_NOP }, 7045 { .name = "TLBI_ALLE3OS", .state = ARM_CP_STATE_AA64, 7046 .opc0 = 1, .opc1 = 6, .crn = 8, .crm = 1, .opc2 = 0, 7047 .access = PL3_W, .type = ARM_CP_NO_RAW, 7048 .writefn = tlbi_aa64_alle3is_write }, 7049 { .name = "TLBI_VAE3OS", .state = ARM_CP_STATE_AA64, 7050 .opc0 = 1, .opc1 = 6, .crn = 8, .crm = 1, .opc2 = 1, 7051 .access = PL3_W, .type = ARM_CP_NO_RAW, 7052 .writefn = tlbi_aa64_vae3is_write }, 7053 { .name = "TLBI_VALE3OS", .state = ARM_CP_STATE_AA64, 7054 .opc0 = 1, .opc1 = 6, .crn = 8, .crm = 1, .opc2 = 5, 7055 .access = PL3_W, .type = ARM_CP_NO_RAW, 7056 .writefn = tlbi_aa64_vae3is_write }, 7057 REGINFO_SENTINEL 7058 }; 7059 7060 static uint64_t rndr_readfn(CPUARMState *env, const ARMCPRegInfo *ri) 7061 { 7062 Error *err = NULL; 7063 uint64_t ret; 7064 7065 /* Success sets NZCV = 0000. */ 7066 env->NF = env->CF = env->VF = 0, env->ZF = 1; 7067 7068 if (qemu_guest_getrandom(&ret, sizeof(ret), &err) < 0) { 7069 /* 7070 * ??? Failed, for unknown reasons in the crypto subsystem. 7071 * The best we can do is log the reason and return the 7072 * timed-out indication to the guest. There is no reason 7073 * we know to expect this failure to be transitory, so the 7074 * guest may well hang retrying the operation. 7075 */ 7076 qemu_log_mask(LOG_UNIMP, "%s: Crypto failure: %s", 7077 ri->name, error_get_pretty(err)); 7078 error_free(err); 7079 7080 env->ZF = 0; /* NZCF = 0100 */ 7081 return 0; 7082 } 7083 return ret; 7084 } 7085 7086 /* We do not support re-seeding, so the two registers operate the same. */ 7087 static const ARMCPRegInfo rndr_reginfo[] = { 7088 { .name = "RNDR", .state = ARM_CP_STATE_AA64, 7089 .type = ARM_CP_NO_RAW | ARM_CP_SUPPRESS_TB_END | ARM_CP_IO, 7090 .opc0 = 3, .opc1 = 3, .crn = 2, .crm = 4, .opc2 = 0, 7091 .access = PL0_R, .readfn = rndr_readfn }, 7092 { .name = "RNDRRS", .state = ARM_CP_STATE_AA64, 7093 .type = ARM_CP_NO_RAW | ARM_CP_SUPPRESS_TB_END | ARM_CP_IO, 7094 .opc0 = 3, .opc1 = 3, .crn = 2, .crm = 4, .opc2 = 1, 7095 .access = PL0_R, .readfn = rndr_readfn }, 7096 REGINFO_SENTINEL 7097 }; 7098 7099 #ifndef CONFIG_USER_ONLY 7100 static void dccvap_writefn(CPUARMState *env, const ARMCPRegInfo *opaque, 7101 uint64_t value) 7102 { 7103 ARMCPU *cpu = env_archcpu(env); 7104 /* CTR_EL0 System register -> DminLine, bits [19:16] */ 7105 uint64_t dline_size = 4 << ((cpu->ctr >> 16) & 0xF); 7106 uint64_t vaddr_in = (uint64_t) value; 7107 uint64_t vaddr = vaddr_in & ~(dline_size - 1); 7108 void *haddr; 7109 int mem_idx = cpu_mmu_index(env, false); 7110 7111 /* This won't be crossing page boundaries */ 7112 haddr = probe_read(env, vaddr, dline_size, mem_idx, GETPC()); 7113 if (haddr) { 7114 7115 ram_addr_t offset; 7116 MemoryRegion *mr; 7117 7118 /* RCU lock is already being held */ 7119 mr = memory_region_from_host(haddr, &offset); 7120 7121 if (mr) { 7122 memory_region_writeback(mr, offset, dline_size); 7123 } 7124 } 7125 } 7126 7127 static const ARMCPRegInfo dcpop_reg[] = { 7128 { .name = "DC_CVAP", .state = ARM_CP_STATE_AA64, 7129 .opc0 = 1, .opc1 = 3, .crn = 7, .crm = 12, .opc2 = 1, 7130 .access = PL0_W, .type = ARM_CP_NO_RAW | ARM_CP_SUPPRESS_TB_END, 7131 .accessfn = aa64_cacheop_poc_access, .writefn = dccvap_writefn }, 7132 REGINFO_SENTINEL 7133 }; 7134 7135 static const ARMCPRegInfo dcpodp_reg[] = { 7136 { .name = "DC_CVADP", .state = ARM_CP_STATE_AA64, 7137 .opc0 = 1, .opc1 = 3, .crn = 7, .crm = 13, .opc2 = 1, 7138 .access = PL0_W, .type = ARM_CP_NO_RAW | ARM_CP_SUPPRESS_TB_END, 7139 .accessfn = aa64_cacheop_poc_access, .writefn = dccvap_writefn }, 7140 REGINFO_SENTINEL 7141 }; 7142 #endif /*CONFIG_USER_ONLY*/ 7143 7144 static CPAccessResult access_aa64_tid5(CPUARMState *env, const ARMCPRegInfo *ri, 7145 bool isread) 7146 { 7147 if ((arm_current_el(env) < 2) && (arm_hcr_el2_eff(env) & HCR_TID5)) { 7148 return CP_ACCESS_TRAP_EL2; 7149 } 7150 7151 return CP_ACCESS_OK; 7152 } 7153 7154 static CPAccessResult access_mte(CPUARMState *env, const ARMCPRegInfo *ri, 7155 bool isread) 7156 { 7157 int el = arm_current_el(env); 7158 7159 if (el < 2 && arm_feature(env, ARM_FEATURE_EL2)) { 7160 uint64_t hcr = arm_hcr_el2_eff(env); 7161 if (!(hcr & HCR_ATA) && (!(hcr & HCR_E2H) || !(hcr & HCR_TGE))) { 7162 return CP_ACCESS_TRAP_EL2; 7163 } 7164 } 7165 if (el < 3 && 7166 arm_feature(env, ARM_FEATURE_EL3) && 7167 !(env->cp15.scr_el3 & SCR_ATA)) { 7168 return CP_ACCESS_TRAP_EL3; 7169 } 7170 return CP_ACCESS_OK; 7171 } 7172 7173 static uint64_t tco_read(CPUARMState *env, const ARMCPRegInfo *ri) 7174 { 7175 return env->pstate & PSTATE_TCO; 7176 } 7177 7178 static void tco_write(CPUARMState *env, const ARMCPRegInfo *ri, uint64_t val) 7179 { 7180 env->pstate = (env->pstate & ~PSTATE_TCO) | (val & PSTATE_TCO); 7181 } 7182 7183 static const ARMCPRegInfo mte_reginfo[] = { 7184 { .name = "TFSRE0_EL1", .state = ARM_CP_STATE_AA64, 7185 .opc0 = 3, .opc1 = 0, .crn = 5, .crm = 6, .opc2 = 1, 7186 .access = PL1_RW, .accessfn = access_mte, 7187 .fieldoffset = offsetof(CPUARMState, cp15.tfsr_el[0]) }, 7188 { .name = "TFSR_EL1", .state = ARM_CP_STATE_AA64, 7189 .opc0 = 3, .opc1 = 0, .crn = 5, .crm = 6, .opc2 = 0, 7190 .access = PL1_RW, .accessfn = access_mte, 7191 .fieldoffset = offsetof(CPUARMState, cp15.tfsr_el[1]) }, 7192 { .name = "TFSR_EL2", .state = ARM_CP_STATE_AA64, 7193 .opc0 = 3, .opc1 = 4, .crn = 5, .crm = 6, .opc2 = 0, 7194 .access = PL2_RW, .accessfn = access_mte, 7195 .fieldoffset = offsetof(CPUARMState, cp15.tfsr_el[2]) }, 7196 { .name = "TFSR_EL3", .state = ARM_CP_STATE_AA64, 7197 .opc0 = 3, .opc1 = 6, .crn = 5, .crm = 6, .opc2 = 0, 7198 .access = PL3_RW, 7199 .fieldoffset = offsetof(CPUARMState, cp15.tfsr_el[3]) }, 7200 { .name = "RGSR_EL1", .state = ARM_CP_STATE_AA64, 7201 .opc0 = 3, .opc1 = 0, .crn = 1, .crm = 0, .opc2 = 5, 7202 .access = PL1_RW, .accessfn = access_mte, 7203 .fieldoffset = offsetof(CPUARMState, cp15.rgsr_el1) }, 7204 { .name = "GCR_EL1", .state = ARM_CP_STATE_AA64, 7205 .opc0 = 3, .opc1 = 0, .crn = 1, .crm = 0, .opc2 = 6, 7206 .access = PL1_RW, .accessfn = access_mte, 7207 .fieldoffset = offsetof(CPUARMState, cp15.gcr_el1) }, 7208 { .name = "GMID_EL1", .state = ARM_CP_STATE_AA64, 7209 .opc0 = 3, .opc1 = 1, .crn = 0, .crm = 0, .opc2 = 4, 7210 .access = PL1_R, .accessfn = access_aa64_tid5, 7211 .type = ARM_CP_CONST, .resetvalue = GMID_EL1_BS }, 7212 { .name = "TCO", .state = ARM_CP_STATE_AA64, 7213 .opc0 = 3, .opc1 = 3, .crn = 4, .crm = 2, .opc2 = 7, 7214 .type = ARM_CP_NO_RAW, 7215 .access = PL0_RW, .readfn = tco_read, .writefn = tco_write }, 7216 { .name = "DC_IGVAC", .state = ARM_CP_STATE_AA64, 7217 .opc0 = 1, .opc1 = 0, .crn = 7, .crm = 6, .opc2 = 3, 7218 .type = ARM_CP_NOP, .access = PL1_W, 7219 .accessfn = aa64_cacheop_poc_access }, 7220 { .name = "DC_IGSW", .state = ARM_CP_STATE_AA64, 7221 .opc0 = 1, .opc1 = 0, .crn = 7, .crm = 6, .opc2 = 4, 7222 .type = ARM_CP_NOP, .access = PL1_W, .accessfn = access_tsw }, 7223 { .name = "DC_IGDVAC", .state = ARM_CP_STATE_AA64, 7224 .opc0 = 1, .opc1 = 0, .crn = 7, .crm = 6, .opc2 = 5, 7225 .type = ARM_CP_NOP, .access = PL1_W, 7226 .accessfn = aa64_cacheop_poc_access }, 7227 { .name = "DC_IGDSW", .state = ARM_CP_STATE_AA64, 7228 .opc0 = 1, .opc1 = 0, .crn = 7, .crm = 6, .opc2 = 6, 7229 .type = ARM_CP_NOP, .access = PL1_W, .accessfn = access_tsw }, 7230 { .name = "DC_CGSW", .state = ARM_CP_STATE_AA64, 7231 .opc0 = 1, .opc1 = 0, .crn = 7, .crm = 10, .opc2 = 4, 7232 .type = ARM_CP_NOP, .access = PL1_W, .accessfn = access_tsw }, 7233 { .name = "DC_CGDSW", .state = ARM_CP_STATE_AA64, 7234 .opc0 = 1, .opc1 = 0, .crn = 7, .crm = 10, .opc2 = 6, 7235 .type = ARM_CP_NOP, .access = PL1_W, .accessfn = access_tsw }, 7236 { .name = "DC_CIGSW", .state = ARM_CP_STATE_AA64, 7237 .opc0 = 1, .opc1 = 0, .crn = 7, .crm = 14, .opc2 = 4, 7238 .type = ARM_CP_NOP, .access = PL1_W, .accessfn = access_tsw }, 7239 { .name = "DC_CIGDSW", .state = ARM_CP_STATE_AA64, 7240 .opc0 = 1, .opc1 = 0, .crn = 7, .crm = 14, .opc2 = 6, 7241 .type = ARM_CP_NOP, .access = PL1_W, .accessfn = access_tsw }, 7242 REGINFO_SENTINEL 7243 }; 7244 7245 static const ARMCPRegInfo mte_tco_ro_reginfo[] = { 7246 { .name = "TCO", .state = ARM_CP_STATE_AA64, 7247 .opc0 = 3, .opc1 = 3, .crn = 4, .crm = 2, .opc2 = 7, 7248 .type = ARM_CP_CONST, .access = PL0_RW, }, 7249 REGINFO_SENTINEL 7250 }; 7251 7252 static const ARMCPRegInfo mte_el0_cacheop_reginfo[] = { 7253 { .name = "DC_CGVAC", .state = ARM_CP_STATE_AA64, 7254 .opc0 = 1, .opc1 = 3, .crn = 7, .crm = 10, .opc2 = 3, 7255 .type = ARM_CP_NOP, .access = PL0_W, 7256 .accessfn = aa64_cacheop_poc_access }, 7257 { .name = "DC_CGDVAC", .state = ARM_CP_STATE_AA64, 7258 .opc0 = 1, .opc1 = 3, .crn = 7, .crm = 10, .opc2 = 5, 7259 .type = ARM_CP_NOP, .access = PL0_W, 7260 .accessfn = aa64_cacheop_poc_access }, 7261 { .name = "DC_CGVAP", .state = ARM_CP_STATE_AA64, 7262 .opc0 = 1, .opc1 = 3, .crn = 7, .crm = 12, .opc2 = 3, 7263 .type = ARM_CP_NOP, .access = PL0_W, 7264 .accessfn = aa64_cacheop_poc_access }, 7265 { .name = "DC_CGDVAP", .state = ARM_CP_STATE_AA64, 7266 .opc0 = 1, .opc1 = 3, .crn = 7, .crm = 12, .opc2 = 5, 7267 .type = ARM_CP_NOP, .access = PL0_W, 7268 .accessfn = aa64_cacheop_poc_access }, 7269 { .name = "DC_CGVADP", .state = ARM_CP_STATE_AA64, 7270 .opc0 = 1, .opc1 = 3, .crn = 7, .crm = 13, .opc2 = 3, 7271 .type = ARM_CP_NOP, .access = PL0_W, 7272 .accessfn = aa64_cacheop_poc_access }, 7273 { .name = "DC_CGDVADP", .state = ARM_CP_STATE_AA64, 7274 .opc0 = 1, .opc1 = 3, .crn = 7, .crm = 13, .opc2 = 5, 7275 .type = ARM_CP_NOP, .access = PL0_W, 7276 .accessfn = aa64_cacheop_poc_access }, 7277 { .name = "DC_CIGVAC", .state = ARM_CP_STATE_AA64, 7278 .opc0 = 1, .opc1 = 3, .crn = 7, .crm = 14, .opc2 = 3, 7279 .type = ARM_CP_NOP, .access = PL0_W, 7280 .accessfn = aa64_cacheop_poc_access }, 7281 { .name = "DC_CIGDVAC", .state = ARM_CP_STATE_AA64, 7282 .opc0 = 1, .opc1 = 3, .crn = 7, .crm = 14, .opc2 = 5, 7283 .type = ARM_CP_NOP, .access = PL0_W, 7284 .accessfn = aa64_cacheop_poc_access }, 7285 { .name = "DC_GVA", .state = ARM_CP_STATE_AA64, 7286 .opc0 = 1, .opc1 = 3, .crn = 7, .crm = 4, .opc2 = 3, 7287 .access = PL0_W, .type = ARM_CP_DC_GVA, 7288 #ifndef CONFIG_USER_ONLY 7289 /* Avoid overhead of an access check that always passes in user-mode */ 7290 .accessfn = aa64_zva_access, 7291 #endif 7292 }, 7293 { .name = "DC_GZVA", .state = ARM_CP_STATE_AA64, 7294 .opc0 = 1, .opc1 = 3, .crn = 7, .crm = 4, .opc2 = 4, 7295 .access = PL0_W, .type = ARM_CP_DC_GZVA, 7296 #ifndef CONFIG_USER_ONLY 7297 /* Avoid overhead of an access check that always passes in user-mode */ 7298 .accessfn = aa64_zva_access, 7299 #endif 7300 }, 7301 REGINFO_SENTINEL 7302 }; 7303 7304 #endif 7305 7306 static CPAccessResult access_predinv(CPUARMState *env, const ARMCPRegInfo *ri, 7307 bool isread) 7308 { 7309 int el = arm_current_el(env); 7310 7311 if (el == 0) { 7312 uint64_t sctlr = arm_sctlr(env, el); 7313 if (!(sctlr & SCTLR_EnRCTX)) { 7314 return CP_ACCESS_TRAP; 7315 } 7316 } else if (el == 1) { 7317 uint64_t hcr = arm_hcr_el2_eff(env); 7318 if (hcr & HCR_NV) { 7319 return CP_ACCESS_TRAP_EL2; 7320 } 7321 } 7322 return CP_ACCESS_OK; 7323 } 7324 7325 static const ARMCPRegInfo predinv_reginfo[] = { 7326 { .name = "CFP_RCTX", .state = ARM_CP_STATE_AA64, 7327 .opc0 = 1, .opc1 = 3, .crn = 7, .crm = 3, .opc2 = 4, 7328 .type = ARM_CP_NOP, .access = PL0_W, .accessfn = access_predinv }, 7329 { .name = "DVP_RCTX", .state = ARM_CP_STATE_AA64, 7330 .opc0 = 1, .opc1 = 3, .crn = 7, .crm = 3, .opc2 = 5, 7331 .type = ARM_CP_NOP, .access = PL0_W, .accessfn = access_predinv }, 7332 { .name = "CPP_RCTX", .state = ARM_CP_STATE_AA64, 7333 .opc0 = 1, .opc1 = 3, .crn = 7, .crm = 3, .opc2 = 7, 7334 .type = ARM_CP_NOP, .access = PL0_W, .accessfn = access_predinv }, 7335 /* 7336 * Note the AArch32 opcodes have a different OPC1. 7337 */ 7338 { .name = "CFPRCTX", .state = ARM_CP_STATE_AA32, 7339 .cp = 15, .opc1 = 0, .crn = 7, .crm = 3, .opc2 = 4, 7340 .type = ARM_CP_NOP, .access = PL0_W, .accessfn = access_predinv }, 7341 { .name = "DVPRCTX", .state = ARM_CP_STATE_AA32, 7342 .cp = 15, .opc1 = 0, .crn = 7, .crm = 3, .opc2 = 5, 7343 .type = ARM_CP_NOP, .access = PL0_W, .accessfn = access_predinv }, 7344 { .name = "CPPRCTX", .state = ARM_CP_STATE_AA32, 7345 .cp = 15, .opc1 = 0, .crn = 7, .crm = 3, .opc2 = 7, 7346 .type = ARM_CP_NOP, .access = PL0_W, .accessfn = access_predinv }, 7347 REGINFO_SENTINEL 7348 }; 7349 7350 static uint64_t ccsidr2_read(CPUARMState *env, const ARMCPRegInfo *ri) 7351 { 7352 /* Read the high 32 bits of the current CCSIDR */ 7353 return extract64(ccsidr_read(env, ri), 32, 32); 7354 } 7355 7356 static const ARMCPRegInfo ccsidr2_reginfo[] = { 7357 { .name = "CCSIDR2", .state = ARM_CP_STATE_BOTH, 7358 .opc0 = 3, .opc1 = 1, .crn = 0, .crm = 0, .opc2 = 2, 7359 .access = PL1_R, 7360 .accessfn = access_aa64_tid2, 7361 .readfn = ccsidr2_read, .type = ARM_CP_NO_RAW }, 7362 REGINFO_SENTINEL 7363 }; 7364 7365 static CPAccessResult access_aa64_tid3(CPUARMState *env, const ARMCPRegInfo *ri, 7366 bool isread) 7367 { 7368 if ((arm_current_el(env) < 2) && (arm_hcr_el2_eff(env) & HCR_TID3)) { 7369 return CP_ACCESS_TRAP_EL2; 7370 } 7371 7372 return CP_ACCESS_OK; 7373 } 7374 7375 static CPAccessResult access_aa32_tid3(CPUARMState *env, const ARMCPRegInfo *ri, 7376 bool isread) 7377 { 7378 if (arm_feature(env, ARM_FEATURE_V8)) { 7379 return access_aa64_tid3(env, ri, isread); 7380 } 7381 7382 return CP_ACCESS_OK; 7383 } 7384 7385 static CPAccessResult access_jazelle(CPUARMState *env, const ARMCPRegInfo *ri, 7386 bool isread) 7387 { 7388 if (arm_current_el(env) == 1 && (arm_hcr_el2_eff(env) & HCR_TID0)) { 7389 return CP_ACCESS_TRAP_EL2; 7390 } 7391 7392 return CP_ACCESS_OK; 7393 } 7394 7395 static CPAccessResult access_joscr_jmcr(CPUARMState *env, 7396 const ARMCPRegInfo *ri, bool isread) 7397 { 7398 /* 7399 * HSTR.TJDBX traps JOSCR and JMCR accesses, but it exists only 7400 * in v7A, not in v8A. 7401 */ 7402 if (!arm_feature(env, ARM_FEATURE_V8) && 7403 arm_current_el(env) < 2 && !arm_is_secure_below_el3(env) && 7404 (env->cp15.hstr_el2 & HSTR_TJDBX)) { 7405 return CP_ACCESS_TRAP_EL2; 7406 } 7407 return CP_ACCESS_OK; 7408 } 7409 7410 static const ARMCPRegInfo jazelle_regs[] = { 7411 { .name = "JIDR", 7412 .cp = 14, .crn = 0, .crm = 0, .opc1 = 7, .opc2 = 0, 7413 .access = PL1_R, .accessfn = access_jazelle, 7414 .type = ARM_CP_CONST, .resetvalue = 0 }, 7415 { .name = "JOSCR", 7416 .cp = 14, .crn = 1, .crm = 0, .opc1 = 7, .opc2 = 0, 7417 .accessfn = access_joscr_jmcr, 7418 .access = PL1_RW, .type = ARM_CP_CONST, .resetvalue = 0 }, 7419 { .name = "JMCR", 7420 .cp = 14, .crn = 2, .crm = 0, .opc1 = 7, .opc2 = 0, 7421 .accessfn = access_joscr_jmcr, 7422 .access = PL1_RW, .type = ARM_CP_CONST, .resetvalue = 0 }, 7423 REGINFO_SENTINEL 7424 }; 7425 7426 static const ARMCPRegInfo vhe_reginfo[] = { 7427 { .name = "CONTEXTIDR_EL2", .state = ARM_CP_STATE_AA64, 7428 .opc0 = 3, .opc1 = 4, .crn = 13, .crm = 0, .opc2 = 1, 7429 .access = PL2_RW, 7430 .fieldoffset = offsetof(CPUARMState, cp15.contextidr_el[2]) }, 7431 { .name = "TTBR1_EL2", .state = ARM_CP_STATE_AA64, 7432 .opc0 = 3, .opc1 = 4, .crn = 2, .crm = 0, .opc2 = 1, 7433 .access = PL2_RW, .writefn = vmsa_tcr_ttbr_el2_write, 7434 .fieldoffset = offsetof(CPUARMState, cp15.ttbr1_el[2]) }, 7435 #ifndef CONFIG_USER_ONLY 7436 { .name = "CNTHV_CVAL_EL2", .state = ARM_CP_STATE_AA64, 7437 .opc0 = 3, .opc1 = 4, .crn = 14, .crm = 3, .opc2 = 2, 7438 .fieldoffset = 7439 offsetof(CPUARMState, cp15.c14_timer[GTIMER_HYPVIRT].cval), 7440 .type = ARM_CP_IO, .access = PL2_RW, 7441 .writefn = gt_hv_cval_write, .raw_writefn = raw_write }, 7442 { .name = "CNTHV_TVAL_EL2", .state = ARM_CP_STATE_BOTH, 7443 .opc0 = 3, .opc1 = 4, .crn = 14, .crm = 3, .opc2 = 0, 7444 .type = ARM_CP_NO_RAW | ARM_CP_IO, .access = PL2_RW, 7445 .resetfn = gt_hv_timer_reset, 7446 .readfn = gt_hv_tval_read, .writefn = gt_hv_tval_write }, 7447 { .name = "CNTHV_CTL_EL2", .state = ARM_CP_STATE_BOTH, 7448 .type = ARM_CP_IO, 7449 .opc0 = 3, .opc1 = 4, .crn = 14, .crm = 3, .opc2 = 1, 7450 .access = PL2_RW, 7451 .fieldoffset = offsetof(CPUARMState, cp15.c14_timer[GTIMER_HYPVIRT].ctl), 7452 .writefn = gt_hv_ctl_write, .raw_writefn = raw_write }, 7453 { .name = "CNTP_CTL_EL02", .state = ARM_CP_STATE_AA64, 7454 .opc0 = 3, .opc1 = 5, .crn = 14, .crm = 2, .opc2 = 1, 7455 .type = ARM_CP_IO | ARM_CP_ALIAS, 7456 .access = PL2_RW, .accessfn = e2h_access, 7457 .fieldoffset = offsetof(CPUARMState, cp15.c14_timer[GTIMER_PHYS].ctl), 7458 .writefn = gt_phys_ctl_write, .raw_writefn = raw_write }, 7459 { .name = "CNTV_CTL_EL02", .state = ARM_CP_STATE_AA64, 7460 .opc0 = 3, .opc1 = 5, .crn = 14, .crm = 3, .opc2 = 1, 7461 .type = ARM_CP_IO | ARM_CP_ALIAS, 7462 .access = PL2_RW, .accessfn = e2h_access, 7463 .fieldoffset = offsetof(CPUARMState, cp15.c14_timer[GTIMER_VIRT].ctl), 7464 .writefn = gt_virt_ctl_write, .raw_writefn = raw_write }, 7465 { .name = "CNTP_TVAL_EL02", .state = ARM_CP_STATE_AA64, 7466 .opc0 = 3, .opc1 = 5, .crn = 14, .crm = 2, .opc2 = 0, 7467 .type = ARM_CP_NO_RAW | ARM_CP_IO | ARM_CP_ALIAS, 7468 .access = PL2_RW, .accessfn = e2h_access, 7469 .readfn = gt_phys_tval_read, .writefn = gt_phys_tval_write }, 7470 { .name = "CNTV_TVAL_EL02", .state = ARM_CP_STATE_AA64, 7471 .opc0 = 3, .opc1 = 5, .crn = 14, .crm = 3, .opc2 = 0, 7472 .type = ARM_CP_NO_RAW | ARM_CP_IO | ARM_CP_ALIAS, 7473 .access = PL2_RW, .accessfn = e2h_access, 7474 .readfn = gt_virt_tval_read, .writefn = gt_virt_tval_write }, 7475 { .name = "CNTP_CVAL_EL02", .state = ARM_CP_STATE_AA64, 7476 .opc0 = 3, .opc1 = 5, .crn = 14, .crm = 2, .opc2 = 2, 7477 .type = ARM_CP_IO | ARM_CP_ALIAS, 7478 .fieldoffset = offsetof(CPUARMState, cp15.c14_timer[GTIMER_PHYS].cval), 7479 .access = PL2_RW, .accessfn = e2h_access, 7480 .writefn = gt_phys_cval_write, .raw_writefn = raw_write }, 7481 { .name = "CNTV_CVAL_EL02", .state = ARM_CP_STATE_AA64, 7482 .opc0 = 3, .opc1 = 5, .crn = 14, .crm = 3, .opc2 = 2, 7483 .type = ARM_CP_IO | ARM_CP_ALIAS, 7484 .fieldoffset = offsetof(CPUARMState, cp15.c14_timer[GTIMER_VIRT].cval), 7485 .access = PL2_RW, .accessfn = e2h_access, 7486 .writefn = gt_virt_cval_write, .raw_writefn = raw_write }, 7487 #endif 7488 REGINFO_SENTINEL 7489 }; 7490 7491 #ifndef CONFIG_USER_ONLY 7492 static const ARMCPRegInfo ats1e1_reginfo[] = { 7493 { .name = "AT_S1E1R", .state = ARM_CP_STATE_AA64, 7494 .opc0 = 1, .opc1 = 0, .crn = 7, .crm = 9, .opc2 = 0, 7495 .access = PL1_W, .type = ARM_CP_NO_RAW | ARM_CP_RAISES_EXC, 7496 .writefn = ats_write64 }, 7497 { .name = "AT_S1E1W", .state = ARM_CP_STATE_AA64, 7498 .opc0 = 1, .opc1 = 0, .crn = 7, .crm = 9, .opc2 = 1, 7499 .access = PL1_W, .type = ARM_CP_NO_RAW | ARM_CP_RAISES_EXC, 7500 .writefn = ats_write64 }, 7501 REGINFO_SENTINEL 7502 }; 7503 7504 static const ARMCPRegInfo ats1cp_reginfo[] = { 7505 { .name = "ATS1CPRP", 7506 .cp = 15, .opc1 = 0, .crn = 7, .crm = 9, .opc2 = 0, 7507 .access = PL1_W, .type = ARM_CP_NO_RAW | ARM_CP_RAISES_EXC, 7508 .writefn = ats_write }, 7509 { .name = "ATS1CPWP", 7510 .cp = 15, .opc1 = 0, .crn = 7, .crm = 9, .opc2 = 1, 7511 .access = PL1_W, .type = ARM_CP_NO_RAW | ARM_CP_RAISES_EXC, 7512 .writefn = ats_write }, 7513 REGINFO_SENTINEL 7514 }; 7515 #endif 7516 7517 /* 7518 * ACTLR2 and HACTLR2 map to ACTLR_EL1[63:32] and 7519 * ACTLR_EL2[63:32]. They exist only if the ID_MMFR4.AC2 field 7520 * is non-zero, which is never for ARMv7, optionally in ARMv8 7521 * and mandatorily for ARMv8.2 and up. 7522 * ACTLR2 is banked for S and NS if EL3 is AArch32. Since QEMU's 7523 * implementation is RAZ/WI we can ignore this detail, as we 7524 * do for ACTLR. 7525 */ 7526 static const ARMCPRegInfo actlr2_hactlr2_reginfo[] = { 7527 { .name = "ACTLR2", .state = ARM_CP_STATE_AA32, 7528 .cp = 15, .opc1 = 0, .crn = 1, .crm = 0, .opc2 = 3, 7529 .access = PL1_RW, .accessfn = access_tacr, 7530 .type = ARM_CP_CONST, .resetvalue = 0 }, 7531 { .name = "HACTLR2", .state = ARM_CP_STATE_AA32, 7532 .cp = 15, .opc1 = 4, .crn = 1, .crm = 0, .opc2 = 3, 7533 .access = PL2_RW, .type = ARM_CP_CONST, 7534 .resetvalue = 0 }, 7535 REGINFO_SENTINEL 7536 }; 7537 7538 void register_cp_regs_for_features(ARMCPU *cpu) 7539 { 7540 /* Register all the coprocessor registers based on feature bits */ 7541 CPUARMState *env = &cpu->env; 7542 if (arm_feature(env, ARM_FEATURE_M)) { 7543 /* M profile has no coprocessor registers */ 7544 return; 7545 } 7546 7547 define_arm_cp_regs(cpu, cp_reginfo); 7548 if (!arm_feature(env, ARM_FEATURE_V8)) { 7549 /* Must go early as it is full of wildcards that may be 7550 * overridden by later definitions. 7551 */ 7552 define_arm_cp_regs(cpu, not_v8_cp_reginfo); 7553 } 7554 7555 if (arm_feature(env, ARM_FEATURE_V6)) { 7556 /* The ID registers all have impdef reset values */ 7557 ARMCPRegInfo v6_idregs[] = { 7558 { .name = "ID_PFR0", .state = ARM_CP_STATE_BOTH, 7559 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 1, .opc2 = 0, 7560 .access = PL1_R, .type = ARM_CP_CONST, 7561 .accessfn = access_aa32_tid3, 7562 .resetvalue = cpu->isar.id_pfr0 }, 7563 /* ID_PFR1 is not a plain ARM_CP_CONST because we don't know 7564 * the value of the GIC field until after we define these regs. 7565 */ 7566 { .name = "ID_PFR1", .state = ARM_CP_STATE_BOTH, 7567 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 1, .opc2 = 1, 7568 .access = PL1_R, .type = ARM_CP_NO_RAW, 7569 .accessfn = access_aa32_tid3, 7570 .readfn = id_pfr1_read, 7571 .writefn = arm_cp_write_ignore }, 7572 { .name = "ID_DFR0", .state = ARM_CP_STATE_BOTH, 7573 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 1, .opc2 = 2, 7574 .access = PL1_R, .type = ARM_CP_CONST, 7575 .accessfn = access_aa32_tid3, 7576 .resetvalue = cpu->isar.id_dfr0 }, 7577 { .name = "ID_AFR0", .state = ARM_CP_STATE_BOTH, 7578 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 1, .opc2 = 3, 7579 .access = PL1_R, .type = ARM_CP_CONST, 7580 .accessfn = access_aa32_tid3, 7581 .resetvalue = cpu->id_afr0 }, 7582 { .name = "ID_MMFR0", .state = ARM_CP_STATE_BOTH, 7583 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 1, .opc2 = 4, 7584 .access = PL1_R, .type = ARM_CP_CONST, 7585 .accessfn = access_aa32_tid3, 7586 .resetvalue = cpu->isar.id_mmfr0 }, 7587 { .name = "ID_MMFR1", .state = ARM_CP_STATE_BOTH, 7588 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 1, .opc2 = 5, 7589 .access = PL1_R, .type = ARM_CP_CONST, 7590 .accessfn = access_aa32_tid3, 7591 .resetvalue = cpu->isar.id_mmfr1 }, 7592 { .name = "ID_MMFR2", .state = ARM_CP_STATE_BOTH, 7593 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 1, .opc2 = 6, 7594 .access = PL1_R, .type = ARM_CP_CONST, 7595 .accessfn = access_aa32_tid3, 7596 .resetvalue = cpu->isar.id_mmfr2 }, 7597 { .name = "ID_MMFR3", .state = ARM_CP_STATE_BOTH, 7598 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 1, .opc2 = 7, 7599 .access = PL1_R, .type = ARM_CP_CONST, 7600 .accessfn = access_aa32_tid3, 7601 .resetvalue = cpu->isar.id_mmfr3 }, 7602 { .name = "ID_ISAR0", .state = ARM_CP_STATE_BOTH, 7603 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 2, .opc2 = 0, 7604 .access = PL1_R, .type = ARM_CP_CONST, 7605 .accessfn = access_aa32_tid3, 7606 .resetvalue = cpu->isar.id_isar0 }, 7607 { .name = "ID_ISAR1", .state = ARM_CP_STATE_BOTH, 7608 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 2, .opc2 = 1, 7609 .access = PL1_R, .type = ARM_CP_CONST, 7610 .accessfn = access_aa32_tid3, 7611 .resetvalue = cpu->isar.id_isar1 }, 7612 { .name = "ID_ISAR2", .state = ARM_CP_STATE_BOTH, 7613 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 2, .opc2 = 2, 7614 .access = PL1_R, .type = ARM_CP_CONST, 7615 .accessfn = access_aa32_tid3, 7616 .resetvalue = cpu->isar.id_isar2 }, 7617 { .name = "ID_ISAR3", .state = ARM_CP_STATE_BOTH, 7618 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 2, .opc2 = 3, 7619 .access = PL1_R, .type = ARM_CP_CONST, 7620 .accessfn = access_aa32_tid3, 7621 .resetvalue = cpu->isar.id_isar3 }, 7622 { .name = "ID_ISAR4", .state = ARM_CP_STATE_BOTH, 7623 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 2, .opc2 = 4, 7624 .access = PL1_R, .type = ARM_CP_CONST, 7625 .accessfn = access_aa32_tid3, 7626 .resetvalue = cpu->isar.id_isar4 }, 7627 { .name = "ID_ISAR5", .state = ARM_CP_STATE_BOTH, 7628 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 2, .opc2 = 5, 7629 .access = PL1_R, .type = ARM_CP_CONST, 7630 .accessfn = access_aa32_tid3, 7631 .resetvalue = cpu->isar.id_isar5 }, 7632 { .name = "ID_MMFR4", .state = ARM_CP_STATE_BOTH, 7633 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 2, .opc2 = 6, 7634 .access = PL1_R, .type = ARM_CP_CONST, 7635 .accessfn = access_aa32_tid3, 7636 .resetvalue = cpu->isar.id_mmfr4 }, 7637 { .name = "ID_ISAR6", .state = ARM_CP_STATE_BOTH, 7638 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 2, .opc2 = 7, 7639 .access = PL1_R, .type = ARM_CP_CONST, 7640 .accessfn = access_aa32_tid3, 7641 .resetvalue = cpu->isar.id_isar6 }, 7642 REGINFO_SENTINEL 7643 }; 7644 define_arm_cp_regs(cpu, v6_idregs); 7645 define_arm_cp_regs(cpu, v6_cp_reginfo); 7646 } else { 7647 define_arm_cp_regs(cpu, not_v6_cp_reginfo); 7648 } 7649 if (arm_feature(env, ARM_FEATURE_V6K)) { 7650 define_arm_cp_regs(cpu, v6k_cp_reginfo); 7651 } 7652 if (arm_feature(env, ARM_FEATURE_V7MP) && 7653 !arm_feature(env, ARM_FEATURE_PMSA)) { 7654 define_arm_cp_regs(cpu, v7mp_cp_reginfo); 7655 } 7656 if (arm_feature(env, ARM_FEATURE_V7VE)) { 7657 define_arm_cp_regs(cpu, pmovsset_cp_reginfo); 7658 } 7659 if (arm_feature(env, ARM_FEATURE_V7)) { 7660 ARMCPRegInfo clidr = { 7661 .name = "CLIDR", .state = ARM_CP_STATE_BOTH, 7662 .opc0 = 3, .crn = 0, .crm = 0, .opc1 = 1, .opc2 = 1, 7663 .access = PL1_R, .type = ARM_CP_CONST, 7664 .accessfn = access_aa64_tid2, 7665 .resetvalue = cpu->clidr 7666 }; 7667 define_one_arm_cp_reg(cpu, &clidr); 7668 define_arm_cp_regs(cpu, v7_cp_reginfo); 7669 define_debug_regs(cpu); 7670 define_pmu_regs(cpu); 7671 } else { 7672 define_arm_cp_regs(cpu, not_v7_cp_reginfo); 7673 } 7674 if (arm_feature(env, ARM_FEATURE_V8)) { 7675 /* AArch64 ID registers, which all have impdef reset values. 7676 * Note that within the ID register ranges the unused slots 7677 * must all RAZ, not UNDEF; future architecture versions may 7678 * define new registers here. 7679 */ 7680 ARMCPRegInfo v8_idregs[] = { 7681 /* 7682 * ID_AA64PFR0_EL1 is not a plain ARM_CP_CONST in system 7683 * emulation because we don't know the right value for the 7684 * GIC field until after we define these regs. 7685 */ 7686 { .name = "ID_AA64PFR0_EL1", .state = ARM_CP_STATE_AA64, 7687 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 4, .opc2 = 0, 7688 .access = PL1_R, 7689 #ifdef CONFIG_USER_ONLY 7690 .type = ARM_CP_CONST, 7691 .resetvalue = cpu->isar.id_aa64pfr0 7692 #else 7693 .type = ARM_CP_NO_RAW, 7694 .accessfn = access_aa64_tid3, 7695 .readfn = id_aa64pfr0_read, 7696 .writefn = arm_cp_write_ignore 7697 #endif 7698 }, 7699 { .name = "ID_AA64PFR1_EL1", .state = ARM_CP_STATE_AA64, 7700 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 4, .opc2 = 1, 7701 .access = PL1_R, .type = ARM_CP_CONST, 7702 .accessfn = access_aa64_tid3, 7703 .resetvalue = cpu->isar.id_aa64pfr1}, 7704 { .name = "ID_AA64PFR2_EL1_RESERVED", .state = ARM_CP_STATE_AA64, 7705 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 4, .opc2 = 2, 7706 .access = PL1_R, .type = ARM_CP_CONST, 7707 .accessfn = access_aa64_tid3, 7708 .resetvalue = 0 }, 7709 { .name = "ID_AA64PFR3_EL1_RESERVED", .state = ARM_CP_STATE_AA64, 7710 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 4, .opc2 = 3, 7711 .access = PL1_R, .type = ARM_CP_CONST, 7712 .accessfn = access_aa64_tid3, 7713 .resetvalue = 0 }, 7714 { .name = "ID_AA64ZFR0_EL1", .state = ARM_CP_STATE_AA64, 7715 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 4, .opc2 = 4, 7716 .access = PL1_R, .type = ARM_CP_CONST, 7717 .accessfn = access_aa64_tid3, 7718 .resetvalue = cpu->isar.id_aa64zfr0 }, 7719 { .name = "ID_AA64PFR5_EL1_RESERVED", .state = ARM_CP_STATE_AA64, 7720 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 4, .opc2 = 5, 7721 .access = PL1_R, .type = ARM_CP_CONST, 7722 .accessfn = access_aa64_tid3, 7723 .resetvalue = 0 }, 7724 { .name = "ID_AA64PFR6_EL1_RESERVED", .state = ARM_CP_STATE_AA64, 7725 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 4, .opc2 = 6, 7726 .access = PL1_R, .type = ARM_CP_CONST, 7727 .accessfn = access_aa64_tid3, 7728 .resetvalue = 0 }, 7729 { .name = "ID_AA64PFR7_EL1_RESERVED", .state = ARM_CP_STATE_AA64, 7730 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 4, .opc2 = 7, 7731 .access = PL1_R, .type = ARM_CP_CONST, 7732 .accessfn = access_aa64_tid3, 7733 .resetvalue = 0 }, 7734 { .name = "ID_AA64DFR0_EL1", .state = ARM_CP_STATE_AA64, 7735 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 5, .opc2 = 0, 7736 .access = PL1_R, .type = ARM_CP_CONST, 7737 .accessfn = access_aa64_tid3, 7738 .resetvalue = cpu->isar.id_aa64dfr0 }, 7739 { .name = "ID_AA64DFR1_EL1", .state = ARM_CP_STATE_AA64, 7740 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 5, .opc2 = 1, 7741 .access = PL1_R, .type = ARM_CP_CONST, 7742 .accessfn = access_aa64_tid3, 7743 .resetvalue = cpu->isar.id_aa64dfr1 }, 7744 { .name = "ID_AA64DFR2_EL1_RESERVED", .state = ARM_CP_STATE_AA64, 7745 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 5, .opc2 = 2, 7746 .access = PL1_R, .type = ARM_CP_CONST, 7747 .accessfn = access_aa64_tid3, 7748 .resetvalue = 0 }, 7749 { .name = "ID_AA64DFR3_EL1_RESERVED", .state = ARM_CP_STATE_AA64, 7750 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 5, .opc2 = 3, 7751 .access = PL1_R, .type = ARM_CP_CONST, 7752 .accessfn = access_aa64_tid3, 7753 .resetvalue = 0 }, 7754 { .name = "ID_AA64AFR0_EL1", .state = ARM_CP_STATE_AA64, 7755 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 5, .opc2 = 4, 7756 .access = PL1_R, .type = ARM_CP_CONST, 7757 .accessfn = access_aa64_tid3, 7758 .resetvalue = cpu->id_aa64afr0 }, 7759 { .name = "ID_AA64AFR1_EL1", .state = ARM_CP_STATE_AA64, 7760 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 5, .opc2 = 5, 7761 .access = PL1_R, .type = ARM_CP_CONST, 7762 .accessfn = access_aa64_tid3, 7763 .resetvalue = cpu->id_aa64afr1 }, 7764 { .name = "ID_AA64AFR2_EL1_RESERVED", .state = ARM_CP_STATE_AA64, 7765 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 5, .opc2 = 6, 7766 .access = PL1_R, .type = ARM_CP_CONST, 7767 .accessfn = access_aa64_tid3, 7768 .resetvalue = 0 }, 7769 { .name = "ID_AA64AFR3_EL1_RESERVED", .state = ARM_CP_STATE_AA64, 7770 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 5, .opc2 = 7, 7771 .access = PL1_R, .type = ARM_CP_CONST, 7772 .accessfn = access_aa64_tid3, 7773 .resetvalue = 0 }, 7774 { .name = "ID_AA64ISAR0_EL1", .state = ARM_CP_STATE_AA64, 7775 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 6, .opc2 = 0, 7776 .access = PL1_R, .type = ARM_CP_CONST, 7777 .accessfn = access_aa64_tid3, 7778 .resetvalue = cpu->isar.id_aa64isar0 }, 7779 { .name = "ID_AA64ISAR1_EL1", .state = ARM_CP_STATE_AA64, 7780 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 6, .opc2 = 1, 7781 .access = PL1_R, .type = ARM_CP_CONST, 7782 .accessfn = access_aa64_tid3, 7783 .resetvalue = cpu->isar.id_aa64isar1 }, 7784 { .name = "ID_AA64ISAR2_EL1_RESERVED", .state = ARM_CP_STATE_AA64, 7785 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 6, .opc2 = 2, 7786 .access = PL1_R, .type = ARM_CP_CONST, 7787 .accessfn = access_aa64_tid3, 7788 .resetvalue = 0 }, 7789 { .name = "ID_AA64ISAR3_EL1_RESERVED", .state = ARM_CP_STATE_AA64, 7790 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 6, .opc2 = 3, 7791 .access = PL1_R, .type = ARM_CP_CONST, 7792 .accessfn = access_aa64_tid3, 7793 .resetvalue = 0 }, 7794 { .name = "ID_AA64ISAR4_EL1_RESERVED", .state = ARM_CP_STATE_AA64, 7795 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 6, .opc2 = 4, 7796 .access = PL1_R, .type = ARM_CP_CONST, 7797 .accessfn = access_aa64_tid3, 7798 .resetvalue = 0 }, 7799 { .name = "ID_AA64ISAR5_EL1_RESERVED", .state = ARM_CP_STATE_AA64, 7800 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 6, .opc2 = 5, 7801 .access = PL1_R, .type = ARM_CP_CONST, 7802 .accessfn = access_aa64_tid3, 7803 .resetvalue = 0 }, 7804 { .name = "ID_AA64ISAR6_EL1_RESERVED", .state = ARM_CP_STATE_AA64, 7805 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 6, .opc2 = 6, 7806 .access = PL1_R, .type = ARM_CP_CONST, 7807 .accessfn = access_aa64_tid3, 7808 .resetvalue = 0 }, 7809 { .name = "ID_AA64ISAR7_EL1_RESERVED", .state = ARM_CP_STATE_AA64, 7810 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 6, .opc2 = 7, 7811 .access = PL1_R, .type = ARM_CP_CONST, 7812 .accessfn = access_aa64_tid3, 7813 .resetvalue = 0 }, 7814 { .name = "ID_AA64MMFR0_EL1", .state = ARM_CP_STATE_AA64, 7815 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 7, .opc2 = 0, 7816 .access = PL1_R, .type = ARM_CP_CONST, 7817 .accessfn = access_aa64_tid3, 7818 .resetvalue = cpu->isar.id_aa64mmfr0 }, 7819 { .name = "ID_AA64MMFR1_EL1", .state = ARM_CP_STATE_AA64, 7820 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 7, .opc2 = 1, 7821 .access = PL1_R, .type = ARM_CP_CONST, 7822 .accessfn = access_aa64_tid3, 7823 .resetvalue = cpu->isar.id_aa64mmfr1 }, 7824 { .name = "ID_AA64MMFR2_EL1", .state = ARM_CP_STATE_AA64, 7825 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 7, .opc2 = 2, 7826 .access = PL1_R, .type = ARM_CP_CONST, 7827 .accessfn = access_aa64_tid3, 7828 .resetvalue = cpu->isar.id_aa64mmfr2 }, 7829 { .name = "ID_AA64MMFR3_EL1_RESERVED", .state = ARM_CP_STATE_AA64, 7830 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 7, .opc2 = 3, 7831 .access = PL1_R, .type = ARM_CP_CONST, 7832 .accessfn = access_aa64_tid3, 7833 .resetvalue = 0 }, 7834 { .name = "ID_AA64MMFR4_EL1_RESERVED", .state = ARM_CP_STATE_AA64, 7835 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 7, .opc2 = 4, 7836 .access = PL1_R, .type = ARM_CP_CONST, 7837 .accessfn = access_aa64_tid3, 7838 .resetvalue = 0 }, 7839 { .name = "ID_AA64MMFR5_EL1_RESERVED", .state = ARM_CP_STATE_AA64, 7840 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 7, .opc2 = 5, 7841 .access = PL1_R, .type = ARM_CP_CONST, 7842 .accessfn = access_aa64_tid3, 7843 .resetvalue = 0 }, 7844 { .name = "ID_AA64MMFR6_EL1_RESERVED", .state = ARM_CP_STATE_AA64, 7845 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 7, .opc2 = 6, 7846 .access = PL1_R, .type = ARM_CP_CONST, 7847 .accessfn = access_aa64_tid3, 7848 .resetvalue = 0 }, 7849 { .name = "ID_AA64MMFR7_EL1_RESERVED", .state = ARM_CP_STATE_AA64, 7850 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 7, .opc2 = 7, 7851 .access = PL1_R, .type = ARM_CP_CONST, 7852 .accessfn = access_aa64_tid3, 7853 .resetvalue = 0 }, 7854 { .name = "MVFR0_EL1", .state = ARM_CP_STATE_AA64, 7855 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 3, .opc2 = 0, 7856 .access = PL1_R, .type = ARM_CP_CONST, 7857 .accessfn = access_aa64_tid3, 7858 .resetvalue = cpu->isar.mvfr0 }, 7859 { .name = "MVFR1_EL1", .state = ARM_CP_STATE_AA64, 7860 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 3, .opc2 = 1, 7861 .access = PL1_R, .type = ARM_CP_CONST, 7862 .accessfn = access_aa64_tid3, 7863 .resetvalue = cpu->isar.mvfr1 }, 7864 { .name = "MVFR2_EL1", .state = ARM_CP_STATE_AA64, 7865 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 3, .opc2 = 2, 7866 .access = PL1_R, .type = ARM_CP_CONST, 7867 .accessfn = access_aa64_tid3, 7868 .resetvalue = cpu->isar.mvfr2 }, 7869 { .name = "MVFR3_EL1_RESERVED", .state = ARM_CP_STATE_AA64, 7870 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 3, .opc2 = 3, 7871 .access = PL1_R, .type = ARM_CP_CONST, 7872 .accessfn = access_aa64_tid3, 7873 .resetvalue = 0 }, 7874 { .name = "ID_PFR2", .state = ARM_CP_STATE_BOTH, 7875 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 3, .opc2 = 4, 7876 .access = PL1_R, .type = ARM_CP_CONST, 7877 .accessfn = access_aa64_tid3, 7878 .resetvalue = cpu->isar.id_pfr2 }, 7879 { .name = "MVFR5_EL1_RESERVED", .state = ARM_CP_STATE_AA64, 7880 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 3, .opc2 = 5, 7881 .access = PL1_R, .type = ARM_CP_CONST, 7882 .accessfn = access_aa64_tid3, 7883 .resetvalue = 0 }, 7884 { .name = "MVFR6_EL1_RESERVED", .state = ARM_CP_STATE_AA64, 7885 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 3, .opc2 = 6, 7886 .access = PL1_R, .type = ARM_CP_CONST, 7887 .accessfn = access_aa64_tid3, 7888 .resetvalue = 0 }, 7889 { .name = "MVFR7_EL1_RESERVED", .state = ARM_CP_STATE_AA64, 7890 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 3, .opc2 = 7, 7891 .access = PL1_R, .type = ARM_CP_CONST, 7892 .accessfn = access_aa64_tid3, 7893 .resetvalue = 0 }, 7894 { .name = "PMCEID0", .state = ARM_CP_STATE_AA32, 7895 .cp = 15, .opc1 = 0, .crn = 9, .crm = 12, .opc2 = 6, 7896 .access = PL0_R, .accessfn = pmreg_access, .type = ARM_CP_CONST, 7897 .resetvalue = extract64(cpu->pmceid0, 0, 32) }, 7898 { .name = "PMCEID0_EL0", .state = ARM_CP_STATE_AA64, 7899 .opc0 = 3, .opc1 = 3, .crn = 9, .crm = 12, .opc2 = 6, 7900 .access = PL0_R, .accessfn = pmreg_access, .type = ARM_CP_CONST, 7901 .resetvalue = cpu->pmceid0 }, 7902 { .name = "PMCEID1", .state = ARM_CP_STATE_AA32, 7903 .cp = 15, .opc1 = 0, .crn = 9, .crm = 12, .opc2 = 7, 7904 .access = PL0_R, .accessfn = pmreg_access, .type = ARM_CP_CONST, 7905 .resetvalue = extract64(cpu->pmceid1, 0, 32) }, 7906 { .name = "PMCEID1_EL0", .state = ARM_CP_STATE_AA64, 7907 .opc0 = 3, .opc1 = 3, .crn = 9, .crm = 12, .opc2 = 7, 7908 .access = PL0_R, .accessfn = pmreg_access, .type = ARM_CP_CONST, 7909 .resetvalue = cpu->pmceid1 }, 7910 REGINFO_SENTINEL 7911 }; 7912 #ifdef CONFIG_USER_ONLY 7913 ARMCPRegUserSpaceInfo v8_user_idregs[] = { 7914 { .name = "ID_AA64PFR0_EL1", 7915 .exported_bits = 0x000f000f00ff0000, 7916 .fixed_bits = 0x0000000000000011 }, 7917 { .name = "ID_AA64PFR1_EL1", 7918 .exported_bits = 0x00000000000000f0 }, 7919 { .name = "ID_AA64PFR*_EL1_RESERVED", 7920 .is_glob = true }, 7921 { .name = "ID_AA64ZFR0_EL1" }, 7922 { .name = "ID_AA64MMFR0_EL1", 7923 .fixed_bits = 0x00000000ff000000 }, 7924 { .name = "ID_AA64MMFR1_EL1" }, 7925 { .name = "ID_AA64MMFR*_EL1_RESERVED", 7926 .is_glob = true }, 7927 { .name = "ID_AA64DFR0_EL1", 7928 .fixed_bits = 0x0000000000000006 }, 7929 { .name = "ID_AA64DFR1_EL1" }, 7930 { .name = "ID_AA64DFR*_EL1_RESERVED", 7931 .is_glob = true }, 7932 { .name = "ID_AA64AFR*", 7933 .is_glob = true }, 7934 { .name = "ID_AA64ISAR0_EL1", 7935 .exported_bits = 0x00fffffff0fffff0 }, 7936 { .name = "ID_AA64ISAR1_EL1", 7937 .exported_bits = 0x000000f0ffffffff }, 7938 { .name = "ID_AA64ISAR*_EL1_RESERVED", 7939 .is_glob = true }, 7940 REGUSERINFO_SENTINEL 7941 }; 7942 modify_arm_cp_regs(v8_idregs, v8_user_idregs); 7943 #endif 7944 /* RVBAR_EL1 is only implemented if EL1 is the highest EL */ 7945 if (!arm_feature(env, ARM_FEATURE_EL3) && 7946 !arm_feature(env, ARM_FEATURE_EL2)) { 7947 ARMCPRegInfo rvbar = { 7948 .name = "RVBAR_EL1", .state = ARM_CP_STATE_AA64, 7949 .opc0 = 3, .opc1 = 0, .crn = 12, .crm = 0, .opc2 = 1, 7950 .type = ARM_CP_CONST, .access = PL1_R, .resetvalue = cpu->rvbar 7951 }; 7952 define_one_arm_cp_reg(cpu, &rvbar); 7953 } 7954 define_arm_cp_regs(cpu, v8_idregs); 7955 define_arm_cp_regs(cpu, v8_cp_reginfo); 7956 } 7957 if (arm_feature(env, ARM_FEATURE_EL2)) { 7958 uint64_t vmpidr_def = mpidr_read_val(env); 7959 ARMCPRegInfo vpidr_regs[] = { 7960 { .name = "VPIDR", .state = ARM_CP_STATE_AA32, 7961 .cp = 15, .opc1 = 4, .crn = 0, .crm = 0, .opc2 = 0, 7962 .access = PL2_RW, .accessfn = access_el3_aa32ns, 7963 .resetvalue = cpu->midr, .type = ARM_CP_ALIAS, 7964 .fieldoffset = offsetoflow32(CPUARMState, cp15.vpidr_el2) }, 7965 { .name = "VPIDR_EL2", .state = ARM_CP_STATE_AA64, 7966 .opc0 = 3, .opc1 = 4, .crn = 0, .crm = 0, .opc2 = 0, 7967 .access = PL2_RW, .resetvalue = cpu->midr, 7968 .fieldoffset = offsetof(CPUARMState, cp15.vpidr_el2) }, 7969 { .name = "VMPIDR", .state = ARM_CP_STATE_AA32, 7970 .cp = 15, .opc1 = 4, .crn = 0, .crm = 0, .opc2 = 5, 7971 .access = PL2_RW, .accessfn = access_el3_aa32ns, 7972 .resetvalue = vmpidr_def, .type = ARM_CP_ALIAS, 7973 .fieldoffset = offsetoflow32(CPUARMState, cp15.vmpidr_el2) }, 7974 { .name = "VMPIDR_EL2", .state = ARM_CP_STATE_AA64, 7975 .opc0 = 3, .opc1 = 4, .crn = 0, .crm = 0, .opc2 = 5, 7976 .access = PL2_RW, 7977 .resetvalue = vmpidr_def, 7978 .fieldoffset = offsetof(CPUARMState, cp15.vmpidr_el2) }, 7979 REGINFO_SENTINEL 7980 }; 7981 define_arm_cp_regs(cpu, vpidr_regs); 7982 define_arm_cp_regs(cpu, el2_cp_reginfo); 7983 if (arm_feature(env, ARM_FEATURE_V8)) { 7984 define_arm_cp_regs(cpu, el2_v8_cp_reginfo); 7985 } 7986 if (cpu_isar_feature(aa64_sel2, cpu)) { 7987 define_arm_cp_regs(cpu, el2_sec_cp_reginfo); 7988 } 7989 /* RVBAR_EL2 is only implemented if EL2 is the highest EL */ 7990 if (!arm_feature(env, ARM_FEATURE_EL3)) { 7991 ARMCPRegInfo rvbar = { 7992 .name = "RVBAR_EL2", .state = ARM_CP_STATE_AA64, 7993 .opc0 = 3, .opc1 = 4, .crn = 12, .crm = 0, .opc2 = 1, 7994 .type = ARM_CP_CONST, .access = PL2_R, .resetvalue = cpu->rvbar 7995 }; 7996 define_one_arm_cp_reg(cpu, &rvbar); 7997 } 7998 } else { 7999 /* If EL2 is missing but higher ELs are enabled, we need to 8000 * register the no_el2 reginfos. 8001 */ 8002 if (arm_feature(env, ARM_FEATURE_EL3)) { 8003 /* When EL3 exists but not EL2, VPIDR and VMPIDR take the value 8004 * of MIDR_EL1 and MPIDR_EL1. 8005 */ 8006 ARMCPRegInfo vpidr_regs[] = { 8007 { .name = "VPIDR_EL2", .state = ARM_CP_STATE_BOTH, 8008 .opc0 = 3, .opc1 = 4, .crn = 0, .crm = 0, .opc2 = 0, 8009 .access = PL2_RW, .accessfn = access_el3_aa32ns, 8010 .type = ARM_CP_CONST, .resetvalue = cpu->midr, 8011 .fieldoffset = offsetof(CPUARMState, cp15.vpidr_el2) }, 8012 { .name = "VMPIDR_EL2", .state = ARM_CP_STATE_BOTH, 8013 .opc0 = 3, .opc1 = 4, .crn = 0, .crm = 0, .opc2 = 5, 8014 .access = PL2_RW, .accessfn = access_el3_aa32ns, 8015 .type = ARM_CP_NO_RAW, 8016 .writefn = arm_cp_write_ignore, .readfn = mpidr_read }, 8017 REGINFO_SENTINEL 8018 }; 8019 define_arm_cp_regs(cpu, vpidr_regs); 8020 define_arm_cp_regs(cpu, el3_no_el2_cp_reginfo); 8021 if (arm_feature(env, ARM_FEATURE_V8)) { 8022 define_arm_cp_regs(cpu, el3_no_el2_v8_cp_reginfo); 8023 } 8024 } 8025 } 8026 if (arm_feature(env, ARM_FEATURE_EL3)) { 8027 define_arm_cp_regs(cpu, el3_cp_reginfo); 8028 ARMCPRegInfo el3_regs[] = { 8029 { .name = "RVBAR_EL3", .state = ARM_CP_STATE_AA64, 8030 .opc0 = 3, .opc1 = 6, .crn = 12, .crm = 0, .opc2 = 1, 8031 .type = ARM_CP_CONST, .access = PL3_R, .resetvalue = cpu->rvbar }, 8032 { .name = "SCTLR_EL3", .state = ARM_CP_STATE_AA64, 8033 .opc0 = 3, .opc1 = 6, .crn = 1, .crm = 0, .opc2 = 0, 8034 .access = PL3_RW, 8035 .raw_writefn = raw_write, .writefn = sctlr_write, 8036 .fieldoffset = offsetof(CPUARMState, cp15.sctlr_el[3]), 8037 .resetvalue = cpu->reset_sctlr }, 8038 REGINFO_SENTINEL 8039 }; 8040 8041 define_arm_cp_regs(cpu, el3_regs); 8042 } 8043 /* The behaviour of NSACR is sufficiently various that we don't 8044 * try to describe it in a single reginfo: 8045 * if EL3 is 64 bit, then trap to EL3 from S EL1, 8046 * reads as constant 0xc00 from NS EL1 and NS EL2 8047 * if EL3 is 32 bit, then RW at EL3, RO at NS EL1 and NS EL2 8048 * if v7 without EL3, register doesn't exist 8049 * if v8 without EL3, reads as constant 0xc00 from NS EL1 and NS EL2 8050 */ 8051 if (arm_feature(env, ARM_FEATURE_EL3)) { 8052 if (arm_feature(env, ARM_FEATURE_AARCH64)) { 8053 ARMCPRegInfo nsacr = { 8054 .name = "NSACR", .type = ARM_CP_CONST, 8055 .cp = 15, .opc1 = 0, .crn = 1, .crm = 1, .opc2 = 2, 8056 .access = PL1_RW, .accessfn = nsacr_access, 8057 .resetvalue = 0xc00 8058 }; 8059 define_one_arm_cp_reg(cpu, &nsacr); 8060 } else { 8061 ARMCPRegInfo nsacr = { 8062 .name = "NSACR", 8063 .cp = 15, .opc1 = 0, .crn = 1, .crm = 1, .opc2 = 2, 8064 .access = PL3_RW | PL1_R, 8065 .resetvalue = 0, 8066 .fieldoffset = offsetof(CPUARMState, cp15.nsacr) 8067 }; 8068 define_one_arm_cp_reg(cpu, &nsacr); 8069 } 8070 } else { 8071 if (arm_feature(env, ARM_FEATURE_V8)) { 8072 ARMCPRegInfo nsacr = { 8073 .name = "NSACR", .type = ARM_CP_CONST, 8074 .cp = 15, .opc1 = 0, .crn = 1, .crm = 1, .opc2 = 2, 8075 .access = PL1_R, 8076 .resetvalue = 0xc00 8077 }; 8078 define_one_arm_cp_reg(cpu, &nsacr); 8079 } 8080 } 8081 8082 if (arm_feature(env, ARM_FEATURE_PMSA)) { 8083 if (arm_feature(env, ARM_FEATURE_V6)) { 8084 /* PMSAv6 not implemented */ 8085 assert(arm_feature(env, ARM_FEATURE_V7)); 8086 define_arm_cp_regs(cpu, vmsa_pmsa_cp_reginfo); 8087 define_arm_cp_regs(cpu, pmsav7_cp_reginfo); 8088 } else { 8089 define_arm_cp_regs(cpu, pmsav5_cp_reginfo); 8090 } 8091 } else { 8092 define_arm_cp_regs(cpu, vmsa_pmsa_cp_reginfo); 8093 define_arm_cp_regs(cpu, vmsa_cp_reginfo); 8094 /* TTCBR2 is introduced with ARMv8.2-AA32HPD. */ 8095 if (cpu_isar_feature(aa32_hpd, cpu)) { 8096 define_one_arm_cp_reg(cpu, &ttbcr2_reginfo); 8097 } 8098 } 8099 if (arm_feature(env, ARM_FEATURE_THUMB2EE)) { 8100 define_arm_cp_regs(cpu, t2ee_cp_reginfo); 8101 } 8102 if (arm_feature(env, ARM_FEATURE_GENERIC_TIMER)) { 8103 define_arm_cp_regs(cpu, generic_timer_cp_reginfo); 8104 } 8105 if (arm_feature(env, ARM_FEATURE_VAPA)) { 8106 define_arm_cp_regs(cpu, vapa_cp_reginfo); 8107 } 8108 if (arm_feature(env, ARM_FEATURE_CACHE_TEST_CLEAN)) { 8109 define_arm_cp_regs(cpu, cache_test_clean_cp_reginfo); 8110 } 8111 if (arm_feature(env, ARM_FEATURE_CACHE_DIRTY_REG)) { 8112 define_arm_cp_regs(cpu, cache_dirty_status_cp_reginfo); 8113 } 8114 if (arm_feature(env, ARM_FEATURE_CACHE_BLOCK_OPS)) { 8115 define_arm_cp_regs(cpu, cache_block_ops_cp_reginfo); 8116 } 8117 if (arm_feature(env, ARM_FEATURE_OMAPCP)) { 8118 define_arm_cp_regs(cpu, omap_cp_reginfo); 8119 } 8120 if (arm_feature(env, ARM_FEATURE_STRONGARM)) { 8121 define_arm_cp_regs(cpu, strongarm_cp_reginfo); 8122 } 8123 if (arm_feature(env, ARM_FEATURE_XSCALE)) { 8124 define_arm_cp_regs(cpu, xscale_cp_reginfo); 8125 } 8126 if (arm_feature(env, ARM_FEATURE_DUMMY_C15_REGS)) { 8127 define_arm_cp_regs(cpu, dummy_c15_cp_reginfo); 8128 } 8129 if (arm_feature(env, ARM_FEATURE_LPAE)) { 8130 define_arm_cp_regs(cpu, lpae_cp_reginfo); 8131 } 8132 if (cpu_isar_feature(aa32_jazelle, cpu)) { 8133 define_arm_cp_regs(cpu, jazelle_regs); 8134 } 8135 /* Slightly awkwardly, the OMAP and StrongARM cores need all of 8136 * cp15 crn=0 to be writes-ignored, whereas for other cores they should 8137 * be read-only (ie write causes UNDEF exception). 8138 */ 8139 { 8140 ARMCPRegInfo id_pre_v8_midr_cp_reginfo[] = { 8141 /* Pre-v8 MIDR space. 8142 * Note that the MIDR isn't a simple constant register because 8143 * of the TI925 behaviour where writes to another register can 8144 * cause the MIDR value to change. 8145 * 8146 * Unimplemented registers in the c15 0 0 0 space default to 8147 * MIDR. Define MIDR first as this entire space, then CTR, TCMTR 8148 * and friends override accordingly. 8149 */ 8150 { .name = "MIDR", 8151 .cp = 15, .crn = 0, .crm = 0, .opc1 = 0, .opc2 = CP_ANY, 8152 .access = PL1_R, .resetvalue = cpu->midr, 8153 .writefn = arm_cp_write_ignore, .raw_writefn = raw_write, 8154 .readfn = midr_read, 8155 .fieldoffset = offsetof(CPUARMState, cp15.c0_cpuid), 8156 .type = ARM_CP_OVERRIDE }, 8157 /* crn = 0 op1 = 0 crm = 3..7 : currently unassigned; we RAZ. */ 8158 { .name = "DUMMY", 8159 .cp = 15, .crn = 0, .crm = 3, .opc1 = 0, .opc2 = CP_ANY, 8160 .access = PL1_R, .type = ARM_CP_CONST, .resetvalue = 0 }, 8161 { .name = "DUMMY", 8162 .cp = 15, .crn = 0, .crm = 4, .opc1 = 0, .opc2 = CP_ANY, 8163 .access = PL1_R, .type = ARM_CP_CONST, .resetvalue = 0 }, 8164 { .name = "DUMMY", 8165 .cp = 15, .crn = 0, .crm = 5, .opc1 = 0, .opc2 = CP_ANY, 8166 .access = PL1_R, .type = ARM_CP_CONST, .resetvalue = 0 }, 8167 { .name = "DUMMY", 8168 .cp = 15, .crn = 0, .crm = 6, .opc1 = 0, .opc2 = CP_ANY, 8169 .access = PL1_R, .type = ARM_CP_CONST, .resetvalue = 0 }, 8170 { .name = "DUMMY", 8171 .cp = 15, .crn = 0, .crm = 7, .opc1 = 0, .opc2 = CP_ANY, 8172 .access = PL1_R, .type = ARM_CP_CONST, .resetvalue = 0 }, 8173 REGINFO_SENTINEL 8174 }; 8175 ARMCPRegInfo id_v8_midr_cp_reginfo[] = { 8176 { .name = "MIDR_EL1", .state = ARM_CP_STATE_BOTH, 8177 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 0, .opc2 = 0, 8178 .access = PL1_R, .type = ARM_CP_NO_RAW, .resetvalue = cpu->midr, 8179 .fieldoffset = offsetof(CPUARMState, cp15.c0_cpuid), 8180 .readfn = midr_read }, 8181 /* crn = 0 op1 = 0 crm = 0 op2 = 4,7 : AArch32 aliases of MIDR */ 8182 { .name = "MIDR", .type = ARM_CP_ALIAS | ARM_CP_CONST, 8183 .cp = 15, .crn = 0, .crm = 0, .opc1 = 0, .opc2 = 4, 8184 .access = PL1_R, .resetvalue = cpu->midr }, 8185 { .name = "MIDR", .type = ARM_CP_ALIAS | ARM_CP_CONST, 8186 .cp = 15, .crn = 0, .crm = 0, .opc1 = 0, .opc2 = 7, 8187 .access = PL1_R, .resetvalue = cpu->midr }, 8188 { .name = "REVIDR_EL1", .state = ARM_CP_STATE_BOTH, 8189 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 0, .opc2 = 6, 8190 .access = PL1_R, 8191 .accessfn = access_aa64_tid1, 8192 .type = ARM_CP_CONST, .resetvalue = cpu->revidr }, 8193 REGINFO_SENTINEL 8194 }; 8195 ARMCPRegInfo id_cp_reginfo[] = { 8196 /* These are common to v8 and pre-v8 */ 8197 { .name = "CTR", 8198 .cp = 15, .crn = 0, .crm = 0, .opc1 = 0, .opc2 = 1, 8199 .access = PL1_R, .accessfn = ctr_el0_access, 8200 .type = ARM_CP_CONST, .resetvalue = cpu->ctr }, 8201 { .name = "CTR_EL0", .state = ARM_CP_STATE_AA64, 8202 .opc0 = 3, .opc1 = 3, .opc2 = 1, .crn = 0, .crm = 0, 8203 .access = PL0_R, .accessfn = ctr_el0_access, 8204 .type = ARM_CP_CONST, .resetvalue = cpu->ctr }, 8205 /* TCMTR and TLBTR exist in v8 but have no 64-bit versions */ 8206 { .name = "TCMTR", 8207 .cp = 15, .crn = 0, .crm = 0, .opc1 = 0, .opc2 = 2, 8208 .access = PL1_R, 8209 .accessfn = access_aa32_tid1, 8210 .type = ARM_CP_CONST, .resetvalue = 0 }, 8211 REGINFO_SENTINEL 8212 }; 8213 /* TLBTR is specific to VMSA */ 8214 ARMCPRegInfo id_tlbtr_reginfo = { 8215 .name = "TLBTR", 8216 .cp = 15, .crn = 0, .crm = 0, .opc1 = 0, .opc2 = 3, 8217 .access = PL1_R, 8218 .accessfn = access_aa32_tid1, 8219 .type = ARM_CP_CONST, .resetvalue = 0, 8220 }; 8221 /* MPUIR is specific to PMSA V6+ */ 8222 ARMCPRegInfo id_mpuir_reginfo = { 8223 .name = "MPUIR", 8224 .cp = 15, .crn = 0, .crm = 0, .opc1 = 0, .opc2 = 4, 8225 .access = PL1_R, .type = ARM_CP_CONST, 8226 .resetvalue = cpu->pmsav7_dregion << 8 8227 }; 8228 ARMCPRegInfo crn0_wi_reginfo = { 8229 .name = "CRN0_WI", .cp = 15, .crn = 0, .crm = CP_ANY, 8230 .opc1 = CP_ANY, .opc2 = CP_ANY, .access = PL1_W, 8231 .type = ARM_CP_NOP | ARM_CP_OVERRIDE 8232 }; 8233 #ifdef CONFIG_USER_ONLY 8234 ARMCPRegUserSpaceInfo id_v8_user_midr_cp_reginfo[] = { 8235 { .name = "MIDR_EL1", 8236 .exported_bits = 0x00000000ffffffff }, 8237 { .name = "REVIDR_EL1" }, 8238 REGUSERINFO_SENTINEL 8239 }; 8240 modify_arm_cp_regs(id_v8_midr_cp_reginfo, id_v8_user_midr_cp_reginfo); 8241 #endif 8242 if (arm_feature(env, ARM_FEATURE_OMAPCP) || 8243 arm_feature(env, ARM_FEATURE_STRONGARM)) { 8244 ARMCPRegInfo *r; 8245 /* Register the blanket "writes ignored" value first to cover the 8246 * whole space. Then update the specific ID registers to allow write 8247 * access, so that they ignore writes rather than causing them to 8248 * UNDEF. 8249 */ 8250 define_one_arm_cp_reg(cpu, &crn0_wi_reginfo); 8251 for (r = id_pre_v8_midr_cp_reginfo; 8252 r->type != ARM_CP_SENTINEL; r++) { 8253 r->access = PL1_RW; 8254 } 8255 for (r = id_cp_reginfo; r->type != ARM_CP_SENTINEL; r++) { 8256 r->access = PL1_RW; 8257 } 8258 id_mpuir_reginfo.access = PL1_RW; 8259 id_tlbtr_reginfo.access = PL1_RW; 8260 } 8261 if (arm_feature(env, ARM_FEATURE_V8)) { 8262 define_arm_cp_regs(cpu, id_v8_midr_cp_reginfo); 8263 } else { 8264 define_arm_cp_regs(cpu, id_pre_v8_midr_cp_reginfo); 8265 } 8266 define_arm_cp_regs(cpu, id_cp_reginfo); 8267 if (!arm_feature(env, ARM_FEATURE_PMSA)) { 8268 define_one_arm_cp_reg(cpu, &id_tlbtr_reginfo); 8269 } else if (arm_feature(env, ARM_FEATURE_V7)) { 8270 define_one_arm_cp_reg(cpu, &id_mpuir_reginfo); 8271 } 8272 } 8273 8274 if (arm_feature(env, ARM_FEATURE_MPIDR)) { 8275 ARMCPRegInfo mpidr_cp_reginfo[] = { 8276 { .name = "MPIDR_EL1", .state = ARM_CP_STATE_BOTH, 8277 .opc0 = 3, .crn = 0, .crm = 0, .opc1 = 0, .opc2 = 5, 8278 .access = PL1_R, .readfn = mpidr_read, .type = ARM_CP_NO_RAW }, 8279 REGINFO_SENTINEL 8280 }; 8281 #ifdef CONFIG_USER_ONLY 8282 ARMCPRegUserSpaceInfo mpidr_user_cp_reginfo[] = { 8283 { .name = "MPIDR_EL1", 8284 .fixed_bits = 0x0000000080000000 }, 8285 REGUSERINFO_SENTINEL 8286 }; 8287 modify_arm_cp_regs(mpidr_cp_reginfo, mpidr_user_cp_reginfo); 8288 #endif 8289 define_arm_cp_regs(cpu, mpidr_cp_reginfo); 8290 } 8291 8292 if (arm_feature(env, ARM_FEATURE_AUXCR)) { 8293 ARMCPRegInfo auxcr_reginfo[] = { 8294 { .name = "ACTLR_EL1", .state = ARM_CP_STATE_BOTH, 8295 .opc0 = 3, .opc1 = 0, .crn = 1, .crm = 0, .opc2 = 1, 8296 .access = PL1_RW, .accessfn = access_tacr, 8297 .type = ARM_CP_CONST, .resetvalue = cpu->reset_auxcr }, 8298 { .name = "ACTLR_EL2", .state = ARM_CP_STATE_BOTH, 8299 .opc0 = 3, .opc1 = 4, .crn = 1, .crm = 0, .opc2 = 1, 8300 .access = PL2_RW, .type = ARM_CP_CONST, 8301 .resetvalue = 0 }, 8302 { .name = "ACTLR_EL3", .state = ARM_CP_STATE_AA64, 8303 .opc0 = 3, .opc1 = 6, .crn = 1, .crm = 0, .opc2 = 1, 8304 .access = PL3_RW, .type = ARM_CP_CONST, 8305 .resetvalue = 0 }, 8306 REGINFO_SENTINEL 8307 }; 8308 define_arm_cp_regs(cpu, auxcr_reginfo); 8309 if (cpu_isar_feature(aa32_ac2, cpu)) { 8310 define_arm_cp_regs(cpu, actlr2_hactlr2_reginfo); 8311 } 8312 } 8313 8314 if (arm_feature(env, ARM_FEATURE_CBAR)) { 8315 /* 8316 * CBAR is IMPDEF, but common on Arm Cortex-A implementations. 8317 * There are two flavours: 8318 * (1) older 32-bit only cores have a simple 32-bit CBAR 8319 * (2) 64-bit cores have a 64-bit CBAR visible to AArch64, plus a 8320 * 32-bit register visible to AArch32 at a different encoding 8321 * to the "flavour 1" register and with the bits rearranged to 8322 * be able to squash a 64-bit address into the 32-bit view. 8323 * We distinguish the two via the ARM_FEATURE_AARCH64 flag, but 8324 * in future if we support AArch32-only configs of some of the 8325 * AArch64 cores we might need to add a specific feature flag 8326 * to indicate cores with "flavour 2" CBAR. 8327 */ 8328 if (arm_feature(env, ARM_FEATURE_AARCH64)) { 8329 /* 32 bit view is [31:18] 0...0 [43:32]. */ 8330 uint32_t cbar32 = (extract64(cpu->reset_cbar, 18, 14) << 18) 8331 | extract64(cpu->reset_cbar, 32, 12); 8332 ARMCPRegInfo cbar_reginfo[] = { 8333 { .name = "CBAR", 8334 .type = ARM_CP_CONST, 8335 .cp = 15, .crn = 15, .crm = 3, .opc1 = 1, .opc2 = 0, 8336 .access = PL1_R, .resetvalue = cbar32 }, 8337 { .name = "CBAR_EL1", .state = ARM_CP_STATE_AA64, 8338 .type = ARM_CP_CONST, 8339 .opc0 = 3, .opc1 = 1, .crn = 15, .crm = 3, .opc2 = 0, 8340 .access = PL1_R, .resetvalue = cpu->reset_cbar }, 8341 REGINFO_SENTINEL 8342 }; 8343 /* We don't implement a r/w 64 bit CBAR currently */ 8344 assert(arm_feature(env, ARM_FEATURE_CBAR_RO)); 8345 define_arm_cp_regs(cpu, cbar_reginfo); 8346 } else { 8347 ARMCPRegInfo cbar = { 8348 .name = "CBAR", 8349 .cp = 15, .crn = 15, .crm = 0, .opc1 = 4, .opc2 = 0, 8350 .access = PL1_R|PL3_W, .resetvalue = cpu->reset_cbar, 8351 .fieldoffset = offsetof(CPUARMState, 8352 cp15.c15_config_base_address) 8353 }; 8354 if (arm_feature(env, ARM_FEATURE_CBAR_RO)) { 8355 cbar.access = PL1_R; 8356 cbar.fieldoffset = 0; 8357 cbar.type = ARM_CP_CONST; 8358 } 8359 define_one_arm_cp_reg(cpu, &cbar); 8360 } 8361 } 8362 8363 if (arm_feature(env, ARM_FEATURE_VBAR)) { 8364 ARMCPRegInfo vbar_cp_reginfo[] = { 8365 { .name = "VBAR", .state = ARM_CP_STATE_BOTH, 8366 .opc0 = 3, .crn = 12, .crm = 0, .opc1 = 0, .opc2 = 0, 8367 .access = PL1_RW, .writefn = vbar_write, 8368 .bank_fieldoffsets = { offsetof(CPUARMState, cp15.vbar_s), 8369 offsetof(CPUARMState, cp15.vbar_ns) }, 8370 .resetvalue = 0 }, 8371 REGINFO_SENTINEL 8372 }; 8373 define_arm_cp_regs(cpu, vbar_cp_reginfo); 8374 } 8375 8376 /* Generic registers whose values depend on the implementation */ 8377 { 8378 ARMCPRegInfo sctlr = { 8379 .name = "SCTLR", .state = ARM_CP_STATE_BOTH, 8380 .opc0 = 3, .opc1 = 0, .crn = 1, .crm = 0, .opc2 = 0, 8381 .access = PL1_RW, .accessfn = access_tvm_trvm, 8382 .bank_fieldoffsets = { offsetof(CPUARMState, cp15.sctlr_s), 8383 offsetof(CPUARMState, cp15.sctlr_ns) }, 8384 .writefn = sctlr_write, .resetvalue = cpu->reset_sctlr, 8385 .raw_writefn = raw_write, 8386 }; 8387 if (arm_feature(env, ARM_FEATURE_XSCALE)) { 8388 /* Normally we would always end the TB on an SCTLR write, but Linux 8389 * arch/arm/mach-pxa/sleep.S expects two instructions following 8390 * an MMU enable to execute from cache. Imitate this behaviour. 8391 */ 8392 sctlr.type |= ARM_CP_SUPPRESS_TB_END; 8393 } 8394 define_one_arm_cp_reg(cpu, &sctlr); 8395 } 8396 8397 if (cpu_isar_feature(aa64_lor, cpu)) { 8398 define_arm_cp_regs(cpu, lor_reginfo); 8399 } 8400 if (cpu_isar_feature(aa64_pan, cpu)) { 8401 define_one_arm_cp_reg(cpu, &pan_reginfo); 8402 } 8403 #ifndef CONFIG_USER_ONLY 8404 if (cpu_isar_feature(aa64_ats1e1, cpu)) { 8405 define_arm_cp_regs(cpu, ats1e1_reginfo); 8406 } 8407 if (cpu_isar_feature(aa32_ats1e1, cpu)) { 8408 define_arm_cp_regs(cpu, ats1cp_reginfo); 8409 } 8410 #endif 8411 if (cpu_isar_feature(aa64_uao, cpu)) { 8412 define_one_arm_cp_reg(cpu, &uao_reginfo); 8413 } 8414 8415 if (cpu_isar_feature(aa64_dit, cpu)) { 8416 define_one_arm_cp_reg(cpu, &dit_reginfo); 8417 } 8418 if (cpu_isar_feature(aa64_ssbs, cpu)) { 8419 define_one_arm_cp_reg(cpu, &ssbs_reginfo); 8420 } 8421 8422 if (arm_feature(env, ARM_FEATURE_EL2) && cpu_isar_feature(aa64_vh, cpu)) { 8423 define_arm_cp_regs(cpu, vhe_reginfo); 8424 } 8425 8426 if (cpu_isar_feature(aa64_sve, cpu)) { 8427 define_one_arm_cp_reg(cpu, &zcr_el1_reginfo); 8428 if (arm_feature(env, ARM_FEATURE_EL2)) { 8429 define_one_arm_cp_reg(cpu, &zcr_el2_reginfo); 8430 } else { 8431 define_one_arm_cp_reg(cpu, &zcr_no_el2_reginfo); 8432 } 8433 if (arm_feature(env, ARM_FEATURE_EL3)) { 8434 define_one_arm_cp_reg(cpu, &zcr_el3_reginfo); 8435 } 8436 } 8437 8438 #ifdef TARGET_AARCH64 8439 if (cpu_isar_feature(aa64_pauth, cpu)) { 8440 define_arm_cp_regs(cpu, pauth_reginfo); 8441 } 8442 if (cpu_isar_feature(aa64_rndr, cpu)) { 8443 define_arm_cp_regs(cpu, rndr_reginfo); 8444 } 8445 if (cpu_isar_feature(aa64_tlbirange, cpu)) { 8446 define_arm_cp_regs(cpu, tlbirange_reginfo); 8447 } 8448 if (cpu_isar_feature(aa64_tlbios, cpu)) { 8449 define_arm_cp_regs(cpu, tlbios_reginfo); 8450 } 8451 #ifndef CONFIG_USER_ONLY 8452 /* Data Cache clean instructions up to PoP */ 8453 if (cpu_isar_feature(aa64_dcpop, cpu)) { 8454 define_one_arm_cp_reg(cpu, dcpop_reg); 8455 8456 if (cpu_isar_feature(aa64_dcpodp, cpu)) { 8457 define_one_arm_cp_reg(cpu, dcpodp_reg); 8458 } 8459 } 8460 #endif /*CONFIG_USER_ONLY*/ 8461 8462 /* 8463 * If full MTE is enabled, add all of the system registers. 8464 * If only "instructions available at EL0" are enabled, 8465 * then define only a RAZ/WI version of PSTATE.TCO. 8466 */ 8467 if (cpu_isar_feature(aa64_mte, cpu)) { 8468 define_arm_cp_regs(cpu, mte_reginfo); 8469 define_arm_cp_regs(cpu, mte_el0_cacheop_reginfo); 8470 } else if (cpu_isar_feature(aa64_mte_insn_reg, cpu)) { 8471 define_arm_cp_regs(cpu, mte_tco_ro_reginfo); 8472 define_arm_cp_regs(cpu, mte_el0_cacheop_reginfo); 8473 } 8474 #endif 8475 8476 if (cpu_isar_feature(any_predinv, cpu)) { 8477 define_arm_cp_regs(cpu, predinv_reginfo); 8478 } 8479 8480 if (cpu_isar_feature(any_ccidx, cpu)) { 8481 define_arm_cp_regs(cpu, ccsidr2_reginfo); 8482 } 8483 8484 #ifndef CONFIG_USER_ONLY 8485 /* 8486 * Register redirections and aliases must be done last, 8487 * after the registers from the other extensions have been defined. 8488 */ 8489 if (arm_feature(env, ARM_FEATURE_EL2) && cpu_isar_feature(aa64_vh, cpu)) { 8490 define_arm_vh_e2h_redirects_aliases(cpu); 8491 } 8492 #endif 8493 } 8494 8495 /* Sort alphabetically by type name, except for "any". */ 8496 static gint arm_cpu_list_compare(gconstpointer a, gconstpointer b) 8497 { 8498 ObjectClass *class_a = (ObjectClass *)a; 8499 ObjectClass *class_b = (ObjectClass *)b; 8500 const char *name_a, *name_b; 8501 8502 name_a = object_class_get_name(class_a); 8503 name_b = object_class_get_name(class_b); 8504 if (strcmp(name_a, "any-" TYPE_ARM_CPU) == 0) { 8505 return 1; 8506 } else if (strcmp(name_b, "any-" TYPE_ARM_CPU) == 0) { 8507 return -1; 8508 } else { 8509 return strcmp(name_a, name_b); 8510 } 8511 } 8512 8513 static void arm_cpu_list_entry(gpointer data, gpointer user_data) 8514 { 8515 ObjectClass *oc = data; 8516 const char *typename; 8517 char *name; 8518 8519 typename = object_class_get_name(oc); 8520 name = g_strndup(typename, strlen(typename) - strlen("-" TYPE_ARM_CPU)); 8521 qemu_printf(" %s\n", name); 8522 g_free(name); 8523 } 8524 8525 void arm_cpu_list(void) 8526 { 8527 GSList *list; 8528 8529 list = object_class_get_list(TYPE_ARM_CPU, false); 8530 list = g_slist_sort(list, arm_cpu_list_compare); 8531 qemu_printf("Available CPUs:\n"); 8532 g_slist_foreach(list, arm_cpu_list_entry, NULL); 8533 g_slist_free(list); 8534 } 8535 8536 static void arm_cpu_add_definition(gpointer data, gpointer user_data) 8537 { 8538 ObjectClass *oc = data; 8539 CpuDefinitionInfoList **cpu_list = user_data; 8540 CpuDefinitionInfo *info; 8541 const char *typename; 8542 8543 typename = object_class_get_name(oc); 8544 info = g_malloc0(sizeof(*info)); 8545 info->name = g_strndup(typename, 8546 strlen(typename) - strlen("-" TYPE_ARM_CPU)); 8547 info->q_typename = g_strdup(typename); 8548 8549 QAPI_LIST_PREPEND(*cpu_list, info); 8550 } 8551 8552 CpuDefinitionInfoList *qmp_query_cpu_definitions(Error **errp) 8553 { 8554 CpuDefinitionInfoList *cpu_list = NULL; 8555 GSList *list; 8556 8557 list = object_class_get_list(TYPE_ARM_CPU, false); 8558 g_slist_foreach(list, arm_cpu_add_definition, &cpu_list); 8559 g_slist_free(list); 8560 8561 return cpu_list; 8562 } 8563 8564 static void add_cpreg_to_hashtable(ARMCPU *cpu, const ARMCPRegInfo *r, 8565 void *opaque, int state, int secstate, 8566 int crm, int opc1, int opc2, 8567 const char *name) 8568 { 8569 /* Private utility function for define_one_arm_cp_reg_with_opaque(): 8570 * add a single reginfo struct to the hash table. 8571 */ 8572 uint32_t *key = g_new(uint32_t, 1); 8573 ARMCPRegInfo *r2 = g_memdup(r, sizeof(ARMCPRegInfo)); 8574 int is64 = (r->type & ARM_CP_64BIT) ? 1 : 0; 8575 int ns = (secstate & ARM_CP_SECSTATE_NS) ? 1 : 0; 8576 8577 r2->name = g_strdup(name); 8578 /* Reset the secure state to the specific incoming state. This is 8579 * necessary as the register may have been defined with both states. 8580 */ 8581 r2->secure = secstate; 8582 8583 if (r->bank_fieldoffsets[0] && r->bank_fieldoffsets[1]) { 8584 /* Register is banked (using both entries in array). 8585 * Overwriting fieldoffset as the array is only used to define 8586 * banked registers but later only fieldoffset is used. 8587 */ 8588 r2->fieldoffset = r->bank_fieldoffsets[ns]; 8589 } 8590 8591 if (state == ARM_CP_STATE_AA32) { 8592 if (r->bank_fieldoffsets[0] && r->bank_fieldoffsets[1]) { 8593 /* If the register is banked then we don't need to migrate or 8594 * reset the 32-bit instance in certain cases: 8595 * 8596 * 1) If the register has both 32-bit and 64-bit instances then we 8597 * can count on the 64-bit instance taking care of the 8598 * non-secure bank. 8599 * 2) If ARMv8 is enabled then we can count on a 64-bit version 8600 * taking care of the secure bank. This requires that separate 8601 * 32 and 64-bit definitions are provided. 8602 */ 8603 if ((r->state == ARM_CP_STATE_BOTH && ns) || 8604 (arm_feature(&cpu->env, ARM_FEATURE_V8) && !ns)) { 8605 r2->type |= ARM_CP_ALIAS; 8606 } 8607 } else if ((secstate != r->secure) && !ns) { 8608 /* The register is not banked so we only want to allow migration of 8609 * the non-secure instance. 8610 */ 8611 r2->type |= ARM_CP_ALIAS; 8612 } 8613 8614 if (r->state == ARM_CP_STATE_BOTH) { 8615 /* We assume it is a cp15 register if the .cp field is left unset. 8616 */ 8617 if (r2->cp == 0) { 8618 r2->cp = 15; 8619 } 8620 8621 #ifdef HOST_WORDS_BIGENDIAN 8622 if (r2->fieldoffset) { 8623 r2->fieldoffset += sizeof(uint32_t); 8624 } 8625 #endif 8626 } 8627 } 8628 if (state == ARM_CP_STATE_AA64) { 8629 /* To allow abbreviation of ARMCPRegInfo 8630 * definitions, we treat cp == 0 as equivalent to 8631 * the value for "standard guest-visible sysreg". 8632 * STATE_BOTH definitions are also always "standard 8633 * sysreg" in their AArch64 view (the .cp value may 8634 * be non-zero for the benefit of the AArch32 view). 8635 */ 8636 if (r->cp == 0 || r->state == ARM_CP_STATE_BOTH) { 8637 r2->cp = CP_REG_ARM64_SYSREG_CP; 8638 } 8639 *key = ENCODE_AA64_CP_REG(r2->cp, r2->crn, crm, 8640 r2->opc0, opc1, opc2); 8641 } else { 8642 *key = ENCODE_CP_REG(r2->cp, is64, ns, r2->crn, crm, opc1, opc2); 8643 } 8644 if (opaque) { 8645 r2->opaque = opaque; 8646 } 8647 /* reginfo passed to helpers is correct for the actual access, 8648 * and is never ARM_CP_STATE_BOTH: 8649 */ 8650 r2->state = state; 8651 /* Make sure reginfo passed to helpers for wildcarded regs 8652 * has the correct crm/opc1/opc2 for this reg, not CP_ANY: 8653 */ 8654 r2->crm = crm; 8655 r2->opc1 = opc1; 8656 r2->opc2 = opc2; 8657 /* By convention, for wildcarded registers only the first 8658 * entry is used for migration; the others are marked as 8659 * ALIAS so we don't try to transfer the register 8660 * multiple times. Special registers (ie NOP/WFI) are 8661 * never migratable and not even raw-accessible. 8662 */ 8663 if ((r->type & ARM_CP_SPECIAL)) { 8664 r2->type |= ARM_CP_NO_RAW; 8665 } 8666 if (((r->crm == CP_ANY) && crm != 0) || 8667 ((r->opc1 == CP_ANY) && opc1 != 0) || 8668 ((r->opc2 == CP_ANY) && opc2 != 0)) { 8669 r2->type |= ARM_CP_ALIAS | ARM_CP_NO_GDB; 8670 } 8671 8672 /* Check that raw accesses are either forbidden or handled. Note that 8673 * we can't assert this earlier because the setup of fieldoffset for 8674 * banked registers has to be done first. 8675 */ 8676 if (!(r2->type & ARM_CP_NO_RAW)) { 8677 assert(!raw_accessors_invalid(r2)); 8678 } 8679 8680 /* Overriding of an existing definition must be explicitly 8681 * requested. 8682 */ 8683 if (!(r->type & ARM_CP_OVERRIDE)) { 8684 ARMCPRegInfo *oldreg; 8685 oldreg = g_hash_table_lookup(cpu->cp_regs, key); 8686 if (oldreg && !(oldreg->type & ARM_CP_OVERRIDE)) { 8687 fprintf(stderr, "Register redefined: cp=%d %d bit " 8688 "crn=%d crm=%d opc1=%d opc2=%d, " 8689 "was %s, now %s\n", r2->cp, 32 + 32 * is64, 8690 r2->crn, r2->crm, r2->opc1, r2->opc2, 8691 oldreg->name, r2->name); 8692 g_assert_not_reached(); 8693 } 8694 } 8695 g_hash_table_insert(cpu->cp_regs, key, r2); 8696 } 8697 8698 8699 void define_one_arm_cp_reg_with_opaque(ARMCPU *cpu, 8700 const ARMCPRegInfo *r, void *opaque) 8701 { 8702 /* Define implementations of coprocessor registers. 8703 * We store these in a hashtable because typically 8704 * there are less than 150 registers in a space which 8705 * is 16*16*16*8*8 = 262144 in size. 8706 * Wildcarding is supported for the crm, opc1 and opc2 fields. 8707 * If a register is defined twice then the second definition is 8708 * used, so this can be used to define some generic registers and 8709 * then override them with implementation specific variations. 8710 * At least one of the original and the second definition should 8711 * include ARM_CP_OVERRIDE in its type bits -- this is just a guard 8712 * against accidental use. 8713 * 8714 * The state field defines whether the register is to be 8715 * visible in the AArch32 or AArch64 execution state. If the 8716 * state is set to ARM_CP_STATE_BOTH then we synthesise a 8717 * reginfo structure for the AArch32 view, which sees the lower 8718 * 32 bits of the 64 bit register. 8719 * 8720 * Only registers visible in AArch64 may set r->opc0; opc0 cannot 8721 * be wildcarded. AArch64 registers are always considered to be 64 8722 * bits; the ARM_CP_64BIT* flag applies only to the AArch32 view of 8723 * the register, if any. 8724 */ 8725 int crm, opc1, opc2, state; 8726 int crmmin = (r->crm == CP_ANY) ? 0 : r->crm; 8727 int crmmax = (r->crm == CP_ANY) ? 15 : r->crm; 8728 int opc1min = (r->opc1 == CP_ANY) ? 0 : r->opc1; 8729 int opc1max = (r->opc1 == CP_ANY) ? 7 : r->opc1; 8730 int opc2min = (r->opc2 == CP_ANY) ? 0 : r->opc2; 8731 int opc2max = (r->opc2 == CP_ANY) ? 7 : r->opc2; 8732 /* 64 bit registers have only CRm and Opc1 fields */ 8733 assert(!((r->type & ARM_CP_64BIT) && (r->opc2 || r->crn))); 8734 /* op0 only exists in the AArch64 encodings */ 8735 assert((r->state != ARM_CP_STATE_AA32) || (r->opc0 == 0)); 8736 /* AArch64 regs are all 64 bit so ARM_CP_64BIT is meaningless */ 8737 assert((r->state != ARM_CP_STATE_AA64) || !(r->type & ARM_CP_64BIT)); 8738 /* 8739 * This API is only for Arm's system coprocessors (14 and 15) or 8740 * (M-profile or v7A-and-earlier only) for implementation defined 8741 * coprocessors in the range 0..7. Our decode assumes this, since 8742 * 8..13 can be used for other insns including VFP and Neon. See 8743 * valid_cp() in translate.c. Assert here that we haven't tried 8744 * to use an invalid coprocessor number. 8745 */ 8746 switch (r->state) { 8747 case ARM_CP_STATE_BOTH: 8748 /* 0 has a special meaning, but otherwise the same rules as AA32. */ 8749 if (r->cp == 0) { 8750 break; 8751 } 8752 /* fall through */ 8753 case ARM_CP_STATE_AA32: 8754 if (arm_feature(&cpu->env, ARM_FEATURE_V8) && 8755 !arm_feature(&cpu->env, ARM_FEATURE_M)) { 8756 assert(r->cp >= 14 && r->cp <= 15); 8757 } else { 8758 assert(r->cp < 8 || (r->cp >= 14 && r->cp <= 15)); 8759 } 8760 break; 8761 case ARM_CP_STATE_AA64: 8762 assert(r->cp == 0 || r->cp == CP_REG_ARM64_SYSREG_CP); 8763 break; 8764 default: 8765 g_assert_not_reached(); 8766 } 8767 /* The AArch64 pseudocode CheckSystemAccess() specifies that op1 8768 * encodes a minimum access level for the register. We roll this 8769 * runtime check into our general permission check code, so check 8770 * here that the reginfo's specified permissions are strict enough 8771 * to encompass the generic architectural permission check. 8772 */ 8773 if (r->state != ARM_CP_STATE_AA32) { 8774 int mask = 0; 8775 switch (r->opc1) { 8776 case 0: 8777 /* min_EL EL1, but some accessible to EL0 via kernel ABI */ 8778 mask = PL0U_R | PL1_RW; 8779 break; 8780 case 1: case 2: 8781 /* min_EL EL1 */ 8782 mask = PL1_RW; 8783 break; 8784 case 3: 8785 /* min_EL EL0 */ 8786 mask = PL0_RW; 8787 break; 8788 case 4: 8789 case 5: 8790 /* min_EL EL2 */ 8791 mask = PL2_RW; 8792 break; 8793 case 6: 8794 /* min_EL EL3 */ 8795 mask = PL3_RW; 8796 break; 8797 case 7: 8798 /* min_EL EL1, secure mode only (we don't check the latter) */ 8799 mask = PL1_RW; 8800 break; 8801 default: 8802 /* broken reginfo with out-of-range opc1 */ 8803 assert(false); 8804 break; 8805 } 8806 /* assert our permissions are not too lax (stricter is fine) */ 8807 assert((r->access & ~mask) == 0); 8808 } 8809 8810 /* Check that the register definition has enough info to handle 8811 * reads and writes if they are permitted. 8812 */ 8813 if (!(r->type & (ARM_CP_SPECIAL|ARM_CP_CONST))) { 8814 if (r->access & PL3_R) { 8815 assert((r->fieldoffset || 8816 (r->bank_fieldoffsets[0] && r->bank_fieldoffsets[1])) || 8817 r->readfn); 8818 } 8819 if (r->access & PL3_W) { 8820 assert((r->fieldoffset || 8821 (r->bank_fieldoffsets[0] && r->bank_fieldoffsets[1])) || 8822 r->writefn); 8823 } 8824 } 8825 /* Bad type field probably means missing sentinel at end of reg list */ 8826 assert(cptype_valid(r->type)); 8827 for (crm = crmmin; crm <= crmmax; crm++) { 8828 for (opc1 = opc1min; opc1 <= opc1max; opc1++) { 8829 for (opc2 = opc2min; opc2 <= opc2max; opc2++) { 8830 for (state = ARM_CP_STATE_AA32; 8831 state <= ARM_CP_STATE_AA64; state++) { 8832 if (r->state != state && r->state != ARM_CP_STATE_BOTH) { 8833 continue; 8834 } 8835 if (state == ARM_CP_STATE_AA32) { 8836 /* Under AArch32 CP registers can be common 8837 * (same for secure and non-secure world) or banked. 8838 */ 8839 char *name; 8840 8841 switch (r->secure) { 8842 case ARM_CP_SECSTATE_S: 8843 case ARM_CP_SECSTATE_NS: 8844 add_cpreg_to_hashtable(cpu, r, opaque, state, 8845 r->secure, crm, opc1, opc2, 8846 r->name); 8847 break; 8848 default: 8849 name = g_strdup_printf("%s_S", r->name); 8850 add_cpreg_to_hashtable(cpu, r, opaque, state, 8851 ARM_CP_SECSTATE_S, 8852 crm, opc1, opc2, name); 8853 g_free(name); 8854 add_cpreg_to_hashtable(cpu, r, opaque, state, 8855 ARM_CP_SECSTATE_NS, 8856 crm, opc1, opc2, r->name); 8857 break; 8858 } 8859 } else { 8860 /* AArch64 registers get mapped to non-secure instance 8861 * of AArch32 */ 8862 add_cpreg_to_hashtable(cpu, r, opaque, state, 8863 ARM_CP_SECSTATE_NS, 8864 crm, opc1, opc2, r->name); 8865 } 8866 } 8867 } 8868 } 8869 } 8870 } 8871 8872 void define_arm_cp_regs_with_opaque(ARMCPU *cpu, 8873 const ARMCPRegInfo *regs, void *opaque) 8874 { 8875 /* Define a whole list of registers */ 8876 const ARMCPRegInfo *r; 8877 for (r = regs; r->type != ARM_CP_SENTINEL; r++) { 8878 define_one_arm_cp_reg_with_opaque(cpu, r, opaque); 8879 } 8880 } 8881 8882 /* 8883 * Modify ARMCPRegInfo for access from userspace. 8884 * 8885 * This is a data driven modification directed by 8886 * ARMCPRegUserSpaceInfo. All registers become ARM_CP_CONST as 8887 * user-space cannot alter any values and dynamic values pertaining to 8888 * execution state are hidden from user space view anyway. 8889 */ 8890 void modify_arm_cp_regs(ARMCPRegInfo *regs, const ARMCPRegUserSpaceInfo *mods) 8891 { 8892 const ARMCPRegUserSpaceInfo *m; 8893 ARMCPRegInfo *r; 8894 8895 for (m = mods; m->name; m++) { 8896 GPatternSpec *pat = NULL; 8897 if (m->is_glob) { 8898 pat = g_pattern_spec_new(m->name); 8899 } 8900 for (r = regs; r->type != ARM_CP_SENTINEL; r++) { 8901 if (pat && g_pattern_match_string(pat, r->name)) { 8902 r->type = ARM_CP_CONST; 8903 r->access = PL0U_R; 8904 r->resetvalue = 0; 8905 /* continue */ 8906 } else if (strcmp(r->name, m->name) == 0) { 8907 r->type = ARM_CP_CONST; 8908 r->access = PL0U_R; 8909 r->resetvalue &= m->exported_bits; 8910 r->resetvalue |= m->fixed_bits; 8911 break; 8912 } 8913 } 8914 if (pat) { 8915 g_pattern_spec_free(pat); 8916 } 8917 } 8918 } 8919 8920 const ARMCPRegInfo *get_arm_cp_reginfo(GHashTable *cpregs, uint32_t encoded_cp) 8921 { 8922 return g_hash_table_lookup(cpregs, &encoded_cp); 8923 } 8924 8925 void arm_cp_write_ignore(CPUARMState *env, const ARMCPRegInfo *ri, 8926 uint64_t value) 8927 { 8928 /* Helper coprocessor write function for write-ignore registers */ 8929 } 8930 8931 uint64_t arm_cp_read_zero(CPUARMState *env, const ARMCPRegInfo *ri) 8932 { 8933 /* Helper coprocessor write function for read-as-zero registers */ 8934 return 0; 8935 } 8936 8937 void arm_cp_reset_ignore(CPUARMState *env, const ARMCPRegInfo *opaque) 8938 { 8939 /* Helper coprocessor reset function for do-nothing-on-reset registers */ 8940 } 8941 8942 static int bad_mode_switch(CPUARMState *env, int mode, CPSRWriteType write_type) 8943 { 8944 /* Return true if it is not valid for us to switch to 8945 * this CPU mode (ie all the UNPREDICTABLE cases in 8946 * the ARM ARM CPSRWriteByInstr pseudocode). 8947 */ 8948 8949 /* Changes to or from Hyp via MSR and CPS are illegal. */ 8950 if (write_type == CPSRWriteByInstr && 8951 ((env->uncached_cpsr & CPSR_M) == ARM_CPU_MODE_HYP || 8952 mode == ARM_CPU_MODE_HYP)) { 8953 return 1; 8954 } 8955 8956 switch (mode) { 8957 case ARM_CPU_MODE_USR: 8958 return 0; 8959 case ARM_CPU_MODE_SYS: 8960 case ARM_CPU_MODE_SVC: 8961 case ARM_CPU_MODE_ABT: 8962 case ARM_CPU_MODE_UND: 8963 case ARM_CPU_MODE_IRQ: 8964 case ARM_CPU_MODE_FIQ: 8965 /* Note that we don't implement the IMPDEF NSACR.RFR which in v7 8966 * allows FIQ mode to be Secure-only. (In v8 this doesn't exist.) 8967 */ 8968 /* If HCR.TGE is set then changes from Monitor to NS PL1 via MSR 8969 * and CPS are treated as illegal mode changes. 8970 */ 8971 if (write_type == CPSRWriteByInstr && 8972 (env->uncached_cpsr & CPSR_M) == ARM_CPU_MODE_MON && 8973 (arm_hcr_el2_eff(env) & HCR_TGE)) { 8974 return 1; 8975 } 8976 return 0; 8977 case ARM_CPU_MODE_HYP: 8978 return !arm_is_el2_enabled(env) || arm_current_el(env) < 2; 8979 case ARM_CPU_MODE_MON: 8980 return arm_current_el(env) < 3; 8981 default: 8982 return 1; 8983 } 8984 } 8985 8986 uint32_t cpsr_read(CPUARMState *env) 8987 { 8988 int ZF; 8989 ZF = (env->ZF == 0); 8990 return env->uncached_cpsr | (env->NF & 0x80000000) | (ZF << 30) | 8991 (env->CF << 29) | ((env->VF & 0x80000000) >> 3) | (env->QF << 27) 8992 | (env->thumb << 5) | ((env->condexec_bits & 3) << 25) 8993 | ((env->condexec_bits & 0xfc) << 8) 8994 | (env->GE << 16) | (env->daif & CPSR_AIF); 8995 } 8996 8997 void cpsr_write(CPUARMState *env, uint32_t val, uint32_t mask, 8998 CPSRWriteType write_type) 8999 { 9000 uint32_t changed_daif; 9001 bool rebuild_hflags = (write_type != CPSRWriteRaw) && 9002 (mask & (CPSR_M | CPSR_E | CPSR_IL)); 9003 9004 if (mask & CPSR_NZCV) { 9005 env->ZF = (~val) & CPSR_Z; 9006 env->NF = val; 9007 env->CF = (val >> 29) & 1; 9008 env->VF = (val << 3) & 0x80000000; 9009 } 9010 if (mask & CPSR_Q) 9011 env->QF = ((val & CPSR_Q) != 0); 9012 if (mask & CPSR_T) 9013 env->thumb = ((val & CPSR_T) != 0); 9014 if (mask & CPSR_IT_0_1) { 9015 env->condexec_bits &= ~3; 9016 env->condexec_bits |= (val >> 25) & 3; 9017 } 9018 if (mask & CPSR_IT_2_7) { 9019 env->condexec_bits &= 3; 9020 env->condexec_bits |= (val >> 8) & 0xfc; 9021 } 9022 if (mask & CPSR_GE) { 9023 env->GE = (val >> 16) & 0xf; 9024 } 9025 9026 /* In a V7 implementation that includes the security extensions but does 9027 * not include Virtualization Extensions the SCR.FW and SCR.AW bits control 9028 * whether non-secure software is allowed to change the CPSR_F and CPSR_A 9029 * bits respectively. 9030 * 9031 * In a V8 implementation, it is permitted for privileged software to 9032 * change the CPSR A/F bits regardless of the SCR.AW/FW bits. 9033 */ 9034 if (write_type != CPSRWriteRaw && !arm_feature(env, ARM_FEATURE_V8) && 9035 arm_feature(env, ARM_FEATURE_EL3) && 9036 !arm_feature(env, ARM_FEATURE_EL2) && 9037 !arm_is_secure(env)) { 9038 9039 changed_daif = (env->daif ^ val) & mask; 9040 9041 if (changed_daif & CPSR_A) { 9042 /* Check to see if we are allowed to change the masking of async 9043 * abort exceptions from a non-secure state. 9044 */ 9045 if (!(env->cp15.scr_el3 & SCR_AW)) { 9046 qemu_log_mask(LOG_GUEST_ERROR, 9047 "Ignoring attempt to switch CPSR_A flag from " 9048 "non-secure world with SCR.AW bit clear\n"); 9049 mask &= ~CPSR_A; 9050 } 9051 } 9052 9053 if (changed_daif & CPSR_F) { 9054 /* Check to see if we are allowed to change the masking of FIQ 9055 * exceptions from a non-secure state. 9056 */ 9057 if (!(env->cp15.scr_el3 & SCR_FW)) { 9058 qemu_log_mask(LOG_GUEST_ERROR, 9059 "Ignoring attempt to switch CPSR_F flag from " 9060 "non-secure world with SCR.FW bit clear\n"); 9061 mask &= ~CPSR_F; 9062 } 9063 9064 /* Check whether non-maskable FIQ (NMFI) support is enabled. 9065 * If this bit is set software is not allowed to mask 9066 * FIQs, but is allowed to set CPSR_F to 0. 9067 */ 9068 if ((A32_BANKED_CURRENT_REG_GET(env, sctlr) & SCTLR_NMFI) && 9069 (val & CPSR_F)) { 9070 qemu_log_mask(LOG_GUEST_ERROR, 9071 "Ignoring attempt to enable CPSR_F flag " 9072 "(non-maskable FIQ [NMFI] support enabled)\n"); 9073 mask &= ~CPSR_F; 9074 } 9075 } 9076 } 9077 9078 env->daif &= ~(CPSR_AIF & mask); 9079 env->daif |= val & CPSR_AIF & mask; 9080 9081 if (write_type != CPSRWriteRaw && 9082 ((env->uncached_cpsr ^ val) & mask & CPSR_M)) { 9083 if ((env->uncached_cpsr & CPSR_M) == ARM_CPU_MODE_USR) { 9084 /* Note that we can only get here in USR mode if this is a 9085 * gdb stub write; for this case we follow the architectural 9086 * behaviour for guest writes in USR mode of ignoring an attempt 9087 * to switch mode. (Those are caught by translate.c for writes 9088 * triggered by guest instructions.) 9089 */ 9090 mask &= ~CPSR_M; 9091 } else if (bad_mode_switch(env, val & CPSR_M, write_type)) { 9092 /* Attempt to switch to an invalid mode: this is UNPREDICTABLE in 9093 * v7, and has defined behaviour in v8: 9094 * + leave CPSR.M untouched 9095 * + allow changes to the other CPSR fields 9096 * + set PSTATE.IL 9097 * For user changes via the GDB stub, we don't set PSTATE.IL, 9098 * as this would be unnecessarily harsh for a user error. 9099 */ 9100 mask &= ~CPSR_M; 9101 if (write_type != CPSRWriteByGDBStub && 9102 arm_feature(env, ARM_FEATURE_V8)) { 9103 mask |= CPSR_IL; 9104 val |= CPSR_IL; 9105 } 9106 qemu_log_mask(LOG_GUEST_ERROR, 9107 "Illegal AArch32 mode switch attempt from %s to %s\n", 9108 aarch32_mode_name(env->uncached_cpsr), 9109 aarch32_mode_name(val)); 9110 } else { 9111 qemu_log_mask(CPU_LOG_INT, "%s %s to %s PC 0x%" PRIx32 "\n", 9112 write_type == CPSRWriteExceptionReturn ? 9113 "Exception return from AArch32" : 9114 "AArch32 mode switch from", 9115 aarch32_mode_name(env->uncached_cpsr), 9116 aarch32_mode_name(val), env->regs[15]); 9117 switch_mode(env, val & CPSR_M); 9118 } 9119 } 9120 mask &= ~CACHED_CPSR_BITS; 9121 env->uncached_cpsr = (env->uncached_cpsr & ~mask) | (val & mask); 9122 if (rebuild_hflags) { 9123 arm_rebuild_hflags(env); 9124 } 9125 } 9126 9127 /* Sign/zero extend */ 9128 uint32_t HELPER(sxtb16)(uint32_t x) 9129 { 9130 uint32_t res; 9131 res = (uint16_t)(int8_t)x; 9132 res |= (uint32_t)(int8_t)(x >> 16) << 16; 9133 return res; 9134 } 9135 9136 static void handle_possible_div0_trap(CPUARMState *env, uintptr_t ra) 9137 { 9138 /* 9139 * Take a division-by-zero exception if necessary; otherwise return 9140 * to get the usual non-trapping division behaviour (result of 0) 9141 */ 9142 if (arm_feature(env, ARM_FEATURE_M) 9143 && (env->v7m.ccr[env->v7m.secure] & R_V7M_CCR_DIV_0_TRP_MASK)) { 9144 raise_exception_ra(env, EXCP_DIVBYZERO, 0, 1, ra); 9145 } 9146 } 9147 9148 uint32_t HELPER(uxtb16)(uint32_t x) 9149 { 9150 uint32_t res; 9151 res = (uint16_t)(uint8_t)x; 9152 res |= (uint32_t)(uint8_t)(x >> 16) << 16; 9153 return res; 9154 } 9155 9156 int32_t HELPER(sdiv)(CPUARMState *env, int32_t num, int32_t den) 9157 { 9158 if (den == 0) { 9159 handle_possible_div0_trap(env, GETPC()); 9160 return 0; 9161 } 9162 if (num == INT_MIN && den == -1) { 9163 return INT_MIN; 9164 } 9165 return num / den; 9166 } 9167 9168 uint32_t HELPER(udiv)(CPUARMState *env, uint32_t num, uint32_t den) 9169 { 9170 if (den == 0) { 9171 handle_possible_div0_trap(env, GETPC()); 9172 return 0; 9173 } 9174 return num / den; 9175 } 9176 9177 uint32_t HELPER(rbit)(uint32_t x) 9178 { 9179 return revbit32(x); 9180 } 9181 9182 #ifdef CONFIG_USER_ONLY 9183 9184 static void switch_mode(CPUARMState *env, int mode) 9185 { 9186 ARMCPU *cpu = env_archcpu(env); 9187 9188 if (mode != ARM_CPU_MODE_USR) { 9189 cpu_abort(CPU(cpu), "Tried to switch out of user mode\n"); 9190 } 9191 } 9192 9193 uint32_t arm_phys_excp_target_el(CPUState *cs, uint32_t excp_idx, 9194 uint32_t cur_el, bool secure) 9195 { 9196 return 1; 9197 } 9198 9199 void aarch64_sync_64_to_32(CPUARMState *env) 9200 { 9201 g_assert_not_reached(); 9202 } 9203 9204 #else 9205 9206 static void switch_mode(CPUARMState *env, int mode) 9207 { 9208 int old_mode; 9209 int i; 9210 9211 old_mode = env->uncached_cpsr & CPSR_M; 9212 if (mode == old_mode) 9213 return; 9214 9215 if (old_mode == ARM_CPU_MODE_FIQ) { 9216 memcpy (env->fiq_regs, env->regs + 8, 5 * sizeof(uint32_t)); 9217 memcpy (env->regs + 8, env->usr_regs, 5 * sizeof(uint32_t)); 9218 } else if (mode == ARM_CPU_MODE_FIQ) { 9219 memcpy (env->usr_regs, env->regs + 8, 5 * sizeof(uint32_t)); 9220 memcpy (env->regs + 8, env->fiq_regs, 5 * sizeof(uint32_t)); 9221 } 9222 9223 i = bank_number(old_mode); 9224 env->banked_r13[i] = env->regs[13]; 9225 env->banked_spsr[i] = env->spsr; 9226 9227 i = bank_number(mode); 9228 env->regs[13] = env->banked_r13[i]; 9229 env->spsr = env->banked_spsr[i]; 9230 9231 env->banked_r14[r14_bank_number(old_mode)] = env->regs[14]; 9232 env->regs[14] = env->banked_r14[r14_bank_number(mode)]; 9233 } 9234 9235 /* Physical Interrupt Target EL Lookup Table 9236 * 9237 * [ From ARM ARM section G1.13.4 (Table G1-15) ] 9238 * 9239 * The below multi-dimensional table is used for looking up the target 9240 * exception level given numerous condition criteria. Specifically, the 9241 * target EL is based on SCR and HCR routing controls as well as the 9242 * currently executing EL and secure state. 9243 * 9244 * Dimensions: 9245 * target_el_table[2][2][2][2][2][4] 9246 * | | | | | +--- Current EL 9247 * | | | | +------ Non-secure(0)/Secure(1) 9248 * | | | +--------- HCR mask override 9249 * | | +------------ SCR exec state control 9250 * | +--------------- SCR mask override 9251 * +------------------ 32-bit(0)/64-bit(1) EL3 9252 * 9253 * The table values are as such: 9254 * 0-3 = EL0-EL3 9255 * -1 = Cannot occur 9256 * 9257 * The ARM ARM target EL table includes entries indicating that an "exception 9258 * is not taken". The two cases where this is applicable are: 9259 * 1) An exception is taken from EL3 but the SCR does not have the exception 9260 * routed to EL3. 9261 * 2) An exception is taken from EL2 but the HCR does not have the exception 9262 * routed to EL2. 9263 * In these two cases, the below table contain a target of EL1. This value is 9264 * returned as it is expected that the consumer of the table data will check 9265 * for "target EL >= current EL" to ensure the exception is not taken. 9266 * 9267 * SCR HCR 9268 * 64 EA AMO From 9269 * BIT IRQ IMO Non-secure Secure 9270 * EL3 FIQ RW FMO EL0 EL1 EL2 EL3 EL0 EL1 EL2 EL3 9271 */ 9272 static const int8_t target_el_table[2][2][2][2][2][4] = { 9273 {{{{/* 0 0 0 0 */{ 1, 1, 2, -1 },{ 3, -1, -1, 3 },}, 9274 {/* 0 0 0 1 */{ 2, 2, 2, -1 },{ 3, -1, -1, 3 },},}, 9275 {{/* 0 0 1 0 */{ 1, 1, 2, -1 },{ 3, -1, -1, 3 },}, 9276 {/* 0 0 1 1 */{ 2, 2, 2, -1 },{ 3, -1, -1, 3 },},},}, 9277 {{{/* 0 1 0 0 */{ 3, 3, 3, -1 },{ 3, -1, -1, 3 },}, 9278 {/* 0 1 0 1 */{ 3, 3, 3, -1 },{ 3, -1, -1, 3 },},}, 9279 {{/* 0 1 1 0 */{ 3, 3, 3, -1 },{ 3, -1, -1, 3 },}, 9280 {/* 0 1 1 1 */{ 3, 3, 3, -1 },{ 3, -1, -1, 3 },},},},}, 9281 {{{{/* 1 0 0 0 */{ 1, 1, 2, -1 },{ 1, 1, -1, 1 },}, 9282 {/* 1 0 0 1 */{ 2, 2, 2, -1 },{ 2, 2, -1, 1 },},}, 9283 {{/* 1 0 1 0 */{ 1, 1, 1, -1 },{ 1, 1, 1, 1 },}, 9284 {/* 1 0 1 1 */{ 2, 2, 2, -1 },{ 2, 2, 2, 1 },},},}, 9285 {{{/* 1 1 0 0 */{ 3, 3, 3, -1 },{ 3, 3, -1, 3 },}, 9286 {/* 1 1 0 1 */{ 3, 3, 3, -1 },{ 3, 3, -1, 3 },},}, 9287 {{/* 1 1 1 0 */{ 3, 3, 3, -1 },{ 3, 3, 3, 3 },}, 9288 {/* 1 1 1 1 */{ 3, 3, 3, -1 },{ 3, 3, 3, 3 },},},},}, 9289 }; 9290 9291 /* 9292 * Determine the target EL for physical exceptions 9293 */ 9294 uint32_t arm_phys_excp_target_el(CPUState *cs, uint32_t excp_idx, 9295 uint32_t cur_el, bool secure) 9296 { 9297 CPUARMState *env = cs->env_ptr; 9298 bool rw; 9299 bool scr; 9300 bool hcr; 9301 int target_el; 9302 /* Is the highest EL AArch64? */ 9303 bool is64 = arm_feature(env, ARM_FEATURE_AARCH64); 9304 uint64_t hcr_el2; 9305 9306 if (arm_feature(env, ARM_FEATURE_EL3)) { 9307 rw = ((env->cp15.scr_el3 & SCR_RW) == SCR_RW); 9308 } else { 9309 /* Either EL2 is the highest EL (and so the EL2 register width 9310 * is given by is64); or there is no EL2 or EL3, in which case 9311 * the value of 'rw' does not affect the table lookup anyway. 9312 */ 9313 rw = is64; 9314 } 9315 9316 hcr_el2 = arm_hcr_el2_eff(env); 9317 switch (excp_idx) { 9318 case EXCP_IRQ: 9319 scr = ((env->cp15.scr_el3 & SCR_IRQ) == SCR_IRQ); 9320 hcr = hcr_el2 & HCR_IMO; 9321 break; 9322 case EXCP_FIQ: 9323 scr = ((env->cp15.scr_el3 & SCR_FIQ) == SCR_FIQ); 9324 hcr = hcr_el2 & HCR_FMO; 9325 break; 9326 default: 9327 scr = ((env->cp15.scr_el3 & SCR_EA) == SCR_EA); 9328 hcr = hcr_el2 & HCR_AMO; 9329 break; 9330 }; 9331 9332 /* 9333 * For these purposes, TGE and AMO/IMO/FMO both force the 9334 * interrupt to EL2. Fold TGE into the bit extracted above. 9335 */ 9336 hcr |= (hcr_el2 & HCR_TGE) != 0; 9337 9338 /* Perform a table-lookup for the target EL given the current state */ 9339 target_el = target_el_table[is64][scr][rw][hcr][secure][cur_el]; 9340 9341 assert(target_el > 0); 9342 9343 return target_el; 9344 } 9345 9346 void arm_log_exception(CPUState *cs) 9347 { 9348 int idx = cs->exception_index; 9349 9350 if (qemu_loglevel_mask(CPU_LOG_INT)) { 9351 const char *exc = NULL; 9352 static const char * const excnames[] = { 9353 [EXCP_UDEF] = "Undefined Instruction", 9354 [EXCP_SWI] = "SVC", 9355 [EXCP_PREFETCH_ABORT] = "Prefetch Abort", 9356 [EXCP_DATA_ABORT] = "Data Abort", 9357 [EXCP_IRQ] = "IRQ", 9358 [EXCP_FIQ] = "FIQ", 9359 [EXCP_BKPT] = "Breakpoint", 9360 [EXCP_EXCEPTION_EXIT] = "QEMU v7M exception exit", 9361 [EXCP_KERNEL_TRAP] = "QEMU intercept of kernel commpage", 9362 [EXCP_HVC] = "Hypervisor Call", 9363 [EXCP_HYP_TRAP] = "Hypervisor Trap", 9364 [EXCP_SMC] = "Secure Monitor Call", 9365 [EXCP_VIRQ] = "Virtual IRQ", 9366 [EXCP_VFIQ] = "Virtual FIQ", 9367 [EXCP_SEMIHOST] = "Semihosting call", 9368 [EXCP_NOCP] = "v7M NOCP UsageFault", 9369 [EXCP_INVSTATE] = "v7M INVSTATE UsageFault", 9370 [EXCP_STKOF] = "v8M STKOF UsageFault", 9371 [EXCP_LAZYFP] = "v7M exception during lazy FP stacking", 9372 [EXCP_LSERR] = "v8M LSERR UsageFault", 9373 [EXCP_UNALIGNED] = "v7M UNALIGNED UsageFault", 9374 [EXCP_DIVBYZERO] = "v7M DIVBYZERO UsageFault", 9375 }; 9376 9377 if (idx >= 0 && idx < ARRAY_SIZE(excnames)) { 9378 exc = excnames[idx]; 9379 } 9380 if (!exc) { 9381 exc = "unknown"; 9382 } 9383 qemu_log_mask(CPU_LOG_INT, "Taking exception %d [%s] on CPU %d\n", 9384 idx, exc, cs->cpu_index); 9385 } 9386 } 9387 9388 /* 9389 * Function used to synchronize QEMU's AArch64 register set with AArch32 9390 * register set. This is necessary when switching between AArch32 and AArch64 9391 * execution state. 9392 */ 9393 void aarch64_sync_32_to_64(CPUARMState *env) 9394 { 9395 int i; 9396 uint32_t mode = env->uncached_cpsr & CPSR_M; 9397 9398 /* We can blanket copy R[0:7] to X[0:7] */ 9399 for (i = 0; i < 8; i++) { 9400 env->xregs[i] = env->regs[i]; 9401 } 9402 9403 /* 9404 * Unless we are in FIQ mode, x8-x12 come from the user registers r8-r12. 9405 * Otherwise, they come from the banked user regs. 9406 */ 9407 if (mode == ARM_CPU_MODE_FIQ) { 9408 for (i = 8; i < 13; i++) { 9409 env->xregs[i] = env->usr_regs[i - 8]; 9410 } 9411 } else { 9412 for (i = 8; i < 13; i++) { 9413 env->xregs[i] = env->regs[i]; 9414 } 9415 } 9416 9417 /* 9418 * Registers x13-x23 are the various mode SP and FP registers. Registers 9419 * r13 and r14 are only copied if we are in that mode, otherwise we copy 9420 * from the mode banked register. 9421 */ 9422 if (mode == ARM_CPU_MODE_USR || mode == ARM_CPU_MODE_SYS) { 9423 env->xregs[13] = env->regs[13]; 9424 env->xregs[14] = env->regs[14]; 9425 } else { 9426 env->xregs[13] = env->banked_r13[bank_number(ARM_CPU_MODE_USR)]; 9427 /* HYP is an exception in that it is copied from r14 */ 9428 if (mode == ARM_CPU_MODE_HYP) { 9429 env->xregs[14] = env->regs[14]; 9430 } else { 9431 env->xregs[14] = env->banked_r14[r14_bank_number(ARM_CPU_MODE_USR)]; 9432 } 9433 } 9434 9435 if (mode == ARM_CPU_MODE_HYP) { 9436 env->xregs[15] = env->regs[13]; 9437 } else { 9438 env->xregs[15] = env->banked_r13[bank_number(ARM_CPU_MODE_HYP)]; 9439 } 9440 9441 if (mode == ARM_CPU_MODE_IRQ) { 9442 env->xregs[16] = env->regs[14]; 9443 env->xregs[17] = env->regs[13]; 9444 } else { 9445 env->xregs[16] = env->banked_r14[r14_bank_number(ARM_CPU_MODE_IRQ)]; 9446 env->xregs[17] = env->banked_r13[bank_number(ARM_CPU_MODE_IRQ)]; 9447 } 9448 9449 if (mode == ARM_CPU_MODE_SVC) { 9450 env->xregs[18] = env->regs[14]; 9451 env->xregs[19] = env->regs[13]; 9452 } else { 9453 env->xregs[18] = env->banked_r14[r14_bank_number(ARM_CPU_MODE_SVC)]; 9454 env->xregs[19] = env->banked_r13[bank_number(ARM_CPU_MODE_SVC)]; 9455 } 9456 9457 if (mode == ARM_CPU_MODE_ABT) { 9458 env->xregs[20] = env->regs[14]; 9459 env->xregs[21] = env->regs[13]; 9460 } else { 9461 env->xregs[20] = env->banked_r14[r14_bank_number(ARM_CPU_MODE_ABT)]; 9462 env->xregs[21] = env->banked_r13[bank_number(ARM_CPU_MODE_ABT)]; 9463 } 9464 9465 if (mode == ARM_CPU_MODE_UND) { 9466 env->xregs[22] = env->regs[14]; 9467 env->xregs[23] = env->regs[13]; 9468 } else { 9469 env->xregs[22] = env->banked_r14[r14_bank_number(ARM_CPU_MODE_UND)]; 9470 env->xregs[23] = env->banked_r13[bank_number(ARM_CPU_MODE_UND)]; 9471 } 9472 9473 /* 9474 * Registers x24-x30 are mapped to r8-r14 in FIQ mode. If we are in FIQ 9475 * mode, then we can copy from r8-r14. Otherwise, we copy from the 9476 * FIQ bank for r8-r14. 9477 */ 9478 if (mode == ARM_CPU_MODE_FIQ) { 9479 for (i = 24; i < 31; i++) { 9480 env->xregs[i] = env->regs[i - 16]; /* X[24:30] <- R[8:14] */ 9481 } 9482 } else { 9483 for (i = 24; i < 29; i++) { 9484 env->xregs[i] = env->fiq_regs[i - 24]; 9485 } 9486 env->xregs[29] = env->banked_r13[bank_number(ARM_CPU_MODE_FIQ)]; 9487 env->xregs[30] = env->banked_r14[r14_bank_number(ARM_CPU_MODE_FIQ)]; 9488 } 9489 9490 env->pc = env->regs[15]; 9491 } 9492 9493 /* 9494 * Function used to synchronize QEMU's AArch32 register set with AArch64 9495 * register set. This is necessary when switching between AArch32 and AArch64 9496 * execution state. 9497 */ 9498 void aarch64_sync_64_to_32(CPUARMState *env) 9499 { 9500 int i; 9501 uint32_t mode = env->uncached_cpsr & CPSR_M; 9502 9503 /* We can blanket copy X[0:7] to R[0:7] */ 9504 for (i = 0; i < 8; i++) { 9505 env->regs[i] = env->xregs[i]; 9506 } 9507 9508 /* 9509 * Unless we are in FIQ mode, r8-r12 come from the user registers x8-x12. 9510 * Otherwise, we copy x8-x12 into the banked user regs. 9511 */ 9512 if (mode == ARM_CPU_MODE_FIQ) { 9513 for (i = 8; i < 13; i++) { 9514 env->usr_regs[i - 8] = env->xregs[i]; 9515 } 9516 } else { 9517 for (i = 8; i < 13; i++) { 9518 env->regs[i] = env->xregs[i]; 9519 } 9520 } 9521 9522 /* 9523 * Registers r13 & r14 depend on the current mode. 9524 * If we are in a given mode, we copy the corresponding x registers to r13 9525 * and r14. Otherwise, we copy the x register to the banked r13 and r14 9526 * for the mode. 9527 */ 9528 if (mode == ARM_CPU_MODE_USR || mode == ARM_CPU_MODE_SYS) { 9529 env->regs[13] = env->xregs[13]; 9530 env->regs[14] = env->xregs[14]; 9531 } else { 9532 env->banked_r13[bank_number(ARM_CPU_MODE_USR)] = env->xregs[13]; 9533 9534 /* 9535 * HYP is an exception in that it does not have its own banked r14 but 9536 * shares the USR r14 9537 */ 9538 if (mode == ARM_CPU_MODE_HYP) { 9539 env->regs[14] = env->xregs[14]; 9540 } else { 9541 env->banked_r14[r14_bank_number(ARM_CPU_MODE_USR)] = env->xregs[14]; 9542 } 9543 } 9544 9545 if (mode == ARM_CPU_MODE_HYP) { 9546 env->regs[13] = env->xregs[15]; 9547 } else { 9548 env->banked_r13[bank_number(ARM_CPU_MODE_HYP)] = env->xregs[15]; 9549 } 9550 9551 if (mode == ARM_CPU_MODE_IRQ) { 9552 env->regs[14] = env->xregs[16]; 9553 env->regs[13] = env->xregs[17]; 9554 } else { 9555 env->banked_r14[r14_bank_number(ARM_CPU_MODE_IRQ)] = env->xregs[16]; 9556 env->banked_r13[bank_number(ARM_CPU_MODE_IRQ)] = env->xregs[17]; 9557 } 9558 9559 if (mode == ARM_CPU_MODE_SVC) { 9560 env->regs[14] = env->xregs[18]; 9561 env->regs[13] = env->xregs[19]; 9562 } else { 9563 env->banked_r14[r14_bank_number(ARM_CPU_MODE_SVC)] = env->xregs[18]; 9564 env->banked_r13[bank_number(ARM_CPU_MODE_SVC)] = env->xregs[19]; 9565 } 9566 9567 if (mode == ARM_CPU_MODE_ABT) { 9568 env->regs[14] = env->xregs[20]; 9569 env->regs[13] = env->xregs[21]; 9570 } else { 9571 env->banked_r14[r14_bank_number(ARM_CPU_MODE_ABT)] = env->xregs[20]; 9572 env->banked_r13[bank_number(ARM_CPU_MODE_ABT)] = env->xregs[21]; 9573 } 9574 9575 if (mode == ARM_CPU_MODE_UND) { 9576 env->regs[14] = env->xregs[22]; 9577 env->regs[13] = env->xregs[23]; 9578 } else { 9579 env->banked_r14[r14_bank_number(ARM_CPU_MODE_UND)] = env->xregs[22]; 9580 env->banked_r13[bank_number(ARM_CPU_MODE_UND)] = env->xregs[23]; 9581 } 9582 9583 /* Registers x24-x30 are mapped to r8-r14 in FIQ mode. If we are in FIQ 9584 * mode, then we can copy to r8-r14. Otherwise, we copy to the 9585 * FIQ bank for r8-r14. 9586 */ 9587 if (mode == ARM_CPU_MODE_FIQ) { 9588 for (i = 24; i < 31; i++) { 9589 env->regs[i - 16] = env->xregs[i]; /* X[24:30] -> R[8:14] */ 9590 } 9591 } else { 9592 for (i = 24; i < 29; i++) { 9593 env->fiq_regs[i - 24] = env->xregs[i]; 9594 } 9595 env->banked_r13[bank_number(ARM_CPU_MODE_FIQ)] = env->xregs[29]; 9596 env->banked_r14[r14_bank_number(ARM_CPU_MODE_FIQ)] = env->xregs[30]; 9597 } 9598 9599 env->regs[15] = env->pc; 9600 } 9601 9602 static void take_aarch32_exception(CPUARMState *env, int new_mode, 9603 uint32_t mask, uint32_t offset, 9604 uint32_t newpc) 9605 { 9606 int new_el; 9607 9608 /* Change the CPU state so as to actually take the exception. */ 9609 switch_mode(env, new_mode); 9610 9611 /* 9612 * For exceptions taken to AArch32 we must clear the SS bit in both 9613 * PSTATE and in the old-state value we save to SPSR_<mode>, so zero it now. 9614 */ 9615 env->pstate &= ~PSTATE_SS; 9616 env->spsr = cpsr_read(env); 9617 /* Clear IT bits. */ 9618 env->condexec_bits = 0; 9619 /* Switch to the new mode, and to the correct instruction set. */ 9620 env->uncached_cpsr = (env->uncached_cpsr & ~CPSR_M) | new_mode; 9621 9622 /* This must be after mode switching. */ 9623 new_el = arm_current_el(env); 9624 9625 /* Set new mode endianness */ 9626 env->uncached_cpsr &= ~CPSR_E; 9627 if (env->cp15.sctlr_el[new_el] & SCTLR_EE) { 9628 env->uncached_cpsr |= CPSR_E; 9629 } 9630 /* J and IL must always be cleared for exception entry */ 9631 env->uncached_cpsr &= ~(CPSR_IL | CPSR_J); 9632 env->daif |= mask; 9633 9634 if (cpu_isar_feature(aa32_ssbs, env_archcpu(env))) { 9635 if (env->cp15.sctlr_el[new_el] & SCTLR_DSSBS_32) { 9636 env->uncached_cpsr |= CPSR_SSBS; 9637 } else { 9638 env->uncached_cpsr &= ~CPSR_SSBS; 9639 } 9640 } 9641 9642 if (new_mode == ARM_CPU_MODE_HYP) { 9643 env->thumb = (env->cp15.sctlr_el[2] & SCTLR_TE) != 0; 9644 env->elr_el[2] = env->regs[15]; 9645 } else { 9646 /* CPSR.PAN is normally preserved preserved unless... */ 9647 if (cpu_isar_feature(aa32_pan, env_archcpu(env))) { 9648 switch (new_el) { 9649 case 3: 9650 if (!arm_is_secure_below_el3(env)) { 9651 /* ... the target is EL3, from non-secure state. */ 9652 env->uncached_cpsr &= ~CPSR_PAN; 9653 break; 9654 } 9655 /* ... the target is EL3, from secure state ... */ 9656 /* fall through */ 9657 case 1: 9658 /* ... the target is EL1 and SCTLR.SPAN is 0. */ 9659 if (!(env->cp15.sctlr_el[new_el] & SCTLR_SPAN)) { 9660 env->uncached_cpsr |= CPSR_PAN; 9661 } 9662 break; 9663 } 9664 } 9665 /* 9666 * this is a lie, as there was no c1_sys on V4T/V5, but who cares 9667 * and we should just guard the thumb mode on V4 9668 */ 9669 if (arm_feature(env, ARM_FEATURE_V4T)) { 9670 env->thumb = 9671 (A32_BANKED_CURRENT_REG_GET(env, sctlr) & SCTLR_TE) != 0; 9672 } 9673 env->regs[14] = env->regs[15] + offset; 9674 } 9675 env->regs[15] = newpc; 9676 arm_rebuild_hflags(env); 9677 } 9678 9679 static void arm_cpu_do_interrupt_aarch32_hyp(CPUState *cs) 9680 { 9681 /* 9682 * Handle exception entry to Hyp mode; this is sufficiently 9683 * different to entry to other AArch32 modes that we handle it 9684 * separately here. 9685 * 9686 * The vector table entry used is always the 0x14 Hyp mode entry point, 9687 * unless this is an UNDEF/SVC/HVC/abort taken from Hyp to Hyp. 9688 * The offset applied to the preferred return address is always zero 9689 * (see DDI0487C.a section G1.12.3). 9690 * PSTATE A/I/F masks are set based only on the SCR.EA/IRQ/FIQ values. 9691 */ 9692 uint32_t addr, mask; 9693 ARMCPU *cpu = ARM_CPU(cs); 9694 CPUARMState *env = &cpu->env; 9695 9696 switch (cs->exception_index) { 9697 case EXCP_UDEF: 9698 addr = 0x04; 9699 break; 9700 case EXCP_SWI: 9701 addr = 0x08; 9702 break; 9703 case EXCP_BKPT: 9704 /* Fall through to prefetch abort. */ 9705 case EXCP_PREFETCH_ABORT: 9706 env->cp15.ifar_s = env->exception.vaddress; 9707 qemu_log_mask(CPU_LOG_INT, "...with HIFAR 0x%x\n", 9708 (uint32_t)env->exception.vaddress); 9709 addr = 0x0c; 9710 break; 9711 case EXCP_DATA_ABORT: 9712 env->cp15.dfar_s = env->exception.vaddress; 9713 qemu_log_mask(CPU_LOG_INT, "...with HDFAR 0x%x\n", 9714 (uint32_t)env->exception.vaddress); 9715 addr = 0x10; 9716 break; 9717 case EXCP_IRQ: 9718 addr = 0x18; 9719 break; 9720 case EXCP_FIQ: 9721 addr = 0x1c; 9722 break; 9723 case EXCP_HVC: 9724 addr = 0x08; 9725 break; 9726 case EXCP_HYP_TRAP: 9727 addr = 0x14; 9728 break; 9729 default: 9730 cpu_abort(cs, "Unhandled exception 0x%x\n", cs->exception_index); 9731 } 9732 9733 if (cs->exception_index != EXCP_IRQ && cs->exception_index != EXCP_FIQ) { 9734 if (!arm_feature(env, ARM_FEATURE_V8)) { 9735 /* 9736 * QEMU syndrome values are v8-style. v7 has the IL bit 9737 * UNK/SBZP for "field not valid" cases, where v8 uses RES1. 9738 * If this is a v7 CPU, squash the IL bit in those cases. 9739 */ 9740 if (cs->exception_index == EXCP_PREFETCH_ABORT || 9741 (cs->exception_index == EXCP_DATA_ABORT && 9742 !(env->exception.syndrome & ARM_EL_ISV)) || 9743 syn_get_ec(env->exception.syndrome) == EC_UNCATEGORIZED) { 9744 env->exception.syndrome &= ~ARM_EL_IL; 9745 } 9746 } 9747 env->cp15.esr_el[2] = env->exception.syndrome; 9748 } 9749 9750 if (arm_current_el(env) != 2 && addr < 0x14) { 9751 addr = 0x14; 9752 } 9753 9754 mask = 0; 9755 if (!(env->cp15.scr_el3 & SCR_EA)) { 9756 mask |= CPSR_A; 9757 } 9758 if (!(env->cp15.scr_el3 & SCR_IRQ)) { 9759 mask |= CPSR_I; 9760 } 9761 if (!(env->cp15.scr_el3 & SCR_FIQ)) { 9762 mask |= CPSR_F; 9763 } 9764 9765 addr += env->cp15.hvbar; 9766 9767 take_aarch32_exception(env, ARM_CPU_MODE_HYP, mask, 0, addr); 9768 } 9769 9770 static void arm_cpu_do_interrupt_aarch32(CPUState *cs) 9771 { 9772 ARMCPU *cpu = ARM_CPU(cs); 9773 CPUARMState *env = &cpu->env; 9774 uint32_t addr; 9775 uint32_t mask; 9776 int new_mode; 9777 uint32_t offset; 9778 uint32_t moe; 9779 9780 /* If this is a debug exception we must update the DBGDSCR.MOE bits */ 9781 switch (syn_get_ec(env->exception.syndrome)) { 9782 case EC_BREAKPOINT: 9783 case EC_BREAKPOINT_SAME_EL: 9784 moe = 1; 9785 break; 9786 case EC_WATCHPOINT: 9787 case EC_WATCHPOINT_SAME_EL: 9788 moe = 10; 9789 break; 9790 case EC_AA32_BKPT: 9791 moe = 3; 9792 break; 9793 case EC_VECTORCATCH: 9794 moe = 5; 9795 break; 9796 default: 9797 moe = 0; 9798 break; 9799 } 9800 9801 if (moe) { 9802 env->cp15.mdscr_el1 = deposit64(env->cp15.mdscr_el1, 2, 4, moe); 9803 } 9804 9805 if (env->exception.target_el == 2) { 9806 arm_cpu_do_interrupt_aarch32_hyp(cs); 9807 return; 9808 } 9809 9810 switch (cs->exception_index) { 9811 case EXCP_UDEF: 9812 new_mode = ARM_CPU_MODE_UND; 9813 addr = 0x04; 9814 mask = CPSR_I; 9815 if (env->thumb) 9816 offset = 2; 9817 else 9818 offset = 4; 9819 break; 9820 case EXCP_SWI: 9821 new_mode = ARM_CPU_MODE_SVC; 9822 addr = 0x08; 9823 mask = CPSR_I; 9824 /* The PC already points to the next instruction. */ 9825 offset = 0; 9826 break; 9827 case EXCP_BKPT: 9828 /* Fall through to prefetch abort. */ 9829 case EXCP_PREFETCH_ABORT: 9830 A32_BANKED_CURRENT_REG_SET(env, ifsr, env->exception.fsr); 9831 A32_BANKED_CURRENT_REG_SET(env, ifar, env->exception.vaddress); 9832 qemu_log_mask(CPU_LOG_INT, "...with IFSR 0x%x IFAR 0x%x\n", 9833 env->exception.fsr, (uint32_t)env->exception.vaddress); 9834 new_mode = ARM_CPU_MODE_ABT; 9835 addr = 0x0c; 9836 mask = CPSR_A | CPSR_I; 9837 offset = 4; 9838 break; 9839 case EXCP_DATA_ABORT: 9840 A32_BANKED_CURRENT_REG_SET(env, dfsr, env->exception.fsr); 9841 A32_BANKED_CURRENT_REG_SET(env, dfar, env->exception.vaddress); 9842 qemu_log_mask(CPU_LOG_INT, "...with DFSR 0x%x DFAR 0x%x\n", 9843 env->exception.fsr, 9844 (uint32_t)env->exception.vaddress); 9845 new_mode = ARM_CPU_MODE_ABT; 9846 addr = 0x10; 9847 mask = CPSR_A | CPSR_I; 9848 offset = 8; 9849 break; 9850 case EXCP_IRQ: 9851 new_mode = ARM_CPU_MODE_IRQ; 9852 addr = 0x18; 9853 /* Disable IRQ and imprecise data aborts. */ 9854 mask = CPSR_A | CPSR_I; 9855 offset = 4; 9856 if (env->cp15.scr_el3 & SCR_IRQ) { 9857 /* IRQ routed to monitor mode */ 9858 new_mode = ARM_CPU_MODE_MON; 9859 mask |= CPSR_F; 9860 } 9861 break; 9862 case EXCP_FIQ: 9863 new_mode = ARM_CPU_MODE_FIQ; 9864 addr = 0x1c; 9865 /* Disable FIQ, IRQ and imprecise data aborts. */ 9866 mask = CPSR_A | CPSR_I | CPSR_F; 9867 if (env->cp15.scr_el3 & SCR_FIQ) { 9868 /* FIQ routed to monitor mode */ 9869 new_mode = ARM_CPU_MODE_MON; 9870 } 9871 offset = 4; 9872 break; 9873 case EXCP_VIRQ: 9874 new_mode = ARM_CPU_MODE_IRQ; 9875 addr = 0x18; 9876 /* Disable IRQ and imprecise data aborts. */ 9877 mask = CPSR_A | CPSR_I; 9878 offset = 4; 9879 break; 9880 case EXCP_VFIQ: 9881 new_mode = ARM_CPU_MODE_FIQ; 9882 addr = 0x1c; 9883 /* Disable FIQ, IRQ and imprecise data aborts. */ 9884 mask = CPSR_A | CPSR_I | CPSR_F; 9885 offset = 4; 9886 break; 9887 case EXCP_SMC: 9888 new_mode = ARM_CPU_MODE_MON; 9889 addr = 0x08; 9890 mask = CPSR_A | CPSR_I | CPSR_F; 9891 offset = 0; 9892 break; 9893 default: 9894 cpu_abort(cs, "Unhandled exception 0x%x\n", cs->exception_index); 9895 return; /* Never happens. Keep compiler happy. */ 9896 } 9897 9898 if (new_mode == ARM_CPU_MODE_MON) { 9899 addr += env->cp15.mvbar; 9900 } else if (A32_BANKED_CURRENT_REG_GET(env, sctlr) & SCTLR_V) { 9901 /* High vectors. When enabled, base address cannot be remapped. */ 9902 addr += 0xffff0000; 9903 } else { 9904 /* ARM v7 architectures provide a vector base address register to remap 9905 * the interrupt vector table. 9906 * This register is only followed in non-monitor mode, and is banked. 9907 * Note: only bits 31:5 are valid. 9908 */ 9909 addr += A32_BANKED_CURRENT_REG_GET(env, vbar); 9910 } 9911 9912 if ((env->uncached_cpsr & CPSR_M) == ARM_CPU_MODE_MON) { 9913 env->cp15.scr_el3 &= ~SCR_NS; 9914 } 9915 9916 take_aarch32_exception(env, new_mode, mask, offset, addr); 9917 } 9918 9919 static int aarch64_regnum(CPUARMState *env, int aarch32_reg) 9920 { 9921 /* 9922 * Return the register number of the AArch64 view of the AArch32 9923 * register @aarch32_reg. The CPUARMState CPSR is assumed to still 9924 * be that of the AArch32 mode the exception came from. 9925 */ 9926 int mode = env->uncached_cpsr & CPSR_M; 9927 9928 switch (aarch32_reg) { 9929 case 0 ... 7: 9930 return aarch32_reg; 9931 case 8 ... 12: 9932 return mode == ARM_CPU_MODE_FIQ ? aarch32_reg + 16 : aarch32_reg; 9933 case 13: 9934 switch (mode) { 9935 case ARM_CPU_MODE_USR: 9936 case ARM_CPU_MODE_SYS: 9937 return 13; 9938 case ARM_CPU_MODE_HYP: 9939 return 15; 9940 case ARM_CPU_MODE_IRQ: 9941 return 17; 9942 case ARM_CPU_MODE_SVC: 9943 return 19; 9944 case ARM_CPU_MODE_ABT: 9945 return 21; 9946 case ARM_CPU_MODE_UND: 9947 return 23; 9948 case ARM_CPU_MODE_FIQ: 9949 return 29; 9950 default: 9951 g_assert_not_reached(); 9952 } 9953 case 14: 9954 switch (mode) { 9955 case ARM_CPU_MODE_USR: 9956 case ARM_CPU_MODE_SYS: 9957 case ARM_CPU_MODE_HYP: 9958 return 14; 9959 case ARM_CPU_MODE_IRQ: 9960 return 16; 9961 case ARM_CPU_MODE_SVC: 9962 return 18; 9963 case ARM_CPU_MODE_ABT: 9964 return 20; 9965 case ARM_CPU_MODE_UND: 9966 return 22; 9967 case ARM_CPU_MODE_FIQ: 9968 return 30; 9969 default: 9970 g_assert_not_reached(); 9971 } 9972 case 15: 9973 return 31; 9974 default: 9975 g_assert_not_reached(); 9976 } 9977 } 9978 9979 static uint32_t cpsr_read_for_spsr_elx(CPUARMState *env) 9980 { 9981 uint32_t ret = cpsr_read(env); 9982 9983 /* Move DIT to the correct location for SPSR_ELx */ 9984 if (ret & CPSR_DIT) { 9985 ret &= ~CPSR_DIT; 9986 ret |= PSTATE_DIT; 9987 } 9988 /* Merge PSTATE.SS into SPSR_ELx */ 9989 ret |= env->pstate & PSTATE_SS; 9990 9991 return ret; 9992 } 9993 9994 /* Handle exception entry to a target EL which is using AArch64 */ 9995 static void arm_cpu_do_interrupt_aarch64(CPUState *cs) 9996 { 9997 ARMCPU *cpu = ARM_CPU(cs); 9998 CPUARMState *env = &cpu->env; 9999 unsigned int new_el = env->exception.target_el; 10000 target_ulong addr = env->cp15.vbar_el[new_el]; 10001 unsigned int new_mode = aarch64_pstate_mode(new_el, true); 10002 unsigned int old_mode; 10003 unsigned int cur_el = arm_current_el(env); 10004 int rt; 10005 10006 /* 10007 * Note that new_el can never be 0. If cur_el is 0, then 10008 * el0_a64 is is_a64(), else el0_a64 is ignored. 10009 */ 10010 aarch64_sve_change_el(env, cur_el, new_el, is_a64(env)); 10011 10012 if (cur_el < new_el) { 10013 /* Entry vector offset depends on whether the implemented EL 10014 * immediately lower than the target level is using AArch32 or AArch64 10015 */ 10016 bool is_aa64; 10017 uint64_t hcr; 10018 10019 switch (new_el) { 10020 case 3: 10021 is_aa64 = (env->cp15.scr_el3 & SCR_RW) != 0; 10022 break; 10023 case 2: 10024 hcr = arm_hcr_el2_eff(env); 10025 if ((hcr & (HCR_E2H | HCR_TGE)) != (HCR_E2H | HCR_TGE)) { 10026 is_aa64 = (hcr & HCR_RW) != 0; 10027 break; 10028 } 10029 /* fall through */ 10030 case 1: 10031 is_aa64 = is_a64(env); 10032 break; 10033 default: 10034 g_assert_not_reached(); 10035 } 10036 10037 if (is_aa64) { 10038 addr += 0x400; 10039 } else { 10040 addr += 0x600; 10041 } 10042 } else if (pstate_read(env) & PSTATE_SP) { 10043 addr += 0x200; 10044 } 10045 10046 switch (cs->exception_index) { 10047 case EXCP_PREFETCH_ABORT: 10048 case EXCP_DATA_ABORT: 10049 env->cp15.far_el[new_el] = env->exception.vaddress; 10050 qemu_log_mask(CPU_LOG_INT, "...with FAR 0x%" PRIx64 "\n", 10051 env->cp15.far_el[new_el]); 10052 /* fall through */ 10053 case EXCP_BKPT: 10054 case EXCP_UDEF: 10055 case EXCP_SWI: 10056 case EXCP_HVC: 10057 case EXCP_HYP_TRAP: 10058 case EXCP_SMC: 10059 switch (syn_get_ec(env->exception.syndrome)) { 10060 case EC_ADVSIMDFPACCESSTRAP: 10061 /* 10062 * QEMU internal FP/SIMD syndromes from AArch32 include the 10063 * TA and coproc fields which are only exposed if the exception 10064 * is taken to AArch32 Hyp mode. Mask them out to get a valid 10065 * AArch64 format syndrome. 10066 */ 10067 env->exception.syndrome &= ~MAKE_64BIT_MASK(0, 20); 10068 break; 10069 case EC_CP14RTTRAP: 10070 case EC_CP15RTTRAP: 10071 case EC_CP14DTTRAP: 10072 /* 10073 * For a trap on AArch32 MRC/MCR/LDC/STC the Rt field is currently 10074 * the raw register field from the insn; when taking this to 10075 * AArch64 we must convert it to the AArch64 view of the register 10076 * number. Notice that we read a 4-bit AArch32 register number and 10077 * write back a 5-bit AArch64 one. 10078 */ 10079 rt = extract32(env->exception.syndrome, 5, 4); 10080 rt = aarch64_regnum(env, rt); 10081 env->exception.syndrome = deposit32(env->exception.syndrome, 10082 5, 5, rt); 10083 break; 10084 case EC_CP15RRTTRAP: 10085 case EC_CP14RRTTRAP: 10086 /* Similarly for MRRC/MCRR traps for Rt and Rt2 fields */ 10087 rt = extract32(env->exception.syndrome, 5, 4); 10088 rt = aarch64_regnum(env, rt); 10089 env->exception.syndrome = deposit32(env->exception.syndrome, 10090 5, 5, rt); 10091 rt = extract32(env->exception.syndrome, 10, 4); 10092 rt = aarch64_regnum(env, rt); 10093 env->exception.syndrome = deposit32(env->exception.syndrome, 10094 10, 5, rt); 10095 break; 10096 } 10097 env->cp15.esr_el[new_el] = env->exception.syndrome; 10098 break; 10099 case EXCP_IRQ: 10100 case EXCP_VIRQ: 10101 addr += 0x80; 10102 break; 10103 case EXCP_FIQ: 10104 case EXCP_VFIQ: 10105 addr += 0x100; 10106 break; 10107 default: 10108 cpu_abort(cs, "Unhandled exception 0x%x\n", cs->exception_index); 10109 } 10110 10111 if (is_a64(env)) { 10112 old_mode = pstate_read(env); 10113 aarch64_save_sp(env, arm_current_el(env)); 10114 env->elr_el[new_el] = env->pc; 10115 } else { 10116 old_mode = cpsr_read_for_spsr_elx(env); 10117 env->elr_el[new_el] = env->regs[15]; 10118 10119 aarch64_sync_32_to_64(env); 10120 10121 env->condexec_bits = 0; 10122 } 10123 env->banked_spsr[aarch64_banked_spsr_index(new_el)] = old_mode; 10124 10125 qemu_log_mask(CPU_LOG_INT, "...with ELR 0x%" PRIx64 "\n", 10126 env->elr_el[new_el]); 10127 10128 if (cpu_isar_feature(aa64_pan, cpu)) { 10129 /* The value of PSTATE.PAN is normally preserved, except when ... */ 10130 new_mode |= old_mode & PSTATE_PAN; 10131 switch (new_el) { 10132 case 2: 10133 /* ... the target is EL2 with HCR_EL2.{E2H,TGE} == '11' ... */ 10134 if ((arm_hcr_el2_eff(env) & (HCR_E2H | HCR_TGE)) 10135 != (HCR_E2H | HCR_TGE)) { 10136 break; 10137 } 10138 /* fall through */ 10139 case 1: 10140 /* ... the target is EL1 ... */ 10141 /* ... and SCTLR_ELx.SPAN == 0, then set to 1. */ 10142 if ((env->cp15.sctlr_el[new_el] & SCTLR_SPAN) == 0) { 10143 new_mode |= PSTATE_PAN; 10144 } 10145 break; 10146 } 10147 } 10148 if (cpu_isar_feature(aa64_mte, cpu)) { 10149 new_mode |= PSTATE_TCO; 10150 } 10151 10152 if (cpu_isar_feature(aa64_ssbs, cpu)) { 10153 if (env->cp15.sctlr_el[new_el] & SCTLR_DSSBS_64) { 10154 new_mode |= PSTATE_SSBS; 10155 } else { 10156 new_mode &= ~PSTATE_SSBS; 10157 } 10158 } 10159 10160 pstate_write(env, PSTATE_DAIF | new_mode); 10161 env->aarch64 = 1; 10162 aarch64_restore_sp(env, new_el); 10163 helper_rebuild_hflags_a64(env, new_el); 10164 10165 env->pc = addr; 10166 10167 qemu_log_mask(CPU_LOG_INT, "...to EL%d PC 0x%" PRIx64 " PSTATE 0x%x\n", 10168 new_el, env->pc, pstate_read(env)); 10169 } 10170 10171 /* 10172 * Do semihosting call and set the appropriate return value. All the 10173 * permission and validity checks have been done at translate time. 10174 * 10175 * We only see semihosting exceptions in TCG only as they are not 10176 * trapped to the hypervisor in KVM. 10177 */ 10178 #ifdef CONFIG_TCG 10179 static void handle_semihosting(CPUState *cs) 10180 { 10181 ARMCPU *cpu = ARM_CPU(cs); 10182 CPUARMState *env = &cpu->env; 10183 10184 if (is_a64(env)) { 10185 qemu_log_mask(CPU_LOG_INT, 10186 "...handling as semihosting call 0x%" PRIx64 "\n", 10187 env->xregs[0]); 10188 env->xregs[0] = do_common_semihosting(cs); 10189 env->pc += 4; 10190 } else { 10191 qemu_log_mask(CPU_LOG_INT, 10192 "...handling as semihosting call 0x%x\n", 10193 env->regs[0]); 10194 env->regs[0] = do_common_semihosting(cs); 10195 env->regs[15] += env->thumb ? 2 : 4; 10196 } 10197 } 10198 #endif 10199 10200 /* Handle a CPU exception for A and R profile CPUs. 10201 * Do any appropriate logging, handle PSCI calls, and then hand off 10202 * to the AArch64-entry or AArch32-entry function depending on the 10203 * target exception level's register width. 10204 * 10205 * Note: this is used for both TCG (as the do_interrupt tcg op), 10206 * and KVM to re-inject guest debug exceptions, and to 10207 * inject a Synchronous-External-Abort. 10208 */ 10209 void arm_cpu_do_interrupt(CPUState *cs) 10210 { 10211 ARMCPU *cpu = ARM_CPU(cs); 10212 CPUARMState *env = &cpu->env; 10213 unsigned int new_el = env->exception.target_el; 10214 10215 assert(!arm_feature(env, ARM_FEATURE_M)); 10216 10217 arm_log_exception(cs); 10218 qemu_log_mask(CPU_LOG_INT, "...from EL%d to EL%d\n", arm_current_el(env), 10219 new_el); 10220 if (qemu_loglevel_mask(CPU_LOG_INT) 10221 && !excp_is_internal(cs->exception_index)) { 10222 qemu_log_mask(CPU_LOG_INT, "...with ESR 0x%x/0x%" PRIx32 "\n", 10223 syn_get_ec(env->exception.syndrome), 10224 env->exception.syndrome); 10225 } 10226 10227 if (arm_is_psci_call(cpu, cs->exception_index)) { 10228 arm_handle_psci_call(cpu); 10229 qemu_log_mask(CPU_LOG_INT, "...handled as PSCI call\n"); 10230 return; 10231 } 10232 10233 /* 10234 * Semihosting semantics depend on the register width of the code 10235 * that caused the exception, not the target exception level, so 10236 * must be handled here. 10237 */ 10238 #ifdef CONFIG_TCG 10239 if (cs->exception_index == EXCP_SEMIHOST) { 10240 handle_semihosting(cs); 10241 return; 10242 } 10243 #endif 10244 10245 /* Hooks may change global state so BQL should be held, also the 10246 * BQL needs to be held for any modification of 10247 * cs->interrupt_request. 10248 */ 10249 g_assert(qemu_mutex_iothread_locked()); 10250 10251 arm_call_pre_el_change_hook(cpu); 10252 10253 assert(!excp_is_internal(cs->exception_index)); 10254 if (arm_el_is_aa64(env, new_el)) { 10255 arm_cpu_do_interrupt_aarch64(cs); 10256 } else { 10257 arm_cpu_do_interrupt_aarch32(cs); 10258 } 10259 10260 arm_call_el_change_hook(cpu); 10261 10262 if (!kvm_enabled()) { 10263 cs->interrupt_request |= CPU_INTERRUPT_EXITTB; 10264 } 10265 } 10266 #endif /* !CONFIG_USER_ONLY */ 10267 10268 uint64_t arm_sctlr(CPUARMState *env, int el) 10269 { 10270 /* Only EL0 needs to be adjusted for EL1&0 or EL2&0. */ 10271 if (el == 0) { 10272 ARMMMUIdx mmu_idx = arm_mmu_idx_el(env, 0); 10273 el = (mmu_idx == ARMMMUIdx_E20_0 || mmu_idx == ARMMMUIdx_SE20_0) 10274 ? 2 : 1; 10275 } 10276 return env->cp15.sctlr_el[el]; 10277 } 10278 10279 /* Return the SCTLR value which controls this address translation regime */ 10280 static inline uint64_t regime_sctlr(CPUARMState *env, ARMMMUIdx mmu_idx) 10281 { 10282 return env->cp15.sctlr_el[regime_el(env, mmu_idx)]; 10283 } 10284 10285 #ifndef CONFIG_USER_ONLY 10286 10287 /* Return true if the specified stage of address translation is disabled */ 10288 static inline bool regime_translation_disabled(CPUARMState *env, 10289 ARMMMUIdx mmu_idx) 10290 { 10291 uint64_t hcr_el2; 10292 10293 if (arm_feature(env, ARM_FEATURE_M)) { 10294 switch (env->v7m.mpu_ctrl[regime_is_secure(env, mmu_idx)] & 10295 (R_V7M_MPU_CTRL_ENABLE_MASK | R_V7M_MPU_CTRL_HFNMIENA_MASK)) { 10296 case R_V7M_MPU_CTRL_ENABLE_MASK: 10297 /* Enabled, but not for HardFault and NMI */ 10298 return mmu_idx & ARM_MMU_IDX_M_NEGPRI; 10299 case R_V7M_MPU_CTRL_ENABLE_MASK | R_V7M_MPU_CTRL_HFNMIENA_MASK: 10300 /* Enabled for all cases */ 10301 return false; 10302 case 0: 10303 default: 10304 /* HFNMIENA set and ENABLE clear is UNPREDICTABLE, but 10305 * we warned about that in armv7m_nvic.c when the guest set it. 10306 */ 10307 return true; 10308 } 10309 } 10310 10311 hcr_el2 = arm_hcr_el2_eff(env); 10312 10313 if (mmu_idx == ARMMMUIdx_Stage2 || mmu_idx == ARMMMUIdx_Stage2_S) { 10314 /* HCR.DC means HCR.VM behaves as 1 */ 10315 return (hcr_el2 & (HCR_DC | HCR_VM)) == 0; 10316 } 10317 10318 if (hcr_el2 & HCR_TGE) { 10319 /* TGE means that NS EL0/1 act as if SCTLR_EL1.M is zero */ 10320 if (!regime_is_secure(env, mmu_idx) && regime_el(env, mmu_idx) == 1) { 10321 return true; 10322 } 10323 } 10324 10325 if ((hcr_el2 & HCR_DC) && arm_mmu_idx_is_stage1_of_2(mmu_idx)) { 10326 /* HCR.DC means SCTLR_EL1.M behaves as 0 */ 10327 return true; 10328 } 10329 10330 return (regime_sctlr(env, mmu_idx) & SCTLR_M) == 0; 10331 } 10332 10333 static inline bool regime_translation_big_endian(CPUARMState *env, 10334 ARMMMUIdx mmu_idx) 10335 { 10336 return (regime_sctlr(env, mmu_idx) & SCTLR_EE) != 0; 10337 } 10338 10339 /* Return the TTBR associated with this translation regime */ 10340 static inline uint64_t regime_ttbr(CPUARMState *env, ARMMMUIdx mmu_idx, 10341 int ttbrn) 10342 { 10343 if (mmu_idx == ARMMMUIdx_Stage2) { 10344 return env->cp15.vttbr_el2; 10345 } 10346 if (mmu_idx == ARMMMUIdx_Stage2_S) { 10347 return env->cp15.vsttbr_el2; 10348 } 10349 if (ttbrn == 0) { 10350 return env->cp15.ttbr0_el[regime_el(env, mmu_idx)]; 10351 } else { 10352 return env->cp15.ttbr1_el[regime_el(env, mmu_idx)]; 10353 } 10354 } 10355 10356 #endif /* !CONFIG_USER_ONLY */ 10357 10358 /* Convert a possible stage1+2 MMU index into the appropriate 10359 * stage 1 MMU index 10360 */ 10361 static inline ARMMMUIdx stage_1_mmu_idx(ARMMMUIdx mmu_idx) 10362 { 10363 switch (mmu_idx) { 10364 case ARMMMUIdx_SE10_0: 10365 return ARMMMUIdx_Stage1_SE0; 10366 case ARMMMUIdx_SE10_1: 10367 return ARMMMUIdx_Stage1_SE1; 10368 case ARMMMUIdx_SE10_1_PAN: 10369 return ARMMMUIdx_Stage1_SE1_PAN; 10370 case ARMMMUIdx_E10_0: 10371 return ARMMMUIdx_Stage1_E0; 10372 case ARMMMUIdx_E10_1: 10373 return ARMMMUIdx_Stage1_E1; 10374 case ARMMMUIdx_E10_1_PAN: 10375 return ARMMMUIdx_Stage1_E1_PAN; 10376 default: 10377 return mmu_idx; 10378 } 10379 } 10380 10381 /* Return true if the translation regime is using LPAE format page tables */ 10382 static inline bool regime_using_lpae_format(CPUARMState *env, 10383 ARMMMUIdx mmu_idx) 10384 { 10385 int el = regime_el(env, mmu_idx); 10386 if (el == 2 || arm_el_is_aa64(env, el)) { 10387 return true; 10388 } 10389 if (arm_feature(env, ARM_FEATURE_LPAE) 10390 && (regime_tcr(env, mmu_idx)->raw_tcr & TTBCR_EAE)) { 10391 return true; 10392 } 10393 return false; 10394 } 10395 10396 /* Returns true if the stage 1 translation regime is using LPAE format page 10397 * tables. Used when raising alignment exceptions, whose FSR changes depending 10398 * on whether the long or short descriptor format is in use. */ 10399 bool arm_s1_regime_using_lpae_format(CPUARMState *env, ARMMMUIdx mmu_idx) 10400 { 10401 mmu_idx = stage_1_mmu_idx(mmu_idx); 10402 10403 return regime_using_lpae_format(env, mmu_idx); 10404 } 10405 10406 #ifndef CONFIG_USER_ONLY 10407 static inline bool regime_is_user(CPUARMState *env, ARMMMUIdx mmu_idx) 10408 { 10409 switch (mmu_idx) { 10410 case ARMMMUIdx_SE10_0: 10411 case ARMMMUIdx_E20_0: 10412 case ARMMMUIdx_SE20_0: 10413 case ARMMMUIdx_Stage1_E0: 10414 case ARMMMUIdx_Stage1_SE0: 10415 case ARMMMUIdx_MUser: 10416 case ARMMMUIdx_MSUser: 10417 case ARMMMUIdx_MUserNegPri: 10418 case ARMMMUIdx_MSUserNegPri: 10419 return true; 10420 default: 10421 return false; 10422 case ARMMMUIdx_E10_0: 10423 case ARMMMUIdx_E10_1: 10424 case ARMMMUIdx_E10_1_PAN: 10425 g_assert_not_reached(); 10426 } 10427 } 10428 10429 /* Translate section/page access permissions to page 10430 * R/W protection flags 10431 * 10432 * @env: CPUARMState 10433 * @mmu_idx: MMU index indicating required translation regime 10434 * @ap: The 3-bit access permissions (AP[2:0]) 10435 * @domain_prot: The 2-bit domain access permissions 10436 */ 10437 static inline int ap_to_rw_prot(CPUARMState *env, ARMMMUIdx mmu_idx, 10438 int ap, int domain_prot) 10439 { 10440 bool is_user = regime_is_user(env, mmu_idx); 10441 10442 if (domain_prot == 3) { 10443 return PAGE_READ | PAGE_WRITE; 10444 } 10445 10446 switch (ap) { 10447 case 0: 10448 if (arm_feature(env, ARM_FEATURE_V7)) { 10449 return 0; 10450 } 10451 switch (regime_sctlr(env, mmu_idx) & (SCTLR_S | SCTLR_R)) { 10452 case SCTLR_S: 10453 return is_user ? 0 : PAGE_READ; 10454 case SCTLR_R: 10455 return PAGE_READ; 10456 default: 10457 return 0; 10458 } 10459 case 1: 10460 return is_user ? 0 : PAGE_READ | PAGE_WRITE; 10461 case 2: 10462 if (is_user) { 10463 return PAGE_READ; 10464 } else { 10465 return PAGE_READ | PAGE_WRITE; 10466 } 10467 case 3: 10468 return PAGE_READ | PAGE_WRITE; 10469 case 4: /* Reserved. */ 10470 return 0; 10471 case 5: 10472 return is_user ? 0 : PAGE_READ; 10473 case 6: 10474 return PAGE_READ; 10475 case 7: 10476 if (!arm_feature(env, ARM_FEATURE_V6K)) { 10477 return 0; 10478 } 10479 return PAGE_READ; 10480 default: 10481 g_assert_not_reached(); 10482 } 10483 } 10484 10485 /* Translate section/page access permissions to page 10486 * R/W protection flags. 10487 * 10488 * @ap: The 2-bit simple AP (AP[2:1]) 10489 * @is_user: TRUE if accessing from PL0 10490 */ 10491 static inline int simple_ap_to_rw_prot_is_user(int ap, bool is_user) 10492 { 10493 switch (ap) { 10494 case 0: 10495 return is_user ? 0 : PAGE_READ | PAGE_WRITE; 10496 case 1: 10497 return PAGE_READ | PAGE_WRITE; 10498 case 2: 10499 return is_user ? 0 : PAGE_READ; 10500 case 3: 10501 return PAGE_READ; 10502 default: 10503 g_assert_not_reached(); 10504 } 10505 } 10506 10507 static inline int 10508 simple_ap_to_rw_prot(CPUARMState *env, ARMMMUIdx mmu_idx, int ap) 10509 { 10510 return simple_ap_to_rw_prot_is_user(ap, regime_is_user(env, mmu_idx)); 10511 } 10512 10513 /* Translate S2 section/page access permissions to protection flags 10514 * 10515 * @env: CPUARMState 10516 * @s2ap: The 2-bit stage2 access permissions (S2AP) 10517 * @xn: XN (execute-never) bits 10518 * @s1_is_el0: true if this is S2 of an S1+2 walk for EL0 10519 */ 10520 static int get_S2prot(CPUARMState *env, int s2ap, int xn, bool s1_is_el0) 10521 { 10522 int prot = 0; 10523 10524 if (s2ap & 1) { 10525 prot |= PAGE_READ; 10526 } 10527 if (s2ap & 2) { 10528 prot |= PAGE_WRITE; 10529 } 10530 10531 if (cpu_isar_feature(any_tts2uxn, env_archcpu(env))) { 10532 switch (xn) { 10533 case 0: 10534 prot |= PAGE_EXEC; 10535 break; 10536 case 1: 10537 if (s1_is_el0) { 10538 prot |= PAGE_EXEC; 10539 } 10540 break; 10541 case 2: 10542 break; 10543 case 3: 10544 if (!s1_is_el0) { 10545 prot |= PAGE_EXEC; 10546 } 10547 break; 10548 default: 10549 g_assert_not_reached(); 10550 } 10551 } else { 10552 if (!extract32(xn, 1, 1)) { 10553 if (arm_el_is_aa64(env, 2) || prot & PAGE_READ) { 10554 prot |= PAGE_EXEC; 10555 } 10556 } 10557 } 10558 return prot; 10559 } 10560 10561 /* Translate section/page access permissions to protection flags 10562 * 10563 * @env: CPUARMState 10564 * @mmu_idx: MMU index indicating required translation regime 10565 * @is_aa64: TRUE if AArch64 10566 * @ap: The 2-bit simple AP (AP[2:1]) 10567 * @ns: NS (non-secure) bit 10568 * @xn: XN (execute-never) bit 10569 * @pxn: PXN (privileged execute-never) bit 10570 */ 10571 static int get_S1prot(CPUARMState *env, ARMMMUIdx mmu_idx, bool is_aa64, 10572 int ap, int ns, int xn, int pxn) 10573 { 10574 bool is_user = regime_is_user(env, mmu_idx); 10575 int prot_rw, user_rw; 10576 bool have_wxn; 10577 int wxn = 0; 10578 10579 assert(mmu_idx != ARMMMUIdx_Stage2); 10580 assert(mmu_idx != ARMMMUIdx_Stage2_S); 10581 10582 user_rw = simple_ap_to_rw_prot_is_user(ap, true); 10583 if (is_user) { 10584 prot_rw = user_rw; 10585 } else { 10586 if (user_rw && regime_is_pan(env, mmu_idx)) { 10587 /* PAN forbids data accesses but doesn't affect insn fetch */ 10588 prot_rw = 0; 10589 } else { 10590 prot_rw = simple_ap_to_rw_prot_is_user(ap, false); 10591 } 10592 } 10593 10594 if (ns && arm_is_secure(env) && (env->cp15.scr_el3 & SCR_SIF)) { 10595 return prot_rw; 10596 } 10597 10598 /* TODO have_wxn should be replaced with 10599 * ARM_FEATURE_V8 || (ARM_FEATURE_V7 && ARM_FEATURE_EL2) 10600 * when ARM_FEATURE_EL2 starts getting set. For now we assume all LPAE 10601 * compatible processors have EL2, which is required for [U]WXN. 10602 */ 10603 have_wxn = arm_feature(env, ARM_FEATURE_LPAE); 10604 10605 if (have_wxn) { 10606 wxn = regime_sctlr(env, mmu_idx) & SCTLR_WXN; 10607 } 10608 10609 if (is_aa64) { 10610 if (regime_has_2_ranges(mmu_idx) && !is_user) { 10611 xn = pxn || (user_rw & PAGE_WRITE); 10612 } 10613 } else if (arm_feature(env, ARM_FEATURE_V7)) { 10614 switch (regime_el(env, mmu_idx)) { 10615 case 1: 10616 case 3: 10617 if (is_user) { 10618 xn = xn || !(user_rw & PAGE_READ); 10619 } else { 10620 int uwxn = 0; 10621 if (have_wxn) { 10622 uwxn = regime_sctlr(env, mmu_idx) & SCTLR_UWXN; 10623 } 10624 xn = xn || !(prot_rw & PAGE_READ) || pxn || 10625 (uwxn && (user_rw & PAGE_WRITE)); 10626 } 10627 break; 10628 case 2: 10629 break; 10630 } 10631 } else { 10632 xn = wxn = 0; 10633 } 10634 10635 if (xn || (wxn && (prot_rw & PAGE_WRITE))) { 10636 return prot_rw; 10637 } 10638 return prot_rw | PAGE_EXEC; 10639 } 10640 10641 static bool get_level1_table_address(CPUARMState *env, ARMMMUIdx mmu_idx, 10642 uint32_t *table, uint32_t address) 10643 { 10644 /* Note that we can only get here for an AArch32 PL0/PL1 lookup */ 10645 TCR *tcr = regime_tcr(env, mmu_idx); 10646 10647 if (address & tcr->mask) { 10648 if (tcr->raw_tcr & TTBCR_PD1) { 10649 /* Translation table walk disabled for TTBR1 */ 10650 return false; 10651 } 10652 *table = regime_ttbr(env, mmu_idx, 1) & 0xffffc000; 10653 } else { 10654 if (tcr->raw_tcr & TTBCR_PD0) { 10655 /* Translation table walk disabled for TTBR0 */ 10656 return false; 10657 } 10658 *table = regime_ttbr(env, mmu_idx, 0) & tcr->base_mask; 10659 } 10660 *table |= (address >> 18) & 0x3ffc; 10661 return true; 10662 } 10663 10664 /* Translate a S1 pagetable walk through S2 if needed. */ 10665 static hwaddr S1_ptw_translate(CPUARMState *env, ARMMMUIdx mmu_idx, 10666 hwaddr addr, bool *is_secure, 10667 ARMMMUFaultInfo *fi) 10668 { 10669 if (arm_mmu_idx_is_stage1_of_2(mmu_idx) && 10670 !regime_translation_disabled(env, ARMMMUIdx_Stage2)) { 10671 target_ulong s2size; 10672 hwaddr s2pa; 10673 int s2prot; 10674 int ret; 10675 ARMMMUIdx s2_mmu_idx = *is_secure ? ARMMMUIdx_Stage2_S 10676 : ARMMMUIdx_Stage2; 10677 ARMCacheAttrs cacheattrs = {}; 10678 MemTxAttrs txattrs = {}; 10679 10680 ret = get_phys_addr_lpae(env, addr, MMU_DATA_LOAD, s2_mmu_idx, false, 10681 &s2pa, &txattrs, &s2prot, &s2size, fi, 10682 &cacheattrs); 10683 if (ret) { 10684 assert(fi->type != ARMFault_None); 10685 fi->s2addr = addr; 10686 fi->stage2 = true; 10687 fi->s1ptw = true; 10688 fi->s1ns = !*is_secure; 10689 return ~0; 10690 } 10691 if ((arm_hcr_el2_eff(env) & HCR_PTW) && 10692 (cacheattrs.attrs & 0xf0) == 0) { 10693 /* 10694 * PTW set and S1 walk touched S2 Device memory: 10695 * generate Permission fault. 10696 */ 10697 fi->type = ARMFault_Permission; 10698 fi->s2addr = addr; 10699 fi->stage2 = true; 10700 fi->s1ptw = true; 10701 fi->s1ns = !*is_secure; 10702 return ~0; 10703 } 10704 10705 if (arm_is_secure_below_el3(env)) { 10706 /* Check if page table walk is to secure or non-secure PA space. */ 10707 if (*is_secure) { 10708 *is_secure = !(env->cp15.vstcr_el2.raw_tcr & VSTCR_SW); 10709 } else { 10710 *is_secure = !(env->cp15.vtcr_el2.raw_tcr & VTCR_NSW); 10711 } 10712 } else { 10713 assert(!*is_secure); 10714 } 10715 10716 addr = s2pa; 10717 } 10718 return addr; 10719 } 10720 10721 /* All loads done in the course of a page table walk go through here. */ 10722 static uint32_t arm_ldl_ptw(CPUState *cs, hwaddr addr, bool is_secure, 10723 ARMMMUIdx mmu_idx, ARMMMUFaultInfo *fi) 10724 { 10725 ARMCPU *cpu = ARM_CPU(cs); 10726 CPUARMState *env = &cpu->env; 10727 MemTxAttrs attrs = {}; 10728 MemTxResult result = MEMTX_OK; 10729 AddressSpace *as; 10730 uint32_t data; 10731 10732 addr = S1_ptw_translate(env, mmu_idx, addr, &is_secure, fi); 10733 attrs.secure = is_secure; 10734 as = arm_addressspace(cs, attrs); 10735 if (fi->s1ptw) { 10736 return 0; 10737 } 10738 if (regime_translation_big_endian(env, mmu_idx)) { 10739 data = address_space_ldl_be(as, addr, attrs, &result); 10740 } else { 10741 data = address_space_ldl_le(as, addr, attrs, &result); 10742 } 10743 if (result == MEMTX_OK) { 10744 return data; 10745 } 10746 fi->type = ARMFault_SyncExternalOnWalk; 10747 fi->ea = arm_extabort_type(result); 10748 return 0; 10749 } 10750 10751 static uint64_t arm_ldq_ptw(CPUState *cs, hwaddr addr, bool is_secure, 10752 ARMMMUIdx mmu_idx, ARMMMUFaultInfo *fi) 10753 { 10754 ARMCPU *cpu = ARM_CPU(cs); 10755 CPUARMState *env = &cpu->env; 10756 MemTxAttrs attrs = {}; 10757 MemTxResult result = MEMTX_OK; 10758 AddressSpace *as; 10759 uint64_t data; 10760 10761 addr = S1_ptw_translate(env, mmu_idx, addr, &is_secure, fi); 10762 attrs.secure = is_secure; 10763 as = arm_addressspace(cs, attrs); 10764 if (fi->s1ptw) { 10765 return 0; 10766 } 10767 if (regime_translation_big_endian(env, mmu_idx)) { 10768 data = address_space_ldq_be(as, addr, attrs, &result); 10769 } else { 10770 data = address_space_ldq_le(as, addr, attrs, &result); 10771 } 10772 if (result == MEMTX_OK) { 10773 return data; 10774 } 10775 fi->type = ARMFault_SyncExternalOnWalk; 10776 fi->ea = arm_extabort_type(result); 10777 return 0; 10778 } 10779 10780 static bool get_phys_addr_v5(CPUARMState *env, uint32_t address, 10781 MMUAccessType access_type, ARMMMUIdx mmu_idx, 10782 hwaddr *phys_ptr, int *prot, 10783 target_ulong *page_size, 10784 ARMMMUFaultInfo *fi) 10785 { 10786 CPUState *cs = env_cpu(env); 10787 int level = 1; 10788 uint32_t table; 10789 uint32_t desc; 10790 int type; 10791 int ap; 10792 int domain = 0; 10793 int domain_prot; 10794 hwaddr phys_addr; 10795 uint32_t dacr; 10796 10797 /* Pagetable walk. */ 10798 /* Lookup l1 descriptor. */ 10799 if (!get_level1_table_address(env, mmu_idx, &table, address)) { 10800 /* Section translation fault if page walk is disabled by PD0 or PD1 */ 10801 fi->type = ARMFault_Translation; 10802 goto do_fault; 10803 } 10804 desc = arm_ldl_ptw(cs, table, regime_is_secure(env, mmu_idx), 10805 mmu_idx, fi); 10806 if (fi->type != ARMFault_None) { 10807 goto do_fault; 10808 } 10809 type = (desc & 3); 10810 domain = (desc >> 5) & 0x0f; 10811 if (regime_el(env, mmu_idx) == 1) { 10812 dacr = env->cp15.dacr_ns; 10813 } else { 10814 dacr = env->cp15.dacr_s; 10815 } 10816 domain_prot = (dacr >> (domain * 2)) & 3; 10817 if (type == 0) { 10818 /* Section translation fault. */ 10819 fi->type = ARMFault_Translation; 10820 goto do_fault; 10821 } 10822 if (type != 2) { 10823 level = 2; 10824 } 10825 if (domain_prot == 0 || domain_prot == 2) { 10826 fi->type = ARMFault_Domain; 10827 goto do_fault; 10828 } 10829 if (type == 2) { 10830 /* 1Mb section. */ 10831 phys_addr = (desc & 0xfff00000) | (address & 0x000fffff); 10832 ap = (desc >> 10) & 3; 10833 *page_size = 1024 * 1024; 10834 } else { 10835 /* Lookup l2 entry. */ 10836 if (type == 1) { 10837 /* Coarse pagetable. */ 10838 table = (desc & 0xfffffc00) | ((address >> 10) & 0x3fc); 10839 } else { 10840 /* Fine pagetable. */ 10841 table = (desc & 0xfffff000) | ((address >> 8) & 0xffc); 10842 } 10843 desc = arm_ldl_ptw(cs, table, regime_is_secure(env, mmu_idx), 10844 mmu_idx, fi); 10845 if (fi->type != ARMFault_None) { 10846 goto do_fault; 10847 } 10848 switch (desc & 3) { 10849 case 0: /* Page translation fault. */ 10850 fi->type = ARMFault_Translation; 10851 goto do_fault; 10852 case 1: /* 64k page. */ 10853 phys_addr = (desc & 0xffff0000) | (address & 0xffff); 10854 ap = (desc >> (4 + ((address >> 13) & 6))) & 3; 10855 *page_size = 0x10000; 10856 break; 10857 case 2: /* 4k page. */ 10858 phys_addr = (desc & 0xfffff000) | (address & 0xfff); 10859 ap = (desc >> (4 + ((address >> 9) & 6))) & 3; 10860 *page_size = 0x1000; 10861 break; 10862 case 3: /* 1k page, or ARMv6/XScale "extended small (4k) page" */ 10863 if (type == 1) { 10864 /* ARMv6/XScale extended small page format */ 10865 if (arm_feature(env, ARM_FEATURE_XSCALE) 10866 || arm_feature(env, ARM_FEATURE_V6)) { 10867 phys_addr = (desc & 0xfffff000) | (address & 0xfff); 10868 *page_size = 0x1000; 10869 } else { 10870 /* UNPREDICTABLE in ARMv5; we choose to take a 10871 * page translation fault. 10872 */ 10873 fi->type = ARMFault_Translation; 10874 goto do_fault; 10875 } 10876 } else { 10877 phys_addr = (desc & 0xfffffc00) | (address & 0x3ff); 10878 *page_size = 0x400; 10879 } 10880 ap = (desc >> 4) & 3; 10881 break; 10882 default: 10883 /* Never happens, but compiler isn't smart enough to tell. */ 10884 abort(); 10885 } 10886 } 10887 *prot = ap_to_rw_prot(env, mmu_idx, ap, domain_prot); 10888 *prot |= *prot ? PAGE_EXEC : 0; 10889 if (!(*prot & (1 << access_type))) { 10890 /* Access permission fault. */ 10891 fi->type = ARMFault_Permission; 10892 goto do_fault; 10893 } 10894 *phys_ptr = phys_addr; 10895 return false; 10896 do_fault: 10897 fi->domain = domain; 10898 fi->level = level; 10899 return true; 10900 } 10901 10902 static bool get_phys_addr_v6(CPUARMState *env, uint32_t address, 10903 MMUAccessType access_type, ARMMMUIdx mmu_idx, 10904 hwaddr *phys_ptr, MemTxAttrs *attrs, int *prot, 10905 target_ulong *page_size, ARMMMUFaultInfo *fi) 10906 { 10907 CPUState *cs = env_cpu(env); 10908 ARMCPU *cpu = env_archcpu(env); 10909 int level = 1; 10910 uint32_t table; 10911 uint32_t desc; 10912 uint32_t xn; 10913 uint32_t pxn = 0; 10914 int type; 10915 int ap; 10916 int domain = 0; 10917 int domain_prot; 10918 hwaddr phys_addr; 10919 uint32_t dacr; 10920 bool ns; 10921 10922 /* Pagetable walk. */ 10923 /* Lookup l1 descriptor. */ 10924 if (!get_level1_table_address(env, mmu_idx, &table, address)) { 10925 /* Section translation fault if page walk is disabled by PD0 or PD1 */ 10926 fi->type = ARMFault_Translation; 10927 goto do_fault; 10928 } 10929 desc = arm_ldl_ptw(cs, table, regime_is_secure(env, mmu_idx), 10930 mmu_idx, fi); 10931 if (fi->type != ARMFault_None) { 10932 goto do_fault; 10933 } 10934 type = (desc & 3); 10935 if (type == 0 || (type == 3 && !cpu_isar_feature(aa32_pxn, cpu))) { 10936 /* Section translation fault, or attempt to use the encoding 10937 * which is Reserved on implementations without PXN. 10938 */ 10939 fi->type = ARMFault_Translation; 10940 goto do_fault; 10941 } 10942 if ((type == 1) || !(desc & (1 << 18))) { 10943 /* Page or Section. */ 10944 domain = (desc >> 5) & 0x0f; 10945 } 10946 if (regime_el(env, mmu_idx) == 1) { 10947 dacr = env->cp15.dacr_ns; 10948 } else { 10949 dacr = env->cp15.dacr_s; 10950 } 10951 if (type == 1) { 10952 level = 2; 10953 } 10954 domain_prot = (dacr >> (domain * 2)) & 3; 10955 if (domain_prot == 0 || domain_prot == 2) { 10956 /* Section or Page domain fault */ 10957 fi->type = ARMFault_Domain; 10958 goto do_fault; 10959 } 10960 if (type != 1) { 10961 if (desc & (1 << 18)) { 10962 /* Supersection. */ 10963 phys_addr = (desc & 0xff000000) | (address & 0x00ffffff); 10964 phys_addr |= (uint64_t)extract32(desc, 20, 4) << 32; 10965 phys_addr |= (uint64_t)extract32(desc, 5, 4) << 36; 10966 *page_size = 0x1000000; 10967 } else { 10968 /* Section. */ 10969 phys_addr = (desc & 0xfff00000) | (address & 0x000fffff); 10970 *page_size = 0x100000; 10971 } 10972 ap = ((desc >> 10) & 3) | ((desc >> 13) & 4); 10973 xn = desc & (1 << 4); 10974 pxn = desc & 1; 10975 ns = extract32(desc, 19, 1); 10976 } else { 10977 if (cpu_isar_feature(aa32_pxn, cpu)) { 10978 pxn = (desc >> 2) & 1; 10979 } 10980 ns = extract32(desc, 3, 1); 10981 /* Lookup l2 entry. */ 10982 table = (desc & 0xfffffc00) | ((address >> 10) & 0x3fc); 10983 desc = arm_ldl_ptw(cs, table, regime_is_secure(env, mmu_idx), 10984 mmu_idx, fi); 10985 if (fi->type != ARMFault_None) { 10986 goto do_fault; 10987 } 10988 ap = ((desc >> 4) & 3) | ((desc >> 7) & 4); 10989 switch (desc & 3) { 10990 case 0: /* Page translation fault. */ 10991 fi->type = ARMFault_Translation; 10992 goto do_fault; 10993 case 1: /* 64k page. */ 10994 phys_addr = (desc & 0xffff0000) | (address & 0xffff); 10995 xn = desc & (1 << 15); 10996 *page_size = 0x10000; 10997 break; 10998 case 2: case 3: /* 4k page. */ 10999 phys_addr = (desc & 0xfffff000) | (address & 0xfff); 11000 xn = desc & 1; 11001 *page_size = 0x1000; 11002 break; 11003 default: 11004 /* Never happens, but compiler isn't smart enough to tell. */ 11005 abort(); 11006 } 11007 } 11008 if (domain_prot == 3) { 11009 *prot = PAGE_READ | PAGE_WRITE | PAGE_EXEC; 11010 } else { 11011 if (pxn && !regime_is_user(env, mmu_idx)) { 11012 xn = 1; 11013 } 11014 if (xn && access_type == MMU_INST_FETCH) { 11015 fi->type = ARMFault_Permission; 11016 goto do_fault; 11017 } 11018 11019 if (arm_feature(env, ARM_FEATURE_V6K) && 11020 (regime_sctlr(env, mmu_idx) & SCTLR_AFE)) { 11021 /* The simplified model uses AP[0] as an access control bit. */ 11022 if ((ap & 1) == 0) { 11023 /* Access flag fault. */ 11024 fi->type = ARMFault_AccessFlag; 11025 goto do_fault; 11026 } 11027 *prot = simple_ap_to_rw_prot(env, mmu_idx, ap >> 1); 11028 } else { 11029 *prot = ap_to_rw_prot(env, mmu_idx, ap, domain_prot); 11030 } 11031 if (*prot && !xn) { 11032 *prot |= PAGE_EXEC; 11033 } 11034 if (!(*prot & (1 << access_type))) { 11035 /* Access permission fault. */ 11036 fi->type = ARMFault_Permission; 11037 goto do_fault; 11038 } 11039 } 11040 if (ns) { 11041 /* The NS bit will (as required by the architecture) have no effect if 11042 * the CPU doesn't support TZ or this is a non-secure translation 11043 * regime, because the attribute will already be non-secure. 11044 */ 11045 attrs->secure = false; 11046 } 11047 *phys_ptr = phys_addr; 11048 return false; 11049 do_fault: 11050 fi->domain = domain; 11051 fi->level = level; 11052 return true; 11053 } 11054 11055 /* 11056 * check_s2_mmu_setup 11057 * @cpu: ARMCPU 11058 * @is_aa64: True if the translation regime is in AArch64 state 11059 * @startlevel: Suggested starting level 11060 * @inputsize: Bitsize of IPAs 11061 * @stride: Page-table stride (See the ARM ARM) 11062 * 11063 * Returns true if the suggested S2 translation parameters are OK and 11064 * false otherwise. 11065 */ 11066 static bool check_s2_mmu_setup(ARMCPU *cpu, bool is_aa64, int level, 11067 int inputsize, int stride) 11068 { 11069 const int grainsize = stride + 3; 11070 int startsizecheck; 11071 11072 /* Negative levels are never allowed. */ 11073 if (level < 0) { 11074 return false; 11075 } 11076 11077 startsizecheck = inputsize - ((3 - level) * stride + grainsize); 11078 if (startsizecheck < 1 || startsizecheck > stride + 4) { 11079 return false; 11080 } 11081 11082 if (is_aa64) { 11083 CPUARMState *env = &cpu->env; 11084 unsigned int pamax = arm_pamax(cpu); 11085 11086 switch (stride) { 11087 case 13: /* 64KB Pages. */ 11088 if (level == 0 || (level == 1 && pamax <= 42)) { 11089 return false; 11090 } 11091 break; 11092 case 11: /* 16KB Pages. */ 11093 if (level == 0 || (level == 1 && pamax <= 40)) { 11094 return false; 11095 } 11096 break; 11097 case 9: /* 4KB Pages. */ 11098 if (level == 0 && pamax <= 42) { 11099 return false; 11100 } 11101 break; 11102 default: 11103 g_assert_not_reached(); 11104 } 11105 11106 /* Inputsize checks. */ 11107 if (inputsize > pamax && 11108 (arm_el_is_aa64(env, 1) || inputsize > 40)) { 11109 /* This is CONSTRAINED UNPREDICTABLE and we choose to fault. */ 11110 return false; 11111 } 11112 } else { 11113 /* AArch32 only supports 4KB pages. Assert on that. */ 11114 assert(stride == 9); 11115 11116 if (level == 0) { 11117 return false; 11118 } 11119 } 11120 return true; 11121 } 11122 11123 /* Translate from the 4-bit stage 2 representation of 11124 * memory attributes (without cache-allocation hints) to 11125 * the 8-bit representation of the stage 1 MAIR registers 11126 * (which includes allocation hints). 11127 * 11128 * ref: shared/translation/attrs/S2AttrDecode() 11129 * .../S2ConvertAttrsHints() 11130 */ 11131 static uint8_t convert_stage2_attrs(CPUARMState *env, uint8_t s2attrs) 11132 { 11133 uint8_t hiattr = extract32(s2attrs, 2, 2); 11134 uint8_t loattr = extract32(s2attrs, 0, 2); 11135 uint8_t hihint = 0, lohint = 0; 11136 11137 if (hiattr != 0) { /* normal memory */ 11138 if (arm_hcr_el2_eff(env) & HCR_CD) { /* cache disabled */ 11139 hiattr = loattr = 1; /* non-cacheable */ 11140 } else { 11141 if (hiattr != 1) { /* Write-through or write-back */ 11142 hihint = 3; /* RW allocate */ 11143 } 11144 if (loattr != 1) { /* Write-through or write-back */ 11145 lohint = 3; /* RW allocate */ 11146 } 11147 } 11148 } 11149 11150 return (hiattr << 6) | (hihint << 4) | (loattr << 2) | lohint; 11151 } 11152 #endif /* !CONFIG_USER_ONLY */ 11153 11154 static int aa64_va_parameter_tbi(uint64_t tcr, ARMMMUIdx mmu_idx) 11155 { 11156 if (regime_has_2_ranges(mmu_idx)) { 11157 return extract64(tcr, 37, 2); 11158 } else if (mmu_idx == ARMMMUIdx_Stage2 || mmu_idx == ARMMMUIdx_Stage2_S) { 11159 return 0; /* VTCR_EL2 */ 11160 } else { 11161 /* Replicate the single TBI bit so we always have 2 bits. */ 11162 return extract32(tcr, 20, 1) * 3; 11163 } 11164 } 11165 11166 static int aa64_va_parameter_tbid(uint64_t tcr, ARMMMUIdx mmu_idx) 11167 { 11168 if (regime_has_2_ranges(mmu_idx)) { 11169 return extract64(tcr, 51, 2); 11170 } else if (mmu_idx == ARMMMUIdx_Stage2 || mmu_idx == ARMMMUIdx_Stage2_S) { 11171 return 0; /* VTCR_EL2 */ 11172 } else { 11173 /* Replicate the single TBID bit so we always have 2 bits. */ 11174 return extract32(tcr, 29, 1) * 3; 11175 } 11176 } 11177 11178 static int aa64_va_parameter_tcma(uint64_t tcr, ARMMMUIdx mmu_idx) 11179 { 11180 if (regime_has_2_ranges(mmu_idx)) { 11181 return extract64(tcr, 57, 2); 11182 } else { 11183 /* Replicate the single TCMA bit so we always have 2 bits. */ 11184 return extract32(tcr, 30, 1) * 3; 11185 } 11186 } 11187 11188 ARMVAParameters aa64_va_parameters(CPUARMState *env, uint64_t va, 11189 ARMMMUIdx mmu_idx, bool data) 11190 { 11191 uint64_t tcr = regime_tcr(env, mmu_idx)->raw_tcr; 11192 bool epd, hpd, using16k, using64k; 11193 int select, tsz, tbi, max_tsz; 11194 11195 if (!regime_has_2_ranges(mmu_idx)) { 11196 select = 0; 11197 tsz = extract32(tcr, 0, 6); 11198 using64k = extract32(tcr, 14, 1); 11199 using16k = extract32(tcr, 15, 1); 11200 if (mmu_idx == ARMMMUIdx_Stage2 || mmu_idx == ARMMMUIdx_Stage2_S) { 11201 /* VTCR_EL2 */ 11202 hpd = false; 11203 } else { 11204 hpd = extract32(tcr, 24, 1); 11205 } 11206 epd = false; 11207 } else { 11208 /* 11209 * Bit 55 is always between the two regions, and is canonical for 11210 * determining if address tagging is enabled. 11211 */ 11212 select = extract64(va, 55, 1); 11213 if (!select) { 11214 tsz = extract32(tcr, 0, 6); 11215 epd = extract32(tcr, 7, 1); 11216 using64k = extract32(tcr, 14, 1); 11217 using16k = extract32(tcr, 15, 1); 11218 hpd = extract64(tcr, 41, 1); 11219 } else { 11220 int tg = extract32(tcr, 30, 2); 11221 using16k = tg == 1; 11222 using64k = tg == 3; 11223 tsz = extract32(tcr, 16, 6); 11224 epd = extract32(tcr, 23, 1); 11225 hpd = extract64(tcr, 42, 1); 11226 } 11227 } 11228 11229 if (cpu_isar_feature(aa64_st, env_archcpu(env))) { 11230 max_tsz = 48 - using64k; 11231 } else { 11232 max_tsz = 39; 11233 } 11234 11235 tsz = MIN(tsz, max_tsz); 11236 tsz = MAX(tsz, 16); /* TODO: ARMv8.2-LVA */ 11237 11238 /* Present TBI as a composite with TBID. */ 11239 tbi = aa64_va_parameter_tbi(tcr, mmu_idx); 11240 if (!data) { 11241 tbi &= ~aa64_va_parameter_tbid(tcr, mmu_idx); 11242 } 11243 tbi = (tbi >> select) & 1; 11244 11245 return (ARMVAParameters) { 11246 .tsz = tsz, 11247 .select = select, 11248 .tbi = tbi, 11249 .epd = epd, 11250 .hpd = hpd, 11251 .using16k = using16k, 11252 .using64k = using64k, 11253 }; 11254 } 11255 11256 #ifndef CONFIG_USER_ONLY 11257 static ARMVAParameters aa32_va_parameters(CPUARMState *env, uint32_t va, 11258 ARMMMUIdx mmu_idx) 11259 { 11260 uint64_t tcr = regime_tcr(env, mmu_idx)->raw_tcr; 11261 uint32_t el = regime_el(env, mmu_idx); 11262 int select, tsz; 11263 bool epd, hpd; 11264 11265 assert(mmu_idx != ARMMMUIdx_Stage2_S); 11266 11267 if (mmu_idx == ARMMMUIdx_Stage2) { 11268 /* VTCR */ 11269 bool sext = extract32(tcr, 4, 1); 11270 bool sign = extract32(tcr, 3, 1); 11271 11272 /* 11273 * If the sign-extend bit is not the same as t0sz[3], the result 11274 * is unpredictable. Flag this as a guest error. 11275 */ 11276 if (sign != sext) { 11277 qemu_log_mask(LOG_GUEST_ERROR, 11278 "AArch32: VTCR.S / VTCR.T0SZ[3] mismatch\n"); 11279 } 11280 tsz = sextract32(tcr, 0, 4) + 8; 11281 select = 0; 11282 hpd = false; 11283 epd = false; 11284 } else if (el == 2) { 11285 /* HTCR */ 11286 tsz = extract32(tcr, 0, 3); 11287 select = 0; 11288 hpd = extract64(tcr, 24, 1); 11289 epd = false; 11290 } else { 11291 int t0sz = extract32(tcr, 0, 3); 11292 int t1sz = extract32(tcr, 16, 3); 11293 11294 if (t1sz == 0) { 11295 select = va > (0xffffffffu >> t0sz); 11296 } else { 11297 /* Note that we will detect errors later. */ 11298 select = va >= ~(0xffffffffu >> t1sz); 11299 } 11300 if (!select) { 11301 tsz = t0sz; 11302 epd = extract32(tcr, 7, 1); 11303 hpd = extract64(tcr, 41, 1); 11304 } else { 11305 tsz = t1sz; 11306 epd = extract32(tcr, 23, 1); 11307 hpd = extract64(tcr, 42, 1); 11308 } 11309 /* For aarch32, hpd0 is not enabled without t2e as well. */ 11310 hpd &= extract32(tcr, 6, 1); 11311 } 11312 11313 return (ARMVAParameters) { 11314 .tsz = tsz, 11315 .select = select, 11316 .epd = epd, 11317 .hpd = hpd, 11318 }; 11319 } 11320 11321 /** 11322 * get_phys_addr_lpae: perform one stage of page table walk, LPAE format 11323 * 11324 * Returns false if the translation was successful. Otherwise, phys_ptr, attrs, 11325 * prot and page_size may not be filled in, and the populated fsr value provides 11326 * information on why the translation aborted, in the format of a long-format 11327 * DFSR/IFSR fault register, with the following caveats: 11328 * * the WnR bit is never set (the caller must do this). 11329 * 11330 * @env: CPUARMState 11331 * @address: virtual address to get physical address for 11332 * @access_type: MMU_DATA_LOAD, MMU_DATA_STORE or MMU_INST_FETCH 11333 * @mmu_idx: MMU index indicating required translation regime 11334 * @s1_is_el0: if @mmu_idx is ARMMMUIdx_Stage2 (so this is a stage 2 page table 11335 * walk), must be true if this is stage 2 of a stage 1+2 walk for an 11336 * EL0 access). If @mmu_idx is anything else, @s1_is_el0 is ignored. 11337 * @phys_ptr: set to the physical address corresponding to the virtual address 11338 * @attrs: set to the memory transaction attributes to use 11339 * @prot: set to the permissions for the page containing phys_ptr 11340 * @page_size_ptr: set to the size of the page containing phys_ptr 11341 * @fi: set to fault info if the translation fails 11342 * @cacheattrs: (if non-NULL) set to the cacheability/shareability attributes 11343 */ 11344 static bool get_phys_addr_lpae(CPUARMState *env, uint64_t address, 11345 MMUAccessType access_type, ARMMMUIdx mmu_idx, 11346 bool s1_is_el0, 11347 hwaddr *phys_ptr, MemTxAttrs *txattrs, int *prot, 11348 target_ulong *page_size_ptr, 11349 ARMMMUFaultInfo *fi, ARMCacheAttrs *cacheattrs) 11350 { 11351 ARMCPU *cpu = env_archcpu(env); 11352 CPUState *cs = CPU(cpu); 11353 /* Read an LPAE long-descriptor translation table. */ 11354 ARMFaultType fault_type = ARMFault_Translation; 11355 uint32_t level; 11356 ARMVAParameters param; 11357 uint64_t ttbr; 11358 hwaddr descaddr, indexmask, indexmask_grainsize; 11359 uint32_t tableattrs; 11360 target_ulong page_size; 11361 uint32_t attrs; 11362 int32_t stride; 11363 int addrsize, inputsize; 11364 TCR *tcr = regime_tcr(env, mmu_idx); 11365 int ap, ns, xn, pxn; 11366 uint32_t el = regime_el(env, mmu_idx); 11367 uint64_t descaddrmask; 11368 bool aarch64 = arm_el_is_aa64(env, el); 11369 bool guarded = false; 11370 11371 /* TODO: This code does not support shareability levels. */ 11372 if (aarch64) { 11373 param = aa64_va_parameters(env, address, mmu_idx, 11374 access_type != MMU_INST_FETCH); 11375 level = 0; 11376 addrsize = 64 - 8 * param.tbi; 11377 inputsize = 64 - param.tsz; 11378 } else { 11379 param = aa32_va_parameters(env, address, mmu_idx); 11380 level = 1; 11381 addrsize = (mmu_idx == ARMMMUIdx_Stage2 ? 40 : 32); 11382 inputsize = addrsize - param.tsz; 11383 } 11384 11385 /* 11386 * We determined the region when collecting the parameters, but we 11387 * have not yet validated that the address is valid for the region. 11388 * Extract the top bits and verify that they all match select. 11389 * 11390 * For aa32, if inputsize == addrsize, then we have selected the 11391 * region by exclusion in aa32_va_parameters and there is no more 11392 * validation to do here. 11393 */ 11394 if (inputsize < addrsize) { 11395 target_ulong top_bits = sextract64(address, inputsize, 11396 addrsize - inputsize); 11397 if (-top_bits != param.select) { 11398 /* The gap between the two regions is a Translation fault */ 11399 fault_type = ARMFault_Translation; 11400 goto do_fault; 11401 } 11402 } 11403 11404 if (param.using64k) { 11405 stride = 13; 11406 } else if (param.using16k) { 11407 stride = 11; 11408 } else { 11409 stride = 9; 11410 } 11411 11412 /* Note that QEMU ignores shareability and cacheability attributes, 11413 * so we don't need to do anything with the SH, ORGN, IRGN fields 11414 * in the TTBCR. Similarly, TTBCR:A1 selects whether we get the 11415 * ASID from TTBR0 or TTBR1, but QEMU's TLB doesn't currently 11416 * implement any ASID-like capability so we can ignore it (instead 11417 * we will always flush the TLB any time the ASID is changed). 11418 */ 11419 ttbr = regime_ttbr(env, mmu_idx, param.select); 11420 11421 /* Here we should have set up all the parameters for the translation: 11422 * inputsize, ttbr, epd, stride, tbi 11423 */ 11424 11425 if (param.epd) { 11426 /* Translation table walk disabled => Translation fault on TLB miss 11427 * Note: This is always 0 on 64-bit EL2 and EL3. 11428 */ 11429 goto do_fault; 11430 } 11431 11432 if (mmu_idx != ARMMMUIdx_Stage2 && mmu_idx != ARMMMUIdx_Stage2_S) { 11433 /* The starting level depends on the virtual address size (which can 11434 * be up to 48 bits) and the translation granule size. It indicates 11435 * the number of strides (stride bits at a time) needed to 11436 * consume the bits of the input address. In the pseudocode this is: 11437 * level = 4 - RoundUp((inputsize - grainsize) / stride) 11438 * where their 'inputsize' is our 'inputsize', 'grainsize' is 11439 * our 'stride + 3' and 'stride' is our 'stride'. 11440 * Applying the usual "rounded up m/n is (m+n-1)/n" and simplifying: 11441 * = 4 - (inputsize - stride - 3 + stride - 1) / stride 11442 * = 4 - (inputsize - 4) / stride; 11443 */ 11444 level = 4 - (inputsize - 4) / stride; 11445 } else { 11446 /* For stage 2 translations the starting level is specified by the 11447 * VTCR_EL2.SL0 field (whose interpretation depends on the page size) 11448 */ 11449 uint32_t sl0 = extract32(tcr->raw_tcr, 6, 2); 11450 uint32_t startlevel; 11451 bool ok; 11452 11453 if (!aarch64 || stride == 9) { 11454 /* AArch32 or 4KB pages */ 11455 startlevel = 2 - sl0; 11456 11457 if (cpu_isar_feature(aa64_st, cpu)) { 11458 startlevel &= 3; 11459 } 11460 } else { 11461 /* 16KB or 64KB pages */ 11462 startlevel = 3 - sl0; 11463 } 11464 11465 /* Check that the starting level is valid. */ 11466 ok = check_s2_mmu_setup(cpu, aarch64, startlevel, 11467 inputsize, stride); 11468 if (!ok) { 11469 fault_type = ARMFault_Translation; 11470 goto do_fault; 11471 } 11472 level = startlevel; 11473 } 11474 11475 indexmask_grainsize = (1ULL << (stride + 3)) - 1; 11476 indexmask = (1ULL << (inputsize - (stride * (4 - level)))) - 1; 11477 11478 /* Now we can extract the actual base address from the TTBR */ 11479 descaddr = extract64(ttbr, 0, 48); 11480 /* 11481 * We rely on this masking to clear the RES0 bits at the bottom of the TTBR 11482 * and also to mask out CnP (bit 0) which could validly be non-zero. 11483 */ 11484 descaddr &= ~indexmask; 11485 11486 /* The address field in the descriptor goes up to bit 39 for ARMv7 11487 * but up to bit 47 for ARMv8, but we use the descaddrmask 11488 * up to bit 39 for AArch32, because we don't need other bits in that case 11489 * to construct next descriptor address (anyway they should be all zeroes). 11490 */ 11491 descaddrmask = ((1ull << (aarch64 ? 48 : 40)) - 1) & 11492 ~indexmask_grainsize; 11493 11494 /* Secure accesses start with the page table in secure memory and 11495 * can be downgraded to non-secure at any step. Non-secure accesses 11496 * remain non-secure. We implement this by just ORing in the NSTable/NS 11497 * bits at each step. 11498 */ 11499 tableattrs = regime_is_secure(env, mmu_idx) ? 0 : (1 << 4); 11500 for (;;) { 11501 uint64_t descriptor; 11502 bool nstable; 11503 11504 descaddr |= (address >> (stride * (4 - level))) & indexmask; 11505 descaddr &= ~7ULL; 11506 nstable = extract32(tableattrs, 4, 1); 11507 descriptor = arm_ldq_ptw(cs, descaddr, !nstable, mmu_idx, fi); 11508 if (fi->type != ARMFault_None) { 11509 goto do_fault; 11510 } 11511 11512 if (!(descriptor & 1) || 11513 (!(descriptor & 2) && (level == 3))) { 11514 /* Invalid, or the Reserved level 3 encoding */ 11515 goto do_fault; 11516 } 11517 descaddr = descriptor & descaddrmask; 11518 11519 if ((descriptor & 2) && (level < 3)) { 11520 /* Table entry. The top five bits are attributes which may 11521 * propagate down through lower levels of the table (and 11522 * which are all arranged so that 0 means "no effect", so 11523 * we can gather them up by ORing in the bits at each level). 11524 */ 11525 tableattrs |= extract64(descriptor, 59, 5); 11526 level++; 11527 indexmask = indexmask_grainsize; 11528 continue; 11529 } 11530 /* Block entry at level 1 or 2, or page entry at level 3. 11531 * These are basically the same thing, although the number 11532 * of bits we pull in from the vaddr varies. 11533 */ 11534 page_size = (1ULL << ((stride * (4 - level)) + 3)); 11535 descaddr |= (address & (page_size - 1)); 11536 /* Extract attributes from the descriptor */ 11537 attrs = extract64(descriptor, 2, 10) 11538 | (extract64(descriptor, 52, 12) << 10); 11539 11540 if (mmu_idx == ARMMMUIdx_Stage2 || mmu_idx == ARMMMUIdx_Stage2_S) { 11541 /* Stage 2 table descriptors do not include any attribute fields */ 11542 break; 11543 } 11544 /* Merge in attributes from table descriptors */ 11545 attrs |= nstable << 3; /* NS */ 11546 guarded = extract64(descriptor, 50, 1); /* GP */ 11547 if (param.hpd) { 11548 /* HPD disables all the table attributes except NSTable. */ 11549 break; 11550 } 11551 attrs |= extract32(tableattrs, 0, 2) << 11; /* XN, PXN */ 11552 /* The sense of AP[1] vs APTable[0] is reversed, as APTable[0] == 1 11553 * means "force PL1 access only", which means forcing AP[1] to 0. 11554 */ 11555 attrs &= ~(extract32(tableattrs, 2, 1) << 4); /* !APT[0] => AP[1] */ 11556 attrs |= extract32(tableattrs, 3, 1) << 5; /* APT[1] => AP[2] */ 11557 break; 11558 } 11559 /* Here descaddr is the final physical address, and attributes 11560 * are all in attrs. 11561 */ 11562 fault_type = ARMFault_AccessFlag; 11563 if ((attrs & (1 << 8)) == 0) { 11564 /* Access flag */ 11565 goto do_fault; 11566 } 11567 11568 ap = extract32(attrs, 4, 2); 11569 11570 if (mmu_idx == ARMMMUIdx_Stage2 || mmu_idx == ARMMMUIdx_Stage2_S) { 11571 ns = mmu_idx == ARMMMUIdx_Stage2; 11572 xn = extract32(attrs, 11, 2); 11573 *prot = get_S2prot(env, ap, xn, s1_is_el0); 11574 } else { 11575 ns = extract32(attrs, 3, 1); 11576 xn = extract32(attrs, 12, 1); 11577 pxn = extract32(attrs, 11, 1); 11578 *prot = get_S1prot(env, mmu_idx, aarch64, ap, ns, xn, pxn); 11579 } 11580 11581 fault_type = ARMFault_Permission; 11582 if (!(*prot & (1 << access_type))) { 11583 goto do_fault; 11584 } 11585 11586 if (ns) { 11587 /* The NS bit will (as required by the architecture) have no effect if 11588 * the CPU doesn't support TZ or this is a non-secure translation 11589 * regime, because the attribute will already be non-secure. 11590 */ 11591 txattrs->secure = false; 11592 } 11593 /* When in aarch64 mode, and BTI is enabled, remember GP in the IOTLB. */ 11594 if (aarch64 && guarded && cpu_isar_feature(aa64_bti, cpu)) { 11595 arm_tlb_bti_gp(txattrs) = true; 11596 } 11597 11598 if (mmu_idx == ARMMMUIdx_Stage2 || mmu_idx == ARMMMUIdx_Stage2_S) { 11599 cacheattrs->attrs = convert_stage2_attrs(env, extract32(attrs, 0, 4)); 11600 } else { 11601 /* Index into MAIR registers for cache attributes */ 11602 uint8_t attrindx = extract32(attrs, 0, 3); 11603 uint64_t mair = env->cp15.mair_el[regime_el(env, mmu_idx)]; 11604 assert(attrindx <= 7); 11605 cacheattrs->attrs = extract64(mair, attrindx * 8, 8); 11606 } 11607 cacheattrs->shareability = extract32(attrs, 6, 2); 11608 11609 *phys_ptr = descaddr; 11610 *page_size_ptr = page_size; 11611 return false; 11612 11613 do_fault: 11614 fi->type = fault_type; 11615 fi->level = level; 11616 /* Tag the error as S2 for failed S1 PTW at S2 or ordinary S2. */ 11617 fi->stage2 = fi->s1ptw || (mmu_idx == ARMMMUIdx_Stage2 || 11618 mmu_idx == ARMMMUIdx_Stage2_S); 11619 fi->s1ns = mmu_idx == ARMMMUIdx_Stage2; 11620 return true; 11621 } 11622 11623 static inline void get_phys_addr_pmsav7_default(CPUARMState *env, 11624 ARMMMUIdx mmu_idx, 11625 int32_t address, int *prot) 11626 { 11627 if (!arm_feature(env, ARM_FEATURE_M)) { 11628 *prot = PAGE_READ | PAGE_WRITE; 11629 switch (address) { 11630 case 0xF0000000 ... 0xFFFFFFFF: 11631 if (regime_sctlr(env, mmu_idx) & SCTLR_V) { 11632 /* hivecs execing is ok */ 11633 *prot |= PAGE_EXEC; 11634 } 11635 break; 11636 case 0x00000000 ... 0x7FFFFFFF: 11637 *prot |= PAGE_EXEC; 11638 break; 11639 } 11640 } else { 11641 /* Default system address map for M profile cores. 11642 * The architecture specifies which regions are execute-never; 11643 * at the MPU level no other checks are defined. 11644 */ 11645 switch (address) { 11646 case 0x00000000 ... 0x1fffffff: /* ROM */ 11647 case 0x20000000 ... 0x3fffffff: /* SRAM */ 11648 case 0x60000000 ... 0x7fffffff: /* RAM */ 11649 case 0x80000000 ... 0x9fffffff: /* RAM */ 11650 *prot = PAGE_READ | PAGE_WRITE | PAGE_EXEC; 11651 break; 11652 case 0x40000000 ... 0x5fffffff: /* Peripheral */ 11653 case 0xa0000000 ... 0xbfffffff: /* Device */ 11654 case 0xc0000000 ... 0xdfffffff: /* Device */ 11655 case 0xe0000000 ... 0xffffffff: /* System */ 11656 *prot = PAGE_READ | PAGE_WRITE; 11657 break; 11658 default: 11659 g_assert_not_reached(); 11660 } 11661 } 11662 } 11663 11664 static bool pmsav7_use_background_region(ARMCPU *cpu, 11665 ARMMMUIdx mmu_idx, bool is_user) 11666 { 11667 /* Return true if we should use the default memory map as a 11668 * "background" region if there are no hits against any MPU regions. 11669 */ 11670 CPUARMState *env = &cpu->env; 11671 11672 if (is_user) { 11673 return false; 11674 } 11675 11676 if (arm_feature(env, ARM_FEATURE_M)) { 11677 return env->v7m.mpu_ctrl[regime_is_secure(env, mmu_idx)] 11678 & R_V7M_MPU_CTRL_PRIVDEFENA_MASK; 11679 } else { 11680 return regime_sctlr(env, mmu_idx) & SCTLR_BR; 11681 } 11682 } 11683 11684 static inline bool m_is_ppb_region(CPUARMState *env, uint32_t address) 11685 { 11686 /* True if address is in the M profile PPB region 0xe0000000 - 0xe00fffff */ 11687 return arm_feature(env, ARM_FEATURE_M) && 11688 extract32(address, 20, 12) == 0xe00; 11689 } 11690 11691 static inline bool m_is_system_region(CPUARMState *env, uint32_t address) 11692 { 11693 /* True if address is in the M profile system region 11694 * 0xe0000000 - 0xffffffff 11695 */ 11696 return arm_feature(env, ARM_FEATURE_M) && extract32(address, 29, 3) == 0x7; 11697 } 11698 11699 static bool get_phys_addr_pmsav7(CPUARMState *env, uint32_t address, 11700 MMUAccessType access_type, ARMMMUIdx mmu_idx, 11701 hwaddr *phys_ptr, int *prot, 11702 target_ulong *page_size, 11703 ARMMMUFaultInfo *fi) 11704 { 11705 ARMCPU *cpu = env_archcpu(env); 11706 int n; 11707 bool is_user = regime_is_user(env, mmu_idx); 11708 11709 *phys_ptr = address; 11710 *page_size = TARGET_PAGE_SIZE; 11711 *prot = 0; 11712 11713 if (regime_translation_disabled(env, mmu_idx) || 11714 m_is_ppb_region(env, address)) { 11715 /* MPU disabled or M profile PPB access: use default memory map. 11716 * The other case which uses the default memory map in the 11717 * v7M ARM ARM pseudocode is exception vector reads from the vector 11718 * table. In QEMU those accesses are done in arm_v7m_load_vector(), 11719 * which always does a direct read using address_space_ldl(), rather 11720 * than going via this function, so we don't need to check that here. 11721 */ 11722 get_phys_addr_pmsav7_default(env, mmu_idx, address, prot); 11723 } else { /* MPU enabled */ 11724 for (n = (int)cpu->pmsav7_dregion - 1; n >= 0; n--) { 11725 /* region search */ 11726 uint32_t base = env->pmsav7.drbar[n]; 11727 uint32_t rsize = extract32(env->pmsav7.drsr[n], 1, 5); 11728 uint32_t rmask; 11729 bool srdis = false; 11730 11731 if (!(env->pmsav7.drsr[n] & 0x1)) { 11732 continue; 11733 } 11734 11735 if (!rsize) { 11736 qemu_log_mask(LOG_GUEST_ERROR, 11737 "DRSR[%d]: Rsize field cannot be 0\n", n); 11738 continue; 11739 } 11740 rsize++; 11741 rmask = (1ull << rsize) - 1; 11742 11743 if (base & rmask) { 11744 qemu_log_mask(LOG_GUEST_ERROR, 11745 "DRBAR[%d]: 0x%" PRIx32 " misaligned " 11746 "to DRSR region size, mask = 0x%" PRIx32 "\n", 11747 n, base, rmask); 11748 continue; 11749 } 11750 11751 if (address < base || address > base + rmask) { 11752 /* 11753 * Address not in this region. We must check whether the 11754 * region covers addresses in the same page as our address. 11755 * In that case we must not report a size that covers the 11756 * whole page for a subsequent hit against a different MPU 11757 * region or the background region, because it would result in 11758 * incorrect TLB hits for subsequent accesses to addresses that 11759 * are in this MPU region. 11760 */ 11761 if (ranges_overlap(base, rmask, 11762 address & TARGET_PAGE_MASK, 11763 TARGET_PAGE_SIZE)) { 11764 *page_size = 1; 11765 } 11766 continue; 11767 } 11768 11769 /* Region matched */ 11770 11771 if (rsize >= 8) { /* no subregions for regions < 256 bytes */ 11772 int i, snd; 11773 uint32_t srdis_mask; 11774 11775 rsize -= 3; /* sub region size (power of 2) */ 11776 snd = ((address - base) >> rsize) & 0x7; 11777 srdis = extract32(env->pmsav7.drsr[n], snd + 8, 1); 11778 11779 srdis_mask = srdis ? 0x3 : 0x0; 11780 for (i = 2; i <= 8 && rsize < TARGET_PAGE_BITS; i *= 2) { 11781 /* This will check in groups of 2, 4 and then 8, whether 11782 * the subregion bits are consistent. rsize is incremented 11783 * back up to give the region size, considering consistent 11784 * adjacent subregions as one region. Stop testing if rsize 11785 * is already big enough for an entire QEMU page. 11786 */ 11787 int snd_rounded = snd & ~(i - 1); 11788 uint32_t srdis_multi = extract32(env->pmsav7.drsr[n], 11789 snd_rounded + 8, i); 11790 if (srdis_mask ^ srdis_multi) { 11791 break; 11792 } 11793 srdis_mask = (srdis_mask << i) | srdis_mask; 11794 rsize++; 11795 } 11796 } 11797 if (srdis) { 11798 continue; 11799 } 11800 if (rsize < TARGET_PAGE_BITS) { 11801 *page_size = 1 << rsize; 11802 } 11803 break; 11804 } 11805 11806 if (n == -1) { /* no hits */ 11807 if (!pmsav7_use_background_region(cpu, mmu_idx, is_user)) { 11808 /* background fault */ 11809 fi->type = ARMFault_Background; 11810 return true; 11811 } 11812 get_phys_addr_pmsav7_default(env, mmu_idx, address, prot); 11813 } else { /* a MPU hit! */ 11814 uint32_t ap = extract32(env->pmsav7.dracr[n], 8, 3); 11815 uint32_t xn = extract32(env->pmsav7.dracr[n], 12, 1); 11816 11817 if (m_is_system_region(env, address)) { 11818 /* System space is always execute never */ 11819 xn = 1; 11820 } 11821 11822 if (is_user) { /* User mode AP bit decoding */ 11823 switch (ap) { 11824 case 0: 11825 case 1: 11826 case 5: 11827 break; /* no access */ 11828 case 3: 11829 *prot |= PAGE_WRITE; 11830 /* fall through */ 11831 case 2: 11832 case 6: 11833 *prot |= PAGE_READ | PAGE_EXEC; 11834 break; 11835 case 7: 11836 /* for v7M, same as 6; for R profile a reserved value */ 11837 if (arm_feature(env, ARM_FEATURE_M)) { 11838 *prot |= PAGE_READ | PAGE_EXEC; 11839 break; 11840 } 11841 /* fall through */ 11842 default: 11843 qemu_log_mask(LOG_GUEST_ERROR, 11844 "DRACR[%d]: Bad value for AP bits: 0x%" 11845 PRIx32 "\n", n, ap); 11846 } 11847 } else { /* Priv. mode AP bits decoding */ 11848 switch (ap) { 11849 case 0: 11850 break; /* no access */ 11851 case 1: 11852 case 2: 11853 case 3: 11854 *prot |= PAGE_WRITE; 11855 /* fall through */ 11856 case 5: 11857 case 6: 11858 *prot |= PAGE_READ | PAGE_EXEC; 11859 break; 11860 case 7: 11861 /* for v7M, same as 6; for R profile a reserved value */ 11862 if (arm_feature(env, ARM_FEATURE_M)) { 11863 *prot |= PAGE_READ | PAGE_EXEC; 11864 break; 11865 } 11866 /* fall through */ 11867 default: 11868 qemu_log_mask(LOG_GUEST_ERROR, 11869 "DRACR[%d]: Bad value for AP bits: 0x%" 11870 PRIx32 "\n", n, ap); 11871 } 11872 } 11873 11874 /* execute never */ 11875 if (xn) { 11876 *prot &= ~PAGE_EXEC; 11877 } 11878 } 11879 } 11880 11881 fi->type = ARMFault_Permission; 11882 fi->level = 1; 11883 return !(*prot & (1 << access_type)); 11884 } 11885 11886 static bool v8m_is_sau_exempt(CPUARMState *env, 11887 uint32_t address, MMUAccessType access_type) 11888 { 11889 /* The architecture specifies that certain address ranges are 11890 * exempt from v8M SAU/IDAU checks. 11891 */ 11892 return 11893 (access_type == MMU_INST_FETCH && m_is_system_region(env, address)) || 11894 (address >= 0xe0000000 && address <= 0xe0002fff) || 11895 (address >= 0xe000e000 && address <= 0xe000efff) || 11896 (address >= 0xe002e000 && address <= 0xe002efff) || 11897 (address >= 0xe0040000 && address <= 0xe0041fff) || 11898 (address >= 0xe00ff000 && address <= 0xe00fffff); 11899 } 11900 11901 void v8m_security_lookup(CPUARMState *env, uint32_t address, 11902 MMUAccessType access_type, ARMMMUIdx mmu_idx, 11903 V8M_SAttributes *sattrs) 11904 { 11905 /* Look up the security attributes for this address. Compare the 11906 * pseudocode SecurityCheck() function. 11907 * We assume the caller has zero-initialized *sattrs. 11908 */ 11909 ARMCPU *cpu = env_archcpu(env); 11910 int r; 11911 bool idau_exempt = false, idau_ns = true, idau_nsc = true; 11912 int idau_region = IREGION_NOTVALID; 11913 uint32_t addr_page_base = address & TARGET_PAGE_MASK; 11914 uint32_t addr_page_limit = addr_page_base + (TARGET_PAGE_SIZE - 1); 11915 11916 if (cpu->idau) { 11917 IDAUInterfaceClass *iic = IDAU_INTERFACE_GET_CLASS(cpu->idau); 11918 IDAUInterface *ii = IDAU_INTERFACE(cpu->idau); 11919 11920 iic->check(ii, address, &idau_region, &idau_exempt, &idau_ns, 11921 &idau_nsc); 11922 } 11923 11924 if (access_type == MMU_INST_FETCH && extract32(address, 28, 4) == 0xf) { 11925 /* 0xf0000000..0xffffffff is always S for insn fetches */ 11926 return; 11927 } 11928 11929 if (idau_exempt || v8m_is_sau_exempt(env, address, access_type)) { 11930 sattrs->ns = !regime_is_secure(env, mmu_idx); 11931 return; 11932 } 11933 11934 if (idau_region != IREGION_NOTVALID) { 11935 sattrs->irvalid = true; 11936 sattrs->iregion = idau_region; 11937 } 11938 11939 switch (env->sau.ctrl & 3) { 11940 case 0: /* SAU.ENABLE == 0, SAU.ALLNS == 0 */ 11941 break; 11942 case 2: /* SAU.ENABLE == 0, SAU.ALLNS == 1 */ 11943 sattrs->ns = true; 11944 break; 11945 default: /* SAU.ENABLE == 1 */ 11946 for (r = 0; r < cpu->sau_sregion; r++) { 11947 if (env->sau.rlar[r] & 1) { 11948 uint32_t base = env->sau.rbar[r] & ~0x1f; 11949 uint32_t limit = env->sau.rlar[r] | 0x1f; 11950 11951 if (base <= address && limit >= address) { 11952 if (base > addr_page_base || limit < addr_page_limit) { 11953 sattrs->subpage = true; 11954 } 11955 if (sattrs->srvalid) { 11956 /* If we hit in more than one region then we must report 11957 * as Secure, not NS-Callable, with no valid region 11958 * number info. 11959 */ 11960 sattrs->ns = false; 11961 sattrs->nsc = false; 11962 sattrs->sregion = 0; 11963 sattrs->srvalid = false; 11964 break; 11965 } else { 11966 if (env->sau.rlar[r] & 2) { 11967 sattrs->nsc = true; 11968 } else { 11969 sattrs->ns = true; 11970 } 11971 sattrs->srvalid = true; 11972 sattrs->sregion = r; 11973 } 11974 } else { 11975 /* 11976 * Address not in this region. We must check whether the 11977 * region covers addresses in the same page as our address. 11978 * In that case we must not report a size that covers the 11979 * whole page for a subsequent hit against a different MPU 11980 * region or the background region, because it would result 11981 * in incorrect TLB hits for subsequent accesses to 11982 * addresses that are in this MPU region. 11983 */ 11984 if (limit >= base && 11985 ranges_overlap(base, limit - base + 1, 11986 addr_page_base, 11987 TARGET_PAGE_SIZE)) { 11988 sattrs->subpage = true; 11989 } 11990 } 11991 } 11992 } 11993 break; 11994 } 11995 11996 /* 11997 * The IDAU will override the SAU lookup results if it specifies 11998 * higher security than the SAU does. 11999 */ 12000 if (!idau_ns) { 12001 if (sattrs->ns || (!idau_nsc && sattrs->nsc)) { 12002 sattrs->ns = false; 12003 sattrs->nsc = idau_nsc; 12004 } 12005 } 12006 } 12007 12008 bool pmsav8_mpu_lookup(CPUARMState *env, uint32_t address, 12009 MMUAccessType access_type, ARMMMUIdx mmu_idx, 12010 hwaddr *phys_ptr, MemTxAttrs *txattrs, 12011 int *prot, bool *is_subpage, 12012 ARMMMUFaultInfo *fi, uint32_t *mregion) 12013 { 12014 /* Perform a PMSAv8 MPU lookup (without also doing the SAU check 12015 * that a full phys-to-virt translation does). 12016 * mregion is (if not NULL) set to the region number which matched, 12017 * or -1 if no region number is returned (MPU off, address did not 12018 * hit a region, address hit in multiple regions). 12019 * We set is_subpage to true if the region hit doesn't cover the 12020 * entire TARGET_PAGE the address is within. 12021 */ 12022 ARMCPU *cpu = env_archcpu(env); 12023 bool is_user = regime_is_user(env, mmu_idx); 12024 uint32_t secure = regime_is_secure(env, mmu_idx); 12025 int n; 12026 int matchregion = -1; 12027 bool hit = false; 12028 uint32_t addr_page_base = address & TARGET_PAGE_MASK; 12029 uint32_t addr_page_limit = addr_page_base + (TARGET_PAGE_SIZE - 1); 12030 12031 *is_subpage = false; 12032 *phys_ptr = address; 12033 *prot = 0; 12034 if (mregion) { 12035 *mregion = -1; 12036 } 12037 12038 /* Unlike the ARM ARM pseudocode, we don't need to check whether this 12039 * was an exception vector read from the vector table (which is always 12040 * done using the default system address map), because those accesses 12041 * are done in arm_v7m_load_vector(), which always does a direct 12042 * read using address_space_ldl(), rather than going via this function. 12043 */ 12044 if (regime_translation_disabled(env, mmu_idx)) { /* MPU disabled */ 12045 hit = true; 12046 } else if (m_is_ppb_region(env, address)) { 12047 hit = true; 12048 } else { 12049 if (pmsav7_use_background_region(cpu, mmu_idx, is_user)) { 12050 hit = true; 12051 } 12052 12053 for (n = (int)cpu->pmsav7_dregion - 1; n >= 0; n--) { 12054 /* region search */ 12055 /* Note that the base address is bits [31:5] from the register 12056 * with bits [4:0] all zeroes, but the limit address is bits 12057 * [31:5] from the register with bits [4:0] all ones. 12058 */ 12059 uint32_t base = env->pmsav8.rbar[secure][n] & ~0x1f; 12060 uint32_t limit = env->pmsav8.rlar[secure][n] | 0x1f; 12061 12062 if (!(env->pmsav8.rlar[secure][n] & 0x1)) { 12063 /* Region disabled */ 12064 continue; 12065 } 12066 12067 if (address < base || address > limit) { 12068 /* 12069 * Address not in this region. We must check whether the 12070 * region covers addresses in the same page as our address. 12071 * In that case we must not report a size that covers the 12072 * whole page for a subsequent hit against a different MPU 12073 * region or the background region, because it would result in 12074 * incorrect TLB hits for subsequent accesses to addresses that 12075 * are in this MPU region. 12076 */ 12077 if (limit >= base && 12078 ranges_overlap(base, limit - base + 1, 12079 addr_page_base, 12080 TARGET_PAGE_SIZE)) { 12081 *is_subpage = true; 12082 } 12083 continue; 12084 } 12085 12086 if (base > addr_page_base || limit < addr_page_limit) { 12087 *is_subpage = true; 12088 } 12089 12090 if (matchregion != -1) { 12091 /* Multiple regions match -- always a failure (unlike 12092 * PMSAv7 where highest-numbered-region wins) 12093 */ 12094 fi->type = ARMFault_Permission; 12095 fi->level = 1; 12096 return true; 12097 } 12098 12099 matchregion = n; 12100 hit = true; 12101 } 12102 } 12103 12104 if (!hit) { 12105 /* background fault */ 12106 fi->type = ARMFault_Background; 12107 return true; 12108 } 12109 12110 if (matchregion == -1) { 12111 /* hit using the background region */ 12112 get_phys_addr_pmsav7_default(env, mmu_idx, address, prot); 12113 } else { 12114 uint32_t ap = extract32(env->pmsav8.rbar[secure][matchregion], 1, 2); 12115 uint32_t xn = extract32(env->pmsav8.rbar[secure][matchregion], 0, 1); 12116 bool pxn = false; 12117 12118 if (arm_feature(env, ARM_FEATURE_V8_1M)) { 12119 pxn = extract32(env->pmsav8.rlar[secure][matchregion], 4, 1); 12120 } 12121 12122 if (m_is_system_region(env, address)) { 12123 /* System space is always execute never */ 12124 xn = 1; 12125 } 12126 12127 *prot = simple_ap_to_rw_prot(env, mmu_idx, ap); 12128 if (*prot && !xn && !(pxn && !is_user)) { 12129 *prot |= PAGE_EXEC; 12130 } 12131 /* We don't need to look the attribute up in the MAIR0/MAIR1 12132 * registers because that only tells us about cacheability. 12133 */ 12134 if (mregion) { 12135 *mregion = matchregion; 12136 } 12137 } 12138 12139 fi->type = ARMFault_Permission; 12140 fi->level = 1; 12141 return !(*prot & (1 << access_type)); 12142 } 12143 12144 12145 static bool get_phys_addr_pmsav8(CPUARMState *env, uint32_t address, 12146 MMUAccessType access_type, ARMMMUIdx mmu_idx, 12147 hwaddr *phys_ptr, MemTxAttrs *txattrs, 12148 int *prot, target_ulong *page_size, 12149 ARMMMUFaultInfo *fi) 12150 { 12151 uint32_t secure = regime_is_secure(env, mmu_idx); 12152 V8M_SAttributes sattrs = {}; 12153 bool ret; 12154 bool mpu_is_subpage; 12155 12156 if (arm_feature(env, ARM_FEATURE_M_SECURITY)) { 12157 v8m_security_lookup(env, address, access_type, mmu_idx, &sattrs); 12158 if (access_type == MMU_INST_FETCH) { 12159 /* Instruction fetches always use the MMU bank and the 12160 * transaction attribute determined by the fetch address, 12161 * regardless of CPU state. This is painful for QEMU 12162 * to handle, because it would mean we need to encode 12163 * into the mmu_idx not just the (user, negpri) information 12164 * for the current security state but also that for the 12165 * other security state, which would balloon the number 12166 * of mmu_idx values needed alarmingly. 12167 * Fortunately we can avoid this because it's not actually 12168 * possible to arbitrarily execute code from memory with 12169 * the wrong security attribute: it will always generate 12170 * an exception of some kind or another, apart from the 12171 * special case of an NS CPU executing an SG instruction 12172 * in S&NSC memory. So we always just fail the translation 12173 * here and sort things out in the exception handler 12174 * (including possibly emulating an SG instruction). 12175 */ 12176 if (sattrs.ns != !secure) { 12177 if (sattrs.nsc) { 12178 fi->type = ARMFault_QEMU_NSCExec; 12179 } else { 12180 fi->type = ARMFault_QEMU_SFault; 12181 } 12182 *page_size = sattrs.subpage ? 1 : TARGET_PAGE_SIZE; 12183 *phys_ptr = address; 12184 *prot = 0; 12185 return true; 12186 } 12187 } else { 12188 /* For data accesses we always use the MMU bank indicated 12189 * by the current CPU state, but the security attributes 12190 * might downgrade a secure access to nonsecure. 12191 */ 12192 if (sattrs.ns) { 12193 txattrs->secure = false; 12194 } else if (!secure) { 12195 /* NS access to S memory must fault. 12196 * Architecturally we should first check whether the 12197 * MPU information for this address indicates that we 12198 * are doing an unaligned access to Device memory, which 12199 * should generate a UsageFault instead. QEMU does not 12200 * currently check for that kind of unaligned access though. 12201 * If we added it we would need to do so as a special case 12202 * for M_FAKE_FSR_SFAULT in arm_v7m_cpu_do_interrupt(). 12203 */ 12204 fi->type = ARMFault_QEMU_SFault; 12205 *page_size = sattrs.subpage ? 1 : TARGET_PAGE_SIZE; 12206 *phys_ptr = address; 12207 *prot = 0; 12208 return true; 12209 } 12210 } 12211 } 12212 12213 ret = pmsav8_mpu_lookup(env, address, access_type, mmu_idx, phys_ptr, 12214 txattrs, prot, &mpu_is_subpage, fi, NULL); 12215 *page_size = sattrs.subpage || mpu_is_subpage ? 1 : TARGET_PAGE_SIZE; 12216 return ret; 12217 } 12218 12219 static bool get_phys_addr_pmsav5(CPUARMState *env, uint32_t address, 12220 MMUAccessType access_type, ARMMMUIdx mmu_idx, 12221 hwaddr *phys_ptr, int *prot, 12222 ARMMMUFaultInfo *fi) 12223 { 12224 int n; 12225 uint32_t mask; 12226 uint32_t base; 12227 bool is_user = regime_is_user(env, mmu_idx); 12228 12229 if (regime_translation_disabled(env, mmu_idx)) { 12230 /* MPU disabled. */ 12231 *phys_ptr = address; 12232 *prot = PAGE_READ | PAGE_WRITE | PAGE_EXEC; 12233 return false; 12234 } 12235 12236 *phys_ptr = address; 12237 for (n = 7; n >= 0; n--) { 12238 base = env->cp15.c6_region[n]; 12239 if ((base & 1) == 0) { 12240 continue; 12241 } 12242 mask = 1 << ((base >> 1) & 0x1f); 12243 /* Keep this shift separate from the above to avoid an 12244 (undefined) << 32. */ 12245 mask = (mask << 1) - 1; 12246 if (((base ^ address) & ~mask) == 0) { 12247 break; 12248 } 12249 } 12250 if (n < 0) { 12251 fi->type = ARMFault_Background; 12252 return true; 12253 } 12254 12255 if (access_type == MMU_INST_FETCH) { 12256 mask = env->cp15.pmsav5_insn_ap; 12257 } else { 12258 mask = env->cp15.pmsav5_data_ap; 12259 } 12260 mask = (mask >> (n * 4)) & 0xf; 12261 switch (mask) { 12262 case 0: 12263 fi->type = ARMFault_Permission; 12264 fi->level = 1; 12265 return true; 12266 case 1: 12267 if (is_user) { 12268 fi->type = ARMFault_Permission; 12269 fi->level = 1; 12270 return true; 12271 } 12272 *prot = PAGE_READ | PAGE_WRITE; 12273 break; 12274 case 2: 12275 *prot = PAGE_READ; 12276 if (!is_user) { 12277 *prot |= PAGE_WRITE; 12278 } 12279 break; 12280 case 3: 12281 *prot = PAGE_READ | PAGE_WRITE; 12282 break; 12283 case 5: 12284 if (is_user) { 12285 fi->type = ARMFault_Permission; 12286 fi->level = 1; 12287 return true; 12288 } 12289 *prot = PAGE_READ; 12290 break; 12291 case 6: 12292 *prot = PAGE_READ; 12293 break; 12294 default: 12295 /* Bad permission. */ 12296 fi->type = ARMFault_Permission; 12297 fi->level = 1; 12298 return true; 12299 } 12300 *prot |= PAGE_EXEC; 12301 return false; 12302 } 12303 12304 /* Combine either inner or outer cacheability attributes for normal 12305 * memory, according to table D4-42 and pseudocode procedure 12306 * CombineS1S2AttrHints() of ARM DDI 0487B.b (the ARMv8 ARM). 12307 * 12308 * NB: only stage 1 includes allocation hints (RW bits), leading to 12309 * some asymmetry. 12310 */ 12311 static uint8_t combine_cacheattr_nibble(uint8_t s1, uint8_t s2) 12312 { 12313 if (s1 == 4 || s2 == 4) { 12314 /* non-cacheable has precedence */ 12315 return 4; 12316 } else if (extract32(s1, 2, 2) == 0 || extract32(s1, 2, 2) == 2) { 12317 /* stage 1 write-through takes precedence */ 12318 return s1; 12319 } else if (extract32(s2, 2, 2) == 2) { 12320 /* stage 2 write-through takes precedence, but the allocation hint 12321 * is still taken from stage 1 12322 */ 12323 return (2 << 2) | extract32(s1, 0, 2); 12324 } else { /* write-back */ 12325 return s1; 12326 } 12327 } 12328 12329 /* Combine S1 and S2 cacheability/shareability attributes, per D4.5.4 12330 * and CombineS1S2Desc() 12331 * 12332 * @s1: Attributes from stage 1 walk 12333 * @s2: Attributes from stage 2 walk 12334 */ 12335 static ARMCacheAttrs combine_cacheattrs(ARMCacheAttrs s1, ARMCacheAttrs s2) 12336 { 12337 uint8_t s1lo, s2lo, s1hi, s2hi; 12338 ARMCacheAttrs ret; 12339 bool tagged = false; 12340 12341 if (s1.attrs == 0xf0) { 12342 tagged = true; 12343 s1.attrs = 0xff; 12344 } 12345 12346 s1lo = extract32(s1.attrs, 0, 4); 12347 s2lo = extract32(s2.attrs, 0, 4); 12348 s1hi = extract32(s1.attrs, 4, 4); 12349 s2hi = extract32(s2.attrs, 4, 4); 12350 12351 /* Combine shareability attributes (table D4-43) */ 12352 if (s1.shareability == 2 || s2.shareability == 2) { 12353 /* if either are outer-shareable, the result is outer-shareable */ 12354 ret.shareability = 2; 12355 } else if (s1.shareability == 3 || s2.shareability == 3) { 12356 /* if either are inner-shareable, the result is inner-shareable */ 12357 ret.shareability = 3; 12358 } else { 12359 /* both non-shareable */ 12360 ret.shareability = 0; 12361 } 12362 12363 /* Combine memory type and cacheability attributes */ 12364 if (s1hi == 0 || s2hi == 0) { 12365 /* Device has precedence over normal */ 12366 if (s1lo == 0 || s2lo == 0) { 12367 /* nGnRnE has precedence over anything */ 12368 ret.attrs = 0; 12369 } else if (s1lo == 4 || s2lo == 4) { 12370 /* non-Reordering has precedence over Reordering */ 12371 ret.attrs = 4; /* nGnRE */ 12372 } else if (s1lo == 8 || s2lo == 8) { 12373 /* non-Gathering has precedence over Gathering */ 12374 ret.attrs = 8; /* nGRE */ 12375 } else { 12376 ret.attrs = 0xc; /* GRE */ 12377 } 12378 12379 /* Any location for which the resultant memory type is any 12380 * type of Device memory is always treated as Outer Shareable. 12381 */ 12382 ret.shareability = 2; 12383 } else { /* Normal memory */ 12384 /* Outer/inner cacheability combine independently */ 12385 ret.attrs = combine_cacheattr_nibble(s1hi, s2hi) << 4 12386 | combine_cacheattr_nibble(s1lo, s2lo); 12387 12388 if (ret.attrs == 0x44) { 12389 /* Any location for which the resultant memory type is Normal 12390 * Inner Non-cacheable, Outer Non-cacheable is always treated 12391 * as Outer Shareable. 12392 */ 12393 ret.shareability = 2; 12394 } 12395 } 12396 12397 /* TODO: CombineS1S2Desc does not consider transient, only WB, RWA. */ 12398 if (tagged && ret.attrs == 0xff) { 12399 ret.attrs = 0xf0; 12400 } 12401 12402 return ret; 12403 } 12404 12405 12406 /* get_phys_addr - get the physical address for this virtual address 12407 * 12408 * Find the physical address corresponding to the given virtual address, 12409 * by doing a translation table walk on MMU based systems or using the 12410 * MPU state on MPU based systems. 12411 * 12412 * Returns false if the translation was successful. Otherwise, phys_ptr, attrs, 12413 * prot and page_size may not be filled in, and the populated fsr value provides 12414 * information on why the translation aborted, in the format of a 12415 * DFSR/IFSR fault register, with the following caveats: 12416 * * we honour the short vs long DFSR format differences. 12417 * * the WnR bit is never set (the caller must do this). 12418 * * for PSMAv5 based systems we don't bother to return a full FSR format 12419 * value. 12420 * 12421 * @env: CPUARMState 12422 * @address: virtual address to get physical address for 12423 * @access_type: 0 for read, 1 for write, 2 for execute 12424 * @mmu_idx: MMU index indicating required translation regime 12425 * @phys_ptr: set to the physical address corresponding to the virtual address 12426 * @attrs: set to the memory transaction attributes to use 12427 * @prot: set to the permissions for the page containing phys_ptr 12428 * @page_size: set to the size of the page containing phys_ptr 12429 * @fi: set to fault info if the translation fails 12430 * @cacheattrs: (if non-NULL) set to the cacheability/shareability attributes 12431 */ 12432 bool get_phys_addr(CPUARMState *env, target_ulong address, 12433 MMUAccessType access_type, ARMMMUIdx mmu_idx, 12434 hwaddr *phys_ptr, MemTxAttrs *attrs, int *prot, 12435 target_ulong *page_size, 12436 ARMMMUFaultInfo *fi, ARMCacheAttrs *cacheattrs) 12437 { 12438 ARMMMUIdx s1_mmu_idx = stage_1_mmu_idx(mmu_idx); 12439 12440 if (mmu_idx != s1_mmu_idx) { 12441 /* Call ourselves recursively to do the stage 1 and then stage 2 12442 * translations if mmu_idx is a two-stage regime. 12443 */ 12444 if (arm_feature(env, ARM_FEATURE_EL2)) { 12445 hwaddr ipa; 12446 int s2_prot; 12447 int ret; 12448 ARMCacheAttrs cacheattrs2 = {}; 12449 ARMMMUIdx s2_mmu_idx; 12450 bool is_el0; 12451 12452 ret = get_phys_addr(env, address, access_type, s1_mmu_idx, &ipa, 12453 attrs, prot, page_size, fi, cacheattrs); 12454 12455 /* If S1 fails or S2 is disabled, return early. */ 12456 if (ret || regime_translation_disabled(env, ARMMMUIdx_Stage2)) { 12457 *phys_ptr = ipa; 12458 return ret; 12459 } 12460 12461 s2_mmu_idx = attrs->secure ? ARMMMUIdx_Stage2_S : ARMMMUIdx_Stage2; 12462 is_el0 = mmu_idx == ARMMMUIdx_E10_0 || mmu_idx == ARMMMUIdx_SE10_0; 12463 12464 /* S1 is done. Now do S2 translation. */ 12465 ret = get_phys_addr_lpae(env, ipa, access_type, s2_mmu_idx, is_el0, 12466 phys_ptr, attrs, &s2_prot, 12467 page_size, fi, &cacheattrs2); 12468 fi->s2addr = ipa; 12469 /* Combine the S1 and S2 perms. */ 12470 *prot &= s2_prot; 12471 12472 /* If S2 fails, return early. */ 12473 if (ret) { 12474 return ret; 12475 } 12476 12477 /* Combine the S1 and S2 cache attributes. */ 12478 if (arm_hcr_el2_eff(env) & HCR_DC) { 12479 /* 12480 * HCR.DC forces the first stage attributes to 12481 * Normal Non-Shareable, 12482 * Inner Write-Back Read-Allocate Write-Allocate, 12483 * Outer Write-Back Read-Allocate Write-Allocate. 12484 * Do not overwrite Tagged within attrs. 12485 */ 12486 if (cacheattrs->attrs != 0xf0) { 12487 cacheattrs->attrs = 0xff; 12488 } 12489 cacheattrs->shareability = 0; 12490 } 12491 *cacheattrs = combine_cacheattrs(*cacheattrs, cacheattrs2); 12492 12493 /* Check if IPA translates to secure or non-secure PA space. */ 12494 if (arm_is_secure_below_el3(env)) { 12495 if (attrs->secure) { 12496 attrs->secure = 12497 !(env->cp15.vstcr_el2.raw_tcr & (VSTCR_SA | VSTCR_SW)); 12498 } else { 12499 attrs->secure = 12500 !((env->cp15.vtcr_el2.raw_tcr & (VTCR_NSA | VTCR_NSW)) 12501 || (env->cp15.vstcr_el2.raw_tcr & VSTCR_SA)); 12502 } 12503 } 12504 return 0; 12505 } else { 12506 /* 12507 * For non-EL2 CPUs a stage1+stage2 translation is just stage 1. 12508 */ 12509 mmu_idx = stage_1_mmu_idx(mmu_idx); 12510 } 12511 } 12512 12513 /* The page table entries may downgrade secure to non-secure, but 12514 * cannot upgrade an non-secure translation regime's attributes 12515 * to secure. 12516 */ 12517 attrs->secure = regime_is_secure(env, mmu_idx); 12518 attrs->user = regime_is_user(env, mmu_idx); 12519 12520 /* Fast Context Switch Extension. This doesn't exist at all in v8. 12521 * In v7 and earlier it affects all stage 1 translations. 12522 */ 12523 if (address < 0x02000000 && mmu_idx != ARMMMUIdx_Stage2 12524 && !arm_feature(env, ARM_FEATURE_V8)) { 12525 if (regime_el(env, mmu_idx) == 3) { 12526 address += env->cp15.fcseidr_s; 12527 } else { 12528 address += env->cp15.fcseidr_ns; 12529 } 12530 } 12531 12532 if (arm_feature(env, ARM_FEATURE_PMSA)) { 12533 bool ret; 12534 *page_size = TARGET_PAGE_SIZE; 12535 12536 if (arm_feature(env, ARM_FEATURE_V8)) { 12537 /* PMSAv8 */ 12538 ret = get_phys_addr_pmsav8(env, address, access_type, mmu_idx, 12539 phys_ptr, attrs, prot, page_size, fi); 12540 } else if (arm_feature(env, ARM_FEATURE_V7)) { 12541 /* PMSAv7 */ 12542 ret = get_phys_addr_pmsav7(env, address, access_type, mmu_idx, 12543 phys_ptr, prot, page_size, fi); 12544 } else { 12545 /* Pre-v7 MPU */ 12546 ret = get_phys_addr_pmsav5(env, address, access_type, mmu_idx, 12547 phys_ptr, prot, fi); 12548 } 12549 qemu_log_mask(CPU_LOG_MMU, "PMSA MPU lookup for %s at 0x%08" PRIx32 12550 " mmu_idx %u -> %s (prot %c%c%c)\n", 12551 access_type == MMU_DATA_LOAD ? "reading" : 12552 (access_type == MMU_DATA_STORE ? "writing" : "execute"), 12553 (uint32_t)address, mmu_idx, 12554 ret ? "Miss" : "Hit", 12555 *prot & PAGE_READ ? 'r' : '-', 12556 *prot & PAGE_WRITE ? 'w' : '-', 12557 *prot & PAGE_EXEC ? 'x' : '-'); 12558 12559 return ret; 12560 } 12561 12562 /* Definitely a real MMU, not an MPU */ 12563 12564 if (regime_translation_disabled(env, mmu_idx)) { 12565 uint64_t hcr; 12566 uint8_t memattr; 12567 12568 /* 12569 * MMU disabled. S1 addresses within aa64 translation regimes are 12570 * still checked for bounds -- see AArch64.TranslateAddressS1Off. 12571 */ 12572 if (mmu_idx != ARMMMUIdx_Stage2 && mmu_idx != ARMMMUIdx_Stage2_S) { 12573 int r_el = regime_el(env, mmu_idx); 12574 if (arm_el_is_aa64(env, r_el)) { 12575 int pamax = arm_pamax(env_archcpu(env)); 12576 uint64_t tcr = env->cp15.tcr_el[r_el].raw_tcr; 12577 int addrtop, tbi; 12578 12579 tbi = aa64_va_parameter_tbi(tcr, mmu_idx); 12580 if (access_type == MMU_INST_FETCH) { 12581 tbi &= ~aa64_va_parameter_tbid(tcr, mmu_idx); 12582 } 12583 tbi = (tbi >> extract64(address, 55, 1)) & 1; 12584 addrtop = (tbi ? 55 : 63); 12585 12586 if (extract64(address, pamax, addrtop - pamax + 1) != 0) { 12587 fi->type = ARMFault_AddressSize; 12588 fi->level = 0; 12589 fi->stage2 = false; 12590 return 1; 12591 } 12592 12593 /* 12594 * When TBI is disabled, we've just validated that all of the 12595 * bits above PAMax are zero, so logically we only need to 12596 * clear the top byte for TBI. But it's clearer to follow 12597 * the pseudocode set of addrdesc.paddress. 12598 */ 12599 address = extract64(address, 0, 52); 12600 } 12601 } 12602 *phys_ptr = address; 12603 *prot = PAGE_READ | PAGE_WRITE | PAGE_EXEC; 12604 *page_size = TARGET_PAGE_SIZE; 12605 12606 /* Fill in cacheattr a-la AArch64.TranslateAddressS1Off. */ 12607 hcr = arm_hcr_el2_eff(env); 12608 cacheattrs->shareability = 0; 12609 if (hcr & HCR_DC) { 12610 if (hcr & HCR_DCT) { 12611 memattr = 0xf0; /* Tagged, Normal, WB, RWA */ 12612 } else { 12613 memattr = 0xff; /* Normal, WB, RWA */ 12614 } 12615 } else if (access_type == MMU_INST_FETCH) { 12616 if (regime_sctlr(env, mmu_idx) & SCTLR_I) { 12617 memattr = 0xee; /* Normal, WT, RA, NT */ 12618 } else { 12619 memattr = 0x44; /* Normal, NC, No */ 12620 } 12621 cacheattrs->shareability = 2; /* outer sharable */ 12622 } else { 12623 memattr = 0x00; /* Device, nGnRnE */ 12624 } 12625 cacheattrs->attrs = memattr; 12626 return 0; 12627 } 12628 12629 if (regime_using_lpae_format(env, mmu_idx)) { 12630 return get_phys_addr_lpae(env, address, access_type, mmu_idx, false, 12631 phys_ptr, attrs, prot, page_size, 12632 fi, cacheattrs); 12633 } else if (regime_sctlr(env, mmu_idx) & SCTLR_XP) { 12634 return get_phys_addr_v6(env, address, access_type, mmu_idx, 12635 phys_ptr, attrs, prot, page_size, fi); 12636 } else { 12637 return get_phys_addr_v5(env, address, access_type, mmu_idx, 12638 phys_ptr, prot, page_size, fi); 12639 } 12640 } 12641 12642 hwaddr arm_cpu_get_phys_page_attrs_debug(CPUState *cs, vaddr addr, 12643 MemTxAttrs *attrs) 12644 { 12645 ARMCPU *cpu = ARM_CPU(cs); 12646 CPUARMState *env = &cpu->env; 12647 hwaddr phys_addr; 12648 target_ulong page_size; 12649 int prot; 12650 bool ret; 12651 ARMMMUFaultInfo fi = {}; 12652 ARMMMUIdx mmu_idx = arm_mmu_idx(env); 12653 ARMCacheAttrs cacheattrs = {}; 12654 12655 *attrs = (MemTxAttrs) {}; 12656 12657 ret = get_phys_addr(env, addr, MMU_DATA_LOAD, mmu_idx, &phys_addr, 12658 attrs, &prot, &page_size, &fi, &cacheattrs); 12659 12660 if (ret) { 12661 return -1; 12662 } 12663 return phys_addr; 12664 } 12665 12666 #endif 12667 12668 /* Note that signed overflow is undefined in C. The following routines are 12669 careful to use unsigned types where modulo arithmetic is required. 12670 Failure to do so _will_ break on newer gcc. */ 12671 12672 /* Signed saturating arithmetic. */ 12673 12674 /* Perform 16-bit signed saturating addition. */ 12675 static inline uint16_t add16_sat(uint16_t a, uint16_t b) 12676 { 12677 uint16_t res; 12678 12679 res = a + b; 12680 if (((res ^ a) & 0x8000) && !((a ^ b) & 0x8000)) { 12681 if (a & 0x8000) 12682 res = 0x8000; 12683 else 12684 res = 0x7fff; 12685 } 12686 return res; 12687 } 12688 12689 /* Perform 8-bit signed saturating addition. */ 12690 static inline uint8_t add8_sat(uint8_t a, uint8_t b) 12691 { 12692 uint8_t res; 12693 12694 res = a + b; 12695 if (((res ^ a) & 0x80) && !((a ^ b) & 0x80)) { 12696 if (a & 0x80) 12697 res = 0x80; 12698 else 12699 res = 0x7f; 12700 } 12701 return res; 12702 } 12703 12704 /* Perform 16-bit signed saturating subtraction. */ 12705 static inline uint16_t sub16_sat(uint16_t a, uint16_t b) 12706 { 12707 uint16_t res; 12708 12709 res = a - b; 12710 if (((res ^ a) & 0x8000) && ((a ^ b) & 0x8000)) { 12711 if (a & 0x8000) 12712 res = 0x8000; 12713 else 12714 res = 0x7fff; 12715 } 12716 return res; 12717 } 12718 12719 /* Perform 8-bit signed saturating subtraction. */ 12720 static inline uint8_t sub8_sat(uint8_t a, uint8_t b) 12721 { 12722 uint8_t res; 12723 12724 res = a - b; 12725 if (((res ^ a) & 0x80) && ((a ^ b) & 0x80)) { 12726 if (a & 0x80) 12727 res = 0x80; 12728 else 12729 res = 0x7f; 12730 } 12731 return res; 12732 } 12733 12734 #define ADD16(a, b, n) RESULT(add16_sat(a, b), n, 16); 12735 #define SUB16(a, b, n) RESULT(sub16_sat(a, b), n, 16); 12736 #define ADD8(a, b, n) RESULT(add8_sat(a, b), n, 8); 12737 #define SUB8(a, b, n) RESULT(sub8_sat(a, b), n, 8); 12738 #define PFX q 12739 12740 #include "op_addsub.h" 12741 12742 /* Unsigned saturating arithmetic. */ 12743 static inline uint16_t add16_usat(uint16_t a, uint16_t b) 12744 { 12745 uint16_t res; 12746 res = a + b; 12747 if (res < a) 12748 res = 0xffff; 12749 return res; 12750 } 12751 12752 static inline uint16_t sub16_usat(uint16_t a, uint16_t b) 12753 { 12754 if (a > b) 12755 return a - b; 12756 else 12757 return 0; 12758 } 12759 12760 static inline uint8_t add8_usat(uint8_t a, uint8_t b) 12761 { 12762 uint8_t res; 12763 res = a + b; 12764 if (res < a) 12765 res = 0xff; 12766 return res; 12767 } 12768 12769 static inline uint8_t sub8_usat(uint8_t a, uint8_t b) 12770 { 12771 if (a > b) 12772 return a - b; 12773 else 12774 return 0; 12775 } 12776 12777 #define ADD16(a, b, n) RESULT(add16_usat(a, b), n, 16); 12778 #define SUB16(a, b, n) RESULT(sub16_usat(a, b), n, 16); 12779 #define ADD8(a, b, n) RESULT(add8_usat(a, b), n, 8); 12780 #define SUB8(a, b, n) RESULT(sub8_usat(a, b), n, 8); 12781 #define PFX uq 12782 12783 #include "op_addsub.h" 12784 12785 /* Signed modulo arithmetic. */ 12786 #define SARITH16(a, b, n, op) do { \ 12787 int32_t sum; \ 12788 sum = (int32_t)(int16_t)(a) op (int32_t)(int16_t)(b); \ 12789 RESULT(sum, n, 16); \ 12790 if (sum >= 0) \ 12791 ge |= 3 << (n * 2); \ 12792 } while(0) 12793 12794 #define SARITH8(a, b, n, op) do { \ 12795 int32_t sum; \ 12796 sum = (int32_t)(int8_t)(a) op (int32_t)(int8_t)(b); \ 12797 RESULT(sum, n, 8); \ 12798 if (sum >= 0) \ 12799 ge |= 1 << n; \ 12800 } while(0) 12801 12802 12803 #define ADD16(a, b, n) SARITH16(a, b, n, +) 12804 #define SUB16(a, b, n) SARITH16(a, b, n, -) 12805 #define ADD8(a, b, n) SARITH8(a, b, n, +) 12806 #define SUB8(a, b, n) SARITH8(a, b, n, -) 12807 #define PFX s 12808 #define ARITH_GE 12809 12810 #include "op_addsub.h" 12811 12812 /* Unsigned modulo arithmetic. */ 12813 #define ADD16(a, b, n) do { \ 12814 uint32_t sum; \ 12815 sum = (uint32_t)(uint16_t)(a) + (uint32_t)(uint16_t)(b); \ 12816 RESULT(sum, n, 16); \ 12817 if ((sum >> 16) == 1) \ 12818 ge |= 3 << (n * 2); \ 12819 } while(0) 12820 12821 #define ADD8(a, b, n) do { \ 12822 uint32_t sum; \ 12823 sum = (uint32_t)(uint8_t)(a) + (uint32_t)(uint8_t)(b); \ 12824 RESULT(sum, n, 8); \ 12825 if ((sum >> 8) == 1) \ 12826 ge |= 1 << n; \ 12827 } while(0) 12828 12829 #define SUB16(a, b, n) do { \ 12830 uint32_t sum; \ 12831 sum = (uint32_t)(uint16_t)(a) - (uint32_t)(uint16_t)(b); \ 12832 RESULT(sum, n, 16); \ 12833 if ((sum >> 16) == 0) \ 12834 ge |= 3 << (n * 2); \ 12835 } while(0) 12836 12837 #define SUB8(a, b, n) do { \ 12838 uint32_t sum; \ 12839 sum = (uint32_t)(uint8_t)(a) - (uint32_t)(uint8_t)(b); \ 12840 RESULT(sum, n, 8); \ 12841 if ((sum >> 8) == 0) \ 12842 ge |= 1 << n; \ 12843 } while(0) 12844 12845 #define PFX u 12846 #define ARITH_GE 12847 12848 #include "op_addsub.h" 12849 12850 /* Halved signed arithmetic. */ 12851 #define ADD16(a, b, n) \ 12852 RESULT(((int32_t)(int16_t)(a) + (int32_t)(int16_t)(b)) >> 1, n, 16) 12853 #define SUB16(a, b, n) \ 12854 RESULT(((int32_t)(int16_t)(a) - (int32_t)(int16_t)(b)) >> 1, n, 16) 12855 #define ADD8(a, b, n) \ 12856 RESULT(((int32_t)(int8_t)(a) + (int32_t)(int8_t)(b)) >> 1, n, 8) 12857 #define SUB8(a, b, n) \ 12858 RESULT(((int32_t)(int8_t)(a) - (int32_t)(int8_t)(b)) >> 1, n, 8) 12859 #define PFX sh 12860 12861 #include "op_addsub.h" 12862 12863 /* Halved unsigned arithmetic. */ 12864 #define ADD16(a, b, n) \ 12865 RESULT(((uint32_t)(uint16_t)(a) + (uint32_t)(uint16_t)(b)) >> 1, n, 16) 12866 #define SUB16(a, b, n) \ 12867 RESULT(((uint32_t)(uint16_t)(a) - (uint32_t)(uint16_t)(b)) >> 1, n, 16) 12868 #define ADD8(a, b, n) \ 12869 RESULT(((uint32_t)(uint8_t)(a) + (uint32_t)(uint8_t)(b)) >> 1, n, 8) 12870 #define SUB8(a, b, n) \ 12871 RESULT(((uint32_t)(uint8_t)(a) - (uint32_t)(uint8_t)(b)) >> 1, n, 8) 12872 #define PFX uh 12873 12874 #include "op_addsub.h" 12875 12876 static inline uint8_t do_usad(uint8_t a, uint8_t b) 12877 { 12878 if (a > b) 12879 return a - b; 12880 else 12881 return b - a; 12882 } 12883 12884 /* Unsigned sum of absolute byte differences. */ 12885 uint32_t HELPER(usad8)(uint32_t a, uint32_t b) 12886 { 12887 uint32_t sum; 12888 sum = do_usad(a, b); 12889 sum += do_usad(a >> 8, b >> 8); 12890 sum += do_usad(a >> 16, b >> 16); 12891 sum += do_usad(a >> 24, b >> 24); 12892 return sum; 12893 } 12894 12895 /* For ARMv6 SEL instruction. */ 12896 uint32_t HELPER(sel_flags)(uint32_t flags, uint32_t a, uint32_t b) 12897 { 12898 uint32_t mask; 12899 12900 mask = 0; 12901 if (flags & 1) 12902 mask |= 0xff; 12903 if (flags & 2) 12904 mask |= 0xff00; 12905 if (flags & 4) 12906 mask |= 0xff0000; 12907 if (flags & 8) 12908 mask |= 0xff000000; 12909 return (a & mask) | (b & ~mask); 12910 } 12911 12912 /* CRC helpers. 12913 * The upper bytes of val (above the number specified by 'bytes') must have 12914 * been zeroed out by the caller. 12915 */ 12916 uint32_t HELPER(crc32)(uint32_t acc, uint32_t val, uint32_t bytes) 12917 { 12918 uint8_t buf[4]; 12919 12920 stl_le_p(buf, val); 12921 12922 /* zlib crc32 converts the accumulator and output to one's complement. */ 12923 return crc32(acc ^ 0xffffffff, buf, bytes) ^ 0xffffffff; 12924 } 12925 12926 uint32_t HELPER(crc32c)(uint32_t acc, uint32_t val, uint32_t bytes) 12927 { 12928 uint8_t buf[4]; 12929 12930 stl_le_p(buf, val); 12931 12932 /* Linux crc32c converts the output to one's complement. */ 12933 return crc32c(acc, buf, bytes) ^ 0xffffffff; 12934 } 12935 12936 /* Return the exception level to which FP-disabled exceptions should 12937 * be taken, or 0 if FP is enabled. 12938 */ 12939 int fp_exception_el(CPUARMState *env, int cur_el) 12940 { 12941 #ifndef CONFIG_USER_ONLY 12942 uint64_t hcr_el2; 12943 12944 /* CPACR and the CPTR registers don't exist before v6, so FP is 12945 * always accessible 12946 */ 12947 if (!arm_feature(env, ARM_FEATURE_V6)) { 12948 return 0; 12949 } 12950 12951 if (arm_feature(env, ARM_FEATURE_M)) { 12952 /* CPACR can cause a NOCP UsageFault taken to current security state */ 12953 if (!v7m_cpacr_pass(env, env->v7m.secure, cur_el != 0)) { 12954 return 1; 12955 } 12956 12957 if (arm_feature(env, ARM_FEATURE_M_SECURITY) && !env->v7m.secure) { 12958 if (!extract32(env->v7m.nsacr, 10, 1)) { 12959 /* FP insns cause a NOCP UsageFault taken to Secure */ 12960 return 3; 12961 } 12962 } 12963 12964 return 0; 12965 } 12966 12967 hcr_el2 = arm_hcr_el2_eff(env); 12968 12969 /* The CPACR controls traps to EL1, or PL1 if we're 32 bit: 12970 * 0, 2 : trap EL0 and EL1/PL1 accesses 12971 * 1 : trap only EL0 accesses 12972 * 3 : trap no accesses 12973 * This register is ignored if E2H+TGE are both set. 12974 */ 12975 if ((hcr_el2 & (HCR_E2H | HCR_TGE)) != (HCR_E2H | HCR_TGE)) { 12976 int fpen = extract32(env->cp15.cpacr_el1, 20, 2); 12977 12978 switch (fpen) { 12979 case 0: 12980 case 2: 12981 if (cur_el == 0 || cur_el == 1) { 12982 /* Trap to PL1, which might be EL1 or EL3 */ 12983 if (arm_is_secure(env) && !arm_el_is_aa64(env, 3)) { 12984 return 3; 12985 } 12986 return 1; 12987 } 12988 if (cur_el == 3 && !is_a64(env)) { 12989 /* Secure PL1 running at EL3 */ 12990 return 3; 12991 } 12992 break; 12993 case 1: 12994 if (cur_el == 0) { 12995 return 1; 12996 } 12997 break; 12998 case 3: 12999 break; 13000 } 13001 } 13002 13003 /* 13004 * The NSACR allows A-profile AArch32 EL3 and M-profile secure mode 13005 * to control non-secure access to the FPU. It doesn't have any 13006 * effect if EL3 is AArch64 or if EL3 doesn't exist at all. 13007 */ 13008 if ((arm_feature(env, ARM_FEATURE_EL3) && !arm_el_is_aa64(env, 3) && 13009 cur_el <= 2 && !arm_is_secure_below_el3(env))) { 13010 if (!extract32(env->cp15.nsacr, 10, 1)) { 13011 /* FP insns act as UNDEF */ 13012 return cur_el == 2 ? 2 : 1; 13013 } 13014 } 13015 13016 /* 13017 * CPTR_EL2 is present in v7VE or v8, and changes format 13018 * with HCR_EL2.E2H (regardless of TGE). 13019 */ 13020 if (cur_el <= 2) { 13021 if (hcr_el2 & HCR_E2H) { 13022 /* Check CPTR_EL2.FPEN. */ 13023 switch (extract32(env->cp15.cptr_el[2], 20, 2)) { 13024 case 1: 13025 if (cur_el != 0 || !(hcr_el2 & HCR_TGE)) { 13026 break; 13027 } 13028 /* fall through */ 13029 case 0: 13030 case 2: 13031 return 2; 13032 } 13033 } else if (arm_is_el2_enabled(env)) { 13034 if (env->cp15.cptr_el[2] & CPTR_TFP) { 13035 return 2; 13036 } 13037 } 13038 } 13039 13040 /* CPTR_EL3 : present in v8 */ 13041 if (env->cp15.cptr_el[3] & CPTR_TFP) { 13042 /* Trap all FP ops to EL3 */ 13043 return 3; 13044 } 13045 #endif 13046 return 0; 13047 } 13048 13049 /* Return the exception level we're running at if this is our mmu_idx */ 13050 int arm_mmu_idx_to_el(ARMMMUIdx mmu_idx) 13051 { 13052 if (mmu_idx & ARM_MMU_IDX_M) { 13053 return mmu_idx & ARM_MMU_IDX_M_PRIV; 13054 } 13055 13056 switch (mmu_idx) { 13057 case ARMMMUIdx_E10_0: 13058 case ARMMMUIdx_E20_0: 13059 case ARMMMUIdx_SE10_0: 13060 case ARMMMUIdx_SE20_0: 13061 return 0; 13062 case ARMMMUIdx_E10_1: 13063 case ARMMMUIdx_E10_1_PAN: 13064 case ARMMMUIdx_SE10_1: 13065 case ARMMMUIdx_SE10_1_PAN: 13066 return 1; 13067 case ARMMMUIdx_E2: 13068 case ARMMMUIdx_E20_2: 13069 case ARMMMUIdx_E20_2_PAN: 13070 case ARMMMUIdx_SE2: 13071 case ARMMMUIdx_SE20_2: 13072 case ARMMMUIdx_SE20_2_PAN: 13073 return 2; 13074 case ARMMMUIdx_SE3: 13075 return 3; 13076 default: 13077 g_assert_not_reached(); 13078 } 13079 } 13080 13081 #ifndef CONFIG_TCG 13082 ARMMMUIdx arm_v7m_mmu_idx_for_secstate(CPUARMState *env, bool secstate) 13083 { 13084 g_assert_not_reached(); 13085 } 13086 #endif 13087 13088 ARMMMUIdx arm_mmu_idx_el(CPUARMState *env, int el) 13089 { 13090 ARMMMUIdx idx; 13091 uint64_t hcr; 13092 13093 if (arm_feature(env, ARM_FEATURE_M)) { 13094 return arm_v7m_mmu_idx_for_secstate(env, env->v7m.secure); 13095 } 13096 13097 /* See ARM pseudo-function ELIsInHost. */ 13098 switch (el) { 13099 case 0: 13100 hcr = arm_hcr_el2_eff(env); 13101 if ((hcr & (HCR_E2H | HCR_TGE)) == (HCR_E2H | HCR_TGE)) { 13102 idx = ARMMMUIdx_E20_0; 13103 } else { 13104 idx = ARMMMUIdx_E10_0; 13105 } 13106 break; 13107 case 1: 13108 if (env->pstate & PSTATE_PAN) { 13109 idx = ARMMMUIdx_E10_1_PAN; 13110 } else { 13111 idx = ARMMMUIdx_E10_1; 13112 } 13113 break; 13114 case 2: 13115 /* Note that TGE does not apply at EL2. */ 13116 if (arm_hcr_el2_eff(env) & HCR_E2H) { 13117 if (env->pstate & PSTATE_PAN) { 13118 idx = ARMMMUIdx_E20_2_PAN; 13119 } else { 13120 idx = ARMMMUIdx_E20_2; 13121 } 13122 } else { 13123 idx = ARMMMUIdx_E2; 13124 } 13125 break; 13126 case 3: 13127 return ARMMMUIdx_SE3; 13128 default: 13129 g_assert_not_reached(); 13130 } 13131 13132 if (arm_is_secure_below_el3(env)) { 13133 idx &= ~ARM_MMU_IDX_A_NS; 13134 } 13135 13136 return idx; 13137 } 13138 13139 ARMMMUIdx arm_mmu_idx(CPUARMState *env) 13140 { 13141 return arm_mmu_idx_el(env, arm_current_el(env)); 13142 } 13143 13144 #ifndef CONFIG_USER_ONLY 13145 ARMMMUIdx arm_stage1_mmu_idx(CPUARMState *env) 13146 { 13147 return stage_1_mmu_idx(arm_mmu_idx(env)); 13148 } 13149 #endif 13150 13151 static CPUARMTBFlags rebuild_hflags_common(CPUARMState *env, int fp_el, 13152 ARMMMUIdx mmu_idx, 13153 CPUARMTBFlags flags) 13154 { 13155 DP_TBFLAG_ANY(flags, FPEXC_EL, fp_el); 13156 DP_TBFLAG_ANY(flags, MMUIDX, arm_to_core_mmu_idx(mmu_idx)); 13157 13158 if (arm_singlestep_active(env)) { 13159 DP_TBFLAG_ANY(flags, SS_ACTIVE, 1); 13160 } 13161 return flags; 13162 } 13163 13164 static CPUARMTBFlags rebuild_hflags_common_32(CPUARMState *env, int fp_el, 13165 ARMMMUIdx mmu_idx, 13166 CPUARMTBFlags flags) 13167 { 13168 bool sctlr_b = arm_sctlr_b(env); 13169 13170 if (sctlr_b) { 13171 DP_TBFLAG_A32(flags, SCTLR__B, 1); 13172 } 13173 if (arm_cpu_data_is_big_endian_a32(env, sctlr_b)) { 13174 DP_TBFLAG_ANY(flags, BE_DATA, 1); 13175 } 13176 DP_TBFLAG_A32(flags, NS, !access_secure_reg(env)); 13177 13178 return rebuild_hflags_common(env, fp_el, mmu_idx, flags); 13179 } 13180 13181 static CPUARMTBFlags rebuild_hflags_m32(CPUARMState *env, int fp_el, 13182 ARMMMUIdx mmu_idx) 13183 { 13184 CPUARMTBFlags flags = {}; 13185 uint32_t ccr = env->v7m.ccr[env->v7m.secure]; 13186 13187 /* Without HaveMainExt, CCR.UNALIGN_TRP is RES1. */ 13188 if (ccr & R_V7M_CCR_UNALIGN_TRP_MASK) { 13189 DP_TBFLAG_ANY(flags, ALIGN_MEM, 1); 13190 } 13191 13192 if (arm_v7m_is_handler_mode(env)) { 13193 DP_TBFLAG_M32(flags, HANDLER, 1); 13194 } 13195 13196 /* 13197 * v8M always applies stack limit checks unless CCR.STKOFHFNMIGN 13198 * is suppressing them because the requested execution priority 13199 * is less than 0. 13200 */ 13201 if (arm_feature(env, ARM_FEATURE_V8) && 13202 !((mmu_idx & ARM_MMU_IDX_M_NEGPRI) && 13203 (ccr & R_V7M_CCR_STKOFHFNMIGN_MASK))) { 13204 DP_TBFLAG_M32(flags, STACKCHECK, 1); 13205 } 13206 13207 return rebuild_hflags_common_32(env, fp_el, mmu_idx, flags); 13208 } 13209 13210 static CPUARMTBFlags rebuild_hflags_aprofile(CPUARMState *env) 13211 { 13212 CPUARMTBFlags flags = {}; 13213 13214 DP_TBFLAG_ANY(flags, DEBUG_TARGET_EL, arm_debug_target_el(env)); 13215 return flags; 13216 } 13217 13218 static CPUARMTBFlags rebuild_hflags_a32(CPUARMState *env, int fp_el, 13219 ARMMMUIdx mmu_idx) 13220 { 13221 CPUARMTBFlags flags = rebuild_hflags_aprofile(env); 13222 int el = arm_current_el(env); 13223 13224 if (arm_sctlr(env, el) & SCTLR_A) { 13225 DP_TBFLAG_ANY(flags, ALIGN_MEM, 1); 13226 } 13227 13228 if (arm_el_is_aa64(env, 1)) { 13229 DP_TBFLAG_A32(flags, VFPEN, 1); 13230 } 13231 13232 if (el < 2 && env->cp15.hstr_el2 && 13233 (arm_hcr_el2_eff(env) & (HCR_E2H | HCR_TGE)) != (HCR_E2H | HCR_TGE)) { 13234 DP_TBFLAG_A32(flags, HSTR_ACTIVE, 1); 13235 } 13236 13237 if (env->uncached_cpsr & CPSR_IL) { 13238 DP_TBFLAG_ANY(flags, PSTATE__IL, 1); 13239 } 13240 13241 return rebuild_hflags_common_32(env, fp_el, mmu_idx, flags); 13242 } 13243 13244 static CPUARMTBFlags rebuild_hflags_a64(CPUARMState *env, int el, int fp_el, 13245 ARMMMUIdx mmu_idx) 13246 { 13247 CPUARMTBFlags flags = rebuild_hflags_aprofile(env); 13248 ARMMMUIdx stage1 = stage_1_mmu_idx(mmu_idx); 13249 uint64_t tcr = regime_tcr(env, mmu_idx)->raw_tcr; 13250 uint64_t sctlr; 13251 int tbii, tbid; 13252 13253 DP_TBFLAG_ANY(flags, AARCH64_STATE, 1); 13254 13255 /* Get control bits for tagged addresses. */ 13256 tbid = aa64_va_parameter_tbi(tcr, mmu_idx); 13257 tbii = tbid & ~aa64_va_parameter_tbid(tcr, mmu_idx); 13258 13259 DP_TBFLAG_A64(flags, TBII, tbii); 13260 DP_TBFLAG_A64(flags, TBID, tbid); 13261 13262 if (cpu_isar_feature(aa64_sve, env_archcpu(env))) { 13263 int sve_el = sve_exception_el(env, el); 13264 uint32_t zcr_len; 13265 13266 /* 13267 * If SVE is disabled, but FP is enabled, 13268 * then the effective len is 0. 13269 */ 13270 if (sve_el != 0 && fp_el == 0) { 13271 zcr_len = 0; 13272 } else { 13273 zcr_len = sve_zcr_len_for_el(env, el); 13274 } 13275 DP_TBFLAG_A64(flags, SVEEXC_EL, sve_el); 13276 DP_TBFLAG_A64(flags, ZCR_LEN, zcr_len); 13277 } 13278 13279 sctlr = regime_sctlr(env, stage1); 13280 13281 if (sctlr & SCTLR_A) { 13282 DP_TBFLAG_ANY(flags, ALIGN_MEM, 1); 13283 } 13284 13285 if (arm_cpu_data_is_big_endian_a64(el, sctlr)) { 13286 DP_TBFLAG_ANY(flags, BE_DATA, 1); 13287 } 13288 13289 if (cpu_isar_feature(aa64_pauth, env_archcpu(env))) { 13290 /* 13291 * In order to save space in flags, we record only whether 13292 * pauth is "inactive", meaning all insns are implemented as 13293 * a nop, or "active" when some action must be performed. 13294 * The decision of which action to take is left to a helper. 13295 */ 13296 if (sctlr & (SCTLR_EnIA | SCTLR_EnIB | SCTLR_EnDA | SCTLR_EnDB)) { 13297 DP_TBFLAG_A64(flags, PAUTH_ACTIVE, 1); 13298 } 13299 } 13300 13301 if (cpu_isar_feature(aa64_bti, env_archcpu(env))) { 13302 /* Note that SCTLR_EL[23].BT == SCTLR_BT1. */ 13303 if (sctlr & (el == 0 ? SCTLR_BT0 : SCTLR_BT1)) { 13304 DP_TBFLAG_A64(flags, BT, 1); 13305 } 13306 } 13307 13308 /* Compute the condition for using AccType_UNPRIV for LDTR et al. */ 13309 if (!(env->pstate & PSTATE_UAO)) { 13310 switch (mmu_idx) { 13311 case ARMMMUIdx_E10_1: 13312 case ARMMMUIdx_E10_1_PAN: 13313 case ARMMMUIdx_SE10_1: 13314 case ARMMMUIdx_SE10_1_PAN: 13315 /* TODO: ARMv8.3-NV */ 13316 DP_TBFLAG_A64(flags, UNPRIV, 1); 13317 break; 13318 case ARMMMUIdx_E20_2: 13319 case ARMMMUIdx_E20_2_PAN: 13320 case ARMMMUIdx_SE20_2: 13321 case ARMMMUIdx_SE20_2_PAN: 13322 /* 13323 * Note that EL20_2 is gated by HCR_EL2.E2H == 1, but EL20_0 is 13324 * gated by HCR_EL2.<E2H,TGE> == '11', and so is LDTR. 13325 */ 13326 if (env->cp15.hcr_el2 & HCR_TGE) { 13327 DP_TBFLAG_A64(flags, UNPRIV, 1); 13328 } 13329 break; 13330 default: 13331 break; 13332 } 13333 } 13334 13335 if (env->pstate & PSTATE_IL) { 13336 DP_TBFLAG_ANY(flags, PSTATE__IL, 1); 13337 } 13338 13339 if (cpu_isar_feature(aa64_mte, env_archcpu(env))) { 13340 /* 13341 * Set MTE_ACTIVE if any access may be Checked, and leave clear 13342 * if all accesses must be Unchecked: 13343 * 1) If no TBI, then there are no tags in the address to check, 13344 * 2) If Tag Check Override, then all accesses are Unchecked, 13345 * 3) If Tag Check Fail == 0, then Checked access have no effect, 13346 * 4) If no Allocation Tag Access, then all accesses are Unchecked. 13347 */ 13348 if (allocation_tag_access_enabled(env, el, sctlr)) { 13349 DP_TBFLAG_A64(flags, ATA, 1); 13350 if (tbid 13351 && !(env->pstate & PSTATE_TCO) 13352 && (sctlr & (el == 0 ? SCTLR_TCF0 : SCTLR_TCF))) { 13353 DP_TBFLAG_A64(flags, MTE_ACTIVE, 1); 13354 } 13355 } 13356 /* And again for unprivileged accesses, if required. */ 13357 if (EX_TBFLAG_A64(flags, UNPRIV) 13358 && tbid 13359 && !(env->pstate & PSTATE_TCO) 13360 && (sctlr & SCTLR_TCF0) 13361 && allocation_tag_access_enabled(env, 0, sctlr)) { 13362 DP_TBFLAG_A64(flags, MTE0_ACTIVE, 1); 13363 } 13364 /* Cache TCMA as well as TBI. */ 13365 DP_TBFLAG_A64(flags, TCMA, aa64_va_parameter_tcma(tcr, mmu_idx)); 13366 } 13367 13368 return rebuild_hflags_common(env, fp_el, mmu_idx, flags); 13369 } 13370 13371 static CPUARMTBFlags rebuild_hflags_internal(CPUARMState *env) 13372 { 13373 int el = arm_current_el(env); 13374 int fp_el = fp_exception_el(env, el); 13375 ARMMMUIdx mmu_idx = arm_mmu_idx_el(env, el); 13376 13377 if (is_a64(env)) { 13378 return rebuild_hflags_a64(env, el, fp_el, mmu_idx); 13379 } else if (arm_feature(env, ARM_FEATURE_M)) { 13380 return rebuild_hflags_m32(env, fp_el, mmu_idx); 13381 } else { 13382 return rebuild_hflags_a32(env, fp_el, mmu_idx); 13383 } 13384 } 13385 13386 void arm_rebuild_hflags(CPUARMState *env) 13387 { 13388 env->hflags = rebuild_hflags_internal(env); 13389 } 13390 13391 /* 13392 * If we have triggered a EL state change we can't rely on the 13393 * translator having passed it to us, we need to recompute. 13394 */ 13395 void HELPER(rebuild_hflags_m32_newel)(CPUARMState *env) 13396 { 13397 int el = arm_current_el(env); 13398 int fp_el = fp_exception_el(env, el); 13399 ARMMMUIdx mmu_idx = arm_mmu_idx_el(env, el); 13400 13401 env->hflags = rebuild_hflags_m32(env, fp_el, mmu_idx); 13402 } 13403 13404 void HELPER(rebuild_hflags_m32)(CPUARMState *env, int el) 13405 { 13406 int fp_el = fp_exception_el(env, el); 13407 ARMMMUIdx mmu_idx = arm_mmu_idx_el(env, el); 13408 13409 env->hflags = rebuild_hflags_m32(env, fp_el, mmu_idx); 13410 } 13411 13412 /* 13413 * If we have triggered a EL state change we can't rely on the 13414 * translator having passed it to us, we need to recompute. 13415 */ 13416 void HELPER(rebuild_hflags_a32_newel)(CPUARMState *env) 13417 { 13418 int el = arm_current_el(env); 13419 int fp_el = fp_exception_el(env, el); 13420 ARMMMUIdx mmu_idx = arm_mmu_idx_el(env, el); 13421 env->hflags = rebuild_hflags_a32(env, fp_el, mmu_idx); 13422 } 13423 13424 void HELPER(rebuild_hflags_a32)(CPUARMState *env, int el) 13425 { 13426 int fp_el = fp_exception_el(env, el); 13427 ARMMMUIdx mmu_idx = arm_mmu_idx_el(env, el); 13428 13429 env->hflags = rebuild_hflags_a32(env, fp_el, mmu_idx); 13430 } 13431 13432 void HELPER(rebuild_hflags_a64)(CPUARMState *env, int el) 13433 { 13434 int fp_el = fp_exception_el(env, el); 13435 ARMMMUIdx mmu_idx = arm_mmu_idx_el(env, el); 13436 13437 env->hflags = rebuild_hflags_a64(env, el, fp_el, mmu_idx); 13438 } 13439 13440 static inline void assert_hflags_rebuild_correctly(CPUARMState *env) 13441 { 13442 #ifdef CONFIG_DEBUG_TCG 13443 CPUARMTBFlags c = env->hflags; 13444 CPUARMTBFlags r = rebuild_hflags_internal(env); 13445 13446 if (unlikely(c.flags != r.flags || c.flags2 != r.flags2)) { 13447 fprintf(stderr, "TCG hflags mismatch " 13448 "(current:(0x%08x,0x" TARGET_FMT_lx ")" 13449 " rebuilt:(0x%08x,0x" TARGET_FMT_lx ")\n", 13450 c.flags, c.flags2, r.flags, r.flags2); 13451 abort(); 13452 } 13453 #endif 13454 } 13455 13456 static bool mve_no_pred(CPUARMState *env) 13457 { 13458 /* 13459 * Return true if there is definitely no predication of MVE 13460 * instructions by VPR or LTPSIZE. (Returning false even if there 13461 * isn't any predication is OK; generated code will just be 13462 * a little worse.) 13463 * If the CPU does not implement MVE then this TB flag is always 0. 13464 * 13465 * NOTE: if you change this logic, the "recalculate s->mve_no_pred" 13466 * logic in gen_update_fp_context() needs to be updated to match. 13467 * 13468 * We do not include the effect of the ECI bits here -- they are 13469 * tracked in other TB flags. This simplifies the logic for 13470 * "when did we emit code that changes the MVE_NO_PRED TB flag 13471 * and thus need to end the TB?". 13472 */ 13473 if (cpu_isar_feature(aa32_mve, env_archcpu(env))) { 13474 return false; 13475 } 13476 if (env->v7m.vpr) { 13477 return false; 13478 } 13479 if (env->v7m.ltpsize < 4) { 13480 return false; 13481 } 13482 return true; 13483 } 13484 13485 void cpu_get_tb_cpu_state(CPUARMState *env, target_ulong *pc, 13486 target_ulong *cs_base, uint32_t *pflags) 13487 { 13488 CPUARMTBFlags flags; 13489 13490 assert_hflags_rebuild_correctly(env); 13491 flags = env->hflags; 13492 13493 if (EX_TBFLAG_ANY(flags, AARCH64_STATE)) { 13494 *pc = env->pc; 13495 if (cpu_isar_feature(aa64_bti, env_archcpu(env))) { 13496 DP_TBFLAG_A64(flags, BTYPE, env->btype); 13497 } 13498 } else { 13499 *pc = env->regs[15]; 13500 13501 if (arm_feature(env, ARM_FEATURE_M)) { 13502 if (arm_feature(env, ARM_FEATURE_M_SECURITY) && 13503 FIELD_EX32(env->v7m.fpccr[M_REG_S], V7M_FPCCR, S) 13504 != env->v7m.secure) { 13505 DP_TBFLAG_M32(flags, FPCCR_S_WRONG, 1); 13506 } 13507 13508 if ((env->v7m.fpccr[env->v7m.secure] & R_V7M_FPCCR_ASPEN_MASK) && 13509 (!(env->v7m.control[M_REG_S] & R_V7M_CONTROL_FPCA_MASK) || 13510 (env->v7m.secure && 13511 !(env->v7m.control[M_REG_S] & R_V7M_CONTROL_SFPA_MASK)))) { 13512 /* 13513 * ASPEN is set, but FPCA/SFPA indicate that there is no 13514 * active FP context; we must create a new FP context before 13515 * executing any FP insn. 13516 */ 13517 DP_TBFLAG_M32(flags, NEW_FP_CTXT_NEEDED, 1); 13518 } 13519 13520 bool is_secure = env->v7m.fpccr[M_REG_S] & R_V7M_FPCCR_S_MASK; 13521 if (env->v7m.fpccr[is_secure] & R_V7M_FPCCR_LSPACT_MASK) { 13522 DP_TBFLAG_M32(flags, LSPACT, 1); 13523 } 13524 13525 if (mve_no_pred(env)) { 13526 DP_TBFLAG_M32(flags, MVE_NO_PRED, 1); 13527 } 13528 } else { 13529 /* 13530 * Note that XSCALE_CPAR shares bits with VECSTRIDE. 13531 * Note that VECLEN+VECSTRIDE are RES0 for M-profile. 13532 */ 13533 if (arm_feature(env, ARM_FEATURE_XSCALE)) { 13534 DP_TBFLAG_A32(flags, XSCALE_CPAR, env->cp15.c15_cpar); 13535 } else { 13536 DP_TBFLAG_A32(flags, VECLEN, env->vfp.vec_len); 13537 DP_TBFLAG_A32(flags, VECSTRIDE, env->vfp.vec_stride); 13538 } 13539 if (env->vfp.xregs[ARM_VFP_FPEXC] & (1 << 30)) { 13540 DP_TBFLAG_A32(flags, VFPEN, 1); 13541 } 13542 } 13543 13544 DP_TBFLAG_AM32(flags, THUMB, env->thumb); 13545 DP_TBFLAG_AM32(flags, CONDEXEC, env->condexec_bits); 13546 } 13547 13548 /* 13549 * The SS_ACTIVE and PSTATE_SS bits correspond to the state machine 13550 * states defined in the ARM ARM for software singlestep: 13551 * SS_ACTIVE PSTATE.SS State 13552 * 0 x Inactive (the TB flag for SS is always 0) 13553 * 1 0 Active-pending 13554 * 1 1 Active-not-pending 13555 * SS_ACTIVE is set in hflags; PSTATE__SS is computed every TB. 13556 */ 13557 if (EX_TBFLAG_ANY(flags, SS_ACTIVE) && (env->pstate & PSTATE_SS)) { 13558 DP_TBFLAG_ANY(flags, PSTATE__SS, 1); 13559 } 13560 13561 *pflags = flags.flags; 13562 *cs_base = flags.flags2; 13563 } 13564 13565 #ifdef TARGET_AARCH64 13566 /* 13567 * The manual says that when SVE is enabled and VQ is widened the 13568 * implementation is allowed to zero the previously inaccessible 13569 * portion of the registers. The corollary to that is that when 13570 * SVE is enabled and VQ is narrowed we are also allowed to zero 13571 * the now inaccessible portion of the registers. 13572 * 13573 * The intent of this is that no predicate bit beyond VQ is ever set. 13574 * Which means that some operations on predicate registers themselves 13575 * may operate on full uint64_t or even unrolled across the maximum 13576 * uint64_t[4]. Performing 4 bits of host arithmetic unconditionally 13577 * may well be cheaper than conditionals to restrict the operation 13578 * to the relevant portion of a uint16_t[16]. 13579 */ 13580 void aarch64_sve_narrow_vq(CPUARMState *env, unsigned vq) 13581 { 13582 int i, j; 13583 uint64_t pmask; 13584 13585 assert(vq >= 1 && vq <= ARM_MAX_VQ); 13586 assert(vq <= env_archcpu(env)->sve_max_vq); 13587 13588 /* Zap the high bits of the zregs. */ 13589 for (i = 0; i < 32; i++) { 13590 memset(&env->vfp.zregs[i].d[2 * vq], 0, 16 * (ARM_MAX_VQ - vq)); 13591 } 13592 13593 /* Zap the high bits of the pregs and ffr. */ 13594 pmask = 0; 13595 if (vq & 3) { 13596 pmask = ~(-1ULL << (16 * (vq & 3))); 13597 } 13598 for (j = vq / 4; j < ARM_MAX_VQ / 4; j++) { 13599 for (i = 0; i < 17; ++i) { 13600 env->vfp.pregs[i].p[j] &= pmask; 13601 } 13602 pmask = 0; 13603 } 13604 } 13605 13606 /* 13607 * Notice a change in SVE vector size when changing EL. 13608 */ 13609 void aarch64_sve_change_el(CPUARMState *env, int old_el, 13610 int new_el, bool el0_a64) 13611 { 13612 ARMCPU *cpu = env_archcpu(env); 13613 int old_len, new_len; 13614 bool old_a64, new_a64; 13615 13616 /* Nothing to do if no SVE. */ 13617 if (!cpu_isar_feature(aa64_sve, cpu)) { 13618 return; 13619 } 13620 13621 /* Nothing to do if FP is disabled in either EL. */ 13622 if (fp_exception_el(env, old_el) || fp_exception_el(env, new_el)) { 13623 return; 13624 } 13625 13626 /* 13627 * DDI0584A.d sec 3.2: "If SVE instructions are disabled or trapped 13628 * at ELx, or not available because the EL is in AArch32 state, then 13629 * for all purposes other than a direct read, the ZCR_ELx.LEN field 13630 * has an effective value of 0". 13631 * 13632 * Consider EL2 (aa64, vq=4) -> EL0 (aa32) -> EL1 (aa64, vq=0). 13633 * If we ignore aa32 state, we would fail to see the vq4->vq0 transition 13634 * from EL2->EL1. Thus we go ahead and narrow when entering aa32 so that 13635 * we already have the correct register contents when encountering the 13636 * vq0->vq0 transition between EL0->EL1. 13637 */ 13638 old_a64 = old_el ? arm_el_is_aa64(env, old_el) : el0_a64; 13639 old_len = (old_a64 && !sve_exception_el(env, old_el) 13640 ? sve_zcr_len_for_el(env, old_el) : 0); 13641 new_a64 = new_el ? arm_el_is_aa64(env, new_el) : el0_a64; 13642 new_len = (new_a64 && !sve_exception_el(env, new_el) 13643 ? sve_zcr_len_for_el(env, new_el) : 0); 13644 13645 /* When changing vector length, clear inaccessible state. */ 13646 if (new_len < old_len) { 13647 aarch64_sve_narrow_vq(env, new_len + 1); 13648 } 13649 } 13650 #endif 13651