1 /* 2 * ARM generic helpers. 3 * 4 * This code is licensed under the GNU GPL v2 or later. 5 * 6 * SPDX-License-Identifier: GPL-2.0-or-later 7 */ 8 9 #include "qemu/osdep.h" 10 #include "qemu/units.h" 11 #include "qemu/log.h" 12 #include "trace.h" 13 #include "cpu.h" 14 #include "internals.h" 15 #include "exec/helper-proto.h" 16 #include "qemu/host-utils.h" 17 #include "qemu/main-loop.h" 18 #include "qemu/timer.h" 19 #include "qemu/bitops.h" 20 #include "qemu/crc32c.h" 21 #include "qemu/qemu-print.h" 22 #include "exec/exec-all.h" 23 #include <zlib.h> /* For crc32 */ 24 #include "hw/irq.h" 25 #include "semihosting/semihost.h" 26 #include "sysemu/cpus.h" 27 #include "sysemu/cpu-timers.h" 28 #include "sysemu/kvm.h" 29 #include "qemu/range.h" 30 #include "qapi/qapi-commands-machine-target.h" 31 #include "qapi/error.h" 32 #include "qemu/guest-random.h" 33 #ifdef CONFIG_TCG 34 #include "arm_ldst.h" 35 #include "exec/cpu_ldst.h" 36 #include "semihosting/common-semi.h" 37 #endif 38 #include "cpregs.h" 39 40 #define ARM_CPU_FREQ 1000000000 /* FIXME: 1 GHz, should be configurable */ 41 42 static void switch_mode(CPUARMState *env, int mode); 43 44 static uint64_t raw_read(CPUARMState *env, const ARMCPRegInfo *ri) 45 { 46 assert(ri->fieldoffset); 47 if (cpreg_field_is_64bit(ri)) { 48 return CPREG_FIELD64(env, ri); 49 } else { 50 return CPREG_FIELD32(env, ri); 51 } 52 } 53 54 static void raw_write(CPUARMState *env, const ARMCPRegInfo *ri, 55 uint64_t value) 56 { 57 assert(ri->fieldoffset); 58 if (cpreg_field_is_64bit(ri)) { 59 CPREG_FIELD64(env, ri) = value; 60 } else { 61 CPREG_FIELD32(env, ri) = value; 62 } 63 } 64 65 static void *raw_ptr(CPUARMState *env, const ARMCPRegInfo *ri) 66 { 67 return (char *)env + ri->fieldoffset; 68 } 69 70 uint64_t read_raw_cp_reg(CPUARMState *env, const ARMCPRegInfo *ri) 71 { 72 /* Raw read of a coprocessor register (as needed for migration, etc). */ 73 if (ri->type & ARM_CP_CONST) { 74 return ri->resetvalue; 75 } else if (ri->raw_readfn) { 76 return ri->raw_readfn(env, ri); 77 } else if (ri->readfn) { 78 return ri->readfn(env, ri); 79 } else { 80 return raw_read(env, ri); 81 } 82 } 83 84 static void write_raw_cp_reg(CPUARMState *env, const ARMCPRegInfo *ri, 85 uint64_t v) 86 { 87 /* Raw write of a coprocessor register (as needed for migration, etc). 88 * Note that constant registers are treated as write-ignored; the 89 * caller should check for success by whether a readback gives the 90 * value written. 91 */ 92 if (ri->type & ARM_CP_CONST) { 93 return; 94 } else if (ri->raw_writefn) { 95 ri->raw_writefn(env, ri, v); 96 } else if (ri->writefn) { 97 ri->writefn(env, ri, v); 98 } else { 99 raw_write(env, ri, v); 100 } 101 } 102 103 static bool raw_accessors_invalid(const ARMCPRegInfo *ri) 104 { 105 /* Return true if the regdef would cause an assertion if you called 106 * read_raw_cp_reg() or write_raw_cp_reg() on it (ie if it is a 107 * program bug for it not to have the NO_RAW flag). 108 * NB that returning false here doesn't necessarily mean that calling 109 * read/write_raw_cp_reg() is safe, because we can't distinguish "has 110 * read/write access functions which are safe for raw use" from "has 111 * read/write access functions which have side effects but has forgotten 112 * to provide raw access functions". 113 * The tests here line up with the conditions in read/write_raw_cp_reg() 114 * and assertions in raw_read()/raw_write(). 115 */ 116 if ((ri->type & ARM_CP_CONST) || 117 ri->fieldoffset || 118 ((ri->raw_writefn || ri->writefn) && (ri->raw_readfn || ri->readfn))) { 119 return false; 120 } 121 return true; 122 } 123 124 bool write_cpustate_to_list(ARMCPU *cpu, bool kvm_sync) 125 { 126 /* Write the coprocessor state from cpu->env to the (index,value) list. */ 127 int i; 128 bool ok = true; 129 130 for (i = 0; i < cpu->cpreg_array_len; i++) { 131 uint32_t regidx = kvm_to_cpreg_id(cpu->cpreg_indexes[i]); 132 const ARMCPRegInfo *ri; 133 uint64_t newval; 134 135 ri = get_arm_cp_reginfo(cpu->cp_regs, regidx); 136 if (!ri) { 137 ok = false; 138 continue; 139 } 140 if (ri->type & ARM_CP_NO_RAW) { 141 continue; 142 } 143 144 newval = read_raw_cp_reg(&cpu->env, ri); 145 if (kvm_sync) { 146 /* 147 * Only sync if the previous list->cpustate sync succeeded. 148 * Rather than tracking the success/failure state for every 149 * item in the list, we just recheck "does the raw write we must 150 * have made in write_list_to_cpustate() read back OK" here. 151 */ 152 uint64_t oldval = cpu->cpreg_values[i]; 153 154 if (oldval == newval) { 155 continue; 156 } 157 158 write_raw_cp_reg(&cpu->env, ri, oldval); 159 if (read_raw_cp_reg(&cpu->env, ri) != oldval) { 160 continue; 161 } 162 163 write_raw_cp_reg(&cpu->env, ri, newval); 164 } 165 cpu->cpreg_values[i] = newval; 166 } 167 return ok; 168 } 169 170 bool write_list_to_cpustate(ARMCPU *cpu) 171 { 172 int i; 173 bool ok = true; 174 175 for (i = 0; i < cpu->cpreg_array_len; i++) { 176 uint32_t regidx = kvm_to_cpreg_id(cpu->cpreg_indexes[i]); 177 uint64_t v = cpu->cpreg_values[i]; 178 const ARMCPRegInfo *ri; 179 180 ri = get_arm_cp_reginfo(cpu->cp_regs, regidx); 181 if (!ri) { 182 ok = false; 183 continue; 184 } 185 if (ri->type & ARM_CP_NO_RAW) { 186 continue; 187 } 188 /* Write value and confirm it reads back as written 189 * (to catch read-only registers and partially read-only 190 * registers where the incoming migration value doesn't match) 191 */ 192 write_raw_cp_reg(&cpu->env, ri, v); 193 if (read_raw_cp_reg(&cpu->env, ri) != v) { 194 ok = false; 195 } 196 } 197 return ok; 198 } 199 200 static void add_cpreg_to_list(gpointer key, gpointer opaque) 201 { 202 ARMCPU *cpu = opaque; 203 uint32_t regidx = (uintptr_t)key; 204 const ARMCPRegInfo *ri = get_arm_cp_reginfo(cpu->cp_regs, regidx); 205 206 if (!(ri->type & (ARM_CP_NO_RAW|ARM_CP_ALIAS))) { 207 cpu->cpreg_indexes[cpu->cpreg_array_len] = cpreg_to_kvm_id(regidx); 208 /* The value array need not be initialized at this point */ 209 cpu->cpreg_array_len++; 210 } 211 } 212 213 static void count_cpreg(gpointer key, gpointer opaque) 214 { 215 ARMCPU *cpu = opaque; 216 const ARMCPRegInfo *ri; 217 218 ri = g_hash_table_lookup(cpu->cp_regs, key); 219 220 if (!(ri->type & (ARM_CP_NO_RAW|ARM_CP_ALIAS))) { 221 cpu->cpreg_array_len++; 222 } 223 } 224 225 static gint cpreg_key_compare(gconstpointer a, gconstpointer b) 226 { 227 uint64_t aidx = cpreg_to_kvm_id((uintptr_t)a); 228 uint64_t bidx = cpreg_to_kvm_id((uintptr_t)b); 229 230 if (aidx > bidx) { 231 return 1; 232 } 233 if (aidx < bidx) { 234 return -1; 235 } 236 return 0; 237 } 238 239 void init_cpreg_list(ARMCPU *cpu) 240 { 241 /* Initialise the cpreg_tuples[] array based on the cp_regs hash. 242 * Note that we require cpreg_tuples[] to be sorted by key ID. 243 */ 244 GList *keys; 245 int arraylen; 246 247 keys = g_hash_table_get_keys(cpu->cp_regs); 248 keys = g_list_sort(keys, cpreg_key_compare); 249 250 cpu->cpreg_array_len = 0; 251 252 g_list_foreach(keys, count_cpreg, cpu); 253 254 arraylen = cpu->cpreg_array_len; 255 cpu->cpreg_indexes = g_new(uint64_t, arraylen); 256 cpu->cpreg_values = g_new(uint64_t, arraylen); 257 cpu->cpreg_vmstate_indexes = g_new(uint64_t, arraylen); 258 cpu->cpreg_vmstate_values = g_new(uint64_t, arraylen); 259 cpu->cpreg_vmstate_array_len = cpu->cpreg_array_len; 260 cpu->cpreg_array_len = 0; 261 262 g_list_foreach(keys, add_cpreg_to_list, cpu); 263 264 assert(cpu->cpreg_array_len == arraylen); 265 266 g_list_free(keys); 267 } 268 269 /* 270 * Some registers are not accessible from AArch32 EL3 if SCR.NS == 0. 271 */ 272 static CPAccessResult access_el3_aa32ns(CPUARMState *env, 273 const ARMCPRegInfo *ri, 274 bool isread) 275 { 276 if (!is_a64(env) && arm_current_el(env) == 3 && 277 arm_is_secure_below_el3(env)) { 278 return CP_ACCESS_TRAP_UNCATEGORIZED; 279 } 280 return CP_ACCESS_OK; 281 } 282 283 /* Some secure-only AArch32 registers trap to EL3 if used from 284 * Secure EL1 (but are just ordinary UNDEF in other non-EL3 contexts). 285 * Note that an access from Secure EL1 can only happen if EL3 is AArch64. 286 * We assume that the .access field is set to PL1_RW. 287 */ 288 static CPAccessResult access_trap_aa32s_el1(CPUARMState *env, 289 const ARMCPRegInfo *ri, 290 bool isread) 291 { 292 if (arm_current_el(env) == 3) { 293 return CP_ACCESS_OK; 294 } 295 if (arm_is_secure_below_el3(env)) { 296 if (env->cp15.scr_el3 & SCR_EEL2) { 297 return CP_ACCESS_TRAP_EL2; 298 } 299 return CP_ACCESS_TRAP_EL3; 300 } 301 /* This will be EL1 NS and EL2 NS, which just UNDEF */ 302 return CP_ACCESS_TRAP_UNCATEGORIZED; 303 } 304 305 static uint64_t arm_mdcr_el2_eff(CPUARMState *env) 306 { 307 return arm_is_el2_enabled(env) ? env->cp15.mdcr_el2 : 0; 308 } 309 310 /* Check for traps to "powerdown debug" registers, which are controlled 311 * by MDCR.TDOSA 312 */ 313 static CPAccessResult access_tdosa(CPUARMState *env, const ARMCPRegInfo *ri, 314 bool isread) 315 { 316 int el = arm_current_el(env); 317 uint64_t mdcr_el2 = arm_mdcr_el2_eff(env); 318 bool mdcr_el2_tdosa = (mdcr_el2 & MDCR_TDOSA) || (mdcr_el2 & MDCR_TDE) || 319 (arm_hcr_el2_eff(env) & HCR_TGE); 320 321 if (el < 2 && mdcr_el2_tdosa) { 322 return CP_ACCESS_TRAP_EL2; 323 } 324 if (el < 3 && (env->cp15.mdcr_el3 & MDCR_TDOSA)) { 325 return CP_ACCESS_TRAP_EL3; 326 } 327 return CP_ACCESS_OK; 328 } 329 330 /* Check for traps to "debug ROM" registers, which are controlled 331 * by MDCR_EL2.TDRA for EL2 but by the more general MDCR_EL3.TDA for EL3. 332 */ 333 static CPAccessResult access_tdra(CPUARMState *env, const ARMCPRegInfo *ri, 334 bool isread) 335 { 336 int el = arm_current_el(env); 337 uint64_t mdcr_el2 = arm_mdcr_el2_eff(env); 338 bool mdcr_el2_tdra = (mdcr_el2 & MDCR_TDRA) || (mdcr_el2 & MDCR_TDE) || 339 (arm_hcr_el2_eff(env) & HCR_TGE); 340 341 if (el < 2 && mdcr_el2_tdra) { 342 return CP_ACCESS_TRAP_EL2; 343 } 344 if (el < 3 && (env->cp15.mdcr_el3 & MDCR_TDA)) { 345 return CP_ACCESS_TRAP_EL3; 346 } 347 return CP_ACCESS_OK; 348 } 349 350 /* Check for traps to general debug registers, which are controlled 351 * by MDCR_EL2.TDA for EL2 and MDCR_EL3.TDA for EL3. 352 */ 353 static CPAccessResult access_tda(CPUARMState *env, const ARMCPRegInfo *ri, 354 bool isread) 355 { 356 int el = arm_current_el(env); 357 uint64_t mdcr_el2 = arm_mdcr_el2_eff(env); 358 bool mdcr_el2_tda = (mdcr_el2 & MDCR_TDA) || (mdcr_el2 & MDCR_TDE) || 359 (arm_hcr_el2_eff(env) & HCR_TGE); 360 361 if (el < 2 && mdcr_el2_tda) { 362 return CP_ACCESS_TRAP_EL2; 363 } 364 if (el < 3 && (env->cp15.mdcr_el3 & MDCR_TDA)) { 365 return CP_ACCESS_TRAP_EL3; 366 } 367 return CP_ACCESS_OK; 368 } 369 370 /* Check for traps to performance monitor registers, which are controlled 371 * by MDCR_EL2.TPM for EL2 and MDCR_EL3.TPM for EL3. 372 */ 373 static CPAccessResult access_tpm(CPUARMState *env, const ARMCPRegInfo *ri, 374 bool isread) 375 { 376 int el = arm_current_el(env); 377 uint64_t mdcr_el2 = arm_mdcr_el2_eff(env); 378 379 if (el < 2 && (mdcr_el2 & MDCR_TPM)) { 380 return CP_ACCESS_TRAP_EL2; 381 } 382 if (el < 3 && (env->cp15.mdcr_el3 & MDCR_TPM)) { 383 return CP_ACCESS_TRAP_EL3; 384 } 385 return CP_ACCESS_OK; 386 } 387 388 /* Check for traps from EL1 due to HCR_EL2.TVM and HCR_EL2.TRVM. */ 389 static CPAccessResult access_tvm_trvm(CPUARMState *env, const ARMCPRegInfo *ri, 390 bool isread) 391 { 392 if (arm_current_el(env) == 1) { 393 uint64_t trap = isread ? HCR_TRVM : HCR_TVM; 394 if (arm_hcr_el2_eff(env) & trap) { 395 return CP_ACCESS_TRAP_EL2; 396 } 397 } 398 return CP_ACCESS_OK; 399 } 400 401 /* Check for traps from EL1 due to HCR_EL2.TSW. */ 402 static CPAccessResult access_tsw(CPUARMState *env, const ARMCPRegInfo *ri, 403 bool isread) 404 { 405 if (arm_current_el(env) == 1 && (arm_hcr_el2_eff(env) & HCR_TSW)) { 406 return CP_ACCESS_TRAP_EL2; 407 } 408 return CP_ACCESS_OK; 409 } 410 411 /* Check for traps from EL1 due to HCR_EL2.TACR. */ 412 static CPAccessResult access_tacr(CPUARMState *env, const ARMCPRegInfo *ri, 413 bool isread) 414 { 415 if (arm_current_el(env) == 1 && (arm_hcr_el2_eff(env) & HCR_TACR)) { 416 return CP_ACCESS_TRAP_EL2; 417 } 418 return CP_ACCESS_OK; 419 } 420 421 /* Check for traps from EL1 due to HCR_EL2.TTLB. */ 422 static CPAccessResult access_ttlb(CPUARMState *env, const ARMCPRegInfo *ri, 423 bool isread) 424 { 425 if (arm_current_el(env) == 1 && (arm_hcr_el2_eff(env) & HCR_TTLB)) { 426 return CP_ACCESS_TRAP_EL2; 427 } 428 return CP_ACCESS_OK; 429 } 430 431 static void dacr_write(CPUARMState *env, const ARMCPRegInfo *ri, uint64_t value) 432 { 433 ARMCPU *cpu = env_archcpu(env); 434 435 raw_write(env, ri, value); 436 tlb_flush(CPU(cpu)); /* Flush TLB as domain not tracked in TLB */ 437 } 438 439 static void fcse_write(CPUARMState *env, const ARMCPRegInfo *ri, uint64_t value) 440 { 441 ARMCPU *cpu = env_archcpu(env); 442 443 if (raw_read(env, ri) != value) { 444 /* Unlike real hardware the qemu TLB uses virtual addresses, 445 * not modified virtual addresses, so this causes a TLB flush. 446 */ 447 tlb_flush(CPU(cpu)); 448 raw_write(env, ri, value); 449 } 450 } 451 452 static void contextidr_write(CPUARMState *env, const ARMCPRegInfo *ri, 453 uint64_t value) 454 { 455 ARMCPU *cpu = env_archcpu(env); 456 457 if (raw_read(env, ri) != value && !arm_feature(env, ARM_FEATURE_PMSA) 458 && !extended_addresses_enabled(env)) { 459 /* For VMSA (when not using the LPAE long descriptor page table 460 * format) this register includes the ASID, so do a TLB flush. 461 * For PMSA it is purely a process ID and no action is needed. 462 */ 463 tlb_flush(CPU(cpu)); 464 } 465 raw_write(env, ri, value); 466 } 467 468 /* IS variants of TLB operations must affect all cores */ 469 static void tlbiall_is_write(CPUARMState *env, const ARMCPRegInfo *ri, 470 uint64_t value) 471 { 472 CPUState *cs = env_cpu(env); 473 474 tlb_flush_all_cpus_synced(cs); 475 } 476 477 static void tlbiasid_is_write(CPUARMState *env, const ARMCPRegInfo *ri, 478 uint64_t value) 479 { 480 CPUState *cs = env_cpu(env); 481 482 tlb_flush_all_cpus_synced(cs); 483 } 484 485 static void tlbimva_is_write(CPUARMState *env, const ARMCPRegInfo *ri, 486 uint64_t value) 487 { 488 CPUState *cs = env_cpu(env); 489 490 tlb_flush_page_all_cpus_synced(cs, value & TARGET_PAGE_MASK); 491 } 492 493 static void tlbimvaa_is_write(CPUARMState *env, const ARMCPRegInfo *ri, 494 uint64_t value) 495 { 496 CPUState *cs = env_cpu(env); 497 498 tlb_flush_page_all_cpus_synced(cs, value & TARGET_PAGE_MASK); 499 } 500 501 /* 502 * Non-IS variants of TLB operations are upgraded to 503 * IS versions if we are at EL1 and HCR_EL2.FB is effectively set to 504 * force broadcast of these operations. 505 */ 506 static bool tlb_force_broadcast(CPUARMState *env) 507 { 508 return arm_current_el(env) == 1 && (arm_hcr_el2_eff(env) & HCR_FB); 509 } 510 511 static void tlbiall_write(CPUARMState *env, const ARMCPRegInfo *ri, 512 uint64_t value) 513 { 514 /* Invalidate all (TLBIALL) */ 515 CPUState *cs = env_cpu(env); 516 517 if (tlb_force_broadcast(env)) { 518 tlb_flush_all_cpus_synced(cs); 519 } else { 520 tlb_flush(cs); 521 } 522 } 523 524 static void tlbimva_write(CPUARMState *env, const ARMCPRegInfo *ri, 525 uint64_t value) 526 { 527 /* Invalidate single TLB entry by MVA and ASID (TLBIMVA) */ 528 CPUState *cs = env_cpu(env); 529 530 value &= TARGET_PAGE_MASK; 531 if (tlb_force_broadcast(env)) { 532 tlb_flush_page_all_cpus_synced(cs, value); 533 } else { 534 tlb_flush_page(cs, value); 535 } 536 } 537 538 static void tlbiasid_write(CPUARMState *env, const ARMCPRegInfo *ri, 539 uint64_t value) 540 { 541 /* Invalidate by ASID (TLBIASID) */ 542 CPUState *cs = env_cpu(env); 543 544 if (tlb_force_broadcast(env)) { 545 tlb_flush_all_cpus_synced(cs); 546 } else { 547 tlb_flush(cs); 548 } 549 } 550 551 static void tlbimvaa_write(CPUARMState *env, const ARMCPRegInfo *ri, 552 uint64_t value) 553 { 554 /* Invalidate single entry by MVA, all ASIDs (TLBIMVAA) */ 555 CPUState *cs = env_cpu(env); 556 557 value &= TARGET_PAGE_MASK; 558 if (tlb_force_broadcast(env)) { 559 tlb_flush_page_all_cpus_synced(cs, value); 560 } else { 561 tlb_flush_page(cs, value); 562 } 563 } 564 565 static void tlbiall_nsnh_write(CPUARMState *env, const ARMCPRegInfo *ri, 566 uint64_t value) 567 { 568 CPUState *cs = env_cpu(env); 569 570 tlb_flush_by_mmuidx(cs, 571 ARMMMUIdxBit_E10_1 | 572 ARMMMUIdxBit_E10_1_PAN | 573 ARMMMUIdxBit_E10_0); 574 } 575 576 static void tlbiall_nsnh_is_write(CPUARMState *env, const ARMCPRegInfo *ri, 577 uint64_t value) 578 { 579 CPUState *cs = env_cpu(env); 580 581 tlb_flush_by_mmuidx_all_cpus_synced(cs, 582 ARMMMUIdxBit_E10_1 | 583 ARMMMUIdxBit_E10_1_PAN | 584 ARMMMUIdxBit_E10_0); 585 } 586 587 588 static void tlbiall_hyp_write(CPUARMState *env, const ARMCPRegInfo *ri, 589 uint64_t value) 590 { 591 CPUState *cs = env_cpu(env); 592 593 tlb_flush_by_mmuidx(cs, ARMMMUIdxBit_E2); 594 } 595 596 static void tlbiall_hyp_is_write(CPUARMState *env, const ARMCPRegInfo *ri, 597 uint64_t value) 598 { 599 CPUState *cs = env_cpu(env); 600 601 tlb_flush_by_mmuidx_all_cpus_synced(cs, ARMMMUIdxBit_E2); 602 } 603 604 static void tlbimva_hyp_write(CPUARMState *env, const ARMCPRegInfo *ri, 605 uint64_t value) 606 { 607 CPUState *cs = env_cpu(env); 608 uint64_t pageaddr = value & ~MAKE_64BIT_MASK(0, 12); 609 610 tlb_flush_page_by_mmuidx(cs, pageaddr, ARMMMUIdxBit_E2); 611 } 612 613 static void tlbimva_hyp_is_write(CPUARMState *env, const ARMCPRegInfo *ri, 614 uint64_t value) 615 { 616 CPUState *cs = env_cpu(env); 617 uint64_t pageaddr = value & ~MAKE_64BIT_MASK(0, 12); 618 619 tlb_flush_page_by_mmuidx_all_cpus_synced(cs, pageaddr, 620 ARMMMUIdxBit_E2); 621 } 622 623 static const ARMCPRegInfo cp_reginfo[] = { 624 /* Define the secure and non-secure FCSE identifier CP registers 625 * separately because there is no secure bank in V8 (no _EL3). This allows 626 * the secure register to be properly reset and migrated. There is also no 627 * v8 EL1 version of the register so the non-secure instance stands alone. 628 */ 629 { .name = "FCSEIDR", 630 .cp = 15, .opc1 = 0, .crn = 13, .crm = 0, .opc2 = 0, 631 .access = PL1_RW, .secure = ARM_CP_SECSTATE_NS, 632 .fieldoffset = offsetof(CPUARMState, cp15.fcseidr_ns), 633 .resetvalue = 0, .writefn = fcse_write, .raw_writefn = raw_write, }, 634 { .name = "FCSEIDR_S", 635 .cp = 15, .opc1 = 0, .crn = 13, .crm = 0, .opc2 = 0, 636 .access = PL1_RW, .secure = ARM_CP_SECSTATE_S, 637 .fieldoffset = offsetof(CPUARMState, cp15.fcseidr_s), 638 .resetvalue = 0, .writefn = fcse_write, .raw_writefn = raw_write, }, 639 /* Define the secure and non-secure context identifier CP registers 640 * separately because there is no secure bank in V8 (no _EL3). This allows 641 * the secure register to be properly reset and migrated. In the 642 * non-secure case, the 32-bit register will have reset and migration 643 * disabled during registration as it is handled by the 64-bit instance. 644 */ 645 { .name = "CONTEXTIDR_EL1", .state = ARM_CP_STATE_BOTH, 646 .opc0 = 3, .opc1 = 0, .crn = 13, .crm = 0, .opc2 = 1, 647 .access = PL1_RW, .accessfn = access_tvm_trvm, 648 .secure = ARM_CP_SECSTATE_NS, 649 .fieldoffset = offsetof(CPUARMState, cp15.contextidr_el[1]), 650 .resetvalue = 0, .writefn = contextidr_write, .raw_writefn = raw_write, }, 651 { .name = "CONTEXTIDR_S", .state = ARM_CP_STATE_AA32, 652 .cp = 15, .opc1 = 0, .crn = 13, .crm = 0, .opc2 = 1, 653 .access = PL1_RW, .accessfn = access_tvm_trvm, 654 .secure = ARM_CP_SECSTATE_S, 655 .fieldoffset = offsetof(CPUARMState, cp15.contextidr_s), 656 .resetvalue = 0, .writefn = contextidr_write, .raw_writefn = raw_write, }, 657 }; 658 659 static const ARMCPRegInfo not_v8_cp_reginfo[] = { 660 /* NB: Some of these registers exist in v8 but with more precise 661 * definitions that don't use CP_ANY wildcards (mostly in v8_cp_reginfo[]). 662 */ 663 /* MMU Domain access control / MPU write buffer control */ 664 { .name = "DACR", 665 .cp = 15, .opc1 = CP_ANY, .crn = 3, .crm = CP_ANY, .opc2 = CP_ANY, 666 .access = PL1_RW, .accessfn = access_tvm_trvm, .resetvalue = 0, 667 .writefn = dacr_write, .raw_writefn = raw_write, 668 .bank_fieldoffsets = { offsetoflow32(CPUARMState, cp15.dacr_s), 669 offsetoflow32(CPUARMState, cp15.dacr_ns) } }, 670 /* ARMv7 allocates a range of implementation defined TLB LOCKDOWN regs. 671 * For v6 and v5, these mappings are overly broad. 672 */ 673 { .name = "TLB_LOCKDOWN", .cp = 15, .crn = 10, .crm = 0, 674 .opc1 = CP_ANY, .opc2 = CP_ANY, .access = PL1_RW, .type = ARM_CP_NOP }, 675 { .name = "TLB_LOCKDOWN", .cp = 15, .crn = 10, .crm = 1, 676 .opc1 = CP_ANY, .opc2 = CP_ANY, .access = PL1_RW, .type = ARM_CP_NOP }, 677 { .name = "TLB_LOCKDOWN", .cp = 15, .crn = 10, .crm = 4, 678 .opc1 = CP_ANY, .opc2 = CP_ANY, .access = PL1_RW, .type = ARM_CP_NOP }, 679 { .name = "TLB_LOCKDOWN", .cp = 15, .crn = 10, .crm = 8, 680 .opc1 = CP_ANY, .opc2 = CP_ANY, .access = PL1_RW, .type = ARM_CP_NOP }, 681 /* Cache maintenance ops; some of this space may be overridden later. */ 682 { .name = "CACHEMAINT", .cp = 15, .crn = 7, .crm = CP_ANY, 683 .opc1 = 0, .opc2 = CP_ANY, .access = PL1_W, 684 .type = ARM_CP_NOP | ARM_CP_OVERRIDE }, 685 }; 686 687 static const ARMCPRegInfo not_v6_cp_reginfo[] = { 688 /* Not all pre-v6 cores implemented this WFI, so this is slightly 689 * over-broad. 690 */ 691 { .name = "WFI_v5", .cp = 15, .crn = 7, .crm = 8, .opc1 = 0, .opc2 = 2, 692 .access = PL1_W, .type = ARM_CP_WFI }, 693 }; 694 695 static const ARMCPRegInfo not_v7_cp_reginfo[] = { 696 /* Standard v6 WFI (also used in some pre-v6 cores); not in v7 (which 697 * is UNPREDICTABLE; we choose to NOP as most implementations do). 698 */ 699 { .name = "WFI_v6", .cp = 15, .crn = 7, .crm = 0, .opc1 = 0, .opc2 = 4, 700 .access = PL1_W, .type = ARM_CP_WFI }, 701 /* L1 cache lockdown. Not architectural in v6 and earlier but in practice 702 * implemented in 926, 946, 1026, 1136, 1176 and 11MPCore. StrongARM and 703 * OMAPCP will override this space. 704 */ 705 { .name = "DLOCKDOWN", .cp = 15, .crn = 9, .crm = 0, .opc1 = 0, .opc2 = 0, 706 .access = PL1_RW, .fieldoffset = offsetof(CPUARMState, cp15.c9_data), 707 .resetvalue = 0 }, 708 { .name = "ILOCKDOWN", .cp = 15, .crn = 9, .crm = 0, .opc1 = 0, .opc2 = 1, 709 .access = PL1_RW, .fieldoffset = offsetof(CPUARMState, cp15.c9_insn), 710 .resetvalue = 0 }, 711 /* v6 doesn't have the cache ID registers but Linux reads them anyway */ 712 { .name = "DUMMY", .cp = 15, .crn = 0, .crm = 0, .opc1 = 1, .opc2 = CP_ANY, 713 .access = PL1_R, .type = ARM_CP_CONST | ARM_CP_NO_RAW, 714 .resetvalue = 0 }, 715 /* We don't implement pre-v7 debug but most CPUs had at least a DBGDIDR; 716 * implementing it as RAZ means the "debug architecture version" bits 717 * will read as a reserved value, which should cause Linux to not try 718 * to use the debug hardware. 719 */ 720 { .name = "DBGDIDR", .cp = 14, .crn = 0, .crm = 0, .opc1 = 0, .opc2 = 0, 721 .access = PL0_R, .type = ARM_CP_CONST, .resetvalue = 0 }, 722 /* MMU TLB control. Note that the wildcarding means we cover not just 723 * the unified TLB ops but also the dside/iside/inner-shareable variants. 724 */ 725 { .name = "TLBIALL", .cp = 15, .crn = 8, .crm = CP_ANY, 726 .opc1 = CP_ANY, .opc2 = 0, .access = PL1_W, .writefn = tlbiall_write, 727 .type = ARM_CP_NO_RAW }, 728 { .name = "TLBIMVA", .cp = 15, .crn = 8, .crm = CP_ANY, 729 .opc1 = CP_ANY, .opc2 = 1, .access = PL1_W, .writefn = tlbimva_write, 730 .type = ARM_CP_NO_RAW }, 731 { .name = "TLBIASID", .cp = 15, .crn = 8, .crm = CP_ANY, 732 .opc1 = CP_ANY, .opc2 = 2, .access = PL1_W, .writefn = tlbiasid_write, 733 .type = ARM_CP_NO_RAW }, 734 { .name = "TLBIMVAA", .cp = 15, .crn = 8, .crm = CP_ANY, 735 .opc1 = CP_ANY, .opc2 = 3, .access = PL1_W, .writefn = tlbimvaa_write, 736 .type = ARM_CP_NO_RAW }, 737 { .name = "PRRR", .cp = 15, .crn = 10, .crm = 2, 738 .opc1 = 0, .opc2 = 0, .access = PL1_RW, .type = ARM_CP_NOP }, 739 { .name = "NMRR", .cp = 15, .crn = 10, .crm = 2, 740 .opc1 = 0, .opc2 = 1, .access = PL1_RW, .type = ARM_CP_NOP }, 741 }; 742 743 static void cpacr_write(CPUARMState *env, const ARMCPRegInfo *ri, 744 uint64_t value) 745 { 746 uint32_t mask = 0; 747 748 /* In ARMv8 most bits of CPACR_EL1 are RES0. */ 749 if (!arm_feature(env, ARM_FEATURE_V8)) { 750 /* ARMv7 defines bits for unimplemented coprocessors as RAZ/WI. 751 * ASEDIS [31] and D32DIS [30] are both UNK/SBZP without VFP. 752 * TRCDIS [28] is RAZ/WI since we do not implement a trace macrocell. 753 */ 754 if (cpu_isar_feature(aa32_vfp_simd, env_archcpu(env))) { 755 /* VFP coprocessor: cp10 & cp11 [23:20] */ 756 mask |= R_CPACR_ASEDIS_MASK | 757 R_CPACR_D32DIS_MASK | 758 R_CPACR_CP11_MASK | 759 R_CPACR_CP10_MASK; 760 761 if (!arm_feature(env, ARM_FEATURE_NEON)) { 762 /* ASEDIS [31] bit is RAO/WI */ 763 value |= R_CPACR_ASEDIS_MASK; 764 } 765 766 /* VFPv3 and upwards with NEON implement 32 double precision 767 * registers (D0-D31). 768 */ 769 if (!cpu_isar_feature(aa32_simd_r32, env_archcpu(env))) { 770 /* D32DIS [30] is RAO/WI if D16-31 are not implemented. */ 771 value |= R_CPACR_D32DIS_MASK; 772 } 773 } 774 value &= mask; 775 } 776 777 /* 778 * For A-profile AArch32 EL3 (but not M-profile secure mode), if NSACR.CP10 779 * is 0 then CPACR.{CP11,CP10} ignore writes and read as 0b00. 780 */ 781 if (arm_feature(env, ARM_FEATURE_EL3) && !arm_el_is_aa64(env, 3) && 782 !arm_is_secure(env) && !extract32(env->cp15.nsacr, 10, 1)) { 783 mask = R_CPACR_CP11_MASK | R_CPACR_CP10_MASK; 784 value = (value & ~mask) | (env->cp15.cpacr_el1 & mask); 785 } 786 787 env->cp15.cpacr_el1 = value; 788 } 789 790 static uint64_t cpacr_read(CPUARMState *env, const ARMCPRegInfo *ri) 791 { 792 /* 793 * For A-profile AArch32 EL3 (but not M-profile secure mode), if NSACR.CP10 794 * is 0 then CPACR.{CP11,CP10} ignore writes and read as 0b00. 795 */ 796 uint64_t value = env->cp15.cpacr_el1; 797 798 if (arm_feature(env, ARM_FEATURE_EL3) && !arm_el_is_aa64(env, 3) && 799 !arm_is_secure(env) && !extract32(env->cp15.nsacr, 10, 1)) { 800 value = ~(R_CPACR_CP11_MASK | R_CPACR_CP10_MASK); 801 } 802 return value; 803 } 804 805 806 static void cpacr_reset(CPUARMState *env, const ARMCPRegInfo *ri) 807 { 808 /* Call cpacr_write() so that we reset with the correct RAO bits set 809 * for our CPU features. 810 */ 811 cpacr_write(env, ri, 0); 812 } 813 814 static CPAccessResult cpacr_access(CPUARMState *env, const ARMCPRegInfo *ri, 815 bool isread) 816 { 817 if (arm_feature(env, ARM_FEATURE_V8)) { 818 /* Check if CPACR accesses are to be trapped to EL2 */ 819 if (arm_current_el(env) == 1 && arm_is_el2_enabled(env) && 820 FIELD_EX64(env->cp15.cptr_el[2], CPTR_EL2, TCPAC)) { 821 return CP_ACCESS_TRAP_EL2; 822 /* Check if CPACR accesses are to be trapped to EL3 */ 823 } else if (arm_current_el(env) < 3 && 824 FIELD_EX64(env->cp15.cptr_el[3], CPTR_EL3, TCPAC)) { 825 return CP_ACCESS_TRAP_EL3; 826 } 827 } 828 829 return CP_ACCESS_OK; 830 } 831 832 static CPAccessResult cptr_access(CPUARMState *env, const ARMCPRegInfo *ri, 833 bool isread) 834 { 835 /* Check if CPTR accesses are set to trap to EL3 */ 836 if (arm_current_el(env) == 2 && 837 FIELD_EX64(env->cp15.cptr_el[3], CPTR_EL3, TCPAC)) { 838 return CP_ACCESS_TRAP_EL3; 839 } 840 841 return CP_ACCESS_OK; 842 } 843 844 static const ARMCPRegInfo v6_cp_reginfo[] = { 845 /* prefetch by MVA in v6, NOP in v7 */ 846 { .name = "MVA_prefetch", 847 .cp = 15, .crn = 7, .crm = 13, .opc1 = 0, .opc2 = 1, 848 .access = PL1_W, .type = ARM_CP_NOP }, 849 /* We need to break the TB after ISB to execute self-modifying code 850 * correctly and also to take any pending interrupts immediately. 851 * So use arm_cp_write_ignore() function instead of ARM_CP_NOP flag. 852 */ 853 { .name = "ISB", .cp = 15, .crn = 7, .crm = 5, .opc1 = 0, .opc2 = 4, 854 .access = PL0_W, .type = ARM_CP_NO_RAW, .writefn = arm_cp_write_ignore }, 855 { .name = "DSB", .cp = 15, .crn = 7, .crm = 10, .opc1 = 0, .opc2 = 4, 856 .access = PL0_W, .type = ARM_CP_NOP }, 857 { .name = "DMB", .cp = 15, .crn = 7, .crm = 10, .opc1 = 0, .opc2 = 5, 858 .access = PL0_W, .type = ARM_CP_NOP }, 859 { .name = "IFAR", .cp = 15, .crn = 6, .crm = 0, .opc1 = 0, .opc2 = 2, 860 .access = PL1_RW, .accessfn = access_tvm_trvm, 861 .bank_fieldoffsets = { offsetof(CPUARMState, cp15.ifar_s), 862 offsetof(CPUARMState, cp15.ifar_ns) }, 863 .resetvalue = 0, }, 864 /* Watchpoint Fault Address Register : should actually only be present 865 * for 1136, 1176, 11MPCore. 866 */ 867 { .name = "WFAR", .cp = 15, .crn = 6, .crm = 0, .opc1 = 0, .opc2 = 1, 868 .access = PL1_RW, .type = ARM_CP_CONST, .resetvalue = 0, }, 869 { .name = "CPACR", .state = ARM_CP_STATE_BOTH, .opc0 = 3, 870 .crn = 1, .crm = 0, .opc1 = 0, .opc2 = 2, .accessfn = cpacr_access, 871 .access = PL1_RW, .fieldoffset = offsetof(CPUARMState, cp15.cpacr_el1), 872 .resetfn = cpacr_reset, .writefn = cpacr_write, .readfn = cpacr_read }, 873 }; 874 875 typedef struct pm_event { 876 uint16_t number; /* PMEVTYPER.evtCount is 16 bits wide */ 877 /* If the event is supported on this CPU (used to generate PMCEID[01]) */ 878 bool (*supported)(CPUARMState *); 879 /* 880 * Retrieve the current count of the underlying event. The programmed 881 * counters hold a difference from the return value from this function 882 */ 883 uint64_t (*get_count)(CPUARMState *); 884 /* 885 * Return how many nanoseconds it will take (at a minimum) for count events 886 * to occur. A negative value indicates the counter will never overflow, or 887 * that the counter has otherwise arranged for the overflow bit to be set 888 * and the PMU interrupt to be raised on overflow. 889 */ 890 int64_t (*ns_per_count)(uint64_t); 891 } pm_event; 892 893 static bool event_always_supported(CPUARMState *env) 894 { 895 return true; 896 } 897 898 static uint64_t swinc_get_count(CPUARMState *env) 899 { 900 /* 901 * SW_INCR events are written directly to the pmevcntr's by writes to 902 * PMSWINC, so there is no underlying count maintained by the PMU itself 903 */ 904 return 0; 905 } 906 907 static int64_t swinc_ns_per(uint64_t ignored) 908 { 909 return -1; 910 } 911 912 /* 913 * Return the underlying cycle count for the PMU cycle counters. If we're in 914 * usermode, simply return 0. 915 */ 916 static uint64_t cycles_get_count(CPUARMState *env) 917 { 918 #ifndef CONFIG_USER_ONLY 919 return muldiv64(qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL), 920 ARM_CPU_FREQ, NANOSECONDS_PER_SECOND); 921 #else 922 return cpu_get_host_ticks(); 923 #endif 924 } 925 926 #ifndef CONFIG_USER_ONLY 927 static int64_t cycles_ns_per(uint64_t cycles) 928 { 929 return (ARM_CPU_FREQ / NANOSECONDS_PER_SECOND) * cycles; 930 } 931 932 static bool instructions_supported(CPUARMState *env) 933 { 934 return icount_enabled() == 1; /* Precise instruction counting */ 935 } 936 937 static uint64_t instructions_get_count(CPUARMState *env) 938 { 939 return (uint64_t)icount_get_raw(); 940 } 941 942 static int64_t instructions_ns_per(uint64_t icount) 943 { 944 return icount_to_ns((int64_t)icount); 945 } 946 #endif 947 948 static bool pmu_8_1_events_supported(CPUARMState *env) 949 { 950 /* For events which are supported in any v8.1 PMU */ 951 return cpu_isar_feature(any_pmu_8_1, env_archcpu(env)); 952 } 953 954 static bool pmu_8_4_events_supported(CPUARMState *env) 955 { 956 /* For events which are supported in any v8.1 PMU */ 957 return cpu_isar_feature(any_pmu_8_4, env_archcpu(env)); 958 } 959 960 static uint64_t zero_event_get_count(CPUARMState *env) 961 { 962 /* For events which on QEMU never fire, so their count is always zero */ 963 return 0; 964 } 965 966 static int64_t zero_event_ns_per(uint64_t cycles) 967 { 968 /* An event which never fires can never overflow */ 969 return -1; 970 } 971 972 static const pm_event pm_events[] = { 973 { .number = 0x000, /* SW_INCR */ 974 .supported = event_always_supported, 975 .get_count = swinc_get_count, 976 .ns_per_count = swinc_ns_per, 977 }, 978 #ifndef CONFIG_USER_ONLY 979 { .number = 0x008, /* INST_RETIRED, Instruction architecturally executed */ 980 .supported = instructions_supported, 981 .get_count = instructions_get_count, 982 .ns_per_count = instructions_ns_per, 983 }, 984 { .number = 0x011, /* CPU_CYCLES, Cycle */ 985 .supported = event_always_supported, 986 .get_count = cycles_get_count, 987 .ns_per_count = cycles_ns_per, 988 }, 989 #endif 990 { .number = 0x023, /* STALL_FRONTEND */ 991 .supported = pmu_8_1_events_supported, 992 .get_count = zero_event_get_count, 993 .ns_per_count = zero_event_ns_per, 994 }, 995 { .number = 0x024, /* STALL_BACKEND */ 996 .supported = pmu_8_1_events_supported, 997 .get_count = zero_event_get_count, 998 .ns_per_count = zero_event_ns_per, 999 }, 1000 { .number = 0x03c, /* STALL */ 1001 .supported = pmu_8_4_events_supported, 1002 .get_count = zero_event_get_count, 1003 .ns_per_count = zero_event_ns_per, 1004 }, 1005 }; 1006 1007 /* 1008 * Note: Before increasing MAX_EVENT_ID beyond 0x3f into the 0x40xx range of 1009 * events (i.e. the statistical profiling extension), this implementation 1010 * should first be updated to something sparse instead of the current 1011 * supported_event_map[] array. 1012 */ 1013 #define MAX_EVENT_ID 0x3c 1014 #define UNSUPPORTED_EVENT UINT16_MAX 1015 static uint16_t supported_event_map[MAX_EVENT_ID + 1]; 1016 1017 /* 1018 * Called upon CPU initialization to initialize PMCEID[01]_EL0 and build a map 1019 * of ARM event numbers to indices in our pm_events array. 1020 * 1021 * Note: Events in the 0x40XX range are not currently supported. 1022 */ 1023 void pmu_init(ARMCPU *cpu) 1024 { 1025 unsigned int i; 1026 1027 /* 1028 * Empty supported_event_map and cpu->pmceid[01] before adding supported 1029 * events to them 1030 */ 1031 for (i = 0; i < ARRAY_SIZE(supported_event_map); i++) { 1032 supported_event_map[i] = UNSUPPORTED_EVENT; 1033 } 1034 cpu->pmceid0 = 0; 1035 cpu->pmceid1 = 0; 1036 1037 for (i = 0; i < ARRAY_SIZE(pm_events); i++) { 1038 const pm_event *cnt = &pm_events[i]; 1039 assert(cnt->number <= MAX_EVENT_ID); 1040 /* We do not currently support events in the 0x40xx range */ 1041 assert(cnt->number <= 0x3f); 1042 1043 if (cnt->supported(&cpu->env)) { 1044 supported_event_map[cnt->number] = i; 1045 uint64_t event_mask = 1ULL << (cnt->number & 0x1f); 1046 if (cnt->number & 0x20) { 1047 cpu->pmceid1 |= event_mask; 1048 } else { 1049 cpu->pmceid0 |= event_mask; 1050 } 1051 } 1052 } 1053 } 1054 1055 /* 1056 * Check at runtime whether a PMU event is supported for the current machine 1057 */ 1058 static bool event_supported(uint16_t number) 1059 { 1060 if (number > MAX_EVENT_ID) { 1061 return false; 1062 } 1063 return supported_event_map[number] != UNSUPPORTED_EVENT; 1064 } 1065 1066 static CPAccessResult pmreg_access(CPUARMState *env, const ARMCPRegInfo *ri, 1067 bool isread) 1068 { 1069 /* Performance monitor registers user accessibility is controlled 1070 * by PMUSERENR. MDCR_EL2.TPM and MDCR_EL3.TPM allow configurable 1071 * trapping to EL2 or EL3 for other accesses. 1072 */ 1073 int el = arm_current_el(env); 1074 uint64_t mdcr_el2 = arm_mdcr_el2_eff(env); 1075 1076 if (el == 0 && !(env->cp15.c9_pmuserenr & 1)) { 1077 return CP_ACCESS_TRAP; 1078 } 1079 if (el < 2 && (mdcr_el2 & MDCR_TPM)) { 1080 return CP_ACCESS_TRAP_EL2; 1081 } 1082 if (el < 3 && (env->cp15.mdcr_el3 & MDCR_TPM)) { 1083 return CP_ACCESS_TRAP_EL3; 1084 } 1085 1086 return CP_ACCESS_OK; 1087 } 1088 1089 static CPAccessResult pmreg_access_xevcntr(CPUARMState *env, 1090 const ARMCPRegInfo *ri, 1091 bool isread) 1092 { 1093 /* ER: event counter read trap control */ 1094 if (arm_feature(env, ARM_FEATURE_V8) 1095 && arm_current_el(env) == 0 1096 && (env->cp15.c9_pmuserenr & (1 << 3)) != 0 1097 && isread) { 1098 return CP_ACCESS_OK; 1099 } 1100 1101 return pmreg_access(env, ri, isread); 1102 } 1103 1104 static CPAccessResult pmreg_access_swinc(CPUARMState *env, 1105 const ARMCPRegInfo *ri, 1106 bool isread) 1107 { 1108 /* SW: software increment write trap control */ 1109 if (arm_feature(env, ARM_FEATURE_V8) 1110 && arm_current_el(env) == 0 1111 && (env->cp15.c9_pmuserenr & (1 << 1)) != 0 1112 && !isread) { 1113 return CP_ACCESS_OK; 1114 } 1115 1116 return pmreg_access(env, ri, isread); 1117 } 1118 1119 static CPAccessResult pmreg_access_selr(CPUARMState *env, 1120 const ARMCPRegInfo *ri, 1121 bool isread) 1122 { 1123 /* ER: event counter read trap control */ 1124 if (arm_feature(env, ARM_FEATURE_V8) 1125 && arm_current_el(env) == 0 1126 && (env->cp15.c9_pmuserenr & (1 << 3)) != 0) { 1127 return CP_ACCESS_OK; 1128 } 1129 1130 return pmreg_access(env, ri, isread); 1131 } 1132 1133 static CPAccessResult pmreg_access_ccntr(CPUARMState *env, 1134 const ARMCPRegInfo *ri, 1135 bool isread) 1136 { 1137 /* CR: cycle counter read trap control */ 1138 if (arm_feature(env, ARM_FEATURE_V8) 1139 && arm_current_el(env) == 0 1140 && (env->cp15.c9_pmuserenr & (1 << 2)) != 0 1141 && isread) { 1142 return CP_ACCESS_OK; 1143 } 1144 1145 return pmreg_access(env, ri, isread); 1146 } 1147 1148 /* Returns true if the counter (pass 31 for PMCCNTR) should count events using 1149 * the current EL, security state, and register configuration. 1150 */ 1151 static bool pmu_counter_enabled(CPUARMState *env, uint8_t counter) 1152 { 1153 uint64_t filter; 1154 bool e, p, u, nsk, nsu, nsh, m; 1155 bool enabled, prohibited, filtered; 1156 bool secure = arm_is_secure(env); 1157 int el = arm_current_el(env); 1158 uint64_t mdcr_el2 = arm_mdcr_el2_eff(env); 1159 uint8_t hpmn = mdcr_el2 & MDCR_HPMN; 1160 1161 if (!arm_feature(env, ARM_FEATURE_PMU)) { 1162 return false; 1163 } 1164 1165 if (!arm_feature(env, ARM_FEATURE_EL2) || 1166 (counter < hpmn || counter == 31)) { 1167 e = env->cp15.c9_pmcr & PMCRE; 1168 } else { 1169 e = mdcr_el2 & MDCR_HPME; 1170 } 1171 enabled = e && (env->cp15.c9_pmcnten & (1 << counter)); 1172 1173 if (!secure) { 1174 if (el == 2 && (counter < hpmn || counter == 31)) { 1175 prohibited = mdcr_el2 & MDCR_HPMD; 1176 } else { 1177 prohibited = false; 1178 } 1179 } else { 1180 prohibited = arm_feature(env, ARM_FEATURE_EL3) && 1181 !(env->cp15.mdcr_el3 & MDCR_SPME); 1182 } 1183 1184 if (prohibited && counter == 31) { 1185 prohibited = env->cp15.c9_pmcr & PMCRDP; 1186 } 1187 1188 if (counter == 31) { 1189 filter = env->cp15.pmccfiltr_el0; 1190 } else { 1191 filter = env->cp15.c14_pmevtyper[counter]; 1192 } 1193 1194 p = filter & PMXEVTYPER_P; 1195 u = filter & PMXEVTYPER_U; 1196 nsk = arm_feature(env, ARM_FEATURE_EL3) && (filter & PMXEVTYPER_NSK); 1197 nsu = arm_feature(env, ARM_FEATURE_EL3) && (filter & PMXEVTYPER_NSU); 1198 nsh = arm_feature(env, ARM_FEATURE_EL2) && (filter & PMXEVTYPER_NSH); 1199 m = arm_el_is_aa64(env, 1) && 1200 arm_feature(env, ARM_FEATURE_EL3) && (filter & PMXEVTYPER_M); 1201 1202 if (el == 0) { 1203 filtered = secure ? u : u != nsu; 1204 } else if (el == 1) { 1205 filtered = secure ? p : p != nsk; 1206 } else if (el == 2) { 1207 filtered = !nsh; 1208 } else { /* EL3 */ 1209 filtered = m != p; 1210 } 1211 1212 if (counter != 31) { 1213 /* 1214 * If not checking PMCCNTR, ensure the counter is setup to an event we 1215 * support 1216 */ 1217 uint16_t event = filter & PMXEVTYPER_EVTCOUNT; 1218 if (!event_supported(event)) { 1219 return false; 1220 } 1221 } 1222 1223 return enabled && !prohibited && !filtered; 1224 } 1225 1226 static void pmu_update_irq(CPUARMState *env) 1227 { 1228 ARMCPU *cpu = env_archcpu(env); 1229 qemu_set_irq(cpu->pmu_interrupt, (env->cp15.c9_pmcr & PMCRE) && 1230 (env->cp15.c9_pminten & env->cp15.c9_pmovsr)); 1231 } 1232 1233 /* 1234 * Ensure c15_ccnt is the guest-visible count so that operations such as 1235 * enabling/disabling the counter or filtering, modifying the count itself, 1236 * etc. can be done logically. This is essentially a no-op if the counter is 1237 * not enabled at the time of the call. 1238 */ 1239 static void pmccntr_op_start(CPUARMState *env) 1240 { 1241 uint64_t cycles = cycles_get_count(env); 1242 1243 if (pmu_counter_enabled(env, 31)) { 1244 uint64_t eff_cycles = cycles; 1245 if (env->cp15.c9_pmcr & PMCRD) { 1246 /* Increment once every 64 processor clock cycles */ 1247 eff_cycles /= 64; 1248 } 1249 1250 uint64_t new_pmccntr = eff_cycles - env->cp15.c15_ccnt_delta; 1251 1252 uint64_t overflow_mask = env->cp15.c9_pmcr & PMCRLC ? \ 1253 1ull << 63 : 1ull << 31; 1254 if (env->cp15.c15_ccnt & ~new_pmccntr & overflow_mask) { 1255 env->cp15.c9_pmovsr |= (1 << 31); 1256 pmu_update_irq(env); 1257 } 1258 1259 env->cp15.c15_ccnt = new_pmccntr; 1260 } 1261 env->cp15.c15_ccnt_delta = cycles; 1262 } 1263 1264 /* 1265 * If PMCCNTR is enabled, recalculate the delta between the clock and the 1266 * guest-visible count. A call to pmccntr_op_finish should follow every call to 1267 * pmccntr_op_start. 1268 */ 1269 static void pmccntr_op_finish(CPUARMState *env) 1270 { 1271 if (pmu_counter_enabled(env, 31)) { 1272 #ifndef CONFIG_USER_ONLY 1273 /* Calculate when the counter will next overflow */ 1274 uint64_t remaining_cycles = -env->cp15.c15_ccnt; 1275 if (!(env->cp15.c9_pmcr & PMCRLC)) { 1276 remaining_cycles = (uint32_t)remaining_cycles; 1277 } 1278 int64_t overflow_in = cycles_ns_per(remaining_cycles); 1279 1280 if (overflow_in > 0) { 1281 int64_t overflow_at = qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL) + 1282 overflow_in; 1283 ARMCPU *cpu = env_archcpu(env); 1284 timer_mod_anticipate_ns(cpu->pmu_timer, overflow_at); 1285 } 1286 #endif 1287 1288 uint64_t prev_cycles = env->cp15.c15_ccnt_delta; 1289 if (env->cp15.c9_pmcr & PMCRD) { 1290 /* Increment once every 64 processor clock cycles */ 1291 prev_cycles /= 64; 1292 } 1293 env->cp15.c15_ccnt_delta = prev_cycles - env->cp15.c15_ccnt; 1294 } 1295 } 1296 1297 static void pmevcntr_op_start(CPUARMState *env, uint8_t counter) 1298 { 1299 1300 uint16_t event = env->cp15.c14_pmevtyper[counter] & PMXEVTYPER_EVTCOUNT; 1301 uint64_t count = 0; 1302 if (event_supported(event)) { 1303 uint16_t event_idx = supported_event_map[event]; 1304 count = pm_events[event_idx].get_count(env); 1305 } 1306 1307 if (pmu_counter_enabled(env, counter)) { 1308 uint32_t new_pmevcntr = count - env->cp15.c14_pmevcntr_delta[counter]; 1309 1310 if (env->cp15.c14_pmevcntr[counter] & ~new_pmevcntr & INT32_MIN) { 1311 env->cp15.c9_pmovsr |= (1 << counter); 1312 pmu_update_irq(env); 1313 } 1314 env->cp15.c14_pmevcntr[counter] = new_pmevcntr; 1315 } 1316 env->cp15.c14_pmevcntr_delta[counter] = count; 1317 } 1318 1319 static void pmevcntr_op_finish(CPUARMState *env, uint8_t counter) 1320 { 1321 if (pmu_counter_enabled(env, counter)) { 1322 #ifndef CONFIG_USER_ONLY 1323 uint16_t event = env->cp15.c14_pmevtyper[counter] & PMXEVTYPER_EVTCOUNT; 1324 uint16_t event_idx = supported_event_map[event]; 1325 uint64_t delta = UINT32_MAX - 1326 (uint32_t)env->cp15.c14_pmevcntr[counter] + 1; 1327 int64_t overflow_in = pm_events[event_idx].ns_per_count(delta); 1328 1329 if (overflow_in > 0) { 1330 int64_t overflow_at = qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL) + 1331 overflow_in; 1332 ARMCPU *cpu = env_archcpu(env); 1333 timer_mod_anticipate_ns(cpu->pmu_timer, overflow_at); 1334 } 1335 #endif 1336 1337 env->cp15.c14_pmevcntr_delta[counter] -= 1338 env->cp15.c14_pmevcntr[counter]; 1339 } 1340 } 1341 1342 void pmu_op_start(CPUARMState *env) 1343 { 1344 unsigned int i; 1345 pmccntr_op_start(env); 1346 for (i = 0; i < pmu_num_counters(env); i++) { 1347 pmevcntr_op_start(env, i); 1348 } 1349 } 1350 1351 void pmu_op_finish(CPUARMState *env) 1352 { 1353 unsigned int i; 1354 pmccntr_op_finish(env); 1355 for (i = 0; i < pmu_num_counters(env); i++) { 1356 pmevcntr_op_finish(env, i); 1357 } 1358 } 1359 1360 void pmu_pre_el_change(ARMCPU *cpu, void *ignored) 1361 { 1362 pmu_op_start(&cpu->env); 1363 } 1364 1365 void pmu_post_el_change(ARMCPU *cpu, void *ignored) 1366 { 1367 pmu_op_finish(&cpu->env); 1368 } 1369 1370 void arm_pmu_timer_cb(void *opaque) 1371 { 1372 ARMCPU *cpu = opaque; 1373 1374 /* 1375 * Update all the counter values based on the current underlying counts, 1376 * triggering interrupts to be raised, if necessary. pmu_op_finish() also 1377 * has the effect of setting the cpu->pmu_timer to the next earliest time a 1378 * counter may expire. 1379 */ 1380 pmu_op_start(&cpu->env); 1381 pmu_op_finish(&cpu->env); 1382 } 1383 1384 static void pmcr_write(CPUARMState *env, const ARMCPRegInfo *ri, 1385 uint64_t value) 1386 { 1387 pmu_op_start(env); 1388 1389 if (value & PMCRC) { 1390 /* The counter has been reset */ 1391 env->cp15.c15_ccnt = 0; 1392 } 1393 1394 if (value & PMCRP) { 1395 unsigned int i; 1396 for (i = 0; i < pmu_num_counters(env); i++) { 1397 env->cp15.c14_pmevcntr[i] = 0; 1398 } 1399 } 1400 1401 env->cp15.c9_pmcr &= ~PMCR_WRITABLE_MASK; 1402 env->cp15.c9_pmcr |= (value & PMCR_WRITABLE_MASK); 1403 1404 pmu_op_finish(env); 1405 } 1406 1407 static void pmswinc_write(CPUARMState *env, const ARMCPRegInfo *ri, 1408 uint64_t value) 1409 { 1410 unsigned int i; 1411 for (i = 0; i < pmu_num_counters(env); i++) { 1412 /* Increment a counter's count iff: */ 1413 if ((value & (1 << i)) && /* counter's bit is set */ 1414 /* counter is enabled and not filtered */ 1415 pmu_counter_enabled(env, i) && 1416 /* counter is SW_INCR */ 1417 (env->cp15.c14_pmevtyper[i] & PMXEVTYPER_EVTCOUNT) == 0x0) { 1418 pmevcntr_op_start(env, i); 1419 1420 /* 1421 * Detect if this write causes an overflow since we can't predict 1422 * PMSWINC overflows like we can for other events 1423 */ 1424 uint32_t new_pmswinc = env->cp15.c14_pmevcntr[i] + 1; 1425 1426 if (env->cp15.c14_pmevcntr[i] & ~new_pmswinc & INT32_MIN) { 1427 env->cp15.c9_pmovsr |= (1 << i); 1428 pmu_update_irq(env); 1429 } 1430 1431 env->cp15.c14_pmevcntr[i] = new_pmswinc; 1432 1433 pmevcntr_op_finish(env, i); 1434 } 1435 } 1436 } 1437 1438 static uint64_t pmccntr_read(CPUARMState *env, const ARMCPRegInfo *ri) 1439 { 1440 uint64_t ret; 1441 pmccntr_op_start(env); 1442 ret = env->cp15.c15_ccnt; 1443 pmccntr_op_finish(env); 1444 return ret; 1445 } 1446 1447 static void pmselr_write(CPUARMState *env, const ARMCPRegInfo *ri, 1448 uint64_t value) 1449 { 1450 /* The value of PMSELR.SEL affects the behavior of PMXEVTYPER and 1451 * PMXEVCNTR. We allow [0..31] to be written to PMSELR here; in the 1452 * meanwhile, we check PMSELR.SEL when PMXEVTYPER and PMXEVCNTR are 1453 * accessed. 1454 */ 1455 env->cp15.c9_pmselr = value & 0x1f; 1456 } 1457 1458 static void pmccntr_write(CPUARMState *env, const ARMCPRegInfo *ri, 1459 uint64_t value) 1460 { 1461 pmccntr_op_start(env); 1462 env->cp15.c15_ccnt = value; 1463 pmccntr_op_finish(env); 1464 } 1465 1466 static void pmccntr_write32(CPUARMState *env, const ARMCPRegInfo *ri, 1467 uint64_t value) 1468 { 1469 uint64_t cur_val = pmccntr_read(env, NULL); 1470 1471 pmccntr_write(env, ri, deposit64(cur_val, 0, 32, value)); 1472 } 1473 1474 static void pmccfiltr_write(CPUARMState *env, const ARMCPRegInfo *ri, 1475 uint64_t value) 1476 { 1477 pmccntr_op_start(env); 1478 env->cp15.pmccfiltr_el0 = value & PMCCFILTR_EL0; 1479 pmccntr_op_finish(env); 1480 } 1481 1482 static void pmccfiltr_write_a32(CPUARMState *env, const ARMCPRegInfo *ri, 1483 uint64_t value) 1484 { 1485 pmccntr_op_start(env); 1486 /* M is not accessible from AArch32 */ 1487 env->cp15.pmccfiltr_el0 = (env->cp15.pmccfiltr_el0 & PMCCFILTR_M) | 1488 (value & PMCCFILTR); 1489 pmccntr_op_finish(env); 1490 } 1491 1492 static uint64_t pmccfiltr_read_a32(CPUARMState *env, const ARMCPRegInfo *ri) 1493 { 1494 /* M is not visible in AArch32 */ 1495 return env->cp15.pmccfiltr_el0 & PMCCFILTR; 1496 } 1497 1498 static void pmcntenset_write(CPUARMState *env, const ARMCPRegInfo *ri, 1499 uint64_t value) 1500 { 1501 value &= pmu_counter_mask(env); 1502 env->cp15.c9_pmcnten |= value; 1503 } 1504 1505 static void pmcntenclr_write(CPUARMState *env, const ARMCPRegInfo *ri, 1506 uint64_t value) 1507 { 1508 value &= pmu_counter_mask(env); 1509 env->cp15.c9_pmcnten &= ~value; 1510 } 1511 1512 static void pmovsr_write(CPUARMState *env, const ARMCPRegInfo *ri, 1513 uint64_t value) 1514 { 1515 value &= pmu_counter_mask(env); 1516 env->cp15.c9_pmovsr &= ~value; 1517 pmu_update_irq(env); 1518 } 1519 1520 static void pmovsset_write(CPUARMState *env, const ARMCPRegInfo *ri, 1521 uint64_t value) 1522 { 1523 value &= pmu_counter_mask(env); 1524 env->cp15.c9_pmovsr |= value; 1525 pmu_update_irq(env); 1526 } 1527 1528 static void pmevtyper_write(CPUARMState *env, const ARMCPRegInfo *ri, 1529 uint64_t value, const uint8_t counter) 1530 { 1531 if (counter == 31) { 1532 pmccfiltr_write(env, ri, value); 1533 } else if (counter < pmu_num_counters(env)) { 1534 pmevcntr_op_start(env, counter); 1535 1536 /* 1537 * If this counter's event type is changing, store the current 1538 * underlying count for the new type in c14_pmevcntr_delta[counter] so 1539 * pmevcntr_op_finish has the correct baseline when it converts back to 1540 * a delta. 1541 */ 1542 uint16_t old_event = env->cp15.c14_pmevtyper[counter] & 1543 PMXEVTYPER_EVTCOUNT; 1544 uint16_t new_event = value & PMXEVTYPER_EVTCOUNT; 1545 if (old_event != new_event) { 1546 uint64_t count = 0; 1547 if (event_supported(new_event)) { 1548 uint16_t event_idx = supported_event_map[new_event]; 1549 count = pm_events[event_idx].get_count(env); 1550 } 1551 env->cp15.c14_pmevcntr_delta[counter] = count; 1552 } 1553 1554 env->cp15.c14_pmevtyper[counter] = value & PMXEVTYPER_MASK; 1555 pmevcntr_op_finish(env, counter); 1556 } 1557 /* Attempts to access PMXEVTYPER are CONSTRAINED UNPREDICTABLE when 1558 * PMSELR value is equal to or greater than the number of implemented 1559 * counters, but not equal to 0x1f. We opt to behave as a RAZ/WI. 1560 */ 1561 } 1562 1563 static uint64_t pmevtyper_read(CPUARMState *env, const ARMCPRegInfo *ri, 1564 const uint8_t counter) 1565 { 1566 if (counter == 31) { 1567 return env->cp15.pmccfiltr_el0; 1568 } else if (counter < pmu_num_counters(env)) { 1569 return env->cp15.c14_pmevtyper[counter]; 1570 } else { 1571 /* 1572 * We opt to behave as a RAZ/WI when attempts to access PMXEVTYPER 1573 * are CONSTRAINED UNPREDICTABLE. See comments in pmevtyper_write(). 1574 */ 1575 return 0; 1576 } 1577 } 1578 1579 static void pmevtyper_writefn(CPUARMState *env, const ARMCPRegInfo *ri, 1580 uint64_t value) 1581 { 1582 uint8_t counter = ((ri->crm & 3) << 3) | (ri->opc2 & 7); 1583 pmevtyper_write(env, ri, value, counter); 1584 } 1585 1586 static void pmevtyper_rawwrite(CPUARMState *env, const ARMCPRegInfo *ri, 1587 uint64_t value) 1588 { 1589 uint8_t counter = ((ri->crm & 3) << 3) | (ri->opc2 & 7); 1590 env->cp15.c14_pmevtyper[counter] = value; 1591 1592 /* 1593 * pmevtyper_rawwrite is called between a pair of pmu_op_start and 1594 * pmu_op_finish calls when loading saved state for a migration. Because 1595 * we're potentially updating the type of event here, the value written to 1596 * c14_pmevcntr_delta by the preceeding pmu_op_start call may be for a 1597 * different counter type. Therefore, we need to set this value to the 1598 * current count for the counter type we're writing so that pmu_op_finish 1599 * has the correct count for its calculation. 1600 */ 1601 uint16_t event = value & PMXEVTYPER_EVTCOUNT; 1602 if (event_supported(event)) { 1603 uint16_t event_idx = supported_event_map[event]; 1604 env->cp15.c14_pmevcntr_delta[counter] = 1605 pm_events[event_idx].get_count(env); 1606 } 1607 } 1608 1609 static uint64_t pmevtyper_readfn(CPUARMState *env, const ARMCPRegInfo *ri) 1610 { 1611 uint8_t counter = ((ri->crm & 3) << 3) | (ri->opc2 & 7); 1612 return pmevtyper_read(env, ri, counter); 1613 } 1614 1615 static void pmxevtyper_write(CPUARMState *env, const ARMCPRegInfo *ri, 1616 uint64_t value) 1617 { 1618 pmevtyper_write(env, ri, value, env->cp15.c9_pmselr & 31); 1619 } 1620 1621 static uint64_t pmxevtyper_read(CPUARMState *env, const ARMCPRegInfo *ri) 1622 { 1623 return pmevtyper_read(env, ri, env->cp15.c9_pmselr & 31); 1624 } 1625 1626 static void pmevcntr_write(CPUARMState *env, const ARMCPRegInfo *ri, 1627 uint64_t value, uint8_t counter) 1628 { 1629 if (counter < pmu_num_counters(env)) { 1630 pmevcntr_op_start(env, counter); 1631 env->cp15.c14_pmevcntr[counter] = value; 1632 pmevcntr_op_finish(env, counter); 1633 } 1634 /* 1635 * We opt to behave as a RAZ/WI when attempts to access PM[X]EVCNTR 1636 * are CONSTRAINED UNPREDICTABLE. 1637 */ 1638 } 1639 1640 static uint64_t pmevcntr_read(CPUARMState *env, const ARMCPRegInfo *ri, 1641 uint8_t counter) 1642 { 1643 if (counter < pmu_num_counters(env)) { 1644 uint64_t ret; 1645 pmevcntr_op_start(env, counter); 1646 ret = env->cp15.c14_pmevcntr[counter]; 1647 pmevcntr_op_finish(env, counter); 1648 return ret; 1649 } else { 1650 /* We opt to behave as a RAZ/WI when attempts to access PM[X]EVCNTR 1651 * are CONSTRAINED UNPREDICTABLE. */ 1652 return 0; 1653 } 1654 } 1655 1656 static void pmevcntr_writefn(CPUARMState *env, const ARMCPRegInfo *ri, 1657 uint64_t value) 1658 { 1659 uint8_t counter = ((ri->crm & 3) << 3) | (ri->opc2 & 7); 1660 pmevcntr_write(env, ri, value, counter); 1661 } 1662 1663 static uint64_t pmevcntr_readfn(CPUARMState *env, const ARMCPRegInfo *ri) 1664 { 1665 uint8_t counter = ((ri->crm & 3) << 3) | (ri->opc2 & 7); 1666 return pmevcntr_read(env, ri, counter); 1667 } 1668 1669 static void pmevcntr_rawwrite(CPUARMState *env, const ARMCPRegInfo *ri, 1670 uint64_t value) 1671 { 1672 uint8_t counter = ((ri->crm & 3) << 3) | (ri->opc2 & 7); 1673 assert(counter < pmu_num_counters(env)); 1674 env->cp15.c14_pmevcntr[counter] = value; 1675 pmevcntr_write(env, ri, value, counter); 1676 } 1677 1678 static uint64_t pmevcntr_rawread(CPUARMState *env, const ARMCPRegInfo *ri) 1679 { 1680 uint8_t counter = ((ri->crm & 3) << 3) | (ri->opc2 & 7); 1681 assert(counter < pmu_num_counters(env)); 1682 return env->cp15.c14_pmevcntr[counter]; 1683 } 1684 1685 static void pmxevcntr_write(CPUARMState *env, const ARMCPRegInfo *ri, 1686 uint64_t value) 1687 { 1688 pmevcntr_write(env, ri, value, env->cp15.c9_pmselr & 31); 1689 } 1690 1691 static uint64_t pmxevcntr_read(CPUARMState *env, const ARMCPRegInfo *ri) 1692 { 1693 return pmevcntr_read(env, ri, env->cp15.c9_pmselr & 31); 1694 } 1695 1696 static void pmuserenr_write(CPUARMState *env, const ARMCPRegInfo *ri, 1697 uint64_t value) 1698 { 1699 if (arm_feature(env, ARM_FEATURE_V8)) { 1700 env->cp15.c9_pmuserenr = value & 0xf; 1701 } else { 1702 env->cp15.c9_pmuserenr = value & 1; 1703 } 1704 } 1705 1706 static void pmintenset_write(CPUARMState *env, const ARMCPRegInfo *ri, 1707 uint64_t value) 1708 { 1709 /* We have no event counters so only the C bit can be changed */ 1710 value &= pmu_counter_mask(env); 1711 env->cp15.c9_pminten |= value; 1712 pmu_update_irq(env); 1713 } 1714 1715 static void pmintenclr_write(CPUARMState *env, const ARMCPRegInfo *ri, 1716 uint64_t value) 1717 { 1718 value &= pmu_counter_mask(env); 1719 env->cp15.c9_pminten &= ~value; 1720 pmu_update_irq(env); 1721 } 1722 1723 static void vbar_write(CPUARMState *env, const ARMCPRegInfo *ri, 1724 uint64_t value) 1725 { 1726 /* Note that even though the AArch64 view of this register has bits 1727 * [10:0] all RES0 we can only mask the bottom 5, to comply with the 1728 * architectural requirements for bits which are RES0 only in some 1729 * contexts. (ARMv8 would permit us to do no masking at all, but ARMv7 1730 * requires the bottom five bits to be RAZ/WI because they're UNK/SBZP.) 1731 */ 1732 raw_write(env, ri, value & ~0x1FULL); 1733 } 1734 1735 static void scr_write(CPUARMState *env, const ARMCPRegInfo *ri, uint64_t value) 1736 { 1737 /* Begin with base v8.0 state. */ 1738 uint32_t valid_mask = 0x3fff; 1739 ARMCPU *cpu = env_archcpu(env); 1740 1741 /* 1742 * Because SCR_EL3 is the "real" cpreg and SCR is the alias, reset always 1743 * passes the reginfo for SCR_EL3, which has type ARM_CP_STATE_AA64. 1744 * Instead, choose the format based on the mode of EL3. 1745 */ 1746 if (arm_el_is_aa64(env, 3)) { 1747 value |= SCR_FW | SCR_AW; /* RES1 */ 1748 valid_mask &= ~SCR_NET; /* RES0 */ 1749 1750 if (!cpu_isar_feature(aa64_aa32_el1, cpu) && 1751 !cpu_isar_feature(aa64_aa32_el2, cpu)) { 1752 value |= SCR_RW; /* RAO/WI */ 1753 } 1754 if (cpu_isar_feature(aa64_ras, cpu)) { 1755 valid_mask |= SCR_TERR; 1756 } 1757 if (cpu_isar_feature(aa64_lor, cpu)) { 1758 valid_mask |= SCR_TLOR; 1759 } 1760 if (cpu_isar_feature(aa64_pauth, cpu)) { 1761 valid_mask |= SCR_API | SCR_APK; 1762 } 1763 if (cpu_isar_feature(aa64_sel2, cpu)) { 1764 valid_mask |= SCR_EEL2; 1765 } 1766 if (cpu_isar_feature(aa64_mte, cpu)) { 1767 valid_mask |= SCR_ATA; 1768 } 1769 if (cpu_isar_feature(aa64_scxtnum, cpu)) { 1770 valid_mask |= SCR_ENSCXT; 1771 } 1772 if (cpu_isar_feature(aa64_doublefault, cpu)) { 1773 valid_mask |= SCR_EASE | SCR_NMEA; 1774 } 1775 } else { 1776 valid_mask &= ~(SCR_RW | SCR_ST); 1777 if (cpu_isar_feature(aa32_ras, cpu)) { 1778 valid_mask |= SCR_TERR; 1779 } 1780 } 1781 1782 if (!arm_feature(env, ARM_FEATURE_EL2)) { 1783 valid_mask &= ~SCR_HCE; 1784 1785 /* On ARMv7, SMD (or SCD as it is called in v7) is only 1786 * supported if EL2 exists. The bit is UNK/SBZP when 1787 * EL2 is unavailable. In QEMU ARMv7, we force it to always zero 1788 * when EL2 is unavailable. 1789 * On ARMv8, this bit is always available. 1790 */ 1791 if (arm_feature(env, ARM_FEATURE_V7) && 1792 !arm_feature(env, ARM_FEATURE_V8)) { 1793 valid_mask &= ~SCR_SMD; 1794 } 1795 } 1796 1797 /* Clear all-context RES0 bits. */ 1798 value &= valid_mask; 1799 raw_write(env, ri, value); 1800 } 1801 1802 static void scr_reset(CPUARMState *env, const ARMCPRegInfo *ri) 1803 { 1804 /* 1805 * scr_write will set the RES1 bits on an AArch64-only CPU. 1806 * The reset value will be 0x30 on an AArch64-only CPU and 0 otherwise. 1807 */ 1808 scr_write(env, ri, 0); 1809 } 1810 1811 static CPAccessResult access_aa64_tid2(CPUARMState *env, 1812 const ARMCPRegInfo *ri, 1813 bool isread) 1814 { 1815 if (arm_current_el(env) == 1 && (arm_hcr_el2_eff(env) & HCR_TID2)) { 1816 return CP_ACCESS_TRAP_EL2; 1817 } 1818 1819 return CP_ACCESS_OK; 1820 } 1821 1822 static uint64_t ccsidr_read(CPUARMState *env, const ARMCPRegInfo *ri) 1823 { 1824 ARMCPU *cpu = env_archcpu(env); 1825 1826 /* Acquire the CSSELR index from the bank corresponding to the CCSIDR 1827 * bank 1828 */ 1829 uint32_t index = A32_BANKED_REG_GET(env, csselr, 1830 ri->secure & ARM_CP_SECSTATE_S); 1831 1832 return cpu->ccsidr[index]; 1833 } 1834 1835 static void csselr_write(CPUARMState *env, const ARMCPRegInfo *ri, 1836 uint64_t value) 1837 { 1838 raw_write(env, ri, value & 0xf); 1839 } 1840 1841 static uint64_t isr_read(CPUARMState *env, const ARMCPRegInfo *ri) 1842 { 1843 CPUState *cs = env_cpu(env); 1844 bool el1 = arm_current_el(env) == 1; 1845 uint64_t hcr_el2 = el1 ? arm_hcr_el2_eff(env) : 0; 1846 uint64_t ret = 0; 1847 1848 if (hcr_el2 & HCR_IMO) { 1849 if (cs->interrupt_request & CPU_INTERRUPT_VIRQ) { 1850 ret |= CPSR_I; 1851 } 1852 } else { 1853 if (cs->interrupt_request & CPU_INTERRUPT_HARD) { 1854 ret |= CPSR_I; 1855 } 1856 } 1857 1858 if (hcr_el2 & HCR_FMO) { 1859 if (cs->interrupt_request & CPU_INTERRUPT_VFIQ) { 1860 ret |= CPSR_F; 1861 } 1862 } else { 1863 if (cs->interrupt_request & CPU_INTERRUPT_FIQ) { 1864 ret |= CPSR_F; 1865 } 1866 } 1867 1868 if (hcr_el2 & HCR_AMO) { 1869 if (cs->interrupt_request & CPU_INTERRUPT_VSERR) { 1870 ret |= CPSR_A; 1871 } 1872 } 1873 1874 return ret; 1875 } 1876 1877 static CPAccessResult access_aa64_tid1(CPUARMState *env, const ARMCPRegInfo *ri, 1878 bool isread) 1879 { 1880 if (arm_current_el(env) == 1 && (arm_hcr_el2_eff(env) & HCR_TID1)) { 1881 return CP_ACCESS_TRAP_EL2; 1882 } 1883 1884 return CP_ACCESS_OK; 1885 } 1886 1887 static CPAccessResult access_aa32_tid1(CPUARMState *env, const ARMCPRegInfo *ri, 1888 bool isread) 1889 { 1890 if (arm_feature(env, ARM_FEATURE_V8)) { 1891 return access_aa64_tid1(env, ri, isread); 1892 } 1893 1894 return CP_ACCESS_OK; 1895 } 1896 1897 static const ARMCPRegInfo v7_cp_reginfo[] = { 1898 /* the old v6 WFI, UNPREDICTABLE in v7 but we choose to NOP */ 1899 { .name = "NOP", .cp = 15, .crn = 7, .crm = 0, .opc1 = 0, .opc2 = 4, 1900 .access = PL1_W, .type = ARM_CP_NOP }, 1901 /* Performance monitors are implementation defined in v7, 1902 * but with an ARM recommended set of registers, which we 1903 * follow. 1904 * 1905 * Performance registers fall into three categories: 1906 * (a) always UNDEF in PL0, RW in PL1 (PMINTENSET, PMINTENCLR) 1907 * (b) RO in PL0 (ie UNDEF on write), RW in PL1 (PMUSERENR) 1908 * (c) UNDEF in PL0 if PMUSERENR.EN==0, otherwise accessible (all others) 1909 * For the cases controlled by PMUSERENR we must set .access to PL0_RW 1910 * or PL0_RO as appropriate and then check PMUSERENR in the helper fn. 1911 */ 1912 { .name = "PMCNTENSET", .cp = 15, .crn = 9, .crm = 12, .opc1 = 0, .opc2 = 1, 1913 .access = PL0_RW, .type = ARM_CP_ALIAS, 1914 .fieldoffset = offsetoflow32(CPUARMState, cp15.c9_pmcnten), 1915 .writefn = pmcntenset_write, 1916 .accessfn = pmreg_access, 1917 .raw_writefn = raw_write }, 1918 { .name = "PMCNTENSET_EL0", .state = ARM_CP_STATE_AA64, 1919 .opc0 = 3, .opc1 = 3, .crn = 9, .crm = 12, .opc2 = 1, 1920 .access = PL0_RW, .accessfn = pmreg_access, 1921 .fieldoffset = offsetof(CPUARMState, cp15.c9_pmcnten), .resetvalue = 0, 1922 .writefn = pmcntenset_write, .raw_writefn = raw_write }, 1923 { .name = "PMCNTENCLR", .cp = 15, .crn = 9, .crm = 12, .opc1 = 0, .opc2 = 2, 1924 .access = PL0_RW, 1925 .fieldoffset = offsetoflow32(CPUARMState, cp15.c9_pmcnten), 1926 .accessfn = pmreg_access, 1927 .writefn = pmcntenclr_write, 1928 .type = ARM_CP_ALIAS }, 1929 { .name = "PMCNTENCLR_EL0", .state = ARM_CP_STATE_AA64, 1930 .opc0 = 3, .opc1 = 3, .crn = 9, .crm = 12, .opc2 = 2, 1931 .access = PL0_RW, .accessfn = pmreg_access, 1932 .type = ARM_CP_ALIAS, 1933 .fieldoffset = offsetof(CPUARMState, cp15.c9_pmcnten), 1934 .writefn = pmcntenclr_write }, 1935 { .name = "PMOVSR", .cp = 15, .crn = 9, .crm = 12, .opc1 = 0, .opc2 = 3, 1936 .access = PL0_RW, .type = ARM_CP_IO, 1937 .fieldoffset = offsetoflow32(CPUARMState, cp15.c9_pmovsr), 1938 .accessfn = pmreg_access, 1939 .writefn = pmovsr_write, 1940 .raw_writefn = raw_write }, 1941 { .name = "PMOVSCLR_EL0", .state = ARM_CP_STATE_AA64, 1942 .opc0 = 3, .opc1 = 3, .crn = 9, .crm = 12, .opc2 = 3, 1943 .access = PL0_RW, .accessfn = pmreg_access, 1944 .type = ARM_CP_ALIAS | ARM_CP_IO, 1945 .fieldoffset = offsetof(CPUARMState, cp15.c9_pmovsr), 1946 .writefn = pmovsr_write, 1947 .raw_writefn = raw_write }, 1948 { .name = "PMSWINC", .cp = 15, .crn = 9, .crm = 12, .opc1 = 0, .opc2 = 4, 1949 .access = PL0_W, .accessfn = pmreg_access_swinc, 1950 .type = ARM_CP_NO_RAW | ARM_CP_IO, 1951 .writefn = pmswinc_write }, 1952 { .name = "PMSWINC_EL0", .state = ARM_CP_STATE_AA64, 1953 .opc0 = 3, .opc1 = 3, .crn = 9, .crm = 12, .opc2 = 4, 1954 .access = PL0_W, .accessfn = pmreg_access_swinc, 1955 .type = ARM_CP_NO_RAW | ARM_CP_IO, 1956 .writefn = pmswinc_write }, 1957 { .name = "PMSELR", .cp = 15, .crn = 9, .crm = 12, .opc1 = 0, .opc2 = 5, 1958 .access = PL0_RW, .type = ARM_CP_ALIAS, 1959 .fieldoffset = offsetoflow32(CPUARMState, cp15.c9_pmselr), 1960 .accessfn = pmreg_access_selr, .writefn = pmselr_write, 1961 .raw_writefn = raw_write}, 1962 { .name = "PMSELR_EL0", .state = ARM_CP_STATE_AA64, 1963 .opc0 = 3, .opc1 = 3, .crn = 9, .crm = 12, .opc2 = 5, 1964 .access = PL0_RW, .accessfn = pmreg_access_selr, 1965 .fieldoffset = offsetof(CPUARMState, cp15.c9_pmselr), 1966 .writefn = pmselr_write, .raw_writefn = raw_write, }, 1967 { .name = "PMCCNTR", .cp = 15, .crn = 9, .crm = 13, .opc1 = 0, .opc2 = 0, 1968 .access = PL0_RW, .resetvalue = 0, .type = ARM_CP_ALIAS | ARM_CP_IO, 1969 .readfn = pmccntr_read, .writefn = pmccntr_write32, 1970 .accessfn = pmreg_access_ccntr }, 1971 { .name = "PMCCNTR_EL0", .state = ARM_CP_STATE_AA64, 1972 .opc0 = 3, .opc1 = 3, .crn = 9, .crm = 13, .opc2 = 0, 1973 .access = PL0_RW, .accessfn = pmreg_access_ccntr, 1974 .type = ARM_CP_IO, 1975 .fieldoffset = offsetof(CPUARMState, cp15.c15_ccnt), 1976 .readfn = pmccntr_read, .writefn = pmccntr_write, 1977 .raw_readfn = raw_read, .raw_writefn = raw_write, }, 1978 { .name = "PMCCFILTR", .cp = 15, .opc1 = 0, .crn = 14, .crm = 15, .opc2 = 7, 1979 .writefn = pmccfiltr_write_a32, .readfn = pmccfiltr_read_a32, 1980 .access = PL0_RW, .accessfn = pmreg_access, 1981 .type = ARM_CP_ALIAS | ARM_CP_IO, 1982 .resetvalue = 0, }, 1983 { .name = "PMCCFILTR_EL0", .state = ARM_CP_STATE_AA64, 1984 .opc0 = 3, .opc1 = 3, .crn = 14, .crm = 15, .opc2 = 7, 1985 .writefn = pmccfiltr_write, .raw_writefn = raw_write, 1986 .access = PL0_RW, .accessfn = pmreg_access, 1987 .type = ARM_CP_IO, 1988 .fieldoffset = offsetof(CPUARMState, cp15.pmccfiltr_el0), 1989 .resetvalue = 0, }, 1990 { .name = "PMXEVTYPER", .cp = 15, .crn = 9, .crm = 13, .opc1 = 0, .opc2 = 1, 1991 .access = PL0_RW, .type = ARM_CP_NO_RAW | ARM_CP_IO, 1992 .accessfn = pmreg_access, 1993 .writefn = pmxevtyper_write, .readfn = pmxevtyper_read }, 1994 { .name = "PMXEVTYPER_EL0", .state = ARM_CP_STATE_AA64, 1995 .opc0 = 3, .opc1 = 3, .crn = 9, .crm = 13, .opc2 = 1, 1996 .access = PL0_RW, .type = ARM_CP_NO_RAW | ARM_CP_IO, 1997 .accessfn = pmreg_access, 1998 .writefn = pmxevtyper_write, .readfn = pmxevtyper_read }, 1999 { .name = "PMXEVCNTR", .cp = 15, .crn = 9, .crm = 13, .opc1 = 0, .opc2 = 2, 2000 .access = PL0_RW, .type = ARM_CP_NO_RAW | ARM_CP_IO, 2001 .accessfn = pmreg_access_xevcntr, 2002 .writefn = pmxevcntr_write, .readfn = pmxevcntr_read }, 2003 { .name = "PMXEVCNTR_EL0", .state = ARM_CP_STATE_AA64, 2004 .opc0 = 3, .opc1 = 3, .crn = 9, .crm = 13, .opc2 = 2, 2005 .access = PL0_RW, .type = ARM_CP_NO_RAW | ARM_CP_IO, 2006 .accessfn = pmreg_access_xevcntr, 2007 .writefn = pmxevcntr_write, .readfn = pmxevcntr_read }, 2008 { .name = "PMUSERENR", .cp = 15, .crn = 9, .crm = 14, .opc1 = 0, .opc2 = 0, 2009 .access = PL0_R | PL1_RW, .accessfn = access_tpm, 2010 .fieldoffset = offsetoflow32(CPUARMState, cp15.c9_pmuserenr), 2011 .resetvalue = 0, 2012 .writefn = pmuserenr_write, .raw_writefn = raw_write }, 2013 { .name = "PMUSERENR_EL0", .state = ARM_CP_STATE_AA64, 2014 .opc0 = 3, .opc1 = 3, .crn = 9, .crm = 14, .opc2 = 0, 2015 .access = PL0_R | PL1_RW, .accessfn = access_tpm, .type = ARM_CP_ALIAS, 2016 .fieldoffset = offsetof(CPUARMState, cp15.c9_pmuserenr), 2017 .resetvalue = 0, 2018 .writefn = pmuserenr_write, .raw_writefn = raw_write }, 2019 { .name = "PMINTENSET", .cp = 15, .crn = 9, .crm = 14, .opc1 = 0, .opc2 = 1, 2020 .access = PL1_RW, .accessfn = access_tpm, 2021 .type = ARM_CP_ALIAS | ARM_CP_IO, 2022 .fieldoffset = offsetoflow32(CPUARMState, cp15.c9_pminten), 2023 .resetvalue = 0, 2024 .writefn = pmintenset_write, .raw_writefn = raw_write }, 2025 { .name = "PMINTENSET_EL1", .state = ARM_CP_STATE_AA64, 2026 .opc0 = 3, .opc1 = 0, .crn = 9, .crm = 14, .opc2 = 1, 2027 .access = PL1_RW, .accessfn = access_tpm, 2028 .type = ARM_CP_IO, 2029 .fieldoffset = offsetof(CPUARMState, cp15.c9_pminten), 2030 .writefn = pmintenset_write, .raw_writefn = raw_write, 2031 .resetvalue = 0x0 }, 2032 { .name = "PMINTENCLR", .cp = 15, .crn = 9, .crm = 14, .opc1 = 0, .opc2 = 2, 2033 .access = PL1_RW, .accessfn = access_tpm, 2034 .type = ARM_CP_ALIAS | ARM_CP_IO | ARM_CP_NO_RAW, 2035 .fieldoffset = offsetof(CPUARMState, cp15.c9_pminten), 2036 .writefn = pmintenclr_write, }, 2037 { .name = "PMINTENCLR_EL1", .state = ARM_CP_STATE_AA64, 2038 .opc0 = 3, .opc1 = 0, .crn = 9, .crm = 14, .opc2 = 2, 2039 .access = PL1_RW, .accessfn = access_tpm, 2040 .type = ARM_CP_ALIAS | ARM_CP_IO | ARM_CP_NO_RAW, 2041 .fieldoffset = offsetof(CPUARMState, cp15.c9_pminten), 2042 .writefn = pmintenclr_write }, 2043 { .name = "CCSIDR", .state = ARM_CP_STATE_BOTH, 2044 .opc0 = 3, .crn = 0, .crm = 0, .opc1 = 1, .opc2 = 0, 2045 .access = PL1_R, 2046 .accessfn = access_aa64_tid2, 2047 .readfn = ccsidr_read, .type = ARM_CP_NO_RAW }, 2048 { .name = "CSSELR", .state = ARM_CP_STATE_BOTH, 2049 .opc0 = 3, .crn = 0, .crm = 0, .opc1 = 2, .opc2 = 0, 2050 .access = PL1_RW, 2051 .accessfn = access_aa64_tid2, 2052 .writefn = csselr_write, .resetvalue = 0, 2053 .bank_fieldoffsets = { offsetof(CPUARMState, cp15.csselr_s), 2054 offsetof(CPUARMState, cp15.csselr_ns) } }, 2055 /* Auxiliary ID register: this actually has an IMPDEF value but for now 2056 * just RAZ for all cores: 2057 */ 2058 { .name = "AIDR", .state = ARM_CP_STATE_BOTH, 2059 .opc0 = 3, .opc1 = 1, .crn = 0, .crm = 0, .opc2 = 7, 2060 .access = PL1_R, .type = ARM_CP_CONST, 2061 .accessfn = access_aa64_tid1, 2062 .resetvalue = 0 }, 2063 /* Auxiliary fault status registers: these also are IMPDEF, and we 2064 * choose to RAZ/WI for all cores. 2065 */ 2066 { .name = "AFSR0_EL1", .state = ARM_CP_STATE_BOTH, 2067 .opc0 = 3, .opc1 = 0, .crn = 5, .crm = 1, .opc2 = 0, 2068 .access = PL1_RW, .accessfn = access_tvm_trvm, 2069 .type = ARM_CP_CONST, .resetvalue = 0 }, 2070 { .name = "AFSR1_EL1", .state = ARM_CP_STATE_BOTH, 2071 .opc0 = 3, .opc1 = 0, .crn = 5, .crm = 1, .opc2 = 1, 2072 .access = PL1_RW, .accessfn = access_tvm_trvm, 2073 .type = ARM_CP_CONST, .resetvalue = 0 }, 2074 /* MAIR can just read-as-written because we don't implement caches 2075 * and so don't need to care about memory attributes. 2076 */ 2077 { .name = "MAIR_EL1", .state = ARM_CP_STATE_AA64, 2078 .opc0 = 3, .opc1 = 0, .crn = 10, .crm = 2, .opc2 = 0, 2079 .access = PL1_RW, .accessfn = access_tvm_trvm, 2080 .fieldoffset = offsetof(CPUARMState, cp15.mair_el[1]), 2081 .resetvalue = 0 }, 2082 { .name = "MAIR_EL3", .state = ARM_CP_STATE_AA64, 2083 .opc0 = 3, .opc1 = 6, .crn = 10, .crm = 2, .opc2 = 0, 2084 .access = PL3_RW, .fieldoffset = offsetof(CPUARMState, cp15.mair_el[3]), 2085 .resetvalue = 0 }, 2086 /* For non-long-descriptor page tables these are PRRR and NMRR; 2087 * regardless they still act as reads-as-written for QEMU. 2088 */ 2089 /* MAIR0/1 are defined separately from their 64-bit counterpart which 2090 * allows them to assign the correct fieldoffset based on the endianness 2091 * handled in the field definitions. 2092 */ 2093 { .name = "MAIR0", .state = ARM_CP_STATE_AA32, 2094 .cp = 15, .opc1 = 0, .crn = 10, .crm = 2, .opc2 = 0, 2095 .access = PL1_RW, .accessfn = access_tvm_trvm, 2096 .bank_fieldoffsets = { offsetof(CPUARMState, cp15.mair0_s), 2097 offsetof(CPUARMState, cp15.mair0_ns) }, 2098 .resetfn = arm_cp_reset_ignore }, 2099 { .name = "MAIR1", .state = ARM_CP_STATE_AA32, 2100 .cp = 15, .opc1 = 0, .crn = 10, .crm = 2, .opc2 = 1, 2101 .access = PL1_RW, .accessfn = access_tvm_trvm, 2102 .bank_fieldoffsets = { offsetof(CPUARMState, cp15.mair1_s), 2103 offsetof(CPUARMState, cp15.mair1_ns) }, 2104 .resetfn = arm_cp_reset_ignore }, 2105 { .name = "ISR_EL1", .state = ARM_CP_STATE_BOTH, 2106 .opc0 = 3, .opc1 = 0, .crn = 12, .crm = 1, .opc2 = 0, 2107 .type = ARM_CP_NO_RAW, .access = PL1_R, .readfn = isr_read }, 2108 /* 32 bit ITLB invalidates */ 2109 { .name = "ITLBIALL", .cp = 15, .opc1 = 0, .crn = 8, .crm = 5, .opc2 = 0, 2110 .type = ARM_CP_NO_RAW, .access = PL1_W, .accessfn = access_ttlb, 2111 .writefn = tlbiall_write }, 2112 { .name = "ITLBIMVA", .cp = 15, .opc1 = 0, .crn = 8, .crm = 5, .opc2 = 1, 2113 .type = ARM_CP_NO_RAW, .access = PL1_W, .accessfn = access_ttlb, 2114 .writefn = tlbimva_write }, 2115 { .name = "ITLBIASID", .cp = 15, .opc1 = 0, .crn = 8, .crm = 5, .opc2 = 2, 2116 .type = ARM_CP_NO_RAW, .access = PL1_W, .accessfn = access_ttlb, 2117 .writefn = tlbiasid_write }, 2118 /* 32 bit DTLB invalidates */ 2119 { .name = "DTLBIALL", .cp = 15, .opc1 = 0, .crn = 8, .crm = 6, .opc2 = 0, 2120 .type = ARM_CP_NO_RAW, .access = PL1_W, .accessfn = access_ttlb, 2121 .writefn = tlbiall_write }, 2122 { .name = "DTLBIMVA", .cp = 15, .opc1 = 0, .crn = 8, .crm = 6, .opc2 = 1, 2123 .type = ARM_CP_NO_RAW, .access = PL1_W, .accessfn = access_ttlb, 2124 .writefn = tlbimva_write }, 2125 { .name = "DTLBIASID", .cp = 15, .opc1 = 0, .crn = 8, .crm = 6, .opc2 = 2, 2126 .type = ARM_CP_NO_RAW, .access = PL1_W, .accessfn = access_ttlb, 2127 .writefn = tlbiasid_write }, 2128 /* 32 bit TLB invalidates */ 2129 { .name = "TLBIALL", .cp = 15, .opc1 = 0, .crn = 8, .crm = 7, .opc2 = 0, 2130 .type = ARM_CP_NO_RAW, .access = PL1_W, .accessfn = access_ttlb, 2131 .writefn = tlbiall_write }, 2132 { .name = "TLBIMVA", .cp = 15, .opc1 = 0, .crn = 8, .crm = 7, .opc2 = 1, 2133 .type = ARM_CP_NO_RAW, .access = PL1_W, .accessfn = access_ttlb, 2134 .writefn = tlbimva_write }, 2135 { .name = "TLBIASID", .cp = 15, .opc1 = 0, .crn = 8, .crm = 7, .opc2 = 2, 2136 .type = ARM_CP_NO_RAW, .access = PL1_W, .accessfn = access_ttlb, 2137 .writefn = tlbiasid_write }, 2138 { .name = "TLBIMVAA", .cp = 15, .opc1 = 0, .crn = 8, .crm = 7, .opc2 = 3, 2139 .type = ARM_CP_NO_RAW, .access = PL1_W, .accessfn = access_ttlb, 2140 .writefn = tlbimvaa_write }, 2141 }; 2142 2143 static const ARMCPRegInfo v7mp_cp_reginfo[] = { 2144 /* 32 bit TLB invalidates, Inner Shareable */ 2145 { .name = "TLBIALLIS", .cp = 15, .opc1 = 0, .crn = 8, .crm = 3, .opc2 = 0, 2146 .type = ARM_CP_NO_RAW, .access = PL1_W, .accessfn = access_ttlb, 2147 .writefn = tlbiall_is_write }, 2148 { .name = "TLBIMVAIS", .cp = 15, .opc1 = 0, .crn = 8, .crm = 3, .opc2 = 1, 2149 .type = ARM_CP_NO_RAW, .access = PL1_W, .accessfn = access_ttlb, 2150 .writefn = tlbimva_is_write }, 2151 { .name = "TLBIASIDIS", .cp = 15, .opc1 = 0, .crn = 8, .crm = 3, .opc2 = 2, 2152 .type = ARM_CP_NO_RAW, .access = PL1_W, .accessfn = access_ttlb, 2153 .writefn = tlbiasid_is_write }, 2154 { .name = "TLBIMVAAIS", .cp = 15, .opc1 = 0, .crn = 8, .crm = 3, .opc2 = 3, 2155 .type = ARM_CP_NO_RAW, .access = PL1_W, .accessfn = access_ttlb, 2156 .writefn = tlbimvaa_is_write }, 2157 }; 2158 2159 static const ARMCPRegInfo pmovsset_cp_reginfo[] = { 2160 /* PMOVSSET is not implemented in v7 before v7ve */ 2161 { .name = "PMOVSSET", .cp = 15, .opc1 = 0, .crn = 9, .crm = 14, .opc2 = 3, 2162 .access = PL0_RW, .accessfn = pmreg_access, 2163 .type = ARM_CP_ALIAS | ARM_CP_IO, 2164 .fieldoffset = offsetoflow32(CPUARMState, cp15.c9_pmovsr), 2165 .writefn = pmovsset_write, 2166 .raw_writefn = raw_write }, 2167 { .name = "PMOVSSET_EL0", .state = ARM_CP_STATE_AA64, 2168 .opc0 = 3, .opc1 = 3, .crn = 9, .crm = 14, .opc2 = 3, 2169 .access = PL0_RW, .accessfn = pmreg_access, 2170 .type = ARM_CP_ALIAS | ARM_CP_IO, 2171 .fieldoffset = offsetof(CPUARMState, cp15.c9_pmovsr), 2172 .writefn = pmovsset_write, 2173 .raw_writefn = raw_write }, 2174 }; 2175 2176 static void teecr_write(CPUARMState *env, const ARMCPRegInfo *ri, 2177 uint64_t value) 2178 { 2179 value &= 1; 2180 env->teecr = value; 2181 } 2182 2183 static CPAccessResult teecr_access(CPUARMState *env, const ARMCPRegInfo *ri, 2184 bool isread) 2185 { 2186 /* 2187 * HSTR.TTEE only exists in v7A, not v8A, but v8A doesn't have T2EE 2188 * at all, so we don't need to check whether we're v8A. 2189 */ 2190 if (arm_current_el(env) < 2 && !arm_is_secure_below_el3(env) && 2191 (env->cp15.hstr_el2 & HSTR_TTEE)) { 2192 return CP_ACCESS_TRAP_EL2; 2193 } 2194 return CP_ACCESS_OK; 2195 } 2196 2197 static CPAccessResult teehbr_access(CPUARMState *env, const ARMCPRegInfo *ri, 2198 bool isread) 2199 { 2200 if (arm_current_el(env) == 0 && (env->teecr & 1)) { 2201 return CP_ACCESS_TRAP; 2202 } 2203 return teecr_access(env, ri, isread); 2204 } 2205 2206 static const ARMCPRegInfo t2ee_cp_reginfo[] = { 2207 { .name = "TEECR", .cp = 14, .crn = 0, .crm = 0, .opc1 = 6, .opc2 = 0, 2208 .access = PL1_RW, .fieldoffset = offsetof(CPUARMState, teecr), 2209 .resetvalue = 0, 2210 .writefn = teecr_write, .accessfn = teecr_access }, 2211 { .name = "TEEHBR", .cp = 14, .crn = 1, .crm = 0, .opc1 = 6, .opc2 = 0, 2212 .access = PL0_RW, .fieldoffset = offsetof(CPUARMState, teehbr), 2213 .accessfn = teehbr_access, .resetvalue = 0 }, 2214 }; 2215 2216 static const ARMCPRegInfo v6k_cp_reginfo[] = { 2217 { .name = "TPIDR_EL0", .state = ARM_CP_STATE_AA64, 2218 .opc0 = 3, .opc1 = 3, .opc2 = 2, .crn = 13, .crm = 0, 2219 .access = PL0_RW, 2220 .fieldoffset = offsetof(CPUARMState, cp15.tpidr_el[0]), .resetvalue = 0 }, 2221 { .name = "TPIDRURW", .cp = 15, .crn = 13, .crm = 0, .opc1 = 0, .opc2 = 2, 2222 .access = PL0_RW, 2223 .bank_fieldoffsets = { offsetoflow32(CPUARMState, cp15.tpidrurw_s), 2224 offsetoflow32(CPUARMState, cp15.tpidrurw_ns) }, 2225 .resetfn = arm_cp_reset_ignore }, 2226 { .name = "TPIDRRO_EL0", .state = ARM_CP_STATE_AA64, 2227 .opc0 = 3, .opc1 = 3, .opc2 = 3, .crn = 13, .crm = 0, 2228 .access = PL0_R|PL1_W, 2229 .fieldoffset = offsetof(CPUARMState, cp15.tpidrro_el[0]), 2230 .resetvalue = 0}, 2231 { .name = "TPIDRURO", .cp = 15, .crn = 13, .crm = 0, .opc1 = 0, .opc2 = 3, 2232 .access = PL0_R|PL1_W, 2233 .bank_fieldoffsets = { offsetoflow32(CPUARMState, cp15.tpidruro_s), 2234 offsetoflow32(CPUARMState, cp15.tpidruro_ns) }, 2235 .resetfn = arm_cp_reset_ignore }, 2236 { .name = "TPIDR_EL1", .state = ARM_CP_STATE_AA64, 2237 .opc0 = 3, .opc1 = 0, .opc2 = 4, .crn = 13, .crm = 0, 2238 .access = PL1_RW, 2239 .fieldoffset = offsetof(CPUARMState, cp15.tpidr_el[1]), .resetvalue = 0 }, 2240 { .name = "TPIDRPRW", .opc1 = 0, .cp = 15, .crn = 13, .crm = 0, .opc2 = 4, 2241 .access = PL1_RW, 2242 .bank_fieldoffsets = { offsetoflow32(CPUARMState, cp15.tpidrprw_s), 2243 offsetoflow32(CPUARMState, cp15.tpidrprw_ns) }, 2244 .resetvalue = 0 }, 2245 }; 2246 2247 #ifndef CONFIG_USER_ONLY 2248 2249 static CPAccessResult gt_cntfrq_access(CPUARMState *env, const ARMCPRegInfo *ri, 2250 bool isread) 2251 { 2252 /* CNTFRQ: not visible from PL0 if both PL0PCTEN and PL0VCTEN are zero. 2253 * Writable only at the highest implemented exception level. 2254 */ 2255 int el = arm_current_el(env); 2256 uint64_t hcr; 2257 uint32_t cntkctl; 2258 2259 switch (el) { 2260 case 0: 2261 hcr = arm_hcr_el2_eff(env); 2262 if ((hcr & (HCR_E2H | HCR_TGE)) == (HCR_E2H | HCR_TGE)) { 2263 cntkctl = env->cp15.cnthctl_el2; 2264 } else { 2265 cntkctl = env->cp15.c14_cntkctl; 2266 } 2267 if (!extract32(cntkctl, 0, 2)) { 2268 return CP_ACCESS_TRAP; 2269 } 2270 break; 2271 case 1: 2272 if (!isread && ri->state == ARM_CP_STATE_AA32 && 2273 arm_is_secure_below_el3(env)) { 2274 /* Accesses from 32-bit Secure EL1 UNDEF (*not* trap to EL3!) */ 2275 return CP_ACCESS_TRAP_UNCATEGORIZED; 2276 } 2277 break; 2278 case 2: 2279 case 3: 2280 break; 2281 } 2282 2283 if (!isread && el < arm_highest_el(env)) { 2284 return CP_ACCESS_TRAP_UNCATEGORIZED; 2285 } 2286 2287 return CP_ACCESS_OK; 2288 } 2289 2290 static CPAccessResult gt_counter_access(CPUARMState *env, int timeridx, 2291 bool isread) 2292 { 2293 unsigned int cur_el = arm_current_el(env); 2294 bool has_el2 = arm_is_el2_enabled(env); 2295 uint64_t hcr = arm_hcr_el2_eff(env); 2296 2297 switch (cur_el) { 2298 case 0: 2299 /* If HCR_EL2.<E2H,TGE> == '11': check CNTHCTL_EL2.EL0[PV]CTEN. */ 2300 if ((hcr & (HCR_E2H | HCR_TGE)) == (HCR_E2H | HCR_TGE)) { 2301 return (extract32(env->cp15.cnthctl_el2, timeridx, 1) 2302 ? CP_ACCESS_OK : CP_ACCESS_TRAP_EL2); 2303 } 2304 2305 /* CNT[PV]CT: not visible from PL0 if EL0[PV]CTEN is zero */ 2306 if (!extract32(env->cp15.c14_cntkctl, timeridx, 1)) { 2307 return CP_ACCESS_TRAP; 2308 } 2309 2310 /* If HCR_EL2.<E2H,TGE> == '10': check CNTHCTL_EL2.EL1PCTEN. */ 2311 if (hcr & HCR_E2H) { 2312 if (timeridx == GTIMER_PHYS && 2313 !extract32(env->cp15.cnthctl_el2, 10, 1)) { 2314 return CP_ACCESS_TRAP_EL2; 2315 } 2316 } else { 2317 /* If HCR_EL2.<E2H> == 0: check CNTHCTL_EL2.EL1PCEN. */ 2318 if (has_el2 && timeridx == GTIMER_PHYS && 2319 !extract32(env->cp15.cnthctl_el2, 1, 1)) { 2320 return CP_ACCESS_TRAP_EL2; 2321 } 2322 } 2323 break; 2324 2325 case 1: 2326 /* Check CNTHCTL_EL2.EL1PCTEN, which changes location based on E2H. */ 2327 if (has_el2 && timeridx == GTIMER_PHYS && 2328 (hcr & HCR_E2H 2329 ? !extract32(env->cp15.cnthctl_el2, 10, 1) 2330 : !extract32(env->cp15.cnthctl_el2, 0, 1))) { 2331 return CP_ACCESS_TRAP_EL2; 2332 } 2333 break; 2334 } 2335 return CP_ACCESS_OK; 2336 } 2337 2338 static CPAccessResult gt_timer_access(CPUARMState *env, int timeridx, 2339 bool isread) 2340 { 2341 unsigned int cur_el = arm_current_el(env); 2342 bool has_el2 = arm_is_el2_enabled(env); 2343 uint64_t hcr = arm_hcr_el2_eff(env); 2344 2345 switch (cur_el) { 2346 case 0: 2347 if ((hcr & (HCR_E2H | HCR_TGE)) == (HCR_E2H | HCR_TGE)) { 2348 /* If HCR_EL2.<E2H,TGE> == '11': check CNTHCTL_EL2.EL0[PV]TEN. */ 2349 return (extract32(env->cp15.cnthctl_el2, 9 - timeridx, 1) 2350 ? CP_ACCESS_OK : CP_ACCESS_TRAP_EL2); 2351 } 2352 2353 /* 2354 * CNT[PV]_CVAL, CNT[PV]_CTL, CNT[PV]_TVAL: not visible from 2355 * EL0 if EL0[PV]TEN is zero. 2356 */ 2357 if (!extract32(env->cp15.c14_cntkctl, 9 - timeridx, 1)) { 2358 return CP_ACCESS_TRAP; 2359 } 2360 /* fall through */ 2361 2362 case 1: 2363 if (has_el2 && timeridx == GTIMER_PHYS) { 2364 if (hcr & HCR_E2H) { 2365 /* If HCR_EL2.<E2H,TGE> == '10': check CNTHCTL_EL2.EL1PTEN. */ 2366 if (!extract32(env->cp15.cnthctl_el2, 11, 1)) { 2367 return CP_ACCESS_TRAP_EL2; 2368 } 2369 } else { 2370 /* If HCR_EL2.<E2H> == 0: check CNTHCTL_EL2.EL1PCEN. */ 2371 if (!extract32(env->cp15.cnthctl_el2, 1, 1)) { 2372 return CP_ACCESS_TRAP_EL2; 2373 } 2374 } 2375 } 2376 break; 2377 } 2378 return CP_ACCESS_OK; 2379 } 2380 2381 static CPAccessResult gt_pct_access(CPUARMState *env, 2382 const ARMCPRegInfo *ri, 2383 bool isread) 2384 { 2385 return gt_counter_access(env, GTIMER_PHYS, isread); 2386 } 2387 2388 static CPAccessResult gt_vct_access(CPUARMState *env, 2389 const ARMCPRegInfo *ri, 2390 bool isread) 2391 { 2392 return gt_counter_access(env, GTIMER_VIRT, isread); 2393 } 2394 2395 static CPAccessResult gt_ptimer_access(CPUARMState *env, const ARMCPRegInfo *ri, 2396 bool isread) 2397 { 2398 return gt_timer_access(env, GTIMER_PHYS, isread); 2399 } 2400 2401 static CPAccessResult gt_vtimer_access(CPUARMState *env, const ARMCPRegInfo *ri, 2402 bool isread) 2403 { 2404 return gt_timer_access(env, GTIMER_VIRT, isread); 2405 } 2406 2407 static CPAccessResult gt_stimer_access(CPUARMState *env, 2408 const ARMCPRegInfo *ri, 2409 bool isread) 2410 { 2411 /* The AArch64 register view of the secure physical timer is 2412 * always accessible from EL3, and configurably accessible from 2413 * Secure EL1. 2414 */ 2415 switch (arm_current_el(env)) { 2416 case 1: 2417 if (!arm_is_secure(env)) { 2418 return CP_ACCESS_TRAP; 2419 } 2420 if (!(env->cp15.scr_el3 & SCR_ST)) { 2421 return CP_ACCESS_TRAP_EL3; 2422 } 2423 return CP_ACCESS_OK; 2424 case 0: 2425 case 2: 2426 return CP_ACCESS_TRAP; 2427 case 3: 2428 return CP_ACCESS_OK; 2429 default: 2430 g_assert_not_reached(); 2431 } 2432 } 2433 2434 static uint64_t gt_get_countervalue(CPUARMState *env) 2435 { 2436 ARMCPU *cpu = env_archcpu(env); 2437 2438 return qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL) / gt_cntfrq_period_ns(cpu); 2439 } 2440 2441 static void gt_recalc_timer(ARMCPU *cpu, int timeridx) 2442 { 2443 ARMGenericTimer *gt = &cpu->env.cp15.c14_timer[timeridx]; 2444 2445 if (gt->ctl & 1) { 2446 /* Timer enabled: calculate and set current ISTATUS, irq, and 2447 * reset timer to when ISTATUS next has to change 2448 */ 2449 uint64_t offset = timeridx == GTIMER_VIRT ? 2450 cpu->env.cp15.cntvoff_el2 : 0; 2451 uint64_t count = gt_get_countervalue(&cpu->env); 2452 /* Note that this must be unsigned 64 bit arithmetic: */ 2453 int istatus = count - offset >= gt->cval; 2454 uint64_t nexttick; 2455 int irqstate; 2456 2457 gt->ctl = deposit32(gt->ctl, 2, 1, istatus); 2458 2459 irqstate = (istatus && !(gt->ctl & 2)); 2460 qemu_set_irq(cpu->gt_timer_outputs[timeridx], irqstate); 2461 2462 if (istatus) { 2463 /* Next transition is when count rolls back over to zero */ 2464 nexttick = UINT64_MAX; 2465 } else { 2466 /* Next transition is when we hit cval */ 2467 nexttick = gt->cval + offset; 2468 } 2469 /* Note that the desired next expiry time might be beyond the 2470 * signed-64-bit range of a QEMUTimer -- in this case we just 2471 * set the timer for as far in the future as possible. When the 2472 * timer expires we will reset the timer for any remaining period. 2473 */ 2474 if (nexttick > INT64_MAX / gt_cntfrq_period_ns(cpu)) { 2475 timer_mod_ns(cpu->gt_timer[timeridx], INT64_MAX); 2476 } else { 2477 timer_mod(cpu->gt_timer[timeridx], nexttick); 2478 } 2479 trace_arm_gt_recalc(timeridx, irqstate, nexttick); 2480 } else { 2481 /* Timer disabled: ISTATUS and timer output always clear */ 2482 gt->ctl &= ~4; 2483 qemu_set_irq(cpu->gt_timer_outputs[timeridx], 0); 2484 timer_del(cpu->gt_timer[timeridx]); 2485 trace_arm_gt_recalc_disabled(timeridx); 2486 } 2487 } 2488 2489 static void gt_timer_reset(CPUARMState *env, const ARMCPRegInfo *ri, 2490 int timeridx) 2491 { 2492 ARMCPU *cpu = env_archcpu(env); 2493 2494 timer_del(cpu->gt_timer[timeridx]); 2495 } 2496 2497 static uint64_t gt_cnt_read(CPUARMState *env, const ARMCPRegInfo *ri) 2498 { 2499 return gt_get_countervalue(env); 2500 } 2501 2502 static uint64_t gt_virt_cnt_offset(CPUARMState *env) 2503 { 2504 uint64_t hcr; 2505 2506 switch (arm_current_el(env)) { 2507 case 2: 2508 hcr = arm_hcr_el2_eff(env); 2509 if (hcr & HCR_E2H) { 2510 return 0; 2511 } 2512 break; 2513 case 0: 2514 hcr = arm_hcr_el2_eff(env); 2515 if ((hcr & (HCR_E2H | HCR_TGE)) == (HCR_E2H | HCR_TGE)) { 2516 return 0; 2517 } 2518 break; 2519 } 2520 2521 return env->cp15.cntvoff_el2; 2522 } 2523 2524 static uint64_t gt_virt_cnt_read(CPUARMState *env, const ARMCPRegInfo *ri) 2525 { 2526 return gt_get_countervalue(env) - gt_virt_cnt_offset(env); 2527 } 2528 2529 static void gt_cval_write(CPUARMState *env, const ARMCPRegInfo *ri, 2530 int timeridx, 2531 uint64_t value) 2532 { 2533 trace_arm_gt_cval_write(timeridx, value); 2534 env->cp15.c14_timer[timeridx].cval = value; 2535 gt_recalc_timer(env_archcpu(env), timeridx); 2536 } 2537 2538 static uint64_t gt_tval_read(CPUARMState *env, const ARMCPRegInfo *ri, 2539 int timeridx) 2540 { 2541 uint64_t offset = 0; 2542 2543 switch (timeridx) { 2544 case GTIMER_VIRT: 2545 case GTIMER_HYPVIRT: 2546 offset = gt_virt_cnt_offset(env); 2547 break; 2548 } 2549 2550 return (uint32_t)(env->cp15.c14_timer[timeridx].cval - 2551 (gt_get_countervalue(env) - offset)); 2552 } 2553 2554 static void gt_tval_write(CPUARMState *env, const ARMCPRegInfo *ri, 2555 int timeridx, 2556 uint64_t value) 2557 { 2558 uint64_t offset = 0; 2559 2560 switch (timeridx) { 2561 case GTIMER_VIRT: 2562 case GTIMER_HYPVIRT: 2563 offset = gt_virt_cnt_offset(env); 2564 break; 2565 } 2566 2567 trace_arm_gt_tval_write(timeridx, value); 2568 env->cp15.c14_timer[timeridx].cval = gt_get_countervalue(env) - offset + 2569 sextract64(value, 0, 32); 2570 gt_recalc_timer(env_archcpu(env), timeridx); 2571 } 2572 2573 static void gt_ctl_write(CPUARMState *env, const ARMCPRegInfo *ri, 2574 int timeridx, 2575 uint64_t value) 2576 { 2577 ARMCPU *cpu = env_archcpu(env); 2578 uint32_t oldval = env->cp15.c14_timer[timeridx].ctl; 2579 2580 trace_arm_gt_ctl_write(timeridx, value); 2581 env->cp15.c14_timer[timeridx].ctl = deposit64(oldval, 0, 2, value); 2582 if ((oldval ^ value) & 1) { 2583 /* Enable toggled */ 2584 gt_recalc_timer(cpu, timeridx); 2585 } else if ((oldval ^ value) & 2) { 2586 /* IMASK toggled: don't need to recalculate, 2587 * just set the interrupt line based on ISTATUS 2588 */ 2589 int irqstate = (oldval & 4) && !(value & 2); 2590 2591 trace_arm_gt_imask_toggle(timeridx, irqstate); 2592 qemu_set_irq(cpu->gt_timer_outputs[timeridx], irqstate); 2593 } 2594 } 2595 2596 static void gt_phys_timer_reset(CPUARMState *env, const ARMCPRegInfo *ri) 2597 { 2598 gt_timer_reset(env, ri, GTIMER_PHYS); 2599 } 2600 2601 static void gt_phys_cval_write(CPUARMState *env, const ARMCPRegInfo *ri, 2602 uint64_t value) 2603 { 2604 gt_cval_write(env, ri, GTIMER_PHYS, value); 2605 } 2606 2607 static uint64_t gt_phys_tval_read(CPUARMState *env, const ARMCPRegInfo *ri) 2608 { 2609 return gt_tval_read(env, ri, GTIMER_PHYS); 2610 } 2611 2612 static void gt_phys_tval_write(CPUARMState *env, const ARMCPRegInfo *ri, 2613 uint64_t value) 2614 { 2615 gt_tval_write(env, ri, GTIMER_PHYS, value); 2616 } 2617 2618 static void gt_phys_ctl_write(CPUARMState *env, const ARMCPRegInfo *ri, 2619 uint64_t value) 2620 { 2621 gt_ctl_write(env, ri, GTIMER_PHYS, value); 2622 } 2623 2624 static int gt_phys_redir_timeridx(CPUARMState *env) 2625 { 2626 switch (arm_mmu_idx(env)) { 2627 case ARMMMUIdx_E20_0: 2628 case ARMMMUIdx_E20_2: 2629 case ARMMMUIdx_E20_2_PAN: 2630 case ARMMMUIdx_SE20_0: 2631 case ARMMMUIdx_SE20_2: 2632 case ARMMMUIdx_SE20_2_PAN: 2633 return GTIMER_HYP; 2634 default: 2635 return GTIMER_PHYS; 2636 } 2637 } 2638 2639 static int gt_virt_redir_timeridx(CPUARMState *env) 2640 { 2641 switch (arm_mmu_idx(env)) { 2642 case ARMMMUIdx_E20_0: 2643 case ARMMMUIdx_E20_2: 2644 case ARMMMUIdx_E20_2_PAN: 2645 case ARMMMUIdx_SE20_0: 2646 case ARMMMUIdx_SE20_2: 2647 case ARMMMUIdx_SE20_2_PAN: 2648 return GTIMER_HYPVIRT; 2649 default: 2650 return GTIMER_VIRT; 2651 } 2652 } 2653 2654 static uint64_t gt_phys_redir_cval_read(CPUARMState *env, 2655 const ARMCPRegInfo *ri) 2656 { 2657 int timeridx = gt_phys_redir_timeridx(env); 2658 return env->cp15.c14_timer[timeridx].cval; 2659 } 2660 2661 static void gt_phys_redir_cval_write(CPUARMState *env, const ARMCPRegInfo *ri, 2662 uint64_t value) 2663 { 2664 int timeridx = gt_phys_redir_timeridx(env); 2665 gt_cval_write(env, ri, timeridx, value); 2666 } 2667 2668 static uint64_t gt_phys_redir_tval_read(CPUARMState *env, 2669 const ARMCPRegInfo *ri) 2670 { 2671 int timeridx = gt_phys_redir_timeridx(env); 2672 return gt_tval_read(env, ri, timeridx); 2673 } 2674 2675 static void gt_phys_redir_tval_write(CPUARMState *env, const ARMCPRegInfo *ri, 2676 uint64_t value) 2677 { 2678 int timeridx = gt_phys_redir_timeridx(env); 2679 gt_tval_write(env, ri, timeridx, value); 2680 } 2681 2682 static uint64_t gt_phys_redir_ctl_read(CPUARMState *env, 2683 const ARMCPRegInfo *ri) 2684 { 2685 int timeridx = gt_phys_redir_timeridx(env); 2686 return env->cp15.c14_timer[timeridx].ctl; 2687 } 2688 2689 static void gt_phys_redir_ctl_write(CPUARMState *env, const ARMCPRegInfo *ri, 2690 uint64_t value) 2691 { 2692 int timeridx = gt_phys_redir_timeridx(env); 2693 gt_ctl_write(env, ri, timeridx, value); 2694 } 2695 2696 static void gt_virt_timer_reset(CPUARMState *env, const ARMCPRegInfo *ri) 2697 { 2698 gt_timer_reset(env, ri, GTIMER_VIRT); 2699 } 2700 2701 static void gt_virt_cval_write(CPUARMState *env, const ARMCPRegInfo *ri, 2702 uint64_t value) 2703 { 2704 gt_cval_write(env, ri, GTIMER_VIRT, value); 2705 } 2706 2707 static uint64_t gt_virt_tval_read(CPUARMState *env, const ARMCPRegInfo *ri) 2708 { 2709 return gt_tval_read(env, ri, GTIMER_VIRT); 2710 } 2711 2712 static void gt_virt_tval_write(CPUARMState *env, const ARMCPRegInfo *ri, 2713 uint64_t value) 2714 { 2715 gt_tval_write(env, ri, GTIMER_VIRT, value); 2716 } 2717 2718 static void gt_virt_ctl_write(CPUARMState *env, const ARMCPRegInfo *ri, 2719 uint64_t value) 2720 { 2721 gt_ctl_write(env, ri, GTIMER_VIRT, value); 2722 } 2723 2724 static void gt_cntvoff_write(CPUARMState *env, const ARMCPRegInfo *ri, 2725 uint64_t value) 2726 { 2727 ARMCPU *cpu = env_archcpu(env); 2728 2729 trace_arm_gt_cntvoff_write(value); 2730 raw_write(env, ri, value); 2731 gt_recalc_timer(cpu, GTIMER_VIRT); 2732 } 2733 2734 static uint64_t gt_virt_redir_cval_read(CPUARMState *env, 2735 const ARMCPRegInfo *ri) 2736 { 2737 int timeridx = gt_virt_redir_timeridx(env); 2738 return env->cp15.c14_timer[timeridx].cval; 2739 } 2740 2741 static void gt_virt_redir_cval_write(CPUARMState *env, const ARMCPRegInfo *ri, 2742 uint64_t value) 2743 { 2744 int timeridx = gt_virt_redir_timeridx(env); 2745 gt_cval_write(env, ri, timeridx, value); 2746 } 2747 2748 static uint64_t gt_virt_redir_tval_read(CPUARMState *env, 2749 const ARMCPRegInfo *ri) 2750 { 2751 int timeridx = gt_virt_redir_timeridx(env); 2752 return gt_tval_read(env, ri, timeridx); 2753 } 2754 2755 static void gt_virt_redir_tval_write(CPUARMState *env, const ARMCPRegInfo *ri, 2756 uint64_t value) 2757 { 2758 int timeridx = gt_virt_redir_timeridx(env); 2759 gt_tval_write(env, ri, timeridx, value); 2760 } 2761 2762 static uint64_t gt_virt_redir_ctl_read(CPUARMState *env, 2763 const ARMCPRegInfo *ri) 2764 { 2765 int timeridx = gt_virt_redir_timeridx(env); 2766 return env->cp15.c14_timer[timeridx].ctl; 2767 } 2768 2769 static void gt_virt_redir_ctl_write(CPUARMState *env, const ARMCPRegInfo *ri, 2770 uint64_t value) 2771 { 2772 int timeridx = gt_virt_redir_timeridx(env); 2773 gt_ctl_write(env, ri, timeridx, value); 2774 } 2775 2776 static void gt_hyp_timer_reset(CPUARMState *env, const ARMCPRegInfo *ri) 2777 { 2778 gt_timer_reset(env, ri, GTIMER_HYP); 2779 } 2780 2781 static void gt_hyp_cval_write(CPUARMState *env, const ARMCPRegInfo *ri, 2782 uint64_t value) 2783 { 2784 gt_cval_write(env, ri, GTIMER_HYP, value); 2785 } 2786 2787 static uint64_t gt_hyp_tval_read(CPUARMState *env, const ARMCPRegInfo *ri) 2788 { 2789 return gt_tval_read(env, ri, GTIMER_HYP); 2790 } 2791 2792 static void gt_hyp_tval_write(CPUARMState *env, const ARMCPRegInfo *ri, 2793 uint64_t value) 2794 { 2795 gt_tval_write(env, ri, GTIMER_HYP, value); 2796 } 2797 2798 static void gt_hyp_ctl_write(CPUARMState *env, const ARMCPRegInfo *ri, 2799 uint64_t value) 2800 { 2801 gt_ctl_write(env, ri, GTIMER_HYP, value); 2802 } 2803 2804 static void gt_sec_timer_reset(CPUARMState *env, const ARMCPRegInfo *ri) 2805 { 2806 gt_timer_reset(env, ri, GTIMER_SEC); 2807 } 2808 2809 static void gt_sec_cval_write(CPUARMState *env, const ARMCPRegInfo *ri, 2810 uint64_t value) 2811 { 2812 gt_cval_write(env, ri, GTIMER_SEC, value); 2813 } 2814 2815 static uint64_t gt_sec_tval_read(CPUARMState *env, const ARMCPRegInfo *ri) 2816 { 2817 return gt_tval_read(env, ri, GTIMER_SEC); 2818 } 2819 2820 static void gt_sec_tval_write(CPUARMState *env, const ARMCPRegInfo *ri, 2821 uint64_t value) 2822 { 2823 gt_tval_write(env, ri, GTIMER_SEC, value); 2824 } 2825 2826 static void gt_sec_ctl_write(CPUARMState *env, const ARMCPRegInfo *ri, 2827 uint64_t value) 2828 { 2829 gt_ctl_write(env, ri, GTIMER_SEC, value); 2830 } 2831 2832 static void gt_hv_timer_reset(CPUARMState *env, const ARMCPRegInfo *ri) 2833 { 2834 gt_timer_reset(env, ri, GTIMER_HYPVIRT); 2835 } 2836 2837 static void gt_hv_cval_write(CPUARMState *env, const ARMCPRegInfo *ri, 2838 uint64_t value) 2839 { 2840 gt_cval_write(env, ri, GTIMER_HYPVIRT, value); 2841 } 2842 2843 static uint64_t gt_hv_tval_read(CPUARMState *env, const ARMCPRegInfo *ri) 2844 { 2845 return gt_tval_read(env, ri, GTIMER_HYPVIRT); 2846 } 2847 2848 static void gt_hv_tval_write(CPUARMState *env, const ARMCPRegInfo *ri, 2849 uint64_t value) 2850 { 2851 gt_tval_write(env, ri, GTIMER_HYPVIRT, value); 2852 } 2853 2854 static void gt_hv_ctl_write(CPUARMState *env, const ARMCPRegInfo *ri, 2855 uint64_t value) 2856 { 2857 gt_ctl_write(env, ri, GTIMER_HYPVIRT, value); 2858 } 2859 2860 void arm_gt_ptimer_cb(void *opaque) 2861 { 2862 ARMCPU *cpu = opaque; 2863 2864 gt_recalc_timer(cpu, GTIMER_PHYS); 2865 } 2866 2867 void arm_gt_vtimer_cb(void *opaque) 2868 { 2869 ARMCPU *cpu = opaque; 2870 2871 gt_recalc_timer(cpu, GTIMER_VIRT); 2872 } 2873 2874 void arm_gt_htimer_cb(void *opaque) 2875 { 2876 ARMCPU *cpu = opaque; 2877 2878 gt_recalc_timer(cpu, GTIMER_HYP); 2879 } 2880 2881 void arm_gt_stimer_cb(void *opaque) 2882 { 2883 ARMCPU *cpu = opaque; 2884 2885 gt_recalc_timer(cpu, GTIMER_SEC); 2886 } 2887 2888 void arm_gt_hvtimer_cb(void *opaque) 2889 { 2890 ARMCPU *cpu = opaque; 2891 2892 gt_recalc_timer(cpu, GTIMER_HYPVIRT); 2893 } 2894 2895 static void arm_gt_cntfrq_reset(CPUARMState *env, const ARMCPRegInfo *opaque) 2896 { 2897 ARMCPU *cpu = env_archcpu(env); 2898 2899 cpu->env.cp15.c14_cntfrq = cpu->gt_cntfrq_hz; 2900 } 2901 2902 static const ARMCPRegInfo generic_timer_cp_reginfo[] = { 2903 /* Note that CNTFRQ is purely reads-as-written for the benefit 2904 * of software; writing it doesn't actually change the timer frequency. 2905 * Our reset value matches the fixed frequency we implement the timer at. 2906 */ 2907 { .name = "CNTFRQ", .cp = 15, .crn = 14, .crm = 0, .opc1 = 0, .opc2 = 0, 2908 .type = ARM_CP_ALIAS, 2909 .access = PL1_RW | PL0_R, .accessfn = gt_cntfrq_access, 2910 .fieldoffset = offsetoflow32(CPUARMState, cp15.c14_cntfrq), 2911 }, 2912 { .name = "CNTFRQ_EL0", .state = ARM_CP_STATE_AA64, 2913 .opc0 = 3, .opc1 = 3, .crn = 14, .crm = 0, .opc2 = 0, 2914 .access = PL1_RW | PL0_R, .accessfn = gt_cntfrq_access, 2915 .fieldoffset = offsetof(CPUARMState, cp15.c14_cntfrq), 2916 .resetfn = arm_gt_cntfrq_reset, 2917 }, 2918 /* overall control: mostly access permissions */ 2919 { .name = "CNTKCTL", .state = ARM_CP_STATE_BOTH, 2920 .opc0 = 3, .opc1 = 0, .crn = 14, .crm = 1, .opc2 = 0, 2921 .access = PL1_RW, 2922 .fieldoffset = offsetof(CPUARMState, cp15.c14_cntkctl), 2923 .resetvalue = 0, 2924 }, 2925 /* per-timer control */ 2926 { .name = "CNTP_CTL", .cp = 15, .crn = 14, .crm = 2, .opc1 = 0, .opc2 = 1, 2927 .secure = ARM_CP_SECSTATE_NS, 2928 .type = ARM_CP_IO | ARM_CP_ALIAS, .access = PL0_RW, 2929 .accessfn = gt_ptimer_access, 2930 .fieldoffset = offsetoflow32(CPUARMState, 2931 cp15.c14_timer[GTIMER_PHYS].ctl), 2932 .readfn = gt_phys_redir_ctl_read, .raw_readfn = raw_read, 2933 .writefn = gt_phys_redir_ctl_write, .raw_writefn = raw_write, 2934 }, 2935 { .name = "CNTP_CTL_S", 2936 .cp = 15, .crn = 14, .crm = 2, .opc1 = 0, .opc2 = 1, 2937 .secure = ARM_CP_SECSTATE_S, 2938 .type = ARM_CP_IO | ARM_CP_ALIAS, .access = PL0_RW, 2939 .accessfn = gt_ptimer_access, 2940 .fieldoffset = offsetoflow32(CPUARMState, 2941 cp15.c14_timer[GTIMER_SEC].ctl), 2942 .writefn = gt_sec_ctl_write, .raw_writefn = raw_write, 2943 }, 2944 { .name = "CNTP_CTL_EL0", .state = ARM_CP_STATE_AA64, 2945 .opc0 = 3, .opc1 = 3, .crn = 14, .crm = 2, .opc2 = 1, 2946 .type = ARM_CP_IO, .access = PL0_RW, 2947 .accessfn = gt_ptimer_access, 2948 .fieldoffset = offsetof(CPUARMState, cp15.c14_timer[GTIMER_PHYS].ctl), 2949 .resetvalue = 0, 2950 .readfn = gt_phys_redir_ctl_read, .raw_readfn = raw_read, 2951 .writefn = gt_phys_redir_ctl_write, .raw_writefn = raw_write, 2952 }, 2953 { .name = "CNTV_CTL", .cp = 15, .crn = 14, .crm = 3, .opc1 = 0, .opc2 = 1, 2954 .type = ARM_CP_IO | ARM_CP_ALIAS, .access = PL0_RW, 2955 .accessfn = gt_vtimer_access, 2956 .fieldoffset = offsetoflow32(CPUARMState, 2957 cp15.c14_timer[GTIMER_VIRT].ctl), 2958 .readfn = gt_virt_redir_ctl_read, .raw_readfn = raw_read, 2959 .writefn = gt_virt_redir_ctl_write, .raw_writefn = raw_write, 2960 }, 2961 { .name = "CNTV_CTL_EL0", .state = ARM_CP_STATE_AA64, 2962 .opc0 = 3, .opc1 = 3, .crn = 14, .crm = 3, .opc2 = 1, 2963 .type = ARM_CP_IO, .access = PL0_RW, 2964 .accessfn = gt_vtimer_access, 2965 .fieldoffset = offsetof(CPUARMState, cp15.c14_timer[GTIMER_VIRT].ctl), 2966 .resetvalue = 0, 2967 .readfn = gt_virt_redir_ctl_read, .raw_readfn = raw_read, 2968 .writefn = gt_virt_redir_ctl_write, .raw_writefn = raw_write, 2969 }, 2970 /* TimerValue views: a 32 bit downcounting view of the underlying state */ 2971 { .name = "CNTP_TVAL", .cp = 15, .crn = 14, .crm = 2, .opc1 = 0, .opc2 = 0, 2972 .secure = ARM_CP_SECSTATE_NS, 2973 .type = ARM_CP_NO_RAW | ARM_CP_IO, .access = PL0_RW, 2974 .accessfn = gt_ptimer_access, 2975 .readfn = gt_phys_redir_tval_read, .writefn = gt_phys_redir_tval_write, 2976 }, 2977 { .name = "CNTP_TVAL_S", 2978 .cp = 15, .crn = 14, .crm = 2, .opc1 = 0, .opc2 = 0, 2979 .secure = ARM_CP_SECSTATE_S, 2980 .type = ARM_CP_NO_RAW | ARM_CP_IO, .access = PL0_RW, 2981 .accessfn = gt_ptimer_access, 2982 .readfn = gt_sec_tval_read, .writefn = gt_sec_tval_write, 2983 }, 2984 { .name = "CNTP_TVAL_EL0", .state = ARM_CP_STATE_AA64, 2985 .opc0 = 3, .opc1 = 3, .crn = 14, .crm = 2, .opc2 = 0, 2986 .type = ARM_CP_NO_RAW | ARM_CP_IO, .access = PL0_RW, 2987 .accessfn = gt_ptimer_access, .resetfn = gt_phys_timer_reset, 2988 .readfn = gt_phys_redir_tval_read, .writefn = gt_phys_redir_tval_write, 2989 }, 2990 { .name = "CNTV_TVAL", .cp = 15, .crn = 14, .crm = 3, .opc1 = 0, .opc2 = 0, 2991 .type = ARM_CP_NO_RAW | ARM_CP_IO, .access = PL0_RW, 2992 .accessfn = gt_vtimer_access, 2993 .readfn = gt_virt_redir_tval_read, .writefn = gt_virt_redir_tval_write, 2994 }, 2995 { .name = "CNTV_TVAL_EL0", .state = ARM_CP_STATE_AA64, 2996 .opc0 = 3, .opc1 = 3, .crn = 14, .crm = 3, .opc2 = 0, 2997 .type = ARM_CP_NO_RAW | ARM_CP_IO, .access = PL0_RW, 2998 .accessfn = gt_vtimer_access, .resetfn = gt_virt_timer_reset, 2999 .readfn = gt_virt_redir_tval_read, .writefn = gt_virt_redir_tval_write, 3000 }, 3001 /* The counter itself */ 3002 { .name = "CNTPCT", .cp = 15, .crm = 14, .opc1 = 0, 3003 .access = PL0_R, .type = ARM_CP_64BIT | ARM_CP_NO_RAW | ARM_CP_IO, 3004 .accessfn = gt_pct_access, 3005 .readfn = gt_cnt_read, .resetfn = arm_cp_reset_ignore, 3006 }, 3007 { .name = "CNTPCT_EL0", .state = ARM_CP_STATE_AA64, 3008 .opc0 = 3, .opc1 = 3, .crn = 14, .crm = 0, .opc2 = 1, 3009 .access = PL0_R, .type = ARM_CP_NO_RAW | ARM_CP_IO, 3010 .accessfn = gt_pct_access, .readfn = gt_cnt_read, 3011 }, 3012 { .name = "CNTVCT", .cp = 15, .crm = 14, .opc1 = 1, 3013 .access = PL0_R, .type = ARM_CP_64BIT | ARM_CP_NO_RAW | ARM_CP_IO, 3014 .accessfn = gt_vct_access, 3015 .readfn = gt_virt_cnt_read, .resetfn = arm_cp_reset_ignore, 3016 }, 3017 { .name = "CNTVCT_EL0", .state = ARM_CP_STATE_AA64, 3018 .opc0 = 3, .opc1 = 3, .crn = 14, .crm = 0, .opc2 = 2, 3019 .access = PL0_R, .type = ARM_CP_NO_RAW | ARM_CP_IO, 3020 .accessfn = gt_vct_access, .readfn = gt_virt_cnt_read, 3021 }, 3022 /* Comparison value, indicating when the timer goes off */ 3023 { .name = "CNTP_CVAL", .cp = 15, .crm = 14, .opc1 = 2, 3024 .secure = ARM_CP_SECSTATE_NS, 3025 .access = PL0_RW, 3026 .type = ARM_CP_64BIT | ARM_CP_IO | ARM_CP_ALIAS, 3027 .fieldoffset = offsetof(CPUARMState, cp15.c14_timer[GTIMER_PHYS].cval), 3028 .accessfn = gt_ptimer_access, 3029 .readfn = gt_phys_redir_cval_read, .raw_readfn = raw_read, 3030 .writefn = gt_phys_redir_cval_write, .raw_writefn = raw_write, 3031 }, 3032 { .name = "CNTP_CVAL_S", .cp = 15, .crm = 14, .opc1 = 2, 3033 .secure = ARM_CP_SECSTATE_S, 3034 .access = PL0_RW, 3035 .type = ARM_CP_64BIT | ARM_CP_IO | ARM_CP_ALIAS, 3036 .fieldoffset = offsetof(CPUARMState, cp15.c14_timer[GTIMER_SEC].cval), 3037 .accessfn = gt_ptimer_access, 3038 .writefn = gt_sec_cval_write, .raw_writefn = raw_write, 3039 }, 3040 { .name = "CNTP_CVAL_EL0", .state = ARM_CP_STATE_AA64, 3041 .opc0 = 3, .opc1 = 3, .crn = 14, .crm = 2, .opc2 = 2, 3042 .access = PL0_RW, 3043 .type = ARM_CP_IO, 3044 .fieldoffset = offsetof(CPUARMState, cp15.c14_timer[GTIMER_PHYS].cval), 3045 .resetvalue = 0, .accessfn = gt_ptimer_access, 3046 .readfn = gt_phys_redir_cval_read, .raw_readfn = raw_read, 3047 .writefn = gt_phys_redir_cval_write, .raw_writefn = raw_write, 3048 }, 3049 { .name = "CNTV_CVAL", .cp = 15, .crm = 14, .opc1 = 3, 3050 .access = PL0_RW, 3051 .type = ARM_CP_64BIT | ARM_CP_IO | ARM_CP_ALIAS, 3052 .fieldoffset = offsetof(CPUARMState, cp15.c14_timer[GTIMER_VIRT].cval), 3053 .accessfn = gt_vtimer_access, 3054 .readfn = gt_virt_redir_cval_read, .raw_readfn = raw_read, 3055 .writefn = gt_virt_redir_cval_write, .raw_writefn = raw_write, 3056 }, 3057 { .name = "CNTV_CVAL_EL0", .state = ARM_CP_STATE_AA64, 3058 .opc0 = 3, .opc1 = 3, .crn = 14, .crm = 3, .opc2 = 2, 3059 .access = PL0_RW, 3060 .type = ARM_CP_IO, 3061 .fieldoffset = offsetof(CPUARMState, cp15.c14_timer[GTIMER_VIRT].cval), 3062 .resetvalue = 0, .accessfn = gt_vtimer_access, 3063 .readfn = gt_virt_redir_cval_read, .raw_readfn = raw_read, 3064 .writefn = gt_virt_redir_cval_write, .raw_writefn = raw_write, 3065 }, 3066 /* Secure timer -- this is actually restricted to only EL3 3067 * and configurably Secure-EL1 via the accessfn. 3068 */ 3069 { .name = "CNTPS_TVAL_EL1", .state = ARM_CP_STATE_AA64, 3070 .opc0 = 3, .opc1 = 7, .crn = 14, .crm = 2, .opc2 = 0, 3071 .type = ARM_CP_NO_RAW | ARM_CP_IO, .access = PL1_RW, 3072 .accessfn = gt_stimer_access, 3073 .readfn = gt_sec_tval_read, 3074 .writefn = gt_sec_tval_write, 3075 .resetfn = gt_sec_timer_reset, 3076 }, 3077 { .name = "CNTPS_CTL_EL1", .state = ARM_CP_STATE_AA64, 3078 .opc0 = 3, .opc1 = 7, .crn = 14, .crm = 2, .opc2 = 1, 3079 .type = ARM_CP_IO, .access = PL1_RW, 3080 .accessfn = gt_stimer_access, 3081 .fieldoffset = offsetof(CPUARMState, cp15.c14_timer[GTIMER_SEC].ctl), 3082 .resetvalue = 0, 3083 .writefn = gt_sec_ctl_write, .raw_writefn = raw_write, 3084 }, 3085 { .name = "CNTPS_CVAL_EL1", .state = ARM_CP_STATE_AA64, 3086 .opc0 = 3, .opc1 = 7, .crn = 14, .crm = 2, .opc2 = 2, 3087 .type = ARM_CP_IO, .access = PL1_RW, 3088 .accessfn = gt_stimer_access, 3089 .fieldoffset = offsetof(CPUARMState, cp15.c14_timer[GTIMER_SEC].cval), 3090 .writefn = gt_sec_cval_write, .raw_writefn = raw_write, 3091 }, 3092 }; 3093 3094 static CPAccessResult e2h_access(CPUARMState *env, const ARMCPRegInfo *ri, 3095 bool isread) 3096 { 3097 if (!(arm_hcr_el2_eff(env) & HCR_E2H)) { 3098 return CP_ACCESS_TRAP; 3099 } 3100 return CP_ACCESS_OK; 3101 } 3102 3103 #else 3104 3105 /* In user-mode most of the generic timer registers are inaccessible 3106 * however modern kernels (4.12+) allow access to cntvct_el0 3107 */ 3108 3109 static uint64_t gt_virt_cnt_read(CPUARMState *env, const ARMCPRegInfo *ri) 3110 { 3111 ARMCPU *cpu = env_archcpu(env); 3112 3113 /* Currently we have no support for QEMUTimer in linux-user so we 3114 * can't call gt_get_countervalue(env), instead we directly 3115 * call the lower level functions. 3116 */ 3117 return cpu_get_clock() / gt_cntfrq_period_ns(cpu); 3118 } 3119 3120 static const ARMCPRegInfo generic_timer_cp_reginfo[] = { 3121 { .name = "CNTFRQ_EL0", .state = ARM_CP_STATE_AA64, 3122 .opc0 = 3, .opc1 = 3, .crn = 14, .crm = 0, .opc2 = 0, 3123 .type = ARM_CP_CONST, .access = PL0_R /* no PL1_RW in linux-user */, 3124 .fieldoffset = offsetof(CPUARMState, cp15.c14_cntfrq), 3125 .resetvalue = NANOSECONDS_PER_SECOND / GTIMER_SCALE, 3126 }, 3127 { .name = "CNTVCT_EL0", .state = ARM_CP_STATE_AA64, 3128 .opc0 = 3, .opc1 = 3, .crn = 14, .crm = 0, .opc2 = 2, 3129 .access = PL0_R, .type = ARM_CP_NO_RAW | ARM_CP_IO, 3130 .readfn = gt_virt_cnt_read, 3131 }, 3132 }; 3133 3134 #endif 3135 3136 static void par_write(CPUARMState *env, const ARMCPRegInfo *ri, uint64_t value) 3137 { 3138 if (arm_feature(env, ARM_FEATURE_LPAE)) { 3139 raw_write(env, ri, value); 3140 } else if (arm_feature(env, ARM_FEATURE_V7)) { 3141 raw_write(env, ri, value & 0xfffff6ff); 3142 } else { 3143 raw_write(env, ri, value & 0xfffff1ff); 3144 } 3145 } 3146 3147 #ifndef CONFIG_USER_ONLY 3148 /* get_phys_addr() isn't present for user-mode-only targets */ 3149 3150 static CPAccessResult ats_access(CPUARMState *env, const ARMCPRegInfo *ri, 3151 bool isread) 3152 { 3153 if (ri->opc2 & 4) { 3154 /* The ATS12NSO* operations must trap to EL3 or EL2 if executed in 3155 * Secure EL1 (which can only happen if EL3 is AArch64). 3156 * They are simply UNDEF if executed from NS EL1. 3157 * They function normally from EL2 or EL3. 3158 */ 3159 if (arm_current_el(env) == 1) { 3160 if (arm_is_secure_below_el3(env)) { 3161 if (env->cp15.scr_el3 & SCR_EEL2) { 3162 return CP_ACCESS_TRAP_UNCATEGORIZED_EL2; 3163 } 3164 return CP_ACCESS_TRAP_UNCATEGORIZED_EL3; 3165 } 3166 return CP_ACCESS_TRAP_UNCATEGORIZED; 3167 } 3168 } 3169 return CP_ACCESS_OK; 3170 } 3171 3172 #ifdef CONFIG_TCG 3173 static uint64_t do_ats_write(CPUARMState *env, uint64_t value, 3174 MMUAccessType access_type, ARMMMUIdx mmu_idx) 3175 { 3176 hwaddr phys_addr; 3177 target_ulong page_size; 3178 int prot; 3179 bool ret; 3180 uint64_t par64; 3181 bool format64 = false; 3182 MemTxAttrs attrs = {}; 3183 ARMMMUFaultInfo fi = {}; 3184 ARMCacheAttrs cacheattrs = {}; 3185 3186 ret = get_phys_addr(env, value, access_type, mmu_idx, &phys_addr, &attrs, 3187 &prot, &page_size, &fi, &cacheattrs); 3188 3189 /* 3190 * ATS operations only do S1 or S1+S2 translations, so we never 3191 * have to deal with the ARMCacheAttrs format for S2 only. 3192 */ 3193 assert(!cacheattrs.is_s2_format); 3194 3195 if (ret) { 3196 /* 3197 * Some kinds of translation fault must cause exceptions rather 3198 * than being reported in the PAR. 3199 */ 3200 int current_el = arm_current_el(env); 3201 int target_el; 3202 uint32_t syn, fsr, fsc; 3203 bool take_exc = false; 3204 3205 if (fi.s1ptw && current_el == 1 3206 && arm_mmu_idx_is_stage1_of_2(mmu_idx)) { 3207 /* 3208 * Synchronous stage 2 fault on an access made as part of the 3209 * translation table walk for AT S1E0* or AT S1E1* insn 3210 * executed from NS EL1. If this is a synchronous external abort 3211 * and SCR_EL3.EA == 1, then we take a synchronous external abort 3212 * to EL3. Otherwise the fault is taken as an exception to EL2, 3213 * and HPFAR_EL2 holds the faulting IPA. 3214 */ 3215 if (fi.type == ARMFault_SyncExternalOnWalk && 3216 (env->cp15.scr_el3 & SCR_EA)) { 3217 target_el = 3; 3218 } else { 3219 env->cp15.hpfar_el2 = extract64(fi.s2addr, 12, 47) << 4; 3220 if (arm_is_secure_below_el3(env) && fi.s1ns) { 3221 env->cp15.hpfar_el2 |= HPFAR_NS; 3222 } 3223 target_el = 2; 3224 } 3225 take_exc = true; 3226 } else if (fi.type == ARMFault_SyncExternalOnWalk) { 3227 /* 3228 * Synchronous external aborts during a translation table walk 3229 * are taken as Data Abort exceptions. 3230 */ 3231 if (fi.stage2) { 3232 if (current_el == 3) { 3233 target_el = 3; 3234 } else { 3235 target_el = 2; 3236 } 3237 } else { 3238 target_el = exception_target_el(env); 3239 } 3240 take_exc = true; 3241 } 3242 3243 if (take_exc) { 3244 /* Construct FSR and FSC using same logic as arm_deliver_fault() */ 3245 if (target_el == 2 || arm_el_is_aa64(env, target_el) || 3246 arm_s1_regime_using_lpae_format(env, mmu_idx)) { 3247 fsr = arm_fi_to_lfsc(&fi); 3248 fsc = extract32(fsr, 0, 6); 3249 } else { 3250 fsr = arm_fi_to_sfsc(&fi); 3251 fsc = 0x3f; 3252 } 3253 /* 3254 * Report exception with ESR indicating a fault due to a 3255 * translation table walk for a cache maintenance instruction. 3256 */ 3257 syn = syn_data_abort_no_iss(current_el == target_el, 0, 3258 fi.ea, 1, fi.s1ptw, 1, fsc); 3259 env->exception.vaddress = value; 3260 env->exception.fsr = fsr; 3261 raise_exception(env, EXCP_DATA_ABORT, syn, target_el); 3262 } 3263 } 3264 3265 if (is_a64(env)) { 3266 format64 = true; 3267 } else if (arm_feature(env, ARM_FEATURE_LPAE)) { 3268 /* 3269 * ATS1Cxx: 3270 * * TTBCR.EAE determines whether the result is returned using the 3271 * 32-bit or the 64-bit PAR format 3272 * * Instructions executed in Hyp mode always use the 64bit format 3273 * 3274 * ATS1S2NSOxx uses the 64bit format if any of the following is true: 3275 * * The Non-secure TTBCR.EAE bit is set to 1 3276 * * The implementation includes EL2, and the value of HCR.VM is 1 3277 * 3278 * (Note that HCR.DC makes HCR.VM behave as if it is 1.) 3279 * 3280 * ATS1Hx always uses the 64bit format. 3281 */ 3282 format64 = arm_s1_regime_using_lpae_format(env, mmu_idx); 3283 3284 if (arm_feature(env, ARM_FEATURE_EL2)) { 3285 if (mmu_idx == ARMMMUIdx_E10_0 || 3286 mmu_idx == ARMMMUIdx_E10_1 || 3287 mmu_idx == ARMMMUIdx_E10_1_PAN) { 3288 format64 |= env->cp15.hcr_el2 & (HCR_VM | HCR_DC); 3289 } else { 3290 format64 |= arm_current_el(env) == 2; 3291 } 3292 } 3293 } 3294 3295 if (format64) { 3296 /* Create a 64-bit PAR */ 3297 par64 = (1 << 11); /* LPAE bit always set */ 3298 if (!ret) { 3299 par64 |= phys_addr & ~0xfffULL; 3300 if (!attrs.secure) { 3301 par64 |= (1 << 9); /* NS */ 3302 } 3303 par64 |= (uint64_t)cacheattrs.attrs << 56; /* ATTR */ 3304 par64 |= cacheattrs.shareability << 7; /* SH */ 3305 } else { 3306 uint32_t fsr = arm_fi_to_lfsc(&fi); 3307 3308 par64 |= 1; /* F */ 3309 par64 |= (fsr & 0x3f) << 1; /* FS */ 3310 if (fi.stage2) { 3311 par64 |= (1 << 9); /* S */ 3312 } 3313 if (fi.s1ptw) { 3314 par64 |= (1 << 8); /* PTW */ 3315 } 3316 } 3317 } else { 3318 /* fsr is a DFSR/IFSR value for the short descriptor 3319 * translation table format (with WnR always clear). 3320 * Convert it to a 32-bit PAR. 3321 */ 3322 if (!ret) { 3323 /* We do not set any attribute bits in the PAR */ 3324 if (page_size == (1 << 24) 3325 && arm_feature(env, ARM_FEATURE_V7)) { 3326 par64 = (phys_addr & 0xff000000) | (1 << 1); 3327 } else { 3328 par64 = phys_addr & 0xfffff000; 3329 } 3330 if (!attrs.secure) { 3331 par64 |= (1 << 9); /* NS */ 3332 } 3333 } else { 3334 uint32_t fsr = arm_fi_to_sfsc(&fi); 3335 3336 par64 = ((fsr & (1 << 10)) >> 5) | ((fsr & (1 << 12)) >> 6) | 3337 ((fsr & 0xf) << 1) | 1; 3338 } 3339 } 3340 return par64; 3341 } 3342 #endif /* CONFIG_TCG */ 3343 3344 static void ats_write(CPUARMState *env, const ARMCPRegInfo *ri, uint64_t value) 3345 { 3346 #ifdef CONFIG_TCG 3347 MMUAccessType access_type = ri->opc2 & 1 ? MMU_DATA_STORE : MMU_DATA_LOAD; 3348 uint64_t par64; 3349 ARMMMUIdx mmu_idx; 3350 int el = arm_current_el(env); 3351 bool secure = arm_is_secure_below_el3(env); 3352 3353 switch (ri->opc2 & 6) { 3354 case 0: 3355 /* stage 1 current state PL1: ATS1CPR, ATS1CPW, ATS1CPRP, ATS1CPWP */ 3356 switch (el) { 3357 case 3: 3358 mmu_idx = ARMMMUIdx_SE3; 3359 break; 3360 case 2: 3361 g_assert(!secure); /* ARMv8.4-SecEL2 is 64-bit only */ 3362 /* fall through */ 3363 case 1: 3364 if (ri->crm == 9 && (env->uncached_cpsr & CPSR_PAN)) { 3365 mmu_idx = (secure ? ARMMMUIdx_Stage1_SE1_PAN 3366 : ARMMMUIdx_Stage1_E1_PAN); 3367 } else { 3368 mmu_idx = secure ? ARMMMUIdx_Stage1_SE1 : ARMMMUIdx_Stage1_E1; 3369 } 3370 break; 3371 default: 3372 g_assert_not_reached(); 3373 } 3374 break; 3375 case 2: 3376 /* stage 1 current state PL0: ATS1CUR, ATS1CUW */ 3377 switch (el) { 3378 case 3: 3379 mmu_idx = ARMMMUIdx_SE10_0; 3380 break; 3381 case 2: 3382 g_assert(!secure); /* ARMv8.4-SecEL2 is 64-bit only */ 3383 mmu_idx = ARMMMUIdx_Stage1_E0; 3384 break; 3385 case 1: 3386 mmu_idx = secure ? ARMMMUIdx_Stage1_SE0 : ARMMMUIdx_Stage1_E0; 3387 break; 3388 default: 3389 g_assert_not_reached(); 3390 } 3391 break; 3392 case 4: 3393 /* stage 1+2 NonSecure PL1: ATS12NSOPR, ATS12NSOPW */ 3394 mmu_idx = ARMMMUIdx_E10_1; 3395 break; 3396 case 6: 3397 /* stage 1+2 NonSecure PL0: ATS12NSOUR, ATS12NSOUW */ 3398 mmu_idx = ARMMMUIdx_E10_0; 3399 break; 3400 default: 3401 g_assert_not_reached(); 3402 } 3403 3404 par64 = do_ats_write(env, value, access_type, mmu_idx); 3405 3406 A32_BANKED_CURRENT_REG_SET(env, par, par64); 3407 #else 3408 /* Handled by hardware accelerator. */ 3409 g_assert_not_reached(); 3410 #endif /* CONFIG_TCG */ 3411 } 3412 3413 static void ats1h_write(CPUARMState *env, const ARMCPRegInfo *ri, 3414 uint64_t value) 3415 { 3416 #ifdef CONFIG_TCG 3417 MMUAccessType access_type = ri->opc2 & 1 ? MMU_DATA_STORE : MMU_DATA_LOAD; 3418 uint64_t par64; 3419 3420 par64 = do_ats_write(env, value, access_type, ARMMMUIdx_E2); 3421 3422 A32_BANKED_CURRENT_REG_SET(env, par, par64); 3423 #else 3424 /* Handled by hardware accelerator. */ 3425 g_assert_not_reached(); 3426 #endif /* CONFIG_TCG */ 3427 } 3428 3429 static CPAccessResult at_s1e2_access(CPUARMState *env, const ARMCPRegInfo *ri, 3430 bool isread) 3431 { 3432 if (arm_current_el(env) == 3 && 3433 !(env->cp15.scr_el3 & (SCR_NS | SCR_EEL2))) { 3434 return CP_ACCESS_TRAP; 3435 } 3436 return CP_ACCESS_OK; 3437 } 3438 3439 static void ats_write64(CPUARMState *env, const ARMCPRegInfo *ri, 3440 uint64_t value) 3441 { 3442 #ifdef CONFIG_TCG 3443 MMUAccessType access_type = ri->opc2 & 1 ? MMU_DATA_STORE : MMU_DATA_LOAD; 3444 ARMMMUIdx mmu_idx; 3445 int secure = arm_is_secure_below_el3(env); 3446 3447 switch (ri->opc2 & 6) { 3448 case 0: 3449 switch (ri->opc1) { 3450 case 0: /* AT S1E1R, AT S1E1W, AT S1E1RP, AT S1E1WP */ 3451 if (ri->crm == 9 && (env->pstate & PSTATE_PAN)) { 3452 mmu_idx = (secure ? ARMMMUIdx_Stage1_SE1_PAN 3453 : ARMMMUIdx_Stage1_E1_PAN); 3454 } else { 3455 mmu_idx = secure ? ARMMMUIdx_Stage1_SE1 : ARMMMUIdx_Stage1_E1; 3456 } 3457 break; 3458 case 4: /* AT S1E2R, AT S1E2W */ 3459 mmu_idx = secure ? ARMMMUIdx_SE2 : ARMMMUIdx_E2; 3460 break; 3461 case 6: /* AT S1E3R, AT S1E3W */ 3462 mmu_idx = ARMMMUIdx_SE3; 3463 break; 3464 default: 3465 g_assert_not_reached(); 3466 } 3467 break; 3468 case 2: /* AT S1E0R, AT S1E0W */ 3469 mmu_idx = secure ? ARMMMUIdx_Stage1_SE0 : ARMMMUIdx_Stage1_E0; 3470 break; 3471 case 4: /* AT S12E1R, AT S12E1W */ 3472 mmu_idx = secure ? ARMMMUIdx_SE10_1 : ARMMMUIdx_E10_1; 3473 break; 3474 case 6: /* AT S12E0R, AT S12E0W */ 3475 mmu_idx = secure ? ARMMMUIdx_SE10_0 : ARMMMUIdx_E10_0; 3476 break; 3477 default: 3478 g_assert_not_reached(); 3479 } 3480 3481 env->cp15.par_el[1] = do_ats_write(env, value, access_type, mmu_idx); 3482 #else 3483 /* Handled by hardware accelerator. */ 3484 g_assert_not_reached(); 3485 #endif /* CONFIG_TCG */ 3486 } 3487 #endif 3488 3489 static const ARMCPRegInfo vapa_cp_reginfo[] = { 3490 { .name = "PAR", .cp = 15, .crn = 7, .crm = 4, .opc1 = 0, .opc2 = 0, 3491 .access = PL1_RW, .resetvalue = 0, 3492 .bank_fieldoffsets = { offsetoflow32(CPUARMState, cp15.par_s), 3493 offsetoflow32(CPUARMState, cp15.par_ns) }, 3494 .writefn = par_write }, 3495 #ifndef CONFIG_USER_ONLY 3496 /* This underdecoding is safe because the reginfo is NO_RAW. */ 3497 { .name = "ATS", .cp = 15, .crn = 7, .crm = 8, .opc1 = 0, .opc2 = CP_ANY, 3498 .access = PL1_W, .accessfn = ats_access, 3499 .writefn = ats_write, .type = ARM_CP_NO_RAW | ARM_CP_RAISES_EXC }, 3500 #endif 3501 }; 3502 3503 /* Return basic MPU access permission bits. */ 3504 static uint32_t simple_mpu_ap_bits(uint32_t val) 3505 { 3506 uint32_t ret; 3507 uint32_t mask; 3508 int i; 3509 ret = 0; 3510 mask = 3; 3511 for (i = 0; i < 16; i += 2) { 3512 ret |= (val >> i) & mask; 3513 mask <<= 2; 3514 } 3515 return ret; 3516 } 3517 3518 /* Pad basic MPU access permission bits to extended format. */ 3519 static uint32_t extended_mpu_ap_bits(uint32_t val) 3520 { 3521 uint32_t ret; 3522 uint32_t mask; 3523 int i; 3524 ret = 0; 3525 mask = 3; 3526 for (i = 0; i < 16; i += 2) { 3527 ret |= (val & mask) << i; 3528 mask <<= 2; 3529 } 3530 return ret; 3531 } 3532 3533 static void pmsav5_data_ap_write(CPUARMState *env, const ARMCPRegInfo *ri, 3534 uint64_t value) 3535 { 3536 env->cp15.pmsav5_data_ap = extended_mpu_ap_bits(value); 3537 } 3538 3539 static uint64_t pmsav5_data_ap_read(CPUARMState *env, const ARMCPRegInfo *ri) 3540 { 3541 return simple_mpu_ap_bits(env->cp15.pmsav5_data_ap); 3542 } 3543 3544 static void pmsav5_insn_ap_write(CPUARMState *env, const ARMCPRegInfo *ri, 3545 uint64_t value) 3546 { 3547 env->cp15.pmsav5_insn_ap = extended_mpu_ap_bits(value); 3548 } 3549 3550 static uint64_t pmsav5_insn_ap_read(CPUARMState *env, const ARMCPRegInfo *ri) 3551 { 3552 return simple_mpu_ap_bits(env->cp15.pmsav5_insn_ap); 3553 } 3554 3555 static uint64_t pmsav7_read(CPUARMState *env, const ARMCPRegInfo *ri) 3556 { 3557 uint32_t *u32p = *(uint32_t **)raw_ptr(env, ri); 3558 3559 if (!u32p) { 3560 return 0; 3561 } 3562 3563 u32p += env->pmsav7.rnr[M_REG_NS]; 3564 return *u32p; 3565 } 3566 3567 static void pmsav7_write(CPUARMState *env, const ARMCPRegInfo *ri, 3568 uint64_t value) 3569 { 3570 ARMCPU *cpu = env_archcpu(env); 3571 uint32_t *u32p = *(uint32_t **)raw_ptr(env, ri); 3572 3573 if (!u32p) { 3574 return; 3575 } 3576 3577 u32p += env->pmsav7.rnr[M_REG_NS]; 3578 tlb_flush(CPU(cpu)); /* Mappings may have changed - purge! */ 3579 *u32p = value; 3580 } 3581 3582 static void pmsav7_rgnr_write(CPUARMState *env, const ARMCPRegInfo *ri, 3583 uint64_t value) 3584 { 3585 ARMCPU *cpu = env_archcpu(env); 3586 uint32_t nrgs = cpu->pmsav7_dregion; 3587 3588 if (value >= nrgs) { 3589 qemu_log_mask(LOG_GUEST_ERROR, 3590 "PMSAv7 RGNR write >= # supported regions, %" PRIu32 3591 " > %" PRIu32 "\n", (uint32_t)value, nrgs); 3592 return; 3593 } 3594 3595 raw_write(env, ri, value); 3596 } 3597 3598 static const ARMCPRegInfo pmsav7_cp_reginfo[] = { 3599 /* Reset for all these registers is handled in arm_cpu_reset(), 3600 * because the PMSAv7 is also used by M-profile CPUs, which do 3601 * not register cpregs but still need the state to be reset. 3602 */ 3603 { .name = "DRBAR", .cp = 15, .crn = 6, .opc1 = 0, .crm = 1, .opc2 = 0, 3604 .access = PL1_RW, .type = ARM_CP_NO_RAW, 3605 .fieldoffset = offsetof(CPUARMState, pmsav7.drbar), 3606 .readfn = pmsav7_read, .writefn = pmsav7_write, 3607 .resetfn = arm_cp_reset_ignore }, 3608 { .name = "DRSR", .cp = 15, .crn = 6, .opc1 = 0, .crm = 1, .opc2 = 2, 3609 .access = PL1_RW, .type = ARM_CP_NO_RAW, 3610 .fieldoffset = offsetof(CPUARMState, pmsav7.drsr), 3611 .readfn = pmsav7_read, .writefn = pmsav7_write, 3612 .resetfn = arm_cp_reset_ignore }, 3613 { .name = "DRACR", .cp = 15, .crn = 6, .opc1 = 0, .crm = 1, .opc2 = 4, 3614 .access = PL1_RW, .type = ARM_CP_NO_RAW, 3615 .fieldoffset = offsetof(CPUARMState, pmsav7.dracr), 3616 .readfn = pmsav7_read, .writefn = pmsav7_write, 3617 .resetfn = arm_cp_reset_ignore }, 3618 { .name = "RGNR", .cp = 15, .crn = 6, .opc1 = 0, .crm = 2, .opc2 = 0, 3619 .access = PL1_RW, 3620 .fieldoffset = offsetof(CPUARMState, pmsav7.rnr[M_REG_NS]), 3621 .writefn = pmsav7_rgnr_write, 3622 .resetfn = arm_cp_reset_ignore }, 3623 }; 3624 3625 static const ARMCPRegInfo pmsav5_cp_reginfo[] = { 3626 { .name = "DATA_AP", .cp = 15, .crn = 5, .crm = 0, .opc1 = 0, .opc2 = 0, 3627 .access = PL1_RW, .type = ARM_CP_ALIAS, 3628 .fieldoffset = offsetof(CPUARMState, cp15.pmsav5_data_ap), 3629 .readfn = pmsav5_data_ap_read, .writefn = pmsav5_data_ap_write, }, 3630 { .name = "INSN_AP", .cp = 15, .crn = 5, .crm = 0, .opc1 = 0, .opc2 = 1, 3631 .access = PL1_RW, .type = ARM_CP_ALIAS, 3632 .fieldoffset = offsetof(CPUARMState, cp15.pmsav5_insn_ap), 3633 .readfn = pmsav5_insn_ap_read, .writefn = pmsav5_insn_ap_write, }, 3634 { .name = "DATA_EXT_AP", .cp = 15, .crn = 5, .crm = 0, .opc1 = 0, .opc2 = 2, 3635 .access = PL1_RW, 3636 .fieldoffset = offsetof(CPUARMState, cp15.pmsav5_data_ap), 3637 .resetvalue = 0, }, 3638 { .name = "INSN_EXT_AP", .cp = 15, .crn = 5, .crm = 0, .opc1 = 0, .opc2 = 3, 3639 .access = PL1_RW, 3640 .fieldoffset = offsetof(CPUARMState, cp15.pmsav5_insn_ap), 3641 .resetvalue = 0, }, 3642 { .name = "DCACHE_CFG", .cp = 15, .crn = 2, .crm = 0, .opc1 = 0, .opc2 = 0, 3643 .access = PL1_RW, 3644 .fieldoffset = offsetof(CPUARMState, cp15.c2_data), .resetvalue = 0, }, 3645 { .name = "ICACHE_CFG", .cp = 15, .crn = 2, .crm = 0, .opc1 = 0, .opc2 = 1, 3646 .access = PL1_RW, 3647 .fieldoffset = offsetof(CPUARMState, cp15.c2_insn), .resetvalue = 0, }, 3648 /* Protection region base and size registers */ 3649 { .name = "946_PRBS0", .cp = 15, .crn = 6, .crm = 0, .opc1 = 0, 3650 .opc2 = CP_ANY, .access = PL1_RW, .resetvalue = 0, 3651 .fieldoffset = offsetof(CPUARMState, cp15.c6_region[0]) }, 3652 { .name = "946_PRBS1", .cp = 15, .crn = 6, .crm = 1, .opc1 = 0, 3653 .opc2 = CP_ANY, .access = PL1_RW, .resetvalue = 0, 3654 .fieldoffset = offsetof(CPUARMState, cp15.c6_region[1]) }, 3655 { .name = "946_PRBS2", .cp = 15, .crn = 6, .crm = 2, .opc1 = 0, 3656 .opc2 = CP_ANY, .access = PL1_RW, .resetvalue = 0, 3657 .fieldoffset = offsetof(CPUARMState, cp15.c6_region[2]) }, 3658 { .name = "946_PRBS3", .cp = 15, .crn = 6, .crm = 3, .opc1 = 0, 3659 .opc2 = CP_ANY, .access = PL1_RW, .resetvalue = 0, 3660 .fieldoffset = offsetof(CPUARMState, cp15.c6_region[3]) }, 3661 { .name = "946_PRBS4", .cp = 15, .crn = 6, .crm = 4, .opc1 = 0, 3662 .opc2 = CP_ANY, .access = PL1_RW, .resetvalue = 0, 3663 .fieldoffset = offsetof(CPUARMState, cp15.c6_region[4]) }, 3664 { .name = "946_PRBS5", .cp = 15, .crn = 6, .crm = 5, .opc1 = 0, 3665 .opc2 = CP_ANY, .access = PL1_RW, .resetvalue = 0, 3666 .fieldoffset = offsetof(CPUARMState, cp15.c6_region[5]) }, 3667 { .name = "946_PRBS6", .cp = 15, .crn = 6, .crm = 6, .opc1 = 0, 3668 .opc2 = CP_ANY, .access = PL1_RW, .resetvalue = 0, 3669 .fieldoffset = offsetof(CPUARMState, cp15.c6_region[6]) }, 3670 { .name = "946_PRBS7", .cp = 15, .crn = 6, .crm = 7, .opc1 = 0, 3671 .opc2 = CP_ANY, .access = PL1_RW, .resetvalue = 0, 3672 .fieldoffset = offsetof(CPUARMState, cp15.c6_region[7]) }, 3673 }; 3674 3675 static void vmsa_ttbcr_raw_write(CPUARMState *env, const ARMCPRegInfo *ri, 3676 uint64_t value) 3677 { 3678 TCR *tcr = raw_ptr(env, ri); 3679 int maskshift = extract32(value, 0, 3); 3680 3681 if (!arm_feature(env, ARM_FEATURE_V8)) { 3682 if (arm_feature(env, ARM_FEATURE_LPAE) && (value & TTBCR_EAE)) { 3683 /* Pre ARMv8 bits [21:19], [15:14] and [6:3] are UNK/SBZP when 3684 * using Long-desciptor translation table format */ 3685 value &= ~((7 << 19) | (3 << 14) | (0xf << 3)); 3686 } else if (arm_feature(env, ARM_FEATURE_EL3)) { 3687 /* In an implementation that includes the Security Extensions 3688 * TTBCR has additional fields PD0 [4] and PD1 [5] for 3689 * Short-descriptor translation table format. 3690 */ 3691 value &= TTBCR_PD1 | TTBCR_PD0 | TTBCR_N; 3692 } else { 3693 value &= TTBCR_N; 3694 } 3695 } 3696 3697 /* Update the masks corresponding to the TCR bank being written 3698 * Note that we always calculate mask and base_mask, but 3699 * they are only used for short-descriptor tables (ie if EAE is 0); 3700 * for long-descriptor tables the TCR fields are used differently 3701 * and the mask and base_mask values are meaningless. 3702 */ 3703 tcr->raw_tcr = value; 3704 tcr->mask = ~(((uint32_t)0xffffffffu) >> maskshift); 3705 tcr->base_mask = ~((uint32_t)0x3fffu >> maskshift); 3706 } 3707 3708 static void vmsa_ttbcr_write(CPUARMState *env, const ARMCPRegInfo *ri, 3709 uint64_t value) 3710 { 3711 ARMCPU *cpu = env_archcpu(env); 3712 TCR *tcr = raw_ptr(env, ri); 3713 3714 if (arm_feature(env, ARM_FEATURE_LPAE)) { 3715 /* With LPAE the TTBCR could result in a change of ASID 3716 * via the TTBCR.A1 bit, so do a TLB flush. 3717 */ 3718 tlb_flush(CPU(cpu)); 3719 } 3720 /* Preserve the high half of TCR_EL1, set via TTBCR2. */ 3721 value = deposit64(tcr->raw_tcr, 0, 32, value); 3722 vmsa_ttbcr_raw_write(env, ri, value); 3723 } 3724 3725 static void vmsa_ttbcr_reset(CPUARMState *env, const ARMCPRegInfo *ri) 3726 { 3727 TCR *tcr = raw_ptr(env, ri); 3728 3729 /* Reset both the TCR as well as the masks corresponding to the bank of 3730 * the TCR being reset. 3731 */ 3732 tcr->raw_tcr = 0; 3733 tcr->mask = 0; 3734 tcr->base_mask = 0xffffc000u; 3735 } 3736 3737 static void vmsa_tcr_el12_write(CPUARMState *env, const ARMCPRegInfo *ri, 3738 uint64_t value) 3739 { 3740 ARMCPU *cpu = env_archcpu(env); 3741 TCR *tcr = raw_ptr(env, ri); 3742 3743 /* For AArch64 the A1 bit could result in a change of ASID, so TLB flush. */ 3744 tlb_flush(CPU(cpu)); 3745 tcr->raw_tcr = value; 3746 } 3747 3748 static void vmsa_ttbr_write(CPUARMState *env, const ARMCPRegInfo *ri, 3749 uint64_t value) 3750 { 3751 /* If the ASID changes (with a 64-bit write), we must flush the TLB. */ 3752 if (cpreg_field_is_64bit(ri) && 3753 extract64(raw_read(env, ri) ^ value, 48, 16) != 0) { 3754 ARMCPU *cpu = env_archcpu(env); 3755 tlb_flush(CPU(cpu)); 3756 } 3757 raw_write(env, ri, value); 3758 } 3759 3760 static void vmsa_tcr_ttbr_el2_write(CPUARMState *env, const ARMCPRegInfo *ri, 3761 uint64_t value) 3762 { 3763 /* 3764 * If we are running with E2&0 regime, then an ASID is active. 3765 * Flush if that might be changing. Note we're not checking 3766 * TCR_EL2.A1 to know if this is really the TTBRx_EL2 that 3767 * holds the active ASID, only checking the field that might. 3768 */ 3769 if (extract64(raw_read(env, ri) ^ value, 48, 16) && 3770 (arm_hcr_el2_eff(env) & HCR_E2H)) { 3771 uint16_t mask = ARMMMUIdxBit_E20_2 | 3772 ARMMMUIdxBit_E20_2_PAN | 3773 ARMMMUIdxBit_E20_0; 3774 3775 if (arm_is_secure_below_el3(env)) { 3776 mask >>= ARM_MMU_IDX_A_NS; 3777 } 3778 3779 tlb_flush_by_mmuidx(env_cpu(env), mask); 3780 } 3781 raw_write(env, ri, value); 3782 } 3783 3784 static void vttbr_write(CPUARMState *env, const ARMCPRegInfo *ri, 3785 uint64_t value) 3786 { 3787 ARMCPU *cpu = env_archcpu(env); 3788 CPUState *cs = CPU(cpu); 3789 3790 /* 3791 * A change in VMID to the stage2 page table (Stage2) invalidates 3792 * the combined stage 1&2 tlbs (EL10_1 and EL10_0). 3793 */ 3794 if (raw_read(env, ri) != value) { 3795 uint16_t mask = ARMMMUIdxBit_E10_1 | 3796 ARMMMUIdxBit_E10_1_PAN | 3797 ARMMMUIdxBit_E10_0; 3798 3799 if (arm_is_secure_below_el3(env)) { 3800 mask >>= ARM_MMU_IDX_A_NS; 3801 } 3802 3803 tlb_flush_by_mmuidx(cs, mask); 3804 raw_write(env, ri, value); 3805 } 3806 } 3807 3808 static const ARMCPRegInfo vmsa_pmsa_cp_reginfo[] = { 3809 { .name = "DFSR", .cp = 15, .crn = 5, .crm = 0, .opc1 = 0, .opc2 = 0, 3810 .access = PL1_RW, .accessfn = access_tvm_trvm, .type = ARM_CP_ALIAS, 3811 .bank_fieldoffsets = { offsetoflow32(CPUARMState, cp15.dfsr_s), 3812 offsetoflow32(CPUARMState, cp15.dfsr_ns) }, }, 3813 { .name = "IFSR", .cp = 15, .crn = 5, .crm = 0, .opc1 = 0, .opc2 = 1, 3814 .access = PL1_RW, .accessfn = access_tvm_trvm, .resetvalue = 0, 3815 .bank_fieldoffsets = { offsetoflow32(CPUARMState, cp15.ifsr_s), 3816 offsetoflow32(CPUARMState, cp15.ifsr_ns) } }, 3817 { .name = "DFAR", .cp = 15, .opc1 = 0, .crn = 6, .crm = 0, .opc2 = 0, 3818 .access = PL1_RW, .accessfn = access_tvm_trvm, .resetvalue = 0, 3819 .bank_fieldoffsets = { offsetof(CPUARMState, cp15.dfar_s), 3820 offsetof(CPUARMState, cp15.dfar_ns) } }, 3821 { .name = "FAR_EL1", .state = ARM_CP_STATE_AA64, 3822 .opc0 = 3, .crn = 6, .crm = 0, .opc1 = 0, .opc2 = 0, 3823 .access = PL1_RW, .accessfn = access_tvm_trvm, 3824 .fieldoffset = offsetof(CPUARMState, cp15.far_el[1]), 3825 .resetvalue = 0, }, 3826 }; 3827 3828 static const ARMCPRegInfo vmsa_cp_reginfo[] = { 3829 { .name = "ESR_EL1", .state = ARM_CP_STATE_AA64, 3830 .opc0 = 3, .crn = 5, .crm = 2, .opc1 = 0, .opc2 = 0, 3831 .access = PL1_RW, .accessfn = access_tvm_trvm, 3832 .fieldoffset = offsetof(CPUARMState, cp15.esr_el[1]), .resetvalue = 0, }, 3833 { .name = "TTBR0_EL1", .state = ARM_CP_STATE_BOTH, 3834 .opc0 = 3, .opc1 = 0, .crn = 2, .crm = 0, .opc2 = 0, 3835 .access = PL1_RW, .accessfn = access_tvm_trvm, 3836 .writefn = vmsa_ttbr_write, .resetvalue = 0, 3837 .bank_fieldoffsets = { offsetof(CPUARMState, cp15.ttbr0_s), 3838 offsetof(CPUARMState, cp15.ttbr0_ns) } }, 3839 { .name = "TTBR1_EL1", .state = ARM_CP_STATE_BOTH, 3840 .opc0 = 3, .opc1 = 0, .crn = 2, .crm = 0, .opc2 = 1, 3841 .access = PL1_RW, .accessfn = access_tvm_trvm, 3842 .writefn = vmsa_ttbr_write, .resetvalue = 0, 3843 .bank_fieldoffsets = { offsetof(CPUARMState, cp15.ttbr1_s), 3844 offsetof(CPUARMState, cp15.ttbr1_ns) } }, 3845 { .name = "TCR_EL1", .state = ARM_CP_STATE_AA64, 3846 .opc0 = 3, .crn = 2, .crm = 0, .opc1 = 0, .opc2 = 2, 3847 .access = PL1_RW, .accessfn = access_tvm_trvm, 3848 .writefn = vmsa_tcr_el12_write, 3849 .resetfn = vmsa_ttbcr_reset, .raw_writefn = raw_write, 3850 .fieldoffset = offsetof(CPUARMState, cp15.tcr_el[1]) }, 3851 { .name = "TTBCR", .cp = 15, .crn = 2, .crm = 0, .opc1 = 0, .opc2 = 2, 3852 .access = PL1_RW, .accessfn = access_tvm_trvm, 3853 .type = ARM_CP_ALIAS, .writefn = vmsa_ttbcr_write, 3854 .raw_writefn = vmsa_ttbcr_raw_write, 3855 /* No offsetoflow32 -- pass the entire TCR to writefn/raw_writefn. */ 3856 .bank_fieldoffsets = { offsetof(CPUARMState, cp15.tcr_el[3]), 3857 offsetof(CPUARMState, cp15.tcr_el[1])} }, 3858 }; 3859 3860 /* Note that unlike TTBCR, writing to TTBCR2 does not require flushing 3861 * qemu tlbs nor adjusting cached masks. 3862 */ 3863 static const ARMCPRegInfo ttbcr2_reginfo = { 3864 .name = "TTBCR2", .cp = 15, .opc1 = 0, .crn = 2, .crm = 0, .opc2 = 3, 3865 .access = PL1_RW, .accessfn = access_tvm_trvm, 3866 .type = ARM_CP_ALIAS, 3867 .bank_fieldoffsets = { 3868 offsetofhigh32(CPUARMState, cp15.tcr_el[3].raw_tcr), 3869 offsetofhigh32(CPUARMState, cp15.tcr_el[1].raw_tcr), 3870 }, 3871 }; 3872 3873 static void omap_ticonfig_write(CPUARMState *env, const ARMCPRegInfo *ri, 3874 uint64_t value) 3875 { 3876 env->cp15.c15_ticonfig = value & 0xe7; 3877 /* The OS_TYPE bit in this register changes the reported CPUID! */ 3878 env->cp15.c0_cpuid = (value & (1 << 5)) ? 3879 ARM_CPUID_TI915T : ARM_CPUID_TI925T; 3880 } 3881 3882 static void omap_threadid_write(CPUARMState *env, const ARMCPRegInfo *ri, 3883 uint64_t value) 3884 { 3885 env->cp15.c15_threadid = value & 0xffff; 3886 } 3887 3888 static void omap_wfi_write(CPUARMState *env, const ARMCPRegInfo *ri, 3889 uint64_t value) 3890 { 3891 /* Wait-for-interrupt (deprecated) */ 3892 cpu_interrupt(env_cpu(env), CPU_INTERRUPT_HALT); 3893 } 3894 3895 static void omap_cachemaint_write(CPUARMState *env, const ARMCPRegInfo *ri, 3896 uint64_t value) 3897 { 3898 /* On OMAP there are registers indicating the max/min index of dcache lines 3899 * containing a dirty line; cache flush operations have to reset these. 3900 */ 3901 env->cp15.c15_i_max = 0x000; 3902 env->cp15.c15_i_min = 0xff0; 3903 } 3904 3905 static const ARMCPRegInfo omap_cp_reginfo[] = { 3906 { .name = "DFSR", .cp = 15, .crn = 5, .crm = CP_ANY, 3907 .opc1 = CP_ANY, .opc2 = CP_ANY, .access = PL1_RW, .type = ARM_CP_OVERRIDE, 3908 .fieldoffset = offsetoflow32(CPUARMState, cp15.esr_el[1]), 3909 .resetvalue = 0, }, 3910 { .name = "", .cp = 15, .crn = 15, .crm = 0, .opc1 = 0, .opc2 = 0, 3911 .access = PL1_RW, .type = ARM_CP_NOP }, 3912 { .name = "TICONFIG", .cp = 15, .crn = 15, .crm = 1, .opc1 = 0, .opc2 = 0, 3913 .access = PL1_RW, 3914 .fieldoffset = offsetof(CPUARMState, cp15.c15_ticonfig), .resetvalue = 0, 3915 .writefn = omap_ticonfig_write }, 3916 { .name = "IMAX", .cp = 15, .crn = 15, .crm = 2, .opc1 = 0, .opc2 = 0, 3917 .access = PL1_RW, 3918 .fieldoffset = offsetof(CPUARMState, cp15.c15_i_max), .resetvalue = 0, }, 3919 { .name = "IMIN", .cp = 15, .crn = 15, .crm = 3, .opc1 = 0, .opc2 = 0, 3920 .access = PL1_RW, .resetvalue = 0xff0, 3921 .fieldoffset = offsetof(CPUARMState, cp15.c15_i_min) }, 3922 { .name = "THREADID", .cp = 15, .crn = 15, .crm = 4, .opc1 = 0, .opc2 = 0, 3923 .access = PL1_RW, 3924 .fieldoffset = offsetof(CPUARMState, cp15.c15_threadid), .resetvalue = 0, 3925 .writefn = omap_threadid_write }, 3926 { .name = "TI925T_STATUS", .cp = 15, .crn = 15, 3927 .crm = 8, .opc1 = 0, .opc2 = 0, .access = PL1_RW, 3928 .type = ARM_CP_NO_RAW, 3929 .readfn = arm_cp_read_zero, .writefn = omap_wfi_write, }, 3930 /* TODO: Peripheral port remap register: 3931 * On OMAP2 mcr p15, 0, rn, c15, c2, 4 sets up the interrupt controller 3932 * base address at $rn & ~0xfff and map size of 0x200 << ($rn & 0xfff), 3933 * when MMU is off. 3934 */ 3935 { .name = "OMAP_CACHEMAINT", .cp = 15, .crn = 7, .crm = CP_ANY, 3936 .opc1 = 0, .opc2 = CP_ANY, .access = PL1_W, 3937 .type = ARM_CP_OVERRIDE | ARM_CP_NO_RAW, 3938 .writefn = omap_cachemaint_write }, 3939 { .name = "C9", .cp = 15, .crn = 9, 3940 .crm = CP_ANY, .opc1 = CP_ANY, .opc2 = CP_ANY, .access = PL1_RW, 3941 .type = ARM_CP_CONST | ARM_CP_OVERRIDE, .resetvalue = 0 }, 3942 }; 3943 3944 static void xscale_cpar_write(CPUARMState *env, const ARMCPRegInfo *ri, 3945 uint64_t value) 3946 { 3947 env->cp15.c15_cpar = value & 0x3fff; 3948 } 3949 3950 static const ARMCPRegInfo xscale_cp_reginfo[] = { 3951 { .name = "XSCALE_CPAR", 3952 .cp = 15, .crn = 15, .crm = 1, .opc1 = 0, .opc2 = 0, .access = PL1_RW, 3953 .fieldoffset = offsetof(CPUARMState, cp15.c15_cpar), .resetvalue = 0, 3954 .writefn = xscale_cpar_write, }, 3955 { .name = "XSCALE_AUXCR", 3956 .cp = 15, .crn = 1, .crm = 0, .opc1 = 0, .opc2 = 1, .access = PL1_RW, 3957 .fieldoffset = offsetof(CPUARMState, cp15.c1_xscaleauxcr), 3958 .resetvalue = 0, }, 3959 /* XScale specific cache-lockdown: since we have no cache we NOP these 3960 * and hope the guest does not really rely on cache behaviour. 3961 */ 3962 { .name = "XSCALE_LOCK_ICACHE_LINE", 3963 .cp = 15, .opc1 = 0, .crn = 9, .crm = 1, .opc2 = 0, 3964 .access = PL1_W, .type = ARM_CP_NOP }, 3965 { .name = "XSCALE_UNLOCK_ICACHE", 3966 .cp = 15, .opc1 = 0, .crn = 9, .crm = 1, .opc2 = 1, 3967 .access = PL1_W, .type = ARM_CP_NOP }, 3968 { .name = "XSCALE_DCACHE_LOCK", 3969 .cp = 15, .opc1 = 0, .crn = 9, .crm = 2, .opc2 = 0, 3970 .access = PL1_RW, .type = ARM_CP_NOP }, 3971 { .name = "XSCALE_UNLOCK_DCACHE", 3972 .cp = 15, .opc1 = 0, .crn = 9, .crm = 2, .opc2 = 1, 3973 .access = PL1_W, .type = ARM_CP_NOP }, 3974 }; 3975 3976 static const ARMCPRegInfo dummy_c15_cp_reginfo[] = { 3977 /* RAZ/WI the whole crn=15 space, when we don't have a more specific 3978 * implementation of this implementation-defined space. 3979 * Ideally this should eventually disappear in favour of actually 3980 * implementing the correct behaviour for all cores. 3981 */ 3982 { .name = "C15_IMPDEF", .cp = 15, .crn = 15, 3983 .crm = CP_ANY, .opc1 = CP_ANY, .opc2 = CP_ANY, 3984 .access = PL1_RW, 3985 .type = ARM_CP_CONST | ARM_CP_NO_RAW | ARM_CP_OVERRIDE, 3986 .resetvalue = 0 }, 3987 }; 3988 3989 static const ARMCPRegInfo cache_dirty_status_cp_reginfo[] = { 3990 /* Cache status: RAZ because we have no cache so it's always clean */ 3991 { .name = "CDSR", .cp = 15, .crn = 7, .crm = 10, .opc1 = 0, .opc2 = 6, 3992 .access = PL1_R, .type = ARM_CP_CONST | ARM_CP_NO_RAW, 3993 .resetvalue = 0 }, 3994 }; 3995 3996 static const ARMCPRegInfo cache_block_ops_cp_reginfo[] = { 3997 /* We never have a a block transfer operation in progress */ 3998 { .name = "BXSR", .cp = 15, .crn = 7, .crm = 12, .opc1 = 0, .opc2 = 4, 3999 .access = PL0_R, .type = ARM_CP_CONST | ARM_CP_NO_RAW, 4000 .resetvalue = 0 }, 4001 /* The cache ops themselves: these all NOP for QEMU */ 4002 { .name = "IICR", .cp = 15, .crm = 5, .opc1 = 0, 4003 .access = PL1_W, .type = ARM_CP_NOP|ARM_CP_64BIT }, 4004 { .name = "IDCR", .cp = 15, .crm = 6, .opc1 = 0, 4005 .access = PL1_W, .type = ARM_CP_NOP|ARM_CP_64BIT }, 4006 { .name = "CDCR", .cp = 15, .crm = 12, .opc1 = 0, 4007 .access = PL0_W, .type = ARM_CP_NOP|ARM_CP_64BIT }, 4008 { .name = "PIR", .cp = 15, .crm = 12, .opc1 = 1, 4009 .access = PL0_W, .type = ARM_CP_NOP|ARM_CP_64BIT }, 4010 { .name = "PDR", .cp = 15, .crm = 12, .opc1 = 2, 4011 .access = PL0_W, .type = ARM_CP_NOP|ARM_CP_64BIT }, 4012 { .name = "CIDCR", .cp = 15, .crm = 14, .opc1 = 0, 4013 .access = PL1_W, .type = ARM_CP_NOP|ARM_CP_64BIT }, 4014 }; 4015 4016 static const ARMCPRegInfo cache_test_clean_cp_reginfo[] = { 4017 /* The cache test-and-clean instructions always return (1 << 30) 4018 * to indicate that there are no dirty cache lines. 4019 */ 4020 { .name = "TC_DCACHE", .cp = 15, .crn = 7, .crm = 10, .opc1 = 0, .opc2 = 3, 4021 .access = PL0_R, .type = ARM_CP_CONST | ARM_CP_NO_RAW, 4022 .resetvalue = (1 << 30) }, 4023 { .name = "TCI_DCACHE", .cp = 15, .crn = 7, .crm = 14, .opc1 = 0, .opc2 = 3, 4024 .access = PL0_R, .type = ARM_CP_CONST | ARM_CP_NO_RAW, 4025 .resetvalue = (1 << 30) }, 4026 }; 4027 4028 static const ARMCPRegInfo strongarm_cp_reginfo[] = { 4029 /* Ignore ReadBuffer accesses */ 4030 { .name = "C9_READBUFFER", .cp = 15, .crn = 9, 4031 .crm = CP_ANY, .opc1 = CP_ANY, .opc2 = CP_ANY, 4032 .access = PL1_RW, .resetvalue = 0, 4033 .type = ARM_CP_CONST | ARM_CP_OVERRIDE | ARM_CP_NO_RAW }, 4034 }; 4035 4036 static uint64_t midr_read(CPUARMState *env, const ARMCPRegInfo *ri) 4037 { 4038 unsigned int cur_el = arm_current_el(env); 4039 4040 if (arm_is_el2_enabled(env) && cur_el == 1) { 4041 return env->cp15.vpidr_el2; 4042 } 4043 return raw_read(env, ri); 4044 } 4045 4046 static uint64_t mpidr_read_val(CPUARMState *env) 4047 { 4048 ARMCPU *cpu = env_archcpu(env); 4049 uint64_t mpidr = cpu->mp_affinity; 4050 4051 if (arm_feature(env, ARM_FEATURE_V7MP)) { 4052 mpidr |= (1U << 31); 4053 /* Cores which are uniprocessor (non-coherent) 4054 * but still implement the MP extensions set 4055 * bit 30. (For instance, Cortex-R5). 4056 */ 4057 if (cpu->mp_is_up) { 4058 mpidr |= (1u << 30); 4059 } 4060 } 4061 return mpidr; 4062 } 4063 4064 static uint64_t mpidr_read(CPUARMState *env, const ARMCPRegInfo *ri) 4065 { 4066 unsigned int cur_el = arm_current_el(env); 4067 4068 if (arm_is_el2_enabled(env) && cur_el == 1) { 4069 return env->cp15.vmpidr_el2; 4070 } 4071 return mpidr_read_val(env); 4072 } 4073 4074 static const ARMCPRegInfo lpae_cp_reginfo[] = { 4075 /* NOP AMAIR0/1 */ 4076 { .name = "AMAIR0", .state = ARM_CP_STATE_BOTH, 4077 .opc0 = 3, .crn = 10, .crm = 3, .opc1 = 0, .opc2 = 0, 4078 .access = PL1_RW, .accessfn = access_tvm_trvm, 4079 .type = ARM_CP_CONST, .resetvalue = 0 }, 4080 /* AMAIR1 is mapped to AMAIR_EL1[63:32] */ 4081 { .name = "AMAIR1", .cp = 15, .crn = 10, .crm = 3, .opc1 = 0, .opc2 = 1, 4082 .access = PL1_RW, .accessfn = access_tvm_trvm, 4083 .type = ARM_CP_CONST, .resetvalue = 0 }, 4084 { .name = "PAR", .cp = 15, .crm = 7, .opc1 = 0, 4085 .access = PL1_RW, .type = ARM_CP_64BIT, .resetvalue = 0, 4086 .bank_fieldoffsets = { offsetof(CPUARMState, cp15.par_s), 4087 offsetof(CPUARMState, cp15.par_ns)} }, 4088 { .name = "TTBR0", .cp = 15, .crm = 2, .opc1 = 0, 4089 .access = PL1_RW, .accessfn = access_tvm_trvm, 4090 .type = ARM_CP_64BIT | ARM_CP_ALIAS, 4091 .bank_fieldoffsets = { offsetof(CPUARMState, cp15.ttbr0_s), 4092 offsetof(CPUARMState, cp15.ttbr0_ns) }, 4093 .writefn = vmsa_ttbr_write, }, 4094 { .name = "TTBR1", .cp = 15, .crm = 2, .opc1 = 1, 4095 .access = PL1_RW, .accessfn = access_tvm_trvm, 4096 .type = ARM_CP_64BIT | ARM_CP_ALIAS, 4097 .bank_fieldoffsets = { offsetof(CPUARMState, cp15.ttbr1_s), 4098 offsetof(CPUARMState, cp15.ttbr1_ns) }, 4099 .writefn = vmsa_ttbr_write, }, 4100 }; 4101 4102 static uint64_t aa64_fpcr_read(CPUARMState *env, const ARMCPRegInfo *ri) 4103 { 4104 return vfp_get_fpcr(env); 4105 } 4106 4107 static void aa64_fpcr_write(CPUARMState *env, const ARMCPRegInfo *ri, 4108 uint64_t value) 4109 { 4110 vfp_set_fpcr(env, value); 4111 } 4112 4113 static uint64_t aa64_fpsr_read(CPUARMState *env, const ARMCPRegInfo *ri) 4114 { 4115 return vfp_get_fpsr(env); 4116 } 4117 4118 static void aa64_fpsr_write(CPUARMState *env, const ARMCPRegInfo *ri, 4119 uint64_t value) 4120 { 4121 vfp_set_fpsr(env, value); 4122 } 4123 4124 static CPAccessResult aa64_daif_access(CPUARMState *env, const ARMCPRegInfo *ri, 4125 bool isread) 4126 { 4127 if (arm_current_el(env) == 0 && !(arm_sctlr(env, 0) & SCTLR_UMA)) { 4128 return CP_ACCESS_TRAP; 4129 } 4130 return CP_ACCESS_OK; 4131 } 4132 4133 static void aa64_daif_write(CPUARMState *env, const ARMCPRegInfo *ri, 4134 uint64_t value) 4135 { 4136 env->daif = value & PSTATE_DAIF; 4137 } 4138 4139 static uint64_t aa64_pan_read(CPUARMState *env, const ARMCPRegInfo *ri) 4140 { 4141 return env->pstate & PSTATE_PAN; 4142 } 4143 4144 static void aa64_pan_write(CPUARMState *env, const ARMCPRegInfo *ri, 4145 uint64_t value) 4146 { 4147 env->pstate = (env->pstate & ~PSTATE_PAN) | (value & PSTATE_PAN); 4148 } 4149 4150 static const ARMCPRegInfo pan_reginfo = { 4151 .name = "PAN", .state = ARM_CP_STATE_AA64, 4152 .opc0 = 3, .opc1 = 0, .crn = 4, .crm = 2, .opc2 = 3, 4153 .type = ARM_CP_NO_RAW, .access = PL1_RW, 4154 .readfn = aa64_pan_read, .writefn = aa64_pan_write 4155 }; 4156 4157 static uint64_t aa64_uao_read(CPUARMState *env, const ARMCPRegInfo *ri) 4158 { 4159 return env->pstate & PSTATE_UAO; 4160 } 4161 4162 static void aa64_uao_write(CPUARMState *env, const ARMCPRegInfo *ri, 4163 uint64_t value) 4164 { 4165 env->pstate = (env->pstate & ~PSTATE_UAO) | (value & PSTATE_UAO); 4166 } 4167 4168 static const ARMCPRegInfo uao_reginfo = { 4169 .name = "UAO", .state = ARM_CP_STATE_AA64, 4170 .opc0 = 3, .opc1 = 0, .crn = 4, .crm = 2, .opc2 = 4, 4171 .type = ARM_CP_NO_RAW, .access = PL1_RW, 4172 .readfn = aa64_uao_read, .writefn = aa64_uao_write 4173 }; 4174 4175 static uint64_t aa64_dit_read(CPUARMState *env, const ARMCPRegInfo *ri) 4176 { 4177 return env->pstate & PSTATE_DIT; 4178 } 4179 4180 static void aa64_dit_write(CPUARMState *env, const ARMCPRegInfo *ri, 4181 uint64_t value) 4182 { 4183 env->pstate = (env->pstate & ~PSTATE_DIT) | (value & PSTATE_DIT); 4184 } 4185 4186 static const ARMCPRegInfo dit_reginfo = { 4187 .name = "DIT", .state = ARM_CP_STATE_AA64, 4188 .opc0 = 3, .opc1 = 3, .crn = 4, .crm = 2, .opc2 = 5, 4189 .type = ARM_CP_NO_RAW, .access = PL0_RW, 4190 .readfn = aa64_dit_read, .writefn = aa64_dit_write 4191 }; 4192 4193 static uint64_t aa64_ssbs_read(CPUARMState *env, const ARMCPRegInfo *ri) 4194 { 4195 return env->pstate & PSTATE_SSBS; 4196 } 4197 4198 static void aa64_ssbs_write(CPUARMState *env, const ARMCPRegInfo *ri, 4199 uint64_t value) 4200 { 4201 env->pstate = (env->pstate & ~PSTATE_SSBS) | (value & PSTATE_SSBS); 4202 } 4203 4204 static const ARMCPRegInfo ssbs_reginfo = { 4205 .name = "SSBS", .state = ARM_CP_STATE_AA64, 4206 .opc0 = 3, .opc1 = 3, .crn = 4, .crm = 2, .opc2 = 6, 4207 .type = ARM_CP_NO_RAW, .access = PL0_RW, 4208 .readfn = aa64_ssbs_read, .writefn = aa64_ssbs_write 4209 }; 4210 4211 static CPAccessResult aa64_cacheop_poc_access(CPUARMState *env, 4212 const ARMCPRegInfo *ri, 4213 bool isread) 4214 { 4215 /* Cache invalidate/clean to Point of Coherency or Persistence... */ 4216 switch (arm_current_el(env)) { 4217 case 0: 4218 /* ... EL0 must UNDEF unless SCTLR_EL1.UCI is set. */ 4219 if (!(arm_sctlr(env, 0) & SCTLR_UCI)) { 4220 return CP_ACCESS_TRAP; 4221 } 4222 /* fall through */ 4223 case 1: 4224 /* ... EL1 must trap to EL2 if HCR_EL2.TPCP is set. */ 4225 if (arm_hcr_el2_eff(env) & HCR_TPCP) { 4226 return CP_ACCESS_TRAP_EL2; 4227 } 4228 break; 4229 } 4230 return CP_ACCESS_OK; 4231 } 4232 4233 static CPAccessResult aa64_cacheop_pou_access(CPUARMState *env, 4234 const ARMCPRegInfo *ri, 4235 bool isread) 4236 { 4237 /* Cache invalidate/clean to Point of Unification... */ 4238 switch (arm_current_el(env)) { 4239 case 0: 4240 /* ... EL0 must UNDEF unless SCTLR_EL1.UCI is set. */ 4241 if (!(arm_sctlr(env, 0) & SCTLR_UCI)) { 4242 return CP_ACCESS_TRAP; 4243 } 4244 /* fall through */ 4245 case 1: 4246 /* ... EL1 must trap to EL2 if HCR_EL2.TPU is set. */ 4247 if (arm_hcr_el2_eff(env) & HCR_TPU) { 4248 return CP_ACCESS_TRAP_EL2; 4249 } 4250 break; 4251 } 4252 return CP_ACCESS_OK; 4253 } 4254 4255 /* See: D4.7.2 TLB maintenance requirements and the TLB maintenance instructions 4256 * Page D4-1736 (DDI0487A.b) 4257 */ 4258 4259 static int vae1_tlbmask(CPUARMState *env) 4260 { 4261 uint64_t hcr = arm_hcr_el2_eff(env); 4262 uint16_t mask; 4263 4264 if ((hcr & (HCR_E2H | HCR_TGE)) == (HCR_E2H | HCR_TGE)) { 4265 mask = ARMMMUIdxBit_E20_2 | 4266 ARMMMUIdxBit_E20_2_PAN | 4267 ARMMMUIdxBit_E20_0; 4268 } else { 4269 mask = ARMMMUIdxBit_E10_1 | 4270 ARMMMUIdxBit_E10_1_PAN | 4271 ARMMMUIdxBit_E10_0; 4272 } 4273 4274 if (arm_is_secure_below_el3(env)) { 4275 mask >>= ARM_MMU_IDX_A_NS; 4276 } 4277 4278 return mask; 4279 } 4280 4281 /* Return 56 if TBI is enabled, 64 otherwise. */ 4282 static int tlbbits_for_regime(CPUARMState *env, ARMMMUIdx mmu_idx, 4283 uint64_t addr) 4284 { 4285 uint64_t tcr = regime_tcr(env, mmu_idx)->raw_tcr; 4286 int tbi = aa64_va_parameter_tbi(tcr, mmu_idx); 4287 int select = extract64(addr, 55, 1); 4288 4289 return (tbi >> select) & 1 ? 56 : 64; 4290 } 4291 4292 static int vae1_tlbbits(CPUARMState *env, uint64_t addr) 4293 { 4294 uint64_t hcr = arm_hcr_el2_eff(env); 4295 ARMMMUIdx mmu_idx; 4296 4297 /* Only the regime of the mmu_idx below is significant. */ 4298 if ((hcr & (HCR_E2H | HCR_TGE)) == (HCR_E2H | HCR_TGE)) { 4299 mmu_idx = ARMMMUIdx_E20_0; 4300 } else { 4301 mmu_idx = ARMMMUIdx_E10_0; 4302 } 4303 4304 if (arm_is_secure_below_el3(env)) { 4305 mmu_idx &= ~ARM_MMU_IDX_A_NS; 4306 } 4307 4308 return tlbbits_for_regime(env, mmu_idx, addr); 4309 } 4310 4311 static void tlbi_aa64_vmalle1is_write(CPUARMState *env, const ARMCPRegInfo *ri, 4312 uint64_t value) 4313 { 4314 CPUState *cs = env_cpu(env); 4315 int mask = vae1_tlbmask(env); 4316 4317 tlb_flush_by_mmuidx_all_cpus_synced(cs, mask); 4318 } 4319 4320 static void tlbi_aa64_vmalle1_write(CPUARMState *env, const ARMCPRegInfo *ri, 4321 uint64_t value) 4322 { 4323 CPUState *cs = env_cpu(env); 4324 int mask = vae1_tlbmask(env); 4325 4326 if (tlb_force_broadcast(env)) { 4327 tlb_flush_by_mmuidx_all_cpus_synced(cs, mask); 4328 } else { 4329 tlb_flush_by_mmuidx(cs, mask); 4330 } 4331 } 4332 4333 static int alle1_tlbmask(CPUARMState *env) 4334 { 4335 /* 4336 * Note that the 'ALL' scope must invalidate both stage 1 and 4337 * stage 2 translations, whereas most other scopes only invalidate 4338 * stage 1 translations. 4339 */ 4340 if (arm_is_secure_below_el3(env)) { 4341 return ARMMMUIdxBit_SE10_1 | 4342 ARMMMUIdxBit_SE10_1_PAN | 4343 ARMMMUIdxBit_SE10_0; 4344 } else { 4345 return ARMMMUIdxBit_E10_1 | 4346 ARMMMUIdxBit_E10_1_PAN | 4347 ARMMMUIdxBit_E10_0; 4348 } 4349 } 4350 4351 static int e2_tlbmask(CPUARMState *env) 4352 { 4353 if (arm_is_secure_below_el3(env)) { 4354 return ARMMMUIdxBit_SE20_0 | 4355 ARMMMUIdxBit_SE20_2 | 4356 ARMMMUIdxBit_SE20_2_PAN | 4357 ARMMMUIdxBit_SE2; 4358 } else { 4359 return ARMMMUIdxBit_E20_0 | 4360 ARMMMUIdxBit_E20_2 | 4361 ARMMMUIdxBit_E20_2_PAN | 4362 ARMMMUIdxBit_E2; 4363 } 4364 } 4365 4366 static void tlbi_aa64_alle1_write(CPUARMState *env, const ARMCPRegInfo *ri, 4367 uint64_t value) 4368 { 4369 CPUState *cs = env_cpu(env); 4370 int mask = alle1_tlbmask(env); 4371 4372 tlb_flush_by_mmuidx(cs, mask); 4373 } 4374 4375 static void tlbi_aa64_alle2_write(CPUARMState *env, const ARMCPRegInfo *ri, 4376 uint64_t value) 4377 { 4378 CPUState *cs = env_cpu(env); 4379 int mask = e2_tlbmask(env); 4380 4381 tlb_flush_by_mmuidx(cs, mask); 4382 } 4383 4384 static void tlbi_aa64_alle3_write(CPUARMState *env, const ARMCPRegInfo *ri, 4385 uint64_t value) 4386 { 4387 ARMCPU *cpu = env_archcpu(env); 4388 CPUState *cs = CPU(cpu); 4389 4390 tlb_flush_by_mmuidx(cs, ARMMMUIdxBit_SE3); 4391 } 4392 4393 static void tlbi_aa64_alle1is_write(CPUARMState *env, const ARMCPRegInfo *ri, 4394 uint64_t value) 4395 { 4396 CPUState *cs = env_cpu(env); 4397 int mask = alle1_tlbmask(env); 4398 4399 tlb_flush_by_mmuidx_all_cpus_synced(cs, mask); 4400 } 4401 4402 static void tlbi_aa64_alle2is_write(CPUARMState *env, const ARMCPRegInfo *ri, 4403 uint64_t value) 4404 { 4405 CPUState *cs = env_cpu(env); 4406 int mask = e2_tlbmask(env); 4407 4408 tlb_flush_by_mmuidx_all_cpus_synced(cs, mask); 4409 } 4410 4411 static void tlbi_aa64_alle3is_write(CPUARMState *env, const ARMCPRegInfo *ri, 4412 uint64_t value) 4413 { 4414 CPUState *cs = env_cpu(env); 4415 4416 tlb_flush_by_mmuidx_all_cpus_synced(cs, ARMMMUIdxBit_SE3); 4417 } 4418 4419 static void tlbi_aa64_vae2_write(CPUARMState *env, const ARMCPRegInfo *ri, 4420 uint64_t value) 4421 { 4422 /* Invalidate by VA, EL2 4423 * Currently handles both VAE2 and VALE2, since we don't support 4424 * flush-last-level-only. 4425 */ 4426 CPUState *cs = env_cpu(env); 4427 int mask = e2_tlbmask(env); 4428 uint64_t pageaddr = sextract64(value << 12, 0, 56); 4429 4430 tlb_flush_page_by_mmuidx(cs, pageaddr, mask); 4431 } 4432 4433 static void tlbi_aa64_vae3_write(CPUARMState *env, const ARMCPRegInfo *ri, 4434 uint64_t value) 4435 { 4436 /* Invalidate by VA, EL3 4437 * Currently handles both VAE3 and VALE3, since we don't support 4438 * flush-last-level-only. 4439 */ 4440 ARMCPU *cpu = env_archcpu(env); 4441 CPUState *cs = CPU(cpu); 4442 uint64_t pageaddr = sextract64(value << 12, 0, 56); 4443 4444 tlb_flush_page_by_mmuidx(cs, pageaddr, ARMMMUIdxBit_SE3); 4445 } 4446 4447 static void tlbi_aa64_vae1is_write(CPUARMState *env, const ARMCPRegInfo *ri, 4448 uint64_t value) 4449 { 4450 CPUState *cs = env_cpu(env); 4451 int mask = vae1_tlbmask(env); 4452 uint64_t pageaddr = sextract64(value << 12, 0, 56); 4453 int bits = vae1_tlbbits(env, pageaddr); 4454 4455 tlb_flush_page_bits_by_mmuidx_all_cpus_synced(cs, pageaddr, mask, bits); 4456 } 4457 4458 static void tlbi_aa64_vae1_write(CPUARMState *env, const ARMCPRegInfo *ri, 4459 uint64_t value) 4460 { 4461 /* Invalidate by VA, EL1&0 (AArch64 version). 4462 * Currently handles all of VAE1, VAAE1, VAALE1 and VALE1, 4463 * since we don't support flush-for-specific-ASID-only or 4464 * flush-last-level-only. 4465 */ 4466 CPUState *cs = env_cpu(env); 4467 int mask = vae1_tlbmask(env); 4468 uint64_t pageaddr = sextract64(value << 12, 0, 56); 4469 int bits = vae1_tlbbits(env, pageaddr); 4470 4471 if (tlb_force_broadcast(env)) { 4472 tlb_flush_page_bits_by_mmuidx_all_cpus_synced(cs, pageaddr, mask, bits); 4473 } else { 4474 tlb_flush_page_bits_by_mmuidx(cs, pageaddr, mask, bits); 4475 } 4476 } 4477 4478 static void tlbi_aa64_vae2is_write(CPUARMState *env, const ARMCPRegInfo *ri, 4479 uint64_t value) 4480 { 4481 CPUState *cs = env_cpu(env); 4482 uint64_t pageaddr = sextract64(value << 12, 0, 56); 4483 bool secure = arm_is_secure_below_el3(env); 4484 int mask = secure ? ARMMMUIdxBit_SE2 : ARMMMUIdxBit_E2; 4485 int bits = tlbbits_for_regime(env, secure ? ARMMMUIdx_SE2 : ARMMMUIdx_E2, 4486 pageaddr); 4487 4488 tlb_flush_page_bits_by_mmuidx_all_cpus_synced(cs, pageaddr, mask, bits); 4489 } 4490 4491 static void tlbi_aa64_vae3is_write(CPUARMState *env, const ARMCPRegInfo *ri, 4492 uint64_t value) 4493 { 4494 CPUState *cs = env_cpu(env); 4495 uint64_t pageaddr = sextract64(value << 12, 0, 56); 4496 int bits = tlbbits_for_regime(env, ARMMMUIdx_SE3, pageaddr); 4497 4498 tlb_flush_page_bits_by_mmuidx_all_cpus_synced(cs, pageaddr, 4499 ARMMMUIdxBit_SE3, bits); 4500 } 4501 4502 #ifdef TARGET_AARCH64 4503 typedef struct { 4504 uint64_t base; 4505 uint64_t length; 4506 } TLBIRange; 4507 4508 static TLBIRange tlbi_aa64_get_range(CPUARMState *env, ARMMMUIdx mmuidx, 4509 uint64_t value) 4510 { 4511 unsigned int page_size_granule, page_shift, num, scale, exponent; 4512 /* Extract one bit to represent the va selector in use. */ 4513 uint64_t select = sextract64(value, 36, 1); 4514 ARMVAParameters param = aa64_va_parameters(env, select, mmuidx, true); 4515 TLBIRange ret = { }; 4516 4517 page_size_granule = extract64(value, 46, 2); 4518 4519 /* The granule encoded in value must match the granule in use. */ 4520 if (page_size_granule != (param.using64k ? 3 : param.using16k ? 2 : 1)) { 4521 qemu_log_mask(LOG_GUEST_ERROR, "Invalid tlbi page size granule %d\n", 4522 page_size_granule); 4523 return ret; 4524 } 4525 4526 page_shift = (page_size_granule - 1) * 2 + 12; 4527 num = extract64(value, 39, 5); 4528 scale = extract64(value, 44, 2); 4529 exponent = (5 * scale) + 1; 4530 4531 ret.length = (num + 1) << (exponent + page_shift); 4532 4533 if (param.select) { 4534 ret.base = sextract64(value, 0, 37); 4535 } else { 4536 ret.base = extract64(value, 0, 37); 4537 } 4538 if (param.ds) { 4539 /* 4540 * With DS=1, BaseADDR is always shifted 16 so that it is able 4541 * to address all 52 va bits. The input address is perforce 4542 * aligned on a 64k boundary regardless of translation granule. 4543 */ 4544 page_shift = 16; 4545 } 4546 ret.base <<= page_shift; 4547 4548 return ret; 4549 } 4550 4551 static void do_rvae_write(CPUARMState *env, uint64_t value, 4552 int idxmap, bool synced) 4553 { 4554 ARMMMUIdx one_idx = ARM_MMU_IDX_A | ctz32(idxmap); 4555 TLBIRange range; 4556 int bits; 4557 4558 range = tlbi_aa64_get_range(env, one_idx, value); 4559 bits = tlbbits_for_regime(env, one_idx, range.base); 4560 4561 if (synced) { 4562 tlb_flush_range_by_mmuidx_all_cpus_synced(env_cpu(env), 4563 range.base, 4564 range.length, 4565 idxmap, 4566 bits); 4567 } else { 4568 tlb_flush_range_by_mmuidx(env_cpu(env), range.base, 4569 range.length, idxmap, bits); 4570 } 4571 } 4572 4573 static void tlbi_aa64_rvae1_write(CPUARMState *env, 4574 const ARMCPRegInfo *ri, 4575 uint64_t value) 4576 { 4577 /* 4578 * Invalidate by VA range, EL1&0. 4579 * Currently handles all of RVAE1, RVAAE1, RVAALE1 and RVALE1, 4580 * since we don't support flush-for-specific-ASID-only or 4581 * flush-last-level-only. 4582 */ 4583 4584 do_rvae_write(env, value, vae1_tlbmask(env), 4585 tlb_force_broadcast(env)); 4586 } 4587 4588 static void tlbi_aa64_rvae1is_write(CPUARMState *env, 4589 const ARMCPRegInfo *ri, 4590 uint64_t value) 4591 { 4592 /* 4593 * Invalidate by VA range, Inner/Outer Shareable EL1&0. 4594 * Currently handles all of RVAE1IS, RVAE1OS, RVAAE1IS, RVAAE1OS, 4595 * RVAALE1IS, RVAALE1OS, RVALE1IS and RVALE1OS, since we don't support 4596 * flush-for-specific-ASID-only, flush-last-level-only or inner/outer 4597 * shareable specific flushes. 4598 */ 4599 4600 do_rvae_write(env, value, vae1_tlbmask(env), true); 4601 } 4602 4603 static int vae2_tlbmask(CPUARMState *env) 4604 { 4605 return (arm_is_secure_below_el3(env) 4606 ? ARMMMUIdxBit_SE2 : ARMMMUIdxBit_E2); 4607 } 4608 4609 static void tlbi_aa64_rvae2_write(CPUARMState *env, 4610 const ARMCPRegInfo *ri, 4611 uint64_t value) 4612 { 4613 /* 4614 * Invalidate by VA range, EL2. 4615 * Currently handles all of RVAE2 and RVALE2, 4616 * since we don't support flush-for-specific-ASID-only or 4617 * flush-last-level-only. 4618 */ 4619 4620 do_rvae_write(env, value, vae2_tlbmask(env), 4621 tlb_force_broadcast(env)); 4622 4623 4624 } 4625 4626 static void tlbi_aa64_rvae2is_write(CPUARMState *env, 4627 const ARMCPRegInfo *ri, 4628 uint64_t value) 4629 { 4630 /* 4631 * Invalidate by VA range, Inner/Outer Shareable, EL2. 4632 * Currently handles all of RVAE2IS, RVAE2OS, RVALE2IS and RVALE2OS, 4633 * since we don't support flush-for-specific-ASID-only, 4634 * flush-last-level-only or inner/outer shareable specific flushes. 4635 */ 4636 4637 do_rvae_write(env, value, vae2_tlbmask(env), true); 4638 4639 } 4640 4641 static void tlbi_aa64_rvae3_write(CPUARMState *env, 4642 const ARMCPRegInfo *ri, 4643 uint64_t value) 4644 { 4645 /* 4646 * Invalidate by VA range, EL3. 4647 * Currently handles all of RVAE3 and RVALE3, 4648 * since we don't support flush-for-specific-ASID-only or 4649 * flush-last-level-only. 4650 */ 4651 4652 do_rvae_write(env, value, ARMMMUIdxBit_SE3, 4653 tlb_force_broadcast(env)); 4654 } 4655 4656 static void tlbi_aa64_rvae3is_write(CPUARMState *env, 4657 const ARMCPRegInfo *ri, 4658 uint64_t value) 4659 { 4660 /* 4661 * Invalidate by VA range, EL3, Inner/Outer Shareable. 4662 * Currently handles all of RVAE3IS, RVAE3OS, RVALE3IS and RVALE3OS, 4663 * since we don't support flush-for-specific-ASID-only, 4664 * flush-last-level-only or inner/outer specific flushes. 4665 */ 4666 4667 do_rvae_write(env, value, ARMMMUIdxBit_SE3, true); 4668 } 4669 #endif 4670 4671 static CPAccessResult aa64_zva_access(CPUARMState *env, const ARMCPRegInfo *ri, 4672 bool isread) 4673 { 4674 int cur_el = arm_current_el(env); 4675 4676 if (cur_el < 2) { 4677 uint64_t hcr = arm_hcr_el2_eff(env); 4678 4679 if (cur_el == 0) { 4680 if ((hcr & (HCR_E2H | HCR_TGE)) == (HCR_E2H | HCR_TGE)) { 4681 if (!(env->cp15.sctlr_el[2] & SCTLR_DZE)) { 4682 return CP_ACCESS_TRAP_EL2; 4683 } 4684 } else { 4685 if (!(env->cp15.sctlr_el[1] & SCTLR_DZE)) { 4686 return CP_ACCESS_TRAP; 4687 } 4688 if (hcr & HCR_TDZ) { 4689 return CP_ACCESS_TRAP_EL2; 4690 } 4691 } 4692 } else if (hcr & HCR_TDZ) { 4693 return CP_ACCESS_TRAP_EL2; 4694 } 4695 } 4696 return CP_ACCESS_OK; 4697 } 4698 4699 static uint64_t aa64_dczid_read(CPUARMState *env, const ARMCPRegInfo *ri) 4700 { 4701 ARMCPU *cpu = env_archcpu(env); 4702 int dzp_bit = 1 << 4; 4703 4704 /* DZP indicates whether DC ZVA access is allowed */ 4705 if (aa64_zva_access(env, NULL, false) == CP_ACCESS_OK) { 4706 dzp_bit = 0; 4707 } 4708 return cpu->dcz_blocksize | dzp_bit; 4709 } 4710 4711 static CPAccessResult sp_el0_access(CPUARMState *env, const ARMCPRegInfo *ri, 4712 bool isread) 4713 { 4714 if (!(env->pstate & PSTATE_SP)) { 4715 /* Access to SP_EL0 is undefined if it's being used as 4716 * the stack pointer. 4717 */ 4718 return CP_ACCESS_TRAP_UNCATEGORIZED; 4719 } 4720 return CP_ACCESS_OK; 4721 } 4722 4723 static uint64_t spsel_read(CPUARMState *env, const ARMCPRegInfo *ri) 4724 { 4725 return env->pstate & PSTATE_SP; 4726 } 4727 4728 static void spsel_write(CPUARMState *env, const ARMCPRegInfo *ri, uint64_t val) 4729 { 4730 update_spsel(env, val); 4731 } 4732 4733 static void sctlr_write(CPUARMState *env, const ARMCPRegInfo *ri, 4734 uint64_t value) 4735 { 4736 ARMCPU *cpu = env_archcpu(env); 4737 4738 if (arm_feature(env, ARM_FEATURE_PMSA) && !cpu->has_mpu) { 4739 /* M bit is RAZ/WI for PMSA with no MPU implemented */ 4740 value &= ~SCTLR_M; 4741 } 4742 4743 /* ??? Lots of these bits are not implemented. */ 4744 4745 if (ri->state == ARM_CP_STATE_AA64 && !cpu_isar_feature(aa64_mte, cpu)) { 4746 if (ri->opc1 == 6) { /* SCTLR_EL3 */ 4747 value &= ~(SCTLR_ITFSB | SCTLR_TCF | SCTLR_ATA); 4748 } else { 4749 value &= ~(SCTLR_ITFSB | SCTLR_TCF0 | SCTLR_TCF | 4750 SCTLR_ATA0 | SCTLR_ATA); 4751 } 4752 } 4753 4754 if (raw_read(env, ri) == value) { 4755 /* Skip the TLB flush if nothing actually changed; Linux likes 4756 * to do a lot of pointless SCTLR writes. 4757 */ 4758 return; 4759 } 4760 4761 raw_write(env, ri, value); 4762 4763 /* This may enable/disable the MMU, so do a TLB flush. */ 4764 tlb_flush(CPU(cpu)); 4765 4766 if (ri->type & ARM_CP_SUPPRESS_TB_END) { 4767 /* 4768 * Normally we would always end the TB on an SCTLR write; see the 4769 * comment in ARMCPRegInfo sctlr initialization below for why Xscale 4770 * is special. Setting ARM_CP_SUPPRESS_TB_END also stops the rebuild 4771 * of hflags from the translator, so do it here. 4772 */ 4773 arm_rebuild_hflags(env); 4774 } 4775 } 4776 4777 static void sdcr_write(CPUARMState *env, const ARMCPRegInfo *ri, 4778 uint64_t value) 4779 { 4780 env->cp15.mdcr_el3 = value & SDCR_VALID_MASK; 4781 } 4782 4783 static const ARMCPRegInfo v8_cp_reginfo[] = { 4784 /* Minimal set of EL0-visible registers. This will need to be expanded 4785 * significantly for system emulation of AArch64 CPUs. 4786 */ 4787 { .name = "NZCV", .state = ARM_CP_STATE_AA64, 4788 .opc0 = 3, .opc1 = 3, .opc2 = 0, .crn = 4, .crm = 2, 4789 .access = PL0_RW, .type = ARM_CP_NZCV }, 4790 { .name = "DAIF", .state = ARM_CP_STATE_AA64, 4791 .opc0 = 3, .opc1 = 3, .opc2 = 1, .crn = 4, .crm = 2, 4792 .type = ARM_CP_NO_RAW, 4793 .access = PL0_RW, .accessfn = aa64_daif_access, 4794 .fieldoffset = offsetof(CPUARMState, daif), 4795 .writefn = aa64_daif_write, .resetfn = arm_cp_reset_ignore }, 4796 { .name = "FPCR", .state = ARM_CP_STATE_AA64, 4797 .opc0 = 3, .opc1 = 3, .opc2 = 0, .crn = 4, .crm = 4, 4798 .access = PL0_RW, .type = ARM_CP_FPU | ARM_CP_SUPPRESS_TB_END, 4799 .readfn = aa64_fpcr_read, .writefn = aa64_fpcr_write }, 4800 { .name = "FPSR", .state = ARM_CP_STATE_AA64, 4801 .opc0 = 3, .opc1 = 3, .opc2 = 1, .crn = 4, .crm = 4, 4802 .access = PL0_RW, .type = ARM_CP_FPU | ARM_CP_SUPPRESS_TB_END, 4803 .readfn = aa64_fpsr_read, .writefn = aa64_fpsr_write }, 4804 { .name = "DCZID_EL0", .state = ARM_CP_STATE_AA64, 4805 .opc0 = 3, .opc1 = 3, .opc2 = 7, .crn = 0, .crm = 0, 4806 .access = PL0_R, .type = ARM_CP_NO_RAW, 4807 .readfn = aa64_dczid_read }, 4808 { .name = "DC_ZVA", .state = ARM_CP_STATE_AA64, 4809 .opc0 = 1, .opc1 = 3, .crn = 7, .crm = 4, .opc2 = 1, 4810 .access = PL0_W, .type = ARM_CP_DC_ZVA, 4811 #ifndef CONFIG_USER_ONLY 4812 /* Avoid overhead of an access check that always passes in user-mode */ 4813 .accessfn = aa64_zva_access, 4814 #endif 4815 }, 4816 { .name = "CURRENTEL", .state = ARM_CP_STATE_AA64, 4817 .opc0 = 3, .opc1 = 0, .opc2 = 2, .crn = 4, .crm = 2, 4818 .access = PL1_R, .type = ARM_CP_CURRENTEL }, 4819 /* Cache ops: all NOPs since we don't emulate caches */ 4820 { .name = "IC_IALLUIS", .state = ARM_CP_STATE_AA64, 4821 .opc0 = 1, .opc1 = 0, .crn = 7, .crm = 1, .opc2 = 0, 4822 .access = PL1_W, .type = ARM_CP_NOP, 4823 .accessfn = aa64_cacheop_pou_access }, 4824 { .name = "IC_IALLU", .state = ARM_CP_STATE_AA64, 4825 .opc0 = 1, .opc1 = 0, .crn = 7, .crm = 5, .opc2 = 0, 4826 .access = PL1_W, .type = ARM_CP_NOP, 4827 .accessfn = aa64_cacheop_pou_access }, 4828 { .name = "IC_IVAU", .state = ARM_CP_STATE_AA64, 4829 .opc0 = 1, .opc1 = 3, .crn = 7, .crm = 5, .opc2 = 1, 4830 .access = PL0_W, .type = ARM_CP_NOP, 4831 .accessfn = aa64_cacheop_pou_access }, 4832 { .name = "DC_IVAC", .state = ARM_CP_STATE_AA64, 4833 .opc0 = 1, .opc1 = 0, .crn = 7, .crm = 6, .opc2 = 1, 4834 .access = PL1_W, .accessfn = aa64_cacheop_poc_access, 4835 .type = ARM_CP_NOP }, 4836 { .name = "DC_ISW", .state = ARM_CP_STATE_AA64, 4837 .opc0 = 1, .opc1 = 0, .crn = 7, .crm = 6, .opc2 = 2, 4838 .access = PL1_W, .accessfn = access_tsw, .type = ARM_CP_NOP }, 4839 { .name = "DC_CVAC", .state = ARM_CP_STATE_AA64, 4840 .opc0 = 1, .opc1 = 3, .crn = 7, .crm = 10, .opc2 = 1, 4841 .access = PL0_W, .type = ARM_CP_NOP, 4842 .accessfn = aa64_cacheop_poc_access }, 4843 { .name = "DC_CSW", .state = ARM_CP_STATE_AA64, 4844 .opc0 = 1, .opc1 = 0, .crn = 7, .crm = 10, .opc2 = 2, 4845 .access = PL1_W, .accessfn = access_tsw, .type = ARM_CP_NOP }, 4846 { .name = "DC_CVAU", .state = ARM_CP_STATE_AA64, 4847 .opc0 = 1, .opc1 = 3, .crn = 7, .crm = 11, .opc2 = 1, 4848 .access = PL0_W, .type = ARM_CP_NOP, 4849 .accessfn = aa64_cacheop_pou_access }, 4850 { .name = "DC_CIVAC", .state = ARM_CP_STATE_AA64, 4851 .opc0 = 1, .opc1 = 3, .crn = 7, .crm = 14, .opc2 = 1, 4852 .access = PL0_W, .type = ARM_CP_NOP, 4853 .accessfn = aa64_cacheop_poc_access }, 4854 { .name = "DC_CISW", .state = ARM_CP_STATE_AA64, 4855 .opc0 = 1, .opc1 = 0, .crn = 7, .crm = 14, .opc2 = 2, 4856 .access = PL1_W, .accessfn = access_tsw, .type = ARM_CP_NOP }, 4857 /* TLBI operations */ 4858 { .name = "TLBI_VMALLE1IS", .state = ARM_CP_STATE_AA64, 4859 .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 3, .opc2 = 0, 4860 .access = PL1_W, .accessfn = access_ttlb, .type = ARM_CP_NO_RAW, 4861 .writefn = tlbi_aa64_vmalle1is_write }, 4862 { .name = "TLBI_VAE1IS", .state = ARM_CP_STATE_AA64, 4863 .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 3, .opc2 = 1, 4864 .access = PL1_W, .accessfn = access_ttlb, .type = ARM_CP_NO_RAW, 4865 .writefn = tlbi_aa64_vae1is_write }, 4866 { .name = "TLBI_ASIDE1IS", .state = ARM_CP_STATE_AA64, 4867 .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 3, .opc2 = 2, 4868 .access = PL1_W, .accessfn = access_ttlb, .type = ARM_CP_NO_RAW, 4869 .writefn = tlbi_aa64_vmalle1is_write }, 4870 { .name = "TLBI_VAAE1IS", .state = ARM_CP_STATE_AA64, 4871 .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 3, .opc2 = 3, 4872 .access = PL1_W, .accessfn = access_ttlb, .type = ARM_CP_NO_RAW, 4873 .writefn = tlbi_aa64_vae1is_write }, 4874 { .name = "TLBI_VALE1IS", .state = ARM_CP_STATE_AA64, 4875 .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 3, .opc2 = 5, 4876 .access = PL1_W, .accessfn = access_ttlb, .type = ARM_CP_NO_RAW, 4877 .writefn = tlbi_aa64_vae1is_write }, 4878 { .name = "TLBI_VAALE1IS", .state = ARM_CP_STATE_AA64, 4879 .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 3, .opc2 = 7, 4880 .access = PL1_W, .accessfn = access_ttlb, .type = ARM_CP_NO_RAW, 4881 .writefn = tlbi_aa64_vae1is_write }, 4882 { .name = "TLBI_VMALLE1", .state = ARM_CP_STATE_AA64, 4883 .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 7, .opc2 = 0, 4884 .access = PL1_W, .accessfn = access_ttlb, .type = ARM_CP_NO_RAW, 4885 .writefn = tlbi_aa64_vmalle1_write }, 4886 { .name = "TLBI_VAE1", .state = ARM_CP_STATE_AA64, 4887 .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 7, .opc2 = 1, 4888 .access = PL1_W, .accessfn = access_ttlb, .type = ARM_CP_NO_RAW, 4889 .writefn = tlbi_aa64_vae1_write }, 4890 { .name = "TLBI_ASIDE1", .state = ARM_CP_STATE_AA64, 4891 .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 7, .opc2 = 2, 4892 .access = PL1_W, .accessfn = access_ttlb, .type = ARM_CP_NO_RAW, 4893 .writefn = tlbi_aa64_vmalle1_write }, 4894 { .name = "TLBI_VAAE1", .state = ARM_CP_STATE_AA64, 4895 .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 7, .opc2 = 3, 4896 .access = PL1_W, .accessfn = access_ttlb, .type = ARM_CP_NO_RAW, 4897 .writefn = tlbi_aa64_vae1_write }, 4898 { .name = "TLBI_VALE1", .state = ARM_CP_STATE_AA64, 4899 .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 7, .opc2 = 5, 4900 .access = PL1_W, .accessfn = access_ttlb, .type = ARM_CP_NO_RAW, 4901 .writefn = tlbi_aa64_vae1_write }, 4902 { .name = "TLBI_VAALE1", .state = ARM_CP_STATE_AA64, 4903 .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 7, .opc2 = 7, 4904 .access = PL1_W, .accessfn = access_ttlb, .type = ARM_CP_NO_RAW, 4905 .writefn = tlbi_aa64_vae1_write }, 4906 { .name = "TLBI_IPAS2E1IS", .state = ARM_CP_STATE_AA64, 4907 .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 0, .opc2 = 1, 4908 .access = PL2_W, .type = ARM_CP_NOP }, 4909 { .name = "TLBI_IPAS2LE1IS", .state = ARM_CP_STATE_AA64, 4910 .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 0, .opc2 = 5, 4911 .access = PL2_W, .type = ARM_CP_NOP }, 4912 { .name = "TLBI_ALLE1IS", .state = ARM_CP_STATE_AA64, 4913 .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 3, .opc2 = 4, 4914 .access = PL2_W, .type = ARM_CP_NO_RAW, 4915 .writefn = tlbi_aa64_alle1is_write }, 4916 { .name = "TLBI_VMALLS12E1IS", .state = ARM_CP_STATE_AA64, 4917 .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 3, .opc2 = 6, 4918 .access = PL2_W, .type = ARM_CP_NO_RAW, 4919 .writefn = tlbi_aa64_alle1is_write }, 4920 { .name = "TLBI_IPAS2E1", .state = ARM_CP_STATE_AA64, 4921 .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 4, .opc2 = 1, 4922 .access = PL2_W, .type = ARM_CP_NOP }, 4923 { .name = "TLBI_IPAS2LE1", .state = ARM_CP_STATE_AA64, 4924 .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 4, .opc2 = 5, 4925 .access = PL2_W, .type = ARM_CP_NOP }, 4926 { .name = "TLBI_ALLE1", .state = ARM_CP_STATE_AA64, 4927 .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 7, .opc2 = 4, 4928 .access = PL2_W, .type = ARM_CP_NO_RAW, 4929 .writefn = tlbi_aa64_alle1_write }, 4930 { .name = "TLBI_VMALLS12E1", .state = ARM_CP_STATE_AA64, 4931 .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 7, .opc2 = 6, 4932 .access = PL2_W, .type = ARM_CP_NO_RAW, 4933 .writefn = tlbi_aa64_alle1is_write }, 4934 #ifndef CONFIG_USER_ONLY 4935 /* 64 bit address translation operations */ 4936 { .name = "AT_S1E1R", .state = ARM_CP_STATE_AA64, 4937 .opc0 = 1, .opc1 = 0, .crn = 7, .crm = 8, .opc2 = 0, 4938 .access = PL1_W, .type = ARM_CP_NO_RAW | ARM_CP_RAISES_EXC, 4939 .writefn = ats_write64 }, 4940 { .name = "AT_S1E1W", .state = ARM_CP_STATE_AA64, 4941 .opc0 = 1, .opc1 = 0, .crn = 7, .crm = 8, .opc2 = 1, 4942 .access = PL1_W, .type = ARM_CP_NO_RAW | ARM_CP_RAISES_EXC, 4943 .writefn = ats_write64 }, 4944 { .name = "AT_S1E0R", .state = ARM_CP_STATE_AA64, 4945 .opc0 = 1, .opc1 = 0, .crn = 7, .crm = 8, .opc2 = 2, 4946 .access = PL1_W, .type = ARM_CP_NO_RAW | ARM_CP_RAISES_EXC, 4947 .writefn = ats_write64 }, 4948 { .name = "AT_S1E0W", .state = ARM_CP_STATE_AA64, 4949 .opc0 = 1, .opc1 = 0, .crn = 7, .crm = 8, .opc2 = 3, 4950 .access = PL1_W, .type = ARM_CP_NO_RAW | ARM_CP_RAISES_EXC, 4951 .writefn = ats_write64 }, 4952 { .name = "AT_S12E1R", .state = ARM_CP_STATE_AA64, 4953 .opc0 = 1, .opc1 = 4, .crn = 7, .crm = 8, .opc2 = 4, 4954 .access = PL2_W, .type = ARM_CP_NO_RAW | ARM_CP_RAISES_EXC, 4955 .writefn = ats_write64 }, 4956 { .name = "AT_S12E1W", .state = ARM_CP_STATE_AA64, 4957 .opc0 = 1, .opc1 = 4, .crn = 7, .crm = 8, .opc2 = 5, 4958 .access = PL2_W, .type = ARM_CP_NO_RAW | ARM_CP_RAISES_EXC, 4959 .writefn = ats_write64 }, 4960 { .name = "AT_S12E0R", .state = ARM_CP_STATE_AA64, 4961 .opc0 = 1, .opc1 = 4, .crn = 7, .crm = 8, .opc2 = 6, 4962 .access = PL2_W, .type = ARM_CP_NO_RAW | ARM_CP_RAISES_EXC, 4963 .writefn = ats_write64 }, 4964 { .name = "AT_S12E0W", .state = ARM_CP_STATE_AA64, 4965 .opc0 = 1, .opc1 = 4, .crn = 7, .crm = 8, .opc2 = 7, 4966 .access = PL2_W, .type = ARM_CP_NO_RAW | ARM_CP_RAISES_EXC, 4967 .writefn = ats_write64 }, 4968 /* AT S1E2* are elsewhere as they UNDEF from EL3 if EL2 is not present */ 4969 { .name = "AT_S1E3R", .state = ARM_CP_STATE_AA64, 4970 .opc0 = 1, .opc1 = 6, .crn = 7, .crm = 8, .opc2 = 0, 4971 .access = PL3_W, .type = ARM_CP_NO_RAW | ARM_CP_RAISES_EXC, 4972 .writefn = ats_write64 }, 4973 { .name = "AT_S1E3W", .state = ARM_CP_STATE_AA64, 4974 .opc0 = 1, .opc1 = 6, .crn = 7, .crm = 8, .opc2 = 1, 4975 .access = PL3_W, .type = ARM_CP_NO_RAW | ARM_CP_RAISES_EXC, 4976 .writefn = ats_write64 }, 4977 { .name = "PAR_EL1", .state = ARM_CP_STATE_AA64, 4978 .type = ARM_CP_ALIAS, 4979 .opc0 = 3, .opc1 = 0, .crn = 7, .crm = 4, .opc2 = 0, 4980 .access = PL1_RW, .resetvalue = 0, 4981 .fieldoffset = offsetof(CPUARMState, cp15.par_el[1]), 4982 .writefn = par_write }, 4983 #endif 4984 /* TLB invalidate last level of translation table walk */ 4985 { .name = "TLBIMVALIS", .cp = 15, .opc1 = 0, .crn = 8, .crm = 3, .opc2 = 5, 4986 .type = ARM_CP_NO_RAW, .access = PL1_W, .accessfn = access_ttlb, 4987 .writefn = tlbimva_is_write }, 4988 { .name = "TLBIMVAALIS", .cp = 15, .opc1 = 0, .crn = 8, .crm = 3, .opc2 = 7, 4989 .type = ARM_CP_NO_RAW, .access = PL1_W, .accessfn = access_ttlb, 4990 .writefn = tlbimvaa_is_write }, 4991 { .name = "TLBIMVAL", .cp = 15, .opc1 = 0, .crn = 8, .crm = 7, .opc2 = 5, 4992 .type = ARM_CP_NO_RAW, .access = PL1_W, .accessfn = access_ttlb, 4993 .writefn = tlbimva_write }, 4994 { .name = "TLBIMVAAL", .cp = 15, .opc1 = 0, .crn = 8, .crm = 7, .opc2 = 7, 4995 .type = ARM_CP_NO_RAW, .access = PL1_W, .accessfn = access_ttlb, 4996 .writefn = tlbimvaa_write }, 4997 { .name = "TLBIMVALH", .cp = 15, .opc1 = 4, .crn = 8, .crm = 7, .opc2 = 5, 4998 .type = ARM_CP_NO_RAW, .access = PL2_W, 4999 .writefn = tlbimva_hyp_write }, 5000 { .name = "TLBIMVALHIS", 5001 .cp = 15, .opc1 = 4, .crn = 8, .crm = 3, .opc2 = 5, 5002 .type = ARM_CP_NO_RAW, .access = PL2_W, 5003 .writefn = tlbimva_hyp_is_write }, 5004 { .name = "TLBIIPAS2", 5005 .cp = 15, .opc1 = 4, .crn = 8, .crm = 4, .opc2 = 1, 5006 .type = ARM_CP_NOP, .access = PL2_W }, 5007 { .name = "TLBIIPAS2IS", 5008 .cp = 15, .opc1 = 4, .crn = 8, .crm = 0, .opc2 = 1, 5009 .type = ARM_CP_NOP, .access = PL2_W }, 5010 { .name = "TLBIIPAS2L", 5011 .cp = 15, .opc1 = 4, .crn = 8, .crm = 4, .opc2 = 5, 5012 .type = ARM_CP_NOP, .access = PL2_W }, 5013 { .name = "TLBIIPAS2LIS", 5014 .cp = 15, .opc1 = 4, .crn = 8, .crm = 0, .opc2 = 5, 5015 .type = ARM_CP_NOP, .access = PL2_W }, 5016 /* 32 bit cache operations */ 5017 { .name = "ICIALLUIS", .cp = 15, .opc1 = 0, .crn = 7, .crm = 1, .opc2 = 0, 5018 .type = ARM_CP_NOP, .access = PL1_W, .accessfn = aa64_cacheop_pou_access }, 5019 { .name = "BPIALLUIS", .cp = 15, .opc1 = 0, .crn = 7, .crm = 1, .opc2 = 6, 5020 .type = ARM_CP_NOP, .access = PL1_W }, 5021 { .name = "ICIALLU", .cp = 15, .opc1 = 0, .crn = 7, .crm = 5, .opc2 = 0, 5022 .type = ARM_CP_NOP, .access = PL1_W, .accessfn = aa64_cacheop_pou_access }, 5023 { .name = "ICIMVAU", .cp = 15, .opc1 = 0, .crn = 7, .crm = 5, .opc2 = 1, 5024 .type = ARM_CP_NOP, .access = PL1_W, .accessfn = aa64_cacheop_pou_access }, 5025 { .name = "BPIALL", .cp = 15, .opc1 = 0, .crn = 7, .crm = 5, .opc2 = 6, 5026 .type = ARM_CP_NOP, .access = PL1_W }, 5027 { .name = "BPIMVA", .cp = 15, .opc1 = 0, .crn = 7, .crm = 5, .opc2 = 7, 5028 .type = ARM_CP_NOP, .access = PL1_W }, 5029 { .name = "DCIMVAC", .cp = 15, .opc1 = 0, .crn = 7, .crm = 6, .opc2 = 1, 5030 .type = ARM_CP_NOP, .access = PL1_W, .accessfn = aa64_cacheop_poc_access }, 5031 { .name = "DCISW", .cp = 15, .opc1 = 0, .crn = 7, .crm = 6, .opc2 = 2, 5032 .type = ARM_CP_NOP, .access = PL1_W, .accessfn = access_tsw }, 5033 { .name = "DCCMVAC", .cp = 15, .opc1 = 0, .crn = 7, .crm = 10, .opc2 = 1, 5034 .type = ARM_CP_NOP, .access = PL1_W, .accessfn = aa64_cacheop_poc_access }, 5035 { .name = "DCCSW", .cp = 15, .opc1 = 0, .crn = 7, .crm = 10, .opc2 = 2, 5036 .type = ARM_CP_NOP, .access = PL1_W, .accessfn = access_tsw }, 5037 { .name = "DCCMVAU", .cp = 15, .opc1 = 0, .crn = 7, .crm = 11, .opc2 = 1, 5038 .type = ARM_CP_NOP, .access = PL1_W, .accessfn = aa64_cacheop_pou_access }, 5039 { .name = "DCCIMVAC", .cp = 15, .opc1 = 0, .crn = 7, .crm = 14, .opc2 = 1, 5040 .type = ARM_CP_NOP, .access = PL1_W, .accessfn = aa64_cacheop_poc_access }, 5041 { .name = "DCCISW", .cp = 15, .opc1 = 0, .crn = 7, .crm = 14, .opc2 = 2, 5042 .type = ARM_CP_NOP, .access = PL1_W, .accessfn = access_tsw }, 5043 /* MMU Domain access control / MPU write buffer control */ 5044 { .name = "DACR", .cp = 15, .opc1 = 0, .crn = 3, .crm = 0, .opc2 = 0, 5045 .access = PL1_RW, .accessfn = access_tvm_trvm, .resetvalue = 0, 5046 .writefn = dacr_write, .raw_writefn = raw_write, 5047 .bank_fieldoffsets = { offsetoflow32(CPUARMState, cp15.dacr_s), 5048 offsetoflow32(CPUARMState, cp15.dacr_ns) } }, 5049 { .name = "ELR_EL1", .state = ARM_CP_STATE_AA64, 5050 .type = ARM_CP_ALIAS, 5051 .opc0 = 3, .opc1 = 0, .crn = 4, .crm = 0, .opc2 = 1, 5052 .access = PL1_RW, 5053 .fieldoffset = offsetof(CPUARMState, elr_el[1]) }, 5054 { .name = "SPSR_EL1", .state = ARM_CP_STATE_AA64, 5055 .type = ARM_CP_ALIAS, 5056 .opc0 = 3, .opc1 = 0, .crn = 4, .crm = 0, .opc2 = 0, 5057 .access = PL1_RW, 5058 .fieldoffset = offsetof(CPUARMState, banked_spsr[BANK_SVC]) }, 5059 /* We rely on the access checks not allowing the guest to write to the 5060 * state field when SPSel indicates that it's being used as the stack 5061 * pointer. 5062 */ 5063 { .name = "SP_EL0", .state = ARM_CP_STATE_AA64, 5064 .opc0 = 3, .opc1 = 0, .crn = 4, .crm = 1, .opc2 = 0, 5065 .access = PL1_RW, .accessfn = sp_el0_access, 5066 .type = ARM_CP_ALIAS, 5067 .fieldoffset = offsetof(CPUARMState, sp_el[0]) }, 5068 { .name = "SP_EL1", .state = ARM_CP_STATE_AA64, 5069 .opc0 = 3, .opc1 = 4, .crn = 4, .crm = 1, .opc2 = 0, 5070 .access = PL2_RW, .type = ARM_CP_ALIAS, 5071 .fieldoffset = offsetof(CPUARMState, sp_el[1]) }, 5072 { .name = "SPSel", .state = ARM_CP_STATE_AA64, 5073 .opc0 = 3, .opc1 = 0, .crn = 4, .crm = 2, .opc2 = 0, 5074 .type = ARM_CP_NO_RAW, 5075 .access = PL1_RW, .readfn = spsel_read, .writefn = spsel_write }, 5076 { .name = "FPEXC32_EL2", .state = ARM_CP_STATE_AA64, 5077 .opc0 = 3, .opc1 = 4, .crn = 5, .crm = 3, .opc2 = 0, 5078 .access = PL2_RW, 5079 .type = ARM_CP_ALIAS | ARM_CP_FPU | ARM_CP_EL3_NO_EL2_KEEP, 5080 .fieldoffset = offsetof(CPUARMState, vfp.xregs[ARM_VFP_FPEXC]) }, 5081 { .name = "DACR32_EL2", .state = ARM_CP_STATE_AA64, 5082 .opc0 = 3, .opc1 = 4, .crn = 3, .crm = 0, .opc2 = 0, 5083 .access = PL2_RW, .resetvalue = 0, .type = ARM_CP_EL3_NO_EL2_KEEP, 5084 .writefn = dacr_write, .raw_writefn = raw_write, 5085 .fieldoffset = offsetof(CPUARMState, cp15.dacr32_el2) }, 5086 { .name = "IFSR32_EL2", .state = ARM_CP_STATE_AA64, 5087 .opc0 = 3, .opc1 = 4, .crn = 5, .crm = 0, .opc2 = 1, 5088 .access = PL2_RW, .resetvalue = 0, .type = ARM_CP_EL3_NO_EL2_KEEP, 5089 .fieldoffset = offsetof(CPUARMState, cp15.ifsr32_el2) }, 5090 { .name = "SPSR_IRQ", .state = ARM_CP_STATE_AA64, 5091 .type = ARM_CP_ALIAS, 5092 .opc0 = 3, .opc1 = 4, .crn = 4, .crm = 3, .opc2 = 0, 5093 .access = PL2_RW, 5094 .fieldoffset = offsetof(CPUARMState, banked_spsr[BANK_IRQ]) }, 5095 { .name = "SPSR_ABT", .state = ARM_CP_STATE_AA64, 5096 .type = ARM_CP_ALIAS, 5097 .opc0 = 3, .opc1 = 4, .crn = 4, .crm = 3, .opc2 = 1, 5098 .access = PL2_RW, 5099 .fieldoffset = offsetof(CPUARMState, banked_spsr[BANK_ABT]) }, 5100 { .name = "SPSR_UND", .state = ARM_CP_STATE_AA64, 5101 .type = ARM_CP_ALIAS, 5102 .opc0 = 3, .opc1 = 4, .crn = 4, .crm = 3, .opc2 = 2, 5103 .access = PL2_RW, 5104 .fieldoffset = offsetof(CPUARMState, banked_spsr[BANK_UND]) }, 5105 { .name = "SPSR_FIQ", .state = ARM_CP_STATE_AA64, 5106 .type = ARM_CP_ALIAS, 5107 .opc0 = 3, .opc1 = 4, .crn = 4, .crm = 3, .opc2 = 3, 5108 .access = PL2_RW, 5109 .fieldoffset = offsetof(CPUARMState, banked_spsr[BANK_FIQ]) }, 5110 { .name = "MDCR_EL3", .state = ARM_CP_STATE_AA64, 5111 .opc0 = 3, .opc1 = 6, .crn = 1, .crm = 3, .opc2 = 1, 5112 .resetvalue = 0, 5113 .access = PL3_RW, .fieldoffset = offsetof(CPUARMState, cp15.mdcr_el3) }, 5114 { .name = "SDCR", .type = ARM_CP_ALIAS, 5115 .cp = 15, .opc1 = 0, .crn = 1, .crm = 3, .opc2 = 1, 5116 .access = PL1_RW, .accessfn = access_trap_aa32s_el1, 5117 .writefn = sdcr_write, 5118 .fieldoffset = offsetoflow32(CPUARMState, cp15.mdcr_el3) }, 5119 }; 5120 5121 static void do_hcr_write(CPUARMState *env, uint64_t value, uint64_t valid_mask) 5122 { 5123 ARMCPU *cpu = env_archcpu(env); 5124 5125 if (arm_feature(env, ARM_FEATURE_V8)) { 5126 valid_mask |= MAKE_64BIT_MASK(0, 34); /* ARMv8.0 */ 5127 } else { 5128 valid_mask |= MAKE_64BIT_MASK(0, 28); /* ARMv7VE */ 5129 } 5130 5131 if (arm_feature(env, ARM_FEATURE_EL3)) { 5132 valid_mask &= ~HCR_HCD; 5133 } else if (cpu->psci_conduit != QEMU_PSCI_CONDUIT_SMC) { 5134 /* Architecturally HCR.TSC is RES0 if EL3 is not implemented. 5135 * However, if we're using the SMC PSCI conduit then QEMU is 5136 * effectively acting like EL3 firmware and so the guest at 5137 * EL2 should retain the ability to prevent EL1 from being 5138 * able to make SMC calls into the ersatz firmware, so in 5139 * that case HCR.TSC should be read/write. 5140 */ 5141 valid_mask &= ~HCR_TSC; 5142 } 5143 5144 if (arm_feature(env, ARM_FEATURE_AARCH64)) { 5145 if (cpu_isar_feature(aa64_vh, cpu)) { 5146 valid_mask |= HCR_E2H; 5147 } 5148 if (cpu_isar_feature(aa64_ras, cpu)) { 5149 valid_mask |= HCR_TERR | HCR_TEA; 5150 } 5151 if (cpu_isar_feature(aa64_lor, cpu)) { 5152 valid_mask |= HCR_TLOR; 5153 } 5154 if (cpu_isar_feature(aa64_pauth, cpu)) { 5155 valid_mask |= HCR_API | HCR_APK; 5156 } 5157 if (cpu_isar_feature(aa64_mte, cpu)) { 5158 valid_mask |= HCR_ATA | HCR_DCT | HCR_TID5; 5159 } 5160 if (cpu_isar_feature(aa64_scxtnum, cpu)) { 5161 valid_mask |= HCR_ENSCXT; 5162 } 5163 if (cpu_isar_feature(aa64_fwb, cpu)) { 5164 valid_mask |= HCR_FWB; 5165 } 5166 } 5167 5168 /* Clear RES0 bits. */ 5169 value &= valid_mask; 5170 5171 /* 5172 * These bits change the MMU setup: 5173 * HCR_VM enables stage 2 translation 5174 * HCR_PTW forbids certain page-table setups 5175 * HCR_DC disables stage1 and enables stage2 translation 5176 * HCR_DCT enables tagging on (disabled) stage1 translation 5177 * HCR_FWB changes the interpretation of stage2 descriptor bits 5178 */ 5179 if ((env->cp15.hcr_el2 ^ value) & 5180 (HCR_VM | HCR_PTW | HCR_DC | HCR_DCT | HCR_FWB)) { 5181 tlb_flush(CPU(cpu)); 5182 } 5183 env->cp15.hcr_el2 = value; 5184 5185 /* 5186 * Updates to VI and VF require us to update the status of 5187 * virtual interrupts, which are the logical OR of these bits 5188 * and the state of the input lines from the GIC. (This requires 5189 * that we have the iothread lock, which is done by marking the 5190 * reginfo structs as ARM_CP_IO.) 5191 * Note that if a write to HCR pends a VIRQ or VFIQ it is never 5192 * possible for it to be taken immediately, because VIRQ and 5193 * VFIQ are masked unless running at EL0 or EL1, and HCR 5194 * can only be written at EL2. 5195 */ 5196 g_assert(qemu_mutex_iothread_locked()); 5197 arm_cpu_update_virq(cpu); 5198 arm_cpu_update_vfiq(cpu); 5199 arm_cpu_update_vserr(cpu); 5200 } 5201 5202 static void hcr_write(CPUARMState *env, const ARMCPRegInfo *ri, uint64_t value) 5203 { 5204 do_hcr_write(env, value, 0); 5205 } 5206 5207 static void hcr_writehigh(CPUARMState *env, const ARMCPRegInfo *ri, 5208 uint64_t value) 5209 { 5210 /* Handle HCR2 write, i.e. write to high half of HCR_EL2 */ 5211 value = deposit64(env->cp15.hcr_el2, 32, 32, value); 5212 do_hcr_write(env, value, MAKE_64BIT_MASK(0, 32)); 5213 } 5214 5215 static void hcr_writelow(CPUARMState *env, const ARMCPRegInfo *ri, 5216 uint64_t value) 5217 { 5218 /* Handle HCR write, i.e. write to low half of HCR_EL2 */ 5219 value = deposit64(env->cp15.hcr_el2, 0, 32, value); 5220 do_hcr_write(env, value, MAKE_64BIT_MASK(32, 32)); 5221 } 5222 5223 /* 5224 * Return the effective value of HCR_EL2. 5225 * Bits that are not included here: 5226 * RW (read from SCR_EL3.RW as needed) 5227 */ 5228 uint64_t arm_hcr_el2_eff(CPUARMState *env) 5229 { 5230 uint64_t ret = env->cp15.hcr_el2; 5231 5232 if (!arm_is_el2_enabled(env)) { 5233 /* 5234 * "This register has no effect if EL2 is not enabled in the 5235 * current Security state". This is ARMv8.4-SecEL2 speak for 5236 * !(SCR_EL3.NS==1 || SCR_EL3.EEL2==1). 5237 * 5238 * Prior to that, the language was "In an implementation that 5239 * includes EL3, when the value of SCR_EL3.NS is 0 the PE behaves 5240 * as if this field is 0 for all purposes other than a direct 5241 * read or write access of HCR_EL2". With lots of enumeration 5242 * on a per-field basis. In current QEMU, this is condition 5243 * is arm_is_secure_below_el3. 5244 * 5245 * Since the v8.4 language applies to the entire register, and 5246 * appears to be backward compatible, use that. 5247 */ 5248 return 0; 5249 } 5250 5251 /* 5252 * For a cpu that supports both aarch64 and aarch32, we can set bits 5253 * in HCR_EL2 (e.g. via EL3) that are RES0 when we enter EL2 as aa32. 5254 * Ignore all of the bits in HCR+HCR2 that are not valid for aarch32. 5255 */ 5256 if (!arm_el_is_aa64(env, 2)) { 5257 uint64_t aa32_valid; 5258 5259 /* 5260 * These bits are up-to-date as of ARMv8.6. 5261 * For HCR, it's easiest to list just the 2 bits that are invalid. 5262 * For HCR2, list those that are valid. 5263 */ 5264 aa32_valid = MAKE_64BIT_MASK(0, 32) & ~(HCR_RW | HCR_TDZ); 5265 aa32_valid |= (HCR_CD | HCR_ID | HCR_TERR | HCR_TEA | HCR_MIOCNCE | 5266 HCR_TID4 | HCR_TICAB | HCR_TOCU | HCR_TTLBIS); 5267 ret &= aa32_valid; 5268 } 5269 5270 if (ret & HCR_TGE) { 5271 /* These bits are up-to-date as of ARMv8.6. */ 5272 if (ret & HCR_E2H) { 5273 ret &= ~(HCR_VM | HCR_FMO | HCR_IMO | HCR_AMO | 5274 HCR_BSU_MASK | HCR_DC | HCR_TWI | HCR_TWE | 5275 HCR_TID0 | HCR_TID2 | HCR_TPCP | HCR_TPU | 5276 HCR_TDZ | HCR_CD | HCR_ID | HCR_MIOCNCE | 5277 HCR_TID4 | HCR_TICAB | HCR_TOCU | HCR_ENSCXT | 5278 HCR_TTLBIS | HCR_TTLBOS | HCR_TID5); 5279 } else { 5280 ret |= HCR_FMO | HCR_IMO | HCR_AMO; 5281 } 5282 ret &= ~(HCR_SWIO | HCR_PTW | HCR_VF | HCR_VI | HCR_VSE | 5283 HCR_FB | HCR_TID1 | HCR_TID3 | HCR_TSC | HCR_TACR | 5284 HCR_TSW | HCR_TTLB | HCR_TVM | HCR_HCD | HCR_TRVM | 5285 HCR_TLOR); 5286 } 5287 5288 return ret; 5289 } 5290 5291 /* 5292 * Corresponds to ARM pseudocode function ELIsInHost(). 5293 */ 5294 bool el_is_in_host(CPUARMState *env, int el) 5295 { 5296 uint64_t mask; 5297 5298 /* 5299 * Since we only care about E2H and TGE, we can skip arm_hcr_el2_eff(). 5300 * Perform the simplest bit tests first, and validate EL2 afterward. 5301 */ 5302 if (el & 1) { 5303 return false; /* EL1 or EL3 */ 5304 } 5305 5306 /* 5307 * Note that hcr_write() checks isar_feature_aa64_vh(), 5308 * aka HaveVirtHostExt(), in allowing HCR_E2H to be set. 5309 */ 5310 mask = el ? HCR_E2H : HCR_E2H | HCR_TGE; 5311 if ((env->cp15.hcr_el2 & mask) != mask) { 5312 return false; 5313 } 5314 5315 /* TGE and/or E2H set: double check those bits are currently legal. */ 5316 return arm_is_el2_enabled(env) && arm_el_is_aa64(env, 2); 5317 } 5318 5319 static void hcrx_write(CPUARMState *env, const ARMCPRegInfo *ri, 5320 uint64_t value) 5321 { 5322 uint64_t valid_mask = 0; 5323 5324 /* No features adding bits to HCRX are implemented. */ 5325 5326 /* Clear RES0 bits. */ 5327 env->cp15.hcrx_el2 = value & valid_mask; 5328 } 5329 5330 static CPAccessResult access_hxen(CPUARMState *env, const ARMCPRegInfo *ri, 5331 bool isread) 5332 { 5333 if (arm_current_el(env) < 3 5334 && arm_feature(env, ARM_FEATURE_EL3) 5335 && !(env->cp15.scr_el3 & SCR_HXEN)) { 5336 return CP_ACCESS_TRAP_EL3; 5337 } 5338 return CP_ACCESS_OK; 5339 } 5340 5341 static const ARMCPRegInfo hcrx_el2_reginfo = { 5342 .name = "HCRX_EL2", .state = ARM_CP_STATE_AA64, 5343 .opc0 = 3, .opc1 = 4, .crn = 1, .crm = 2, .opc2 = 2, 5344 .access = PL2_RW, .writefn = hcrx_write, .accessfn = access_hxen, 5345 .fieldoffset = offsetof(CPUARMState, cp15.hcrx_el2), 5346 }; 5347 5348 /* Return the effective value of HCRX_EL2. */ 5349 uint64_t arm_hcrx_el2_eff(CPUARMState *env) 5350 { 5351 /* 5352 * The bits in this register behave as 0 for all purposes other than 5353 * direct reads of the register if: 5354 * - EL2 is not enabled in the current security state, 5355 * - SCR_EL3.HXEn is 0. 5356 */ 5357 if (!arm_is_el2_enabled(env) 5358 || (arm_feature(env, ARM_FEATURE_EL3) 5359 && !(env->cp15.scr_el3 & SCR_HXEN))) { 5360 return 0; 5361 } 5362 return env->cp15.hcrx_el2; 5363 } 5364 5365 static void cptr_el2_write(CPUARMState *env, const ARMCPRegInfo *ri, 5366 uint64_t value) 5367 { 5368 /* 5369 * For A-profile AArch32 EL3, if NSACR.CP10 5370 * is 0 then HCPTR.{TCP11,TCP10} ignore writes and read as 1. 5371 */ 5372 if (arm_feature(env, ARM_FEATURE_EL3) && !arm_el_is_aa64(env, 3) && 5373 !arm_is_secure(env) && !extract32(env->cp15.nsacr, 10, 1)) { 5374 uint64_t mask = R_HCPTR_TCP11_MASK | R_HCPTR_TCP10_MASK; 5375 value = (value & ~mask) | (env->cp15.cptr_el[2] & mask); 5376 } 5377 env->cp15.cptr_el[2] = value; 5378 } 5379 5380 static uint64_t cptr_el2_read(CPUARMState *env, const ARMCPRegInfo *ri) 5381 { 5382 /* 5383 * For A-profile AArch32 EL3, if NSACR.CP10 5384 * is 0 then HCPTR.{TCP11,TCP10} ignore writes and read as 1. 5385 */ 5386 uint64_t value = env->cp15.cptr_el[2]; 5387 5388 if (arm_feature(env, ARM_FEATURE_EL3) && !arm_el_is_aa64(env, 3) && 5389 !arm_is_secure(env) && !extract32(env->cp15.nsacr, 10, 1)) { 5390 value |= R_HCPTR_TCP11_MASK | R_HCPTR_TCP10_MASK; 5391 } 5392 return value; 5393 } 5394 5395 static const ARMCPRegInfo el2_cp_reginfo[] = { 5396 { .name = "HCR_EL2", .state = ARM_CP_STATE_AA64, 5397 .type = ARM_CP_IO, 5398 .opc0 = 3, .opc1 = 4, .crn = 1, .crm = 1, .opc2 = 0, 5399 .access = PL2_RW, .fieldoffset = offsetof(CPUARMState, cp15.hcr_el2), 5400 .writefn = hcr_write }, 5401 { .name = "HCR", .state = ARM_CP_STATE_AA32, 5402 .type = ARM_CP_ALIAS | ARM_CP_IO, 5403 .cp = 15, .opc1 = 4, .crn = 1, .crm = 1, .opc2 = 0, 5404 .access = PL2_RW, .fieldoffset = offsetof(CPUARMState, cp15.hcr_el2), 5405 .writefn = hcr_writelow }, 5406 { .name = "HACR_EL2", .state = ARM_CP_STATE_BOTH, 5407 .opc0 = 3, .opc1 = 4, .crn = 1, .crm = 1, .opc2 = 7, 5408 .access = PL2_RW, .type = ARM_CP_CONST, .resetvalue = 0 }, 5409 { .name = "ELR_EL2", .state = ARM_CP_STATE_AA64, 5410 .type = ARM_CP_ALIAS, 5411 .opc0 = 3, .opc1 = 4, .crn = 4, .crm = 0, .opc2 = 1, 5412 .access = PL2_RW, 5413 .fieldoffset = offsetof(CPUARMState, elr_el[2]) }, 5414 { .name = "ESR_EL2", .state = ARM_CP_STATE_BOTH, 5415 .opc0 = 3, .opc1 = 4, .crn = 5, .crm = 2, .opc2 = 0, 5416 .access = PL2_RW, .fieldoffset = offsetof(CPUARMState, cp15.esr_el[2]) }, 5417 { .name = "FAR_EL2", .state = ARM_CP_STATE_BOTH, 5418 .opc0 = 3, .opc1 = 4, .crn = 6, .crm = 0, .opc2 = 0, 5419 .access = PL2_RW, .fieldoffset = offsetof(CPUARMState, cp15.far_el[2]) }, 5420 { .name = "HIFAR", .state = ARM_CP_STATE_AA32, 5421 .type = ARM_CP_ALIAS, 5422 .cp = 15, .opc1 = 4, .crn = 6, .crm = 0, .opc2 = 2, 5423 .access = PL2_RW, 5424 .fieldoffset = offsetofhigh32(CPUARMState, cp15.far_el[2]) }, 5425 { .name = "SPSR_EL2", .state = ARM_CP_STATE_AA64, 5426 .type = ARM_CP_ALIAS, 5427 .opc0 = 3, .opc1 = 4, .crn = 4, .crm = 0, .opc2 = 0, 5428 .access = PL2_RW, 5429 .fieldoffset = offsetof(CPUARMState, banked_spsr[BANK_HYP]) }, 5430 { .name = "VBAR_EL2", .state = ARM_CP_STATE_BOTH, 5431 .opc0 = 3, .opc1 = 4, .crn = 12, .crm = 0, .opc2 = 0, 5432 .access = PL2_RW, .writefn = vbar_write, 5433 .fieldoffset = offsetof(CPUARMState, cp15.vbar_el[2]), 5434 .resetvalue = 0 }, 5435 { .name = "SP_EL2", .state = ARM_CP_STATE_AA64, 5436 .opc0 = 3, .opc1 = 6, .crn = 4, .crm = 1, .opc2 = 0, 5437 .access = PL3_RW, .type = ARM_CP_ALIAS, 5438 .fieldoffset = offsetof(CPUARMState, sp_el[2]) }, 5439 { .name = "CPTR_EL2", .state = ARM_CP_STATE_BOTH, 5440 .opc0 = 3, .opc1 = 4, .crn = 1, .crm = 1, .opc2 = 2, 5441 .access = PL2_RW, .accessfn = cptr_access, .resetvalue = 0, 5442 .fieldoffset = offsetof(CPUARMState, cp15.cptr_el[2]), 5443 .readfn = cptr_el2_read, .writefn = cptr_el2_write }, 5444 { .name = "MAIR_EL2", .state = ARM_CP_STATE_BOTH, 5445 .opc0 = 3, .opc1 = 4, .crn = 10, .crm = 2, .opc2 = 0, 5446 .access = PL2_RW, .fieldoffset = offsetof(CPUARMState, cp15.mair_el[2]), 5447 .resetvalue = 0 }, 5448 { .name = "HMAIR1", .state = ARM_CP_STATE_AA32, 5449 .cp = 15, .opc1 = 4, .crn = 10, .crm = 2, .opc2 = 1, 5450 .access = PL2_RW, .type = ARM_CP_ALIAS, 5451 .fieldoffset = offsetofhigh32(CPUARMState, cp15.mair_el[2]) }, 5452 { .name = "AMAIR_EL2", .state = ARM_CP_STATE_BOTH, 5453 .opc0 = 3, .opc1 = 4, .crn = 10, .crm = 3, .opc2 = 0, 5454 .access = PL2_RW, .type = ARM_CP_CONST, 5455 .resetvalue = 0 }, 5456 /* HAMAIR1 is mapped to AMAIR_EL2[63:32] */ 5457 { .name = "HAMAIR1", .state = ARM_CP_STATE_AA32, 5458 .cp = 15, .opc1 = 4, .crn = 10, .crm = 3, .opc2 = 1, 5459 .access = PL2_RW, .type = ARM_CP_CONST, 5460 .resetvalue = 0 }, 5461 { .name = "AFSR0_EL2", .state = ARM_CP_STATE_BOTH, 5462 .opc0 = 3, .opc1 = 4, .crn = 5, .crm = 1, .opc2 = 0, 5463 .access = PL2_RW, .type = ARM_CP_CONST, 5464 .resetvalue = 0 }, 5465 { .name = "AFSR1_EL2", .state = ARM_CP_STATE_BOTH, 5466 .opc0 = 3, .opc1 = 4, .crn = 5, .crm = 1, .opc2 = 1, 5467 .access = PL2_RW, .type = ARM_CP_CONST, 5468 .resetvalue = 0 }, 5469 { .name = "TCR_EL2", .state = ARM_CP_STATE_BOTH, 5470 .opc0 = 3, .opc1 = 4, .crn = 2, .crm = 0, .opc2 = 2, 5471 .access = PL2_RW, .writefn = vmsa_tcr_el12_write, 5472 /* no .raw_writefn or .resetfn needed as we never use mask/base_mask */ 5473 .fieldoffset = offsetof(CPUARMState, cp15.tcr_el[2]) }, 5474 { .name = "VTCR", .state = ARM_CP_STATE_AA32, 5475 .cp = 15, .opc1 = 4, .crn = 2, .crm = 1, .opc2 = 2, 5476 .type = ARM_CP_ALIAS, 5477 .access = PL2_RW, .accessfn = access_el3_aa32ns, 5478 .fieldoffset = offsetof(CPUARMState, cp15.vtcr_el2) }, 5479 { .name = "VTCR_EL2", .state = ARM_CP_STATE_AA64, 5480 .opc0 = 3, .opc1 = 4, .crn = 2, .crm = 1, .opc2 = 2, 5481 .access = PL2_RW, 5482 /* no .writefn needed as this can't cause an ASID change; 5483 * no .raw_writefn or .resetfn needed as we never use mask/base_mask 5484 */ 5485 .fieldoffset = offsetof(CPUARMState, cp15.vtcr_el2) }, 5486 { .name = "VTTBR", .state = ARM_CP_STATE_AA32, 5487 .cp = 15, .opc1 = 6, .crm = 2, 5488 .type = ARM_CP_64BIT | ARM_CP_ALIAS, 5489 .access = PL2_RW, .accessfn = access_el3_aa32ns, 5490 .fieldoffset = offsetof(CPUARMState, cp15.vttbr_el2), 5491 .writefn = vttbr_write }, 5492 { .name = "VTTBR_EL2", .state = ARM_CP_STATE_AA64, 5493 .opc0 = 3, .opc1 = 4, .crn = 2, .crm = 1, .opc2 = 0, 5494 .access = PL2_RW, .writefn = vttbr_write, 5495 .fieldoffset = offsetof(CPUARMState, cp15.vttbr_el2) }, 5496 { .name = "SCTLR_EL2", .state = ARM_CP_STATE_BOTH, 5497 .opc0 = 3, .opc1 = 4, .crn = 1, .crm = 0, .opc2 = 0, 5498 .access = PL2_RW, .raw_writefn = raw_write, .writefn = sctlr_write, 5499 .fieldoffset = offsetof(CPUARMState, cp15.sctlr_el[2]) }, 5500 { .name = "TPIDR_EL2", .state = ARM_CP_STATE_BOTH, 5501 .opc0 = 3, .opc1 = 4, .crn = 13, .crm = 0, .opc2 = 2, 5502 .access = PL2_RW, .resetvalue = 0, 5503 .fieldoffset = offsetof(CPUARMState, cp15.tpidr_el[2]) }, 5504 { .name = "TTBR0_EL2", .state = ARM_CP_STATE_AA64, 5505 .opc0 = 3, .opc1 = 4, .crn = 2, .crm = 0, .opc2 = 0, 5506 .access = PL2_RW, .resetvalue = 0, .writefn = vmsa_tcr_ttbr_el2_write, 5507 .fieldoffset = offsetof(CPUARMState, cp15.ttbr0_el[2]) }, 5508 { .name = "HTTBR", .cp = 15, .opc1 = 4, .crm = 2, 5509 .access = PL2_RW, .type = ARM_CP_64BIT | ARM_CP_ALIAS, 5510 .fieldoffset = offsetof(CPUARMState, cp15.ttbr0_el[2]) }, 5511 { .name = "TLBIALLNSNH", 5512 .cp = 15, .opc1 = 4, .crn = 8, .crm = 7, .opc2 = 4, 5513 .type = ARM_CP_NO_RAW, .access = PL2_W, 5514 .writefn = tlbiall_nsnh_write }, 5515 { .name = "TLBIALLNSNHIS", 5516 .cp = 15, .opc1 = 4, .crn = 8, .crm = 3, .opc2 = 4, 5517 .type = ARM_CP_NO_RAW, .access = PL2_W, 5518 .writefn = tlbiall_nsnh_is_write }, 5519 { .name = "TLBIALLH", .cp = 15, .opc1 = 4, .crn = 8, .crm = 7, .opc2 = 0, 5520 .type = ARM_CP_NO_RAW, .access = PL2_W, 5521 .writefn = tlbiall_hyp_write }, 5522 { .name = "TLBIALLHIS", .cp = 15, .opc1 = 4, .crn = 8, .crm = 3, .opc2 = 0, 5523 .type = ARM_CP_NO_RAW, .access = PL2_W, 5524 .writefn = tlbiall_hyp_is_write }, 5525 { .name = "TLBIMVAH", .cp = 15, .opc1 = 4, .crn = 8, .crm = 7, .opc2 = 1, 5526 .type = ARM_CP_NO_RAW, .access = PL2_W, 5527 .writefn = tlbimva_hyp_write }, 5528 { .name = "TLBIMVAHIS", .cp = 15, .opc1 = 4, .crn = 8, .crm = 3, .opc2 = 1, 5529 .type = ARM_CP_NO_RAW, .access = PL2_W, 5530 .writefn = tlbimva_hyp_is_write }, 5531 { .name = "TLBI_ALLE2", .state = ARM_CP_STATE_AA64, 5532 .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 7, .opc2 = 0, 5533 .access = PL2_W, .type = ARM_CP_NO_RAW | ARM_CP_EL3_NO_EL2_UNDEF, 5534 .writefn = tlbi_aa64_alle2_write }, 5535 { .name = "TLBI_VAE2", .state = ARM_CP_STATE_AA64, 5536 .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 7, .opc2 = 1, 5537 .access = PL2_W, .type = ARM_CP_NO_RAW | ARM_CP_EL3_NO_EL2_UNDEF, 5538 .writefn = tlbi_aa64_vae2_write }, 5539 { .name = "TLBI_VALE2", .state = ARM_CP_STATE_AA64, 5540 .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 7, .opc2 = 5, 5541 .access = PL2_W, .type = ARM_CP_NO_RAW | ARM_CP_EL3_NO_EL2_UNDEF, 5542 .writefn = tlbi_aa64_vae2_write }, 5543 { .name = "TLBI_ALLE2IS", .state = ARM_CP_STATE_AA64, 5544 .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 3, .opc2 = 0, 5545 .access = PL2_W, .type = ARM_CP_NO_RAW | ARM_CP_EL3_NO_EL2_UNDEF, 5546 .writefn = tlbi_aa64_alle2is_write }, 5547 { .name = "TLBI_VAE2IS", .state = ARM_CP_STATE_AA64, 5548 .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 3, .opc2 = 1, 5549 .access = PL2_W, .type = ARM_CP_NO_RAW | ARM_CP_EL3_NO_EL2_UNDEF, 5550 .writefn = tlbi_aa64_vae2is_write }, 5551 { .name = "TLBI_VALE2IS", .state = ARM_CP_STATE_AA64, 5552 .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 3, .opc2 = 5, 5553 .access = PL2_W, .type = ARM_CP_NO_RAW | ARM_CP_EL3_NO_EL2_UNDEF, 5554 .writefn = tlbi_aa64_vae2is_write }, 5555 #ifndef CONFIG_USER_ONLY 5556 /* Unlike the other EL2-related AT operations, these must 5557 * UNDEF from EL3 if EL2 is not implemented, which is why we 5558 * define them here rather than with the rest of the AT ops. 5559 */ 5560 { .name = "AT_S1E2R", .state = ARM_CP_STATE_AA64, 5561 .opc0 = 1, .opc1 = 4, .crn = 7, .crm = 8, .opc2 = 0, 5562 .access = PL2_W, .accessfn = at_s1e2_access, 5563 .type = ARM_CP_NO_RAW | ARM_CP_RAISES_EXC | ARM_CP_EL3_NO_EL2_UNDEF, 5564 .writefn = ats_write64 }, 5565 { .name = "AT_S1E2W", .state = ARM_CP_STATE_AA64, 5566 .opc0 = 1, .opc1 = 4, .crn = 7, .crm = 8, .opc2 = 1, 5567 .access = PL2_W, .accessfn = at_s1e2_access, 5568 .type = ARM_CP_NO_RAW | ARM_CP_RAISES_EXC | ARM_CP_EL3_NO_EL2_UNDEF, 5569 .writefn = ats_write64 }, 5570 /* The AArch32 ATS1H* operations are CONSTRAINED UNPREDICTABLE 5571 * if EL2 is not implemented; we choose to UNDEF. Behaviour at EL3 5572 * with SCR.NS == 0 outside Monitor mode is UNPREDICTABLE; we choose 5573 * to behave as if SCR.NS was 1. 5574 */ 5575 { .name = "ATS1HR", .cp = 15, .opc1 = 4, .crn = 7, .crm = 8, .opc2 = 0, 5576 .access = PL2_W, 5577 .writefn = ats1h_write, .type = ARM_CP_NO_RAW | ARM_CP_RAISES_EXC }, 5578 { .name = "ATS1HW", .cp = 15, .opc1 = 4, .crn = 7, .crm = 8, .opc2 = 1, 5579 .access = PL2_W, 5580 .writefn = ats1h_write, .type = ARM_CP_NO_RAW | ARM_CP_RAISES_EXC }, 5581 { .name = "CNTHCTL_EL2", .state = ARM_CP_STATE_BOTH, 5582 .opc0 = 3, .opc1 = 4, .crn = 14, .crm = 1, .opc2 = 0, 5583 /* ARMv7 requires bit 0 and 1 to reset to 1. ARMv8 defines the 5584 * reset values as IMPDEF. We choose to reset to 3 to comply with 5585 * both ARMv7 and ARMv8. 5586 */ 5587 .access = PL2_RW, .resetvalue = 3, 5588 .fieldoffset = offsetof(CPUARMState, cp15.cnthctl_el2) }, 5589 { .name = "CNTVOFF_EL2", .state = ARM_CP_STATE_AA64, 5590 .opc0 = 3, .opc1 = 4, .crn = 14, .crm = 0, .opc2 = 3, 5591 .access = PL2_RW, .type = ARM_CP_IO, .resetvalue = 0, 5592 .writefn = gt_cntvoff_write, 5593 .fieldoffset = offsetof(CPUARMState, cp15.cntvoff_el2) }, 5594 { .name = "CNTVOFF", .cp = 15, .opc1 = 4, .crm = 14, 5595 .access = PL2_RW, .type = ARM_CP_64BIT | ARM_CP_ALIAS | ARM_CP_IO, 5596 .writefn = gt_cntvoff_write, 5597 .fieldoffset = offsetof(CPUARMState, cp15.cntvoff_el2) }, 5598 { .name = "CNTHP_CVAL_EL2", .state = ARM_CP_STATE_AA64, 5599 .opc0 = 3, .opc1 = 4, .crn = 14, .crm = 2, .opc2 = 2, 5600 .fieldoffset = offsetof(CPUARMState, cp15.c14_timer[GTIMER_HYP].cval), 5601 .type = ARM_CP_IO, .access = PL2_RW, 5602 .writefn = gt_hyp_cval_write, .raw_writefn = raw_write }, 5603 { .name = "CNTHP_CVAL", .cp = 15, .opc1 = 6, .crm = 14, 5604 .fieldoffset = offsetof(CPUARMState, cp15.c14_timer[GTIMER_HYP].cval), 5605 .access = PL2_RW, .type = ARM_CP_64BIT | ARM_CP_IO, 5606 .writefn = gt_hyp_cval_write, .raw_writefn = raw_write }, 5607 { .name = "CNTHP_TVAL_EL2", .state = ARM_CP_STATE_BOTH, 5608 .opc0 = 3, .opc1 = 4, .crn = 14, .crm = 2, .opc2 = 0, 5609 .type = ARM_CP_NO_RAW | ARM_CP_IO, .access = PL2_RW, 5610 .resetfn = gt_hyp_timer_reset, 5611 .readfn = gt_hyp_tval_read, .writefn = gt_hyp_tval_write }, 5612 { .name = "CNTHP_CTL_EL2", .state = ARM_CP_STATE_BOTH, 5613 .type = ARM_CP_IO, 5614 .opc0 = 3, .opc1 = 4, .crn = 14, .crm = 2, .opc2 = 1, 5615 .access = PL2_RW, 5616 .fieldoffset = offsetof(CPUARMState, cp15.c14_timer[GTIMER_HYP].ctl), 5617 .resetvalue = 0, 5618 .writefn = gt_hyp_ctl_write, .raw_writefn = raw_write }, 5619 #endif 5620 { .name = "HPFAR", .state = ARM_CP_STATE_AA32, 5621 .cp = 15, .opc1 = 4, .crn = 6, .crm = 0, .opc2 = 4, 5622 .access = PL2_RW, .accessfn = access_el3_aa32ns, 5623 .fieldoffset = offsetof(CPUARMState, cp15.hpfar_el2) }, 5624 { .name = "HPFAR_EL2", .state = ARM_CP_STATE_AA64, 5625 .opc0 = 3, .opc1 = 4, .crn = 6, .crm = 0, .opc2 = 4, 5626 .access = PL2_RW, 5627 .fieldoffset = offsetof(CPUARMState, cp15.hpfar_el2) }, 5628 { .name = "HSTR_EL2", .state = ARM_CP_STATE_BOTH, 5629 .cp = 15, .opc0 = 3, .opc1 = 4, .crn = 1, .crm = 1, .opc2 = 3, 5630 .access = PL2_RW, 5631 .fieldoffset = offsetof(CPUARMState, cp15.hstr_el2) }, 5632 }; 5633 5634 static const ARMCPRegInfo el2_v8_cp_reginfo[] = { 5635 { .name = "HCR2", .state = ARM_CP_STATE_AA32, 5636 .type = ARM_CP_ALIAS | ARM_CP_IO, 5637 .cp = 15, .opc1 = 4, .crn = 1, .crm = 1, .opc2 = 4, 5638 .access = PL2_RW, 5639 .fieldoffset = offsetofhigh32(CPUARMState, cp15.hcr_el2), 5640 .writefn = hcr_writehigh }, 5641 }; 5642 5643 static CPAccessResult sel2_access(CPUARMState *env, const ARMCPRegInfo *ri, 5644 bool isread) 5645 { 5646 if (arm_current_el(env) == 3 || arm_is_secure_below_el3(env)) { 5647 return CP_ACCESS_OK; 5648 } 5649 return CP_ACCESS_TRAP_UNCATEGORIZED; 5650 } 5651 5652 static const ARMCPRegInfo el2_sec_cp_reginfo[] = { 5653 { .name = "VSTTBR_EL2", .state = ARM_CP_STATE_AA64, 5654 .opc0 = 3, .opc1 = 4, .crn = 2, .crm = 6, .opc2 = 0, 5655 .access = PL2_RW, .accessfn = sel2_access, 5656 .fieldoffset = offsetof(CPUARMState, cp15.vsttbr_el2) }, 5657 { .name = "VSTCR_EL2", .state = ARM_CP_STATE_AA64, 5658 .opc0 = 3, .opc1 = 4, .crn = 2, .crm = 6, .opc2 = 2, 5659 .access = PL2_RW, .accessfn = sel2_access, 5660 .fieldoffset = offsetof(CPUARMState, cp15.vstcr_el2) }, 5661 }; 5662 5663 static CPAccessResult nsacr_access(CPUARMState *env, const ARMCPRegInfo *ri, 5664 bool isread) 5665 { 5666 /* The NSACR is RW at EL3, and RO for NS EL1 and NS EL2. 5667 * At Secure EL1 it traps to EL3 or EL2. 5668 */ 5669 if (arm_current_el(env) == 3) { 5670 return CP_ACCESS_OK; 5671 } 5672 if (arm_is_secure_below_el3(env)) { 5673 if (env->cp15.scr_el3 & SCR_EEL2) { 5674 return CP_ACCESS_TRAP_EL2; 5675 } 5676 return CP_ACCESS_TRAP_EL3; 5677 } 5678 /* Accesses from EL1 NS and EL2 NS are UNDEF for write but allow reads. */ 5679 if (isread) { 5680 return CP_ACCESS_OK; 5681 } 5682 return CP_ACCESS_TRAP_UNCATEGORIZED; 5683 } 5684 5685 static const ARMCPRegInfo el3_cp_reginfo[] = { 5686 { .name = "SCR_EL3", .state = ARM_CP_STATE_AA64, 5687 .opc0 = 3, .opc1 = 6, .crn = 1, .crm = 1, .opc2 = 0, 5688 .access = PL3_RW, .fieldoffset = offsetof(CPUARMState, cp15.scr_el3), 5689 .resetfn = scr_reset, .writefn = scr_write }, 5690 { .name = "SCR", .type = ARM_CP_ALIAS | ARM_CP_NEWEL, 5691 .cp = 15, .opc1 = 0, .crn = 1, .crm = 1, .opc2 = 0, 5692 .access = PL1_RW, .accessfn = access_trap_aa32s_el1, 5693 .fieldoffset = offsetoflow32(CPUARMState, cp15.scr_el3), 5694 .writefn = scr_write }, 5695 { .name = "SDER32_EL3", .state = ARM_CP_STATE_AA64, 5696 .opc0 = 3, .opc1 = 6, .crn = 1, .crm = 1, .opc2 = 1, 5697 .access = PL3_RW, .resetvalue = 0, 5698 .fieldoffset = offsetof(CPUARMState, cp15.sder) }, 5699 { .name = "SDER", 5700 .cp = 15, .opc1 = 0, .crn = 1, .crm = 1, .opc2 = 1, 5701 .access = PL3_RW, .resetvalue = 0, 5702 .fieldoffset = offsetoflow32(CPUARMState, cp15.sder) }, 5703 { .name = "MVBAR", .cp = 15, .opc1 = 0, .crn = 12, .crm = 0, .opc2 = 1, 5704 .access = PL1_RW, .accessfn = access_trap_aa32s_el1, 5705 .writefn = vbar_write, .resetvalue = 0, 5706 .fieldoffset = offsetof(CPUARMState, cp15.mvbar) }, 5707 { .name = "TTBR0_EL3", .state = ARM_CP_STATE_AA64, 5708 .opc0 = 3, .opc1 = 6, .crn = 2, .crm = 0, .opc2 = 0, 5709 .access = PL3_RW, .resetvalue = 0, 5710 .fieldoffset = offsetof(CPUARMState, cp15.ttbr0_el[3]) }, 5711 { .name = "TCR_EL3", .state = ARM_CP_STATE_AA64, 5712 .opc0 = 3, .opc1 = 6, .crn = 2, .crm = 0, .opc2 = 2, 5713 .access = PL3_RW, 5714 /* no .writefn needed as this can't cause an ASID change; 5715 * we must provide a .raw_writefn and .resetfn because we handle 5716 * reset and migration for the AArch32 TTBCR(S), which might be 5717 * using mask and base_mask. 5718 */ 5719 .resetfn = vmsa_ttbcr_reset, .raw_writefn = vmsa_ttbcr_raw_write, 5720 .fieldoffset = offsetof(CPUARMState, cp15.tcr_el[3]) }, 5721 { .name = "ELR_EL3", .state = ARM_CP_STATE_AA64, 5722 .type = ARM_CP_ALIAS, 5723 .opc0 = 3, .opc1 = 6, .crn = 4, .crm = 0, .opc2 = 1, 5724 .access = PL3_RW, 5725 .fieldoffset = offsetof(CPUARMState, elr_el[3]) }, 5726 { .name = "ESR_EL3", .state = ARM_CP_STATE_AA64, 5727 .opc0 = 3, .opc1 = 6, .crn = 5, .crm = 2, .opc2 = 0, 5728 .access = PL3_RW, .fieldoffset = offsetof(CPUARMState, cp15.esr_el[3]) }, 5729 { .name = "FAR_EL3", .state = ARM_CP_STATE_AA64, 5730 .opc0 = 3, .opc1 = 6, .crn = 6, .crm = 0, .opc2 = 0, 5731 .access = PL3_RW, .fieldoffset = offsetof(CPUARMState, cp15.far_el[3]) }, 5732 { .name = "SPSR_EL3", .state = ARM_CP_STATE_AA64, 5733 .type = ARM_CP_ALIAS, 5734 .opc0 = 3, .opc1 = 6, .crn = 4, .crm = 0, .opc2 = 0, 5735 .access = PL3_RW, 5736 .fieldoffset = offsetof(CPUARMState, banked_spsr[BANK_MON]) }, 5737 { .name = "VBAR_EL3", .state = ARM_CP_STATE_AA64, 5738 .opc0 = 3, .opc1 = 6, .crn = 12, .crm = 0, .opc2 = 0, 5739 .access = PL3_RW, .writefn = vbar_write, 5740 .fieldoffset = offsetof(CPUARMState, cp15.vbar_el[3]), 5741 .resetvalue = 0 }, 5742 { .name = "CPTR_EL3", .state = ARM_CP_STATE_AA64, 5743 .opc0 = 3, .opc1 = 6, .crn = 1, .crm = 1, .opc2 = 2, 5744 .access = PL3_RW, .accessfn = cptr_access, .resetvalue = 0, 5745 .fieldoffset = offsetof(CPUARMState, cp15.cptr_el[3]) }, 5746 { .name = "TPIDR_EL3", .state = ARM_CP_STATE_AA64, 5747 .opc0 = 3, .opc1 = 6, .crn = 13, .crm = 0, .opc2 = 2, 5748 .access = PL3_RW, .resetvalue = 0, 5749 .fieldoffset = offsetof(CPUARMState, cp15.tpidr_el[3]) }, 5750 { .name = "AMAIR_EL3", .state = ARM_CP_STATE_AA64, 5751 .opc0 = 3, .opc1 = 6, .crn = 10, .crm = 3, .opc2 = 0, 5752 .access = PL3_RW, .type = ARM_CP_CONST, 5753 .resetvalue = 0 }, 5754 { .name = "AFSR0_EL3", .state = ARM_CP_STATE_BOTH, 5755 .opc0 = 3, .opc1 = 6, .crn = 5, .crm = 1, .opc2 = 0, 5756 .access = PL3_RW, .type = ARM_CP_CONST, 5757 .resetvalue = 0 }, 5758 { .name = "AFSR1_EL3", .state = ARM_CP_STATE_BOTH, 5759 .opc0 = 3, .opc1 = 6, .crn = 5, .crm = 1, .opc2 = 1, 5760 .access = PL3_RW, .type = ARM_CP_CONST, 5761 .resetvalue = 0 }, 5762 { .name = "TLBI_ALLE3IS", .state = ARM_CP_STATE_AA64, 5763 .opc0 = 1, .opc1 = 6, .crn = 8, .crm = 3, .opc2 = 0, 5764 .access = PL3_W, .type = ARM_CP_NO_RAW, 5765 .writefn = tlbi_aa64_alle3is_write }, 5766 { .name = "TLBI_VAE3IS", .state = ARM_CP_STATE_AA64, 5767 .opc0 = 1, .opc1 = 6, .crn = 8, .crm = 3, .opc2 = 1, 5768 .access = PL3_W, .type = ARM_CP_NO_RAW, 5769 .writefn = tlbi_aa64_vae3is_write }, 5770 { .name = "TLBI_VALE3IS", .state = ARM_CP_STATE_AA64, 5771 .opc0 = 1, .opc1 = 6, .crn = 8, .crm = 3, .opc2 = 5, 5772 .access = PL3_W, .type = ARM_CP_NO_RAW, 5773 .writefn = tlbi_aa64_vae3is_write }, 5774 { .name = "TLBI_ALLE3", .state = ARM_CP_STATE_AA64, 5775 .opc0 = 1, .opc1 = 6, .crn = 8, .crm = 7, .opc2 = 0, 5776 .access = PL3_W, .type = ARM_CP_NO_RAW, 5777 .writefn = tlbi_aa64_alle3_write }, 5778 { .name = "TLBI_VAE3", .state = ARM_CP_STATE_AA64, 5779 .opc0 = 1, .opc1 = 6, .crn = 8, .crm = 7, .opc2 = 1, 5780 .access = PL3_W, .type = ARM_CP_NO_RAW, 5781 .writefn = tlbi_aa64_vae3_write }, 5782 { .name = "TLBI_VALE3", .state = ARM_CP_STATE_AA64, 5783 .opc0 = 1, .opc1 = 6, .crn = 8, .crm = 7, .opc2 = 5, 5784 .access = PL3_W, .type = ARM_CP_NO_RAW, 5785 .writefn = tlbi_aa64_vae3_write }, 5786 }; 5787 5788 #ifndef CONFIG_USER_ONLY 5789 /* Test if system register redirection is to occur in the current state. */ 5790 static bool redirect_for_e2h(CPUARMState *env) 5791 { 5792 return arm_current_el(env) == 2 && (arm_hcr_el2_eff(env) & HCR_E2H); 5793 } 5794 5795 static uint64_t el2_e2h_read(CPUARMState *env, const ARMCPRegInfo *ri) 5796 { 5797 CPReadFn *readfn; 5798 5799 if (redirect_for_e2h(env)) { 5800 /* Switch to the saved EL2 version of the register. */ 5801 ri = ri->opaque; 5802 readfn = ri->readfn; 5803 } else { 5804 readfn = ri->orig_readfn; 5805 } 5806 if (readfn == NULL) { 5807 readfn = raw_read; 5808 } 5809 return readfn(env, ri); 5810 } 5811 5812 static void el2_e2h_write(CPUARMState *env, const ARMCPRegInfo *ri, 5813 uint64_t value) 5814 { 5815 CPWriteFn *writefn; 5816 5817 if (redirect_for_e2h(env)) { 5818 /* Switch to the saved EL2 version of the register. */ 5819 ri = ri->opaque; 5820 writefn = ri->writefn; 5821 } else { 5822 writefn = ri->orig_writefn; 5823 } 5824 if (writefn == NULL) { 5825 writefn = raw_write; 5826 } 5827 writefn(env, ri, value); 5828 } 5829 5830 static void define_arm_vh_e2h_redirects_aliases(ARMCPU *cpu) 5831 { 5832 struct E2HAlias { 5833 uint32_t src_key, dst_key, new_key; 5834 const char *src_name, *dst_name, *new_name; 5835 bool (*feature)(const ARMISARegisters *id); 5836 }; 5837 5838 #define K(op0, op1, crn, crm, op2) \ 5839 ENCODE_AA64_CP_REG(CP_REG_ARM64_SYSREG_CP, crn, crm, op0, op1, op2) 5840 5841 static const struct E2HAlias aliases[] = { 5842 { K(3, 0, 1, 0, 0), K(3, 4, 1, 0, 0), K(3, 5, 1, 0, 0), 5843 "SCTLR", "SCTLR_EL2", "SCTLR_EL12" }, 5844 { K(3, 0, 1, 0, 2), K(3, 4, 1, 1, 2), K(3, 5, 1, 0, 2), 5845 "CPACR", "CPTR_EL2", "CPACR_EL12" }, 5846 { K(3, 0, 2, 0, 0), K(3, 4, 2, 0, 0), K(3, 5, 2, 0, 0), 5847 "TTBR0_EL1", "TTBR0_EL2", "TTBR0_EL12" }, 5848 { K(3, 0, 2, 0, 1), K(3, 4, 2, 0, 1), K(3, 5, 2, 0, 1), 5849 "TTBR1_EL1", "TTBR1_EL2", "TTBR1_EL12" }, 5850 { K(3, 0, 2, 0, 2), K(3, 4, 2, 0, 2), K(3, 5, 2, 0, 2), 5851 "TCR_EL1", "TCR_EL2", "TCR_EL12" }, 5852 { K(3, 0, 4, 0, 0), K(3, 4, 4, 0, 0), K(3, 5, 4, 0, 0), 5853 "SPSR_EL1", "SPSR_EL2", "SPSR_EL12" }, 5854 { K(3, 0, 4, 0, 1), K(3, 4, 4, 0, 1), K(3, 5, 4, 0, 1), 5855 "ELR_EL1", "ELR_EL2", "ELR_EL12" }, 5856 { K(3, 0, 5, 1, 0), K(3, 4, 5, 1, 0), K(3, 5, 5, 1, 0), 5857 "AFSR0_EL1", "AFSR0_EL2", "AFSR0_EL12" }, 5858 { K(3, 0, 5, 1, 1), K(3, 4, 5, 1, 1), K(3, 5, 5, 1, 1), 5859 "AFSR1_EL1", "AFSR1_EL2", "AFSR1_EL12" }, 5860 { K(3, 0, 5, 2, 0), K(3, 4, 5, 2, 0), K(3, 5, 5, 2, 0), 5861 "ESR_EL1", "ESR_EL2", "ESR_EL12" }, 5862 { K(3, 0, 6, 0, 0), K(3, 4, 6, 0, 0), K(3, 5, 6, 0, 0), 5863 "FAR_EL1", "FAR_EL2", "FAR_EL12" }, 5864 { K(3, 0, 10, 2, 0), K(3, 4, 10, 2, 0), K(3, 5, 10, 2, 0), 5865 "MAIR_EL1", "MAIR_EL2", "MAIR_EL12" }, 5866 { K(3, 0, 10, 3, 0), K(3, 4, 10, 3, 0), K(3, 5, 10, 3, 0), 5867 "AMAIR0", "AMAIR_EL2", "AMAIR_EL12" }, 5868 { K(3, 0, 12, 0, 0), K(3, 4, 12, 0, 0), K(3, 5, 12, 0, 0), 5869 "VBAR", "VBAR_EL2", "VBAR_EL12" }, 5870 { K(3, 0, 13, 0, 1), K(3, 4, 13, 0, 1), K(3, 5, 13, 0, 1), 5871 "CONTEXTIDR_EL1", "CONTEXTIDR_EL2", "CONTEXTIDR_EL12" }, 5872 { K(3, 0, 14, 1, 0), K(3, 4, 14, 1, 0), K(3, 5, 14, 1, 0), 5873 "CNTKCTL", "CNTHCTL_EL2", "CNTKCTL_EL12" }, 5874 5875 /* 5876 * Note that redirection of ZCR is mentioned in the description 5877 * of ZCR_EL2, and aliasing in the description of ZCR_EL1, but 5878 * not in the summary table. 5879 */ 5880 { K(3, 0, 1, 2, 0), K(3, 4, 1, 2, 0), K(3, 5, 1, 2, 0), 5881 "ZCR_EL1", "ZCR_EL2", "ZCR_EL12", isar_feature_aa64_sve }, 5882 5883 { K(3, 0, 5, 6, 0), K(3, 4, 5, 6, 0), K(3, 5, 5, 6, 0), 5884 "TFSR_EL1", "TFSR_EL2", "TFSR_EL12", isar_feature_aa64_mte }, 5885 5886 { K(3, 0, 13, 0, 7), K(3, 4, 13, 0, 7), K(3, 5, 13, 0, 7), 5887 "SCXTNUM_EL1", "SCXTNUM_EL2", "SCXTNUM_EL12", 5888 isar_feature_aa64_scxtnum }, 5889 5890 /* TODO: ARMv8.2-SPE -- PMSCR_EL2 */ 5891 /* TODO: ARMv8.4-Trace -- TRFCR_EL2 */ 5892 }; 5893 #undef K 5894 5895 size_t i; 5896 5897 for (i = 0; i < ARRAY_SIZE(aliases); i++) { 5898 const struct E2HAlias *a = &aliases[i]; 5899 ARMCPRegInfo *src_reg, *dst_reg, *new_reg; 5900 bool ok; 5901 5902 if (a->feature && !a->feature(&cpu->isar)) { 5903 continue; 5904 } 5905 5906 src_reg = g_hash_table_lookup(cpu->cp_regs, 5907 (gpointer)(uintptr_t)a->src_key); 5908 dst_reg = g_hash_table_lookup(cpu->cp_regs, 5909 (gpointer)(uintptr_t)a->dst_key); 5910 g_assert(src_reg != NULL); 5911 g_assert(dst_reg != NULL); 5912 5913 /* Cross-compare names to detect typos in the keys. */ 5914 g_assert(strcmp(src_reg->name, a->src_name) == 0); 5915 g_assert(strcmp(dst_reg->name, a->dst_name) == 0); 5916 5917 /* None of the core system registers use opaque; we will. */ 5918 g_assert(src_reg->opaque == NULL); 5919 5920 /* Create alias before redirection so we dup the right data. */ 5921 new_reg = g_memdup(src_reg, sizeof(ARMCPRegInfo)); 5922 5923 new_reg->name = a->new_name; 5924 new_reg->type |= ARM_CP_ALIAS; 5925 /* Remove PL1/PL0 access, leaving PL2/PL3 R/W in place. */ 5926 new_reg->access &= PL2_RW | PL3_RW; 5927 5928 ok = g_hash_table_insert(cpu->cp_regs, 5929 (gpointer)(uintptr_t)a->new_key, new_reg); 5930 g_assert(ok); 5931 5932 src_reg->opaque = dst_reg; 5933 src_reg->orig_readfn = src_reg->readfn ?: raw_read; 5934 src_reg->orig_writefn = src_reg->writefn ?: raw_write; 5935 if (!src_reg->raw_readfn) { 5936 src_reg->raw_readfn = raw_read; 5937 } 5938 if (!src_reg->raw_writefn) { 5939 src_reg->raw_writefn = raw_write; 5940 } 5941 src_reg->readfn = el2_e2h_read; 5942 src_reg->writefn = el2_e2h_write; 5943 } 5944 } 5945 #endif 5946 5947 static CPAccessResult ctr_el0_access(CPUARMState *env, const ARMCPRegInfo *ri, 5948 bool isread) 5949 { 5950 int cur_el = arm_current_el(env); 5951 5952 if (cur_el < 2) { 5953 uint64_t hcr = arm_hcr_el2_eff(env); 5954 5955 if (cur_el == 0) { 5956 if ((hcr & (HCR_E2H | HCR_TGE)) == (HCR_E2H | HCR_TGE)) { 5957 if (!(env->cp15.sctlr_el[2] & SCTLR_UCT)) { 5958 return CP_ACCESS_TRAP_EL2; 5959 } 5960 } else { 5961 if (!(env->cp15.sctlr_el[1] & SCTLR_UCT)) { 5962 return CP_ACCESS_TRAP; 5963 } 5964 if (hcr & HCR_TID2) { 5965 return CP_ACCESS_TRAP_EL2; 5966 } 5967 } 5968 } else if (hcr & HCR_TID2) { 5969 return CP_ACCESS_TRAP_EL2; 5970 } 5971 } 5972 5973 if (arm_current_el(env) < 2 && arm_hcr_el2_eff(env) & HCR_TID2) { 5974 return CP_ACCESS_TRAP_EL2; 5975 } 5976 5977 return CP_ACCESS_OK; 5978 } 5979 5980 static void oslar_write(CPUARMState *env, const ARMCPRegInfo *ri, 5981 uint64_t value) 5982 { 5983 /* Writes to OSLAR_EL1 may update the OS lock status, which can be 5984 * read via a bit in OSLSR_EL1. 5985 */ 5986 int oslock; 5987 5988 if (ri->state == ARM_CP_STATE_AA32) { 5989 oslock = (value == 0xC5ACCE55); 5990 } else { 5991 oslock = value & 1; 5992 } 5993 5994 env->cp15.oslsr_el1 = deposit32(env->cp15.oslsr_el1, 1, 1, oslock); 5995 } 5996 5997 static const ARMCPRegInfo debug_cp_reginfo[] = { 5998 /* DBGDRAR, DBGDSAR: always RAZ since we don't implement memory mapped 5999 * debug components. The AArch64 version of DBGDRAR is named MDRAR_EL1; 6000 * unlike DBGDRAR it is never accessible from EL0. 6001 * DBGDSAR is deprecated and must RAZ from v8 anyway, so it has no AArch64 6002 * accessor. 6003 */ 6004 { .name = "DBGDRAR", .cp = 14, .crn = 1, .crm = 0, .opc1 = 0, .opc2 = 0, 6005 .access = PL0_R, .accessfn = access_tdra, 6006 .type = ARM_CP_CONST, .resetvalue = 0 }, 6007 { .name = "MDRAR_EL1", .state = ARM_CP_STATE_AA64, 6008 .opc0 = 2, .opc1 = 0, .crn = 1, .crm = 0, .opc2 = 0, 6009 .access = PL1_R, .accessfn = access_tdra, 6010 .type = ARM_CP_CONST, .resetvalue = 0 }, 6011 { .name = "DBGDSAR", .cp = 14, .crn = 2, .crm = 0, .opc1 = 0, .opc2 = 0, 6012 .access = PL0_R, .accessfn = access_tdra, 6013 .type = ARM_CP_CONST, .resetvalue = 0 }, 6014 /* Monitor debug system control register; the 32-bit alias is DBGDSCRext. */ 6015 { .name = "MDSCR_EL1", .state = ARM_CP_STATE_BOTH, 6016 .cp = 14, .opc0 = 2, .opc1 = 0, .crn = 0, .crm = 2, .opc2 = 2, 6017 .access = PL1_RW, .accessfn = access_tda, 6018 .fieldoffset = offsetof(CPUARMState, cp15.mdscr_el1), 6019 .resetvalue = 0 }, 6020 /* 6021 * MDCCSR_EL0[30:29] map to EDSCR[30:29]. Simply RAZ as the external 6022 * Debug Communication Channel is not implemented. 6023 */ 6024 { .name = "MDCCSR_EL0", .state = ARM_CP_STATE_AA64, 6025 .opc0 = 2, .opc1 = 3, .crn = 0, .crm = 1, .opc2 = 0, 6026 .access = PL0_R, .accessfn = access_tda, 6027 .type = ARM_CP_CONST, .resetvalue = 0 }, 6028 /* 6029 * DBGDSCRint[15,12,5:2] map to MDSCR_EL1[15,12,5:2]. Map all bits as 6030 * it is unlikely a guest will care. 6031 * We don't implement the configurable EL0 access. 6032 */ 6033 { .name = "DBGDSCRint", .state = ARM_CP_STATE_AA32, 6034 .cp = 14, .opc1 = 0, .crn = 0, .crm = 1, .opc2 = 0, 6035 .type = ARM_CP_ALIAS, 6036 .access = PL1_R, .accessfn = access_tda, 6037 .fieldoffset = offsetof(CPUARMState, cp15.mdscr_el1), }, 6038 { .name = "OSLAR_EL1", .state = ARM_CP_STATE_BOTH, 6039 .cp = 14, .opc0 = 2, .opc1 = 0, .crn = 1, .crm = 0, .opc2 = 4, 6040 .access = PL1_W, .type = ARM_CP_NO_RAW, 6041 .accessfn = access_tdosa, 6042 .writefn = oslar_write }, 6043 { .name = "OSLSR_EL1", .state = ARM_CP_STATE_BOTH, 6044 .cp = 14, .opc0 = 2, .opc1 = 0, .crn = 1, .crm = 1, .opc2 = 4, 6045 .access = PL1_R, .resetvalue = 10, 6046 .accessfn = access_tdosa, 6047 .fieldoffset = offsetof(CPUARMState, cp15.oslsr_el1) }, 6048 /* Dummy OSDLR_EL1: 32-bit Linux will read this */ 6049 { .name = "OSDLR_EL1", .state = ARM_CP_STATE_BOTH, 6050 .cp = 14, .opc0 = 2, .opc1 = 0, .crn = 1, .crm = 3, .opc2 = 4, 6051 .access = PL1_RW, .accessfn = access_tdosa, 6052 .type = ARM_CP_NOP }, 6053 /* Dummy DBGVCR: Linux wants to clear this on startup, but we don't 6054 * implement vector catch debug events yet. 6055 */ 6056 { .name = "DBGVCR", 6057 .cp = 14, .opc1 = 0, .crn = 0, .crm = 7, .opc2 = 0, 6058 .access = PL1_RW, .accessfn = access_tda, 6059 .type = ARM_CP_NOP }, 6060 /* Dummy DBGVCR32_EL2 (which is only for a 64-bit hypervisor 6061 * to save and restore a 32-bit guest's DBGVCR) 6062 */ 6063 { .name = "DBGVCR32_EL2", .state = ARM_CP_STATE_AA64, 6064 .opc0 = 2, .opc1 = 4, .crn = 0, .crm = 7, .opc2 = 0, 6065 .access = PL2_RW, .accessfn = access_tda, 6066 .type = ARM_CP_NOP | ARM_CP_EL3_NO_EL2_KEEP }, 6067 /* Dummy MDCCINT_EL1, since we don't implement the Debug Communications 6068 * Channel but Linux may try to access this register. The 32-bit 6069 * alias is DBGDCCINT. 6070 */ 6071 { .name = "MDCCINT_EL1", .state = ARM_CP_STATE_BOTH, 6072 .cp = 14, .opc0 = 2, .opc1 = 0, .crn = 0, .crm = 2, .opc2 = 0, 6073 .access = PL1_RW, .accessfn = access_tda, 6074 .type = ARM_CP_NOP }, 6075 }; 6076 6077 static const ARMCPRegInfo debug_lpae_cp_reginfo[] = { 6078 /* 64 bit access versions of the (dummy) debug registers */ 6079 { .name = "DBGDRAR", .cp = 14, .crm = 1, .opc1 = 0, 6080 .access = PL0_R, .type = ARM_CP_CONST|ARM_CP_64BIT, .resetvalue = 0 }, 6081 { .name = "DBGDSAR", .cp = 14, .crm = 2, .opc1 = 0, 6082 .access = PL0_R, .type = ARM_CP_CONST|ARM_CP_64BIT, .resetvalue = 0 }, 6083 }; 6084 6085 /* 6086 * Check for traps to RAS registers, which are controlled 6087 * by HCR_EL2.TERR and SCR_EL3.TERR. 6088 */ 6089 static CPAccessResult access_terr(CPUARMState *env, const ARMCPRegInfo *ri, 6090 bool isread) 6091 { 6092 int el = arm_current_el(env); 6093 6094 if (el < 2 && (arm_hcr_el2_eff(env) & HCR_TERR)) { 6095 return CP_ACCESS_TRAP_EL2; 6096 } 6097 if (el < 3 && (env->cp15.scr_el3 & SCR_TERR)) { 6098 return CP_ACCESS_TRAP_EL3; 6099 } 6100 return CP_ACCESS_OK; 6101 } 6102 6103 static uint64_t disr_read(CPUARMState *env, const ARMCPRegInfo *ri) 6104 { 6105 int el = arm_current_el(env); 6106 6107 if (el < 2 && (arm_hcr_el2_eff(env) & HCR_AMO)) { 6108 return env->cp15.vdisr_el2; 6109 } 6110 if (el < 3 && (env->cp15.scr_el3 & SCR_EA)) { 6111 return 0; /* RAZ/WI */ 6112 } 6113 return env->cp15.disr_el1; 6114 } 6115 6116 static void disr_write(CPUARMState *env, const ARMCPRegInfo *ri, uint64_t val) 6117 { 6118 int el = arm_current_el(env); 6119 6120 if (el < 2 && (arm_hcr_el2_eff(env) & HCR_AMO)) { 6121 env->cp15.vdisr_el2 = val; 6122 return; 6123 } 6124 if (el < 3 && (env->cp15.scr_el3 & SCR_EA)) { 6125 return; /* RAZ/WI */ 6126 } 6127 env->cp15.disr_el1 = val; 6128 } 6129 6130 /* 6131 * Minimal RAS implementation with no Error Records. 6132 * Which means that all of the Error Record registers: 6133 * ERXADDR_EL1 6134 * ERXCTLR_EL1 6135 * ERXFR_EL1 6136 * ERXMISC0_EL1 6137 * ERXMISC1_EL1 6138 * ERXMISC2_EL1 6139 * ERXMISC3_EL1 6140 * ERXPFGCDN_EL1 (RASv1p1) 6141 * ERXPFGCTL_EL1 (RASv1p1) 6142 * ERXPFGF_EL1 (RASv1p1) 6143 * ERXSTATUS_EL1 6144 * and 6145 * ERRSELR_EL1 6146 * may generate UNDEFINED, which is the effect we get by not 6147 * listing them at all. 6148 */ 6149 static const ARMCPRegInfo minimal_ras_reginfo[] = { 6150 { .name = "DISR_EL1", .state = ARM_CP_STATE_BOTH, 6151 .opc0 = 3, .opc1 = 0, .crn = 12, .crm = 1, .opc2 = 1, 6152 .access = PL1_RW, .fieldoffset = offsetof(CPUARMState, cp15.disr_el1), 6153 .readfn = disr_read, .writefn = disr_write, .raw_writefn = raw_write }, 6154 { .name = "ERRIDR_EL1", .state = ARM_CP_STATE_BOTH, 6155 .opc0 = 3, .opc1 = 0, .crn = 5, .crm = 3, .opc2 = 0, 6156 .access = PL1_R, .accessfn = access_terr, 6157 .type = ARM_CP_CONST, .resetvalue = 0 }, 6158 { .name = "VDISR_EL2", .state = ARM_CP_STATE_BOTH, 6159 .opc0 = 3, .opc1 = 4, .crn = 12, .crm = 1, .opc2 = 1, 6160 .access = PL2_RW, .fieldoffset = offsetof(CPUARMState, cp15.vdisr_el2) }, 6161 { .name = "VSESR_EL2", .state = ARM_CP_STATE_BOTH, 6162 .opc0 = 3, .opc1 = 4, .crn = 5, .crm = 2, .opc2 = 3, 6163 .access = PL2_RW, .fieldoffset = offsetof(CPUARMState, cp15.vsesr_el2) }, 6164 }; 6165 6166 /* 6167 * Return the exception level to which exceptions should be taken 6168 * via SVEAccessTrap. This excludes the check for whether the exception 6169 * should be routed through AArch64.AdvSIMDFPAccessTrap. That can easily 6170 * be found by testing 0 < fp_exception_el < sve_exception_el. 6171 * 6172 * C.f. the ARM pseudocode function CheckSVEEnabled. Note that the 6173 * pseudocode does *not* separate out the FP trap checks, but has them 6174 * all in one function. 6175 */ 6176 int sve_exception_el(CPUARMState *env, int el) 6177 { 6178 #ifndef CONFIG_USER_ONLY 6179 if (el <= 1 && !el_is_in_host(env, el)) { 6180 switch (FIELD_EX64(env->cp15.cpacr_el1, CPACR_EL1, ZEN)) { 6181 case 1: 6182 if (el != 0) { 6183 break; 6184 } 6185 /* fall through */ 6186 case 0: 6187 case 2: 6188 return 1; 6189 } 6190 } 6191 6192 if (el <= 2 && arm_is_el2_enabled(env)) { 6193 /* CPTR_EL2 changes format with HCR_EL2.E2H (regardless of TGE). */ 6194 if (env->cp15.hcr_el2 & HCR_E2H) { 6195 switch (FIELD_EX64(env->cp15.cptr_el[2], CPTR_EL2, ZEN)) { 6196 case 1: 6197 if (el != 0 || !(env->cp15.hcr_el2 & HCR_TGE)) { 6198 break; 6199 } 6200 /* fall through */ 6201 case 0: 6202 case 2: 6203 return 2; 6204 } 6205 } else { 6206 if (FIELD_EX64(env->cp15.cptr_el[2], CPTR_EL2, TZ)) { 6207 return 2; 6208 } 6209 } 6210 } 6211 6212 /* CPTR_EL3. Since EZ is negative we must check for EL3. */ 6213 if (arm_feature(env, ARM_FEATURE_EL3) 6214 && !FIELD_EX64(env->cp15.cptr_el[3], CPTR_EL3, EZ)) { 6215 return 3; 6216 } 6217 #endif 6218 return 0; 6219 } 6220 6221 /* 6222 * Given that SVE is enabled, return the vector length for EL. 6223 */ 6224 uint32_t sve_vqm1_for_el(CPUARMState *env, int el) 6225 { 6226 ARMCPU *cpu = env_archcpu(env); 6227 uint32_t len = cpu->sve_max_vq - 1; 6228 6229 if (el <= 1 && !el_is_in_host(env, el)) { 6230 len = MIN(len, 0xf & (uint32_t)env->vfp.zcr_el[1]); 6231 } 6232 if (el <= 2 && arm_feature(env, ARM_FEATURE_EL2)) { 6233 len = MIN(len, 0xf & (uint32_t)env->vfp.zcr_el[2]); 6234 } 6235 if (arm_feature(env, ARM_FEATURE_EL3)) { 6236 len = MIN(len, 0xf & (uint32_t)env->vfp.zcr_el[3]); 6237 } 6238 6239 len = 31 - clz32(cpu->sve_vq_map & MAKE_64BIT_MASK(0, len + 1)); 6240 return len; 6241 } 6242 6243 static void zcr_write(CPUARMState *env, const ARMCPRegInfo *ri, 6244 uint64_t value) 6245 { 6246 int cur_el = arm_current_el(env); 6247 int old_len = sve_vqm1_for_el(env, cur_el); 6248 int new_len; 6249 6250 /* Bits other than [3:0] are RAZ/WI. */ 6251 QEMU_BUILD_BUG_ON(ARM_MAX_VQ > 16); 6252 raw_write(env, ri, value & 0xf); 6253 6254 /* 6255 * Because we arrived here, we know both FP and SVE are enabled; 6256 * otherwise we would have trapped access to the ZCR_ELn register. 6257 */ 6258 new_len = sve_vqm1_for_el(env, cur_el); 6259 if (new_len < old_len) { 6260 aarch64_sve_narrow_vq(env, new_len + 1); 6261 } 6262 } 6263 6264 static const ARMCPRegInfo zcr_reginfo[] = { 6265 { .name = "ZCR_EL1", .state = ARM_CP_STATE_AA64, 6266 .opc0 = 3, .opc1 = 0, .crn = 1, .crm = 2, .opc2 = 0, 6267 .access = PL1_RW, .type = ARM_CP_SVE, 6268 .fieldoffset = offsetof(CPUARMState, vfp.zcr_el[1]), 6269 .writefn = zcr_write, .raw_writefn = raw_write }, 6270 { .name = "ZCR_EL2", .state = ARM_CP_STATE_AA64, 6271 .opc0 = 3, .opc1 = 4, .crn = 1, .crm = 2, .opc2 = 0, 6272 .access = PL2_RW, .type = ARM_CP_SVE, 6273 .fieldoffset = offsetof(CPUARMState, vfp.zcr_el[2]), 6274 .writefn = zcr_write, .raw_writefn = raw_write }, 6275 { .name = "ZCR_EL3", .state = ARM_CP_STATE_AA64, 6276 .opc0 = 3, .opc1 = 6, .crn = 1, .crm = 2, .opc2 = 0, 6277 .access = PL3_RW, .type = ARM_CP_SVE, 6278 .fieldoffset = offsetof(CPUARMState, vfp.zcr_el[3]), 6279 .writefn = zcr_write, .raw_writefn = raw_write }, 6280 }; 6281 6282 void hw_watchpoint_update(ARMCPU *cpu, int n) 6283 { 6284 CPUARMState *env = &cpu->env; 6285 vaddr len = 0; 6286 vaddr wvr = env->cp15.dbgwvr[n]; 6287 uint64_t wcr = env->cp15.dbgwcr[n]; 6288 int mask; 6289 int flags = BP_CPU | BP_STOP_BEFORE_ACCESS; 6290 6291 if (env->cpu_watchpoint[n]) { 6292 cpu_watchpoint_remove_by_ref(CPU(cpu), env->cpu_watchpoint[n]); 6293 env->cpu_watchpoint[n] = NULL; 6294 } 6295 6296 if (!FIELD_EX64(wcr, DBGWCR, E)) { 6297 /* E bit clear : watchpoint disabled */ 6298 return; 6299 } 6300 6301 switch (FIELD_EX64(wcr, DBGWCR, LSC)) { 6302 case 0: 6303 /* LSC 00 is reserved and must behave as if the wp is disabled */ 6304 return; 6305 case 1: 6306 flags |= BP_MEM_READ; 6307 break; 6308 case 2: 6309 flags |= BP_MEM_WRITE; 6310 break; 6311 case 3: 6312 flags |= BP_MEM_ACCESS; 6313 break; 6314 } 6315 6316 /* Attempts to use both MASK and BAS fields simultaneously are 6317 * CONSTRAINED UNPREDICTABLE; we opt to ignore BAS in this case, 6318 * thus generating a watchpoint for every byte in the masked region. 6319 */ 6320 mask = FIELD_EX64(wcr, DBGWCR, MASK); 6321 if (mask == 1 || mask == 2) { 6322 /* Reserved values of MASK; we must act as if the mask value was 6323 * some non-reserved value, or as if the watchpoint were disabled. 6324 * We choose the latter. 6325 */ 6326 return; 6327 } else if (mask) { 6328 /* Watchpoint covers an aligned area up to 2GB in size */ 6329 len = 1ULL << mask; 6330 /* If masked bits in WVR are not zero it's CONSTRAINED UNPREDICTABLE 6331 * whether the watchpoint fires when the unmasked bits match; we opt 6332 * to generate the exceptions. 6333 */ 6334 wvr &= ~(len - 1); 6335 } else { 6336 /* Watchpoint covers bytes defined by the byte address select bits */ 6337 int bas = FIELD_EX64(wcr, DBGWCR, BAS); 6338 int basstart; 6339 6340 if (extract64(wvr, 2, 1)) { 6341 /* Deprecated case of an only 4-aligned address. BAS[7:4] are 6342 * ignored, and BAS[3:0] define which bytes to watch. 6343 */ 6344 bas &= 0xf; 6345 } 6346 6347 if (bas == 0) { 6348 /* This must act as if the watchpoint is disabled */ 6349 return; 6350 } 6351 6352 /* The BAS bits are supposed to be programmed to indicate a contiguous 6353 * range of bytes. Otherwise it is CONSTRAINED UNPREDICTABLE whether 6354 * we fire for each byte in the word/doubleword addressed by the WVR. 6355 * We choose to ignore any non-zero bits after the first range of 1s. 6356 */ 6357 basstart = ctz32(bas); 6358 len = cto32(bas >> basstart); 6359 wvr += basstart; 6360 } 6361 6362 cpu_watchpoint_insert(CPU(cpu), wvr, len, flags, 6363 &env->cpu_watchpoint[n]); 6364 } 6365 6366 void hw_watchpoint_update_all(ARMCPU *cpu) 6367 { 6368 int i; 6369 CPUARMState *env = &cpu->env; 6370 6371 /* Completely clear out existing QEMU watchpoints and our array, to 6372 * avoid possible stale entries following migration load. 6373 */ 6374 cpu_watchpoint_remove_all(CPU(cpu), BP_CPU); 6375 memset(env->cpu_watchpoint, 0, sizeof(env->cpu_watchpoint)); 6376 6377 for (i = 0; i < ARRAY_SIZE(cpu->env.cpu_watchpoint); i++) { 6378 hw_watchpoint_update(cpu, i); 6379 } 6380 } 6381 6382 static void dbgwvr_write(CPUARMState *env, const ARMCPRegInfo *ri, 6383 uint64_t value) 6384 { 6385 ARMCPU *cpu = env_archcpu(env); 6386 int i = ri->crm; 6387 6388 /* 6389 * Bits [1:0] are RES0. 6390 * 6391 * It is IMPLEMENTATION DEFINED whether [63:49] ([63:53] with FEAT_LVA) 6392 * are hardwired to the value of bit [48] ([52] with FEAT_LVA), or if 6393 * they contain the value written. It is CONSTRAINED UNPREDICTABLE 6394 * whether the RESS bits are ignored when comparing an address. 6395 * 6396 * Therefore we are allowed to compare the entire register, which lets 6397 * us avoid considering whether or not FEAT_LVA is actually enabled. 6398 */ 6399 value &= ~3ULL; 6400 6401 raw_write(env, ri, value); 6402 hw_watchpoint_update(cpu, i); 6403 } 6404 6405 static void dbgwcr_write(CPUARMState *env, const ARMCPRegInfo *ri, 6406 uint64_t value) 6407 { 6408 ARMCPU *cpu = env_archcpu(env); 6409 int i = ri->crm; 6410 6411 raw_write(env, ri, value); 6412 hw_watchpoint_update(cpu, i); 6413 } 6414 6415 void hw_breakpoint_update(ARMCPU *cpu, int n) 6416 { 6417 CPUARMState *env = &cpu->env; 6418 uint64_t bvr = env->cp15.dbgbvr[n]; 6419 uint64_t bcr = env->cp15.dbgbcr[n]; 6420 vaddr addr; 6421 int bt; 6422 int flags = BP_CPU; 6423 6424 if (env->cpu_breakpoint[n]) { 6425 cpu_breakpoint_remove_by_ref(CPU(cpu), env->cpu_breakpoint[n]); 6426 env->cpu_breakpoint[n] = NULL; 6427 } 6428 6429 if (!extract64(bcr, 0, 1)) { 6430 /* E bit clear : watchpoint disabled */ 6431 return; 6432 } 6433 6434 bt = extract64(bcr, 20, 4); 6435 6436 switch (bt) { 6437 case 4: /* unlinked address mismatch (reserved if AArch64) */ 6438 case 5: /* linked address mismatch (reserved if AArch64) */ 6439 qemu_log_mask(LOG_UNIMP, 6440 "arm: address mismatch breakpoint types not implemented\n"); 6441 return; 6442 case 0: /* unlinked address match */ 6443 case 1: /* linked address match */ 6444 { 6445 /* 6446 * Bits [1:0] are RES0. 6447 * 6448 * It is IMPLEMENTATION DEFINED whether bits [63:49] 6449 * ([63:53] for FEAT_LVA) are hardwired to a copy of the sign bit 6450 * of the VA field ([48] or [52] for FEAT_LVA), or whether the 6451 * value is read as written. It is CONSTRAINED UNPREDICTABLE 6452 * whether the RESS bits are ignored when comparing an address. 6453 * Therefore we are allowed to compare the entire register, which 6454 * lets us avoid considering whether FEAT_LVA is actually enabled. 6455 * 6456 * The BAS field is used to allow setting breakpoints on 16-bit 6457 * wide instructions; it is CONSTRAINED UNPREDICTABLE whether 6458 * a bp will fire if the addresses covered by the bp and the addresses 6459 * covered by the insn overlap but the insn doesn't start at the 6460 * start of the bp address range. We choose to require the insn and 6461 * the bp to have the same address. The constraints on writing to 6462 * BAS enforced in dbgbcr_write mean we have only four cases: 6463 * 0b0000 => no breakpoint 6464 * 0b0011 => breakpoint on addr 6465 * 0b1100 => breakpoint on addr + 2 6466 * 0b1111 => breakpoint on addr 6467 * See also figure D2-3 in the v8 ARM ARM (DDI0487A.c). 6468 */ 6469 int bas = extract64(bcr, 5, 4); 6470 addr = bvr & ~3ULL; 6471 if (bas == 0) { 6472 return; 6473 } 6474 if (bas == 0xc) { 6475 addr += 2; 6476 } 6477 break; 6478 } 6479 case 2: /* unlinked context ID match */ 6480 case 8: /* unlinked VMID match (reserved if no EL2) */ 6481 case 10: /* unlinked context ID and VMID match (reserved if no EL2) */ 6482 qemu_log_mask(LOG_UNIMP, 6483 "arm: unlinked context breakpoint types not implemented\n"); 6484 return; 6485 case 9: /* linked VMID match (reserved if no EL2) */ 6486 case 11: /* linked context ID and VMID match (reserved if no EL2) */ 6487 case 3: /* linked context ID match */ 6488 default: 6489 /* We must generate no events for Linked context matches (unless 6490 * they are linked to by some other bp/wp, which is handled in 6491 * updates for the linking bp/wp). We choose to also generate no events 6492 * for reserved values. 6493 */ 6494 return; 6495 } 6496 6497 cpu_breakpoint_insert(CPU(cpu), addr, flags, &env->cpu_breakpoint[n]); 6498 } 6499 6500 void hw_breakpoint_update_all(ARMCPU *cpu) 6501 { 6502 int i; 6503 CPUARMState *env = &cpu->env; 6504 6505 /* Completely clear out existing QEMU breakpoints and our array, to 6506 * avoid possible stale entries following migration load. 6507 */ 6508 cpu_breakpoint_remove_all(CPU(cpu), BP_CPU); 6509 memset(env->cpu_breakpoint, 0, sizeof(env->cpu_breakpoint)); 6510 6511 for (i = 0; i < ARRAY_SIZE(cpu->env.cpu_breakpoint); i++) { 6512 hw_breakpoint_update(cpu, i); 6513 } 6514 } 6515 6516 static void dbgbvr_write(CPUARMState *env, const ARMCPRegInfo *ri, 6517 uint64_t value) 6518 { 6519 ARMCPU *cpu = env_archcpu(env); 6520 int i = ri->crm; 6521 6522 raw_write(env, ri, value); 6523 hw_breakpoint_update(cpu, i); 6524 } 6525 6526 static void dbgbcr_write(CPUARMState *env, const ARMCPRegInfo *ri, 6527 uint64_t value) 6528 { 6529 ARMCPU *cpu = env_archcpu(env); 6530 int i = ri->crm; 6531 6532 /* BAS[3] is a read-only copy of BAS[2], and BAS[1] a read-only 6533 * copy of BAS[0]. 6534 */ 6535 value = deposit64(value, 6, 1, extract64(value, 5, 1)); 6536 value = deposit64(value, 8, 1, extract64(value, 7, 1)); 6537 6538 raw_write(env, ri, value); 6539 hw_breakpoint_update(cpu, i); 6540 } 6541 6542 static void define_debug_regs(ARMCPU *cpu) 6543 { 6544 /* Define v7 and v8 architectural debug registers. 6545 * These are just dummy implementations for now. 6546 */ 6547 int i; 6548 int wrps, brps, ctx_cmps; 6549 6550 /* 6551 * The Arm ARM says DBGDIDR is optional and deprecated if EL1 cannot 6552 * use AArch32. Given that bit 15 is RES1, if the value is 0 then 6553 * the register must not exist for this cpu. 6554 */ 6555 if (cpu->isar.dbgdidr != 0) { 6556 ARMCPRegInfo dbgdidr = { 6557 .name = "DBGDIDR", .cp = 14, .crn = 0, .crm = 0, 6558 .opc1 = 0, .opc2 = 0, 6559 .access = PL0_R, .accessfn = access_tda, 6560 .type = ARM_CP_CONST, .resetvalue = cpu->isar.dbgdidr, 6561 }; 6562 define_one_arm_cp_reg(cpu, &dbgdidr); 6563 } 6564 6565 brps = arm_num_brps(cpu); 6566 wrps = arm_num_wrps(cpu); 6567 ctx_cmps = arm_num_ctx_cmps(cpu); 6568 6569 assert(ctx_cmps <= brps); 6570 6571 define_arm_cp_regs(cpu, debug_cp_reginfo); 6572 6573 if (arm_feature(&cpu->env, ARM_FEATURE_LPAE)) { 6574 define_arm_cp_regs(cpu, debug_lpae_cp_reginfo); 6575 } 6576 6577 for (i = 0; i < brps; i++) { 6578 char *dbgbvr_el1_name = g_strdup_printf("DBGBVR%d_EL1", i); 6579 char *dbgbcr_el1_name = g_strdup_printf("DBGBCR%d_EL1", i); 6580 ARMCPRegInfo dbgregs[] = { 6581 { .name = dbgbvr_el1_name, .state = ARM_CP_STATE_BOTH, 6582 .cp = 14, .opc0 = 2, .opc1 = 0, .crn = 0, .crm = i, .opc2 = 4, 6583 .access = PL1_RW, .accessfn = access_tda, 6584 .fieldoffset = offsetof(CPUARMState, cp15.dbgbvr[i]), 6585 .writefn = dbgbvr_write, .raw_writefn = raw_write 6586 }, 6587 { .name = dbgbcr_el1_name, .state = ARM_CP_STATE_BOTH, 6588 .cp = 14, .opc0 = 2, .opc1 = 0, .crn = 0, .crm = i, .opc2 = 5, 6589 .access = PL1_RW, .accessfn = access_tda, 6590 .fieldoffset = offsetof(CPUARMState, cp15.dbgbcr[i]), 6591 .writefn = dbgbcr_write, .raw_writefn = raw_write 6592 }, 6593 }; 6594 define_arm_cp_regs(cpu, dbgregs); 6595 g_free(dbgbvr_el1_name); 6596 g_free(dbgbcr_el1_name); 6597 } 6598 6599 for (i = 0; i < wrps; i++) { 6600 char *dbgwvr_el1_name = g_strdup_printf("DBGWVR%d_EL1", i); 6601 char *dbgwcr_el1_name = g_strdup_printf("DBGWCR%d_EL1", i); 6602 ARMCPRegInfo dbgregs[] = { 6603 { .name = dbgwvr_el1_name, .state = ARM_CP_STATE_BOTH, 6604 .cp = 14, .opc0 = 2, .opc1 = 0, .crn = 0, .crm = i, .opc2 = 6, 6605 .access = PL1_RW, .accessfn = access_tda, 6606 .fieldoffset = offsetof(CPUARMState, cp15.dbgwvr[i]), 6607 .writefn = dbgwvr_write, .raw_writefn = raw_write 6608 }, 6609 { .name = dbgwcr_el1_name, .state = ARM_CP_STATE_BOTH, 6610 .cp = 14, .opc0 = 2, .opc1 = 0, .crn = 0, .crm = i, .opc2 = 7, 6611 .access = PL1_RW, .accessfn = access_tda, 6612 .fieldoffset = offsetof(CPUARMState, cp15.dbgwcr[i]), 6613 .writefn = dbgwcr_write, .raw_writefn = raw_write 6614 }, 6615 }; 6616 define_arm_cp_regs(cpu, dbgregs); 6617 g_free(dbgwvr_el1_name); 6618 g_free(dbgwcr_el1_name); 6619 } 6620 } 6621 6622 static void define_pmu_regs(ARMCPU *cpu) 6623 { 6624 /* 6625 * v7 performance monitor control register: same implementor 6626 * field as main ID register, and we implement four counters in 6627 * addition to the cycle count register. 6628 */ 6629 unsigned int i, pmcrn = pmu_num_counters(&cpu->env); 6630 ARMCPRegInfo pmcr = { 6631 .name = "PMCR", .cp = 15, .crn = 9, .crm = 12, .opc1 = 0, .opc2 = 0, 6632 .access = PL0_RW, 6633 .type = ARM_CP_IO | ARM_CP_ALIAS, 6634 .fieldoffset = offsetoflow32(CPUARMState, cp15.c9_pmcr), 6635 .accessfn = pmreg_access, .writefn = pmcr_write, 6636 .raw_writefn = raw_write, 6637 }; 6638 ARMCPRegInfo pmcr64 = { 6639 .name = "PMCR_EL0", .state = ARM_CP_STATE_AA64, 6640 .opc0 = 3, .opc1 = 3, .crn = 9, .crm = 12, .opc2 = 0, 6641 .access = PL0_RW, .accessfn = pmreg_access, 6642 .type = ARM_CP_IO, 6643 .fieldoffset = offsetof(CPUARMState, cp15.c9_pmcr), 6644 .resetvalue = cpu->isar.reset_pmcr_el0, 6645 .writefn = pmcr_write, .raw_writefn = raw_write, 6646 }; 6647 6648 define_one_arm_cp_reg(cpu, &pmcr); 6649 define_one_arm_cp_reg(cpu, &pmcr64); 6650 for (i = 0; i < pmcrn; i++) { 6651 char *pmevcntr_name = g_strdup_printf("PMEVCNTR%d", i); 6652 char *pmevcntr_el0_name = g_strdup_printf("PMEVCNTR%d_EL0", i); 6653 char *pmevtyper_name = g_strdup_printf("PMEVTYPER%d", i); 6654 char *pmevtyper_el0_name = g_strdup_printf("PMEVTYPER%d_EL0", i); 6655 ARMCPRegInfo pmev_regs[] = { 6656 { .name = pmevcntr_name, .cp = 15, .crn = 14, 6657 .crm = 8 | (3 & (i >> 3)), .opc1 = 0, .opc2 = i & 7, 6658 .access = PL0_RW, .type = ARM_CP_IO | ARM_CP_ALIAS, 6659 .readfn = pmevcntr_readfn, .writefn = pmevcntr_writefn, 6660 .accessfn = pmreg_access_xevcntr }, 6661 { .name = pmevcntr_el0_name, .state = ARM_CP_STATE_AA64, 6662 .opc0 = 3, .opc1 = 3, .crn = 14, .crm = 8 | (3 & (i >> 3)), 6663 .opc2 = i & 7, .access = PL0_RW, .accessfn = pmreg_access_xevcntr, 6664 .type = ARM_CP_IO, 6665 .readfn = pmevcntr_readfn, .writefn = pmevcntr_writefn, 6666 .raw_readfn = pmevcntr_rawread, 6667 .raw_writefn = pmevcntr_rawwrite }, 6668 { .name = pmevtyper_name, .cp = 15, .crn = 14, 6669 .crm = 12 | (3 & (i >> 3)), .opc1 = 0, .opc2 = i & 7, 6670 .access = PL0_RW, .type = ARM_CP_IO | ARM_CP_ALIAS, 6671 .readfn = pmevtyper_readfn, .writefn = pmevtyper_writefn, 6672 .accessfn = pmreg_access }, 6673 { .name = pmevtyper_el0_name, .state = ARM_CP_STATE_AA64, 6674 .opc0 = 3, .opc1 = 3, .crn = 14, .crm = 12 | (3 & (i >> 3)), 6675 .opc2 = i & 7, .access = PL0_RW, .accessfn = pmreg_access, 6676 .type = ARM_CP_IO, 6677 .readfn = pmevtyper_readfn, .writefn = pmevtyper_writefn, 6678 .raw_writefn = pmevtyper_rawwrite }, 6679 }; 6680 define_arm_cp_regs(cpu, pmev_regs); 6681 g_free(pmevcntr_name); 6682 g_free(pmevcntr_el0_name); 6683 g_free(pmevtyper_name); 6684 g_free(pmevtyper_el0_name); 6685 } 6686 if (cpu_isar_feature(aa32_pmu_8_1, cpu)) { 6687 ARMCPRegInfo v81_pmu_regs[] = { 6688 { .name = "PMCEID2", .state = ARM_CP_STATE_AA32, 6689 .cp = 15, .opc1 = 0, .crn = 9, .crm = 14, .opc2 = 4, 6690 .access = PL0_R, .accessfn = pmreg_access, .type = ARM_CP_CONST, 6691 .resetvalue = extract64(cpu->pmceid0, 32, 32) }, 6692 { .name = "PMCEID3", .state = ARM_CP_STATE_AA32, 6693 .cp = 15, .opc1 = 0, .crn = 9, .crm = 14, .opc2 = 5, 6694 .access = PL0_R, .accessfn = pmreg_access, .type = ARM_CP_CONST, 6695 .resetvalue = extract64(cpu->pmceid1, 32, 32) }, 6696 }; 6697 define_arm_cp_regs(cpu, v81_pmu_regs); 6698 } 6699 if (cpu_isar_feature(any_pmu_8_4, cpu)) { 6700 static const ARMCPRegInfo v84_pmmir = { 6701 .name = "PMMIR_EL1", .state = ARM_CP_STATE_BOTH, 6702 .opc0 = 3, .opc1 = 0, .crn = 9, .crm = 14, .opc2 = 6, 6703 .access = PL1_R, .accessfn = pmreg_access, .type = ARM_CP_CONST, 6704 .resetvalue = 0 6705 }; 6706 define_one_arm_cp_reg(cpu, &v84_pmmir); 6707 } 6708 } 6709 6710 /* We don't know until after realize whether there's a GICv3 6711 * attached, and that is what registers the gicv3 sysregs. 6712 * So we have to fill in the GIC fields in ID_PFR/ID_PFR1_EL1/ID_AA64PFR0_EL1 6713 * at runtime. 6714 */ 6715 static uint64_t id_pfr1_read(CPUARMState *env, const ARMCPRegInfo *ri) 6716 { 6717 ARMCPU *cpu = env_archcpu(env); 6718 uint64_t pfr1 = cpu->isar.id_pfr1; 6719 6720 if (env->gicv3state) { 6721 pfr1 |= 1 << 28; 6722 } 6723 return pfr1; 6724 } 6725 6726 #ifndef CONFIG_USER_ONLY 6727 static uint64_t id_aa64pfr0_read(CPUARMState *env, const ARMCPRegInfo *ri) 6728 { 6729 ARMCPU *cpu = env_archcpu(env); 6730 uint64_t pfr0 = cpu->isar.id_aa64pfr0; 6731 6732 if (env->gicv3state) { 6733 pfr0 |= 1 << 24; 6734 } 6735 return pfr0; 6736 } 6737 #endif 6738 6739 /* Shared logic between LORID and the rest of the LOR* registers. 6740 * Secure state exclusion has already been dealt with. 6741 */ 6742 static CPAccessResult access_lor_ns(CPUARMState *env, 6743 const ARMCPRegInfo *ri, bool isread) 6744 { 6745 int el = arm_current_el(env); 6746 6747 if (el < 2 && (arm_hcr_el2_eff(env) & HCR_TLOR)) { 6748 return CP_ACCESS_TRAP_EL2; 6749 } 6750 if (el < 3 && (env->cp15.scr_el3 & SCR_TLOR)) { 6751 return CP_ACCESS_TRAP_EL3; 6752 } 6753 return CP_ACCESS_OK; 6754 } 6755 6756 static CPAccessResult access_lor_other(CPUARMState *env, 6757 const ARMCPRegInfo *ri, bool isread) 6758 { 6759 if (arm_is_secure_below_el3(env)) { 6760 /* Access denied in secure mode. */ 6761 return CP_ACCESS_TRAP; 6762 } 6763 return access_lor_ns(env, ri, isread); 6764 } 6765 6766 /* 6767 * A trivial implementation of ARMv8.1-LOR leaves all of these 6768 * registers fixed at 0, which indicates that there are zero 6769 * supported Limited Ordering regions. 6770 */ 6771 static const ARMCPRegInfo lor_reginfo[] = { 6772 { .name = "LORSA_EL1", .state = ARM_CP_STATE_AA64, 6773 .opc0 = 3, .opc1 = 0, .crn = 10, .crm = 4, .opc2 = 0, 6774 .access = PL1_RW, .accessfn = access_lor_other, 6775 .type = ARM_CP_CONST, .resetvalue = 0 }, 6776 { .name = "LOREA_EL1", .state = ARM_CP_STATE_AA64, 6777 .opc0 = 3, .opc1 = 0, .crn = 10, .crm = 4, .opc2 = 1, 6778 .access = PL1_RW, .accessfn = access_lor_other, 6779 .type = ARM_CP_CONST, .resetvalue = 0 }, 6780 { .name = "LORN_EL1", .state = ARM_CP_STATE_AA64, 6781 .opc0 = 3, .opc1 = 0, .crn = 10, .crm = 4, .opc2 = 2, 6782 .access = PL1_RW, .accessfn = access_lor_other, 6783 .type = ARM_CP_CONST, .resetvalue = 0 }, 6784 { .name = "LORC_EL1", .state = ARM_CP_STATE_AA64, 6785 .opc0 = 3, .opc1 = 0, .crn = 10, .crm = 4, .opc2 = 3, 6786 .access = PL1_RW, .accessfn = access_lor_other, 6787 .type = ARM_CP_CONST, .resetvalue = 0 }, 6788 { .name = "LORID_EL1", .state = ARM_CP_STATE_AA64, 6789 .opc0 = 3, .opc1 = 0, .crn = 10, .crm = 4, .opc2 = 7, 6790 .access = PL1_R, .accessfn = access_lor_ns, 6791 .type = ARM_CP_CONST, .resetvalue = 0 }, 6792 }; 6793 6794 #ifdef TARGET_AARCH64 6795 static CPAccessResult access_pauth(CPUARMState *env, const ARMCPRegInfo *ri, 6796 bool isread) 6797 { 6798 int el = arm_current_el(env); 6799 6800 if (el < 2 && 6801 arm_is_el2_enabled(env) && 6802 !(arm_hcr_el2_eff(env) & HCR_APK)) { 6803 return CP_ACCESS_TRAP_EL2; 6804 } 6805 if (el < 3 && 6806 arm_feature(env, ARM_FEATURE_EL3) && 6807 !(env->cp15.scr_el3 & SCR_APK)) { 6808 return CP_ACCESS_TRAP_EL3; 6809 } 6810 return CP_ACCESS_OK; 6811 } 6812 6813 static const ARMCPRegInfo pauth_reginfo[] = { 6814 { .name = "APDAKEYLO_EL1", .state = ARM_CP_STATE_AA64, 6815 .opc0 = 3, .opc1 = 0, .crn = 2, .crm = 2, .opc2 = 0, 6816 .access = PL1_RW, .accessfn = access_pauth, 6817 .fieldoffset = offsetof(CPUARMState, keys.apda.lo) }, 6818 { .name = "APDAKEYHI_EL1", .state = ARM_CP_STATE_AA64, 6819 .opc0 = 3, .opc1 = 0, .crn = 2, .crm = 2, .opc2 = 1, 6820 .access = PL1_RW, .accessfn = access_pauth, 6821 .fieldoffset = offsetof(CPUARMState, keys.apda.hi) }, 6822 { .name = "APDBKEYLO_EL1", .state = ARM_CP_STATE_AA64, 6823 .opc0 = 3, .opc1 = 0, .crn = 2, .crm = 2, .opc2 = 2, 6824 .access = PL1_RW, .accessfn = access_pauth, 6825 .fieldoffset = offsetof(CPUARMState, keys.apdb.lo) }, 6826 { .name = "APDBKEYHI_EL1", .state = ARM_CP_STATE_AA64, 6827 .opc0 = 3, .opc1 = 0, .crn = 2, .crm = 2, .opc2 = 3, 6828 .access = PL1_RW, .accessfn = access_pauth, 6829 .fieldoffset = offsetof(CPUARMState, keys.apdb.hi) }, 6830 { .name = "APGAKEYLO_EL1", .state = ARM_CP_STATE_AA64, 6831 .opc0 = 3, .opc1 = 0, .crn = 2, .crm = 3, .opc2 = 0, 6832 .access = PL1_RW, .accessfn = access_pauth, 6833 .fieldoffset = offsetof(CPUARMState, keys.apga.lo) }, 6834 { .name = "APGAKEYHI_EL1", .state = ARM_CP_STATE_AA64, 6835 .opc0 = 3, .opc1 = 0, .crn = 2, .crm = 3, .opc2 = 1, 6836 .access = PL1_RW, .accessfn = access_pauth, 6837 .fieldoffset = offsetof(CPUARMState, keys.apga.hi) }, 6838 { .name = "APIAKEYLO_EL1", .state = ARM_CP_STATE_AA64, 6839 .opc0 = 3, .opc1 = 0, .crn = 2, .crm = 1, .opc2 = 0, 6840 .access = PL1_RW, .accessfn = access_pauth, 6841 .fieldoffset = offsetof(CPUARMState, keys.apia.lo) }, 6842 { .name = "APIAKEYHI_EL1", .state = ARM_CP_STATE_AA64, 6843 .opc0 = 3, .opc1 = 0, .crn = 2, .crm = 1, .opc2 = 1, 6844 .access = PL1_RW, .accessfn = access_pauth, 6845 .fieldoffset = offsetof(CPUARMState, keys.apia.hi) }, 6846 { .name = "APIBKEYLO_EL1", .state = ARM_CP_STATE_AA64, 6847 .opc0 = 3, .opc1 = 0, .crn = 2, .crm = 1, .opc2 = 2, 6848 .access = PL1_RW, .accessfn = access_pauth, 6849 .fieldoffset = offsetof(CPUARMState, keys.apib.lo) }, 6850 { .name = "APIBKEYHI_EL1", .state = ARM_CP_STATE_AA64, 6851 .opc0 = 3, .opc1 = 0, .crn = 2, .crm = 1, .opc2 = 3, 6852 .access = PL1_RW, .accessfn = access_pauth, 6853 .fieldoffset = offsetof(CPUARMState, keys.apib.hi) }, 6854 }; 6855 6856 static const ARMCPRegInfo tlbirange_reginfo[] = { 6857 { .name = "TLBI_RVAE1IS", .state = ARM_CP_STATE_AA64, 6858 .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 2, .opc2 = 1, 6859 .access = PL1_W, .type = ARM_CP_NO_RAW, 6860 .writefn = tlbi_aa64_rvae1is_write }, 6861 { .name = "TLBI_RVAAE1IS", .state = ARM_CP_STATE_AA64, 6862 .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 2, .opc2 = 3, 6863 .access = PL1_W, .type = ARM_CP_NO_RAW, 6864 .writefn = tlbi_aa64_rvae1is_write }, 6865 { .name = "TLBI_RVALE1IS", .state = ARM_CP_STATE_AA64, 6866 .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 2, .opc2 = 5, 6867 .access = PL1_W, .type = ARM_CP_NO_RAW, 6868 .writefn = tlbi_aa64_rvae1is_write }, 6869 { .name = "TLBI_RVAALE1IS", .state = ARM_CP_STATE_AA64, 6870 .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 2, .opc2 = 7, 6871 .access = PL1_W, .type = ARM_CP_NO_RAW, 6872 .writefn = tlbi_aa64_rvae1is_write }, 6873 { .name = "TLBI_RVAE1OS", .state = ARM_CP_STATE_AA64, 6874 .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 5, .opc2 = 1, 6875 .access = PL1_W, .type = ARM_CP_NO_RAW, 6876 .writefn = tlbi_aa64_rvae1is_write }, 6877 { .name = "TLBI_RVAAE1OS", .state = ARM_CP_STATE_AA64, 6878 .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 5, .opc2 = 3, 6879 .access = PL1_W, .type = ARM_CP_NO_RAW, 6880 .writefn = tlbi_aa64_rvae1is_write }, 6881 { .name = "TLBI_RVALE1OS", .state = ARM_CP_STATE_AA64, 6882 .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 5, .opc2 = 5, 6883 .access = PL1_W, .type = ARM_CP_NO_RAW, 6884 .writefn = tlbi_aa64_rvae1is_write }, 6885 { .name = "TLBI_RVAALE1OS", .state = ARM_CP_STATE_AA64, 6886 .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 5, .opc2 = 7, 6887 .access = PL1_W, .type = ARM_CP_NO_RAW, 6888 .writefn = tlbi_aa64_rvae1is_write }, 6889 { .name = "TLBI_RVAE1", .state = ARM_CP_STATE_AA64, 6890 .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 6, .opc2 = 1, 6891 .access = PL1_W, .type = ARM_CP_NO_RAW, 6892 .writefn = tlbi_aa64_rvae1_write }, 6893 { .name = "TLBI_RVAAE1", .state = ARM_CP_STATE_AA64, 6894 .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 6, .opc2 = 3, 6895 .access = PL1_W, .type = ARM_CP_NO_RAW, 6896 .writefn = tlbi_aa64_rvae1_write }, 6897 { .name = "TLBI_RVALE1", .state = ARM_CP_STATE_AA64, 6898 .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 6, .opc2 = 5, 6899 .access = PL1_W, .type = ARM_CP_NO_RAW, 6900 .writefn = tlbi_aa64_rvae1_write }, 6901 { .name = "TLBI_RVAALE1", .state = ARM_CP_STATE_AA64, 6902 .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 6, .opc2 = 7, 6903 .access = PL1_W, .type = ARM_CP_NO_RAW, 6904 .writefn = tlbi_aa64_rvae1_write }, 6905 { .name = "TLBI_RIPAS2E1IS", .state = ARM_CP_STATE_AA64, 6906 .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 0, .opc2 = 2, 6907 .access = PL2_W, .type = ARM_CP_NOP }, 6908 { .name = "TLBI_RIPAS2LE1IS", .state = ARM_CP_STATE_AA64, 6909 .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 0, .opc2 = 6, 6910 .access = PL2_W, .type = ARM_CP_NOP }, 6911 { .name = "TLBI_RVAE2IS", .state = ARM_CP_STATE_AA64, 6912 .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 2, .opc2 = 1, 6913 .access = PL2_W, .type = ARM_CP_NO_RAW | ARM_CP_EL3_NO_EL2_UNDEF, 6914 .writefn = tlbi_aa64_rvae2is_write }, 6915 { .name = "TLBI_RVALE2IS", .state = ARM_CP_STATE_AA64, 6916 .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 2, .opc2 = 5, 6917 .access = PL2_W, .type = ARM_CP_NO_RAW | ARM_CP_EL3_NO_EL2_UNDEF, 6918 .writefn = tlbi_aa64_rvae2is_write }, 6919 { .name = "TLBI_RIPAS2E1", .state = ARM_CP_STATE_AA64, 6920 .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 4, .opc2 = 2, 6921 .access = PL2_W, .type = ARM_CP_NOP }, 6922 { .name = "TLBI_RIPAS2LE1", .state = ARM_CP_STATE_AA64, 6923 .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 4, .opc2 = 6, 6924 .access = PL2_W, .type = ARM_CP_NOP }, 6925 { .name = "TLBI_RVAE2OS", .state = ARM_CP_STATE_AA64, 6926 .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 5, .opc2 = 1, 6927 .access = PL2_W, .type = ARM_CP_NO_RAW | ARM_CP_EL3_NO_EL2_UNDEF, 6928 .writefn = tlbi_aa64_rvae2is_write }, 6929 { .name = "TLBI_RVALE2OS", .state = ARM_CP_STATE_AA64, 6930 .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 5, .opc2 = 5, 6931 .access = PL2_W, .type = ARM_CP_NO_RAW | ARM_CP_EL3_NO_EL2_UNDEF, 6932 .writefn = tlbi_aa64_rvae2is_write }, 6933 { .name = "TLBI_RVAE2", .state = ARM_CP_STATE_AA64, 6934 .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 6, .opc2 = 1, 6935 .access = PL2_W, .type = ARM_CP_NO_RAW | ARM_CP_EL3_NO_EL2_UNDEF, 6936 .writefn = tlbi_aa64_rvae2_write }, 6937 { .name = "TLBI_RVALE2", .state = ARM_CP_STATE_AA64, 6938 .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 6, .opc2 = 5, 6939 .access = PL2_W, .type = ARM_CP_NO_RAW | ARM_CP_EL3_NO_EL2_UNDEF, 6940 .writefn = tlbi_aa64_rvae2_write }, 6941 { .name = "TLBI_RVAE3IS", .state = ARM_CP_STATE_AA64, 6942 .opc0 = 1, .opc1 = 6, .crn = 8, .crm = 2, .opc2 = 1, 6943 .access = PL3_W, .type = ARM_CP_NO_RAW, 6944 .writefn = tlbi_aa64_rvae3is_write }, 6945 { .name = "TLBI_RVALE3IS", .state = ARM_CP_STATE_AA64, 6946 .opc0 = 1, .opc1 = 6, .crn = 8, .crm = 2, .opc2 = 5, 6947 .access = PL3_W, .type = ARM_CP_NO_RAW, 6948 .writefn = tlbi_aa64_rvae3is_write }, 6949 { .name = "TLBI_RVAE3OS", .state = ARM_CP_STATE_AA64, 6950 .opc0 = 1, .opc1 = 6, .crn = 8, .crm = 5, .opc2 = 1, 6951 .access = PL3_W, .type = ARM_CP_NO_RAW, 6952 .writefn = tlbi_aa64_rvae3is_write }, 6953 { .name = "TLBI_RVALE3OS", .state = ARM_CP_STATE_AA64, 6954 .opc0 = 1, .opc1 = 6, .crn = 8, .crm = 5, .opc2 = 5, 6955 .access = PL3_W, .type = ARM_CP_NO_RAW, 6956 .writefn = tlbi_aa64_rvae3is_write }, 6957 { .name = "TLBI_RVAE3", .state = ARM_CP_STATE_AA64, 6958 .opc0 = 1, .opc1 = 6, .crn = 8, .crm = 6, .opc2 = 1, 6959 .access = PL3_W, .type = ARM_CP_NO_RAW, 6960 .writefn = tlbi_aa64_rvae3_write }, 6961 { .name = "TLBI_RVALE3", .state = ARM_CP_STATE_AA64, 6962 .opc0 = 1, .opc1 = 6, .crn = 8, .crm = 6, .opc2 = 5, 6963 .access = PL3_W, .type = ARM_CP_NO_RAW, 6964 .writefn = tlbi_aa64_rvae3_write }, 6965 }; 6966 6967 static const ARMCPRegInfo tlbios_reginfo[] = { 6968 { .name = "TLBI_VMALLE1OS", .state = ARM_CP_STATE_AA64, 6969 .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 1, .opc2 = 0, 6970 .access = PL1_W, .type = ARM_CP_NO_RAW, 6971 .writefn = tlbi_aa64_vmalle1is_write }, 6972 { .name = "TLBI_VAE1OS", .state = ARM_CP_STATE_AA64, 6973 .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 1, .opc2 = 1, 6974 .access = PL1_W, .type = ARM_CP_NO_RAW, 6975 .writefn = tlbi_aa64_vae1is_write }, 6976 { .name = "TLBI_ASIDE1OS", .state = ARM_CP_STATE_AA64, 6977 .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 1, .opc2 = 2, 6978 .access = PL1_W, .type = ARM_CP_NO_RAW, 6979 .writefn = tlbi_aa64_vmalle1is_write }, 6980 { .name = "TLBI_VAAE1OS", .state = ARM_CP_STATE_AA64, 6981 .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 1, .opc2 = 3, 6982 .access = PL1_W, .type = ARM_CP_NO_RAW, 6983 .writefn = tlbi_aa64_vae1is_write }, 6984 { .name = "TLBI_VALE1OS", .state = ARM_CP_STATE_AA64, 6985 .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 1, .opc2 = 5, 6986 .access = PL1_W, .type = ARM_CP_NO_RAW, 6987 .writefn = tlbi_aa64_vae1is_write }, 6988 { .name = "TLBI_VAALE1OS", .state = ARM_CP_STATE_AA64, 6989 .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 1, .opc2 = 7, 6990 .access = PL1_W, .type = ARM_CP_NO_RAW, 6991 .writefn = tlbi_aa64_vae1is_write }, 6992 { .name = "TLBI_ALLE2OS", .state = ARM_CP_STATE_AA64, 6993 .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 1, .opc2 = 0, 6994 .access = PL2_W, .type = ARM_CP_NO_RAW | ARM_CP_EL3_NO_EL2_UNDEF, 6995 .writefn = tlbi_aa64_alle2is_write }, 6996 { .name = "TLBI_VAE2OS", .state = ARM_CP_STATE_AA64, 6997 .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 1, .opc2 = 1, 6998 .access = PL2_W, .type = ARM_CP_NO_RAW | ARM_CP_EL3_NO_EL2_UNDEF, 6999 .writefn = tlbi_aa64_vae2is_write }, 7000 { .name = "TLBI_ALLE1OS", .state = ARM_CP_STATE_AA64, 7001 .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 1, .opc2 = 4, 7002 .access = PL2_W, .type = ARM_CP_NO_RAW, 7003 .writefn = tlbi_aa64_alle1is_write }, 7004 { .name = "TLBI_VALE2OS", .state = ARM_CP_STATE_AA64, 7005 .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 1, .opc2 = 5, 7006 .access = PL2_W, .type = ARM_CP_NO_RAW | ARM_CP_EL3_NO_EL2_UNDEF, 7007 .writefn = tlbi_aa64_vae2is_write }, 7008 { .name = "TLBI_VMALLS12E1OS", .state = ARM_CP_STATE_AA64, 7009 .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 1, .opc2 = 6, 7010 .access = PL2_W, .type = ARM_CP_NO_RAW, 7011 .writefn = tlbi_aa64_alle1is_write }, 7012 { .name = "TLBI_IPAS2E1OS", .state = ARM_CP_STATE_AA64, 7013 .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 4, .opc2 = 0, 7014 .access = PL2_W, .type = ARM_CP_NOP }, 7015 { .name = "TLBI_RIPAS2E1OS", .state = ARM_CP_STATE_AA64, 7016 .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 4, .opc2 = 3, 7017 .access = PL2_W, .type = ARM_CP_NOP }, 7018 { .name = "TLBI_IPAS2LE1OS", .state = ARM_CP_STATE_AA64, 7019 .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 4, .opc2 = 4, 7020 .access = PL2_W, .type = ARM_CP_NOP }, 7021 { .name = "TLBI_RIPAS2LE1OS", .state = ARM_CP_STATE_AA64, 7022 .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 4, .opc2 = 7, 7023 .access = PL2_W, .type = ARM_CP_NOP }, 7024 { .name = "TLBI_ALLE3OS", .state = ARM_CP_STATE_AA64, 7025 .opc0 = 1, .opc1 = 6, .crn = 8, .crm = 1, .opc2 = 0, 7026 .access = PL3_W, .type = ARM_CP_NO_RAW, 7027 .writefn = tlbi_aa64_alle3is_write }, 7028 { .name = "TLBI_VAE3OS", .state = ARM_CP_STATE_AA64, 7029 .opc0 = 1, .opc1 = 6, .crn = 8, .crm = 1, .opc2 = 1, 7030 .access = PL3_W, .type = ARM_CP_NO_RAW, 7031 .writefn = tlbi_aa64_vae3is_write }, 7032 { .name = "TLBI_VALE3OS", .state = ARM_CP_STATE_AA64, 7033 .opc0 = 1, .opc1 = 6, .crn = 8, .crm = 1, .opc2 = 5, 7034 .access = PL3_W, .type = ARM_CP_NO_RAW, 7035 .writefn = tlbi_aa64_vae3is_write }, 7036 }; 7037 7038 static uint64_t rndr_readfn(CPUARMState *env, const ARMCPRegInfo *ri) 7039 { 7040 Error *err = NULL; 7041 uint64_t ret; 7042 7043 /* Success sets NZCV = 0000. */ 7044 env->NF = env->CF = env->VF = 0, env->ZF = 1; 7045 7046 if (qemu_guest_getrandom(&ret, sizeof(ret), &err) < 0) { 7047 /* 7048 * ??? Failed, for unknown reasons in the crypto subsystem. 7049 * The best we can do is log the reason and return the 7050 * timed-out indication to the guest. There is no reason 7051 * we know to expect this failure to be transitory, so the 7052 * guest may well hang retrying the operation. 7053 */ 7054 qemu_log_mask(LOG_UNIMP, "%s: Crypto failure: %s", 7055 ri->name, error_get_pretty(err)); 7056 error_free(err); 7057 7058 env->ZF = 0; /* NZCF = 0100 */ 7059 return 0; 7060 } 7061 return ret; 7062 } 7063 7064 /* We do not support re-seeding, so the two registers operate the same. */ 7065 static const ARMCPRegInfo rndr_reginfo[] = { 7066 { .name = "RNDR", .state = ARM_CP_STATE_AA64, 7067 .type = ARM_CP_NO_RAW | ARM_CP_SUPPRESS_TB_END | ARM_CP_IO, 7068 .opc0 = 3, .opc1 = 3, .crn = 2, .crm = 4, .opc2 = 0, 7069 .access = PL0_R, .readfn = rndr_readfn }, 7070 { .name = "RNDRRS", .state = ARM_CP_STATE_AA64, 7071 .type = ARM_CP_NO_RAW | ARM_CP_SUPPRESS_TB_END | ARM_CP_IO, 7072 .opc0 = 3, .opc1 = 3, .crn = 2, .crm = 4, .opc2 = 1, 7073 .access = PL0_R, .readfn = rndr_readfn }, 7074 }; 7075 7076 #ifndef CONFIG_USER_ONLY 7077 static void dccvap_writefn(CPUARMState *env, const ARMCPRegInfo *opaque, 7078 uint64_t value) 7079 { 7080 ARMCPU *cpu = env_archcpu(env); 7081 /* CTR_EL0 System register -> DminLine, bits [19:16] */ 7082 uint64_t dline_size = 4 << ((cpu->ctr >> 16) & 0xF); 7083 uint64_t vaddr_in = (uint64_t) value; 7084 uint64_t vaddr = vaddr_in & ~(dline_size - 1); 7085 void *haddr; 7086 int mem_idx = cpu_mmu_index(env, false); 7087 7088 /* This won't be crossing page boundaries */ 7089 haddr = probe_read(env, vaddr, dline_size, mem_idx, GETPC()); 7090 if (haddr) { 7091 7092 ram_addr_t offset; 7093 MemoryRegion *mr; 7094 7095 /* RCU lock is already being held */ 7096 mr = memory_region_from_host(haddr, &offset); 7097 7098 if (mr) { 7099 memory_region_writeback(mr, offset, dline_size); 7100 } 7101 } 7102 } 7103 7104 static const ARMCPRegInfo dcpop_reg[] = { 7105 { .name = "DC_CVAP", .state = ARM_CP_STATE_AA64, 7106 .opc0 = 1, .opc1 = 3, .crn = 7, .crm = 12, .opc2 = 1, 7107 .access = PL0_W, .type = ARM_CP_NO_RAW | ARM_CP_SUPPRESS_TB_END, 7108 .accessfn = aa64_cacheop_poc_access, .writefn = dccvap_writefn }, 7109 }; 7110 7111 static const ARMCPRegInfo dcpodp_reg[] = { 7112 { .name = "DC_CVADP", .state = ARM_CP_STATE_AA64, 7113 .opc0 = 1, .opc1 = 3, .crn = 7, .crm = 13, .opc2 = 1, 7114 .access = PL0_W, .type = ARM_CP_NO_RAW | ARM_CP_SUPPRESS_TB_END, 7115 .accessfn = aa64_cacheop_poc_access, .writefn = dccvap_writefn }, 7116 }; 7117 #endif /*CONFIG_USER_ONLY*/ 7118 7119 static CPAccessResult access_aa64_tid5(CPUARMState *env, const ARMCPRegInfo *ri, 7120 bool isread) 7121 { 7122 if ((arm_current_el(env) < 2) && (arm_hcr_el2_eff(env) & HCR_TID5)) { 7123 return CP_ACCESS_TRAP_EL2; 7124 } 7125 7126 return CP_ACCESS_OK; 7127 } 7128 7129 static CPAccessResult access_mte(CPUARMState *env, const ARMCPRegInfo *ri, 7130 bool isread) 7131 { 7132 int el = arm_current_el(env); 7133 7134 if (el < 2 && arm_is_el2_enabled(env)) { 7135 uint64_t hcr = arm_hcr_el2_eff(env); 7136 if (!(hcr & HCR_ATA) && (!(hcr & HCR_E2H) || !(hcr & HCR_TGE))) { 7137 return CP_ACCESS_TRAP_EL2; 7138 } 7139 } 7140 if (el < 3 && 7141 arm_feature(env, ARM_FEATURE_EL3) && 7142 !(env->cp15.scr_el3 & SCR_ATA)) { 7143 return CP_ACCESS_TRAP_EL3; 7144 } 7145 return CP_ACCESS_OK; 7146 } 7147 7148 static uint64_t tco_read(CPUARMState *env, const ARMCPRegInfo *ri) 7149 { 7150 return env->pstate & PSTATE_TCO; 7151 } 7152 7153 static void tco_write(CPUARMState *env, const ARMCPRegInfo *ri, uint64_t val) 7154 { 7155 env->pstate = (env->pstate & ~PSTATE_TCO) | (val & PSTATE_TCO); 7156 } 7157 7158 static const ARMCPRegInfo mte_reginfo[] = { 7159 { .name = "TFSRE0_EL1", .state = ARM_CP_STATE_AA64, 7160 .opc0 = 3, .opc1 = 0, .crn = 5, .crm = 6, .opc2 = 1, 7161 .access = PL1_RW, .accessfn = access_mte, 7162 .fieldoffset = offsetof(CPUARMState, cp15.tfsr_el[0]) }, 7163 { .name = "TFSR_EL1", .state = ARM_CP_STATE_AA64, 7164 .opc0 = 3, .opc1 = 0, .crn = 5, .crm = 6, .opc2 = 0, 7165 .access = PL1_RW, .accessfn = access_mte, 7166 .fieldoffset = offsetof(CPUARMState, cp15.tfsr_el[1]) }, 7167 { .name = "TFSR_EL2", .state = ARM_CP_STATE_AA64, 7168 .opc0 = 3, .opc1 = 4, .crn = 5, .crm = 6, .opc2 = 0, 7169 .access = PL2_RW, .accessfn = access_mte, 7170 .fieldoffset = offsetof(CPUARMState, cp15.tfsr_el[2]) }, 7171 { .name = "TFSR_EL3", .state = ARM_CP_STATE_AA64, 7172 .opc0 = 3, .opc1 = 6, .crn = 5, .crm = 6, .opc2 = 0, 7173 .access = PL3_RW, 7174 .fieldoffset = offsetof(CPUARMState, cp15.tfsr_el[3]) }, 7175 { .name = "RGSR_EL1", .state = ARM_CP_STATE_AA64, 7176 .opc0 = 3, .opc1 = 0, .crn = 1, .crm = 0, .opc2 = 5, 7177 .access = PL1_RW, .accessfn = access_mte, 7178 .fieldoffset = offsetof(CPUARMState, cp15.rgsr_el1) }, 7179 { .name = "GCR_EL1", .state = ARM_CP_STATE_AA64, 7180 .opc0 = 3, .opc1 = 0, .crn = 1, .crm = 0, .opc2 = 6, 7181 .access = PL1_RW, .accessfn = access_mte, 7182 .fieldoffset = offsetof(CPUARMState, cp15.gcr_el1) }, 7183 { .name = "GMID_EL1", .state = ARM_CP_STATE_AA64, 7184 .opc0 = 3, .opc1 = 1, .crn = 0, .crm = 0, .opc2 = 4, 7185 .access = PL1_R, .accessfn = access_aa64_tid5, 7186 .type = ARM_CP_CONST, .resetvalue = GMID_EL1_BS }, 7187 { .name = "TCO", .state = ARM_CP_STATE_AA64, 7188 .opc0 = 3, .opc1 = 3, .crn = 4, .crm = 2, .opc2 = 7, 7189 .type = ARM_CP_NO_RAW, 7190 .access = PL0_RW, .readfn = tco_read, .writefn = tco_write }, 7191 { .name = "DC_IGVAC", .state = ARM_CP_STATE_AA64, 7192 .opc0 = 1, .opc1 = 0, .crn = 7, .crm = 6, .opc2 = 3, 7193 .type = ARM_CP_NOP, .access = PL1_W, 7194 .accessfn = aa64_cacheop_poc_access }, 7195 { .name = "DC_IGSW", .state = ARM_CP_STATE_AA64, 7196 .opc0 = 1, .opc1 = 0, .crn = 7, .crm = 6, .opc2 = 4, 7197 .type = ARM_CP_NOP, .access = PL1_W, .accessfn = access_tsw }, 7198 { .name = "DC_IGDVAC", .state = ARM_CP_STATE_AA64, 7199 .opc0 = 1, .opc1 = 0, .crn = 7, .crm = 6, .opc2 = 5, 7200 .type = ARM_CP_NOP, .access = PL1_W, 7201 .accessfn = aa64_cacheop_poc_access }, 7202 { .name = "DC_IGDSW", .state = ARM_CP_STATE_AA64, 7203 .opc0 = 1, .opc1 = 0, .crn = 7, .crm = 6, .opc2 = 6, 7204 .type = ARM_CP_NOP, .access = PL1_W, .accessfn = access_tsw }, 7205 { .name = "DC_CGSW", .state = ARM_CP_STATE_AA64, 7206 .opc0 = 1, .opc1 = 0, .crn = 7, .crm = 10, .opc2 = 4, 7207 .type = ARM_CP_NOP, .access = PL1_W, .accessfn = access_tsw }, 7208 { .name = "DC_CGDSW", .state = ARM_CP_STATE_AA64, 7209 .opc0 = 1, .opc1 = 0, .crn = 7, .crm = 10, .opc2 = 6, 7210 .type = ARM_CP_NOP, .access = PL1_W, .accessfn = access_tsw }, 7211 { .name = "DC_CIGSW", .state = ARM_CP_STATE_AA64, 7212 .opc0 = 1, .opc1 = 0, .crn = 7, .crm = 14, .opc2 = 4, 7213 .type = ARM_CP_NOP, .access = PL1_W, .accessfn = access_tsw }, 7214 { .name = "DC_CIGDSW", .state = ARM_CP_STATE_AA64, 7215 .opc0 = 1, .opc1 = 0, .crn = 7, .crm = 14, .opc2 = 6, 7216 .type = ARM_CP_NOP, .access = PL1_W, .accessfn = access_tsw }, 7217 }; 7218 7219 static const ARMCPRegInfo mte_tco_ro_reginfo[] = { 7220 { .name = "TCO", .state = ARM_CP_STATE_AA64, 7221 .opc0 = 3, .opc1 = 3, .crn = 4, .crm = 2, .opc2 = 7, 7222 .type = ARM_CP_CONST, .access = PL0_RW, }, 7223 }; 7224 7225 static const ARMCPRegInfo mte_el0_cacheop_reginfo[] = { 7226 { .name = "DC_CGVAC", .state = ARM_CP_STATE_AA64, 7227 .opc0 = 1, .opc1 = 3, .crn = 7, .crm = 10, .opc2 = 3, 7228 .type = ARM_CP_NOP, .access = PL0_W, 7229 .accessfn = aa64_cacheop_poc_access }, 7230 { .name = "DC_CGDVAC", .state = ARM_CP_STATE_AA64, 7231 .opc0 = 1, .opc1 = 3, .crn = 7, .crm = 10, .opc2 = 5, 7232 .type = ARM_CP_NOP, .access = PL0_W, 7233 .accessfn = aa64_cacheop_poc_access }, 7234 { .name = "DC_CGVAP", .state = ARM_CP_STATE_AA64, 7235 .opc0 = 1, .opc1 = 3, .crn = 7, .crm = 12, .opc2 = 3, 7236 .type = ARM_CP_NOP, .access = PL0_W, 7237 .accessfn = aa64_cacheop_poc_access }, 7238 { .name = "DC_CGDVAP", .state = ARM_CP_STATE_AA64, 7239 .opc0 = 1, .opc1 = 3, .crn = 7, .crm = 12, .opc2 = 5, 7240 .type = ARM_CP_NOP, .access = PL0_W, 7241 .accessfn = aa64_cacheop_poc_access }, 7242 { .name = "DC_CGVADP", .state = ARM_CP_STATE_AA64, 7243 .opc0 = 1, .opc1 = 3, .crn = 7, .crm = 13, .opc2 = 3, 7244 .type = ARM_CP_NOP, .access = PL0_W, 7245 .accessfn = aa64_cacheop_poc_access }, 7246 { .name = "DC_CGDVADP", .state = ARM_CP_STATE_AA64, 7247 .opc0 = 1, .opc1 = 3, .crn = 7, .crm = 13, .opc2 = 5, 7248 .type = ARM_CP_NOP, .access = PL0_W, 7249 .accessfn = aa64_cacheop_poc_access }, 7250 { .name = "DC_CIGVAC", .state = ARM_CP_STATE_AA64, 7251 .opc0 = 1, .opc1 = 3, .crn = 7, .crm = 14, .opc2 = 3, 7252 .type = ARM_CP_NOP, .access = PL0_W, 7253 .accessfn = aa64_cacheop_poc_access }, 7254 { .name = "DC_CIGDVAC", .state = ARM_CP_STATE_AA64, 7255 .opc0 = 1, .opc1 = 3, .crn = 7, .crm = 14, .opc2 = 5, 7256 .type = ARM_CP_NOP, .access = PL0_W, 7257 .accessfn = aa64_cacheop_poc_access }, 7258 { .name = "DC_GVA", .state = ARM_CP_STATE_AA64, 7259 .opc0 = 1, .opc1 = 3, .crn = 7, .crm = 4, .opc2 = 3, 7260 .access = PL0_W, .type = ARM_CP_DC_GVA, 7261 #ifndef CONFIG_USER_ONLY 7262 /* Avoid overhead of an access check that always passes in user-mode */ 7263 .accessfn = aa64_zva_access, 7264 #endif 7265 }, 7266 { .name = "DC_GZVA", .state = ARM_CP_STATE_AA64, 7267 .opc0 = 1, .opc1 = 3, .crn = 7, .crm = 4, .opc2 = 4, 7268 .access = PL0_W, .type = ARM_CP_DC_GZVA, 7269 #ifndef CONFIG_USER_ONLY 7270 /* Avoid overhead of an access check that always passes in user-mode */ 7271 .accessfn = aa64_zva_access, 7272 #endif 7273 }, 7274 }; 7275 7276 static CPAccessResult access_scxtnum(CPUARMState *env, const ARMCPRegInfo *ri, 7277 bool isread) 7278 { 7279 uint64_t hcr = arm_hcr_el2_eff(env); 7280 int el = arm_current_el(env); 7281 7282 if (el == 0 && !((hcr & HCR_E2H) && (hcr & HCR_TGE))) { 7283 if (env->cp15.sctlr_el[1] & SCTLR_TSCXT) { 7284 if (hcr & HCR_TGE) { 7285 return CP_ACCESS_TRAP_EL2; 7286 } 7287 return CP_ACCESS_TRAP; 7288 } 7289 } else if (el < 2 && (env->cp15.sctlr_el[2] & SCTLR_TSCXT)) { 7290 return CP_ACCESS_TRAP_EL2; 7291 } 7292 if (el < 2 && arm_is_el2_enabled(env) && !(hcr & HCR_ENSCXT)) { 7293 return CP_ACCESS_TRAP_EL2; 7294 } 7295 if (el < 3 7296 && arm_feature(env, ARM_FEATURE_EL3) 7297 && !(env->cp15.scr_el3 & SCR_ENSCXT)) { 7298 return CP_ACCESS_TRAP_EL3; 7299 } 7300 return CP_ACCESS_OK; 7301 } 7302 7303 static const ARMCPRegInfo scxtnum_reginfo[] = { 7304 { .name = "SCXTNUM_EL0", .state = ARM_CP_STATE_AA64, 7305 .opc0 = 3, .opc1 = 3, .crn = 13, .crm = 0, .opc2 = 7, 7306 .access = PL0_RW, .accessfn = access_scxtnum, 7307 .fieldoffset = offsetof(CPUARMState, scxtnum_el[0]) }, 7308 { .name = "SCXTNUM_EL1", .state = ARM_CP_STATE_AA64, 7309 .opc0 = 3, .opc1 = 0, .crn = 13, .crm = 0, .opc2 = 7, 7310 .access = PL1_RW, .accessfn = access_scxtnum, 7311 .fieldoffset = offsetof(CPUARMState, scxtnum_el[1]) }, 7312 { .name = "SCXTNUM_EL2", .state = ARM_CP_STATE_AA64, 7313 .opc0 = 3, .opc1 = 4, .crn = 13, .crm = 0, .opc2 = 7, 7314 .access = PL2_RW, .accessfn = access_scxtnum, 7315 .fieldoffset = offsetof(CPUARMState, scxtnum_el[2]) }, 7316 { .name = "SCXTNUM_EL3", .state = ARM_CP_STATE_AA64, 7317 .opc0 = 3, .opc1 = 6, .crn = 13, .crm = 0, .opc2 = 7, 7318 .access = PL3_RW, 7319 .fieldoffset = offsetof(CPUARMState, scxtnum_el[3]) }, 7320 }; 7321 #endif /* TARGET_AARCH64 */ 7322 7323 static CPAccessResult access_predinv(CPUARMState *env, const ARMCPRegInfo *ri, 7324 bool isread) 7325 { 7326 int el = arm_current_el(env); 7327 7328 if (el == 0) { 7329 uint64_t sctlr = arm_sctlr(env, el); 7330 if (!(sctlr & SCTLR_EnRCTX)) { 7331 return CP_ACCESS_TRAP; 7332 } 7333 } else if (el == 1) { 7334 uint64_t hcr = arm_hcr_el2_eff(env); 7335 if (hcr & HCR_NV) { 7336 return CP_ACCESS_TRAP_EL2; 7337 } 7338 } 7339 return CP_ACCESS_OK; 7340 } 7341 7342 static const ARMCPRegInfo predinv_reginfo[] = { 7343 { .name = "CFP_RCTX", .state = ARM_CP_STATE_AA64, 7344 .opc0 = 1, .opc1 = 3, .crn = 7, .crm = 3, .opc2 = 4, 7345 .type = ARM_CP_NOP, .access = PL0_W, .accessfn = access_predinv }, 7346 { .name = "DVP_RCTX", .state = ARM_CP_STATE_AA64, 7347 .opc0 = 1, .opc1 = 3, .crn = 7, .crm = 3, .opc2 = 5, 7348 .type = ARM_CP_NOP, .access = PL0_W, .accessfn = access_predinv }, 7349 { .name = "CPP_RCTX", .state = ARM_CP_STATE_AA64, 7350 .opc0 = 1, .opc1 = 3, .crn = 7, .crm = 3, .opc2 = 7, 7351 .type = ARM_CP_NOP, .access = PL0_W, .accessfn = access_predinv }, 7352 /* 7353 * Note the AArch32 opcodes have a different OPC1. 7354 */ 7355 { .name = "CFPRCTX", .state = ARM_CP_STATE_AA32, 7356 .cp = 15, .opc1 = 0, .crn = 7, .crm = 3, .opc2 = 4, 7357 .type = ARM_CP_NOP, .access = PL0_W, .accessfn = access_predinv }, 7358 { .name = "DVPRCTX", .state = ARM_CP_STATE_AA32, 7359 .cp = 15, .opc1 = 0, .crn = 7, .crm = 3, .opc2 = 5, 7360 .type = ARM_CP_NOP, .access = PL0_W, .accessfn = access_predinv }, 7361 { .name = "CPPRCTX", .state = ARM_CP_STATE_AA32, 7362 .cp = 15, .opc1 = 0, .crn = 7, .crm = 3, .opc2 = 7, 7363 .type = ARM_CP_NOP, .access = PL0_W, .accessfn = access_predinv }, 7364 }; 7365 7366 static uint64_t ccsidr2_read(CPUARMState *env, const ARMCPRegInfo *ri) 7367 { 7368 /* Read the high 32 bits of the current CCSIDR */ 7369 return extract64(ccsidr_read(env, ri), 32, 32); 7370 } 7371 7372 static const ARMCPRegInfo ccsidr2_reginfo[] = { 7373 { .name = "CCSIDR2", .state = ARM_CP_STATE_BOTH, 7374 .opc0 = 3, .opc1 = 1, .crn = 0, .crm = 0, .opc2 = 2, 7375 .access = PL1_R, 7376 .accessfn = access_aa64_tid2, 7377 .readfn = ccsidr2_read, .type = ARM_CP_NO_RAW }, 7378 }; 7379 7380 static CPAccessResult access_aa64_tid3(CPUARMState *env, const ARMCPRegInfo *ri, 7381 bool isread) 7382 { 7383 if ((arm_current_el(env) < 2) && (arm_hcr_el2_eff(env) & HCR_TID3)) { 7384 return CP_ACCESS_TRAP_EL2; 7385 } 7386 7387 return CP_ACCESS_OK; 7388 } 7389 7390 static CPAccessResult access_aa32_tid3(CPUARMState *env, const ARMCPRegInfo *ri, 7391 bool isread) 7392 { 7393 if (arm_feature(env, ARM_FEATURE_V8)) { 7394 return access_aa64_tid3(env, ri, isread); 7395 } 7396 7397 return CP_ACCESS_OK; 7398 } 7399 7400 static CPAccessResult access_jazelle(CPUARMState *env, const ARMCPRegInfo *ri, 7401 bool isread) 7402 { 7403 if (arm_current_el(env) == 1 && (arm_hcr_el2_eff(env) & HCR_TID0)) { 7404 return CP_ACCESS_TRAP_EL2; 7405 } 7406 7407 return CP_ACCESS_OK; 7408 } 7409 7410 static CPAccessResult access_joscr_jmcr(CPUARMState *env, 7411 const ARMCPRegInfo *ri, bool isread) 7412 { 7413 /* 7414 * HSTR.TJDBX traps JOSCR and JMCR accesses, but it exists only 7415 * in v7A, not in v8A. 7416 */ 7417 if (!arm_feature(env, ARM_FEATURE_V8) && 7418 arm_current_el(env) < 2 && !arm_is_secure_below_el3(env) && 7419 (env->cp15.hstr_el2 & HSTR_TJDBX)) { 7420 return CP_ACCESS_TRAP_EL2; 7421 } 7422 return CP_ACCESS_OK; 7423 } 7424 7425 static const ARMCPRegInfo jazelle_regs[] = { 7426 { .name = "JIDR", 7427 .cp = 14, .crn = 0, .crm = 0, .opc1 = 7, .opc2 = 0, 7428 .access = PL1_R, .accessfn = access_jazelle, 7429 .type = ARM_CP_CONST, .resetvalue = 0 }, 7430 { .name = "JOSCR", 7431 .cp = 14, .crn = 1, .crm = 0, .opc1 = 7, .opc2 = 0, 7432 .accessfn = access_joscr_jmcr, 7433 .access = PL1_RW, .type = ARM_CP_CONST, .resetvalue = 0 }, 7434 { .name = "JMCR", 7435 .cp = 14, .crn = 2, .crm = 0, .opc1 = 7, .opc2 = 0, 7436 .accessfn = access_joscr_jmcr, 7437 .access = PL1_RW, .type = ARM_CP_CONST, .resetvalue = 0 }, 7438 }; 7439 7440 static const ARMCPRegInfo contextidr_el2 = { 7441 .name = "CONTEXTIDR_EL2", .state = ARM_CP_STATE_AA64, 7442 .opc0 = 3, .opc1 = 4, .crn = 13, .crm = 0, .opc2 = 1, 7443 .access = PL2_RW, 7444 .fieldoffset = offsetof(CPUARMState, cp15.contextidr_el[2]) 7445 }; 7446 7447 static const ARMCPRegInfo vhe_reginfo[] = { 7448 { .name = "TTBR1_EL2", .state = ARM_CP_STATE_AA64, 7449 .opc0 = 3, .opc1 = 4, .crn = 2, .crm = 0, .opc2 = 1, 7450 .access = PL2_RW, .writefn = vmsa_tcr_ttbr_el2_write, 7451 .fieldoffset = offsetof(CPUARMState, cp15.ttbr1_el[2]) }, 7452 #ifndef CONFIG_USER_ONLY 7453 { .name = "CNTHV_CVAL_EL2", .state = ARM_CP_STATE_AA64, 7454 .opc0 = 3, .opc1 = 4, .crn = 14, .crm = 3, .opc2 = 2, 7455 .fieldoffset = 7456 offsetof(CPUARMState, cp15.c14_timer[GTIMER_HYPVIRT].cval), 7457 .type = ARM_CP_IO, .access = PL2_RW, 7458 .writefn = gt_hv_cval_write, .raw_writefn = raw_write }, 7459 { .name = "CNTHV_TVAL_EL2", .state = ARM_CP_STATE_BOTH, 7460 .opc0 = 3, .opc1 = 4, .crn = 14, .crm = 3, .opc2 = 0, 7461 .type = ARM_CP_NO_RAW | ARM_CP_IO, .access = PL2_RW, 7462 .resetfn = gt_hv_timer_reset, 7463 .readfn = gt_hv_tval_read, .writefn = gt_hv_tval_write }, 7464 { .name = "CNTHV_CTL_EL2", .state = ARM_CP_STATE_BOTH, 7465 .type = ARM_CP_IO, 7466 .opc0 = 3, .opc1 = 4, .crn = 14, .crm = 3, .opc2 = 1, 7467 .access = PL2_RW, 7468 .fieldoffset = offsetof(CPUARMState, cp15.c14_timer[GTIMER_HYPVIRT].ctl), 7469 .writefn = gt_hv_ctl_write, .raw_writefn = raw_write }, 7470 { .name = "CNTP_CTL_EL02", .state = ARM_CP_STATE_AA64, 7471 .opc0 = 3, .opc1 = 5, .crn = 14, .crm = 2, .opc2 = 1, 7472 .type = ARM_CP_IO | ARM_CP_ALIAS, 7473 .access = PL2_RW, .accessfn = e2h_access, 7474 .fieldoffset = offsetof(CPUARMState, cp15.c14_timer[GTIMER_PHYS].ctl), 7475 .writefn = gt_phys_ctl_write, .raw_writefn = raw_write }, 7476 { .name = "CNTV_CTL_EL02", .state = ARM_CP_STATE_AA64, 7477 .opc0 = 3, .opc1 = 5, .crn = 14, .crm = 3, .opc2 = 1, 7478 .type = ARM_CP_IO | ARM_CP_ALIAS, 7479 .access = PL2_RW, .accessfn = e2h_access, 7480 .fieldoffset = offsetof(CPUARMState, cp15.c14_timer[GTIMER_VIRT].ctl), 7481 .writefn = gt_virt_ctl_write, .raw_writefn = raw_write }, 7482 { .name = "CNTP_TVAL_EL02", .state = ARM_CP_STATE_AA64, 7483 .opc0 = 3, .opc1 = 5, .crn = 14, .crm = 2, .opc2 = 0, 7484 .type = ARM_CP_NO_RAW | ARM_CP_IO | ARM_CP_ALIAS, 7485 .access = PL2_RW, .accessfn = e2h_access, 7486 .readfn = gt_phys_tval_read, .writefn = gt_phys_tval_write }, 7487 { .name = "CNTV_TVAL_EL02", .state = ARM_CP_STATE_AA64, 7488 .opc0 = 3, .opc1 = 5, .crn = 14, .crm = 3, .opc2 = 0, 7489 .type = ARM_CP_NO_RAW | ARM_CP_IO | ARM_CP_ALIAS, 7490 .access = PL2_RW, .accessfn = e2h_access, 7491 .readfn = gt_virt_tval_read, .writefn = gt_virt_tval_write }, 7492 { .name = "CNTP_CVAL_EL02", .state = ARM_CP_STATE_AA64, 7493 .opc0 = 3, .opc1 = 5, .crn = 14, .crm = 2, .opc2 = 2, 7494 .type = ARM_CP_IO | ARM_CP_ALIAS, 7495 .fieldoffset = offsetof(CPUARMState, cp15.c14_timer[GTIMER_PHYS].cval), 7496 .access = PL2_RW, .accessfn = e2h_access, 7497 .writefn = gt_phys_cval_write, .raw_writefn = raw_write }, 7498 { .name = "CNTV_CVAL_EL02", .state = ARM_CP_STATE_AA64, 7499 .opc0 = 3, .opc1 = 5, .crn = 14, .crm = 3, .opc2 = 2, 7500 .type = ARM_CP_IO | ARM_CP_ALIAS, 7501 .fieldoffset = offsetof(CPUARMState, cp15.c14_timer[GTIMER_VIRT].cval), 7502 .access = PL2_RW, .accessfn = e2h_access, 7503 .writefn = gt_virt_cval_write, .raw_writefn = raw_write }, 7504 #endif 7505 }; 7506 7507 #ifndef CONFIG_USER_ONLY 7508 static const ARMCPRegInfo ats1e1_reginfo[] = { 7509 { .name = "AT_S1E1R", .state = ARM_CP_STATE_AA64, 7510 .opc0 = 1, .opc1 = 0, .crn = 7, .crm = 9, .opc2 = 0, 7511 .access = PL1_W, .type = ARM_CP_NO_RAW | ARM_CP_RAISES_EXC, 7512 .writefn = ats_write64 }, 7513 { .name = "AT_S1E1W", .state = ARM_CP_STATE_AA64, 7514 .opc0 = 1, .opc1 = 0, .crn = 7, .crm = 9, .opc2 = 1, 7515 .access = PL1_W, .type = ARM_CP_NO_RAW | ARM_CP_RAISES_EXC, 7516 .writefn = ats_write64 }, 7517 }; 7518 7519 static const ARMCPRegInfo ats1cp_reginfo[] = { 7520 { .name = "ATS1CPRP", 7521 .cp = 15, .opc1 = 0, .crn = 7, .crm = 9, .opc2 = 0, 7522 .access = PL1_W, .type = ARM_CP_NO_RAW | ARM_CP_RAISES_EXC, 7523 .writefn = ats_write }, 7524 { .name = "ATS1CPWP", 7525 .cp = 15, .opc1 = 0, .crn = 7, .crm = 9, .opc2 = 1, 7526 .access = PL1_W, .type = ARM_CP_NO_RAW | ARM_CP_RAISES_EXC, 7527 .writefn = ats_write }, 7528 }; 7529 #endif 7530 7531 /* 7532 * ACTLR2 and HACTLR2 map to ACTLR_EL1[63:32] and 7533 * ACTLR_EL2[63:32]. They exist only if the ID_MMFR4.AC2 field 7534 * is non-zero, which is never for ARMv7, optionally in ARMv8 7535 * and mandatorily for ARMv8.2 and up. 7536 * ACTLR2 is banked for S and NS if EL3 is AArch32. Since QEMU's 7537 * implementation is RAZ/WI we can ignore this detail, as we 7538 * do for ACTLR. 7539 */ 7540 static const ARMCPRegInfo actlr2_hactlr2_reginfo[] = { 7541 { .name = "ACTLR2", .state = ARM_CP_STATE_AA32, 7542 .cp = 15, .opc1 = 0, .crn = 1, .crm = 0, .opc2 = 3, 7543 .access = PL1_RW, .accessfn = access_tacr, 7544 .type = ARM_CP_CONST, .resetvalue = 0 }, 7545 { .name = "HACTLR2", .state = ARM_CP_STATE_AA32, 7546 .cp = 15, .opc1 = 4, .crn = 1, .crm = 0, .opc2 = 3, 7547 .access = PL2_RW, .type = ARM_CP_CONST, 7548 .resetvalue = 0 }, 7549 }; 7550 7551 void register_cp_regs_for_features(ARMCPU *cpu) 7552 { 7553 /* Register all the coprocessor registers based on feature bits */ 7554 CPUARMState *env = &cpu->env; 7555 if (arm_feature(env, ARM_FEATURE_M)) { 7556 /* M profile has no coprocessor registers */ 7557 return; 7558 } 7559 7560 define_arm_cp_regs(cpu, cp_reginfo); 7561 if (!arm_feature(env, ARM_FEATURE_V8)) { 7562 /* Must go early as it is full of wildcards that may be 7563 * overridden by later definitions. 7564 */ 7565 define_arm_cp_regs(cpu, not_v8_cp_reginfo); 7566 } 7567 7568 if (arm_feature(env, ARM_FEATURE_V6)) { 7569 /* The ID registers all have impdef reset values */ 7570 ARMCPRegInfo v6_idregs[] = { 7571 { .name = "ID_PFR0", .state = ARM_CP_STATE_BOTH, 7572 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 1, .opc2 = 0, 7573 .access = PL1_R, .type = ARM_CP_CONST, 7574 .accessfn = access_aa32_tid3, 7575 .resetvalue = cpu->isar.id_pfr0 }, 7576 /* ID_PFR1 is not a plain ARM_CP_CONST because we don't know 7577 * the value of the GIC field until after we define these regs. 7578 */ 7579 { .name = "ID_PFR1", .state = ARM_CP_STATE_BOTH, 7580 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 1, .opc2 = 1, 7581 .access = PL1_R, .type = ARM_CP_NO_RAW, 7582 .accessfn = access_aa32_tid3, 7583 .readfn = id_pfr1_read, 7584 .writefn = arm_cp_write_ignore }, 7585 { .name = "ID_DFR0", .state = ARM_CP_STATE_BOTH, 7586 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 1, .opc2 = 2, 7587 .access = PL1_R, .type = ARM_CP_CONST, 7588 .accessfn = access_aa32_tid3, 7589 .resetvalue = cpu->isar.id_dfr0 }, 7590 { .name = "ID_AFR0", .state = ARM_CP_STATE_BOTH, 7591 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 1, .opc2 = 3, 7592 .access = PL1_R, .type = ARM_CP_CONST, 7593 .accessfn = access_aa32_tid3, 7594 .resetvalue = cpu->id_afr0 }, 7595 { .name = "ID_MMFR0", .state = ARM_CP_STATE_BOTH, 7596 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 1, .opc2 = 4, 7597 .access = PL1_R, .type = ARM_CP_CONST, 7598 .accessfn = access_aa32_tid3, 7599 .resetvalue = cpu->isar.id_mmfr0 }, 7600 { .name = "ID_MMFR1", .state = ARM_CP_STATE_BOTH, 7601 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 1, .opc2 = 5, 7602 .access = PL1_R, .type = ARM_CP_CONST, 7603 .accessfn = access_aa32_tid3, 7604 .resetvalue = cpu->isar.id_mmfr1 }, 7605 { .name = "ID_MMFR2", .state = ARM_CP_STATE_BOTH, 7606 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 1, .opc2 = 6, 7607 .access = PL1_R, .type = ARM_CP_CONST, 7608 .accessfn = access_aa32_tid3, 7609 .resetvalue = cpu->isar.id_mmfr2 }, 7610 { .name = "ID_MMFR3", .state = ARM_CP_STATE_BOTH, 7611 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 1, .opc2 = 7, 7612 .access = PL1_R, .type = ARM_CP_CONST, 7613 .accessfn = access_aa32_tid3, 7614 .resetvalue = cpu->isar.id_mmfr3 }, 7615 { .name = "ID_ISAR0", .state = ARM_CP_STATE_BOTH, 7616 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 2, .opc2 = 0, 7617 .access = PL1_R, .type = ARM_CP_CONST, 7618 .accessfn = access_aa32_tid3, 7619 .resetvalue = cpu->isar.id_isar0 }, 7620 { .name = "ID_ISAR1", .state = ARM_CP_STATE_BOTH, 7621 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 2, .opc2 = 1, 7622 .access = PL1_R, .type = ARM_CP_CONST, 7623 .accessfn = access_aa32_tid3, 7624 .resetvalue = cpu->isar.id_isar1 }, 7625 { .name = "ID_ISAR2", .state = ARM_CP_STATE_BOTH, 7626 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 2, .opc2 = 2, 7627 .access = PL1_R, .type = ARM_CP_CONST, 7628 .accessfn = access_aa32_tid3, 7629 .resetvalue = cpu->isar.id_isar2 }, 7630 { .name = "ID_ISAR3", .state = ARM_CP_STATE_BOTH, 7631 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 2, .opc2 = 3, 7632 .access = PL1_R, .type = ARM_CP_CONST, 7633 .accessfn = access_aa32_tid3, 7634 .resetvalue = cpu->isar.id_isar3 }, 7635 { .name = "ID_ISAR4", .state = ARM_CP_STATE_BOTH, 7636 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 2, .opc2 = 4, 7637 .access = PL1_R, .type = ARM_CP_CONST, 7638 .accessfn = access_aa32_tid3, 7639 .resetvalue = cpu->isar.id_isar4 }, 7640 { .name = "ID_ISAR5", .state = ARM_CP_STATE_BOTH, 7641 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 2, .opc2 = 5, 7642 .access = PL1_R, .type = ARM_CP_CONST, 7643 .accessfn = access_aa32_tid3, 7644 .resetvalue = cpu->isar.id_isar5 }, 7645 { .name = "ID_MMFR4", .state = ARM_CP_STATE_BOTH, 7646 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 2, .opc2 = 6, 7647 .access = PL1_R, .type = ARM_CP_CONST, 7648 .accessfn = access_aa32_tid3, 7649 .resetvalue = cpu->isar.id_mmfr4 }, 7650 { .name = "ID_ISAR6", .state = ARM_CP_STATE_BOTH, 7651 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 2, .opc2 = 7, 7652 .access = PL1_R, .type = ARM_CP_CONST, 7653 .accessfn = access_aa32_tid3, 7654 .resetvalue = cpu->isar.id_isar6 }, 7655 }; 7656 define_arm_cp_regs(cpu, v6_idregs); 7657 define_arm_cp_regs(cpu, v6_cp_reginfo); 7658 } else { 7659 define_arm_cp_regs(cpu, not_v6_cp_reginfo); 7660 } 7661 if (arm_feature(env, ARM_FEATURE_V6K)) { 7662 define_arm_cp_regs(cpu, v6k_cp_reginfo); 7663 } 7664 if (arm_feature(env, ARM_FEATURE_V7MP) && 7665 !arm_feature(env, ARM_FEATURE_PMSA)) { 7666 define_arm_cp_regs(cpu, v7mp_cp_reginfo); 7667 } 7668 if (arm_feature(env, ARM_FEATURE_V7VE)) { 7669 define_arm_cp_regs(cpu, pmovsset_cp_reginfo); 7670 } 7671 if (arm_feature(env, ARM_FEATURE_V7)) { 7672 ARMCPRegInfo clidr = { 7673 .name = "CLIDR", .state = ARM_CP_STATE_BOTH, 7674 .opc0 = 3, .crn = 0, .crm = 0, .opc1 = 1, .opc2 = 1, 7675 .access = PL1_R, .type = ARM_CP_CONST, 7676 .accessfn = access_aa64_tid2, 7677 .resetvalue = cpu->clidr 7678 }; 7679 define_one_arm_cp_reg(cpu, &clidr); 7680 define_arm_cp_regs(cpu, v7_cp_reginfo); 7681 define_debug_regs(cpu); 7682 define_pmu_regs(cpu); 7683 } else { 7684 define_arm_cp_regs(cpu, not_v7_cp_reginfo); 7685 } 7686 if (arm_feature(env, ARM_FEATURE_V8)) { 7687 /* AArch64 ID registers, which all have impdef reset values. 7688 * Note that within the ID register ranges the unused slots 7689 * must all RAZ, not UNDEF; future architecture versions may 7690 * define new registers here. 7691 */ 7692 ARMCPRegInfo v8_idregs[] = { 7693 /* 7694 * ID_AA64PFR0_EL1 is not a plain ARM_CP_CONST in system 7695 * emulation because we don't know the right value for the 7696 * GIC field until after we define these regs. 7697 */ 7698 { .name = "ID_AA64PFR0_EL1", .state = ARM_CP_STATE_AA64, 7699 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 4, .opc2 = 0, 7700 .access = PL1_R, 7701 #ifdef CONFIG_USER_ONLY 7702 .type = ARM_CP_CONST, 7703 .resetvalue = cpu->isar.id_aa64pfr0 7704 #else 7705 .type = ARM_CP_NO_RAW, 7706 .accessfn = access_aa64_tid3, 7707 .readfn = id_aa64pfr0_read, 7708 .writefn = arm_cp_write_ignore 7709 #endif 7710 }, 7711 { .name = "ID_AA64PFR1_EL1", .state = ARM_CP_STATE_AA64, 7712 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 4, .opc2 = 1, 7713 .access = PL1_R, .type = ARM_CP_CONST, 7714 .accessfn = access_aa64_tid3, 7715 .resetvalue = cpu->isar.id_aa64pfr1}, 7716 { .name = "ID_AA64PFR2_EL1_RESERVED", .state = ARM_CP_STATE_AA64, 7717 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 4, .opc2 = 2, 7718 .access = PL1_R, .type = ARM_CP_CONST, 7719 .accessfn = access_aa64_tid3, 7720 .resetvalue = 0 }, 7721 { .name = "ID_AA64PFR3_EL1_RESERVED", .state = ARM_CP_STATE_AA64, 7722 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 4, .opc2 = 3, 7723 .access = PL1_R, .type = ARM_CP_CONST, 7724 .accessfn = access_aa64_tid3, 7725 .resetvalue = 0 }, 7726 { .name = "ID_AA64ZFR0_EL1", .state = ARM_CP_STATE_AA64, 7727 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 4, .opc2 = 4, 7728 .access = PL1_R, .type = ARM_CP_CONST, 7729 .accessfn = access_aa64_tid3, 7730 .resetvalue = cpu->isar.id_aa64zfr0 }, 7731 { .name = "ID_AA64SMFR0_EL1", .state = ARM_CP_STATE_AA64, 7732 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 4, .opc2 = 5, 7733 .access = PL1_R, .type = ARM_CP_CONST, 7734 .accessfn = access_aa64_tid3, 7735 .resetvalue = cpu->isar.id_aa64smfr0 }, 7736 { .name = "ID_AA64PFR6_EL1_RESERVED", .state = ARM_CP_STATE_AA64, 7737 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 4, .opc2 = 6, 7738 .access = PL1_R, .type = ARM_CP_CONST, 7739 .accessfn = access_aa64_tid3, 7740 .resetvalue = 0 }, 7741 { .name = "ID_AA64PFR7_EL1_RESERVED", .state = ARM_CP_STATE_AA64, 7742 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 4, .opc2 = 7, 7743 .access = PL1_R, .type = ARM_CP_CONST, 7744 .accessfn = access_aa64_tid3, 7745 .resetvalue = 0 }, 7746 { .name = "ID_AA64DFR0_EL1", .state = ARM_CP_STATE_AA64, 7747 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 5, .opc2 = 0, 7748 .access = PL1_R, .type = ARM_CP_CONST, 7749 .accessfn = access_aa64_tid3, 7750 .resetvalue = cpu->isar.id_aa64dfr0 }, 7751 { .name = "ID_AA64DFR1_EL1", .state = ARM_CP_STATE_AA64, 7752 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 5, .opc2 = 1, 7753 .access = PL1_R, .type = ARM_CP_CONST, 7754 .accessfn = access_aa64_tid3, 7755 .resetvalue = cpu->isar.id_aa64dfr1 }, 7756 { .name = "ID_AA64DFR2_EL1_RESERVED", .state = ARM_CP_STATE_AA64, 7757 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 5, .opc2 = 2, 7758 .access = PL1_R, .type = ARM_CP_CONST, 7759 .accessfn = access_aa64_tid3, 7760 .resetvalue = 0 }, 7761 { .name = "ID_AA64DFR3_EL1_RESERVED", .state = ARM_CP_STATE_AA64, 7762 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 5, .opc2 = 3, 7763 .access = PL1_R, .type = ARM_CP_CONST, 7764 .accessfn = access_aa64_tid3, 7765 .resetvalue = 0 }, 7766 { .name = "ID_AA64AFR0_EL1", .state = ARM_CP_STATE_AA64, 7767 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 5, .opc2 = 4, 7768 .access = PL1_R, .type = ARM_CP_CONST, 7769 .accessfn = access_aa64_tid3, 7770 .resetvalue = cpu->id_aa64afr0 }, 7771 { .name = "ID_AA64AFR1_EL1", .state = ARM_CP_STATE_AA64, 7772 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 5, .opc2 = 5, 7773 .access = PL1_R, .type = ARM_CP_CONST, 7774 .accessfn = access_aa64_tid3, 7775 .resetvalue = cpu->id_aa64afr1 }, 7776 { .name = "ID_AA64AFR2_EL1_RESERVED", .state = ARM_CP_STATE_AA64, 7777 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 5, .opc2 = 6, 7778 .access = PL1_R, .type = ARM_CP_CONST, 7779 .accessfn = access_aa64_tid3, 7780 .resetvalue = 0 }, 7781 { .name = "ID_AA64AFR3_EL1_RESERVED", .state = ARM_CP_STATE_AA64, 7782 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 5, .opc2 = 7, 7783 .access = PL1_R, .type = ARM_CP_CONST, 7784 .accessfn = access_aa64_tid3, 7785 .resetvalue = 0 }, 7786 { .name = "ID_AA64ISAR0_EL1", .state = ARM_CP_STATE_AA64, 7787 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 6, .opc2 = 0, 7788 .access = PL1_R, .type = ARM_CP_CONST, 7789 .accessfn = access_aa64_tid3, 7790 .resetvalue = cpu->isar.id_aa64isar0 }, 7791 { .name = "ID_AA64ISAR1_EL1", .state = ARM_CP_STATE_AA64, 7792 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 6, .opc2 = 1, 7793 .access = PL1_R, .type = ARM_CP_CONST, 7794 .accessfn = access_aa64_tid3, 7795 .resetvalue = cpu->isar.id_aa64isar1 }, 7796 { .name = "ID_AA64ISAR2_EL1_RESERVED", .state = ARM_CP_STATE_AA64, 7797 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 6, .opc2 = 2, 7798 .access = PL1_R, .type = ARM_CP_CONST, 7799 .accessfn = access_aa64_tid3, 7800 .resetvalue = 0 }, 7801 { .name = "ID_AA64ISAR3_EL1_RESERVED", .state = ARM_CP_STATE_AA64, 7802 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 6, .opc2 = 3, 7803 .access = PL1_R, .type = ARM_CP_CONST, 7804 .accessfn = access_aa64_tid3, 7805 .resetvalue = 0 }, 7806 { .name = "ID_AA64ISAR4_EL1_RESERVED", .state = ARM_CP_STATE_AA64, 7807 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 6, .opc2 = 4, 7808 .access = PL1_R, .type = ARM_CP_CONST, 7809 .accessfn = access_aa64_tid3, 7810 .resetvalue = 0 }, 7811 { .name = "ID_AA64ISAR5_EL1_RESERVED", .state = ARM_CP_STATE_AA64, 7812 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 6, .opc2 = 5, 7813 .access = PL1_R, .type = ARM_CP_CONST, 7814 .accessfn = access_aa64_tid3, 7815 .resetvalue = 0 }, 7816 { .name = "ID_AA64ISAR6_EL1_RESERVED", .state = ARM_CP_STATE_AA64, 7817 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 6, .opc2 = 6, 7818 .access = PL1_R, .type = ARM_CP_CONST, 7819 .accessfn = access_aa64_tid3, 7820 .resetvalue = 0 }, 7821 { .name = "ID_AA64ISAR7_EL1_RESERVED", .state = ARM_CP_STATE_AA64, 7822 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 6, .opc2 = 7, 7823 .access = PL1_R, .type = ARM_CP_CONST, 7824 .accessfn = access_aa64_tid3, 7825 .resetvalue = 0 }, 7826 { .name = "ID_AA64MMFR0_EL1", .state = ARM_CP_STATE_AA64, 7827 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 7, .opc2 = 0, 7828 .access = PL1_R, .type = ARM_CP_CONST, 7829 .accessfn = access_aa64_tid3, 7830 .resetvalue = cpu->isar.id_aa64mmfr0 }, 7831 { .name = "ID_AA64MMFR1_EL1", .state = ARM_CP_STATE_AA64, 7832 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 7, .opc2 = 1, 7833 .access = PL1_R, .type = ARM_CP_CONST, 7834 .accessfn = access_aa64_tid3, 7835 .resetvalue = cpu->isar.id_aa64mmfr1 }, 7836 { .name = "ID_AA64MMFR2_EL1", .state = ARM_CP_STATE_AA64, 7837 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 7, .opc2 = 2, 7838 .access = PL1_R, .type = ARM_CP_CONST, 7839 .accessfn = access_aa64_tid3, 7840 .resetvalue = cpu->isar.id_aa64mmfr2 }, 7841 { .name = "ID_AA64MMFR3_EL1_RESERVED", .state = ARM_CP_STATE_AA64, 7842 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 7, .opc2 = 3, 7843 .access = PL1_R, .type = ARM_CP_CONST, 7844 .accessfn = access_aa64_tid3, 7845 .resetvalue = 0 }, 7846 { .name = "ID_AA64MMFR4_EL1_RESERVED", .state = ARM_CP_STATE_AA64, 7847 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 7, .opc2 = 4, 7848 .access = PL1_R, .type = ARM_CP_CONST, 7849 .accessfn = access_aa64_tid3, 7850 .resetvalue = 0 }, 7851 { .name = "ID_AA64MMFR5_EL1_RESERVED", .state = ARM_CP_STATE_AA64, 7852 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 7, .opc2 = 5, 7853 .access = PL1_R, .type = ARM_CP_CONST, 7854 .accessfn = access_aa64_tid3, 7855 .resetvalue = 0 }, 7856 { .name = "ID_AA64MMFR6_EL1_RESERVED", .state = ARM_CP_STATE_AA64, 7857 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 7, .opc2 = 6, 7858 .access = PL1_R, .type = ARM_CP_CONST, 7859 .accessfn = access_aa64_tid3, 7860 .resetvalue = 0 }, 7861 { .name = "ID_AA64MMFR7_EL1_RESERVED", .state = ARM_CP_STATE_AA64, 7862 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 7, .opc2 = 7, 7863 .access = PL1_R, .type = ARM_CP_CONST, 7864 .accessfn = access_aa64_tid3, 7865 .resetvalue = 0 }, 7866 { .name = "MVFR0_EL1", .state = ARM_CP_STATE_AA64, 7867 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 3, .opc2 = 0, 7868 .access = PL1_R, .type = ARM_CP_CONST, 7869 .accessfn = access_aa64_tid3, 7870 .resetvalue = cpu->isar.mvfr0 }, 7871 { .name = "MVFR1_EL1", .state = ARM_CP_STATE_AA64, 7872 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 3, .opc2 = 1, 7873 .access = PL1_R, .type = ARM_CP_CONST, 7874 .accessfn = access_aa64_tid3, 7875 .resetvalue = cpu->isar.mvfr1 }, 7876 { .name = "MVFR2_EL1", .state = ARM_CP_STATE_AA64, 7877 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 3, .opc2 = 2, 7878 .access = PL1_R, .type = ARM_CP_CONST, 7879 .accessfn = access_aa64_tid3, 7880 .resetvalue = cpu->isar.mvfr2 }, 7881 { .name = "MVFR3_EL1_RESERVED", .state = ARM_CP_STATE_AA64, 7882 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 3, .opc2 = 3, 7883 .access = PL1_R, .type = ARM_CP_CONST, 7884 .accessfn = access_aa64_tid3, 7885 .resetvalue = 0 }, 7886 { .name = "ID_PFR2", .state = ARM_CP_STATE_BOTH, 7887 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 3, .opc2 = 4, 7888 .access = PL1_R, .type = ARM_CP_CONST, 7889 .accessfn = access_aa64_tid3, 7890 .resetvalue = cpu->isar.id_pfr2 }, 7891 { .name = "MVFR5_EL1_RESERVED", .state = ARM_CP_STATE_AA64, 7892 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 3, .opc2 = 5, 7893 .access = PL1_R, .type = ARM_CP_CONST, 7894 .accessfn = access_aa64_tid3, 7895 .resetvalue = 0 }, 7896 { .name = "MVFR6_EL1_RESERVED", .state = ARM_CP_STATE_AA64, 7897 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 3, .opc2 = 6, 7898 .access = PL1_R, .type = ARM_CP_CONST, 7899 .accessfn = access_aa64_tid3, 7900 .resetvalue = 0 }, 7901 { .name = "MVFR7_EL1_RESERVED", .state = ARM_CP_STATE_AA64, 7902 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 3, .opc2 = 7, 7903 .access = PL1_R, .type = ARM_CP_CONST, 7904 .accessfn = access_aa64_tid3, 7905 .resetvalue = 0 }, 7906 { .name = "PMCEID0", .state = ARM_CP_STATE_AA32, 7907 .cp = 15, .opc1 = 0, .crn = 9, .crm = 12, .opc2 = 6, 7908 .access = PL0_R, .accessfn = pmreg_access, .type = ARM_CP_CONST, 7909 .resetvalue = extract64(cpu->pmceid0, 0, 32) }, 7910 { .name = "PMCEID0_EL0", .state = ARM_CP_STATE_AA64, 7911 .opc0 = 3, .opc1 = 3, .crn = 9, .crm = 12, .opc2 = 6, 7912 .access = PL0_R, .accessfn = pmreg_access, .type = ARM_CP_CONST, 7913 .resetvalue = cpu->pmceid0 }, 7914 { .name = "PMCEID1", .state = ARM_CP_STATE_AA32, 7915 .cp = 15, .opc1 = 0, .crn = 9, .crm = 12, .opc2 = 7, 7916 .access = PL0_R, .accessfn = pmreg_access, .type = ARM_CP_CONST, 7917 .resetvalue = extract64(cpu->pmceid1, 0, 32) }, 7918 { .name = "PMCEID1_EL0", .state = ARM_CP_STATE_AA64, 7919 .opc0 = 3, .opc1 = 3, .crn = 9, .crm = 12, .opc2 = 7, 7920 .access = PL0_R, .accessfn = pmreg_access, .type = ARM_CP_CONST, 7921 .resetvalue = cpu->pmceid1 }, 7922 }; 7923 #ifdef CONFIG_USER_ONLY 7924 static const ARMCPRegUserSpaceInfo v8_user_idregs[] = { 7925 { .name = "ID_AA64PFR0_EL1", 7926 .exported_bits = 0x000f000f00ff0000, 7927 .fixed_bits = 0x0000000000000011 }, 7928 { .name = "ID_AA64PFR1_EL1", 7929 .exported_bits = 0x00000000000000f0 }, 7930 { .name = "ID_AA64PFR*_EL1_RESERVED", 7931 .is_glob = true }, 7932 { .name = "ID_AA64ZFR0_EL1" }, 7933 { .name = "ID_AA64MMFR0_EL1", 7934 .fixed_bits = 0x00000000ff000000 }, 7935 { .name = "ID_AA64MMFR1_EL1" }, 7936 { .name = "ID_AA64MMFR*_EL1_RESERVED", 7937 .is_glob = true }, 7938 { .name = "ID_AA64DFR0_EL1", 7939 .fixed_bits = 0x0000000000000006 }, 7940 { .name = "ID_AA64DFR1_EL1" }, 7941 { .name = "ID_AA64DFR*_EL1_RESERVED", 7942 .is_glob = true }, 7943 { .name = "ID_AA64AFR*", 7944 .is_glob = true }, 7945 { .name = "ID_AA64ISAR0_EL1", 7946 .exported_bits = 0x00fffffff0fffff0 }, 7947 { .name = "ID_AA64ISAR1_EL1", 7948 .exported_bits = 0x000000f0ffffffff }, 7949 { .name = "ID_AA64ISAR*_EL1_RESERVED", 7950 .is_glob = true }, 7951 }; 7952 modify_arm_cp_regs(v8_idregs, v8_user_idregs); 7953 #endif 7954 /* RVBAR_EL1 is only implemented if EL1 is the highest EL */ 7955 if (!arm_feature(env, ARM_FEATURE_EL3) && 7956 !arm_feature(env, ARM_FEATURE_EL2)) { 7957 ARMCPRegInfo rvbar = { 7958 .name = "RVBAR_EL1", .state = ARM_CP_STATE_AA64, 7959 .opc0 = 3, .opc1 = 0, .crn = 12, .crm = 0, .opc2 = 1, 7960 .access = PL1_R, 7961 .fieldoffset = offsetof(CPUARMState, cp15.rvbar), 7962 }; 7963 define_one_arm_cp_reg(cpu, &rvbar); 7964 } 7965 define_arm_cp_regs(cpu, v8_idregs); 7966 define_arm_cp_regs(cpu, v8_cp_reginfo); 7967 } 7968 7969 /* 7970 * Register the base EL2 cpregs. 7971 * Pre v8, these registers are implemented only as part of the 7972 * Virtualization Extensions (EL2 present). Beginning with v8, 7973 * if EL2 is missing but EL3 is enabled, mostly these become 7974 * RES0 from EL3, with some specific exceptions. 7975 */ 7976 if (arm_feature(env, ARM_FEATURE_EL2) 7977 || (arm_feature(env, ARM_FEATURE_EL3) 7978 && arm_feature(env, ARM_FEATURE_V8))) { 7979 uint64_t vmpidr_def = mpidr_read_val(env); 7980 ARMCPRegInfo vpidr_regs[] = { 7981 { .name = "VPIDR", .state = ARM_CP_STATE_AA32, 7982 .cp = 15, .opc1 = 4, .crn = 0, .crm = 0, .opc2 = 0, 7983 .access = PL2_RW, .accessfn = access_el3_aa32ns, 7984 .resetvalue = cpu->midr, 7985 .type = ARM_CP_ALIAS | ARM_CP_EL3_NO_EL2_C_NZ, 7986 .fieldoffset = offsetoflow32(CPUARMState, cp15.vpidr_el2) }, 7987 { .name = "VPIDR_EL2", .state = ARM_CP_STATE_AA64, 7988 .opc0 = 3, .opc1 = 4, .crn = 0, .crm = 0, .opc2 = 0, 7989 .access = PL2_RW, .resetvalue = cpu->midr, 7990 .type = ARM_CP_EL3_NO_EL2_C_NZ, 7991 .fieldoffset = offsetof(CPUARMState, cp15.vpidr_el2) }, 7992 { .name = "VMPIDR", .state = ARM_CP_STATE_AA32, 7993 .cp = 15, .opc1 = 4, .crn = 0, .crm = 0, .opc2 = 5, 7994 .access = PL2_RW, .accessfn = access_el3_aa32ns, 7995 .resetvalue = vmpidr_def, 7996 .type = ARM_CP_ALIAS | ARM_CP_EL3_NO_EL2_C_NZ, 7997 .fieldoffset = offsetoflow32(CPUARMState, cp15.vmpidr_el2) }, 7998 { .name = "VMPIDR_EL2", .state = ARM_CP_STATE_AA64, 7999 .opc0 = 3, .opc1 = 4, .crn = 0, .crm = 0, .opc2 = 5, 8000 .access = PL2_RW, .resetvalue = vmpidr_def, 8001 .type = ARM_CP_EL3_NO_EL2_C_NZ, 8002 .fieldoffset = offsetof(CPUARMState, cp15.vmpidr_el2) }, 8003 }; 8004 /* 8005 * The only field of MDCR_EL2 that has a defined architectural reset 8006 * value is MDCR_EL2.HPMN which should reset to the value of PMCR_EL0.N. 8007 */ 8008 ARMCPRegInfo mdcr_el2 = { 8009 .name = "MDCR_EL2", .state = ARM_CP_STATE_BOTH, 8010 .opc0 = 3, .opc1 = 4, .crn = 1, .crm = 1, .opc2 = 1, 8011 .access = PL2_RW, .resetvalue = pmu_num_counters(env), 8012 .fieldoffset = offsetof(CPUARMState, cp15.mdcr_el2), 8013 }; 8014 define_one_arm_cp_reg(cpu, &mdcr_el2); 8015 define_arm_cp_regs(cpu, vpidr_regs); 8016 define_arm_cp_regs(cpu, el2_cp_reginfo); 8017 if (arm_feature(env, ARM_FEATURE_V8)) { 8018 define_arm_cp_regs(cpu, el2_v8_cp_reginfo); 8019 } 8020 if (cpu_isar_feature(aa64_sel2, cpu)) { 8021 define_arm_cp_regs(cpu, el2_sec_cp_reginfo); 8022 } 8023 /* RVBAR_EL2 is only implemented if EL2 is the highest EL */ 8024 if (!arm_feature(env, ARM_FEATURE_EL3)) { 8025 ARMCPRegInfo rvbar = { 8026 .name = "RVBAR_EL2", .state = ARM_CP_STATE_AA64, 8027 .opc0 = 3, .opc1 = 4, .crn = 12, .crm = 0, .opc2 = 1, 8028 .access = PL2_R, 8029 .fieldoffset = offsetof(CPUARMState, cp15.rvbar), 8030 }; 8031 define_one_arm_cp_reg(cpu, &rvbar); 8032 } 8033 } 8034 8035 /* Register the base EL3 cpregs. */ 8036 if (arm_feature(env, ARM_FEATURE_EL3)) { 8037 define_arm_cp_regs(cpu, el3_cp_reginfo); 8038 ARMCPRegInfo el3_regs[] = { 8039 { .name = "RVBAR_EL3", .state = ARM_CP_STATE_AA64, 8040 .opc0 = 3, .opc1 = 6, .crn = 12, .crm = 0, .opc2 = 1, 8041 .access = PL3_R, 8042 .fieldoffset = offsetof(CPUARMState, cp15.rvbar), 8043 }, 8044 { .name = "SCTLR_EL3", .state = ARM_CP_STATE_AA64, 8045 .opc0 = 3, .opc1 = 6, .crn = 1, .crm = 0, .opc2 = 0, 8046 .access = PL3_RW, 8047 .raw_writefn = raw_write, .writefn = sctlr_write, 8048 .fieldoffset = offsetof(CPUARMState, cp15.sctlr_el[3]), 8049 .resetvalue = cpu->reset_sctlr }, 8050 }; 8051 8052 define_arm_cp_regs(cpu, el3_regs); 8053 } 8054 /* The behaviour of NSACR is sufficiently various that we don't 8055 * try to describe it in a single reginfo: 8056 * if EL3 is 64 bit, then trap to EL3 from S EL1, 8057 * reads as constant 0xc00 from NS EL1 and NS EL2 8058 * if EL3 is 32 bit, then RW at EL3, RO at NS EL1 and NS EL2 8059 * if v7 without EL3, register doesn't exist 8060 * if v8 without EL3, reads as constant 0xc00 from NS EL1 and NS EL2 8061 */ 8062 if (arm_feature(env, ARM_FEATURE_EL3)) { 8063 if (arm_feature(env, ARM_FEATURE_AARCH64)) { 8064 static const ARMCPRegInfo nsacr = { 8065 .name = "NSACR", .type = ARM_CP_CONST, 8066 .cp = 15, .opc1 = 0, .crn = 1, .crm = 1, .opc2 = 2, 8067 .access = PL1_RW, .accessfn = nsacr_access, 8068 .resetvalue = 0xc00 8069 }; 8070 define_one_arm_cp_reg(cpu, &nsacr); 8071 } else { 8072 static const ARMCPRegInfo nsacr = { 8073 .name = "NSACR", 8074 .cp = 15, .opc1 = 0, .crn = 1, .crm = 1, .opc2 = 2, 8075 .access = PL3_RW | PL1_R, 8076 .resetvalue = 0, 8077 .fieldoffset = offsetof(CPUARMState, cp15.nsacr) 8078 }; 8079 define_one_arm_cp_reg(cpu, &nsacr); 8080 } 8081 } else { 8082 if (arm_feature(env, ARM_FEATURE_V8)) { 8083 static const ARMCPRegInfo nsacr = { 8084 .name = "NSACR", .type = ARM_CP_CONST, 8085 .cp = 15, .opc1 = 0, .crn = 1, .crm = 1, .opc2 = 2, 8086 .access = PL1_R, 8087 .resetvalue = 0xc00 8088 }; 8089 define_one_arm_cp_reg(cpu, &nsacr); 8090 } 8091 } 8092 8093 if (arm_feature(env, ARM_FEATURE_PMSA)) { 8094 if (arm_feature(env, ARM_FEATURE_V6)) { 8095 /* PMSAv6 not implemented */ 8096 assert(arm_feature(env, ARM_FEATURE_V7)); 8097 define_arm_cp_regs(cpu, vmsa_pmsa_cp_reginfo); 8098 define_arm_cp_regs(cpu, pmsav7_cp_reginfo); 8099 } else { 8100 define_arm_cp_regs(cpu, pmsav5_cp_reginfo); 8101 } 8102 } else { 8103 define_arm_cp_regs(cpu, vmsa_pmsa_cp_reginfo); 8104 define_arm_cp_regs(cpu, vmsa_cp_reginfo); 8105 /* TTCBR2 is introduced with ARMv8.2-AA32HPD. */ 8106 if (cpu_isar_feature(aa32_hpd, cpu)) { 8107 define_one_arm_cp_reg(cpu, &ttbcr2_reginfo); 8108 } 8109 } 8110 if (arm_feature(env, ARM_FEATURE_THUMB2EE)) { 8111 define_arm_cp_regs(cpu, t2ee_cp_reginfo); 8112 } 8113 if (arm_feature(env, ARM_FEATURE_GENERIC_TIMER)) { 8114 define_arm_cp_regs(cpu, generic_timer_cp_reginfo); 8115 } 8116 if (arm_feature(env, ARM_FEATURE_VAPA)) { 8117 define_arm_cp_regs(cpu, vapa_cp_reginfo); 8118 } 8119 if (arm_feature(env, ARM_FEATURE_CACHE_TEST_CLEAN)) { 8120 define_arm_cp_regs(cpu, cache_test_clean_cp_reginfo); 8121 } 8122 if (arm_feature(env, ARM_FEATURE_CACHE_DIRTY_REG)) { 8123 define_arm_cp_regs(cpu, cache_dirty_status_cp_reginfo); 8124 } 8125 if (arm_feature(env, ARM_FEATURE_CACHE_BLOCK_OPS)) { 8126 define_arm_cp_regs(cpu, cache_block_ops_cp_reginfo); 8127 } 8128 if (arm_feature(env, ARM_FEATURE_OMAPCP)) { 8129 define_arm_cp_regs(cpu, omap_cp_reginfo); 8130 } 8131 if (arm_feature(env, ARM_FEATURE_STRONGARM)) { 8132 define_arm_cp_regs(cpu, strongarm_cp_reginfo); 8133 } 8134 if (arm_feature(env, ARM_FEATURE_XSCALE)) { 8135 define_arm_cp_regs(cpu, xscale_cp_reginfo); 8136 } 8137 if (arm_feature(env, ARM_FEATURE_DUMMY_C15_REGS)) { 8138 define_arm_cp_regs(cpu, dummy_c15_cp_reginfo); 8139 } 8140 if (arm_feature(env, ARM_FEATURE_LPAE)) { 8141 define_arm_cp_regs(cpu, lpae_cp_reginfo); 8142 } 8143 if (cpu_isar_feature(aa32_jazelle, cpu)) { 8144 define_arm_cp_regs(cpu, jazelle_regs); 8145 } 8146 /* Slightly awkwardly, the OMAP and StrongARM cores need all of 8147 * cp15 crn=0 to be writes-ignored, whereas for other cores they should 8148 * be read-only (ie write causes UNDEF exception). 8149 */ 8150 { 8151 ARMCPRegInfo id_pre_v8_midr_cp_reginfo[] = { 8152 /* Pre-v8 MIDR space. 8153 * Note that the MIDR isn't a simple constant register because 8154 * of the TI925 behaviour where writes to another register can 8155 * cause the MIDR value to change. 8156 * 8157 * Unimplemented registers in the c15 0 0 0 space default to 8158 * MIDR. Define MIDR first as this entire space, then CTR, TCMTR 8159 * and friends override accordingly. 8160 */ 8161 { .name = "MIDR", 8162 .cp = 15, .crn = 0, .crm = 0, .opc1 = 0, .opc2 = CP_ANY, 8163 .access = PL1_R, .resetvalue = cpu->midr, 8164 .writefn = arm_cp_write_ignore, .raw_writefn = raw_write, 8165 .readfn = midr_read, 8166 .fieldoffset = offsetof(CPUARMState, cp15.c0_cpuid), 8167 .type = ARM_CP_OVERRIDE }, 8168 /* crn = 0 op1 = 0 crm = 3..7 : currently unassigned; we RAZ. */ 8169 { .name = "DUMMY", 8170 .cp = 15, .crn = 0, .crm = 3, .opc1 = 0, .opc2 = CP_ANY, 8171 .access = PL1_R, .type = ARM_CP_CONST, .resetvalue = 0 }, 8172 { .name = "DUMMY", 8173 .cp = 15, .crn = 0, .crm = 4, .opc1 = 0, .opc2 = CP_ANY, 8174 .access = PL1_R, .type = ARM_CP_CONST, .resetvalue = 0 }, 8175 { .name = "DUMMY", 8176 .cp = 15, .crn = 0, .crm = 5, .opc1 = 0, .opc2 = CP_ANY, 8177 .access = PL1_R, .type = ARM_CP_CONST, .resetvalue = 0 }, 8178 { .name = "DUMMY", 8179 .cp = 15, .crn = 0, .crm = 6, .opc1 = 0, .opc2 = CP_ANY, 8180 .access = PL1_R, .type = ARM_CP_CONST, .resetvalue = 0 }, 8181 { .name = "DUMMY", 8182 .cp = 15, .crn = 0, .crm = 7, .opc1 = 0, .opc2 = CP_ANY, 8183 .access = PL1_R, .type = ARM_CP_CONST, .resetvalue = 0 }, 8184 }; 8185 ARMCPRegInfo id_v8_midr_cp_reginfo[] = { 8186 { .name = "MIDR_EL1", .state = ARM_CP_STATE_BOTH, 8187 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 0, .opc2 = 0, 8188 .access = PL1_R, .type = ARM_CP_NO_RAW, .resetvalue = cpu->midr, 8189 .fieldoffset = offsetof(CPUARMState, cp15.c0_cpuid), 8190 .readfn = midr_read }, 8191 /* crn = 0 op1 = 0 crm = 0 op2 = 4,7 : AArch32 aliases of MIDR */ 8192 { .name = "MIDR", .type = ARM_CP_ALIAS | ARM_CP_CONST, 8193 .cp = 15, .crn = 0, .crm = 0, .opc1 = 0, .opc2 = 4, 8194 .access = PL1_R, .resetvalue = cpu->midr }, 8195 { .name = "MIDR", .type = ARM_CP_ALIAS | ARM_CP_CONST, 8196 .cp = 15, .crn = 0, .crm = 0, .opc1 = 0, .opc2 = 7, 8197 .access = PL1_R, .resetvalue = cpu->midr }, 8198 { .name = "REVIDR_EL1", .state = ARM_CP_STATE_BOTH, 8199 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 0, .opc2 = 6, 8200 .access = PL1_R, 8201 .accessfn = access_aa64_tid1, 8202 .type = ARM_CP_CONST, .resetvalue = cpu->revidr }, 8203 }; 8204 ARMCPRegInfo id_cp_reginfo[] = { 8205 /* These are common to v8 and pre-v8 */ 8206 { .name = "CTR", 8207 .cp = 15, .crn = 0, .crm = 0, .opc1 = 0, .opc2 = 1, 8208 .access = PL1_R, .accessfn = ctr_el0_access, 8209 .type = ARM_CP_CONST, .resetvalue = cpu->ctr }, 8210 { .name = "CTR_EL0", .state = ARM_CP_STATE_AA64, 8211 .opc0 = 3, .opc1 = 3, .opc2 = 1, .crn = 0, .crm = 0, 8212 .access = PL0_R, .accessfn = ctr_el0_access, 8213 .type = ARM_CP_CONST, .resetvalue = cpu->ctr }, 8214 /* TCMTR and TLBTR exist in v8 but have no 64-bit versions */ 8215 { .name = "TCMTR", 8216 .cp = 15, .crn = 0, .crm = 0, .opc1 = 0, .opc2 = 2, 8217 .access = PL1_R, 8218 .accessfn = access_aa32_tid1, 8219 .type = ARM_CP_CONST, .resetvalue = 0 }, 8220 }; 8221 /* TLBTR is specific to VMSA */ 8222 ARMCPRegInfo id_tlbtr_reginfo = { 8223 .name = "TLBTR", 8224 .cp = 15, .crn = 0, .crm = 0, .opc1 = 0, .opc2 = 3, 8225 .access = PL1_R, 8226 .accessfn = access_aa32_tid1, 8227 .type = ARM_CP_CONST, .resetvalue = 0, 8228 }; 8229 /* MPUIR is specific to PMSA V6+ */ 8230 ARMCPRegInfo id_mpuir_reginfo = { 8231 .name = "MPUIR", 8232 .cp = 15, .crn = 0, .crm = 0, .opc1 = 0, .opc2 = 4, 8233 .access = PL1_R, .type = ARM_CP_CONST, 8234 .resetvalue = cpu->pmsav7_dregion << 8 8235 }; 8236 static const ARMCPRegInfo crn0_wi_reginfo = { 8237 .name = "CRN0_WI", .cp = 15, .crn = 0, .crm = CP_ANY, 8238 .opc1 = CP_ANY, .opc2 = CP_ANY, .access = PL1_W, 8239 .type = ARM_CP_NOP | ARM_CP_OVERRIDE 8240 }; 8241 #ifdef CONFIG_USER_ONLY 8242 static const ARMCPRegUserSpaceInfo id_v8_user_midr_cp_reginfo[] = { 8243 { .name = "MIDR_EL1", 8244 .exported_bits = 0x00000000ffffffff }, 8245 { .name = "REVIDR_EL1" }, 8246 }; 8247 modify_arm_cp_regs(id_v8_midr_cp_reginfo, id_v8_user_midr_cp_reginfo); 8248 #endif 8249 if (arm_feature(env, ARM_FEATURE_OMAPCP) || 8250 arm_feature(env, ARM_FEATURE_STRONGARM)) { 8251 size_t i; 8252 /* Register the blanket "writes ignored" value first to cover the 8253 * whole space. Then update the specific ID registers to allow write 8254 * access, so that they ignore writes rather than causing them to 8255 * UNDEF. 8256 */ 8257 define_one_arm_cp_reg(cpu, &crn0_wi_reginfo); 8258 for (i = 0; i < ARRAY_SIZE(id_pre_v8_midr_cp_reginfo); ++i) { 8259 id_pre_v8_midr_cp_reginfo[i].access = PL1_RW; 8260 } 8261 for (i = 0; i < ARRAY_SIZE(id_cp_reginfo); ++i) { 8262 id_cp_reginfo[i].access = PL1_RW; 8263 } 8264 id_mpuir_reginfo.access = PL1_RW; 8265 id_tlbtr_reginfo.access = PL1_RW; 8266 } 8267 if (arm_feature(env, ARM_FEATURE_V8)) { 8268 define_arm_cp_regs(cpu, id_v8_midr_cp_reginfo); 8269 } else { 8270 define_arm_cp_regs(cpu, id_pre_v8_midr_cp_reginfo); 8271 } 8272 define_arm_cp_regs(cpu, id_cp_reginfo); 8273 if (!arm_feature(env, ARM_FEATURE_PMSA)) { 8274 define_one_arm_cp_reg(cpu, &id_tlbtr_reginfo); 8275 } else if (arm_feature(env, ARM_FEATURE_V7)) { 8276 define_one_arm_cp_reg(cpu, &id_mpuir_reginfo); 8277 } 8278 } 8279 8280 if (arm_feature(env, ARM_FEATURE_MPIDR)) { 8281 ARMCPRegInfo mpidr_cp_reginfo[] = { 8282 { .name = "MPIDR_EL1", .state = ARM_CP_STATE_BOTH, 8283 .opc0 = 3, .crn = 0, .crm = 0, .opc1 = 0, .opc2 = 5, 8284 .access = PL1_R, .readfn = mpidr_read, .type = ARM_CP_NO_RAW }, 8285 }; 8286 #ifdef CONFIG_USER_ONLY 8287 static const ARMCPRegUserSpaceInfo mpidr_user_cp_reginfo[] = { 8288 { .name = "MPIDR_EL1", 8289 .fixed_bits = 0x0000000080000000 }, 8290 }; 8291 modify_arm_cp_regs(mpidr_cp_reginfo, mpidr_user_cp_reginfo); 8292 #endif 8293 define_arm_cp_regs(cpu, mpidr_cp_reginfo); 8294 } 8295 8296 if (arm_feature(env, ARM_FEATURE_AUXCR)) { 8297 ARMCPRegInfo auxcr_reginfo[] = { 8298 { .name = "ACTLR_EL1", .state = ARM_CP_STATE_BOTH, 8299 .opc0 = 3, .opc1 = 0, .crn = 1, .crm = 0, .opc2 = 1, 8300 .access = PL1_RW, .accessfn = access_tacr, 8301 .type = ARM_CP_CONST, .resetvalue = cpu->reset_auxcr }, 8302 { .name = "ACTLR_EL2", .state = ARM_CP_STATE_BOTH, 8303 .opc0 = 3, .opc1 = 4, .crn = 1, .crm = 0, .opc2 = 1, 8304 .access = PL2_RW, .type = ARM_CP_CONST, 8305 .resetvalue = 0 }, 8306 { .name = "ACTLR_EL3", .state = ARM_CP_STATE_AA64, 8307 .opc0 = 3, .opc1 = 6, .crn = 1, .crm = 0, .opc2 = 1, 8308 .access = PL3_RW, .type = ARM_CP_CONST, 8309 .resetvalue = 0 }, 8310 }; 8311 define_arm_cp_regs(cpu, auxcr_reginfo); 8312 if (cpu_isar_feature(aa32_ac2, cpu)) { 8313 define_arm_cp_regs(cpu, actlr2_hactlr2_reginfo); 8314 } 8315 } 8316 8317 if (arm_feature(env, ARM_FEATURE_CBAR)) { 8318 /* 8319 * CBAR is IMPDEF, but common on Arm Cortex-A implementations. 8320 * There are two flavours: 8321 * (1) older 32-bit only cores have a simple 32-bit CBAR 8322 * (2) 64-bit cores have a 64-bit CBAR visible to AArch64, plus a 8323 * 32-bit register visible to AArch32 at a different encoding 8324 * to the "flavour 1" register and with the bits rearranged to 8325 * be able to squash a 64-bit address into the 32-bit view. 8326 * We distinguish the two via the ARM_FEATURE_AARCH64 flag, but 8327 * in future if we support AArch32-only configs of some of the 8328 * AArch64 cores we might need to add a specific feature flag 8329 * to indicate cores with "flavour 2" CBAR. 8330 */ 8331 if (arm_feature(env, ARM_FEATURE_AARCH64)) { 8332 /* 32 bit view is [31:18] 0...0 [43:32]. */ 8333 uint32_t cbar32 = (extract64(cpu->reset_cbar, 18, 14) << 18) 8334 | extract64(cpu->reset_cbar, 32, 12); 8335 ARMCPRegInfo cbar_reginfo[] = { 8336 { .name = "CBAR", 8337 .type = ARM_CP_CONST, 8338 .cp = 15, .crn = 15, .crm = 3, .opc1 = 1, .opc2 = 0, 8339 .access = PL1_R, .resetvalue = cbar32 }, 8340 { .name = "CBAR_EL1", .state = ARM_CP_STATE_AA64, 8341 .type = ARM_CP_CONST, 8342 .opc0 = 3, .opc1 = 1, .crn = 15, .crm = 3, .opc2 = 0, 8343 .access = PL1_R, .resetvalue = cpu->reset_cbar }, 8344 }; 8345 /* We don't implement a r/w 64 bit CBAR currently */ 8346 assert(arm_feature(env, ARM_FEATURE_CBAR_RO)); 8347 define_arm_cp_regs(cpu, cbar_reginfo); 8348 } else { 8349 ARMCPRegInfo cbar = { 8350 .name = "CBAR", 8351 .cp = 15, .crn = 15, .crm = 0, .opc1 = 4, .opc2 = 0, 8352 .access = PL1_R|PL3_W, .resetvalue = cpu->reset_cbar, 8353 .fieldoffset = offsetof(CPUARMState, 8354 cp15.c15_config_base_address) 8355 }; 8356 if (arm_feature(env, ARM_FEATURE_CBAR_RO)) { 8357 cbar.access = PL1_R; 8358 cbar.fieldoffset = 0; 8359 cbar.type = ARM_CP_CONST; 8360 } 8361 define_one_arm_cp_reg(cpu, &cbar); 8362 } 8363 } 8364 8365 if (arm_feature(env, ARM_FEATURE_VBAR)) { 8366 static const ARMCPRegInfo vbar_cp_reginfo[] = { 8367 { .name = "VBAR", .state = ARM_CP_STATE_BOTH, 8368 .opc0 = 3, .crn = 12, .crm = 0, .opc1 = 0, .opc2 = 0, 8369 .access = PL1_RW, .writefn = vbar_write, 8370 .bank_fieldoffsets = { offsetof(CPUARMState, cp15.vbar_s), 8371 offsetof(CPUARMState, cp15.vbar_ns) }, 8372 .resetvalue = 0 }, 8373 }; 8374 define_arm_cp_regs(cpu, vbar_cp_reginfo); 8375 } 8376 8377 /* Generic registers whose values depend on the implementation */ 8378 { 8379 ARMCPRegInfo sctlr = { 8380 .name = "SCTLR", .state = ARM_CP_STATE_BOTH, 8381 .opc0 = 3, .opc1 = 0, .crn = 1, .crm = 0, .opc2 = 0, 8382 .access = PL1_RW, .accessfn = access_tvm_trvm, 8383 .bank_fieldoffsets = { offsetof(CPUARMState, cp15.sctlr_s), 8384 offsetof(CPUARMState, cp15.sctlr_ns) }, 8385 .writefn = sctlr_write, .resetvalue = cpu->reset_sctlr, 8386 .raw_writefn = raw_write, 8387 }; 8388 if (arm_feature(env, ARM_FEATURE_XSCALE)) { 8389 /* Normally we would always end the TB on an SCTLR write, but Linux 8390 * arch/arm/mach-pxa/sleep.S expects two instructions following 8391 * an MMU enable to execute from cache. Imitate this behaviour. 8392 */ 8393 sctlr.type |= ARM_CP_SUPPRESS_TB_END; 8394 } 8395 define_one_arm_cp_reg(cpu, &sctlr); 8396 } 8397 8398 if (cpu_isar_feature(aa64_lor, cpu)) { 8399 define_arm_cp_regs(cpu, lor_reginfo); 8400 } 8401 if (cpu_isar_feature(aa64_pan, cpu)) { 8402 define_one_arm_cp_reg(cpu, &pan_reginfo); 8403 } 8404 #ifndef CONFIG_USER_ONLY 8405 if (cpu_isar_feature(aa64_ats1e1, cpu)) { 8406 define_arm_cp_regs(cpu, ats1e1_reginfo); 8407 } 8408 if (cpu_isar_feature(aa32_ats1e1, cpu)) { 8409 define_arm_cp_regs(cpu, ats1cp_reginfo); 8410 } 8411 #endif 8412 if (cpu_isar_feature(aa64_uao, cpu)) { 8413 define_one_arm_cp_reg(cpu, &uao_reginfo); 8414 } 8415 8416 if (cpu_isar_feature(aa64_dit, cpu)) { 8417 define_one_arm_cp_reg(cpu, &dit_reginfo); 8418 } 8419 if (cpu_isar_feature(aa64_ssbs, cpu)) { 8420 define_one_arm_cp_reg(cpu, &ssbs_reginfo); 8421 } 8422 if (cpu_isar_feature(any_ras, cpu)) { 8423 define_arm_cp_regs(cpu, minimal_ras_reginfo); 8424 } 8425 8426 if (cpu_isar_feature(aa64_vh, cpu) || 8427 cpu_isar_feature(aa64_debugv8p2, cpu)) { 8428 define_one_arm_cp_reg(cpu, &contextidr_el2); 8429 } 8430 if (arm_feature(env, ARM_FEATURE_EL2) && cpu_isar_feature(aa64_vh, cpu)) { 8431 define_arm_cp_regs(cpu, vhe_reginfo); 8432 } 8433 8434 if (cpu_isar_feature(aa64_sve, cpu)) { 8435 define_arm_cp_regs(cpu, zcr_reginfo); 8436 } 8437 8438 if (cpu_isar_feature(aa64_hcx, cpu)) { 8439 define_one_arm_cp_reg(cpu, &hcrx_el2_reginfo); 8440 } 8441 8442 #ifdef TARGET_AARCH64 8443 if (cpu_isar_feature(aa64_pauth, cpu)) { 8444 define_arm_cp_regs(cpu, pauth_reginfo); 8445 } 8446 if (cpu_isar_feature(aa64_rndr, cpu)) { 8447 define_arm_cp_regs(cpu, rndr_reginfo); 8448 } 8449 if (cpu_isar_feature(aa64_tlbirange, cpu)) { 8450 define_arm_cp_regs(cpu, tlbirange_reginfo); 8451 } 8452 if (cpu_isar_feature(aa64_tlbios, cpu)) { 8453 define_arm_cp_regs(cpu, tlbios_reginfo); 8454 } 8455 #ifndef CONFIG_USER_ONLY 8456 /* Data Cache clean instructions up to PoP */ 8457 if (cpu_isar_feature(aa64_dcpop, cpu)) { 8458 define_one_arm_cp_reg(cpu, dcpop_reg); 8459 8460 if (cpu_isar_feature(aa64_dcpodp, cpu)) { 8461 define_one_arm_cp_reg(cpu, dcpodp_reg); 8462 } 8463 } 8464 #endif /*CONFIG_USER_ONLY*/ 8465 8466 /* 8467 * If full MTE is enabled, add all of the system registers. 8468 * If only "instructions available at EL0" are enabled, 8469 * then define only a RAZ/WI version of PSTATE.TCO. 8470 */ 8471 if (cpu_isar_feature(aa64_mte, cpu)) { 8472 define_arm_cp_regs(cpu, mte_reginfo); 8473 define_arm_cp_regs(cpu, mte_el0_cacheop_reginfo); 8474 } else if (cpu_isar_feature(aa64_mte_insn_reg, cpu)) { 8475 define_arm_cp_regs(cpu, mte_tco_ro_reginfo); 8476 define_arm_cp_regs(cpu, mte_el0_cacheop_reginfo); 8477 } 8478 8479 if (cpu_isar_feature(aa64_scxtnum, cpu)) { 8480 define_arm_cp_regs(cpu, scxtnum_reginfo); 8481 } 8482 #endif 8483 8484 if (cpu_isar_feature(any_predinv, cpu)) { 8485 define_arm_cp_regs(cpu, predinv_reginfo); 8486 } 8487 8488 if (cpu_isar_feature(any_ccidx, cpu)) { 8489 define_arm_cp_regs(cpu, ccsidr2_reginfo); 8490 } 8491 8492 #ifndef CONFIG_USER_ONLY 8493 /* 8494 * Register redirections and aliases must be done last, 8495 * after the registers from the other extensions have been defined. 8496 */ 8497 if (arm_feature(env, ARM_FEATURE_EL2) && cpu_isar_feature(aa64_vh, cpu)) { 8498 define_arm_vh_e2h_redirects_aliases(cpu); 8499 } 8500 #endif 8501 } 8502 8503 /* Sort alphabetically by type name, except for "any". */ 8504 static gint arm_cpu_list_compare(gconstpointer a, gconstpointer b) 8505 { 8506 ObjectClass *class_a = (ObjectClass *)a; 8507 ObjectClass *class_b = (ObjectClass *)b; 8508 const char *name_a, *name_b; 8509 8510 name_a = object_class_get_name(class_a); 8511 name_b = object_class_get_name(class_b); 8512 if (strcmp(name_a, "any-" TYPE_ARM_CPU) == 0) { 8513 return 1; 8514 } else if (strcmp(name_b, "any-" TYPE_ARM_CPU) == 0) { 8515 return -1; 8516 } else { 8517 return strcmp(name_a, name_b); 8518 } 8519 } 8520 8521 static void arm_cpu_list_entry(gpointer data, gpointer user_data) 8522 { 8523 ObjectClass *oc = data; 8524 const char *typename; 8525 char *name; 8526 8527 typename = object_class_get_name(oc); 8528 name = g_strndup(typename, strlen(typename) - strlen("-" TYPE_ARM_CPU)); 8529 qemu_printf(" %s\n", name); 8530 g_free(name); 8531 } 8532 8533 void arm_cpu_list(void) 8534 { 8535 GSList *list; 8536 8537 list = object_class_get_list(TYPE_ARM_CPU, false); 8538 list = g_slist_sort(list, arm_cpu_list_compare); 8539 qemu_printf("Available CPUs:\n"); 8540 g_slist_foreach(list, arm_cpu_list_entry, NULL); 8541 g_slist_free(list); 8542 } 8543 8544 static void arm_cpu_add_definition(gpointer data, gpointer user_data) 8545 { 8546 ObjectClass *oc = data; 8547 CpuDefinitionInfoList **cpu_list = user_data; 8548 CpuDefinitionInfo *info; 8549 const char *typename; 8550 8551 typename = object_class_get_name(oc); 8552 info = g_malloc0(sizeof(*info)); 8553 info->name = g_strndup(typename, 8554 strlen(typename) - strlen("-" TYPE_ARM_CPU)); 8555 info->q_typename = g_strdup(typename); 8556 8557 QAPI_LIST_PREPEND(*cpu_list, info); 8558 } 8559 8560 CpuDefinitionInfoList *qmp_query_cpu_definitions(Error **errp) 8561 { 8562 CpuDefinitionInfoList *cpu_list = NULL; 8563 GSList *list; 8564 8565 list = object_class_get_list(TYPE_ARM_CPU, false); 8566 g_slist_foreach(list, arm_cpu_add_definition, &cpu_list); 8567 g_slist_free(list); 8568 8569 return cpu_list; 8570 } 8571 8572 /* 8573 * Private utility function for define_one_arm_cp_reg_with_opaque(): 8574 * add a single reginfo struct to the hash table. 8575 */ 8576 static void add_cpreg_to_hashtable(ARMCPU *cpu, const ARMCPRegInfo *r, 8577 void *opaque, CPState state, 8578 CPSecureState secstate, 8579 int crm, int opc1, int opc2, 8580 const char *name) 8581 { 8582 CPUARMState *env = &cpu->env; 8583 uint32_t key; 8584 ARMCPRegInfo *r2; 8585 bool is64 = r->type & ARM_CP_64BIT; 8586 bool ns = secstate & ARM_CP_SECSTATE_NS; 8587 int cp = r->cp; 8588 size_t name_len; 8589 bool make_const; 8590 8591 switch (state) { 8592 case ARM_CP_STATE_AA32: 8593 /* We assume it is a cp15 register if the .cp field is left unset. */ 8594 if (cp == 0 && r->state == ARM_CP_STATE_BOTH) { 8595 cp = 15; 8596 } 8597 key = ENCODE_CP_REG(cp, is64, ns, r->crn, crm, opc1, opc2); 8598 break; 8599 case ARM_CP_STATE_AA64: 8600 /* 8601 * To allow abbreviation of ARMCPRegInfo definitions, we treat 8602 * cp == 0 as equivalent to the value for "standard guest-visible 8603 * sysreg". STATE_BOTH definitions are also always "standard sysreg" 8604 * in their AArch64 view (the .cp value may be non-zero for the 8605 * benefit of the AArch32 view). 8606 */ 8607 if (cp == 0 || r->state == ARM_CP_STATE_BOTH) { 8608 cp = CP_REG_ARM64_SYSREG_CP; 8609 } 8610 key = ENCODE_AA64_CP_REG(cp, r->crn, crm, r->opc0, opc1, opc2); 8611 break; 8612 default: 8613 g_assert_not_reached(); 8614 } 8615 8616 /* Overriding of an existing definition must be explicitly requested. */ 8617 if (!(r->type & ARM_CP_OVERRIDE)) { 8618 const ARMCPRegInfo *oldreg = get_arm_cp_reginfo(cpu->cp_regs, key); 8619 if (oldreg) { 8620 assert(oldreg->type & ARM_CP_OVERRIDE); 8621 } 8622 } 8623 8624 /* 8625 * Eliminate registers that are not present because the EL is missing. 8626 * Doing this here makes it easier to put all registers for a given 8627 * feature into the same ARMCPRegInfo array and define them all at once. 8628 */ 8629 make_const = false; 8630 if (arm_feature(env, ARM_FEATURE_EL3)) { 8631 /* 8632 * An EL2 register without EL2 but with EL3 is (usually) RES0. 8633 * See rule RJFFP in section D1.1.3 of DDI0487H.a. 8634 */ 8635 int min_el = ctz32(r->access) / 2; 8636 if (min_el == 2 && !arm_feature(env, ARM_FEATURE_EL2)) { 8637 if (r->type & ARM_CP_EL3_NO_EL2_UNDEF) { 8638 return; 8639 } 8640 make_const = !(r->type & ARM_CP_EL3_NO_EL2_KEEP); 8641 } 8642 } else { 8643 CPAccessRights max_el = (arm_feature(env, ARM_FEATURE_EL2) 8644 ? PL2_RW : PL1_RW); 8645 if ((r->access & max_el) == 0) { 8646 return; 8647 } 8648 } 8649 8650 /* Combine cpreg and name into one allocation. */ 8651 name_len = strlen(name) + 1; 8652 r2 = g_malloc(sizeof(*r2) + name_len); 8653 *r2 = *r; 8654 r2->name = memcpy(r2 + 1, name, name_len); 8655 8656 /* 8657 * Update fields to match the instantiation, overwiting wildcards 8658 * such as CP_ANY, ARM_CP_STATE_BOTH, or ARM_CP_SECSTATE_BOTH. 8659 */ 8660 r2->cp = cp; 8661 r2->crm = crm; 8662 r2->opc1 = opc1; 8663 r2->opc2 = opc2; 8664 r2->state = state; 8665 r2->secure = secstate; 8666 if (opaque) { 8667 r2->opaque = opaque; 8668 } 8669 8670 if (make_const) { 8671 /* This should not have been a very special register to begin. */ 8672 int old_special = r2->type & ARM_CP_SPECIAL_MASK; 8673 assert(old_special == 0 || old_special == ARM_CP_NOP); 8674 /* 8675 * Set the special function to CONST, retaining the other flags. 8676 * This is important for e.g. ARM_CP_SVE so that we still 8677 * take the SVE trap if CPTR_EL3.EZ == 0. 8678 */ 8679 r2->type = (r2->type & ~ARM_CP_SPECIAL_MASK) | ARM_CP_CONST; 8680 /* 8681 * Usually, these registers become RES0, but there are a few 8682 * special cases like VPIDR_EL2 which have a constant non-zero 8683 * value with writes ignored. 8684 */ 8685 if (!(r->type & ARM_CP_EL3_NO_EL2_C_NZ)) { 8686 r2->resetvalue = 0; 8687 } 8688 /* 8689 * ARM_CP_CONST has precedence, so removing the callbacks and 8690 * offsets are not strictly necessary, but it is potentially 8691 * less confusing to debug later. 8692 */ 8693 r2->readfn = NULL; 8694 r2->writefn = NULL; 8695 r2->raw_readfn = NULL; 8696 r2->raw_writefn = NULL; 8697 r2->resetfn = NULL; 8698 r2->fieldoffset = 0; 8699 r2->bank_fieldoffsets[0] = 0; 8700 r2->bank_fieldoffsets[1] = 0; 8701 } else { 8702 bool isbanked = r->bank_fieldoffsets[0] && r->bank_fieldoffsets[1]; 8703 8704 if (isbanked) { 8705 /* 8706 * Register is banked (using both entries in array). 8707 * Overwriting fieldoffset as the array is only used to define 8708 * banked registers but later only fieldoffset is used. 8709 */ 8710 r2->fieldoffset = r->bank_fieldoffsets[ns]; 8711 } 8712 if (state == ARM_CP_STATE_AA32) { 8713 if (isbanked) { 8714 /* 8715 * If the register is banked then we don't need to migrate or 8716 * reset the 32-bit instance in certain cases: 8717 * 8718 * 1) If the register has both 32-bit and 64-bit instances 8719 * then we can count on the 64-bit instance taking care 8720 * of the non-secure bank. 8721 * 2) If ARMv8 is enabled then we can count on a 64-bit 8722 * version taking care of the secure bank. This requires 8723 * that separate 32 and 64-bit definitions are provided. 8724 */ 8725 if ((r->state == ARM_CP_STATE_BOTH && ns) || 8726 (arm_feature(env, ARM_FEATURE_V8) && !ns)) { 8727 r2->type |= ARM_CP_ALIAS; 8728 } 8729 } else if ((secstate != r->secure) && !ns) { 8730 /* 8731 * The register is not banked so we only want to allow 8732 * migration of the non-secure instance. 8733 */ 8734 r2->type |= ARM_CP_ALIAS; 8735 } 8736 8737 if (HOST_BIG_ENDIAN && 8738 r->state == ARM_CP_STATE_BOTH && r2->fieldoffset) { 8739 r2->fieldoffset += sizeof(uint32_t); 8740 } 8741 } 8742 } 8743 8744 /* 8745 * By convention, for wildcarded registers only the first 8746 * entry is used for migration; the others are marked as 8747 * ALIAS so we don't try to transfer the register 8748 * multiple times. Special registers (ie NOP/WFI) are 8749 * never migratable and not even raw-accessible. 8750 */ 8751 if (r2->type & ARM_CP_SPECIAL_MASK) { 8752 r2->type |= ARM_CP_NO_RAW; 8753 } 8754 if (((r->crm == CP_ANY) && crm != 0) || 8755 ((r->opc1 == CP_ANY) && opc1 != 0) || 8756 ((r->opc2 == CP_ANY) && opc2 != 0)) { 8757 r2->type |= ARM_CP_ALIAS | ARM_CP_NO_GDB; 8758 } 8759 8760 /* 8761 * Check that raw accesses are either forbidden or handled. Note that 8762 * we can't assert this earlier because the setup of fieldoffset for 8763 * banked registers has to be done first. 8764 */ 8765 if (!(r2->type & ARM_CP_NO_RAW)) { 8766 assert(!raw_accessors_invalid(r2)); 8767 } 8768 8769 g_hash_table_insert(cpu->cp_regs, (gpointer)(uintptr_t)key, r2); 8770 } 8771 8772 8773 void define_one_arm_cp_reg_with_opaque(ARMCPU *cpu, 8774 const ARMCPRegInfo *r, void *opaque) 8775 { 8776 /* Define implementations of coprocessor registers. 8777 * We store these in a hashtable because typically 8778 * there are less than 150 registers in a space which 8779 * is 16*16*16*8*8 = 262144 in size. 8780 * Wildcarding is supported for the crm, opc1 and opc2 fields. 8781 * If a register is defined twice then the second definition is 8782 * used, so this can be used to define some generic registers and 8783 * then override them with implementation specific variations. 8784 * At least one of the original and the second definition should 8785 * include ARM_CP_OVERRIDE in its type bits -- this is just a guard 8786 * against accidental use. 8787 * 8788 * The state field defines whether the register is to be 8789 * visible in the AArch32 or AArch64 execution state. If the 8790 * state is set to ARM_CP_STATE_BOTH then we synthesise a 8791 * reginfo structure for the AArch32 view, which sees the lower 8792 * 32 bits of the 64 bit register. 8793 * 8794 * Only registers visible in AArch64 may set r->opc0; opc0 cannot 8795 * be wildcarded. AArch64 registers are always considered to be 64 8796 * bits; the ARM_CP_64BIT* flag applies only to the AArch32 view of 8797 * the register, if any. 8798 */ 8799 int crm, opc1, opc2; 8800 int crmmin = (r->crm == CP_ANY) ? 0 : r->crm; 8801 int crmmax = (r->crm == CP_ANY) ? 15 : r->crm; 8802 int opc1min = (r->opc1 == CP_ANY) ? 0 : r->opc1; 8803 int opc1max = (r->opc1 == CP_ANY) ? 7 : r->opc1; 8804 int opc2min = (r->opc2 == CP_ANY) ? 0 : r->opc2; 8805 int opc2max = (r->opc2 == CP_ANY) ? 7 : r->opc2; 8806 CPState state; 8807 8808 /* 64 bit registers have only CRm and Opc1 fields */ 8809 assert(!((r->type & ARM_CP_64BIT) && (r->opc2 || r->crn))); 8810 /* op0 only exists in the AArch64 encodings */ 8811 assert((r->state != ARM_CP_STATE_AA32) || (r->opc0 == 0)); 8812 /* AArch64 regs are all 64 bit so ARM_CP_64BIT is meaningless */ 8813 assert((r->state != ARM_CP_STATE_AA64) || !(r->type & ARM_CP_64BIT)); 8814 /* 8815 * This API is only for Arm's system coprocessors (14 and 15) or 8816 * (M-profile or v7A-and-earlier only) for implementation defined 8817 * coprocessors in the range 0..7. Our decode assumes this, since 8818 * 8..13 can be used for other insns including VFP and Neon. See 8819 * valid_cp() in translate.c. Assert here that we haven't tried 8820 * to use an invalid coprocessor number. 8821 */ 8822 switch (r->state) { 8823 case ARM_CP_STATE_BOTH: 8824 /* 0 has a special meaning, but otherwise the same rules as AA32. */ 8825 if (r->cp == 0) { 8826 break; 8827 } 8828 /* fall through */ 8829 case ARM_CP_STATE_AA32: 8830 if (arm_feature(&cpu->env, ARM_FEATURE_V8) && 8831 !arm_feature(&cpu->env, ARM_FEATURE_M)) { 8832 assert(r->cp >= 14 && r->cp <= 15); 8833 } else { 8834 assert(r->cp < 8 || (r->cp >= 14 && r->cp <= 15)); 8835 } 8836 break; 8837 case ARM_CP_STATE_AA64: 8838 assert(r->cp == 0 || r->cp == CP_REG_ARM64_SYSREG_CP); 8839 break; 8840 default: 8841 g_assert_not_reached(); 8842 } 8843 /* The AArch64 pseudocode CheckSystemAccess() specifies that op1 8844 * encodes a minimum access level for the register. We roll this 8845 * runtime check into our general permission check code, so check 8846 * here that the reginfo's specified permissions are strict enough 8847 * to encompass the generic architectural permission check. 8848 */ 8849 if (r->state != ARM_CP_STATE_AA32) { 8850 CPAccessRights mask; 8851 switch (r->opc1) { 8852 case 0: 8853 /* min_EL EL1, but some accessible to EL0 via kernel ABI */ 8854 mask = PL0U_R | PL1_RW; 8855 break; 8856 case 1: case 2: 8857 /* min_EL EL1 */ 8858 mask = PL1_RW; 8859 break; 8860 case 3: 8861 /* min_EL EL0 */ 8862 mask = PL0_RW; 8863 break; 8864 case 4: 8865 case 5: 8866 /* min_EL EL2 */ 8867 mask = PL2_RW; 8868 break; 8869 case 6: 8870 /* min_EL EL3 */ 8871 mask = PL3_RW; 8872 break; 8873 case 7: 8874 /* min_EL EL1, secure mode only (we don't check the latter) */ 8875 mask = PL1_RW; 8876 break; 8877 default: 8878 /* broken reginfo with out-of-range opc1 */ 8879 g_assert_not_reached(); 8880 } 8881 /* assert our permissions are not too lax (stricter is fine) */ 8882 assert((r->access & ~mask) == 0); 8883 } 8884 8885 /* Check that the register definition has enough info to handle 8886 * reads and writes if they are permitted. 8887 */ 8888 if (!(r->type & (ARM_CP_SPECIAL_MASK | ARM_CP_CONST))) { 8889 if (r->access & PL3_R) { 8890 assert((r->fieldoffset || 8891 (r->bank_fieldoffsets[0] && r->bank_fieldoffsets[1])) || 8892 r->readfn); 8893 } 8894 if (r->access & PL3_W) { 8895 assert((r->fieldoffset || 8896 (r->bank_fieldoffsets[0] && r->bank_fieldoffsets[1])) || 8897 r->writefn); 8898 } 8899 } 8900 8901 for (crm = crmmin; crm <= crmmax; crm++) { 8902 for (opc1 = opc1min; opc1 <= opc1max; opc1++) { 8903 for (opc2 = opc2min; opc2 <= opc2max; opc2++) { 8904 for (state = ARM_CP_STATE_AA32; 8905 state <= ARM_CP_STATE_AA64; state++) { 8906 if (r->state != state && r->state != ARM_CP_STATE_BOTH) { 8907 continue; 8908 } 8909 if (state == ARM_CP_STATE_AA32) { 8910 /* Under AArch32 CP registers can be common 8911 * (same for secure and non-secure world) or banked. 8912 */ 8913 char *name; 8914 8915 switch (r->secure) { 8916 case ARM_CP_SECSTATE_S: 8917 case ARM_CP_SECSTATE_NS: 8918 add_cpreg_to_hashtable(cpu, r, opaque, state, 8919 r->secure, crm, opc1, opc2, 8920 r->name); 8921 break; 8922 case ARM_CP_SECSTATE_BOTH: 8923 name = g_strdup_printf("%s_S", r->name); 8924 add_cpreg_to_hashtable(cpu, r, opaque, state, 8925 ARM_CP_SECSTATE_S, 8926 crm, opc1, opc2, name); 8927 g_free(name); 8928 add_cpreg_to_hashtable(cpu, r, opaque, state, 8929 ARM_CP_SECSTATE_NS, 8930 crm, opc1, opc2, r->name); 8931 break; 8932 default: 8933 g_assert_not_reached(); 8934 } 8935 } else { 8936 /* AArch64 registers get mapped to non-secure instance 8937 * of AArch32 */ 8938 add_cpreg_to_hashtable(cpu, r, opaque, state, 8939 ARM_CP_SECSTATE_NS, 8940 crm, opc1, opc2, r->name); 8941 } 8942 } 8943 } 8944 } 8945 } 8946 } 8947 8948 /* Define a whole list of registers */ 8949 void define_arm_cp_regs_with_opaque_len(ARMCPU *cpu, const ARMCPRegInfo *regs, 8950 void *opaque, size_t len) 8951 { 8952 size_t i; 8953 for (i = 0; i < len; ++i) { 8954 define_one_arm_cp_reg_with_opaque(cpu, regs + i, opaque); 8955 } 8956 } 8957 8958 /* 8959 * Modify ARMCPRegInfo for access from userspace. 8960 * 8961 * This is a data driven modification directed by 8962 * ARMCPRegUserSpaceInfo. All registers become ARM_CP_CONST as 8963 * user-space cannot alter any values and dynamic values pertaining to 8964 * execution state are hidden from user space view anyway. 8965 */ 8966 void modify_arm_cp_regs_with_len(ARMCPRegInfo *regs, size_t regs_len, 8967 const ARMCPRegUserSpaceInfo *mods, 8968 size_t mods_len) 8969 { 8970 for (size_t mi = 0; mi < mods_len; ++mi) { 8971 const ARMCPRegUserSpaceInfo *m = mods + mi; 8972 GPatternSpec *pat = NULL; 8973 8974 if (m->is_glob) { 8975 pat = g_pattern_spec_new(m->name); 8976 } 8977 for (size_t ri = 0; ri < regs_len; ++ri) { 8978 ARMCPRegInfo *r = regs + ri; 8979 8980 if (pat && g_pattern_match_string(pat, r->name)) { 8981 r->type = ARM_CP_CONST; 8982 r->access = PL0U_R; 8983 r->resetvalue = 0; 8984 /* continue */ 8985 } else if (strcmp(r->name, m->name) == 0) { 8986 r->type = ARM_CP_CONST; 8987 r->access = PL0U_R; 8988 r->resetvalue &= m->exported_bits; 8989 r->resetvalue |= m->fixed_bits; 8990 break; 8991 } 8992 } 8993 if (pat) { 8994 g_pattern_spec_free(pat); 8995 } 8996 } 8997 } 8998 8999 const ARMCPRegInfo *get_arm_cp_reginfo(GHashTable *cpregs, uint32_t encoded_cp) 9000 { 9001 return g_hash_table_lookup(cpregs, (gpointer)(uintptr_t)encoded_cp); 9002 } 9003 9004 void arm_cp_write_ignore(CPUARMState *env, const ARMCPRegInfo *ri, 9005 uint64_t value) 9006 { 9007 /* Helper coprocessor write function for write-ignore registers */ 9008 } 9009 9010 uint64_t arm_cp_read_zero(CPUARMState *env, const ARMCPRegInfo *ri) 9011 { 9012 /* Helper coprocessor write function for read-as-zero registers */ 9013 return 0; 9014 } 9015 9016 void arm_cp_reset_ignore(CPUARMState *env, const ARMCPRegInfo *opaque) 9017 { 9018 /* Helper coprocessor reset function for do-nothing-on-reset registers */ 9019 } 9020 9021 static int bad_mode_switch(CPUARMState *env, int mode, CPSRWriteType write_type) 9022 { 9023 /* Return true if it is not valid for us to switch to 9024 * this CPU mode (ie all the UNPREDICTABLE cases in 9025 * the ARM ARM CPSRWriteByInstr pseudocode). 9026 */ 9027 9028 /* Changes to or from Hyp via MSR and CPS are illegal. */ 9029 if (write_type == CPSRWriteByInstr && 9030 ((env->uncached_cpsr & CPSR_M) == ARM_CPU_MODE_HYP || 9031 mode == ARM_CPU_MODE_HYP)) { 9032 return 1; 9033 } 9034 9035 switch (mode) { 9036 case ARM_CPU_MODE_USR: 9037 return 0; 9038 case ARM_CPU_MODE_SYS: 9039 case ARM_CPU_MODE_SVC: 9040 case ARM_CPU_MODE_ABT: 9041 case ARM_CPU_MODE_UND: 9042 case ARM_CPU_MODE_IRQ: 9043 case ARM_CPU_MODE_FIQ: 9044 /* Note that we don't implement the IMPDEF NSACR.RFR which in v7 9045 * allows FIQ mode to be Secure-only. (In v8 this doesn't exist.) 9046 */ 9047 /* If HCR.TGE is set then changes from Monitor to NS PL1 via MSR 9048 * and CPS are treated as illegal mode changes. 9049 */ 9050 if (write_type == CPSRWriteByInstr && 9051 (env->uncached_cpsr & CPSR_M) == ARM_CPU_MODE_MON && 9052 (arm_hcr_el2_eff(env) & HCR_TGE)) { 9053 return 1; 9054 } 9055 return 0; 9056 case ARM_CPU_MODE_HYP: 9057 return !arm_is_el2_enabled(env) || arm_current_el(env) < 2; 9058 case ARM_CPU_MODE_MON: 9059 return arm_current_el(env) < 3; 9060 default: 9061 return 1; 9062 } 9063 } 9064 9065 uint32_t cpsr_read(CPUARMState *env) 9066 { 9067 int ZF; 9068 ZF = (env->ZF == 0); 9069 return env->uncached_cpsr | (env->NF & 0x80000000) | (ZF << 30) | 9070 (env->CF << 29) | ((env->VF & 0x80000000) >> 3) | (env->QF << 27) 9071 | (env->thumb << 5) | ((env->condexec_bits & 3) << 25) 9072 | ((env->condexec_bits & 0xfc) << 8) 9073 | (env->GE << 16) | (env->daif & CPSR_AIF); 9074 } 9075 9076 void cpsr_write(CPUARMState *env, uint32_t val, uint32_t mask, 9077 CPSRWriteType write_type) 9078 { 9079 uint32_t changed_daif; 9080 bool rebuild_hflags = (write_type != CPSRWriteRaw) && 9081 (mask & (CPSR_M | CPSR_E | CPSR_IL)); 9082 9083 if (mask & CPSR_NZCV) { 9084 env->ZF = (~val) & CPSR_Z; 9085 env->NF = val; 9086 env->CF = (val >> 29) & 1; 9087 env->VF = (val << 3) & 0x80000000; 9088 } 9089 if (mask & CPSR_Q) 9090 env->QF = ((val & CPSR_Q) != 0); 9091 if (mask & CPSR_T) 9092 env->thumb = ((val & CPSR_T) != 0); 9093 if (mask & CPSR_IT_0_1) { 9094 env->condexec_bits &= ~3; 9095 env->condexec_bits |= (val >> 25) & 3; 9096 } 9097 if (mask & CPSR_IT_2_7) { 9098 env->condexec_bits &= 3; 9099 env->condexec_bits |= (val >> 8) & 0xfc; 9100 } 9101 if (mask & CPSR_GE) { 9102 env->GE = (val >> 16) & 0xf; 9103 } 9104 9105 /* In a V7 implementation that includes the security extensions but does 9106 * not include Virtualization Extensions the SCR.FW and SCR.AW bits control 9107 * whether non-secure software is allowed to change the CPSR_F and CPSR_A 9108 * bits respectively. 9109 * 9110 * In a V8 implementation, it is permitted for privileged software to 9111 * change the CPSR A/F bits regardless of the SCR.AW/FW bits. 9112 */ 9113 if (write_type != CPSRWriteRaw && !arm_feature(env, ARM_FEATURE_V8) && 9114 arm_feature(env, ARM_FEATURE_EL3) && 9115 !arm_feature(env, ARM_FEATURE_EL2) && 9116 !arm_is_secure(env)) { 9117 9118 changed_daif = (env->daif ^ val) & mask; 9119 9120 if (changed_daif & CPSR_A) { 9121 /* Check to see if we are allowed to change the masking of async 9122 * abort exceptions from a non-secure state. 9123 */ 9124 if (!(env->cp15.scr_el3 & SCR_AW)) { 9125 qemu_log_mask(LOG_GUEST_ERROR, 9126 "Ignoring attempt to switch CPSR_A flag from " 9127 "non-secure world with SCR.AW bit clear\n"); 9128 mask &= ~CPSR_A; 9129 } 9130 } 9131 9132 if (changed_daif & CPSR_F) { 9133 /* Check to see if we are allowed to change the masking of FIQ 9134 * exceptions from a non-secure state. 9135 */ 9136 if (!(env->cp15.scr_el3 & SCR_FW)) { 9137 qemu_log_mask(LOG_GUEST_ERROR, 9138 "Ignoring attempt to switch CPSR_F flag from " 9139 "non-secure world with SCR.FW bit clear\n"); 9140 mask &= ~CPSR_F; 9141 } 9142 9143 /* Check whether non-maskable FIQ (NMFI) support is enabled. 9144 * If this bit is set software is not allowed to mask 9145 * FIQs, but is allowed to set CPSR_F to 0. 9146 */ 9147 if ((A32_BANKED_CURRENT_REG_GET(env, sctlr) & SCTLR_NMFI) && 9148 (val & CPSR_F)) { 9149 qemu_log_mask(LOG_GUEST_ERROR, 9150 "Ignoring attempt to enable CPSR_F flag " 9151 "(non-maskable FIQ [NMFI] support enabled)\n"); 9152 mask &= ~CPSR_F; 9153 } 9154 } 9155 } 9156 9157 env->daif &= ~(CPSR_AIF & mask); 9158 env->daif |= val & CPSR_AIF & mask; 9159 9160 if (write_type != CPSRWriteRaw && 9161 ((env->uncached_cpsr ^ val) & mask & CPSR_M)) { 9162 if ((env->uncached_cpsr & CPSR_M) == ARM_CPU_MODE_USR) { 9163 /* Note that we can only get here in USR mode if this is a 9164 * gdb stub write; for this case we follow the architectural 9165 * behaviour for guest writes in USR mode of ignoring an attempt 9166 * to switch mode. (Those are caught by translate.c for writes 9167 * triggered by guest instructions.) 9168 */ 9169 mask &= ~CPSR_M; 9170 } else if (bad_mode_switch(env, val & CPSR_M, write_type)) { 9171 /* Attempt to switch to an invalid mode: this is UNPREDICTABLE in 9172 * v7, and has defined behaviour in v8: 9173 * + leave CPSR.M untouched 9174 * + allow changes to the other CPSR fields 9175 * + set PSTATE.IL 9176 * For user changes via the GDB stub, we don't set PSTATE.IL, 9177 * as this would be unnecessarily harsh for a user error. 9178 */ 9179 mask &= ~CPSR_M; 9180 if (write_type != CPSRWriteByGDBStub && 9181 arm_feature(env, ARM_FEATURE_V8)) { 9182 mask |= CPSR_IL; 9183 val |= CPSR_IL; 9184 } 9185 qemu_log_mask(LOG_GUEST_ERROR, 9186 "Illegal AArch32 mode switch attempt from %s to %s\n", 9187 aarch32_mode_name(env->uncached_cpsr), 9188 aarch32_mode_name(val)); 9189 } else { 9190 qemu_log_mask(CPU_LOG_INT, "%s %s to %s PC 0x%" PRIx32 "\n", 9191 write_type == CPSRWriteExceptionReturn ? 9192 "Exception return from AArch32" : 9193 "AArch32 mode switch from", 9194 aarch32_mode_name(env->uncached_cpsr), 9195 aarch32_mode_name(val), env->regs[15]); 9196 switch_mode(env, val & CPSR_M); 9197 } 9198 } 9199 mask &= ~CACHED_CPSR_BITS; 9200 env->uncached_cpsr = (env->uncached_cpsr & ~mask) | (val & mask); 9201 if (rebuild_hflags) { 9202 arm_rebuild_hflags(env); 9203 } 9204 } 9205 9206 /* Sign/zero extend */ 9207 uint32_t HELPER(sxtb16)(uint32_t x) 9208 { 9209 uint32_t res; 9210 res = (uint16_t)(int8_t)x; 9211 res |= (uint32_t)(int8_t)(x >> 16) << 16; 9212 return res; 9213 } 9214 9215 static void handle_possible_div0_trap(CPUARMState *env, uintptr_t ra) 9216 { 9217 /* 9218 * Take a division-by-zero exception if necessary; otherwise return 9219 * to get the usual non-trapping division behaviour (result of 0) 9220 */ 9221 if (arm_feature(env, ARM_FEATURE_M) 9222 && (env->v7m.ccr[env->v7m.secure] & R_V7M_CCR_DIV_0_TRP_MASK)) { 9223 raise_exception_ra(env, EXCP_DIVBYZERO, 0, 1, ra); 9224 } 9225 } 9226 9227 uint32_t HELPER(uxtb16)(uint32_t x) 9228 { 9229 uint32_t res; 9230 res = (uint16_t)(uint8_t)x; 9231 res |= (uint32_t)(uint8_t)(x >> 16) << 16; 9232 return res; 9233 } 9234 9235 int32_t HELPER(sdiv)(CPUARMState *env, int32_t num, int32_t den) 9236 { 9237 if (den == 0) { 9238 handle_possible_div0_trap(env, GETPC()); 9239 return 0; 9240 } 9241 if (num == INT_MIN && den == -1) { 9242 return INT_MIN; 9243 } 9244 return num / den; 9245 } 9246 9247 uint32_t HELPER(udiv)(CPUARMState *env, uint32_t num, uint32_t den) 9248 { 9249 if (den == 0) { 9250 handle_possible_div0_trap(env, GETPC()); 9251 return 0; 9252 } 9253 return num / den; 9254 } 9255 9256 uint32_t HELPER(rbit)(uint32_t x) 9257 { 9258 return revbit32(x); 9259 } 9260 9261 #ifdef CONFIG_USER_ONLY 9262 9263 static void switch_mode(CPUARMState *env, int mode) 9264 { 9265 ARMCPU *cpu = env_archcpu(env); 9266 9267 if (mode != ARM_CPU_MODE_USR) { 9268 cpu_abort(CPU(cpu), "Tried to switch out of user mode\n"); 9269 } 9270 } 9271 9272 uint32_t arm_phys_excp_target_el(CPUState *cs, uint32_t excp_idx, 9273 uint32_t cur_el, bool secure) 9274 { 9275 return 1; 9276 } 9277 9278 void aarch64_sync_64_to_32(CPUARMState *env) 9279 { 9280 g_assert_not_reached(); 9281 } 9282 9283 #else 9284 9285 static void switch_mode(CPUARMState *env, int mode) 9286 { 9287 int old_mode; 9288 int i; 9289 9290 old_mode = env->uncached_cpsr & CPSR_M; 9291 if (mode == old_mode) 9292 return; 9293 9294 if (old_mode == ARM_CPU_MODE_FIQ) { 9295 memcpy (env->fiq_regs, env->regs + 8, 5 * sizeof(uint32_t)); 9296 memcpy (env->regs + 8, env->usr_regs, 5 * sizeof(uint32_t)); 9297 } else if (mode == ARM_CPU_MODE_FIQ) { 9298 memcpy (env->usr_regs, env->regs + 8, 5 * sizeof(uint32_t)); 9299 memcpy (env->regs + 8, env->fiq_regs, 5 * sizeof(uint32_t)); 9300 } 9301 9302 i = bank_number(old_mode); 9303 env->banked_r13[i] = env->regs[13]; 9304 env->banked_spsr[i] = env->spsr; 9305 9306 i = bank_number(mode); 9307 env->regs[13] = env->banked_r13[i]; 9308 env->spsr = env->banked_spsr[i]; 9309 9310 env->banked_r14[r14_bank_number(old_mode)] = env->regs[14]; 9311 env->regs[14] = env->banked_r14[r14_bank_number(mode)]; 9312 } 9313 9314 /* Physical Interrupt Target EL Lookup Table 9315 * 9316 * [ From ARM ARM section G1.13.4 (Table G1-15) ] 9317 * 9318 * The below multi-dimensional table is used for looking up the target 9319 * exception level given numerous condition criteria. Specifically, the 9320 * target EL is based on SCR and HCR routing controls as well as the 9321 * currently executing EL and secure state. 9322 * 9323 * Dimensions: 9324 * target_el_table[2][2][2][2][2][4] 9325 * | | | | | +--- Current EL 9326 * | | | | +------ Non-secure(0)/Secure(1) 9327 * | | | +--------- HCR mask override 9328 * | | +------------ SCR exec state control 9329 * | +--------------- SCR mask override 9330 * +------------------ 32-bit(0)/64-bit(1) EL3 9331 * 9332 * The table values are as such: 9333 * 0-3 = EL0-EL3 9334 * -1 = Cannot occur 9335 * 9336 * The ARM ARM target EL table includes entries indicating that an "exception 9337 * is not taken". The two cases where this is applicable are: 9338 * 1) An exception is taken from EL3 but the SCR does not have the exception 9339 * routed to EL3. 9340 * 2) An exception is taken from EL2 but the HCR does not have the exception 9341 * routed to EL2. 9342 * In these two cases, the below table contain a target of EL1. This value is 9343 * returned as it is expected that the consumer of the table data will check 9344 * for "target EL >= current EL" to ensure the exception is not taken. 9345 * 9346 * SCR HCR 9347 * 64 EA AMO From 9348 * BIT IRQ IMO Non-secure Secure 9349 * EL3 FIQ RW FMO EL0 EL1 EL2 EL3 EL0 EL1 EL2 EL3 9350 */ 9351 static const int8_t target_el_table[2][2][2][2][2][4] = { 9352 {{{{/* 0 0 0 0 */{ 1, 1, 2, -1 },{ 3, -1, -1, 3 },}, 9353 {/* 0 0 0 1 */{ 2, 2, 2, -1 },{ 3, -1, -1, 3 },},}, 9354 {{/* 0 0 1 0 */{ 1, 1, 2, -1 },{ 3, -1, -1, 3 },}, 9355 {/* 0 0 1 1 */{ 2, 2, 2, -1 },{ 3, -1, -1, 3 },},},}, 9356 {{{/* 0 1 0 0 */{ 3, 3, 3, -1 },{ 3, -1, -1, 3 },}, 9357 {/* 0 1 0 1 */{ 3, 3, 3, -1 },{ 3, -1, -1, 3 },},}, 9358 {{/* 0 1 1 0 */{ 3, 3, 3, -1 },{ 3, -1, -1, 3 },}, 9359 {/* 0 1 1 1 */{ 3, 3, 3, -1 },{ 3, -1, -1, 3 },},},},}, 9360 {{{{/* 1 0 0 0 */{ 1, 1, 2, -1 },{ 1, 1, -1, 1 },}, 9361 {/* 1 0 0 1 */{ 2, 2, 2, -1 },{ 2, 2, -1, 1 },},}, 9362 {{/* 1 0 1 0 */{ 1, 1, 1, -1 },{ 1, 1, 1, 1 },}, 9363 {/* 1 0 1 1 */{ 2, 2, 2, -1 },{ 2, 2, 2, 1 },},},}, 9364 {{{/* 1 1 0 0 */{ 3, 3, 3, -1 },{ 3, 3, -1, 3 },}, 9365 {/* 1 1 0 1 */{ 3, 3, 3, -1 },{ 3, 3, -1, 3 },},}, 9366 {{/* 1 1 1 0 */{ 3, 3, 3, -1 },{ 3, 3, 3, 3 },}, 9367 {/* 1 1 1 1 */{ 3, 3, 3, -1 },{ 3, 3, 3, 3 },},},},}, 9368 }; 9369 9370 /* 9371 * Determine the target EL for physical exceptions 9372 */ 9373 uint32_t arm_phys_excp_target_el(CPUState *cs, uint32_t excp_idx, 9374 uint32_t cur_el, bool secure) 9375 { 9376 CPUARMState *env = cs->env_ptr; 9377 bool rw; 9378 bool scr; 9379 bool hcr; 9380 int target_el; 9381 /* Is the highest EL AArch64? */ 9382 bool is64 = arm_feature(env, ARM_FEATURE_AARCH64); 9383 uint64_t hcr_el2; 9384 9385 if (arm_feature(env, ARM_FEATURE_EL3)) { 9386 rw = ((env->cp15.scr_el3 & SCR_RW) == SCR_RW); 9387 } else { 9388 /* Either EL2 is the highest EL (and so the EL2 register width 9389 * is given by is64); or there is no EL2 or EL3, in which case 9390 * the value of 'rw' does not affect the table lookup anyway. 9391 */ 9392 rw = is64; 9393 } 9394 9395 hcr_el2 = arm_hcr_el2_eff(env); 9396 switch (excp_idx) { 9397 case EXCP_IRQ: 9398 scr = ((env->cp15.scr_el3 & SCR_IRQ) == SCR_IRQ); 9399 hcr = hcr_el2 & HCR_IMO; 9400 break; 9401 case EXCP_FIQ: 9402 scr = ((env->cp15.scr_el3 & SCR_FIQ) == SCR_FIQ); 9403 hcr = hcr_el2 & HCR_FMO; 9404 break; 9405 default: 9406 scr = ((env->cp15.scr_el3 & SCR_EA) == SCR_EA); 9407 hcr = hcr_el2 & HCR_AMO; 9408 break; 9409 }; 9410 9411 /* 9412 * For these purposes, TGE and AMO/IMO/FMO both force the 9413 * interrupt to EL2. Fold TGE into the bit extracted above. 9414 */ 9415 hcr |= (hcr_el2 & HCR_TGE) != 0; 9416 9417 /* Perform a table-lookup for the target EL given the current state */ 9418 target_el = target_el_table[is64][scr][rw][hcr][secure][cur_el]; 9419 9420 assert(target_el > 0); 9421 9422 return target_el; 9423 } 9424 9425 void arm_log_exception(CPUState *cs) 9426 { 9427 int idx = cs->exception_index; 9428 9429 if (qemu_loglevel_mask(CPU_LOG_INT)) { 9430 const char *exc = NULL; 9431 static const char * const excnames[] = { 9432 [EXCP_UDEF] = "Undefined Instruction", 9433 [EXCP_SWI] = "SVC", 9434 [EXCP_PREFETCH_ABORT] = "Prefetch Abort", 9435 [EXCP_DATA_ABORT] = "Data Abort", 9436 [EXCP_IRQ] = "IRQ", 9437 [EXCP_FIQ] = "FIQ", 9438 [EXCP_BKPT] = "Breakpoint", 9439 [EXCP_EXCEPTION_EXIT] = "QEMU v7M exception exit", 9440 [EXCP_KERNEL_TRAP] = "QEMU intercept of kernel commpage", 9441 [EXCP_HVC] = "Hypervisor Call", 9442 [EXCP_HYP_TRAP] = "Hypervisor Trap", 9443 [EXCP_SMC] = "Secure Monitor Call", 9444 [EXCP_VIRQ] = "Virtual IRQ", 9445 [EXCP_VFIQ] = "Virtual FIQ", 9446 [EXCP_SEMIHOST] = "Semihosting call", 9447 [EXCP_NOCP] = "v7M NOCP UsageFault", 9448 [EXCP_INVSTATE] = "v7M INVSTATE UsageFault", 9449 [EXCP_STKOF] = "v8M STKOF UsageFault", 9450 [EXCP_LAZYFP] = "v7M exception during lazy FP stacking", 9451 [EXCP_LSERR] = "v8M LSERR UsageFault", 9452 [EXCP_UNALIGNED] = "v7M UNALIGNED UsageFault", 9453 [EXCP_DIVBYZERO] = "v7M DIVBYZERO UsageFault", 9454 [EXCP_VSERR] = "Virtual SERR", 9455 }; 9456 9457 if (idx >= 0 && idx < ARRAY_SIZE(excnames)) { 9458 exc = excnames[idx]; 9459 } 9460 if (!exc) { 9461 exc = "unknown"; 9462 } 9463 qemu_log_mask(CPU_LOG_INT, "Taking exception %d [%s] on CPU %d\n", 9464 idx, exc, cs->cpu_index); 9465 } 9466 } 9467 9468 /* 9469 * Function used to synchronize QEMU's AArch64 register set with AArch32 9470 * register set. This is necessary when switching between AArch32 and AArch64 9471 * execution state. 9472 */ 9473 void aarch64_sync_32_to_64(CPUARMState *env) 9474 { 9475 int i; 9476 uint32_t mode = env->uncached_cpsr & CPSR_M; 9477 9478 /* We can blanket copy R[0:7] to X[0:7] */ 9479 for (i = 0; i < 8; i++) { 9480 env->xregs[i] = env->regs[i]; 9481 } 9482 9483 /* 9484 * Unless we are in FIQ mode, x8-x12 come from the user registers r8-r12. 9485 * Otherwise, they come from the banked user regs. 9486 */ 9487 if (mode == ARM_CPU_MODE_FIQ) { 9488 for (i = 8; i < 13; i++) { 9489 env->xregs[i] = env->usr_regs[i - 8]; 9490 } 9491 } else { 9492 for (i = 8; i < 13; i++) { 9493 env->xregs[i] = env->regs[i]; 9494 } 9495 } 9496 9497 /* 9498 * Registers x13-x23 are the various mode SP and FP registers. Registers 9499 * r13 and r14 are only copied if we are in that mode, otherwise we copy 9500 * from the mode banked register. 9501 */ 9502 if (mode == ARM_CPU_MODE_USR || mode == ARM_CPU_MODE_SYS) { 9503 env->xregs[13] = env->regs[13]; 9504 env->xregs[14] = env->regs[14]; 9505 } else { 9506 env->xregs[13] = env->banked_r13[bank_number(ARM_CPU_MODE_USR)]; 9507 /* HYP is an exception in that it is copied from r14 */ 9508 if (mode == ARM_CPU_MODE_HYP) { 9509 env->xregs[14] = env->regs[14]; 9510 } else { 9511 env->xregs[14] = env->banked_r14[r14_bank_number(ARM_CPU_MODE_USR)]; 9512 } 9513 } 9514 9515 if (mode == ARM_CPU_MODE_HYP) { 9516 env->xregs[15] = env->regs[13]; 9517 } else { 9518 env->xregs[15] = env->banked_r13[bank_number(ARM_CPU_MODE_HYP)]; 9519 } 9520 9521 if (mode == ARM_CPU_MODE_IRQ) { 9522 env->xregs[16] = env->regs[14]; 9523 env->xregs[17] = env->regs[13]; 9524 } else { 9525 env->xregs[16] = env->banked_r14[r14_bank_number(ARM_CPU_MODE_IRQ)]; 9526 env->xregs[17] = env->banked_r13[bank_number(ARM_CPU_MODE_IRQ)]; 9527 } 9528 9529 if (mode == ARM_CPU_MODE_SVC) { 9530 env->xregs[18] = env->regs[14]; 9531 env->xregs[19] = env->regs[13]; 9532 } else { 9533 env->xregs[18] = env->banked_r14[r14_bank_number(ARM_CPU_MODE_SVC)]; 9534 env->xregs[19] = env->banked_r13[bank_number(ARM_CPU_MODE_SVC)]; 9535 } 9536 9537 if (mode == ARM_CPU_MODE_ABT) { 9538 env->xregs[20] = env->regs[14]; 9539 env->xregs[21] = env->regs[13]; 9540 } else { 9541 env->xregs[20] = env->banked_r14[r14_bank_number(ARM_CPU_MODE_ABT)]; 9542 env->xregs[21] = env->banked_r13[bank_number(ARM_CPU_MODE_ABT)]; 9543 } 9544 9545 if (mode == ARM_CPU_MODE_UND) { 9546 env->xregs[22] = env->regs[14]; 9547 env->xregs[23] = env->regs[13]; 9548 } else { 9549 env->xregs[22] = env->banked_r14[r14_bank_number(ARM_CPU_MODE_UND)]; 9550 env->xregs[23] = env->banked_r13[bank_number(ARM_CPU_MODE_UND)]; 9551 } 9552 9553 /* 9554 * Registers x24-x30 are mapped to r8-r14 in FIQ mode. If we are in FIQ 9555 * mode, then we can copy from r8-r14. Otherwise, we copy from the 9556 * FIQ bank for r8-r14. 9557 */ 9558 if (mode == ARM_CPU_MODE_FIQ) { 9559 for (i = 24; i < 31; i++) { 9560 env->xregs[i] = env->regs[i - 16]; /* X[24:30] <- R[8:14] */ 9561 } 9562 } else { 9563 for (i = 24; i < 29; i++) { 9564 env->xregs[i] = env->fiq_regs[i - 24]; 9565 } 9566 env->xregs[29] = env->banked_r13[bank_number(ARM_CPU_MODE_FIQ)]; 9567 env->xregs[30] = env->banked_r14[r14_bank_number(ARM_CPU_MODE_FIQ)]; 9568 } 9569 9570 env->pc = env->regs[15]; 9571 } 9572 9573 /* 9574 * Function used to synchronize QEMU's AArch32 register set with AArch64 9575 * register set. This is necessary when switching between AArch32 and AArch64 9576 * execution state. 9577 */ 9578 void aarch64_sync_64_to_32(CPUARMState *env) 9579 { 9580 int i; 9581 uint32_t mode = env->uncached_cpsr & CPSR_M; 9582 9583 /* We can blanket copy X[0:7] to R[0:7] */ 9584 for (i = 0; i < 8; i++) { 9585 env->regs[i] = env->xregs[i]; 9586 } 9587 9588 /* 9589 * Unless we are in FIQ mode, r8-r12 come from the user registers x8-x12. 9590 * Otherwise, we copy x8-x12 into the banked user regs. 9591 */ 9592 if (mode == ARM_CPU_MODE_FIQ) { 9593 for (i = 8; i < 13; i++) { 9594 env->usr_regs[i - 8] = env->xregs[i]; 9595 } 9596 } else { 9597 for (i = 8; i < 13; i++) { 9598 env->regs[i] = env->xregs[i]; 9599 } 9600 } 9601 9602 /* 9603 * Registers r13 & r14 depend on the current mode. 9604 * If we are in a given mode, we copy the corresponding x registers to r13 9605 * and r14. Otherwise, we copy the x register to the banked r13 and r14 9606 * for the mode. 9607 */ 9608 if (mode == ARM_CPU_MODE_USR || mode == ARM_CPU_MODE_SYS) { 9609 env->regs[13] = env->xregs[13]; 9610 env->regs[14] = env->xregs[14]; 9611 } else { 9612 env->banked_r13[bank_number(ARM_CPU_MODE_USR)] = env->xregs[13]; 9613 9614 /* 9615 * HYP is an exception in that it does not have its own banked r14 but 9616 * shares the USR r14 9617 */ 9618 if (mode == ARM_CPU_MODE_HYP) { 9619 env->regs[14] = env->xregs[14]; 9620 } else { 9621 env->banked_r14[r14_bank_number(ARM_CPU_MODE_USR)] = env->xregs[14]; 9622 } 9623 } 9624 9625 if (mode == ARM_CPU_MODE_HYP) { 9626 env->regs[13] = env->xregs[15]; 9627 } else { 9628 env->banked_r13[bank_number(ARM_CPU_MODE_HYP)] = env->xregs[15]; 9629 } 9630 9631 if (mode == ARM_CPU_MODE_IRQ) { 9632 env->regs[14] = env->xregs[16]; 9633 env->regs[13] = env->xregs[17]; 9634 } else { 9635 env->banked_r14[r14_bank_number(ARM_CPU_MODE_IRQ)] = env->xregs[16]; 9636 env->banked_r13[bank_number(ARM_CPU_MODE_IRQ)] = env->xregs[17]; 9637 } 9638 9639 if (mode == ARM_CPU_MODE_SVC) { 9640 env->regs[14] = env->xregs[18]; 9641 env->regs[13] = env->xregs[19]; 9642 } else { 9643 env->banked_r14[r14_bank_number(ARM_CPU_MODE_SVC)] = env->xregs[18]; 9644 env->banked_r13[bank_number(ARM_CPU_MODE_SVC)] = env->xregs[19]; 9645 } 9646 9647 if (mode == ARM_CPU_MODE_ABT) { 9648 env->regs[14] = env->xregs[20]; 9649 env->regs[13] = env->xregs[21]; 9650 } else { 9651 env->banked_r14[r14_bank_number(ARM_CPU_MODE_ABT)] = env->xregs[20]; 9652 env->banked_r13[bank_number(ARM_CPU_MODE_ABT)] = env->xregs[21]; 9653 } 9654 9655 if (mode == ARM_CPU_MODE_UND) { 9656 env->regs[14] = env->xregs[22]; 9657 env->regs[13] = env->xregs[23]; 9658 } else { 9659 env->banked_r14[r14_bank_number(ARM_CPU_MODE_UND)] = env->xregs[22]; 9660 env->banked_r13[bank_number(ARM_CPU_MODE_UND)] = env->xregs[23]; 9661 } 9662 9663 /* Registers x24-x30 are mapped to r8-r14 in FIQ mode. If we are in FIQ 9664 * mode, then we can copy to r8-r14. Otherwise, we copy to the 9665 * FIQ bank for r8-r14. 9666 */ 9667 if (mode == ARM_CPU_MODE_FIQ) { 9668 for (i = 24; i < 31; i++) { 9669 env->regs[i - 16] = env->xregs[i]; /* X[24:30] -> R[8:14] */ 9670 } 9671 } else { 9672 for (i = 24; i < 29; i++) { 9673 env->fiq_regs[i - 24] = env->xregs[i]; 9674 } 9675 env->banked_r13[bank_number(ARM_CPU_MODE_FIQ)] = env->xregs[29]; 9676 env->banked_r14[r14_bank_number(ARM_CPU_MODE_FIQ)] = env->xregs[30]; 9677 } 9678 9679 env->regs[15] = env->pc; 9680 } 9681 9682 static void take_aarch32_exception(CPUARMState *env, int new_mode, 9683 uint32_t mask, uint32_t offset, 9684 uint32_t newpc) 9685 { 9686 int new_el; 9687 9688 /* Change the CPU state so as to actually take the exception. */ 9689 switch_mode(env, new_mode); 9690 9691 /* 9692 * For exceptions taken to AArch32 we must clear the SS bit in both 9693 * PSTATE and in the old-state value we save to SPSR_<mode>, so zero it now. 9694 */ 9695 env->pstate &= ~PSTATE_SS; 9696 env->spsr = cpsr_read(env); 9697 /* Clear IT bits. */ 9698 env->condexec_bits = 0; 9699 /* Switch to the new mode, and to the correct instruction set. */ 9700 env->uncached_cpsr = (env->uncached_cpsr & ~CPSR_M) | new_mode; 9701 9702 /* This must be after mode switching. */ 9703 new_el = arm_current_el(env); 9704 9705 /* Set new mode endianness */ 9706 env->uncached_cpsr &= ~CPSR_E; 9707 if (env->cp15.sctlr_el[new_el] & SCTLR_EE) { 9708 env->uncached_cpsr |= CPSR_E; 9709 } 9710 /* J and IL must always be cleared for exception entry */ 9711 env->uncached_cpsr &= ~(CPSR_IL | CPSR_J); 9712 env->daif |= mask; 9713 9714 if (cpu_isar_feature(aa32_ssbs, env_archcpu(env))) { 9715 if (env->cp15.sctlr_el[new_el] & SCTLR_DSSBS_32) { 9716 env->uncached_cpsr |= CPSR_SSBS; 9717 } else { 9718 env->uncached_cpsr &= ~CPSR_SSBS; 9719 } 9720 } 9721 9722 if (new_mode == ARM_CPU_MODE_HYP) { 9723 env->thumb = (env->cp15.sctlr_el[2] & SCTLR_TE) != 0; 9724 env->elr_el[2] = env->regs[15]; 9725 } else { 9726 /* CPSR.PAN is normally preserved preserved unless... */ 9727 if (cpu_isar_feature(aa32_pan, env_archcpu(env))) { 9728 switch (new_el) { 9729 case 3: 9730 if (!arm_is_secure_below_el3(env)) { 9731 /* ... the target is EL3, from non-secure state. */ 9732 env->uncached_cpsr &= ~CPSR_PAN; 9733 break; 9734 } 9735 /* ... the target is EL3, from secure state ... */ 9736 /* fall through */ 9737 case 1: 9738 /* ... the target is EL1 and SCTLR.SPAN is 0. */ 9739 if (!(env->cp15.sctlr_el[new_el] & SCTLR_SPAN)) { 9740 env->uncached_cpsr |= CPSR_PAN; 9741 } 9742 break; 9743 } 9744 } 9745 /* 9746 * this is a lie, as there was no c1_sys on V4T/V5, but who cares 9747 * and we should just guard the thumb mode on V4 9748 */ 9749 if (arm_feature(env, ARM_FEATURE_V4T)) { 9750 env->thumb = 9751 (A32_BANKED_CURRENT_REG_GET(env, sctlr) & SCTLR_TE) != 0; 9752 } 9753 env->regs[14] = env->regs[15] + offset; 9754 } 9755 env->regs[15] = newpc; 9756 arm_rebuild_hflags(env); 9757 } 9758 9759 static void arm_cpu_do_interrupt_aarch32_hyp(CPUState *cs) 9760 { 9761 /* 9762 * Handle exception entry to Hyp mode; this is sufficiently 9763 * different to entry to other AArch32 modes that we handle it 9764 * separately here. 9765 * 9766 * The vector table entry used is always the 0x14 Hyp mode entry point, 9767 * unless this is an UNDEF/SVC/HVC/abort taken from Hyp to Hyp. 9768 * The offset applied to the preferred return address is always zero 9769 * (see DDI0487C.a section G1.12.3). 9770 * PSTATE A/I/F masks are set based only on the SCR.EA/IRQ/FIQ values. 9771 */ 9772 uint32_t addr, mask; 9773 ARMCPU *cpu = ARM_CPU(cs); 9774 CPUARMState *env = &cpu->env; 9775 9776 switch (cs->exception_index) { 9777 case EXCP_UDEF: 9778 addr = 0x04; 9779 break; 9780 case EXCP_SWI: 9781 addr = 0x08; 9782 break; 9783 case EXCP_BKPT: 9784 /* Fall through to prefetch abort. */ 9785 case EXCP_PREFETCH_ABORT: 9786 env->cp15.ifar_s = env->exception.vaddress; 9787 qemu_log_mask(CPU_LOG_INT, "...with HIFAR 0x%x\n", 9788 (uint32_t)env->exception.vaddress); 9789 addr = 0x0c; 9790 break; 9791 case EXCP_DATA_ABORT: 9792 env->cp15.dfar_s = env->exception.vaddress; 9793 qemu_log_mask(CPU_LOG_INT, "...with HDFAR 0x%x\n", 9794 (uint32_t)env->exception.vaddress); 9795 addr = 0x10; 9796 break; 9797 case EXCP_IRQ: 9798 addr = 0x18; 9799 break; 9800 case EXCP_FIQ: 9801 addr = 0x1c; 9802 break; 9803 case EXCP_HVC: 9804 addr = 0x08; 9805 break; 9806 case EXCP_HYP_TRAP: 9807 addr = 0x14; 9808 break; 9809 default: 9810 cpu_abort(cs, "Unhandled exception 0x%x\n", cs->exception_index); 9811 } 9812 9813 if (cs->exception_index != EXCP_IRQ && cs->exception_index != EXCP_FIQ) { 9814 if (!arm_feature(env, ARM_FEATURE_V8)) { 9815 /* 9816 * QEMU syndrome values are v8-style. v7 has the IL bit 9817 * UNK/SBZP for "field not valid" cases, where v8 uses RES1. 9818 * If this is a v7 CPU, squash the IL bit in those cases. 9819 */ 9820 if (cs->exception_index == EXCP_PREFETCH_ABORT || 9821 (cs->exception_index == EXCP_DATA_ABORT && 9822 !(env->exception.syndrome & ARM_EL_ISV)) || 9823 syn_get_ec(env->exception.syndrome) == EC_UNCATEGORIZED) { 9824 env->exception.syndrome &= ~ARM_EL_IL; 9825 } 9826 } 9827 env->cp15.esr_el[2] = env->exception.syndrome; 9828 } 9829 9830 if (arm_current_el(env) != 2 && addr < 0x14) { 9831 addr = 0x14; 9832 } 9833 9834 mask = 0; 9835 if (!(env->cp15.scr_el3 & SCR_EA)) { 9836 mask |= CPSR_A; 9837 } 9838 if (!(env->cp15.scr_el3 & SCR_IRQ)) { 9839 mask |= CPSR_I; 9840 } 9841 if (!(env->cp15.scr_el3 & SCR_FIQ)) { 9842 mask |= CPSR_F; 9843 } 9844 9845 addr += env->cp15.hvbar; 9846 9847 take_aarch32_exception(env, ARM_CPU_MODE_HYP, mask, 0, addr); 9848 } 9849 9850 static void arm_cpu_do_interrupt_aarch32(CPUState *cs) 9851 { 9852 ARMCPU *cpu = ARM_CPU(cs); 9853 CPUARMState *env = &cpu->env; 9854 uint32_t addr; 9855 uint32_t mask; 9856 int new_mode; 9857 uint32_t offset; 9858 uint32_t moe; 9859 9860 /* If this is a debug exception we must update the DBGDSCR.MOE bits */ 9861 switch (syn_get_ec(env->exception.syndrome)) { 9862 case EC_BREAKPOINT: 9863 case EC_BREAKPOINT_SAME_EL: 9864 moe = 1; 9865 break; 9866 case EC_WATCHPOINT: 9867 case EC_WATCHPOINT_SAME_EL: 9868 moe = 10; 9869 break; 9870 case EC_AA32_BKPT: 9871 moe = 3; 9872 break; 9873 case EC_VECTORCATCH: 9874 moe = 5; 9875 break; 9876 default: 9877 moe = 0; 9878 break; 9879 } 9880 9881 if (moe) { 9882 env->cp15.mdscr_el1 = deposit64(env->cp15.mdscr_el1, 2, 4, moe); 9883 } 9884 9885 if (env->exception.target_el == 2) { 9886 arm_cpu_do_interrupt_aarch32_hyp(cs); 9887 return; 9888 } 9889 9890 switch (cs->exception_index) { 9891 case EXCP_UDEF: 9892 new_mode = ARM_CPU_MODE_UND; 9893 addr = 0x04; 9894 mask = CPSR_I; 9895 if (env->thumb) 9896 offset = 2; 9897 else 9898 offset = 4; 9899 break; 9900 case EXCP_SWI: 9901 new_mode = ARM_CPU_MODE_SVC; 9902 addr = 0x08; 9903 mask = CPSR_I; 9904 /* The PC already points to the next instruction. */ 9905 offset = 0; 9906 break; 9907 case EXCP_BKPT: 9908 /* Fall through to prefetch abort. */ 9909 case EXCP_PREFETCH_ABORT: 9910 A32_BANKED_CURRENT_REG_SET(env, ifsr, env->exception.fsr); 9911 A32_BANKED_CURRENT_REG_SET(env, ifar, env->exception.vaddress); 9912 qemu_log_mask(CPU_LOG_INT, "...with IFSR 0x%x IFAR 0x%x\n", 9913 env->exception.fsr, (uint32_t)env->exception.vaddress); 9914 new_mode = ARM_CPU_MODE_ABT; 9915 addr = 0x0c; 9916 mask = CPSR_A | CPSR_I; 9917 offset = 4; 9918 break; 9919 case EXCP_DATA_ABORT: 9920 A32_BANKED_CURRENT_REG_SET(env, dfsr, env->exception.fsr); 9921 A32_BANKED_CURRENT_REG_SET(env, dfar, env->exception.vaddress); 9922 qemu_log_mask(CPU_LOG_INT, "...with DFSR 0x%x DFAR 0x%x\n", 9923 env->exception.fsr, 9924 (uint32_t)env->exception.vaddress); 9925 new_mode = ARM_CPU_MODE_ABT; 9926 addr = 0x10; 9927 mask = CPSR_A | CPSR_I; 9928 offset = 8; 9929 break; 9930 case EXCP_IRQ: 9931 new_mode = ARM_CPU_MODE_IRQ; 9932 addr = 0x18; 9933 /* Disable IRQ and imprecise data aborts. */ 9934 mask = CPSR_A | CPSR_I; 9935 offset = 4; 9936 if (env->cp15.scr_el3 & SCR_IRQ) { 9937 /* IRQ routed to monitor mode */ 9938 new_mode = ARM_CPU_MODE_MON; 9939 mask |= CPSR_F; 9940 } 9941 break; 9942 case EXCP_FIQ: 9943 new_mode = ARM_CPU_MODE_FIQ; 9944 addr = 0x1c; 9945 /* Disable FIQ, IRQ and imprecise data aborts. */ 9946 mask = CPSR_A | CPSR_I | CPSR_F; 9947 if (env->cp15.scr_el3 & SCR_FIQ) { 9948 /* FIQ routed to monitor mode */ 9949 new_mode = ARM_CPU_MODE_MON; 9950 } 9951 offset = 4; 9952 break; 9953 case EXCP_VIRQ: 9954 new_mode = ARM_CPU_MODE_IRQ; 9955 addr = 0x18; 9956 /* Disable IRQ and imprecise data aborts. */ 9957 mask = CPSR_A | CPSR_I; 9958 offset = 4; 9959 break; 9960 case EXCP_VFIQ: 9961 new_mode = ARM_CPU_MODE_FIQ; 9962 addr = 0x1c; 9963 /* Disable FIQ, IRQ and imprecise data aborts. */ 9964 mask = CPSR_A | CPSR_I | CPSR_F; 9965 offset = 4; 9966 break; 9967 case EXCP_VSERR: 9968 { 9969 /* 9970 * Note that this is reported as a data abort, but the DFAR 9971 * has an UNKNOWN value. Construct the SError syndrome from 9972 * AET and ExT fields. 9973 */ 9974 ARMMMUFaultInfo fi = { .type = ARMFault_AsyncExternal, }; 9975 9976 if (extended_addresses_enabled(env)) { 9977 env->exception.fsr = arm_fi_to_lfsc(&fi); 9978 } else { 9979 env->exception.fsr = arm_fi_to_sfsc(&fi); 9980 } 9981 env->exception.fsr |= env->cp15.vsesr_el2 & 0xd000; 9982 A32_BANKED_CURRENT_REG_SET(env, dfsr, env->exception.fsr); 9983 qemu_log_mask(CPU_LOG_INT, "...with IFSR 0x%x\n", 9984 env->exception.fsr); 9985 9986 new_mode = ARM_CPU_MODE_ABT; 9987 addr = 0x10; 9988 mask = CPSR_A | CPSR_I; 9989 offset = 8; 9990 } 9991 break; 9992 case EXCP_SMC: 9993 new_mode = ARM_CPU_MODE_MON; 9994 addr = 0x08; 9995 mask = CPSR_A | CPSR_I | CPSR_F; 9996 offset = 0; 9997 break; 9998 default: 9999 cpu_abort(cs, "Unhandled exception 0x%x\n", cs->exception_index); 10000 return; /* Never happens. Keep compiler happy. */ 10001 } 10002 10003 if (new_mode == ARM_CPU_MODE_MON) { 10004 addr += env->cp15.mvbar; 10005 } else if (A32_BANKED_CURRENT_REG_GET(env, sctlr) & SCTLR_V) { 10006 /* High vectors. When enabled, base address cannot be remapped. */ 10007 addr += 0xffff0000; 10008 } else { 10009 /* ARM v7 architectures provide a vector base address register to remap 10010 * the interrupt vector table. 10011 * This register is only followed in non-monitor mode, and is banked. 10012 * Note: only bits 31:5 are valid. 10013 */ 10014 addr += A32_BANKED_CURRENT_REG_GET(env, vbar); 10015 } 10016 10017 if ((env->uncached_cpsr & CPSR_M) == ARM_CPU_MODE_MON) { 10018 env->cp15.scr_el3 &= ~SCR_NS; 10019 } 10020 10021 take_aarch32_exception(env, new_mode, mask, offset, addr); 10022 } 10023 10024 static int aarch64_regnum(CPUARMState *env, int aarch32_reg) 10025 { 10026 /* 10027 * Return the register number of the AArch64 view of the AArch32 10028 * register @aarch32_reg. The CPUARMState CPSR is assumed to still 10029 * be that of the AArch32 mode the exception came from. 10030 */ 10031 int mode = env->uncached_cpsr & CPSR_M; 10032 10033 switch (aarch32_reg) { 10034 case 0 ... 7: 10035 return aarch32_reg; 10036 case 8 ... 12: 10037 return mode == ARM_CPU_MODE_FIQ ? aarch32_reg + 16 : aarch32_reg; 10038 case 13: 10039 switch (mode) { 10040 case ARM_CPU_MODE_USR: 10041 case ARM_CPU_MODE_SYS: 10042 return 13; 10043 case ARM_CPU_MODE_HYP: 10044 return 15; 10045 case ARM_CPU_MODE_IRQ: 10046 return 17; 10047 case ARM_CPU_MODE_SVC: 10048 return 19; 10049 case ARM_CPU_MODE_ABT: 10050 return 21; 10051 case ARM_CPU_MODE_UND: 10052 return 23; 10053 case ARM_CPU_MODE_FIQ: 10054 return 29; 10055 default: 10056 g_assert_not_reached(); 10057 } 10058 case 14: 10059 switch (mode) { 10060 case ARM_CPU_MODE_USR: 10061 case ARM_CPU_MODE_SYS: 10062 case ARM_CPU_MODE_HYP: 10063 return 14; 10064 case ARM_CPU_MODE_IRQ: 10065 return 16; 10066 case ARM_CPU_MODE_SVC: 10067 return 18; 10068 case ARM_CPU_MODE_ABT: 10069 return 20; 10070 case ARM_CPU_MODE_UND: 10071 return 22; 10072 case ARM_CPU_MODE_FIQ: 10073 return 30; 10074 default: 10075 g_assert_not_reached(); 10076 } 10077 case 15: 10078 return 31; 10079 default: 10080 g_assert_not_reached(); 10081 } 10082 } 10083 10084 static uint32_t cpsr_read_for_spsr_elx(CPUARMState *env) 10085 { 10086 uint32_t ret = cpsr_read(env); 10087 10088 /* Move DIT to the correct location for SPSR_ELx */ 10089 if (ret & CPSR_DIT) { 10090 ret &= ~CPSR_DIT; 10091 ret |= PSTATE_DIT; 10092 } 10093 /* Merge PSTATE.SS into SPSR_ELx */ 10094 ret |= env->pstate & PSTATE_SS; 10095 10096 return ret; 10097 } 10098 10099 static bool syndrome_is_sync_extabt(uint32_t syndrome) 10100 { 10101 /* Return true if this syndrome value is a synchronous external abort */ 10102 switch (syn_get_ec(syndrome)) { 10103 case EC_INSNABORT: 10104 case EC_INSNABORT_SAME_EL: 10105 case EC_DATAABORT: 10106 case EC_DATAABORT_SAME_EL: 10107 /* Look at fault status code for all the synchronous ext abort cases */ 10108 switch (syndrome & 0x3f) { 10109 case 0x10: 10110 case 0x13: 10111 case 0x14: 10112 case 0x15: 10113 case 0x16: 10114 case 0x17: 10115 return true; 10116 default: 10117 return false; 10118 } 10119 default: 10120 return false; 10121 } 10122 } 10123 10124 /* Handle exception entry to a target EL which is using AArch64 */ 10125 static void arm_cpu_do_interrupt_aarch64(CPUState *cs) 10126 { 10127 ARMCPU *cpu = ARM_CPU(cs); 10128 CPUARMState *env = &cpu->env; 10129 unsigned int new_el = env->exception.target_el; 10130 target_ulong addr = env->cp15.vbar_el[new_el]; 10131 unsigned int new_mode = aarch64_pstate_mode(new_el, true); 10132 unsigned int old_mode; 10133 unsigned int cur_el = arm_current_el(env); 10134 int rt; 10135 10136 /* 10137 * Note that new_el can never be 0. If cur_el is 0, then 10138 * el0_a64 is is_a64(), else el0_a64 is ignored. 10139 */ 10140 aarch64_sve_change_el(env, cur_el, new_el, is_a64(env)); 10141 10142 if (cur_el < new_el) { 10143 /* Entry vector offset depends on whether the implemented EL 10144 * immediately lower than the target level is using AArch32 or AArch64 10145 */ 10146 bool is_aa64; 10147 uint64_t hcr; 10148 10149 switch (new_el) { 10150 case 3: 10151 is_aa64 = (env->cp15.scr_el3 & SCR_RW) != 0; 10152 break; 10153 case 2: 10154 hcr = arm_hcr_el2_eff(env); 10155 if ((hcr & (HCR_E2H | HCR_TGE)) != (HCR_E2H | HCR_TGE)) { 10156 is_aa64 = (hcr & HCR_RW) != 0; 10157 break; 10158 } 10159 /* fall through */ 10160 case 1: 10161 is_aa64 = is_a64(env); 10162 break; 10163 default: 10164 g_assert_not_reached(); 10165 } 10166 10167 if (is_aa64) { 10168 addr += 0x400; 10169 } else { 10170 addr += 0x600; 10171 } 10172 } else if (pstate_read(env) & PSTATE_SP) { 10173 addr += 0x200; 10174 } 10175 10176 switch (cs->exception_index) { 10177 case EXCP_PREFETCH_ABORT: 10178 case EXCP_DATA_ABORT: 10179 /* 10180 * FEAT_DoubleFault allows synchronous external aborts taken to EL3 10181 * to be taken to the SError vector entrypoint. 10182 */ 10183 if (new_el == 3 && (env->cp15.scr_el3 & SCR_EASE) && 10184 syndrome_is_sync_extabt(env->exception.syndrome)) { 10185 addr += 0x180; 10186 } 10187 env->cp15.far_el[new_el] = env->exception.vaddress; 10188 qemu_log_mask(CPU_LOG_INT, "...with FAR 0x%" PRIx64 "\n", 10189 env->cp15.far_el[new_el]); 10190 /* fall through */ 10191 case EXCP_BKPT: 10192 case EXCP_UDEF: 10193 case EXCP_SWI: 10194 case EXCP_HVC: 10195 case EXCP_HYP_TRAP: 10196 case EXCP_SMC: 10197 switch (syn_get_ec(env->exception.syndrome)) { 10198 case EC_ADVSIMDFPACCESSTRAP: 10199 /* 10200 * QEMU internal FP/SIMD syndromes from AArch32 include the 10201 * TA and coproc fields which are only exposed if the exception 10202 * is taken to AArch32 Hyp mode. Mask them out to get a valid 10203 * AArch64 format syndrome. 10204 */ 10205 env->exception.syndrome &= ~MAKE_64BIT_MASK(0, 20); 10206 break; 10207 case EC_CP14RTTRAP: 10208 case EC_CP15RTTRAP: 10209 case EC_CP14DTTRAP: 10210 /* 10211 * For a trap on AArch32 MRC/MCR/LDC/STC the Rt field is currently 10212 * the raw register field from the insn; when taking this to 10213 * AArch64 we must convert it to the AArch64 view of the register 10214 * number. Notice that we read a 4-bit AArch32 register number and 10215 * write back a 5-bit AArch64 one. 10216 */ 10217 rt = extract32(env->exception.syndrome, 5, 4); 10218 rt = aarch64_regnum(env, rt); 10219 env->exception.syndrome = deposit32(env->exception.syndrome, 10220 5, 5, rt); 10221 break; 10222 case EC_CP15RRTTRAP: 10223 case EC_CP14RRTTRAP: 10224 /* Similarly for MRRC/MCRR traps for Rt and Rt2 fields */ 10225 rt = extract32(env->exception.syndrome, 5, 4); 10226 rt = aarch64_regnum(env, rt); 10227 env->exception.syndrome = deposit32(env->exception.syndrome, 10228 5, 5, rt); 10229 rt = extract32(env->exception.syndrome, 10, 4); 10230 rt = aarch64_regnum(env, rt); 10231 env->exception.syndrome = deposit32(env->exception.syndrome, 10232 10, 5, rt); 10233 break; 10234 } 10235 env->cp15.esr_el[new_el] = env->exception.syndrome; 10236 break; 10237 case EXCP_IRQ: 10238 case EXCP_VIRQ: 10239 addr += 0x80; 10240 break; 10241 case EXCP_FIQ: 10242 case EXCP_VFIQ: 10243 addr += 0x100; 10244 break; 10245 case EXCP_VSERR: 10246 addr += 0x180; 10247 /* Construct the SError syndrome from IDS and ISS fields. */ 10248 env->exception.syndrome = syn_serror(env->cp15.vsesr_el2 & 0x1ffffff); 10249 env->cp15.esr_el[new_el] = env->exception.syndrome; 10250 break; 10251 default: 10252 cpu_abort(cs, "Unhandled exception 0x%x\n", cs->exception_index); 10253 } 10254 10255 if (is_a64(env)) { 10256 old_mode = pstate_read(env); 10257 aarch64_save_sp(env, arm_current_el(env)); 10258 env->elr_el[new_el] = env->pc; 10259 } else { 10260 old_mode = cpsr_read_for_spsr_elx(env); 10261 env->elr_el[new_el] = env->regs[15]; 10262 10263 aarch64_sync_32_to_64(env); 10264 10265 env->condexec_bits = 0; 10266 } 10267 env->banked_spsr[aarch64_banked_spsr_index(new_el)] = old_mode; 10268 10269 qemu_log_mask(CPU_LOG_INT, "...with ELR 0x%" PRIx64 "\n", 10270 env->elr_el[new_el]); 10271 10272 if (cpu_isar_feature(aa64_pan, cpu)) { 10273 /* The value of PSTATE.PAN is normally preserved, except when ... */ 10274 new_mode |= old_mode & PSTATE_PAN; 10275 switch (new_el) { 10276 case 2: 10277 /* ... the target is EL2 with HCR_EL2.{E2H,TGE} == '11' ... */ 10278 if ((arm_hcr_el2_eff(env) & (HCR_E2H | HCR_TGE)) 10279 != (HCR_E2H | HCR_TGE)) { 10280 break; 10281 } 10282 /* fall through */ 10283 case 1: 10284 /* ... the target is EL1 ... */ 10285 /* ... and SCTLR_ELx.SPAN == 0, then set to 1. */ 10286 if ((env->cp15.sctlr_el[new_el] & SCTLR_SPAN) == 0) { 10287 new_mode |= PSTATE_PAN; 10288 } 10289 break; 10290 } 10291 } 10292 if (cpu_isar_feature(aa64_mte, cpu)) { 10293 new_mode |= PSTATE_TCO; 10294 } 10295 10296 if (cpu_isar_feature(aa64_ssbs, cpu)) { 10297 if (env->cp15.sctlr_el[new_el] & SCTLR_DSSBS_64) { 10298 new_mode |= PSTATE_SSBS; 10299 } else { 10300 new_mode &= ~PSTATE_SSBS; 10301 } 10302 } 10303 10304 pstate_write(env, PSTATE_DAIF | new_mode); 10305 env->aarch64 = true; 10306 aarch64_restore_sp(env, new_el); 10307 helper_rebuild_hflags_a64(env, new_el); 10308 10309 env->pc = addr; 10310 10311 qemu_log_mask(CPU_LOG_INT, "...to EL%d PC 0x%" PRIx64 " PSTATE 0x%x\n", 10312 new_el, env->pc, pstate_read(env)); 10313 } 10314 10315 /* 10316 * Do semihosting call and set the appropriate return value. All the 10317 * permission and validity checks have been done at translate time. 10318 * 10319 * We only see semihosting exceptions in TCG only as they are not 10320 * trapped to the hypervisor in KVM. 10321 */ 10322 #ifdef CONFIG_TCG 10323 static void handle_semihosting(CPUState *cs) 10324 { 10325 ARMCPU *cpu = ARM_CPU(cs); 10326 CPUARMState *env = &cpu->env; 10327 10328 if (is_a64(env)) { 10329 qemu_log_mask(CPU_LOG_INT, 10330 "...handling as semihosting call 0x%" PRIx64 "\n", 10331 env->xregs[0]); 10332 env->xregs[0] = do_common_semihosting(cs); 10333 env->pc += 4; 10334 } else { 10335 qemu_log_mask(CPU_LOG_INT, 10336 "...handling as semihosting call 0x%x\n", 10337 env->regs[0]); 10338 env->regs[0] = do_common_semihosting(cs); 10339 env->regs[15] += env->thumb ? 2 : 4; 10340 } 10341 } 10342 #endif 10343 10344 /* Handle a CPU exception for A and R profile CPUs. 10345 * Do any appropriate logging, handle PSCI calls, and then hand off 10346 * to the AArch64-entry or AArch32-entry function depending on the 10347 * target exception level's register width. 10348 * 10349 * Note: this is used for both TCG (as the do_interrupt tcg op), 10350 * and KVM to re-inject guest debug exceptions, and to 10351 * inject a Synchronous-External-Abort. 10352 */ 10353 void arm_cpu_do_interrupt(CPUState *cs) 10354 { 10355 ARMCPU *cpu = ARM_CPU(cs); 10356 CPUARMState *env = &cpu->env; 10357 unsigned int new_el = env->exception.target_el; 10358 10359 assert(!arm_feature(env, ARM_FEATURE_M)); 10360 10361 arm_log_exception(cs); 10362 qemu_log_mask(CPU_LOG_INT, "...from EL%d to EL%d\n", arm_current_el(env), 10363 new_el); 10364 if (qemu_loglevel_mask(CPU_LOG_INT) 10365 && !excp_is_internal(cs->exception_index)) { 10366 qemu_log_mask(CPU_LOG_INT, "...with ESR 0x%x/0x%" PRIx32 "\n", 10367 syn_get_ec(env->exception.syndrome), 10368 env->exception.syndrome); 10369 } 10370 10371 if (arm_is_psci_call(cpu, cs->exception_index)) { 10372 arm_handle_psci_call(cpu); 10373 qemu_log_mask(CPU_LOG_INT, "...handled as PSCI call\n"); 10374 return; 10375 } 10376 10377 /* 10378 * Semihosting semantics depend on the register width of the code 10379 * that caused the exception, not the target exception level, so 10380 * must be handled here. 10381 */ 10382 #ifdef CONFIG_TCG 10383 if (cs->exception_index == EXCP_SEMIHOST) { 10384 handle_semihosting(cs); 10385 return; 10386 } 10387 #endif 10388 10389 /* Hooks may change global state so BQL should be held, also the 10390 * BQL needs to be held for any modification of 10391 * cs->interrupt_request. 10392 */ 10393 g_assert(qemu_mutex_iothread_locked()); 10394 10395 arm_call_pre_el_change_hook(cpu); 10396 10397 assert(!excp_is_internal(cs->exception_index)); 10398 if (arm_el_is_aa64(env, new_el)) { 10399 arm_cpu_do_interrupt_aarch64(cs); 10400 } else { 10401 arm_cpu_do_interrupt_aarch32(cs); 10402 } 10403 10404 arm_call_el_change_hook(cpu); 10405 10406 if (!kvm_enabled()) { 10407 cs->interrupt_request |= CPU_INTERRUPT_EXITTB; 10408 } 10409 } 10410 #endif /* !CONFIG_USER_ONLY */ 10411 10412 uint64_t arm_sctlr(CPUARMState *env, int el) 10413 { 10414 /* Only EL0 needs to be adjusted for EL1&0 or EL2&0. */ 10415 if (el == 0) { 10416 ARMMMUIdx mmu_idx = arm_mmu_idx_el(env, 0); 10417 el = (mmu_idx == ARMMMUIdx_E20_0 || mmu_idx == ARMMMUIdx_SE20_0) 10418 ? 2 : 1; 10419 } 10420 return env->cp15.sctlr_el[el]; 10421 } 10422 10423 int aa64_va_parameter_tbi(uint64_t tcr, ARMMMUIdx mmu_idx) 10424 { 10425 if (regime_has_2_ranges(mmu_idx)) { 10426 return extract64(tcr, 37, 2); 10427 } else if (mmu_idx == ARMMMUIdx_Stage2 || mmu_idx == ARMMMUIdx_Stage2_S) { 10428 return 0; /* VTCR_EL2 */ 10429 } else { 10430 /* Replicate the single TBI bit so we always have 2 bits. */ 10431 return extract32(tcr, 20, 1) * 3; 10432 } 10433 } 10434 10435 int aa64_va_parameter_tbid(uint64_t tcr, ARMMMUIdx mmu_idx) 10436 { 10437 if (regime_has_2_ranges(mmu_idx)) { 10438 return extract64(tcr, 51, 2); 10439 } else if (mmu_idx == ARMMMUIdx_Stage2 || mmu_idx == ARMMMUIdx_Stage2_S) { 10440 return 0; /* VTCR_EL2 */ 10441 } else { 10442 /* Replicate the single TBID bit so we always have 2 bits. */ 10443 return extract32(tcr, 29, 1) * 3; 10444 } 10445 } 10446 10447 static int aa64_va_parameter_tcma(uint64_t tcr, ARMMMUIdx mmu_idx) 10448 { 10449 if (regime_has_2_ranges(mmu_idx)) { 10450 return extract64(tcr, 57, 2); 10451 } else { 10452 /* Replicate the single TCMA bit so we always have 2 bits. */ 10453 return extract32(tcr, 30, 1) * 3; 10454 } 10455 } 10456 10457 ARMVAParameters aa64_va_parameters(CPUARMState *env, uint64_t va, 10458 ARMMMUIdx mmu_idx, bool data) 10459 { 10460 uint64_t tcr = regime_tcr(env, mmu_idx)->raw_tcr; 10461 bool epd, hpd, using16k, using64k, tsz_oob, ds; 10462 int select, tsz, tbi, max_tsz, min_tsz, ps, sh; 10463 ARMCPU *cpu = env_archcpu(env); 10464 10465 if (!regime_has_2_ranges(mmu_idx)) { 10466 select = 0; 10467 tsz = extract32(tcr, 0, 6); 10468 using64k = extract32(tcr, 14, 1); 10469 using16k = extract32(tcr, 15, 1); 10470 if (mmu_idx == ARMMMUIdx_Stage2 || mmu_idx == ARMMMUIdx_Stage2_S) { 10471 /* VTCR_EL2 */ 10472 hpd = false; 10473 } else { 10474 hpd = extract32(tcr, 24, 1); 10475 } 10476 epd = false; 10477 sh = extract32(tcr, 12, 2); 10478 ps = extract32(tcr, 16, 3); 10479 ds = extract64(tcr, 32, 1); 10480 } else { 10481 /* 10482 * Bit 55 is always between the two regions, and is canonical for 10483 * determining if address tagging is enabled. 10484 */ 10485 select = extract64(va, 55, 1); 10486 if (!select) { 10487 tsz = extract32(tcr, 0, 6); 10488 epd = extract32(tcr, 7, 1); 10489 sh = extract32(tcr, 12, 2); 10490 using64k = extract32(tcr, 14, 1); 10491 using16k = extract32(tcr, 15, 1); 10492 hpd = extract64(tcr, 41, 1); 10493 } else { 10494 int tg = extract32(tcr, 30, 2); 10495 using16k = tg == 1; 10496 using64k = tg == 3; 10497 tsz = extract32(tcr, 16, 6); 10498 epd = extract32(tcr, 23, 1); 10499 sh = extract32(tcr, 28, 2); 10500 hpd = extract64(tcr, 42, 1); 10501 } 10502 ps = extract64(tcr, 32, 3); 10503 ds = extract64(tcr, 59, 1); 10504 } 10505 10506 if (cpu_isar_feature(aa64_st, cpu)) { 10507 max_tsz = 48 - using64k; 10508 } else { 10509 max_tsz = 39; 10510 } 10511 10512 /* 10513 * DS is RES0 unless FEAT_LPA2 is supported for the given page size; 10514 * adjust the effective value of DS, as documented. 10515 */ 10516 min_tsz = 16; 10517 if (using64k) { 10518 if (cpu_isar_feature(aa64_lva, cpu)) { 10519 min_tsz = 12; 10520 } 10521 ds = false; 10522 } else if (ds) { 10523 switch (mmu_idx) { 10524 case ARMMMUIdx_Stage2: 10525 case ARMMMUIdx_Stage2_S: 10526 if (using16k) { 10527 ds = cpu_isar_feature(aa64_tgran16_2_lpa2, cpu); 10528 } else { 10529 ds = cpu_isar_feature(aa64_tgran4_2_lpa2, cpu); 10530 } 10531 break; 10532 default: 10533 if (using16k) { 10534 ds = cpu_isar_feature(aa64_tgran16_lpa2, cpu); 10535 } else { 10536 ds = cpu_isar_feature(aa64_tgran4_lpa2, cpu); 10537 } 10538 break; 10539 } 10540 if (ds) { 10541 min_tsz = 12; 10542 } 10543 } 10544 10545 if (tsz > max_tsz) { 10546 tsz = max_tsz; 10547 tsz_oob = true; 10548 } else if (tsz < min_tsz) { 10549 tsz = min_tsz; 10550 tsz_oob = true; 10551 } else { 10552 tsz_oob = false; 10553 } 10554 10555 /* Present TBI as a composite with TBID. */ 10556 tbi = aa64_va_parameter_tbi(tcr, mmu_idx); 10557 if (!data) { 10558 tbi &= ~aa64_va_parameter_tbid(tcr, mmu_idx); 10559 } 10560 tbi = (tbi >> select) & 1; 10561 10562 return (ARMVAParameters) { 10563 .tsz = tsz, 10564 .ps = ps, 10565 .sh = sh, 10566 .select = select, 10567 .tbi = tbi, 10568 .epd = epd, 10569 .hpd = hpd, 10570 .using16k = using16k, 10571 .using64k = using64k, 10572 .tsz_oob = tsz_oob, 10573 .ds = ds, 10574 }; 10575 } 10576 10577 /* Note that signed overflow is undefined in C. The following routines are 10578 careful to use unsigned types where modulo arithmetic is required. 10579 Failure to do so _will_ break on newer gcc. */ 10580 10581 /* Signed saturating arithmetic. */ 10582 10583 /* Perform 16-bit signed saturating addition. */ 10584 static inline uint16_t add16_sat(uint16_t a, uint16_t b) 10585 { 10586 uint16_t res; 10587 10588 res = a + b; 10589 if (((res ^ a) & 0x8000) && !((a ^ b) & 0x8000)) { 10590 if (a & 0x8000) 10591 res = 0x8000; 10592 else 10593 res = 0x7fff; 10594 } 10595 return res; 10596 } 10597 10598 /* Perform 8-bit signed saturating addition. */ 10599 static inline uint8_t add8_sat(uint8_t a, uint8_t b) 10600 { 10601 uint8_t res; 10602 10603 res = a + b; 10604 if (((res ^ a) & 0x80) && !((a ^ b) & 0x80)) { 10605 if (a & 0x80) 10606 res = 0x80; 10607 else 10608 res = 0x7f; 10609 } 10610 return res; 10611 } 10612 10613 /* Perform 16-bit signed saturating subtraction. */ 10614 static inline uint16_t sub16_sat(uint16_t a, uint16_t b) 10615 { 10616 uint16_t res; 10617 10618 res = a - b; 10619 if (((res ^ a) & 0x8000) && ((a ^ b) & 0x8000)) { 10620 if (a & 0x8000) 10621 res = 0x8000; 10622 else 10623 res = 0x7fff; 10624 } 10625 return res; 10626 } 10627 10628 /* Perform 8-bit signed saturating subtraction. */ 10629 static inline uint8_t sub8_sat(uint8_t a, uint8_t b) 10630 { 10631 uint8_t res; 10632 10633 res = a - b; 10634 if (((res ^ a) & 0x80) && ((a ^ b) & 0x80)) { 10635 if (a & 0x80) 10636 res = 0x80; 10637 else 10638 res = 0x7f; 10639 } 10640 return res; 10641 } 10642 10643 #define ADD16(a, b, n) RESULT(add16_sat(a, b), n, 16); 10644 #define SUB16(a, b, n) RESULT(sub16_sat(a, b), n, 16); 10645 #define ADD8(a, b, n) RESULT(add8_sat(a, b), n, 8); 10646 #define SUB8(a, b, n) RESULT(sub8_sat(a, b), n, 8); 10647 #define PFX q 10648 10649 #include "op_addsub.h" 10650 10651 /* Unsigned saturating arithmetic. */ 10652 static inline uint16_t add16_usat(uint16_t a, uint16_t b) 10653 { 10654 uint16_t res; 10655 res = a + b; 10656 if (res < a) 10657 res = 0xffff; 10658 return res; 10659 } 10660 10661 static inline uint16_t sub16_usat(uint16_t a, uint16_t b) 10662 { 10663 if (a > b) 10664 return a - b; 10665 else 10666 return 0; 10667 } 10668 10669 static inline uint8_t add8_usat(uint8_t a, uint8_t b) 10670 { 10671 uint8_t res; 10672 res = a + b; 10673 if (res < a) 10674 res = 0xff; 10675 return res; 10676 } 10677 10678 static inline uint8_t sub8_usat(uint8_t a, uint8_t b) 10679 { 10680 if (a > b) 10681 return a - b; 10682 else 10683 return 0; 10684 } 10685 10686 #define ADD16(a, b, n) RESULT(add16_usat(a, b), n, 16); 10687 #define SUB16(a, b, n) RESULT(sub16_usat(a, b), n, 16); 10688 #define ADD8(a, b, n) RESULT(add8_usat(a, b), n, 8); 10689 #define SUB8(a, b, n) RESULT(sub8_usat(a, b), n, 8); 10690 #define PFX uq 10691 10692 #include "op_addsub.h" 10693 10694 /* Signed modulo arithmetic. */ 10695 #define SARITH16(a, b, n, op) do { \ 10696 int32_t sum; \ 10697 sum = (int32_t)(int16_t)(a) op (int32_t)(int16_t)(b); \ 10698 RESULT(sum, n, 16); \ 10699 if (sum >= 0) \ 10700 ge |= 3 << (n * 2); \ 10701 } while(0) 10702 10703 #define SARITH8(a, b, n, op) do { \ 10704 int32_t sum; \ 10705 sum = (int32_t)(int8_t)(a) op (int32_t)(int8_t)(b); \ 10706 RESULT(sum, n, 8); \ 10707 if (sum >= 0) \ 10708 ge |= 1 << n; \ 10709 } while(0) 10710 10711 10712 #define ADD16(a, b, n) SARITH16(a, b, n, +) 10713 #define SUB16(a, b, n) SARITH16(a, b, n, -) 10714 #define ADD8(a, b, n) SARITH8(a, b, n, +) 10715 #define SUB8(a, b, n) SARITH8(a, b, n, -) 10716 #define PFX s 10717 #define ARITH_GE 10718 10719 #include "op_addsub.h" 10720 10721 /* Unsigned modulo arithmetic. */ 10722 #define ADD16(a, b, n) do { \ 10723 uint32_t sum; \ 10724 sum = (uint32_t)(uint16_t)(a) + (uint32_t)(uint16_t)(b); \ 10725 RESULT(sum, n, 16); \ 10726 if ((sum >> 16) == 1) \ 10727 ge |= 3 << (n * 2); \ 10728 } while(0) 10729 10730 #define ADD8(a, b, n) do { \ 10731 uint32_t sum; \ 10732 sum = (uint32_t)(uint8_t)(a) + (uint32_t)(uint8_t)(b); \ 10733 RESULT(sum, n, 8); \ 10734 if ((sum >> 8) == 1) \ 10735 ge |= 1 << n; \ 10736 } while(0) 10737 10738 #define SUB16(a, b, n) do { \ 10739 uint32_t sum; \ 10740 sum = (uint32_t)(uint16_t)(a) - (uint32_t)(uint16_t)(b); \ 10741 RESULT(sum, n, 16); \ 10742 if ((sum >> 16) == 0) \ 10743 ge |= 3 << (n * 2); \ 10744 } while(0) 10745 10746 #define SUB8(a, b, n) do { \ 10747 uint32_t sum; \ 10748 sum = (uint32_t)(uint8_t)(a) - (uint32_t)(uint8_t)(b); \ 10749 RESULT(sum, n, 8); \ 10750 if ((sum >> 8) == 0) \ 10751 ge |= 1 << n; \ 10752 } while(0) 10753 10754 #define PFX u 10755 #define ARITH_GE 10756 10757 #include "op_addsub.h" 10758 10759 /* Halved signed arithmetic. */ 10760 #define ADD16(a, b, n) \ 10761 RESULT(((int32_t)(int16_t)(a) + (int32_t)(int16_t)(b)) >> 1, n, 16) 10762 #define SUB16(a, b, n) \ 10763 RESULT(((int32_t)(int16_t)(a) - (int32_t)(int16_t)(b)) >> 1, n, 16) 10764 #define ADD8(a, b, n) \ 10765 RESULT(((int32_t)(int8_t)(a) + (int32_t)(int8_t)(b)) >> 1, n, 8) 10766 #define SUB8(a, b, n) \ 10767 RESULT(((int32_t)(int8_t)(a) - (int32_t)(int8_t)(b)) >> 1, n, 8) 10768 #define PFX sh 10769 10770 #include "op_addsub.h" 10771 10772 /* Halved unsigned arithmetic. */ 10773 #define ADD16(a, b, n) \ 10774 RESULT(((uint32_t)(uint16_t)(a) + (uint32_t)(uint16_t)(b)) >> 1, n, 16) 10775 #define SUB16(a, b, n) \ 10776 RESULT(((uint32_t)(uint16_t)(a) - (uint32_t)(uint16_t)(b)) >> 1, n, 16) 10777 #define ADD8(a, b, n) \ 10778 RESULT(((uint32_t)(uint8_t)(a) + (uint32_t)(uint8_t)(b)) >> 1, n, 8) 10779 #define SUB8(a, b, n) \ 10780 RESULT(((uint32_t)(uint8_t)(a) - (uint32_t)(uint8_t)(b)) >> 1, n, 8) 10781 #define PFX uh 10782 10783 #include "op_addsub.h" 10784 10785 static inline uint8_t do_usad(uint8_t a, uint8_t b) 10786 { 10787 if (a > b) 10788 return a - b; 10789 else 10790 return b - a; 10791 } 10792 10793 /* Unsigned sum of absolute byte differences. */ 10794 uint32_t HELPER(usad8)(uint32_t a, uint32_t b) 10795 { 10796 uint32_t sum; 10797 sum = do_usad(a, b); 10798 sum += do_usad(a >> 8, b >> 8); 10799 sum += do_usad(a >> 16, b >> 16); 10800 sum += do_usad(a >> 24, b >> 24); 10801 return sum; 10802 } 10803 10804 /* For ARMv6 SEL instruction. */ 10805 uint32_t HELPER(sel_flags)(uint32_t flags, uint32_t a, uint32_t b) 10806 { 10807 uint32_t mask; 10808 10809 mask = 0; 10810 if (flags & 1) 10811 mask |= 0xff; 10812 if (flags & 2) 10813 mask |= 0xff00; 10814 if (flags & 4) 10815 mask |= 0xff0000; 10816 if (flags & 8) 10817 mask |= 0xff000000; 10818 return (a & mask) | (b & ~mask); 10819 } 10820 10821 /* CRC helpers. 10822 * The upper bytes of val (above the number specified by 'bytes') must have 10823 * been zeroed out by the caller. 10824 */ 10825 uint32_t HELPER(crc32)(uint32_t acc, uint32_t val, uint32_t bytes) 10826 { 10827 uint8_t buf[4]; 10828 10829 stl_le_p(buf, val); 10830 10831 /* zlib crc32 converts the accumulator and output to one's complement. */ 10832 return crc32(acc ^ 0xffffffff, buf, bytes) ^ 0xffffffff; 10833 } 10834 10835 uint32_t HELPER(crc32c)(uint32_t acc, uint32_t val, uint32_t bytes) 10836 { 10837 uint8_t buf[4]; 10838 10839 stl_le_p(buf, val); 10840 10841 /* Linux crc32c converts the output to one's complement. */ 10842 return crc32c(acc, buf, bytes) ^ 0xffffffff; 10843 } 10844 10845 /* Return the exception level to which FP-disabled exceptions should 10846 * be taken, or 0 if FP is enabled. 10847 */ 10848 int fp_exception_el(CPUARMState *env, int cur_el) 10849 { 10850 #ifndef CONFIG_USER_ONLY 10851 uint64_t hcr_el2; 10852 10853 /* CPACR and the CPTR registers don't exist before v6, so FP is 10854 * always accessible 10855 */ 10856 if (!arm_feature(env, ARM_FEATURE_V6)) { 10857 return 0; 10858 } 10859 10860 if (arm_feature(env, ARM_FEATURE_M)) { 10861 /* CPACR can cause a NOCP UsageFault taken to current security state */ 10862 if (!v7m_cpacr_pass(env, env->v7m.secure, cur_el != 0)) { 10863 return 1; 10864 } 10865 10866 if (arm_feature(env, ARM_FEATURE_M_SECURITY) && !env->v7m.secure) { 10867 if (!extract32(env->v7m.nsacr, 10, 1)) { 10868 /* FP insns cause a NOCP UsageFault taken to Secure */ 10869 return 3; 10870 } 10871 } 10872 10873 return 0; 10874 } 10875 10876 hcr_el2 = arm_hcr_el2_eff(env); 10877 10878 /* The CPACR controls traps to EL1, or PL1 if we're 32 bit: 10879 * 0, 2 : trap EL0 and EL1/PL1 accesses 10880 * 1 : trap only EL0 accesses 10881 * 3 : trap no accesses 10882 * This register is ignored if E2H+TGE are both set. 10883 */ 10884 if ((hcr_el2 & (HCR_E2H | HCR_TGE)) != (HCR_E2H | HCR_TGE)) { 10885 int fpen = FIELD_EX64(env->cp15.cpacr_el1, CPACR_EL1, FPEN); 10886 10887 switch (fpen) { 10888 case 1: 10889 if (cur_el != 0) { 10890 break; 10891 } 10892 /* fall through */ 10893 case 0: 10894 case 2: 10895 /* Trap from Secure PL0 or PL1 to Secure PL1. */ 10896 if (!arm_el_is_aa64(env, 3) 10897 && (cur_el == 3 || arm_is_secure_below_el3(env))) { 10898 return 3; 10899 } 10900 if (cur_el <= 1) { 10901 return 1; 10902 } 10903 break; 10904 } 10905 } 10906 10907 /* 10908 * The NSACR allows A-profile AArch32 EL3 and M-profile secure mode 10909 * to control non-secure access to the FPU. It doesn't have any 10910 * effect if EL3 is AArch64 or if EL3 doesn't exist at all. 10911 */ 10912 if ((arm_feature(env, ARM_FEATURE_EL3) && !arm_el_is_aa64(env, 3) && 10913 cur_el <= 2 && !arm_is_secure_below_el3(env))) { 10914 if (!extract32(env->cp15.nsacr, 10, 1)) { 10915 /* FP insns act as UNDEF */ 10916 return cur_el == 2 ? 2 : 1; 10917 } 10918 } 10919 10920 /* 10921 * CPTR_EL2 is present in v7VE or v8, and changes format 10922 * with HCR_EL2.E2H (regardless of TGE). 10923 */ 10924 if (cur_el <= 2) { 10925 if (hcr_el2 & HCR_E2H) { 10926 switch (FIELD_EX64(env->cp15.cptr_el[2], CPTR_EL2, FPEN)) { 10927 case 1: 10928 if (cur_el != 0 || !(hcr_el2 & HCR_TGE)) { 10929 break; 10930 } 10931 /* fall through */ 10932 case 0: 10933 case 2: 10934 return 2; 10935 } 10936 } else if (arm_is_el2_enabled(env)) { 10937 if (FIELD_EX64(env->cp15.cptr_el[2], CPTR_EL2, TFP)) { 10938 return 2; 10939 } 10940 } 10941 } 10942 10943 /* CPTR_EL3 : present in v8 */ 10944 if (FIELD_EX64(env->cp15.cptr_el[3], CPTR_EL3, TFP)) { 10945 /* Trap all FP ops to EL3 */ 10946 return 3; 10947 } 10948 #endif 10949 return 0; 10950 } 10951 10952 /* Return the exception level we're running at if this is our mmu_idx */ 10953 int arm_mmu_idx_to_el(ARMMMUIdx mmu_idx) 10954 { 10955 if (mmu_idx & ARM_MMU_IDX_M) { 10956 return mmu_idx & ARM_MMU_IDX_M_PRIV; 10957 } 10958 10959 switch (mmu_idx) { 10960 case ARMMMUIdx_E10_0: 10961 case ARMMMUIdx_E20_0: 10962 case ARMMMUIdx_SE10_0: 10963 case ARMMMUIdx_SE20_0: 10964 return 0; 10965 case ARMMMUIdx_E10_1: 10966 case ARMMMUIdx_E10_1_PAN: 10967 case ARMMMUIdx_SE10_1: 10968 case ARMMMUIdx_SE10_1_PAN: 10969 return 1; 10970 case ARMMMUIdx_E2: 10971 case ARMMMUIdx_E20_2: 10972 case ARMMMUIdx_E20_2_PAN: 10973 case ARMMMUIdx_SE2: 10974 case ARMMMUIdx_SE20_2: 10975 case ARMMMUIdx_SE20_2_PAN: 10976 return 2; 10977 case ARMMMUIdx_SE3: 10978 return 3; 10979 default: 10980 g_assert_not_reached(); 10981 } 10982 } 10983 10984 #ifndef CONFIG_TCG 10985 ARMMMUIdx arm_v7m_mmu_idx_for_secstate(CPUARMState *env, bool secstate) 10986 { 10987 g_assert_not_reached(); 10988 } 10989 #endif 10990 10991 ARMMMUIdx arm_mmu_idx_el(CPUARMState *env, int el) 10992 { 10993 ARMMMUIdx idx; 10994 uint64_t hcr; 10995 10996 if (arm_feature(env, ARM_FEATURE_M)) { 10997 return arm_v7m_mmu_idx_for_secstate(env, env->v7m.secure); 10998 } 10999 11000 /* See ARM pseudo-function ELIsInHost. */ 11001 switch (el) { 11002 case 0: 11003 hcr = arm_hcr_el2_eff(env); 11004 if ((hcr & (HCR_E2H | HCR_TGE)) == (HCR_E2H | HCR_TGE)) { 11005 idx = ARMMMUIdx_E20_0; 11006 } else { 11007 idx = ARMMMUIdx_E10_0; 11008 } 11009 break; 11010 case 1: 11011 if (env->pstate & PSTATE_PAN) { 11012 idx = ARMMMUIdx_E10_1_PAN; 11013 } else { 11014 idx = ARMMMUIdx_E10_1; 11015 } 11016 break; 11017 case 2: 11018 /* Note that TGE does not apply at EL2. */ 11019 if (arm_hcr_el2_eff(env) & HCR_E2H) { 11020 if (env->pstate & PSTATE_PAN) { 11021 idx = ARMMMUIdx_E20_2_PAN; 11022 } else { 11023 idx = ARMMMUIdx_E20_2; 11024 } 11025 } else { 11026 idx = ARMMMUIdx_E2; 11027 } 11028 break; 11029 case 3: 11030 return ARMMMUIdx_SE3; 11031 default: 11032 g_assert_not_reached(); 11033 } 11034 11035 if (arm_is_secure_below_el3(env)) { 11036 idx &= ~ARM_MMU_IDX_A_NS; 11037 } 11038 11039 return idx; 11040 } 11041 11042 ARMMMUIdx arm_mmu_idx(CPUARMState *env) 11043 { 11044 return arm_mmu_idx_el(env, arm_current_el(env)); 11045 } 11046 11047 static CPUARMTBFlags rebuild_hflags_common(CPUARMState *env, int fp_el, 11048 ARMMMUIdx mmu_idx, 11049 CPUARMTBFlags flags) 11050 { 11051 DP_TBFLAG_ANY(flags, FPEXC_EL, fp_el); 11052 DP_TBFLAG_ANY(flags, MMUIDX, arm_to_core_mmu_idx(mmu_idx)); 11053 11054 if (arm_singlestep_active(env)) { 11055 DP_TBFLAG_ANY(flags, SS_ACTIVE, 1); 11056 } 11057 return flags; 11058 } 11059 11060 static CPUARMTBFlags rebuild_hflags_common_32(CPUARMState *env, int fp_el, 11061 ARMMMUIdx mmu_idx, 11062 CPUARMTBFlags flags) 11063 { 11064 bool sctlr_b = arm_sctlr_b(env); 11065 11066 if (sctlr_b) { 11067 DP_TBFLAG_A32(flags, SCTLR__B, 1); 11068 } 11069 if (arm_cpu_data_is_big_endian_a32(env, sctlr_b)) { 11070 DP_TBFLAG_ANY(flags, BE_DATA, 1); 11071 } 11072 DP_TBFLAG_A32(flags, NS, !access_secure_reg(env)); 11073 11074 return rebuild_hflags_common(env, fp_el, mmu_idx, flags); 11075 } 11076 11077 static CPUARMTBFlags rebuild_hflags_m32(CPUARMState *env, int fp_el, 11078 ARMMMUIdx mmu_idx) 11079 { 11080 CPUARMTBFlags flags = {}; 11081 uint32_t ccr = env->v7m.ccr[env->v7m.secure]; 11082 11083 /* Without HaveMainExt, CCR.UNALIGN_TRP is RES1. */ 11084 if (ccr & R_V7M_CCR_UNALIGN_TRP_MASK) { 11085 DP_TBFLAG_ANY(flags, ALIGN_MEM, 1); 11086 } 11087 11088 if (arm_v7m_is_handler_mode(env)) { 11089 DP_TBFLAG_M32(flags, HANDLER, 1); 11090 } 11091 11092 /* 11093 * v8M always applies stack limit checks unless CCR.STKOFHFNMIGN 11094 * is suppressing them because the requested execution priority 11095 * is less than 0. 11096 */ 11097 if (arm_feature(env, ARM_FEATURE_V8) && 11098 !((mmu_idx & ARM_MMU_IDX_M_NEGPRI) && 11099 (ccr & R_V7M_CCR_STKOFHFNMIGN_MASK))) { 11100 DP_TBFLAG_M32(flags, STACKCHECK, 1); 11101 } 11102 11103 return rebuild_hflags_common_32(env, fp_el, mmu_idx, flags); 11104 } 11105 11106 static CPUARMTBFlags rebuild_hflags_a32(CPUARMState *env, int fp_el, 11107 ARMMMUIdx mmu_idx) 11108 { 11109 CPUARMTBFlags flags = {}; 11110 int el = arm_current_el(env); 11111 11112 if (arm_sctlr(env, el) & SCTLR_A) { 11113 DP_TBFLAG_ANY(flags, ALIGN_MEM, 1); 11114 } 11115 11116 if (arm_el_is_aa64(env, 1)) { 11117 DP_TBFLAG_A32(flags, VFPEN, 1); 11118 } 11119 11120 if (el < 2 && env->cp15.hstr_el2 && 11121 (arm_hcr_el2_eff(env) & (HCR_E2H | HCR_TGE)) != (HCR_E2H | HCR_TGE)) { 11122 DP_TBFLAG_A32(flags, HSTR_ACTIVE, 1); 11123 } 11124 11125 if (env->uncached_cpsr & CPSR_IL) { 11126 DP_TBFLAG_ANY(flags, PSTATE__IL, 1); 11127 } 11128 11129 return rebuild_hflags_common_32(env, fp_el, mmu_idx, flags); 11130 } 11131 11132 static CPUARMTBFlags rebuild_hflags_a64(CPUARMState *env, int el, int fp_el, 11133 ARMMMUIdx mmu_idx) 11134 { 11135 CPUARMTBFlags flags = {}; 11136 ARMMMUIdx stage1 = stage_1_mmu_idx(mmu_idx); 11137 uint64_t tcr = regime_tcr(env, mmu_idx)->raw_tcr; 11138 uint64_t sctlr; 11139 int tbii, tbid; 11140 11141 DP_TBFLAG_ANY(flags, AARCH64_STATE, 1); 11142 11143 /* Get control bits for tagged addresses. */ 11144 tbid = aa64_va_parameter_tbi(tcr, mmu_idx); 11145 tbii = tbid & ~aa64_va_parameter_tbid(tcr, mmu_idx); 11146 11147 DP_TBFLAG_A64(flags, TBII, tbii); 11148 DP_TBFLAG_A64(flags, TBID, tbid); 11149 11150 if (cpu_isar_feature(aa64_sve, env_archcpu(env))) { 11151 int sve_el = sve_exception_el(env, el); 11152 11153 /* 11154 * If either FP or SVE are disabled, translator does not need len. 11155 * If SVE EL > FP EL, FP exception has precedence, and translator 11156 * does not need SVE EL. Save potential re-translations by forcing 11157 * the unneeded data to zero. 11158 */ 11159 if (fp_el != 0) { 11160 if (sve_el > fp_el) { 11161 sve_el = 0; 11162 } 11163 } else if (sve_el == 0) { 11164 DP_TBFLAG_A64(flags, VL, sve_vqm1_for_el(env, el)); 11165 } 11166 DP_TBFLAG_A64(flags, SVEEXC_EL, sve_el); 11167 } 11168 11169 sctlr = regime_sctlr(env, stage1); 11170 11171 if (sctlr & SCTLR_A) { 11172 DP_TBFLAG_ANY(flags, ALIGN_MEM, 1); 11173 } 11174 11175 if (arm_cpu_data_is_big_endian_a64(el, sctlr)) { 11176 DP_TBFLAG_ANY(flags, BE_DATA, 1); 11177 } 11178 11179 if (cpu_isar_feature(aa64_pauth, env_archcpu(env))) { 11180 /* 11181 * In order to save space in flags, we record only whether 11182 * pauth is "inactive", meaning all insns are implemented as 11183 * a nop, or "active" when some action must be performed. 11184 * The decision of which action to take is left to a helper. 11185 */ 11186 if (sctlr & (SCTLR_EnIA | SCTLR_EnIB | SCTLR_EnDA | SCTLR_EnDB)) { 11187 DP_TBFLAG_A64(flags, PAUTH_ACTIVE, 1); 11188 } 11189 } 11190 11191 if (cpu_isar_feature(aa64_bti, env_archcpu(env))) { 11192 /* Note that SCTLR_EL[23].BT == SCTLR_BT1. */ 11193 if (sctlr & (el == 0 ? SCTLR_BT0 : SCTLR_BT1)) { 11194 DP_TBFLAG_A64(flags, BT, 1); 11195 } 11196 } 11197 11198 /* Compute the condition for using AccType_UNPRIV for LDTR et al. */ 11199 if (!(env->pstate & PSTATE_UAO)) { 11200 switch (mmu_idx) { 11201 case ARMMMUIdx_E10_1: 11202 case ARMMMUIdx_E10_1_PAN: 11203 case ARMMMUIdx_SE10_1: 11204 case ARMMMUIdx_SE10_1_PAN: 11205 /* TODO: ARMv8.3-NV */ 11206 DP_TBFLAG_A64(flags, UNPRIV, 1); 11207 break; 11208 case ARMMMUIdx_E20_2: 11209 case ARMMMUIdx_E20_2_PAN: 11210 case ARMMMUIdx_SE20_2: 11211 case ARMMMUIdx_SE20_2_PAN: 11212 /* 11213 * Note that EL20_2 is gated by HCR_EL2.E2H == 1, but EL20_0 is 11214 * gated by HCR_EL2.<E2H,TGE> == '11', and so is LDTR. 11215 */ 11216 if (env->cp15.hcr_el2 & HCR_TGE) { 11217 DP_TBFLAG_A64(flags, UNPRIV, 1); 11218 } 11219 break; 11220 default: 11221 break; 11222 } 11223 } 11224 11225 if (env->pstate & PSTATE_IL) { 11226 DP_TBFLAG_ANY(flags, PSTATE__IL, 1); 11227 } 11228 11229 if (cpu_isar_feature(aa64_mte, env_archcpu(env))) { 11230 /* 11231 * Set MTE_ACTIVE if any access may be Checked, and leave clear 11232 * if all accesses must be Unchecked: 11233 * 1) If no TBI, then there are no tags in the address to check, 11234 * 2) If Tag Check Override, then all accesses are Unchecked, 11235 * 3) If Tag Check Fail == 0, then Checked access have no effect, 11236 * 4) If no Allocation Tag Access, then all accesses are Unchecked. 11237 */ 11238 if (allocation_tag_access_enabled(env, el, sctlr)) { 11239 DP_TBFLAG_A64(flags, ATA, 1); 11240 if (tbid 11241 && !(env->pstate & PSTATE_TCO) 11242 && (sctlr & (el == 0 ? SCTLR_TCF0 : SCTLR_TCF))) { 11243 DP_TBFLAG_A64(flags, MTE_ACTIVE, 1); 11244 } 11245 } 11246 /* And again for unprivileged accesses, if required. */ 11247 if (EX_TBFLAG_A64(flags, UNPRIV) 11248 && tbid 11249 && !(env->pstate & PSTATE_TCO) 11250 && (sctlr & SCTLR_TCF0) 11251 && allocation_tag_access_enabled(env, 0, sctlr)) { 11252 DP_TBFLAG_A64(flags, MTE0_ACTIVE, 1); 11253 } 11254 /* Cache TCMA as well as TBI. */ 11255 DP_TBFLAG_A64(flags, TCMA, aa64_va_parameter_tcma(tcr, mmu_idx)); 11256 } 11257 11258 return rebuild_hflags_common(env, fp_el, mmu_idx, flags); 11259 } 11260 11261 static CPUARMTBFlags rebuild_hflags_internal(CPUARMState *env) 11262 { 11263 int el = arm_current_el(env); 11264 int fp_el = fp_exception_el(env, el); 11265 ARMMMUIdx mmu_idx = arm_mmu_idx_el(env, el); 11266 11267 if (is_a64(env)) { 11268 return rebuild_hflags_a64(env, el, fp_el, mmu_idx); 11269 } else if (arm_feature(env, ARM_FEATURE_M)) { 11270 return rebuild_hflags_m32(env, fp_el, mmu_idx); 11271 } else { 11272 return rebuild_hflags_a32(env, fp_el, mmu_idx); 11273 } 11274 } 11275 11276 void arm_rebuild_hflags(CPUARMState *env) 11277 { 11278 env->hflags = rebuild_hflags_internal(env); 11279 } 11280 11281 /* 11282 * If we have triggered a EL state change we can't rely on the 11283 * translator having passed it to us, we need to recompute. 11284 */ 11285 void HELPER(rebuild_hflags_m32_newel)(CPUARMState *env) 11286 { 11287 int el = arm_current_el(env); 11288 int fp_el = fp_exception_el(env, el); 11289 ARMMMUIdx mmu_idx = arm_mmu_idx_el(env, el); 11290 11291 env->hflags = rebuild_hflags_m32(env, fp_el, mmu_idx); 11292 } 11293 11294 void HELPER(rebuild_hflags_m32)(CPUARMState *env, int el) 11295 { 11296 int fp_el = fp_exception_el(env, el); 11297 ARMMMUIdx mmu_idx = arm_mmu_idx_el(env, el); 11298 11299 env->hflags = rebuild_hflags_m32(env, fp_el, mmu_idx); 11300 } 11301 11302 /* 11303 * If we have triggered a EL state change we can't rely on the 11304 * translator having passed it to us, we need to recompute. 11305 */ 11306 void HELPER(rebuild_hflags_a32_newel)(CPUARMState *env) 11307 { 11308 int el = arm_current_el(env); 11309 int fp_el = fp_exception_el(env, el); 11310 ARMMMUIdx mmu_idx = arm_mmu_idx_el(env, el); 11311 env->hflags = rebuild_hflags_a32(env, fp_el, mmu_idx); 11312 } 11313 11314 void HELPER(rebuild_hflags_a32)(CPUARMState *env, int el) 11315 { 11316 int fp_el = fp_exception_el(env, el); 11317 ARMMMUIdx mmu_idx = arm_mmu_idx_el(env, el); 11318 11319 env->hflags = rebuild_hflags_a32(env, fp_el, mmu_idx); 11320 } 11321 11322 void HELPER(rebuild_hflags_a64)(CPUARMState *env, int el) 11323 { 11324 int fp_el = fp_exception_el(env, el); 11325 ARMMMUIdx mmu_idx = arm_mmu_idx_el(env, el); 11326 11327 env->hflags = rebuild_hflags_a64(env, el, fp_el, mmu_idx); 11328 } 11329 11330 static inline void assert_hflags_rebuild_correctly(CPUARMState *env) 11331 { 11332 #ifdef CONFIG_DEBUG_TCG 11333 CPUARMTBFlags c = env->hflags; 11334 CPUARMTBFlags r = rebuild_hflags_internal(env); 11335 11336 if (unlikely(c.flags != r.flags || c.flags2 != r.flags2)) { 11337 fprintf(stderr, "TCG hflags mismatch " 11338 "(current:(0x%08x,0x" TARGET_FMT_lx ")" 11339 " rebuilt:(0x%08x,0x" TARGET_FMT_lx ")\n", 11340 c.flags, c.flags2, r.flags, r.flags2); 11341 abort(); 11342 } 11343 #endif 11344 } 11345 11346 static bool mve_no_pred(CPUARMState *env) 11347 { 11348 /* 11349 * Return true if there is definitely no predication of MVE 11350 * instructions by VPR or LTPSIZE. (Returning false even if there 11351 * isn't any predication is OK; generated code will just be 11352 * a little worse.) 11353 * If the CPU does not implement MVE then this TB flag is always 0. 11354 * 11355 * NOTE: if you change this logic, the "recalculate s->mve_no_pred" 11356 * logic in gen_update_fp_context() needs to be updated to match. 11357 * 11358 * We do not include the effect of the ECI bits here -- they are 11359 * tracked in other TB flags. This simplifies the logic for 11360 * "when did we emit code that changes the MVE_NO_PRED TB flag 11361 * and thus need to end the TB?". 11362 */ 11363 if (cpu_isar_feature(aa32_mve, env_archcpu(env))) { 11364 return false; 11365 } 11366 if (env->v7m.vpr) { 11367 return false; 11368 } 11369 if (env->v7m.ltpsize < 4) { 11370 return false; 11371 } 11372 return true; 11373 } 11374 11375 void cpu_get_tb_cpu_state(CPUARMState *env, target_ulong *pc, 11376 target_ulong *cs_base, uint32_t *pflags) 11377 { 11378 CPUARMTBFlags flags; 11379 11380 assert_hflags_rebuild_correctly(env); 11381 flags = env->hflags; 11382 11383 if (EX_TBFLAG_ANY(flags, AARCH64_STATE)) { 11384 *pc = env->pc; 11385 if (cpu_isar_feature(aa64_bti, env_archcpu(env))) { 11386 DP_TBFLAG_A64(flags, BTYPE, env->btype); 11387 } 11388 } else { 11389 *pc = env->regs[15]; 11390 11391 if (arm_feature(env, ARM_FEATURE_M)) { 11392 if (arm_feature(env, ARM_FEATURE_M_SECURITY) && 11393 FIELD_EX32(env->v7m.fpccr[M_REG_S], V7M_FPCCR, S) 11394 != env->v7m.secure) { 11395 DP_TBFLAG_M32(flags, FPCCR_S_WRONG, 1); 11396 } 11397 11398 if ((env->v7m.fpccr[env->v7m.secure] & R_V7M_FPCCR_ASPEN_MASK) && 11399 (!(env->v7m.control[M_REG_S] & R_V7M_CONTROL_FPCA_MASK) || 11400 (env->v7m.secure && 11401 !(env->v7m.control[M_REG_S] & R_V7M_CONTROL_SFPA_MASK)))) { 11402 /* 11403 * ASPEN is set, but FPCA/SFPA indicate that there is no 11404 * active FP context; we must create a new FP context before 11405 * executing any FP insn. 11406 */ 11407 DP_TBFLAG_M32(flags, NEW_FP_CTXT_NEEDED, 1); 11408 } 11409 11410 bool is_secure = env->v7m.fpccr[M_REG_S] & R_V7M_FPCCR_S_MASK; 11411 if (env->v7m.fpccr[is_secure] & R_V7M_FPCCR_LSPACT_MASK) { 11412 DP_TBFLAG_M32(flags, LSPACT, 1); 11413 } 11414 11415 if (mve_no_pred(env)) { 11416 DP_TBFLAG_M32(flags, MVE_NO_PRED, 1); 11417 } 11418 } else { 11419 /* 11420 * Note that XSCALE_CPAR shares bits with VECSTRIDE. 11421 * Note that VECLEN+VECSTRIDE are RES0 for M-profile. 11422 */ 11423 if (arm_feature(env, ARM_FEATURE_XSCALE)) { 11424 DP_TBFLAG_A32(flags, XSCALE_CPAR, env->cp15.c15_cpar); 11425 } else { 11426 DP_TBFLAG_A32(flags, VECLEN, env->vfp.vec_len); 11427 DP_TBFLAG_A32(flags, VECSTRIDE, env->vfp.vec_stride); 11428 } 11429 if (env->vfp.xregs[ARM_VFP_FPEXC] & (1 << 30)) { 11430 DP_TBFLAG_A32(flags, VFPEN, 1); 11431 } 11432 } 11433 11434 DP_TBFLAG_AM32(flags, THUMB, env->thumb); 11435 DP_TBFLAG_AM32(flags, CONDEXEC, env->condexec_bits); 11436 } 11437 11438 /* 11439 * The SS_ACTIVE and PSTATE_SS bits correspond to the state machine 11440 * states defined in the ARM ARM for software singlestep: 11441 * SS_ACTIVE PSTATE.SS State 11442 * 0 x Inactive (the TB flag for SS is always 0) 11443 * 1 0 Active-pending 11444 * 1 1 Active-not-pending 11445 * SS_ACTIVE is set in hflags; PSTATE__SS is computed every TB. 11446 */ 11447 if (EX_TBFLAG_ANY(flags, SS_ACTIVE) && (env->pstate & PSTATE_SS)) { 11448 DP_TBFLAG_ANY(flags, PSTATE__SS, 1); 11449 } 11450 11451 *pflags = flags.flags; 11452 *cs_base = flags.flags2; 11453 } 11454 11455 #ifdef TARGET_AARCH64 11456 /* 11457 * The manual says that when SVE is enabled and VQ is widened the 11458 * implementation is allowed to zero the previously inaccessible 11459 * portion of the registers. The corollary to that is that when 11460 * SVE is enabled and VQ is narrowed we are also allowed to zero 11461 * the now inaccessible portion of the registers. 11462 * 11463 * The intent of this is that no predicate bit beyond VQ is ever set. 11464 * Which means that some operations on predicate registers themselves 11465 * may operate on full uint64_t or even unrolled across the maximum 11466 * uint64_t[4]. Performing 4 bits of host arithmetic unconditionally 11467 * may well be cheaper than conditionals to restrict the operation 11468 * to the relevant portion of a uint16_t[16]. 11469 */ 11470 void aarch64_sve_narrow_vq(CPUARMState *env, unsigned vq) 11471 { 11472 int i, j; 11473 uint64_t pmask; 11474 11475 assert(vq >= 1 && vq <= ARM_MAX_VQ); 11476 assert(vq <= env_archcpu(env)->sve_max_vq); 11477 11478 /* Zap the high bits of the zregs. */ 11479 for (i = 0; i < 32; i++) { 11480 memset(&env->vfp.zregs[i].d[2 * vq], 0, 16 * (ARM_MAX_VQ - vq)); 11481 } 11482 11483 /* Zap the high bits of the pregs and ffr. */ 11484 pmask = 0; 11485 if (vq & 3) { 11486 pmask = ~(-1ULL << (16 * (vq & 3))); 11487 } 11488 for (j = vq / 4; j < ARM_MAX_VQ / 4; j++) { 11489 for (i = 0; i < 17; ++i) { 11490 env->vfp.pregs[i].p[j] &= pmask; 11491 } 11492 pmask = 0; 11493 } 11494 } 11495 11496 /* 11497 * Notice a change in SVE vector size when changing EL. 11498 */ 11499 void aarch64_sve_change_el(CPUARMState *env, int old_el, 11500 int new_el, bool el0_a64) 11501 { 11502 ARMCPU *cpu = env_archcpu(env); 11503 int old_len, new_len; 11504 bool old_a64, new_a64; 11505 11506 /* Nothing to do if no SVE. */ 11507 if (!cpu_isar_feature(aa64_sve, cpu)) { 11508 return; 11509 } 11510 11511 /* Nothing to do if FP is disabled in either EL. */ 11512 if (fp_exception_el(env, old_el) || fp_exception_el(env, new_el)) { 11513 return; 11514 } 11515 11516 /* 11517 * DDI0584A.d sec 3.2: "If SVE instructions are disabled or trapped 11518 * at ELx, or not available because the EL is in AArch32 state, then 11519 * for all purposes other than a direct read, the ZCR_ELx.LEN field 11520 * has an effective value of 0". 11521 * 11522 * Consider EL2 (aa64, vq=4) -> EL0 (aa32) -> EL1 (aa64, vq=0). 11523 * If we ignore aa32 state, we would fail to see the vq4->vq0 transition 11524 * from EL2->EL1. Thus we go ahead and narrow when entering aa32 so that 11525 * we already have the correct register contents when encountering the 11526 * vq0->vq0 transition between EL0->EL1. 11527 */ 11528 old_a64 = old_el ? arm_el_is_aa64(env, old_el) : el0_a64; 11529 old_len = (old_a64 && !sve_exception_el(env, old_el) 11530 ? sve_vqm1_for_el(env, old_el) : 0); 11531 new_a64 = new_el ? arm_el_is_aa64(env, new_el) : el0_a64; 11532 new_len = (new_a64 && !sve_exception_el(env, new_el) 11533 ? sve_vqm1_for_el(env, new_el) : 0); 11534 11535 /* When changing vector length, clear inaccessible state. */ 11536 if (new_len < old_len) { 11537 aarch64_sve_narrow_vq(env, new_len + 1); 11538 } 11539 } 11540 #endif 11541