xref: /openbmc/qemu/target/arm/helper.c (revision ac12b601)
1 /*
2  * ARM generic helpers.
3  *
4  * This code is licensed under the GNU GPL v2 or later.
5  *
6  * SPDX-License-Identifier: GPL-2.0-or-later
7  */
8 
9 #include "qemu/osdep.h"
10 #include "qemu/units.h"
11 #include "target/arm/idau.h"
12 #include "trace.h"
13 #include "cpu.h"
14 #include "internals.h"
15 #include "exec/gdbstub.h"
16 #include "exec/helper-proto.h"
17 #include "qemu/host-utils.h"
18 #include "qemu/main-loop.h"
19 #include "qemu/bitops.h"
20 #include "qemu/crc32c.h"
21 #include "qemu/qemu-print.h"
22 #include "exec/exec-all.h"
23 #include <zlib.h> /* For crc32 */
24 #include "hw/irq.h"
25 #include "semihosting/semihost.h"
26 #include "sysemu/cpus.h"
27 #include "sysemu/cpu-timers.h"
28 #include "sysemu/kvm.h"
29 #include "sysemu/tcg.h"
30 #include "qemu/range.h"
31 #include "qapi/qapi-commands-machine-target.h"
32 #include "qapi/error.h"
33 #include "qemu/guest-random.h"
34 #ifdef CONFIG_TCG
35 #include "arm_ldst.h"
36 #include "exec/cpu_ldst.h"
37 #include "semihosting/common-semi.h"
38 #endif
39 
40 #define ARM_CPU_FREQ 1000000000 /* FIXME: 1 GHz, should be configurable */
41 #define PMCR_NUM_COUNTERS 4 /* QEMU IMPDEF choice */
42 
43 #ifndef CONFIG_USER_ONLY
44 
45 static bool get_phys_addr_lpae(CPUARMState *env, uint64_t address,
46                                MMUAccessType access_type, ARMMMUIdx mmu_idx,
47                                bool s1_is_el0,
48                                hwaddr *phys_ptr, MemTxAttrs *txattrs, int *prot,
49                                target_ulong *page_size_ptr,
50                                ARMMMUFaultInfo *fi, ARMCacheAttrs *cacheattrs)
51     __attribute__((nonnull));
52 #endif
53 
54 static void switch_mode(CPUARMState *env, int mode);
55 static int aa64_va_parameter_tbi(uint64_t tcr, ARMMMUIdx mmu_idx);
56 
57 static int vfp_gdb_get_reg(CPUARMState *env, GByteArray *buf, int reg)
58 {
59     ARMCPU *cpu = env_archcpu(env);
60     int nregs = cpu_isar_feature(aa32_simd_r32, cpu) ? 32 : 16;
61 
62     /* VFP data registers are always little-endian.  */
63     if (reg < nregs) {
64         return gdb_get_reg64(buf, *aa32_vfp_dreg(env, reg));
65     }
66     if (arm_feature(env, ARM_FEATURE_NEON)) {
67         /* Aliases for Q regs.  */
68         nregs += 16;
69         if (reg < nregs) {
70             uint64_t *q = aa32_vfp_qreg(env, reg - 32);
71             return gdb_get_reg128(buf, q[0], q[1]);
72         }
73     }
74     switch (reg - nregs) {
75     case 0: return gdb_get_reg32(buf, env->vfp.xregs[ARM_VFP_FPSID]); break;
76     case 1: return gdb_get_reg32(buf, vfp_get_fpscr(env)); break;
77     case 2: return gdb_get_reg32(buf, env->vfp.xregs[ARM_VFP_FPEXC]); break;
78     }
79     return 0;
80 }
81 
82 static int vfp_gdb_set_reg(CPUARMState *env, uint8_t *buf, int reg)
83 {
84     ARMCPU *cpu = env_archcpu(env);
85     int nregs = cpu_isar_feature(aa32_simd_r32, cpu) ? 32 : 16;
86 
87     if (reg < nregs) {
88         *aa32_vfp_dreg(env, reg) = ldq_le_p(buf);
89         return 8;
90     }
91     if (arm_feature(env, ARM_FEATURE_NEON)) {
92         nregs += 16;
93         if (reg < nregs) {
94             uint64_t *q = aa32_vfp_qreg(env, reg - 32);
95             q[0] = ldq_le_p(buf);
96             q[1] = ldq_le_p(buf + 8);
97             return 16;
98         }
99     }
100     switch (reg - nregs) {
101     case 0: env->vfp.xregs[ARM_VFP_FPSID] = ldl_p(buf); return 4;
102     case 1: vfp_set_fpscr(env, ldl_p(buf)); return 4;
103     case 2: env->vfp.xregs[ARM_VFP_FPEXC] = ldl_p(buf) & (1 << 30); return 4;
104     }
105     return 0;
106 }
107 
108 static int aarch64_fpu_gdb_get_reg(CPUARMState *env, GByteArray *buf, int reg)
109 {
110     switch (reg) {
111     case 0 ... 31:
112     {
113         /* 128 bit FP register - quads are in LE order */
114         uint64_t *q = aa64_vfp_qreg(env, reg);
115         return gdb_get_reg128(buf, q[1], q[0]);
116     }
117     case 32:
118         /* FPSR */
119         return gdb_get_reg32(buf, vfp_get_fpsr(env));
120     case 33:
121         /* FPCR */
122         return gdb_get_reg32(buf,vfp_get_fpcr(env));
123     default:
124         return 0;
125     }
126 }
127 
128 static int aarch64_fpu_gdb_set_reg(CPUARMState *env, uint8_t *buf, int reg)
129 {
130     switch (reg) {
131     case 0 ... 31:
132         /* 128 bit FP register */
133         {
134             uint64_t *q = aa64_vfp_qreg(env, reg);
135             q[0] = ldq_le_p(buf);
136             q[1] = ldq_le_p(buf + 8);
137             return 16;
138         }
139     case 32:
140         /* FPSR */
141         vfp_set_fpsr(env, ldl_p(buf));
142         return 4;
143     case 33:
144         /* FPCR */
145         vfp_set_fpcr(env, ldl_p(buf));
146         return 4;
147     default:
148         return 0;
149     }
150 }
151 
152 static uint64_t raw_read(CPUARMState *env, const ARMCPRegInfo *ri)
153 {
154     assert(ri->fieldoffset);
155     if (cpreg_field_is_64bit(ri)) {
156         return CPREG_FIELD64(env, ri);
157     } else {
158         return CPREG_FIELD32(env, ri);
159     }
160 }
161 
162 static void raw_write(CPUARMState *env, const ARMCPRegInfo *ri,
163                       uint64_t value)
164 {
165     assert(ri->fieldoffset);
166     if (cpreg_field_is_64bit(ri)) {
167         CPREG_FIELD64(env, ri) = value;
168     } else {
169         CPREG_FIELD32(env, ri) = value;
170     }
171 }
172 
173 static void *raw_ptr(CPUARMState *env, const ARMCPRegInfo *ri)
174 {
175     return (char *)env + ri->fieldoffset;
176 }
177 
178 uint64_t read_raw_cp_reg(CPUARMState *env, const ARMCPRegInfo *ri)
179 {
180     /* Raw read of a coprocessor register (as needed for migration, etc). */
181     if (ri->type & ARM_CP_CONST) {
182         return ri->resetvalue;
183     } else if (ri->raw_readfn) {
184         return ri->raw_readfn(env, ri);
185     } else if (ri->readfn) {
186         return ri->readfn(env, ri);
187     } else {
188         return raw_read(env, ri);
189     }
190 }
191 
192 static void write_raw_cp_reg(CPUARMState *env, const ARMCPRegInfo *ri,
193                              uint64_t v)
194 {
195     /* Raw write of a coprocessor register (as needed for migration, etc).
196      * Note that constant registers are treated as write-ignored; the
197      * caller should check for success by whether a readback gives the
198      * value written.
199      */
200     if (ri->type & ARM_CP_CONST) {
201         return;
202     } else if (ri->raw_writefn) {
203         ri->raw_writefn(env, ri, v);
204     } else if (ri->writefn) {
205         ri->writefn(env, ri, v);
206     } else {
207         raw_write(env, ri, v);
208     }
209 }
210 
211 /**
212  * arm_get/set_gdb_*: get/set a gdb register
213  * @env: the CPU state
214  * @buf: a buffer to copy to/from
215  * @reg: register number (offset from start of group)
216  *
217  * We return the number of bytes copied
218  */
219 
220 static int arm_gdb_get_sysreg(CPUARMState *env, GByteArray *buf, int reg)
221 {
222     ARMCPU *cpu = env_archcpu(env);
223     const ARMCPRegInfo *ri;
224     uint32_t key;
225 
226     key = cpu->dyn_sysreg_xml.data.cpregs.keys[reg];
227     ri = get_arm_cp_reginfo(cpu->cp_regs, key);
228     if (ri) {
229         if (cpreg_field_is_64bit(ri)) {
230             return gdb_get_reg64(buf, (uint64_t)read_raw_cp_reg(env, ri));
231         } else {
232             return gdb_get_reg32(buf, (uint32_t)read_raw_cp_reg(env, ri));
233         }
234     }
235     return 0;
236 }
237 
238 static int arm_gdb_set_sysreg(CPUARMState *env, uint8_t *buf, int reg)
239 {
240     return 0;
241 }
242 
243 #ifdef TARGET_AARCH64
244 static int arm_gdb_get_svereg(CPUARMState *env, GByteArray *buf, int reg)
245 {
246     ARMCPU *cpu = env_archcpu(env);
247 
248     switch (reg) {
249     /* The first 32 registers are the zregs */
250     case 0 ... 31:
251     {
252         int vq, len = 0;
253         for (vq = 0; vq < cpu->sve_max_vq; vq++) {
254             len += gdb_get_reg128(buf,
255                                   env->vfp.zregs[reg].d[vq * 2 + 1],
256                                   env->vfp.zregs[reg].d[vq * 2]);
257         }
258         return len;
259     }
260     case 32:
261         return gdb_get_reg32(buf, vfp_get_fpsr(env));
262     case 33:
263         return gdb_get_reg32(buf, vfp_get_fpcr(env));
264     /* then 16 predicates and the ffr */
265     case 34 ... 50:
266     {
267         int preg = reg - 34;
268         int vq, len = 0;
269         for (vq = 0; vq < cpu->sve_max_vq; vq = vq + 4) {
270             len += gdb_get_reg64(buf, env->vfp.pregs[preg].p[vq / 4]);
271         }
272         return len;
273     }
274     case 51:
275     {
276         /*
277          * We report in Vector Granules (VG) which is 64bit in a Z reg
278          * while the ZCR works in Vector Quads (VQ) which is 128bit chunks.
279          */
280         int vq = sve_zcr_len_for_el(env, arm_current_el(env)) + 1;
281         return gdb_get_reg64(buf, vq * 2);
282     }
283     default:
284         /* gdbstub asked for something out our range */
285         qemu_log_mask(LOG_UNIMP, "%s: out of range register %d", __func__, reg);
286         break;
287     }
288 
289     return 0;
290 }
291 
292 static int arm_gdb_set_svereg(CPUARMState *env, uint8_t *buf, int reg)
293 {
294     ARMCPU *cpu = env_archcpu(env);
295 
296     /* The first 32 registers are the zregs */
297     switch (reg) {
298     /* The first 32 registers are the zregs */
299     case 0 ... 31:
300     {
301         int vq, len = 0;
302         uint64_t *p = (uint64_t *) buf;
303         for (vq = 0; vq < cpu->sve_max_vq; vq++) {
304             env->vfp.zregs[reg].d[vq * 2 + 1] = *p++;
305             env->vfp.zregs[reg].d[vq * 2] = *p++;
306             len += 16;
307         }
308         return len;
309     }
310     case 32:
311         vfp_set_fpsr(env, *(uint32_t *)buf);
312         return 4;
313     case 33:
314         vfp_set_fpcr(env, *(uint32_t *)buf);
315         return 4;
316     case 34 ... 50:
317     {
318         int preg = reg - 34;
319         int vq, len = 0;
320         uint64_t *p = (uint64_t *) buf;
321         for (vq = 0; vq < cpu->sve_max_vq; vq = vq + 4) {
322             env->vfp.pregs[preg].p[vq / 4] = *p++;
323             len += 8;
324         }
325         return len;
326     }
327     case 51:
328         /* cannot set vg via gdbstub */
329         return 0;
330     default:
331         /* gdbstub asked for something out our range */
332         break;
333     }
334 
335     return 0;
336 }
337 #endif /* TARGET_AARCH64 */
338 
339 static bool raw_accessors_invalid(const ARMCPRegInfo *ri)
340 {
341    /* Return true if the regdef would cause an assertion if you called
342     * read_raw_cp_reg() or write_raw_cp_reg() on it (ie if it is a
343     * program bug for it not to have the NO_RAW flag).
344     * NB that returning false here doesn't necessarily mean that calling
345     * read/write_raw_cp_reg() is safe, because we can't distinguish "has
346     * read/write access functions which are safe for raw use" from "has
347     * read/write access functions which have side effects but has forgotten
348     * to provide raw access functions".
349     * The tests here line up with the conditions in read/write_raw_cp_reg()
350     * and assertions in raw_read()/raw_write().
351     */
352     if ((ri->type & ARM_CP_CONST) ||
353         ri->fieldoffset ||
354         ((ri->raw_writefn || ri->writefn) && (ri->raw_readfn || ri->readfn))) {
355         return false;
356     }
357     return true;
358 }
359 
360 bool write_cpustate_to_list(ARMCPU *cpu, bool kvm_sync)
361 {
362     /* Write the coprocessor state from cpu->env to the (index,value) list. */
363     int i;
364     bool ok = true;
365 
366     for (i = 0; i < cpu->cpreg_array_len; i++) {
367         uint32_t regidx = kvm_to_cpreg_id(cpu->cpreg_indexes[i]);
368         const ARMCPRegInfo *ri;
369         uint64_t newval;
370 
371         ri = get_arm_cp_reginfo(cpu->cp_regs, regidx);
372         if (!ri) {
373             ok = false;
374             continue;
375         }
376         if (ri->type & ARM_CP_NO_RAW) {
377             continue;
378         }
379 
380         newval = read_raw_cp_reg(&cpu->env, ri);
381         if (kvm_sync) {
382             /*
383              * Only sync if the previous list->cpustate sync succeeded.
384              * Rather than tracking the success/failure state for every
385              * item in the list, we just recheck "does the raw write we must
386              * have made in write_list_to_cpustate() read back OK" here.
387              */
388             uint64_t oldval = cpu->cpreg_values[i];
389 
390             if (oldval == newval) {
391                 continue;
392             }
393 
394             write_raw_cp_reg(&cpu->env, ri, oldval);
395             if (read_raw_cp_reg(&cpu->env, ri) != oldval) {
396                 continue;
397             }
398 
399             write_raw_cp_reg(&cpu->env, ri, newval);
400         }
401         cpu->cpreg_values[i] = newval;
402     }
403     return ok;
404 }
405 
406 bool write_list_to_cpustate(ARMCPU *cpu)
407 {
408     int i;
409     bool ok = true;
410 
411     for (i = 0; i < cpu->cpreg_array_len; i++) {
412         uint32_t regidx = kvm_to_cpreg_id(cpu->cpreg_indexes[i]);
413         uint64_t v = cpu->cpreg_values[i];
414         const ARMCPRegInfo *ri;
415 
416         ri = get_arm_cp_reginfo(cpu->cp_regs, regidx);
417         if (!ri) {
418             ok = false;
419             continue;
420         }
421         if (ri->type & ARM_CP_NO_RAW) {
422             continue;
423         }
424         /* Write value and confirm it reads back as written
425          * (to catch read-only registers and partially read-only
426          * registers where the incoming migration value doesn't match)
427          */
428         write_raw_cp_reg(&cpu->env, ri, v);
429         if (read_raw_cp_reg(&cpu->env, ri) != v) {
430             ok = false;
431         }
432     }
433     return ok;
434 }
435 
436 static void add_cpreg_to_list(gpointer key, gpointer opaque)
437 {
438     ARMCPU *cpu = opaque;
439     uint64_t regidx;
440     const ARMCPRegInfo *ri;
441 
442     regidx = *(uint32_t *)key;
443     ri = get_arm_cp_reginfo(cpu->cp_regs, regidx);
444 
445     if (!(ri->type & (ARM_CP_NO_RAW|ARM_CP_ALIAS))) {
446         cpu->cpreg_indexes[cpu->cpreg_array_len] = cpreg_to_kvm_id(regidx);
447         /* The value array need not be initialized at this point */
448         cpu->cpreg_array_len++;
449     }
450 }
451 
452 static void count_cpreg(gpointer key, gpointer opaque)
453 {
454     ARMCPU *cpu = opaque;
455     uint64_t regidx;
456     const ARMCPRegInfo *ri;
457 
458     regidx = *(uint32_t *)key;
459     ri = get_arm_cp_reginfo(cpu->cp_regs, regidx);
460 
461     if (!(ri->type & (ARM_CP_NO_RAW|ARM_CP_ALIAS))) {
462         cpu->cpreg_array_len++;
463     }
464 }
465 
466 static gint cpreg_key_compare(gconstpointer a, gconstpointer b)
467 {
468     uint64_t aidx = cpreg_to_kvm_id(*(uint32_t *)a);
469     uint64_t bidx = cpreg_to_kvm_id(*(uint32_t *)b);
470 
471     if (aidx > bidx) {
472         return 1;
473     }
474     if (aidx < bidx) {
475         return -1;
476     }
477     return 0;
478 }
479 
480 void init_cpreg_list(ARMCPU *cpu)
481 {
482     /* Initialise the cpreg_tuples[] array based on the cp_regs hash.
483      * Note that we require cpreg_tuples[] to be sorted by key ID.
484      */
485     GList *keys;
486     int arraylen;
487 
488     keys = g_hash_table_get_keys(cpu->cp_regs);
489     keys = g_list_sort(keys, cpreg_key_compare);
490 
491     cpu->cpreg_array_len = 0;
492 
493     g_list_foreach(keys, count_cpreg, cpu);
494 
495     arraylen = cpu->cpreg_array_len;
496     cpu->cpreg_indexes = g_new(uint64_t, arraylen);
497     cpu->cpreg_values = g_new(uint64_t, arraylen);
498     cpu->cpreg_vmstate_indexes = g_new(uint64_t, arraylen);
499     cpu->cpreg_vmstate_values = g_new(uint64_t, arraylen);
500     cpu->cpreg_vmstate_array_len = cpu->cpreg_array_len;
501     cpu->cpreg_array_len = 0;
502 
503     g_list_foreach(keys, add_cpreg_to_list, cpu);
504 
505     assert(cpu->cpreg_array_len == arraylen);
506 
507     g_list_free(keys);
508 }
509 
510 /*
511  * Some registers are not accessible from AArch32 EL3 if SCR.NS == 0.
512  */
513 static CPAccessResult access_el3_aa32ns(CPUARMState *env,
514                                         const ARMCPRegInfo *ri,
515                                         bool isread)
516 {
517     if (!is_a64(env) && arm_current_el(env) == 3 &&
518         arm_is_secure_below_el3(env)) {
519         return CP_ACCESS_TRAP_UNCATEGORIZED;
520     }
521     return CP_ACCESS_OK;
522 }
523 
524 /* Some secure-only AArch32 registers trap to EL3 if used from
525  * Secure EL1 (but are just ordinary UNDEF in other non-EL3 contexts).
526  * Note that an access from Secure EL1 can only happen if EL3 is AArch64.
527  * We assume that the .access field is set to PL1_RW.
528  */
529 static CPAccessResult access_trap_aa32s_el1(CPUARMState *env,
530                                             const ARMCPRegInfo *ri,
531                                             bool isread)
532 {
533     if (arm_current_el(env) == 3) {
534         return CP_ACCESS_OK;
535     }
536     if (arm_is_secure_below_el3(env)) {
537         if (env->cp15.scr_el3 & SCR_EEL2) {
538             return CP_ACCESS_TRAP_EL2;
539         }
540         return CP_ACCESS_TRAP_EL3;
541     }
542     /* This will be EL1 NS and EL2 NS, which just UNDEF */
543     return CP_ACCESS_TRAP_UNCATEGORIZED;
544 }
545 
546 static uint64_t arm_mdcr_el2_eff(CPUARMState *env)
547 {
548     return arm_is_el2_enabled(env) ? env->cp15.mdcr_el2 : 0;
549 }
550 
551 /* Check for traps to "powerdown debug" registers, which are controlled
552  * by MDCR.TDOSA
553  */
554 static CPAccessResult access_tdosa(CPUARMState *env, const ARMCPRegInfo *ri,
555                                    bool isread)
556 {
557     int el = arm_current_el(env);
558     uint64_t mdcr_el2 = arm_mdcr_el2_eff(env);
559     bool mdcr_el2_tdosa = (mdcr_el2 & MDCR_TDOSA) || (mdcr_el2 & MDCR_TDE) ||
560         (arm_hcr_el2_eff(env) & HCR_TGE);
561 
562     if (el < 2 && mdcr_el2_tdosa) {
563         return CP_ACCESS_TRAP_EL2;
564     }
565     if (el < 3 && (env->cp15.mdcr_el3 & MDCR_TDOSA)) {
566         return CP_ACCESS_TRAP_EL3;
567     }
568     return CP_ACCESS_OK;
569 }
570 
571 /* Check for traps to "debug ROM" registers, which are controlled
572  * by MDCR_EL2.TDRA for EL2 but by the more general MDCR_EL3.TDA for EL3.
573  */
574 static CPAccessResult access_tdra(CPUARMState *env, const ARMCPRegInfo *ri,
575                                   bool isread)
576 {
577     int el = arm_current_el(env);
578     uint64_t mdcr_el2 = arm_mdcr_el2_eff(env);
579     bool mdcr_el2_tdra = (mdcr_el2 & MDCR_TDRA) || (mdcr_el2 & MDCR_TDE) ||
580         (arm_hcr_el2_eff(env) & HCR_TGE);
581 
582     if (el < 2 && mdcr_el2_tdra) {
583         return CP_ACCESS_TRAP_EL2;
584     }
585     if (el < 3 && (env->cp15.mdcr_el3 & MDCR_TDA)) {
586         return CP_ACCESS_TRAP_EL3;
587     }
588     return CP_ACCESS_OK;
589 }
590 
591 /* Check for traps to general debug registers, which are controlled
592  * by MDCR_EL2.TDA for EL2 and MDCR_EL3.TDA for EL3.
593  */
594 static CPAccessResult access_tda(CPUARMState *env, const ARMCPRegInfo *ri,
595                                   bool isread)
596 {
597     int el = arm_current_el(env);
598     uint64_t mdcr_el2 = arm_mdcr_el2_eff(env);
599     bool mdcr_el2_tda = (mdcr_el2 & MDCR_TDA) || (mdcr_el2 & MDCR_TDE) ||
600         (arm_hcr_el2_eff(env) & HCR_TGE);
601 
602     if (el < 2 && mdcr_el2_tda) {
603         return CP_ACCESS_TRAP_EL2;
604     }
605     if (el < 3 && (env->cp15.mdcr_el3 & MDCR_TDA)) {
606         return CP_ACCESS_TRAP_EL3;
607     }
608     return CP_ACCESS_OK;
609 }
610 
611 /* Check for traps to performance monitor registers, which are controlled
612  * by MDCR_EL2.TPM for EL2 and MDCR_EL3.TPM for EL3.
613  */
614 static CPAccessResult access_tpm(CPUARMState *env, const ARMCPRegInfo *ri,
615                                  bool isread)
616 {
617     int el = arm_current_el(env);
618     uint64_t mdcr_el2 = arm_mdcr_el2_eff(env);
619 
620     if (el < 2 && (mdcr_el2 & MDCR_TPM)) {
621         return CP_ACCESS_TRAP_EL2;
622     }
623     if (el < 3 && (env->cp15.mdcr_el3 & MDCR_TPM)) {
624         return CP_ACCESS_TRAP_EL3;
625     }
626     return CP_ACCESS_OK;
627 }
628 
629 /* Check for traps from EL1 due to HCR_EL2.TVM and HCR_EL2.TRVM.  */
630 static CPAccessResult access_tvm_trvm(CPUARMState *env, const ARMCPRegInfo *ri,
631                                       bool isread)
632 {
633     if (arm_current_el(env) == 1) {
634         uint64_t trap = isread ? HCR_TRVM : HCR_TVM;
635         if (arm_hcr_el2_eff(env) & trap) {
636             return CP_ACCESS_TRAP_EL2;
637         }
638     }
639     return CP_ACCESS_OK;
640 }
641 
642 /* Check for traps from EL1 due to HCR_EL2.TSW.  */
643 static CPAccessResult access_tsw(CPUARMState *env, const ARMCPRegInfo *ri,
644                                  bool isread)
645 {
646     if (arm_current_el(env) == 1 && (arm_hcr_el2_eff(env) & HCR_TSW)) {
647         return CP_ACCESS_TRAP_EL2;
648     }
649     return CP_ACCESS_OK;
650 }
651 
652 /* Check for traps from EL1 due to HCR_EL2.TACR.  */
653 static CPAccessResult access_tacr(CPUARMState *env, const ARMCPRegInfo *ri,
654                                   bool isread)
655 {
656     if (arm_current_el(env) == 1 && (arm_hcr_el2_eff(env) & HCR_TACR)) {
657         return CP_ACCESS_TRAP_EL2;
658     }
659     return CP_ACCESS_OK;
660 }
661 
662 /* Check for traps from EL1 due to HCR_EL2.TTLB. */
663 static CPAccessResult access_ttlb(CPUARMState *env, const ARMCPRegInfo *ri,
664                                   bool isread)
665 {
666     if (arm_current_el(env) == 1 && (arm_hcr_el2_eff(env) & HCR_TTLB)) {
667         return CP_ACCESS_TRAP_EL2;
668     }
669     return CP_ACCESS_OK;
670 }
671 
672 static void dacr_write(CPUARMState *env, const ARMCPRegInfo *ri, uint64_t value)
673 {
674     ARMCPU *cpu = env_archcpu(env);
675 
676     raw_write(env, ri, value);
677     tlb_flush(CPU(cpu)); /* Flush TLB as domain not tracked in TLB */
678 }
679 
680 static void fcse_write(CPUARMState *env, const ARMCPRegInfo *ri, uint64_t value)
681 {
682     ARMCPU *cpu = env_archcpu(env);
683 
684     if (raw_read(env, ri) != value) {
685         /* Unlike real hardware the qemu TLB uses virtual addresses,
686          * not modified virtual addresses, so this causes a TLB flush.
687          */
688         tlb_flush(CPU(cpu));
689         raw_write(env, ri, value);
690     }
691 }
692 
693 static void contextidr_write(CPUARMState *env, const ARMCPRegInfo *ri,
694                              uint64_t value)
695 {
696     ARMCPU *cpu = env_archcpu(env);
697 
698     if (raw_read(env, ri) != value && !arm_feature(env, ARM_FEATURE_PMSA)
699         && !extended_addresses_enabled(env)) {
700         /* For VMSA (when not using the LPAE long descriptor page table
701          * format) this register includes the ASID, so do a TLB flush.
702          * For PMSA it is purely a process ID and no action is needed.
703          */
704         tlb_flush(CPU(cpu));
705     }
706     raw_write(env, ri, value);
707 }
708 
709 /* IS variants of TLB operations must affect all cores */
710 static void tlbiall_is_write(CPUARMState *env, const ARMCPRegInfo *ri,
711                              uint64_t value)
712 {
713     CPUState *cs = env_cpu(env);
714 
715     tlb_flush_all_cpus_synced(cs);
716 }
717 
718 static void tlbiasid_is_write(CPUARMState *env, const ARMCPRegInfo *ri,
719                              uint64_t value)
720 {
721     CPUState *cs = env_cpu(env);
722 
723     tlb_flush_all_cpus_synced(cs);
724 }
725 
726 static void tlbimva_is_write(CPUARMState *env, const ARMCPRegInfo *ri,
727                              uint64_t value)
728 {
729     CPUState *cs = env_cpu(env);
730 
731     tlb_flush_page_all_cpus_synced(cs, value & TARGET_PAGE_MASK);
732 }
733 
734 static void tlbimvaa_is_write(CPUARMState *env, const ARMCPRegInfo *ri,
735                              uint64_t value)
736 {
737     CPUState *cs = env_cpu(env);
738 
739     tlb_flush_page_all_cpus_synced(cs, value & TARGET_PAGE_MASK);
740 }
741 
742 /*
743  * Non-IS variants of TLB operations are upgraded to
744  * IS versions if we are at EL1 and HCR_EL2.FB is effectively set to
745  * force broadcast of these operations.
746  */
747 static bool tlb_force_broadcast(CPUARMState *env)
748 {
749     return arm_current_el(env) == 1 && (arm_hcr_el2_eff(env) & HCR_FB);
750 }
751 
752 static void tlbiall_write(CPUARMState *env, const ARMCPRegInfo *ri,
753                           uint64_t value)
754 {
755     /* Invalidate all (TLBIALL) */
756     CPUState *cs = env_cpu(env);
757 
758     if (tlb_force_broadcast(env)) {
759         tlb_flush_all_cpus_synced(cs);
760     } else {
761         tlb_flush(cs);
762     }
763 }
764 
765 static void tlbimva_write(CPUARMState *env, const ARMCPRegInfo *ri,
766                           uint64_t value)
767 {
768     /* Invalidate single TLB entry by MVA and ASID (TLBIMVA) */
769     CPUState *cs = env_cpu(env);
770 
771     value &= TARGET_PAGE_MASK;
772     if (tlb_force_broadcast(env)) {
773         tlb_flush_page_all_cpus_synced(cs, value);
774     } else {
775         tlb_flush_page(cs, value);
776     }
777 }
778 
779 static void tlbiasid_write(CPUARMState *env, const ARMCPRegInfo *ri,
780                            uint64_t value)
781 {
782     /* Invalidate by ASID (TLBIASID) */
783     CPUState *cs = env_cpu(env);
784 
785     if (tlb_force_broadcast(env)) {
786         tlb_flush_all_cpus_synced(cs);
787     } else {
788         tlb_flush(cs);
789     }
790 }
791 
792 static void tlbimvaa_write(CPUARMState *env, const ARMCPRegInfo *ri,
793                            uint64_t value)
794 {
795     /* Invalidate single entry by MVA, all ASIDs (TLBIMVAA) */
796     CPUState *cs = env_cpu(env);
797 
798     value &= TARGET_PAGE_MASK;
799     if (tlb_force_broadcast(env)) {
800         tlb_flush_page_all_cpus_synced(cs, value);
801     } else {
802         tlb_flush_page(cs, value);
803     }
804 }
805 
806 static void tlbiall_nsnh_write(CPUARMState *env, const ARMCPRegInfo *ri,
807                                uint64_t value)
808 {
809     CPUState *cs = env_cpu(env);
810 
811     tlb_flush_by_mmuidx(cs,
812                         ARMMMUIdxBit_E10_1 |
813                         ARMMMUIdxBit_E10_1_PAN |
814                         ARMMMUIdxBit_E10_0);
815 }
816 
817 static void tlbiall_nsnh_is_write(CPUARMState *env, const ARMCPRegInfo *ri,
818                                   uint64_t value)
819 {
820     CPUState *cs = env_cpu(env);
821 
822     tlb_flush_by_mmuidx_all_cpus_synced(cs,
823                                         ARMMMUIdxBit_E10_1 |
824                                         ARMMMUIdxBit_E10_1_PAN |
825                                         ARMMMUIdxBit_E10_0);
826 }
827 
828 
829 static void tlbiall_hyp_write(CPUARMState *env, const ARMCPRegInfo *ri,
830                               uint64_t value)
831 {
832     CPUState *cs = env_cpu(env);
833 
834     tlb_flush_by_mmuidx(cs, ARMMMUIdxBit_E2);
835 }
836 
837 static void tlbiall_hyp_is_write(CPUARMState *env, const ARMCPRegInfo *ri,
838                                  uint64_t value)
839 {
840     CPUState *cs = env_cpu(env);
841 
842     tlb_flush_by_mmuidx_all_cpus_synced(cs, ARMMMUIdxBit_E2);
843 }
844 
845 static void tlbimva_hyp_write(CPUARMState *env, const ARMCPRegInfo *ri,
846                               uint64_t value)
847 {
848     CPUState *cs = env_cpu(env);
849     uint64_t pageaddr = value & ~MAKE_64BIT_MASK(0, 12);
850 
851     tlb_flush_page_by_mmuidx(cs, pageaddr, ARMMMUIdxBit_E2);
852 }
853 
854 static void tlbimva_hyp_is_write(CPUARMState *env, const ARMCPRegInfo *ri,
855                                  uint64_t value)
856 {
857     CPUState *cs = env_cpu(env);
858     uint64_t pageaddr = value & ~MAKE_64BIT_MASK(0, 12);
859 
860     tlb_flush_page_by_mmuidx_all_cpus_synced(cs, pageaddr,
861                                              ARMMMUIdxBit_E2);
862 }
863 
864 static const ARMCPRegInfo cp_reginfo[] = {
865     /* Define the secure and non-secure FCSE identifier CP registers
866      * separately because there is no secure bank in V8 (no _EL3).  This allows
867      * the secure register to be properly reset and migrated. There is also no
868      * v8 EL1 version of the register so the non-secure instance stands alone.
869      */
870     { .name = "FCSEIDR",
871       .cp = 15, .opc1 = 0, .crn = 13, .crm = 0, .opc2 = 0,
872       .access = PL1_RW, .secure = ARM_CP_SECSTATE_NS,
873       .fieldoffset = offsetof(CPUARMState, cp15.fcseidr_ns),
874       .resetvalue = 0, .writefn = fcse_write, .raw_writefn = raw_write, },
875     { .name = "FCSEIDR_S",
876       .cp = 15, .opc1 = 0, .crn = 13, .crm = 0, .opc2 = 0,
877       .access = PL1_RW, .secure = ARM_CP_SECSTATE_S,
878       .fieldoffset = offsetof(CPUARMState, cp15.fcseidr_s),
879       .resetvalue = 0, .writefn = fcse_write, .raw_writefn = raw_write, },
880     /* Define the secure and non-secure context identifier CP registers
881      * separately because there is no secure bank in V8 (no _EL3).  This allows
882      * the secure register to be properly reset and migrated.  In the
883      * non-secure case, the 32-bit register will have reset and migration
884      * disabled during registration as it is handled by the 64-bit instance.
885      */
886     { .name = "CONTEXTIDR_EL1", .state = ARM_CP_STATE_BOTH,
887       .opc0 = 3, .opc1 = 0, .crn = 13, .crm = 0, .opc2 = 1,
888       .access = PL1_RW, .accessfn = access_tvm_trvm,
889       .secure = ARM_CP_SECSTATE_NS,
890       .fieldoffset = offsetof(CPUARMState, cp15.contextidr_el[1]),
891       .resetvalue = 0, .writefn = contextidr_write, .raw_writefn = raw_write, },
892     { .name = "CONTEXTIDR_S", .state = ARM_CP_STATE_AA32,
893       .cp = 15, .opc1 = 0, .crn = 13, .crm = 0, .opc2 = 1,
894       .access = PL1_RW, .accessfn = access_tvm_trvm,
895       .secure = ARM_CP_SECSTATE_S,
896       .fieldoffset = offsetof(CPUARMState, cp15.contextidr_s),
897       .resetvalue = 0, .writefn = contextidr_write, .raw_writefn = raw_write, },
898     REGINFO_SENTINEL
899 };
900 
901 static const ARMCPRegInfo not_v8_cp_reginfo[] = {
902     /* NB: Some of these registers exist in v8 but with more precise
903      * definitions that don't use CP_ANY wildcards (mostly in v8_cp_reginfo[]).
904      */
905     /* MMU Domain access control / MPU write buffer control */
906     { .name = "DACR",
907       .cp = 15, .opc1 = CP_ANY, .crn = 3, .crm = CP_ANY, .opc2 = CP_ANY,
908       .access = PL1_RW, .accessfn = access_tvm_trvm, .resetvalue = 0,
909       .writefn = dacr_write, .raw_writefn = raw_write,
910       .bank_fieldoffsets = { offsetoflow32(CPUARMState, cp15.dacr_s),
911                              offsetoflow32(CPUARMState, cp15.dacr_ns) } },
912     /* ARMv7 allocates a range of implementation defined TLB LOCKDOWN regs.
913      * For v6 and v5, these mappings are overly broad.
914      */
915     { .name = "TLB_LOCKDOWN", .cp = 15, .crn = 10, .crm = 0,
916       .opc1 = CP_ANY, .opc2 = CP_ANY, .access = PL1_RW, .type = ARM_CP_NOP },
917     { .name = "TLB_LOCKDOWN", .cp = 15, .crn = 10, .crm = 1,
918       .opc1 = CP_ANY, .opc2 = CP_ANY, .access = PL1_RW, .type = ARM_CP_NOP },
919     { .name = "TLB_LOCKDOWN", .cp = 15, .crn = 10, .crm = 4,
920       .opc1 = CP_ANY, .opc2 = CP_ANY, .access = PL1_RW, .type = ARM_CP_NOP },
921     { .name = "TLB_LOCKDOWN", .cp = 15, .crn = 10, .crm = 8,
922       .opc1 = CP_ANY, .opc2 = CP_ANY, .access = PL1_RW, .type = ARM_CP_NOP },
923     /* Cache maintenance ops; some of this space may be overridden later. */
924     { .name = "CACHEMAINT", .cp = 15, .crn = 7, .crm = CP_ANY,
925       .opc1 = 0, .opc2 = CP_ANY, .access = PL1_W,
926       .type = ARM_CP_NOP | ARM_CP_OVERRIDE },
927     REGINFO_SENTINEL
928 };
929 
930 static const ARMCPRegInfo not_v6_cp_reginfo[] = {
931     /* Not all pre-v6 cores implemented this WFI, so this is slightly
932      * over-broad.
933      */
934     { .name = "WFI_v5", .cp = 15, .crn = 7, .crm = 8, .opc1 = 0, .opc2 = 2,
935       .access = PL1_W, .type = ARM_CP_WFI },
936     REGINFO_SENTINEL
937 };
938 
939 static const ARMCPRegInfo not_v7_cp_reginfo[] = {
940     /* Standard v6 WFI (also used in some pre-v6 cores); not in v7 (which
941      * is UNPREDICTABLE; we choose to NOP as most implementations do).
942      */
943     { .name = "WFI_v6", .cp = 15, .crn = 7, .crm = 0, .opc1 = 0, .opc2 = 4,
944       .access = PL1_W, .type = ARM_CP_WFI },
945     /* L1 cache lockdown. Not architectural in v6 and earlier but in practice
946      * implemented in 926, 946, 1026, 1136, 1176 and 11MPCore. StrongARM and
947      * OMAPCP will override this space.
948      */
949     { .name = "DLOCKDOWN", .cp = 15, .crn = 9, .crm = 0, .opc1 = 0, .opc2 = 0,
950       .access = PL1_RW, .fieldoffset = offsetof(CPUARMState, cp15.c9_data),
951       .resetvalue = 0 },
952     { .name = "ILOCKDOWN", .cp = 15, .crn = 9, .crm = 0, .opc1 = 0, .opc2 = 1,
953       .access = PL1_RW, .fieldoffset = offsetof(CPUARMState, cp15.c9_insn),
954       .resetvalue = 0 },
955     /* v6 doesn't have the cache ID registers but Linux reads them anyway */
956     { .name = "DUMMY", .cp = 15, .crn = 0, .crm = 0, .opc1 = 1, .opc2 = CP_ANY,
957       .access = PL1_R, .type = ARM_CP_CONST | ARM_CP_NO_RAW,
958       .resetvalue = 0 },
959     /* We don't implement pre-v7 debug but most CPUs had at least a DBGDIDR;
960      * implementing it as RAZ means the "debug architecture version" bits
961      * will read as a reserved value, which should cause Linux to not try
962      * to use the debug hardware.
963      */
964     { .name = "DBGDIDR", .cp = 14, .crn = 0, .crm = 0, .opc1 = 0, .opc2 = 0,
965       .access = PL0_R, .type = ARM_CP_CONST, .resetvalue = 0 },
966     /* MMU TLB control. Note that the wildcarding means we cover not just
967      * the unified TLB ops but also the dside/iside/inner-shareable variants.
968      */
969     { .name = "TLBIALL", .cp = 15, .crn = 8, .crm = CP_ANY,
970       .opc1 = CP_ANY, .opc2 = 0, .access = PL1_W, .writefn = tlbiall_write,
971       .type = ARM_CP_NO_RAW },
972     { .name = "TLBIMVA", .cp = 15, .crn = 8, .crm = CP_ANY,
973       .opc1 = CP_ANY, .opc2 = 1, .access = PL1_W, .writefn = tlbimva_write,
974       .type = ARM_CP_NO_RAW },
975     { .name = "TLBIASID", .cp = 15, .crn = 8, .crm = CP_ANY,
976       .opc1 = CP_ANY, .opc2 = 2, .access = PL1_W, .writefn = tlbiasid_write,
977       .type = ARM_CP_NO_RAW },
978     { .name = "TLBIMVAA", .cp = 15, .crn = 8, .crm = CP_ANY,
979       .opc1 = CP_ANY, .opc2 = 3, .access = PL1_W, .writefn = tlbimvaa_write,
980       .type = ARM_CP_NO_RAW },
981     { .name = "PRRR", .cp = 15, .crn = 10, .crm = 2,
982       .opc1 = 0, .opc2 = 0, .access = PL1_RW, .type = ARM_CP_NOP },
983     { .name = "NMRR", .cp = 15, .crn = 10, .crm = 2,
984       .opc1 = 0, .opc2 = 1, .access = PL1_RW, .type = ARM_CP_NOP },
985     REGINFO_SENTINEL
986 };
987 
988 static void cpacr_write(CPUARMState *env, const ARMCPRegInfo *ri,
989                         uint64_t value)
990 {
991     uint32_t mask = 0;
992 
993     /* In ARMv8 most bits of CPACR_EL1 are RES0. */
994     if (!arm_feature(env, ARM_FEATURE_V8)) {
995         /* ARMv7 defines bits for unimplemented coprocessors as RAZ/WI.
996          * ASEDIS [31] and D32DIS [30] are both UNK/SBZP without VFP.
997          * TRCDIS [28] is RAZ/WI since we do not implement a trace macrocell.
998          */
999         if (cpu_isar_feature(aa32_vfp_simd, env_archcpu(env))) {
1000             /* VFP coprocessor: cp10 & cp11 [23:20] */
1001             mask |= (1 << 31) | (1 << 30) | (0xf << 20);
1002 
1003             if (!arm_feature(env, ARM_FEATURE_NEON)) {
1004                 /* ASEDIS [31] bit is RAO/WI */
1005                 value |= (1 << 31);
1006             }
1007 
1008             /* VFPv3 and upwards with NEON implement 32 double precision
1009              * registers (D0-D31).
1010              */
1011             if (!cpu_isar_feature(aa32_simd_r32, env_archcpu(env))) {
1012                 /* D32DIS [30] is RAO/WI if D16-31 are not implemented. */
1013                 value |= (1 << 30);
1014             }
1015         }
1016         value &= mask;
1017     }
1018 
1019     /*
1020      * For A-profile AArch32 EL3 (but not M-profile secure mode), if NSACR.CP10
1021      * is 0 then CPACR.{CP11,CP10} ignore writes and read as 0b00.
1022      */
1023     if (arm_feature(env, ARM_FEATURE_EL3) && !arm_el_is_aa64(env, 3) &&
1024         !arm_is_secure(env) && !extract32(env->cp15.nsacr, 10, 1)) {
1025         value &= ~(0xf << 20);
1026         value |= env->cp15.cpacr_el1 & (0xf << 20);
1027     }
1028 
1029     env->cp15.cpacr_el1 = value;
1030 }
1031 
1032 static uint64_t cpacr_read(CPUARMState *env, const ARMCPRegInfo *ri)
1033 {
1034     /*
1035      * For A-profile AArch32 EL3 (but not M-profile secure mode), if NSACR.CP10
1036      * is 0 then CPACR.{CP11,CP10} ignore writes and read as 0b00.
1037      */
1038     uint64_t value = env->cp15.cpacr_el1;
1039 
1040     if (arm_feature(env, ARM_FEATURE_EL3) && !arm_el_is_aa64(env, 3) &&
1041         !arm_is_secure(env) && !extract32(env->cp15.nsacr, 10, 1)) {
1042         value &= ~(0xf << 20);
1043     }
1044     return value;
1045 }
1046 
1047 
1048 static void cpacr_reset(CPUARMState *env, const ARMCPRegInfo *ri)
1049 {
1050     /* Call cpacr_write() so that we reset with the correct RAO bits set
1051      * for our CPU features.
1052      */
1053     cpacr_write(env, ri, 0);
1054 }
1055 
1056 static CPAccessResult cpacr_access(CPUARMState *env, const ARMCPRegInfo *ri,
1057                                    bool isread)
1058 {
1059     if (arm_feature(env, ARM_FEATURE_V8)) {
1060         /* Check if CPACR accesses are to be trapped to EL2 */
1061         if (arm_current_el(env) == 1 && arm_is_el2_enabled(env) &&
1062             (env->cp15.cptr_el[2] & CPTR_TCPAC)) {
1063             return CP_ACCESS_TRAP_EL2;
1064         /* Check if CPACR accesses are to be trapped to EL3 */
1065         } else if (arm_current_el(env) < 3 &&
1066                    (env->cp15.cptr_el[3] & CPTR_TCPAC)) {
1067             return CP_ACCESS_TRAP_EL3;
1068         }
1069     }
1070 
1071     return CP_ACCESS_OK;
1072 }
1073 
1074 static CPAccessResult cptr_access(CPUARMState *env, const ARMCPRegInfo *ri,
1075                                   bool isread)
1076 {
1077     /* Check if CPTR accesses are set to trap to EL3 */
1078     if (arm_current_el(env) == 2 && (env->cp15.cptr_el[3] & CPTR_TCPAC)) {
1079         return CP_ACCESS_TRAP_EL3;
1080     }
1081 
1082     return CP_ACCESS_OK;
1083 }
1084 
1085 static const ARMCPRegInfo v6_cp_reginfo[] = {
1086     /* prefetch by MVA in v6, NOP in v7 */
1087     { .name = "MVA_prefetch",
1088       .cp = 15, .crn = 7, .crm = 13, .opc1 = 0, .opc2 = 1,
1089       .access = PL1_W, .type = ARM_CP_NOP },
1090     /* We need to break the TB after ISB to execute self-modifying code
1091      * correctly and also to take any pending interrupts immediately.
1092      * So use arm_cp_write_ignore() function instead of ARM_CP_NOP flag.
1093      */
1094     { .name = "ISB", .cp = 15, .crn = 7, .crm = 5, .opc1 = 0, .opc2 = 4,
1095       .access = PL0_W, .type = ARM_CP_NO_RAW, .writefn = arm_cp_write_ignore },
1096     { .name = "DSB", .cp = 15, .crn = 7, .crm = 10, .opc1 = 0, .opc2 = 4,
1097       .access = PL0_W, .type = ARM_CP_NOP },
1098     { .name = "DMB", .cp = 15, .crn = 7, .crm = 10, .opc1 = 0, .opc2 = 5,
1099       .access = PL0_W, .type = ARM_CP_NOP },
1100     { .name = "IFAR", .cp = 15, .crn = 6, .crm = 0, .opc1 = 0, .opc2 = 2,
1101       .access = PL1_RW, .accessfn = access_tvm_trvm,
1102       .bank_fieldoffsets = { offsetof(CPUARMState, cp15.ifar_s),
1103                              offsetof(CPUARMState, cp15.ifar_ns) },
1104       .resetvalue = 0, },
1105     /* Watchpoint Fault Address Register : should actually only be present
1106      * for 1136, 1176, 11MPCore.
1107      */
1108     { .name = "WFAR", .cp = 15, .crn = 6, .crm = 0, .opc1 = 0, .opc2 = 1,
1109       .access = PL1_RW, .type = ARM_CP_CONST, .resetvalue = 0, },
1110     { .name = "CPACR", .state = ARM_CP_STATE_BOTH, .opc0 = 3,
1111       .crn = 1, .crm = 0, .opc1 = 0, .opc2 = 2, .accessfn = cpacr_access,
1112       .access = PL1_RW, .fieldoffset = offsetof(CPUARMState, cp15.cpacr_el1),
1113       .resetfn = cpacr_reset, .writefn = cpacr_write, .readfn = cpacr_read },
1114     REGINFO_SENTINEL
1115 };
1116 
1117 /* Definitions for the PMU registers */
1118 #define PMCRN_MASK  0xf800
1119 #define PMCRN_SHIFT 11
1120 #define PMCRLC  0x40
1121 #define PMCRDP  0x20
1122 #define PMCRX   0x10
1123 #define PMCRD   0x8
1124 #define PMCRC   0x4
1125 #define PMCRP   0x2
1126 #define PMCRE   0x1
1127 /*
1128  * Mask of PMCR bits writeable by guest (not including WO bits like C, P,
1129  * which can be written as 1 to trigger behaviour but which stay RAZ).
1130  */
1131 #define PMCR_WRITEABLE_MASK (PMCRLC | PMCRDP | PMCRX | PMCRD | PMCRE)
1132 
1133 #define PMXEVTYPER_P          0x80000000
1134 #define PMXEVTYPER_U          0x40000000
1135 #define PMXEVTYPER_NSK        0x20000000
1136 #define PMXEVTYPER_NSU        0x10000000
1137 #define PMXEVTYPER_NSH        0x08000000
1138 #define PMXEVTYPER_M          0x04000000
1139 #define PMXEVTYPER_MT         0x02000000
1140 #define PMXEVTYPER_EVTCOUNT   0x0000ffff
1141 #define PMXEVTYPER_MASK       (PMXEVTYPER_P | PMXEVTYPER_U | PMXEVTYPER_NSK | \
1142                                PMXEVTYPER_NSU | PMXEVTYPER_NSH | \
1143                                PMXEVTYPER_M | PMXEVTYPER_MT | \
1144                                PMXEVTYPER_EVTCOUNT)
1145 
1146 #define PMCCFILTR             0xf8000000
1147 #define PMCCFILTR_M           PMXEVTYPER_M
1148 #define PMCCFILTR_EL0         (PMCCFILTR | PMCCFILTR_M)
1149 
1150 static inline uint32_t pmu_num_counters(CPUARMState *env)
1151 {
1152   return (env->cp15.c9_pmcr & PMCRN_MASK) >> PMCRN_SHIFT;
1153 }
1154 
1155 /* Bits allowed to be set/cleared for PMCNTEN* and PMINTEN* */
1156 static inline uint64_t pmu_counter_mask(CPUARMState *env)
1157 {
1158   return (1 << 31) | ((1 << pmu_num_counters(env)) - 1);
1159 }
1160 
1161 typedef struct pm_event {
1162     uint16_t number; /* PMEVTYPER.evtCount is 16 bits wide */
1163     /* If the event is supported on this CPU (used to generate PMCEID[01]) */
1164     bool (*supported)(CPUARMState *);
1165     /*
1166      * Retrieve the current count of the underlying event. The programmed
1167      * counters hold a difference from the return value from this function
1168      */
1169     uint64_t (*get_count)(CPUARMState *);
1170     /*
1171      * Return how many nanoseconds it will take (at a minimum) for count events
1172      * to occur. A negative value indicates the counter will never overflow, or
1173      * that the counter has otherwise arranged for the overflow bit to be set
1174      * and the PMU interrupt to be raised on overflow.
1175      */
1176     int64_t (*ns_per_count)(uint64_t);
1177 } pm_event;
1178 
1179 static bool event_always_supported(CPUARMState *env)
1180 {
1181     return true;
1182 }
1183 
1184 static uint64_t swinc_get_count(CPUARMState *env)
1185 {
1186     /*
1187      * SW_INCR events are written directly to the pmevcntr's by writes to
1188      * PMSWINC, so there is no underlying count maintained by the PMU itself
1189      */
1190     return 0;
1191 }
1192 
1193 static int64_t swinc_ns_per(uint64_t ignored)
1194 {
1195     return -1;
1196 }
1197 
1198 /*
1199  * Return the underlying cycle count for the PMU cycle counters. If we're in
1200  * usermode, simply return 0.
1201  */
1202 static uint64_t cycles_get_count(CPUARMState *env)
1203 {
1204 #ifndef CONFIG_USER_ONLY
1205     return muldiv64(qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL),
1206                    ARM_CPU_FREQ, NANOSECONDS_PER_SECOND);
1207 #else
1208     return cpu_get_host_ticks();
1209 #endif
1210 }
1211 
1212 #ifndef CONFIG_USER_ONLY
1213 static int64_t cycles_ns_per(uint64_t cycles)
1214 {
1215     return (ARM_CPU_FREQ / NANOSECONDS_PER_SECOND) * cycles;
1216 }
1217 
1218 static bool instructions_supported(CPUARMState *env)
1219 {
1220     return icount_enabled() == 1; /* Precise instruction counting */
1221 }
1222 
1223 static uint64_t instructions_get_count(CPUARMState *env)
1224 {
1225     return (uint64_t)icount_get_raw();
1226 }
1227 
1228 static int64_t instructions_ns_per(uint64_t icount)
1229 {
1230     return icount_to_ns((int64_t)icount);
1231 }
1232 #endif
1233 
1234 static bool pmu_8_1_events_supported(CPUARMState *env)
1235 {
1236     /* For events which are supported in any v8.1 PMU */
1237     return cpu_isar_feature(any_pmu_8_1, env_archcpu(env));
1238 }
1239 
1240 static bool pmu_8_4_events_supported(CPUARMState *env)
1241 {
1242     /* For events which are supported in any v8.1 PMU */
1243     return cpu_isar_feature(any_pmu_8_4, env_archcpu(env));
1244 }
1245 
1246 static uint64_t zero_event_get_count(CPUARMState *env)
1247 {
1248     /* For events which on QEMU never fire, so their count is always zero */
1249     return 0;
1250 }
1251 
1252 static int64_t zero_event_ns_per(uint64_t cycles)
1253 {
1254     /* An event which never fires can never overflow */
1255     return -1;
1256 }
1257 
1258 static const pm_event pm_events[] = {
1259     { .number = 0x000, /* SW_INCR */
1260       .supported = event_always_supported,
1261       .get_count = swinc_get_count,
1262       .ns_per_count = swinc_ns_per,
1263     },
1264 #ifndef CONFIG_USER_ONLY
1265     { .number = 0x008, /* INST_RETIRED, Instruction architecturally executed */
1266       .supported = instructions_supported,
1267       .get_count = instructions_get_count,
1268       .ns_per_count = instructions_ns_per,
1269     },
1270     { .number = 0x011, /* CPU_CYCLES, Cycle */
1271       .supported = event_always_supported,
1272       .get_count = cycles_get_count,
1273       .ns_per_count = cycles_ns_per,
1274     },
1275 #endif
1276     { .number = 0x023, /* STALL_FRONTEND */
1277       .supported = pmu_8_1_events_supported,
1278       .get_count = zero_event_get_count,
1279       .ns_per_count = zero_event_ns_per,
1280     },
1281     { .number = 0x024, /* STALL_BACKEND */
1282       .supported = pmu_8_1_events_supported,
1283       .get_count = zero_event_get_count,
1284       .ns_per_count = zero_event_ns_per,
1285     },
1286     { .number = 0x03c, /* STALL */
1287       .supported = pmu_8_4_events_supported,
1288       .get_count = zero_event_get_count,
1289       .ns_per_count = zero_event_ns_per,
1290     },
1291 };
1292 
1293 /*
1294  * Note: Before increasing MAX_EVENT_ID beyond 0x3f into the 0x40xx range of
1295  * events (i.e. the statistical profiling extension), this implementation
1296  * should first be updated to something sparse instead of the current
1297  * supported_event_map[] array.
1298  */
1299 #define MAX_EVENT_ID 0x3c
1300 #define UNSUPPORTED_EVENT UINT16_MAX
1301 static uint16_t supported_event_map[MAX_EVENT_ID + 1];
1302 
1303 /*
1304  * Called upon CPU initialization to initialize PMCEID[01]_EL0 and build a map
1305  * of ARM event numbers to indices in our pm_events array.
1306  *
1307  * Note: Events in the 0x40XX range are not currently supported.
1308  */
1309 void pmu_init(ARMCPU *cpu)
1310 {
1311     unsigned int i;
1312 
1313     /*
1314      * Empty supported_event_map and cpu->pmceid[01] before adding supported
1315      * events to them
1316      */
1317     for (i = 0; i < ARRAY_SIZE(supported_event_map); i++) {
1318         supported_event_map[i] = UNSUPPORTED_EVENT;
1319     }
1320     cpu->pmceid0 = 0;
1321     cpu->pmceid1 = 0;
1322 
1323     for (i = 0; i < ARRAY_SIZE(pm_events); i++) {
1324         const pm_event *cnt = &pm_events[i];
1325         assert(cnt->number <= MAX_EVENT_ID);
1326         /* We do not currently support events in the 0x40xx range */
1327         assert(cnt->number <= 0x3f);
1328 
1329         if (cnt->supported(&cpu->env)) {
1330             supported_event_map[cnt->number] = i;
1331             uint64_t event_mask = 1ULL << (cnt->number & 0x1f);
1332             if (cnt->number & 0x20) {
1333                 cpu->pmceid1 |= event_mask;
1334             } else {
1335                 cpu->pmceid0 |= event_mask;
1336             }
1337         }
1338     }
1339 }
1340 
1341 /*
1342  * Check at runtime whether a PMU event is supported for the current machine
1343  */
1344 static bool event_supported(uint16_t number)
1345 {
1346     if (number > MAX_EVENT_ID) {
1347         return false;
1348     }
1349     return supported_event_map[number] != UNSUPPORTED_EVENT;
1350 }
1351 
1352 static CPAccessResult pmreg_access(CPUARMState *env, const ARMCPRegInfo *ri,
1353                                    bool isread)
1354 {
1355     /* Performance monitor registers user accessibility is controlled
1356      * by PMUSERENR. MDCR_EL2.TPM and MDCR_EL3.TPM allow configurable
1357      * trapping to EL2 or EL3 for other accesses.
1358      */
1359     int el = arm_current_el(env);
1360     uint64_t mdcr_el2 = arm_mdcr_el2_eff(env);
1361 
1362     if (el == 0 && !(env->cp15.c9_pmuserenr & 1)) {
1363         return CP_ACCESS_TRAP;
1364     }
1365     if (el < 2 && (mdcr_el2 & MDCR_TPM)) {
1366         return CP_ACCESS_TRAP_EL2;
1367     }
1368     if (el < 3 && (env->cp15.mdcr_el3 & MDCR_TPM)) {
1369         return CP_ACCESS_TRAP_EL3;
1370     }
1371 
1372     return CP_ACCESS_OK;
1373 }
1374 
1375 static CPAccessResult pmreg_access_xevcntr(CPUARMState *env,
1376                                            const ARMCPRegInfo *ri,
1377                                            bool isread)
1378 {
1379     /* ER: event counter read trap control */
1380     if (arm_feature(env, ARM_FEATURE_V8)
1381         && arm_current_el(env) == 0
1382         && (env->cp15.c9_pmuserenr & (1 << 3)) != 0
1383         && isread) {
1384         return CP_ACCESS_OK;
1385     }
1386 
1387     return pmreg_access(env, ri, isread);
1388 }
1389 
1390 static CPAccessResult pmreg_access_swinc(CPUARMState *env,
1391                                          const ARMCPRegInfo *ri,
1392                                          bool isread)
1393 {
1394     /* SW: software increment write trap control */
1395     if (arm_feature(env, ARM_FEATURE_V8)
1396         && arm_current_el(env) == 0
1397         && (env->cp15.c9_pmuserenr & (1 << 1)) != 0
1398         && !isread) {
1399         return CP_ACCESS_OK;
1400     }
1401 
1402     return pmreg_access(env, ri, isread);
1403 }
1404 
1405 static CPAccessResult pmreg_access_selr(CPUARMState *env,
1406                                         const ARMCPRegInfo *ri,
1407                                         bool isread)
1408 {
1409     /* ER: event counter read trap control */
1410     if (arm_feature(env, ARM_FEATURE_V8)
1411         && arm_current_el(env) == 0
1412         && (env->cp15.c9_pmuserenr & (1 << 3)) != 0) {
1413         return CP_ACCESS_OK;
1414     }
1415 
1416     return pmreg_access(env, ri, isread);
1417 }
1418 
1419 static CPAccessResult pmreg_access_ccntr(CPUARMState *env,
1420                                          const ARMCPRegInfo *ri,
1421                                          bool isread)
1422 {
1423     /* CR: cycle counter read trap control */
1424     if (arm_feature(env, ARM_FEATURE_V8)
1425         && arm_current_el(env) == 0
1426         && (env->cp15.c9_pmuserenr & (1 << 2)) != 0
1427         && isread) {
1428         return CP_ACCESS_OK;
1429     }
1430 
1431     return pmreg_access(env, ri, isread);
1432 }
1433 
1434 /* Returns true if the counter (pass 31 for PMCCNTR) should count events using
1435  * the current EL, security state, and register configuration.
1436  */
1437 static bool pmu_counter_enabled(CPUARMState *env, uint8_t counter)
1438 {
1439     uint64_t filter;
1440     bool e, p, u, nsk, nsu, nsh, m;
1441     bool enabled, prohibited, filtered;
1442     bool secure = arm_is_secure(env);
1443     int el = arm_current_el(env);
1444     uint64_t mdcr_el2 = arm_mdcr_el2_eff(env);
1445     uint8_t hpmn = mdcr_el2 & MDCR_HPMN;
1446 
1447     if (!arm_feature(env, ARM_FEATURE_PMU)) {
1448         return false;
1449     }
1450 
1451     if (!arm_feature(env, ARM_FEATURE_EL2) ||
1452             (counter < hpmn || counter == 31)) {
1453         e = env->cp15.c9_pmcr & PMCRE;
1454     } else {
1455         e = mdcr_el2 & MDCR_HPME;
1456     }
1457     enabled = e && (env->cp15.c9_pmcnten & (1 << counter));
1458 
1459     if (!secure) {
1460         if (el == 2 && (counter < hpmn || counter == 31)) {
1461             prohibited = mdcr_el2 & MDCR_HPMD;
1462         } else {
1463             prohibited = false;
1464         }
1465     } else {
1466         prohibited = arm_feature(env, ARM_FEATURE_EL3) &&
1467            !(env->cp15.mdcr_el3 & MDCR_SPME);
1468     }
1469 
1470     if (prohibited && counter == 31) {
1471         prohibited = env->cp15.c9_pmcr & PMCRDP;
1472     }
1473 
1474     if (counter == 31) {
1475         filter = env->cp15.pmccfiltr_el0;
1476     } else {
1477         filter = env->cp15.c14_pmevtyper[counter];
1478     }
1479 
1480     p   = filter & PMXEVTYPER_P;
1481     u   = filter & PMXEVTYPER_U;
1482     nsk = arm_feature(env, ARM_FEATURE_EL3) && (filter & PMXEVTYPER_NSK);
1483     nsu = arm_feature(env, ARM_FEATURE_EL3) && (filter & PMXEVTYPER_NSU);
1484     nsh = arm_feature(env, ARM_FEATURE_EL2) && (filter & PMXEVTYPER_NSH);
1485     m   = arm_el_is_aa64(env, 1) &&
1486               arm_feature(env, ARM_FEATURE_EL3) && (filter & PMXEVTYPER_M);
1487 
1488     if (el == 0) {
1489         filtered = secure ? u : u != nsu;
1490     } else if (el == 1) {
1491         filtered = secure ? p : p != nsk;
1492     } else if (el == 2) {
1493         filtered = !nsh;
1494     } else { /* EL3 */
1495         filtered = m != p;
1496     }
1497 
1498     if (counter != 31) {
1499         /*
1500          * If not checking PMCCNTR, ensure the counter is setup to an event we
1501          * support
1502          */
1503         uint16_t event = filter & PMXEVTYPER_EVTCOUNT;
1504         if (!event_supported(event)) {
1505             return false;
1506         }
1507     }
1508 
1509     return enabled && !prohibited && !filtered;
1510 }
1511 
1512 static void pmu_update_irq(CPUARMState *env)
1513 {
1514     ARMCPU *cpu = env_archcpu(env);
1515     qemu_set_irq(cpu->pmu_interrupt, (env->cp15.c9_pmcr & PMCRE) &&
1516             (env->cp15.c9_pminten & env->cp15.c9_pmovsr));
1517 }
1518 
1519 /*
1520  * Ensure c15_ccnt is the guest-visible count so that operations such as
1521  * enabling/disabling the counter or filtering, modifying the count itself,
1522  * etc. can be done logically. This is essentially a no-op if the counter is
1523  * not enabled at the time of the call.
1524  */
1525 static void pmccntr_op_start(CPUARMState *env)
1526 {
1527     uint64_t cycles = cycles_get_count(env);
1528 
1529     if (pmu_counter_enabled(env, 31)) {
1530         uint64_t eff_cycles = cycles;
1531         if (env->cp15.c9_pmcr & PMCRD) {
1532             /* Increment once every 64 processor clock cycles */
1533             eff_cycles /= 64;
1534         }
1535 
1536         uint64_t new_pmccntr = eff_cycles - env->cp15.c15_ccnt_delta;
1537 
1538         uint64_t overflow_mask = env->cp15.c9_pmcr & PMCRLC ? \
1539                                  1ull << 63 : 1ull << 31;
1540         if (env->cp15.c15_ccnt & ~new_pmccntr & overflow_mask) {
1541             env->cp15.c9_pmovsr |= (1 << 31);
1542             pmu_update_irq(env);
1543         }
1544 
1545         env->cp15.c15_ccnt = new_pmccntr;
1546     }
1547     env->cp15.c15_ccnt_delta = cycles;
1548 }
1549 
1550 /*
1551  * If PMCCNTR is enabled, recalculate the delta between the clock and the
1552  * guest-visible count. A call to pmccntr_op_finish should follow every call to
1553  * pmccntr_op_start.
1554  */
1555 static void pmccntr_op_finish(CPUARMState *env)
1556 {
1557     if (pmu_counter_enabled(env, 31)) {
1558 #ifndef CONFIG_USER_ONLY
1559         /* Calculate when the counter will next overflow */
1560         uint64_t remaining_cycles = -env->cp15.c15_ccnt;
1561         if (!(env->cp15.c9_pmcr & PMCRLC)) {
1562             remaining_cycles = (uint32_t)remaining_cycles;
1563         }
1564         int64_t overflow_in = cycles_ns_per(remaining_cycles);
1565 
1566         if (overflow_in > 0) {
1567             int64_t overflow_at = qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL) +
1568                 overflow_in;
1569             ARMCPU *cpu = env_archcpu(env);
1570             timer_mod_anticipate_ns(cpu->pmu_timer, overflow_at);
1571         }
1572 #endif
1573 
1574         uint64_t prev_cycles = env->cp15.c15_ccnt_delta;
1575         if (env->cp15.c9_pmcr & PMCRD) {
1576             /* Increment once every 64 processor clock cycles */
1577             prev_cycles /= 64;
1578         }
1579         env->cp15.c15_ccnt_delta = prev_cycles - env->cp15.c15_ccnt;
1580     }
1581 }
1582 
1583 static void pmevcntr_op_start(CPUARMState *env, uint8_t counter)
1584 {
1585 
1586     uint16_t event = env->cp15.c14_pmevtyper[counter] & PMXEVTYPER_EVTCOUNT;
1587     uint64_t count = 0;
1588     if (event_supported(event)) {
1589         uint16_t event_idx = supported_event_map[event];
1590         count = pm_events[event_idx].get_count(env);
1591     }
1592 
1593     if (pmu_counter_enabled(env, counter)) {
1594         uint32_t new_pmevcntr = count - env->cp15.c14_pmevcntr_delta[counter];
1595 
1596         if (env->cp15.c14_pmevcntr[counter] & ~new_pmevcntr & INT32_MIN) {
1597             env->cp15.c9_pmovsr |= (1 << counter);
1598             pmu_update_irq(env);
1599         }
1600         env->cp15.c14_pmevcntr[counter] = new_pmevcntr;
1601     }
1602     env->cp15.c14_pmevcntr_delta[counter] = count;
1603 }
1604 
1605 static void pmevcntr_op_finish(CPUARMState *env, uint8_t counter)
1606 {
1607     if (pmu_counter_enabled(env, counter)) {
1608 #ifndef CONFIG_USER_ONLY
1609         uint16_t event = env->cp15.c14_pmevtyper[counter] & PMXEVTYPER_EVTCOUNT;
1610         uint16_t event_idx = supported_event_map[event];
1611         uint64_t delta = UINT32_MAX -
1612             (uint32_t)env->cp15.c14_pmevcntr[counter] + 1;
1613         int64_t overflow_in = pm_events[event_idx].ns_per_count(delta);
1614 
1615         if (overflow_in > 0) {
1616             int64_t overflow_at = qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL) +
1617                 overflow_in;
1618             ARMCPU *cpu = env_archcpu(env);
1619             timer_mod_anticipate_ns(cpu->pmu_timer, overflow_at);
1620         }
1621 #endif
1622 
1623         env->cp15.c14_pmevcntr_delta[counter] -=
1624             env->cp15.c14_pmevcntr[counter];
1625     }
1626 }
1627 
1628 void pmu_op_start(CPUARMState *env)
1629 {
1630     unsigned int i;
1631     pmccntr_op_start(env);
1632     for (i = 0; i < pmu_num_counters(env); i++) {
1633         pmevcntr_op_start(env, i);
1634     }
1635 }
1636 
1637 void pmu_op_finish(CPUARMState *env)
1638 {
1639     unsigned int i;
1640     pmccntr_op_finish(env);
1641     for (i = 0; i < pmu_num_counters(env); i++) {
1642         pmevcntr_op_finish(env, i);
1643     }
1644 }
1645 
1646 void pmu_pre_el_change(ARMCPU *cpu, void *ignored)
1647 {
1648     pmu_op_start(&cpu->env);
1649 }
1650 
1651 void pmu_post_el_change(ARMCPU *cpu, void *ignored)
1652 {
1653     pmu_op_finish(&cpu->env);
1654 }
1655 
1656 void arm_pmu_timer_cb(void *opaque)
1657 {
1658     ARMCPU *cpu = opaque;
1659 
1660     /*
1661      * Update all the counter values based on the current underlying counts,
1662      * triggering interrupts to be raised, if necessary. pmu_op_finish() also
1663      * has the effect of setting the cpu->pmu_timer to the next earliest time a
1664      * counter may expire.
1665      */
1666     pmu_op_start(&cpu->env);
1667     pmu_op_finish(&cpu->env);
1668 }
1669 
1670 static void pmcr_write(CPUARMState *env, const ARMCPRegInfo *ri,
1671                        uint64_t value)
1672 {
1673     pmu_op_start(env);
1674 
1675     if (value & PMCRC) {
1676         /* The counter has been reset */
1677         env->cp15.c15_ccnt = 0;
1678     }
1679 
1680     if (value & PMCRP) {
1681         unsigned int i;
1682         for (i = 0; i < pmu_num_counters(env); i++) {
1683             env->cp15.c14_pmevcntr[i] = 0;
1684         }
1685     }
1686 
1687     env->cp15.c9_pmcr &= ~PMCR_WRITEABLE_MASK;
1688     env->cp15.c9_pmcr |= (value & PMCR_WRITEABLE_MASK);
1689 
1690     pmu_op_finish(env);
1691 }
1692 
1693 static void pmswinc_write(CPUARMState *env, const ARMCPRegInfo *ri,
1694                           uint64_t value)
1695 {
1696     unsigned int i;
1697     for (i = 0; i < pmu_num_counters(env); i++) {
1698         /* Increment a counter's count iff: */
1699         if ((value & (1 << i)) && /* counter's bit is set */
1700                 /* counter is enabled and not filtered */
1701                 pmu_counter_enabled(env, i) &&
1702                 /* counter is SW_INCR */
1703                 (env->cp15.c14_pmevtyper[i] & PMXEVTYPER_EVTCOUNT) == 0x0) {
1704             pmevcntr_op_start(env, i);
1705 
1706             /*
1707              * Detect if this write causes an overflow since we can't predict
1708              * PMSWINC overflows like we can for other events
1709              */
1710             uint32_t new_pmswinc = env->cp15.c14_pmevcntr[i] + 1;
1711 
1712             if (env->cp15.c14_pmevcntr[i] & ~new_pmswinc & INT32_MIN) {
1713                 env->cp15.c9_pmovsr |= (1 << i);
1714                 pmu_update_irq(env);
1715             }
1716 
1717             env->cp15.c14_pmevcntr[i] = new_pmswinc;
1718 
1719             pmevcntr_op_finish(env, i);
1720         }
1721     }
1722 }
1723 
1724 static uint64_t pmccntr_read(CPUARMState *env, const ARMCPRegInfo *ri)
1725 {
1726     uint64_t ret;
1727     pmccntr_op_start(env);
1728     ret = env->cp15.c15_ccnt;
1729     pmccntr_op_finish(env);
1730     return ret;
1731 }
1732 
1733 static void pmselr_write(CPUARMState *env, const ARMCPRegInfo *ri,
1734                          uint64_t value)
1735 {
1736     /* The value of PMSELR.SEL affects the behavior of PMXEVTYPER and
1737      * PMXEVCNTR. We allow [0..31] to be written to PMSELR here; in the
1738      * meanwhile, we check PMSELR.SEL when PMXEVTYPER and PMXEVCNTR are
1739      * accessed.
1740      */
1741     env->cp15.c9_pmselr = value & 0x1f;
1742 }
1743 
1744 static void pmccntr_write(CPUARMState *env, const ARMCPRegInfo *ri,
1745                         uint64_t value)
1746 {
1747     pmccntr_op_start(env);
1748     env->cp15.c15_ccnt = value;
1749     pmccntr_op_finish(env);
1750 }
1751 
1752 static void pmccntr_write32(CPUARMState *env, const ARMCPRegInfo *ri,
1753                             uint64_t value)
1754 {
1755     uint64_t cur_val = pmccntr_read(env, NULL);
1756 
1757     pmccntr_write(env, ri, deposit64(cur_val, 0, 32, value));
1758 }
1759 
1760 static void pmccfiltr_write(CPUARMState *env, const ARMCPRegInfo *ri,
1761                             uint64_t value)
1762 {
1763     pmccntr_op_start(env);
1764     env->cp15.pmccfiltr_el0 = value & PMCCFILTR_EL0;
1765     pmccntr_op_finish(env);
1766 }
1767 
1768 static void pmccfiltr_write_a32(CPUARMState *env, const ARMCPRegInfo *ri,
1769                             uint64_t value)
1770 {
1771     pmccntr_op_start(env);
1772     /* M is not accessible from AArch32 */
1773     env->cp15.pmccfiltr_el0 = (env->cp15.pmccfiltr_el0 & PMCCFILTR_M) |
1774         (value & PMCCFILTR);
1775     pmccntr_op_finish(env);
1776 }
1777 
1778 static uint64_t pmccfiltr_read_a32(CPUARMState *env, const ARMCPRegInfo *ri)
1779 {
1780     /* M is not visible in AArch32 */
1781     return env->cp15.pmccfiltr_el0 & PMCCFILTR;
1782 }
1783 
1784 static void pmcntenset_write(CPUARMState *env, const ARMCPRegInfo *ri,
1785                             uint64_t value)
1786 {
1787     value &= pmu_counter_mask(env);
1788     env->cp15.c9_pmcnten |= value;
1789 }
1790 
1791 static void pmcntenclr_write(CPUARMState *env, const ARMCPRegInfo *ri,
1792                              uint64_t value)
1793 {
1794     value &= pmu_counter_mask(env);
1795     env->cp15.c9_pmcnten &= ~value;
1796 }
1797 
1798 static void pmovsr_write(CPUARMState *env, const ARMCPRegInfo *ri,
1799                          uint64_t value)
1800 {
1801     value &= pmu_counter_mask(env);
1802     env->cp15.c9_pmovsr &= ~value;
1803     pmu_update_irq(env);
1804 }
1805 
1806 static void pmovsset_write(CPUARMState *env, const ARMCPRegInfo *ri,
1807                          uint64_t value)
1808 {
1809     value &= pmu_counter_mask(env);
1810     env->cp15.c9_pmovsr |= value;
1811     pmu_update_irq(env);
1812 }
1813 
1814 static void pmevtyper_write(CPUARMState *env, const ARMCPRegInfo *ri,
1815                              uint64_t value, const uint8_t counter)
1816 {
1817     if (counter == 31) {
1818         pmccfiltr_write(env, ri, value);
1819     } else if (counter < pmu_num_counters(env)) {
1820         pmevcntr_op_start(env, counter);
1821 
1822         /*
1823          * If this counter's event type is changing, store the current
1824          * underlying count for the new type in c14_pmevcntr_delta[counter] so
1825          * pmevcntr_op_finish has the correct baseline when it converts back to
1826          * a delta.
1827          */
1828         uint16_t old_event = env->cp15.c14_pmevtyper[counter] &
1829             PMXEVTYPER_EVTCOUNT;
1830         uint16_t new_event = value & PMXEVTYPER_EVTCOUNT;
1831         if (old_event != new_event) {
1832             uint64_t count = 0;
1833             if (event_supported(new_event)) {
1834                 uint16_t event_idx = supported_event_map[new_event];
1835                 count = pm_events[event_idx].get_count(env);
1836             }
1837             env->cp15.c14_pmevcntr_delta[counter] = count;
1838         }
1839 
1840         env->cp15.c14_pmevtyper[counter] = value & PMXEVTYPER_MASK;
1841         pmevcntr_op_finish(env, counter);
1842     }
1843     /* Attempts to access PMXEVTYPER are CONSTRAINED UNPREDICTABLE when
1844      * PMSELR value is equal to or greater than the number of implemented
1845      * counters, but not equal to 0x1f. We opt to behave as a RAZ/WI.
1846      */
1847 }
1848 
1849 static uint64_t pmevtyper_read(CPUARMState *env, const ARMCPRegInfo *ri,
1850                                const uint8_t counter)
1851 {
1852     if (counter == 31) {
1853         return env->cp15.pmccfiltr_el0;
1854     } else if (counter < pmu_num_counters(env)) {
1855         return env->cp15.c14_pmevtyper[counter];
1856     } else {
1857       /*
1858        * We opt to behave as a RAZ/WI when attempts to access PMXEVTYPER
1859        * are CONSTRAINED UNPREDICTABLE. See comments in pmevtyper_write().
1860        */
1861         return 0;
1862     }
1863 }
1864 
1865 static void pmevtyper_writefn(CPUARMState *env, const ARMCPRegInfo *ri,
1866                               uint64_t value)
1867 {
1868     uint8_t counter = ((ri->crm & 3) << 3) | (ri->opc2 & 7);
1869     pmevtyper_write(env, ri, value, counter);
1870 }
1871 
1872 static void pmevtyper_rawwrite(CPUARMState *env, const ARMCPRegInfo *ri,
1873                                uint64_t value)
1874 {
1875     uint8_t counter = ((ri->crm & 3) << 3) | (ri->opc2 & 7);
1876     env->cp15.c14_pmevtyper[counter] = value;
1877 
1878     /*
1879      * pmevtyper_rawwrite is called between a pair of pmu_op_start and
1880      * pmu_op_finish calls when loading saved state for a migration. Because
1881      * we're potentially updating the type of event here, the value written to
1882      * c14_pmevcntr_delta by the preceeding pmu_op_start call may be for a
1883      * different counter type. Therefore, we need to set this value to the
1884      * current count for the counter type we're writing so that pmu_op_finish
1885      * has the correct count for its calculation.
1886      */
1887     uint16_t event = value & PMXEVTYPER_EVTCOUNT;
1888     if (event_supported(event)) {
1889         uint16_t event_idx = supported_event_map[event];
1890         env->cp15.c14_pmevcntr_delta[counter] =
1891             pm_events[event_idx].get_count(env);
1892     }
1893 }
1894 
1895 static uint64_t pmevtyper_readfn(CPUARMState *env, const ARMCPRegInfo *ri)
1896 {
1897     uint8_t counter = ((ri->crm & 3) << 3) | (ri->opc2 & 7);
1898     return pmevtyper_read(env, ri, counter);
1899 }
1900 
1901 static void pmxevtyper_write(CPUARMState *env, const ARMCPRegInfo *ri,
1902                              uint64_t value)
1903 {
1904     pmevtyper_write(env, ri, value, env->cp15.c9_pmselr & 31);
1905 }
1906 
1907 static uint64_t pmxevtyper_read(CPUARMState *env, const ARMCPRegInfo *ri)
1908 {
1909     return pmevtyper_read(env, ri, env->cp15.c9_pmselr & 31);
1910 }
1911 
1912 static void pmevcntr_write(CPUARMState *env, const ARMCPRegInfo *ri,
1913                              uint64_t value, uint8_t counter)
1914 {
1915     if (counter < pmu_num_counters(env)) {
1916         pmevcntr_op_start(env, counter);
1917         env->cp15.c14_pmevcntr[counter] = value;
1918         pmevcntr_op_finish(env, counter);
1919     }
1920     /*
1921      * We opt to behave as a RAZ/WI when attempts to access PM[X]EVCNTR
1922      * are CONSTRAINED UNPREDICTABLE.
1923      */
1924 }
1925 
1926 static uint64_t pmevcntr_read(CPUARMState *env, const ARMCPRegInfo *ri,
1927                               uint8_t counter)
1928 {
1929     if (counter < pmu_num_counters(env)) {
1930         uint64_t ret;
1931         pmevcntr_op_start(env, counter);
1932         ret = env->cp15.c14_pmevcntr[counter];
1933         pmevcntr_op_finish(env, counter);
1934         return ret;
1935     } else {
1936       /* We opt to behave as a RAZ/WI when attempts to access PM[X]EVCNTR
1937        * are CONSTRAINED UNPREDICTABLE. */
1938         return 0;
1939     }
1940 }
1941 
1942 static void pmevcntr_writefn(CPUARMState *env, const ARMCPRegInfo *ri,
1943                              uint64_t value)
1944 {
1945     uint8_t counter = ((ri->crm & 3) << 3) | (ri->opc2 & 7);
1946     pmevcntr_write(env, ri, value, counter);
1947 }
1948 
1949 static uint64_t pmevcntr_readfn(CPUARMState *env, const ARMCPRegInfo *ri)
1950 {
1951     uint8_t counter = ((ri->crm & 3) << 3) | (ri->opc2 & 7);
1952     return pmevcntr_read(env, ri, counter);
1953 }
1954 
1955 static void pmevcntr_rawwrite(CPUARMState *env, const ARMCPRegInfo *ri,
1956                              uint64_t value)
1957 {
1958     uint8_t counter = ((ri->crm & 3) << 3) | (ri->opc2 & 7);
1959     assert(counter < pmu_num_counters(env));
1960     env->cp15.c14_pmevcntr[counter] = value;
1961     pmevcntr_write(env, ri, value, counter);
1962 }
1963 
1964 static uint64_t pmevcntr_rawread(CPUARMState *env, const ARMCPRegInfo *ri)
1965 {
1966     uint8_t counter = ((ri->crm & 3) << 3) | (ri->opc2 & 7);
1967     assert(counter < pmu_num_counters(env));
1968     return env->cp15.c14_pmevcntr[counter];
1969 }
1970 
1971 static void pmxevcntr_write(CPUARMState *env, const ARMCPRegInfo *ri,
1972                              uint64_t value)
1973 {
1974     pmevcntr_write(env, ri, value, env->cp15.c9_pmselr & 31);
1975 }
1976 
1977 static uint64_t pmxevcntr_read(CPUARMState *env, const ARMCPRegInfo *ri)
1978 {
1979     return pmevcntr_read(env, ri, env->cp15.c9_pmselr & 31);
1980 }
1981 
1982 static void pmuserenr_write(CPUARMState *env, const ARMCPRegInfo *ri,
1983                             uint64_t value)
1984 {
1985     if (arm_feature(env, ARM_FEATURE_V8)) {
1986         env->cp15.c9_pmuserenr = value & 0xf;
1987     } else {
1988         env->cp15.c9_pmuserenr = value & 1;
1989     }
1990 }
1991 
1992 static void pmintenset_write(CPUARMState *env, const ARMCPRegInfo *ri,
1993                              uint64_t value)
1994 {
1995     /* We have no event counters so only the C bit can be changed */
1996     value &= pmu_counter_mask(env);
1997     env->cp15.c9_pminten |= value;
1998     pmu_update_irq(env);
1999 }
2000 
2001 static void pmintenclr_write(CPUARMState *env, const ARMCPRegInfo *ri,
2002                              uint64_t value)
2003 {
2004     value &= pmu_counter_mask(env);
2005     env->cp15.c9_pminten &= ~value;
2006     pmu_update_irq(env);
2007 }
2008 
2009 static void vbar_write(CPUARMState *env, const ARMCPRegInfo *ri,
2010                        uint64_t value)
2011 {
2012     /* Note that even though the AArch64 view of this register has bits
2013      * [10:0] all RES0 we can only mask the bottom 5, to comply with the
2014      * architectural requirements for bits which are RES0 only in some
2015      * contexts. (ARMv8 would permit us to do no masking at all, but ARMv7
2016      * requires the bottom five bits to be RAZ/WI because they're UNK/SBZP.)
2017      */
2018     raw_write(env, ri, value & ~0x1FULL);
2019 }
2020 
2021 static void scr_write(CPUARMState *env, const ARMCPRegInfo *ri, uint64_t value)
2022 {
2023     /* Begin with base v8.0 state.  */
2024     uint32_t valid_mask = 0x3fff;
2025     ARMCPU *cpu = env_archcpu(env);
2026 
2027     if (ri->state == ARM_CP_STATE_AA64) {
2028         if (arm_feature(env, ARM_FEATURE_AARCH64) &&
2029             !cpu_isar_feature(aa64_aa32_el1, cpu)) {
2030                 value |= SCR_FW | SCR_AW;   /* these two bits are RES1.  */
2031         }
2032         valid_mask &= ~SCR_NET;
2033 
2034         if (cpu_isar_feature(aa64_lor, cpu)) {
2035             valid_mask |= SCR_TLOR;
2036         }
2037         if (cpu_isar_feature(aa64_pauth, cpu)) {
2038             valid_mask |= SCR_API | SCR_APK;
2039         }
2040         if (cpu_isar_feature(aa64_sel2, cpu)) {
2041             valid_mask |= SCR_EEL2;
2042         }
2043         if (cpu_isar_feature(aa64_mte, cpu)) {
2044             valid_mask |= SCR_ATA;
2045         }
2046     } else {
2047         valid_mask &= ~(SCR_RW | SCR_ST);
2048     }
2049 
2050     if (!arm_feature(env, ARM_FEATURE_EL2)) {
2051         valid_mask &= ~SCR_HCE;
2052 
2053         /* On ARMv7, SMD (or SCD as it is called in v7) is only
2054          * supported if EL2 exists. The bit is UNK/SBZP when
2055          * EL2 is unavailable. In QEMU ARMv7, we force it to always zero
2056          * when EL2 is unavailable.
2057          * On ARMv8, this bit is always available.
2058          */
2059         if (arm_feature(env, ARM_FEATURE_V7) &&
2060             !arm_feature(env, ARM_FEATURE_V8)) {
2061             valid_mask &= ~SCR_SMD;
2062         }
2063     }
2064 
2065     /* Clear all-context RES0 bits.  */
2066     value &= valid_mask;
2067     raw_write(env, ri, value);
2068 }
2069 
2070 static void scr_reset(CPUARMState *env, const ARMCPRegInfo *ri)
2071 {
2072     /*
2073      * scr_write will set the RES1 bits on an AArch64-only CPU.
2074      * The reset value will be 0x30 on an AArch64-only CPU and 0 otherwise.
2075      */
2076     scr_write(env, ri, 0);
2077 }
2078 
2079 static CPAccessResult access_aa64_tid2(CPUARMState *env,
2080                                        const ARMCPRegInfo *ri,
2081                                        bool isread)
2082 {
2083     if (arm_current_el(env) == 1 && (arm_hcr_el2_eff(env) & HCR_TID2)) {
2084         return CP_ACCESS_TRAP_EL2;
2085     }
2086 
2087     return CP_ACCESS_OK;
2088 }
2089 
2090 static uint64_t ccsidr_read(CPUARMState *env, const ARMCPRegInfo *ri)
2091 {
2092     ARMCPU *cpu = env_archcpu(env);
2093 
2094     /* Acquire the CSSELR index from the bank corresponding to the CCSIDR
2095      * bank
2096      */
2097     uint32_t index = A32_BANKED_REG_GET(env, csselr,
2098                                         ri->secure & ARM_CP_SECSTATE_S);
2099 
2100     return cpu->ccsidr[index];
2101 }
2102 
2103 static void csselr_write(CPUARMState *env, const ARMCPRegInfo *ri,
2104                          uint64_t value)
2105 {
2106     raw_write(env, ri, value & 0xf);
2107 }
2108 
2109 static uint64_t isr_read(CPUARMState *env, const ARMCPRegInfo *ri)
2110 {
2111     CPUState *cs = env_cpu(env);
2112     bool el1 = arm_current_el(env) == 1;
2113     uint64_t hcr_el2 = el1 ? arm_hcr_el2_eff(env) : 0;
2114     uint64_t ret = 0;
2115 
2116     if (hcr_el2 & HCR_IMO) {
2117         if (cs->interrupt_request & CPU_INTERRUPT_VIRQ) {
2118             ret |= CPSR_I;
2119         }
2120     } else {
2121         if (cs->interrupt_request & CPU_INTERRUPT_HARD) {
2122             ret |= CPSR_I;
2123         }
2124     }
2125 
2126     if (hcr_el2 & HCR_FMO) {
2127         if (cs->interrupt_request & CPU_INTERRUPT_VFIQ) {
2128             ret |= CPSR_F;
2129         }
2130     } else {
2131         if (cs->interrupt_request & CPU_INTERRUPT_FIQ) {
2132             ret |= CPSR_F;
2133         }
2134     }
2135 
2136     /* External aborts are not possible in QEMU so A bit is always clear */
2137     return ret;
2138 }
2139 
2140 static CPAccessResult access_aa64_tid1(CPUARMState *env, const ARMCPRegInfo *ri,
2141                                        bool isread)
2142 {
2143     if (arm_current_el(env) == 1 && (arm_hcr_el2_eff(env) & HCR_TID1)) {
2144         return CP_ACCESS_TRAP_EL2;
2145     }
2146 
2147     return CP_ACCESS_OK;
2148 }
2149 
2150 static CPAccessResult access_aa32_tid1(CPUARMState *env, const ARMCPRegInfo *ri,
2151                                        bool isread)
2152 {
2153     if (arm_feature(env, ARM_FEATURE_V8)) {
2154         return access_aa64_tid1(env, ri, isread);
2155     }
2156 
2157     return CP_ACCESS_OK;
2158 }
2159 
2160 static const ARMCPRegInfo v7_cp_reginfo[] = {
2161     /* the old v6 WFI, UNPREDICTABLE in v7 but we choose to NOP */
2162     { .name = "NOP", .cp = 15, .crn = 7, .crm = 0, .opc1 = 0, .opc2 = 4,
2163       .access = PL1_W, .type = ARM_CP_NOP },
2164     /* Performance monitors are implementation defined in v7,
2165      * but with an ARM recommended set of registers, which we
2166      * follow.
2167      *
2168      * Performance registers fall into three categories:
2169      *  (a) always UNDEF in PL0, RW in PL1 (PMINTENSET, PMINTENCLR)
2170      *  (b) RO in PL0 (ie UNDEF on write), RW in PL1 (PMUSERENR)
2171      *  (c) UNDEF in PL0 if PMUSERENR.EN==0, otherwise accessible (all others)
2172      * For the cases controlled by PMUSERENR we must set .access to PL0_RW
2173      * or PL0_RO as appropriate and then check PMUSERENR in the helper fn.
2174      */
2175     { .name = "PMCNTENSET", .cp = 15, .crn = 9, .crm = 12, .opc1 = 0, .opc2 = 1,
2176       .access = PL0_RW, .type = ARM_CP_ALIAS,
2177       .fieldoffset = offsetoflow32(CPUARMState, cp15.c9_pmcnten),
2178       .writefn = pmcntenset_write,
2179       .accessfn = pmreg_access,
2180       .raw_writefn = raw_write },
2181     { .name = "PMCNTENSET_EL0", .state = ARM_CP_STATE_AA64,
2182       .opc0 = 3, .opc1 = 3, .crn = 9, .crm = 12, .opc2 = 1,
2183       .access = PL0_RW, .accessfn = pmreg_access,
2184       .fieldoffset = offsetof(CPUARMState, cp15.c9_pmcnten), .resetvalue = 0,
2185       .writefn = pmcntenset_write, .raw_writefn = raw_write },
2186     { .name = "PMCNTENCLR", .cp = 15, .crn = 9, .crm = 12, .opc1 = 0, .opc2 = 2,
2187       .access = PL0_RW,
2188       .fieldoffset = offsetoflow32(CPUARMState, cp15.c9_pmcnten),
2189       .accessfn = pmreg_access,
2190       .writefn = pmcntenclr_write,
2191       .type = ARM_CP_ALIAS },
2192     { .name = "PMCNTENCLR_EL0", .state = ARM_CP_STATE_AA64,
2193       .opc0 = 3, .opc1 = 3, .crn = 9, .crm = 12, .opc2 = 2,
2194       .access = PL0_RW, .accessfn = pmreg_access,
2195       .type = ARM_CP_ALIAS,
2196       .fieldoffset = offsetof(CPUARMState, cp15.c9_pmcnten),
2197       .writefn = pmcntenclr_write },
2198     { .name = "PMOVSR", .cp = 15, .crn = 9, .crm = 12, .opc1 = 0, .opc2 = 3,
2199       .access = PL0_RW, .type = ARM_CP_IO,
2200       .fieldoffset = offsetoflow32(CPUARMState, cp15.c9_pmovsr),
2201       .accessfn = pmreg_access,
2202       .writefn = pmovsr_write,
2203       .raw_writefn = raw_write },
2204     { .name = "PMOVSCLR_EL0", .state = ARM_CP_STATE_AA64,
2205       .opc0 = 3, .opc1 = 3, .crn = 9, .crm = 12, .opc2 = 3,
2206       .access = PL0_RW, .accessfn = pmreg_access,
2207       .type = ARM_CP_ALIAS | ARM_CP_IO,
2208       .fieldoffset = offsetof(CPUARMState, cp15.c9_pmovsr),
2209       .writefn = pmovsr_write,
2210       .raw_writefn = raw_write },
2211     { .name = "PMSWINC", .cp = 15, .crn = 9, .crm = 12, .opc1 = 0, .opc2 = 4,
2212       .access = PL0_W, .accessfn = pmreg_access_swinc,
2213       .type = ARM_CP_NO_RAW | ARM_CP_IO,
2214       .writefn = pmswinc_write },
2215     { .name = "PMSWINC_EL0", .state = ARM_CP_STATE_AA64,
2216       .opc0 = 3, .opc1 = 3, .crn = 9, .crm = 12, .opc2 = 4,
2217       .access = PL0_W, .accessfn = pmreg_access_swinc,
2218       .type = ARM_CP_NO_RAW | ARM_CP_IO,
2219       .writefn = pmswinc_write },
2220     { .name = "PMSELR", .cp = 15, .crn = 9, .crm = 12, .opc1 = 0, .opc2 = 5,
2221       .access = PL0_RW, .type = ARM_CP_ALIAS,
2222       .fieldoffset = offsetoflow32(CPUARMState, cp15.c9_pmselr),
2223       .accessfn = pmreg_access_selr, .writefn = pmselr_write,
2224       .raw_writefn = raw_write},
2225     { .name = "PMSELR_EL0", .state = ARM_CP_STATE_AA64,
2226       .opc0 = 3, .opc1 = 3, .crn = 9, .crm = 12, .opc2 = 5,
2227       .access = PL0_RW, .accessfn = pmreg_access_selr,
2228       .fieldoffset = offsetof(CPUARMState, cp15.c9_pmselr),
2229       .writefn = pmselr_write, .raw_writefn = raw_write, },
2230     { .name = "PMCCNTR", .cp = 15, .crn = 9, .crm = 13, .opc1 = 0, .opc2 = 0,
2231       .access = PL0_RW, .resetvalue = 0, .type = ARM_CP_ALIAS | ARM_CP_IO,
2232       .readfn = pmccntr_read, .writefn = pmccntr_write32,
2233       .accessfn = pmreg_access_ccntr },
2234     { .name = "PMCCNTR_EL0", .state = ARM_CP_STATE_AA64,
2235       .opc0 = 3, .opc1 = 3, .crn = 9, .crm = 13, .opc2 = 0,
2236       .access = PL0_RW, .accessfn = pmreg_access_ccntr,
2237       .type = ARM_CP_IO,
2238       .fieldoffset = offsetof(CPUARMState, cp15.c15_ccnt),
2239       .readfn = pmccntr_read, .writefn = pmccntr_write,
2240       .raw_readfn = raw_read, .raw_writefn = raw_write, },
2241     { .name = "PMCCFILTR", .cp = 15, .opc1 = 0, .crn = 14, .crm = 15, .opc2 = 7,
2242       .writefn = pmccfiltr_write_a32, .readfn = pmccfiltr_read_a32,
2243       .access = PL0_RW, .accessfn = pmreg_access,
2244       .type = ARM_CP_ALIAS | ARM_CP_IO,
2245       .resetvalue = 0, },
2246     { .name = "PMCCFILTR_EL0", .state = ARM_CP_STATE_AA64,
2247       .opc0 = 3, .opc1 = 3, .crn = 14, .crm = 15, .opc2 = 7,
2248       .writefn = pmccfiltr_write, .raw_writefn = raw_write,
2249       .access = PL0_RW, .accessfn = pmreg_access,
2250       .type = ARM_CP_IO,
2251       .fieldoffset = offsetof(CPUARMState, cp15.pmccfiltr_el0),
2252       .resetvalue = 0, },
2253     { .name = "PMXEVTYPER", .cp = 15, .crn = 9, .crm = 13, .opc1 = 0, .opc2 = 1,
2254       .access = PL0_RW, .type = ARM_CP_NO_RAW | ARM_CP_IO,
2255       .accessfn = pmreg_access,
2256       .writefn = pmxevtyper_write, .readfn = pmxevtyper_read },
2257     { .name = "PMXEVTYPER_EL0", .state = ARM_CP_STATE_AA64,
2258       .opc0 = 3, .opc1 = 3, .crn = 9, .crm = 13, .opc2 = 1,
2259       .access = PL0_RW, .type = ARM_CP_NO_RAW | ARM_CP_IO,
2260       .accessfn = pmreg_access,
2261       .writefn = pmxevtyper_write, .readfn = pmxevtyper_read },
2262     { .name = "PMXEVCNTR", .cp = 15, .crn = 9, .crm = 13, .opc1 = 0, .opc2 = 2,
2263       .access = PL0_RW, .type = ARM_CP_NO_RAW | ARM_CP_IO,
2264       .accessfn = pmreg_access_xevcntr,
2265       .writefn = pmxevcntr_write, .readfn = pmxevcntr_read },
2266     { .name = "PMXEVCNTR_EL0", .state = ARM_CP_STATE_AA64,
2267       .opc0 = 3, .opc1 = 3, .crn = 9, .crm = 13, .opc2 = 2,
2268       .access = PL0_RW, .type = ARM_CP_NO_RAW | ARM_CP_IO,
2269       .accessfn = pmreg_access_xevcntr,
2270       .writefn = pmxevcntr_write, .readfn = pmxevcntr_read },
2271     { .name = "PMUSERENR", .cp = 15, .crn = 9, .crm = 14, .opc1 = 0, .opc2 = 0,
2272       .access = PL0_R | PL1_RW, .accessfn = access_tpm,
2273       .fieldoffset = offsetoflow32(CPUARMState, cp15.c9_pmuserenr),
2274       .resetvalue = 0,
2275       .writefn = pmuserenr_write, .raw_writefn = raw_write },
2276     { .name = "PMUSERENR_EL0", .state = ARM_CP_STATE_AA64,
2277       .opc0 = 3, .opc1 = 3, .crn = 9, .crm = 14, .opc2 = 0,
2278       .access = PL0_R | PL1_RW, .accessfn = access_tpm, .type = ARM_CP_ALIAS,
2279       .fieldoffset = offsetof(CPUARMState, cp15.c9_pmuserenr),
2280       .resetvalue = 0,
2281       .writefn = pmuserenr_write, .raw_writefn = raw_write },
2282     { .name = "PMINTENSET", .cp = 15, .crn = 9, .crm = 14, .opc1 = 0, .opc2 = 1,
2283       .access = PL1_RW, .accessfn = access_tpm,
2284       .type = ARM_CP_ALIAS | ARM_CP_IO,
2285       .fieldoffset = offsetoflow32(CPUARMState, cp15.c9_pminten),
2286       .resetvalue = 0,
2287       .writefn = pmintenset_write, .raw_writefn = raw_write },
2288     { .name = "PMINTENSET_EL1", .state = ARM_CP_STATE_AA64,
2289       .opc0 = 3, .opc1 = 0, .crn = 9, .crm = 14, .opc2 = 1,
2290       .access = PL1_RW, .accessfn = access_tpm,
2291       .type = ARM_CP_IO,
2292       .fieldoffset = offsetof(CPUARMState, cp15.c9_pminten),
2293       .writefn = pmintenset_write, .raw_writefn = raw_write,
2294       .resetvalue = 0x0 },
2295     { .name = "PMINTENCLR", .cp = 15, .crn = 9, .crm = 14, .opc1 = 0, .opc2 = 2,
2296       .access = PL1_RW, .accessfn = access_tpm,
2297       .type = ARM_CP_ALIAS | ARM_CP_IO | ARM_CP_NO_RAW,
2298       .fieldoffset = offsetof(CPUARMState, cp15.c9_pminten),
2299       .writefn = pmintenclr_write, },
2300     { .name = "PMINTENCLR_EL1", .state = ARM_CP_STATE_AA64,
2301       .opc0 = 3, .opc1 = 0, .crn = 9, .crm = 14, .opc2 = 2,
2302       .access = PL1_RW, .accessfn = access_tpm,
2303       .type = ARM_CP_ALIAS | ARM_CP_IO | ARM_CP_NO_RAW,
2304       .fieldoffset = offsetof(CPUARMState, cp15.c9_pminten),
2305       .writefn = pmintenclr_write },
2306     { .name = "CCSIDR", .state = ARM_CP_STATE_BOTH,
2307       .opc0 = 3, .crn = 0, .crm = 0, .opc1 = 1, .opc2 = 0,
2308       .access = PL1_R,
2309       .accessfn = access_aa64_tid2,
2310       .readfn = ccsidr_read, .type = ARM_CP_NO_RAW },
2311     { .name = "CSSELR", .state = ARM_CP_STATE_BOTH,
2312       .opc0 = 3, .crn = 0, .crm = 0, .opc1 = 2, .opc2 = 0,
2313       .access = PL1_RW,
2314       .accessfn = access_aa64_tid2,
2315       .writefn = csselr_write, .resetvalue = 0,
2316       .bank_fieldoffsets = { offsetof(CPUARMState, cp15.csselr_s),
2317                              offsetof(CPUARMState, cp15.csselr_ns) } },
2318     /* Auxiliary ID register: this actually has an IMPDEF value but for now
2319      * just RAZ for all cores:
2320      */
2321     { .name = "AIDR", .state = ARM_CP_STATE_BOTH,
2322       .opc0 = 3, .opc1 = 1, .crn = 0, .crm = 0, .opc2 = 7,
2323       .access = PL1_R, .type = ARM_CP_CONST,
2324       .accessfn = access_aa64_tid1,
2325       .resetvalue = 0 },
2326     /* Auxiliary fault status registers: these also are IMPDEF, and we
2327      * choose to RAZ/WI for all cores.
2328      */
2329     { .name = "AFSR0_EL1", .state = ARM_CP_STATE_BOTH,
2330       .opc0 = 3, .opc1 = 0, .crn = 5, .crm = 1, .opc2 = 0,
2331       .access = PL1_RW, .accessfn = access_tvm_trvm,
2332       .type = ARM_CP_CONST, .resetvalue = 0 },
2333     { .name = "AFSR1_EL1", .state = ARM_CP_STATE_BOTH,
2334       .opc0 = 3, .opc1 = 0, .crn = 5, .crm = 1, .opc2 = 1,
2335       .access = PL1_RW, .accessfn = access_tvm_trvm,
2336       .type = ARM_CP_CONST, .resetvalue = 0 },
2337     /* MAIR can just read-as-written because we don't implement caches
2338      * and so don't need to care about memory attributes.
2339      */
2340     { .name = "MAIR_EL1", .state = ARM_CP_STATE_AA64,
2341       .opc0 = 3, .opc1 = 0, .crn = 10, .crm = 2, .opc2 = 0,
2342       .access = PL1_RW, .accessfn = access_tvm_trvm,
2343       .fieldoffset = offsetof(CPUARMState, cp15.mair_el[1]),
2344       .resetvalue = 0 },
2345     { .name = "MAIR_EL3", .state = ARM_CP_STATE_AA64,
2346       .opc0 = 3, .opc1 = 6, .crn = 10, .crm = 2, .opc2 = 0,
2347       .access = PL3_RW, .fieldoffset = offsetof(CPUARMState, cp15.mair_el[3]),
2348       .resetvalue = 0 },
2349     /* For non-long-descriptor page tables these are PRRR and NMRR;
2350      * regardless they still act as reads-as-written for QEMU.
2351      */
2352      /* MAIR0/1 are defined separately from their 64-bit counterpart which
2353       * allows them to assign the correct fieldoffset based on the endianness
2354       * handled in the field definitions.
2355       */
2356     { .name = "MAIR0", .state = ARM_CP_STATE_AA32,
2357       .cp = 15, .opc1 = 0, .crn = 10, .crm = 2, .opc2 = 0,
2358       .access = PL1_RW, .accessfn = access_tvm_trvm,
2359       .bank_fieldoffsets = { offsetof(CPUARMState, cp15.mair0_s),
2360                              offsetof(CPUARMState, cp15.mair0_ns) },
2361       .resetfn = arm_cp_reset_ignore },
2362     { .name = "MAIR1", .state = ARM_CP_STATE_AA32,
2363       .cp = 15, .opc1 = 0, .crn = 10, .crm = 2, .opc2 = 1,
2364       .access = PL1_RW, .accessfn = access_tvm_trvm,
2365       .bank_fieldoffsets = { offsetof(CPUARMState, cp15.mair1_s),
2366                              offsetof(CPUARMState, cp15.mair1_ns) },
2367       .resetfn = arm_cp_reset_ignore },
2368     { .name = "ISR_EL1", .state = ARM_CP_STATE_BOTH,
2369       .opc0 = 3, .opc1 = 0, .crn = 12, .crm = 1, .opc2 = 0,
2370       .type = ARM_CP_NO_RAW, .access = PL1_R, .readfn = isr_read },
2371     /* 32 bit ITLB invalidates */
2372     { .name = "ITLBIALL", .cp = 15, .opc1 = 0, .crn = 8, .crm = 5, .opc2 = 0,
2373       .type = ARM_CP_NO_RAW, .access = PL1_W, .accessfn = access_ttlb,
2374       .writefn = tlbiall_write },
2375     { .name = "ITLBIMVA", .cp = 15, .opc1 = 0, .crn = 8, .crm = 5, .opc2 = 1,
2376       .type = ARM_CP_NO_RAW, .access = PL1_W, .accessfn = access_ttlb,
2377       .writefn = tlbimva_write },
2378     { .name = "ITLBIASID", .cp = 15, .opc1 = 0, .crn = 8, .crm = 5, .opc2 = 2,
2379       .type = ARM_CP_NO_RAW, .access = PL1_W, .accessfn = access_ttlb,
2380       .writefn = tlbiasid_write },
2381     /* 32 bit DTLB invalidates */
2382     { .name = "DTLBIALL", .cp = 15, .opc1 = 0, .crn = 8, .crm = 6, .opc2 = 0,
2383       .type = ARM_CP_NO_RAW, .access = PL1_W, .accessfn = access_ttlb,
2384       .writefn = tlbiall_write },
2385     { .name = "DTLBIMVA", .cp = 15, .opc1 = 0, .crn = 8, .crm = 6, .opc2 = 1,
2386       .type = ARM_CP_NO_RAW, .access = PL1_W, .accessfn = access_ttlb,
2387       .writefn = tlbimva_write },
2388     { .name = "DTLBIASID", .cp = 15, .opc1 = 0, .crn = 8, .crm = 6, .opc2 = 2,
2389       .type = ARM_CP_NO_RAW, .access = PL1_W, .accessfn = access_ttlb,
2390       .writefn = tlbiasid_write },
2391     /* 32 bit TLB invalidates */
2392     { .name = "TLBIALL", .cp = 15, .opc1 = 0, .crn = 8, .crm = 7, .opc2 = 0,
2393       .type = ARM_CP_NO_RAW, .access = PL1_W, .accessfn = access_ttlb,
2394       .writefn = tlbiall_write },
2395     { .name = "TLBIMVA", .cp = 15, .opc1 = 0, .crn = 8, .crm = 7, .opc2 = 1,
2396       .type = ARM_CP_NO_RAW, .access = PL1_W, .accessfn = access_ttlb,
2397       .writefn = tlbimva_write },
2398     { .name = "TLBIASID", .cp = 15, .opc1 = 0, .crn = 8, .crm = 7, .opc2 = 2,
2399       .type = ARM_CP_NO_RAW, .access = PL1_W, .accessfn = access_ttlb,
2400       .writefn = tlbiasid_write },
2401     { .name = "TLBIMVAA", .cp = 15, .opc1 = 0, .crn = 8, .crm = 7, .opc2 = 3,
2402       .type = ARM_CP_NO_RAW, .access = PL1_W, .accessfn = access_ttlb,
2403       .writefn = tlbimvaa_write },
2404     REGINFO_SENTINEL
2405 };
2406 
2407 static const ARMCPRegInfo v7mp_cp_reginfo[] = {
2408     /* 32 bit TLB invalidates, Inner Shareable */
2409     { .name = "TLBIALLIS", .cp = 15, .opc1 = 0, .crn = 8, .crm = 3, .opc2 = 0,
2410       .type = ARM_CP_NO_RAW, .access = PL1_W, .accessfn = access_ttlb,
2411       .writefn = tlbiall_is_write },
2412     { .name = "TLBIMVAIS", .cp = 15, .opc1 = 0, .crn = 8, .crm = 3, .opc2 = 1,
2413       .type = ARM_CP_NO_RAW, .access = PL1_W, .accessfn = access_ttlb,
2414       .writefn = tlbimva_is_write },
2415     { .name = "TLBIASIDIS", .cp = 15, .opc1 = 0, .crn = 8, .crm = 3, .opc2 = 2,
2416       .type = ARM_CP_NO_RAW, .access = PL1_W, .accessfn = access_ttlb,
2417       .writefn = tlbiasid_is_write },
2418     { .name = "TLBIMVAAIS", .cp = 15, .opc1 = 0, .crn = 8, .crm = 3, .opc2 = 3,
2419       .type = ARM_CP_NO_RAW, .access = PL1_W, .accessfn = access_ttlb,
2420       .writefn = tlbimvaa_is_write },
2421     REGINFO_SENTINEL
2422 };
2423 
2424 static const ARMCPRegInfo pmovsset_cp_reginfo[] = {
2425     /* PMOVSSET is not implemented in v7 before v7ve */
2426     { .name = "PMOVSSET", .cp = 15, .opc1 = 0, .crn = 9, .crm = 14, .opc2 = 3,
2427       .access = PL0_RW, .accessfn = pmreg_access,
2428       .type = ARM_CP_ALIAS | ARM_CP_IO,
2429       .fieldoffset = offsetoflow32(CPUARMState, cp15.c9_pmovsr),
2430       .writefn = pmovsset_write,
2431       .raw_writefn = raw_write },
2432     { .name = "PMOVSSET_EL0", .state = ARM_CP_STATE_AA64,
2433       .opc0 = 3, .opc1 = 3, .crn = 9, .crm = 14, .opc2 = 3,
2434       .access = PL0_RW, .accessfn = pmreg_access,
2435       .type = ARM_CP_ALIAS | ARM_CP_IO,
2436       .fieldoffset = offsetof(CPUARMState, cp15.c9_pmovsr),
2437       .writefn = pmovsset_write,
2438       .raw_writefn = raw_write },
2439     REGINFO_SENTINEL
2440 };
2441 
2442 static void teecr_write(CPUARMState *env, const ARMCPRegInfo *ri,
2443                         uint64_t value)
2444 {
2445     value &= 1;
2446     env->teecr = value;
2447 }
2448 
2449 static CPAccessResult teehbr_access(CPUARMState *env, const ARMCPRegInfo *ri,
2450                                     bool isread)
2451 {
2452     if (arm_current_el(env) == 0 && (env->teecr & 1)) {
2453         return CP_ACCESS_TRAP;
2454     }
2455     return CP_ACCESS_OK;
2456 }
2457 
2458 static const ARMCPRegInfo t2ee_cp_reginfo[] = {
2459     { .name = "TEECR", .cp = 14, .crn = 0, .crm = 0, .opc1 = 6, .opc2 = 0,
2460       .access = PL1_RW, .fieldoffset = offsetof(CPUARMState, teecr),
2461       .resetvalue = 0,
2462       .writefn = teecr_write },
2463     { .name = "TEEHBR", .cp = 14, .crn = 1, .crm = 0, .opc1 = 6, .opc2 = 0,
2464       .access = PL0_RW, .fieldoffset = offsetof(CPUARMState, teehbr),
2465       .accessfn = teehbr_access, .resetvalue = 0 },
2466     REGINFO_SENTINEL
2467 };
2468 
2469 static const ARMCPRegInfo v6k_cp_reginfo[] = {
2470     { .name = "TPIDR_EL0", .state = ARM_CP_STATE_AA64,
2471       .opc0 = 3, .opc1 = 3, .opc2 = 2, .crn = 13, .crm = 0,
2472       .access = PL0_RW,
2473       .fieldoffset = offsetof(CPUARMState, cp15.tpidr_el[0]), .resetvalue = 0 },
2474     { .name = "TPIDRURW", .cp = 15, .crn = 13, .crm = 0, .opc1 = 0, .opc2 = 2,
2475       .access = PL0_RW,
2476       .bank_fieldoffsets = { offsetoflow32(CPUARMState, cp15.tpidrurw_s),
2477                              offsetoflow32(CPUARMState, cp15.tpidrurw_ns) },
2478       .resetfn = arm_cp_reset_ignore },
2479     { .name = "TPIDRRO_EL0", .state = ARM_CP_STATE_AA64,
2480       .opc0 = 3, .opc1 = 3, .opc2 = 3, .crn = 13, .crm = 0,
2481       .access = PL0_R|PL1_W,
2482       .fieldoffset = offsetof(CPUARMState, cp15.tpidrro_el[0]),
2483       .resetvalue = 0},
2484     { .name = "TPIDRURO", .cp = 15, .crn = 13, .crm = 0, .opc1 = 0, .opc2 = 3,
2485       .access = PL0_R|PL1_W,
2486       .bank_fieldoffsets = { offsetoflow32(CPUARMState, cp15.tpidruro_s),
2487                              offsetoflow32(CPUARMState, cp15.tpidruro_ns) },
2488       .resetfn = arm_cp_reset_ignore },
2489     { .name = "TPIDR_EL1", .state = ARM_CP_STATE_AA64,
2490       .opc0 = 3, .opc1 = 0, .opc2 = 4, .crn = 13, .crm = 0,
2491       .access = PL1_RW,
2492       .fieldoffset = offsetof(CPUARMState, cp15.tpidr_el[1]), .resetvalue = 0 },
2493     { .name = "TPIDRPRW", .opc1 = 0, .cp = 15, .crn = 13, .crm = 0, .opc2 = 4,
2494       .access = PL1_RW,
2495       .bank_fieldoffsets = { offsetoflow32(CPUARMState, cp15.tpidrprw_s),
2496                              offsetoflow32(CPUARMState, cp15.tpidrprw_ns) },
2497       .resetvalue = 0 },
2498     REGINFO_SENTINEL
2499 };
2500 
2501 #ifndef CONFIG_USER_ONLY
2502 
2503 static CPAccessResult gt_cntfrq_access(CPUARMState *env, const ARMCPRegInfo *ri,
2504                                        bool isread)
2505 {
2506     /* CNTFRQ: not visible from PL0 if both PL0PCTEN and PL0VCTEN are zero.
2507      * Writable only at the highest implemented exception level.
2508      */
2509     int el = arm_current_el(env);
2510     uint64_t hcr;
2511     uint32_t cntkctl;
2512 
2513     switch (el) {
2514     case 0:
2515         hcr = arm_hcr_el2_eff(env);
2516         if ((hcr & (HCR_E2H | HCR_TGE)) == (HCR_E2H | HCR_TGE)) {
2517             cntkctl = env->cp15.cnthctl_el2;
2518         } else {
2519             cntkctl = env->cp15.c14_cntkctl;
2520         }
2521         if (!extract32(cntkctl, 0, 2)) {
2522             return CP_ACCESS_TRAP;
2523         }
2524         break;
2525     case 1:
2526         if (!isread && ri->state == ARM_CP_STATE_AA32 &&
2527             arm_is_secure_below_el3(env)) {
2528             /* Accesses from 32-bit Secure EL1 UNDEF (*not* trap to EL3!) */
2529             return CP_ACCESS_TRAP_UNCATEGORIZED;
2530         }
2531         break;
2532     case 2:
2533     case 3:
2534         break;
2535     }
2536 
2537     if (!isread && el < arm_highest_el(env)) {
2538         return CP_ACCESS_TRAP_UNCATEGORIZED;
2539     }
2540 
2541     return CP_ACCESS_OK;
2542 }
2543 
2544 static CPAccessResult gt_counter_access(CPUARMState *env, int timeridx,
2545                                         bool isread)
2546 {
2547     unsigned int cur_el = arm_current_el(env);
2548     bool has_el2 = arm_is_el2_enabled(env);
2549     uint64_t hcr = arm_hcr_el2_eff(env);
2550 
2551     switch (cur_el) {
2552     case 0:
2553         /* If HCR_EL2.<E2H,TGE> == '11': check CNTHCTL_EL2.EL0[PV]CTEN. */
2554         if ((hcr & (HCR_E2H | HCR_TGE)) == (HCR_E2H | HCR_TGE)) {
2555             return (extract32(env->cp15.cnthctl_el2, timeridx, 1)
2556                     ? CP_ACCESS_OK : CP_ACCESS_TRAP_EL2);
2557         }
2558 
2559         /* CNT[PV]CT: not visible from PL0 if EL0[PV]CTEN is zero */
2560         if (!extract32(env->cp15.c14_cntkctl, timeridx, 1)) {
2561             return CP_ACCESS_TRAP;
2562         }
2563 
2564         /* If HCR_EL2.<E2H,TGE> == '10': check CNTHCTL_EL2.EL1PCTEN. */
2565         if (hcr & HCR_E2H) {
2566             if (timeridx == GTIMER_PHYS &&
2567                 !extract32(env->cp15.cnthctl_el2, 10, 1)) {
2568                 return CP_ACCESS_TRAP_EL2;
2569             }
2570         } else {
2571             /* If HCR_EL2.<E2H> == 0: check CNTHCTL_EL2.EL1PCEN. */
2572             if (has_el2 && timeridx == GTIMER_PHYS &&
2573                 !extract32(env->cp15.cnthctl_el2, 1, 1)) {
2574                 return CP_ACCESS_TRAP_EL2;
2575             }
2576         }
2577         break;
2578 
2579     case 1:
2580         /* Check CNTHCTL_EL2.EL1PCTEN, which changes location based on E2H. */
2581         if (has_el2 && timeridx == GTIMER_PHYS &&
2582             (hcr & HCR_E2H
2583              ? !extract32(env->cp15.cnthctl_el2, 10, 1)
2584              : !extract32(env->cp15.cnthctl_el2, 0, 1))) {
2585             return CP_ACCESS_TRAP_EL2;
2586         }
2587         break;
2588     }
2589     return CP_ACCESS_OK;
2590 }
2591 
2592 static CPAccessResult gt_timer_access(CPUARMState *env, int timeridx,
2593                                       bool isread)
2594 {
2595     unsigned int cur_el = arm_current_el(env);
2596     bool has_el2 = arm_is_el2_enabled(env);
2597     uint64_t hcr = arm_hcr_el2_eff(env);
2598 
2599     switch (cur_el) {
2600     case 0:
2601         if ((hcr & (HCR_E2H | HCR_TGE)) == (HCR_E2H | HCR_TGE)) {
2602             /* If HCR_EL2.<E2H,TGE> == '11': check CNTHCTL_EL2.EL0[PV]TEN. */
2603             return (extract32(env->cp15.cnthctl_el2, 9 - timeridx, 1)
2604                     ? CP_ACCESS_OK : CP_ACCESS_TRAP_EL2);
2605         }
2606 
2607         /*
2608          * CNT[PV]_CVAL, CNT[PV]_CTL, CNT[PV]_TVAL: not visible from
2609          * EL0 if EL0[PV]TEN is zero.
2610          */
2611         if (!extract32(env->cp15.c14_cntkctl, 9 - timeridx, 1)) {
2612             return CP_ACCESS_TRAP;
2613         }
2614         /* fall through */
2615 
2616     case 1:
2617         if (has_el2 && timeridx == GTIMER_PHYS) {
2618             if (hcr & HCR_E2H) {
2619                 /* If HCR_EL2.<E2H,TGE> == '10': check CNTHCTL_EL2.EL1PTEN. */
2620                 if (!extract32(env->cp15.cnthctl_el2, 11, 1)) {
2621                     return CP_ACCESS_TRAP_EL2;
2622                 }
2623             } else {
2624                 /* If HCR_EL2.<E2H> == 0: check CNTHCTL_EL2.EL1PCEN. */
2625                 if (!extract32(env->cp15.cnthctl_el2, 1, 1)) {
2626                     return CP_ACCESS_TRAP_EL2;
2627                 }
2628             }
2629         }
2630         break;
2631     }
2632     return CP_ACCESS_OK;
2633 }
2634 
2635 static CPAccessResult gt_pct_access(CPUARMState *env,
2636                                     const ARMCPRegInfo *ri,
2637                                     bool isread)
2638 {
2639     return gt_counter_access(env, GTIMER_PHYS, isread);
2640 }
2641 
2642 static CPAccessResult gt_vct_access(CPUARMState *env,
2643                                     const ARMCPRegInfo *ri,
2644                                     bool isread)
2645 {
2646     return gt_counter_access(env, GTIMER_VIRT, isread);
2647 }
2648 
2649 static CPAccessResult gt_ptimer_access(CPUARMState *env, const ARMCPRegInfo *ri,
2650                                        bool isread)
2651 {
2652     return gt_timer_access(env, GTIMER_PHYS, isread);
2653 }
2654 
2655 static CPAccessResult gt_vtimer_access(CPUARMState *env, const ARMCPRegInfo *ri,
2656                                        bool isread)
2657 {
2658     return gt_timer_access(env, GTIMER_VIRT, isread);
2659 }
2660 
2661 static CPAccessResult gt_stimer_access(CPUARMState *env,
2662                                        const ARMCPRegInfo *ri,
2663                                        bool isread)
2664 {
2665     /* The AArch64 register view of the secure physical timer is
2666      * always accessible from EL3, and configurably accessible from
2667      * Secure EL1.
2668      */
2669     switch (arm_current_el(env)) {
2670     case 1:
2671         if (!arm_is_secure(env)) {
2672             return CP_ACCESS_TRAP;
2673         }
2674         if (!(env->cp15.scr_el3 & SCR_ST)) {
2675             return CP_ACCESS_TRAP_EL3;
2676         }
2677         return CP_ACCESS_OK;
2678     case 0:
2679     case 2:
2680         return CP_ACCESS_TRAP;
2681     case 3:
2682         return CP_ACCESS_OK;
2683     default:
2684         g_assert_not_reached();
2685     }
2686 }
2687 
2688 static uint64_t gt_get_countervalue(CPUARMState *env)
2689 {
2690     ARMCPU *cpu = env_archcpu(env);
2691 
2692     return qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL) / gt_cntfrq_period_ns(cpu);
2693 }
2694 
2695 static void gt_recalc_timer(ARMCPU *cpu, int timeridx)
2696 {
2697     ARMGenericTimer *gt = &cpu->env.cp15.c14_timer[timeridx];
2698 
2699     if (gt->ctl & 1) {
2700         /* Timer enabled: calculate and set current ISTATUS, irq, and
2701          * reset timer to when ISTATUS next has to change
2702          */
2703         uint64_t offset = timeridx == GTIMER_VIRT ?
2704                                       cpu->env.cp15.cntvoff_el2 : 0;
2705         uint64_t count = gt_get_countervalue(&cpu->env);
2706         /* Note that this must be unsigned 64 bit arithmetic: */
2707         int istatus = count - offset >= gt->cval;
2708         uint64_t nexttick;
2709         int irqstate;
2710 
2711         gt->ctl = deposit32(gt->ctl, 2, 1, istatus);
2712 
2713         irqstate = (istatus && !(gt->ctl & 2));
2714         qemu_set_irq(cpu->gt_timer_outputs[timeridx], irqstate);
2715 
2716         if (istatus) {
2717             /* Next transition is when count rolls back over to zero */
2718             nexttick = UINT64_MAX;
2719         } else {
2720             /* Next transition is when we hit cval */
2721             nexttick = gt->cval + offset;
2722         }
2723         /* Note that the desired next expiry time might be beyond the
2724          * signed-64-bit range of a QEMUTimer -- in this case we just
2725          * set the timer for as far in the future as possible. When the
2726          * timer expires we will reset the timer for any remaining period.
2727          */
2728         if (nexttick > INT64_MAX / gt_cntfrq_period_ns(cpu)) {
2729             timer_mod_ns(cpu->gt_timer[timeridx], INT64_MAX);
2730         } else {
2731             timer_mod(cpu->gt_timer[timeridx], nexttick);
2732         }
2733         trace_arm_gt_recalc(timeridx, irqstate, nexttick);
2734     } else {
2735         /* Timer disabled: ISTATUS and timer output always clear */
2736         gt->ctl &= ~4;
2737         qemu_set_irq(cpu->gt_timer_outputs[timeridx], 0);
2738         timer_del(cpu->gt_timer[timeridx]);
2739         trace_arm_gt_recalc_disabled(timeridx);
2740     }
2741 }
2742 
2743 static void gt_timer_reset(CPUARMState *env, const ARMCPRegInfo *ri,
2744                            int timeridx)
2745 {
2746     ARMCPU *cpu = env_archcpu(env);
2747 
2748     timer_del(cpu->gt_timer[timeridx]);
2749 }
2750 
2751 static uint64_t gt_cnt_read(CPUARMState *env, const ARMCPRegInfo *ri)
2752 {
2753     return gt_get_countervalue(env);
2754 }
2755 
2756 static uint64_t gt_virt_cnt_offset(CPUARMState *env)
2757 {
2758     uint64_t hcr;
2759 
2760     switch (arm_current_el(env)) {
2761     case 2:
2762         hcr = arm_hcr_el2_eff(env);
2763         if (hcr & HCR_E2H) {
2764             return 0;
2765         }
2766         break;
2767     case 0:
2768         hcr = arm_hcr_el2_eff(env);
2769         if ((hcr & (HCR_E2H | HCR_TGE)) == (HCR_E2H | HCR_TGE)) {
2770             return 0;
2771         }
2772         break;
2773     }
2774 
2775     return env->cp15.cntvoff_el2;
2776 }
2777 
2778 static uint64_t gt_virt_cnt_read(CPUARMState *env, const ARMCPRegInfo *ri)
2779 {
2780     return gt_get_countervalue(env) - gt_virt_cnt_offset(env);
2781 }
2782 
2783 static void gt_cval_write(CPUARMState *env, const ARMCPRegInfo *ri,
2784                           int timeridx,
2785                           uint64_t value)
2786 {
2787     trace_arm_gt_cval_write(timeridx, value);
2788     env->cp15.c14_timer[timeridx].cval = value;
2789     gt_recalc_timer(env_archcpu(env), timeridx);
2790 }
2791 
2792 static uint64_t gt_tval_read(CPUARMState *env, const ARMCPRegInfo *ri,
2793                              int timeridx)
2794 {
2795     uint64_t offset = 0;
2796 
2797     switch (timeridx) {
2798     case GTIMER_VIRT:
2799     case GTIMER_HYPVIRT:
2800         offset = gt_virt_cnt_offset(env);
2801         break;
2802     }
2803 
2804     return (uint32_t)(env->cp15.c14_timer[timeridx].cval -
2805                       (gt_get_countervalue(env) - offset));
2806 }
2807 
2808 static void gt_tval_write(CPUARMState *env, const ARMCPRegInfo *ri,
2809                           int timeridx,
2810                           uint64_t value)
2811 {
2812     uint64_t offset = 0;
2813 
2814     switch (timeridx) {
2815     case GTIMER_VIRT:
2816     case GTIMER_HYPVIRT:
2817         offset = gt_virt_cnt_offset(env);
2818         break;
2819     }
2820 
2821     trace_arm_gt_tval_write(timeridx, value);
2822     env->cp15.c14_timer[timeridx].cval = gt_get_countervalue(env) - offset +
2823                                          sextract64(value, 0, 32);
2824     gt_recalc_timer(env_archcpu(env), timeridx);
2825 }
2826 
2827 static void gt_ctl_write(CPUARMState *env, const ARMCPRegInfo *ri,
2828                          int timeridx,
2829                          uint64_t value)
2830 {
2831     ARMCPU *cpu = env_archcpu(env);
2832     uint32_t oldval = env->cp15.c14_timer[timeridx].ctl;
2833 
2834     trace_arm_gt_ctl_write(timeridx, value);
2835     env->cp15.c14_timer[timeridx].ctl = deposit64(oldval, 0, 2, value);
2836     if ((oldval ^ value) & 1) {
2837         /* Enable toggled */
2838         gt_recalc_timer(cpu, timeridx);
2839     } else if ((oldval ^ value) & 2) {
2840         /* IMASK toggled: don't need to recalculate,
2841          * just set the interrupt line based on ISTATUS
2842          */
2843         int irqstate = (oldval & 4) && !(value & 2);
2844 
2845         trace_arm_gt_imask_toggle(timeridx, irqstate);
2846         qemu_set_irq(cpu->gt_timer_outputs[timeridx], irqstate);
2847     }
2848 }
2849 
2850 static void gt_phys_timer_reset(CPUARMState *env, const ARMCPRegInfo *ri)
2851 {
2852     gt_timer_reset(env, ri, GTIMER_PHYS);
2853 }
2854 
2855 static void gt_phys_cval_write(CPUARMState *env, const ARMCPRegInfo *ri,
2856                                uint64_t value)
2857 {
2858     gt_cval_write(env, ri, GTIMER_PHYS, value);
2859 }
2860 
2861 static uint64_t gt_phys_tval_read(CPUARMState *env, const ARMCPRegInfo *ri)
2862 {
2863     return gt_tval_read(env, ri, GTIMER_PHYS);
2864 }
2865 
2866 static void gt_phys_tval_write(CPUARMState *env, const ARMCPRegInfo *ri,
2867                                uint64_t value)
2868 {
2869     gt_tval_write(env, ri, GTIMER_PHYS, value);
2870 }
2871 
2872 static void gt_phys_ctl_write(CPUARMState *env, const ARMCPRegInfo *ri,
2873                               uint64_t value)
2874 {
2875     gt_ctl_write(env, ri, GTIMER_PHYS, value);
2876 }
2877 
2878 static int gt_phys_redir_timeridx(CPUARMState *env)
2879 {
2880     switch (arm_mmu_idx(env)) {
2881     case ARMMMUIdx_E20_0:
2882     case ARMMMUIdx_E20_2:
2883     case ARMMMUIdx_E20_2_PAN:
2884     case ARMMMUIdx_SE20_0:
2885     case ARMMMUIdx_SE20_2:
2886     case ARMMMUIdx_SE20_2_PAN:
2887         return GTIMER_HYP;
2888     default:
2889         return GTIMER_PHYS;
2890     }
2891 }
2892 
2893 static int gt_virt_redir_timeridx(CPUARMState *env)
2894 {
2895     switch (arm_mmu_idx(env)) {
2896     case ARMMMUIdx_E20_0:
2897     case ARMMMUIdx_E20_2:
2898     case ARMMMUIdx_E20_2_PAN:
2899     case ARMMMUIdx_SE20_0:
2900     case ARMMMUIdx_SE20_2:
2901     case ARMMMUIdx_SE20_2_PAN:
2902         return GTIMER_HYPVIRT;
2903     default:
2904         return GTIMER_VIRT;
2905     }
2906 }
2907 
2908 static uint64_t gt_phys_redir_cval_read(CPUARMState *env,
2909                                         const ARMCPRegInfo *ri)
2910 {
2911     int timeridx = gt_phys_redir_timeridx(env);
2912     return env->cp15.c14_timer[timeridx].cval;
2913 }
2914 
2915 static void gt_phys_redir_cval_write(CPUARMState *env, const ARMCPRegInfo *ri,
2916                                      uint64_t value)
2917 {
2918     int timeridx = gt_phys_redir_timeridx(env);
2919     gt_cval_write(env, ri, timeridx, value);
2920 }
2921 
2922 static uint64_t gt_phys_redir_tval_read(CPUARMState *env,
2923                                         const ARMCPRegInfo *ri)
2924 {
2925     int timeridx = gt_phys_redir_timeridx(env);
2926     return gt_tval_read(env, ri, timeridx);
2927 }
2928 
2929 static void gt_phys_redir_tval_write(CPUARMState *env, const ARMCPRegInfo *ri,
2930                                      uint64_t value)
2931 {
2932     int timeridx = gt_phys_redir_timeridx(env);
2933     gt_tval_write(env, ri, timeridx, value);
2934 }
2935 
2936 static uint64_t gt_phys_redir_ctl_read(CPUARMState *env,
2937                                        const ARMCPRegInfo *ri)
2938 {
2939     int timeridx = gt_phys_redir_timeridx(env);
2940     return env->cp15.c14_timer[timeridx].ctl;
2941 }
2942 
2943 static void gt_phys_redir_ctl_write(CPUARMState *env, const ARMCPRegInfo *ri,
2944                                     uint64_t value)
2945 {
2946     int timeridx = gt_phys_redir_timeridx(env);
2947     gt_ctl_write(env, ri, timeridx, value);
2948 }
2949 
2950 static void gt_virt_timer_reset(CPUARMState *env, const ARMCPRegInfo *ri)
2951 {
2952     gt_timer_reset(env, ri, GTIMER_VIRT);
2953 }
2954 
2955 static void gt_virt_cval_write(CPUARMState *env, const ARMCPRegInfo *ri,
2956                                uint64_t value)
2957 {
2958     gt_cval_write(env, ri, GTIMER_VIRT, value);
2959 }
2960 
2961 static uint64_t gt_virt_tval_read(CPUARMState *env, const ARMCPRegInfo *ri)
2962 {
2963     return gt_tval_read(env, ri, GTIMER_VIRT);
2964 }
2965 
2966 static void gt_virt_tval_write(CPUARMState *env, const ARMCPRegInfo *ri,
2967                                uint64_t value)
2968 {
2969     gt_tval_write(env, ri, GTIMER_VIRT, value);
2970 }
2971 
2972 static void gt_virt_ctl_write(CPUARMState *env, const ARMCPRegInfo *ri,
2973                               uint64_t value)
2974 {
2975     gt_ctl_write(env, ri, GTIMER_VIRT, value);
2976 }
2977 
2978 static void gt_cntvoff_write(CPUARMState *env, const ARMCPRegInfo *ri,
2979                               uint64_t value)
2980 {
2981     ARMCPU *cpu = env_archcpu(env);
2982 
2983     trace_arm_gt_cntvoff_write(value);
2984     raw_write(env, ri, value);
2985     gt_recalc_timer(cpu, GTIMER_VIRT);
2986 }
2987 
2988 static uint64_t gt_virt_redir_cval_read(CPUARMState *env,
2989                                         const ARMCPRegInfo *ri)
2990 {
2991     int timeridx = gt_virt_redir_timeridx(env);
2992     return env->cp15.c14_timer[timeridx].cval;
2993 }
2994 
2995 static void gt_virt_redir_cval_write(CPUARMState *env, const ARMCPRegInfo *ri,
2996                                      uint64_t value)
2997 {
2998     int timeridx = gt_virt_redir_timeridx(env);
2999     gt_cval_write(env, ri, timeridx, value);
3000 }
3001 
3002 static uint64_t gt_virt_redir_tval_read(CPUARMState *env,
3003                                         const ARMCPRegInfo *ri)
3004 {
3005     int timeridx = gt_virt_redir_timeridx(env);
3006     return gt_tval_read(env, ri, timeridx);
3007 }
3008 
3009 static void gt_virt_redir_tval_write(CPUARMState *env, const ARMCPRegInfo *ri,
3010                                      uint64_t value)
3011 {
3012     int timeridx = gt_virt_redir_timeridx(env);
3013     gt_tval_write(env, ri, timeridx, value);
3014 }
3015 
3016 static uint64_t gt_virt_redir_ctl_read(CPUARMState *env,
3017                                        const ARMCPRegInfo *ri)
3018 {
3019     int timeridx = gt_virt_redir_timeridx(env);
3020     return env->cp15.c14_timer[timeridx].ctl;
3021 }
3022 
3023 static void gt_virt_redir_ctl_write(CPUARMState *env, const ARMCPRegInfo *ri,
3024                                     uint64_t value)
3025 {
3026     int timeridx = gt_virt_redir_timeridx(env);
3027     gt_ctl_write(env, ri, timeridx, value);
3028 }
3029 
3030 static void gt_hyp_timer_reset(CPUARMState *env, const ARMCPRegInfo *ri)
3031 {
3032     gt_timer_reset(env, ri, GTIMER_HYP);
3033 }
3034 
3035 static void gt_hyp_cval_write(CPUARMState *env, const ARMCPRegInfo *ri,
3036                               uint64_t value)
3037 {
3038     gt_cval_write(env, ri, GTIMER_HYP, value);
3039 }
3040 
3041 static uint64_t gt_hyp_tval_read(CPUARMState *env, const ARMCPRegInfo *ri)
3042 {
3043     return gt_tval_read(env, ri, GTIMER_HYP);
3044 }
3045 
3046 static void gt_hyp_tval_write(CPUARMState *env, const ARMCPRegInfo *ri,
3047                               uint64_t value)
3048 {
3049     gt_tval_write(env, ri, GTIMER_HYP, value);
3050 }
3051 
3052 static void gt_hyp_ctl_write(CPUARMState *env, const ARMCPRegInfo *ri,
3053                               uint64_t value)
3054 {
3055     gt_ctl_write(env, ri, GTIMER_HYP, value);
3056 }
3057 
3058 static void gt_sec_timer_reset(CPUARMState *env, const ARMCPRegInfo *ri)
3059 {
3060     gt_timer_reset(env, ri, GTIMER_SEC);
3061 }
3062 
3063 static void gt_sec_cval_write(CPUARMState *env, const ARMCPRegInfo *ri,
3064                               uint64_t value)
3065 {
3066     gt_cval_write(env, ri, GTIMER_SEC, value);
3067 }
3068 
3069 static uint64_t gt_sec_tval_read(CPUARMState *env, const ARMCPRegInfo *ri)
3070 {
3071     return gt_tval_read(env, ri, GTIMER_SEC);
3072 }
3073 
3074 static void gt_sec_tval_write(CPUARMState *env, const ARMCPRegInfo *ri,
3075                               uint64_t value)
3076 {
3077     gt_tval_write(env, ri, GTIMER_SEC, value);
3078 }
3079 
3080 static void gt_sec_ctl_write(CPUARMState *env, const ARMCPRegInfo *ri,
3081                               uint64_t value)
3082 {
3083     gt_ctl_write(env, ri, GTIMER_SEC, value);
3084 }
3085 
3086 static void gt_hv_timer_reset(CPUARMState *env, const ARMCPRegInfo *ri)
3087 {
3088     gt_timer_reset(env, ri, GTIMER_HYPVIRT);
3089 }
3090 
3091 static void gt_hv_cval_write(CPUARMState *env, const ARMCPRegInfo *ri,
3092                              uint64_t value)
3093 {
3094     gt_cval_write(env, ri, GTIMER_HYPVIRT, value);
3095 }
3096 
3097 static uint64_t gt_hv_tval_read(CPUARMState *env, const ARMCPRegInfo *ri)
3098 {
3099     return gt_tval_read(env, ri, GTIMER_HYPVIRT);
3100 }
3101 
3102 static void gt_hv_tval_write(CPUARMState *env, const ARMCPRegInfo *ri,
3103                              uint64_t value)
3104 {
3105     gt_tval_write(env, ri, GTIMER_HYPVIRT, value);
3106 }
3107 
3108 static void gt_hv_ctl_write(CPUARMState *env, const ARMCPRegInfo *ri,
3109                             uint64_t value)
3110 {
3111     gt_ctl_write(env, ri, GTIMER_HYPVIRT, value);
3112 }
3113 
3114 void arm_gt_ptimer_cb(void *opaque)
3115 {
3116     ARMCPU *cpu = opaque;
3117 
3118     gt_recalc_timer(cpu, GTIMER_PHYS);
3119 }
3120 
3121 void arm_gt_vtimer_cb(void *opaque)
3122 {
3123     ARMCPU *cpu = opaque;
3124 
3125     gt_recalc_timer(cpu, GTIMER_VIRT);
3126 }
3127 
3128 void arm_gt_htimer_cb(void *opaque)
3129 {
3130     ARMCPU *cpu = opaque;
3131 
3132     gt_recalc_timer(cpu, GTIMER_HYP);
3133 }
3134 
3135 void arm_gt_stimer_cb(void *opaque)
3136 {
3137     ARMCPU *cpu = opaque;
3138 
3139     gt_recalc_timer(cpu, GTIMER_SEC);
3140 }
3141 
3142 void arm_gt_hvtimer_cb(void *opaque)
3143 {
3144     ARMCPU *cpu = opaque;
3145 
3146     gt_recalc_timer(cpu, GTIMER_HYPVIRT);
3147 }
3148 
3149 static void arm_gt_cntfrq_reset(CPUARMState *env, const ARMCPRegInfo *opaque)
3150 {
3151     ARMCPU *cpu = env_archcpu(env);
3152 
3153     cpu->env.cp15.c14_cntfrq = cpu->gt_cntfrq_hz;
3154 }
3155 
3156 static const ARMCPRegInfo generic_timer_cp_reginfo[] = {
3157     /* Note that CNTFRQ is purely reads-as-written for the benefit
3158      * of software; writing it doesn't actually change the timer frequency.
3159      * Our reset value matches the fixed frequency we implement the timer at.
3160      */
3161     { .name = "CNTFRQ", .cp = 15, .crn = 14, .crm = 0, .opc1 = 0, .opc2 = 0,
3162       .type = ARM_CP_ALIAS,
3163       .access = PL1_RW | PL0_R, .accessfn = gt_cntfrq_access,
3164       .fieldoffset = offsetoflow32(CPUARMState, cp15.c14_cntfrq),
3165     },
3166     { .name = "CNTFRQ_EL0", .state = ARM_CP_STATE_AA64,
3167       .opc0 = 3, .opc1 = 3, .crn = 14, .crm = 0, .opc2 = 0,
3168       .access = PL1_RW | PL0_R, .accessfn = gt_cntfrq_access,
3169       .fieldoffset = offsetof(CPUARMState, cp15.c14_cntfrq),
3170       .resetfn = arm_gt_cntfrq_reset,
3171     },
3172     /* overall control: mostly access permissions */
3173     { .name = "CNTKCTL", .state = ARM_CP_STATE_BOTH,
3174       .opc0 = 3, .opc1 = 0, .crn = 14, .crm = 1, .opc2 = 0,
3175       .access = PL1_RW,
3176       .fieldoffset = offsetof(CPUARMState, cp15.c14_cntkctl),
3177       .resetvalue = 0,
3178     },
3179     /* per-timer control */
3180     { .name = "CNTP_CTL", .cp = 15, .crn = 14, .crm = 2, .opc1 = 0, .opc2 = 1,
3181       .secure = ARM_CP_SECSTATE_NS,
3182       .type = ARM_CP_IO | ARM_CP_ALIAS, .access = PL0_RW,
3183       .accessfn = gt_ptimer_access,
3184       .fieldoffset = offsetoflow32(CPUARMState,
3185                                    cp15.c14_timer[GTIMER_PHYS].ctl),
3186       .readfn = gt_phys_redir_ctl_read, .raw_readfn = raw_read,
3187       .writefn = gt_phys_redir_ctl_write, .raw_writefn = raw_write,
3188     },
3189     { .name = "CNTP_CTL_S",
3190       .cp = 15, .crn = 14, .crm = 2, .opc1 = 0, .opc2 = 1,
3191       .secure = ARM_CP_SECSTATE_S,
3192       .type = ARM_CP_IO | ARM_CP_ALIAS, .access = PL0_RW,
3193       .accessfn = gt_ptimer_access,
3194       .fieldoffset = offsetoflow32(CPUARMState,
3195                                    cp15.c14_timer[GTIMER_SEC].ctl),
3196       .writefn = gt_sec_ctl_write, .raw_writefn = raw_write,
3197     },
3198     { .name = "CNTP_CTL_EL0", .state = ARM_CP_STATE_AA64,
3199       .opc0 = 3, .opc1 = 3, .crn = 14, .crm = 2, .opc2 = 1,
3200       .type = ARM_CP_IO, .access = PL0_RW,
3201       .accessfn = gt_ptimer_access,
3202       .fieldoffset = offsetof(CPUARMState, cp15.c14_timer[GTIMER_PHYS].ctl),
3203       .resetvalue = 0,
3204       .readfn = gt_phys_redir_ctl_read, .raw_readfn = raw_read,
3205       .writefn = gt_phys_redir_ctl_write, .raw_writefn = raw_write,
3206     },
3207     { .name = "CNTV_CTL", .cp = 15, .crn = 14, .crm = 3, .opc1 = 0, .opc2 = 1,
3208       .type = ARM_CP_IO | ARM_CP_ALIAS, .access = PL0_RW,
3209       .accessfn = gt_vtimer_access,
3210       .fieldoffset = offsetoflow32(CPUARMState,
3211                                    cp15.c14_timer[GTIMER_VIRT].ctl),
3212       .readfn = gt_virt_redir_ctl_read, .raw_readfn = raw_read,
3213       .writefn = gt_virt_redir_ctl_write, .raw_writefn = raw_write,
3214     },
3215     { .name = "CNTV_CTL_EL0", .state = ARM_CP_STATE_AA64,
3216       .opc0 = 3, .opc1 = 3, .crn = 14, .crm = 3, .opc2 = 1,
3217       .type = ARM_CP_IO, .access = PL0_RW,
3218       .accessfn = gt_vtimer_access,
3219       .fieldoffset = offsetof(CPUARMState, cp15.c14_timer[GTIMER_VIRT].ctl),
3220       .resetvalue = 0,
3221       .readfn = gt_virt_redir_ctl_read, .raw_readfn = raw_read,
3222       .writefn = gt_virt_redir_ctl_write, .raw_writefn = raw_write,
3223     },
3224     /* TimerValue views: a 32 bit downcounting view of the underlying state */
3225     { .name = "CNTP_TVAL", .cp = 15, .crn = 14, .crm = 2, .opc1 = 0, .opc2 = 0,
3226       .secure = ARM_CP_SECSTATE_NS,
3227       .type = ARM_CP_NO_RAW | ARM_CP_IO, .access = PL0_RW,
3228       .accessfn = gt_ptimer_access,
3229       .readfn = gt_phys_redir_tval_read, .writefn = gt_phys_redir_tval_write,
3230     },
3231     { .name = "CNTP_TVAL_S",
3232       .cp = 15, .crn = 14, .crm = 2, .opc1 = 0, .opc2 = 0,
3233       .secure = ARM_CP_SECSTATE_S,
3234       .type = ARM_CP_NO_RAW | ARM_CP_IO, .access = PL0_RW,
3235       .accessfn = gt_ptimer_access,
3236       .readfn = gt_sec_tval_read, .writefn = gt_sec_tval_write,
3237     },
3238     { .name = "CNTP_TVAL_EL0", .state = ARM_CP_STATE_AA64,
3239       .opc0 = 3, .opc1 = 3, .crn = 14, .crm = 2, .opc2 = 0,
3240       .type = ARM_CP_NO_RAW | ARM_CP_IO, .access = PL0_RW,
3241       .accessfn = gt_ptimer_access, .resetfn = gt_phys_timer_reset,
3242       .readfn = gt_phys_redir_tval_read, .writefn = gt_phys_redir_tval_write,
3243     },
3244     { .name = "CNTV_TVAL", .cp = 15, .crn = 14, .crm = 3, .opc1 = 0, .opc2 = 0,
3245       .type = ARM_CP_NO_RAW | ARM_CP_IO, .access = PL0_RW,
3246       .accessfn = gt_vtimer_access,
3247       .readfn = gt_virt_redir_tval_read, .writefn = gt_virt_redir_tval_write,
3248     },
3249     { .name = "CNTV_TVAL_EL0", .state = ARM_CP_STATE_AA64,
3250       .opc0 = 3, .opc1 = 3, .crn = 14, .crm = 3, .opc2 = 0,
3251       .type = ARM_CP_NO_RAW | ARM_CP_IO, .access = PL0_RW,
3252       .accessfn = gt_vtimer_access, .resetfn = gt_virt_timer_reset,
3253       .readfn = gt_virt_redir_tval_read, .writefn = gt_virt_redir_tval_write,
3254     },
3255     /* The counter itself */
3256     { .name = "CNTPCT", .cp = 15, .crm = 14, .opc1 = 0,
3257       .access = PL0_R, .type = ARM_CP_64BIT | ARM_CP_NO_RAW | ARM_CP_IO,
3258       .accessfn = gt_pct_access,
3259       .readfn = gt_cnt_read, .resetfn = arm_cp_reset_ignore,
3260     },
3261     { .name = "CNTPCT_EL0", .state = ARM_CP_STATE_AA64,
3262       .opc0 = 3, .opc1 = 3, .crn = 14, .crm = 0, .opc2 = 1,
3263       .access = PL0_R, .type = ARM_CP_NO_RAW | ARM_CP_IO,
3264       .accessfn = gt_pct_access, .readfn = gt_cnt_read,
3265     },
3266     { .name = "CNTVCT", .cp = 15, .crm = 14, .opc1 = 1,
3267       .access = PL0_R, .type = ARM_CP_64BIT | ARM_CP_NO_RAW | ARM_CP_IO,
3268       .accessfn = gt_vct_access,
3269       .readfn = gt_virt_cnt_read, .resetfn = arm_cp_reset_ignore,
3270     },
3271     { .name = "CNTVCT_EL0", .state = ARM_CP_STATE_AA64,
3272       .opc0 = 3, .opc1 = 3, .crn = 14, .crm = 0, .opc2 = 2,
3273       .access = PL0_R, .type = ARM_CP_NO_RAW | ARM_CP_IO,
3274       .accessfn = gt_vct_access, .readfn = gt_virt_cnt_read,
3275     },
3276     /* Comparison value, indicating when the timer goes off */
3277     { .name = "CNTP_CVAL", .cp = 15, .crm = 14, .opc1 = 2,
3278       .secure = ARM_CP_SECSTATE_NS,
3279       .access = PL0_RW,
3280       .type = ARM_CP_64BIT | ARM_CP_IO | ARM_CP_ALIAS,
3281       .fieldoffset = offsetof(CPUARMState, cp15.c14_timer[GTIMER_PHYS].cval),
3282       .accessfn = gt_ptimer_access,
3283       .readfn = gt_phys_redir_cval_read, .raw_readfn = raw_read,
3284       .writefn = gt_phys_redir_cval_write, .raw_writefn = raw_write,
3285     },
3286     { .name = "CNTP_CVAL_S", .cp = 15, .crm = 14, .opc1 = 2,
3287       .secure = ARM_CP_SECSTATE_S,
3288       .access = PL0_RW,
3289       .type = ARM_CP_64BIT | ARM_CP_IO | ARM_CP_ALIAS,
3290       .fieldoffset = offsetof(CPUARMState, cp15.c14_timer[GTIMER_SEC].cval),
3291       .accessfn = gt_ptimer_access,
3292       .writefn = gt_sec_cval_write, .raw_writefn = raw_write,
3293     },
3294     { .name = "CNTP_CVAL_EL0", .state = ARM_CP_STATE_AA64,
3295       .opc0 = 3, .opc1 = 3, .crn = 14, .crm = 2, .opc2 = 2,
3296       .access = PL0_RW,
3297       .type = ARM_CP_IO,
3298       .fieldoffset = offsetof(CPUARMState, cp15.c14_timer[GTIMER_PHYS].cval),
3299       .resetvalue = 0, .accessfn = gt_ptimer_access,
3300       .readfn = gt_phys_redir_cval_read, .raw_readfn = raw_read,
3301       .writefn = gt_phys_redir_cval_write, .raw_writefn = raw_write,
3302     },
3303     { .name = "CNTV_CVAL", .cp = 15, .crm = 14, .opc1 = 3,
3304       .access = PL0_RW,
3305       .type = ARM_CP_64BIT | ARM_CP_IO | ARM_CP_ALIAS,
3306       .fieldoffset = offsetof(CPUARMState, cp15.c14_timer[GTIMER_VIRT].cval),
3307       .accessfn = gt_vtimer_access,
3308       .readfn = gt_virt_redir_cval_read, .raw_readfn = raw_read,
3309       .writefn = gt_virt_redir_cval_write, .raw_writefn = raw_write,
3310     },
3311     { .name = "CNTV_CVAL_EL0", .state = ARM_CP_STATE_AA64,
3312       .opc0 = 3, .opc1 = 3, .crn = 14, .crm = 3, .opc2 = 2,
3313       .access = PL0_RW,
3314       .type = ARM_CP_IO,
3315       .fieldoffset = offsetof(CPUARMState, cp15.c14_timer[GTIMER_VIRT].cval),
3316       .resetvalue = 0, .accessfn = gt_vtimer_access,
3317       .readfn = gt_virt_redir_cval_read, .raw_readfn = raw_read,
3318       .writefn = gt_virt_redir_cval_write, .raw_writefn = raw_write,
3319     },
3320     /* Secure timer -- this is actually restricted to only EL3
3321      * and configurably Secure-EL1 via the accessfn.
3322      */
3323     { .name = "CNTPS_TVAL_EL1", .state = ARM_CP_STATE_AA64,
3324       .opc0 = 3, .opc1 = 7, .crn = 14, .crm = 2, .opc2 = 0,
3325       .type = ARM_CP_NO_RAW | ARM_CP_IO, .access = PL1_RW,
3326       .accessfn = gt_stimer_access,
3327       .readfn = gt_sec_tval_read,
3328       .writefn = gt_sec_tval_write,
3329       .resetfn = gt_sec_timer_reset,
3330     },
3331     { .name = "CNTPS_CTL_EL1", .state = ARM_CP_STATE_AA64,
3332       .opc0 = 3, .opc1 = 7, .crn = 14, .crm = 2, .opc2 = 1,
3333       .type = ARM_CP_IO, .access = PL1_RW,
3334       .accessfn = gt_stimer_access,
3335       .fieldoffset = offsetof(CPUARMState, cp15.c14_timer[GTIMER_SEC].ctl),
3336       .resetvalue = 0,
3337       .writefn = gt_sec_ctl_write, .raw_writefn = raw_write,
3338     },
3339     { .name = "CNTPS_CVAL_EL1", .state = ARM_CP_STATE_AA64,
3340       .opc0 = 3, .opc1 = 7, .crn = 14, .crm = 2, .opc2 = 2,
3341       .type = ARM_CP_IO, .access = PL1_RW,
3342       .accessfn = gt_stimer_access,
3343       .fieldoffset = offsetof(CPUARMState, cp15.c14_timer[GTIMER_SEC].cval),
3344       .writefn = gt_sec_cval_write, .raw_writefn = raw_write,
3345     },
3346     REGINFO_SENTINEL
3347 };
3348 
3349 static CPAccessResult e2h_access(CPUARMState *env, const ARMCPRegInfo *ri,
3350                                  bool isread)
3351 {
3352     if (!(arm_hcr_el2_eff(env) & HCR_E2H)) {
3353         return CP_ACCESS_TRAP;
3354     }
3355     return CP_ACCESS_OK;
3356 }
3357 
3358 #else
3359 
3360 /* In user-mode most of the generic timer registers are inaccessible
3361  * however modern kernels (4.12+) allow access to cntvct_el0
3362  */
3363 
3364 static uint64_t gt_virt_cnt_read(CPUARMState *env, const ARMCPRegInfo *ri)
3365 {
3366     ARMCPU *cpu = env_archcpu(env);
3367 
3368     /* Currently we have no support for QEMUTimer in linux-user so we
3369      * can't call gt_get_countervalue(env), instead we directly
3370      * call the lower level functions.
3371      */
3372     return cpu_get_clock() / gt_cntfrq_period_ns(cpu);
3373 }
3374 
3375 static const ARMCPRegInfo generic_timer_cp_reginfo[] = {
3376     { .name = "CNTFRQ_EL0", .state = ARM_CP_STATE_AA64,
3377       .opc0 = 3, .opc1 = 3, .crn = 14, .crm = 0, .opc2 = 0,
3378       .type = ARM_CP_CONST, .access = PL0_R /* no PL1_RW in linux-user */,
3379       .fieldoffset = offsetof(CPUARMState, cp15.c14_cntfrq),
3380       .resetvalue = NANOSECONDS_PER_SECOND / GTIMER_SCALE,
3381     },
3382     { .name = "CNTVCT_EL0", .state = ARM_CP_STATE_AA64,
3383       .opc0 = 3, .opc1 = 3, .crn = 14, .crm = 0, .opc2 = 2,
3384       .access = PL0_R, .type = ARM_CP_NO_RAW | ARM_CP_IO,
3385       .readfn = gt_virt_cnt_read,
3386     },
3387     REGINFO_SENTINEL
3388 };
3389 
3390 #endif
3391 
3392 static void par_write(CPUARMState *env, const ARMCPRegInfo *ri, uint64_t value)
3393 {
3394     if (arm_feature(env, ARM_FEATURE_LPAE)) {
3395         raw_write(env, ri, value);
3396     } else if (arm_feature(env, ARM_FEATURE_V7)) {
3397         raw_write(env, ri, value & 0xfffff6ff);
3398     } else {
3399         raw_write(env, ri, value & 0xfffff1ff);
3400     }
3401 }
3402 
3403 #ifndef CONFIG_USER_ONLY
3404 /* get_phys_addr() isn't present for user-mode-only targets */
3405 
3406 static CPAccessResult ats_access(CPUARMState *env, const ARMCPRegInfo *ri,
3407                                  bool isread)
3408 {
3409     if (ri->opc2 & 4) {
3410         /* The ATS12NSO* operations must trap to EL3 or EL2 if executed in
3411          * Secure EL1 (which can only happen if EL3 is AArch64).
3412          * They are simply UNDEF if executed from NS EL1.
3413          * They function normally from EL2 or EL3.
3414          */
3415         if (arm_current_el(env) == 1) {
3416             if (arm_is_secure_below_el3(env)) {
3417                 if (env->cp15.scr_el3 & SCR_EEL2) {
3418                     return CP_ACCESS_TRAP_UNCATEGORIZED_EL2;
3419                 }
3420                 return CP_ACCESS_TRAP_UNCATEGORIZED_EL3;
3421             }
3422             return CP_ACCESS_TRAP_UNCATEGORIZED;
3423         }
3424     }
3425     return CP_ACCESS_OK;
3426 }
3427 
3428 #ifdef CONFIG_TCG
3429 static uint64_t do_ats_write(CPUARMState *env, uint64_t value,
3430                              MMUAccessType access_type, ARMMMUIdx mmu_idx)
3431 {
3432     hwaddr phys_addr;
3433     target_ulong page_size;
3434     int prot;
3435     bool ret;
3436     uint64_t par64;
3437     bool format64 = false;
3438     MemTxAttrs attrs = {};
3439     ARMMMUFaultInfo fi = {};
3440     ARMCacheAttrs cacheattrs = {};
3441 
3442     ret = get_phys_addr(env, value, access_type, mmu_idx, &phys_addr, &attrs,
3443                         &prot, &page_size, &fi, &cacheattrs);
3444 
3445     if (ret) {
3446         /*
3447          * Some kinds of translation fault must cause exceptions rather
3448          * than being reported in the PAR.
3449          */
3450         int current_el = arm_current_el(env);
3451         int target_el;
3452         uint32_t syn, fsr, fsc;
3453         bool take_exc = false;
3454 
3455         if (fi.s1ptw && current_el == 1
3456             && arm_mmu_idx_is_stage1_of_2(mmu_idx)) {
3457             /*
3458              * Synchronous stage 2 fault on an access made as part of the
3459              * translation table walk for AT S1E0* or AT S1E1* insn
3460              * executed from NS EL1. If this is a synchronous external abort
3461              * and SCR_EL3.EA == 1, then we take a synchronous external abort
3462              * to EL3. Otherwise the fault is taken as an exception to EL2,
3463              * and HPFAR_EL2 holds the faulting IPA.
3464              */
3465             if (fi.type == ARMFault_SyncExternalOnWalk &&
3466                 (env->cp15.scr_el3 & SCR_EA)) {
3467                 target_el = 3;
3468             } else {
3469                 env->cp15.hpfar_el2 = extract64(fi.s2addr, 12, 47) << 4;
3470                 if (arm_is_secure_below_el3(env) && fi.s1ns) {
3471                     env->cp15.hpfar_el2 |= HPFAR_NS;
3472                 }
3473                 target_el = 2;
3474             }
3475             take_exc = true;
3476         } else if (fi.type == ARMFault_SyncExternalOnWalk) {
3477             /*
3478              * Synchronous external aborts during a translation table walk
3479              * are taken as Data Abort exceptions.
3480              */
3481             if (fi.stage2) {
3482                 if (current_el == 3) {
3483                     target_el = 3;
3484                 } else {
3485                     target_el = 2;
3486                 }
3487             } else {
3488                 target_el = exception_target_el(env);
3489             }
3490             take_exc = true;
3491         }
3492 
3493         if (take_exc) {
3494             /* Construct FSR and FSC using same logic as arm_deliver_fault() */
3495             if (target_el == 2 || arm_el_is_aa64(env, target_el) ||
3496                 arm_s1_regime_using_lpae_format(env, mmu_idx)) {
3497                 fsr = arm_fi_to_lfsc(&fi);
3498                 fsc = extract32(fsr, 0, 6);
3499             } else {
3500                 fsr = arm_fi_to_sfsc(&fi);
3501                 fsc = 0x3f;
3502             }
3503             /*
3504              * Report exception with ESR indicating a fault due to a
3505              * translation table walk for a cache maintenance instruction.
3506              */
3507             syn = syn_data_abort_no_iss(current_el == target_el, 0,
3508                                         fi.ea, 1, fi.s1ptw, 1, fsc);
3509             env->exception.vaddress = value;
3510             env->exception.fsr = fsr;
3511             raise_exception(env, EXCP_DATA_ABORT, syn, target_el);
3512         }
3513     }
3514 
3515     if (is_a64(env)) {
3516         format64 = true;
3517     } else if (arm_feature(env, ARM_FEATURE_LPAE)) {
3518         /*
3519          * ATS1Cxx:
3520          * * TTBCR.EAE determines whether the result is returned using the
3521          *   32-bit or the 64-bit PAR format
3522          * * Instructions executed in Hyp mode always use the 64bit format
3523          *
3524          * ATS1S2NSOxx uses the 64bit format if any of the following is true:
3525          * * The Non-secure TTBCR.EAE bit is set to 1
3526          * * The implementation includes EL2, and the value of HCR.VM is 1
3527          *
3528          * (Note that HCR.DC makes HCR.VM behave as if it is 1.)
3529          *
3530          * ATS1Hx always uses the 64bit format.
3531          */
3532         format64 = arm_s1_regime_using_lpae_format(env, mmu_idx);
3533 
3534         if (arm_feature(env, ARM_FEATURE_EL2)) {
3535             if (mmu_idx == ARMMMUIdx_E10_0 ||
3536                 mmu_idx == ARMMMUIdx_E10_1 ||
3537                 mmu_idx == ARMMMUIdx_E10_1_PAN) {
3538                 format64 |= env->cp15.hcr_el2 & (HCR_VM | HCR_DC);
3539             } else {
3540                 format64 |= arm_current_el(env) == 2;
3541             }
3542         }
3543     }
3544 
3545     if (format64) {
3546         /* Create a 64-bit PAR */
3547         par64 = (1 << 11); /* LPAE bit always set */
3548         if (!ret) {
3549             par64 |= phys_addr & ~0xfffULL;
3550             if (!attrs.secure) {
3551                 par64 |= (1 << 9); /* NS */
3552             }
3553             par64 |= (uint64_t)cacheattrs.attrs << 56; /* ATTR */
3554             par64 |= cacheattrs.shareability << 7; /* SH */
3555         } else {
3556             uint32_t fsr = arm_fi_to_lfsc(&fi);
3557 
3558             par64 |= 1; /* F */
3559             par64 |= (fsr & 0x3f) << 1; /* FS */
3560             if (fi.stage2) {
3561                 par64 |= (1 << 9); /* S */
3562             }
3563             if (fi.s1ptw) {
3564                 par64 |= (1 << 8); /* PTW */
3565             }
3566         }
3567     } else {
3568         /* fsr is a DFSR/IFSR value for the short descriptor
3569          * translation table format (with WnR always clear).
3570          * Convert it to a 32-bit PAR.
3571          */
3572         if (!ret) {
3573             /* We do not set any attribute bits in the PAR */
3574             if (page_size == (1 << 24)
3575                 && arm_feature(env, ARM_FEATURE_V7)) {
3576                 par64 = (phys_addr & 0xff000000) | (1 << 1);
3577             } else {
3578                 par64 = phys_addr & 0xfffff000;
3579             }
3580             if (!attrs.secure) {
3581                 par64 |= (1 << 9); /* NS */
3582             }
3583         } else {
3584             uint32_t fsr = arm_fi_to_sfsc(&fi);
3585 
3586             par64 = ((fsr & (1 << 10)) >> 5) | ((fsr & (1 << 12)) >> 6) |
3587                     ((fsr & 0xf) << 1) | 1;
3588         }
3589     }
3590     return par64;
3591 }
3592 #endif /* CONFIG_TCG */
3593 
3594 static void ats_write(CPUARMState *env, const ARMCPRegInfo *ri, uint64_t value)
3595 {
3596 #ifdef CONFIG_TCG
3597     MMUAccessType access_type = ri->opc2 & 1 ? MMU_DATA_STORE : MMU_DATA_LOAD;
3598     uint64_t par64;
3599     ARMMMUIdx mmu_idx;
3600     int el = arm_current_el(env);
3601     bool secure = arm_is_secure_below_el3(env);
3602 
3603     switch (ri->opc2 & 6) {
3604     case 0:
3605         /* stage 1 current state PL1: ATS1CPR, ATS1CPW, ATS1CPRP, ATS1CPWP */
3606         switch (el) {
3607         case 3:
3608             mmu_idx = ARMMMUIdx_SE3;
3609             break;
3610         case 2:
3611             g_assert(!secure);  /* ARMv8.4-SecEL2 is 64-bit only */
3612             /* fall through */
3613         case 1:
3614             if (ri->crm == 9 && (env->uncached_cpsr & CPSR_PAN)) {
3615                 mmu_idx = (secure ? ARMMMUIdx_Stage1_SE1_PAN
3616                            : ARMMMUIdx_Stage1_E1_PAN);
3617             } else {
3618                 mmu_idx = secure ? ARMMMUIdx_Stage1_SE1 : ARMMMUIdx_Stage1_E1;
3619             }
3620             break;
3621         default:
3622             g_assert_not_reached();
3623         }
3624         break;
3625     case 2:
3626         /* stage 1 current state PL0: ATS1CUR, ATS1CUW */
3627         switch (el) {
3628         case 3:
3629             mmu_idx = ARMMMUIdx_SE10_0;
3630             break;
3631         case 2:
3632             g_assert(!secure);  /* ARMv8.4-SecEL2 is 64-bit only */
3633             mmu_idx = ARMMMUIdx_Stage1_E0;
3634             break;
3635         case 1:
3636             mmu_idx = secure ? ARMMMUIdx_Stage1_SE0 : ARMMMUIdx_Stage1_E0;
3637             break;
3638         default:
3639             g_assert_not_reached();
3640         }
3641         break;
3642     case 4:
3643         /* stage 1+2 NonSecure PL1: ATS12NSOPR, ATS12NSOPW */
3644         mmu_idx = ARMMMUIdx_E10_1;
3645         break;
3646     case 6:
3647         /* stage 1+2 NonSecure PL0: ATS12NSOUR, ATS12NSOUW */
3648         mmu_idx = ARMMMUIdx_E10_0;
3649         break;
3650     default:
3651         g_assert_not_reached();
3652     }
3653 
3654     par64 = do_ats_write(env, value, access_type, mmu_idx);
3655 
3656     A32_BANKED_CURRENT_REG_SET(env, par, par64);
3657 #else
3658     /* Handled by hardware accelerator. */
3659     g_assert_not_reached();
3660 #endif /* CONFIG_TCG */
3661 }
3662 
3663 static void ats1h_write(CPUARMState *env, const ARMCPRegInfo *ri,
3664                         uint64_t value)
3665 {
3666 #ifdef CONFIG_TCG
3667     MMUAccessType access_type = ri->opc2 & 1 ? MMU_DATA_STORE : MMU_DATA_LOAD;
3668     uint64_t par64;
3669 
3670     par64 = do_ats_write(env, value, access_type, ARMMMUIdx_E2);
3671 
3672     A32_BANKED_CURRENT_REG_SET(env, par, par64);
3673 #else
3674     /* Handled by hardware accelerator. */
3675     g_assert_not_reached();
3676 #endif /* CONFIG_TCG */
3677 }
3678 
3679 static CPAccessResult at_s1e2_access(CPUARMState *env, const ARMCPRegInfo *ri,
3680                                      bool isread)
3681 {
3682     if (arm_current_el(env) == 3 &&
3683         !(env->cp15.scr_el3 & (SCR_NS | SCR_EEL2))) {
3684         return CP_ACCESS_TRAP;
3685     }
3686     return CP_ACCESS_OK;
3687 }
3688 
3689 static void ats_write64(CPUARMState *env, const ARMCPRegInfo *ri,
3690                         uint64_t value)
3691 {
3692 #ifdef CONFIG_TCG
3693     MMUAccessType access_type = ri->opc2 & 1 ? MMU_DATA_STORE : MMU_DATA_LOAD;
3694     ARMMMUIdx mmu_idx;
3695     int secure = arm_is_secure_below_el3(env);
3696 
3697     switch (ri->opc2 & 6) {
3698     case 0:
3699         switch (ri->opc1) {
3700         case 0: /* AT S1E1R, AT S1E1W, AT S1E1RP, AT S1E1WP */
3701             if (ri->crm == 9 && (env->pstate & PSTATE_PAN)) {
3702                 mmu_idx = (secure ? ARMMMUIdx_Stage1_SE1_PAN
3703                            : ARMMMUIdx_Stage1_E1_PAN);
3704             } else {
3705                 mmu_idx = secure ? ARMMMUIdx_Stage1_SE1 : ARMMMUIdx_Stage1_E1;
3706             }
3707             break;
3708         case 4: /* AT S1E2R, AT S1E2W */
3709             mmu_idx = secure ? ARMMMUIdx_SE2 : ARMMMUIdx_E2;
3710             break;
3711         case 6: /* AT S1E3R, AT S1E3W */
3712             mmu_idx = ARMMMUIdx_SE3;
3713             break;
3714         default:
3715             g_assert_not_reached();
3716         }
3717         break;
3718     case 2: /* AT S1E0R, AT S1E0W */
3719         mmu_idx = secure ? ARMMMUIdx_Stage1_SE0 : ARMMMUIdx_Stage1_E0;
3720         break;
3721     case 4: /* AT S12E1R, AT S12E1W */
3722         mmu_idx = secure ? ARMMMUIdx_SE10_1 : ARMMMUIdx_E10_1;
3723         break;
3724     case 6: /* AT S12E0R, AT S12E0W */
3725         mmu_idx = secure ? ARMMMUIdx_SE10_0 : ARMMMUIdx_E10_0;
3726         break;
3727     default:
3728         g_assert_not_reached();
3729     }
3730 
3731     env->cp15.par_el[1] = do_ats_write(env, value, access_type, mmu_idx);
3732 #else
3733     /* Handled by hardware accelerator. */
3734     g_assert_not_reached();
3735 #endif /* CONFIG_TCG */
3736 }
3737 #endif
3738 
3739 static const ARMCPRegInfo vapa_cp_reginfo[] = {
3740     { .name = "PAR", .cp = 15, .crn = 7, .crm = 4, .opc1 = 0, .opc2 = 0,
3741       .access = PL1_RW, .resetvalue = 0,
3742       .bank_fieldoffsets = { offsetoflow32(CPUARMState, cp15.par_s),
3743                              offsetoflow32(CPUARMState, cp15.par_ns) },
3744       .writefn = par_write },
3745 #ifndef CONFIG_USER_ONLY
3746     /* This underdecoding is safe because the reginfo is NO_RAW. */
3747     { .name = "ATS", .cp = 15, .crn = 7, .crm = 8, .opc1 = 0, .opc2 = CP_ANY,
3748       .access = PL1_W, .accessfn = ats_access,
3749       .writefn = ats_write, .type = ARM_CP_NO_RAW | ARM_CP_RAISES_EXC },
3750 #endif
3751     REGINFO_SENTINEL
3752 };
3753 
3754 /* Return basic MPU access permission bits.  */
3755 static uint32_t simple_mpu_ap_bits(uint32_t val)
3756 {
3757     uint32_t ret;
3758     uint32_t mask;
3759     int i;
3760     ret = 0;
3761     mask = 3;
3762     for (i = 0; i < 16; i += 2) {
3763         ret |= (val >> i) & mask;
3764         mask <<= 2;
3765     }
3766     return ret;
3767 }
3768 
3769 /* Pad basic MPU access permission bits to extended format.  */
3770 static uint32_t extended_mpu_ap_bits(uint32_t val)
3771 {
3772     uint32_t ret;
3773     uint32_t mask;
3774     int i;
3775     ret = 0;
3776     mask = 3;
3777     for (i = 0; i < 16; i += 2) {
3778         ret |= (val & mask) << i;
3779         mask <<= 2;
3780     }
3781     return ret;
3782 }
3783 
3784 static void pmsav5_data_ap_write(CPUARMState *env, const ARMCPRegInfo *ri,
3785                                  uint64_t value)
3786 {
3787     env->cp15.pmsav5_data_ap = extended_mpu_ap_bits(value);
3788 }
3789 
3790 static uint64_t pmsav5_data_ap_read(CPUARMState *env, const ARMCPRegInfo *ri)
3791 {
3792     return simple_mpu_ap_bits(env->cp15.pmsav5_data_ap);
3793 }
3794 
3795 static void pmsav5_insn_ap_write(CPUARMState *env, const ARMCPRegInfo *ri,
3796                                  uint64_t value)
3797 {
3798     env->cp15.pmsav5_insn_ap = extended_mpu_ap_bits(value);
3799 }
3800 
3801 static uint64_t pmsav5_insn_ap_read(CPUARMState *env, const ARMCPRegInfo *ri)
3802 {
3803     return simple_mpu_ap_bits(env->cp15.pmsav5_insn_ap);
3804 }
3805 
3806 static uint64_t pmsav7_read(CPUARMState *env, const ARMCPRegInfo *ri)
3807 {
3808     uint32_t *u32p = *(uint32_t **)raw_ptr(env, ri);
3809 
3810     if (!u32p) {
3811         return 0;
3812     }
3813 
3814     u32p += env->pmsav7.rnr[M_REG_NS];
3815     return *u32p;
3816 }
3817 
3818 static void pmsav7_write(CPUARMState *env, const ARMCPRegInfo *ri,
3819                          uint64_t value)
3820 {
3821     ARMCPU *cpu = env_archcpu(env);
3822     uint32_t *u32p = *(uint32_t **)raw_ptr(env, ri);
3823 
3824     if (!u32p) {
3825         return;
3826     }
3827 
3828     u32p += env->pmsav7.rnr[M_REG_NS];
3829     tlb_flush(CPU(cpu)); /* Mappings may have changed - purge! */
3830     *u32p = value;
3831 }
3832 
3833 static void pmsav7_rgnr_write(CPUARMState *env, const ARMCPRegInfo *ri,
3834                               uint64_t value)
3835 {
3836     ARMCPU *cpu = env_archcpu(env);
3837     uint32_t nrgs = cpu->pmsav7_dregion;
3838 
3839     if (value >= nrgs) {
3840         qemu_log_mask(LOG_GUEST_ERROR,
3841                       "PMSAv7 RGNR write >= # supported regions, %" PRIu32
3842                       " > %" PRIu32 "\n", (uint32_t)value, nrgs);
3843         return;
3844     }
3845 
3846     raw_write(env, ri, value);
3847 }
3848 
3849 static const ARMCPRegInfo pmsav7_cp_reginfo[] = {
3850     /* Reset for all these registers is handled in arm_cpu_reset(),
3851      * because the PMSAv7 is also used by M-profile CPUs, which do
3852      * not register cpregs but still need the state to be reset.
3853      */
3854     { .name = "DRBAR", .cp = 15, .crn = 6, .opc1 = 0, .crm = 1, .opc2 = 0,
3855       .access = PL1_RW, .type = ARM_CP_NO_RAW,
3856       .fieldoffset = offsetof(CPUARMState, pmsav7.drbar),
3857       .readfn = pmsav7_read, .writefn = pmsav7_write,
3858       .resetfn = arm_cp_reset_ignore },
3859     { .name = "DRSR", .cp = 15, .crn = 6, .opc1 = 0, .crm = 1, .opc2 = 2,
3860       .access = PL1_RW, .type = ARM_CP_NO_RAW,
3861       .fieldoffset = offsetof(CPUARMState, pmsav7.drsr),
3862       .readfn = pmsav7_read, .writefn = pmsav7_write,
3863       .resetfn = arm_cp_reset_ignore },
3864     { .name = "DRACR", .cp = 15, .crn = 6, .opc1 = 0, .crm = 1, .opc2 = 4,
3865       .access = PL1_RW, .type = ARM_CP_NO_RAW,
3866       .fieldoffset = offsetof(CPUARMState, pmsav7.dracr),
3867       .readfn = pmsav7_read, .writefn = pmsav7_write,
3868       .resetfn = arm_cp_reset_ignore },
3869     { .name = "RGNR", .cp = 15, .crn = 6, .opc1 = 0, .crm = 2, .opc2 = 0,
3870       .access = PL1_RW,
3871       .fieldoffset = offsetof(CPUARMState, pmsav7.rnr[M_REG_NS]),
3872       .writefn = pmsav7_rgnr_write,
3873       .resetfn = arm_cp_reset_ignore },
3874     REGINFO_SENTINEL
3875 };
3876 
3877 static const ARMCPRegInfo pmsav5_cp_reginfo[] = {
3878     { .name = "DATA_AP", .cp = 15, .crn = 5, .crm = 0, .opc1 = 0, .opc2 = 0,
3879       .access = PL1_RW, .type = ARM_CP_ALIAS,
3880       .fieldoffset = offsetof(CPUARMState, cp15.pmsav5_data_ap),
3881       .readfn = pmsav5_data_ap_read, .writefn = pmsav5_data_ap_write, },
3882     { .name = "INSN_AP", .cp = 15, .crn = 5, .crm = 0, .opc1 = 0, .opc2 = 1,
3883       .access = PL1_RW, .type = ARM_CP_ALIAS,
3884       .fieldoffset = offsetof(CPUARMState, cp15.pmsav5_insn_ap),
3885       .readfn = pmsav5_insn_ap_read, .writefn = pmsav5_insn_ap_write, },
3886     { .name = "DATA_EXT_AP", .cp = 15, .crn = 5, .crm = 0, .opc1 = 0, .opc2 = 2,
3887       .access = PL1_RW,
3888       .fieldoffset = offsetof(CPUARMState, cp15.pmsav5_data_ap),
3889       .resetvalue = 0, },
3890     { .name = "INSN_EXT_AP", .cp = 15, .crn = 5, .crm = 0, .opc1 = 0, .opc2 = 3,
3891       .access = PL1_RW,
3892       .fieldoffset = offsetof(CPUARMState, cp15.pmsav5_insn_ap),
3893       .resetvalue = 0, },
3894     { .name = "DCACHE_CFG", .cp = 15, .crn = 2, .crm = 0, .opc1 = 0, .opc2 = 0,
3895       .access = PL1_RW,
3896       .fieldoffset = offsetof(CPUARMState, cp15.c2_data), .resetvalue = 0, },
3897     { .name = "ICACHE_CFG", .cp = 15, .crn = 2, .crm = 0, .opc1 = 0, .opc2 = 1,
3898       .access = PL1_RW,
3899       .fieldoffset = offsetof(CPUARMState, cp15.c2_insn), .resetvalue = 0, },
3900     /* Protection region base and size registers */
3901     { .name = "946_PRBS0", .cp = 15, .crn = 6, .crm = 0, .opc1 = 0,
3902       .opc2 = CP_ANY, .access = PL1_RW, .resetvalue = 0,
3903       .fieldoffset = offsetof(CPUARMState, cp15.c6_region[0]) },
3904     { .name = "946_PRBS1", .cp = 15, .crn = 6, .crm = 1, .opc1 = 0,
3905       .opc2 = CP_ANY, .access = PL1_RW, .resetvalue = 0,
3906       .fieldoffset = offsetof(CPUARMState, cp15.c6_region[1]) },
3907     { .name = "946_PRBS2", .cp = 15, .crn = 6, .crm = 2, .opc1 = 0,
3908       .opc2 = CP_ANY, .access = PL1_RW, .resetvalue = 0,
3909       .fieldoffset = offsetof(CPUARMState, cp15.c6_region[2]) },
3910     { .name = "946_PRBS3", .cp = 15, .crn = 6, .crm = 3, .opc1 = 0,
3911       .opc2 = CP_ANY, .access = PL1_RW, .resetvalue = 0,
3912       .fieldoffset = offsetof(CPUARMState, cp15.c6_region[3]) },
3913     { .name = "946_PRBS4", .cp = 15, .crn = 6, .crm = 4, .opc1 = 0,
3914       .opc2 = CP_ANY, .access = PL1_RW, .resetvalue = 0,
3915       .fieldoffset = offsetof(CPUARMState, cp15.c6_region[4]) },
3916     { .name = "946_PRBS5", .cp = 15, .crn = 6, .crm = 5, .opc1 = 0,
3917       .opc2 = CP_ANY, .access = PL1_RW, .resetvalue = 0,
3918       .fieldoffset = offsetof(CPUARMState, cp15.c6_region[5]) },
3919     { .name = "946_PRBS6", .cp = 15, .crn = 6, .crm = 6, .opc1 = 0,
3920       .opc2 = CP_ANY, .access = PL1_RW, .resetvalue = 0,
3921       .fieldoffset = offsetof(CPUARMState, cp15.c6_region[6]) },
3922     { .name = "946_PRBS7", .cp = 15, .crn = 6, .crm = 7, .opc1 = 0,
3923       .opc2 = CP_ANY, .access = PL1_RW, .resetvalue = 0,
3924       .fieldoffset = offsetof(CPUARMState, cp15.c6_region[7]) },
3925     REGINFO_SENTINEL
3926 };
3927 
3928 static void vmsa_ttbcr_raw_write(CPUARMState *env, const ARMCPRegInfo *ri,
3929                                  uint64_t value)
3930 {
3931     TCR *tcr = raw_ptr(env, ri);
3932     int maskshift = extract32(value, 0, 3);
3933 
3934     if (!arm_feature(env, ARM_FEATURE_V8)) {
3935         if (arm_feature(env, ARM_FEATURE_LPAE) && (value & TTBCR_EAE)) {
3936             /* Pre ARMv8 bits [21:19], [15:14] and [6:3] are UNK/SBZP when
3937              * using Long-desciptor translation table format */
3938             value &= ~((7 << 19) | (3 << 14) | (0xf << 3));
3939         } else if (arm_feature(env, ARM_FEATURE_EL3)) {
3940             /* In an implementation that includes the Security Extensions
3941              * TTBCR has additional fields PD0 [4] and PD1 [5] for
3942              * Short-descriptor translation table format.
3943              */
3944             value &= TTBCR_PD1 | TTBCR_PD0 | TTBCR_N;
3945         } else {
3946             value &= TTBCR_N;
3947         }
3948     }
3949 
3950     /* Update the masks corresponding to the TCR bank being written
3951      * Note that we always calculate mask and base_mask, but
3952      * they are only used for short-descriptor tables (ie if EAE is 0);
3953      * for long-descriptor tables the TCR fields are used differently
3954      * and the mask and base_mask values are meaningless.
3955      */
3956     tcr->raw_tcr = value;
3957     tcr->mask = ~(((uint32_t)0xffffffffu) >> maskshift);
3958     tcr->base_mask = ~((uint32_t)0x3fffu >> maskshift);
3959 }
3960 
3961 static void vmsa_ttbcr_write(CPUARMState *env, const ARMCPRegInfo *ri,
3962                              uint64_t value)
3963 {
3964     ARMCPU *cpu = env_archcpu(env);
3965     TCR *tcr = raw_ptr(env, ri);
3966 
3967     if (arm_feature(env, ARM_FEATURE_LPAE)) {
3968         /* With LPAE the TTBCR could result in a change of ASID
3969          * via the TTBCR.A1 bit, so do a TLB flush.
3970          */
3971         tlb_flush(CPU(cpu));
3972     }
3973     /* Preserve the high half of TCR_EL1, set via TTBCR2.  */
3974     value = deposit64(tcr->raw_tcr, 0, 32, value);
3975     vmsa_ttbcr_raw_write(env, ri, value);
3976 }
3977 
3978 static void vmsa_ttbcr_reset(CPUARMState *env, const ARMCPRegInfo *ri)
3979 {
3980     TCR *tcr = raw_ptr(env, ri);
3981 
3982     /* Reset both the TCR as well as the masks corresponding to the bank of
3983      * the TCR being reset.
3984      */
3985     tcr->raw_tcr = 0;
3986     tcr->mask = 0;
3987     tcr->base_mask = 0xffffc000u;
3988 }
3989 
3990 static void vmsa_tcr_el12_write(CPUARMState *env, const ARMCPRegInfo *ri,
3991                                uint64_t value)
3992 {
3993     ARMCPU *cpu = env_archcpu(env);
3994     TCR *tcr = raw_ptr(env, ri);
3995 
3996     /* For AArch64 the A1 bit could result in a change of ASID, so TLB flush. */
3997     tlb_flush(CPU(cpu));
3998     tcr->raw_tcr = value;
3999 }
4000 
4001 static void vmsa_ttbr_write(CPUARMState *env, const ARMCPRegInfo *ri,
4002                             uint64_t value)
4003 {
4004     /* If the ASID changes (with a 64-bit write), we must flush the TLB.  */
4005     if (cpreg_field_is_64bit(ri) &&
4006         extract64(raw_read(env, ri) ^ value, 48, 16) != 0) {
4007         ARMCPU *cpu = env_archcpu(env);
4008         tlb_flush(CPU(cpu));
4009     }
4010     raw_write(env, ri, value);
4011 }
4012 
4013 static void vmsa_tcr_ttbr_el2_write(CPUARMState *env, const ARMCPRegInfo *ri,
4014                                     uint64_t value)
4015 {
4016     /*
4017      * If we are running with E2&0 regime, then an ASID is active.
4018      * Flush if that might be changing.  Note we're not checking
4019      * TCR_EL2.A1 to know if this is really the TTBRx_EL2 that
4020      * holds the active ASID, only checking the field that might.
4021      */
4022     if (extract64(raw_read(env, ri) ^ value, 48, 16) &&
4023         (arm_hcr_el2_eff(env) & HCR_E2H)) {
4024         uint16_t mask = ARMMMUIdxBit_E20_2 |
4025                         ARMMMUIdxBit_E20_2_PAN |
4026                         ARMMMUIdxBit_E20_0;
4027 
4028         if (arm_is_secure_below_el3(env)) {
4029             mask >>= ARM_MMU_IDX_A_NS;
4030         }
4031 
4032         tlb_flush_by_mmuidx(env_cpu(env), mask);
4033     }
4034     raw_write(env, ri, value);
4035 }
4036 
4037 static void vttbr_write(CPUARMState *env, const ARMCPRegInfo *ri,
4038                         uint64_t value)
4039 {
4040     ARMCPU *cpu = env_archcpu(env);
4041     CPUState *cs = CPU(cpu);
4042 
4043     /*
4044      * A change in VMID to the stage2 page table (Stage2) invalidates
4045      * the combined stage 1&2 tlbs (EL10_1 and EL10_0).
4046      */
4047     if (raw_read(env, ri) != value) {
4048         uint16_t mask = ARMMMUIdxBit_E10_1 |
4049                         ARMMMUIdxBit_E10_1_PAN |
4050                         ARMMMUIdxBit_E10_0;
4051 
4052         if (arm_is_secure_below_el3(env)) {
4053             mask >>= ARM_MMU_IDX_A_NS;
4054         }
4055 
4056         tlb_flush_by_mmuidx(cs, mask);
4057         raw_write(env, ri, value);
4058     }
4059 }
4060 
4061 static const ARMCPRegInfo vmsa_pmsa_cp_reginfo[] = {
4062     { .name = "DFSR", .cp = 15, .crn = 5, .crm = 0, .opc1 = 0, .opc2 = 0,
4063       .access = PL1_RW, .accessfn = access_tvm_trvm, .type = ARM_CP_ALIAS,
4064       .bank_fieldoffsets = { offsetoflow32(CPUARMState, cp15.dfsr_s),
4065                              offsetoflow32(CPUARMState, cp15.dfsr_ns) }, },
4066     { .name = "IFSR", .cp = 15, .crn = 5, .crm = 0, .opc1 = 0, .opc2 = 1,
4067       .access = PL1_RW, .accessfn = access_tvm_trvm, .resetvalue = 0,
4068       .bank_fieldoffsets = { offsetoflow32(CPUARMState, cp15.ifsr_s),
4069                              offsetoflow32(CPUARMState, cp15.ifsr_ns) } },
4070     { .name = "DFAR", .cp = 15, .opc1 = 0, .crn = 6, .crm = 0, .opc2 = 0,
4071       .access = PL1_RW, .accessfn = access_tvm_trvm, .resetvalue = 0,
4072       .bank_fieldoffsets = { offsetof(CPUARMState, cp15.dfar_s),
4073                              offsetof(CPUARMState, cp15.dfar_ns) } },
4074     { .name = "FAR_EL1", .state = ARM_CP_STATE_AA64,
4075       .opc0 = 3, .crn = 6, .crm = 0, .opc1 = 0, .opc2 = 0,
4076       .access = PL1_RW, .accessfn = access_tvm_trvm,
4077       .fieldoffset = offsetof(CPUARMState, cp15.far_el[1]),
4078       .resetvalue = 0, },
4079     REGINFO_SENTINEL
4080 };
4081 
4082 static const ARMCPRegInfo vmsa_cp_reginfo[] = {
4083     { .name = "ESR_EL1", .state = ARM_CP_STATE_AA64,
4084       .opc0 = 3, .crn = 5, .crm = 2, .opc1 = 0, .opc2 = 0,
4085       .access = PL1_RW, .accessfn = access_tvm_trvm,
4086       .fieldoffset = offsetof(CPUARMState, cp15.esr_el[1]), .resetvalue = 0, },
4087     { .name = "TTBR0_EL1", .state = ARM_CP_STATE_BOTH,
4088       .opc0 = 3, .opc1 = 0, .crn = 2, .crm = 0, .opc2 = 0,
4089       .access = PL1_RW, .accessfn = access_tvm_trvm,
4090       .writefn = vmsa_ttbr_write, .resetvalue = 0,
4091       .bank_fieldoffsets = { offsetof(CPUARMState, cp15.ttbr0_s),
4092                              offsetof(CPUARMState, cp15.ttbr0_ns) } },
4093     { .name = "TTBR1_EL1", .state = ARM_CP_STATE_BOTH,
4094       .opc0 = 3, .opc1 = 0, .crn = 2, .crm = 0, .opc2 = 1,
4095       .access = PL1_RW, .accessfn = access_tvm_trvm,
4096       .writefn = vmsa_ttbr_write, .resetvalue = 0,
4097       .bank_fieldoffsets = { offsetof(CPUARMState, cp15.ttbr1_s),
4098                              offsetof(CPUARMState, cp15.ttbr1_ns) } },
4099     { .name = "TCR_EL1", .state = ARM_CP_STATE_AA64,
4100       .opc0 = 3, .crn = 2, .crm = 0, .opc1 = 0, .opc2 = 2,
4101       .access = PL1_RW, .accessfn = access_tvm_trvm,
4102       .writefn = vmsa_tcr_el12_write,
4103       .resetfn = vmsa_ttbcr_reset, .raw_writefn = raw_write,
4104       .fieldoffset = offsetof(CPUARMState, cp15.tcr_el[1]) },
4105     { .name = "TTBCR", .cp = 15, .crn = 2, .crm = 0, .opc1 = 0, .opc2 = 2,
4106       .access = PL1_RW, .accessfn = access_tvm_trvm,
4107       .type = ARM_CP_ALIAS, .writefn = vmsa_ttbcr_write,
4108       .raw_writefn = vmsa_ttbcr_raw_write,
4109       .bank_fieldoffsets = { offsetoflow32(CPUARMState, cp15.tcr_el[3]),
4110                              offsetoflow32(CPUARMState, cp15.tcr_el[1])} },
4111     REGINFO_SENTINEL
4112 };
4113 
4114 /* Note that unlike TTBCR, writing to TTBCR2 does not require flushing
4115  * qemu tlbs nor adjusting cached masks.
4116  */
4117 static const ARMCPRegInfo ttbcr2_reginfo = {
4118     .name = "TTBCR2", .cp = 15, .opc1 = 0, .crn = 2, .crm = 0, .opc2 = 3,
4119     .access = PL1_RW, .accessfn = access_tvm_trvm,
4120     .type = ARM_CP_ALIAS,
4121     .bank_fieldoffsets = { offsetofhigh32(CPUARMState, cp15.tcr_el[3]),
4122                            offsetofhigh32(CPUARMState, cp15.tcr_el[1]) },
4123 };
4124 
4125 static void omap_ticonfig_write(CPUARMState *env, const ARMCPRegInfo *ri,
4126                                 uint64_t value)
4127 {
4128     env->cp15.c15_ticonfig = value & 0xe7;
4129     /* The OS_TYPE bit in this register changes the reported CPUID! */
4130     env->cp15.c0_cpuid = (value & (1 << 5)) ?
4131         ARM_CPUID_TI915T : ARM_CPUID_TI925T;
4132 }
4133 
4134 static void omap_threadid_write(CPUARMState *env, const ARMCPRegInfo *ri,
4135                                 uint64_t value)
4136 {
4137     env->cp15.c15_threadid = value & 0xffff;
4138 }
4139 
4140 static void omap_wfi_write(CPUARMState *env, const ARMCPRegInfo *ri,
4141                            uint64_t value)
4142 {
4143     /* Wait-for-interrupt (deprecated) */
4144     cpu_interrupt(env_cpu(env), CPU_INTERRUPT_HALT);
4145 }
4146 
4147 static void omap_cachemaint_write(CPUARMState *env, const ARMCPRegInfo *ri,
4148                                   uint64_t value)
4149 {
4150     /* On OMAP there are registers indicating the max/min index of dcache lines
4151      * containing a dirty line; cache flush operations have to reset these.
4152      */
4153     env->cp15.c15_i_max = 0x000;
4154     env->cp15.c15_i_min = 0xff0;
4155 }
4156 
4157 static const ARMCPRegInfo omap_cp_reginfo[] = {
4158     { .name = "DFSR", .cp = 15, .crn = 5, .crm = CP_ANY,
4159       .opc1 = CP_ANY, .opc2 = CP_ANY, .access = PL1_RW, .type = ARM_CP_OVERRIDE,
4160       .fieldoffset = offsetoflow32(CPUARMState, cp15.esr_el[1]),
4161       .resetvalue = 0, },
4162     { .name = "", .cp = 15, .crn = 15, .crm = 0, .opc1 = 0, .opc2 = 0,
4163       .access = PL1_RW, .type = ARM_CP_NOP },
4164     { .name = "TICONFIG", .cp = 15, .crn = 15, .crm = 1, .opc1 = 0, .opc2 = 0,
4165       .access = PL1_RW,
4166       .fieldoffset = offsetof(CPUARMState, cp15.c15_ticonfig), .resetvalue = 0,
4167       .writefn = omap_ticonfig_write },
4168     { .name = "IMAX", .cp = 15, .crn = 15, .crm = 2, .opc1 = 0, .opc2 = 0,
4169       .access = PL1_RW,
4170       .fieldoffset = offsetof(CPUARMState, cp15.c15_i_max), .resetvalue = 0, },
4171     { .name = "IMIN", .cp = 15, .crn = 15, .crm = 3, .opc1 = 0, .opc2 = 0,
4172       .access = PL1_RW, .resetvalue = 0xff0,
4173       .fieldoffset = offsetof(CPUARMState, cp15.c15_i_min) },
4174     { .name = "THREADID", .cp = 15, .crn = 15, .crm = 4, .opc1 = 0, .opc2 = 0,
4175       .access = PL1_RW,
4176       .fieldoffset = offsetof(CPUARMState, cp15.c15_threadid), .resetvalue = 0,
4177       .writefn = omap_threadid_write },
4178     { .name = "TI925T_STATUS", .cp = 15, .crn = 15,
4179       .crm = 8, .opc1 = 0, .opc2 = 0, .access = PL1_RW,
4180       .type = ARM_CP_NO_RAW,
4181       .readfn = arm_cp_read_zero, .writefn = omap_wfi_write, },
4182     /* TODO: Peripheral port remap register:
4183      * On OMAP2 mcr p15, 0, rn, c15, c2, 4 sets up the interrupt controller
4184      * base address at $rn & ~0xfff and map size of 0x200 << ($rn & 0xfff),
4185      * when MMU is off.
4186      */
4187     { .name = "OMAP_CACHEMAINT", .cp = 15, .crn = 7, .crm = CP_ANY,
4188       .opc1 = 0, .opc2 = CP_ANY, .access = PL1_W,
4189       .type = ARM_CP_OVERRIDE | ARM_CP_NO_RAW,
4190       .writefn = omap_cachemaint_write },
4191     { .name = "C9", .cp = 15, .crn = 9,
4192       .crm = CP_ANY, .opc1 = CP_ANY, .opc2 = CP_ANY, .access = PL1_RW,
4193       .type = ARM_CP_CONST | ARM_CP_OVERRIDE, .resetvalue = 0 },
4194     REGINFO_SENTINEL
4195 };
4196 
4197 static void xscale_cpar_write(CPUARMState *env, const ARMCPRegInfo *ri,
4198                               uint64_t value)
4199 {
4200     env->cp15.c15_cpar = value & 0x3fff;
4201 }
4202 
4203 static const ARMCPRegInfo xscale_cp_reginfo[] = {
4204     { .name = "XSCALE_CPAR",
4205       .cp = 15, .crn = 15, .crm = 1, .opc1 = 0, .opc2 = 0, .access = PL1_RW,
4206       .fieldoffset = offsetof(CPUARMState, cp15.c15_cpar), .resetvalue = 0,
4207       .writefn = xscale_cpar_write, },
4208     { .name = "XSCALE_AUXCR",
4209       .cp = 15, .crn = 1, .crm = 0, .opc1 = 0, .opc2 = 1, .access = PL1_RW,
4210       .fieldoffset = offsetof(CPUARMState, cp15.c1_xscaleauxcr),
4211       .resetvalue = 0, },
4212     /* XScale specific cache-lockdown: since we have no cache we NOP these
4213      * and hope the guest does not really rely on cache behaviour.
4214      */
4215     { .name = "XSCALE_LOCK_ICACHE_LINE",
4216       .cp = 15, .opc1 = 0, .crn = 9, .crm = 1, .opc2 = 0,
4217       .access = PL1_W, .type = ARM_CP_NOP },
4218     { .name = "XSCALE_UNLOCK_ICACHE",
4219       .cp = 15, .opc1 = 0, .crn = 9, .crm = 1, .opc2 = 1,
4220       .access = PL1_W, .type = ARM_CP_NOP },
4221     { .name = "XSCALE_DCACHE_LOCK",
4222       .cp = 15, .opc1 = 0, .crn = 9, .crm = 2, .opc2 = 0,
4223       .access = PL1_RW, .type = ARM_CP_NOP },
4224     { .name = "XSCALE_UNLOCK_DCACHE",
4225       .cp = 15, .opc1 = 0, .crn = 9, .crm = 2, .opc2 = 1,
4226       .access = PL1_W, .type = ARM_CP_NOP },
4227     REGINFO_SENTINEL
4228 };
4229 
4230 static const ARMCPRegInfo dummy_c15_cp_reginfo[] = {
4231     /* RAZ/WI the whole crn=15 space, when we don't have a more specific
4232      * implementation of this implementation-defined space.
4233      * Ideally this should eventually disappear in favour of actually
4234      * implementing the correct behaviour for all cores.
4235      */
4236     { .name = "C15_IMPDEF", .cp = 15, .crn = 15,
4237       .crm = CP_ANY, .opc1 = CP_ANY, .opc2 = CP_ANY,
4238       .access = PL1_RW,
4239       .type = ARM_CP_CONST | ARM_CP_NO_RAW | ARM_CP_OVERRIDE,
4240       .resetvalue = 0 },
4241     REGINFO_SENTINEL
4242 };
4243 
4244 static const ARMCPRegInfo cache_dirty_status_cp_reginfo[] = {
4245     /* Cache status: RAZ because we have no cache so it's always clean */
4246     { .name = "CDSR", .cp = 15, .crn = 7, .crm = 10, .opc1 = 0, .opc2 = 6,
4247       .access = PL1_R, .type = ARM_CP_CONST | ARM_CP_NO_RAW,
4248       .resetvalue = 0 },
4249     REGINFO_SENTINEL
4250 };
4251 
4252 static const ARMCPRegInfo cache_block_ops_cp_reginfo[] = {
4253     /* We never have a a block transfer operation in progress */
4254     { .name = "BXSR", .cp = 15, .crn = 7, .crm = 12, .opc1 = 0, .opc2 = 4,
4255       .access = PL0_R, .type = ARM_CP_CONST | ARM_CP_NO_RAW,
4256       .resetvalue = 0 },
4257     /* The cache ops themselves: these all NOP for QEMU */
4258     { .name = "IICR", .cp = 15, .crm = 5, .opc1 = 0,
4259       .access = PL1_W, .type = ARM_CP_NOP|ARM_CP_64BIT },
4260     { .name = "IDCR", .cp = 15, .crm = 6, .opc1 = 0,
4261       .access = PL1_W, .type = ARM_CP_NOP|ARM_CP_64BIT },
4262     { .name = "CDCR", .cp = 15, .crm = 12, .opc1 = 0,
4263       .access = PL0_W, .type = ARM_CP_NOP|ARM_CP_64BIT },
4264     { .name = "PIR", .cp = 15, .crm = 12, .opc1 = 1,
4265       .access = PL0_W, .type = ARM_CP_NOP|ARM_CP_64BIT },
4266     { .name = "PDR", .cp = 15, .crm = 12, .opc1 = 2,
4267       .access = PL0_W, .type = ARM_CP_NOP|ARM_CP_64BIT },
4268     { .name = "CIDCR", .cp = 15, .crm = 14, .opc1 = 0,
4269       .access = PL1_W, .type = ARM_CP_NOP|ARM_CP_64BIT },
4270     REGINFO_SENTINEL
4271 };
4272 
4273 static const ARMCPRegInfo cache_test_clean_cp_reginfo[] = {
4274     /* The cache test-and-clean instructions always return (1 << 30)
4275      * to indicate that there are no dirty cache lines.
4276      */
4277     { .name = "TC_DCACHE", .cp = 15, .crn = 7, .crm = 10, .opc1 = 0, .opc2 = 3,
4278       .access = PL0_R, .type = ARM_CP_CONST | ARM_CP_NO_RAW,
4279       .resetvalue = (1 << 30) },
4280     { .name = "TCI_DCACHE", .cp = 15, .crn = 7, .crm = 14, .opc1 = 0, .opc2 = 3,
4281       .access = PL0_R, .type = ARM_CP_CONST | ARM_CP_NO_RAW,
4282       .resetvalue = (1 << 30) },
4283     REGINFO_SENTINEL
4284 };
4285 
4286 static const ARMCPRegInfo strongarm_cp_reginfo[] = {
4287     /* Ignore ReadBuffer accesses */
4288     { .name = "C9_READBUFFER", .cp = 15, .crn = 9,
4289       .crm = CP_ANY, .opc1 = CP_ANY, .opc2 = CP_ANY,
4290       .access = PL1_RW, .resetvalue = 0,
4291       .type = ARM_CP_CONST | ARM_CP_OVERRIDE | ARM_CP_NO_RAW },
4292     REGINFO_SENTINEL
4293 };
4294 
4295 static uint64_t midr_read(CPUARMState *env, const ARMCPRegInfo *ri)
4296 {
4297     unsigned int cur_el = arm_current_el(env);
4298 
4299     if (arm_is_el2_enabled(env) && cur_el == 1) {
4300         return env->cp15.vpidr_el2;
4301     }
4302     return raw_read(env, ri);
4303 }
4304 
4305 static uint64_t mpidr_read_val(CPUARMState *env)
4306 {
4307     ARMCPU *cpu = env_archcpu(env);
4308     uint64_t mpidr = cpu->mp_affinity;
4309 
4310     if (arm_feature(env, ARM_FEATURE_V7MP)) {
4311         mpidr |= (1U << 31);
4312         /* Cores which are uniprocessor (non-coherent)
4313          * but still implement the MP extensions set
4314          * bit 30. (For instance, Cortex-R5).
4315          */
4316         if (cpu->mp_is_up) {
4317             mpidr |= (1u << 30);
4318         }
4319     }
4320     return mpidr;
4321 }
4322 
4323 static uint64_t mpidr_read(CPUARMState *env, const ARMCPRegInfo *ri)
4324 {
4325     unsigned int cur_el = arm_current_el(env);
4326 
4327     if (arm_is_el2_enabled(env) && cur_el == 1) {
4328         return env->cp15.vmpidr_el2;
4329     }
4330     return mpidr_read_val(env);
4331 }
4332 
4333 static const ARMCPRegInfo lpae_cp_reginfo[] = {
4334     /* NOP AMAIR0/1 */
4335     { .name = "AMAIR0", .state = ARM_CP_STATE_BOTH,
4336       .opc0 = 3, .crn = 10, .crm = 3, .opc1 = 0, .opc2 = 0,
4337       .access = PL1_RW, .accessfn = access_tvm_trvm,
4338       .type = ARM_CP_CONST, .resetvalue = 0 },
4339     /* AMAIR1 is mapped to AMAIR_EL1[63:32] */
4340     { .name = "AMAIR1", .cp = 15, .crn = 10, .crm = 3, .opc1 = 0, .opc2 = 1,
4341       .access = PL1_RW, .accessfn = access_tvm_trvm,
4342       .type = ARM_CP_CONST, .resetvalue = 0 },
4343     { .name = "PAR", .cp = 15, .crm = 7, .opc1 = 0,
4344       .access = PL1_RW, .type = ARM_CP_64BIT, .resetvalue = 0,
4345       .bank_fieldoffsets = { offsetof(CPUARMState, cp15.par_s),
4346                              offsetof(CPUARMState, cp15.par_ns)} },
4347     { .name = "TTBR0", .cp = 15, .crm = 2, .opc1 = 0,
4348       .access = PL1_RW, .accessfn = access_tvm_trvm,
4349       .type = ARM_CP_64BIT | ARM_CP_ALIAS,
4350       .bank_fieldoffsets = { offsetof(CPUARMState, cp15.ttbr0_s),
4351                              offsetof(CPUARMState, cp15.ttbr0_ns) },
4352       .writefn = vmsa_ttbr_write, },
4353     { .name = "TTBR1", .cp = 15, .crm = 2, .opc1 = 1,
4354       .access = PL1_RW, .accessfn = access_tvm_trvm,
4355       .type = ARM_CP_64BIT | ARM_CP_ALIAS,
4356       .bank_fieldoffsets = { offsetof(CPUARMState, cp15.ttbr1_s),
4357                              offsetof(CPUARMState, cp15.ttbr1_ns) },
4358       .writefn = vmsa_ttbr_write, },
4359     REGINFO_SENTINEL
4360 };
4361 
4362 static uint64_t aa64_fpcr_read(CPUARMState *env, const ARMCPRegInfo *ri)
4363 {
4364     return vfp_get_fpcr(env);
4365 }
4366 
4367 static void aa64_fpcr_write(CPUARMState *env, const ARMCPRegInfo *ri,
4368                             uint64_t value)
4369 {
4370     vfp_set_fpcr(env, value);
4371 }
4372 
4373 static uint64_t aa64_fpsr_read(CPUARMState *env, const ARMCPRegInfo *ri)
4374 {
4375     return vfp_get_fpsr(env);
4376 }
4377 
4378 static void aa64_fpsr_write(CPUARMState *env, const ARMCPRegInfo *ri,
4379                             uint64_t value)
4380 {
4381     vfp_set_fpsr(env, value);
4382 }
4383 
4384 static CPAccessResult aa64_daif_access(CPUARMState *env, const ARMCPRegInfo *ri,
4385                                        bool isread)
4386 {
4387     if (arm_current_el(env) == 0 && !(arm_sctlr(env, 0) & SCTLR_UMA)) {
4388         return CP_ACCESS_TRAP;
4389     }
4390     return CP_ACCESS_OK;
4391 }
4392 
4393 static void aa64_daif_write(CPUARMState *env, const ARMCPRegInfo *ri,
4394                             uint64_t value)
4395 {
4396     env->daif = value & PSTATE_DAIF;
4397 }
4398 
4399 static uint64_t aa64_pan_read(CPUARMState *env, const ARMCPRegInfo *ri)
4400 {
4401     return env->pstate & PSTATE_PAN;
4402 }
4403 
4404 static void aa64_pan_write(CPUARMState *env, const ARMCPRegInfo *ri,
4405                            uint64_t value)
4406 {
4407     env->pstate = (env->pstate & ~PSTATE_PAN) | (value & PSTATE_PAN);
4408 }
4409 
4410 static const ARMCPRegInfo pan_reginfo = {
4411     .name = "PAN", .state = ARM_CP_STATE_AA64,
4412     .opc0 = 3, .opc1 = 0, .crn = 4, .crm = 2, .opc2 = 3,
4413     .type = ARM_CP_NO_RAW, .access = PL1_RW,
4414     .readfn = aa64_pan_read, .writefn = aa64_pan_write
4415 };
4416 
4417 static uint64_t aa64_uao_read(CPUARMState *env, const ARMCPRegInfo *ri)
4418 {
4419     return env->pstate & PSTATE_UAO;
4420 }
4421 
4422 static void aa64_uao_write(CPUARMState *env, const ARMCPRegInfo *ri,
4423                            uint64_t value)
4424 {
4425     env->pstate = (env->pstate & ~PSTATE_UAO) | (value & PSTATE_UAO);
4426 }
4427 
4428 static const ARMCPRegInfo uao_reginfo = {
4429     .name = "UAO", .state = ARM_CP_STATE_AA64,
4430     .opc0 = 3, .opc1 = 0, .crn = 4, .crm = 2, .opc2 = 4,
4431     .type = ARM_CP_NO_RAW, .access = PL1_RW,
4432     .readfn = aa64_uao_read, .writefn = aa64_uao_write
4433 };
4434 
4435 static uint64_t aa64_dit_read(CPUARMState *env, const ARMCPRegInfo *ri)
4436 {
4437     return env->pstate & PSTATE_DIT;
4438 }
4439 
4440 static void aa64_dit_write(CPUARMState *env, const ARMCPRegInfo *ri,
4441                            uint64_t value)
4442 {
4443     env->pstate = (env->pstate & ~PSTATE_DIT) | (value & PSTATE_DIT);
4444 }
4445 
4446 static const ARMCPRegInfo dit_reginfo = {
4447     .name = "DIT", .state = ARM_CP_STATE_AA64,
4448     .opc0 = 3, .opc1 = 3, .crn = 4, .crm = 2, .opc2 = 5,
4449     .type = ARM_CP_NO_RAW, .access = PL0_RW,
4450     .readfn = aa64_dit_read, .writefn = aa64_dit_write
4451 };
4452 
4453 static uint64_t aa64_ssbs_read(CPUARMState *env, const ARMCPRegInfo *ri)
4454 {
4455     return env->pstate & PSTATE_SSBS;
4456 }
4457 
4458 static void aa64_ssbs_write(CPUARMState *env, const ARMCPRegInfo *ri,
4459                            uint64_t value)
4460 {
4461     env->pstate = (env->pstate & ~PSTATE_SSBS) | (value & PSTATE_SSBS);
4462 }
4463 
4464 static const ARMCPRegInfo ssbs_reginfo = {
4465     .name = "SSBS", .state = ARM_CP_STATE_AA64,
4466     .opc0 = 3, .opc1 = 3, .crn = 4, .crm = 2, .opc2 = 6,
4467     .type = ARM_CP_NO_RAW, .access = PL0_RW,
4468     .readfn = aa64_ssbs_read, .writefn = aa64_ssbs_write
4469 };
4470 
4471 static CPAccessResult aa64_cacheop_poc_access(CPUARMState *env,
4472                                               const ARMCPRegInfo *ri,
4473                                               bool isread)
4474 {
4475     /* Cache invalidate/clean to Point of Coherency or Persistence...  */
4476     switch (arm_current_el(env)) {
4477     case 0:
4478         /* ... EL0 must UNDEF unless SCTLR_EL1.UCI is set.  */
4479         if (!(arm_sctlr(env, 0) & SCTLR_UCI)) {
4480             return CP_ACCESS_TRAP;
4481         }
4482         /* fall through */
4483     case 1:
4484         /* ... EL1 must trap to EL2 if HCR_EL2.TPCP is set.  */
4485         if (arm_hcr_el2_eff(env) & HCR_TPCP) {
4486             return CP_ACCESS_TRAP_EL2;
4487         }
4488         break;
4489     }
4490     return CP_ACCESS_OK;
4491 }
4492 
4493 static CPAccessResult aa64_cacheop_pou_access(CPUARMState *env,
4494                                               const ARMCPRegInfo *ri,
4495                                               bool isread)
4496 {
4497     /* Cache invalidate/clean to Point of Unification... */
4498     switch (arm_current_el(env)) {
4499     case 0:
4500         /* ... EL0 must UNDEF unless SCTLR_EL1.UCI is set.  */
4501         if (!(arm_sctlr(env, 0) & SCTLR_UCI)) {
4502             return CP_ACCESS_TRAP;
4503         }
4504         /* fall through */
4505     case 1:
4506         /* ... EL1 must trap to EL2 if HCR_EL2.TPU is set.  */
4507         if (arm_hcr_el2_eff(env) & HCR_TPU) {
4508             return CP_ACCESS_TRAP_EL2;
4509         }
4510         break;
4511     }
4512     return CP_ACCESS_OK;
4513 }
4514 
4515 /* See: D4.7.2 TLB maintenance requirements and the TLB maintenance instructions
4516  * Page D4-1736 (DDI0487A.b)
4517  */
4518 
4519 static int vae1_tlbmask(CPUARMState *env)
4520 {
4521     uint64_t hcr = arm_hcr_el2_eff(env);
4522     uint16_t mask;
4523 
4524     if ((hcr & (HCR_E2H | HCR_TGE)) == (HCR_E2H | HCR_TGE)) {
4525         mask = ARMMMUIdxBit_E20_2 |
4526                ARMMMUIdxBit_E20_2_PAN |
4527                ARMMMUIdxBit_E20_0;
4528     } else {
4529         mask = ARMMMUIdxBit_E10_1 |
4530                ARMMMUIdxBit_E10_1_PAN |
4531                ARMMMUIdxBit_E10_0;
4532     }
4533 
4534     if (arm_is_secure_below_el3(env)) {
4535         mask >>= ARM_MMU_IDX_A_NS;
4536     }
4537 
4538     return mask;
4539 }
4540 
4541 /* Return 56 if TBI is enabled, 64 otherwise. */
4542 static int tlbbits_for_regime(CPUARMState *env, ARMMMUIdx mmu_idx,
4543                               uint64_t addr)
4544 {
4545     uint64_t tcr = regime_tcr(env, mmu_idx)->raw_tcr;
4546     int tbi = aa64_va_parameter_tbi(tcr, mmu_idx);
4547     int select = extract64(addr, 55, 1);
4548 
4549     return (tbi >> select) & 1 ? 56 : 64;
4550 }
4551 
4552 static int vae1_tlbbits(CPUARMState *env, uint64_t addr)
4553 {
4554     uint64_t hcr = arm_hcr_el2_eff(env);
4555     ARMMMUIdx mmu_idx;
4556 
4557     /* Only the regime of the mmu_idx below is significant. */
4558     if ((hcr & (HCR_E2H | HCR_TGE)) == (HCR_E2H | HCR_TGE)) {
4559         mmu_idx = ARMMMUIdx_E20_0;
4560     } else {
4561         mmu_idx = ARMMMUIdx_E10_0;
4562     }
4563 
4564     if (arm_is_secure_below_el3(env)) {
4565         mmu_idx &= ~ARM_MMU_IDX_A_NS;
4566     }
4567 
4568     return tlbbits_for_regime(env, mmu_idx, addr);
4569 }
4570 
4571 static void tlbi_aa64_vmalle1is_write(CPUARMState *env, const ARMCPRegInfo *ri,
4572                                       uint64_t value)
4573 {
4574     CPUState *cs = env_cpu(env);
4575     int mask = vae1_tlbmask(env);
4576 
4577     tlb_flush_by_mmuidx_all_cpus_synced(cs, mask);
4578 }
4579 
4580 static void tlbi_aa64_vmalle1_write(CPUARMState *env, const ARMCPRegInfo *ri,
4581                                     uint64_t value)
4582 {
4583     CPUState *cs = env_cpu(env);
4584     int mask = vae1_tlbmask(env);
4585 
4586     if (tlb_force_broadcast(env)) {
4587         tlb_flush_by_mmuidx_all_cpus_synced(cs, mask);
4588     } else {
4589         tlb_flush_by_mmuidx(cs, mask);
4590     }
4591 }
4592 
4593 static int alle1_tlbmask(CPUARMState *env)
4594 {
4595     /*
4596      * Note that the 'ALL' scope must invalidate both stage 1 and
4597      * stage 2 translations, whereas most other scopes only invalidate
4598      * stage 1 translations.
4599      */
4600     if (arm_is_secure_below_el3(env)) {
4601         return ARMMMUIdxBit_SE10_1 |
4602                ARMMMUIdxBit_SE10_1_PAN |
4603                ARMMMUIdxBit_SE10_0;
4604     } else {
4605         return ARMMMUIdxBit_E10_1 |
4606                ARMMMUIdxBit_E10_1_PAN |
4607                ARMMMUIdxBit_E10_0;
4608     }
4609 }
4610 
4611 static int e2_tlbmask(CPUARMState *env)
4612 {
4613     if (arm_is_secure_below_el3(env)) {
4614         return ARMMMUIdxBit_SE20_0 |
4615                ARMMMUIdxBit_SE20_2 |
4616                ARMMMUIdxBit_SE20_2_PAN |
4617                ARMMMUIdxBit_SE2;
4618     } else {
4619         return ARMMMUIdxBit_E20_0 |
4620                ARMMMUIdxBit_E20_2 |
4621                ARMMMUIdxBit_E20_2_PAN |
4622                ARMMMUIdxBit_E2;
4623     }
4624 }
4625 
4626 static void tlbi_aa64_alle1_write(CPUARMState *env, const ARMCPRegInfo *ri,
4627                                   uint64_t value)
4628 {
4629     CPUState *cs = env_cpu(env);
4630     int mask = alle1_tlbmask(env);
4631 
4632     tlb_flush_by_mmuidx(cs, mask);
4633 }
4634 
4635 static void tlbi_aa64_alle2_write(CPUARMState *env, const ARMCPRegInfo *ri,
4636                                   uint64_t value)
4637 {
4638     CPUState *cs = env_cpu(env);
4639     int mask = e2_tlbmask(env);
4640 
4641     tlb_flush_by_mmuidx(cs, mask);
4642 }
4643 
4644 static void tlbi_aa64_alle3_write(CPUARMState *env, const ARMCPRegInfo *ri,
4645                                   uint64_t value)
4646 {
4647     ARMCPU *cpu = env_archcpu(env);
4648     CPUState *cs = CPU(cpu);
4649 
4650     tlb_flush_by_mmuidx(cs, ARMMMUIdxBit_SE3);
4651 }
4652 
4653 static void tlbi_aa64_alle1is_write(CPUARMState *env, const ARMCPRegInfo *ri,
4654                                     uint64_t value)
4655 {
4656     CPUState *cs = env_cpu(env);
4657     int mask = alle1_tlbmask(env);
4658 
4659     tlb_flush_by_mmuidx_all_cpus_synced(cs, mask);
4660 }
4661 
4662 static void tlbi_aa64_alle2is_write(CPUARMState *env, const ARMCPRegInfo *ri,
4663                                     uint64_t value)
4664 {
4665     CPUState *cs = env_cpu(env);
4666     int mask = e2_tlbmask(env);
4667 
4668     tlb_flush_by_mmuidx_all_cpus_synced(cs, mask);
4669 }
4670 
4671 static void tlbi_aa64_alle3is_write(CPUARMState *env, const ARMCPRegInfo *ri,
4672                                     uint64_t value)
4673 {
4674     CPUState *cs = env_cpu(env);
4675 
4676     tlb_flush_by_mmuidx_all_cpus_synced(cs, ARMMMUIdxBit_SE3);
4677 }
4678 
4679 static void tlbi_aa64_vae2_write(CPUARMState *env, const ARMCPRegInfo *ri,
4680                                  uint64_t value)
4681 {
4682     /* Invalidate by VA, EL2
4683      * Currently handles both VAE2 and VALE2, since we don't support
4684      * flush-last-level-only.
4685      */
4686     CPUState *cs = env_cpu(env);
4687     int mask = e2_tlbmask(env);
4688     uint64_t pageaddr = sextract64(value << 12, 0, 56);
4689 
4690     tlb_flush_page_by_mmuidx(cs, pageaddr, mask);
4691 }
4692 
4693 static void tlbi_aa64_vae3_write(CPUARMState *env, const ARMCPRegInfo *ri,
4694                                  uint64_t value)
4695 {
4696     /* Invalidate by VA, EL3
4697      * Currently handles both VAE3 and VALE3, since we don't support
4698      * flush-last-level-only.
4699      */
4700     ARMCPU *cpu = env_archcpu(env);
4701     CPUState *cs = CPU(cpu);
4702     uint64_t pageaddr = sextract64(value << 12, 0, 56);
4703 
4704     tlb_flush_page_by_mmuidx(cs, pageaddr, ARMMMUIdxBit_SE3);
4705 }
4706 
4707 static void tlbi_aa64_vae1is_write(CPUARMState *env, const ARMCPRegInfo *ri,
4708                                    uint64_t value)
4709 {
4710     CPUState *cs = env_cpu(env);
4711     int mask = vae1_tlbmask(env);
4712     uint64_t pageaddr = sextract64(value << 12, 0, 56);
4713     int bits = vae1_tlbbits(env, pageaddr);
4714 
4715     tlb_flush_page_bits_by_mmuidx_all_cpus_synced(cs, pageaddr, mask, bits);
4716 }
4717 
4718 static void tlbi_aa64_vae1_write(CPUARMState *env, const ARMCPRegInfo *ri,
4719                                  uint64_t value)
4720 {
4721     /* Invalidate by VA, EL1&0 (AArch64 version).
4722      * Currently handles all of VAE1, VAAE1, VAALE1 and VALE1,
4723      * since we don't support flush-for-specific-ASID-only or
4724      * flush-last-level-only.
4725      */
4726     CPUState *cs = env_cpu(env);
4727     int mask = vae1_tlbmask(env);
4728     uint64_t pageaddr = sextract64(value << 12, 0, 56);
4729     int bits = vae1_tlbbits(env, pageaddr);
4730 
4731     if (tlb_force_broadcast(env)) {
4732         tlb_flush_page_bits_by_mmuidx_all_cpus_synced(cs, pageaddr, mask, bits);
4733     } else {
4734         tlb_flush_page_bits_by_mmuidx(cs, pageaddr, mask, bits);
4735     }
4736 }
4737 
4738 static void tlbi_aa64_vae2is_write(CPUARMState *env, const ARMCPRegInfo *ri,
4739                                    uint64_t value)
4740 {
4741     CPUState *cs = env_cpu(env);
4742     uint64_t pageaddr = sextract64(value << 12, 0, 56);
4743     bool secure = arm_is_secure_below_el3(env);
4744     int mask = secure ? ARMMMUIdxBit_SE2 : ARMMMUIdxBit_E2;
4745     int bits = tlbbits_for_regime(env, secure ? ARMMMUIdx_SE2 : ARMMMUIdx_E2,
4746                                   pageaddr);
4747 
4748     tlb_flush_page_bits_by_mmuidx_all_cpus_synced(cs, pageaddr, mask, bits);
4749 }
4750 
4751 static void tlbi_aa64_vae3is_write(CPUARMState *env, const ARMCPRegInfo *ri,
4752                                    uint64_t value)
4753 {
4754     CPUState *cs = env_cpu(env);
4755     uint64_t pageaddr = sextract64(value << 12, 0, 56);
4756     int bits = tlbbits_for_regime(env, ARMMMUIdx_SE3, pageaddr);
4757 
4758     tlb_flush_page_bits_by_mmuidx_all_cpus_synced(cs, pageaddr,
4759                                                   ARMMMUIdxBit_SE3, bits);
4760 }
4761 
4762 static CPAccessResult aa64_zva_access(CPUARMState *env, const ARMCPRegInfo *ri,
4763                                       bool isread)
4764 {
4765     int cur_el = arm_current_el(env);
4766 
4767     if (cur_el < 2) {
4768         uint64_t hcr = arm_hcr_el2_eff(env);
4769 
4770         if (cur_el == 0) {
4771             if ((hcr & (HCR_E2H | HCR_TGE)) == (HCR_E2H | HCR_TGE)) {
4772                 if (!(env->cp15.sctlr_el[2] & SCTLR_DZE)) {
4773                     return CP_ACCESS_TRAP_EL2;
4774                 }
4775             } else {
4776                 if (!(env->cp15.sctlr_el[1] & SCTLR_DZE)) {
4777                     return CP_ACCESS_TRAP;
4778                 }
4779                 if (hcr & HCR_TDZ) {
4780                     return CP_ACCESS_TRAP_EL2;
4781                 }
4782             }
4783         } else if (hcr & HCR_TDZ) {
4784             return CP_ACCESS_TRAP_EL2;
4785         }
4786     }
4787     return CP_ACCESS_OK;
4788 }
4789 
4790 static uint64_t aa64_dczid_read(CPUARMState *env, const ARMCPRegInfo *ri)
4791 {
4792     ARMCPU *cpu = env_archcpu(env);
4793     int dzp_bit = 1 << 4;
4794 
4795     /* DZP indicates whether DC ZVA access is allowed */
4796     if (aa64_zva_access(env, NULL, false) == CP_ACCESS_OK) {
4797         dzp_bit = 0;
4798     }
4799     return cpu->dcz_blocksize | dzp_bit;
4800 }
4801 
4802 static CPAccessResult sp_el0_access(CPUARMState *env, const ARMCPRegInfo *ri,
4803                                     bool isread)
4804 {
4805     if (!(env->pstate & PSTATE_SP)) {
4806         /* Access to SP_EL0 is undefined if it's being used as
4807          * the stack pointer.
4808          */
4809         return CP_ACCESS_TRAP_UNCATEGORIZED;
4810     }
4811     return CP_ACCESS_OK;
4812 }
4813 
4814 static uint64_t spsel_read(CPUARMState *env, const ARMCPRegInfo *ri)
4815 {
4816     return env->pstate & PSTATE_SP;
4817 }
4818 
4819 static void spsel_write(CPUARMState *env, const ARMCPRegInfo *ri, uint64_t val)
4820 {
4821     update_spsel(env, val);
4822 }
4823 
4824 static void sctlr_write(CPUARMState *env, const ARMCPRegInfo *ri,
4825                         uint64_t value)
4826 {
4827     ARMCPU *cpu = env_archcpu(env);
4828 
4829     if (arm_feature(env, ARM_FEATURE_PMSA) && !cpu->has_mpu) {
4830         /* M bit is RAZ/WI for PMSA with no MPU implemented */
4831         value &= ~SCTLR_M;
4832     }
4833 
4834     /* ??? Lots of these bits are not implemented.  */
4835 
4836     if (ri->state == ARM_CP_STATE_AA64 && !cpu_isar_feature(aa64_mte, cpu)) {
4837         if (ri->opc1 == 6) { /* SCTLR_EL3 */
4838             value &= ~(SCTLR_ITFSB | SCTLR_TCF | SCTLR_ATA);
4839         } else {
4840             value &= ~(SCTLR_ITFSB | SCTLR_TCF0 | SCTLR_TCF |
4841                        SCTLR_ATA0 | SCTLR_ATA);
4842         }
4843     }
4844 
4845     if (raw_read(env, ri) == value) {
4846         /* Skip the TLB flush if nothing actually changed; Linux likes
4847          * to do a lot of pointless SCTLR writes.
4848          */
4849         return;
4850     }
4851 
4852     raw_write(env, ri, value);
4853 
4854     /* This may enable/disable the MMU, so do a TLB flush.  */
4855     tlb_flush(CPU(cpu));
4856 
4857     if (ri->type & ARM_CP_SUPPRESS_TB_END) {
4858         /*
4859          * Normally we would always end the TB on an SCTLR write; see the
4860          * comment in ARMCPRegInfo sctlr initialization below for why Xscale
4861          * is special.  Setting ARM_CP_SUPPRESS_TB_END also stops the rebuild
4862          * of hflags from the translator, so do it here.
4863          */
4864         arm_rebuild_hflags(env);
4865     }
4866 }
4867 
4868 static CPAccessResult fpexc32_access(CPUARMState *env, const ARMCPRegInfo *ri,
4869                                      bool isread)
4870 {
4871     if ((env->cp15.cptr_el[2] & CPTR_TFP) && arm_current_el(env) == 2) {
4872         return CP_ACCESS_TRAP_FP_EL2;
4873     }
4874     if (env->cp15.cptr_el[3] & CPTR_TFP) {
4875         return CP_ACCESS_TRAP_FP_EL3;
4876     }
4877     return CP_ACCESS_OK;
4878 }
4879 
4880 static void sdcr_write(CPUARMState *env, const ARMCPRegInfo *ri,
4881                        uint64_t value)
4882 {
4883     env->cp15.mdcr_el3 = value & SDCR_VALID_MASK;
4884 }
4885 
4886 static const ARMCPRegInfo v8_cp_reginfo[] = {
4887     /* Minimal set of EL0-visible registers. This will need to be expanded
4888      * significantly for system emulation of AArch64 CPUs.
4889      */
4890     { .name = "NZCV", .state = ARM_CP_STATE_AA64,
4891       .opc0 = 3, .opc1 = 3, .opc2 = 0, .crn = 4, .crm = 2,
4892       .access = PL0_RW, .type = ARM_CP_NZCV },
4893     { .name = "DAIF", .state = ARM_CP_STATE_AA64,
4894       .opc0 = 3, .opc1 = 3, .opc2 = 1, .crn = 4, .crm = 2,
4895       .type = ARM_CP_NO_RAW,
4896       .access = PL0_RW, .accessfn = aa64_daif_access,
4897       .fieldoffset = offsetof(CPUARMState, daif),
4898       .writefn = aa64_daif_write, .resetfn = arm_cp_reset_ignore },
4899     { .name = "FPCR", .state = ARM_CP_STATE_AA64,
4900       .opc0 = 3, .opc1 = 3, .opc2 = 0, .crn = 4, .crm = 4,
4901       .access = PL0_RW, .type = ARM_CP_FPU | ARM_CP_SUPPRESS_TB_END,
4902       .readfn = aa64_fpcr_read, .writefn = aa64_fpcr_write },
4903     { .name = "FPSR", .state = ARM_CP_STATE_AA64,
4904       .opc0 = 3, .opc1 = 3, .opc2 = 1, .crn = 4, .crm = 4,
4905       .access = PL0_RW, .type = ARM_CP_FPU | ARM_CP_SUPPRESS_TB_END,
4906       .readfn = aa64_fpsr_read, .writefn = aa64_fpsr_write },
4907     { .name = "DCZID_EL0", .state = ARM_CP_STATE_AA64,
4908       .opc0 = 3, .opc1 = 3, .opc2 = 7, .crn = 0, .crm = 0,
4909       .access = PL0_R, .type = ARM_CP_NO_RAW,
4910       .readfn = aa64_dczid_read },
4911     { .name = "DC_ZVA", .state = ARM_CP_STATE_AA64,
4912       .opc0 = 1, .opc1 = 3, .crn = 7, .crm = 4, .opc2 = 1,
4913       .access = PL0_W, .type = ARM_CP_DC_ZVA,
4914 #ifndef CONFIG_USER_ONLY
4915       /* Avoid overhead of an access check that always passes in user-mode */
4916       .accessfn = aa64_zva_access,
4917 #endif
4918     },
4919     { .name = "CURRENTEL", .state = ARM_CP_STATE_AA64,
4920       .opc0 = 3, .opc1 = 0, .opc2 = 2, .crn = 4, .crm = 2,
4921       .access = PL1_R, .type = ARM_CP_CURRENTEL },
4922     /* Cache ops: all NOPs since we don't emulate caches */
4923     { .name = "IC_IALLUIS", .state = ARM_CP_STATE_AA64,
4924       .opc0 = 1, .opc1 = 0, .crn = 7, .crm = 1, .opc2 = 0,
4925       .access = PL1_W, .type = ARM_CP_NOP,
4926       .accessfn = aa64_cacheop_pou_access },
4927     { .name = "IC_IALLU", .state = ARM_CP_STATE_AA64,
4928       .opc0 = 1, .opc1 = 0, .crn = 7, .crm = 5, .opc2 = 0,
4929       .access = PL1_W, .type = ARM_CP_NOP,
4930       .accessfn = aa64_cacheop_pou_access },
4931     { .name = "IC_IVAU", .state = ARM_CP_STATE_AA64,
4932       .opc0 = 1, .opc1 = 3, .crn = 7, .crm = 5, .opc2 = 1,
4933       .access = PL0_W, .type = ARM_CP_NOP,
4934       .accessfn = aa64_cacheop_pou_access },
4935     { .name = "DC_IVAC", .state = ARM_CP_STATE_AA64,
4936       .opc0 = 1, .opc1 = 0, .crn = 7, .crm = 6, .opc2 = 1,
4937       .access = PL1_W, .accessfn = aa64_cacheop_poc_access,
4938       .type = ARM_CP_NOP },
4939     { .name = "DC_ISW", .state = ARM_CP_STATE_AA64,
4940       .opc0 = 1, .opc1 = 0, .crn = 7, .crm = 6, .opc2 = 2,
4941       .access = PL1_W, .accessfn = access_tsw, .type = ARM_CP_NOP },
4942     { .name = "DC_CVAC", .state = ARM_CP_STATE_AA64,
4943       .opc0 = 1, .opc1 = 3, .crn = 7, .crm = 10, .opc2 = 1,
4944       .access = PL0_W, .type = ARM_CP_NOP,
4945       .accessfn = aa64_cacheop_poc_access },
4946     { .name = "DC_CSW", .state = ARM_CP_STATE_AA64,
4947       .opc0 = 1, .opc1 = 0, .crn = 7, .crm = 10, .opc2 = 2,
4948       .access = PL1_W, .accessfn = access_tsw, .type = ARM_CP_NOP },
4949     { .name = "DC_CVAU", .state = ARM_CP_STATE_AA64,
4950       .opc0 = 1, .opc1 = 3, .crn = 7, .crm = 11, .opc2 = 1,
4951       .access = PL0_W, .type = ARM_CP_NOP,
4952       .accessfn = aa64_cacheop_pou_access },
4953     { .name = "DC_CIVAC", .state = ARM_CP_STATE_AA64,
4954       .opc0 = 1, .opc1 = 3, .crn = 7, .crm = 14, .opc2 = 1,
4955       .access = PL0_W, .type = ARM_CP_NOP,
4956       .accessfn = aa64_cacheop_poc_access },
4957     { .name = "DC_CISW", .state = ARM_CP_STATE_AA64,
4958       .opc0 = 1, .opc1 = 0, .crn = 7, .crm = 14, .opc2 = 2,
4959       .access = PL1_W, .accessfn = access_tsw, .type = ARM_CP_NOP },
4960     /* TLBI operations */
4961     { .name = "TLBI_VMALLE1IS", .state = ARM_CP_STATE_AA64,
4962       .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 3, .opc2 = 0,
4963       .access = PL1_W, .accessfn = access_ttlb, .type = ARM_CP_NO_RAW,
4964       .writefn = tlbi_aa64_vmalle1is_write },
4965     { .name = "TLBI_VAE1IS", .state = ARM_CP_STATE_AA64,
4966       .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 3, .opc2 = 1,
4967       .access = PL1_W, .accessfn = access_ttlb, .type = ARM_CP_NO_RAW,
4968       .writefn = tlbi_aa64_vae1is_write },
4969     { .name = "TLBI_ASIDE1IS", .state = ARM_CP_STATE_AA64,
4970       .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 3, .opc2 = 2,
4971       .access = PL1_W, .accessfn = access_ttlb, .type = ARM_CP_NO_RAW,
4972       .writefn = tlbi_aa64_vmalle1is_write },
4973     { .name = "TLBI_VAAE1IS", .state = ARM_CP_STATE_AA64,
4974       .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 3, .opc2 = 3,
4975       .access = PL1_W, .accessfn = access_ttlb, .type = ARM_CP_NO_RAW,
4976       .writefn = tlbi_aa64_vae1is_write },
4977     { .name = "TLBI_VALE1IS", .state = ARM_CP_STATE_AA64,
4978       .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 3, .opc2 = 5,
4979       .access = PL1_W, .accessfn = access_ttlb, .type = ARM_CP_NO_RAW,
4980       .writefn = tlbi_aa64_vae1is_write },
4981     { .name = "TLBI_VAALE1IS", .state = ARM_CP_STATE_AA64,
4982       .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 3, .opc2 = 7,
4983       .access = PL1_W, .accessfn = access_ttlb, .type = ARM_CP_NO_RAW,
4984       .writefn = tlbi_aa64_vae1is_write },
4985     { .name = "TLBI_VMALLE1", .state = ARM_CP_STATE_AA64,
4986       .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 7, .opc2 = 0,
4987       .access = PL1_W, .accessfn = access_ttlb, .type = ARM_CP_NO_RAW,
4988       .writefn = tlbi_aa64_vmalle1_write },
4989     { .name = "TLBI_VAE1", .state = ARM_CP_STATE_AA64,
4990       .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 7, .opc2 = 1,
4991       .access = PL1_W, .accessfn = access_ttlb, .type = ARM_CP_NO_RAW,
4992       .writefn = tlbi_aa64_vae1_write },
4993     { .name = "TLBI_ASIDE1", .state = ARM_CP_STATE_AA64,
4994       .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 7, .opc2 = 2,
4995       .access = PL1_W, .accessfn = access_ttlb, .type = ARM_CP_NO_RAW,
4996       .writefn = tlbi_aa64_vmalle1_write },
4997     { .name = "TLBI_VAAE1", .state = ARM_CP_STATE_AA64,
4998       .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 7, .opc2 = 3,
4999       .access = PL1_W, .accessfn = access_ttlb, .type = ARM_CP_NO_RAW,
5000       .writefn = tlbi_aa64_vae1_write },
5001     { .name = "TLBI_VALE1", .state = ARM_CP_STATE_AA64,
5002       .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 7, .opc2 = 5,
5003       .access = PL1_W, .accessfn = access_ttlb, .type = ARM_CP_NO_RAW,
5004       .writefn = tlbi_aa64_vae1_write },
5005     { .name = "TLBI_VAALE1", .state = ARM_CP_STATE_AA64,
5006       .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 7, .opc2 = 7,
5007       .access = PL1_W, .accessfn = access_ttlb, .type = ARM_CP_NO_RAW,
5008       .writefn = tlbi_aa64_vae1_write },
5009     { .name = "TLBI_IPAS2E1IS", .state = ARM_CP_STATE_AA64,
5010       .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 0, .opc2 = 1,
5011       .access = PL2_W, .type = ARM_CP_NOP },
5012     { .name = "TLBI_IPAS2LE1IS", .state = ARM_CP_STATE_AA64,
5013       .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 0, .opc2 = 5,
5014       .access = PL2_W, .type = ARM_CP_NOP },
5015     { .name = "TLBI_ALLE1IS", .state = ARM_CP_STATE_AA64,
5016       .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 3, .opc2 = 4,
5017       .access = PL2_W, .type = ARM_CP_NO_RAW,
5018       .writefn = tlbi_aa64_alle1is_write },
5019     { .name = "TLBI_VMALLS12E1IS", .state = ARM_CP_STATE_AA64,
5020       .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 3, .opc2 = 6,
5021       .access = PL2_W, .type = ARM_CP_NO_RAW,
5022       .writefn = tlbi_aa64_alle1is_write },
5023     { .name = "TLBI_IPAS2E1", .state = ARM_CP_STATE_AA64,
5024       .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 4, .opc2 = 1,
5025       .access = PL2_W, .type = ARM_CP_NOP },
5026     { .name = "TLBI_IPAS2LE1", .state = ARM_CP_STATE_AA64,
5027       .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 4, .opc2 = 5,
5028       .access = PL2_W, .type = ARM_CP_NOP },
5029     { .name = "TLBI_ALLE1", .state = ARM_CP_STATE_AA64,
5030       .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 7, .opc2 = 4,
5031       .access = PL2_W, .type = ARM_CP_NO_RAW,
5032       .writefn = tlbi_aa64_alle1_write },
5033     { .name = "TLBI_VMALLS12E1", .state = ARM_CP_STATE_AA64,
5034       .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 7, .opc2 = 6,
5035       .access = PL2_W, .type = ARM_CP_NO_RAW,
5036       .writefn = tlbi_aa64_alle1is_write },
5037 #ifndef CONFIG_USER_ONLY
5038     /* 64 bit address translation operations */
5039     { .name = "AT_S1E1R", .state = ARM_CP_STATE_AA64,
5040       .opc0 = 1, .opc1 = 0, .crn = 7, .crm = 8, .opc2 = 0,
5041       .access = PL1_W, .type = ARM_CP_NO_RAW | ARM_CP_RAISES_EXC,
5042       .writefn = ats_write64 },
5043     { .name = "AT_S1E1W", .state = ARM_CP_STATE_AA64,
5044       .opc0 = 1, .opc1 = 0, .crn = 7, .crm = 8, .opc2 = 1,
5045       .access = PL1_W, .type = ARM_CP_NO_RAW | ARM_CP_RAISES_EXC,
5046       .writefn = ats_write64 },
5047     { .name = "AT_S1E0R", .state = ARM_CP_STATE_AA64,
5048       .opc0 = 1, .opc1 = 0, .crn = 7, .crm = 8, .opc2 = 2,
5049       .access = PL1_W, .type = ARM_CP_NO_RAW | ARM_CP_RAISES_EXC,
5050       .writefn = ats_write64 },
5051     { .name = "AT_S1E0W", .state = ARM_CP_STATE_AA64,
5052       .opc0 = 1, .opc1 = 0, .crn = 7, .crm = 8, .opc2 = 3,
5053       .access = PL1_W, .type = ARM_CP_NO_RAW | ARM_CP_RAISES_EXC,
5054       .writefn = ats_write64 },
5055     { .name = "AT_S12E1R", .state = ARM_CP_STATE_AA64,
5056       .opc0 = 1, .opc1 = 4, .crn = 7, .crm = 8, .opc2 = 4,
5057       .access = PL2_W, .type = ARM_CP_NO_RAW | ARM_CP_RAISES_EXC,
5058       .writefn = ats_write64 },
5059     { .name = "AT_S12E1W", .state = ARM_CP_STATE_AA64,
5060       .opc0 = 1, .opc1 = 4, .crn = 7, .crm = 8, .opc2 = 5,
5061       .access = PL2_W, .type = ARM_CP_NO_RAW | ARM_CP_RAISES_EXC,
5062       .writefn = ats_write64 },
5063     { .name = "AT_S12E0R", .state = ARM_CP_STATE_AA64,
5064       .opc0 = 1, .opc1 = 4, .crn = 7, .crm = 8, .opc2 = 6,
5065       .access = PL2_W, .type = ARM_CP_NO_RAW | ARM_CP_RAISES_EXC,
5066       .writefn = ats_write64 },
5067     { .name = "AT_S12E0W", .state = ARM_CP_STATE_AA64,
5068       .opc0 = 1, .opc1 = 4, .crn = 7, .crm = 8, .opc2 = 7,
5069       .access = PL2_W, .type = ARM_CP_NO_RAW | ARM_CP_RAISES_EXC,
5070       .writefn = ats_write64 },
5071     /* AT S1E2* are elsewhere as they UNDEF from EL3 if EL2 is not present */
5072     { .name = "AT_S1E3R", .state = ARM_CP_STATE_AA64,
5073       .opc0 = 1, .opc1 = 6, .crn = 7, .crm = 8, .opc2 = 0,
5074       .access = PL3_W, .type = ARM_CP_NO_RAW | ARM_CP_RAISES_EXC,
5075       .writefn = ats_write64 },
5076     { .name = "AT_S1E3W", .state = ARM_CP_STATE_AA64,
5077       .opc0 = 1, .opc1 = 6, .crn = 7, .crm = 8, .opc2 = 1,
5078       .access = PL3_W, .type = ARM_CP_NO_RAW | ARM_CP_RAISES_EXC,
5079       .writefn = ats_write64 },
5080     { .name = "PAR_EL1", .state = ARM_CP_STATE_AA64,
5081       .type = ARM_CP_ALIAS,
5082       .opc0 = 3, .opc1 = 0, .crn = 7, .crm = 4, .opc2 = 0,
5083       .access = PL1_RW, .resetvalue = 0,
5084       .fieldoffset = offsetof(CPUARMState, cp15.par_el[1]),
5085       .writefn = par_write },
5086 #endif
5087     /* TLB invalidate last level of translation table walk */
5088     { .name = "TLBIMVALIS", .cp = 15, .opc1 = 0, .crn = 8, .crm = 3, .opc2 = 5,
5089       .type = ARM_CP_NO_RAW, .access = PL1_W, .accessfn = access_ttlb,
5090       .writefn = tlbimva_is_write },
5091     { .name = "TLBIMVAALIS", .cp = 15, .opc1 = 0, .crn = 8, .crm = 3, .opc2 = 7,
5092       .type = ARM_CP_NO_RAW, .access = PL1_W, .accessfn = access_ttlb,
5093       .writefn = tlbimvaa_is_write },
5094     { .name = "TLBIMVAL", .cp = 15, .opc1 = 0, .crn = 8, .crm = 7, .opc2 = 5,
5095       .type = ARM_CP_NO_RAW, .access = PL1_W, .accessfn = access_ttlb,
5096       .writefn = tlbimva_write },
5097     { .name = "TLBIMVAAL", .cp = 15, .opc1 = 0, .crn = 8, .crm = 7, .opc2 = 7,
5098       .type = ARM_CP_NO_RAW, .access = PL1_W, .accessfn = access_ttlb,
5099       .writefn = tlbimvaa_write },
5100     { .name = "TLBIMVALH", .cp = 15, .opc1 = 4, .crn = 8, .crm = 7, .opc2 = 5,
5101       .type = ARM_CP_NO_RAW, .access = PL2_W,
5102       .writefn = tlbimva_hyp_write },
5103     { .name = "TLBIMVALHIS",
5104       .cp = 15, .opc1 = 4, .crn = 8, .crm = 3, .opc2 = 5,
5105       .type = ARM_CP_NO_RAW, .access = PL2_W,
5106       .writefn = tlbimva_hyp_is_write },
5107     { .name = "TLBIIPAS2",
5108       .cp = 15, .opc1 = 4, .crn = 8, .crm = 4, .opc2 = 1,
5109       .type = ARM_CP_NOP, .access = PL2_W },
5110     { .name = "TLBIIPAS2IS",
5111       .cp = 15, .opc1 = 4, .crn = 8, .crm = 0, .opc2 = 1,
5112       .type = ARM_CP_NOP, .access = PL2_W },
5113     { .name = "TLBIIPAS2L",
5114       .cp = 15, .opc1 = 4, .crn = 8, .crm = 4, .opc2 = 5,
5115       .type = ARM_CP_NOP, .access = PL2_W },
5116     { .name = "TLBIIPAS2LIS",
5117       .cp = 15, .opc1 = 4, .crn = 8, .crm = 0, .opc2 = 5,
5118       .type = ARM_CP_NOP, .access = PL2_W },
5119     /* 32 bit cache operations */
5120     { .name = "ICIALLUIS", .cp = 15, .opc1 = 0, .crn = 7, .crm = 1, .opc2 = 0,
5121       .type = ARM_CP_NOP, .access = PL1_W, .accessfn = aa64_cacheop_pou_access },
5122     { .name = "BPIALLUIS", .cp = 15, .opc1 = 0, .crn = 7, .crm = 1, .opc2 = 6,
5123       .type = ARM_CP_NOP, .access = PL1_W },
5124     { .name = "ICIALLU", .cp = 15, .opc1 = 0, .crn = 7, .crm = 5, .opc2 = 0,
5125       .type = ARM_CP_NOP, .access = PL1_W, .accessfn = aa64_cacheop_pou_access },
5126     { .name = "ICIMVAU", .cp = 15, .opc1 = 0, .crn = 7, .crm = 5, .opc2 = 1,
5127       .type = ARM_CP_NOP, .access = PL1_W, .accessfn = aa64_cacheop_pou_access },
5128     { .name = "BPIALL", .cp = 15, .opc1 = 0, .crn = 7, .crm = 5, .opc2 = 6,
5129       .type = ARM_CP_NOP, .access = PL1_W },
5130     { .name = "BPIMVA", .cp = 15, .opc1 = 0, .crn = 7, .crm = 5, .opc2 = 7,
5131       .type = ARM_CP_NOP, .access = PL1_W },
5132     { .name = "DCIMVAC", .cp = 15, .opc1 = 0, .crn = 7, .crm = 6, .opc2 = 1,
5133       .type = ARM_CP_NOP, .access = PL1_W, .accessfn = aa64_cacheop_poc_access },
5134     { .name = "DCISW", .cp = 15, .opc1 = 0, .crn = 7, .crm = 6, .opc2 = 2,
5135       .type = ARM_CP_NOP, .access = PL1_W, .accessfn = access_tsw },
5136     { .name = "DCCMVAC", .cp = 15, .opc1 = 0, .crn = 7, .crm = 10, .opc2 = 1,
5137       .type = ARM_CP_NOP, .access = PL1_W, .accessfn = aa64_cacheop_poc_access },
5138     { .name = "DCCSW", .cp = 15, .opc1 = 0, .crn = 7, .crm = 10, .opc2 = 2,
5139       .type = ARM_CP_NOP, .access = PL1_W, .accessfn = access_tsw },
5140     { .name = "DCCMVAU", .cp = 15, .opc1 = 0, .crn = 7, .crm = 11, .opc2 = 1,
5141       .type = ARM_CP_NOP, .access = PL1_W, .accessfn = aa64_cacheop_pou_access },
5142     { .name = "DCCIMVAC", .cp = 15, .opc1 = 0, .crn = 7, .crm = 14, .opc2 = 1,
5143       .type = ARM_CP_NOP, .access = PL1_W, .accessfn = aa64_cacheop_poc_access },
5144     { .name = "DCCISW", .cp = 15, .opc1 = 0, .crn = 7, .crm = 14, .opc2 = 2,
5145       .type = ARM_CP_NOP, .access = PL1_W, .accessfn = access_tsw },
5146     /* MMU Domain access control / MPU write buffer control */
5147     { .name = "DACR", .cp = 15, .opc1 = 0, .crn = 3, .crm = 0, .opc2 = 0,
5148       .access = PL1_RW, .accessfn = access_tvm_trvm, .resetvalue = 0,
5149       .writefn = dacr_write, .raw_writefn = raw_write,
5150       .bank_fieldoffsets = { offsetoflow32(CPUARMState, cp15.dacr_s),
5151                              offsetoflow32(CPUARMState, cp15.dacr_ns) } },
5152     { .name = "ELR_EL1", .state = ARM_CP_STATE_AA64,
5153       .type = ARM_CP_ALIAS,
5154       .opc0 = 3, .opc1 = 0, .crn = 4, .crm = 0, .opc2 = 1,
5155       .access = PL1_RW,
5156       .fieldoffset = offsetof(CPUARMState, elr_el[1]) },
5157     { .name = "SPSR_EL1", .state = ARM_CP_STATE_AA64,
5158       .type = ARM_CP_ALIAS,
5159       .opc0 = 3, .opc1 = 0, .crn = 4, .crm = 0, .opc2 = 0,
5160       .access = PL1_RW,
5161       .fieldoffset = offsetof(CPUARMState, banked_spsr[BANK_SVC]) },
5162     /* We rely on the access checks not allowing the guest to write to the
5163      * state field when SPSel indicates that it's being used as the stack
5164      * pointer.
5165      */
5166     { .name = "SP_EL0", .state = ARM_CP_STATE_AA64,
5167       .opc0 = 3, .opc1 = 0, .crn = 4, .crm = 1, .opc2 = 0,
5168       .access = PL1_RW, .accessfn = sp_el0_access,
5169       .type = ARM_CP_ALIAS,
5170       .fieldoffset = offsetof(CPUARMState, sp_el[0]) },
5171     { .name = "SP_EL1", .state = ARM_CP_STATE_AA64,
5172       .opc0 = 3, .opc1 = 4, .crn = 4, .crm = 1, .opc2 = 0,
5173       .access = PL2_RW, .type = ARM_CP_ALIAS,
5174       .fieldoffset = offsetof(CPUARMState, sp_el[1]) },
5175     { .name = "SPSel", .state = ARM_CP_STATE_AA64,
5176       .opc0 = 3, .opc1 = 0, .crn = 4, .crm = 2, .opc2 = 0,
5177       .type = ARM_CP_NO_RAW,
5178       .access = PL1_RW, .readfn = spsel_read, .writefn = spsel_write },
5179     { .name = "FPEXC32_EL2", .state = ARM_CP_STATE_AA64,
5180       .opc0 = 3, .opc1 = 4, .crn = 5, .crm = 3, .opc2 = 0,
5181       .type = ARM_CP_ALIAS,
5182       .fieldoffset = offsetof(CPUARMState, vfp.xregs[ARM_VFP_FPEXC]),
5183       .access = PL2_RW, .accessfn = fpexc32_access },
5184     { .name = "DACR32_EL2", .state = ARM_CP_STATE_AA64,
5185       .opc0 = 3, .opc1 = 4, .crn = 3, .crm = 0, .opc2 = 0,
5186       .access = PL2_RW, .resetvalue = 0,
5187       .writefn = dacr_write, .raw_writefn = raw_write,
5188       .fieldoffset = offsetof(CPUARMState, cp15.dacr32_el2) },
5189     { .name = "IFSR32_EL2", .state = ARM_CP_STATE_AA64,
5190       .opc0 = 3, .opc1 = 4, .crn = 5, .crm = 0, .opc2 = 1,
5191       .access = PL2_RW, .resetvalue = 0,
5192       .fieldoffset = offsetof(CPUARMState, cp15.ifsr32_el2) },
5193     { .name = "SPSR_IRQ", .state = ARM_CP_STATE_AA64,
5194       .type = ARM_CP_ALIAS,
5195       .opc0 = 3, .opc1 = 4, .crn = 4, .crm = 3, .opc2 = 0,
5196       .access = PL2_RW,
5197       .fieldoffset = offsetof(CPUARMState, banked_spsr[BANK_IRQ]) },
5198     { .name = "SPSR_ABT", .state = ARM_CP_STATE_AA64,
5199       .type = ARM_CP_ALIAS,
5200       .opc0 = 3, .opc1 = 4, .crn = 4, .crm = 3, .opc2 = 1,
5201       .access = PL2_RW,
5202       .fieldoffset = offsetof(CPUARMState, banked_spsr[BANK_ABT]) },
5203     { .name = "SPSR_UND", .state = ARM_CP_STATE_AA64,
5204       .type = ARM_CP_ALIAS,
5205       .opc0 = 3, .opc1 = 4, .crn = 4, .crm = 3, .opc2 = 2,
5206       .access = PL2_RW,
5207       .fieldoffset = offsetof(CPUARMState, banked_spsr[BANK_UND]) },
5208     { .name = "SPSR_FIQ", .state = ARM_CP_STATE_AA64,
5209       .type = ARM_CP_ALIAS,
5210       .opc0 = 3, .opc1 = 4, .crn = 4, .crm = 3, .opc2 = 3,
5211       .access = PL2_RW,
5212       .fieldoffset = offsetof(CPUARMState, banked_spsr[BANK_FIQ]) },
5213     { .name = "MDCR_EL3", .state = ARM_CP_STATE_AA64,
5214       .opc0 = 3, .opc1 = 6, .crn = 1, .crm = 3, .opc2 = 1,
5215       .resetvalue = 0,
5216       .access = PL3_RW, .fieldoffset = offsetof(CPUARMState, cp15.mdcr_el3) },
5217     { .name = "SDCR", .type = ARM_CP_ALIAS,
5218       .cp = 15, .opc1 = 0, .crn = 1, .crm = 3, .opc2 = 1,
5219       .access = PL1_RW, .accessfn = access_trap_aa32s_el1,
5220       .writefn = sdcr_write,
5221       .fieldoffset = offsetoflow32(CPUARMState, cp15.mdcr_el3) },
5222     REGINFO_SENTINEL
5223 };
5224 
5225 /* Used to describe the behaviour of EL2 regs when EL2 does not exist.  */
5226 static const ARMCPRegInfo el3_no_el2_cp_reginfo[] = {
5227     { .name = "VBAR_EL2", .state = ARM_CP_STATE_BOTH,
5228       .opc0 = 3, .opc1 = 4, .crn = 12, .crm = 0, .opc2 = 0,
5229       .access = PL2_RW,
5230       .readfn = arm_cp_read_zero, .writefn = arm_cp_write_ignore },
5231     { .name = "HCR_EL2", .state = ARM_CP_STATE_BOTH,
5232       .opc0 = 3, .opc1 = 4, .crn = 1, .crm = 1, .opc2 = 0,
5233       .access = PL2_RW,
5234       .type = ARM_CP_CONST, .resetvalue = 0 },
5235     { .name = "HACR_EL2", .state = ARM_CP_STATE_BOTH,
5236       .opc0 = 3, .opc1 = 4, .crn = 1, .crm = 1, .opc2 = 7,
5237       .access = PL2_RW, .type = ARM_CP_CONST, .resetvalue = 0 },
5238     { .name = "ESR_EL2", .state = ARM_CP_STATE_BOTH,
5239       .opc0 = 3, .opc1 = 4, .crn = 5, .crm = 2, .opc2 = 0,
5240       .access = PL2_RW,
5241       .type = ARM_CP_CONST, .resetvalue = 0 },
5242     { .name = "CPTR_EL2", .state = ARM_CP_STATE_BOTH,
5243       .opc0 = 3, .opc1 = 4, .crn = 1, .crm = 1, .opc2 = 2,
5244       .access = PL2_RW, .type = ARM_CP_CONST, .resetvalue = 0 },
5245     { .name = "MAIR_EL2", .state = ARM_CP_STATE_BOTH,
5246       .opc0 = 3, .opc1 = 4, .crn = 10, .crm = 2, .opc2 = 0,
5247       .access = PL2_RW, .type = ARM_CP_CONST,
5248       .resetvalue = 0 },
5249     { .name = "HMAIR1", .state = ARM_CP_STATE_AA32,
5250       .cp = 15, .opc1 = 4, .crn = 10, .crm = 2, .opc2 = 1,
5251       .access = PL2_RW, .type = ARM_CP_CONST, .resetvalue = 0 },
5252     { .name = "AMAIR_EL2", .state = ARM_CP_STATE_BOTH,
5253       .opc0 = 3, .opc1 = 4, .crn = 10, .crm = 3, .opc2 = 0,
5254       .access = PL2_RW, .type = ARM_CP_CONST,
5255       .resetvalue = 0 },
5256     { .name = "HAMAIR1", .state = ARM_CP_STATE_AA32,
5257       .cp = 15, .opc1 = 4, .crn = 10, .crm = 3, .opc2 = 1,
5258       .access = PL2_RW, .type = ARM_CP_CONST,
5259       .resetvalue = 0 },
5260     { .name = "AFSR0_EL2", .state = ARM_CP_STATE_BOTH,
5261       .opc0 = 3, .opc1 = 4, .crn = 5, .crm = 1, .opc2 = 0,
5262       .access = PL2_RW, .type = ARM_CP_CONST,
5263       .resetvalue = 0 },
5264     { .name = "AFSR1_EL2", .state = ARM_CP_STATE_BOTH,
5265       .opc0 = 3, .opc1 = 4, .crn = 5, .crm = 1, .opc2 = 1,
5266       .access = PL2_RW, .type = ARM_CP_CONST,
5267       .resetvalue = 0 },
5268     { .name = "TCR_EL2", .state = ARM_CP_STATE_BOTH,
5269       .opc0 = 3, .opc1 = 4, .crn = 2, .crm = 0, .opc2 = 2,
5270       .access = PL2_RW, .type = ARM_CP_CONST, .resetvalue = 0 },
5271     { .name = "VTCR_EL2", .state = ARM_CP_STATE_BOTH,
5272       .opc0 = 3, .opc1 = 4, .crn = 2, .crm = 1, .opc2 = 2,
5273       .access = PL2_RW, .accessfn = access_el3_aa32ns,
5274       .type = ARM_CP_CONST, .resetvalue = 0 },
5275     { .name = "VTTBR", .state = ARM_CP_STATE_AA32,
5276       .cp = 15, .opc1 = 6, .crm = 2,
5277       .access = PL2_RW, .accessfn = access_el3_aa32ns,
5278       .type = ARM_CP_CONST | ARM_CP_64BIT, .resetvalue = 0 },
5279     { .name = "VTTBR_EL2", .state = ARM_CP_STATE_AA64,
5280       .opc0 = 3, .opc1 = 4, .crn = 2, .crm = 1, .opc2 = 0,
5281       .access = PL2_RW, .type = ARM_CP_CONST, .resetvalue = 0 },
5282     { .name = "SCTLR_EL2", .state = ARM_CP_STATE_BOTH,
5283       .opc0 = 3, .opc1 = 4, .crn = 1, .crm = 0, .opc2 = 0,
5284       .access = PL2_RW, .type = ARM_CP_CONST, .resetvalue = 0 },
5285     { .name = "TPIDR_EL2", .state = ARM_CP_STATE_BOTH,
5286       .opc0 = 3, .opc1 = 4, .crn = 13, .crm = 0, .opc2 = 2,
5287       .access = PL2_RW, .type = ARM_CP_CONST, .resetvalue = 0 },
5288     { .name = "TTBR0_EL2", .state = ARM_CP_STATE_AA64,
5289       .opc0 = 3, .opc1 = 4, .crn = 2, .crm = 0, .opc2 = 0,
5290       .access = PL2_RW, .type = ARM_CP_CONST, .resetvalue = 0 },
5291     { .name = "HTTBR", .cp = 15, .opc1 = 4, .crm = 2,
5292       .access = PL2_RW, .type = ARM_CP_64BIT | ARM_CP_CONST,
5293       .resetvalue = 0 },
5294     { .name = "CNTHCTL_EL2", .state = ARM_CP_STATE_BOTH,
5295       .opc0 = 3, .opc1 = 4, .crn = 14, .crm = 1, .opc2 = 0,
5296       .access = PL2_RW, .type = ARM_CP_CONST, .resetvalue = 0 },
5297     { .name = "CNTVOFF_EL2", .state = ARM_CP_STATE_AA64,
5298       .opc0 = 3, .opc1 = 4, .crn = 14, .crm = 0, .opc2 = 3,
5299       .access = PL2_RW, .type = ARM_CP_CONST, .resetvalue = 0 },
5300     { .name = "CNTVOFF", .cp = 15, .opc1 = 4, .crm = 14,
5301       .access = PL2_RW, .type = ARM_CP_64BIT | ARM_CP_CONST,
5302       .resetvalue = 0 },
5303     { .name = "CNTHP_CVAL_EL2", .state = ARM_CP_STATE_AA64,
5304       .opc0 = 3, .opc1 = 4, .crn = 14, .crm = 2, .opc2 = 2,
5305       .access = PL2_RW, .type = ARM_CP_CONST, .resetvalue = 0 },
5306     { .name = "CNTHP_CVAL", .cp = 15, .opc1 = 6, .crm = 14,
5307       .access = PL2_RW, .type = ARM_CP_64BIT | ARM_CP_CONST,
5308       .resetvalue = 0 },
5309     { .name = "CNTHP_TVAL_EL2", .state = ARM_CP_STATE_BOTH,
5310       .opc0 = 3, .opc1 = 4, .crn = 14, .crm = 2, .opc2 = 0,
5311       .access = PL2_RW, .type = ARM_CP_CONST, .resetvalue = 0 },
5312     { .name = "CNTHP_CTL_EL2", .state = ARM_CP_STATE_BOTH,
5313       .opc0 = 3, .opc1 = 4, .crn = 14, .crm = 2, .opc2 = 1,
5314       .access = PL2_RW, .type = ARM_CP_CONST, .resetvalue = 0 },
5315     { .name = "MDCR_EL2", .state = ARM_CP_STATE_BOTH,
5316       .opc0 = 3, .opc1 = 4, .crn = 1, .crm = 1, .opc2 = 1,
5317       .access = PL2_RW, .accessfn = access_tda,
5318       .type = ARM_CP_CONST, .resetvalue = 0 },
5319     { .name = "HPFAR_EL2", .state = ARM_CP_STATE_BOTH,
5320       .opc0 = 3, .opc1 = 4, .crn = 6, .crm = 0, .opc2 = 4,
5321       .access = PL2_RW, .accessfn = access_el3_aa32ns,
5322       .type = ARM_CP_CONST, .resetvalue = 0 },
5323     { .name = "HSTR_EL2", .state = ARM_CP_STATE_BOTH,
5324       .opc0 = 3, .opc1 = 4, .crn = 1, .crm = 1, .opc2 = 3,
5325       .access = PL2_RW, .type = ARM_CP_CONST, .resetvalue = 0 },
5326     { .name = "FAR_EL2", .state = ARM_CP_STATE_BOTH,
5327       .opc0 = 3, .opc1 = 4, .crn = 6, .crm = 0, .opc2 = 0,
5328       .access = PL2_RW, .type = ARM_CP_CONST, .resetvalue = 0 },
5329     { .name = "HIFAR", .state = ARM_CP_STATE_AA32,
5330       .type = ARM_CP_CONST,
5331       .cp = 15, .opc1 = 4, .crn = 6, .crm = 0, .opc2 = 2,
5332       .access = PL2_RW, .resetvalue = 0 },
5333     REGINFO_SENTINEL
5334 };
5335 
5336 /* Ditto, but for registers which exist in ARMv8 but not v7 */
5337 static const ARMCPRegInfo el3_no_el2_v8_cp_reginfo[] = {
5338     { .name = "HCR2", .state = ARM_CP_STATE_AA32,
5339       .cp = 15, .opc1 = 4, .crn = 1, .crm = 1, .opc2 = 4,
5340       .access = PL2_RW,
5341       .type = ARM_CP_CONST, .resetvalue = 0 },
5342     REGINFO_SENTINEL
5343 };
5344 
5345 static void do_hcr_write(CPUARMState *env, uint64_t value, uint64_t valid_mask)
5346 {
5347     ARMCPU *cpu = env_archcpu(env);
5348 
5349     if (arm_feature(env, ARM_FEATURE_V8)) {
5350         valid_mask |= MAKE_64BIT_MASK(0, 34);  /* ARMv8.0 */
5351     } else {
5352         valid_mask |= MAKE_64BIT_MASK(0, 28);  /* ARMv7VE */
5353     }
5354 
5355     if (arm_feature(env, ARM_FEATURE_EL3)) {
5356         valid_mask &= ~HCR_HCD;
5357     } else if (cpu->psci_conduit != QEMU_PSCI_CONDUIT_SMC) {
5358         /* Architecturally HCR.TSC is RES0 if EL3 is not implemented.
5359          * However, if we're using the SMC PSCI conduit then QEMU is
5360          * effectively acting like EL3 firmware and so the guest at
5361          * EL2 should retain the ability to prevent EL1 from being
5362          * able to make SMC calls into the ersatz firmware, so in
5363          * that case HCR.TSC should be read/write.
5364          */
5365         valid_mask &= ~HCR_TSC;
5366     }
5367 
5368     if (arm_feature(env, ARM_FEATURE_AARCH64)) {
5369         if (cpu_isar_feature(aa64_vh, cpu)) {
5370             valid_mask |= HCR_E2H;
5371         }
5372         if (cpu_isar_feature(aa64_lor, cpu)) {
5373             valid_mask |= HCR_TLOR;
5374         }
5375         if (cpu_isar_feature(aa64_pauth, cpu)) {
5376             valid_mask |= HCR_API | HCR_APK;
5377         }
5378         if (cpu_isar_feature(aa64_mte, cpu)) {
5379             valid_mask |= HCR_ATA | HCR_DCT | HCR_TID5;
5380         }
5381     }
5382 
5383     /* Clear RES0 bits.  */
5384     value &= valid_mask;
5385 
5386     /*
5387      * These bits change the MMU setup:
5388      * HCR_VM enables stage 2 translation
5389      * HCR_PTW forbids certain page-table setups
5390      * HCR_DC disables stage1 and enables stage2 translation
5391      * HCR_DCT enables tagging on (disabled) stage1 translation
5392      */
5393     if ((env->cp15.hcr_el2 ^ value) & (HCR_VM | HCR_PTW | HCR_DC | HCR_DCT)) {
5394         tlb_flush(CPU(cpu));
5395     }
5396     env->cp15.hcr_el2 = value;
5397 
5398     /*
5399      * Updates to VI and VF require us to update the status of
5400      * virtual interrupts, which are the logical OR of these bits
5401      * and the state of the input lines from the GIC. (This requires
5402      * that we have the iothread lock, which is done by marking the
5403      * reginfo structs as ARM_CP_IO.)
5404      * Note that if a write to HCR pends a VIRQ or VFIQ it is never
5405      * possible for it to be taken immediately, because VIRQ and
5406      * VFIQ are masked unless running at EL0 or EL1, and HCR
5407      * can only be written at EL2.
5408      */
5409     g_assert(qemu_mutex_iothread_locked());
5410     arm_cpu_update_virq(cpu);
5411     arm_cpu_update_vfiq(cpu);
5412 }
5413 
5414 static void hcr_write(CPUARMState *env, const ARMCPRegInfo *ri, uint64_t value)
5415 {
5416     do_hcr_write(env, value, 0);
5417 }
5418 
5419 static void hcr_writehigh(CPUARMState *env, const ARMCPRegInfo *ri,
5420                           uint64_t value)
5421 {
5422     /* Handle HCR2 write, i.e. write to high half of HCR_EL2 */
5423     value = deposit64(env->cp15.hcr_el2, 32, 32, value);
5424     do_hcr_write(env, value, MAKE_64BIT_MASK(0, 32));
5425 }
5426 
5427 static void hcr_writelow(CPUARMState *env, const ARMCPRegInfo *ri,
5428                          uint64_t value)
5429 {
5430     /* Handle HCR write, i.e. write to low half of HCR_EL2 */
5431     value = deposit64(env->cp15.hcr_el2, 0, 32, value);
5432     do_hcr_write(env, value, MAKE_64BIT_MASK(32, 32));
5433 }
5434 
5435 /*
5436  * Return the effective value of HCR_EL2.
5437  * Bits that are not included here:
5438  * RW       (read from SCR_EL3.RW as needed)
5439  */
5440 uint64_t arm_hcr_el2_eff(CPUARMState *env)
5441 {
5442     uint64_t ret = env->cp15.hcr_el2;
5443 
5444     if (!arm_is_el2_enabled(env)) {
5445         /*
5446          * "This register has no effect if EL2 is not enabled in the
5447          * current Security state".  This is ARMv8.4-SecEL2 speak for
5448          * !(SCR_EL3.NS==1 || SCR_EL3.EEL2==1).
5449          *
5450          * Prior to that, the language was "In an implementation that
5451          * includes EL3, when the value of SCR_EL3.NS is 0 the PE behaves
5452          * as if this field is 0 for all purposes other than a direct
5453          * read or write access of HCR_EL2".  With lots of enumeration
5454          * on a per-field basis.  In current QEMU, this is condition
5455          * is arm_is_secure_below_el3.
5456          *
5457          * Since the v8.4 language applies to the entire register, and
5458          * appears to be backward compatible, use that.
5459          */
5460         return 0;
5461     }
5462 
5463     /*
5464      * For a cpu that supports both aarch64 and aarch32, we can set bits
5465      * in HCR_EL2 (e.g. via EL3) that are RES0 when we enter EL2 as aa32.
5466      * Ignore all of the bits in HCR+HCR2 that are not valid for aarch32.
5467      */
5468     if (!arm_el_is_aa64(env, 2)) {
5469         uint64_t aa32_valid;
5470 
5471         /*
5472          * These bits are up-to-date as of ARMv8.6.
5473          * For HCR, it's easiest to list just the 2 bits that are invalid.
5474          * For HCR2, list those that are valid.
5475          */
5476         aa32_valid = MAKE_64BIT_MASK(0, 32) & ~(HCR_RW | HCR_TDZ);
5477         aa32_valid |= (HCR_CD | HCR_ID | HCR_TERR | HCR_TEA | HCR_MIOCNCE |
5478                        HCR_TID4 | HCR_TICAB | HCR_TOCU | HCR_TTLBIS);
5479         ret &= aa32_valid;
5480     }
5481 
5482     if (ret & HCR_TGE) {
5483         /* These bits are up-to-date as of ARMv8.6.  */
5484         if (ret & HCR_E2H) {
5485             ret &= ~(HCR_VM | HCR_FMO | HCR_IMO | HCR_AMO |
5486                      HCR_BSU_MASK | HCR_DC | HCR_TWI | HCR_TWE |
5487                      HCR_TID0 | HCR_TID2 | HCR_TPCP | HCR_TPU |
5488                      HCR_TDZ | HCR_CD | HCR_ID | HCR_MIOCNCE |
5489                      HCR_TID4 | HCR_TICAB | HCR_TOCU | HCR_ENSCXT |
5490                      HCR_TTLBIS | HCR_TTLBOS | HCR_TID5);
5491         } else {
5492             ret |= HCR_FMO | HCR_IMO | HCR_AMO;
5493         }
5494         ret &= ~(HCR_SWIO | HCR_PTW | HCR_VF | HCR_VI | HCR_VSE |
5495                  HCR_FB | HCR_TID1 | HCR_TID3 | HCR_TSC | HCR_TACR |
5496                  HCR_TSW | HCR_TTLB | HCR_TVM | HCR_HCD | HCR_TRVM |
5497                  HCR_TLOR);
5498     }
5499 
5500     return ret;
5501 }
5502 
5503 static void cptr_el2_write(CPUARMState *env, const ARMCPRegInfo *ri,
5504                            uint64_t value)
5505 {
5506     /*
5507      * For A-profile AArch32 EL3, if NSACR.CP10
5508      * is 0 then HCPTR.{TCP11,TCP10} ignore writes and read as 1.
5509      */
5510     if (arm_feature(env, ARM_FEATURE_EL3) && !arm_el_is_aa64(env, 3) &&
5511         !arm_is_secure(env) && !extract32(env->cp15.nsacr, 10, 1)) {
5512         value &= ~(0x3 << 10);
5513         value |= env->cp15.cptr_el[2] & (0x3 << 10);
5514     }
5515     env->cp15.cptr_el[2] = value;
5516 }
5517 
5518 static uint64_t cptr_el2_read(CPUARMState *env, const ARMCPRegInfo *ri)
5519 {
5520     /*
5521      * For A-profile AArch32 EL3, if NSACR.CP10
5522      * is 0 then HCPTR.{TCP11,TCP10} ignore writes and read as 1.
5523      */
5524     uint64_t value = env->cp15.cptr_el[2];
5525 
5526     if (arm_feature(env, ARM_FEATURE_EL3) && !arm_el_is_aa64(env, 3) &&
5527         !arm_is_secure(env) && !extract32(env->cp15.nsacr, 10, 1)) {
5528         value |= 0x3 << 10;
5529     }
5530     return value;
5531 }
5532 
5533 static const ARMCPRegInfo el2_cp_reginfo[] = {
5534     { .name = "HCR_EL2", .state = ARM_CP_STATE_AA64,
5535       .type = ARM_CP_IO,
5536       .opc0 = 3, .opc1 = 4, .crn = 1, .crm = 1, .opc2 = 0,
5537       .access = PL2_RW, .fieldoffset = offsetof(CPUARMState, cp15.hcr_el2),
5538       .writefn = hcr_write },
5539     { .name = "HCR", .state = ARM_CP_STATE_AA32,
5540       .type = ARM_CP_ALIAS | ARM_CP_IO,
5541       .cp = 15, .opc1 = 4, .crn = 1, .crm = 1, .opc2 = 0,
5542       .access = PL2_RW, .fieldoffset = offsetof(CPUARMState, cp15.hcr_el2),
5543       .writefn = hcr_writelow },
5544     { .name = "HACR_EL2", .state = ARM_CP_STATE_BOTH,
5545       .opc0 = 3, .opc1 = 4, .crn = 1, .crm = 1, .opc2 = 7,
5546       .access = PL2_RW, .type = ARM_CP_CONST, .resetvalue = 0 },
5547     { .name = "ELR_EL2", .state = ARM_CP_STATE_AA64,
5548       .type = ARM_CP_ALIAS,
5549       .opc0 = 3, .opc1 = 4, .crn = 4, .crm = 0, .opc2 = 1,
5550       .access = PL2_RW,
5551       .fieldoffset = offsetof(CPUARMState, elr_el[2]) },
5552     { .name = "ESR_EL2", .state = ARM_CP_STATE_BOTH,
5553       .opc0 = 3, .opc1 = 4, .crn = 5, .crm = 2, .opc2 = 0,
5554       .access = PL2_RW, .fieldoffset = offsetof(CPUARMState, cp15.esr_el[2]) },
5555     { .name = "FAR_EL2", .state = ARM_CP_STATE_BOTH,
5556       .opc0 = 3, .opc1 = 4, .crn = 6, .crm = 0, .opc2 = 0,
5557       .access = PL2_RW, .fieldoffset = offsetof(CPUARMState, cp15.far_el[2]) },
5558     { .name = "HIFAR", .state = ARM_CP_STATE_AA32,
5559       .type = ARM_CP_ALIAS,
5560       .cp = 15, .opc1 = 4, .crn = 6, .crm = 0, .opc2 = 2,
5561       .access = PL2_RW,
5562       .fieldoffset = offsetofhigh32(CPUARMState, cp15.far_el[2]) },
5563     { .name = "SPSR_EL2", .state = ARM_CP_STATE_AA64,
5564       .type = ARM_CP_ALIAS,
5565       .opc0 = 3, .opc1 = 4, .crn = 4, .crm = 0, .opc2 = 0,
5566       .access = PL2_RW,
5567       .fieldoffset = offsetof(CPUARMState, banked_spsr[BANK_HYP]) },
5568     { .name = "VBAR_EL2", .state = ARM_CP_STATE_BOTH,
5569       .opc0 = 3, .opc1 = 4, .crn = 12, .crm = 0, .opc2 = 0,
5570       .access = PL2_RW, .writefn = vbar_write,
5571       .fieldoffset = offsetof(CPUARMState, cp15.vbar_el[2]),
5572       .resetvalue = 0 },
5573     { .name = "SP_EL2", .state = ARM_CP_STATE_AA64,
5574       .opc0 = 3, .opc1 = 6, .crn = 4, .crm = 1, .opc2 = 0,
5575       .access = PL3_RW, .type = ARM_CP_ALIAS,
5576       .fieldoffset = offsetof(CPUARMState, sp_el[2]) },
5577     { .name = "CPTR_EL2", .state = ARM_CP_STATE_BOTH,
5578       .opc0 = 3, .opc1 = 4, .crn = 1, .crm = 1, .opc2 = 2,
5579       .access = PL2_RW, .accessfn = cptr_access, .resetvalue = 0,
5580       .fieldoffset = offsetof(CPUARMState, cp15.cptr_el[2]),
5581       .readfn = cptr_el2_read, .writefn = cptr_el2_write },
5582     { .name = "MAIR_EL2", .state = ARM_CP_STATE_BOTH,
5583       .opc0 = 3, .opc1 = 4, .crn = 10, .crm = 2, .opc2 = 0,
5584       .access = PL2_RW, .fieldoffset = offsetof(CPUARMState, cp15.mair_el[2]),
5585       .resetvalue = 0 },
5586     { .name = "HMAIR1", .state = ARM_CP_STATE_AA32,
5587       .cp = 15, .opc1 = 4, .crn = 10, .crm = 2, .opc2 = 1,
5588       .access = PL2_RW, .type = ARM_CP_ALIAS,
5589       .fieldoffset = offsetofhigh32(CPUARMState, cp15.mair_el[2]) },
5590     { .name = "AMAIR_EL2", .state = ARM_CP_STATE_BOTH,
5591       .opc0 = 3, .opc1 = 4, .crn = 10, .crm = 3, .opc2 = 0,
5592       .access = PL2_RW, .type = ARM_CP_CONST,
5593       .resetvalue = 0 },
5594     /* HAMAIR1 is mapped to AMAIR_EL2[63:32] */
5595     { .name = "HAMAIR1", .state = ARM_CP_STATE_AA32,
5596       .cp = 15, .opc1 = 4, .crn = 10, .crm = 3, .opc2 = 1,
5597       .access = PL2_RW, .type = ARM_CP_CONST,
5598       .resetvalue = 0 },
5599     { .name = "AFSR0_EL2", .state = ARM_CP_STATE_BOTH,
5600       .opc0 = 3, .opc1 = 4, .crn = 5, .crm = 1, .opc2 = 0,
5601       .access = PL2_RW, .type = ARM_CP_CONST,
5602       .resetvalue = 0 },
5603     { .name = "AFSR1_EL2", .state = ARM_CP_STATE_BOTH,
5604       .opc0 = 3, .opc1 = 4, .crn = 5, .crm = 1, .opc2 = 1,
5605       .access = PL2_RW, .type = ARM_CP_CONST,
5606       .resetvalue = 0 },
5607     { .name = "TCR_EL2", .state = ARM_CP_STATE_BOTH,
5608       .opc0 = 3, .opc1 = 4, .crn = 2, .crm = 0, .opc2 = 2,
5609       .access = PL2_RW, .writefn = vmsa_tcr_el12_write,
5610       /* no .raw_writefn or .resetfn needed as we never use mask/base_mask */
5611       .fieldoffset = offsetof(CPUARMState, cp15.tcr_el[2]) },
5612     { .name = "VTCR", .state = ARM_CP_STATE_AA32,
5613       .cp = 15, .opc1 = 4, .crn = 2, .crm = 1, .opc2 = 2,
5614       .type = ARM_CP_ALIAS,
5615       .access = PL2_RW, .accessfn = access_el3_aa32ns,
5616       .fieldoffset = offsetof(CPUARMState, cp15.vtcr_el2) },
5617     { .name = "VTCR_EL2", .state = ARM_CP_STATE_AA64,
5618       .opc0 = 3, .opc1 = 4, .crn = 2, .crm = 1, .opc2 = 2,
5619       .access = PL2_RW,
5620       /* no .writefn needed as this can't cause an ASID change;
5621        * no .raw_writefn or .resetfn needed as we never use mask/base_mask
5622        */
5623       .fieldoffset = offsetof(CPUARMState, cp15.vtcr_el2) },
5624     { .name = "VTTBR", .state = ARM_CP_STATE_AA32,
5625       .cp = 15, .opc1 = 6, .crm = 2,
5626       .type = ARM_CP_64BIT | ARM_CP_ALIAS,
5627       .access = PL2_RW, .accessfn = access_el3_aa32ns,
5628       .fieldoffset = offsetof(CPUARMState, cp15.vttbr_el2),
5629       .writefn = vttbr_write },
5630     { .name = "VTTBR_EL2", .state = ARM_CP_STATE_AA64,
5631       .opc0 = 3, .opc1 = 4, .crn = 2, .crm = 1, .opc2 = 0,
5632       .access = PL2_RW, .writefn = vttbr_write,
5633       .fieldoffset = offsetof(CPUARMState, cp15.vttbr_el2) },
5634     { .name = "SCTLR_EL2", .state = ARM_CP_STATE_BOTH,
5635       .opc0 = 3, .opc1 = 4, .crn = 1, .crm = 0, .opc2 = 0,
5636       .access = PL2_RW, .raw_writefn = raw_write, .writefn = sctlr_write,
5637       .fieldoffset = offsetof(CPUARMState, cp15.sctlr_el[2]) },
5638     { .name = "TPIDR_EL2", .state = ARM_CP_STATE_BOTH,
5639       .opc0 = 3, .opc1 = 4, .crn = 13, .crm = 0, .opc2 = 2,
5640       .access = PL2_RW, .resetvalue = 0,
5641       .fieldoffset = offsetof(CPUARMState, cp15.tpidr_el[2]) },
5642     { .name = "TTBR0_EL2", .state = ARM_CP_STATE_AA64,
5643       .opc0 = 3, .opc1 = 4, .crn = 2, .crm = 0, .opc2 = 0,
5644       .access = PL2_RW, .resetvalue = 0, .writefn = vmsa_tcr_ttbr_el2_write,
5645       .fieldoffset = offsetof(CPUARMState, cp15.ttbr0_el[2]) },
5646     { .name = "HTTBR", .cp = 15, .opc1 = 4, .crm = 2,
5647       .access = PL2_RW, .type = ARM_CP_64BIT | ARM_CP_ALIAS,
5648       .fieldoffset = offsetof(CPUARMState, cp15.ttbr0_el[2]) },
5649     { .name = "TLBIALLNSNH",
5650       .cp = 15, .opc1 = 4, .crn = 8, .crm = 7, .opc2 = 4,
5651       .type = ARM_CP_NO_RAW, .access = PL2_W,
5652       .writefn = tlbiall_nsnh_write },
5653     { .name = "TLBIALLNSNHIS",
5654       .cp = 15, .opc1 = 4, .crn = 8, .crm = 3, .opc2 = 4,
5655       .type = ARM_CP_NO_RAW, .access = PL2_W,
5656       .writefn = tlbiall_nsnh_is_write },
5657     { .name = "TLBIALLH", .cp = 15, .opc1 = 4, .crn = 8, .crm = 7, .opc2 = 0,
5658       .type = ARM_CP_NO_RAW, .access = PL2_W,
5659       .writefn = tlbiall_hyp_write },
5660     { .name = "TLBIALLHIS", .cp = 15, .opc1 = 4, .crn = 8, .crm = 3, .opc2 = 0,
5661       .type = ARM_CP_NO_RAW, .access = PL2_W,
5662       .writefn = tlbiall_hyp_is_write },
5663     { .name = "TLBIMVAH", .cp = 15, .opc1 = 4, .crn = 8, .crm = 7, .opc2 = 1,
5664       .type = ARM_CP_NO_RAW, .access = PL2_W,
5665       .writefn = tlbimva_hyp_write },
5666     { .name = "TLBIMVAHIS", .cp = 15, .opc1 = 4, .crn = 8, .crm = 3, .opc2 = 1,
5667       .type = ARM_CP_NO_RAW, .access = PL2_W,
5668       .writefn = tlbimva_hyp_is_write },
5669     { .name = "TLBI_ALLE2", .state = ARM_CP_STATE_AA64,
5670       .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 7, .opc2 = 0,
5671       .type = ARM_CP_NO_RAW, .access = PL2_W,
5672       .writefn = tlbi_aa64_alle2_write },
5673     { .name = "TLBI_VAE2", .state = ARM_CP_STATE_AA64,
5674       .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 7, .opc2 = 1,
5675       .type = ARM_CP_NO_RAW, .access = PL2_W,
5676       .writefn = tlbi_aa64_vae2_write },
5677     { .name = "TLBI_VALE2", .state = ARM_CP_STATE_AA64,
5678       .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 7, .opc2 = 5,
5679       .access = PL2_W, .type = ARM_CP_NO_RAW,
5680       .writefn = tlbi_aa64_vae2_write },
5681     { .name = "TLBI_ALLE2IS", .state = ARM_CP_STATE_AA64,
5682       .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 3, .opc2 = 0,
5683       .access = PL2_W, .type = ARM_CP_NO_RAW,
5684       .writefn = tlbi_aa64_alle2is_write },
5685     { .name = "TLBI_VAE2IS", .state = ARM_CP_STATE_AA64,
5686       .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 3, .opc2 = 1,
5687       .type = ARM_CP_NO_RAW, .access = PL2_W,
5688       .writefn = tlbi_aa64_vae2is_write },
5689     { .name = "TLBI_VALE2IS", .state = ARM_CP_STATE_AA64,
5690       .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 3, .opc2 = 5,
5691       .access = PL2_W, .type = ARM_CP_NO_RAW,
5692       .writefn = tlbi_aa64_vae2is_write },
5693 #ifndef CONFIG_USER_ONLY
5694     /* Unlike the other EL2-related AT operations, these must
5695      * UNDEF from EL3 if EL2 is not implemented, which is why we
5696      * define them here rather than with the rest of the AT ops.
5697      */
5698     { .name = "AT_S1E2R", .state = ARM_CP_STATE_AA64,
5699       .opc0 = 1, .opc1 = 4, .crn = 7, .crm = 8, .opc2 = 0,
5700       .access = PL2_W, .accessfn = at_s1e2_access,
5701       .type = ARM_CP_NO_RAW | ARM_CP_RAISES_EXC, .writefn = ats_write64 },
5702     { .name = "AT_S1E2W", .state = ARM_CP_STATE_AA64,
5703       .opc0 = 1, .opc1 = 4, .crn = 7, .crm = 8, .opc2 = 1,
5704       .access = PL2_W, .accessfn = at_s1e2_access,
5705       .type = ARM_CP_NO_RAW | ARM_CP_RAISES_EXC, .writefn = ats_write64 },
5706     /* The AArch32 ATS1H* operations are CONSTRAINED UNPREDICTABLE
5707      * if EL2 is not implemented; we choose to UNDEF. Behaviour at EL3
5708      * with SCR.NS == 0 outside Monitor mode is UNPREDICTABLE; we choose
5709      * to behave as if SCR.NS was 1.
5710      */
5711     { .name = "ATS1HR", .cp = 15, .opc1 = 4, .crn = 7, .crm = 8, .opc2 = 0,
5712       .access = PL2_W,
5713       .writefn = ats1h_write, .type = ARM_CP_NO_RAW | ARM_CP_RAISES_EXC },
5714     { .name = "ATS1HW", .cp = 15, .opc1 = 4, .crn = 7, .crm = 8, .opc2 = 1,
5715       .access = PL2_W,
5716       .writefn = ats1h_write, .type = ARM_CP_NO_RAW | ARM_CP_RAISES_EXC },
5717     { .name = "CNTHCTL_EL2", .state = ARM_CP_STATE_BOTH,
5718       .opc0 = 3, .opc1 = 4, .crn = 14, .crm = 1, .opc2 = 0,
5719       /* ARMv7 requires bit 0 and 1 to reset to 1. ARMv8 defines the
5720        * reset values as IMPDEF. We choose to reset to 3 to comply with
5721        * both ARMv7 and ARMv8.
5722        */
5723       .access = PL2_RW, .resetvalue = 3,
5724       .fieldoffset = offsetof(CPUARMState, cp15.cnthctl_el2) },
5725     { .name = "CNTVOFF_EL2", .state = ARM_CP_STATE_AA64,
5726       .opc0 = 3, .opc1 = 4, .crn = 14, .crm = 0, .opc2 = 3,
5727       .access = PL2_RW, .type = ARM_CP_IO, .resetvalue = 0,
5728       .writefn = gt_cntvoff_write,
5729       .fieldoffset = offsetof(CPUARMState, cp15.cntvoff_el2) },
5730     { .name = "CNTVOFF", .cp = 15, .opc1 = 4, .crm = 14,
5731       .access = PL2_RW, .type = ARM_CP_64BIT | ARM_CP_ALIAS | ARM_CP_IO,
5732       .writefn = gt_cntvoff_write,
5733       .fieldoffset = offsetof(CPUARMState, cp15.cntvoff_el2) },
5734     { .name = "CNTHP_CVAL_EL2", .state = ARM_CP_STATE_AA64,
5735       .opc0 = 3, .opc1 = 4, .crn = 14, .crm = 2, .opc2 = 2,
5736       .fieldoffset = offsetof(CPUARMState, cp15.c14_timer[GTIMER_HYP].cval),
5737       .type = ARM_CP_IO, .access = PL2_RW,
5738       .writefn = gt_hyp_cval_write, .raw_writefn = raw_write },
5739     { .name = "CNTHP_CVAL", .cp = 15, .opc1 = 6, .crm = 14,
5740       .fieldoffset = offsetof(CPUARMState, cp15.c14_timer[GTIMER_HYP].cval),
5741       .access = PL2_RW, .type = ARM_CP_64BIT | ARM_CP_IO,
5742       .writefn = gt_hyp_cval_write, .raw_writefn = raw_write },
5743     { .name = "CNTHP_TVAL_EL2", .state = ARM_CP_STATE_BOTH,
5744       .opc0 = 3, .opc1 = 4, .crn = 14, .crm = 2, .opc2 = 0,
5745       .type = ARM_CP_NO_RAW | ARM_CP_IO, .access = PL2_RW,
5746       .resetfn = gt_hyp_timer_reset,
5747       .readfn = gt_hyp_tval_read, .writefn = gt_hyp_tval_write },
5748     { .name = "CNTHP_CTL_EL2", .state = ARM_CP_STATE_BOTH,
5749       .type = ARM_CP_IO,
5750       .opc0 = 3, .opc1 = 4, .crn = 14, .crm = 2, .opc2 = 1,
5751       .access = PL2_RW,
5752       .fieldoffset = offsetof(CPUARMState, cp15.c14_timer[GTIMER_HYP].ctl),
5753       .resetvalue = 0,
5754       .writefn = gt_hyp_ctl_write, .raw_writefn = raw_write },
5755 #endif
5756     /* The only field of MDCR_EL2 that has a defined architectural reset value
5757      * is MDCR_EL2.HPMN which should reset to the value of PMCR_EL0.N.
5758      */
5759     { .name = "MDCR_EL2", .state = ARM_CP_STATE_BOTH,
5760       .opc0 = 3, .opc1 = 4, .crn = 1, .crm = 1, .opc2 = 1,
5761       .access = PL2_RW, .resetvalue = PMCR_NUM_COUNTERS,
5762       .fieldoffset = offsetof(CPUARMState, cp15.mdcr_el2), },
5763     { .name = "HPFAR", .state = ARM_CP_STATE_AA32,
5764       .cp = 15, .opc1 = 4, .crn = 6, .crm = 0, .opc2 = 4,
5765       .access = PL2_RW, .accessfn = access_el3_aa32ns,
5766       .fieldoffset = offsetof(CPUARMState, cp15.hpfar_el2) },
5767     { .name = "HPFAR_EL2", .state = ARM_CP_STATE_AA64,
5768       .opc0 = 3, .opc1 = 4, .crn = 6, .crm = 0, .opc2 = 4,
5769       .access = PL2_RW,
5770       .fieldoffset = offsetof(CPUARMState, cp15.hpfar_el2) },
5771     { .name = "HSTR_EL2", .state = ARM_CP_STATE_BOTH,
5772       .cp = 15, .opc0 = 3, .opc1 = 4, .crn = 1, .crm = 1, .opc2 = 3,
5773       .access = PL2_RW,
5774       .fieldoffset = offsetof(CPUARMState, cp15.hstr_el2) },
5775     REGINFO_SENTINEL
5776 };
5777 
5778 static const ARMCPRegInfo el2_v8_cp_reginfo[] = {
5779     { .name = "HCR2", .state = ARM_CP_STATE_AA32,
5780       .type = ARM_CP_ALIAS | ARM_CP_IO,
5781       .cp = 15, .opc1 = 4, .crn = 1, .crm = 1, .opc2 = 4,
5782       .access = PL2_RW,
5783       .fieldoffset = offsetofhigh32(CPUARMState, cp15.hcr_el2),
5784       .writefn = hcr_writehigh },
5785     REGINFO_SENTINEL
5786 };
5787 
5788 static CPAccessResult sel2_access(CPUARMState *env, const ARMCPRegInfo *ri,
5789                                   bool isread)
5790 {
5791     if (arm_current_el(env) == 3 || arm_is_secure_below_el3(env)) {
5792         return CP_ACCESS_OK;
5793     }
5794     return CP_ACCESS_TRAP_UNCATEGORIZED;
5795 }
5796 
5797 static const ARMCPRegInfo el2_sec_cp_reginfo[] = {
5798     { .name = "VSTTBR_EL2", .state = ARM_CP_STATE_AA64,
5799       .opc0 = 3, .opc1 = 4, .crn = 2, .crm = 6, .opc2 = 0,
5800       .access = PL2_RW, .accessfn = sel2_access,
5801       .fieldoffset = offsetof(CPUARMState, cp15.vsttbr_el2) },
5802     { .name = "VSTCR_EL2", .state = ARM_CP_STATE_AA64,
5803       .opc0 = 3, .opc1 = 4, .crn = 2, .crm = 6, .opc2 = 2,
5804       .access = PL2_RW, .accessfn = sel2_access,
5805       .fieldoffset = offsetof(CPUARMState, cp15.vstcr_el2) },
5806     REGINFO_SENTINEL
5807 };
5808 
5809 static CPAccessResult nsacr_access(CPUARMState *env, const ARMCPRegInfo *ri,
5810                                    bool isread)
5811 {
5812     /* The NSACR is RW at EL3, and RO for NS EL1 and NS EL2.
5813      * At Secure EL1 it traps to EL3 or EL2.
5814      */
5815     if (arm_current_el(env) == 3) {
5816         return CP_ACCESS_OK;
5817     }
5818     if (arm_is_secure_below_el3(env)) {
5819         if (env->cp15.scr_el3 & SCR_EEL2) {
5820             return CP_ACCESS_TRAP_EL2;
5821         }
5822         return CP_ACCESS_TRAP_EL3;
5823     }
5824     /* Accesses from EL1 NS and EL2 NS are UNDEF for write but allow reads. */
5825     if (isread) {
5826         return CP_ACCESS_OK;
5827     }
5828     return CP_ACCESS_TRAP_UNCATEGORIZED;
5829 }
5830 
5831 static const ARMCPRegInfo el3_cp_reginfo[] = {
5832     { .name = "SCR_EL3", .state = ARM_CP_STATE_AA64,
5833       .opc0 = 3, .opc1 = 6, .crn = 1, .crm = 1, .opc2 = 0,
5834       .access = PL3_RW, .fieldoffset = offsetof(CPUARMState, cp15.scr_el3),
5835       .resetfn = scr_reset, .writefn = scr_write },
5836     { .name = "SCR",  .type = ARM_CP_ALIAS | ARM_CP_NEWEL,
5837       .cp = 15, .opc1 = 0, .crn = 1, .crm = 1, .opc2 = 0,
5838       .access = PL1_RW, .accessfn = access_trap_aa32s_el1,
5839       .fieldoffset = offsetoflow32(CPUARMState, cp15.scr_el3),
5840       .writefn = scr_write },
5841     { .name = "SDER32_EL3", .state = ARM_CP_STATE_AA64,
5842       .opc0 = 3, .opc1 = 6, .crn = 1, .crm = 1, .opc2 = 1,
5843       .access = PL3_RW, .resetvalue = 0,
5844       .fieldoffset = offsetof(CPUARMState, cp15.sder) },
5845     { .name = "SDER",
5846       .cp = 15, .opc1 = 0, .crn = 1, .crm = 1, .opc2 = 1,
5847       .access = PL3_RW, .resetvalue = 0,
5848       .fieldoffset = offsetoflow32(CPUARMState, cp15.sder) },
5849     { .name = "MVBAR", .cp = 15, .opc1 = 0, .crn = 12, .crm = 0, .opc2 = 1,
5850       .access = PL1_RW, .accessfn = access_trap_aa32s_el1,
5851       .writefn = vbar_write, .resetvalue = 0,
5852       .fieldoffset = offsetof(CPUARMState, cp15.mvbar) },
5853     { .name = "TTBR0_EL3", .state = ARM_CP_STATE_AA64,
5854       .opc0 = 3, .opc1 = 6, .crn = 2, .crm = 0, .opc2 = 0,
5855       .access = PL3_RW, .resetvalue = 0,
5856       .fieldoffset = offsetof(CPUARMState, cp15.ttbr0_el[3]) },
5857     { .name = "TCR_EL3", .state = ARM_CP_STATE_AA64,
5858       .opc0 = 3, .opc1 = 6, .crn = 2, .crm = 0, .opc2 = 2,
5859       .access = PL3_RW,
5860       /* no .writefn needed as this can't cause an ASID change;
5861        * we must provide a .raw_writefn and .resetfn because we handle
5862        * reset and migration for the AArch32 TTBCR(S), which might be
5863        * using mask and base_mask.
5864        */
5865       .resetfn = vmsa_ttbcr_reset, .raw_writefn = vmsa_ttbcr_raw_write,
5866       .fieldoffset = offsetof(CPUARMState, cp15.tcr_el[3]) },
5867     { .name = "ELR_EL3", .state = ARM_CP_STATE_AA64,
5868       .type = ARM_CP_ALIAS,
5869       .opc0 = 3, .opc1 = 6, .crn = 4, .crm = 0, .opc2 = 1,
5870       .access = PL3_RW,
5871       .fieldoffset = offsetof(CPUARMState, elr_el[3]) },
5872     { .name = "ESR_EL3", .state = ARM_CP_STATE_AA64,
5873       .opc0 = 3, .opc1 = 6, .crn = 5, .crm = 2, .opc2 = 0,
5874       .access = PL3_RW, .fieldoffset = offsetof(CPUARMState, cp15.esr_el[3]) },
5875     { .name = "FAR_EL3", .state = ARM_CP_STATE_AA64,
5876       .opc0 = 3, .opc1 = 6, .crn = 6, .crm = 0, .opc2 = 0,
5877       .access = PL3_RW, .fieldoffset = offsetof(CPUARMState, cp15.far_el[3]) },
5878     { .name = "SPSR_EL3", .state = ARM_CP_STATE_AA64,
5879       .type = ARM_CP_ALIAS,
5880       .opc0 = 3, .opc1 = 6, .crn = 4, .crm = 0, .opc2 = 0,
5881       .access = PL3_RW,
5882       .fieldoffset = offsetof(CPUARMState, banked_spsr[BANK_MON]) },
5883     { .name = "VBAR_EL3", .state = ARM_CP_STATE_AA64,
5884       .opc0 = 3, .opc1 = 6, .crn = 12, .crm = 0, .opc2 = 0,
5885       .access = PL3_RW, .writefn = vbar_write,
5886       .fieldoffset = offsetof(CPUARMState, cp15.vbar_el[3]),
5887       .resetvalue = 0 },
5888     { .name = "CPTR_EL3", .state = ARM_CP_STATE_AA64,
5889       .opc0 = 3, .opc1 = 6, .crn = 1, .crm = 1, .opc2 = 2,
5890       .access = PL3_RW, .accessfn = cptr_access, .resetvalue = 0,
5891       .fieldoffset = offsetof(CPUARMState, cp15.cptr_el[3]) },
5892     { .name = "TPIDR_EL3", .state = ARM_CP_STATE_AA64,
5893       .opc0 = 3, .opc1 = 6, .crn = 13, .crm = 0, .opc2 = 2,
5894       .access = PL3_RW, .resetvalue = 0,
5895       .fieldoffset = offsetof(CPUARMState, cp15.tpidr_el[3]) },
5896     { .name = "AMAIR_EL3", .state = ARM_CP_STATE_AA64,
5897       .opc0 = 3, .opc1 = 6, .crn = 10, .crm = 3, .opc2 = 0,
5898       .access = PL3_RW, .type = ARM_CP_CONST,
5899       .resetvalue = 0 },
5900     { .name = "AFSR0_EL3", .state = ARM_CP_STATE_BOTH,
5901       .opc0 = 3, .opc1 = 6, .crn = 5, .crm = 1, .opc2 = 0,
5902       .access = PL3_RW, .type = ARM_CP_CONST,
5903       .resetvalue = 0 },
5904     { .name = "AFSR1_EL3", .state = ARM_CP_STATE_BOTH,
5905       .opc0 = 3, .opc1 = 6, .crn = 5, .crm = 1, .opc2 = 1,
5906       .access = PL3_RW, .type = ARM_CP_CONST,
5907       .resetvalue = 0 },
5908     { .name = "TLBI_ALLE3IS", .state = ARM_CP_STATE_AA64,
5909       .opc0 = 1, .opc1 = 6, .crn = 8, .crm = 3, .opc2 = 0,
5910       .access = PL3_W, .type = ARM_CP_NO_RAW,
5911       .writefn = tlbi_aa64_alle3is_write },
5912     { .name = "TLBI_VAE3IS", .state = ARM_CP_STATE_AA64,
5913       .opc0 = 1, .opc1 = 6, .crn = 8, .crm = 3, .opc2 = 1,
5914       .access = PL3_W, .type = ARM_CP_NO_RAW,
5915       .writefn = tlbi_aa64_vae3is_write },
5916     { .name = "TLBI_VALE3IS", .state = ARM_CP_STATE_AA64,
5917       .opc0 = 1, .opc1 = 6, .crn = 8, .crm = 3, .opc2 = 5,
5918       .access = PL3_W, .type = ARM_CP_NO_RAW,
5919       .writefn = tlbi_aa64_vae3is_write },
5920     { .name = "TLBI_ALLE3", .state = ARM_CP_STATE_AA64,
5921       .opc0 = 1, .opc1 = 6, .crn = 8, .crm = 7, .opc2 = 0,
5922       .access = PL3_W, .type = ARM_CP_NO_RAW,
5923       .writefn = tlbi_aa64_alle3_write },
5924     { .name = "TLBI_VAE3", .state = ARM_CP_STATE_AA64,
5925       .opc0 = 1, .opc1 = 6, .crn = 8, .crm = 7, .opc2 = 1,
5926       .access = PL3_W, .type = ARM_CP_NO_RAW,
5927       .writefn = tlbi_aa64_vae3_write },
5928     { .name = "TLBI_VALE3", .state = ARM_CP_STATE_AA64,
5929       .opc0 = 1, .opc1 = 6, .crn = 8, .crm = 7, .opc2 = 5,
5930       .access = PL3_W, .type = ARM_CP_NO_RAW,
5931       .writefn = tlbi_aa64_vae3_write },
5932     REGINFO_SENTINEL
5933 };
5934 
5935 #ifndef CONFIG_USER_ONLY
5936 /* Test if system register redirection is to occur in the current state.  */
5937 static bool redirect_for_e2h(CPUARMState *env)
5938 {
5939     return arm_current_el(env) == 2 && (arm_hcr_el2_eff(env) & HCR_E2H);
5940 }
5941 
5942 static uint64_t el2_e2h_read(CPUARMState *env, const ARMCPRegInfo *ri)
5943 {
5944     CPReadFn *readfn;
5945 
5946     if (redirect_for_e2h(env)) {
5947         /* Switch to the saved EL2 version of the register.  */
5948         ri = ri->opaque;
5949         readfn = ri->readfn;
5950     } else {
5951         readfn = ri->orig_readfn;
5952     }
5953     if (readfn == NULL) {
5954         readfn = raw_read;
5955     }
5956     return readfn(env, ri);
5957 }
5958 
5959 static void el2_e2h_write(CPUARMState *env, const ARMCPRegInfo *ri,
5960                           uint64_t value)
5961 {
5962     CPWriteFn *writefn;
5963 
5964     if (redirect_for_e2h(env)) {
5965         /* Switch to the saved EL2 version of the register.  */
5966         ri = ri->opaque;
5967         writefn = ri->writefn;
5968     } else {
5969         writefn = ri->orig_writefn;
5970     }
5971     if (writefn == NULL) {
5972         writefn = raw_write;
5973     }
5974     writefn(env, ri, value);
5975 }
5976 
5977 static void define_arm_vh_e2h_redirects_aliases(ARMCPU *cpu)
5978 {
5979     struct E2HAlias {
5980         uint32_t src_key, dst_key, new_key;
5981         const char *src_name, *dst_name, *new_name;
5982         bool (*feature)(const ARMISARegisters *id);
5983     };
5984 
5985 #define K(op0, op1, crn, crm, op2) \
5986     ENCODE_AA64_CP_REG(CP_REG_ARM64_SYSREG_CP, crn, crm, op0, op1, op2)
5987 
5988     static const struct E2HAlias aliases[] = {
5989         { K(3, 0,  1, 0, 0), K(3, 4,  1, 0, 0), K(3, 5, 1, 0, 0),
5990           "SCTLR", "SCTLR_EL2", "SCTLR_EL12" },
5991         { K(3, 0,  1, 0, 2), K(3, 4,  1, 1, 2), K(3, 5, 1, 0, 2),
5992           "CPACR", "CPTR_EL2", "CPACR_EL12" },
5993         { K(3, 0,  2, 0, 0), K(3, 4,  2, 0, 0), K(3, 5, 2, 0, 0),
5994           "TTBR0_EL1", "TTBR0_EL2", "TTBR0_EL12" },
5995         { K(3, 0,  2, 0, 1), K(3, 4,  2, 0, 1), K(3, 5, 2, 0, 1),
5996           "TTBR1_EL1", "TTBR1_EL2", "TTBR1_EL12" },
5997         { K(3, 0,  2, 0, 2), K(3, 4,  2, 0, 2), K(3, 5, 2, 0, 2),
5998           "TCR_EL1", "TCR_EL2", "TCR_EL12" },
5999         { K(3, 0,  4, 0, 0), K(3, 4,  4, 0, 0), K(3, 5, 4, 0, 0),
6000           "SPSR_EL1", "SPSR_EL2", "SPSR_EL12" },
6001         { K(3, 0,  4, 0, 1), K(3, 4,  4, 0, 1), K(3, 5, 4, 0, 1),
6002           "ELR_EL1", "ELR_EL2", "ELR_EL12" },
6003         { K(3, 0,  5, 1, 0), K(3, 4,  5, 1, 0), K(3, 5, 5, 1, 0),
6004           "AFSR0_EL1", "AFSR0_EL2", "AFSR0_EL12" },
6005         { K(3, 0,  5, 1, 1), K(3, 4,  5, 1, 1), K(3, 5, 5, 1, 1),
6006           "AFSR1_EL1", "AFSR1_EL2", "AFSR1_EL12" },
6007         { K(3, 0,  5, 2, 0), K(3, 4,  5, 2, 0), K(3, 5, 5, 2, 0),
6008           "ESR_EL1", "ESR_EL2", "ESR_EL12" },
6009         { K(3, 0,  6, 0, 0), K(3, 4,  6, 0, 0), K(3, 5, 6, 0, 0),
6010           "FAR_EL1", "FAR_EL2", "FAR_EL12" },
6011         { K(3, 0, 10, 2, 0), K(3, 4, 10, 2, 0), K(3, 5, 10, 2, 0),
6012           "MAIR_EL1", "MAIR_EL2", "MAIR_EL12" },
6013         { K(3, 0, 10, 3, 0), K(3, 4, 10, 3, 0), K(3, 5, 10, 3, 0),
6014           "AMAIR0", "AMAIR_EL2", "AMAIR_EL12" },
6015         { K(3, 0, 12, 0, 0), K(3, 4, 12, 0, 0), K(3, 5, 12, 0, 0),
6016           "VBAR", "VBAR_EL2", "VBAR_EL12" },
6017         { K(3, 0, 13, 0, 1), K(3, 4, 13, 0, 1), K(3, 5, 13, 0, 1),
6018           "CONTEXTIDR_EL1", "CONTEXTIDR_EL2", "CONTEXTIDR_EL12" },
6019         { K(3, 0, 14, 1, 0), K(3, 4, 14, 1, 0), K(3, 5, 14, 1, 0),
6020           "CNTKCTL", "CNTHCTL_EL2", "CNTKCTL_EL12" },
6021 
6022         /*
6023          * Note that redirection of ZCR is mentioned in the description
6024          * of ZCR_EL2, and aliasing in the description of ZCR_EL1, but
6025          * not in the summary table.
6026          */
6027         { K(3, 0,  1, 2, 0), K(3, 4,  1, 2, 0), K(3, 5, 1, 2, 0),
6028           "ZCR_EL1", "ZCR_EL2", "ZCR_EL12", isar_feature_aa64_sve },
6029 
6030         { K(3, 0,  5, 6, 0), K(3, 4,  5, 6, 0), K(3, 5, 5, 6, 0),
6031           "TFSR_EL1", "TFSR_EL2", "TFSR_EL12", isar_feature_aa64_mte },
6032 
6033         /* TODO: ARMv8.2-SPE -- PMSCR_EL2 */
6034         /* TODO: ARMv8.4-Trace -- TRFCR_EL2 */
6035     };
6036 #undef K
6037 
6038     size_t i;
6039 
6040     for (i = 0; i < ARRAY_SIZE(aliases); i++) {
6041         const struct E2HAlias *a = &aliases[i];
6042         ARMCPRegInfo *src_reg, *dst_reg;
6043 
6044         if (a->feature && !a->feature(&cpu->isar)) {
6045             continue;
6046         }
6047 
6048         src_reg = g_hash_table_lookup(cpu->cp_regs, &a->src_key);
6049         dst_reg = g_hash_table_lookup(cpu->cp_regs, &a->dst_key);
6050         g_assert(src_reg != NULL);
6051         g_assert(dst_reg != NULL);
6052 
6053         /* Cross-compare names to detect typos in the keys.  */
6054         g_assert(strcmp(src_reg->name, a->src_name) == 0);
6055         g_assert(strcmp(dst_reg->name, a->dst_name) == 0);
6056 
6057         /* None of the core system registers use opaque; we will.  */
6058         g_assert(src_reg->opaque == NULL);
6059 
6060         /* Create alias before redirection so we dup the right data. */
6061         if (a->new_key) {
6062             ARMCPRegInfo *new_reg = g_memdup(src_reg, sizeof(ARMCPRegInfo));
6063             uint32_t *new_key = g_memdup(&a->new_key, sizeof(uint32_t));
6064             bool ok;
6065 
6066             new_reg->name = a->new_name;
6067             new_reg->type |= ARM_CP_ALIAS;
6068             /* Remove PL1/PL0 access, leaving PL2/PL3 R/W in place.  */
6069             new_reg->access &= PL2_RW | PL3_RW;
6070 
6071             ok = g_hash_table_insert(cpu->cp_regs, new_key, new_reg);
6072             g_assert(ok);
6073         }
6074 
6075         src_reg->opaque = dst_reg;
6076         src_reg->orig_readfn = src_reg->readfn ?: raw_read;
6077         src_reg->orig_writefn = src_reg->writefn ?: raw_write;
6078         if (!src_reg->raw_readfn) {
6079             src_reg->raw_readfn = raw_read;
6080         }
6081         if (!src_reg->raw_writefn) {
6082             src_reg->raw_writefn = raw_write;
6083         }
6084         src_reg->readfn = el2_e2h_read;
6085         src_reg->writefn = el2_e2h_write;
6086     }
6087 }
6088 #endif
6089 
6090 static CPAccessResult ctr_el0_access(CPUARMState *env, const ARMCPRegInfo *ri,
6091                                      bool isread)
6092 {
6093     int cur_el = arm_current_el(env);
6094 
6095     if (cur_el < 2) {
6096         uint64_t hcr = arm_hcr_el2_eff(env);
6097 
6098         if (cur_el == 0) {
6099             if ((hcr & (HCR_E2H | HCR_TGE)) == (HCR_E2H | HCR_TGE)) {
6100                 if (!(env->cp15.sctlr_el[2] & SCTLR_UCT)) {
6101                     return CP_ACCESS_TRAP_EL2;
6102                 }
6103             } else {
6104                 if (!(env->cp15.sctlr_el[1] & SCTLR_UCT)) {
6105                     return CP_ACCESS_TRAP;
6106                 }
6107                 if (hcr & HCR_TID2) {
6108                     return CP_ACCESS_TRAP_EL2;
6109                 }
6110             }
6111         } else if (hcr & HCR_TID2) {
6112             return CP_ACCESS_TRAP_EL2;
6113         }
6114     }
6115 
6116     if (arm_current_el(env) < 2 && arm_hcr_el2_eff(env) & HCR_TID2) {
6117         return CP_ACCESS_TRAP_EL2;
6118     }
6119 
6120     return CP_ACCESS_OK;
6121 }
6122 
6123 static void oslar_write(CPUARMState *env, const ARMCPRegInfo *ri,
6124                         uint64_t value)
6125 {
6126     /* Writes to OSLAR_EL1 may update the OS lock status, which can be
6127      * read via a bit in OSLSR_EL1.
6128      */
6129     int oslock;
6130 
6131     if (ri->state == ARM_CP_STATE_AA32) {
6132         oslock = (value == 0xC5ACCE55);
6133     } else {
6134         oslock = value & 1;
6135     }
6136 
6137     env->cp15.oslsr_el1 = deposit32(env->cp15.oslsr_el1, 1, 1, oslock);
6138 }
6139 
6140 static const ARMCPRegInfo debug_cp_reginfo[] = {
6141     /* DBGDRAR, DBGDSAR: always RAZ since we don't implement memory mapped
6142      * debug components. The AArch64 version of DBGDRAR is named MDRAR_EL1;
6143      * unlike DBGDRAR it is never accessible from EL0.
6144      * DBGDSAR is deprecated and must RAZ from v8 anyway, so it has no AArch64
6145      * accessor.
6146      */
6147     { .name = "DBGDRAR", .cp = 14, .crn = 1, .crm = 0, .opc1 = 0, .opc2 = 0,
6148       .access = PL0_R, .accessfn = access_tdra,
6149       .type = ARM_CP_CONST, .resetvalue = 0 },
6150     { .name = "MDRAR_EL1", .state = ARM_CP_STATE_AA64,
6151       .opc0 = 2, .opc1 = 0, .crn = 1, .crm = 0, .opc2 = 0,
6152       .access = PL1_R, .accessfn = access_tdra,
6153       .type = ARM_CP_CONST, .resetvalue = 0 },
6154     { .name = "DBGDSAR", .cp = 14, .crn = 2, .crm = 0, .opc1 = 0, .opc2 = 0,
6155       .access = PL0_R, .accessfn = access_tdra,
6156       .type = ARM_CP_CONST, .resetvalue = 0 },
6157     /* Monitor debug system control register; the 32-bit alias is DBGDSCRext. */
6158     { .name = "MDSCR_EL1", .state = ARM_CP_STATE_BOTH,
6159       .cp = 14, .opc0 = 2, .opc1 = 0, .crn = 0, .crm = 2, .opc2 = 2,
6160       .access = PL1_RW, .accessfn = access_tda,
6161       .fieldoffset = offsetof(CPUARMState, cp15.mdscr_el1),
6162       .resetvalue = 0 },
6163     /* MDCCSR_EL0, aka DBGDSCRint. This is a read-only mirror of MDSCR_EL1.
6164      * We don't implement the configurable EL0 access.
6165      */
6166     { .name = "MDCCSR_EL0", .state = ARM_CP_STATE_BOTH,
6167       .cp = 14, .opc0 = 2, .opc1 = 0, .crn = 0, .crm = 1, .opc2 = 0,
6168       .type = ARM_CP_ALIAS,
6169       .access = PL1_R, .accessfn = access_tda,
6170       .fieldoffset = offsetof(CPUARMState, cp15.mdscr_el1), },
6171     { .name = "OSLAR_EL1", .state = ARM_CP_STATE_BOTH,
6172       .cp = 14, .opc0 = 2, .opc1 = 0, .crn = 1, .crm = 0, .opc2 = 4,
6173       .access = PL1_W, .type = ARM_CP_NO_RAW,
6174       .accessfn = access_tdosa,
6175       .writefn = oslar_write },
6176     { .name = "OSLSR_EL1", .state = ARM_CP_STATE_BOTH,
6177       .cp = 14, .opc0 = 2, .opc1 = 0, .crn = 1, .crm = 1, .opc2 = 4,
6178       .access = PL1_R, .resetvalue = 10,
6179       .accessfn = access_tdosa,
6180       .fieldoffset = offsetof(CPUARMState, cp15.oslsr_el1) },
6181     /* Dummy OSDLR_EL1: 32-bit Linux will read this */
6182     { .name = "OSDLR_EL1", .state = ARM_CP_STATE_BOTH,
6183       .cp = 14, .opc0 = 2, .opc1 = 0, .crn = 1, .crm = 3, .opc2 = 4,
6184       .access = PL1_RW, .accessfn = access_tdosa,
6185       .type = ARM_CP_NOP },
6186     /* Dummy DBGVCR: Linux wants to clear this on startup, but we don't
6187      * implement vector catch debug events yet.
6188      */
6189     { .name = "DBGVCR",
6190       .cp = 14, .opc1 = 0, .crn = 0, .crm = 7, .opc2 = 0,
6191       .access = PL1_RW, .accessfn = access_tda,
6192       .type = ARM_CP_NOP },
6193     /* Dummy DBGVCR32_EL2 (which is only for a 64-bit hypervisor
6194      * to save and restore a 32-bit guest's DBGVCR)
6195      */
6196     { .name = "DBGVCR32_EL2", .state = ARM_CP_STATE_AA64,
6197       .opc0 = 2, .opc1 = 4, .crn = 0, .crm = 7, .opc2 = 0,
6198       .access = PL2_RW, .accessfn = access_tda,
6199       .type = ARM_CP_NOP },
6200     /* Dummy MDCCINT_EL1, since we don't implement the Debug Communications
6201      * Channel but Linux may try to access this register. The 32-bit
6202      * alias is DBGDCCINT.
6203      */
6204     { .name = "MDCCINT_EL1", .state = ARM_CP_STATE_BOTH,
6205       .cp = 14, .opc0 = 2, .opc1 = 0, .crn = 0, .crm = 2, .opc2 = 0,
6206       .access = PL1_RW, .accessfn = access_tda,
6207       .type = ARM_CP_NOP },
6208     REGINFO_SENTINEL
6209 };
6210 
6211 static const ARMCPRegInfo debug_lpae_cp_reginfo[] = {
6212     /* 64 bit access versions of the (dummy) debug registers */
6213     { .name = "DBGDRAR", .cp = 14, .crm = 1, .opc1 = 0,
6214       .access = PL0_R, .type = ARM_CP_CONST|ARM_CP_64BIT, .resetvalue = 0 },
6215     { .name = "DBGDSAR", .cp = 14, .crm = 2, .opc1 = 0,
6216       .access = PL0_R, .type = ARM_CP_CONST|ARM_CP_64BIT, .resetvalue = 0 },
6217     REGINFO_SENTINEL
6218 };
6219 
6220 /* Return the exception level to which exceptions should be taken
6221  * via SVEAccessTrap.  If an exception should be routed through
6222  * AArch64.AdvSIMDFPAccessTrap, return 0; fp_exception_el should
6223  * take care of raising that exception.
6224  * C.f. the ARM pseudocode function CheckSVEEnabled.
6225  */
6226 int sve_exception_el(CPUARMState *env, int el)
6227 {
6228 #ifndef CONFIG_USER_ONLY
6229     uint64_t hcr_el2 = arm_hcr_el2_eff(env);
6230 
6231     if (el <= 1 && (hcr_el2 & (HCR_E2H | HCR_TGE)) != (HCR_E2H | HCR_TGE)) {
6232         bool disabled = false;
6233 
6234         /* The CPACR.ZEN controls traps to EL1:
6235          * 0, 2 : trap EL0 and EL1 accesses
6236          * 1    : trap only EL0 accesses
6237          * 3    : trap no accesses
6238          */
6239         if (!extract32(env->cp15.cpacr_el1, 16, 1)) {
6240             disabled = true;
6241         } else if (!extract32(env->cp15.cpacr_el1, 17, 1)) {
6242             disabled = el == 0;
6243         }
6244         if (disabled) {
6245             /* route_to_el2 */
6246             return hcr_el2 & HCR_TGE ? 2 : 1;
6247         }
6248 
6249         /* Check CPACR.FPEN.  */
6250         if (!extract32(env->cp15.cpacr_el1, 20, 1)) {
6251             disabled = true;
6252         } else if (!extract32(env->cp15.cpacr_el1, 21, 1)) {
6253             disabled = el == 0;
6254         }
6255         if (disabled) {
6256             return 0;
6257         }
6258     }
6259 
6260     /* CPTR_EL2.  Since TZ and TFP are positive,
6261      * they will be zero when EL2 is not present.
6262      */
6263     if (el <= 2 && arm_is_el2_enabled(env)) {
6264         if (env->cp15.cptr_el[2] & CPTR_TZ) {
6265             return 2;
6266         }
6267         if (env->cp15.cptr_el[2] & CPTR_TFP) {
6268             return 0;
6269         }
6270     }
6271 
6272     /* CPTR_EL3.  Since EZ is negative we must check for EL3.  */
6273     if (arm_feature(env, ARM_FEATURE_EL3)
6274         && !(env->cp15.cptr_el[3] & CPTR_EZ)) {
6275         return 3;
6276     }
6277 #endif
6278     return 0;
6279 }
6280 
6281 static uint32_t sve_zcr_get_valid_len(ARMCPU *cpu, uint32_t start_len)
6282 {
6283     uint32_t end_len;
6284 
6285     end_len = start_len &= 0xf;
6286     if (!test_bit(start_len, cpu->sve_vq_map)) {
6287         end_len = find_last_bit(cpu->sve_vq_map, start_len);
6288         assert(end_len < start_len);
6289     }
6290     return end_len;
6291 }
6292 
6293 /*
6294  * Given that SVE is enabled, return the vector length for EL.
6295  */
6296 uint32_t sve_zcr_len_for_el(CPUARMState *env, int el)
6297 {
6298     ARMCPU *cpu = env_archcpu(env);
6299     uint32_t zcr_len = cpu->sve_max_vq - 1;
6300 
6301     if (el <= 1) {
6302         zcr_len = MIN(zcr_len, 0xf & (uint32_t)env->vfp.zcr_el[1]);
6303     }
6304     if (el <= 2 && arm_feature(env, ARM_FEATURE_EL2)) {
6305         zcr_len = MIN(zcr_len, 0xf & (uint32_t)env->vfp.zcr_el[2]);
6306     }
6307     if (arm_feature(env, ARM_FEATURE_EL3)) {
6308         zcr_len = MIN(zcr_len, 0xf & (uint32_t)env->vfp.zcr_el[3]);
6309     }
6310 
6311     return sve_zcr_get_valid_len(cpu, zcr_len);
6312 }
6313 
6314 static void zcr_write(CPUARMState *env, const ARMCPRegInfo *ri,
6315                       uint64_t value)
6316 {
6317     int cur_el = arm_current_el(env);
6318     int old_len = sve_zcr_len_for_el(env, cur_el);
6319     int new_len;
6320 
6321     /* Bits other than [3:0] are RAZ/WI.  */
6322     QEMU_BUILD_BUG_ON(ARM_MAX_VQ > 16);
6323     raw_write(env, ri, value & 0xf);
6324 
6325     /*
6326      * Because we arrived here, we know both FP and SVE are enabled;
6327      * otherwise we would have trapped access to the ZCR_ELn register.
6328      */
6329     new_len = sve_zcr_len_for_el(env, cur_el);
6330     if (new_len < old_len) {
6331         aarch64_sve_narrow_vq(env, new_len + 1);
6332     }
6333 }
6334 
6335 static const ARMCPRegInfo zcr_el1_reginfo = {
6336     .name = "ZCR_EL1", .state = ARM_CP_STATE_AA64,
6337     .opc0 = 3, .opc1 = 0, .crn = 1, .crm = 2, .opc2 = 0,
6338     .access = PL1_RW, .type = ARM_CP_SVE,
6339     .fieldoffset = offsetof(CPUARMState, vfp.zcr_el[1]),
6340     .writefn = zcr_write, .raw_writefn = raw_write
6341 };
6342 
6343 static const ARMCPRegInfo zcr_el2_reginfo = {
6344     .name = "ZCR_EL2", .state = ARM_CP_STATE_AA64,
6345     .opc0 = 3, .opc1 = 4, .crn = 1, .crm = 2, .opc2 = 0,
6346     .access = PL2_RW, .type = ARM_CP_SVE,
6347     .fieldoffset = offsetof(CPUARMState, vfp.zcr_el[2]),
6348     .writefn = zcr_write, .raw_writefn = raw_write
6349 };
6350 
6351 static const ARMCPRegInfo zcr_no_el2_reginfo = {
6352     .name = "ZCR_EL2", .state = ARM_CP_STATE_AA64,
6353     .opc0 = 3, .opc1 = 4, .crn = 1, .crm = 2, .opc2 = 0,
6354     .access = PL2_RW, .type = ARM_CP_SVE,
6355     .readfn = arm_cp_read_zero, .writefn = arm_cp_write_ignore
6356 };
6357 
6358 static const ARMCPRegInfo zcr_el3_reginfo = {
6359     .name = "ZCR_EL3", .state = ARM_CP_STATE_AA64,
6360     .opc0 = 3, .opc1 = 6, .crn = 1, .crm = 2, .opc2 = 0,
6361     .access = PL3_RW, .type = ARM_CP_SVE,
6362     .fieldoffset = offsetof(CPUARMState, vfp.zcr_el[3]),
6363     .writefn = zcr_write, .raw_writefn = raw_write
6364 };
6365 
6366 void hw_watchpoint_update(ARMCPU *cpu, int n)
6367 {
6368     CPUARMState *env = &cpu->env;
6369     vaddr len = 0;
6370     vaddr wvr = env->cp15.dbgwvr[n];
6371     uint64_t wcr = env->cp15.dbgwcr[n];
6372     int mask;
6373     int flags = BP_CPU | BP_STOP_BEFORE_ACCESS;
6374 
6375     if (env->cpu_watchpoint[n]) {
6376         cpu_watchpoint_remove_by_ref(CPU(cpu), env->cpu_watchpoint[n]);
6377         env->cpu_watchpoint[n] = NULL;
6378     }
6379 
6380     if (!extract64(wcr, 0, 1)) {
6381         /* E bit clear : watchpoint disabled */
6382         return;
6383     }
6384 
6385     switch (extract64(wcr, 3, 2)) {
6386     case 0:
6387         /* LSC 00 is reserved and must behave as if the wp is disabled */
6388         return;
6389     case 1:
6390         flags |= BP_MEM_READ;
6391         break;
6392     case 2:
6393         flags |= BP_MEM_WRITE;
6394         break;
6395     case 3:
6396         flags |= BP_MEM_ACCESS;
6397         break;
6398     }
6399 
6400     /* Attempts to use both MASK and BAS fields simultaneously are
6401      * CONSTRAINED UNPREDICTABLE; we opt to ignore BAS in this case,
6402      * thus generating a watchpoint for every byte in the masked region.
6403      */
6404     mask = extract64(wcr, 24, 4);
6405     if (mask == 1 || mask == 2) {
6406         /* Reserved values of MASK; we must act as if the mask value was
6407          * some non-reserved value, or as if the watchpoint were disabled.
6408          * We choose the latter.
6409          */
6410         return;
6411     } else if (mask) {
6412         /* Watchpoint covers an aligned area up to 2GB in size */
6413         len = 1ULL << mask;
6414         /* If masked bits in WVR are not zero it's CONSTRAINED UNPREDICTABLE
6415          * whether the watchpoint fires when the unmasked bits match; we opt
6416          * to generate the exceptions.
6417          */
6418         wvr &= ~(len - 1);
6419     } else {
6420         /* Watchpoint covers bytes defined by the byte address select bits */
6421         int bas = extract64(wcr, 5, 8);
6422         int basstart;
6423 
6424         if (extract64(wvr, 2, 1)) {
6425             /* Deprecated case of an only 4-aligned address. BAS[7:4] are
6426              * ignored, and BAS[3:0] define which bytes to watch.
6427              */
6428             bas &= 0xf;
6429         }
6430 
6431         if (bas == 0) {
6432             /* This must act as if the watchpoint is disabled */
6433             return;
6434         }
6435 
6436         /* The BAS bits are supposed to be programmed to indicate a contiguous
6437          * range of bytes. Otherwise it is CONSTRAINED UNPREDICTABLE whether
6438          * we fire for each byte in the word/doubleword addressed by the WVR.
6439          * We choose to ignore any non-zero bits after the first range of 1s.
6440          */
6441         basstart = ctz32(bas);
6442         len = cto32(bas >> basstart);
6443         wvr += basstart;
6444     }
6445 
6446     cpu_watchpoint_insert(CPU(cpu), wvr, len, flags,
6447                           &env->cpu_watchpoint[n]);
6448 }
6449 
6450 void hw_watchpoint_update_all(ARMCPU *cpu)
6451 {
6452     int i;
6453     CPUARMState *env = &cpu->env;
6454 
6455     /* Completely clear out existing QEMU watchpoints and our array, to
6456      * avoid possible stale entries following migration load.
6457      */
6458     cpu_watchpoint_remove_all(CPU(cpu), BP_CPU);
6459     memset(env->cpu_watchpoint, 0, sizeof(env->cpu_watchpoint));
6460 
6461     for (i = 0; i < ARRAY_SIZE(cpu->env.cpu_watchpoint); i++) {
6462         hw_watchpoint_update(cpu, i);
6463     }
6464 }
6465 
6466 static void dbgwvr_write(CPUARMState *env, const ARMCPRegInfo *ri,
6467                          uint64_t value)
6468 {
6469     ARMCPU *cpu = env_archcpu(env);
6470     int i = ri->crm;
6471 
6472     /* Bits [63:49] are hardwired to the value of bit [48]; that is, the
6473      * register reads and behaves as if values written are sign extended.
6474      * Bits [1:0] are RES0.
6475      */
6476     value = sextract64(value, 0, 49) & ~3ULL;
6477 
6478     raw_write(env, ri, value);
6479     hw_watchpoint_update(cpu, i);
6480 }
6481 
6482 static void dbgwcr_write(CPUARMState *env, const ARMCPRegInfo *ri,
6483                          uint64_t value)
6484 {
6485     ARMCPU *cpu = env_archcpu(env);
6486     int i = ri->crm;
6487 
6488     raw_write(env, ri, value);
6489     hw_watchpoint_update(cpu, i);
6490 }
6491 
6492 void hw_breakpoint_update(ARMCPU *cpu, int n)
6493 {
6494     CPUARMState *env = &cpu->env;
6495     uint64_t bvr = env->cp15.dbgbvr[n];
6496     uint64_t bcr = env->cp15.dbgbcr[n];
6497     vaddr addr;
6498     int bt;
6499     int flags = BP_CPU;
6500 
6501     if (env->cpu_breakpoint[n]) {
6502         cpu_breakpoint_remove_by_ref(CPU(cpu), env->cpu_breakpoint[n]);
6503         env->cpu_breakpoint[n] = NULL;
6504     }
6505 
6506     if (!extract64(bcr, 0, 1)) {
6507         /* E bit clear : watchpoint disabled */
6508         return;
6509     }
6510 
6511     bt = extract64(bcr, 20, 4);
6512 
6513     switch (bt) {
6514     case 4: /* unlinked address mismatch (reserved if AArch64) */
6515     case 5: /* linked address mismatch (reserved if AArch64) */
6516         qemu_log_mask(LOG_UNIMP,
6517                       "arm: address mismatch breakpoint types not implemented\n");
6518         return;
6519     case 0: /* unlinked address match */
6520     case 1: /* linked address match */
6521     {
6522         /* Bits [63:49] are hardwired to the value of bit [48]; that is,
6523          * we behave as if the register was sign extended. Bits [1:0] are
6524          * RES0. The BAS field is used to allow setting breakpoints on 16
6525          * bit wide instructions; it is CONSTRAINED UNPREDICTABLE whether
6526          * a bp will fire if the addresses covered by the bp and the addresses
6527          * covered by the insn overlap but the insn doesn't start at the
6528          * start of the bp address range. We choose to require the insn and
6529          * the bp to have the same address. The constraints on writing to
6530          * BAS enforced in dbgbcr_write mean we have only four cases:
6531          *  0b0000  => no breakpoint
6532          *  0b0011  => breakpoint on addr
6533          *  0b1100  => breakpoint on addr + 2
6534          *  0b1111  => breakpoint on addr
6535          * See also figure D2-3 in the v8 ARM ARM (DDI0487A.c).
6536          */
6537         int bas = extract64(bcr, 5, 4);
6538         addr = sextract64(bvr, 0, 49) & ~3ULL;
6539         if (bas == 0) {
6540             return;
6541         }
6542         if (bas == 0xc) {
6543             addr += 2;
6544         }
6545         break;
6546     }
6547     case 2: /* unlinked context ID match */
6548     case 8: /* unlinked VMID match (reserved if no EL2) */
6549     case 10: /* unlinked context ID and VMID match (reserved if no EL2) */
6550         qemu_log_mask(LOG_UNIMP,
6551                       "arm: unlinked context breakpoint types not implemented\n");
6552         return;
6553     case 9: /* linked VMID match (reserved if no EL2) */
6554     case 11: /* linked context ID and VMID match (reserved if no EL2) */
6555     case 3: /* linked context ID match */
6556     default:
6557         /* We must generate no events for Linked context matches (unless
6558          * they are linked to by some other bp/wp, which is handled in
6559          * updates for the linking bp/wp). We choose to also generate no events
6560          * for reserved values.
6561          */
6562         return;
6563     }
6564 
6565     cpu_breakpoint_insert(CPU(cpu), addr, flags, &env->cpu_breakpoint[n]);
6566 }
6567 
6568 void hw_breakpoint_update_all(ARMCPU *cpu)
6569 {
6570     int i;
6571     CPUARMState *env = &cpu->env;
6572 
6573     /* Completely clear out existing QEMU breakpoints and our array, to
6574      * avoid possible stale entries following migration load.
6575      */
6576     cpu_breakpoint_remove_all(CPU(cpu), BP_CPU);
6577     memset(env->cpu_breakpoint, 0, sizeof(env->cpu_breakpoint));
6578 
6579     for (i = 0; i < ARRAY_SIZE(cpu->env.cpu_breakpoint); i++) {
6580         hw_breakpoint_update(cpu, i);
6581     }
6582 }
6583 
6584 static void dbgbvr_write(CPUARMState *env, const ARMCPRegInfo *ri,
6585                          uint64_t value)
6586 {
6587     ARMCPU *cpu = env_archcpu(env);
6588     int i = ri->crm;
6589 
6590     raw_write(env, ri, value);
6591     hw_breakpoint_update(cpu, i);
6592 }
6593 
6594 static void dbgbcr_write(CPUARMState *env, const ARMCPRegInfo *ri,
6595                          uint64_t value)
6596 {
6597     ARMCPU *cpu = env_archcpu(env);
6598     int i = ri->crm;
6599 
6600     /* BAS[3] is a read-only copy of BAS[2], and BAS[1] a read-only
6601      * copy of BAS[0].
6602      */
6603     value = deposit64(value, 6, 1, extract64(value, 5, 1));
6604     value = deposit64(value, 8, 1, extract64(value, 7, 1));
6605 
6606     raw_write(env, ri, value);
6607     hw_breakpoint_update(cpu, i);
6608 }
6609 
6610 static void define_debug_regs(ARMCPU *cpu)
6611 {
6612     /* Define v7 and v8 architectural debug registers.
6613      * These are just dummy implementations for now.
6614      */
6615     int i;
6616     int wrps, brps, ctx_cmps;
6617 
6618     /*
6619      * The Arm ARM says DBGDIDR is optional and deprecated if EL1 cannot
6620      * use AArch32.  Given that bit 15 is RES1, if the value is 0 then
6621      * the register must not exist for this cpu.
6622      */
6623     if (cpu->isar.dbgdidr != 0) {
6624         ARMCPRegInfo dbgdidr = {
6625             .name = "DBGDIDR", .cp = 14, .crn = 0, .crm = 0,
6626             .opc1 = 0, .opc2 = 0,
6627             .access = PL0_R, .accessfn = access_tda,
6628             .type = ARM_CP_CONST, .resetvalue = cpu->isar.dbgdidr,
6629         };
6630         define_one_arm_cp_reg(cpu, &dbgdidr);
6631     }
6632 
6633     /* Note that all these register fields hold "number of Xs minus 1". */
6634     brps = arm_num_brps(cpu);
6635     wrps = arm_num_wrps(cpu);
6636     ctx_cmps = arm_num_ctx_cmps(cpu);
6637 
6638     assert(ctx_cmps <= brps);
6639 
6640     define_arm_cp_regs(cpu, debug_cp_reginfo);
6641 
6642     if (arm_feature(&cpu->env, ARM_FEATURE_LPAE)) {
6643         define_arm_cp_regs(cpu, debug_lpae_cp_reginfo);
6644     }
6645 
6646     for (i = 0; i < brps; i++) {
6647         ARMCPRegInfo dbgregs[] = {
6648             { .name = "DBGBVR", .state = ARM_CP_STATE_BOTH,
6649               .cp = 14, .opc0 = 2, .opc1 = 0, .crn = 0, .crm = i, .opc2 = 4,
6650               .access = PL1_RW, .accessfn = access_tda,
6651               .fieldoffset = offsetof(CPUARMState, cp15.dbgbvr[i]),
6652               .writefn = dbgbvr_write, .raw_writefn = raw_write
6653             },
6654             { .name = "DBGBCR", .state = ARM_CP_STATE_BOTH,
6655               .cp = 14, .opc0 = 2, .opc1 = 0, .crn = 0, .crm = i, .opc2 = 5,
6656               .access = PL1_RW, .accessfn = access_tda,
6657               .fieldoffset = offsetof(CPUARMState, cp15.dbgbcr[i]),
6658               .writefn = dbgbcr_write, .raw_writefn = raw_write
6659             },
6660             REGINFO_SENTINEL
6661         };
6662         define_arm_cp_regs(cpu, dbgregs);
6663     }
6664 
6665     for (i = 0; i < wrps; i++) {
6666         ARMCPRegInfo dbgregs[] = {
6667             { .name = "DBGWVR", .state = ARM_CP_STATE_BOTH,
6668               .cp = 14, .opc0 = 2, .opc1 = 0, .crn = 0, .crm = i, .opc2 = 6,
6669               .access = PL1_RW, .accessfn = access_tda,
6670               .fieldoffset = offsetof(CPUARMState, cp15.dbgwvr[i]),
6671               .writefn = dbgwvr_write, .raw_writefn = raw_write
6672             },
6673             { .name = "DBGWCR", .state = ARM_CP_STATE_BOTH,
6674               .cp = 14, .opc0 = 2, .opc1 = 0, .crn = 0, .crm = i, .opc2 = 7,
6675               .access = PL1_RW, .accessfn = access_tda,
6676               .fieldoffset = offsetof(CPUARMState, cp15.dbgwcr[i]),
6677               .writefn = dbgwcr_write, .raw_writefn = raw_write
6678             },
6679             REGINFO_SENTINEL
6680         };
6681         define_arm_cp_regs(cpu, dbgregs);
6682     }
6683 }
6684 
6685 static void define_pmu_regs(ARMCPU *cpu)
6686 {
6687     /*
6688      * v7 performance monitor control register: same implementor
6689      * field as main ID register, and we implement four counters in
6690      * addition to the cycle count register.
6691      */
6692     unsigned int i, pmcrn = PMCR_NUM_COUNTERS;
6693     ARMCPRegInfo pmcr = {
6694         .name = "PMCR", .cp = 15, .crn = 9, .crm = 12, .opc1 = 0, .opc2 = 0,
6695         .access = PL0_RW,
6696         .type = ARM_CP_IO | ARM_CP_ALIAS,
6697         .fieldoffset = offsetoflow32(CPUARMState, cp15.c9_pmcr),
6698         .accessfn = pmreg_access, .writefn = pmcr_write,
6699         .raw_writefn = raw_write,
6700     };
6701     ARMCPRegInfo pmcr64 = {
6702         .name = "PMCR_EL0", .state = ARM_CP_STATE_AA64,
6703         .opc0 = 3, .opc1 = 3, .crn = 9, .crm = 12, .opc2 = 0,
6704         .access = PL0_RW, .accessfn = pmreg_access,
6705         .type = ARM_CP_IO,
6706         .fieldoffset = offsetof(CPUARMState, cp15.c9_pmcr),
6707         .resetvalue = (cpu->midr & 0xff000000) | (pmcrn << PMCRN_SHIFT) |
6708                       PMCRLC,
6709         .writefn = pmcr_write, .raw_writefn = raw_write,
6710     };
6711     define_one_arm_cp_reg(cpu, &pmcr);
6712     define_one_arm_cp_reg(cpu, &pmcr64);
6713     for (i = 0; i < pmcrn; i++) {
6714         char *pmevcntr_name = g_strdup_printf("PMEVCNTR%d", i);
6715         char *pmevcntr_el0_name = g_strdup_printf("PMEVCNTR%d_EL0", i);
6716         char *pmevtyper_name = g_strdup_printf("PMEVTYPER%d", i);
6717         char *pmevtyper_el0_name = g_strdup_printf("PMEVTYPER%d_EL0", i);
6718         ARMCPRegInfo pmev_regs[] = {
6719             { .name = pmevcntr_name, .cp = 15, .crn = 14,
6720               .crm = 8 | (3 & (i >> 3)), .opc1 = 0, .opc2 = i & 7,
6721               .access = PL0_RW, .type = ARM_CP_IO | ARM_CP_ALIAS,
6722               .readfn = pmevcntr_readfn, .writefn = pmevcntr_writefn,
6723               .accessfn = pmreg_access },
6724             { .name = pmevcntr_el0_name, .state = ARM_CP_STATE_AA64,
6725               .opc0 = 3, .opc1 = 3, .crn = 14, .crm = 8 | (3 & (i >> 3)),
6726               .opc2 = i & 7, .access = PL0_RW, .accessfn = pmreg_access,
6727               .type = ARM_CP_IO,
6728               .readfn = pmevcntr_readfn, .writefn = pmevcntr_writefn,
6729               .raw_readfn = pmevcntr_rawread,
6730               .raw_writefn = pmevcntr_rawwrite },
6731             { .name = pmevtyper_name, .cp = 15, .crn = 14,
6732               .crm = 12 | (3 & (i >> 3)), .opc1 = 0, .opc2 = i & 7,
6733               .access = PL0_RW, .type = ARM_CP_IO | ARM_CP_ALIAS,
6734               .readfn = pmevtyper_readfn, .writefn = pmevtyper_writefn,
6735               .accessfn = pmreg_access },
6736             { .name = pmevtyper_el0_name, .state = ARM_CP_STATE_AA64,
6737               .opc0 = 3, .opc1 = 3, .crn = 14, .crm = 12 | (3 & (i >> 3)),
6738               .opc2 = i & 7, .access = PL0_RW, .accessfn = pmreg_access,
6739               .type = ARM_CP_IO,
6740               .readfn = pmevtyper_readfn, .writefn = pmevtyper_writefn,
6741               .raw_writefn = pmevtyper_rawwrite },
6742             REGINFO_SENTINEL
6743         };
6744         define_arm_cp_regs(cpu, pmev_regs);
6745         g_free(pmevcntr_name);
6746         g_free(pmevcntr_el0_name);
6747         g_free(pmevtyper_name);
6748         g_free(pmevtyper_el0_name);
6749     }
6750     if (cpu_isar_feature(aa32_pmu_8_1, cpu)) {
6751         ARMCPRegInfo v81_pmu_regs[] = {
6752             { .name = "PMCEID2", .state = ARM_CP_STATE_AA32,
6753               .cp = 15, .opc1 = 0, .crn = 9, .crm = 14, .opc2 = 4,
6754               .access = PL0_R, .accessfn = pmreg_access, .type = ARM_CP_CONST,
6755               .resetvalue = extract64(cpu->pmceid0, 32, 32) },
6756             { .name = "PMCEID3", .state = ARM_CP_STATE_AA32,
6757               .cp = 15, .opc1 = 0, .crn = 9, .crm = 14, .opc2 = 5,
6758               .access = PL0_R, .accessfn = pmreg_access, .type = ARM_CP_CONST,
6759               .resetvalue = extract64(cpu->pmceid1, 32, 32) },
6760             REGINFO_SENTINEL
6761         };
6762         define_arm_cp_regs(cpu, v81_pmu_regs);
6763     }
6764     if (cpu_isar_feature(any_pmu_8_4, cpu)) {
6765         static const ARMCPRegInfo v84_pmmir = {
6766             .name = "PMMIR_EL1", .state = ARM_CP_STATE_BOTH,
6767             .opc0 = 3, .opc1 = 0, .crn = 9, .crm = 14, .opc2 = 6,
6768             .access = PL1_R, .accessfn = pmreg_access, .type = ARM_CP_CONST,
6769             .resetvalue = 0
6770         };
6771         define_one_arm_cp_reg(cpu, &v84_pmmir);
6772     }
6773 }
6774 
6775 /* We don't know until after realize whether there's a GICv3
6776  * attached, and that is what registers the gicv3 sysregs.
6777  * So we have to fill in the GIC fields in ID_PFR/ID_PFR1_EL1/ID_AA64PFR0_EL1
6778  * at runtime.
6779  */
6780 static uint64_t id_pfr1_read(CPUARMState *env, const ARMCPRegInfo *ri)
6781 {
6782     ARMCPU *cpu = env_archcpu(env);
6783     uint64_t pfr1 = cpu->isar.id_pfr1;
6784 
6785     if (env->gicv3state) {
6786         pfr1 |= 1 << 28;
6787     }
6788     return pfr1;
6789 }
6790 
6791 #ifndef CONFIG_USER_ONLY
6792 static uint64_t id_aa64pfr0_read(CPUARMState *env, const ARMCPRegInfo *ri)
6793 {
6794     ARMCPU *cpu = env_archcpu(env);
6795     uint64_t pfr0 = cpu->isar.id_aa64pfr0;
6796 
6797     if (env->gicv3state) {
6798         pfr0 |= 1 << 24;
6799     }
6800     return pfr0;
6801 }
6802 #endif
6803 
6804 /* Shared logic between LORID and the rest of the LOR* registers.
6805  * Secure state exclusion has already been dealt with.
6806  */
6807 static CPAccessResult access_lor_ns(CPUARMState *env,
6808                                     const ARMCPRegInfo *ri, bool isread)
6809 {
6810     int el = arm_current_el(env);
6811 
6812     if (el < 2 && (arm_hcr_el2_eff(env) & HCR_TLOR)) {
6813         return CP_ACCESS_TRAP_EL2;
6814     }
6815     if (el < 3 && (env->cp15.scr_el3 & SCR_TLOR)) {
6816         return CP_ACCESS_TRAP_EL3;
6817     }
6818     return CP_ACCESS_OK;
6819 }
6820 
6821 static CPAccessResult access_lor_other(CPUARMState *env,
6822                                        const ARMCPRegInfo *ri, bool isread)
6823 {
6824     if (arm_is_secure_below_el3(env)) {
6825         /* Access denied in secure mode.  */
6826         return CP_ACCESS_TRAP;
6827     }
6828     return access_lor_ns(env, ri, isread);
6829 }
6830 
6831 /*
6832  * A trivial implementation of ARMv8.1-LOR leaves all of these
6833  * registers fixed at 0, which indicates that there are zero
6834  * supported Limited Ordering regions.
6835  */
6836 static const ARMCPRegInfo lor_reginfo[] = {
6837     { .name = "LORSA_EL1", .state = ARM_CP_STATE_AA64,
6838       .opc0 = 3, .opc1 = 0, .crn = 10, .crm = 4, .opc2 = 0,
6839       .access = PL1_RW, .accessfn = access_lor_other,
6840       .type = ARM_CP_CONST, .resetvalue = 0 },
6841     { .name = "LOREA_EL1", .state = ARM_CP_STATE_AA64,
6842       .opc0 = 3, .opc1 = 0, .crn = 10, .crm = 4, .opc2 = 1,
6843       .access = PL1_RW, .accessfn = access_lor_other,
6844       .type = ARM_CP_CONST, .resetvalue = 0 },
6845     { .name = "LORN_EL1", .state = ARM_CP_STATE_AA64,
6846       .opc0 = 3, .opc1 = 0, .crn = 10, .crm = 4, .opc2 = 2,
6847       .access = PL1_RW, .accessfn = access_lor_other,
6848       .type = ARM_CP_CONST, .resetvalue = 0 },
6849     { .name = "LORC_EL1", .state = ARM_CP_STATE_AA64,
6850       .opc0 = 3, .opc1 = 0, .crn = 10, .crm = 4, .opc2 = 3,
6851       .access = PL1_RW, .accessfn = access_lor_other,
6852       .type = ARM_CP_CONST, .resetvalue = 0 },
6853     { .name = "LORID_EL1", .state = ARM_CP_STATE_AA64,
6854       .opc0 = 3, .opc1 = 0, .crn = 10, .crm = 4, .opc2 = 7,
6855       .access = PL1_R, .accessfn = access_lor_ns,
6856       .type = ARM_CP_CONST, .resetvalue = 0 },
6857     REGINFO_SENTINEL
6858 };
6859 
6860 #ifdef TARGET_AARCH64
6861 static CPAccessResult access_pauth(CPUARMState *env, const ARMCPRegInfo *ri,
6862                                    bool isread)
6863 {
6864     int el = arm_current_el(env);
6865 
6866     if (el < 2 &&
6867         arm_feature(env, ARM_FEATURE_EL2) &&
6868         !(arm_hcr_el2_eff(env) & HCR_APK)) {
6869         return CP_ACCESS_TRAP_EL2;
6870     }
6871     if (el < 3 &&
6872         arm_feature(env, ARM_FEATURE_EL3) &&
6873         !(env->cp15.scr_el3 & SCR_APK)) {
6874         return CP_ACCESS_TRAP_EL3;
6875     }
6876     return CP_ACCESS_OK;
6877 }
6878 
6879 static const ARMCPRegInfo pauth_reginfo[] = {
6880     { .name = "APDAKEYLO_EL1", .state = ARM_CP_STATE_AA64,
6881       .opc0 = 3, .opc1 = 0, .crn = 2, .crm = 2, .opc2 = 0,
6882       .access = PL1_RW, .accessfn = access_pauth,
6883       .fieldoffset = offsetof(CPUARMState, keys.apda.lo) },
6884     { .name = "APDAKEYHI_EL1", .state = ARM_CP_STATE_AA64,
6885       .opc0 = 3, .opc1 = 0, .crn = 2, .crm = 2, .opc2 = 1,
6886       .access = PL1_RW, .accessfn = access_pauth,
6887       .fieldoffset = offsetof(CPUARMState, keys.apda.hi) },
6888     { .name = "APDBKEYLO_EL1", .state = ARM_CP_STATE_AA64,
6889       .opc0 = 3, .opc1 = 0, .crn = 2, .crm = 2, .opc2 = 2,
6890       .access = PL1_RW, .accessfn = access_pauth,
6891       .fieldoffset = offsetof(CPUARMState, keys.apdb.lo) },
6892     { .name = "APDBKEYHI_EL1", .state = ARM_CP_STATE_AA64,
6893       .opc0 = 3, .opc1 = 0, .crn = 2, .crm = 2, .opc2 = 3,
6894       .access = PL1_RW, .accessfn = access_pauth,
6895       .fieldoffset = offsetof(CPUARMState, keys.apdb.hi) },
6896     { .name = "APGAKEYLO_EL1", .state = ARM_CP_STATE_AA64,
6897       .opc0 = 3, .opc1 = 0, .crn = 2, .crm = 3, .opc2 = 0,
6898       .access = PL1_RW, .accessfn = access_pauth,
6899       .fieldoffset = offsetof(CPUARMState, keys.apga.lo) },
6900     { .name = "APGAKEYHI_EL1", .state = ARM_CP_STATE_AA64,
6901       .opc0 = 3, .opc1 = 0, .crn = 2, .crm = 3, .opc2 = 1,
6902       .access = PL1_RW, .accessfn = access_pauth,
6903       .fieldoffset = offsetof(CPUARMState, keys.apga.hi) },
6904     { .name = "APIAKEYLO_EL1", .state = ARM_CP_STATE_AA64,
6905       .opc0 = 3, .opc1 = 0, .crn = 2, .crm = 1, .opc2 = 0,
6906       .access = PL1_RW, .accessfn = access_pauth,
6907       .fieldoffset = offsetof(CPUARMState, keys.apia.lo) },
6908     { .name = "APIAKEYHI_EL1", .state = ARM_CP_STATE_AA64,
6909       .opc0 = 3, .opc1 = 0, .crn = 2, .crm = 1, .opc2 = 1,
6910       .access = PL1_RW, .accessfn = access_pauth,
6911       .fieldoffset = offsetof(CPUARMState, keys.apia.hi) },
6912     { .name = "APIBKEYLO_EL1", .state = ARM_CP_STATE_AA64,
6913       .opc0 = 3, .opc1 = 0, .crn = 2, .crm = 1, .opc2 = 2,
6914       .access = PL1_RW, .accessfn = access_pauth,
6915       .fieldoffset = offsetof(CPUARMState, keys.apib.lo) },
6916     { .name = "APIBKEYHI_EL1", .state = ARM_CP_STATE_AA64,
6917       .opc0 = 3, .opc1 = 0, .crn = 2, .crm = 1, .opc2 = 3,
6918       .access = PL1_RW, .accessfn = access_pauth,
6919       .fieldoffset = offsetof(CPUARMState, keys.apib.hi) },
6920     REGINFO_SENTINEL
6921 };
6922 
6923 static uint64_t rndr_readfn(CPUARMState *env, const ARMCPRegInfo *ri)
6924 {
6925     Error *err = NULL;
6926     uint64_t ret;
6927 
6928     /* Success sets NZCV = 0000.  */
6929     env->NF = env->CF = env->VF = 0, env->ZF = 1;
6930 
6931     if (qemu_guest_getrandom(&ret, sizeof(ret), &err) < 0) {
6932         /*
6933          * ??? Failed, for unknown reasons in the crypto subsystem.
6934          * The best we can do is log the reason and return the
6935          * timed-out indication to the guest.  There is no reason
6936          * we know to expect this failure to be transitory, so the
6937          * guest may well hang retrying the operation.
6938          */
6939         qemu_log_mask(LOG_UNIMP, "%s: Crypto failure: %s",
6940                       ri->name, error_get_pretty(err));
6941         error_free(err);
6942 
6943         env->ZF = 0; /* NZCF = 0100 */
6944         return 0;
6945     }
6946     return ret;
6947 }
6948 
6949 /* We do not support re-seeding, so the two registers operate the same.  */
6950 static const ARMCPRegInfo rndr_reginfo[] = {
6951     { .name = "RNDR", .state = ARM_CP_STATE_AA64,
6952       .type = ARM_CP_NO_RAW | ARM_CP_SUPPRESS_TB_END | ARM_CP_IO,
6953       .opc0 = 3, .opc1 = 3, .crn = 2, .crm = 4, .opc2 = 0,
6954       .access = PL0_R, .readfn = rndr_readfn },
6955     { .name = "RNDRRS", .state = ARM_CP_STATE_AA64,
6956       .type = ARM_CP_NO_RAW | ARM_CP_SUPPRESS_TB_END | ARM_CP_IO,
6957       .opc0 = 3, .opc1 = 3, .crn = 2, .crm = 4, .opc2 = 1,
6958       .access = PL0_R, .readfn = rndr_readfn },
6959     REGINFO_SENTINEL
6960 };
6961 
6962 #ifndef CONFIG_USER_ONLY
6963 static void dccvap_writefn(CPUARMState *env, const ARMCPRegInfo *opaque,
6964                           uint64_t value)
6965 {
6966     ARMCPU *cpu = env_archcpu(env);
6967     /* CTR_EL0 System register -> DminLine, bits [19:16] */
6968     uint64_t dline_size = 4 << ((cpu->ctr >> 16) & 0xF);
6969     uint64_t vaddr_in = (uint64_t) value;
6970     uint64_t vaddr = vaddr_in & ~(dline_size - 1);
6971     void *haddr;
6972     int mem_idx = cpu_mmu_index(env, false);
6973 
6974     /* This won't be crossing page boundaries */
6975     haddr = probe_read(env, vaddr, dline_size, mem_idx, GETPC());
6976     if (haddr) {
6977 
6978         ram_addr_t offset;
6979         MemoryRegion *mr;
6980 
6981         /* RCU lock is already being held */
6982         mr = memory_region_from_host(haddr, &offset);
6983 
6984         if (mr) {
6985             memory_region_writeback(mr, offset, dline_size);
6986         }
6987     }
6988 }
6989 
6990 static const ARMCPRegInfo dcpop_reg[] = {
6991     { .name = "DC_CVAP", .state = ARM_CP_STATE_AA64,
6992       .opc0 = 1, .opc1 = 3, .crn = 7, .crm = 12, .opc2 = 1,
6993       .access = PL0_W, .type = ARM_CP_NO_RAW | ARM_CP_SUPPRESS_TB_END,
6994       .accessfn = aa64_cacheop_poc_access, .writefn = dccvap_writefn },
6995     REGINFO_SENTINEL
6996 };
6997 
6998 static const ARMCPRegInfo dcpodp_reg[] = {
6999     { .name = "DC_CVADP", .state = ARM_CP_STATE_AA64,
7000       .opc0 = 1, .opc1 = 3, .crn = 7, .crm = 13, .opc2 = 1,
7001       .access = PL0_W, .type = ARM_CP_NO_RAW | ARM_CP_SUPPRESS_TB_END,
7002       .accessfn = aa64_cacheop_poc_access, .writefn = dccvap_writefn },
7003     REGINFO_SENTINEL
7004 };
7005 #endif /*CONFIG_USER_ONLY*/
7006 
7007 static CPAccessResult access_aa64_tid5(CPUARMState *env, const ARMCPRegInfo *ri,
7008                                        bool isread)
7009 {
7010     if ((arm_current_el(env) < 2) && (arm_hcr_el2_eff(env) & HCR_TID5)) {
7011         return CP_ACCESS_TRAP_EL2;
7012     }
7013 
7014     return CP_ACCESS_OK;
7015 }
7016 
7017 static CPAccessResult access_mte(CPUARMState *env, const ARMCPRegInfo *ri,
7018                                  bool isread)
7019 {
7020     int el = arm_current_el(env);
7021 
7022     if (el < 2 && arm_feature(env, ARM_FEATURE_EL2)) {
7023         uint64_t hcr = arm_hcr_el2_eff(env);
7024         if (!(hcr & HCR_ATA) && (!(hcr & HCR_E2H) || !(hcr & HCR_TGE))) {
7025             return CP_ACCESS_TRAP_EL2;
7026         }
7027     }
7028     if (el < 3 &&
7029         arm_feature(env, ARM_FEATURE_EL3) &&
7030         !(env->cp15.scr_el3 & SCR_ATA)) {
7031         return CP_ACCESS_TRAP_EL3;
7032     }
7033     return CP_ACCESS_OK;
7034 }
7035 
7036 static uint64_t tco_read(CPUARMState *env, const ARMCPRegInfo *ri)
7037 {
7038     return env->pstate & PSTATE_TCO;
7039 }
7040 
7041 static void tco_write(CPUARMState *env, const ARMCPRegInfo *ri, uint64_t val)
7042 {
7043     env->pstate = (env->pstate & ~PSTATE_TCO) | (val & PSTATE_TCO);
7044 }
7045 
7046 static const ARMCPRegInfo mte_reginfo[] = {
7047     { .name = "TFSRE0_EL1", .state = ARM_CP_STATE_AA64,
7048       .opc0 = 3, .opc1 = 0, .crn = 5, .crm = 6, .opc2 = 1,
7049       .access = PL1_RW, .accessfn = access_mte,
7050       .fieldoffset = offsetof(CPUARMState, cp15.tfsr_el[0]) },
7051     { .name = "TFSR_EL1", .state = ARM_CP_STATE_AA64,
7052       .opc0 = 3, .opc1 = 0, .crn = 5, .crm = 6, .opc2 = 0,
7053       .access = PL1_RW, .accessfn = access_mte,
7054       .fieldoffset = offsetof(CPUARMState, cp15.tfsr_el[1]) },
7055     { .name = "TFSR_EL2", .state = ARM_CP_STATE_AA64,
7056       .opc0 = 3, .opc1 = 4, .crn = 5, .crm = 6, .opc2 = 0,
7057       .access = PL2_RW, .accessfn = access_mte,
7058       .fieldoffset = offsetof(CPUARMState, cp15.tfsr_el[2]) },
7059     { .name = "TFSR_EL3", .state = ARM_CP_STATE_AA64,
7060       .opc0 = 3, .opc1 = 6, .crn = 5, .crm = 6, .opc2 = 0,
7061       .access = PL3_RW,
7062       .fieldoffset = offsetof(CPUARMState, cp15.tfsr_el[3]) },
7063     { .name = "RGSR_EL1", .state = ARM_CP_STATE_AA64,
7064       .opc0 = 3, .opc1 = 0, .crn = 1, .crm = 0, .opc2 = 5,
7065       .access = PL1_RW, .accessfn = access_mte,
7066       .fieldoffset = offsetof(CPUARMState, cp15.rgsr_el1) },
7067     { .name = "GCR_EL1", .state = ARM_CP_STATE_AA64,
7068       .opc0 = 3, .opc1 = 0, .crn = 1, .crm = 0, .opc2 = 6,
7069       .access = PL1_RW, .accessfn = access_mte,
7070       .fieldoffset = offsetof(CPUARMState, cp15.gcr_el1) },
7071     { .name = "GMID_EL1", .state = ARM_CP_STATE_AA64,
7072       .opc0 = 3, .opc1 = 1, .crn = 0, .crm = 0, .opc2 = 4,
7073       .access = PL1_R, .accessfn = access_aa64_tid5,
7074       .type = ARM_CP_CONST, .resetvalue = GMID_EL1_BS },
7075     { .name = "TCO", .state = ARM_CP_STATE_AA64,
7076       .opc0 = 3, .opc1 = 3, .crn = 4, .crm = 2, .opc2 = 7,
7077       .type = ARM_CP_NO_RAW,
7078       .access = PL0_RW, .readfn = tco_read, .writefn = tco_write },
7079     { .name = "DC_IGVAC", .state = ARM_CP_STATE_AA64,
7080       .opc0 = 1, .opc1 = 0, .crn = 7, .crm = 6, .opc2 = 3,
7081       .type = ARM_CP_NOP, .access = PL1_W,
7082       .accessfn = aa64_cacheop_poc_access },
7083     { .name = "DC_IGSW", .state = ARM_CP_STATE_AA64,
7084       .opc0 = 1, .opc1 = 0, .crn = 7, .crm = 6, .opc2 = 4,
7085       .type = ARM_CP_NOP, .access = PL1_W, .accessfn = access_tsw },
7086     { .name = "DC_IGDVAC", .state = ARM_CP_STATE_AA64,
7087       .opc0 = 1, .opc1 = 0, .crn = 7, .crm = 6, .opc2 = 5,
7088       .type = ARM_CP_NOP, .access = PL1_W,
7089       .accessfn = aa64_cacheop_poc_access },
7090     { .name = "DC_IGDSW", .state = ARM_CP_STATE_AA64,
7091       .opc0 = 1, .opc1 = 0, .crn = 7, .crm = 6, .opc2 = 6,
7092       .type = ARM_CP_NOP, .access = PL1_W, .accessfn = access_tsw },
7093     { .name = "DC_CGSW", .state = ARM_CP_STATE_AA64,
7094       .opc0 = 1, .opc1 = 0, .crn = 7, .crm = 10, .opc2 = 4,
7095       .type = ARM_CP_NOP, .access = PL1_W, .accessfn = access_tsw },
7096     { .name = "DC_CGDSW", .state = ARM_CP_STATE_AA64,
7097       .opc0 = 1, .opc1 = 0, .crn = 7, .crm = 10, .opc2 = 6,
7098       .type = ARM_CP_NOP, .access = PL1_W, .accessfn = access_tsw },
7099     { .name = "DC_CIGSW", .state = ARM_CP_STATE_AA64,
7100       .opc0 = 1, .opc1 = 0, .crn = 7, .crm = 14, .opc2 = 4,
7101       .type = ARM_CP_NOP, .access = PL1_W, .accessfn = access_tsw },
7102     { .name = "DC_CIGDSW", .state = ARM_CP_STATE_AA64,
7103       .opc0 = 1, .opc1 = 0, .crn = 7, .crm = 14, .opc2 = 6,
7104       .type = ARM_CP_NOP, .access = PL1_W, .accessfn = access_tsw },
7105     REGINFO_SENTINEL
7106 };
7107 
7108 static const ARMCPRegInfo mte_tco_ro_reginfo[] = {
7109     { .name = "TCO", .state = ARM_CP_STATE_AA64,
7110       .opc0 = 3, .opc1 = 3, .crn = 4, .crm = 2, .opc2 = 7,
7111       .type = ARM_CP_CONST, .access = PL0_RW, },
7112     REGINFO_SENTINEL
7113 };
7114 
7115 static const ARMCPRegInfo mte_el0_cacheop_reginfo[] = {
7116     { .name = "DC_CGVAC", .state = ARM_CP_STATE_AA64,
7117       .opc0 = 1, .opc1 = 3, .crn = 7, .crm = 10, .opc2 = 3,
7118       .type = ARM_CP_NOP, .access = PL0_W,
7119       .accessfn = aa64_cacheop_poc_access },
7120     { .name = "DC_CGDVAC", .state = ARM_CP_STATE_AA64,
7121       .opc0 = 1, .opc1 = 3, .crn = 7, .crm = 10, .opc2 = 5,
7122       .type = ARM_CP_NOP, .access = PL0_W,
7123       .accessfn = aa64_cacheop_poc_access },
7124     { .name = "DC_CGVAP", .state = ARM_CP_STATE_AA64,
7125       .opc0 = 1, .opc1 = 3, .crn = 7, .crm = 12, .opc2 = 3,
7126       .type = ARM_CP_NOP, .access = PL0_W,
7127       .accessfn = aa64_cacheop_poc_access },
7128     { .name = "DC_CGDVAP", .state = ARM_CP_STATE_AA64,
7129       .opc0 = 1, .opc1 = 3, .crn = 7, .crm = 12, .opc2 = 5,
7130       .type = ARM_CP_NOP, .access = PL0_W,
7131       .accessfn = aa64_cacheop_poc_access },
7132     { .name = "DC_CGVADP", .state = ARM_CP_STATE_AA64,
7133       .opc0 = 1, .opc1 = 3, .crn = 7, .crm = 13, .opc2 = 3,
7134       .type = ARM_CP_NOP, .access = PL0_W,
7135       .accessfn = aa64_cacheop_poc_access },
7136     { .name = "DC_CGDVADP", .state = ARM_CP_STATE_AA64,
7137       .opc0 = 1, .opc1 = 3, .crn = 7, .crm = 13, .opc2 = 5,
7138       .type = ARM_CP_NOP, .access = PL0_W,
7139       .accessfn = aa64_cacheop_poc_access },
7140     { .name = "DC_CIGVAC", .state = ARM_CP_STATE_AA64,
7141       .opc0 = 1, .opc1 = 3, .crn = 7, .crm = 14, .opc2 = 3,
7142       .type = ARM_CP_NOP, .access = PL0_W,
7143       .accessfn = aa64_cacheop_poc_access },
7144     { .name = "DC_CIGDVAC", .state = ARM_CP_STATE_AA64,
7145       .opc0 = 1, .opc1 = 3, .crn = 7, .crm = 14, .opc2 = 5,
7146       .type = ARM_CP_NOP, .access = PL0_W,
7147       .accessfn = aa64_cacheop_poc_access },
7148     { .name = "DC_GVA", .state = ARM_CP_STATE_AA64,
7149       .opc0 = 1, .opc1 = 3, .crn = 7, .crm = 4, .opc2 = 3,
7150       .access = PL0_W, .type = ARM_CP_DC_GVA,
7151 #ifndef CONFIG_USER_ONLY
7152       /* Avoid overhead of an access check that always passes in user-mode */
7153       .accessfn = aa64_zva_access,
7154 #endif
7155     },
7156     { .name = "DC_GZVA", .state = ARM_CP_STATE_AA64,
7157       .opc0 = 1, .opc1 = 3, .crn = 7, .crm = 4, .opc2 = 4,
7158       .access = PL0_W, .type = ARM_CP_DC_GZVA,
7159 #ifndef CONFIG_USER_ONLY
7160       /* Avoid overhead of an access check that always passes in user-mode */
7161       .accessfn = aa64_zva_access,
7162 #endif
7163     },
7164     REGINFO_SENTINEL
7165 };
7166 
7167 #endif
7168 
7169 static CPAccessResult access_predinv(CPUARMState *env, const ARMCPRegInfo *ri,
7170                                      bool isread)
7171 {
7172     int el = arm_current_el(env);
7173 
7174     if (el == 0) {
7175         uint64_t sctlr = arm_sctlr(env, el);
7176         if (!(sctlr & SCTLR_EnRCTX)) {
7177             return CP_ACCESS_TRAP;
7178         }
7179     } else if (el == 1) {
7180         uint64_t hcr = arm_hcr_el2_eff(env);
7181         if (hcr & HCR_NV) {
7182             return CP_ACCESS_TRAP_EL2;
7183         }
7184     }
7185     return CP_ACCESS_OK;
7186 }
7187 
7188 static const ARMCPRegInfo predinv_reginfo[] = {
7189     { .name = "CFP_RCTX", .state = ARM_CP_STATE_AA64,
7190       .opc0 = 1, .opc1 = 3, .crn = 7, .crm = 3, .opc2 = 4,
7191       .type = ARM_CP_NOP, .access = PL0_W, .accessfn = access_predinv },
7192     { .name = "DVP_RCTX", .state = ARM_CP_STATE_AA64,
7193       .opc0 = 1, .opc1 = 3, .crn = 7, .crm = 3, .opc2 = 5,
7194       .type = ARM_CP_NOP, .access = PL0_W, .accessfn = access_predinv },
7195     { .name = "CPP_RCTX", .state = ARM_CP_STATE_AA64,
7196       .opc0 = 1, .opc1 = 3, .crn = 7, .crm = 3, .opc2 = 7,
7197       .type = ARM_CP_NOP, .access = PL0_W, .accessfn = access_predinv },
7198     /*
7199      * Note the AArch32 opcodes have a different OPC1.
7200      */
7201     { .name = "CFPRCTX", .state = ARM_CP_STATE_AA32,
7202       .cp = 15, .opc1 = 0, .crn = 7, .crm = 3, .opc2 = 4,
7203       .type = ARM_CP_NOP, .access = PL0_W, .accessfn = access_predinv },
7204     { .name = "DVPRCTX", .state = ARM_CP_STATE_AA32,
7205       .cp = 15, .opc1 = 0, .crn = 7, .crm = 3, .opc2 = 5,
7206       .type = ARM_CP_NOP, .access = PL0_W, .accessfn = access_predinv },
7207     { .name = "CPPRCTX", .state = ARM_CP_STATE_AA32,
7208       .cp = 15, .opc1 = 0, .crn = 7, .crm = 3, .opc2 = 7,
7209       .type = ARM_CP_NOP, .access = PL0_W, .accessfn = access_predinv },
7210     REGINFO_SENTINEL
7211 };
7212 
7213 static uint64_t ccsidr2_read(CPUARMState *env, const ARMCPRegInfo *ri)
7214 {
7215     /* Read the high 32 bits of the current CCSIDR */
7216     return extract64(ccsidr_read(env, ri), 32, 32);
7217 }
7218 
7219 static const ARMCPRegInfo ccsidr2_reginfo[] = {
7220     { .name = "CCSIDR2", .state = ARM_CP_STATE_BOTH,
7221       .opc0 = 3, .opc1 = 1, .crn = 0, .crm = 0, .opc2 = 2,
7222       .access = PL1_R,
7223       .accessfn = access_aa64_tid2,
7224       .readfn = ccsidr2_read, .type = ARM_CP_NO_RAW },
7225     REGINFO_SENTINEL
7226 };
7227 
7228 static CPAccessResult access_aa64_tid3(CPUARMState *env, const ARMCPRegInfo *ri,
7229                                        bool isread)
7230 {
7231     if ((arm_current_el(env) < 2) && (arm_hcr_el2_eff(env) & HCR_TID3)) {
7232         return CP_ACCESS_TRAP_EL2;
7233     }
7234 
7235     return CP_ACCESS_OK;
7236 }
7237 
7238 static CPAccessResult access_aa32_tid3(CPUARMState *env, const ARMCPRegInfo *ri,
7239                                        bool isread)
7240 {
7241     if (arm_feature(env, ARM_FEATURE_V8)) {
7242         return access_aa64_tid3(env, ri, isread);
7243     }
7244 
7245     return CP_ACCESS_OK;
7246 }
7247 
7248 static CPAccessResult access_jazelle(CPUARMState *env, const ARMCPRegInfo *ri,
7249                                      bool isread)
7250 {
7251     if (arm_current_el(env) == 1 && (arm_hcr_el2_eff(env) & HCR_TID0)) {
7252         return CP_ACCESS_TRAP_EL2;
7253     }
7254 
7255     return CP_ACCESS_OK;
7256 }
7257 
7258 static const ARMCPRegInfo jazelle_regs[] = {
7259     { .name = "JIDR",
7260       .cp = 14, .crn = 0, .crm = 0, .opc1 = 7, .opc2 = 0,
7261       .access = PL1_R, .accessfn = access_jazelle,
7262       .type = ARM_CP_CONST, .resetvalue = 0 },
7263     { .name = "JOSCR",
7264       .cp = 14, .crn = 1, .crm = 0, .opc1 = 7, .opc2 = 0,
7265       .access = PL1_RW, .type = ARM_CP_CONST, .resetvalue = 0 },
7266     { .name = "JMCR",
7267       .cp = 14, .crn = 2, .crm = 0, .opc1 = 7, .opc2 = 0,
7268       .access = PL1_RW, .type = ARM_CP_CONST, .resetvalue = 0 },
7269     REGINFO_SENTINEL
7270 };
7271 
7272 static const ARMCPRegInfo vhe_reginfo[] = {
7273     { .name = "CONTEXTIDR_EL2", .state = ARM_CP_STATE_AA64,
7274       .opc0 = 3, .opc1 = 4, .crn = 13, .crm = 0, .opc2 = 1,
7275       .access = PL2_RW,
7276       .fieldoffset = offsetof(CPUARMState, cp15.contextidr_el[2]) },
7277     { .name = "TTBR1_EL2", .state = ARM_CP_STATE_AA64,
7278       .opc0 = 3, .opc1 = 4, .crn = 2, .crm = 0, .opc2 = 1,
7279       .access = PL2_RW, .writefn = vmsa_tcr_ttbr_el2_write,
7280       .fieldoffset = offsetof(CPUARMState, cp15.ttbr1_el[2]) },
7281 #ifndef CONFIG_USER_ONLY
7282     { .name = "CNTHV_CVAL_EL2", .state = ARM_CP_STATE_AA64,
7283       .opc0 = 3, .opc1 = 4, .crn = 14, .crm = 3, .opc2 = 2,
7284       .fieldoffset =
7285         offsetof(CPUARMState, cp15.c14_timer[GTIMER_HYPVIRT].cval),
7286       .type = ARM_CP_IO, .access = PL2_RW,
7287       .writefn = gt_hv_cval_write, .raw_writefn = raw_write },
7288     { .name = "CNTHV_TVAL_EL2", .state = ARM_CP_STATE_BOTH,
7289       .opc0 = 3, .opc1 = 4, .crn = 14, .crm = 3, .opc2 = 0,
7290       .type = ARM_CP_NO_RAW | ARM_CP_IO, .access = PL2_RW,
7291       .resetfn = gt_hv_timer_reset,
7292       .readfn = gt_hv_tval_read, .writefn = gt_hv_tval_write },
7293     { .name = "CNTHV_CTL_EL2", .state = ARM_CP_STATE_BOTH,
7294       .type = ARM_CP_IO,
7295       .opc0 = 3, .opc1 = 4, .crn = 14, .crm = 3, .opc2 = 1,
7296       .access = PL2_RW,
7297       .fieldoffset = offsetof(CPUARMState, cp15.c14_timer[GTIMER_HYPVIRT].ctl),
7298       .writefn = gt_hv_ctl_write, .raw_writefn = raw_write },
7299     { .name = "CNTP_CTL_EL02", .state = ARM_CP_STATE_AA64,
7300       .opc0 = 3, .opc1 = 5, .crn = 14, .crm = 2, .opc2 = 1,
7301       .type = ARM_CP_IO | ARM_CP_ALIAS,
7302       .access = PL2_RW, .accessfn = e2h_access,
7303       .fieldoffset = offsetof(CPUARMState, cp15.c14_timer[GTIMER_PHYS].ctl),
7304       .writefn = gt_phys_ctl_write, .raw_writefn = raw_write },
7305     { .name = "CNTV_CTL_EL02", .state = ARM_CP_STATE_AA64,
7306       .opc0 = 3, .opc1 = 5, .crn = 14, .crm = 3, .opc2 = 1,
7307       .type = ARM_CP_IO | ARM_CP_ALIAS,
7308       .access = PL2_RW, .accessfn = e2h_access,
7309       .fieldoffset = offsetof(CPUARMState, cp15.c14_timer[GTIMER_VIRT].ctl),
7310       .writefn = gt_virt_ctl_write, .raw_writefn = raw_write },
7311     { .name = "CNTP_TVAL_EL02", .state = ARM_CP_STATE_AA64,
7312       .opc0 = 3, .opc1 = 5, .crn = 14, .crm = 2, .opc2 = 0,
7313       .type = ARM_CP_NO_RAW | ARM_CP_IO | ARM_CP_ALIAS,
7314       .access = PL2_RW, .accessfn = e2h_access,
7315       .readfn = gt_phys_tval_read, .writefn = gt_phys_tval_write },
7316     { .name = "CNTV_TVAL_EL02", .state = ARM_CP_STATE_AA64,
7317       .opc0 = 3, .opc1 = 5, .crn = 14, .crm = 3, .opc2 = 0,
7318       .type = ARM_CP_NO_RAW | ARM_CP_IO | ARM_CP_ALIAS,
7319       .access = PL2_RW, .accessfn = e2h_access,
7320       .readfn = gt_virt_tval_read, .writefn = gt_virt_tval_write },
7321     { .name = "CNTP_CVAL_EL02", .state = ARM_CP_STATE_AA64,
7322       .opc0 = 3, .opc1 = 5, .crn = 14, .crm = 2, .opc2 = 2,
7323       .type = ARM_CP_IO | ARM_CP_ALIAS,
7324       .fieldoffset = offsetof(CPUARMState, cp15.c14_timer[GTIMER_PHYS].cval),
7325       .access = PL2_RW, .accessfn = e2h_access,
7326       .writefn = gt_phys_cval_write, .raw_writefn = raw_write },
7327     { .name = "CNTV_CVAL_EL02", .state = ARM_CP_STATE_AA64,
7328       .opc0 = 3, .opc1 = 5, .crn = 14, .crm = 3, .opc2 = 2,
7329       .type = ARM_CP_IO | ARM_CP_ALIAS,
7330       .fieldoffset = offsetof(CPUARMState, cp15.c14_timer[GTIMER_VIRT].cval),
7331       .access = PL2_RW, .accessfn = e2h_access,
7332       .writefn = gt_virt_cval_write, .raw_writefn = raw_write },
7333 #endif
7334     REGINFO_SENTINEL
7335 };
7336 
7337 #ifndef CONFIG_USER_ONLY
7338 static const ARMCPRegInfo ats1e1_reginfo[] = {
7339     { .name = "AT_S1E1R", .state = ARM_CP_STATE_AA64,
7340       .opc0 = 1, .opc1 = 0, .crn = 7, .crm = 9, .opc2 = 0,
7341       .access = PL1_W, .type = ARM_CP_NO_RAW | ARM_CP_RAISES_EXC,
7342       .writefn = ats_write64 },
7343     { .name = "AT_S1E1W", .state = ARM_CP_STATE_AA64,
7344       .opc0 = 1, .opc1 = 0, .crn = 7, .crm = 9, .opc2 = 1,
7345       .access = PL1_W, .type = ARM_CP_NO_RAW | ARM_CP_RAISES_EXC,
7346       .writefn = ats_write64 },
7347     REGINFO_SENTINEL
7348 };
7349 
7350 static const ARMCPRegInfo ats1cp_reginfo[] = {
7351     { .name = "ATS1CPRP",
7352       .cp = 15, .opc1 = 0, .crn = 7, .crm = 9, .opc2 = 0,
7353       .access = PL1_W, .type = ARM_CP_NO_RAW | ARM_CP_RAISES_EXC,
7354       .writefn = ats_write },
7355     { .name = "ATS1CPWP",
7356       .cp = 15, .opc1 = 0, .crn = 7, .crm = 9, .opc2 = 1,
7357       .access = PL1_W, .type = ARM_CP_NO_RAW | ARM_CP_RAISES_EXC,
7358       .writefn = ats_write },
7359     REGINFO_SENTINEL
7360 };
7361 #endif
7362 
7363 /*
7364  * ACTLR2 and HACTLR2 map to ACTLR_EL1[63:32] and
7365  * ACTLR_EL2[63:32]. They exist only if the ID_MMFR4.AC2 field
7366  * is non-zero, which is never for ARMv7, optionally in ARMv8
7367  * and mandatorily for ARMv8.2 and up.
7368  * ACTLR2 is banked for S and NS if EL3 is AArch32. Since QEMU's
7369  * implementation is RAZ/WI we can ignore this detail, as we
7370  * do for ACTLR.
7371  */
7372 static const ARMCPRegInfo actlr2_hactlr2_reginfo[] = {
7373     { .name = "ACTLR2", .state = ARM_CP_STATE_AA32,
7374       .cp = 15, .opc1 = 0, .crn = 1, .crm = 0, .opc2 = 3,
7375       .access = PL1_RW, .accessfn = access_tacr,
7376       .type = ARM_CP_CONST, .resetvalue = 0 },
7377     { .name = "HACTLR2", .state = ARM_CP_STATE_AA32,
7378       .cp = 15, .opc1 = 4, .crn = 1, .crm = 0, .opc2 = 3,
7379       .access = PL2_RW, .type = ARM_CP_CONST,
7380       .resetvalue = 0 },
7381     REGINFO_SENTINEL
7382 };
7383 
7384 void register_cp_regs_for_features(ARMCPU *cpu)
7385 {
7386     /* Register all the coprocessor registers based on feature bits */
7387     CPUARMState *env = &cpu->env;
7388     if (arm_feature(env, ARM_FEATURE_M)) {
7389         /* M profile has no coprocessor registers */
7390         return;
7391     }
7392 
7393     define_arm_cp_regs(cpu, cp_reginfo);
7394     if (!arm_feature(env, ARM_FEATURE_V8)) {
7395         /* Must go early as it is full of wildcards that may be
7396          * overridden by later definitions.
7397          */
7398         define_arm_cp_regs(cpu, not_v8_cp_reginfo);
7399     }
7400 
7401     if (arm_feature(env, ARM_FEATURE_V6)) {
7402         /* The ID registers all have impdef reset values */
7403         ARMCPRegInfo v6_idregs[] = {
7404             { .name = "ID_PFR0", .state = ARM_CP_STATE_BOTH,
7405               .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 1, .opc2 = 0,
7406               .access = PL1_R, .type = ARM_CP_CONST,
7407               .accessfn = access_aa32_tid3,
7408               .resetvalue = cpu->isar.id_pfr0 },
7409             /* ID_PFR1 is not a plain ARM_CP_CONST because we don't know
7410              * the value of the GIC field until after we define these regs.
7411              */
7412             { .name = "ID_PFR1", .state = ARM_CP_STATE_BOTH,
7413               .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 1, .opc2 = 1,
7414               .access = PL1_R, .type = ARM_CP_NO_RAW,
7415               .accessfn = access_aa32_tid3,
7416               .readfn = id_pfr1_read,
7417               .writefn = arm_cp_write_ignore },
7418             { .name = "ID_DFR0", .state = ARM_CP_STATE_BOTH,
7419               .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 1, .opc2 = 2,
7420               .access = PL1_R, .type = ARM_CP_CONST,
7421               .accessfn = access_aa32_tid3,
7422               .resetvalue = cpu->isar.id_dfr0 },
7423             { .name = "ID_AFR0", .state = ARM_CP_STATE_BOTH,
7424               .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 1, .opc2 = 3,
7425               .access = PL1_R, .type = ARM_CP_CONST,
7426               .accessfn = access_aa32_tid3,
7427               .resetvalue = cpu->id_afr0 },
7428             { .name = "ID_MMFR0", .state = ARM_CP_STATE_BOTH,
7429               .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 1, .opc2 = 4,
7430               .access = PL1_R, .type = ARM_CP_CONST,
7431               .accessfn = access_aa32_tid3,
7432               .resetvalue = cpu->isar.id_mmfr0 },
7433             { .name = "ID_MMFR1", .state = ARM_CP_STATE_BOTH,
7434               .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 1, .opc2 = 5,
7435               .access = PL1_R, .type = ARM_CP_CONST,
7436               .accessfn = access_aa32_tid3,
7437               .resetvalue = cpu->isar.id_mmfr1 },
7438             { .name = "ID_MMFR2", .state = ARM_CP_STATE_BOTH,
7439               .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 1, .opc2 = 6,
7440               .access = PL1_R, .type = ARM_CP_CONST,
7441               .accessfn = access_aa32_tid3,
7442               .resetvalue = cpu->isar.id_mmfr2 },
7443             { .name = "ID_MMFR3", .state = ARM_CP_STATE_BOTH,
7444               .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 1, .opc2 = 7,
7445               .access = PL1_R, .type = ARM_CP_CONST,
7446               .accessfn = access_aa32_tid3,
7447               .resetvalue = cpu->isar.id_mmfr3 },
7448             { .name = "ID_ISAR0", .state = ARM_CP_STATE_BOTH,
7449               .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 2, .opc2 = 0,
7450               .access = PL1_R, .type = ARM_CP_CONST,
7451               .accessfn = access_aa32_tid3,
7452               .resetvalue = cpu->isar.id_isar0 },
7453             { .name = "ID_ISAR1", .state = ARM_CP_STATE_BOTH,
7454               .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 2, .opc2 = 1,
7455               .access = PL1_R, .type = ARM_CP_CONST,
7456               .accessfn = access_aa32_tid3,
7457               .resetvalue = cpu->isar.id_isar1 },
7458             { .name = "ID_ISAR2", .state = ARM_CP_STATE_BOTH,
7459               .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 2, .opc2 = 2,
7460               .access = PL1_R, .type = ARM_CP_CONST,
7461               .accessfn = access_aa32_tid3,
7462               .resetvalue = cpu->isar.id_isar2 },
7463             { .name = "ID_ISAR3", .state = ARM_CP_STATE_BOTH,
7464               .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 2, .opc2 = 3,
7465               .access = PL1_R, .type = ARM_CP_CONST,
7466               .accessfn = access_aa32_tid3,
7467               .resetvalue = cpu->isar.id_isar3 },
7468             { .name = "ID_ISAR4", .state = ARM_CP_STATE_BOTH,
7469               .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 2, .opc2 = 4,
7470               .access = PL1_R, .type = ARM_CP_CONST,
7471               .accessfn = access_aa32_tid3,
7472               .resetvalue = cpu->isar.id_isar4 },
7473             { .name = "ID_ISAR5", .state = ARM_CP_STATE_BOTH,
7474               .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 2, .opc2 = 5,
7475               .access = PL1_R, .type = ARM_CP_CONST,
7476               .accessfn = access_aa32_tid3,
7477               .resetvalue = cpu->isar.id_isar5 },
7478             { .name = "ID_MMFR4", .state = ARM_CP_STATE_BOTH,
7479               .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 2, .opc2 = 6,
7480               .access = PL1_R, .type = ARM_CP_CONST,
7481               .accessfn = access_aa32_tid3,
7482               .resetvalue = cpu->isar.id_mmfr4 },
7483             { .name = "ID_ISAR6", .state = ARM_CP_STATE_BOTH,
7484               .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 2, .opc2 = 7,
7485               .access = PL1_R, .type = ARM_CP_CONST,
7486               .accessfn = access_aa32_tid3,
7487               .resetvalue = cpu->isar.id_isar6 },
7488             REGINFO_SENTINEL
7489         };
7490         define_arm_cp_regs(cpu, v6_idregs);
7491         define_arm_cp_regs(cpu, v6_cp_reginfo);
7492     } else {
7493         define_arm_cp_regs(cpu, not_v6_cp_reginfo);
7494     }
7495     if (arm_feature(env, ARM_FEATURE_V6K)) {
7496         define_arm_cp_regs(cpu, v6k_cp_reginfo);
7497     }
7498     if (arm_feature(env, ARM_FEATURE_V7MP) &&
7499         !arm_feature(env, ARM_FEATURE_PMSA)) {
7500         define_arm_cp_regs(cpu, v7mp_cp_reginfo);
7501     }
7502     if (arm_feature(env, ARM_FEATURE_V7VE)) {
7503         define_arm_cp_regs(cpu, pmovsset_cp_reginfo);
7504     }
7505     if (arm_feature(env, ARM_FEATURE_V7)) {
7506         ARMCPRegInfo clidr = {
7507             .name = "CLIDR", .state = ARM_CP_STATE_BOTH,
7508             .opc0 = 3, .crn = 0, .crm = 0, .opc1 = 1, .opc2 = 1,
7509             .access = PL1_R, .type = ARM_CP_CONST,
7510             .accessfn = access_aa64_tid2,
7511             .resetvalue = cpu->clidr
7512         };
7513         define_one_arm_cp_reg(cpu, &clidr);
7514         define_arm_cp_regs(cpu, v7_cp_reginfo);
7515         define_debug_regs(cpu);
7516         define_pmu_regs(cpu);
7517     } else {
7518         define_arm_cp_regs(cpu, not_v7_cp_reginfo);
7519     }
7520     if (arm_feature(env, ARM_FEATURE_V8)) {
7521         /* AArch64 ID registers, which all have impdef reset values.
7522          * Note that within the ID register ranges the unused slots
7523          * must all RAZ, not UNDEF; future architecture versions may
7524          * define new registers here.
7525          */
7526         ARMCPRegInfo v8_idregs[] = {
7527             /*
7528              * ID_AA64PFR0_EL1 is not a plain ARM_CP_CONST in system
7529              * emulation because we don't know the right value for the
7530              * GIC field until after we define these regs.
7531              */
7532             { .name = "ID_AA64PFR0_EL1", .state = ARM_CP_STATE_AA64,
7533               .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 4, .opc2 = 0,
7534               .access = PL1_R,
7535 #ifdef CONFIG_USER_ONLY
7536               .type = ARM_CP_CONST,
7537               .resetvalue = cpu->isar.id_aa64pfr0
7538 #else
7539               .type = ARM_CP_NO_RAW,
7540               .accessfn = access_aa64_tid3,
7541               .readfn = id_aa64pfr0_read,
7542               .writefn = arm_cp_write_ignore
7543 #endif
7544             },
7545             { .name = "ID_AA64PFR1_EL1", .state = ARM_CP_STATE_AA64,
7546               .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 4, .opc2 = 1,
7547               .access = PL1_R, .type = ARM_CP_CONST,
7548               .accessfn = access_aa64_tid3,
7549               .resetvalue = cpu->isar.id_aa64pfr1},
7550             { .name = "ID_AA64PFR2_EL1_RESERVED", .state = ARM_CP_STATE_AA64,
7551               .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 4, .opc2 = 2,
7552               .access = PL1_R, .type = ARM_CP_CONST,
7553               .accessfn = access_aa64_tid3,
7554               .resetvalue = 0 },
7555             { .name = "ID_AA64PFR3_EL1_RESERVED", .state = ARM_CP_STATE_AA64,
7556               .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 4, .opc2 = 3,
7557               .access = PL1_R, .type = ARM_CP_CONST,
7558               .accessfn = access_aa64_tid3,
7559               .resetvalue = 0 },
7560             { .name = "ID_AA64ZFR0_EL1", .state = ARM_CP_STATE_AA64,
7561               .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 4, .opc2 = 4,
7562               .access = PL1_R, .type = ARM_CP_CONST,
7563               .accessfn = access_aa64_tid3,
7564               /* At present, only SVEver == 0 is defined anyway.  */
7565               .resetvalue = 0 },
7566             { .name = "ID_AA64PFR5_EL1_RESERVED", .state = ARM_CP_STATE_AA64,
7567               .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 4, .opc2 = 5,
7568               .access = PL1_R, .type = ARM_CP_CONST,
7569               .accessfn = access_aa64_tid3,
7570               .resetvalue = 0 },
7571             { .name = "ID_AA64PFR6_EL1_RESERVED", .state = ARM_CP_STATE_AA64,
7572               .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 4, .opc2 = 6,
7573               .access = PL1_R, .type = ARM_CP_CONST,
7574               .accessfn = access_aa64_tid3,
7575               .resetvalue = 0 },
7576             { .name = "ID_AA64PFR7_EL1_RESERVED", .state = ARM_CP_STATE_AA64,
7577               .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 4, .opc2 = 7,
7578               .access = PL1_R, .type = ARM_CP_CONST,
7579               .accessfn = access_aa64_tid3,
7580               .resetvalue = 0 },
7581             { .name = "ID_AA64DFR0_EL1", .state = ARM_CP_STATE_AA64,
7582               .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 5, .opc2 = 0,
7583               .access = PL1_R, .type = ARM_CP_CONST,
7584               .accessfn = access_aa64_tid3,
7585               .resetvalue = cpu->isar.id_aa64dfr0 },
7586             { .name = "ID_AA64DFR1_EL1", .state = ARM_CP_STATE_AA64,
7587               .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 5, .opc2 = 1,
7588               .access = PL1_R, .type = ARM_CP_CONST,
7589               .accessfn = access_aa64_tid3,
7590               .resetvalue = cpu->isar.id_aa64dfr1 },
7591             { .name = "ID_AA64DFR2_EL1_RESERVED", .state = ARM_CP_STATE_AA64,
7592               .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 5, .opc2 = 2,
7593               .access = PL1_R, .type = ARM_CP_CONST,
7594               .accessfn = access_aa64_tid3,
7595               .resetvalue = 0 },
7596             { .name = "ID_AA64DFR3_EL1_RESERVED", .state = ARM_CP_STATE_AA64,
7597               .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 5, .opc2 = 3,
7598               .access = PL1_R, .type = ARM_CP_CONST,
7599               .accessfn = access_aa64_tid3,
7600               .resetvalue = 0 },
7601             { .name = "ID_AA64AFR0_EL1", .state = ARM_CP_STATE_AA64,
7602               .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 5, .opc2 = 4,
7603               .access = PL1_R, .type = ARM_CP_CONST,
7604               .accessfn = access_aa64_tid3,
7605               .resetvalue = cpu->id_aa64afr0 },
7606             { .name = "ID_AA64AFR1_EL1", .state = ARM_CP_STATE_AA64,
7607               .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 5, .opc2 = 5,
7608               .access = PL1_R, .type = ARM_CP_CONST,
7609               .accessfn = access_aa64_tid3,
7610               .resetvalue = cpu->id_aa64afr1 },
7611             { .name = "ID_AA64AFR2_EL1_RESERVED", .state = ARM_CP_STATE_AA64,
7612               .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 5, .opc2 = 6,
7613               .access = PL1_R, .type = ARM_CP_CONST,
7614               .accessfn = access_aa64_tid3,
7615               .resetvalue = 0 },
7616             { .name = "ID_AA64AFR3_EL1_RESERVED", .state = ARM_CP_STATE_AA64,
7617               .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 5, .opc2 = 7,
7618               .access = PL1_R, .type = ARM_CP_CONST,
7619               .accessfn = access_aa64_tid3,
7620               .resetvalue = 0 },
7621             { .name = "ID_AA64ISAR0_EL1", .state = ARM_CP_STATE_AA64,
7622               .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 6, .opc2 = 0,
7623               .access = PL1_R, .type = ARM_CP_CONST,
7624               .accessfn = access_aa64_tid3,
7625               .resetvalue = cpu->isar.id_aa64isar0 },
7626             { .name = "ID_AA64ISAR1_EL1", .state = ARM_CP_STATE_AA64,
7627               .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 6, .opc2 = 1,
7628               .access = PL1_R, .type = ARM_CP_CONST,
7629               .accessfn = access_aa64_tid3,
7630               .resetvalue = cpu->isar.id_aa64isar1 },
7631             { .name = "ID_AA64ISAR2_EL1_RESERVED", .state = ARM_CP_STATE_AA64,
7632               .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 6, .opc2 = 2,
7633               .access = PL1_R, .type = ARM_CP_CONST,
7634               .accessfn = access_aa64_tid3,
7635               .resetvalue = 0 },
7636             { .name = "ID_AA64ISAR3_EL1_RESERVED", .state = ARM_CP_STATE_AA64,
7637               .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 6, .opc2 = 3,
7638               .access = PL1_R, .type = ARM_CP_CONST,
7639               .accessfn = access_aa64_tid3,
7640               .resetvalue = 0 },
7641             { .name = "ID_AA64ISAR4_EL1_RESERVED", .state = ARM_CP_STATE_AA64,
7642               .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 6, .opc2 = 4,
7643               .access = PL1_R, .type = ARM_CP_CONST,
7644               .accessfn = access_aa64_tid3,
7645               .resetvalue = 0 },
7646             { .name = "ID_AA64ISAR5_EL1_RESERVED", .state = ARM_CP_STATE_AA64,
7647               .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 6, .opc2 = 5,
7648               .access = PL1_R, .type = ARM_CP_CONST,
7649               .accessfn = access_aa64_tid3,
7650               .resetvalue = 0 },
7651             { .name = "ID_AA64ISAR6_EL1_RESERVED", .state = ARM_CP_STATE_AA64,
7652               .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 6, .opc2 = 6,
7653               .access = PL1_R, .type = ARM_CP_CONST,
7654               .accessfn = access_aa64_tid3,
7655               .resetvalue = 0 },
7656             { .name = "ID_AA64ISAR7_EL1_RESERVED", .state = ARM_CP_STATE_AA64,
7657               .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 6, .opc2 = 7,
7658               .access = PL1_R, .type = ARM_CP_CONST,
7659               .accessfn = access_aa64_tid3,
7660               .resetvalue = 0 },
7661             { .name = "ID_AA64MMFR0_EL1", .state = ARM_CP_STATE_AA64,
7662               .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 7, .opc2 = 0,
7663               .access = PL1_R, .type = ARM_CP_CONST,
7664               .accessfn = access_aa64_tid3,
7665               .resetvalue = cpu->isar.id_aa64mmfr0 },
7666             { .name = "ID_AA64MMFR1_EL1", .state = ARM_CP_STATE_AA64,
7667               .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 7, .opc2 = 1,
7668               .access = PL1_R, .type = ARM_CP_CONST,
7669               .accessfn = access_aa64_tid3,
7670               .resetvalue = cpu->isar.id_aa64mmfr1 },
7671             { .name = "ID_AA64MMFR2_EL1", .state = ARM_CP_STATE_AA64,
7672               .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 7, .opc2 = 2,
7673               .access = PL1_R, .type = ARM_CP_CONST,
7674               .accessfn = access_aa64_tid3,
7675               .resetvalue = cpu->isar.id_aa64mmfr2 },
7676             { .name = "ID_AA64MMFR3_EL1_RESERVED", .state = ARM_CP_STATE_AA64,
7677               .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 7, .opc2 = 3,
7678               .access = PL1_R, .type = ARM_CP_CONST,
7679               .accessfn = access_aa64_tid3,
7680               .resetvalue = 0 },
7681             { .name = "ID_AA64MMFR4_EL1_RESERVED", .state = ARM_CP_STATE_AA64,
7682               .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 7, .opc2 = 4,
7683               .access = PL1_R, .type = ARM_CP_CONST,
7684               .accessfn = access_aa64_tid3,
7685               .resetvalue = 0 },
7686             { .name = "ID_AA64MMFR5_EL1_RESERVED", .state = ARM_CP_STATE_AA64,
7687               .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 7, .opc2 = 5,
7688               .access = PL1_R, .type = ARM_CP_CONST,
7689               .accessfn = access_aa64_tid3,
7690               .resetvalue = 0 },
7691             { .name = "ID_AA64MMFR6_EL1_RESERVED", .state = ARM_CP_STATE_AA64,
7692               .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 7, .opc2 = 6,
7693               .access = PL1_R, .type = ARM_CP_CONST,
7694               .accessfn = access_aa64_tid3,
7695               .resetvalue = 0 },
7696             { .name = "ID_AA64MMFR7_EL1_RESERVED", .state = ARM_CP_STATE_AA64,
7697               .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 7, .opc2 = 7,
7698               .access = PL1_R, .type = ARM_CP_CONST,
7699               .accessfn = access_aa64_tid3,
7700               .resetvalue = 0 },
7701             { .name = "MVFR0_EL1", .state = ARM_CP_STATE_AA64,
7702               .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 3, .opc2 = 0,
7703               .access = PL1_R, .type = ARM_CP_CONST,
7704               .accessfn = access_aa64_tid3,
7705               .resetvalue = cpu->isar.mvfr0 },
7706             { .name = "MVFR1_EL1", .state = ARM_CP_STATE_AA64,
7707               .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 3, .opc2 = 1,
7708               .access = PL1_R, .type = ARM_CP_CONST,
7709               .accessfn = access_aa64_tid3,
7710               .resetvalue = cpu->isar.mvfr1 },
7711             { .name = "MVFR2_EL1", .state = ARM_CP_STATE_AA64,
7712               .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 3, .opc2 = 2,
7713               .access = PL1_R, .type = ARM_CP_CONST,
7714               .accessfn = access_aa64_tid3,
7715               .resetvalue = cpu->isar.mvfr2 },
7716             { .name = "MVFR3_EL1_RESERVED", .state = ARM_CP_STATE_AA64,
7717               .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 3, .opc2 = 3,
7718               .access = PL1_R, .type = ARM_CP_CONST,
7719               .accessfn = access_aa64_tid3,
7720               .resetvalue = 0 },
7721             { .name = "ID_PFR2", .state = ARM_CP_STATE_BOTH,
7722               .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 3, .opc2 = 4,
7723               .access = PL1_R, .type = ARM_CP_CONST,
7724               .accessfn = access_aa64_tid3,
7725               .resetvalue = cpu->isar.id_pfr2 },
7726             { .name = "MVFR5_EL1_RESERVED", .state = ARM_CP_STATE_AA64,
7727               .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 3, .opc2 = 5,
7728               .access = PL1_R, .type = ARM_CP_CONST,
7729               .accessfn = access_aa64_tid3,
7730               .resetvalue = 0 },
7731             { .name = "MVFR6_EL1_RESERVED", .state = ARM_CP_STATE_AA64,
7732               .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 3, .opc2 = 6,
7733               .access = PL1_R, .type = ARM_CP_CONST,
7734               .accessfn = access_aa64_tid3,
7735               .resetvalue = 0 },
7736             { .name = "MVFR7_EL1_RESERVED", .state = ARM_CP_STATE_AA64,
7737               .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 3, .opc2 = 7,
7738               .access = PL1_R, .type = ARM_CP_CONST,
7739               .accessfn = access_aa64_tid3,
7740               .resetvalue = 0 },
7741             { .name = "PMCEID0", .state = ARM_CP_STATE_AA32,
7742               .cp = 15, .opc1 = 0, .crn = 9, .crm = 12, .opc2 = 6,
7743               .access = PL0_R, .accessfn = pmreg_access, .type = ARM_CP_CONST,
7744               .resetvalue = extract64(cpu->pmceid0, 0, 32) },
7745             { .name = "PMCEID0_EL0", .state = ARM_CP_STATE_AA64,
7746               .opc0 = 3, .opc1 = 3, .crn = 9, .crm = 12, .opc2 = 6,
7747               .access = PL0_R, .accessfn = pmreg_access, .type = ARM_CP_CONST,
7748               .resetvalue = cpu->pmceid0 },
7749             { .name = "PMCEID1", .state = ARM_CP_STATE_AA32,
7750               .cp = 15, .opc1 = 0, .crn = 9, .crm = 12, .opc2 = 7,
7751               .access = PL0_R, .accessfn = pmreg_access, .type = ARM_CP_CONST,
7752               .resetvalue = extract64(cpu->pmceid1, 0, 32) },
7753             { .name = "PMCEID1_EL0", .state = ARM_CP_STATE_AA64,
7754               .opc0 = 3, .opc1 = 3, .crn = 9, .crm = 12, .opc2 = 7,
7755               .access = PL0_R, .accessfn = pmreg_access, .type = ARM_CP_CONST,
7756               .resetvalue = cpu->pmceid1 },
7757             REGINFO_SENTINEL
7758         };
7759 #ifdef CONFIG_USER_ONLY
7760         ARMCPRegUserSpaceInfo v8_user_idregs[] = {
7761             { .name = "ID_AA64PFR0_EL1",
7762               .exported_bits = 0x000f000f00ff0000,
7763               .fixed_bits    = 0x0000000000000011 },
7764             { .name = "ID_AA64PFR1_EL1",
7765               .exported_bits = 0x00000000000000f0 },
7766             { .name = "ID_AA64PFR*_EL1_RESERVED",
7767               .is_glob = true                     },
7768             { .name = "ID_AA64ZFR0_EL1"           },
7769             { .name = "ID_AA64MMFR0_EL1",
7770               .fixed_bits    = 0x00000000ff000000 },
7771             { .name = "ID_AA64MMFR1_EL1"          },
7772             { .name = "ID_AA64MMFR*_EL1_RESERVED",
7773               .is_glob = true                     },
7774             { .name = "ID_AA64DFR0_EL1",
7775               .fixed_bits    = 0x0000000000000006 },
7776             { .name = "ID_AA64DFR1_EL1"           },
7777             { .name = "ID_AA64DFR*_EL1_RESERVED",
7778               .is_glob = true                     },
7779             { .name = "ID_AA64AFR*",
7780               .is_glob = true                     },
7781             { .name = "ID_AA64ISAR0_EL1",
7782               .exported_bits = 0x00fffffff0fffff0 },
7783             { .name = "ID_AA64ISAR1_EL1",
7784               .exported_bits = 0x000000f0ffffffff },
7785             { .name = "ID_AA64ISAR*_EL1_RESERVED",
7786               .is_glob = true                     },
7787             REGUSERINFO_SENTINEL
7788         };
7789         modify_arm_cp_regs(v8_idregs, v8_user_idregs);
7790 #endif
7791         /* RVBAR_EL1 is only implemented if EL1 is the highest EL */
7792         if (!arm_feature(env, ARM_FEATURE_EL3) &&
7793             !arm_feature(env, ARM_FEATURE_EL2)) {
7794             ARMCPRegInfo rvbar = {
7795                 .name = "RVBAR_EL1", .state = ARM_CP_STATE_AA64,
7796                 .opc0 = 3, .opc1 = 0, .crn = 12, .crm = 0, .opc2 = 1,
7797                 .type = ARM_CP_CONST, .access = PL1_R, .resetvalue = cpu->rvbar
7798             };
7799             define_one_arm_cp_reg(cpu, &rvbar);
7800         }
7801         define_arm_cp_regs(cpu, v8_idregs);
7802         define_arm_cp_regs(cpu, v8_cp_reginfo);
7803     }
7804     if (arm_feature(env, ARM_FEATURE_EL2)) {
7805         uint64_t vmpidr_def = mpidr_read_val(env);
7806         ARMCPRegInfo vpidr_regs[] = {
7807             { .name = "VPIDR", .state = ARM_CP_STATE_AA32,
7808               .cp = 15, .opc1 = 4, .crn = 0, .crm = 0, .opc2 = 0,
7809               .access = PL2_RW, .accessfn = access_el3_aa32ns,
7810               .resetvalue = cpu->midr, .type = ARM_CP_ALIAS,
7811               .fieldoffset = offsetoflow32(CPUARMState, cp15.vpidr_el2) },
7812             { .name = "VPIDR_EL2", .state = ARM_CP_STATE_AA64,
7813               .opc0 = 3, .opc1 = 4, .crn = 0, .crm = 0, .opc2 = 0,
7814               .access = PL2_RW, .resetvalue = cpu->midr,
7815               .fieldoffset = offsetof(CPUARMState, cp15.vpidr_el2) },
7816             { .name = "VMPIDR", .state = ARM_CP_STATE_AA32,
7817               .cp = 15, .opc1 = 4, .crn = 0, .crm = 0, .opc2 = 5,
7818               .access = PL2_RW, .accessfn = access_el3_aa32ns,
7819               .resetvalue = vmpidr_def, .type = ARM_CP_ALIAS,
7820               .fieldoffset = offsetoflow32(CPUARMState, cp15.vmpidr_el2) },
7821             { .name = "VMPIDR_EL2", .state = ARM_CP_STATE_AA64,
7822               .opc0 = 3, .opc1 = 4, .crn = 0, .crm = 0, .opc2 = 5,
7823               .access = PL2_RW,
7824               .resetvalue = vmpidr_def,
7825               .fieldoffset = offsetof(CPUARMState, cp15.vmpidr_el2) },
7826             REGINFO_SENTINEL
7827         };
7828         define_arm_cp_regs(cpu, vpidr_regs);
7829         define_arm_cp_regs(cpu, el2_cp_reginfo);
7830         if (arm_feature(env, ARM_FEATURE_V8)) {
7831             define_arm_cp_regs(cpu, el2_v8_cp_reginfo);
7832         }
7833         if (cpu_isar_feature(aa64_sel2, cpu)) {
7834             define_arm_cp_regs(cpu, el2_sec_cp_reginfo);
7835         }
7836         /* RVBAR_EL2 is only implemented if EL2 is the highest EL */
7837         if (!arm_feature(env, ARM_FEATURE_EL3)) {
7838             ARMCPRegInfo rvbar = {
7839                 .name = "RVBAR_EL2", .state = ARM_CP_STATE_AA64,
7840                 .opc0 = 3, .opc1 = 4, .crn = 12, .crm = 0, .opc2 = 1,
7841                 .type = ARM_CP_CONST, .access = PL2_R, .resetvalue = cpu->rvbar
7842             };
7843             define_one_arm_cp_reg(cpu, &rvbar);
7844         }
7845     } else {
7846         /* If EL2 is missing but higher ELs are enabled, we need to
7847          * register the no_el2 reginfos.
7848          */
7849         if (arm_feature(env, ARM_FEATURE_EL3)) {
7850             /* When EL3 exists but not EL2, VPIDR and VMPIDR take the value
7851              * of MIDR_EL1 and MPIDR_EL1.
7852              */
7853             ARMCPRegInfo vpidr_regs[] = {
7854                 { .name = "VPIDR_EL2", .state = ARM_CP_STATE_BOTH,
7855                   .opc0 = 3, .opc1 = 4, .crn = 0, .crm = 0, .opc2 = 0,
7856                   .access = PL2_RW, .accessfn = access_el3_aa32ns,
7857                   .type = ARM_CP_CONST, .resetvalue = cpu->midr,
7858                   .fieldoffset = offsetof(CPUARMState, cp15.vpidr_el2) },
7859                 { .name = "VMPIDR_EL2", .state = ARM_CP_STATE_BOTH,
7860                   .opc0 = 3, .opc1 = 4, .crn = 0, .crm = 0, .opc2 = 5,
7861                   .access = PL2_RW, .accessfn = access_el3_aa32ns,
7862                   .type = ARM_CP_NO_RAW,
7863                   .writefn = arm_cp_write_ignore, .readfn = mpidr_read },
7864                 REGINFO_SENTINEL
7865             };
7866             define_arm_cp_regs(cpu, vpidr_regs);
7867             define_arm_cp_regs(cpu, el3_no_el2_cp_reginfo);
7868             if (arm_feature(env, ARM_FEATURE_V8)) {
7869                 define_arm_cp_regs(cpu, el3_no_el2_v8_cp_reginfo);
7870             }
7871         }
7872     }
7873     if (arm_feature(env, ARM_FEATURE_EL3)) {
7874         define_arm_cp_regs(cpu, el3_cp_reginfo);
7875         ARMCPRegInfo el3_regs[] = {
7876             { .name = "RVBAR_EL3", .state = ARM_CP_STATE_AA64,
7877               .opc0 = 3, .opc1 = 6, .crn = 12, .crm = 0, .opc2 = 1,
7878               .type = ARM_CP_CONST, .access = PL3_R, .resetvalue = cpu->rvbar },
7879             { .name = "SCTLR_EL3", .state = ARM_CP_STATE_AA64,
7880               .opc0 = 3, .opc1 = 6, .crn = 1, .crm = 0, .opc2 = 0,
7881               .access = PL3_RW,
7882               .raw_writefn = raw_write, .writefn = sctlr_write,
7883               .fieldoffset = offsetof(CPUARMState, cp15.sctlr_el[3]),
7884               .resetvalue = cpu->reset_sctlr },
7885             REGINFO_SENTINEL
7886         };
7887 
7888         define_arm_cp_regs(cpu, el3_regs);
7889     }
7890     /* The behaviour of NSACR is sufficiently various that we don't
7891      * try to describe it in a single reginfo:
7892      *  if EL3 is 64 bit, then trap to EL3 from S EL1,
7893      *     reads as constant 0xc00 from NS EL1 and NS EL2
7894      *  if EL3 is 32 bit, then RW at EL3, RO at NS EL1 and NS EL2
7895      *  if v7 without EL3, register doesn't exist
7896      *  if v8 without EL3, reads as constant 0xc00 from NS EL1 and NS EL2
7897      */
7898     if (arm_feature(env, ARM_FEATURE_EL3)) {
7899         if (arm_feature(env, ARM_FEATURE_AARCH64)) {
7900             ARMCPRegInfo nsacr = {
7901                 .name = "NSACR", .type = ARM_CP_CONST,
7902                 .cp = 15, .opc1 = 0, .crn = 1, .crm = 1, .opc2 = 2,
7903                 .access = PL1_RW, .accessfn = nsacr_access,
7904                 .resetvalue = 0xc00
7905             };
7906             define_one_arm_cp_reg(cpu, &nsacr);
7907         } else {
7908             ARMCPRegInfo nsacr = {
7909                 .name = "NSACR",
7910                 .cp = 15, .opc1 = 0, .crn = 1, .crm = 1, .opc2 = 2,
7911                 .access = PL3_RW | PL1_R,
7912                 .resetvalue = 0,
7913                 .fieldoffset = offsetof(CPUARMState, cp15.nsacr)
7914             };
7915             define_one_arm_cp_reg(cpu, &nsacr);
7916         }
7917     } else {
7918         if (arm_feature(env, ARM_FEATURE_V8)) {
7919             ARMCPRegInfo nsacr = {
7920                 .name = "NSACR", .type = ARM_CP_CONST,
7921                 .cp = 15, .opc1 = 0, .crn = 1, .crm = 1, .opc2 = 2,
7922                 .access = PL1_R,
7923                 .resetvalue = 0xc00
7924             };
7925             define_one_arm_cp_reg(cpu, &nsacr);
7926         }
7927     }
7928 
7929     if (arm_feature(env, ARM_FEATURE_PMSA)) {
7930         if (arm_feature(env, ARM_FEATURE_V6)) {
7931             /* PMSAv6 not implemented */
7932             assert(arm_feature(env, ARM_FEATURE_V7));
7933             define_arm_cp_regs(cpu, vmsa_pmsa_cp_reginfo);
7934             define_arm_cp_regs(cpu, pmsav7_cp_reginfo);
7935         } else {
7936             define_arm_cp_regs(cpu, pmsav5_cp_reginfo);
7937         }
7938     } else {
7939         define_arm_cp_regs(cpu, vmsa_pmsa_cp_reginfo);
7940         define_arm_cp_regs(cpu, vmsa_cp_reginfo);
7941         /* TTCBR2 is introduced with ARMv8.2-AA32HPD.  */
7942         if (cpu_isar_feature(aa32_hpd, cpu)) {
7943             define_one_arm_cp_reg(cpu, &ttbcr2_reginfo);
7944         }
7945     }
7946     if (arm_feature(env, ARM_FEATURE_THUMB2EE)) {
7947         define_arm_cp_regs(cpu, t2ee_cp_reginfo);
7948     }
7949     if (arm_feature(env, ARM_FEATURE_GENERIC_TIMER)) {
7950         define_arm_cp_regs(cpu, generic_timer_cp_reginfo);
7951     }
7952     if (arm_feature(env, ARM_FEATURE_VAPA)) {
7953         define_arm_cp_regs(cpu, vapa_cp_reginfo);
7954     }
7955     if (arm_feature(env, ARM_FEATURE_CACHE_TEST_CLEAN)) {
7956         define_arm_cp_regs(cpu, cache_test_clean_cp_reginfo);
7957     }
7958     if (arm_feature(env, ARM_FEATURE_CACHE_DIRTY_REG)) {
7959         define_arm_cp_regs(cpu, cache_dirty_status_cp_reginfo);
7960     }
7961     if (arm_feature(env, ARM_FEATURE_CACHE_BLOCK_OPS)) {
7962         define_arm_cp_regs(cpu, cache_block_ops_cp_reginfo);
7963     }
7964     if (arm_feature(env, ARM_FEATURE_OMAPCP)) {
7965         define_arm_cp_regs(cpu, omap_cp_reginfo);
7966     }
7967     if (arm_feature(env, ARM_FEATURE_STRONGARM)) {
7968         define_arm_cp_regs(cpu, strongarm_cp_reginfo);
7969     }
7970     if (arm_feature(env, ARM_FEATURE_XSCALE)) {
7971         define_arm_cp_regs(cpu, xscale_cp_reginfo);
7972     }
7973     if (arm_feature(env, ARM_FEATURE_DUMMY_C15_REGS)) {
7974         define_arm_cp_regs(cpu, dummy_c15_cp_reginfo);
7975     }
7976     if (arm_feature(env, ARM_FEATURE_LPAE)) {
7977         define_arm_cp_regs(cpu, lpae_cp_reginfo);
7978     }
7979     if (cpu_isar_feature(aa32_jazelle, cpu)) {
7980         define_arm_cp_regs(cpu, jazelle_regs);
7981     }
7982     /* Slightly awkwardly, the OMAP and StrongARM cores need all of
7983      * cp15 crn=0 to be writes-ignored, whereas for other cores they should
7984      * be read-only (ie write causes UNDEF exception).
7985      */
7986     {
7987         ARMCPRegInfo id_pre_v8_midr_cp_reginfo[] = {
7988             /* Pre-v8 MIDR space.
7989              * Note that the MIDR isn't a simple constant register because
7990              * of the TI925 behaviour where writes to another register can
7991              * cause the MIDR value to change.
7992              *
7993              * Unimplemented registers in the c15 0 0 0 space default to
7994              * MIDR. Define MIDR first as this entire space, then CTR, TCMTR
7995              * and friends override accordingly.
7996              */
7997             { .name = "MIDR",
7998               .cp = 15, .crn = 0, .crm = 0, .opc1 = 0, .opc2 = CP_ANY,
7999               .access = PL1_R, .resetvalue = cpu->midr,
8000               .writefn = arm_cp_write_ignore, .raw_writefn = raw_write,
8001               .readfn = midr_read,
8002               .fieldoffset = offsetof(CPUARMState, cp15.c0_cpuid),
8003               .type = ARM_CP_OVERRIDE },
8004             /* crn = 0 op1 = 0 crm = 3..7 : currently unassigned; we RAZ. */
8005             { .name = "DUMMY",
8006               .cp = 15, .crn = 0, .crm = 3, .opc1 = 0, .opc2 = CP_ANY,
8007               .access = PL1_R, .type = ARM_CP_CONST, .resetvalue = 0 },
8008             { .name = "DUMMY",
8009               .cp = 15, .crn = 0, .crm = 4, .opc1 = 0, .opc2 = CP_ANY,
8010               .access = PL1_R, .type = ARM_CP_CONST, .resetvalue = 0 },
8011             { .name = "DUMMY",
8012               .cp = 15, .crn = 0, .crm = 5, .opc1 = 0, .opc2 = CP_ANY,
8013               .access = PL1_R, .type = ARM_CP_CONST, .resetvalue = 0 },
8014             { .name = "DUMMY",
8015               .cp = 15, .crn = 0, .crm = 6, .opc1 = 0, .opc2 = CP_ANY,
8016               .access = PL1_R, .type = ARM_CP_CONST, .resetvalue = 0 },
8017             { .name = "DUMMY",
8018               .cp = 15, .crn = 0, .crm = 7, .opc1 = 0, .opc2 = CP_ANY,
8019               .access = PL1_R, .type = ARM_CP_CONST, .resetvalue = 0 },
8020             REGINFO_SENTINEL
8021         };
8022         ARMCPRegInfo id_v8_midr_cp_reginfo[] = {
8023             { .name = "MIDR_EL1", .state = ARM_CP_STATE_BOTH,
8024               .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 0, .opc2 = 0,
8025               .access = PL1_R, .type = ARM_CP_NO_RAW, .resetvalue = cpu->midr,
8026               .fieldoffset = offsetof(CPUARMState, cp15.c0_cpuid),
8027               .readfn = midr_read },
8028             /* crn = 0 op1 = 0 crm = 0 op2 = 4,7 : AArch32 aliases of MIDR */
8029             { .name = "MIDR", .type = ARM_CP_ALIAS | ARM_CP_CONST,
8030               .cp = 15, .crn = 0, .crm = 0, .opc1 = 0, .opc2 = 4,
8031               .access = PL1_R, .resetvalue = cpu->midr },
8032             { .name = "MIDR", .type = ARM_CP_ALIAS | ARM_CP_CONST,
8033               .cp = 15, .crn = 0, .crm = 0, .opc1 = 0, .opc2 = 7,
8034               .access = PL1_R, .resetvalue = cpu->midr },
8035             { .name = "REVIDR_EL1", .state = ARM_CP_STATE_BOTH,
8036               .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 0, .opc2 = 6,
8037               .access = PL1_R,
8038               .accessfn = access_aa64_tid1,
8039               .type = ARM_CP_CONST, .resetvalue = cpu->revidr },
8040             REGINFO_SENTINEL
8041         };
8042         ARMCPRegInfo id_cp_reginfo[] = {
8043             /* These are common to v8 and pre-v8 */
8044             { .name = "CTR",
8045               .cp = 15, .crn = 0, .crm = 0, .opc1 = 0, .opc2 = 1,
8046               .access = PL1_R, .accessfn = ctr_el0_access,
8047               .type = ARM_CP_CONST, .resetvalue = cpu->ctr },
8048             { .name = "CTR_EL0", .state = ARM_CP_STATE_AA64,
8049               .opc0 = 3, .opc1 = 3, .opc2 = 1, .crn = 0, .crm = 0,
8050               .access = PL0_R, .accessfn = ctr_el0_access,
8051               .type = ARM_CP_CONST, .resetvalue = cpu->ctr },
8052             /* TCMTR and TLBTR exist in v8 but have no 64-bit versions */
8053             { .name = "TCMTR",
8054               .cp = 15, .crn = 0, .crm = 0, .opc1 = 0, .opc2 = 2,
8055               .access = PL1_R,
8056               .accessfn = access_aa32_tid1,
8057               .type = ARM_CP_CONST, .resetvalue = 0 },
8058             REGINFO_SENTINEL
8059         };
8060         /* TLBTR is specific to VMSA */
8061         ARMCPRegInfo id_tlbtr_reginfo = {
8062               .name = "TLBTR",
8063               .cp = 15, .crn = 0, .crm = 0, .opc1 = 0, .opc2 = 3,
8064               .access = PL1_R,
8065               .accessfn = access_aa32_tid1,
8066               .type = ARM_CP_CONST, .resetvalue = 0,
8067         };
8068         /* MPUIR is specific to PMSA V6+ */
8069         ARMCPRegInfo id_mpuir_reginfo = {
8070               .name = "MPUIR",
8071               .cp = 15, .crn = 0, .crm = 0, .opc1 = 0, .opc2 = 4,
8072               .access = PL1_R, .type = ARM_CP_CONST,
8073               .resetvalue = cpu->pmsav7_dregion << 8
8074         };
8075         ARMCPRegInfo crn0_wi_reginfo = {
8076             .name = "CRN0_WI", .cp = 15, .crn = 0, .crm = CP_ANY,
8077             .opc1 = CP_ANY, .opc2 = CP_ANY, .access = PL1_W,
8078             .type = ARM_CP_NOP | ARM_CP_OVERRIDE
8079         };
8080 #ifdef CONFIG_USER_ONLY
8081         ARMCPRegUserSpaceInfo id_v8_user_midr_cp_reginfo[] = {
8082             { .name = "MIDR_EL1",
8083               .exported_bits = 0x00000000ffffffff },
8084             { .name = "REVIDR_EL1"                },
8085             REGUSERINFO_SENTINEL
8086         };
8087         modify_arm_cp_regs(id_v8_midr_cp_reginfo, id_v8_user_midr_cp_reginfo);
8088 #endif
8089         if (arm_feature(env, ARM_FEATURE_OMAPCP) ||
8090             arm_feature(env, ARM_FEATURE_STRONGARM)) {
8091             ARMCPRegInfo *r;
8092             /* Register the blanket "writes ignored" value first to cover the
8093              * whole space. Then update the specific ID registers to allow write
8094              * access, so that they ignore writes rather than causing them to
8095              * UNDEF.
8096              */
8097             define_one_arm_cp_reg(cpu, &crn0_wi_reginfo);
8098             for (r = id_pre_v8_midr_cp_reginfo;
8099                  r->type != ARM_CP_SENTINEL; r++) {
8100                 r->access = PL1_RW;
8101             }
8102             for (r = id_cp_reginfo; r->type != ARM_CP_SENTINEL; r++) {
8103                 r->access = PL1_RW;
8104             }
8105             id_mpuir_reginfo.access = PL1_RW;
8106             id_tlbtr_reginfo.access = PL1_RW;
8107         }
8108         if (arm_feature(env, ARM_FEATURE_V8)) {
8109             define_arm_cp_regs(cpu, id_v8_midr_cp_reginfo);
8110         } else {
8111             define_arm_cp_regs(cpu, id_pre_v8_midr_cp_reginfo);
8112         }
8113         define_arm_cp_regs(cpu, id_cp_reginfo);
8114         if (!arm_feature(env, ARM_FEATURE_PMSA)) {
8115             define_one_arm_cp_reg(cpu, &id_tlbtr_reginfo);
8116         } else if (arm_feature(env, ARM_FEATURE_V7)) {
8117             define_one_arm_cp_reg(cpu, &id_mpuir_reginfo);
8118         }
8119     }
8120 
8121     if (arm_feature(env, ARM_FEATURE_MPIDR)) {
8122         ARMCPRegInfo mpidr_cp_reginfo[] = {
8123             { .name = "MPIDR_EL1", .state = ARM_CP_STATE_BOTH,
8124               .opc0 = 3, .crn = 0, .crm = 0, .opc1 = 0, .opc2 = 5,
8125               .access = PL1_R, .readfn = mpidr_read, .type = ARM_CP_NO_RAW },
8126             REGINFO_SENTINEL
8127         };
8128 #ifdef CONFIG_USER_ONLY
8129         ARMCPRegUserSpaceInfo mpidr_user_cp_reginfo[] = {
8130             { .name = "MPIDR_EL1",
8131               .fixed_bits = 0x0000000080000000 },
8132             REGUSERINFO_SENTINEL
8133         };
8134         modify_arm_cp_regs(mpidr_cp_reginfo, mpidr_user_cp_reginfo);
8135 #endif
8136         define_arm_cp_regs(cpu, mpidr_cp_reginfo);
8137     }
8138 
8139     if (arm_feature(env, ARM_FEATURE_AUXCR)) {
8140         ARMCPRegInfo auxcr_reginfo[] = {
8141             { .name = "ACTLR_EL1", .state = ARM_CP_STATE_BOTH,
8142               .opc0 = 3, .opc1 = 0, .crn = 1, .crm = 0, .opc2 = 1,
8143               .access = PL1_RW, .accessfn = access_tacr,
8144               .type = ARM_CP_CONST, .resetvalue = cpu->reset_auxcr },
8145             { .name = "ACTLR_EL2", .state = ARM_CP_STATE_BOTH,
8146               .opc0 = 3, .opc1 = 4, .crn = 1, .crm = 0, .opc2 = 1,
8147               .access = PL2_RW, .type = ARM_CP_CONST,
8148               .resetvalue = 0 },
8149             { .name = "ACTLR_EL3", .state = ARM_CP_STATE_AA64,
8150               .opc0 = 3, .opc1 = 6, .crn = 1, .crm = 0, .opc2 = 1,
8151               .access = PL3_RW, .type = ARM_CP_CONST,
8152               .resetvalue = 0 },
8153             REGINFO_SENTINEL
8154         };
8155         define_arm_cp_regs(cpu, auxcr_reginfo);
8156         if (cpu_isar_feature(aa32_ac2, cpu)) {
8157             define_arm_cp_regs(cpu, actlr2_hactlr2_reginfo);
8158         }
8159     }
8160 
8161     if (arm_feature(env, ARM_FEATURE_CBAR)) {
8162         /*
8163          * CBAR is IMPDEF, but common on Arm Cortex-A implementations.
8164          * There are two flavours:
8165          *  (1) older 32-bit only cores have a simple 32-bit CBAR
8166          *  (2) 64-bit cores have a 64-bit CBAR visible to AArch64, plus a
8167          *      32-bit register visible to AArch32 at a different encoding
8168          *      to the "flavour 1" register and with the bits rearranged to
8169          *      be able to squash a 64-bit address into the 32-bit view.
8170          * We distinguish the two via the ARM_FEATURE_AARCH64 flag, but
8171          * in future if we support AArch32-only configs of some of the
8172          * AArch64 cores we might need to add a specific feature flag
8173          * to indicate cores with "flavour 2" CBAR.
8174          */
8175         if (arm_feature(env, ARM_FEATURE_AARCH64)) {
8176             /* 32 bit view is [31:18] 0...0 [43:32]. */
8177             uint32_t cbar32 = (extract64(cpu->reset_cbar, 18, 14) << 18)
8178                 | extract64(cpu->reset_cbar, 32, 12);
8179             ARMCPRegInfo cbar_reginfo[] = {
8180                 { .name = "CBAR",
8181                   .type = ARM_CP_CONST,
8182                   .cp = 15, .crn = 15, .crm = 3, .opc1 = 1, .opc2 = 0,
8183                   .access = PL1_R, .resetvalue = cbar32 },
8184                 { .name = "CBAR_EL1", .state = ARM_CP_STATE_AA64,
8185                   .type = ARM_CP_CONST,
8186                   .opc0 = 3, .opc1 = 1, .crn = 15, .crm = 3, .opc2 = 0,
8187                   .access = PL1_R, .resetvalue = cpu->reset_cbar },
8188                 REGINFO_SENTINEL
8189             };
8190             /* We don't implement a r/w 64 bit CBAR currently */
8191             assert(arm_feature(env, ARM_FEATURE_CBAR_RO));
8192             define_arm_cp_regs(cpu, cbar_reginfo);
8193         } else {
8194             ARMCPRegInfo cbar = {
8195                 .name = "CBAR",
8196                 .cp = 15, .crn = 15, .crm = 0, .opc1 = 4, .opc2 = 0,
8197                 .access = PL1_R|PL3_W, .resetvalue = cpu->reset_cbar,
8198                 .fieldoffset = offsetof(CPUARMState,
8199                                         cp15.c15_config_base_address)
8200             };
8201             if (arm_feature(env, ARM_FEATURE_CBAR_RO)) {
8202                 cbar.access = PL1_R;
8203                 cbar.fieldoffset = 0;
8204                 cbar.type = ARM_CP_CONST;
8205             }
8206             define_one_arm_cp_reg(cpu, &cbar);
8207         }
8208     }
8209 
8210     if (arm_feature(env, ARM_FEATURE_VBAR)) {
8211         ARMCPRegInfo vbar_cp_reginfo[] = {
8212             { .name = "VBAR", .state = ARM_CP_STATE_BOTH,
8213               .opc0 = 3, .crn = 12, .crm = 0, .opc1 = 0, .opc2 = 0,
8214               .access = PL1_RW, .writefn = vbar_write,
8215               .bank_fieldoffsets = { offsetof(CPUARMState, cp15.vbar_s),
8216                                      offsetof(CPUARMState, cp15.vbar_ns) },
8217               .resetvalue = 0 },
8218             REGINFO_SENTINEL
8219         };
8220         define_arm_cp_regs(cpu, vbar_cp_reginfo);
8221     }
8222 
8223     /* Generic registers whose values depend on the implementation */
8224     {
8225         ARMCPRegInfo sctlr = {
8226             .name = "SCTLR", .state = ARM_CP_STATE_BOTH,
8227             .opc0 = 3, .opc1 = 0, .crn = 1, .crm = 0, .opc2 = 0,
8228             .access = PL1_RW, .accessfn = access_tvm_trvm,
8229             .bank_fieldoffsets = { offsetof(CPUARMState, cp15.sctlr_s),
8230                                    offsetof(CPUARMState, cp15.sctlr_ns) },
8231             .writefn = sctlr_write, .resetvalue = cpu->reset_sctlr,
8232             .raw_writefn = raw_write,
8233         };
8234         if (arm_feature(env, ARM_FEATURE_XSCALE)) {
8235             /* Normally we would always end the TB on an SCTLR write, but Linux
8236              * arch/arm/mach-pxa/sleep.S expects two instructions following
8237              * an MMU enable to execute from cache.  Imitate this behaviour.
8238              */
8239             sctlr.type |= ARM_CP_SUPPRESS_TB_END;
8240         }
8241         define_one_arm_cp_reg(cpu, &sctlr);
8242     }
8243 
8244     if (cpu_isar_feature(aa64_lor, cpu)) {
8245         define_arm_cp_regs(cpu, lor_reginfo);
8246     }
8247     if (cpu_isar_feature(aa64_pan, cpu)) {
8248         define_one_arm_cp_reg(cpu, &pan_reginfo);
8249     }
8250 #ifndef CONFIG_USER_ONLY
8251     if (cpu_isar_feature(aa64_ats1e1, cpu)) {
8252         define_arm_cp_regs(cpu, ats1e1_reginfo);
8253     }
8254     if (cpu_isar_feature(aa32_ats1e1, cpu)) {
8255         define_arm_cp_regs(cpu, ats1cp_reginfo);
8256     }
8257 #endif
8258     if (cpu_isar_feature(aa64_uao, cpu)) {
8259         define_one_arm_cp_reg(cpu, &uao_reginfo);
8260     }
8261 
8262     if (cpu_isar_feature(aa64_dit, cpu)) {
8263         define_one_arm_cp_reg(cpu, &dit_reginfo);
8264     }
8265     if (cpu_isar_feature(aa64_ssbs, cpu)) {
8266         define_one_arm_cp_reg(cpu, &ssbs_reginfo);
8267     }
8268 
8269     if (arm_feature(env, ARM_FEATURE_EL2) && cpu_isar_feature(aa64_vh, cpu)) {
8270         define_arm_cp_regs(cpu, vhe_reginfo);
8271     }
8272 
8273     if (cpu_isar_feature(aa64_sve, cpu)) {
8274         define_one_arm_cp_reg(cpu, &zcr_el1_reginfo);
8275         if (arm_feature(env, ARM_FEATURE_EL2)) {
8276             define_one_arm_cp_reg(cpu, &zcr_el2_reginfo);
8277         } else {
8278             define_one_arm_cp_reg(cpu, &zcr_no_el2_reginfo);
8279         }
8280         if (arm_feature(env, ARM_FEATURE_EL3)) {
8281             define_one_arm_cp_reg(cpu, &zcr_el3_reginfo);
8282         }
8283     }
8284 
8285 #ifdef TARGET_AARCH64
8286     if (cpu_isar_feature(aa64_pauth, cpu)) {
8287         define_arm_cp_regs(cpu, pauth_reginfo);
8288     }
8289     if (cpu_isar_feature(aa64_rndr, cpu)) {
8290         define_arm_cp_regs(cpu, rndr_reginfo);
8291     }
8292 #ifndef CONFIG_USER_ONLY
8293     /* Data Cache clean instructions up to PoP */
8294     if (cpu_isar_feature(aa64_dcpop, cpu)) {
8295         define_one_arm_cp_reg(cpu, dcpop_reg);
8296 
8297         if (cpu_isar_feature(aa64_dcpodp, cpu)) {
8298             define_one_arm_cp_reg(cpu, dcpodp_reg);
8299         }
8300     }
8301 #endif /*CONFIG_USER_ONLY*/
8302 
8303     /*
8304      * If full MTE is enabled, add all of the system registers.
8305      * If only "instructions available at EL0" are enabled,
8306      * then define only a RAZ/WI version of PSTATE.TCO.
8307      */
8308     if (cpu_isar_feature(aa64_mte, cpu)) {
8309         define_arm_cp_regs(cpu, mte_reginfo);
8310         define_arm_cp_regs(cpu, mte_el0_cacheop_reginfo);
8311     } else if (cpu_isar_feature(aa64_mte_insn_reg, cpu)) {
8312         define_arm_cp_regs(cpu, mte_tco_ro_reginfo);
8313         define_arm_cp_regs(cpu, mte_el0_cacheop_reginfo);
8314     }
8315 #endif
8316 
8317     if (cpu_isar_feature(any_predinv, cpu)) {
8318         define_arm_cp_regs(cpu, predinv_reginfo);
8319     }
8320 
8321     if (cpu_isar_feature(any_ccidx, cpu)) {
8322         define_arm_cp_regs(cpu, ccsidr2_reginfo);
8323     }
8324 
8325 #ifndef CONFIG_USER_ONLY
8326     /*
8327      * Register redirections and aliases must be done last,
8328      * after the registers from the other extensions have been defined.
8329      */
8330     if (arm_feature(env, ARM_FEATURE_EL2) && cpu_isar_feature(aa64_vh, cpu)) {
8331         define_arm_vh_e2h_redirects_aliases(cpu);
8332     }
8333 #endif
8334 }
8335 
8336 void arm_cpu_register_gdb_regs_for_features(ARMCPU *cpu)
8337 {
8338     CPUState *cs = CPU(cpu);
8339     CPUARMState *env = &cpu->env;
8340 
8341     if (arm_feature(env, ARM_FEATURE_AARCH64)) {
8342         /*
8343          * The lower part of each SVE register aliases to the FPU
8344          * registers so we don't need to include both.
8345          */
8346 #ifdef TARGET_AARCH64
8347         if (isar_feature_aa64_sve(&cpu->isar)) {
8348             gdb_register_coprocessor(cs, arm_gdb_get_svereg, arm_gdb_set_svereg,
8349                                      arm_gen_dynamic_svereg_xml(cs, cs->gdb_num_regs),
8350                                      "sve-registers.xml", 0);
8351         } else
8352 #endif
8353         {
8354             gdb_register_coprocessor(cs, aarch64_fpu_gdb_get_reg,
8355                                      aarch64_fpu_gdb_set_reg,
8356                                      34, "aarch64-fpu.xml", 0);
8357         }
8358     } else if (arm_feature(env, ARM_FEATURE_NEON)) {
8359         gdb_register_coprocessor(cs, vfp_gdb_get_reg, vfp_gdb_set_reg,
8360                                  51, "arm-neon.xml", 0);
8361     } else if (cpu_isar_feature(aa32_simd_r32, cpu)) {
8362         gdb_register_coprocessor(cs, vfp_gdb_get_reg, vfp_gdb_set_reg,
8363                                  35, "arm-vfp3.xml", 0);
8364     } else if (cpu_isar_feature(aa32_vfp_simd, cpu)) {
8365         gdb_register_coprocessor(cs, vfp_gdb_get_reg, vfp_gdb_set_reg,
8366                                  19, "arm-vfp.xml", 0);
8367     }
8368     gdb_register_coprocessor(cs, arm_gdb_get_sysreg, arm_gdb_set_sysreg,
8369                              arm_gen_dynamic_sysreg_xml(cs, cs->gdb_num_regs),
8370                              "system-registers.xml", 0);
8371 
8372 }
8373 
8374 /* Sort alphabetically by type name, except for "any". */
8375 static gint arm_cpu_list_compare(gconstpointer a, gconstpointer b)
8376 {
8377     ObjectClass *class_a = (ObjectClass *)a;
8378     ObjectClass *class_b = (ObjectClass *)b;
8379     const char *name_a, *name_b;
8380 
8381     name_a = object_class_get_name(class_a);
8382     name_b = object_class_get_name(class_b);
8383     if (strcmp(name_a, "any-" TYPE_ARM_CPU) == 0) {
8384         return 1;
8385     } else if (strcmp(name_b, "any-" TYPE_ARM_CPU) == 0) {
8386         return -1;
8387     } else {
8388         return strcmp(name_a, name_b);
8389     }
8390 }
8391 
8392 static void arm_cpu_list_entry(gpointer data, gpointer user_data)
8393 {
8394     ObjectClass *oc = data;
8395     const char *typename;
8396     char *name;
8397 
8398     typename = object_class_get_name(oc);
8399     name = g_strndup(typename, strlen(typename) - strlen("-" TYPE_ARM_CPU));
8400     qemu_printf("  %s\n", name);
8401     g_free(name);
8402 }
8403 
8404 void arm_cpu_list(void)
8405 {
8406     GSList *list;
8407 
8408     list = object_class_get_list(TYPE_ARM_CPU, false);
8409     list = g_slist_sort(list, arm_cpu_list_compare);
8410     qemu_printf("Available CPUs:\n");
8411     g_slist_foreach(list, arm_cpu_list_entry, NULL);
8412     g_slist_free(list);
8413 }
8414 
8415 static void arm_cpu_add_definition(gpointer data, gpointer user_data)
8416 {
8417     ObjectClass *oc = data;
8418     CpuDefinitionInfoList **cpu_list = user_data;
8419     CpuDefinitionInfo *info;
8420     const char *typename;
8421 
8422     typename = object_class_get_name(oc);
8423     info = g_malloc0(sizeof(*info));
8424     info->name = g_strndup(typename,
8425                            strlen(typename) - strlen("-" TYPE_ARM_CPU));
8426     info->q_typename = g_strdup(typename);
8427 
8428     QAPI_LIST_PREPEND(*cpu_list, info);
8429 }
8430 
8431 CpuDefinitionInfoList *qmp_query_cpu_definitions(Error **errp)
8432 {
8433     CpuDefinitionInfoList *cpu_list = NULL;
8434     GSList *list;
8435 
8436     list = object_class_get_list(TYPE_ARM_CPU, false);
8437     g_slist_foreach(list, arm_cpu_add_definition, &cpu_list);
8438     g_slist_free(list);
8439 
8440     return cpu_list;
8441 }
8442 
8443 static void add_cpreg_to_hashtable(ARMCPU *cpu, const ARMCPRegInfo *r,
8444                                    void *opaque, int state, int secstate,
8445                                    int crm, int opc1, int opc2,
8446                                    const char *name)
8447 {
8448     /* Private utility function for define_one_arm_cp_reg_with_opaque():
8449      * add a single reginfo struct to the hash table.
8450      */
8451     uint32_t *key = g_new(uint32_t, 1);
8452     ARMCPRegInfo *r2 = g_memdup(r, sizeof(ARMCPRegInfo));
8453     int is64 = (r->type & ARM_CP_64BIT) ? 1 : 0;
8454     int ns = (secstate & ARM_CP_SECSTATE_NS) ? 1 : 0;
8455 
8456     r2->name = g_strdup(name);
8457     /* Reset the secure state to the specific incoming state.  This is
8458      * necessary as the register may have been defined with both states.
8459      */
8460     r2->secure = secstate;
8461 
8462     if (r->bank_fieldoffsets[0] && r->bank_fieldoffsets[1]) {
8463         /* Register is banked (using both entries in array).
8464          * Overwriting fieldoffset as the array is only used to define
8465          * banked registers but later only fieldoffset is used.
8466          */
8467         r2->fieldoffset = r->bank_fieldoffsets[ns];
8468     }
8469 
8470     if (state == ARM_CP_STATE_AA32) {
8471         if (r->bank_fieldoffsets[0] && r->bank_fieldoffsets[1]) {
8472             /* If the register is banked then we don't need to migrate or
8473              * reset the 32-bit instance in certain cases:
8474              *
8475              * 1) If the register has both 32-bit and 64-bit instances then we
8476              *    can count on the 64-bit instance taking care of the
8477              *    non-secure bank.
8478              * 2) If ARMv8 is enabled then we can count on a 64-bit version
8479              *    taking care of the secure bank.  This requires that separate
8480              *    32 and 64-bit definitions are provided.
8481              */
8482             if ((r->state == ARM_CP_STATE_BOTH && ns) ||
8483                 (arm_feature(&cpu->env, ARM_FEATURE_V8) && !ns)) {
8484                 r2->type |= ARM_CP_ALIAS;
8485             }
8486         } else if ((secstate != r->secure) && !ns) {
8487             /* The register is not banked so we only want to allow migration of
8488              * the non-secure instance.
8489              */
8490             r2->type |= ARM_CP_ALIAS;
8491         }
8492 
8493         if (r->state == ARM_CP_STATE_BOTH) {
8494             /* We assume it is a cp15 register if the .cp field is left unset.
8495              */
8496             if (r2->cp == 0) {
8497                 r2->cp = 15;
8498             }
8499 
8500 #ifdef HOST_WORDS_BIGENDIAN
8501             if (r2->fieldoffset) {
8502                 r2->fieldoffset += sizeof(uint32_t);
8503             }
8504 #endif
8505         }
8506     }
8507     if (state == ARM_CP_STATE_AA64) {
8508         /* To allow abbreviation of ARMCPRegInfo
8509          * definitions, we treat cp == 0 as equivalent to
8510          * the value for "standard guest-visible sysreg".
8511          * STATE_BOTH definitions are also always "standard
8512          * sysreg" in their AArch64 view (the .cp value may
8513          * be non-zero for the benefit of the AArch32 view).
8514          */
8515         if (r->cp == 0 || r->state == ARM_CP_STATE_BOTH) {
8516             r2->cp = CP_REG_ARM64_SYSREG_CP;
8517         }
8518         *key = ENCODE_AA64_CP_REG(r2->cp, r2->crn, crm,
8519                                   r2->opc0, opc1, opc2);
8520     } else {
8521         *key = ENCODE_CP_REG(r2->cp, is64, ns, r2->crn, crm, opc1, opc2);
8522     }
8523     if (opaque) {
8524         r2->opaque = opaque;
8525     }
8526     /* reginfo passed to helpers is correct for the actual access,
8527      * and is never ARM_CP_STATE_BOTH:
8528      */
8529     r2->state = state;
8530     /* Make sure reginfo passed to helpers for wildcarded regs
8531      * has the correct crm/opc1/opc2 for this reg, not CP_ANY:
8532      */
8533     r2->crm = crm;
8534     r2->opc1 = opc1;
8535     r2->opc2 = opc2;
8536     /* By convention, for wildcarded registers only the first
8537      * entry is used for migration; the others are marked as
8538      * ALIAS so we don't try to transfer the register
8539      * multiple times. Special registers (ie NOP/WFI) are
8540      * never migratable and not even raw-accessible.
8541      */
8542     if ((r->type & ARM_CP_SPECIAL)) {
8543         r2->type |= ARM_CP_NO_RAW;
8544     }
8545     if (((r->crm == CP_ANY) && crm != 0) ||
8546         ((r->opc1 == CP_ANY) && opc1 != 0) ||
8547         ((r->opc2 == CP_ANY) && opc2 != 0)) {
8548         r2->type |= ARM_CP_ALIAS | ARM_CP_NO_GDB;
8549     }
8550 
8551     /* Check that raw accesses are either forbidden or handled. Note that
8552      * we can't assert this earlier because the setup of fieldoffset for
8553      * banked registers has to be done first.
8554      */
8555     if (!(r2->type & ARM_CP_NO_RAW)) {
8556         assert(!raw_accessors_invalid(r2));
8557     }
8558 
8559     /* Overriding of an existing definition must be explicitly
8560      * requested.
8561      */
8562     if (!(r->type & ARM_CP_OVERRIDE)) {
8563         ARMCPRegInfo *oldreg;
8564         oldreg = g_hash_table_lookup(cpu->cp_regs, key);
8565         if (oldreg && !(oldreg->type & ARM_CP_OVERRIDE)) {
8566             fprintf(stderr, "Register redefined: cp=%d %d bit "
8567                     "crn=%d crm=%d opc1=%d opc2=%d, "
8568                     "was %s, now %s\n", r2->cp, 32 + 32 * is64,
8569                     r2->crn, r2->crm, r2->opc1, r2->opc2,
8570                     oldreg->name, r2->name);
8571             g_assert_not_reached();
8572         }
8573     }
8574     g_hash_table_insert(cpu->cp_regs, key, r2);
8575 }
8576 
8577 
8578 void define_one_arm_cp_reg_with_opaque(ARMCPU *cpu,
8579                                        const ARMCPRegInfo *r, void *opaque)
8580 {
8581     /* Define implementations of coprocessor registers.
8582      * We store these in a hashtable because typically
8583      * there are less than 150 registers in a space which
8584      * is 16*16*16*8*8 = 262144 in size.
8585      * Wildcarding is supported for the crm, opc1 and opc2 fields.
8586      * If a register is defined twice then the second definition is
8587      * used, so this can be used to define some generic registers and
8588      * then override them with implementation specific variations.
8589      * At least one of the original and the second definition should
8590      * include ARM_CP_OVERRIDE in its type bits -- this is just a guard
8591      * against accidental use.
8592      *
8593      * The state field defines whether the register is to be
8594      * visible in the AArch32 or AArch64 execution state. If the
8595      * state is set to ARM_CP_STATE_BOTH then we synthesise a
8596      * reginfo structure for the AArch32 view, which sees the lower
8597      * 32 bits of the 64 bit register.
8598      *
8599      * Only registers visible in AArch64 may set r->opc0; opc0 cannot
8600      * be wildcarded. AArch64 registers are always considered to be 64
8601      * bits; the ARM_CP_64BIT* flag applies only to the AArch32 view of
8602      * the register, if any.
8603      */
8604     int crm, opc1, opc2, state;
8605     int crmmin = (r->crm == CP_ANY) ? 0 : r->crm;
8606     int crmmax = (r->crm == CP_ANY) ? 15 : r->crm;
8607     int opc1min = (r->opc1 == CP_ANY) ? 0 : r->opc1;
8608     int opc1max = (r->opc1 == CP_ANY) ? 7 : r->opc1;
8609     int opc2min = (r->opc2 == CP_ANY) ? 0 : r->opc2;
8610     int opc2max = (r->opc2 == CP_ANY) ? 7 : r->opc2;
8611     /* 64 bit registers have only CRm and Opc1 fields */
8612     assert(!((r->type & ARM_CP_64BIT) && (r->opc2 || r->crn)));
8613     /* op0 only exists in the AArch64 encodings */
8614     assert((r->state != ARM_CP_STATE_AA32) || (r->opc0 == 0));
8615     /* AArch64 regs are all 64 bit so ARM_CP_64BIT is meaningless */
8616     assert((r->state != ARM_CP_STATE_AA64) || !(r->type & ARM_CP_64BIT));
8617     /*
8618      * This API is only for Arm's system coprocessors (14 and 15) or
8619      * (M-profile or v7A-and-earlier only) for implementation defined
8620      * coprocessors in the range 0..7.  Our decode assumes this, since
8621      * 8..13 can be used for other insns including VFP and Neon. See
8622      * valid_cp() in translate.c.  Assert here that we haven't tried
8623      * to use an invalid coprocessor number.
8624      */
8625     switch (r->state) {
8626     case ARM_CP_STATE_BOTH:
8627         /* 0 has a special meaning, but otherwise the same rules as AA32. */
8628         if (r->cp == 0) {
8629             break;
8630         }
8631         /* fall through */
8632     case ARM_CP_STATE_AA32:
8633         if (arm_feature(&cpu->env, ARM_FEATURE_V8) &&
8634             !arm_feature(&cpu->env, ARM_FEATURE_M)) {
8635             assert(r->cp >= 14 && r->cp <= 15);
8636         } else {
8637             assert(r->cp < 8 || (r->cp >= 14 && r->cp <= 15));
8638         }
8639         break;
8640     case ARM_CP_STATE_AA64:
8641         assert(r->cp == 0 || r->cp == CP_REG_ARM64_SYSREG_CP);
8642         break;
8643     default:
8644         g_assert_not_reached();
8645     }
8646     /* The AArch64 pseudocode CheckSystemAccess() specifies that op1
8647      * encodes a minimum access level for the register. We roll this
8648      * runtime check into our general permission check code, so check
8649      * here that the reginfo's specified permissions are strict enough
8650      * to encompass the generic architectural permission check.
8651      */
8652     if (r->state != ARM_CP_STATE_AA32) {
8653         int mask = 0;
8654         switch (r->opc1) {
8655         case 0:
8656             /* min_EL EL1, but some accessible to EL0 via kernel ABI */
8657             mask = PL0U_R | PL1_RW;
8658             break;
8659         case 1: case 2:
8660             /* min_EL EL1 */
8661             mask = PL1_RW;
8662             break;
8663         case 3:
8664             /* min_EL EL0 */
8665             mask = PL0_RW;
8666             break;
8667         case 4:
8668         case 5:
8669             /* min_EL EL2 */
8670             mask = PL2_RW;
8671             break;
8672         case 6:
8673             /* min_EL EL3 */
8674             mask = PL3_RW;
8675             break;
8676         case 7:
8677             /* min_EL EL1, secure mode only (we don't check the latter) */
8678             mask = PL1_RW;
8679             break;
8680         default:
8681             /* broken reginfo with out-of-range opc1 */
8682             assert(false);
8683             break;
8684         }
8685         /* assert our permissions are not too lax (stricter is fine) */
8686         assert((r->access & ~mask) == 0);
8687     }
8688 
8689     /* Check that the register definition has enough info to handle
8690      * reads and writes if they are permitted.
8691      */
8692     if (!(r->type & (ARM_CP_SPECIAL|ARM_CP_CONST))) {
8693         if (r->access & PL3_R) {
8694             assert((r->fieldoffset ||
8695                    (r->bank_fieldoffsets[0] && r->bank_fieldoffsets[1])) ||
8696                    r->readfn);
8697         }
8698         if (r->access & PL3_W) {
8699             assert((r->fieldoffset ||
8700                    (r->bank_fieldoffsets[0] && r->bank_fieldoffsets[1])) ||
8701                    r->writefn);
8702         }
8703     }
8704     /* Bad type field probably means missing sentinel at end of reg list */
8705     assert(cptype_valid(r->type));
8706     for (crm = crmmin; crm <= crmmax; crm++) {
8707         for (opc1 = opc1min; opc1 <= opc1max; opc1++) {
8708             for (opc2 = opc2min; opc2 <= opc2max; opc2++) {
8709                 for (state = ARM_CP_STATE_AA32;
8710                      state <= ARM_CP_STATE_AA64; state++) {
8711                     if (r->state != state && r->state != ARM_CP_STATE_BOTH) {
8712                         continue;
8713                     }
8714                     if (state == ARM_CP_STATE_AA32) {
8715                         /* Under AArch32 CP registers can be common
8716                          * (same for secure and non-secure world) or banked.
8717                          */
8718                         char *name;
8719 
8720                         switch (r->secure) {
8721                         case ARM_CP_SECSTATE_S:
8722                         case ARM_CP_SECSTATE_NS:
8723                             add_cpreg_to_hashtable(cpu, r, opaque, state,
8724                                                    r->secure, crm, opc1, opc2,
8725                                                    r->name);
8726                             break;
8727                         default:
8728                             name = g_strdup_printf("%s_S", r->name);
8729                             add_cpreg_to_hashtable(cpu, r, opaque, state,
8730                                                    ARM_CP_SECSTATE_S,
8731                                                    crm, opc1, opc2, name);
8732                             g_free(name);
8733                             add_cpreg_to_hashtable(cpu, r, opaque, state,
8734                                                    ARM_CP_SECSTATE_NS,
8735                                                    crm, opc1, opc2, r->name);
8736                             break;
8737                         }
8738                     } else {
8739                         /* AArch64 registers get mapped to non-secure instance
8740                          * of AArch32 */
8741                         add_cpreg_to_hashtable(cpu, r, opaque, state,
8742                                                ARM_CP_SECSTATE_NS,
8743                                                crm, opc1, opc2, r->name);
8744                     }
8745                 }
8746             }
8747         }
8748     }
8749 }
8750 
8751 void define_arm_cp_regs_with_opaque(ARMCPU *cpu,
8752                                     const ARMCPRegInfo *regs, void *opaque)
8753 {
8754     /* Define a whole list of registers */
8755     const ARMCPRegInfo *r;
8756     for (r = regs; r->type != ARM_CP_SENTINEL; r++) {
8757         define_one_arm_cp_reg_with_opaque(cpu, r, opaque);
8758     }
8759 }
8760 
8761 /*
8762  * Modify ARMCPRegInfo for access from userspace.
8763  *
8764  * This is a data driven modification directed by
8765  * ARMCPRegUserSpaceInfo. All registers become ARM_CP_CONST as
8766  * user-space cannot alter any values and dynamic values pertaining to
8767  * execution state are hidden from user space view anyway.
8768  */
8769 void modify_arm_cp_regs(ARMCPRegInfo *regs, const ARMCPRegUserSpaceInfo *mods)
8770 {
8771     const ARMCPRegUserSpaceInfo *m;
8772     ARMCPRegInfo *r;
8773 
8774     for (m = mods; m->name; m++) {
8775         GPatternSpec *pat = NULL;
8776         if (m->is_glob) {
8777             pat = g_pattern_spec_new(m->name);
8778         }
8779         for (r = regs; r->type != ARM_CP_SENTINEL; r++) {
8780             if (pat && g_pattern_match_string(pat, r->name)) {
8781                 r->type = ARM_CP_CONST;
8782                 r->access = PL0U_R;
8783                 r->resetvalue = 0;
8784                 /* continue */
8785             } else if (strcmp(r->name, m->name) == 0) {
8786                 r->type = ARM_CP_CONST;
8787                 r->access = PL0U_R;
8788                 r->resetvalue &= m->exported_bits;
8789                 r->resetvalue |= m->fixed_bits;
8790                 break;
8791             }
8792         }
8793         if (pat) {
8794             g_pattern_spec_free(pat);
8795         }
8796     }
8797 }
8798 
8799 const ARMCPRegInfo *get_arm_cp_reginfo(GHashTable *cpregs, uint32_t encoded_cp)
8800 {
8801     return g_hash_table_lookup(cpregs, &encoded_cp);
8802 }
8803 
8804 void arm_cp_write_ignore(CPUARMState *env, const ARMCPRegInfo *ri,
8805                          uint64_t value)
8806 {
8807     /* Helper coprocessor write function for write-ignore registers */
8808 }
8809 
8810 uint64_t arm_cp_read_zero(CPUARMState *env, const ARMCPRegInfo *ri)
8811 {
8812     /* Helper coprocessor write function for read-as-zero registers */
8813     return 0;
8814 }
8815 
8816 void arm_cp_reset_ignore(CPUARMState *env, const ARMCPRegInfo *opaque)
8817 {
8818     /* Helper coprocessor reset function for do-nothing-on-reset registers */
8819 }
8820 
8821 static int bad_mode_switch(CPUARMState *env, int mode, CPSRWriteType write_type)
8822 {
8823     /* Return true if it is not valid for us to switch to
8824      * this CPU mode (ie all the UNPREDICTABLE cases in
8825      * the ARM ARM CPSRWriteByInstr pseudocode).
8826      */
8827 
8828     /* Changes to or from Hyp via MSR and CPS are illegal. */
8829     if (write_type == CPSRWriteByInstr &&
8830         ((env->uncached_cpsr & CPSR_M) == ARM_CPU_MODE_HYP ||
8831          mode == ARM_CPU_MODE_HYP)) {
8832         return 1;
8833     }
8834 
8835     switch (mode) {
8836     case ARM_CPU_MODE_USR:
8837         return 0;
8838     case ARM_CPU_MODE_SYS:
8839     case ARM_CPU_MODE_SVC:
8840     case ARM_CPU_MODE_ABT:
8841     case ARM_CPU_MODE_UND:
8842     case ARM_CPU_MODE_IRQ:
8843     case ARM_CPU_MODE_FIQ:
8844         /* Note that we don't implement the IMPDEF NSACR.RFR which in v7
8845          * allows FIQ mode to be Secure-only. (In v8 this doesn't exist.)
8846          */
8847         /* If HCR.TGE is set then changes from Monitor to NS PL1 via MSR
8848          * and CPS are treated as illegal mode changes.
8849          */
8850         if (write_type == CPSRWriteByInstr &&
8851             (env->uncached_cpsr & CPSR_M) == ARM_CPU_MODE_MON &&
8852             (arm_hcr_el2_eff(env) & HCR_TGE)) {
8853             return 1;
8854         }
8855         return 0;
8856     case ARM_CPU_MODE_HYP:
8857         return !arm_is_el2_enabled(env) || arm_current_el(env) < 2;
8858     case ARM_CPU_MODE_MON:
8859         return arm_current_el(env) < 3;
8860     default:
8861         return 1;
8862     }
8863 }
8864 
8865 uint32_t cpsr_read(CPUARMState *env)
8866 {
8867     int ZF;
8868     ZF = (env->ZF == 0);
8869     return env->uncached_cpsr | (env->NF & 0x80000000) | (ZF << 30) |
8870         (env->CF << 29) | ((env->VF & 0x80000000) >> 3) | (env->QF << 27)
8871         | (env->thumb << 5) | ((env->condexec_bits & 3) << 25)
8872         | ((env->condexec_bits & 0xfc) << 8)
8873         | (env->GE << 16) | (env->daif & CPSR_AIF);
8874 }
8875 
8876 void cpsr_write(CPUARMState *env, uint32_t val, uint32_t mask,
8877                 CPSRWriteType write_type)
8878 {
8879     uint32_t changed_daif;
8880 
8881     if (mask & CPSR_NZCV) {
8882         env->ZF = (~val) & CPSR_Z;
8883         env->NF = val;
8884         env->CF = (val >> 29) & 1;
8885         env->VF = (val << 3) & 0x80000000;
8886     }
8887     if (mask & CPSR_Q)
8888         env->QF = ((val & CPSR_Q) != 0);
8889     if (mask & CPSR_T)
8890         env->thumb = ((val & CPSR_T) != 0);
8891     if (mask & CPSR_IT_0_1) {
8892         env->condexec_bits &= ~3;
8893         env->condexec_bits |= (val >> 25) & 3;
8894     }
8895     if (mask & CPSR_IT_2_7) {
8896         env->condexec_bits &= 3;
8897         env->condexec_bits |= (val >> 8) & 0xfc;
8898     }
8899     if (mask & CPSR_GE) {
8900         env->GE = (val >> 16) & 0xf;
8901     }
8902 
8903     /* In a V7 implementation that includes the security extensions but does
8904      * not include Virtualization Extensions the SCR.FW and SCR.AW bits control
8905      * whether non-secure software is allowed to change the CPSR_F and CPSR_A
8906      * bits respectively.
8907      *
8908      * In a V8 implementation, it is permitted for privileged software to
8909      * change the CPSR A/F bits regardless of the SCR.AW/FW bits.
8910      */
8911     if (write_type != CPSRWriteRaw && !arm_feature(env, ARM_FEATURE_V8) &&
8912         arm_feature(env, ARM_FEATURE_EL3) &&
8913         !arm_feature(env, ARM_FEATURE_EL2) &&
8914         !arm_is_secure(env)) {
8915 
8916         changed_daif = (env->daif ^ val) & mask;
8917 
8918         if (changed_daif & CPSR_A) {
8919             /* Check to see if we are allowed to change the masking of async
8920              * abort exceptions from a non-secure state.
8921              */
8922             if (!(env->cp15.scr_el3 & SCR_AW)) {
8923                 qemu_log_mask(LOG_GUEST_ERROR,
8924                               "Ignoring attempt to switch CPSR_A flag from "
8925                               "non-secure world with SCR.AW bit clear\n");
8926                 mask &= ~CPSR_A;
8927             }
8928         }
8929 
8930         if (changed_daif & CPSR_F) {
8931             /* Check to see if we are allowed to change the masking of FIQ
8932              * exceptions from a non-secure state.
8933              */
8934             if (!(env->cp15.scr_el3 & SCR_FW)) {
8935                 qemu_log_mask(LOG_GUEST_ERROR,
8936                               "Ignoring attempt to switch CPSR_F flag from "
8937                               "non-secure world with SCR.FW bit clear\n");
8938                 mask &= ~CPSR_F;
8939             }
8940 
8941             /* Check whether non-maskable FIQ (NMFI) support is enabled.
8942              * If this bit is set software is not allowed to mask
8943              * FIQs, but is allowed to set CPSR_F to 0.
8944              */
8945             if ((A32_BANKED_CURRENT_REG_GET(env, sctlr) & SCTLR_NMFI) &&
8946                 (val & CPSR_F)) {
8947                 qemu_log_mask(LOG_GUEST_ERROR,
8948                               "Ignoring attempt to enable CPSR_F flag "
8949                               "(non-maskable FIQ [NMFI] support enabled)\n");
8950                 mask &= ~CPSR_F;
8951             }
8952         }
8953     }
8954 
8955     env->daif &= ~(CPSR_AIF & mask);
8956     env->daif |= val & CPSR_AIF & mask;
8957 
8958     if (write_type != CPSRWriteRaw &&
8959         ((env->uncached_cpsr ^ val) & mask & CPSR_M)) {
8960         if ((env->uncached_cpsr & CPSR_M) == ARM_CPU_MODE_USR) {
8961             /* Note that we can only get here in USR mode if this is a
8962              * gdb stub write; for this case we follow the architectural
8963              * behaviour for guest writes in USR mode of ignoring an attempt
8964              * to switch mode. (Those are caught by translate.c for writes
8965              * triggered by guest instructions.)
8966              */
8967             mask &= ~CPSR_M;
8968         } else if (bad_mode_switch(env, val & CPSR_M, write_type)) {
8969             /* Attempt to switch to an invalid mode: this is UNPREDICTABLE in
8970              * v7, and has defined behaviour in v8:
8971              *  + leave CPSR.M untouched
8972              *  + allow changes to the other CPSR fields
8973              *  + set PSTATE.IL
8974              * For user changes via the GDB stub, we don't set PSTATE.IL,
8975              * as this would be unnecessarily harsh for a user error.
8976              */
8977             mask &= ~CPSR_M;
8978             if (write_type != CPSRWriteByGDBStub &&
8979                 arm_feature(env, ARM_FEATURE_V8)) {
8980                 mask |= CPSR_IL;
8981                 val |= CPSR_IL;
8982             }
8983             qemu_log_mask(LOG_GUEST_ERROR,
8984                           "Illegal AArch32 mode switch attempt from %s to %s\n",
8985                           aarch32_mode_name(env->uncached_cpsr),
8986                           aarch32_mode_name(val));
8987         } else {
8988             qemu_log_mask(CPU_LOG_INT, "%s %s to %s PC 0x%" PRIx32 "\n",
8989                           write_type == CPSRWriteExceptionReturn ?
8990                           "Exception return from AArch32" :
8991                           "AArch32 mode switch from",
8992                           aarch32_mode_name(env->uncached_cpsr),
8993                           aarch32_mode_name(val), env->regs[15]);
8994             switch_mode(env, val & CPSR_M);
8995         }
8996     }
8997     mask &= ~CACHED_CPSR_BITS;
8998     env->uncached_cpsr = (env->uncached_cpsr & ~mask) | (val & mask);
8999 }
9000 
9001 /* Sign/zero extend */
9002 uint32_t HELPER(sxtb16)(uint32_t x)
9003 {
9004     uint32_t res;
9005     res = (uint16_t)(int8_t)x;
9006     res |= (uint32_t)(int8_t)(x >> 16) << 16;
9007     return res;
9008 }
9009 
9010 uint32_t HELPER(uxtb16)(uint32_t x)
9011 {
9012     uint32_t res;
9013     res = (uint16_t)(uint8_t)x;
9014     res |= (uint32_t)(uint8_t)(x >> 16) << 16;
9015     return res;
9016 }
9017 
9018 int32_t HELPER(sdiv)(int32_t num, int32_t den)
9019 {
9020     if (den == 0)
9021       return 0;
9022     if (num == INT_MIN && den == -1)
9023       return INT_MIN;
9024     return num / den;
9025 }
9026 
9027 uint32_t HELPER(udiv)(uint32_t num, uint32_t den)
9028 {
9029     if (den == 0)
9030       return 0;
9031     return num / den;
9032 }
9033 
9034 uint32_t HELPER(rbit)(uint32_t x)
9035 {
9036     return revbit32(x);
9037 }
9038 
9039 #ifdef CONFIG_USER_ONLY
9040 
9041 static void switch_mode(CPUARMState *env, int mode)
9042 {
9043     ARMCPU *cpu = env_archcpu(env);
9044 
9045     if (mode != ARM_CPU_MODE_USR) {
9046         cpu_abort(CPU(cpu), "Tried to switch out of user mode\n");
9047     }
9048 }
9049 
9050 uint32_t arm_phys_excp_target_el(CPUState *cs, uint32_t excp_idx,
9051                                  uint32_t cur_el, bool secure)
9052 {
9053     return 1;
9054 }
9055 
9056 void aarch64_sync_64_to_32(CPUARMState *env)
9057 {
9058     g_assert_not_reached();
9059 }
9060 
9061 #else
9062 
9063 static void switch_mode(CPUARMState *env, int mode)
9064 {
9065     int old_mode;
9066     int i;
9067 
9068     old_mode = env->uncached_cpsr & CPSR_M;
9069     if (mode == old_mode)
9070         return;
9071 
9072     if (old_mode == ARM_CPU_MODE_FIQ) {
9073         memcpy (env->fiq_regs, env->regs + 8, 5 * sizeof(uint32_t));
9074         memcpy (env->regs + 8, env->usr_regs, 5 * sizeof(uint32_t));
9075     } else if (mode == ARM_CPU_MODE_FIQ) {
9076         memcpy (env->usr_regs, env->regs + 8, 5 * sizeof(uint32_t));
9077         memcpy (env->regs + 8, env->fiq_regs, 5 * sizeof(uint32_t));
9078     }
9079 
9080     i = bank_number(old_mode);
9081     env->banked_r13[i] = env->regs[13];
9082     env->banked_spsr[i] = env->spsr;
9083 
9084     i = bank_number(mode);
9085     env->regs[13] = env->banked_r13[i];
9086     env->spsr = env->banked_spsr[i];
9087 
9088     env->banked_r14[r14_bank_number(old_mode)] = env->regs[14];
9089     env->regs[14] = env->banked_r14[r14_bank_number(mode)];
9090 }
9091 
9092 /* Physical Interrupt Target EL Lookup Table
9093  *
9094  * [ From ARM ARM section G1.13.4 (Table G1-15) ]
9095  *
9096  * The below multi-dimensional table is used for looking up the target
9097  * exception level given numerous condition criteria.  Specifically, the
9098  * target EL is based on SCR and HCR routing controls as well as the
9099  * currently executing EL and secure state.
9100  *
9101  *    Dimensions:
9102  *    target_el_table[2][2][2][2][2][4]
9103  *                    |  |  |  |  |  +--- Current EL
9104  *                    |  |  |  |  +------ Non-secure(0)/Secure(1)
9105  *                    |  |  |  +--------- HCR mask override
9106  *                    |  |  +------------ SCR exec state control
9107  *                    |  +--------------- SCR mask override
9108  *                    +------------------ 32-bit(0)/64-bit(1) EL3
9109  *
9110  *    The table values are as such:
9111  *    0-3 = EL0-EL3
9112  *     -1 = Cannot occur
9113  *
9114  * The ARM ARM target EL table includes entries indicating that an "exception
9115  * is not taken".  The two cases where this is applicable are:
9116  *    1) An exception is taken from EL3 but the SCR does not have the exception
9117  *    routed to EL3.
9118  *    2) An exception is taken from EL2 but the HCR does not have the exception
9119  *    routed to EL2.
9120  * In these two cases, the below table contain a target of EL1.  This value is
9121  * returned as it is expected that the consumer of the table data will check
9122  * for "target EL >= current EL" to ensure the exception is not taken.
9123  *
9124  *            SCR     HCR
9125  *         64  EA     AMO                 From
9126  *        BIT IRQ     IMO      Non-secure         Secure
9127  *        EL3 FIQ  RW FMO   EL0 EL1 EL2 EL3   EL0 EL1 EL2 EL3
9128  */
9129 static const int8_t target_el_table[2][2][2][2][2][4] = {
9130     {{{{/* 0   0   0   0 */{ 1,  1,  2, -1 },{ 3, -1, -1,  3 },},
9131        {/* 0   0   0   1 */{ 2,  2,  2, -1 },{ 3, -1, -1,  3 },},},
9132       {{/* 0   0   1   0 */{ 1,  1,  2, -1 },{ 3, -1, -1,  3 },},
9133        {/* 0   0   1   1 */{ 2,  2,  2, -1 },{ 3, -1, -1,  3 },},},},
9134      {{{/* 0   1   0   0 */{ 3,  3,  3, -1 },{ 3, -1, -1,  3 },},
9135        {/* 0   1   0   1 */{ 3,  3,  3, -1 },{ 3, -1, -1,  3 },},},
9136       {{/* 0   1   1   0 */{ 3,  3,  3, -1 },{ 3, -1, -1,  3 },},
9137        {/* 0   1   1   1 */{ 3,  3,  3, -1 },{ 3, -1, -1,  3 },},},},},
9138     {{{{/* 1   0   0   0 */{ 1,  1,  2, -1 },{ 1,  1, -1,  1 },},
9139        {/* 1   0   0   1 */{ 2,  2,  2, -1 },{ 2,  2, -1,  1 },},},
9140       {{/* 1   0   1   0 */{ 1,  1,  1, -1 },{ 1,  1,  1,  1 },},
9141        {/* 1   0   1   1 */{ 2,  2,  2, -1 },{ 2,  2,  2,  1 },},},},
9142      {{{/* 1   1   0   0 */{ 3,  3,  3, -1 },{ 3,  3, -1,  3 },},
9143        {/* 1   1   0   1 */{ 3,  3,  3, -1 },{ 3,  3, -1,  3 },},},
9144       {{/* 1   1   1   0 */{ 3,  3,  3, -1 },{ 3,  3,  3,  3 },},
9145        {/* 1   1   1   1 */{ 3,  3,  3, -1 },{ 3,  3,  3,  3 },},},},},
9146 };
9147 
9148 /*
9149  * Determine the target EL for physical exceptions
9150  */
9151 uint32_t arm_phys_excp_target_el(CPUState *cs, uint32_t excp_idx,
9152                                  uint32_t cur_el, bool secure)
9153 {
9154     CPUARMState *env = cs->env_ptr;
9155     bool rw;
9156     bool scr;
9157     bool hcr;
9158     int target_el;
9159     /* Is the highest EL AArch64? */
9160     bool is64 = arm_feature(env, ARM_FEATURE_AARCH64);
9161     uint64_t hcr_el2;
9162 
9163     if (arm_feature(env, ARM_FEATURE_EL3)) {
9164         rw = ((env->cp15.scr_el3 & SCR_RW) == SCR_RW);
9165     } else {
9166         /* Either EL2 is the highest EL (and so the EL2 register width
9167          * is given by is64); or there is no EL2 or EL3, in which case
9168          * the value of 'rw' does not affect the table lookup anyway.
9169          */
9170         rw = is64;
9171     }
9172 
9173     hcr_el2 = arm_hcr_el2_eff(env);
9174     switch (excp_idx) {
9175     case EXCP_IRQ:
9176         scr = ((env->cp15.scr_el3 & SCR_IRQ) == SCR_IRQ);
9177         hcr = hcr_el2 & HCR_IMO;
9178         break;
9179     case EXCP_FIQ:
9180         scr = ((env->cp15.scr_el3 & SCR_FIQ) == SCR_FIQ);
9181         hcr = hcr_el2 & HCR_FMO;
9182         break;
9183     default:
9184         scr = ((env->cp15.scr_el3 & SCR_EA) == SCR_EA);
9185         hcr = hcr_el2 & HCR_AMO;
9186         break;
9187     };
9188 
9189     /*
9190      * For these purposes, TGE and AMO/IMO/FMO both force the
9191      * interrupt to EL2.  Fold TGE into the bit extracted above.
9192      */
9193     hcr |= (hcr_el2 & HCR_TGE) != 0;
9194 
9195     /* Perform a table-lookup for the target EL given the current state */
9196     target_el = target_el_table[is64][scr][rw][hcr][secure][cur_el];
9197 
9198     assert(target_el > 0);
9199 
9200     return target_el;
9201 }
9202 
9203 void arm_log_exception(int idx)
9204 {
9205     if (qemu_loglevel_mask(CPU_LOG_INT)) {
9206         const char *exc = NULL;
9207         static const char * const excnames[] = {
9208             [EXCP_UDEF] = "Undefined Instruction",
9209             [EXCP_SWI] = "SVC",
9210             [EXCP_PREFETCH_ABORT] = "Prefetch Abort",
9211             [EXCP_DATA_ABORT] = "Data Abort",
9212             [EXCP_IRQ] = "IRQ",
9213             [EXCP_FIQ] = "FIQ",
9214             [EXCP_BKPT] = "Breakpoint",
9215             [EXCP_EXCEPTION_EXIT] = "QEMU v7M exception exit",
9216             [EXCP_KERNEL_TRAP] = "QEMU intercept of kernel commpage",
9217             [EXCP_HVC] = "Hypervisor Call",
9218             [EXCP_HYP_TRAP] = "Hypervisor Trap",
9219             [EXCP_SMC] = "Secure Monitor Call",
9220             [EXCP_VIRQ] = "Virtual IRQ",
9221             [EXCP_VFIQ] = "Virtual FIQ",
9222             [EXCP_SEMIHOST] = "Semihosting call",
9223             [EXCP_NOCP] = "v7M NOCP UsageFault",
9224             [EXCP_INVSTATE] = "v7M INVSTATE UsageFault",
9225             [EXCP_STKOF] = "v8M STKOF UsageFault",
9226             [EXCP_LAZYFP] = "v7M exception during lazy FP stacking",
9227             [EXCP_LSERR] = "v8M LSERR UsageFault",
9228             [EXCP_UNALIGNED] = "v7M UNALIGNED UsageFault",
9229         };
9230 
9231         if (idx >= 0 && idx < ARRAY_SIZE(excnames)) {
9232             exc = excnames[idx];
9233         }
9234         if (!exc) {
9235             exc = "unknown";
9236         }
9237         qemu_log_mask(CPU_LOG_INT, "Taking exception %d [%s]\n", idx, exc);
9238     }
9239 }
9240 
9241 /*
9242  * Function used to synchronize QEMU's AArch64 register set with AArch32
9243  * register set.  This is necessary when switching between AArch32 and AArch64
9244  * execution state.
9245  */
9246 void aarch64_sync_32_to_64(CPUARMState *env)
9247 {
9248     int i;
9249     uint32_t mode = env->uncached_cpsr & CPSR_M;
9250 
9251     /* We can blanket copy R[0:7] to X[0:7] */
9252     for (i = 0; i < 8; i++) {
9253         env->xregs[i] = env->regs[i];
9254     }
9255 
9256     /*
9257      * Unless we are in FIQ mode, x8-x12 come from the user registers r8-r12.
9258      * Otherwise, they come from the banked user regs.
9259      */
9260     if (mode == ARM_CPU_MODE_FIQ) {
9261         for (i = 8; i < 13; i++) {
9262             env->xregs[i] = env->usr_regs[i - 8];
9263         }
9264     } else {
9265         for (i = 8; i < 13; i++) {
9266             env->xregs[i] = env->regs[i];
9267         }
9268     }
9269 
9270     /*
9271      * Registers x13-x23 are the various mode SP and FP registers. Registers
9272      * r13 and r14 are only copied if we are in that mode, otherwise we copy
9273      * from the mode banked register.
9274      */
9275     if (mode == ARM_CPU_MODE_USR || mode == ARM_CPU_MODE_SYS) {
9276         env->xregs[13] = env->regs[13];
9277         env->xregs[14] = env->regs[14];
9278     } else {
9279         env->xregs[13] = env->banked_r13[bank_number(ARM_CPU_MODE_USR)];
9280         /* HYP is an exception in that it is copied from r14 */
9281         if (mode == ARM_CPU_MODE_HYP) {
9282             env->xregs[14] = env->regs[14];
9283         } else {
9284             env->xregs[14] = env->banked_r14[r14_bank_number(ARM_CPU_MODE_USR)];
9285         }
9286     }
9287 
9288     if (mode == ARM_CPU_MODE_HYP) {
9289         env->xregs[15] = env->regs[13];
9290     } else {
9291         env->xregs[15] = env->banked_r13[bank_number(ARM_CPU_MODE_HYP)];
9292     }
9293 
9294     if (mode == ARM_CPU_MODE_IRQ) {
9295         env->xregs[16] = env->regs[14];
9296         env->xregs[17] = env->regs[13];
9297     } else {
9298         env->xregs[16] = env->banked_r14[r14_bank_number(ARM_CPU_MODE_IRQ)];
9299         env->xregs[17] = env->banked_r13[bank_number(ARM_CPU_MODE_IRQ)];
9300     }
9301 
9302     if (mode == ARM_CPU_MODE_SVC) {
9303         env->xregs[18] = env->regs[14];
9304         env->xregs[19] = env->regs[13];
9305     } else {
9306         env->xregs[18] = env->banked_r14[r14_bank_number(ARM_CPU_MODE_SVC)];
9307         env->xregs[19] = env->banked_r13[bank_number(ARM_CPU_MODE_SVC)];
9308     }
9309 
9310     if (mode == ARM_CPU_MODE_ABT) {
9311         env->xregs[20] = env->regs[14];
9312         env->xregs[21] = env->regs[13];
9313     } else {
9314         env->xregs[20] = env->banked_r14[r14_bank_number(ARM_CPU_MODE_ABT)];
9315         env->xregs[21] = env->banked_r13[bank_number(ARM_CPU_MODE_ABT)];
9316     }
9317 
9318     if (mode == ARM_CPU_MODE_UND) {
9319         env->xregs[22] = env->regs[14];
9320         env->xregs[23] = env->regs[13];
9321     } else {
9322         env->xregs[22] = env->banked_r14[r14_bank_number(ARM_CPU_MODE_UND)];
9323         env->xregs[23] = env->banked_r13[bank_number(ARM_CPU_MODE_UND)];
9324     }
9325 
9326     /*
9327      * Registers x24-x30 are mapped to r8-r14 in FIQ mode.  If we are in FIQ
9328      * mode, then we can copy from r8-r14.  Otherwise, we copy from the
9329      * FIQ bank for r8-r14.
9330      */
9331     if (mode == ARM_CPU_MODE_FIQ) {
9332         for (i = 24; i < 31; i++) {
9333             env->xregs[i] = env->regs[i - 16];   /* X[24:30] <- R[8:14] */
9334         }
9335     } else {
9336         for (i = 24; i < 29; i++) {
9337             env->xregs[i] = env->fiq_regs[i - 24];
9338         }
9339         env->xregs[29] = env->banked_r13[bank_number(ARM_CPU_MODE_FIQ)];
9340         env->xregs[30] = env->banked_r14[r14_bank_number(ARM_CPU_MODE_FIQ)];
9341     }
9342 
9343     env->pc = env->regs[15];
9344 }
9345 
9346 /*
9347  * Function used to synchronize QEMU's AArch32 register set with AArch64
9348  * register set.  This is necessary when switching between AArch32 and AArch64
9349  * execution state.
9350  */
9351 void aarch64_sync_64_to_32(CPUARMState *env)
9352 {
9353     int i;
9354     uint32_t mode = env->uncached_cpsr & CPSR_M;
9355 
9356     /* We can blanket copy X[0:7] to R[0:7] */
9357     for (i = 0; i < 8; i++) {
9358         env->regs[i] = env->xregs[i];
9359     }
9360 
9361     /*
9362      * Unless we are in FIQ mode, r8-r12 come from the user registers x8-x12.
9363      * Otherwise, we copy x8-x12 into the banked user regs.
9364      */
9365     if (mode == ARM_CPU_MODE_FIQ) {
9366         for (i = 8; i < 13; i++) {
9367             env->usr_regs[i - 8] = env->xregs[i];
9368         }
9369     } else {
9370         for (i = 8; i < 13; i++) {
9371             env->regs[i] = env->xregs[i];
9372         }
9373     }
9374 
9375     /*
9376      * Registers r13 & r14 depend on the current mode.
9377      * If we are in a given mode, we copy the corresponding x registers to r13
9378      * and r14.  Otherwise, we copy the x register to the banked r13 and r14
9379      * for the mode.
9380      */
9381     if (mode == ARM_CPU_MODE_USR || mode == ARM_CPU_MODE_SYS) {
9382         env->regs[13] = env->xregs[13];
9383         env->regs[14] = env->xregs[14];
9384     } else {
9385         env->banked_r13[bank_number(ARM_CPU_MODE_USR)] = env->xregs[13];
9386 
9387         /*
9388          * HYP is an exception in that it does not have its own banked r14 but
9389          * shares the USR r14
9390          */
9391         if (mode == ARM_CPU_MODE_HYP) {
9392             env->regs[14] = env->xregs[14];
9393         } else {
9394             env->banked_r14[r14_bank_number(ARM_CPU_MODE_USR)] = env->xregs[14];
9395         }
9396     }
9397 
9398     if (mode == ARM_CPU_MODE_HYP) {
9399         env->regs[13] = env->xregs[15];
9400     } else {
9401         env->banked_r13[bank_number(ARM_CPU_MODE_HYP)] = env->xregs[15];
9402     }
9403 
9404     if (mode == ARM_CPU_MODE_IRQ) {
9405         env->regs[14] = env->xregs[16];
9406         env->regs[13] = env->xregs[17];
9407     } else {
9408         env->banked_r14[r14_bank_number(ARM_CPU_MODE_IRQ)] = env->xregs[16];
9409         env->banked_r13[bank_number(ARM_CPU_MODE_IRQ)] = env->xregs[17];
9410     }
9411 
9412     if (mode == ARM_CPU_MODE_SVC) {
9413         env->regs[14] = env->xregs[18];
9414         env->regs[13] = env->xregs[19];
9415     } else {
9416         env->banked_r14[r14_bank_number(ARM_CPU_MODE_SVC)] = env->xregs[18];
9417         env->banked_r13[bank_number(ARM_CPU_MODE_SVC)] = env->xregs[19];
9418     }
9419 
9420     if (mode == ARM_CPU_MODE_ABT) {
9421         env->regs[14] = env->xregs[20];
9422         env->regs[13] = env->xregs[21];
9423     } else {
9424         env->banked_r14[r14_bank_number(ARM_CPU_MODE_ABT)] = env->xregs[20];
9425         env->banked_r13[bank_number(ARM_CPU_MODE_ABT)] = env->xregs[21];
9426     }
9427 
9428     if (mode == ARM_CPU_MODE_UND) {
9429         env->regs[14] = env->xregs[22];
9430         env->regs[13] = env->xregs[23];
9431     } else {
9432         env->banked_r14[r14_bank_number(ARM_CPU_MODE_UND)] = env->xregs[22];
9433         env->banked_r13[bank_number(ARM_CPU_MODE_UND)] = env->xregs[23];
9434     }
9435 
9436     /* Registers x24-x30 are mapped to r8-r14 in FIQ mode.  If we are in FIQ
9437      * mode, then we can copy to r8-r14.  Otherwise, we copy to the
9438      * FIQ bank for r8-r14.
9439      */
9440     if (mode == ARM_CPU_MODE_FIQ) {
9441         for (i = 24; i < 31; i++) {
9442             env->regs[i - 16] = env->xregs[i];   /* X[24:30] -> R[8:14] */
9443         }
9444     } else {
9445         for (i = 24; i < 29; i++) {
9446             env->fiq_regs[i - 24] = env->xregs[i];
9447         }
9448         env->banked_r13[bank_number(ARM_CPU_MODE_FIQ)] = env->xregs[29];
9449         env->banked_r14[r14_bank_number(ARM_CPU_MODE_FIQ)] = env->xregs[30];
9450     }
9451 
9452     env->regs[15] = env->pc;
9453 }
9454 
9455 static void take_aarch32_exception(CPUARMState *env, int new_mode,
9456                                    uint32_t mask, uint32_t offset,
9457                                    uint32_t newpc)
9458 {
9459     int new_el;
9460 
9461     /* Change the CPU state so as to actually take the exception. */
9462     switch_mode(env, new_mode);
9463 
9464     /*
9465      * For exceptions taken to AArch32 we must clear the SS bit in both
9466      * PSTATE and in the old-state value we save to SPSR_<mode>, so zero it now.
9467      */
9468     env->pstate &= ~PSTATE_SS;
9469     env->spsr = cpsr_read(env);
9470     /* Clear IT bits.  */
9471     env->condexec_bits = 0;
9472     /* Switch to the new mode, and to the correct instruction set.  */
9473     env->uncached_cpsr = (env->uncached_cpsr & ~CPSR_M) | new_mode;
9474 
9475     /* This must be after mode switching. */
9476     new_el = arm_current_el(env);
9477 
9478     /* Set new mode endianness */
9479     env->uncached_cpsr &= ~CPSR_E;
9480     if (env->cp15.sctlr_el[new_el] & SCTLR_EE) {
9481         env->uncached_cpsr |= CPSR_E;
9482     }
9483     /* J and IL must always be cleared for exception entry */
9484     env->uncached_cpsr &= ~(CPSR_IL | CPSR_J);
9485     env->daif |= mask;
9486 
9487     if (cpu_isar_feature(aa32_ssbs, env_archcpu(env))) {
9488         if (env->cp15.sctlr_el[new_el] & SCTLR_DSSBS_32) {
9489             env->uncached_cpsr |= CPSR_SSBS;
9490         } else {
9491             env->uncached_cpsr &= ~CPSR_SSBS;
9492         }
9493     }
9494 
9495     if (new_mode == ARM_CPU_MODE_HYP) {
9496         env->thumb = (env->cp15.sctlr_el[2] & SCTLR_TE) != 0;
9497         env->elr_el[2] = env->regs[15];
9498     } else {
9499         /* CPSR.PAN is normally preserved preserved unless...  */
9500         if (cpu_isar_feature(aa32_pan, env_archcpu(env))) {
9501             switch (new_el) {
9502             case 3:
9503                 if (!arm_is_secure_below_el3(env)) {
9504                     /* ... the target is EL3, from non-secure state.  */
9505                     env->uncached_cpsr &= ~CPSR_PAN;
9506                     break;
9507                 }
9508                 /* ... the target is EL3, from secure state ... */
9509                 /* fall through */
9510             case 1:
9511                 /* ... the target is EL1 and SCTLR.SPAN is 0.  */
9512                 if (!(env->cp15.sctlr_el[new_el] & SCTLR_SPAN)) {
9513                     env->uncached_cpsr |= CPSR_PAN;
9514                 }
9515                 break;
9516             }
9517         }
9518         /*
9519          * this is a lie, as there was no c1_sys on V4T/V5, but who cares
9520          * and we should just guard the thumb mode on V4
9521          */
9522         if (arm_feature(env, ARM_FEATURE_V4T)) {
9523             env->thumb =
9524                 (A32_BANKED_CURRENT_REG_GET(env, sctlr) & SCTLR_TE) != 0;
9525         }
9526         env->regs[14] = env->regs[15] + offset;
9527     }
9528     env->regs[15] = newpc;
9529     arm_rebuild_hflags(env);
9530 }
9531 
9532 static void arm_cpu_do_interrupt_aarch32_hyp(CPUState *cs)
9533 {
9534     /*
9535      * Handle exception entry to Hyp mode; this is sufficiently
9536      * different to entry to other AArch32 modes that we handle it
9537      * separately here.
9538      *
9539      * The vector table entry used is always the 0x14 Hyp mode entry point,
9540      * unless this is an UNDEF/HVC/abort taken from Hyp to Hyp.
9541      * The offset applied to the preferred return address is always zero
9542      * (see DDI0487C.a section G1.12.3).
9543      * PSTATE A/I/F masks are set based only on the SCR.EA/IRQ/FIQ values.
9544      */
9545     uint32_t addr, mask;
9546     ARMCPU *cpu = ARM_CPU(cs);
9547     CPUARMState *env = &cpu->env;
9548 
9549     switch (cs->exception_index) {
9550     case EXCP_UDEF:
9551         addr = 0x04;
9552         break;
9553     case EXCP_SWI:
9554         addr = 0x14;
9555         break;
9556     case EXCP_BKPT:
9557         /* Fall through to prefetch abort.  */
9558     case EXCP_PREFETCH_ABORT:
9559         env->cp15.ifar_s = env->exception.vaddress;
9560         qemu_log_mask(CPU_LOG_INT, "...with HIFAR 0x%x\n",
9561                       (uint32_t)env->exception.vaddress);
9562         addr = 0x0c;
9563         break;
9564     case EXCP_DATA_ABORT:
9565         env->cp15.dfar_s = env->exception.vaddress;
9566         qemu_log_mask(CPU_LOG_INT, "...with HDFAR 0x%x\n",
9567                       (uint32_t)env->exception.vaddress);
9568         addr = 0x10;
9569         break;
9570     case EXCP_IRQ:
9571         addr = 0x18;
9572         break;
9573     case EXCP_FIQ:
9574         addr = 0x1c;
9575         break;
9576     case EXCP_HVC:
9577         addr = 0x08;
9578         break;
9579     case EXCP_HYP_TRAP:
9580         addr = 0x14;
9581         break;
9582     default:
9583         cpu_abort(cs, "Unhandled exception 0x%x\n", cs->exception_index);
9584     }
9585 
9586     if (cs->exception_index != EXCP_IRQ && cs->exception_index != EXCP_FIQ) {
9587         if (!arm_feature(env, ARM_FEATURE_V8)) {
9588             /*
9589              * QEMU syndrome values are v8-style. v7 has the IL bit
9590              * UNK/SBZP for "field not valid" cases, where v8 uses RES1.
9591              * If this is a v7 CPU, squash the IL bit in those cases.
9592              */
9593             if (cs->exception_index == EXCP_PREFETCH_ABORT ||
9594                 (cs->exception_index == EXCP_DATA_ABORT &&
9595                  !(env->exception.syndrome & ARM_EL_ISV)) ||
9596                 syn_get_ec(env->exception.syndrome) == EC_UNCATEGORIZED) {
9597                 env->exception.syndrome &= ~ARM_EL_IL;
9598             }
9599         }
9600         env->cp15.esr_el[2] = env->exception.syndrome;
9601     }
9602 
9603     if (arm_current_el(env) != 2 && addr < 0x14) {
9604         addr = 0x14;
9605     }
9606 
9607     mask = 0;
9608     if (!(env->cp15.scr_el3 & SCR_EA)) {
9609         mask |= CPSR_A;
9610     }
9611     if (!(env->cp15.scr_el3 & SCR_IRQ)) {
9612         mask |= CPSR_I;
9613     }
9614     if (!(env->cp15.scr_el3 & SCR_FIQ)) {
9615         mask |= CPSR_F;
9616     }
9617 
9618     addr += env->cp15.hvbar;
9619 
9620     take_aarch32_exception(env, ARM_CPU_MODE_HYP, mask, 0, addr);
9621 }
9622 
9623 static void arm_cpu_do_interrupt_aarch32(CPUState *cs)
9624 {
9625     ARMCPU *cpu = ARM_CPU(cs);
9626     CPUARMState *env = &cpu->env;
9627     uint32_t addr;
9628     uint32_t mask;
9629     int new_mode;
9630     uint32_t offset;
9631     uint32_t moe;
9632 
9633     /* If this is a debug exception we must update the DBGDSCR.MOE bits */
9634     switch (syn_get_ec(env->exception.syndrome)) {
9635     case EC_BREAKPOINT:
9636     case EC_BREAKPOINT_SAME_EL:
9637         moe = 1;
9638         break;
9639     case EC_WATCHPOINT:
9640     case EC_WATCHPOINT_SAME_EL:
9641         moe = 10;
9642         break;
9643     case EC_AA32_BKPT:
9644         moe = 3;
9645         break;
9646     case EC_VECTORCATCH:
9647         moe = 5;
9648         break;
9649     default:
9650         moe = 0;
9651         break;
9652     }
9653 
9654     if (moe) {
9655         env->cp15.mdscr_el1 = deposit64(env->cp15.mdscr_el1, 2, 4, moe);
9656     }
9657 
9658     if (env->exception.target_el == 2) {
9659         arm_cpu_do_interrupt_aarch32_hyp(cs);
9660         return;
9661     }
9662 
9663     switch (cs->exception_index) {
9664     case EXCP_UDEF:
9665         new_mode = ARM_CPU_MODE_UND;
9666         addr = 0x04;
9667         mask = CPSR_I;
9668         if (env->thumb)
9669             offset = 2;
9670         else
9671             offset = 4;
9672         break;
9673     case EXCP_SWI:
9674         new_mode = ARM_CPU_MODE_SVC;
9675         addr = 0x08;
9676         mask = CPSR_I;
9677         /* The PC already points to the next instruction.  */
9678         offset = 0;
9679         break;
9680     case EXCP_BKPT:
9681         /* Fall through to prefetch abort.  */
9682     case EXCP_PREFETCH_ABORT:
9683         A32_BANKED_CURRENT_REG_SET(env, ifsr, env->exception.fsr);
9684         A32_BANKED_CURRENT_REG_SET(env, ifar, env->exception.vaddress);
9685         qemu_log_mask(CPU_LOG_INT, "...with IFSR 0x%x IFAR 0x%x\n",
9686                       env->exception.fsr, (uint32_t)env->exception.vaddress);
9687         new_mode = ARM_CPU_MODE_ABT;
9688         addr = 0x0c;
9689         mask = CPSR_A | CPSR_I;
9690         offset = 4;
9691         break;
9692     case EXCP_DATA_ABORT:
9693         A32_BANKED_CURRENT_REG_SET(env, dfsr, env->exception.fsr);
9694         A32_BANKED_CURRENT_REG_SET(env, dfar, env->exception.vaddress);
9695         qemu_log_mask(CPU_LOG_INT, "...with DFSR 0x%x DFAR 0x%x\n",
9696                       env->exception.fsr,
9697                       (uint32_t)env->exception.vaddress);
9698         new_mode = ARM_CPU_MODE_ABT;
9699         addr = 0x10;
9700         mask = CPSR_A | CPSR_I;
9701         offset = 8;
9702         break;
9703     case EXCP_IRQ:
9704         new_mode = ARM_CPU_MODE_IRQ;
9705         addr = 0x18;
9706         /* Disable IRQ and imprecise data aborts.  */
9707         mask = CPSR_A | CPSR_I;
9708         offset = 4;
9709         if (env->cp15.scr_el3 & SCR_IRQ) {
9710             /* IRQ routed to monitor mode */
9711             new_mode = ARM_CPU_MODE_MON;
9712             mask |= CPSR_F;
9713         }
9714         break;
9715     case EXCP_FIQ:
9716         new_mode = ARM_CPU_MODE_FIQ;
9717         addr = 0x1c;
9718         /* Disable FIQ, IRQ and imprecise data aborts.  */
9719         mask = CPSR_A | CPSR_I | CPSR_F;
9720         if (env->cp15.scr_el3 & SCR_FIQ) {
9721             /* FIQ routed to monitor mode */
9722             new_mode = ARM_CPU_MODE_MON;
9723         }
9724         offset = 4;
9725         break;
9726     case EXCP_VIRQ:
9727         new_mode = ARM_CPU_MODE_IRQ;
9728         addr = 0x18;
9729         /* Disable IRQ and imprecise data aborts.  */
9730         mask = CPSR_A | CPSR_I;
9731         offset = 4;
9732         break;
9733     case EXCP_VFIQ:
9734         new_mode = ARM_CPU_MODE_FIQ;
9735         addr = 0x1c;
9736         /* Disable FIQ, IRQ and imprecise data aborts.  */
9737         mask = CPSR_A | CPSR_I | CPSR_F;
9738         offset = 4;
9739         break;
9740     case EXCP_SMC:
9741         new_mode = ARM_CPU_MODE_MON;
9742         addr = 0x08;
9743         mask = CPSR_A | CPSR_I | CPSR_F;
9744         offset = 0;
9745         break;
9746     default:
9747         cpu_abort(cs, "Unhandled exception 0x%x\n", cs->exception_index);
9748         return; /* Never happens.  Keep compiler happy.  */
9749     }
9750 
9751     if (new_mode == ARM_CPU_MODE_MON) {
9752         addr += env->cp15.mvbar;
9753     } else if (A32_BANKED_CURRENT_REG_GET(env, sctlr) & SCTLR_V) {
9754         /* High vectors. When enabled, base address cannot be remapped. */
9755         addr += 0xffff0000;
9756     } else {
9757         /* ARM v7 architectures provide a vector base address register to remap
9758          * the interrupt vector table.
9759          * This register is only followed in non-monitor mode, and is banked.
9760          * Note: only bits 31:5 are valid.
9761          */
9762         addr += A32_BANKED_CURRENT_REG_GET(env, vbar);
9763     }
9764 
9765     if ((env->uncached_cpsr & CPSR_M) == ARM_CPU_MODE_MON) {
9766         env->cp15.scr_el3 &= ~SCR_NS;
9767     }
9768 
9769     take_aarch32_exception(env, new_mode, mask, offset, addr);
9770 }
9771 
9772 static int aarch64_regnum(CPUARMState *env, int aarch32_reg)
9773 {
9774     /*
9775      * Return the register number of the AArch64 view of the AArch32
9776      * register @aarch32_reg. The CPUARMState CPSR is assumed to still
9777      * be that of the AArch32 mode the exception came from.
9778      */
9779     int mode = env->uncached_cpsr & CPSR_M;
9780 
9781     switch (aarch32_reg) {
9782     case 0 ... 7:
9783         return aarch32_reg;
9784     case 8 ... 12:
9785         return mode == ARM_CPU_MODE_FIQ ? aarch32_reg + 16 : aarch32_reg;
9786     case 13:
9787         switch (mode) {
9788         case ARM_CPU_MODE_USR:
9789         case ARM_CPU_MODE_SYS:
9790             return 13;
9791         case ARM_CPU_MODE_HYP:
9792             return 15;
9793         case ARM_CPU_MODE_IRQ:
9794             return 17;
9795         case ARM_CPU_MODE_SVC:
9796             return 19;
9797         case ARM_CPU_MODE_ABT:
9798             return 21;
9799         case ARM_CPU_MODE_UND:
9800             return 23;
9801         case ARM_CPU_MODE_FIQ:
9802             return 29;
9803         default:
9804             g_assert_not_reached();
9805         }
9806     case 14:
9807         switch (mode) {
9808         case ARM_CPU_MODE_USR:
9809         case ARM_CPU_MODE_SYS:
9810         case ARM_CPU_MODE_HYP:
9811             return 14;
9812         case ARM_CPU_MODE_IRQ:
9813             return 16;
9814         case ARM_CPU_MODE_SVC:
9815             return 18;
9816         case ARM_CPU_MODE_ABT:
9817             return 20;
9818         case ARM_CPU_MODE_UND:
9819             return 22;
9820         case ARM_CPU_MODE_FIQ:
9821             return 30;
9822         default:
9823             g_assert_not_reached();
9824         }
9825     case 15:
9826         return 31;
9827     default:
9828         g_assert_not_reached();
9829     }
9830 }
9831 
9832 static uint32_t cpsr_read_for_spsr_elx(CPUARMState *env)
9833 {
9834     uint32_t ret = cpsr_read(env);
9835 
9836     /* Move DIT to the correct location for SPSR_ELx */
9837     if (ret & CPSR_DIT) {
9838         ret &= ~CPSR_DIT;
9839         ret |= PSTATE_DIT;
9840     }
9841     /* Merge PSTATE.SS into SPSR_ELx */
9842     ret |= env->pstate & PSTATE_SS;
9843 
9844     return ret;
9845 }
9846 
9847 /* Handle exception entry to a target EL which is using AArch64 */
9848 static void arm_cpu_do_interrupt_aarch64(CPUState *cs)
9849 {
9850     ARMCPU *cpu = ARM_CPU(cs);
9851     CPUARMState *env = &cpu->env;
9852     unsigned int new_el = env->exception.target_el;
9853     target_ulong addr = env->cp15.vbar_el[new_el];
9854     unsigned int new_mode = aarch64_pstate_mode(new_el, true);
9855     unsigned int old_mode;
9856     unsigned int cur_el = arm_current_el(env);
9857     int rt;
9858 
9859     /*
9860      * Note that new_el can never be 0.  If cur_el is 0, then
9861      * el0_a64 is is_a64(), else el0_a64 is ignored.
9862      */
9863     aarch64_sve_change_el(env, cur_el, new_el, is_a64(env));
9864 
9865     if (cur_el < new_el) {
9866         /* Entry vector offset depends on whether the implemented EL
9867          * immediately lower than the target level is using AArch32 or AArch64
9868          */
9869         bool is_aa64;
9870         uint64_t hcr;
9871 
9872         switch (new_el) {
9873         case 3:
9874             is_aa64 = (env->cp15.scr_el3 & SCR_RW) != 0;
9875             break;
9876         case 2:
9877             hcr = arm_hcr_el2_eff(env);
9878             if ((hcr & (HCR_E2H | HCR_TGE)) != (HCR_E2H | HCR_TGE)) {
9879                 is_aa64 = (hcr & HCR_RW) != 0;
9880                 break;
9881             }
9882             /* fall through */
9883         case 1:
9884             is_aa64 = is_a64(env);
9885             break;
9886         default:
9887             g_assert_not_reached();
9888         }
9889 
9890         if (is_aa64) {
9891             addr += 0x400;
9892         } else {
9893             addr += 0x600;
9894         }
9895     } else if (pstate_read(env) & PSTATE_SP) {
9896         addr += 0x200;
9897     }
9898 
9899     switch (cs->exception_index) {
9900     case EXCP_PREFETCH_ABORT:
9901     case EXCP_DATA_ABORT:
9902         env->cp15.far_el[new_el] = env->exception.vaddress;
9903         qemu_log_mask(CPU_LOG_INT, "...with FAR 0x%" PRIx64 "\n",
9904                       env->cp15.far_el[new_el]);
9905         /* fall through */
9906     case EXCP_BKPT:
9907     case EXCP_UDEF:
9908     case EXCP_SWI:
9909     case EXCP_HVC:
9910     case EXCP_HYP_TRAP:
9911     case EXCP_SMC:
9912         switch (syn_get_ec(env->exception.syndrome)) {
9913         case EC_ADVSIMDFPACCESSTRAP:
9914             /*
9915              * QEMU internal FP/SIMD syndromes from AArch32 include the
9916              * TA and coproc fields which are only exposed if the exception
9917              * is taken to AArch32 Hyp mode. Mask them out to get a valid
9918              * AArch64 format syndrome.
9919              */
9920             env->exception.syndrome &= ~MAKE_64BIT_MASK(0, 20);
9921             break;
9922         case EC_CP14RTTRAP:
9923         case EC_CP15RTTRAP:
9924         case EC_CP14DTTRAP:
9925             /*
9926              * For a trap on AArch32 MRC/MCR/LDC/STC the Rt field is currently
9927              * the raw register field from the insn; when taking this to
9928              * AArch64 we must convert it to the AArch64 view of the register
9929              * number. Notice that we read a 4-bit AArch32 register number and
9930              * write back a 5-bit AArch64 one.
9931              */
9932             rt = extract32(env->exception.syndrome, 5, 4);
9933             rt = aarch64_regnum(env, rt);
9934             env->exception.syndrome = deposit32(env->exception.syndrome,
9935                                                 5, 5, rt);
9936             break;
9937         case EC_CP15RRTTRAP:
9938         case EC_CP14RRTTRAP:
9939             /* Similarly for MRRC/MCRR traps for Rt and Rt2 fields */
9940             rt = extract32(env->exception.syndrome, 5, 4);
9941             rt = aarch64_regnum(env, rt);
9942             env->exception.syndrome = deposit32(env->exception.syndrome,
9943                                                 5, 5, rt);
9944             rt = extract32(env->exception.syndrome, 10, 4);
9945             rt = aarch64_regnum(env, rt);
9946             env->exception.syndrome = deposit32(env->exception.syndrome,
9947                                                 10, 5, rt);
9948             break;
9949         }
9950         env->cp15.esr_el[new_el] = env->exception.syndrome;
9951         break;
9952     case EXCP_IRQ:
9953     case EXCP_VIRQ:
9954         addr += 0x80;
9955         break;
9956     case EXCP_FIQ:
9957     case EXCP_VFIQ:
9958         addr += 0x100;
9959         break;
9960     default:
9961         cpu_abort(cs, "Unhandled exception 0x%x\n", cs->exception_index);
9962     }
9963 
9964     if (is_a64(env)) {
9965         old_mode = pstate_read(env);
9966         aarch64_save_sp(env, arm_current_el(env));
9967         env->elr_el[new_el] = env->pc;
9968     } else {
9969         old_mode = cpsr_read_for_spsr_elx(env);
9970         env->elr_el[new_el] = env->regs[15];
9971 
9972         aarch64_sync_32_to_64(env);
9973 
9974         env->condexec_bits = 0;
9975     }
9976     env->banked_spsr[aarch64_banked_spsr_index(new_el)] = old_mode;
9977 
9978     qemu_log_mask(CPU_LOG_INT, "...with ELR 0x%" PRIx64 "\n",
9979                   env->elr_el[new_el]);
9980 
9981     if (cpu_isar_feature(aa64_pan, cpu)) {
9982         /* The value of PSTATE.PAN is normally preserved, except when ... */
9983         new_mode |= old_mode & PSTATE_PAN;
9984         switch (new_el) {
9985         case 2:
9986             /* ... the target is EL2 with HCR_EL2.{E2H,TGE} == '11' ...  */
9987             if ((arm_hcr_el2_eff(env) & (HCR_E2H | HCR_TGE))
9988                 != (HCR_E2H | HCR_TGE)) {
9989                 break;
9990             }
9991             /* fall through */
9992         case 1:
9993             /* ... the target is EL1 ... */
9994             /* ... and SCTLR_ELx.SPAN == 0, then set to 1.  */
9995             if ((env->cp15.sctlr_el[new_el] & SCTLR_SPAN) == 0) {
9996                 new_mode |= PSTATE_PAN;
9997             }
9998             break;
9999         }
10000     }
10001     if (cpu_isar_feature(aa64_mte, cpu)) {
10002         new_mode |= PSTATE_TCO;
10003     }
10004 
10005     if (cpu_isar_feature(aa64_ssbs, cpu)) {
10006         if (env->cp15.sctlr_el[new_el] & SCTLR_DSSBS_64) {
10007             new_mode |= PSTATE_SSBS;
10008         } else {
10009             new_mode &= ~PSTATE_SSBS;
10010         }
10011     }
10012 
10013     pstate_write(env, PSTATE_DAIF | new_mode);
10014     env->aarch64 = 1;
10015     aarch64_restore_sp(env, new_el);
10016     helper_rebuild_hflags_a64(env, new_el);
10017 
10018     env->pc = addr;
10019 
10020     qemu_log_mask(CPU_LOG_INT, "...to EL%d PC 0x%" PRIx64 " PSTATE 0x%x\n",
10021                   new_el, env->pc, pstate_read(env));
10022 }
10023 
10024 /*
10025  * Do semihosting call and set the appropriate return value. All the
10026  * permission and validity checks have been done at translate time.
10027  *
10028  * We only see semihosting exceptions in TCG only as they are not
10029  * trapped to the hypervisor in KVM.
10030  */
10031 #ifdef CONFIG_TCG
10032 static void handle_semihosting(CPUState *cs)
10033 {
10034     ARMCPU *cpu = ARM_CPU(cs);
10035     CPUARMState *env = &cpu->env;
10036 
10037     if (is_a64(env)) {
10038         qemu_log_mask(CPU_LOG_INT,
10039                       "...handling as semihosting call 0x%" PRIx64 "\n",
10040                       env->xregs[0]);
10041         env->xregs[0] = do_common_semihosting(cs);
10042         env->pc += 4;
10043     } else {
10044         qemu_log_mask(CPU_LOG_INT,
10045                       "...handling as semihosting call 0x%x\n",
10046                       env->regs[0]);
10047         env->regs[0] = do_common_semihosting(cs);
10048         env->regs[15] += env->thumb ? 2 : 4;
10049     }
10050 }
10051 #endif
10052 
10053 /* Handle a CPU exception for A and R profile CPUs.
10054  * Do any appropriate logging, handle PSCI calls, and then hand off
10055  * to the AArch64-entry or AArch32-entry function depending on the
10056  * target exception level's register width.
10057  *
10058  * Note: this is used for both TCG (as the do_interrupt tcg op),
10059  *       and KVM to re-inject guest debug exceptions, and to
10060  *       inject a Synchronous-External-Abort.
10061  */
10062 void arm_cpu_do_interrupt(CPUState *cs)
10063 {
10064     ARMCPU *cpu = ARM_CPU(cs);
10065     CPUARMState *env = &cpu->env;
10066     unsigned int new_el = env->exception.target_el;
10067 
10068     assert(!arm_feature(env, ARM_FEATURE_M));
10069 
10070     arm_log_exception(cs->exception_index);
10071     qemu_log_mask(CPU_LOG_INT, "...from EL%d to EL%d\n", arm_current_el(env),
10072                   new_el);
10073     if (qemu_loglevel_mask(CPU_LOG_INT)
10074         && !excp_is_internal(cs->exception_index)) {
10075         qemu_log_mask(CPU_LOG_INT, "...with ESR 0x%x/0x%" PRIx32 "\n",
10076                       syn_get_ec(env->exception.syndrome),
10077                       env->exception.syndrome);
10078     }
10079 
10080     if (arm_is_psci_call(cpu, cs->exception_index)) {
10081         arm_handle_psci_call(cpu);
10082         qemu_log_mask(CPU_LOG_INT, "...handled as PSCI call\n");
10083         return;
10084     }
10085 
10086     /*
10087      * Semihosting semantics depend on the register width of the code
10088      * that caused the exception, not the target exception level, so
10089      * must be handled here.
10090      */
10091 #ifdef CONFIG_TCG
10092     if (cs->exception_index == EXCP_SEMIHOST) {
10093         handle_semihosting(cs);
10094         return;
10095     }
10096 #endif
10097 
10098     /* Hooks may change global state so BQL should be held, also the
10099      * BQL needs to be held for any modification of
10100      * cs->interrupt_request.
10101      */
10102     g_assert(qemu_mutex_iothread_locked());
10103 
10104     arm_call_pre_el_change_hook(cpu);
10105 
10106     assert(!excp_is_internal(cs->exception_index));
10107     if (arm_el_is_aa64(env, new_el)) {
10108         arm_cpu_do_interrupt_aarch64(cs);
10109     } else {
10110         arm_cpu_do_interrupt_aarch32(cs);
10111     }
10112 
10113     arm_call_el_change_hook(cpu);
10114 
10115     if (!kvm_enabled()) {
10116         cs->interrupt_request |= CPU_INTERRUPT_EXITTB;
10117     }
10118 }
10119 #endif /* !CONFIG_USER_ONLY */
10120 
10121 uint64_t arm_sctlr(CPUARMState *env, int el)
10122 {
10123     /* Only EL0 needs to be adjusted for EL1&0 or EL2&0. */
10124     if (el == 0) {
10125         ARMMMUIdx mmu_idx = arm_mmu_idx_el(env, 0);
10126         el = (mmu_idx == ARMMMUIdx_E20_0 || mmu_idx == ARMMMUIdx_SE20_0)
10127              ? 2 : 1;
10128     }
10129     return env->cp15.sctlr_el[el];
10130 }
10131 
10132 /* Return the SCTLR value which controls this address translation regime */
10133 static inline uint64_t regime_sctlr(CPUARMState *env, ARMMMUIdx mmu_idx)
10134 {
10135     return env->cp15.sctlr_el[regime_el(env, mmu_idx)];
10136 }
10137 
10138 #ifndef CONFIG_USER_ONLY
10139 
10140 /* Return true if the specified stage of address translation is disabled */
10141 static inline bool regime_translation_disabled(CPUARMState *env,
10142                                                ARMMMUIdx mmu_idx)
10143 {
10144     uint64_t hcr_el2;
10145 
10146     if (arm_feature(env, ARM_FEATURE_M)) {
10147         switch (env->v7m.mpu_ctrl[regime_is_secure(env, mmu_idx)] &
10148                 (R_V7M_MPU_CTRL_ENABLE_MASK | R_V7M_MPU_CTRL_HFNMIENA_MASK)) {
10149         case R_V7M_MPU_CTRL_ENABLE_MASK:
10150             /* Enabled, but not for HardFault and NMI */
10151             return mmu_idx & ARM_MMU_IDX_M_NEGPRI;
10152         case R_V7M_MPU_CTRL_ENABLE_MASK | R_V7M_MPU_CTRL_HFNMIENA_MASK:
10153             /* Enabled for all cases */
10154             return false;
10155         case 0:
10156         default:
10157             /* HFNMIENA set and ENABLE clear is UNPREDICTABLE, but
10158              * we warned about that in armv7m_nvic.c when the guest set it.
10159              */
10160             return true;
10161         }
10162     }
10163 
10164     hcr_el2 = arm_hcr_el2_eff(env);
10165 
10166     if (mmu_idx == ARMMMUIdx_Stage2 || mmu_idx == ARMMMUIdx_Stage2_S) {
10167         /* HCR.DC means HCR.VM behaves as 1 */
10168         return (hcr_el2 & (HCR_DC | HCR_VM)) == 0;
10169     }
10170 
10171     if (hcr_el2 & HCR_TGE) {
10172         /* TGE means that NS EL0/1 act as if SCTLR_EL1.M is zero */
10173         if (!regime_is_secure(env, mmu_idx) && regime_el(env, mmu_idx) == 1) {
10174             return true;
10175         }
10176     }
10177 
10178     if ((hcr_el2 & HCR_DC) && arm_mmu_idx_is_stage1_of_2(mmu_idx)) {
10179         /* HCR.DC means SCTLR_EL1.M behaves as 0 */
10180         return true;
10181     }
10182 
10183     return (regime_sctlr(env, mmu_idx) & SCTLR_M) == 0;
10184 }
10185 
10186 static inline bool regime_translation_big_endian(CPUARMState *env,
10187                                                  ARMMMUIdx mmu_idx)
10188 {
10189     return (regime_sctlr(env, mmu_idx) & SCTLR_EE) != 0;
10190 }
10191 
10192 /* Return the TTBR associated with this translation regime */
10193 static inline uint64_t regime_ttbr(CPUARMState *env, ARMMMUIdx mmu_idx,
10194                                    int ttbrn)
10195 {
10196     if (mmu_idx == ARMMMUIdx_Stage2) {
10197         return env->cp15.vttbr_el2;
10198     }
10199     if (mmu_idx == ARMMMUIdx_Stage2_S) {
10200         return env->cp15.vsttbr_el2;
10201     }
10202     if (ttbrn == 0) {
10203         return env->cp15.ttbr0_el[regime_el(env, mmu_idx)];
10204     } else {
10205         return env->cp15.ttbr1_el[regime_el(env, mmu_idx)];
10206     }
10207 }
10208 
10209 #endif /* !CONFIG_USER_ONLY */
10210 
10211 /* Convert a possible stage1+2 MMU index into the appropriate
10212  * stage 1 MMU index
10213  */
10214 static inline ARMMMUIdx stage_1_mmu_idx(ARMMMUIdx mmu_idx)
10215 {
10216     switch (mmu_idx) {
10217     case ARMMMUIdx_SE10_0:
10218         return ARMMMUIdx_Stage1_SE0;
10219     case ARMMMUIdx_SE10_1:
10220         return ARMMMUIdx_Stage1_SE1;
10221     case ARMMMUIdx_SE10_1_PAN:
10222         return ARMMMUIdx_Stage1_SE1_PAN;
10223     case ARMMMUIdx_E10_0:
10224         return ARMMMUIdx_Stage1_E0;
10225     case ARMMMUIdx_E10_1:
10226         return ARMMMUIdx_Stage1_E1;
10227     case ARMMMUIdx_E10_1_PAN:
10228         return ARMMMUIdx_Stage1_E1_PAN;
10229     default:
10230         return mmu_idx;
10231     }
10232 }
10233 
10234 /* Return true if the translation regime is using LPAE format page tables */
10235 static inline bool regime_using_lpae_format(CPUARMState *env,
10236                                             ARMMMUIdx mmu_idx)
10237 {
10238     int el = regime_el(env, mmu_idx);
10239     if (el == 2 || arm_el_is_aa64(env, el)) {
10240         return true;
10241     }
10242     if (arm_feature(env, ARM_FEATURE_LPAE)
10243         && (regime_tcr(env, mmu_idx)->raw_tcr & TTBCR_EAE)) {
10244         return true;
10245     }
10246     return false;
10247 }
10248 
10249 /* Returns true if the stage 1 translation regime is using LPAE format page
10250  * tables. Used when raising alignment exceptions, whose FSR changes depending
10251  * on whether the long or short descriptor format is in use. */
10252 bool arm_s1_regime_using_lpae_format(CPUARMState *env, ARMMMUIdx mmu_idx)
10253 {
10254     mmu_idx = stage_1_mmu_idx(mmu_idx);
10255 
10256     return regime_using_lpae_format(env, mmu_idx);
10257 }
10258 
10259 #ifndef CONFIG_USER_ONLY
10260 static inline bool regime_is_user(CPUARMState *env, ARMMMUIdx mmu_idx)
10261 {
10262     switch (mmu_idx) {
10263     case ARMMMUIdx_SE10_0:
10264     case ARMMMUIdx_E20_0:
10265     case ARMMMUIdx_SE20_0:
10266     case ARMMMUIdx_Stage1_E0:
10267     case ARMMMUIdx_Stage1_SE0:
10268     case ARMMMUIdx_MUser:
10269     case ARMMMUIdx_MSUser:
10270     case ARMMMUIdx_MUserNegPri:
10271     case ARMMMUIdx_MSUserNegPri:
10272         return true;
10273     default:
10274         return false;
10275     case ARMMMUIdx_E10_0:
10276     case ARMMMUIdx_E10_1:
10277     case ARMMMUIdx_E10_1_PAN:
10278         g_assert_not_reached();
10279     }
10280 }
10281 
10282 /* Translate section/page access permissions to page
10283  * R/W protection flags
10284  *
10285  * @env:         CPUARMState
10286  * @mmu_idx:     MMU index indicating required translation regime
10287  * @ap:          The 3-bit access permissions (AP[2:0])
10288  * @domain_prot: The 2-bit domain access permissions
10289  */
10290 static inline int ap_to_rw_prot(CPUARMState *env, ARMMMUIdx mmu_idx,
10291                                 int ap, int domain_prot)
10292 {
10293     bool is_user = regime_is_user(env, mmu_idx);
10294 
10295     if (domain_prot == 3) {
10296         return PAGE_READ | PAGE_WRITE;
10297     }
10298 
10299     switch (ap) {
10300     case 0:
10301         if (arm_feature(env, ARM_FEATURE_V7)) {
10302             return 0;
10303         }
10304         switch (regime_sctlr(env, mmu_idx) & (SCTLR_S | SCTLR_R)) {
10305         case SCTLR_S:
10306             return is_user ? 0 : PAGE_READ;
10307         case SCTLR_R:
10308             return PAGE_READ;
10309         default:
10310             return 0;
10311         }
10312     case 1:
10313         return is_user ? 0 : PAGE_READ | PAGE_WRITE;
10314     case 2:
10315         if (is_user) {
10316             return PAGE_READ;
10317         } else {
10318             return PAGE_READ | PAGE_WRITE;
10319         }
10320     case 3:
10321         return PAGE_READ | PAGE_WRITE;
10322     case 4: /* Reserved.  */
10323         return 0;
10324     case 5:
10325         return is_user ? 0 : PAGE_READ;
10326     case 6:
10327         return PAGE_READ;
10328     case 7:
10329         if (!arm_feature(env, ARM_FEATURE_V6K)) {
10330             return 0;
10331         }
10332         return PAGE_READ;
10333     default:
10334         g_assert_not_reached();
10335     }
10336 }
10337 
10338 /* Translate section/page access permissions to page
10339  * R/W protection flags.
10340  *
10341  * @ap:      The 2-bit simple AP (AP[2:1])
10342  * @is_user: TRUE if accessing from PL0
10343  */
10344 static inline int simple_ap_to_rw_prot_is_user(int ap, bool is_user)
10345 {
10346     switch (ap) {
10347     case 0:
10348         return is_user ? 0 : PAGE_READ | PAGE_WRITE;
10349     case 1:
10350         return PAGE_READ | PAGE_WRITE;
10351     case 2:
10352         return is_user ? 0 : PAGE_READ;
10353     case 3:
10354         return PAGE_READ;
10355     default:
10356         g_assert_not_reached();
10357     }
10358 }
10359 
10360 static inline int
10361 simple_ap_to_rw_prot(CPUARMState *env, ARMMMUIdx mmu_idx, int ap)
10362 {
10363     return simple_ap_to_rw_prot_is_user(ap, regime_is_user(env, mmu_idx));
10364 }
10365 
10366 /* Translate S2 section/page access permissions to protection flags
10367  *
10368  * @env:     CPUARMState
10369  * @s2ap:    The 2-bit stage2 access permissions (S2AP)
10370  * @xn:      XN (execute-never) bits
10371  * @s1_is_el0: true if this is S2 of an S1+2 walk for EL0
10372  */
10373 static int get_S2prot(CPUARMState *env, int s2ap, int xn, bool s1_is_el0)
10374 {
10375     int prot = 0;
10376 
10377     if (s2ap & 1) {
10378         prot |= PAGE_READ;
10379     }
10380     if (s2ap & 2) {
10381         prot |= PAGE_WRITE;
10382     }
10383 
10384     if (cpu_isar_feature(any_tts2uxn, env_archcpu(env))) {
10385         switch (xn) {
10386         case 0:
10387             prot |= PAGE_EXEC;
10388             break;
10389         case 1:
10390             if (s1_is_el0) {
10391                 prot |= PAGE_EXEC;
10392             }
10393             break;
10394         case 2:
10395             break;
10396         case 3:
10397             if (!s1_is_el0) {
10398                 prot |= PAGE_EXEC;
10399             }
10400             break;
10401         default:
10402             g_assert_not_reached();
10403         }
10404     } else {
10405         if (!extract32(xn, 1, 1)) {
10406             if (arm_el_is_aa64(env, 2) || prot & PAGE_READ) {
10407                 prot |= PAGE_EXEC;
10408             }
10409         }
10410     }
10411     return prot;
10412 }
10413 
10414 /* Translate section/page access permissions to protection flags
10415  *
10416  * @env:     CPUARMState
10417  * @mmu_idx: MMU index indicating required translation regime
10418  * @is_aa64: TRUE if AArch64
10419  * @ap:      The 2-bit simple AP (AP[2:1])
10420  * @ns:      NS (non-secure) bit
10421  * @xn:      XN (execute-never) bit
10422  * @pxn:     PXN (privileged execute-never) bit
10423  */
10424 static int get_S1prot(CPUARMState *env, ARMMMUIdx mmu_idx, bool is_aa64,
10425                       int ap, int ns, int xn, int pxn)
10426 {
10427     bool is_user = regime_is_user(env, mmu_idx);
10428     int prot_rw, user_rw;
10429     bool have_wxn;
10430     int wxn = 0;
10431 
10432     assert(mmu_idx != ARMMMUIdx_Stage2);
10433     assert(mmu_idx != ARMMMUIdx_Stage2_S);
10434 
10435     user_rw = simple_ap_to_rw_prot_is_user(ap, true);
10436     if (is_user) {
10437         prot_rw = user_rw;
10438     } else {
10439         if (user_rw && regime_is_pan(env, mmu_idx)) {
10440             /* PAN forbids data accesses but doesn't affect insn fetch */
10441             prot_rw = 0;
10442         } else {
10443             prot_rw = simple_ap_to_rw_prot_is_user(ap, false);
10444         }
10445     }
10446 
10447     if (ns && arm_is_secure(env) && (env->cp15.scr_el3 & SCR_SIF)) {
10448         return prot_rw;
10449     }
10450 
10451     /* TODO have_wxn should be replaced with
10452      *   ARM_FEATURE_V8 || (ARM_FEATURE_V7 && ARM_FEATURE_EL2)
10453      * when ARM_FEATURE_EL2 starts getting set. For now we assume all LPAE
10454      * compatible processors have EL2, which is required for [U]WXN.
10455      */
10456     have_wxn = arm_feature(env, ARM_FEATURE_LPAE);
10457 
10458     if (have_wxn) {
10459         wxn = regime_sctlr(env, mmu_idx) & SCTLR_WXN;
10460     }
10461 
10462     if (is_aa64) {
10463         if (regime_has_2_ranges(mmu_idx) && !is_user) {
10464             xn = pxn || (user_rw & PAGE_WRITE);
10465         }
10466     } else if (arm_feature(env, ARM_FEATURE_V7)) {
10467         switch (regime_el(env, mmu_idx)) {
10468         case 1:
10469         case 3:
10470             if (is_user) {
10471                 xn = xn || !(user_rw & PAGE_READ);
10472             } else {
10473                 int uwxn = 0;
10474                 if (have_wxn) {
10475                     uwxn = regime_sctlr(env, mmu_idx) & SCTLR_UWXN;
10476                 }
10477                 xn = xn || !(prot_rw & PAGE_READ) || pxn ||
10478                      (uwxn && (user_rw & PAGE_WRITE));
10479             }
10480             break;
10481         case 2:
10482             break;
10483         }
10484     } else {
10485         xn = wxn = 0;
10486     }
10487 
10488     if (xn || (wxn && (prot_rw & PAGE_WRITE))) {
10489         return prot_rw;
10490     }
10491     return prot_rw | PAGE_EXEC;
10492 }
10493 
10494 static bool get_level1_table_address(CPUARMState *env, ARMMMUIdx mmu_idx,
10495                                      uint32_t *table, uint32_t address)
10496 {
10497     /* Note that we can only get here for an AArch32 PL0/PL1 lookup */
10498     TCR *tcr = regime_tcr(env, mmu_idx);
10499 
10500     if (address & tcr->mask) {
10501         if (tcr->raw_tcr & TTBCR_PD1) {
10502             /* Translation table walk disabled for TTBR1 */
10503             return false;
10504         }
10505         *table = regime_ttbr(env, mmu_idx, 1) & 0xffffc000;
10506     } else {
10507         if (tcr->raw_tcr & TTBCR_PD0) {
10508             /* Translation table walk disabled for TTBR0 */
10509             return false;
10510         }
10511         *table = regime_ttbr(env, mmu_idx, 0) & tcr->base_mask;
10512     }
10513     *table |= (address >> 18) & 0x3ffc;
10514     return true;
10515 }
10516 
10517 /* Translate a S1 pagetable walk through S2 if needed.  */
10518 static hwaddr S1_ptw_translate(CPUARMState *env, ARMMMUIdx mmu_idx,
10519                                hwaddr addr, bool *is_secure,
10520                                ARMMMUFaultInfo *fi)
10521 {
10522     if (arm_mmu_idx_is_stage1_of_2(mmu_idx) &&
10523         !regime_translation_disabled(env, ARMMMUIdx_Stage2)) {
10524         target_ulong s2size;
10525         hwaddr s2pa;
10526         int s2prot;
10527         int ret;
10528         ARMMMUIdx s2_mmu_idx = *is_secure ? ARMMMUIdx_Stage2_S
10529                                           : ARMMMUIdx_Stage2;
10530         ARMCacheAttrs cacheattrs = {};
10531         MemTxAttrs txattrs = {};
10532 
10533         ret = get_phys_addr_lpae(env, addr, MMU_DATA_LOAD, s2_mmu_idx, false,
10534                                  &s2pa, &txattrs, &s2prot, &s2size, fi,
10535                                  &cacheattrs);
10536         if (ret) {
10537             assert(fi->type != ARMFault_None);
10538             fi->s2addr = addr;
10539             fi->stage2 = true;
10540             fi->s1ptw = true;
10541             fi->s1ns = !*is_secure;
10542             return ~0;
10543         }
10544         if ((arm_hcr_el2_eff(env) & HCR_PTW) &&
10545             (cacheattrs.attrs & 0xf0) == 0) {
10546             /*
10547              * PTW set and S1 walk touched S2 Device memory:
10548              * generate Permission fault.
10549              */
10550             fi->type = ARMFault_Permission;
10551             fi->s2addr = addr;
10552             fi->stage2 = true;
10553             fi->s1ptw = true;
10554             fi->s1ns = !*is_secure;
10555             return ~0;
10556         }
10557 
10558         if (arm_is_secure_below_el3(env)) {
10559             /* Check if page table walk is to secure or non-secure PA space. */
10560             if (*is_secure) {
10561                 *is_secure = !(env->cp15.vstcr_el2.raw_tcr & VSTCR_SW);
10562             } else {
10563                 *is_secure = !(env->cp15.vtcr_el2.raw_tcr & VTCR_NSW);
10564             }
10565         } else {
10566             assert(!*is_secure);
10567         }
10568 
10569         addr = s2pa;
10570     }
10571     return addr;
10572 }
10573 
10574 /* All loads done in the course of a page table walk go through here. */
10575 static uint32_t arm_ldl_ptw(CPUState *cs, hwaddr addr, bool is_secure,
10576                             ARMMMUIdx mmu_idx, ARMMMUFaultInfo *fi)
10577 {
10578     ARMCPU *cpu = ARM_CPU(cs);
10579     CPUARMState *env = &cpu->env;
10580     MemTxAttrs attrs = {};
10581     MemTxResult result = MEMTX_OK;
10582     AddressSpace *as;
10583     uint32_t data;
10584 
10585     addr = S1_ptw_translate(env, mmu_idx, addr, &is_secure, fi);
10586     attrs.secure = is_secure;
10587     as = arm_addressspace(cs, attrs);
10588     if (fi->s1ptw) {
10589         return 0;
10590     }
10591     if (regime_translation_big_endian(env, mmu_idx)) {
10592         data = address_space_ldl_be(as, addr, attrs, &result);
10593     } else {
10594         data = address_space_ldl_le(as, addr, attrs, &result);
10595     }
10596     if (result == MEMTX_OK) {
10597         return data;
10598     }
10599     fi->type = ARMFault_SyncExternalOnWalk;
10600     fi->ea = arm_extabort_type(result);
10601     return 0;
10602 }
10603 
10604 static uint64_t arm_ldq_ptw(CPUState *cs, hwaddr addr, bool is_secure,
10605                             ARMMMUIdx mmu_idx, ARMMMUFaultInfo *fi)
10606 {
10607     ARMCPU *cpu = ARM_CPU(cs);
10608     CPUARMState *env = &cpu->env;
10609     MemTxAttrs attrs = {};
10610     MemTxResult result = MEMTX_OK;
10611     AddressSpace *as;
10612     uint64_t data;
10613 
10614     addr = S1_ptw_translate(env, mmu_idx, addr, &is_secure, fi);
10615     attrs.secure = is_secure;
10616     as = arm_addressspace(cs, attrs);
10617     if (fi->s1ptw) {
10618         return 0;
10619     }
10620     if (regime_translation_big_endian(env, mmu_idx)) {
10621         data = address_space_ldq_be(as, addr, attrs, &result);
10622     } else {
10623         data = address_space_ldq_le(as, addr, attrs, &result);
10624     }
10625     if (result == MEMTX_OK) {
10626         return data;
10627     }
10628     fi->type = ARMFault_SyncExternalOnWalk;
10629     fi->ea = arm_extabort_type(result);
10630     return 0;
10631 }
10632 
10633 static bool get_phys_addr_v5(CPUARMState *env, uint32_t address,
10634                              MMUAccessType access_type, ARMMMUIdx mmu_idx,
10635                              hwaddr *phys_ptr, int *prot,
10636                              target_ulong *page_size,
10637                              ARMMMUFaultInfo *fi)
10638 {
10639     CPUState *cs = env_cpu(env);
10640     int level = 1;
10641     uint32_t table;
10642     uint32_t desc;
10643     int type;
10644     int ap;
10645     int domain = 0;
10646     int domain_prot;
10647     hwaddr phys_addr;
10648     uint32_t dacr;
10649 
10650     /* Pagetable walk.  */
10651     /* Lookup l1 descriptor.  */
10652     if (!get_level1_table_address(env, mmu_idx, &table, address)) {
10653         /* Section translation fault if page walk is disabled by PD0 or PD1 */
10654         fi->type = ARMFault_Translation;
10655         goto do_fault;
10656     }
10657     desc = arm_ldl_ptw(cs, table, regime_is_secure(env, mmu_idx),
10658                        mmu_idx, fi);
10659     if (fi->type != ARMFault_None) {
10660         goto do_fault;
10661     }
10662     type = (desc & 3);
10663     domain = (desc >> 5) & 0x0f;
10664     if (regime_el(env, mmu_idx) == 1) {
10665         dacr = env->cp15.dacr_ns;
10666     } else {
10667         dacr = env->cp15.dacr_s;
10668     }
10669     domain_prot = (dacr >> (domain * 2)) & 3;
10670     if (type == 0) {
10671         /* Section translation fault.  */
10672         fi->type = ARMFault_Translation;
10673         goto do_fault;
10674     }
10675     if (type != 2) {
10676         level = 2;
10677     }
10678     if (domain_prot == 0 || domain_prot == 2) {
10679         fi->type = ARMFault_Domain;
10680         goto do_fault;
10681     }
10682     if (type == 2) {
10683         /* 1Mb section.  */
10684         phys_addr = (desc & 0xfff00000) | (address & 0x000fffff);
10685         ap = (desc >> 10) & 3;
10686         *page_size = 1024 * 1024;
10687     } else {
10688         /* Lookup l2 entry.  */
10689         if (type == 1) {
10690             /* Coarse pagetable.  */
10691             table = (desc & 0xfffffc00) | ((address >> 10) & 0x3fc);
10692         } else {
10693             /* Fine pagetable.  */
10694             table = (desc & 0xfffff000) | ((address >> 8) & 0xffc);
10695         }
10696         desc = arm_ldl_ptw(cs, table, regime_is_secure(env, mmu_idx),
10697                            mmu_idx, fi);
10698         if (fi->type != ARMFault_None) {
10699             goto do_fault;
10700         }
10701         switch (desc & 3) {
10702         case 0: /* Page translation fault.  */
10703             fi->type = ARMFault_Translation;
10704             goto do_fault;
10705         case 1: /* 64k page.  */
10706             phys_addr = (desc & 0xffff0000) | (address & 0xffff);
10707             ap = (desc >> (4 + ((address >> 13) & 6))) & 3;
10708             *page_size = 0x10000;
10709             break;
10710         case 2: /* 4k page.  */
10711             phys_addr = (desc & 0xfffff000) | (address & 0xfff);
10712             ap = (desc >> (4 + ((address >> 9) & 6))) & 3;
10713             *page_size = 0x1000;
10714             break;
10715         case 3: /* 1k page, or ARMv6/XScale "extended small (4k) page" */
10716             if (type == 1) {
10717                 /* ARMv6/XScale extended small page format */
10718                 if (arm_feature(env, ARM_FEATURE_XSCALE)
10719                     || arm_feature(env, ARM_FEATURE_V6)) {
10720                     phys_addr = (desc & 0xfffff000) | (address & 0xfff);
10721                     *page_size = 0x1000;
10722                 } else {
10723                     /* UNPREDICTABLE in ARMv5; we choose to take a
10724                      * page translation fault.
10725                      */
10726                     fi->type = ARMFault_Translation;
10727                     goto do_fault;
10728                 }
10729             } else {
10730                 phys_addr = (desc & 0xfffffc00) | (address & 0x3ff);
10731                 *page_size = 0x400;
10732             }
10733             ap = (desc >> 4) & 3;
10734             break;
10735         default:
10736             /* Never happens, but compiler isn't smart enough to tell.  */
10737             abort();
10738         }
10739     }
10740     *prot = ap_to_rw_prot(env, mmu_idx, ap, domain_prot);
10741     *prot |= *prot ? PAGE_EXEC : 0;
10742     if (!(*prot & (1 << access_type))) {
10743         /* Access permission fault.  */
10744         fi->type = ARMFault_Permission;
10745         goto do_fault;
10746     }
10747     *phys_ptr = phys_addr;
10748     return false;
10749 do_fault:
10750     fi->domain = domain;
10751     fi->level = level;
10752     return true;
10753 }
10754 
10755 static bool get_phys_addr_v6(CPUARMState *env, uint32_t address,
10756                              MMUAccessType access_type, ARMMMUIdx mmu_idx,
10757                              hwaddr *phys_ptr, MemTxAttrs *attrs, int *prot,
10758                              target_ulong *page_size, ARMMMUFaultInfo *fi)
10759 {
10760     CPUState *cs = env_cpu(env);
10761     ARMCPU *cpu = env_archcpu(env);
10762     int level = 1;
10763     uint32_t table;
10764     uint32_t desc;
10765     uint32_t xn;
10766     uint32_t pxn = 0;
10767     int type;
10768     int ap;
10769     int domain = 0;
10770     int domain_prot;
10771     hwaddr phys_addr;
10772     uint32_t dacr;
10773     bool ns;
10774 
10775     /* Pagetable walk.  */
10776     /* Lookup l1 descriptor.  */
10777     if (!get_level1_table_address(env, mmu_idx, &table, address)) {
10778         /* Section translation fault if page walk is disabled by PD0 or PD1 */
10779         fi->type = ARMFault_Translation;
10780         goto do_fault;
10781     }
10782     desc = arm_ldl_ptw(cs, table, regime_is_secure(env, mmu_idx),
10783                        mmu_idx, fi);
10784     if (fi->type != ARMFault_None) {
10785         goto do_fault;
10786     }
10787     type = (desc & 3);
10788     if (type == 0 || (type == 3 && !cpu_isar_feature(aa32_pxn, cpu))) {
10789         /* Section translation fault, or attempt to use the encoding
10790          * which is Reserved on implementations without PXN.
10791          */
10792         fi->type = ARMFault_Translation;
10793         goto do_fault;
10794     }
10795     if ((type == 1) || !(desc & (1 << 18))) {
10796         /* Page or Section.  */
10797         domain = (desc >> 5) & 0x0f;
10798     }
10799     if (regime_el(env, mmu_idx) == 1) {
10800         dacr = env->cp15.dacr_ns;
10801     } else {
10802         dacr = env->cp15.dacr_s;
10803     }
10804     if (type == 1) {
10805         level = 2;
10806     }
10807     domain_prot = (dacr >> (domain * 2)) & 3;
10808     if (domain_prot == 0 || domain_prot == 2) {
10809         /* Section or Page domain fault */
10810         fi->type = ARMFault_Domain;
10811         goto do_fault;
10812     }
10813     if (type != 1) {
10814         if (desc & (1 << 18)) {
10815             /* Supersection.  */
10816             phys_addr = (desc & 0xff000000) | (address & 0x00ffffff);
10817             phys_addr |= (uint64_t)extract32(desc, 20, 4) << 32;
10818             phys_addr |= (uint64_t)extract32(desc, 5, 4) << 36;
10819             *page_size = 0x1000000;
10820         } else {
10821             /* Section.  */
10822             phys_addr = (desc & 0xfff00000) | (address & 0x000fffff);
10823             *page_size = 0x100000;
10824         }
10825         ap = ((desc >> 10) & 3) | ((desc >> 13) & 4);
10826         xn = desc & (1 << 4);
10827         pxn = desc & 1;
10828         ns = extract32(desc, 19, 1);
10829     } else {
10830         if (cpu_isar_feature(aa32_pxn, cpu)) {
10831             pxn = (desc >> 2) & 1;
10832         }
10833         ns = extract32(desc, 3, 1);
10834         /* Lookup l2 entry.  */
10835         table = (desc & 0xfffffc00) | ((address >> 10) & 0x3fc);
10836         desc = arm_ldl_ptw(cs, table, regime_is_secure(env, mmu_idx),
10837                            mmu_idx, fi);
10838         if (fi->type != ARMFault_None) {
10839             goto do_fault;
10840         }
10841         ap = ((desc >> 4) & 3) | ((desc >> 7) & 4);
10842         switch (desc & 3) {
10843         case 0: /* Page translation fault.  */
10844             fi->type = ARMFault_Translation;
10845             goto do_fault;
10846         case 1: /* 64k page.  */
10847             phys_addr = (desc & 0xffff0000) | (address & 0xffff);
10848             xn = desc & (1 << 15);
10849             *page_size = 0x10000;
10850             break;
10851         case 2: case 3: /* 4k page.  */
10852             phys_addr = (desc & 0xfffff000) | (address & 0xfff);
10853             xn = desc & 1;
10854             *page_size = 0x1000;
10855             break;
10856         default:
10857             /* Never happens, but compiler isn't smart enough to tell.  */
10858             abort();
10859         }
10860     }
10861     if (domain_prot == 3) {
10862         *prot = PAGE_READ | PAGE_WRITE | PAGE_EXEC;
10863     } else {
10864         if (pxn && !regime_is_user(env, mmu_idx)) {
10865             xn = 1;
10866         }
10867         if (xn && access_type == MMU_INST_FETCH) {
10868             fi->type = ARMFault_Permission;
10869             goto do_fault;
10870         }
10871 
10872         if (arm_feature(env, ARM_FEATURE_V6K) &&
10873                 (regime_sctlr(env, mmu_idx) & SCTLR_AFE)) {
10874             /* The simplified model uses AP[0] as an access control bit.  */
10875             if ((ap & 1) == 0) {
10876                 /* Access flag fault.  */
10877                 fi->type = ARMFault_AccessFlag;
10878                 goto do_fault;
10879             }
10880             *prot = simple_ap_to_rw_prot(env, mmu_idx, ap >> 1);
10881         } else {
10882             *prot = ap_to_rw_prot(env, mmu_idx, ap, domain_prot);
10883         }
10884         if (*prot && !xn) {
10885             *prot |= PAGE_EXEC;
10886         }
10887         if (!(*prot & (1 << access_type))) {
10888             /* Access permission fault.  */
10889             fi->type = ARMFault_Permission;
10890             goto do_fault;
10891         }
10892     }
10893     if (ns) {
10894         /* The NS bit will (as required by the architecture) have no effect if
10895          * the CPU doesn't support TZ or this is a non-secure translation
10896          * regime, because the attribute will already be non-secure.
10897          */
10898         attrs->secure = false;
10899     }
10900     *phys_ptr = phys_addr;
10901     return false;
10902 do_fault:
10903     fi->domain = domain;
10904     fi->level = level;
10905     return true;
10906 }
10907 
10908 /*
10909  * check_s2_mmu_setup
10910  * @cpu:        ARMCPU
10911  * @is_aa64:    True if the translation regime is in AArch64 state
10912  * @startlevel: Suggested starting level
10913  * @inputsize:  Bitsize of IPAs
10914  * @stride:     Page-table stride (See the ARM ARM)
10915  *
10916  * Returns true if the suggested S2 translation parameters are OK and
10917  * false otherwise.
10918  */
10919 static bool check_s2_mmu_setup(ARMCPU *cpu, bool is_aa64, int level,
10920                                int inputsize, int stride)
10921 {
10922     const int grainsize = stride + 3;
10923     int startsizecheck;
10924 
10925     /* Negative levels are never allowed.  */
10926     if (level < 0) {
10927         return false;
10928     }
10929 
10930     startsizecheck = inputsize - ((3 - level) * stride + grainsize);
10931     if (startsizecheck < 1 || startsizecheck > stride + 4) {
10932         return false;
10933     }
10934 
10935     if (is_aa64) {
10936         CPUARMState *env = &cpu->env;
10937         unsigned int pamax = arm_pamax(cpu);
10938 
10939         switch (stride) {
10940         case 13: /* 64KB Pages.  */
10941             if (level == 0 || (level == 1 && pamax <= 42)) {
10942                 return false;
10943             }
10944             break;
10945         case 11: /* 16KB Pages.  */
10946             if (level == 0 || (level == 1 && pamax <= 40)) {
10947                 return false;
10948             }
10949             break;
10950         case 9: /* 4KB Pages.  */
10951             if (level == 0 && pamax <= 42) {
10952                 return false;
10953             }
10954             break;
10955         default:
10956             g_assert_not_reached();
10957         }
10958 
10959         /* Inputsize checks.  */
10960         if (inputsize > pamax &&
10961             (arm_el_is_aa64(env, 1) || inputsize > 40)) {
10962             /* This is CONSTRAINED UNPREDICTABLE and we choose to fault.  */
10963             return false;
10964         }
10965     } else {
10966         /* AArch32 only supports 4KB pages. Assert on that.  */
10967         assert(stride == 9);
10968 
10969         if (level == 0) {
10970             return false;
10971         }
10972     }
10973     return true;
10974 }
10975 
10976 /* Translate from the 4-bit stage 2 representation of
10977  * memory attributes (without cache-allocation hints) to
10978  * the 8-bit representation of the stage 1 MAIR registers
10979  * (which includes allocation hints).
10980  *
10981  * ref: shared/translation/attrs/S2AttrDecode()
10982  *      .../S2ConvertAttrsHints()
10983  */
10984 static uint8_t convert_stage2_attrs(CPUARMState *env, uint8_t s2attrs)
10985 {
10986     uint8_t hiattr = extract32(s2attrs, 2, 2);
10987     uint8_t loattr = extract32(s2attrs, 0, 2);
10988     uint8_t hihint = 0, lohint = 0;
10989 
10990     if (hiattr != 0) { /* normal memory */
10991         if (arm_hcr_el2_eff(env) & HCR_CD) { /* cache disabled */
10992             hiattr = loattr = 1; /* non-cacheable */
10993         } else {
10994             if (hiattr != 1) { /* Write-through or write-back */
10995                 hihint = 3; /* RW allocate */
10996             }
10997             if (loattr != 1) { /* Write-through or write-back */
10998                 lohint = 3; /* RW allocate */
10999             }
11000         }
11001     }
11002 
11003     return (hiattr << 6) | (hihint << 4) | (loattr << 2) | lohint;
11004 }
11005 #endif /* !CONFIG_USER_ONLY */
11006 
11007 static int aa64_va_parameter_tbi(uint64_t tcr, ARMMMUIdx mmu_idx)
11008 {
11009     if (regime_has_2_ranges(mmu_idx)) {
11010         return extract64(tcr, 37, 2);
11011     } else if (mmu_idx == ARMMMUIdx_Stage2 || mmu_idx == ARMMMUIdx_Stage2_S) {
11012         return 0; /* VTCR_EL2 */
11013     } else {
11014         /* Replicate the single TBI bit so we always have 2 bits.  */
11015         return extract32(tcr, 20, 1) * 3;
11016     }
11017 }
11018 
11019 static int aa64_va_parameter_tbid(uint64_t tcr, ARMMMUIdx mmu_idx)
11020 {
11021     if (regime_has_2_ranges(mmu_idx)) {
11022         return extract64(tcr, 51, 2);
11023     } else if (mmu_idx == ARMMMUIdx_Stage2 || mmu_idx == ARMMMUIdx_Stage2_S) {
11024         return 0; /* VTCR_EL2 */
11025     } else {
11026         /* Replicate the single TBID bit so we always have 2 bits.  */
11027         return extract32(tcr, 29, 1) * 3;
11028     }
11029 }
11030 
11031 static int aa64_va_parameter_tcma(uint64_t tcr, ARMMMUIdx mmu_idx)
11032 {
11033     if (regime_has_2_ranges(mmu_idx)) {
11034         return extract64(tcr, 57, 2);
11035     } else {
11036         /* Replicate the single TCMA bit so we always have 2 bits.  */
11037         return extract32(tcr, 30, 1) * 3;
11038     }
11039 }
11040 
11041 ARMVAParameters aa64_va_parameters(CPUARMState *env, uint64_t va,
11042                                    ARMMMUIdx mmu_idx, bool data)
11043 {
11044     uint64_t tcr = regime_tcr(env, mmu_idx)->raw_tcr;
11045     bool epd, hpd, using16k, using64k;
11046     int select, tsz, tbi, max_tsz;
11047 
11048     if (!regime_has_2_ranges(mmu_idx)) {
11049         select = 0;
11050         tsz = extract32(tcr, 0, 6);
11051         using64k = extract32(tcr, 14, 1);
11052         using16k = extract32(tcr, 15, 1);
11053         if (mmu_idx == ARMMMUIdx_Stage2 || mmu_idx == ARMMMUIdx_Stage2_S) {
11054             /* VTCR_EL2 */
11055             hpd = false;
11056         } else {
11057             hpd = extract32(tcr, 24, 1);
11058         }
11059         epd = false;
11060     } else {
11061         /*
11062          * Bit 55 is always between the two regions, and is canonical for
11063          * determining if address tagging is enabled.
11064          */
11065         select = extract64(va, 55, 1);
11066         if (!select) {
11067             tsz = extract32(tcr, 0, 6);
11068             epd = extract32(tcr, 7, 1);
11069             using64k = extract32(tcr, 14, 1);
11070             using16k = extract32(tcr, 15, 1);
11071             hpd = extract64(tcr, 41, 1);
11072         } else {
11073             int tg = extract32(tcr, 30, 2);
11074             using16k = tg == 1;
11075             using64k = tg == 3;
11076             tsz = extract32(tcr, 16, 6);
11077             epd = extract32(tcr, 23, 1);
11078             hpd = extract64(tcr, 42, 1);
11079         }
11080     }
11081 
11082     if (cpu_isar_feature(aa64_st, env_archcpu(env))) {
11083         max_tsz = 48 - using64k;
11084     } else {
11085         max_tsz = 39;
11086     }
11087 
11088     tsz = MIN(tsz, max_tsz);
11089     tsz = MAX(tsz, 16);  /* TODO: ARMv8.2-LVA  */
11090 
11091     /* Present TBI as a composite with TBID.  */
11092     tbi = aa64_va_parameter_tbi(tcr, mmu_idx);
11093     if (!data) {
11094         tbi &= ~aa64_va_parameter_tbid(tcr, mmu_idx);
11095     }
11096     tbi = (tbi >> select) & 1;
11097 
11098     return (ARMVAParameters) {
11099         .tsz = tsz,
11100         .select = select,
11101         .tbi = tbi,
11102         .epd = epd,
11103         .hpd = hpd,
11104         .using16k = using16k,
11105         .using64k = using64k,
11106     };
11107 }
11108 
11109 #ifndef CONFIG_USER_ONLY
11110 static ARMVAParameters aa32_va_parameters(CPUARMState *env, uint32_t va,
11111                                           ARMMMUIdx mmu_idx)
11112 {
11113     uint64_t tcr = regime_tcr(env, mmu_idx)->raw_tcr;
11114     uint32_t el = regime_el(env, mmu_idx);
11115     int select, tsz;
11116     bool epd, hpd;
11117 
11118     assert(mmu_idx != ARMMMUIdx_Stage2_S);
11119 
11120     if (mmu_idx == ARMMMUIdx_Stage2) {
11121         /* VTCR */
11122         bool sext = extract32(tcr, 4, 1);
11123         bool sign = extract32(tcr, 3, 1);
11124 
11125         /*
11126          * If the sign-extend bit is not the same as t0sz[3], the result
11127          * is unpredictable. Flag this as a guest error.
11128          */
11129         if (sign != sext) {
11130             qemu_log_mask(LOG_GUEST_ERROR,
11131                           "AArch32: VTCR.S / VTCR.T0SZ[3] mismatch\n");
11132         }
11133         tsz = sextract32(tcr, 0, 4) + 8;
11134         select = 0;
11135         hpd = false;
11136         epd = false;
11137     } else if (el == 2) {
11138         /* HTCR */
11139         tsz = extract32(tcr, 0, 3);
11140         select = 0;
11141         hpd = extract64(tcr, 24, 1);
11142         epd = false;
11143     } else {
11144         int t0sz = extract32(tcr, 0, 3);
11145         int t1sz = extract32(tcr, 16, 3);
11146 
11147         if (t1sz == 0) {
11148             select = va > (0xffffffffu >> t0sz);
11149         } else {
11150             /* Note that we will detect errors later.  */
11151             select = va >= ~(0xffffffffu >> t1sz);
11152         }
11153         if (!select) {
11154             tsz = t0sz;
11155             epd = extract32(tcr, 7, 1);
11156             hpd = extract64(tcr, 41, 1);
11157         } else {
11158             tsz = t1sz;
11159             epd = extract32(tcr, 23, 1);
11160             hpd = extract64(tcr, 42, 1);
11161         }
11162         /* For aarch32, hpd0 is not enabled without t2e as well.  */
11163         hpd &= extract32(tcr, 6, 1);
11164     }
11165 
11166     return (ARMVAParameters) {
11167         .tsz = tsz,
11168         .select = select,
11169         .epd = epd,
11170         .hpd = hpd,
11171     };
11172 }
11173 
11174 /**
11175  * get_phys_addr_lpae: perform one stage of page table walk, LPAE format
11176  *
11177  * Returns false if the translation was successful. Otherwise, phys_ptr, attrs,
11178  * prot and page_size may not be filled in, and the populated fsr value provides
11179  * information on why the translation aborted, in the format of a long-format
11180  * DFSR/IFSR fault register, with the following caveats:
11181  *  * the WnR bit is never set (the caller must do this).
11182  *
11183  * @env: CPUARMState
11184  * @address: virtual address to get physical address for
11185  * @access_type: MMU_DATA_LOAD, MMU_DATA_STORE or MMU_INST_FETCH
11186  * @mmu_idx: MMU index indicating required translation regime
11187  * @s1_is_el0: if @mmu_idx is ARMMMUIdx_Stage2 (so this is a stage 2 page table
11188  *             walk), must be true if this is stage 2 of a stage 1+2 walk for an
11189  *             EL0 access). If @mmu_idx is anything else, @s1_is_el0 is ignored.
11190  * @phys_ptr: set to the physical address corresponding to the virtual address
11191  * @attrs: set to the memory transaction attributes to use
11192  * @prot: set to the permissions for the page containing phys_ptr
11193  * @page_size_ptr: set to the size of the page containing phys_ptr
11194  * @fi: set to fault info if the translation fails
11195  * @cacheattrs: (if non-NULL) set to the cacheability/shareability attributes
11196  */
11197 static bool get_phys_addr_lpae(CPUARMState *env, uint64_t address,
11198                                MMUAccessType access_type, ARMMMUIdx mmu_idx,
11199                                bool s1_is_el0,
11200                                hwaddr *phys_ptr, MemTxAttrs *txattrs, int *prot,
11201                                target_ulong *page_size_ptr,
11202                                ARMMMUFaultInfo *fi, ARMCacheAttrs *cacheattrs)
11203 {
11204     ARMCPU *cpu = env_archcpu(env);
11205     CPUState *cs = CPU(cpu);
11206     /* Read an LPAE long-descriptor translation table. */
11207     ARMFaultType fault_type = ARMFault_Translation;
11208     uint32_t level;
11209     ARMVAParameters param;
11210     uint64_t ttbr;
11211     hwaddr descaddr, indexmask, indexmask_grainsize;
11212     uint32_t tableattrs;
11213     target_ulong page_size;
11214     uint32_t attrs;
11215     int32_t stride;
11216     int addrsize, inputsize;
11217     TCR *tcr = regime_tcr(env, mmu_idx);
11218     int ap, ns, xn, pxn;
11219     uint32_t el = regime_el(env, mmu_idx);
11220     uint64_t descaddrmask;
11221     bool aarch64 = arm_el_is_aa64(env, el);
11222     bool guarded = false;
11223 
11224     /* TODO: This code does not support shareability levels. */
11225     if (aarch64) {
11226         param = aa64_va_parameters(env, address, mmu_idx,
11227                                    access_type != MMU_INST_FETCH);
11228         level = 0;
11229         addrsize = 64 - 8 * param.tbi;
11230         inputsize = 64 - param.tsz;
11231     } else {
11232         param = aa32_va_parameters(env, address, mmu_idx);
11233         level = 1;
11234         addrsize = (mmu_idx == ARMMMUIdx_Stage2 ? 40 : 32);
11235         inputsize = addrsize - param.tsz;
11236     }
11237 
11238     /*
11239      * We determined the region when collecting the parameters, but we
11240      * have not yet validated that the address is valid for the region.
11241      * Extract the top bits and verify that they all match select.
11242      *
11243      * For aa32, if inputsize == addrsize, then we have selected the
11244      * region by exclusion in aa32_va_parameters and there is no more
11245      * validation to do here.
11246      */
11247     if (inputsize < addrsize) {
11248         target_ulong top_bits = sextract64(address, inputsize,
11249                                            addrsize - inputsize);
11250         if (-top_bits != param.select) {
11251             /* The gap between the two regions is a Translation fault */
11252             fault_type = ARMFault_Translation;
11253             goto do_fault;
11254         }
11255     }
11256 
11257     if (param.using64k) {
11258         stride = 13;
11259     } else if (param.using16k) {
11260         stride = 11;
11261     } else {
11262         stride = 9;
11263     }
11264 
11265     /* Note that QEMU ignores shareability and cacheability attributes,
11266      * so we don't need to do anything with the SH, ORGN, IRGN fields
11267      * in the TTBCR.  Similarly, TTBCR:A1 selects whether we get the
11268      * ASID from TTBR0 or TTBR1, but QEMU's TLB doesn't currently
11269      * implement any ASID-like capability so we can ignore it (instead
11270      * we will always flush the TLB any time the ASID is changed).
11271      */
11272     ttbr = regime_ttbr(env, mmu_idx, param.select);
11273 
11274     /* Here we should have set up all the parameters for the translation:
11275      * inputsize, ttbr, epd, stride, tbi
11276      */
11277 
11278     if (param.epd) {
11279         /* Translation table walk disabled => Translation fault on TLB miss
11280          * Note: This is always 0 on 64-bit EL2 and EL3.
11281          */
11282         goto do_fault;
11283     }
11284 
11285     if (mmu_idx != ARMMMUIdx_Stage2 && mmu_idx != ARMMMUIdx_Stage2_S) {
11286         /* The starting level depends on the virtual address size (which can
11287          * be up to 48 bits) and the translation granule size. It indicates
11288          * the number of strides (stride bits at a time) needed to
11289          * consume the bits of the input address. In the pseudocode this is:
11290          *  level = 4 - RoundUp((inputsize - grainsize) / stride)
11291          * where their 'inputsize' is our 'inputsize', 'grainsize' is
11292          * our 'stride + 3' and 'stride' is our 'stride'.
11293          * Applying the usual "rounded up m/n is (m+n-1)/n" and simplifying:
11294          * = 4 - (inputsize - stride - 3 + stride - 1) / stride
11295          * = 4 - (inputsize - 4) / stride;
11296          */
11297         level = 4 - (inputsize - 4) / stride;
11298     } else {
11299         /* For stage 2 translations the starting level is specified by the
11300          * VTCR_EL2.SL0 field (whose interpretation depends on the page size)
11301          */
11302         uint32_t sl0 = extract32(tcr->raw_tcr, 6, 2);
11303         uint32_t startlevel;
11304         bool ok;
11305 
11306         if (!aarch64 || stride == 9) {
11307             /* AArch32 or 4KB pages */
11308             startlevel = 2 - sl0;
11309 
11310             if (cpu_isar_feature(aa64_st, cpu)) {
11311                 startlevel &= 3;
11312             }
11313         } else {
11314             /* 16KB or 64KB pages */
11315             startlevel = 3 - sl0;
11316         }
11317 
11318         /* Check that the starting level is valid. */
11319         ok = check_s2_mmu_setup(cpu, aarch64, startlevel,
11320                                 inputsize, stride);
11321         if (!ok) {
11322             fault_type = ARMFault_Translation;
11323             goto do_fault;
11324         }
11325         level = startlevel;
11326     }
11327 
11328     indexmask_grainsize = (1ULL << (stride + 3)) - 1;
11329     indexmask = (1ULL << (inputsize - (stride * (4 - level)))) - 1;
11330 
11331     /* Now we can extract the actual base address from the TTBR */
11332     descaddr = extract64(ttbr, 0, 48);
11333     /*
11334      * We rely on this masking to clear the RES0 bits at the bottom of the TTBR
11335      * and also to mask out CnP (bit 0) which could validly be non-zero.
11336      */
11337     descaddr &= ~indexmask;
11338 
11339     /* The address field in the descriptor goes up to bit 39 for ARMv7
11340      * but up to bit 47 for ARMv8, but we use the descaddrmask
11341      * up to bit 39 for AArch32, because we don't need other bits in that case
11342      * to construct next descriptor address (anyway they should be all zeroes).
11343      */
11344     descaddrmask = ((1ull << (aarch64 ? 48 : 40)) - 1) &
11345                    ~indexmask_grainsize;
11346 
11347     /* Secure accesses start with the page table in secure memory and
11348      * can be downgraded to non-secure at any step. Non-secure accesses
11349      * remain non-secure. We implement this by just ORing in the NSTable/NS
11350      * bits at each step.
11351      */
11352     tableattrs = regime_is_secure(env, mmu_idx) ? 0 : (1 << 4);
11353     for (;;) {
11354         uint64_t descriptor;
11355         bool nstable;
11356 
11357         descaddr |= (address >> (stride * (4 - level))) & indexmask;
11358         descaddr &= ~7ULL;
11359         nstable = extract32(tableattrs, 4, 1);
11360         descriptor = arm_ldq_ptw(cs, descaddr, !nstable, mmu_idx, fi);
11361         if (fi->type != ARMFault_None) {
11362             goto do_fault;
11363         }
11364 
11365         if (!(descriptor & 1) ||
11366             (!(descriptor & 2) && (level == 3))) {
11367             /* Invalid, or the Reserved level 3 encoding */
11368             goto do_fault;
11369         }
11370         descaddr = descriptor & descaddrmask;
11371 
11372         if ((descriptor & 2) && (level < 3)) {
11373             /* Table entry. The top five bits are attributes which may
11374              * propagate down through lower levels of the table (and
11375              * which are all arranged so that 0 means "no effect", so
11376              * we can gather them up by ORing in the bits at each level).
11377              */
11378             tableattrs |= extract64(descriptor, 59, 5);
11379             level++;
11380             indexmask = indexmask_grainsize;
11381             continue;
11382         }
11383         /* Block entry at level 1 or 2, or page entry at level 3.
11384          * These are basically the same thing, although the number
11385          * of bits we pull in from the vaddr varies.
11386          */
11387         page_size = (1ULL << ((stride * (4 - level)) + 3));
11388         descaddr |= (address & (page_size - 1));
11389         /* Extract attributes from the descriptor */
11390         attrs = extract64(descriptor, 2, 10)
11391             | (extract64(descriptor, 52, 12) << 10);
11392 
11393         if (mmu_idx == ARMMMUIdx_Stage2 || mmu_idx == ARMMMUIdx_Stage2_S) {
11394             /* Stage 2 table descriptors do not include any attribute fields */
11395             break;
11396         }
11397         /* Merge in attributes from table descriptors */
11398         attrs |= nstable << 3; /* NS */
11399         guarded = extract64(descriptor, 50, 1);  /* GP */
11400         if (param.hpd) {
11401             /* HPD disables all the table attributes except NSTable.  */
11402             break;
11403         }
11404         attrs |= extract32(tableattrs, 0, 2) << 11;     /* XN, PXN */
11405         /* The sense of AP[1] vs APTable[0] is reversed, as APTable[0] == 1
11406          * means "force PL1 access only", which means forcing AP[1] to 0.
11407          */
11408         attrs &= ~(extract32(tableattrs, 2, 1) << 4);   /* !APT[0] => AP[1] */
11409         attrs |= extract32(tableattrs, 3, 1) << 5;      /* APT[1] => AP[2] */
11410         break;
11411     }
11412     /* Here descaddr is the final physical address, and attributes
11413      * are all in attrs.
11414      */
11415     fault_type = ARMFault_AccessFlag;
11416     if ((attrs & (1 << 8)) == 0) {
11417         /* Access flag */
11418         goto do_fault;
11419     }
11420 
11421     ap = extract32(attrs, 4, 2);
11422 
11423     if (mmu_idx == ARMMMUIdx_Stage2 || mmu_idx == ARMMMUIdx_Stage2_S) {
11424         ns = mmu_idx == ARMMMUIdx_Stage2;
11425         xn = extract32(attrs, 11, 2);
11426         *prot = get_S2prot(env, ap, xn, s1_is_el0);
11427     } else {
11428         ns = extract32(attrs, 3, 1);
11429         xn = extract32(attrs, 12, 1);
11430         pxn = extract32(attrs, 11, 1);
11431         *prot = get_S1prot(env, mmu_idx, aarch64, ap, ns, xn, pxn);
11432     }
11433 
11434     fault_type = ARMFault_Permission;
11435     if (!(*prot & (1 << access_type))) {
11436         goto do_fault;
11437     }
11438 
11439     if (ns) {
11440         /* The NS bit will (as required by the architecture) have no effect if
11441          * the CPU doesn't support TZ or this is a non-secure translation
11442          * regime, because the attribute will already be non-secure.
11443          */
11444         txattrs->secure = false;
11445     }
11446     /* When in aarch64 mode, and BTI is enabled, remember GP in the IOTLB.  */
11447     if (aarch64 && guarded && cpu_isar_feature(aa64_bti, cpu)) {
11448         arm_tlb_bti_gp(txattrs) = true;
11449     }
11450 
11451     if (mmu_idx == ARMMMUIdx_Stage2 || mmu_idx == ARMMMUIdx_Stage2_S) {
11452         cacheattrs->attrs = convert_stage2_attrs(env, extract32(attrs, 0, 4));
11453     } else {
11454         /* Index into MAIR registers for cache attributes */
11455         uint8_t attrindx = extract32(attrs, 0, 3);
11456         uint64_t mair = env->cp15.mair_el[regime_el(env, mmu_idx)];
11457         assert(attrindx <= 7);
11458         cacheattrs->attrs = extract64(mair, attrindx * 8, 8);
11459     }
11460     cacheattrs->shareability = extract32(attrs, 6, 2);
11461 
11462     *phys_ptr = descaddr;
11463     *page_size_ptr = page_size;
11464     return false;
11465 
11466 do_fault:
11467     fi->type = fault_type;
11468     fi->level = level;
11469     /* Tag the error as S2 for failed S1 PTW at S2 or ordinary S2.  */
11470     fi->stage2 = fi->s1ptw || (mmu_idx == ARMMMUIdx_Stage2 ||
11471                                mmu_idx == ARMMMUIdx_Stage2_S);
11472     fi->s1ns = mmu_idx == ARMMMUIdx_Stage2;
11473     return true;
11474 }
11475 
11476 static inline void get_phys_addr_pmsav7_default(CPUARMState *env,
11477                                                 ARMMMUIdx mmu_idx,
11478                                                 int32_t address, int *prot)
11479 {
11480     if (!arm_feature(env, ARM_FEATURE_M)) {
11481         *prot = PAGE_READ | PAGE_WRITE;
11482         switch (address) {
11483         case 0xF0000000 ... 0xFFFFFFFF:
11484             if (regime_sctlr(env, mmu_idx) & SCTLR_V) {
11485                 /* hivecs execing is ok */
11486                 *prot |= PAGE_EXEC;
11487             }
11488             break;
11489         case 0x00000000 ... 0x7FFFFFFF:
11490             *prot |= PAGE_EXEC;
11491             break;
11492         }
11493     } else {
11494         /* Default system address map for M profile cores.
11495          * The architecture specifies which regions are execute-never;
11496          * at the MPU level no other checks are defined.
11497          */
11498         switch (address) {
11499         case 0x00000000 ... 0x1fffffff: /* ROM */
11500         case 0x20000000 ... 0x3fffffff: /* SRAM */
11501         case 0x60000000 ... 0x7fffffff: /* RAM */
11502         case 0x80000000 ... 0x9fffffff: /* RAM */
11503             *prot = PAGE_READ | PAGE_WRITE | PAGE_EXEC;
11504             break;
11505         case 0x40000000 ... 0x5fffffff: /* Peripheral */
11506         case 0xa0000000 ... 0xbfffffff: /* Device */
11507         case 0xc0000000 ... 0xdfffffff: /* Device */
11508         case 0xe0000000 ... 0xffffffff: /* System */
11509             *prot = PAGE_READ | PAGE_WRITE;
11510             break;
11511         default:
11512             g_assert_not_reached();
11513         }
11514     }
11515 }
11516 
11517 static bool pmsav7_use_background_region(ARMCPU *cpu,
11518                                          ARMMMUIdx mmu_idx, bool is_user)
11519 {
11520     /* Return true if we should use the default memory map as a
11521      * "background" region if there are no hits against any MPU regions.
11522      */
11523     CPUARMState *env = &cpu->env;
11524 
11525     if (is_user) {
11526         return false;
11527     }
11528 
11529     if (arm_feature(env, ARM_FEATURE_M)) {
11530         return env->v7m.mpu_ctrl[regime_is_secure(env, mmu_idx)]
11531             & R_V7M_MPU_CTRL_PRIVDEFENA_MASK;
11532     } else {
11533         return regime_sctlr(env, mmu_idx) & SCTLR_BR;
11534     }
11535 }
11536 
11537 static inline bool m_is_ppb_region(CPUARMState *env, uint32_t address)
11538 {
11539     /* True if address is in the M profile PPB region 0xe0000000 - 0xe00fffff */
11540     return arm_feature(env, ARM_FEATURE_M) &&
11541         extract32(address, 20, 12) == 0xe00;
11542 }
11543 
11544 static inline bool m_is_system_region(CPUARMState *env, uint32_t address)
11545 {
11546     /* True if address is in the M profile system region
11547      * 0xe0000000 - 0xffffffff
11548      */
11549     return arm_feature(env, ARM_FEATURE_M) && extract32(address, 29, 3) == 0x7;
11550 }
11551 
11552 static bool get_phys_addr_pmsav7(CPUARMState *env, uint32_t address,
11553                                  MMUAccessType access_type, ARMMMUIdx mmu_idx,
11554                                  hwaddr *phys_ptr, int *prot,
11555                                  target_ulong *page_size,
11556                                  ARMMMUFaultInfo *fi)
11557 {
11558     ARMCPU *cpu = env_archcpu(env);
11559     int n;
11560     bool is_user = regime_is_user(env, mmu_idx);
11561 
11562     *phys_ptr = address;
11563     *page_size = TARGET_PAGE_SIZE;
11564     *prot = 0;
11565 
11566     if (regime_translation_disabled(env, mmu_idx) ||
11567         m_is_ppb_region(env, address)) {
11568         /* MPU disabled or M profile PPB access: use default memory map.
11569          * The other case which uses the default memory map in the
11570          * v7M ARM ARM pseudocode is exception vector reads from the vector
11571          * table. In QEMU those accesses are done in arm_v7m_load_vector(),
11572          * which always does a direct read using address_space_ldl(), rather
11573          * than going via this function, so we don't need to check that here.
11574          */
11575         get_phys_addr_pmsav7_default(env, mmu_idx, address, prot);
11576     } else { /* MPU enabled */
11577         for (n = (int)cpu->pmsav7_dregion - 1; n >= 0; n--) {
11578             /* region search */
11579             uint32_t base = env->pmsav7.drbar[n];
11580             uint32_t rsize = extract32(env->pmsav7.drsr[n], 1, 5);
11581             uint32_t rmask;
11582             bool srdis = false;
11583 
11584             if (!(env->pmsav7.drsr[n] & 0x1)) {
11585                 continue;
11586             }
11587 
11588             if (!rsize) {
11589                 qemu_log_mask(LOG_GUEST_ERROR,
11590                               "DRSR[%d]: Rsize field cannot be 0\n", n);
11591                 continue;
11592             }
11593             rsize++;
11594             rmask = (1ull << rsize) - 1;
11595 
11596             if (base & rmask) {
11597                 qemu_log_mask(LOG_GUEST_ERROR,
11598                               "DRBAR[%d]: 0x%" PRIx32 " misaligned "
11599                               "to DRSR region size, mask = 0x%" PRIx32 "\n",
11600                               n, base, rmask);
11601                 continue;
11602             }
11603 
11604             if (address < base || address > base + rmask) {
11605                 /*
11606                  * Address not in this region. We must check whether the
11607                  * region covers addresses in the same page as our address.
11608                  * In that case we must not report a size that covers the
11609                  * whole page for a subsequent hit against a different MPU
11610                  * region or the background region, because it would result in
11611                  * incorrect TLB hits for subsequent accesses to addresses that
11612                  * are in this MPU region.
11613                  */
11614                 if (ranges_overlap(base, rmask,
11615                                    address & TARGET_PAGE_MASK,
11616                                    TARGET_PAGE_SIZE)) {
11617                     *page_size = 1;
11618                 }
11619                 continue;
11620             }
11621 
11622             /* Region matched */
11623 
11624             if (rsize >= 8) { /* no subregions for regions < 256 bytes */
11625                 int i, snd;
11626                 uint32_t srdis_mask;
11627 
11628                 rsize -= 3; /* sub region size (power of 2) */
11629                 snd = ((address - base) >> rsize) & 0x7;
11630                 srdis = extract32(env->pmsav7.drsr[n], snd + 8, 1);
11631 
11632                 srdis_mask = srdis ? 0x3 : 0x0;
11633                 for (i = 2; i <= 8 && rsize < TARGET_PAGE_BITS; i *= 2) {
11634                     /* This will check in groups of 2, 4 and then 8, whether
11635                      * the subregion bits are consistent. rsize is incremented
11636                      * back up to give the region size, considering consistent
11637                      * adjacent subregions as one region. Stop testing if rsize
11638                      * is already big enough for an entire QEMU page.
11639                      */
11640                     int snd_rounded = snd & ~(i - 1);
11641                     uint32_t srdis_multi = extract32(env->pmsav7.drsr[n],
11642                                                      snd_rounded + 8, i);
11643                     if (srdis_mask ^ srdis_multi) {
11644                         break;
11645                     }
11646                     srdis_mask = (srdis_mask << i) | srdis_mask;
11647                     rsize++;
11648                 }
11649             }
11650             if (srdis) {
11651                 continue;
11652             }
11653             if (rsize < TARGET_PAGE_BITS) {
11654                 *page_size = 1 << rsize;
11655             }
11656             break;
11657         }
11658 
11659         if (n == -1) { /* no hits */
11660             if (!pmsav7_use_background_region(cpu, mmu_idx, is_user)) {
11661                 /* background fault */
11662                 fi->type = ARMFault_Background;
11663                 return true;
11664             }
11665             get_phys_addr_pmsav7_default(env, mmu_idx, address, prot);
11666         } else { /* a MPU hit! */
11667             uint32_t ap = extract32(env->pmsav7.dracr[n], 8, 3);
11668             uint32_t xn = extract32(env->pmsav7.dracr[n], 12, 1);
11669 
11670             if (m_is_system_region(env, address)) {
11671                 /* System space is always execute never */
11672                 xn = 1;
11673             }
11674 
11675             if (is_user) { /* User mode AP bit decoding */
11676                 switch (ap) {
11677                 case 0:
11678                 case 1:
11679                 case 5:
11680                     break; /* no access */
11681                 case 3:
11682                     *prot |= PAGE_WRITE;
11683                     /* fall through */
11684                 case 2:
11685                 case 6:
11686                     *prot |= PAGE_READ | PAGE_EXEC;
11687                     break;
11688                 case 7:
11689                     /* for v7M, same as 6; for R profile a reserved value */
11690                     if (arm_feature(env, ARM_FEATURE_M)) {
11691                         *prot |= PAGE_READ | PAGE_EXEC;
11692                         break;
11693                     }
11694                     /* fall through */
11695                 default:
11696                     qemu_log_mask(LOG_GUEST_ERROR,
11697                                   "DRACR[%d]: Bad value for AP bits: 0x%"
11698                                   PRIx32 "\n", n, ap);
11699                 }
11700             } else { /* Priv. mode AP bits decoding */
11701                 switch (ap) {
11702                 case 0:
11703                     break; /* no access */
11704                 case 1:
11705                 case 2:
11706                 case 3:
11707                     *prot |= PAGE_WRITE;
11708                     /* fall through */
11709                 case 5:
11710                 case 6:
11711                     *prot |= PAGE_READ | PAGE_EXEC;
11712                     break;
11713                 case 7:
11714                     /* for v7M, same as 6; for R profile a reserved value */
11715                     if (arm_feature(env, ARM_FEATURE_M)) {
11716                         *prot |= PAGE_READ | PAGE_EXEC;
11717                         break;
11718                     }
11719                     /* fall through */
11720                 default:
11721                     qemu_log_mask(LOG_GUEST_ERROR,
11722                                   "DRACR[%d]: Bad value for AP bits: 0x%"
11723                                   PRIx32 "\n", n, ap);
11724                 }
11725             }
11726 
11727             /* execute never */
11728             if (xn) {
11729                 *prot &= ~PAGE_EXEC;
11730             }
11731         }
11732     }
11733 
11734     fi->type = ARMFault_Permission;
11735     fi->level = 1;
11736     return !(*prot & (1 << access_type));
11737 }
11738 
11739 static bool v8m_is_sau_exempt(CPUARMState *env,
11740                               uint32_t address, MMUAccessType access_type)
11741 {
11742     /* The architecture specifies that certain address ranges are
11743      * exempt from v8M SAU/IDAU checks.
11744      */
11745     return
11746         (access_type == MMU_INST_FETCH && m_is_system_region(env, address)) ||
11747         (address >= 0xe0000000 && address <= 0xe0002fff) ||
11748         (address >= 0xe000e000 && address <= 0xe000efff) ||
11749         (address >= 0xe002e000 && address <= 0xe002efff) ||
11750         (address >= 0xe0040000 && address <= 0xe0041fff) ||
11751         (address >= 0xe00ff000 && address <= 0xe00fffff);
11752 }
11753 
11754 void v8m_security_lookup(CPUARMState *env, uint32_t address,
11755                                 MMUAccessType access_type, ARMMMUIdx mmu_idx,
11756                                 V8M_SAttributes *sattrs)
11757 {
11758     /* Look up the security attributes for this address. Compare the
11759      * pseudocode SecurityCheck() function.
11760      * We assume the caller has zero-initialized *sattrs.
11761      */
11762     ARMCPU *cpu = env_archcpu(env);
11763     int r;
11764     bool idau_exempt = false, idau_ns = true, idau_nsc = true;
11765     int idau_region = IREGION_NOTVALID;
11766     uint32_t addr_page_base = address & TARGET_PAGE_MASK;
11767     uint32_t addr_page_limit = addr_page_base + (TARGET_PAGE_SIZE - 1);
11768 
11769     if (cpu->idau) {
11770         IDAUInterfaceClass *iic = IDAU_INTERFACE_GET_CLASS(cpu->idau);
11771         IDAUInterface *ii = IDAU_INTERFACE(cpu->idau);
11772 
11773         iic->check(ii, address, &idau_region, &idau_exempt, &idau_ns,
11774                    &idau_nsc);
11775     }
11776 
11777     if (access_type == MMU_INST_FETCH && extract32(address, 28, 4) == 0xf) {
11778         /* 0xf0000000..0xffffffff is always S for insn fetches */
11779         return;
11780     }
11781 
11782     if (idau_exempt || v8m_is_sau_exempt(env, address, access_type)) {
11783         sattrs->ns = !regime_is_secure(env, mmu_idx);
11784         return;
11785     }
11786 
11787     if (idau_region != IREGION_NOTVALID) {
11788         sattrs->irvalid = true;
11789         sattrs->iregion = idau_region;
11790     }
11791 
11792     switch (env->sau.ctrl & 3) {
11793     case 0: /* SAU.ENABLE == 0, SAU.ALLNS == 0 */
11794         break;
11795     case 2: /* SAU.ENABLE == 0, SAU.ALLNS == 1 */
11796         sattrs->ns = true;
11797         break;
11798     default: /* SAU.ENABLE == 1 */
11799         for (r = 0; r < cpu->sau_sregion; r++) {
11800             if (env->sau.rlar[r] & 1) {
11801                 uint32_t base = env->sau.rbar[r] & ~0x1f;
11802                 uint32_t limit = env->sau.rlar[r] | 0x1f;
11803 
11804                 if (base <= address && limit >= address) {
11805                     if (base > addr_page_base || limit < addr_page_limit) {
11806                         sattrs->subpage = true;
11807                     }
11808                     if (sattrs->srvalid) {
11809                         /* If we hit in more than one region then we must report
11810                          * as Secure, not NS-Callable, with no valid region
11811                          * number info.
11812                          */
11813                         sattrs->ns = false;
11814                         sattrs->nsc = false;
11815                         sattrs->sregion = 0;
11816                         sattrs->srvalid = false;
11817                         break;
11818                     } else {
11819                         if (env->sau.rlar[r] & 2) {
11820                             sattrs->nsc = true;
11821                         } else {
11822                             sattrs->ns = true;
11823                         }
11824                         sattrs->srvalid = true;
11825                         sattrs->sregion = r;
11826                     }
11827                 } else {
11828                     /*
11829                      * Address not in this region. We must check whether the
11830                      * region covers addresses in the same page as our address.
11831                      * In that case we must not report a size that covers the
11832                      * whole page for a subsequent hit against a different MPU
11833                      * region or the background region, because it would result
11834                      * in incorrect TLB hits for subsequent accesses to
11835                      * addresses that are in this MPU region.
11836                      */
11837                     if (limit >= base &&
11838                         ranges_overlap(base, limit - base + 1,
11839                                        addr_page_base,
11840                                        TARGET_PAGE_SIZE)) {
11841                         sattrs->subpage = true;
11842                     }
11843                 }
11844             }
11845         }
11846         break;
11847     }
11848 
11849     /*
11850      * The IDAU will override the SAU lookup results if it specifies
11851      * higher security than the SAU does.
11852      */
11853     if (!idau_ns) {
11854         if (sattrs->ns || (!idau_nsc && sattrs->nsc)) {
11855             sattrs->ns = false;
11856             sattrs->nsc = idau_nsc;
11857         }
11858     }
11859 }
11860 
11861 bool pmsav8_mpu_lookup(CPUARMState *env, uint32_t address,
11862                               MMUAccessType access_type, ARMMMUIdx mmu_idx,
11863                               hwaddr *phys_ptr, MemTxAttrs *txattrs,
11864                               int *prot, bool *is_subpage,
11865                               ARMMMUFaultInfo *fi, uint32_t *mregion)
11866 {
11867     /* Perform a PMSAv8 MPU lookup (without also doing the SAU check
11868      * that a full phys-to-virt translation does).
11869      * mregion is (if not NULL) set to the region number which matched,
11870      * or -1 if no region number is returned (MPU off, address did not
11871      * hit a region, address hit in multiple regions).
11872      * We set is_subpage to true if the region hit doesn't cover the
11873      * entire TARGET_PAGE the address is within.
11874      */
11875     ARMCPU *cpu = env_archcpu(env);
11876     bool is_user = regime_is_user(env, mmu_idx);
11877     uint32_t secure = regime_is_secure(env, mmu_idx);
11878     int n;
11879     int matchregion = -1;
11880     bool hit = false;
11881     uint32_t addr_page_base = address & TARGET_PAGE_MASK;
11882     uint32_t addr_page_limit = addr_page_base + (TARGET_PAGE_SIZE - 1);
11883 
11884     *is_subpage = false;
11885     *phys_ptr = address;
11886     *prot = 0;
11887     if (mregion) {
11888         *mregion = -1;
11889     }
11890 
11891     /* Unlike the ARM ARM pseudocode, we don't need to check whether this
11892      * was an exception vector read from the vector table (which is always
11893      * done using the default system address map), because those accesses
11894      * are done in arm_v7m_load_vector(), which always does a direct
11895      * read using address_space_ldl(), rather than going via this function.
11896      */
11897     if (regime_translation_disabled(env, mmu_idx)) { /* MPU disabled */
11898         hit = true;
11899     } else if (m_is_ppb_region(env, address)) {
11900         hit = true;
11901     } else {
11902         if (pmsav7_use_background_region(cpu, mmu_idx, is_user)) {
11903             hit = true;
11904         }
11905 
11906         for (n = (int)cpu->pmsav7_dregion - 1; n >= 0; n--) {
11907             /* region search */
11908             /* Note that the base address is bits [31:5] from the register
11909              * with bits [4:0] all zeroes, but the limit address is bits
11910              * [31:5] from the register with bits [4:0] all ones.
11911              */
11912             uint32_t base = env->pmsav8.rbar[secure][n] & ~0x1f;
11913             uint32_t limit = env->pmsav8.rlar[secure][n] | 0x1f;
11914 
11915             if (!(env->pmsav8.rlar[secure][n] & 0x1)) {
11916                 /* Region disabled */
11917                 continue;
11918             }
11919 
11920             if (address < base || address > limit) {
11921                 /*
11922                  * Address not in this region. We must check whether the
11923                  * region covers addresses in the same page as our address.
11924                  * In that case we must not report a size that covers the
11925                  * whole page for a subsequent hit against a different MPU
11926                  * region or the background region, because it would result in
11927                  * incorrect TLB hits for subsequent accesses to addresses that
11928                  * are in this MPU region.
11929                  */
11930                 if (limit >= base &&
11931                     ranges_overlap(base, limit - base + 1,
11932                                    addr_page_base,
11933                                    TARGET_PAGE_SIZE)) {
11934                     *is_subpage = true;
11935                 }
11936                 continue;
11937             }
11938 
11939             if (base > addr_page_base || limit < addr_page_limit) {
11940                 *is_subpage = true;
11941             }
11942 
11943             if (matchregion != -1) {
11944                 /* Multiple regions match -- always a failure (unlike
11945                  * PMSAv7 where highest-numbered-region wins)
11946                  */
11947                 fi->type = ARMFault_Permission;
11948                 fi->level = 1;
11949                 return true;
11950             }
11951 
11952             matchregion = n;
11953             hit = true;
11954         }
11955     }
11956 
11957     if (!hit) {
11958         /* background fault */
11959         fi->type = ARMFault_Background;
11960         return true;
11961     }
11962 
11963     if (matchregion == -1) {
11964         /* hit using the background region */
11965         get_phys_addr_pmsav7_default(env, mmu_idx, address, prot);
11966     } else {
11967         uint32_t ap = extract32(env->pmsav8.rbar[secure][matchregion], 1, 2);
11968         uint32_t xn = extract32(env->pmsav8.rbar[secure][matchregion], 0, 1);
11969         bool pxn = false;
11970 
11971         if (arm_feature(env, ARM_FEATURE_V8_1M)) {
11972             pxn = extract32(env->pmsav8.rlar[secure][matchregion], 4, 1);
11973         }
11974 
11975         if (m_is_system_region(env, address)) {
11976             /* System space is always execute never */
11977             xn = 1;
11978         }
11979 
11980         *prot = simple_ap_to_rw_prot(env, mmu_idx, ap);
11981         if (*prot && !xn && !(pxn && !is_user)) {
11982             *prot |= PAGE_EXEC;
11983         }
11984         /* We don't need to look the attribute up in the MAIR0/MAIR1
11985          * registers because that only tells us about cacheability.
11986          */
11987         if (mregion) {
11988             *mregion = matchregion;
11989         }
11990     }
11991 
11992     fi->type = ARMFault_Permission;
11993     fi->level = 1;
11994     return !(*prot & (1 << access_type));
11995 }
11996 
11997 
11998 static bool get_phys_addr_pmsav8(CPUARMState *env, uint32_t address,
11999                                  MMUAccessType access_type, ARMMMUIdx mmu_idx,
12000                                  hwaddr *phys_ptr, MemTxAttrs *txattrs,
12001                                  int *prot, target_ulong *page_size,
12002                                  ARMMMUFaultInfo *fi)
12003 {
12004     uint32_t secure = regime_is_secure(env, mmu_idx);
12005     V8M_SAttributes sattrs = {};
12006     bool ret;
12007     bool mpu_is_subpage;
12008 
12009     if (arm_feature(env, ARM_FEATURE_M_SECURITY)) {
12010         v8m_security_lookup(env, address, access_type, mmu_idx, &sattrs);
12011         if (access_type == MMU_INST_FETCH) {
12012             /* Instruction fetches always use the MMU bank and the
12013              * transaction attribute determined by the fetch address,
12014              * regardless of CPU state. This is painful for QEMU
12015              * to handle, because it would mean we need to encode
12016              * into the mmu_idx not just the (user, negpri) information
12017              * for the current security state but also that for the
12018              * other security state, which would balloon the number
12019              * of mmu_idx values needed alarmingly.
12020              * Fortunately we can avoid this because it's not actually
12021              * possible to arbitrarily execute code from memory with
12022              * the wrong security attribute: it will always generate
12023              * an exception of some kind or another, apart from the
12024              * special case of an NS CPU executing an SG instruction
12025              * in S&NSC memory. So we always just fail the translation
12026              * here and sort things out in the exception handler
12027              * (including possibly emulating an SG instruction).
12028              */
12029             if (sattrs.ns != !secure) {
12030                 if (sattrs.nsc) {
12031                     fi->type = ARMFault_QEMU_NSCExec;
12032                 } else {
12033                     fi->type = ARMFault_QEMU_SFault;
12034                 }
12035                 *page_size = sattrs.subpage ? 1 : TARGET_PAGE_SIZE;
12036                 *phys_ptr = address;
12037                 *prot = 0;
12038                 return true;
12039             }
12040         } else {
12041             /* For data accesses we always use the MMU bank indicated
12042              * by the current CPU state, but the security attributes
12043              * might downgrade a secure access to nonsecure.
12044              */
12045             if (sattrs.ns) {
12046                 txattrs->secure = false;
12047             } else if (!secure) {
12048                 /* NS access to S memory must fault.
12049                  * Architecturally we should first check whether the
12050                  * MPU information for this address indicates that we
12051                  * are doing an unaligned access to Device memory, which
12052                  * should generate a UsageFault instead. QEMU does not
12053                  * currently check for that kind of unaligned access though.
12054                  * If we added it we would need to do so as a special case
12055                  * for M_FAKE_FSR_SFAULT in arm_v7m_cpu_do_interrupt().
12056                  */
12057                 fi->type = ARMFault_QEMU_SFault;
12058                 *page_size = sattrs.subpage ? 1 : TARGET_PAGE_SIZE;
12059                 *phys_ptr = address;
12060                 *prot = 0;
12061                 return true;
12062             }
12063         }
12064     }
12065 
12066     ret = pmsav8_mpu_lookup(env, address, access_type, mmu_idx, phys_ptr,
12067                             txattrs, prot, &mpu_is_subpage, fi, NULL);
12068     *page_size = sattrs.subpage || mpu_is_subpage ? 1 : TARGET_PAGE_SIZE;
12069     return ret;
12070 }
12071 
12072 static bool get_phys_addr_pmsav5(CPUARMState *env, uint32_t address,
12073                                  MMUAccessType access_type, ARMMMUIdx mmu_idx,
12074                                  hwaddr *phys_ptr, int *prot,
12075                                  ARMMMUFaultInfo *fi)
12076 {
12077     int n;
12078     uint32_t mask;
12079     uint32_t base;
12080     bool is_user = regime_is_user(env, mmu_idx);
12081 
12082     if (regime_translation_disabled(env, mmu_idx)) {
12083         /* MPU disabled.  */
12084         *phys_ptr = address;
12085         *prot = PAGE_READ | PAGE_WRITE | PAGE_EXEC;
12086         return false;
12087     }
12088 
12089     *phys_ptr = address;
12090     for (n = 7; n >= 0; n--) {
12091         base = env->cp15.c6_region[n];
12092         if ((base & 1) == 0) {
12093             continue;
12094         }
12095         mask = 1 << ((base >> 1) & 0x1f);
12096         /* Keep this shift separate from the above to avoid an
12097            (undefined) << 32.  */
12098         mask = (mask << 1) - 1;
12099         if (((base ^ address) & ~mask) == 0) {
12100             break;
12101         }
12102     }
12103     if (n < 0) {
12104         fi->type = ARMFault_Background;
12105         return true;
12106     }
12107 
12108     if (access_type == MMU_INST_FETCH) {
12109         mask = env->cp15.pmsav5_insn_ap;
12110     } else {
12111         mask = env->cp15.pmsav5_data_ap;
12112     }
12113     mask = (mask >> (n * 4)) & 0xf;
12114     switch (mask) {
12115     case 0:
12116         fi->type = ARMFault_Permission;
12117         fi->level = 1;
12118         return true;
12119     case 1:
12120         if (is_user) {
12121             fi->type = ARMFault_Permission;
12122             fi->level = 1;
12123             return true;
12124         }
12125         *prot = PAGE_READ | PAGE_WRITE;
12126         break;
12127     case 2:
12128         *prot = PAGE_READ;
12129         if (!is_user) {
12130             *prot |= PAGE_WRITE;
12131         }
12132         break;
12133     case 3:
12134         *prot = PAGE_READ | PAGE_WRITE;
12135         break;
12136     case 5:
12137         if (is_user) {
12138             fi->type = ARMFault_Permission;
12139             fi->level = 1;
12140             return true;
12141         }
12142         *prot = PAGE_READ;
12143         break;
12144     case 6:
12145         *prot = PAGE_READ;
12146         break;
12147     default:
12148         /* Bad permission.  */
12149         fi->type = ARMFault_Permission;
12150         fi->level = 1;
12151         return true;
12152     }
12153     *prot |= PAGE_EXEC;
12154     return false;
12155 }
12156 
12157 /* Combine either inner or outer cacheability attributes for normal
12158  * memory, according to table D4-42 and pseudocode procedure
12159  * CombineS1S2AttrHints() of ARM DDI 0487B.b (the ARMv8 ARM).
12160  *
12161  * NB: only stage 1 includes allocation hints (RW bits), leading to
12162  * some asymmetry.
12163  */
12164 static uint8_t combine_cacheattr_nibble(uint8_t s1, uint8_t s2)
12165 {
12166     if (s1 == 4 || s2 == 4) {
12167         /* non-cacheable has precedence */
12168         return 4;
12169     } else if (extract32(s1, 2, 2) == 0 || extract32(s1, 2, 2) == 2) {
12170         /* stage 1 write-through takes precedence */
12171         return s1;
12172     } else if (extract32(s2, 2, 2) == 2) {
12173         /* stage 2 write-through takes precedence, but the allocation hint
12174          * is still taken from stage 1
12175          */
12176         return (2 << 2) | extract32(s1, 0, 2);
12177     } else { /* write-back */
12178         return s1;
12179     }
12180 }
12181 
12182 /* Combine S1 and S2 cacheability/shareability attributes, per D4.5.4
12183  * and CombineS1S2Desc()
12184  *
12185  * @s1:      Attributes from stage 1 walk
12186  * @s2:      Attributes from stage 2 walk
12187  */
12188 static ARMCacheAttrs combine_cacheattrs(ARMCacheAttrs s1, ARMCacheAttrs s2)
12189 {
12190     uint8_t s1lo, s2lo, s1hi, s2hi;
12191     ARMCacheAttrs ret;
12192     bool tagged = false;
12193 
12194     if (s1.attrs == 0xf0) {
12195         tagged = true;
12196         s1.attrs = 0xff;
12197     }
12198 
12199     s1lo = extract32(s1.attrs, 0, 4);
12200     s2lo = extract32(s2.attrs, 0, 4);
12201     s1hi = extract32(s1.attrs, 4, 4);
12202     s2hi = extract32(s2.attrs, 4, 4);
12203 
12204     /* Combine shareability attributes (table D4-43) */
12205     if (s1.shareability == 2 || s2.shareability == 2) {
12206         /* if either are outer-shareable, the result is outer-shareable */
12207         ret.shareability = 2;
12208     } else if (s1.shareability == 3 || s2.shareability == 3) {
12209         /* if either are inner-shareable, the result is inner-shareable */
12210         ret.shareability = 3;
12211     } else {
12212         /* both non-shareable */
12213         ret.shareability = 0;
12214     }
12215 
12216     /* Combine memory type and cacheability attributes */
12217     if (s1hi == 0 || s2hi == 0) {
12218         /* Device has precedence over normal */
12219         if (s1lo == 0 || s2lo == 0) {
12220             /* nGnRnE has precedence over anything */
12221             ret.attrs = 0;
12222         } else if (s1lo == 4 || s2lo == 4) {
12223             /* non-Reordering has precedence over Reordering */
12224             ret.attrs = 4;  /* nGnRE */
12225         } else if (s1lo == 8 || s2lo == 8) {
12226             /* non-Gathering has precedence over Gathering */
12227             ret.attrs = 8;  /* nGRE */
12228         } else {
12229             ret.attrs = 0xc; /* GRE */
12230         }
12231 
12232         /* Any location for which the resultant memory type is any
12233          * type of Device memory is always treated as Outer Shareable.
12234          */
12235         ret.shareability = 2;
12236     } else { /* Normal memory */
12237         /* Outer/inner cacheability combine independently */
12238         ret.attrs = combine_cacheattr_nibble(s1hi, s2hi) << 4
12239                   | combine_cacheattr_nibble(s1lo, s2lo);
12240 
12241         if (ret.attrs == 0x44) {
12242             /* Any location for which the resultant memory type is Normal
12243              * Inner Non-cacheable, Outer Non-cacheable is always treated
12244              * as Outer Shareable.
12245              */
12246             ret.shareability = 2;
12247         }
12248     }
12249 
12250     /* TODO: CombineS1S2Desc does not consider transient, only WB, RWA. */
12251     if (tagged && ret.attrs == 0xff) {
12252         ret.attrs = 0xf0;
12253     }
12254 
12255     return ret;
12256 }
12257 
12258 
12259 /* get_phys_addr - get the physical address for this virtual address
12260  *
12261  * Find the physical address corresponding to the given virtual address,
12262  * by doing a translation table walk on MMU based systems or using the
12263  * MPU state on MPU based systems.
12264  *
12265  * Returns false if the translation was successful. Otherwise, phys_ptr, attrs,
12266  * prot and page_size may not be filled in, and the populated fsr value provides
12267  * information on why the translation aborted, in the format of a
12268  * DFSR/IFSR fault register, with the following caveats:
12269  *  * we honour the short vs long DFSR format differences.
12270  *  * the WnR bit is never set (the caller must do this).
12271  *  * for PSMAv5 based systems we don't bother to return a full FSR format
12272  *    value.
12273  *
12274  * @env: CPUARMState
12275  * @address: virtual address to get physical address for
12276  * @access_type: 0 for read, 1 for write, 2 for execute
12277  * @mmu_idx: MMU index indicating required translation regime
12278  * @phys_ptr: set to the physical address corresponding to the virtual address
12279  * @attrs: set to the memory transaction attributes to use
12280  * @prot: set to the permissions for the page containing phys_ptr
12281  * @page_size: set to the size of the page containing phys_ptr
12282  * @fi: set to fault info if the translation fails
12283  * @cacheattrs: (if non-NULL) set to the cacheability/shareability attributes
12284  */
12285 bool get_phys_addr(CPUARMState *env, target_ulong address,
12286                    MMUAccessType access_type, ARMMMUIdx mmu_idx,
12287                    hwaddr *phys_ptr, MemTxAttrs *attrs, int *prot,
12288                    target_ulong *page_size,
12289                    ARMMMUFaultInfo *fi, ARMCacheAttrs *cacheattrs)
12290 {
12291     ARMMMUIdx s1_mmu_idx = stage_1_mmu_idx(mmu_idx);
12292 
12293     if (mmu_idx != s1_mmu_idx) {
12294         /* Call ourselves recursively to do the stage 1 and then stage 2
12295          * translations if mmu_idx is a two-stage regime.
12296          */
12297         if (arm_feature(env, ARM_FEATURE_EL2)) {
12298             hwaddr ipa;
12299             int s2_prot;
12300             int ret;
12301             ARMCacheAttrs cacheattrs2 = {};
12302             ARMMMUIdx s2_mmu_idx;
12303             bool is_el0;
12304 
12305             ret = get_phys_addr(env, address, access_type, s1_mmu_idx, &ipa,
12306                                 attrs, prot, page_size, fi, cacheattrs);
12307 
12308             /* If S1 fails or S2 is disabled, return early.  */
12309             if (ret || regime_translation_disabled(env, ARMMMUIdx_Stage2)) {
12310                 *phys_ptr = ipa;
12311                 return ret;
12312             }
12313 
12314             s2_mmu_idx = attrs->secure ? ARMMMUIdx_Stage2_S : ARMMMUIdx_Stage2;
12315             is_el0 = mmu_idx == ARMMMUIdx_E10_0 || mmu_idx == ARMMMUIdx_SE10_0;
12316 
12317             /* S1 is done. Now do S2 translation.  */
12318             ret = get_phys_addr_lpae(env, ipa, access_type, s2_mmu_idx, is_el0,
12319                                      phys_ptr, attrs, &s2_prot,
12320                                      page_size, fi, &cacheattrs2);
12321             fi->s2addr = ipa;
12322             /* Combine the S1 and S2 perms.  */
12323             *prot &= s2_prot;
12324 
12325             /* If S2 fails, return early.  */
12326             if (ret) {
12327                 return ret;
12328             }
12329 
12330             /* Combine the S1 and S2 cache attributes. */
12331             if (arm_hcr_el2_eff(env) & HCR_DC) {
12332                 /*
12333                  * HCR.DC forces the first stage attributes to
12334                  *  Normal Non-Shareable,
12335                  *  Inner Write-Back Read-Allocate Write-Allocate,
12336                  *  Outer Write-Back Read-Allocate Write-Allocate.
12337                  * Do not overwrite Tagged within attrs.
12338                  */
12339                 if (cacheattrs->attrs != 0xf0) {
12340                     cacheattrs->attrs = 0xff;
12341                 }
12342                 cacheattrs->shareability = 0;
12343             }
12344             *cacheattrs = combine_cacheattrs(*cacheattrs, cacheattrs2);
12345 
12346             /* Check if IPA translates to secure or non-secure PA space. */
12347             if (arm_is_secure_below_el3(env)) {
12348                 if (attrs->secure) {
12349                     attrs->secure =
12350                         !(env->cp15.vstcr_el2.raw_tcr & (VSTCR_SA | VSTCR_SW));
12351                 } else {
12352                     attrs->secure =
12353                         !((env->cp15.vtcr_el2.raw_tcr & (VTCR_NSA | VTCR_NSW))
12354                         || (env->cp15.vstcr_el2.raw_tcr & VSTCR_SA));
12355                 }
12356             }
12357             return 0;
12358         } else {
12359             /*
12360              * For non-EL2 CPUs a stage1+stage2 translation is just stage 1.
12361              */
12362             mmu_idx = stage_1_mmu_idx(mmu_idx);
12363         }
12364     }
12365 
12366     /* The page table entries may downgrade secure to non-secure, but
12367      * cannot upgrade an non-secure translation regime's attributes
12368      * to secure.
12369      */
12370     attrs->secure = regime_is_secure(env, mmu_idx);
12371     attrs->user = regime_is_user(env, mmu_idx);
12372 
12373     /* Fast Context Switch Extension. This doesn't exist at all in v8.
12374      * In v7 and earlier it affects all stage 1 translations.
12375      */
12376     if (address < 0x02000000 && mmu_idx != ARMMMUIdx_Stage2
12377         && !arm_feature(env, ARM_FEATURE_V8)) {
12378         if (regime_el(env, mmu_idx) == 3) {
12379             address += env->cp15.fcseidr_s;
12380         } else {
12381             address += env->cp15.fcseidr_ns;
12382         }
12383     }
12384 
12385     if (arm_feature(env, ARM_FEATURE_PMSA)) {
12386         bool ret;
12387         *page_size = TARGET_PAGE_SIZE;
12388 
12389         if (arm_feature(env, ARM_FEATURE_V8)) {
12390             /* PMSAv8 */
12391             ret = get_phys_addr_pmsav8(env, address, access_type, mmu_idx,
12392                                        phys_ptr, attrs, prot, page_size, fi);
12393         } else if (arm_feature(env, ARM_FEATURE_V7)) {
12394             /* PMSAv7 */
12395             ret = get_phys_addr_pmsav7(env, address, access_type, mmu_idx,
12396                                        phys_ptr, prot, page_size, fi);
12397         } else {
12398             /* Pre-v7 MPU */
12399             ret = get_phys_addr_pmsav5(env, address, access_type, mmu_idx,
12400                                        phys_ptr, prot, fi);
12401         }
12402         qemu_log_mask(CPU_LOG_MMU, "PMSA MPU lookup for %s at 0x%08" PRIx32
12403                       " mmu_idx %u -> %s (prot %c%c%c)\n",
12404                       access_type == MMU_DATA_LOAD ? "reading" :
12405                       (access_type == MMU_DATA_STORE ? "writing" : "execute"),
12406                       (uint32_t)address, mmu_idx,
12407                       ret ? "Miss" : "Hit",
12408                       *prot & PAGE_READ ? 'r' : '-',
12409                       *prot & PAGE_WRITE ? 'w' : '-',
12410                       *prot & PAGE_EXEC ? 'x' : '-');
12411 
12412         return ret;
12413     }
12414 
12415     /* Definitely a real MMU, not an MPU */
12416 
12417     if (regime_translation_disabled(env, mmu_idx)) {
12418         uint64_t hcr;
12419         uint8_t memattr;
12420 
12421         /*
12422          * MMU disabled.  S1 addresses within aa64 translation regimes are
12423          * still checked for bounds -- see AArch64.TranslateAddressS1Off.
12424          */
12425         if (mmu_idx != ARMMMUIdx_Stage2 && mmu_idx != ARMMMUIdx_Stage2_S) {
12426             int r_el = regime_el(env, mmu_idx);
12427             if (arm_el_is_aa64(env, r_el)) {
12428                 int pamax = arm_pamax(env_archcpu(env));
12429                 uint64_t tcr = env->cp15.tcr_el[r_el].raw_tcr;
12430                 int addrtop, tbi;
12431 
12432                 tbi = aa64_va_parameter_tbi(tcr, mmu_idx);
12433                 if (access_type == MMU_INST_FETCH) {
12434                     tbi &= ~aa64_va_parameter_tbid(tcr, mmu_idx);
12435                 }
12436                 tbi = (tbi >> extract64(address, 55, 1)) & 1;
12437                 addrtop = (tbi ? 55 : 63);
12438 
12439                 if (extract64(address, pamax, addrtop - pamax + 1) != 0) {
12440                     fi->type = ARMFault_AddressSize;
12441                     fi->level = 0;
12442                     fi->stage2 = false;
12443                     return 1;
12444                 }
12445 
12446                 /*
12447                  * When TBI is disabled, we've just validated that all of the
12448                  * bits above PAMax are zero, so logically we only need to
12449                  * clear the top byte for TBI.  But it's clearer to follow
12450                  * the pseudocode set of addrdesc.paddress.
12451                  */
12452                 address = extract64(address, 0, 52);
12453             }
12454         }
12455         *phys_ptr = address;
12456         *prot = PAGE_READ | PAGE_WRITE | PAGE_EXEC;
12457         *page_size = TARGET_PAGE_SIZE;
12458 
12459         /* Fill in cacheattr a-la AArch64.TranslateAddressS1Off. */
12460         hcr = arm_hcr_el2_eff(env);
12461         cacheattrs->shareability = 0;
12462         if (hcr & HCR_DC) {
12463             if (hcr & HCR_DCT) {
12464                 memattr = 0xf0;  /* Tagged, Normal, WB, RWA */
12465             } else {
12466                 memattr = 0xff;  /* Normal, WB, RWA */
12467             }
12468         } else if (access_type == MMU_INST_FETCH) {
12469             if (regime_sctlr(env, mmu_idx) & SCTLR_I) {
12470                 memattr = 0xee;  /* Normal, WT, RA, NT */
12471             } else {
12472                 memattr = 0x44;  /* Normal, NC, No */
12473             }
12474             cacheattrs->shareability = 2; /* outer sharable */
12475         } else {
12476             memattr = 0x00;      /* Device, nGnRnE */
12477         }
12478         cacheattrs->attrs = memattr;
12479         return 0;
12480     }
12481 
12482     if (regime_using_lpae_format(env, mmu_idx)) {
12483         return get_phys_addr_lpae(env, address, access_type, mmu_idx, false,
12484                                   phys_ptr, attrs, prot, page_size,
12485                                   fi, cacheattrs);
12486     } else if (regime_sctlr(env, mmu_idx) & SCTLR_XP) {
12487         return get_phys_addr_v6(env, address, access_type, mmu_idx,
12488                                 phys_ptr, attrs, prot, page_size, fi);
12489     } else {
12490         return get_phys_addr_v5(env, address, access_type, mmu_idx,
12491                                     phys_ptr, prot, page_size, fi);
12492     }
12493 }
12494 
12495 hwaddr arm_cpu_get_phys_page_attrs_debug(CPUState *cs, vaddr addr,
12496                                          MemTxAttrs *attrs)
12497 {
12498     ARMCPU *cpu = ARM_CPU(cs);
12499     CPUARMState *env = &cpu->env;
12500     hwaddr phys_addr;
12501     target_ulong page_size;
12502     int prot;
12503     bool ret;
12504     ARMMMUFaultInfo fi = {};
12505     ARMMMUIdx mmu_idx = arm_mmu_idx(env);
12506     ARMCacheAttrs cacheattrs = {};
12507 
12508     *attrs = (MemTxAttrs) {};
12509 
12510     ret = get_phys_addr(env, addr, MMU_DATA_LOAD, mmu_idx, &phys_addr,
12511                         attrs, &prot, &page_size, &fi, &cacheattrs);
12512 
12513     if (ret) {
12514         return -1;
12515     }
12516     return phys_addr;
12517 }
12518 
12519 #endif
12520 
12521 /* Note that signed overflow is undefined in C.  The following routines are
12522    careful to use unsigned types where modulo arithmetic is required.
12523    Failure to do so _will_ break on newer gcc.  */
12524 
12525 /* Signed saturating arithmetic.  */
12526 
12527 /* Perform 16-bit signed saturating addition.  */
12528 static inline uint16_t add16_sat(uint16_t a, uint16_t b)
12529 {
12530     uint16_t res;
12531 
12532     res = a + b;
12533     if (((res ^ a) & 0x8000) && !((a ^ b) & 0x8000)) {
12534         if (a & 0x8000)
12535             res = 0x8000;
12536         else
12537             res = 0x7fff;
12538     }
12539     return res;
12540 }
12541 
12542 /* Perform 8-bit signed saturating addition.  */
12543 static inline uint8_t add8_sat(uint8_t a, uint8_t b)
12544 {
12545     uint8_t res;
12546 
12547     res = a + b;
12548     if (((res ^ a) & 0x80) && !((a ^ b) & 0x80)) {
12549         if (a & 0x80)
12550             res = 0x80;
12551         else
12552             res = 0x7f;
12553     }
12554     return res;
12555 }
12556 
12557 /* Perform 16-bit signed saturating subtraction.  */
12558 static inline uint16_t sub16_sat(uint16_t a, uint16_t b)
12559 {
12560     uint16_t res;
12561 
12562     res = a - b;
12563     if (((res ^ a) & 0x8000) && ((a ^ b) & 0x8000)) {
12564         if (a & 0x8000)
12565             res = 0x8000;
12566         else
12567             res = 0x7fff;
12568     }
12569     return res;
12570 }
12571 
12572 /* Perform 8-bit signed saturating subtraction.  */
12573 static inline uint8_t sub8_sat(uint8_t a, uint8_t b)
12574 {
12575     uint8_t res;
12576 
12577     res = a - b;
12578     if (((res ^ a) & 0x80) && ((a ^ b) & 0x80)) {
12579         if (a & 0x80)
12580             res = 0x80;
12581         else
12582             res = 0x7f;
12583     }
12584     return res;
12585 }
12586 
12587 #define ADD16(a, b, n) RESULT(add16_sat(a, b), n, 16);
12588 #define SUB16(a, b, n) RESULT(sub16_sat(a, b), n, 16);
12589 #define ADD8(a, b, n)  RESULT(add8_sat(a, b), n, 8);
12590 #define SUB8(a, b, n)  RESULT(sub8_sat(a, b), n, 8);
12591 #define PFX q
12592 
12593 #include "op_addsub.h"
12594 
12595 /* Unsigned saturating arithmetic.  */
12596 static inline uint16_t add16_usat(uint16_t a, uint16_t b)
12597 {
12598     uint16_t res;
12599     res = a + b;
12600     if (res < a)
12601         res = 0xffff;
12602     return res;
12603 }
12604 
12605 static inline uint16_t sub16_usat(uint16_t a, uint16_t b)
12606 {
12607     if (a > b)
12608         return a - b;
12609     else
12610         return 0;
12611 }
12612 
12613 static inline uint8_t add8_usat(uint8_t a, uint8_t b)
12614 {
12615     uint8_t res;
12616     res = a + b;
12617     if (res < a)
12618         res = 0xff;
12619     return res;
12620 }
12621 
12622 static inline uint8_t sub8_usat(uint8_t a, uint8_t b)
12623 {
12624     if (a > b)
12625         return a - b;
12626     else
12627         return 0;
12628 }
12629 
12630 #define ADD16(a, b, n) RESULT(add16_usat(a, b), n, 16);
12631 #define SUB16(a, b, n) RESULT(sub16_usat(a, b), n, 16);
12632 #define ADD8(a, b, n)  RESULT(add8_usat(a, b), n, 8);
12633 #define SUB8(a, b, n)  RESULT(sub8_usat(a, b), n, 8);
12634 #define PFX uq
12635 
12636 #include "op_addsub.h"
12637 
12638 /* Signed modulo arithmetic.  */
12639 #define SARITH16(a, b, n, op) do { \
12640     int32_t sum; \
12641     sum = (int32_t)(int16_t)(a) op (int32_t)(int16_t)(b); \
12642     RESULT(sum, n, 16); \
12643     if (sum >= 0) \
12644         ge |= 3 << (n * 2); \
12645     } while(0)
12646 
12647 #define SARITH8(a, b, n, op) do { \
12648     int32_t sum; \
12649     sum = (int32_t)(int8_t)(a) op (int32_t)(int8_t)(b); \
12650     RESULT(sum, n, 8); \
12651     if (sum >= 0) \
12652         ge |= 1 << n; \
12653     } while(0)
12654 
12655 
12656 #define ADD16(a, b, n) SARITH16(a, b, n, +)
12657 #define SUB16(a, b, n) SARITH16(a, b, n, -)
12658 #define ADD8(a, b, n)  SARITH8(a, b, n, +)
12659 #define SUB8(a, b, n)  SARITH8(a, b, n, -)
12660 #define PFX s
12661 #define ARITH_GE
12662 
12663 #include "op_addsub.h"
12664 
12665 /* Unsigned modulo arithmetic.  */
12666 #define ADD16(a, b, n) do { \
12667     uint32_t sum; \
12668     sum = (uint32_t)(uint16_t)(a) + (uint32_t)(uint16_t)(b); \
12669     RESULT(sum, n, 16); \
12670     if ((sum >> 16) == 1) \
12671         ge |= 3 << (n * 2); \
12672     } while(0)
12673 
12674 #define ADD8(a, b, n) do { \
12675     uint32_t sum; \
12676     sum = (uint32_t)(uint8_t)(a) + (uint32_t)(uint8_t)(b); \
12677     RESULT(sum, n, 8); \
12678     if ((sum >> 8) == 1) \
12679         ge |= 1 << n; \
12680     } while(0)
12681 
12682 #define SUB16(a, b, n) do { \
12683     uint32_t sum; \
12684     sum = (uint32_t)(uint16_t)(a) - (uint32_t)(uint16_t)(b); \
12685     RESULT(sum, n, 16); \
12686     if ((sum >> 16) == 0) \
12687         ge |= 3 << (n * 2); \
12688     } while(0)
12689 
12690 #define SUB8(a, b, n) do { \
12691     uint32_t sum; \
12692     sum = (uint32_t)(uint8_t)(a) - (uint32_t)(uint8_t)(b); \
12693     RESULT(sum, n, 8); \
12694     if ((sum >> 8) == 0) \
12695         ge |= 1 << n; \
12696     } while(0)
12697 
12698 #define PFX u
12699 #define ARITH_GE
12700 
12701 #include "op_addsub.h"
12702 
12703 /* Halved signed arithmetic.  */
12704 #define ADD16(a, b, n) \
12705   RESULT(((int32_t)(int16_t)(a) + (int32_t)(int16_t)(b)) >> 1, n, 16)
12706 #define SUB16(a, b, n) \
12707   RESULT(((int32_t)(int16_t)(a) - (int32_t)(int16_t)(b)) >> 1, n, 16)
12708 #define ADD8(a, b, n) \
12709   RESULT(((int32_t)(int8_t)(a) + (int32_t)(int8_t)(b)) >> 1, n, 8)
12710 #define SUB8(a, b, n) \
12711   RESULT(((int32_t)(int8_t)(a) - (int32_t)(int8_t)(b)) >> 1, n, 8)
12712 #define PFX sh
12713 
12714 #include "op_addsub.h"
12715 
12716 /* Halved unsigned arithmetic.  */
12717 #define ADD16(a, b, n) \
12718   RESULT(((uint32_t)(uint16_t)(a) + (uint32_t)(uint16_t)(b)) >> 1, n, 16)
12719 #define SUB16(a, b, n) \
12720   RESULT(((uint32_t)(uint16_t)(a) - (uint32_t)(uint16_t)(b)) >> 1, n, 16)
12721 #define ADD8(a, b, n) \
12722   RESULT(((uint32_t)(uint8_t)(a) + (uint32_t)(uint8_t)(b)) >> 1, n, 8)
12723 #define SUB8(a, b, n) \
12724   RESULT(((uint32_t)(uint8_t)(a) - (uint32_t)(uint8_t)(b)) >> 1, n, 8)
12725 #define PFX uh
12726 
12727 #include "op_addsub.h"
12728 
12729 static inline uint8_t do_usad(uint8_t a, uint8_t b)
12730 {
12731     if (a > b)
12732         return a - b;
12733     else
12734         return b - a;
12735 }
12736 
12737 /* Unsigned sum of absolute byte differences.  */
12738 uint32_t HELPER(usad8)(uint32_t a, uint32_t b)
12739 {
12740     uint32_t sum;
12741     sum = do_usad(a, b);
12742     sum += do_usad(a >> 8, b >> 8);
12743     sum += do_usad(a >> 16, b >> 16);
12744     sum += do_usad(a >> 24, b >> 24);
12745     return sum;
12746 }
12747 
12748 /* For ARMv6 SEL instruction.  */
12749 uint32_t HELPER(sel_flags)(uint32_t flags, uint32_t a, uint32_t b)
12750 {
12751     uint32_t mask;
12752 
12753     mask = 0;
12754     if (flags & 1)
12755         mask |= 0xff;
12756     if (flags & 2)
12757         mask |= 0xff00;
12758     if (flags & 4)
12759         mask |= 0xff0000;
12760     if (flags & 8)
12761         mask |= 0xff000000;
12762     return (a & mask) | (b & ~mask);
12763 }
12764 
12765 /* CRC helpers.
12766  * The upper bytes of val (above the number specified by 'bytes') must have
12767  * been zeroed out by the caller.
12768  */
12769 uint32_t HELPER(crc32)(uint32_t acc, uint32_t val, uint32_t bytes)
12770 {
12771     uint8_t buf[4];
12772 
12773     stl_le_p(buf, val);
12774 
12775     /* zlib crc32 converts the accumulator and output to one's complement.  */
12776     return crc32(acc ^ 0xffffffff, buf, bytes) ^ 0xffffffff;
12777 }
12778 
12779 uint32_t HELPER(crc32c)(uint32_t acc, uint32_t val, uint32_t bytes)
12780 {
12781     uint8_t buf[4];
12782 
12783     stl_le_p(buf, val);
12784 
12785     /* Linux crc32c converts the output to one's complement.  */
12786     return crc32c(acc, buf, bytes) ^ 0xffffffff;
12787 }
12788 
12789 /* Return the exception level to which FP-disabled exceptions should
12790  * be taken, or 0 if FP is enabled.
12791  */
12792 int fp_exception_el(CPUARMState *env, int cur_el)
12793 {
12794 #ifndef CONFIG_USER_ONLY
12795     /* CPACR and the CPTR registers don't exist before v6, so FP is
12796      * always accessible
12797      */
12798     if (!arm_feature(env, ARM_FEATURE_V6)) {
12799         return 0;
12800     }
12801 
12802     if (arm_feature(env, ARM_FEATURE_M)) {
12803         /* CPACR can cause a NOCP UsageFault taken to current security state */
12804         if (!v7m_cpacr_pass(env, env->v7m.secure, cur_el != 0)) {
12805             return 1;
12806         }
12807 
12808         if (arm_feature(env, ARM_FEATURE_M_SECURITY) && !env->v7m.secure) {
12809             if (!extract32(env->v7m.nsacr, 10, 1)) {
12810                 /* FP insns cause a NOCP UsageFault taken to Secure */
12811                 return 3;
12812             }
12813         }
12814 
12815         return 0;
12816     }
12817 
12818     /* The CPACR controls traps to EL1, or PL1 if we're 32 bit:
12819      * 0, 2 : trap EL0 and EL1/PL1 accesses
12820      * 1    : trap only EL0 accesses
12821      * 3    : trap no accesses
12822      * This register is ignored if E2H+TGE are both set.
12823      */
12824     if ((arm_hcr_el2_eff(env) & (HCR_E2H | HCR_TGE)) != (HCR_E2H | HCR_TGE)) {
12825         int fpen = extract32(env->cp15.cpacr_el1, 20, 2);
12826 
12827         switch (fpen) {
12828         case 0:
12829         case 2:
12830             if (cur_el == 0 || cur_el == 1) {
12831                 /* Trap to PL1, which might be EL1 or EL3 */
12832                 if (arm_is_secure(env) && !arm_el_is_aa64(env, 3)) {
12833                     return 3;
12834                 }
12835                 return 1;
12836             }
12837             if (cur_el == 3 && !is_a64(env)) {
12838                 /* Secure PL1 running at EL3 */
12839                 return 3;
12840             }
12841             break;
12842         case 1:
12843             if (cur_el == 0) {
12844                 return 1;
12845             }
12846             break;
12847         case 3:
12848             break;
12849         }
12850     }
12851 
12852     /*
12853      * The NSACR allows A-profile AArch32 EL3 and M-profile secure mode
12854      * to control non-secure access to the FPU. It doesn't have any
12855      * effect if EL3 is AArch64 or if EL3 doesn't exist at all.
12856      */
12857     if ((arm_feature(env, ARM_FEATURE_EL3) && !arm_el_is_aa64(env, 3) &&
12858          cur_el <= 2 && !arm_is_secure_below_el3(env))) {
12859         if (!extract32(env->cp15.nsacr, 10, 1)) {
12860             /* FP insns act as UNDEF */
12861             return cur_el == 2 ? 2 : 1;
12862         }
12863     }
12864 
12865     /* For the CPTR registers we don't need to guard with an ARM_FEATURE
12866      * check because zero bits in the registers mean "don't trap".
12867      */
12868 
12869     /* CPTR_EL2 : present in v7VE or v8 */
12870     if (cur_el <= 2 && extract32(env->cp15.cptr_el[2], 10, 1)
12871         && arm_is_el2_enabled(env)) {
12872         /* Trap FP ops at EL2, NS-EL1 or NS-EL0 to EL2 */
12873         return 2;
12874     }
12875 
12876     /* CPTR_EL3 : present in v8 */
12877     if (extract32(env->cp15.cptr_el[3], 10, 1)) {
12878         /* Trap all FP ops to EL3 */
12879         return 3;
12880     }
12881 #endif
12882     return 0;
12883 }
12884 
12885 /* Return the exception level we're running at if this is our mmu_idx */
12886 int arm_mmu_idx_to_el(ARMMMUIdx mmu_idx)
12887 {
12888     if (mmu_idx & ARM_MMU_IDX_M) {
12889         return mmu_idx & ARM_MMU_IDX_M_PRIV;
12890     }
12891 
12892     switch (mmu_idx) {
12893     case ARMMMUIdx_E10_0:
12894     case ARMMMUIdx_E20_0:
12895     case ARMMMUIdx_SE10_0:
12896     case ARMMMUIdx_SE20_0:
12897         return 0;
12898     case ARMMMUIdx_E10_1:
12899     case ARMMMUIdx_E10_1_PAN:
12900     case ARMMMUIdx_SE10_1:
12901     case ARMMMUIdx_SE10_1_PAN:
12902         return 1;
12903     case ARMMMUIdx_E2:
12904     case ARMMMUIdx_E20_2:
12905     case ARMMMUIdx_E20_2_PAN:
12906     case ARMMMUIdx_SE2:
12907     case ARMMMUIdx_SE20_2:
12908     case ARMMMUIdx_SE20_2_PAN:
12909         return 2;
12910     case ARMMMUIdx_SE3:
12911         return 3;
12912     default:
12913         g_assert_not_reached();
12914     }
12915 }
12916 
12917 #ifndef CONFIG_TCG
12918 ARMMMUIdx arm_v7m_mmu_idx_for_secstate(CPUARMState *env, bool secstate)
12919 {
12920     g_assert_not_reached();
12921 }
12922 #endif
12923 
12924 ARMMMUIdx arm_mmu_idx_el(CPUARMState *env, int el)
12925 {
12926     ARMMMUIdx idx;
12927     uint64_t hcr;
12928 
12929     if (arm_feature(env, ARM_FEATURE_M)) {
12930         return arm_v7m_mmu_idx_for_secstate(env, env->v7m.secure);
12931     }
12932 
12933     /* See ARM pseudo-function ELIsInHost.  */
12934     switch (el) {
12935     case 0:
12936         hcr = arm_hcr_el2_eff(env);
12937         if ((hcr & (HCR_E2H | HCR_TGE)) == (HCR_E2H | HCR_TGE)) {
12938             idx = ARMMMUIdx_E20_0;
12939         } else {
12940             idx = ARMMMUIdx_E10_0;
12941         }
12942         break;
12943     case 1:
12944         if (env->pstate & PSTATE_PAN) {
12945             idx = ARMMMUIdx_E10_1_PAN;
12946         } else {
12947             idx = ARMMMUIdx_E10_1;
12948         }
12949         break;
12950     case 2:
12951         /* Note that TGE does not apply at EL2.  */
12952         if (arm_hcr_el2_eff(env) & HCR_E2H) {
12953             if (env->pstate & PSTATE_PAN) {
12954                 idx = ARMMMUIdx_E20_2_PAN;
12955             } else {
12956                 idx = ARMMMUIdx_E20_2;
12957             }
12958         } else {
12959             idx = ARMMMUIdx_E2;
12960         }
12961         break;
12962     case 3:
12963         return ARMMMUIdx_SE3;
12964     default:
12965         g_assert_not_reached();
12966     }
12967 
12968     if (arm_is_secure_below_el3(env)) {
12969         idx &= ~ARM_MMU_IDX_A_NS;
12970     }
12971 
12972     return idx;
12973 }
12974 
12975 ARMMMUIdx arm_mmu_idx(CPUARMState *env)
12976 {
12977     return arm_mmu_idx_el(env, arm_current_el(env));
12978 }
12979 
12980 #ifndef CONFIG_USER_ONLY
12981 ARMMMUIdx arm_stage1_mmu_idx(CPUARMState *env)
12982 {
12983     return stage_1_mmu_idx(arm_mmu_idx(env));
12984 }
12985 #endif
12986 
12987 static CPUARMTBFlags rebuild_hflags_common(CPUARMState *env, int fp_el,
12988                                            ARMMMUIdx mmu_idx,
12989                                            CPUARMTBFlags flags)
12990 {
12991     DP_TBFLAG_ANY(flags, FPEXC_EL, fp_el);
12992     DP_TBFLAG_ANY(flags, MMUIDX, arm_to_core_mmu_idx(mmu_idx));
12993 
12994     if (arm_singlestep_active(env)) {
12995         DP_TBFLAG_ANY(flags, SS_ACTIVE, 1);
12996     }
12997     return flags;
12998 }
12999 
13000 static CPUARMTBFlags rebuild_hflags_common_32(CPUARMState *env, int fp_el,
13001                                               ARMMMUIdx mmu_idx,
13002                                               CPUARMTBFlags flags)
13003 {
13004     bool sctlr_b = arm_sctlr_b(env);
13005 
13006     if (sctlr_b) {
13007         DP_TBFLAG_A32(flags, SCTLR__B, 1);
13008     }
13009     if (arm_cpu_data_is_big_endian_a32(env, sctlr_b)) {
13010         DP_TBFLAG_ANY(flags, BE_DATA, 1);
13011     }
13012     DP_TBFLAG_A32(flags, NS, !access_secure_reg(env));
13013 
13014     return rebuild_hflags_common(env, fp_el, mmu_idx, flags);
13015 }
13016 
13017 static CPUARMTBFlags rebuild_hflags_m32(CPUARMState *env, int fp_el,
13018                                         ARMMMUIdx mmu_idx)
13019 {
13020     CPUARMTBFlags flags = {};
13021     uint32_t ccr = env->v7m.ccr[env->v7m.secure];
13022 
13023     /* Without HaveMainExt, CCR.UNALIGN_TRP is RES1. */
13024     if (ccr & R_V7M_CCR_UNALIGN_TRP_MASK) {
13025         DP_TBFLAG_ANY(flags, ALIGN_MEM, 1);
13026     }
13027 
13028     if (arm_v7m_is_handler_mode(env)) {
13029         DP_TBFLAG_M32(flags, HANDLER, 1);
13030     }
13031 
13032     /*
13033      * v8M always applies stack limit checks unless CCR.STKOFHFNMIGN
13034      * is suppressing them because the requested execution priority
13035      * is less than 0.
13036      */
13037     if (arm_feature(env, ARM_FEATURE_V8) &&
13038         !((mmu_idx & ARM_MMU_IDX_M_NEGPRI) &&
13039           (ccr & R_V7M_CCR_STKOFHFNMIGN_MASK))) {
13040         DP_TBFLAG_M32(flags, STACKCHECK, 1);
13041     }
13042 
13043     return rebuild_hflags_common_32(env, fp_el, mmu_idx, flags);
13044 }
13045 
13046 static CPUARMTBFlags rebuild_hflags_aprofile(CPUARMState *env)
13047 {
13048     CPUARMTBFlags flags = {};
13049 
13050     DP_TBFLAG_ANY(flags, DEBUG_TARGET_EL, arm_debug_target_el(env));
13051     return flags;
13052 }
13053 
13054 static CPUARMTBFlags rebuild_hflags_a32(CPUARMState *env, int fp_el,
13055                                         ARMMMUIdx mmu_idx)
13056 {
13057     CPUARMTBFlags flags = rebuild_hflags_aprofile(env);
13058     int el = arm_current_el(env);
13059 
13060     if (arm_sctlr(env, el) & SCTLR_A) {
13061         DP_TBFLAG_ANY(flags, ALIGN_MEM, 1);
13062     }
13063 
13064     if (arm_el_is_aa64(env, 1)) {
13065         DP_TBFLAG_A32(flags, VFPEN, 1);
13066     }
13067 
13068     if (el < 2 && env->cp15.hstr_el2 &&
13069         (arm_hcr_el2_eff(env) & (HCR_E2H | HCR_TGE)) != (HCR_E2H | HCR_TGE)) {
13070         DP_TBFLAG_A32(flags, HSTR_ACTIVE, 1);
13071     }
13072 
13073     return rebuild_hflags_common_32(env, fp_el, mmu_idx, flags);
13074 }
13075 
13076 static CPUARMTBFlags rebuild_hflags_a64(CPUARMState *env, int el, int fp_el,
13077                                         ARMMMUIdx mmu_idx)
13078 {
13079     CPUARMTBFlags flags = rebuild_hflags_aprofile(env);
13080     ARMMMUIdx stage1 = stage_1_mmu_idx(mmu_idx);
13081     uint64_t tcr = regime_tcr(env, mmu_idx)->raw_tcr;
13082     uint64_t sctlr;
13083     int tbii, tbid;
13084 
13085     DP_TBFLAG_ANY(flags, AARCH64_STATE, 1);
13086 
13087     /* Get control bits for tagged addresses.  */
13088     tbid = aa64_va_parameter_tbi(tcr, mmu_idx);
13089     tbii = tbid & ~aa64_va_parameter_tbid(tcr, mmu_idx);
13090 
13091     DP_TBFLAG_A64(flags, TBII, tbii);
13092     DP_TBFLAG_A64(flags, TBID, tbid);
13093 
13094     if (cpu_isar_feature(aa64_sve, env_archcpu(env))) {
13095         int sve_el = sve_exception_el(env, el);
13096         uint32_t zcr_len;
13097 
13098         /*
13099          * If SVE is disabled, but FP is enabled,
13100          * then the effective len is 0.
13101          */
13102         if (sve_el != 0 && fp_el == 0) {
13103             zcr_len = 0;
13104         } else {
13105             zcr_len = sve_zcr_len_for_el(env, el);
13106         }
13107         DP_TBFLAG_A64(flags, SVEEXC_EL, sve_el);
13108         DP_TBFLAG_A64(flags, ZCR_LEN, zcr_len);
13109     }
13110 
13111     sctlr = regime_sctlr(env, stage1);
13112 
13113     if (sctlr & SCTLR_A) {
13114         DP_TBFLAG_ANY(flags, ALIGN_MEM, 1);
13115     }
13116 
13117     if (arm_cpu_data_is_big_endian_a64(el, sctlr)) {
13118         DP_TBFLAG_ANY(flags, BE_DATA, 1);
13119     }
13120 
13121     if (cpu_isar_feature(aa64_pauth, env_archcpu(env))) {
13122         /*
13123          * In order to save space in flags, we record only whether
13124          * pauth is "inactive", meaning all insns are implemented as
13125          * a nop, or "active" when some action must be performed.
13126          * The decision of which action to take is left to a helper.
13127          */
13128         if (sctlr & (SCTLR_EnIA | SCTLR_EnIB | SCTLR_EnDA | SCTLR_EnDB)) {
13129             DP_TBFLAG_A64(flags, PAUTH_ACTIVE, 1);
13130         }
13131     }
13132 
13133     if (cpu_isar_feature(aa64_bti, env_archcpu(env))) {
13134         /* Note that SCTLR_EL[23].BT == SCTLR_BT1.  */
13135         if (sctlr & (el == 0 ? SCTLR_BT0 : SCTLR_BT1)) {
13136             DP_TBFLAG_A64(flags, BT, 1);
13137         }
13138     }
13139 
13140     /* Compute the condition for using AccType_UNPRIV for LDTR et al. */
13141     if (!(env->pstate & PSTATE_UAO)) {
13142         switch (mmu_idx) {
13143         case ARMMMUIdx_E10_1:
13144         case ARMMMUIdx_E10_1_PAN:
13145         case ARMMMUIdx_SE10_1:
13146         case ARMMMUIdx_SE10_1_PAN:
13147             /* TODO: ARMv8.3-NV */
13148             DP_TBFLAG_A64(flags, UNPRIV, 1);
13149             break;
13150         case ARMMMUIdx_E20_2:
13151         case ARMMMUIdx_E20_2_PAN:
13152         case ARMMMUIdx_SE20_2:
13153         case ARMMMUIdx_SE20_2_PAN:
13154             /*
13155              * Note that EL20_2 is gated by HCR_EL2.E2H == 1, but EL20_0 is
13156              * gated by HCR_EL2.<E2H,TGE> == '11', and so is LDTR.
13157              */
13158             if (env->cp15.hcr_el2 & HCR_TGE) {
13159                 DP_TBFLAG_A64(flags, UNPRIV, 1);
13160             }
13161             break;
13162         default:
13163             break;
13164         }
13165     }
13166 
13167     if (cpu_isar_feature(aa64_mte, env_archcpu(env))) {
13168         /*
13169          * Set MTE_ACTIVE if any access may be Checked, and leave clear
13170          * if all accesses must be Unchecked:
13171          * 1) If no TBI, then there are no tags in the address to check,
13172          * 2) If Tag Check Override, then all accesses are Unchecked,
13173          * 3) If Tag Check Fail == 0, then Checked access have no effect,
13174          * 4) If no Allocation Tag Access, then all accesses are Unchecked.
13175          */
13176         if (allocation_tag_access_enabled(env, el, sctlr)) {
13177             DP_TBFLAG_A64(flags, ATA, 1);
13178             if (tbid
13179                 && !(env->pstate & PSTATE_TCO)
13180                 && (sctlr & (el == 0 ? SCTLR_TCF0 : SCTLR_TCF))) {
13181                 DP_TBFLAG_A64(flags, MTE_ACTIVE, 1);
13182             }
13183         }
13184         /* And again for unprivileged accesses, if required.  */
13185         if (EX_TBFLAG_A64(flags, UNPRIV)
13186             && tbid
13187             && !(env->pstate & PSTATE_TCO)
13188             && (sctlr & SCTLR_TCF0)
13189             && allocation_tag_access_enabled(env, 0, sctlr)) {
13190             DP_TBFLAG_A64(flags, MTE0_ACTIVE, 1);
13191         }
13192         /* Cache TCMA as well as TBI. */
13193         DP_TBFLAG_A64(flags, TCMA, aa64_va_parameter_tcma(tcr, mmu_idx));
13194     }
13195 
13196     return rebuild_hflags_common(env, fp_el, mmu_idx, flags);
13197 }
13198 
13199 static CPUARMTBFlags rebuild_hflags_internal(CPUARMState *env)
13200 {
13201     int el = arm_current_el(env);
13202     int fp_el = fp_exception_el(env, el);
13203     ARMMMUIdx mmu_idx = arm_mmu_idx_el(env, el);
13204 
13205     if (is_a64(env)) {
13206         return rebuild_hflags_a64(env, el, fp_el, mmu_idx);
13207     } else if (arm_feature(env, ARM_FEATURE_M)) {
13208         return rebuild_hflags_m32(env, fp_el, mmu_idx);
13209     } else {
13210         return rebuild_hflags_a32(env, fp_el, mmu_idx);
13211     }
13212 }
13213 
13214 void arm_rebuild_hflags(CPUARMState *env)
13215 {
13216     env->hflags = rebuild_hflags_internal(env);
13217 }
13218 
13219 /*
13220  * If we have triggered a EL state change we can't rely on the
13221  * translator having passed it to us, we need to recompute.
13222  */
13223 void HELPER(rebuild_hflags_m32_newel)(CPUARMState *env)
13224 {
13225     int el = arm_current_el(env);
13226     int fp_el = fp_exception_el(env, el);
13227     ARMMMUIdx mmu_idx = arm_mmu_idx_el(env, el);
13228 
13229     env->hflags = rebuild_hflags_m32(env, fp_el, mmu_idx);
13230 }
13231 
13232 void HELPER(rebuild_hflags_m32)(CPUARMState *env, int el)
13233 {
13234     int fp_el = fp_exception_el(env, el);
13235     ARMMMUIdx mmu_idx = arm_mmu_idx_el(env, el);
13236 
13237     env->hflags = rebuild_hflags_m32(env, fp_el, mmu_idx);
13238 }
13239 
13240 /*
13241  * If we have triggered a EL state change we can't rely on the
13242  * translator having passed it to us, we need to recompute.
13243  */
13244 void HELPER(rebuild_hflags_a32_newel)(CPUARMState *env)
13245 {
13246     int el = arm_current_el(env);
13247     int fp_el = fp_exception_el(env, el);
13248     ARMMMUIdx mmu_idx = arm_mmu_idx_el(env, el);
13249     env->hflags = rebuild_hflags_a32(env, fp_el, mmu_idx);
13250 }
13251 
13252 void HELPER(rebuild_hflags_a32)(CPUARMState *env, int el)
13253 {
13254     int fp_el = fp_exception_el(env, el);
13255     ARMMMUIdx mmu_idx = arm_mmu_idx_el(env, el);
13256 
13257     env->hflags = rebuild_hflags_a32(env, fp_el, mmu_idx);
13258 }
13259 
13260 void HELPER(rebuild_hflags_a64)(CPUARMState *env, int el)
13261 {
13262     int fp_el = fp_exception_el(env, el);
13263     ARMMMUIdx mmu_idx = arm_mmu_idx_el(env, el);
13264 
13265     env->hflags = rebuild_hflags_a64(env, el, fp_el, mmu_idx);
13266 }
13267 
13268 static inline void assert_hflags_rebuild_correctly(CPUARMState *env)
13269 {
13270 #ifdef CONFIG_DEBUG_TCG
13271     CPUARMTBFlags c = env->hflags;
13272     CPUARMTBFlags r = rebuild_hflags_internal(env);
13273 
13274     if (unlikely(c.flags != r.flags || c.flags2 != r.flags2)) {
13275         fprintf(stderr, "TCG hflags mismatch "
13276                         "(current:(0x%08x,0x" TARGET_FMT_lx ")"
13277                         " rebuilt:(0x%08x,0x" TARGET_FMT_lx ")\n",
13278                 c.flags, c.flags2, r.flags, r.flags2);
13279         abort();
13280     }
13281 #endif
13282 }
13283 
13284 void cpu_get_tb_cpu_state(CPUARMState *env, target_ulong *pc,
13285                           target_ulong *cs_base, uint32_t *pflags)
13286 {
13287     CPUARMTBFlags flags;
13288 
13289     assert_hflags_rebuild_correctly(env);
13290     flags = env->hflags;
13291 
13292     if (EX_TBFLAG_ANY(flags, AARCH64_STATE)) {
13293         *pc = env->pc;
13294         if (cpu_isar_feature(aa64_bti, env_archcpu(env))) {
13295             DP_TBFLAG_A64(flags, BTYPE, env->btype);
13296         }
13297     } else {
13298         *pc = env->regs[15];
13299 
13300         if (arm_feature(env, ARM_FEATURE_M)) {
13301             if (arm_feature(env, ARM_FEATURE_M_SECURITY) &&
13302                 FIELD_EX32(env->v7m.fpccr[M_REG_S], V7M_FPCCR, S)
13303                 != env->v7m.secure) {
13304                 DP_TBFLAG_M32(flags, FPCCR_S_WRONG, 1);
13305             }
13306 
13307             if ((env->v7m.fpccr[env->v7m.secure] & R_V7M_FPCCR_ASPEN_MASK) &&
13308                 (!(env->v7m.control[M_REG_S] & R_V7M_CONTROL_FPCA_MASK) ||
13309                  (env->v7m.secure &&
13310                   !(env->v7m.control[M_REG_S] & R_V7M_CONTROL_SFPA_MASK)))) {
13311                 /*
13312                  * ASPEN is set, but FPCA/SFPA indicate that there is no
13313                  * active FP context; we must create a new FP context before
13314                  * executing any FP insn.
13315                  */
13316                 DP_TBFLAG_M32(flags, NEW_FP_CTXT_NEEDED, 1);
13317             }
13318 
13319             bool is_secure = env->v7m.fpccr[M_REG_S] & R_V7M_FPCCR_S_MASK;
13320             if (env->v7m.fpccr[is_secure] & R_V7M_FPCCR_LSPACT_MASK) {
13321                 DP_TBFLAG_M32(flags, LSPACT, 1);
13322             }
13323         } else {
13324             /*
13325              * Note that XSCALE_CPAR shares bits with VECSTRIDE.
13326              * Note that VECLEN+VECSTRIDE are RES0 for M-profile.
13327              */
13328             if (arm_feature(env, ARM_FEATURE_XSCALE)) {
13329                 DP_TBFLAG_A32(flags, XSCALE_CPAR, env->cp15.c15_cpar);
13330             } else {
13331                 DP_TBFLAG_A32(flags, VECLEN, env->vfp.vec_len);
13332                 DP_TBFLAG_A32(flags, VECSTRIDE, env->vfp.vec_stride);
13333             }
13334             if (env->vfp.xregs[ARM_VFP_FPEXC] & (1 << 30)) {
13335                 DP_TBFLAG_A32(flags, VFPEN, 1);
13336             }
13337         }
13338 
13339         DP_TBFLAG_AM32(flags, THUMB, env->thumb);
13340         DP_TBFLAG_AM32(flags, CONDEXEC, env->condexec_bits);
13341     }
13342 
13343     /*
13344      * The SS_ACTIVE and PSTATE_SS bits correspond to the state machine
13345      * states defined in the ARM ARM for software singlestep:
13346      *  SS_ACTIVE   PSTATE.SS   State
13347      *     0            x       Inactive (the TB flag for SS is always 0)
13348      *     1            0       Active-pending
13349      *     1            1       Active-not-pending
13350      * SS_ACTIVE is set in hflags; PSTATE__SS is computed every TB.
13351      */
13352     if (EX_TBFLAG_ANY(flags, SS_ACTIVE) && (env->pstate & PSTATE_SS)) {
13353         DP_TBFLAG_ANY(flags, PSTATE__SS, 1);
13354     }
13355 
13356     *pflags = flags.flags;
13357     *cs_base = flags.flags2;
13358 }
13359 
13360 #ifdef TARGET_AARCH64
13361 /*
13362  * The manual says that when SVE is enabled and VQ is widened the
13363  * implementation is allowed to zero the previously inaccessible
13364  * portion of the registers.  The corollary to that is that when
13365  * SVE is enabled and VQ is narrowed we are also allowed to zero
13366  * the now inaccessible portion of the registers.
13367  *
13368  * The intent of this is that no predicate bit beyond VQ is ever set.
13369  * Which means that some operations on predicate registers themselves
13370  * may operate on full uint64_t or even unrolled across the maximum
13371  * uint64_t[4].  Performing 4 bits of host arithmetic unconditionally
13372  * may well be cheaper than conditionals to restrict the operation
13373  * to the relevant portion of a uint16_t[16].
13374  */
13375 void aarch64_sve_narrow_vq(CPUARMState *env, unsigned vq)
13376 {
13377     int i, j;
13378     uint64_t pmask;
13379 
13380     assert(vq >= 1 && vq <= ARM_MAX_VQ);
13381     assert(vq <= env_archcpu(env)->sve_max_vq);
13382 
13383     /* Zap the high bits of the zregs.  */
13384     for (i = 0; i < 32; i++) {
13385         memset(&env->vfp.zregs[i].d[2 * vq], 0, 16 * (ARM_MAX_VQ - vq));
13386     }
13387 
13388     /* Zap the high bits of the pregs and ffr.  */
13389     pmask = 0;
13390     if (vq & 3) {
13391         pmask = ~(-1ULL << (16 * (vq & 3)));
13392     }
13393     for (j = vq / 4; j < ARM_MAX_VQ / 4; j++) {
13394         for (i = 0; i < 17; ++i) {
13395             env->vfp.pregs[i].p[j] &= pmask;
13396         }
13397         pmask = 0;
13398     }
13399 }
13400 
13401 /*
13402  * Notice a change in SVE vector size when changing EL.
13403  */
13404 void aarch64_sve_change_el(CPUARMState *env, int old_el,
13405                            int new_el, bool el0_a64)
13406 {
13407     ARMCPU *cpu = env_archcpu(env);
13408     int old_len, new_len;
13409     bool old_a64, new_a64;
13410 
13411     /* Nothing to do if no SVE.  */
13412     if (!cpu_isar_feature(aa64_sve, cpu)) {
13413         return;
13414     }
13415 
13416     /* Nothing to do if FP is disabled in either EL.  */
13417     if (fp_exception_el(env, old_el) || fp_exception_el(env, new_el)) {
13418         return;
13419     }
13420 
13421     /*
13422      * DDI0584A.d sec 3.2: "If SVE instructions are disabled or trapped
13423      * at ELx, or not available because the EL is in AArch32 state, then
13424      * for all purposes other than a direct read, the ZCR_ELx.LEN field
13425      * has an effective value of 0".
13426      *
13427      * Consider EL2 (aa64, vq=4) -> EL0 (aa32) -> EL1 (aa64, vq=0).
13428      * If we ignore aa32 state, we would fail to see the vq4->vq0 transition
13429      * from EL2->EL1.  Thus we go ahead and narrow when entering aa32 so that
13430      * we already have the correct register contents when encountering the
13431      * vq0->vq0 transition between EL0->EL1.
13432      */
13433     old_a64 = old_el ? arm_el_is_aa64(env, old_el) : el0_a64;
13434     old_len = (old_a64 && !sve_exception_el(env, old_el)
13435                ? sve_zcr_len_for_el(env, old_el) : 0);
13436     new_a64 = new_el ? arm_el_is_aa64(env, new_el) : el0_a64;
13437     new_len = (new_a64 && !sve_exception_el(env, new_el)
13438                ? sve_zcr_len_for_el(env, new_el) : 0);
13439 
13440     /* When changing vector length, clear inaccessible state.  */
13441     if (new_len < old_len) {
13442         aarch64_sve_narrow_vq(env, new_len + 1);
13443     }
13444 }
13445 #endif
13446