1 /* 2 * ARM generic helpers. 3 * 4 * This code is licensed under the GNU GPL v2 or later. 5 * 6 * SPDX-License-Identifier: GPL-2.0-or-later 7 */ 8 9 #include "qemu/osdep.h" 10 #include "qemu/units.h" 11 #include "target/arm/idau.h" 12 #include "trace.h" 13 #include "cpu.h" 14 #include "internals.h" 15 #include "exec/gdbstub.h" 16 #include "exec/helper-proto.h" 17 #include "qemu/host-utils.h" 18 #include "qemu/main-loop.h" 19 #include "qemu/bitops.h" 20 #include "qemu/crc32c.h" 21 #include "qemu/qemu-print.h" 22 #include "exec/exec-all.h" 23 #include <zlib.h> /* For crc32 */ 24 #include "hw/irq.h" 25 #include "hw/semihosting/semihost.h" 26 #include "sysemu/cpus.h" 27 #include "sysemu/kvm.h" 28 #include "qemu/range.h" 29 #include "qapi/qapi-commands-machine-target.h" 30 #include "qapi/error.h" 31 #include "qemu/guest-random.h" 32 #ifdef CONFIG_TCG 33 #include "arm_ldst.h" 34 #include "exec/cpu_ldst.h" 35 #endif 36 37 #define ARM_CPU_FREQ 1000000000 /* FIXME: 1 GHz, should be configurable */ 38 39 #ifndef CONFIG_USER_ONLY 40 41 static bool get_phys_addr_lpae(CPUARMState *env, target_ulong address, 42 MMUAccessType access_type, ARMMMUIdx mmu_idx, 43 hwaddr *phys_ptr, MemTxAttrs *txattrs, int *prot, 44 target_ulong *page_size_ptr, 45 ARMMMUFaultInfo *fi, ARMCacheAttrs *cacheattrs); 46 #endif 47 48 static void switch_mode(CPUARMState *env, int mode); 49 50 static int vfp_gdb_get_reg(CPUARMState *env, uint8_t *buf, int reg) 51 { 52 int nregs; 53 54 /* VFP data registers are always little-endian. */ 55 nregs = arm_feature(env, ARM_FEATURE_VFP3) ? 32 : 16; 56 if (reg < nregs) { 57 stq_le_p(buf, *aa32_vfp_dreg(env, reg)); 58 return 8; 59 } 60 if (arm_feature(env, ARM_FEATURE_NEON)) { 61 /* Aliases for Q regs. */ 62 nregs += 16; 63 if (reg < nregs) { 64 uint64_t *q = aa32_vfp_qreg(env, reg - 32); 65 stq_le_p(buf, q[0]); 66 stq_le_p(buf + 8, q[1]); 67 return 16; 68 } 69 } 70 switch (reg - nregs) { 71 case 0: stl_p(buf, env->vfp.xregs[ARM_VFP_FPSID]); return 4; 72 case 1: stl_p(buf, vfp_get_fpscr(env)); return 4; 73 case 2: stl_p(buf, env->vfp.xregs[ARM_VFP_FPEXC]); return 4; 74 } 75 return 0; 76 } 77 78 static int vfp_gdb_set_reg(CPUARMState *env, uint8_t *buf, int reg) 79 { 80 int nregs; 81 82 nregs = arm_feature(env, ARM_FEATURE_VFP3) ? 32 : 16; 83 if (reg < nregs) { 84 *aa32_vfp_dreg(env, reg) = ldq_le_p(buf); 85 return 8; 86 } 87 if (arm_feature(env, ARM_FEATURE_NEON)) { 88 nregs += 16; 89 if (reg < nregs) { 90 uint64_t *q = aa32_vfp_qreg(env, reg - 32); 91 q[0] = ldq_le_p(buf); 92 q[1] = ldq_le_p(buf + 8); 93 return 16; 94 } 95 } 96 switch (reg - nregs) { 97 case 0: env->vfp.xregs[ARM_VFP_FPSID] = ldl_p(buf); return 4; 98 case 1: vfp_set_fpscr(env, ldl_p(buf)); return 4; 99 case 2: env->vfp.xregs[ARM_VFP_FPEXC] = ldl_p(buf) & (1 << 30); return 4; 100 } 101 return 0; 102 } 103 104 static int aarch64_fpu_gdb_get_reg(CPUARMState *env, uint8_t *buf, int reg) 105 { 106 switch (reg) { 107 case 0 ... 31: 108 /* 128 bit FP register */ 109 { 110 uint64_t *q = aa64_vfp_qreg(env, reg); 111 stq_le_p(buf, q[0]); 112 stq_le_p(buf + 8, q[1]); 113 return 16; 114 } 115 case 32: 116 /* FPSR */ 117 stl_p(buf, vfp_get_fpsr(env)); 118 return 4; 119 case 33: 120 /* FPCR */ 121 stl_p(buf, vfp_get_fpcr(env)); 122 return 4; 123 default: 124 return 0; 125 } 126 } 127 128 static int aarch64_fpu_gdb_set_reg(CPUARMState *env, uint8_t *buf, int reg) 129 { 130 switch (reg) { 131 case 0 ... 31: 132 /* 128 bit FP register */ 133 { 134 uint64_t *q = aa64_vfp_qreg(env, reg); 135 q[0] = ldq_le_p(buf); 136 q[1] = ldq_le_p(buf + 8); 137 return 16; 138 } 139 case 32: 140 /* FPSR */ 141 vfp_set_fpsr(env, ldl_p(buf)); 142 return 4; 143 case 33: 144 /* FPCR */ 145 vfp_set_fpcr(env, ldl_p(buf)); 146 return 4; 147 default: 148 return 0; 149 } 150 } 151 152 static uint64_t raw_read(CPUARMState *env, const ARMCPRegInfo *ri) 153 { 154 assert(ri->fieldoffset); 155 if (cpreg_field_is_64bit(ri)) { 156 return CPREG_FIELD64(env, ri); 157 } else { 158 return CPREG_FIELD32(env, ri); 159 } 160 } 161 162 static void raw_write(CPUARMState *env, const ARMCPRegInfo *ri, 163 uint64_t value) 164 { 165 assert(ri->fieldoffset); 166 if (cpreg_field_is_64bit(ri)) { 167 CPREG_FIELD64(env, ri) = value; 168 } else { 169 CPREG_FIELD32(env, ri) = value; 170 } 171 } 172 173 static void *raw_ptr(CPUARMState *env, const ARMCPRegInfo *ri) 174 { 175 return (char *)env + ri->fieldoffset; 176 } 177 178 uint64_t read_raw_cp_reg(CPUARMState *env, const ARMCPRegInfo *ri) 179 { 180 /* Raw read of a coprocessor register (as needed for migration, etc). */ 181 if (ri->type & ARM_CP_CONST) { 182 return ri->resetvalue; 183 } else if (ri->raw_readfn) { 184 return ri->raw_readfn(env, ri); 185 } else if (ri->readfn) { 186 return ri->readfn(env, ri); 187 } else { 188 return raw_read(env, ri); 189 } 190 } 191 192 static void write_raw_cp_reg(CPUARMState *env, const ARMCPRegInfo *ri, 193 uint64_t v) 194 { 195 /* Raw write of a coprocessor register (as needed for migration, etc). 196 * Note that constant registers are treated as write-ignored; the 197 * caller should check for success by whether a readback gives the 198 * value written. 199 */ 200 if (ri->type & ARM_CP_CONST) { 201 return; 202 } else if (ri->raw_writefn) { 203 ri->raw_writefn(env, ri, v); 204 } else if (ri->writefn) { 205 ri->writefn(env, ri, v); 206 } else { 207 raw_write(env, ri, v); 208 } 209 } 210 211 static int arm_gdb_get_sysreg(CPUARMState *env, uint8_t *buf, int reg) 212 { 213 ARMCPU *cpu = env_archcpu(env); 214 const ARMCPRegInfo *ri; 215 uint32_t key; 216 217 key = cpu->dyn_xml.cpregs_keys[reg]; 218 ri = get_arm_cp_reginfo(cpu->cp_regs, key); 219 if (ri) { 220 if (cpreg_field_is_64bit(ri)) { 221 return gdb_get_reg64(buf, (uint64_t)read_raw_cp_reg(env, ri)); 222 } else { 223 return gdb_get_reg32(buf, (uint32_t)read_raw_cp_reg(env, ri)); 224 } 225 } 226 return 0; 227 } 228 229 static int arm_gdb_set_sysreg(CPUARMState *env, uint8_t *buf, int reg) 230 { 231 return 0; 232 } 233 234 static bool raw_accessors_invalid(const ARMCPRegInfo *ri) 235 { 236 /* Return true if the regdef would cause an assertion if you called 237 * read_raw_cp_reg() or write_raw_cp_reg() on it (ie if it is a 238 * program bug for it not to have the NO_RAW flag). 239 * NB that returning false here doesn't necessarily mean that calling 240 * read/write_raw_cp_reg() is safe, because we can't distinguish "has 241 * read/write access functions which are safe for raw use" from "has 242 * read/write access functions which have side effects but has forgotten 243 * to provide raw access functions". 244 * The tests here line up with the conditions in read/write_raw_cp_reg() 245 * and assertions in raw_read()/raw_write(). 246 */ 247 if ((ri->type & ARM_CP_CONST) || 248 ri->fieldoffset || 249 ((ri->raw_writefn || ri->writefn) && (ri->raw_readfn || ri->readfn))) { 250 return false; 251 } 252 return true; 253 } 254 255 bool write_cpustate_to_list(ARMCPU *cpu, bool kvm_sync) 256 { 257 /* Write the coprocessor state from cpu->env to the (index,value) list. */ 258 int i; 259 bool ok = true; 260 261 for (i = 0; i < cpu->cpreg_array_len; i++) { 262 uint32_t regidx = kvm_to_cpreg_id(cpu->cpreg_indexes[i]); 263 const ARMCPRegInfo *ri; 264 uint64_t newval; 265 266 ri = get_arm_cp_reginfo(cpu->cp_regs, regidx); 267 if (!ri) { 268 ok = false; 269 continue; 270 } 271 if (ri->type & ARM_CP_NO_RAW) { 272 continue; 273 } 274 275 newval = read_raw_cp_reg(&cpu->env, ri); 276 if (kvm_sync) { 277 /* 278 * Only sync if the previous list->cpustate sync succeeded. 279 * Rather than tracking the success/failure state for every 280 * item in the list, we just recheck "does the raw write we must 281 * have made in write_list_to_cpustate() read back OK" here. 282 */ 283 uint64_t oldval = cpu->cpreg_values[i]; 284 285 if (oldval == newval) { 286 continue; 287 } 288 289 write_raw_cp_reg(&cpu->env, ri, oldval); 290 if (read_raw_cp_reg(&cpu->env, ri) != oldval) { 291 continue; 292 } 293 294 write_raw_cp_reg(&cpu->env, ri, newval); 295 } 296 cpu->cpreg_values[i] = newval; 297 } 298 return ok; 299 } 300 301 bool write_list_to_cpustate(ARMCPU *cpu) 302 { 303 int i; 304 bool ok = true; 305 306 for (i = 0; i < cpu->cpreg_array_len; i++) { 307 uint32_t regidx = kvm_to_cpreg_id(cpu->cpreg_indexes[i]); 308 uint64_t v = cpu->cpreg_values[i]; 309 const ARMCPRegInfo *ri; 310 311 ri = get_arm_cp_reginfo(cpu->cp_regs, regidx); 312 if (!ri) { 313 ok = false; 314 continue; 315 } 316 if (ri->type & ARM_CP_NO_RAW) { 317 continue; 318 } 319 /* Write value and confirm it reads back as written 320 * (to catch read-only registers and partially read-only 321 * registers where the incoming migration value doesn't match) 322 */ 323 write_raw_cp_reg(&cpu->env, ri, v); 324 if (read_raw_cp_reg(&cpu->env, ri) != v) { 325 ok = false; 326 } 327 } 328 return ok; 329 } 330 331 static void add_cpreg_to_list(gpointer key, gpointer opaque) 332 { 333 ARMCPU *cpu = opaque; 334 uint64_t regidx; 335 const ARMCPRegInfo *ri; 336 337 regidx = *(uint32_t *)key; 338 ri = get_arm_cp_reginfo(cpu->cp_regs, regidx); 339 340 if (!(ri->type & (ARM_CP_NO_RAW|ARM_CP_ALIAS))) { 341 cpu->cpreg_indexes[cpu->cpreg_array_len] = cpreg_to_kvm_id(regidx); 342 /* The value array need not be initialized at this point */ 343 cpu->cpreg_array_len++; 344 } 345 } 346 347 static void count_cpreg(gpointer key, gpointer opaque) 348 { 349 ARMCPU *cpu = opaque; 350 uint64_t regidx; 351 const ARMCPRegInfo *ri; 352 353 regidx = *(uint32_t *)key; 354 ri = get_arm_cp_reginfo(cpu->cp_regs, regidx); 355 356 if (!(ri->type & (ARM_CP_NO_RAW|ARM_CP_ALIAS))) { 357 cpu->cpreg_array_len++; 358 } 359 } 360 361 static gint cpreg_key_compare(gconstpointer a, gconstpointer b) 362 { 363 uint64_t aidx = cpreg_to_kvm_id(*(uint32_t *)a); 364 uint64_t bidx = cpreg_to_kvm_id(*(uint32_t *)b); 365 366 if (aidx > bidx) { 367 return 1; 368 } 369 if (aidx < bidx) { 370 return -1; 371 } 372 return 0; 373 } 374 375 void init_cpreg_list(ARMCPU *cpu) 376 { 377 /* Initialise the cpreg_tuples[] array based on the cp_regs hash. 378 * Note that we require cpreg_tuples[] to be sorted by key ID. 379 */ 380 GList *keys; 381 int arraylen; 382 383 keys = g_hash_table_get_keys(cpu->cp_regs); 384 keys = g_list_sort(keys, cpreg_key_compare); 385 386 cpu->cpreg_array_len = 0; 387 388 g_list_foreach(keys, count_cpreg, cpu); 389 390 arraylen = cpu->cpreg_array_len; 391 cpu->cpreg_indexes = g_new(uint64_t, arraylen); 392 cpu->cpreg_values = g_new(uint64_t, arraylen); 393 cpu->cpreg_vmstate_indexes = g_new(uint64_t, arraylen); 394 cpu->cpreg_vmstate_values = g_new(uint64_t, arraylen); 395 cpu->cpreg_vmstate_array_len = cpu->cpreg_array_len; 396 cpu->cpreg_array_len = 0; 397 398 g_list_foreach(keys, add_cpreg_to_list, cpu); 399 400 assert(cpu->cpreg_array_len == arraylen); 401 402 g_list_free(keys); 403 } 404 405 /* 406 * Some registers are not accessible if EL3.NS=0 and EL3 is using AArch32 but 407 * they are accessible when EL3 is using AArch64 regardless of EL3.NS. 408 * 409 * access_el3_aa32ns: Used to check AArch32 register views. 410 * access_el3_aa32ns_aa64any: Used to check both AArch32/64 register views. 411 */ 412 static CPAccessResult access_el3_aa32ns(CPUARMState *env, 413 const ARMCPRegInfo *ri, 414 bool isread) 415 { 416 bool secure = arm_is_secure_below_el3(env); 417 418 assert(!arm_el_is_aa64(env, 3)); 419 if (secure) { 420 return CP_ACCESS_TRAP_UNCATEGORIZED; 421 } 422 return CP_ACCESS_OK; 423 } 424 425 static CPAccessResult access_el3_aa32ns_aa64any(CPUARMState *env, 426 const ARMCPRegInfo *ri, 427 bool isread) 428 { 429 if (!arm_el_is_aa64(env, 3)) { 430 return access_el3_aa32ns(env, ri, isread); 431 } 432 return CP_ACCESS_OK; 433 } 434 435 /* Some secure-only AArch32 registers trap to EL3 if used from 436 * Secure EL1 (but are just ordinary UNDEF in other non-EL3 contexts). 437 * Note that an access from Secure EL1 can only happen if EL3 is AArch64. 438 * We assume that the .access field is set to PL1_RW. 439 */ 440 static CPAccessResult access_trap_aa32s_el1(CPUARMState *env, 441 const ARMCPRegInfo *ri, 442 bool isread) 443 { 444 if (arm_current_el(env) == 3) { 445 return CP_ACCESS_OK; 446 } 447 if (arm_is_secure_below_el3(env)) { 448 return CP_ACCESS_TRAP_EL3; 449 } 450 /* This will be EL1 NS and EL2 NS, which just UNDEF */ 451 return CP_ACCESS_TRAP_UNCATEGORIZED; 452 } 453 454 /* Check for traps to "powerdown debug" registers, which are controlled 455 * by MDCR.TDOSA 456 */ 457 static CPAccessResult access_tdosa(CPUARMState *env, const ARMCPRegInfo *ri, 458 bool isread) 459 { 460 int el = arm_current_el(env); 461 bool mdcr_el2_tdosa = (env->cp15.mdcr_el2 & MDCR_TDOSA) || 462 (env->cp15.mdcr_el2 & MDCR_TDE) || 463 (arm_hcr_el2_eff(env) & HCR_TGE); 464 465 if (el < 2 && mdcr_el2_tdosa && !arm_is_secure_below_el3(env)) { 466 return CP_ACCESS_TRAP_EL2; 467 } 468 if (el < 3 && (env->cp15.mdcr_el3 & MDCR_TDOSA)) { 469 return CP_ACCESS_TRAP_EL3; 470 } 471 return CP_ACCESS_OK; 472 } 473 474 /* Check for traps to "debug ROM" registers, which are controlled 475 * by MDCR_EL2.TDRA for EL2 but by the more general MDCR_EL3.TDA for EL3. 476 */ 477 static CPAccessResult access_tdra(CPUARMState *env, const ARMCPRegInfo *ri, 478 bool isread) 479 { 480 int el = arm_current_el(env); 481 bool mdcr_el2_tdra = (env->cp15.mdcr_el2 & MDCR_TDRA) || 482 (env->cp15.mdcr_el2 & MDCR_TDE) || 483 (arm_hcr_el2_eff(env) & HCR_TGE); 484 485 if (el < 2 && mdcr_el2_tdra && !arm_is_secure_below_el3(env)) { 486 return CP_ACCESS_TRAP_EL2; 487 } 488 if (el < 3 && (env->cp15.mdcr_el3 & MDCR_TDA)) { 489 return CP_ACCESS_TRAP_EL3; 490 } 491 return CP_ACCESS_OK; 492 } 493 494 /* Check for traps to general debug registers, which are controlled 495 * by MDCR_EL2.TDA for EL2 and MDCR_EL3.TDA for EL3. 496 */ 497 static CPAccessResult access_tda(CPUARMState *env, const ARMCPRegInfo *ri, 498 bool isread) 499 { 500 int el = arm_current_el(env); 501 bool mdcr_el2_tda = (env->cp15.mdcr_el2 & MDCR_TDA) || 502 (env->cp15.mdcr_el2 & MDCR_TDE) || 503 (arm_hcr_el2_eff(env) & HCR_TGE); 504 505 if (el < 2 && mdcr_el2_tda && !arm_is_secure_below_el3(env)) { 506 return CP_ACCESS_TRAP_EL2; 507 } 508 if (el < 3 && (env->cp15.mdcr_el3 & MDCR_TDA)) { 509 return CP_ACCESS_TRAP_EL3; 510 } 511 return CP_ACCESS_OK; 512 } 513 514 /* Check for traps to performance monitor registers, which are controlled 515 * by MDCR_EL2.TPM for EL2 and MDCR_EL3.TPM for EL3. 516 */ 517 static CPAccessResult access_tpm(CPUARMState *env, const ARMCPRegInfo *ri, 518 bool isread) 519 { 520 int el = arm_current_el(env); 521 522 if (el < 2 && (env->cp15.mdcr_el2 & MDCR_TPM) 523 && !arm_is_secure_below_el3(env)) { 524 return CP_ACCESS_TRAP_EL2; 525 } 526 if (el < 3 && (env->cp15.mdcr_el3 & MDCR_TPM)) { 527 return CP_ACCESS_TRAP_EL3; 528 } 529 return CP_ACCESS_OK; 530 } 531 532 static void dacr_write(CPUARMState *env, const ARMCPRegInfo *ri, uint64_t value) 533 { 534 ARMCPU *cpu = env_archcpu(env); 535 536 raw_write(env, ri, value); 537 tlb_flush(CPU(cpu)); /* Flush TLB as domain not tracked in TLB */ 538 } 539 540 static void fcse_write(CPUARMState *env, const ARMCPRegInfo *ri, uint64_t value) 541 { 542 ARMCPU *cpu = env_archcpu(env); 543 544 if (raw_read(env, ri) != value) { 545 /* Unlike real hardware the qemu TLB uses virtual addresses, 546 * not modified virtual addresses, so this causes a TLB flush. 547 */ 548 tlb_flush(CPU(cpu)); 549 raw_write(env, ri, value); 550 } 551 } 552 553 static void contextidr_write(CPUARMState *env, const ARMCPRegInfo *ri, 554 uint64_t value) 555 { 556 ARMCPU *cpu = env_archcpu(env); 557 558 if (raw_read(env, ri) != value && !arm_feature(env, ARM_FEATURE_PMSA) 559 && !extended_addresses_enabled(env)) { 560 /* For VMSA (when not using the LPAE long descriptor page table 561 * format) this register includes the ASID, so do a TLB flush. 562 * For PMSA it is purely a process ID and no action is needed. 563 */ 564 tlb_flush(CPU(cpu)); 565 } 566 raw_write(env, ri, value); 567 } 568 569 /* IS variants of TLB operations must affect all cores */ 570 static void tlbiall_is_write(CPUARMState *env, const ARMCPRegInfo *ri, 571 uint64_t value) 572 { 573 CPUState *cs = env_cpu(env); 574 575 tlb_flush_all_cpus_synced(cs); 576 } 577 578 static void tlbiasid_is_write(CPUARMState *env, const ARMCPRegInfo *ri, 579 uint64_t value) 580 { 581 CPUState *cs = env_cpu(env); 582 583 tlb_flush_all_cpus_synced(cs); 584 } 585 586 static void tlbimva_is_write(CPUARMState *env, const ARMCPRegInfo *ri, 587 uint64_t value) 588 { 589 CPUState *cs = env_cpu(env); 590 591 tlb_flush_page_all_cpus_synced(cs, value & TARGET_PAGE_MASK); 592 } 593 594 static void tlbimvaa_is_write(CPUARMState *env, const ARMCPRegInfo *ri, 595 uint64_t value) 596 { 597 CPUState *cs = env_cpu(env); 598 599 tlb_flush_page_all_cpus_synced(cs, value & TARGET_PAGE_MASK); 600 } 601 602 /* 603 * Non-IS variants of TLB operations are upgraded to 604 * IS versions if we are at NS EL1 and HCR_EL2.FB is set to 605 * force broadcast of these operations. 606 */ 607 static bool tlb_force_broadcast(CPUARMState *env) 608 { 609 return (env->cp15.hcr_el2 & HCR_FB) && 610 arm_current_el(env) == 1 && arm_is_secure_below_el3(env); 611 } 612 613 static void tlbiall_write(CPUARMState *env, const ARMCPRegInfo *ri, 614 uint64_t value) 615 { 616 /* Invalidate all (TLBIALL) */ 617 ARMCPU *cpu = env_archcpu(env); 618 619 if (tlb_force_broadcast(env)) { 620 tlbiall_is_write(env, NULL, value); 621 return; 622 } 623 624 tlb_flush(CPU(cpu)); 625 } 626 627 static void tlbimva_write(CPUARMState *env, const ARMCPRegInfo *ri, 628 uint64_t value) 629 { 630 /* Invalidate single TLB entry by MVA and ASID (TLBIMVA) */ 631 ARMCPU *cpu = env_archcpu(env); 632 633 if (tlb_force_broadcast(env)) { 634 tlbimva_is_write(env, NULL, value); 635 return; 636 } 637 638 tlb_flush_page(CPU(cpu), value & TARGET_PAGE_MASK); 639 } 640 641 static void tlbiasid_write(CPUARMState *env, const ARMCPRegInfo *ri, 642 uint64_t value) 643 { 644 /* Invalidate by ASID (TLBIASID) */ 645 ARMCPU *cpu = env_archcpu(env); 646 647 if (tlb_force_broadcast(env)) { 648 tlbiasid_is_write(env, NULL, value); 649 return; 650 } 651 652 tlb_flush(CPU(cpu)); 653 } 654 655 static void tlbimvaa_write(CPUARMState *env, const ARMCPRegInfo *ri, 656 uint64_t value) 657 { 658 /* Invalidate single entry by MVA, all ASIDs (TLBIMVAA) */ 659 ARMCPU *cpu = env_archcpu(env); 660 661 if (tlb_force_broadcast(env)) { 662 tlbimvaa_is_write(env, NULL, value); 663 return; 664 } 665 666 tlb_flush_page(CPU(cpu), value & TARGET_PAGE_MASK); 667 } 668 669 static void tlbiall_nsnh_write(CPUARMState *env, const ARMCPRegInfo *ri, 670 uint64_t value) 671 { 672 CPUState *cs = env_cpu(env); 673 674 tlb_flush_by_mmuidx(cs, 675 ARMMMUIdxBit_S12NSE1 | 676 ARMMMUIdxBit_S12NSE0 | 677 ARMMMUIdxBit_S2NS); 678 } 679 680 static void tlbiall_nsnh_is_write(CPUARMState *env, const ARMCPRegInfo *ri, 681 uint64_t value) 682 { 683 CPUState *cs = env_cpu(env); 684 685 tlb_flush_by_mmuidx_all_cpus_synced(cs, 686 ARMMMUIdxBit_S12NSE1 | 687 ARMMMUIdxBit_S12NSE0 | 688 ARMMMUIdxBit_S2NS); 689 } 690 691 static void tlbiipas2_write(CPUARMState *env, const ARMCPRegInfo *ri, 692 uint64_t value) 693 { 694 /* Invalidate by IPA. This has to invalidate any structures that 695 * contain only stage 2 translation information, but does not need 696 * to apply to structures that contain combined stage 1 and stage 2 697 * translation information. 698 * This must NOP if EL2 isn't implemented or SCR_EL3.NS is zero. 699 */ 700 CPUState *cs = env_cpu(env); 701 uint64_t pageaddr; 702 703 if (!arm_feature(env, ARM_FEATURE_EL2) || !(env->cp15.scr_el3 & SCR_NS)) { 704 return; 705 } 706 707 pageaddr = sextract64(value << 12, 0, 40); 708 709 tlb_flush_page_by_mmuidx(cs, pageaddr, ARMMMUIdxBit_S2NS); 710 } 711 712 static void tlbiipas2_is_write(CPUARMState *env, const ARMCPRegInfo *ri, 713 uint64_t value) 714 { 715 CPUState *cs = env_cpu(env); 716 uint64_t pageaddr; 717 718 if (!arm_feature(env, ARM_FEATURE_EL2) || !(env->cp15.scr_el3 & SCR_NS)) { 719 return; 720 } 721 722 pageaddr = sextract64(value << 12, 0, 40); 723 724 tlb_flush_page_by_mmuidx_all_cpus_synced(cs, pageaddr, 725 ARMMMUIdxBit_S2NS); 726 } 727 728 static void tlbiall_hyp_write(CPUARMState *env, const ARMCPRegInfo *ri, 729 uint64_t value) 730 { 731 CPUState *cs = env_cpu(env); 732 733 tlb_flush_by_mmuidx(cs, ARMMMUIdxBit_S1E2); 734 } 735 736 static void tlbiall_hyp_is_write(CPUARMState *env, const ARMCPRegInfo *ri, 737 uint64_t value) 738 { 739 CPUState *cs = env_cpu(env); 740 741 tlb_flush_by_mmuidx_all_cpus_synced(cs, ARMMMUIdxBit_S1E2); 742 } 743 744 static void tlbimva_hyp_write(CPUARMState *env, const ARMCPRegInfo *ri, 745 uint64_t value) 746 { 747 CPUState *cs = env_cpu(env); 748 uint64_t pageaddr = value & ~MAKE_64BIT_MASK(0, 12); 749 750 tlb_flush_page_by_mmuidx(cs, pageaddr, ARMMMUIdxBit_S1E2); 751 } 752 753 static void tlbimva_hyp_is_write(CPUARMState *env, const ARMCPRegInfo *ri, 754 uint64_t value) 755 { 756 CPUState *cs = env_cpu(env); 757 uint64_t pageaddr = value & ~MAKE_64BIT_MASK(0, 12); 758 759 tlb_flush_page_by_mmuidx_all_cpus_synced(cs, pageaddr, 760 ARMMMUIdxBit_S1E2); 761 } 762 763 static const ARMCPRegInfo cp_reginfo[] = { 764 /* Define the secure and non-secure FCSE identifier CP registers 765 * separately because there is no secure bank in V8 (no _EL3). This allows 766 * the secure register to be properly reset and migrated. There is also no 767 * v8 EL1 version of the register so the non-secure instance stands alone. 768 */ 769 { .name = "FCSEIDR", 770 .cp = 15, .opc1 = 0, .crn = 13, .crm = 0, .opc2 = 0, 771 .access = PL1_RW, .secure = ARM_CP_SECSTATE_NS, 772 .fieldoffset = offsetof(CPUARMState, cp15.fcseidr_ns), 773 .resetvalue = 0, .writefn = fcse_write, .raw_writefn = raw_write, }, 774 { .name = "FCSEIDR_S", 775 .cp = 15, .opc1 = 0, .crn = 13, .crm = 0, .opc2 = 0, 776 .access = PL1_RW, .secure = ARM_CP_SECSTATE_S, 777 .fieldoffset = offsetof(CPUARMState, cp15.fcseidr_s), 778 .resetvalue = 0, .writefn = fcse_write, .raw_writefn = raw_write, }, 779 /* Define the secure and non-secure context identifier CP registers 780 * separately because there is no secure bank in V8 (no _EL3). This allows 781 * the secure register to be properly reset and migrated. In the 782 * non-secure case, the 32-bit register will have reset and migration 783 * disabled during registration as it is handled by the 64-bit instance. 784 */ 785 { .name = "CONTEXTIDR_EL1", .state = ARM_CP_STATE_BOTH, 786 .opc0 = 3, .opc1 = 0, .crn = 13, .crm = 0, .opc2 = 1, 787 .access = PL1_RW, .secure = ARM_CP_SECSTATE_NS, 788 .fieldoffset = offsetof(CPUARMState, cp15.contextidr_el[1]), 789 .resetvalue = 0, .writefn = contextidr_write, .raw_writefn = raw_write, }, 790 { .name = "CONTEXTIDR_S", .state = ARM_CP_STATE_AA32, 791 .cp = 15, .opc1 = 0, .crn = 13, .crm = 0, .opc2 = 1, 792 .access = PL1_RW, .secure = ARM_CP_SECSTATE_S, 793 .fieldoffset = offsetof(CPUARMState, cp15.contextidr_s), 794 .resetvalue = 0, .writefn = contextidr_write, .raw_writefn = raw_write, }, 795 REGINFO_SENTINEL 796 }; 797 798 static const ARMCPRegInfo not_v8_cp_reginfo[] = { 799 /* NB: Some of these registers exist in v8 but with more precise 800 * definitions that don't use CP_ANY wildcards (mostly in v8_cp_reginfo[]). 801 */ 802 /* MMU Domain access control / MPU write buffer control */ 803 { .name = "DACR", 804 .cp = 15, .opc1 = CP_ANY, .crn = 3, .crm = CP_ANY, .opc2 = CP_ANY, 805 .access = PL1_RW, .resetvalue = 0, 806 .writefn = dacr_write, .raw_writefn = raw_write, 807 .bank_fieldoffsets = { offsetoflow32(CPUARMState, cp15.dacr_s), 808 offsetoflow32(CPUARMState, cp15.dacr_ns) } }, 809 /* ARMv7 allocates a range of implementation defined TLB LOCKDOWN regs. 810 * For v6 and v5, these mappings are overly broad. 811 */ 812 { .name = "TLB_LOCKDOWN", .cp = 15, .crn = 10, .crm = 0, 813 .opc1 = CP_ANY, .opc2 = CP_ANY, .access = PL1_RW, .type = ARM_CP_NOP }, 814 { .name = "TLB_LOCKDOWN", .cp = 15, .crn = 10, .crm = 1, 815 .opc1 = CP_ANY, .opc2 = CP_ANY, .access = PL1_RW, .type = ARM_CP_NOP }, 816 { .name = "TLB_LOCKDOWN", .cp = 15, .crn = 10, .crm = 4, 817 .opc1 = CP_ANY, .opc2 = CP_ANY, .access = PL1_RW, .type = ARM_CP_NOP }, 818 { .name = "TLB_LOCKDOWN", .cp = 15, .crn = 10, .crm = 8, 819 .opc1 = CP_ANY, .opc2 = CP_ANY, .access = PL1_RW, .type = ARM_CP_NOP }, 820 /* Cache maintenance ops; some of this space may be overridden later. */ 821 { .name = "CACHEMAINT", .cp = 15, .crn = 7, .crm = CP_ANY, 822 .opc1 = 0, .opc2 = CP_ANY, .access = PL1_W, 823 .type = ARM_CP_NOP | ARM_CP_OVERRIDE }, 824 REGINFO_SENTINEL 825 }; 826 827 static const ARMCPRegInfo not_v6_cp_reginfo[] = { 828 /* Not all pre-v6 cores implemented this WFI, so this is slightly 829 * over-broad. 830 */ 831 { .name = "WFI_v5", .cp = 15, .crn = 7, .crm = 8, .opc1 = 0, .opc2 = 2, 832 .access = PL1_W, .type = ARM_CP_WFI }, 833 REGINFO_SENTINEL 834 }; 835 836 static const ARMCPRegInfo not_v7_cp_reginfo[] = { 837 /* Standard v6 WFI (also used in some pre-v6 cores); not in v7 (which 838 * is UNPREDICTABLE; we choose to NOP as most implementations do). 839 */ 840 { .name = "WFI_v6", .cp = 15, .crn = 7, .crm = 0, .opc1 = 0, .opc2 = 4, 841 .access = PL1_W, .type = ARM_CP_WFI }, 842 /* L1 cache lockdown. Not architectural in v6 and earlier but in practice 843 * implemented in 926, 946, 1026, 1136, 1176 and 11MPCore. StrongARM and 844 * OMAPCP will override this space. 845 */ 846 { .name = "DLOCKDOWN", .cp = 15, .crn = 9, .crm = 0, .opc1 = 0, .opc2 = 0, 847 .access = PL1_RW, .fieldoffset = offsetof(CPUARMState, cp15.c9_data), 848 .resetvalue = 0 }, 849 { .name = "ILOCKDOWN", .cp = 15, .crn = 9, .crm = 0, .opc1 = 0, .opc2 = 1, 850 .access = PL1_RW, .fieldoffset = offsetof(CPUARMState, cp15.c9_insn), 851 .resetvalue = 0 }, 852 /* v6 doesn't have the cache ID registers but Linux reads them anyway */ 853 { .name = "DUMMY", .cp = 15, .crn = 0, .crm = 0, .opc1 = 1, .opc2 = CP_ANY, 854 .access = PL1_R, .type = ARM_CP_CONST | ARM_CP_NO_RAW, 855 .resetvalue = 0 }, 856 /* We don't implement pre-v7 debug but most CPUs had at least a DBGDIDR; 857 * implementing it as RAZ means the "debug architecture version" bits 858 * will read as a reserved value, which should cause Linux to not try 859 * to use the debug hardware. 860 */ 861 { .name = "DBGDIDR", .cp = 14, .crn = 0, .crm = 0, .opc1 = 0, .opc2 = 0, 862 .access = PL0_R, .type = ARM_CP_CONST, .resetvalue = 0 }, 863 /* MMU TLB control. Note that the wildcarding means we cover not just 864 * the unified TLB ops but also the dside/iside/inner-shareable variants. 865 */ 866 { .name = "TLBIALL", .cp = 15, .crn = 8, .crm = CP_ANY, 867 .opc1 = CP_ANY, .opc2 = 0, .access = PL1_W, .writefn = tlbiall_write, 868 .type = ARM_CP_NO_RAW }, 869 { .name = "TLBIMVA", .cp = 15, .crn = 8, .crm = CP_ANY, 870 .opc1 = CP_ANY, .opc2 = 1, .access = PL1_W, .writefn = tlbimva_write, 871 .type = ARM_CP_NO_RAW }, 872 { .name = "TLBIASID", .cp = 15, .crn = 8, .crm = CP_ANY, 873 .opc1 = CP_ANY, .opc2 = 2, .access = PL1_W, .writefn = tlbiasid_write, 874 .type = ARM_CP_NO_RAW }, 875 { .name = "TLBIMVAA", .cp = 15, .crn = 8, .crm = CP_ANY, 876 .opc1 = CP_ANY, .opc2 = 3, .access = PL1_W, .writefn = tlbimvaa_write, 877 .type = ARM_CP_NO_RAW }, 878 { .name = "PRRR", .cp = 15, .crn = 10, .crm = 2, 879 .opc1 = 0, .opc2 = 0, .access = PL1_RW, .type = ARM_CP_NOP }, 880 { .name = "NMRR", .cp = 15, .crn = 10, .crm = 2, 881 .opc1 = 0, .opc2 = 1, .access = PL1_RW, .type = ARM_CP_NOP }, 882 REGINFO_SENTINEL 883 }; 884 885 static void cpacr_write(CPUARMState *env, const ARMCPRegInfo *ri, 886 uint64_t value) 887 { 888 uint32_t mask = 0; 889 890 /* In ARMv8 most bits of CPACR_EL1 are RES0. */ 891 if (!arm_feature(env, ARM_FEATURE_V8)) { 892 /* ARMv7 defines bits for unimplemented coprocessors as RAZ/WI. 893 * ASEDIS [31] and D32DIS [30] are both UNK/SBZP without VFP. 894 * TRCDIS [28] is RAZ/WI since we do not implement a trace macrocell. 895 */ 896 if (arm_feature(env, ARM_FEATURE_VFP)) { 897 /* VFP coprocessor: cp10 & cp11 [23:20] */ 898 mask |= (1 << 31) | (1 << 30) | (0xf << 20); 899 900 if (!arm_feature(env, ARM_FEATURE_NEON)) { 901 /* ASEDIS [31] bit is RAO/WI */ 902 value |= (1 << 31); 903 } 904 905 /* VFPv3 and upwards with NEON implement 32 double precision 906 * registers (D0-D31). 907 */ 908 if (!arm_feature(env, ARM_FEATURE_NEON) || 909 !arm_feature(env, ARM_FEATURE_VFP3)) { 910 /* D32DIS [30] is RAO/WI if D16-31 are not implemented. */ 911 value |= (1 << 30); 912 } 913 } 914 value &= mask; 915 } 916 917 /* 918 * For A-profile AArch32 EL3 (but not M-profile secure mode), if NSACR.CP10 919 * is 0 then CPACR.{CP11,CP10} ignore writes and read as 0b00. 920 */ 921 if (arm_feature(env, ARM_FEATURE_EL3) && !arm_el_is_aa64(env, 3) && 922 !arm_is_secure(env) && !extract32(env->cp15.nsacr, 10, 1)) { 923 value &= ~(0xf << 20); 924 value |= env->cp15.cpacr_el1 & (0xf << 20); 925 } 926 927 env->cp15.cpacr_el1 = value; 928 } 929 930 static uint64_t cpacr_read(CPUARMState *env, const ARMCPRegInfo *ri) 931 { 932 /* 933 * For A-profile AArch32 EL3 (but not M-profile secure mode), if NSACR.CP10 934 * is 0 then CPACR.{CP11,CP10} ignore writes and read as 0b00. 935 */ 936 uint64_t value = env->cp15.cpacr_el1; 937 938 if (arm_feature(env, ARM_FEATURE_EL3) && !arm_el_is_aa64(env, 3) && 939 !arm_is_secure(env) && !extract32(env->cp15.nsacr, 10, 1)) { 940 value &= ~(0xf << 20); 941 } 942 return value; 943 } 944 945 946 static void cpacr_reset(CPUARMState *env, const ARMCPRegInfo *ri) 947 { 948 /* Call cpacr_write() so that we reset with the correct RAO bits set 949 * for our CPU features. 950 */ 951 cpacr_write(env, ri, 0); 952 } 953 954 static CPAccessResult cpacr_access(CPUARMState *env, const ARMCPRegInfo *ri, 955 bool isread) 956 { 957 if (arm_feature(env, ARM_FEATURE_V8)) { 958 /* Check if CPACR accesses are to be trapped to EL2 */ 959 if (arm_current_el(env) == 1 && 960 (env->cp15.cptr_el[2] & CPTR_TCPAC) && !arm_is_secure(env)) { 961 return CP_ACCESS_TRAP_EL2; 962 /* Check if CPACR accesses are to be trapped to EL3 */ 963 } else if (arm_current_el(env) < 3 && 964 (env->cp15.cptr_el[3] & CPTR_TCPAC)) { 965 return CP_ACCESS_TRAP_EL3; 966 } 967 } 968 969 return CP_ACCESS_OK; 970 } 971 972 static CPAccessResult cptr_access(CPUARMState *env, const ARMCPRegInfo *ri, 973 bool isread) 974 { 975 /* Check if CPTR accesses are set to trap to EL3 */ 976 if (arm_current_el(env) == 2 && (env->cp15.cptr_el[3] & CPTR_TCPAC)) { 977 return CP_ACCESS_TRAP_EL3; 978 } 979 980 return CP_ACCESS_OK; 981 } 982 983 static const ARMCPRegInfo v6_cp_reginfo[] = { 984 /* prefetch by MVA in v6, NOP in v7 */ 985 { .name = "MVA_prefetch", 986 .cp = 15, .crn = 7, .crm = 13, .opc1 = 0, .opc2 = 1, 987 .access = PL1_W, .type = ARM_CP_NOP }, 988 /* We need to break the TB after ISB to execute self-modifying code 989 * correctly and also to take any pending interrupts immediately. 990 * So use arm_cp_write_ignore() function instead of ARM_CP_NOP flag. 991 */ 992 { .name = "ISB", .cp = 15, .crn = 7, .crm = 5, .opc1 = 0, .opc2 = 4, 993 .access = PL0_W, .type = ARM_CP_NO_RAW, .writefn = arm_cp_write_ignore }, 994 { .name = "DSB", .cp = 15, .crn = 7, .crm = 10, .opc1 = 0, .opc2 = 4, 995 .access = PL0_W, .type = ARM_CP_NOP }, 996 { .name = "DMB", .cp = 15, .crn = 7, .crm = 10, .opc1 = 0, .opc2 = 5, 997 .access = PL0_W, .type = ARM_CP_NOP }, 998 { .name = "IFAR", .cp = 15, .crn = 6, .crm = 0, .opc1 = 0, .opc2 = 2, 999 .access = PL1_RW, 1000 .bank_fieldoffsets = { offsetof(CPUARMState, cp15.ifar_s), 1001 offsetof(CPUARMState, cp15.ifar_ns) }, 1002 .resetvalue = 0, }, 1003 /* Watchpoint Fault Address Register : should actually only be present 1004 * for 1136, 1176, 11MPCore. 1005 */ 1006 { .name = "WFAR", .cp = 15, .crn = 6, .crm = 0, .opc1 = 0, .opc2 = 1, 1007 .access = PL1_RW, .type = ARM_CP_CONST, .resetvalue = 0, }, 1008 { .name = "CPACR", .state = ARM_CP_STATE_BOTH, .opc0 = 3, 1009 .crn = 1, .crm = 0, .opc1 = 0, .opc2 = 2, .accessfn = cpacr_access, 1010 .access = PL1_RW, .fieldoffset = offsetof(CPUARMState, cp15.cpacr_el1), 1011 .resetfn = cpacr_reset, .writefn = cpacr_write, .readfn = cpacr_read }, 1012 REGINFO_SENTINEL 1013 }; 1014 1015 /* Definitions for the PMU registers */ 1016 #define PMCRN_MASK 0xf800 1017 #define PMCRN_SHIFT 11 1018 #define PMCRLC 0x40 1019 #define PMCRDP 0x10 1020 #define PMCRD 0x8 1021 #define PMCRC 0x4 1022 #define PMCRP 0x2 1023 #define PMCRE 0x1 1024 1025 #define PMXEVTYPER_P 0x80000000 1026 #define PMXEVTYPER_U 0x40000000 1027 #define PMXEVTYPER_NSK 0x20000000 1028 #define PMXEVTYPER_NSU 0x10000000 1029 #define PMXEVTYPER_NSH 0x08000000 1030 #define PMXEVTYPER_M 0x04000000 1031 #define PMXEVTYPER_MT 0x02000000 1032 #define PMXEVTYPER_EVTCOUNT 0x0000ffff 1033 #define PMXEVTYPER_MASK (PMXEVTYPER_P | PMXEVTYPER_U | PMXEVTYPER_NSK | \ 1034 PMXEVTYPER_NSU | PMXEVTYPER_NSH | \ 1035 PMXEVTYPER_M | PMXEVTYPER_MT | \ 1036 PMXEVTYPER_EVTCOUNT) 1037 1038 #define PMCCFILTR 0xf8000000 1039 #define PMCCFILTR_M PMXEVTYPER_M 1040 #define PMCCFILTR_EL0 (PMCCFILTR | PMCCFILTR_M) 1041 1042 static inline uint32_t pmu_num_counters(CPUARMState *env) 1043 { 1044 return (env->cp15.c9_pmcr & PMCRN_MASK) >> PMCRN_SHIFT; 1045 } 1046 1047 /* Bits allowed to be set/cleared for PMCNTEN* and PMINTEN* */ 1048 static inline uint64_t pmu_counter_mask(CPUARMState *env) 1049 { 1050 return (1 << 31) | ((1 << pmu_num_counters(env)) - 1); 1051 } 1052 1053 typedef struct pm_event { 1054 uint16_t number; /* PMEVTYPER.evtCount is 16 bits wide */ 1055 /* If the event is supported on this CPU (used to generate PMCEID[01]) */ 1056 bool (*supported)(CPUARMState *); 1057 /* 1058 * Retrieve the current count of the underlying event. The programmed 1059 * counters hold a difference from the return value from this function 1060 */ 1061 uint64_t (*get_count)(CPUARMState *); 1062 /* 1063 * Return how many nanoseconds it will take (at a minimum) for count events 1064 * to occur. A negative value indicates the counter will never overflow, or 1065 * that the counter has otherwise arranged for the overflow bit to be set 1066 * and the PMU interrupt to be raised on overflow. 1067 */ 1068 int64_t (*ns_per_count)(uint64_t); 1069 } pm_event; 1070 1071 static bool event_always_supported(CPUARMState *env) 1072 { 1073 return true; 1074 } 1075 1076 static uint64_t swinc_get_count(CPUARMState *env) 1077 { 1078 /* 1079 * SW_INCR events are written directly to the pmevcntr's by writes to 1080 * PMSWINC, so there is no underlying count maintained by the PMU itself 1081 */ 1082 return 0; 1083 } 1084 1085 static int64_t swinc_ns_per(uint64_t ignored) 1086 { 1087 return -1; 1088 } 1089 1090 /* 1091 * Return the underlying cycle count for the PMU cycle counters. If we're in 1092 * usermode, simply return 0. 1093 */ 1094 static uint64_t cycles_get_count(CPUARMState *env) 1095 { 1096 #ifndef CONFIG_USER_ONLY 1097 return muldiv64(qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL), 1098 ARM_CPU_FREQ, NANOSECONDS_PER_SECOND); 1099 #else 1100 return cpu_get_host_ticks(); 1101 #endif 1102 } 1103 1104 #ifndef CONFIG_USER_ONLY 1105 static int64_t cycles_ns_per(uint64_t cycles) 1106 { 1107 return (ARM_CPU_FREQ / NANOSECONDS_PER_SECOND) * cycles; 1108 } 1109 1110 static bool instructions_supported(CPUARMState *env) 1111 { 1112 return use_icount == 1 /* Precise instruction counting */; 1113 } 1114 1115 static uint64_t instructions_get_count(CPUARMState *env) 1116 { 1117 return (uint64_t)cpu_get_icount_raw(); 1118 } 1119 1120 static int64_t instructions_ns_per(uint64_t icount) 1121 { 1122 return cpu_icount_to_ns((int64_t)icount); 1123 } 1124 #endif 1125 1126 static const pm_event pm_events[] = { 1127 { .number = 0x000, /* SW_INCR */ 1128 .supported = event_always_supported, 1129 .get_count = swinc_get_count, 1130 .ns_per_count = swinc_ns_per, 1131 }, 1132 #ifndef CONFIG_USER_ONLY 1133 { .number = 0x008, /* INST_RETIRED, Instruction architecturally executed */ 1134 .supported = instructions_supported, 1135 .get_count = instructions_get_count, 1136 .ns_per_count = instructions_ns_per, 1137 }, 1138 { .number = 0x011, /* CPU_CYCLES, Cycle */ 1139 .supported = event_always_supported, 1140 .get_count = cycles_get_count, 1141 .ns_per_count = cycles_ns_per, 1142 } 1143 #endif 1144 }; 1145 1146 /* 1147 * Note: Before increasing MAX_EVENT_ID beyond 0x3f into the 0x40xx range of 1148 * events (i.e. the statistical profiling extension), this implementation 1149 * should first be updated to something sparse instead of the current 1150 * supported_event_map[] array. 1151 */ 1152 #define MAX_EVENT_ID 0x11 1153 #define UNSUPPORTED_EVENT UINT16_MAX 1154 static uint16_t supported_event_map[MAX_EVENT_ID + 1]; 1155 1156 /* 1157 * Called upon CPU initialization to initialize PMCEID[01]_EL0 and build a map 1158 * of ARM event numbers to indices in our pm_events array. 1159 * 1160 * Note: Events in the 0x40XX range are not currently supported. 1161 */ 1162 void pmu_init(ARMCPU *cpu) 1163 { 1164 unsigned int i; 1165 1166 /* 1167 * Empty supported_event_map and cpu->pmceid[01] before adding supported 1168 * events to them 1169 */ 1170 for (i = 0; i < ARRAY_SIZE(supported_event_map); i++) { 1171 supported_event_map[i] = UNSUPPORTED_EVENT; 1172 } 1173 cpu->pmceid0 = 0; 1174 cpu->pmceid1 = 0; 1175 1176 for (i = 0; i < ARRAY_SIZE(pm_events); i++) { 1177 const pm_event *cnt = &pm_events[i]; 1178 assert(cnt->number <= MAX_EVENT_ID); 1179 /* We do not currently support events in the 0x40xx range */ 1180 assert(cnt->number <= 0x3f); 1181 1182 if (cnt->supported(&cpu->env)) { 1183 supported_event_map[cnt->number] = i; 1184 uint64_t event_mask = 1ULL << (cnt->number & 0x1f); 1185 if (cnt->number & 0x20) { 1186 cpu->pmceid1 |= event_mask; 1187 } else { 1188 cpu->pmceid0 |= event_mask; 1189 } 1190 } 1191 } 1192 } 1193 1194 /* 1195 * Check at runtime whether a PMU event is supported for the current machine 1196 */ 1197 static bool event_supported(uint16_t number) 1198 { 1199 if (number > MAX_EVENT_ID) { 1200 return false; 1201 } 1202 return supported_event_map[number] != UNSUPPORTED_EVENT; 1203 } 1204 1205 static CPAccessResult pmreg_access(CPUARMState *env, const ARMCPRegInfo *ri, 1206 bool isread) 1207 { 1208 /* Performance monitor registers user accessibility is controlled 1209 * by PMUSERENR. MDCR_EL2.TPM and MDCR_EL3.TPM allow configurable 1210 * trapping to EL2 or EL3 for other accesses. 1211 */ 1212 int el = arm_current_el(env); 1213 1214 if (el == 0 && !(env->cp15.c9_pmuserenr & 1)) { 1215 return CP_ACCESS_TRAP; 1216 } 1217 if (el < 2 && (env->cp15.mdcr_el2 & MDCR_TPM) 1218 && !arm_is_secure_below_el3(env)) { 1219 return CP_ACCESS_TRAP_EL2; 1220 } 1221 if (el < 3 && (env->cp15.mdcr_el3 & MDCR_TPM)) { 1222 return CP_ACCESS_TRAP_EL3; 1223 } 1224 1225 return CP_ACCESS_OK; 1226 } 1227 1228 static CPAccessResult pmreg_access_xevcntr(CPUARMState *env, 1229 const ARMCPRegInfo *ri, 1230 bool isread) 1231 { 1232 /* ER: event counter read trap control */ 1233 if (arm_feature(env, ARM_FEATURE_V8) 1234 && arm_current_el(env) == 0 1235 && (env->cp15.c9_pmuserenr & (1 << 3)) != 0 1236 && isread) { 1237 return CP_ACCESS_OK; 1238 } 1239 1240 return pmreg_access(env, ri, isread); 1241 } 1242 1243 static CPAccessResult pmreg_access_swinc(CPUARMState *env, 1244 const ARMCPRegInfo *ri, 1245 bool isread) 1246 { 1247 /* SW: software increment write trap control */ 1248 if (arm_feature(env, ARM_FEATURE_V8) 1249 && arm_current_el(env) == 0 1250 && (env->cp15.c9_pmuserenr & (1 << 1)) != 0 1251 && !isread) { 1252 return CP_ACCESS_OK; 1253 } 1254 1255 return pmreg_access(env, ri, isread); 1256 } 1257 1258 static CPAccessResult pmreg_access_selr(CPUARMState *env, 1259 const ARMCPRegInfo *ri, 1260 bool isread) 1261 { 1262 /* ER: event counter read trap control */ 1263 if (arm_feature(env, ARM_FEATURE_V8) 1264 && arm_current_el(env) == 0 1265 && (env->cp15.c9_pmuserenr & (1 << 3)) != 0) { 1266 return CP_ACCESS_OK; 1267 } 1268 1269 return pmreg_access(env, ri, isread); 1270 } 1271 1272 static CPAccessResult pmreg_access_ccntr(CPUARMState *env, 1273 const ARMCPRegInfo *ri, 1274 bool isread) 1275 { 1276 /* CR: cycle counter read trap control */ 1277 if (arm_feature(env, ARM_FEATURE_V8) 1278 && arm_current_el(env) == 0 1279 && (env->cp15.c9_pmuserenr & (1 << 2)) != 0 1280 && isread) { 1281 return CP_ACCESS_OK; 1282 } 1283 1284 return pmreg_access(env, ri, isread); 1285 } 1286 1287 /* Returns true if the counter (pass 31 for PMCCNTR) should count events using 1288 * the current EL, security state, and register configuration. 1289 */ 1290 static bool pmu_counter_enabled(CPUARMState *env, uint8_t counter) 1291 { 1292 uint64_t filter; 1293 bool e, p, u, nsk, nsu, nsh, m; 1294 bool enabled, prohibited, filtered; 1295 bool secure = arm_is_secure(env); 1296 int el = arm_current_el(env); 1297 uint8_t hpmn = env->cp15.mdcr_el2 & MDCR_HPMN; 1298 1299 if (!arm_feature(env, ARM_FEATURE_PMU)) { 1300 return false; 1301 } 1302 1303 if (!arm_feature(env, ARM_FEATURE_EL2) || 1304 (counter < hpmn || counter == 31)) { 1305 e = env->cp15.c9_pmcr & PMCRE; 1306 } else { 1307 e = env->cp15.mdcr_el2 & MDCR_HPME; 1308 } 1309 enabled = e && (env->cp15.c9_pmcnten & (1 << counter)); 1310 1311 if (!secure) { 1312 if (el == 2 && (counter < hpmn || counter == 31)) { 1313 prohibited = env->cp15.mdcr_el2 & MDCR_HPMD; 1314 } else { 1315 prohibited = false; 1316 } 1317 } else { 1318 prohibited = arm_feature(env, ARM_FEATURE_EL3) && 1319 (env->cp15.mdcr_el3 & MDCR_SPME); 1320 } 1321 1322 if (prohibited && counter == 31) { 1323 prohibited = env->cp15.c9_pmcr & PMCRDP; 1324 } 1325 1326 if (counter == 31) { 1327 filter = env->cp15.pmccfiltr_el0; 1328 } else { 1329 filter = env->cp15.c14_pmevtyper[counter]; 1330 } 1331 1332 p = filter & PMXEVTYPER_P; 1333 u = filter & PMXEVTYPER_U; 1334 nsk = arm_feature(env, ARM_FEATURE_EL3) && (filter & PMXEVTYPER_NSK); 1335 nsu = arm_feature(env, ARM_FEATURE_EL3) && (filter & PMXEVTYPER_NSU); 1336 nsh = arm_feature(env, ARM_FEATURE_EL2) && (filter & PMXEVTYPER_NSH); 1337 m = arm_el_is_aa64(env, 1) && 1338 arm_feature(env, ARM_FEATURE_EL3) && (filter & PMXEVTYPER_M); 1339 1340 if (el == 0) { 1341 filtered = secure ? u : u != nsu; 1342 } else if (el == 1) { 1343 filtered = secure ? p : p != nsk; 1344 } else if (el == 2) { 1345 filtered = !nsh; 1346 } else { /* EL3 */ 1347 filtered = m != p; 1348 } 1349 1350 if (counter != 31) { 1351 /* 1352 * If not checking PMCCNTR, ensure the counter is setup to an event we 1353 * support 1354 */ 1355 uint16_t event = filter & PMXEVTYPER_EVTCOUNT; 1356 if (!event_supported(event)) { 1357 return false; 1358 } 1359 } 1360 1361 return enabled && !prohibited && !filtered; 1362 } 1363 1364 static void pmu_update_irq(CPUARMState *env) 1365 { 1366 ARMCPU *cpu = env_archcpu(env); 1367 qemu_set_irq(cpu->pmu_interrupt, (env->cp15.c9_pmcr & PMCRE) && 1368 (env->cp15.c9_pminten & env->cp15.c9_pmovsr)); 1369 } 1370 1371 /* 1372 * Ensure c15_ccnt is the guest-visible count so that operations such as 1373 * enabling/disabling the counter or filtering, modifying the count itself, 1374 * etc. can be done logically. This is essentially a no-op if the counter is 1375 * not enabled at the time of the call. 1376 */ 1377 static void pmccntr_op_start(CPUARMState *env) 1378 { 1379 uint64_t cycles = cycles_get_count(env); 1380 1381 if (pmu_counter_enabled(env, 31)) { 1382 uint64_t eff_cycles = cycles; 1383 if (env->cp15.c9_pmcr & PMCRD) { 1384 /* Increment once every 64 processor clock cycles */ 1385 eff_cycles /= 64; 1386 } 1387 1388 uint64_t new_pmccntr = eff_cycles - env->cp15.c15_ccnt_delta; 1389 1390 uint64_t overflow_mask = env->cp15.c9_pmcr & PMCRLC ? \ 1391 1ull << 63 : 1ull << 31; 1392 if (env->cp15.c15_ccnt & ~new_pmccntr & overflow_mask) { 1393 env->cp15.c9_pmovsr |= (1 << 31); 1394 pmu_update_irq(env); 1395 } 1396 1397 env->cp15.c15_ccnt = new_pmccntr; 1398 } 1399 env->cp15.c15_ccnt_delta = cycles; 1400 } 1401 1402 /* 1403 * If PMCCNTR is enabled, recalculate the delta between the clock and the 1404 * guest-visible count. A call to pmccntr_op_finish should follow every call to 1405 * pmccntr_op_start. 1406 */ 1407 static void pmccntr_op_finish(CPUARMState *env) 1408 { 1409 if (pmu_counter_enabled(env, 31)) { 1410 #ifndef CONFIG_USER_ONLY 1411 /* Calculate when the counter will next overflow */ 1412 uint64_t remaining_cycles = -env->cp15.c15_ccnt; 1413 if (!(env->cp15.c9_pmcr & PMCRLC)) { 1414 remaining_cycles = (uint32_t)remaining_cycles; 1415 } 1416 int64_t overflow_in = cycles_ns_per(remaining_cycles); 1417 1418 if (overflow_in > 0) { 1419 int64_t overflow_at = qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL) + 1420 overflow_in; 1421 ARMCPU *cpu = env_archcpu(env); 1422 timer_mod_anticipate_ns(cpu->pmu_timer, overflow_at); 1423 } 1424 #endif 1425 1426 uint64_t prev_cycles = env->cp15.c15_ccnt_delta; 1427 if (env->cp15.c9_pmcr & PMCRD) { 1428 /* Increment once every 64 processor clock cycles */ 1429 prev_cycles /= 64; 1430 } 1431 env->cp15.c15_ccnt_delta = prev_cycles - env->cp15.c15_ccnt; 1432 } 1433 } 1434 1435 static void pmevcntr_op_start(CPUARMState *env, uint8_t counter) 1436 { 1437 1438 uint16_t event = env->cp15.c14_pmevtyper[counter] & PMXEVTYPER_EVTCOUNT; 1439 uint64_t count = 0; 1440 if (event_supported(event)) { 1441 uint16_t event_idx = supported_event_map[event]; 1442 count = pm_events[event_idx].get_count(env); 1443 } 1444 1445 if (pmu_counter_enabled(env, counter)) { 1446 uint32_t new_pmevcntr = count - env->cp15.c14_pmevcntr_delta[counter]; 1447 1448 if (env->cp15.c14_pmevcntr[counter] & ~new_pmevcntr & INT32_MIN) { 1449 env->cp15.c9_pmovsr |= (1 << counter); 1450 pmu_update_irq(env); 1451 } 1452 env->cp15.c14_pmevcntr[counter] = new_pmevcntr; 1453 } 1454 env->cp15.c14_pmevcntr_delta[counter] = count; 1455 } 1456 1457 static void pmevcntr_op_finish(CPUARMState *env, uint8_t counter) 1458 { 1459 if (pmu_counter_enabled(env, counter)) { 1460 #ifndef CONFIG_USER_ONLY 1461 uint16_t event = env->cp15.c14_pmevtyper[counter] & PMXEVTYPER_EVTCOUNT; 1462 uint16_t event_idx = supported_event_map[event]; 1463 uint64_t delta = UINT32_MAX - 1464 (uint32_t)env->cp15.c14_pmevcntr[counter] + 1; 1465 int64_t overflow_in = pm_events[event_idx].ns_per_count(delta); 1466 1467 if (overflow_in > 0) { 1468 int64_t overflow_at = qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL) + 1469 overflow_in; 1470 ARMCPU *cpu = env_archcpu(env); 1471 timer_mod_anticipate_ns(cpu->pmu_timer, overflow_at); 1472 } 1473 #endif 1474 1475 env->cp15.c14_pmevcntr_delta[counter] -= 1476 env->cp15.c14_pmevcntr[counter]; 1477 } 1478 } 1479 1480 void pmu_op_start(CPUARMState *env) 1481 { 1482 unsigned int i; 1483 pmccntr_op_start(env); 1484 for (i = 0; i < pmu_num_counters(env); i++) { 1485 pmevcntr_op_start(env, i); 1486 } 1487 } 1488 1489 void pmu_op_finish(CPUARMState *env) 1490 { 1491 unsigned int i; 1492 pmccntr_op_finish(env); 1493 for (i = 0; i < pmu_num_counters(env); i++) { 1494 pmevcntr_op_finish(env, i); 1495 } 1496 } 1497 1498 void pmu_pre_el_change(ARMCPU *cpu, void *ignored) 1499 { 1500 pmu_op_start(&cpu->env); 1501 } 1502 1503 void pmu_post_el_change(ARMCPU *cpu, void *ignored) 1504 { 1505 pmu_op_finish(&cpu->env); 1506 } 1507 1508 void arm_pmu_timer_cb(void *opaque) 1509 { 1510 ARMCPU *cpu = opaque; 1511 1512 /* 1513 * Update all the counter values based on the current underlying counts, 1514 * triggering interrupts to be raised, if necessary. pmu_op_finish() also 1515 * has the effect of setting the cpu->pmu_timer to the next earliest time a 1516 * counter may expire. 1517 */ 1518 pmu_op_start(&cpu->env); 1519 pmu_op_finish(&cpu->env); 1520 } 1521 1522 static void pmcr_write(CPUARMState *env, const ARMCPRegInfo *ri, 1523 uint64_t value) 1524 { 1525 pmu_op_start(env); 1526 1527 if (value & PMCRC) { 1528 /* The counter has been reset */ 1529 env->cp15.c15_ccnt = 0; 1530 } 1531 1532 if (value & PMCRP) { 1533 unsigned int i; 1534 for (i = 0; i < pmu_num_counters(env); i++) { 1535 env->cp15.c14_pmevcntr[i] = 0; 1536 } 1537 } 1538 1539 /* only the DP, X, D and E bits are writable */ 1540 env->cp15.c9_pmcr &= ~0x39; 1541 env->cp15.c9_pmcr |= (value & 0x39); 1542 1543 pmu_op_finish(env); 1544 } 1545 1546 static void pmswinc_write(CPUARMState *env, const ARMCPRegInfo *ri, 1547 uint64_t value) 1548 { 1549 unsigned int i; 1550 for (i = 0; i < pmu_num_counters(env); i++) { 1551 /* Increment a counter's count iff: */ 1552 if ((value & (1 << i)) && /* counter's bit is set */ 1553 /* counter is enabled and not filtered */ 1554 pmu_counter_enabled(env, i) && 1555 /* counter is SW_INCR */ 1556 (env->cp15.c14_pmevtyper[i] & PMXEVTYPER_EVTCOUNT) == 0x0) { 1557 pmevcntr_op_start(env, i); 1558 1559 /* 1560 * Detect if this write causes an overflow since we can't predict 1561 * PMSWINC overflows like we can for other events 1562 */ 1563 uint32_t new_pmswinc = env->cp15.c14_pmevcntr[i] + 1; 1564 1565 if (env->cp15.c14_pmevcntr[i] & ~new_pmswinc & INT32_MIN) { 1566 env->cp15.c9_pmovsr |= (1 << i); 1567 pmu_update_irq(env); 1568 } 1569 1570 env->cp15.c14_pmevcntr[i] = new_pmswinc; 1571 1572 pmevcntr_op_finish(env, i); 1573 } 1574 } 1575 } 1576 1577 static uint64_t pmccntr_read(CPUARMState *env, const ARMCPRegInfo *ri) 1578 { 1579 uint64_t ret; 1580 pmccntr_op_start(env); 1581 ret = env->cp15.c15_ccnt; 1582 pmccntr_op_finish(env); 1583 return ret; 1584 } 1585 1586 static void pmselr_write(CPUARMState *env, const ARMCPRegInfo *ri, 1587 uint64_t value) 1588 { 1589 /* The value of PMSELR.SEL affects the behavior of PMXEVTYPER and 1590 * PMXEVCNTR. We allow [0..31] to be written to PMSELR here; in the 1591 * meanwhile, we check PMSELR.SEL when PMXEVTYPER and PMXEVCNTR are 1592 * accessed. 1593 */ 1594 env->cp15.c9_pmselr = value & 0x1f; 1595 } 1596 1597 static void pmccntr_write(CPUARMState *env, const ARMCPRegInfo *ri, 1598 uint64_t value) 1599 { 1600 pmccntr_op_start(env); 1601 env->cp15.c15_ccnt = value; 1602 pmccntr_op_finish(env); 1603 } 1604 1605 static void pmccntr_write32(CPUARMState *env, const ARMCPRegInfo *ri, 1606 uint64_t value) 1607 { 1608 uint64_t cur_val = pmccntr_read(env, NULL); 1609 1610 pmccntr_write(env, ri, deposit64(cur_val, 0, 32, value)); 1611 } 1612 1613 static void pmccfiltr_write(CPUARMState *env, const ARMCPRegInfo *ri, 1614 uint64_t value) 1615 { 1616 pmccntr_op_start(env); 1617 env->cp15.pmccfiltr_el0 = value & PMCCFILTR_EL0; 1618 pmccntr_op_finish(env); 1619 } 1620 1621 static void pmccfiltr_write_a32(CPUARMState *env, const ARMCPRegInfo *ri, 1622 uint64_t value) 1623 { 1624 pmccntr_op_start(env); 1625 /* M is not accessible from AArch32 */ 1626 env->cp15.pmccfiltr_el0 = (env->cp15.pmccfiltr_el0 & PMCCFILTR_M) | 1627 (value & PMCCFILTR); 1628 pmccntr_op_finish(env); 1629 } 1630 1631 static uint64_t pmccfiltr_read_a32(CPUARMState *env, const ARMCPRegInfo *ri) 1632 { 1633 /* M is not visible in AArch32 */ 1634 return env->cp15.pmccfiltr_el0 & PMCCFILTR; 1635 } 1636 1637 static void pmcntenset_write(CPUARMState *env, const ARMCPRegInfo *ri, 1638 uint64_t value) 1639 { 1640 value &= pmu_counter_mask(env); 1641 env->cp15.c9_pmcnten |= value; 1642 } 1643 1644 static void pmcntenclr_write(CPUARMState *env, const ARMCPRegInfo *ri, 1645 uint64_t value) 1646 { 1647 value &= pmu_counter_mask(env); 1648 env->cp15.c9_pmcnten &= ~value; 1649 } 1650 1651 static void pmovsr_write(CPUARMState *env, const ARMCPRegInfo *ri, 1652 uint64_t value) 1653 { 1654 value &= pmu_counter_mask(env); 1655 env->cp15.c9_pmovsr &= ~value; 1656 pmu_update_irq(env); 1657 } 1658 1659 static void pmovsset_write(CPUARMState *env, const ARMCPRegInfo *ri, 1660 uint64_t value) 1661 { 1662 value &= pmu_counter_mask(env); 1663 env->cp15.c9_pmovsr |= value; 1664 pmu_update_irq(env); 1665 } 1666 1667 static void pmevtyper_write(CPUARMState *env, const ARMCPRegInfo *ri, 1668 uint64_t value, const uint8_t counter) 1669 { 1670 if (counter == 31) { 1671 pmccfiltr_write(env, ri, value); 1672 } else if (counter < pmu_num_counters(env)) { 1673 pmevcntr_op_start(env, counter); 1674 1675 /* 1676 * If this counter's event type is changing, store the current 1677 * underlying count for the new type in c14_pmevcntr_delta[counter] so 1678 * pmevcntr_op_finish has the correct baseline when it converts back to 1679 * a delta. 1680 */ 1681 uint16_t old_event = env->cp15.c14_pmevtyper[counter] & 1682 PMXEVTYPER_EVTCOUNT; 1683 uint16_t new_event = value & PMXEVTYPER_EVTCOUNT; 1684 if (old_event != new_event) { 1685 uint64_t count = 0; 1686 if (event_supported(new_event)) { 1687 uint16_t event_idx = supported_event_map[new_event]; 1688 count = pm_events[event_idx].get_count(env); 1689 } 1690 env->cp15.c14_pmevcntr_delta[counter] = count; 1691 } 1692 1693 env->cp15.c14_pmevtyper[counter] = value & PMXEVTYPER_MASK; 1694 pmevcntr_op_finish(env, counter); 1695 } 1696 /* Attempts to access PMXEVTYPER are CONSTRAINED UNPREDICTABLE when 1697 * PMSELR value is equal to or greater than the number of implemented 1698 * counters, but not equal to 0x1f. We opt to behave as a RAZ/WI. 1699 */ 1700 } 1701 1702 static uint64_t pmevtyper_read(CPUARMState *env, const ARMCPRegInfo *ri, 1703 const uint8_t counter) 1704 { 1705 if (counter == 31) { 1706 return env->cp15.pmccfiltr_el0; 1707 } else if (counter < pmu_num_counters(env)) { 1708 return env->cp15.c14_pmevtyper[counter]; 1709 } else { 1710 /* 1711 * We opt to behave as a RAZ/WI when attempts to access PMXEVTYPER 1712 * are CONSTRAINED UNPREDICTABLE. See comments in pmevtyper_write(). 1713 */ 1714 return 0; 1715 } 1716 } 1717 1718 static void pmevtyper_writefn(CPUARMState *env, const ARMCPRegInfo *ri, 1719 uint64_t value) 1720 { 1721 uint8_t counter = ((ri->crm & 3) << 3) | (ri->opc2 & 7); 1722 pmevtyper_write(env, ri, value, counter); 1723 } 1724 1725 static void pmevtyper_rawwrite(CPUARMState *env, const ARMCPRegInfo *ri, 1726 uint64_t value) 1727 { 1728 uint8_t counter = ((ri->crm & 3) << 3) | (ri->opc2 & 7); 1729 env->cp15.c14_pmevtyper[counter] = value; 1730 1731 /* 1732 * pmevtyper_rawwrite is called between a pair of pmu_op_start and 1733 * pmu_op_finish calls when loading saved state for a migration. Because 1734 * we're potentially updating the type of event here, the value written to 1735 * c14_pmevcntr_delta by the preceeding pmu_op_start call may be for a 1736 * different counter type. Therefore, we need to set this value to the 1737 * current count for the counter type we're writing so that pmu_op_finish 1738 * has the correct count for its calculation. 1739 */ 1740 uint16_t event = value & PMXEVTYPER_EVTCOUNT; 1741 if (event_supported(event)) { 1742 uint16_t event_idx = supported_event_map[event]; 1743 env->cp15.c14_pmevcntr_delta[counter] = 1744 pm_events[event_idx].get_count(env); 1745 } 1746 } 1747 1748 static uint64_t pmevtyper_readfn(CPUARMState *env, const ARMCPRegInfo *ri) 1749 { 1750 uint8_t counter = ((ri->crm & 3) << 3) | (ri->opc2 & 7); 1751 return pmevtyper_read(env, ri, counter); 1752 } 1753 1754 static void pmxevtyper_write(CPUARMState *env, const ARMCPRegInfo *ri, 1755 uint64_t value) 1756 { 1757 pmevtyper_write(env, ri, value, env->cp15.c9_pmselr & 31); 1758 } 1759 1760 static uint64_t pmxevtyper_read(CPUARMState *env, const ARMCPRegInfo *ri) 1761 { 1762 return pmevtyper_read(env, ri, env->cp15.c9_pmselr & 31); 1763 } 1764 1765 static void pmevcntr_write(CPUARMState *env, const ARMCPRegInfo *ri, 1766 uint64_t value, uint8_t counter) 1767 { 1768 if (counter < pmu_num_counters(env)) { 1769 pmevcntr_op_start(env, counter); 1770 env->cp15.c14_pmevcntr[counter] = value; 1771 pmevcntr_op_finish(env, counter); 1772 } 1773 /* 1774 * We opt to behave as a RAZ/WI when attempts to access PM[X]EVCNTR 1775 * are CONSTRAINED UNPREDICTABLE. 1776 */ 1777 } 1778 1779 static uint64_t pmevcntr_read(CPUARMState *env, const ARMCPRegInfo *ri, 1780 uint8_t counter) 1781 { 1782 if (counter < pmu_num_counters(env)) { 1783 uint64_t ret; 1784 pmevcntr_op_start(env, counter); 1785 ret = env->cp15.c14_pmevcntr[counter]; 1786 pmevcntr_op_finish(env, counter); 1787 return ret; 1788 } else { 1789 /* We opt to behave as a RAZ/WI when attempts to access PM[X]EVCNTR 1790 * are CONSTRAINED UNPREDICTABLE. */ 1791 return 0; 1792 } 1793 } 1794 1795 static void pmevcntr_writefn(CPUARMState *env, const ARMCPRegInfo *ri, 1796 uint64_t value) 1797 { 1798 uint8_t counter = ((ri->crm & 3) << 3) | (ri->opc2 & 7); 1799 pmevcntr_write(env, ri, value, counter); 1800 } 1801 1802 static uint64_t pmevcntr_readfn(CPUARMState *env, const ARMCPRegInfo *ri) 1803 { 1804 uint8_t counter = ((ri->crm & 3) << 3) | (ri->opc2 & 7); 1805 return pmevcntr_read(env, ri, counter); 1806 } 1807 1808 static void pmevcntr_rawwrite(CPUARMState *env, const ARMCPRegInfo *ri, 1809 uint64_t value) 1810 { 1811 uint8_t counter = ((ri->crm & 3) << 3) | (ri->opc2 & 7); 1812 assert(counter < pmu_num_counters(env)); 1813 env->cp15.c14_pmevcntr[counter] = value; 1814 pmevcntr_write(env, ri, value, counter); 1815 } 1816 1817 static uint64_t pmevcntr_rawread(CPUARMState *env, const ARMCPRegInfo *ri) 1818 { 1819 uint8_t counter = ((ri->crm & 3) << 3) | (ri->opc2 & 7); 1820 assert(counter < pmu_num_counters(env)); 1821 return env->cp15.c14_pmevcntr[counter]; 1822 } 1823 1824 static void pmxevcntr_write(CPUARMState *env, const ARMCPRegInfo *ri, 1825 uint64_t value) 1826 { 1827 pmevcntr_write(env, ri, value, env->cp15.c9_pmselr & 31); 1828 } 1829 1830 static uint64_t pmxevcntr_read(CPUARMState *env, const ARMCPRegInfo *ri) 1831 { 1832 return pmevcntr_read(env, ri, env->cp15.c9_pmselr & 31); 1833 } 1834 1835 static void pmuserenr_write(CPUARMState *env, const ARMCPRegInfo *ri, 1836 uint64_t value) 1837 { 1838 if (arm_feature(env, ARM_FEATURE_V8)) { 1839 env->cp15.c9_pmuserenr = value & 0xf; 1840 } else { 1841 env->cp15.c9_pmuserenr = value & 1; 1842 } 1843 } 1844 1845 static void pmintenset_write(CPUARMState *env, const ARMCPRegInfo *ri, 1846 uint64_t value) 1847 { 1848 /* We have no event counters so only the C bit can be changed */ 1849 value &= pmu_counter_mask(env); 1850 env->cp15.c9_pminten |= value; 1851 pmu_update_irq(env); 1852 } 1853 1854 static void pmintenclr_write(CPUARMState *env, const ARMCPRegInfo *ri, 1855 uint64_t value) 1856 { 1857 value &= pmu_counter_mask(env); 1858 env->cp15.c9_pminten &= ~value; 1859 pmu_update_irq(env); 1860 } 1861 1862 static void vbar_write(CPUARMState *env, const ARMCPRegInfo *ri, 1863 uint64_t value) 1864 { 1865 /* Note that even though the AArch64 view of this register has bits 1866 * [10:0] all RES0 we can only mask the bottom 5, to comply with the 1867 * architectural requirements for bits which are RES0 only in some 1868 * contexts. (ARMv8 would permit us to do no masking at all, but ARMv7 1869 * requires the bottom five bits to be RAZ/WI because they're UNK/SBZP.) 1870 */ 1871 raw_write(env, ri, value & ~0x1FULL); 1872 } 1873 1874 static void scr_write(CPUARMState *env, const ARMCPRegInfo *ri, uint64_t value) 1875 { 1876 /* Begin with base v8.0 state. */ 1877 uint32_t valid_mask = 0x3fff; 1878 ARMCPU *cpu = env_archcpu(env); 1879 1880 if (arm_el_is_aa64(env, 3)) { 1881 value |= SCR_FW | SCR_AW; /* these two bits are RES1. */ 1882 valid_mask &= ~SCR_NET; 1883 } else { 1884 valid_mask &= ~(SCR_RW | SCR_ST); 1885 } 1886 1887 if (!arm_feature(env, ARM_FEATURE_EL2)) { 1888 valid_mask &= ~SCR_HCE; 1889 1890 /* On ARMv7, SMD (or SCD as it is called in v7) is only 1891 * supported if EL2 exists. The bit is UNK/SBZP when 1892 * EL2 is unavailable. In QEMU ARMv7, we force it to always zero 1893 * when EL2 is unavailable. 1894 * On ARMv8, this bit is always available. 1895 */ 1896 if (arm_feature(env, ARM_FEATURE_V7) && 1897 !arm_feature(env, ARM_FEATURE_V8)) { 1898 valid_mask &= ~SCR_SMD; 1899 } 1900 } 1901 if (cpu_isar_feature(aa64_lor, cpu)) { 1902 valid_mask |= SCR_TLOR; 1903 } 1904 if (cpu_isar_feature(aa64_pauth, cpu)) { 1905 valid_mask |= SCR_API | SCR_APK; 1906 } 1907 1908 /* Clear all-context RES0 bits. */ 1909 value &= valid_mask; 1910 raw_write(env, ri, value); 1911 } 1912 1913 static uint64_t ccsidr_read(CPUARMState *env, const ARMCPRegInfo *ri) 1914 { 1915 ARMCPU *cpu = env_archcpu(env); 1916 1917 /* Acquire the CSSELR index from the bank corresponding to the CCSIDR 1918 * bank 1919 */ 1920 uint32_t index = A32_BANKED_REG_GET(env, csselr, 1921 ri->secure & ARM_CP_SECSTATE_S); 1922 1923 return cpu->ccsidr[index]; 1924 } 1925 1926 static void csselr_write(CPUARMState *env, const ARMCPRegInfo *ri, 1927 uint64_t value) 1928 { 1929 raw_write(env, ri, value & 0xf); 1930 } 1931 1932 static uint64_t isr_read(CPUARMState *env, const ARMCPRegInfo *ri) 1933 { 1934 CPUState *cs = env_cpu(env); 1935 uint64_t hcr_el2 = arm_hcr_el2_eff(env); 1936 uint64_t ret = 0; 1937 1938 if (hcr_el2 & HCR_IMO) { 1939 if (cs->interrupt_request & CPU_INTERRUPT_VIRQ) { 1940 ret |= CPSR_I; 1941 } 1942 } else { 1943 if (cs->interrupt_request & CPU_INTERRUPT_HARD) { 1944 ret |= CPSR_I; 1945 } 1946 } 1947 1948 if (hcr_el2 & HCR_FMO) { 1949 if (cs->interrupt_request & CPU_INTERRUPT_VFIQ) { 1950 ret |= CPSR_F; 1951 } 1952 } else { 1953 if (cs->interrupt_request & CPU_INTERRUPT_FIQ) { 1954 ret |= CPSR_F; 1955 } 1956 } 1957 1958 /* External aborts are not possible in QEMU so A bit is always clear */ 1959 return ret; 1960 } 1961 1962 static const ARMCPRegInfo v7_cp_reginfo[] = { 1963 /* the old v6 WFI, UNPREDICTABLE in v7 but we choose to NOP */ 1964 { .name = "NOP", .cp = 15, .crn = 7, .crm = 0, .opc1 = 0, .opc2 = 4, 1965 .access = PL1_W, .type = ARM_CP_NOP }, 1966 /* Performance monitors are implementation defined in v7, 1967 * but with an ARM recommended set of registers, which we 1968 * follow. 1969 * 1970 * Performance registers fall into three categories: 1971 * (a) always UNDEF in PL0, RW in PL1 (PMINTENSET, PMINTENCLR) 1972 * (b) RO in PL0 (ie UNDEF on write), RW in PL1 (PMUSERENR) 1973 * (c) UNDEF in PL0 if PMUSERENR.EN==0, otherwise accessible (all others) 1974 * For the cases controlled by PMUSERENR we must set .access to PL0_RW 1975 * or PL0_RO as appropriate and then check PMUSERENR in the helper fn. 1976 */ 1977 { .name = "PMCNTENSET", .cp = 15, .crn = 9, .crm = 12, .opc1 = 0, .opc2 = 1, 1978 .access = PL0_RW, .type = ARM_CP_ALIAS, 1979 .fieldoffset = offsetoflow32(CPUARMState, cp15.c9_pmcnten), 1980 .writefn = pmcntenset_write, 1981 .accessfn = pmreg_access, 1982 .raw_writefn = raw_write }, 1983 { .name = "PMCNTENSET_EL0", .state = ARM_CP_STATE_AA64, 1984 .opc0 = 3, .opc1 = 3, .crn = 9, .crm = 12, .opc2 = 1, 1985 .access = PL0_RW, .accessfn = pmreg_access, 1986 .fieldoffset = offsetof(CPUARMState, cp15.c9_pmcnten), .resetvalue = 0, 1987 .writefn = pmcntenset_write, .raw_writefn = raw_write }, 1988 { .name = "PMCNTENCLR", .cp = 15, .crn = 9, .crm = 12, .opc1 = 0, .opc2 = 2, 1989 .access = PL0_RW, 1990 .fieldoffset = offsetoflow32(CPUARMState, cp15.c9_pmcnten), 1991 .accessfn = pmreg_access, 1992 .writefn = pmcntenclr_write, 1993 .type = ARM_CP_ALIAS }, 1994 { .name = "PMCNTENCLR_EL0", .state = ARM_CP_STATE_AA64, 1995 .opc0 = 3, .opc1 = 3, .crn = 9, .crm = 12, .opc2 = 2, 1996 .access = PL0_RW, .accessfn = pmreg_access, 1997 .type = ARM_CP_ALIAS, 1998 .fieldoffset = offsetof(CPUARMState, cp15.c9_pmcnten), 1999 .writefn = pmcntenclr_write }, 2000 { .name = "PMOVSR", .cp = 15, .crn = 9, .crm = 12, .opc1 = 0, .opc2 = 3, 2001 .access = PL0_RW, .type = ARM_CP_IO, 2002 .fieldoffset = offsetoflow32(CPUARMState, cp15.c9_pmovsr), 2003 .accessfn = pmreg_access, 2004 .writefn = pmovsr_write, 2005 .raw_writefn = raw_write }, 2006 { .name = "PMOVSCLR_EL0", .state = ARM_CP_STATE_AA64, 2007 .opc0 = 3, .opc1 = 3, .crn = 9, .crm = 12, .opc2 = 3, 2008 .access = PL0_RW, .accessfn = pmreg_access, 2009 .type = ARM_CP_ALIAS | ARM_CP_IO, 2010 .fieldoffset = offsetof(CPUARMState, cp15.c9_pmovsr), 2011 .writefn = pmovsr_write, 2012 .raw_writefn = raw_write }, 2013 { .name = "PMSWINC", .cp = 15, .crn = 9, .crm = 12, .opc1 = 0, .opc2 = 4, 2014 .access = PL0_W, .accessfn = pmreg_access_swinc, 2015 .type = ARM_CP_NO_RAW | ARM_CP_IO, 2016 .writefn = pmswinc_write }, 2017 { .name = "PMSWINC_EL0", .state = ARM_CP_STATE_AA64, 2018 .opc0 = 3, .opc1 = 3, .crn = 9, .crm = 12, .opc2 = 4, 2019 .access = PL0_W, .accessfn = pmreg_access_swinc, 2020 .type = ARM_CP_NO_RAW | ARM_CP_IO, 2021 .writefn = pmswinc_write }, 2022 { .name = "PMSELR", .cp = 15, .crn = 9, .crm = 12, .opc1 = 0, .opc2 = 5, 2023 .access = PL0_RW, .type = ARM_CP_ALIAS, 2024 .fieldoffset = offsetoflow32(CPUARMState, cp15.c9_pmselr), 2025 .accessfn = pmreg_access_selr, .writefn = pmselr_write, 2026 .raw_writefn = raw_write}, 2027 { .name = "PMSELR_EL0", .state = ARM_CP_STATE_AA64, 2028 .opc0 = 3, .opc1 = 3, .crn = 9, .crm = 12, .opc2 = 5, 2029 .access = PL0_RW, .accessfn = pmreg_access_selr, 2030 .fieldoffset = offsetof(CPUARMState, cp15.c9_pmselr), 2031 .writefn = pmselr_write, .raw_writefn = raw_write, }, 2032 { .name = "PMCCNTR", .cp = 15, .crn = 9, .crm = 13, .opc1 = 0, .opc2 = 0, 2033 .access = PL0_RW, .resetvalue = 0, .type = ARM_CP_ALIAS | ARM_CP_IO, 2034 .readfn = pmccntr_read, .writefn = pmccntr_write32, 2035 .accessfn = pmreg_access_ccntr }, 2036 { .name = "PMCCNTR_EL0", .state = ARM_CP_STATE_AA64, 2037 .opc0 = 3, .opc1 = 3, .crn = 9, .crm = 13, .opc2 = 0, 2038 .access = PL0_RW, .accessfn = pmreg_access_ccntr, 2039 .type = ARM_CP_IO, 2040 .fieldoffset = offsetof(CPUARMState, cp15.c15_ccnt), 2041 .readfn = pmccntr_read, .writefn = pmccntr_write, 2042 .raw_readfn = raw_read, .raw_writefn = raw_write, }, 2043 { .name = "PMCCFILTR", .cp = 15, .opc1 = 0, .crn = 14, .crm = 15, .opc2 = 7, 2044 .writefn = pmccfiltr_write_a32, .readfn = pmccfiltr_read_a32, 2045 .access = PL0_RW, .accessfn = pmreg_access, 2046 .type = ARM_CP_ALIAS | ARM_CP_IO, 2047 .resetvalue = 0, }, 2048 { .name = "PMCCFILTR_EL0", .state = ARM_CP_STATE_AA64, 2049 .opc0 = 3, .opc1 = 3, .crn = 14, .crm = 15, .opc2 = 7, 2050 .writefn = pmccfiltr_write, .raw_writefn = raw_write, 2051 .access = PL0_RW, .accessfn = pmreg_access, 2052 .type = ARM_CP_IO, 2053 .fieldoffset = offsetof(CPUARMState, cp15.pmccfiltr_el0), 2054 .resetvalue = 0, }, 2055 { .name = "PMXEVTYPER", .cp = 15, .crn = 9, .crm = 13, .opc1 = 0, .opc2 = 1, 2056 .access = PL0_RW, .type = ARM_CP_NO_RAW | ARM_CP_IO, 2057 .accessfn = pmreg_access, 2058 .writefn = pmxevtyper_write, .readfn = pmxevtyper_read }, 2059 { .name = "PMXEVTYPER_EL0", .state = ARM_CP_STATE_AA64, 2060 .opc0 = 3, .opc1 = 3, .crn = 9, .crm = 13, .opc2 = 1, 2061 .access = PL0_RW, .type = ARM_CP_NO_RAW | ARM_CP_IO, 2062 .accessfn = pmreg_access, 2063 .writefn = pmxevtyper_write, .readfn = pmxevtyper_read }, 2064 { .name = "PMXEVCNTR", .cp = 15, .crn = 9, .crm = 13, .opc1 = 0, .opc2 = 2, 2065 .access = PL0_RW, .type = ARM_CP_NO_RAW | ARM_CP_IO, 2066 .accessfn = pmreg_access_xevcntr, 2067 .writefn = pmxevcntr_write, .readfn = pmxevcntr_read }, 2068 { .name = "PMXEVCNTR_EL0", .state = ARM_CP_STATE_AA64, 2069 .opc0 = 3, .opc1 = 3, .crn = 9, .crm = 13, .opc2 = 2, 2070 .access = PL0_RW, .type = ARM_CP_NO_RAW | ARM_CP_IO, 2071 .accessfn = pmreg_access_xevcntr, 2072 .writefn = pmxevcntr_write, .readfn = pmxevcntr_read }, 2073 { .name = "PMUSERENR", .cp = 15, .crn = 9, .crm = 14, .opc1 = 0, .opc2 = 0, 2074 .access = PL0_R | PL1_RW, .accessfn = access_tpm, 2075 .fieldoffset = offsetoflow32(CPUARMState, cp15.c9_pmuserenr), 2076 .resetvalue = 0, 2077 .writefn = pmuserenr_write, .raw_writefn = raw_write }, 2078 { .name = "PMUSERENR_EL0", .state = ARM_CP_STATE_AA64, 2079 .opc0 = 3, .opc1 = 3, .crn = 9, .crm = 14, .opc2 = 0, 2080 .access = PL0_R | PL1_RW, .accessfn = access_tpm, .type = ARM_CP_ALIAS, 2081 .fieldoffset = offsetof(CPUARMState, cp15.c9_pmuserenr), 2082 .resetvalue = 0, 2083 .writefn = pmuserenr_write, .raw_writefn = raw_write }, 2084 { .name = "PMINTENSET", .cp = 15, .crn = 9, .crm = 14, .opc1 = 0, .opc2 = 1, 2085 .access = PL1_RW, .accessfn = access_tpm, 2086 .type = ARM_CP_ALIAS | ARM_CP_IO, 2087 .fieldoffset = offsetoflow32(CPUARMState, cp15.c9_pminten), 2088 .resetvalue = 0, 2089 .writefn = pmintenset_write, .raw_writefn = raw_write }, 2090 { .name = "PMINTENSET_EL1", .state = ARM_CP_STATE_AA64, 2091 .opc0 = 3, .opc1 = 0, .crn = 9, .crm = 14, .opc2 = 1, 2092 .access = PL1_RW, .accessfn = access_tpm, 2093 .type = ARM_CP_IO, 2094 .fieldoffset = offsetof(CPUARMState, cp15.c9_pminten), 2095 .writefn = pmintenset_write, .raw_writefn = raw_write, 2096 .resetvalue = 0x0 }, 2097 { .name = "PMINTENCLR", .cp = 15, .crn = 9, .crm = 14, .opc1 = 0, .opc2 = 2, 2098 .access = PL1_RW, .accessfn = access_tpm, 2099 .type = ARM_CP_ALIAS | ARM_CP_IO, 2100 .fieldoffset = offsetof(CPUARMState, cp15.c9_pminten), 2101 .writefn = pmintenclr_write, }, 2102 { .name = "PMINTENCLR_EL1", .state = ARM_CP_STATE_AA64, 2103 .opc0 = 3, .opc1 = 0, .crn = 9, .crm = 14, .opc2 = 2, 2104 .access = PL1_RW, .accessfn = access_tpm, 2105 .type = ARM_CP_ALIAS | ARM_CP_IO, 2106 .fieldoffset = offsetof(CPUARMState, cp15.c9_pminten), 2107 .writefn = pmintenclr_write }, 2108 { .name = "CCSIDR", .state = ARM_CP_STATE_BOTH, 2109 .opc0 = 3, .crn = 0, .crm = 0, .opc1 = 1, .opc2 = 0, 2110 .access = PL1_R, .readfn = ccsidr_read, .type = ARM_CP_NO_RAW }, 2111 { .name = "CSSELR", .state = ARM_CP_STATE_BOTH, 2112 .opc0 = 3, .crn = 0, .crm = 0, .opc1 = 2, .opc2 = 0, 2113 .access = PL1_RW, .writefn = csselr_write, .resetvalue = 0, 2114 .bank_fieldoffsets = { offsetof(CPUARMState, cp15.csselr_s), 2115 offsetof(CPUARMState, cp15.csselr_ns) } }, 2116 /* Auxiliary ID register: this actually has an IMPDEF value but for now 2117 * just RAZ for all cores: 2118 */ 2119 { .name = "AIDR", .state = ARM_CP_STATE_BOTH, 2120 .opc0 = 3, .opc1 = 1, .crn = 0, .crm = 0, .opc2 = 7, 2121 .access = PL1_R, .type = ARM_CP_CONST, .resetvalue = 0 }, 2122 /* Auxiliary fault status registers: these also are IMPDEF, and we 2123 * choose to RAZ/WI for all cores. 2124 */ 2125 { .name = "AFSR0_EL1", .state = ARM_CP_STATE_BOTH, 2126 .opc0 = 3, .opc1 = 0, .crn = 5, .crm = 1, .opc2 = 0, 2127 .access = PL1_RW, .type = ARM_CP_CONST, .resetvalue = 0 }, 2128 { .name = "AFSR1_EL1", .state = ARM_CP_STATE_BOTH, 2129 .opc0 = 3, .opc1 = 0, .crn = 5, .crm = 1, .opc2 = 1, 2130 .access = PL1_RW, .type = ARM_CP_CONST, .resetvalue = 0 }, 2131 /* MAIR can just read-as-written because we don't implement caches 2132 * and so don't need to care about memory attributes. 2133 */ 2134 { .name = "MAIR_EL1", .state = ARM_CP_STATE_AA64, 2135 .opc0 = 3, .opc1 = 0, .crn = 10, .crm = 2, .opc2 = 0, 2136 .access = PL1_RW, .fieldoffset = offsetof(CPUARMState, cp15.mair_el[1]), 2137 .resetvalue = 0 }, 2138 { .name = "MAIR_EL3", .state = ARM_CP_STATE_AA64, 2139 .opc0 = 3, .opc1 = 6, .crn = 10, .crm = 2, .opc2 = 0, 2140 .access = PL3_RW, .fieldoffset = offsetof(CPUARMState, cp15.mair_el[3]), 2141 .resetvalue = 0 }, 2142 /* For non-long-descriptor page tables these are PRRR and NMRR; 2143 * regardless they still act as reads-as-written for QEMU. 2144 */ 2145 /* MAIR0/1 are defined separately from their 64-bit counterpart which 2146 * allows them to assign the correct fieldoffset based on the endianness 2147 * handled in the field definitions. 2148 */ 2149 { .name = "MAIR0", .state = ARM_CP_STATE_AA32, 2150 .cp = 15, .opc1 = 0, .crn = 10, .crm = 2, .opc2 = 0, .access = PL1_RW, 2151 .bank_fieldoffsets = { offsetof(CPUARMState, cp15.mair0_s), 2152 offsetof(CPUARMState, cp15.mair0_ns) }, 2153 .resetfn = arm_cp_reset_ignore }, 2154 { .name = "MAIR1", .state = ARM_CP_STATE_AA32, 2155 .cp = 15, .opc1 = 0, .crn = 10, .crm = 2, .opc2 = 1, .access = PL1_RW, 2156 .bank_fieldoffsets = { offsetof(CPUARMState, cp15.mair1_s), 2157 offsetof(CPUARMState, cp15.mair1_ns) }, 2158 .resetfn = arm_cp_reset_ignore }, 2159 { .name = "ISR_EL1", .state = ARM_CP_STATE_BOTH, 2160 .opc0 = 3, .opc1 = 0, .crn = 12, .crm = 1, .opc2 = 0, 2161 .type = ARM_CP_NO_RAW, .access = PL1_R, .readfn = isr_read }, 2162 /* 32 bit ITLB invalidates */ 2163 { .name = "ITLBIALL", .cp = 15, .opc1 = 0, .crn = 8, .crm = 5, .opc2 = 0, 2164 .type = ARM_CP_NO_RAW, .access = PL1_W, .writefn = tlbiall_write }, 2165 { .name = "ITLBIMVA", .cp = 15, .opc1 = 0, .crn = 8, .crm = 5, .opc2 = 1, 2166 .type = ARM_CP_NO_RAW, .access = PL1_W, .writefn = tlbimva_write }, 2167 { .name = "ITLBIASID", .cp = 15, .opc1 = 0, .crn = 8, .crm = 5, .opc2 = 2, 2168 .type = ARM_CP_NO_RAW, .access = PL1_W, .writefn = tlbiasid_write }, 2169 /* 32 bit DTLB invalidates */ 2170 { .name = "DTLBIALL", .cp = 15, .opc1 = 0, .crn = 8, .crm = 6, .opc2 = 0, 2171 .type = ARM_CP_NO_RAW, .access = PL1_W, .writefn = tlbiall_write }, 2172 { .name = "DTLBIMVA", .cp = 15, .opc1 = 0, .crn = 8, .crm = 6, .opc2 = 1, 2173 .type = ARM_CP_NO_RAW, .access = PL1_W, .writefn = tlbimva_write }, 2174 { .name = "DTLBIASID", .cp = 15, .opc1 = 0, .crn = 8, .crm = 6, .opc2 = 2, 2175 .type = ARM_CP_NO_RAW, .access = PL1_W, .writefn = tlbiasid_write }, 2176 /* 32 bit TLB invalidates */ 2177 { .name = "TLBIALL", .cp = 15, .opc1 = 0, .crn = 8, .crm = 7, .opc2 = 0, 2178 .type = ARM_CP_NO_RAW, .access = PL1_W, .writefn = tlbiall_write }, 2179 { .name = "TLBIMVA", .cp = 15, .opc1 = 0, .crn = 8, .crm = 7, .opc2 = 1, 2180 .type = ARM_CP_NO_RAW, .access = PL1_W, .writefn = tlbimva_write }, 2181 { .name = "TLBIASID", .cp = 15, .opc1 = 0, .crn = 8, .crm = 7, .opc2 = 2, 2182 .type = ARM_CP_NO_RAW, .access = PL1_W, .writefn = tlbiasid_write }, 2183 { .name = "TLBIMVAA", .cp = 15, .opc1 = 0, .crn = 8, .crm = 7, .opc2 = 3, 2184 .type = ARM_CP_NO_RAW, .access = PL1_W, .writefn = tlbimvaa_write }, 2185 REGINFO_SENTINEL 2186 }; 2187 2188 static const ARMCPRegInfo v7mp_cp_reginfo[] = { 2189 /* 32 bit TLB invalidates, Inner Shareable */ 2190 { .name = "TLBIALLIS", .cp = 15, .opc1 = 0, .crn = 8, .crm = 3, .opc2 = 0, 2191 .type = ARM_CP_NO_RAW, .access = PL1_W, .writefn = tlbiall_is_write }, 2192 { .name = "TLBIMVAIS", .cp = 15, .opc1 = 0, .crn = 8, .crm = 3, .opc2 = 1, 2193 .type = ARM_CP_NO_RAW, .access = PL1_W, .writefn = tlbimva_is_write }, 2194 { .name = "TLBIASIDIS", .cp = 15, .opc1 = 0, .crn = 8, .crm = 3, .opc2 = 2, 2195 .type = ARM_CP_NO_RAW, .access = PL1_W, 2196 .writefn = tlbiasid_is_write }, 2197 { .name = "TLBIMVAAIS", .cp = 15, .opc1 = 0, .crn = 8, .crm = 3, .opc2 = 3, 2198 .type = ARM_CP_NO_RAW, .access = PL1_W, 2199 .writefn = tlbimvaa_is_write }, 2200 REGINFO_SENTINEL 2201 }; 2202 2203 static const ARMCPRegInfo pmovsset_cp_reginfo[] = { 2204 /* PMOVSSET is not implemented in v7 before v7ve */ 2205 { .name = "PMOVSSET", .cp = 15, .opc1 = 0, .crn = 9, .crm = 14, .opc2 = 3, 2206 .access = PL0_RW, .accessfn = pmreg_access, 2207 .type = ARM_CP_ALIAS | ARM_CP_IO, 2208 .fieldoffset = offsetoflow32(CPUARMState, cp15.c9_pmovsr), 2209 .writefn = pmovsset_write, 2210 .raw_writefn = raw_write }, 2211 { .name = "PMOVSSET_EL0", .state = ARM_CP_STATE_AA64, 2212 .opc0 = 3, .opc1 = 3, .crn = 9, .crm = 14, .opc2 = 3, 2213 .access = PL0_RW, .accessfn = pmreg_access, 2214 .type = ARM_CP_ALIAS | ARM_CP_IO, 2215 .fieldoffset = offsetof(CPUARMState, cp15.c9_pmovsr), 2216 .writefn = pmovsset_write, 2217 .raw_writefn = raw_write }, 2218 REGINFO_SENTINEL 2219 }; 2220 2221 static void teecr_write(CPUARMState *env, const ARMCPRegInfo *ri, 2222 uint64_t value) 2223 { 2224 value &= 1; 2225 env->teecr = value; 2226 } 2227 2228 static CPAccessResult teehbr_access(CPUARMState *env, const ARMCPRegInfo *ri, 2229 bool isread) 2230 { 2231 if (arm_current_el(env) == 0 && (env->teecr & 1)) { 2232 return CP_ACCESS_TRAP; 2233 } 2234 return CP_ACCESS_OK; 2235 } 2236 2237 static const ARMCPRegInfo t2ee_cp_reginfo[] = { 2238 { .name = "TEECR", .cp = 14, .crn = 0, .crm = 0, .opc1 = 6, .opc2 = 0, 2239 .access = PL1_RW, .fieldoffset = offsetof(CPUARMState, teecr), 2240 .resetvalue = 0, 2241 .writefn = teecr_write }, 2242 { .name = "TEEHBR", .cp = 14, .crn = 1, .crm = 0, .opc1 = 6, .opc2 = 0, 2243 .access = PL0_RW, .fieldoffset = offsetof(CPUARMState, teehbr), 2244 .accessfn = teehbr_access, .resetvalue = 0 }, 2245 REGINFO_SENTINEL 2246 }; 2247 2248 static const ARMCPRegInfo v6k_cp_reginfo[] = { 2249 { .name = "TPIDR_EL0", .state = ARM_CP_STATE_AA64, 2250 .opc0 = 3, .opc1 = 3, .opc2 = 2, .crn = 13, .crm = 0, 2251 .access = PL0_RW, 2252 .fieldoffset = offsetof(CPUARMState, cp15.tpidr_el[0]), .resetvalue = 0 }, 2253 { .name = "TPIDRURW", .cp = 15, .crn = 13, .crm = 0, .opc1 = 0, .opc2 = 2, 2254 .access = PL0_RW, 2255 .bank_fieldoffsets = { offsetoflow32(CPUARMState, cp15.tpidrurw_s), 2256 offsetoflow32(CPUARMState, cp15.tpidrurw_ns) }, 2257 .resetfn = arm_cp_reset_ignore }, 2258 { .name = "TPIDRRO_EL0", .state = ARM_CP_STATE_AA64, 2259 .opc0 = 3, .opc1 = 3, .opc2 = 3, .crn = 13, .crm = 0, 2260 .access = PL0_R|PL1_W, 2261 .fieldoffset = offsetof(CPUARMState, cp15.tpidrro_el[0]), 2262 .resetvalue = 0}, 2263 { .name = "TPIDRURO", .cp = 15, .crn = 13, .crm = 0, .opc1 = 0, .opc2 = 3, 2264 .access = PL0_R|PL1_W, 2265 .bank_fieldoffsets = { offsetoflow32(CPUARMState, cp15.tpidruro_s), 2266 offsetoflow32(CPUARMState, cp15.tpidruro_ns) }, 2267 .resetfn = arm_cp_reset_ignore }, 2268 { .name = "TPIDR_EL1", .state = ARM_CP_STATE_AA64, 2269 .opc0 = 3, .opc1 = 0, .opc2 = 4, .crn = 13, .crm = 0, 2270 .access = PL1_RW, 2271 .fieldoffset = offsetof(CPUARMState, cp15.tpidr_el[1]), .resetvalue = 0 }, 2272 { .name = "TPIDRPRW", .opc1 = 0, .cp = 15, .crn = 13, .crm = 0, .opc2 = 4, 2273 .access = PL1_RW, 2274 .bank_fieldoffsets = { offsetoflow32(CPUARMState, cp15.tpidrprw_s), 2275 offsetoflow32(CPUARMState, cp15.tpidrprw_ns) }, 2276 .resetvalue = 0 }, 2277 REGINFO_SENTINEL 2278 }; 2279 2280 #ifndef CONFIG_USER_ONLY 2281 2282 static CPAccessResult gt_cntfrq_access(CPUARMState *env, const ARMCPRegInfo *ri, 2283 bool isread) 2284 { 2285 /* CNTFRQ: not visible from PL0 if both PL0PCTEN and PL0VCTEN are zero. 2286 * Writable only at the highest implemented exception level. 2287 */ 2288 int el = arm_current_el(env); 2289 2290 switch (el) { 2291 case 0: 2292 if (!extract32(env->cp15.c14_cntkctl, 0, 2)) { 2293 return CP_ACCESS_TRAP; 2294 } 2295 break; 2296 case 1: 2297 if (!isread && ri->state == ARM_CP_STATE_AA32 && 2298 arm_is_secure_below_el3(env)) { 2299 /* Accesses from 32-bit Secure EL1 UNDEF (*not* trap to EL3!) */ 2300 return CP_ACCESS_TRAP_UNCATEGORIZED; 2301 } 2302 break; 2303 case 2: 2304 case 3: 2305 break; 2306 } 2307 2308 if (!isread && el < arm_highest_el(env)) { 2309 return CP_ACCESS_TRAP_UNCATEGORIZED; 2310 } 2311 2312 return CP_ACCESS_OK; 2313 } 2314 2315 static CPAccessResult gt_counter_access(CPUARMState *env, int timeridx, 2316 bool isread) 2317 { 2318 unsigned int cur_el = arm_current_el(env); 2319 bool secure = arm_is_secure(env); 2320 2321 /* CNT[PV]CT: not visible from PL0 if ELO[PV]CTEN is zero */ 2322 if (cur_el == 0 && 2323 !extract32(env->cp15.c14_cntkctl, timeridx, 1)) { 2324 return CP_ACCESS_TRAP; 2325 } 2326 2327 if (arm_feature(env, ARM_FEATURE_EL2) && 2328 timeridx == GTIMER_PHYS && !secure && cur_el < 2 && 2329 !extract32(env->cp15.cnthctl_el2, 0, 1)) { 2330 return CP_ACCESS_TRAP_EL2; 2331 } 2332 return CP_ACCESS_OK; 2333 } 2334 2335 static CPAccessResult gt_timer_access(CPUARMState *env, int timeridx, 2336 bool isread) 2337 { 2338 unsigned int cur_el = arm_current_el(env); 2339 bool secure = arm_is_secure(env); 2340 2341 /* CNT[PV]_CVAL, CNT[PV]_CTL, CNT[PV]_TVAL: not visible from PL0 if 2342 * EL0[PV]TEN is zero. 2343 */ 2344 if (cur_el == 0 && 2345 !extract32(env->cp15.c14_cntkctl, 9 - timeridx, 1)) { 2346 return CP_ACCESS_TRAP; 2347 } 2348 2349 if (arm_feature(env, ARM_FEATURE_EL2) && 2350 timeridx == GTIMER_PHYS && !secure && cur_el < 2 && 2351 !extract32(env->cp15.cnthctl_el2, 1, 1)) { 2352 return CP_ACCESS_TRAP_EL2; 2353 } 2354 return CP_ACCESS_OK; 2355 } 2356 2357 static CPAccessResult gt_pct_access(CPUARMState *env, 2358 const ARMCPRegInfo *ri, 2359 bool isread) 2360 { 2361 return gt_counter_access(env, GTIMER_PHYS, isread); 2362 } 2363 2364 static CPAccessResult gt_vct_access(CPUARMState *env, 2365 const ARMCPRegInfo *ri, 2366 bool isread) 2367 { 2368 return gt_counter_access(env, GTIMER_VIRT, isread); 2369 } 2370 2371 static CPAccessResult gt_ptimer_access(CPUARMState *env, const ARMCPRegInfo *ri, 2372 bool isread) 2373 { 2374 return gt_timer_access(env, GTIMER_PHYS, isread); 2375 } 2376 2377 static CPAccessResult gt_vtimer_access(CPUARMState *env, const ARMCPRegInfo *ri, 2378 bool isread) 2379 { 2380 return gt_timer_access(env, GTIMER_VIRT, isread); 2381 } 2382 2383 static CPAccessResult gt_stimer_access(CPUARMState *env, 2384 const ARMCPRegInfo *ri, 2385 bool isread) 2386 { 2387 /* The AArch64 register view of the secure physical timer is 2388 * always accessible from EL3, and configurably accessible from 2389 * Secure EL1. 2390 */ 2391 switch (arm_current_el(env)) { 2392 case 1: 2393 if (!arm_is_secure(env)) { 2394 return CP_ACCESS_TRAP; 2395 } 2396 if (!(env->cp15.scr_el3 & SCR_ST)) { 2397 return CP_ACCESS_TRAP_EL3; 2398 } 2399 return CP_ACCESS_OK; 2400 case 0: 2401 case 2: 2402 return CP_ACCESS_TRAP; 2403 case 3: 2404 return CP_ACCESS_OK; 2405 default: 2406 g_assert_not_reached(); 2407 } 2408 } 2409 2410 static uint64_t gt_get_countervalue(CPUARMState *env) 2411 { 2412 return qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL) / GTIMER_SCALE; 2413 } 2414 2415 static void gt_recalc_timer(ARMCPU *cpu, int timeridx) 2416 { 2417 ARMGenericTimer *gt = &cpu->env.cp15.c14_timer[timeridx]; 2418 2419 if (gt->ctl & 1) { 2420 /* Timer enabled: calculate and set current ISTATUS, irq, and 2421 * reset timer to when ISTATUS next has to change 2422 */ 2423 uint64_t offset = timeridx == GTIMER_VIRT ? 2424 cpu->env.cp15.cntvoff_el2 : 0; 2425 uint64_t count = gt_get_countervalue(&cpu->env); 2426 /* Note that this must be unsigned 64 bit arithmetic: */ 2427 int istatus = count - offset >= gt->cval; 2428 uint64_t nexttick; 2429 int irqstate; 2430 2431 gt->ctl = deposit32(gt->ctl, 2, 1, istatus); 2432 2433 irqstate = (istatus && !(gt->ctl & 2)); 2434 qemu_set_irq(cpu->gt_timer_outputs[timeridx], irqstate); 2435 2436 if (istatus) { 2437 /* Next transition is when count rolls back over to zero */ 2438 nexttick = UINT64_MAX; 2439 } else { 2440 /* Next transition is when we hit cval */ 2441 nexttick = gt->cval + offset; 2442 } 2443 /* Note that the desired next expiry time might be beyond the 2444 * signed-64-bit range of a QEMUTimer -- in this case we just 2445 * set the timer for as far in the future as possible. When the 2446 * timer expires we will reset the timer for any remaining period. 2447 */ 2448 if (nexttick > INT64_MAX / GTIMER_SCALE) { 2449 nexttick = INT64_MAX / GTIMER_SCALE; 2450 } 2451 timer_mod(cpu->gt_timer[timeridx], nexttick); 2452 trace_arm_gt_recalc(timeridx, irqstate, nexttick); 2453 } else { 2454 /* Timer disabled: ISTATUS and timer output always clear */ 2455 gt->ctl &= ~4; 2456 qemu_set_irq(cpu->gt_timer_outputs[timeridx], 0); 2457 timer_del(cpu->gt_timer[timeridx]); 2458 trace_arm_gt_recalc_disabled(timeridx); 2459 } 2460 } 2461 2462 static void gt_timer_reset(CPUARMState *env, const ARMCPRegInfo *ri, 2463 int timeridx) 2464 { 2465 ARMCPU *cpu = env_archcpu(env); 2466 2467 timer_del(cpu->gt_timer[timeridx]); 2468 } 2469 2470 static uint64_t gt_cnt_read(CPUARMState *env, const ARMCPRegInfo *ri) 2471 { 2472 return gt_get_countervalue(env); 2473 } 2474 2475 static uint64_t gt_virt_cnt_read(CPUARMState *env, const ARMCPRegInfo *ri) 2476 { 2477 return gt_get_countervalue(env) - env->cp15.cntvoff_el2; 2478 } 2479 2480 static void gt_cval_write(CPUARMState *env, const ARMCPRegInfo *ri, 2481 int timeridx, 2482 uint64_t value) 2483 { 2484 trace_arm_gt_cval_write(timeridx, value); 2485 env->cp15.c14_timer[timeridx].cval = value; 2486 gt_recalc_timer(env_archcpu(env), timeridx); 2487 } 2488 2489 static uint64_t gt_tval_read(CPUARMState *env, const ARMCPRegInfo *ri, 2490 int timeridx) 2491 { 2492 uint64_t offset = timeridx == GTIMER_VIRT ? env->cp15.cntvoff_el2 : 0; 2493 2494 return (uint32_t)(env->cp15.c14_timer[timeridx].cval - 2495 (gt_get_countervalue(env) - offset)); 2496 } 2497 2498 static void gt_tval_write(CPUARMState *env, const ARMCPRegInfo *ri, 2499 int timeridx, 2500 uint64_t value) 2501 { 2502 uint64_t offset = timeridx == GTIMER_VIRT ? env->cp15.cntvoff_el2 : 0; 2503 2504 trace_arm_gt_tval_write(timeridx, value); 2505 env->cp15.c14_timer[timeridx].cval = gt_get_countervalue(env) - offset + 2506 sextract64(value, 0, 32); 2507 gt_recalc_timer(env_archcpu(env), timeridx); 2508 } 2509 2510 static void gt_ctl_write(CPUARMState *env, const ARMCPRegInfo *ri, 2511 int timeridx, 2512 uint64_t value) 2513 { 2514 ARMCPU *cpu = env_archcpu(env); 2515 uint32_t oldval = env->cp15.c14_timer[timeridx].ctl; 2516 2517 trace_arm_gt_ctl_write(timeridx, value); 2518 env->cp15.c14_timer[timeridx].ctl = deposit64(oldval, 0, 2, value); 2519 if ((oldval ^ value) & 1) { 2520 /* Enable toggled */ 2521 gt_recalc_timer(cpu, timeridx); 2522 } else if ((oldval ^ value) & 2) { 2523 /* IMASK toggled: don't need to recalculate, 2524 * just set the interrupt line based on ISTATUS 2525 */ 2526 int irqstate = (oldval & 4) && !(value & 2); 2527 2528 trace_arm_gt_imask_toggle(timeridx, irqstate); 2529 qemu_set_irq(cpu->gt_timer_outputs[timeridx], irqstate); 2530 } 2531 } 2532 2533 static void gt_phys_timer_reset(CPUARMState *env, const ARMCPRegInfo *ri) 2534 { 2535 gt_timer_reset(env, ri, GTIMER_PHYS); 2536 } 2537 2538 static void gt_phys_cval_write(CPUARMState *env, const ARMCPRegInfo *ri, 2539 uint64_t value) 2540 { 2541 gt_cval_write(env, ri, GTIMER_PHYS, value); 2542 } 2543 2544 static uint64_t gt_phys_tval_read(CPUARMState *env, const ARMCPRegInfo *ri) 2545 { 2546 return gt_tval_read(env, ri, GTIMER_PHYS); 2547 } 2548 2549 static void gt_phys_tval_write(CPUARMState *env, const ARMCPRegInfo *ri, 2550 uint64_t value) 2551 { 2552 gt_tval_write(env, ri, GTIMER_PHYS, value); 2553 } 2554 2555 static void gt_phys_ctl_write(CPUARMState *env, const ARMCPRegInfo *ri, 2556 uint64_t value) 2557 { 2558 gt_ctl_write(env, ri, GTIMER_PHYS, value); 2559 } 2560 2561 static void gt_virt_timer_reset(CPUARMState *env, const ARMCPRegInfo *ri) 2562 { 2563 gt_timer_reset(env, ri, GTIMER_VIRT); 2564 } 2565 2566 static void gt_virt_cval_write(CPUARMState *env, const ARMCPRegInfo *ri, 2567 uint64_t value) 2568 { 2569 gt_cval_write(env, ri, GTIMER_VIRT, value); 2570 } 2571 2572 static uint64_t gt_virt_tval_read(CPUARMState *env, const ARMCPRegInfo *ri) 2573 { 2574 return gt_tval_read(env, ri, GTIMER_VIRT); 2575 } 2576 2577 static void gt_virt_tval_write(CPUARMState *env, const ARMCPRegInfo *ri, 2578 uint64_t value) 2579 { 2580 gt_tval_write(env, ri, GTIMER_VIRT, value); 2581 } 2582 2583 static void gt_virt_ctl_write(CPUARMState *env, const ARMCPRegInfo *ri, 2584 uint64_t value) 2585 { 2586 gt_ctl_write(env, ri, GTIMER_VIRT, value); 2587 } 2588 2589 static void gt_cntvoff_write(CPUARMState *env, const ARMCPRegInfo *ri, 2590 uint64_t value) 2591 { 2592 ARMCPU *cpu = env_archcpu(env); 2593 2594 trace_arm_gt_cntvoff_write(value); 2595 raw_write(env, ri, value); 2596 gt_recalc_timer(cpu, GTIMER_VIRT); 2597 } 2598 2599 static void gt_hyp_timer_reset(CPUARMState *env, const ARMCPRegInfo *ri) 2600 { 2601 gt_timer_reset(env, ri, GTIMER_HYP); 2602 } 2603 2604 static void gt_hyp_cval_write(CPUARMState *env, const ARMCPRegInfo *ri, 2605 uint64_t value) 2606 { 2607 gt_cval_write(env, ri, GTIMER_HYP, value); 2608 } 2609 2610 static uint64_t gt_hyp_tval_read(CPUARMState *env, const ARMCPRegInfo *ri) 2611 { 2612 return gt_tval_read(env, ri, GTIMER_HYP); 2613 } 2614 2615 static void gt_hyp_tval_write(CPUARMState *env, const ARMCPRegInfo *ri, 2616 uint64_t value) 2617 { 2618 gt_tval_write(env, ri, GTIMER_HYP, value); 2619 } 2620 2621 static void gt_hyp_ctl_write(CPUARMState *env, const ARMCPRegInfo *ri, 2622 uint64_t value) 2623 { 2624 gt_ctl_write(env, ri, GTIMER_HYP, value); 2625 } 2626 2627 static void gt_sec_timer_reset(CPUARMState *env, const ARMCPRegInfo *ri) 2628 { 2629 gt_timer_reset(env, ri, GTIMER_SEC); 2630 } 2631 2632 static void gt_sec_cval_write(CPUARMState *env, const ARMCPRegInfo *ri, 2633 uint64_t value) 2634 { 2635 gt_cval_write(env, ri, GTIMER_SEC, value); 2636 } 2637 2638 static uint64_t gt_sec_tval_read(CPUARMState *env, const ARMCPRegInfo *ri) 2639 { 2640 return gt_tval_read(env, ri, GTIMER_SEC); 2641 } 2642 2643 static void gt_sec_tval_write(CPUARMState *env, const ARMCPRegInfo *ri, 2644 uint64_t value) 2645 { 2646 gt_tval_write(env, ri, GTIMER_SEC, value); 2647 } 2648 2649 static void gt_sec_ctl_write(CPUARMState *env, const ARMCPRegInfo *ri, 2650 uint64_t value) 2651 { 2652 gt_ctl_write(env, ri, GTIMER_SEC, value); 2653 } 2654 2655 void arm_gt_ptimer_cb(void *opaque) 2656 { 2657 ARMCPU *cpu = opaque; 2658 2659 gt_recalc_timer(cpu, GTIMER_PHYS); 2660 } 2661 2662 void arm_gt_vtimer_cb(void *opaque) 2663 { 2664 ARMCPU *cpu = opaque; 2665 2666 gt_recalc_timer(cpu, GTIMER_VIRT); 2667 } 2668 2669 void arm_gt_htimer_cb(void *opaque) 2670 { 2671 ARMCPU *cpu = opaque; 2672 2673 gt_recalc_timer(cpu, GTIMER_HYP); 2674 } 2675 2676 void arm_gt_stimer_cb(void *opaque) 2677 { 2678 ARMCPU *cpu = opaque; 2679 2680 gt_recalc_timer(cpu, GTIMER_SEC); 2681 } 2682 2683 static const ARMCPRegInfo generic_timer_cp_reginfo[] = { 2684 /* Note that CNTFRQ is purely reads-as-written for the benefit 2685 * of software; writing it doesn't actually change the timer frequency. 2686 * Our reset value matches the fixed frequency we implement the timer at. 2687 */ 2688 { .name = "CNTFRQ", .cp = 15, .crn = 14, .crm = 0, .opc1 = 0, .opc2 = 0, 2689 .type = ARM_CP_ALIAS, 2690 .access = PL1_RW | PL0_R, .accessfn = gt_cntfrq_access, 2691 .fieldoffset = offsetoflow32(CPUARMState, cp15.c14_cntfrq), 2692 }, 2693 { .name = "CNTFRQ_EL0", .state = ARM_CP_STATE_AA64, 2694 .opc0 = 3, .opc1 = 3, .crn = 14, .crm = 0, .opc2 = 0, 2695 .access = PL1_RW | PL0_R, .accessfn = gt_cntfrq_access, 2696 .fieldoffset = offsetof(CPUARMState, cp15.c14_cntfrq), 2697 .resetvalue = (1000 * 1000 * 1000) / GTIMER_SCALE, 2698 }, 2699 /* overall control: mostly access permissions */ 2700 { .name = "CNTKCTL", .state = ARM_CP_STATE_BOTH, 2701 .opc0 = 3, .opc1 = 0, .crn = 14, .crm = 1, .opc2 = 0, 2702 .access = PL1_RW, 2703 .fieldoffset = offsetof(CPUARMState, cp15.c14_cntkctl), 2704 .resetvalue = 0, 2705 }, 2706 /* per-timer control */ 2707 { .name = "CNTP_CTL", .cp = 15, .crn = 14, .crm = 2, .opc1 = 0, .opc2 = 1, 2708 .secure = ARM_CP_SECSTATE_NS, 2709 .type = ARM_CP_IO | ARM_CP_ALIAS, .access = PL0_RW, 2710 .accessfn = gt_ptimer_access, 2711 .fieldoffset = offsetoflow32(CPUARMState, 2712 cp15.c14_timer[GTIMER_PHYS].ctl), 2713 .writefn = gt_phys_ctl_write, .raw_writefn = raw_write, 2714 }, 2715 { .name = "CNTP_CTL_S", 2716 .cp = 15, .crn = 14, .crm = 2, .opc1 = 0, .opc2 = 1, 2717 .secure = ARM_CP_SECSTATE_S, 2718 .type = ARM_CP_IO | ARM_CP_ALIAS, .access = PL0_RW, 2719 .accessfn = gt_ptimer_access, 2720 .fieldoffset = offsetoflow32(CPUARMState, 2721 cp15.c14_timer[GTIMER_SEC].ctl), 2722 .writefn = gt_sec_ctl_write, .raw_writefn = raw_write, 2723 }, 2724 { .name = "CNTP_CTL_EL0", .state = ARM_CP_STATE_AA64, 2725 .opc0 = 3, .opc1 = 3, .crn = 14, .crm = 2, .opc2 = 1, 2726 .type = ARM_CP_IO, .access = PL0_RW, 2727 .accessfn = gt_ptimer_access, 2728 .fieldoffset = offsetof(CPUARMState, cp15.c14_timer[GTIMER_PHYS].ctl), 2729 .resetvalue = 0, 2730 .writefn = gt_phys_ctl_write, .raw_writefn = raw_write, 2731 }, 2732 { .name = "CNTV_CTL", .cp = 15, .crn = 14, .crm = 3, .opc1 = 0, .opc2 = 1, 2733 .type = ARM_CP_IO | ARM_CP_ALIAS, .access = PL0_RW, 2734 .accessfn = gt_vtimer_access, 2735 .fieldoffset = offsetoflow32(CPUARMState, 2736 cp15.c14_timer[GTIMER_VIRT].ctl), 2737 .writefn = gt_virt_ctl_write, .raw_writefn = raw_write, 2738 }, 2739 { .name = "CNTV_CTL_EL0", .state = ARM_CP_STATE_AA64, 2740 .opc0 = 3, .opc1 = 3, .crn = 14, .crm = 3, .opc2 = 1, 2741 .type = ARM_CP_IO, .access = PL0_RW, 2742 .accessfn = gt_vtimer_access, 2743 .fieldoffset = offsetof(CPUARMState, cp15.c14_timer[GTIMER_VIRT].ctl), 2744 .resetvalue = 0, 2745 .writefn = gt_virt_ctl_write, .raw_writefn = raw_write, 2746 }, 2747 /* TimerValue views: a 32 bit downcounting view of the underlying state */ 2748 { .name = "CNTP_TVAL", .cp = 15, .crn = 14, .crm = 2, .opc1 = 0, .opc2 = 0, 2749 .secure = ARM_CP_SECSTATE_NS, 2750 .type = ARM_CP_NO_RAW | ARM_CP_IO, .access = PL0_RW, 2751 .accessfn = gt_ptimer_access, 2752 .readfn = gt_phys_tval_read, .writefn = gt_phys_tval_write, 2753 }, 2754 { .name = "CNTP_TVAL_S", 2755 .cp = 15, .crn = 14, .crm = 2, .opc1 = 0, .opc2 = 0, 2756 .secure = ARM_CP_SECSTATE_S, 2757 .type = ARM_CP_NO_RAW | ARM_CP_IO, .access = PL0_RW, 2758 .accessfn = gt_ptimer_access, 2759 .readfn = gt_sec_tval_read, .writefn = gt_sec_tval_write, 2760 }, 2761 { .name = "CNTP_TVAL_EL0", .state = ARM_CP_STATE_AA64, 2762 .opc0 = 3, .opc1 = 3, .crn = 14, .crm = 2, .opc2 = 0, 2763 .type = ARM_CP_NO_RAW | ARM_CP_IO, .access = PL0_RW, 2764 .accessfn = gt_ptimer_access, .resetfn = gt_phys_timer_reset, 2765 .readfn = gt_phys_tval_read, .writefn = gt_phys_tval_write, 2766 }, 2767 { .name = "CNTV_TVAL", .cp = 15, .crn = 14, .crm = 3, .opc1 = 0, .opc2 = 0, 2768 .type = ARM_CP_NO_RAW | ARM_CP_IO, .access = PL0_RW, 2769 .accessfn = gt_vtimer_access, 2770 .readfn = gt_virt_tval_read, .writefn = gt_virt_tval_write, 2771 }, 2772 { .name = "CNTV_TVAL_EL0", .state = ARM_CP_STATE_AA64, 2773 .opc0 = 3, .opc1 = 3, .crn = 14, .crm = 3, .opc2 = 0, 2774 .type = ARM_CP_NO_RAW | ARM_CP_IO, .access = PL0_RW, 2775 .accessfn = gt_vtimer_access, .resetfn = gt_virt_timer_reset, 2776 .readfn = gt_virt_tval_read, .writefn = gt_virt_tval_write, 2777 }, 2778 /* The counter itself */ 2779 { .name = "CNTPCT", .cp = 15, .crm = 14, .opc1 = 0, 2780 .access = PL0_R, .type = ARM_CP_64BIT | ARM_CP_NO_RAW | ARM_CP_IO, 2781 .accessfn = gt_pct_access, 2782 .readfn = gt_cnt_read, .resetfn = arm_cp_reset_ignore, 2783 }, 2784 { .name = "CNTPCT_EL0", .state = ARM_CP_STATE_AA64, 2785 .opc0 = 3, .opc1 = 3, .crn = 14, .crm = 0, .opc2 = 1, 2786 .access = PL0_R, .type = ARM_CP_NO_RAW | ARM_CP_IO, 2787 .accessfn = gt_pct_access, .readfn = gt_cnt_read, 2788 }, 2789 { .name = "CNTVCT", .cp = 15, .crm = 14, .opc1 = 1, 2790 .access = PL0_R, .type = ARM_CP_64BIT | ARM_CP_NO_RAW | ARM_CP_IO, 2791 .accessfn = gt_vct_access, 2792 .readfn = gt_virt_cnt_read, .resetfn = arm_cp_reset_ignore, 2793 }, 2794 { .name = "CNTVCT_EL0", .state = ARM_CP_STATE_AA64, 2795 .opc0 = 3, .opc1 = 3, .crn = 14, .crm = 0, .opc2 = 2, 2796 .access = PL0_R, .type = ARM_CP_NO_RAW | ARM_CP_IO, 2797 .accessfn = gt_vct_access, .readfn = gt_virt_cnt_read, 2798 }, 2799 /* Comparison value, indicating when the timer goes off */ 2800 { .name = "CNTP_CVAL", .cp = 15, .crm = 14, .opc1 = 2, 2801 .secure = ARM_CP_SECSTATE_NS, 2802 .access = PL0_RW, 2803 .type = ARM_CP_64BIT | ARM_CP_IO | ARM_CP_ALIAS, 2804 .fieldoffset = offsetof(CPUARMState, cp15.c14_timer[GTIMER_PHYS].cval), 2805 .accessfn = gt_ptimer_access, 2806 .writefn = gt_phys_cval_write, .raw_writefn = raw_write, 2807 }, 2808 { .name = "CNTP_CVAL_S", .cp = 15, .crm = 14, .opc1 = 2, 2809 .secure = ARM_CP_SECSTATE_S, 2810 .access = PL0_RW, 2811 .type = ARM_CP_64BIT | ARM_CP_IO | ARM_CP_ALIAS, 2812 .fieldoffset = offsetof(CPUARMState, cp15.c14_timer[GTIMER_SEC].cval), 2813 .accessfn = gt_ptimer_access, 2814 .writefn = gt_sec_cval_write, .raw_writefn = raw_write, 2815 }, 2816 { .name = "CNTP_CVAL_EL0", .state = ARM_CP_STATE_AA64, 2817 .opc0 = 3, .opc1 = 3, .crn = 14, .crm = 2, .opc2 = 2, 2818 .access = PL0_RW, 2819 .type = ARM_CP_IO, 2820 .fieldoffset = offsetof(CPUARMState, cp15.c14_timer[GTIMER_PHYS].cval), 2821 .resetvalue = 0, .accessfn = gt_ptimer_access, 2822 .writefn = gt_phys_cval_write, .raw_writefn = raw_write, 2823 }, 2824 { .name = "CNTV_CVAL", .cp = 15, .crm = 14, .opc1 = 3, 2825 .access = PL0_RW, 2826 .type = ARM_CP_64BIT | ARM_CP_IO | ARM_CP_ALIAS, 2827 .fieldoffset = offsetof(CPUARMState, cp15.c14_timer[GTIMER_VIRT].cval), 2828 .accessfn = gt_vtimer_access, 2829 .writefn = gt_virt_cval_write, .raw_writefn = raw_write, 2830 }, 2831 { .name = "CNTV_CVAL_EL0", .state = ARM_CP_STATE_AA64, 2832 .opc0 = 3, .opc1 = 3, .crn = 14, .crm = 3, .opc2 = 2, 2833 .access = PL0_RW, 2834 .type = ARM_CP_IO, 2835 .fieldoffset = offsetof(CPUARMState, cp15.c14_timer[GTIMER_VIRT].cval), 2836 .resetvalue = 0, .accessfn = gt_vtimer_access, 2837 .writefn = gt_virt_cval_write, .raw_writefn = raw_write, 2838 }, 2839 /* Secure timer -- this is actually restricted to only EL3 2840 * and configurably Secure-EL1 via the accessfn. 2841 */ 2842 { .name = "CNTPS_TVAL_EL1", .state = ARM_CP_STATE_AA64, 2843 .opc0 = 3, .opc1 = 7, .crn = 14, .crm = 2, .opc2 = 0, 2844 .type = ARM_CP_NO_RAW | ARM_CP_IO, .access = PL1_RW, 2845 .accessfn = gt_stimer_access, 2846 .readfn = gt_sec_tval_read, 2847 .writefn = gt_sec_tval_write, 2848 .resetfn = gt_sec_timer_reset, 2849 }, 2850 { .name = "CNTPS_CTL_EL1", .state = ARM_CP_STATE_AA64, 2851 .opc0 = 3, .opc1 = 7, .crn = 14, .crm = 2, .opc2 = 1, 2852 .type = ARM_CP_IO, .access = PL1_RW, 2853 .accessfn = gt_stimer_access, 2854 .fieldoffset = offsetof(CPUARMState, cp15.c14_timer[GTIMER_SEC].ctl), 2855 .resetvalue = 0, 2856 .writefn = gt_sec_ctl_write, .raw_writefn = raw_write, 2857 }, 2858 { .name = "CNTPS_CVAL_EL1", .state = ARM_CP_STATE_AA64, 2859 .opc0 = 3, .opc1 = 7, .crn = 14, .crm = 2, .opc2 = 2, 2860 .type = ARM_CP_IO, .access = PL1_RW, 2861 .accessfn = gt_stimer_access, 2862 .fieldoffset = offsetof(CPUARMState, cp15.c14_timer[GTIMER_SEC].cval), 2863 .writefn = gt_sec_cval_write, .raw_writefn = raw_write, 2864 }, 2865 REGINFO_SENTINEL 2866 }; 2867 2868 #else 2869 2870 /* In user-mode most of the generic timer registers are inaccessible 2871 * however modern kernels (4.12+) allow access to cntvct_el0 2872 */ 2873 2874 static uint64_t gt_virt_cnt_read(CPUARMState *env, const ARMCPRegInfo *ri) 2875 { 2876 /* Currently we have no support for QEMUTimer in linux-user so we 2877 * can't call gt_get_countervalue(env), instead we directly 2878 * call the lower level functions. 2879 */ 2880 return cpu_get_clock() / GTIMER_SCALE; 2881 } 2882 2883 static const ARMCPRegInfo generic_timer_cp_reginfo[] = { 2884 { .name = "CNTFRQ_EL0", .state = ARM_CP_STATE_AA64, 2885 .opc0 = 3, .opc1 = 3, .crn = 14, .crm = 0, .opc2 = 0, 2886 .type = ARM_CP_CONST, .access = PL0_R /* no PL1_RW in linux-user */, 2887 .fieldoffset = offsetof(CPUARMState, cp15.c14_cntfrq), 2888 .resetvalue = NANOSECONDS_PER_SECOND / GTIMER_SCALE, 2889 }, 2890 { .name = "CNTVCT_EL0", .state = ARM_CP_STATE_AA64, 2891 .opc0 = 3, .opc1 = 3, .crn = 14, .crm = 0, .opc2 = 2, 2892 .access = PL0_R, .type = ARM_CP_NO_RAW | ARM_CP_IO, 2893 .readfn = gt_virt_cnt_read, 2894 }, 2895 REGINFO_SENTINEL 2896 }; 2897 2898 #endif 2899 2900 static void par_write(CPUARMState *env, const ARMCPRegInfo *ri, uint64_t value) 2901 { 2902 if (arm_feature(env, ARM_FEATURE_LPAE)) { 2903 raw_write(env, ri, value); 2904 } else if (arm_feature(env, ARM_FEATURE_V7)) { 2905 raw_write(env, ri, value & 0xfffff6ff); 2906 } else { 2907 raw_write(env, ri, value & 0xfffff1ff); 2908 } 2909 } 2910 2911 #ifndef CONFIG_USER_ONLY 2912 /* get_phys_addr() isn't present for user-mode-only targets */ 2913 2914 static CPAccessResult ats_access(CPUARMState *env, const ARMCPRegInfo *ri, 2915 bool isread) 2916 { 2917 if (ri->opc2 & 4) { 2918 /* The ATS12NSO* operations must trap to EL3 if executed in 2919 * Secure EL1 (which can only happen if EL3 is AArch64). 2920 * They are simply UNDEF if executed from NS EL1. 2921 * They function normally from EL2 or EL3. 2922 */ 2923 if (arm_current_el(env) == 1) { 2924 if (arm_is_secure_below_el3(env)) { 2925 return CP_ACCESS_TRAP_UNCATEGORIZED_EL3; 2926 } 2927 return CP_ACCESS_TRAP_UNCATEGORIZED; 2928 } 2929 } 2930 return CP_ACCESS_OK; 2931 } 2932 2933 static uint64_t do_ats_write(CPUARMState *env, uint64_t value, 2934 MMUAccessType access_type, ARMMMUIdx mmu_idx) 2935 { 2936 hwaddr phys_addr; 2937 target_ulong page_size; 2938 int prot; 2939 bool ret; 2940 uint64_t par64; 2941 bool format64 = false; 2942 MemTxAttrs attrs = {}; 2943 ARMMMUFaultInfo fi = {}; 2944 ARMCacheAttrs cacheattrs = {}; 2945 2946 ret = get_phys_addr(env, value, access_type, mmu_idx, &phys_addr, &attrs, 2947 &prot, &page_size, &fi, &cacheattrs); 2948 2949 if (ret) { 2950 /* 2951 * Some kinds of translation fault must cause exceptions rather 2952 * than being reported in the PAR. 2953 */ 2954 int current_el = arm_current_el(env); 2955 int target_el; 2956 uint32_t syn, fsr, fsc; 2957 bool take_exc = false; 2958 2959 if (fi.s1ptw && current_el == 1 && !arm_is_secure(env) 2960 && (mmu_idx == ARMMMUIdx_S1NSE1 || mmu_idx == ARMMMUIdx_S1NSE0)) { 2961 /* 2962 * Synchronous stage 2 fault on an access made as part of the 2963 * translation table walk for AT S1E0* or AT S1E1* insn 2964 * executed from NS EL1. If this is a synchronous external abort 2965 * and SCR_EL3.EA == 1, then we take a synchronous external abort 2966 * to EL3. Otherwise the fault is taken as an exception to EL2, 2967 * and HPFAR_EL2 holds the faulting IPA. 2968 */ 2969 if (fi.type == ARMFault_SyncExternalOnWalk && 2970 (env->cp15.scr_el3 & SCR_EA)) { 2971 target_el = 3; 2972 } else { 2973 env->cp15.hpfar_el2 = extract64(fi.s2addr, 12, 47) << 4; 2974 target_el = 2; 2975 } 2976 take_exc = true; 2977 } else if (fi.type == ARMFault_SyncExternalOnWalk) { 2978 /* 2979 * Synchronous external aborts during a translation table walk 2980 * are taken as Data Abort exceptions. 2981 */ 2982 if (fi.stage2) { 2983 if (current_el == 3) { 2984 target_el = 3; 2985 } else { 2986 target_el = 2; 2987 } 2988 } else { 2989 target_el = exception_target_el(env); 2990 } 2991 take_exc = true; 2992 } 2993 2994 if (take_exc) { 2995 /* Construct FSR and FSC using same logic as arm_deliver_fault() */ 2996 if (target_el == 2 || arm_el_is_aa64(env, target_el) || 2997 arm_s1_regime_using_lpae_format(env, mmu_idx)) { 2998 fsr = arm_fi_to_lfsc(&fi); 2999 fsc = extract32(fsr, 0, 6); 3000 } else { 3001 fsr = arm_fi_to_sfsc(&fi); 3002 fsc = 0x3f; 3003 } 3004 /* 3005 * Report exception with ESR indicating a fault due to a 3006 * translation table walk for a cache maintenance instruction. 3007 */ 3008 syn = syn_data_abort_no_iss(current_el == target_el, 3009 fi.ea, 1, fi.s1ptw, 1, fsc); 3010 env->exception.vaddress = value; 3011 env->exception.fsr = fsr; 3012 raise_exception(env, EXCP_DATA_ABORT, syn, target_el); 3013 } 3014 } 3015 3016 if (is_a64(env)) { 3017 format64 = true; 3018 } else if (arm_feature(env, ARM_FEATURE_LPAE)) { 3019 /* 3020 * ATS1Cxx: 3021 * * TTBCR.EAE determines whether the result is returned using the 3022 * 32-bit or the 64-bit PAR format 3023 * * Instructions executed in Hyp mode always use the 64bit format 3024 * 3025 * ATS1S2NSOxx uses the 64bit format if any of the following is true: 3026 * * The Non-secure TTBCR.EAE bit is set to 1 3027 * * The implementation includes EL2, and the value of HCR.VM is 1 3028 * 3029 * (Note that HCR.DC makes HCR.VM behave as if it is 1.) 3030 * 3031 * ATS1Hx always uses the 64bit format. 3032 */ 3033 format64 = arm_s1_regime_using_lpae_format(env, mmu_idx); 3034 3035 if (arm_feature(env, ARM_FEATURE_EL2)) { 3036 if (mmu_idx == ARMMMUIdx_S12NSE0 || mmu_idx == ARMMMUIdx_S12NSE1) { 3037 format64 |= env->cp15.hcr_el2 & (HCR_VM | HCR_DC); 3038 } else { 3039 format64 |= arm_current_el(env) == 2; 3040 } 3041 } 3042 } 3043 3044 if (format64) { 3045 /* Create a 64-bit PAR */ 3046 par64 = (1 << 11); /* LPAE bit always set */ 3047 if (!ret) { 3048 par64 |= phys_addr & ~0xfffULL; 3049 if (!attrs.secure) { 3050 par64 |= (1 << 9); /* NS */ 3051 } 3052 par64 |= (uint64_t)cacheattrs.attrs << 56; /* ATTR */ 3053 par64 |= cacheattrs.shareability << 7; /* SH */ 3054 } else { 3055 uint32_t fsr = arm_fi_to_lfsc(&fi); 3056 3057 par64 |= 1; /* F */ 3058 par64 |= (fsr & 0x3f) << 1; /* FS */ 3059 if (fi.stage2) { 3060 par64 |= (1 << 9); /* S */ 3061 } 3062 if (fi.s1ptw) { 3063 par64 |= (1 << 8); /* PTW */ 3064 } 3065 } 3066 } else { 3067 /* fsr is a DFSR/IFSR value for the short descriptor 3068 * translation table format (with WnR always clear). 3069 * Convert it to a 32-bit PAR. 3070 */ 3071 if (!ret) { 3072 /* We do not set any attribute bits in the PAR */ 3073 if (page_size == (1 << 24) 3074 && arm_feature(env, ARM_FEATURE_V7)) { 3075 par64 = (phys_addr & 0xff000000) | (1 << 1); 3076 } else { 3077 par64 = phys_addr & 0xfffff000; 3078 } 3079 if (!attrs.secure) { 3080 par64 |= (1 << 9); /* NS */ 3081 } 3082 } else { 3083 uint32_t fsr = arm_fi_to_sfsc(&fi); 3084 3085 par64 = ((fsr & (1 << 10)) >> 5) | ((fsr & (1 << 12)) >> 6) | 3086 ((fsr & 0xf) << 1) | 1; 3087 } 3088 } 3089 return par64; 3090 } 3091 3092 static void ats_write(CPUARMState *env, const ARMCPRegInfo *ri, uint64_t value) 3093 { 3094 MMUAccessType access_type = ri->opc2 & 1 ? MMU_DATA_STORE : MMU_DATA_LOAD; 3095 uint64_t par64; 3096 ARMMMUIdx mmu_idx; 3097 int el = arm_current_el(env); 3098 bool secure = arm_is_secure_below_el3(env); 3099 3100 switch (ri->opc2 & 6) { 3101 case 0: 3102 /* stage 1 current state PL1: ATS1CPR, ATS1CPW */ 3103 switch (el) { 3104 case 3: 3105 mmu_idx = ARMMMUIdx_S1E3; 3106 break; 3107 case 2: 3108 mmu_idx = ARMMMUIdx_S1NSE1; 3109 break; 3110 case 1: 3111 mmu_idx = secure ? ARMMMUIdx_S1SE1 : ARMMMUIdx_S1NSE1; 3112 break; 3113 default: 3114 g_assert_not_reached(); 3115 } 3116 break; 3117 case 2: 3118 /* stage 1 current state PL0: ATS1CUR, ATS1CUW */ 3119 switch (el) { 3120 case 3: 3121 mmu_idx = ARMMMUIdx_S1SE0; 3122 break; 3123 case 2: 3124 mmu_idx = ARMMMUIdx_S1NSE0; 3125 break; 3126 case 1: 3127 mmu_idx = secure ? ARMMMUIdx_S1SE0 : ARMMMUIdx_S1NSE0; 3128 break; 3129 default: 3130 g_assert_not_reached(); 3131 } 3132 break; 3133 case 4: 3134 /* stage 1+2 NonSecure PL1: ATS12NSOPR, ATS12NSOPW */ 3135 mmu_idx = ARMMMUIdx_S12NSE1; 3136 break; 3137 case 6: 3138 /* stage 1+2 NonSecure PL0: ATS12NSOUR, ATS12NSOUW */ 3139 mmu_idx = ARMMMUIdx_S12NSE0; 3140 break; 3141 default: 3142 g_assert_not_reached(); 3143 } 3144 3145 par64 = do_ats_write(env, value, access_type, mmu_idx); 3146 3147 A32_BANKED_CURRENT_REG_SET(env, par, par64); 3148 } 3149 3150 static void ats1h_write(CPUARMState *env, const ARMCPRegInfo *ri, 3151 uint64_t value) 3152 { 3153 MMUAccessType access_type = ri->opc2 & 1 ? MMU_DATA_STORE : MMU_DATA_LOAD; 3154 uint64_t par64; 3155 3156 par64 = do_ats_write(env, value, access_type, ARMMMUIdx_S1E2); 3157 3158 A32_BANKED_CURRENT_REG_SET(env, par, par64); 3159 } 3160 3161 static CPAccessResult at_s1e2_access(CPUARMState *env, const ARMCPRegInfo *ri, 3162 bool isread) 3163 { 3164 if (arm_current_el(env) == 3 && !(env->cp15.scr_el3 & SCR_NS)) { 3165 return CP_ACCESS_TRAP; 3166 } 3167 return CP_ACCESS_OK; 3168 } 3169 3170 static void ats_write64(CPUARMState *env, const ARMCPRegInfo *ri, 3171 uint64_t value) 3172 { 3173 MMUAccessType access_type = ri->opc2 & 1 ? MMU_DATA_STORE : MMU_DATA_LOAD; 3174 ARMMMUIdx mmu_idx; 3175 int secure = arm_is_secure_below_el3(env); 3176 3177 switch (ri->opc2 & 6) { 3178 case 0: 3179 switch (ri->opc1) { 3180 case 0: /* AT S1E1R, AT S1E1W */ 3181 mmu_idx = secure ? ARMMMUIdx_S1SE1 : ARMMMUIdx_S1NSE1; 3182 break; 3183 case 4: /* AT S1E2R, AT S1E2W */ 3184 mmu_idx = ARMMMUIdx_S1E2; 3185 break; 3186 case 6: /* AT S1E3R, AT S1E3W */ 3187 mmu_idx = ARMMMUIdx_S1E3; 3188 break; 3189 default: 3190 g_assert_not_reached(); 3191 } 3192 break; 3193 case 2: /* AT S1E0R, AT S1E0W */ 3194 mmu_idx = secure ? ARMMMUIdx_S1SE0 : ARMMMUIdx_S1NSE0; 3195 break; 3196 case 4: /* AT S12E1R, AT S12E1W */ 3197 mmu_idx = secure ? ARMMMUIdx_S1SE1 : ARMMMUIdx_S12NSE1; 3198 break; 3199 case 6: /* AT S12E0R, AT S12E0W */ 3200 mmu_idx = secure ? ARMMMUIdx_S1SE0 : ARMMMUIdx_S12NSE0; 3201 break; 3202 default: 3203 g_assert_not_reached(); 3204 } 3205 3206 env->cp15.par_el[1] = do_ats_write(env, value, access_type, mmu_idx); 3207 } 3208 #endif 3209 3210 static const ARMCPRegInfo vapa_cp_reginfo[] = { 3211 { .name = "PAR", .cp = 15, .crn = 7, .crm = 4, .opc1 = 0, .opc2 = 0, 3212 .access = PL1_RW, .resetvalue = 0, 3213 .bank_fieldoffsets = { offsetoflow32(CPUARMState, cp15.par_s), 3214 offsetoflow32(CPUARMState, cp15.par_ns) }, 3215 .writefn = par_write }, 3216 #ifndef CONFIG_USER_ONLY 3217 /* This underdecoding is safe because the reginfo is NO_RAW. */ 3218 { .name = "ATS", .cp = 15, .crn = 7, .crm = 8, .opc1 = 0, .opc2 = CP_ANY, 3219 .access = PL1_W, .accessfn = ats_access, 3220 .writefn = ats_write, .type = ARM_CP_NO_RAW | ARM_CP_RAISES_EXC }, 3221 #endif 3222 REGINFO_SENTINEL 3223 }; 3224 3225 /* Return basic MPU access permission bits. */ 3226 static uint32_t simple_mpu_ap_bits(uint32_t val) 3227 { 3228 uint32_t ret; 3229 uint32_t mask; 3230 int i; 3231 ret = 0; 3232 mask = 3; 3233 for (i = 0; i < 16; i += 2) { 3234 ret |= (val >> i) & mask; 3235 mask <<= 2; 3236 } 3237 return ret; 3238 } 3239 3240 /* Pad basic MPU access permission bits to extended format. */ 3241 static uint32_t extended_mpu_ap_bits(uint32_t val) 3242 { 3243 uint32_t ret; 3244 uint32_t mask; 3245 int i; 3246 ret = 0; 3247 mask = 3; 3248 for (i = 0; i < 16; i += 2) { 3249 ret |= (val & mask) << i; 3250 mask <<= 2; 3251 } 3252 return ret; 3253 } 3254 3255 static void pmsav5_data_ap_write(CPUARMState *env, const ARMCPRegInfo *ri, 3256 uint64_t value) 3257 { 3258 env->cp15.pmsav5_data_ap = extended_mpu_ap_bits(value); 3259 } 3260 3261 static uint64_t pmsav5_data_ap_read(CPUARMState *env, const ARMCPRegInfo *ri) 3262 { 3263 return simple_mpu_ap_bits(env->cp15.pmsav5_data_ap); 3264 } 3265 3266 static void pmsav5_insn_ap_write(CPUARMState *env, const ARMCPRegInfo *ri, 3267 uint64_t value) 3268 { 3269 env->cp15.pmsav5_insn_ap = extended_mpu_ap_bits(value); 3270 } 3271 3272 static uint64_t pmsav5_insn_ap_read(CPUARMState *env, const ARMCPRegInfo *ri) 3273 { 3274 return simple_mpu_ap_bits(env->cp15.pmsav5_insn_ap); 3275 } 3276 3277 static uint64_t pmsav7_read(CPUARMState *env, const ARMCPRegInfo *ri) 3278 { 3279 uint32_t *u32p = *(uint32_t **)raw_ptr(env, ri); 3280 3281 if (!u32p) { 3282 return 0; 3283 } 3284 3285 u32p += env->pmsav7.rnr[M_REG_NS]; 3286 return *u32p; 3287 } 3288 3289 static void pmsav7_write(CPUARMState *env, const ARMCPRegInfo *ri, 3290 uint64_t value) 3291 { 3292 ARMCPU *cpu = env_archcpu(env); 3293 uint32_t *u32p = *(uint32_t **)raw_ptr(env, ri); 3294 3295 if (!u32p) { 3296 return; 3297 } 3298 3299 u32p += env->pmsav7.rnr[M_REG_NS]; 3300 tlb_flush(CPU(cpu)); /* Mappings may have changed - purge! */ 3301 *u32p = value; 3302 } 3303 3304 static void pmsav7_rgnr_write(CPUARMState *env, const ARMCPRegInfo *ri, 3305 uint64_t value) 3306 { 3307 ARMCPU *cpu = env_archcpu(env); 3308 uint32_t nrgs = cpu->pmsav7_dregion; 3309 3310 if (value >= nrgs) { 3311 qemu_log_mask(LOG_GUEST_ERROR, 3312 "PMSAv7 RGNR write >= # supported regions, %" PRIu32 3313 " > %" PRIu32 "\n", (uint32_t)value, nrgs); 3314 return; 3315 } 3316 3317 raw_write(env, ri, value); 3318 } 3319 3320 static const ARMCPRegInfo pmsav7_cp_reginfo[] = { 3321 /* Reset for all these registers is handled in arm_cpu_reset(), 3322 * because the PMSAv7 is also used by M-profile CPUs, which do 3323 * not register cpregs but still need the state to be reset. 3324 */ 3325 { .name = "DRBAR", .cp = 15, .crn = 6, .opc1 = 0, .crm = 1, .opc2 = 0, 3326 .access = PL1_RW, .type = ARM_CP_NO_RAW, 3327 .fieldoffset = offsetof(CPUARMState, pmsav7.drbar), 3328 .readfn = pmsav7_read, .writefn = pmsav7_write, 3329 .resetfn = arm_cp_reset_ignore }, 3330 { .name = "DRSR", .cp = 15, .crn = 6, .opc1 = 0, .crm = 1, .opc2 = 2, 3331 .access = PL1_RW, .type = ARM_CP_NO_RAW, 3332 .fieldoffset = offsetof(CPUARMState, pmsav7.drsr), 3333 .readfn = pmsav7_read, .writefn = pmsav7_write, 3334 .resetfn = arm_cp_reset_ignore }, 3335 { .name = "DRACR", .cp = 15, .crn = 6, .opc1 = 0, .crm = 1, .opc2 = 4, 3336 .access = PL1_RW, .type = ARM_CP_NO_RAW, 3337 .fieldoffset = offsetof(CPUARMState, pmsav7.dracr), 3338 .readfn = pmsav7_read, .writefn = pmsav7_write, 3339 .resetfn = arm_cp_reset_ignore }, 3340 { .name = "RGNR", .cp = 15, .crn = 6, .opc1 = 0, .crm = 2, .opc2 = 0, 3341 .access = PL1_RW, 3342 .fieldoffset = offsetof(CPUARMState, pmsav7.rnr[M_REG_NS]), 3343 .writefn = pmsav7_rgnr_write, 3344 .resetfn = arm_cp_reset_ignore }, 3345 REGINFO_SENTINEL 3346 }; 3347 3348 static const ARMCPRegInfo pmsav5_cp_reginfo[] = { 3349 { .name = "DATA_AP", .cp = 15, .crn = 5, .crm = 0, .opc1 = 0, .opc2 = 0, 3350 .access = PL1_RW, .type = ARM_CP_ALIAS, 3351 .fieldoffset = offsetof(CPUARMState, cp15.pmsav5_data_ap), 3352 .readfn = pmsav5_data_ap_read, .writefn = pmsav5_data_ap_write, }, 3353 { .name = "INSN_AP", .cp = 15, .crn = 5, .crm = 0, .opc1 = 0, .opc2 = 1, 3354 .access = PL1_RW, .type = ARM_CP_ALIAS, 3355 .fieldoffset = offsetof(CPUARMState, cp15.pmsav5_insn_ap), 3356 .readfn = pmsav5_insn_ap_read, .writefn = pmsav5_insn_ap_write, }, 3357 { .name = "DATA_EXT_AP", .cp = 15, .crn = 5, .crm = 0, .opc1 = 0, .opc2 = 2, 3358 .access = PL1_RW, 3359 .fieldoffset = offsetof(CPUARMState, cp15.pmsav5_data_ap), 3360 .resetvalue = 0, }, 3361 { .name = "INSN_EXT_AP", .cp = 15, .crn = 5, .crm = 0, .opc1 = 0, .opc2 = 3, 3362 .access = PL1_RW, 3363 .fieldoffset = offsetof(CPUARMState, cp15.pmsav5_insn_ap), 3364 .resetvalue = 0, }, 3365 { .name = "DCACHE_CFG", .cp = 15, .crn = 2, .crm = 0, .opc1 = 0, .opc2 = 0, 3366 .access = PL1_RW, 3367 .fieldoffset = offsetof(CPUARMState, cp15.c2_data), .resetvalue = 0, }, 3368 { .name = "ICACHE_CFG", .cp = 15, .crn = 2, .crm = 0, .opc1 = 0, .opc2 = 1, 3369 .access = PL1_RW, 3370 .fieldoffset = offsetof(CPUARMState, cp15.c2_insn), .resetvalue = 0, }, 3371 /* Protection region base and size registers */ 3372 { .name = "946_PRBS0", .cp = 15, .crn = 6, .crm = 0, .opc1 = 0, 3373 .opc2 = CP_ANY, .access = PL1_RW, .resetvalue = 0, 3374 .fieldoffset = offsetof(CPUARMState, cp15.c6_region[0]) }, 3375 { .name = "946_PRBS1", .cp = 15, .crn = 6, .crm = 1, .opc1 = 0, 3376 .opc2 = CP_ANY, .access = PL1_RW, .resetvalue = 0, 3377 .fieldoffset = offsetof(CPUARMState, cp15.c6_region[1]) }, 3378 { .name = "946_PRBS2", .cp = 15, .crn = 6, .crm = 2, .opc1 = 0, 3379 .opc2 = CP_ANY, .access = PL1_RW, .resetvalue = 0, 3380 .fieldoffset = offsetof(CPUARMState, cp15.c6_region[2]) }, 3381 { .name = "946_PRBS3", .cp = 15, .crn = 6, .crm = 3, .opc1 = 0, 3382 .opc2 = CP_ANY, .access = PL1_RW, .resetvalue = 0, 3383 .fieldoffset = offsetof(CPUARMState, cp15.c6_region[3]) }, 3384 { .name = "946_PRBS4", .cp = 15, .crn = 6, .crm = 4, .opc1 = 0, 3385 .opc2 = CP_ANY, .access = PL1_RW, .resetvalue = 0, 3386 .fieldoffset = offsetof(CPUARMState, cp15.c6_region[4]) }, 3387 { .name = "946_PRBS5", .cp = 15, .crn = 6, .crm = 5, .opc1 = 0, 3388 .opc2 = CP_ANY, .access = PL1_RW, .resetvalue = 0, 3389 .fieldoffset = offsetof(CPUARMState, cp15.c6_region[5]) }, 3390 { .name = "946_PRBS6", .cp = 15, .crn = 6, .crm = 6, .opc1 = 0, 3391 .opc2 = CP_ANY, .access = PL1_RW, .resetvalue = 0, 3392 .fieldoffset = offsetof(CPUARMState, cp15.c6_region[6]) }, 3393 { .name = "946_PRBS7", .cp = 15, .crn = 6, .crm = 7, .opc1 = 0, 3394 .opc2 = CP_ANY, .access = PL1_RW, .resetvalue = 0, 3395 .fieldoffset = offsetof(CPUARMState, cp15.c6_region[7]) }, 3396 REGINFO_SENTINEL 3397 }; 3398 3399 static void vmsa_ttbcr_raw_write(CPUARMState *env, const ARMCPRegInfo *ri, 3400 uint64_t value) 3401 { 3402 TCR *tcr = raw_ptr(env, ri); 3403 int maskshift = extract32(value, 0, 3); 3404 3405 if (!arm_feature(env, ARM_FEATURE_V8)) { 3406 if (arm_feature(env, ARM_FEATURE_LPAE) && (value & TTBCR_EAE)) { 3407 /* Pre ARMv8 bits [21:19], [15:14] and [6:3] are UNK/SBZP when 3408 * using Long-desciptor translation table format */ 3409 value &= ~((7 << 19) | (3 << 14) | (0xf << 3)); 3410 } else if (arm_feature(env, ARM_FEATURE_EL3)) { 3411 /* In an implementation that includes the Security Extensions 3412 * TTBCR has additional fields PD0 [4] and PD1 [5] for 3413 * Short-descriptor translation table format. 3414 */ 3415 value &= TTBCR_PD1 | TTBCR_PD0 | TTBCR_N; 3416 } else { 3417 value &= TTBCR_N; 3418 } 3419 } 3420 3421 /* Update the masks corresponding to the TCR bank being written 3422 * Note that we always calculate mask and base_mask, but 3423 * they are only used for short-descriptor tables (ie if EAE is 0); 3424 * for long-descriptor tables the TCR fields are used differently 3425 * and the mask and base_mask values are meaningless. 3426 */ 3427 tcr->raw_tcr = value; 3428 tcr->mask = ~(((uint32_t)0xffffffffu) >> maskshift); 3429 tcr->base_mask = ~((uint32_t)0x3fffu >> maskshift); 3430 } 3431 3432 static void vmsa_ttbcr_write(CPUARMState *env, const ARMCPRegInfo *ri, 3433 uint64_t value) 3434 { 3435 ARMCPU *cpu = env_archcpu(env); 3436 TCR *tcr = raw_ptr(env, ri); 3437 3438 if (arm_feature(env, ARM_FEATURE_LPAE)) { 3439 /* With LPAE the TTBCR could result in a change of ASID 3440 * via the TTBCR.A1 bit, so do a TLB flush. 3441 */ 3442 tlb_flush(CPU(cpu)); 3443 } 3444 /* Preserve the high half of TCR_EL1, set via TTBCR2. */ 3445 value = deposit64(tcr->raw_tcr, 0, 32, value); 3446 vmsa_ttbcr_raw_write(env, ri, value); 3447 } 3448 3449 static void vmsa_ttbcr_reset(CPUARMState *env, const ARMCPRegInfo *ri) 3450 { 3451 TCR *tcr = raw_ptr(env, ri); 3452 3453 /* Reset both the TCR as well as the masks corresponding to the bank of 3454 * the TCR being reset. 3455 */ 3456 tcr->raw_tcr = 0; 3457 tcr->mask = 0; 3458 tcr->base_mask = 0xffffc000u; 3459 } 3460 3461 static void vmsa_tcr_el1_write(CPUARMState *env, const ARMCPRegInfo *ri, 3462 uint64_t value) 3463 { 3464 ARMCPU *cpu = env_archcpu(env); 3465 TCR *tcr = raw_ptr(env, ri); 3466 3467 /* For AArch64 the A1 bit could result in a change of ASID, so TLB flush. */ 3468 tlb_flush(CPU(cpu)); 3469 tcr->raw_tcr = value; 3470 } 3471 3472 static void vmsa_ttbr_write(CPUARMState *env, const ARMCPRegInfo *ri, 3473 uint64_t value) 3474 { 3475 /* If the ASID changes (with a 64-bit write), we must flush the TLB. */ 3476 if (cpreg_field_is_64bit(ri) && 3477 extract64(raw_read(env, ri) ^ value, 48, 16) != 0) { 3478 ARMCPU *cpu = env_archcpu(env); 3479 tlb_flush(CPU(cpu)); 3480 } 3481 raw_write(env, ri, value); 3482 } 3483 3484 static void vttbr_write(CPUARMState *env, const ARMCPRegInfo *ri, 3485 uint64_t value) 3486 { 3487 ARMCPU *cpu = env_archcpu(env); 3488 CPUState *cs = CPU(cpu); 3489 3490 /* Accesses to VTTBR may change the VMID so we must flush the TLB. */ 3491 if (raw_read(env, ri) != value) { 3492 tlb_flush_by_mmuidx(cs, 3493 ARMMMUIdxBit_S12NSE1 | 3494 ARMMMUIdxBit_S12NSE0 | 3495 ARMMMUIdxBit_S2NS); 3496 raw_write(env, ri, value); 3497 } 3498 } 3499 3500 static const ARMCPRegInfo vmsa_pmsa_cp_reginfo[] = { 3501 { .name = "DFSR", .cp = 15, .crn = 5, .crm = 0, .opc1 = 0, .opc2 = 0, 3502 .access = PL1_RW, .type = ARM_CP_ALIAS, 3503 .bank_fieldoffsets = { offsetoflow32(CPUARMState, cp15.dfsr_s), 3504 offsetoflow32(CPUARMState, cp15.dfsr_ns) }, }, 3505 { .name = "IFSR", .cp = 15, .crn = 5, .crm = 0, .opc1 = 0, .opc2 = 1, 3506 .access = PL1_RW, .resetvalue = 0, 3507 .bank_fieldoffsets = { offsetoflow32(CPUARMState, cp15.ifsr_s), 3508 offsetoflow32(CPUARMState, cp15.ifsr_ns) } }, 3509 { .name = "DFAR", .cp = 15, .opc1 = 0, .crn = 6, .crm = 0, .opc2 = 0, 3510 .access = PL1_RW, .resetvalue = 0, 3511 .bank_fieldoffsets = { offsetof(CPUARMState, cp15.dfar_s), 3512 offsetof(CPUARMState, cp15.dfar_ns) } }, 3513 { .name = "FAR_EL1", .state = ARM_CP_STATE_AA64, 3514 .opc0 = 3, .crn = 6, .crm = 0, .opc1 = 0, .opc2 = 0, 3515 .access = PL1_RW, .fieldoffset = offsetof(CPUARMState, cp15.far_el[1]), 3516 .resetvalue = 0, }, 3517 REGINFO_SENTINEL 3518 }; 3519 3520 static const ARMCPRegInfo vmsa_cp_reginfo[] = { 3521 { .name = "ESR_EL1", .state = ARM_CP_STATE_AA64, 3522 .opc0 = 3, .crn = 5, .crm = 2, .opc1 = 0, .opc2 = 0, 3523 .access = PL1_RW, 3524 .fieldoffset = offsetof(CPUARMState, cp15.esr_el[1]), .resetvalue = 0, }, 3525 { .name = "TTBR0_EL1", .state = ARM_CP_STATE_BOTH, 3526 .opc0 = 3, .opc1 = 0, .crn = 2, .crm = 0, .opc2 = 0, 3527 .access = PL1_RW, .writefn = vmsa_ttbr_write, .resetvalue = 0, 3528 .bank_fieldoffsets = { offsetof(CPUARMState, cp15.ttbr0_s), 3529 offsetof(CPUARMState, cp15.ttbr0_ns) } }, 3530 { .name = "TTBR1_EL1", .state = ARM_CP_STATE_BOTH, 3531 .opc0 = 3, .opc1 = 0, .crn = 2, .crm = 0, .opc2 = 1, 3532 .access = PL1_RW, .writefn = vmsa_ttbr_write, .resetvalue = 0, 3533 .bank_fieldoffsets = { offsetof(CPUARMState, cp15.ttbr1_s), 3534 offsetof(CPUARMState, cp15.ttbr1_ns) } }, 3535 { .name = "TCR_EL1", .state = ARM_CP_STATE_AA64, 3536 .opc0 = 3, .crn = 2, .crm = 0, .opc1 = 0, .opc2 = 2, 3537 .access = PL1_RW, .writefn = vmsa_tcr_el1_write, 3538 .resetfn = vmsa_ttbcr_reset, .raw_writefn = raw_write, 3539 .fieldoffset = offsetof(CPUARMState, cp15.tcr_el[1]) }, 3540 { .name = "TTBCR", .cp = 15, .crn = 2, .crm = 0, .opc1 = 0, .opc2 = 2, 3541 .access = PL1_RW, .type = ARM_CP_ALIAS, .writefn = vmsa_ttbcr_write, 3542 .raw_writefn = vmsa_ttbcr_raw_write, 3543 .bank_fieldoffsets = { offsetoflow32(CPUARMState, cp15.tcr_el[3]), 3544 offsetoflow32(CPUARMState, cp15.tcr_el[1])} }, 3545 REGINFO_SENTINEL 3546 }; 3547 3548 /* Note that unlike TTBCR, writing to TTBCR2 does not require flushing 3549 * qemu tlbs nor adjusting cached masks. 3550 */ 3551 static const ARMCPRegInfo ttbcr2_reginfo = { 3552 .name = "TTBCR2", .cp = 15, .opc1 = 0, .crn = 2, .crm = 0, .opc2 = 3, 3553 .access = PL1_RW, .type = ARM_CP_ALIAS, 3554 .bank_fieldoffsets = { offsetofhigh32(CPUARMState, cp15.tcr_el[3]), 3555 offsetofhigh32(CPUARMState, cp15.tcr_el[1]) }, 3556 }; 3557 3558 static void omap_ticonfig_write(CPUARMState *env, const ARMCPRegInfo *ri, 3559 uint64_t value) 3560 { 3561 env->cp15.c15_ticonfig = value & 0xe7; 3562 /* The OS_TYPE bit in this register changes the reported CPUID! */ 3563 env->cp15.c0_cpuid = (value & (1 << 5)) ? 3564 ARM_CPUID_TI915T : ARM_CPUID_TI925T; 3565 } 3566 3567 static void omap_threadid_write(CPUARMState *env, const ARMCPRegInfo *ri, 3568 uint64_t value) 3569 { 3570 env->cp15.c15_threadid = value & 0xffff; 3571 } 3572 3573 static void omap_wfi_write(CPUARMState *env, const ARMCPRegInfo *ri, 3574 uint64_t value) 3575 { 3576 /* Wait-for-interrupt (deprecated) */ 3577 cpu_interrupt(env_cpu(env), CPU_INTERRUPT_HALT); 3578 } 3579 3580 static void omap_cachemaint_write(CPUARMState *env, const ARMCPRegInfo *ri, 3581 uint64_t value) 3582 { 3583 /* On OMAP there are registers indicating the max/min index of dcache lines 3584 * containing a dirty line; cache flush operations have to reset these. 3585 */ 3586 env->cp15.c15_i_max = 0x000; 3587 env->cp15.c15_i_min = 0xff0; 3588 } 3589 3590 static const ARMCPRegInfo omap_cp_reginfo[] = { 3591 { .name = "DFSR", .cp = 15, .crn = 5, .crm = CP_ANY, 3592 .opc1 = CP_ANY, .opc2 = CP_ANY, .access = PL1_RW, .type = ARM_CP_OVERRIDE, 3593 .fieldoffset = offsetoflow32(CPUARMState, cp15.esr_el[1]), 3594 .resetvalue = 0, }, 3595 { .name = "", .cp = 15, .crn = 15, .crm = 0, .opc1 = 0, .opc2 = 0, 3596 .access = PL1_RW, .type = ARM_CP_NOP }, 3597 { .name = "TICONFIG", .cp = 15, .crn = 15, .crm = 1, .opc1 = 0, .opc2 = 0, 3598 .access = PL1_RW, 3599 .fieldoffset = offsetof(CPUARMState, cp15.c15_ticonfig), .resetvalue = 0, 3600 .writefn = omap_ticonfig_write }, 3601 { .name = "IMAX", .cp = 15, .crn = 15, .crm = 2, .opc1 = 0, .opc2 = 0, 3602 .access = PL1_RW, 3603 .fieldoffset = offsetof(CPUARMState, cp15.c15_i_max), .resetvalue = 0, }, 3604 { .name = "IMIN", .cp = 15, .crn = 15, .crm = 3, .opc1 = 0, .opc2 = 0, 3605 .access = PL1_RW, .resetvalue = 0xff0, 3606 .fieldoffset = offsetof(CPUARMState, cp15.c15_i_min) }, 3607 { .name = "THREADID", .cp = 15, .crn = 15, .crm = 4, .opc1 = 0, .opc2 = 0, 3608 .access = PL1_RW, 3609 .fieldoffset = offsetof(CPUARMState, cp15.c15_threadid), .resetvalue = 0, 3610 .writefn = omap_threadid_write }, 3611 { .name = "TI925T_STATUS", .cp = 15, .crn = 15, 3612 .crm = 8, .opc1 = 0, .opc2 = 0, .access = PL1_RW, 3613 .type = ARM_CP_NO_RAW, 3614 .readfn = arm_cp_read_zero, .writefn = omap_wfi_write, }, 3615 /* TODO: Peripheral port remap register: 3616 * On OMAP2 mcr p15, 0, rn, c15, c2, 4 sets up the interrupt controller 3617 * base address at $rn & ~0xfff and map size of 0x200 << ($rn & 0xfff), 3618 * when MMU is off. 3619 */ 3620 { .name = "OMAP_CACHEMAINT", .cp = 15, .crn = 7, .crm = CP_ANY, 3621 .opc1 = 0, .opc2 = CP_ANY, .access = PL1_W, 3622 .type = ARM_CP_OVERRIDE | ARM_CP_NO_RAW, 3623 .writefn = omap_cachemaint_write }, 3624 { .name = "C9", .cp = 15, .crn = 9, 3625 .crm = CP_ANY, .opc1 = CP_ANY, .opc2 = CP_ANY, .access = PL1_RW, 3626 .type = ARM_CP_CONST | ARM_CP_OVERRIDE, .resetvalue = 0 }, 3627 REGINFO_SENTINEL 3628 }; 3629 3630 static void xscale_cpar_write(CPUARMState *env, const ARMCPRegInfo *ri, 3631 uint64_t value) 3632 { 3633 env->cp15.c15_cpar = value & 0x3fff; 3634 } 3635 3636 static const ARMCPRegInfo xscale_cp_reginfo[] = { 3637 { .name = "XSCALE_CPAR", 3638 .cp = 15, .crn = 15, .crm = 1, .opc1 = 0, .opc2 = 0, .access = PL1_RW, 3639 .fieldoffset = offsetof(CPUARMState, cp15.c15_cpar), .resetvalue = 0, 3640 .writefn = xscale_cpar_write, }, 3641 { .name = "XSCALE_AUXCR", 3642 .cp = 15, .crn = 1, .crm = 0, .opc1 = 0, .opc2 = 1, .access = PL1_RW, 3643 .fieldoffset = offsetof(CPUARMState, cp15.c1_xscaleauxcr), 3644 .resetvalue = 0, }, 3645 /* XScale specific cache-lockdown: since we have no cache we NOP these 3646 * and hope the guest does not really rely on cache behaviour. 3647 */ 3648 { .name = "XSCALE_LOCK_ICACHE_LINE", 3649 .cp = 15, .opc1 = 0, .crn = 9, .crm = 1, .opc2 = 0, 3650 .access = PL1_W, .type = ARM_CP_NOP }, 3651 { .name = "XSCALE_UNLOCK_ICACHE", 3652 .cp = 15, .opc1 = 0, .crn = 9, .crm = 1, .opc2 = 1, 3653 .access = PL1_W, .type = ARM_CP_NOP }, 3654 { .name = "XSCALE_DCACHE_LOCK", 3655 .cp = 15, .opc1 = 0, .crn = 9, .crm = 2, .opc2 = 0, 3656 .access = PL1_RW, .type = ARM_CP_NOP }, 3657 { .name = "XSCALE_UNLOCK_DCACHE", 3658 .cp = 15, .opc1 = 0, .crn = 9, .crm = 2, .opc2 = 1, 3659 .access = PL1_W, .type = ARM_CP_NOP }, 3660 REGINFO_SENTINEL 3661 }; 3662 3663 static const ARMCPRegInfo dummy_c15_cp_reginfo[] = { 3664 /* RAZ/WI the whole crn=15 space, when we don't have a more specific 3665 * implementation of this implementation-defined space. 3666 * Ideally this should eventually disappear in favour of actually 3667 * implementing the correct behaviour for all cores. 3668 */ 3669 { .name = "C15_IMPDEF", .cp = 15, .crn = 15, 3670 .crm = CP_ANY, .opc1 = CP_ANY, .opc2 = CP_ANY, 3671 .access = PL1_RW, 3672 .type = ARM_CP_CONST | ARM_CP_NO_RAW | ARM_CP_OVERRIDE, 3673 .resetvalue = 0 }, 3674 REGINFO_SENTINEL 3675 }; 3676 3677 static const ARMCPRegInfo cache_dirty_status_cp_reginfo[] = { 3678 /* Cache status: RAZ because we have no cache so it's always clean */ 3679 { .name = "CDSR", .cp = 15, .crn = 7, .crm = 10, .opc1 = 0, .opc2 = 6, 3680 .access = PL1_R, .type = ARM_CP_CONST | ARM_CP_NO_RAW, 3681 .resetvalue = 0 }, 3682 REGINFO_SENTINEL 3683 }; 3684 3685 static const ARMCPRegInfo cache_block_ops_cp_reginfo[] = { 3686 /* We never have a a block transfer operation in progress */ 3687 { .name = "BXSR", .cp = 15, .crn = 7, .crm = 12, .opc1 = 0, .opc2 = 4, 3688 .access = PL0_R, .type = ARM_CP_CONST | ARM_CP_NO_RAW, 3689 .resetvalue = 0 }, 3690 /* The cache ops themselves: these all NOP for QEMU */ 3691 { .name = "IICR", .cp = 15, .crm = 5, .opc1 = 0, 3692 .access = PL1_W, .type = ARM_CP_NOP|ARM_CP_64BIT }, 3693 { .name = "IDCR", .cp = 15, .crm = 6, .opc1 = 0, 3694 .access = PL1_W, .type = ARM_CP_NOP|ARM_CP_64BIT }, 3695 { .name = "CDCR", .cp = 15, .crm = 12, .opc1 = 0, 3696 .access = PL0_W, .type = ARM_CP_NOP|ARM_CP_64BIT }, 3697 { .name = "PIR", .cp = 15, .crm = 12, .opc1 = 1, 3698 .access = PL0_W, .type = ARM_CP_NOP|ARM_CP_64BIT }, 3699 { .name = "PDR", .cp = 15, .crm = 12, .opc1 = 2, 3700 .access = PL0_W, .type = ARM_CP_NOP|ARM_CP_64BIT }, 3701 { .name = "CIDCR", .cp = 15, .crm = 14, .opc1 = 0, 3702 .access = PL1_W, .type = ARM_CP_NOP|ARM_CP_64BIT }, 3703 REGINFO_SENTINEL 3704 }; 3705 3706 static const ARMCPRegInfo cache_test_clean_cp_reginfo[] = { 3707 /* The cache test-and-clean instructions always return (1 << 30) 3708 * to indicate that there are no dirty cache lines. 3709 */ 3710 { .name = "TC_DCACHE", .cp = 15, .crn = 7, .crm = 10, .opc1 = 0, .opc2 = 3, 3711 .access = PL0_R, .type = ARM_CP_CONST | ARM_CP_NO_RAW, 3712 .resetvalue = (1 << 30) }, 3713 { .name = "TCI_DCACHE", .cp = 15, .crn = 7, .crm = 14, .opc1 = 0, .opc2 = 3, 3714 .access = PL0_R, .type = ARM_CP_CONST | ARM_CP_NO_RAW, 3715 .resetvalue = (1 << 30) }, 3716 REGINFO_SENTINEL 3717 }; 3718 3719 static const ARMCPRegInfo strongarm_cp_reginfo[] = { 3720 /* Ignore ReadBuffer accesses */ 3721 { .name = "C9_READBUFFER", .cp = 15, .crn = 9, 3722 .crm = CP_ANY, .opc1 = CP_ANY, .opc2 = CP_ANY, 3723 .access = PL1_RW, .resetvalue = 0, 3724 .type = ARM_CP_CONST | ARM_CP_OVERRIDE | ARM_CP_NO_RAW }, 3725 REGINFO_SENTINEL 3726 }; 3727 3728 static uint64_t midr_read(CPUARMState *env, const ARMCPRegInfo *ri) 3729 { 3730 ARMCPU *cpu = env_archcpu(env); 3731 unsigned int cur_el = arm_current_el(env); 3732 bool secure = arm_is_secure(env); 3733 3734 if (arm_feature(&cpu->env, ARM_FEATURE_EL2) && !secure && cur_el == 1) { 3735 return env->cp15.vpidr_el2; 3736 } 3737 return raw_read(env, ri); 3738 } 3739 3740 static uint64_t mpidr_read_val(CPUARMState *env) 3741 { 3742 ARMCPU *cpu = env_archcpu(env); 3743 uint64_t mpidr = cpu->mp_affinity; 3744 3745 if (arm_feature(env, ARM_FEATURE_V7MP)) { 3746 mpidr |= (1U << 31); 3747 /* Cores which are uniprocessor (non-coherent) 3748 * but still implement the MP extensions set 3749 * bit 30. (For instance, Cortex-R5). 3750 */ 3751 if (cpu->mp_is_up) { 3752 mpidr |= (1u << 30); 3753 } 3754 } 3755 return mpidr; 3756 } 3757 3758 static uint64_t mpidr_read(CPUARMState *env, const ARMCPRegInfo *ri) 3759 { 3760 unsigned int cur_el = arm_current_el(env); 3761 bool secure = arm_is_secure(env); 3762 3763 if (arm_feature(env, ARM_FEATURE_EL2) && !secure && cur_el == 1) { 3764 return env->cp15.vmpidr_el2; 3765 } 3766 return mpidr_read_val(env); 3767 } 3768 3769 static const ARMCPRegInfo lpae_cp_reginfo[] = { 3770 /* NOP AMAIR0/1 */ 3771 { .name = "AMAIR0", .state = ARM_CP_STATE_BOTH, 3772 .opc0 = 3, .crn = 10, .crm = 3, .opc1 = 0, .opc2 = 0, 3773 .access = PL1_RW, .type = ARM_CP_CONST, 3774 .resetvalue = 0 }, 3775 /* AMAIR1 is mapped to AMAIR_EL1[63:32] */ 3776 { .name = "AMAIR1", .cp = 15, .crn = 10, .crm = 3, .opc1 = 0, .opc2 = 1, 3777 .access = PL1_RW, .type = ARM_CP_CONST, 3778 .resetvalue = 0 }, 3779 { .name = "PAR", .cp = 15, .crm = 7, .opc1 = 0, 3780 .access = PL1_RW, .type = ARM_CP_64BIT, .resetvalue = 0, 3781 .bank_fieldoffsets = { offsetof(CPUARMState, cp15.par_s), 3782 offsetof(CPUARMState, cp15.par_ns)} }, 3783 { .name = "TTBR0", .cp = 15, .crm = 2, .opc1 = 0, 3784 .access = PL1_RW, .type = ARM_CP_64BIT | ARM_CP_ALIAS, 3785 .bank_fieldoffsets = { offsetof(CPUARMState, cp15.ttbr0_s), 3786 offsetof(CPUARMState, cp15.ttbr0_ns) }, 3787 .writefn = vmsa_ttbr_write, }, 3788 { .name = "TTBR1", .cp = 15, .crm = 2, .opc1 = 1, 3789 .access = PL1_RW, .type = ARM_CP_64BIT | ARM_CP_ALIAS, 3790 .bank_fieldoffsets = { offsetof(CPUARMState, cp15.ttbr1_s), 3791 offsetof(CPUARMState, cp15.ttbr1_ns) }, 3792 .writefn = vmsa_ttbr_write, }, 3793 REGINFO_SENTINEL 3794 }; 3795 3796 static uint64_t aa64_fpcr_read(CPUARMState *env, const ARMCPRegInfo *ri) 3797 { 3798 return vfp_get_fpcr(env); 3799 } 3800 3801 static void aa64_fpcr_write(CPUARMState *env, const ARMCPRegInfo *ri, 3802 uint64_t value) 3803 { 3804 vfp_set_fpcr(env, value); 3805 } 3806 3807 static uint64_t aa64_fpsr_read(CPUARMState *env, const ARMCPRegInfo *ri) 3808 { 3809 return vfp_get_fpsr(env); 3810 } 3811 3812 static void aa64_fpsr_write(CPUARMState *env, const ARMCPRegInfo *ri, 3813 uint64_t value) 3814 { 3815 vfp_set_fpsr(env, value); 3816 } 3817 3818 static CPAccessResult aa64_daif_access(CPUARMState *env, const ARMCPRegInfo *ri, 3819 bool isread) 3820 { 3821 if (arm_current_el(env) == 0 && !(env->cp15.sctlr_el[1] & SCTLR_UMA)) { 3822 return CP_ACCESS_TRAP; 3823 } 3824 return CP_ACCESS_OK; 3825 } 3826 3827 static void aa64_daif_write(CPUARMState *env, const ARMCPRegInfo *ri, 3828 uint64_t value) 3829 { 3830 env->daif = value & PSTATE_DAIF; 3831 } 3832 3833 static CPAccessResult aa64_cacheop_access(CPUARMState *env, 3834 const ARMCPRegInfo *ri, 3835 bool isread) 3836 { 3837 /* Cache invalidate/clean: NOP, but EL0 must UNDEF unless 3838 * SCTLR_EL1.UCI is set. 3839 */ 3840 if (arm_current_el(env) == 0 && !(env->cp15.sctlr_el[1] & SCTLR_UCI)) { 3841 return CP_ACCESS_TRAP; 3842 } 3843 return CP_ACCESS_OK; 3844 } 3845 3846 /* See: D4.7.2 TLB maintenance requirements and the TLB maintenance instructions 3847 * Page D4-1736 (DDI0487A.b) 3848 */ 3849 3850 static void tlbi_aa64_vmalle1is_write(CPUARMState *env, const ARMCPRegInfo *ri, 3851 uint64_t value) 3852 { 3853 CPUState *cs = env_cpu(env); 3854 bool sec = arm_is_secure_below_el3(env); 3855 3856 if (sec) { 3857 tlb_flush_by_mmuidx_all_cpus_synced(cs, 3858 ARMMMUIdxBit_S1SE1 | 3859 ARMMMUIdxBit_S1SE0); 3860 } else { 3861 tlb_flush_by_mmuidx_all_cpus_synced(cs, 3862 ARMMMUIdxBit_S12NSE1 | 3863 ARMMMUIdxBit_S12NSE0); 3864 } 3865 } 3866 3867 static void tlbi_aa64_vmalle1_write(CPUARMState *env, const ARMCPRegInfo *ri, 3868 uint64_t value) 3869 { 3870 CPUState *cs = env_cpu(env); 3871 3872 if (tlb_force_broadcast(env)) { 3873 tlbi_aa64_vmalle1is_write(env, NULL, value); 3874 return; 3875 } 3876 3877 if (arm_is_secure_below_el3(env)) { 3878 tlb_flush_by_mmuidx(cs, 3879 ARMMMUIdxBit_S1SE1 | 3880 ARMMMUIdxBit_S1SE0); 3881 } else { 3882 tlb_flush_by_mmuidx(cs, 3883 ARMMMUIdxBit_S12NSE1 | 3884 ARMMMUIdxBit_S12NSE0); 3885 } 3886 } 3887 3888 static void tlbi_aa64_alle1_write(CPUARMState *env, const ARMCPRegInfo *ri, 3889 uint64_t value) 3890 { 3891 /* Note that the 'ALL' scope must invalidate both stage 1 and 3892 * stage 2 translations, whereas most other scopes only invalidate 3893 * stage 1 translations. 3894 */ 3895 ARMCPU *cpu = env_archcpu(env); 3896 CPUState *cs = CPU(cpu); 3897 3898 if (arm_is_secure_below_el3(env)) { 3899 tlb_flush_by_mmuidx(cs, 3900 ARMMMUIdxBit_S1SE1 | 3901 ARMMMUIdxBit_S1SE0); 3902 } else { 3903 if (arm_feature(env, ARM_FEATURE_EL2)) { 3904 tlb_flush_by_mmuidx(cs, 3905 ARMMMUIdxBit_S12NSE1 | 3906 ARMMMUIdxBit_S12NSE0 | 3907 ARMMMUIdxBit_S2NS); 3908 } else { 3909 tlb_flush_by_mmuidx(cs, 3910 ARMMMUIdxBit_S12NSE1 | 3911 ARMMMUIdxBit_S12NSE0); 3912 } 3913 } 3914 } 3915 3916 static void tlbi_aa64_alle2_write(CPUARMState *env, const ARMCPRegInfo *ri, 3917 uint64_t value) 3918 { 3919 ARMCPU *cpu = env_archcpu(env); 3920 CPUState *cs = CPU(cpu); 3921 3922 tlb_flush_by_mmuidx(cs, ARMMMUIdxBit_S1E2); 3923 } 3924 3925 static void tlbi_aa64_alle3_write(CPUARMState *env, const ARMCPRegInfo *ri, 3926 uint64_t value) 3927 { 3928 ARMCPU *cpu = env_archcpu(env); 3929 CPUState *cs = CPU(cpu); 3930 3931 tlb_flush_by_mmuidx(cs, ARMMMUIdxBit_S1E3); 3932 } 3933 3934 static void tlbi_aa64_alle1is_write(CPUARMState *env, const ARMCPRegInfo *ri, 3935 uint64_t value) 3936 { 3937 /* Note that the 'ALL' scope must invalidate both stage 1 and 3938 * stage 2 translations, whereas most other scopes only invalidate 3939 * stage 1 translations. 3940 */ 3941 CPUState *cs = env_cpu(env); 3942 bool sec = arm_is_secure_below_el3(env); 3943 bool has_el2 = arm_feature(env, ARM_FEATURE_EL2); 3944 3945 if (sec) { 3946 tlb_flush_by_mmuidx_all_cpus_synced(cs, 3947 ARMMMUIdxBit_S1SE1 | 3948 ARMMMUIdxBit_S1SE0); 3949 } else if (has_el2) { 3950 tlb_flush_by_mmuidx_all_cpus_synced(cs, 3951 ARMMMUIdxBit_S12NSE1 | 3952 ARMMMUIdxBit_S12NSE0 | 3953 ARMMMUIdxBit_S2NS); 3954 } else { 3955 tlb_flush_by_mmuidx_all_cpus_synced(cs, 3956 ARMMMUIdxBit_S12NSE1 | 3957 ARMMMUIdxBit_S12NSE0); 3958 } 3959 } 3960 3961 static void tlbi_aa64_alle2is_write(CPUARMState *env, const ARMCPRegInfo *ri, 3962 uint64_t value) 3963 { 3964 CPUState *cs = env_cpu(env); 3965 3966 tlb_flush_by_mmuidx_all_cpus_synced(cs, ARMMMUIdxBit_S1E2); 3967 } 3968 3969 static void tlbi_aa64_alle3is_write(CPUARMState *env, const ARMCPRegInfo *ri, 3970 uint64_t value) 3971 { 3972 CPUState *cs = env_cpu(env); 3973 3974 tlb_flush_by_mmuidx_all_cpus_synced(cs, ARMMMUIdxBit_S1E3); 3975 } 3976 3977 static void tlbi_aa64_vae2_write(CPUARMState *env, const ARMCPRegInfo *ri, 3978 uint64_t value) 3979 { 3980 /* Invalidate by VA, EL2 3981 * Currently handles both VAE2 and VALE2, since we don't support 3982 * flush-last-level-only. 3983 */ 3984 ARMCPU *cpu = env_archcpu(env); 3985 CPUState *cs = CPU(cpu); 3986 uint64_t pageaddr = sextract64(value << 12, 0, 56); 3987 3988 tlb_flush_page_by_mmuidx(cs, pageaddr, ARMMMUIdxBit_S1E2); 3989 } 3990 3991 static void tlbi_aa64_vae3_write(CPUARMState *env, const ARMCPRegInfo *ri, 3992 uint64_t value) 3993 { 3994 /* Invalidate by VA, EL3 3995 * Currently handles both VAE3 and VALE3, since we don't support 3996 * flush-last-level-only. 3997 */ 3998 ARMCPU *cpu = env_archcpu(env); 3999 CPUState *cs = CPU(cpu); 4000 uint64_t pageaddr = sextract64(value << 12, 0, 56); 4001 4002 tlb_flush_page_by_mmuidx(cs, pageaddr, ARMMMUIdxBit_S1E3); 4003 } 4004 4005 static void tlbi_aa64_vae1is_write(CPUARMState *env, const ARMCPRegInfo *ri, 4006 uint64_t value) 4007 { 4008 ARMCPU *cpu = env_archcpu(env); 4009 CPUState *cs = CPU(cpu); 4010 bool sec = arm_is_secure_below_el3(env); 4011 uint64_t pageaddr = sextract64(value << 12, 0, 56); 4012 4013 if (sec) { 4014 tlb_flush_page_by_mmuidx_all_cpus_synced(cs, pageaddr, 4015 ARMMMUIdxBit_S1SE1 | 4016 ARMMMUIdxBit_S1SE0); 4017 } else { 4018 tlb_flush_page_by_mmuidx_all_cpus_synced(cs, pageaddr, 4019 ARMMMUIdxBit_S12NSE1 | 4020 ARMMMUIdxBit_S12NSE0); 4021 } 4022 } 4023 4024 static void tlbi_aa64_vae1_write(CPUARMState *env, const ARMCPRegInfo *ri, 4025 uint64_t value) 4026 { 4027 /* Invalidate by VA, EL1&0 (AArch64 version). 4028 * Currently handles all of VAE1, VAAE1, VAALE1 and VALE1, 4029 * since we don't support flush-for-specific-ASID-only or 4030 * flush-last-level-only. 4031 */ 4032 ARMCPU *cpu = env_archcpu(env); 4033 CPUState *cs = CPU(cpu); 4034 uint64_t pageaddr = sextract64(value << 12, 0, 56); 4035 4036 if (tlb_force_broadcast(env)) { 4037 tlbi_aa64_vae1is_write(env, NULL, value); 4038 return; 4039 } 4040 4041 if (arm_is_secure_below_el3(env)) { 4042 tlb_flush_page_by_mmuidx(cs, pageaddr, 4043 ARMMMUIdxBit_S1SE1 | 4044 ARMMMUIdxBit_S1SE0); 4045 } else { 4046 tlb_flush_page_by_mmuidx(cs, pageaddr, 4047 ARMMMUIdxBit_S12NSE1 | 4048 ARMMMUIdxBit_S12NSE0); 4049 } 4050 } 4051 4052 static void tlbi_aa64_vae2is_write(CPUARMState *env, const ARMCPRegInfo *ri, 4053 uint64_t value) 4054 { 4055 CPUState *cs = env_cpu(env); 4056 uint64_t pageaddr = sextract64(value << 12, 0, 56); 4057 4058 tlb_flush_page_by_mmuidx_all_cpus_synced(cs, pageaddr, 4059 ARMMMUIdxBit_S1E2); 4060 } 4061 4062 static void tlbi_aa64_vae3is_write(CPUARMState *env, const ARMCPRegInfo *ri, 4063 uint64_t value) 4064 { 4065 CPUState *cs = env_cpu(env); 4066 uint64_t pageaddr = sextract64(value << 12, 0, 56); 4067 4068 tlb_flush_page_by_mmuidx_all_cpus_synced(cs, pageaddr, 4069 ARMMMUIdxBit_S1E3); 4070 } 4071 4072 static void tlbi_aa64_ipas2e1_write(CPUARMState *env, const ARMCPRegInfo *ri, 4073 uint64_t value) 4074 { 4075 /* Invalidate by IPA. This has to invalidate any structures that 4076 * contain only stage 2 translation information, but does not need 4077 * to apply to structures that contain combined stage 1 and stage 2 4078 * translation information. 4079 * This must NOP if EL2 isn't implemented or SCR_EL3.NS is zero. 4080 */ 4081 ARMCPU *cpu = env_archcpu(env); 4082 CPUState *cs = CPU(cpu); 4083 uint64_t pageaddr; 4084 4085 if (!arm_feature(env, ARM_FEATURE_EL2) || !(env->cp15.scr_el3 & SCR_NS)) { 4086 return; 4087 } 4088 4089 pageaddr = sextract64(value << 12, 0, 48); 4090 4091 tlb_flush_page_by_mmuidx(cs, pageaddr, ARMMMUIdxBit_S2NS); 4092 } 4093 4094 static void tlbi_aa64_ipas2e1is_write(CPUARMState *env, const ARMCPRegInfo *ri, 4095 uint64_t value) 4096 { 4097 CPUState *cs = env_cpu(env); 4098 uint64_t pageaddr; 4099 4100 if (!arm_feature(env, ARM_FEATURE_EL2) || !(env->cp15.scr_el3 & SCR_NS)) { 4101 return; 4102 } 4103 4104 pageaddr = sextract64(value << 12, 0, 48); 4105 4106 tlb_flush_page_by_mmuidx_all_cpus_synced(cs, pageaddr, 4107 ARMMMUIdxBit_S2NS); 4108 } 4109 4110 static CPAccessResult aa64_zva_access(CPUARMState *env, const ARMCPRegInfo *ri, 4111 bool isread) 4112 { 4113 /* We don't implement EL2, so the only control on DC ZVA is the 4114 * bit in the SCTLR which can prohibit access for EL0. 4115 */ 4116 if (arm_current_el(env) == 0 && !(env->cp15.sctlr_el[1] & SCTLR_DZE)) { 4117 return CP_ACCESS_TRAP; 4118 } 4119 return CP_ACCESS_OK; 4120 } 4121 4122 static uint64_t aa64_dczid_read(CPUARMState *env, const ARMCPRegInfo *ri) 4123 { 4124 ARMCPU *cpu = env_archcpu(env); 4125 int dzp_bit = 1 << 4; 4126 4127 /* DZP indicates whether DC ZVA access is allowed */ 4128 if (aa64_zva_access(env, NULL, false) == CP_ACCESS_OK) { 4129 dzp_bit = 0; 4130 } 4131 return cpu->dcz_blocksize | dzp_bit; 4132 } 4133 4134 static CPAccessResult sp_el0_access(CPUARMState *env, const ARMCPRegInfo *ri, 4135 bool isread) 4136 { 4137 if (!(env->pstate & PSTATE_SP)) { 4138 /* Access to SP_EL0 is undefined if it's being used as 4139 * the stack pointer. 4140 */ 4141 return CP_ACCESS_TRAP_UNCATEGORIZED; 4142 } 4143 return CP_ACCESS_OK; 4144 } 4145 4146 static uint64_t spsel_read(CPUARMState *env, const ARMCPRegInfo *ri) 4147 { 4148 return env->pstate & PSTATE_SP; 4149 } 4150 4151 static void spsel_write(CPUARMState *env, const ARMCPRegInfo *ri, uint64_t val) 4152 { 4153 update_spsel(env, val); 4154 } 4155 4156 static void sctlr_write(CPUARMState *env, const ARMCPRegInfo *ri, 4157 uint64_t value) 4158 { 4159 ARMCPU *cpu = env_archcpu(env); 4160 4161 if (raw_read(env, ri) == value) { 4162 /* Skip the TLB flush if nothing actually changed; Linux likes 4163 * to do a lot of pointless SCTLR writes. 4164 */ 4165 return; 4166 } 4167 4168 if (arm_feature(env, ARM_FEATURE_PMSA) && !cpu->has_mpu) { 4169 /* M bit is RAZ/WI for PMSA with no MPU implemented */ 4170 value &= ~SCTLR_M; 4171 } 4172 4173 raw_write(env, ri, value); 4174 /* ??? Lots of these bits are not implemented. */ 4175 /* This may enable/disable the MMU, so do a TLB flush. */ 4176 tlb_flush(CPU(cpu)); 4177 } 4178 4179 static CPAccessResult fpexc32_access(CPUARMState *env, const ARMCPRegInfo *ri, 4180 bool isread) 4181 { 4182 if ((env->cp15.cptr_el[2] & CPTR_TFP) && arm_current_el(env) == 2) { 4183 return CP_ACCESS_TRAP_FP_EL2; 4184 } 4185 if (env->cp15.cptr_el[3] & CPTR_TFP) { 4186 return CP_ACCESS_TRAP_FP_EL3; 4187 } 4188 return CP_ACCESS_OK; 4189 } 4190 4191 static void sdcr_write(CPUARMState *env, const ARMCPRegInfo *ri, 4192 uint64_t value) 4193 { 4194 env->cp15.mdcr_el3 = value & SDCR_VALID_MASK; 4195 } 4196 4197 static const ARMCPRegInfo v8_cp_reginfo[] = { 4198 /* Minimal set of EL0-visible registers. This will need to be expanded 4199 * significantly for system emulation of AArch64 CPUs. 4200 */ 4201 { .name = "NZCV", .state = ARM_CP_STATE_AA64, 4202 .opc0 = 3, .opc1 = 3, .opc2 = 0, .crn = 4, .crm = 2, 4203 .access = PL0_RW, .type = ARM_CP_NZCV }, 4204 { .name = "DAIF", .state = ARM_CP_STATE_AA64, 4205 .opc0 = 3, .opc1 = 3, .opc2 = 1, .crn = 4, .crm = 2, 4206 .type = ARM_CP_NO_RAW, 4207 .access = PL0_RW, .accessfn = aa64_daif_access, 4208 .fieldoffset = offsetof(CPUARMState, daif), 4209 .writefn = aa64_daif_write, .resetfn = arm_cp_reset_ignore }, 4210 { .name = "FPCR", .state = ARM_CP_STATE_AA64, 4211 .opc0 = 3, .opc1 = 3, .opc2 = 0, .crn = 4, .crm = 4, 4212 .access = PL0_RW, .type = ARM_CP_FPU | ARM_CP_SUPPRESS_TB_END, 4213 .readfn = aa64_fpcr_read, .writefn = aa64_fpcr_write }, 4214 { .name = "FPSR", .state = ARM_CP_STATE_AA64, 4215 .opc0 = 3, .opc1 = 3, .opc2 = 1, .crn = 4, .crm = 4, 4216 .access = PL0_RW, .type = ARM_CP_FPU | ARM_CP_SUPPRESS_TB_END, 4217 .readfn = aa64_fpsr_read, .writefn = aa64_fpsr_write }, 4218 { .name = "DCZID_EL0", .state = ARM_CP_STATE_AA64, 4219 .opc0 = 3, .opc1 = 3, .opc2 = 7, .crn = 0, .crm = 0, 4220 .access = PL0_R, .type = ARM_CP_NO_RAW, 4221 .readfn = aa64_dczid_read }, 4222 { .name = "DC_ZVA", .state = ARM_CP_STATE_AA64, 4223 .opc0 = 1, .opc1 = 3, .crn = 7, .crm = 4, .opc2 = 1, 4224 .access = PL0_W, .type = ARM_CP_DC_ZVA, 4225 #ifndef CONFIG_USER_ONLY 4226 /* Avoid overhead of an access check that always passes in user-mode */ 4227 .accessfn = aa64_zva_access, 4228 #endif 4229 }, 4230 { .name = "CURRENTEL", .state = ARM_CP_STATE_AA64, 4231 .opc0 = 3, .opc1 = 0, .opc2 = 2, .crn = 4, .crm = 2, 4232 .access = PL1_R, .type = ARM_CP_CURRENTEL }, 4233 /* Cache ops: all NOPs since we don't emulate caches */ 4234 { .name = "IC_IALLUIS", .state = ARM_CP_STATE_AA64, 4235 .opc0 = 1, .opc1 = 0, .crn = 7, .crm = 1, .opc2 = 0, 4236 .access = PL1_W, .type = ARM_CP_NOP }, 4237 { .name = "IC_IALLU", .state = ARM_CP_STATE_AA64, 4238 .opc0 = 1, .opc1 = 0, .crn = 7, .crm = 5, .opc2 = 0, 4239 .access = PL1_W, .type = ARM_CP_NOP }, 4240 { .name = "IC_IVAU", .state = ARM_CP_STATE_AA64, 4241 .opc0 = 1, .opc1 = 3, .crn = 7, .crm = 5, .opc2 = 1, 4242 .access = PL0_W, .type = ARM_CP_NOP, 4243 .accessfn = aa64_cacheop_access }, 4244 { .name = "DC_IVAC", .state = ARM_CP_STATE_AA64, 4245 .opc0 = 1, .opc1 = 0, .crn = 7, .crm = 6, .opc2 = 1, 4246 .access = PL1_W, .type = ARM_CP_NOP }, 4247 { .name = "DC_ISW", .state = ARM_CP_STATE_AA64, 4248 .opc0 = 1, .opc1 = 0, .crn = 7, .crm = 6, .opc2 = 2, 4249 .access = PL1_W, .type = ARM_CP_NOP }, 4250 { .name = "DC_CVAC", .state = ARM_CP_STATE_AA64, 4251 .opc0 = 1, .opc1 = 3, .crn = 7, .crm = 10, .opc2 = 1, 4252 .access = PL0_W, .type = ARM_CP_NOP, 4253 .accessfn = aa64_cacheop_access }, 4254 { .name = "DC_CSW", .state = ARM_CP_STATE_AA64, 4255 .opc0 = 1, .opc1 = 0, .crn = 7, .crm = 10, .opc2 = 2, 4256 .access = PL1_W, .type = ARM_CP_NOP }, 4257 { .name = "DC_CVAU", .state = ARM_CP_STATE_AA64, 4258 .opc0 = 1, .opc1 = 3, .crn = 7, .crm = 11, .opc2 = 1, 4259 .access = PL0_W, .type = ARM_CP_NOP, 4260 .accessfn = aa64_cacheop_access }, 4261 { .name = "DC_CIVAC", .state = ARM_CP_STATE_AA64, 4262 .opc0 = 1, .opc1 = 3, .crn = 7, .crm = 14, .opc2 = 1, 4263 .access = PL0_W, .type = ARM_CP_NOP, 4264 .accessfn = aa64_cacheop_access }, 4265 { .name = "DC_CISW", .state = ARM_CP_STATE_AA64, 4266 .opc0 = 1, .opc1 = 0, .crn = 7, .crm = 14, .opc2 = 2, 4267 .access = PL1_W, .type = ARM_CP_NOP }, 4268 /* TLBI operations */ 4269 { .name = "TLBI_VMALLE1IS", .state = ARM_CP_STATE_AA64, 4270 .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 3, .opc2 = 0, 4271 .access = PL1_W, .type = ARM_CP_NO_RAW, 4272 .writefn = tlbi_aa64_vmalle1is_write }, 4273 { .name = "TLBI_VAE1IS", .state = ARM_CP_STATE_AA64, 4274 .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 3, .opc2 = 1, 4275 .access = PL1_W, .type = ARM_CP_NO_RAW, 4276 .writefn = tlbi_aa64_vae1is_write }, 4277 { .name = "TLBI_ASIDE1IS", .state = ARM_CP_STATE_AA64, 4278 .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 3, .opc2 = 2, 4279 .access = PL1_W, .type = ARM_CP_NO_RAW, 4280 .writefn = tlbi_aa64_vmalle1is_write }, 4281 { .name = "TLBI_VAAE1IS", .state = ARM_CP_STATE_AA64, 4282 .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 3, .opc2 = 3, 4283 .access = PL1_W, .type = ARM_CP_NO_RAW, 4284 .writefn = tlbi_aa64_vae1is_write }, 4285 { .name = "TLBI_VALE1IS", .state = ARM_CP_STATE_AA64, 4286 .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 3, .opc2 = 5, 4287 .access = PL1_W, .type = ARM_CP_NO_RAW, 4288 .writefn = tlbi_aa64_vae1is_write }, 4289 { .name = "TLBI_VAALE1IS", .state = ARM_CP_STATE_AA64, 4290 .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 3, .opc2 = 7, 4291 .access = PL1_W, .type = ARM_CP_NO_RAW, 4292 .writefn = tlbi_aa64_vae1is_write }, 4293 { .name = "TLBI_VMALLE1", .state = ARM_CP_STATE_AA64, 4294 .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 7, .opc2 = 0, 4295 .access = PL1_W, .type = ARM_CP_NO_RAW, 4296 .writefn = tlbi_aa64_vmalle1_write }, 4297 { .name = "TLBI_VAE1", .state = ARM_CP_STATE_AA64, 4298 .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 7, .opc2 = 1, 4299 .access = PL1_W, .type = ARM_CP_NO_RAW, 4300 .writefn = tlbi_aa64_vae1_write }, 4301 { .name = "TLBI_ASIDE1", .state = ARM_CP_STATE_AA64, 4302 .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 7, .opc2 = 2, 4303 .access = PL1_W, .type = ARM_CP_NO_RAW, 4304 .writefn = tlbi_aa64_vmalle1_write }, 4305 { .name = "TLBI_VAAE1", .state = ARM_CP_STATE_AA64, 4306 .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 7, .opc2 = 3, 4307 .access = PL1_W, .type = ARM_CP_NO_RAW, 4308 .writefn = tlbi_aa64_vae1_write }, 4309 { .name = "TLBI_VALE1", .state = ARM_CP_STATE_AA64, 4310 .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 7, .opc2 = 5, 4311 .access = PL1_W, .type = ARM_CP_NO_RAW, 4312 .writefn = tlbi_aa64_vae1_write }, 4313 { .name = "TLBI_VAALE1", .state = ARM_CP_STATE_AA64, 4314 .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 7, .opc2 = 7, 4315 .access = PL1_W, .type = ARM_CP_NO_RAW, 4316 .writefn = tlbi_aa64_vae1_write }, 4317 { .name = "TLBI_IPAS2E1IS", .state = ARM_CP_STATE_AA64, 4318 .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 0, .opc2 = 1, 4319 .access = PL2_W, .type = ARM_CP_NO_RAW, 4320 .writefn = tlbi_aa64_ipas2e1is_write }, 4321 { .name = "TLBI_IPAS2LE1IS", .state = ARM_CP_STATE_AA64, 4322 .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 0, .opc2 = 5, 4323 .access = PL2_W, .type = ARM_CP_NO_RAW, 4324 .writefn = tlbi_aa64_ipas2e1is_write }, 4325 { .name = "TLBI_ALLE1IS", .state = ARM_CP_STATE_AA64, 4326 .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 3, .opc2 = 4, 4327 .access = PL2_W, .type = ARM_CP_NO_RAW, 4328 .writefn = tlbi_aa64_alle1is_write }, 4329 { .name = "TLBI_VMALLS12E1IS", .state = ARM_CP_STATE_AA64, 4330 .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 3, .opc2 = 6, 4331 .access = PL2_W, .type = ARM_CP_NO_RAW, 4332 .writefn = tlbi_aa64_alle1is_write }, 4333 { .name = "TLBI_IPAS2E1", .state = ARM_CP_STATE_AA64, 4334 .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 4, .opc2 = 1, 4335 .access = PL2_W, .type = ARM_CP_NO_RAW, 4336 .writefn = tlbi_aa64_ipas2e1_write }, 4337 { .name = "TLBI_IPAS2LE1", .state = ARM_CP_STATE_AA64, 4338 .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 4, .opc2 = 5, 4339 .access = PL2_W, .type = ARM_CP_NO_RAW, 4340 .writefn = tlbi_aa64_ipas2e1_write }, 4341 { .name = "TLBI_ALLE1", .state = ARM_CP_STATE_AA64, 4342 .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 7, .opc2 = 4, 4343 .access = PL2_W, .type = ARM_CP_NO_RAW, 4344 .writefn = tlbi_aa64_alle1_write }, 4345 { .name = "TLBI_VMALLS12E1", .state = ARM_CP_STATE_AA64, 4346 .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 7, .opc2 = 6, 4347 .access = PL2_W, .type = ARM_CP_NO_RAW, 4348 .writefn = tlbi_aa64_alle1is_write }, 4349 #ifndef CONFIG_USER_ONLY 4350 /* 64 bit address translation operations */ 4351 { .name = "AT_S1E1R", .state = ARM_CP_STATE_AA64, 4352 .opc0 = 1, .opc1 = 0, .crn = 7, .crm = 8, .opc2 = 0, 4353 .access = PL1_W, .type = ARM_CP_NO_RAW | ARM_CP_RAISES_EXC, 4354 .writefn = ats_write64 }, 4355 { .name = "AT_S1E1W", .state = ARM_CP_STATE_AA64, 4356 .opc0 = 1, .opc1 = 0, .crn = 7, .crm = 8, .opc2 = 1, 4357 .access = PL1_W, .type = ARM_CP_NO_RAW | ARM_CP_RAISES_EXC, 4358 .writefn = ats_write64 }, 4359 { .name = "AT_S1E0R", .state = ARM_CP_STATE_AA64, 4360 .opc0 = 1, .opc1 = 0, .crn = 7, .crm = 8, .opc2 = 2, 4361 .access = PL1_W, .type = ARM_CP_NO_RAW | ARM_CP_RAISES_EXC, 4362 .writefn = ats_write64 }, 4363 { .name = "AT_S1E0W", .state = ARM_CP_STATE_AA64, 4364 .opc0 = 1, .opc1 = 0, .crn = 7, .crm = 8, .opc2 = 3, 4365 .access = PL1_W, .type = ARM_CP_NO_RAW | ARM_CP_RAISES_EXC, 4366 .writefn = ats_write64 }, 4367 { .name = "AT_S12E1R", .state = ARM_CP_STATE_AA64, 4368 .opc0 = 1, .opc1 = 4, .crn = 7, .crm = 8, .opc2 = 4, 4369 .access = PL2_W, .type = ARM_CP_NO_RAW | ARM_CP_RAISES_EXC, 4370 .writefn = ats_write64 }, 4371 { .name = "AT_S12E1W", .state = ARM_CP_STATE_AA64, 4372 .opc0 = 1, .opc1 = 4, .crn = 7, .crm = 8, .opc2 = 5, 4373 .access = PL2_W, .type = ARM_CP_NO_RAW | ARM_CP_RAISES_EXC, 4374 .writefn = ats_write64 }, 4375 { .name = "AT_S12E0R", .state = ARM_CP_STATE_AA64, 4376 .opc0 = 1, .opc1 = 4, .crn = 7, .crm = 8, .opc2 = 6, 4377 .access = PL2_W, .type = ARM_CP_NO_RAW | ARM_CP_RAISES_EXC, 4378 .writefn = ats_write64 }, 4379 { .name = "AT_S12E0W", .state = ARM_CP_STATE_AA64, 4380 .opc0 = 1, .opc1 = 4, .crn = 7, .crm = 8, .opc2 = 7, 4381 .access = PL2_W, .type = ARM_CP_NO_RAW | ARM_CP_RAISES_EXC, 4382 .writefn = ats_write64 }, 4383 /* AT S1E2* are elsewhere as they UNDEF from EL3 if EL2 is not present */ 4384 { .name = "AT_S1E3R", .state = ARM_CP_STATE_AA64, 4385 .opc0 = 1, .opc1 = 6, .crn = 7, .crm = 8, .opc2 = 0, 4386 .access = PL3_W, .type = ARM_CP_NO_RAW | ARM_CP_RAISES_EXC, 4387 .writefn = ats_write64 }, 4388 { .name = "AT_S1E3W", .state = ARM_CP_STATE_AA64, 4389 .opc0 = 1, .opc1 = 6, .crn = 7, .crm = 8, .opc2 = 1, 4390 .access = PL3_W, .type = ARM_CP_NO_RAW | ARM_CP_RAISES_EXC, 4391 .writefn = ats_write64 }, 4392 { .name = "PAR_EL1", .state = ARM_CP_STATE_AA64, 4393 .type = ARM_CP_ALIAS, 4394 .opc0 = 3, .opc1 = 0, .crn = 7, .crm = 4, .opc2 = 0, 4395 .access = PL1_RW, .resetvalue = 0, 4396 .fieldoffset = offsetof(CPUARMState, cp15.par_el[1]), 4397 .writefn = par_write }, 4398 #endif 4399 /* TLB invalidate last level of translation table walk */ 4400 { .name = "TLBIMVALIS", .cp = 15, .opc1 = 0, .crn = 8, .crm = 3, .opc2 = 5, 4401 .type = ARM_CP_NO_RAW, .access = PL1_W, .writefn = tlbimva_is_write }, 4402 { .name = "TLBIMVAALIS", .cp = 15, .opc1 = 0, .crn = 8, .crm = 3, .opc2 = 7, 4403 .type = ARM_CP_NO_RAW, .access = PL1_W, 4404 .writefn = tlbimvaa_is_write }, 4405 { .name = "TLBIMVAL", .cp = 15, .opc1 = 0, .crn = 8, .crm = 7, .opc2 = 5, 4406 .type = ARM_CP_NO_RAW, .access = PL1_W, .writefn = tlbimva_write }, 4407 { .name = "TLBIMVAAL", .cp = 15, .opc1 = 0, .crn = 8, .crm = 7, .opc2 = 7, 4408 .type = ARM_CP_NO_RAW, .access = PL1_W, .writefn = tlbimvaa_write }, 4409 { .name = "TLBIMVALH", .cp = 15, .opc1 = 4, .crn = 8, .crm = 7, .opc2 = 5, 4410 .type = ARM_CP_NO_RAW, .access = PL2_W, 4411 .writefn = tlbimva_hyp_write }, 4412 { .name = "TLBIMVALHIS", 4413 .cp = 15, .opc1 = 4, .crn = 8, .crm = 3, .opc2 = 5, 4414 .type = ARM_CP_NO_RAW, .access = PL2_W, 4415 .writefn = tlbimva_hyp_is_write }, 4416 { .name = "TLBIIPAS2", 4417 .cp = 15, .opc1 = 4, .crn = 8, .crm = 4, .opc2 = 1, 4418 .type = ARM_CP_NO_RAW, .access = PL2_W, 4419 .writefn = tlbiipas2_write }, 4420 { .name = "TLBIIPAS2IS", 4421 .cp = 15, .opc1 = 4, .crn = 8, .crm = 0, .opc2 = 1, 4422 .type = ARM_CP_NO_RAW, .access = PL2_W, 4423 .writefn = tlbiipas2_is_write }, 4424 { .name = "TLBIIPAS2L", 4425 .cp = 15, .opc1 = 4, .crn = 8, .crm = 4, .opc2 = 5, 4426 .type = ARM_CP_NO_RAW, .access = PL2_W, 4427 .writefn = tlbiipas2_write }, 4428 { .name = "TLBIIPAS2LIS", 4429 .cp = 15, .opc1 = 4, .crn = 8, .crm = 0, .opc2 = 5, 4430 .type = ARM_CP_NO_RAW, .access = PL2_W, 4431 .writefn = tlbiipas2_is_write }, 4432 /* 32 bit cache operations */ 4433 { .name = "ICIALLUIS", .cp = 15, .opc1 = 0, .crn = 7, .crm = 1, .opc2 = 0, 4434 .type = ARM_CP_NOP, .access = PL1_W }, 4435 { .name = "BPIALLUIS", .cp = 15, .opc1 = 0, .crn = 7, .crm = 1, .opc2 = 6, 4436 .type = ARM_CP_NOP, .access = PL1_W }, 4437 { .name = "ICIALLU", .cp = 15, .opc1 = 0, .crn = 7, .crm = 5, .opc2 = 0, 4438 .type = ARM_CP_NOP, .access = PL1_W }, 4439 { .name = "ICIMVAU", .cp = 15, .opc1 = 0, .crn = 7, .crm = 5, .opc2 = 1, 4440 .type = ARM_CP_NOP, .access = PL1_W }, 4441 { .name = "BPIALL", .cp = 15, .opc1 = 0, .crn = 7, .crm = 5, .opc2 = 6, 4442 .type = ARM_CP_NOP, .access = PL1_W }, 4443 { .name = "BPIMVA", .cp = 15, .opc1 = 0, .crn = 7, .crm = 5, .opc2 = 7, 4444 .type = ARM_CP_NOP, .access = PL1_W }, 4445 { .name = "DCIMVAC", .cp = 15, .opc1 = 0, .crn = 7, .crm = 6, .opc2 = 1, 4446 .type = ARM_CP_NOP, .access = PL1_W }, 4447 { .name = "DCISW", .cp = 15, .opc1 = 0, .crn = 7, .crm = 6, .opc2 = 2, 4448 .type = ARM_CP_NOP, .access = PL1_W }, 4449 { .name = "DCCMVAC", .cp = 15, .opc1 = 0, .crn = 7, .crm = 10, .opc2 = 1, 4450 .type = ARM_CP_NOP, .access = PL1_W }, 4451 { .name = "DCCSW", .cp = 15, .opc1 = 0, .crn = 7, .crm = 10, .opc2 = 2, 4452 .type = ARM_CP_NOP, .access = PL1_W }, 4453 { .name = "DCCMVAU", .cp = 15, .opc1 = 0, .crn = 7, .crm = 11, .opc2 = 1, 4454 .type = ARM_CP_NOP, .access = PL1_W }, 4455 { .name = "DCCIMVAC", .cp = 15, .opc1 = 0, .crn = 7, .crm = 14, .opc2 = 1, 4456 .type = ARM_CP_NOP, .access = PL1_W }, 4457 { .name = "DCCISW", .cp = 15, .opc1 = 0, .crn = 7, .crm = 14, .opc2 = 2, 4458 .type = ARM_CP_NOP, .access = PL1_W }, 4459 /* MMU Domain access control / MPU write buffer control */ 4460 { .name = "DACR", .cp = 15, .opc1 = 0, .crn = 3, .crm = 0, .opc2 = 0, 4461 .access = PL1_RW, .resetvalue = 0, 4462 .writefn = dacr_write, .raw_writefn = raw_write, 4463 .bank_fieldoffsets = { offsetoflow32(CPUARMState, cp15.dacr_s), 4464 offsetoflow32(CPUARMState, cp15.dacr_ns) } }, 4465 { .name = "ELR_EL1", .state = ARM_CP_STATE_AA64, 4466 .type = ARM_CP_ALIAS, 4467 .opc0 = 3, .opc1 = 0, .crn = 4, .crm = 0, .opc2 = 1, 4468 .access = PL1_RW, 4469 .fieldoffset = offsetof(CPUARMState, elr_el[1]) }, 4470 { .name = "SPSR_EL1", .state = ARM_CP_STATE_AA64, 4471 .type = ARM_CP_ALIAS, 4472 .opc0 = 3, .opc1 = 0, .crn = 4, .crm = 0, .opc2 = 0, 4473 .access = PL1_RW, 4474 .fieldoffset = offsetof(CPUARMState, banked_spsr[BANK_SVC]) }, 4475 /* We rely on the access checks not allowing the guest to write to the 4476 * state field when SPSel indicates that it's being used as the stack 4477 * pointer. 4478 */ 4479 { .name = "SP_EL0", .state = ARM_CP_STATE_AA64, 4480 .opc0 = 3, .opc1 = 0, .crn = 4, .crm = 1, .opc2 = 0, 4481 .access = PL1_RW, .accessfn = sp_el0_access, 4482 .type = ARM_CP_ALIAS, 4483 .fieldoffset = offsetof(CPUARMState, sp_el[0]) }, 4484 { .name = "SP_EL1", .state = ARM_CP_STATE_AA64, 4485 .opc0 = 3, .opc1 = 4, .crn = 4, .crm = 1, .opc2 = 0, 4486 .access = PL2_RW, .type = ARM_CP_ALIAS, 4487 .fieldoffset = offsetof(CPUARMState, sp_el[1]) }, 4488 { .name = "SPSel", .state = ARM_CP_STATE_AA64, 4489 .opc0 = 3, .opc1 = 0, .crn = 4, .crm = 2, .opc2 = 0, 4490 .type = ARM_CP_NO_RAW, 4491 .access = PL1_RW, .readfn = spsel_read, .writefn = spsel_write }, 4492 { .name = "FPEXC32_EL2", .state = ARM_CP_STATE_AA64, 4493 .opc0 = 3, .opc1 = 4, .crn = 5, .crm = 3, .opc2 = 0, 4494 .type = ARM_CP_ALIAS, 4495 .fieldoffset = offsetof(CPUARMState, vfp.xregs[ARM_VFP_FPEXC]), 4496 .access = PL2_RW, .accessfn = fpexc32_access }, 4497 { .name = "DACR32_EL2", .state = ARM_CP_STATE_AA64, 4498 .opc0 = 3, .opc1 = 4, .crn = 3, .crm = 0, .opc2 = 0, 4499 .access = PL2_RW, .resetvalue = 0, 4500 .writefn = dacr_write, .raw_writefn = raw_write, 4501 .fieldoffset = offsetof(CPUARMState, cp15.dacr32_el2) }, 4502 { .name = "IFSR32_EL2", .state = ARM_CP_STATE_AA64, 4503 .opc0 = 3, .opc1 = 4, .crn = 5, .crm = 0, .opc2 = 1, 4504 .access = PL2_RW, .resetvalue = 0, 4505 .fieldoffset = offsetof(CPUARMState, cp15.ifsr32_el2) }, 4506 { .name = "SPSR_IRQ", .state = ARM_CP_STATE_AA64, 4507 .type = ARM_CP_ALIAS, 4508 .opc0 = 3, .opc1 = 4, .crn = 4, .crm = 3, .opc2 = 0, 4509 .access = PL2_RW, 4510 .fieldoffset = offsetof(CPUARMState, banked_spsr[BANK_IRQ]) }, 4511 { .name = "SPSR_ABT", .state = ARM_CP_STATE_AA64, 4512 .type = ARM_CP_ALIAS, 4513 .opc0 = 3, .opc1 = 4, .crn = 4, .crm = 3, .opc2 = 1, 4514 .access = PL2_RW, 4515 .fieldoffset = offsetof(CPUARMState, banked_spsr[BANK_ABT]) }, 4516 { .name = "SPSR_UND", .state = ARM_CP_STATE_AA64, 4517 .type = ARM_CP_ALIAS, 4518 .opc0 = 3, .opc1 = 4, .crn = 4, .crm = 3, .opc2 = 2, 4519 .access = PL2_RW, 4520 .fieldoffset = offsetof(CPUARMState, banked_spsr[BANK_UND]) }, 4521 { .name = "SPSR_FIQ", .state = ARM_CP_STATE_AA64, 4522 .type = ARM_CP_ALIAS, 4523 .opc0 = 3, .opc1 = 4, .crn = 4, .crm = 3, .opc2 = 3, 4524 .access = PL2_RW, 4525 .fieldoffset = offsetof(CPUARMState, banked_spsr[BANK_FIQ]) }, 4526 { .name = "MDCR_EL3", .state = ARM_CP_STATE_AA64, 4527 .opc0 = 3, .opc1 = 6, .crn = 1, .crm = 3, .opc2 = 1, 4528 .resetvalue = 0, 4529 .access = PL3_RW, .fieldoffset = offsetof(CPUARMState, cp15.mdcr_el3) }, 4530 { .name = "SDCR", .type = ARM_CP_ALIAS, 4531 .cp = 15, .opc1 = 0, .crn = 1, .crm = 3, .opc2 = 1, 4532 .access = PL1_RW, .accessfn = access_trap_aa32s_el1, 4533 .writefn = sdcr_write, 4534 .fieldoffset = offsetoflow32(CPUARMState, cp15.mdcr_el3) }, 4535 REGINFO_SENTINEL 4536 }; 4537 4538 /* Used to describe the behaviour of EL2 regs when EL2 does not exist. */ 4539 static const ARMCPRegInfo el3_no_el2_cp_reginfo[] = { 4540 { .name = "VBAR_EL2", .state = ARM_CP_STATE_BOTH, 4541 .opc0 = 3, .opc1 = 4, .crn = 12, .crm = 0, .opc2 = 0, 4542 .access = PL2_RW, 4543 .readfn = arm_cp_read_zero, .writefn = arm_cp_write_ignore }, 4544 { .name = "HCR_EL2", .state = ARM_CP_STATE_BOTH, 4545 .type = ARM_CP_NO_RAW, 4546 .opc0 = 3, .opc1 = 4, .crn = 1, .crm = 1, .opc2 = 0, 4547 .access = PL2_RW, 4548 .type = ARM_CP_CONST, .resetvalue = 0 }, 4549 { .name = "HACR_EL2", .state = ARM_CP_STATE_BOTH, 4550 .opc0 = 3, .opc1 = 4, .crn = 1, .crm = 1, .opc2 = 7, 4551 .access = PL2_RW, .type = ARM_CP_CONST, .resetvalue = 0 }, 4552 { .name = "ESR_EL2", .state = ARM_CP_STATE_BOTH, 4553 .opc0 = 3, .opc1 = 4, .crn = 5, .crm = 2, .opc2 = 0, 4554 .access = PL2_RW, 4555 .type = ARM_CP_CONST, .resetvalue = 0 }, 4556 { .name = "CPTR_EL2", .state = ARM_CP_STATE_BOTH, 4557 .opc0 = 3, .opc1 = 4, .crn = 1, .crm = 1, .opc2 = 2, 4558 .access = PL2_RW, .type = ARM_CP_CONST, .resetvalue = 0 }, 4559 { .name = "MAIR_EL2", .state = ARM_CP_STATE_BOTH, 4560 .opc0 = 3, .opc1 = 4, .crn = 10, .crm = 2, .opc2 = 0, 4561 .access = PL2_RW, .type = ARM_CP_CONST, 4562 .resetvalue = 0 }, 4563 { .name = "HMAIR1", .state = ARM_CP_STATE_AA32, 4564 .cp = 15, .opc1 = 4, .crn = 10, .crm = 2, .opc2 = 1, 4565 .access = PL2_RW, .type = ARM_CP_CONST, .resetvalue = 0 }, 4566 { .name = "AMAIR_EL2", .state = ARM_CP_STATE_BOTH, 4567 .opc0 = 3, .opc1 = 4, .crn = 10, .crm = 3, .opc2 = 0, 4568 .access = PL2_RW, .type = ARM_CP_CONST, 4569 .resetvalue = 0 }, 4570 { .name = "HAMAIR1", .state = ARM_CP_STATE_AA32, 4571 .cp = 15, .opc1 = 4, .crn = 10, .crm = 3, .opc2 = 1, 4572 .access = PL2_RW, .type = ARM_CP_CONST, 4573 .resetvalue = 0 }, 4574 { .name = "AFSR0_EL2", .state = ARM_CP_STATE_BOTH, 4575 .opc0 = 3, .opc1 = 4, .crn = 5, .crm = 1, .opc2 = 0, 4576 .access = PL2_RW, .type = ARM_CP_CONST, 4577 .resetvalue = 0 }, 4578 { .name = "AFSR1_EL2", .state = ARM_CP_STATE_BOTH, 4579 .opc0 = 3, .opc1 = 4, .crn = 5, .crm = 1, .opc2 = 1, 4580 .access = PL2_RW, .type = ARM_CP_CONST, 4581 .resetvalue = 0 }, 4582 { .name = "TCR_EL2", .state = ARM_CP_STATE_BOTH, 4583 .opc0 = 3, .opc1 = 4, .crn = 2, .crm = 0, .opc2 = 2, 4584 .access = PL2_RW, .type = ARM_CP_CONST, .resetvalue = 0 }, 4585 { .name = "VTCR_EL2", .state = ARM_CP_STATE_BOTH, 4586 .opc0 = 3, .opc1 = 4, .crn = 2, .crm = 1, .opc2 = 2, 4587 .access = PL2_RW, .accessfn = access_el3_aa32ns_aa64any, 4588 .type = ARM_CP_CONST, .resetvalue = 0 }, 4589 { .name = "VTTBR", .state = ARM_CP_STATE_AA32, 4590 .cp = 15, .opc1 = 6, .crm = 2, 4591 .access = PL2_RW, .accessfn = access_el3_aa32ns, 4592 .type = ARM_CP_CONST | ARM_CP_64BIT, .resetvalue = 0 }, 4593 { .name = "VTTBR_EL2", .state = ARM_CP_STATE_AA64, 4594 .opc0 = 3, .opc1 = 4, .crn = 2, .crm = 1, .opc2 = 0, 4595 .access = PL2_RW, .type = ARM_CP_CONST, .resetvalue = 0 }, 4596 { .name = "SCTLR_EL2", .state = ARM_CP_STATE_BOTH, 4597 .opc0 = 3, .opc1 = 4, .crn = 1, .crm = 0, .opc2 = 0, 4598 .access = PL2_RW, .type = ARM_CP_CONST, .resetvalue = 0 }, 4599 { .name = "TPIDR_EL2", .state = ARM_CP_STATE_BOTH, 4600 .opc0 = 3, .opc1 = 4, .crn = 13, .crm = 0, .opc2 = 2, 4601 .access = PL2_RW, .type = ARM_CP_CONST, .resetvalue = 0 }, 4602 { .name = "TTBR0_EL2", .state = ARM_CP_STATE_AA64, 4603 .opc0 = 3, .opc1 = 4, .crn = 2, .crm = 0, .opc2 = 0, 4604 .access = PL2_RW, .type = ARM_CP_CONST, .resetvalue = 0 }, 4605 { .name = "HTTBR", .cp = 15, .opc1 = 4, .crm = 2, 4606 .access = PL2_RW, .type = ARM_CP_64BIT | ARM_CP_CONST, 4607 .resetvalue = 0 }, 4608 { .name = "CNTHCTL_EL2", .state = ARM_CP_STATE_BOTH, 4609 .opc0 = 3, .opc1 = 4, .crn = 14, .crm = 1, .opc2 = 0, 4610 .access = PL2_RW, .type = ARM_CP_CONST, .resetvalue = 0 }, 4611 { .name = "CNTVOFF_EL2", .state = ARM_CP_STATE_AA64, 4612 .opc0 = 3, .opc1 = 4, .crn = 14, .crm = 0, .opc2 = 3, 4613 .access = PL2_RW, .type = ARM_CP_CONST, .resetvalue = 0 }, 4614 { .name = "CNTVOFF", .cp = 15, .opc1 = 4, .crm = 14, 4615 .access = PL2_RW, .type = ARM_CP_64BIT | ARM_CP_CONST, 4616 .resetvalue = 0 }, 4617 { .name = "CNTHP_CVAL_EL2", .state = ARM_CP_STATE_AA64, 4618 .opc0 = 3, .opc1 = 4, .crn = 14, .crm = 2, .opc2 = 2, 4619 .access = PL2_RW, .type = ARM_CP_CONST, .resetvalue = 0 }, 4620 { .name = "CNTHP_CVAL", .cp = 15, .opc1 = 6, .crm = 14, 4621 .access = PL2_RW, .type = ARM_CP_64BIT | ARM_CP_CONST, 4622 .resetvalue = 0 }, 4623 { .name = "CNTHP_TVAL_EL2", .state = ARM_CP_STATE_BOTH, 4624 .opc0 = 3, .opc1 = 4, .crn = 14, .crm = 2, .opc2 = 0, 4625 .access = PL2_RW, .type = ARM_CP_CONST, .resetvalue = 0 }, 4626 { .name = "CNTHP_CTL_EL2", .state = ARM_CP_STATE_BOTH, 4627 .opc0 = 3, .opc1 = 4, .crn = 14, .crm = 2, .opc2 = 1, 4628 .access = PL2_RW, .type = ARM_CP_CONST, .resetvalue = 0 }, 4629 { .name = "MDCR_EL2", .state = ARM_CP_STATE_BOTH, 4630 .opc0 = 3, .opc1 = 4, .crn = 1, .crm = 1, .opc2 = 1, 4631 .access = PL2_RW, .accessfn = access_tda, 4632 .type = ARM_CP_CONST, .resetvalue = 0 }, 4633 { .name = "HPFAR_EL2", .state = ARM_CP_STATE_BOTH, 4634 .opc0 = 3, .opc1 = 4, .crn = 6, .crm = 0, .opc2 = 4, 4635 .access = PL2_RW, .accessfn = access_el3_aa32ns_aa64any, 4636 .type = ARM_CP_CONST, .resetvalue = 0 }, 4637 { .name = "HSTR_EL2", .state = ARM_CP_STATE_BOTH, 4638 .opc0 = 3, .opc1 = 4, .crn = 1, .crm = 1, .opc2 = 3, 4639 .access = PL2_RW, .type = ARM_CP_CONST, .resetvalue = 0 }, 4640 { .name = "FAR_EL2", .state = ARM_CP_STATE_BOTH, 4641 .opc0 = 3, .opc1 = 4, .crn = 6, .crm = 0, .opc2 = 0, 4642 .access = PL2_RW, .type = ARM_CP_CONST, .resetvalue = 0 }, 4643 { .name = "HIFAR", .state = ARM_CP_STATE_AA32, 4644 .type = ARM_CP_CONST, 4645 .cp = 15, .opc1 = 4, .crn = 6, .crm = 0, .opc2 = 2, 4646 .access = PL2_RW, .resetvalue = 0 }, 4647 REGINFO_SENTINEL 4648 }; 4649 4650 /* Ditto, but for registers which exist in ARMv8 but not v7 */ 4651 static const ARMCPRegInfo el3_no_el2_v8_cp_reginfo[] = { 4652 { .name = "HCR2", .state = ARM_CP_STATE_AA32, 4653 .cp = 15, .opc1 = 4, .crn = 1, .crm = 1, .opc2 = 4, 4654 .access = PL2_RW, 4655 .type = ARM_CP_CONST, .resetvalue = 0 }, 4656 REGINFO_SENTINEL 4657 }; 4658 4659 static void hcr_write(CPUARMState *env, const ARMCPRegInfo *ri, uint64_t value) 4660 { 4661 ARMCPU *cpu = env_archcpu(env); 4662 uint64_t valid_mask = HCR_MASK; 4663 4664 if (arm_feature(env, ARM_FEATURE_EL3)) { 4665 valid_mask &= ~HCR_HCD; 4666 } else if (cpu->psci_conduit != QEMU_PSCI_CONDUIT_SMC) { 4667 /* Architecturally HCR.TSC is RES0 if EL3 is not implemented. 4668 * However, if we're using the SMC PSCI conduit then QEMU is 4669 * effectively acting like EL3 firmware and so the guest at 4670 * EL2 should retain the ability to prevent EL1 from being 4671 * able to make SMC calls into the ersatz firmware, so in 4672 * that case HCR.TSC should be read/write. 4673 */ 4674 valid_mask &= ~HCR_TSC; 4675 } 4676 if (cpu_isar_feature(aa64_lor, cpu)) { 4677 valid_mask |= HCR_TLOR; 4678 } 4679 if (cpu_isar_feature(aa64_pauth, cpu)) { 4680 valid_mask |= HCR_API | HCR_APK; 4681 } 4682 4683 /* Clear RES0 bits. */ 4684 value &= valid_mask; 4685 4686 /* These bits change the MMU setup: 4687 * HCR_VM enables stage 2 translation 4688 * HCR_PTW forbids certain page-table setups 4689 * HCR_DC Disables stage1 and enables stage2 translation 4690 */ 4691 if ((env->cp15.hcr_el2 ^ value) & (HCR_VM | HCR_PTW | HCR_DC)) { 4692 tlb_flush(CPU(cpu)); 4693 } 4694 env->cp15.hcr_el2 = value; 4695 4696 /* 4697 * Updates to VI and VF require us to update the status of 4698 * virtual interrupts, which are the logical OR of these bits 4699 * and the state of the input lines from the GIC. (This requires 4700 * that we have the iothread lock, which is done by marking the 4701 * reginfo structs as ARM_CP_IO.) 4702 * Note that if a write to HCR pends a VIRQ or VFIQ it is never 4703 * possible for it to be taken immediately, because VIRQ and 4704 * VFIQ are masked unless running at EL0 or EL1, and HCR 4705 * can only be written at EL2. 4706 */ 4707 g_assert(qemu_mutex_iothread_locked()); 4708 arm_cpu_update_virq(cpu); 4709 arm_cpu_update_vfiq(cpu); 4710 } 4711 4712 static void hcr_writehigh(CPUARMState *env, const ARMCPRegInfo *ri, 4713 uint64_t value) 4714 { 4715 /* Handle HCR2 write, i.e. write to high half of HCR_EL2 */ 4716 value = deposit64(env->cp15.hcr_el2, 32, 32, value); 4717 hcr_write(env, NULL, value); 4718 } 4719 4720 static void hcr_writelow(CPUARMState *env, const ARMCPRegInfo *ri, 4721 uint64_t value) 4722 { 4723 /* Handle HCR write, i.e. write to low half of HCR_EL2 */ 4724 value = deposit64(env->cp15.hcr_el2, 0, 32, value); 4725 hcr_write(env, NULL, value); 4726 } 4727 4728 /* 4729 * Return the effective value of HCR_EL2. 4730 * Bits that are not included here: 4731 * RW (read from SCR_EL3.RW as needed) 4732 */ 4733 uint64_t arm_hcr_el2_eff(CPUARMState *env) 4734 { 4735 uint64_t ret = env->cp15.hcr_el2; 4736 4737 if (arm_is_secure_below_el3(env)) { 4738 /* 4739 * "This register has no effect if EL2 is not enabled in the 4740 * current Security state". This is ARMv8.4-SecEL2 speak for 4741 * !(SCR_EL3.NS==1 || SCR_EL3.EEL2==1). 4742 * 4743 * Prior to that, the language was "In an implementation that 4744 * includes EL3, when the value of SCR_EL3.NS is 0 the PE behaves 4745 * as if this field is 0 for all purposes other than a direct 4746 * read or write access of HCR_EL2". With lots of enumeration 4747 * on a per-field basis. In current QEMU, this is condition 4748 * is arm_is_secure_below_el3. 4749 * 4750 * Since the v8.4 language applies to the entire register, and 4751 * appears to be backward compatible, use that. 4752 */ 4753 ret = 0; 4754 } else if (ret & HCR_TGE) { 4755 /* These bits are up-to-date as of ARMv8.4. */ 4756 if (ret & HCR_E2H) { 4757 ret &= ~(HCR_VM | HCR_FMO | HCR_IMO | HCR_AMO | 4758 HCR_BSU_MASK | HCR_DC | HCR_TWI | HCR_TWE | 4759 HCR_TID0 | HCR_TID2 | HCR_TPCP | HCR_TPU | 4760 HCR_TDZ | HCR_CD | HCR_ID | HCR_MIOCNCE); 4761 } else { 4762 ret |= HCR_FMO | HCR_IMO | HCR_AMO; 4763 } 4764 ret &= ~(HCR_SWIO | HCR_PTW | HCR_VF | HCR_VI | HCR_VSE | 4765 HCR_FB | HCR_TID1 | HCR_TID3 | HCR_TSC | HCR_TACR | 4766 HCR_TSW | HCR_TTLB | HCR_TVM | HCR_HCD | HCR_TRVM | 4767 HCR_TLOR); 4768 } 4769 4770 return ret; 4771 } 4772 4773 static void cptr_el2_write(CPUARMState *env, const ARMCPRegInfo *ri, 4774 uint64_t value) 4775 { 4776 /* 4777 * For A-profile AArch32 EL3, if NSACR.CP10 4778 * is 0 then HCPTR.{TCP11,TCP10} ignore writes and read as 1. 4779 */ 4780 if (arm_feature(env, ARM_FEATURE_EL3) && !arm_el_is_aa64(env, 3) && 4781 !arm_is_secure(env) && !extract32(env->cp15.nsacr, 10, 1)) { 4782 value &= ~(0x3 << 10); 4783 value |= env->cp15.cptr_el[2] & (0x3 << 10); 4784 } 4785 env->cp15.cptr_el[2] = value; 4786 } 4787 4788 static uint64_t cptr_el2_read(CPUARMState *env, const ARMCPRegInfo *ri) 4789 { 4790 /* 4791 * For A-profile AArch32 EL3, if NSACR.CP10 4792 * is 0 then HCPTR.{TCP11,TCP10} ignore writes and read as 1. 4793 */ 4794 uint64_t value = env->cp15.cptr_el[2]; 4795 4796 if (arm_feature(env, ARM_FEATURE_EL3) && !arm_el_is_aa64(env, 3) && 4797 !arm_is_secure(env) && !extract32(env->cp15.nsacr, 10, 1)) { 4798 value |= 0x3 << 10; 4799 } 4800 return value; 4801 } 4802 4803 static const ARMCPRegInfo el2_cp_reginfo[] = { 4804 { .name = "HCR_EL2", .state = ARM_CP_STATE_AA64, 4805 .type = ARM_CP_IO, 4806 .opc0 = 3, .opc1 = 4, .crn = 1, .crm = 1, .opc2 = 0, 4807 .access = PL2_RW, .fieldoffset = offsetof(CPUARMState, cp15.hcr_el2), 4808 .writefn = hcr_write }, 4809 { .name = "HCR", .state = ARM_CP_STATE_AA32, 4810 .type = ARM_CP_ALIAS | ARM_CP_IO, 4811 .cp = 15, .opc1 = 4, .crn = 1, .crm = 1, .opc2 = 0, 4812 .access = PL2_RW, .fieldoffset = offsetof(CPUARMState, cp15.hcr_el2), 4813 .writefn = hcr_writelow }, 4814 { .name = "HACR_EL2", .state = ARM_CP_STATE_BOTH, 4815 .opc0 = 3, .opc1 = 4, .crn = 1, .crm = 1, .opc2 = 7, 4816 .access = PL2_RW, .type = ARM_CP_CONST, .resetvalue = 0 }, 4817 { .name = "ELR_EL2", .state = ARM_CP_STATE_AA64, 4818 .type = ARM_CP_ALIAS, 4819 .opc0 = 3, .opc1 = 4, .crn = 4, .crm = 0, .opc2 = 1, 4820 .access = PL2_RW, 4821 .fieldoffset = offsetof(CPUARMState, elr_el[2]) }, 4822 { .name = "ESR_EL2", .state = ARM_CP_STATE_BOTH, 4823 .opc0 = 3, .opc1 = 4, .crn = 5, .crm = 2, .opc2 = 0, 4824 .access = PL2_RW, .fieldoffset = offsetof(CPUARMState, cp15.esr_el[2]) }, 4825 { .name = "FAR_EL2", .state = ARM_CP_STATE_BOTH, 4826 .opc0 = 3, .opc1 = 4, .crn = 6, .crm = 0, .opc2 = 0, 4827 .access = PL2_RW, .fieldoffset = offsetof(CPUARMState, cp15.far_el[2]) }, 4828 { .name = "HIFAR", .state = ARM_CP_STATE_AA32, 4829 .type = ARM_CP_ALIAS, 4830 .cp = 15, .opc1 = 4, .crn = 6, .crm = 0, .opc2 = 2, 4831 .access = PL2_RW, 4832 .fieldoffset = offsetofhigh32(CPUARMState, cp15.far_el[2]) }, 4833 { .name = "SPSR_EL2", .state = ARM_CP_STATE_AA64, 4834 .type = ARM_CP_ALIAS, 4835 .opc0 = 3, .opc1 = 4, .crn = 4, .crm = 0, .opc2 = 0, 4836 .access = PL2_RW, 4837 .fieldoffset = offsetof(CPUARMState, banked_spsr[BANK_HYP]) }, 4838 { .name = "VBAR_EL2", .state = ARM_CP_STATE_BOTH, 4839 .opc0 = 3, .opc1 = 4, .crn = 12, .crm = 0, .opc2 = 0, 4840 .access = PL2_RW, .writefn = vbar_write, 4841 .fieldoffset = offsetof(CPUARMState, cp15.vbar_el[2]), 4842 .resetvalue = 0 }, 4843 { .name = "SP_EL2", .state = ARM_CP_STATE_AA64, 4844 .opc0 = 3, .opc1 = 6, .crn = 4, .crm = 1, .opc2 = 0, 4845 .access = PL3_RW, .type = ARM_CP_ALIAS, 4846 .fieldoffset = offsetof(CPUARMState, sp_el[2]) }, 4847 { .name = "CPTR_EL2", .state = ARM_CP_STATE_BOTH, 4848 .opc0 = 3, .opc1 = 4, .crn = 1, .crm = 1, .opc2 = 2, 4849 .access = PL2_RW, .accessfn = cptr_access, .resetvalue = 0, 4850 .fieldoffset = offsetof(CPUARMState, cp15.cptr_el[2]), 4851 .readfn = cptr_el2_read, .writefn = cptr_el2_write }, 4852 { .name = "MAIR_EL2", .state = ARM_CP_STATE_BOTH, 4853 .opc0 = 3, .opc1 = 4, .crn = 10, .crm = 2, .opc2 = 0, 4854 .access = PL2_RW, .fieldoffset = offsetof(CPUARMState, cp15.mair_el[2]), 4855 .resetvalue = 0 }, 4856 { .name = "HMAIR1", .state = ARM_CP_STATE_AA32, 4857 .cp = 15, .opc1 = 4, .crn = 10, .crm = 2, .opc2 = 1, 4858 .access = PL2_RW, .type = ARM_CP_ALIAS, 4859 .fieldoffset = offsetofhigh32(CPUARMState, cp15.mair_el[2]) }, 4860 { .name = "AMAIR_EL2", .state = ARM_CP_STATE_BOTH, 4861 .opc0 = 3, .opc1 = 4, .crn = 10, .crm = 3, .opc2 = 0, 4862 .access = PL2_RW, .type = ARM_CP_CONST, 4863 .resetvalue = 0 }, 4864 /* HAMAIR1 is mapped to AMAIR_EL2[63:32] */ 4865 { .name = "HAMAIR1", .state = ARM_CP_STATE_AA32, 4866 .cp = 15, .opc1 = 4, .crn = 10, .crm = 3, .opc2 = 1, 4867 .access = PL2_RW, .type = ARM_CP_CONST, 4868 .resetvalue = 0 }, 4869 { .name = "AFSR0_EL2", .state = ARM_CP_STATE_BOTH, 4870 .opc0 = 3, .opc1 = 4, .crn = 5, .crm = 1, .opc2 = 0, 4871 .access = PL2_RW, .type = ARM_CP_CONST, 4872 .resetvalue = 0 }, 4873 { .name = "AFSR1_EL2", .state = ARM_CP_STATE_BOTH, 4874 .opc0 = 3, .opc1 = 4, .crn = 5, .crm = 1, .opc2 = 1, 4875 .access = PL2_RW, .type = ARM_CP_CONST, 4876 .resetvalue = 0 }, 4877 { .name = "TCR_EL2", .state = ARM_CP_STATE_BOTH, 4878 .opc0 = 3, .opc1 = 4, .crn = 2, .crm = 0, .opc2 = 2, 4879 .access = PL2_RW, 4880 /* no .writefn needed as this can't cause an ASID change; 4881 * no .raw_writefn or .resetfn needed as we never use mask/base_mask 4882 */ 4883 .fieldoffset = offsetof(CPUARMState, cp15.tcr_el[2]) }, 4884 { .name = "VTCR", .state = ARM_CP_STATE_AA32, 4885 .cp = 15, .opc1 = 4, .crn = 2, .crm = 1, .opc2 = 2, 4886 .type = ARM_CP_ALIAS, 4887 .access = PL2_RW, .accessfn = access_el3_aa32ns, 4888 .fieldoffset = offsetof(CPUARMState, cp15.vtcr_el2) }, 4889 { .name = "VTCR_EL2", .state = ARM_CP_STATE_AA64, 4890 .opc0 = 3, .opc1 = 4, .crn = 2, .crm = 1, .opc2 = 2, 4891 .access = PL2_RW, 4892 /* no .writefn needed as this can't cause an ASID change; 4893 * no .raw_writefn or .resetfn needed as we never use mask/base_mask 4894 */ 4895 .fieldoffset = offsetof(CPUARMState, cp15.vtcr_el2) }, 4896 { .name = "VTTBR", .state = ARM_CP_STATE_AA32, 4897 .cp = 15, .opc1 = 6, .crm = 2, 4898 .type = ARM_CP_64BIT | ARM_CP_ALIAS, 4899 .access = PL2_RW, .accessfn = access_el3_aa32ns, 4900 .fieldoffset = offsetof(CPUARMState, cp15.vttbr_el2), 4901 .writefn = vttbr_write }, 4902 { .name = "VTTBR_EL2", .state = ARM_CP_STATE_AA64, 4903 .opc0 = 3, .opc1 = 4, .crn = 2, .crm = 1, .opc2 = 0, 4904 .access = PL2_RW, .writefn = vttbr_write, 4905 .fieldoffset = offsetof(CPUARMState, cp15.vttbr_el2) }, 4906 { .name = "SCTLR_EL2", .state = ARM_CP_STATE_BOTH, 4907 .opc0 = 3, .opc1 = 4, .crn = 1, .crm = 0, .opc2 = 0, 4908 .access = PL2_RW, .raw_writefn = raw_write, .writefn = sctlr_write, 4909 .fieldoffset = offsetof(CPUARMState, cp15.sctlr_el[2]) }, 4910 { .name = "TPIDR_EL2", .state = ARM_CP_STATE_BOTH, 4911 .opc0 = 3, .opc1 = 4, .crn = 13, .crm = 0, .opc2 = 2, 4912 .access = PL2_RW, .resetvalue = 0, 4913 .fieldoffset = offsetof(CPUARMState, cp15.tpidr_el[2]) }, 4914 { .name = "TTBR0_EL2", .state = ARM_CP_STATE_AA64, 4915 .opc0 = 3, .opc1 = 4, .crn = 2, .crm = 0, .opc2 = 0, 4916 .access = PL2_RW, .resetvalue = 0, 4917 .fieldoffset = offsetof(CPUARMState, cp15.ttbr0_el[2]) }, 4918 { .name = "HTTBR", .cp = 15, .opc1 = 4, .crm = 2, 4919 .access = PL2_RW, .type = ARM_CP_64BIT | ARM_CP_ALIAS, 4920 .fieldoffset = offsetof(CPUARMState, cp15.ttbr0_el[2]) }, 4921 { .name = "TLBIALLNSNH", 4922 .cp = 15, .opc1 = 4, .crn = 8, .crm = 7, .opc2 = 4, 4923 .type = ARM_CP_NO_RAW, .access = PL2_W, 4924 .writefn = tlbiall_nsnh_write }, 4925 { .name = "TLBIALLNSNHIS", 4926 .cp = 15, .opc1 = 4, .crn = 8, .crm = 3, .opc2 = 4, 4927 .type = ARM_CP_NO_RAW, .access = PL2_W, 4928 .writefn = tlbiall_nsnh_is_write }, 4929 { .name = "TLBIALLH", .cp = 15, .opc1 = 4, .crn = 8, .crm = 7, .opc2 = 0, 4930 .type = ARM_CP_NO_RAW, .access = PL2_W, 4931 .writefn = tlbiall_hyp_write }, 4932 { .name = "TLBIALLHIS", .cp = 15, .opc1 = 4, .crn = 8, .crm = 3, .opc2 = 0, 4933 .type = ARM_CP_NO_RAW, .access = PL2_W, 4934 .writefn = tlbiall_hyp_is_write }, 4935 { .name = "TLBIMVAH", .cp = 15, .opc1 = 4, .crn = 8, .crm = 7, .opc2 = 1, 4936 .type = ARM_CP_NO_RAW, .access = PL2_W, 4937 .writefn = tlbimva_hyp_write }, 4938 { .name = "TLBIMVAHIS", .cp = 15, .opc1 = 4, .crn = 8, .crm = 3, .opc2 = 1, 4939 .type = ARM_CP_NO_RAW, .access = PL2_W, 4940 .writefn = tlbimva_hyp_is_write }, 4941 { .name = "TLBI_ALLE2", .state = ARM_CP_STATE_AA64, 4942 .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 7, .opc2 = 0, 4943 .type = ARM_CP_NO_RAW, .access = PL2_W, 4944 .writefn = tlbi_aa64_alle2_write }, 4945 { .name = "TLBI_VAE2", .state = ARM_CP_STATE_AA64, 4946 .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 7, .opc2 = 1, 4947 .type = ARM_CP_NO_RAW, .access = PL2_W, 4948 .writefn = tlbi_aa64_vae2_write }, 4949 { .name = "TLBI_VALE2", .state = ARM_CP_STATE_AA64, 4950 .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 7, .opc2 = 5, 4951 .access = PL2_W, .type = ARM_CP_NO_RAW, 4952 .writefn = tlbi_aa64_vae2_write }, 4953 { .name = "TLBI_ALLE2IS", .state = ARM_CP_STATE_AA64, 4954 .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 3, .opc2 = 0, 4955 .access = PL2_W, .type = ARM_CP_NO_RAW, 4956 .writefn = tlbi_aa64_alle2is_write }, 4957 { .name = "TLBI_VAE2IS", .state = ARM_CP_STATE_AA64, 4958 .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 3, .opc2 = 1, 4959 .type = ARM_CP_NO_RAW, .access = PL2_W, 4960 .writefn = tlbi_aa64_vae2is_write }, 4961 { .name = "TLBI_VALE2IS", .state = ARM_CP_STATE_AA64, 4962 .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 3, .opc2 = 5, 4963 .access = PL2_W, .type = ARM_CP_NO_RAW, 4964 .writefn = tlbi_aa64_vae2is_write }, 4965 #ifndef CONFIG_USER_ONLY 4966 /* Unlike the other EL2-related AT operations, these must 4967 * UNDEF from EL3 if EL2 is not implemented, which is why we 4968 * define them here rather than with the rest of the AT ops. 4969 */ 4970 { .name = "AT_S1E2R", .state = ARM_CP_STATE_AA64, 4971 .opc0 = 1, .opc1 = 4, .crn = 7, .crm = 8, .opc2 = 0, 4972 .access = PL2_W, .accessfn = at_s1e2_access, 4973 .type = ARM_CP_NO_RAW | ARM_CP_RAISES_EXC, .writefn = ats_write64 }, 4974 { .name = "AT_S1E2W", .state = ARM_CP_STATE_AA64, 4975 .opc0 = 1, .opc1 = 4, .crn = 7, .crm = 8, .opc2 = 1, 4976 .access = PL2_W, .accessfn = at_s1e2_access, 4977 .type = ARM_CP_NO_RAW | ARM_CP_RAISES_EXC, .writefn = ats_write64 }, 4978 /* The AArch32 ATS1H* operations are CONSTRAINED UNPREDICTABLE 4979 * if EL2 is not implemented; we choose to UNDEF. Behaviour at EL3 4980 * with SCR.NS == 0 outside Monitor mode is UNPREDICTABLE; we choose 4981 * to behave as if SCR.NS was 1. 4982 */ 4983 { .name = "ATS1HR", .cp = 15, .opc1 = 4, .crn = 7, .crm = 8, .opc2 = 0, 4984 .access = PL2_W, 4985 .writefn = ats1h_write, .type = ARM_CP_NO_RAW | ARM_CP_RAISES_EXC }, 4986 { .name = "ATS1HW", .cp = 15, .opc1 = 4, .crn = 7, .crm = 8, .opc2 = 1, 4987 .access = PL2_W, 4988 .writefn = ats1h_write, .type = ARM_CP_NO_RAW | ARM_CP_RAISES_EXC }, 4989 { .name = "CNTHCTL_EL2", .state = ARM_CP_STATE_BOTH, 4990 .opc0 = 3, .opc1 = 4, .crn = 14, .crm = 1, .opc2 = 0, 4991 /* ARMv7 requires bit 0 and 1 to reset to 1. ARMv8 defines the 4992 * reset values as IMPDEF. We choose to reset to 3 to comply with 4993 * both ARMv7 and ARMv8. 4994 */ 4995 .access = PL2_RW, .resetvalue = 3, 4996 .fieldoffset = offsetof(CPUARMState, cp15.cnthctl_el2) }, 4997 { .name = "CNTVOFF_EL2", .state = ARM_CP_STATE_AA64, 4998 .opc0 = 3, .opc1 = 4, .crn = 14, .crm = 0, .opc2 = 3, 4999 .access = PL2_RW, .type = ARM_CP_IO, .resetvalue = 0, 5000 .writefn = gt_cntvoff_write, 5001 .fieldoffset = offsetof(CPUARMState, cp15.cntvoff_el2) }, 5002 { .name = "CNTVOFF", .cp = 15, .opc1 = 4, .crm = 14, 5003 .access = PL2_RW, .type = ARM_CP_64BIT | ARM_CP_ALIAS | ARM_CP_IO, 5004 .writefn = gt_cntvoff_write, 5005 .fieldoffset = offsetof(CPUARMState, cp15.cntvoff_el2) }, 5006 { .name = "CNTHP_CVAL_EL2", .state = ARM_CP_STATE_AA64, 5007 .opc0 = 3, .opc1 = 4, .crn = 14, .crm = 2, .opc2 = 2, 5008 .fieldoffset = offsetof(CPUARMState, cp15.c14_timer[GTIMER_HYP].cval), 5009 .type = ARM_CP_IO, .access = PL2_RW, 5010 .writefn = gt_hyp_cval_write, .raw_writefn = raw_write }, 5011 { .name = "CNTHP_CVAL", .cp = 15, .opc1 = 6, .crm = 14, 5012 .fieldoffset = offsetof(CPUARMState, cp15.c14_timer[GTIMER_HYP].cval), 5013 .access = PL2_RW, .type = ARM_CP_64BIT | ARM_CP_IO, 5014 .writefn = gt_hyp_cval_write, .raw_writefn = raw_write }, 5015 { .name = "CNTHP_TVAL_EL2", .state = ARM_CP_STATE_BOTH, 5016 .opc0 = 3, .opc1 = 4, .crn = 14, .crm = 2, .opc2 = 0, 5017 .type = ARM_CP_NO_RAW | ARM_CP_IO, .access = PL2_RW, 5018 .resetfn = gt_hyp_timer_reset, 5019 .readfn = gt_hyp_tval_read, .writefn = gt_hyp_tval_write }, 5020 { .name = "CNTHP_CTL_EL2", .state = ARM_CP_STATE_BOTH, 5021 .type = ARM_CP_IO, 5022 .opc0 = 3, .opc1 = 4, .crn = 14, .crm = 2, .opc2 = 1, 5023 .access = PL2_RW, 5024 .fieldoffset = offsetof(CPUARMState, cp15.c14_timer[GTIMER_HYP].ctl), 5025 .resetvalue = 0, 5026 .writefn = gt_hyp_ctl_write, .raw_writefn = raw_write }, 5027 #endif 5028 /* The only field of MDCR_EL2 that has a defined architectural reset value 5029 * is MDCR_EL2.HPMN which should reset to the value of PMCR_EL0.N; but we 5030 * don't implement any PMU event counters, so using zero as a reset 5031 * value for MDCR_EL2 is okay 5032 */ 5033 { .name = "MDCR_EL2", .state = ARM_CP_STATE_BOTH, 5034 .opc0 = 3, .opc1 = 4, .crn = 1, .crm = 1, .opc2 = 1, 5035 .access = PL2_RW, .resetvalue = 0, 5036 .fieldoffset = offsetof(CPUARMState, cp15.mdcr_el2), }, 5037 { .name = "HPFAR", .state = ARM_CP_STATE_AA32, 5038 .cp = 15, .opc1 = 4, .crn = 6, .crm = 0, .opc2 = 4, 5039 .access = PL2_RW, .accessfn = access_el3_aa32ns, 5040 .fieldoffset = offsetof(CPUARMState, cp15.hpfar_el2) }, 5041 { .name = "HPFAR_EL2", .state = ARM_CP_STATE_AA64, 5042 .opc0 = 3, .opc1 = 4, .crn = 6, .crm = 0, .opc2 = 4, 5043 .access = PL2_RW, 5044 .fieldoffset = offsetof(CPUARMState, cp15.hpfar_el2) }, 5045 { .name = "HSTR_EL2", .state = ARM_CP_STATE_BOTH, 5046 .cp = 15, .opc0 = 3, .opc1 = 4, .crn = 1, .crm = 1, .opc2 = 3, 5047 .access = PL2_RW, 5048 .fieldoffset = offsetof(CPUARMState, cp15.hstr_el2) }, 5049 REGINFO_SENTINEL 5050 }; 5051 5052 static const ARMCPRegInfo el2_v8_cp_reginfo[] = { 5053 { .name = "HCR2", .state = ARM_CP_STATE_AA32, 5054 .type = ARM_CP_ALIAS | ARM_CP_IO, 5055 .cp = 15, .opc1 = 4, .crn = 1, .crm = 1, .opc2 = 4, 5056 .access = PL2_RW, 5057 .fieldoffset = offsetofhigh32(CPUARMState, cp15.hcr_el2), 5058 .writefn = hcr_writehigh }, 5059 REGINFO_SENTINEL 5060 }; 5061 5062 static CPAccessResult nsacr_access(CPUARMState *env, const ARMCPRegInfo *ri, 5063 bool isread) 5064 { 5065 /* The NSACR is RW at EL3, and RO for NS EL1 and NS EL2. 5066 * At Secure EL1 it traps to EL3. 5067 */ 5068 if (arm_current_el(env) == 3) { 5069 return CP_ACCESS_OK; 5070 } 5071 if (arm_is_secure_below_el3(env)) { 5072 return CP_ACCESS_TRAP_EL3; 5073 } 5074 /* Accesses from EL1 NS and EL2 NS are UNDEF for write but allow reads. */ 5075 if (isread) { 5076 return CP_ACCESS_OK; 5077 } 5078 return CP_ACCESS_TRAP_UNCATEGORIZED; 5079 } 5080 5081 static const ARMCPRegInfo el3_cp_reginfo[] = { 5082 { .name = "SCR_EL3", .state = ARM_CP_STATE_AA64, 5083 .opc0 = 3, .opc1 = 6, .crn = 1, .crm = 1, .opc2 = 0, 5084 .access = PL3_RW, .fieldoffset = offsetof(CPUARMState, cp15.scr_el3), 5085 .resetvalue = 0, .writefn = scr_write }, 5086 { .name = "SCR", .type = ARM_CP_ALIAS, 5087 .cp = 15, .opc1 = 0, .crn = 1, .crm = 1, .opc2 = 0, 5088 .access = PL1_RW, .accessfn = access_trap_aa32s_el1, 5089 .fieldoffset = offsetoflow32(CPUARMState, cp15.scr_el3), 5090 .writefn = scr_write }, 5091 { .name = "SDER32_EL3", .state = ARM_CP_STATE_AA64, 5092 .opc0 = 3, .opc1 = 6, .crn = 1, .crm = 1, .opc2 = 1, 5093 .access = PL3_RW, .resetvalue = 0, 5094 .fieldoffset = offsetof(CPUARMState, cp15.sder) }, 5095 { .name = "SDER", 5096 .cp = 15, .opc1 = 0, .crn = 1, .crm = 1, .opc2 = 1, 5097 .access = PL3_RW, .resetvalue = 0, 5098 .fieldoffset = offsetoflow32(CPUARMState, cp15.sder) }, 5099 { .name = "MVBAR", .cp = 15, .opc1 = 0, .crn = 12, .crm = 0, .opc2 = 1, 5100 .access = PL1_RW, .accessfn = access_trap_aa32s_el1, 5101 .writefn = vbar_write, .resetvalue = 0, 5102 .fieldoffset = offsetof(CPUARMState, cp15.mvbar) }, 5103 { .name = "TTBR0_EL3", .state = ARM_CP_STATE_AA64, 5104 .opc0 = 3, .opc1 = 6, .crn = 2, .crm = 0, .opc2 = 0, 5105 .access = PL3_RW, .resetvalue = 0, 5106 .fieldoffset = offsetof(CPUARMState, cp15.ttbr0_el[3]) }, 5107 { .name = "TCR_EL3", .state = ARM_CP_STATE_AA64, 5108 .opc0 = 3, .opc1 = 6, .crn = 2, .crm = 0, .opc2 = 2, 5109 .access = PL3_RW, 5110 /* no .writefn needed as this can't cause an ASID change; 5111 * we must provide a .raw_writefn and .resetfn because we handle 5112 * reset and migration for the AArch32 TTBCR(S), which might be 5113 * using mask and base_mask. 5114 */ 5115 .resetfn = vmsa_ttbcr_reset, .raw_writefn = vmsa_ttbcr_raw_write, 5116 .fieldoffset = offsetof(CPUARMState, cp15.tcr_el[3]) }, 5117 { .name = "ELR_EL3", .state = ARM_CP_STATE_AA64, 5118 .type = ARM_CP_ALIAS, 5119 .opc0 = 3, .opc1 = 6, .crn = 4, .crm = 0, .opc2 = 1, 5120 .access = PL3_RW, 5121 .fieldoffset = offsetof(CPUARMState, elr_el[3]) }, 5122 { .name = "ESR_EL3", .state = ARM_CP_STATE_AA64, 5123 .opc0 = 3, .opc1 = 6, .crn = 5, .crm = 2, .opc2 = 0, 5124 .access = PL3_RW, .fieldoffset = offsetof(CPUARMState, cp15.esr_el[3]) }, 5125 { .name = "FAR_EL3", .state = ARM_CP_STATE_AA64, 5126 .opc0 = 3, .opc1 = 6, .crn = 6, .crm = 0, .opc2 = 0, 5127 .access = PL3_RW, .fieldoffset = offsetof(CPUARMState, cp15.far_el[3]) }, 5128 { .name = "SPSR_EL3", .state = ARM_CP_STATE_AA64, 5129 .type = ARM_CP_ALIAS, 5130 .opc0 = 3, .opc1 = 6, .crn = 4, .crm = 0, .opc2 = 0, 5131 .access = PL3_RW, 5132 .fieldoffset = offsetof(CPUARMState, banked_spsr[BANK_MON]) }, 5133 { .name = "VBAR_EL3", .state = ARM_CP_STATE_AA64, 5134 .opc0 = 3, .opc1 = 6, .crn = 12, .crm = 0, .opc2 = 0, 5135 .access = PL3_RW, .writefn = vbar_write, 5136 .fieldoffset = offsetof(CPUARMState, cp15.vbar_el[3]), 5137 .resetvalue = 0 }, 5138 { .name = "CPTR_EL3", .state = ARM_CP_STATE_AA64, 5139 .opc0 = 3, .opc1 = 6, .crn = 1, .crm = 1, .opc2 = 2, 5140 .access = PL3_RW, .accessfn = cptr_access, .resetvalue = 0, 5141 .fieldoffset = offsetof(CPUARMState, cp15.cptr_el[3]) }, 5142 { .name = "TPIDR_EL3", .state = ARM_CP_STATE_AA64, 5143 .opc0 = 3, .opc1 = 6, .crn = 13, .crm = 0, .opc2 = 2, 5144 .access = PL3_RW, .resetvalue = 0, 5145 .fieldoffset = offsetof(CPUARMState, cp15.tpidr_el[3]) }, 5146 { .name = "AMAIR_EL3", .state = ARM_CP_STATE_AA64, 5147 .opc0 = 3, .opc1 = 6, .crn = 10, .crm = 3, .opc2 = 0, 5148 .access = PL3_RW, .type = ARM_CP_CONST, 5149 .resetvalue = 0 }, 5150 { .name = "AFSR0_EL3", .state = ARM_CP_STATE_BOTH, 5151 .opc0 = 3, .opc1 = 6, .crn = 5, .crm = 1, .opc2 = 0, 5152 .access = PL3_RW, .type = ARM_CP_CONST, 5153 .resetvalue = 0 }, 5154 { .name = "AFSR1_EL3", .state = ARM_CP_STATE_BOTH, 5155 .opc0 = 3, .opc1 = 6, .crn = 5, .crm = 1, .opc2 = 1, 5156 .access = PL3_RW, .type = ARM_CP_CONST, 5157 .resetvalue = 0 }, 5158 { .name = "TLBI_ALLE3IS", .state = ARM_CP_STATE_AA64, 5159 .opc0 = 1, .opc1 = 6, .crn = 8, .crm = 3, .opc2 = 0, 5160 .access = PL3_W, .type = ARM_CP_NO_RAW, 5161 .writefn = tlbi_aa64_alle3is_write }, 5162 { .name = "TLBI_VAE3IS", .state = ARM_CP_STATE_AA64, 5163 .opc0 = 1, .opc1 = 6, .crn = 8, .crm = 3, .opc2 = 1, 5164 .access = PL3_W, .type = ARM_CP_NO_RAW, 5165 .writefn = tlbi_aa64_vae3is_write }, 5166 { .name = "TLBI_VALE3IS", .state = ARM_CP_STATE_AA64, 5167 .opc0 = 1, .opc1 = 6, .crn = 8, .crm = 3, .opc2 = 5, 5168 .access = PL3_W, .type = ARM_CP_NO_RAW, 5169 .writefn = tlbi_aa64_vae3is_write }, 5170 { .name = "TLBI_ALLE3", .state = ARM_CP_STATE_AA64, 5171 .opc0 = 1, .opc1 = 6, .crn = 8, .crm = 7, .opc2 = 0, 5172 .access = PL3_W, .type = ARM_CP_NO_RAW, 5173 .writefn = tlbi_aa64_alle3_write }, 5174 { .name = "TLBI_VAE3", .state = ARM_CP_STATE_AA64, 5175 .opc0 = 1, .opc1 = 6, .crn = 8, .crm = 7, .opc2 = 1, 5176 .access = PL3_W, .type = ARM_CP_NO_RAW, 5177 .writefn = tlbi_aa64_vae3_write }, 5178 { .name = "TLBI_VALE3", .state = ARM_CP_STATE_AA64, 5179 .opc0 = 1, .opc1 = 6, .crn = 8, .crm = 7, .opc2 = 5, 5180 .access = PL3_W, .type = ARM_CP_NO_RAW, 5181 .writefn = tlbi_aa64_vae3_write }, 5182 REGINFO_SENTINEL 5183 }; 5184 5185 static CPAccessResult ctr_el0_access(CPUARMState *env, const ARMCPRegInfo *ri, 5186 bool isread) 5187 { 5188 /* Only accessible in EL0 if SCTLR.UCT is set (and only in AArch64, 5189 * but the AArch32 CTR has its own reginfo struct) 5190 */ 5191 if (arm_current_el(env) == 0 && !(env->cp15.sctlr_el[1] & SCTLR_UCT)) { 5192 return CP_ACCESS_TRAP; 5193 } 5194 return CP_ACCESS_OK; 5195 } 5196 5197 static void oslar_write(CPUARMState *env, const ARMCPRegInfo *ri, 5198 uint64_t value) 5199 { 5200 /* Writes to OSLAR_EL1 may update the OS lock status, which can be 5201 * read via a bit in OSLSR_EL1. 5202 */ 5203 int oslock; 5204 5205 if (ri->state == ARM_CP_STATE_AA32) { 5206 oslock = (value == 0xC5ACCE55); 5207 } else { 5208 oslock = value & 1; 5209 } 5210 5211 env->cp15.oslsr_el1 = deposit32(env->cp15.oslsr_el1, 1, 1, oslock); 5212 } 5213 5214 static const ARMCPRegInfo debug_cp_reginfo[] = { 5215 /* DBGDRAR, DBGDSAR: always RAZ since we don't implement memory mapped 5216 * debug components. The AArch64 version of DBGDRAR is named MDRAR_EL1; 5217 * unlike DBGDRAR it is never accessible from EL0. 5218 * DBGDSAR is deprecated and must RAZ from v8 anyway, so it has no AArch64 5219 * accessor. 5220 */ 5221 { .name = "DBGDRAR", .cp = 14, .crn = 1, .crm = 0, .opc1 = 0, .opc2 = 0, 5222 .access = PL0_R, .accessfn = access_tdra, 5223 .type = ARM_CP_CONST, .resetvalue = 0 }, 5224 { .name = "MDRAR_EL1", .state = ARM_CP_STATE_AA64, 5225 .opc0 = 2, .opc1 = 0, .crn = 1, .crm = 0, .opc2 = 0, 5226 .access = PL1_R, .accessfn = access_tdra, 5227 .type = ARM_CP_CONST, .resetvalue = 0 }, 5228 { .name = "DBGDSAR", .cp = 14, .crn = 2, .crm = 0, .opc1 = 0, .opc2 = 0, 5229 .access = PL0_R, .accessfn = access_tdra, 5230 .type = ARM_CP_CONST, .resetvalue = 0 }, 5231 /* Monitor debug system control register; the 32-bit alias is DBGDSCRext. */ 5232 { .name = "MDSCR_EL1", .state = ARM_CP_STATE_BOTH, 5233 .cp = 14, .opc0 = 2, .opc1 = 0, .crn = 0, .crm = 2, .opc2 = 2, 5234 .access = PL1_RW, .accessfn = access_tda, 5235 .fieldoffset = offsetof(CPUARMState, cp15.mdscr_el1), 5236 .resetvalue = 0 }, 5237 /* MDCCSR_EL0, aka DBGDSCRint. This is a read-only mirror of MDSCR_EL1. 5238 * We don't implement the configurable EL0 access. 5239 */ 5240 { .name = "MDCCSR_EL0", .state = ARM_CP_STATE_BOTH, 5241 .cp = 14, .opc0 = 2, .opc1 = 0, .crn = 0, .crm = 1, .opc2 = 0, 5242 .type = ARM_CP_ALIAS, 5243 .access = PL1_R, .accessfn = access_tda, 5244 .fieldoffset = offsetof(CPUARMState, cp15.mdscr_el1), }, 5245 { .name = "OSLAR_EL1", .state = ARM_CP_STATE_BOTH, 5246 .cp = 14, .opc0 = 2, .opc1 = 0, .crn = 1, .crm = 0, .opc2 = 4, 5247 .access = PL1_W, .type = ARM_CP_NO_RAW, 5248 .accessfn = access_tdosa, 5249 .writefn = oslar_write }, 5250 { .name = "OSLSR_EL1", .state = ARM_CP_STATE_BOTH, 5251 .cp = 14, .opc0 = 2, .opc1 = 0, .crn = 1, .crm = 1, .opc2 = 4, 5252 .access = PL1_R, .resetvalue = 10, 5253 .accessfn = access_tdosa, 5254 .fieldoffset = offsetof(CPUARMState, cp15.oslsr_el1) }, 5255 /* Dummy OSDLR_EL1: 32-bit Linux will read this */ 5256 { .name = "OSDLR_EL1", .state = ARM_CP_STATE_BOTH, 5257 .cp = 14, .opc0 = 2, .opc1 = 0, .crn = 1, .crm = 3, .opc2 = 4, 5258 .access = PL1_RW, .accessfn = access_tdosa, 5259 .type = ARM_CP_NOP }, 5260 /* Dummy DBGVCR: Linux wants to clear this on startup, but we don't 5261 * implement vector catch debug events yet. 5262 */ 5263 { .name = "DBGVCR", 5264 .cp = 14, .opc1 = 0, .crn = 0, .crm = 7, .opc2 = 0, 5265 .access = PL1_RW, .accessfn = access_tda, 5266 .type = ARM_CP_NOP }, 5267 /* Dummy DBGVCR32_EL2 (which is only for a 64-bit hypervisor 5268 * to save and restore a 32-bit guest's DBGVCR) 5269 */ 5270 { .name = "DBGVCR32_EL2", .state = ARM_CP_STATE_AA64, 5271 .opc0 = 2, .opc1 = 4, .crn = 0, .crm = 7, .opc2 = 0, 5272 .access = PL2_RW, .accessfn = access_tda, 5273 .type = ARM_CP_NOP }, 5274 /* Dummy MDCCINT_EL1, since we don't implement the Debug Communications 5275 * Channel but Linux may try to access this register. The 32-bit 5276 * alias is DBGDCCINT. 5277 */ 5278 { .name = "MDCCINT_EL1", .state = ARM_CP_STATE_BOTH, 5279 .cp = 14, .opc0 = 2, .opc1 = 0, .crn = 0, .crm = 2, .opc2 = 0, 5280 .access = PL1_RW, .accessfn = access_tda, 5281 .type = ARM_CP_NOP }, 5282 REGINFO_SENTINEL 5283 }; 5284 5285 static const ARMCPRegInfo debug_lpae_cp_reginfo[] = { 5286 /* 64 bit access versions of the (dummy) debug registers */ 5287 { .name = "DBGDRAR", .cp = 14, .crm = 1, .opc1 = 0, 5288 .access = PL0_R, .type = ARM_CP_CONST|ARM_CP_64BIT, .resetvalue = 0 }, 5289 { .name = "DBGDSAR", .cp = 14, .crm = 2, .opc1 = 0, 5290 .access = PL0_R, .type = ARM_CP_CONST|ARM_CP_64BIT, .resetvalue = 0 }, 5291 REGINFO_SENTINEL 5292 }; 5293 5294 /* Return the exception level to which exceptions should be taken 5295 * via SVEAccessTrap. If an exception should be routed through 5296 * AArch64.AdvSIMDFPAccessTrap, return 0; fp_exception_el should 5297 * take care of raising that exception. 5298 * C.f. the ARM pseudocode function CheckSVEEnabled. 5299 */ 5300 int sve_exception_el(CPUARMState *env, int el) 5301 { 5302 #ifndef CONFIG_USER_ONLY 5303 if (el <= 1) { 5304 bool disabled = false; 5305 5306 /* The CPACR.ZEN controls traps to EL1: 5307 * 0, 2 : trap EL0 and EL1 accesses 5308 * 1 : trap only EL0 accesses 5309 * 3 : trap no accesses 5310 */ 5311 if (!extract32(env->cp15.cpacr_el1, 16, 1)) { 5312 disabled = true; 5313 } else if (!extract32(env->cp15.cpacr_el1, 17, 1)) { 5314 disabled = el == 0; 5315 } 5316 if (disabled) { 5317 /* route_to_el2 */ 5318 return (arm_feature(env, ARM_FEATURE_EL2) 5319 && (arm_hcr_el2_eff(env) & HCR_TGE) ? 2 : 1); 5320 } 5321 5322 /* Check CPACR.FPEN. */ 5323 if (!extract32(env->cp15.cpacr_el1, 20, 1)) { 5324 disabled = true; 5325 } else if (!extract32(env->cp15.cpacr_el1, 21, 1)) { 5326 disabled = el == 0; 5327 } 5328 if (disabled) { 5329 return 0; 5330 } 5331 } 5332 5333 /* CPTR_EL2. Since TZ and TFP are positive, 5334 * they will be zero when EL2 is not present. 5335 */ 5336 if (el <= 2 && !arm_is_secure_below_el3(env)) { 5337 if (env->cp15.cptr_el[2] & CPTR_TZ) { 5338 return 2; 5339 } 5340 if (env->cp15.cptr_el[2] & CPTR_TFP) { 5341 return 0; 5342 } 5343 } 5344 5345 /* CPTR_EL3. Since EZ is negative we must check for EL3. */ 5346 if (arm_feature(env, ARM_FEATURE_EL3) 5347 && !(env->cp15.cptr_el[3] & CPTR_EZ)) { 5348 return 3; 5349 } 5350 #endif 5351 return 0; 5352 } 5353 5354 /* 5355 * Given that SVE is enabled, return the vector length for EL. 5356 */ 5357 uint32_t sve_zcr_len_for_el(CPUARMState *env, int el) 5358 { 5359 ARMCPU *cpu = env_archcpu(env); 5360 uint32_t zcr_len = cpu->sve_max_vq - 1; 5361 5362 if (el <= 1) { 5363 zcr_len = MIN(zcr_len, 0xf & (uint32_t)env->vfp.zcr_el[1]); 5364 } 5365 if (el <= 2 && arm_feature(env, ARM_FEATURE_EL2)) { 5366 zcr_len = MIN(zcr_len, 0xf & (uint32_t)env->vfp.zcr_el[2]); 5367 } 5368 if (arm_feature(env, ARM_FEATURE_EL3)) { 5369 zcr_len = MIN(zcr_len, 0xf & (uint32_t)env->vfp.zcr_el[3]); 5370 } 5371 return zcr_len; 5372 } 5373 5374 static void zcr_write(CPUARMState *env, const ARMCPRegInfo *ri, 5375 uint64_t value) 5376 { 5377 int cur_el = arm_current_el(env); 5378 int old_len = sve_zcr_len_for_el(env, cur_el); 5379 int new_len; 5380 5381 /* Bits other than [3:0] are RAZ/WI. */ 5382 QEMU_BUILD_BUG_ON(ARM_MAX_VQ > 16); 5383 raw_write(env, ri, value & 0xf); 5384 5385 /* 5386 * Because we arrived here, we know both FP and SVE are enabled; 5387 * otherwise we would have trapped access to the ZCR_ELn register. 5388 */ 5389 new_len = sve_zcr_len_for_el(env, cur_el); 5390 if (new_len < old_len) { 5391 aarch64_sve_narrow_vq(env, new_len + 1); 5392 } 5393 } 5394 5395 static const ARMCPRegInfo zcr_el1_reginfo = { 5396 .name = "ZCR_EL1", .state = ARM_CP_STATE_AA64, 5397 .opc0 = 3, .opc1 = 0, .crn = 1, .crm = 2, .opc2 = 0, 5398 .access = PL1_RW, .type = ARM_CP_SVE, 5399 .fieldoffset = offsetof(CPUARMState, vfp.zcr_el[1]), 5400 .writefn = zcr_write, .raw_writefn = raw_write 5401 }; 5402 5403 static const ARMCPRegInfo zcr_el2_reginfo = { 5404 .name = "ZCR_EL2", .state = ARM_CP_STATE_AA64, 5405 .opc0 = 3, .opc1 = 4, .crn = 1, .crm = 2, .opc2 = 0, 5406 .access = PL2_RW, .type = ARM_CP_SVE, 5407 .fieldoffset = offsetof(CPUARMState, vfp.zcr_el[2]), 5408 .writefn = zcr_write, .raw_writefn = raw_write 5409 }; 5410 5411 static const ARMCPRegInfo zcr_no_el2_reginfo = { 5412 .name = "ZCR_EL2", .state = ARM_CP_STATE_AA64, 5413 .opc0 = 3, .opc1 = 4, .crn = 1, .crm = 2, .opc2 = 0, 5414 .access = PL2_RW, .type = ARM_CP_SVE, 5415 .readfn = arm_cp_read_zero, .writefn = arm_cp_write_ignore 5416 }; 5417 5418 static const ARMCPRegInfo zcr_el3_reginfo = { 5419 .name = "ZCR_EL3", .state = ARM_CP_STATE_AA64, 5420 .opc0 = 3, .opc1 = 6, .crn = 1, .crm = 2, .opc2 = 0, 5421 .access = PL3_RW, .type = ARM_CP_SVE, 5422 .fieldoffset = offsetof(CPUARMState, vfp.zcr_el[3]), 5423 .writefn = zcr_write, .raw_writefn = raw_write 5424 }; 5425 5426 void hw_watchpoint_update(ARMCPU *cpu, int n) 5427 { 5428 CPUARMState *env = &cpu->env; 5429 vaddr len = 0; 5430 vaddr wvr = env->cp15.dbgwvr[n]; 5431 uint64_t wcr = env->cp15.dbgwcr[n]; 5432 int mask; 5433 int flags = BP_CPU | BP_STOP_BEFORE_ACCESS; 5434 5435 if (env->cpu_watchpoint[n]) { 5436 cpu_watchpoint_remove_by_ref(CPU(cpu), env->cpu_watchpoint[n]); 5437 env->cpu_watchpoint[n] = NULL; 5438 } 5439 5440 if (!extract64(wcr, 0, 1)) { 5441 /* E bit clear : watchpoint disabled */ 5442 return; 5443 } 5444 5445 switch (extract64(wcr, 3, 2)) { 5446 case 0: 5447 /* LSC 00 is reserved and must behave as if the wp is disabled */ 5448 return; 5449 case 1: 5450 flags |= BP_MEM_READ; 5451 break; 5452 case 2: 5453 flags |= BP_MEM_WRITE; 5454 break; 5455 case 3: 5456 flags |= BP_MEM_ACCESS; 5457 break; 5458 } 5459 5460 /* Attempts to use both MASK and BAS fields simultaneously are 5461 * CONSTRAINED UNPREDICTABLE; we opt to ignore BAS in this case, 5462 * thus generating a watchpoint for every byte in the masked region. 5463 */ 5464 mask = extract64(wcr, 24, 4); 5465 if (mask == 1 || mask == 2) { 5466 /* Reserved values of MASK; we must act as if the mask value was 5467 * some non-reserved value, or as if the watchpoint were disabled. 5468 * We choose the latter. 5469 */ 5470 return; 5471 } else if (mask) { 5472 /* Watchpoint covers an aligned area up to 2GB in size */ 5473 len = 1ULL << mask; 5474 /* If masked bits in WVR are not zero it's CONSTRAINED UNPREDICTABLE 5475 * whether the watchpoint fires when the unmasked bits match; we opt 5476 * to generate the exceptions. 5477 */ 5478 wvr &= ~(len - 1); 5479 } else { 5480 /* Watchpoint covers bytes defined by the byte address select bits */ 5481 int bas = extract64(wcr, 5, 8); 5482 int basstart; 5483 5484 if (bas == 0) { 5485 /* This must act as if the watchpoint is disabled */ 5486 return; 5487 } 5488 5489 if (extract64(wvr, 2, 1)) { 5490 /* Deprecated case of an only 4-aligned address. BAS[7:4] are 5491 * ignored, and BAS[3:0] define which bytes to watch. 5492 */ 5493 bas &= 0xf; 5494 } 5495 /* The BAS bits are supposed to be programmed to indicate a contiguous 5496 * range of bytes. Otherwise it is CONSTRAINED UNPREDICTABLE whether 5497 * we fire for each byte in the word/doubleword addressed by the WVR. 5498 * We choose to ignore any non-zero bits after the first range of 1s. 5499 */ 5500 basstart = ctz32(bas); 5501 len = cto32(bas >> basstart); 5502 wvr += basstart; 5503 } 5504 5505 cpu_watchpoint_insert(CPU(cpu), wvr, len, flags, 5506 &env->cpu_watchpoint[n]); 5507 } 5508 5509 void hw_watchpoint_update_all(ARMCPU *cpu) 5510 { 5511 int i; 5512 CPUARMState *env = &cpu->env; 5513 5514 /* Completely clear out existing QEMU watchpoints and our array, to 5515 * avoid possible stale entries following migration load. 5516 */ 5517 cpu_watchpoint_remove_all(CPU(cpu), BP_CPU); 5518 memset(env->cpu_watchpoint, 0, sizeof(env->cpu_watchpoint)); 5519 5520 for (i = 0; i < ARRAY_SIZE(cpu->env.cpu_watchpoint); i++) { 5521 hw_watchpoint_update(cpu, i); 5522 } 5523 } 5524 5525 static void dbgwvr_write(CPUARMState *env, const ARMCPRegInfo *ri, 5526 uint64_t value) 5527 { 5528 ARMCPU *cpu = env_archcpu(env); 5529 int i = ri->crm; 5530 5531 /* Bits [63:49] are hardwired to the value of bit [48]; that is, the 5532 * register reads and behaves as if values written are sign extended. 5533 * Bits [1:0] are RES0. 5534 */ 5535 value = sextract64(value, 0, 49) & ~3ULL; 5536 5537 raw_write(env, ri, value); 5538 hw_watchpoint_update(cpu, i); 5539 } 5540 5541 static void dbgwcr_write(CPUARMState *env, const ARMCPRegInfo *ri, 5542 uint64_t value) 5543 { 5544 ARMCPU *cpu = env_archcpu(env); 5545 int i = ri->crm; 5546 5547 raw_write(env, ri, value); 5548 hw_watchpoint_update(cpu, i); 5549 } 5550 5551 void hw_breakpoint_update(ARMCPU *cpu, int n) 5552 { 5553 CPUARMState *env = &cpu->env; 5554 uint64_t bvr = env->cp15.dbgbvr[n]; 5555 uint64_t bcr = env->cp15.dbgbcr[n]; 5556 vaddr addr; 5557 int bt; 5558 int flags = BP_CPU; 5559 5560 if (env->cpu_breakpoint[n]) { 5561 cpu_breakpoint_remove_by_ref(CPU(cpu), env->cpu_breakpoint[n]); 5562 env->cpu_breakpoint[n] = NULL; 5563 } 5564 5565 if (!extract64(bcr, 0, 1)) { 5566 /* E bit clear : watchpoint disabled */ 5567 return; 5568 } 5569 5570 bt = extract64(bcr, 20, 4); 5571 5572 switch (bt) { 5573 case 4: /* unlinked address mismatch (reserved if AArch64) */ 5574 case 5: /* linked address mismatch (reserved if AArch64) */ 5575 qemu_log_mask(LOG_UNIMP, 5576 "arm: address mismatch breakpoint types not implemented\n"); 5577 return; 5578 case 0: /* unlinked address match */ 5579 case 1: /* linked address match */ 5580 { 5581 /* Bits [63:49] are hardwired to the value of bit [48]; that is, 5582 * we behave as if the register was sign extended. Bits [1:0] are 5583 * RES0. The BAS field is used to allow setting breakpoints on 16 5584 * bit wide instructions; it is CONSTRAINED UNPREDICTABLE whether 5585 * a bp will fire if the addresses covered by the bp and the addresses 5586 * covered by the insn overlap but the insn doesn't start at the 5587 * start of the bp address range. We choose to require the insn and 5588 * the bp to have the same address. The constraints on writing to 5589 * BAS enforced in dbgbcr_write mean we have only four cases: 5590 * 0b0000 => no breakpoint 5591 * 0b0011 => breakpoint on addr 5592 * 0b1100 => breakpoint on addr + 2 5593 * 0b1111 => breakpoint on addr 5594 * See also figure D2-3 in the v8 ARM ARM (DDI0487A.c). 5595 */ 5596 int bas = extract64(bcr, 5, 4); 5597 addr = sextract64(bvr, 0, 49) & ~3ULL; 5598 if (bas == 0) { 5599 return; 5600 } 5601 if (bas == 0xc) { 5602 addr += 2; 5603 } 5604 break; 5605 } 5606 case 2: /* unlinked context ID match */ 5607 case 8: /* unlinked VMID match (reserved if no EL2) */ 5608 case 10: /* unlinked context ID and VMID match (reserved if no EL2) */ 5609 qemu_log_mask(LOG_UNIMP, 5610 "arm: unlinked context breakpoint types not implemented\n"); 5611 return; 5612 case 9: /* linked VMID match (reserved if no EL2) */ 5613 case 11: /* linked context ID and VMID match (reserved if no EL2) */ 5614 case 3: /* linked context ID match */ 5615 default: 5616 /* We must generate no events for Linked context matches (unless 5617 * they are linked to by some other bp/wp, which is handled in 5618 * updates for the linking bp/wp). We choose to also generate no events 5619 * for reserved values. 5620 */ 5621 return; 5622 } 5623 5624 cpu_breakpoint_insert(CPU(cpu), addr, flags, &env->cpu_breakpoint[n]); 5625 } 5626 5627 void hw_breakpoint_update_all(ARMCPU *cpu) 5628 { 5629 int i; 5630 CPUARMState *env = &cpu->env; 5631 5632 /* Completely clear out existing QEMU breakpoints and our array, to 5633 * avoid possible stale entries following migration load. 5634 */ 5635 cpu_breakpoint_remove_all(CPU(cpu), BP_CPU); 5636 memset(env->cpu_breakpoint, 0, sizeof(env->cpu_breakpoint)); 5637 5638 for (i = 0; i < ARRAY_SIZE(cpu->env.cpu_breakpoint); i++) { 5639 hw_breakpoint_update(cpu, i); 5640 } 5641 } 5642 5643 static void dbgbvr_write(CPUARMState *env, const ARMCPRegInfo *ri, 5644 uint64_t value) 5645 { 5646 ARMCPU *cpu = env_archcpu(env); 5647 int i = ri->crm; 5648 5649 raw_write(env, ri, value); 5650 hw_breakpoint_update(cpu, i); 5651 } 5652 5653 static void dbgbcr_write(CPUARMState *env, const ARMCPRegInfo *ri, 5654 uint64_t value) 5655 { 5656 ARMCPU *cpu = env_archcpu(env); 5657 int i = ri->crm; 5658 5659 /* BAS[3] is a read-only copy of BAS[2], and BAS[1] a read-only 5660 * copy of BAS[0]. 5661 */ 5662 value = deposit64(value, 6, 1, extract64(value, 5, 1)); 5663 value = deposit64(value, 8, 1, extract64(value, 7, 1)); 5664 5665 raw_write(env, ri, value); 5666 hw_breakpoint_update(cpu, i); 5667 } 5668 5669 static void define_debug_regs(ARMCPU *cpu) 5670 { 5671 /* Define v7 and v8 architectural debug registers. 5672 * These are just dummy implementations for now. 5673 */ 5674 int i; 5675 int wrps, brps, ctx_cmps; 5676 ARMCPRegInfo dbgdidr = { 5677 .name = "DBGDIDR", .cp = 14, .crn = 0, .crm = 0, .opc1 = 0, .opc2 = 0, 5678 .access = PL0_R, .accessfn = access_tda, 5679 .type = ARM_CP_CONST, .resetvalue = cpu->dbgdidr, 5680 }; 5681 5682 /* Note that all these register fields hold "number of Xs minus 1". */ 5683 brps = extract32(cpu->dbgdidr, 24, 4); 5684 wrps = extract32(cpu->dbgdidr, 28, 4); 5685 ctx_cmps = extract32(cpu->dbgdidr, 20, 4); 5686 5687 assert(ctx_cmps <= brps); 5688 5689 /* The DBGDIDR and ID_AA64DFR0_EL1 define various properties 5690 * of the debug registers such as number of breakpoints; 5691 * check that if they both exist then they agree. 5692 */ 5693 if (arm_feature(&cpu->env, ARM_FEATURE_AARCH64)) { 5694 assert(extract32(cpu->id_aa64dfr0, 12, 4) == brps); 5695 assert(extract32(cpu->id_aa64dfr0, 20, 4) == wrps); 5696 assert(extract32(cpu->id_aa64dfr0, 28, 4) == ctx_cmps); 5697 } 5698 5699 define_one_arm_cp_reg(cpu, &dbgdidr); 5700 define_arm_cp_regs(cpu, debug_cp_reginfo); 5701 5702 if (arm_feature(&cpu->env, ARM_FEATURE_LPAE)) { 5703 define_arm_cp_regs(cpu, debug_lpae_cp_reginfo); 5704 } 5705 5706 for (i = 0; i < brps + 1; i++) { 5707 ARMCPRegInfo dbgregs[] = { 5708 { .name = "DBGBVR", .state = ARM_CP_STATE_BOTH, 5709 .cp = 14, .opc0 = 2, .opc1 = 0, .crn = 0, .crm = i, .opc2 = 4, 5710 .access = PL1_RW, .accessfn = access_tda, 5711 .fieldoffset = offsetof(CPUARMState, cp15.dbgbvr[i]), 5712 .writefn = dbgbvr_write, .raw_writefn = raw_write 5713 }, 5714 { .name = "DBGBCR", .state = ARM_CP_STATE_BOTH, 5715 .cp = 14, .opc0 = 2, .opc1 = 0, .crn = 0, .crm = i, .opc2 = 5, 5716 .access = PL1_RW, .accessfn = access_tda, 5717 .fieldoffset = offsetof(CPUARMState, cp15.dbgbcr[i]), 5718 .writefn = dbgbcr_write, .raw_writefn = raw_write 5719 }, 5720 REGINFO_SENTINEL 5721 }; 5722 define_arm_cp_regs(cpu, dbgregs); 5723 } 5724 5725 for (i = 0; i < wrps + 1; i++) { 5726 ARMCPRegInfo dbgregs[] = { 5727 { .name = "DBGWVR", .state = ARM_CP_STATE_BOTH, 5728 .cp = 14, .opc0 = 2, .opc1 = 0, .crn = 0, .crm = i, .opc2 = 6, 5729 .access = PL1_RW, .accessfn = access_tda, 5730 .fieldoffset = offsetof(CPUARMState, cp15.dbgwvr[i]), 5731 .writefn = dbgwvr_write, .raw_writefn = raw_write 5732 }, 5733 { .name = "DBGWCR", .state = ARM_CP_STATE_BOTH, 5734 .cp = 14, .opc0 = 2, .opc1 = 0, .crn = 0, .crm = i, .opc2 = 7, 5735 .access = PL1_RW, .accessfn = access_tda, 5736 .fieldoffset = offsetof(CPUARMState, cp15.dbgwcr[i]), 5737 .writefn = dbgwcr_write, .raw_writefn = raw_write 5738 }, 5739 REGINFO_SENTINEL 5740 }; 5741 define_arm_cp_regs(cpu, dbgregs); 5742 } 5743 } 5744 5745 /* We don't know until after realize whether there's a GICv3 5746 * attached, and that is what registers the gicv3 sysregs. 5747 * So we have to fill in the GIC fields in ID_PFR/ID_PFR1_EL1/ID_AA64PFR0_EL1 5748 * at runtime. 5749 */ 5750 static uint64_t id_pfr1_read(CPUARMState *env, const ARMCPRegInfo *ri) 5751 { 5752 ARMCPU *cpu = env_archcpu(env); 5753 uint64_t pfr1 = cpu->id_pfr1; 5754 5755 if (env->gicv3state) { 5756 pfr1 |= 1 << 28; 5757 } 5758 return pfr1; 5759 } 5760 5761 static uint64_t id_aa64pfr0_read(CPUARMState *env, const ARMCPRegInfo *ri) 5762 { 5763 ARMCPU *cpu = env_archcpu(env); 5764 uint64_t pfr0 = cpu->isar.id_aa64pfr0; 5765 5766 if (env->gicv3state) { 5767 pfr0 |= 1 << 24; 5768 } 5769 return pfr0; 5770 } 5771 5772 /* Shared logic between LORID and the rest of the LOR* registers. 5773 * Secure state has already been delt with. 5774 */ 5775 static CPAccessResult access_lor_ns(CPUARMState *env) 5776 { 5777 int el = arm_current_el(env); 5778 5779 if (el < 2 && (arm_hcr_el2_eff(env) & HCR_TLOR)) { 5780 return CP_ACCESS_TRAP_EL2; 5781 } 5782 if (el < 3 && (env->cp15.scr_el3 & SCR_TLOR)) { 5783 return CP_ACCESS_TRAP_EL3; 5784 } 5785 return CP_ACCESS_OK; 5786 } 5787 5788 static CPAccessResult access_lorid(CPUARMState *env, const ARMCPRegInfo *ri, 5789 bool isread) 5790 { 5791 if (arm_is_secure_below_el3(env)) { 5792 /* Access ok in secure mode. */ 5793 return CP_ACCESS_OK; 5794 } 5795 return access_lor_ns(env); 5796 } 5797 5798 static CPAccessResult access_lor_other(CPUARMState *env, 5799 const ARMCPRegInfo *ri, bool isread) 5800 { 5801 if (arm_is_secure_below_el3(env)) { 5802 /* Access denied in secure mode. */ 5803 return CP_ACCESS_TRAP; 5804 } 5805 return access_lor_ns(env); 5806 } 5807 5808 #ifdef TARGET_AARCH64 5809 static CPAccessResult access_pauth(CPUARMState *env, const ARMCPRegInfo *ri, 5810 bool isread) 5811 { 5812 int el = arm_current_el(env); 5813 5814 if (el < 2 && 5815 arm_feature(env, ARM_FEATURE_EL2) && 5816 !(arm_hcr_el2_eff(env) & HCR_APK)) { 5817 return CP_ACCESS_TRAP_EL2; 5818 } 5819 if (el < 3 && 5820 arm_feature(env, ARM_FEATURE_EL3) && 5821 !(env->cp15.scr_el3 & SCR_APK)) { 5822 return CP_ACCESS_TRAP_EL3; 5823 } 5824 return CP_ACCESS_OK; 5825 } 5826 5827 static const ARMCPRegInfo pauth_reginfo[] = { 5828 { .name = "APDAKEYLO_EL1", .state = ARM_CP_STATE_AA64, 5829 .opc0 = 3, .opc1 = 0, .crn = 2, .crm = 2, .opc2 = 0, 5830 .access = PL1_RW, .accessfn = access_pauth, 5831 .fieldoffset = offsetof(CPUARMState, keys.apda.lo) }, 5832 { .name = "APDAKEYHI_EL1", .state = ARM_CP_STATE_AA64, 5833 .opc0 = 3, .opc1 = 0, .crn = 2, .crm = 2, .opc2 = 1, 5834 .access = PL1_RW, .accessfn = access_pauth, 5835 .fieldoffset = offsetof(CPUARMState, keys.apda.hi) }, 5836 { .name = "APDBKEYLO_EL1", .state = ARM_CP_STATE_AA64, 5837 .opc0 = 3, .opc1 = 0, .crn = 2, .crm = 2, .opc2 = 2, 5838 .access = PL1_RW, .accessfn = access_pauth, 5839 .fieldoffset = offsetof(CPUARMState, keys.apdb.lo) }, 5840 { .name = "APDBKEYHI_EL1", .state = ARM_CP_STATE_AA64, 5841 .opc0 = 3, .opc1 = 0, .crn = 2, .crm = 2, .opc2 = 3, 5842 .access = PL1_RW, .accessfn = access_pauth, 5843 .fieldoffset = offsetof(CPUARMState, keys.apdb.hi) }, 5844 { .name = "APGAKEYLO_EL1", .state = ARM_CP_STATE_AA64, 5845 .opc0 = 3, .opc1 = 0, .crn = 2, .crm = 3, .opc2 = 0, 5846 .access = PL1_RW, .accessfn = access_pauth, 5847 .fieldoffset = offsetof(CPUARMState, keys.apga.lo) }, 5848 { .name = "APGAKEYHI_EL1", .state = ARM_CP_STATE_AA64, 5849 .opc0 = 3, .opc1 = 0, .crn = 2, .crm = 3, .opc2 = 1, 5850 .access = PL1_RW, .accessfn = access_pauth, 5851 .fieldoffset = offsetof(CPUARMState, keys.apga.hi) }, 5852 { .name = "APIAKEYLO_EL1", .state = ARM_CP_STATE_AA64, 5853 .opc0 = 3, .opc1 = 0, .crn = 2, .crm = 1, .opc2 = 0, 5854 .access = PL1_RW, .accessfn = access_pauth, 5855 .fieldoffset = offsetof(CPUARMState, keys.apia.lo) }, 5856 { .name = "APIAKEYHI_EL1", .state = ARM_CP_STATE_AA64, 5857 .opc0 = 3, .opc1 = 0, .crn = 2, .crm = 1, .opc2 = 1, 5858 .access = PL1_RW, .accessfn = access_pauth, 5859 .fieldoffset = offsetof(CPUARMState, keys.apia.hi) }, 5860 { .name = "APIBKEYLO_EL1", .state = ARM_CP_STATE_AA64, 5861 .opc0 = 3, .opc1 = 0, .crn = 2, .crm = 1, .opc2 = 2, 5862 .access = PL1_RW, .accessfn = access_pauth, 5863 .fieldoffset = offsetof(CPUARMState, keys.apib.lo) }, 5864 { .name = "APIBKEYHI_EL1", .state = ARM_CP_STATE_AA64, 5865 .opc0 = 3, .opc1 = 0, .crn = 2, .crm = 1, .opc2 = 3, 5866 .access = PL1_RW, .accessfn = access_pauth, 5867 .fieldoffset = offsetof(CPUARMState, keys.apib.hi) }, 5868 REGINFO_SENTINEL 5869 }; 5870 5871 static uint64_t rndr_readfn(CPUARMState *env, const ARMCPRegInfo *ri) 5872 { 5873 Error *err = NULL; 5874 uint64_t ret; 5875 5876 /* Success sets NZCV = 0000. */ 5877 env->NF = env->CF = env->VF = 0, env->ZF = 1; 5878 5879 if (qemu_guest_getrandom(&ret, sizeof(ret), &err) < 0) { 5880 /* 5881 * ??? Failed, for unknown reasons in the crypto subsystem. 5882 * The best we can do is log the reason and return the 5883 * timed-out indication to the guest. There is no reason 5884 * we know to expect this failure to be transitory, so the 5885 * guest may well hang retrying the operation. 5886 */ 5887 qemu_log_mask(LOG_UNIMP, "%s: Crypto failure: %s", 5888 ri->name, error_get_pretty(err)); 5889 error_free(err); 5890 5891 env->ZF = 0; /* NZCF = 0100 */ 5892 return 0; 5893 } 5894 return ret; 5895 } 5896 5897 /* We do not support re-seeding, so the two registers operate the same. */ 5898 static const ARMCPRegInfo rndr_reginfo[] = { 5899 { .name = "RNDR", .state = ARM_CP_STATE_AA64, 5900 .type = ARM_CP_NO_RAW | ARM_CP_SUPPRESS_TB_END | ARM_CP_IO, 5901 .opc0 = 3, .opc1 = 3, .crn = 2, .crm = 4, .opc2 = 0, 5902 .access = PL0_R, .readfn = rndr_readfn }, 5903 { .name = "RNDRRS", .state = ARM_CP_STATE_AA64, 5904 .type = ARM_CP_NO_RAW | ARM_CP_SUPPRESS_TB_END | ARM_CP_IO, 5905 .opc0 = 3, .opc1 = 3, .crn = 2, .crm = 4, .opc2 = 1, 5906 .access = PL0_R, .readfn = rndr_readfn }, 5907 REGINFO_SENTINEL 5908 }; 5909 #endif 5910 5911 static CPAccessResult access_predinv(CPUARMState *env, const ARMCPRegInfo *ri, 5912 bool isread) 5913 { 5914 int el = arm_current_el(env); 5915 5916 if (el == 0) { 5917 uint64_t sctlr = arm_sctlr(env, el); 5918 if (!(sctlr & SCTLR_EnRCTX)) { 5919 return CP_ACCESS_TRAP; 5920 } 5921 } else if (el == 1) { 5922 uint64_t hcr = arm_hcr_el2_eff(env); 5923 if (hcr & HCR_NV) { 5924 return CP_ACCESS_TRAP_EL2; 5925 } 5926 } 5927 return CP_ACCESS_OK; 5928 } 5929 5930 static const ARMCPRegInfo predinv_reginfo[] = { 5931 { .name = "CFP_RCTX", .state = ARM_CP_STATE_AA64, 5932 .opc0 = 1, .opc1 = 3, .crn = 7, .crm = 3, .opc2 = 4, 5933 .type = ARM_CP_NOP, .access = PL0_W, .accessfn = access_predinv }, 5934 { .name = "DVP_RCTX", .state = ARM_CP_STATE_AA64, 5935 .opc0 = 1, .opc1 = 3, .crn = 7, .crm = 3, .opc2 = 5, 5936 .type = ARM_CP_NOP, .access = PL0_W, .accessfn = access_predinv }, 5937 { .name = "CPP_RCTX", .state = ARM_CP_STATE_AA64, 5938 .opc0 = 1, .opc1 = 3, .crn = 7, .crm = 3, .opc2 = 7, 5939 .type = ARM_CP_NOP, .access = PL0_W, .accessfn = access_predinv }, 5940 /* 5941 * Note the AArch32 opcodes have a different OPC1. 5942 */ 5943 { .name = "CFPRCTX", .state = ARM_CP_STATE_AA32, 5944 .cp = 15, .opc1 = 0, .crn = 7, .crm = 3, .opc2 = 4, 5945 .type = ARM_CP_NOP, .access = PL0_W, .accessfn = access_predinv }, 5946 { .name = "DVPRCTX", .state = ARM_CP_STATE_AA32, 5947 .cp = 15, .opc1 = 0, .crn = 7, .crm = 3, .opc2 = 5, 5948 .type = ARM_CP_NOP, .access = PL0_W, .accessfn = access_predinv }, 5949 { .name = "CPPRCTX", .state = ARM_CP_STATE_AA32, 5950 .cp = 15, .opc1 = 0, .crn = 7, .crm = 3, .opc2 = 7, 5951 .type = ARM_CP_NOP, .access = PL0_W, .accessfn = access_predinv }, 5952 REGINFO_SENTINEL 5953 }; 5954 5955 void register_cp_regs_for_features(ARMCPU *cpu) 5956 { 5957 /* Register all the coprocessor registers based on feature bits */ 5958 CPUARMState *env = &cpu->env; 5959 if (arm_feature(env, ARM_FEATURE_M)) { 5960 /* M profile has no coprocessor registers */ 5961 return; 5962 } 5963 5964 define_arm_cp_regs(cpu, cp_reginfo); 5965 if (!arm_feature(env, ARM_FEATURE_V8)) { 5966 /* Must go early as it is full of wildcards that may be 5967 * overridden by later definitions. 5968 */ 5969 define_arm_cp_regs(cpu, not_v8_cp_reginfo); 5970 } 5971 5972 if (arm_feature(env, ARM_FEATURE_V6)) { 5973 /* The ID registers all have impdef reset values */ 5974 ARMCPRegInfo v6_idregs[] = { 5975 { .name = "ID_PFR0", .state = ARM_CP_STATE_BOTH, 5976 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 1, .opc2 = 0, 5977 .access = PL1_R, .type = ARM_CP_CONST, 5978 .resetvalue = cpu->id_pfr0 }, 5979 /* ID_PFR1 is not a plain ARM_CP_CONST because we don't know 5980 * the value of the GIC field until after we define these regs. 5981 */ 5982 { .name = "ID_PFR1", .state = ARM_CP_STATE_BOTH, 5983 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 1, .opc2 = 1, 5984 .access = PL1_R, .type = ARM_CP_NO_RAW, 5985 .readfn = id_pfr1_read, 5986 .writefn = arm_cp_write_ignore }, 5987 { .name = "ID_DFR0", .state = ARM_CP_STATE_BOTH, 5988 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 1, .opc2 = 2, 5989 .access = PL1_R, .type = ARM_CP_CONST, 5990 .resetvalue = cpu->id_dfr0 }, 5991 { .name = "ID_AFR0", .state = ARM_CP_STATE_BOTH, 5992 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 1, .opc2 = 3, 5993 .access = PL1_R, .type = ARM_CP_CONST, 5994 .resetvalue = cpu->id_afr0 }, 5995 { .name = "ID_MMFR0", .state = ARM_CP_STATE_BOTH, 5996 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 1, .opc2 = 4, 5997 .access = PL1_R, .type = ARM_CP_CONST, 5998 .resetvalue = cpu->id_mmfr0 }, 5999 { .name = "ID_MMFR1", .state = ARM_CP_STATE_BOTH, 6000 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 1, .opc2 = 5, 6001 .access = PL1_R, .type = ARM_CP_CONST, 6002 .resetvalue = cpu->id_mmfr1 }, 6003 { .name = "ID_MMFR2", .state = ARM_CP_STATE_BOTH, 6004 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 1, .opc2 = 6, 6005 .access = PL1_R, .type = ARM_CP_CONST, 6006 .resetvalue = cpu->id_mmfr2 }, 6007 { .name = "ID_MMFR3", .state = ARM_CP_STATE_BOTH, 6008 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 1, .opc2 = 7, 6009 .access = PL1_R, .type = ARM_CP_CONST, 6010 .resetvalue = cpu->id_mmfr3 }, 6011 { .name = "ID_ISAR0", .state = ARM_CP_STATE_BOTH, 6012 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 2, .opc2 = 0, 6013 .access = PL1_R, .type = ARM_CP_CONST, 6014 .resetvalue = cpu->isar.id_isar0 }, 6015 { .name = "ID_ISAR1", .state = ARM_CP_STATE_BOTH, 6016 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 2, .opc2 = 1, 6017 .access = PL1_R, .type = ARM_CP_CONST, 6018 .resetvalue = cpu->isar.id_isar1 }, 6019 { .name = "ID_ISAR2", .state = ARM_CP_STATE_BOTH, 6020 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 2, .opc2 = 2, 6021 .access = PL1_R, .type = ARM_CP_CONST, 6022 .resetvalue = cpu->isar.id_isar2 }, 6023 { .name = "ID_ISAR3", .state = ARM_CP_STATE_BOTH, 6024 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 2, .opc2 = 3, 6025 .access = PL1_R, .type = ARM_CP_CONST, 6026 .resetvalue = cpu->isar.id_isar3 }, 6027 { .name = "ID_ISAR4", .state = ARM_CP_STATE_BOTH, 6028 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 2, .opc2 = 4, 6029 .access = PL1_R, .type = ARM_CP_CONST, 6030 .resetvalue = cpu->isar.id_isar4 }, 6031 { .name = "ID_ISAR5", .state = ARM_CP_STATE_BOTH, 6032 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 2, .opc2 = 5, 6033 .access = PL1_R, .type = ARM_CP_CONST, 6034 .resetvalue = cpu->isar.id_isar5 }, 6035 { .name = "ID_MMFR4", .state = ARM_CP_STATE_BOTH, 6036 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 2, .opc2 = 6, 6037 .access = PL1_R, .type = ARM_CP_CONST, 6038 .resetvalue = cpu->id_mmfr4 }, 6039 { .name = "ID_ISAR6", .state = ARM_CP_STATE_BOTH, 6040 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 2, .opc2 = 7, 6041 .access = PL1_R, .type = ARM_CP_CONST, 6042 .resetvalue = cpu->isar.id_isar6 }, 6043 REGINFO_SENTINEL 6044 }; 6045 define_arm_cp_regs(cpu, v6_idregs); 6046 define_arm_cp_regs(cpu, v6_cp_reginfo); 6047 } else { 6048 define_arm_cp_regs(cpu, not_v6_cp_reginfo); 6049 } 6050 if (arm_feature(env, ARM_FEATURE_V6K)) { 6051 define_arm_cp_regs(cpu, v6k_cp_reginfo); 6052 } 6053 if (arm_feature(env, ARM_FEATURE_V7MP) && 6054 !arm_feature(env, ARM_FEATURE_PMSA)) { 6055 define_arm_cp_regs(cpu, v7mp_cp_reginfo); 6056 } 6057 if (arm_feature(env, ARM_FEATURE_V7VE)) { 6058 define_arm_cp_regs(cpu, pmovsset_cp_reginfo); 6059 } 6060 if (arm_feature(env, ARM_FEATURE_V7)) { 6061 /* v7 performance monitor control register: same implementor 6062 * field as main ID register, and we implement four counters in 6063 * addition to the cycle count register. 6064 */ 6065 unsigned int i, pmcrn = 4; 6066 ARMCPRegInfo pmcr = { 6067 .name = "PMCR", .cp = 15, .crn = 9, .crm = 12, .opc1 = 0, .opc2 = 0, 6068 .access = PL0_RW, 6069 .type = ARM_CP_IO | ARM_CP_ALIAS, 6070 .fieldoffset = offsetoflow32(CPUARMState, cp15.c9_pmcr), 6071 .accessfn = pmreg_access, .writefn = pmcr_write, 6072 .raw_writefn = raw_write, 6073 }; 6074 ARMCPRegInfo pmcr64 = { 6075 .name = "PMCR_EL0", .state = ARM_CP_STATE_AA64, 6076 .opc0 = 3, .opc1 = 3, .crn = 9, .crm = 12, .opc2 = 0, 6077 .access = PL0_RW, .accessfn = pmreg_access, 6078 .type = ARM_CP_IO, 6079 .fieldoffset = offsetof(CPUARMState, cp15.c9_pmcr), 6080 .resetvalue = (cpu->midr & 0xff000000) | (pmcrn << PMCRN_SHIFT), 6081 .writefn = pmcr_write, .raw_writefn = raw_write, 6082 }; 6083 define_one_arm_cp_reg(cpu, &pmcr); 6084 define_one_arm_cp_reg(cpu, &pmcr64); 6085 for (i = 0; i < pmcrn; i++) { 6086 char *pmevcntr_name = g_strdup_printf("PMEVCNTR%d", i); 6087 char *pmevcntr_el0_name = g_strdup_printf("PMEVCNTR%d_EL0", i); 6088 char *pmevtyper_name = g_strdup_printf("PMEVTYPER%d", i); 6089 char *pmevtyper_el0_name = g_strdup_printf("PMEVTYPER%d_EL0", i); 6090 ARMCPRegInfo pmev_regs[] = { 6091 { .name = pmevcntr_name, .cp = 15, .crn = 14, 6092 .crm = 8 | (3 & (i >> 3)), .opc1 = 0, .opc2 = i & 7, 6093 .access = PL0_RW, .type = ARM_CP_IO | ARM_CP_ALIAS, 6094 .readfn = pmevcntr_readfn, .writefn = pmevcntr_writefn, 6095 .accessfn = pmreg_access }, 6096 { .name = pmevcntr_el0_name, .state = ARM_CP_STATE_AA64, 6097 .opc0 = 3, .opc1 = 3, .crn = 14, .crm = 8 | (3 & (i >> 3)), 6098 .opc2 = i & 7, .access = PL0_RW, .accessfn = pmreg_access, 6099 .type = ARM_CP_IO, 6100 .readfn = pmevcntr_readfn, .writefn = pmevcntr_writefn, 6101 .raw_readfn = pmevcntr_rawread, 6102 .raw_writefn = pmevcntr_rawwrite }, 6103 { .name = pmevtyper_name, .cp = 15, .crn = 14, 6104 .crm = 12 | (3 & (i >> 3)), .opc1 = 0, .opc2 = i & 7, 6105 .access = PL0_RW, .type = ARM_CP_IO | ARM_CP_ALIAS, 6106 .readfn = pmevtyper_readfn, .writefn = pmevtyper_writefn, 6107 .accessfn = pmreg_access }, 6108 { .name = pmevtyper_el0_name, .state = ARM_CP_STATE_AA64, 6109 .opc0 = 3, .opc1 = 3, .crn = 14, .crm = 12 | (3 & (i >> 3)), 6110 .opc2 = i & 7, .access = PL0_RW, .accessfn = pmreg_access, 6111 .type = ARM_CP_IO, 6112 .readfn = pmevtyper_readfn, .writefn = pmevtyper_writefn, 6113 .raw_writefn = pmevtyper_rawwrite }, 6114 REGINFO_SENTINEL 6115 }; 6116 define_arm_cp_regs(cpu, pmev_regs); 6117 g_free(pmevcntr_name); 6118 g_free(pmevcntr_el0_name); 6119 g_free(pmevtyper_name); 6120 g_free(pmevtyper_el0_name); 6121 } 6122 ARMCPRegInfo clidr = { 6123 .name = "CLIDR", .state = ARM_CP_STATE_BOTH, 6124 .opc0 = 3, .crn = 0, .crm = 0, .opc1 = 1, .opc2 = 1, 6125 .access = PL1_R, .type = ARM_CP_CONST, .resetvalue = cpu->clidr 6126 }; 6127 define_one_arm_cp_reg(cpu, &clidr); 6128 define_arm_cp_regs(cpu, v7_cp_reginfo); 6129 define_debug_regs(cpu); 6130 } else { 6131 define_arm_cp_regs(cpu, not_v7_cp_reginfo); 6132 } 6133 if (FIELD_EX32(cpu->id_dfr0, ID_DFR0, PERFMON) >= 4 && 6134 FIELD_EX32(cpu->id_dfr0, ID_DFR0, PERFMON) != 0xf) { 6135 ARMCPRegInfo v81_pmu_regs[] = { 6136 { .name = "PMCEID2", .state = ARM_CP_STATE_AA32, 6137 .cp = 15, .opc1 = 0, .crn = 9, .crm = 14, .opc2 = 4, 6138 .access = PL0_R, .accessfn = pmreg_access, .type = ARM_CP_CONST, 6139 .resetvalue = extract64(cpu->pmceid0, 32, 32) }, 6140 { .name = "PMCEID3", .state = ARM_CP_STATE_AA32, 6141 .cp = 15, .opc1 = 0, .crn = 9, .crm = 14, .opc2 = 5, 6142 .access = PL0_R, .accessfn = pmreg_access, .type = ARM_CP_CONST, 6143 .resetvalue = extract64(cpu->pmceid1, 32, 32) }, 6144 REGINFO_SENTINEL 6145 }; 6146 define_arm_cp_regs(cpu, v81_pmu_regs); 6147 } 6148 if (arm_feature(env, ARM_FEATURE_V8)) { 6149 /* AArch64 ID registers, which all have impdef reset values. 6150 * Note that within the ID register ranges the unused slots 6151 * must all RAZ, not UNDEF; future architecture versions may 6152 * define new registers here. 6153 */ 6154 ARMCPRegInfo v8_idregs[] = { 6155 /* ID_AA64PFR0_EL1 is not a plain ARM_CP_CONST because we don't 6156 * know the right value for the GIC field until after we 6157 * define these regs. 6158 */ 6159 { .name = "ID_AA64PFR0_EL1", .state = ARM_CP_STATE_AA64, 6160 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 4, .opc2 = 0, 6161 .access = PL1_R, .type = ARM_CP_NO_RAW, 6162 .readfn = id_aa64pfr0_read, 6163 .writefn = arm_cp_write_ignore }, 6164 { .name = "ID_AA64PFR1_EL1", .state = ARM_CP_STATE_AA64, 6165 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 4, .opc2 = 1, 6166 .access = PL1_R, .type = ARM_CP_CONST, 6167 .resetvalue = cpu->isar.id_aa64pfr1}, 6168 { .name = "ID_AA64PFR2_EL1_RESERVED", .state = ARM_CP_STATE_AA64, 6169 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 4, .opc2 = 2, 6170 .access = PL1_R, .type = ARM_CP_CONST, 6171 .resetvalue = 0 }, 6172 { .name = "ID_AA64PFR3_EL1_RESERVED", .state = ARM_CP_STATE_AA64, 6173 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 4, .opc2 = 3, 6174 .access = PL1_R, .type = ARM_CP_CONST, 6175 .resetvalue = 0 }, 6176 { .name = "ID_AA64ZFR0_EL1", .state = ARM_CP_STATE_AA64, 6177 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 4, .opc2 = 4, 6178 .access = PL1_R, .type = ARM_CP_CONST, 6179 /* At present, only SVEver == 0 is defined anyway. */ 6180 .resetvalue = 0 }, 6181 { .name = "ID_AA64PFR5_EL1_RESERVED", .state = ARM_CP_STATE_AA64, 6182 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 4, .opc2 = 5, 6183 .access = PL1_R, .type = ARM_CP_CONST, 6184 .resetvalue = 0 }, 6185 { .name = "ID_AA64PFR6_EL1_RESERVED", .state = ARM_CP_STATE_AA64, 6186 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 4, .opc2 = 6, 6187 .access = PL1_R, .type = ARM_CP_CONST, 6188 .resetvalue = 0 }, 6189 { .name = "ID_AA64PFR7_EL1_RESERVED", .state = ARM_CP_STATE_AA64, 6190 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 4, .opc2 = 7, 6191 .access = PL1_R, .type = ARM_CP_CONST, 6192 .resetvalue = 0 }, 6193 { .name = "ID_AA64DFR0_EL1", .state = ARM_CP_STATE_AA64, 6194 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 5, .opc2 = 0, 6195 .access = PL1_R, .type = ARM_CP_CONST, 6196 .resetvalue = cpu->id_aa64dfr0 }, 6197 { .name = "ID_AA64DFR1_EL1", .state = ARM_CP_STATE_AA64, 6198 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 5, .opc2 = 1, 6199 .access = PL1_R, .type = ARM_CP_CONST, 6200 .resetvalue = cpu->id_aa64dfr1 }, 6201 { .name = "ID_AA64DFR2_EL1_RESERVED", .state = ARM_CP_STATE_AA64, 6202 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 5, .opc2 = 2, 6203 .access = PL1_R, .type = ARM_CP_CONST, 6204 .resetvalue = 0 }, 6205 { .name = "ID_AA64DFR3_EL1_RESERVED", .state = ARM_CP_STATE_AA64, 6206 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 5, .opc2 = 3, 6207 .access = PL1_R, .type = ARM_CP_CONST, 6208 .resetvalue = 0 }, 6209 { .name = "ID_AA64AFR0_EL1", .state = ARM_CP_STATE_AA64, 6210 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 5, .opc2 = 4, 6211 .access = PL1_R, .type = ARM_CP_CONST, 6212 .resetvalue = cpu->id_aa64afr0 }, 6213 { .name = "ID_AA64AFR1_EL1", .state = ARM_CP_STATE_AA64, 6214 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 5, .opc2 = 5, 6215 .access = PL1_R, .type = ARM_CP_CONST, 6216 .resetvalue = cpu->id_aa64afr1 }, 6217 { .name = "ID_AA64AFR2_EL1_RESERVED", .state = ARM_CP_STATE_AA64, 6218 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 5, .opc2 = 6, 6219 .access = PL1_R, .type = ARM_CP_CONST, 6220 .resetvalue = 0 }, 6221 { .name = "ID_AA64AFR3_EL1_RESERVED", .state = ARM_CP_STATE_AA64, 6222 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 5, .opc2 = 7, 6223 .access = PL1_R, .type = ARM_CP_CONST, 6224 .resetvalue = 0 }, 6225 { .name = "ID_AA64ISAR0_EL1", .state = ARM_CP_STATE_AA64, 6226 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 6, .opc2 = 0, 6227 .access = PL1_R, .type = ARM_CP_CONST, 6228 .resetvalue = cpu->isar.id_aa64isar0 }, 6229 { .name = "ID_AA64ISAR1_EL1", .state = ARM_CP_STATE_AA64, 6230 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 6, .opc2 = 1, 6231 .access = PL1_R, .type = ARM_CP_CONST, 6232 .resetvalue = cpu->isar.id_aa64isar1 }, 6233 { .name = "ID_AA64ISAR2_EL1_RESERVED", .state = ARM_CP_STATE_AA64, 6234 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 6, .opc2 = 2, 6235 .access = PL1_R, .type = ARM_CP_CONST, 6236 .resetvalue = 0 }, 6237 { .name = "ID_AA64ISAR3_EL1_RESERVED", .state = ARM_CP_STATE_AA64, 6238 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 6, .opc2 = 3, 6239 .access = PL1_R, .type = ARM_CP_CONST, 6240 .resetvalue = 0 }, 6241 { .name = "ID_AA64ISAR4_EL1_RESERVED", .state = ARM_CP_STATE_AA64, 6242 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 6, .opc2 = 4, 6243 .access = PL1_R, .type = ARM_CP_CONST, 6244 .resetvalue = 0 }, 6245 { .name = "ID_AA64ISAR5_EL1_RESERVED", .state = ARM_CP_STATE_AA64, 6246 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 6, .opc2 = 5, 6247 .access = PL1_R, .type = ARM_CP_CONST, 6248 .resetvalue = 0 }, 6249 { .name = "ID_AA64ISAR6_EL1_RESERVED", .state = ARM_CP_STATE_AA64, 6250 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 6, .opc2 = 6, 6251 .access = PL1_R, .type = ARM_CP_CONST, 6252 .resetvalue = 0 }, 6253 { .name = "ID_AA64ISAR7_EL1_RESERVED", .state = ARM_CP_STATE_AA64, 6254 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 6, .opc2 = 7, 6255 .access = PL1_R, .type = ARM_CP_CONST, 6256 .resetvalue = 0 }, 6257 { .name = "ID_AA64MMFR0_EL1", .state = ARM_CP_STATE_AA64, 6258 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 7, .opc2 = 0, 6259 .access = PL1_R, .type = ARM_CP_CONST, 6260 .resetvalue = cpu->isar.id_aa64mmfr0 }, 6261 { .name = "ID_AA64MMFR1_EL1", .state = ARM_CP_STATE_AA64, 6262 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 7, .opc2 = 1, 6263 .access = PL1_R, .type = ARM_CP_CONST, 6264 .resetvalue = cpu->isar.id_aa64mmfr1 }, 6265 { .name = "ID_AA64MMFR2_EL1_RESERVED", .state = ARM_CP_STATE_AA64, 6266 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 7, .opc2 = 2, 6267 .access = PL1_R, .type = ARM_CP_CONST, 6268 .resetvalue = 0 }, 6269 { .name = "ID_AA64MMFR3_EL1_RESERVED", .state = ARM_CP_STATE_AA64, 6270 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 7, .opc2 = 3, 6271 .access = PL1_R, .type = ARM_CP_CONST, 6272 .resetvalue = 0 }, 6273 { .name = "ID_AA64MMFR4_EL1_RESERVED", .state = ARM_CP_STATE_AA64, 6274 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 7, .opc2 = 4, 6275 .access = PL1_R, .type = ARM_CP_CONST, 6276 .resetvalue = 0 }, 6277 { .name = "ID_AA64MMFR5_EL1_RESERVED", .state = ARM_CP_STATE_AA64, 6278 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 7, .opc2 = 5, 6279 .access = PL1_R, .type = ARM_CP_CONST, 6280 .resetvalue = 0 }, 6281 { .name = "ID_AA64MMFR6_EL1_RESERVED", .state = ARM_CP_STATE_AA64, 6282 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 7, .opc2 = 6, 6283 .access = PL1_R, .type = ARM_CP_CONST, 6284 .resetvalue = 0 }, 6285 { .name = "ID_AA64MMFR7_EL1_RESERVED", .state = ARM_CP_STATE_AA64, 6286 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 7, .opc2 = 7, 6287 .access = PL1_R, .type = ARM_CP_CONST, 6288 .resetvalue = 0 }, 6289 { .name = "MVFR0_EL1", .state = ARM_CP_STATE_AA64, 6290 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 3, .opc2 = 0, 6291 .access = PL1_R, .type = ARM_CP_CONST, 6292 .resetvalue = cpu->isar.mvfr0 }, 6293 { .name = "MVFR1_EL1", .state = ARM_CP_STATE_AA64, 6294 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 3, .opc2 = 1, 6295 .access = PL1_R, .type = ARM_CP_CONST, 6296 .resetvalue = cpu->isar.mvfr1 }, 6297 { .name = "MVFR2_EL1", .state = ARM_CP_STATE_AA64, 6298 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 3, .opc2 = 2, 6299 .access = PL1_R, .type = ARM_CP_CONST, 6300 .resetvalue = cpu->isar.mvfr2 }, 6301 { .name = "MVFR3_EL1_RESERVED", .state = ARM_CP_STATE_AA64, 6302 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 3, .opc2 = 3, 6303 .access = PL1_R, .type = ARM_CP_CONST, 6304 .resetvalue = 0 }, 6305 { .name = "MVFR4_EL1_RESERVED", .state = ARM_CP_STATE_AA64, 6306 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 3, .opc2 = 4, 6307 .access = PL1_R, .type = ARM_CP_CONST, 6308 .resetvalue = 0 }, 6309 { .name = "MVFR5_EL1_RESERVED", .state = ARM_CP_STATE_AA64, 6310 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 3, .opc2 = 5, 6311 .access = PL1_R, .type = ARM_CP_CONST, 6312 .resetvalue = 0 }, 6313 { .name = "MVFR6_EL1_RESERVED", .state = ARM_CP_STATE_AA64, 6314 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 3, .opc2 = 6, 6315 .access = PL1_R, .type = ARM_CP_CONST, 6316 .resetvalue = 0 }, 6317 { .name = "MVFR7_EL1_RESERVED", .state = ARM_CP_STATE_AA64, 6318 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 3, .opc2 = 7, 6319 .access = PL1_R, .type = ARM_CP_CONST, 6320 .resetvalue = 0 }, 6321 { .name = "PMCEID0", .state = ARM_CP_STATE_AA32, 6322 .cp = 15, .opc1 = 0, .crn = 9, .crm = 12, .opc2 = 6, 6323 .access = PL0_R, .accessfn = pmreg_access, .type = ARM_CP_CONST, 6324 .resetvalue = extract64(cpu->pmceid0, 0, 32) }, 6325 { .name = "PMCEID0_EL0", .state = ARM_CP_STATE_AA64, 6326 .opc0 = 3, .opc1 = 3, .crn = 9, .crm = 12, .opc2 = 6, 6327 .access = PL0_R, .accessfn = pmreg_access, .type = ARM_CP_CONST, 6328 .resetvalue = cpu->pmceid0 }, 6329 { .name = "PMCEID1", .state = ARM_CP_STATE_AA32, 6330 .cp = 15, .opc1 = 0, .crn = 9, .crm = 12, .opc2 = 7, 6331 .access = PL0_R, .accessfn = pmreg_access, .type = ARM_CP_CONST, 6332 .resetvalue = extract64(cpu->pmceid1, 0, 32) }, 6333 { .name = "PMCEID1_EL0", .state = ARM_CP_STATE_AA64, 6334 .opc0 = 3, .opc1 = 3, .crn = 9, .crm = 12, .opc2 = 7, 6335 .access = PL0_R, .accessfn = pmreg_access, .type = ARM_CP_CONST, 6336 .resetvalue = cpu->pmceid1 }, 6337 REGINFO_SENTINEL 6338 }; 6339 #ifdef CONFIG_USER_ONLY 6340 ARMCPRegUserSpaceInfo v8_user_idregs[] = { 6341 { .name = "ID_AA64PFR0_EL1", 6342 .exported_bits = 0x000f000f00ff0000, 6343 .fixed_bits = 0x0000000000000011 }, 6344 { .name = "ID_AA64PFR1_EL1", 6345 .exported_bits = 0x00000000000000f0 }, 6346 { .name = "ID_AA64PFR*_EL1_RESERVED", 6347 .is_glob = true }, 6348 { .name = "ID_AA64ZFR0_EL1" }, 6349 { .name = "ID_AA64MMFR0_EL1", 6350 .fixed_bits = 0x00000000ff000000 }, 6351 { .name = "ID_AA64MMFR1_EL1" }, 6352 { .name = "ID_AA64MMFR*_EL1_RESERVED", 6353 .is_glob = true }, 6354 { .name = "ID_AA64DFR0_EL1", 6355 .fixed_bits = 0x0000000000000006 }, 6356 { .name = "ID_AA64DFR1_EL1" }, 6357 { .name = "ID_AA64DFR*_EL1_RESERVED", 6358 .is_glob = true }, 6359 { .name = "ID_AA64AFR*", 6360 .is_glob = true }, 6361 { .name = "ID_AA64ISAR0_EL1", 6362 .exported_bits = 0x00fffffff0fffff0 }, 6363 { .name = "ID_AA64ISAR1_EL1", 6364 .exported_bits = 0x000000f0ffffffff }, 6365 { .name = "ID_AA64ISAR*_EL1_RESERVED", 6366 .is_glob = true }, 6367 REGUSERINFO_SENTINEL 6368 }; 6369 modify_arm_cp_regs(v8_idregs, v8_user_idregs); 6370 #endif 6371 /* RVBAR_EL1 is only implemented if EL1 is the highest EL */ 6372 if (!arm_feature(env, ARM_FEATURE_EL3) && 6373 !arm_feature(env, ARM_FEATURE_EL2)) { 6374 ARMCPRegInfo rvbar = { 6375 .name = "RVBAR_EL1", .state = ARM_CP_STATE_AA64, 6376 .opc0 = 3, .opc1 = 0, .crn = 12, .crm = 0, .opc2 = 1, 6377 .type = ARM_CP_CONST, .access = PL1_R, .resetvalue = cpu->rvbar 6378 }; 6379 define_one_arm_cp_reg(cpu, &rvbar); 6380 } 6381 define_arm_cp_regs(cpu, v8_idregs); 6382 define_arm_cp_regs(cpu, v8_cp_reginfo); 6383 } 6384 if (arm_feature(env, ARM_FEATURE_EL2)) { 6385 uint64_t vmpidr_def = mpidr_read_val(env); 6386 ARMCPRegInfo vpidr_regs[] = { 6387 { .name = "VPIDR", .state = ARM_CP_STATE_AA32, 6388 .cp = 15, .opc1 = 4, .crn = 0, .crm = 0, .opc2 = 0, 6389 .access = PL2_RW, .accessfn = access_el3_aa32ns, 6390 .resetvalue = cpu->midr, .type = ARM_CP_ALIAS, 6391 .fieldoffset = offsetoflow32(CPUARMState, cp15.vpidr_el2) }, 6392 { .name = "VPIDR_EL2", .state = ARM_CP_STATE_AA64, 6393 .opc0 = 3, .opc1 = 4, .crn = 0, .crm = 0, .opc2 = 0, 6394 .access = PL2_RW, .resetvalue = cpu->midr, 6395 .fieldoffset = offsetof(CPUARMState, cp15.vpidr_el2) }, 6396 { .name = "VMPIDR", .state = ARM_CP_STATE_AA32, 6397 .cp = 15, .opc1 = 4, .crn = 0, .crm = 0, .opc2 = 5, 6398 .access = PL2_RW, .accessfn = access_el3_aa32ns, 6399 .resetvalue = vmpidr_def, .type = ARM_CP_ALIAS, 6400 .fieldoffset = offsetoflow32(CPUARMState, cp15.vmpidr_el2) }, 6401 { .name = "VMPIDR_EL2", .state = ARM_CP_STATE_AA64, 6402 .opc0 = 3, .opc1 = 4, .crn = 0, .crm = 0, .opc2 = 5, 6403 .access = PL2_RW, 6404 .resetvalue = vmpidr_def, 6405 .fieldoffset = offsetof(CPUARMState, cp15.vmpidr_el2) }, 6406 REGINFO_SENTINEL 6407 }; 6408 define_arm_cp_regs(cpu, vpidr_regs); 6409 define_arm_cp_regs(cpu, el2_cp_reginfo); 6410 if (arm_feature(env, ARM_FEATURE_V8)) { 6411 define_arm_cp_regs(cpu, el2_v8_cp_reginfo); 6412 } 6413 /* RVBAR_EL2 is only implemented if EL2 is the highest EL */ 6414 if (!arm_feature(env, ARM_FEATURE_EL3)) { 6415 ARMCPRegInfo rvbar = { 6416 .name = "RVBAR_EL2", .state = ARM_CP_STATE_AA64, 6417 .opc0 = 3, .opc1 = 4, .crn = 12, .crm = 0, .opc2 = 1, 6418 .type = ARM_CP_CONST, .access = PL2_R, .resetvalue = cpu->rvbar 6419 }; 6420 define_one_arm_cp_reg(cpu, &rvbar); 6421 } 6422 } else { 6423 /* If EL2 is missing but higher ELs are enabled, we need to 6424 * register the no_el2 reginfos. 6425 */ 6426 if (arm_feature(env, ARM_FEATURE_EL3)) { 6427 /* When EL3 exists but not EL2, VPIDR and VMPIDR take the value 6428 * of MIDR_EL1 and MPIDR_EL1. 6429 */ 6430 ARMCPRegInfo vpidr_regs[] = { 6431 { .name = "VPIDR_EL2", .state = ARM_CP_STATE_BOTH, 6432 .opc0 = 3, .opc1 = 4, .crn = 0, .crm = 0, .opc2 = 0, 6433 .access = PL2_RW, .accessfn = access_el3_aa32ns_aa64any, 6434 .type = ARM_CP_CONST, .resetvalue = cpu->midr, 6435 .fieldoffset = offsetof(CPUARMState, cp15.vpidr_el2) }, 6436 { .name = "VMPIDR_EL2", .state = ARM_CP_STATE_BOTH, 6437 .opc0 = 3, .opc1 = 4, .crn = 0, .crm = 0, .opc2 = 5, 6438 .access = PL2_RW, .accessfn = access_el3_aa32ns_aa64any, 6439 .type = ARM_CP_NO_RAW, 6440 .writefn = arm_cp_write_ignore, .readfn = mpidr_read }, 6441 REGINFO_SENTINEL 6442 }; 6443 define_arm_cp_regs(cpu, vpidr_regs); 6444 define_arm_cp_regs(cpu, el3_no_el2_cp_reginfo); 6445 if (arm_feature(env, ARM_FEATURE_V8)) { 6446 define_arm_cp_regs(cpu, el3_no_el2_v8_cp_reginfo); 6447 } 6448 } 6449 } 6450 if (arm_feature(env, ARM_FEATURE_EL3)) { 6451 define_arm_cp_regs(cpu, el3_cp_reginfo); 6452 ARMCPRegInfo el3_regs[] = { 6453 { .name = "RVBAR_EL3", .state = ARM_CP_STATE_AA64, 6454 .opc0 = 3, .opc1 = 6, .crn = 12, .crm = 0, .opc2 = 1, 6455 .type = ARM_CP_CONST, .access = PL3_R, .resetvalue = cpu->rvbar }, 6456 { .name = "SCTLR_EL3", .state = ARM_CP_STATE_AA64, 6457 .opc0 = 3, .opc1 = 6, .crn = 1, .crm = 0, .opc2 = 0, 6458 .access = PL3_RW, 6459 .raw_writefn = raw_write, .writefn = sctlr_write, 6460 .fieldoffset = offsetof(CPUARMState, cp15.sctlr_el[3]), 6461 .resetvalue = cpu->reset_sctlr }, 6462 REGINFO_SENTINEL 6463 }; 6464 6465 define_arm_cp_regs(cpu, el3_regs); 6466 } 6467 /* The behaviour of NSACR is sufficiently various that we don't 6468 * try to describe it in a single reginfo: 6469 * if EL3 is 64 bit, then trap to EL3 from S EL1, 6470 * reads as constant 0xc00 from NS EL1 and NS EL2 6471 * if EL3 is 32 bit, then RW at EL3, RO at NS EL1 and NS EL2 6472 * if v7 without EL3, register doesn't exist 6473 * if v8 without EL3, reads as constant 0xc00 from NS EL1 and NS EL2 6474 */ 6475 if (arm_feature(env, ARM_FEATURE_EL3)) { 6476 if (arm_feature(env, ARM_FEATURE_AARCH64)) { 6477 ARMCPRegInfo nsacr = { 6478 .name = "NSACR", .type = ARM_CP_CONST, 6479 .cp = 15, .opc1 = 0, .crn = 1, .crm = 1, .opc2 = 2, 6480 .access = PL1_RW, .accessfn = nsacr_access, 6481 .resetvalue = 0xc00 6482 }; 6483 define_one_arm_cp_reg(cpu, &nsacr); 6484 } else { 6485 ARMCPRegInfo nsacr = { 6486 .name = "NSACR", 6487 .cp = 15, .opc1 = 0, .crn = 1, .crm = 1, .opc2 = 2, 6488 .access = PL3_RW | PL1_R, 6489 .resetvalue = 0, 6490 .fieldoffset = offsetof(CPUARMState, cp15.nsacr) 6491 }; 6492 define_one_arm_cp_reg(cpu, &nsacr); 6493 } 6494 } else { 6495 if (arm_feature(env, ARM_FEATURE_V8)) { 6496 ARMCPRegInfo nsacr = { 6497 .name = "NSACR", .type = ARM_CP_CONST, 6498 .cp = 15, .opc1 = 0, .crn = 1, .crm = 1, .opc2 = 2, 6499 .access = PL1_R, 6500 .resetvalue = 0xc00 6501 }; 6502 define_one_arm_cp_reg(cpu, &nsacr); 6503 } 6504 } 6505 6506 if (arm_feature(env, ARM_FEATURE_PMSA)) { 6507 if (arm_feature(env, ARM_FEATURE_V6)) { 6508 /* PMSAv6 not implemented */ 6509 assert(arm_feature(env, ARM_FEATURE_V7)); 6510 define_arm_cp_regs(cpu, vmsa_pmsa_cp_reginfo); 6511 define_arm_cp_regs(cpu, pmsav7_cp_reginfo); 6512 } else { 6513 define_arm_cp_regs(cpu, pmsav5_cp_reginfo); 6514 } 6515 } else { 6516 define_arm_cp_regs(cpu, vmsa_pmsa_cp_reginfo); 6517 define_arm_cp_regs(cpu, vmsa_cp_reginfo); 6518 /* TTCBR2 is introduced with ARMv8.2-A32HPD. */ 6519 if (FIELD_EX32(cpu->id_mmfr4, ID_MMFR4, HPDS) != 0) { 6520 define_one_arm_cp_reg(cpu, &ttbcr2_reginfo); 6521 } 6522 } 6523 if (arm_feature(env, ARM_FEATURE_THUMB2EE)) { 6524 define_arm_cp_regs(cpu, t2ee_cp_reginfo); 6525 } 6526 if (arm_feature(env, ARM_FEATURE_GENERIC_TIMER)) { 6527 define_arm_cp_regs(cpu, generic_timer_cp_reginfo); 6528 } 6529 if (arm_feature(env, ARM_FEATURE_VAPA)) { 6530 define_arm_cp_regs(cpu, vapa_cp_reginfo); 6531 } 6532 if (arm_feature(env, ARM_FEATURE_CACHE_TEST_CLEAN)) { 6533 define_arm_cp_regs(cpu, cache_test_clean_cp_reginfo); 6534 } 6535 if (arm_feature(env, ARM_FEATURE_CACHE_DIRTY_REG)) { 6536 define_arm_cp_regs(cpu, cache_dirty_status_cp_reginfo); 6537 } 6538 if (arm_feature(env, ARM_FEATURE_CACHE_BLOCK_OPS)) { 6539 define_arm_cp_regs(cpu, cache_block_ops_cp_reginfo); 6540 } 6541 if (arm_feature(env, ARM_FEATURE_OMAPCP)) { 6542 define_arm_cp_regs(cpu, omap_cp_reginfo); 6543 } 6544 if (arm_feature(env, ARM_FEATURE_STRONGARM)) { 6545 define_arm_cp_regs(cpu, strongarm_cp_reginfo); 6546 } 6547 if (arm_feature(env, ARM_FEATURE_XSCALE)) { 6548 define_arm_cp_regs(cpu, xscale_cp_reginfo); 6549 } 6550 if (arm_feature(env, ARM_FEATURE_DUMMY_C15_REGS)) { 6551 define_arm_cp_regs(cpu, dummy_c15_cp_reginfo); 6552 } 6553 if (arm_feature(env, ARM_FEATURE_LPAE)) { 6554 define_arm_cp_regs(cpu, lpae_cp_reginfo); 6555 } 6556 /* Slightly awkwardly, the OMAP and StrongARM cores need all of 6557 * cp15 crn=0 to be writes-ignored, whereas for other cores they should 6558 * be read-only (ie write causes UNDEF exception). 6559 */ 6560 { 6561 ARMCPRegInfo id_pre_v8_midr_cp_reginfo[] = { 6562 /* Pre-v8 MIDR space. 6563 * Note that the MIDR isn't a simple constant register because 6564 * of the TI925 behaviour where writes to another register can 6565 * cause the MIDR value to change. 6566 * 6567 * Unimplemented registers in the c15 0 0 0 space default to 6568 * MIDR. Define MIDR first as this entire space, then CTR, TCMTR 6569 * and friends override accordingly. 6570 */ 6571 { .name = "MIDR", 6572 .cp = 15, .crn = 0, .crm = 0, .opc1 = 0, .opc2 = CP_ANY, 6573 .access = PL1_R, .resetvalue = cpu->midr, 6574 .writefn = arm_cp_write_ignore, .raw_writefn = raw_write, 6575 .readfn = midr_read, 6576 .fieldoffset = offsetof(CPUARMState, cp15.c0_cpuid), 6577 .type = ARM_CP_OVERRIDE }, 6578 /* crn = 0 op1 = 0 crm = 3..7 : currently unassigned; we RAZ. */ 6579 { .name = "DUMMY", 6580 .cp = 15, .crn = 0, .crm = 3, .opc1 = 0, .opc2 = CP_ANY, 6581 .access = PL1_R, .type = ARM_CP_CONST, .resetvalue = 0 }, 6582 { .name = "DUMMY", 6583 .cp = 15, .crn = 0, .crm = 4, .opc1 = 0, .opc2 = CP_ANY, 6584 .access = PL1_R, .type = ARM_CP_CONST, .resetvalue = 0 }, 6585 { .name = "DUMMY", 6586 .cp = 15, .crn = 0, .crm = 5, .opc1 = 0, .opc2 = CP_ANY, 6587 .access = PL1_R, .type = ARM_CP_CONST, .resetvalue = 0 }, 6588 { .name = "DUMMY", 6589 .cp = 15, .crn = 0, .crm = 6, .opc1 = 0, .opc2 = CP_ANY, 6590 .access = PL1_R, .type = ARM_CP_CONST, .resetvalue = 0 }, 6591 { .name = "DUMMY", 6592 .cp = 15, .crn = 0, .crm = 7, .opc1 = 0, .opc2 = CP_ANY, 6593 .access = PL1_R, .type = ARM_CP_CONST, .resetvalue = 0 }, 6594 REGINFO_SENTINEL 6595 }; 6596 ARMCPRegInfo id_v8_midr_cp_reginfo[] = { 6597 { .name = "MIDR_EL1", .state = ARM_CP_STATE_BOTH, 6598 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 0, .opc2 = 0, 6599 .access = PL1_R, .type = ARM_CP_NO_RAW, .resetvalue = cpu->midr, 6600 .fieldoffset = offsetof(CPUARMState, cp15.c0_cpuid), 6601 .readfn = midr_read }, 6602 /* crn = 0 op1 = 0 crm = 0 op2 = 4,7 : AArch32 aliases of MIDR */ 6603 { .name = "MIDR", .type = ARM_CP_ALIAS | ARM_CP_CONST, 6604 .cp = 15, .crn = 0, .crm = 0, .opc1 = 0, .opc2 = 4, 6605 .access = PL1_R, .resetvalue = cpu->midr }, 6606 { .name = "MIDR", .type = ARM_CP_ALIAS | ARM_CP_CONST, 6607 .cp = 15, .crn = 0, .crm = 0, .opc1 = 0, .opc2 = 7, 6608 .access = PL1_R, .resetvalue = cpu->midr }, 6609 { .name = "REVIDR_EL1", .state = ARM_CP_STATE_BOTH, 6610 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 0, .opc2 = 6, 6611 .access = PL1_R, .type = ARM_CP_CONST, .resetvalue = cpu->revidr }, 6612 REGINFO_SENTINEL 6613 }; 6614 ARMCPRegInfo id_cp_reginfo[] = { 6615 /* These are common to v8 and pre-v8 */ 6616 { .name = "CTR", 6617 .cp = 15, .crn = 0, .crm = 0, .opc1 = 0, .opc2 = 1, 6618 .access = PL1_R, .type = ARM_CP_CONST, .resetvalue = cpu->ctr }, 6619 { .name = "CTR_EL0", .state = ARM_CP_STATE_AA64, 6620 .opc0 = 3, .opc1 = 3, .opc2 = 1, .crn = 0, .crm = 0, 6621 .access = PL0_R, .accessfn = ctr_el0_access, 6622 .type = ARM_CP_CONST, .resetvalue = cpu->ctr }, 6623 /* TCMTR and TLBTR exist in v8 but have no 64-bit versions */ 6624 { .name = "TCMTR", 6625 .cp = 15, .crn = 0, .crm = 0, .opc1 = 0, .opc2 = 2, 6626 .access = PL1_R, .type = ARM_CP_CONST, .resetvalue = 0 }, 6627 REGINFO_SENTINEL 6628 }; 6629 /* TLBTR is specific to VMSA */ 6630 ARMCPRegInfo id_tlbtr_reginfo = { 6631 .name = "TLBTR", 6632 .cp = 15, .crn = 0, .crm = 0, .opc1 = 0, .opc2 = 3, 6633 .access = PL1_R, .type = ARM_CP_CONST, .resetvalue = 0, 6634 }; 6635 /* MPUIR is specific to PMSA V6+ */ 6636 ARMCPRegInfo id_mpuir_reginfo = { 6637 .name = "MPUIR", 6638 .cp = 15, .crn = 0, .crm = 0, .opc1 = 0, .opc2 = 4, 6639 .access = PL1_R, .type = ARM_CP_CONST, 6640 .resetvalue = cpu->pmsav7_dregion << 8 6641 }; 6642 ARMCPRegInfo crn0_wi_reginfo = { 6643 .name = "CRN0_WI", .cp = 15, .crn = 0, .crm = CP_ANY, 6644 .opc1 = CP_ANY, .opc2 = CP_ANY, .access = PL1_W, 6645 .type = ARM_CP_NOP | ARM_CP_OVERRIDE 6646 }; 6647 #ifdef CONFIG_USER_ONLY 6648 ARMCPRegUserSpaceInfo id_v8_user_midr_cp_reginfo[] = { 6649 { .name = "MIDR_EL1", 6650 .exported_bits = 0x00000000ffffffff }, 6651 { .name = "REVIDR_EL1" }, 6652 REGUSERINFO_SENTINEL 6653 }; 6654 modify_arm_cp_regs(id_v8_midr_cp_reginfo, id_v8_user_midr_cp_reginfo); 6655 #endif 6656 if (arm_feature(env, ARM_FEATURE_OMAPCP) || 6657 arm_feature(env, ARM_FEATURE_STRONGARM)) { 6658 ARMCPRegInfo *r; 6659 /* Register the blanket "writes ignored" value first to cover the 6660 * whole space. Then update the specific ID registers to allow write 6661 * access, so that they ignore writes rather than causing them to 6662 * UNDEF. 6663 */ 6664 define_one_arm_cp_reg(cpu, &crn0_wi_reginfo); 6665 for (r = id_pre_v8_midr_cp_reginfo; 6666 r->type != ARM_CP_SENTINEL; r++) { 6667 r->access = PL1_RW; 6668 } 6669 for (r = id_cp_reginfo; r->type != ARM_CP_SENTINEL; r++) { 6670 r->access = PL1_RW; 6671 } 6672 id_mpuir_reginfo.access = PL1_RW; 6673 id_tlbtr_reginfo.access = PL1_RW; 6674 } 6675 if (arm_feature(env, ARM_FEATURE_V8)) { 6676 define_arm_cp_regs(cpu, id_v8_midr_cp_reginfo); 6677 } else { 6678 define_arm_cp_regs(cpu, id_pre_v8_midr_cp_reginfo); 6679 } 6680 define_arm_cp_regs(cpu, id_cp_reginfo); 6681 if (!arm_feature(env, ARM_FEATURE_PMSA)) { 6682 define_one_arm_cp_reg(cpu, &id_tlbtr_reginfo); 6683 } else if (arm_feature(env, ARM_FEATURE_V7)) { 6684 define_one_arm_cp_reg(cpu, &id_mpuir_reginfo); 6685 } 6686 } 6687 6688 if (arm_feature(env, ARM_FEATURE_MPIDR)) { 6689 ARMCPRegInfo mpidr_cp_reginfo[] = { 6690 { .name = "MPIDR_EL1", .state = ARM_CP_STATE_BOTH, 6691 .opc0 = 3, .crn = 0, .crm = 0, .opc1 = 0, .opc2 = 5, 6692 .access = PL1_R, .readfn = mpidr_read, .type = ARM_CP_NO_RAW }, 6693 REGINFO_SENTINEL 6694 }; 6695 #ifdef CONFIG_USER_ONLY 6696 ARMCPRegUserSpaceInfo mpidr_user_cp_reginfo[] = { 6697 { .name = "MPIDR_EL1", 6698 .fixed_bits = 0x0000000080000000 }, 6699 REGUSERINFO_SENTINEL 6700 }; 6701 modify_arm_cp_regs(mpidr_cp_reginfo, mpidr_user_cp_reginfo); 6702 #endif 6703 define_arm_cp_regs(cpu, mpidr_cp_reginfo); 6704 } 6705 6706 if (arm_feature(env, ARM_FEATURE_AUXCR)) { 6707 ARMCPRegInfo auxcr_reginfo[] = { 6708 { .name = "ACTLR_EL1", .state = ARM_CP_STATE_BOTH, 6709 .opc0 = 3, .opc1 = 0, .crn = 1, .crm = 0, .opc2 = 1, 6710 .access = PL1_RW, .type = ARM_CP_CONST, 6711 .resetvalue = cpu->reset_auxcr }, 6712 { .name = "ACTLR_EL2", .state = ARM_CP_STATE_BOTH, 6713 .opc0 = 3, .opc1 = 4, .crn = 1, .crm = 0, .opc2 = 1, 6714 .access = PL2_RW, .type = ARM_CP_CONST, 6715 .resetvalue = 0 }, 6716 { .name = "ACTLR_EL3", .state = ARM_CP_STATE_AA64, 6717 .opc0 = 3, .opc1 = 6, .crn = 1, .crm = 0, .opc2 = 1, 6718 .access = PL3_RW, .type = ARM_CP_CONST, 6719 .resetvalue = 0 }, 6720 REGINFO_SENTINEL 6721 }; 6722 define_arm_cp_regs(cpu, auxcr_reginfo); 6723 if (arm_feature(env, ARM_FEATURE_V8)) { 6724 /* HACTLR2 maps to ACTLR_EL2[63:32] and is not in ARMv7 */ 6725 ARMCPRegInfo hactlr2_reginfo = { 6726 .name = "HACTLR2", .state = ARM_CP_STATE_AA32, 6727 .cp = 15, .opc1 = 4, .crn = 1, .crm = 0, .opc2 = 3, 6728 .access = PL2_RW, .type = ARM_CP_CONST, 6729 .resetvalue = 0 6730 }; 6731 define_one_arm_cp_reg(cpu, &hactlr2_reginfo); 6732 } 6733 } 6734 6735 if (arm_feature(env, ARM_FEATURE_CBAR)) { 6736 if (arm_feature(env, ARM_FEATURE_AARCH64)) { 6737 /* 32 bit view is [31:18] 0...0 [43:32]. */ 6738 uint32_t cbar32 = (extract64(cpu->reset_cbar, 18, 14) << 18) 6739 | extract64(cpu->reset_cbar, 32, 12); 6740 ARMCPRegInfo cbar_reginfo[] = { 6741 { .name = "CBAR", 6742 .type = ARM_CP_CONST, 6743 .cp = 15, .crn = 15, .crm = 0, .opc1 = 4, .opc2 = 0, 6744 .access = PL1_R, .resetvalue = cpu->reset_cbar }, 6745 { .name = "CBAR_EL1", .state = ARM_CP_STATE_AA64, 6746 .type = ARM_CP_CONST, 6747 .opc0 = 3, .opc1 = 1, .crn = 15, .crm = 3, .opc2 = 0, 6748 .access = PL1_R, .resetvalue = cbar32 }, 6749 REGINFO_SENTINEL 6750 }; 6751 /* We don't implement a r/w 64 bit CBAR currently */ 6752 assert(arm_feature(env, ARM_FEATURE_CBAR_RO)); 6753 define_arm_cp_regs(cpu, cbar_reginfo); 6754 } else { 6755 ARMCPRegInfo cbar = { 6756 .name = "CBAR", 6757 .cp = 15, .crn = 15, .crm = 0, .opc1 = 4, .opc2 = 0, 6758 .access = PL1_R|PL3_W, .resetvalue = cpu->reset_cbar, 6759 .fieldoffset = offsetof(CPUARMState, 6760 cp15.c15_config_base_address) 6761 }; 6762 if (arm_feature(env, ARM_FEATURE_CBAR_RO)) { 6763 cbar.access = PL1_R; 6764 cbar.fieldoffset = 0; 6765 cbar.type = ARM_CP_CONST; 6766 } 6767 define_one_arm_cp_reg(cpu, &cbar); 6768 } 6769 } 6770 6771 if (arm_feature(env, ARM_FEATURE_VBAR)) { 6772 ARMCPRegInfo vbar_cp_reginfo[] = { 6773 { .name = "VBAR", .state = ARM_CP_STATE_BOTH, 6774 .opc0 = 3, .crn = 12, .crm = 0, .opc1 = 0, .opc2 = 0, 6775 .access = PL1_RW, .writefn = vbar_write, 6776 .bank_fieldoffsets = { offsetof(CPUARMState, cp15.vbar_s), 6777 offsetof(CPUARMState, cp15.vbar_ns) }, 6778 .resetvalue = 0 }, 6779 REGINFO_SENTINEL 6780 }; 6781 define_arm_cp_regs(cpu, vbar_cp_reginfo); 6782 } 6783 6784 /* Generic registers whose values depend on the implementation */ 6785 { 6786 ARMCPRegInfo sctlr = { 6787 .name = "SCTLR", .state = ARM_CP_STATE_BOTH, 6788 .opc0 = 3, .opc1 = 0, .crn = 1, .crm = 0, .opc2 = 0, 6789 .access = PL1_RW, 6790 .bank_fieldoffsets = { offsetof(CPUARMState, cp15.sctlr_s), 6791 offsetof(CPUARMState, cp15.sctlr_ns) }, 6792 .writefn = sctlr_write, .resetvalue = cpu->reset_sctlr, 6793 .raw_writefn = raw_write, 6794 }; 6795 if (arm_feature(env, ARM_FEATURE_XSCALE)) { 6796 /* Normally we would always end the TB on an SCTLR write, but Linux 6797 * arch/arm/mach-pxa/sleep.S expects two instructions following 6798 * an MMU enable to execute from cache. Imitate this behaviour. 6799 */ 6800 sctlr.type |= ARM_CP_SUPPRESS_TB_END; 6801 } 6802 define_one_arm_cp_reg(cpu, &sctlr); 6803 } 6804 6805 if (cpu_isar_feature(aa64_lor, cpu)) { 6806 /* 6807 * A trivial implementation of ARMv8.1-LOR leaves all of these 6808 * registers fixed at 0, which indicates that there are zero 6809 * supported Limited Ordering regions. 6810 */ 6811 static const ARMCPRegInfo lor_reginfo[] = { 6812 { .name = "LORSA_EL1", .state = ARM_CP_STATE_AA64, 6813 .opc0 = 3, .opc1 = 0, .crn = 10, .crm = 4, .opc2 = 0, 6814 .access = PL1_RW, .accessfn = access_lor_other, 6815 .type = ARM_CP_CONST, .resetvalue = 0 }, 6816 { .name = "LOREA_EL1", .state = ARM_CP_STATE_AA64, 6817 .opc0 = 3, .opc1 = 0, .crn = 10, .crm = 4, .opc2 = 1, 6818 .access = PL1_RW, .accessfn = access_lor_other, 6819 .type = ARM_CP_CONST, .resetvalue = 0 }, 6820 { .name = "LORN_EL1", .state = ARM_CP_STATE_AA64, 6821 .opc0 = 3, .opc1 = 0, .crn = 10, .crm = 4, .opc2 = 2, 6822 .access = PL1_RW, .accessfn = access_lor_other, 6823 .type = ARM_CP_CONST, .resetvalue = 0 }, 6824 { .name = "LORC_EL1", .state = ARM_CP_STATE_AA64, 6825 .opc0 = 3, .opc1 = 0, .crn = 10, .crm = 4, .opc2 = 3, 6826 .access = PL1_RW, .accessfn = access_lor_other, 6827 .type = ARM_CP_CONST, .resetvalue = 0 }, 6828 { .name = "LORID_EL1", .state = ARM_CP_STATE_AA64, 6829 .opc0 = 3, .opc1 = 0, .crn = 10, .crm = 4, .opc2 = 7, 6830 .access = PL1_R, .accessfn = access_lorid, 6831 .type = ARM_CP_CONST, .resetvalue = 0 }, 6832 REGINFO_SENTINEL 6833 }; 6834 define_arm_cp_regs(cpu, lor_reginfo); 6835 } 6836 6837 if (cpu_isar_feature(aa64_sve, cpu)) { 6838 define_one_arm_cp_reg(cpu, &zcr_el1_reginfo); 6839 if (arm_feature(env, ARM_FEATURE_EL2)) { 6840 define_one_arm_cp_reg(cpu, &zcr_el2_reginfo); 6841 } else { 6842 define_one_arm_cp_reg(cpu, &zcr_no_el2_reginfo); 6843 } 6844 if (arm_feature(env, ARM_FEATURE_EL3)) { 6845 define_one_arm_cp_reg(cpu, &zcr_el3_reginfo); 6846 } 6847 } 6848 6849 #ifdef TARGET_AARCH64 6850 if (cpu_isar_feature(aa64_pauth, cpu)) { 6851 define_arm_cp_regs(cpu, pauth_reginfo); 6852 } 6853 if (cpu_isar_feature(aa64_rndr, cpu)) { 6854 define_arm_cp_regs(cpu, rndr_reginfo); 6855 } 6856 #endif 6857 6858 /* 6859 * While all v8.0 cpus support aarch64, QEMU does have configurations 6860 * that do not set ID_AA64ISAR1, e.g. user-only qemu-arm -cpu max, 6861 * which will set ID_ISAR6. 6862 */ 6863 if (arm_feature(&cpu->env, ARM_FEATURE_AARCH64) 6864 ? cpu_isar_feature(aa64_predinv, cpu) 6865 : cpu_isar_feature(aa32_predinv, cpu)) { 6866 define_arm_cp_regs(cpu, predinv_reginfo); 6867 } 6868 } 6869 6870 void arm_cpu_register_gdb_regs_for_features(ARMCPU *cpu) 6871 { 6872 CPUState *cs = CPU(cpu); 6873 CPUARMState *env = &cpu->env; 6874 6875 if (arm_feature(env, ARM_FEATURE_AARCH64)) { 6876 gdb_register_coprocessor(cs, aarch64_fpu_gdb_get_reg, 6877 aarch64_fpu_gdb_set_reg, 6878 34, "aarch64-fpu.xml", 0); 6879 } else if (arm_feature(env, ARM_FEATURE_NEON)) { 6880 gdb_register_coprocessor(cs, vfp_gdb_get_reg, vfp_gdb_set_reg, 6881 51, "arm-neon.xml", 0); 6882 } else if (arm_feature(env, ARM_FEATURE_VFP3)) { 6883 gdb_register_coprocessor(cs, vfp_gdb_get_reg, vfp_gdb_set_reg, 6884 35, "arm-vfp3.xml", 0); 6885 } else if (arm_feature(env, ARM_FEATURE_VFP)) { 6886 gdb_register_coprocessor(cs, vfp_gdb_get_reg, vfp_gdb_set_reg, 6887 19, "arm-vfp.xml", 0); 6888 } 6889 gdb_register_coprocessor(cs, arm_gdb_get_sysreg, arm_gdb_set_sysreg, 6890 arm_gen_dynamic_xml(cs), 6891 "system-registers.xml", 0); 6892 } 6893 6894 /* Sort alphabetically by type name, except for "any". */ 6895 static gint arm_cpu_list_compare(gconstpointer a, gconstpointer b) 6896 { 6897 ObjectClass *class_a = (ObjectClass *)a; 6898 ObjectClass *class_b = (ObjectClass *)b; 6899 const char *name_a, *name_b; 6900 6901 name_a = object_class_get_name(class_a); 6902 name_b = object_class_get_name(class_b); 6903 if (strcmp(name_a, "any-" TYPE_ARM_CPU) == 0) { 6904 return 1; 6905 } else if (strcmp(name_b, "any-" TYPE_ARM_CPU) == 0) { 6906 return -1; 6907 } else { 6908 return strcmp(name_a, name_b); 6909 } 6910 } 6911 6912 static void arm_cpu_list_entry(gpointer data, gpointer user_data) 6913 { 6914 ObjectClass *oc = data; 6915 const char *typename; 6916 char *name; 6917 6918 typename = object_class_get_name(oc); 6919 name = g_strndup(typename, strlen(typename) - strlen("-" TYPE_ARM_CPU)); 6920 qemu_printf(" %s\n", name); 6921 g_free(name); 6922 } 6923 6924 void arm_cpu_list(void) 6925 { 6926 GSList *list; 6927 6928 list = object_class_get_list(TYPE_ARM_CPU, false); 6929 list = g_slist_sort(list, arm_cpu_list_compare); 6930 qemu_printf("Available CPUs:\n"); 6931 g_slist_foreach(list, arm_cpu_list_entry, NULL); 6932 g_slist_free(list); 6933 } 6934 6935 static void arm_cpu_add_definition(gpointer data, gpointer user_data) 6936 { 6937 ObjectClass *oc = data; 6938 CpuDefinitionInfoList **cpu_list = user_data; 6939 CpuDefinitionInfoList *entry; 6940 CpuDefinitionInfo *info; 6941 const char *typename; 6942 6943 typename = object_class_get_name(oc); 6944 info = g_malloc0(sizeof(*info)); 6945 info->name = g_strndup(typename, 6946 strlen(typename) - strlen("-" TYPE_ARM_CPU)); 6947 info->q_typename = g_strdup(typename); 6948 6949 entry = g_malloc0(sizeof(*entry)); 6950 entry->value = info; 6951 entry->next = *cpu_list; 6952 *cpu_list = entry; 6953 } 6954 6955 CpuDefinitionInfoList *qmp_query_cpu_definitions(Error **errp) 6956 { 6957 CpuDefinitionInfoList *cpu_list = NULL; 6958 GSList *list; 6959 6960 list = object_class_get_list(TYPE_ARM_CPU, false); 6961 g_slist_foreach(list, arm_cpu_add_definition, &cpu_list); 6962 g_slist_free(list); 6963 6964 return cpu_list; 6965 } 6966 6967 static void add_cpreg_to_hashtable(ARMCPU *cpu, const ARMCPRegInfo *r, 6968 void *opaque, int state, int secstate, 6969 int crm, int opc1, int opc2, 6970 const char *name) 6971 { 6972 /* Private utility function for define_one_arm_cp_reg_with_opaque(): 6973 * add a single reginfo struct to the hash table. 6974 */ 6975 uint32_t *key = g_new(uint32_t, 1); 6976 ARMCPRegInfo *r2 = g_memdup(r, sizeof(ARMCPRegInfo)); 6977 int is64 = (r->type & ARM_CP_64BIT) ? 1 : 0; 6978 int ns = (secstate & ARM_CP_SECSTATE_NS) ? 1 : 0; 6979 6980 r2->name = g_strdup(name); 6981 /* Reset the secure state to the specific incoming state. This is 6982 * necessary as the register may have been defined with both states. 6983 */ 6984 r2->secure = secstate; 6985 6986 if (r->bank_fieldoffsets[0] && r->bank_fieldoffsets[1]) { 6987 /* Register is banked (using both entries in array). 6988 * Overwriting fieldoffset as the array is only used to define 6989 * banked registers but later only fieldoffset is used. 6990 */ 6991 r2->fieldoffset = r->bank_fieldoffsets[ns]; 6992 } 6993 6994 if (state == ARM_CP_STATE_AA32) { 6995 if (r->bank_fieldoffsets[0] && r->bank_fieldoffsets[1]) { 6996 /* If the register is banked then we don't need to migrate or 6997 * reset the 32-bit instance in certain cases: 6998 * 6999 * 1) If the register has both 32-bit and 64-bit instances then we 7000 * can count on the 64-bit instance taking care of the 7001 * non-secure bank. 7002 * 2) If ARMv8 is enabled then we can count on a 64-bit version 7003 * taking care of the secure bank. This requires that separate 7004 * 32 and 64-bit definitions are provided. 7005 */ 7006 if ((r->state == ARM_CP_STATE_BOTH && ns) || 7007 (arm_feature(&cpu->env, ARM_FEATURE_V8) && !ns)) { 7008 r2->type |= ARM_CP_ALIAS; 7009 } 7010 } else if ((secstate != r->secure) && !ns) { 7011 /* The register is not banked so we only want to allow migration of 7012 * the non-secure instance. 7013 */ 7014 r2->type |= ARM_CP_ALIAS; 7015 } 7016 7017 if (r->state == ARM_CP_STATE_BOTH) { 7018 /* We assume it is a cp15 register if the .cp field is left unset. 7019 */ 7020 if (r2->cp == 0) { 7021 r2->cp = 15; 7022 } 7023 7024 #ifdef HOST_WORDS_BIGENDIAN 7025 if (r2->fieldoffset) { 7026 r2->fieldoffset += sizeof(uint32_t); 7027 } 7028 #endif 7029 } 7030 } 7031 if (state == ARM_CP_STATE_AA64) { 7032 /* To allow abbreviation of ARMCPRegInfo 7033 * definitions, we treat cp == 0 as equivalent to 7034 * the value for "standard guest-visible sysreg". 7035 * STATE_BOTH definitions are also always "standard 7036 * sysreg" in their AArch64 view (the .cp value may 7037 * be non-zero for the benefit of the AArch32 view). 7038 */ 7039 if (r->cp == 0 || r->state == ARM_CP_STATE_BOTH) { 7040 r2->cp = CP_REG_ARM64_SYSREG_CP; 7041 } 7042 *key = ENCODE_AA64_CP_REG(r2->cp, r2->crn, crm, 7043 r2->opc0, opc1, opc2); 7044 } else { 7045 *key = ENCODE_CP_REG(r2->cp, is64, ns, r2->crn, crm, opc1, opc2); 7046 } 7047 if (opaque) { 7048 r2->opaque = opaque; 7049 } 7050 /* reginfo passed to helpers is correct for the actual access, 7051 * and is never ARM_CP_STATE_BOTH: 7052 */ 7053 r2->state = state; 7054 /* Make sure reginfo passed to helpers for wildcarded regs 7055 * has the correct crm/opc1/opc2 for this reg, not CP_ANY: 7056 */ 7057 r2->crm = crm; 7058 r2->opc1 = opc1; 7059 r2->opc2 = opc2; 7060 /* By convention, for wildcarded registers only the first 7061 * entry is used for migration; the others are marked as 7062 * ALIAS so we don't try to transfer the register 7063 * multiple times. Special registers (ie NOP/WFI) are 7064 * never migratable and not even raw-accessible. 7065 */ 7066 if ((r->type & ARM_CP_SPECIAL)) { 7067 r2->type |= ARM_CP_NO_RAW; 7068 } 7069 if (((r->crm == CP_ANY) && crm != 0) || 7070 ((r->opc1 == CP_ANY) && opc1 != 0) || 7071 ((r->opc2 == CP_ANY) && opc2 != 0)) { 7072 r2->type |= ARM_CP_ALIAS | ARM_CP_NO_GDB; 7073 } 7074 7075 /* Check that raw accesses are either forbidden or handled. Note that 7076 * we can't assert this earlier because the setup of fieldoffset for 7077 * banked registers has to be done first. 7078 */ 7079 if (!(r2->type & ARM_CP_NO_RAW)) { 7080 assert(!raw_accessors_invalid(r2)); 7081 } 7082 7083 /* Overriding of an existing definition must be explicitly 7084 * requested. 7085 */ 7086 if (!(r->type & ARM_CP_OVERRIDE)) { 7087 ARMCPRegInfo *oldreg; 7088 oldreg = g_hash_table_lookup(cpu->cp_regs, key); 7089 if (oldreg && !(oldreg->type & ARM_CP_OVERRIDE)) { 7090 fprintf(stderr, "Register redefined: cp=%d %d bit " 7091 "crn=%d crm=%d opc1=%d opc2=%d, " 7092 "was %s, now %s\n", r2->cp, 32 + 32 * is64, 7093 r2->crn, r2->crm, r2->opc1, r2->opc2, 7094 oldreg->name, r2->name); 7095 g_assert_not_reached(); 7096 } 7097 } 7098 g_hash_table_insert(cpu->cp_regs, key, r2); 7099 } 7100 7101 7102 void define_one_arm_cp_reg_with_opaque(ARMCPU *cpu, 7103 const ARMCPRegInfo *r, void *opaque) 7104 { 7105 /* Define implementations of coprocessor registers. 7106 * We store these in a hashtable because typically 7107 * there are less than 150 registers in a space which 7108 * is 16*16*16*8*8 = 262144 in size. 7109 * Wildcarding is supported for the crm, opc1 and opc2 fields. 7110 * If a register is defined twice then the second definition is 7111 * used, so this can be used to define some generic registers and 7112 * then override them with implementation specific variations. 7113 * At least one of the original and the second definition should 7114 * include ARM_CP_OVERRIDE in its type bits -- this is just a guard 7115 * against accidental use. 7116 * 7117 * The state field defines whether the register is to be 7118 * visible in the AArch32 or AArch64 execution state. If the 7119 * state is set to ARM_CP_STATE_BOTH then we synthesise a 7120 * reginfo structure for the AArch32 view, which sees the lower 7121 * 32 bits of the 64 bit register. 7122 * 7123 * Only registers visible in AArch64 may set r->opc0; opc0 cannot 7124 * be wildcarded. AArch64 registers are always considered to be 64 7125 * bits; the ARM_CP_64BIT* flag applies only to the AArch32 view of 7126 * the register, if any. 7127 */ 7128 int crm, opc1, opc2, state; 7129 int crmmin = (r->crm == CP_ANY) ? 0 : r->crm; 7130 int crmmax = (r->crm == CP_ANY) ? 15 : r->crm; 7131 int opc1min = (r->opc1 == CP_ANY) ? 0 : r->opc1; 7132 int opc1max = (r->opc1 == CP_ANY) ? 7 : r->opc1; 7133 int opc2min = (r->opc2 == CP_ANY) ? 0 : r->opc2; 7134 int opc2max = (r->opc2 == CP_ANY) ? 7 : r->opc2; 7135 /* 64 bit registers have only CRm and Opc1 fields */ 7136 assert(!((r->type & ARM_CP_64BIT) && (r->opc2 || r->crn))); 7137 /* op0 only exists in the AArch64 encodings */ 7138 assert((r->state != ARM_CP_STATE_AA32) || (r->opc0 == 0)); 7139 /* AArch64 regs are all 64 bit so ARM_CP_64BIT is meaningless */ 7140 assert((r->state != ARM_CP_STATE_AA64) || !(r->type & ARM_CP_64BIT)); 7141 /* The AArch64 pseudocode CheckSystemAccess() specifies that op1 7142 * encodes a minimum access level for the register. We roll this 7143 * runtime check into our general permission check code, so check 7144 * here that the reginfo's specified permissions are strict enough 7145 * to encompass the generic architectural permission check. 7146 */ 7147 if (r->state != ARM_CP_STATE_AA32) { 7148 int mask = 0; 7149 switch (r->opc1) { 7150 case 0: 7151 /* min_EL EL1, but some accessible to EL0 via kernel ABI */ 7152 mask = PL0U_R | PL1_RW; 7153 break; 7154 case 1: case 2: 7155 /* min_EL EL1 */ 7156 mask = PL1_RW; 7157 break; 7158 case 3: 7159 /* min_EL EL0 */ 7160 mask = PL0_RW; 7161 break; 7162 case 4: 7163 /* min_EL EL2 */ 7164 mask = PL2_RW; 7165 break; 7166 case 5: 7167 /* unallocated encoding, so not possible */ 7168 assert(false); 7169 break; 7170 case 6: 7171 /* min_EL EL3 */ 7172 mask = PL3_RW; 7173 break; 7174 case 7: 7175 /* min_EL EL1, secure mode only (we don't check the latter) */ 7176 mask = PL1_RW; 7177 break; 7178 default: 7179 /* broken reginfo with out-of-range opc1 */ 7180 assert(false); 7181 break; 7182 } 7183 /* assert our permissions are not too lax (stricter is fine) */ 7184 assert((r->access & ~mask) == 0); 7185 } 7186 7187 /* Check that the register definition has enough info to handle 7188 * reads and writes if they are permitted. 7189 */ 7190 if (!(r->type & (ARM_CP_SPECIAL|ARM_CP_CONST))) { 7191 if (r->access & PL3_R) { 7192 assert((r->fieldoffset || 7193 (r->bank_fieldoffsets[0] && r->bank_fieldoffsets[1])) || 7194 r->readfn); 7195 } 7196 if (r->access & PL3_W) { 7197 assert((r->fieldoffset || 7198 (r->bank_fieldoffsets[0] && r->bank_fieldoffsets[1])) || 7199 r->writefn); 7200 } 7201 } 7202 /* Bad type field probably means missing sentinel at end of reg list */ 7203 assert(cptype_valid(r->type)); 7204 for (crm = crmmin; crm <= crmmax; crm++) { 7205 for (opc1 = opc1min; opc1 <= opc1max; opc1++) { 7206 for (opc2 = opc2min; opc2 <= opc2max; opc2++) { 7207 for (state = ARM_CP_STATE_AA32; 7208 state <= ARM_CP_STATE_AA64; state++) { 7209 if (r->state != state && r->state != ARM_CP_STATE_BOTH) { 7210 continue; 7211 } 7212 if (state == ARM_CP_STATE_AA32) { 7213 /* Under AArch32 CP registers can be common 7214 * (same for secure and non-secure world) or banked. 7215 */ 7216 char *name; 7217 7218 switch (r->secure) { 7219 case ARM_CP_SECSTATE_S: 7220 case ARM_CP_SECSTATE_NS: 7221 add_cpreg_to_hashtable(cpu, r, opaque, state, 7222 r->secure, crm, opc1, opc2, 7223 r->name); 7224 break; 7225 default: 7226 name = g_strdup_printf("%s_S", r->name); 7227 add_cpreg_to_hashtable(cpu, r, opaque, state, 7228 ARM_CP_SECSTATE_S, 7229 crm, opc1, opc2, name); 7230 g_free(name); 7231 add_cpreg_to_hashtable(cpu, r, opaque, state, 7232 ARM_CP_SECSTATE_NS, 7233 crm, opc1, opc2, r->name); 7234 break; 7235 } 7236 } else { 7237 /* AArch64 registers get mapped to non-secure instance 7238 * of AArch32 */ 7239 add_cpreg_to_hashtable(cpu, r, opaque, state, 7240 ARM_CP_SECSTATE_NS, 7241 crm, opc1, opc2, r->name); 7242 } 7243 } 7244 } 7245 } 7246 } 7247 } 7248 7249 void define_arm_cp_regs_with_opaque(ARMCPU *cpu, 7250 const ARMCPRegInfo *regs, void *opaque) 7251 { 7252 /* Define a whole list of registers */ 7253 const ARMCPRegInfo *r; 7254 for (r = regs; r->type != ARM_CP_SENTINEL; r++) { 7255 define_one_arm_cp_reg_with_opaque(cpu, r, opaque); 7256 } 7257 } 7258 7259 /* 7260 * Modify ARMCPRegInfo for access from userspace. 7261 * 7262 * This is a data driven modification directed by 7263 * ARMCPRegUserSpaceInfo. All registers become ARM_CP_CONST as 7264 * user-space cannot alter any values and dynamic values pertaining to 7265 * execution state are hidden from user space view anyway. 7266 */ 7267 void modify_arm_cp_regs(ARMCPRegInfo *regs, const ARMCPRegUserSpaceInfo *mods) 7268 { 7269 const ARMCPRegUserSpaceInfo *m; 7270 ARMCPRegInfo *r; 7271 7272 for (m = mods; m->name; m++) { 7273 GPatternSpec *pat = NULL; 7274 if (m->is_glob) { 7275 pat = g_pattern_spec_new(m->name); 7276 } 7277 for (r = regs; r->type != ARM_CP_SENTINEL; r++) { 7278 if (pat && g_pattern_match_string(pat, r->name)) { 7279 r->type = ARM_CP_CONST; 7280 r->access = PL0U_R; 7281 r->resetvalue = 0; 7282 /* continue */ 7283 } else if (strcmp(r->name, m->name) == 0) { 7284 r->type = ARM_CP_CONST; 7285 r->access = PL0U_R; 7286 r->resetvalue &= m->exported_bits; 7287 r->resetvalue |= m->fixed_bits; 7288 break; 7289 } 7290 } 7291 if (pat) { 7292 g_pattern_spec_free(pat); 7293 } 7294 } 7295 } 7296 7297 const ARMCPRegInfo *get_arm_cp_reginfo(GHashTable *cpregs, uint32_t encoded_cp) 7298 { 7299 return g_hash_table_lookup(cpregs, &encoded_cp); 7300 } 7301 7302 void arm_cp_write_ignore(CPUARMState *env, const ARMCPRegInfo *ri, 7303 uint64_t value) 7304 { 7305 /* Helper coprocessor write function for write-ignore registers */ 7306 } 7307 7308 uint64_t arm_cp_read_zero(CPUARMState *env, const ARMCPRegInfo *ri) 7309 { 7310 /* Helper coprocessor write function for read-as-zero registers */ 7311 return 0; 7312 } 7313 7314 void arm_cp_reset_ignore(CPUARMState *env, const ARMCPRegInfo *opaque) 7315 { 7316 /* Helper coprocessor reset function for do-nothing-on-reset registers */ 7317 } 7318 7319 static int bad_mode_switch(CPUARMState *env, int mode, CPSRWriteType write_type) 7320 { 7321 /* Return true if it is not valid for us to switch to 7322 * this CPU mode (ie all the UNPREDICTABLE cases in 7323 * the ARM ARM CPSRWriteByInstr pseudocode). 7324 */ 7325 7326 /* Changes to or from Hyp via MSR and CPS are illegal. */ 7327 if (write_type == CPSRWriteByInstr && 7328 ((env->uncached_cpsr & CPSR_M) == ARM_CPU_MODE_HYP || 7329 mode == ARM_CPU_MODE_HYP)) { 7330 return 1; 7331 } 7332 7333 switch (mode) { 7334 case ARM_CPU_MODE_USR: 7335 return 0; 7336 case ARM_CPU_MODE_SYS: 7337 case ARM_CPU_MODE_SVC: 7338 case ARM_CPU_MODE_ABT: 7339 case ARM_CPU_MODE_UND: 7340 case ARM_CPU_MODE_IRQ: 7341 case ARM_CPU_MODE_FIQ: 7342 /* Note that we don't implement the IMPDEF NSACR.RFR which in v7 7343 * allows FIQ mode to be Secure-only. (In v8 this doesn't exist.) 7344 */ 7345 /* If HCR.TGE is set then changes from Monitor to NS PL1 via MSR 7346 * and CPS are treated as illegal mode changes. 7347 */ 7348 if (write_type == CPSRWriteByInstr && 7349 (env->uncached_cpsr & CPSR_M) == ARM_CPU_MODE_MON && 7350 (arm_hcr_el2_eff(env) & HCR_TGE)) { 7351 return 1; 7352 } 7353 return 0; 7354 case ARM_CPU_MODE_HYP: 7355 return !arm_feature(env, ARM_FEATURE_EL2) 7356 || arm_current_el(env) < 2 || arm_is_secure_below_el3(env); 7357 case ARM_CPU_MODE_MON: 7358 return arm_current_el(env) < 3; 7359 default: 7360 return 1; 7361 } 7362 } 7363 7364 uint32_t cpsr_read(CPUARMState *env) 7365 { 7366 int ZF; 7367 ZF = (env->ZF == 0); 7368 return env->uncached_cpsr | (env->NF & 0x80000000) | (ZF << 30) | 7369 (env->CF << 29) | ((env->VF & 0x80000000) >> 3) | (env->QF << 27) 7370 | (env->thumb << 5) | ((env->condexec_bits & 3) << 25) 7371 | ((env->condexec_bits & 0xfc) << 8) 7372 | (env->GE << 16) | (env->daif & CPSR_AIF); 7373 } 7374 7375 void cpsr_write(CPUARMState *env, uint32_t val, uint32_t mask, 7376 CPSRWriteType write_type) 7377 { 7378 uint32_t changed_daif; 7379 7380 if (mask & CPSR_NZCV) { 7381 env->ZF = (~val) & CPSR_Z; 7382 env->NF = val; 7383 env->CF = (val >> 29) & 1; 7384 env->VF = (val << 3) & 0x80000000; 7385 } 7386 if (mask & CPSR_Q) 7387 env->QF = ((val & CPSR_Q) != 0); 7388 if (mask & CPSR_T) 7389 env->thumb = ((val & CPSR_T) != 0); 7390 if (mask & CPSR_IT_0_1) { 7391 env->condexec_bits &= ~3; 7392 env->condexec_bits |= (val >> 25) & 3; 7393 } 7394 if (mask & CPSR_IT_2_7) { 7395 env->condexec_bits &= 3; 7396 env->condexec_bits |= (val >> 8) & 0xfc; 7397 } 7398 if (mask & CPSR_GE) { 7399 env->GE = (val >> 16) & 0xf; 7400 } 7401 7402 /* In a V7 implementation that includes the security extensions but does 7403 * not include Virtualization Extensions the SCR.FW and SCR.AW bits control 7404 * whether non-secure software is allowed to change the CPSR_F and CPSR_A 7405 * bits respectively. 7406 * 7407 * In a V8 implementation, it is permitted for privileged software to 7408 * change the CPSR A/F bits regardless of the SCR.AW/FW bits. 7409 */ 7410 if (write_type != CPSRWriteRaw && !arm_feature(env, ARM_FEATURE_V8) && 7411 arm_feature(env, ARM_FEATURE_EL3) && 7412 !arm_feature(env, ARM_FEATURE_EL2) && 7413 !arm_is_secure(env)) { 7414 7415 changed_daif = (env->daif ^ val) & mask; 7416 7417 if (changed_daif & CPSR_A) { 7418 /* Check to see if we are allowed to change the masking of async 7419 * abort exceptions from a non-secure state. 7420 */ 7421 if (!(env->cp15.scr_el3 & SCR_AW)) { 7422 qemu_log_mask(LOG_GUEST_ERROR, 7423 "Ignoring attempt to switch CPSR_A flag from " 7424 "non-secure world with SCR.AW bit clear\n"); 7425 mask &= ~CPSR_A; 7426 } 7427 } 7428 7429 if (changed_daif & CPSR_F) { 7430 /* Check to see if we are allowed to change the masking of FIQ 7431 * exceptions from a non-secure state. 7432 */ 7433 if (!(env->cp15.scr_el3 & SCR_FW)) { 7434 qemu_log_mask(LOG_GUEST_ERROR, 7435 "Ignoring attempt to switch CPSR_F flag from " 7436 "non-secure world with SCR.FW bit clear\n"); 7437 mask &= ~CPSR_F; 7438 } 7439 7440 /* Check whether non-maskable FIQ (NMFI) support is enabled. 7441 * If this bit is set software is not allowed to mask 7442 * FIQs, but is allowed to set CPSR_F to 0. 7443 */ 7444 if ((A32_BANKED_CURRENT_REG_GET(env, sctlr) & SCTLR_NMFI) && 7445 (val & CPSR_F)) { 7446 qemu_log_mask(LOG_GUEST_ERROR, 7447 "Ignoring attempt to enable CPSR_F flag " 7448 "(non-maskable FIQ [NMFI] support enabled)\n"); 7449 mask &= ~CPSR_F; 7450 } 7451 } 7452 } 7453 7454 env->daif &= ~(CPSR_AIF & mask); 7455 env->daif |= val & CPSR_AIF & mask; 7456 7457 if (write_type != CPSRWriteRaw && 7458 ((env->uncached_cpsr ^ val) & mask & CPSR_M)) { 7459 if ((env->uncached_cpsr & CPSR_M) == ARM_CPU_MODE_USR) { 7460 /* Note that we can only get here in USR mode if this is a 7461 * gdb stub write; for this case we follow the architectural 7462 * behaviour for guest writes in USR mode of ignoring an attempt 7463 * to switch mode. (Those are caught by translate.c for writes 7464 * triggered by guest instructions.) 7465 */ 7466 mask &= ~CPSR_M; 7467 } else if (bad_mode_switch(env, val & CPSR_M, write_type)) { 7468 /* Attempt to switch to an invalid mode: this is UNPREDICTABLE in 7469 * v7, and has defined behaviour in v8: 7470 * + leave CPSR.M untouched 7471 * + allow changes to the other CPSR fields 7472 * + set PSTATE.IL 7473 * For user changes via the GDB stub, we don't set PSTATE.IL, 7474 * as this would be unnecessarily harsh for a user error. 7475 */ 7476 mask &= ~CPSR_M; 7477 if (write_type != CPSRWriteByGDBStub && 7478 arm_feature(env, ARM_FEATURE_V8)) { 7479 mask |= CPSR_IL; 7480 val |= CPSR_IL; 7481 } 7482 qemu_log_mask(LOG_GUEST_ERROR, 7483 "Illegal AArch32 mode switch attempt from %s to %s\n", 7484 aarch32_mode_name(env->uncached_cpsr), 7485 aarch32_mode_name(val)); 7486 } else { 7487 qemu_log_mask(CPU_LOG_INT, "%s %s to %s PC 0x%" PRIx32 "\n", 7488 write_type == CPSRWriteExceptionReturn ? 7489 "Exception return from AArch32" : 7490 "AArch32 mode switch from", 7491 aarch32_mode_name(env->uncached_cpsr), 7492 aarch32_mode_name(val), env->regs[15]); 7493 switch_mode(env, val & CPSR_M); 7494 } 7495 } 7496 mask &= ~CACHED_CPSR_BITS; 7497 env->uncached_cpsr = (env->uncached_cpsr & ~mask) | (val & mask); 7498 } 7499 7500 /* Sign/zero extend */ 7501 uint32_t HELPER(sxtb16)(uint32_t x) 7502 { 7503 uint32_t res; 7504 res = (uint16_t)(int8_t)x; 7505 res |= (uint32_t)(int8_t)(x >> 16) << 16; 7506 return res; 7507 } 7508 7509 uint32_t HELPER(uxtb16)(uint32_t x) 7510 { 7511 uint32_t res; 7512 res = (uint16_t)(uint8_t)x; 7513 res |= (uint32_t)(uint8_t)(x >> 16) << 16; 7514 return res; 7515 } 7516 7517 int32_t HELPER(sdiv)(int32_t num, int32_t den) 7518 { 7519 if (den == 0) 7520 return 0; 7521 if (num == INT_MIN && den == -1) 7522 return INT_MIN; 7523 return num / den; 7524 } 7525 7526 uint32_t HELPER(udiv)(uint32_t num, uint32_t den) 7527 { 7528 if (den == 0) 7529 return 0; 7530 return num / den; 7531 } 7532 7533 uint32_t HELPER(rbit)(uint32_t x) 7534 { 7535 return revbit32(x); 7536 } 7537 7538 #ifdef CONFIG_USER_ONLY 7539 7540 static void switch_mode(CPUARMState *env, int mode) 7541 { 7542 ARMCPU *cpu = env_archcpu(env); 7543 7544 if (mode != ARM_CPU_MODE_USR) { 7545 cpu_abort(CPU(cpu), "Tried to switch out of user mode\n"); 7546 } 7547 } 7548 7549 uint32_t arm_phys_excp_target_el(CPUState *cs, uint32_t excp_idx, 7550 uint32_t cur_el, bool secure) 7551 { 7552 return 1; 7553 } 7554 7555 void aarch64_sync_64_to_32(CPUARMState *env) 7556 { 7557 g_assert_not_reached(); 7558 } 7559 7560 #else 7561 7562 static void switch_mode(CPUARMState *env, int mode) 7563 { 7564 int old_mode; 7565 int i; 7566 7567 old_mode = env->uncached_cpsr & CPSR_M; 7568 if (mode == old_mode) 7569 return; 7570 7571 if (old_mode == ARM_CPU_MODE_FIQ) { 7572 memcpy (env->fiq_regs, env->regs + 8, 5 * sizeof(uint32_t)); 7573 memcpy (env->regs + 8, env->usr_regs, 5 * sizeof(uint32_t)); 7574 } else if (mode == ARM_CPU_MODE_FIQ) { 7575 memcpy (env->usr_regs, env->regs + 8, 5 * sizeof(uint32_t)); 7576 memcpy (env->regs + 8, env->fiq_regs, 5 * sizeof(uint32_t)); 7577 } 7578 7579 i = bank_number(old_mode); 7580 env->banked_r13[i] = env->regs[13]; 7581 env->banked_spsr[i] = env->spsr; 7582 7583 i = bank_number(mode); 7584 env->regs[13] = env->banked_r13[i]; 7585 env->spsr = env->banked_spsr[i]; 7586 7587 env->banked_r14[r14_bank_number(old_mode)] = env->regs[14]; 7588 env->regs[14] = env->banked_r14[r14_bank_number(mode)]; 7589 } 7590 7591 /* Physical Interrupt Target EL Lookup Table 7592 * 7593 * [ From ARM ARM section G1.13.4 (Table G1-15) ] 7594 * 7595 * The below multi-dimensional table is used for looking up the target 7596 * exception level given numerous condition criteria. Specifically, the 7597 * target EL is based on SCR and HCR routing controls as well as the 7598 * currently executing EL and secure state. 7599 * 7600 * Dimensions: 7601 * target_el_table[2][2][2][2][2][4] 7602 * | | | | | +--- Current EL 7603 * | | | | +------ Non-secure(0)/Secure(1) 7604 * | | | +--------- HCR mask override 7605 * | | +------------ SCR exec state control 7606 * | +--------------- SCR mask override 7607 * +------------------ 32-bit(0)/64-bit(1) EL3 7608 * 7609 * The table values are as such: 7610 * 0-3 = EL0-EL3 7611 * -1 = Cannot occur 7612 * 7613 * The ARM ARM target EL table includes entries indicating that an "exception 7614 * is not taken". The two cases where this is applicable are: 7615 * 1) An exception is taken from EL3 but the SCR does not have the exception 7616 * routed to EL3. 7617 * 2) An exception is taken from EL2 but the HCR does not have the exception 7618 * routed to EL2. 7619 * In these two cases, the below table contain a target of EL1. This value is 7620 * returned as it is expected that the consumer of the table data will check 7621 * for "target EL >= current EL" to ensure the exception is not taken. 7622 * 7623 * SCR HCR 7624 * 64 EA AMO From 7625 * BIT IRQ IMO Non-secure Secure 7626 * EL3 FIQ RW FMO EL0 EL1 EL2 EL3 EL0 EL1 EL2 EL3 7627 */ 7628 static const int8_t target_el_table[2][2][2][2][2][4] = { 7629 {{{{/* 0 0 0 0 */{ 1, 1, 2, -1 },{ 3, -1, -1, 3 },}, 7630 {/* 0 0 0 1 */{ 2, 2, 2, -1 },{ 3, -1, -1, 3 },},}, 7631 {{/* 0 0 1 0 */{ 1, 1, 2, -1 },{ 3, -1, -1, 3 },}, 7632 {/* 0 0 1 1 */{ 2, 2, 2, -1 },{ 3, -1, -1, 3 },},},}, 7633 {{{/* 0 1 0 0 */{ 3, 3, 3, -1 },{ 3, -1, -1, 3 },}, 7634 {/* 0 1 0 1 */{ 3, 3, 3, -1 },{ 3, -1, -1, 3 },},}, 7635 {{/* 0 1 1 0 */{ 3, 3, 3, -1 },{ 3, -1, -1, 3 },}, 7636 {/* 0 1 1 1 */{ 3, 3, 3, -1 },{ 3, -1, -1, 3 },},},},}, 7637 {{{{/* 1 0 0 0 */{ 1, 1, 2, -1 },{ 1, 1, -1, 1 },}, 7638 {/* 1 0 0 1 */{ 2, 2, 2, -1 },{ 1, 1, -1, 1 },},}, 7639 {{/* 1 0 1 0 */{ 1, 1, 1, -1 },{ 1, 1, -1, 1 },}, 7640 {/* 1 0 1 1 */{ 2, 2, 2, -1 },{ 1, 1, -1, 1 },},},}, 7641 {{{/* 1 1 0 0 */{ 3, 3, 3, -1 },{ 3, 3, -1, 3 },}, 7642 {/* 1 1 0 1 */{ 3, 3, 3, -1 },{ 3, 3, -1, 3 },},}, 7643 {{/* 1 1 1 0 */{ 3, 3, 3, -1 },{ 3, 3, -1, 3 },}, 7644 {/* 1 1 1 1 */{ 3, 3, 3, -1 },{ 3, 3, -1, 3 },},},},}, 7645 }; 7646 7647 /* 7648 * Determine the target EL for physical exceptions 7649 */ 7650 uint32_t arm_phys_excp_target_el(CPUState *cs, uint32_t excp_idx, 7651 uint32_t cur_el, bool secure) 7652 { 7653 CPUARMState *env = cs->env_ptr; 7654 bool rw; 7655 bool scr; 7656 bool hcr; 7657 int target_el; 7658 /* Is the highest EL AArch64? */ 7659 bool is64 = arm_feature(env, ARM_FEATURE_AARCH64); 7660 uint64_t hcr_el2; 7661 7662 if (arm_feature(env, ARM_FEATURE_EL3)) { 7663 rw = ((env->cp15.scr_el3 & SCR_RW) == SCR_RW); 7664 } else { 7665 /* Either EL2 is the highest EL (and so the EL2 register width 7666 * is given by is64); or there is no EL2 or EL3, in which case 7667 * the value of 'rw' does not affect the table lookup anyway. 7668 */ 7669 rw = is64; 7670 } 7671 7672 hcr_el2 = arm_hcr_el2_eff(env); 7673 switch (excp_idx) { 7674 case EXCP_IRQ: 7675 scr = ((env->cp15.scr_el3 & SCR_IRQ) == SCR_IRQ); 7676 hcr = hcr_el2 & HCR_IMO; 7677 break; 7678 case EXCP_FIQ: 7679 scr = ((env->cp15.scr_el3 & SCR_FIQ) == SCR_FIQ); 7680 hcr = hcr_el2 & HCR_FMO; 7681 break; 7682 default: 7683 scr = ((env->cp15.scr_el3 & SCR_EA) == SCR_EA); 7684 hcr = hcr_el2 & HCR_AMO; 7685 break; 7686 }; 7687 7688 /* Perform a table-lookup for the target EL given the current state */ 7689 target_el = target_el_table[is64][scr][rw][hcr][secure][cur_el]; 7690 7691 assert(target_el > 0); 7692 7693 return target_el; 7694 } 7695 7696 void arm_log_exception(int idx) 7697 { 7698 if (qemu_loglevel_mask(CPU_LOG_INT)) { 7699 const char *exc = NULL; 7700 static const char * const excnames[] = { 7701 [EXCP_UDEF] = "Undefined Instruction", 7702 [EXCP_SWI] = "SVC", 7703 [EXCP_PREFETCH_ABORT] = "Prefetch Abort", 7704 [EXCP_DATA_ABORT] = "Data Abort", 7705 [EXCP_IRQ] = "IRQ", 7706 [EXCP_FIQ] = "FIQ", 7707 [EXCP_BKPT] = "Breakpoint", 7708 [EXCP_EXCEPTION_EXIT] = "QEMU v7M exception exit", 7709 [EXCP_KERNEL_TRAP] = "QEMU intercept of kernel commpage", 7710 [EXCP_HVC] = "Hypervisor Call", 7711 [EXCP_HYP_TRAP] = "Hypervisor Trap", 7712 [EXCP_SMC] = "Secure Monitor Call", 7713 [EXCP_VIRQ] = "Virtual IRQ", 7714 [EXCP_VFIQ] = "Virtual FIQ", 7715 [EXCP_SEMIHOST] = "Semihosting call", 7716 [EXCP_NOCP] = "v7M NOCP UsageFault", 7717 [EXCP_INVSTATE] = "v7M INVSTATE UsageFault", 7718 [EXCP_STKOF] = "v8M STKOF UsageFault", 7719 [EXCP_LAZYFP] = "v7M exception during lazy FP stacking", 7720 [EXCP_LSERR] = "v8M LSERR UsageFault", 7721 [EXCP_UNALIGNED] = "v7M UNALIGNED UsageFault", 7722 }; 7723 7724 if (idx >= 0 && idx < ARRAY_SIZE(excnames)) { 7725 exc = excnames[idx]; 7726 } 7727 if (!exc) { 7728 exc = "unknown"; 7729 } 7730 qemu_log_mask(CPU_LOG_INT, "Taking exception %d [%s]\n", idx, exc); 7731 } 7732 } 7733 7734 /* 7735 * Function used to synchronize QEMU's AArch64 register set with AArch32 7736 * register set. This is necessary when switching between AArch32 and AArch64 7737 * execution state. 7738 */ 7739 void aarch64_sync_32_to_64(CPUARMState *env) 7740 { 7741 int i; 7742 uint32_t mode = env->uncached_cpsr & CPSR_M; 7743 7744 /* We can blanket copy R[0:7] to X[0:7] */ 7745 for (i = 0; i < 8; i++) { 7746 env->xregs[i] = env->regs[i]; 7747 } 7748 7749 /* 7750 * Unless we are in FIQ mode, x8-x12 come from the user registers r8-r12. 7751 * Otherwise, they come from the banked user regs. 7752 */ 7753 if (mode == ARM_CPU_MODE_FIQ) { 7754 for (i = 8; i < 13; i++) { 7755 env->xregs[i] = env->usr_regs[i - 8]; 7756 } 7757 } else { 7758 for (i = 8; i < 13; i++) { 7759 env->xregs[i] = env->regs[i]; 7760 } 7761 } 7762 7763 /* 7764 * Registers x13-x23 are the various mode SP and FP registers. Registers 7765 * r13 and r14 are only copied if we are in that mode, otherwise we copy 7766 * from the mode banked register. 7767 */ 7768 if (mode == ARM_CPU_MODE_USR || mode == ARM_CPU_MODE_SYS) { 7769 env->xregs[13] = env->regs[13]; 7770 env->xregs[14] = env->regs[14]; 7771 } else { 7772 env->xregs[13] = env->banked_r13[bank_number(ARM_CPU_MODE_USR)]; 7773 /* HYP is an exception in that it is copied from r14 */ 7774 if (mode == ARM_CPU_MODE_HYP) { 7775 env->xregs[14] = env->regs[14]; 7776 } else { 7777 env->xregs[14] = env->banked_r14[r14_bank_number(ARM_CPU_MODE_USR)]; 7778 } 7779 } 7780 7781 if (mode == ARM_CPU_MODE_HYP) { 7782 env->xregs[15] = env->regs[13]; 7783 } else { 7784 env->xregs[15] = env->banked_r13[bank_number(ARM_CPU_MODE_HYP)]; 7785 } 7786 7787 if (mode == ARM_CPU_MODE_IRQ) { 7788 env->xregs[16] = env->regs[14]; 7789 env->xregs[17] = env->regs[13]; 7790 } else { 7791 env->xregs[16] = env->banked_r14[r14_bank_number(ARM_CPU_MODE_IRQ)]; 7792 env->xregs[17] = env->banked_r13[bank_number(ARM_CPU_MODE_IRQ)]; 7793 } 7794 7795 if (mode == ARM_CPU_MODE_SVC) { 7796 env->xregs[18] = env->regs[14]; 7797 env->xregs[19] = env->regs[13]; 7798 } else { 7799 env->xregs[18] = env->banked_r14[r14_bank_number(ARM_CPU_MODE_SVC)]; 7800 env->xregs[19] = env->banked_r13[bank_number(ARM_CPU_MODE_SVC)]; 7801 } 7802 7803 if (mode == ARM_CPU_MODE_ABT) { 7804 env->xregs[20] = env->regs[14]; 7805 env->xregs[21] = env->regs[13]; 7806 } else { 7807 env->xregs[20] = env->banked_r14[r14_bank_number(ARM_CPU_MODE_ABT)]; 7808 env->xregs[21] = env->banked_r13[bank_number(ARM_CPU_MODE_ABT)]; 7809 } 7810 7811 if (mode == ARM_CPU_MODE_UND) { 7812 env->xregs[22] = env->regs[14]; 7813 env->xregs[23] = env->regs[13]; 7814 } else { 7815 env->xregs[22] = env->banked_r14[r14_bank_number(ARM_CPU_MODE_UND)]; 7816 env->xregs[23] = env->banked_r13[bank_number(ARM_CPU_MODE_UND)]; 7817 } 7818 7819 /* 7820 * Registers x24-x30 are mapped to r8-r14 in FIQ mode. If we are in FIQ 7821 * mode, then we can copy from r8-r14. Otherwise, we copy from the 7822 * FIQ bank for r8-r14. 7823 */ 7824 if (mode == ARM_CPU_MODE_FIQ) { 7825 for (i = 24; i < 31; i++) { 7826 env->xregs[i] = env->regs[i - 16]; /* X[24:30] <- R[8:14] */ 7827 } 7828 } else { 7829 for (i = 24; i < 29; i++) { 7830 env->xregs[i] = env->fiq_regs[i - 24]; 7831 } 7832 env->xregs[29] = env->banked_r13[bank_number(ARM_CPU_MODE_FIQ)]; 7833 env->xregs[30] = env->banked_r14[r14_bank_number(ARM_CPU_MODE_FIQ)]; 7834 } 7835 7836 env->pc = env->regs[15]; 7837 } 7838 7839 /* 7840 * Function used to synchronize QEMU's AArch32 register set with AArch64 7841 * register set. This is necessary when switching between AArch32 and AArch64 7842 * execution state. 7843 */ 7844 void aarch64_sync_64_to_32(CPUARMState *env) 7845 { 7846 int i; 7847 uint32_t mode = env->uncached_cpsr & CPSR_M; 7848 7849 /* We can blanket copy X[0:7] to R[0:7] */ 7850 for (i = 0; i < 8; i++) { 7851 env->regs[i] = env->xregs[i]; 7852 } 7853 7854 /* 7855 * Unless we are in FIQ mode, r8-r12 come from the user registers x8-x12. 7856 * Otherwise, we copy x8-x12 into the banked user regs. 7857 */ 7858 if (mode == ARM_CPU_MODE_FIQ) { 7859 for (i = 8; i < 13; i++) { 7860 env->usr_regs[i - 8] = env->xregs[i]; 7861 } 7862 } else { 7863 for (i = 8; i < 13; i++) { 7864 env->regs[i] = env->xregs[i]; 7865 } 7866 } 7867 7868 /* 7869 * Registers r13 & r14 depend on the current mode. 7870 * If we are in a given mode, we copy the corresponding x registers to r13 7871 * and r14. Otherwise, we copy the x register to the banked r13 and r14 7872 * for the mode. 7873 */ 7874 if (mode == ARM_CPU_MODE_USR || mode == ARM_CPU_MODE_SYS) { 7875 env->regs[13] = env->xregs[13]; 7876 env->regs[14] = env->xregs[14]; 7877 } else { 7878 env->banked_r13[bank_number(ARM_CPU_MODE_USR)] = env->xregs[13]; 7879 7880 /* 7881 * HYP is an exception in that it does not have its own banked r14 but 7882 * shares the USR r14 7883 */ 7884 if (mode == ARM_CPU_MODE_HYP) { 7885 env->regs[14] = env->xregs[14]; 7886 } else { 7887 env->banked_r14[r14_bank_number(ARM_CPU_MODE_USR)] = env->xregs[14]; 7888 } 7889 } 7890 7891 if (mode == ARM_CPU_MODE_HYP) { 7892 env->regs[13] = env->xregs[15]; 7893 } else { 7894 env->banked_r13[bank_number(ARM_CPU_MODE_HYP)] = env->xregs[15]; 7895 } 7896 7897 if (mode == ARM_CPU_MODE_IRQ) { 7898 env->regs[14] = env->xregs[16]; 7899 env->regs[13] = env->xregs[17]; 7900 } else { 7901 env->banked_r14[r14_bank_number(ARM_CPU_MODE_IRQ)] = env->xregs[16]; 7902 env->banked_r13[bank_number(ARM_CPU_MODE_IRQ)] = env->xregs[17]; 7903 } 7904 7905 if (mode == ARM_CPU_MODE_SVC) { 7906 env->regs[14] = env->xregs[18]; 7907 env->regs[13] = env->xregs[19]; 7908 } else { 7909 env->banked_r14[r14_bank_number(ARM_CPU_MODE_SVC)] = env->xregs[18]; 7910 env->banked_r13[bank_number(ARM_CPU_MODE_SVC)] = env->xregs[19]; 7911 } 7912 7913 if (mode == ARM_CPU_MODE_ABT) { 7914 env->regs[14] = env->xregs[20]; 7915 env->regs[13] = env->xregs[21]; 7916 } else { 7917 env->banked_r14[r14_bank_number(ARM_CPU_MODE_ABT)] = env->xregs[20]; 7918 env->banked_r13[bank_number(ARM_CPU_MODE_ABT)] = env->xregs[21]; 7919 } 7920 7921 if (mode == ARM_CPU_MODE_UND) { 7922 env->regs[14] = env->xregs[22]; 7923 env->regs[13] = env->xregs[23]; 7924 } else { 7925 env->banked_r14[r14_bank_number(ARM_CPU_MODE_UND)] = env->xregs[22]; 7926 env->banked_r13[bank_number(ARM_CPU_MODE_UND)] = env->xregs[23]; 7927 } 7928 7929 /* Registers x24-x30 are mapped to r8-r14 in FIQ mode. If we are in FIQ 7930 * mode, then we can copy to r8-r14. Otherwise, we copy to the 7931 * FIQ bank for r8-r14. 7932 */ 7933 if (mode == ARM_CPU_MODE_FIQ) { 7934 for (i = 24; i < 31; i++) { 7935 env->regs[i - 16] = env->xregs[i]; /* X[24:30] -> R[8:14] */ 7936 } 7937 } else { 7938 for (i = 24; i < 29; i++) { 7939 env->fiq_regs[i - 24] = env->xregs[i]; 7940 } 7941 env->banked_r13[bank_number(ARM_CPU_MODE_FIQ)] = env->xregs[29]; 7942 env->banked_r14[r14_bank_number(ARM_CPU_MODE_FIQ)] = env->xregs[30]; 7943 } 7944 7945 env->regs[15] = env->pc; 7946 } 7947 7948 static void take_aarch32_exception(CPUARMState *env, int new_mode, 7949 uint32_t mask, uint32_t offset, 7950 uint32_t newpc) 7951 { 7952 /* Change the CPU state so as to actually take the exception. */ 7953 switch_mode(env, new_mode); 7954 /* 7955 * For exceptions taken to AArch32 we must clear the SS bit in both 7956 * PSTATE and in the old-state value we save to SPSR_<mode>, so zero it now. 7957 */ 7958 env->uncached_cpsr &= ~PSTATE_SS; 7959 env->spsr = cpsr_read(env); 7960 /* Clear IT bits. */ 7961 env->condexec_bits = 0; 7962 /* Switch to the new mode, and to the correct instruction set. */ 7963 env->uncached_cpsr = (env->uncached_cpsr & ~CPSR_M) | new_mode; 7964 /* Set new mode endianness */ 7965 env->uncached_cpsr &= ~CPSR_E; 7966 if (env->cp15.sctlr_el[arm_current_el(env)] & SCTLR_EE) { 7967 env->uncached_cpsr |= CPSR_E; 7968 } 7969 /* J and IL must always be cleared for exception entry */ 7970 env->uncached_cpsr &= ~(CPSR_IL | CPSR_J); 7971 env->daif |= mask; 7972 7973 if (new_mode == ARM_CPU_MODE_HYP) { 7974 env->thumb = (env->cp15.sctlr_el[2] & SCTLR_TE) != 0; 7975 env->elr_el[2] = env->regs[15]; 7976 } else { 7977 /* 7978 * this is a lie, as there was no c1_sys on V4T/V5, but who cares 7979 * and we should just guard the thumb mode on V4 7980 */ 7981 if (arm_feature(env, ARM_FEATURE_V4T)) { 7982 env->thumb = 7983 (A32_BANKED_CURRENT_REG_GET(env, sctlr) & SCTLR_TE) != 0; 7984 } 7985 env->regs[14] = env->regs[15] + offset; 7986 } 7987 env->regs[15] = newpc; 7988 } 7989 7990 static void arm_cpu_do_interrupt_aarch32_hyp(CPUState *cs) 7991 { 7992 /* 7993 * Handle exception entry to Hyp mode; this is sufficiently 7994 * different to entry to other AArch32 modes that we handle it 7995 * separately here. 7996 * 7997 * The vector table entry used is always the 0x14 Hyp mode entry point, 7998 * unless this is an UNDEF/HVC/abort taken from Hyp to Hyp. 7999 * The offset applied to the preferred return address is always zero 8000 * (see DDI0487C.a section G1.12.3). 8001 * PSTATE A/I/F masks are set based only on the SCR.EA/IRQ/FIQ values. 8002 */ 8003 uint32_t addr, mask; 8004 ARMCPU *cpu = ARM_CPU(cs); 8005 CPUARMState *env = &cpu->env; 8006 8007 switch (cs->exception_index) { 8008 case EXCP_UDEF: 8009 addr = 0x04; 8010 break; 8011 case EXCP_SWI: 8012 addr = 0x14; 8013 break; 8014 case EXCP_BKPT: 8015 /* Fall through to prefetch abort. */ 8016 case EXCP_PREFETCH_ABORT: 8017 env->cp15.ifar_s = env->exception.vaddress; 8018 qemu_log_mask(CPU_LOG_INT, "...with HIFAR 0x%x\n", 8019 (uint32_t)env->exception.vaddress); 8020 addr = 0x0c; 8021 break; 8022 case EXCP_DATA_ABORT: 8023 env->cp15.dfar_s = env->exception.vaddress; 8024 qemu_log_mask(CPU_LOG_INT, "...with HDFAR 0x%x\n", 8025 (uint32_t)env->exception.vaddress); 8026 addr = 0x10; 8027 break; 8028 case EXCP_IRQ: 8029 addr = 0x18; 8030 break; 8031 case EXCP_FIQ: 8032 addr = 0x1c; 8033 break; 8034 case EXCP_HVC: 8035 addr = 0x08; 8036 break; 8037 case EXCP_HYP_TRAP: 8038 addr = 0x14; 8039 break; 8040 default: 8041 cpu_abort(cs, "Unhandled exception 0x%x\n", cs->exception_index); 8042 } 8043 8044 if (cs->exception_index != EXCP_IRQ && cs->exception_index != EXCP_FIQ) { 8045 if (!arm_feature(env, ARM_FEATURE_V8)) { 8046 /* 8047 * QEMU syndrome values are v8-style. v7 has the IL bit 8048 * UNK/SBZP for "field not valid" cases, where v8 uses RES1. 8049 * If this is a v7 CPU, squash the IL bit in those cases. 8050 */ 8051 if (cs->exception_index == EXCP_PREFETCH_ABORT || 8052 (cs->exception_index == EXCP_DATA_ABORT && 8053 !(env->exception.syndrome & ARM_EL_ISV)) || 8054 syn_get_ec(env->exception.syndrome) == EC_UNCATEGORIZED) { 8055 env->exception.syndrome &= ~ARM_EL_IL; 8056 } 8057 } 8058 env->cp15.esr_el[2] = env->exception.syndrome; 8059 } 8060 8061 if (arm_current_el(env) != 2 && addr < 0x14) { 8062 addr = 0x14; 8063 } 8064 8065 mask = 0; 8066 if (!(env->cp15.scr_el3 & SCR_EA)) { 8067 mask |= CPSR_A; 8068 } 8069 if (!(env->cp15.scr_el3 & SCR_IRQ)) { 8070 mask |= CPSR_I; 8071 } 8072 if (!(env->cp15.scr_el3 & SCR_FIQ)) { 8073 mask |= CPSR_F; 8074 } 8075 8076 addr += env->cp15.hvbar; 8077 8078 take_aarch32_exception(env, ARM_CPU_MODE_HYP, mask, 0, addr); 8079 } 8080 8081 static void arm_cpu_do_interrupt_aarch32(CPUState *cs) 8082 { 8083 ARMCPU *cpu = ARM_CPU(cs); 8084 CPUARMState *env = &cpu->env; 8085 uint32_t addr; 8086 uint32_t mask; 8087 int new_mode; 8088 uint32_t offset; 8089 uint32_t moe; 8090 8091 /* If this is a debug exception we must update the DBGDSCR.MOE bits */ 8092 switch (syn_get_ec(env->exception.syndrome)) { 8093 case EC_BREAKPOINT: 8094 case EC_BREAKPOINT_SAME_EL: 8095 moe = 1; 8096 break; 8097 case EC_WATCHPOINT: 8098 case EC_WATCHPOINT_SAME_EL: 8099 moe = 10; 8100 break; 8101 case EC_AA32_BKPT: 8102 moe = 3; 8103 break; 8104 case EC_VECTORCATCH: 8105 moe = 5; 8106 break; 8107 default: 8108 moe = 0; 8109 break; 8110 } 8111 8112 if (moe) { 8113 env->cp15.mdscr_el1 = deposit64(env->cp15.mdscr_el1, 2, 4, moe); 8114 } 8115 8116 if (env->exception.target_el == 2) { 8117 arm_cpu_do_interrupt_aarch32_hyp(cs); 8118 return; 8119 } 8120 8121 switch (cs->exception_index) { 8122 case EXCP_UDEF: 8123 new_mode = ARM_CPU_MODE_UND; 8124 addr = 0x04; 8125 mask = CPSR_I; 8126 if (env->thumb) 8127 offset = 2; 8128 else 8129 offset = 4; 8130 break; 8131 case EXCP_SWI: 8132 new_mode = ARM_CPU_MODE_SVC; 8133 addr = 0x08; 8134 mask = CPSR_I; 8135 /* The PC already points to the next instruction. */ 8136 offset = 0; 8137 break; 8138 case EXCP_BKPT: 8139 /* Fall through to prefetch abort. */ 8140 case EXCP_PREFETCH_ABORT: 8141 A32_BANKED_CURRENT_REG_SET(env, ifsr, env->exception.fsr); 8142 A32_BANKED_CURRENT_REG_SET(env, ifar, env->exception.vaddress); 8143 qemu_log_mask(CPU_LOG_INT, "...with IFSR 0x%x IFAR 0x%x\n", 8144 env->exception.fsr, (uint32_t)env->exception.vaddress); 8145 new_mode = ARM_CPU_MODE_ABT; 8146 addr = 0x0c; 8147 mask = CPSR_A | CPSR_I; 8148 offset = 4; 8149 break; 8150 case EXCP_DATA_ABORT: 8151 A32_BANKED_CURRENT_REG_SET(env, dfsr, env->exception.fsr); 8152 A32_BANKED_CURRENT_REG_SET(env, dfar, env->exception.vaddress); 8153 qemu_log_mask(CPU_LOG_INT, "...with DFSR 0x%x DFAR 0x%x\n", 8154 env->exception.fsr, 8155 (uint32_t)env->exception.vaddress); 8156 new_mode = ARM_CPU_MODE_ABT; 8157 addr = 0x10; 8158 mask = CPSR_A | CPSR_I; 8159 offset = 8; 8160 break; 8161 case EXCP_IRQ: 8162 new_mode = ARM_CPU_MODE_IRQ; 8163 addr = 0x18; 8164 /* Disable IRQ and imprecise data aborts. */ 8165 mask = CPSR_A | CPSR_I; 8166 offset = 4; 8167 if (env->cp15.scr_el3 & SCR_IRQ) { 8168 /* IRQ routed to monitor mode */ 8169 new_mode = ARM_CPU_MODE_MON; 8170 mask |= CPSR_F; 8171 } 8172 break; 8173 case EXCP_FIQ: 8174 new_mode = ARM_CPU_MODE_FIQ; 8175 addr = 0x1c; 8176 /* Disable FIQ, IRQ and imprecise data aborts. */ 8177 mask = CPSR_A | CPSR_I | CPSR_F; 8178 if (env->cp15.scr_el3 & SCR_FIQ) { 8179 /* FIQ routed to monitor mode */ 8180 new_mode = ARM_CPU_MODE_MON; 8181 } 8182 offset = 4; 8183 break; 8184 case EXCP_VIRQ: 8185 new_mode = ARM_CPU_MODE_IRQ; 8186 addr = 0x18; 8187 /* Disable IRQ and imprecise data aborts. */ 8188 mask = CPSR_A | CPSR_I; 8189 offset = 4; 8190 break; 8191 case EXCP_VFIQ: 8192 new_mode = ARM_CPU_MODE_FIQ; 8193 addr = 0x1c; 8194 /* Disable FIQ, IRQ and imprecise data aborts. */ 8195 mask = CPSR_A | CPSR_I | CPSR_F; 8196 offset = 4; 8197 break; 8198 case EXCP_SMC: 8199 new_mode = ARM_CPU_MODE_MON; 8200 addr = 0x08; 8201 mask = CPSR_A | CPSR_I | CPSR_F; 8202 offset = 0; 8203 break; 8204 default: 8205 cpu_abort(cs, "Unhandled exception 0x%x\n", cs->exception_index); 8206 return; /* Never happens. Keep compiler happy. */ 8207 } 8208 8209 if (new_mode == ARM_CPU_MODE_MON) { 8210 addr += env->cp15.mvbar; 8211 } else if (A32_BANKED_CURRENT_REG_GET(env, sctlr) & SCTLR_V) { 8212 /* High vectors. When enabled, base address cannot be remapped. */ 8213 addr += 0xffff0000; 8214 } else { 8215 /* ARM v7 architectures provide a vector base address register to remap 8216 * the interrupt vector table. 8217 * This register is only followed in non-monitor mode, and is banked. 8218 * Note: only bits 31:5 are valid. 8219 */ 8220 addr += A32_BANKED_CURRENT_REG_GET(env, vbar); 8221 } 8222 8223 if ((env->uncached_cpsr & CPSR_M) == ARM_CPU_MODE_MON) { 8224 env->cp15.scr_el3 &= ~SCR_NS; 8225 } 8226 8227 take_aarch32_exception(env, new_mode, mask, offset, addr); 8228 } 8229 8230 /* Handle exception entry to a target EL which is using AArch64 */ 8231 static void arm_cpu_do_interrupt_aarch64(CPUState *cs) 8232 { 8233 ARMCPU *cpu = ARM_CPU(cs); 8234 CPUARMState *env = &cpu->env; 8235 unsigned int new_el = env->exception.target_el; 8236 target_ulong addr = env->cp15.vbar_el[new_el]; 8237 unsigned int new_mode = aarch64_pstate_mode(new_el, true); 8238 unsigned int cur_el = arm_current_el(env); 8239 8240 /* 8241 * Note that new_el can never be 0. If cur_el is 0, then 8242 * el0_a64 is is_a64(), else el0_a64 is ignored. 8243 */ 8244 aarch64_sve_change_el(env, cur_el, new_el, is_a64(env)); 8245 8246 if (cur_el < new_el) { 8247 /* Entry vector offset depends on whether the implemented EL 8248 * immediately lower than the target level is using AArch32 or AArch64 8249 */ 8250 bool is_aa64; 8251 8252 switch (new_el) { 8253 case 3: 8254 is_aa64 = (env->cp15.scr_el3 & SCR_RW) != 0; 8255 break; 8256 case 2: 8257 is_aa64 = (env->cp15.hcr_el2 & HCR_RW) != 0; 8258 break; 8259 case 1: 8260 is_aa64 = is_a64(env); 8261 break; 8262 default: 8263 g_assert_not_reached(); 8264 } 8265 8266 if (is_aa64) { 8267 addr += 0x400; 8268 } else { 8269 addr += 0x600; 8270 } 8271 } else if (pstate_read(env) & PSTATE_SP) { 8272 addr += 0x200; 8273 } 8274 8275 switch (cs->exception_index) { 8276 case EXCP_PREFETCH_ABORT: 8277 case EXCP_DATA_ABORT: 8278 env->cp15.far_el[new_el] = env->exception.vaddress; 8279 qemu_log_mask(CPU_LOG_INT, "...with FAR 0x%" PRIx64 "\n", 8280 env->cp15.far_el[new_el]); 8281 /* fall through */ 8282 case EXCP_BKPT: 8283 case EXCP_UDEF: 8284 case EXCP_SWI: 8285 case EXCP_HVC: 8286 case EXCP_HYP_TRAP: 8287 case EXCP_SMC: 8288 if (syn_get_ec(env->exception.syndrome) == EC_ADVSIMDFPACCESSTRAP) { 8289 /* 8290 * QEMU internal FP/SIMD syndromes from AArch32 include the 8291 * TA and coproc fields which are only exposed if the exception 8292 * is taken to AArch32 Hyp mode. Mask them out to get a valid 8293 * AArch64 format syndrome. 8294 */ 8295 env->exception.syndrome &= ~MAKE_64BIT_MASK(0, 20); 8296 } 8297 env->cp15.esr_el[new_el] = env->exception.syndrome; 8298 break; 8299 case EXCP_IRQ: 8300 case EXCP_VIRQ: 8301 addr += 0x80; 8302 break; 8303 case EXCP_FIQ: 8304 case EXCP_VFIQ: 8305 addr += 0x100; 8306 break; 8307 case EXCP_SEMIHOST: 8308 qemu_log_mask(CPU_LOG_INT, 8309 "...handling as semihosting call 0x%" PRIx64 "\n", 8310 env->xregs[0]); 8311 env->xregs[0] = do_arm_semihosting(env); 8312 return; 8313 default: 8314 cpu_abort(cs, "Unhandled exception 0x%x\n", cs->exception_index); 8315 } 8316 8317 if (is_a64(env)) { 8318 env->banked_spsr[aarch64_banked_spsr_index(new_el)] = pstate_read(env); 8319 aarch64_save_sp(env, arm_current_el(env)); 8320 env->elr_el[new_el] = env->pc; 8321 } else { 8322 env->banked_spsr[aarch64_banked_spsr_index(new_el)] = cpsr_read(env); 8323 env->elr_el[new_el] = env->regs[15]; 8324 8325 aarch64_sync_32_to_64(env); 8326 8327 env->condexec_bits = 0; 8328 } 8329 qemu_log_mask(CPU_LOG_INT, "...with ELR 0x%" PRIx64 "\n", 8330 env->elr_el[new_el]); 8331 8332 pstate_write(env, PSTATE_DAIF | new_mode); 8333 env->aarch64 = 1; 8334 aarch64_restore_sp(env, new_el); 8335 8336 env->pc = addr; 8337 8338 qemu_log_mask(CPU_LOG_INT, "...to EL%d PC 0x%" PRIx64 " PSTATE 0x%x\n", 8339 new_el, env->pc, pstate_read(env)); 8340 } 8341 8342 static inline bool check_for_semihosting(CPUState *cs) 8343 { 8344 #ifdef CONFIG_TCG 8345 /* Check whether this exception is a semihosting call; if so 8346 * then handle it and return true; otherwise return false. 8347 */ 8348 ARMCPU *cpu = ARM_CPU(cs); 8349 CPUARMState *env = &cpu->env; 8350 8351 if (is_a64(env)) { 8352 if (cs->exception_index == EXCP_SEMIHOST) { 8353 /* This is always the 64-bit semihosting exception. 8354 * The "is this usermode" and "is semihosting enabled" 8355 * checks have been done at translate time. 8356 */ 8357 qemu_log_mask(CPU_LOG_INT, 8358 "...handling as semihosting call 0x%" PRIx64 "\n", 8359 env->xregs[0]); 8360 env->xregs[0] = do_arm_semihosting(env); 8361 return true; 8362 } 8363 return false; 8364 } else { 8365 uint32_t imm; 8366 8367 /* Only intercept calls from privileged modes, to provide some 8368 * semblance of security. 8369 */ 8370 if (cs->exception_index != EXCP_SEMIHOST && 8371 (!semihosting_enabled() || 8372 ((env->uncached_cpsr & CPSR_M) == ARM_CPU_MODE_USR))) { 8373 return false; 8374 } 8375 8376 switch (cs->exception_index) { 8377 case EXCP_SEMIHOST: 8378 /* This is always a semihosting call; the "is this usermode" 8379 * and "is semihosting enabled" checks have been done at 8380 * translate time. 8381 */ 8382 break; 8383 case EXCP_SWI: 8384 /* Check for semihosting interrupt. */ 8385 if (env->thumb) { 8386 imm = arm_lduw_code(env, env->regs[15] - 2, arm_sctlr_b(env)) 8387 & 0xff; 8388 if (imm == 0xab) { 8389 break; 8390 } 8391 } else { 8392 imm = arm_ldl_code(env, env->regs[15] - 4, arm_sctlr_b(env)) 8393 & 0xffffff; 8394 if (imm == 0x123456) { 8395 break; 8396 } 8397 } 8398 return false; 8399 case EXCP_BKPT: 8400 /* See if this is a semihosting syscall. */ 8401 if (env->thumb) { 8402 imm = arm_lduw_code(env, env->regs[15], arm_sctlr_b(env)) 8403 & 0xff; 8404 if (imm == 0xab) { 8405 env->regs[15] += 2; 8406 break; 8407 } 8408 } 8409 return false; 8410 default: 8411 return false; 8412 } 8413 8414 qemu_log_mask(CPU_LOG_INT, 8415 "...handling as semihosting call 0x%x\n", 8416 env->regs[0]); 8417 env->regs[0] = do_arm_semihosting(env); 8418 return true; 8419 } 8420 #else 8421 return false; 8422 #endif 8423 } 8424 8425 /* Handle a CPU exception for A and R profile CPUs. 8426 * Do any appropriate logging, handle PSCI calls, and then hand off 8427 * to the AArch64-entry or AArch32-entry function depending on the 8428 * target exception level's register width. 8429 */ 8430 void arm_cpu_do_interrupt(CPUState *cs) 8431 { 8432 ARMCPU *cpu = ARM_CPU(cs); 8433 CPUARMState *env = &cpu->env; 8434 unsigned int new_el = env->exception.target_el; 8435 8436 assert(!arm_feature(env, ARM_FEATURE_M)); 8437 8438 arm_log_exception(cs->exception_index); 8439 qemu_log_mask(CPU_LOG_INT, "...from EL%d to EL%d\n", arm_current_el(env), 8440 new_el); 8441 if (qemu_loglevel_mask(CPU_LOG_INT) 8442 && !excp_is_internal(cs->exception_index)) { 8443 qemu_log_mask(CPU_LOG_INT, "...with ESR 0x%x/0x%" PRIx32 "\n", 8444 syn_get_ec(env->exception.syndrome), 8445 env->exception.syndrome); 8446 } 8447 8448 if (arm_is_psci_call(cpu, cs->exception_index)) { 8449 arm_handle_psci_call(cpu); 8450 qemu_log_mask(CPU_LOG_INT, "...handled as PSCI call\n"); 8451 return; 8452 } 8453 8454 /* Semihosting semantics depend on the register width of the 8455 * code that caused the exception, not the target exception level, 8456 * so must be handled here. 8457 */ 8458 if (check_for_semihosting(cs)) { 8459 return; 8460 } 8461 8462 /* Hooks may change global state so BQL should be held, also the 8463 * BQL needs to be held for any modification of 8464 * cs->interrupt_request. 8465 */ 8466 g_assert(qemu_mutex_iothread_locked()); 8467 8468 arm_call_pre_el_change_hook(cpu); 8469 8470 assert(!excp_is_internal(cs->exception_index)); 8471 if (arm_el_is_aa64(env, new_el)) { 8472 arm_cpu_do_interrupt_aarch64(cs); 8473 } else { 8474 arm_cpu_do_interrupt_aarch32(cs); 8475 } 8476 8477 arm_call_el_change_hook(cpu); 8478 8479 if (!kvm_enabled()) { 8480 cs->interrupt_request |= CPU_INTERRUPT_EXITTB; 8481 } 8482 } 8483 #endif /* !CONFIG_USER_ONLY */ 8484 8485 /* Return the exception level which controls this address translation regime */ 8486 static inline uint32_t regime_el(CPUARMState *env, ARMMMUIdx mmu_idx) 8487 { 8488 switch (mmu_idx) { 8489 case ARMMMUIdx_S2NS: 8490 case ARMMMUIdx_S1E2: 8491 return 2; 8492 case ARMMMUIdx_S1E3: 8493 return 3; 8494 case ARMMMUIdx_S1SE0: 8495 return arm_el_is_aa64(env, 3) ? 1 : 3; 8496 case ARMMMUIdx_S1SE1: 8497 case ARMMMUIdx_S1NSE0: 8498 case ARMMMUIdx_S1NSE1: 8499 case ARMMMUIdx_MPrivNegPri: 8500 case ARMMMUIdx_MUserNegPri: 8501 case ARMMMUIdx_MPriv: 8502 case ARMMMUIdx_MUser: 8503 case ARMMMUIdx_MSPrivNegPri: 8504 case ARMMMUIdx_MSUserNegPri: 8505 case ARMMMUIdx_MSPriv: 8506 case ARMMMUIdx_MSUser: 8507 return 1; 8508 default: 8509 g_assert_not_reached(); 8510 } 8511 } 8512 8513 #ifndef CONFIG_USER_ONLY 8514 8515 /* Return the SCTLR value which controls this address translation regime */ 8516 static inline uint32_t regime_sctlr(CPUARMState *env, ARMMMUIdx mmu_idx) 8517 { 8518 return env->cp15.sctlr_el[regime_el(env, mmu_idx)]; 8519 } 8520 8521 /* Return true if the specified stage of address translation is disabled */ 8522 static inline bool regime_translation_disabled(CPUARMState *env, 8523 ARMMMUIdx mmu_idx) 8524 { 8525 if (arm_feature(env, ARM_FEATURE_M)) { 8526 switch (env->v7m.mpu_ctrl[regime_is_secure(env, mmu_idx)] & 8527 (R_V7M_MPU_CTRL_ENABLE_MASK | R_V7M_MPU_CTRL_HFNMIENA_MASK)) { 8528 case R_V7M_MPU_CTRL_ENABLE_MASK: 8529 /* Enabled, but not for HardFault and NMI */ 8530 return mmu_idx & ARM_MMU_IDX_M_NEGPRI; 8531 case R_V7M_MPU_CTRL_ENABLE_MASK | R_V7M_MPU_CTRL_HFNMIENA_MASK: 8532 /* Enabled for all cases */ 8533 return false; 8534 case 0: 8535 default: 8536 /* HFNMIENA set and ENABLE clear is UNPREDICTABLE, but 8537 * we warned about that in armv7m_nvic.c when the guest set it. 8538 */ 8539 return true; 8540 } 8541 } 8542 8543 if (mmu_idx == ARMMMUIdx_S2NS) { 8544 /* HCR.DC means HCR.VM behaves as 1 */ 8545 return (env->cp15.hcr_el2 & (HCR_DC | HCR_VM)) == 0; 8546 } 8547 8548 if (env->cp15.hcr_el2 & HCR_TGE) { 8549 /* TGE means that NS EL0/1 act as if SCTLR_EL1.M is zero */ 8550 if (!regime_is_secure(env, mmu_idx) && regime_el(env, mmu_idx) == 1) { 8551 return true; 8552 } 8553 } 8554 8555 if ((env->cp15.hcr_el2 & HCR_DC) && 8556 (mmu_idx == ARMMMUIdx_S1NSE0 || mmu_idx == ARMMMUIdx_S1NSE1)) { 8557 /* HCR.DC means SCTLR_EL1.M behaves as 0 */ 8558 return true; 8559 } 8560 8561 return (regime_sctlr(env, mmu_idx) & SCTLR_M) == 0; 8562 } 8563 8564 static inline bool regime_translation_big_endian(CPUARMState *env, 8565 ARMMMUIdx mmu_idx) 8566 { 8567 return (regime_sctlr(env, mmu_idx) & SCTLR_EE) != 0; 8568 } 8569 8570 /* Return the TTBR associated with this translation regime */ 8571 static inline uint64_t regime_ttbr(CPUARMState *env, ARMMMUIdx mmu_idx, 8572 int ttbrn) 8573 { 8574 if (mmu_idx == ARMMMUIdx_S2NS) { 8575 return env->cp15.vttbr_el2; 8576 } 8577 if (ttbrn == 0) { 8578 return env->cp15.ttbr0_el[regime_el(env, mmu_idx)]; 8579 } else { 8580 return env->cp15.ttbr1_el[regime_el(env, mmu_idx)]; 8581 } 8582 } 8583 8584 #endif /* !CONFIG_USER_ONLY */ 8585 8586 /* Return the TCR controlling this translation regime */ 8587 static inline TCR *regime_tcr(CPUARMState *env, ARMMMUIdx mmu_idx) 8588 { 8589 if (mmu_idx == ARMMMUIdx_S2NS) { 8590 return &env->cp15.vtcr_el2; 8591 } 8592 return &env->cp15.tcr_el[regime_el(env, mmu_idx)]; 8593 } 8594 8595 /* Convert a possible stage1+2 MMU index into the appropriate 8596 * stage 1 MMU index 8597 */ 8598 static inline ARMMMUIdx stage_1_mmu_idx(ARMMMUIdx mmu_idx) 8599 { 8600 if (mmu_idx == ARMMMUIdx_S12NSE0 || mmu_idx == ARMMMUIdx_S12NSE1) { 8601 mmu_idx += (ARMMMUIdx_S1NSE0 - ARMMMUIdx_S12NSE0); 8602 } 8603 return mmu_idx; 8604 } 8605 8606 /* Return true if the translation regime is using LPAE format page tables */ 8607 static inline bool regime_using_lpae_format(CPUARMState *env, 8608 ARMMMUIdx mmu_idx) 8609 { 8610 int el = regime_el(env, mmu_idx); 8611 if (el == 2 || arm_el_is_aa64(env, el)) { 8612 return true; 8613 } 8614 if (arm_feature(env, ARM_FEATURE_LPAE) 8615 && (regime_tcr(env, mmu_idx)->raw_tcr & TTBCR_EAE)) { 8616 return true; 8617 } 8618 return false; 8619 } 8620 8621 /* Returns true if the stage 1 translation regime is using LPAE format page 8622 * tables. Used when raising alignment exceptions, whose FSR changes depending 8623 * on whether the long or short descriptor format is in use. */ 8624 bool arm_s1_regime_using_lpae_format(CPUARMState *env, ARMMMUIdx mmu_idx) 8625 { 8626 mmu_idx = stage_1_mmu_idx(mmu_idx); 8627 8628 return regime_using_lpae_format(env, mmu_idx); 8629 } 8630 8631 #ifndef CONFIG_USER_ONLY 8632 static inline bool regime_is_user(CPUARMState *env, ARMMMUIdx mmu_idx) 8633 { 8634 switch (mmu_idx) { 8635 case ARMMMUIdx_S1SE0: 8636 case ARMMMUIdx_S1NSE0: 8637 case ARMMMUIdx_MUser: 8638 case ARMMMUIdx_MSUser: 8639 case ARMMMUIdx_MUserNegPri: 8640 case ARMMMUIdx_MSUserNegPri: 8641 return true; 8642 default: 8643 return false; 8644 case ARMMMUIdx_S12NSE0: 8645 case ARMMMUIdx_S12NSE1: 8646 g_assert_not_reached(); 8647 } 8648 } 8649 8650 /* Translate section/page access permissions to page 8651 * R/W protection flags 8652 * 8653 * @env: CPUARMState 8654 * @mmu_idx: MMU index indicating required translation regime 8655 * @ap: The 3-bit access permissions (AP[2:0]) 8656 * @domain_prot: The 2-bit domain access permissions 8657 */ 8658 static inline int ap_to_rw_prot(CPUARMState *env, ARMMMUIdx mmu_idx, 8659 int ap, int domain_prot) 8660 { 8661 bool is_user = regime_is_user(env, mmu_idx); 8662 8663 if (domain_prot == 3) { 8664 return PAGE_READ | PAGE_WRITE; 8665 } 8666 8667 switch (ap) { 8668 case 0: 8669 if (arm_feature(env, ARM_FEATURE_V7)) { 8670 return 0; 8671 } 8672 switch (regime_sctlr(env, mmu_idx) & (SCTLR_S | SCTLR_R)) { 8673 case SCTLR_S: 8674 return is_user ? 0 : PAGE_READ; 8675 case SCTLR_R: 8676 return PAGE_READ; 8677 default: 8678 return 0; 8679 } 8680 case 1: 8681 return is_user ? 0 : PAGE_READ | PAGE_WRITE; 8682 case 2: 8683 if (is_user) { 8684 return PAGE_READ; 8685 } else { 8686 return PAGE_READ | PAGE_WRITE; 8687 } 8688 case 3: 8689 return PAGE_READ | PAGE_WRITE; 8690 case 4: /* Reserved. */ 8691 return 0; 8692 case 5: 8693 return is_user ? 0 : PAGE_READ; 8694 case 6: 8695 return PAGE_READ; 8696 case 7: 8697 if (!arm_feature(env, ARM_FEATURE_V6K)) { 8698 return 0; 8699 } 8700 return PAGE_READ; 8701 default: 8702 g_assert_not_reached(); 8703 } 8704 } 8705 8706 /* Translate section/page access permissions to page 8707 * R/W protection flags. 8708 * 8709 * @ap: The 2-bit simple AP (AP[2:1]) 8710 * @is_user: TRUE if accessing from PL0 8711 */ 8712 static inline int simple_ap_to_rw_prot_is_user(int ap, bool is_user) 8713 { 8714 switch (ap) { 8715 case 0: 8716 return is_user ? 0 : PAGE_READ | PAGE_WRITE; 8717 case 1: 8718 return PAGE_READ | PAGE_WRITE; 8719 case 2: 8720 return is_user ? 0 : PAGE_READ; 8721 case 3: 8722 return PAGE_READ; 8723 default: 8724 g_assert_not_reached(); 8725 } 8726 } 8727 8728 static inline int 8729 simple_ap_to_rw_prot(CPUARMState *env, ARMMMUIdx mmu_idx, int ap) 8730 { 8731 return simple_ap_to_rw_prot_is_user(ap, regime_is_user(env, mmu_idx)); 8732 } 8733 8734 /* Translate S2 section/page access permissions to protection flags 8735 * 8736 * @env: CPUARMState 8737 * @s2ap: The 2-bit stage2 access permissions (S2AP) 8738 * @xn: XN (execute-never) bit 8739 */ 8740 static int get_S2prot(CPUARMState *env, int s2ap, int xn) 8741 { 8742 int prot = 0; 8743 8744 if (s2ap & 1) { 8745 prot |= PAGE_READ; 8746 } 8747 if (s2ap & 2) { 8748 prot |= PAGE_WRITE; 8749 } 8750 if (!xn) { 8751 if (arm_el_is_aa64(env, 2) || prot & PAGE_READ) { 8752 prot |= PAGE_EXEC; 8753 } 8754 } 8755 return prot; 8756 } 8757 8758 /* Translate section/page access permissions to protection flags 8759 * 8760 * @env: CPUARMState 8761 * @mmu_idx: MMU index indicating required translation regime 8762 * @is_aa64: TRUE if AArch64 8763 * @ap: The 2-bit simple AP (AP[2:1]) 8764 * @ns: NS (non-secure) bit 8765 * @xn: XN (execute-never) bit 8766 * @pxn: PXN (privileged execute-never) bit 8767 */ 8768 static int get_S1prot(CPUARMState *env, ARMMMUIdx mmu_idx, bool is_aa64, 8769 int ap, int ns, int xn, int pxn) 8770 { 8771 bool is_user = regime_is_user(env, mmu_idx); 8772 int prot_rw, user_rw; 8773 bool have_wxn; 8774 int wxn = 0; 8775 8776 assert(mmu_idx != ARMMMUIdx_S2NS); 8777 8778 user_rw = simple_ap_to_rw_prot_is_user(ap, true); 8779 if (is_user) { 8780 prot_rw = user_rw; 8781 } else { 8782 prot_rw = simple_ap_to_rw_prot_is_user(ap, false); 8783 } 8784 8785 if (ns && arm_is_secure(env) && (env->cp15.scr_el3 & SCR_SIF)) { 8786 return prot_rw; 8787 } 8788 8789 /* TODO have_wxn should be replaced with 8790 * ARM_FEATURE_V8 || (ARM_FEATURE_V7 && ARM_FEATURE_EL2) 8791 * when ARM_FEATURE_EL2 starts getting set. For now we assume all LPAE 8792 * compatible processors have EL2, which is required for [U]WXN. 8793 */ 8794 have_wxn = arm_feature(env, ARM_FEATURE_LPAE); 8795 8796 if (have_wxn) { 8797 wxn = regime_sctlr(env, mmu_idx) & SCTLR_WXN; 8798 } 8799 8800 if (is_aa64) { 8801 switch (regime_el(env, mmu_idx)) { 8802 case 1: 8803 if (!is_user) { 8804 xn = pxn || (user_rw & PAGE_WRITE); 8805 } 8806 break; 8807 case 2: 8808 case 3: 8809 break; 8810 } 8811 } else if (arm_feature(env, ARM_FEATURE_V7)) { 8812 switch (regime_el(env, mmu_idx)) { 8813 case 1: 8814 case 3: 8815 if (is_user) { 8816 xn = xn || !(user_rw & PAGE_READ); 8817 } else { 8818 int uwxn = 0; 8819 if (have_wxn) { 8820 uwxn = regime_sctlr(env, mmu_idx) & SCTLR_UWXN; 8821 } 8822 xn = xn || !(prot_rw & PAGE_READ) || pxn || 8823 (uwxn && (user_rw & PAGE_WRITE)); 8824 } 8825 break; 8826 case 2: 8827 break; 8828 } 8829 } else { 8830 xn = wxn = 0; 8831 } 8832 8833 if (xn || (wxn && (prot_rw & PAGE_WRITE))) { 8834 return prot_rw; 8835 } 8836 return prot_rw | PAGE_EXEC; 8837 } 8838 8839 static bool get_level1_table_address(CPUARMState *env, ARMMMUIdx mmu_idx, 8840 uint32_t *table, uint32_t address) 8841 { 8842 /* Note that we can only get here for an AArch32 PL0/PL1 lookup */ 8843 TCR *tcr = regime_tcr(env, mmu_idx); 8844 8845 if (address & tcr->mask) { 8846 if (tcr->raw_tcr & TTBCR_PD1) { 8847 /* Translation table walk disabled for TTBR1 */ 8848 return false; 8849 } 8850 *table = regime_ttbr(env, mmu_idx, 1) & 0xffffc000; 8851 } else { 8852 if (tcr->raw_tcr & TTBCR_PD0) { 8853 /* Translation table walk disabled for TTBR0 */ 8854 return false; 8855 } 8856 *table = regime_ttbr(env, mmu_idx, 0) & tcr->base_mask; 8857 } 8858 *table |= (address >> 18) & 0x3ffc; 8859 return true; 8860 } 8861 8862 /* Translate a S1 pagetable walk through S2 if needed. */ 8863 static hwaddr S1_ptw_translate(CPUARMState *env, ARMMMUIdx mmu_idx, 8864 hwaddr addr, MemTxAttrs txattrs, 8865 ARMMMUFaultInfo *fi) 8866 { 8867 if ((mmu_idx == ARMMMUIdx_S1NSE0 || mmu_idx == ARMMMUIdx_S1NSE1) && 8868 !regime_translation_disabled(env, ARMMMUIdx_S2NS)) { 8869 target_ulong s2size; 8870 hwaddr s2pa; 8871 int s2prot; 8872 int ret; 8873 ARMCacheAttrs cacheattrs = {}; 8874 ARMCacheAttrs *pcacheattrs = NULL; 8875 8876 if (env->cp15.hcr_el2 & HCR_PTW) { 8877 /* 8878 * PTW means we must fault if this S1 walk touches S2 Device 8879 * memory; otherwise we don't care about the attributes and can 8880 * save the S2 translation the effort of computing them. 8881 */ 8882 pcacheattrs = &cacheattrs; 8883 } 8884 8885 ret = get_phys_addr_lpae(env, addr, 0, ARMMMUIdx_S2NS, &s2pa, 8886 &txattrs, &s2prot, &s2size, fi, pcacheattrs); 8887 if (ret) { 8888 assert(fi->type != ARMFault_None); 8889 fi->s2addr = addr; 8890 fi->stage2 = true; 8891 fi->s1ptw = true; 8892 return ~0; 8893 } 8894 if (pcacheattrs && (pcacheattrs->attrs & 0xf0) == 0) { 8895 /* Access was to Device memory: generate Permission fault */ 8896 fi->type = ARMFault_Permission; 8897 fi->s2addr = addr; 8898 fi->stage2 = true; 8899 fi->s1ptw = true; 8900 return ~0; 8901 } 8902 addr = s2pa; 8903 } 8904 return addr; 8905 } 8906 8907 /* All loads done in the course of a page table walk go through here. */ 8908 static uint32_t arm_ldl_ptw(CPUState *cs, hwaddr addr, bool is_secure, 8909 ARMMMUIdx mmu_idx, ARMMMUFaultInfo *fi) 8910 { 8911 ARMCPU *cpu = ARM_CPU(cs); 8912 CPUARMState *env = &cpu->env; 8913 MemTxAttrs attrs = {}; 8914 MemTxResult result = MEMTX_OK; 8915 AddressSpace *as; 8916 uint32_t data; 8917 8918 attrs.secure = is_secure; 8919 as = arm_addressspace(cs, attrs); 8920 addr = S1_ptw_translate(env, mmu_idx, addr, attrs, fi); 8921 if (fi->s1ptw) { 8922 return 0; 8923 } 8924 if (regime_translation_big_endian(env, mmu_idx)) { 8925 data = address_space_ldl_be(as, addr, attrs, &result); 8926 } else { 8927 data = address_space_ldl_le(as, addr, attrs, &result); 8928 } 8929 if (result == MEMTX_OK) { 8930 return data; 8931 } 8932 fi->type = ARMFault_SyncExternalOnWalk; 8933 fi->ea = arm_extabort_type(result); 8934 return 0; 8935 } 8936 8937 static uint64_t arm_ldq_ptw(CPUState *cs, hwaddr addr, bool is_secure, 8938 ARMMMUIdx mmu_idx, ARMMMUFaultInfo *fi) 8939 { 8940 ARMCPU *cpu = ARM_CPU(cs); 8941 CPUARMState *env = &cpu->env; 8942 MemTxAttrs attrs = {}; 8943 MemTxResult result = MEMTX_OK; 8944 AddressSpace *as; 8945 uint64_t data; 8946 8947 attrs.secure = is_secure; 8948 as = arm_addressspace(cs, attrs); 8949 addr = S1_ptw_translate(env, mmu_idx, addr, attrs, fi); 8950 if (fi->s1ptw) { 8951 return 0; 8952 } 8953 if (regime_translation_big_endian(env, mmu_idx)) { 8954 data = address_space_ldq_be(as, addr, attrs, &result); 8955 } else { 8956 data = address_space_ldq_le(as, addr, attrs, &result); 8957 } 8958 if (result == MEMTX_OK) { 8959 return data; 8960 } 8961 fi->type = ARMFault_SyncExternalOnWalk; 8962 fi->ea = arm_extabort_type(result); 8963 return 0; 8964 } 8965 8966 static bool get_phys_addr_v5(CPUARMState *env, uint32_t address, 8967 MMUAccessType access_type, ARMMMUIdx mmu_idx, 8968 hwaddr *phys_ptr, int *prot, 8969 target_ulong *page_size, 8970 ARMMMUFaultInfo *fi) 8971 { 8972 CPUState *cs = env_cpu(env); 8973 int level = 1; 8974 uint32_t table; 8975 uint32_t desc; 8976 int type; 8977 int ap; 8978 int domain = 0; 8979 int domain_prot; 8980 hwaddr phys_addr; 8981 uint32_t dacr; 8982 8983 /* Pagetable walk. */ 8984 /* Lookup l1 descriptor. */ 8985 if (!get_level1_table_address(env, mmu_idx, &table, address)) { 8986 /* Section translation fault if page walk is disabled by PD0 or PD1 */ 8987 fi->type = ARMFault_Translation; 8988 goto do_fault; 8989 } 8990 desc = arm_ldl_ptw(cs, table, regime_is_secure(env, mmu_idx), 8991 mmu_idx, fi); 8992 if (fi->type != ARMFault_None) { 8993 goto do_fault; 8994 } 8995 type = (desc & 3); 8996 domain = (desc >> 5) & 0x0f; 8997 if (regime_el(env, mmu_idx) == 1) { 8998 dacr = env->cp15.dacr_ns; 8999 } else { 9000 dacr = env->cp15.dacr_s; 9001 } 9002 domain_prot = (dacr >> (domain * 2)) & 3; 9003 if (type == 0) { 9004 /* Section translation fault. */ 9005 fi->type = ARMFault_Translation; 9006 goto do_fault; 9007 } 9008 if (type != 2) { 9009 level = 2; 9010 } 9011 if (domain_prot == 0 || domain_prot == 2) { 9012 fi->type = ARMFault_Domain; 9013 goto do_fault; 9014 } 9015 if (type == 2) { 9016 /* 1Mb section. */ 9017 phys_addr = (desc & 0xfff00000) | (address & 0x000fffff); 9018 ap = (desc >> 10) & 3; 9019 *page_size = 1024 * 1024; 9020 } else { 9021 /* Lookup l2 entry. */ 9022 if (type == 1) { 9023 /* Coarse pagetable. */ 9024 table = (desc & 0xfffffc00) | ((address >> 10) & 0x3fc); 9025 } else { 9026 /* Fine pagetable. */ 9027 table = (desc & 0xfffff000) | ((address >> 8) & 0xffc); 9028 } 9029 desc = arm_ldl_ptw(cs, table, regime_is_secure(env, mmu_idx), 9030 mmu_idx, fi); 9031 if (fi->type != ARMFault_None) { 9032 goto do_fault; 9033 } 9034 switch (desc & 3) { 9035 case 0: /* Page translation fault. */ 9036 fi->type = ARMFault_Translation; 9037 goto do_fault; 9038 case 1: /* 64k page. */ 9039 phys_addr = (desc & 0xffff0000) | (address & 0xffff); 9040 ap = (desc >> (4 + ((address >> 13) & 6))) & 3; 9041 *page_size = 0x10000; 9042 break; 9043 case 2: /* 4k page. */ 9044 phys_addr = (desc & 0xfffff000) | (address & 0xfff); 9045 ap = (desc >> (4 + ((address >> 9) & 6))) & 3; 9046 *page_size = 0x1000; 9047 break; 9048 case 3: /* 1k page, or ARMv6/XScale "extended small (4k) page" */ 9049 if (type == 1) { 9050 /* ARMv6/XScale extended small page format */ 9051 if (arm_feature(env, ARM_FEATURE_XSCALE) 9052 || arm_feature(env, ARM_FEATURE_V6)) { 9053 phys_addr = (desc & 0xfffff000) | (address & 0xfff); 9054 *page_size = 0x1000; 9055 } else { 9056 /* UNPREDICTABLE in ARMv5; we choose to take a 9057 * page translation fault. 9058 */ 9059 fi->type = ARMFault_Translation; 9060 goto do_fault; 9061 } 9062 } else { 9063 phys_addr = (desc & 0xfffffc00) | (address & 0x3ff); 9064 *page_size = 0x400; 9065 } 9066 ap = (desc >> 4) & 3; 9067 break; 9068 default: 9069 /* Never happens, but compiler isn't smart enough to tell. */ 9070 abort(); 9071 } 9072 } 9073 *prot = ap_to_rw_prot(env, mmu_idx, ap, domain_prot); 9074 *prot |= *prot ? PAGE_EXEC : 0; 9075 if (!(*prot & (1 << access_type))) { 9076 /* Access permission fault. */ 9077 fi->type = ARMFault_Permission; 9078 goto do_fault; 9079 } 9080 *phys_ptr = phys_addr; 9081 return false; 9082 do_fault: 9083 fi->domain = domain; 9084 fi->level = level; 9085 return true; 9086 } 9087 9088 static bool get_phys_addr_v6(CPUARMState *env, uint32_t address, 9089 MMUAccessType access_type, ARMMMUIdx mmu_idx, 9090 hwaddr *phys_ptr, MemTxAttrs *attrs, int *prot, 9091 target_ulong *page_size, ARMMMUFaultInfo *fi) 9092 { 9093 CPUState *cs = env_cpu(env); 9094 int level = 1; 9095 uint32_t table; 9096 uint32_t desc; 9097 uint32_t xn; 9098 uint32_t pxn = 0; 9099 int type; 9100 int ap; 9101 int domain = 0; 9102 int domain_prot; 9103 hwaddr phys_addr; 9104 uint32_t dacr; 9105 bool ns; 9106 9107 /* Pagetable walk. */ 9108 /* Lookup l1 descriptor. */ 9109 if (!get_level1_table_address(env, mmu_idx, &table, address)) { 9110 /* Section translation fault if page walk is disabled by PD0 or PD1 */ 9111 fi->type = ARMFault_Translation; 9112 goto do_fault; 9113 } 9114 desc = arm_ldl_ptw(cs, table, regime_is_secure(env, mmu_idx), 9115 mmu_idx, fi); 9116 if (fi->type != ARMFault_None) { 9117 goto do_fault; 9118 } 9119 type = (desc & 3); 9120 if (type == 0 || (type == 3 && !arm_feature(env, ARM_FEATURE_PXN))) { 9121 /* Section translation fault, or attempt to use the encoding 9122 * which is Reserved on implementations without PXN. 9123 */ 9124 fi->type = ARMFault_Translation; 9125 goto do_fault; 9126 } 9127 if ((type == 1) || !(desc & (1 << 18))) { 9128 /* Page or Section. */ 9129 domain = (desc >> 5) & 0x0f; 9130 } 9131 if (regime_el(env, mmu_idx) == 1) { 9132 dacr = env->cp15.dacr_ns; 9133 } else { 9134 dacr = env->cp15.dacr_s; 9135 } 9136 if (type == 1) { 9137 level = 2; 9138 } 9139 domain_prot = (dacr >> (domain * 2)) & 3; 9140 if (domain_prot == 0 || domain_prot == 2) { 9141 /* Section or Page domain fault */ 9142 fi->type = ARMFault_Domain; 9143 goto do_fault; 9144 } 9145 if (type != 1) { 9146 if (desc & (1 << 18)) { 9147 /* Supersection. */ 9148 phys_addr = (desc & 0xff000000) | (address & 0x00ffffff); 9149 phys_addr |= (uint64_t)extract32(desc, 20, 4) << 32; 9150 phys_addr |= (uint64_t)extract32(desc, 5, 4) << 36; 9151 *page_size = 0x1000000; 9152 } else { 9153 /* Section. */ 9154 phys_addr = (desc & 0xfff00000) | (address & 0x000fffff); 9155 *page_size = 0x100000; 9156 } 9157 ap = ((desc >> 10) & 3) | ((desc >> 13) & 4); 9158 xn = desc & (1 << 4); 9159 pxn = desc & 1; 9160 ns = extract32(desc, 19, 1); 9161 } else { 9162 if (arm_feature(env, ARM_FEATURE_PXN)) { 9163 pxn = (desc >> 2) & 1; 9164 } 9165 ns = extract32(desc, 3, 1); 9166 /* Lookup l2 entry. */ 9167 table = (desc & 0xfffffc00) | ((address >> 10) & 0x3fc); 9168 desc = arm_ldl_ptw(cs, table, regime_is_secure(env, mmu_idx), 9169 mmu_idx, fi); 9170 if (fi->type != ARMFault_None) { 9171 goto do_fault; 9172 } 9173 ap = ((desc >> 4) & 3) | ((desc >> 7) & 4); 9174 switch (desc & 3) { 9175 case 0: /* Page translation fault. */ 9176 fi->type = ARMFault_Translation; 9177 goto do_fault; 9178 case 1: /* 64k page. */ 9179 phys_addr = (desc & 0xffff0000) | (address & 0xffff); 9180 xn = desc & (1 << 15); 9181 *page_size = 0x10000; 9182 break; 9183 case 2: case 3: /* 4k page. */ 9184 phys_addr = (desc & 0xfffff000) | (address & 0xfff); 9185 xn = desc & 1; 9186 *page_size = 0x1000; 9187 break; 9188 default: 9189 /* Never happens, but compiler isn't smart enough to tell. */ 9190 abort(); 9191 } 9192 } 9193 if (domain_prot == 3) { 9194 *prot = PAGE_READ | PAGE_WRITE | PAGE_EXEC; 9195 } else { 9196 if (pxn && !regime_is_user(env, mmu_idx)) { 9197 xn = 1; 9198 } 9199 if (xn && access_type == MMU_INST_FETCH) { 9200 fi->type = ARMFault_Permission; 9201 goto do_fault; 9202 } 9203 9204 if (arm_feature(env, ARM_FEATURE_V6K) && 9205 (regime_sctlr(env, mmu_idx) & SCTLR_AFE)) { 9206 /* The simplified model uses AP[0] as an access control bit. */ 9207 if ((ap & 1) == 0) { 9208 /* Access flag fault. */ 9209 fi->type = ARMFault_AccessFlag; 9210 goto do_fault; 9211 } 9212 *prot = simple_ap_to_rw_prot(env, mmu_idx, ap >> 1); 9213 } else { 9214 *prot = ap_to_rw_prot(env, mmu_idx, ap, domain_prot); 9215 } 9216 if (*prot && !xn) { 9217 *prot |= PAGE_EXEC; 9218 } 9219 if (!(*prot & (1 << access_type))) { 9220 /* Access permission fault. */ 9221 fi->type = ARMFault_Permission; 9222 goto do_fault; 9223 } 9224 } 9225 if (ns) { 9226 /* The NS bit will (as required by the architecture) have no effect if 9227 * the CPU doesn't support TZ or this is a non-secure translation 9228 * regime, because the attribute will already be non-secure. 9229 */ 9230 attrs->secure = false; 9231 } 9232 *phys_ptr = phys_addr; 9233 return false; 9234 do_fault: 9235 fi->domain = domain; 9236 fi->level = level; 9237 return true; 9238 } 9239 9240 /* 9241 * check_s2_mmu_setup 9242 * @cpu: ARMCPU 9243 * @is_aa64: True if the translation regime is in AArch64 state 9244 * @startlevel: Suggested starting level 9245 * @inputsize: Bitsize of IPAs 9246 * @stride: Page-table stride (See the ARM ARM) 9247 * 9248 * Returns true if the suggested S2 translation parameters are OK and 9249 * false otherwise. 9250 */ 9251 static bool check_s2_mmu_setup(ARMCPU *cpu, bool is_aa64, int level, 9252 int inputsize, int stride) 9253 { 9254 const int grainsize = stride + 3; 9255 int startsizecheck; 9256 9257 /* Negative levels are never allowed. */ 9258 if (level < 0) { 9259 return false; 9260 } 9261 9262 startsizecheck = inputsize - ((3 - level) * stride + grainsize); 9263 if (startsizecheck < 1 || startsizecheck > stride + 4) { 9264 return false; 9265 } 9266 9267 if (is_aa64) { 9268 CPUARMState *env = &cpu->env; 9269 unsigned int pamax = arm_pamax(cpu); 9270 9271 switch (stride) { 9272 case 13: /* 64KB Pages. */ 9273 if (level == 0 || (level == 1 && pamax <= 42)) { 9274 return false; 9275 } 9276 break; 9277 case 11: /* 16KB Pages. */ 9278 if (level == 0 || (level == 1 && pamax <= 40)) { 9279 return false; 9280 } 9281 break; 9282 case 9: /* 4KB Pages. */ 9283 if (level == 0 && pamax <= 42) { 9284 return false; 9285 } 9286 break; 9287 default: 9288 g_assert_not_reached(); 9289 } 9290 9291 /* Inputsize checks. */ 9292 if (inputsize > pamax && 9293 (arm_el_is_aa64(env, 1) || inputsize > 40)) { 9294 /* This is CONSTRAINED UNPREDICTABLE and we choose to fault. */ 9295 return false; 9296 } 9297 } else { 9298 /* AArch32 only supports 4KB pages. Assert on that. */ 9299 assert(stride == 9); 9300 9301 if (level == 0) { 9302 return false; 9303 } 9304 } 9305 return true; 9306 } 9307 9308 /* Translate from the 4-bit stage 2 representation of 9309 * memory attributes (without cache-allocation hints) to 9310 * the 8-bit representation of the stage 1 MAIR registers 9311 * (which includes allocation hints). 9312 * 9313 * ref: shared/translation/attrs/S2AttrDecode() 9314 * .../S2ConvertAttrsHints() 9315 */ 9316 static uint8_t convert_stage2_attrs(CPUARMState *env, uint8_t s2attrs) 9317 { 9318 uint8_t hiattr = extract32(s2attrs, 2, 2); 9319 uint8_t loattr = extract32(s2attrs, 0, 2); 9320 uint8_t hihint = 0, lohint = 0; 9321 9322 if (hiattr != 0) { /* normal memory */ 9323 if ((env->cp15.hcr_el2 & HCR_CD) != 0) { /* cache disabled */ 9324 hiattr = loattr = 1; /* non-cacheable */ 9325 } else { 9326 if (hiattr != 1) { /* Write-through or write-back */ 9327 hihint = 3; /* RW allocate */ 9328 } 9329 if (loattr != 1) { /* Write-through or write-back */ 9330 lohint = 3; /* RW allocate */ 9331 } 9332 } 9333 } 9334 9335 return (hiattr << 6) | (hihint << 4) | (loattr << 2) | lohint; 9336 } 9337 #endif /* !CONFIG_USER_ONLY */ 9338 9339 ARMVAParameters aa64_va_parameters_both(CPUARMState *env, uint64_t va, 9340 ARMMMUIdx mmu_idx) 9341 { 9342 uint64_t tcr = regime_tcr(env, mmu_idx)->raw_tcr; 9343 uint32_t el = regime_el(env, mmu_idx); 9344 bool tbi, tbid, epd, hpd, using16k, using64k; 9345 int select, tsz; 9346 9347 /* 9348 * Bit 55 is always between the two regions, and is canonical for 9349 * determining if address tagging is enabled. 9350 */ 9351 select = extract64(va, 55, 1); 9352 9353 if (el > 1) { 9354 tsz = extract32(tcr, 0, 6); 9355 using64k = extract32(tcr, 14, 1); 9356 using16k = extract32(tcr, 15, 1); 9357 if (mmu_idx == ARMMMUIdx_S2NS) { 9358 /* VTCR_EL2 */ 9359 tbi = tbid = hpd = false; 9360 } else { 9361 tbi = extract32(tcr, 20, 1); 9362 hpd = extract32(tcr, 24, 1); 9363 tbid = extract32(tcr, 29, 1); 9364 } 9365 epd = false; 9366 } else if (!select) { 9367 tsz = extract32(tcr, 0, 6); 9368 epd = extract32(tcr, 7, 1); 9369 using64k = extract32(tcr, 14, 1); 9370 using16k = extract32(tcr, 15, 1); 9371 tbi = extract64(tcr, 37, 1); 9372 hpd = extract64(tcr, 41, 1); 9373 tbid = extract64(tcr, 51, 1); 9374 } else { 9375 int tg = extract32(tcr, 30, 2); 9376 using16k = tg == 1; 9377 using64k = tg == 3; 9378 tsz = extract32(tcr, 16, 6); 9379 epd = extract32(tcr, 23, 1); 9380 tbi = extract64(tcr, 38, 1); 9381 hpd = extract64(tcr, 42, 1); 9382 tbid = extract64(tcr, 52, 1); 9383 } 9384 tsz = MIN(tsz, 39); /* TODO: ARMv8.4-TTST */ 9385 tsz = MAX(tsz, 16); /* TODO: ARMv8.2-LVA */ 9386 9387 return (ARMVAParameters) { 9388 .tsz = tsz, 9389 .select = select, 9390 .tbi = tbi, 9391 .tbid = tbid, 9392 .epd = epd, 9393 .hpd = hpd, 9394 .using16k = using16k, 9395 .using64k = using64k, 9396 }; 9397 } 9398 9399 ARMVAParameters aa64_va_parameters(CPUARMState *env, uint64_t va, 9400 ARMMMUIdx mmu_idx, bool data) 9401 { 9402 ARMVAParameters ret = aa64_va_parameters_both(env, va, mmu_idx); 9403 9404 /* Present TBI as a composite with TBID. */ 9405 ret.tbi &= (data || !ret.tbid); 9406 return ret; 9407 } 9408 9409 #ifndef CONFIG_USER_ONLY 9410 static ARMVAParameters aa32_va_parameters(CPUARMState *env, uint32_t va, 9411 ARMMMUIdx mmu_idx) 9412 { 9413 uint64_t tcr = regime_tcr(env, mmu_idx)->raw_tcr; 9414 uint32_t el = regime_el(env, mmu_idx); 9415 int select, tsz; 9416 bool epd, hpd; 9417 9418 if (mmu_idx == ARMMMUIdx_S2NS) { 9419 /* VTCR */ 9420 bool sext = extract32(tcr, 4, 1); 9421 bool sign = extract32(tcr, 3, 1); 9422 9423 /* 9424 * If the sign-extend bit is not the same as t0sz[3], the result 9425 * is unpredictable. Flag this as a guest error. 9426 */ 9427 if (sign != sext) { 9428 qemu_log_mask(LOG_GUEST_ERROR, 9429 "AArch32: VTCR.S / VTCR.T0SZ[3] mismatch\n"); 9430 } 9431 tsz = sextract32(tcr, 0, 4) + 8; 9432 select = 0; 9433 hpd = false; 9434 epd = false; 9435 } else if (el == 2) { 9436 /* HTCR */ 9437 tsz = extract32(tcr, 0, 3); 9438 select = 0; 9439 hpd = extract64(tcr, 24, 1); 9440 epd = false; 9441 } else { 9442 int t0sz = extract32(tcr, 0, 3); 9443 int t1sz = extract32(tcr, 16, 3); 9444 9445 if (t1sz == 0) { 9446 select = va > (0xffffffffu >> t0sz); 9447 } else { 9448 /* Note that we will detect errors later. */ 9449 select = va >= ~(0xffffffffu >> t1sz); 9450 } 9451 if (!select) { 9452 tsz = t0sz; 9453 epd = extract32(tcr, 7, 1); 9454 hpd = extract64(tcr, 41, 1); 9455 } else { 9456 tsz = t1sz; 9457 epd = extract32(tcr, 23, 1); 9458 hpd = extract64(tcr, 42, 1); 9459 } 9460 /* For aarch32, hpd0 is not enabled without t2e as well. */ 9461 hpd &= extract32(tcr, 6, 1); 9462 } 9463 9464 return (ARMVAParameters) { 9465 .tsz = tsz, 9466 .select = select, 9467 .epd = epd, 9468 .hpd = hpd, 9469 }; 9470 } 9471 9472 static bool get_phys_addr_lpae(CPUARMState *env, target_ulong address, 9473 MMUAccessType access_type, ARMMMUIdx mmu_idx, 9474 hwaddr *phys_ptr, MemTxAttrs *txattrs, int *prot, 9475 target_ulong *page_size_ptr, 9476 ARMMMUFaultInfo *fi, ARMCacheAttrs *cacheattrs) 9477 { 9478 ARMCPU *cpu = env_archcpu(env); 9479 CPUState *cs = CPU(cpu); 9480 /* Read an LPAE long-descriptor translation table. */ 9481 ARMFaultType fault_type = ARMFault_Translation; 9482 uint32_t level; 9483 ARMVAParameters param; 9484 uint64_t ttbr; 9485 hwaddr descaddr, indexmask, indexmask_grainsize; 9486 uint32_t tableattrs; 9487 target_ulong page_size; 9488 uint32_t attrs; 9489 int32_t stride; 9490 int addrsize, inputsize; 9491 TCR *tcr = regime_tcr(env, mmu_idx); 9492 int ap, ns, xn, pxn; 9493 uint32_t el = regime_el(env, mmu_idx); 9494 bool ttbr1_valid; 9495 uint64_t descaddrmask; 9496 bool aarch64 = arm_el_is_aa64(env, el); 9497 bool guarded = false; 9498 9499 /* TODO: 9500 * This code does not handle the different format TCR for VTCR_EL2. 9501 * This code also does not support shareability levels. 9502 * Attribute and permission bit handling should also be checked when adding 9503 * support for those page table walks. 9504 */ 9505 if (aarch64) { 9506 param = aa64_va_parameters(env, address, mmu_idx, 9507 access_type != MMU_INST_FETCH); 9508 level = 0; 9509 /* If we are in 64-bit EL2 or EL3 then there is no TTBR1, so mark it 9510 * invalid. 9511 */ 9512 ttbr1_valid = (el < 2); 9513 addrsize = 64 - 8 * param.tbi; 9514 inputsize = 64 - param.tsz; 9515 } else { 9516 param = aa32_va_parameters(env, address, mmu_idx); 9517 level = 1; 9518 /* There is no TTBR1 for EL2 */ 9519 ttbr1_valid = (el != 2); 9520 addrsize = (mmu_idx == ARMMMUIdx_S2NS ? 40 : 32); 9521 inputsize = addrsize - param.tsz; 9522 } 9523 9524 /* 9525 * We determined the region when collecting the parameters, but we 9526 * have not yet validated that the address is valid for the region. 9527 * Extract the top bits and verify that they all match select. 9528 * 9529 * For aa32, if inputsize == addrsize, then we have selected the 9530 * region by exclusion in aa32_va_parameters and there is no more 9531 * validation to do here. 9532 */ 9533 if (inputsize < addrsize) { 9534 target_ulong top_bits = sextract64(address, inputsize, 9535 addrsize - inputsize); 9536 if (-top_bits != param.select || (param.select && !ttbr1_valid)) { 9537 /* The gap between the two regions is a Translation fault */ 9538 fault_type = ARMFault_Translation; 9539 goto do_fault; 9540 } 9541 } 9542 9543 if (param.using64k) { 9544 stride = 13; 9545 } else if (param.using16k) { 9546 stride = 11; 9547 } else { 9548 stride = 9; 9549 } 9550 9551 /* Note that QEMU ignores shareability and cacheability attributes, 9552 * so we don't need to do anything with the SH, ORGN, IRGN fields 9553 * in the TTBCR. Similarly, TTBCR:A1 selects whether we get the 9554 * ASID from TTBR0 or TTBR1, but QEMU's TLB doesn't currently 9555 * implement any ASID-like capability so we can ignore it (instead 9556 * we will always flush the TLB any time the ASID is changed). 9557 */ 9558 ttbr = regime_ttbr(env, mmu_idx, param.select); 9559 9560 /* Here we should have set up all the parameters for the translation: 9561 * inputsize, ttbr, epd, stride, tbi 9562 */ 9563 9564 if (param.epd) { 9565 /* Translation table walk disabled => Translation fault on TLB miss 9566 * Note: This is always 0 on 64-bit EL2 and EL3. 9567 */ 9568 goto do_fault; 9569 } 9570 9571 if (mmu_idx != ARMMMUIdx_S2NS) { 9572 /* The starting level depends on the virtual address size (which can 9573 * be up to 48 bits) and the translation granule size. It indicates 9574 * the number of strides (stride bits at a time) needed to 9575 * consume the bits of the input address. In the pseudocode this is: 9576 * level = 4 - RoundUp((inputsize - grainsize) / stride) 9577 * where their 'inputsize' is our 'inputsize', 'grainsize' is 9578 * our 'stride + 3' and 'stride' is our 'stride'. 9579 * Applying the usual "rounded up m/n is (m+n-1)/n" and simplifying: 9580 * = 4 - (inputsize - stride - 3 + stride - 1) / stride 9581 * = 4 - (inputsize - 4) / stride; 9582 */ 9583 level = 4 - (inputsize - 4) / stride; 9584 } else { 9585 /* For stage 2 translations the starting level is specified by the 9586 * VTCR_EL2.SL0 field (whose interpretation depends on the page size) 9587 */ 9588 uint32_t sl0 = extract32(tcr->raw_tcr, 6, 2); 9589 uint32_t startlevel; 9590 bool ok; 9591 9592 if (!aarch64 || stride == 9) { 9593 /* AArch32 or 4KB pages */ 9594 startlevel = 2 - sl0; 9595 } else { 9596 /* 16KB or 64KB pages */ 9597 startlevel = 3 - sl0; 9598 } 9599 9600 /* Check that the starting level is valid. */ 9601 ok = check_s2_mmu_setup(cpu, aarch64, startlevel, 9602 inputsize, stride); 9603 if (!ok) { 9604 fault_type = ARMFault_Translation; 9605 goto do_fault; 9606 } 9607 level = startlevel; 9608 } 9609 9610 indexmask_grainsize = (1ULL << (stride + 3)) - 1; 9611 indexmask = (1ULL << (inputsize - (stride * (4 - level)))) - 1; 9612 9613 /* Now we can extract the actual base address from the TTBR */ 9614 descaddr = extract64(ttbr, 0, 48); 9615 descaddr &= ~indexmask; 9616 9617 /* The address field in the descriptor goes up to bit 39 for ARMv7 9618 * but up to bit 47 for ARMv8, but we use the descaddrmask 9619 * up to bit 39 for AArch32, because we don't need other bits in that case 9620 * to construct next descriptor address (anyway they should be all zeroes). 9621 */ 9622 descaddrmask = ((1ull << (aarch64 ? 48 : 40)) - 1) & 9623 ~indexmask_grainsize; 9624 9625 /* Secure accesses start with the page table in secure memory and 9626 * can be downgraded to non-secure at any step. Non-secure accesses 9627 * remain non-secure. We implement this by just ORing in the NSTable/NS 9628 * bits at each step. 9629 */ 9630 tableattrs = regime_is_secure(env, mmu_idx) ? 0 : (1 << 4); 9631 for (;;) { 9632 uint64_t descriptor; 9633 bool nstable; 9634 9635 descaddr |= (address >> (stride * (4 - level))) & indexmask; 9636 descaddr &= ~7ULL; 9637 nstable = extract32(tableattrs, 4, 1); 9638 descriptor = arm_ldq_ptw(cs, descaddr, !nstable, mmu_idx, fi); 9639 if (fi->type != ARMFault_None) { 9640 goto do_fault; 9641 } 9642 9643 if (!(descriptor & 1) || 9644 (!(descriptor & 2) && (level == 3))) { 9645 /* Invalid, or the Reserved level 3 encoding */ 9646 goto do_fault; 9647 } 9648 descaddr = descriptor & descaddrmask; 9649 9650 if ((descriptor & 2) && (level < 3)) { 9651 /* Table entry. The top five bits are attributes which may 9652 * propagate down through lower levels of the table (and 9653 * which are all arranged so that 0 means "no effect", so 9654 * we can gather them up by ORing in the bits at each level). 9655 */ 9656 tableattrs |= extract64(descriptor, 59, 5); 9657 level++; 9658 indexmask = indexmask_grainsize; 9659 continue; 9660 } 9661 /* Block entry at level 1 or 2, or page entry at level 3. 9662 * These are basically the same thing, although the number 9663 * of bits we pull in from the vaddr varies. 9664 */ 9665 page_size = (1ULL << ((stride * (4 - level)) + 3)); 9666 descaddr |= (address & (page_size - 1)); 9667 /* Extract attributes from the descriptor */ 9668 attrs = extract64(descriptor, 2, 10) 9669 | (extract64(descriptor, 52, 12) << 10); 9670 9671 if (mmu_idx == ARMMMUIdx_S2NS) { 9672 /* Stage 2 table descriptors do not include any attribute fields */ 9673 break; 9674 } 9675 /* Merge in attributes from table descriptors */ 9676 attrs |= nstable << 3; /* NS */ 9677 guarded = extract64(descriptor, 50, 1); /* GP */ 9678 if (param.hpd) { 9679 /* HPD disables all the table attributes except NSTable. */ 9680 break; 9681 } 9682 attrs |= extract32(tableattrs, 0, 2) << 11; /* XN, PXN */ 9683 /* The sense of AP[1] vs APTable[0] is reversed, as APTable[0] == 1 9684 * means "force PL1 access only", which means forcing AP[1] to 0. 9685 */ 9686 attrs &= ~(extract32(tableattrs, 2, 1) << 4); /* !APT[0] => AP[1] */ 9687 attrs |= extract32(tableattrs, 3, 1) << 5; /* APT[1] => AP[2] */ 9688 break; 9689 } 9690 /* Here descaddr is the final physical address, and attributes 9691 * are all in attrs. 9692 */ 9693 fault_type = ARMFault_AccessFlag; 9694 if ((attrs & (1 << 8)) == 0) { 9695 /* Access flag */ 9696 goto do_fault; 9697 } 9698 9699 ap = extract32(attrs, 4, 2); 9700 xn = extract32(attrs, 12, 1); 9701 9702 if (mmu_idx == ARMMMUIdx_S2NS) { 9703 ns = true; 9704 *prot = get_S2prot(env, ap, xn); 9705 } else { 9706 ns = extract32(attrs, 3, 1); 9707 pxn = extract32(attrs, 11, 1); 9708 *prot = get_S1prot(env, mmu_idx, aarch64, ap, ns, xn, pxn); 9709 } 9710 9711 fault_type = ARMFault_Permission; 9712 if (!(*prot & (1 << access_type))) { 9713 goto do_fault; 9714 } 9715 9716 if (ns) { 9717 /* The NS bit will (as required by the architecture) have no effect if 9718 * the CPU doesn't support TZ or this is a non-secure translation 9719 * regime, because the attribute will already be non-secure. 9720 */ 9721 txattrs->secure = false; 9722 } 9723 /* When in aarch64 mode, and BTI is enabled, remember GP in the IOTLB. */ 9724 if (aarch64 && guarded && cpu_isar_feature(aa64_bti, cpu)) { 9725 txattrs->target_tlb_bit0 = true; 9726 } 9727 9728 if (cacheattrs != NULL) { 9729 if (mmu_idx == ARMMMUIdx_S2NS) { 9730 cacheattrs->attrs = convert_stage2_attrs(env, 9731 extract32(attrs, 0, 4)); 9732 } else { 9733 /* Index into MAIR registers for cache attributes */ 9734 uint8_t attrindx = extract32(attrs, 0, 3); 9735 uint64_t mair = env->cp15.mair_el[regime_el(env, mmu_idx)]; 9736 assert(attrindx <= 7); 9737 cacheattrs->attrs = extract64(mair, attrindx * 8, 8); 9738 } 9739 cacheattrs->shareability = extract32(attrs, 6, 2); 9740 } 9741 9742 *phys_ptr = descaddr; 9743 *page_size_ptr = page_size; 9744 return false; 9745 9746 do_fault: 9747 fi->type = fault_type; 9748 fi->level = level; 9749 /* Tag the error as S2 for failed S1 PTW at S2 or ordinary S2. */ 9750 fi->stage2 = fi->s1ptw || (mmu_idx == ARMMMUIdx_S2NS); 9751 return true; 9752 } 9753 9754 static inline void get_phys_addr_pmsav7_default(CPUARMState *env, 9755 ARMMMUIdx mmu_idx, 9756 int32_t address, int *prot) 9757 { 9758 if (!arm_feature(env, ARM_FEATURE_M)) { 9759 *prot = PAGE_READ | PAGE_WRITE; 9760 switch (address) { 9761 case 0xF0000000 ... 0xFFFFFFFF: 9762 if (regime_sctlr(env, mmu_idx) & SCTLR_V) { 9763 /* hivecs execing is ok */ 9764 *prot |= PAGE_EXEC; 9765 } 9766 break; 9767 case 0x00000000 ... 0x7FFFFFFF: 9768 *prot |= PAGE_EXEC; 9769 break; 9770 } 9771 } else { 9772 /* Default system address map for M profile cores. 9773 * The architecture specifies which regions are execute-never; 9774 * at the MPU level no other checks are defined. 9775 */ 9776 switch (address) { 9777 case 0x00000000 ... 0x1fffffff: /* ROM */ 9778 case 0x20000000 ... 0x3fffffff: /* SRAM */ 9779 case 0x60000000 ... 0x7fffffff: /* RAM */ 9780 case 0x80000000 ... 0x9fffffff: /* RAM */ 9781 *prot = PAGE_READ | PAGE_WRITE | PAGE_EXEC; 9782 break; 9783 case 0x40000000 ... 0x5fffffff: /* Peripheral */ 9784 case 0xa0000000 ... 0xbfffffff: /* Device */ 9785 case 0xc0000000 ... 0xdfffffff: /* Device */ 9786 case 0xe0000000 ... 0xffffffff: /* System */ 9787 *prot = PAGE_READ | PAGE_WRITE; 9788 break; 9789 default: 9790 g_assert_not_reached(); 9791 } 9792 } 9793 } 9794 9795 static bool pmsav7_use_background_region(ARMCPU *cpu, 9796 ARMMMUIdx mmu_idx, bool is_user) 9797 { 9798 /* Return true if we should use the default memory map as a 9799 * "background" region if there are no hits against any MPU regions. 9800 */ 9801 CPUARMState *env = &cpu->env; 9802 9803 if (is_user) { 9804 return false; 9805 } 9806 9807 if (arm_feature(env, ARM_FEATURE_M)) { 9808 return env->v7m.mpu_ctrl[regime_is_secure(env, mmu_idx)] 9809 & R_V7M_MPU_CTRL_PRIVDEFENA_MASK; 9810 } else { 9811 return regime_sctlr(env, mmu_idx) & SCTLR_BR; 9812 } 9813 } 9814 9815 static inline bool m_is_ppb_region(CPUARMState *env, uint32_t address) 9816 { 9817 /* True if address is in the M profile PPB region 0xe0000000 - 0xe00fffff */ 9818 return arm_feature(env, ARM_FEATURE_M) && 9819 extract32(address, 20, 12) == 0xe00; 9820 } 9821 9822 static inline bool m_is_system_region(CPUARMState *env, uint32_t address) 9823 { 9824 /* True if address is in the M profile system region 9825 * 0xe0000000 - 0xffffffff 9826 */ 9827 return arm_feature(env, ARM_FEATURE_M) && extract32(address, 29, 3) == 0x7; 9828 } 9829 9830 static bool get_phys_addr_pmsav7(CPUARMState *env, uint32_t address, 9831 MMUAccessType access_type, ARMMMUIdx mmu_idx, 9832 hwaddr *phys_ptr, int *prot, 9833 target_ulong *page_size, 9834 ARMMMUFaultInfo *fi) 9835 { 9836 ARMCPU *cpu = env_archcpu(env); 9837 int n; 9838 bool is_user = regime_is_user(env, mmu_idx); 9839 9840 *phys_ptr = address; 9841 *page_size = TARGET_PAGE_SIZE; 9842 *prot = 0; 9843 9844 if (regime_translation_disabled(env, mmu_idx) || 9845 m_is_ppb_region(env, address)) { 9846 /* MPU disabled or M profile PPB access: use default memory map. 9847 * The other case which uses the default memory map in the 9848 * v7M ARM ARM pseudocode is exception vector reads from the vector 9849 * table. In QEMU those accesses are done in arm_v7m_load_vector(), 9850 * which always does a direct read using address_space_ldl(), rather 9851 * than going via this function, so we don't need to check that here. 9852 */ 9853 get_phys_addr_pmsav7_default(env, mmu_idx, address, prot); 9854 } else { /* MPU enabled */ 9855 for (n = (int)cpu->pmsav7_dregion - 1; n >= 0; n--) { 9856 /* region search */ 9857 uint32_t base = env->pmsav7.drbar[n]; 9858 uint32_t rsize = extract32(env->pmsav7.drsr[n], 1, 5); 9859 uint32_t rmask; 9860 bool srdis = false; 9861 9862 if (!(env->pmsav7.drsr[n] & 0x1)) { 9863 continue; 9864 } 9865 9866 if (!rsize) { 9867 qemu_log_mask(LOG_GUEST_ERROR, 9868 "DRSR[%d]: Rsize field cannot be 0\n", n); 9869 continue; 9870 } 9871 rsize++; 9872 rmask = (1ull << rsize) - 1; 9873 9874 if (base & rmask) { 9875 qemu_log_mask(LOG_GUEST_ERROR, 9876 "DRBAR[%d]: 0x%" PRIx32 " misaligned " 9877 "to DRSR region size, mask = 0x%" PRIx32 "\n", 9878 n, base, rmask); 9879 continue; 9880 } 9881 9882 if (address < base || address > base + rmask) { 9883 /* 9884 * Address not in this region. We must check whether the 9885 * region covers addresses in the same page as our address. 9886 * In that case we must not report a size that covers the 9887 * whole page for a subsequent hit against a different MPU 9888 * region or the background region, because it would result in 9889 * incorrect TLB hits for subsequent accesses to addresses that 9890 * are in this MPU region. 9891 */ 9892 if (ranges_overlap(base, rmask, 9893 address & TARGET_PAGE_MASK, 9894 TARGET_PAGE_SIZE)) { 9895 *page_size = 1; 9896 } 9897 continue; 9898 } 9899 9900 /* Region matched */ 9901 9902 if (rsize >= 8) { /* no subregions for regions < 256 bytes */ 9903 int i, snd; 9904 uint32_t srdis_mask; 9905 9906 rsize -= 3; /* sub region size (power of 2) */ 9907 snd = ((address - base) >> rsize) & 0x7; 9908 srdis = extract32(env->pmsav7.drsr[n], snd + 8, 1); 9909 9910 srdis_mask = srdis ? 0x3 : 0x0; 9911 for (i = 2; i <= 8 && rsize < TARGET_PAGE_BITS; i *= 2) { 9912 /* This will check in groups of 2, 4 and then 8, whether 9913 * the subregion bits are consistent. rsize is incremented 9914 * back up to give the region size, considering consistent 9915 * adjacent subregions as one region. Stop testing if rsize 9916 * is already big enough for an entire QEMU page. 9917 */ 9918 int snd_rounded = snd & ~(i - 1); 9919 uint32_t srdis_multi = extract32(env->pmsav7.drsr[n], 9920 snd_rounded + 8, i); 9921 if (srdis_mask ^ srdis_multi) { 9922 break; 9923 } 9924 srdis_mask = (srdis_mask << i) | srdis_mask; 9925 rsize++; 9926 } 9927 } 9928 if (srdis) { 9929 continue; 9930 } 9931 if (rsize < TARGET_PAGE_BITS) { 9932 *page_size = 1 << rsize; 9933 } 9934 break; 9935 } 9936 9937 if (n == -1) { /* no hits */ 9938 if (!pmsav7_use_background_region(cpu, mmu_idx, is_user)) { 9939 /* background fault */ 9940 fi->type = ARMFault_Background; 9941 return true; 9942 } 9943 get_phys_addr_pmsav7_default(env, mmu_idx, address, prot); 9944 } else { /* a MPU hit! */ 9945 uint32_t ap = extract32(env->pmsav7.dracr[n], 8, 3); 9946 uint32_t xn = extract32(env->pmsav7.dracr[n], 12, 1); 9947 9948 if (m_is_system_region(env, address)) { 9949 /* System space is always execute never */ 9950 xn = 1; 9951 } 9952 9953 if (is_user) { /* User mode AP bit decoding */ 9954 switch (ap) { 9955 case 0: 9956 case 1: 9957 case 5: 9958 break; /* no access */ 9959 case 3: 9960 *prot |= PAGE_WRITE; 9961 /* fall through */ 9962 case 2: 9963 case 6: 9964 *prot |= PAGE_READ | PAGE_EXEC; 9965 break; 9966 case 7: 9967 /* for v7M, same as 6; for R profile a reserved value */ 9968 if (arm_feature(env, ARM_FEATURE_M)) { 9969 *prot |= PAGE_READ | PAGE_EXEC; 9970 break; 9971 } 9972 /* fall through */ 9973 default: 9974 qemu_log_mask(LOG_GUEST_ERROR, 9975 "DRACR[%d]: Bad value for AP bits: 0x%" 9976 PRIx32 "\n", n, ap); 9977 } 9978 } else { /* Priv. mode AP bits decoding */ 9979 switch (ap) { 9980 case 0: 9981 break; /* no access */ 9982 case 1: 9983 case 2: 9984 case 3: 9985 *prot |= PAGE_WRITE; 9986 /* fall through */ 9987 case 5: 9988 case 6: 9989 *prot |= PAGE_READ | PAGE_EXEC; 9990 break; 9991 case 7: 9992 /* for v7M, same as 6; for R profile a reserved value */ 9993 if (arm_feature(env, ARM_FEATURE_M)) { 9994 *prot |= PAGE_READ | PAGE_EXEC; 9995 break; 9996 } 9997 /* fall through */ 9998 default: 9999 qemu_log_mask(LOG_GUEST_ERROR, 10000 "DRACR[%d]: Bad value for AP bits: 0x%" 10001 PRIx32 "\n", n, ap); 10002 } 10003 } 10004 10005 /* execute never */ 10006 if (xn) { 10007 *prot &= ~PAGE_EXEC; 10008 } 10009 } 10010 } 10011 10012 fi->type = ARMFault_Permission; 10013 fi->level = 1; 10014 return !(*prot & (1 << access_type)); 10015 } 10016 10017 static bool v8m_is_sau_exempt(CPUARMState *env, 10018 uint32_t address, MMUAccessType access_type) 10019 { 10020 /* The architecture specifies that certain address ranges are 10021 * exempt from v8M SAU/IDAU checks. 10022 */ 10023 return 10024 (access_type == MMU_INST_FETCH && m_is_system_region(env, address)) || 10025 (address >= 0xe0000000 && address <= 0xe0002fff) || 10026 (address >= 0xe000e000 && address <= 0xe000efff) || 10027 (address >= 0xe002e000 && address <= 0xe002efff) || 10028 (address >= 0xe0040000 && address <= 0xe0041fff) || 10029 (address >= 0xe00ff000 && address <= 0xe00fffff); 10030 } 10031 10032 void v8m_security_lookup(CPUARMState *env, uint32_t address, 10033 MMUAccessType access_type, ARMMMUIdx mmu_idx, 10034 V8M_SAttributes *sattrs) 10035 { 10036 /* Look up the security attributes for this address. Compare the 10037 * pseudocode SecurityCheck() function. 10038 * We assume the caller has zero-initialized *sattrs. 10039 */ 10040 ARMCPU *cpu = env_archcpu(env); 10041 int r; 10042 bool idau_exempt = false, idau_ns = true, idau_nsc = true; 10043 int idau_region = IREGION_NOTVALID; 10044 uint32_t addr_page_base = address & TARGET_PAGE_MASK; 10045 uint32_t addr_page_limit = addr_page_base + (TARGET_PAGE_SIZE - 1); 10046 10047 if (cpu->idau) { 10048 IDAUInterfaceClass *iic = IDAU_INTERFACE_GET_CLASS(cpu->idau); 10049 IDAUInterface *ii = IDAU_INTERFACE(cpu->idau); 10050 10051 iic->check(ii, address, &idau_region, &idau_exempt, &idau_ns, 10052 &idau_nsc); 10053 } 10054 10055 if (access_type == MMU_INST_FETCH && extract32(address, 28, 4) == 0xf) { 10056 /* 0xf0000000..0xffffffff is always S for insn fetches */ 10057 return; 10058 } 10059 10060 if (idau_exempt || v8m_is_sau_exempt(env, address, access_type)) { 10061 sattrs->ns = !regime_is_secure(env, mmu_idx); 10062 return; 10063 } 10064 10065 if (idau_region != IREGION_NOTVALID) { 10066 sattrs->irvalid = true; 10067 sattrs->iregion = idau_region; 10068 } 10069 10070 switch (env->sau.ctrl & 3) { 10071 case 0: /* SAU.ENABLE == 0, SAU.ALLNS == 0 */ 10072 break; 10073 case 2: /* SAU.ENABLE == 0, SAU.ALLNS == 1 */ 10074 sattrs->ns = true; 10075 break; 10076 default: /* SAU.ENABLE == 1 */ 10077 for (r = 0; r < cpu->sau_sregion; r++) { 10078 if (env->sau.rlar[r] & 1) { 10079 uint32_t base = env->sau.rbar[r] & ~0x1f; 10080 uint32_t limit = env->sau.rlar[r] | 0x1f; 10081 10082 if (base <= address && limit >= address) { 10083 if (base > addr_page_base || limit < addr_page_limit) { 10084 sattrs->subpage = true; 10085 } 10086 if (sattrs->srvalid) { 10087 /* If we hit in more than one region then we must report 10088 * as Secure, not NS-Callable, with no valid region 10089 * number info. 10090 */ 10091 sattrs->ns = false; 10092 sattrs->nsc = false; 10093 sattrs->sregion = 0; 10094 sattrs->srvalid = false; 10095 break; 10096 } else { 10097 if (env->sau.rlar[r] & 2) { 10098 sattrs->nsc = true; 10099 } else { 10100 sattrs->ns = true; 10101 } 10102 sattrs->srvalid = true; 10103 sattrs->sregion = r; 10104 } 10105 } else { 10106 /* 10107 * Address not in this region. We must check whether the 10108 * region covers addresses in the same page as our address. 10109 * In that case we must not report a size that covers the 10110 * whole page for a subsequent hit against a different MPU 10111 * region or the background region, because it would result 10112 * in incorrect TLB hits for subsequent accesses to 10113 * addresses that are in this MPU region. 10114 */ 10115 if (limit >= base && 10116 ranges_overlap(base, limit - base + 1, 10117 addr_page_base, 10118 TARGET_PAGE_SIZE)) { 10119 sattrs->subpage = true; 10120 } 10121 } 10122 } 10123 } 10124 break; 10125 } 10126 10127 /* 10128 * The IDAU will override the SAU lookup results if it specifies 10129 * higher security than the SAU does. 10130 */ 10131 if (!idau_ns) { 10132 if (sattrs->ns || (!idau_nsc && sattrs->nsc)) { 10133 sattrs->ns = false; 10134 sattrs->nsc = idau_nsc; 10135 } 10136 } 10137 } 10138 10139 bool pmsav8_mpu_lookup(CPUARMState *env, uint32_t address, 10140 MMUAccessType access_type, ARMMMUIdx mmu_idx, 10141 hwaddr *phys_ptr, MemTxAttrs *txattrs, 10142 int *prot, bool *is_subpage, 10143 ARMMMUFaultInfo *fi, uint32_t *mregion) 10144 { 10145 /* Perform a PMSAv8 MPU lookup (without also doing the SAU check 10146 * that a full phys-to-virt translation does). 10147 * mregion is (if not NULL) set to the region number which matched, 10148 * or -1 if no region number is returned (MPU off, address did not 10149 * hit a region, address hit in multiple regions). 10150 * We set is_subpage to true if the region hit doesn't cover the 10151 * entire TARGET_PAGE the address is within. 10152 */ 10153 ARMCPU *cpu = env_archcpu(env); 10154 bool is_user = regime_is_user(env, mmu_idx); 10155 uint32_t secure = regime_is_secure(env, mmu_idx); 10156 int n; 10157 int matchregion = -1; 10158 bool hit = false; 10159 uint32_t addr_page_base = address & TARGET_PAGE_MASK; 10160 uint32_t addr_page_limit = addr_page_base + (TARGET_PAGE_SIZE - 1); 10161 10162 *is_subpage = false; 10163 *phys_ptr = address; 10164 *prot = 0; 10165 if (mregion) { 10166 *mregion = -1; 10167 } 10168 10169 /* Unlike the ARM ARM pseudocode, we don't need to check whether this 10170 * was an exception vector read from the vector table (which is always 10171 * done using the default system address map), because those accesses 10172 * are done in arm_v7m_load_vector(), which always does a direct 10173 * read using address_space_ldl(), rather than going via this function. 10174 */ 10175 if (regime_translation_disabled(env, mmu_idx)) { /* MPU disabled */ 10176 hit = true; 10177 } else if (m_is_ppb_region(env, address)) { 10178 hit = true; 10179 } else { 10180 if (pmsav7_use_background_region(cpu, mmu_idx, is_user)) { 10181 hit = true; 10182 } 10183 10184 for (n = (int)cpu->pmsav7_dregion - 1; n >= 0; n--) { 10185 /* region search */ 10186 /* Note that the base address is bits [31:5] from the register 10187 * with bits [4:0] all zeroes, but the limit address is bits 10188 * [31:5] from the register with bits [4:0] all ones. 10189 */ 10190 uint32_t base = env->pmsav8.rbar[secure][n] & ~0x1f; 10191 uint32_t limit = env->pmsav8.rlar[secure][n] | 0x1f; 10192 10193 if (!(env->pmsav8.rlar[secure][n] & 0x1)) { 10194 /* Region disabled */ 10195 continue; 10196 } 10197 10198 if (address < base || address > limit) { 10199 /* 10200 * Address not in this region. We must check whether the 10201 * region covers addresses in the same page as our address. 10202 * In that case we must not report a size that covers the 10203 * whole page for a subsequent hit against a different MPU 10204 * region or the background region, because it would result in 10205 * incorrect TLB hits for subsequent accesses to addresses that 10206 * are in this MPU region. 10207 */ 10208 if (limit >= base && 10209 ranges_overlap(base, limit - base + 1, 10210 addr_page_base, 10211 TARGET_PAGE_SIZE)) { 10212 *is_subpage = true; 10213 } 10214 continue; 10215 } 10216 10217 if (base > addr_page_base || limit < addr_page_limit) { 10218 *is_subpage = true; 10219 } 10220 10221 if (matchregion != -1) { 10222 /* Multiple regions match -- always a failure (unlike 10223 * PMSAv7 where highest-numbered-region wins) 10224 */ 10225 fi->type = ARMFault_Permission; 10226 fi->level = 1; 10227 return true; 10228 } 10229 10230 matchregion = n; 10231 hit = true; 10232 } 10233 } 10234 10235 if (!hit) { 10236 /* background fault */ 10237 fi->type = ARMFault_Background; 10238 return true; 10239 } 10240 10241 if (matchregion == -1) { 10242 /* hit using the background region */ 10243 get_phys_addr_pmsav7_default(env, mmu_idx, address, prot); 10244 } else { 10245 uint32_t ap = extract32(env->pmsav8.rbar[secure][matchregion], 1, 2); 10246 uint32_t xn = extract32(env->pmsav8.rbar[secure][matchregion], 0, 1); 10247 10248 if (m_is_system_region(env, address)) { 10249 /* System space is always execute never */ 10250 xn = 1; 10251 } 10252 10253 *prot = simple_ap_to_rw_prot(env, mmu_idx, ap); 10254 if (*prot && !xn) { 10255 *prot |= PAGE_EXEC; 10256 } 10257 /* We don't need to look the attribute up in the MAIR0/MAIR1 10258 * registers because that only tells us about cacheability. 10259 */ 10260 if (mregion) { 10261 *mregion = matchregion; 10262 } 10263 } 10264 10265 fi->type = ARMFault_Permission; 10266 fi->level = 1; 10267 return !(*prot & (1 << access_type)); 10268 } 10269 10270 10271 static bool get_phys_addr_pmsav8(CPUARMState *env, uint32_t address, 10272 MMUAccessType access_type, ARMMMUIdx mmu_idx, 10273 hwaddr *phys_ptr, MemTxAttrs *txattrs, 10274 int *prot, target_ulong *page_size, 10275 ARMMMUFaultInfo *fi) 10276 { 10277 uint32_t secure = regime_is_secure(env, mmu_idx); 10278 V8M_SAttributes sattrs = {}; 10279 bool ret; 10280 bool mpu_is_subpage; 10281 10282 if (arm_feature(env, ARM_FEATURE_M_SECURITY)) { 10283 v8m_security_lookup(env, address, access_type, mmu_idx, &sattrs); 10284 if (access_type == MMU_INST_FETCH) { 10285 /* Instruction fetches always use the MMU bank and the 10286 * transaction attribute determined by the fetch address, 10287 * regardless of CPU state. This is painful for QEMU 10288 * to handle, because it would mean we need to encode 10289 * into the mmu_idx not just the (user, negpri) information 10290 * for the current security state but also that for the 10291 * other security state, which would balloon the number 10292 * of mmu_idx values needed alarmingly. 10293 * Fortunately we can avoid this because it's not actually 10294 * possible to arbitrarily execute code from memory with 10295 * the wrong security attribute: it will always generate 10296 * an exception of some kind or another, apart from the 10297 * special case of an NS CPU executing an SG instruction 10298 * in S&NSC memory. So we always just fail the translation 10299 * here and sort things out in the exception handler 10300 * (including possibly emulating an SG instruction). 10301 */ 10302 if (sattrs.ns != !secure) { 10303 if (sattrs.nsc) { 10304 fi->type = ARMFault_QEMU_NSCExec; 10305 } else { 10306 fi->type = ARMFault_QEMU_SFault; 10307 } 10308 *page_size = sattrs.subpage ? 1 : TARGET_PAGE_SIZE; 10309 *phys_ptr = address; 10310 *prot = 0; 10311 return true; 10312 } 10313 } else { 10314 /* For data accesses we always use the MMU bank indicated 10315 * by the current CPU state, but the security attributes 10316 * might downgrade a secure access to nonsecure. 10317 */ 10318 if (sattrs.ns) { 10319 txattrs->secure = false; 10320 } else if (!secure) { 10321 /* NS access to S memory must fault. 10322 * Architecturally we should first check whether the 10323 * MPU information for this address indicates that we 10324 * are doing an unaligned access to Device memory, which 10325 * should generate a UsageFault instead. QEMU does not 10326 * currently check for that kind of unaligned access though. 10327 * If we added it we would need to do so as a special case 10328 * for M_FAKE_FSR_SFAULT in arm_v7m_cpu_do_interrupt(). 10329 */ 10330 fi->type = ARMFault_QEMU_SFault; 10331 *page_size = sattrs.subpage ? 1 : TARGET_PAGE_SIZE; 10332 *phys_ptr = address; 10333 *prot = 0; 10334 return true; 10335 } 10336 } 10337 } 10338 10339 ret = pmsav8_mpu_lookup(env, address, access_type, mmu_idx, phys_ptr, 10340 txattrs, prot, &mpu_is_subpage, fi, NULL); 10341 *page_size = sattrs.subpage || mpu_is_subpage ? 1 : TARGET_PAGE_SIZE; 10342 return ret; 10343 } 10344 10345 static bool get_phys_addr_pmsav5(CPUARMState *env, uint32_t address, 10346 MMUAccessType access_type, ARMMMUIdx mmu_idx, 10347 hwaddr *phys_ptr, int *prot, 10348 ARMMMUFaultInfo *fi) 10349 { 10350 int n; 10351 uint32_t mask; 10352 uint32_t base; 10353 bool is_user = regime_is_user(env, mmu_idx); 10354 10355 if (regime_translation_disabled(env, mmu_idx)) { 10356 /* MPU disabled. */ 10357 *phys_ptr = address; 10358 *prot = PAGE_READ | PAGE_WRITE | PAGE_EXEC; 10359 return false; 10360 } 10361 10362 *phys_ptr = address; 10363 for (n = 7; n >= 0; n--) { 10364 base = env->cp15.c6_region[n]; 10365 if ((base & 1) == 0) { 10366 continue; 10367 } 10368 mask = 1 << ((base >> 1) & 0x1f); 10369 /* Keep this shift separate from the above to avoid an 10370 (undefined) << 32. */ 10371 mask = (mask << 1) - 1; 10372 if (((base ^ address) & ~mask) == 0) { 10373 break; 10374 } 10375 } 10376 if (n < 0) { 10377 fi->type = ARMFault_Background; 10378 return true; 10379 } 10380 10381 if (access_type == MMU_INST_FETCH) { 10382 mask = env->cp15.pmsav5_insn_ap; 10383 } else { 10384 mask = env->cp15.pmsav5_data_ap; 10385 } 10386 mask = (mask >> (n * 4)) & 0xf; 10387 switch (mask) { 10388 case 0: 10389 fi->type = ARMFault_Permission; 10390 fi->level = 1; 10391 return true; 10392 case 1: 10393 if (is_user) { 10394 fi->type = ARMFault_Permission; 10395 fi->level = 1; 10396 return true; 10397 } 10398 *prot = PAGE_READ | PAGE_WRITE; 10399 break; 10400 case 2: 10401 *prot = PAGE_READ; 10402 if (!is_user) { 10403 *prot |= PAGE_WRITE; 10404 } 10405 break; 10406 case 3: 10407 *prot = PAGE_READ | PAGE_WRITE; 10408 break; 10409 case 5: 10410 if (is_user) { 10411 fi->type = ARMFault_Permission; 10412 fi->level = 1; 10413 return true; 10414 } 10415 *prot = PAGE_READ; 10416 break; 10417 case 6: 10418 *prot = PAGE_READ; 10419 break; 10420 default: 10421 /* Bad permission. */ 10422 fi->type = ARMFault_Permission; 10423 fi->level = 1; 10424 return true; 10425 } 10426 *prot |= PAGE_EXEC; 10427 return false; 10428 } 10429 10430 /* Combine either inner or outer cacheability attributes for normal 10431 * memory, according to table D4-42 and pseudocode procedure 10432 * CombineS1S2AttrHints() of ARM DDI 0487B.b (the ARMv8 ARM). 10433 * 10434 * NB: only stage 1 includes allocation hints (RW bits), leading to 10435 * some asymmetry. 10436 */ 10437 static uint8_t combine_cacheattr_nibble(uint8_t s1, uint8_t s2) 10438 { 10439 if (s1 == 4 || s2 == 4) { 10440 /* non-cacheable has precedence */ 10441 return 4; 10442 } else if (extract32(s1, 2, 2) == 0 || extract32(s1, 2, 2) == 2) { 10443 /* stage 1 write-through takes precedence */ 10444 return s1; 10445 } else if (extract32(s2, 2, 2) == 2) { 10446 /* stage 2 write-through takes precedence, but the allocation hint 10447 * is still taken from stage 1 10448 */ 10449 return (2 << 2) | extract32(s1, 0, 2); 10450 } else { /* write-back */ 10451 return s1; 10452 } 10453 } 10454 10455 /* Combine S1 and S2 cacheability/shareability attributes, per D4.5.4 10456 * and CombineS1S2Desc() 10457 * 10458 * @s1: Attributes from stage 1 walk 10459 * @s2: Attributes from stage 2 walk 10460 */ 10461 static ARMCacheAttrs combine_cacheattrs(ARMCacheAttrs s1, ARMCacheAttrs s2) 10462 { 10463 uint8_t s1lo = extract32(s1.attrs, 0, 4), s2lo = extract32(s2.attrs, 0, 4); 10464 uint8_t s1hi = extract32(s1.attrs, 4, 4), s2hi = extract32(s2.attrs, 4, 4); 10465 ARMCacheAttrs ret; 10466 10467 /* Combine shareability attributes (table D4-43) */ 10468 if (s1.shareability == 2 || s2.shareability == 2) { 10469 /* if either are outer-shareable, the result is outer-shareable */ 10470 ret.shareability = 2; 10471 } else if (s1.shareability == 3 || s2.shareability == 3) { 10472 /* if either are inner-shareable, the result is inner-shareable */ 10473 ret.shareability = 3; 10474 } else { 10475 /* both non-shareable */ 10476 ret.shareability = 0; 10477 } 10478 10479 /* Combine memory type and cacheability attributes */ 10480 if (s1hi == 0 || s2hi == 0) { 10481 /* Device has precedence over normal */ 10482 if (s1lo == 0 || s2lo == 0) { 10483 /* nGnRnE has precedence over anything */ 10484 ret.attrs = 0; 10485 } else if (s1lo == 4 || s2lo == 4) { 10486 /* non-Reordering has precedence over Reordering */ 10487 ret.attrs = 4; /* nGnRE */ 10488 } else if (s1lo == 8 || s2lo == 8) { 10489 /* non-Gathering has precedence over Gathering */ 10490 ret.attrs = 8; /* nGRE */ 10491 } else { 10492 ret.attrs = 0xc; /* GRE */ 10493 } 10494 10495 /* Any location for which the resultant memory type is any 10496 * type of Device memory is always treated as Outer Shareable. 10497 */ 10498 ret.shareability = 2; 10499 } else { /* Normal memory */ 10500 /* Outer/inner cacheability combine independently */ 10501 ret.attrs = combine_cacheattr_nibble(s1hi, s2hi) << 4 10502 | combine_cacheattr_nibble(s1lo, s2lo); 10503 10504 if (ret.attrs == 0x44) { 10505 /* Any location for which the resultant memory type is Normal 10506 * Inner Non-cacheable, Outer Non-cacheable is always treated 10507 * as Outer Shareable. 10508 */ 10509 ret.shareability = 2; 10510 } 10511 } 10512 10513 return ret; 10514 } 10515 10516 10517 /* get_phys_addr - get the physical address for this virtual address 10518 * 10519 * Find the physical address corresponding to the given virtual address, 10520 * by doing a translation table walk on MMU based systems or using the 10521 * MPU state on MPU based systems. 10522 * 10523 * Returns false if the translation was successful. Otherwise, phys_ptr, attrs, 10524 * prot and page_size may not be filled in, and the populated fsr value provides 10525 * information on why the translation aborted, in the format of a 10526 * DFSR/IFSR fault register, with the following caveats: 10527 * * we honour the short vs long DFSR format differences. 10528 * * the WnR bit is never set (the caller must do this). 10529 * * for PSMAv5 based systems we don't bother to return a full FSR format 10530 * value. 10531 * 10532 * @env: CPUARMState 10533 * @address: virtual address to get physical address for 10534 * @access_type: 0 for read, 1 for write, 2 for execute 10535 * @mmu_idx: MMU index indicating required translation regime 10536 * @phys_ptr: set to the physical address corresponding to the virtual address 10537 * @attrs: set to the memory transaction attributes to use 10538 * @prot: set to the permissions for the page containing phys_ptr 10539 * @page_size: set to the size of the page containing phys_ptr 10540 * @fi: set to fault info if the translation fails 10541 * @cacheattrs: (if non-NULL) set to the cacheability/shareability attributes 10542 */ 10543 bool get_phys_addr(CPUARMState *env, target_ulong address, 10544 MMUAccessType access_type, ARMMMUIdx mmu_idx, 10545 hwaddr *phys_ptr, MemTxAttrs *attrs, int *prot, 10546 target_ulong *page_size, 10547 ARMMMUFaultInfo *fi, ARMCacheAttrs *cacheattrs) 10548 { 10549 if (mmu_idx == ARMMMUIdx_S12NSE0 || mmu_idx == ARMMMUIdx_S12NSE1) { 10550 /* Call ourselves recursively to do the stage 1 and then stage 2 10551 * translations. 10552 */ 10553 if (arm_feature(env, ARM_FEATURE_EL2)) { 10554 hwaddr ipa; 10555 int s2_prot; 10556 int ret; 10557 ARMCacheAttrs cacheattrs2 = {}; 10558 10559 ret = get_phys_addr(env, address, access_type, 10560 stage_1_mmu_idx(mmu_idx), &ipa, attrs, 10561 prot, page_size, fi, cacheattrs); 10562 10563 /* If S1 fails or S2 is disabled, return early. */ 10564 if (ret || regime_translation_disabled(env, ARMMMUIdx_S2NS)) { 10565 *phys_ptr = ipa; 10566 return ret; 10567 } 10568 10569 /* S1 is done. Now do S2 translation. */ 10570 ret = get_phys_addr_lpae(env, ipa, access_type, ARMMMUIdx_S2NS, 10571 phys_ptr, attrs, &s2_prot, 10572 page_size, fi, 10573 cacheattrs != NULL ? &cacheattrs2 : NULL); 10574 fi->s2addr = ipa; 10575 /* Combine the S1 and S2 perms. */ 10576 *prot &= s2_prot; 10577 10578 /* Combine the S1 and S2 cache attributes, if needed */ 10579 if (!ret && cacheattrs != NULL) { 10580 if (env->cp15.hcr_el2 & HCR_DC) { 10581 /* 10582 * HCR.DC forces the first stage attributes to 10583 * Normal Non-Shareable, 10584 * Inner Write-Back Read-Allocate Write-Allocate, 10585 * Outer Write-Back Read-Allocate Write-Allocate. 10586 */ 10587 cacheattrs->attrs = 0xff; 10588 cacheattrs->shareability = 0; 10589 } 10590 *cacheattrs = combine_cacheattrs(*cacheattrs, cacheattrs2); 10591 } 10592 10593 return ret; 10594 } else { 10595 /* 10596 * For non-EL2 CPUs a stage1+stage2 translation is just stage 1. 10597 */ 10598 mmu_idx = stage_1_mmu_idx(mmu_idx); 10599 } 10600 } 10601 10602 /* The page table entries may downgrade secure to non-secure, but 10603 * cannot upgrade an non-secure translation regime's attributes 10604 * to secure. 10605 */ 10606 attrs->secure = regime_is_secure(env, mmu_idx); 10607 attrs->user = regime_is_user(env, mmu_idx); 10608 10609 /* Fast Context Switch Extension. This doesn't exist at all in v8. 10610 * In v7 and earlier it affects all stage 1 translations. 10611 */ 10612 if (address < 0x02000000 && mmu_idx != ARMMMUIdx_S2NS 10613 && !arm_feature(env, ARM_FEATURE_V8)) { 10614 if (regime_el(env, mmu_idx) == 3) { 10615 address += env->cp15.fcseidr_s; 10616 } else { 10617 address += env->cp15.fcseidr_ns; 10618 } 10619 } 10620 10621 if (arm_feature(env, ARM_FEATURE_PMSA)) { 10622 bool ret; 10623 *page_size = TARGET_PAGE_SIZE; 10624 10625 if (arm_feature(env, ARM_FEATURE_V8)) { 10626 /* PMSAv8 */ 10627 ret = get_phys_addr_pmsav8(env, address, access_type, mmu_idx, 10628 phys_ptr, attrs, prot, page_size, fi); 10629 } else if (arm_feature(env, ARM_FEATURE_V7)) { 10630 /* PMSAv7 */ 10631 ret = get_phys_addr_pmsav7(env, address, access_type, mmu_idx, 10632 phys_ptr, prot, page_size, fi); 10633 } else { 10634 /* Pre-v7 MPU */ 10635 ret = get_phys_addr_pmsav5(env, address, access_type, mmu_idx, 10636 phys_ptr, prot, fi); 10637 } 10638 qemu_log_mask(CPU_LOG_MMU, "PMSA MPU lookup for %s at 0x%08" PRIx32 10639 " mmu_idx %u -> %s (prot %c%c%c)\n", 10640 access_type == MMU_DATA_LOAD ? "reading" : 10641 (access_type == MMU_DATA_STORE ? "writing" : "execute"), 10642 (uint32_t)address, mmu_idx, 10643 ret ? "Miss" : "Hit", 10644 *prot & PAGE_READ ? 'r' : '-', 10645 *prot & PAGE_WRITE ? 'w' : '-', 10646 *prot & PAGE_EXEC ? 'x' : '-'); 10647 10648 return ret; 10649 } 10650 10651 /* Definitely a real MMU, not an MPU */ 10652 10653 if (regime_translation_disabled(env, mmu_idx)) { 10654 /* MMU disabled. */ 10655 *phys_ptr = address; 10656 *prot = PAGE_READ | PAGE_WRITE | PAGE_EXEC; 10657 *page_size = TARGET_PAGE_SIZE; 10658 return 0; 10659 } 10660 10661 if (regime_using_lpae_format(env, mmu_idx)) { 10662 return get_phys_addr_lpae(env, address, access_type, mmu_idx, 10663 phys_ptr, attrs, prot, page_size, 10664 fi, cacheattrs); 10665 } else if (regime_sctlr(env, mmu_idx) & SCTLR_XP) { 10666 return get_phys_addr_v6(env, address, access_type, mmu_idx, 10667 phys_ptr, attrs, prot, page_size, fi); 10668 } else { 10669 return get_phys_addr_v5(env, address, access_type, mmu_idx, 10670 phys_ptr, prot, page_size, fi); 10671 } 10672 } 10673 10674 hwaddr arm_cpu_get_phys_page_attrs_debug(CPUState *cs, vaddr addr, 10675 MemTxAttrs *attrs) 10676 { 10677 ARMCPU *cpu = ARM_CPU(cs); 10678 CPUARMState *env = &cpu->env; 10679 hwaddr phys_addr; 10680 target_ulong page_size; 10681 int prot; 10682 bool ret; 10683 ARMMMUFaultInfo fi = {}; 10684 ARMMMUIdx mmu_idx = arm_mmu_idx(env); 10685 10686 *attrs = (MemTxAttrs) {}; 10687 10688 ret = get_phys_addr(env, addr, 0, mmu_idx, &phys_addr, 10689 attrs, &prot, &page_size, &fi, NULL); 10690 10691 if (ret) { 10692 return -1; 10693 } 10694 return phys_addr; 10695 } 10696 10697 #endif 10698 10699 /* Note that signed overflow is undefined in C. The following routines are 10700 careful to use unsigned types where modulo arithmetic is required. 10701 Failure to do so _will_ break on newer gcc. */ 10702 10703 /* Signed saturating arithmetic. */ 10704 10705 /* Perform 16-bit signed saturating addition. */ 10706 static inline uint16_t add16_sat(uint16_t a, uint16_t b) 10707 { 10708 uint16_t res; 10709 10710 res = a + b; 10711 if (((res ^ a) & 0x8000) && !((a ^ b) & 0x8000)) { 10712 if (a & 0x8000) 10713 res = 0x8000; 10714 else 10715 res = 0x7fff; 10716 } 10717 return res; 10718 } 10719 10720 /* Perform 8-bit signed saturating addition. */ 10721 static inline uint8_t add8_sat(uint8_t a, uint8_t b) 10722 { 10723 uint8_t res; 10724 10725 res = a + b; 10726 if (((res ^ a) & 0x80) && !((a ^ b) & 0x80)) { 10727 if (a & 0x80) 10728 res = 0x80; 10729 else 10730 res = 0x7f; 10731 } 10732 return res; 10733 } 10734 10735 /* Perform 16-bit signed saturating subtraction. */ 10736 static inline uint16_t sub16_sat(uint16_t a, uint16_t b) 10737 { 10738 uint16_t res; 10739 10740 res = a - b; 10741 if (((res ^ a) & 0x8000) && ((a ^ b) & 0x8000)) { 10742 if (a & 0x8000) 10743 res = 0x8000; 10744 else 10745 res = 0x7fff; 10746 } 10747 return res; 10748 } 10749 10750 /* Perform 8-bit signed saturating subtraction. */ 10751 static inline uint8_t sub8_sat(uint8_t a, uint8_t b) 10752 { 10753 uint8_t res; 10754 10755 res = a - b; 10756 if (((res ^ a) & 0x80) && ((a ^ b) & 0x80)) { 10757 if (a & 0x80) 10758 res = 0x80; 10759 else 10760 res = 0x7f; 10761 } 10762 return res; 10763 } 10764 10765 #define ADD16(a, b, n) RESULT(add16_sat(a, b), n, 16); 10766 #define SUB16(a, b, n) RESULT(sub16_sat(a, b), n, 16); 10767 #define ADD8(a, b, n) RESULT(add8_sat(a, b), n, 8); 10768 #define SUB8(a, b, n) RESULT(sub8_sat(a, b), n, 8); 10769 #define PFX q 10770 10771 #include "op_addsub.h" 10772 10773 /* Unsigned saturating arithmetic. */ 10774 static inline uint16_t add16_usat(uint16_t a, uint16_t b) 10775 { 10776 uint16_t res; 10777 res = a + b; 10778 if (res < a) 10779 res = 0xffff; 10780 return res; 10781 } 10782 10783 static inline uint16_t sub16_usat(uint16_t a, uint16_t b) 10784 { 10785 if (a > b) 10786 return a - b; 10787 else 10788 return 0; 10789 } 10790 10791 static inline uint8_t add8_usat(uint8_t a, uint8_t b) 10792 { 10793 uint8_t res; 10794 res = a + b; 10795 if (res < a) 10796 res = 0xff; 10797 return res; 10798 } 10799 10800 static inline uint8_t sub8_usat(uint8_t a, uint8_t b) 10801 { 10802 if (a > b) 10803 return a - b; 10804 else 10805 return 0; 10806 } 10807 10808 #define ADD16(a, b, n) RESULT(add16_usat(a, b), n, 16); 10809 #define SUB16(a, b, n) RESULT(sub16_usat(a, b), n, 16); 10810 #define ADD8(a, b, n) RESULT(add8_usat(a, b), n, 8); 10811 #define SUB8(a, b, n) RESULT(sub8_usat(a, b), n, 8); 10812 #define PFX uq 10813 10814 #include "op_addsub.h" 10815 10816 /* Signed modulo arithmetic. */ 10817 #define SARITH16(a, b, n, op) do { \ 10818 int32_t sum; \ 10819 sum = (int32_t)(int16_t)(a) op (int32_t)(int16_t)(b); \ 10820 RESULT(sum, n, 16); \ 10821 if (sum >= 0) \ 10822 ge |= 3 << (n * 2); \ 10823 } while(0) 10824 10825 #define SARITH8(a, b, n, op) do { \ 10826 int32_t sum; \ 10827 sum = (int32_t)(int8_t)(a) op (int32_t)(int8_t)(b); \ 10828 RESULT(sum, n, 8); \ 10829 if (sum >= 0) \ 10830 ge |= 1 << n; \ 10831 } while(0) 10832 10833 10834 #define ADD16(a, b, n) SARITH16(a, b, n, +) 10835 #define SUB16(a, b, n) SARITH16(a, b, n, -) 10836 #define ADD8(a, b, n) SARITH8(a, b, n, +) 10837 #define SUB8(a, b, n) SARITH8(a, b, n, -) 10838 #define PFX s 10839 #define ARITH_GE 10840 10841 #include "op_addsub.h" 10842 10843 /* Unsigned modulo arithmetic. */ 10844 #define ADD16(a, b, n) do { \ 10845 uint32_t sum; \ 10846 sum = (uint32_t)(uint16_t)(a) + (uint32_t)(uint16_t)(b); \ 10847 RESULT(sum, n, 16); \ 10848 if ((sum >> 16) == 1) \ 10849 ge |= 3 << (n * 2); \ 10850 } while(0) 10851 10852 #define ADD8(a, b, n) do { \ 10853 uint32_t sum; \ 10854 sum = (uint32_t)(uint8_t)(a) + (uint32_t)(uint8_t)(b); \ 10855 RESULT(sum, n, 8); \ 10856 if ((sum >> 8) == 1) \ 10857 ge |= 1 << n; \ 10858 } while(0) 10859 10860 #define SUB16(a, b, n) do { \ 10861 uint32_t sum; \ 10862 sum = (uint32_t)(uint16_t)(a) - (uint32_t)(uint16_t)(b); \ 10863 RESULT(sum, n, 16); \ 10864 if ((sum >> 16) == 0) \ 10865 ge |= 3 << (n * 2); \ 10866 } while(0) 10867 10868 #define SUB8(a, b, n) do { \ 10869 uint32_t sum; \ 10870 sum = (uint32_t)(uint8_t)(a) - (uint32_t)(uint8_t)(b); \ 10871 RESULT(sum, n, 8); \ 10872 if ((sum >> 8) == 0) \ 10873 ge |= 1 << n; \ 10874 } while(0) 10875 10876 #define PFX u 10877 #define ARITH_GE 10878 10879 #include "op_addsub.h" 10880 10881 /* Halved signed arithmetic. */ 10882 #define ADD16(a, b, n) \ 10883 RESULT(((int32_t)(int16_t)(a) + (int32_t)(int16_t)(b)) >> 1, n, 16) 10884 #define SUB16(a, b, n) \ 10885 RESULT(((int32_t)(int16_t)(a) - (int32_t)(int16_t)(b)) >> 1, n, 16) 10886 #define ADD8(a, b, n) \ 10887 RESULT(((int32_t)(int8_t)(a) + (int32_t)(int8_t)(b)) >> 1, n, 8) 10888 #define SUB8(a, b, n) \ 10889 RESULT(((int32_t)(int8_t)(a) - (int32_t)(int8_t)(b)) >> 1, n, 8) 10890 #define PFX sh 10891 10892 #include "op_addsub.h" 10893 10894 /* Halved unsigned arithmetic. */ 10895 #define ADD16(a, b, n) \ 10896 RESULT(((uint32_t)(uint16_t)(a) + (uint32_t)(uint16_t)(b)) >> 1, n, 16) 10897 #define SUB16(a, b, n) \ 10898 RESULT(((uint32_t)(uint16_t)(a) - (uint32_t)(uint16_t)(b)) >> 1, n, 16) 10899 #define ADD8(a, b, n) \ 10900 RESULT(((uint32_t)(uint8_t)(a) + (uint32_t)(uint8_t)(b)) >> 1, n, 8) 10901 #define SUB8(a, b, n) \ 10902 RESULT(((uint32_t)(uint8_t)(a) - (uint32_t)(uint8_t)(b)) >> 1, n, 8) 10903 #define PFX uh 10904 10905 #include "op_addsub.h" 10906 10907 static inline uint8_t do_usad(uint8_t a, uint8_t b) 10908 { 10909 if (a > b) 10910 return a - b; 10911 else 10912 return b - a; 10913 } 10914 10915 /* Unsigned sum of absolute byte differences. */ 10916 uint32_t HELPER(usad8)(uint32_t a, uint32_t b) 10917 { 10918 uint32_t sum; 10919 sum = do_usad(a, b); 10920 sum += do_usad(a >> 8, b >> 8); 10921 sum += do_usad(a >> 16, b >>16); 10922 sum += do_usad(a >> 24, b >> 24); 10923 return sum; 10924 } 10925 10926 /* For ARMv6 SEL instruction. */ 10927 uint32_t HELPER(sel_flags)(uint32_t flags, uint32_t a, uint32_t b) 10928 { 10929 uint32_t mask; 10930 10931 mask = 0; 10932 if (flags & 1) 10933 mask |= 0xff; 10934 if (flags & 2) 10935 mask |= 0xff00; 10936 if (flags & 4) 10937 mask |= 0xff0000; 10938 if (flags & 8) 10939 mask |= 0xff000000; 10940 return (a & mask) | (b & ~mask); 10941 } 10942 10943 /* CRC helpers. 10944 * The upper bytes of val (above the number specified by 'bytes') must have 10945 * been zeroed out by the caller. 10946 */ 10947 uint32_t HELPER(crc32)(uint32_t acc, uint32_t val, uint32_t bytes) 10948 { 10949 uint8_t buf[4]; 10950 10951 stl_le_p(buf, val); 10952 10953 /* zlib crc32 converts the accumulator and output to one's complement. */ 10954 return crc32(acc ^ 0xffffffff, buf, bytes) ^ 0xffffffff; 10955 } 10956 10957 uint32_t HELPER(crc32c)(uint32_t acc, uint32_t val, uint32_t bytes) 10958 { 10959 uint8_t buf[4]; 10960 10961 stl_le_p(buf, val); 10962 10963 /* Linux crc32c converts the output to one's complement. */ 10964 return crc32c(acc, buf, bytes) ^ 0xffffffff; 10965 } 10966 10967 /* Return the exception level to which FP-disabled exceptions should 10968 * be taken, or 0 if FP is enabled. 10969 */ 10970 int fp_exception_el(CPUARMState *env, int cur_el) 10971 { 10972 #ifndef CONFIG_USER_ONLY 10973 int fpen; 10974 10975 /* CPACR and the CPTR registers don't exist before v6, so FP is 10976 * always accessible 10977 */ 10978 if (!arm_feature(env, ARM_FEATURE_V6)) { 10979 return 0; 10980 } 10981 10982 if (arm_feature(env, ARM_FEATURE_M)) { 10983 /* CPACR can cause a NOCP UsageFault taken to current security state */ 10984 if (!v7m_cpacr_pass(env, env->v7m.secure, cur_el != 0)) { 10985 return 1; 10986 } 10987 10988 if (arm_feature(env, ARM_FEATURE_M_SECURITY) && !env->v7m.secure) { 10989 if (!extract32(env->v7m.nsacr, 10, 1)) { 10990 /* FP insns cause a NOCP UsageFault taken to Secure */ 10991 return 3; 10992 } 10993 } 10994 10995 return 0; 10996 } 10997 10998 /* The CPACR controls traps to EL1, or PL1 if we're 32 bit: 10999 * 0, 2 : trap EL0 and EL1/PL1 accesses 11000 * 1 : trap only EL0 accesses 11001 * 3 : trap no accesses 11002 */ 11003 fpen = extract32(env->cp15.cpacr_el1, 20, 2); 11004 switch (fpen) { 11005 case 0: 11006 case 2: 11007 if (cur_el == 0 || cur_el == 1) { 11008 /* Trap to PL1, which might be EL1 or EL3 */ 11009 if (arm_is_secure(env) && !arm_el_is_aa64(env, 3)) { 11010 return 3; 11011 } 11012 return 1; 11013 } 11014 if (cur_el == 3 && !is_a64(env)) { 11015 /* Secure PL1 running at EL3 */ 11016 return 3; 11017 } 11018 break; 11019 case 1: 11020 if (cur_el == 0) { 11021 return 1; 11022 } 11023 break; 11024 case 3: 11025 break; 11026 } 11027 11028 /* 11029 * The NSACR allows A-profile AArch32 EL3 and M-profile secure mode 11030 * to control non-secure access to the FPU. It doesn't have any 11031 * effect if EL3 is AArch64 or if EL3 doesn't exist at all. 11032 */ 11033 if ((arm_feature(env, ARM_FEATURE_EL3) && !arm_el_is_aa64(env, 3) && 11034 cur_el <= 2 && !arm_is_secure_below_el3(env))) { 11035 if (!extract32(env->cp15.nsacr, 10, 1)) { 11036 /* FP insns act as UNDEF */ 11037 return cur_el == 2 ? 2 : 1; 11038 } 11039 } 11040 11041 /* For the CPTR registers we don't need to guard with an ARM_FEATURE 11042 * check because zero bits in the registers mean "don't trap". 11043 */ 11044 11045 /* CPTR_EL2 : present in v7VE or v8 */ 11046 if (cur_el <= 2 && extract32(env->cp15.cptr_el[2], 10, 1) 11047 && !arm_is_secure_below_el3(env)) { 11048 /* Trap FP ops at EL2, NS-EL1 or NS-EL0 to EL2 */ 11049 return 2; 11050 } 11051 11052 /* CPTR_EL3 : present in v8 */ 11053 if (extract32(env->cp15.cptr_el[3], 10, 1)) { 11054 /* Trap all FP ops to EL3 */ 11055 return 3; 11056 } 11057 #endif 11058 return 0; 11059 } 11060 11061 #ifndef CONFIG_TCG 11062 ARMMMUIdx arm_v7m_mmu_idx_for_secstate(CPUARMState *env, bool secstate) 11063 { 11064 g_assert_not_reached(); 11065 } 11066 #endif 11067 11068 ARMMMUIdx arm_mmu_idx(CPUARMState *env) 11069 { 11070 int el; 11071 11072 if (arm_feature(env, ARM_FEATURE_M)) { 11073 return arm_v7m_mmu_idx_for_secstate(env, env->v7m.secure); 11074 } 11075 11076 el = arm_current_el(env); 11077 if (el < 2 && arm_is_secure_below_el3(env)) { 11078 return ARMMMUIdx_S1SE0 + el; 11079 } else { 11080 return ARMMMUIdx_S12NSE0 + el; 11081 } 11082 } 11083 11084 int cpu_mmu_index(CPUARMState *env, bool ifetch) 11085 { 11086 return arm_to_core_mmu_idx(arm_mmu_idx(env)); 11087 } 11088 11089 #ifndef CONFIG_USER_ONLY 11090 ARMMMUIdx arm_stage1_mmu_idx(CPUARMState *env) 11091 { 11092 return stage_1_mmu_idx(arm_mmu_idx(env)); 11093 } 11094 #endif 11095 11096 void cpu_get_tb_cpu_state(CPUARMState *env, target_ulong *pc, 11097 target_ulong *cs_base, uint32_t *pflags) 11098 { 11099 ARMMMUIdx mmu_idx = arm_mmu_idx(env); 11100 int current_el = arm_current_el(env); 11101 int fp_el = fp_exception_el(env, current_el); 11102 uint32_t flags = 0; 11103 11104 if (is_a64(env)) { 11105 ARMCPU *cpu = env_archcpu(env); 11106 uint64_t sctlr; 11107 11108 *pc = env->pc; 11109 flags = FIELD_DP32(flags, TBFLAG_ANY, AARCH64_STATE, 1); 11110 11111 /* Get control bits for tagged addresses. */ 11112 { 11113 ARMMMUIdx stage1 = stage_1_mmu_idx(mmu_idx); 11114 ARMVAParameters p0 = aa64_va_parameters_both(env, 0, stage1); 11115 int tbii, tbid; 11116 11117 /* FIXME: ARMv8.1-VHE S2 translation regime. */ 11118 if (regime_el(env, stage1) < 2) { 11119 ARMVAParameters p1 = aa64_va_parameters_both(env, -1, stage1); 11120 tbid = (p1.tbi << 1) | p0.tbi; 11121 tbii = tbid & ~((p1.tbid << 1) | p0.tbid); 11122 } else { 11123 tbid = p0.tbi; 11124 tbii = tbid & !p0.tbid; 11125 } 11126 11127 flags = FIELD_DP32(flags, TBFLAG_A64, TBII, tbii); 11128 flags = FIELD_DP32(flags, TBFLAG_A64, TBID, tbid); 11129 } 11130 11131 if (cpu_isar_feature(aa64_sve, cpu)) { 11132 int sve_el = sve_exception_el(env, current_el); 11133 uint32_t zcr_len; 11134 11135 /* If SVE is disabled, but FP is enabled, 11136 * then the effective len is 0. 11137 */ 11138 if (sve_el != 0 && fp_el == 0) { 11139 zcr_len = 0; 11140 } else { 11141 zcr_len = sve_zcr_len_for_el(env, current_el); 11142 } 11143 flags = FIELD_DP32(flags, TBFLAG_A64, SVEEXC_EL, sve_el); 11144 flags = FIELD_DP32(flags, TBFLAG_A64, ZCR_LEN, zcr_len); 11145 } 11146 11147 sctlr = arm_sctlr(env, current_el); 11148 11149 if (cpu_isar_feature(aa64_pauth, cpu)) { 11150 /* 11151 * In order to save space in flags, we record only whether 11152 * pauth is "inactive", meaning all insns are implemented as 11153 * a nop, or "active" when some action must be performed. 11154 * The decision of which action to take is left to a helper. 11155 */ 11156 if (sctlr & (SCTLR_EnIA | SCTLR_EnIB | SCTLR_EnDA | SCTLR_EnDB)) { 11157 flags = FIELD_DP32(flags, TBFLAG_A64, PAUTH_ACTIVE, 1); 11158 } 11159 } 11160 11161 if (cpu_isar_feature(aa64_bti, cpu)) { 11162 /* Note that SCTLR_EL[23].BT == SCTLR_BT1. */ 11163 if (sctlr & (current_el == 0 ? SCTLR_BT0 : SCTLR_BT1)) { 11164 flags = FIELD_DP32(flags, TBFLAG_A64, BT, 1); 11165 } 11166 flags = FIELD_DP32(flags, TBFLAG_A64, BTYPE, env->btype); 11167 } 11168 } else { 11169 *pc = env->regs[15]; 11170 flags = FIELD_DP32(flags, TBFLAG_A32, THUMB, env->thumb); 11171 flags = FIELD_DP32(flags, TBFLAG_A32, VECLEN, env->vfp.vec_len); 11172 flags = FIELD_DP32(flags, TBFLAG_A32, VECSTRIDE, env->vfp.vec_stride); 11173 flags = FIELD_DP32(flags, TBFLAG_A32, CONDEXEC, env->condexec_bits); 11174 flags = FIELD_DP32(flags, TBFLAG_A32, SCTLR_B, arm_sctlr_b(env)); 11175 flags = FIELD_DP32(flags, TBFLAG_A32, NS, !access_secure_reg(env)); 11176 if (env->vfp.xregs[ARM_VFP_FPEXC] & (1 << 30) 11177 || arm_el_is_aa64(env, 1) || arm_feature(env, ARM_FEATURE_M)) { 11178 flags = FIELD_DP32(flags, TBFLAG_A32, VFPEN, 1); 11179 } 11180 /* Note that XSCALE_CPAR shares bits with VECSTRIDE */ 11181 if (arm_feature(env, ARM_FEATURE_XSCALE)) { 11182 flags = FIELD_DP32(flags, TBFLAG_A32, 11183 XSCALE_CPAR, env->cp15.c15_cpar); 11184 } 11185 } 11186 11187 flags = FIELD_DP32(flags, TBFLAG_ANY, MMUIDX, arm_to_core_mmu_idx(mmu_idx)); 11188 11189 /* The SS_ACTIVE and PSTATE_SS bits correspond to the state machine 11190 * states defined in the ARM ARM for software singlestep: 11191 * SS_ACTIVE PSTATE.SS State 11192 * 0 x Inactive (the TB flag for SS is always 0) 11193 * 1 0 Active-pending 11194 * 1 1 Active-not-pending 11195 */ 11196 if (arm_singlestep_active(env)) { 11197 flags = FIELD_DP32(flags, TBFLAG_ANY, SS_ACTIVE, 1); 11198 if (is_a64(env)) { 11199 if (env->pstate & PSTATE_SS) { 11200 flags = FIELD_DP32(flags, TBFLAG_ANY, PSTATE_SS, 1); 11201 } 11202 } else { 11203 if (env->uncached_cpsr & PSTATE_SS) { 11204 flags = FIELD_DP32(flags, TBFLAG_ANY, PSTATE_SS, 1); 11205 } 11206 } 11207 } 11208 if (arm_cpu_data_is_big_endian(env)) { 11209 flags = FIELD_DP32(flags, TBFLAG_ANY, BE_DATA, 1); 11210 } 11211 flags = FIELD_DP32(flags, TBFLAG_ANY, FPEXC_EL, fp_el); 11212 11213 if (arm_v7m_is_handler_mode(env)) { 11214 flags = FIELD_DP32(flags, TBFLAG_A32, HANDLER, 1); 11215 } 11216 11217 /* v8M always applies stack limit checks unless CCR.STKOFHFNMIGN is 11218 * suppressing them because the requested execution priority is less than 0. 11219 */ 11220 if (arm_feature(env, ARM_FEATURE_V8) && 11221 arm_feature(env, ARM_FEATURE_M) && 11222 !((mmu_idx & ARM_MMU_IDX_M_NEGPRI) && 11223 (env->v7m.ccr[env->v7m.secure] & R_V7M_CCR_STKOFHFNMIGN_MASK))) { 11224 flags = FIELD_DP32(flags, TBFLAG_A32, STACKCHECK, 1); 11225 } 11226 11227 if (arm_feature(env, ARM_FEATURE_M_SECURITY) && 11228 FIELD_EX32(env->v7m.fpccr[M_REG_S], V7M_FPCCR, S) != env->v7m.secure) { 11229 flags = FIELD_DP32(flags, TBFLAG_A32, FPCCR_S_WRONG, 1); 11230 } 11231 11232 if (arm_feature(env, ARM_FEATURE_M) && 11233 (env->v7m.fpccr[env->v7m.secure] & R_V7M_FPCCR_ASPEN_MASK) && 11234 (!(env->v7m.control[M_REG_S] & R_V7M_CONTROL_FPCA_MASK) || 11235 (env->v7m.secure && 11236 !(env->v7m.control[M_REG_S] & R_V7M_CONTROL_SFPA_MASK)))) { 11237 /* 11238 * ASPEN is set, but FPCA/SFPA indicate that there is no active 11239 * FP context; we must create a new FP context before executing 11240 * any FP insn. 11241 */ 11242 flags = FIELD_DP32(flags, TBFLAG_A32, NEW_FP_CTXT_NEEDED, 1); 11243 } 11244 11245 if (arm_feature(env, ARM_FEATURE_M)) { 11246 bool is_secure = env->v7m.fpccr[M_REG_S] & R_V7M_FPCCR_S_MASK; 11247 11248 if (env->v7m.fpccr[is_secure] & R_V7M_FPCCR_LSPACT_MASK) { 11249 flags = FIELD_DP32(flags, TBFLAG_A32, LSPACT, 1); 11250 } 11251 } 11252 11253 if (!arm_feature(env, ARM_FEATURE_M)) { 11254 int target_el = arm_debug_target_el(env); 11255 11256 flags = FIELD_DP32(flags, TBFLAG_ANY, DEBUG_TARGET_EL, target_el); 11257 } 11258 11259 *pflags = flags; 11260 *cs_base = 0; 11261 } 11262 11263 #ifdef TARGET_AARCH64 11264 /* 11265 * The manual says that when SVE is enabled and VQ is widened the 11266 * implementation is allowed to zero the previously inaccessible 11267 * portion of the registers. The corollary to that is that when 11268 * SVE is enabled and VQ is narrowed we are also allowed to zero 11269 * the now inaccessible portion of the registers. 11270 * 11271 * The intent of this is that no predicate bit beyond VQ is ever set. 11272 * Which means that some operations on predicate registers themselves 11273 * may operate on full uint64_t or even unrolled across the maximum 11274 * uint64_t[4]. Performing 4 bits of host arithmetic unconditionally 11275 * may well be cheaper than conditionals to restrict the operation 11276 * to the relevant portion of a uint16_t[16]. 11277 */ 11278 void aarch64_sve_narrow_vq(CPUARMState *env, unsigned vq) 11279 { 11280 int i, j; 11281 uint64_t pmask; 11282 11283 assert(vq >= 1 && vq <= ARM_MAX_VQ); 11284 assert(vq <= env_archcpu(env)->sve_max_vq); 11285 11286 /* Zap the high bits of the zregs. */ 11287 for (i = 0; i < 32; i++) { 11288 memset(&env->vfp.zregs[i].d[2 * vq], 0, 16 * (ARM_MAX_VQ - vq)); 11289 } 11290 11291 /* Zap the high bits of the pregs and ffr. */ 11292 pmask = 0; 11293 if (vq & 3) { 11294 pmask = ~(-1ULL << (16 * (vq & 3))); 11295 } 11296 for (j = vq / 4; j < ARM_MAX_VQ / 4; j++) { 11297 for (i = 0; i < 17; ++i) { 11298 env->vfp.pregs[i].p[j] &= pmask; 11299 } 11300 pmask = 0; 11301 } 11302 } 11303 11304 /* 11305 * Notice a change in SVE vector size when changing EL. 11306 */ 11307 void aarch64_sve_change_el(CPUARMState *env, int old_el, 11308 int new_el, bool el0_a64) 11309 { 11310 ARMCPU *cpu = env_archcpu(env); 11311 int old_len, new_len; 11312 bool old_a64, new_a64; 11313 11314 /* Nothing to do if no SVE. */ 11315 if (!cpu_isar_feature(aa64_sve, cpu)) { 11316 return; 11317 } 11318 11319 /* Nothing to do if FP is disabled in either EL. */ 11320 if (fp_exception_el(env, old_el) || fp_exception_el(env, new_el)) { 11321 return; 11322 } 11323 11324 /* 11325 * DDI0584A.d sec 3.2: "If SVE instructions are disabled or trapped 11326 * at ELx, or not available because the EL is in AArch32 state, then 11327 * for all purposes other than a direct read, the ZCR_ELx.LEN field 11328 * has an effective value of 0". 11329 * 11330 * Consider EL2 (aa64, vq=4) -> EL0 (aa32) -> EL1 (aa64, vq=0). 11331 * If we ignore aa32 state, we would fail to see the vq4->vq0 transition 11332 * from EL2->EL1. Thus we go ahead and narrow when entering aa32 so that 11333 * we already have the correct register contents when encountering the 11334 * vq0->vq0 transition between EL0->EL1. 11335 */ 11336 old_a64 = old_el ? arm_el_is_aa64(env, old_el) : el0_a64; 11337 old_len = (old_a64 && !sve_exception_el(env, old_el) 11338 ? sve_zcr_len_for_el(env, old_el) : 0); 11339 new_a64 = new_el ? arm_el_is_aa64(env, new_el) : el0_a64; 11340 new_len = (new_a64 && !sve_exception_el(env, new_el) 11341 ? sve_zcr_len_for_el(env, new_el) : 0); 11342 11343 /* When changing vector length, clear inaccessible state. */ 11344 if (new_len < old_len) { 11345 aarch64_sve_narrow_vq(env, new_len + 1); 11346 } 11347 } 11348 #endif 11349