xref: /openbmc/qemu/target/arm/helper.c (revision a9ded601)
1 #include "qemu/osdep.h"
2 #include "trace.h"
3 #include "cpu.h"
4 #include "internals.h"
5 #include "exec/gdbstub.h"
6 #include "exec/helper-proto.h"
7 #include "qemu/host-utils.h"
8 #include "sysemu/arch_init.h"
9 #include "sysemu/sysemu.h"
10 #include "qemu/bitops.h"
11 #include "qemu/crc32c.h"
12 #include "exec/exec-all.h"
13 #include "exec/cpu_ldst.h"
14 #include "arm_ldst.h"
15 #include <zlib.h> /* For crc32 */
16 #include "exec/semihost.h"
17 #include "sysemu/kvm.h"
18 
19 #define ARM_CPU_FREQ 1000000000 /* FIXME: 1 GHz, should be configurable */
20 
21 #ifndef CONFIG_USER_ONLY
22 static bool get_phys_addr(CPUARMState *env, target_ulong address,
23                           int access_type, ARMMMUIdx mmu_idx,
24                           hwaddr *phys_ptr, MemTxAttrs *attrs, int *prot,
25                           target_ulong *page_size, uint32_t *fsr,
26                           ARMMMUFaultInfo *fi);
27 
28 static bool get_phys_addr_lpae(CPUARMState *env, target_ulong address,
29                                int access_type, ARMMMUIdx mmu_idx,
30                                hwaddr *phys_ptr, MemTxAttrs *txattrs, int *prot,
31                                target_ulong *page_size_ptr, uint32_t *fsr,
32                                ARMMMUFaultInfo *fi);
33 
34 /* Definitions for the PMCCNTR and PMCR registers */
35 #define PMCRD   0x8
36 #define PMCRC   0x4
37 #define PMCRE   0x1
38 #endif
39 
40 static int vfp_gdb_get_reg(CPUARMState *env, uint8_t *buf, int reg)
41 {
42     int nregs;
43 
44     /* VFP data registers are always little-endian.  */
45     nregs = arm_feature(env, ARM_FEATURE_VFP3) ? 32 : 16;
46     if (reg < nregs) {
47         stfq_le_p(buf, env->vfp.regs[reg]);
48         return 8;
49     }
50     if (arm_feature(env, ARM_FEATURE_NEON)) {
51         /* Aliases for Q regs.  */
52         nregs += 16;
53         if (reg < nregs) {
54             stfq_le_p(buf, env->vfp.regs[(reg - 32) * 2]);
55             stfq_le_p(buf + 8, env->vfp.regs[(reg - 32) * 2 + 1]);
56             return 16;
57         }
58     }
59     switch (reg - nregs) {
60     case 0: stl_p(buf, env->vfp.xregs[ARM_VFP_FPSID]); return 4;
61     case 1: stl_p(buf, env->vfp.xregs[ARM_VFP_FPSCR]); return 4;
62     case 2: stl_p(buf, env->vfp.xregs[ARM_VFP_FPEXC]); return 4;
63     }
64     return 0;
65 }
66 
67 static int vfp_gdb_set_reg(CPUARMState *env, uint8_t *buf, int reg)
68 {
69     int nregs;
70 
71     nregs = arm_feature(env, ARM_FEATURE_VFP3) ? 32 : 16;
72     if (reg < nregs) {
73         env->vfp.regs[reg] = ldfq_le_p(buf);
74         return 8;
75     }
76     if (arm_feature(env, ARM_FEATURE_NEON)) {
77         nregs += 16;
78         if (reg < nregs) {
79             env->vfp.regs[(reg - 32) * 2] = ldfq_le_p(buf);
80             env->vfp.regs[(reg - 32) * 2 + 1] = ldfq_le_p(buf + 8);
81             return 16;
82         }
83     }
84     switch (reg - nregs) {
85     case 0: env->vfp.xregs[ARM_VFP_FPSID] = ldl_p(buf); return 4;
86     case 1: env->vfp.xregs[ARM_VFP_FPSCR] = ldl_p(buf); return 4;
87     case 2: env->vfp.xregs[ARM_VFP_FPEXC] = ldl_p(buf) & (1 << 30); return 4;
88     }
89     return 0;
90 }
91 
92 static int aarch64_fpu_gdb_get_reg(CPUARMState *env, uint8_t *buf, int reg)
93 {
94     switch (reg) {
95     case 0 ... 31:
96         /* 128 bit FP register */
97         stfq_le_p(buf, env->vfp.regs[reg * 2]);
98         stfq_le_p(buf + 8, env->vfp.regs[reg * 2 + 1]);
99         return 16;
100     case 32:
101         /* FPSR */
102         stl_p(buf, vfp_get_fpsr(env));
103         return 4;
104     case 33:
105         /* FPCR */
106         stl_p(buf, vfp_get_fpcr(env));
107         return 4;
108     default:
109         return 0;
110     }
111 }
112 
113 static int aarch64_fpu_gdb_set_reg(CPUARMState *env, uint8_t *buf, int reg)
114 {
115     switch (reg) {
116     case 0 ... 31:
117         /* 128 bit FP register */
118         env->vfp.regs[reg * 2] = ldfq_le_p(buf);
119         env->vfp.regs[reg * 2 + 1] = ldfq_le_p(buf + 8);
120         return 16;
121     case 32:
122         /* FPSR */
123         vfp_set_fpsr(env, ldl_p(buf));
124         return 4;
125     case 33:
126         /* FPCR */
127         vfp_set_fpcr(env, ldl_p(buf));
128         return 4;
129     default:
130         return 0;
131     }
132 }
133 
134 static uint64_t raw_read(CPUARMState *env, const ARMCPRegInfo *ri)
135 {
136     assert(ri->fieldoffset);
137     if (cpreg_field_is_64bit(ri)) {
138         return CPREG_FIELD64(env, ri);
139     } else {
140         return CPREG_FIELD32(env, ri);
141     }
142 }
143 
144 static void raw_write(CPUARMState *env, const ARMCPRegInfo *ri,
145                       uint64_t value)
146 {
147     assert(ri->fieldoffset);
148     if (cpreg_field_is_64bit(ri)) {
149         CPREG_FIELD64(env, ri) = value;
150     } else {
151         CPREG_FIELD32(env, ri) = value;
152     }
153 }
154 
155 static void *raw_ptr(CPUARMState *env, const ARMCPRegInfo *ri)
156 {
157     return (char *)env + ri->fieldoffset;
158 }
159 
160 uint64_t read_raw_cp_reg(CPUARMState *env, const ARMCPRegInfo *ri)
161 {
162     /* Raw read of a coprocessor register (as needed for migration, etc). */
163     if (ri->type & ARM_CP_CONST) {
164         return ri->resetvalue;
165     } else if (ri->raw_readfn) {
166         return ri->raw_readfn(env, ri);
167     } else if (ri->readfn) {
168         return ri->readfn(env, ri);
169     } else {
170         return raw_read(env, ri);
171     }
172 }
173 
174 static void write_raw_cp_reg(CPUARMState *env, const ARMCPRegInfo *ri,
175                              uint64_t v)
176 {
177     /* Raw write of a coprocessor register (as needed for migration, etc).
178      * Note that constant registers are treated as write-ignored; the
179      * caller should check for success by whether a readback gives the
180      * value written.
181      */
182     if (ri->type & ARM_CP_CONST) {
183         return;
184     } else if (ri->raw_writefn) {
185         ri->raw_writefn(env, ri, v);
186     } else if (ri->writefn) {
187         ri->writefn(env, ri, v);
188     } else {
189         raw_write(env, ri, v);
190     }
191 }
192 
193 static bool raw_accessors_invalid(const ARMCPRegInfo *ri)
194 {
195    /* Return true if the regdef would cause an assertion if you called
196     * read_raw_cp_reg() or write_raw_cp_reg() on it (ie if it is a
197     * program bug for it not to have the NO_RAW flag).
198     * NB that returning false here doesn't necessarily mean that calling
199     * read/write_raw_cp_reg() is safe, because we can't distinguish "has
200     * read/write access functions which are safe for raw use" from "has
201     * read/write access functions which have side effects but has forgotten
202     * to provide raw access functions".
203     * The tests here line up with the conditions in read/write_raw_cp_reg()
204     * and assertions in raw_read()/raw_write().
205     */
206     if ((ri->type & ARM_CP_CONST) ||
207         ri->fieldoffset ||
208         ((ri->raw_writefn || ri->writefn) && (ri->raw_readfn || ri->readfn))) {
209         return false;
210     }
211     return true;
212 }
213 
214 bool write_cpustate_to_list(ARMCPU *cpu)
215 {
216     /* Write the coprocessor state from cpu->env to the (index,value) list. */
217     int i;
218     bool ok = true;
219 
220     for (i = 0; i < cpu->cpreg_array_len; i++) {
221         uint32_t regidx = kvm_to_cpreg_id(cpu->cpreg_indexes[i]);
222         const ARMCPRegInfo *ri;
223 
224         ri = get_arm_cp_reginfo(cpu->cp_regs, regidx);
225         if (!ri) {
226             ok = false;
227             continue;
228         }
229         if (ri->type & ARM_CP_NO_RAW) {
230             continue;
231         }
232         cpu->cpreg_values[i] = read_raw_cp_reg(&cpu->env, ri);
233     }
234     return ok;
235 }
236 
237 bool write_list_to_cpustate(ARMCPU *cpu)
238 {
239     int i;
240     bool ok = true;
241 
242     for (i = 0; i < cpu->cpreg_array_len; i++) {
243         uint32_t regidx = kvm_to_cpreg_id(cpu->cpreg_indexes[i]);
244         uint64_t v = cpu->cpreg_values[i];
245         const ARMCPRegInfo *ri;
246 
247         ri = get_arm_cp_reginfo(cpu->cp_regs, regidx);
248         if (!ri) {
249             ok = false;
250             continue;
251         }
252         if (ri->type & ARM_CP_NO_RAW) {
253             continue;
254         }
255         /* Write value and confirm it reads back as written
256          * (to catch read-only registers and partially read-only
257          * registers where the incoming migration value doesn't match)
258          */
259         write_raw_cp_reg(&cpu->env, ri, v);
260         if (read_raw_cp_reg(&cpu->env, ri) != v) {
261             ok = false;
262         }
263     }
264     return ok;
265 }
266 
267 static void add_cpreg_to_list(gpointer key, gpointer opaque)
268 {
269     ARMCPU *cpu = opaque;
270     uint64_t regidx;
271     const ARMCPRegInfo *ri;
272 
273     regidx = *(uint32_t *)key;
274     ri = get_arm_cp_reginfo(cpu->cp_regs, regidx);
275 
276     if (!(ri->type & (ARM_CP_NO_RAW|ARM_CP_ALIAS))) {
277         cpu->cpreg_indexes[cpu->cpreg_array_len] = cpreg_to_kvm_id(regidx);
278         /* The value array need not be initialized at this point */
279         cpu->cpreg_array_len++;
280     }
281 }
282 
283 static void count_cpreg(gpointer key, gpointer opaque)
284 {
285     ARMCPU *cpu = opaque;
286     uint64_t regidx;
287     const ARMCPRegInfo *ri;
288 
289     regidx = *(uint32_t *)key;
290     ri = get_arm_cp_reginfo(cpu->cp_regs, regidx);
291 
292     if (!(ri->type & (ARM_CP_NO_RAW|ARM_CP_ALIAS))) {
293         cpu->cpreg_array_len++;
294     }
295 }
296 
297 static gint cpreg_key_compare(gconstpointer a, gconstpointer b)
298 {
299     uint64_t aidx = cpreg_to_kvm_id(*(uint32_t *)a);
300     uint64_t bidx = cpreg_to_kvm_id(*(uint32_t *)b);
301 
302     if (aidx > bidx) {
303         return 1;
304     }
305     if (aidx < bidx) {
306         return -1;
307     }
308     return 0;
309 }
310 
311 void init_cpreg_list(ARMCPU *cpu)
312 {
313     /* Initialise the cpreg_tuples[] array based on the cp_regs hash.
314      * Note that we require cpreg_tuples[] to be sorted by key ID.
315      */
316     GList *keys;
317     int arraylen;
318 
319     keys = g_hash_table_get_keys(cpu->cp_regs);
320     keys = g_list_sort(keys, cpreg_key_compare);
321 
322     cpu->cpreg_array_len = 0;
323 
324     g_list_foreach(keys, count_cpreg, cpu);
325 
326     arraylen = cpu->cpreg_array_len;
327     cpu->cpreg_indexes = g_new(uint64_t, arraylen);
328     cpu->cpreg_values = g_new(uint64_t, arraylen);
329     cpu->cpreg_vmstate_indexes = g_new(uint64_t, arraylen);
330     cpu->cpreg_vmstate_values = g_new(uint64_t, arraylen);
331     cpu->cpreg_vmstate_array_len = cpu->cpreg_array_len;
332     cpu->cpreg_array_len = 0;
333 
334     g_list_foreach(keys, add_cpreg_to_list, cpu);
335 
336     assert(cpu->cpreg_array_len == arraylen);
337 
338     g_list_free(keys);
339 }
340 
341 /*
342  * Some registers are not accessible if EL3.NS=0 and EL3 is using AArch32 but
343  * they are accessible when EL3 is using AArch64 regardless of EL3.NS.
344  *
345  * access_el3_aa32ns: Used to check AArch32 register views.
346  * access_el3_aa32ns_aa64any: Used to check both AArch32/64 register views.
347  */
348 static CPAccessResult access_el3_aa32ns(CPUARMState *env,
349                                         const ARMCPRegInfo *ri,
350                                         bool isread)
351 {
352     bool secure = arm_is_secure_below_el3(env);
353 
354     assert(!arm_el_is_aa64(env, 3));
355     if (secure) {
356         return CP_ACCESS_TRAP_UNCATEGORIZED;
357     }
358     return CP_ACCESS_OK;
359 }
360 
361 static CPAccessResult access_el3_aa32ns_aa64any(CPUARMState *env,
362                                                 const ARMCPRegInfo *ri,
363                                                 bool isread)
364 {
365     if (!arm_el_is_aa64(env, 3)) {
366         return access_el3_aa32ns(env, ri, isread);
367     }
368     return CP_ACCESS_OK;
369 }
370 
371 /* Some secure-only AArch32 registers trap to EL3 if used from
372  * Secure EL1 (but are just ordinary UNDEF in other non-EL3 contexts).
373  * Note that an access from Secure EL1 can only happen if EL3 is AArch64.
374  * We assume that the .access field is set to PL1_RW.
375  */
376 static CPAccessResult access_trap_aa32s_el1(CPUARMState *env,
377                                             const ARMCPRegInfo *ri,
378                                             bool isread)
379 {
380     if (arm_current_el(env) == 3) {
381         return CP_ACCESS_OK;
382     }
383     if (arm_is_secure_below_el3(env)) {
384         return CP_ACCESS_TRAP_EL3;
385     }
386     /* This will be EL1 NS and EL2 NS, which just UNDEF */
387     return CP_ACCESS_TRAP_UNCATEGORIZED;
388 }
389 
390 /* Check for traps to "powerdown debug" registers, which are controlled
391  * by MDCR.TDOSA
392  */
393 static CPAccessResult access_tdosa(CPUARMState *env, const ARMCPRegInfo *ri,
394                                    bool isread)
395 {
396     int el = arm_current_el(env);
397 
398     if (el < 2 && (env->cp15.mdcr_el2 & MDCR_TDOSA)
399         && !arm_is_secure_below_el3(env)) {
400         return CP_ACCESS_TRAP_EL2;
401     }
402     if (el < 3 && (env->cp15.mdcr_el3 & MDCR_TDOSA)) {
403         return CP_ACCESS_TRAP_EL3;
404     }
405     return CP_ACCESS_OK;
406 }
407 
408 /* Check for traps to "debug ROM" registers, which are controlled
409  * by MDCR_EL2.TDRA for EL2 but by the more general MDCR_EL3.TDA for EL3.
410  */
411 static CPAccessResult access_tdra(CPUARMState *env, const ARMCPRegInfo *ri,
412                                   bool isread)
413 {
414     int el = arm_current_el(env);
415 
416     if (el < 2 && (env->cp15.mdcr_el2 & MDCR_TDRA)
417         && !arm_is_secure_below_el3(env)) {
418         return CP_ACCESS_TRAP_EL2;
419     }
420     if (el < 3 && (env->cp15.mdcr_el3 & MDCR_TDA)) {
421         return CP_ACCESS_TRAP_EL3;
422     }
423     return CP_ACCESS_OK;
424 }
425 
426 /* Check for traps to general debug registers, which are controlled
427  * by MDCR_EL2.TDA for EL2 and MDCR_EL3.TDA for EL3.
428  */
429 static CPAccessResult access_tda(CPUARMState *env, const ARMCPRegInfo *ri,
430                                   bool isread)
431 {
432     int el = arm_current_el(env);
433 
434     if (el < 2 && (env->cp15.mdcr_el2 & MDCR_TDA)
435         && !arm_is_secure_below_el3(env)) {
436         return CP_ACCESS_TRAP_EL2;
437     }
438     if (el < 3 && (env->cp15.mdcr_el3 & MDCR_TDA)) {
439         return CP_ACCESS_TRAP_EL3;
440     }
441     return CP_ACCESS_OK;
442 }
443 
444 /* Check for traps to performance monitor registers, which are controlled
445  * by MDCR_EL2.TPM for EL2 and MDCR_EL3.TPM for EL3.
446  */
447 static CPAccessResult access_tpm(CPUARMState *env, const ARMCPRegInfo *ri,
448                                  bool isread)
449 {
450     int el = arm_current_el(env);
451 
452     if (el < 2 && (env->cp15.mdcr_el2 & MDCR_TPM)
453         && !arm_is_secure_below_el3(env)) {
454         return CP_ACCESS_TRAP_EL2;
455     }
456     if (el < 3 && (env->cp15.mdcr_el3 & MDCR_TPM)) {
457         return CP_ACCESS_TRAP_EL3;
458     }
459     return CP_ACCESS_OK;
460 }
461 
462 static void dacr_write(CPUARMState *env, const ARMCPRegInfo *ri, uint64_t value)
463 {
464     ARMCPU *cpu = arm_env_get_cpu(env);
465 
466     raw_write(env, ri, value);
467     tlb_flush(CPU(cpu)); /* Flush TLB as domain not tracked in TLB */
468 }
469 
470 static void fcse_write(CPUARMState *env, const ARMCPRegInfo *ri, uint64_t value)
471 {
472     ARMCPU *cpu = arm_env_get_cpu(env);
473 
474     if (raw_read(env, ri) != value) {
475         /* Unlike real hardware the qemu TLB uses virtual addresses,
476          * not modified virtual addresses, so this causes a TLB flush.
477          */
478         tlb_flush(CPU(cpu));
479         raw_write(env, ri, value);
480     }
481 }
482 
483 static void contextidr_write(CPUARMState *env, const ARMCPRegInfo *ri,
484                              uint64_t value)
485 {
486     ARMCPU *cpu = arm_env_get_cpu(env);
487 
488     if (raw_read(env, ri) != value && !arm_feature(env, ARM_FEATURE_PMSA)
489         && !extended_addresses_enabled(env)) {
490         /* For VMSA (when not using the LPAE long descriptor page table
491          * format) this register includes the ASID, so do a TLB flush.
492          * For PMSA it is purely a process ID and no action is needed.
493          */
494         tlb_flush(CPU(cpu));
495     }
496     raw_write(env, ri, value);
497 }
498 
499 static void tlbiall_write(CPUARMState *env, const ARMCPRegInfo *ri,
500                           uint64_t value)
501 {
502     /* Invalidate all (TLBIALL) */
503     ARMCPU *cpu = arm_env_get_cpu(env);
504 
505     tlb_flush(CPU(cpu));
506 }
507 
508 static void tlbimva_write(CPUARMState *env, const ARMCPRegInfo *ri,
509                           uint64_t value)
510 {
511     /* Invalidate single TLB entry by MVA and ASID (TLBIMVA) */
512     ARMCPU *cpu = arm_env_get_cpu(env);
513 
514     tlb_flush_page(CPU(cpu), value & TARGET_PAGE_MASK);
515 }
516 
517 static void tlbiasid_write(CPUARMState *env, const ARMCPRegInfo *ri,
518                            uint64_t value)
519 {
520     /* Invalidate by ASID (TLBIASID) */
521     ARMCPU *cpu = arm_env_get_cpu(env);
522 
523     tlb_flush(CPU(cpu));
524 }
525 
526 static void tlbimvaa_write(CPUARMState *env, const ARMCPRegInfo *ri,
527                            uint64_t value)
528 {
529     /* Invalidate single entry by MVA, all ASIDs (TLBIMVAA) */
530     ARMCPU *cpu = arm_env_get_cpu(env);
531 
532     tlb_flush_page(CPU(cpu), value & TARGET_PAGE_MASK);
533 }
534 
535 /* IS variants of TLB operations must affect all cores */
536 static void tlbiall_is_write(CPUARMState *env, const ARMCPRegInfo *ri,
537                              uint64_t value)
538 {
539     CPUState *cs = ENV_GET_CPU(env);
540 
541     tlb_flush_all_cpus_synced(cs);
542 }
543 
544 static void tlbiasid_is_write(CPUARMState *env, const ARMCPRegInfo *ri,
545                              uint64_t value)
546 {
547     CPUState *cs = ENV_GET_CPU(env);
548 
549     tlb_flush_all_cpus_synced(cs);
550 }
551 
552 static void tlbimva_is_write(CPUARMState *env, const ARMCPRegInfo *ri,
553                              uint64_t value)
554 {
555     CPUState *cs = ENV_GET_CPU(env);
556 
557     tlb_flush_page_all_cpus_synced(cs, value & TARGET_PAGE_MASK);
558 }
559 
560 static void tlbimvaa_is_write(CPUARMState *env, const ARMCPRegInfo *ri,
561                              uint64_t value)
562 {
563     CPUState *cs = ENV_GET_CPU(env);
564 
565     tlb_flush_page_all_cpus_synced(cs, value & TARGET_PAGE_MASK);
566 }
567 
568 static void tlbiall_nsnh_write(CPUARMState *env, const ARMCPRegInfo *ri,
569                                uint64_t value)
570 {
571     CPUState *cs = ENV_GET_CPU(env);
572 
573     tlb_flush_by_mmuidx(cs,
574                         ARMMMUIdxBit_S12NSE1 |
575                         ARMMMUIdxBit_S12NSE0 |
576                         ARMMMUIdxBit_S2NS);
577 }
578 
579 static void tlbiall_nsnh_is_write(CPUARMState *env, const ARMCPRegInfo *ri,
580                                   uint64_t value)
581 {
582     CPUState *cs = ENV_GET_CPU(env);
583 
584     tlb_flush_by_mmuidx_all_cpus_synced(cs,
585                                         ARMMMUIdxBit_S12NSE1 |
586                                         ARMMMUIdxBit_S12NSE0 |
587                                         ARMMMUIdxBit_S2NS);
588 }
589 
590 static void tlbiipas2_write(CPUARMState *env, const ARMCPRegInfo *ri,
591                             uint64_t value)
592 {
593     /* Invalidate by IPA. This has to invalidate any structures that
594      * contain only stage 2 translation information, but does not need
595      * to apply to structures that contain combined stage 1 and stage 2
596      * translation information.
597      * This must NOP if EL2 isn't implemented or SCR_EL3.NS is zero.
598      */
599     CPUState *cs = ENV_GET_CPU(env);
600     uint64_t pageaddr;
601 
602     if (!arm_feature(env, ARM_FEATURE_EL2) || !(env->cp15.scr_el3 & SCR_NS)) {
603         return;
604     }
605 
606     pageaddr = sextract64(value << 12, 0, 40);
607 
608     tlb_flush_page_by_mmuidx(cs, pageaddr, ARMMMUIdxBit_S2NS);
609 }
610 
611 static void tlbiipas2_is_write(CPUARMState *env, const ARMCPRegInfo *ri,
612                                uint64_t value)
613 {
614     CPUState *cs = ENV_GET_CPU(env);
615     uint64_t pageaddr;
616 
617     if (!arm_feature(env, ARM_FEATURE_EL2) || !(env->cp15.scr_el3 & SCR_NS)) {
618         return;
619     }
620 
621     pageaddr = sextract64(value << 12, 0, 40);
622 
623     tlb_flush_page_by_mmuidx_all_cpus_synced(cs, pageaddr,
624                                              ARMMMUIdxBit_S2NS);
625 }
626 
627 static void tlbiall_hyp_write(CPUARMState *env, const ARMCPRegInfo *ri,
628                               uint64_t value)
629 {
630     CPUState *cs = ENV_GET_CPU(env);
631 
632     tlb_flush_by_mmuidx(cs, ARMMMUIdxBit_S1E2);
633 }
634 
635 static void tlbiall_hyp_is_write(CPUARMState *env, const ARMCPRegInfo *ri,
636                                  uint64_t value)
637 {
638     CPUState *cs = ENV_GET_CPU(env);
639 
640     tlb_flush_by_mmuidx_all_cpus_synced(cs, ARMMMUIdxBit_S1E2);
641 }
642 
643 static void tlbimva_hyp_write(CPUARMState *env, const ARMCPRegInfo *ri,
644                               uint64_t value)
645 {
646     CPUState *cs = ENV_GET_CPU(env);
647     uint64_t pageaddr = value & ~MAKE_64BIT_MASK(0, 12);
648 
649     tlb_flush_page_by_mmuidx(cs, pageaddr, ARMMMUIdxBit_S1E2);
650 }
651 
652 static void tlbimva_hyp_is_write(CPUARMState *env, const ARMCPRegInfo *ri,
653                                  uint64_t value)
654 {
655     CPUState *cs = ENV_GET_CPU(env);
656     uint64_t pageaddr = value & ~MAKE_64BIT_MASK(0, 12);
657 
658     tlb_flush_page_by_mmuidx_all_cpus_synced(cs, pageaddr,
659                                              ARMMMUIdxBit_S1E2);
660 }
661 
662 static const ARMCPRegInfo cp_reginfo[] = {
663     /* Define the secure and non-secure FCSE identifier CP registers
664      * separately because there is no secure bank in V8 (no _EL3).  This allows
665      * the secure register to be properly reset and migrated. There is also no
666      * v8 EL1 version of the register so the non-secure instance stands alone.
667      */
668     { .name = "FCSEIDR(NS)",
669       .cp = 15, .opc1 = 0, .crn = 13, .crm = 0, .opc2 = 0,
670       .access = PL1_RW, .secure = ARM_CP_SECSTATE_NS,
671       .fieldoffset = offsetof(CPUARMState, cp15.fcseidr_ns),
672       .resetvalue = 0, .writefn = fcse_write, .raw_writefn = raw_write, },
673     { .name = "FCSEIDR(S)",
674       .cp = 15, .opc1 = 0, .crn = 13, .crm = 0, .opc2 = 0,
675       .access = PL1_RW, .secure = ARM_CP_SECSTATE_S,
676       .fieldoffset = offsetof(CPUARMState, cp15.fcseidr_s),
677       .resetvalue = 0, .writefn = fcse_write, .raw_writefn = raw_write, },
678     /* Define the secure and non-secure context identifier CP registers
679      * separately because there is no secure bank in V8 (no _EL3).  This allows
680      * the secure register to be properly reset and migrated.  In the
681      * non-secure case, the 32-bit register will have reset and migration
682      * disabled during registration as it is handled by the 64-bit instance.
683      */
684     { .name = "CONTEXTIDR_EL1", .state = ARM_CP_STATE_BOTH,
685       .opc0 = 3, .opc1 = 0, .crn = 13, .crm = 0, .opc2 = 1,
686       .access = PL1_RW, .secure = ARM_CP_SECSTATE_NS,
687       .fieldoffset = offsetof(CPUARMState, cp15.contextidr_el[1]),
688       .resetvalue = 0, .writefn = contextidr_write, .raw_writefn = raw_write, },
689     { .name = "CONTEXTIDR(S)", .state = ARM_CP_STATE_AA32,
690       .cp = 15, .opc1 = 0, .crn = 13, .crm = 0, .opc2 = 1,
691       .access = PL1_RW, .secure = ARM_CP_SECSTATE_S,
692       .fieldoffset = offsetof(CPUARMState, cp15.contextidr_s),
693       .resetvalue = 0, .writefn = contextidr_write, .raw_writefn = raw_write, },
694     REGINFO_SENTINEL
695 };
696 
697 static const ARMCPRegInfo not_v8_cp_reginfo[] = {
698     /* NB: Some of these registers exist in v8 but with more precise
699      * definitions that don't use CP_ANY wildcards (mostly in v8_cp_reginfo[]).
700      */
701     /* MMU Domain access control / MPU write buffer control */
702     { .name = "DACR",
703       .cp = 15, .opc1 = CP_ANY, .crn = 3, .crm = CP_ANY, .opc2 = CP_ANY,
704       .access = PL1_RW, .resetvalue = 0,
705       .writefn = dacr_write, .raw_writefn = raw_write,
706       .bank_fieldoffsets = { offsetoflow32(CPUARMState, cp15.dacr_s),
707                              offsetoflow32(CPUARMState, cp15.dacr_ns) } },
708     /* ARMv7 allocates a range of implementation defined TLB LOCKDOWN regs.
709      * For v6 and v5, these mappings are overly broad.
710      */
711     { .name = "TLB_LOCKDOWN", .cp = 15, .crn = 10, .crm = 0,
712       .opc1 = CP_ANY, .opc2 = CP_ANY, .access = PL1_RW, .type = ARM_CP_NOP },
713     { .name = "TLB_LOCKDOWN", .cp = 15, .crn = 10, .crm = 1,
714       .opc1 = CP_ANY, .opc2 = CP_ANY, .access = PL1_RW, .type = ARM_CP_NOP },
715     { .name = "TLB_LOCKDOWN", .cp = 15, .crn = 10, .crm = 4,
716       .opc1 = CP_ANY, .opc2 = CP_ANY, .access = PL1_RW, .type = ARM_CP_NOP },
717     { .name = "TLB_LOCKDOWN", .cp = 15, .crn = 10, .crm = 8,
718       .opc1 = CP_ANY, .opc2 = CP_ANY, .access = PL1_RW, .type = ARM_CP_NOP },
719     /* Cache maintenance ops; some of this space may be overridden later. */
720     { .name = "CACHEMAINT", .cp = 15, .crn = 7, .crm = CP_ANY,
721       .opc1 = 0, .opc2 = CP_ANY, .access = PL1_W,
722       .type = ARM_CP_NOP | ARM_CP_OVERRIDE },
723     REGINFO_SENTINEL
724 };
725 
726 static const ARMCPRegInfo not_v6_cp_reginfo[] = {
727     /* Not all pre-v6 cores implemented this WFI, so this is slightly
728      * over-broad.
729      */
730     { .name = "WFI_v5", .cp = 15, .crn = 7, .crm = 8, .opc1 = 0, .opc2 = 2,
731       .access = PL1_W, .type = ARM_CP_WFI },
732     REGINFO_SENTINEL
733 };
734 
735 static const ARMCPRegInfo not_v7_cp_reginfo[] = {
736     /* Standard v6 WFI (also used in some pre-v6 cores); not in v7 (which
737      * is UNPREDICTABLE; we choose to NOP as most implementations do).
738      */
739     { .name = "WFI_v6", .cp = 15, .crn = 7, .crm = 0, .opc1 = 0, .opc2 = 4,
740       .access = PL1_W, .type = ARM_CP_WFI },
741     /* L1 cache lockdown. Not architectural in v6 and earlier but in practice
742      * implemented in 926, 946, 1026, 1136, 1176 and 11MPCore. StrongARM and
743      * OMAPCP will override this space.
744      */
745     { .name = "DLOCKDOWN", .cp = 15, .crn = 9, .crm = 0, .opc1 = 0, .opc2 = 0,
746       .access = PL1_RW, .fieldoffset = offsetof(CPUARMState, cp15.c9_data),
747       .resetvalue = 0 },
748     { .name = "ILOCKDOWN", .cp = 15, .crn = 9, .crm = 0, .opc1 = 0, .opc2 = 1,
749       .access = PL1_RW, .fieldoffset = offsetof(CPUARMState, cp15.c9_insn),
750       .resetvalue = 0 },
751     /* v6 doesn't have the cache ID registers but Linux reads them anyway */
752     { .name = "DUMMY", .cp = 15, .crn = 0, .crm = 0, .opc1 = 1, .opc2 = CP_ANY,
753       .access = PL1_R, .type = ARM_CP_CONST | ARM_CP_NO_RAW,
754       .resetvalue = 0 },
755     /* We don't implement pre-v7 debug but most CPUs had at least a DBGDIDR;
756      * implementing it as RAZ means the "debug architecture version" bits
757      * will read as a reserved value, which should cause Linux to not try
758      * to use the debug hardware.
759      */
760     { .name = "DBGDIDR", .cp = 14, .crn = 0, .crm = 0, .opc1 = 0, .opc2 = 0,
761       .access = PL0_R, .type = ARM_CP_CONST, .resetvalue = 0 },
762     /* MMU TLB control. Note that the wildcarding means we cover not just
763      * the unified TLB ops but also the dside/iside/inner-shareable variants.
764      */
765     { .name = "TLBIALL", .cp = 15, .crn = 8, .crm = CP_ANY,
766       .opc1 = CP_ANY, .opc2 = 0, .access = PL1_W, .writefn = tlbiall_write,
767       .type = ARM_CP_NO_RAW },
768     { .name = "TLBIMVA", .cp = 15, .crn = 8, .crm = CP_ANY,
769       .opc1 = CP_ANY, .opc2 = 1, .access = PL1_W, .writefn = tlbimva_write,
770       .type = ARM_CP_NO_RAW },
771     { .name = "TLBIASID", .cp = 15, .crn = 8, .crm = CP_ANY,
772       .opc1 = CP_ANY, .opc2 = 2, .access = PL1_W, .writefn = tlbiasid_write,
773       .type = ARM_CP_NO_RAW },
774     { .name = "TLBIMVAA", .cp = 15, .crn = 8, .crm = CP_ANY,
775       .opc1 = CP_ANY, .opc2 = 3, .access = PL1_W, .writefn = tlbimvaa_write,
776       .type = ARM_CP_NO_RAW },
777     { .name = "PRRR", .cp = 15, .crn = 10, .crm = 2,
778       .opc1 = 0, .opc2 = 0, .access = PL1_RW, .type = ARM_CP_NOP },
779     { .name = "NMRR", .cp = 15, .crn = 10, .crm = 2,
780       .opc1 = 0, .opc2 = 1, .access = PL1_RW, .type = ARM_CP_NOP },
781     REGINFO_SENTINEL
782 };
783 
784 static void cpacr_write(CPUARMState *env, const ARMCPRegInfo *ri,
785                         uint64_t value)
786 {
787     uint32_t mask = 0;
788 
789     /* In ARMv8 most bits of CPACR_EL1 are RES0. */
790     if (!arm_feature(env, ARM_FEATURE_V8)) {
791         /* ARMv7 defines bits for unimplemented coprocessors as RAZ/WI.
792          * ASEDIS [31] and D32DIS [30] are both UNK/SBZP without VFP.
793          * TRCDIS [28] is RAZ/WI since we do not implement a trace macrocell.
794          */
795         if (arm_feature(env, ARM_FEATURE_VFP)) {
796             /* VFP coprocessor: cp10 & cp11 [23:20] */
797             mask |= (1 << 31) | (1 << 30) | (0xf << 20);
798 
799             if (!arm_feature(env, ARM_FEATURE_NEON)) {
800                 /* ASEDIS [31] bit is RAO/WI */
801                 value |= (1 << 31);
802             }
803 
804             /* VFPv3 and upwards with NEON implement 32 double precision
805              * registers (D0-D31).
806              */
807             if (!arm_feature(env, ARM_FEATURE_NEON) ||
808                     !arm_feature(env, ARM_FEATURE_VFP3)) {
809                 /* D32DIS [30] is RAO/WI if D16-31 are not implemented. */
810                 value |= (1 << 30);
811             }
812         }
813         value &= mask;
814     }
815     env->cp15.cpacr_el1 = value;
816 }
817 
818 static CPAccessResult cpacr_access(CPUARMState *env, const ARMCPRegInfo *ri,
819                                    bool isread)
820 {
821     if (arm_feature(env, ARM_FEATURE_V8)) {
822         /* Check if CPACR accesses are to be trapped to EL2 */
823         if (arm_current_el(env) == 1 &&
824             (env->cp15.cptr_el[2] & CPTR_TCPAC) && !arm_is_secure(env)) {
825             return CP_ACCESS_TRAP_EL2;
826         /* Check if CPACR accesses are to be trapped to EL3 */
827         } else if (arm_current_el(env) < 3 &&
828                    (env->cp15.cptr_el[3] & CPTR_TCPAC)) {
829             return CP_ACCESS_TRAP_EL3;
830         }
831     }
832 
833     return CP_ACCESS_OK;
834 }
835 
836 static CPAccessResult cptr_access(CPUARMState *env, const ARMCPRegInfo *ri,
837                                   bool isread)
838 {
839     /* Check if CPTR accesses are set to trap to EL3 */
840     if (arm_current_el(env) == 2 && (env->cp15.cptr_el[3] & CPTR_TCPAC)) {
841         return CP_ACCESS_TRAP_EL3;
842     }
843 
844     return CP_ACCESS_OK;
845 }
846 
847 static const ARMCPRegInfo v6_cp_reginfo[] = {
848     /* prefetch by MVA in v6, NOP in v7 */
849     { .name = "MVA_prefetch",
850       .cp = 15, .crn = 7, .crm = 13, .opc1 = 0, .opc2 = 1,
851       .access = PL1_W, .type = ARM_CP_NOP },
852     /* We need to break the TB after ISB to execute self-modifying code
853      * correctly and also to take any pending interrupts immediately.
854      * So use arm_cp_write_ignore() function instead of ARM_CP_NOP flag.
855      */
856     { .name = "ISB", .cp = 15, .crn = 7, .crm = 5, .opc1 = 0, .opc2 = 4,
857       .access = PL0_W, .type = ARM_CP_NO_RAW, .writefn = arm_cp_write_ignore },
858     { .name = "DSB", .cp = 15, .crn = 7, .crm = 10, .opc1 = 0, .opc2 = 4,
859       .access = PL0_W, .type = ARM_CP_NOP },
860     { .name = "DMB", .cp = 15, .crn = 7, .crm = 10, .opc1 = 0, .opc2 = 5,
861       .access = PL0_W, .type = ARM_CP_NOP },
862     { .name = "IFAR", .cp = 15, .crn = 6, .crm = 0, .opc1 = 0, .opc2 = 2,
863       .access = PL1_RW,
864       .bank_fieldoffsets = { offsetof(CPUARMState, cp15.ifar_s),
865                              offsetof(CPUARMState, cp15.ifar_ns) },
866       .resetvalue = 0, },
867     /* Watchpoint Fault Address Register : should actually only be present
868      * for 1136, 1176, 11MPCore.
869      */
870     { .name = "WFAR", .cp = 15, .crn = 6, .crm = 0, .opc1 = 0, .opc2 = 1,
871       .access = PL1_RW, .type = ARM_CP_CONST, .resetvalue = 0, },
872     { .name = "CPACR", .state = ARM_CP_STATE_BOTH, .opc0 = 3,
873       .crn = 1, .crm = 0, .opc1 = 0, .opc2 = 2, .accessfn = cpacr_access,
874       .access = PL1_RW, .fieldoffset = offsetof(CPUARMState, cp15.cpacr_el1),
875       .resetvalue = 0, .writefn = cpacr_write },
876     REGINFO_SENTINEL
877 };
878 
879 static CPAccessResult pmreg_access(CPUARMState *env, const ARMCPRegInfo *ri,
880                                    bool isread)
881 {
882     /* Performance monitor registers user accessibility is controlled
883      * by PMUSERENR. MDCR_EL2.TPM and MDCR_EL3.TPM allow configurable
884      * trapping to EL2 or EL3 for other accesses.
885      */
886     int el = arm_current_el(env);
887 
888     if (el == 0 && !(env->cp15.c9_pmuserenr & 1)) {
889         return CP_ACCESS_TRAP;
890     }
891     if (el < 2 && (env->cp15.mdcr_el2 & MDCR_TPM)
892         && !arm_is_secure_below_el3(env)) {
893         return CP_ACCESS_TRAP_EL2;
894     }
895     if (el < 3 && (env->cp15.mdcr_el3 & MDCR_TPM)) {
896         return CP_ACCESS_TRAP_EL3;
897     }
898 
899     return CP_ACCESS_OK;
900 }
901 
902 static CPAccessResult pmreg_access_xevcntr(CPUARMState *env,
903                                            const ARMCPRegInfo *ri,
904                                            bool isread)
905 {
906     /* ER: event counter read trap control */
907     if (arm_feature(env, ARM_FEATURE_V8)
908         && arm_current_el(env) == 0
909         && (env->cp15.c9_pmuserenr & (1 << 3)) != 0
910         && isread) {
911         return CP_ACCESS_OK;
912     }
913 
914     return pmreg_access(env, ri, isread);
915 }
916 
917 static CPAccessResult pmreg_access_swinc(CPUARMState *env,
918                                          const ARMCPRegInfo *ri,
919                                          bool isread)
920 {
921     /* SW: software increment write trap control */
922     if (arm_feature(env, ARM_FEATURE_V8)
923         && arm_current_el(env) == 0
924         && (env->cp15.c9_pmuserenr & (1 << 1)) != 0
925         && !isread) {
926         return CP_ACCESS_OK;
927     }
928 
929     return pmreg_access(env, ri, isread);
930 }
931 
932 #ifndef CONFIG_USER_ONLY
933 
934 static CPAccessResult pmreg_access_selr(CPUARMState *env,
935                                         const ARMCPRegInfo *ri,
936                                         bool isread)
937 {
938     /* ER: event counter read trap control */
939     if (arm_feature(env, ARM_FEATURE_V8)
940         && arm_current_el(env) == 0
941         && (env->cp15.c9_pmuserenr & (1 << 3)) != 0) {
942         return CP_ACCESS_OK;
943     }
944 
945     return pmreg_access(env, ri, isread);
946 }
947 
948 static CPAccessResult pmreg_access_ccntr(CPUARMState *env,
949                                          const ARMCPRegInfo *ri,
950                                          bool isread)
951 {
952     /* CR: cycle counter read trap control */
953     if (arm_feature(env, ARM_FEATURE_V8)
954         && arm_current_el(env) == 0
955         && (env->cp15.c9_pmuserenr & (1 << 2)) != 0
956         && isread) {
957         return CP_ACCESS_OK;
958     }
959 
960     return pmreg_access(env, ri, isread);
961 }
962 
963 static inline bool arm_ccnt_enabled(CPUARMState *env)
964 {
965     /* This does not support checking PMCCFILTR_EL0 register */
966 
967     if (!(env->cp15.c9_pmcr & PMCRE)) {
968         return false;
969     }
970 
971     return true;
972 }
973 
974 void pmccntr_sync(CPUARMState *env)
975 {
976     uint64_t temp_ticks;
977 
978     temp_ticks = muldiv64(qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL),
979                           ARM_CPU_FREQ, NANOSECONDS_PER_SECOND);
980 
981     if (env->cp15.c9_pmcr & PMCRD) {
982         /* Increment once every 64 processor clock cycles */
983         temp_ticks /= 64;
984     }
985 
986     if (arm_ccnt_enabled(env)) {
987         env->cp15.c15_ccnt = temp_ticks - env->cp15.c15_ccnt;
988     }
989 }
990 
991 static void pmcr_write(CPUARMState *env, const ARMCPRegInfo *ri,
992                        uint64_t value)
993 {
994     pmccntr_sync(env);
995 
996     if (value & PMCRC) {
997         /* The counter has been reset */
998         env->cp15.c15_ccnt = 0;
999     }
1000 
1001     /* only the DP, X, D and E bits are writable */
1002     env->cp15.c9_pmcr &= ~0x39;
1003     env->cp15.c9_pmcr |= (value & 0x39);
1004 
1005     pmccntr_sync(env);
1006 }
1007 
1008 static uint64_t pmccntr_read(CPUARMState *env, const ARMCPRegInfo *ri)
1009 {
1010     uint64_t total_ticks;
1011 
1012     if (!arm_ccnt_enabled(env)) {
1013         /* Counter is disabled, do not change value */
1014         return env->cp15.c15_ccnt;
1015     }
1016 
1017     total_ticks = muldiv64(qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL),
1018                            ARM_CPU_FREQ, NANOSECONDS_PER_SECOND);
1019 
1020     if (env->cp15.c9_pmcr & PMCRD) {
1021         /* Increment once every 64 processor clock cycles */
1022         total_ticks /= 64;
1023     }
1024     return total_ticks - env->cp15.c15_ccnt;
1025 }
1026 
1027 static void pmselr_write(CPUARMState *env, const ARMCPRegInfo *ri,
1028                          uint64_t value)
1029 {
1030     /* The value of PMSELR.SEL affects the behavior of PMXEVTYPER and
1031      * PMXEVCNTR. We allow [0..31] to be written to PMSELR here; in the
1032      * meanwhile, we check PMSELR.SEL when PMXEVTYPER and PMXEVCNTR are
1033      * accessed.
1034      */
1035     env->cp15.c9_pmselr = value & 0x1f;
1036 }
1037 
1038 static void pmccntr_write(CPUARMState *env, const ARMCPRegInfo *ri,
1039                         uint64_t value)
1040 {
1041     uint64_t total_ticks;
1042 
1043     if (!arm_ccnt_enabled(env)) {
1044         /* Counter is disabled, set the absolute value */
1045         env->cp15.c15_ccnt = value;
1046         return;
1047     }
1048 
1049     total_ticks = muldiv64(qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL),
1050                            ARM_CPU_FREQ, NANOSECONDS_PER_SECOND);
1051 
1052     if (env->cp15.c9_pmcr & PMCRD) {
1053         /* Increment once every 64 processor clock cycles */
1054         total_ticks /= 64;
1055     }
1056     env->cp15.c15_ccnt = total_ticks - value;
1057 }
1058 
1059 static void pmccntr_write32(CPUARMState *env, const ARMCPRegInfo *ri,
1060                             uint64_t value)
1061 {
1062     uint64_t cur_val = pmccntr_read(env, NULL);
1063 
1064     pmccntr_write(env, ri, deposit64(cur_val, 0, 32, value));
1065 }
1066 
1067 #else /* CONFIG_USER_ONLY */
1068 
1069 void pmccntr_sync(CPUARMState *env)
1070 {
1071 }
1072 
1073 #endif
1074 
1075 static void pmccfiltr_write(CPUARMState *env, const ARMCPRegInfo *ri,
1076                             uint64_t value)
1077 {
1078     pmccntr_sync(env);
1079     env->cp15.pmccfiltr_el0 = value & 0x7E000000;
1080     pmccntr_sync(env);
1081 }
1082 
1083 static void pmcntenset_write(CPUARMState *env, const ARMCPRegInfo *ri,
1084                             uint64_t value)
1085 {
1086     value &= (1 << 31);
1087     env->cp15.c9_pmcnten |= value;
1088 }
1089 
1090 static void pmcntenclr_write(CPUARMState *env, const ARMCPRegInfo *ri,
1091                              uint64_t value)
1092 {
1093     value &= (1 << 31);
1094     env->cp15.c9_pmcnten &= ~value;
1095 }
1096 
1097 static void pmovsr_write(CPUARMState *env, const ARMCPRegInfo *ri,
1098                          uint64_t value)
1099 {
1100     env->cp15.c9_pmovsr &= ~value;
1101 }
1102 
1103 static void pmxevtyper_write(CPUARMState *env, const ARMCPRegInfo *ri,
1104                              uint64_t value)
1105 {
1106     /* Attempts to access PMXEVTYPER are CONSTRAINED UNPREDICTABLE when
1107      * PMSELR value is equal to or greater than the number of implemented
1108      * counters, but not equal to 0x1f. We opt to behave as a RAZ/WI.
1109      */
1110     if (env->cp15.c9_pmselr == 0x1f) {
1111         pmccfiltr_write(env, ri, value);
1112     }
1113 }
1114 
1115 static uint64_t pmxevtyper_read(CPUARMState *env, const ARMCPRegInfo *ri)
1116 {
1117     /* We opt to behave as a RAZ/WI when attempts to access PMXEVTYPER
1118      * are CONSTRAINED UNPREDICTABLE. See comments in pmxevtyper_write().
1119      */
1120     if (env->cp15.c9_pmselr == 0x1f) {
1121         return env->cp15.pmccfiltr_el0;
1122     } else {
1123         return 0;
1124     }
1125 }
1126 
1127 static void pmuserenr_write(CPUARMState *env, const ARMCPRegInfo *ri,
1128                             uint64_t value)
1129 {
1130     if (arm_feature(env, ARM_FEATURE_V8)) {
1131         env->cp15.c9_pmuserenr = value & 0xf;
1132     } else {
1133         env->cp15.c9_pmuserenr = value & 1;
1134     }
1135 }
1136 
1137 static void pmintenset_write(CPUARMState *env, const ARMCPRegInfo *ri,
1138                              uint64_t value)
1139 {
1140     /* We have no event counters so only the C bit can be changed */
1141     value &= (1 << 31);
1142     env->cp15.c9_pminten |= value;
1143 }
1144 
1145 static void pmintenclr_write(CPUARMState *env, const ARMCPRegInfo *ri,
1146                              uint64_t value)
1147 {
1148     value &= (1 << 31);
1149     env->cp15.c9_pminten &= ~value;
1150 }
1151 
1152 static void vbar_write(CPUARMState *env, const ARMCPRegInfo *ri,
1153                        uint64_t value)
1154 {
1155     /* Note that even though the AArch64 view of this register has bits
1156      * [10:0] all RES0 we can only mask the bottom 5, to comply with the
1157      * architectural requirements for bits which are RES0 only in some
1158      * contexts. (ARMv8 would permit us to do no masking at all, but ARMv7
1159      * requires the bottom five bits to be RAZ/WI because they're UNK/SBZP.)
1160      */
1161     raw_write(env, ri, value & ~0x1FULL);
1162 }
1163 
1164 static void scr_write(CPUARMState *env, const ARMCPRegInfo *ri, uint64_t value)
1165 {
1166     /* We only mask off bits that are RES0 both for AArch64 and AArch32.
1167      * For bits that vary between AArch32/64, code needs to check the
1168      * current execution mode before directly using the feature bit.
1169      */
1170     uint32_t valid_mask = SCR_AARCH64_MASK | SCR_AARCH32_MASK;
1171 
1172     if (!arm_feature(env, ARM_FEATURE_EL2)) {
1173         valid_mask &= ~SCR_HCE;
1174 
1175         /* On ARMv7, SMD (or SCD as it is called in v7) is only
1176          * supported if EL2 exists. The bit is UNK/SBZP when
1177          * EL2 is unavailable. In QEMU ARMv7, we force it to always zero
1178          * when EL2 is unavailable.
1179          * On ARMv8, this bit is always available.
1180          */
1181         if (arm_feature(env, ARM_FEATURE_V7) &&
1182             !arm_feature(env, ARM_FEATURE_V8)) {
1183             valid_mask &= ~SCR_SMD;
1184         }
1185     }
1186 
1187     /* Clear all-context RES0 bits.  */
1188     value &= valid_mask;
1189     raw_write(env, ri, value);
1190 }
1191 
1192 static uint64_t ccsidr_read(CPUARMState *env, const ARMCPRegInfo *ri)
1193 {
1194     ARMCPU *cpu = arm_env_get_cpu(env);
1195 
1196     /* Acquire the CSSELR index from the bank corresponding to the CCSIDR
1197      * bank
1198      */
1199     uint32_t index = A32_BANKED_REG_GET(env, csselr,
1200                                         ri->secure & ARM_CP_SECSTATE_S);
1201 
1202     return cpu->ccsidr[index];
1203 }
1204 
1205 static void csselr_write(CPUARMState *env, const ARMCPRegInfo *ri,
1206                          uint64_t value)
1207 {
1208     raw_write(env, ri, value & 0xf);
1209 }
1210 
1211 static uint64_t isr_read(CPUARMState *env, const ARMCPRegInfo *ri)
1212 {
1213     CPUState *cs = ENV_GET_CPU(env);
1214     uint64_t ret = 0;
1215 
1216     if (cs->interrupt_request & CPU_INTERRUPT_HARD) {
1217         ret |= CPSR_I;
1218     }
1219     if (cs->interrupt_request & CPU_INTERRUPT_FIQ) {
1220         ret |= CPSR_F;
1221     }
1222     /* External aborts are not possible in QEMU so A bit is always clear */
1223     return ret;
1224 }
1225 
1226 static const ARMCPRegInfo v7_cp_reginfo[] = {
1227     /* the old v6 WFI, UNPREDICTABLE in v7 but we choose to NOP */
1228     { .name = "NOP", .cp = 15, .crn = 7, .crm = 0, .opc1 = 0, .opc2 = 4,
1229       .access = PL1_W, .type = ARM_CP_NOP },
1230     /* Performance monitors are implementation defined in v7,
1231      * but with an ARM recommended set of registers, which we
1232      * follow (although we don't actually implement any counters)
1233      *
1234      * Performance registers fall into three categories:
1235      *  (a) always UNDEF in PL0, RW in PL1 (PMINTENSET, PMINTENCLR)
1236      *  (b) RO in PL0 (ie UNDEF on write), RW in PL1 (PMUSERENR)
1237      *  (c) UNDEF in PL0 if PMUSERENR.EN==0, otherwise accessible (all others)
1238      * For the cases controlled by PMUSERENR we must set .access to PL0_RW
1239      * or PL0_RO as appropriate and then check PMUSERENR in the helper fn.
1240      */
1241     { .name = "PMCNTENSET", .cp = 15, .crn = 9, .crm = 12, .opc1 = 0, .opc2 = 1,
1242       .access = PL0_RW, .type = ARM_CP_ALIAS,
1243       .fieldoffset = offsetoflow32(CPUARMState, cp15.c9_pmcnten),
1244       .writefn = pmcntenset_write,
1245       .accessfn = pmreg_access,
1246       .raw_writefn = raw_write },
1247     { .name = "PMCNTENSET_EL0", .state = ARM_CP_STATE_AA64,
1248       .opc0 = 3, .opc1 = 3, .crn = 9, .crm = 12, .opc2 = 1,
1249       .access = PL0_RW, .accessfn = pmreg_access,
1250       .fieldoffset = offsetof(CPUARMState, cp15.c9_pmcnten), .resetvalue = 0,
1251       .writefn = pmcntenset_write, .raw_writefn = raw_write },
1252     { .name = "PMCNTENCLR", .cp = 15, .crn = 9, .crm = 12, .opc1 = 0, .opc2 = 2,
1253       .access = PL0_RW,
1254       .fieldoffset = offsetoflow32(CPUARMState, cp15.c9_pmcnten),
1255       .accessfn = pmreg_access,
1256       .writefn = pmcntenclr_write,
1257       .type = ARM_CP_ALIAS },
1258     { .name = "PMCNTENCLR_EL0", .state = ARM_CP_STATE_AA64,
1259       .opc0 = 3, .opc1 = 3, .crn = 9, .crm = 12, .opc2 = 2,
1260       .access = PL0_RW, .accessfn = pmreg_access,
1261       .type = ARM_CP_ALIAS,
1262       .fieldoffset = offsetof(CPUARMState, cp15.c9_pmcnten),
1263       .writefn = pmcntenclr_write },
1264     { .name = "PMOVSR", .cp = 15, .crn = 9, .crm = 12, .opc1 = 0, .opc2 = 3,
1265       .access = PL0_RW, .fieldoffset = offsetof(CPUARMState, cp15.c9_pmovsr),
1266       .accessfn = pmreg_access,
1267       .writefn = pmovsr_write,
1268       .raw_writefn = raw_write },
1269     { .name = "PMOVSCLR_EL0", .state = ARM_CP_STATE_AA64,
1270       .opc0 = 3, .opc1 = 3, .crn = 9, .crm = 12, .opc2 = 3,
1271       .access = PL0_RW, .accessfn = pmreg_access,
1272       .type = ARM_CP_ALIAS,
1273       .fieldoffset = offsetof(CPUARMState, cp15.c9_pmovsr),
1274       .writefn = pmovsr_write,
1275       .raw_writefn = raw_write },
1276     /* Unimplemented so WI. */
1277     { .name = "PMSWINC", .cp = 15, .crn = 9, .crm = 12, .opc1 = 0, .opc2 = 4,
1278       .access = PL0_W, .accessfn = pmreg_access_swinc, .type = ARM_CP_NOP },
1279 #ifndef CONFIG_USER_ONLY
1280     { .name = "PMSELR", .cp = 15, .crn = 9, .crm = 12, .opc1 = 0, .opc2 = 5,
1281       .access = PL0_RW, .type = ARM_CP_ALIAS,
1282       .fieldoffset = offsetoflow32(CPUARMState, cp15.c9_pmselr),
1283       .accessfn = pmreg_access_selr, .writefn = pmselr_write,
1284       .raw_writefn = raw_write},
1285     { .name = "PMSELR_EL0", .state = ARM_CP_STATE_AA64,
1286       .opc0 = 3, .opc1 = 3, .crn = 9, .crm = 12, .opc2 = 5,
1287       .access = PL0_RW, .accessfn = pmreg_access_selr,
1288       .fieldoffset = offsetof(CPUARMState, cp15.c9_pmselr),
1289       .writefn = pmselr_write, .raw_writefn = raw_write, },
1290     { .name = "PMCCNTR", .cp = 15, .crn = 9, .crm = 13, .opc1 = 0, .opc2 = 0,
1291       .access = PL0_RW, .resetvalue = 0, .type = ARM_CP_IO,
1292       .readfn = pmccntr_read, .writefn = pmccntr_write32,
1293       .accessfn = pmreg_access_ccntr },
1294     { .name = "PMCCNTR_EL0", .state = ARM_CP_STATE_AA64,
1295       .opc0 = 3, .opc1 = 3, .crn = 9, .crm = 13, .opc2 = 0,
1296       .access = PL0_RW, .accessfn = pmreg_access_ccntr,
1297       .type = ARM_CP_IO,
1298       .readfn = pmccntr_read, .writefn = pmccntr_write, },
1299 #endif
1300     { .name = "PMCCFILTR_EL0", .state = ARM_CP_STATE_AA64,
1301       .opc0 = 3, .opc1 = 3, .crn = 14, .crm = 15, .opc2 = 7,
1302       .writefn = pmccfiltr_write,
1303       .access = PL0_RW, .accessfn = pmreg_access,
1304       .type = ARM_CP_IO,
1305       .fieldoffset = offsetof(CPUARMState, cp15.pmccfiltr_el0),
1306       .resetvalue = 0, },
1307     { .name = "PMXEVTYPER", .cp = 15, .crn = 9, .crm = 13, .opc1 = 0, .opc2 = 1,
1308       .access = PL0_RW, .type = ARM_CP_NO_RAW, .accessfn = pmreg_access,
1309       .writefn = pmxevtyper_write, .readfn = pmxevtyper_read },
1310     { .name = "PMXEVTYPER_EL0", .state = ARM_CP_STATE_AA64,
1311       .opc0 = 3, .opc1 = 3, .crn = 9, .crm = 13, .opc2 = 1,
1312       .access = PL0_RW, .type = ARM_CP_NO_RAW, .accessfn = pmreg_access,
1313       .writefn = pmxevtyper_write, .readfn = pmxevtyper_read },
1314     /* Unimplemented, RAZ/WI. */
1315     { .name = "PMXEVCNTR", .cp = 15, .crn = 9, .crm = 13, .opc1 = 0, .opc2 = 2,
1316       .access = PL0_RW, .type = ARM_CP_CONST, .resetvalue = 0,
1317       .accessfn = pmreg_access_xevcntr },
1318     { .name = "PMUSERENR", .cp = 15, .crn = 9, .crm = 14, .opc1 = 0, .opc2 = 0,
1319       .access = PL0_R | PL1_RW, .accessfn = access_tpm,
1320       .fieldoffset = offsetof(CPUARMState, cp15.c9_pmuserenr),
1321       .resetvalue = 0,
1322       .writefn = pmuserenr_write, .raw_writefn = raw_write },
1323     { .name = "PMUSERENR_EL0", .state = ARM_CP_STATE_AA64,
1324       .opc0 = 3, .opc1 = 3, .crn = 9, .crm = 14, .opc2 = 0,
1325       .access = PL0_R | PL1_RW, .accessfn = access_tpm, .type = ARM_CP_ALIAS,
1326       .fieldoffset = offsetof(CPUARMState, cp15.c9_pmuserenr),
1327       .resetvalue = 0,
1328       .writefn = pmuserenr_write, .raw_writefn = raw_write },
1329     { .name = "PMINTENSET", .cp = 15, .crn = 9, .crm = 14, .opc1 = 0, .opc2 = 1,
1330       .access = PL1_RW, .accessfn = access_tpm,
1331       .type = ARM_CP_ALIAS,
1332       .fieldoffset = offsetoflow32(CPUARMState, cp15.c9_pminten),
1333       .resetvalue = 0,
1334       .writefn = pmintenset_write, .raw_writefn = raw_write },
1335     { .name = "PMINTENSET_EL1", .state = ARM_CP_STATE_AA64,
1336       .opc0 = 3, .opc1 = 0, .crn = 9, .crm = 14, .opc2 = 1,
1337       .access = PL1_RW, .accessfn = access_tpm,
1338       .type = ARM_CP_IO,
1339       .fieldoffset = offsetof(CPUARMState, cp15.c9_pminten),
1340       .writefn = pmintenset_write, .raw_writefn = raw_write,
1341       .resetvalue = 0x0 },
1342     { .name = "PMINTENCLR", .cp = 15, .crn = 9, .crm = 14, .opc1 = 0, .opc2 = 2,
1343       .access = PL1_RW, .accessfn = access_tpm, .type = ARM_CP_ALIAS,
1344       .fieldoffset = offsetof(CPUARMState, cp15.c9_pminten),
1345       .writefn = pmintenclr_write, },
1346     { .name = "PMINTENCLR_EL1", .state = ARM_CP_STATE_AA64,
1347       .opc0 = 3, .opc1 = 0, .crn = 9, .crm = 14, .opc2 = 2,
1348       .access = PL1_RW, .accessfn = access_tpm, .type = ARM_CP_ALIAS,
1349       .fieldoffset = offsetof(CPUARMState, cp15.c9_pminten),
1350       .writefn = pmintenclr_write },
1351     { .name = "CCSIDR", .state = ARM_CP_STATE_BOTH,
1352       .opc0 = 3, .crn = 0, .crm = 0, .opc1 = 1, .opc2 = 0,
1353       .access = PL1_R, .readfn = ccsidr_read, .type = ARM_CP_NO_RAW },
1354     { .name = "CSSELR", .state = ARM_CP_STATE_BOTH,
1355       .opc0 = 3, .crn = 0, .crm = 0, .opc1 = 2, .opc2 = 0,
1356       .access = PL1_RW, .writefn = csselr_write, .resetvalue = 0,
1357       .bank_fieldoffsets = { offsetof(CPUARMState, cp15.csselr_s),
1358                              offsetof(CPUARMState, cp15.csselr_ns) } },
1359     /* Auxiliary ID register: this actually has an IMPDEF value but for now
1360      * just RAZ for all cores:
1361      */
1362     { .name = "AIDR", .state = ARM_CP_STATE_BOTH,
1363       .opc0 = 3, .opc1 = 1, .crn = 0, .crm = 0, .opc2 = 7,
1364       .access = PL1_R, .type = ARM_CP_CONST, .resetvalue = 0 },
1365     /* Auxiliary fault status registers: these also are IMPDEF, and we
1366      * choose to RAZ/WI for all cores.
1367      */
1368     { .name = "AFSR0_EL1", .state = ARM_CP_STATE_BOTH,
1369       .opc0 = 3, .opc1 = 0, .crn = 5, .crm = 1, .opc2 = 0,
1370       .access = PL1_RW, .type = ARM_CP_CONST, .resetvalue = 0 },
1371     { .name = "AFSR1_EL1", .state = ARM_CP_STATE_BOTH,
1372       .opc0 = 3, .opc1 = 0, .crn = 5, .crm = 1, .opc2 = 1,
1373       .access = PL1_RW, .type = ARM_CP_CONST, .resetvalue = 0 },
1374     /* MAIR can just read-as-written because we don't implement caches
1375      * and so don't need to care about memory attributes.
1376      */
1377     { .name = "MAIR_EL1", .state = ARM_CP_STATE_AA64,
1378       .opc0 = 3, .opc1 = 0, .crn = 10, .crm = 2, .opc2 = 0,
1379       .access = PL1_RW, .fieldoffset = offsetof(CPUARMState, cp15.mair_el[1]),
1380       .resetvalue = 0 },
1381     { .name = "MAIR_EL3", .state = ARM_CP_STATE_AA64,
1382       .opc0 = 3, .opc1 = 6, .crn = 10, .crm = 2, .opc2 = 0,
1383       .access = PL3_RW, .fieldoffset = offsetof(CPUARMState, cp15.mair_el[3]),
1384       .resetvalue = 0 },
1385     /* For non-long-descriptor page tables these are PRRR and NMRR;
1386      * regardless they still act as reads-as-written for QEMU.
1387      */
1388      /* MAIR0/1 are defined separately from their 64-bit counterpart which
1389       * allows them to assign the correct fieldoffset based on the endianness
1390       * handled in the field definitions.
1391       */
1392     { .name = "MAIR0", .state = ARM_CP_STATE_AA32,
1393       .cp = 15, .opc1 = 0, .crn = 10, .crm = 2, .opc2 = 0, .access = PL1_RW,
1394       .bank_fieldoffsets = { offsetof(CPUARMState, cp15.mair0_s),
1395                              offsetof(CPUARMState, cp15.mair0_ns) },
1396       .resetfn = arm_cp_reset_ignore },
1397     { .name = "MAIR1", .state = ARM_CP_STATE_AA32,
1398       .cp = 15, .opc1 = 0, .crn = 10, .crm = 2, .opc2 = 1, .access = PL1_RW,
1399       .bank_fieldoffsets = { offsetof(CPUARMState, cp15.mair1_s),
1400                              offsetof(CPUARMState, cp15.mair1_ns) },
1401       .resetfn = arm_cp_reset_ignore },
1402     { .name = "ISR_EL1", .state = ARM_CP_STATE_BOTH,
1403       .opc0 = 3, .opc1 = 0, .crn = 12, .crm = 1, .opc2 = 0,
1404       .type = ARM_CP_NO_RAW, .access = PL1_R, .readfn = isr_read },
1405     /* 32 bit ITLB invalidates */
1406     { .name = "ITLBIALL", .cp = 15, .opc1 = 0, .crn = 8, .crm = 5, .opc2 = 0,
1407       .type = ARM_CP_NO_RAW, .access = PL1_W, .writefn = tlbiall_write },
1408     { .name = "ITLBIMVA", .cp = 15, .opc1 = 0, .crn = 8, .crm = 5, .opc2 = 1,
1409       .type = ARM_CP_NO_RAW, .access = PL1_W, .writefn = tlbimva_write },
1410     { .name = "ITLBIASID", .cp = 15, .opc1 = 0, .crn = 8, .crm = 5, .opc2 = 2,
1411       .type = ARM_CP_NO_RAW, .access = PL1_W, .writefn = tlbiasid_write },
1412     /* 32 bit DTLB invalidates */
1413     { .name = "DTLBIALL", .cp = 15, .opc1 = 0, .crn = 8, .crm = 6, .opc2 = 0,
1414       .type = ARM_CP_NO_RAW, .access = PL1_W, .writefn = tlbiall_write },
1415     { .name = "DTLBIMVA", .cp = 15, .opc1 = 0, .crn = 8, .crm = 6, .opc2 = 1,
1416       .type = ARM_CP_NO_RAW, .access = PL1_W, .writefn = tlbimva_write },
1417     { .name = "DTLBIASID", .cp = 15, .opc1 = 0, .crn = 8, .crm = 6, .opc2 = 2,
1418       .type = ARM_CP_NO_RAW, .access = PL1_W, .writefn = tlbiasid_write },
1419     /* 32 bit TLB invalidates */
1420     { .name = "TLBIALL", .cp = 15, .opc1 = 0, .crn = 8, .crm = 7, .opc2 = 0,
1421       .type = ARM_CP_NO_RAW, .access = PL1_W, .writefn = tlbiall_write },
1422     { .name = "TLBIMVA", .cp = 15, .opc1 = 0, .crn = 8, .crm = 7, .opc2 = 1,
1423       .type = ARM_CP_NO_RAW, .access = PL1_W, .writefn = tlbimva_write },
1424     { .name = "TLBIASID", .cp = 15, .opc1 = 0, .crn = 8, .crm = 7, .opc2 = 2,
1425       .type = ARM_CP_NO_RAW, .access = PL1_W, .writefn = tlbiasid_write },
1426     { .name = "TLBIMVAA", .cp = 15, .opc1 = 0, .crn = 8, .crm = 7, .opc2 = 3,
1427       .type = ARM_CP_NO_RAW, .access = PL1_W, .writefn = tlbimvaa_write },
1428     REGINFO_SENTINEL
1429 };
1430 
1431 static const ARMCPRegInfo v7mp_cp_reginfo[] = {
1432     /* 32 bit TLB invalidates, Inner Shareable */
1433     { .name = "TLBIALLIS", .cp = 15, .opc1 = 0, .crn = 8, .crm = 3, .opc2 = 0,
1434       .type = ARM_CP_NO_RAW, .access = PL1_W, .writefn = tlbiall_is_write },
1435     { .name = "TLBIMVAIS", .cp = 15, .opc1 = 0, .crn = 8, .crm = 3, .opc2 = 1,
1436       .type = ARM_CP_NO_RAW, .access = PL1_W, .writefn = tlbimva_is_write },
1437     { .name = "TLBIASIDIS", .cp = 15, .opc1 = 0, .crn = 8, .crm = 3, .opc2 = 2,
1438       .type = ARM_CP_NO_RAW, .access = PL1_W,
1439       .writefn = tlbiasid_is_write },
1440     { .name = "TLBIMVAAIS", .cp = 15, .opc1 = 0, .crn = 8, .crm = 3, .opc2 = 3,
1441       .type = ARM_CP_NO_RAW, .access = PL1_W,
1442       .writefn = tlbimvaa_is_write },
1443     REGINFO_SENTINEL
1444 };
1445 
1446 static void teecr_write(CPUARMState *env, const ARMCPRegInfo *ri,
1447                         uint64_t value)
1448 {
1449     value &= 1;
1450     env->teecr = value;
1451 }
1452 
1453 static CPAccessResult teehbr_access(CPUARMState *env, const ARMCPRegInfo *ri,
1454                                     bool isread)
1455 {
1456     if (arm_current_el(env) == 0 && (env->teecr & 1)) {
1457         return CP_ACCESS_TRAP;
1458     }
1459     return CP_ACCESS_OK;
1460 }
1461 
1462 static const ARMCPRegInfo t2ee_cp_reginfo[] = {
1463     { .name = "TEECR", .cp = 14, .crn = 0, .crm = 0, .opc1 = 6, .opc2 = 0,
1464       .access = PL1_RW, .fieldoffset = offsetof(CPUARMState, teecr),
1465       .resetvalue = 0,
1466       .writefn = teecr_write },
1467     { .name = "TEEHBR", .cp = 14, .crn = 1, .crm = 0, .opc1 = 6, .opc2 = 0,
1468       .access = PL0_RW, .fieldoffset = offsetof(CPUARMState, teehbr),
1469       .accessfn = teehbr_access, .resetvalue = 0 },
1470     REGINFO_SENTINEL
1471 };
1472 
1473 static const ARMCPRegInfo v6k_cp_reginfo[] = {
1474     { .name = "TPIDR_EL0", .state = ARM_CP_STATE_AA64,
1475       .opc0 = 3, .opc1 = 3, .opc2 = 2, .crn = 13, .crm = 0,
1476       .access = PL0_RW,
1477       .fieldoffset = offsetof(CPUARMState, cp15.tpidr_el[0]), .resetvalue = 0 },
1478     { .name = "TPIDRURW", .cp = 15, .crn = 13, .crm = 0, .opc1 = 0, .opc2 = 2,
1479       .access = PL0_RW,
1480       .bank_fieldoffsets = { offsetoflow32(CPUARMState, cp15.tpidrurw_s),
1481                              offsetoflow32(CPUARMState, cp15.tpidrurw_ns) },
1482       .resetfn = arm_cp_reset_ignore },
1483     { .name = "TPIDRRO_EL0", .state = ARM_CP_STATE_AA64,
1484       .opc0 = 3, .opc1 = 3, .opc2 = 3, .crn = 13, .crm = 0,
1485       .access = PL0_R|PL1_W,
1486       .fieldoffset = offsetof(CPUARMState, cp15.tpidrro_el[0]),
1487       .resetvalue = 0},
1488     { .name = "TPIDRURO", .cp = 15, .crn = 13, .crm = 0, .opc1 = 0, .opc2 = 3,
1489       .access = PL0_R|PL1_W,
1490       .bank_fieldoffsets = { offsetoflow32(CPUARMState, cp15.tpidruro_s),
1491                              offsetoflow32(CPUARMState, cp15.tpidruro_ns) },
1492       .resetfn = arm_cp_reset_ignore },
1493     { .name = "TPIDR_EL1", .state = ARM_CP_STATE_AA64,
1494       .opc0 = 3, .opc1 = 0, .opc2 = 4, .crn = 13, .crm = 0,
1495       .access = PL1_RW,
1496       .fieldoffset = offsetof(CPUARMState, cp15.tpidr_el[1]), .resetvalue = 0 },
1497     { .name = "TPIDRPRW", .opc1 = 0, .cp = 15, .crn = 13, .crm = 0, .opc2 = 4,
1498       .access = PL1_RW,
1499       .bank_fieldoffsets = { offsetoflow32(CPUARMState, cp15.tpidrprw_s),
1500                              offsetoflow32(CPUARMState, cp15.tpidrprw_ns) },
1501       .resetvalue = 0 },
1502     REGINFO_SENTINEL
1503 };
1504 
1505 #ifndef CONFIG_USER_ONLY
1506 
1507 static CPAccessResult gt_cntfrq_access(CPUARMState *env, const ARMCPRegInfo *ri,
1508                                        bool isread)
1509 {
1510     /* CNTFRQ: not visible from PL0 if both PL0PCTEN and PL0VCTEN are zero.
1511      * Writable only at the highest implemented exception level.
1512      */
1513     int el = arm_current_el(env);
1514 
1515     switch (el) {
1516     case 0:
1517         if (!extract32(env->cp15.c14_cntkctl, 0, 2)) {
1518             return CP_ACCESS_TRAP;
1519         }
1520         break;
1521     case 1:
1522         if (!isread && ri->state == ARM_CP_STATE_AA32 &&
1523             arm_is_secure_below_el3(env)) {
1524             /* Accesses from 32-bit Secure EL1 UNDEF (*not* trap to EL3!) */
1525             return CP_ACCESS_TRAP_UNCATEGORIZED;
1526         }
1527         break;
1528     case 2:
1529     case 3:
1530         break;
1531     }
1532 
1533     if (!isread && el < arm_highest_el(env)) {
1534         return CP_ACCESS_TRAP_UNCATEGORIZED;
1535     }
1536 
1537     return CP_ACCESS_OK;
1538 }
1539 
1540 static CPAccessResult gt_counter_access(CPUARMState *env, int timeridx,
1541                                         bool isread)
1542 {
1543     unsigned int cur_el = arm_current_el(env);
1544     bool secure = arm_is_secure(env);
1545 
1546     /* CNT[PV]CT: not visible from PL0 if ELO[PV]CTEN is zero */
1547     if (cur_el == 0 &&
1548         !extract32(env->cp15.c14_cntkctl, timeridx, 1)) {
1549         return CP_ACCESS_TRAP;
1550     }
1551 
1552     if (arm_feature(env, ARM_FEATURE_EL2) &&
1553         timeridx == GTIMER_PHYS && !secure && cur_el < 2 &&
1554         !extract32(env->cp15.cnthctl_el2, 0, 1)) {
1555         return CP_ACCESS_TRAP_EL2;
1556     }
1557     return CP_ACCESS_OK;
1558 }
1559 
1560 static CPAccessResult gt_timer_access(CPUARMState *env, int timeridx,
1561                                       bool isread)
1562 {
1563     unsigned int cur_el = arm_current_el(env);
1564     bool secure = arm_is_secure(env);
1565 
1566     /* CNT[PV]_CVAL, CNT[PV]_CTL, CNT[PV]_TVAL: not visible from PL0 if
1567      * EL0[PV]TEN is zero.
1568      */
1569     if (cur_el == 0 &&
1570         !extract32(env->cp15.c14_cntkctl, 9 - timeridx, 1)) {
1571         return CP_ACCESS_TRAP;
1572     }
1573 
1574     if (arm_feature(env, ARM_FEATURE_EL2) &&
1575         timeridx == GTIMER_PHYS && !secure && cur_el < 2 &&
1576         !extract32(env->cp15.cnthctl_el2, 1, 1)) {
1577         return CP_ACCESS_TRAP_EL2;
1578     }
1579     return CP_ACCESS_OK;
1580 }
1581 
1582 static CPAccessResult gt_pct_access(CPUARMState *env,
1583                                     const ARMCPRegInfo *ri,
1584                                     bool isread)
1585 {
1586     return gt_counter_access(env, GTIMER_PHYS, isread);
1587 }
1588 
1589 static CPAccessResult gt_vct_access(CPUARMState *env,
1590                                     const ARMCPRegInfo *ri,
1591                                     bool isread)
1592 {
1593     return gt_counter_access(env, GTIMER_VIRT, isread);
1594 }
1595 
1596 static CPAccessResult gt_ptimer_access(CPUARMState *env, const ARMCPRegInfo *ri,
1597                                        bool isread)
1598 {
1599     return gt_timer_access(env, GTIMER_PHYS, isread);
1600 }
1601 
1602 static CPAccessResult gt_vtimer_access(CPUARMState *env, const ARMCPRegInfo *ri,
1603                                        bool isread)
1604 {
1605     return gt_timer_access(env, GTIMER_VIRT, isread);
1606 }
1607 
1608 static CPAccessResult gt_stimer_access(CPUARMState *env,
1609                                        const ARMCPRegInfo *ri,
1610                                        bool isread)
1611 {
1612     /* The AArch64 register view of the secure physical timer is
1613      * always accessible from EL3, and configurably accessible from
1614      * Secure EL1.
1615      */
1616     switch (arm_current_el(env)) {
1617     case 1:
1618         if (!arm_is_secure(env)) {
1619             return CP_ACCESS_TRAP;
1620         }
1621         if (!(env->cp15.scr_el3 & SCR_ST)) {
1622             return CP_ACCESS_TRAP_EL3;
1623         }
1624         return CP_ACCESS_OK;
1625     case 0:
1626     case 2:
1627         return CP_ACCESS_TRAP;
1628     case 3:
1629         return CP_ACCESS_OK;
1630     default:
1631         g_assert_not_reached();
1632     }
1633 }
1634 
1635 static uint64_t gt_get_countervalue(CPUARMState *env)
1636 {
1637     return qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL) / GTIMER_SCALE;
1638 }
1639 
1640 static void gt_recalc_timer(ARMCPU *cpu, int timeridx)
1641 {
1642     ARMGenericTimer *gt = &cpu->env.cp15.c14_timer[timeridx];
1643 
1644     if (gt->ctl & 1) {
1645         /* Timer enabled: calculate and set current ISTATUS, irq, and
1646          * reset timer to when ISTATUS next has to change
1647          */
1648         uint64_t offset = timeridx == GTIMER_VIRT ?
1649                                       cpu->env.cp15.cntvoff_el2 : 0;
1650         uint64_t count = gt_get_countervalue(&cpu->env);
1651         /* Note that this must be unsigned 64 bit arithmetic: */
1652         int istatus = count - offset >= gt->cval;
1653         uint64_t nexttick;
1654         int irqstate;
1655 
1656         gt->ctl = deposit32(gt->ctl, 2, 1, istatus);
1657 
1658         irqstate = (istatus && !(gt->ctl & 2));
1659         qemu_set_irq(cpu->gt_timer_outputs[timeridx], irqstate);
1660 
1661         if (istatus) {
1662             /* Next transition is when count rolls back over to zero */
1663             nexttick = UINT64_MAX;
1664         } else {
1665             /* Next transition is when we hit cval */
1666             nexttick = gt->cval + offset;
1667         }
1668         /* Note that the desired next expiry time might be beyond the
1669          * signed-64-bit range of a QEMUTimer -- in this case we just
1670          * set the timer for as far in the future as possible. When the
1671          * timer expires we will reset the timer for any remaining period.
1672          */
1673         if (nexttick > INT64_MAX / GTIMER_SCALE) {
1674             nexttick = INT64_MAX / GTIMER_SCALE;
1675         }
1676         timer_mod(cpu->gt_timer[timeridx], nexttick);
1677         trace_arm_gt_recalc(timeridx, irqstate, nexttick);
1678     } else {
1679         /* Timer disabled: ISTATUS and timer output always clear */
1680         gt->ctl &= ~4;
1681         qemu_set_irq(cpu->gt_timer_outputs[timeridx], 0);
1682         timer_del(cpu->gt_timer[timeridx]);
1683         trace_arm_gt_recalc_disabled(timeridx);
1684     }
1685 }
1686 
1687 static void gt_timer_reset(CPUARMState *env, const ARMCPRegInfo *ri,
1688                            int timeridx)
1689 {
1690     ARMCPU *cpu = arm_env_get_cpu(env);
1691 
1692     timer_del(cpu->gt_timer[timeridx]);
1693 }
1694 
1695 static uint64_t gt_cnt_read(CPUARMState *env, const ARMCPRegInfo *ri)
1696 {
1697     return gt_get_countervalue(env);
1698 }
1699 
1700 static uint64_t gt_virt_cnt_read(CPUARMState *env, const ARMCPRegInfo *ri)
1701 {
1702     return gt_get_countervalue(env) - env->cp15.cntvoff_el2;
1703 }
1704 
1705 static void gt_cval_write(CPUARMState *env, const ARMCPRegInfo *ri,
1706                           int timeridx,
1707                           uint64_t value)
1708 {
1709     trace_arm_gt_cval_write(timeridx, value);
1710     env->cp15.c14_timer[timeridx].cval = value;
1711     gt_recalc_timer(arm_env_get_cpu(env), timeridx);
1712 }
1713 
1714 static uint64_t gt_tval_read(CPUARMState *env, const ARMCPRegInfo *ri,
1715                              int timeridx)
1716 {
1717     uint64_t offset = timeridx == GTIMER_VIRT ? env->cp15.cntvoff_el2 : 0;
1718 
1719     return (uint32_t)(env->cp15.c14_timer[timeridx].cval -
1720                       (gt_get_countervalue(env) - offset));
1721 }
1722 
1723 static void gt_tval_write(CPUARMState *env, const ARMCPRegInfo *ri,
1724                           int timeridx,
1725                           uint64_t value)
1726 {
1727     uint64_t offset = timeridx == GTIMER_VIRT ? env->cp15.cntvoff_el2 : 0;
1728 
1729     trace_arm_gt_tval_write(timeridx, value);
1730     env->cp15.c14_timer[timeridx].cval = gt_get_countervalue(env) - offset +
1731                                          sextract64(value, 0, 32);
1732     gt_recalc_timer(arm_env_get_cpu(env), timeridx);
1733 }
1734 
1735 static void gt_ctl_write(CPUARMState *env, const ARMCPRegInfo *ri,
1736                          int timeridx,
1737                          uint64_t value)
1738 {
1739     ARMCPU *cpu = arm_env_get_cpu(env);
1740     uint32_t oldval = env->cp15.c14_timer[timeridx].ctl;
1741 
1742     trace_arm_gt_ctl_write(timeridx, value);
1743     env->cp15.c14_timer[timeridx].ctl = deposit64(oldval, 0, 2, value);
1744     if ((oldval ^ value) & 1) {
1745         /* Enable toggled */
1746         gt_recalc_timer(cpu, timeridx);
1747     } else if ((oldval ^ value) & 2) {
1748         /* IMASK toggled: don't need to recalculate,
1749          * just set the interrupt line based on ISTATUS
1750          */
1751         int irqstate = (oldval & 4) && !(value & 2);
1752 
1753         trace_arm_gt_imask_toggle(timeridx, irqstate);
1754         qemu_set_irq(cpu->gt_timer_outputs[timeridx], irqstate);
1755     }
1756 }
1757 
1758 static void gt_phys_timer_reset(CPUARMState *env, const ARMCPRegInfo *ri)
1759 {
1760     gt_timer_reset(env, ri, GTIMER_PHYS);
1761 }
1762 
1763 static void gt_phys_cval_write(CPUARMState *env, const ARMCPRegInfo *ri,
1764                                uint64_t value)
1765 {
1766     gt_cval_write(env, ri, GTIMER_PHYS, value);
1767 }
1768 
1769 static uint64_t gt_phys_tval_read(CPUARMState *env, const ARMCPRegInfo *ri)
1770 {
1771     return gt_tval_read(env, ri, GTIMER_PHYS);
1772 }
1773 
1774 static void gt_phys_tval_write(CPUARMState *env, const ARMCPRegInfo *ri,
1775                                uint64_t value)
1776 {
1777     gt_tval_write(env, ri, GTIMER_PHYS, value);
1778 }
1779 
1780 static void gt_phys_ctl_write(CPUARMState *env, const ARMCPRegInfo *ri,
1781                               uint64_t value)
1782 {
1783     gt_ctl_write(env, ri, GTIMER_PHYS, value);
1784 }
1785 
1786 static void gt_virt_timer_reset(CPUARMState *env, const ARMCPRegInfo *ri)
1787 {
1788     gt_timer_reset(env, ri, GTIMER_VIRT);
1789 }
1790 
1791 static void gt_virt_cval_write(CPUARMState *env, const ARMCPRegInfo *ri,
1792                                uint64_t value)
1793 {
1794     gt_cval_write(env, ri, GTIMER_VIRT, value);
1795 }
1796 
1797 static uint64_t gt_virt_tval_read(CPUARMState *env, const ARMCPRegInfo *ri)
1798 {
1799     return gt_tval_read(env, ri, GTIMER_VIRT);
1800 }
1801 
1802 static void gt_virt_tval_write(CPUARMState *env, const ARMCPRegInfo *ri,
1803                                uint64_t value)
1804 {
1805     gt_tval_write(env, ri, GTIMER_VIRT, value);
1806 }
1807 
1808 static void gt_virt_ctl_write(CPUARMState *env, const ARMCPRegInfo *ri,
1809                               uint64_t value)
1810 {
1811     gt_ctl_write(env, ri, GTIMER_VIRT, value);
1812 }
1813 
1814 static void gt_cntvoff_write(CPUARMState *env, const ARMCPRegInfo *ri,
1815                               uint64_t value)
1816 {
1817     ARMCPU *cpu = arm_env_get_cpu(env);
1818 
1819     trace_arm_gt_cntvoff_write(value);
1820     raw_write(env, ri, value);
1821     gt_recalc_timer(cpu, GTIMER_VIRT);
1822 }
1823 
1824 static void gt_hyp_timer_reset(CPUARMState *env, const ARMCPRegInfo *ri)
1825 {
1826     gt_timer_reset(env, ri, GTIMER_HYP);
1827 }
1828 
1829 static void gt_hyp_cval_write(CPUARMState *env, const ARMCPRegInfo *ri,
1830                               uint64_t value)
1831 {
1832     gt_cval_write(env, ri, GTIMER_HYP, value);
1833 }
1834 
1835 static uint64_t gt_hyp_tval_read(CPUARMState *env, const ARMCPRegInfo *ri)
1836 {
1837     return gt_tval_read(env, ri, GTIMER_HYP);
1838 }
1839 
1840 static void gt_hyp_tval_write(CPUARMState *env, const ARMCPRegInfo *ri,
1841                               uint64_t value)
1842 {
1843     gt_tval_write(env, ri, GTIMER_HYP, value);
1844 }
1845 
1846 static void gt_hyp_ctl_write(CPUARMState *env, const ARMCPRegInfo *ri,
1847                               uint64_t value)
1848 {
1849     gt_ctl_write(env, ri, GTIMER_HYP, value);
1850 }
1851 
1852 static void gt_sec_timer_reset(CPUARMState *env, const ARMCPRegInfo *ri)
1853 {
1854     gt_timer_reset(env, ri, GTIMER_SEC);
1855 }
1856 
1857 static void gt_sec_cval_write(CPUARMState *env, const ARMCPRegInfo *ri,
1858                               uint64_t value)
1859 {
1860     gt_cval_write(env, ri, GTIMER_SEC, value);
1861 }
1862 
1863 static uint64_t gt_sec_tval_read(CPUARMState *env, const ARMCPRegInfo *ri)
1864 {
1865     return gt_tval_read(env, ri, GTIMER_SEC);
1866 }
1867 
1868 static void gt_sec_tval_write(CPUARMState *env, const ARMCPRegInfo *ri,
1869                               uint64_t value)
1870 {
1871     gt_tval_write(env, ri, GTIMER_SEC, value);
1872 }
1873 
1874 static void gt_sec_ctl_write(CPUARMState *env, const ARMCPRegInfo *ri,
1875                               uint64_t value)
1876 {
1877     gt_ctl_write(env, ri, GTIMER_SEC, value);
1878 }
1879 
1880 void arm_gt_ptimer_cb(void *opaque)
1881 {
1882     ARMCPU *cpu = opaque;
1883 
1884     gt_recalc_timer(cpu, GTIMER_PHYS);
1885 }
1886 
1887 void arm_gt_vtimer_cb(void *opaque)
1888 {
1889     ARMCPU *cpu = opaque;
1890 
1891     gt_recalc_timer(cpu, GTIMER_VIRT);
1892 }
1893 
1894 void arm_gt_htimer_cb(void *opaque)
1895 {
1896     ARMCPU *cpu = opaque;
1897 
1898     gt_recalc_timer(cpu, GTIMER_HYP);
1899 }
1900 
1901 void arm_gt_stimer_cb(void *opaque)
1902 {
1903     ARMCPU *cpu = opaque;
1904 
1905     gt_recalc_timer(cpu, GTIMER_SEC);
1906 }
1907 
1908 static const ARMCPRegInfo generic_timer_cp_reginfo[] = {
1909     /* Note that CNTFRQ is purely reads-as-written for the benefit
1910      * of software; writing it doesn't actually change the timer frequency.
1911      * Our reset value matches the fixed frequency we implement the timer at.
1912      */
1913     { .name = "CNTFRQ", .cp = 15, .crn = 14, .crm = 0, .opc1 = 0, .opc2 = 0,
1914       .type = ARM_CP_ALIAS,
1915       .access = PL1_RW | PL0_R, .accessfn = gt_cntfrq_access,
1916       .fieldoffset = offsetoflow32(CPUARMState, cp15.c14_cntfrq),
1917     },
1918     { .name = "CNTFRQ_EL0", .state = ARM_CP_STATE_AA64,
1919       .opc0 = 3, .opc1 = 3, .crn = 14, .crm = 0, .opc2 = 0,
1920       .access = PL1_RW | PL0_R, .accessfn = gt_cntfrq_access,
1921       .fieldoffset = offsetof(CPUARMState, cp15.c14_cntfrq),
1922       .resetvalue = (1000 * 1000 * 1000) / GTIMER_SCALE,
1923     },
1924     /* overall control: mostly access permissions */
1925     { .name = "CNTKCTL", .state = ARM_CP_STATE_BOTH,
1926       .opc0 = 3, .opc1 = 0, .crn = 14, .crm = 1, .opc2 = 0,
1927       .access = PL1_RW,
1928       .fieldoffset = offsetof(CPUARMState, cp15.c14_cntkctl),
1929       .resetvalue = 0,
1930     },
1931     /* per-timer control */
1932     { .name = "CNTP_CTL", .cp = 15, .crn = 14, .crm = 2, .opc1 = 0, .opc2 = 1,
1933       .secure = ARM_CP_SECSTATE_NS,
1934       .type = ARM_CP_IO | ARM_CP_ALIAS, .access = PL1_RW | PL0_R,
1935       .accessfn = gt_ptimer_access,
1936       .fieldoffset = offsetoflow32(CPUARMState,
1937                                    cp15.c14_timer[GTIMER_PHYS].ctl),
1938       .writefn = gt_phys_ctl_write, .raw_writefn = raw_write,
1939     },
1940     { .name = "CNTP_CTL(S)",
1941       .cp = 15, .crn = 14, .crm = 2, .opc1 = 0, .opc2 = 1,
1942       .secure = ARM_CP_SECSTATE_S,
1943       .type = ARM_CP_IO | ARM_CP_ALIAS, .access = PL1_RW | PL0_R,
1944       .accessfn = gt_ptimer_access,
1945       .fieldoffset = offsetoflow32(CPUARMState,
1946                                    cp15.c14_timer[GTIMER_SEC].ctl),
1947       .writefn = gt_sec_ctl_write, .raw_writefn = raw_write,
1948     },
1949     { .name = "CNTP_CTL_EL0", .state = ARM_CP_STATE_AA64,
1950       .opc0 = 3, .opc1 = 3, .crn = 14, .crm = 2, .opc2 = 1,
1951       .type = ARM_CP_IO, .access = PL1_RW | PL0_R,
1952       .accessfn = gt_ptimer_access,
1953       .fieldoffset = offsetof(CPUARMState, cp15.c14_timer[GTIMER_PHYS].ctl),
1954       .resetvalue = 0,
1955       .writefn = gt_phys_ctl_write, .raw_writefn = raw_write,
1956     },
1957     { .name = "CNTV_CTL", .cp = 15, .crn = 14, .crm = 3, .opc1 = 0, .opc2 = 1,
1958       .type = ARM_CP_IO | ARM_CP_ALIAS, .access = PL1_RW | PL0_R,
1959       .accessfn = gt_vtimer_access,
1960       .fieldoffset = offsetoflow32(CPUARMState,
1961                                    cp15.c14_timer[GTIMER_VIRT].ctl),
1962       .writefn = gt_virt_ctl_write, .raw_writefn = raw_write,
1963     },
1964     { .name = "CNTV_CTL_EL0", .state = ARM_CP_STATE_AA64,
1965       .opc0 = 3, .opc1 = 3, .crn = 14, .crm = 3, .opc2 = 1,
1966       .type = ARM_CP_IO, .access = PL1_RW | PL0_R,
1967       .accessfn = gt_vtimer_access,
1968       .fieldoffset = offsetof(CPUARMState, cp15.c14_timer[GTIMER_VIRT].ctl),
1969       .resetvalue = 0,
1970       .writefn = gt_virt_ctl_write, .raw_writefn = raw_write,
1971     },
1972     /* TimerValue views: a 32 bit downcounting view of the underlying state */
1973     { .name = "CNTP_TVAL", .cp = 15, .crn = 14, .crm = 2, .opc1 = 0, .opc2 = 0,
1974       .secure = ARM_CP_SECSTATE_NS,
1975       .type = ARM_CP_NO_RAW | ARM_CP_IO, .access = PL1_RW | PL0_R,
1976       .accessfn = gt_ptimer_access,
1977       .readfn = gt_phys_tval_read, .writefn = gt_phys_tval_write,
1978     },
1979     { .name = "CNTP_TVAL(S)",
1980       .cp = 15, .crn = 14, .crm = 2, .opc1 = 0, .opc2 = 0,
1981       .secure = ARM_CP_SECSTATE_S,
1982       .type = ARM_CP_NO_RAW | ARM_CP_IO, .access = PL1_RW | PL0_R,
1983       .accessfn = gt_ptimer_access,
1984       .readfn = gt_sec_tval_read, .writefn = gt_sec_tval_write,
1985     },
1986     { .name = "CNTP_TVAL_EL0", .state = ARM_CP_STATE_AA64,
1987       .opc0 = 3, .opc1 = 3, .crn = 14, .crm = 2, .opc2 = 0,
1988       .type = ARM_CP_NO_RAW | ARM_CP_IO, .access = PL1_RW | PL0_R,
1989       .accessfn = gt_ptimer_access, .resetfn = gt_phys_timer_reset,
1990       .readfn = gt_phys_tval_read, .writefn = gt_phys_tval_write,
1991     },
1992     { .name = "CNTV_TVAL", .cp = 15, .crn = 14, .crm = 3, .opc1 = 0, .opc2 = 0,
1993       .type = ARM_CP_NO_RAW | ARM_CP_IO, .access = PL1_RW | PL0_R,
1994       .accessfn = gt_vtimer_access,
1995       .readfn = gt_virt_tval_read, .writefn = gt_virt_tval_write,
1996     },
1997     { .name = "CNTV_TVAL_EL0", .state = ARM_CP_STATE_AA64,
1998       .opc0 = 3, .opc1 = 3, .crn = 14, .crm = 3, .opc2 = 0,
1999       .type = ARM_CP_NO_RAW | ARM_CP_IO, .access = PL1_RW | PL0_R,
2000       .accessfn = gt_vtimer_access, .resetfn = gt_virt_timer_reset,
2001       .readfn = gt_virt_tval_read, .writefn = gt_virt_tval_write,
2002     },
2003     /* The counter itself */
2004     { .name = "CNTPCT", .cp = 15, .crm = 14, .opc1 = 0,
2005       .access = PL0_R, .type = ARM_CP_64BIT | ARM_CP_NO_RAW | ARM_CP_IO,
2006       .accessfn = gt_pct_access,
2007       .readfn = gt_cnt_read, .resetfn = arm_cp_reset_ignore,
2008     },
2009     { .name = "CNTPCT_EL0", .state = ARM_CP_STATE_AA64,
2010       .opc0 = 3, .opc1 = 3, .crn = 14, .crm = 0, .opc2 = 1,
2011       .access = PL0_R, .type = ARM_CP_NO_RAW | ARM_CP_IO,
2012       .accessfn = gt_pct_access, .readfn = gt_cnt_read,
2013     },
2014     { .name = "CNTVCT", .cp = 15, .crm = 14, .opc1 = 1,
2015       .access = PL0_R, .type = ARM_CP_64BIT | ARM_CP_NO_RAW | ARM_CP_IO,
2016       .accessfn = gt_vct_access,
2017       .readfn = gt_virt_cnt_read, .resetfn = arm_cp_reset_ignore,
2018     },
2019     { .name = "CNTVCT_EL0", .state = ARM_CP_STATE_AA64,
2020       .opc0 = 3, .opc1 = 3, .crn = 14, .crm = 0, .opc2 = 2,
2021       .access = PL0_R, .type = ARM_CP_NO_RAW | ARM_CP_IO,
2022       .accessfn = gt_vct_access, .readfn = gt_virt_cnt_read,
2023     },
2024     /* Comparison value, indicating when the timer goes off */
2025     { .name = "CNTP_CVAL", .cp = 15, .crm = 14, .opc1 = 2,
2026       .secure = ARM_CP_SECSTATE_NS,
2027       .access = PL1_RW | PL0_R,
2028       .type = ARM_CP_64BIT | ARM_CP_IO | ARM_CP_ALIAS,
2029       .fieldoffset = offsetof(CPUARMState, cp15.c14_timer[GTIMER_PHYS].cval),
2030       .accessfn = gt_ptimer_access,
2031       .writefn = gt_phys_cval_write, .raw_writefn = raw_write,
2032     },
2033     { .name = "CNTP_CVAL(S)", .cp = 15, .crm = 14, .opc1 = 2,
2034       .secure = ARM_CP_SECSTATE_S,
2035       .access = PL1_RW | PL0_R,
2036       .type = ARM_CP_64BIT | ARM_CP_IO | ARM_CP_ALIAS,
2037       .fieldoffset = offsetof(CPUARMState, cp15.c14_timer[GTIMER_SEC].cval),
2038       .accessfn = gt_ptimer_access,
2039       .writefn = gt_sec_cval_write, .raw_writefn = raw_write,
2040     },
2041     { .name = "CNTP_CVAL_EL0", .state = ARM_CP_STATE_AA64,
2042       .opc0 = 3, .opc1 = 3, .crn = 14, .crm = 2, .opc2 = 2,
2043       .access = PL1_RW | PL0_R,
2044       .type = ARM_CP_IO,
2045       .fieldoffset = offsetof(CPUARMState, cp15.c14_timer[GTIMER_PHYS].cval),
2046       .resetvalue = 0, .accessfn = gt_ptimer_access,
2047       .writefn = gt_phys_cval_write, .raw_writefn = raw_write,
2048     },
2049     { .name = "CNTV_CVAL", .cp = 15, .crm = 14, .opc1 = 3,
2050       .access = PL1_RW | PL0_R,
2051       .type = ARM_CP_64BIT | ARM_CP_IO | ARM_CP_ALIAS,
2052       .fieldoffset = offsetof(CPUARMState, cp15.c14_timer[GTIMER_VIRT].cval),
2053       .accessfn = gt_vtimer_access,
2054       .writefn = gt_virt_cval_write, .raw_writefn = raw_write,
2055     },
2056     { .name = "CNTV_CVAL_EL0", .state = ARM_CP_STATE_AA64,
2057       .opc0 = 3, .opc1 = 3, .crn = 14, .crm = 3, .opc2 = 2,
2058       .access = PL1_RW | PL0_R,
2059       .type = ARM_CP_IO,
2060       .fieldoffset = offsetof(CPUARMState, cp15.c14_timer[GTIMER_VIRT].cval),
2061       .resetvalue = 0, .accessfn = gt_vtimer_access,
2062       .writefn = gt_virt_cval_write, .raw_writefn = raw_write,
2063     },
2064     /* Secure timer -- this is actually restricted to only EL3
2065      * and configurably Secure-EL1 via the accessfn.
2066      */
2067     { .name = "CNTPS_TVAL_EL1", .state = ARM_CP_STATE_AA64,
2068       .opc0 = 3, .opc1 = 7, .crn = 14, .crm = 2, .opc2 = 0,
2069       .type = ARM_CP_NO_RAW | ARM_CP_IO, .access = PL1_RW,
2070       .accessfn = gt_stimer_access,
2071       .readfn = gt_sec_tval_read,
2072       .writefn = gt_sec_tval_write,
2073       .resetfn = gt_sec_timer_reset,
2074     },
2075     { .name = "CNTPS_CTL_EL1", .state = ARM_CP_STATE_AA64,
2076       .opc0 = 3, .opc1 = 7, .crn = 14, .crm = 2, .opc2 = 1,
2077       .type = ARM_CP_IO, .access = PL1_RW,
2078       .accessfn = gt_stimer_access,
2079       .fieldoffset = offsetof(CPUARMState, cp15.c14_timer[GTIMER_SEC].ctl),
2080       .resetvalue = 0,
2081       .writefn = gt_sec_ctl_write, .raw_writefn = raw_write,
2082     },
2083     { .name = "CNTPS_CVAL_EL1", .state = ARM_CP_STATE_AA64,
2084       .opc0 = 3, .opc1 = 7, .crn = 14, .crm = 2, .opc2 = 2,
2085       .type = ARM_CP_IO, .access = PL1_RW,
2086       .accessfn = gt_stimer_access,
2087       .fieldoffset = offsetof(CPUARMState, cp15.c14_timer[GTIMER_SEC].cval),
2088       .writefn = gt_sec_cval_write, .raw_writefn = raw_write,
2089     },
2090     REGINFO_SENTINEL
2091 };
2092 
2093 #else
2094 /* In user-mode none of the generic timer registers are accessible,
2095  * and their implementation depends on QEMU_CLOCK_VIRTUAL and qdev gpio outputs,
2096  * so instead just don't register any of them.
2097  */
2098 static const ARMCPRegInfo generic_timer_cp_reginfo[] = {
2099     REGINFO_SENTINEL
2100 };
2101 
2102 #endif
2103 
2104 static void par_write(CPUARMState *env, const ARMCPRegInfo *ri, uint64_t value)
2105 {
2106     if (arm_feature(env, ARM_FEATURE_LPAE)) {
2107         raw_write(env, ri, value);
2108     } else if (arm_feature(env, ARM_FEATURE_V7)) {
2109         raw_write(env, ri, value & 0xfffff6ff);
2110     } else {
2111         raw_write(env, ri, value & 0xfffff1ff);
2112     }
2113 }
2114 
2115 #ifndef CONFIG_USER_ONLY
2116 /* get_phys_addr() isn't present for user-mode-only targets */
2117 
2118 static CPAccessResult ats_access(CPUARMState *env, const ARMCPRegInfo *ri,
2119                                  bool isread)
2120 {
2121     if (ri->opc2 & 4) {
2122         /* The ATS12NSO* operations must trap to EL3 if executed in
2123          * Secure EL1 (which can only happen if EL3 is AArch64).
2124          * They are simply UNDEF if executed from NS EL1.
2125          * They function normally from EL2 or EL3.
2126          */
2127         if (arm_current_el(env) == 1) {
2128             if (arm_is_secure_below_el3(env)) {
2129                 return CP_ACCESS_TRAP_UNCATEGORIZED_EL3;
2130             }
2131             return CP_ACCESS_TRAP_UNCATEGORIZED;
2132         }
2133     }
2134     return CP_ACCESS_OK;
2135 }
2136 
2137 static uint64_t do_ats_write(CPUARMState *env, uint64_t value,
2138                              int access_type, ARMMMUIdx mmu_idx)
2139 {
2140     hwaddr phys_addr;
2141     target_ulong page_size;
2142     int prot;
2143     uint32_t fsr;
2144     bool ret;
2145     uint64_t par64;
2146     MemTxAttrs attrs = {};
2147     ARMMMUFaultInfo fi = {};
2148 
2149     ret = get_phys_addr(env, value, access_type, mmu_idx,
2150                         &phys_addr, &attrs, &prot, &page_size, &fsr, &fi);
2151     if (extended_addresses_enabled(env)) {
2152         /* fsr is a DFSR/IFSR value for the long descriptor
2153          * translation table format, but with WnR always clear.
2154          * Convert it to a 64-bit PAR.
2155          */
2156         par64 = (1 << 11); /* LPAE bit always set */
2157         if (!ret) {
2158             par64 |= phys_addr & ~0xfffULL;
2159             if (!attrs.secure) {
2160                 par64 |= (1 << 9); /* NS */
2161             }
2162             /* We don't set the ATTR or SH fields in the PAR. */
2163         } else {
2164             par64 |= 1; /* F */
2165             par64 |= (fsr & 0x3f) << 1; /* FS */
2166             /* Note that S2WLK and FSTAGE are always zero, because we don't
2167              * implement virtualization and therefore there can't be a stage 2
2168              * fault.
2169              */
2170         }
2171     } else {
2172         /* fsr is a DFSR/IFSR value for the short descriptor
2173          * translation table format (with WnR always clear).
2174          * Convert it to a 32-bit PAR.
2175          */
2176         if (!ret) {
2177             /* We do not set any attribute bits in the PAR */
2178             if (page_size == (1 << 24)
2179                 && arm_feature(env, ARM_FEATURE_V7)) {
2180                 par64 = (phys_addr & 0xff000000) | (1 << 1);
2181             } else {
2182                 par64 = phys_addr & 0xfffff000;
2183             }
2184             if (!attrs.secure) {
2185                 par64 |= (1 << 9); /* NS */
2186             }
2187         } else {
2188             par64 = ((fsr & (1 << 10)) >> 5) | ((fsr & (1 << 12)) >> 6) |
2189                     ((fsr & 0xf) << 1) | 1;
2190         }
2191     }
2192     return par64;
2193 }
2194 
2195 static void ats_write(CPUARMState *env, const ARMCPRegInfo *ri, uint64_t value)
2196 {
2197     int access_type = ri->opc2 & 1;
2198     uint64_t par64;
2199     ARMMMUIdx mmu_idx;
2200     int el = arm_current_el(env);
2201     bool secure = arm_is_secure_below_el3(env);
2202 
2203     switch (ri->opc2 & 6) {
2204     case 0:
2205         /* stage 1 current state PL1: ATS1CPR, ATS1CPW */
2206         switch (el) {
2207         case 3:
2208             mmu_idx = ARMMMUIdx_S1E3;
2209             break;
2210         case 2:
2211             mmu_idx = ARMMMUIdx_S1NSE1;
2212             break;
2213         case 1:
2214             mmu_idx = secure ? ARMMMUIdx_S1SE1 : ARMMMUIdx_S1NSE1;
2215             break;
2216         default:
2217             g_assert_not_reached();
2218         }
2219         break;
2220     case 2:
2221         /* stage 1 current state PL0: ATS1CUR, ATS1CUW */
2222         switch (el) {
2223         case 3:
2224             mmu_idx = ARMMMUIdx_S1SE0;
2225             break;
2226         case 2:
2227             mmu_idx = ARMMMUIdx_S1NSE0;
2228             break;
2229         case 1:
2230             mmu_idx = secure ? ARMMMUIdx_S1SE0 : ARMMMUIdx_S1NSE0;
2231             break;
2232         default:
2233             g_assert_not_reached();
2234         }
2235         break;
2236     case 4:
2237         /* stage 1+2 NonSecure PL1: ATS12NSOPR, ATS12NSOPW */
2238         mmu_idx = ARMMMUIdx_S12NSE1;
2239         break;
2240     case 6:
2241         /* stage 1+2 NonSecure PL0: ATS12NSOUR, ATS12NSOUW */
2242         mmu_idx = ARMMMUIdx_S12NSE0;
2243         break;
2244     default:
2245         g_assert_not_reached();
2246     }
2247 
2248     par64 = do_ats_write(env, value, access_type, mmu_idx);
2249 
2250     A32_BANKED_CURRENT_REG_SET(env, par, par64);
2251 }
2252 
2253 static void ats1h_write(CPUARMState *env, const ARMCPRegInfo *ri,
2254                         uint64_t value)
2255 {
2256     int access_type = ri->opc2 & 1;
2257     uint64_t par64;
2258 
2259     par64 = do_ats_write(env, value, access_type, ARMMMUIdx_S2NS);
2260 
2261     A32_BANKED_CURRENT_REG_SET(env, par, par64);
2262 }
2263 
2264 static CPAccessResult at_s1e2_access(CPUARMState *env, const ARMCPRegInfo *ri,
2265                                      bool isread)
2266 {
2267     if (arm_current_el(env) == 3 && !(env->cp15.scr_el3 & SCR_NS)) {
2268         return CP_ACCESS_TRAP;
2269     }
2270     return CP_ACCESS_OK;
2271 }
2272 
2273 static void ats_write64(CPUARMState *env, const ARMCPRegInfo *ri,
2274                         uint64_t value)
2275 {
2276     int access_type = ri->opc2 & 1;
2277     ARMMMUIdx mmu_idx;
2278     int secure = arm_is_secure_below_el3(env);
2279 
2280     switch (ri->opc2 & 6) {
2281     case 0:
2282         switch (ri->opc1) {
2283         case 0: /* AT S1E1R, AT S1E1W */
2284             mmu_idx = secure ? ARMMMUIdx_S1SE1 : ARMMMUIdx_S1NSE1;
2285             break;
2286         case 4: /* AT S1E2R, AT S1E2W */
2287             mmu_idx = ARMMMUIdx_S1E2;
2288             break;
2289         case 6: /* AT S1E3R, AT S1E3W */
2290             mmu_idx = ARMMMUIdx_S1E3;
2291             break;
2292         default:
2293             g_assert_not_reached();
2294         }
2295         break;
2296     case 2: /* AT S1E0R, AT S1E0W */
2297         mmu_idx = secure ? ARMMMUIdx_S1SE0 : ARMMMUIdx_S1NSE0;
2298         break;
2299     case 4: /* AT S12E1R, AT S12E1W */
2300         mmu_idx = secure ? ARMMMUIdx_S1SE1 : ARMMMUIdx_S12NSE1;
2301         break;
2302     case 6: /* AT S12E0R, AT S12E0W */
2303         mmu_idx = secure ? ARMMMUIdx_S1SE0 : ARMMMUIdx_S12NSE0;
2304         break;
2305     default:
2306         g_assert_not_reached();
2307     }
2308 
2309     env->cp15.par_el[1] = do_ats_write(env, value, access_type, mmu_idx);
2310 }
2311 #endif
2312 
2313 static const ARMCPRegInfo vapa_cp_reginfo[] = {
2314     { .name = "PAR", .cp = 15, .crn = 7, .crm = 4, .opc1 = 0, .opc2 = 0,
2315       .access = PL1_RW, .resetvalue = 0,
2316       .bank_fieldoffsets = { offsetoflow32(CPUARMState, cp15.par_s),
2317                              offsetoflow32(CPUARMState, cp15.par_ns) },
2318       .writefn = par_write },
2319 #ifndef CONFIG_USER_ONLY
2320     /* This underdecoding is safe because the reginfo is NO_RAW. */
2321     { .name = "ATS", .cp = 15, .crn = 7, .crm = 8, .opc1 = 0, .opc2 = CP_ANY,
2322       .access = PL1_W, .accessfn = ats_access,
2323       .writefn = ats_write, .type = ARM_CP_NO_RAW },
2324 #endif
2325     REGINFO_SENTINEL
2326 };
2327 
2328 /* Return basic MPU access permission bits.  */
2329 static uint32_t simple_mpu_ap_bits(uint32_t val)
2330 {
2331     uint32_t ret;
2332     uint32_t mask;
2333     int i;
2334     ret = 0;
2335     mask = 3;
2336     for (i = 0; i < 16; i += 2) {
2337         ret |= (val >> i) & mask;
2338         mask <<= 2;
2339     }
2340     return ret;
2341 }
2342 
2343 /* Pad basic MPU access permission bits to extended format.  */
2344 static uint32_t extended_mpu_ap_bits(uint32_t val)
2345 {
2346     uint32_t ret;
2347     uint32_t mask;
2348     int i;
2349     ret = 0;
2350     mask = 3;
2351     for (i = 0; i < 16; i += 2) {
2352         ret |= (val & mask) << i;
2353         mask <<= 2;
2354     }
2355     return ret;
2356 }
2357 
2358 static void pmsav5_data_ap_write(CPUARMState *env, const ARMCPRegInfo *ri,
2359                                  uint64_t value)
2360 {
2361     env->cp15.pmsav5_data_ap = extended_mpu_ap_bits(value);
2362 }
2363 
2364 static uint64_t pmsav5_data_ap_read(CPUARMState *env, const ARMCPRegInfo *ri)
2365 {
2366     return simple_mpu_ap_bits(env->cp15.pmsav5_data_ap);
2367 }
2368 
2369 static void pmsav5_insn_ap_write(CPUARMState *env, const ARMCPRegInfo *ri,
2370                                  uint64_t value)
2371 {
2372     env->cp15.pmsav5_insn_ap = extended_mpu_ap_bits(value);
2373 }
2374 
2375 static uint64_t pmsav5_insn_ap_read(CPUARMState *env, const ARMCPRegInfo *ri)
2376 {
2377     return simple_mpu_ap_bits(env->cp15.pmsav5_insn_ap);
2378 }
2379 
2380 static uint64_t pmsav7_read(CPUARMState *env, const ARMCPRegInfo *ri)
2381 {
2382     uint32_t *u32p = *(uint32_t **)raw_ptr(env, ri);
2383 
2384     if (!u32p) {
2385         return 0;
2386     }
2387 
2388     u32p += env->cp15.c6_rgnr;
2389     return *u32p;
2390 }
2391 
2392 static void pmsav7_write(CPUARMState *env, const ARMCPRegInfo *ri,
2393                          uint64_t value)
2394 {
2395     ARMCPU *cpu = arm_env_get_cpu(env);
2396     uint32_t *u32p = *(uint32_t **)raw_ptr(env, ri);
2397 
2398     if (!u32p) {
2399         return;
2400     }
2401 
2402     u32p += env->cp15.c6_rgnr;
2403     tlb_flush(CPU(cpu)); /* Mappings may have changed - purge! */
2404     *u32p = value;
2405 }
2406 
2407 static void pmsav7_reset(CPUARMState *env, const ARMCPRegInfo *ri)
2408 {
2409     ARMCPU *cpu = arm_env_get_cpu(env);
2410     uint32_t *u32p = *(uint32_t **)raw_ptr(env, ri);
2411 
2412     if (!u32p) {
2413         return;
2414     }
2415 
2416     memset(u32p, 0, sizeof(*u32p) * cpu->pmsav7_dregion);
2417 }
2418 
2419 static void pmsav7_rgnr_write(CPUARMState *env, const ARMCPRegInfo *ri,
2420                               uint64_t value)
2421 {
2422     ARMCPU *cpu = arm_env_get_cpu(env);
2423     uint32_t nrgs = cpu->pmsav7_dregion;
2424 
2425     if (value >= nrgs) {
2426         qemu_log_mask(LOG_GUEST_ERROR,
2427                       "PMSAv7 RGNR write >= # supported regions, %" PRIu32
2428                       " > %" PRIu32 "\n", (uint32_t)value, nrgs);
2429         return;
2430     }
2431 
2432     raw_write(env, ri, value);
2433 }
2434 
2435 static const ARMCPRegInfo pmsav7_cp_reginfo[] = {
2436     { .name = "DRBAR", .cp = 15, .crn = 6, .opc1 = 0, .crm = 1, .opc2 = 0,
2437       .access = PL1_RW, .type = ARM_CP_NO_RAW,
2438       .fieldoffset = offsetof(CPUARMState, pmsav7.drbar),
2439       .readfn = pmsav7_read, .writefn = pmsav7_write, .resetfn = pmsav7_reset },
2440     { .name = "DRSR", .cp = 15, .crn = 6, .opc1 = 0, .crm = 1, .opc2 = 2,
2441       .access = PL1_RW, .type = ARM_CP_NO_RAW,
2442       .fieldoffset = offsetof(CPUARMState, pmsav7.drsr),
2443       .readfn = pmsav7_read, .writefn = pmsav7_write, .resetfn = pmsav7_reset },
2444     { .name = "DRACR", .cp = 15, .crn = 6, .opc1 = 0, .crm = 1, .opc2 = 4,
2445       .access = PL1_RW, .type = ARM_CP_NO_RAW,
2446       .fieldoffset = offsetof(CPUARMState, pmsav7.dracr),
2447       .readfn = pmsav7_read, .writefn = pmsav7_write, .resetfn = pmsav7_reset },
2448     { .name = "RGNR", .cp = 15, .crn = 6, .opc1 = 0, .crm = 2, .opc2 = 0,
2449       .access = PL1_RW,
2450       .fieldoffset = offsetof(CPUARMState, cp15.c6_rgnr),
2451       .writefn = pmsav7_rgnr_write },
2452     REGINFO_SENTINEL
2453 };
2454 
2455 static const ARMCPRegInfo pmsav5_cp_reginfo[] = {
2456     { .name = "DATA_AP", .cp = 15, .crn = 5, .crm = 0, .opc1 = 0, .opc2 = 0,
2457       .access = PL1_RW, .type = ARM_CP_ALIAS,
2458       .fieldoffset = offsetof(CPUARMState, cp15.pmsav5_data_ap),
2459       .readfn = pmsav5_data_ap_read, .writefn = pmsav5_data_ap_write, },
2460     { .name = "INSN_AP", .cp = 15, .crn = 5, .crm = 0, .opc1 = 0, .opc2 = 1,
2461       .access = PL1_RW, .type = ARM_CP_ALIAS,
2462       .fieldoffset = offsetof(CPUARMState, cp15.pmsav5_insn_ap),
2463       .readfn = pmsav5_insn_ap_read, .writefn = pmsav5_insn_ap_write, },
2464     { .name = "DATA_EXT_AP", .cp = 15, .crn = 5, .crm = 0, .opc1 = 0, .opc2 = 2,
2465       .access = PL1_RW,
2466       .fieldoffset = offsetof(CPUARMState, cp15.pmsav5_data_ap),
2467       .resetvalue = 0, },
2468     { .name = "INSN_EXT_AP", .cp = 15, .crn = 5, .crm = 0, .opc1 = 0, .opc2 = 3,
2469       .access = PL1_RW,
2470       .fieldoffset = offsetof(CPUARMState, cp15.pmsav5_insn_ap),
2471       .resetvalue = 0, },
2472     { .name = "DCACHE_CFG", .cp = 15, .crn = 2, .crm = 0, .opc1 = 0, .opc2 = 0,
2473       .access = PL1_RW,
2474       .fieldoffset = offsetof(CPUARMState, cp15.c2_data), .resetvalue = 0, },
2475     { .name = "ICACHE_CFG", .cp = 15, .crn = 2, .crm = 0, .opc1 = 0, .opc2 = 1,
2476       .access = PL1_RW,
2477       .fieldoffset = offsetof(CPUARMState, cp15.c2_insn), .resetvalue = 0, },
2478     /* Protection region base and size registers */
2479     { .name = "946_PRBS0", .cp = 15, .crn = 6, .crm = 0, .opc1 = 0,
2480       .opc2 = CP_ANY, .access = PL1_RW, .resetvalue = 0,
2481       .fieldoffset = offsetof(CPUARMState, cp15.c6_region[0]) },
2482     { .name = "946_PRBS1", .cp = 15, .crn = 6, .crm = 1, .opc1 = 0,
2483       .opc2 = CP_ANY, .access = PL1_RW, .resetvalue = 0,
2484       .fieldoffset = offsetof(CPUARMState, cp15.c6_region[1]) },
2485     { .name = "946_PRBS2", .cp = 15, .crn = 6, .crm = 2, .opc1 = 0,
2486       .opc2 = CP_ANY, .access = PL1_RW, .resetvalue = 0,
2487       .fieldoffset = offsetof(CPUARMState, cp15.c6_region[2]) },
2488     { .name = "946_PRBS3", .cp = 15, .crn = 6, .crm = 3, .opc1 = 0,
2489       .opc2 = CP_ANY, .access = PL1_RW, .resetvalue = 0,
2490       .fieldoffset = offsetof(CPUARMState, cp15.c6_region[3]) },
2491     { .name = "946_PRBS4", .cp = 15, .crn = 6, .crm = 4, .opc1 = 0,
2492       .opc2 = CP_ANY, .access = PL1_RW, .resetvalue = 0,
2493       .fieldoffset = offsetof(CPUARMState, cp15.c6_region[4]) },
2494     { .name = "946_PRBS5", .cp = 15, .crn = 6, .crm = 5, .opc1 = 0,
2495       .opc2 = CP_ANY, .access = PL1_RW, .resetvalue = 0,
2496       .fieldoffset = offsetof(CPUARMState, cp15.c6_region[5]) },
2497     { .name = "946_PRBS6", .cp = 15, .crn = 6, .crm = 6, .opc1 = 0,
2498       .opc2 = CP_ANY, .access = PL1_RW, .resetvalue = 0,
2499       .fieldoffset = offsetof(CPUARMState, cp15.c6_region[6]) },
2500     { .name = "946_PRBS7", .cp = 15, .crn = 6, .crm = 7, .opc1 = 0,
2501       .opc2 = CP_ANY, .access = PL1_RW, .resetvalue = 0,
2502       .fieldoffset = offsetof(CPUARMState, cp15.c6_region[7]) },
2503     REGINFO_SENTINEL
2504 };
2505 
2506 static void vmsa_ttbcr_raw_write(CPUARMState *env, const ARMCPRegInfo *ri,
2507                                  uint64_t value)
2508 {
2509     TCR *tcr = raw_ptr(env, ri);
2510     int maskshift = extract32(value, 0, 3);
2511 
2512     if (!arm_feature(env, ARM_FEATURE_V8)) {
2513         if (arm_feature(env, ARM_FEATURE_LPAE) && (value & TTBCR_EAE)) {
2514             /* Pre ARMv8 bits [21:19], [15:14] and [6:3] are UNK/SBZP when
2515              * using Long-desciptor translation table format */
2516             value &= ~((7 << 19) | (3 << 14) | (0xf << 3));
2517         } else if (arm_feature(env, ARM_FEATURE_EL3)) {
2518             /* In an implementation that includes the Security Extensions
2519              * TTBCR has additional fields PD0 [4] and PD1 [5] for
2520              * Short-descriptor translation table format.
2521              */
2522             value &= TTBCR_PD1 | TTBCR_PD0 | TTBCR_N;
2523         } else {
2524             value &= TTBCR_N;
2525         }
2526     }
2527 
2528     /* Update the masks corresponding to the TCR bank being written
2529      * Note that we always calculate mask and base_mask, but
2530      * they are only used for short-descriptor tables (ie if EAE is 0);
2531      * for long-descriptor tables the TCR fields are used differently
2532      * and the mask and base_mask values are meaningless.
2533      */
2534     tcr->raw_tcr = value;
2535     tcr->mask = ~(((uint32_t)0xffffffffu) >> maskshift);
2536     tcr->base_mask = ~((uint32_t)0x3fffu >> maskshift);
2537 }
2538 
2539 static void vmsa_ttbcr_write(CPUARMState *env, const ARMCPRegInfo *ri,
2540                              uint64_t value)
2541 {
2542     ARMCPU *cpu = arm_env_get_cpu(env);
2543 
2544     if (arm_feature(env, ARM_FEATURE_LPAE)) {
2545         /* With LPAE the TTBCR could result in a change of ASID
2546          * via the TTBCR.A1 bit, so do a TLB flush.
2547          */
2548         tlb_flush(CPU(cpu));
2549     }
2550     vmsa_ttbcr_raw_write(env, ri, value);
2551 }
2552 
2553 static void vmsa_ttbcr_reset(CPUARMState *env, const ARMCPRegInfo *ri)
2554 {
2555     TCR *tcr = raw_ptr(env, ri);
2556 
2557     /* Reset both the TCR as well as the masks corresponding to the bank of
2558      * the TCR being reset.
2559      */
2560     tcr->raw_tcr = 0;
2561     tcr->mask = 0;
2562     tcr->base_mask = 0xffffc000u;
2563 }
2564 
2565 static void vmsa_tcr_el1_write(CPUARMState *env, const ARMCPRegInfo *ri,
2566                                uint64_t value)
2567 {
2568     ARMCPU *cpu = arm_env_get_cpu(env);
2569     TCR *tcr = raw_ptr(env, ri);
2570 
2571     /* For AArch64 the A1 bit could result in a change of ASID, so TLB flush. */
2572     tlb_flush(CPU(cpu));
2573     tcr->raw_tcr = value;
2574 }
2575 
2576 static void vmsa_ttbr_write(CPUARMState *env, const ARMCPRegInfo *ri,
2577                             uint64_t value)
2578 {
2579     /* 64 bit accesses to the TTBRs can change the ASID and so we
2580      * must flush the TLB.
2581      */
2582     if (cpreg_field_is_64bit(ri)) {
2583         ARMCPU *cpu = arm_env_get_cpu(env);
2584 
2585         tlb_flush(CPU(cpu));
2586     }
2587     raw_write(env, ri, value);
2588 }
2589 
2590 static void vttbr_write(CPUARMState *env, const ARMCPRegInfo *ri,
2591                         uint64_t value)
2592 {
2593     ARMCPU *cpu = arm_env_get_cpu(env);
2594     CPUState *cs = CPU(cpu);
2595 
2596     /* Accesses to VTTBR may change the VMID so we must flush the TLB.  */
2597     if (raw_read(env, ri) != value) {
2598         tlb_flush_by_mmuidx(cs,
2599                             ARMMMUIdxBit_S12NSE1 |
2600                             ARMMMUIdxBit_S12NSE0 |
2601                             ARMMMUIdxBit_S2NS);
2602         raw_write(env, ri, value);
2603     }
2604 }
2605 
2606 static const ARMCPRegInfo vmsa_pmsa_cp_reginfo[] = {
2607     { .name = "DFSR", .cp = 15, .crn = 5, .crm = 0, .opc1 = 0, .opc2 = 0,
2608       .access = PL1_RW, .type = ARM_CP_ALIAS,
2609       .bank_fieldoffsets = { offsetoflow32(CPUARMState, cp15.dfsr_s),
2610                              offsetoflow32(CPUARMState, cp15.dfsr_ns) }, },
2611     { .name = "IFSR", .cp = 15, .crn = 5, .crm = 0, .opc1 = 0, .opc2 = 1,
2612       .access = PL1_RW, .resetvalue = 0,
2613       .bank_fieldoffsets = { offsetoflow32(CPUARMState, cp15.ifsr_s),
2614                              offsetoflow32(CPUARMState, cp15.ifsr_ns) } },
2615     { .name = "DFAR", .cp = 15, .opc1 = 0, .crn = 6, .crm = 0, .opc2 = 0,
2616       .access = PL1_RW, .resetvalue = 0,
2617       .bank_fieldoffsets = { offsetof(CPUARMState, cp15.dfar_s),
2618                              offsetof(CPUARMState, cp15.dfar_ns) } },
2619     { .name = "FAR_EL1", .state = ARM_CP_STATE_AA64,
2620       .opc0 = 3, .crn = 6, .crm = 0, .opc1 = 0, .opc2 = 0,
2621       .access = PL1_RW, .fieldoffset = offsetof(CPUARMState, cp15.far_el[1]),
2622       .resetvalue = 0, },
2623     REGINFO_SENTINEL
2624 };
2625 
2626 static const ARMCPRegInfo vmsa_cp_reginfo[] = {
2627     { .name = "ESR_EL1", .state = ARM_CP_STATE_AA64,
2628       .opc0 = 3, .crn = 5, .crm = 2, .opc1 = 0, .opc2 = 0,
2629       .access = PL1_RW,
2630       .fieldoffset = offsetof(CPUARMState, cp15.esr_el[1]), .resetvalue = 0, },
2631     { .name = "TTBR0_EL1", .state = ARM_CP_STATE_BOTH,
2632       .opc0 = 3, .opc1 = 0, .crn = 2, .crm = 0, .opc2 = 0,
2633       .access = PL1_RW, .writefn = vmsa_ttbr_write, .resetvalue = 0,
2634       .bank_fieldoffsets = { offsetof(CPUARMState, cp15.ttbr0_s),
2635                              offsetof(CPUARMState, cp15.ttbr0_ns) } },
2636     { .name = "TTBR1_EL1", .state = ARM_CP_STATE_BOTH,
2637       .opc0 = 3, .opc1 = 0, .crn = 2, .crm = 0, .opc2 = 1,
2638       .access = PL1_RW, .writefn = vmsa_ttbr_write, .resetvalue = 0,
2639       .bank_fieldoffsets = { offsetof(CPUARMState, cp15.ttbr1_s),
2640                              offsetof(CPUARMState, cp15.ttbr1_ns) } },
2641     { .name = "TCR_EL1", .state = ARM_CP_STATE_AA64,
2642       .opc0 = 3, .crn = 2, .crm = 0, .opc1 = 0, .opc2 = 2,
2643       .access = PL1_RW, .writefn = vmsa_tcr_el1_write,
2644       .resetfn = vmsa_ttbcr_reset, .raw_writefn = raw_write,
2645       .fieldoffset = offsetof(CPUARMState, cp15.tcr_el[1]) },
2646     { .name = "TTBCR", .cp = 15, .crn = 2, .crm = 0, .opc1 = 0, .opc2 = 2,
2647       .access = PL1_RW, .type = ARM_CP_ALIAS, .writefn = vmsa_ttbcr_write,
2648       .raw_writefn = vmsa_ttbcr_raw_write,
2649       .bank_fieldoffsets = { offsetoflow32(CPUARMState, cp15.tcr_el[3]),
2650                              offsetoflow32(CPUARMState, cp15.tcr_el[1])} },
2651     REGINFO_SENTINEL
2652 };
2653 
2654 static void omap_ticonfig_write(CPUARMState *env, const ARMCPRegInfo *ri,
2655                                 uint64_t value)
2656 {
2657     env->cp15.c15_ticonfig = value & 0xe7;
2658     /* The OS_TYPE bit in this register changes the reported CPUID! */
2659     env->cp15.c0_cpuid = (value & (1 << 5)) ?
2660         ARM_CPUID_TI915T : ARM_CPUID_TI925T;
2661 }
2662 
2663 static void omap_threadid_write(CPUARMState *env, const ARMCPRegInfo *ri,
2664                                 uint64_t value)
2665 {
2666     env->cp15.c15_threadid = value & 0xffff;
2667 }
2668 
2669 static void omap_wfi_write(CPUARMState *env, const ARMCPRegInfo *ri,
2670                            uint64_t value)
2671 {
2672     /* Wait-for-interrupt (deprecated) */
2673     cpu_interrupt(CPU(arm_env_get_cpu(env)), CPU_INTERRUPT_HALT);
2674 }
2675 
2676 static void omap_cachemaint_write(CPUARMState *env, const ARMCPRegInfo *ri,
2677                                   uint64_t value)
2678 {
2679     /* On OMAP there are registers indicating the max/min index of dcache lines
2680      * containing a dirty line; cache flush operations have to reset these.
2681      */
2682     env->cp15.c15_i_max = 0x000;
2683     env->cp15.c15_i_min = 0xff0;
2684 }
2685 
2686 static const ARMCPRegInfo omap_cp_reginfo[] = {
2687     { .name = "DFSR", .cp = 15, .crn = 5, .crm = CP_ANY,
2688       .opc1 = CP_ANY, .opc2 = CP_ANY, .access = PL1_RW, .type = ARM_CP_OVERRIDE,
2689       .fieldoffset = offsetoflow32(CPUARMState, cp15.esr_el[1]),
2690       .resetvalue = 0, },
2691     { .name = "", .cp = 15, .crn = 15, .crm = 0, .opc1 = 0, .opc2 = 0,
2692       .access = PL1_RW, .type = ARM_CP_NOP },
2693     { .name = "TICONFIG", .cp = 15, .crn = 15, .crm = 1, .opc1 = 0, .opc2 = 0,
2694       .access = PL1_RW,
2695       .fieldoffset = offsetof(CPUARMState, cp15.c15_ticonfig), .resetvalue = 0,
2696       .writefn = omap_ticonfig_write },
2697     { .name = "IMAX", .cp = 15, .crn = 15, .crm = 2, .opc1 = 0, .opc2 = 0,
2698       .access = PL1_RW,
2699       .fieldoffset = offsetof(CPUARMState, cp15.c15_i_max), .resetvalue = 0, },
2700     { .name = "IMIN", .cp = 15, .crn = 15, .crm = 3, .opc1 = 0, .opc2 = 0,
2701       .access = PL1_RW, .resetvalue = 0xff0,
2702       .fieldoffset = offsetof(CPUARMState, cp15.c15_i_min) },
2703     { .name = "THREADID", .cp = 15, .crn = 15, .crm = 4, .opc1 = 0, .opc2 = 0,
2704       .access = PL1_RW,
2705       .fieldoffset = offsetof(CPUARMState, cp15.c15_threadid), .resetvalue = 0,
2706       .writefn = omap_threadid_write },
2707     { .name = "TI925T_STATUS", .cp = 15, .crn = 15,
2708       .crm = 8, .opc1 = 0, .opc2 = 0, .access = PL1_RW,
2709       .type = ARM_CP_NO_RAW,
2710       .readfn = arm_cp_read_zero, .writefn = omap_wfi_write, },
2711     /* TODO: Peripheral port remap register:
2712      * On OMAP2 mcr p15, 0, rn, c15, c2, 4 sets up the interrupt controller
2713      * base address at $rn & ~0xfff and map size of 0x200 << ($rn & 0xfff),
2714      * when MMU is off.
2715      */
2716     { .name = "OMAP_CACHEMAINT", .cp = 15, .crn = 7, .crm = CP_ANY,
2717       .opc1 = 0, .opc2 = CP_ANY, .access = PL1_W,
2718       .type = ARM_CP_OVERRIDE | ARM_CP_NO_RAW,
2719       .writefn = omap_cachemaint_write },
2720     { .name = "C9", .cp = 15, .crn = 9,
2721       .crm = CP_ANY, .opc1 = CP_ANY, .opc2 = CP_ANY, .access = PL1_RW,
2722       .type = ARM_CP_CONST | ARM_CP_OVERRIDE, .resetvalue = 0 },
2723     REGINFO_SENTINEL
2724 };
2725 
2726 static void xscale_cpar_write(CPUARMState *env, const ARMCPRegInfo *ri,
2727                               uint64_t value)
2728 {
2729     env->cp15.c15_cpar = value & 0x3fff;
2730 }
2731 
2732 static const ARMCPRegInfo xscale_cp_reginfo[] = {
2733     { .name = "XSCALE_CPAR",
2734       .cp = 15, .crn = 15, .crm = 1, .opc1 = 0, .opc2 = 0, .access = PL1_RW,
2735       .fieldoffset = offsetof(CPUARMState, cp15.c15_cpar), .resetvalue = 0,
2736       .writefn = xscale_cpar_write, },
2737     { .name = "XSCALE_AUXCR",
2738       .cp = 15, .crn = 1, .crm = 0, .opc1 = 0, .opc2 = 1, .access = PL1_RW,
2739       .fieldoffset = offsetof(CPUARMState, cp15.c1_xscaleauxcr),
2740       .resetvalue = 0, },
2741     /* XScale specific cache-lockdown: since we have no cache we NOP these
2742      * and hope the guest does not really rely on cache behaviour.
2743      */
2744     { .name = "XSCALE_LOCK_ICACHE_LINE",
2745       .cp = 15, .opc1 = 0, .crn = 9, .crm = 1, .opc2 = 0,
2746       .access = PL1_W, .type = ARM_CP_NOP },
2747     { .name = "XSCALE_UNLOCK_ICACHE",
2748       .cp = 15, .opc1 = 0, .crn = 9, .crm = 1, .opc2 = 1,
2749       .access = PL1_W, .type = ARM_CP_NOP },
2750     { .name = "XSCALE_DCACHE_LOCK",
2751       .cp = 15, .opc1 = 0, .crn = 9, .crm = 2, .opc2 = 0,
2752       .access = PL1_RW, .type = ARM_CP_NOP },
2753     { .name = "XSCALE_UNLOCK_DCACHE",
2754       .cp = 15, .opc1 = 0, .crn = 9, .crm = 2, .opc2 = 1,
2755       .access = PL1_W, .type = ARM_CP_NOP },
2756     REGINFO_SENTINEL
2757 };
2758 
2759 static const ARMCPRegInfo dummy_c15_cp_reginfo[] = {
2760     /* RAZ/WI the whole crn=15 space, when we don't have a more specific
2761      * implementation of this implementation-defined space.
2762      * Ideally this should eventually disappear in favour of actually
2763      * implementing the correct behaviour for all cores.
2764      */
2765     { .name = "C15_IMPDEF", .cp = 15, .crn = 15,
2766       .crm = CP_ANY, .opc1 = CP_ANY, .opc2 = CP_ANY,
2767       .access = PL1_RW,
2768       .type = ARM_CP_CONST | ARM_CP_NO_RAW | ARM_CP_OVERRIDE,
2769       .resetvalue = 0 },
2770     REGINFO_SENTINEL
2771 };
2772 
2773 static const ARMCPRegInfo cache_dirty_status_cp_reginfo[] = {
2774     /* Cache status: RAZ because we have no cache so it's always clean */
2775     { .name = "CDSR", .cp = 15, .crn = 7, .crm = 10, .opc1 = 0, .opc2 = 6,
2776       .access = PL1_R, .type = ARM_CP_CONST | ARM_CP_NO_RAW,
2777       .resetvalue = 0 },
2778     REGINFO_SENTINEL
2779 };
2780 
2781 static const ARMCPRegInfo cache_block_ops_cp_reginfo[] = {
2782     /* We never have a a block transfer operation in progress */
2783     { .name = "BXSR", .cp = 15, .crn = 7, .crm = 12, .opc1 = 0, .opc2 = 4,
2784       .access = PL0_R, .type = ARM_CP_CONST | ARM_CP_NO_RAW,
2785       .resetvalue = 0 },
2786     /* The cache ops themselves: these all NOP for QEMU */
2787     { .name = "IICR", .cp = 15, .crm = 5, .opc1 = 0,
2788       .access = PL1_W, .type = ARM_CP_NOP|ARM_CP_64BIT },
2789     { .name = "IDCR", .cp = 15, .crm = 6, .opc1 = 0,
2790       .access = PL1_W, .type = ARM_CP_NOP|ARM_CP_64BIT },
2791     { .name = "CDCR", .cp = 15, .crm = 12, .opc1 = 0,
2792       .access = PL0_W, .type = ARM_CP_NOP|ARM_CP_64BIT },
2793     { .name = "PIR", .cp = 15, .crm = 12, .opc1 = 1,
2794       .access = PL0_W, .type = ARM_CP_NOP|ARM_CP_64BIT },
2795     { .name = "PDR", .cp = 15, .crm = 12, .opc1 = 2,
2796       .access = PL0_W, .type = ARM_CP_NOP|ARM_CP_64BIT },
2797     { .name = "CIDCR", .cp = 15, .crm = 14, .opc1 = 0,
2798       .access = PL1_W, .type = ARM_CP_NOP|ARM_CP_64BIT },
2799     REGINFO_SENTINEL
2800 };
2801 
2802 static const ARMCPRegInfo cache_test_clean_cp_reginfo[] = {
2803     /* The cache test-and-clean instructions always return (1 << 30)
2804      * to indicate that there are no dirty cache lines.
2805      */
2806     { .name = "TC_DCACHE", .cp = 15, .crn = 7, .crm = 10, .opc1 = 0, .opc2 = 3,
2807       .access = PL0_R, .type = ARM_CP_CONST | ARM_CP_NO_RAW,
2808       .resetvalue = (1 << 30) },
2809     { .name = "TCI_DCACHE", .cp = 15, .crn = 7, .crm = 14, .opc1 = 0, .opc2 = 3,
2810       .access = PL0_R, .type = ARM_CP_CONST | ARM_CP_NO_RAW,
2811       .resetvalue = (1 << 30) },
2812     REGINFO_SENTINEL
2813 };
2814 
2815 static const ARMCPRegInfo strongarm_cp_reginfo[] = {
2816     /* Ignore ReadBuffer accesses */
2817     { .name = "C9_READBUFFER", .cp = 15, .crn = 9,
2818       .crm = CP_ANY, .opc1 = CP_ANY, .opc2 = CP_ANY,
2819       .access = PL1_RW, .resetvalue = 0,
2820       .type = ARM_CP_CONST | ARM_CP_OVERRIDE | ARM_CP_NO_RAW },
2821     REGINFO_SENTINEL
2822 };
2823 
2824 static uint64_t midr_read(CPUARMState *env, const ARMCPRegInfo *ri)
2825 {
2826     ARMCPU *cpu = arm_env_get_cpu(env);
2827     unsigned int cur_el = arm_current_el(env);
2828     bool secure = arm_is_secure(env);
2829 
2830     if (arm_feature(&cpu->env, ARM_FEATURE_EL2) && !secure && cur_el == 1) {
2831         return env->cp15.vpidr_el2;
2832     }
2833     return raw_read(env, ri);
2834 }
2835 
2836 static uint64_t mpidr_read_val(CPUARMState *env)
2837 {
2838     ARMCPU *cpu = ARM_CPU(arm_env_get_cpu(env));
2839     uint64_t mpidr = cpu->mp_affinity;
2840 
2841     if (arm_feature(env, ARM_FEATURE_V7MP)) {
2842         mpidr |= (1U << 31);
2843         /* Cores which are uniprocessor (non-coherent)
2844          * but still implement the MP extensions set
2845          * bit 30. (For instance, Cortex-R5).
2846          */
2847         if (cpu->mp_is_up) {
2848             mpidr |= (1u << 30);
2849         }
2850     }
2851     return mpidr;
2852 }
2853 
2854 static uint64_t mpidr_read(CPUARMState *env, const ARMCPRegInfo *ri)
2855 {
2856     unsigned int cur_el = arm_current_el(env);
2857     bool secure = arm_is_secure(env);
2858 
2859     if (arm_feature(env, ARM_FEATURE_EL2) && !secure && cur_el == 1) {
2860         return env->cp15.vmpidr_el2;
2861     }
2862     return mpidr_read_val(env);
2863 }
2864 
2865 static const ARMCPRegInfo mpidr_cp_reginfo[] = {
2866     { .name = "MPIDR", .state = ARM_CP_STATE_BOTH,
2867       .opc0 = 3, .crn = 0, .crm = 0, .opc1 = 0, .opc2 = 5,
2868       .access = PL1_R, .readfn = mpidr_read, .type = ARM_CP_NO_RAW },
2869     REGINFO_SENTINEL
2870 };
2871 
2872 static const ARMCPRegInfo lpae_cp_reginfo[] = {
2873     /* NOP AMAIR0/1 */
2874     { .name = "AMAIR0", .state = ARM_CP_STATE_BOTH,
2875       .opc0 = 3, .crn = 10, .crm = 3, .opc1 = 0, .opc2 = 0,
2876       .access = PL1_RW, .type = ARM_CP_CONST,
2877       .resetvalue = 0 },
2878     /* AMAIR1 is mapped to AMAIR_EL1[63:32] */
2879     { .name = "AMAIR1", .cp = 15, .crn = 10, .crm = 3, .opc1 = 0, .opc2 = 1,
2880       .access = PL1_RW, .type = ARM_CP_CONST,
2881       .resetvalue = 0 },
2882     { .name = "PAR", .cp = 15, .crm = 7, .opc1 = 0,
2883       .access = PL1_RW, .type = ARM_CP_64BIT, .resetvalue = 0,
2884       .bank_fieldoffsets = { offsetof(CPUARMState, cp15.par_s),
2885                              offsetof(CPUARMState, cp15.par_ns)} },
2886     { .name = "TTBR0", .cp = 15, .crm = 2, .opc1 = 0,
2887       .access = PL1_RW, .type = ARM_CP_64BIT | ARM_CP_ALIAS,
2888       .bank_fieldoffsets = { offsetof(CPUARMState, cp15.ttbr0_s),
2889                              offsetof(CPUARMState, cp15.ttbr0_ns) },
2890       .writefn = vmsa_ttbr_write, },
2891     { .name = "TTBR1", .cp = 15, .crm = 2, .opc1 = 1,
2892       .access = PL1_RW, .type = ARM_CP_64BIT | ARM_CP_ALIAS,
2893       .bank_fieldoffsets = { offsetof(CPUARMState, cp15.ttbr1_s),
2894                              offsetof(CPUARMState, cp15.ttbr1_ns) },
2895       .writefn = vmsa_ttbr_write, },
2896     REGINFO_SENTINEL
2897 };
2898 
2899 static uint64_t aa64_fpcr_read(CPUARMState *env, const ARMCPRegInfo *ri)
2900 {
2901     return vfp_get_fpcr(env);
2902 }
2903 
2904 static void aa64_fpcr_write(CPUARMState *env, const ARMCPRegInfo *ri,
2905                             uint64_t value)
2906 {
2907     vfp_set_fpcr(env, value);
2908 }
2909 
2910 static uint64_t aa64_fpsr_read(CPUARMState *env, const ARMCPRegInfo *ri)
2911 {
2912     return vfp_get_fpsr(env);
2913 }
2914 
2915 static void aa64_fpsr_write(CPUARMState *env, const ARMCPRegInfo *ri,
2916                             uint64_t value)
2917 {
2918     vfp_set_fpsr(env, value);
2919 }
2920 
2921 static CPAccessResult aa64_daif_access(CPUARMState *env, const ARMCPRegInfo *ri,
2922                                        bool isread)
2923 {
2924     if (arm_current_el(env) == 0 && !(env->cp15.sctlr_el[1] & SCTLR_UMA)) {
2925         return CP_ACCESS_TRAP;
2926     }
2927     return CP_ACCESS_OK;
2928 }
2929 
2930 static void aa64_daif_write(CPUARMState *env, const ARMCPRegInfo *ri,
2931                             uint64_t value)
2932 {
2933     env->daif = value & PSTATE_DAIF;
2934 }
2935 
2936 static CPAccessResult aa64_cacheop_access(CPUARMState *env,
2937                                           const ARMCPRegInfo *ri,
2938                                           bool isread)
2939 {
2940     /* Cache invalidate/clean: NOP, but EL0 must UNDEF unless
2941      * SCTLR_EL1.UCI is set.
2942      */
2943     if (arm_current_el(env) == 0 && !(env->cp15.sctlr_el[1] & SCTLR_UCI)) {
2944         return CP_ACCESS_TRAP;
2945     }
2946     return CP_ACCESS_OK;
2947 }
2948 
2949 /* See: D4.7.2 TLB maintenance requirements and the TLB maintenance instructions
2950  * Page D4-1736 (DDI0487A.b)
2951  */
2952 
2953 static void tlbi_aa64_vmalle1_write(CPUARMState *env, const ARMCPRegInfo *ri,
2954                                     uint64_t value)
2955 {
2956     CPUState *cs = ENV_GET_CPU(env);
2957 
2958     if (arm_is_secure_below_el3(env)) {
2959         tlb_flush_by_mmuidx(cs,
2960                             ARMMMUIdxBit_S1SE1 |
2961                             ARMMMUIdxBit_S1SE0);
2962     } else {
2963         tlb_flush_by_mmuidx(cs,
2964                             ARMMMUIdxBit_S12NSE1 |
2965                             ARMMMUIdxBit_S12NSE0);
2966     }
2967 }
2968 
2969 static void tlbi_aa64_vmalle1is_write(CPUARMState *env, const ARMCPRegInfo *ri,
2970                                       uint64_t value)
2971 {
2972     CPUState *cs = ENV_GET_CPU(env);
2973     bool sec = arm_is_secure_below_el3(env);
2974 
2975     if (sec) {
2976         tlb_flush_by_mmuidx_all_cpus_synced(cs,
2977                                             ARMMMUIdxBit_S1SE1 |
2978                                             ARMMMUIdxBit_S1SE0);
2979     } else {
2980         tlb_flush_by_mmuidx_all_cpus_synced(cs,
2981                                             ARMMMUIdxBit_S12NSE1 |
2982                                             ARMMMUIdxBit_S12NSE0);
2983     }
2984 }
2985 
2986 static void tlbi_aa64_alle1_write(CPUARMState *env, const ARMCPRegInfo *ri,
2987                                   uint64_t value)
2988 {
2989     /* Note that the 'ALL' scope must invalidate both stage 1 and
2990      * stage 2 translations, whereas most other scopes only invalidate
2991      * stage 1 translations.
2992      */
2993     ARMCPU *cpu = arm_env_get_cpu(env);
2994     CPUState *cs = CPU(cpu);
2995 
2996     if (arm_is_secure_below_el3(env)) {
2997         tlb_flush_by_mmuidx(cs,
2998                             ARMMMUIdxBit_S1SE1 |
2999                             ARMMMUIdxBit_S1SE0);
3000     } else {
3001         if (arm_feature(env, ARM_FEATURE_EL2)) {
3002             tlb_flush_by_mmuidx(cs,
3003                                 ARMMMUIdxBit_S12NSE1 |
3004                                 ARMMMUIdxBit_S12NSE0 |
3005                                 ARMMMUIdxBit_S2NS);
3006         } else {
3007             tlb_flush_by_mmuidx(cs,
3008                                 ARMMMUIdxBit_S12NSE1 |
3009                                 ARMMMUIdxBit_S12NSE0);
3010         }
3011     }
3012 }
3013 
3014 static void tlbi_aa64_alle2_write(CPUARMState *env, const ARMCPRegInfo *ri,
3015                                   uint64_t value)
3016 {
3017     ARMCPU *cpu = arm_env_get_cpu(env);
3018     CPUState *cs = CPU(cpu);
3019 
3020     tlb_flush_by_mmuidx(cs, ARMMMUIdxBit_S1E2);
3021 }
3022 
3023 static void tlbi_aa64_alle3_write(CPUARMState *env, const ARMCPRegInfo *ri,
3024                                   uint64_t value)
3025 {
3026     ARMCPU *cpu = arm_env_get_cpu(env);
3027     CPUState *cs = CPU(cpu);
3028 
3029     tlb_flush_by_mmuidx(cs, ARMMMUIdxBit_S1E3);
3030 }
3031 
3032 static void tlbi_aa64_alle1is_write(CPUARMState *env, const ARMCPRegInfo *ri,
3033                                     uint64_t value)
3034 {
3035     /* Note that the 'ALL' scope must invalidate both stage 1 and
3036      * stage 2 translations, whereas most other scopes only invalidate
3037      * stage 1 translations.
3038      */
3039     CPUState *cs = ENV_GET_CPU(env);
3040     bool sec = arm_is_secure_below_el3(env);
3041     bool has_el2 = arm_feature(env, ARM_FEATURE_EL2);
3042 
3043     if (sec) {
3044         tlb_flush_by_mmuidx_all_cpus_synced(cs,
3045                                             ARMMMUIdxBit_S1SE1 |
3046                                             ARMMMUIdxBit_S1SE0);
3047     } else if (has_el2) {
3048         tlb_flush_by_mmuidx_all_cpus_synced(cs,
3049                                             ARMMMUIdxBit_S12NSE1 |
3050                                             ARMMMUIdxBit_S12NSE0 |
3051                                             ARMMMUIdxBit_S2NS);
3052     } else {
3053           tlb_flush_by_mmuidx_all_cpus_synced(cs,
3054                                               ARMMMUIdxBit_S12NSE1 |
3055                                               ARMMMUIdxBit_S12NSE0);
3056     }
3057 }
3058 
3059 static void tlbi_aa64_alle2is_write(CPUARMState *env, const ARMCPRegInfo *ri,
3060                                     uint64_t value)
3061 {
3062     CPUState *cs = ENV_GET_CPU(env);
3063 
3064     tlb_flush_by_mmuidx_all_cpus_synced(cs, ARMMMUIdxBit_S1E2);
3065 }
3066 
3067 static void tlbi_aa64_alle3is_write(CPUARMState *env, const ARMCPRegInfo *ri,
3068                                     uint64_t value)
3069 {
3070     CPUState *cs = ENV_GET_CPU(env);
3071 
3072     tlb_flush_by_mmuidx_all_cpus_synced(cs, ARMMMUIdxBit_S1E3);
3073 }
3074 
3075 static void tlbi_aa64_vae1_write(CPUARMState *env, const ARMCPRegInfo *ri,
3076                                  uint64_t value)
3077 {
3078     /* Invalidate by VA, EL1&0 (AArch64 version).
3079      * Currently handles all of VAE1, VAAE1, VAALE1 and VALE1,
3080      * since we don't support flush-for-specific-ASID-only or
3081      * flush-last-level-only.
3082      */
3083     ARMCPU *cpu = arm_env_get_cpu(env);
3084     CPUState *cs = CPU(cpu);
3085     uint64_t pageaddr = sextract64(value << 12, 0, 56);
3086 
3087     if (arm_is_secure_below_el3(env)) {
3088         tlb_flush_page_by_mmuidx(cs, pageaddr,
3089                                  ARMMMUIdxBit_S1SE1 |
3090                                  ARMMMUIdxBit_S1SE0);
3091     } else {
3092         tlb_flush_page_by_mmuidx(cs, pageaddr,
3093                                  ARMMMUIdxBit_S12NSE1 |
3094                                  ARMMMUIdxBit_S12NSE0);
3095     }
3096 }
3097 
3098 static void tlbi_aa64_vae2_write(CPUARMState *env, const ARMCPRegInfo *ri,
3099                                  uint64_t value)
3100 {
3101     /* Invalidate by VA, EL2
3102      * Currently handles both VAE2 and VALE2, since we don't support
3103      * flush-last-level-only.
3104      */
3105     ARMCPU *cpu = arm_env_get_cpu(env);
3106     CPUState *cs = CPU(cpu);
3107     uint64_t pageaddr = sextract64(value << 12, 0, 56);
3108 
3109     tlb_flush_page_by_mmuidx(cs, pageaddr, ARMMMUIdxBit_S1E2);
3110 }
3111 
3112 static void tlbi_aa64_vae3_write(CPUARMState *env, const ARMCPRegInfo *ri,
3113                                  uint64_t value)
3114 {
3115     /* Invalidate by VA, EL3
3116      * Currently handles both VAE3 and VALE3, since we don't support
3117      * flush-last-level-only.
3118      */
3119     ARMCPU *cpu = arm_env_get_cpu(env);
3120     CPUState *cs = CPU(cpu);
3121     uint64_t pageaddr = sextract64(value << 12, 0, 56);
3122 
3123     tlb_flush_page_by_mmuidx(cs, pageaddr, ARMMMUIdxBit_S1E3);
3124 }
3125 
3126 static void tlbi_aa64_vae1is_write(CPUARMState *env, const ARMCPRegInfo *ri,
3127                                    uint64_t value)
3128 {
3129     ARMCPU *cpu = arm_env_get_cpu(env);
3130     CPUState *cs = CPU(cpu);
3131     bool sec = arm_is_secure_below_el3(env);
3132     uint64_t pageaddr = sextract64(value << 12, 0, 56);
3133 
3134     if (sec) {
3135         tlb_flush_page_by_mmuidx_all_cpus_synced(cs, pageaddr,
3136                                                  ARMMMUIdxBit_S1SE1 |
3137                                                  ARMMMUIdxBit_S1SE0);
3138     } else {
3139         tlb_flush_page_by_mmuidx_all_cpus_synced(cs, pageaddr,
3140                                                  ARMMMUIdxBit_S12NSE1 |
3141                                                  ARMMMUIdxBit_S12NSE0);
3142     }
3143 }
3144 
3145 static void tlbi_aa64_vae2is_write(CPUARMState *env, const ARMCPRegInfo *ri,
3146                                    uint64_t value)
3147 {
3148     CPUState *cs = ENV_GET_CPU(env);
3149     uint64_t pageaddr = sextract64(value << 12, 0, 56);
3150 
3151     tlb_flush_page_by_mmuidx_all_cpus_synced(cs, pageaddr,
3152                                              ARMMMUIdxBit_S1E2);
3153 }
3154 
3155 static void tlbi_aa64_vae3is_write(CPUARMState *env, const ARMCPRegInfo *ri,
3156                                    uint64_t value)
3157 {
3158     CPUState *cs = ENV_GET_CPU(env);
3159     uint64_t pageaddr = sextract64(value << 12, 0, 56);
3160 
3161     tlb_flush_page_by_mmuidx_all_cpus_synced(cs, pageaddr,
3162                                              ARMMMUIdxBit_S1E3);
3163 }
3164 
3165 static void tlbi_aa64_ipas2e1_write(CPUARMState *env, const ARMCPRegInfo *ri,
3166                                     uint64_t value)
3167 {
3168     /* Invalidate by IPA. This has to invalidate any structures that
3169      * contain only stage 2 translation information, but does not need
3170      * to apply to structures that contain combined stage 1 and stage 2
3171      * translation information.
3172      * This must NOP if EL2 isn't implemented or SCR_EL3.NS is zero.
3173      */
3174     ARMCPU *cpu = arm_env_get_cpu(env);
3175     CPUState *cs = CPU(cpu);
3176     uint64_t pageaddr;
3177 
3178     if (!arm_feature(env, ARM_FEATURE_EL2) || !(env->cp15.scr_el3 & SCR_NS)) {
3179         return;
3180     }
3181 
3182     pageaddr = sextract64(value << 12, 0, 48);
3183 
3184     tlb_flush_page_by_mmuidx(cs, pageaddr, ARMMMUIdxBit_S2NS);
3185 }
3186 
3187 static void tlbi_aa64_ipas2e1is_write(CPUARMState *env, const ARMCPRegInfo *ri,
3188                                       uint64_t value)
3189 {
3190     CPUState *cs = ENV_GET_CPU(env);
3191     uint64_t pageaddr;
3192 
3193     if (!arm_feature(env, ARM_FEATURE_EL2) || !(env->cp15.scr_el3 & SCR_NS)) {
3194         return;
3195     }
3196 
3197     pageaddr = sextract64(value << 12, 0, 48);
3198 
3199     tlb_flush_page_by_mmuidx_all_cpus_synced(cs, pageaddr,
3200                                              ARMMMUIdxBit_S2NS);
3201 }
3202 
3203 static CPAccessResult aa64_zva_access(CPUARMState *env, const ARMCPRegInfo *ri,
3204                                       bool isread)
3205 {
3206     /* We don't implement EL2, so the only control on DC ZVA is the
3207      * bit in the SCTLR which can prohibit access for EL0.
3208      */
3209     if (arm_current_el(env) == 0 && !(env->cp15.sctlr_el[1] & SCTLR_DZE)) {
3210         return CP_ACCESS_TRAP;
3211     }
3212     return CP_ACCESS_OK;
3213 }
3214 
3215 static uint64_t aa64_dczid_read(CPUARMState *env, const ARMCPRegInfo *ri)
3216 {
3217     ARMCPU *cpu = arm_env_get_cpu(env);
3218     int dzp_bit = 1 << 4;
3219 
3220     /* DZP indicates whether DC ZVA access is allowed */
3221     if (aa64_zva_access(env, NULL, false) == CP_ACCESS_OK) {
3222         dzp_bit = 0;
3223     }
3224     return cpu->dcz_blocksize | dzp_bit;
3225 }
3226 
3227 static CPAccessResult sp_el0_access(CPUARMState *env, const ARMCPRegInfo *ri,
3228                                     bool isread)
3229 {
3230     if (!(env->pstate & PSTATE_SP)) {
3231         /* Access to SP_EL0 is undefined if it's being used as
3232          * the stack pointer.
3233          */
3234         return CP_ACCESS_TRAP_UNCATEGORIZED;
3235     }
3236     return CP_ACCESS_OK;
3237 }
3238 
3239 static uint64_t spsel_read(CPUARMState *env, const ARMCPRegInfo *ri)
3240 {
3241     return env->pstate & PSTATE_SP;
3242 }
3243 
3244 static void spsel_write(CPUARMState *env, const ARMCPRegInfo *ri, uint64_t val)
3245 {
3246     update_spsel(env, val);
3247 }
3248 
3249 static void sctlr_write(CPUARMState *env, const ARMCPRegInfo *ri,
3250                         uint64_t value)
3251 {
3252     ARMCPU *cpu = arm_env_get_cpu(env);
3253 
3254     if (raw_read(env, ri) == value) {
3255         /* Skip the TLB flush if nothing actually changed; Linux likes
3256          * to do a lot of pointless SCTLR writes.
3257          */
3258         return;
3259     }
3260 
3261     if (arm_feature(env, ARM_FEATURE_PMSA) && !cpu->has_mpu) {
3262         /* M bit is RAZ/WI for PMSA with no MPU implemented */
3263         value &= ~SCTLR_M;
3264     }
3265 
3266     raw_write(env, ri, value);
3267     /* ??? Lots of these bits are not implemented.  */
3268     /* This may enable/disable the MMU, so do a TLB flush.  */
3269     tlb_flush(CPU(cpu));
3270 }
3271 
3272 static CPAccessResult fpexc32_access(CPUARMState *env, const ARMCPRegInfo *ri,
3273                                      bool isread)
3274 {
3275     if ((env->cp15.cptr_el[2] & CPTR_TFP) && arm_current_el(env) == 2) {
3276         return CP_ACCESS_TRAP_FP_EL2;
3277     }
3278     if (env->cp15.cptr_el[3] & CPTR_TFP) {
3279         return CP_ACCESS_TRAP_FP_EL3;
3280     }
3281     return CP_ACCESS_OK;
3282 }
3283 
3284 static void sdcr_write(CPUARMState *env, const ARMCPRegInfo *ri,
3285                        uint64_t value)
3286 {
3287     env->cp15.mdcr_el3 = value & SDCR_VALID_MASK;
3288 }
3289 
3290 static const ARMCPRegInfo v8_cp_reginfo[] = {
3291     /* Minimal set of EL0-visible registers. This will need to be expanded
3292      * significantly for system emulation of AArch64 CPUs.
3293      */
3294     { .name = "NZCV", .state = ARM_CP_STATE_AA64,
3295       .opc0 = 3, .opc1 = 3, .opc2 = 0, .crn = 4, .crm = 2,
3296       .access = PL0_RW, .type = ARM_CP_NZCV },
3297     { .name = "DAIF", .state = ARM_CP_STATE_AA64,
3298       .opc0 = 3, .opc1 = 3, .opc2 = 1, .crn = 4, .crm = 2,
3299       .type = ARM_CP_NO_RAW,
3300       .access = PL0_RW, .accessfn = aa64_daif_access,
3301       .fieldoffset = offsetof(CPUARMState, daif),
3302       .writefn = aa64_daif_write, .resetfn = arm_cp_reset_ignore },
3303     { .name = "FPCR", .state = ARM_CP_STATE_AA64,
3304       .opc0 = 3, .opc1 = 3, .opc2 = 0, .crn = 4, .crm = 4,
3305       .access = PL0_RW, .readfn = aa64_fpcr_read, .writefn = aa64_fpcr_write },
3306     { .name = "FPSR", .state = ARM_CP_STATE_AA64,
3307       .opc0 = 3, .opc1 = 3, .opc2 = 1, .crn = 4, .crm = 4,
3308       .access = PL0_RW, .readfn = aa64_fpsr_read, .writefn = aa64_fpsr_write },
3309     { .name = "DCZID_EL0", .state = ARM_CP_STATE_AA64,
3310       .opc0 = 3, .opc1 = 3, .opc2 = 7, .crn = 0, .crm = 0,
3311       .access = PL0_R, .type = ARM_CP_NO_RAW,
3312       .readfn = aa64_dczid_read },
3313     { .name = "DC_ZVA", .state = ARM_CP_STATE_AA64,
3314       .opc0 = 1, .opc1 = 3, .crn = 7, .crm = 4, .opc2 = 1,
3315       .access = PL0_W, .type = ARM_CP_DC_ZVA,
3316 #ifndef CONFIG_USER_ONLY
3317       /* Avoid overhead of an access check that always passes in user-mode */
3318       .accessfn = aa64_zva_access,
3319 #endif
3320     },
3321     { .name = "CURRENTEL", .state = ARM_CP_STATE_AA64,
3322       .opc0 = 3, .opc1 = 0, .opc2 = 2, .crn = 4, .crm = 2,
3323       .access = PL1_R, .type = ARM_CP_CURRENTEL },
3324     /* Cache ops: all NOPs since we don't emulate caches */
3325     { .name = "IC_IALLUIS", .state = ARM_CP_STATE_AA64,
3326       .opc0 = 1, .opc1 = 0, .crn = 7, .crm = 1, .opc2 = 0,
3327       .access = PL1_W, .type = ARM_CP_NOP },
3328     { .name = "IC_IALLU", .state = ARM_CP_STATE_AA64,
3329       .opc0 = 1, .opc1 = 0, .crn = 7, .crm = 5, .opc2 = 0,
3330       .access = PL1_W, .type = ARM_CP_NOP },
3331     { .name = "IC_IVAU", .state = ARM_CP_STATE_AA64,
3332       .opc0 = 1, .opc1 = 3, .crn = 7, .crm = 5, .opc2 = 1,
3333       .access = PL0_W, .type = ARM_CP_NOP,
3334       .accessfn = aa64_cacheop_access },
3335     { .name = "DC_IVAC", .state = ARM_CP_STATE_AA64,
3336       .opc0 = 1, .opc1 = 0, .crn = 7, .crm = 6, .opc2 = 1,
3337       .access = PL1_W, .type = ARM_CP_NOP },
3338     { .name = "DC_ISW", .state = ARM_CP_STATE_AA64,
3339       .opc0 = 1, .opc1 = 0, .crn = 7, .crm = 6, .opc2 = 2,
3340       .access = PL1_W, .type = ARM_CP_NOP },
3341     { .name = "DC_CVAC", .state = ARM_CP_STATE_AA64,
3342       .opc0 = 1, .opc1 = 3, .crn = 7, .crm = 10, .opc2 = 1,
3343       .access = PL0_W, .type = ARM_CP_NOP,
3344       .accessfn = aa64_cacheop_access },
3345     { .name = "DC_CSW", .state = ARM_CP_STATE_AA64,
3346       .opc0 = 1, .opc1 = 0, .crn = 7, .crm = 10, .opc2 = 2,
3347       .access = PL1_W, .type = ARM_CP_NOP },
3348     { .name = "DC_CVAU", .state = ARM_CP_STATE_AA64,
3349       .opc0 = 1, .opc1 = 3, .crn = 7, .crm = 11, .opc2 = 1,
3350       .access = PL0_W, .type = ARM_CP_NOP,
3351       .accessfn = aa64_cacheop_access },
3352     { .name = "DC_CIVAC", .state = ARM_CP_STATE_AA64,
3353       .opc0 = 1, .opc1 = 3, .crn = 7, .crm = 14, .opc2 = 1,
3354       .access = PL0_W, .type = ARM_CP_NOP,
3355       .accessfn = aa64_cacheop_access },
3356     { .name = "DC_CISW", .state = ARM_CP_STATE_AA64,
3357       .opc0 = 1, .opc1 = 0, .crn = 7, .crm = 14, .opc2 = 2,
3358       .access = PL1_W, .type = ARM_CP_NOP },
3359     /* TLBI operations */
3360     { .name = "TLBI_VMALLE1IS", .state = ARM_CP_STATE_AA64,
3361       .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 3, .opc2 = 0,
3362       .access = PL1_W, .type = ARM_CP_NO_RAW,
3363       .writefn = tlbi_aa64_vmalle1is_write },
3364     { .name = "TLBI_VAE1IS", .state = ARM_CP_STATE_AA64,
3365       .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 3, .opc2 = 1,
3366       .access = PL1_W, .type = ARM_CP_NO_RAW,
3367       .writefn = tlbi_aa64_vae1is_write },
3368     { .name = "TLBI_ASIDE1IS", .state = ARM_CP_STATE_AA64,
3369       .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 3, .opc2 = 2,
3370       .access = PL1_W, .type = ARM_CP_NO_RAW,
3371       .writefn = tlbi_aa64_vmalle1is_write },
3372     { .name = "TLBI_VAAE1IS", .state = ARM_CP_STATE_AA64,
3373       .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 3, .opc2 = 3,
3374       .access = PL1_W, .type = ARM_CP_NO_RAW,
3375       .writefn = tlbi_aa64_vae1is_write },
3376     { .name = "TLBI_VALE1IS", .state = ARM_CP_STATE_AA64,
3377       .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 3, .opc2 = 5,
3378       .access = PL1_W, .type = ARM_CP_NO_RAW,
3379       .writefn = tlbi_aa64_vae1is_write },
3380     { .name = "TLBI_VAALE1IS", .state = ARM_CP_STATE_AA64,
3381       .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 3, .opc2 = 7,
3382       .access = PL1_W, .type = ARM_CP_NO_RAW,
3383       .writefn = tlbi_aa64_vae1is_write },
3384     { .name = "TLBI_VMALLE1", .state = ARM_CP_STATE_AA64,
3385       .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 7, .opc2 = 0,
3386       .access = PL1_W, .type = ARM_CP_NO_RAW,
3387       .writefn = tlbi_aa64_vmalle1_write },
3388     { .name = "TLBI_VAE1", .state = ARM_CP_STATE_AA64,
3389       .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 7, .opc2 = 1,
3390       .access = PL1_W, .type = ARM_CP_NO_RAW,
3391       .writefn = tlbi_aa64_vae1_write },
3392     { .name = "TLBI_ASIDE1", .state = ARM_CP_STATE_AA64,
3393       .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 7, .opc2 = 2,
3394       .access = PL1_W, .type = ARM_CP_NO_RAW,
3395       .writefn = tlbi_aa64_vmalle1_write },
3396     { .name = "TLBI_VAAE1", .state = ARM_CP_STATE_AA64,
3397       .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 7, .opc2 = 3,
3398       .access = PL1_W, .type = ARM_CP_NO_RAW,
3399       .writefn = tlbi_aa64_vae1_write },
3400     { .name = "TLBI_VALE1", .state = ARM_CP_STATE_AA64,
3401       .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 7, .opc2 = 5,
3402       .access = PL1_W, .type = ARM_CP_NO_RAW,
3403       .writefn = tlbi_aa64_vae1_write },
3404     { .name = "TLBI_VAALE1", .state = ARM_CP_STATE_AA64,
3405       .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 7, .opc2 = 7,
3406       .access = PL1_W, .type = ARM_CP_NO_RAW,
3407       .writefn = tlbi_aa64_vae1_write },
3408     { .name = "TLBI_IPAS2E1IS", .state = ARM_CP_STATE_AA64,
3409       .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 0, .opc2 = 1,
3410       .access = PL2_W, .type = ARM_CP_NO_RAW,
3411       .writefn = tlbi_aa64_ipas2e1is_write },
3412     { .name = "TLBI_IPAS2LE1IS", .state = ARM_CP_STATE_AA64,
3413       .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 0, .opc2 = 5,
3414       .access = PL2_W, .type = ARM_CP_NO_RAW,
3415       .writefn = tlbi_aa64_ipas2e1is_write },
3416     { .name = "TLBI_ALLE1IS", .state = ARM_CP_STATE_AA64,
3417       .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 3, .opc2 = 4,
3418       .access = PL2_W, .type = ARM_CP_NO_RAW,
3419       .writefn = tlbi_aa64_alle1is_write },
3420     { .name = "TLBI_VMALLS12E1IS", .state = ARM_CP_STATE_AA64,
3421       .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 3, .opc2 = 6,
3422       .access = PL2_W, .type = ARM_CP_NO_RAW,
3423       .writefn = tlbi_aa64_alle1is_write },
3424     { .name = "TLBI_IPAS2E1", .state = ARM_CP_STATE_AA64,
3425       .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 4, .opc2 = 1,
3426       .access = PL2_W, .type = ARM_CP_NO_RAW,
3427       .writefn = tlbi_aa64_ipas2e1_write },
3428     { .name = "TLBI_IPAS2LE1", .state = ARM_CP_STATE_AA64,
3429       .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 4, .opc2 = 5,
3430       .access = PL2_W, .type = ARM_CP_NO_RAW,
3431       .writefn = tlbi_aa64_ipas2e1_write },
3432     { .name = "TLBI_ALLE1", .state = ARM_CP_STATE_AA64,
3433       .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 7, .opc2 = 4,
3434       .access = PL2_W, .type = ARM_CP_NO_RAW,
3435       .writefn = tlbi_aa64_alle1_write },
3436     { .name = "TLBI_VMALLS12E1", .state = ARM_CP_STATE_AA64,
3437       .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 7, .opc2 = 6,
3438       .access = PL2_W, .type = ARM_CP_NO_RAW,
3439       .writefn = tlbi_aa64_alle1is_write },
3440 #ifndef CONFIG_USER_ONLY
3441     /* 64 bit address translation operations */
3442     { .name = "AT_S1E1R", .state = ARM_CP_STATE_AA64,
3443       .opc0 = 1, .opc1 = 0, .crn = 7, .crm = 8, .opc2 = 0,
3444       .access = PL1_W, .type = ARM_CP_NO_RAW, .writefn = ats_write64 },
3445     { .name = "AT_S1E1W", .state = ARM_CP_STATE_AA64,
3446       .opc0 = 1, .opc1 = 0, .crn = 7, .crm = 8, .opc2 = 1,
3447       .access = PL1_W, .type = ARM_CP_NO_RAW, .writefn = ats_write64 },
3448     { .name = "AT_S1E0R", .state = ARM_CP_STATE_AA64,
3449       .opc0 = 1, .opc1 = 0, .crn = 7, .crm = 8, .opc2 = 2,
3450       .access = PL1_W, .type = ARM_CP_NO_RAW, .writefn = ats_write64 },
3451     { .name = "AT_S1E0W", .state = ARM_CP_STATE_AA64,
3452       .opc0 = 1, .opc1 = 0, .crn = 7, .crm = 8, .opc2 = 3,
3453       .access = PL1_W, .type = ARM_CP_NO_RAW, .writefn = ats_write64 },
3454     { .name = "AT_S12E1R", .state = ARM_CP_STATE_AA64,
3455       .opc0 = 1, .opc1 = 4, .crn = 7, .crm = 8, .opc2 = 4,
3456       .access = PL2_W, .type = ARM_CP_NO_RAW, .writefn = ats_write64 },
3457     { .name = "AT_S12E1W", .state = ARM_CP_STATE_AA64,
3458       .opc0 = 1, .opc1 = 4, .crn = 7, .crm = 8, .opc2 = 5,
3459       .access = PL2_W, .type = ARM_CP_NO_RAW, .writefn = ats_write64 },
3460     { .name = "AT_S12E0R", .state = ARM_CP_STATE_AA64,
3461       .opc0 = 1, .opc1 = 4, .crn = 7, .crm = 8, .opc2 = 6,
3462       .access = PL2_W, .type = ARM_CP_NO_RAW, .writefn = ats_write64 },
3463     { .name = "AT_S12E0W", .state = ARM_CP_STATE_AA64,
3464       .opc0 = 1, .opc1 = 4, .crn = 7, .crm = 8, .opc2 = 7,
3465       .access = PL2_W, .type = ARM_CP_NO_RAW, .writefn = ats_write64 },
3466     /* AT S1E2* are elsewhere as they UNDEF from EL3 if EL2 is not present */
3467     { .name = "AT_S1E3R", .state = ARM_CP_STATE_AA64,
3468       .opc0 = 1, .opc1 = 6, .crn = 7, .crm = 8, .opc2 = 0,
3469       .access = PL3_W, .type = ARM_CP_NO_RAW, .writefn = ats_write64 },
3470     { .name = "AT_S1E3W", .state = ARM_CP_STATE_AA64,
3471       .opc0 = 1, .opc1 = 6, .crn = 7, .crm = 8, .opc2 = 1,
3472       .access = PL3_W, .type = ARM_CP_NO_RAW, .writefn = ats_write64 },
3473     { .name = "PAR_EL1", .state = ARM_CP_STATE_AA64,
3474       .type = ARM_CP_ALIAS,
3475       .opc0 = 3, .opc1 = 0, .crn = 7, .crm = 4, .opc2 = 0,
3476       .access = PL1_RW, .resetvalue = 0,
3477       .fieldoffset = offsetof(CPUARMState, cp15.par_el[1]),
3478       .writefn = par_write },
3479 #endif
3480     /* TLB invalidate last level of translation table walk */
3481     { .name = "TLBIMVALIS", .cp = 15, .opc1 = 0, .crn = 8, .crm = 3, .opc2 = 5,
3482       .type = ARM_CP_NO_RAW, .access = PL1_W, .writefn = tlbimva_is_write },
3483     { .name = "TLBIMVAALIS", .cp = 15, .opc1 = 0, .crn = 8, .crm = 3, .opc2 = 7,
3484       .type = ARM_CP_NO_RAW, .access = PL1_W,
3485       .writefn = tlbimvaa_is_write },
3486     { .name = "TLBIMVAL", .cp = 15, .opc1 = 0, .crn = 8, .crm = 7, .opc2 = 5,
3487       .type = ARM_CP_NO_RAW, .access = PL1_W, .writefn = tlbimva_write },
3488     { .name = "TLBIMVAAL", .cp = 15, .opc1 = 0, .crn = 8, .crm = 7, .opc2 = 7,
3489       .type = ARM_CP_NO_RAW, .access = PL1_W, .writefn = tlbimvaa_write },
3490     { .name = "TLBIMVALH", .cp = 15, .opc1 = 4, .crn = 8, .crm = 7, .opc2 = 5,
3491       .type = ARM_CP_NO_RAW, .access = PL2_W,
3492       .writefn = tlbimva_hyp_write },
3493     { .name = "TLBIMVALHIS",
3494       .cp = 15, .opc1 = 4, .crn = 8, .crm = 3, .opc2 = 5,
3495       .type = ARM_CP_NO_RAW, .access = PL2_W,
3496       .writefn = tlbimva_hyp_is_write },
3497     { .name = "TLBIIPAS2",
3498       .cp = 15, .opc1 = 4, .crn = 8, .crm = 4, .opc2 = 1,
3499       .type = ARM_CP_NO_RAW, .access = PL2_W,
3500       .writefn = tlbiipas2_write },
3501     { .name = "TLBIIPAS2IS",
3502       .cp = 15, .opc1 = 4, .crn = 8, .crm = 0, .opc2 = 1,
3503       .type = ARM_CP_NO_RAW, .access = PL2_W,
3504       .writefn = tlbiipas2_is_write },
3505     { .name = "TLBIIPAS2L",
3506       .cp = 15, .opc1 = 4, .crn = 8, .crm = 4, .opc2 = 5,
3507       .type = ARM_CP_NO_RAW, .access = PL2_W,
3508       .writefn = tlbiipas2_write },
3509     { .name = "TLBIIPAS2LIS",
3510       .cp = 15, .opc1 = 4, .crn = 8, .crm = 0, .opc2 = 5,
3511       .type = ARM_CP_NO_RAW, .access = PL2_W,
3512       .writefn = tlbiipas2_is_write },
3513     /* 32 bit cache operations */
3514     { .name = "ICIALLUIS", .cp = 15, .opc1 = 0, .crn = 7, .crm = 1, .opc2 = 0,
3515       .type = ARM_CP_NOP, .access = PL1_W },
3516     { .name = "BPIALLUIS", .cp = 15, .opc1 = 0, .crn = 7, .crm = 1, .opc2 = 6,
3517       .type = ARM_CP_NOP, .access = PL1_W },
3518     { .name = "ICIALLU", .cp = 15, .opc1 = 0, .crn = 7, .crm = 5, .opc2 = 0,
3519       .type = ARM_CP_NOP, .access = PL1_W },
3520     { .name = "ICIMVAU", .cp = 15, .opc1 = 0, .crn = 7, .crm = 5, .opc2 = 1,
3521       .type = ARM_CP_NOP, .access = PL1_W },
3522     { .name = "BPIALL", .cp = 15, .opc1 = 0, .crn = 7, .crm = 5, .opc2 = 6,
3523       .type = ARM_CP_NOP, .access = PL1_W },
3524     { .name = "BPIMVA", .cp = 15, .opc1 = 0, .crn = 7, .crm = 5, .opc2 = 7,
3525       .type = ARM_CP_NOP, .access = PL1_W },
3526     { .name = "DCIMVAC", .cp = 15, .opc1 = 0, .crn = 7, .crm = 6, .opc2 = 1,
3527       .type = ARM_CP_NOP, .access = PL1_W },
3528     { .name = "DCISW", .cp = 15, .opc1 = 0, .crn = 7, .crm = 6, .opc2 = 2,
3529       .type = ARM_CP_NOP, .access = PL1_W },
3530     { .name = "DCCMVAC", .cp = 15, .opc1 = 0, .crn = 7, .crm = 10, .opc2 = 1,
3531       .type = ARM_CP_NOP, .access = PL1_W },
3532     { .name = "DCCSW", .cp = 15, .opc1 = 0, .crn = 7, .crm = 10, .opc2 = 2,
3533       .type = ARM_CP_NOP, .access = PL1_W },
3534     { .name = "DCCMVAU", .cp = 15, .opc1 = 0, .crn = 7, .crm = 11, .opc2 = 1,
3535       .type = ARM_CP_NOP, .access = PL1_W },
3536     { .name = "DCCIMVAC", .cp = 15, .opc1 = 0, .crn = 7, .crm = 14, .opc2 = 1,
3537       .type = ARM_CP_NOP, .access = PL1_W },
3538     { .name = "DCCISW", .cp = 15, .opc1 = 0, .crn = 7, .crm = 14, .opc2 = 2,
3539       .type = ARM_CP_NOP, .access = PL1_W },
3540     /* MMU Domain access control / MPU write buffer control */
3541     { .name = "DACR", .cp = 15, .opc1 = 0, .crn = 3, .crm = 0, .opc2 = 0,
3542       .access = PL1_RW, .resetvalue = 0,
3543       .writefn = dacr_write, .raw_writefn = raw_write,
3544       .bank_fieldoffsets = { offsetoflow32(CPUARMState, cp15.dacr_s),
3545                              offsetoflow32(CPUARMState, cp15.dacr_ns) } },
3546     { .name = "ELR_EL1", .state = ARM_CP_STATE_AA64,
3547       .type = ARM_CP_ALIAS,
3548       .opc0 = 3, .opc1 = 0, .crn = 4, .crm = 0, .opc2 = 1,
3549       .access = PL1_RW,
3550       .fieldoffset = offsetof(CPUARMState, elr_el[1]) },
3551     { .name = "SPSR_EL1", .state = ARM_CP_STATE_AA64,
3552       .type = ARM_CP_ALIAS,
3553       .opc0 = 3, .opc1 = 0, .crn = 4, .crm = 0, .opc2 = 0,
3554       .access = PL1_RW,
3555       .fieldoffset = offsetof(CPUARMState, banked_spsr[BANK_SVC]) },
3556     /* We rely on the access checks not allowing the guest to write to the
3557      * state field when SPSel indicates that it's being used as the stack
3558      * pointer.
3559      */
3560     { .name = "SP_EL0", .state = ARM_CP_STATE_AA64,
3561       .opc0 = 3, .opc1 = 0, .crn = 4, .crm = 1, .opc2 = 0,
3562       .access = PL1_RW, .accessfn = sp_el0_access,
3563       .type = ARM_CP_ALIAS,
3564       .fieldoffset = offsetof(CPUARMState, sp_el[0]) },
3565     { .name = "SP_EL1", .state = ARM_CP_STATE_AA64,
3566       .opc0 = 3, .opc1 = 4, .crn = 4, .crm = 1, .opc2 = 0,
3567       .access = PL2_RW, .type = ARM_CP_ALIAS,
3568       .fieldoffset = offsetof(CPUARMState, sp_el[1]) },
3569     { .name = "SPSel", .state = ARM_CP_STATE_AA64,
3570       .opc0 = 3, .opc1 = 0, .crn = 4, .crm = 2, .opc2 = 0,
3571       .type = ARM_CP_NO_RAW,
3572       .access = PL1_RW, .readfn = spsel_read, .writefn = spsel_write },
3573     { .name = "FPEXC32_EL2", .state = ARM_CP_STATE_AA64,
3574       .opc0 = 3, .opc1 = 4, .crn = 5, .crm = 3, .opc2 = 0,
3575       .type = ARM_CP_ALIAS,
3576       .fieldoffset = offsetof(CPUARMState, vfp.xregs[ARM_VFP_FPEXC]),
3577       .access = PL2_RW, .accessfn = fpexc32_access },
3578     { .name = "DACR32_EL2", .state = ARM_CP_STATE_AA64,
3579       .opc0 = 3, .opc1 = 4, .crn = 3, .crm = 0, .opc2 = 0,
3580       .access = PL2_RW, .resetvalue = 0,
3581       .writefn = dacr_write, .raw_writefn = raw_write,
3582       .fieldoffset = offsetof(CPUARMState, cp15.dacr32_el2) },
3583     { .name = "IFSR32_EL2", .state = ARM_CP_STATE_AA64,
3584       .opc0 = 3, .opc1 = 4, .crn = 5, .crm = 0, .opc2 = 1,
3585       .access = PL2_RW, .resetvalue = 0,
3586       .fieldoffset = offsetof(CPUARMState, cp15.ifsr32_el2) },
3587     { .name = "SPSR_IRQ", .state = ARM_CP_STATE_AA64,
3588       .type = ARM_CP_ALIAS,
3589       .opc0 = 3, .opc1 = 4, .crn = 4, .crm = 3, .opc2 = 0,
3590       .access = PL2_RW,
3591       .fieldoffset = offsetof(CPUARMState, banked_spsr[BANK_IRQ]) },
3592     { .name = "SPSR_ABT", .state = ARM_CP_STATE_AA64,
3593       .type = ARM_CP_ALIAS,
3594       .opc0 = 3, .opc1 = 4, .crn = 4, .crm = 3, .opc2 = 1,
3595       .access = PL2_RW,
3596       .fieldoffset = offsetof(CPUARMState, banked_spsr[BANK_ABT]) },
3597     { .name = "SPSR_UND", .state = ARM_CP_STATE_AA64,
3598       .type = ARM_CP_ALIAS,
3599       .opc0 = 3, .opc1 = 4, .crn = 4, .crm = 3, .opc2 = 2,
3600       .access = PL2_RW,
3601       .fieldoffset = offsetof(CPUARMState, banked_spsr[BANK_UND]) },
3602     { .name = "SPSR_FIQ", .state = ARM_CP_STATE_AA64,
3603       .type = ARM_CP_ALIAS,
3604       .opc0 = 3, .opc1 = 4, .crn = 4, .crm = 3, .opc2 = 3,
3605       .access = PL2_RW,
3606       .fieldoffset = offsetof(CPUARMState, banked_spsr[BANK_FIQ]) },
3607     { .name = "MDCR_EL3", .state = ARM_CP_STATE_AA64,
3608       .opc0 = 3, .opc1 = 6, .crn = 1, .crm = 3, .opc2 = 1,
3609       .resetvalue = 0,
3610       .access = PL3_RW, .fieldoffset = offsetof(CPUARMState, cp15.mdcr_el3) },
3611     { .name = "SDCR", .type = ARM_CP_ALIAS,
3612       .cp = 15, .opc1 = 0, .crn = 1, .crm = 3, .opc2 = 1,
3613       .access = PL1_RW, .accessfn = access_trap_aa32s_el1,
3614       .writefn = sdcr_write,
3615       .fieldoffset = offsetoflow32(CPUARMState, cp15.mdcr_el3) },
3616     REGINFO_SENTINEL
3617 };
3618 
3619 /* Used to describe the behaviour of EL2 regs when EL2 does not exist.  */
3620 static const ARMCPRegInfo el3_no_el2_cp_reginfo[] = {
3621     { .name = "VBAR_EL2", .state = ARM_CP_STATE_AA64,
3622       .opc0 = 3, .opc1 = 4, .crn = 12, .crm = 0, .opc2 = 0,
3623       .access = PL2_RW,
3624       .readfn = arm_cp_read_zero, .writefn = arm_cp_write_ignore },
3625     { .name = "HCR_EL2", .state = ARM_CP_STATE_AA64,
3626       .type = ARM_CP_NO_RAW,
3627       .opc0 = 3, .opc1 = 4, .crn = 1, .crm = 1, .opc2 = 0,
3628       .access = PL2_RW,
3629       .readfn = arm_cp_read_zero, .writefn = arm_cp_write_ignore },
3630     { .name = "CPTR_EL2", .state = ARM_CP_STATE_BOTH,
3631       .opc0 = 3, .opc1 = 4, .crn = 1, .crm = 1, .opc2 = 2,
3632       .access = PL2_RW, .type = ARM_CP_CONST, .resetvalue = 0 },
3633     { .name = "MAIR_EL2", .state = ARM_CP_STATE_BOTH,
3634       .opc0 = 3, .opc1 = 4, .crn = 10, .crm = 2, .opc2 = 0,
3635       .access = PL2_RW, .type = ARM_CP_CONST,
3636       .resetvalue = 0 },
3637     { .name = "HMAIR1", .state = ARM_CP_STATE_AA32,
3638       .opc1 = 4, .crn = 10, .crm = 2, .opc2 = 1,
3639       .access = PL2_RW, .type = ARM_CP_CONST, .resetvalue = 0 },
3640     { .name = "AMAIR_EL2", .state = ARM_CP_STATE_BOTH,
3641       .opc0 = 3, .opc1 = 4, .crn = 10, .crm = 3, .opc2 = 0,
3642       .access = PL2_RW, .type = ARM_CP_CONST,
3643       .resetvalue = 0 },
3644     { .name = "HMAIR1", .state = ARM_CP_STATE_AA32,
3645       .opc1 = 4, .crn = 10, .crm = 3, .opc2 = 1,
3646       .access = PL2_RW, .type = ARM_CP_CONST,
3647       .resetvalue = 0 },
3648     { .name = "AFSR0_EL2", .state = ARM_CP_STATE_BOTH,
3649       .opc0 = 3, .opc1 = 4, .crn = 5, .crm = 1, .opc2 = 0,
3650       .access = PL2_RW, .type = ARM_CP_CONST,
3651       .resetvalue = 0 },
3652     { .name = "AFSR1_EL2", .state = ARM_CP_STATE_BOTH,
3653       .opc0 = 3, .opc1 = 4, .crn = 5, .crm = 1, .opc2 = 1,
3654       .access = PL2_RW, .type = ARM_CP_CONST,
3655       .resetvalue = 0 },
3656     { .name = "TCR_EL2", .state = ARM_CP_STATE_BOTH,
3657       .opc0 = 3, .opc1 = 4, .crn = 2, .crm = 0, .opc2 = 2,
3658       .access = PL2_RW, .type = ARM_CP_CONST, .resetvalue = 0 },
3659     { .name = "VTCR_EL2", .state = ARM_CP_STATE_BOTH,
3660       .opc0 = 3, .opc1 = 4, .crn = 2, .crm = 1, .opc2 = 2,
3661       .access = PL2_RW, .accessfn = access_el3_aa32ns_aa64any,
3662       .type = ARM_CP_CONST, .resetvalue = 0 },
3663     { .name = "VTTBR", .state = ARM_CP_STATE_AA32,
3664       .cp = 15, .opc1 = 6, .crm = 2,
3665       .access = PL2_RW, .accessfn = access_el3_aa32ns,
3666       .type = ARM_CP_CONST | ARM_CP_64BIT, .resetvalue = 0 },
3667     { .name = "VTTBR_EL2", .state = ARM_CP_STATE_AA64,
3668       .opc0 = 3, .opc1 = 4, .crn = 2, .crm = 1, .opc2 = 0,
3669       .access = PL2_RW, .type = ARM_CP_CONST, .resetvalue = 0 },
3670     { .name = "SCTLR_EL2", .state = ARM_CP_STATE_BOTH,
3671       .opc0 = 3, .opc1 = 4, .crn = 1, .crm = 0, .opc2 = 0,
3672       .access = PL2_RW, .type = ARM_CP_CONST, .resetvalue = 0 },
3673     { .name = "TPIDR_EL2", .state = ARM_CP_STATE_BOTH,
3674       .opc0 = 3, .opc1 = 4, .crn = 13, .crm = 0, .opc2 = 2,
3675       .access = PL2_RW, .type = ARM_CP_CONST, .resetvalue = 0 },
3676     { .name = "TTBR0_EL2", .state = ARM_CP_STATE_AA64,
3677       .opc0 = 3, .opc1 = 4, .crn = 2, .crm = 0, .opc2 = 0,
3678       .access = PL2_RW, .type = ARM_CP_CONST, .resetvalue = 0 },
3679     { .name = "HTTBR", .cp = 15, .opc1 = 4, .crm = 2,
3680       .access = PL2_RW, .type = ARM_CP_64BIT | ARM_CP_CONST,
3681       .resetvalue = 0 },
3682     { .name = "CNTHCTL_EL2", .state = ARM_CP_STATE_BOTH,
3683       .opc0 = 3, .opc1 = 4, .crn = 14, .crm = 1, .opc2 = 0,
3684       .access = PL2_RW, .type = ARM_CP_CONST, .resetvalue = 0 },
3685     { .name = "CNTVOFF_EL2", .state = ARM_CP_STATE_AA64,
3686       .opc0 = 3, .opc1 = 4, .crn = 14, .crm = 0, .opc2 = 3,
3687       .access = PL2_RW, .type = ARM_CP_CONST, .resetvalue = 0 },
3688     { .name = "CNTVOFF", .cp = 15, .opc1 = 4, .crm = 14,
3689       .access = PL2_RW, .type = ARM_CP_64BIT | ARM_CP_CONST,
3690       .resetvalue = 0 },
3691     { .name = "CNTHP_CVAL_EL2", .state = ARM_CP_STATE_AA64,
3692       .opc0 = 3, .opc1 = 4, .crn = 14, .crm = 2, .opc2 = 2,
3693       .access = PL2_RW, .type = ARM_CP_CONST, .resetvalue = 0 },
3694     { .name = "CNTHP_CVAL", .cp = 15, .opc1 = 6, .crm = 14,
3695       .access = PL2_RW, .type = ARM_CP_64BIT | ARM_CP_CONST,
3696       .resetvalue = 0 },
3697     { .name = "CNTHP_TVAL_EL2", .state = ARM_CP_STATE_BOTH,
3698       .opc0 = 3, .opc1 = 4, .crn = 14, .crm = 2, .opc2 = 0,
3699       .access = PL2_RW, .type = ARM_CP_CONST, .resetvalue = 0 },
3700     { .name = "CNTHP_CTL_EL2", .state = ARM_CP_STATE_BOTH,
3701       .opc0 = 3, .opc1 = 4, .crn = 14, .crm = 2, .opc2 = 1,
3702       .access = PL2_RW, .type = ARM_CP_CONST, .resetvalue = 0 },
3703     { .name = "MDCR_EL2", .state = ARM_CP_STATE_BOTH,
3704       .opc0 = 3, .opc1 = 4, .crn = 1, .crm = 1, .opc2 = 1,
3705       .access = PL2_RW, .accessfn = access_tda,
3706       .type = ARM_CP_CONST, .resetvalue = 0 },
3707     { .name = "HPFAR_EL2", .state = ARM_CP_STATE_BOTH,
3708       .opc0 = 3, .opc1 = 4, .crn = 6, .crm = 0, .opc2 = 4,
3709       .access = PL2_RW, .accessfn = access_el3_aa32ns_aa64any,
3710       .type = ARM_CP_CONST, .resetvalue = 0 },
3711     { .name = "HSTR_EL2", .state = ARM_CP_STATE_BOTH,
3712       .opc0 = 3, .opc1 = 4, .crn = 1, .crm = 1, .opc2 = 3,
3713       .access = PL2_RW, .type = ARM_CP_CONST, .resetvalue = 0 },
3714     REGINFO_SENTINEL
3715 };
3716 
3717 static void hcr_write(CPUARMState *env, const ARMCPRegInfo *ri, uint64_t value)
3718 {
3719     ARMCPU *cpu = arm_env_get_cpu(env);
3720     uint64_t valid_mask = HCR_MASK;
3721 
3722     if (arm_feature(env, ARM_FEATURE_EL3)) {
3723         valid_mask &= ~HCR_HCD;
3724     } else {
3725         valid_mask &= ~HCR_TSC;
3726     }
3727 
3728     /* Clear RES0 bits.  */
3729     value &= valid_mask;
3730 
3731     /* These bits change the MMU setup:
3732      * HCR_VM enables stage 2 translation
3733      * HCR_PTW forbids certain page-table setups
3734      * HCR_DC Disables stage1 and enables stage2 translation
3735      */
3736     if ((raw_read(env, ri) ^ value) & (HCR_VM | HCR_PTW | HCR_DC)) {
3737         tlb_flush(CPU(cpu));
3738     }
3739     raw_write(env, ri, value);
3740 }
3741 
3742 static const ARMCPRegInfo el2_cp_reginfo[] = {
3743     { .name = "HCR_EL2", .state = ARM_CP_STATE_AA64,
3744       .opc0 = 3, .opc1 = 4, .crn = 1, .crm = 1, .opc2 = 0,
3745       .access = PL2_RW, .fieldoffset = offsetof(CPUARMState, cp15.hcr_el2),
3746       .writefn = hcr_write },
3747     { .name = "ELR_EL2", .state = ARM_CP_STATE_AA64,
3748       .type = ARM_CP_ALIAS,
3749       .opc0 = 3, .opc1 = 4, .crn = 4, .crm = 0, .opc2 = 1,
3750       .access = PL2_RW,
3751       .fieldoffset = offsetof(CPUARMState, elr_el[2]) },
3752     { .name = "ESR_EL2", .state = ARM_CP_STATE_AA64,
3753       .opc0 = 3, .opc1 = 4, .crn = 5, .crm = 2, .opc2 = 0,
3754       .access = PL2_RW, .fieldoffset = offsetof(CPUARMState, cp15.esr_el[2]) },
3755     { .name = "FAR_EL2", .state = ARM_CP_STATE_AA64,
3756       .opc0 = 3, .opc1 = 4, .crn = 6, .crm = 0, .opc2 = 0,
3757       .access = PL2_RW, .fieldoffset = offsetof(CPUARMState, cp15.far_el[2]) },
3758     { .name = "SPSR_EL2", .state = ARM_CP_STATE_AA64,
3759       .type = ARM_CP_ALIAS,
3760       .opc0 = 3, .opc1 = 4, .crn = 4, .crm = 0, .opc2 = 0,
3761       .access = PL2_RW,
3762       .fieldoffset = offsetof(CPUARMState, banked_spsr[BANK_HYP]) },
3763     { .name = "VBAR_EL2", .state = ARM_CP_STATE_AA64,
3764       .opc0 = 3, .opc1 = 4, .crn = 12, .crm = 0, .opc2 = 0,
3765       .access = PL2_RW, .writefn = vbar_write,
3766       .fieldoffset = offsetof(CPUARMState, cp15.vbar_el[2]),
3767       .resetvalue = 0 },
3768     { .name = "SP_EL2", .state = ARM_CP_STATE_AA64,
3769       .opc0 = 3, .opc1 = 6, .crn = 4, .crm = 1, .opc2 = 0,
3770       .access = PL3_RW, .type = ARM_CP_ALIAS,
3771       .fieldoffset = offsetof(CPUARMState, sp_el[2]) },
3772     { .name = "CPTR_EL2", .state = ARM_CP_STATE_BOTH,
3773       .opc0 = 3, .opc1 = 4, .crn = 1, .crm = 1, .opc2 = 2,
3774       .access = PL2_RW, .accessfn = cptr_access, .resetvalue = 0,
3775       .fieldoffset = offsetof(CPUARMState, cp15.cptr_el[2]) },
3776     { .name = "MAIR_EL2", .state = ARM_CP_STATE_BOTH,
3777       .opc0 = 3, .opc1 = 4, .crn = 10, .crm = 2, .opc2 = 0,
3778       .access = PL2_RW, .fieldoffset = offsetof(CPUARMState, cp15.mair_el[2]),
3779       .resetvalue = 0 },
3780     { .name = "HMAIR1", .state = ARM_CP_STATE_AA32,
3781       .opc1 = 4, .crn = 10, .crm = 2, .opc2 = 1,
3782       .access = PL2_RW, .type = ARM_CP_ALIAS,
3783       .fieldoffset = offsetofhigh32(CPUARMState, cp15.mair_el[2]) },
3784     { .name = "AMAIR_EL2", .state = ARM_CP_STATE_BOTH,
3785       .opc0 = 3, .opc1 = 4, .crn = 10, .crm = 3, .opc2 = 0,
3786       .access = PL2_RW, .type = ARM_CP_CONST,
3787       .resetvalue = 0 },
3788     /* HAMAIR1 is mapped to AMAIR_EL2[63:32] */
3789     { .name = "HMAIR1", .state = ARM_CP_STATE_AA32,
3790       .opc1 = 4, .crn = 10, .crm = 3, .opc2 = 1,
3791       .access = PL2_RW, .type = ARM_CP_CONST,
3792       .resetvalue = 0 },
3793     { .name = "AFSR0_EL2", .state = ARM_CP_STATE_BOTH,
3794       .opc0 = 3, .opc1 = 4, .crn = 5, .crm = 1, .opc2 = 0,
3795       .access = PL2_RW, .type = ARM_CP_CONST,
3796       .resetvalue = 0 },
3797     { .name = "AFSR1_EL2", .state = ARM_CP_STATE_BOTH,
3798       .opc0 = 3, .opc1 = 4, .crn = 5, .crm = 1, .opc2 = 1,
3799       .access = PL2_RW, .type = ARM_CP_CONST,
3800       .resetvalue = 0 },
3801     { .name = "TCR_EL2", .state = ARM_CP_STATE_BOTH,
3802       .opc0 = 3, .opc1 = 4, .crn = 2, .crm = 0, .opc2 = 2,
3803       .access = PL2_RW,
3804       /* no .writefn needed as this can't cause an ASID change;
3805        * no .raw_writefn or .resetfn needed as we never use mask/base_mask
3806        */
3807       .fieldoffset = offsetof(CPUARMState, cp15.tcr_el[2]) },
3808     { .name = "VTCR", .state = ARM_CP_STATE_AA32,
3809       .cp = 15, .opc1 = 4, .crn = 2, .crm = 1, .opc2 = 2,
3810       .type = ARM_CP_ALIAS,
3811       .access = PL2_RW, .accessfn = access_el3_aa32ns,
3812       .fieldoffset = offsetof(CPUARMState, cp15.vtcr_el2) },
3813     { .name = "VTCR_EL2", .state = ARM_CP_STATE_AA64,
3814       .opc0 = 3, .opc1 = 4, .crn = 2, .crm = 1, .opc2 = 2,
3815       .access = PL2_RW,
3816       /* no .writefn needed as this can't cause an ASID change;
3817        * no .raw_writefn or .resetfn needed as we never use mask/base_mask
3818        */
3819       .fieldoffset = offsetof(CPUARMState, cp15.vtcr_el2) },
3820     { .name = "VTTBR", .state = ARM_CP_STATE_AA32,
3821       .cp = 15, .opc1 = 6, .crm = 2,
3822       .type = ARM_CP_64BIT | ARM_CP_ALIAS,
3823       .access = PL2_RW, .accessfn = access_el3_aa32ns,
3824       .fieldoffset = offsetof(CPUARMState, cp15.vttbr_el2),
3825       .writefn = vttbr_write },
3826     { .name = "VTTBR_EL2", .state = ARM_CP_STATE_AA64,
3827       .opc0 = 3, .opc1 = 4, .crn = 2, .crm = 1, .opc2 = 0,
3828       .access = PL2_RW, .writefn = vttbr_write,
3829       .fieldoffset = offsetof(CPUARMState, cp15.vttbr_el2) },
3830     { .name = "SCTLR_EL2", .state = ARM_CP_STATE_BOTH,
3831       .opc0 = 3, .opc1 = 4, .crn = 1, .crm = 0, .opc2 = 0,
3832       .access = PL2_RW, .raw_writefn = raw_write, .writefn = sctlr_write,
3833       .fieldoffset = offsetof(CPUARMState, cp15.sctlr_el[2]) },
3834     { .name = "TPIDR_EL2", .state = ARM_CP_STATE_BOTH,
3835       .opc0 = 3, .opc1 = 4, .crn = 13, .crm = 0, .opc2 = 2,
3836       .access = PL2_RW, .resetvalue = 0,
3837       .fieldoffset = offsetof(CPUARMState, cp15.tpidr_el[2]) },
3838     { .name = "TTBR0_EL2", .state = ARM_CP_STATE_AA64,
3839       .opc0 = 3, .opc1 = 4, .crn = 2, .crm = 0, .opc2 = 0,
3840       .access = PL2_RW, .resetvalue = 0,
3841       .fieldoffset = offsetof(CPUARMState, cp15.ttbr0_el[2]) },
3842     { .name = "HTTBR", .cp = 15, .opc1 = 4, .crm = 2,
3843       .access = PL2_RW, .type = ARM_CP_64BIT | ARM_CP_ALIAS,
3844       .fieldoffset = offsetof(CPUARMState, cp15.ttbr0_el[2]) },
3845     { .name = "TLBIALLNSNH",
3846       .cp = 15, .opc1 = 4, .crn = 8, .crm = 7, .opc2 = 4,
3847       .type = ARM_CP_NO_RAW, .access = PL2_W,
3848       .writefn = tlbiall_nsnh_write },
3849     { .name = "TLBIALLNSNHIS",
3850       .cp = 15, .opc1 = 4, .crn = 8, .crm = 3, .opc2 = 4,
3851       .type = ARM_CP_NO_RAW, .access = PL2_W,
3852       .writefn = tlbiall_nsnh_is_write },
3853     { .name = "TLBIALLH", .cp = 15, .opc1 = 4, .crn = 8, .crm = 7, .opc2 = 0,
3854       .type = ARM_CP_NO_RAW, .access = PL2_W,
3855       .writefn = tlbiall_hyp_write },
3856     { .name = "TLBIALLHIS", .cp = 15, .opc1 = 4, .crn = 8, .crm = 3, .opc2 = 0,
3857       .type = ARM_CP_NO_RAW, .access = PL2_W,
3858       .writefn = tlbiall_hyp_is_write },
3859     { .name = "TLBIMVAH", .cp = 15, .opc1 = 4, .crn = 8, .crm = 7, .opc2 = 1,
3860       .type = ARM_CP_NO_RAW, .access = PL2_W,
3861       .writefn = tlbimva_hyp_write },
3862     { .name = "TLBIMVAHIS", .cp = 15, .opc1 = 4, .crn = 8, .crm = 3, .opc2 = 1,
3863       .type = ARM_CP_NO_RAW, .access = PL2_W,
3864       .writefn = tlbimva_hyp_is_write },
3865     { .name = "TLBI_ALLE2", .state = ARM_CP_STATE_AA64,
3866       .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 7, .opc2 = 0,
3867       .type = ARM_CP_NO_RAW, .access = PL2_W,
3868       .writefn = tlbi_aa64_alle2_write },
3869     { .name = "TLBI_VAE2", .state = ARM_CP_STATE_AA64,
3870       .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 7, .opc2 = 1,
3871       .type = ARM_CP_NO_RAW, .access = PL2_W,
3872       .writefn = tlbi_aa64_vae2_write },
3873     { .name = "TLBI_VALE2", .state = ARM_CP_STATE_AA64,
3874       .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 7, .opc2 = 5,
3875       .access = PL2_W, .type = ARM_CP_NO_RAW,
3876       .writefn = tlbi_aa64_vae2_write },
3877     { .name = "TLBI_ALLE2IS", .state = ARM_CP_STATE_AA64,
3878       .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 3, .opc2 = 0,
3879       .access = PL2_W, .type = ARM_CP_NO_RAW,
3880       .writefn = tlbi_aa64_alle2is_write },
3881     { .name = "TLBI_VAE2IS", .state = ARM_CP_STATE_AA64,
3882       .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 3, .opc2 = 1,
3883       .type = ARM_CP_NO_RAW, .access = PL2_W,
3884       .writefn = tlbi_aa64_vae2is_write },
3885     { .name = "TLBI_VALE2IS", .state = ARM_CP_STATE_AA64,
3886       .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 3, .opc2 = 5,
3887       .access = PL2_W, .type = ARM_CP_NO_RAW,
3888       .writefn = tlbi_aa64_vae2is_write },
3889 #ifndef CONFIG_USER_ONLY
3890     /* Unlike the other EL2-related AT operations, these must
3891      * UNDEF from EL3 if EL2 is not implemented, which is why we
3892      * define them here rather than with the rest of the AT ops.
3893      */
3894     { .name = "AT_S1E2R", .state = ARM_CP_STATE_AA64,
3895       .opc0 = 1, .opc1 = 4, .crn = 7, .crm = 8, .opc2 = 0,
3896       .access = PL2_W, .accessfn = at_s1e2_access,
3897       .type = ARM_CP_NO_RAW, .writefn = ats_write64 },
3898     { .name = "AT_S1E2W", .state = ARM_CP_STATE_AA64,
3899       .opc0 = 1, .opc1 = 4, .crn = 7, .crm = 8, .opc2 = 1,
3900       .access = PL2_W, .accessfn = at_s1e2_access,
3901       .type = ARM_CP_NO_RAW, .writefn = ats_write64 },
3902     /* The AArch32 ATS1H* operations are CONSTRAINED UNPREDICTABLE
3903      * if EL2 is not implemented; we choose to UNDEF. Behaviour at EL3
3904      * with SCR.NS == 0 outside Monitor mode is UNPREDICTABLE; we choose
3905      * to behave as if SCR.NS was 1.
3906      */
3907     { .name = "ATS1HR", .cp = 15, .opc1 = 4, .crn = 7, .crm = 8, .opc2 = 0,
3908       .access = PL2_W,
3909       .writefn = ats1h_write, .type = ARM_CP_NO_RAW },
3910     { .name = "ATS1HW", .cp = 15, .opc1 = 4, .crn = 7, .crm = 8, .opc2 = 1,
3911       .access = PL2_W,
3912       .writefn = ats1h_write, .type = ARM_CP_NO_RAW },
3913     { .name = "CNTHCTL_EL2", .state = ARM_CP_STATE_BOTH,
3914       .opc0 = 3, .opc1 = 4, .crn = 14, .crm = 1, .opc2 = 0,
3915       /* ARMv7 requires bit 0 and 1 to reset to 1. ARMv8 defines the
3916        * reset values as IMPDEF. We choose to reset to 3 to comply with
3917        * both ARMv7 and ARMv8.
3918        */
3919       .access = PL2_RW, .resetvalue = 3,
3920       .fieldoffset = offsetof(CPUARMState, cp15.cnthctl_el2) },
3921     { .name = "CNTVOFF_EL2", .state = ARM_CP_STATE_AA64,
3922       .opc0 = 3, .opc1 = 4, .crn = 14, .crm = 0, .opc2 = 3,
3923       .access = PL2_RW, .type = ARM_CP_IO, .resetvalue = 0,
3924       .writefn = gt_cntvoff_write,
3925       .fieldoffset = offsetof(CPUARMState, cp15.cntvoff_el2) },
3926     { .name = "CNTVOFF", .cp = 15, .opc1 = 4, .crm = 14,
3927       .access = PL2_RW, .type = ARM_CP_64BIT | ARM_CP_ALIAS | ARM_CP_IO,
3928       .writefn = gt_cntvoff_write,
3929       .fieldoffset = offsetof(CPUARMState, cp15.cntvoff_el2) },
3930     { .name = "CNTHP_CVAL_EL2", .state = ARM_CP_STATE_AA64,
3931       .opc0 = 3, .opc1 = 4, .crn = 14, .crm = 2, .opc2 = 2,
3932       .fieldoffset = offsetof(CPUARMState, cp15.c14_timer[GTIMER_HYP].cval),
3933       .type = ARM_CP_IO, .access = PL2_RW,
3934       .writefn = gt_hyp_cval_write, .raw_writefn = raw_write },
3935     { .name = "CNTHP_CVAL", .cp = 15, .opc1 = 6, .crm = 14,
3936       .fieldoffset = offsetof(CPUARMState, cp15.c14_timer[GTIMER_HYP].cval),
3937       .access = PL2_RW, .type = ARM_CP_64BIT | ARM_CP_IO,
3938       .writefn = gt_hyp_cval_write, .raw_writefn = raw_write },
3939     { .name = "CNTHP_TVAL_EL2", .state = ARM_CP_STATE_BOTH,
3940       .opc0 = 3, .opc1 = 4, .crn = 14, .crm = 2, .opc2 = 0,
3941       .type = ARM_CP_NO_RAW | ARM_CP_IO, .access = PL2_RW,
3942       .resetfn = gt_hyp_timer_reset,
3943       .readfn = gt_hyp_tval_read, .writefn = gt_hyp_tval_write },
3944     { .name = "CNTHP_CTL_EL2", .state = ARM_CP_STATE_BOTH,
3945       .type = ARM_CP_IO,
3946       .opc0 = 3, .opc1 = 4, .crn = 14, .crm = 2, .opc2 = 1,
3947       .access = PL2_RW,
3948       .fieldoffset = offsetof(CPUARMState, cp15.c14_timer[GTIMER_HYP].ctl),
3949       .resetvalue = 0,
3950       .writefn = gt_hyp_ctl_write, .raw_writefn = raw_write },
3951 #endif
3952     /* The only field of MDCR_EL2 that has a defined architectural reset value
3953      * is MDCR_EL2.HPMN which should reset to the value of PMCR_EL0.N; but we
3954      * don't impelment any PMU event counters, so using zero as a reset
3955      * value for MDCR_EL2 is okay
3956      */
3957     { .name = "MDCR_EL2", .state = ARM_CP_STATE_BOTH,
3958       .opc0 = 3, .opc1 = 4, .crn = 1, .crm = 1, .opc2 = 1,
3959       .access = PL2_RW, .resetvalue = 0,
3960       .fieldoffset = offsetof(CPUARMState, cp15.mdcr_el2), },
3961     { .name = "HPFAR", .state = ARM_CP_STATE_AA32,
3962       .cp = 15, .opc1 = 4, .crn = 6, .crm = 0, .opc2 = 4,
3963       .access = PL2_RW, .accessfn = access_el3_aa32ns,
3964       .fieldoffset = offsetof(CPUARMState, cp15.hpfar_el2) },
3965     { .name = "HPFAR_EL2", .state = ARM_CP_STATE_AA64,
3966       .opc0 = 3, .opc1 = 4, .crn = 6, .crm = 0, .opc2 = 4,
3967       .access = PL2_RW,
3968       .fieldoffset = offsetof(CPUARMState, cp15.hpfar_el2) },
3969     { .name = "HSTR_EL2", .state = ARM_CP_STATE_BOTH,
3970       .cp = 15, .opc0 = 3, .opc1 = 4, .crn = 1, .crm = 1, .opc2 = 3,
3971       .access = PL2_RW,
3972       .fieldoffset = offsetof(CPUARMState, cp15.hstr_el2) },
3973     REGINFO_SENTINEL
3974 };
3975 
3976 static CPAccessResult nsacr_access(CPUARMState *env, const ARMCPRegInfo *ri,
3977                                    bool isread)
3978 {
3979     /* The NSACR is RW at EL3, and RO for NS EL1 and NS EL2.
3980      * At Secure EL1 it traps to EL3.
3981      */
3982     if (arm_current_el(env) == 3) {
3983         return CP_ACCESS_OK;
3984     }
3985     if (arm_is_secure_below_el3(env)) {
3986         return CP_ACCESS_TRAP_EL3;
3987     }
3988     /* Accesses from EL1 NS and EL2 NS are UNDEF for write but allow reads. */
3989     if (isread) {
3990         return CP_ACCESS_OK;
3991     }
3992     return CP_ACCESS_TRAP_UNCATEGORIZED;
3993 }
3994 
3995 static const ARMCPRegInfo el3_cp_reginfo[] = {
3996     { .name = "SCR_EL3", .state = ARM_CP_STATE_AA64,
3997       .opc0 = 3, .opc1 = 6, .crn = 1, .crm = 1, .opc2 = 0,
3998       .access = PL3_RW, .fieldoffset = offsetof(CPUARMState, cp15.scr_el3),
3999       .resetvalue = 0, .writefn = scr_write },
4000     { .name = "SCR",  .type = ARM_CP_ALIAS,
4001       .cp = 15, .opc1 = 0, .crn = 1, .crm = 1, .opc2 = 0,
4002       .access = PL1_RW, .accessfn = access_trap_aa32s_el1,
4003       .fieldoffset = offsetoflow32(CPUARMState, cp15.scr_el3),
4004       .writefn = scr_write },
4005     { .name = "SDER32_EL3", .state = ARM_CP_STATE_AA64,
4006       .opc0 = 3, .opc1 = 6, .crn = 1, .crm = 1, .opc2 = 1,
4007       .access = PL3_RW, .resetvalue = 0,
4008       .fieldoffset = offsetof(CPUARMState, cp15.sder) },
4009     { .name = "SDER",
4010       .cp = 15, .opc1 = 0, .crn = 1, .crm = 1, .opc2 = 1,
4011       .access = PL3_RW, .resetvalue = 0,
4012       .fieldoffset = offsetoflow32(CPUARMState, cp15.sder) },
4013     { .name = "MVBAR", .cp = 15, .opc1 = 0, .crn = 12, .crm = 0, .opc2 = 1,
4014       .access = PL1_RW, .accessfn = access_trap_aa32s_el1,
4015       .writefn = vbar_write, .resetvalue = 0,
4016       .fieldoffset = offsetof(CPUARMState, cp15.mvbar) },
4017     { .name = "TTBR0_EL3", .state = ARM_CP_STATE_AA64,
4018       .opc0 = 3, .opc1 = 6, .crn = 2, .crm = 0, .opc2 = 0,
4019       .access = PL3_RW, .writefn = vmsa_ttbr_write, .resetvalue = 0,
4020       .fieldoffset = offsetof(CPUARMState, cp15.ttbr0_el[3]) },
4021     { .name = "TCR_EL3", .state = ARM_CP_STATE_AA64,
4022       .opc0 = 3, .opc1 = 6, .crn = 2, .crm = 0, .opc2 = 2,
4023       .access = PL3_RW,
4024       /* no .writefn needed as this can't cause an ASID change;
4025        * we must provide a .raw_writefn and .resetfn because we handle
4026        * reset and migration for the AArch32 TTBCR(S), which might be
4027        * using mask and base_mask.
4028        */
4029       .resetfn = vmsa_ttbcr_reset, .raw_writefn = vmsa_ttbcr_raw_write,
4030       .fieldoffset = offsetof(CPUARMState, cp15.tcr_el[3]) },
4031     { .name = "ELR_EL3", .state = ARM_CP_STATE_AA64,
4032       .type = ARM_CP_ALIAS,
4033       .opc0 = 3, .opc1 = 6, .crn = 4, .crm = 0, .opc2 = 1,
4034       .access = PL3_RW,
4035       .fieldoffset = offsetof(CPUARMState, elr_el[3]) },
4036     { .name = "ESR_EL3", .state = ARM_CP_STATE_AA64,
4037       .opc0 = 3, .opc1 = 6, .crn = 5, .crm = 2, .opc2 = 0,
4038       .access = PL3_RW, .fieldoffset = offsetof(CPUARMState, cp15.esr_el[3]) },
4039     { .name = "FAR_EL3", .state = ARM_CP_STATE_AA64,
4040       .opc0 = 3, .opc1 = 6, .crn = 6, .crm = 0, .opc2 = 0,
4041       .access = PL3_RW, .fieldoffset = offsetof(CPUARMState, cp15.far_el[3]) },
4042     { .name = "SPSR_EL3", .state = ARM_CP_STATE_AA64,
4043       .type = ARM_CP_ALIAS,
4044       .opc0 = 3, .opc1 = 6, .crn = 4, .crm = 0, .opc2 = 0,
4045       .access = PL3_RW,
4046       .fieldoffset = offsetof(CPUARMState, banked_spsr[BANK_MON]) },
4047     { .name = "VBAR_EL3", .state = ARM_CP_STATE_AA64,
4048       .opc0 = 3, .opc1 = 6, .crn = 12, .crm = 0, .opc2 = 0,
4049       .access = PL3_RW, .writefn = vbar_write,
4050       .fieldoffset = offsetof(CPUARMState, cp15.vbar_el[3]),
4051       .resetvalue = 0 },
4052     { .name = "CPTR_EL3", .state = ARM_CP_STATE_AA64,
4053       .opc0 = 3, .opc1 = 6, .crn = 1, .crm = 1, .opc2 = 2,
4054       .access = PL3_RW, .accessfn = cptr_access, .resetvalue = 0,
4055       .fieldoffset = offsetof(CPUARMState, cp15.cptr_el[3]) },
4056     { .name = "TPIDR_EL3", .state = ARM_CP_STATE_AA64,
4057       .opc0 = 3, .opc1 = 6, .crn = 13, .crm = 0, .opc2 = 2,
4058       .access = PL3_RW, .resetvalue = 0,
4059       .fieldoffset = offsetof(CPUARMState, cp15.tpidr_el[3]) },
4060     { .name = "AMAIR_EL3", .state = ARM_CP_STATE_AA64,
4061       .opc0 = 3, .opc1 = 6, .crn = 10, .crm = 3, .opc2 = 0,
4062       .access = PL3_RW, .type = ARM_CP_CONST,
4063       .resetvalue = 0 },
4064     { .name = "AFSR0_EL3", .state = ARM_CP_STATE_BOTH,
4065       .opc0 = 3, .opc1 = 6, .crn = 5, .crm = 1, .opc2 = 0,
4066       .access = PL3_RW, .type = ARM_CP_CONST,
4067       .resetvalue = 0 },
4068     { .name = "AFSR1_EL3", .state = ARM_CP_STATE_BOTH,
4069       .opc0 = 3, .opc1 = 6, .crn = 5, .crm = 1, .opc2 = 1,
4070       .access = PL3_RW, .type = ARM_CP_CONST,
4071       .resetvalue = 0 },
4072     { .name = "TLBI_ALLE3IS", .state = ARM_CP_STATE_AA64,
4073       .opc0 = 1, .opc1 = 6, .crn = 8, .crm = 3, .opc2 = 0,
4074       .access = PL3_W, .type = ARM_CP_NO_RAW,
4075       .writefn = tlbi_aa64_alle3is_write },
4076     { .name = "TLBI_VAE3IS", .state = ARM_CP_STATE_AA64,
4077       .opc0 = 1, .opc1 = 6, .crn = 8, .crm = 3, .opc2 = 1,
4078       .access = PL3_W, .type = ARM_CP_NO_RAW,
4079       .writefn = tlbi_aa64_vae3is_write },
4080     { .name = "TLBI_VALE3IS", .state = ARM_CP_STATE_AA64,
4081       .opc0 = 1, .opc1 = 6, .crn = 8, .crm = 3, .opc2 = 5,
4082       .access = PL3_W, .type = ARM_CP_NO_RAW,
4083       .writefn = tlbi_aa64_vae3is_write },
4084     { .name = "TLBI_ALLE3", .state = ARM_CP_STATE_AA64,
4085       .opc0 = 1, .opc1 = 6, .crn = 8, .crm = 7, .opc2 = 0,
4086       .access = PL3_W, .type = ARM_CP_NO_RAW,
4087       .writefn = tlbi_aa64_alle3_write },
4088     { .name = "TLBI_VAE3", .state = ARM_CP_STATE_AA64,
4089       .opc0 = 1, .opc1 = 6, .crn = 8, .crm = 7, .opc2 = 1,
4090       .access = PL3_W, .type = ARM_CP_NO_RAW,
4091       .writefn = tlbi_aa64_vae3_write },
4092     { .name = "TLBI_VALE3", .state = ARM_CP_STATE_AA64,
4093       .opc0 = 1, .opc1 = 6, .crn = 8, .crm = 7, .opc2 = 5,
4094       .access = PL3_W, .type = ARM_CP_NO_RAW,
4095       .writefn = tlbi_aa64_vae3_write },
4096     REGINFO_SENTINEL
4097 };
4098 
4099 static CPAccessResult ctr_el0_access(CPUARMState *env, const ARMCPRegInfo *ri,
4100                                      bool isread)
4101 {
4102     /* Only accessible in EL0 if SCTLR.UCT is set (and only in AArch64,
4103      * but the AArch32 CTR has its own reginfo struct)
4104      */
4105     if (arm_current_el(env) == 0 && !(env->cp15.sctlr_el[1] & SCTLR_UCT)) {
4106         return CP_ACCESS_TRAP;
4107     }
4108     return CP_ACCESS_OK;
4109 }
4110 
4111 static void oslar_write(CPUARMState *env, const ARMCPRegInfo *ri,
4112                         uint64_t value)
4113 {
4114     /* Writes to OSLAR_EL1 may update the OS lock status, which can be
4115      * read via a bit in OSLSR_EL1.
4116      */
4117     int oslock;
4118 
4119     if (ri->state == ARM_CP_STATE_AA32) {
4120         oslock = (value == 0xC5ACCE55);
4121     } else {
4122         oslock = value & 1;
4123     }
4124 
4125     env->cp15.oslsr_el1 = deposit32(env->cp15.oslsr_el1, 1, 1, oslock);
4126 }
4127 
4128 static const ARMCPRegInfo debug_cp_reginfo[] = {
4129     /* DBGDRAR, DBGDSAR: always RAZ since we don't implement memory mapped
4130      * debug components. The AArch64 version of DBGDRAR is named MDRAR_EL1;
4131      * unlike DBGDRAR it is never accessible from EL0.
4132      * DBGDSAR is deprecated and must RAZ from v8 anyway, so it has no AArch64
4133      * accessor.
4134      */
4135     { .name = "DBGDRAR", .cp = 14, .crn = 1, .crm = 0, .opc1 = 0, .opc2 = 0,
4136       .access = PL0_R, .accessfn = access_tdra,
4137       .type = ARM_CP_CONST, .resetvalue = 0 },
4138     { .name = "MDRAR_EL1", .state = ARM_CP_STATE_AA64,
4139       .opc0 = 2, .opc1 = 0, .crn = 1, .crm = 0, .opc2 = 0,
4140       .access = PL1_R, .accessfn = access_tdra,
4141       .type = ARM_CP_CONST, .resetvalue = 0 },
4142     { .name = "DBGDSAR", .cp = 14, .crn = 2, .crm = 0, .opc1 = 0, .opc2 = 0,
4143       .access = PL0_R, .accessfn = access_tdra,
4144       .type = ARM_CP_CONST, .resetvalue = 0 },
4145     /* Monitor debug system control register; the 32-bit alias is DBGDSCRext. */
4146     { .name = "MDSCR_EL1", .state = ARM_CP_STATE_BOTH,
4147       .cp = 14, .opc0 = 2, .opc1 = 0, .crn = 0, .crm = 2, .opc2 = 2,
4148       .access = PL1_RW, .accessfn = access_tda,
4149       .fieldoffset = offsetof(CPUARMState, cp15.mdscr_el1),
4150       .resetvalue = 0 },
4151     /* MDCCSR_EL0, aka DBGDSCRint. This is a read-only mirror of MDSCR_EL1.
4152      * We don't implement the configurable EL0 access.
4153      */
4154     { .name = "MDCCSR_EL0", .state = ARM_CP_STATE_BOTH,
4155       .cp = 14, .opc0 = 2, .opc1 = 0, .crn = 0, .crm = 1, .opc2 = 0,
4156       .type = ARM_CP_ALIAS,
4157       .access = PL1_R, .accessfn = access_tda,
4158       .fieldoffset = offsetof(CPUARMState, cp15.mdscr_el1), },
4159     { .name = "OSLAR_EL1", .state = ARM_CP_STATE_BOTH,
4160       .cp = 14, .opc0 = 2, .opc1 = 0, .crn = 1, .crm = 0, .opc2 = 4,
4161       .access = PL1_W, .type = ARM_CP_NO_RAW,
4162       .accessfn = access_tdosa,
4163       .writefn = oslar_write },
4164     { .name = "OSLSR_EL1", .state = ARM_CP_STATE_BOTH,
4165       .cp = 14, .opc0 = 2, .opc1 = 0, .crn = 1, .crm = 1, .opc2 = 4,
4166       .access = PL1_R, .resetvalue = 10,
4167       .accessfn = access_tdosa,
4168       .fieldoffset = offsetof(CPUARMState, cp15.oslsr_el1) },
4169     /* Dummy OSDLR_EL1: 32-bit Linux will read this */
4170     { .name = "OSDLR_EL1", .state = ARM_CP_STATE_BOTH,
4171       .cp = 14, .opc0 = 2, .opc1 = 0, .crn = 1, .crm = 3, .opc2 = 4,
4172       .access = PL1_RW, .accessfn = access_tdosa,
4173       .type = ARM_CP_NOP },
4174     /* Dummy DBGVCR: Linux wants to clear this on startup, but we don't
4175      * implement vector catch debug events yet.
4176      */
4177     { .name = "DBGVCR",
4178       .cp = 14, .opc1 = 0, .crn = 0, .crm = 7, .opc2 = 0,
4179       .access = PL1_RW, .accessfn = access_tda,
4180       .type = ARM_CP_NOP },
4181     /* Dummy DBGVCR32_EL2 (which is only for a 64-bit hypervisor
4182      * to save and restore a 32-bit guest's DBGVCR)
4183      */
4184     { .name = "DBGVCR32_EL2", .state = ARM_CP_STATE_AA64,
4185       .opc0 = 2, .opc1 = 4, .crn = 0, .crm = 7, .opc2 = 0,
4186       .access = PL2_RW, .accessfn = access_tda,
4187       .type = ARM_CP_NOP },
4188     /* Dummy MDCCINT_EL1, since we don't implement the Debug Communications
4189      * Channel but Linux may try to access this register. The 32-bit
4190      * alias is DBGDCCINT.
4191      */
4192     { .name = "MDCCINT_EL1", .state = ARM_CP_STATE_BOTH,
4193       .cp = 14, .opc0 = 2, .opc1 = 0, .crn = 0, .crm = 2, .opc2 = 0,
4194       .access = PL1_RW, .accessfn = access_tda,
4195       .type = ARM_CP_NOP },
4196     REGINFO_SENTINEL
4197 };
4198 
4199 static const ARMCPRegInfo debug_lpae_cp_reginfo[] = {
4200     /* 64 bit access versions of the (dummy) debug registers */
4201     { .name = "DBGDRAR", .cp = 14, .crm = 1, .opc1 = 0,
4202       .access = PL0_R, .type = ARM_CP_CONST|ARM_CP_64BIT, .resetvalue = 0 },
4203     { .name = "DBGDSAR", .cp = 14, .crm = 2, .opc1 = 0,
4204       .access = PL0_R, .type = ARM_CP_CONST|ARM_CP_64BIT, .resetvalue = 0 },
4205     REGINFO_SENTINEL
4206 };
4207 
4208 void hw_watchpoint_update(ARMCPU *cpu, int n)
4209 {
4210     CPUARMState *env = &cpu->env;
4211     vaddr len = 0;
4212     vaddr wvr = env->cp15.dbgwvr[n];
4213     uint64_t wcr = env->cp15.dbgwcr[n];
4214     int mask;
4215     int flags = BP_CPU | BP_STOP_BEFORE_ACCESS;
4216 
4217     if (env->cpu_watchpoint[n]) {
4218         cpu_watchpoint_remove_by_ref(CPU(cpu), env->cpu_watchpoint[n]);
4219         env->cpu_watchpoint[n] = NULL;
4220     }
4221 
4222     if (!extract64(wcr, 0, 1)) {
4223         /* E bit clear : watchpoint disabled */
4224         return;
4225     }
4226 
4227     switch (extract64(wcr, 3, 2)) {
4228     case 0:
4229         /* LSC 00 is reserved and must behave as if the wp is disabled */
4230         return;
4231     case 1:
4232         flags |= BP_MEM_READ;
4233         break;
4234     case 2:
4235         flags |= BP_MEM_WRITE;
4236         break;
4237     case 3:
4238         flags |= BP_MEM_ACCESS;
4239         break;
4240     }
4241 
4242     /* Attempts to use both MASK and BAS fields simultaneously are
4243      * CONSTRAINED UNPREDICTABLE; we opt to ignore BAS in this case,
4244      * thus generating a watchpoint for every byte in the masked region.
4245      */
4246     mask = extract64(wcr, 24, 4);
4247     if (mask == 1 || mask == 2) {
4248         /* Reserved values of MASK; we must act as if the mask value was
4249          * some non-reserved value, or as if the watchpoint were disabled.
4250          * We choose the latter.
4251          */
4252         return;
4253     } else if (mask) {
4254         /* Watchpoint covers an aligned area up to 2GB in size */
4255         len = 1ULL << mask;
4256         /* If masked bits in WVR are not zero it's CONSTRAINED UNPREDICTABLE
4257          * whether the watchpoint fires when the unmasked bits match; we opt
4258          * to generate the exceptions.
4259          */
4260         wvr &= ~(len - 1);
4261     } else {
4262         /* Watchpoint covers bytes defined by the byte address select bits */
4263         int bas = extract64(wcr, 5, 8);
4264         int basstart;
4265 
4266         if (bas == 0) {
4267             /* This must act as if the watchpoint is disabled */
4268             return;
4269         }
4270 
4271         if (extract64(wvr, 2, 1)) {
4272             /* Deprecated case of an only 4-aligned address. BAS[7:4] are
4273              * ignored, and BAS[3:0] define which bytes to watch.
4274              */
4275             bas &= 0xf;
4276         }
4277         /* The BAS bits are supposed to be programmed to indicate a contiguous
4278          * range of bytes. Otherwise it is CONSTRAINED UNPREDICTABLE whether
4279          * we fire for each byte in the word/doubleword addressed by the WVR.
4280          * We choose to ignore any non-zero bits after the first range of 1s.
4281          */
4282         basstart = ctz32(bas);
4283         len = cto32(bas >> basstart);
4284         wvr += basstart;
4285     }
4286 
4287     cpu_watchpoint_insert(CPU(cpu), wvr, len, flags,
4288                           &env->cpu_watchpoint[n]);
4289 }
4290 
4291 void hw_watchpoint_update_all(ARMCPU *cpu)
4292 {
4293     int i;
4294     CPUARMState *env = &cpu->env;
4295 
4296     /* Completely clear out existing QEMU watchpoints and our array, to
4297      * avoid possible stale entries following migration load.
4298      */
4299     cpu_watchpoint_remove_all(CPU(cpu), BP_CPU);
4300     memset(env->cpu_watchpoint, 0, sizeof(env->cpu_watchpoint));
4301 
4302     for (i = 0; i < ARRAY_SIZE(cpu->env.cpu_watchpoint); i++) {
4303         hw_watchpoint_update(cpu, i);
4304     }
4305 }
4306 
4307 static void dbgwvr_write(CPUARMState *env, const ARMCPRegInfo *ri,
4308                          uint64_t value)
4309 {
4310     ARMCPU *cpu = arm_env_get_cpu(env);
4311     int i = ri->crm;
4312 
4313     /* Bits [63:49] are hardwired to the value of bit [48]; that is, the
4314      * register reads and behaves as if values written are sign extended.
4315      * Bits [1:0] are RES0.
4316      */
4317     value = sextract64(value, 0, 49) & ~3ULL;
4318 
4319     raw_write(env, ri, value);
4320     hw_watchpoint_update(cpu, i);
4321 }
4322 
4323 static void dbgwcr_write(CPUARMState *env, const ARMCPRegInfo *ri,
4324                          uint64_t value)
4325 {
4326     ARMCPU *cpu = arm_env_get_cpu(env);
4327     int i = ri->crm;
4328 
4329     raw_write(env, ri, value);
4330     hw_watchpoint_update(cpu, i);
4331 }
4332 
4333 void hw_breakpoint_update(ARMCPU *cpu, int n)
4334 {
4335     CPUARMState *env = &cpu->env;
4336     uint64_t bvr = env->cp15.dbgbvr[n];
4337     uint64_t bcr = env->cp15.dbgbcr[n];
4338     vaddr addr;
4339     int bt;
4340     int flags = BP_CPU;
4341 
4342     if (env->cpu_breakpoint[n]) {
4343         cpu_breakpoint_remove_by_ref(CPU(cpu), env->cpu_breakpoint[n]);
4344         env->cpu_breakpoint[n] = NULL;
4345     }
4346 
4347     if (!extract64(bcr, 0, 1)) {
4348         /* E bit clear : watchpoint disabled */
4349         return;
4350     }
4351 
4352     bt = extract64(bcr, 20, 4);
4353 
4354     switch (bt) {
4355     case 4: /* unlinked address mismatch (reserved if AArch64) */
4356     case 5: /* linked address mismatch (reserved if AArch64) */
4357         qemu_log_mask(LOG_UNIMP,
4358                       "arm: address mismatch breakpoint types not implemented");
4359         return;
4360     case 0: /* unlinked address match */
4361     case 1: /* linked address match */
4362     {
4363         /* Bits [63:49] are hardwired to the value of bit [48]; that is,
4364          * we behave as if the register was sign extended. Bits [1:0] are
4365          * RES0. The BAS field is used to allow setting breakpoints on 16
4366          * bit wide instructions; it is CONSTRAINED UNPREDICTABLE whether
4367          * a bp will fire if the addresses covered by the bp and the addresses
4368          * covered by the insn overlap but the insn doesn't start at the
4369          * start of the bp address range. We choose to require the insn and
4370          * the bp to have the same address. The constraints on writing to
4371          * BAS enforced in dbgbcr_write mean we have only four cases:
4372          *  0b0000  => no breakpoint
4373          *  0b0011  => breakpoint on addr
4374          *  0b1100  => breakpoint on addr + 2
4375          *  0b1111  => breakpoint on addr
4376          * See also figure D2-3 in the v8 ARM ARM (DDI0487A.c).
4377          */
4378         int bas = extract64(bcr, 5, 4);
4379         addr = sextract64(bvr, 0, 49) & ~3ULL;
4380         if (bas == 0) {
4381             return;
4382         }
4383         if (bas == 0xc) {
4384             addr += 2;
4385         }
4386         break;
4387     }
4388     case 2: /* unlinked context ID match */
4389     case 8: /* unlinked VMID match (reserved if no EL2) */
4390     case 10: /* unlinked context ID and VMID match (reserved if no EL2) */
4391         qemu_log_mask(LOG_UNIMP,
4392                       "arm: unlinked context breakpoint types not implemented");
4393         return;
4394     case 9: /* linked VMID match (reserved if no EL2) */
4395     case 11: /* linked context ID and VMID match (reserved if no EL2) */
4396     case 3: /* linked context ID match */
4397     default:
4398         /* We must generate no events for Linked context matches (unless
4399          * they are linked to by some other bp/wp, which is handled in
4400          * updates for the linking bp/wp). We choose to also generate no events
4401          * for reserved values.
4402          */
4403         return;
4404     }
4405 
4406     cpu_breakpoint_insert(CPU(cpu), addr, flags, &env->cpu_breakpoint[n]);
4407 }
4408 
4409 void hw_breakpoint_update_all(ARMCPU *cpu)
4410 {
4411     int i;
4412     CPUARMState *env = &cpu->env;
4413 
4414     /* Completely clear out existing QEMU breakpoints and our array, to
4415      * avoid possible stale entries following migration load.
4416      */
4417     cpu_breakpoint_remove_all(CPU(cpu), BP_CPU);
4418     memset(env->cpu_breakpoint, 0, sizeof(env->cpu_breakpoint));
4419 
4420     for (i = 0; i < ARRAY_SIZE(cpu->env.cpu_breakpoint); i++) {
4421         hw_breakpoint_update(cpu, i);
4422     }
4423 }
4424 
4425 static void dbgbvr_write(CPUARMState *env, const ARMCPRegInfo *ri,
4426                          uint64_t value)
4427 {
4428     ARMCPU *cpu = arm_env_get_cpu(env);
4429     int i = ri->crm;
4430 
4431     raw_write(env, ri, value);
4432     hw_breakpoint_update(cpu, i);
4433 }
4434 
4435 static void dbgbcr_write(CPUARMState *env, const ARMCPRegInfo *ri,
4436                          uint64_t value)
4437 {
4438     ARMCPU *cpu = arm_env_get_cpu(env);
4439     int i = ri->crm;
4440 
4441     /* BAS[3] is a read-only copy of BAS[2], and BAS[1] a read-only
4442      * copy of BAS[0].
4443      */
4444     value = deposit64(value, 6, 1, extract64(value, 5, 1));
4445     value = deposit64(value, 8, 1, extract64(value, 7, 1));
4446 
4447     raw_write(env, ri, value);
4448     hw_breakpoint_update(cpu, i);
4449 }
4450 
4451 static void define_debug_regs(ARMCPU *cpu)
4452 {
4453     /* Define v7 and v8 architectural debug registers.
4454      * These are just dummy implementations for now.
4455      */
4456     int i;
4457     int wrps, brps, ctx_cmps;
4458     ARMCPRegInfo dbgdidr = {
4459         .name = "DBGDIDR", .cp = 14, .crn = 0, .crm = 0, .opc1 = 0, .opc2 = 0,
4460         .access = PL0_R, .accessfn = access_tda,
4461         .type = ARM_CP_CONST, .resetvalue = cpu->dbgdidr,
4462     };
4463 
4464     /* Note that all these register fields hold "number of Xs minus 1". */
4465     brps = extract32(cpu->dbgdidr, 24, 4);
4466     wrps = extract32(cpu->dbgdidr, 28, 4);
4467     ctx_cmps = extract32(cpu->dbgdidr, 20, 4);
4468 
4469     assert(ctx_cmps <= brps);
4470 
4471     /* The DBGDIDR and ID_AA64DFR0_EL1 define various properties
4472      * of the debug registers such as number of breakpoints;
4473      * check that if they both exist then they agree.
4474      */
4475     if (arm_feature(&cpu->env, ARM_FEATURE_AARCH64)) {
4476         assert(extract32(cpu->id_aa64dfr0, 12, 4) == brps);
4477         assert(extract32(cpu->id_aa64dfr0, 20, 4) == wrps);
4478         assert(extract32(cpu->id_aa64dfr0, 28, 4) == ctx_cmps);
4479     }
4480 
4481     define_one_arm_cp_reg(cpu, &dbgdidr);
4482     define_arm_cp_regs(cpu, debug_cp_reginfo);
4483 
4484     if (arm_feature(&cpu->env, ARM_FEATURE_LPAE)) {
4485         define_arm_cp_regs(cpu, debug_lpae_cp_reginfo);
4486     }
4487 
4488     for (i = 0; i < brps + 1; i++) {
4489         ARMCPRegInfo dbgregs[] = {
4490             { .name = "DBGBVR", .state = ARM_CP_STATE_BOTH,
4491               .cp = 14, .opc0 = 2, .opc1 = 0, .crn = 0, .crm = i, .opc2 = 4,
4492               .access = PL1_RW, .accessfn = access_tda,
4493               .fieldoffset = offsetof(CPUARMState, cp15.dbgbvr[i]),
4494               .writefn = dbgbvr_write, .raw_writefn = raw_write
4495             },
4496             { .name = "DBGBCR", .state = ARM_CP_STATE_BOTH,
4497               .cp = 14, .opc0 = 2, .opc1 = 0, .crn = 0, .crm = i, .opc2 = 5,
4498               .access = PL1_RW, .accessfn = access_tda,
4499               .fieldoffset = offsetof(CPUARMState, cp15.dbgbcr[i]),
4500               .writefn = dbgbcr_write, .raw_writefn = raw_write
4501             },
4502             REGINFO_SENTINEL
4503         };
4504         define_arm_cp_regs(cpu, dbgregs);
4505     }
4506 
4507     for (i = 0; i < wrps + 1; i++) {
4508         ARMCPRegInfo dbgregs[] = {
4509             { .name = "DBGWVR", .state = ARM_CP_STATE_BOTH,
4510               .cp = 14, .opc0 = 2, .opc1 = 0, .crn = 0, .crm = i, .opc2 = 6,
4511               .access = PL1_RW, .accessfn = access_tda,
4512               .fieldoffset = offsetof(CPUARMState, cp15.dbgwvr[i]),
4513               .writefn = dbgwvr_write, .raw_writefn = raw_write
4514             },
4515             { .name = "DBGWCR", .state = ARM_CP_STATE_BOTH,
4516               .cp = 14, .opc0 = 2, .opc1 = 0, .crn = 0, .crm = i, .opc2 = 7,
4517               .access = PL1_RW, .accessfn = access_tda,
4518               .fieldoffset = offsetof(CPUARMState, cp15.dbgwcr[i]),
4519               .writefn = dbgwcr_write, .raw_writefn = raw_write
4520             },
4521             REGINFO_SENTINEL
4522         };
4523         define_arm_cp_regs(cpu, dbgregs);
4524     }
4525 }
4526 
4527 void register_cp_regs_for_features(ARMCPU *cpu)
4528 {
4529     /* Register all the coprocessor registers based on feature bits */
4530     CPUARMState *env = &cpu->env;
4531     if (arm_feature(env, ARM_FEATURE_M)) {
4532         /* M profile has no coprocessor registers */
4533         return;
4534     }
4535 
4536     define_arm_cp_regs(cpu, cp_reginfo);
4537     if (!arm_feature(env, ARM_FEATURE_V8)) {
4538         /* Must go early as it is full of wildcards that may be
4539          * overridden by later definitions.
4540          */
4541         define_arm_cp_regs(cpu, not_v8_cp_reginfo);
4542     }
4543 
4544     if (arm_feature(env, ARM_FEATURE_V6)) {
4545         /* The ID registers all have impdef reset values */
4546         ARMCPRegInfo v6_idregs[] = {
4547             { .name = "ID_PFR0", .state = ARM_CP_STATE_BOTH,
4548               .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 1, .opc2 = 0,
4549               .access = PL1_R, .type = ARM_CP_CONST,
4550               .resetvalue = cpu->id_pfr0 },
4551             { .name = "ID_PFR1", .state = ARM_CP_STATE_BOTH,
4552               .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 1, .opc2 = 1,
4553               .access = PL1_R, .type = ARM_CP_CONST,
4554               .resetvalue = cpu->id_pfr1 },
4555             { .name = "ID_DFR0", .state = ARM_CP_STATE_BOTH,
4556               .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 1, .opc2 = 2,
4557               .access = PL1_R, .type = ARM_CP_CONST,
4558               .resetvalue = cpu->id_dfr0 },
4559             { .name = "ID_AFR0", .state = ARM_CP_STATE_BOTH,
4560               .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 1, .opc2 = 3,
4561               .access = PL1_R, .type = ARM_CP_CONST,
4562               .resetvalue = cpu->id_afr0 },
4563             { .name = "ID_MMFR0", .state = ARM_CP_STATE_BOTH,
4564               .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 1, .opc2 = 4,
4565               .access = PL1_R, .type = ARM_CP_CONST,
4566               .resetvalue = cpu->id_mmfr0 },
4567             { .name = "ID_MMFR1", .state = ARM_CP_STATE_BOTH,
4568               .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 1, .opc2 = 5,
4569               .access = PL1_R, .type = ARM_CP_CONST,
4570               .resetvalue = cpu->id_mmfr1 },
4571             { .name = "ID_MMFR2", .state = ARM_CP_STATE_BOTH,
4572               .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 1, .opc2 = 6,
4573               .access = PL1_R, .type = ARM_CP_CONST,
4574               .resetvalue = cpu->id_mmfr2 },
4575             { .name = "ID_MMFR3", .state = ARM_CP_STATE_BOTH,
4576               .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 1, .opc2 = 7,
4577               .access = PL1_R, .type = ARM_CP_CONST,
4578               .resetvalue = cpu->id_mmfr3 },
4579             { .name = "ID_ISAR0", .state = ARM_CP_STATE_BOTH,
4580               .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 2, .opc2 = 0,
4581               .access = PL1_R, .type = ARM_CP_CONST,
4582               .resetvalue = cpu->id_isar0 },
4583             { .name = "ID_ISAR1", .state = ARM_CP_STATE_BOTH,
4584               .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 2, .opc2 = 1,
4585               .access = PL1_R, .type = ARM_CP_CONST,
4586               .resetvalue = cpu->id_isar1 },
4587             { .name = "ID_ISAR2", .state = ARM_CP_STATE_BOTH,
4588               .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 2, .opc2 = 2,
4589               .access = PL1_R, .type = ARM_CP_CONST,
4590               .resetvalue = cpu->id_isar2 },
4591             { .name = "ID_ISAR3", .state = ARM_CP_STATE_BOTH,
4592               .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 2, .opc2 = 3,
4593               .access = PL1_R, .type = ARM_CP_CONST,
4594               .resetvalue = cpu->id_isar3 },
4595             { .name = "ID_ISAR4", .state = ARM_CP_STATE_BOTH,
4596               .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 2, .opc2 = 4,
4597               .access = PL1_R, .type = ARM_CP_CONST,
4598               .resetvalue = cpu->id_isar4 },
4599             { .name = "ID_ISAR5", .state = ARM_CP_STATE_BOTH,
4600               .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 2, .opc2 = 5,
4601               .access = PL1_R, .type = ARM_CP_CONST,
4602               .resetvalue = cpu->id_isar5 },
4603             { .name = "ID_MMFR4", .state = ARM_CP_STATE_BOTH,
4604               .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 2, .opc2 = 6,
4605               .access = PL1_R, .type = ARM_CP_CONST,
4606               .resetvalue = cpu->id_mmfr4 },
4607             /* 7 is as yet unallocated and must RAZ */
4608             { .name = "ID_ISAR7_RESERVED", .state = ARM_CP_STATE_BOTH,
4609               .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 2, .opc2 = 7,
4610               .access = PL1_R, .type = ARM_CP_CONST,
4611               .resetvalue = 0 },
4612             REGINFO_SENTINEL
4613         };
4614         define_arm_cp_regs(cpu, v6_idregs);
4615         define_arm_cp_regs(cpu, v6_cp_reginfo);
4616     } else {
4617         define_arm_cp_regs(cpu, not_v6_cp_reginfo);
4618     }
4619     if (arm_feature(env, ARM_FEATURE_V6K)) {
4620         define_arm_cp_regs(cpu, v6k_cp_reginfo);
4621     }
4622     if (arm_feature(env, ARM_FEATURE_V7MP) &&
4623         !arm_feature(env, ARM_FEATURE_PMSA)) {
4624         define_arm_cp_regs(cpu, v7mp_cp_reginfo);
4625     }
4626     if (arm_feature(env, ARM_FEATURE_V7)) {
4627         /* v7 performance monitor control register: same implementor
4628          * field as main ID register, and we implement only the cycle
4629          * count register.
4630          */
4631 #ifndef CONFIG_USER_ONLY
4632         ARMCPRegInfo pmcr = {
4633             .name = "PMCR", .cp = 15, .crn = 9, .crm = 12, .opc1 = 0, .opc2 = 0,
4634             .access = PL0_RW,
4635             .type = ARM_CP_IO | ARM_CP_ALIAS,
4636             .fieldoffset = offsetoflow32(CPUARMState, cp15.c9_pmcr),
4637             .accessfn = pmreg_access, .writefn = pmcr_write,
4638             .raw_writefn = raw_write,
4639         };
4640         ARMCPRegInfo pmcr64 = {
4641             .name = "PMCR_EL0", .state = ARM_CP_STATE_AA64,
4642             .opc0 = 3, .opc1 = 3, .crn = 9, .crm = 12, .opc2 = 0,
4643             .access = PL0_RW, .accessfn = pmreg_access,
4644             .type = ARM_CP_IO,
4645             .fieldoffset = offsetof(CPUARMState, cp15.c9_pmcr),
4646             .resetvalue = cpu->midr & 0xff000000,
4647             .writefn = pmcr_write, .raw_writefn = raw_write,
4648         };
4649         define_one_arm_cp_reg(cpu, &pmcr);
4650         define_one_arm_cp_reg(cpu, &pmcr64);
4651 #endif
4652         ARMCPRegInfo clidr = {
4653             .name = "CLIDR", .state = ARM_CP_STATE_BOTH,
4654             .opc0 = 3, .crn = 0, .crm = 0, .opc1 = 1, .opc2 = 1,
4655             .access = PL1_R, .type = ARM_CP_CONST, .resetvalue = cpu->clidr
4656         };
4657         define_one_arm_cp_reg(cpu, &clidr);
4658         define_arm_cp_regs(cpu, v7_cp_reginfo);
4659         define_debug_regs(cpu);
4660     } else {
4661         define_arm_cp_regs(cpu, not_v7_cp_reginfo);
4662     }
4663     if (arm_feature(env, ARM_FEATURE_V8)) {
4664         /* AArch64 ID registers, which all have impdef reset values.
4665          * Note that within the ID register ranges the unused slots
4666          * must all RAZ, not UNDEF; future architecture versions may
4667          * define new registers here.
4668          */
4669         ARMCPRegInfo v8_idregs[] = {
4670             { .name = "ID_AA64PFR0_EL1", .state = ARM_CP_STATE_AA64,
4671               .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 4, .opc2 = 0,
4672               .access = PL1_R, .type = ARM_CP_CONST,
4673               .resetvalue = cpu->id_aa64pfr0 },
4674             { .name = "ID_AA64PFR1_EL1", .state = ARM_CP_STATE_AA64,
4675               .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 4, .opc2 = 1,
4676               .access = PL1_R, .type = ARM_CP_CONST,
4677               .resetvalue = cpu->id_aa64pfr1},
4678             { .name = "ID_AA64PFR2_EL1_RESERVED", .state = ARM_CP_STATE_AA64,
4679               .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 4, .opc2 = 2,
4680               .access = PL1_R, .type = ARM_CP_CONST,
4681               .resetvalue = 0 },
4682             { .name = "ID_AA64PFR3_EL1_RESERVED", .state = ARM_CP_STATE_AA64,
4683               .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 4, .opc2 = 3,
4684               .access = PL1_R, .type = ARM_CP_CONST,
4685               .resetvalue = 0 },
4686             { .name = "ID_AA64PFR4_EL1_RESERVED", .state = ARM_CP_STATE_AA64,
4687               .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 4, .opc2 = 4,
4688               .access = PL1_R, .type = ARM_CP_CONST,
4689               .resetvalue = 0 },
4690             { .name = "ID_AA64PFR5_EL1_RESERVED", .state = ARM_CP_STATE_AA64,
4691               .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 4, .opc2 = 5,
4692               .access = PL1_R, .type = ARM_CP_CONST,
4693               .resetvalue = 0 },
4694             { .name = "ID_AA64PFR6_EL1_RESERVED", .state = ARM_CP_STATE_AA64,
4695               .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 4, .opc2 = 6,
4696               .access = PL1_R, .type = ARM_CP_CONST,
4697               .resetvalue = 0 },
4698             { .name = "ID_AA64PFR7_EL1_RESERVED", .state = ARM_CP_STATE_AA64,
4699               .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 4, .opc2 = 7,
4700               .access = PL1_R, .type = ARM_CP_CONST,
4701               .resetvalue = 0 },
4702             { .name = "ID_AA64DFR0_EL1", .state = ARM_CP_STATE_AA64,
4703               .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 5, .opc2 = 0,
4704               .access = PL1_R, .type = ARM_CP_CONST,
4705               .resetvalue = cpu->id_aa64dfr0 },
4706             { .name = "ID_AA64DFR1_EL1", .state = ARM_CP_STATE_AA64,
4707               .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 5, .opc2 = 1,
4708               .access = PL1_R, .type = ARM_CP_CONST,
4709               .resetvalue = cpu->id_aa64dfr1 },
4710             { .name = "ID_AA64DFR2_EL1_RESERVED", .state = ARM_CP_STATE_AA64,
4711               .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 5, .opc2 = 2,
4712               .access = PL1_R, .type = ARM_CP_CONST,
4713               .resetvalue = 0 },
4714             { .name = "ID_AA64DFR3_EL1_RESERVED", .state = ARM_CP_STATE_AA64,
4715               .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 5, .opc2 = 3,
4716               .access = PL1_R, .type = ARM_CP_CONST,
4717               .resetvalue = 0 },
4718             { .name = "ID_AA64AFR0_EL1", .state = ARM_CP_STATE_AA64,
4719               .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 5, .opc2 = 4,
4720               .access = PL1_R, .type = ARM_CP_CONST,
4721               .resetvalue = cpu->id_aa64afr0 },
4722             { .name = "ID_AA64AFR1_EL1", .state = ARM_CP_STATE_AA64,
4723               .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 5, .opc2 = 5,
4724               .access = PL1_R, .type = ARM_CP_CONST,
4725               .resetvalue = cpu->id_aa64afr1 },
4726             { .name = "ID_AA64AFR2_EL1_RESERVED", .state = ARM_CP_STATE_AA64,
4727               .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 5, .opc2 = 6,
4728               .access = PL1_R, .type = ARM_CP_CONST,
4729               .resetvalue = 0 },
4730             { .name = "ID_AA64AFR3_EL1_RESERVED", .state = ARM_CP_STATE_AA64,
4731               .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 5, .opc2 = 7,
4732               .access = PL1_R, .type = ARM_CP_CONST,
4733               .resetvalue = 0 },
4734             { .name = "ID_AA64ISAR0_EL1", .state = ARM_CP_STATE_AA64,
4735               .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 6, .opc2 = 0,
4736               .access = PL1_R, .type = ARM_CP_CONST,
4737               .resetvalue = cpu->id_aa64isar0 },
4738             { .name = "ID_AA64ISAR1_EL1", .state = ARM_CP_STATE_AA64,
4739               .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 6, .opc2 = 1,
4740               .access = PL1_R, .type = ARM_CP_CONST,
4741               .resetvalue = cpu->id_aa64isar1 },
4742             { .name = "ID_AA64ISAR2_EL1_RESERVED", .state = ARM_CP_STATE_AA64,
4743               .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 6, .opc2 = 2,
4744               .access = PL1_R, .type = ARM_CP_CONST,
4745               .resetvalue = 0 },
4746             { .name = "ID_AA64ISAR3_EL1_RESERVED", .state = ARM_CP_STATE_AA64,
4747               .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 6, .opc2 = 3,
4748               .access = PL1_R, .type = ARM_CP_CONST,
4749               .resetvalue = 0 },
4750             { .name = "ID_AA64ISAR4_EL1_RESERVED", .state = ARM_CP_STATE_AA64,
4751               .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 6, .opc2 = 4,
4752               .access = PL1_R, .type = ARM_CP_CONST,
4753               .resetvalue = 0 },
4754             { .name = "ID_AA64ISAR5_EL1_RESERVED", .state = ARM_CP_STATE_AA64,
4755               .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 6, .opc2 = 5,
4756               .access = PL1_R, .type = ARM_CP_CONST,
4757               .resetvalue = 0 },
4758             { .name = "ID_AA64ISAR6_EL1_RESERVED", .state = ARM_CP_STATE_AA64,
4759               .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 6, .opc2 = 6,
4760               .access = PL1_R, .type = ARM_CP_CONST,
4761               .resetvalue = 0 },
4762             { .name = "ID_AA64ISAR7_EL1_RESERVED", .state = ARM_CP_STATE_AA64,
4763               .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 6, .opc2 = 7,
4764               .access = PL1_R, .type = ARM_CP_CONST,
4765               .resetvalue = 0 },
4766             { .name = "ID_AA64MMFR0_EL1", .state = ARM_CP_STATE_AA64,
4767               .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 7, .opc2 = 0,
4768               .access = PL1_R, .type = ARM_CP_CONST,
4769               .resetvalue = cpu->id_aa64mmfr0 },
4770             { .name = "ID_AA64MMFR1_EL1", .state = ARM_CP_STATE_AA64,
4771               .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 7, .opc2 = 1,
4772               .access = PL1_R, .type = ARM_CP_CONST,
4773               .resetvalue = cpu->id_aa64mmfr1 },
4774             { .name = "ID_AA64MMFR2_EL1_RESERVED", .state = ARM_CP_STATE_AA64,
4775               .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 7, .opc2 = 2,
4776               .access = PL1_R, .type = ARM_CP_CONST,
4777               .resetvalue = 0 },
4778             { .name = "ID_AA64MMFR3_EL1_RESERVED", .state = ARM_CP_STATE_AA64,
4779               .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 7, .opc2 = 3,
4780               .access = PL1_R, .type = ARM_CP_CONST,
4781               .resetvalue = 0 },
4782             { .name = "ID_AA64MMFR4_EL1_RESERVED", .state = ARM_CP_STATE_AA64,
4783               .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 7, .opc2 = 4,
4784               .access = PL1_R, .type = ARM_CP_CONST,
4785               .resetvalue = 0 },
4786             { .name = "ID_AA64MMFR5_EL1_RESERVED", .state = ARM_CP_STATE_AA64,
4787               .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 7, .opc2 = 5,
4788               .access = PL1_R, .type = ARM_CP_CONST,
4789               .resetvalue = 0 },
4790             { .name = "ID_AA64MMFR6_EL1_RESERVED", .state = ARM_CP_STATE_AA64,
4791               .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 7, .opc2 = 6,
4792               .access = PL1_R, .type = ARM_CP_CONST,
4793               .resetvalue = 0 },
4794             { .name = "ID_AA64MMFR7_EL1_RESERVED", .state = ARM_CP_STATE_AA64,
4795               .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 7, .opc2 = 7,
4796               .access = PL1_R, .type = ARM_CP_CONST,
4797               .resetvalue = 0 },
4798             { .name = "MVFR0_EL1", .state = ARM_CP_STATE_AA64,
4799               .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 3, .opc2 = 0,
4800               .access = PL1_R, .type = ARM_CP_CONST,
4801               .resetvalue = cpu->mvfr0 },
4802             { .name = "MVFR1_EL1", .state = ARM_CP_STATE_AA64,
4803               .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 3, .opc2 = 1,
4804               .access = PL1_R, .type = ARM_CP_CONST,
4805               .resetvalue = cpu->mvfr1 },
4806             { .name = "MVFR2_EL1", .state = ARM_CP_STATE_AA64,
4807               .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 3, .opc2 = 2,
4808               .access = PL1_R, .type = ARM_CP_CONST,
4809               .resetvalue = cpu->mvfr2 },
4810             { .name = "MVFR3_EL1_RESERVED", .state = ARM_CP_STATE_AA64,
4811               .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 3, .opc2 = 3,
4812               .access = PL1_R, .type = ARM_CP_CONST,
4813               .resetvalue = 0 },
4814             { .name = "MVFR4_EL1_RESERVED", .state = ARM_CP_STATE_AA64,
4815               .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 3, .opc2 = 4,
4816               .access = PL1_R, .type = ARM_CP_CONST,
4817               .resetvalue = 0 },
4818             { .name = "MVFR5_EL1_RESERVED", .state = ARM_CP_STATE_AA64,
4819               .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 3, .opc2 = 5,
4820               .access = PL1_R, .type = ARM_CP_CONST,
4821               .resetvalue = 0 },
4822             { .name = "MVFR6_EL1_RESERVED", .state = ARM_CP_STATE_AA64,
4823               .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 3, .opc2 = 6,
4824               .access = PL1_R, .type = ARM_CP_CONST,
4825               .resetvalue = 0 },
4826             { .name = "MVFR7_EL1_RESERVED", .state = ARM_CP_STATE_AA64,
4827               .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 3, .opc2 = 7,
4828               .access = PL1_R, .type = ARM_CP_CONST,
4829               .resetvalue = 0 },
4830             { .name = "PMCEID0", .state = ARM_CP_STATE_AA32,
4831               .cp = 15, .opc1 = 0, .crn = 9, .crm = 12, .opc2 = 6,
4832               .access = PL0_R, .accessfn = pmreg_access, .type = ARM_CP_CONST,
4833               .resetvalue = cpu->pmceid0 },
4834             { .name = "PMCEID0_EL0", .state = ARM_CP_STATE_AA64,
4835               .opc0 = 3, .opc1 = 3, .crn = 9, .crm = 12, .opc2 = 6,
4836               .access = PL0_R, .accessfn = pmreg_access, .type = ARM_CP_CONST,
4837               .resetvalue = cpu->pmceid0 },
4838             { .name = "PMCEID1", .state = ARM_CP_STATE_AA32,
4839               .cp = 15, .opc1 = 0, .crn = 9, .crm = 12, .opc2 = 7,
4840               .access = PL0_R, .accessfn = pmreg_access, .type = ARM_CP_CONST,
4841               .resetvalue = cpu->pmceid1 },
4842             { .name = "PMCEID1_EL0", .state = ARM_CP_STATE_AA64,
4843               .opc0 = 3, .opc1 = 3, .crn = 9, .crm = 12, .opc2 = 7,
4844               .access = PL0_R, .accessfn = pmreg_access, .type = ARM_CP_CONST,
4845               .resetvalue = cpu->pmceid1 },
4846             REGINFO_SENTINEL
4847         };
4848         /* RVBAR_EL1 is only implemented if EL1 is the highest EL */
4849         if (!arm_feature(env, ARM_FEATURE_EL3) &&
4850             !arm_feature(env, ARM_FEATURE_EL2)) {
4851             ARMCPRegInfo rvbar = {
4852                 .name = "RVBAR_EL1", .state = ARM_CP_STATE_AA64,
4853                 .opc0 = 3, .opc1 = 0, .crn = 12, .crm = 0, .opc2 = 1,
4854                 .type = ARM_CP_CONST, .access = PL1_R, .resetvalue = cpu->rvbar
4855             };
4856             define_one_arm_cp_reg(cpu, &rvbar);
4857         }
4858         define_arm_cp_regs(cpu, v8_idregs);
4859         define_arm_cp_regs(cpu, v8_cp_reginfo);
4860     }
4861     if (arm_feature(env, ARM_FEATURE_EL2)) {
4862         uint64_t vmpidr_def = mpidr_read_val(env);
4863         ARMCPRegInfo vpidr_regs[] = {
4864             { .name = "VPIDR", .state = ARM_CP_STATE_AA32,
4865               .cp = 15, .opc1 = 4, .crn = 0, .crm = 0, .opc2 = 0,
4866               .access = PL2_RW, .accessfn = access_el3_aa32ns,
4867               .resetvalue = cpu->midr,
4868               .fieldoffset = offsetof(CPUARMState, cp15.vpidr_el2) },
4869             { .name = "VPIDR_EL2", .state = ARM_CP_STATE_AA64,
4870               .opc0 = 3, .opc1 = 4, .crn = 0, .crm = 0, .opc2 = 0,
4871               .access = PL2_RW, .resetvalue = cpu->midr,
4872               .fieldoffset = offsetof(CPUARMState, cp15.vpidr_el2) },
4873             { .name = "VMPIDR", .state = ARM_CP_STATE_AA32,
4874               .cp = 15, .opc1 = 4, .crn = 0, .crm = 0, .opc2 = 5,
4875               .access = PL2_RW, .accessfn = access_el3_aa32ns,
4876               .resetvalue = vmpidr_def,
4877               .fieldoffset = offsetof(CPUARMState, cp15.vmpidr_el2) },
4878             { .name = "VMPIDR_EL2", .state = ARM_CP_STATE_AA64,
4879               .opc0 = 3, .opc1 = 4, .crn = 0, .crm = 0, .opc2 = 5,
4880               .access = PL2_RW,
4881               .resetvalue = vmpidr_def,
4882               .fieldoffset = offsetof(CPUARMState, cp15.vmpidr_el2) },
4883             REGINFO_SENTINEL
4884         };
4885         define_arm_cp_regs(cpu, vpidr_regs);
4886         define_arm_cp_regs(cpu, el2_cp_reginfo);
4887         /* RVBAR_EL2 is only implemented if EL2 is the highest EL */
4888         if (!arm_feature(env, ARM_FEATURE_EL3)) {
4889             ARMCPRegInfo rvbar = {
4890                 .name = "RVBAR_EL2", .state = ARM_CP_STATE_AA64,
4891                 .opc0 = 3, .opc1 = 4, .crn = 12, .crm = 0, .opc2 = 1,
4892                 .type = ARM_CP_CONST, .access = PL2_R, .resetvalue = cpu->rvbar
4893             };
4894             define_one_arm_cp_reg(cpu, &rvbar);
4895         }
4896     } else {
4897         /* If EL2 is missing but higher ELs are enabled, we need to
4898          * register the no_el2 reginfos.
4899          */
4900         if (arm_feature(env, ARM_FEATURE_EL3)) {
4901             /* When EL3 exists but not EL2, VPIDR and VMPIDR take the value
4902              * of MIDR_EL1 and MPIDR_EL1.
4903              */
4904             ARMCPRegInfo vpidr_regs[] = {
4905                 { .name = "VPIDR_EL2", .state = ARM_CP_STATE_BOTH,
4906                   .opc0 = 3, .opc1 = 4, .crn = 0, .crm = 0, .opc2 = 0,
4907                   .access = PL2_RW, .accessfn = access_el3_aa32ns_aa64any,
4908                   .type = ARM_CP_CONST, .resetvalue = cpu->midr,
4909                   .fieldoffset = offsetof(CPUARMState, cp15.vpidr_el2) },
4910                 { .name = "VMPIDR_EL2", .state = ARM_CP_STATE_BOTH,
4911                   .opc0 = 3, .opc1 = 4, .crn = 0, .crm = 0, .opc2 = 5,
4912                   .access = PL2_RW, .accessfn = access_el3_aa32ns_aa64any,
4913                   .type = ARM_CP_NO_RAW,
4914                   .writefn = arm_cp_write_ignore, .readfn = mpidr_read },
4915                 REGINFO_SENTINEL
4916             };
4917             define_arm_cp_regs(cpu, vpidr_regs);
4918             define_arm_cp_regs(cpu, el3_no_el2_cp_reginfo);
4919         }
4920     }
4921     if (arm_feature(env, ARM_FEATURE_EL3)) {
4922         define_arm_cp_regs(cpu, el3_cp_reginfo);
4923         ARMCPRegInfo el3_regs[] = {
4924             { .name = "RVBAR_EL3", .state = ARM_CP_STATE_AA64,
4925               .opc0 = 3, .opc1 = 6, .crn = 12, .crm = 0, .opc2 = 1,
4926               .type = ARM_CP_CONST, .access = PL3_R, .resetvalue = cpu->rvbar },
4927             { .name = "SCTLR_EL3", .state = ARM_CP_STATE_AA64,
4928               .opc0 = 3, .opc1 = 6, .crn = 1, .crm = 0, .opc2 = 0,
4929               .access = PL3_RW,
4930               .raw_writefn = raw_write, .writefn = sctlr_write,
4931               .fieldoffset = offsetof(CPUARMState, cp15.sctlr_el[3]),
4932               .resetvalue = cpu->reset_sctlr },
4933             REGINFO_SENTINEL
4934         };
4935 
4936         define_arm_cp_regs(cpu, el3_regs);
4937     }
4938     /* The behaviour of NSACR is sufficiently various that we don't
4939      * try to describe it in a single reginfo:
4940      *  if EL3 is 64 bit, then trap to EL3 from S EL1,
4941      *     reads as constant 0xc00 from NS EL1 and NS EL2
4942      *  if EL3 is 32 bit, then RW at EL3, RO at NS EL1 and NS EL2
4943      *  if v7 without EL3, register doesn't exist
4944      *  if v8 without EL3, reads as constant 0xc00 from NS EL1 and NS EL2
4945      */
4946     if (arm_feature(env, ARM_FEATURE_EL3)) {
4947         if (arm_feature(env, ARM_FEATURE_AARCH64)) {
4948             ARMCPRegInfo nsacr = {
4949                 .name = "NSACR", .type = ARM_CP_CONST,
4950                 .cp = 15, .opc1 = 0, .crn = 1, .crm = 1, .opc2 = 2,
4951                 .access = PL1_RW, .accessfn = nsacr_access,
4952                 .resetvalue = 0xc00
4953             };
4954             define_one_arm_cp_reg(cpu, &nsacr);
4955         } else {
4956             ARMCPRegInfo nsacr = {
4957                 .name = "NSACR",
4958                 .cp = 15, .opc1 = 0, .crn = 1, .crm = 1, .opc2 = 2,
4959                 .access = PL3_RW | PL1_R,
4960                 .resetvalue = 0,
4961                 .fieldoffset = offsetof(CPUARMState, cp15.nsacr)
4962             };
4963             define_one_arm_cp_reg(cpu, &nsacr);
4964         }
4965     } else {
4966         if (arm_feature(env, ARM_FEATURE_V8)) {
4967             ARMCPRegInfo nsacr = {
4968                 .name = "NSACR", .type = ARM_CP_CONST,
4969                 .cp = 15, .opc1 = 0, .crn = 1, .crm = 1, .opc2 = 2,
4970                 .access = PL1_R,
4971                 .resetvalue = 0xc00
4972             };
4973             define_one_arm_cp_reg(cpu, &nsacr);
4974         }
4975     }
4976 
4977     if (arm_feature(env, ARM_FEATURE_PMSA)) {
4978         if (arm_feature(env, ARM_FEATURE_V6)) {
4979             /* PMSAv6 not implemented */
4980             assert(arm_feature(env, ARM_FEATURE_V7));
4981             define_arm_cp_regs(cpu, vmsa_pmsa_cp_reginfo);
4982             define_arm_cp_regs(cpu, pmsav7_cp_reginfo);
4983         } else {
4984             define_arm_cp_regs(cpu, pmsav5_cp_reginfo);
4985         }
4986     } else {
4987         define_arm_cp_regs(cpu, vmsa_pmsa_cp_reginfo);
4988         define_arm_cp_regs(cpu, vmsa_cp_reginfo);
4989     }
4990     if (arm_feature(env, ARM_FEATURE_THUMB2EE)) {
4991         define_arm_cp_regs(cpu, t2ee_cp_reginfo);
4992     }
4993     if (arm_feature(env, ARM_FEATURE_GENERIC_TIMER)) {
4994         define_arm_cp_regs(cpu, generic_timer_cp_reginfo);
4995     }
4996     if (arm_feature(env, ARM_FEATURE_VAPA)) {
4997         define_arm_cp_regs(cpu, vapa_cp_reginfo);
4998     }
4999     if (arm_feature(env, ARM_FEATURE_CACHE_TEST_CLEAN)) {
5000         define_arm_cp_regs(cpu, cache_test_clean_cp_reginfo);
5001     }
5002     if (arm_feature(env, ARM_FEATURE_CACHE_DIRTY_REG)) {
5003         define_arm_cp_regs(cpu, cache_dirty_status_cp_reginfo);
5004     }
5005     if (arm_feature(env, ARM_FEATURE_CACHE_BLOCK_OPS)) {
5006         define_arm_cp_regs(cpu, cache_block_ops_cp_reginfo);
5007     }
5008     if (arm_feature(env, ARM_FEATURE_OMAPCP)) {
5009         define_arm_cp_regs(cpu, omap_cp_reginfo);
5010     }
5011     if (arm_feature(env, ARM_FEATURE_STRONGARM)) {
5012         define_arm_cp_regs(cpu, strongarm_cp_reginfo);
5013     }
5014     if (arm_feature(env, ARM_FEATURE_XSCALE)) {
5015         define_arm_cp_regs(cpu, xscale_cp_reginfo);
5016     }
5017     if (arm_feature(env, ARM_FEATURE_DUMMY_C15_REGS)) {
5018         define_arm_cp_regs(cpu, dummy_c15_cp_reginfo);
5019     }
5020     if (arm_feature(env, ARM_FEATURE_LPAE)) {
5021         define_arm_cp_regs(cpu, lpae_cp_reginfo);
5022     }
5023     /* Slightly awkwardly, the OMAP and StrongARM cores need all of
5024      * cp15 crn=0 to be writes-ignored, whereas for other cores they should
5025      * be read-only (ie write causes UNDEF exception).
5026      */
5027     {
5028         ARMCPRegInfo id_pre_v8_midr_cp_reginfo[] = {
5029             /* Pre-v8 MIDR space.
5030              * Note that the MIDR isn't a simple constant register because
5031              * of the TI925 behaviour where writes to another register can
5032              * cause the MIDR value to change.
5033              *
5034              * Unimplemented registers in the c15 0 0 0 space default to
5035              * MIDR. Define MIDR first as this entire space, then CTR, TCMTR
5036              * and friends override accordingly.
5037              */
5038             { .name = "MIDR",
5039               .cp = 15, .crn = 0, .crm = 0, .opc1 = 0, .opc2 = CP_ANY,
5040               .access = PL1_R, .resetvalue = cpu->midr,
5041               .writefn = arm_cp_write_ignore, .raw_writefn = raw_write,
5042               .readfn = midr_read,
5043               .fieldoffset = offsetof(CPUARMState, cp15.c0_cpuid),
5044               .type = ARM_CP_OVERRIDE },
5045             /* crn = 0 op1 = 0 crm = 3..7 : currently unassigned; we RAZ. */
5046             { .name = "DUMMY",
5047               .cp = 15, .crn = 0, .crm = 3, .opc1 = 0, .opc2 = CP_ANY,
5048               .access = PL1_R, .type = ARM_CP_CONST, .resetvalue = 0 },
5049             { .name = "DUMMY",
5050               .cp = 15, .crn = 0, .crm = 4, .opc1 = 0, .opc2 = CP_ANY,
5051               .access = PL1_R, .type = ARM_CP_CONST, .resetvalue = 0 },
5052             { .name = "DUMMY",
5053               .cp = 15, .crn = 0, .crm = 5, .opc1 = 0, .opc2 = CP_ANY,
5054               .access = PL1_R, .type = ARM_CP_CONST, .resetvalue = 0 },
5055             { .name = "DUMMY",
5056               .cp = 15, .crn = 0, .crm = 6, .opc1 = 0, .opc2 = CP_ANY,
5057               .access = PL1_R, .type = ARM_CP_CONST, .resetvalue = 0 },
5058             { .name = "DUMMY",
5059               .cp = 15, .crn = 0, .crm = 7, .opc1 = 0, .opc2 = CP_ANY,
5060               .access = PL1_R, .type = ARM_CP_CONST, .resetvalue = 0 },
5061             REGINFO_SENTINEL
5062         };
5063         ARMCPRegInfo id_v8_midr_cp_reginfo[] = {
5064             { .name = "MIDR_EL1", .state = ARM_CP_STATE_BOTH,
5065               .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 0, .opc2 = 0,
5066               .access = PL1_R, .type = ARM_CP_NO_RAW, .resetvalue = cpu->midr,
5067               .fieldoffset = offsetof(CPUARMState, cp15.c0_cpuid),
5068               .readfn = midr_read },
5069             /* crn = 0 op1 = 0 crm = 0 op2 = 4,7 : AArch32 aliases of MIDR */
5070             { .name = "MIDR", .type = ARM_CP_ALIAS | ARM_CP_CONST,
5071               .cp = 15, .crn = 0, .crm = 0, .opc1 = 0, .opc2 = 4,
5072               .access = PL1_R, .resetvalue = cpu->midr },
5073             { .name = "MIDR", .type = ARM_CP_ALIAS | ARM_CP_CONST,
5074               .cp = 15, .crn = 0, .crm = 0, .opc1 = 0, .opc2 = 7,
5075               .access = PL1_R, .resetvalue = cpu->midr },
5076             { .name = "REVIDR_EL1", .state = ARM_CP_STATE_BOTH,
5077               .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 0, .opc2 = 6,
5078               .access = PL1_R, .type = ARM_CP_CONST, .resetvalue = cpu->revidr },
5079             REGINFO_SENTINEL
5080         };
5081         ARMCPRegInfo id_cp_reginfo[] = {
5082             /* These are common to v8 and pre-v8 */
5083             { .name = "CTR",
5084               .cp = 15, .crn = 0, .crm = 0, .opc1 = 0, .opc2 = 1,
5085               .access = PL1_R, .type = ARM_CP_CONST, .resetvalue = cpu->ctr },
5086             { .name = "CTR_EL0", .state = ARM_CP_STATE_AA64,
5087               .opc0 = 3, .opc1 = 3, .opc2 = 1, .crn = 0, .crm = 0,
5088               .access = PL0_R, .accessfn = ctr_el0_access,
5089               .type = ARM_CP_CONST, .resetvalue = cpu->ctr },
5090             /* TCMTR and TLBTR exist in v8 but have no 64-bit versions */
5091             { .name = "TCMTR",
5092               .cp = 15, .crn = 0, .crm = 0, .opc1 = 0, .opc2 = 2,
5093               .access = PL1_R, .type = ARM_CP_CONST, .resetvalue = 0 },
5094             REGINFO_SENTINEL
5095         };
5096         /* TLBTR is specific to VMSA */
5097         ARMCPRegInfo id_tlbtr_reginfo = {
5098               .name = "TLBTR",
5099               .cp = 15, .crn = 0, .crm = 0, .opc1 = 0, .opc2 = 3,
5100               .access = PL1_R, .type = ARM_CP_CONST, .resetvalue = 0,
5101         };
5102         /* MPUIR is specific to PMSA V6+ */
5103         ARMCPRegInfo id_mpuir_reginfo = {
5104               .name = "MPUIR",
5105               .cp = 15, .crn = 0, .crm = 0, .opc1 = 0, .opc2 = 4,
5106               .access = PL1_R, .type = ARM_CP_CONST,
5107               .resetvalue = cpu->pmsav7_dregion << 8
5108         };
5109         ARMCPRegInfo crn0_wi_reginfo = {
5110             .name = "CRN0_WI", .cp = 15, .crn = 0, .crm = CP_ANY,
5111             .opc1 = CP_ANY, .opc2 = CP_ANY, .access = PL1_W,
5112             .type = ARM_CP_NOP | ARM_CP_OVERRIDE
5113         };
5114         if (arm_feature(env, ARM_FEATURE_OMAPCP) ||
5115             arm_feature(env, ARM_FEATURE_STRONGARM)) {
5116             ARMCPRegInfo *r;
5117             /* Register the blanket "writes ignored" value first to cover the
5118              * whole space. Then update the specific ID registers to allow write
5119              * access, so that they ignore writes rather than causing them to
5120              * UNDEF.
5121              */
5122             define_one_arm_cp_reg(cpu, &crn0_wi_reginfo);
5123             for (r = id_pre_v8_midr_cp_reginfo;
5124                  r->type != ARM_CP_SENTINEL; r++) {
5125                 r->access = PL1_RW;
5126             }
5127             for (r = id_cp_reginfo; r->type != ARM_CP_SENTINEL; r++) {
5128                 r->access = PL1_RW;
5129             }
5130             id_tlbtr_reginfo.access = PL1_RW;
5131             id_tlbtr_reginfo.access = PL1_RW;
5132         }
5133         if (arm_feature(env, ARM_FEATURE_V8)) {
5134             define_arm_cp_regs(cpu, id_v8_midr_cp_reginfo);
5135         } else {
5136             define_arm_cp_regs(cpu, id_pre_v8_midr_cp_reginfo);
5137         }
5138         define_arm_cp_regs(cpu, id_cp_reginfo);
5139         if (!arm_feature(env, ARM_FEATURE_PMSA)) {
5140             define_one_arm_cp_reg(cpu, &id_tlbtr_reginfo);
5141         } else if (arm_feature(env, ARM_FEATURE_V7)) {
5142             define_one_arm_cp_reg(cpu, &id_mpuir_reginfo);
5143         }
5144     }
5145 
5146     if (arm_feature(env, ARM_FEATURE_MPIDR)) {
5147         define_arm_cp_regs(cpu, mpidr_cp_reginfo);
5148     }
5149 
5150     if (arm_feature(env, ARM_FEATURE_AUXCR)) {
5151         ARMCPRegInfo auxcr_reginfo[] = {
5152             { .name = "ACTLR_EL1", .state = ARM_CP_STATE_BOTH,
5153               .opc0 = 3, .opc1 = 0, .crn = 1, .crm = 0, .opc2 = 1,
5154               .access = PL1_RW, .type = ARM_CP_CONST,
5155               .resetvalue = cpu->reset_auxcr },
5156             { .name = "ACTLR_EL2", .state = ARM_CP_STATE_BOTH,
5157               .opc0 = 3, .opc1 = 4, .crn = 1, .crm = 0, .opc2 = 1,
5158               .access = PL2_RW, .type = ARM_CP_CONST,
5159               .resetvalue = 0 },
5160             { .name = "ACTLR_EL3", .state = ARM_CP_STATE_AA64,
5161               .opc0 = 3, .opc1 = 6, .crn = 1, .crm = 0, .opc2 = 1,
5162               .access = PL3_RW, .type = ARM_CP_CONST,
5163               .resetvalue = 0 },
5164             REGINFO_SENTINEL
5165         };
5166         define_arm_cp_regs(cpu, auxcr_reginfo);
5167     }
5168 
5169     if (arm_feature(env, ARM_FEATURE_CBAR)) {
5170         if (arm_feature(env, ARM_FEATURE_AARCH64)) {
5171             /* 32 bit view is [31:18] 0...0 [43:32]. */
5172             uint32_t cbar32 = (extract64(cpu->reset_cbar, 18, 14) << 18)
5173                 | extract64(cpu->reset_cbar, 32, 12);
5174             ARMCPRegInfo cbar_reginfo[] = {
5175                 { .name = "CBAR",
5176                   .type = ARM_CP_CONST,
5177                   .cp = 15, .crn = 15, .crm = 0, .opc1 = 4, .opc2 = 0,
5178                   .access = PL1_R, .resetvalue = cpu->reset_cbar },
5179                 { .name = "CBAR_EL1", .state = ARM_CP_STATE_AA64,
5180                   .type = ARM_CP_CONST,
5181                   .opc0 = 3, .opc1 = 1, .crn = 15, .crm = 3, .opc2 = 0,
5182                   .access = PL1_R, .resetvalue = cbar32 },
5183                 REGINFO_SENTINEL
5184             };
5185             /* We don't implement a r/w 64 bit CBAR currently */
5186             assert(arm_feature(env, ARM_FEATURE_CBAR_RO));
5187             define_arm_cp_regs(cpu, cbar_reginfo);
5188         } else {
5189             ARMCPRegInfo cbar = {
5190                 .name = "CBAR",
5191                 .cp = 15, .crn = 15, .crm = 0, .opc1 = 4, .opc2 = 0,
5192                 .access = PL1_R|PL3_W, .resetvalue = cpu->reset_cbar,
5193                 .fieldoffset = offsetof(CPUARMState,
5194                                         cp15.c15_config_base_address)
5195             };
5196             if (arm_feature(env, ARM_FEATURE_CBAR_RO)) {
5197                 cbar.access = PL1_R;
5198                 cbar.fieldoffset = 0;
5199                 cbar.type = ARM_CP_CONST;
5200             }
5201             define_one_arm_cp_reg(cpu, &cbar);
5202         }
5203     }
5204 
5205     if (arm_feature(env, ARM_FEATURE_VBAR)) {
5206         ARMCPRegInfo vbar_cp_reginfo[] = {
5207             { .name = "VBAR", .state = ARM_CP_STATE_BOTH,
5208               .opc0 = 3, .crn = 12, .crm = 0, .opc1 = 0, .opc2 = 0,
5209               .access = PL1_RW, .writefn = vbar_write,
5210               .bank_fieldoffsets = { offsetof(CPUARMState, cp15.vbar_s),
5211                                      offsetof(CPUARMState, cp15.vbar_ns) },
5212               .resetvalue = 0 },
5213             REGINFO_SENTINEL
5214         };
5215         define_arm_cp_regs(cpu, vbar_cp_reginfo);
5216     }
5217 
5218     /* Generic registers whose values depend on the implementation */
5219     {
5220         ARMCPRegInfo sctlr = {
5221             .name = "SCTLR", .state = ARM_CP_STATE_BOTH,
5222             .opc0 = 3, .opc1 = 0, .crn = 1, .crm = 0, .opc2 = 0,
5223             .access = PL1_RW,
5224             .bank_fieldoffsets = { offsetof(CPUARMState, cp15.sctlr_s),
5225                                    offsetof(CPUARMState, cp15.sctlr_ns) },
5226             .writefn = sctlr_write, .resetvalue = cpu->reset_sctlr,
5227             .raw_writefn = raw_write,
5228         };
5229         if (arm_feature(env, ARM_FEATURE_XSCALE)) {
5230             /* Normally we would always end the TB on an SCTLR write, but Linux
5231              * arch/arm/mach-pxa/sleep.S expects two instructions following
5232              * an MMU enable to execute from cache.  Imitate this behaviour.
5233              */
5234             sctlr.type |= ARM_CP_SUPPRESS_TB_END;
5235         }
5236         define_one_arm_cp_reg(cpu, &sctlr);
5237     }
5238 }
5239 
5240 ARMCPU *cpu_arm_init(const char *cpu_model)
5241 {
5242     return ARM_CPU(cpu_generic_init(TYPE_ARM_CPU, cpu_model));
5243 }
5244 
5245 void arm_cpu_register_gdb_regs_for_features(ARMCPU *cpu)
5246 {
5247     CPUState *cs = CPU(cpu);
5248     CPUARMState *env = &cpu->env;
5249 
5250     if (arm_feature(env, ARM_FEATURE_AARCH64)) {
5251         gdb_register_coprocessor(cs, aarch64_fpu_gdb_get_reg,
5252                                  aarch64_fpu_gdb_set_reg,
5253                                  34, "aarch64-fpu.xml", 0);
5254     } else if (arm_feature(env, ARM_FEATURE_NEON)) {
5255         gdb_register_coprocessor(cs, vfp_gdb_get_reg, vfp_gdb_set_reg,
5256                                  51, "arm-neon.xml", 0);
5257     } else if (arm_feature(env, ARM_FEATURE_VFP3)) {
5258         gdb_register_coprocessor(cs, vfp_gdb_get_reg, vfp_gdb_set_reg,
5259                                  35, "arm-vfp3.xml", 0);
5260     } else if (arm_feature(env, ARM_FEATURE_VFP)) {
5261         gdb_register_coprocessor(cs, vfp_gdb_get_reg, vfp_gdb_set_reg,
5262                                  19, "arm-vfp.xml", 0);
5263     }
5264 }
5265 
5266 /* Sort alphabetically by type name, except for "any". */
5267 static gint arm_cpu_list_compare(gconstpointer a, gconstpointer b)
5268 {
5269     ObjectClass *class_a = (ObjectClass *)a;
5270     ObjectClass *class_b = (ObjectClass *)b;
5271     const char *name_a, *name_b;
5272 
5273     name_a = object_class_get_name(class_a);
5274     name_b = object_class_get_name(class_b);
5275     if (strcmp(name_a, "any-" TYPE_ARM_CPU) == 0) {
5276         return 1;
5277     } else if (strcmp(name_b, "any-" TYPE_ARM_CPU) == 0) {
5278         return -1;
5279     } else {
5280         return strcmp(name_a, name_b);
5281     }
5282 }
5283 
5284 static void arm_cpu_list_entry(gpointer data, gpointer user_data)
5285 {
5286     ObjectClass *oc = data;
5287     CPUListState *s = user_data;
5288     const char *typename;
5289     char *name;
5290 
5291     typename = object_class_get_name(oc);
5292     name = g_strndup(typename, strlen(typename) - strlen("-" TYPE_ARM_CPU));
5293     (*s->cpu_fprintf)(s->file, "  %s\n",
5294                       name);
5295     g_free(name);
5296 }
5297 
5298 void arm_cpu_list(FILE *f, fprintf_function cpu_fprintf)
5299 {
5300     CPUListState s = {
5301         .file = f,
5302         .cpu_fprintf = cpu_fprintf,
5303     };
5304     GSList *list;
5305 
5306     list = object_class_get_list(TYPE_ARM_CPU, false);
5307     list = g_slist_sort(list, arm_cpu_list_compare);
5308     (*cpu_fprintf)(f, "Available CPUs:\n");
5309     g_slist_foreach(list, arm_cpu_list_entry, &s);
5310     g_slist_free(list);
5311 #ifdef CONFIG_KVM
5312     /* The 'host' CPU type is dynamically registered only if KVM is
5313      * enabled, so we have to special-case it here:
5314      */
5315     (*cpu_fprintf)(f, "  host (only available in KVM mode)\n");
5316 #endif
5317 }
5318 
5319 static void arm_cpu_add_definition(gpointer data, gpointer user_data)
5320 {
5321     ObjectClass *oc = data;
5322     CpuDefinitionInfoList **cpu_list = user_data;
5323     CpuDefinitionInfoList *entry;
5324     CpuDefinitionInfo *info;
5325     const char *typename;
5326 
5327     typename = object_class_get_name(oc);
5328     info = g_malloc0(sizeof(*info));
5329     info->name = g_strndup(typename,
5330                            strlen(typename) - strlen("-" TYPE_ARM_CPU));
5331     info->q_typename = g_strdup(typename);
5332 
5333     entry = g_malloc0(sizeof(*entry));
5334     entry->value = info;
5335     entry->next = *cpu_list;
5336     *cpu_list = entry;
5337 }
5338 
5339 CpuDefinitionInfoList *arch_query_cpu_definitions(Error **errp)
5340 {
5341     CpuDefinitionInfoList *cpu_list = NULL;
5342     GSList *list;
5343 
5344     list = object_class_get_list(TYPE_ARM_CPU, false);
5345     g_slist_foreach(list, arm_cpu_add_definition, &cpu_list);
5346     g_slist_free(list);
5347 
5348     return cpu_list;
5349 }
5350 
5351 static void add_cpreg_to_hashtable(ARMCPU *cpu, const ARMCPRegInfo *r,
5352                                    void *opaque, int state, int secstate,
5353                                    int crm, int opc1, int opc2)
5354 {
5355     /* Private utility function for define_one_arm_cp_reg_with_opaque():
5356      * add a single reginfo struct to the hash table.
5357      */
5358     uint32_t *key = g_new(uint32_t, 1);
5359     ARMCPRegInfo *r2 = g_memdup(r, sizeof(ARMCPRegInfo));
5360     int is64 = (r->type & ARM_CP_64BIT) ? 1 : 0;
5361     int ns = (secstate & ARM_CP_SECSTATE_NS) ? 1 : 0;
5362 
5363     /* Reset the secure state to the specific incoming state.  This is
5364      * necessary as the register may have been defined with both states.
5365      */
5366     r2->secure = secstate;
5367 
5368     if (r->bank_fieldoffsets[0] && r->bank_fieldoffsets[1]) {
5369         /* Register is banked (using both entries in array).
5370          * Overwriting fieldoffset as the array is only used to define
5371          * banked registers but later only fieldoffset is used.
5372          */
5373         r2->fieldoffset = r->bank_fieldoffsets[ns];
5374     }
5375 
5376     if (state == ARM_CP_STATE_AA32) {
5377         if (r->bank_fieldoffsets[0] && r->bank_fieldoffsets[1]) {
5378             /* If the register is banked then we don't need to migrate or
5379              * reset the 32-bit instance in certain cases:
5380              *
5381              * 1) If the register has both 32-bit and 64-bit instances then we
5382              *    can count on the 64-bit instance taking care of the
5383              *    non-secure bank.
5384              * 2) If ARMv8 is enabled then we can count on a 64-bit version
5385              *    taking care of the secure bank.  This requires that separate
5386              *    32 and 64-bit definitions are provided.
5387              */
5388             if ((r->state == ARM_CP_STATE_BOTH && ns) ||
5389                 (arm_feature(&cpu->env, ARM_FEATURE_V8) && !ns)) {
5390                 r2->type |= ARM_CP_ALIAS;
5391             }
5392         } else if ((secstate != r->secure) && !ns) {
5393             /* The register is not banked so we only want to allow migration of
5394              * the non-secure instance.
5395              */
5396             r2->type |= ARM_CP_ALIAS;
5397         }
5398 
5399         if (r->state == ARM_CP_STATE_BOTH) {
5400             /* We assume it is a cp15 register if the .cp field is left unset.
5401              */
5402             if (r2->cp == 0) {
5403                 r2->cp = 15;
5404             }
5405 
5406 #ifdef HOST_WORDS_BIGENDIAN
5407             if (r2->fieldoffset) {
5408                 r2->fieldoffset += sizeof(uint32_t);
5409             }
5410 #endif
5411         }
5412     }
5413     if (state == ARM_CP_STATE_AA64) {
5414         /* To allow abbreviation of ARMCPRegInfo
5415          * definitions, we treat cp == 0 as equivalent to
5416          * the value for "standard guest-visible sysreg".
5417          * STATE_BOTH definitions are also always "standard
5418          * sysreg" in their AArch64 view (the .cp value may
5419          * be non-zero for the benefit of the AArch32 view).
5420          */
5421         if (r->cp == 0 || r->state == ARM_CP_STATE_BOTH) {
5422             r2->cp = CP_REG_ARM64_SYSREG_CP;
5423         }
5424         *key = ENCODE_AA64_CP_REG(r2->cp, r2->crn, crm,
5425                                   r2->opc0, opc1, opc2);
5426     } else {
5427         *key = ENCODE_CP_REG(r2->cp, is64, ns, r2->crn, crm, opc1, opc2);
5428     }
5429     if (opaque) {
5430         r2->opaque = opaque;
5431     }
5432     /* reginfo passed to helpers is correct for the actual access,
5433      * and is never ARM_CP_STATE_BOTH:
5434      */
5435     r2->state = state;
5436     /* Make sure reginfo passed to helpers for wildcarded regs
5437      * has the correct crm/opc1/opc2 for this reg, not CP_ANY:
5438      */
5439     r2->crm = crm;
5440     r2->opc1 = opc1;
5441     r2->opc2 = opc2;
5442     /* By convention, for wildcarded registers only the first
5443      * entry is used for migration; the others are marked as
5444      * ALIAS so we don't try to transfer the register
5445      * multiple times. Special registers (ie NOP/WFI) are
5446      * never migratable and not even raw-accessible.
5447      */
5448     if ((r->type & ARM_CP_SPECIAL)) {
5449         r2->type |= ARM_CP_NO_RAW;
5450     }
5451     if (((r->crm == CP_ANY) && crm != 0) ||
5452         ((r->opc1 == CP_ANY) && opc1 != 0) ||
5453         ((r->opc2 == CP_ANY) && opc2 != 0)) {
5454         r2->type |= ARM_CP_ALIAS;
5455     }
5456 
5457     /* Check that raw accesses are either forbidden or handled. Note that
5458      * we can't assert this earlier because the setup of fieldoffset for
5459      * banked registers has to be done first.
5460      */
5461     if (!(r2->type & ARM_CP_NO_RAW)) {
5462         assert(!raw_accessors_invalid(r2));
5463     }
5464 
5465     /* Overriding of an existing definition must be explicitly
5466      * requested.
5467      */
5468     if (!(r->type & ARM_CP_OVERRIDE)) {
5469         ARMCPRegInfo *oldreg;
5470         oldreg = g_hash_table_lookup(cpu->cp_regs, key);
5471         if (oldreg && !(oldreg->type & ARM_CP_OVERRIDE)) {
5472             fprintf(stderr, "Register redefined: cp=%d %d bit "
5473                     "crn=%d crm=%d opc1=%d opc2=%d, "
5474                     "was %s, now %s\n", r2->cp, 32 + 32 * is64,
5475                     r2->crn, r2->crm, r2->opc1, r2->opc2,
5476                     oldreg->name, r2->name);
5477             g_assert_not_reached();
5478         }
5479     }
5480     g_hash_table_insert(cpu->cp_regs, key, r2);
5481 }
5482 
5483 
5484 void define_one_arm_cp_reg_with_opaque(ARMCPU *cpu,
5485                                        const ARMCPRegInfo *r, void *opaque)
5486 {
5487     /* Define implementations of coprocessor registers.
5488      * We store these in a hashtable because typically
5489      * there are less than 150 registers in a space which
5490      * is 16*16*16*8*8 = 262144 in size.
5491      * Wildcarding is supported for the crm, opc1 and opc2 fields.
5492      * If a register is defined twice then the second definition is
5493      * used, so this can be used to define some generic registers and
5494      * then override them with implementation specific variations.
5495      * At least one of the original and the second definition should
5496      * include ARM_CP_OVERRIDE in its type bits -- this is just a guard
5497      * against accidental use.
5498      *
5499      * The state field defines whether the register is to be
5500      * visible in the AArch32 or AArch64 execution state. If the
5501      * state is set to ARM_CP_STATE_BOTH then we synthesise a
5502      * reginfo structure for the AArch32 view, which sees the lower
5503      * 32 bits of the 64 bit register.
5504      *
5505      * Only registers visible in AArch64 may set r->opc0; opc0 cannot
5506      * be wildcarded. AArch64 registers are always considered to be 64
5507      * bits; the ARM_CP_64BIT* flag applies only to the AArch32 view of
5508      * the register, if any.
5509      */
5510     int crm, opc1, opc2, state;
5511     int crmmin = (r->crm == CP_ANY) ? 0 : r->crm;
5512     int crmmax = (r->crm == CP_ANY) ? 15 : r->crm;
5513     int opc1min = (r->opc1 == CP_ANY) ? 0 : r->opc1;
5514     int opc1max = (r->opc1 == CP_ANY) ? 7 : r->opc1;
5515     int opc2min = (r->opc2 == CP_ANY) ? 0 : r->opc2;
5516     int opc2max = (r->opc2 == CP_ANY) ? 7 : r->opc2;
5517     /* 64 bit registers have only CRm and Opc1 fields */
5518     assert(!((r->type & ARM_CP_64BIT) && (r->opc2 || r->crn)));
5519     /* op0 only exists in the AArch64 encodings */
5520     assert((r->state != ARM_CP_STATE_AA32) || (r->opc0 == 0));
5521     /* AArch64 regs are all 64 bit so ARM_CP_64BIT is meaningless */
5522     assert((r->state != ARM_CP_STATE_AA64) || !(r->type & ARM_CP_64BIT));
5523     /* The AArch64 pseudocode CheckSystemAccess() specifies that op1
5524      * encodes a minimum access level for the register. We roll this
5525      * runtime check into our general permission check code, so check
5526      * here that the reginfo's specified permissions are strict enough
5527      * to encompass the generic architectural permission check.
5528      */
5529     if (r->state != ARM_CP_STATE_AA32) {
5530         int mask = 0;
5531         switch (r->opc1) {
5532         case 0: case 1: case 2:
5533             /* min_EL EL1 */
5534             mask = PL1_RW;
5535             break;
5536         case 3:
5537             /* min_EL EL0 */
5538             mask = PL0_RW;
5539             break;
5540         case 4:
5541             /* min_EL EL2 */
5542             mask = PL2_RW;
5543             break;
5544         case 5:
5545             /* unallocated encoding, so not possible */
5546             assert(false);
5547             break;
5548         case 6:
5549             /* min_EL EL3 */
5550             mask = PL3_RW;
5551             break;
5552         case 7:
5553             /* min_EL EL1, secure mode only (we don't check the latter) */
5554             mask = PL1_RW;
5555             break;
5556         default:
5557             /* broken reginfo with out-of-range opc1 */
5558             assert(false);
5559             break;
5560         }
5561         /* assert our permissions are not too lax (stricter is fine) */
5562         assert((r->access & ~mask) == 0);
5563     }
5564 
5565     /* Check that the register definition has enough info to handle
5566      * reads and writes if they are permitted.
5567      */
5568     if (!(r->type & (ARM_CP_SPECIAL|ARM_CP_CONST))) {
5569         if (r->access & PL3_R) {
5570             assert((r->fieldoffset ||
5571                    (r->bank_fieldoffsets[0] && r->bank_fieldoffsets[1])) ||
5572                    r->readfn);
5573         }
5574         if (r->access & PL3_W) {
5575             assert((r->fieldoffset ||
5576                    (r->bank_fieldoffsets[0] && r->bank_fieldoffsets[1])) ||
5577                    r->writefn);
5578         }
5579     }
5580     /* Bad type field probably means missing sentinel at end of reg list */
5581     assert(cptype_valid(r->type));
5582     for (crm = crmmin; crm <= crmmax; crm++) {
5583         for (opc1 = opc1min; opc1 <= opc1max; opc1++) {
5584             for (opc2 = opc2min; opc2 <= opc2max; opc2++) {
5585                 for (state = ARM_CP_STATE_AA32;
5586                      state <= ARM_CP_STATE_AA64; state++) {
5587                     if (r->state != state && r->state != ARM_CP_STATE_BOTH) {
5588                         continue;
5589                     }
5590                     if (state == ARM_CP_STATE_AA32) {
5591                         /* Under AArch32 CP registers can be common
5592                          * (same for secure and non-secure world) or banked.
5593                          */
5594                         switch (r->secure) {
5595                         case ARM_CP_SECSTATE_S:
5596                         case ARM_CP_SECSTATE_NS:
5597                             add_cpreg_to_hashtable(cpu, r, opaque, state,
5598                                                    r->secure, crm, opc1, opc2);
5599                             break;
5600                         default:
5601                             add_cpreg_to_hashtable(cpu, r, opaque, state,
5602                                                    ARM_CP_SECSTATE_S,
5603                                                    crm, opc1, opc2);
5604                             add_cpreg_to_hashtable(cpu, r, opaque, state,
5605                                                    ARM_CP_SECSTATE_NS,
5606                                                    crm, opc1, opc2);
5607                             break;
5608                         }
5609                     } else {
5610                         /* AArch64 registers get mapped to non-secure instance
5611                          * of AArch32 */
5612                         add_cpreg_to_hashtable(cpu, r, opaque, state,
5613                                                ARM_CP_SECSTATE_NS,
5614                                                crm, opc1, opc2);
5615                     }
5616                 }
5617             }
5618         }
5619     }
5620 }
5621 
5622 void define_arm_cp_regs_with_opaque(ARMCPU *cpu,
5623                                     const ARMCPRegInfo *regs, void *opaque)
5624 {
5625     /* Define a whole list of registers */
5626     const ARMCPRegInfo *r;
5627     for (r = regs; r->type != ARM_CP_SENTINEL; r++) {
5628         define_one_arm_cp_reg_with_opaque(cpu, r, opaque);
5629     }
5630 }
5631 
5632 const ARMCPRegInfo *get_arm_cp_reginfo(GHashTable *cpregs, uint32_t encoded_cp)
5633 {
5634     return g_hash_table_lookup(cpregs, &encoded_cp);
5635 }
5636 
5637 void arm_cp_write_ignore(CPUARMState *env, const ARMCPRegInfo *ri,
5638                          uint64_t value)
5639 {
5640     /* Helper coprocessor write function for write-ignore registers */
5641 }
5642 
5643 uint64_t arm_cp_read_zero(CPUARMState *env, const ARMCPRegInfo *ri)
5644 {
5645     /* Helper coprocessor write function for read-as-zero registers */
5646     return 0;
5647 }
5648 
5649 void arm_cp_reset_ignore(CPUARMState *env, const ARMCPRegInfo *opaque)
5650 {
5651     /* Helper coprocessor reset function for do-nothing-on-reset registers */
5652 }
5653 
5654 static int bad_mode_switch(CPUARMState *env, int mode, CPSRWriteType write_type)
5655 {
5656     /* Return true if it is not valid for us to switch to
5657      * this CPU mode (ie all the UNPREDICTABLE cases in
5658      * the ARM ARM CPSRWriteByInstr pseudocode).
5659      */
5660 
5661     /* Changes to or from Hyp via MSR and CPS are illegal. */
5662     if (write_type == CPSRWriteByInstr &&
5663         ((env->uncached_cpsr & CPSR_M) == ARM_CPU_MODE_HYP ||
5664          mode == ARM_CPU_MODE_HYP)) {
5665         return 1;
5666     }
5667 
5668     switch (mode) {
5669     case ARM_CPU_MODE_USR:
5670         return 0;
5671     case ARM_CPU_MODE_SYS:
5672     case ARM_CPU_MODE_SVC:
5673     case ARM_CPU_MODE_ABT:
5674     case ARM_CPU_MODE_UND:
5675     case ARM_CPU_MODE_IRQ:
5676     case ARM_CPU_MODE_FIQ:
5677         /* Note that we don't implement the IMPDEF NSACR.RFR which in v7
5678          * allows FIQ mode to be Secure-only. (In v8 this doesn't exist.)
5679          */
5680         /* If HCR.TGE is set then changes from Monitor to NS PL1 via MSR
5681          * and CPS are treated as illegal mode changes.
5682          */
5683         if (write_type == CPSRWriteByInstr &&
5684             (env->cp15.hcr_el2 & HCR_TGE) &&
5685             (env->uncached_cpsr & CPSR_M) == ARM_CPU_MODE_MON &&
5686             !arm_is_secure_below_el3(env)) {
5687             return 1;
5688         }
5689         return 0;
5690     case ARM_CPU_MODE_HYP:
5691         return !arm_feature(env, ARM_FEATURE_EL2)
5692             || arm_current_el(env) < 2 || arm_is_secure(env);
5693     case ARM_CPU_MODE_MON:
5694         return arm_current_el(env) < 3;
5695     default:
5696         return 1;
5697     }
5698 }
5699 
5700 uint32_t cpsr_read(CPUARMState *env)
5701 {
5702     int ZF;
5703     ZF = (env->ZF == 0);
5704     return env->uncached_cpsr | (env->NF & 0x80000000) | (ZF << 30) |
5705         (env->CF << 29) | ((env->VF & 0x80000000) >> 3) | (env->QF << 27)
5706         | (env->thumb << 5) | ((env->condexec_bits & 3) << 25)
5707         | ((env->condexec_bits & 0xfc) << 8)
5708         | (env->GE << 16) | (env->daif & CPSR_AIF);
5709 }
5710 
5711 void cpsr_write(CPUARMState *env, uint32_t val, uint32_t mask,
5712                 CPSRWriteType write_type)
5713 {
5714     uint32_t changed_daif;
5715 
5716     if (mask & CPSR_NZCV) {
5717         env->ZF = (~val) & CPSR_Z;
5718         env->NF = val;
5719         env->CF = (val >> 29) & 1;
5720         env->VF = (val << 3) & 0x80000000;
5721     }
5722     if (mask & CPSR_Q)
5723         env->QF = ((val & CPSR_Q) != 0);
5724     if (mask & CPSR_T)
5725         env->thumb = ((val & CPSR_T) != 0);
5726     if (mask & CPSR_IT_0_1) {
5727         env->condexec_bits &= ~3;
5728         env->condexec_bits |= (val >> 25) & 3;
5729     }
5730     if (mask & CPSR_IT_2_7) {
5731         env->condexec_bits &= 3;
5732         env->condexec_bits |= (val >> 8) & 0xfc;
5733     }
5734     if (mask & CPSR_GE) {
5735         env->GE = (val >> 16) & 0xf;
5736     }
5737 
5738     /* In a V7 implementation that includes the security extensions but does
5739      * not include Virtualization Extensions the SCR.FW and SCR.AW bits control
5740      * whether non-secure software is allowed to change the CPSR_F and CPSR_A
5741      * bits respectively.
5742      *
5743      * In a V8 implementation, it is permitted for privileged software to
5744      * change the CPSR A/F bits regardless of the SCR.AW/FW bits.
5745      */
5746     if (write_type != CPSRWriteRaw && !arm_feature(env, ARM_FEATURE_V8) &&
5747         arm_feature(env, ARM_FEATURE_EL3) &&
5748         !arm_feature(env, ARM_FEATURE_EL2) &&
5749         !arm_is_secure(env)) {
5750 
5751         changed_daif = (env->daif ^ val) & mask;
5752 
5753         if (changed_daif & CPSR_A) {
5754             /* Check to see if we are allowed to change the masking of async
5755              * abort exceptions from a non-secure state.
5756              */
5757             if (!(env->cp15.scr_el3 & SCR_AW)) {
5758                 qemu_log_mask(LOG_GUEST_ERROR,
5759                               "Ignoring attempt to switch CPSR_A flag from "
5760                               "non-secure world with SCR.AW bit clear\n");
5761                 mask &= ~CPSR_A;
5762             }
5763         }
5764 
5765         if (changed_daif & CPSR_F) {
5766             /* Check to see if we are allowed to change the masking of FIQ
5767              * exceptions from a non-secure state.
5768              */
5769             if (!(env->cp15.scr_el3 & SCR_FW)) {
5770                 qemu_log_mask(LOG_GUEST_ERROR,
5771                               "Ignoring attempt to switch CPSR_F flag from "
5772                               "non-secure world with SCR.FW bit clear\n");
5773                 mask &= ~CPSR_F;
5774             }
5775 
5776             /* Check whether non-maskable FIQ (NMFI) support is enabled.
5777              * If this bit is set software is not allowed to mask
5778              * FIQs, but is allowed to set CPSR_F to 0.
5779              */
5780             if ((A32_BANKED_CURRENT_REG_GET(env, sctlr) & SCTLR_NMFI) &&
5781                 (val & CPSR_F)) {
5782                 qemu_log_mask(LOG_GUEST_ERROR,
5783                               "Ignoring attempt to enable CPSR_F flag "
5784                               "(non-maskable FIQ [NMFI] support enabled)\n");
5785                 mask &= ~CPSR_F;
5786             }
5787         }
5788     }
5789 
5790     env->daif &= ~(CPSR_AIF & mask);
5791     env->daif |= val & CPSR_AIF & mask;
5792 
5793     if (write_type != CPSRWriteRaw &&
5794         ((env->uncached_cpsr ^ val) & mask & CPSR_M)) {
5795         if ((env->uncached_cpsr & CPSR_M) == ARM_CPU_MODE_USR) {
5796             /* Note that we can only get here in USR mode if this is a
5797              * gdb stub write; for this case we follow the architectural
5798              * behaviour for guest writes in USR mode of ignoring an attempt
5799              * to switch mode. (Those are caught by translate.c for writes
5800              * triggered by guest instructions.)
5801              */
5802             mask &= ~CPSR_M;
5803         } else if (bad_mode_switch(env, val & CPSR_M, write_type)) {
5804             /* Attempt to switch to an invalid mode: this is UNPREDICTABLE in
5805              * v7, and has defined behaviour in v8:
5806              *  + leave CPSR.M untouched
5807              *  + allow changes to the other CPSR fields
5808              *  + set PSTATE.IL
5809              * For user changes via the GDB stub, we don't set PSTATE.IL,
5810              * as this would be unnecessarily harsh for a user error.
5811              */
5812             mask &= ~CPSR_M;
5813             if (write_type != CPSRWriteByGDBStub &&
5814                 arm_feature(env, ARM_FEATURE_V8)) {
5815                 mask |= CPSR_IL;
5816                 val |= CPSR_IL;
5817             }
5818         } else {
5819             switch_mode(env, val & CPSR_M);
5820         }
5821     }
5822     mask &= ~CACHED_CPSR_BITS;
5823     env->uncached_cpsr = (env->uncached_cpsr & ~mask) | (val & mask);
5824 }
5825 
5826 /* Sign/zero extend */
5827 uint32_t HELPER(sxtb16)(uint32_t x)
5828 {
5829     uint32_t res;
5830     res = (uint16_t)(int8_t)x;
5831     res |= (uint32_t)(int8_t)(x >> 16) << 16;
5832     return res;
5833 }
5834 
5835 uint32_t HELPER(uxtb16)(uint32_t x)
5836 {
5837     uint32_t res;
5838     res = (uint16_t)(uint8_t)x;
5839     res |= (uint32_t)(uint8_t)(x >> 16) << 16;
5840     return res;
5841 }
5842 
5843 int32_t HELPER(sdiv)(int32_t num, int32_t den)
5844 {
5845     if (den == 0)
5846       return 0;
5847     if (num == INT_MIN && den == -1)
5848       return INT_MIN;
5849     return num / den;
5850 }
5851 
5852 uint32_t HELPER(udiv)(uint32_t num, uint32_t den)
5853 {
5854     if (den == 0)
5855       return 0;
5856     return num / den;
5857 }
5858 
5859 uint32_t HELPER(rbit)(uint32_t x)
5860 {
5861     return revbit32(x);
5862 }
5863 
5864 #if defined(CONFIG_USER_ONLY)
5865 
5866 /* These should probably raise undefined insn exceptions.  */
5867 void HELPER(v7m_msr)(CPUARMState *env, uint32_t reg, uint32_t val)
5868 {
5869     ARMCPU *cpu = arm_env_get_cpu(env);
5870 
5871     cpu_abort(CPU(cpu), "v7m_msr %d\n", reg);
5872 }
5873 
5874 uint32_t HELPER(v7m_mrs)(CPUARMState *env, uint32_t reg)
5875 {
5876     ARMCPU *cpu = arm_env_get_cpu(env);
5877 
5878     cpu_abort(CPU(cpu), "v7m_mrs %d\n", reg);
5879     return 0;
5880 }
5881 
5882 void switch_mode(CPUARMState *env, int mode)
5883 {
5884     ARMCPU *cpu = arm_env_get_cpu(env);
5885 
5886     if (mode != ARM_CPU_MODE_USR) {
5887         cpu_abort(CPU(cpu), "Tried to switch out of user mode\n");
5888     }
5889 }
5890 
5891 uint32_t arm_phys_excp_target_el(CPUState *cs, uint32_t excp_idx,
5892                                  uint32_t cur_el, bool secure)
5893 {
5894     return 1;
5895 }
5896 
5897 void aarch64_sync_64_to_32(CPUARMState *env)
5898 {
5899     g_assert_not_reached();
5900 }
5901 
5902 #else
5903 
5904 void switch_mode(CPUARMState *env, int mode)
5905 {
5906     int old_mode;
5907     int i;
5908 
5909     old_mode = env->uncached_cpsr & CPSR_M;
5910     if (mode == old_mode)
5911         return;
5912 
5913     if (old_mode == ARM_CPU_MODE_FIQ) {
5914         memcpy (env->fiq_regs, env->regs + 8, 5 * sizeof(uint32_t));
5915         memcpy (env->regs + 8, env->usr_regs, 5 * sizeof(uint32_t));
5916     } else if (mode == ARM_CPU_MODE_FIQ) {
5917         memcpy (env->usr_regs, env->regs + 8, 5 * sizeof(uint32_t));
5918         memcpy (env->regs + 8, env->fiq_regs, 5 * sizeof(uint32_t));
5919     }
5920 
5921     i = bank_number(old_mode);
5922     env->banked_r13[i] = env->regs[13];
5923     env->banked_r14[i] = env->regs[14];
5924     env->banked_spsr[i] = env->spsr;
5925 
5926     i = bank_number(mode);
5927     env->regs[13] = env->banked_r13[i];
5928     env->regs[14] = env->banked_r14[i];
5929     env->spsr = env->banked_spsr[i];
5930 }
5931 
5932 /* Physical Interrupt Target EL Lookup Table
5933  *
5934  * [ From ARM ARM section G1.13.4 (Table G1-15) ]
5935  *
5936  * The below multi-dimensional table is used for looking up the target
5937  * exception level given numerous condition criteria.  Specifically, the
5938  * target EL is based on SCR and HCR routing controls as well as the
5939  * currently executing EL and secure state.
5940  *
5941  *    Dimensions:
5942  *    target_el_table[2][2][2][2][2][4]
5943  *                    |  |  |  |  |  +--- Current EL
5944  *                    |  |  |  |  +------ Non-secure(0)/Secure(1)
5945  *                    |  |  |  +--------- HCR mask override
5946  *                    |  |  +------------ SCR exec state control
5947  *                    |  +--------------- SCR mask override
5948  *                    +------------------ 32-bit(0)/64-bit(1) EL3
5949  *
5950  *    The table values are as such:
5951  *    0-3 = EL0-EL3
5952  *     -1 = Cannot occur
5953  *
5954  * The ARM ARM target EL table includes entries indicating that an "exception
5955  * is not taken".  The two cases where this is applicable are:
5956  *    1) An exception is taken from EL3 but the SCR does not have the exception
5957  *    routed to EL3.
5958  *    2) An exception is taken from EL2 but the HCR does not have the exception
5959  *    routed to EL2.
5960  * In these two cases, the below table contain a target of EL1.  This value is
5961  * returned as it is expected that the consumer of the table data will check
5962  * for "target EL >= current EL" to ensure the exception is not taken.
5963  *
5964  *            SCR     HCR
5965  *         64  EA     AMO                 From
5966  *        BIT IRQ     IMO      Non-secure         Secure
5967  *        EL3 FIQ  RW FMO   EL0 EL1 EL2 EL3   EL0 EL1 EL2 EL3
5968  */
5969 static const int8_t target_el_table[2][2][2][2][2][4] = {
5970     {{{{/* 0   0   0   0 */{ 1,  1,  2, -1 },{ 3, -1, -1,  3 },},
5971        {/* 0   0   0   1 */{ 2,  2,  2, -1 },{ 3, -1, -1,  3 },},},
5972       {{/* 0   0   1   0 */{ 1,  1,  2, -1 },{ 3, -1, -1,  3 },},
5973        {/* 0   0   1   1 */{ 2,  2,  2, -1 },{ 3, -1, -1,  3 },},},},
5974      {{{/* 0   1   0   0 */{ 3,  3,  3, -1 },{ 3, -1, -1,  3 },},
5975        {/* 0   1   0   1 */{ 3,  3,  3, -1 },{ 3, -1, -1,  3 },},},
5976       {{/* 0   1   1   0 */{ 3,  3,  3, -1 },{ 3, -1, -1,  3 },},
5977        {/* 0   1   1   1 */{ 3,  3,  3, -1 },{ 3, -1, -1,  3 },},},},},
5978     {{{{/* 1   0   0   0 */{ 1,  1,  2, -1 },{ 1,  1, -1,  1 },},
5979        {/* 1   0   0   1 */{ 2,  2,  2, -1 },{ 1,  1, -1,  1 },},},
5980       {{/* 1   0   1   0 */{ 1,  1,  1, -1 },{ 1,  1, -1,  1 },},
5981        {/* 1   0   1   1 */{ 2,  2,  2, -1 },{ 1,  1, -1,  1 },},},},
5982      {{{/* 1   1   0   0 */{ 3,  3,  3, -1 },{ 3,  3, -1,  3 },},
5983        {/* 1   1   0   1 */{ 3,  3,  3, -1 },{ 3,  3, -1,  3 },},},
5984       {{/* 1   1   1   0 */{ 3,  3,  3, -1 },{ 3,  3, -1,  3 },},
5985        {/* 1   1   1   1 */{ 3,  3,  3, -1 },{ 3,  3, -1,  3 },},},},},
5986 };
5987 
5988 /*
5989  * Determine the target EL for physical exceptions
5990  */
5991 uint32_t arm_phys_excp_target_el(CPUState *cs, uint32_t excp_idx,
5992                                  uint32_t cur_el, bool secure)
5993 {
5994     CPUARMState *env = cs->env_ptr;
5995     int rw;
5996     int scr;
5997     int hcr;
5998     int target_el;
5999     /* Is the highest EL AArch64? */
6000     int is64 = arm_feature(env, ARM_FEATURE_AARCH64);
6001 
6002     if (arm_feature(env, ARM_FEATURE_EL3)) {
6003         rw = ((env->cp15.scr_el3 & SCR_RW) == SCR_RW);
6004     } else {
6005         /* Either EL2 is the highest EL (and so the EL2 register width
6006          * is given by is64); or there is no EL2 or EL3, in which case
6007          * the value of 'rw' does not affect the table lookup anyway.
6008          */
6009         rw = is64;
6010     }
6011 
6012     switch (excp_idx) {
6013     case EXCP_IRQ:
6014         scr = ((env->cp15.scr_el3 & SCR_IRQ) == SCR_IRQ);
6015         hcr = ((env->cp15.hcr_el2 & HCR_IMO) == HCR_IMO);
6016         break;
6017     case EXCP_FIQ:
6018         scr = ((env->cp15.scr_el3 & SCR_FIQ) == SCR_FIQ);
6019         hcr = ((env->cp15.hcr_el2 & HCR_FMO) == HCR_FMO);
6020         break;
6021     default:
6022         scr = ((env->cp15.scr_el3 & SCR_EA) == SCR_EA);
6023         hcr = ((env->cp15.hcr_el2 & HCR_AMO) == HCR_AMO);
6024         break;
6025     };
6026 
6027     /* If HCR.TGE is set then HCR is treated as being 1 */
6028     hcr |= ((env->cp15.hcr_el2 & HCR_TGE) == HCR_TGE);
6029 
6030     /* Perform a table-lookup for the target EL given the current state */
6031     target_el = target_el_table[is64][scr][rw][hcr][secure][cur_el];
6032 
6033     assert(target_el > 0);
6034 
6035     return target_el;
6036 }
6037 
6038 static void v7m_push(CPUARMState *env, uint32_t val)
6039 {
6040     CPUState *cs = CPU(arm_env_get_cpu(env));
6041 
6042     env->regs[13] -= 4;
6043     stl_phys(cs->as, env->regs[13], val);
6044 }
6045 
6046 static uint32_t v7m_pop(CPUARMState *env)
6047 {
6048     CPUState *cs = CPU(arm_env_get_cpu(env));
6049     uint32_t val;
6050 
6051     val = ldl_phys(cs->as, env->regs[13]);
6052     env->regs[13] += 4;
6053     return val;
6054 }
6055 
6056 /* Switch to V7M main or process stack pointer.  */
6057 static void switch_v7m_sp(CPUARMState *env, bool new_spsel)
6058 {
6059     uint32_t tmp;
6060     bool old_spsel = env->v7m.control & R_V7M_CONTROL_SPSEL_MASK;
6061 
6062     if (old_spsel != new_spsel) {
6063         tmp = env->v7m.other_sp;
6064         env->v7m.other_sp = env->regs[13];
6065         env->regs[13] = tmp;
6066 
6067         env->v7m.control = deposit32(env->v7m.control,
6068                                      R_V7M_CONTROL_SPSEL_SHIFT,
6069                                      R_V7M_CONTROL_SPSEL_LENGTH, new_spsel);
6070     }
6071 }
6072 
6073 static uint32_t arm_v7m_load_vector(ARMCPU *cpu)
6074 {
6075     CPUState *cs = CPU(cpu);
6076     CPUARMState *env = &cpu->env;
6077     MemTxResult result;
6078     hwaddr vec = env->v7m.vecbase + env->v7m.exception * 4;
6079     uint32_t addr;
6080 
6081     addr = address_space_ldl(cs->as, vec,
6082                              MEMTXATTRS_UNSPECIFIED, &result);
6083     if (result != MEMTX_OK) {
6084         /* Architecturally this should cause a HardFault setting HSFR.VECTTBL,
6085          * which would then be immediately followed by our failing to load
6086          * the entry vector for that HardFault, which is a Lockup case.
6087          * Since we don't model Lockup, we just report this guest error
6088          * via cpu_abort().
6089          */
6090         cpu_abort(cs, "Failed to read from exception vector table "
6091                   "entry %08x\n", (unsigned)vec);
6092     }
6093     return addr;
6094 }
6095 
6096 static void v7m_exception_taken(ARMCPU *cpu, uint32_t lr)
6097 {
6098     /* Do the "take the exception" parts of exception entry,
6099      * but not the pushing of state to the stack. This is
6100      * similar to the pseudocode ExceptionTaken() function.
6101      */
6102     CPUARMState *env = &cpu->env;
6103     uint32_t addr;
6104 
6105     armv7m_nvic_acknowledge_irq(env->nvic);
6106     switch_v7m_sp(env, 0);
6107     /* Clear IT bits */
6108     env->condexec_bits = 0;
6109     env->regs[14] = lr;
6110     addr = arm_v7m_load_vector(cpu);
6111     env->regs[15] = addr & 0xfffffffe;
6112     env->thumb = addr & 1;
6113 }
6114 
6115 static void v7m_push_stack(ARMCPU *cpu)
6116 {
6117     /* Do the "set up stack frame" part of exception entry,
6118      * similar to pseudocode PushStack().
6119      */
6120     CPUARMState *env = &cpu->env;
6121     uint32_t xpsr = xpsr_read(env);
6122 
6123     /* Align stack pointer if the guest wants that */
6124     if ((env->regs[13] & 4) && (env->v7m.ccr & R_V7M_CCR_STKALIGN_MASK)) {
6125         env->regs[13] -= 4;
6126         xpsr |= 0x200;
6127     }
6128     /* Switch to the handler mode.  */
6129     v7m_push(env, xpsr);
6130     v7m_push(env, env->regs[15]);
6131     v7m_push(env, env->regs[14]);
6132     v7m_push(env, env->regs[12]);
6133     v7m_push(env, env->regs[3]);
6134     v7m_push(env, env->regs[2]);
6135     v7m_push(env, env->regs[1]);
6136     v7m_push(env, env->regs[0]);
6137 }
6138 
6139 static void do_v7m_exception_exit(ARMCPU *cpu)
6140 {
6141     CPUARMState *env = &cpu->env;
6142     uint32_t type;
6143     uint32_t xpsr;
6144     bool ufault = false;
6145     bool return_to_sp_process = false;
6146     bool return_to_handler = false;
6147     bool rettobase = false;
6148 
6149     /* We can only get here from an EXCP_EXCEPTION_EXIT, and
6150      * arm_v7m_do_unassigned_access() enforces the architectural rule
6151      * that jumps to magic addresses don't have magic behaviour unless
6152      * we're in Handler mode (compare pseudocode BXWritePC()).
6153      */
6154     assert(env->v7m.exception != 0);
6155 
6156     /* In the spec pseudocode ExceptionReturn() is called directly
6157      * from BXWritePC() and gets the full target PC value including
6158      * bit zero. In QEMU's implementation we treat it as a normal
6159      * jump-to-register (which is then caught later on), and so split
6160      * the target value up between env->regs[15] and env->thumb in
6161      * gen_bx(). Reconstitute it.
6162      */
6163     type = env->regs[15];
6164     if (env->thumb) {
6165         type |= 1;
6166     }
6167 
6168     qemu_log_mask(CPU_LOG_INT, "Exception return: magic PC %" PRIx32
6169                   " previous exception %d\n",
6170                   type, env->v7m.exception);
6171 
6172     if (extract32(type, 5, 23) != extract32(-1, 5, 23)) {
6173         qemu_log_mask(LOG_GUEST_ERROR, "M profile: zero high bits in exception "
6174                       "exit PC value 0x%" PRIx32 " are UNPREDICTABLE\n", type);
6175     }
6176 
6177     if (env->v7m.exception != ARMV7M_EXCP_NMI) {
6178         /* Auto-clear FAULTMASK on return from other than NMI */
6179         env->daif &= ~PSTATE_F;
6180     }
6181 
6182     switch (armv7m_nvic_complete_irq(env->nvic, env->v7m.exception)) {
6183     case -1:
6184         /* attempt to exit an exception that isn't active */
6185         ufault = true;
6186         break;
6187     case 0:
6188         /* still an irq active now */
6189         break;
6190     case 1:
6191         /* we returned to base exception level, no nesting.
6192          * (In the pseudocode this is written using "NestedActivation != 1"
6193          * where we have 'rettobase == false'.)
6194          */
6195         rettobase = true;
6196         break;
6197     default:
6198         g_assert_not_reached();
6199     }
6200 
6201     switch (type & 0xf) {
6202     case 1: /* Return to Handler */
6203         return_to_handler = true;
6204         break;
6205     case 13: /* Return to Thread using Process stack */
6206         return_to_sp_process = true;
6207         /* fall through */
6208     case 9: /* Return to Thread using Main stack */
6209         if (!rettobase &&
6210             !(env->v7m.ccr & R_V7M_CCR_NONBASETHRDENA_MASK)) {
6211             ufault = true;
6212         }
6213         break;
6214     default:
6215         ufault = true;
6216     }
6217 
6218     if (ufault) {
6219         /* Bad exception return: instead of popping the exception
6220          * stack, directly take a usage fault on the current stack.
6221          */
6222         env->v7m.cfsr |= R_V7M_CFSR_INVPC_MASK;
6223         armv7m_nvic_set_pending(env->nvic, ARMV7M_EXCP_USAGE);
6224         v7m_exception_taken(cpu, type | 0xf0000000);
6225         qemu_log_mask(CPU_LOG_INT, "...taking UsageFault on existing "
6226                       "stackframe: failed exception return integrity check\n");
6227         return;
6228     }
6229 
6230     /* Switch to the target stack.  */
6231     switch_v7m_sp(env, return_to_sp_process);
6232     /* Pop registers.  */
6233     env->regs[0] = v7m_pop(env);
6234     env->regs[1] = v7m_pop(env);
6235     env->regs[2] = v7m_pop(env);
6236     env->regs[3] = v7m_pop(env);
6237     env->regs[12] = v7m_pop(env);
6238     env->regs[14] = v7m_pop(env);
6239     env->regs[15] = v7m_pop(env);
6240     if (env->regs[15] & 1) {
6241         qemu_log_mask(LOG_GUEST_ERROR,
6242                       "M profile return from interrupt with misaligned "
6243                       "PC is UNPREDICTABLE\n");
6244         /* Actual hardware seems to ignore the lsbit, and there are several
6245          * RTOSes out there which incorrectly assume the r15 in the stack
6246          * frame should be a Thumb-style "lsbit indicates ARM/Thumb" value.
6247          */
6248         env->regs[15] &= ~1U;
6249     }
6250     xpsr = v7m_pop(env);
6251     xpsr_write(env, xpsr, 0xfffffdff);
6252     /* Undo stack alignment.  */
6253     if (xpsr & 0x200)
6254         env->regs[13] |= 4;
6255 
6256     /* The restored xPSR exception field will be zero if we're
6257      * resuming in Thread mode. If that doesn't match what the
6258      * exception return type specified then this is a UsageFault.
6259      */
6260     if (return_to_handler == (env->v7m.exception == 0)) {
6261         /* Take an INVPC UsageFault by pushing the stack again. */
6262         armv7m_nvic_set_pending(env->nvic, ARMV7M_EXCP_USAGE);
6263         env->v7m.cfsr |= R_V7M_CFSR_INVPC_MASK;
6264         v7m_push_stack(cpu);
6265         v7m_exception_taken(cpu, type | 0xf0000000);
6266         qemu_log_mask(CPU_LOG_INT, "...taking UsageFault on new stackframe: "
6267                       "failed exception return integrity check\n");
6268         return;
6269     }
6270 
6271     /* Otherwise, we have a successful exception exit. */
6272     qemu_log_mask(CPU_LOG_INT, "...successful exception return\n");
6273 }
6274 
6275 static void arm_log_exception(int idx)
6276 {
6277     if (qemu_loglevel_mask(CPU_LOG_INT)) {
6278         const char *exc = NULL;
6279         static const char * const excnames[] = {
6280             [EXCP_UDEF] = "Undefined Instruction",
6281             [EXCP_SWI] = "SVC",
6282             [EXCP_PREFETCH_ABORT] = "Prefetch Abort",
6283             [EXCP_DATA_ABORT] = "Data Abort",
6284             [EXCP_IRQ] = "IRQ",
6285             [EXCP_FIQ] = "FIQ",
6286             [EXCP_BKPT] = "Breakpoint",
6287             [EXCP_EXCEPTION_EXIT] = "QEMU v7M exception exit",
6288             [EXCP_KERNEL_TRAP] = "QEMU intercept of kernel commpage",
6289             [EXCP_HVC] = "Hypervisor Call",
6290             [EXCP_HYP_TRAP] = "Hypervisor Trap",
6291             [EXCP_SMC] = "Secure Monitor Call",
6292             [EXCP_VIRQ] = "Virtual IRQ",
6293             [EXCP_VFIQ] = "Virtual FIQ",
6294             [EXCP_SEMIHOST] = "Semihosting call",
6295             [EXCP_NOCP] = "v7M NOCP UsageFault",
6296             [EXCP_INVSTATE] = "v7M INVSTATE UsageFault",
6297         };
6298 
6299         if (idx >= 0 && idx < ARRAY_SIZE(excnames)) {
6300             exc = excnames[idx];
6301         }
6302         if (!exc) {
6303             exc = "unknown";
6304         }
6305         qemu_log_mask(CPU_LOG_INT, "Taking exception %d [%s]\n", idx, exc);
6306     }
6307 }
6308 
6309 void arm_v7m_cpu_do_interrupt(CPUState *cs)
6310 {
6311     ARMCPU *cpu = ARM_CPU(cs);
6312     CPUARMState *env = &cpu->env;
6313     uint32_t lr;
6314 
6315     arm_log_exception(cs->exception_index);
6316 
6317     lr = 0xfffffff1;
6318     if (env->v7m.control & R_V7M_CONTROL_SPSEL_MASK) {
6319         lr |= 4;
6320     }
6321     if (env->v7m.exception == 0)
6322         lr |= 8;
6323 
6324     /* For exceptions we just mark as pending on the NVIC, and let that
6325        handle it.  */
6326     switch (cs->exception_index) {
6327     case EXCP_UDEF:
6328         armv7m_nvic_set_pending(env->nvic, ARMV7M_EXCP_USAGE);
6329         env->v7m.cfsr |= R_V7M_CFSR_UNDEFINSTR_MASK;
6330         break;
6331     case EXCP_NOCP:
6332         armv7m_nvic_set_pending(env->nvic, ARMV7M_EXCP_USAGE);
6333         env->v7m.cfsr |= R_V7M_CFSR_NOCP_MASK;
6334         break;
6335     case EXCP_INVSTATE:
6336         armv7m_nvic_set_pending(env->nvic, ARMV7M_EXCP_USAGE);
6337         env->v7m.cfsr |= R_V7M_CFSR_INVSTATE_MASK;
6338         break;
6339     case EXCP_SWI:
6340         /* The PC already points to the next instruction.  */
6341         armv7m_nvic_set_pending(env->nvic, ARMV7M_EXCP_SVC);
6342         break;
6343     case EXCP_PREFETCH_ABORT:
6344     case EXCP_DATA_ABORT:
6345         /* Note that for M profile we don't have a guest facing FSR, but
6346          * the env->exception.fsr will be populated by the code that
6347          * raises the fault, in the A profile short-descriptor format.
6348          */
6349         switch (env->exception.fsr & 0xf) {
6350         case 0x8: /* External Abort */
6351             switch (cs->exception_index) {
6352             case EXCP_PREFETCH_ABORT:
6353                 env->v7m.cfsr |= R_V7M_CFSR_PRECISERR_MASK;
6354                 qemu_log_mask(CPU_LOG_INT, "...with CFSR.PRECISERR\n");
6355                 break;
6356             case EXCP_DATA_ABORT:
6357                 env->v7m.cfsr |=
6358                     (R_V7M_CFSR_IBUSERR_MASK | R_V7M_CFSR_BFARVALID_MASK);
6359                 env->v7m.bfar = env->exception.vaddress;
6360                 qemu_log_mask(CPU_LOG_INT,
6361                               "...with CFSR.IBUSERR and BFAR 0x%x\n",
6362                               env->v7m.bfar);
6363                 break;
6364             }
6365             armv7m_nvic_set_pending(env->nvic, ARMV7M_EXCP_BUS);
6366             break;
6367         default:
6368             /* All other FSR values are either MPU faults or "can't happen
6369              * for M profile" cases.
6370              */
6371             switch (cs->exception_index) {
6372             case EXCP_PREFETCH_ABORT:
6373                 env->v7m.cfsr |= R_V7M_CFSR_IACCVIOL_MASK;
6374                 qemu_log_mask(CPU_LOG_INT, "...with CFSR.IACCVIOL\n");
6375                 break;
6376             case EXCP_DATA_ABORT:
6377                 env->v7m.cfsr |=
6378                     (R_V7M_CFSR_DACCVIOL_MASK | R_V7M_CFSR_MMARVALID_MASK);
6379                 env->v7m.mmfar = env->exception.vaddress;
6380                 qemu_log_mask(CPU_LOG_INT,
6381                               "...with CFSR.DACCVIOL and MMFAR 0x%x\n",
6382                               env->v7m.mmfar);
6383                 break;
6384             }
6385             armv7m_nvic_set_pending(env->nvic, ARMV7M_EXCP_MEM);
6386             break;
6387         }
6388         break;
6389     case EXCP_BKPT:
6390         if (semihosting_enabled()) {
6391             int nr;
6392             nr = arm_lduw_code(env, env->regs[15], arm_sctlr_b(env)) & 0xff;
6393             if (nr == 0xab) {
6394                 env->regs[15] += 2;
6395                 qemu_log_mask(CPU_LOG_INT,
6396                               "...handling as semihosting call 0x%x\n",
6397                               env->regs[0]);
6398                 env->regs[0] = do_arm_semihosting(env);
6399                 return;
6400             }
6401         }
6402         armv7m_nvic_set_pending(env->nvic, ARMV7M_EXCP_DEBUG);
6403         break;
6404     case EXCP_IRQ:
6405         break;
6406     case EXCP_EXCEPTION_EXIT:
6407         do_v7m_exception_exit(cpu);
6408         return;
6409     default:
6410         cpu_abort(cs, "Unhandled exception 0x%x\n", cs->exception_index);
6411         return; /* Never happens.  Keep compiler happy.  */
6412     }
6413 
6414     v7m_push_stack(cpu);
6415     v7m_exception_taken(cpu, lr);
6416     qemu_log_mask(CPU_LOG_INT, "... as %d\n", env->v7m.exception);
6417 }
6418 
6419 /* Function used to synchronize QEMU's AArch64 register set with AArch32
6420  * register set.  This is necessary when switching between AArch32 and AArch64
6421  * execution state.
6422  */
6423 void aarch64_sync_32_to_64(CPUARMState *env)
6424 {
6425     int i;
6426     uint32_t mode = env->uncached_cpsr & CPSR_M;
6427 
6428     /* We can blanket copy R[0:7] to X[0:7] */
6429     for (i = 0; i < 8; i++) {
6430         env->xregs[i] = env->regs[i];
6431     }
6432 
6433     /* Unless we are in FIQ mode, x8-x12 come from the user registers r8-r12.
6434      * Otherwise, they come from the banked user regs.
6435      */
6436     if (mode == ARM_CPU_MODE_FIQ) {
6437         for (i = 8; i < 13; i++) {
6438             env->xregs[i] = env->usr_regs[i - 8];
6439         }
6440     } else {
6441         for (i = 8; i < 13; i++) {
6442             env->xregs[i] = env->regs[i];
6443         }
6444     }
6445 
6446     /* Registers x13-x23 are the various mode SP and FP registers. Registers
6447      * r13 and r14 are only copied if we are in that mode, otherwise we copy
6448      * from the mode banked register.
6449      */
6450     if (mode == ARM_CPU_MODE_USR || mode == ARM_CPU_MODE_SYS) {
6451         env->xregs[13] = env->regs[13];
6452         env->xregs[14] = env->regs[14];
6453     } else {
6454         env->xregs[13] = env->banked_r13[bank_number(ARM_CPU_MODE_USR)];
6455         /* HYP is an exception in that it is copied from r14 */
6456         if (mode == ARM_CPU_MODE_HYP) {
6457             env->xregs[14] = env->regs[14];
6458         } else {
6459             env->xregs[14] = env->banked_r14[bank_number(ARM_CPU_MODE_USR)];
6460         }
6461     }
6462 
6463     if (mode == ARM_CPU_MODE_HYP) {
6464         env->xregs[15] = env->regs[13];
6465     } else {
6466         env->xregs[15] = env->banked_r13[bank_number(ARM_CPU_MODE_HYP)];
6467     }
6468 
6469     if (mode == ARM_CPU_MODE_IRQ) {
6470         env->xregs[16] = env->regs[14];
6471         env->xregs[17] = env->regs[13];
6472     } else {
6473         env->xregs[16] = env->banked_r14[bank_number(ARM_CPU_MODE_IRQ)];
6474         env->xregs[17] = env->banked_r13[bank_number(ARM_CPU_MODE_IRQ)];
6475     }
6476 
6477     if (mode == ARM_CPU_MODE_SVC) {
6478         env->xregs[18] = env->regs[14];
6479         env->xregs[19] = env->regs[13];
6480     } else {
6481         env->xregs[18] = env->banked_r14[bank_number(ARM_CPU_MODE_SVC)];
6482         env->xregs[19] = env->banked_r13[bank_number(ARM_CPU_MODE_SVC)];
6483     }
6484 
6485     if (mode == ARM_CPU_MODE_ABT) {
6486         env->xregs[20] = env->regs[14];
6487         env->xregs[21] = env->regs[13];
6488     } else {
6489         env->xregs[20] = env->banked_r14[bank_number(ARM_CPU_MODE_ABT)];
6490         env->xregs[21] = env->banked_r13[bank_number(ARM_CPU_MODE_ABT)];
6491     }
6492 
6493     if (mode == ARM_CPU_MODE_UND) {
6494         env->xregs[22] = env->regs[14];
6495         env->xregs[23] = env->regs[13];
6496     } else {
6497         env->xregs[22] = env->banked_r14[bank_number(ARM_CPU_MODE_UND)];
6498         env->xregs[23] = env->banked_r13[bank_number(ARM_CPU_MODE_UND)];
6499     }
6500 
6501     /* Registers x24-x30 are mapped to r8-r14 in FIQ mode.  If we are in FIQ
6502      * mode, then we can copy from r8-r14.  Otherwise, we copy from the
6503      * FIQ bank for r8-r14.
6504      */
6505     if (mode == ARM_CPU_MODE_FIQ) {
6506         for (i = 24; i < 31; i++) {
6507             env->xregs[i] = env->regs[i - 16];   /* X[24:30] <- R[8:14] */
6508         }
6509     } else {
6510         for (i = 24; i < 29; i++) {
6511             env->xregs[i] = env->fiq_regs[i - 24];
6512         }
6513         env->xregs[29] = env->banked_r13[bank_number(ARM_CPU_MODE_FIQ)];
6514         env->xregs[30] = env->banked_r14[bank_number(ARM_CPU_MODE_FIQ)];
6515     }
6516 
6517     env->pc = env->regs[15];
6518 }
6519 
6520 /* Function used to synchronize QEMU's AArch32 register set with AArch64
6521  * register set.  This is necessary when switching between AArch32 and AArch64
6522  * execution state.
6523  */
6524 void aarch64_sync_64_to_32(CPUARMState *env)
6525 {
6526     int i;
6527     uint32_t mode = env->uncached_cpsr & CPSR_M;
6528 
6529     /* We can blanket copy X[0:7] to R[0:7] */
6530     for (i = 0; i < 8; i++) {
6531         env->regs[i] = env->xregs[i];
6532     }
6533 
6534     /* Unless we are in FIQ mode, r8-r12 come from the user registers x8-x12.
6535      * Otherwise, we copy x8-x12 into the banked user regs.
6536      */
6537     if (mode == ARM_CPU_MODE_FIQ) {
6538         for (i = 8; i < 13; i++) {
6539             env->usr_regs[i - 8] = env->xregs[i];
6540         }
6541     } else {
6542         for (i = 8; i < 13; i++) {
6543             env->regs[i] = env->xregs[i];
6544         }
6545     }
6546 
6547     /* Registers r13 & r14 depend on the current mode.
6548      * If we are in a given mode, we copy the corresponding x registers to r13
6549      * and r14.  Otherwise, we copy the x register to the banked r13 and r14
6550      * for the mode.
6551      */
6552     if (mode == ARM_CPU_MODE_USR || mode == ARM_CPU_MODE_SYS) {
6553         env->regs[13] = env->xregs[13];
6554         env->regs[14] = env->xregs[14];
6555     } else {
6556         env->banked_r13[bank_number(ARM_CPU_MODE_USR)] = env->xregs[13];
6557 
6558         /* HYP is an exception in that it does not have its own banked r14 but
6559          * shares the USR r14
6560          */
6561         if (mode == ARM_CPU_MODE_HYP) {
6562             env->regs[14] = env->xregs[14];
6563         } else {
6564             env->banked_r14[bank_number(ARM_CPU_MODE_USR)] = env->xregs[14];
6565         }
6566     }
6567 
6568     if (mode == ARM_CPU_MODE_HYP) {
6569         env->regs[13] = env->xregs[15];
6570     } else {
6571         env->banked_r13[bank_number(ARM_CPU_MODE_HYP)] = env->xregs[15];
6572     }
6573 
6574     if (mode == ARM_CPU_MODE_IRQ) {
6575         env->regs[14] = env->xregs[16];
6576         env->regs[13] = env->xregs[17];
6577     } else {
6578         env->banked_r14[bank_number(ARM_CPU_MODE_IRQ)] = env->xregs[16];
6579         env->banked_r13[bank_number(ARM_CPU_MODE_IRQ)] = env->xregs[17];
6580     }
6581 
6582     if (mode == ARM_CPU_MODE_SVC) {
6583         env->regs[14] = env->xregs[18];
6584         env->regs[13] = env->xregs[19];
6585     } else {
6586         env->banked_r14[bank_number(ARM_CPU_MODE_SVC)] = env->xregs[18];
6587         env->banked_r13[bank_number(ARM_CPU_MODE_SVC)] = env->xregs[19];
6588     }
6589 
6590     if (mode == ARM_CPU_MODE_ABT) {
6591         env->regs[14] = env->xregs[20];
6592         env->regs[13] = env->xregs[21];
6593     } else {
6594         env->banked_r14[bank_number(ARM_CPU_MODE_ABT)] = env->xregs[20];
6595         env->banked_r13[bank_number(ARM_CPU_MODE_ABT)] = env->xregs[21];
6596     }
6597 
6598     if (mode == ARM_CPU_MODE_UND) {
6599         env->regs[14] = env->xregs[22];
6600         env->regs[13] = env->xregs[23];
6601     } else {
6602         env->banked_r14[bank_number(ARM_CPU_MODE_UND)] = env->xregs[22];
6603         env->banked_r13[bank_number(ARM_CPU_MODE_UND)] = env->xregs[23];
6604     }
6605 
6606     /* Registers x24-x30 are mapped to r8-r14 in FIQ mode.  If we are in FIQ
6607      * mode, then we can copy to r8-r14.  Otherwise, we copy to the
6608      * FIQ bank for r8-r14.
6609      */
6610     if (mode == ARM_CPU_MODE_FIQ) {
6611         for (i = 24; i < 31; i++) {
6612             env->regs[i - 16] = env->xregs[i];   /* X[24:30] -> R[8:14] */
6613         }
6614     } else {
6615         for (i = 24; i < 29; i++) {
6616             env->fiq_regs[i - 24] = env->xregs[i];
6617         }
6618         env->banked_r13[bank_number(ARM_CPU_MODE_FIQ)] = env->xregs[29];
6619         env->banked_r14[bank_number(ARM_CPU_MODE_FIQ)] = env->xregs[30];
6620     }
6621 
6622     env->regs[15] = env->pc;
6623 }
6624 
6625 static void arm_cpu_do_interrupt_aarch32(CPUState *cs)
6626 {
6627     ARMCPU *cpu = ARM_CPU(cs);
6628     CPUARMState *env = &cpu->env;
6629     uint32_t addr;
6630     uint32_t mask;
6631     int new_mode;
6632     uint32_t offset;
6633     uint32_t moe;
6634 
6635     /* If this is a debug exception we must update the DBGDSCR.MOE bits */
6636     switch (env->exception.syndrome >> ARM_EL_EC_SHIFT) {
6637     case EC_BREAKPOINT:
6638     case EC_BREAKPOINT_SAME_EL:
6639         moe = 1;
6640         break;
6641     case EC_WATCHPOINT:
6642     case EC_WATCHPOINT_SAME_EL:
6643         moe = 10;
6644         break;
6645     case EC_AA32_BKPT:
6646         moe = 3;
6647         break;
6648     case EC_VECTORCATCH:
6649         moe = 5;
6650         break;
6651     default:
6652         moe = 0;
6653         break;
6654     }
6655 
6656     if (moe) {
6657         env->cp15.mdscr_el1 = deposit64(env->cp15.mdscr_el1, 2, 4, moe);
6658     }
6659 
6660     /* TODO: Vectored interrupt controller.  */
6661     switch (cs->exception_index) {
6662     case EXCP_UDEF:
6663         new_mode = ARM_CPU_MODE_UND;
6664         addr = 0x04;
6665         mask = CPSR_I;
6666         if (env->thumb)
6667             offset = 2;
6668         else
6669             offset = 4;
6670         break;
6671     case EXCP_SWI:
6672         new_mode = ARM_CPU_MODE_SVC;
6673         addr = 0x08;
6674         mask = CPSR_I;
6675         /* The PC already points to the next instruction.  */
6676         offset = 0;
6677         break;
6678     case EXCP_BKPT:
6679         env->exception.fsr = 2;
6680         /* Fall through to prefetch abort.  */
6681     case EXCP_PREFETCH_ABORT:
6682         A32_BANKED_CURRENT_REG_SET(env, ifsr, env->exception.fsr);
6683         A32_BANKED_CURRENT_REG_SET(env, ifar, env->exception.vaddress);
6684         qemu_log_mask(CPU_LOG_INT, "...with IFSR 0x%x IFAR 0x%x\n",
6685                       env->exception.fsr, (uint32_t)env->exception.vaddress);
6686         new_mode = ARM_CPU_MODE_ABT;
6687         addr = 0x0c;
6688         mask = CPSR_A | CPSR_I;
6689         offset = 4;
6690         break;
6691     case EXCP_DATA_ABORT:
6692         A32_BANKED_CURRENT_REG_SET(env, dfsr, env->exception.fsr);
6693         A32_BANKED_CURRENT_REG_SET(env, dfar, env->exception.vaddress);
6694         qemu_log_mask(CPU_LOG_INT, "...with DFSR 0x%x DFAR 0x%x\n",
6695                       env->exception.fsr,
6696                       (uint32_t)env->exception.vaddress);
6697         new_mode = ARM_CPU_MODE_ABT;
6698         addr = 0x10;
6699         mask = CPSR_A | CPSR_I;
6700         offset = 8;
6701         break;
6702     case EXCP_IRQ:
6703         new_mode = ARM_CPU_MODE_IRQ;
6704         addr = 0x18;
6705         /* Disable IRQ and imprecise data aborts.  */
6706         mask = CPSR_A | CPSR_I;
6707         offset = 4;
6708         if (env->cp15.scr_el3 & SCR_IRQ) {
6709             /* IRQ routed to monitor mode */
6710             new_mode = ARM_CPU_MODE_MON;
6711             mask |= CPSR_F;
6712         }
6713         break;
6714     case EXCP_FIQ:
6715         new_mode = ARM_CPU_MODE_FIQ;
6716         addr = 0x1c;
6717         /* Disable FIQ, IRQ and imprecise data aborts.  */
6718         mask = CPSR_A | CPSR_I | CPSR_F;
6719         if (env->cp15.scr_el3 & SCR_FIQ) {
6720             /* FIQ routed to monitor mode */
6721             new_mode = ARM_CPU_MODE_MON;
6722         }
6723         offset = 4;
6724         break;
6725     case EXCP_VIRQ:
6726         new_mode = ARM_CPU_MODE_IRQ;
6727         addr = 0x18;
6728         /* Disable IRQ and imprecise data aborts.  */
6729         mask = CPSR_A | CPSR_I;
6730         offset = 4;
6731         break;
6732     case EXCP_VFIQ:
6733         new_mode = ARM_CPU_MODE_FIQ;
6734         addr = 0x1c;
6735         /* Disable FIQ, IRQ and imprecise data aborts.  */
6736         mask = CPSR_A | CPSR_I | CPSR_F;
6737         offset = 4;
6738         break;
6739     case EXCP_SMC:
6740         new_mode = ARM_CPU_MODE_MON;
6741         addr = 0x08;
6742         mask = CPSR_A | CPSR_I | CPSR_F;
6743         offset = 0;
6744         break;
6745     default:
6746         cpu_abort(cs, "Unhandled exception 0x%x\n", cs->exception_index);
6747         return; /* Never happens.  Keep compiler happy.  */
6748     }
6749 
6750     if (new_mode == ARM_CPU_MODE_MON) {
6751         addr += env->cp15.mvbar;
6752     } else if (A32_BANKED_CURRENT_REG_GET(env, sctlr) & SCTLR_V) {
6753         /* High vectors. When enabled, base address cannot be remapped. */
6754         addr += 0xffff0000;
6755     } else {
6756         /* ARM v7 architectures provide a vector base address register to remap
6757          * the interrupt vector table.
6758          * This register is only followed in non-monitor mode, and is banked.
6759          * Note: only bits 31:5 are valid.
6760          */
6761         addr += A32_BANKED_CURRENT_REG_GET(env, vbar);
6762     }
6763 
6764     if ((env->uncached_cpsr & CPSR_M) == ARM_CPU_MODE_MON) {
6765         env->cp15.scr_el3 &= ~SCR_NS;
6766     }
6767 
6768     switch_mode (env, new_mode);
6769     /* For exceptions taken to AArch32 we must clear the SS bit in both
6770      * PSTATE and in the old-state value we save to SPSR_<mode>, so zero it now.
6771      */
6772     env->uncached_cpsr &= ~PSTATE_SS;
6773     env->spsr = cpsr_read(env);
6774     /* Clear IT bits.  */
6775     env->condexec_bits = 0;
6776     /* Switch to the new mode, and to the correct instruction set.  */
6777     env->uncached_cpsr = (env->uncached_cpsr & ~CPSR_M) | new_mode;
6778     /* Set new mode endianness */
6779     env->uncached_cpsr &= ~CPSR_E;
6780     if (env->cp15.sctlr_el[arm_current_el(env)] & SCTLR_EE) {
6781         env->uncached_cpsr |= CPSR_E;
6782     }
6783     env->daif |= mask;
6784     /* this is a lie, as the was no c1_sys on V4T/V5, but who cares
6785      * and we should just guard the thumb mode on V4 */
6786     if (arm_feature(env, ARM_FEATURE_V4T)) {
6787         env->thumb = (A32_BANKED_CURRENT_REG_GET(env, sctlr) & SCTLR_TE) != 0;
6788     }
6789     env->regs[14] = env->regs[15] + offset;
6790     env->regs[15] = addr;
6791 }
6792 
6793 /* Handle exception entry to a target EL which is using AArch64 */
6794 static void arm_cpu_do_interrupt_aarch64(CPUState *cs)
6795 {
6796     ARMCPU *cpu = ARM_CPU(cs);
6797     CPUARMState *env = &cpu->env;
6798     unsigned int new_el = env->exception.target_el;
6799     target_ulong addr = env->cp15.vbar_el[new_el];
6800     unsigned int new_mode = aarch64_pstate_mode(new_el, true);
6801 
6802     if (arm_current_el(env) < new_el) {
6803         /* Entry vector offset depends on whether the implemented EL
6804          * immediately lower than the target level is using AArch32 or AArch64
6805          */
6806         bool is_aa64;
6807 
6808         switch (new_el) {
6809         case 3:
6810             is_aa64 = (env->cp15.scr_el3 & SCR_RW) != 0;
6811             break;
6812         case 2:
6813             is_aa64 = (env->cp15.hcr_el2 & HCR_RW) != 0;
6814             break;
6815         case 1:
6816             is_aa64 = is_a64(env);
6817             break;
6818         default:
6819             g_assert_not_reached();
6820         }
6821 
6822         if (is_aa64) {
6823             addr += 0x400;
6824         } else {
6825             addr += 0x600;
6826         }
6827     } else if (pstate_read(env) & PSTATE_SP) {
6828         addr += 0x200;
6829     }
6830 
6831     switch (cs->exception_index) {
6832     case EXCP_PREFETCH_ABORT:
6833     case EXCP_DATA_ABORT:
6834         env->cp15.far_el[new_el] = env->exception.vaddress;
6835         qemu_log_mask(CPU_LOG_INT, "...with FAR 0x%" PRIx64 "\n",
6836                       env->cp15.far_el[new_el]);
6837         /* fall through */
6838     case EXCP_BKPT:
6839     case EXCP_UDEF:
6840     case EXCP_SWI:
6841     case EXCP_HVC:
6842     case EXCP_HYP_TRAP:
6843     case EXCP_SMC:
6844         env->cp15.esr_el[new_el] = env->exception.syndrome;
6845         break;
6846     case EXCP_IRQ:
6847     case EXCP_VIRQ:
6848         addr += 0x80;
6849         break;
6850     case EXCP_FIQ:
6851     case EXCP_VFIQ:
6852         addr += 0x100;
6853         break;
6854     case EXCP_SEMIHOST:
6855         qemu_log_mask(CPU_LOG_INT,
6856                       "...handling as semihosting call 0x%" PRIx64 "\n",
6857                       env->xregs[0]);
6858         env->xregs[0] = do_arm_semihosting(env);
6859         return;
6860     default:
6861         cpu_abort(cs, "Unhandled exception 0x%x\n", cs->exception_index);
6862     }
6863 
6864     if (is_a64(env)) {
6865         env->banked_spsr[aarch64_banked_spsr_index(new_el)] = pstate_read(env);
6866         aarch64_save_sp(env, arm_current_el(env));
6867         env->elr_el[new_el] = env->pc;
6868     } else {
6869         env->banked_spsr[aarch64_banked_spsr_index(new_el)] = cpsr_read(env);
6870         env->elr_el[new_el] = env->regs[15];
6871 
6872         aarch64_sync_32_to_64(env);
6873 
6874         env->condexec_bits = 0;
6875     }
6876     qemu_log_mask(CPU_LOG_INT, "...with ELR 0x%" PRIx64 "\n",
6877                   env->elr_el[new_el]);
6878 
6879     pstate_write(env, PSTATE_DAIF | new_mode);
6880     env->aarch64 = 1;
6881     aarch64_restore_sp(env, new_el);
6882 
6883     env->pc = addr;
6884 
6885     qemu_log_mask(CPU_LOG_INT, "...to EL%d PC 0x%" PRIx64 " PSTATE 0x%x\n",
6886                   new_el, env->pc, pstate_read(env));
6887 }
6888 
6889 static inline bool check_for_semihosting(CPUState *cs)
6890 {
6891     /* Check whether this exception is a semihosting call; if so
6892      * then handle it and return true; otherwise return false.
6893      */
6894     ARMCPU *cpu = ARM_CPU(cs);
6895     CPUARMState *env = &cpu->env;
6896 
6897     if (is_a64(env)) {
6898         if (cs->exception_index == EXCP_SEMIHOST) {
6899             /* This is always the 64-bit semihosting exception.
6900              * The "is this usermode" and "is semihosting enabled"
6901              * checks have been done at translate time.
6902              */
6903             qemu_log_mask(CPU_LOG_INT,
6904                           "...handling as semihosting call 0x%" PRIx64 "\n",
6905                           env->xregs[0]);
6906             env->xregs[0] = do_arm_semihosting(env);
6907             return true;
6908         }
6909         return false;
6910     } else {
6911         uint32_t imm;
6912 
6913         /* Only intercept calls from privileged modes, to provide some
6914          * semblance of security.
6915          */
6916         if (cs->exception_index != EXCP_SEMIHOST &&
6917             (!semihosting_enabled() ||
6918              ((env->uncached_cpsr & CPSR_M) == ARM_CPU_MODE_USR))) {
6919             return false;
6920         }
6921 
6922         switch (cs->exception_index) {
6923         case EXCP_SEMIHOST:
6924             /* This is always a semihosting call; the "is this usermode"
6925              * and "is semihosting enabled" checks have been done at
6926              * translate time.
6927              */
6928             break;
6929         case EXCP_SWI:
6930             /* Check for semihosting interrupt.  */
6931             if (env->thumb) {
6932                 imm = arm_lduw_code(env, env->regs[15] - 2, arm_sctlr_b(env))
6933                     & 0xff;
6934                 if (imm == 0xab) {
6935                     break;
6936                 }
6937             } else {
6938                 imm = arm_ldl_code(env, env->regs[15] - 4, arm_sctlr_b(env))
6939                     & 0xffffff;
6940                 if (imm == 0x123456) {
6941                     break;
6942                 }
6943             }
6944             return false;
6945         case EXCP_BKPT:
6946             /* See if this is a semihosting syscall.  */
6947             if (env->thumb) {
6948                 imm = arm_lduw_code(env, env->regs[15], arm_sctlr_b(env))
6949                     & 0xff;
6950                 if (imm == 0xab) {
6951                     env->regs[15] += 2;
6952                     break;
6953                 }
6954             }
6955             return false;
6956         default:
6957             return false;
6958         }
6959 
6960         qemu_log_mask(CPU_LOG_INT,
6961                       "...handling as semihosting call 0x%x\n",
6962                       env->regs[0]);
6963         env->regs[0] = do_arm_semihosting(env);
6964         return true;
6965     }
6966 }
6967 
6968 /* Handle a CPU exception for A and R profile CPUs.
6969  * Do any appropriate logging, handle PSCI calls, and then hand off
6970  * to the AArch64-entry or AArch32-entry function depending on the
6971  * target exception level's register width.
6972  */
6973 void arm_cpu_do_interrupt(CPUState *cs)
6974 {
6975     ARMCPU *cpu = ARM_CPU(cs);
6976     CPUARMState *env = &cpu->env;
6977     unsigned int new_el = env->exception.target_el;
6978 
6979     assert(!arm_feature(env, ARM_FEATURE_M));
6980 
6981     arm_log_exception(cs->exception_index);
6982     qemu_log_mask(CPU_LOG_INT, "...from EL%d to EL%d\n", arm_current_el(env),
6983                   new_el);
6984     if (qemu_loglevel_mask(CPU_LOG_INT)
6985         && !excp_is_internal(cs->exception_index)) {
6986         qemu_log_mask(CPU_LOG_INT, "...with ESR 0x%x/0x%" PRIx32 "\n",
6987                       env->exception.syndrome >> ARM_EL_EC_SHIFT,
6988                       env->exception.syndrome);
6989     }
6990 
6991     if (arm_is_psci_call(cpu, cs->exception_index)) {
6992         arm_handle_psci_call(cpu);
6993         qemu_log_mask(CPU_LOG_INT, "...handled as PSCI call\n");
6994         return;
6995     }
6996 
6997     /* Semihosting semantics depend on the register width of the
6998      * code that caused the exception, not the target exception level,
6999      * so must be handled here.
7000      */
7001     if (check_for_semihosting(cs)) {
7002         return;
7003     }
7004 
7005     assert(!excp_is_internal(cs->exception_index));
7006     if (arm_el_is_aa64(env, new_el)) {
7007         arm_cpu_do_interrupt_aarch64(cs);
7008     } else {
7009         arm_cpu_do_interrupt_aarch32(cs);
7010     }
7011 
7012     /* Hooks may change global state so BQL should be held, also the
7013      * BQL needs to be held for any modification of
7014      * cs->interrupt_request.
7015      */
7016     g_assert(qemu_mutex_iothread_locked());
7017 
7018     arm_call_el_change_hook(cpu);
7019 
7020     if (!kvm_enabled()) {
7021         cs->interrupt_request |= CPU_INTERRUPT_EXITTB;
7022     }
7023 }
7024 
7025 /* Return the exception level which controls this address translation regime */
7026 static inline uint32_t regime_el(CPUARMState *env, ARMMMUIdx mmu_idx)
7027 {
7028     switch (mmu_idx) {
7029     case ARMMMUIdx_S2NS:
7030     case ARMMMUIdx_S1E2:
7031         return 2;
7032     case ARMMMUIdx_S1E3:
7033         return 3;
7034     case ARMMMUIdx_S1SE0:
7035         return arm_el_is_aa64(env, 3) ? 1 : 3;
7036     case ARMMMUIdx_S1SE1:
7037     case ARMMMUIdx_S1NSE0:
7038     case ARMMMUIdx_S1NSE1:
7039     case ARMMMUIdx_MPriv:
7040     case ARMMMUIdx_MNegPri:
7041     case ARMMMUIdx_MUser:
7042         return 1;
7043     default:
7044         g_assert_not_reached();
7045     }
7046 }
7047 
7048 /* Return true if this address translation regime is secure */
7049 static inline bool regime_is_secure(CPUARMState *env, ARMMMUIdx mmu_idx)
7050 {
7051     switch (mmu_idx) {
7052     case ARMMMUIdx_S12NSE0:
7053     case ARMMMUIdx_S12NSE1:
7054     case ARMMMUIdx_S1NSE0:
7055     case ARMMMUIdx_S1NSE1:
7056     case ARMMMUIdx_S1E2:
7057     case ARMMMUIdx_S2NS:
7058     case ARMMMUIdx_MPriv:
7059     case ARMMMUIdx_MNegPri:
7060     case ARMMMUIdx_MUser:
7061         return false;
7062     case ARMMMUIdx_S1E3:
7063     case ARMMMUIdx_S1SE0:
7064     case ARMMMUIdx_S1SE1:
7065         return true;
7066     default:
7067         g_assert_not_reached();
7068     }
7069 }
7070 
7071 /* Return the SCTLR value which controls this address translation regime */
7072 static inline uint32_t regime_sctlr(CPUARMState *env, ARMMMUIdx mmu_idx)
7073 {
7074     return env->cp15.sctlr_el[regime_el(env, mmu_idx)];
7075 }
7076 
7077 /* Return true if the specified stage of address translation is disabled */
7078 static inline bool regime_translation_disabled(CPUARMState *env,
7079                                                ARMMMUIdx mmu_idx)
7080 {
7081     if (arm_feature(env, ARM_FEATURE_M)) {
7082         switch (env->v7m.mpu_ctrl &
7083                 (R_V7M_MPU_CTRL_ENABLE_MASK | R_V7M_MPU_CTRL_HFNMIENA_MASK)) {
7084         case R_V7M_MPU_CTRL_ENABLE_MASK:
7085             /* Enabled, but not for HardFault and NMI */
7086             return mmu_idx == ARMMMUIdx_MNegPri;
7087         case R_V7M_MPU_CTRL_ENABLE_MASK | R_V7M_MPU_CTRL_HFNMIENA_MASK:
7088             /* Enabled for all cases */
7089             return false;
7090         case 0:
7091         default:
7092             /* HFNMIENA set and ENABLE clear is UNPREDICTABLE, but
7093              * we warned about that in armv7m_nvic.c when the guest set it.
7094              */
7095             return true;
7096         }
7097     }
7098 
7099     if (mmu_idx == ARMMMUIdx_S2NS) {
7100         return (env->cp15.hcr_el2 & HCR_VM) == 0;
7101     }
7102     return (regime_sctlr(env, mmu_idx) & SCTLR_M) == 0;
7103 }
7104 
7105 static inline bool regime_translation_big_endian(CPUARMState *env,
7106                                                  ARMMMUIdx mmu_idx)
7107 {
7108     return (regime_sctlr(env, mmu_idx) & SCTLR_EE) != 0;
7109 }
7110 
7111 /* Return the TCR controlling this translation regime */
7112 static inline TCR *regime_tcr(CPUARMState *env, ARMMMUIdx mmu_idx)
7113 {
7114     if (mmu_idx == ARMMMUIdx_S2NS) {
7115         return &env->cp15.vtcr_el2;
7116     }
7117     return &env->cp15.tcr_el[regime_el(env, mmu_idx)];
7118 }
7119 
7120 /* Convert a possible stage1+2 MMU index into the appropriate
7121  * stage 1 MMU index
7122  */
7123 static inline ARMMMUIdx stage_1_mmu_idx(ARMMMUIdx mmu_idx)
7124 {
7125     if (mmu_idx == ARMMMUIdx_S12NSE0 || mmu_idx == ARMMMUIdx_S12NSE1) {
7126         mmu_idx += (ARMMMUIdx_S1NSE0 - ARMMMUIdx_S12NSE0);
7127     }
7128     return mmu_idx;
7129 }
7130 
7131 /* Returns TBI0 value for current regime el */
7132 uint32_t arm_regime_tbi0(CPUARMState *env, ARMMMUIdx mmu_idx)
7133 {
7134     TCR *tcr;
7135     uint32_t el;
7136 
7137     /* For EL0 and EL1, TBI is controlled by stage 1's TCR, so convert
7138      * a stage 1+2 mmu index into the appropriate stage 1 mmu index.
7139      */
7140     mmu_idx = stage_1_mmu_idx(mmu_idx);
7141 
7142     tcr = regime_tcr(env, mmu_idx);
7143     el = regime_el(env, mmu_idx);
7144 
7145     if (el > 1) {
7146         return extract64(tcr->raw_tcr, 20, 1);
7147     } else {
7148         return extract64(tcr->raw_tcr, 37, 1);
7149     }
7150 }
7151 
7152 /* Returns TBI1 value for current regime el */
7153 uint32_t arm_regime_tbi1(CPUARMState *env, ARMMMUIdx mmu_idx)
7154 {
7155     TCR *tcr;
7156     uint32_t el;
7157 
7158     /* For EL0 and EL1, TBI is controlled by stage 1's TCR, so convert
7159      * a stage 1+2 mmu index into the appropriate stage 1 mmu index.
7160      */
7161     mmu_idx = stage_1_mmu_idx(mmu_idx);
7162 
7163     tcr = regime_tcr(env, mmu_idx);
7164     el = regime_el(env, mmu_idx);
7165 
7166     if (el > 1) {
7167         return 0;
7168     } else {
7169         return extract64(tcr->raw_tcr, 38, 1);
7170     }
7171 }
7172 
7173 /* Return the TTBR associated with this translation regime */
7174 static inline uint64_t regime_ttbr(CPUARMState *env, ARMMMUIdx mmu_idx,
7175                                    int ttbrn)
7176 {
7177     if (mmu_idx == ARMMMUIdx_S2NS) {
7178         return env->cp15.vttbr_el2;
7179     }
7180     if (ttbrn == 0) {
7181         return env->cp15.ttbr0_el[regime_el(env, mmu_idx)];
7182     } else {
7183         return env->cp15.ttbr1_el[regime_el(env, mmu_idx)];
7184     }
7185 }
7186 
7187 /* Return true if the translation regime is using LPAE format page tables */
7188 static inline bool regime_using_lpae_format(CPUARMState *env,
7189                                             ARMMMUIdx mmu_idx)
7190 {
7191     int el = regime_el(env, mmu_idx);
7192     if (el == 2 || arm_el_is_aa64(env, el)) {
7193         return true;
7194     }
7195     if (arm_feature(env, ARM_FEATURE_LPAE)
7196         && (regime_tcr(env, mmu_idx)->raw_tcr & TTBCR_EAE)) {
7197         return true;
7198     }
7199     return false;
7200 }
7201 
7202 /* Returns true if the stage 1 translation regime is using LPAE format page
7203  * tables. Used when raising alignment exceptions, whose FSR changes depending
7204  * on whether the long or short descriptor format is in use. */
7205 bool arm_s1_regime_using_lpae_format(CPUARMState *env, ARMMMUIdx mmu_idx)
7206 {
7207     mmu_idx = stage_1_mmu_idx(mmu_idx);
7208 
7209     return regime_using_lpae_format(env, mmu_idx);
7210 }
7211 
7212 static inline bool regime_is_user(CPUARMState *env, ARMMMUIdx mmu_idx)
7213 {
7214     switch (mmu_idx) {
7215     case ARMMMUIdx_S1SE0:
7216     case ARMMMUIdx_S1NSE0:
7217     case ARMMMUIdx_MUser:
7218         return true;
7219     default:
7220         return false;
7221     case ARMMMUIdx_S12NSE0:
7222     case ARMMMUIdx_S12NSE1:
7223         g_assert_not_reached();
7224     }
7225 }
7226 
7227 /* Translate section/page access permissions to page
7228  * R/W protection flags
7229  *
7230  * @env:         CPUARMState
7231  * @mmu_idx:     MMU index indicating required translation regime
7232  * @ap:          The 3-bit access permissions (AP[2:0])
7233  * @domain_prot: The 2-bit domain access permissions
7234  */
7235 static inline int ap_to_rw_prot(CPUARMState *env, ARMMMUIdx mmu_idx,
7236                                 int ap, int domain_prot)
7237 {
7238     bool is_user = regime_is_user(env, mmu_idx);
7239 
7240     if (domain_prot == 3) {
7241         return PAGE_READ | PAGE_WRITE;
7242     }
7243 
7244     switch (ap) {
7245     case 0:
7246         if (arm_feature(env, ARM_FEATURE_V7)) {
7247             return 0;
7248         }
7249         switch (regime_sctlr(env, mmu_idx) & (SCTLR_S | SCTLR_R)) {
7250         case SCTLR_S:
7251             return is_user ? 0 : PAGE_READ;
7252         case SCTLR_R:
7253             return PAGE_READ;
7254         default:
7255             return 0;
7256         }
7257     case 1:
7258         return is_user ? 0 : PAGE_READ | PAGE_WRITE;
7259     case 2:
7260         if (is_user) {
7261             return PAGE_READ;
7262         } else {
7263             return PAGE_READ | PAGE_WRITE;
7264         }
7265     case 3:
7266         return PAGE_READ | PAGE_WRITE;
7267     case 4: /* Reserved.  */
7268         return 0;
7269     case 5:
7270         return is_user ? 0 : PAGE_READ;
7271     case 6:
7272         return PAGE_READ;
7273     case 7:
7274         if (!arm_feature(env, ARM_FEATURE_V6K)) {
7275             return 0;
7276         }
7277         return PAGE_READ;
7278     default:
7279         g_assert_not_reached();
7280     }
7281 }
7282 
7283 /* Translate section/page access permissions to page
7284  * R/W protection flags.
7285  *
7286  * @ap:      The 2-bit simple AP (AP[2:1])
7287  * @is_user: TRUE if accessing from PL0
7288  */
7289 static inline int simple_ap_to_rw_prot_is_user(int ap, bool is_user)
7290 {
7291     switch (ap) {
7292     case 0:
7293         return is_user ? 0 : PAGE_READ | PAGE_WRITE;
7294     case 1:
7295         return PAGE_READ | PAGE_WRITE;
7296     case 2:
7297         return is_user ? 0 : PAGE_READ;
7298     case 3:
7299         return PAGE_READ;
7300     default:
7301         g_assert_not_reached();
7302     }
7303 }
7304 
7305 static inline int
7306 simple_ap_to_rw_prot(CPUARMState *env, ARMMMUIdx mmu_idx, int ap)
7307 {
7308     return simple_ap_to_rw_prot_is_user(ap, regime_is_user(env, mmu_idx));
7309 }
7310 
7311 /* Translate S2 section/page access permissions to protection flags
7312  *
7313  * @env:     CPUARMState
7314  * @s2ap:    The 2-bit stage2 access permissions (S2AP)
7315  * @xn:      XN (execute-never) bit
7316  */
7317 static int get_S2prot(CPUARMState *env, int s2ap, int xn)
7318 {
7319     int prot = 0;
7320 
7321     if (s2ap & 1) {
7322         prot |= PAGE_READ;
7323     }
7324     if (s2ap & 2) {
7325         prot |= PAGE_WRITE;
7326     }
7327     if (!xn) {
7328         if (arm_el_is_aa64(env, 2) || prot & PAGE_READ) {
7329             prot |= PAGE_EXEC;
7330         }
7331     }
7332     return prot;
7333 }
7334 
7335 /* Translate section/page access permissions to protection flags
7336  *
7337  * @env:     CPUARMState
7338  * @mmu_idx: MMU index indicating required translation regime
7339  * @is_aa64: TRUE if AArch64
7340  * @ap:      The 2-bit simple AP (AP[2:1])
7341  * @ns:      NS (non-secure) bit
7342  * @xn:      XN (execute-never) bit
7343  * @pxn:     PXN (privileged execute-never) bit
7344  */
7345 static int get_S1prot(CPUARMState *env, ARMMMUIdx mmu_idx, bool is_aa64,
7346                       int ap, int ns, int xn, int pxn)
7347 {
7348     bool is_user = regime_is_user(env, mmu_idx);
7349     int prot_rw, user_rw;
7350     bool have_wxn;
7351     int wxn = 0;
7352 
7353     assert(mmu_idx != ARMMMUIdx_S2NS);
7354 
7355     user_rw = simple_ap_to_rw_prot_is_user(ap, true);
7356     if (is_user) {
7357         prot_rw = user_rw;
7358     } else {
7359         prot_rw = simple_ap_to_rw_prot_is_user(ap, false);
7360     }
7361 
7362     if (ns && arm_is_secure(env) && (env->cp15.scr_el3 & SCR_SIF)) {
7363         return prot_rw;
7364     }
7365 
7366     /* TODO have_wxn should be replaced with
7367      *   ARM_FEATURE_V8 || (ARM_FEATURE_V7 && ARM_FEATURE_EL2)
7368      * when ARM_FEATURE_EL2 starts getting set. For now we assume all LPAE
7369      * compatible processors have EL2, which is required for [U]WXN.
7370      */
7371     have_wxn = arm_feature(env, ARM_FEATURE_LPAE);
7372 
7373     if (have_wxn) {
7374         wxn = regime_sctlr(env, mmu_idx) & SCTLR_WXN;
7375     }
7376 
7377     if (is_aa64) {
7378         switch (regime_el(env, mmu_idx)) {
7379         case 1:
7380             if (!is_user) {
7381                 xn = pxn || (user_rw & PAGE_WRITE);
7382             }
7383             break;
7384         case 2:
7385         case 3:
7386             break;
7387         }
7388     } else if (arm_feature(env, ARM_FEATURE_V7)) {
7389         switch (regime_el(env, mmu_idx)) {
7390         case 1:
7391         case 3:
7392             if (is_user) {
7393                 xn = xn || !(user_rw & PAGE_READ);
7394             } else {
7395                 int uwxn = 0;
7396                 if (have_wxn) {
7397                     uwxn = regime_sctlr(env, mmu_idx) & SCTLR_UWXN;
7398                 }
7399                 xn = xn || !(prot_rw & PAGE_READ) || pxn ||
7400                      (uwxn && (user_rw & PAGE_WRITE));
7401             }
7402             break;
7403         case 2:
7404             break;
7405         }
7406     } else {
7407         xn = wxn = 0;
7408     }
7409 
7410     if (xn || (wxn && (prot_rw & PAGE_WRITE))) {
7411         return prot_rw;
7412     }
7413     return prot_rw | PAGE_EXEC;
7414 }
7415 
7416 static bool get_level1_table_address(CPUARMState *env, ARMMMUIdx mmu_idx,
7417                                      uint32_t *table, uint32_t address)
7418 {
7419     /* Note that we can only get here for an AArch32 PL0/PL1 lookup */
7420     TCR *tcr = regime_tcr(env, mmu_idx);
7421 
7422     if (address & tcr->mask) {
7423         if (tcr->raw_tcr & TTBCR_PD1) {
7424             /* Translation table walk disabled for TTBR1 */
7425             return false;
7426         }
7427         *table = regime_ttbr(env, mmu_idx, 1) & 0xffffc000;
7428     } else {
7429         if (tcr->raw_tcr & TTBCR_PD0) {
7430             /* Translation table walk disabled for TTBR0 */
7431             return false;
7432         }
7433         *table = regime_ttbr(env, mmu_idx, 0) & tcr->base_mask;
7434     }
7435     *table |= (address >> 18) & 0x3ffc;
7436     return true;
7437 }
7438 
7439 /* Translate a S1 pagetable walk through S2 if needed.  */
7440 static hwaddr S1_ptw_translate(CPUARMState *env, ARMMMUIdx mmu_idx,
7441                                hwaddr addr, MemTxAttrs txattrs,
7442                                uint32_t *fsr,
7443                                ARMMMUFaultInfo *fi)
7444 {
7445     if ((mmu_idx == ARMMMUIdx_S1NSE0 || mmu_idx == ARMMMUIdx_S1NSE1) &&
7446         !regime_translation_disabled(env, ARMMMUIdx_S2NS)) {
7447         target_ulong s2size;
7448         hwaddr s2pa;
7449         int s2prot;
7450         int ret;
7451 
7452         ret = get_phys_addr_lpae(env, addr, 0, ARMMMUIdx_S2NS, &s2pa,
7453                                  &txattrs, &s2prot, &s2size, fsr, fi);
7454         if (ret) {
7455             fi->s2addr = addr;
7456             fi->stage2 = true;
7457             fi->s1ptw = true;
7458             return ~0;
7459         }
7460         addr = s2pa;
7461     }
7462     return addr;
7463 }
7464 
7465 /* All loads done in the course of a page table walk go through here.
7466  * TODO: rather than ignoring errors from physical memory reads (which
7467  * are external aborts in ARM terminology) we should propagate this
7468  * error out so that we can turn it into a Data Abort if this walk
7469  * was being done for a CPU load/store or an address translation instruction
7470  * (but not if it was for a debug access).
7471  */
7472 static uint32_t arm_ldl_ptw(CPUState *cs, hwaddr addr, bool is_secure,
7473                             ARMMMUIdx mmu_idx, uint32_t *fsr,
7474                             ARMMMUFaultInfo *fi)
7475 {
7476     ARMCPU *cpu = ARM_CPU(cs);
7477     CPUARMState *env = &cpu->env;
7478     MemTxAttrs attrs = {};
7479     AddressSpace *as;
7480 
7481     attrs.secure = is_secure;
7482     as = arm_addressspace(cs, attrs);
7483     addr = S1_ptw_translate(env, mmu_idx, addr, attrs, fsr, fi);
7484     if (fi->s1ptw) {
7485         return 0;
7486     }
7487     if (regime_translation_big_endian(env, mmu_idx)) {
7488         return address_space_ldl_be(as, addr, attrs, NULL);
7489     } else {
7490         return address_space_ldl_le(as, addr, attrs, NULL);
7491     }
7492 }
7493 
7494 static uint64_t arm_ldq_ptw(CPUState *cs, hwaddr addr, bool is_secure,
7495                             ARMMMUIdx mmu_idx, uint32_t *fsr,
7496                             ARMMMUFaultInfo *fi)
7497 {
7498     ARMCPU *cpu = ARM_CPU(cs);
7499     CPUARMState *env = &cpu->env;
7500     MemTxAttrs attrs = {};
7501     AddressSpace *as;
7502 
7503     attrs.secure = is_secure;
7504     as = arm_addressspace(cs, attrs);
7505     addr = S1_ptw_translate(env, mmu_idx, addr, attrs, fsr, fi);
7506     if (fi->s1ptw) {
7507         return 0;
7508     }
7509     if (regime_translation_big_endian(env, mmu_idx)) {
7510         return address_space_ldq_be(as, addr, attrs, NULL);
7511     } else {
7512         return address_space_ldq_le(as, addr, attrs, NULL);
7513     }
7514 }
7515 
7516 static bool get_phys_addr_v5(CPUARMState *env, uint32_t address,
7517                              int access_type, ARMMMUIdx mmu_idx,
7518                              hwaddr *phys_ptr, int *prot,
7519                              target_ulong *page_size, uint32_t *fsr,
7520                              ARMMMUFaultInfo *fi)
7521 {
7522     CPUState *cs = CPU(arm_env_get_cpu(env));
7523     int code;
7524     uint32_t table;
7525     uint32_t desc;
7526     int type;
7527     int ap;
7528     int domain = 0;
7529     int domain_prot;
7530     hwaddr phys_addr;
7531     uint32_t dacr;
7532 
7533     /* Pagetable walk.  */
7534     /* Lookup l1 descriptor.  */
7535     if (!get_level1_table_address(env, mmu_idx, &table, address)) {
7536         /* Section translation fault if page walk is disabled by PD0 or PD1 */
7537         code = 5;
7538         goto do_fault;
7539     }
7540     desc = arm_ldl_ptw(cs, table, regime_is_secure(env, mmu_idx),
7541                        mmu_idx, fsr, fi);
7542     type = (desc & 3);
7543     domain = (desc >> 5) & 0x0f;
7544     if (regime_el(env, mmu_idx) == 1) {
7545         dacr = env->cp15.dacr_ns;
7546     } else {
7547         dacr = env->cp15.dacr_s;
7548     }
7549     domain_prot = (dacr >> (domain * 2)) & 3;
7550     if (type == 0) {
7551         /* Section translation fault.  */
7552         code = 5;
7553         goto do_fault;
7554     }
7555     if (domain_prot == 0 || domain_prot == 2) {
7556         if (type == 2)
7557             code = 9; /* Section domain fault.  */
7558         else
7559             code = 11; /* Page domain fault.  */
7560         goto do_fault;
7561     }
7562     if (type == 2) {
7563         /* 1Mb section.  */
7564         phys_addr = (desc & 0xfff00000) | (address & 0x000fffff);
7565         ap = (desc >> 10) & 3;
7566         code = 13;
7567         *page_size = 1024 * 1024;
7568     } else {
7569         /* Lookup l2 entry.  */
7570         if (type == 1) {
7571             /* Coarse pagetable.  */
7572             table = (desc & 0xfffffc00) | ((address >> 10) & 0x3fc);
7573         } else {
7574             /* Fine pagetable.  */
7575             table = (desc & 0xfffff000) | ((address >> 8) & 0xffc);
7576         }
7577         desc = arm_ldl_ptw(cs, table, regime_is_secure(env, mmu_idx),
7578                            mmu_idx, fsr, fi);
7579         switch (desc & 3) {
7580         case 0: /* Page translation fault.  */
7581             code = 7;
7582             goto do_fault;
7583         case 1: /* 64k page.  */
7584             phys_addr = (desc & 0xffff0000) | (address & 0xffff);
7585             ap = (desc >> (4 + ((address >> 13) & 6))) & 3;
7586             *page_size = 0x10000;
7587             break;
7588         case 2: /* 4k page.  */
7589             phys_addr = (desc & 0xfffff000) | (address & 0xfff);
7590             ap = (desc >> (4 + ((address >> 9) & 6))) & 3;
7591             *page_size = 0x1000;
7592             break;
7593         case 3: /* 1k page, or ARMv6/XScale "extended small (4k) page" */
7594             if (type == 1) {
7595                 /* ARMv6/XScale extended small page format */
7596                 if (arm_feature(env, ARM_FEATURE_XSCALE)
7597                     || arm_feature(env, ARM_FEATURE_V6)) {
7598                     phys_addr = (desc & 0xfffff000) | (address & 0xfff);
7599                     *page_size = 0x1000;
7600                 } else {
7601                     /* UNPREDICTABLE in ARMv5; we choose to take a
7602                      * page translation fault.
7603                      */
7604                     code = 7;
7605                     goto do_fault;
7606                 }
7607             } else {
7608                 phys_addr = (desc & 0xfffffc00) | (address & 0x3ff);
7609                 *page_size = 0x400;
7610             }
7611             ap = (desc >> 4) & 3;
7612             break;
7613         default:
7614             /* Never happens, but compiler isn't smart enough to tell.  */
7615             abort();
7616         }
7617         code = 15;
7618     }
7619     *prot = ap_to_rw_prot(env, mmu_idx, ap, domain_prot);
7620     *prot |= *prot ? PAGE_EXEC : 0;
7621     if (!(*prot & (1 << access_type))) {
7622         /* Access permission fault.  */
7623         goto do_fault;
7624     }
7625     *phys_ptr = phys_addr;
7626     return false;
7627 do_fault:
7628     *fsr = code | (domain << 4);
7629     return true;
7630 }
7631 
7632 static bool get_phys_addr_v6(CPUARMState *env, uint32_t address,
7633                              int access_type, ARMMMUIdx mmu_idx,
7634                              hwaddr *phys_ptr, MemTxAttrs *attrs, int *prot,
7635                              target_ulong *page_size, uint32_t *fsr,
7636                              ARMMMUFaultInfo *fi)
7637 {
7638     CPUState *cs = CPU(arm_env_get_cpu(env));
7639     int code;
7640     uint32_t table;
7641     uint32_t desc;
7642     uint32_t xn;
7643     uint32_t pxn = 0;
7644     int type;
7645     int ap;
7646     int domain = 0;
7647     int domain_prot;
7648     hwaddr phys_addr;
7649     uint32_t dacr;
7650     bool ns;
7651 
7652     /* Pagetable walk.  */
7653     /* Lookup l1 descriptor.  */
7654     if (!get_level1_table_address(env, mmu_idx, &table, address)) {
7655         /* Section translation fault if page walk is disabled by PD0 or PD1 */
7656         code = 5;
7657         goto do_fault;
7658     }
7659     desc = arm_ldl_ptw(cs, table, regime_is_secure(env, mmu_idx),
7660                        mmu_idx, fsr, fi);
7661     type = (desc & 3);
7662     if (type == 0 || (type == 3 && !arm_feature(env, ARM_FEATURE_PXN))) {
7663         /* Section translation fault, or attempt to use the encoding
7664          * which is Reserved on implementations without PXN.
7665          */
7666         code = 5;
7667         goto do_fault;
7668     }
7669     if ((type == 1) || !(desc & (1 << 18))) {
7670         /* Page or Section.  */
7671         domain = (desc >> 5) & 0x0f;
7672     }
7673     if (regime_el(env, mmu_idx) == 1) {
7674         dacr = env->cp15.dacr_ns;
7675     } else {
7676         dacr = env->cp15.dacr_s;
7677     }
7678     domain_prot = (dacr >> (domain * 2)) & 3;
7679     if (domain_prot == 0 || domain_prot == 2) {
7680         if (type != 1) {
7681             code = 9; /* Section domain fault.  */
7682         } else {
7683             code = 11; /* Page domain fault.  */
7684         }
7685         goto do_fault;
7686     }
7687     if (type != 1) {
7688         if (desc & (1 << 18)) {
7689             /* Supersection.  */
7690             phys_addr = (desc & 0xff000000) | (address & 0x00ffffff);
7691             phys_addr |= (uint64_t)extract32(desc, 20, 4) << 32;
7692             phys_addr |= (uint64_t)extract32(desc, 5, 4) << 36;
7693             *page_size = 0x1000000;
7694         } else {
7695             /* Section.  */
7696             phys_addr = (desc & 0xfff00000) | (address & 0x000fffff);
7697             *page_size = 0x100000;
7698         }
7699         ap = ((desc >> 10) & 3) | ((desc >> 13) & 4);
7700         xn = desc & (1 << 4);
7701         pxn = desc & 1;
7702         code = 13;
7703         ns = extract32(desc, 19, 1);
7704     } else {
7705         if (arm_feature(env, ARM_FEATURE_PXN)) {
7706             pxn = (desc >> 2) & 1;
7707         }
7708         ns = extract32(desc, 3, 1);
7709         /* Lookup l2 entry.  */
7710         table = (desc & 0xfffffc00) | ((address >> 10) & 0x3fc);
7711         desc = arm_ldl_ptw(cs, table, regime_is_secure(env, mmu_idx),
7712                            mmu_idx, fsr, fi);
7713         ap = ((desc >> 4) & 3) | ((desc >> 7) & 4);
7714         switch (desc & 3) {
7715         case 0: /* Page translation fault.  */
7716             code = 7;
7717             goto do_fault;
7718         case 1: /* 64k page.  */
7719             phys_addr = (desc & 0xffff0000) | (address & 0xffff);
7720             xn = desc & (1 << 15);
7721             *page_size = 0x10000;
7722             break;
7723         case 2: case 3: /* 4k page.  */
7724             phys_addr = (desc & 0xfffff000) | (address & 0xfff);
7725             xn = desc & 1;
7726             *page_size = 0x1000;
7727             break;
7728         default:
7729             /* Never happens, but compiler isn't smart enough to tell.  */
7730             abort();
7731         }
7732         code = 15;
7733     }
7734     if (domain_prot == 3) {
7735         *prot = PAGE_READ | PAGE_WRITE | PAGE_EXEC;
7736     } else {
7737         if (pxn && !regime_is_user(env, mmu_idx)) {
7738             xn = 1;
7739         }
7740         if (xn && access_type == 2)
7741             goto do_fault;
7742 
7743         if (arm_feature(env, ARM_FEATURE_V6K) &&
7744                 (regime_sctlr(env, mmu_idx) & SCTLR_AFE)) {
7745             /* The simplified model uses AP[0] as an access control bit.  */
7746             if ((ap & 1) == 0) {
7747                 /* Access flag fault.  */
7748                 code = (code == 15) ? 6 : 3;
7749                 goto do_fault;
7750             }
7751             *prot = simple_ap_to_rw_prot(env, mmu_idx, ap >> 1);
7752         } else {
7753             *prot = ap_to_rw_prot(env, mmu_idx, ap, domain_prot);
7754         }
7755         if (*prot && !xn) {
7756             *prot |= PAGE_EXEC;
7757         }
7758         if (!(*prot & (1 << access_type))) {
7759             /* Access permission fault.  */
7760             goto do_fault;
7761         }
7762     }
7763     if (ns) {
7764         /* The NS bit will (as required by the architecture) have no effect if
7765          * the CPU doesn't support TZ or this is a non-secure translation
7766          * regime, because the attribute will already be non-secure.
7767          */
7768         attrs->secure = false;
7769     }
7770     *phys_ptr = phys_addr;
7771     return false;
7772 do_fault:
7773     *fsr = code | (domain << 4);
7774     return true;
7775 }
7776 
7777 /* Fault type for long-descriptor MMU fault reporting; this corresponds
7778  * to bits [5..2] in the STATUS field in long-format DFSR/IFSR.
7779  */
7780 typedef enum {
7781     translation_fault = 1,
7782     access_fault = 2,
7783     permission_fault = 3,
7784 } MMUFaultType;
7785 
7786 /*
7787  * check_s2_mmu_setup
7788  * @cpu:        ARMCPU
7789  * @is_aa64:    True if the translation regime is in AArch64 state
7790  * @startlevel: Suggested starting level
7791  * @inputsize:  Bitsize of IPAs
7792  * @stride:     Page-table stride (See the ARM ARM)
7793  *
7794  * Returns true if the suggested S2 translation parameters are OK and
7795  * false otherwise.
7796  */
7797 static bool check_s2_mmu_setup(ARMCPU *cpu, bool is_aa64, int level,
7798                                int inputsize, int stride)
7799 {
7800     const int grainsize = stride + 3;
7801     int startsizecheck;
7802 
7803     /* Negative levels are never allowed.  */
7804     if (level < 0) {
7805         return false;
7806     }
7807 
7808     startsizecheck = inputsize - ((3 - level) * stride + grainsize);
7809     if (startsizecheck < 1 || startsizecheck > stride + 4) {
7810         return false;
7811     }
7812 
7813     if (is_aa64) {
7814         CPUARMState *env = &cpu->env;
7815         unsigned int pamax = arm_pamax(cpu);
7816 
7817         switch (stride) {
7818         case 13: /* 64KB Pages.  */
7819             if (level == 0 || (level == 1 && pamax <= 42)) {
7820                 return false;
7821             }
7822             break;
7823         case 11: /* 16KB Pages.  */
7824             if (level == 0 || (level == 1 && pamax <= 40)) {
7825                 return false;
7826             }
7827             break;
7828         case 9: /* 4KB Pages.  */
7829             if (level == 0 && pamax <= 42) {
7830                 return false;
7831             }
7832             break;
7833         default:
7834             g_assert_not_reached();
7835         }
7836 
7837         /* Inputsize checks.  */
7838         if (inputsize > pamax &&
7839             (arm_el_is_aa64(env, 1) || inputsize > 40)) {
7840             /* This is CONSTRAINED UNPREDICTABLE and we choose to fault.  */
7841             return false;
7842         }
7843     } else {
7844         /* AArch32 only supports 4KB pages. Assert on that.  */
7845         assert(stride == 9);
7846 
7847         if (level == 0) {
7848             return false;
7849         }
7850     }
7851     return true;
7852 }
7853 
7854 static bool get_phys_addr_lpae(CPUARMState *env, target_ulong address,
7855                                int access_type, ARMMMUIdx mmu_idx,
7856                                hwaddr *phys_ptr, MemTxAttrs *txattrs, int *prot,
7857                                target_ulong *page_size_ptr, uint32_t *fsr,
7858                                ARMMMUFaultInfo *fi)
7859 {
7860     ARMCPU *cpu = arm_env_get_cpu(env);
7861     CPUState *cs = CPU(cpu);
7862     /* Read an LPAE long-descriptor translation table. */
7863     MMUFaultType fault_type = translation_fault;
7864     uint32_t level;
7865     uint32_t epd = 0;
7866     int32_t t0sz, t1sz;
7867     uint32_t tg;
7868     uint64_t ttbr;
7869     int ttbr_select;
7870     hwaddr descaddr, indexmask, indexmask_grainsize;
7871     uint32_t tableattrs;
7872     target_ulong page_size;
7873     uint32_t attrs;
7874     int32_t stride = 9;
7875     int32_t addrsize;
7876     int inputsize;
7877     int32_t tbi = 0;
7878     TCR *tcr = regime_tcr(env, mmu_idx);
7879     int ap, ns, xn, pxn;
7880     uint32_t el = regime_el(env, mmu_idx);
7881     bool ttbr1_valid = true;
7882     uint64_t descaddrmask;
7883     bool aarch64 = arm_el_is_aa64(env, el);
7884 
7885     /* TODO:
7886      * This code does not handle the different format TCR for VTCR_EL2.
7887      * This code also does not support shareability levels.
7888      * Attribute and permission bit handling should also be checked when adding
7889      * support for those page table walks.
7890      */
7891     if (aarch64) {
7892         level = 0;
7893         addrsize = 64;
7894         if (el > 1) {
7895             if (mmu_idx != ARMMMUIdx_S2NS) {
7896                 tbi = extract64(tcr->raw_tcr, 20, 1);
7897             }
7898         } else {
7899             if (extract64(address, 55, 1)) {
7900                 tbi = extract64(tcr->raw_tcr, 38, 1);
7901             } else {
7902                 tbi = extract64(tcr->raw_tcr, 37, 1);
7903             }
7904         }
7905         tbi *= 8;
7906 
7907         /* If we are in 64-bit EL2 or EL3 then there is no TTBR1, so mark it
7908          * invalid.
7909          */
7910         if (el > 1) {
7911             ttbr1_valid = false;
7912         }
7913     } else {
7914         level = 1;
7915         addrsize = 32;
7916         /* There is no TTBR1 for EL2 */
7917         if (el == 2) {
7918             ttbr1_valid = false;
7919         }
7920     }
7921 
7922     /* Determine whether this address is in the region controlled by
7923      * TTBR0 or TTBR1 (or if it is in neither region and should fault).
7924      * This is a Non-secure PL0/1 stage 1 translation, so controlled by
7925      * TTBCR/TTBR0/TTBR1 in accordance with ARM ARM DDI0406C table B-32:
7926      */
7927     if (aarch64) {
7928         /* AArch64 translation.  */
7929         t0sz = extract32(tcr->raw_tcr, 0, 6);
7930         t0sz = MIN(t0sz, 39);
7931         t0sz = MAX(t0sz, 16);
7932     } else if (mmu_idx != ARMMMUIdx_S2NS) {
7933         /* AArch32 stage 1 translation.  */
7934         t0sz = extract32(tcr->raw_tcr, 0, 3);
7935     } else {
7936         /* AArch32 stage 2 translation.  */
7937         bool sext = extract32(tcr->raw_tcr, 4, 1);
7938         bool sign = extract32(tcr->raw_tcr, 3, 1);
7939         /* Address size is 40-bit for a stage 2 translation,
7940          * and t0sz can be negative (from -8 to 7),
7941          * so we need to adjust it to use the TTBR selecting logic below.
7942          */
7943         addrsize = 40;
7944         t0sz = sextract32(tcr->raw_tcr, 0, 4) + 8;
7945 
7946         /* If the sign-extend bit is not the same as t0sz[3], the result
7947          * is unpredictable. Flag this as a guest error.  */
7948         if (sign != sext) {
7949             qemu_log_mask(LOG_GUEST_ERROR,
7950                           "AArch32: VTCR.S / VTCR.T0SZ[3] mismatch\n");
7951         }
7952     }
7953     t1sz = extract32(tcr->raw_tcr, 16, 6);
7954     if (aarch64) {
7955         t1sz = MIN(t1sz, 39);
7956         t1sz = MAX(t1sz, 16);
7957     }
7958     if (t0sz && !extract64(address, addrsize - t0sz, t0sz - tbi)) {
7959         /* there is a ttbr0 region and we are in it (high bits all zero) */
7960         ttbr_select = 0;
7961     } else if (ttbr1_valid && t1sz &&
7962                !extract64(~address, addrsize - t1sz, t1sz - tbi)) {
7963         /* there is a ttbr1 region and we are in it (high bits all one) */
7964         ttbr_select = 1;
7965     } else if (!t0sz) {
7966         /* ttbr0 region is "everything not in the ttbr1 region" */
7967         ttbr_select = 0;
7968     } else if (!t1sz && ttbr1_valid) {
7969         /* ttbr1 region is "everything not in the ttbr0 region" */
7970         ttbr_select = 1;
7971     } else {
7972         /* in the gap between the two regions, this is a Translation fault */
7973         fault_type = translation_fault;
7974         goto do_fault;
7975     }
7976 
7977     /* Note that QEMU ignores shareability and cacheability attributes,
7978      * so we don't need to do anything with the SH, ORGN, IRGN fields
7979      * in the TTBCR.  Similarly, TTBCR:A1 selects whether we get the
7980      * ASID from TTBR0 or TTBR1, but QEMU's TLB doesn't currently
7981      * implement any ASID-like capability so we can ignore it (instead
7982      * we will always flush the TLB any time the ASID is changed).
7983      */
7984     if (ttbr_select == 0) {
7985         ttbr = regime_ttbr(env, mmu_idx, 0);
7986         if (el < 2) {
7987             epd = extract32(tcr->raw_tcr, 7, 1);
7988         }
7989         inputsize = addrsize - t0sz;
7990 
7991         tg = extract32(tcr->raw_tcr, 14, 2);
7992         if (tg == 1) { /* 64KB pages */
7993             stride = 13;
7994         }
7995         if (tg == 2) { /* 16KB pages */
7996             stride = 11;
7997         }
7998     } else {
7999         /* We should only be here if TTBR1 is valid */
8000         assert(ttbr1_valid);
8001 
8002         ttbr = regime_ttbr(env, mmu_idx, 1);
8003         epd = extract32(tcr->raw_tcr, 23, 1);
8004         inputsize = addrsize - t1sz;
8005 
8006         tg = extract32(tcr->raw_tcr, 30, 2);
8007         if (tg == 3)  { /* 64KB pages */
8008             stride = 13;
8009         }
8010         if (tg == 1) { /* 16KB pages */
8011             stride = 11;
8012         }
8013     }
8014 
8015     /* Here we should have set up all the parameters for the translation:
8016      * inputsize, ttbr, epd, stride, tbi
8017      */
8018 
8019     if (epd) {
8020         /* Translation table walk disabled => Translation fault on TLB miss
8021          * Note: This is always 0 on 64-bit EL2 and EL3.
8022          */
8023         goto do_fault;
8024     }
8025 
8026     if (mmu_idx != ARMMMUIdx_S2NS) {
8027         /* The starting level depends on the virtual address size (which can
8028          * be up to 48 bits) and the translation granule size. It indicates
8029          * the number of strides (stride bits at a time) needed to
8030          * consume the bits of the input address. In the pseudocode this is:
8031          *  level = 4 - RoundUp((inputsize - grainsize) / stride)
8032          * where their 'inputsize' is our 'inputsize', 'grainsize' is
8033          * our 'stride + 3' and 'stride' is our 'stride'.
8034          * Applying the usual "rounded up m/n is (m+n-1)/n" and simplifying:
8035          * = 4 - (inputsize - stride - 3 + stride - 1) / stride
8036          * = 4 - (inputsize - 4) / stride;
8037          */
8038         level = 4 - (inputsize - 4) / stride;
8039     } else {
8040         /* For stage 2 translations the starting level is specified by the
8041          * VTCR_EL2.SL0 field (whose interpretation depends on the page size)
8042          */
8043         uint32_t sl0 = extract32(tcr->raw_tcr, 6, 2);
8044         uint32_t startlevel;
8045         bool ok;
8046 
8047         if (!aarch64 || stride == 9) {
8048             /* AArch32 or 4KB pages */
8049             startlevel = 2 - sl0;
8050         } else {
8051             /* 16KB or 64KB pages */
8052             startlevel = 3 - sl0;
8053         }
8054 
8055         /* Check that the starting level is valid. */
8056         ok = check_s2_mmu_setup(cpu, aarch64, startlevel,
8057                                 inputsize, stride);
8058         if (!ok) {
8059             fault_type = translation_fault;
8060             goto do_fault;
8061         }
8062         level = startlevel;
8063     }
8064 
8065     indexmask_grainsize = (1ULL << (stride + 3)) - 1;
8066     indexmask = (1ULL << (inputsize - (stride * (4 - level)))) - 1;
8067 
8068     /* Now we can extract the actual base address from the TTBR */
8069     descaddr = extract64(ttbr, 0, 48);
8070     descaddr &= ~indexmask;
8071 
8072     /* The address field in the descriptor goes up to bit 39 for ARMv7
8073      * but up to bit 47 for ARMv8, but we use the descaddrmask
8074      * up to bit 39 for AArch32, because we don't need other bits in that case
8075      * to construct next descriptor address (anyway they should be all zeroes).
8076      */
8077     descaddrmask = ((1ull << (aarch64 ? 48 : 40)) - 1) &
8078                    ~indexmask_grainsize;
8079 
8080     /* Secure accesses start with the page table in secure memory and
8081      * can be downgraded to non-secure at any step. Non-secure accesses
8082      * remain non-secure. We implement this by just ORing in the NSTable/NS
8083      * bits at each step.
8084      */
8085     tableattrs = regime_is_secure(env, mmu_idx) ? 0 : (1 << 4);
8086     for (;;) {
8087         uint64_t descriptor;
8088         bool nstable;
8089 
8090         descaddr |= (address >> (stride * (4 - level))) & indexmask;
8091         descaddr &= ~7ULL;
8092         nstable = extract32(tableattrs, 4, 1);
8093         descriptor = arm_ldq_ptw(cs, descaddr, !nstable, mmu_idx, fsr, fi);
8094         if (fi->s1ptw) {
8095             goto do_fault;
8096         }
8097 
8098         if (!(descriptor & 1) ||
8099             (!(descriptor & 2) && (level == 3))) {
8100             /* Invalid, or the Reserved level 3 encoding */
8101             goto do_fault;
8102         }
8103         descaddr = descriptor & descaddrmask;
8104 
8105         if ((descriptor & 2) && (level < 3)) {
8106             /* Table entry. The top five bits are attributes which  may
8107              * propagate down through lower levels of the table (and
8108              * which are all arranged so that 0 means "no effect", so
8109              * we can gather them up by ORing in the bits at each level).
8110              */
8111             tableattrs |= extract64(descriptor, 59, 5);
8112             level++;
8113             indexmask = indexmask_grainsize;
8114             continue;
8115         }
8116         /* Block entry at level 1 or 2, or page entry at level 3.
8117          * These are basically the same thing, although the number
8118          * of bits we pull in from the vaddr varies.
8119          */
8120         page_size = (1ULL << ((stride * (4 - level)) + 3));
8121         descaddr |= (address & (page_size - 1));
8122         /* Extract attributes from the descriptor */
8123         attrs = extract64(descriptor, 2, 10)
8124             | (extract64(descriptor, 52, 12) << 10);
8125 
8126         if (mmu_idx == ARMMMUIdx_S2NS) {
8127             /* Stage 2 table descriptors do not include any attribute fields */
8128             break;
8129         }
8130         /* Merge in attributes from table descriptors */
8131         attrs |= extract32(tableattrs, 0, 2) << 11; /* XN, PXN */
8132         attrs |= extract32(tableattrs, 3, 1) << 5; /* APTable[1] => AP[2] */
8133         /* The sense of AP[1] vs APTable[0] is reversed, as APTable[0] == 1
8134          * means "force PL1 access only", which means forcing AP[1] to 0.
8135          */
8136         if (extract32(tableattrs, 2, 1)) {
8137             attrs &= ~(1 << 4);
8138         }
8139         attrs |= nstable << 3; /* NS */
8140         break;
8141     }
8142     /* Here descaddr is the final physical address, and attributes
8143      * are all in attrs.
8144      */
8145     fault_type = access_fault;
8146     if ((attrs & (1 << 8)) == 0) {
8147         /* Access flag */
8148         goto do_fault;
8149     }
8150 
8151     ap = extract32(attrs, 4, 2);
8152     xn = extract32(attrs, 12, 1);
8153 
8154     if (mmu_idx == ARMMMUIdx_S2NS) {
8155         ns = true;
8156         *prot = get_S2prot(env, ap, xn);
8157     } else {
8158         ns = extract32(attrs, 3, 1);
8159         pxn = extract32(attrs, 11, 1);
8160         *prot = get_S1prot(env, mmu_idx, aarch64, ap, ns, xn, pxn);
8161     }
8162 
8163     fault_type = permission_fault;
8164     if (!(*prot & (1 << access_type))) {
8165         goto do_fault;
8166     }
8167 
8168     if (ns) {
8169         /* The NS bit will (as required by the architecture) have no effect if
8170          * the CPU doesn't support TZ or this is a non-secure translation
8171          * regime, because the attribute will already be non-secure.
8172          */
8173         txattrs->secure = false;
8174     }
8175     *phys_ptr = descaddr;
8176     *page_size_ptr = page_size;
8177     return false;
8178 
8179 do_fault:
8180     /* Long-descriptor format IFSR/DFSR value */
8181     *fsr = (1 << 9) | (fault_type << 2) | level;
8182     /* Tag the error as S2 for failed S1 PTW at S2 or ordinary S2.  */
8183     fi->stage2 = fi->s1ptw || (mmu_idx == ARMMMUIdx_S2NS);
8184     return true;
8185 }
8186 
8187 static inline void get_phys_addr_pmsav7_default(CPUARMState *env,
8188                                                 ARMMMUIdx mmu_idx,
8189                                                 int32_t address, int *prot)
8190 {
8191     if (!arm_feature(env, ARM_FEATURE_M)) {
8192         *prot = PAGE_READ | PAGE_WRITE;
8193         switch (address) {
8194         case 0xF0000000 ... 0xFFFFFFFF:
8195             if (regime_sctlr(env, mmu_idx) & SCTLR_V) {
8196                 /* hivecs execing is ok */
8197                 *prot |= PAGE_EXEC;
8198             }
8199             break;
8200         case 0x00000000 ... 0x7FFFFFFF:
8201             *prot |= PAGE_EXEC;
8202             break;
8203         }
8204     } else {
8205         /* Default system address map for M profile cores.
8206          * The architecture specifies which regions are execute-never;
8207          * at the MPU level no other checks are defined.
8208          */
8209         switch (address) {
8210         case 0x00000000 ... 0x1fffffff: /* ROM */
8211         case 0x20000000 ... 0x3fffffff: /* SRAM */
8212         case 0x60000000 ... 0x7fffffff: /* RAM */
8213         case 0x80000000 ... 0x9fffffff: /* RAM */
8214             *prot = PAGE_READ | PAGE_WRITE | PAGE_EXEC;
8215             break;
8216         case 0x40000000 ... 0x5fffffff: /* Peripheral */
8217         case 0xa0000000 ... 0xbfffffff: /* Device */
8218         case 0xc0000000 ... 0xdfffffff: /* Device */
8219         case 0xe0000000 ... 0xffffffff: /* System */
8220             *prot = PAGE_READ | PAGE_WRITE;
8221             break;
8222         default:
8223             g_assert_not_reached();
8224         }
8225     }
8226 }
8227 
8228 static bool pmsav7_use_background_region(ARMCPU *cpu,
8229                                          ARMMMUIdx mmu_idx, bool is_user)
8230 {
8231     /* Return true if we should use the default memory map as a
8232      * "background" region if there are no hits against any MPU regions.
8233      */
8234     CPUARMState *env = &cpu->env;
8235 
8236     if (is_user) {
8237         return false;
8238     }
8239 
8240     if (arm_feature(env, ARM_FEATURE_M)) {
8241         return env->v7m.mpu_ctrl & R_V7M_MPU_CTRL_PRIVDEFENA_MASK;
8242     } else {
8243         return regime_sctlr(env, mmu_idx) & SCTLR_BR;
8244     }
8245 }
8246 
8247 static bool get_phys_addr_pmsav7(CPUARMState *env, uint32_t address,
8248                                  int access_type, ARMMMUIdx mmu_idx,
8249                                  hwaddr *phys_ptr, int *prot, uint32_t *fsr)
8250 {
8251     ARMCPU *cpu = arm_env_get_cpu(env);
8252     int n;
8253     bool is_user = regime_is_user(env, mmu_idx);
8254 
8255     *phys_ptr = address;
8256     *prot = 0;
8257 
8258     if (regime_translation_disabled(env, mmu_idx)) { /* MPU disabled */
8259         get_phys_addr_pmsav7_default(env, mmu_idx, address, prot);
8260     } else { /* MPU enabled */
8261         for (n = (int)cpu->pmsav7_dregion - 1; n >= 0; n--) {
8262             /* region search */
8263             uint32_t base = env->pmsav7.drbar[n];
8264             uint32_t rsize = extract32(env->pmsav7.drsr[n], 1, 5);
8265             uint32_t rmask;
8266             bool srdis = false;
8267 
8268             if (!(env->pmsav7.drsr[n] & 0x1)) {
8269                 continue;
8270             }
8271 
8272             if (!rsize) {
8273                 qemu_log_mask(LOG_GUEST_ERROR,
8274                               "DRSR[%d]: Rsize field cannot be 0\n", n);
8275                 continue;
8276             }
8277             rsize++;
8278             rmask = (1ull << rsize) - 1;
8279 
8280             if (base & rmask) {
8281                 qemu_log_mask(LOG_GUEST_ERROR,
8282                               "DRBAR[%d]: 0x%" PRIx32 " misaligned "
8283                               "to DRSR region size, mask = 0x%" PRIx32 "\n",
8284                               n, base, rmask);
8285                 continue;
8286             }
8287 
8288             if (address < base || address > base + rmask) {
8289                 continue;
8290             }
8291 
8292             /* Region matched */
8293 
8294             if (rsize >= 8) { /* no subregions for regions < 256 bytes */
8295                 int i, snd;
8296                 uint32_t srdis_mask;
8297 
8298                 rsize -= 3; /* sub region size (power of 2) */
8299                 snd = ((address - base) >> rsize) & 0x7;
8300                 srdis = extract32(env->pmsav7.drsr[n], snd + 8, 1);
8301 
8302                 srdis_mask = srdis ? 0x3 : 0x0;
8303                 for (i = 2; i <= 8 && rsize < TARGET_PAGE_BITS; i *= 2) {
8304                     /* This will check in groups of 2, 4 and then 8, whether
8305                      * the subregion bits are consistent. rsize is incremented
8306                      * back up to give the region size, considering consistent
8307                      * adjacent subregions as one region. Stop testing if rsize
8308                      * is already big enough for an entire QEMU page.
8309                      */
8310                     int snd_rounded = snd & ~(i - 1);
8311                     uint32_t srdis_multi = extract32(env->pmsav7.drsr[n],
8312                                                      snd_rounded + 8, i);
8313                     if (srdis_mask ^ srdis_multi) {
8314                         break;
8315                     }
8316                     srdis_mask = (srdis_mask << i) | srdis_mask;
8317                     rsize++;
8318                 }
8319             }
8320             if (rsize < TARGET_PAGE_BITS) {
8321                 qemu_log_mask(LOG_UNIMP,
8322                               "DRSR[%d]: No support for MPU (sub)region "
8323                               "alignment of %" PRIu32 " bits. Minimum is %d\n",
8324                               n, rsize, TARGET_PAGE_BITS);
8325                 continue;
8326             }
8327             if (srdis) {
8328                 continue;
8329             }
8330             break;
8331         }
8332 
8333         if (n == -1) { /* no hits */
8334             if (!pmsav7_use_background_region(cpu, mmu_idx, is_user)) {
8335                 /* background fault */
8336                 *fsr = 0;
8337                 return true;
8338             }
8339             get_phys_addr_pmsav7_default(env, mmu_idx, address, prot);
8340         } else { /* a MPU hit! */
8341             uint32_t ap = extract32(env->pmsav7.dracr[n], 8, 3);
8342 
8343             if (is_user) { /* User mode AP bit decoding */
8344                 switch (ap) {
8345                 case 0:
8346                 case 1:
8347                 case 5:
8348                     break; /* no access */
8349                 case 3:
8350                     *prot |= PAGE_WRITE;
8351                     /* fall through */
8352                 case 2:
8353                 case 6:
8354                     *prot |= PAGE_READ | PAGE_EXEC;
8355                     break;
8356                 default:
8357                     qemu_log_mask(LOG_GUEST_ERROR,
8358                                   "DRACR[%d]: Bad value for AP bits: 0x%"
8359                                   PRIx32 "\n", n, ap);
8360                 }
8361             } else { /* Priv. mode AP bits decoding */
8362                 switch (ap) {
8363                 case 0:
8364                     break; /* no access */
8365                 case 1:
8366                 case 2:
8367                 case 3:
8368                     *prot |= PAGE_WRITE;
8369                     /* fall through */
8370                 case 5:
8371                 case 6:
8372                     *prot |= PAGE_READ | PAGE_EXEC;
8373                     break;
8374                 default:
8375                     qemu_log_mask(LOG_GUEST_ERROR,
8376                                   "DRACR[%d]: Bad value for AP bits: 0x%"
8377                                   PRIx32 "\n", n, ap);
8378                 }
8379             }
8380 
8381             /* execute never */
8382             if (env->pmsav7.dracr[n] & (1 << 12)) {
8383                 *prot &= ~PAGE_EXEC;
8384             }
8385         }
8386     }
8387 
8388     *fsr = 0x00d; /* Permission fault */
8389     return !(*prot & (1 << access_type));
8390 }
8391 
8392 static bool get_phys_addr_pmsav5(CPUARMState *env, uint32_t address,
8393                                  int access_type, ARMMMUIdx mmu_idx,
8394                                  hwaddr *phys_ptr, int *prot, uint32_t *fsr)
8395 {
8396     int n;
8397     uint32_t mask;
8398     uint32_t base;
8399     bool is_user = regime_is_user(env, mmu_idx);
8400 
8401     *phys_ptr = address;
8402     for (n = 7; n >= 0; n--) {
8403         base = env->cp15.c6_region[n];
8404         if ((base & 1) == 0) {
8405             continue;
8406         }
8407         mask = 1 << ((base >> 1) & 0x1f);
8408         /* Keep this shift separate from the above to avoid an
8409            (undefined) << 32.  */
8410         mask = (mask << 1) - 1;
8411         if (((base ^ address) & ~mask) == 0) {
8412             break;
8413         }
8414     }
8415     if (n < 0) {
8416         *fsr = 2;
8417         return true;
8418     }
8419 
8420     if (access_type == 2) {
8421         mask = env->cp15.pmsav5_insn_ap;
8422     } else {
8423         mask = env->cp15.pmsav5_data_ap;
8424     }
8425     mask = (mask >> (n * 4)) & 0xf;
8426     switch (mask) {
8427     case 0:
8428         *fsr = 1;
8429         return true;
8430     case 1:
8431         if (is_user) {
8432             *fsr = 1;
8433             return true;
8434         }
8435         *prot = PAGE_READ | PAGE_WRITE;
8436         break;
8437     case 2:
8438         *prot = PAGE_READ;
8439         if (!is_user) {
8440             *prot |= PAGE_WRITE;
8441         }
8442         break;
8443     case 3:
8444         *prot = PAGE_READ | PAGE_WRITE;
8445         break;
8446     case 5:
8447         if (is_user) {
8448             *fsr = 1;
8449             return true;
8450         }
8451         *prot = PAGE_READ;
8452         break;
8453     case 6:
8454         *prot = PAGE_READ;
8455         break;
8456     default:
8457         /* Bad permission.  */
8458         *fsr = 1;
8459         return true;
8460     }
8461     *prot |= PAGE_EXEC;
8462     return false;
8463 }
8464 
8465 /* get_phys_addr - get the physical address for this virtual address
8466  *
8467  * Find the physical address corresponding to the given virtual address,
8468  * by doing a translation table walk on MMU based systems or using the
8469  * MPU state on MPU based systems.
8470  *
8471  * Returns false if the translation was successful. Otherwise, phys_ptr, attrs,
8472  * prot and page_size may not be filled in, and the populated fsr value provides
8473  * information on why the translation aborted, in the format of a
8474  * DFSR/IFSR fault register, with the following caveats:
8475  *  * we honour the short vs long DFSR format differences.
8476  *  * the WnR bit is never set (the caller must do this).
8477  *  * for PSMAv5 based systems we don't bother to return a full FSR format
8478  *    value.
8479  *
8480  * @env: CPUARMState
8481  * @address: virtual address to get physical address for
8482  * @access_type: 0 for read, 1 for write, 2 for execute
8483  * @mmu_idx: MMU index indicating required translation regime
8484  * @phys_ptr: set to the physical address corresponding to the virtual address
8485  * @attrs: set to the memory transaction attributes to use
8486  * @prot: set to the permissions for the page containing phys_ptr
8487  * @page_size: set to the size of the page containing phys_ptr
8488  * @fsr: set to the DFSR/IFSR value on failure
8489  */
8490 static bool get_phys_addr(CPUARMState *env, target_ulong address,
8491                           int access_type, ARMMMUIdx mmu_idx,
8492                           hwaddr *phys_ptr, MemTxAttrs *attrs, int *prot,
8493                           target_ulong *page_size, uint32_t *fsr,
8494                           ARMMMUFaultInfo *fi)
8495 {
8496     if (mmu_idx == ARMMMUIdx_S12NSE0 || mmu_idx == ARMMMUIdx_S12NSE1) {
8497         /* Call ourselves recursively to do the stage 1 and then stage 2
8498          * translations.
8499          */
8500         if (arm_feature(env, ARM_FEATURE_EL2)) {
8501             hwaddr ipa;
8502             int s2_prot;
8503             int ret;
8504 
8505             ret = get_phys_addr(env, address, access_type,
8506                                 stage_1_mmu_idx(mmu_idx), &ipa, attrs,
8507                                 prot, page_size, fsr, fi);
8508 
8509             /* If S1 fails or S2 is disabled, return early.  */
8510             if (ret || regime_translation_disabled(env, ARMMMUIdx_S2NS)) {
8511                 *phys_ptr = ipa;
8512                 return ret;
8513             }
8514 
8515             /* S1 is done. Now do S2 translation.  */
8516             ret = get_phys_addr_lpae(env, ipa, access_type, ARMMMUIdx_S2NS,
8517                                      phys_ptr, attrs, &s2_prot,
8518                                      page_size, fsr, fi);
8519             fi->s2addr = ipa;
8520             /* Combine the S1 and S2 perms.  */
8521             *prot &= s2_prot;
8522             return ret;
8523         } else {
8524             /*
8525              * For non-EL2 CPUs a stage1+stage2 translation is just stage 1.
8526              */
8527             mmu_idx = stage_1_mmu_idx(mmu_idx);
8528         }
8529     }
8530 
8531     /* The page table entries may downgrade secure to non-secure, but
8532      * cannot upgrade an non-secure translation regime's attributes
8533      * to secure.
8534      */
8535     attrs->secure = regime_is_secure(env, mmu_idx);
8536     attrs->user = regime_is_user(env, mmu_idx);
8537 
8538     /* Fast Context Switch Extension. This doesn't exist at all in v8.
8539      * In v7 and earlier it affects all stage 1 translations.
8540      */
8541     if (address < 0x02000000 && mmu_idx != ARMMMUIdx_S2NS
8542         && !arm_feature(env, ARM_FEATURE_V8)) {
8543         if (regime_el(env, mmu_idx) == 3) {
8544             address += env->cp15.fcseidr_s;
8545         } else {
8546             address += env->cp15.fcseidr_ns;
8547         }
8548     }
8549 
8550     /* pmsav7 has special handling for when MPU is disabled so call it before
8551      * the common MMU/MPU disabled check below.
8552      */
8553     if (arm_feature(env, ARM_FEATURE_PMSA) &&
8554         arm_feature(env, ARM_FEATURE_V7)) {
8555         bool ret;
8556         *page_size = TARGET_PAGE_SIZE;
8557         ret = get_phys_addr_pmsav7(env, address, access_type, mmu_idx,
8558                                    phys_ptr, prot, fsr);
8559         qemu_log_mask(CPU_LOG_MMU, "PMSAv7 MPU lookup for %s at 0x%08" PRIx32
8560                       " mmu_idx %u -> %s (prot %c%c%c)\n",
8561                       access_type == 1 ? "reading" :
8562                       (access_type == 2 ? "writing" : "execute"),
8563                       (uint32_t)address, mmu_idx,
8564                       ret ? "Miss" : "Hit",
8565                       *prot & PAGE_READ ? 'r' : '-',
8566                       *prot & PAGE_WRITE ? 'w' : '-',
8567                       *prot & PAGE_EXEC ? 'x' : '-');
8568 
8569         return ret;
8570     }
8571 
8572     if (regime_translation_disabled(env, mmu_idx)) {
8573         /* MMU/MPU disabled.  */
8574         *phys_ptr = address;
8575         *prot = PAGE_READ | PAGE_WRITE | PAGE_EXEC;
8576         *page_size = TARGET_PAGE_SIZE;
8577         return 0;
8578     }
8579 
8580     if (arm_feature(env, ARM_FEATURE_PMSA)) {
8581         /* Pre-v7 MPU */
8582         *page_size = TARGET_PAGE_SIZE;
8583         return get_phys_addr_pmsav5(env, address, access_type, mmu_idx,
8584                                     phys_ptr, prot, fsr);
8585     }
8586 
8587     if (regime_using_lpae_format(env, mmu_idx)) {
8588         return get_phys_addr_lpae(env, address, access_type, mmu_idx, phys_ptr,
8589                                   attrs, prot, page_size, fsr, fi);
8590     } else if (regime_sctlr(env, mmu_idx) & SCTLR_XP) {
8591         return get_phys_addr_v6(env, address, access_type, mmu_idx, phys_ptr,
8592                                 attrs, prot, page_size, fsr, fi);
8593     } else {
8594         return get_phys_addr_v5(env, address, access_type, mmu_idx, phys_ptr,
8595                                 prot, page_size, fsr, fi);
8596     }
8597 }
8598 
8599 /* Walk the page table and (if the mapping exists) add the page
8600  * to the TLB. Return false on success, or true on failure. Populate
8601  * fsr with ARM DFSR/IFSR fault register format value on failure.
8602  */
8603 bool arm_tlb_fill(CPUState *cs, vaddr address,
8604                   int access_type, int mmu_idx, uint32_t *fsr,
8605                   ARMMMUFaultInfo *fi)
8606 {
8607     ARMCPU *cpu = ARM_CPU(cs);
8608     CPUARMState *env = &cpu->env;
8609     hwaddr phys_addr;
8610     target_ulong page_size;
8611     int prot;
8612     int ret;
8613     MemTxAttrs attrs = {};
8614 
8615     ret = get_phys_addr(env, address, access_type,
8616                         core_to_arm_mmu_idx(env, mmu_idx), &phys_addr,
8617                         &attrs, &prot, &page_size, fsr, fi);
8618     if (!ret) {
8619         /* Map a single [sub]page.  */
8620         phys_addr &= TARGET_PAGE_MASK;
8621         address &= TARGET_PAGE_MASK;
8622         tlb_set_page_with_attrs(cs, address, phys_addr, attrs,
8623                                 prot, mmu_idx, page_size);
8624         return 0;
8625     }
8626 
8627     return ret;
8628 }
8629 
8630 hwaddr arm_cpu_get_phys_page_attrs_debug(CPUState *cs, vaddr addr,
8631                                          MemTxAttrs *attrs)
8632 {
8633     ARMCPU *cpu = ARM_CPU(cs);
8634     CPUARMState *env = &cpu->env;
8635     hwaddr phys_addr;
8636     target_ulong page_size;
8637     int prot;
8638     bool ret;
8639     uint32_t fsr;
8640     ARMMMUFaultInfo fi = {};
8641     ARMMMUIdx mmu_idx = core_to_arm_mmu_idx(env, cpu_mmu_index(env, false));
8642 
8643     *attrs = (MemTxAttrs) {};
8644 
8645     ret = get_phys_addr(env, addr, 0, mmu_idx, &phys_addr,
8646                         attrs, &prot, &page_size, &fsr, &fi);
8647 
8648     if (ret) {
8649         return -1;
8650     }
8651     return phys_addr;
8652 }
8653 
8654 uint32_t HELPER(v7m_mrs)(CPUARMState *env, uint32_t reg)
8655 {
8656     uint32_t mask;
8657     unsigned el = arm_current_el(env);
8658 
8659     /* First handle registers which unprivileged can read */
8660 
8661     switch (reg) {
8662     case 0 ... 7: /* xPSR sub-fields */
8663         mask = 0;
8664         if ((reg & 1) && el) {
8665             mask |= 0x000001ff; /* IPSR (unpriv. reads as zero) */
8666         }
8667         if (!(reg & 4)) {
8668             mask |= 0xf8000000; /* APSR */
8669         }
8670         /* EPSR reads as zero */
8671         return xpsr_read(env) & mask;
8672         break;
8673     case 20: /* CONTROL */
8674         return env->v7m.control;
8675     }
8676 
8677     if (el == 0) {
8678         return 0; /* unprivileged reads others as zero */
8679     }
8680 
8681     switch (reg) {
8682     case 8: /* MSP */
8683         return (env->v7m.control & R_V7M_CONTROL_SPSEL_MASK) ?
8684             env->v7m.other_sp : env->regs[13];
8685     case 9: /* PSP */
8686         return (env->v7m.control & R_V7M_CONTROL_SPSEL_MASK) ?
8687             env->regs[13] : env->v7m.other_sp;
8688     case 16: /* PRIMASK */
8689         return (env->daif & PSTATE_I) != 0;
8690     case 17: /* BASEPRI */
8691     case 18: /* BASEPRI_MAX */
8692         return env->v7m.basepri;
8693     case 19: /* FAULTMASK */
8694         return (env->daif & PSTATE_F) != 0;
8695     default:
8696         qemu_log_mask(LOG_GUEST_ERROR, "Attempt to read unknown special"
8697                                        " register %d\n", reg);
8698         return 0;
8699     }
8700 }
8701 
8702 void HELPER(v7m_msr)(CPUARMState *env, uint32_t maskreg, uint32_t val)
8703 {
8704     /* We're passed bits [11..0] of the instruction; extract
8705      * SYSm and the mask bits.
8706      * Invalid combinations of SYSm and mask are UNPREDICTABLE;
8707      * we choose to treat them as if the mask bits were valid.
8708      * NB that the pseudocode 'mask' variable is bits [11..10],
8709      * whereas ours is [11..8].
8710      */
8711     uint32_t mask = extract32(maskreg, 8, 4);
8712     uint32_t reg = extract32(maskreg, 0, 8);
8713 
8714     if (arm_current_el(env) == 0 && reg > 7) {
8715         /* only xPSR sub-fields may be written by unprivileged */
8716         return;
8717     }
8718 
8719     switch (reg) {
8720     case 0 ... 7: /* xPSR sub-fields */
8721         /* only APSR is actually writable */
8722         if (!(reg & 4)) {
8723             uint32_t apsrmask = 0;
8724 
8725             if (mask & 8) {
8726                 apsrmask |= 0xf8000000; /* APSR NZCVQ */
8727             }
8728             if ((mask & 4) && arm_feature(env, ARM_FEATURE_THUMB_DSP)) {
8729                 apsrmask |= 0x000f0000; /* APSR GE[3:0] */
8730             }
8731             xpsr_write(env, val, apsrmask);
8732         }
8733         break;
8734     case 8: /* MSP */
8735         if (env->v7m.control & R_V7M_CONTROL_SPSEL_MASK) {
8736             env->v7m.other_sp = val;
8737         } else {
8738             env->regs[13] = val;
8739         }
8740         break;
8741     case 9: /* PSP */
8742         if (env->v7m.control & R_V7M_CONTROL_SPSEL_MASK) {
8743             env->regs[13] = val;
8744         } else {
8745             env->v7m.other_sp = val;
8746         }
8747         break;
8748     case 16: /* PRIMASK */
8749         if (val & 1) {
8750             env->daif |= PSTATE_I;
8751         } else {
8752             env->daif &= ~PSTATE_I;
8753         }
8754         break;
8755     case 17: /* BASEPRI */
8756         env->v7m.basepri = val & 0xff;
8757         break;
8758     case 18: /* BASEPRI_MAX */
8759         val &= 0xff;
8760         if (val != 0 && (val < env->v7m.basepri || env->v7m.basepri == 0))
8761             env->v7m.basepri = val;
8762         break;
8763     case 19: /* FAULTMASK */
8764         if (val & 1) {
8765             env->daif |= PSTATE_F;
8766         } else {
8767             env->daif &= ~PSTATE_F;
8768         }
8769         break;
8770     case 20: /* CONTROL */
8771         switch_v7m_sp(env, (val & R_V7M_CONTROL_SPSEL_MASK) != 0);
8772         env->v7m.control = val & (R_V7M_CONTROL_SPSEL_MASK |
8773                                   R_V7M_CONTROL_NPRIV_MASK);
8774         break;
8775     default:
8776         qemu_log_mask(LOG_GUEST_ERROR, "Attempt to write unknown special"
8777                                        " register %d\n", reg);
8778         return;
8779     }
8780 }
8781 
8782 #endif
8783 
8784 void HELPER(dc_zva)(CPUARMState *env, uint64_t vaddr_in)
8785 {
8786     /* Implement DC ZVA, which zeroes a fixed-length block of memory.
8787      * Note that we do not implement the (architecturally mandated)
8788      * alignment fault for attempts to use this on Device memory
8789      * (which matches the usual QEMU behaviour of not implementing either
8790      * alignment faults or any memory attribute handling).
8791      */
8792 
8793     ARMCPU *cpu = arm_env_get_cpu(env);
8794     uint64_t blocklen = 4 << cpu->dcz_blocksize;
8795     uint64_t vaddr = vaddr_in & ~(blocklen - 1);
8796 
8797 #ifndef CONFIG_USER_ONLY
8798     {
8799         /* Slightly awkwardly, QEMU's TARGET_PAGE_SIZE may be less than
8800          * the block size so we might have to do more than one TLB lookup.
8801          * We know that in fact for any v8 CPU the page size is at least 4K
8802          * and the block size must be 2K or less, but TARGET_PAGE_SIZE is only
8803          * 1K as an artefact of legacy v5 subpage support being present in the
8804          * same QEMU executable.
8805          */
8806         int maxidx = DIV_ROUND_UP(blocklen, TARGET_PAGE_SIZE);
8807         void *hostaddr[maxidx];
8808         int try, i;
8809         unsigned mmu_idx = cpu_mmu_index(env, false);
8810         TCGMemOpIdx oi = make_memop_idx(MO_UB, mmu_idx);
8811 
8812         for (try = 0; try < 2; try++) {
8813 
8814             for (i = 0; i < maxidx; i++) {
8815                 hostaddr[i] = tlb_vaddr_to_host(env,
8816                                                 vaddr + TARGET_PAGE_SIZE * i,
8817                                                 1, mmu_idx);
8818                 if (!hostaddr[i]) {
8819                     break;
8820                 }
8821             }
8822             if (i == maxidx) {
8823                 /* If it's all in the TLB it's fair game for just writing to;
8824                  * we know we don't need to update dirty status, etc.
8825                  */
8826                 for (i = 0; i < maxidx - 1; i++) {
8827                     memset(hostaddr[i], 0, TARGET_PAGE_SIZE);
8828                 }
8829                 memset(hostaddr[i], 0, blocklen - (i * TARGET_PAGE_SIZE));
8830                 return;
8831             }
8832             /* OK, try a store and see if we can populate the tlb. This
8833              * might cause an exception if the memory isn't writable,
8834              * in which case we will longjmp out of here. We must for
8835              * this purpose use the actual register value passed to us
8836              * so that we get the fault address right.
8837              */
8838             helper_ret_stb_mmu(env, vaddr_in, 0, oi, GETPC());
8839             /* Now we can populate the other TLB entries, if any */
8840             for (i = 0; i < maxidx; i++) {
8841                 uint64_t va = vaddr + TARGET_PAGE_SIZE * i;
8842                 if (va != (vaddr_in & TARGET_PAGE_MASK)) {
8843                     helper_ret_stb_mmu(env, va, 0, oi, GETPC());
8844                 }
8845             }
8846         }
8847 
8848         /* Slow path (probably attempt to do this to an I/O device or
8849          * similar, or clearing of a block of code we have translations
8850          * cached for). Just do a series of byte writes as the architecture
8851          * demands. It's not worth trying to use a cpu_physical_memory_map(),
8852          * memset(), unmap() sequence here because:
8853          *  + we'd need to account for the blocksize being larger than a page
8854          *  + the direct-RAM access case is almost always going to be dealt
8855          *    with in the fastpath code above, so there's no speed benefit
8856          *  + we would have to deal with the map returning NULL because the
8857          *    bounce buffer was in use
8858          */
8859         for (i = 0; i < blocklen; i++) {
8860             helper_ret_stb_mmu(env, vaddr + i, 0, oi, GETPC());
8861         }
8862     }
8863 #else
8864     memset(g2h(vaddr), 0, blocklen);
8865 #endif
8866 }
8867 
8868 /* Note that signed overflow is undefined in C.  The following routines are
8869    careful to use unsigned types where modulo arithmetic is required.
8870    Failure to do so _will_ break on newer gcc.  */
8871 
8872 /* Signed saturating arithmetic.  */
8873 
8874 /* Perform 16-bit signed saturating addition.  */
8875 static inline uint16_t add16_sat(uint16_t a, uint16_t b)
8876 {
8877     uint16_t res;
8878 
8879     res = a + b;
8880     if (((res ^ a) & 0x8000) && !((a ^ b) & 0x8000)) {
8881         if (a & 0x8000)
8882             res = 0x8000;
8883         else
8884             res = 0x7fff;
8885     }
8886     return res;
8887 }
8888 
8889 /* Perform 8-bit signed saturating addition.  */
8890 static inline uint8_t add8_sat(uint8_t a, uint8_t b)
8891 {
8892     uint8_t res;
8893 
8894     res = a + b;
8895     if (((res ^ a) & 0x80) && !((a ^ b) & 0x80)) {
8896         if (a & 0x80)
8897             res = 0x80;
8898         else
8899             res = 0x7f;
8900     }
8901     return res;
8902 }
8903 
8904 /* Perform 16-bit signed saturating subtraction.  */
8905 static inline uint16_t sub16_sat(uint16_t a, uint16_t b)
8906 {
8907     uint16_t res;
8908 
8909     res = a - b;
8910     if (((res ^ a) & 0x8000) && ((a ^ b) & 0x8000)) {
8911         if (a & 0x8000)
8912             res = 0x8000;
8913         else
8914             res = 0x7fff;
8915     }
8916     return res;
8917 }
8918 
8919 /* Perform 8-bit signed saturating subtraction.  */
8920 static inline uint8_t sub8_sat(uint8_t a, uint8_t b)
8921 {
8922     uint8_t res;
8923 
8924     res = a - b;
8925     if (((res ^ a) & 0x80) && ((a ^ b) & 0x80)) {
8926         if (a & 0x80)
8927             res = 0x80;
8928         else
8929             res = 0x7f;
8930     }
8931     return res;
8932 }
8933 
8934 #define ADD16(a, b, n) RESULT(add16_sat(a, b), n, 16);
8935 #define SUB16(a, b, n) RESULT(sub16_sat(a, b), n, 16);
8936 #define ADD8(a, b, n)  RESULT(add8_sat(a, b), n, 8);
8937 #define SUB8(a, b, n)  RESULT(sub8_sat(a, b), n, 8);
8938 #define PFX q
8939 
8940 #include "op_addsub.h"
8941 
8942 /* Unsigned saturating arithmetic.  */
8943 static inline uint16_t add16_usat(uint16_t a, uint16_t b)
8944 {
8945     uint16_t res;
8946     res = a + b;
8947     if (res < a)
8948         res = 0xffff;
8949     return res;
8950 }
8951 
8952 static inline uint16_t sub16_usat(uint16_t a, uint16_t b)
8953 {
8954     if (a > b)
8955         return a - b;
8956     else
8957         return 0;
8958 }
8959 
8960 static inline uint8_t add8_usat(uint8_t a, uint8_t b)
8961 {
8962     uint8_t res;
8963     res = a + b;
8964     if (res < a)
8965         res = 0xff;
8966     return res;
8967 }
8968 
8969 static inline uint8_t sub8_usat(uint8_t a, uint8_t b)
8970 {
8971     if (a > b)
8972         return a - b;
8973     else
8974         return 0;
8975 }
8976 
8977 #define ADD16(a, b, n) RESULT(add16_usat(a, b), n, 16);
8978 #define SUB16(a, b, n) RESULT(sub16_usat(a, b), n, 16);
8979 #define ADD8(a, b, n)  RESULT(add8_usat(a, b), n, 8);
8980 #define SUB8(a, b, n)  RESULT(sub8_usat(a, b), n, 8);
8981 #define PFX uq
8982 
8983 #include "op_addsub.h"
8984 
8985 /* Signed modulo arithmetic.  */
8986 #define SARITH16(a, b, n, op) do { \
8987     int32_t sum; \
8988     sum = (int32_t)(int16_t)(a) op (int32_t)(int16_t)(b); \
8989     RESULT(sum, n, 16); \
8990     if (sum >= 0) \
8991         ge |= 3 << (n * 2); \
8992     } while(0)
8993 
8994 #define SARITH8(a, b, n, op) do { \
8995     int32_t sum; \
8996     sum = (int32_t)(int8_t)(a) op (int32_t)(int8_t)(b); \
8997     RESULT(sum, n, 8); \
8998     if (sum >= 0) \
8999         ge |= 1 << n; \
9000     } while(0)
9001 
9002 
9003 #define ADD16(a, b, n) SARITH16(a, b, n, +)
9004 #define SUB16(a, b, n) SARITH16(a, b, n, -)
9005 #define ADD8(a, b, n)  SARITH8(a, b, n, +)
9006 #define SUB8(a, b, n)  SARITH8(a, b, n, -)
9007 #define PFX s
9008 #define ARITH_GE
9009 
9010 #include "op_addsub.h"
9011 
9012 /* Unsigned modulo arithmetic.  */
9013 #define ADD16(a, b, n) do { \
9014     uint32_t sum; \
9015     sum = (uint32_t)(uint16_t)(a) + (uint32_t)(uint16_t)(b); \
9016     RESULT(sum, n, 16); \
9017     if ((sum >> 16) == 1) \
9018         ge |= 3 << (n * 2); \
9019     } while(0)
9020 
9021 #define ADD8(a, b, n) do { \
9022     uint32_t sum; \
9023     sum = (uint32_t)(uint8_t)(a) + (uint32_t)(uint8_t)(b); \
9024     RESULT(sum, n, 8); \
9025     if ((sum >> 8) == 1) \
9026         ge |= 1 << n; \
9027     } while(0)
9028 
9029 #define SUB16(a, b, n) do { \
9030     uint32_t sum; \
9031     sum = (uint32_t)(uint16_t)(a) - (uint32_t)(uint16_t)(b); \
9032     RESULT(sum, n, 16); \
9033     if ((sum >> 16) == 0) \
9034         ge |= 3 << (n * 2); \
9035     } while(0)
9036 
9037 #define SUB8(a, b, n) do { \
9038     uint32_t sum; \
9039     sum = (uint32_t)(uint8_t)(a) - (uint32_t)(uint8_t)(b); \
9040     RESULT(sum, n, 8); \
9041     if ((sum >> 8) == 0) \
9042         ge |= 1 << n; \
9043     } while(0)
9044 
9045 #define PFX u
9046 #define ARITH_GE
9047 
9048 #include "op_addsub.h"
9049 
9050 /* Halved signed arithmetic.  */
9051 #define ADD16(a, b, n) \
9052   RESULT(((int32_t)(int16_t)(a) + (int32_t)(int16_t)(b)) >> 1, n, 16)
9053 #define SUB16(a, b, n) \
9054   RESULT(((int32_t)(int16_t)(a) - (int32_t)(int16_t)(b)) >> 1, n, 16)
9055 #define ADD8(a, b, n) \
9056   RESULT(((int32_t)(int8_t)(a) + (int32_t)(int8_t)(b)) >> 1, n, 8)
9057 #define SUB8(a, b, n) \
9058   RESULT(((int32_t)(int8_t)(a) - (int32_t)(int8_t)(b)) >> 1, n, 8)
9059 #define PFX sh
9060 
9061 #include "op_addsub.h"
9062 
9063 /* Halved unsigned arithmetic.  */
9064 #define ADD16(a, b, n) \
9065   RESULT(((uint32_t)(uint16_t)(a) + (uint32_t)(uint16_t)(b)) >> 1, n, 16)
9066 #define SUB16(a, b, n) \
9067   RESULT(((uint32_t)(uint16_t)(a) - (uint32_t)(uint16_t)(b)) >> 1, n, 16)
9068 #define ADD8(a, b, n) \
9069   RESULT(((uint32_t)(uint8_t)(a) + (uint32_t)(uint8_t)(b)) >> 1, n, 8)
9070 #define SUB8(a, b, n) \
9071   RESULT(((uint32_t)(uint8_t)(a) - (uint32_t)(uint8_t)(b)) >> 1, n, 8)
9072 #define PFX uh
9073 
9074 #include "op_addsub.h"
9075 
9076 static inline uint8_t do_usad(uint8_t a, uint8_t b)
9077 {
9078     if (a > b)
9079         return a - b;
9080     else
9081         return b - a;
9082 }
9083 
9084 /* Unsigned sum of absolute byte differences.  */
9085 uint32_t HELPER(usad8)(uint32_t a, uint32_t b)
9086 {
9087     uint32_t sum;
9088     sum = do_usad(a, b);
9089     sum += do_usad(a >> 8, b >> 8);
9090     sum += do_usad(a >> 16, b >>16);
9091     sum += do_usad(a >> 24, b >> 24);
9092     return sum;
9093 }
9094 
9095 /* For ARMv6 SEL instruction.  */
9096 uint32_t HELPER(sel_flags)(uint32_t flags, uint32_t a, uint32_t b)
9097 {
9098     uint32_t mask;
9099 
9100     mask = 0;
9101     if (flags & 1)
9102         mask |= 0xff;
9103     if (flags & 2)
9104         mask |= 0xff00;
9105     if (flags & 4)
9106         mask |= 0xff0000;
9107     if (flags & 8)
9108         mask |= 0xff000000;
9109     return (a & mask) | (b & ~mask);
9110 }
9111 
9112 /* VFP support.  We follow the convention used for VFP instructions:
9113    Single precision routines have a "s" suffix, double precision a
9114    "d" suffix.  */
9115 
9116 /* Convert host exception flags to vfp form.  */
9117 static inline int vfp_exceptbits_from_host(int host_bits)
9118 {
9119     int target_bits = 0;
9120 
9121     if (host_bits & float_flag_invalid)
9122         target_bits |= 1;
9123     if (host_bits & float_flag_divbyzero)
9124         target_bits |= 2;
9125     if (host_bits & float_flag_overflow)
9126         target_bits |= 4;
9127     if (host_bits & (float_flag_underflow | float_flag_output_denormal))
9128         target_bits |= 8;
9129     if (host_bits & float_flag_inexact)
9130         target_bits |= 0x10;
9131     if (host_bits & float_flag_input_denormal)
9132         target_bits |= 0x80;
9133     return target_bits;
9134 }
9135 
9136 uint32_t HELPER(vfp_get_fpscr)(CPUARMState *env)
9137 {
9138     int i;
9139     uint32_t fpscr;
9140 
9141     fpscr = (env->vfp.xregs[ARM_VFP_FPSCR] & 0xffc8ffff)
9142             | (env->vfp.vec_len << 16)
9143             | (env->vfp.vec_stride << 20);
9144     i = get_float_exception_flags(&env->vfp.fp_status);
9145     i |= get_float_exception_flags(&env->vfp.standard_fp_status);
9146     fpscr |= vfp_exceptbits_from_host(i);
9147     return fpscr;
9148 }
9149 
9150 uint32_t vfp_get_fpscr(CPUARMState *env)
9151 {
9152     return HELPER(vfp_get_fpscr)(env);
9153 }
9154 
9155 /* Convert vfp exception flags to target form.  */
9156 static inline int vfp_exceptbits_to_host(int target_bits)
9157 {
9158     int host_bits = 0;
9159 
9160     if (target_bits & 1)
9161         host_bits |= float_flag_invalid;
9162     if (target_bits & 2)
9163         host_bits |= float_flag_divbyzero;
9164     if (target_bits & 4)
9165         host_bits |= float_flag_overflow;
9166     if (target_bits & 8)
9167         host_bits |= float_flag_underflow;
9168     if (target_bits & 0x10)
9169         host_bits |= float_flag_inexact;
9170     if (target_bits & 0x80)
9171         host_bits |= float_flag_input_denormal;
9172     return host_bits;
9173 }
9174 
9175 void HELPER(vfp_set_fpscr)(CPUARMState *env, uint32_t val)
9176 {
9177     int i;
9178     uint32_t changed;
9179 
9180     changed = env->vfp.xregs[ARM_VFP_FPSCR];
9181     env->vfp.xregs[ARM_VFP_FPSCR] = (val & 0xffc8ffff);
9182     env->vfp.vec_len = (val >> 16) & 7;
9183     env->vfp.vec_stride = (val >> 20) & 3;
9184 
9185     changed ^= val;
9186     if (changed & (3 << 22)) {
9187         i = (val >> 22) & 3;
9188         switch (i) {
9189         case FPROUNDING_TIEEVEN:
9190             i = float_round_nearest_even;
9191             break;
9192         case FPROUNDING_POSINF:
9193             i = float_round_up;
9194             break;
9195         case FPROUNDING_NEGINF:
9196             i = float_round_down;
9197             break;
9198         case FPROUNDING_ZERO:
9199             i = float_round_to_zero;
9200             break;
9201         }
9202         set_float_rounding_mode(i, &env->vfp.fp_status);
9203     }
9204     if (changed & (1 << 24)) {
9205         set_flush_to_zero((val & (1 << 24)) != 0, &env->vfp.fp_status);
9206         set_flush_inputs_to_zero((val & (1 << 24)) != 0, &env->vfp.fp_status);
9207     }
9208     if (changed & (1 << 25))
9209         set_default_nan_mode((val & (1 << 25)) != 0, &env->vfp.fp_status);
9210 
9211     i = vfp_exceptbits_to_host(val);
9212     set_float_exception_flags(i, &env->vfp.fp_status);
9213     set_float_exception_flags(0, &env->vfp.standard_fp_status);
9214 }
9215 
9216 void vfp_set_fpscr(CPUARMState *env, uint32_t val)
9217 {
9218     HELPER(vfp_set_fpscr)(env, val);
9219 }
9220 
9221 #define VFP_HELPER(name, p) HELPER(glue(glue(vfp_,name),p))
9222 
9223 #define VFP_BINOP(name) \
9224 float32 VFP_HELPER(name, s)(float32 a, float32 b, void *fpstp) \
9225 { \
9226     float_status *fpst = fpstp; \
9227     return float32_ ## name(a, b, fpst); \
9228 } \
9229 float64 VFP_HELPER(name, d)(float64 a, float64 b, void *fpstp) \
9230 { \
9231     float_status *fpst = fpstp; \
9232     return float64_ ## name(a, b, fpst); \
9233 }
9234 VFP_BINOP(add)
9235 VFP_BINOP(sub)
9236 VFP_BINOP(mul)
9237 VFP_BINOP(div)
9238 VFP_BINOP(min)
9239 VFP_BINOP(max)
9240 VFP_BINOP(minnum)
9241 VFP_BINOP(maxnum)
9242 #undef VFP_BINOP
9243 
9244 float32 VFP_HELPER(neg, s)(float32 a)
9245 {
9246     return float32_chs(a);
9247 }
9248 
9249 float64 VFP_HELPER(neg, d)(float64 a)
9250 {
9251     return float64_chs(a);
9252 }
9253 
9254 float32 VFP_HELPER(abs, s)(float32 a)
9255 {
9256     return float32_abs(a);
9257 }
9258 
9259 float64 VFP_HELPER(abs, d)(float64 a)
9260 {
9261     return float64_abs(a);
9262 }
9263 
9264 float32 VFP_HELPER(sqrt, s)(float32 a, CPUARMState *env)
9265 {
9266     return float32_sqrt(a, &env->vfp.fp_status);
9267 }
9268 
9269 float64 VFP_HELPER(sqrt, d)(float64 a, CPUARMState *env)
9270 {
9271     return float64_sqrt(a, &env->vfp.fp_status);
9272 }
9273 
9274 /* XXX: check quiet/signaling case */
9275 #define DO_VFP_cmp(p, type) \
9276 void VFP_HELPER(cmp, p)(type a, type b, CPUARMState *env)  \
9277 { \
9278     uint32_t flags; \
9279     switch(type ## _compare_quiet(a, b, &env->vfp.fp_status)) { \
9280     case 0: flags = 0x6; break; \
9281     case -1: flags = 0x8; break; \
9282     case 1: flags = 0x2; break; \
9283     default: case 2: flags = 0x3; break; \
9284     } \
9285     env->vfp.xregs[ARM_VFP_FPSCR] = (flags << 28) \
9286         | (env->vfp.xregs[ARM_VFP_FPSCR] & 0x0fffffff); \
9287 } \
9288 void VFP_HELPER(cmpe, p)(type a, type b, CPUARMState *env) \
9289 { \
9290     uint32_t flags; \
9291     switch(type ## _compare(a, b, &env->vfp.fp_status)) { \
9292     case 0: flags = 0x6; break; \
9293     case -1: flags = 0x8; break; \
9294     case 1: flags = 0x2; break; \
9295     default: case 2: flags = 0x3; break; \
9296     } \
9297     env->vfp.xregs[ARM_VFP_FPSCR] = (flags << 28) \
9298         | (env->vfp.xregs[ARM_VFP_FPSCR] & 0x0fffffff); \
9299 }
9300 DO_VFP_cmp(s, float32)
9301 DO_VFP_cmp(d, float64)
9302 #undef DO_VFP_cmp
9303 
9304 /* Integer to float and float to integer conversions */
9305 
9306 #define CONV_ITOF(name, fsz, sign) \
9307     float##fsz HELPER(name)(uint32_t x, void *fpstp) \
9308 { \
9309     float_status *fpst = fpstp; \
9310     return sign##int32_to_##float##fsz((sign##int32_t)x, fpst); \
9311 }
9312 
9313 #define CONV_FTOI(name, fsz, sign, round) \
9314 uint32_t HELPER(name)(float##fsz x, void *fpstp) \
9315 { \
9316     float_status *fpst = fpstp; \
9317     if (float##fsz##_is_any_nan(x)) { \
9318         float_raise(float_flag_invalid, fpst); \
9319         return 0; \
9320     } \
9321     return float##fsz##_to_##sign##int32##round(x, fpst); \
9322 }
9323 
9324 #define FLOAT_CONVS(name, p, fsz, sign) \
9325 CONV_ITOF(vfp_##name##to##p, fsz, sign) \
9326 CONV_FTOI(vfp_to##name##p, fsz, sign, ) \
9327 CONV_FTOI(vfp_to##name##z##p, fsz, sign, _round_to_zero)
9328 
9329 FLOAT_CONVS(si, s, 32, )
9330 FLOAT_CONVS(si, d, 64, )
9331 FLOAT_CONVS(ui, s, 32, u)
9332 FLOAT_CONVS(ui, d, 64, u)
9333 
9334 #undef CONV_ITOF
9335 #undef CONV_FTOI
9336 #undef FLOAT_CONVS
9337 
9338 /* floating point conversion */
9339 float64 VFP_HELPER(fcvtd, s)(float32 x, CPUARMState *env)
9340 {
9341     float64 r = float32_to_float64(x, &env->vfp.fp_status);
9342     /* ARM requires that S<->D conversion of any kind of NaN generates
9343      * a quiet NaN by forcing the most significant frac bit to 1.
9344      */
9345     return float64_maybe_silence_nan(r, &env->vfp.fp_status);
9346 }
9347 
9348 float32 VFP_HELPER(fcvts, d)(float64 x, CPUARMState *env)
9349 {
9350     float32 r =  float64_to_float32(x, &env->vfp.fp_status);
9351     /* ARM requires that S<->D conversion of any kind of NaN generates
9352      * a quiet NaN by forcing the most significant frac bit to 1.
9353      */
9354     return float32_maybe_silence_nan(r, &env->vfp.fp_status);
9355 }
9356 
9357 /* VFP3 fixed point conversion.  */
9358 #define VFP_CONV_FIX_FLOAT(name, p, fsz, isz, itype) \
9359 float##fsz HELPER(vfp_##name##to##p)(uint##isz##_t  x, uint32_t shift, \
9360                                      void *fpstp) \
9361 { \
9362     float_status *fpst = fpstp; \
9363     float##fsz tmp; \
9364     tmp = itype##_to_##float##fsz(x, fpst); \
9365     return float##fsz##_scalbn(tmp, -(int)shift, fpst); \
9366 }
9367 
9368 /* Notice that we want only input-denormal exception flags from the
9369  * scalbn operation: the other possible flags (overflow+inexact if
9370  * we overflow to infinity, output-denormal) aren't correct for the
9371  * complete scale-and-convert operation.
9372  */
9373 #define VFP_CONV_FLOAT_FIX_ROUND(name, p, fsz, isz, itype, round) \
9374 uint##isz##_t HELPER(vfp_to##name##p##round)(float##fsz x, \
9375                                              uint32_t shift, \
9376                                              void *fpstp) \
9377 { \
9378     float_status *fpst = fpstp; \
9379     int old_exc_flags = get_float_exception_flags(fpst); \
9380     float##fsz tmp; \
9381     if (float##fsz##_is_any_nan(x)) { \
9382         float_raise(float_flag_invalid, fpst); \
9383         return 0; \
9384     } \
9385     tmp = float##fsz##_scalbn(x, shift, fpst); \
9386     old_exc_flags |= get_float_exception_flags(fpst) \
9387         & float_flag_input_denormal; \
9388     set_float_exception_flags(old_exc_flags, fpst); \
9389     return float##fsz##_to_##itype##round(tmp, fpst); \
9390 }
9391 
9392 #define VFP_CONV_FIX(name, p, fsz, isz, itype)                   \
9393 VFP_CONV_FIX_FLOAT(name, p, fsz, isz, itype)                     \
9394 VFP_CONV_FLOAT_FIX_ROUND(name, p, fsz, isz, itype, _round_to_zero) \
9395 VFP_CONV_FLOAT_FIX_ROUND(name, p, fsz, isz, itype, )
9396 
9397 #define VFP_CONV_FIX_A64(name, p, fsz, isz, itype)               \
9398 VFP_CONV_FIX_FLOAT(name, p, fsz, isz, itype)                     \
9399 VFP_CONV_FLOAT_FIX_ROUND(name, p, fsz, isz, itype, )
9400 
9401 VFP_CONV_FIX(sh, d, 64, 64, int16)
9402 VFP_CONV_FIX(sl, d, 64, 64, int32)
9403 VFP_CONV_FIX_A64(sq, d, 64, 64, int64)
9404 VFP_CONV_FIX(uh, d, 64, 64, uint16)
9405 VFP_CONV_FIX(ul, d, 64, 64, uint32)
9406 VFP_CONV_FIX_A64(uq, d, 64, 64, uint64)
9407 VFP_CONV_FIX(sh, s, 32, 32, int16)
9408 VFP_CONV_FIX(sl, s, 32, 32, int32)
9409 VFP_CONV_FIX_A64(sq, s, 32, 64, int64)
9410 VFP_CONV_FIX(uh, s, 32, 32, uint16)
9411 VFP_CONV_FIX(ul, s, 32, 32, uint32)
9412 VFP_CONV_FIX_A64(uq, s, 32, 64, uint64)
9413 #undef VFP_CONV_FIX
9414 #undef VFP_CONV_FIX_FLOAT
9415 #undef VFP_CONV_FLOAT_FIX_ROUND
9416 
9417 /* Set the current fp rounding mode and return the old one.
9418  * The argument is a softfloat float_round_ value.
9419  */
9420 uint32_t HELPER(set_rmode)(uint32_t rmode, CPUARMState *env)
9421 {
9422     float_status *fp_status = &env->vfp.fp_status;
9423 
9424     uint32_t prev_rmode = get_float_rounding_mode(fp_status);
9425     set_float_rounding_mode(rmode, fp_status);
9426 
9427     return prev_rmode;
9428 }
9429 
9430 /* Set the current fp rounding mode in the standard fp status and return
9431  * the old one. This is for NEON instructions that need to change the
9432  * rounding mode but wish to use the standard FPSCR values for everything
9433  * else. Always set the rounding mode back to the correct value after
9434  * modifying it.
9435  * The argument is a softfloat float_round_ value.
9436  */
9437 uint32_t HELPER(set_neon_rmode)(uint32_t rmode, CPUARMState *env)
9438 {
9439     float_status *fp_status = &env->vfp.standard_fp_status;
9440 
9441     uint32_t prev_rmode = get_float_rounding_mode(fp_status);
9442     set_float_rounding_mode(rmode, fp_status);
9443 
9444     return prev_rmode;
9445 }
9446 
9447 /* Half precision conversions.  */
9448 static float32 do_fcvt_f16_to_f32(uint32_t a, CPUARMState *env, float_status *s)
9449 {
9450     int ieee = (env->vfp.xregs[ARM_VFP_FPSCR] & (1 << 26)) == 0;
9451     float32 r = float16_to_float32(make_float16(a), ieee, s);
9452     if (ieee) {
9453         return float32_maybe_silence_nan(r, s);
9454     }
9455     return r;
9456 }
9457 
9458 static uint32_t do_fcvt_f32_to_f16(float32 a, CPUARMState *env, float_status *s)
9459 {
9460     int ieee = (env->vfp.xregs[ARM_VFP_FPSCR] & (1 << 26)) == 0;
9461     float16 r = float32_to_float16(a, ieee, s);
9462     if (ieee) {
9463         r = float16_maybe_silence_nan(r, s);
9464     }
9465     return float16_val(r);
9466 }
9467 
9468 float32 HELPER(neon_fcvt_f16_to_f32)(uint32_t a, CPUARMState *env)
9469 {
9470     return do_fcvt_f16_to_f32(a, env, &env->vfp.standard_fp_status);
9471 }
9472 
9473 uint32_t HELPER(neon_fcvt_f32_to_f16)(float32 a, CPUARMState *env)
9474 {
9475     return do_fcvt_f32_to_f16(a, env, &env->vfp.standard_fp_status);
9476 }
9477 
9478 float32 HELPER(vfp_fcvt_f16_to_f32)(uint32_t a, CPUARMState *env)
9479 {
9480     return do_fcvt_f16_to_f32(a, env, &env->vfp.fp_status);
9481 }
9482 
9483 uint32_t HELPER(vfp_fcvt_f32_to_f16)(float32 a, CPUARMState *env)
9484 {
9485     return do_fcvt_f32_to_f16(a, env, &env->vfp.fp_status);
9486 }
9487 
9488 float64 HELPER(vfp_fcvt_f16_to_f64)(uint32_t a, CPUARMState *env)
9489 {
9490     int ieee = (env->vfp.xregs[ARM_VFP_FPSCR] & (1 << 26)) == 0;
9491     float64 r = float16_to_float64(make_float16(a), ieee, &env->vfp.fp_status);
9492     if (ieee) {
9493         return float64_maybe_silence_nan(r, &env->vfp.fp_status);
9494     }
9495     return r;
9496 }
9497 
9498 uint32_t HELPER(vfp_fcvt_f64_to_f16)(float64 a, CPUARMState *env)
9499 {
9500     int ieee = (env->vfp.xregs[ARM_VFP_FPSCR] & (1 << 26)) == 0;
9501     float16 r = float64_to_float16(a, ieee, &env->vfp.fp_status);
9502     if (ieee) {
9503         r = float16_maybe_silence_nan(r, &env->vfp.fp_status);
9504     }
9505     return float16_val(r);
9506 }
9507 
9508 #define float32_two make_float32(0x40000000)
9509 #define float32_three make_float32(0x40400000)
9510 #define float32_one_point_five make_float32(0x3fc00000)
9511 
9512 float32 HELPER(recps_f32)(float32 a, float32 b, CPUARMState *env)
9513 {
9514     float_status *s = &env->vfp.standard_fp_status;
9515     if ((float32_is_infinity(a) && float32_is_zero_or_denormal(b)) ||
9516         (float32_is_infinity(b) && float32_is_zero_or_denormal(a))) {
9517         if (!(float32_is_zero(a) || float32_is_zero(b))) {
9518             float_raise(float_flag_input_denormal, s);
9519         }
9520         return float32_two;
9521     }
9522     return float32_sub(float32_two, float32_mul(a, b, s), s);
9523 }
9524 
9525 float32 HELPER(rsqrts_f32)(float32 a, float32 b, CPUARMState *env)
9526 {
9527     float_status *s = &env->vfp.standard_fp_status;
9528     float32 product;
9529     if ((float32_is_infinity(a) && float32_is_zero_or_denormal(b)) ||
9530         (float32_is_infinity(b) && float32_is_zero_or_denormal(a))) {
9531         if (!(float32_is_zero(a) || float32_is_zero(b))) {
9532             float_raise(float_flag_input_denormal, s);
9533         }
9534         return float32_one_point_five;
9535     }
9536     product = float32_mul(a, b, s);
9537     return float32_div(float32_sub(float32_three, product, s), float32_two, s);
9538 }
9539 
9540 /* NEON helpers.  */
9541 
9542 /* Constants 256 and 512 are used in some helpers; we avoid relying on
9543  * int->float conversions at run-time.  */
9544 #define float64_256 make_float64(0x4070000000000000LL)
9545 #define float64_512 make_float64(0x4080000000000000LL)
9546 #define float32_maxnorm make_float32(0x7f7fffff)
9547 #define float64_maxnorm make_float64(0x7fefffffffffffffLL)
9548 
9549 /* Reciprocal functions
9550  *
9551  * The algorithm that must be used to calculate the estimate
9552  * is specified by the ARM ARM, see FPRecipEstimate()
9553  */
9554 
9555 static float64 recip_estimate(float64 a, float_status *real_fp_status)
9556 {
9557     /* These calculations mustn't set any fp exception flags,
9558      * so we use a local copy of the fp_status.
9559      */
9560     float_status dummy_status = *real_fp_status;
9561     float_status *s = &dummy_status;
9562     /* q = (int)(a * 512.0) */
9563     float64 q = float64_mul(float64_512, a, s);
9564     int64_t q_int = float64_to_int64_round_to_zero(q, s);
9565 
9566     /* r = 1.0 / (((double)q + 0.5) / 512.0) */
9567     q = int64_to_float64(q_int, s);
9568     q = float64_add(q, float64_half, s);
9569     q = float64_div(q, float64_512, s);
9570     q = float64_div(float64_one, q, s);
9571 
9572     /* s = (int)(256.0 * r + 0.5) */
9573     q = float64_mul(q, float64_256, s);
9574     q = float64_add(q, float64_half, s);
9575     q_int = float64_to_int64_round_to_zero(q, s);
9576 
9577     /* return (double)s / 256.0 */
9578     return float64_div(int64_to_float64(q_int, s), float64_256, s);
9579 }
9580 
9581 /* Common wrapper to call recip_estimate */
9582 static float64 call_recip_estimate(float64 num, int off, float_status *fpst)
9583 {
9584     uint64_t val64 = float64_val(num);
9585     uint64_t frac = extract64(val64, 0, 52);
9586     int64_t exp = extract64(val64, 52, 11);
9587     uint64_t sbit;
9588     float64 scaled, estimate;
9589 
9590     /* Generate the scaled number for the estimate function */
9591     if (exp == 0) {
9592         if (extract64(frac, 51, 1) == 0) {
9593             exp = -1;
9594             frac = extract64(frac, 0, 50) << 2;
9595         } else {
9596             frac = extract64(frac, 0, 51) << 1;
9597         }
9598     }
9599 
9600     /* scaled = '0' : '01111111110' : fraction<51:44> : Zeros(44); */
9601     scaled = make_float64((0x3feULL << 52)
9602                           | extract64(frac, 44, 8) << 44);
9603 
9604     estimate = recip_estimate(scaled, fpst);
9605 
9606     /* Build new result */
9607     val64 = float64_val(estimate);
9608     sbit = 0x8000000000000000ULL & val64;
9609     exp = off - exp;
9610     frac = extract64(val64, 0, 52);
9611 
9612     if (exp == 0) {
9613         frac = 1ULL << 51 | extract64(frac, 1, 51);
9614     } else if (exp == -1) {
9615         frac = 1ULL << 50 | extract64(frac, 2, 50);
9616         exp = 0;
9617     }
9618 
9619     return make_float64(sbit | (exp << 52) | frac);
9620 }
9621 
9622 static bool round_to_inf(float_status *fpst, bool sign_bit)
9623 {
9624     switch (fpst->float_rounding_mode) {
9625     case float_round_nearest_even: /* Round to Nearest */
9626         return true;
9627     case float_round_up: /* Round to +Inf */
9628         return !sign_bit;
9629     case float_round_down: /* Round to -Inf */
9630         return sign_bit;
9631     case float_round_to_zero: /* Round to Zero */
9632         return false;
9633     }
9634 
9635     g_assert_not_reached();
9636 }
9637 
9638 float32 HELPER(recpe_f32)(float32 input, void *fpstp)
9639 {
9640     float_status *fpst = fpstp;
9641     float32 f32 = float32_squash_input_denormal(input, fpst);
9642     uint32_t f32_val = float32_val(f32);
9643     uint32_t f32_sbit = 0x80000000ULL & f32_val;
9644     int32_t f32_exp = extract32(f32_val, 23, 8);
9645     uint32_t f32_frac = extract32(f32_val, 0, 23);
9646     float64 f64, r64;
9647     uint64_t r64_val;
9648     int64_t r64_exp;
9649     uint64_t r64_frac;
9650 
9651     if (float32_is_any_nan(f32)) {
9652         float32 nan = f32;
9653         if (float32_is_signaling_nan(f32, fpst)) {
9654             float_raise(float_flag_invalid, fpst);
9655             nan = float32_maybe_silence_nan(f32, fpst);
9656         }
9657         if (fpst->default_nan_mode) {
9658             nan =  float32_default_nan(fpst);
9659         }
9660         return nan;
9661     } else if (float32_is_infinity(f32)) {
9662         return float32_set_sign(float32_zero, float32_is_neg(f32));
9663     } else if (float32_is_zero(f32)) {
9664         float_raise(float_flag_divbyzero, fpst);
9665         return float32_set_sign(float32_infinity, float32_is_neg(f32));
9666     } else if ((f32_val & ~(1ULL << 31)) < (1ULL << 21)) {
9667         /* Abs(value) < 2.0^-128 */
9668         float_raise(float_flag_overflow | float_flag_inexact, fpst);
9669         if (round_to_inf(fpst, f32_sbit)) {
9670             return float32_set_sign(float32_infinity, float32_is_neg(f32));
9671         } else {
9672             return float32_set_sign(float32_maxnorm, float32_is_neg(f32));
9673         }
9674     } else if (f32_exp >= 253 && fpst->flush_to_zero) {
9675         float_raise(float_flag_underflow, fpst);
9676         return float32_set_sign(float32_zero, float32_is_neg(f32));
9677     }
9678 
9679 
9680     f64 = make_float64(((int64_t)(f32_exp) << 52) | (int64_t)(f32_frac) << 29);
9681     r64 = call_recip_estimate(f64, 253, fpst);
9682     r64_val = float64_val(r64);
9683     r64_exp = extract64(r64_val, 52, 11);
9684     r64_frac = extract64(r64_val, 0, 52);
9685 
9686     /* result = sign : result_exp<7:0> : fraction<51:29>; */
9687     return make_float32(f32_sbit |
9688                         (r64_exp & 0xff) << 23 |
9689                         extract64(r64_frac, 29, 24));
9690 }
9691 
9692 float64 HELPER(recpe_f64)(float64 input, void *fpstp)
9693 {
9694     float_status *fpst = fpstp;
9695     float64 f64 = float64_squash_input_denormal(input, fpst);
9696     uint64_t f64_val = float64_val(f64);
9697     uint64_t f64_sbit = 0x8000000000000000ULL & f64_val;
9698     int64_t f64_exp = extract64(f64_val, 52, 11);
9699     float64 r64;
9700     uint64_t r64_val;
9701     int64_t r64_exp;
9702     uint64_t r64_frac;
9703 
9704     /* Deal with any special cases */
9705     if (float64_is_any_nan(f64)) {
9706         float64 nan = f64;
9707         if (float64_is_signaling_nan(f64, fpst)) {
9708             float_raise(float_flag_invalid, fpst);
9709             nan = float64_maybe_silence_nan(f64, fpst);
9710         }
9711         if (fpst->default_nan_mode) {
9712             nan =  float64_default_nan(fpst);
9713         }
9714         return nan;
9715     } else if (float64_is_infinity(f64)) {
9716         return float64_set_sign(float64_zero, float64_is_neg(f64));
9717     } else if (float64_is_zero(f64)) {
9718         float_raise(float_flag_divbyzero, fpst);
9719         return float64_set_sign(float64_infinity, float64_is_neg(f64));
9720     } else if ((f64_val & ~(1ULL << 63)) < (1ULL << 50)) {
9721         /* Abs(value) < 2.0^-1024 */
9722         float_raise(float_flag_overflow | float_flag_inexact, fpst);
9723         if (round_to_inf(fpst, f64_sbit)) {
9724             return float64_set_sign(float64_infinity, float64_is_neg(f64));
9725         } else {
9726             return float64_set_sign(float64_maxnorm, float64_is_neg(f64));
9727         }
9728     } else if (f64_exp >= 2045 && fpst->flush_to_zero) {
9729         float_raise(float_flag_underflow, fpst);
9730         return float64_set_sign(float64_zero, float64_is_neg(f64));
9731     }
9732 
9733     r64 = call_recip_estimate(f64, 2045, fpst);
9734     r64_val = float64_val(r64);
9735     r64_exp = extract64(r64_val, 52, 11);
9736     r64_frac = extract64(r64_val, 0, 52);
9737 
9738     /* result = sign : result_exp<10:0> : fraction<51:0> */
9739     return make_float64(f64_sbit |
9740                         ((r64_exp & 0x7ff) << 52) |
9741                         r64_frac);
9742 }
9743 
9744 /* The algorithm that must be used to calculate the estimate
9745  * is specified by the ARM ARM.
9746  */
9747 static float64 recip_sqrt_estimate(float64 a, float_status *real_fp_status)
9748 {
9749     /* These calculations mustn't set any fp exception flags,
9750      * so we use a local copy of the fp_status.
9751      */
9752     float_status dummy_status = *real_fp_status;
9753     float_status *s = &dummy_status;
9754     float64 q;
9755     int64_t q_int;
9756 
9757     if (float64_lt(a, float64_half, s)) {
9758         /* range 0.25 <= a < 0.5 */
9759 
9760         /* a in units of 1/512 rounded down */
9761         /* q0 = (int)(a * 512.0);  */
9762         q = float64_mul(float64_512, a, s);
9763         q_int = float64_to_int64_round_to_zero(q, s);
9764 
9765         /* reciprocal root r */
9766         /* r = 1.0 / sqrt(((double)q0 + 0.5) / 512.0);  */
9767         q = int64_to_float64(q_int, s);
9768         q = float64_add(q, float64_half, s);
9769         q = float64_div(q, float64_512, s);
9770         q = float64_sqrt(q, s);
9771         q = float64_div(float64_one, q, s);
9772     } else {
9773         /* range 0.5 <= a < 1.0 */
9774 
9775         /* a in units of 1/256 rounded down */
9776         /* q1 = (int)(a * 256.0); */
9777         q = float64_mul(float64_256, a, s);
9778         int64_t q_int = float64_to_int64_round_to_zero(q, s);
9779 
9780         /* reciprocal root r */
9781         /* r = 1.0 /sqrt(((double)q1 + 0.5) / 256); */
9782         q = int64_to_float64(q_int, s);
9783         q = float64_add(q, float64_half, s);
9784         q = float64_div(q, float64_256, s);
9785         q = float64_sqrt(q, s);
9786         q = float64_div(float64_one, q, s);
9787     }
9788     /* r in units of 1/256 rounded to nearest */
9789     /* s = (int)(256.0 * r + 0.5); */
9790 
9791     q = float64_mul(q, float64_256,s );
9792     q = float64_add(q, float64_half, s);
9793     q_int = float64_to_int64_round_to_zero(q, s);
9794 
9795     /* return (double)s / 256.0;*/
9796     return float64_div(int64_to_float64(q_int, s), float64_256, s);
9797 }
9798 
9799 float32 HELPER(rsqrte_f32)(float32 input, void *fpstp)
9800 {
9801     float_status *s = fpstp;
9802     float32 f32 = float32_squash_input_denormal(input, s);
9803     uint32_t val = float32_val(f32);
9804     uint32_t f32_sbit = 0x80000000 & val;
9805     int32_t f32_exp = extract32(val, 23, 8);
9806     uint32_t f32_frac = extract32(val, 0, 23);
9807     uint64_t f64_frac;
9808     uint64_t val64;
9809     int result_exp;
9810     float64 f64;
9811 
9812     if (float32_is_any_nan(f32)) {
9813         float32 nan = f32;
9814         if (float32_is_signaling_nan(f32, s)) {
9815             float_raise(float_flag_invalid, s);
9816             nan = float32_maybe_silence_nan(f32, s);
9817         }
9818         if (s->default_nan_mode) {
9819             nan =  float32_default_nan(s);
9820         }
9821         return nan;
9822     } else if (float32_is_zero(f32)) {
9823         float_raise(float_flag_divbyzero, s);
9824         return float32_set_sign(float32_infinity, float32_is_neg(f32));
9825     } else if (float32_is_neg(f32)) {
9826         float_raise(float_flag_invalid, s);
9827         return float32_default_nan(s);
9828     } else if (float32_is_infinity(f32)) {
9829         return float32_zero;
9830     }
9831 
9832     /* Scale and normalize to a double-precision value between 0.25 and 1.0,
9833      * preserving the parity of the exponent.  */
9834 
9835     f64_frac = ((uint64_t) f32_frac) << 29;
9836     if (f32_exp == 0) {
9837         while (extract64(f64_frac, 51, 1) == 0) {
9838             f64_frac = f64_frac << 1;
9839             f32_exp = f32_exp-1;
9840         }
9841         f64_frac = extract64(f64_frac, 0, 51) << 1;
9842     }
9843 
9844     if (extract64(f32_exp, 0, 1) == 0) {
9845         f64 = make_float64(((uint64_t) f32_sbit) << 32
9846                            | (0x3feULL << 52)
9847                            | f64_frac);
9848     } else {
9849         f64 = make_float64(((uint64_t) f32_sbit) << 32
9850                            | (0x3fdULL << 52)
9851                            | f64_frac);
9852     }
9853 
9854     result_exp = (380 - f32_exp) / 2;
9855 
9856     f64 = recip_sqrt_estimate(f64, s);
9857 
9858     val64 = float64_val(f64);
9859 
9860     val = ((result_exp & 0xff) << 23)
9861         | ((val64 >> 29)  & 0x7fffff);
9862     return make_float32(val);
9863 }
9864 
9865 float64 HELPER(rsqrte_f64)(float64 input, void *fpstp)
9866 {
9867     float_status *s = fpstp;
9868     float64 f64 = float64_squash_input_denormal(input, s);
9869     uint64_t val = float64_val(f64);
9870     uint64_t f64_sbit = 0x8000000000000000ULL & val;
9871     int64_t f64_exp = extract64(val, 52, 11);
9872     uint64_t f64_frac = extract64(val, 0, 52);
9873     int64_t result_exp;
9874     uint64_t result_frac;
9875 
9876     if (float64_is_any_nan(f64)) {
9877         float64 nan = f64;
9878         if (float64_is_signaling_nan(f64, s)) {
9879             float_raise(float_flag_invalid, s);
9880             nan = float64_maybe_silence_nan(f64, s);
9881         }
9882         if (s->default_nan_mode) {
9883             nan =  float64_default_nan(s);
9884         }
9885         return nan;
9886     } else if (float64_is_zero(f64)) {
9887         float_raise(float_flag_divbyzero, s);
9888         return float64_set_sign(float64_infinity, float64_is_neg(f64));
9889     } else if (float64_is_neg(f64)) {
9890         float_raise(float_flag_invalid, s);
9891         return float64_default_nan(s);
9892     } else if (float64_is_infinity(f64)) {
9893         return float64_zero;
9894     }
9895 
9896     /* Scale and normalize to a double-precision value between 0.25 and 1.0,
9897      * preserving the parity of the exponent.  */
9898 
9899     if (f64_exp == 0) {
9900         while (extract64(f64_frac, 51, 1) == 0) {
9901             f64_frac = f64_frac << 1;
9902             f64_exp = f64_exp - 1;
9903         }
9904         f64_frac = extract64(f64_frac, 0, 51) << 1;
9905     }
9906 
9907     if (extract64(f64_exp, 0, 1) == 0) {
9908         f64 = make_float64(f64_sbit
9909                            | (0x3feULL << 52)
9910                            | f64_frac);
9911     } else {
9912         f64 = make_float64(f64_sbit
9913                            | (0x3fdULL << 52)
9914                            | f64_frac);
9915     }
9916 
9917     result_exp = (3068 - f64_exp) / 2;
9918 
9919     f64 = recip_sqrt_estimate(f64, s);
9920 
9921     result_frac = extract64(float64_val(f64), 0, 52);
9922 
9923     return make_float64(f64_sbit |
9924                         ((result_exp & 0x7ff) << 52) |
9925                         result_frac);
9926 }
9927 
9928 uint32_t HELPER(recpe_u32)(uint32_t a, void *fpstp)
9929 {
9930     float_status *s = fpstp;
9931     float64 f64;
9932 
9933     if ((a & 0x80000000) == 0) {
9934         return 0xffffffff;
9935     }
9936 
9937     f64 = make_float64((0x3feULL << 52)
9938                        | ((int64_t)(a & 0x7fffffff) << 21));
9939 
9940     f64 = recip_estimate(f64, s);
9941 
9942     return 0x80000000 | ((float64_val(f64) >> 21) & 0x7fffffff);
9943 }
9944 
9945 uint32_t HELPER(rsqrte_u32)(uint32_t a, void *fpstp)
9946 {
9947     float_status *fpst = fpstp;
9948     float64 f64;
9949 
9950     if ((a & 0xc0000000) == 0) {
9951         return 0xffffffff;
9952     }
9953 
9954     if (a & 0x80000000) {
9955         f64 = make_float64((0x3feULL << 52)
9956                            | ((uint64_t)(a & 0x7fffffff) << 21));
9957     } else { /* bits 31-30 == '01' */
9958         f64 = make_float64((0x3fdULL << 52)
9959                            | ((uint64_t)(a & 0x3fffffff) << 22));
9960     }
9961 
9962     f64 = recip_sqrt_estimate(f64, fpst);
9963 
9964     return 0x80000000 | ((float64_val(f64) >> 21) & 0x7fffffff);
9965 }
9966 
9967 /* VFPv4 fused multiply-accumulate */
9968 float32 VFP_HELPER(muladd, s)(float32 a, float32 b, float32 c, void *fpstp)
9969 {
9970     float_status *fpst = fpstp;
9971     return float32_muladd(a, b, c, 0, fpst);
9972 }
9973 
9974 float64 VFP_HELPER(muladd, d)(float64 a, float64 b, float64 c, void *fpstp)
9975 {
9976     float_status *fpst = fpstp;
9977     return float64_muladd(a, b, c, 0, fpst);
9978 }
9979 
9980 /* ARMv8 round to integral */
9981 float32 HELPER(rints_exact)(float32 x, void *fp_status)
9982 {
9983     return float32_round_to_int(x, fp_status);
9984 }
9985 
9986 float64 HELPER(rintd_exact)(float64 x, void *fp_status)
9987 {
9988     return float64_round_to_int(x, fp_status);
9989 }
9990 
9991 float32 HELPER(rints)(float32 x, void *fp_status)
9992 {
9993     int old_flags = get_float_exception_flags(fp_status), new_flags;
9994     float32 ret;
9995 
9996     ret = float32_round_to_int(x, fp_status);
9997 
9998     /* Suppress any inexact exceptions the conversion produced */
9999     if (!(old_flags & float_flag_inexact)) {
10000         new_flags = get_float_exception_flags(fp_status);
10001         set_float_exception_flags(new_flags & ~float_flag_inexact, fp_status);
10002     }
10003 
10004     return ret;
10005 }
10006 
10007 float64 HELPER(rintd)(float64 x, void *fp_status)
10008 {
10009     int old_flags = get_float_exception_flags(fp_status), new_flags;
10010     float64 ret;
10011 
10012     ret = float64_round_to_int(x, fp_status);
10013 
10014     new_flags = get_float_exception_flags(fp_status);
10015 
10016     /* Suppress any inexact exceptions the conversion produced */
10017     if (!(old_flags & float_flag_inexact)) {
10018         new_flags = get_float_exception_flags(fp_status);
10019         set_float_exception_flags(new_flags & ~float_flag_inexact, fp_status);
10020     }
10021 
10022     return ret;
10023 }
10024 
10025 /* Convert ARM rounding mode to softfloat */
10026 int arm_rmode_to_sf(int rmode)
10027 {
10028     switch (rmode) {
10029     case FPROUNDING_TIEAWAY:
10030         rmode = float_round_ties_away;
10031         break;
10032     case FPROUNDING_ODD:
10033         /* FIXME: add support for TIEAWAY and ODD */
10034         qemu_log_mask(LOG_UNIMP, "arm: unimplemented rounding mode: %d\n",
10035                       rmode);
10036     case FPROUNDING_TIEEVEN:
10037     default:
10038         rmode = float_round_nearest_even;
10039         break;
10040     case FPROUNDING_POSINF:
10041         rmode = float_round_up;
10042         break;
10043     case FPROUNDING_NEGINF:
10044         rmode = float_round_down;
10045         break;
10046     case FPROUNDING_ZERO:
10047         rmode = float_round_to_zero;
10048         break;
10049     }
10050     return rmode;
10051 }
10052 
10053 /* CRC helpers.
10054  * The upper bytes of val (above the number specified by 'bytes') must have
10055  * been zeroed out by the caller.
10056  */
10057 uint32_t HELPER(crc32)(uint32_t acc, uint32_t val, uint32_t bytes)
10058 {
10059     uint8_t buf[4];
10060 
10061     stl_le_p(buf, val);
10062 
10063     /* zlib crc32 converts the accumulator and output to one's complement.  */
10064     return crc32(acc ^ 0xffffffff, buf, bytes) ^ 0xffffffff;
10065 }
10066 
10067 uint32_t HELPER(crc32c)(uint32_t acc, uint32_t val, uint32_t bytes)
10068 {
10069     uint8_t buf[4];
10070 
10071     stl_le_p(buf, val);
10072 
10073     /* Linux crc32c converts the output to one's complement.  */
10074     return crc32c(acc, buf, bytes) ^ 0xffffffff;
10075 }
10076