1 /* 2 * ARM generic helpers. 3 * 4 * This code is licensed under the GNU GPL v2 or later. 5 * 6 * SPDX-License-Identifier: GPL-2.0-or-later 7 */ 8 9 #include "qemu/osdep.h" 10 #include "qemu/log.h" 11 #include "trace.h" 12 #include "cpu.h" 13 #include "internals.h" 14 #include "exec/helper-proto.h" 15 #include "qemu/main-loop.h" 16 #include "qemu/timer.h" 17 #include "qemu/bitops.h" 18 #include "qemu/crc32c.h" 19 #include "qemu/qemu-print.h" 20 #include "exec/exec-all.h" 21 #include <zlib.h> /* For crc32 */ 22 #include "hw/irq.h" 23 #include "sysemu/cpu-timers.h" 24 #include "sysemu/kvm.h" 25 #include "sysemu/tcg.h" 26 #include "qapi/error.h" 27 #include "qemu/guest-random.h" 28 #ifdef CONFIG_TCG 29 #include "semihosting/common-semi.h" 30 #endif 31 #include "cpregs.h" 32 33 #define ARM_CPU_FREQ 1000000000 /* FIXME: 1 GHz, should be configurable */ 34 35 static void switch_mode(CPUARMState *env, int mode); 36 37 static uint64_t raw_read(CPUARMState *env, const ARMCPRegInfo *ri) 38 { 39 assert(ri->fieldoffset); 40 if (cpreg_field_is_64bit(ri)) { 41 return CPREG_FIELD64(env, ri); 42 } else { 43 return CPREG_FIELD32(env, ri); 44 } 45 } 46 47 void raw_write(CPUARMState *env, const ARMCPRegInfo *ri, uint64_t value) 48 { 49 assert(ri->fieldoffset); 50 if (cpreg_field_is_64bit(ri)) { 51 CPREG_FIELD64(env, ri) = value; 52 } else { 53 CPREG_FIELD32(env, ri) = value; 54 } 55 } 56 57 static void *raw_ptr(CPUARMState *env, const ARMCPRegInfo *ri) 58 { 59 return (char *)env + ri->fieldoffset; 60 } 61 62 uint64_t read_raw_cp_reg(CPUARMState *env, const ARMCPRegInfo *ri) 63 { 64 /* Raw read of a coprocessor register (as needed for migration, etc). */ 65 if (ri->type & ARM_CP_CONST) { 66 return ri->resetvalue; 67 } else if (ri->raw_readfn) { 68 return ri->raw_readfn(env, ri); 69 } else if (ri->readfn) { 70 return ri->readfn(env, ri); 71 } else { 72 return raw_read(env, ri); 73 } 74 } 75 76 static void write_raw_cp_reg(CPUARMState *env, const ARMCPRegInfo *ri, 77 uint64_t v) 78 { 79 /* 80 * Raw write of a coprocessor register (as needed for migration, etc). 81 * Note that constant registers are treated as write-ignored; the 82 * caller should check for success by whether a readback gives the 83 * value written. 84 */ 85 if (ri->type & ARM_CP_CONST) { 86 return; 87 } else if (ri->raw_writefn) { 88 ri->raw_writefn(env, ri, v); 89 } else if (ri->writefn) { 90 ri->writefn(env, ri, v); 91 } else { 92 raw_write(env, ri, v); 93 } 94 } 95 96 static bool raw_accessors_invalid(const ARMCPRegInfo *ri) 97 { 98 /* 99 * Return true if the regdef would cause an assertion if you called 100 * read_raw_cp_reg() or write_raw_cp_reg() on it (ie if it is a 101 * program bug for it not to have the NO_RAW flag). 102 * NB that returning false here doesn't necessarily mean that calling 103 * read/write_raw_cp_reg() is safe, because we can't distinguish "has 104 * read/write access functions which are safe for raw use" from "has 105 * read/write access functions which have side effects but has forgotten 106 * to provide raw access functions". 107 * The tests here line up with the conditions in read/write_raw_cp_reg() 108 * and assertions in raw_read()/raw_write(). 109 */ 110 if ((ri->type & ARM_CP_CONST) || 111 ri->fieldoffset || 112 ((ri->raw_writefn || ri->writefn) && (ri->raw_readfn || ri->readfn))) { 113 return false; 114 } 115 return true; 116 } 117 118 bool write_cpustate_to_list(ARMCPU *cpu, bool kvm_sync) 119 { 120 /* Write the coprocessor state from cpu->env to the (index,value) list. */ 121 int i; 122 bool ok = true; 123 124 for (i = 0; i < cpu->cpreg_array_len; i++) { 125 uint32_t regidx = kvm_to_cpreg_id(cpu->cpreg_indexes[i]); 126 const ARMCPRegInfo *ri; 127 uint64_t newval; 128 129 ri = get_arm_cp_reginfo(cpu->cp_regs, regidx); 130 if (!ri) { 131 ok = false; 132 continue; 133 } 134 if (ri->type & ARM_CP_NO_RAW) { 135 continue; 136 } 137 138 newval = read_raw_cp_reg(&cpu->env, ri); 139 if (kvm_sync) { 140 /* 141 * Only sync if the previous list->cpustate sync succeeded. 142 * Rather than tracking the success/failure state for every 143 * item in the list, we just recheck "does the raw write we must 144 * have made in write_list_to_cpustate() read back OK" here. 145 */ 146 uint64_t oldval = cpu->cpreg_values[i]; 147 148 if (oldval == newval) { 149 continue; 150 } 151 152 write_raw_cp_reg(&cpu->env, ri, oldval); 153 if (read_raw_cp_reg(&cpu->env, ri) != oldval) { 154 continue; 155 } 156 157 write_raw_cp_reg(&cpu->env, ri, newval); 158 } 159 cpu->cpreg_values[i] = newval; 160 } 161 return ok; 162 } 163 164 bool write_list_to_cpustate(ARMCPU *cpu) 165 { 166 int i; 167 bool ok = true; 168 169 for (i = 0; i < cpu->cpreg_array_len; i++) { 170 uint32_t regidx = kvm_to_cpreg_id(cpu->cpreg_indexes[i]); 171 uint64_t v = cpu->cpreg_values[i]; 172 const ARMCPRegInfo *ri; 173 174 ri = get_arm_cp_reginfo(cpu->cp_regs, regidx); 175 if (!ri) { 176 ok = false; 177 continue; 178 } 179 if (ri->type & ARM_CP_NO_RAW) { 180 continue; 181 } 182 /* 183 * Write value and confirm it reads back as written 184 * (to catch read-only registers and partially read-only 185 * registers where the incoming migration value doesn't match) 186 */ 187 write_raw_cp_reg(&cpu->env, ri, v); 188 if (read_raw_cp_reg(&cpu->env, ri) != v) { 189 ok = false; 190 } 191 } 192 return ok; 193 } 194 195 static void add_cpreg_to_list(gpointer key, gpointer opaque) 196 { 197 ARMCPU *cpu = opaque; 198 uint32_t regidx = (uintptr_t)key; 199 const ARMCPRegInfo *ri = get_arm_cp_reginfo(cpu->cp_regs, regidx); 200 201 if (!(ri->type & (ARM_CP_NO_RAW | ARM_CP_ALIAS))) { 202 cpu->cpreg_indexes[cpu->cpreg_array_len] = cpreg_to_kvm_id(regidx); 203 /* The value array need not be initialized at this point */ 204 cpu->cpreg_array_len++; 205 } 206 } 207 208 static void count_cpreg(gpointer key, gpointer opaque) 209 { 210 ARMCPU *cpu = opaque; 211 const ARMCPRegInfo *ri; 212 213 ri = g_hash_table_lookup(cpu->cp_regs, key); 214 215 if (!(ri->type & (ARM_CP_NO_RAW | ARM_CP_ALIAS))) { 216 cpu->cpreg_array_len++; 217 } 218 } 219 220 static gint cpreg_key_compare(gconstpointer a, gconstpointer b) 221 { 222 uint64_t aidx = cpreg_to_kvm_id((uintptr_t)a); 223 uint64_t bidx = cpreg_to_kvm_id((uintptr_t)b); 224 225 if (aidx > bidx) { 226 return 1; 227 } 228 if (aidx < bidx) { 229 return -1; 230 } 231 return 0; 232 } 233 234 void init_cpreg_list(ARMCPU *cpu) 235 { 236 /* 237 * Initialise the cpreg_tuples[] array based on the cp_regs hash. 238 * Note that we require cpreg_tuples[] to be sorted by key ID. 239 */ 240 GList *keys; 241 int arraylen; 242 243 keys = g_hash_table_get_keys(cpu->cp_regs); 244 keys = g_list_sort(keys, cpreg_key_compare); 245 246 cpu->cpreg_array_len = 0; 247 248 g_list_foreach(keys, count_cpreg, cpu); 249 250 arraylen = cpu->cpreg_array_len; 251 cpu->cpreg_indexes = g_new(uint64_t, arraylen); 252 cpu->cpreg_values = g_new(uint64_t, arraylen); 253 cpu->cpreg_vmstate_indexes = g_new(uint64_t, arraylen); 254 cpu->cpreg_vmstate_values = g_new(uint64_t, arraylen); 255 cpu->cpreg_vmstate_array_len = cpu->cpreg_array_len; 256 cpu->cpreg_array_len = 0; 257 258 g_list_foreach(keys, add_cpreg_to_list, cpu); 259 260 assert(cpu->cpreg_array_len == arraylen); 261 262 g_list_free(keys); 263 } 264 265 /* 266 * Some registers are not accessible from AArch32 EL3 if SCR.NS == 0. 267 */ 268 static CPAccessResult access_el3_aa32ns(CPUARMState *env, 269 const ARMCPRegInfo *ri, 270 bool isread) 271 { 272 if (!is_a64(env) && arm_current_el(env) == 3 && 273 arm_is_secure_below_el3(env)) { 274 return CP_ACCESS_TRAP_UNCATEGORIZED; 275 } 276 return CP_ACCESS_OK; 277 } 278 279 /* 280 * Some secure-only AArch32 registers trap to EL3 if used from 281 * Secure EL1 (but are just ordinary UNDEF in other non-EL3 contexts). 282 * Note that an access from Secure EL1 can only happen if EL3 is AArch64. 283 * We assume that the .access field is set to PL1_RW. 284 */ 285 static CPAccessResult access_trap_aa32s_el1(CPUARMState *env, 286 const ARMCPRegInfo *ri, 287 bool isread) 288 { 289 if (arm_current_el(env) == 3) { 290 return CP_ACCESS_OK; 291 } 292 if (arm_is_secure_below_el3(env)) { 293 if (env->cp15.scr_el3 & SCR_EEL2) { 294 return CP_ACCESS_TRAP_EL2; 295 } 296 return CP_ACCESS_TRAP_EL3; 297 } 298 /* This will be EL1 NS and EL2 NS, which just UNDEF */ 299 return CP_ACCESS_TRAP_UNCATEGORIZED; 300 } 301 302 /* 303 * Check for traps to performance monitor registers, which are controlled 304 * by MDCR_EL2.TPM for EL2 and MDCR_EL3.TPM for EL3. 305 */ 306 static CPAccessResult access_tpm(CPUARMState *env, const ARMCPRegInfo *ri, 307 bool isread) 308 { 309 int el = arm_current_el(env); 310 uint64_t mdcr_el2 = arm_mdcr_el2_eff(env); 311 312 if (el < 2 && (mdcr_el2 & MDCR_TPM)) { 313 return CP_ACCESS_TRAP_EL2; 314 } 315 if (el < 3 && (env->cp15.mdcr_el3 & MDCR_TPM)) { 316 return CP_ACCESS_TRAP_EL3; 317 } 318 return CP_ACCESS_OK; 319 } 320 321 /* Check for traps from EL1 due to HCR_EL2.TVM and HCR_EL2.TRVM. */ 322 CPAccessResult access_tvm_trvm(CPUARMState *env, const ARMCPRegInfo *ri, 323 bool isread) 324 { 325 if (arm_current_el(env) == 1) { 326 uint64_t trap = isread ? HCR_TRVM : HCR_TVM; 327 if (arm_hcr_el2_eff(env) & trap) { 328 return CP_ACCESS_TRAP_EL2; 329 } 330 } 331 return CP_ACCESS_OK; 332 } 333 334 /* Check for traps from EL1 due to HCR_EL2.TSW. */ 335 static CPAccessResult access_tsw(CPUARMState *env, const ARMCPRegInfo *ri, 336 bool isread) 337 { 338 if (arm_current_el(env) == 1 && (arm_hcr_el2_eff(env) & HCR_TSW)) { 339 return CP_ACCESS_TRAP_EL2; 340 } 341 return CP_ACCESS_OK; 342 } 343 344 /* Check for traps from EL1 due to HCR_EL2.TACR. */ 345 static CPAccessResult access_tacr(CPUARMState *env, const ARMCPRegInfo *ri, 346 bool isread) 347 { 348 if (arm_current_el(env) == 1 && (arm_hcr_el2_eff(env) & HCR_TACR)) { 349 return CP_ACCESS_TRAP_EL2; 350 } 351 return CP_ACCESS_OK; 352 } 353 354 /* Check for traps from EL1 due to HCR_EL2.TTLB. */ 355 static CPAccessResult access_ttlb(CPUARMState *env, const ARMCPRegInfo *ri, 356 bool isread) 357 { 358 if (arm_current_el(env) == 1 && (arm_hcr_el2_eff(env) & HCR_TTLB)) { 359 return CP_ACCESS_TRAP_EL2; 360 } 361 return CP_ACCESS_OK; 362 } 363 364 /* Check for traps from EL1 due to HCR_EL2.TTLB or TTLBIS. */ 365 static CPAccessResult access_ttlbis(CPUARMState *env, const ARMCPRegInfo *ri, 366 bool isread) 367 { 368 if (arm_current_el(env) == 1 && 369 (arm_hcr_el2_eff(env) & (HCR_TTLB | HCR_TTLBIS))) { 370 return CP_ACCESS_TRAP_EL2; 371 } 372 return CP_ACCESS_OK; 373 } 374 375 #ifdef TARGET_AARCH64 376 /* Check for traps from EL1 due to HCR_EL2.TTLB or TTLBOS. */ 377 static CPAccessResult access_ttlbos(CPUARMState *env, const ARMCPRegInfo *ri, 378 bool isread) 379 { 380 if (arm_current_el(env) == 1 && 381 (arm_hcr_el2_eff(env) & (HCR_TTLB | HCR_TTLBOS))) { 382 return CP_ACCESS_TRAP_EL2; 383 } 384 return CP_ACCESS_OK; 385 } 386 #endif 387 388 static void dacr_write(CPUARMState *env, const ARMCPRegInfo *ri, uint64_t value) 389 { 390 ARMCPU *cpu = env_archcpu(env); 391 392 raw_write(env, ri, value); 393 tlb_flush(CPU(cpu)); /* Flush TLB as domain not tracked in TLB */ 394 } 395 396 static void fcse_write(CPUARMState *env, const ARMCPRegInfo *ri, uint64_t value) 397 { 398 ARMCPU *cpu = env_archcpu(env); 399 400 if (raw_read(env, ri) != value) { 401 /* 402 * Unlike real hardware the qemu TLB uses virtual addresses, 403 * not modified virtual addresses, so this causes a TLB flush. 404 */ 405 tlb_flush(CPU(cpu)); 406 raw_write(env, ri, value); 407 } 408 } 409 410 static void contextidr_write(CPUARMState *env, const ARMCPRegInfo *ri, 411 uint64_t value) 412 { 413 ARMCPU *cpu = env_archcpu(env); 414 415 if (raw_read(env, ri) != value && !arm_feature(env, ARM_FEATURE_PMSA) 416 && !extended_addresses_enabled(env)) { 417 /* 418 * For VMSA (when not using the LPAE long descriptor page table 419 * format) this register includes the ASID, so do a TLB flush. 420 * For PMSA it is purely a process ID and no action is needed. 421 */ 422 tlb_flush(CPU(cpu)); 423 } 424 raw_write(env, ri, value); 425 } 426 427 static int alle1_tlbmask(CPUARMState *env) 428 { 429 /* 430 * Note that the 'ALL' scope must invalidate both stage 1 and 431 * stage 2 translations, whereas most other scopes only invalidate 432 * stage 1 translations. 433 */ 434 return (ARMMMUIdxBit_E10_1 | 435 ARMMMUIdxBit_E10_1_PAN | 436 ARMMMUIdxBit_E10_0 | 437 ARMMMUIdxBit_Stage2 | 438 ARMMMUIdxBit_Stage2_S); 439 } 440 441 442 /* IS variants of TLB operations must affect all cores */ 443 static void tlbiall_is_write(CPUARMState *env, const ARMCPRegInfo *ri, 444 uint64_t value) 445 { 446 CPUState *cs = env_cpu(env); 447 448 tlb_flush_all_cpus_synced(cs); 449 } 450 451 static void tlbiasid_is_write(CPUARMState *env, const ARMCPRegInfo *ri, 452 uint64_t value) 453 { 454 CPUState *cs = env_cpu(env); 455 456 tlb_flush_all_cpus_synced(cs); 457 } 458 459 static void tlbimva_is_write(CPUARMState *env, const ARMCPRegInfo *ri, 460 uint64_t value) 461 { 462 CPUState *cs = env_cpu(env); 463 464 tlb_flush_page_all_cpus_synced(cs, value & TARGET_PAGE_MASK); 465 } 466 467 static void tlbimvaa_is_write(CPUARMState *env, const ARMCPRegInfo *ri, 468 uint64_t value) 469 { 470 CPUState *cs = env_cpu(env); 471 472 tlb_flush_page_all_cpus_synced(cs, value & TARGET_PAGE_MASK); 473 } 474 475 /* 476 * Non-IS variants of TLB operations are upgraded to 477 * IS versions if we are at EL1 and HCR_EL2.FB is effectively set to 478 * force broadcast of these operations. 479 */ 480 static bool tlb_force_broadcast(CPUARMState *env) 481 { 482 return arm_current_el(env) == 1 && (arm_hcr_el2_eff(env) & HCR_FB); 483 } 484 485 static void tlbiall_write(CPUARMState *env, const ARMCPRegInfo *ri, 486 uint64_t value) 487 { 488 /* Invalidate all (TLBIALL) */ 489 CPUState *cs = env_cpu(env); 490 491 if (tlb_force_broadcast(env)) { 492 tlb_flush_all_cpus_synced(cs); 493 } else { 494 tlb_flush(cs); 495 } 496 } 497 498 static void tlbimva_write(CPUARMState *env, const ARMCPRegInfo *ri, 499 uint64_t value) 500 { 501 /* Invalidate single TLB entry by MVA and ASID (TLBIMVA) */ 502 CPUState *cs = env_cpu(env); 503 504 value &= TARGET_PAGE_MASK; 505 if (tlb_force_broadcast(env)) { 506 tlb_flush_page_all_cpus_synced(cs, value); 507 } else { 508 tlb_flush_page(cs, value); 509 } 510 } 511 512 static void tlbiasid_write(CPUARMState *env, const ARMCPRegInfo *ri, 513 uint64_t value) 514 { 515 /* Invalidate by ASID (TLBIASID) */ 516 CPUState *cs = env_cpu(env); 517 518 if (tlb_force_broadcast(env)) { 519 tlb_flush_all_cpus_synced(cs); 520 } else { 521 tlb_flush(cs); 522 } 523 } 524 525 static void tlbimvaa_write(CPUARMState *env, const ARMCPRegInfo *ri, 526 uint64_t value) 527 { 528 /* Invalidate single entry by MVA, all ASIDs (TLBIMVAA) */ 529 CPUState *cs = env_cpu(env); 530 531 value &= TARGET_PAGE_MASK; 532 if (tlb_force_broadcast(env)) { 533 tlb_flush_page_all_cpus_synced(cs, value); 534 } else { 535 tlb_flush_page(cs, value); 536 } 537 } 538 539 static void tlbiall_nsnh_write(CPUARMState *env, const ARMCPRegInfo *ri, 540 uint64_t value) 541 { 542 CPUState *cs = env_cpu(env); 543 544 tlb_flush_by_mmuidx(cs, alle1_tlbmask(env)); 545 } 546 547 static void tlbiall_nsnh_is_write(CPUARMState *env, const ARMCPRegInfo *ri, 548 uint64_t value) 549 { 550 CPUState *cs = env_cpu(env); 551 552 tlb_flush_by_mmuidx_all_cpus_synced(cs, alle1_tlbmask(env)); 553 } 554 555 556 static void tlbiall_hyp_write(CPUARMState *env, const ARMCPRegInfo *ri, 557 uint64_t value) 558 { 559 CPUState *cs = env_cpu(env); 560 561 tlb_flush_by_mmuidx(cs, ARMMMUIdxBit_E2); 562 } 563 564 static void tlbiall_hyp_is_write(CPUARMState *env, const ARMCPRegInfo *ri, 565 uint64_t value) 566 { 567 CPUState *cs = env_cpu(env); 568 569 tlb_flush_by_mmuidx_all_cpus_synced(cs, ARMMMUIdxBit_E2); 570 } 571 572 static void tlbimva_hyp_write(CPUARMState *env, const ARMCPRegInfo *ri, 573 uint64_t value) 574 { 575 CPUState *cs = env_cpu(env); 576 uint64_t pageaddr = value & ~MAKE_64BIT_MASK(0, 12); 577 578 tlb_flush_page_by_mmuidx(cs, pageaddr, ARMMMUIdxBit_E2); 579 } 580 581 static void tlbimva_hyp_is_write(CPUARMState *env, const ARMCPRegInfo *ri, 582 uint64_t value) 583 { 584 CPUState *cs = env_cpu(env); 585 uint64_t pageaddr = value & ~MAKE_64BIT_MASK(0, 12); 586 587 tlb_flush_page_by_mmuidx_all_cpus_synced(cs, pageaddr, 588 ARMMMUIdxBit_E2); 589 } 590 591 static void tlbiipas2_hyp_write(CPUARMState *env, const ARMCPRegInfo *ri, 592 uint64_t value) 593 { 594 CPUState *cs = env_cpu(env); 595 uint64_t pageaddr = (value & MAKE_64BIT_MASK(0, 28)) << 12; 596 597 tlb_flush_page_by_mmuidx(cs, pageaddr, ARMMMUIdxBit_Stage2); 598 } 599 600 static void tlbiipas2is_hyp_write(CPUARMState *env, const ARMCPRegInfo *ri, 601 uint64_t value) 602 { 603 CPUState *cs = env_cpu(env); 604 uint64_t pageaddr = (value & MAKE_64BIT_MASK(0, 28)) << 12; 605 606 tlb_flush_page_by_mmuidx_all_cpus_synced(cs, pageaddr, ARMMMUIdxBit_Stage2); 607 } 608 609 static const ARMCPRegInfo cp_reginfo[] = { 610 /* 611 * Define the secure and non-secure FCSE identifier CP registers 612 * separately because there is no secure bank in V8 (no _EL3). This allows 613 * the secure register to be properly reset and migrated. There is also no 614 * v8 EL1 version of the register so the non-secure instance stands alone. 615 */ 616 { .name = "FCSEIDR", 617 .cp = 15, .opc1 = 0, .crn = 13, .crm = 0, .opc2 = 0, 618 .access = PL1_RW, .secure = ARM_CP_SECSTATE_NS, 619 .fieldoffset = offsetof(CPUARMState, cp15.fcseidr_ns), 620 .resetvalue = 0, .writefn = fcse_write, .raw_writefn = raw_write, }, 621 { .name = "FCSEIDR_S", 622 .cp = 15, .opc1 = 0, .crn = 13, .crm = 0, .opc2 = 0, 623 .access = PL1_RW, .secure = ARM_CP_SECSTATE_S, 624 .fieldoffset = offsetof(CPUARMState, cp15.fcseidr_s), 625 .resetvalue = 0, .writefn = fcse_write, .raw_writefn = raw_write, }, 626 /* 627 * Define the secure and non-secure context identifier CP registers 628 * separately because there is no secure bank in V8 (no _EL3). This allows 629 * the secure register to be properly reset and migrated. In the 630 * non-secure case, the 32-bit register will have reset and migration 631 * disabled during registration as it is handled by the 64-bit instance. 632 */ 633 { .name = "CONTEXTIDR_EL1", .state = ARM_CP_STATE_BOTH, 634 .opc0 = 3, .opc1 = 0, .crn = 13, .crm = 0, .opc2 = 1, 635 .access = PL1_RW, .accessfn = access_tvm_trvm, 636 .fgt = FGT_CONTEXTIDR_EL1, 637 .secure = ARM_CP_SECSTATE_NS, 638 .fieldoffset = offsetof(CPUARMState, cp15.contextidr_el[1]), 639 .resetvalue = 0, .writefn = contextidr_write, .raw_writefn = raw_write, }, 640 { .name = "CONTEXTIDR_S", .state = ARM_CP_STATE_AA32, 641 .cp = 15, .opc1 = 0, .crn = 13, .crm = 0, .opc2 = 1, 642 .access = PL1_RW, .accessfn = access_tvm_trvm, 643 .secure = ARM_CP_SECSTATE_S, 644 .fieldoffset = offsetof(CPUARMState, cp15.contextidr_s), 645 .resetvalue = 0, .writefn = contextidr_write, .raw_writefn = raw_write, }, 646 }; 647 648 static const ARMCPRegInfo not_v8_cp_reginfo[] = { 649 /* 650 * NB: Some of these registers exist in v8 but with more precise 651 * definitions that don't use CP_ANY wildcards (mostly in v8_cp_reginfo[]). 652 */ 653 /* MMU Domain access control / MPU write buffer control */ 654 { .name = "DACR", 655 .cp = 15, .opc1 = CP_ANY, .crn = 3, .crm = CP_ANY, .opc2 = CP_ANY, 656 .access = PL1_RW, .accessfn = access_tvm_trvm, .resetvalue = 0, 657 .writefn = dacr_write, .raw_writefn = raw_write, 658 .bank_fieldoffsets = { offsetoflow32(CPUARMState, cp15.dacr_s), 659 offsetoflow32(CPUARMState, cp15.dacr_ns) } }, 660 /* 661 * ARMv7 allocates a range of implementation defined TLB LOCKDOWN regs. 662 * For v6 and v5, these mappings are overly broad. 663 */ 664 { .name = "TLB_LOCKDOWN", .cp = 15, .crn = 10, .crm = 0, 665 .opc1 = CP_ANY, .opc2 = CP_ANY, .access = PL1_RW, .type = ARM_CP_NOP }, 666 { .name = "TLB_LOCKDOWN", .cp = 15, .crn = 10, .crm = 1, 667 .opc1 = CP_ANY, .opc2 = CP_ANY, .access = PL1_RW, .type = ARM_CP_NOP }, 668 { .name = "TLB_LOCKDOWN", .cp = 15, .crn = 10, .crm = 4, 669 .opc1 = CP_ANY, .opc2 = CP_ANY, .access = PL1_RW, .type = ARM_CP_NOP }, 670 { .name = "TLB_LOCKDOWN", .cp = 15, .crn = 10, .crm = 8, 671 .opc1 = CP_ANY, .opc2 = CP_ANY, .access = PL1_RW, .type = ARM_CP_NOP }, 672 /* Cache maintenance ops; some of this space may be overridden later. */ 673 { .name = "CACHEMAINT", .cp = 15, .crn = 7, .crm = CP_ANY, 674 .opc1 = 0, .opc2 = CP_ANY, .access = PL1_W, 675 .type = ARM_CP_NOP | ARM_CP_OVERRIDE }, 676 }; 677 678 static const ARMCPRegInfo not_v6_cp_reginfo[] = { 679 /* 680 * Not all pre-v6 cores implemented this WFI, so this is slightly 681 * over-broad. 682 */ 683 { .name = "WFI_v5", .cp = 15, .crn = 7, .crm = 8, .opc1 = 0, .opc2 = 2, 684 .access = PL1_W, .type = ARM_CP_WFI }, 685 }; 686 687 static const ARMCPRegInfo not_v7_cp_reginfo[] = { 688 /* 689 * Standard v6 WFI (also used in some pre-v6 cores); not in v7 (which 690 * is UNPREDICTABLE; we choose to NOP as most implementations do). 691 */ 692 { .name = "WFI_v6", .cp = 15, .crn = 7, .crm = 0, .opc1 = 0, .opc2 = 4, 693 .access = PL1_W, .type = ARM_CP_WFI }, 694 /* 695 * L1 cache lockdown. Not architectural in v6 and earlier but in practice 696 * implemented in 926, 946, 1026, 1136, 1176 and 11MPCore. StrongARM and 697 * OMAPCP will override this space. 698 */ 699 { .name = "DLOCKDOWN", .cp = 15, .crn = 9, .crm = 0, .opc1 = 0, .opc2 = 0, 700 .access = PL1_RW, .fieldoffset = offsetof(CPUARMState, cp15.c9_data), 701 .resetvalue = 0 }, 702 { .name = "ILOCKDOWN", .cp = 15, .crn = 9, .crm = 0, .opc1 = 0, .opc2 = 1, 703 .access = PL1_RW, .fieldoffset = offsetof(CPUARMState, cp15.c9_insn), 704 .resetvalue = 0 }, 705 /* v6 doesn't have the cache ID registers but Linux reads them anyway */ 706 { .name = "DUMMY", .cp = 15, .crn = 0, .crm = 0, .opc1 = 1, .opc2 = CP_ANY, 707 .access = PL1_R, .type = ARM_CP_CONST | ARM_CP_NO_RAW, 708 .resetvalue = 0 }, 709 /* 710 * We don't implement pre-v7 debug but most CPUs had at least a DBGDIDR; 711 * implementing it as RAZ means the "debug architecture version" bits 712 * will read as a reserved value, which should cause Linux to not try 713 * to use the debug hardware. 714 */ 715 { .name = "DBGDIDR", .cp = 14, .crn = 0, .crm = 0, .opc1 = 0, .opc2 = 0, 716 .access = PL0_R, .type = ARM_CP_CONST, .resetvalue = 0 }, 717 /* 718 * MMU TLB control. Note that the wildcarding means we cover not just 719 * the unified TLB ops but also the dside/iside/inner-shareable variants. 720 */ 721 { .name = "TLBIALL", .cp = 15, .crn = 8, .crm = CP_ANY, 722 .opc1 = CP_ANY, .opc2 = 0, .access = PL1_W, .writefn = tlbiall_write, 723 .type = ARM_CP_NO_RAW }, 724 { .name = "TLBIMVA", .cp = 15, .crn = 8, .crm = CP_ANY, 725 .opc1 = CP_ANY, .opc2 = 1, .access = PL1_W, .writefn = tlbimva_write, 726 .type = ARM_CP_NO_RAW }, 727 { .name = "TLBIASID", .cp = 15, .crn = 8, .crm = CP_ANY, 728 .opc1 = CP_ANY, .opc2 = 2, .access = PL1_W, .writefn = tlbiasid_write, 729 .type = ARM_CP_NO_RAW }, 730 { .name = "TLBIMVAA", .cp = 15, .crn = 8, .crm = CP_ANY, 731 .opc1 = CP_ANY, .opc2 = 3, .access = PL1_W, .writefn = tlbimvaa_write, 732 .type = ARM_CP_NO_RAW }, 733 { .name = "PRRR", .cp = 15, .crn = 10, .crm = 2, 734 .opc1 = 0, .opc2 = 0, .access = PL1_RW, .type = ARM_CP_NOP }, 735 { .name = "NMRR", .cp = 15, .crn = 10, .crm = 2, 736 .opc1 = 0, .opc2 = 1, .access = PL1_RW, .type = ARM_CP_NOP }, 737 }; 738 739 static void cpacr_write(CPUARMState *env, const ARMCPRegInfo *ri, 740 uint64_t value) 741 { 742 uint32_t mask = 0; 743 744 /* In ARMv8 most bits of CPACR_EL1 are RES0. */ 745 if (!arm_feature(env, ARM_FEATURE_V8)) { 746 /* 747 * ARMv7 defines bits for unimplemented coprocessors as RAZ/WI. 748 * ASEDIS [31] and D32DIS [30] are both UNK/SBZP without VFP. 749 * TRCDIS [28] is RAZ/WI since we do not implement a trace macrocell. 750 */ 751 if (cpu_isar_feature(aa32_vfp_simd, env_archcpu(env))) { 752 /* VFP coprocessor: cp10 & cp11 [23:20] */ 753 mask |= R_CPACR_ASEDIS_MASK | 754 R_CPACR_D32DIS_MASK | 755 R_CPACR_CP11_MASK | 756 R_CPACR_CP10_MASK; 757 758 if (!arm_feature(env, ARM_FEATURE_NEON)) { 759 /* ASEDIS [31] bit is RAO/WI */ 760 value |= R_CPACR_ASEDIS_MASK; 761 } 762 763 /* 764 * VFPv3 and upwards with NEON implement 32 double precision 765 * registers (D0-D31). 766 */ 767 if (!cpu_isar_feature(aa32_simd_r32, env_archcpu(env))) { 768 /* D32DIS [30] is RAO/WI if D16-31 are not implemented. */ 769 value |= R_CPACR_D32DIS_MASK; 770 } 771 } 772 value &= mask; 773 } 774 775 /* 776 * For A-profile AArch32 EL3 (but not M-profile secure mode), if NSACR.CP10 777 * is 0 then CPACR.{CP11,CP10} ignore writes and read as 0b00. 778 */ 779 if (arm_feature(env, ARM_FEATURE_EL3) && !arm_el_is_aa64(env, 3) && 780 !arm_is_secure(env) && !extract32(env->cp15.nsacr, 10, 1)) { 781 mask = R_CPACR_CP11_MASK | R_CPACR_CP10_MASK; 782 value = (value & ~mask) | (env->cp15.cpacr_el1 & mask); 783 } 784 785 env->cp15.cpacr_el1 = value; 786 } 787 788 static uint64_t cpacr_read(CPUARMState *env, const ARMCPRegInfo *ri) 789 { 790 /* 791 * For A-profile AArch32 EL3 (but not M-profile secure mode), if NSACR.CP10 792 * is 0 then CPACR.{CP11,CP10} ignore writes and read as 0b00. 793 */ 794 uint64_t value = env->cp15.cpacr_el1; 795 796 if (arm_feature(env, ARM_FEATURE_EL3) && !arm_el_is_aa64(env, 3) && 797 !arm_is_secure(env) && !extract32(env->cp15.nsacr, 10, 1)) { 798 value = ~(R_CPACR_CP11_MASK | R_CPACR_CP10_MASK); 799 } 800 return value; 801 } 802 803 804 static void cpacr_reset(CPUARMState *env, const ARMCPRegInfo *ri) 805 { 806 /* 807 * Call cpacr_write() so that we reset with the correct RAO bits set 808 * for our CPU features. 809 */ 810 cpacr_write(env, ri, 0); 811 } 812 813 static CPAccessResult cpacr_access(CPUARMState *env, const ARMCPRegInfo *ri, 814 bool isread) 815 { 816 if (arm_feature(env, ARM_FEATURE_V8)) { 817 /* Check if CPACR accesses are to be trapped to EL2 */ 818 if (arm_current_el(env) == 1 && arm_is_el2_enabled(env) && 819 FIELD_EX64(env->cp15.cptr_el[2], CPTR_EL2, TCPAC)) { 820 return CP_ACCESS_TRAP_EL2; 821 /* Check if CPACR accesses are to be trapped to EL3 */ 822 } else if (arm_current_el(env) < 3 && 823 FIELD_EX64(env->cp15.cptr_el[3], CPTR_EL3, TCPAC)) { 824 return CP_ACCESS_TRAP_EL3; 825 } 826 } 827 828 return CP_ACCESS_OK; 829 } 830 831 static CPAccessResult cptr_access(CPUARMState *env, const ARMCPRegInfo *ri, 832 bool isread) 833 { 834 /* Check if CPTR accesses are set to trap to EL3 */ 835 if (arm_current_el(env) == 2 && 836 FIELD_EX64(env->cp15.cptr_el[3], CPTR_EL3, TCPAC)) { 837 return CP_ACCESS_TRAP_EL3; 838 } 839 840 return CP_ACCESS_OK; 841 } 842 843 static const ARMCPRegInfo v6_cp_reginfo[] = { 844 /* prefetch by MVA in v6, NOP in v7 */ 845 { .name = "MVA_prefetch", 846 .cp = 15, .crn = 7, .crm = 13, .opc1 = 0, .opc2 = 1, 847 .access = PL1_W, .type = ARM_CP_NOP }, 848 /* 849 * We need to break the TB after ISB to execute self-modifying code 850 * correctly and also to take any pending interrupts immediately. 851 * So use arm_cp_write_ignore() function instead of ARM_CP_NOP flag. 852 */ 853 { .name = "ISB", .cp = 15, .crn = 7, .crm = 5, .opc1 = 0, .opc2 = 4, 854 .access = PL0_W, .type = ARM_CP_NO_RAW, .writefn = arm_cp_write_ignore }, 855 { .name = "DSB", .cp = 15, .crn = 7, .crm = 10, .opc1 = 0, .opc2 = 4, 856 .access = PL0_W, .type = ARM_CP_NOP }, 857 { .name = "DMB", .cp = 15, .crn = 7, .crm = 10, .opc1 = 0, .opc2 = 5, 858 .access = PL0_W, .type = ARM_CP_NOP }, 859 { .name = "IFAR", .cp = 15, .crn = 6, .crm = 0, .opc1 = 0, .opc2 = 2, 860 .access = PL1_RW, .accessfn = access_tvm_trvm, 861 .bank_fieldoffsets = { offsetof(CPUARMState, cp15.ifar_s), 862 offsetof(CPUARMState, cp15.ifar_ns) }, 863 .resetvalue = 0, }, 864 /* 865 * Watchpoint Fault Address Register : should actually only be present 866 * for 1136, 1176, 11MPCore. 867 */ 868 { .name = "WFAR", .cp = 15, .crn = 6, .crm = 0, .opc1 = 0, .opc2 = 1, 869 .access = PL1_RW, .type = ARM_CP_CONST, .resetvalue = 0, }, 870 { .name = "CPACR", .state = ARM_CP_STATE_BOTH, .opc0 = 3, 871 .crn = 1, .crm = 0, .opc1 = 0, .opc2 = 2, .accessfn = cpacr_access, 872 .fgt = FGT_CPACR_EL1, 873 .access = PL1_RW, .fieldoffset = offsetof(CPUARMState, cp15.cpacr_el1), 874 .resetfn = cpacr_reset, .writefn = cpacr_write, .readfn = cpacr_read }, 875 }; 876 877 typedef struct pm_event { 878 uint16_t number; /* PMEVTYPER.evtCount is 16 bits wide */ 879 /* If the event is supported on this CPU (used to generate PMCEID[01]) */ 880 bool (*supported)(CPUARMState *); 881 /* 882 * Retrieve the current count of the underlying event. The programmed 883 * counters hold a difference from the return value from this function 884 */ 885 uint64_t (*get_count)(CPUARMState *); 886 /* 887 * Return how many nanoseconds it will take (at a minimum) for count events 888 * to occur. A negative value indicates the counter will never overflow, or 889 * that the counter has otherwise arranged for the overflow bit to be set 890 * and the PMU interrupt to be raised on overflow. 891 */ 892 int64_t (*ns_per_count)(uint64_t); 893 } pm_event; 894 895 static bool event_always_supported(CPUARMState *env) 896 { 897 return true; 898 } 899 900 static uint64_t swinc_get_count(CPUARMState *env) 901 { 902 /* 903 * SW_INCR events are written directly to the pmevcntr's by writes to 904 * PMSWINC, so there is no underlying count maintained by the PMU itself 905 */ 906 return 0; 907 } 908 909 static int64_t swinc_ns_per(uint64_t ignored) 910 { 911 return -1; 912 } 913 914 /* 915 * Return the underlying cycle count for the PMU cycle counters. If we're in 916 * usermode, simply return 0. 917 */ 918 static uint64_t cycles_get_count(CPUARMState *env) 919 { 920 #ifndef CONFIG_USER_ONLY 921 return muldiv64(qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL), 922 ARM_CPU_FREQ, NANOSECONDS_PER_SECOND); 923 #else 924 return cpu_get_host_ticks(); 925 #endif 926 } 927 928 #ifndef CONFIG_USER_ONLY 929 static int64_t cycles_ns_per(uint64_t cycles) 930 { 931 return (ARM_CPU_FREQ / NANOSECONDS_PER_SECOND) * cycles; 932 } 933 934 static bool instructions_supported(CPUARMState *env) 935 { 936 return icount_enabled() == 1; /* Precise instruction counting */ 937 } 938 939 static uint64_t instructions_get_count(CPUARMState *env) 940 { 941 return (uint64_t)icount_get_raw(); 942 } 943 944 static int64_t instructions_ns_per(uint64_t icount) 945 { 946 return icount_to_ns((int64_t)icount); 947 } 948 #endif 949 950 static bool pmuv3p1_events_supported(CPUARMState *env) 951 { 952 /* For events which are supported in any v8.1 PMU */ 953 return cpu_isar_feature(any_pmuv3p1, env_archcpu(env)); 954 } 955 956 static bool pmuv3p4_events_supported(CPUARMState *env) 957 { 958 /* For events which are supported in any v8.1 PMU */ 959 return cpu_isar_feature(any_pmuv3p4, env_archcpu(env)); 960 } 961 962 static uint64_t zero_event_get_count(CPUARMState *env) 963 { 964 /* For events which on QEMU never fire, so their count is always zero */ 965 return 0; 966 } 967 968 static int64_t zero_event_ns_per(uint64_t cycles) 969 { 970 /* An event which never fires can never overflow */ 971 return -1; 972 } 973 974 static const pm_event pm_events[] = { 975 { .number = 0x000, /* SW_INCR */ 976 .supported = event_always_supported, 977 .get_count = swinc_get_count, 978 .ns_per_count = swinc_ns_per, 979 }, 980 #ifndef CONFIG_USER_ONLY 981 { .number = 0x008, /* INST_RETIRED, Instruction architecturally executed */ 982 .supported = instructions_supported, 983 .get_count = instructions_get_count, 984 .ns_per_count = instructions_ns_per, 985 }, 986 { .number = 0x011, /* CPU_CYCLES, Cycle */ 987 .supported = event_always_supported, 988 .get_count = cycles_get_count, 989 .ns_per_count = cycles_ns_per, 990 }, 991 #endif 992 { .number = 0x023, /* STALL_FRONTEND */ 993 .supported = pmuv3p1_events_supported, 994 .get_count = zero_event_get_count, 995 .ns_per_count = zero_event_ns_per, 996 }, 997 { .number = 0x024, /* STALL_BACKEND */ 998 .supported = pmuv3p1_events_supported, 999 .get_count = zero_event_get_count, 1000 .ns_per_count = zero_event_ns_per, 1001 }, 1002 { .number = 0x03c, /* STALL */ 1003 .supported = pmuv3p4_events_supported, 1004 .get_count = zero_event_get_count, 1005 .ns_per_count = zero_event_ns_per, 1006 }, 1007 }; 1008 1009 /* 1010 * Note: Before increasing MAX_EVENT_ID beyond 0x3f into the 0x40xx range of 1011 * events (i.e. the statistical profiling extension), this implementation 1012 * should first be updated to something sparse instead of the current 1013 * supported_event_map[] array. 1014 */ 1015 #define MAX_EVENT_ID 0x3c 1016 #define UNSUPPORTED_EVENT UINT16_MAX 1017 static uint16_t supported_event_map[MAX_EVENT_ID + 1]; 1018 1019 /* 1020 * Called upon CPU initialization to initialize PMCEID[01]_EL0 and build a map 1021 * of ARM event numbers to indices in our pm_events array. 1022 * 1023 * Note: Events in the 0x40XX range are not currently supported. 1024 */ 1025 void pmu_init(ARMCPU *cpu) 1026 { 1027 unsigned int i; 1028 1029 /* 1030 * Empty supported_event_map and cpu->pmceid[01] before adding supported 1031 * events to them 1032 */ 1033 for (i = 0; i < ARRAY_SIZE(supported_event_map); i++) { 1034 supported_event_map[i] = UNSUPPORTED_EVENT; 1035 } 1036 cpu->pmceid0 = 0; 1037 cpu->pmceid1 = 0; 1038 1039 for (i = 0; i < ARRAY_SIZE(pm_events); i++) { 1040 const pm_event *cnt = &pm_events[i]; 1041 assert(cnt->number <= MAX_EVENT_ID); 1042 /* We do not currently support events in the 0x40xx range */ 1043 assert(cnt->number <= 0x3f); 1044 1045 if (cnt->supported(&cpu->env)) { 1046 supported_event_map[cnt->number] = i; 1047 uint64_t event_mask = 1ULL << (cnt->number & 0x1f); 1048 if (cnt->number & 0x20) { 1049 cpu->pmceid1 |= event_mask; 1050 } else { 1051 cpu->pmceid0 |= event_mask; 1052 } 1053 } 1054 } 1055 } 1056 1057 /* 1058 * Check at runtime whether a PMU event is supported for the current machine 1059 */ 1060 static bool event_supported(uint16_t number) 1061 { 1062 if (number > MAX_EVENT_ID) { 1063 return false; 1064 } 1065 return supported_event_map[number] != UNSUPPORTED_EVENT; 1066 } 1067 1068 static CPAccessResult pmreg_access(CPUARMState *env, const ARMCPRegInfo *ri, 1069 bool isread) 1070 { 1071 /* 1072 * Performance monitor registers user accessibility is controlled 1073 * by PMUSERENR. MDCR_EL2.TPM and MDCR_EL3.TPM allow configurable 1074 * trapping to EL2 or EL3 for other accesses. 1075 */ 1076 int el = arm_current_el(env); 1077 uint64_t mdcr_el2 = arm_mdcr_el2_eff(env); 1078 1079 if (el == 0 && !(env->cp15.c9_pmuserenr & 1)) { 1080 return CP_ACCESS_TRAP; 1081 } 1082 if (el < 2 && (mdcr_el2 & MDCR_TPM)) { 1083 return CP_ACCESS_TRAP_EL2; 1084 } 1085 if (el < 3 && (env->cp15.mdcr_el3 & MDCR_TPM)) { 1086 return CP_ACCESS_TRAP_EL3; 1087 } 1088 1089 return CP_ACCESS_OK; 1090 } 1091 1092 static CPAccessResult pmreg_access_xevcntr(CPUARMState *env, 1093 const ARMCPRegInfo *ri, 1094 bool isread) 1095 { 1096 /* ER: event counter read trap control */ 1097 if (arm_feature(env, ARM_FEATURE_V8) 1098 && arm_current_el(env) == 0 1099 && (env->cp15.c9_pmuserenr & (1 << 3)) != 0 1100 && isread) { 1101 return CP_ACCESS_OK; 1102 } 1103 1104 return pmreg_access(env, ri, isread); 1105 } 1106 1107 static CPAccessResult pmreg_access_swinc(CPUARMState *env, 1108 const ARMCPRegInfo *ri, 1109 bool isread) 1110 { 1111 /* SW: software increment write trap control */ 1112 if (arm_feature(env, ARM_FEATURE_V8) 1113 && arm_current_el(env) == 0 1114 && (env->cp15.c9_pmuserenr & (1 << 1)) != 0 1115 && !isread) { 1116 return CP_ACCESS_OK; 1117 } 1118 1119 return pmreg_access(env, ri, isread); 1120 } 1121 1122 static CPAccessResult pmreg_access_selr(CPUARMState *env, 1123 const ARMCPRegInfo *ri, 1124 bool isread) 1125 { 1126 /* ER: event counter read trap control */ 1127 if (arm_feature(env, ARM_FEATURE_V8) 1128 && arm_current_el(env) == 0 1129 && (env->cp15.c9_pmuserenr & (1 << 3)) != 0) { 1130 return CP_ACCESS_OK; 1131 } 1132 1133 return pmreg_access(env, ri, isread); 1134 } 1135 1136 static CPAccessResult pmreg_access_ccntr(CPUARMState *env, 1137 const ARMCPRegInfo *ri, 1138 bool isread) 1139 { 1140 /* CR: cycle counter read trap control */ 1141 if (arm_feature(env, ARM_FEATURE_V8) 1142 && arm_current_el(env) == 0 1143 && (env->cp15.c9_pmuserenr & (1 << 2)) != 0 1144 && isread) { 1145 return CP_ACCESS_OK; 1146 } 1147 1148 return pmreg_access(env, ri, isread); 1149 } 1150 1151 /* 1152 * Bits in MDCR_EL2 and MDCR_EL3 which pmu_counter_enabled() looks at. 1153 * We use these to decide whether we need to wrap a write to MDCR_EL2 1154 * or MDCR_EL3 in pmu_op_start()/pmu_op_finish() calls. 1155 */ 1156 #define MDCR_EL2_PMU_ENABLE_BITS \ 1157 (MDCR_HPME | MDCR_HPMD | MDCR_HPMN | MDCR_HCCD | MDCR_HLP) 1158 #define MDCR_EL3_PMU_ENABLE_BITS (MDCR_SPME | MDCR_SCCD) 1159 1160 /* 1161 * Returns true if the counter (pass 31 for PMCCNTR) should count events using 1162 * the current EL, security state, and register configuration. 1163 */ 1164 static bool pmu_counter_enabled(CPUARMState *env, uint8_t counter) 1165 { 1166 uint64_t filter; 1167 bool e, p, u, nsk, nsu, nsh, m; 1168 bool enabled, prohibited = false, filtered; 1169 bool secure = arm_is_secure(env); 1170 int el = arm_current_el(env); 1171 uint64_t mdcr_el2 = arm_mdcr_el2_eff(env); 1172 uint8_t hpmn = mdcr_el2 & MDCR_HPMN; 1173 1174 if (!arm_feature(env, ARM_FEATURE_PMU)) { 1175 return false; 1176 } 1177 1178 if (!arm_feature(env, ARM_FEATURE_EL2) || 1179 (counter < hpmn || counter == 31)) { 1180 e = env->cp15.c9_pmcr & PMCRE; 1181 } else { 1182 e = mdcr_el2 & MDCR_HPME; 1183 } 1184 enabled = e && (env->cp15.c9_pmcnten & (1 << counter)); 1185 1186 /* Is event counting prohibited? */ 1187 if (el == 2 && (counter < hpmn || counter == 31)) { 1188 prohibited = mdcr_el2 & MDCR_HPMD; 1189 } 1190 if (secure) { 1191 prohibited = prohibited || !(env->cp15.mdcr_el3 & MDCR_SPME); 1192 } 1193 1194 if (counter == 31) { 1195 /* 1196 * The cycle counter defaults to running. PMCR.DP says "disable 1197 * the cycle counter when event counting is prohibited". 1198 * Some MDCR bits disable the cycle counter specifically. 1199 */ 1200 prohibited = prohibited && env->cp15.c9_pmcr & PMCRDP; 1201 if (cpu_isar_feature(any_pmuv3p5, env_archcpu(env))) { 1202 if (secure) { 1203 prohibited = prohibited || (env->cp15.mdcr_el3 & MDCR_SCCD); 1204 } 1205 if (el == 2) { 1206 prohibited = prohibited || (mdcr_el2 & MDCR_HCCD); 1207 } 1208 } 1209 } 1210 1211 if (counter == 31) { 1212 filter = env->cp15.pmccfiltr_el0; 1213 } else { 1214 filter = env->cp15.c14_pmevtyper[counter]; 1215 } 1216 1217 p = filter & PMXEVTYPER_P; 1218 u = filter & PMXEVTYPER_U; 1219 nsk = arm_feature(env, ARM_FEATURE_EL3) && (filter & PMXEVTYPER_NSK); 1220 nsu = arm_feature(env, ARM_FEATURE_EL3) && (filter & PMXEVTYPER_NSU); 1221 nsh = arm_feature(env, ARM_FEATURE_EL2) && (filter & PMXEVTYPER_NSH); 1222 m = arm_el_is_aa64(env, 1) && 1223 arm_feature(env, ARM_FEATURE_EL3) && (filter & PMXEVTYPER_M); 1224 1225 if (el == 0) { 1226 filtered = secure ? u : u != nsu; 1227 } else if (el == 1) { 1228 filtered = secure ? p : p != nsk; 1229 } else if (el == 2) { 1230 filtered = !nsh; 1231 } else { /* EL3 */ 1232 filtered = m != p; 1233 } 1234 1235 if (counter != 31) { 1236 /* 1237 * If not checking PMCCNTR, ensure the counter is setup to an event we 1238 * support 1239 */ 1240 uint16_t event = filter & PMXEVTYPER_EVTCOUNT; 1241 if (!event_supported(event)) { 1242 return false; 1243 } 1244 } 1245 1246 return enabled && !prohibited && !filtered; 1247 } 1248 1249 static void pmu_update_irq(CPUARMState *env) 1250 { 1251 ARMCPU *cpu = env_archcpu(env); 1252 qemu_set_irq(cpu->pmu_interrupt, (env->cp15.c9_pmcr & PMCRE) && 1253 (env->cp15.c9_pminten & env->cp15.c9_pmovsr)); 1254 } 1255 1256 static bool pmccntr_clockdiv_enabled(CPUARMState *env) 1257 { 1258 /* 1259 * Return true if the clock divider is enabled and the cycle counter 1260 * is supposed to tick only once every 64 clock cycles. This is 1261 * controlled by PMCR.D, but if PMCR.LC is set to enable the long 1262 * (64-bit) cycle counter PMCR.D has no effect. 1263 */ 1264 return (env->cp15.c9_pmcr & (PMCRD | PMCRLC)) == PMCRD; 1265 } 1266 1267 static bool pmevcntr_is_64_bit(CPUARMState *env, int counter) 1268 { 1269 /* Return true if the specified event counter is configured to be 64 bit */ 1270 1271 /* This isn't intended to be used with the cycle counter */ 1272 assert(counter < 31); 1273 1274 if (!cpu_isar_feature(any_pmuv3p5, env_archcpu(env))) { 1275 return false; 1276 } 1277 1278 if (arm_feature(env, ARM_FEATURE_EL2)) { 1279 /* 1280 * MDCR_EL2.HLP still applies even when EL2 is disabled in the 1281 * current security state, so we don't use arm_mdcr_el2_eff() here. 1282 */ 1283 bool hlp = env->cp15.mdcr_el2 & MDCR_HLP; 1284 int hpmn = env->cp15.mdcr_el2 & MDCR_HPMN; 1285 1286 if (hpmn != 0 && counter >= hpmn) { 1287 return hlp; 1288 } 1289 } 1290 return env->cp15.c9_pmcr & PMCRLP; 1291 } 1292 1293 /* 1294 * Ensure c15_ccnt is the guest-visible count so that operations such as 1295 * enabling/disabling the counter or filtering, modifying the count itself, 1296 * etc. can be done logically. This is essentially a no-op if the counter is 1297 * not enabled at the time of the call. 1298 */ 1299 static void pmccntr_op_start(CPUARMState *env) 1300 { 1301 uint64_t cycles = cycles_get_count(env); 1302 1303 if (pmu_counter_enabled(env, 31)) { 1304 uint64_t eff_cycles = cycles; 1305 if (pmccntr_clockdiv_enabled(env)) { 1306 eff_cycles /= 64; 1307 } 1308 1309 uint64_t new_pmccntr = eff_cycles - env->cp15.c15_ccnt_delta; 1310 1311 uint64_t overflow_mask = env->cp15.c9_pmcr & PMCRLC ? \ 1312 1ull << 63 : 1ull << 31; 1313 if (env->cp15.c15_ccnt & ~new_pmccntr & overflow_mask) { 1314 env->cp15.c9_pmovsr |= (1ULL << 31); 1315 pmu_update_irq(env); 1316 } 1317 1318 env->cp15.c15_ccnt = new_pmccntr; 1319 } 1320 env->cp15.c15_ccnt_delta = cycles; 1321 } 1322 1323 /* 1324 * If PMCCNTR is enabled, recalculate the delta between the clock and the 1325 * guest-visible count. A call to pmccntr_op_finish should follow every call to 1326 * pmccntr_op_start. 1327 */ 1328 static void pmccntr_op_finish(CPUARMState *env) 1329 { 1330 if (pmu_counter_enabled(env, 31)) { 1331 #ifndef CONFIG_USER_ONLY 1332 /* Calculate when the counter will next overflow */ 1333 uint64_t remaining_cycles = -env->cp15.c15_ccnt; 1334 if (!(env->cp15.c9_pmcr & PMCRLC)) { 1335 remaining_cycles = (uint32_t)remaining_cycles; 1336 } 1337 int64_t overflow_in = cycles_ns_per(remaining_cycles); 1338 1339 if (overflow_in > 0) { 1340 int64_t overflow_at; 1341 1342 if (!sadd64_overflow(qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL), 1343 overflow_in, &overflow_at)) { 1344 ARMCPU *cpu = env_archcpu(env); 1345 timer_mod_anticipate_ns(cpu->pmu_timer, overflow_at); 1346 } 1347 } 1348 #endif 1349 1350 uint64_t prev_cycles = env->cp15.c15_ccnt_delta; 1351 if (pmccntr_clockdiv_enabled(env)) { 1352 prev_cycles /= 64; 1353 } 1354 env->cp15.c15_ccnt_delta = prev_cycles - env->cp15.c15_ccnt; 1355 } 1356 } 1357 1358 static void pmevcntr_op_start(CPUARMState *env, uint8_t counter) 1359 { 1360 1361 uint16_t event = env->cp15.c14_pmevtyper[counter] & PMXEVTYPER_EVTCOUNT; 1362 uint64_t count = 0; 1363 if (event_supported(event)) { 1364 uint16_t event_idx = supported_event_map[event]; 1365 count = pm_events[event_idx].get_count(env); 1366 } 1367 1368 if (pmu_counter_enabled(env, counter)) { 1369 uint64_t new_pmevcntr = count - env->cp15.c14_pmevcntr_delta[counter]; 1370 uint64_t overflow_mask = pmevcntr_is_64_bit(env, counter) ? 1371 1ULL << 63 : 1ULL << 31; 1372 1373 if (env->cp15.c14_pmevcntr[counter] & ~new_pmevcntr & overflow_mask) { 1374 env->cp15.c9_pmovsr |= (1 << counter); 1375 pmu_update_irq(env); 1376 } 1377 env->cp15.c14_pmevcntr[counter] = new_pmevcntr; 1378 } 1379 env->cp15.c14_pmevcntr_delta[counter] = count; 1380 } 1381 1382 static void pmevcntr_op_finish(CPUARMState *env, uint8_t counter) 1383 { 1384 if (pmu_counter_enabled(env, counter)) { 1385 #ifndef CONFIG_USER_ONLY 1386 uint16_t event = env->cp15.c14_pmevtyper[counter] & PMXEVTYPER_EVTCOUNT; 1387 uint16_t event_idx = supported_event_map[event]; 1388 uint64_t delta = -(env->cp15.c14_pmevcntr[counter] + 1); 1389 int64_t overflow_in; 1390 1391 if (!pmevcntr_is_64_bit(env, counter)) { 1392 delta = (uint32_t)delta; 1393 } 1394 overflow_in = pm_events[event_idx].ns_per_count(delta); 1395 1396 if (overflow_in > 0) { 1397 int64_t overflow_at; 1398 1399 if (!sadd64_overflow(qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL), 1400 overflow_in, &overflow_at)) { 1401 ARMCPU *cpu = env_archcpu(env); 1402 timer_mod_anticipate_ns(cpu->pmu_timer, overflow_at); 1403 } 1404 } 1405 #endif 1406 1407 env->cp15.c14_pmevcntr_delta[counter] -= 1408 env->cp15.c14_pmevcntr[counter]; 1409 } 1410 } 1411 1412 void pmu_op_start(CPUARMState *env) 1413 { 1414 unsigned int i; 1415 pmccntr_op_start(env); 1416 for (i = 0; i < pmu_num_counters(env); i++) { 1417 pmevcntr_op_start(env, i); 1418 } 1419 } 1420 1421 void pmu_op_finish(CPUARMState *env) 1422 { 1423 unsigned int i; 1424 pmccntr_op_finish(env); 1425 for (i = 0; i < pmu_num_counters(env); i++) { 1426 pmevcntr_op_finish(env, i); 1427 } 1428 } 1429 1430 void pmu_pre_el_change(ARMCPU *cpu, void *ignored) 1431 { 1432 pmu_op_start(&cpu->env); 1433 } 1434 1435 void pmu_post_el_change(ARMCPU *cpu, void *ignored) 1436 { 1437 pmu_op_finish(&cpu->env); 1438 } 1439 1440 void arm_pmu_timer_cb(void *opaque) 1441 { 1442 ARMCPU *cpu = opaque; 1443 1444 /* 1445 * Update all the counter values based on the current underlying counts, 1446 * triggering interrupts to be raised, if necessary. pmu_op_finish() also 1447 * has the effect of setting the cpu->pmu_timer to the next earliest time a 1448 * counter may expire. 1449 */ 1450 pmu_op_start(&cpu->env); 1451 pmu_op_finish(&cpu->env); 1452 } 1453 1454 static void pmcr_write(CPUARMState *env, const ARMCPRegInfo *ri, 1455 uint64_t value) 1456 { 1457 pmu_op_start(env); 1458 1459 if (value & PMCRC) { 1460 /* The counter has been reset */ 1461 env->cp15.c15_ccnt = 0; 1462 } 1463 1464 if (value & PMCRP) { 1465 unsigned int i; 1466 for (i = 0; i < pmu_num_counters(env); i++) { 1467 env->cp15.c14_pmevcntr[i] = 0; 1468 } 1469 } 1470 1471 env->cp15.c9_pmcr &= ~PMCR_WRITABLE_MASK; 1472 env->cp15.c9_pmcr |= (value & PMCR_WRITABLE_MASK); 1473 1474 pmu_op_finish(env); 1475 } 1476 1477 static void pmswinc_write(CPUARMState *env, const ARMCPRegInfo *ri, 1478 uint64_t value) 1479 { 1480 unsigned int i; 1481 uint64_t overflow_mask, new_pmswinc; 1482 1483 for (i = 0; i < pmu_num_counters(env); i++) { 1484 /* Increment a counter's count iff: */ 1485 if ((value & (1 << i)) && /* counter's bit is set */ 1486 /* counter is enabled and not filtered */ 1487 pmu_counter_enabled(env, i) && 1488 /* counter is SW_INCR */ 1489 (env->cp15.c14_pmevtyper[i] & PMXEVTYPER_EVTCOUNT) == 0x0) { 1490 pmevcntr_op_start(env, i); 1491 1492 /* 1493 * Detect if this write causes an overflow since we can't predict 1494 * PMSWINC overflows like we can for other events 1495 */ 1496 new_pmswinc = env->cp15.c14_pmevcntr[i] + 1; 1497 1498 overflow_mask = pmevcntr_is_64_bit(env, i) ? 1499 1ULL << 63 : 1ULL << 31; 1500 1501 if (env->cp15.c14_pmevcntr[i] & ~new_pmswinc & overflow_mask) { 1502 env->cp15.c9_pmovsr |= (1 << i); 1503 pmu_update_irq(env); 1504 } 1505 1506 env->cp15.c14_pmevcntr[i] = new_pmswinc; 1507 1508 pmevcntr_op_finish(env, i); 1509 } 1510 } 1511 } 1512 1513 static uint64_t pmccntr_read(CPUARMState *env, const ARMCPRegInfo *ri) 1514 { 1515 uint64_t ret; 1516 pmccntr_op_start(env); 1517 ret = env->cp15.c15_ccnt; 1518 pmccntr_op_finish(env); 1519 return ret; 1520 } 1521 1522 static void pmselr_write(CPUARMState *env, const ARMCPRegInfo *ri, 1523 uint64_t value) 1524 { 1525 /* 1526 * The value of PMSELR.SEL affects the behavior of PMXEVTYPER and 1527 * PMXEVCNTR. We allow [0..31] to be written to PMSELR here; in the 1528 * meanwhile, we check PMSELR.SEL when PMXEVTYPER and PMXEVCNTR are 1529 * accessed. 1530 */ 1531 env->cp15.c9_pmselr = value & 0x1f; 1532 } 1533 1534 static void pmccntr_write(CPUARMState *env, const ARMCPRegInfo *ri, 1535 uint64_t value) 1536 { 1537 pmccntr_op_start(env); 1538 env->cp15.c15_ccnt = value; 1539 pmccntr_op_finish(env); 1540 } 1541 1542 static void pmccntr_write32(CPUARMState *env, const ARMCPRegInfo *ri, 1543 uint64_t value) 1544 { 1545 uint64_t cur_val = pmccntr_read(env, NULL); 1546 1547 pmccntr_write(env, ri, deposit64(cur_val, 0, 32, value)); 1548 } 1549 1550 static void pmccfiltr_write(CPUARMState *env, const ARMCPRegInfo *ri, 1551 uint64_t value) 1552 { 1553 pmccntr_op_start(env); 1554 env->cp15.pmccfiltr_el0 = value & PMCCFILTR_EL0; 1555 pmccntr_op_finish(env); 1556 } 1557 1558 static void pmccfiltr_write_a32(CPUARMState *env, const ARMCPRegInfo *ri, 1559 uint64_t value) 1560 { 1561 pmccntr_op_start(env); 1562 /* M is not accessible from AArch32 */ 1563 env->cp15.pmccfiltr_el0 = (env->cp15.pmccfiltr_el0 & PMCCFILTR_M) | 1564 (value & PMCCFILTR); 1565 pmccntr_op_finish(env); 1566 } 1567 1568 static uint64_t pmccfiltr_read_a32(CPUARMState *env, const ARMCPRegInfo *ri) 1569 { 1570 /* M is not visible in AArch32 */ 1571 return env->cp15.pmccfiltr_el0 & PMCCFILTR; 1572 } 1573 1574 static void pmcntenset_write(CPUARMState *env, const ARMCPRegInfo *ri, 1575 uint64_t value) 1576 { 1577 pmu_op_start(env); 1578 value &= pmu_counter_mask(env); 1579 env->cp15.c9_pmcnten |= value; 1580 pmu_op_finish(env); 1581 } 1582 1583 static void pmcntenclr_write(CPUARMState *env, const ARMCPRegInfo *ri, 1584 uint64_t value) 1585 { 1586 pmu_op_start(env); 1587 value &= pmu_counter_mask(env); 1588 env->cp15.c9_pmcnten &= ~value; 1589 pmu_op_finish(env); 1590 } 1591 1592 static void pmovsr_write(CPUARMState *env, const ARMCPRegInfo *ri, 1593 uint64_t value) 1594 { 1595 value &= pmu_counter_mask(env); 1596 env->cp15.c9_pmovsr &= ~value; 1597 pmu_update_irq(env); 1598 } 1599 1600 static void pmovsset_write(CPUARMState *env, const ARMCPRegInfo *ri, 1601 uint64_t value) 1602 { 1603 value &= pmu_counter_mask(env); 1604 env->cp15.c9_pmovsr |= value; 1605 pmu_update_irq(env); 1606 } 1607 1608 static void pmevtyper_write(CPUARMState *env, const ARMCPRegInfo *ri, 1609 uint64_t value, const uint8_t counter) 1610 { 1611 if (counter == 31) { 1612 pmccfiltr_write(env, ri, value); 1613 } else if (counter < pmu_num_counters(env)) { 1614 pmevcntr_op_start(env, counter); 1615 1616 /* 1617 * If this counter's event type is changing, store the current 1618 * underlying count for the new type in c14_pmevcntr_delta[counter] so 1619 * pmevcntr_op_finish has the correct baseline when it converts back to 1620 * a delta. 1621 */ 1622 uint16_t old_event = env->cp15.c14_pmevtyper[counter] & 1623 PMXEVTYPER_EVTCOUNT; 1624 uint16_t new_event = value & PMXEVTYPER_EVTCOUNT; 1625 if (old_event != new_event) { 1626 uint64_t count = 0; 1627 if (event_supported(new_event)) { 1628 uint16_t event_idx = supported_event_map[new_event]; 1629 count = pm_events[event_idx].get_count(env); 1630 } 1631 env->cp15.c14_pmevcntr_delta[counter] = count; 1632 } 1633 1634 env->cp15.c14_pmevtyper[counter] = value & PMXEVTYPER_MASK; 1635 pmevcntr_op_finish(env, counter); 1636 } 1637 /* 1638 * Attempts to access PMXEVTYPER are CONSTRAINED UNPREDICTABLE when 1639 * PMSELR value is equal to or greater than the number of implemented 1640 * counters, but not equal to 0x1f. We opt to behave as a RAZ/WI. 1641 */ 1642 } 1643 1644 static uint64_t pmevtyper_read(CPUARMState *env, const ARMCPRegInfo *ri, 1645 const uint8_t counter) 1646 { 1647 if (counter == 31) { 1648 return env->cp15.pmccfiltr_el0; 1649 } else if (counter < pmu_num_counters(env)) { 1650 return env->cp15.c14_pmevtyper[counter]; 1651 } else { 1652 /* 1653 * We opt to behave as a RAZ/WI when attempts to access PMXEVTYPER 1654 * are CONSTRAINED UNPREDICTABLE. See comments in pmevtyper_write(). 1655 */ 1656 return 0; 1657 } 1658 } 1659 1660 static void pmevtyper_writefn(CPUARMState *env, const ARMCPRegInfo *ri, 1661 uint64_t value) 1662 { 1663 uint8_t counter = ((ri->crm & 3) << 3) | (ri->opc2 & 7); 1664 pmevtyper_write(env, ri, value, counter); 1665 } 1666 1667 static void pmevtyper_rawwrite(CPUARMState *env, const ARMCPRegInfo *ri, 1668 uint64_t value) 1669 { 1670 uint8_t counter = ((ri->crm & 3) << 3) | (ri->opc2 & 7); 1671 env->cp15.c14_pmevtyper[counter] = value; 1672 1673 /* 1674 * pmevtyper_rawwrite is called between a pair of pmu_op_start and 1675 * pmu_op_finish calls when loading saved state for a migration. Because 1676 * we're potentially updating the type of event here, the value written to 1677 * c14_pmevcntr_delta by the preceding pmu_op_start call may be for a 1678 * different counter type. Therefore, we need to set this value to the 1679 * current count for the counter type we're writing so that pmu_op_finish 1680 * has the correct count for its calculation. 1681 */ 1682 uint16_t event = value & PMXEVTYPER_EVTCOUNT; 1683 if (event_supported(event)) { 1684 uint16_t event_idx = supported_event_map[event]; 1685 env->cp15.c14_pmevcntr_delta[counter] = 1686 pm_events[event_idx].get_count(env); 1687 } 1688 } 1689 1690 static uint64_t pmevtyper_readfn(CPUARMState *env, const ARMCPRegInfo *ri) 1691 { 1692 uint8_t counter = ((ri->crm & 3) << 3) | (ri->opc2 & 7); 1693 return pmevtyper_read(env, ri, counter); 1694 } 1695 1696 static void pmxevtyper_write(CPUARMState *env, const ARMCPRegInfo *ri, 1697 uint64_t value) 1698 { 1699 pmevtyper_write(env, ri, value, env->cp15.c9_pmselr & 31); 1700 } 1701 1702 static uint64_t pmxevtyper_read(CPUARMState *env, const ARMCPRegInfo *ri) 1703 { 1704 return pmevtyper_read(env, ri, env->cp15.c9_pmselr & 31); 1705 } 1706 1707 static void pmevcntr_write(CPUARMState *env, const ARMCPRegInfo *ri, 1708 uint64_t value, uint8_t counter) 1709 { 1710 if (!cpu_isar_feature(any_pmuv3p5, env_archcpu(env))) { 1711 /* Before FEAT_PMUv3p5, top 32 bits of event counters are RES0 */ 1712 value &= MAKE_64BIT_MASK(0, 32); 1713 } 1714 if (counter < pmu_num_counters(env)) { 1715 pmevcntr_op_start(env, counter); 1716 env->cp15.c14_pmevcntr[counter] = value; 1717 pmevcntr_op_finish(env, counter); 1718 } 1719 /* 1720 * We opt to behave as a RAZ/WI when attempts to access PM[X]EVCNTR 1721 * are CONSTRAINED UNPREDICTABLE. 1722 */ 1723 } 1724 1725 static uint64_t pmevcntr_read(CPUARMState *env, const ARMCPRegInfo *ri, 1726 uint8_t counter) 1727 { 1728 if (counter < pmu_num_counters(env)) { 1729 uint64_t ret; 1730 pmevcntr_op_start(env, counter); 1731 ret = env->cp15.c14_pmevcntr[counter]; 1732 pmevcntr_op_finish(env, counter); 1733 if (!cpu_isar_feature(any_pmuv3p5, env_archcpu(env))) { 1734 /* Before FEAT_PMUv3p5, top 32 bits of event counters are RES0 */ 1735 ret &= MAKE_64BIT_MASK(0, 32); 1736 } 1737 return ret; 1738 } else { 1739 /* 1740 * We opt to behave as a RAZ/WI when attempts to access PM[X]EVCNTR 1741 * are CONSTRAINED UNPREDICTABLE. 1742 */ 1743 return 0; 1744 } 1745 } 1746 1747 static void pmevcntr_writefn(CPUARMState *env, const ARMCPRegInfo *ri, 1748 uint64_t value) 1749 { 1750 uint8_t counter = ((ri->crm & 3) << 3) | (ri->opc2 & 7); 1751 pmevcntr_write(env, ri, value, counter); 1752 } 1753 1754 static uint64_t pmevcntr_readfn(CPUARMState *env, const ARMCPRegInfo *ri) 1755 { 1756 uint8_t counter = ((ri->crm & 3) << 3) | (ri->opc2 & 7); 1757 return pmevcntr_read(env, ri, counter); 1758 } 1759 1760 static void pmevcntr_rawwrite(CPUARMState *env, const ARMCPRegInfo *ri, 1761 uint64_t value) 1762 { 1763 uint8_t counter = ((ri->crm & 3) << 3) | (ri->opc2 & 7); 1764 assert(counter < pmu_num_counters(env)); 1765 env->cp15.c14_pmevcntr[counter] = value; 1766 pmevcntr_write(env, ri, value, counter); 1767 } 1768 1769 static uint64_t pmevcntr_rawread(CPUARMState *env, const ARMCPRegInfo *ri) 1770 { 1771 uint8_t counter = ((ri->crm & 3) << 3) | (ri->opc2 & 7); 1772 assert(counter < pmu_num_counters(env)); 1773 return env->cp15.c14_pmevcntr[counter]; 1774 } 1775 1776 static void pmxevcntr_write(CPUARMState *env, const ARMCPRegInfo *ri, 1777 uint64_t value) 1778 { 1779 pmevcntr_write(env, ri, value, env->cp15.c9_pmselr & 31); 1780 } 1781 1782 static uint64_t pmxevcntr_read(CPUARMState *env, const ARMCPRegInfo *ri) 1783 { 1784 return pmevcntr_read(env, ri, env->cp15.c9_pmselr & 31); 1785 } 1786 1787 static void pmuserenr_write(CPUARMState *env, const ARMCPRegInfo *ri, 1788 uint64_t value) 1789 { 1790 if (arm_feature(env, ARM_FEATURE_V8)) { 1791 env->cp15.c9_pmuserenr = value & 0xf; 1792 } else { 1793 env->cp15.c9_pmuserenr = value & 1; 1794 } 1795 } 1796 1797 static void pmintenset_write(CPUARMState *env, const ARMCPRegInfo *ri, 1798 uint64_t value) 1799 { 1800 /* We have no event counters so only the C bit can be changed */ 1801 value &= pmu_counter_mask(env); 1802 env->cp15.c9_pminten |= value; 1803 pmu_update_irq(env); 1804 } 1805 1806 static void pmintenclr_write(CPUARMState *env, const ARMCPRegInfo *ri, 1807 uint64_t value) 1808 { 1809 value &= pmu_counter_mask(env); 1810 env->cp15.c9_pminten &= ~value; 1811 pmu_update_irq(env); 1812 } 1813 1814 static void vbar_write(CPUARMState *env, const ARMCPRegInfo *ri, 1815 uint64_t value) 1816 { 1817 /* 1818 * Note that even though the AArch64 view of this register has bits 1819 * [10:0] all RES0 we can only mask the bottom 5, to comply with the 1820 * architectural requirements for bits which are RES0 only in some 1821 * contexts. (ARMv8 would permit us to do no masking at all, but ARMv7 1822 * requires the bottom five bits to be RAZ/WI because they're UNK/SBZP.) 1823 */ 1824 raw_write(env, ri, value & ~0x1FULL); 1825 } 1826 1827 static void scr_write(CPUARMState *env, const ARMCPRegInfo *ri, uint64_t value) 1828 { 1829 /* Begin with base v8.0 state. */ 1830 uint64_t valid_mask = 0x3fff; 1831 ARMCPU *cpu = env_archcpu(env); 1832 uint64_t changed; 1833 1834 /* 1835 * Because SCR_EL3 is the "real" cpreg and SCR is the alias, reset always 1836 * passes the reginfo for SCR_EL3, which has type ARM_CP_STATE_AA64. 1837 * Instead, choose the format based on the mode of EL3. 1838 */ 1839 if (arm_el_is_aa64(env, 3)) { 1840 value |= SCR_FW | SCR_AW; /* RES1 */ 1841 valid_mask &= ~SCR_NET; /* RES0 */ 1842 1843 if (!cpu_isar_feature(aa64_aa32_el1, cpu) && 1844 !cpu_isar_feature(aa64_aa32_el2, cpu)) { 1845 value |= SCR_RW; /* RAO/WI */ 1846 } 1847 if (cpu_isar_feature(aa64_ras, cpu)) { 1848 valid_mask |= SCR_TERR; 1849 } 1850 if (cpu_isar_feature(aa64_lor, cpu)) { 1851 valid_mask |= SCR_TLOR; 1852 } 1853 if (cpu_isar_feature(aa64_pauth, cpu)) { 1854 valid_mask |= SCR_API | SCR_APK; 1855 } 1856 if (cpu_isar_feature(aa64_sel2, cpu)) { 1857 valid_mask |= SCR_EEL2; 1858 } else if (cpu_isar_feature(aa64_rme, cpu)) { 1859 /* With RME and without SEL2, NS is RES1 (R_GSWWH, I_DJJQJ). */ 1860 value |= SCR_NS; 1861 } 1862 if (cpu_isar_feature(aa64_mte, cpu)) { 1863 valid_mask |= SCR_ATA; 1864 } 1865 if (cpu_isar_feature(aa64_scxtnum, cpu)) { 1866 valid_mask |= SCR_ENSCXT; 1867 } 1868 if (cpu_isar_feature(aa64_doublefault, cpu)) { 1869 valid_mask |= SCR_EASE | SCR_NMEA; 1870 } 1871 if (cpu_isar_feature(aa64_sme, cpu)) { 1872 valid_mask |= SCR_ENTP2; 1873 } 1874 if (cpu_isar_feature(aa64_hcx, cpu)) { 1875 valid_mask |= SCR_HXEN; 1876 } 1877 if (cpu_isar_feature(aa64_fgt, cpu)) { 1878 valid_mask |= SCR_FGTEN; 1879 } 1880 if (cpu_isar_feature(aa64_rme, cpu)) { 1881 valid_mask |= SCR_NSE | SCR_GPF; 1882 } 1883 } else { 1884 valid_mask &= ~(SCR_RW | SCR_ST); 1885 if (cpu_isar_feature(aa32_ras, cpu)) { 1886 valid_mask |= SCR_TERR; 1887 } 1888 } 1889 1890 if (!arm_feature(env, ARM_FEATURE_EL2)) { 1891 valid_mask &= ~SCR_HCE; 1892 1893 /* 1894 * On ARMv7, SMD (or SCD as it is called in v7) is only 1895 * supported if EL2 exists. The bit is UNK/SBZP when 1896 * EL2 is unavailable. In QEMU ARMv7, we force it to always zero 1897 * when EL2 is unavailable. 1898 * On ARMv8, this bit is always available. 1899 */ 1900 if (arm_feature(env, ARM_FEATURE_V7) && 1901 !arm_feature(env, ARM_FEATURE_V8)) { 1902 valid_mask &= ~SCR_SMD; 1903 } 1904 } 1905 1906 /* Clear all-context RES0 bits. */ 1907 value &= valid_mask; 1908 changed = env->cp15.scr_el3 ^ value; 1909 env->cp15.scr_el3 = value; 1910 1911 /* 1912 * If SCR_EL3.{NS,NSE} changes, i.e. change of security state, 1913 * we must invalidate all TLBs below EL3. 1914 */ 1915 if (changed & (SCR_NS | SCR_NSE)) { 1916 tlb_flush_by_mmuidx(env_cpu(env), (ARMMMUIdxBit_E10_0 | 1917 ARMMMUIdxBit_E20_0 | 1918 ARMMMUIdxBit_E10_1 | 1919 ARMMMUIdxBit_E20_2 | 1920 ARMMMUIdxBit_E10_1_PAN | 1921 ARMMMUIdxBit_E20_2_PAN | 1922 ARMMMUIdxBit_E2)); 1923 } 1924 } 1925 1926 static void scr_reset(CPUARMState *env, const ARMCPRegInfo *ri) 1927 { 1928 /* 1929 * scr_write will set the RES1 bits on an AArch64-only CPU. 1930 * The reset value will be 0x30 on an AArch64-only CPU and 0 otherwise. 1931 */ 1932 scr_write(env, ri, 0); 1933 } 1934 1935 static CPAccessResult access_tid4(CPUARMState *env, 1936 const ARMCPRegInfo *ri, 1937 bool isread) 1938 { 1939 if (arm_current_el(env) == 1 && 1940 (arm_hcr_el2_eff(env) & (HCR_TID2 | HCR_TID4))) { 1941 return CP_ACCESS_TRAP_EL2; 1942 } 1943 1944 return CP_ACCESS_OK; 1945 } 1946 1947 static uint64_t ccsidr_read(CPUARMState *env, const ARMCPRegInfo *ri) 1948 { 1949 ARMCPU *cpu = env_archcpu(env); 1950 1951 /* 1952 * Acquire the CSSELR index from the bank corresponding to the CCSIDR 1953 * bank 1954 */ 1955 uint32_t index = A32_BANKED_REG_GET(env, csselr, 1956 ri->secure & ARM_CP_SECSTATE_S); 1957 1958 return cpu->ccsidr[index]; 1959 } 1960 1961 static void csselr_write(CPUARMState *env, const ARMCPRegInfo *ri, 1962 uint64_t value) 1963 { 1964 raw_write(env, ri, value & 0xf); 1965 } 1966 1967 static uint64_t isr_read(CPUARMState *env, const ARMCPRegInfo *ri) 1968 { 1969 CPUState *cs = env_cpu(env); 1970 bool el1 = arm_current_el(env) == 1; 1971 uint64_t hcr_el2 = el1 ? arm_hcr_el2_eff(env) : 0; 1972 uint64_t ret = 0; 1973 1974 if (hcr_el2 & HCR_IMO) { 1975 if (cs->interrupt_request & CPU_INTERRUPT_VIRQ) { 1976 ret |= CPSR_I; 1977 } 1978 } else { 1979 if (cs->interrupt_request & CPU_INTERRUPT_HARD) { 1980 ret |= CPSR_I; 1981 } 1982 } 1983 1984 if (hcr_el2 & HCR_FMO) { 1985 if (cs->interrupt_request & CPU_INTERRUPT_VFIQ) { 1986 ret |= CPSR_F; 1987 } 1988 } else { 1989 if (cs->interrupt_request & CPU_INTERRUPT_FIQ) { 1990 ret |= CPSR_F; 1991 } 1992 } 1993 1994 if (hcr_el2 & HCR_AMO) { 1995 if (cs->interrupt_request & CPU_INTERRUPT_VSERR) { 1996 ret |= CPSR_A; 1997 } 1998 } 1999 2000 return ret; 2001 } 2002 2003 static CPAccessResult access_aa64_tid1(CPUARMState *env, const ARMCPRegInfo *ri, 2004 bool isread) 2005 { 2006 if (arm_current_el(env) == 1 && (arm_hcr_el2_eff(env) & HCR_TID1)) { 2007 return CP_ACCESS_TRAP_EL2; 2008 } 2009 2010 return CP_ACCESS_OK; 2011 } 2012 2013 static CPAccessResult access_aa32_tid1(CPUARMState *env, const ARMCPRegInfo *ri, 2014 bool isread) 2015 { 2016 if (arm_feature(env, ARM_FEATURE_V8)) { 2017 return access_aa64_tid1(env, ri, isread); 2018 } 2019 2020 return CP_ACCESS_OK; 2021 } 2022 2023 static const ARMCPRegInfo v7_cp_reginfo[] = { 2024 /* the old v6 WFI, UNPREDICTABLE in v7 but we choose to NOP */ 2025 { .name = "NOP", .cp = 15, .crn = 7, .crm = 0, .opc1 = 0, .opc2 = 4, 2026 .access = PL1_W, .type = ARM_CP_NOP }, 2027 /* 2028 * Performance monitors are implementation defined in v7, 2029 * but with an ARM recommended set of registers, which we 2030 * follow. 2031 * 2032 * Performance registers fall into three categories: 2033 * (a) always UNDEF in PL0, RW in PL1 (PMINTENSET, PMINTENCLR) 2034 * (b) RO in PL0 (ie UNDEF on write), RW in PL1 (PMUSERENR) 2035 * (c) UNDEF in PL0 if PMUSERENR.EN==0, otherwise accessible (all others) 2036 * For the cases controlled by PMUSERENR we must set .access to PL0_RW 2037 * or PL0_RO as appropriate and then check PMUSERENR in the helper fn. 2038 */ 2039 { .name = "PMCNTENSET", .cp = 15, .crn = 9, .crm = 12, .opc1 = 0, .opc2 = 1, 2040 .access = PL0_RW, .type = ARM_CP_ALIAS | ARM_CP_IO, 2041 .fieldoffset = offsetoflow32(CPUARMState, cp15.c9_pmcnten), 2042 .writefn = pmcntenset_write, 2043 .accessfn = pmreg_access, 2044 .fgt = FGT_PMCNTEN, 2045 .raw_writefn = raw_write }, 2046 { .name = "PMCNTENSET_EL0", .state = ARM_CP_STATE_AA64, .type = ARM_CP_IO, 2047 .opc0 = 3, .opc1 = 3, .crn = 9, .crm = 12, .opc2 = 1, 2048 .access = PL0_RW, .accessfn = pmreg_access, 2049 .fgt = FGT_PMCNTEN, 2050 .fieldoffset = offsetof(CPUARMState, cp15.c9_pmcnten), .resetvalue = 0, 2051 .writefn = pmcntenset_write, .raw_writefn = raw_write }, 2052 { .name = "PMCNTENCLR", .cp = 15, .crn = 9, .crm = 12, .opc1 = 0, .opc2 = 2, 2053 .access = PL0_RW, 2054 .fieldoffset = offsetoflow32(CPUARMState, cp15.c9_pmcnten), 2055 .accessfn = pmreg_access, 2056 .fgt = FGT_PMCNTEN, 2057 .writefn = pmcntenclr_write, 2058 .type = ARM_CP_ALIAS | ARM_CP_IO }, 2059 { .name = "PMCNTENCLR_EL0", .state = ARM_CP_STATE_AA64, 2060 .opc0 = 3, .opc1 = 3, .crn = 9, .crm = 12, .opc2 = 2, 2061 .access = PL0_RW, .accessfn = pmreg_access, 2062 .fgt = FGT_PMCNTEN, 2063 .type = ARM_CP_ALIAS | ARM_CP_IO, 2064 .fieldoffset = offsetof(CPUARMState, cp15.c9_pmcnten), 2065 .writefn = pmcntenclr_write }, 2066 { .name = "PMOVSR", .cp = 15, .crn = 9, .crm = 12, .opc1 = 0, .opc2 = 3, 2067 .access = PL0_RW, .type = ARM_CP_IO, 2068 .fieldoffset = offsetoflow32(CPUARMState, cp15.c9_pmovsr), 2069 .accessfn = pmreg_access, 2070 .fgt = FGT_PMOVS, 2071 .writefn = pmovsr_write, 2072 .raw_writefn = raw_write }, 2073 { .name = "PMOVSCLR_EL0", .state = ARM_CP_STATE_AA64, 2074 .opc0 = 3, .opc1 = 3, .crn = 9, .crm = 12, .opc2 = 3, 2075 .access = PL0_RW, .accessfn = pmreg_access, 2076 .fgt = FGT_PMOVS, 2077 .type = ARM_CP_ALIAS | ARM_CP_IO, 2078 .fieldoffset = offsetof(CPUARMState, cp15.c9_pmovsr), 2079 .writefn = pmovsr_write, 2080 .raw_writefn = raw_write }, 2081 { .name = "PMSWINC", .cp = 15, .crn = 9, .crm = 12, .opc1 = 0, .opc2 = 4, 2082 .access = PL0_W, .accessfn = pmreg_access_swinc, 2083 .fgt = FGT_PMSWINC_EL0, 2084 .type = ARM_CP_NO_RAW | ARM_CP_IO, 2085 .writefn = pmswinc_write }, 2086 { .name = "PMSWINC_EL0", .state = ARM_CP_STATE_AA64, 2087 .opc0 = 3, .opc1 = 3, .crn = 9, .crm = 12, .opc2 = 4, 2088 .access = PL0_W, .accessfn = pmreg_access_swinc, 2089 .fgt = FGT_PMSWINC_EL0, 2090 .type = ARM_CP_NO_RAW | ARM_CP_IO, 2091 .writefn = pmswinc_write }, 2092 { .name = "PMSELR", .cp = 15, .crn = 9, .crm = 12, .opc1 = 0, .opc2 = 5, 2093 .access = PL0_RW, .type = ARM_CP_ALIAS, 2094 .fgt = FGT_PMSELR_EL0, 2095 .fieldoffset = offsetoflow32(CPUARMState, cp15.c9_pmselr), 2096 .accessfn = pmreg_access_selr, .writefn = pmselr_write, 2097 .raw_writefn = raw_write}, 2098 { .name = "PMSELR_EL0", .state = ARM_CP_STATE_AA64, 2099 .opc0 = 3, .opc1 = 3, .crn = 9, .crm = 12, .opc2 = 5, 2100 .access = PL0_RW, .accessfn = pmreg_access_selr, 2101 .fgt = FGT_PMSELR_EL0, 2102 .fieldoffset = offsetof(CPUARMState, cp15.c9_pmselr), 2103 .writefn = pmselr_write, .raw_writefn = raw_write, }, 2104 { .name = "PMCCNTR", .cp = 15, .crn = 9, .crm = 13, .opc1 = 0, .opc2 = 0, 2105 .access = PL0_RW, .resetvalue = 0, .type = ARM_CP_ALIAS | ARM_CP_IO, 2106 .fgt = FGT_PMCCNTR_EL0, 2107 .readfn = pmccntr_read, .writefn = pmccntr_write32, 2108 .accessfn = pmreg_access_ccntr }, 2109 { .name = "PMCCNTR_EL0", .state = ARM_CP_STATE_AA64, 2110 .opc0 = 3, .opc1 = 3, .crn = 9, .crm = 13, .opc2 = 0, 2111 .access = PL0_RW, .accessfn = pmreg_access_ccntr, 2112 .fgt = FGT_PMCCNTR_EL0, 2113 .type = ARM_CP_IO, 2114 .fieldoffset = offsetof(CPUARMState, cp15.c15_ccnt), 2115 .readfn = pmccntr_read, .writefn = pmccntr_write, 2116 .raw_readfn = raw_read, .raw_writefn = raw_write, }, 2117 { .name = "PMCCFILTR", .cp = 15, .opc1 = 0, .crn = 14, .crm = 15, .opc2 = 7, 2118 .writefn = pmccfiltr_write_a32, .readfn = pmccfiltr_read_a32, 2119 .access = PL0_RW, .accessfn = pmreg_access, 2120 .fgt = FGT_PMCCFILTR_EL0, 2121 .type = ARM_CP_ALIAS | ARM_CP_IO, 2122 .resetvalue = 0, }, 2123 { .name = "PMCCFILTR_EL0", .state = ARM_CP_STATE_AA64, 2124 .opc0 = 3, .opc1 = 3, .crn = 14, .crm = 15, .opc2 = 7, 2125 .writefn = pmccfiltr_write, .raw_writefn = raw_write, 2126 .access = PL0_RW, .accessfn = pmreg_access, 2127 .fgt = FGT_PMCCFILTR_EL0, 2128 .type = ARM_CP_IO, 2129 .fieldoffset = offsetof(CPUARMState, cp15.pmccfiltr_el0), 2130 .resetvalue = 0, }, 2131 { .name = "PMXEVTYPER", .cp = 15, .crn = 9, .crm = 13, .opc1 = 0, .opc2 = 1, 2132 .access = PL0_RW, .type = ARM_CP_NO_RAW | ARM_CP_IO, 2133 .accessfn = pmreg_access, 2134 .fgt = FGT_PMEVTYPERN_EL0, 2135 .writefn = pmxevtyper_write, .readfn = pmxevtyper_read }, 2136 { .name = "PMXEVTYPER_EL0", .state = ARM_CP_STATE_AA64, 2137 .opc0 = 3, .opc1 = 3, .crn = 9, .crm = 13, .opc2 = 1, 2138 .access = PL0_RW, .type = ARM_CP_NO_RAW | ARM_CP_IO, 2139 .accessfn = pmreg_access, 2140 .fgt = FGT_PMEVTYPERN_EL0, 2141 .writefn = pmxevtyper_write, .readfn = pmxevtyper_read }, 2142 { .name = "PMXEVCNTR", .cp = 15, .crn = 9, .crm = 13, .opc1 = 0, .opc2 = 2, 2143 .access = PL0_RW, .type = ARM_CP_NO_RAW | ARM_CP_IO, 2144 .accessfn = pmreg_access_xevcntr, 2145 .fgt = FGT_PMEVCNTRN_EL0, 2146 .writefn = pmxevcntr_write, .readfn = pmxevcntr_read }, 2147 { .name = "PMXEVCNTR_EL0", .state = ARM_CP_STATE_AA64, 2148 .opc0 = 3, .opc1 = 3, .crn = 9, .crm = 13, .opc2 = 2, 2149 .access = PL0_RW, .type = ARM_CP_NO_RAW | ARM_CP_IO, 2150 .accessfn = pmreg_access_xevcntr, 2151 .fgt = FGT_PMEVCNTRN_EL0, 2152 .writefn = pmxevcntr_write, .readfn = pmxevcntr_read }, 2153 { .name = "PMUSERENR", .cp = 15, .crn = 9, .crm = 14, .opc1 = 0, .opc2 = 0, 2154 .access = PL0_R | PL1_RW, .accessfn = access_tpm, 2155 .fieldoffset = offsetoflow32(CPUARMState, cp15.c9_pmuserenr), 2156 .resetvalue = 0, 2157 .writefn = pmuserenr_write, .raw_writefn = raw_write }, 2158 { .name = "PMUSERENR_EL0", .state = ARM_CP_STATE_AA64, 2159 .opc0 = 3, .opc1 = 3, .crn = 9, .crm = 14, .opc2 = 0, 2160 .access = PL0_R | PL1_RW, .accessfn = access_tpm, .type = ARM_CP_ALIAS, 2161 .fieldoffset = offsetof(CPUARMState, cp15.c9_pmuserenr), 2162 .resetvalue = 0, 2163 .writefn = pmuserenr_write, .raw_writefn = raw_write }, 2164 { .name = "PMINTENSET", .cp = 15, .crn = 9, .crm = 14, .opc1 = 0, .opc2 = 1, 2165 .access = PL1_RW, .accessfn = access_tpm, 2166 .fgt = FGT_PMINTEN, 2167 .type = ARM_CP_ALIAS | ARM_CP_IO, 2168 .fieldoffset = offsetoflow32(CPUARMState, cp15.c9_pminten), 2169 .resetvalue = 0, 2170 .writefn = pmintenset_write, .raw_writefn = raw_write }, 2171 { .name = "PMINTENSET_EL1", .state = ARM_CP_STATE_AA64, 2172 .opc0 = 3, .opc1 = 0, .crn = 9, .crm = 14, .opc2 = 1, 2173 .access = PL1_RW, .accessfn = access_tpm, 2174 .fgt = FGT_PMINTEN, 2175 .type = ARM_CP_IO, 2176 .fieldoffset = offsetof(CPUARMState, cp15.c9_pminten), 2177 .writefn = pmintenset_write, .raw_writefn = raw_write, 2178 .resetvalue = 0x0 }, 2179 { .name = "PMINTENCLR", .cp = 15, .crn = 9, .crm = 14, .opc1 = 0, .opc2 = 2, 2180 .access = PL1_RW, .accessfn = access_tpm, 2181 .fgt = FGT_PMINTEN, 2182 .type = ARM_CP_ALIAS | ARM_CP_IO | ARM_CP_NO_RAW, 2183 .fieldoffset = offsetof(CPUARMState, cp15.c9_pminten), 2184 .writefn = pmintenclr_write, }, 2185 { .name = "PMINTENCLR_EL1", .state = ARM_CP_STATE_AA64, 2186 .opc0 = 3, .opc1 = 0, .crn = 9, .crm = 14, .opc2 = 2, 2187 .access = PL1_RW, .accessfn = access_tpm, 2188 .fgt = FGT_PMINTEN, 2189 .type = ARM_CP_ALIAS | ARM_CP_IO | ARM_CP_NO_RAW, 2190 .fieldoffset = offsetof(CPUARMState, cp15.c9_pminten), 2191 .writefn = pmintenclr_write }, 2192 { .name = "CCSIDR", .state = ARM_CP_STATE_BOTH, 2193 .opc0 = 3, .crn = 0, .crm = 0, .opc1 = 1, .opc2 = 0, 2194 .access = PL1_R, 2195 .accessfn = access_tid4, 2196 .fgt = FGT_CCSIDR_EL1, 2197 .readfn = ccsidr_read, .type = ARM_CP_NO_RAW }, 2198 { .name = "CSSELR", .state = ARM_CP_STATE_BOTH, 2199 .opc0 = 3, .crn = 0, .crm = 0, .opc1 = 2, .opc2 = 0, 2200 .access = PL1_RW, 2201 .accessfn = access_tid4, 2202 .fgt = FGT_CSSELR_EL1, 2203 .writefn = csselr_write, .resetvalue = 0, 2204 .bank_fieldoffsets = { offsetof(CPUARMState, cp15.csselr_s), 2205 offsetof(CPUARMState, cp15.csselr_ns) } }, 2206 /* 2207 * Auxiliary ID register: this actually has an IMPDEF value but for now 2208 * just RAZ for all cores: 2209 */ 2210 { .name = "AIDR", .state = ARM_CP_STATE_BOTH, 2211 .opc0 = 3, .opc1 = 1, .crn = 0, .crm = 0, .opc2 = 7, 2212 .access = PL1_R, .type = ARM_CP_CONST, 2213 .accessfn = access_aa64_tid1, 2214 .fgt = FGT_AIDR_EL1, 2215 .resetvalue = 0 }, 2216 /* 2217 * Auxiliary fault status registers: these also are IMPDEF, and we 2218 * choose to RAZ/WI for all cores. 2219 */ 2220 { .name = "AFSR0_EL1", .state = ARM_CP_STATE_BOTH, 2221 .opc0 = 3, .opc1 = 0, .crn = 5, .crm = 1, .opc2 = 0, 2222 .access = PL1_RW, .accessfn = access_tvm_trvm, 2223 .fgt = FGT_AFSR0_EL1, 2224 .type = ARM_CP_CONST, .resetvalue = 0 }, 2225 { .name = "AFSR1_EL1", .state = ARM_CP_STATE_BOTH, 2226 .opc0 = 3, .opc1 = 0, .crn = 5, .crm = 1, .opc2 = 1, 2227 .access = PL1_RW, .accessfn = access_tvm_trvm, 2228 .fgt = FGT_AFSR1_EL1, 2229 .type = ARM_CP_CONST, .resetvalue = 0 }, 2230 /* 2231 * MAIR can just read-as-written because we don't implement caches 2232 * and so don't need to care about memory attributes. 2233 */ 2234 { .name = "MAIR_EL1", .state = ARM_CP_STATE_AA64, 2235 .opc0 = 3, .opc1 = 0, .crn = 10, .crm = 2, .opc2 = 0, 2236 .access = PL1_RW, .accessfn = access_tvm_trvm, 2237 .fgt = FGT_MAIR_EL1, 2238 .fieldoffset = offsetof(CPUARMState, cp15.mair_el[1]), 2239 .resetvalue = 0 }, 2240 { .name = "MAIR_EL3", .state = ARM_CP_STATE_AA64, 2241 .opc0 = 3, .opc1 = 6, .crn = 10, .crm = 2, .opc2 = 0, 2242 .access = PL3_RW, .fieldoffset = offsetof(CPUARMState, cp15.mair_el[3]), 2243 .resetvalue = 0 }, 2244 /* 2245 * For non-long-descriptor page tables these are PRRR and NMRR; 2246 * regardless they still act as reads-as-written for QEMU. 2247 */ 2248 /* 2249 * MAIR0/1 are defined separately from their 64-bit counterpart which 2250 * allows them to assign the correct fieldoffset based on the endianness 2251 * handled in the field definitions. 2252 */ 2253 { .name = "MAIR0", .state = ARM_CP_STATE_AA32, 2254 .cp = 15, .opc1 = 0, .crn = 10, .crm = 2, .opc2 = 0, 2255 .access = PL1_RW, .accessfn = access_tvm_trvm, 2256 .bank_fieldoffsets = { offsetof(CPUARMState, cp15.mair0_s), 2257 offsetof(CPUARMState, cp15.mair0_ns) }, 2258 .resetfn = arm_cp_reset_ignore }, 2259 { .name = "MAIR1", .state = ARM_CP_STATE_AA32, 2260 .cp = 15, .opc1 = 0, .crn = 10, .crm = 2, .opc2 = 1, 2261 .access = PL1_RW, .accessfn = access_tvm_trvm, 2262 .bank_fieldoffsets = { offsetof(CPUARMState, cp15.mair1_s), 2263 offsetof(CPUARMState, cp15.mair1_ns) }, 2264 .resetfn = arm_cp_reset_ignore }, 2265 { .name = "ISR_EL1", .state = ARM_CP_STATE_BOTH, 2266 .opc0 = 3, .opc1 = 0, .crn = 12, .crm = 1, .opc2 = 0, 2267 .fgt = FGT_ISR_EL1, 2268 .type = ARM_CP_NO_RAW, .access = PL1_R, .readfn = isr_read }, 2269 /* 32 bit ITLB invalidates */ 2270 { .name = "ITLBIALL", .cp = 15, .opc1 = 0, .crn = 8, .crm = 5, .opc2 = 0, 2271 .type = ARM_CP_NO_RAW, .access = PL1_W, .accessfn = access_ttlb, 2272 .writefn = tlbiall_write }, 2273 { .name = "ITLBIMVA", .cp = 15, .opc1 = 0, .crn = 8, .crm = 5, .opc2 = 1, 2274 .type = ARM_CP_NO_RAW, .access = PL1_W, .accessfn = access_ttlb, 2275 .writefn = tlbimva_write }, 2276 { .name = "ITLBIASID", .cp = 15, .opc1 = 0, .crn = 8, .crm = 5, .opc2 = 2, 2277 .type = ARM_CP_NO_RAW, .access = PL1_W, .accessfn = access_ttlb, 2278 .writefn = tlbiasid_write }, 2279 /* 32 bit DTLB invalidates */ 2280 { .name = "DTLBIALL", .cp = 15, .opc1 = 0, .crn = 8, .crm = 6, .opc2 = 0, 2281 .type = ARM_CP_NO_RAW, .access = PL1_W, .accessfn = access_ttlb, 2282 .writefn = tlbiall_write }, 2283 { .name = "DTLBIMVA", .cp = 15, .opc1 = 0, .crn = 8, .crm = 6, .opc2 = 1, 2284 .type = ARM_CP_NO_RAW, .access = PL1_W, .accessfn = access_ttlb, 2285 .writefn = tlbimva_write }, 2286 { .name = "DTLBIASID", .cp = 15, .opc1 = 0, .crn = 8, .crm = 6, .opc2 = 2, 2287 .type = ARM_CP_NO_RAW, .access = PL1_W, .accessfn = access_ttlb, 2288 .writefn = tlbiasid_write }, 2289 /* 32 bit TLB invalidates */ 2290 { .name = "TLBIALL", .cp = 15, .opc1 = 0, .crn = 8, .crm = 7, .opc2 = 0, 2291 .type = ARM_CP_NO_RAW, .access = PL1_W, .accessfn = access_ttlb, 2292 .writefn = tlbiall_write }, 2293 { .name = "TLBIMVA", .cp = 15, .opc1 = 0, .crn = 8, .crm = 7, .opc2 = 1, 2294 .type = ARM_CP_NO_RAW, .access = PL1_W, .accessfn = access_ttlb, 2295 .writefn = tlbimva_write }, 2296 { .name = "TLBIASID", .cp = 15, .opc1 = 0, .crn = 8, .crm = 7, .opc2 = 2, 2297 .type = ARM_CP_NO_RAW, .access = PL1_W, .accessfn = access_ttlb, 2298 .writefn = tlbiasid_write }, 2299 { .name = "TLBIMVAA", .cp = 15, .opc1 = 0, .crn = 8, .crm = 7, .opc2 = 3, 2300 .type = ARM_CP_NO_RAW, .access = PL1_W, .accessfn = access_ttlb, 2301 .writefn = tlbimvaa_write }, 2302 }; 2303 2304 static const ARMCPRegInfo v7mp_cp_reginfo[] = { 2305 /* 32 bit TLB invalidates, Inner Shareable */ 2306 { .name = "TLBIALLIS", .cp = 15, .opc1 = 0, .crn = 8, .crm = 3, .opc2 = 0, 2307 .type = ARM_CP_NO_RAW, .access = PL1_W, .accessfn = access_ttlbis, 2308 .writefn = tlbiall_is_write }, 2309 { .name = "TLBIMVAIS", .cp = 15, .opc1 = 0, .crn = 8, .crm = 3, .opc2 = 1, 2310 .type = ARM_CP_NO_RAW, .access = PL1_W, .accessfn = access_ttlbis, 2311 .writefn = tlbimva_is_write }, 2312 { .name = "TLBIASIDIS", .cp = 15, .opc1 = 0, .crn = 8, .crm = 3, .opc2 = 2, 2313 .type = ARM_CP_NO_RAW, .access = PL1_W, .accessfn = access_ttlbis, 2314 .writefn = tlbiasid_is_write }, 2315 { .name = "TLBIMVAAIS", .cp = 15, .opc1 = 0, .crn = 8, .crm = 3, .opc2 = 3, 2316 .type = ARM_CP_NO_RAW, .access = PL1_W, .accessfn = access_ttlbis, 2317 .writefn = tlbimvaa_is_write }, 2318 }; 2319 2320 static const ARMCPRegInfo pmovsset_cp_reginfo[] = { 2321 /* PMOVSSET is not implemented in v7 before v7ve */ 2322 { .name = "PMOVSSET", .cp = 15, .opc1 = 0, .crn = 9, .crm = 14, .opc2 = 3, 2323 .access = PL0_RW, .accessfn = pmreg_access, 2324 .fgt = FGT_PMOVS, 2325 .type = ARM_CP_ALIAS | ARM_CP_IO, 2326 .fieldoffset = offsetoflow32(CPUARMState, cp15.c9_pmovsr), 2327 .writefn = pmovsset_write, 2328 .raw_writefn = raw_write }, 2329 { .name = "PMOVSSET_EL0", .state = ARM_CP_STATE_AA64, 2330 .opc0 = 3, .opc1 = 3, .crn = 9, .crm = 14, .opc2 = 3, 2331 .access = PL0_RW, .accessfn = pmreg_access, 2332 .fgt = FGT_PMOVS, 2333 .type = ARM_CP_ALIAS | ARM_CP_IO, 2334 .fieldoffset = offsetof(CPUARMState, cp15.c9_pmovsr), 2335 .writefn = pmovsset_write, 2336 .raw_writefn = raw_write }, 2337 }; 2338 2339 static void teecr_write(CPUARMState *env, const ARMCPRegInfo *ri, 2340 uint64_t value) 2341 { 2342 value &= 1; 2343 env->teecr = value; 2344 } 2345 2346 static CPAccessResult teecr_access(CPUARMState *env, const ARMCPRegInfo *ri, 2347 bool isread) 2348 { 2349 /* 2350 * HSTR.TTEE only exists in v7A, not v8A, but v8A doesn't have T2EE 2351 * at all, so we don't need to check whether we're v8A. 2352 */ 2353 if (arm_current_el(env) < 2 && !arm_is_secure_below_el3(env) && 2354 (env->cp15.hstr_el2 & HSTR_TTEE)) { 2355 return CP_ACCESS_TRAP_EL2; 2356 } 2357 return CP_ACCESS_OK; 2358 } 2359 2360 static CPAccessResult teehbr_access(CPUARMState *env, const ARMCPRegInfo *ri, 2361 bool isread) 2362 { 2363 if (arm_current_el(env) == 0 && (env->teecr & 1)) { 2364 return CP_ACCESS_TRAP; 2365 } 2366 return teecr_access(env, ri, isread); 2367 } 2368 2369 static const ARMCPRegInfo t2ee_cp_reginfo[] = { 2370 { .name = "TEECR", .cp = 14, .crn = 0, .crm = 0, .opc1 = 6, .opc2 = 0, 2371 .access = PL1_RW, .fieldoffset = offsetof(CPUARMState, teecr), 2372 .resetvalue = 0, 2373 .writefn = teecr_write, .accessfn = teecr_access }, 2374 { .name = "TEEHBR", .cp = 14, .crn = 1, .crm = 0, .opc1 = 6, .opc2 = 0, 2375 .access = PL0_RW, .fieldoffset = offsetof(CPUARMState, teehbr), 2376 .accessfn = teehbr_access, .resetvalue = 0 }, 2377 }; 2378 2379 static const ARMCPRegInfo v6k_cp_reginfo[] = { 2380 { .name = "TPIDR_EL0", .state = ARM_CP_STATE_AA64, 2381 .opc0 = 3, .opc1 = 3, .opc2 = 2, .crn = 13, .crm = 0, 2382 .access = PL0_RW, 2383 .fgt = FGT_TPIDR_EL0, 2384 .fieldoffset = offsetof(CPUARMState, cp15.tpidr_el[0]), .resetvalue = 0 }, 2385 { .name = "TPIDRURW", .cp = 15, .crn = 13, .crm = 0, .opc1 = 0, .opc2 = 2, 2386 .access = PL0_RW, 2387 .fgt = FGT_TPIDR_EL0, 2388 .bank_fieldoffsets = { offsetoflow32(CPUARMState, cp15.tpidrurw_s), 2389 offsetoflow32(CPUARMState, cp15.tpidrurw_ns) }, 2390 .resetfn = arm_cp_reset_ignore }, 2391 { .name = "TPIDRRO_EL0", .state = ARM_CP_STATE_AA64, 2392 .opc0 = 3, .opc1 = 3, .opc2 = 3, .crn = 13, .crm = 0, 2393 .access = PL0_R | PL1_W, 2394 .fgt = FGT_TPIDRRO_EL0, 2395 .fieldoffset = offsetof(CPUARMState, cp15.tpidrro_el[0]), 2396 .resetvalue = 0}, 2397 { .name = "TPIDRURO", .cp = 15, .crn = 13, .crm = 0, .opc1 = 0, .opc2 = 3, 2398 .access = PL0_R | PL1_W, 2399 .fgt = FGT_TPIDRRO_EL0, 2400 .bank_fieldoffsets = { offsetoflow32(CPUARMState, cp15.tpidruro_s), 2401 offsetoflow32(CPUARMState, cp15.tpidruro_ns) }, 2402 .resetfn = arm_cp_reset_ignore }, 2403 { .name = "TPIDR_EL1", .state = ARM_CP_STATE_AA64, 2404 .opc0 = 3, .opc1 = 0, .opc2 = 4, .crn = 13, .crm = 0, 2405 .access = PL1_RW, 2406 .fgt = FGT_TPIDR_EL1, 2407 .fieldoffset = offsetof(CPUARMState, cp15.tpidr_el[1]), .resetvalue = 0 }, 2408 { .name = "TPIDRPRW", .opc1 = 0, .cp = 15, .crn = 13, .crm = 0, .opc2 = 4, 2409 .access = PL1_RW, 2410 .bank_fieldoffsets = { offsetoflow32(CPUARMState, cp15.tpidrprw_s), 2411 offsetoflow32(CPUARMState, cp15.tpidrprw_ns) }, 2412 .resetvalue = 0 }, 2413 }; 2414 2415 #ifndef CONFIG_USER_ONLY 2416 2417 static CPAccessResult gt_cntfrq_access(CPUARMState *env, const ARMCPRegInfo *ri, 2418 bool isread) 2419 { 2420 /* 2421 * CNTFRQ: not visible from PL0 if both PL0PCTEN and PL0VCTEN are zero. 2422 * Writable only at the highest implemented exception level. 2423 */ 2424 int el = arm_current_el(env); 2425 uint64_t hcr; 2426 uint32_t cntkctl; 2427 2428 switch (el) { 2429 case 0: 2430 hcr = arm_hcr_el2_eff(env); 2431 if ((hcr & (HCR_E2H | HCR_TGE)) == (HCR_E2H | HCR_TGE)) { 2432 cntkctl = env->cp15.cnthctl_el2; 2433 } else { 2434 cntkctl = env->cp15.c14_cntkctl; 2435 } 2436 if (!extract32(cntkctl, 0, 2)) { 2437 return CP_ACCESS_TRAP; 2438 } 2439 break; 2440 case 1: 2441 if (!isread && ri->state == ARM_CP_STATE_AA32 && 2442 arm_is_secure_below_el3(env)) { 2443 /* Accesses from 32-bit Secure EL1 UNDEF (*not* trap to EL3!) */ 2444 return CP_ACCESS_TRAP_UNCATEGORIZED; 2445 } 2446 break; 2447 case 2: 2448 case 3: 2449 break; 2450 } 2451 2452 if (!isread && el < arm_highest_el(env)) { 2453 return CP_ACCESS_TRAP_UNCATEGORIZED; 2454 } 2455 2456 return CP_ACCESS_OK; 2457 } 2458 2459 static CPAccessResult gt_counter_access(CPUARMState *env, int timeridx, 2460 bool isread) 2461 { 2462 unsigned int cur_el = arm_current_el(env); 2463 bool has_el2 = arm_is_el2_enabled(env); 2464 uint64_t hcr = arm_hcr_el2_eff(env); 2465 2466 switch (cur_el) { 2467 case 0: 2468 /* If HCR_EL2.<E2H,TGE> == '11': check CNTHCTL_EL2.EL0[PV]CTEN. */ 2469 if ((hcr & (HCR_E2H | HCR_TGE)) == (HCR_E2H | HCR_TGE)) { 2470 return (extract32(env->cp15.cnthctl_el2, timeridx, 1) 2471 ? CP_ACCESS_OK : CP_ACCESS_TRAP_EL2); 2472 } 2473 2474 /* CNT[PV]CT: not visible from PL0 if EL0[PV]CTEN is zero */ 2475 if (!extract32(env->cp15.c14_cntkctl, timeridx, 1)) { 2476 return CP_ACCESS_TRAP; 2477 } 2478 2479 /* If HCR_EL2.<E2H,TGE> == '10': check CNTHCTL_EL2.EL1PCTEN. */ 2480 if (hcr & HCR_E2H) { 2481 if (timeridx == GTIMER_PHYS && 2482 !extract32(env->cp15.cnthctl_el2, 10, 1)) { 2483 return CP_ACCESS_TRAP_EL2; 2484 } 2485 } else { 2486 /* If HCR_EL2.<E2H> == 0: check CNTHCTL_EL2.EL1PCEN. */ 2487 if (has_el2 && timeridx == GTIMER_PHYS && 2488 !extract32(env->cp15.cnthctl_el2, 1, 1)) { 2489 return CP_ACCESS_TRAP_EL2; 2490 } 2491 } 2492 break; 2493 2494 case 1: 2495 /* Check CNTHCTL_EL2.EL1PCTEN, which changes location based on E2H. */ 2496 if (has_el2 && timeridx == GTIMER_PHYS && 2497 (hcr & HCR_E2H 2498 ? !extract32(env->cp15.cnthctl_el2, 10, 1) 2499 : !extract32(env->cp15.cnthctl_el2, 0, 1))) { 2500 return CP_ACCESS_TRAP_EL2; 2501 } 2502 break; 2503 } 2504 return CP_ACCESS_OK; 2505 } 2506 2507 static CPAccessResult gt_timer_access(CPUARMState *env, int timeridx, 2508 bool isread) 2509 { 2510 unsigned int cur_el = arm_current_el(env); 2511 bool has_el2 = arm_is_el2_enabled(env); 2512 uint64_t hcr = arm_hcr_el2_eff(env); 2513 2514 switch (cur_el) { 2515 case 0: 2516 if ((hcr & (HCR_E2H | HCR_TGE)) == (HCR_E2H | HCR_TGE)) { 2517 /* If HCR_EL2.<E2H,TGE> == '11': check CNTHCTL_EL2.EL0[PV]TEN. */ 2518 return (extract32(env->cp15.cnthctl_el2, 9 - timeridx, 1) 2519 ? CP_ACCESS_OK : CP_ACCESS_TRAP_EL2); 2520 } 2521 2522 /* 2523 * CNT[PV]_CVAL, CNT[PV]_CTL, CNT[PV]_TVAL: not visible from 2524 * EL0 if EL0[PV]TEN is zero. 2525 */ 2526 if (!extract32(env->cp15.c14_cntkctl, 9 - timeridx, 1)) { 2527 return CP_ACCESS_TRAP; 2528 } 2529 /* fall through */ 2530 2531 case 1: 2532 if (has_el2 && timeridx == GTIMER_PHYS) { 2533 if (hcr & HCR_E2H) { 2534 /* If HCR_EL2.<E2H,TGE> == '10': check CNTHCTL_EL2.EL1PTEN. */ 2535 if (!extract32(env->cp15.cnthctl_el2, 11, 1)) { 2536 return CP_ACCESS_TRAP_EL2; 2537 } 2538 } else { 2539 /* If HCR_EL2.<E2H> == 0: check CNTHCTL_EL2.EL1PCEN. */ 2540 if (!extract32(env->cp15.cnthctl_el2, 1, 1)) { 2541 return CP_ACCESS_TRAP_EL2; 2542 } 2543 } 2544 } 2545 break; 2546 } 2547 return CP_ACCESS_OK; 2548 } 2549 2550 static CPAccessResult gt_pct_access(CPUARMState *env, 2551 const ARMCPRegInfo *ri, 2552 bool isread) 2553 { 2554 return gt_counter_access(env, GTIMER_PHYS, isread); 2555 } 2556 2557 static CPAccessResult gt_vct_access(CPUARMState *env, 2558 const ARMCPRegInfo *ri, 2559 bool isread) 2560 { 2561 return gt_counter_access(env, GTIMER_VIRT, isread); 2562 } 2563 2564 static CPAccessResult gt_ptimer_access(CPUARMState *env, const ARMCPRegInfo *ri, 2565 bool isread) 2566 { 2567 return gt_timer_access(env, GTIMER_PHYS, isread); 2568 } 2569 2570 static CPAccessResult gt_vtimer_access(CPUARMState *env, const ARMCPRegInfo *ri, 2571 bool isread) 2572 { 2573 return gt_timer_access(env, GTIMER_VIRT, isread); 2574 } 2575 2576 static CPAccessResult gt_stimer_access(CPUARMState *env, 2577 const ARMCPRegInfo *ri, 2578 bool isread) 2579 { 2580 /* 2581 * The AArch64 register view of the secure physical timer is 2582 * always accessible from EL3, and configurably accessible from 2583 * Secure EL1. 2584 */ 2585 switch (arm_current_el(env)) { 2586 case 1: 2587 if (!arm_is_secure(env)) { 2588 return CP_ACCESS_TRAP; 2589 } 2590 if (!(env->cp15.scr_el3 & SCR_ST)) { 2591 return CP_ACCESS_TRAP_EL3; 2592 } 2593 return CP_ACCESS_OK; 2594 case 0: 2595 case 2: 2596 return CP_ACCESS_TRAP; 2597 case 3: 2598 return CP_ACCESS_OK; 2599 default: 2600 g_assert_not_reached(); 2601 } 2602 } 2603 2604 static uint64_t gt_get_countervalue(CPUARMState *env) 2605 { 2606 ARMCPU *cpu = env_archcpu(env); 2607 2608 return qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL) / gt_cntfrq_period_ns(cpu); 2609 } 2610 2611 static void gt_update_irq(ARMCPU *cpu, int timeridx) 2612 { 2613 CPUARMState *env = &cpu->env; 2614 uint64_t cnthctl = env->cp15.cnthctl_el2; 2615 ARMSecuritySpace ss = arm_security_space(env); 2616 /* ISTATUS && !IMASK */ 2617 int irqstate = (env->cp15.c14_timer[timeridx].ctl & 6) == 4; 2618 2619 /* 2620 * If bit CNTHCTL_EL2.CNT[VP]MASK is set, it overrides IMASK. 2621 * It is RES0 in Secure and NonSecure state. 2622 */ 2623 if ((ss == ARMSS_Root || ss == ARMSS_Realm) && 2624 ((timeridx == GTIMER_VIRT && (cnthctl & CNTHCTL_CNTVMASK)) || 2625 (timeridx == GTIMER_PHYS && (cnthctl & CNTHCTL_CNTPMASK)))) { 2626 irqstate = 0; 2627 } 2628 2629 qemu_set_irq(cpu->gt_timer_outputs[timeridx], irqstate); 2630 trace_arm_gt_update_irq(timeridx, irqstate); 2631 } 2632 2633 void gt_rme_post_el_change(ARMCPU *cpu, void *ignored) 2634 { 2635 /* 2636 * Changing security state between Root and Secure/NonSecure, which may 2637 * happen when switching EL, can change the effective value of CNTHCTL_EL2 2638 * mask bits. Update the IRQ state accordingly. 2639 */ 2640 gt_update_irq(cpu, GTIMER_VIRT); 2641 gt_update_irq(cpu, GTIMER_PHYS); 2642 } 2643 2644 static void gt_recalc_timer(ARMCPU *cpu, int timeridx) 2645 { 2646 ARMGenericTimer *gt = &cpu->env.cp15.c14_timer[timeridx]; 2647 2648 if (gt->ctl & 1) { 2649 /* 2650 * Timer enabled: calculate and set current ISTATUS, irq, and 2651 * reset timer to when ISTATUS next has to change 2652 */ 2653 uint64_t offset = timeridx == GTIMER_VIRT ? 2654 cpu->env.cp15.cntvoff_el2 : 0; 2655 uint64_t count = gt_get_countervalue(&cpu->env); 2656 /* Note that this must be unsigned 64 bit arithmetic: */ 2657 int istatus = count - offset >= gt->cval; 2658 uint64_t nexttick; 2659 2660 gt->ctl = deposit32(gt->ctl, 2, 1, istatus); 2661 2662 if (istatus) { 2663 /* Next transition is when count rolls back over to zero */ 2664 nexttick = UINT64_MAX; 2665 } else { 2666 /* Next transition is when we hit cval */ 2667 nexttick = gt->cval + offset; 2668 } 2669 /* 2670 * Note that the desired next expiry time might be beyond the 2671 * signed-64-bit range of a QEMUTimer -- in this case we just 2672 * set the timer for as far in the future as possible. When the 2673 * timer expires we will reset the timer for any remaining period. 2674 */ 2675 if (nexttick > INT64_MAX / gt_cntfrq_period_ns(cpu)) { 2676 timer_mod_ns(cpu->gt_timer[timeridx], INT64_MAX); 2677 } else { 2678 timer_mod(cpu->gt_timer[timeridx], nexttick); 2679 } 2680 trace_arm_gt_recalc(timeridx, nexttick); 2681 } else { 2682 /* Timer disabled: ISTATUS and timer output always clear */ 2683 gt->ctl &= ~4; 2684 timer_del(cpu->gt_timer[timeridx]); 2685 trace_arm_gt_recalc_disabled(timeridx); 2686 } 2687 gt_update_irq(cpu, timeridx); 2688 } 2689 2690 static void gt_timer_reset(CPUARMState *env, const ARMCPRegInfo *ri, 2691 int timeridx) 2692 { 2693 ARMCPU *cpu = env_archcpu(env); 2694 2695 timer_del(cpu->gt_timer[timeridx]); 2696 } 2697 2698 static uint64_t gt_cnt_read(CPUARMState *env, const ARMCPRegInfo *ri) 2699 { 2700 return gt_get_countervalue(env); 2701 } 2702 2703 static uint64_t gt_virt_cnt_offset(CPUARMState *env) 2704 { 2705 uint64_t hcr; 2706 2707 switch (arm_current_el(env)) { 2708 case 2: 2709 hcr = arm_hcr_el2_eff(env); 2710 if (hcr & HCR_E2H) { 2711 return 0; 2712 } 2713 break; 2714 case 0: 2715 hcr = arm_hcr_el2_eff(env); 2716 if ((hcr & (HCR_E2H | HCR_TGE)) == (HCR_E2H | HCR_TGE)) { 2717 return 0; 2718 } 2719 break; 2720 } 2721 2722 return env->cp15.cntvoff_el2; 2723 } 2724 2725 static uint64_t gt_virt_cnt_read(CPUARMState *env, const ARMCPRegInfo *ri) 2726 { 2727 return gt_get_countervalue(env) - gt_virt_cnt_offset(env); 2728 } 2729 2730 static void gt_cval_write(CPUARMState *env, const ARMCPRegInfo *ri, 2731 int timeridx, 2732 uint64_t value) 2733 { 2734 trace_arm_gt_cval_write(timeridx, value); 2735 env->cp15.c14_timer[timeridx].cval = value; 2736 gt_recalc_timer(env_archcpu(env), timeridx); 2737 } 2738 2739 static uint64_t gt_tval_read(CPUARMState *env, const ARMCPRegInfo *ri, 2740 int timeridx) 2741 { 2742 uint64_t offset = 0; 2743 2744 switch (timeridx) { 2745 case GTIMER_VIRT: 2746 case GTIMER_HYPVIRT: 2747 offset = gt_virt_cnt_offset(env); 2748 break; 2749 } 2750 2751 return (uint32_t)(env->cp15.c14_timer[timeridx].cval - 2752 (gt_get_countervalue(env) - offset)); 2753 } 2754 2755 static void gt_tval_write(CPUARMState *env, const ARMCPRegInfo *ri, 2756 int timeridx, 2757 uint64_t value) 2758 { 2759 uint64_t offset = 0; 2760 2761 switch (timeridx) { 2762 case GTIMER_VIRT: 2763 case GTIMER_HYPVIRT: 2764 offset = gt_virt_cnt_offset(env); 2765 break; 2766 } 2767 2768 trace_arm_gt_tval_write(timeridx, value); 2769 env->cp15.c14_timer[timeridx].cval = gt_get_countervalue(env) - offset + 2770 sextract64(value, 0, 32); 2771 gt_recalc_timer(env_archcpu(env), timeridx); 2772 } 2773 2774 static void gt_ctl_write(CPUARMState *env, const ARMCPRegInfo *ri, 2775 int timeridx, 2776 uint64_t value) 2777 { 2778 ARMCPU *cpu = env_archcpu(env); 2779 uint32_t oldval = env->cp15.c14_timer[timeridx].ctl; 2780 2781 trace_arm_gt_ctl_write(timeridx, value); 2782 env->cp15.c14_timer[timeridx].ctl = deposit64(oldval, 0, 2, value); 2783 if ((oldval ^ value) & 1) { 2784 /* Enable toggled */ 2785 gt_recalc_timer(cpu, timeridx); 2786 } else if ((oldval ^ value) & 2) { 2787 /* 2788 * IMASK toggled: don't need to recalculate, 2789 * just set the interrupt line based on ISTATUS 2790 */ 2791 trace_arm_gt_imask_toggle(timeridx); 2792 gt_update_irq(cpu, timeridx); 2793 } 2794 } 2795 2796 static void gt_phys_timer_reset(CPUARMState *env, const ARMCPRegInfo *ri) 2797 { 2798 gt_timer_reset(env, ri, GTIMER_PHYS); 2799 } 2800 2801 static void gt_phys_cval_write(CPUARMState *env, const ARMCPRegInfo *ri, 2802 uint64_t value) 2803 { 2804 gt_cval_write(env, ri, GTIMER_PHYS, value); 2805 } 2806 2807 static uint64_t gt_phys_tval_read(CPUARMState *env, const ARMCPRegInfo *ri) 2808 { 2809 return gt_tval_read(env, ri, GTIMER_PHYS); 2810 } 2811 2812 static void gt_phys_tval_write(CPUARMState *env, const ARMCPRegInfo *ri, 2813 uint64_t value) 2814 { 2815 gt_tval_write(env, ri, GTIMER_PHYS, value); 2816 } 2817 2818 static void gt_phys_ctl_write(CPUARMState *env, const ARMCPRegInfo *ri, 2819 uint64_t value) 2820 { 2821 gt_ctl_write(env, ri, GTIMER_PHYS, value); 2822 } 2823 2824 static int gt_phys_redir_timeridx(CPUARMState *env) 2825 { 2826 switch (arm_mmu_idx(env)) { 2827 case ARMMMUIdx_E20_0: 2828 case ARMMMUIdx_E20_2: 2829 case ARMMMUIdx_E20_2_PAN: 2830 return GTIMER_HYP; 2831 default: 2832 return GTIMER_PHYS; 2833 } 2834 } 2835 2836 static int gt_virt_redir_timeridx(CPUARMState *env) 2837 { 2838 switch (arm_mmu_idx(env)) { 2839 case ARMMMUIdx_E20_0: 2840 case ARMMMUIdx_E20_2: 2841 case ARMMMUIdx_E20_2_PAN: 2842 return GTIMER_HYPVIRT; 2843 default: 2844 return GTIMER_VIRT; 2845 } 2846 } 2847 2848 static uint64_t gt_phys_redir_cval_read(CPUARMState *env, 2849 const ARMCPRegInfo *ri) 2850 { 2851 int timeridx = gt_phys_redir_timeridx(env); 2852 return env->cp15.c14_timer[timeridx].cval; 2853 } 2854 2855 static void gt_phys_redir_cval_write(CPUARMState *env, const ARMCPRegInfo *ri, 2856 uint64_t value) 2857 { 2858 int timeridx = gt_phys_redir_timeridx(env); 2859 gt_cval_write(env, ri, timeridx, value); 2860 } 2861 2862 static uint64_t gt_phys_redir_tval_read(CPUARMState *env, 2863 const ARMCPRegInfo *ri) 2864 { 2865 int timeridx = gt_phys_redir_timeridx(env); 2866 return gt_tval_read(env, ri, timeridx); 2867 } 2868 2869 static void gt_phys_redir_tval_write(CPUARMState *env, const ARMCPRegInfo *ri, 2870 uint64_t value) 2871 { 2872 int timeridx = gt_phys_redir_timeridx(env); 2873 gt_tval_write(env, ri, timeridx, value); 2874 } 2875 2876 static uint64_t gt_phys_redir_ctl_read(CPUARMState *env, 2877 const ARMCPRegInfo *ri) 2878 { 2879 int timeridx = gt_phys_redir_timeridx(env); 2880 return env->cp15.c14_timer[timeridx].ctl; 2881 } 2882 2883 static void gt_phys_redir_ctl_write(CPUARMState *env, const ARMCPRegInfo *ri, 2884 uint64_t value) 2885 { 2886 int timeridx = gt_phys_redir_timeridx(env); 2887 gt_ctl_write(env, ri, timeridx, value); 2888 } 2889 2890 static void gt_virt_timer_reset(CPUARMState *env, const ARMCPRegInfo *ri) 2891 { 2892 gt_timer_reset(env, ri, GTIMER_VIRT); 2893 } 2894 2895 static void gt_virt_cval_write(CPUARMState *env, const ARMCPRegInfo *ri, 2896 uint64_t value) 2897 { 2898 gt_cval_write(env, ri, GTIMER_VIRT, value); 2899 } 2900 2901 static uint64_t gt_virt_tval_read(CPUARMState *env, const ARMCPRegInfo *ri) 2902 { 2903 return gt_tval_read(env, ri, GTIMER_VIRT); 2904 } 2905 2906 static void gt_virt_tval_write(CPUARMState *env, const ARMCPRegInfo *ri, 2907 uint64_t value) 2908 { 2909 gt_tval_write(env, ri, GTIMER_VIRT, value); 2910 } 2911 2912 static void gt_virt_ctl_write(CPUARMState *env, const ARMCPRegInfo *ri, 2913 uint64_t value) 2914 { 2915 gt_ctl_write(env, ri, GTIMER_VIRT, value); 2916 } 2917 2918 static void gt_cnthctl_write(CPUARMState *env, const ARMCPRegInfo *ri, 2919 uint64_t value) 2920 { 2921 ARMCPU *cpu = env_archcpu(env); 2922 uint32_t oldval = env->cp15.cnthctl_el2; 2923 2924 raw_write(env, ri, value); 2925 2926 if ((oldval ^ value) & CNTHCTL_CNTVMASK) { 2927 gt_update_irq(cpu, GTIMER_VIRT); 2928 } else if ((oldval ^ value) & CNTHCTL_CNTPMASK) { 2929 gt_update_irq(cpu, GTIMER_PHYS); 2930 } 2931 } 2932 2933 static void gt_cntvoff_write(CPUARMState *env, const ARMCPRegInfo *ri, 2934 uint64_t value) 2935 { 2936 ARMCPU *cpu = env_archcpu(env); 2937 2938 trace_arm_gt_cntvoff_write(value); 2939 raw_write(env, ri, value); 2940 gt_recalc_timer(cpu, GTIMER_VIRT); 2941 } 2942 2943 static uint64_t gt_virt_redir_cval_read(CPUARMState *env, 2944 const ARMCPRegInfo *ri) 2945 { 2946 int timeridx = gt_virt_redir_timeridx(env); 2947 return env->cp15.c14_timer[timeridx].cval; 2948 } 2949 2950 static void gt_virt_redir_cval_write(CPUARMState *env, const ARMCPRegInfo *ri, 2951 uint64_t value) 2952 { 2953 int timeridx = gt_virt_redir_timeridx(env); 2954 gt_cval_write(env, ri, timeridx, value); 2955 } 2956 2957 static uint64_t gt_virt_redir_tval_read(CPUARMState *env, 2958 const ARMCPRegInfo *ri) 2959 { 2960 int timeridx = gt_virt_redir_timeridx(env); 2961 return gt_tval_read(env, ri, timeridx); 2962 } 2963 2964 static void gt_virt_redir_tval_write(CPUARMState *env, const ARMCPRegInfo *ri, 2965 uint64_t value) 2966 { 2967 int timeridx = gt_virt_redir_timeridx(env); 2968 gt_tval_write(env, ri, timeridx, value); 2969 } 2970 2971 static uint64_t gt_virt_redir_ctl_read(CPUARMState *env, 2972 const ARMCPRegInfo *ri) 2973 { 2974 int timeridx = gt_virt_redir_timeridx(env); 2975 return env->cp15.c14_timer[timeridx].ctl; 2976 } 2977 2978 static void gt_virt_redir_ctl_write(CPUARMState *env, const ARMCPRegInfo *ri, 2979 uint64_t value) 2980 { 2981 int timeridx = gt_virt_redir_timeridx(env); 2982 gt_ctl_write(env, ri, timeridx, value); 2983 } 2984 2985 static void gt_hyp_timer_reset(CPUARMState *env, const ARMCPRegInfo *ri) 2986 { 2987 gt_timer_reset(env, ri, GTIMER_HYP); 2988 } 2989 2990 static void gt_hyp_cval_write(CPUARMState *env, const ARMCPRegInfo *ri, 2991 uint64_t value) 2992 { 2993 gt_cval_write(env, ri, GTIMER_HYP, value); 2994 } 2995 2996 static uint64_t gt_hyp_tval_read(CPUARMState *env, const ARMCPRegInfo *ri) 2997 { 2998 return gt_tval_read(env, ri, GTIMER_HYP); 2999 } 3000 3001 static void gt_hyp_tval_write(CPUARMState *env, const ARMCPRegInfo *ri, 3002 uint64_t value) 3003 { 3004 gt_tval_write(env, ri, GTIMER_HYP, value); 3005 } 3006 3007 static void gt_hyp_ctl_write(CPUARMState *env, const ARMCPRegInfo *ri, 3008 uint64_t value) 3009 { 3010 gt_ctl_write(env, ri, GTIMER_HYP, value); 3011 } 3012 3013 static void gt_sec_timer_reset(CPUARMState *env, const ARMCPRegInfo *ri) 3014 { 3015 gt_timer_reset(env, ri, GTIMER_SEC); 3016 } 3017 3018 static void gt_sec_cval_write(CPUARMState *env, const ARMCPRegInfo *ri, 3019 uint64_t value) 3020 { 3021 gt_cval_write(env, ri, GTIMER_SEC, value); 3022 } 3023 3024 static uint64_t gt_sec_tval_read(CPUARMState *env, const ARMCPRegInfo *ri) 3025 { 3026 return gt_tval_read(env, ri, GTIMER_SEC); 3027 } 3028 3029 static void gt_sec_tval_write(CPUARMState *env, const ARMCPRegInfo *ri, 3030 uint64_t value) 3031 { 3032 gt_tval_write(env, ri, GTIMER_SEC, value); 3033 } 3034 3035 static void gt_sec_ctl_write(CPUARMState *env, const ARMCPRegInfo *ri, 3036 uint64_t value) 3037 { 3038 gt_ctl_write(env, ri, GTIMER_SEC, value); 3039 } 3040 3041 static void gt_hv_timer_reset(CPUARMState *env, const ARMCPRegInfo *ri) 3042 { 3043 gt_timer_reset(env, ri, GTIMER_HYPVIRT); 3044 } 3045 3046 static void gt_hv_cval_write(CPUARMState *env, const ARMCPRegInfo *ri, 3047 uint64_t value) 3048 { 3049 gt_cval_write(env, ri, GTIMER_HYPVIRT, value); 3050 } 3051 3052 static uint64_t gt_hv_tval_read(CPUARMState *env, const ARMCPRegInfo *ri) 3053 { 3054 return gt_tval_read(env, ri, GTIMER_HYPVIRT); 3055 } 3056 3057 static void gt_hv_tval_write(CPUARMState *env, const ARMCPRegInfo *ri, 3058 uint64_t value) 3059 { 3060 gt_tval_write(env, ri, GTIMER_HYPVIRT, value); 3061 } 3062 3063 static void gt_hv_ctl_write(CPUARMState *env, const ARMCPRegInfo *ri, 3064 uint64_t value) 3065 { 3066 gt_ctl_write(env, ri, GTIMER_HYPVIRT, value); 3067 } 3068 3069 void arm_gt_ptimer_cb(void *opaque) 3070 { 3071 ARMCPU *cpu = opaque; 3072 3073 gt_recalc_timer(cpu, GTIMER_PHYS); 3074 } 3075 3076 void arm_gt_vtimer_cb(void *opaque) 3077 { 3078 ARMCPU *cpu = opaque; 3079 3080 gt_recalc_timer(cpu, GTIMER_VIRT); 3081 } 3082 3083 void arm_gt_htimer_cb(void *opaque) 3084 { 3085 ARMCPU *cpu = opaque; 3086 3087 gt_recalc_timer(cpu, GTIMER_HYP); 3088 } 3089 3090 void arm_gt_stimer_cb(void *opaque) 3091 { 3092 ARMCPU *cpu = opaque; 3093 3094 gt_recalc_timer(cpu, GTIMER_SEC); 3095 } 3096 3097 void arm_gt_hvtimer_cb(void *opaque) 3098 { 3099 ARMCPU *cpu = opaque; 3100 3101 gt_recalc_timer(cpu, GTIMER_HYPVIRT); 3102 } 3103 3104 static void arm_gt_cntfrq_reset(CPUARMState *env, const ARMCPRegInfo *opaque) 3105 { 3106 ARMCPU *cpu = env_archcpu(env); 3107 3108 cpu->env.cp15.c14_cntfrq = cpu->gt_cntfrq_hz; 3109 } 3110 3111 static const ARMCPRegInfo generic_timer_cp_reginfo[] = { 3112 /* 3113 * Note that CNTFRQ is purely reads-as-written for the benefit 3114 * of software; writing it doesn't actually change the timer frequency. 3115 * Our reset value matches the fixed frequency we implement the timer at. 3116 */ 3117 { .name = "CNTFRQ", .cp = 15, .crn = 14, .crm = 0, .opc1 = 0, .opc2 = 0, 3118 .type = ARM_CP_ALIAS, 3119 .access = PL1_RW | PL0_R, .accessfn = gt_cntfrq_access, 3120 .fieldoffset = offsetoflow32(CPUARMState, cp15.c14_cntfrq), 3121 }, 3122 { .name = "CNTFRQ_EL0", .state = ARM_CP_STATE_AA64, 3123 .opc0 = 3, .opc1 = 3, .crn = 14, .crm = 0, .opc2 = 0, 3124 .access = PL1_RW | PL0_R, .accessfn = gt_cntfrq_access, 3125 .fieldoffset = offsetof(CPUARMState, cp15.c14_cntfrq), 3126 .resetfn = arm_gt_cntfrq_reset, 3127 }, 3128 /* overall control: mostly access permissions */ 3129 { .name = "CNTKCTL", .state = ARM_CP_STATE_BOTH, 3130 .opc0 = 3, .opc1 = 0, .crn = 14, .crm = 1, .opc2 = 0, 3131 .access = PL1_RW, 3132 .fieldoffset = offsetof(CPUARMState, cp15.c14_cntkctl), 3133 .resetvalue = 0, 3134 }, 3135 /* per-timer control */ 3136 { .name = "CNTP_CTL", .cp = 15, .crn = 14, .crm = 2, .opc1 = 0, .opc2 = 1, 3137 .secure = ARM_CP_SECSTATE_NS, 3138 .type = ARM_CP_IO | ARM_CP_ALIAS, .access = PL0_RW, 3139 .accessfn = gt_ptimer_access, 3140 .fieldoffset = offsetoflow32(CPUARMState, 3141 cp15.c14_timer[GTIMER_PHYS].ctl), 3142 .readfn = gt_phys_redir_ctl_read, .raw_readfn = raw_read, 3143 .writefn = gt_phys_redir_ctl_write, .raw_writefn = raw_write, 3144 }, 3145 { .name = "CNTP_CTL_S", 3146 .cp = 15, .crn = 14, .crm = 2, .opc1 = 0, .opc2 = 1, 3147 .secure = ARM_CP_SECSTATE_S, 3148 .type = ARM_CP_IO | ARM_CP_ALIAS, .access = PL0_RW, 3149 .accessfn = gt_ptimer_access, 3150 .fieldoffset = offsetoflow32(CPUARMState, 3151 cp15.c14_timer[GTIMER_SEC].ctl), 3152 .writefn = gt_sec_ctl_write, .raw_writefn = raw_write, 3153 }, 3154 { .name = "CNTP_CTL_EL0", .state = ARM_CP_STATE_AA64, 3155 .opc0 = 3, .opc1 = 3, .crn = 14, .crm = 2, .opc2 = 1, 3156 .type = ARM_CP_IO, .access = PL0_RW, 3157 .accessfn = gt_ptimer_access, 3158 .fieldoffset = offsetof(CPUARMState, cp15.c14_timer[GTIMER_PHYS].ctl), 3159 .resetvalue = 0, 3160 .readfn = gt_phys_redir_ctl_read, .raw_readfn = raw_read, 3161 .writefn = gt_phys_redir_ctl_write, .raw_writefn = raw_write, 3162 }, 3163 { .name = "CNTV_CTL", .cp = 15, .crn = 14, .crm = 3, .opc1 = 0, .opc2 = 1, 3164 .type = ARM_CP_IO | ARM_CP_ALIAS, .access = PL0_RW, 3165 .accessfn = gt_vtimer_access, 3166 .fieldoffset = offsetoflow32(CPUARMState, 3167 cp15.c14_timer[GTIMER_VIRT].ctl), 3168 .readfn = gt_virt_redir_ctl_read, .raw_readfn = raw_read, 3169 .writefn = gt_virt_redir_ctl_write, .raw_writefn = raw_write, 3170 }, 3171 { .name = "CNTV_CTL_EL0", .state = ARM_CP_STATE_AA64, 3172 .opc0 = 3, .opc1 = 3, .crn = 14, .crm = 3, .opc2 = 1, 3173 .type = ARM_CP_IO, .access = PL0_RW, 3174 .accessfn = gt_vtimer_access, 3175 .fieldoffset = offsetof(CPUARMState, cp15.c14_timer[GTIMER_VIRT].ctl), 3176 .resetvalue = 0, 3177 .readfn = gt_virt_redir_ctl_read, .raw_readfn = raw_read, 3178 .writefn = gt_virt_redir_ctl_write, .raw_writefn = raw_write, 3179 }, 3180 /* TimerValue views: a 32 bit downcounting view of the underlying state */ 3181 { .name = "CNTP_TVAL", .cp = 15, .crn = 14, .crm = 2, .opc1 = 0, .opc2 = 0, 3182 .secure = ARM_CP_SECSTATE_NS, 3183 .type = ARM_CP_NO_RAW | ARM_CP_IO, .access = PL0_RW, 3184 .accessfn = gt_ptimer_access, 3185 .readfn = gt_phys_redir_tval_read, .writefn = gt_phys_redir_tval_write, 3186 }, 3187 { .name = "CNTP_TVAL_S", 3188 .cp = 15, .crn = 14, .crm = 2, .opc1 = 0, .opc2 = 0, 3189 .secure = ARM_CP_SECSTATE_S, 3190 .type = ARM_CP_NO_RAW | ARM_CP_IO, .access = PL0_RW, 3191 .accessfn = gt_ptimer_access, 3192 .readfn = gt_sec_tval_read, .writefn = gt_sec_tval_write, 3193 }, 3194 { .name = "CNTP_TVAL_EL0", .state = ARM_CP_STATE_AA64, 3195 .opc0 = 3, .opc1 = 3, .crn = 14, .crm = 2, .opc2 = 0, 3196 .type = ARM_CP_NO_RAW | ARM_CP_IO, .access = PL0_RW, 3197 .accessfn = gt_ptimer_access, .resetfn = gt_phys_timer_reset, 3198 .readfn = gt_phys_redir_tval_read, .writefn = gt_phys_redir_tval_write, 3199 }, 3200 { .name = "CNTV_TVAL", .cp = 15, .crn = 14, .crm = 3, .opc1 = 0, .opc2 = 0, 3201 .type = ARM_CP_NO_RAW | ARM_CP_IO, .access = PL0_RW, 3202 .accessfn = gt_vtimer_access, 3203 .readfn = gt_virt_redir_tval_read, .writefn = gt_virt_redir_tval_write, 3204 }, 3205 { .name = "CNTV_TVAL_EL0", .state = ARM_CP_STATE_AA64, 3206 .opc0 = 3, .opc1 = 3, .crn = 14, .crm = 3, .opc2 = 0, 3207 .type = ARM_CP_NO_RAW | ARM_CP_IO, .access = PL0_RW, 3208 .accessfn = gt_vtimer_access, .resetfn = gt_virt_timer_reset, 3209 .readfn = gt_virt_redir_tval_read, .writefn = gt_virt_redir_tval_write, 3210 }, 3211 /* The counter itself */ 3212 { .name = "CNTPCT", .cp = 15, .crm = 14, .opc1 = 0, 3213 .access = PL0_R, .type = ARM_CP_64BIT | ARM_CP_NO_RAW | ARM_CP_IO, 3214 .accessfn = gt_pct_access, 3215 .readfn = gt_cnt_read, .resetfn = arm_cp_reset_ignore, 3216 }, 3217 { .name = "CNTPCT_EL0", .state = ARM_CP_STATE_AA64, 3218 .opc0 = 3, .opc1 = 3, .crn = 14, .crm = 0, .opc2 = 1, 3219 .access = PL0_R, .type = ARM_CP_NO_RAW | ARM_CP_IO, 3220 .accessfn = gt_pct_access, .readfn = gt_cnt_read, 3221 }, 3222 { .name = "CNTVCT", .cp = 15, .crm = 14, .opc1 = 1, 3223 .access = PL0_R, .type = ARM_CP_64BIT | ARM_CP_NO_RAW | ARM_CP_IO, 3224 .accessfn = gt_vct_access, 3225 .readfn = gt_virt_cnt_read, .resetfn = arm_cp_reset_ignore, 3226 }, 3227 { .name = "CNTVCT_EL0", .state = ARM_CP_STATE_AA64, 3228 .opc0 = 3, .opc1 = 3, .crn = 14, .crm = 0, .opc2 = 2, 3229 .access = PL0_R, .type = ARM_CP_NO_RAW | ARM_CP_IO, 3230 .accessfn = gt_vct_access, .readfn = gt_virt_cnt_read, 3231 }, 3232 /* Comparison value, indicating when the timer goes off */ 3233 { .name = "CNTP_CVAL", .cp = 15, .crm = 14, .opc1 = 2, 3234 .secure = ARM_CP_SECSTATE_NS, 3235 .access = PL0_RW, 3236 .type = ARM_CP_64BIT | ARM_CP_IO | ARM_CP_ALIAS, 3237 .fieldoffset = offsetof(CPUARMState, cp15.c14_timer[GTIMER_PHYS].cval), 3238 .accessfn = gt_ptimer_access, 3239 .readfn = gt_phys_redir_cval_read, .raw_readfn = raw_read, 3240 .writefn = gt_phys_redir_cval_write, .raw_writefn = raw_write, 3241 }, 3242 { .name = "CNTP_CVAL_S", .cp = 15, .crm = 14, .opc1 = 2, 3243 .secure = ARM_CP_SECSTATE_S, 3244 .access = PL0_RW, 3245 .type = ARM_CP_64BIT | ARM_CP_IO | ARM_CP_ALIAS, 3246 .fieldoffset = offsetof(CPUARMState, cp15.c14_timer[GTIMER_SEC].cval), 3247 .accessfn = gt_ptimer_access, 3248 .writefn = gt_sec_cval_write, .raw_writefn = raw_write, 3249 }, 3250 { .name = "CNTP_CVAL_EL0", .state = ARM_CP_STATE_AA64, 3251 .opc0 = 3, .opc1 = 3, .crn = 14, .crm = 2, .opc2 = 2, 3252 .access = PL0_RW, 3253 .type = ARM_CP_IO, 3254 .fieldoffset = offsetof(CPUARMState, cp15.c14_timer[GTIMER_PHYS].cval), 3255 .resetvalue = 0, .accessfn = gt_ptimer_access, 3256 .readfn = gt_phys_redir_cval_read, .raw_readfn = raw_read, 3257 .writefn = gt_phys_redir_cval_write, .raw_writefn = raw_write, 3258 }, 3259 { .name = "CNTV_CVAL", .cp = 15, .crm = 14, .opc1 = 3, 3260 .access = PL0_RW, 3261 .type = ARM_CP_64BIT | ARM_CP_IO | ARM_CP_ALIAS, 3262 .fieldoffset = offsetof(CPUARMState, cp15.c14_timer[GTIMER_VIRT].cval), 3263 .accessfn = gt_vtimer_access, 3264 .readfn = gt_virt_redir_cval_read, .raw_readfn = raw_read, 3265 .writefn = gt_virt_redir_cval_write, .raw_writefn = raw_write, 3266 }, 3267 { .name = "CNTV_CVAL_EL0", .state = ARM_CP_STATE_AA64, 3268 .opc0 = 3, .opc1 = 3, .crn = 14, .crm = 3, .opc2 = 2, 3269 .access = PL0_RW, 3270 .type = ARM_CP_IO, 3271 .fieldoffset = offsetof(CPUARMState, cp15.c14_timer[GTIMER_VIRT].cval), 3272 .resetvalue = 0, .accessfn = gt_vtimer_access, 3273 .readfn = gt_virt_redir_cval_read, .raw_readfn = raw_read, 3274 .writefn = gt_virt_redir_cval_write, .raw_writefn = raw_write, 3275 }, 3276 /* 3277 * Secure timer -- this is actually restricted to only EL3 3278 * and configurably Secure-EL1 via the accessfn. 3279 */ 3280 { .name = "CNTPS_TVAL_EL1", .state = ARM_CP_STATE_AA64, 3281 .opc0 = 3, .opc1 = 7, .crn = 14, .crm = 2, .opc2 = 0, 3282 .type = ARM_CP_NO_RAW | ARM_CP_IO, .access = PL1_RW, 3283 .accessfn = gt_stimer_access, 3284 .readfn = gt_sec_tval_read, 3285 .writefn = gt_sec_tval_write, 3286 .resetfn = gt_sec_timer_reset, 3287 }, 3288 { .name = "CNTPS_CTL_EL1", .state = ARM_CP_STATE_AA64, 3289 .opc0 = 3, .opc1 = 7, .crn = 14, .crm = 2, .opc2 = 1, 3290 .type = ARM_CP_IO, .access = PL1_RW, 3291 .accessfn = gt_stimer_access, 3292 .fieldoffset = offsetof(CPUARMState, cp15.c14_timer[GTIMER_SEC].ctl), 3293 .resetvalue = 0, 3294 .writefn = gt_sec_ctl_write, .raw_writefn = raw_write, 3295 }, 3296 { .name = "CNTPS_CVAL_EL1", .state = ARM_CP_STATE_AA64, 3297 .opc0 = 3, .opc1 = 7, .crn = 14, .crm = 2, .opc2 = 2, 3298 .type = ARM_CP_IO, .access = PL1_RW, 3299 .accessfn = gt_stimer_access, 3300 .fieldoffset = offsetof(CPUARMState, cp15.c14_timer[GTIMER_SEC].cval), 3301 .writefn = gt_sec_cval_write, .raw_writefn = raw_write, 3302 }, 3303 }; 3304 3305 static CPAccessResult e2h_access(CPUARMState *env, const ARMCPRegInfo *ri, 3306 bool isread) 3307 { 3308 if (!(arm_hcr_el2_eff(env) & HCR_E2H)) { 3309 return CP_ACCESS_TRAP; 3310 } 3311 return CP_ACCESS_OK; 3312 } 3313 3314 #else 3315 3316 /* 3317 * In user-mode most of the generic timer registers are inaccessible 3318 * however modern kernels (4.12+) allow access to cntvct_el0 3319 */ 3320 3321 static uint64_t gt_virt_cnt_read(CPUARMState *env, const ARMCPRegInfo *ri) 3322 { 3323 ARMCPU *cpu = env_archcpu(env); 3324 3325 /* 3326 * Currently we have no support for QEMUTimer in linux-user so we 3327 * can't call gt_get_countervalue(env), instead we directly 3328 * call the lower level functions. 3329 */ 3330 return cpu_get_clock() / gt_cntfrq_period_ns(cpu); 3331 } 3332 3333 static const ARMCPRegInfo generic_timer_cp_reginfo[] = { 3334 { .name = "CNTFRQ_EL0", .state = ARM_CP_STATE_AA64, 3335 .opc0 = 3, .opc1 = 3, .crn = 14, .crm = 0, .opc2 = 0, 3336 .type = ARM_CP_CONST, .access = PL0_R /* no PL1_RW in linux-user */, 3337 .fieldoffset = offsetof(CPUARMState, cp15.c14_cntfrq), 3338 .resetvalue = NANOSECONDS_PER_SECOND / GTIMER_SCALE, 3339 }, 3340 { .name = "CNTVCT_EL0", .state = ARM_CP_STATE_AA64, 3341 .opc0 = 3, .opc1 = 3, .crn = 14, .crm = 0, .opc2 = 2, 3342 .access = PL0_R, .type = ARM_CP_NO_RAW | ARM_CP_IO, 3343 .readfn = gt_virt_cnt_read, 3344 }, 3345 }; 3346 3347 #endif 3348 3349 static void par_write(CPUARMState *env, const ARMCPRegInfo *ri, uint64_t value) 3350 { 3351 if (arm_feature(env, ARM_FEATURE_LPAE)) { 3352 raw_write(env, ri, value); 3353 } else if (arm_feature(env, ARM_FEATURE_V7)) { 3354 raw_write(env, ri, value & 0xfffff6ff); 3355 } else { 3356 raw_write(env, ri, value & 0xfffff1ff); 3357 } 3358 } 3359 3360 #ifndef CONFIG_USER_ONLY 3361 /* get_phys_addr() isn't present for user-mode-only targets */ 3362 3363 static CPAccessResult ats_access(CPUARMState *env, const ARMCPRegInfo *ri, 3364 bool isread) 3365 { 3366 if (ri->opc2 & 4) { 3367 /* 3368 * The ATS12NSO* operations must trap to EL3 or EL2 if executed in 3369 * Secure EL1 (which can only happen if EL3 is AArch64). 3370 * They are simply UNDEF if executed from NS EL1. 3371 * They function normally from EL2 or EL3. 3372 */ 3373 if (arm_current_el(env) == 1) { 3374 if (arm_is_secure_below_el3(env)) { 3375 if (env->cp15.scr_el3 & SCR_EEL2) { 3376 return CP_ACCESS_TRAP_EL2; 3377 } 3378 return CP_ACCESS_TRAP_EL3; 3379 } 3380 return CP_ACCESS_TRAP_UNCATEGORIZED; 3381 } 3382 } 3383 return CP_ACCESS_OK; 3384 } 3385 3386 #ifdef CONFIG_TCG 3387 static int par_el1_shareability(GetPhysAddrResult *res) 3388 { 3389 /* 3390 * The PAR_EL1.SH field must be 0b10 for Device or Normal-NC 3391 * memory -- see pseudocode PAREncodeShareability(). 3392 */ 3393 if (((res->cacheattrs.attrs & 0xf0) == 0) || 3394 res->cacheattrs.attrs == 0x44 || res->cacheattrs.attrs == 0x40) { 3395 return 2; 3396 } 3397 return res->cacheattrs.shareability; 3398 } 3399 3400 static uint64_t do_ats_write(CPUARMState *env, uint64_t value, 3401 MMUAccessType access_type, ARMMMUIdx mmu_idx, 3402 ARMSecuritySpace ss) 3403 { 3404 bool ret; 3405 uint64_t par64; 3406 bool format64 = false; 3407 ARMMMUFaultInfo fi = {}; 3408 GetPhysAddrResult res = {}; 3409 3410 /* 3411 * I_MXTJT: Granule protection checks are not performed on the final address 3412 * of a successful translation. 3413 */ 3414 ret = get_phys_addr_with_space_nogpc(env, value, access_type, mmu_idx, ss, 3415 &res, &fi); 3416 3417 /* 3418 * ATS operations only do S1 or S1+S2 translations, so we never 3419 * have to deal with the ARMCacheAttrs format for S2 only. 3420 */ 3421 assert(!res.cacheattrs.is_s2_format); 3422 3423 if (ret) { 3424 /* 3425 * Some kinds of translation fault must cause exceptions rather 3426 * than being reported in the PAR. 3427 */ 3428 int current_el = arm_current_el(env); 3429 int target_el; 3430 uint32_t syn, fsr, fsc; 3431 bool take_exc = false; 3432 3433 if (fi.s1ptw && current_el == 1 3434 && arm_mmu_idx_is_stage1_of_2(mmu_idx)) { 3435 /* 3436 * Synchronous stage 2 fault on an access made as part of the 3437 * translation table walk for AT S1E0* or AT S1E1* insn 3438 * executed from NS EL1. If this is a synchronous external abort 3439 * and SCR_EL3.EA == 1, then we take a synchronous external abort 3440 * to EL3. Otherwise the fault is taken as an exception to EL2, 3441 * and HPFAR_EL2 holds the faulting IPA. 3442 */ 3443 if (fi.type == ARMFault_SyncExternalOnWalk && 3444 (env->cp15.scr_el3 & SCR_EA)) { 3445 target_el = 3; 3446 } else { 3447 env->cp15.hpfar_el2 = extract64(fi.s2addr, 12, 47) << 4; 3448 if (arm_is_secure_below_el3(env) && fi.s1ns) { 3449 env->cp15.hpfar_el2 |= HPFAR_NS; 3450 } 3451 target_el = 2; 3452 } 3453 take_exc = true; 3454 } else if (fi.type == ARMFault_SyncExternalOnWalk) { 3455 /* 3456 * Synchronous external aborts during a translation table walk 3457 * are taken as Data Abort exceptions. 3458 */ 3459 if (fi.stage2) { 3460 if (current_el == 3) { 3461 target_el = 3; 3462 } else { 3463 target_el = 2; 3464 } 3465 } else { 3466 target_el = exception_target_el(env); 3467 } 3468 take_exc = true; 3469 } 3470 3471 if (take_exc) { 3472 /* Construct FSR and FSC using same logic as arm_deliver_fault() */ 3473 if (target_el == 2 || arm_el_is_aa64(env, target_el) || 3474 arm_s1_regime_using_lpae_format(env, mmu_idx)) { 3475 fsr = arm_fi_to_lfsc(&fi); 3476 fsc = extract32(fsr, 0, 6); 3477 } else { 3478 fsr = arm_fi_to_sfsc(&fi); 3479 fsc = 0x3f; 3480 } 3481 /* 3482 * Report exception with ESR indicating a fault due to a 3483 * translation table walk for a cache maintenance instruction. 3484 */ 3485 syn = syn_data_abort_no_iss(current_el == target_el, 0, 3486 fi.ea, 1, fi.s1ptw, 1, fsc); 3487 env->exception.vaddress = value; 3488 env->exception.fsr = fsr; 3489 raise_exception(env, EXCP_DATA_ABORT, syn, target_el); 3490 } 3491 } 3492 3493 if (is_a64(env)) { 3494 format64 = true; 3495 } else if (arm_feature(env, ARM_FEATURE_LPAE)) { 3496 /* 3497 * ATS1Cxx: 3498 * * TTBCR.EAE determines whether the result is returned using the 3499 * 32-bit or the 64-bit PAR format 3500 * * Instructions executed in Hyp mode always use the 64bit format 3501 * 3502 * ATS1S2NSOxx uses the 64bit format if any of the following is true: 3503 * * The Non-secure TTBCR.EAE bit is set to 1 3504 * * The implementation includes EL2, and the value of HCR.VM is 1 3505 * 3506 * (Note that HCR.DC makes HCR.VM behave as if it is 1.) 3507 * 3508 * ATS1Hx always uses the 64bit format. 3509 */ 3510 format64 = arm_s1_regime_using_lpae_format(env, mmu_idx); 3511 3512 if (arm_feature(env, ARM_FEATURE_EL2)) { 3513 if (mmu_idx == ARMMMUIdx_E10_0 || 3514 mmu_idx == ARMMMUIdx_E10_1 || 3515 mmu_idx == ARMMMUIdx_E10_1_PAN) { 3516 format64 |= env->cp15.hcr_el2 & (HCR_VM | HCR_DC); 3517 } else { 3518 format64 |= arm_current_el(env) == 2; 3519 } 3520 } 3521 } 3522 3523 if (format64) { 3524 /* Create a 64-bit PAR */ 3525 par64 = (1 << 11); /* LPAE bit always set */ 3526 if (!ret) { 3527 par64 |= res.f.phys_addr & ~0xfffULL; 3528 if (!res.f.attrs.secure) { 3529 par64 |= (1 << 9); /* NS */ 3530 } 3531 par64 |= (uint64_t)res.cacheattrs.attrs << 56; /* ATTR */ 3532 par64 |= par_el1_shareability(&res) << 7; /* SH */ 3533 } else { 3534 uint32_t fsr = arm_fi_to_lfsc(&fi); 3535 3536 par64 |= 1; /* F */ 3537 par64 |= (fsr & 0x3f) << 1; /* FS */ 3538 if (fi.stage2) { 3539 par64 |= (1 << 9); /* S */ 3540 } 3541 if (fi.s1ptw) { 3542 par64 |= (1 << 8); /* PTW */ 3543 } 3544 } 3545 } else { 3546 /* 3547 * fsr is a DFSR/IFSR value for the short descriptor 3548 * translation table format (with WnR always clear). 3549 * Convert it to a 32-bit PAR. 3550 */ 3551 if (!ret) { 3552 /* We do not set any attribute bits in the PAR */ 3553 if (res.f.lg_page_size == 24 3554 && arm_feature(env, ARM_FEATURE_V7)) { 3555 par64 = (res.f.phys_addr & 0xff000000) | (1 << 1); 3556 } else { 3557 par64 = res.f.phys_addr & 0xfffff000; 3558 } 3559 if (!res.f.attrs.secure) { 3560 par64 |= (1 << 9); /* NS */ 3561 } 3562 } else { 3563 uint32_t fsr = arm_fi_to_sfsc(&fi); 3564 3565 par64 = ((fsr & (1 << 10)) >> 5) | ((fsr & (1 << 12)) >> 6) | 3566 ((fsr & 0xf) << 1) | 1; 3567 } 3568 } 3569 return par64; 3570 } 3571 #endif /* CONFIG_TCG */ 3572 3573 static void ats_write(CPUARMState *env, const ARMCPRegInfo *ri, uint64_t value) 3574 { 3575 #ifdef CONFIG_TCG 3576 MMUAccessType access_type = ri->opc2 & 1 ? MMU_DATA_STORE : MMU_DATA_LOAD; 3577 uint64_t par64; 3578 ARMMMUIdx mmu_idx; 3579 int el = arm_current_el(env); 3580 ARMSecuritySpace ss = arm_security_space(env); 3581 3582 switch (ri->opc2 & 6) { 3583 case 0: 3584 /* stage 1 current state PL1: ATS1CPR, ATS1CPW, ATS1CPRP, ATS1CPWP */ 3585 switch (el) { 3586 case 3: 3587 mmu_idx = ARMMMUIdx_E3; 3588 break; 3589 case 2: 3590 g_assert(ss != ARMSS_Secure); /* ARMv8.4-SecEL2 is 64-bit only */ 3591 /* fall through */ 3592 case 1: 3593 if (ri->crm == 9 && (env->uncached_cpsr & CPSR_PAN)) { 3594 mmu_idx = ARMMMUIdx_Stage1_E1_PAN; 3595 } else { 3596 mmu_idx = ARMMMUIdx_Stage1_E1; 3597 } 3598 break; 3599 default: 3600 g_assert_not_reached(); 3601 } 3602 break; 3603 case 2: 3604 /* stage 1 current state PL0: ATS1CUR, ATS1CUW */ 3605 switch (el) { 3606 case 3: 3607 mmu_idx = ARMMMUIdx_E10_0; 3608 break; 3609 case 2: 3610 g_assert(ss != ARMSS_Secure); /* ARMv8.4-SecEL2 is 64-bit only */ 3611 mmu_idx = ARMMMUIdx_Stage1_E0; 3612 break; 3613 case 1: 3614 mmu_idx = ARMMMUIdx_Stage1_E0; 3615 break; 3616 default: 3617 g_assert_not_reached(); 3618 } 3619 break; 3620 case 4: 3621 /* stage 1+2 NonSecure PL1: ATS12NSOPR, ATS12NSOPW */ 3622 mmu_idx = ARMMMUIdx_E10_1; 3623 ss = ARMSS_NonSecure; 3624 break; 3625 case 6: 3626 /* stage 1+2 NonSecure PL0: ATS12NSOUR, ATS12NSOUW */ 3627 mmu_idx = ARMMMUIdx_E10_0; 3628 ss = ARMSS_NonSecure; 3629 break; 3630 default: 3631 g_assert_not_reached(); 3632 } 3633 3634 par64 = do_ats_write(env, value, access_type, mmu_idx, ss); 3635 3636 A32_BANKED_CURRENT_REG_SET(env, par, par64); 3637 #else 3638 /* Handled by hardware accelerator. */ 3639 g_assert_not_reached(); 3640 #endif /* CONFIG_TCG */ 3641 } 3642 3643 static void ats1h_write(CPUARMState *env, const ARMCPRegInfo *ri, 3644 uint64_t value) 3645 { 3646 #ifdef CONFIG_TCG 3647 MMUAccessType access_type = ri->opc2 & 1 ? MMU_DATA_STORE : MMU_DATA_LOAD; 3648 uint64_t par64; 3649 3650 /* There is no SecureEL2 for AArch32. */ 3651 par64 = do_ats_write(env, value, access_type, ARMMMUIdx_E2, 3652 ARMSS_NonSecure); 3653 3654 A32_BANKED_CURRENT_REG_SET(env, par, par64); 3655 #else 3656 /* Handled by hardware accelerator. */ 3657 g_assert_not_reached(); 3658 #endif /* CONFIG_TCG */ 3659 } 3660 3661 static CPAccessResult at_e012_access(CPUARMState *env, const ARMCPRegInfo *ri, 3662 bool isread) 3663 { 3664 /* 3665 * R_NYXTL: instruction is UNDEFINED if it applies to an Exception level 3666 * lower than EL3 and the combination SCR_EL3.{NSE,NS} is reserved. This can 3667 * only happen when executing at EL3 because that combination also causes an 3668 * illegal exception return. We don't need to check FEAT_RME either, because 3669 * scr_write() ensures that the NSE bit is not set otherwise. 3670 */ 3671 if ((env->cp15.scr_el3 & (SCR_NSE | SCR_NS)) == SCR_NSE) { 3672 return CP_ACCESS_TRAP; 3673 } 3674 return CP_ACCESS_OK; 3675 } 3676 3677 static CPAccessResult at_s1e2_access(CPUARMState *env, const ARMCPRegInfo *ri, 3678 bool isread) 3679 { 3680 if (arm_current_el(env) == 3 && 3681 !(env->cp15.scr_el3 & (SCR_NS | SCR_EEL2))) { 3682 return CP_ACCESS_TRAP; 3683 } 3684 return at_e012_access(env, ri, isread); 3685 } 3686 3687 static void ats_write64(CPUARMState *env, const ARMCPRegInfo *ri, 3688 uint64_t value) 3689 { 3690 #ifdef CONFIG_TCG 3691 MMUAccessType access_type = ri->opc2 & 1 ? MMU_DATA_STORE : MMU_DATA_LOAD; 3692 ARMMMUIdx mmu_idx; 3693 uint64_t hcr_el2 = arm_hcr_el2_eff(env); 3694 bool regime_e20 = (hcr_el2 & (HCR_E2H | HCR_TGE)) == (HCR_E2H | HCR_TGE); 3695 3696 switch (ri->opc2 & 6) { 3697 case 0: 3698 switch (ri->opc1) { 3699 case 0: /* AT S1E1R, AT S1E1W, AT S1E1RP, AT S1E1WP */ 3700 if (ri->crm == 9 && (env->pstate & PSTATE_PAN)) { 3701 mmu_idx = regime_e20 ? 3702 ARMMMUIdx_E20_2_PAN : ARMMMUIdx_Stage1_E1_PAN; 3703 } else { 3704 mmu_idx = regime_e20 ? ARMMMUIdx_E20_2 : ARMMMUIdx_Stage1_E1; 3705 } 3706 break; 3707 case 4: /* AT S1E2R, AT S1E2W */ 3708 mmu_idx = hcr_el2 & HCR_E2H ? ARMMMUIdx_E20_2 : ARMMMUIdx_E2; 3709 break; 3710 case 6: /* AT S1E3R, AT S1E3W */ 3711 mmu_idx = ARMMMUIdx_E3; 3712 break; 3713 default: 3714 g_assert_not_reached(); 3715 } 3716 break; 3717 case 2: /* AT S1E0R, AT S1E0W */ 3718 mmu_idx = regime_e20 ? ARMMMUIdx_E20_0 : ARMMMUIdx_Stage1_E0; 3719 break; 3720 case 4: /* AT S12E1R, AT S12E1W */ 3721 mmu_idx = regime_e20 ? ARMMMUIdx_E20_2 : ARMMMUIdx_E10_1; 3722 break; 3723 case 6: /* AT S12E0R, AT S12E0W */ 3724 mmu_idx = regime_e20 ? ARMMMUIdx_E20_0 : ARMMMUIdx_E10_0; 3725 break; 3726 default: 3727 g_assert_not_reached(); 3728 } 3729 3730 env->cp15.par_el[1] = do_ats_write(env, value, access_type, 3731 mmu_idx, arm_security_space(env)); 3732 #else 3733 /* Handled by hardware accelerator. */ 3734 g_assert_not_reached(); 3735 #endif /* CONFIG_TCG */ 3736 } 3737 #endif 3738 3739 static const ARMCPRegInfo vapa_cp_reginfo[] = { 3740 { .name = "PAR", .cp = 15, .crn = 7, .crm = 4, .opc1 = 0, .opc2 = 0, 3741 .access = PL1_RW, .resetvalue = 0, 3742 .bank_fieldoffsets = { offsetoflow32(CPUARMState, cp15.par_s), 3743 offsetoflow32(CPUARMState, cp15.par_ns) }, 3744 .writefn = par_write }, 3745 #ifndef CONFIG_USER_ONLY 3746 /* This underdecoding is safe because the reginfo is NO_RAW. */ 3747 { .name = "ATS", .cp = 15, .crn = 7, .crm = 8, .opc1 = 0, .opc2 = CP_ANY, 3748 .access = PL1_W, .accessfn = ats_access, 3749 .writefn = ats_write, .type = ARM_CP_NO_RAW | ARM_CP_RAISES_EXC }, 3750 #endif 3751 }; 3752 3753 /* Return basic MPU access permission bits. */ 3754 static uint32_t simple_mpu_ap_bits(uint32_t val) 3755 { 3756 uint32_t ret; 3757 uint32_t mask; 3758 int i; 3759 ret = 0; 3760 mask = 3; 3761 for (i = 0; i < 16; i += 2) { 3762 ret |= (val >> i) & mask; 3763 mask <<= 2; 3764 } 3765 return ret; 3766 } 3767 3768 /* Pad basic MPU access permission bits to extended format. */ 3769 static uint32_t extended_mpu_ap_bits(uint32_t val) 3770 { 3771 uint32_t ret; 3772 uint32_t mask; 3773 int i; 3774 ret = 0; 3775 mask = 3; 3776 for (i = 0; i < 16; i += 2) { 3777 ret |= (val & mask) << i; 3778 mask <<= 2; 3779 } 3780 return ret; 3781 } 3782 3783 static void pmsav5_data_ap_write(CPUARMState *env, const ARMCPRegInfo *ri, 3784 uint64_t value) 3785 { 3786 env->cp15.pmsav5_data_ap = extended_mpu_ap_bits(value); 3787 } 3788 3789 static uint64_t pmsav5_data_ap_read(CPUARMState *env, const ARMCPRegInfo *ri) 3790 { 3791 return simple_mpu_ap_bits(env->cp15.pmsav5_data_ap); 3792 } 3793 3794 static void pmsav5_insn_ap_write(CPUARMState *env, const ARMCPRegInfo *ri, 3795 uint64_t value) 3796 { 3797 env->cp15.pmsav5_insn_ap = extended_mpu_ap_bits(value); 3798 } 3799 3800 static uint64_t pmsav5_insn_ap_read(CPUARMState *env, const ARMCPRegInfo *ri) 3801 { 3802 return simple_mpu_ap_bits(env->cp15.pmsav5_insn_ap); 3803 } 3804 3805 static uint64_t pmsav7_read(CPUARMState *env, const ARMCPRegInfo *ri) 3806 { 3807 uint32_t *u32p = *(uint32_t **)raw_ptr(env, ri); 3808 3809 if (!u32p) { 3810 return 0; 3811 } 3812 3813 u32p += env->pmsav7.rnr[M_REG_NS]; 3814 return *u32p; 3815 } 3816 3817 static void pmsav7_write(CPUARMState *env, const ARMCPRegInfo *ri, 3818 uint64_t value) 3819 { 3820 ARMCPU *cpu = env_archcpu(env); 3821 uint32_t *u32p = *(uint32_t **)raw_ptr(env, ri); 3822 3823 if (!u32p) { 3824 return; 3825 } 3826 3827 u32p += env->pmsav7.rnr[M_REG_NS]; 3828 tlb_flush(CPU(cpu)); /* Mappings may have changed - purge! */ 3829 *u32p = value; 3830 } 3831 3832 static void pmsav7_rgnr_write(CPUARMState *env, const ARMCPRegInfo *ri, 3833 uint64_t value) 3834 { 3835 ARMCPU *cpu = env_archcpu(env); 3836 uint32_t nrgs = cpu->pmsav7_dregion; 3837 3838 if (value >= nrgs) { 3839 qemu_log_mask(LOG_GUEST_ERROR, 3840 "PMSAv7 RGNR write >= # supported regions, %" PRIu32 3841 " > %" PRIu32 "\n", (uint32_t)value, nrgs); 3842 return; 3843 } 3844 3845 raw_write(env, ri, value); 3846 } 3847 3848 static void prbar_write(CPUARMState *env, const ARMCPRegInfo *ri, 3849 uint64_t value) 3850 { 3851 ARMCPU *cpu = env_archcpu(env); 3852 3853 tlb_flush(CPU(cpu)); /* Mappings may have changed - purge! */ 3854 env->pmsav8.rbar[M_REG_NS][env->pmsav7.rnr[M_REG_NS]] = value; 3855 } 3856 3857 static uint64_t prbar_read(CPUARMState *env, const ARMCPRegInfo *ri) 3858 { 3859 return env->pmsav8.rbar[M_REG_NS][env->pmsav7.rnr[M_REG_NS]]; 3860 } 3861 3862 static void prlar_write(CPUARMState *env, const ARMCPRegInfo *ri, 3863 uint64_t value) 3864 { 3865 ARMCPU *cpu = env_archcpu(env); 3866 3867 tlb_flush(CPU(cpu)); /* Mappings may have changed - purge! */ 3868 env->pmsav8.rlar[M_REG_NS][env->pmsav7.rnr[M_REG_NS]] = value; 3869 } 3870 3871 static uint64_t prlar_read(CPUARMState *env, const ARMCPRegInfo *ri) 3872 { 3873 return env->pmsav8.rlar[M_REG_NS][env->pmsav7.rnr[M_REG_NS]]; 3874 } 3875 3876 static void prselr_write(CPUARMState *env, const ARMCPRegInfo *ri, 3877 uint64_t value) 3878 { 3879 ARMCPU *cpu = env_archcpu(env); 3880 3881 /* 3882 * Ignore writes that would select not implemented region. 3883 * This is architecturally UNPREDICTABLE. 3884 */ 3885 if (value >= cpu->pmsav7_dregion) { 3886 return; 3887 } 3888 3889 env->pmsav7.rnr[M_REG_NS] = value; 3890 } 3891 3892 static void hprbar_write(CPUARMState *env, const ARMCPRegInfo *ri, 3893 uint64_t value) 3894 { 3895 ARMCPU *cpu = env_archcpu(env); 3896 3897 tlb_flush(CPU(cpu)); /* Mappings may have changed - purge! */ 3898 env->pmsav8.hprbar[env->pmsav8.hprselr] = value; 3899 } 3900 3901 static uint64_t hprbar_read(CPUARMState *env, const ARMCPRegInfo *ri) 3902 { 3903 return env->pmsav8.hprbar[env->pmsav8.hprselr]; 3904 } 3905 3906 static void hprlar_write(CPUARMState *env, const ARMCPRegInfo *ri, 3907 uint64_t value) 3908 { 3909 ARMCPU *cpu = env_archcpu(env); 3910 3911 tlb_flush(CPU(cpu)); /* Mappings may have changed - purge! */ 3912 env->pmsav8.hprlar[env->pmsav8.hprselr] = value; 3913 } 3914 3915 static uint64_t hprlar_read(CPUARMState *env, const ARMCPRegInfo *ri) 3916 { 3917 return env->pmsav8.hprlar[env->pmsav8.hprselr]; 3918 } 3919 3920 static void hprenr_write(CPUARMState *env, const ARMCPRegInfo *ri, 3921 uint64_t value) 3922 { 3923 uint32_t n; 3924 uint32_t bit; 3925 ARMCPU *cpu = env_archcpu(env); 3926 3927 /* Ignore writes to unimplemented regions */ 3928 int rmax = MIN(cpu->pmsav8r_hdregion, 32); 3929 value &= MAKE_64BIT_MASK(0, rmax); 3930 3931 tlb_flush(CPU(cpu)); /* Mappings may have changed - purge! */ 3932 3933 /* Register alias is only valid for first 32 indexes */ 3934 for (n = 0; n < rmax; ++n) { 3935 bit = extract32(value, n, 1); 3936 env->pmsav8.hprlar[n] = deposit32( 3937 env->pmsav8.hprlar[n], 0, 1, bit); 3938 } 3939 } 3940 3941 static uint64_t hprenr_read(CPUARMState *env, const ARMCPRegInfo *ri) 3942 { 3943 uint32_t n; 3944 uint32_t result = 0x0; 3945 ARMCPU *cpu = env_archcpu(env); 3946 3947 /* Register alias is only valid for first 32 indexes */ 3948 for (n = 0; n < MIN(cpu->pmsav8r_hdregion, 32); ++n) { 3949 if (env->pmsav8.hprlar[n] & 0x1) { 3950 result |= (0x1 << n); 3951 } 3952 } 3953 return result; 3954 } 3955 3956 static void hprselr_write(CPUARMState *env, const ARMCPRegInfo *ri, 3957 uint64_t value) 3958 { 3959 ARMCPU *cpu = env_archcpu(env); 3960 3961 /* 3962 * Ignore writes that would select not implemented region. 3963 * This is architecturally UNPREDICTABLE. 3964 */ 3965 if (value >= cpu->pmsav8r_hdregion) { 3966 return; 3967 } 3968 3969 env->pmsav8.hprselr = value; 3970 } 3971 3972 static void pmsav8r_regn_write(CPUARMState *env, const ARMCPRegInfo *ri, 3973 uint64_t value) 3974 { 3975 ARMCPU *cpu = env_archcpu(env); 3976 uint8_t index = (extract32(ri->opc0, 0, 1) << 4) | 3977 (extract32(ri->crm, 0, 3) << 1) | extract32(ri->opc2, 2, 1); 3978 3979 tlb_flush(CPU(cpu)); /* Mappings may have changed - purge! */ 3980 3981 if (ri->opc1 & 4) { 3982 if (index >= cpu->pmsav8r_hdregion) { 3983 return; 3984 } 3985 if (ri->opc2 & 0x1) { 3986 env->pmsav8.hprlar[index] = value; 3987 } else { 3988 env->pmsav8.hprbar[index] = value; 3989 } 3990 } else { 3991 if (index >= cpu->pmsav7_dregion) { 3992 return; 3993 } 3994 if (ri->opc2 & 0x1) { 3995 env->pmsav8.rlar[M_REG_NS][index] = value; 3996 } else { 3997 env->pmsav8.rbar[M_REG_NS][index] = value; 3998 } 3999 } 4000 } 4001 4002 static uint64_t pmsav8r_regn_read(CPUARMState *env, const ARMCPRegInfo *ri) 4003 { 4004 ARMCPU *cpu = env_archcpu(env); 4005 uint8_t index = (extract32(ri->opc0, 0, 1) << 4) | 4006 (extract32(ri->crm, 0, 3) << 1) | extract32(ri->opc2, 2, 1); 4007 4008 if (ri->opc1 & 4) { 4009 if (index >= cpu->pmsav8r_hdregion) { 4010 return 0x0; 4011 } 4012 if (ri->opc2 & 0x1) { 4013 return env->pmsav8.hprlar[index]; 4014 } else { 4015 return env->pmsav8.hprbar[index]; 4016 } 4017 } else { 4018 if (index >= cpu->pmsav7_dregion) { 4019 return 0x0; 4020 } 4021 if (ri->opc2 & 0x1) { 4022 return env->pmsav8.rlar[M_REG_NS][index]; 4023 } else { 4024 return env->pmsav8.rbar[M_REG_NS][index]; 4025 } 4026 } 4027 } 4028 4029 static const ARMCPRegInfo pmsav8r_cp_reginfo[] = { 4030 { .name = "PRBAR", 4031 .cp = 15, .opc1 = 0, .crn = 6, .crm = 3, .opc2 = 0, 4032 .access = PL1_RW, .type = ARM_CP_NO_RAW, 4033 .accessfn = access_tvm_trvm, 4034 .readfn = prbar_read, .writefn = prbar_write }, 4035 { .name = "PRLAR", 4036 .cp = 15, .opc1 = 0, .crn = 6, .crm = 3, .opc2 = 1, 4037 .access = PL1_RW, .type = ARM_CP_NO_RAW, 4038 .accessfn = access_tvm_trvm, 4039 .readfn = prlar_read, .writefn = prlar_write }, 4040 { .name = "PRSELR", .resetvalue = 0, 4041 .cp = 15, .opc1 = 0, .crn = 6, .crm = 2, .opc2 = 1, 4042 .access = PL1_RW, .accessfn = access_tvm_trvm, 4043 .writefn = prselr_write, 4044 .fieldoffset = offsetof(CPUARMState, pmsav7.rnr[M_REG_NS]) }, 4045 { .name = "HPRBAR", .resetvalue = 0, 4046 .cp = 15, .opc1 = 4, .crn = 6, .crm = 3, .opc2 = 0, 4047 .access = PL2_RW, .type = ARM_CP_NO_RAW, 4048 .readfn = hprbar_read, .writefn = hprbar_write }, 4049 { .name = "HPRLAR", 4050 .cp = 15, .opc1 = 4, .crn = 6, .crm = 3, .opc2 = 1, 4051 .access = PL2_RW, .type = ARM_CP_NO_RAW, 4052 .readfn = hprlar_read, .writefn = hprlar_write }, 4053 { .name = "HPRSELR", .resetvalue = 0, 4054 .cp = 15, .opc1 = 4, .crn = 6, .crm = 2, .opc2 = 1, 4055 .access = PL2_RW, 4056 .writefn = hprselr_write, 4057 .fieldoffset = offsetof(CPUARMState, pmsav8.hprselr) }, 4058 { .name = "HPRENR", 4059 .cp = 15, .opc1 = 4, .crn = 6, .crm = 1, .opc2 = 1, 4060 .access = PL2_RW, .type = ARM_CP_NO_RAW, 4061 .readfn = hprenr_read, .writefn = hprenr_write }, 4062 }; 4063 4064 static const ARMCPRegInfo pmsav7_cp_reginfo[] = { 4065 /* 4066 * Reset for all these registers is handled in arm_cpu_reset(), 4067 * because the PMSAv7 is also used by M-profile CPUs, which do 4068 * not register cpregs but still need the state to be reset. 4069 */ 4070 { .name = "DRBAR", .cp = 15, .crn = 6, .opc1 = 0, .crm = 1, .opc2 = 0, 4071 .access = PL1_RW, .type = ARM_CP_NO_RAW, 4072 .fieldoffset = offsetof(CPUARMState, pmsav7.drbar), 4073 .readfn = pmsav7_read, .writefn = pmsav7_write, 4074 .resetfn = arm_cp_reset_ignore }, 4075 { .name = "DRSR", .cp = 15, .crn = 6, .opc1 = 0, .crm = 1, .opc2 = 2, 4076 .access = PL1_RW, .type = ARM_CP_NO_RAW, 4077 .fieldoffset = offsetof(CPUARMState, pmsav7.drsr), 4078 .readfn = pmsav7_read, .writefn = pmsav7_write, 4079 .resetfn = arm_cp_reset_ignore }, 4080 { .name = "DRACR", .cp = 15, .crn = 6, .opc1 = 0, .crm = 1, .opc2 = 4, 4081 .access = PL1_RW, .type = ARM_CP_NO_RAW, 4082 .fieldoffset = offsetof(CPUARMState, pmsav7.dracr), 4083 .readfn = pmsav7_read, .writefn = pmsav7_write, 4084 .resetfn = arm_cp_reset_ignore }, 4085 { .name = "RGNR", .cp = 15, .crn = 6, .opc1 = 0, .crm = 2, .opc2 = 0, 4086 .access = PL1_RW, 4087 .fieldoffset = offsetof(CPUARMState, pmsav7.rnr[M_REG_NS]), 4088 .writefn = pmsav7_rgnr_write, 4089 .resetfn = arm_cp_reset_ignore }, 4090 }; 4091 4092 static const ARMCPRegInfo pmsav5_cp_reginfo[] = { 4093 { .name = "DATA_AP", .cp = 15, .crn = 5, .crm = 0, .opc1 = 0, .opc2 = 0, 4094 .access = PL1_RW, .type = ARM_CP_ALIAS, 4095 .fieldoffset = offsetof(CPUARMState, cp15.pmsav5_data_ap), 4096 .readfn = pmsav5_data_ap_read, .writefn = pmsav5_data_ap_write, }, 4097 { .name = "INSN_AP", .cp = 15, .crn = 5, .crm = 0, .opc1 = 0, .opc2 = 1, 4098 .access = PL1_RW, .type = ARM_CP_ALIAS, 4099 .fieldoffset = offsetof(CPUARMState, cp15.pmsav5_insn_ap), 4100 .readfn = pmsav5_insn_ap_read, .writefn = pmsav5_insn_ap_write, }, 4101 { .name = "DATA_EXT_AP", .cp = 15, .crn = 5, .crm = 0, .opc1 = 0, .opc2 = 2, 4102 .access = PL1_RW, 4103 .fieldoffset = offsetof(CPUARMState, cp15.pmsav5_data_ap), 4104 .resetvalue = 0, }, 4105 { .name = "INSN_EXT_AP", .cp = 15, .crn = 5, .crm = 0, .opc1 = 0, .opc2 = 3, 4106 .access = PL1_RW, 4107 .fieldoffset = offsetof(CPUARMState, cp15.pmsav5_insn_ap), 4108 .resetvalue = 0, }, 4109 { .name = "DCACHE_CFG", .cp = 15, .crn = 2, .crm = 0, .opc1 = 0, .opc2 = 0, 4110 .access = PL1_RW, 4111 .fieldoffset = offsetof(CPUARMState, cp15.c2_data), .resetvalue = 0, }, 4112 { .name = "ICACHE_CFG", .cp = 15, .crn = 2, .crm = 0, .opc1 = 0, .opc2 = 1, 4113 .access = PL1_RW, 4114 .fieldoffset = offsetof(CPUARMState, cp15.c2_insn), .resetvalue = 0, }, 4115 /* Protection region base and size registers */ 4116 { .name = "946_PRBS0", .cp = 15, .crn = 6, .crm = 0, .opc1 = 0, 4117 .opc2 = CP_ANY, .access = PL1_RW, .resetvalue = 0, 4118 .fieldoffset = offsetof(CPUARMState, cp15.c6_region[0]) }, 4119 { .name = "946_PRBS1", .cp = 15, .crn = 6, .crm = 1, .opc1 = 0, 4120 .opc2 = CP_ANY, .access = PL1_RW, .resetvalue = 0, 4121 .fieldoffset = offsetof(CPUARMState, cp15.c6_region[1]) }, 4122 { .name = "946_PRBS2", .cp = 15, .crn = 6, .crm = 2, .opc1 = 0, 4123 .opc2 = CP_ANY, .access = PL1_RW, .resetvalue = 0, 4124 .fieldoffset = offsetof(CPUARMState, cp15.c6_region[2]) }, 4125 { .name = "946_PRBS3", .cp = 15, .crn = 6, .crm = 3, .opc1 = 0, 4126 .opc2 = CP_ANY, .access = PL1_RW, .resetvalue = 0, 4127 .fieldoffset = offsetof(CPUARMState, cp15.c6_region[3]) }, 4128 { .name = "946_PRBS4", .cp = 15, .crn = 6, .crm = 4, .opc1 = 0, 4129 .opc2 = CP_ANY, .access = PL1_RW, .resetvalue = 0, 4130 .fieldoffset = offsetof(CPUARMState, cp15.c6_region[4]) }, 4131 { .name = "946_PRBS5", .cp = 15, .crn = 6, .crm = 5, .opc1 = 0, 4132 .opc2 = CP_ANY, .access = PL1_RW, .resetvalue = 0, 4133 .fieldoffset = offsetof(CPUARMState, cp15.c6_region[5]) }, 4134 { .name = "946_PRBS6", .cp = 15, .crn = 6, .crm = 6, .opc1 = 0, 4135 .opc2 = CP_ANY, .access = PL1_RW, .resetvalue = 0, 4136 .fieldoffset = offsetof(CPUARMState, cp15.c6_region[6]) }, 4137 { .name = "946_PRBS7", .cp = 15, .crn = 6, .crm = 7, .opc1 = 0, 4138 .opc2 = CP_ANY, .access = PL1_RW, .resetvalue = 0, 4139 .fieldoffset = offsetof(CPUARMState, cp15.c6_region[7]) }, 4140 }; 4141 4142 static void vmsa_ttbcr_write(CPUARMState *env, const ARMCPRegInfo *ri, 4143 uint64_t value) 4144 { 4145 ARMCPU *cpu = env_archcpu(env); 4146 4147 if (!arm_feature(env, ARM_FEATURE_V8)) { 4148 if (arm_feature(env, ARM_FEATURE_LPAE) && (value & TTBCR_EAE)) { 4149 /* 4150 * Pre ARMv8 bits [21:19], [15:14] and [6:3] are UNK/SBZP when 4151 * using Long-descriptor translation table format 4152 */ 4153 value &= ~((7 << 19) | (3 << 14) | (0xf << 3)); 4154 } else if (arm_feature(env, ARM_FEATURE_EL3)) { 4155 /* 4156 * In an implementation that includes the Security Extensions 4157 * TTBCR has additional fields PD0 [4] and PD1 [5] for 4158 * Short-descriptor translation table format. 4159 */ 4160 value &= TTBCR_PD1 | TTBCR_PD0 | TTBCR_N; 4161 } else { 4162 value &= TTBCR_N; 4163 } 4164 } 4165 4166 if (arm_feature(env, ARM_FEATURE_LPAE)) { 4167 /* 4168 * With LPAE the TTBCR could result in a change of ASID 4169 * via the TTBCR.A1 bit, so do a TLB flush. 4170 */ 4171 tlb_flush(CPU(cpu)); 4172 } 4173 raw_write(env, ri, value); 4174 } 4175 4176 static void vmsa_tcr_el12_write(CPUARMState *env, const ARMCPRegInfo *ri, 4177 uint64_t value) 4178 { 4179 ARMCPU *cpu = env_archcpu(env); 4180 4181 /* For AArch64 the A1 bit could result in a change of ASID, so TLB flush. */ 4182 tlb_flush(CPU(cpu)); 4183 raw_write(env, ri, value); 4184 } 4185 4186 static void vmsa_ttbr_write(CPUARMState *env, const ARMCPRegInfo *ri, 4187 uint64_t value) 4188 { 4189 /* If the ASID changes (with a 64-bit write), we must flush the TLB. */ 4190 if (cpreg_field_is_64bit(ri) && 4191 extract64(raw_read(env, ri) ^ value, 48, 16) != 0) { 4192 ARMCPU *cpu = env_archcpu(env); 4193 tlb_flush(CPU(cpu)); 4194 } 4195 raw_write(env, ri, value); 4196 } 4197 4198 static void vmsa_tcr_ttbr_el2_write(CPUARMState *env, const ARMCPRegInfo *ri, 4199 uint64_t value) 4200 { 4201 /* 4202 * If we are running with E2&0 regime, then an ASID is active. 4203 * Flush if that might be changing. Note we're not checking 4204 * TCR_EL2.A1 to know if this is really the TTBRx_EL2 that 4205 * holds the active ASID, only checking the field that might. 4206 */ 4207 if (extract64(raw_read(env, ri) ^ value, 48, 16) && 4208 (arm_hcr_el2_eff(env) & HCR_E2H)) { 4209 uint16_t mask = ARMMMUIdxBit_E20_2 | 4210 ARMMMUIdxBit_E20_2_PAN | 4211 ARMMMUIdxBit_E20_0; 4212 tlb_flush_by_mmuidx(env_cpu(env), mask); 4213 } 4214 raw_write(env, ri, value); 4215 } 4216 4217 static void vttbr_write(CPUARMState *env, const ARMCPRegInfo *ri, 4218 uint64_t value) 4219 { 4220 ARMCPU *cpu = env_archcpu(env); 4221 CPUState *cs = CPU(cpu); 4222 4223 /* 4224 * A change in VMID to the stage2 page table (Stage2) invalidates 4225 * the stage2 and combined stage 1&2 tlbs (EL10_1 and EL10_0). 4226 */ 4227 if (extract64(raw_read(env, ri) ^ value, 48, 16) != 0) { 4228 tlb_flush_by_mmuidx(cs, alle1_tlbmask(env)); 4229 } 4230 raw_write(env, ri, value); 4231 } 4232 4233 static const ARMCPRegInfo vmsa_pmsa_cp_reginfo[] = { 4234 { .name = "DFSR", .cp = 15, .crn = 5, .crm = 0, .opc1 = 0, .opc2 = 0, 4235 .access = PL1_RW, .accessfn = access_tvm_trvm, .type = ARM_CP_ALIAS, 4236 .bank_fieldoffsets = { offsetoflow32(CPUARMState, cp15.dfsr_s), 4237 offsetoflow32(CPUARMState, cp15.dfsr_ns) }, }, 4238 { .name = "IFSR", .cp = 15, .crn = 5, .crm = 0, .opc1 = 0, .opc2 = 1, 4239 .access = PL1_RW, .accessfn = access_tvm_trvm, .resetvalue = 0, 4240 .bank_fieldoffsets = { offsetoflow32(CPUARMState, cp15.ifsr_s), 4241 offsetoflow32(CPUARMState, cp15.ifsr_ns) } }, 4242 { .name = "DFAR", .cp = 15, .opc1 = 0, .crn = 6, .crm = 0, .opc2 = 0, 4243 .access = PL1_RW, .accessfn = access_tvm_trvm, .resetvalue = 0, 4244 .bank_fieldoffsets = { offsetof(CPUARMState, cp15.dfar_s), 4245 offsetof(CPUARMState, cp15.dfar_ns) } }, 4246 { .name = "FAR_EL1", .state = ARM_CP_STATE_AA64, 4247 .opc0 = 3, .crn = 6, .crm = 0, .opc1 = 0, .opc2 = 0, 4248 .access = PL1_RW, .accessfn = access_tvm_trvm, 4249 .fgt = FGT_FAR_EL1, 4250 .fieldoffset = offsetof(CPUARMState, cp15.far_el[1]), 4251 .resetvalue = 0, }, 4252 }; 4253 4254 static const ARMCPRegInfo vmsa_cp_reginfo[] = { 4255 { .name = "ESR_EL1", .state = ARM_CP_STATE_AA64, 4256 .opc0 = 3, .crn = 5, .crm = 2, .opc1 = 0, .opc2 = 0, 4257 .access = PL1_RW, .accessfn = access_tvm_trvm, 4258 .fgt = FGT_ESR_EL1, 4259 .fieldoffset = offsetof(CPUARMState, cp15.esr_el[1]), .resetvalue = 0, }, 4260 { .name = "TTBR0_EL1", .state = ARM_CP_STATE_BOTH, 4261 .opc0 = 3, .opc1 = 0, .crn = 2, .crm = 0, .opc2 = 0, 4262 .access = PL1_RW, .accessfn = access_tvm_trvm, 4263 .fgt = FGT_TTBR0_EL1, 4264 .writefn = vmsa_ttbr_write, .resetvalue = 0, .raw_writefn = raw_write, 4265 .bank_fieldoffsets = { offsetof(CPUARMState, cp15.ttbr0_s), 4266 offsetof(CPUARMState, cp15.ttbr0_ns) } }, 4267 { .name = "TTBR1_EL1", .state = ARM_CP_STATE_BOTH, 4268 .opc0 = 3, .opc1 = 0, .crn = 2, .crm = 0, .opc2 = 1, 4269 .access = PL1_RW, .accessfn = access_tvm_trvm, 4270 .fgt = FGT_TTBR1_EL1, 4271 .writefn = vmsa_ttbr_write, .resetvalue = 0, .raw_writefn = raw_write, 4272 .bank_fieldoffsets = { offsetof(CPUARMState, cp15.ttbr1_s), 4273 offsetof(CPUARMState, cp15.ttbr1_ns) } }, 4274 { .name = "TCR_EL1", .state = ARM_CP_STATE_AA64, 4275 .opc0 = 3, .crn = 2, .crm = 0, .opc1 = 0, .opc2 = 2, 4276 .access = PL1_RW, .accessfn = access_tvm_trvm, 4277 .fgt = FGT_TCR_EL1, 4278 .writefn = vmsa_tcr_el12_write, 4279 .raw_writefn = raw_write, 4280 .resetvalue = 0, 4281 .fieldoffset = offsetof(CPUARMState, cp15.tcr_el[1]) }, 4282 { .name = "TTBCR", .cp = 15, .crn = 2, .crm = 0, .opc1 = 0, .opc2 = 2, 4283 .access = PL1_RW, .accessfn = access_tvm_trvm, 4284 .type = ARM_CP_ALIAS, .writefn = vmsa_ttbcr_write, 4285 .raw_writefn = raw_write, 4286 .bank_fieldoffsets = { offsetoflow32(CPUARMState, cp15.tcr_el[3]), 4287 offsetoflow32(CPUARMState, cp15.tcr_el[1])} }, 4288 }; 4289 4290 /* 4291 * Note that unlike TTBCR, writing to TTBCR2 does not require flushing 4292 * qemu tlbs nor adjusting cached masks. 4293 */ 4294 static const ARMCPRegInfo ttbcr2_reginfo = { 4295 .name = "TTBCR2", .cp = 15, .opc1 = 0, .crn = 2, .crm = 0, .opc2 = 3, 4296 .access = PL1_RW, .accessfn = access_tvm_trvm, 4297 .type = ARM_CP_ALIAS, 4298 .bank_fieldoffsets = { 4299 offsetofhigh32(CPUARMState, cp15.tcr_el[3]), 4300 offsetofhigh32(CPUARMState, cp15.tcr_el[1]), 4301 }, 4302 }; 4303 4304 static void omap_ticonfig_write(CPUARMState *env, const ARMCPRegInfo *ri, 4305 uint64_t value) 4306 { 4307 env->cp15.c15_ticonfig = value & 0xe7; 4308 /* The OS_TYPE bit in this register changes the reported CPUID! */ 4309 env->cp15.c0_cpuid = (value & (1 << 5)) ? 4310 ARM_CPUID_TI915T : ARM_CPUID_TI925T; 4311 } 4312 4313 static void omap_threadid_write(CPUARMState *env, const ARMCPRegInfo *ri, 4314 uint64_t value) 4315 { 4316 env->cp15.c15_threadid = value & 0xffff; 4317 } 4318 4319 static void omap_wfi_write(CPUARMState *env, const ARMCPRegInfo *ri, 4320 uint64_t value) 4321 { 4322 /* Wait-for-interrupt (deprecated) */ 4323 cpu_interrupt(env_cpu(env), CPU_INTERRUPT_HALT); 4324 } 4325 4326 static void omap_cachemaint_write(CPUARMState *env, const ARMCPRegInfo *ri, 4327 uint64_t value) 4328 { 4329 /* 4330 * On OMAP there are registers indicating the max/min index of dcache lines 4331 * containing a dirty line; cache flush operations have to reset these. 4332 */ 4333 env->cp15.c15_i_max = 0x000; 4334 env->cp15.c15_i_min = 0xff0; 4335 } 4336 4337 static const ARMCPRegInfo omap_cp_reginfo[] = { 4338 { .name = "DFSR", .cp = 15, .crn = 5, .crm = CP_ANY, 4339 .opc1 = CP_ANY, .opc2 = CP_ANY, .access = PL1_RW, .type = ARM_CP_OVERRIDE, 4340 .fieldoffset = offsetoflow32(CPUARMState, cp15.esr_el[1]), 4341 .resetvalue = 0, }, 4342 { .name = "", .cp = 15, .crn = 15, .crm = 0, .opc1 = 0, .opc2 = 0, 4343 .access = PL1_RW, .type = ARM_CP_NOP }, 4344 { .name = "TICONFIG", .cp = 15, .crn = 15, .crm = 1, .opc1 = 0, .opc2 = 0, 4345 .access = PL1_RW, 4346 .fieldoffset = offsetof(CPUARMState, cp15.c15_ticonfig), .resetvalue = 0, 4347 .writefn = omap_ticonfig_write }, 4348 { .name = "IMAX", .cp = 15, .crn = 15, .crm = 2, .opc1 = 0, .opc2 = 0, 4349 .access = PL1_RW, 4350 .fieldoffset = offsetof(CPUARMState, cp15.c15_i_max), .resetvalue = 0, }, 4351 { .name = "IMIN", .cp = 15, .crn = 15, .crm = 3, .opc1 = 0, .opc2 = 0, 4352 .access = PL1_RW, .resetvalue = 0xff0, 4353 .fieldoffset = offsetof(CPUARMState, cp15.c15_i_min) }, 4354 { .name = "THREADID", .cp = 15, .crn = 15, .crm = 4, .opc1 = 0, .opc2 = 0, 4355 .access = PL1_RW, 4356 .fieldoffset = offsetof(CPUARMState, cp15.c15_threadid), .resetvalue = 0, 4357 .writefn = omap_threadid_write }, 4358 { .name = "TI925T_STATUS", .cp = 15, .crn = 15, 4359 .crm = 8, .opc1 = 0, .opc2 = 0, .access = PL1_RW, 4360 .type = ARM_CP_NO_RAW, 4361 .readfn = arm_cp_read_zero, .writefn = omap_wfi_write, }, 4362 /* 4363 * TODO: Peripheral port remap register: 4364 * On OMAP2 mcr p15, 0, rn, c15, c2, 4 sets up the interrupt controller 4365 * base address at $rn & ~0xfff and map size of 0x200 << ($rn & 0xfff), 4366 * when MMU is off. 4367 */ 4368 { .name = "OMAP_CACHEMAINT", .cp = 15, .crn = 7, .crm = CP_ANY, 4369 .opc1 = 0, .opc2 = CP_ANY, .access = PL1_W, 4370 .type = ARM_CP_OVERRIDE | ARM_CP_NO_RAW, 4371 .writefn = omap_cachemaint_write }, 4372 { .name = "C9", .cp = 15, .crn = 9, 4373 .crm = CP_ANY, .opc1 = CP_ANY, .opc2 = CP_ANY, .access = PL1_RW, 4374 .type = ARM_CP_CONST | ARM_CP_OVERRIDE, .resetvalue = 0 }, 4375 }; 4376 4377 static void xscale_cpar_write(CPUARMState *env, const ARMCPRegInfo *ri, 4378 uint64_t value) 4379 { 4380 env->cp15.c15_cpar = value & 0x3fff; 4381 } 4382 4383 static const ARMCPRegInfo xscale_cp_reginfo[] = { 4384 { .name = "XSCALE_CPAR", 4385 .cp = 15, .crn = 15, .crm = 1, .opc1 = 0, .opc2 = 0, .access = PL1_RW, 4386 .fieldoffset = offsetof(CPUARMState, cp15.c15_cpar), .resetvalue = 0, 4387 .writefn = xscale_cpar_write, }, 4388 { .name = "XSCALE_AUXCR", 4389 .cp = 15, .crn = 1, .crm = 0, .opc1 = 0, .opc2 = 1, .access = PL1_RW, 4390 .fieldoffset = offsetof(CPUARMState, cp15.c1_xscaleauxcr), 4391 .resetvalue = 0, }, 4392 /* 4393 * XScale specific cache-lockdown: since we have no cache we NOP these 4394 * and hope the guest does not really rely on cache behaviour. 4395 */ 4396 { .name = "XSCALE_LOCK_ICACHE_LINE", 4397 .cp = 15, .opc1 = 0, .crn = 9, .crm = 1, .opc2 = 0, 4398 .access = PL1_W, .type = ARM_CP_NOP }, 4399 { .name = "XSCALE_UNLOCK_ICACHE", 4400 .cp = 15, .opc1 = 0, .crn = 9, .crm = 1, .opc2 = 1, 4401 .access = PL1_W, .type = ARM_CP_NOP }, 4402 { .name = "XSCALE_DCACHE_LOCK", 4403 .cp = 15, .opc1 = 0, .crn = 9, .crm = 2, .opc2 = 0, 4404 .access = PL1_RW, .type = ARM_CP_NOP }, 4405 { .name = "XSCALE_UNLOCK_DCACHE", 4406 .cp = 15, .opc1 = 0, .crn = 9, .crm = 2, .opc2 = 1, 4407 .access = PL1_W, .type = ARM_CP_NOP }, 4408 }; 4409 4410 static const ARMCPRegInfo dummy_c15_cp_reginfo[] = { 4411 /* 4412 * RAZ/WI the whole crn=15 space, when we don't have a more specific 4413 * implementation of this implementation-defined space. 4414 * Ideally this should eventually disappear in favour of actually 4415 * implementing the correct behaviour for all cores. 4416 */ 4417 { .name = "C15_IMPDEF", .cp = 15, .crn = 15, 4418 .crm = CP_ANY, .opc1 = CP_ANY, .opc2 = CP_ANY, 4419 .access = PL1_RW, 4420 .type = ARM_CP_CONST | ARM_CP_NO_RAW | ARM_CP_OVERRIDE, 4421 .resetvalue = 0 }, 4422 }; 4423 4424 static const ARMCPRegInfo cache_dirty_status_cp_reginfo[] = { 4425 /* Cache status: RAZ because we have no cache so it's always clean */ 4426 { .name = "CDSR", .cp = 15, .crn = 7, .crm = 10, .opc1 = 0, .opc2 = 6, 4427 .access = PL1_R, .type = ARM_CP_CONST | ARM_CP_NO_RAW, 4428 .resetvalue = 0 }, 4429 }; 4430 4431 static const ARMCPRegInfo cache_block_ops_cp_reginfo[] = { 4432 /* We never have a block transfer operation in progress */ 4433 { .name = "BXSR", .cp = 15, .crn = 7, .crm = 12, .opc1 = 0, .opc2 = 4, 4434 .access = PL0_R, .type = ARM_CP_CONST | ARM_CP_NO_RAW, 4435 .resetvalue = 0 }, 4436 /* The cache ops themselves: these all NOP for QEMU */ 4437 { .name = "IICR", .cp = 15, .crm = 5, .opc1 = 0, 4438 .access = PL1_W, .type = ARM_CP_NOP | ARM_CP_64BIT }, 4439 { .name = "IDCR", .cp = 15, .crm = 6, .opc1 = 0, 4440 .access = PL1_W, .type = ARM_CP_NOP | ARM_CP_64BIT }, 4441 { .name = "CDCR", .cp = 15, .crm = 12, .opc1 = 0, 4442 .access = PL0_W, .type = ARM_CP_NOP | ARM_CP_64BIT }, 4443 { .name = "PIR", .cp = 15, .crm = 12, .opc1 = 1, 4444 .access = PL0_W, .type = ARM_CP_NOP | ARM_CP_64BIT }, 4445 { .name = "PDR", .cp = 15, .crm = 12, .opc1 = 2, 4446 .access = PL0_W, .type = ARM_CP_NOP | ARM_CP_64BIT }, 4447 { .name = "CIDCR", .cp = 15, .crm = 14, .opc1 = 0, 4448 .access = PL1_W, .type = ARM_CP_NOP | ARM_CP_64BIT }, 4449 }; 4450 4451 static const ARMCPRegInfo cache_test_clean_cp_reginfo[] = { 4452 /* 4453 * The cache test-and-clean instructions always return (1 << 30) 4454 * to indicate that there are no dirty cache lines. 4455 */ 4456 { .name = "TC_DCACHE", .cp = 15, .crn = 7, .crm = 10, .opc1 = 0, .opc2 = 3, 4457 .access = PL0_R, .type = ARM_CP_CONST | ARM_CP_NO_RAW, 4458 .resetvalue = (1 << 30) }, 4459 { .name = "TCI_DCACHE", .cp = 15, .crn = 7, .crm = 14, .opc1 = 0, .opc2 = 3, 4460 .access = PL0_R, .type = ARM_CP_CONST | ARM_CP_NO_RAW, 4461 .resetvalue = (1 << 30) }, 4462 }; 4463 4464 static const ARMCPRegInfo strongarm_cp_reginfo[] = { 4465 /* Ignore ReadBuffer accesses */ 4466 { .name = "C9_READBUFFER", .cp = 15, .crn = 9, 4467 .crm = CP_ANY, .opc1 = CP_ANY, .opc2 = CP_ANY, 4468 .access = PL1_RW, .resetvalue = 0, 4469 .type = ARM_CP_CONST | ARM_CP_OVERRIDE | ARM_CP_NO_RAW }, 4470 }; 4471 4472 static uint64_t midr_read(CPUARMState *env, const ARMCPRegInfo *ri) 4473 { 4474 unsigned int cur_el = arm_current_el(env); 4475 4476 if (arm_is_el2_enabled(env) && cur_el == 1) { 4477 return env->cp15.vpidr_el2; 4478 } 4479 return raw_read(env, ri); 4480 } 4481 4482 static uint64_t mpidr_read_val(CPUARMState *env) 4483 { 4484 ARMCPU *cpu = env_archcpu(env); 4485 uint64_t mpidr = cpu->mp_affinity; 4486 4487 if (arm_feature(env, ARM_FEATURE_V7MP)) { 4488 mpidr |= (1U << 31); 4489 /* 4490 * Cores which are uniprocessor (non-coherent) 4491 * but still implement the MP extensions set 4492 * bit 30. (For instance, Cortex-R5). 4493 */ 4494 if (cpu->mp_is_up) { 4495 mpidr |= (1u << 30); 4496 } 4497 } 4498 return mpidr; 4499 } 4500 4501 static uint64_t mpidr_read(CPUARMState *env, const ARMCPRegInfo *ri) 4502 { 4503 unsigned int cur_el = arm_current_el(env); 4504 4505 if (arm_is_el2_enabled(env) && cur_el == 1) { 4506 return env->cp15.vmpidr_el2; 4507 } 4508 return mpidr_read_val(env); 4509 } 4510 4511 static const ARMCPRegInfo lpae_cp_reginfo[] = { 4512 /* NOP AMAIR0/1 */ 4513 { .name = "AMAIR0", .state = ARM_CP_STATE_BOTH, 4514 .opc0 = 3, .crn = 10, .crm = 3, .opc1 = 0, .opc2 = 0, 4515 .access = PL1_RW, .accessfn = access_tvm_trvm, 4516 .fgt = FGT_AMAIR_EL1, 4517 .type = ARM_CP_CONST, .resetvalue = 0 }, 4518 /* AMAIR1 is mapped to AMAIR_EL1[63:32] */ 4519 { .name = "AMAIR1", .cp = 15, .crn = 10, .crm = 3, .opc1 = 0, .opc2 = 1, 4520 .access = PL1_RW, .accessfn = access_tvm_trvm, 4521 .type = ARM_CP_CONST, .resetvalue = 0 }, 4522 { .name = "PAR", .cp = 15, .crm = 7, .opc1 = 0, 4523 .access = PL1_RW, .type = ARM_CP_64BIT, .resetvalue = 0, 4524 .bank_fieldoffsets = { offsetof(CPUARMState, cp15.par_s), 4525 offsetof(CPUARMState, cp15.par_ns)} }, 4526 { .name = "TTBR0", .cp = 15, .crm = 2, .opc1 = 0, 4527 .access = PL1_RW, .accessfn = access_tvm_trvm, 4528 .type = ARM_CP_64BIT | ARM_CP_ALIAS, 4529 .bank_fieldoffsets = { offsetof(CPUARMState, cp15.ttbr0_s), 4530 offsetof(CPUARMState, cp15.ttbr0_ns) }, 4531 .writefn = vmsa_ttbr_write, .raw_writefn = raw_write }, 4532 { .name = "TTBR1", .cp = 15, .crm = 2, .opc1 = 1, 4533 .access = PL1_RW, .accessfn = access_tvm_trvm, 4534 .type = ARM_CP_64BIT | ARM_CP_ALIAS, 4535 .bank_fieldoffsets = { offsetof(CPUARMState, cp15.ttbr1_s), 4536 offsetof(CPUARMState, cp15.ttbr1_ns) }, 4537 .writefn = vmsa_ttbr_write, .raw_writefn = raw_write }, 4538 }; 4539 4540 static uint64_t aa64_fpcr_read(CPUARMState *env, const ARMCPRegInfo *ri) 4541 { 4542 return vfp_get_fpcr(env); 4543 } 4544 4545 static void aa64_fpcr_write(CPUARMState *env, const ARMCPRegInfo *ri, 4546 uint64_t value) 4547 { 4548 vfp_set_fpcr(env, value); 4549 } 4550 4551 static uint64_t aa64_fpsr_read(CPUARMState *env, const ARMCPRegInfo *ri) 4552 { 4553 return vfp_get_fpsr(env); 4554 } 4555 4556 static void aa64_fpsr_write(CPUARMState *env, const ARMCPRegInfo *ri, 4557 uint64_t value) 4558 { 4559 vfp_set_fpsr(env, value); 4560 } 4561 4562 static CPAccessResult aa64_daif_access(CPUARMState *env, const ARMCPRegInfo *ri, 4563 bool isread) 4564 { 4565 if (arm_current_el(env) == 0 && !(arm_sctlr(env, 0) & SCTLR_UMA)) { 4566 return CP_ACCESS_TRAP; 4567 } 4568 return CP_ACCESS_OK; 4569 } 4570 4571 static void aa64_daif_write(CPUARMState *env, const ARMCPRegInfo *ri, 4572 uint64_t value) 4573 { 4574 env->daif = value & PSTATE_DAIF; 4575 } 4576 4577 static uint64_t aa64_pan_read(CPUARMState *env, const ARMCPRegInfo *ri) 4578 { 4579 return env->pstate & PSTATE_PAN; 4580 } 4581 4582 static void aa64_pan_write(CPUARMState *env, const ARMCPRegInfo *ri, 4583 uint64_t value) 4584 { 4585 env->pstate = (env->pstate & ~PSTATE_PAN) | (value & PSTATE_PAN); 4586 } 4587 4588 static const ARMCPRegInfo pan_reginfo = { 4589 .name = "PAN", .state = ARM_CP_STATE_AA64, 4590 .opc0 = 3, .opc1 = 0, .crn = 4, .crm = 2, .opc2 = 3, 4591 .type = ARM_CP_NO_RAW, .access = PL1_RW, 4592 .readfn = aa64_pan_read, .writefn = aa64_pan_write 4593 }; 4594 4595 static uint64_t aa64_uao_read(CPUARMState *env, const ARMCPRegInfo *ri) 4596 { 4597 return env->pstate & PSTATE_UAO; 4598 } 4599 4600 static void aa64_uao_write(CPUARMState *env, const ARMCPRegInfo *ri, 4601 uint64_t value) 4602 { 4603 env->pstate = (env->pstate & ~PSTATE_UAO) | (value & PSTATE_UAO); 4604 } 4605 4606 static const ARMCPRegInfo uao_reginfo = { 4607 .name = "UAO", .state = ARM_CP_STATE_AA64, 4608 .opc0 = 3, .opc1 = 0, .crn = 4, .crm = 2, .opc2 = 4, 4609 .type = ARM_CP_NO_RAW, .access = PL1_RW, 4610 .readfn = aa64_uao_read, .writefn = aa64_uao_write 4611 }; 4612 4613 static uint64_t aa64_dit_read(CPUARMState *env, const ARMCPRegInfo *ri) 4614 { 4615 return env->pstate & PSTATE_DIT; 4616 } 4617 4618 static void aa64_dit_write(CPUARMState *env, const ARMCPRegInfo *ri, 4619 uint64_t value) 4620 { 4621 env->pstate = (env->pstate & ~PSTATE_DIT) | (value & PSTATE_DIT); 4622 } 4623 4624 static const ARMCPRegInfo dit_reginfo = { 4625 .name = "DIT", .state = ARM_CP_STATE_AA64, 4626 .opc0 = 3, .opc1 = 3, .crn = 4, .crm = 2, .opc2 = 5, 4627 .type = ARM_CP_NO_RAW, .access = PL0_RW, 4628 .readfn = aa64_dit_read, .writefn = aa64_dit_write 4629 }; 4630 4631 static uint64_t aa64_ssbs_read(CPUARMState *env, const ARMCPRegInfo *ri) 4632 { 4633 return env->pstate & PSTATE_SSBS; 4634 } 4635 4636 static void aa64_ssbs_write(CPUARMState *env, const ARMCPRegInfo *ri, 4637 uint64_t value) 4638 { 4639 env->pstate = (env->pstate & ~PSTATE_SSBS) | (value & PSTATE_SSBS); 4640 } 4641 4642 static const ARMCPRegInfo ssbs_reginfo = { 4643 .name = "SSBS", .state = ARM_CP_STATE_AA64, 4644 .opc0 = 3, .opc1 = 3, .crn = 4, .crm = 2, .opc2 = 6, 4645 .type = ARM_CP_NO_RAW, .access = PL0_RW, 4646 .readfn = aa64_ssbs_read, .writefn = aa64_ssbs_write 4647 }; 4648 4649 static CPAccessResult aa64_cacheop_poc_access(CPUARMState *env, 4650 const ARMCPRegInfo *ri, 4651 bool isread) 4652 { 4653 /* Cache invalidate/clean to Point of Coherency or Persistence... */ 4654 switch (arm_current_el(env)) { 4655 case 0: 4656 /* ... EL0 must UNDEF unless SCTLR_EL1.UCI is set. */ 4657 if (!(arm_sctlr(env, 0) & SCTLR_UCI)) { 4658 return CP_ACCESS_TRAP; 4659 } 4660 /* fall through */ 4661 case 1: 4662 /* ... EL1 must trap to EL2 if HCR_EL2.TPCP is set. */ 4663 if (arm_hcr_el2_eff(env) & HCR_TPCP) { 4664 return CP_ACCESS_TRAP_EL2; 4665 } 4666 break; 4667 } 4668 return CP_ACCESS_OK; 4669 } 4670 4671 static CPAccessResult do_cacheop_pou_access(CPUARMState *env, uint64_t hcrflags) 4672 { 4673 /* Cache invalidate/clean to Point of Unification... */ 4674 switch (arm_current_el(env)) { 4675 case 0: 4676 /* ... EL0 must UNDEF unless SCTLR_EL1.UCI is set. */ 4677 if (!(arm_sctlr(env, 0) & SCTLR_UCI)) { 4678 return CP_ACCESS_TRAP; 4679 } 4680 /* fall through */ 4681 case 1: 4682 /* ... EL1 must trap to EL2 if relevant HCR_EL2 flags are set. */ 4683 if (arm_hcr_el2_eff(env) & hcrflags) { 4684 return CP_ACCESS_TRAP_EL2; 4685 } 4686 break; 4687 } 4688 return CP_ACCESS_OK; 4689 } 4690 4691 static CPAccessResult access_ticab(CPUARMState *env, const ARMCPRegInfo *ri, 4692 bool isread) 4693 { 4694 return do_cacheop_pou_access(env, HCR_TICAB | HCR_TPU); 4695 } 4696 4697 static CPAccessResult access_tocu(CPUARMState *env, const ARMCPRegInfo *ri, 4698 bool isread) 4699 { 4700 return do_cacheop_pou_access(env, HCR_TOCU | HCR_TPU); 4701 } 4702 4703 /* 4704 * See: D4.7.2 TLB maintenance requirements and the TLB maintenance instructions 4705 * Page D4-1736 (DDI0487A.b) 4706 */ 4707 4708 static int vae1_tlbmask(CPUARMState *env) 4709 { 4710 uint64_t hcr = arm_hcr_el2_eff(env); 4711 uint16_t mask; 4712 4713 if ((hcr & (HCR_E2H | HCR_TGE)) == (HCR_E2H | HCR_TGE)) { 4714 mask = ARMMMUIdxBit_E20_2 | 4715 ARMMMUIdxBit_E20_2_PAN | 4716 ARMMMUIdxBit_E20_0; 4717 } else { 4718 mask = ARMMMUIdxBit_E10_1 | 4719 ARMMMUIdxBit_E10_1_PAN | 4720 ARMMMUIdxBit_E10_0; 4721 } 4722 return mask; 4723 } 4724 4725 static int vae2_tlbmask(CPUARMState *env) 4726 { 4727 uint64_t hcr = arm_hcr_el2_eff(env); 4728 uint16_t mask; 4729 4730 if (hcr & HCR_E2H) { 4731 mask = ARMMMUIdxBit_E20_2 | 4732 ARMMMUIdxBit_E20_2_PAN | 4733 ARMMMUIdxBit_E20_0; 4734 } else { 4735 mask = ARMMMUIdxBit_E2; 4736 } 4737 return mask; 4738 } 4739 4740 /* Return 56 if TBI is enabled, 64 otherwise. */ 4741 static int tlbbits_for_regime(CPUARMState *env, ARMMMUIdx mmu_idx, 4742 uint64_t addr) 4743 { 4744 uint64_t tcr = regime_tcr(env, mmu_idx); 4745 int tbi = aa64_va_parameter_tbi(tcr, mmu_idx); 4746 int select = extract64(addr, 55, 1); 4747 4748 return (tbi >> select) & 1 ? 56 : 64; 4749 } 4750 4751 static int vae1_tlbbits(CPUARMState *env, uint64_t addr) 4752 { 4753 uint64_t hcr = arm_hcr_el2_eff(env); 4754 ARMMMUIdx mmu_idx; 4755 4756 /* Only the regime of the mmu_idx below is significant. */ 4757 if ((hcr & (HCR_E2H | HCR_TGE)) == (HCR_E2H | HCR_TGE)) { 4758 mmu_idx = ARMMMUIdx_E20_0; 4759 } else { 4760 mmu_idx = ARMMMUIdx_E10_0; 4761 } 4762 4763 return tlbbits_for_regime(env, mmu_idx, addr); 4764 } 4765 4766 static int vae2_tlbbits(CPUARMState *env, uint64_t addr) 4767 { 4768 uint64_t hcr = arm_hcr_el2_eff(env); 4769 ARMMMUIdx mmu_idx; 4770 4771 /* 4772 * Only the regime of the mmu_idx below is significant. 4773 * Regime EL2&0 has two ranges with separate TBI configuration, while EL2 4774 * only has one. 4775 */ 4776 if (hcr & HCR_E2H) { 4777 mmu_idx = ARMMMUIdx_E20_2; 4778 } else { 4779 mmu_idx = ARMMMUIdx_E2; 4780 } 4781 4782 return tlbbits_for_regime(env, mmu_idx, addr); 4783 } 4784 4785 static void tlbi_aa64_vmalle1is_write(CPUARMState *env, const ARMCPRegInfo *ri, 4786 uint64_t value) 4787 { 4788 CPUState *cs = env_cpu(env); 4789 int mask = vae1_tlbmask(env); 4790 4791 tlb_flush_by_mmuidx_all_cpus_synced(cs, mask); 4792 } 4793 4794 static void tlbi_aa64_vmalle1_write(CPUARMState *env, const ARMCPRegInfo *ri, 4795 uint64_t value) 4796 { 4797 CPUState *cs = env_cpu(env); 4798 int mask = vae1_tlbmask(env); 4799 4800 if (tlb_force_broadcast(env)) { 4801 tlb_flush_by_mmuidx_all_cpus_synced(cs, mask); 4802 } else { 4803 tlb_flush_by_mmuidx(cs, mask); 4804 } 4805 } 4806 4807 static int e2_tlbmask(CPUARMState *env) 4808 { 4809 return (ARMMMUIdxBit_E20_0 | 4810 ARMMMUIdxBit_E20_2 | 4811 ARMMMUIdxBit_E20_2_PAN | 4812 ARMMMUIdxBit_E2); 4813 } 4814 4815 static void tlbi_aa64_alle1_write(CPUARMState *env, const ARMCPRegInfo *ri, 4816 uint64_t value) 4817 { 4818 CPUState *cs = env_cpu(env); 4819 int mask = alle1_tlbmask(env); 4820 4821 tlb_flush_by_mmuidx(cs, mask); 4822 } 4823 4824 static void tlbi_aa64_alle2_write(CPUARMState *env, const ARMCPRegInfo *ri, 4825 uint64_t value) 4826 { 4827 CPUState *cs = env_cpu(env); 4828 int mask = e2_tlbmask(env); 4829 4830 tlb_flush_by_mmuidx(cs, mask); 4831 } 4832 4833 static void tlbi_aa64_alle3_write(CPUARMState *env, const ARMCPRegInfo *ri, 4834 uint64_t value) 4835 { 4836 ARMCPU *cpu = env_archcpu(env); 4837 CPUState *cs = CPU(cpu); 4838 4839 tlb_flush_by_mmuidx(cs, ARMMMUIdxBit_E3); 4840 } 4841 4842 static void tlbi_aa64_alle1is_write(CPUARMState *env, const ARMCPRegInfo *ri, 4843 uint64_t value) 4844 { 4845 CPUState *cs = env_cpu(env); 4846 int mask = alle1_tlbmask(env); 4847 4848 tlb_flush_by_mmuidx_all_cpus_synced(cs, mask); 4849 } 4850 4851 static void tlbi_aa64_alle2is_write(CPUARMState *env, const ARMCPRegInfo *ri, 4852 uint64_t value) 4853 { 4854 CPUState *cs = env_cpu(env); 4855 int mask = e2_tlbmask(env); 4856 4857 tlb_flush_by_mmuidx_all_cpus_synced(cs, mask); 4858 } 4859 4860 static void tlbi_aa64_alle3is_write(CPUARMState *env, const ARMCPRegInfo *ri, 4861 uint64_t value) 4862 { 4863 CPUState *cs = env_cpu(env); 4864 4865 tlb_flush_by_mmuidx_all_cpus_synced(cs, ARMMMUIdxBit_E3); 4866 } 4867 4868 static void tlbi_aa64_vae2_write(CPUARMState *env, const ARMCPRegInfo *ri, 4869 uint64_t value) 4870 { 4871 /* 4872 * Invalidate by VA, EL2 4873 * Currently handles both VAE2 and VALE2, since we don't support 4874 * flush-last-level-only. 4875 */ 4876 CPUState *cs = env_cpu(env); 4877 int mask = vae2_tlbmask(env); 4878 uint64_t pageaddr = sextract64(value << 12, 0, 56); 4879 int bits = vae2_tlbbits(env, pageaddr); 4880 4881 tlb_flush_page_bits_by_mmuidx(cs, pageaddr, mask, bits); 4882 } 4883 4884 static void tlbi_aa64_vae3_write(CPUARMState *env, const ARMCPRegInfo *ri, 4885 uint64_t value) 4886 { 4887 /* 4888 * Invalidate by VA, EL3 4889 * Currently handles both VAE3 and VALE3, since we don't support 4890 * flush-last-level-only. 4891 */ 4892 ARMCPU *cpu = env_archcpu(env); 4893 CPUState *cs = CPU(cpu); 4894 uint64_t pageaddr = sextract64(value << 12, 0, 56); 4895 4896 tlb_flush_page_by_mmuidx(cs, pageaddr, ARMMMUIdxBit_E3); 4897 } 4898 4899 static void tlbi_aa64_vae1is_write(CPUARMState *env, const ARMCPRegInfo *ri, 4900 uint64_t value) 4901 { 4902 CPUState *cs = env_cpu(env); 4903 int mask = vae1_tlbmask(env); 4904 uint64_t pageaddr = sextract64(value << 12, 0, 56); 4905 int bits = vae1_tlbbits(env, pageaddr); 4906 4907 tlb_flush_page_bits_by_mmuidx_all_cpus_synced(cs, pageaddr, mask, bits); 4908 } 4909 4910 static void tlbi_aa64_vae1_write(CPUARMState *env, const ARMCPRegInfo *ri, 4911 uint64_t value) 4912 { 4913 /* 4914 * Invalidate by VA, EL1&0 (AArch64 version). 4915 * Currently handles all of VAE1, VAAE1, VAALE1 and VALE1, 4916 * since we don't support flush-for-specific-ASID-only or 4917 * flush-last-level-only. 4918 */ 4919 CPUState *cs = env_cpu(env); 4920 int mask = vae1_tlbmask(env); 4921 uint64_t pageaddr = sextract64(value << 12, 0, 56); 4922 int bits = vae1_tlbbits(env, pageaddr); 4923 4924 if (tlb_force_broadcast(env)) { 4925 tlb_flush_page_bits_by_mmuidx_all_cpus_synced(cs, pageaddr, mask, bits); 4926 } else { 4927 tlb_flush_page_bits_by_mmuidx(cs, pageaddr, mask, bits); 4928 } 4929 } 4930 4931 static void tlbi_aa64_vae2is_write(CPUARMState *env, const ARMCPRegInfo *ri, 4932 uint64_t value) 4933 { 4934 CPUState *cs = env_cpu(env); 4935 int mask = vae2_tlbmask(env); 4936 uint64_t pageaddr = sextract64(value << 12, 0, 56); 4937 int bits = vae2_tlbbits(env, pageaddr); 4938 4939 tlb_flush_page_bits_by_mmuidx_all_cpus_synced(cs, pageaddr, mask, bits); 4940 } 4941 4942 static void tlbi_aa64_vae3is_write(CPUARMState *env, const ARMCPRegInfo *ri, 4943 uint64_t value) 4944 { 4945 CPUState *cs = env_cpu(env); 4946 uint64_t pageaddr = sextract64(value << 12, 0, 56); 4947 int bits = tlbbits_for_regime(env, ARMMMUIdx_E3, pageaddr); 4948 4949 tlb_flush_page_bits_by_mmuidx_all_cpus_synced(cs, pageaddr, 4950 ARMMMUIdxBit_E3, bits); 4951 } 4952 4953 static int ipas2e1_tlbmask(CPUARMState *env, int64_t value) 4954 { 4955 /* 4956 * The MSB of value is the NS field, which only applies if SEL2 4957 * is implemented and SCR_EL3.NS is not set (i.e. in secure mode). 4958 */ 4959 return (value >= 0 4960 && cpu_isar_feature(aa64_sel2, env_archcpu(env)) 4961 && arm_is_secure_below_el3(env) 4962 ? ARMMMUIdxBit_Stage2_S 4963 : ARMMMUIdxBit_Stage2); 4964 } 4965 4966 static void tlbi_aa64_ipas2e1_write(CPUARMState *env, const ARMCPRegInfo *ri, 4967 uint64_t value) 4968 { 4969 CPUState *cs = env_cpu(env); 4970 int mask = ipas2e1_tlbmask(env, value); 4971 uint64_t pageaddr = sextract64(value << 12, 0, 56); 4972 4973 if (tlb_force_broadcast(env)) { 4974 tlb_flush_page_by_mmuidx_all_cpus_synced(cs, pageaddr, mask); 4975 } else { 4976 tlb_flush_page_by_mmuidx(cs, pageaddr, mask); 4977 } 4978 } 4979 4980 static void tlbi_aa64_ipas2e1is_write(CPUARMState *env, const ARMCPRegInfo *ri, 4981 uint64_t value) 4982 { 4983 CPUState *cs = env_cpu(env); 4984 int mask = ipas2e1_tlbmask(env, value); 4985 uint64_t pageaddr = sextract64(value << 12, 0, 56); 4986 4987 tlb_flush_page_by_mmuidx_all_cpus_synced(cs, pageaddr, mask); 4988 } 4989 4990 #ifdef TARGET_AARCH64 4991 typedef struct { 4992 uint64_t base; 4993 uint64_t length; 4994 } TLBIRange; 4995 4996 static ARMGranuleSize tlbi_range_tg_to_gran_size(int tg) 4997 { 4998 /* 4999 * Note that the TLBI range TG field encoding differs from both 5000 * TG0 and TG1 encodings. 5001 */ 5002 switch (tg) { 5003 case 1: 5004 return Gran4K; 5005 case 2: 5006 return Gran16K; 5007 case 3: 5008 return Gran64K; 5009 default: 5010 return GranInvalid; 5011 } 5012 } 5013 5014 static TLBIRange tlbi_aa64_get_range(CPUARMState *env, ARMMMUIdx mmuidx, 5015 uint64_t value) 5016 { 5017 unsigned int page_size_granule, page_shift, num, scale, exponent; 5018 /* Extract one bit to represent the va selector in use. */ 5019 uint64_t select = sextract64(value, 36, 1); 5020 ARMVAParameters param = aa64_va_parameters(env, select, mmuidx, true, false); 5021 TLBIRange ret = { }; 5022 ARMGranuleSize gran; 5023 5024 page_size_granule = extract64(value, 46, 2); 5025 gran = tlbi_range_tg_to_gran_size(page_size_granule); 5026 5027 /* The granule encoded in value must match the granule in use. */ 5028 if (gran != param.gran) { 5029 qemu_log_mask(LOG_GUEST_ERROR, "Invalid tlbi page size granule %d\n", 5030 page_size_granule); 5031 return ret; 5032 } 5033 5034 page_shift = arm_granule_bits(gran); 5035 num = extract64(value, 39, 5); 5036 scale = extract64(value, 44, 2); 5037 exponent = (5 * scale) + 1; 5038 5039 ret.length = (num + 1) << (exponent + page_shift); 5040 5041 if (param.select) { 5042 ret.base = sextract64(value, 0, 37); 5043 } else { 5044 ret.base = extract64(value, 0, 37); 5045 } 5046 if (param.ds) { 5047 /* 5048 * With DS=1, BaseADDR is always shifted 16 so that it is able 5049 * to address all 52 va bits. The input address is perforce 5050 * aligned on a 64k boundary regardless of translation granule. 5051 */ 5052 page_shift = 16; 5053 } 5054 ret.base <<= page_shift; 5055 5056 return ret; 5057 } 5058 5059 static void do_rvae_write(CPUARMState *env, uint64_t value, 5060 int idxmap, bool synced) 5061 { 5062 ARMMMUIdx one_idx = ARM_MMU_IDX_A | ctz32(idxmap); 5063 TLBIRange range; 5064 int bits; 5065 5066 range = tlbi_aa64_get_range(env, one_idx, value); 5067 bits = tlbbits_for_regime(env, one_idx, range.base); 5068 5069 if (synced) { 5070 tlb_flush_range_by_mmuidx_all_cpus_synced(env_cpu(env), 5071 range.base, 5072 range.length, 5073 idxmap, 5074 bits); 5075 } else { 5076 tlb_flush_range_by_mmuidx(env_cpu(env), range.base, 5077 range.length, idxmap, bits); 5078 } 5079 } 5080 5081 static void tlbi_aa64_rvae1_write(CPUARMState *env, 5082 const ARMCPRegInfo *ri, 5083 uint64_t value) 5084 { 5085 /* 5086 * Invalidate by VA range, EL1&0. 5087 * Currently handles all of RVAE1, RVAAE1, RVAALE1 and RVALE1, 5088 * since we don't support flush-for-specific-ASID-only or 5089 * flush-last-level-only. 5090 */ 5091 5092 do_rvae_write(env, value, vae1_tlbmask(env), 5093 tlb_force_broadcast(env)); 5094 } 5095 5096 static void tlbi_aa64_rvae1is_write(CPUARMState *env, 5097 const ARMCPRegInfo *ri, 5098 uint64_t value) 5099 { 5100 /* 5101 * Invalidate by VA range, Inner/Outer Shareable EL1&0. 5102 * Currently handles all of RVAE1IS, RVAE1OS, RVAAE1IS, RVAAE1OS, 5103 * RVAALE1IS, RVAALE1OS, RVALE1IS and RVALE1OS, since we don't support 5104 * flush-for-specific-ASID-only, flush-last-level-only or inner/outer 5105 * shareable specific flushes. 5106 */ 5107 5108 do_rvae_write(env, value, vae1_tlbmask(env), true); 5109 } 5110 5111 static void tlbi_aa64_rvae2_write(CPUARMState *env, 5112 const ARMCPRegInfo *ri, 5113 uint64_t value) 5114 { 5115 /* 5116 * Invalidate by VA range, EL2. 5117 * Currently handles all of RVAE2 and RVALE2, 5118 * since we don't support flush-for-specific-ASID-only or 5119 * flush-last-level-only. 5120 */ 5121 5122 do_rvae_write(env, value, vae2_tlbmask(env), 5123 tlb_force_broadcast(env)); 5124 5125 5126 } 5127 5128 static void tlbi_aa64_rvae2is_write(CPUARMState *env, 5129 const ARMCPRegInfo *ri, 5130 uint64_t value) 5131 { 5132 /* 5133 * Invalidate by VA range, Inner/Outer Shareable, EL2. 5134 * Currently handles all of RVAE2IS, RVAE2OS, RVALE2IS and RVALE2OS, 5135 * since we don't support flush-for-specific-ASID-only, 5136 * flush-last-level-only or inner/outer shareable specific flushes. 5137 */ 5138 5139 do_rvae_write(env, value, vae2_tlbmask(env), true); 5140 5141 } 5142 5143 static void tlbi_aa64_rvae3_write(CPUARMState *env, 5144 const ARMCPRegInfo *ri, 5145 uint64_t value) 5146 { 5147 /* 5148 * Invalidate by VA range, EL3. 5149 * Currently handles all of RVAE3 and RVALE3, 5150 * since we don't support flush-for-specific-ASID-only or 5151 * flush-last-level-only. 5152 */ 5153 5154 do_rvae_write(env, value, ARMMMUIdxBit_E3, tlb_force_broadcast(env)); 5155 } 5156 5157 static void tlbi_aa64_rvae3is_write(CPUARMState *env, 5158 const ARMCPRegInfo *ri, 5159 uint64_t value) 5160 { 5161 /* 5162 * Invalidate by VA range, EL3, Inner/Outer Shareable. 5163 * Currently handles all of RVAE3IS, RVAE3OS, RVALE3IS and RVALE3OS, 5164 * since we don't support flush-for-specific-ASID-only, 5165 * flush-last-level-only or inner/outer specific flushes. 5166 */ 5167 5168 do_rvae_write(env, value, ARMMMUIdxBit_E3, true); 5169 } 5170 5171 static void tlbi_aa64_ripas2e1_write(CPUARMState *env, const ARMCPRegInfo *ri, 5172 uint64_t value) 5173 { 5174 do_rvae_write(env, value, ipas2e1_tlbmask(env, value), 5175 tlb_force_broadcast(env)); 5176 } 5177 5178 static void tlbi_aa64_ripas2e1is_write(CPUARMState *env, 5179 const ARMCPRegInfo *ri, 5180 uint64_t value) 5181 { 5182 do_rvae_write(env, value, ipas2e1_tlbmask(env, value), true); 5183 } 5184 #endif 5185 5186 static CPAccessResult aa64_zva_access(CPUARMState *env, const ARMCPRegInfo *ri, 5187 bool isread) 5188 { 5189 int cur_el = arm_current_el(env); 5190 5191 if (cur_el < 2) { 5192 uint64_t hcr = arm_hcr_el2_eff(env); 5193 5194 if (cur_el == 0) { 5195 if ((hcr & (HCR_E2H | HCR_TGE)) == (HCR_E2H | HCR_TGE)) { 5196 if (!(env->cp15.sctlr_el[2] & SCTLR_DZE)) { 5197 return CP_ACCESS_TRAP_EL2; 5198 } 5199 } else { 5200 if (!(env->cp15.sctlr_el[1] & SCTLR_DZE)) { 5201 return CP_ACCESS_TRAP; 5202 } 5203 if (hcr & HCR_TDZ) { 5204 return CP_ACCESS_TRAP_EL2; 5205 } 5206 } 5207 } else if (hcr & HCR_TDZ) { 5208 return CP_ACCESS_TRAP_EL2; 5209 } 5210 } 5211 return CP_ACCESS_OK; 5212 } 5213 5214 static uint64_t aa64_dczid_read(CPUARMState *env, const ARMCPRegInfo *ri) 5215 { 5216 ARMCPU *cpu = env_archcpu(env); 5217 int dzp_bit = 1 << 4; 5218 5219 /* DZP indicates whether DC ZVA access is allowed */ 5220 if (aa64_zva_access(env, NULL, false) == CP_ACCESS_OK) { 5221 dzp_bit = 0; 5222 } 5223 return cpu->dcz_blocksize | dzp_bit; 5224 } 5225 5226 static CPAccessResult sp_el0_access(CPUARMState *env, const ARMCPRegInfo *ri, 5227 bool isread) 5228 { 5229 if (!(env->pstate & PSTATE_SP)) { 5230 /* 5231 * Access to SP_EL0 is undefined if it's being used as 5232 * the stack pointer. 5233 */ 5234 return CP_ACCESS_TRAP_UNCATEGORIZED; 5235 } 5236 return CP_ACCESS_OK; 5237 } 5238 5239 static uint64_t spsel_read(CPUARMState *env, const ARMCPRegInfo *ri) 5240 { 5241 return env->pstate & PSTATE_SP; 5242 } 5243 5244 static void spsel_write(CPUARMState *env, const ARMCPRegInfo *ri, uint64_t val) 5245 { 5246 update_spsel(env, val); 5247 } 5248 5249 static void sctlr_write(CPUARMState *env, const ARMCPRegInfo *ri, 5250 uint64_t value) 5251 { 5252 ARMCPU *cpu = env_archcpu(env); 5253 5254 if (arm_feature(env, ARM_FEATURE_PMSA) && !cpu->has_mpu) { 5255 /* M bit is RAZ/WI for PMSA with no MPU implemented */ 5256 value &= ~SCTLR_M; 5257 } 5258 5259 /* ??? Lots of these bits are not implemented. */ 5260 5261 if (ri->state == ARM_CP_STATE_AA64 && !cpu_isar_feature(aa64_mte, cpu)) { 5262 if (ri->opc1 == 6) { /* SCTLR_EL3 */ 5263 value &= ~(SCTLR_ITFSB | SCTLR_TCF | SCTLR_ATA); 5264 } else { 5265 value &= ~(SCTLR_ITFSB | SCTLR_TCF0 | SCTLR_TCF | 5266 SCTLR_ATA0 | SCTLR_ATA); 5267 } 5268 } 5269 5270 if (raw_read(env, ri) == value) { 5271 /* 5272 * Skip the TLB flush if nothing actually changed; Linux likes 5273 * to do a lot of pointless SCTLR writes. 5274 */ 5275 return; 5276 } 5277 5278 raw_write(env, ri, value); 5279 5280 /* This may enable/disable the MMU, so do a TLB flush. */ 5281 tlb_flush(CPU(cpu)); 5282 5283 if (tcg_enabled() && ri->type & ARM_CP_SUPPRESS_TB_END) { 5284 /* 5285 * Normally we would always end the TB on an SCTLR write; see the 5286 * comment in ARMCPRegInfo sctlr initialization below for why Xscale 5287 * is special. Setting ARM_CP_SUPPRESS_TB_END also stops the rebuild 5288 * of hflags from the translator, so do it here. 5289 */ 5290 arm_rebuild_hflags(env); 5291 } 5292 } 5293 5294 static void mdcr_el3_write(CPUARMState *env, const ARMCPRegInfo *ri, 5295 uint64_t value) 5296 { 5297 /* 5298 * Some MDCR_EL3 bits affect whether PMU counters are running: 5299 * if we are trying to change any of those then we must 5300 * bracket this update with PMU start/finish calls. 5301 */ 5302 bool pmu_op = (env->cp15.mdcr_el3 ^ value) & MDCR_EL3_PMU_ENABLE_BITS; 5303 5304 if (pmu_op) { 5305 pmu_op_start(env); 5306 } 5307 env->cp15.mdcr_el3 = value; 5308 if (pmu_op) { 5309 pmu_op_finish(env); 5310 } 5311 } 5312 5313 static void sdcr_write(CPUARMState *env, const ARMCPRegInfo *ri, 5314 uint64_t value) 5315 { 5316 /* Not all bits defined for MDCR_EL3 exist in the AArch32 SDCR */ 5317 mdcr_el3_write(env, ri, value & SDCR_VALID_MASK); 5318 } 5319 5320 static void mdcr_el2_write(CPUARMState *env, const ARMCPRegInfo *ri, 5321 uint64_t value) 5322 { 5323 /* 5324 * Some MDCR_EL2 bits affect whether PMU counters are running: 5325 * if we are trying to change any of those then we must 5326 * bracket this update with PMU start/finish calls. 5327 */ 5328 bool pmu_op = (env->cp15.mdcr_el2 ^ value) & MDCR_EL2_PMU_ENABLE_BITS; 5329 5330 if (pmu_op) { 5331 pmu_op_start(env); 5332 } 5333 env->cp15.mdcr_el2 = value; 5334 if (pmu_op) { 5335 pmu_op_finish(env); 5336 } 5337 } 5338 5339 #ifdef CONFIG_USER_ONLY 5340 /* 5341 * `IC IVAU` is handled to improve compatibility with JITs that dual-map their 5342 * code to get around W^X restrictions, where one region is writable and the 5343 * other is executable. 5344 * 5345 * Since the executable region is never written to we cannot detect code 5346 * changes when running in user mode, and rely on the emulated JIT telling us 5347 * that the code has changed by executing this instruction. 5348 */ 5349 static void ic_ivau_write(CPUARMState *env, const ARMCPRegInfo *ri, 5350 uint64_t value) 5351 { 5352 uint64_t icache_line_mask, start_address, end_address; 5353 const ARMCPU *cpu; 5354 5355 cpu = env_archcpu(env); 5356 5357 icache_line_mask = (4 << extract32(cpu->ctr, 0, 4)) - 1; 5358 start_address = value & ~icache_line_mask; 5359 end_address = value | icache_line_mask; 5360 5361 mmap_lock(); 5362 5363 tb_invalidate_phys_range(start_address, end_address); 5364 5365 mmap_unlock(); 5366 } 5367 #endif 5368 5369 static const ARMCPRegInfo v8_cp_reginfo[] = { 5370 /* 5371 * Minimal set of EL0-visible registers. This will need to be expanded 5372 * significantly for system emulation of AArch64 CPUs. 5373 */ 5374 { .name = "NZCV", .state = ARM_CP_STATE_AA64, 5375 .opc0 = 3, .opc1 = 3, .opc2 = 0, .crn = 4, .crm = 2, 5376 .access = PL0_RW, .type = ARM_CP_NZCV }, 5377 { .name = "DAIF", .state = ARM_CP_STATE_AA64, 5378 .opc0 = 3, .opc1 = 3, .opc2 = 1, .crn = 4, .crm = 2, 5379 .type = ARM_CP_NO_RAW, 5380 .access = PL0_RW, .accessfn = aa64_daif_access, 5381 .fieldoffset = offsetof(CPUARMState, daif), 5382 .writefn = aa64_daif_write, .resetfn = arm_cp_reset_ignore }, 5383 { .name = "FPCR", .state = ARM_CP_STATE_AA64, 5384 .opc0 = 3, .opc1 = 3, .opc2 = 0, .crn = 4, .crm = 4, 5385 .access = PL0_RW, .type = ARM_CP_FPU | ARM_CP_SUPPRESS_TB_END, 5386 .readfn = aa64_fpcr_read, .writefn = aa64_fpcr_write }, 5387 { .name = "FPSR", .state = ARM_CP_STATE_AA64, 5388 .opc0 = 3, .opc1 = 3, .opc2 = 1, .crn = 4, .crm = 4, 5389 .access = PL0_RW, .type = ARM_CP_FPU | ARM_CP_SUPPRESS_TB_END, 5390 .readfn = aa64_fpsr_read, .writefn = aa64_fpsr_write }, 5391 { .name = "DCZID_EL0", .state = ARM_CP_STATE_AA64, 5392 .opc0 = 3, .opc1 = 3, .opc2 = 7, .crn = 0, .crm = 0, 5393 .access = PL0_R, .type = ARM_CP_NO_RAW, 5394 .fgt = FGT_DCZID_EL0, 5395 .readfn = aa64_dczid_read }, 5396 { .name = "DC_ZVA", .state = ARM_CP_STATE_AA64, 5397 .opc0 = 1, .opc1 = 3, .crn = 7, .crm = 4, .opc2 = 1, 5398 .access = PL0_W, .type = ARM_CP_DC_ZVA, 5399 #ifndef CONFIG_USER_ONLY 5400 /* Avoid overhead of an access check that always passes in user-mode */ 5401 .accessfn = aa64_zva_access, 5402 .fgt = FGT_DCZVA, 5403 #endif 5404 }, 5405 { .name = "CURRENTEL", .state = ARM_CP_STATE_AA64, 5406 .opc0 = 3, .opc1 = 0, .opc2 = 2, .crn = 4, .crm = 2, 5407 .access = PL1_R, .type = ARM_CP_CURRENTEL }, 5408 /* 5409 * Instruction cache ops. All of these except `IC IVAU` NOP because we 5410 * don't emulate caches. 5411 */ 5412 { .name = "IC_IALLUIS", .state = ARM_CP_STATE_AA64, 5413 .opc0 = 1, .opc1 = 0, .crn = 7, .crm = 1, .opc2 = 0, 5414 .access = PL1_W, .type = ARM_CP_NOP, 5415 .fgt = FGT_ICIALLUIS, 5416 .accessfn = access_ticab }, 5417 { .name = "IC_IALLU", .state = ARM_CP_STATE_AA64, 5418 .opc0 = 1, .opc1 = 0, .crn = 7, .crm = 5, .opc2 = 0, 5419 .access = PL1_W, .type = ARM_CP_NOP, 5420 .fgt = FGT_ICIALLU, 5421 .accessfn = access_tocu }, 5422 { .name = "IC_IVAU", .state = ARM_CP_STATE_AA64, 5423 .opc0 = 1, .opc1 = 3, .crn = 7, .crm = 5, .opc2 = 1, 5424 .access = PL0_W, 5425 .fgt = FGT_ICIVAU, 5426 .accessfn = access_tocu, 5427 #ifdef CONFIG_USER_ONLY 5428 .type = ARM_CP_NO_RAW, 5429 .writefn = ic_ivau_write 5430 #else 5431 .type = ARM_CP_NOP 5432 #endif 5433 }, 5434 /* Cache ops: all NOPs since we don't emulate caches */ 5435 { .name = "DC_IVAC", .state = ARM_CP_STATE_AA64, 5436 .opc0 = 1, .opc1 = 0, .crn = 7, .crm = 6, .opc2 = 1, 5437 .access = PL1_W, .accessfn = aa64_cacheop_poc_access, 5438 .fgt = FGT_DCIVAC, 5439 .type = ARM_CP_NOP }, 5440 { .name = "DC_ISW", .state = ARM_CP_STATE_AA64, 5441 .opc0 = 1, .opc1 = 0, .crn = 7, .crm = 6, .opc2 = 2, 5442 .fgt = FGT_DCISW, 5443 .access = PL1_W, .accessfn = access_tsw, .type = ARM_CP_NOP }, 5444 { .name = "DC_CVAC", .state = ARM_CP_STATE_AA64, 5445 .opc0 = 1, .opc1 = 3, .crn = 7, .crm = 10, .opc2 = 1, 5446 .access = PL0_W, .type = ARM_CP_NOP, 5447 .fgt = FGT_DCCVAC, 5448 .accessfn = aa64_cacheop_poc_access }, 5449 { .name = "DC_CSW", .state = ARM_CP_STATE_AA64, 5450 .opc0 = 1, .opc1 = 0, .crn = 7, .crm = 10, .opc2 = 2, 5451 .fgt = FGT_DCCSW, 5452 .access = PL1_W, .accessfn = access_tsw, .type = ARM_CP_NOP }, 5453 { .name = "DC_CVAU", .state = ARM_CP_STATE_AA64, 5454 .opc0 = 1, .opc1 = 3, .crn = 7, .crm = 11, .opc2 = 1, 5455 .access = PL0_W, .type = ARM_CP_NOP, 5456 .fgt = FGT_DCCVAU, 5457 .accessfn = access_tocu }, 5458 { .name = "DC_CIVAC", .state = ARM_CP_STATE_AA64, 5459 .opc0 = 1, .opc1 = 3, .crn = 7, .crm = 14, .opc2 = 1, 5460 .access = PL0_W, .type = ARM_CP_NOP, 5461 .fgt = FGT_DCCIVAC, 5462 .accessfn = aa64_cacheop_poc_access }, 5463 { .name = "DC_CISW", .state = ARM_CP_STATE_AA64, 5464 .opc0 = 1, .opc1 = 0, .crn = 7, .crm = 14, .opc2 = 2, 5465 .fgt = FGT_DCCISW, 5466 .access = PL1_W, .accessfn = access_tsw, .type = ARM_CP_NOP }, 5467 /* TLBI operations */ 5468 { .name = "TLBI_VMALLE1IS", .state = ARM_CP_STATE_AA64, 5469 .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 3, .opc2 = 0, 5470 .access = PL1_W, .accessfn = access_ttlbis, .type = ARM_CP_NO_RAW, 5471 .fgt = FGT_TLBIVMALLE1IS, 5472 .writefn = tlbi_aa64_vmalle1is_write }, 5473 { .name = "TLBI_VAE1IS", .state = ARM_CP_STATE_AA64, 5474 .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 3, .opc2 = 1, 5475 .access = PL1_W, .accessfn = access_ttlbis, .type = ARM_CP_NO_RAW, 5476 .fgt = FGT_TLBIVAE1IS, 5477 .writefn = tlbi_aa64_vae1is_write }, 5478 { .name = "TLBI_ASIDE1IS", .state = ARM_CP_STATE_AA64, 5479 .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 3, .opc2 = 2, 5480 .access = PL1_W, .accessfn = access_ttlbis, .type = ARM_CP_NO_RAW, 5481 .fgt = FGT_TLBIASIDE1IS, 5482 .writefn = tlbi_aa64_vmalle1is_write }, 5483 { .name = "TLBI_VAAE1IS", .state = ARM_CP_STATE_AA64, 5484 .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 3, .opc2 = 3, 5485 .access = PL1_W, .accessfn = access_ttlbis, .type = ARM_CP_NO_RAW, 5486 .fgt = FGT_TLBIVAAE1IS, 5487 .writefn = tlbi_aa64_vae1is_write }, 5488 { .name = "TLBI_VALE1IS", .state = ARM_CP_STATE_AA64, 5489 .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 3, .opc2 = 5, 5490 .access = PL1_W, .accessfn = access_ttlbis, .type = ARM_CP_NO_RAW, 5491 .fgt = FGT_TLBIVALE1IS, 5492 .writefn = tlbi_aa64_vae1is_write }, 5493 { .name = "TLBI_VAALE1IS", .state = ARM_CP_STATE_AA64, 5494 .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 3, .opc2 = 7, 5495 .access = PL1_W, .accessfn = access_ttlbis, .type = ARM_CP_NO_RAW, 5496 .fgt = FGT_TLBIVAALE1IS, 5497 .writefn = tlbi_aa64_vae1is_write }, 5498 { .name = "TLBI_VMALLE1", .state = ARM_CP_STATE_AA64, 5499 .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 7, .opc2 = 0, 5500 .access = PL1_W, .accessfn = access_ttlb, .type = ARM_CP_NO_RAW, 5501 .fgt = FGT_TLBIVMALLE1, 5502 .writefn = tlbi_aa64_vmalle1_write }, 5503 { .name = "TLBI_VAE1", .state = ARM_CP_STATE_AA64, 5504 .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 7, .opc2 = 1, 5505 .access = PL1_W, .accessfn = access_ttlb, .type = ARM_CP_NO_RAW, 5506 .fgt = FGT_TLBIVAE1, 5507 .writefn = tlbi_aa64_vae1_write }, 5508 { .name = "TLBI_ASIDE1", .state = ARM_CP_STATE_AA64, 5509 .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 7, .opc2 = 2, 5510 .access = PL1_W, .accessfn = access_ttlb, .type = ARM_CP_NO_RAW, 5511 .fgt = FGT_TLBIASIDE1, 5512 .writefn = tlbi_aa64_vmalle1_write }, 5513 { .name = "TLBI_VAAE1", .state = ARM_CP_STATE_AA64, 5514 .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 7, .opc2 = 3, 5515 .access = PL1_W, .accessfn = access_ttlb, .type = ARM_CP_NO_RAW, 5516 .fgt = FGT_TLBIVAAE1, 5517 .writefn = tlbi_aa64_vae1_write }, 5518 { .name = "TLBI_VALE1", .state = ARM_CP_STATE_AA64, 5519 .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 7, .opc2 = 5, 5520 .access = PL1_W, .accessfn = access_ttlb, .type = ARM_CP_NO_RAW, 5521 .fgt = FGT_TLBIVALE1, 5522 .writefn = tlbi_aa64_vae1_write }, 5523 { .name = "TLBI_VAALE1", .state = ARM_CP_STATE_AA64, 5524 .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 7, .opc2 = 7, 5525 .access = PL1_W, .accessfn = access_ttlb, .type = ARM_CP_NO_RAW, 5526 .fgt = FGT_TLBIVAALE1, 5527 .writefn = tlbi_aa64_vae1_write }, 5528 { .name = "TLBI_IPAS2E1IS", .state = ARM_CP_STATE_AA64, 5529 .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 0, .opc2 = 1, 5530 .access = PL2_W, .type = ARM_CP_NO_RAW, 5531 .writefn = tlbi_aa64_ipas2e1is_write }, 5532 { .name = "TLBI_IPAS2LE1IS", .state = ARM_CP_STATE_AA64, 5533 .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 0, .opc2 = 5, 5534 .access = PL2_W, .type = ARM_CP_NO_RAW, 5535 .writefn = tlbi_aa64_ipas2e1is_write }, 5536 { .name = "TLBI_ALLE1IS", .state = ARM_CP_STATE_AA64, 5537 .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 3, .opc2 = 4, 5538 .access = PL2_W, .type = ARM_CP_NO_RAW, 5539 .writefn = tlbi_aa64_alle1is_write }, 5540 { .name = "TLBI_VMALLS12E1IS", .state = ARM_CP_STATE_AA64, 5541 .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 3, .opc2 = 6, 5542 .access = PL2_W, .type = ARM_CP_NO_RAW, 5543 .writefn = tlbi_aa64_alle1is_write }, 5544 { .name = "TLBI_IPAS2E1", .state = ARM_CP_STATE_AA64, 5545 .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 4, .opc2 = 1, 5546 .access = PL2_W, .type = ARM_CP_NO_RAW, 5547 .writefn = tlbi_aa64_ipas2e1_write }, 5548 { .name = "TLBI_IPAS2LE1", .state = ARM_CP_STATE_AA64, 5549 .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 4, .opc2 = 5, 5550 .access = PL2_W, .type = ARM_CP_NO_RAW, 5551 .writefn = tlbi_aa64_ipas2e1_write }, 5552 { .name = "TLBI_ALLE1", .state = ARM_CP_STATE_AA64, 5553 .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 7, .opc2 = 4, 5554 .access = PL2_W, .type = ARM_CP_NO_RAW, 5555 .writefn = tlbi_aa64_alle1_write }, 5556 { .name = "TLBI_VMALLS12E1", .state = ARM_CP_STATE_AA64, 5557 .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 7, .opc2 = 6, 5558 .access = PL2_W, .type = ARM_CP_NO_RAW, 5559 .writefn = tlbi_aa64_alle1is_write }, 5560 #ifndef CONFIG_USER_ONLY 5561 /* 64 bit address translation operations */ 5562 { .name = "AT_S1E1R", .state = ARM_CP_STATE_AA64, 5563 .opc0 = 1, .opc1 = 0, .crn = 7, .crm = 8, .opc2 = 0, 5564 .access = PL1_W, .type = ARM_CP_NO_RAW | ARM_CP_RAISES_EXC, 5565 .fgt = FGT_ATS1E1R, 5566 .accessfn = at_e012_access, .writefn = ats_write64 }, 5567 { .name = "AT_S1E1W", .state = ARM_CP_STATE_AA64, 5568 .opc0 = 1, .opc1 = 0, .crn = 7, .crm = 8, .opc2 = 1, 5569 .access = PL1_W, .type = ARM_CP_NO_RAW | ARM_CP_RAISES_EXC, 5570 .fgt = FGT_ATS1E1W, 5571 .accessfn = at_e012_access, .writefn = ats_write64 }, 5572 { .name = "AT_S1E0R", .state = ARM_CP_STATE_AA64, 5573 .opc0 = 1, .opc1 = 0, .crn = 7, .crm = 8, .opc2 = 2, 5574 .access = PL1_W, .type = ARM_CP_NO_RAW | ARM_CP_RAISES_EXC, 5575 .fgt = FGT_ATS1E0R, 5576 .accessfn = at_e012_access, .writefn = ats_write64 }, 5577 { .name = "AT_S1E0W", .state = ARM_CP_STATE_AA64, 5578 .opc0 = 1, .opc1 = 0, .crn = 7, .crm = 8, .opc2 = 3, 5579 .access = PL1_W, .type = ARM_CP_NO_RAW | ARM_CP_RAISES_EXC, 5580 .fgt = FGT_ATS1E0W, 5581 .accessfn = at_e012_access, .writefn = ats_write64 }, 5582 { .name = "AT_S12E1R", .state = ARM_CP_STATE_AA64, 5583 .opc0 = 1, .opc1 = 4, .crn = 7, .crm = 8, .opc2 = 4, 5584 .access = PL2_W, .type = ARM_CP_NO_RAW | ARM_CP_RAISES_EXC, 5585 .accessfn = at_e012_access, .writefn = ats_write64 }, 5586 { .name = "AT_S12E1W", .state = ARM_CP_STATE_AA64, 5587 .opc0 = 1, .opc1 = 4, .crn = 7, .crm = 8, .opc2 = 5, 5588 .access = PL2_W, .type = ARM_CP_NO_RAW | ARM_CP_RAISES_EXC, 5589 .accessfn = at_e012_access, .writefn = ats_write64 }, 5590 { .name = "AT_S12E0R", .state = ARM_CP_STATE_AA64, 5591 .opc0 = 1, .opc1 = 4, .crn = 7, .crm = 8, .opc2 = 6, 5592 .access = PL2_W, .type = ARM_CP_NO_RAW | ARM_CP_RAISES_EXC, 5593 .accessfn = at_e012_access, .writefn = ats_write64 }, 5594 { .name = "AT_S12E0W", .state = ARM_CP_STATE_AA64, 5595 .opc0 = 1, .opc1 = 4, .crn = 7, .crm = 8, .opc2 = 7, 5596 .access = PL2_W, .type = ARM_CP_NO_RAW | ARM_CP_RAISES_EXC, 5597 .accessfn = at_e012_access, .writefn = ats_write64 }, 5598 /* AT S1E2* are elsewhere as they UNDEF from EL3 if EL2 is not present */ 5599 { .name = "AT_S1E3R", .state = ARM_CP_STATE_AA64, 5600 .opc0 = 1, .opc1 = 6, .crn = 7, .crm = 8, .opc2 = 0, 5601 .access = PL3_W, .type = ARM_CP_NO_RAW | ARM_CP_RAISES_EXC, 5602 .writefn = ats_write64 }, 5603 { .name = "AT_S1E3W", .state = ARM_CP_STATE_AA64, 5604 .opc0 = 1, .opc1 = 6, .crn = 7, .crm = 8, .opc2 = 1, 5605 .access = PL3_W, .type = ARM_CP_NO_RAW | ARM_CP_RAISES_EXC, 5606 .writefn = ats_write64 }, 5607 { .name = "PAR_EL1", .state = ARM_CP_STATE_AA64, 5608 .type = ARM_CP_ALIAS, 5609 .opc0 = 3, .opc1 = 0, .crn = 7, .crm = 4, .opc2 = 0, 5610 .access = PL1_RW, .resetvalue = 0, 5611 .fgt = FGT_PAR_EL1, 5612 .fieldoffset = offsetof(CPUARMState, cp15.par_el[1]), 5613 .writefn = par_write }, 5614 #endif 5615 /* TLB invalidate last level of translation table walk */ 5616 { .name = "TLBIMVALIS", .cp = 15, .opc1 = 0, .crn = 8, .crm = 3, .opc2 = 5, 5617 .type = ARM_CP_NO_RAW, .access = PL1_W, .accessfn = access_ttlbis, 5618 .writefn = tlbimva_is_write }, 5619 { .name = "TLBIMVAALIS", .cp = 15, .opc1 = 0, .crn = 8, .crm = 3, .opc2 = 7, 5620 .type = ARM_CP_NO_RAW, .access = PL1_W, .accessfn = access_ttlbis, 5621 .writefn = tlbimvaa_is_write }, 5622 { .name = "TLBIMVAL", .cp = 15, .opc1 = 0, .crn = 8, .crm = 7, .opc2 = 5, 5623 .type = ARM_CP_NO_RAW, .access = PL1_W, .accessfn = access_ttlb, 5624 .writefn = tlbimva_write }, 5625 { .name = "TLBIMVAAL", .cp = 15, .opc1 = 0, .crn = 8, .crm = 7, .opc2 = 7, 5626 .type = ARM_CP_NO_RAW, .access = PL1_W, .accessfn = access_ttlb, 5627 .writefn = tlbimvaa_write }, 5628 { .name = "TLBIMVALH", .cp = 15, .opc1 = 4, .crn = 8, .crm = 7, .opc2 = 5, 5629 .type = ARM_CP_NO_RAW, .access = PL2_W, 5630 .writefn = tlbimva_hyp_write }, 5631 { .name = "TLBIMVALHIS", 5632 .cp = 15, .opc1 = 4, .crn = 8, .crm = 3, .opc2 = 5, 5633 .type = ARM_CP_NO_RAW, .access = PL2_W, 5634 .writefn = tlbimva_hyp_is_write }, 5635 { .name = "TLBIIPAS2", 5636 .cp = 15, .opc1 = 4, .crn = 8, .crm = 4, .opc2 = 1, 5637 .type = ARM_CP_NO_RAW, .access = PL2_W, 5638 .writefn = tlbiipas2_hyp_write }, 5639 { .name = "TLBIIPAS2IS", 5640 .cp = 15, .opc1 = 4, .crn = 8, .crm = 0, .opc2 = 1, 5641 .type = ARM_CP_NO_RAW, .access = PL2_W, 5642 .writefn = tlbiipas2is_hyp_write }, 5643 { .name = "TLBIIPAS2L", 5644 .cp = 15, .opc1 = 4, .crn = 8, .crm = 4, .opc2 = 5, 5645 .type = ARM_CP_NO_RAW, .access = PL2_W, 5646 .writefn = tlbiipas2_hyp_write }, 5647 { .name = "TLBIIPAS2LIS", 5648 .cp = 15, .opc1 = 4, .crn = 8, .crm = 0, .opc2 = 5, 5649 .type = ARM_CP_NO_RAW, .access = PL2_W, 5650 .writefn = tlbiipas2is_hyp_write }, 5651 /* 32 bit cache operations */ 5652 { .name = "ICIALLUIS", .cp = 15, .opc1 = 0, .crn = 7, .crm = 1, .opc2 = 0, 5653 .type = ARM_CP_NOP, .access = PL1_W, .accessfn = access_ticab }, 5654 { .name = "BPIALLUIS", .cp = 15, .opc1 = 0, .crn = 7, .crm = 1, .opc2 = 6, 5655 .type = ARM_CP_NOP, .access = PL1_W }, 5656 { .name = "ICIALLU", .cp = 15, .opc1 = 0, .crn = 7, .crm = 5, .opc2 = 0, 5657 .type = ARM_CP_NOP, .access = PL1_W, .accessfn = access_tocu }, 5658 { .name = "ICIMVAU", .cp = 15, .opc1 = 0, .crn = 7, .crm = 5, .opc2 = 1, 5659 .type = ARM_CP_NOP, .access = PL1_W, .accessfn = access_tocu }, 5660 { .name = "BPIALL", .cp = 15, .opc1 = 0, .crn = 7, .crm = 5, .opc2 = 6, 5661 .type = ARM_CP_NOP, .access = PL1_W }, 5662 { .name = "BPIMVA", .cp = 15, .opc1 = 0, .crn = 7, .crm = 5, .opc2 = 7, 5663 .type = ARM_CP_NOP, .access = PL1_W }, 5664 { .name = "DCIMVAC", .cp = 15, .opc1 = 0, .crn = 7, .crm = 6, .opc2 = 1, 5665 .type = ARM_CP_NOP, .access = PL1_W, .accessfn = aa64_cacheop_poc_access }, 5666 { .name = "DCISW", .cp = 15, .opc1 = 0, .crn = 7, .crm = 6, .opc2 = 2, 5667 .type = ARM_CP_NOP, .access = PL1_W, .accessfn = access_tsw }, 5668 { .name = "DCCMVAC", .cp = 15, .opc1 = 0, .crn = 7, .crm = 10, .opc2 = 1, 5669 .type = ARM_CP_NOP, .access = PL1_W, .accessfn = aa64_cacheop_poc_access }, 5670 { .name = "DCCSW", .cp = 15, .opc1 = 0, .crn = 7, .crm = 10, .opc2 = 2, 5671 .type = ARM_CP_NOP, .access = PL1_W, .accessfn = access_tsw }, 5672 { .name = "DCCMVAU", .cp = 15, .opc1 = 0, .crn = 7, .crm = 11, .opc2 = 1, 5673 .type = ARM_CP_NOP, .access = PL1_W, .accessfn = access_tocu }, 5674 { .name = "DCCIMVAC", .cp = 15, .opc1 = 0, .crn = 7, .crm = 14, .opc2 = 1, 5675 .type = ARM_CP_NOP, .access = PL1_W, .accessfn = aa64_cacheop_poc_access }, 5676 { .name = "DCCISW", .cp = 15, .opc1 = 0, .crn = 7, .crm = 14, .opc2 = 2, 5677 .type = ARM_CP_NOP, .access = PL1_W, .accessfn = access_tsw }, 5678 /* MMU Domain access control / MPU write buffer control */ 5679 { .name = "DACR", .cp = 15, .opc1 = 0, .crn = 3, .crm = 0, .opc2 = 0, 5680 .access = PL1_RW, .accessfn = access_tvm_trvm, .resetvalue = 0, 5681 .writefn = dacr_write, .raw_writefn = raw_write, 5682 .bank_fieldoffsets = { offsetoflow32(CPUARMState, cp15.dacr_s), 5683 offsetoflow32(CPUARMState, cp15.dacr_ns) } }, 5684 { .name = "ELR_EL1", .state = ARM_CP_STATE_AA64, 5685 .type = ARM_CP_ALIAS, 5686 .opc0 = 3, .opc1 = 0, .crn = 4, .crm = 0, .opc2 = 1, 5687 .access = PL1_RW, 5688 .fieldoffset = offsetof(CPUARMState, elr_el[1]) }, 5689 { .name = "SPSR_EL1", .state = ARM_CP_STATE_AA64, 5690 .type = ARM_CP_ALIAS, 5691 .opc0 = 3, .opc1 = 0, .crn = 4, .crm = 0, .opc2 = 0, 5692 .access = PL1_RW, 5693 .fieldoffset = offsetof(CPUARMState, banked_spsr[BANK_SVC]) }, 5694 /* 5695 * We rely on the access checks not allowing the guest to write to the 5696 * state field when SPSel indicates that it's being used as the stack 5697 * pointer. 5698 */ 5699 { .name = "SP_EL0", .state = ARM_CP_STATE_AA64, 5700 .opc0 = 3, .opc1 = 0, .crn = 4, .crm = 1, .opc2 = 0, 5701 .access = PL1_RW, .accessfn = sp_el0_access, 5702 .type = ARM_CP_ALIAS, 5703 .fieldoffset = offsetof(CPUARMState, sp_el[0]) }, 5704 { .name = "SP_EL1", .state = ARM_CP_STATE_AA64, 5705 .opc0 = 3, .opc1 = 4, .crn = 4, .crm = 1, .opc2 = 0, 5706 .access = PL2_RW, .type = ARM_CP_ALIAS | ARM_CP_EL3_NO_EL2_KEEP, 5707 .fieldoffset = offsetof(CPUARMState, sp_el[1]) }, 5708 { .name = "SPSel", .state = ARM_CP_STATE_AA64, 5709 .opc0 = 3, .opc1 = 0, .crn = 4, .crm = 2, .opc2 = 0, 5710 .type = ARM_CP_NO_RAW, 5711 .access = PL1_RW, .readfn = spsel_read, .writefn = spsel_write }, 5712 { .name = "FPEXC32_EL2", .state = ARM_CP_STATE_AA64, 5713 .opc0 = 3, .opc1 = 4, .crn = 5, .crm = 3, .opc2 = 0, 5714 .access = PL2_RW, 5715 .type = ARM_CP_ALIAS | ARM_CP_FPU | ARM_CP_EL3_NO_EL2_KEEP, 5716 .fieldoffset = offsetof(CPUARMState, vfp.xregs[ARM_VFP_FPEXC]) }, 5717 { .name = "DACR32_EL2", .state = ARM_CP_STATE_AA64, 5718 .opc0 = 3, .opc1 = 4, .crn = 3, .crm = 0, .opc2 = 0, 5719 .access = PL2_RW, .resetvalue = 0, .type = ARM_CP_EL3_NO_EL2_KEEP, 5720 .writefn = dacr_write, .raw_writefn = raw_write, 5721 .fieldoffset = offsetof(CPUARMState, cp15.dacr32_el2) }, 5722 { .name = "IFSR32_EL2", .state = ARM_CP_STATE_AA64, 5723 .opc0 = 3, .opc1 = 4, .crn = 5, .crm = 0, .opc2 = 1, 5724 .access = PL2_RW, .resetvalue = 0, .type = ARM_CP_EL3_NO_EL2_KEEP, 5725 .fieldoffset = offsetof(CPUARMState, cp15.ifsr32_el2) }, 5726 { .name = "SPSR_IRQ", .state = ARM_CP_STATE_AA64, 5727 .type = ARM_CP_ALIAS, 5728 .opc0 = 3, .opc1 = 4, .crn = 4, .crm = 3, .opc2 = 0, 5729 .access = PL2_RW, 5730 .fieldoffset = offsetof(CPUARMState, banked_spsr[BANK_IRQ]) }, 5731 { .name = "SPSR_ABT", .state = ARM_CP_STATE_AA64, 5732 .type = ARM_CP_ALIAS, 5733 .opc0 = 3, .opc1 = 4, .crn = 4, .crm = 3, .opc2 = 1, 5734 .access = PL2_RW, 5735 .fieldoffset = offsetof(CPUARMState, banked_spsr[BANK_ABT]) }, 5736 { .name = "SPSR_UND", .state = ARM_CP_STATE_AA64, 5737 .type = ARM_CP_ALIAS, 5738 .opc0 = 3, .opc1 = 4, .crn = 4, .crm = 3, .opc2 = 2, 5739 .access = PL2_RW, 5740 .fieldoffset = offsetof(CPUARMState, banked_spsr[BANK_UND]) }, 5741 { .name = "SPSR_FIQ", .state = ARM_CP_STATE_AA64, 5742 .type = ARM_CP_ALIAS, 5743 .opc0 = 3, .opc1 = 4, .crn = 4, .crm = 3, .opc2 = 3, 5744 .access = PL2_RW, 5745 .fieldoffset = offsetof(CPUARMState, banked_spsr[BANK_FIQ]) }, 5746 { .name = "MDCR_EL3", .state = ARM_CP_STATE_AA64, 5747 .type = ARM_CP_IO, 5748 .opc0 = 3, .opc1 = 6, .crn = 1, .crm = 3, .opc2 = 1, 5749 .resetvalue = 0, 5750 .access = PL3_RW, 5751 .writefn = mdcr_el3_write, 5752 .fieldoffset = offsetof(CPUARMState, cp15.mdcr_el3) }, 5753 { .name = "SDCR", .type = ARM_CP_ALIAS | ARM_CP_IO, 5754 .cp = 15, .opc1 = 0, .crn = 1, .crm = 3, .opc2 = 1, 5755 .access = PL1_RW, .accessfn = access_trap_aa32s_el1, 5756 .writefn = sdcr_write, 5757 .fieldoffset = offsetoflow32(CPUARMState, cp15.mdcr_el3) }, 5758 }; 5759 5760 static void do_hcr_write(CPUARMState *env, uint64_t value, uint64_t valid_mask) 5761 { 5762 ARMCPU *cpu = env_archcpu(env); 5763 5764 if (arm_feature(env, ARM_FEATURE_V8)) { 5765 valid_mask |= MAKE_64BIT_MASK(0, 34); /* ARMv8.0 */ 5766 } else { 5767 valid_mask |= MAKE_64BIT_MASK(0, 28); /* ARMv7VE */ 5768 } 5769 5770 if (arm_feature(env, ARM_FEATURE_EL3)) { 5771 valid_mask &= ~HCR_HCD; 5772 } else if (cpu->psci_conduit != QEMU_PSCI_CONDUIT_SMC) { 5773 /* 5774 * Architecturally HCR.TSC is RES0 if EL3 is not implemented. 5775 * However, if we're using the SMC PSCI conduit then QEMU is 5776 * effectively acting like EL3 firmware and so the guest at 5777 * EL2 should retain the ability to prevent EL1 from being 5778 * able to make SMC calls into the ersatz firmware, so in 5779 * that case HCR.TSC should be read/write. 5780 */ 5781 valid_mask &= ~HCR_TSC; 5782 } 5783 5784 if (arm_feature(env, ARM_FEATURE_AARCH64)) { 5785 if (cpu_isar_feature(aa64_vh, cpu)) { 5786 valid_mask |= HCR_E2H; 5787 } 5788 if (cpu_isar_feature(aa64_ras, cpu)) { 5789 valid_mask |= HCR_TERR | HCR_TEA; 5790 } 5791 if (cpu_isar_feature(aa64_lor, cpu)) { 5792 valid_mask |= HCR_TLOR; 5793 } 5794 if (cpu_isar_feature(aa64_pauth, cpu)) { 5795 valid_mask |= HCR_API | HCR_APK; 5796 } 5797 if (cpu_isar_feature(aa64_mte, cpu)) { 5798 valid_mask |= HCR_ATA | HCR_DCT | HCR_TID5; 5799 } 5800 if (cpu_isar_feature(aa64_scxtnum, cpu)) { 5801 valid_mask |= HCR_ENSCXT; 5802 } 5803 if (cpu_isar_feature(aa64_fwb, cpu)) { 5804 valid_mask |= HCR_FWB; 5805 } 5806 if (cpu_isar_feature(aa64_rme, cpu)) { 5807 valid_mask |= HCR_GPF; 5808 } 5809 } 5810 5811 if (cpu_isar_feature(any_evt, cpu)) { 5812 valid_mask |= HCR_TTLBIS | HCR_TTLBOS | HCR_TICAB | HCR_TOCU | HCR_TID4; 5813 } else if (cpu_isar_feature(any_half_evt, cpu)) { 5814 valid_mask |= HCR_TICAB | HCR_TOCU | HCR_TID4; 5815 } 5816 5817 /* Clear RES0 bits. */ 5818 value &= valid_mask; 5819 5820 /* 5821 * These bits change the MMU setup: 5822 * HCR_VM enables stage 2 translation 5823 * HCR_PTW forbids certain page-table setups 5824 * HCR_DC disables stage1 and enables stage2 translation 5825 * HCR_DCT enables tagging on (disabled) stage1 translation 5826 * HCR_FWB changes the interpretation of stage2 descriptor bits 5827 */ 5828 if ((env->cp15.hcr_el2 ^ value) & 5829 (HCR_VM | HCR_PTW | HCR_DC | HCR_DCT | HCR_FWB)) { 5830 tlb_flush(CPU(cpu)); 5831 } 5832 env->cp15.hcr_el2 = value; 5833 5834 /* 5835 * Updates to VI and VF require us to update the status of 5836 * virtual interrupts, which are the logical OR of these bits 5837 * and the state of the input lines from the GIC. (This requires 5838 * that we have the iothread lock, which is done by marking the 5839 * reginfo structs as ARM_CP_IO.) 5840 * Note that if a write to HCR pends a VIRQ or VFIQ it is never 5841 * possible for it to be taken immediately, because VIRQ and 5842 * VFIQ are masked unless running at EL0 or EL1, and HCR 5843 * can only be written at EL2. 5844 */ 5845 g_assert(qemu_mutex_iothread_locked()); 5846 arm_cpu_update_virq(cpu); 5847 arm_cpu_update_vfiq(cpu); 5848 arm_cpu_update_vserr(cpu); 5849 } 5850 5851 static void hcr_write(CPUARMState *env, const ARMCPRegInfo *ri, uint64_t value) 5852 { 5853 do_hcr_write(env, value, 0); 5854 } 5855 5856 static void hcr_writehigh(CPUARMState *env, const ARMCPRegInfo *ri, 5857 uint64_t value) 5858 { 5859 /* Handle HCR2 write, i.e. write to high half of HCR_EL2 */ 5860 value = deposit64(env->cp15.hcr_el2, 32, 32, value); 5861 do_hcr_write(env, value, MAKE_64BIT_MASK(0, 32)); 5862 } 5863 5864 static void hcr_writelow(CPUARMState *env, const ARMCPRegInfo *ri, 5865 uint64_t value) 5866 { 5867 /* Handle HCR write, i.e. write to low half of HCR_EL2 */ 5868 value = deposit64(env->cp15.hcr_el2, 0, 32, value); 5869 do_hcr_write(env, value, MAKE_64BIT_MASK(32, 32)); 5870 } 5871 5872 /* 5873 * Return the effective value of HCR_EL2, at the given security state. 5874 * Bits that are not included here: 5875 * RW (read from SCR_EL3.RW as needed) 5876 */ 5877 uint64_t arm_hcr_el2_eff_secstate(CPUARMState *env, ARMSecuritySpace space) 5878 { 5879 uint64_t ret = env->cp15.hcr_el2; 5880 5881 assert(space != ARMSS_Root); 5882 5883 if (!arm_is_el2_enabled_secstate(env, space)) { 5884 /* 5885 * "This register has no effect if EL2 is not enabled in the 5886 * current Security state". This is ARMv8.4-SecEL2 speak for 5887 * !(SCR_EL3.NS==1 || SCR_EL3.EEL2==1). 5888 * 5889 * Prior to that, the language was "In an implementation that 5890 * includes EL3, when the value of SCR_EL3.NS is 0 the PE behaves 5891 * as if this field is 0 for all purposes other than a direct 5892 * read or write access of HCR_EL2". With lots of enumeration 5893 * on a per-field basis. In current QEMU, this is condition 5894 * is arm_is_secure_below_el3. 5895 * 5896 * Since the v8.4 language applies to the entire register, and 5897 * appears to be backward compatible, use that. 5898 */ 5899 return 0; 5900 } 5901 5902 /* 5903 * For a cpu that supports both aarch64 and aarch32, we can set bits 5904 * in HCR_EL2 (e.g. via EL3) that are RES0 when we enter EL2 as aa32. 5905 * Ignore all of the bits in HCR+HCR2 that are not valid for aarch32. 5906 */ 5907 if (!arm_el_is_aa64(env, 2)) { 5908 uint64_t aa32_valid; 5909 5910 /* 5911 * These bits are up-to-date as of ARMv8.6. 5912 * For HCR, it's easiest to list just the 2 bits that are invalid. 5913 * For HCR2, list those that are valid. 5914 */ 5915 aa32_valid = MAKE_64BIT_MASK(0, 32) & ~(HCR_RW | HCR_TDZ); 5916 aa32_valid |= (HCR_CD | HCR_ID | HCR_TERR | HCR_TEA | HCR_MIOCNCE | 5917 HCR_TID4 | HCR_TICAB | HCR_TOCU | HCR_TTLBIS); 5918 ret &= aa32_valid; 5919 } 5920 5921 if (ret & HCR_TGE) { 5922 /* These bits are up-to-date as of ARMv8.6. */ 5923 if (ret & HCR_E2H) { 5924 ret &= ~(HCR_VM | HCR_FMO | HCR_IMO | HCR_AMO | 5925 HCR_BSU_MASK | HCR_DC | HCR_TWI | HCR_TWE | 5926 HCR_TID0 | HCR_TID2 | HCR_TPCP | HCR_TPU | 5927 HCR_TDZ | HCR_CD | HCR_ID | HCR_MIOCNCE | 5928 HCR_TID4 | HCR_TICAB | HCR_TOCU | HCR_ENSCXT | 5929 HCR_TTLBIS | HCR_TTLBOS | HCR_TID5); 5930 } else { 5931 ret |= HCR_FMO | HCR_IMO | HCR_AMO; 5932 } 5933 ret &= ~(HCR_SWIO | HCR_PTW | HCR_VF | HCR_VI | HCR_VSE | 5934 HCR_FB | HCR_TID1 | HCR_TID3 | HCR_TSC | HCR_TACR | 5935 HCR_TSW | HCR_TTLB | HCR_TVM | HCR_HCD | HCR_TRVM | 5936 HCR_TLOR); 5937 } 5938 5939 return ret; 5940 } 5941 5942 uint64_t arm_hcr_el2_eff(CPUARMState *env) 5943 { 5944 if (arm_feature(env, ARM_FEATURE_M)) { 5945 return 0; 5946 } 5947 return arm_hcr_el2_eff_secstate(env, arm_security_space_below_el3(env)); 5948 } 5949 5950 /* 5951 * Corresponds to ARM pseudocode function ELIsInHost(). 5952 */ 5953 bool el_is_in_host(CPUARMState *env, int el) 5954 { 5955 uint64_t mask; 5956 5957 /* 5958 * Since we only care about E2H and TGE, we can skip arm_hcr_el2_eff(). 5959 * Perform the simplest bit tests first, and validate EL2 afterward. 5960 */ 5961 if (el & 1) { 5962 return false; /* EL1 or EL3 */ 5963 } 5964 5965 /* 5966 * Note that hcr_write() checks isar_feature_aa64_vh(), 5967 * aka HaveVirtHostExt(), in allowing HCR_E2H to be set. 5968 */ 5969 mask = el ? HCR_E2H : HCR_E2H | HCR_TGE; 5970 if ((env->cp15.hcr_el2 & mask) != mask) { 5971 return false; 5972 } 5973 5974 /* TGE and/or E2H set: double check those bits are currently legal. */ 5975 return arm_is_el2_enabled(env) && arm_el_is_aa64(env, 2); 5976 } 5977 5978 static void hcrx_write(CPUARMState *env, const ARMCPRegInfo *ri, 5979 uint64_t value) 5980 { 5981 uint64_t valid_mask = 0; 5982 5983 /* FEAT_MOPS adds MSCEn and MCE2 */ 5984 if (cpu_isar_feature(aa64_mops, env_archcpu(env))) { 5985 valid_mask |= HCRX_MSCEN | HCRX_MCE2; 5986 } 5987 5988 /* Clear RES0 bits. */ 5989 env->cp15.hcrx_el2 = value & valid_mask; 5990 } 5991 5992 static CPAccessResult access_hxen(CPUARMState *env, const ARMCPRegInfo *ri, 5993 bool isread) 5994 { 5995 if (arm_current_el(env) < 3 5996 && arm_feature(env, ARM_FEATURE_EL3) 5997 && !(env->cp15.scr_el3 & SCR_HXEN)) { 5998 return CP_ACCESS_TRAP_EL3; 5999 } 6000 return CP_ACCESS_OK; 6001 } 6002 6003 static const ARMCPRegInfo hcrx_el2_reginfo = { 6004 .name = "HCRX_EL2", .state = ARM_CP_STATE_AA64, 6005 .opc0 = 3, .opc1 = 4, .crn = 1, .crm = 2, .opc2 = 2, 6006 .access = PL2_RW, .writefn = hcrx_write, .accessfn = access_hxen, 6007 .fieldoffset = offsetof(CPUARMState, cp15.hcrx_el2), 6008 }; 6009 6010 /* Return the effective value of HCRX_EL2. */ 6011 uint64_t arm_hcrx_el2_eff(CPUARMState *env) 6012 { 6013 /* 6014 * The bits in this register behave as 0 for all purposes other than 6015 * direct reads of the register if SCR_EL3.HXEn is 0. 6016 * If EL2 is not enabled in the current security state, then the 6017 * bit may behave as if 0, or as if 1, depending on the bit. 6018 * For the moment, we treat the EL2-disabled case as taking 6019 * priority over the HXEn-disabled case. This is true for the only 6020 * bit for a feature which we implement where the answer is different 6021 * for the two cases (MSCEn for FEAT_MOPS). 6022 * This may need to be revisited for future bits. 6023 */ 6024 if (!arm_is_el2_enabled(env)) { 6025 uint64_t hcrx = 0; 6026 if (cpu_isar_feature(aa64_mops, env_archcpu(env))) { 6027 /* MSCEn behaves as 1 if EL2 is not enabled */ 6028 hcrx |= HCRX_MSCEN; 6029 } 6030 return hcrx; 6031 } 6032 if (arm_feature(env, ARM_FEATURE_EL3) && !(env->cp15.scr_el3 & SCR_HXEN)) { 6033 return 0; 6034 } 6035 return env->cp15.hcrx_el2; 6036 } 6037 6038 static void cptr_el2_write(CPUARMState *env, const ARMCPRegInfo *ri, 6039 uint64_t value) 6040 { 6041 /* 6042 * For A-profile AArch32 EL3, if NSACR.CP10 6043 * is 0 then HCPTR.{TCP11,TCP10} ignore writes and read as 1. 6044 */ 6045 if (arm_feature(env, ARM_FEATURE_EL3) && !arm_el_is_aa64(env, 3) && 6046 !arm_is_secure(env) && !extract32(env->cp15.nsacr, 10, 1)) { 6047 uint64_t mask = R_HCPTR_TCP11_MASK | R_HCPTR_TCP10_MASK; 6048 value = (value & ~mask) | (env->cp15.cptr_el[2] & mask); 6049 } 6050 env->cp15.cptr_el[2] = value; 6051 } 6052 6053 static uint64_t cptr_el2_read(CPUARMState *env, const ARMCPRegInfo *ri) 6054 { 6055 /* 6056 * For A-profile AArch32 EL3, if NSACR.CP10 6057 * is 0 then HCPTR.{TCP11,TCP10} ignore writes and read as 1. 6058 */ 6059 uint64_t value = env->cp15.cptr_el[2]; 6060 6061 if (arm_feature(env, ARM_FEATURE_EL3) && !arm_el_is_aa64(env, 3) && 6062 !arm_is_secure(env) && !extract32(env->cp15.nsacr, 10, 1)) { 6063 value |= R_HCPTR_TCP11_MASK | R_HCPTR_TCP10_MASK; 6064 } 6065 return value; 6066 } 6067 6068 static const ARMCPRegInfo el2_cp_reginfo[] = { 6069 { .name = "HCR_EL2", .state = ARM_CP_STATE_AA64, 6070 .type = ARM_CP_IO, 6071 .opc0 = 3, .opc1 = 4, .crn = 1, .crm = 1, .opc2 = 0, 6072 .access = PL2_RW, .fieldoffset = offsetof(CPUARMState, cp15.hcr_el2), 6073 .writefn = hcr_write, .raw_writefn = raw_write }, 6074 { .name = "HCR", .state = ARM_CP_STATE_AA32, 6075 .type = ARM_CP_ALIAS | ARM_CP_IO, 6076 .cp = 15, .opc1 = 4, .crn = 1, .crm = 1, .opc2 = 0, 6077 .access = PL2_RW, .fieldoffset = offsetof(CPUARMState, cp15.hcr_el2), 6078 .writefn = hcr_writelow }, 6079 { .name = "HACR_EL2", .state = ARM_CP_STATE_BOTH, 6080 .opc0 = 3, .opc1 = 4, .crn = 1, .crm = 1, .opc2 = 7, 6081 .access = PL2_RW, .type = ARM_CP_CONST, .resetvalue = 0 }, 6082 { .name = "ELR_EL2", .state = ARM_CP_STATE_AA64, 6083 .type = ARM_CP_ALIAS, 6084 .opc0 = 3, .opc1 = 4, .crn = 4, .crm = 0, .opc2 = 1, 6085 .access = PL2_RW, 6086 .fieldoffset = offsetof(CPUARMState, elr_el[2]) }, 6087 { .name = "ESR_EL2", .state = ARM_CP_STATE_BOTH, 6088 .opc0 = 3, .opc1 = 4, .crn = 5, .crm = 2, .opc2 = 0, 6089 .access = PL2_RW, .fieldoffset = offsetof(CPUARMState, cp15.esr_el[2]) }, 6090 { .name = "FAR_EL2", .state = ARM_CP_STATE_BOTH, 6091 .opc0 = 3, .opc1 = 4, .crn = 6, .crm = 0, .opc2 = 0, 6092 .access = PL2_RW, .fieldoffset = offsetof(CPUARMState, cp15.far_el[2]) }, 6093 { .name = "HIFAR", .state = ARM_CP_STATE_AA32, 6094 .type = ARM_CP_ALIAS, 6095 .cp = 15, .opc1 = 4, .crn = 6, .crm = 0, .opc2 = 2, 6096 .access = PL2_RW, 6097 .fieldoffset = offsetofhigh32(CPUARMState, cp15.far_el[2]) }, 6098 { .name = "SPSR_EL2", .state = ARM_CP_STATE_AA64, 6099 .type = ARM_CP_ALIAS, 6100 .opc0 = 3, .opc1 = 4, .crn = 4, .crm = 0, .opc2 = 0, 6101 .access = PL2_RW, 6102 .fieldoffset = offsetof(CPUARMState, banked_spsr[BANK_HYP]) }, 6103 { .name = "VBAR_EL2", .state = ARM_CP_STATE_BOTH, 6104 .opc0 = 3, .opc1 = 4, .crn = 12, .crm = 0, .opc2 = 0, 6105 .access = PL2_RW, .writefn = vbar_write, 6106 .fieldoffset = offsetof(CPUARMState, cp15.vbar_el[2]), 6107 .resetvalue = 0 }, 6108 { .name = "SP_EL2", .state = ARM_CP_STATE_AA64, 6109 .opc0 = 3, .opc1 = 6, .crn = 4, .crm = 1, .opc2 = 0, 6110 .access = PL3_RW, .type = ARM_CP_ALIAS, 6111 .fieldoffset = offsetof(CPUARMState, sp_el[2]) }, 6112 { .name = "CPTR_EL2", .state = ARM_CP_STATE_BOTH, 6113 .opc0 = 3, .opc1 = 4, .crn = 1, .crm = 1, .opc2 = 2, 6114 .access = PL2_RW, .accessfn = cptr_access, .resetvalue = 0, 6115 .fieldoffset = offsetof(CPUARMState, cp15.cptr_el[2]), 6116 .readfn = cptr_el2_read, .writefn = cptr_el2_write }, 6117 { .name = "MAIR_EL2", .state = ARM_CP_STATE_BOTH, 6118 .opc0 = 3, .opc1 = 4, .crn = 10, .crm = 2, .opc2 = 0, 6119 .access = PL2_RW, .fieldoffset = offsetof(CPUARMState, cp15.mair_el[2]), 6120 .resetvalue = 0 }, 6121 { .name = "HMAIR1", .state = ARM_CP_STATE_AA32, 6122 .cp = 15, .opc1 = 4, .crn = 10, .crm = 2, .opc2 = 1, 6123 .access = PL2_RW, .type = ARM_CP_ALIAS, 6124 .fieldoffset = offsetofhigh32(CPUARMState, cp15.mair_el[2]) }, 6125 { .name = "AMAIR_EL2", .state = ARM_CP_STATE_BOTH, 6126 .opc0 = 3, .opc1 = 4, .crn = 10, .crm = 3, .opc2 = 0, 6127 .access = PL2_RW, .type = ARM_CP_CONST, 6128 .resetvalue = 0 }, 6129 /* HAMAIR1 is mapped to AMAIR_EL2[63:32] */ 6130 { .name = "HAMAIR1", .state = ARM_CP_STATE_AA32, 6131 .cp = 15, .opc1 = 4, .crn = 10, .crm = 3, .opc2 = 1, 6132 .access = PL2_RW, .type = ARM_CP_CONST, 6133 .resetvalue = 0 }, 6134 { .name = "AFSR0_EL2", .state = ARM_CP_STATE_BOTH, 6135 .opc0 = 3, .opc1 = 4, .crn = 5, .crm = 1, .opc2 = 0, 6136 .access = PL2_RW, .type = ARM_CP_CONST, 6137 .resetvalue = 0 }, 6138 { .name = "AFSR1_EL2", .state = ARM_CP_STATE_BOTH, 6139 .opc0 = 3, .opc1 = 4, .crn = 5, .crm = 1, .opc2 = 1, 6140 .access = PL2_RW, .type = ARM_CP_CONST, 6141 .resetvalue = 0 }, 6142 { .name = "TCR_EL2", .state = ARM_CP_STATE_BOTH, 6143 .opc0 = 3, .opc1 = 4, .crn = 2, .crm = 0, .opc2 = 2, 6144 .access = PL2_RW, .writefn = vmsa_tcr_el12_write, 6145 .raw_writefn = raw_write, 6146 .fieldoffset = offsetof(CPUARMState, cp15.tcr_el[2]) }, 6147 { .name = "VTCR", .state = ARM_CP_STATE_AA32, 6148 .cp = 15, .opc1 = 4, .crn = 2, .crm = 1, .opc2 = 2, 6149 .type = ARM_CP_ALIAS, 6150 .access = PL2_RW, .accessfn = access_el3_aa32ns, 6151 .fieldoffset = offsetoflow32(CPUARMState, cp15.vtcr_el2) }, 6152 { .name = "VTCR_EL2", .state = ARM_CP_STATE_AA64, 6153 .opc0 = 3, .opc1 = 4, .crn = 2, .crm = 1, .opc2 = 2, 6154 .access = PL2_RW, 6155 /* no .writefn needed as this can't cause an ASID change */ 6156 .fieldoffset = offsetof(CPUARMState, cp15.vtcr_el2) }, 6157 { .name = "VTTBR", .state = ARM_CP_STATE_AA32, 6158 .cp = 15, .opc1 = 6, .crm = 2, 6159 .type = ARM_CP_64BIT | ARM_CP_ALIAS, 6160 .access = PL2_RW, .accessfn = access_el3_aa32ns, 6161 .fieldoffset = offsetof(CPUARMState, cp15.vttbr_el2), 6162 .writefn = vttbr_write, .raw_writefn = raw_write }, 6163 { .name = "VTTBR_EL2", .state = ARM_CP_STATE_AA64, 6164 .opc0 = 3, .opc1 = 4, .crn = 2, .crm = 1, .opc2 = 0, 6165 .access = PL2_RW, .writefn = vttbr_write, .raw_writefn = raw_write, 6166 .fieldoffset = offsetof(CPUARMState, cp15.vttbr_el2) }, 6167 { .name = "SCTLR_EL2", .state = ARM_CP_STATE_BOTH, 6168 .opc0 = 3, .opc1 = 4, .crn = 1, .crm = 0, .opc2 = 0, 6169 .access = PL2_RW, .raw_writefn = raw_write, .writefn = sctlr_write, 6170 .fieldoffset = offsetof(CPUARMState, cp15.sctlr_el[2]) }, 6171 { .name = "TPIDR_EL2", .state = ARM_CP_STATE_BOTH, 6172 .opc0 = 3, .opc1 = 4, .crn = 13, .crm = 0, .opc2 = 2, 6173 .access = PL2_RW, .resetvalue = 0, 6174 .fieldoffset = offsetof(CPUARMState, cp15.tpidr_el[2]) }, 6175 { .name = "TTBR0_EL2", .state = ARM_CP_STATE_AA64, 6176 .opc0 = 3, .opc1 = 4, .crn = 2, .crm = 0, .opc2 = 0, 6177 .access = PL2_RW, .resetvalue = 0, 6178 .writefn = vmsa_tcr_ttbr_el2_write, .raw_writefn = raw_write, 6179 .fieldoffset = offsetof(CPUARMState, cp15.ttbr0_el[2]) }, 6180 { .name = "HTTBR", .cp = 15, .opc1 = 4, .crm = 2, 6181 .access = PL2_RW, .type = ARM_CP_64BIT | ARM_CP_ALIAS, 6182 .fieldoffset = offsetof(CPUARMState, cp15.ttbr0_el[2]) }, 6183 { .name = "TLBIALLNSNH", 6184 .cp = 15, .opc1 = 4, .crn = 8, .crm = 7, .opc2 = 4, 6185 .type = ARM_CP_NO_RAW, .access = PL2_W, 6186 .writefn = tlbiall_nsnh_write }, 6187 { .name = "TLBIALLNSNHIS", 6188 .cp = 15, .opc1 = 4, .crn = 8, .crm = 3, .opc2 = 4, 6189 .type = ARM_CP_NO_RAW, .access = PL2_W, 6190 .writefn = tlbiall_nsnh_is_write }, 6191 { .name = "TLBIALLH", .cp = 15, .opc1 = 4, .crn = 8, .crm = 7, .opc2 = 0, 6192 .type = ARM_CP_NO_RAW, .access = PL2_W, 6193 .writefn = tlbiall_hyp_write }, 6194 { .name = "TLBIALLHIS", .cp = 15, .opc1 = 4, .crn = 8, .crm = 3, .opc2 = 0, 6195 .type = ARM_CP_NO_RAW, .access = PL2_W, 6196 .writefn = tlbiall_hyp_is_write }, 6197 { .name = "TLBIMVAH", .cp = 15, .opc1 = 4, .crn = 8, .crm = 7, .opc2 = 1, 6198 .type = ARM_CP_NO_RAW, .access = PL2_W, 6199 .writefn = tlbimva_hyp_write }, 6200 { .name = "TLBIMVAHIS", .cp = 15, .opc1 = 4, .crn = 8, .crm = 3, .opc2 = 1, 6201 .type = ARM_CP_NO_RAW, .access = PL2_W, 6202 .writefn = tlbimva_hyp_is_write }, 6203 { .name = "TLBI_ALLE2", .state = ARM_CP_STATE_AA64, 6204 .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 7, .opc2 = 0, 6205 .access = PL2_W, .type = ARM_CP_NO_RAW | ARM_CP_EL3_NO_EL2_UNDEF, 6206 .writefn = tlbi_aa64_alle2_write }, 6207 { .name = "TLBI_VAE2", .state = ARM_CP_STATE_AA64, 6208 .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 7, .opc2 = 1, 6209 .access = PL2_W, .type = ARM_CP_NO_RAW | ARM_CP_EL3_NO_EL2_UNDEF, 6210 .writefn = tlbi_aa64_vae2_write }, 6211 { .name = "TLBI_VALE2", .state = ARM_CP_STATE_AA64, 6212 .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 7, .opc2 = 5, 6213 .access = PL2_W, .type = ARM_CP_NO_RAW | ARM_CP_EL3_NO_EL2_UNDEF, 6214 .writefn = tlbi_aa64_vae2_write }, 6215 { .name = "TLBI_ALLE2IS", .state = ARM_CP_STATE_AA64, 6216 .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 3, .opc2 = 0, 6217 .access = PL2_W, .type = ARM_CP_NO_RAW | ARM_CP_EL3_NO_EL2_UNDEF, 6218 .writefn = tlbi_aa64_alle2is_write }, 6219 { .name = "TLBI_VAE2IS", .state = ARM_CP_STATE_AA64, 6220 .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 3, .opc2 = 1, 6221 .access = PL2_W, .type = ARM_CP_NO_RAW | ARM_CP_EL3_NO_EL2_UNDEF, 6222 .writefn = tlbi_aa64_vae2is_write }, 6223 { .name = "TLBI_VALE2IS", .state = ARM_CP_STATE_AA64, 6224 .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 3, .opc2 = 5, 6225 .access = PL2_W, .type = ARM_CP_NO_RAW | ARM_CP_EL3_NO_EL2_UNDEF, 6226 .writefn = tlbi_aa64_vae2is_write }, 6227 #ifndef CONFIG_USER_ONLY 6228 /* 6229 * Unlike the other EL2-related AT operations, these must 6230 * UNDEF from EL3 if EL2 is not implemented, which is why we 6231 * define them here rather than with the rest of the AT ops. 6232 */ 6233 { .name = "AT_S1E2R", .state = ARM_CP_STATE_AA64, 6234 .opc0 = 1, .opc1 = 4, .crn = 7, .crm = 8, .opc2 = 0, 6235 .access = PL2_W, .accessfn = at_s1e2_access, 6236 .type = ARM_CP_NO_RAW | ARM_CP_RAISES_EXC | ARM_CP_EL3_NO_EL2_UNDEF, 6237 .writefn = ats_write64 }, 6238 { .name = "AT_S1E2W", .state = ARM_CP_STATE_AA64, 6239 .opc0 = 1, .opc1 = 4, .crn = 7, .crm = 8, .opc2 = 1, 6240 .access = PL2_W, .accessfn = at_s1e2_access, 6241 .type = ARM_CP_NO_RAW | ARM_CP_RAISES_EXC | ARM_CP_EL3_NO_EL2_UNDEF, 6242 .writefn = ats_write64 }, 6243 /* 6244 * The AArch32 ATS1H* operations are CONSTRAINED UNPREDICTABLE 6245 * if EL2 is not implemented; we choose to UNDEF. Behaviour at EL3 6246 * with SCR.NS == 0 outside Monitor mode is UNPREDICTABLE; we choose 6247 * to behave as if SCR.NS was 1. 6248 */ 6249 { .name = "ATS1HR", .cp = 15, .opc1 = 4, .crn = 7, .crm = 8, .opc2 = 0, 6250 .access = PL2_W, 6251 .writefn = ats1h_write, .type = ARM_CP_NO_RAW | ARM_CP_RAISES_EXC }, 6252 { .name = "ATS1HW", .cp = 15, .opc1 = 4, .crn = 7, .crm = 8, .opc2 = 1, 6253 .access = PL2_W, 6254 .writefn = ats1h_write, .type = ARM_CP_NO_RAW | ARM_CP_RAISES_EXC }, 6255 { .name = "CNTHCTL_EL2", .state = ARM_CP_STATE_BOTH, 6256 .opc0 = 3, .opc1 = 4, .crn = 14, .crm = 1, .opc2 = 0, 6257 /* 6258 * ARMv7 requires bit 0 and 1 to reset to 1. ARMv8 defines the 6259 * reset values as IMPDEF. We choose to reset to 3 to comply with 6260 * both ARMv7 and ARMv8. 6261 */ 6262 .access = PL2_RW, .type = ARM_CP_IO, .resetvalue = 3, 6263 .writefn = gt_cnthctl_write, .raw_writefn = raw_write, 6264 .fieldoffset = offsetof(CPUARMState, cp15.cnthctl_el2) }, 6265 { .name = "CNTVOFF_EL2", .state = ARM_CP_STATE_AA64, 6266 .opc0 = 3, .opc1 = 4, .crn = 14, .crm = 0, .opc2 = 3, 6267 .access = PL2_RW, .type = ARM_CP_IO, .resetvalue = 0, 6268 .writefn = gt_cntvoff_write, 6269 .fieldoffset = offsetof(CPUARMState, cp15.cntvoff_el2) }, 6270 { .name = "CNTVOFF", .cp = 15, .opc1 = 4, .crm = 14, 6271 .access = PL2_RW, .type = ARM_CP_64BIT | ARM_CP_ALIAS | ARM_CP_IO, 6272 .writefn = gt_cntvoff_write, 6273 .fieldoffset = offsetof(CPUARMState, cp15.cntvoff_el2) }, 6274 { .name = "CNTHP_CVAL_EL2", .state = ARM_CP_STATE_AA64, 6275 .opc0 = 3, .opc1 = 4, .crn = 14, .crm = 2, .opc2 = 2, 6276 .fieldoffset = offsetof(CPUARMState, cp15.c14_timer[GTIMER_HYP].cval), 6277 .type = ARM_CP_IO, .access = PL2_RW, 6278 .writefn = gt_hyp_cval_write, .raw_writefn = raw_write }, 6279 { .name = "CNTHP_CVAL", .cp = 15, .opc1 = 6, .crm = 14, 6280 .fieldoffset = offsetof(CPUARMState, cp15.c14_timer[GTIMER_HYP].cval), 6281 .access = PL2_RW, .type = ARM_CP_64BIT | ARM_CP_IO, 6282 .writefn = gt_hyp_cval_write, .raw_writefn = raw_write }, 6283 { .name = "CNTHP_TVAL_EL2", .state = ARM_CP_STATE_BOTH, 6284 .opc0 = 3, .opc1 = 4, .crn = 14, .crm = 2, .opc2 = 0, 6285 .type = ARM_CP_NO_RAW | ARM_CP_IO, .access = PL2_RW, 6286 .resetfn = gt_hyp_timer_reset, 6287 .readfn = gt_hyp_tval_read, .writefn = gt_hyp_tval_write }, 6288 { .name = "CNTHP_CTL_EL2", .state = ARM_CP_STATE_BOTH, 6289 .type = ARM_CP_IO, 6290 .opc0 = 3, .opc1 = 4, .crn = 14, .crm = 2, .opc2 = 1, 6291 .access = PL2_RW, 6292 .fieldoffset = offsetof(CPUARMState, cp15.c14_timer[GTIMER_HYP].ctl), 6293 .resetvalue = 0, 6294 .writefn = gt_hyp_ctl_write, .raw_writefn = raw_write }, 6295 #endif 6296 { .name = "HPFAR", .state = ARM_CP_STATE_AA32, 6297 .cp = 15, .opc1 = 4, .crn = 6, .crm = 0, .opc2 = 4, 6298 .access = PL2_RW, .accessfn = access_el3_aa32ns, 6299 .fieldoffset = offsetof(CPUARMState, cp15.hpfar_el2) }, 6300 { .name = "HPFAR_EL2", .state = ARM_CP_STATE_AA64, 6301 .opc0 = 3, .opc1 = 4, .crn = 6, .crm = 0, .opc2 = 4, 6302 .access = PL2_RW, 6303 .fieldoffset = offsetof(CPUARMState, cp15.hpfar_el2) }, 6304 { .name = "HSTR_EL2", .state = ARM_CP_STATE_BOTH, 6305 .cp = 15, .opc0 = 3, .opc1 = 4, .crn = 1, .crm = 1, .opc2 = 3, 6306 .access = PL2_RW, 6307 .fieldoffset = offsetof(CPUARMState, cp15.hstr_el2) }, 6308 }; 6309 6310 static const ARMCPRegInfo el2_v8_cp_reginfo[] = { 6311 { .name = "HCR2", .state = ARM_CP_STATE_AA32, 6312 .type = ARM_CP_ALIAS | ARM_CP_IO, 6313 .cp = 15, .opc1 = 4, .crn = 1, .crm = 1, .opc2 = 4, 6314 .access = PL2_RW, 6315 .fieldoffset = offsetofhigh32(CPUARMState, cp15.hcr_el2), 6316 .writefn = hcr_writehigh }, 6317 }; 6318 6319 static CPAccessResult sel2_access(CPUARMState *env, const ARMCPRegInfo *ri, 6320 bool isread) 6321 { 6322 if (arm_current_el(env) == 3 || arm_is_secure_below_el3(env)) { 6323 return CP_ACCESS_OK; 6324 } 6325 return CP_ACCESS_TRAP_UNCATEGORIZED; 6326 } 6327 6328 static const ARMCPRegInfo el2_sec_cp_reginfo[] = { 6329 { .name = "VSTTBR_EL2", .state = ARM_CP_STATE_AA64, 6330 .opc0 = 3, .opc1 = 4, .crn = 2, .crm = 6, .opc2 = 0, 6331 .access = PL2_RW, .accessfn = sel2_access, 6332 .fieldoffset = offsetof(CPUARMState, cp15.vsttbr_el2) }, 6333 { .name = "VSTCR_EL2", .state = ARM_CP_STATE_AA64, 6334 .opc0 = 3, .opc1 = 4, .crn = 2, .crm = 6, .opc2 = 2, 6335 .access = PL2_RW, .accessfn = sel2_access, 6336 .fieldoffset = offsetof(CPUARMState, cp15.vstcr_el2) }, 6337 }; 6338 6339 static CPAccessResult nsacr_access(CPUARMState *env, const ARMCPRegInfo *ri, 6340 bool isread) 6341 { 6342 /* 6343 * The NSACR is RW at EL3, and RO for NS EL1 and NS EL2. 6344 * At Secure EL1 it traps to EL3 or EL2. 6345 */ 6346 if (arm_current_el(env) == 3) { 6347 return CP_ACCESS_OK; 6348 } 6349 if (arm_is_secure_below_el3(env)) { 6350 if (env->cp15.scr_el3 & SCR_EEL2) { 6351 return CP_ACCESS_TRAP_EL2; 6352 } 6353 return CP_ACCESS_TRAP_EL3; 6354 } 6355 /* Accesses from EL1 NS and EL2 NS are UNDEF for write but allow reads. */ 6356 if (isread) { 6357 return CP_ACCESS_OK; 6358 } 6359 return CP_ACCESS_TRAP_UNCATEGORIZED; 6360 } 6361 6362 static const ARMCPRegInfo el3_cp_reginfo[] = { 6363 { .name = "SCR_EL3", .state = ARM_CP_STATE_AA64, 6364 .opc0 = 3, .opc1 = 6, .crn = 1, .crm = 1, .opc2 = 0, 6365 .access = PL3_RW, .fieldoffset = offsetof(CPUARMState, cp15.scr_el3), 6366 .resetfn = scr_reset, .writefn = scr_write, .raw_writefn = raw_write }, 6367 { .name = "SCR", .type = ARM_CP_ALIAS | ARM_CP_NEWEL, 6368 .cp = 15, .opc1 = 0, .crn = 1, .crm = 1, .opc2 = 0, 6369 .access = PL1_RW, .accessfn = access_trap_aa32s_el1, 6370 .fieldoffset = offsetoflow32(CPUARMState, cp15.scr_el3), 6371 .writefn = scr_write, .raw_writefn = raw_write }, 6372 { .name = "SDER32_EL3", .state = ARM_CP_STATE_AA64, 6373 .opc0 = 3, .opc1 = 6, .crn = 1, .crm = 1, .opc2 = 1, 6374 .access = PL3_RW, .resetvalue = 0, 6375 .fieldoffset = offsetof(CPUARMState, cp15.sder) }, 6376 { .name = "SDER", 6377 .cp = 15, .opc1 = 0, .crn = 1, .crm = 1, .opc2 = 1, 6378 .access = PL3_RW, .resetvalue = 0, 6379 .fieldoffset = offsetoflow32(CPUARMState, cp15.sder) }, 6380 { .name = "MVBAR", .cp = 15, .opc1 = 0, .crn = 12, .crm = 0, .opc2 = 1, 6381 .access = PL1_RW, .accessfn = access_trap_aa32s_el1, 6382 .writefn = vbar_write, .resetvalue = 0, 6383 .fieldoffset = offsetof(CPUARMState, cp15.mvbar) }, 6384 { .name = "TTBR0_EL3", .state = ARM_CP_STATE_AA64, 6385 .opc0 = 3, .opc1 = 6, .crn = 2, .crm = 0, .opc2 = 0, 6386 .access = PL3_RW, .resetvalue = 0, 6387 .fieldoffset = offsetof(CPUARMState, cp15.ttbr0_el[3]) }, 6388 { .name = "TCR_EL3", .state = ARM_CP_STATE_AA64, 6389 .opc0 = 3, .opc1 = 6, .crn = 2, .crm = 0, .opc2 = 2, 6390 .access = PL3_RW, 6391 /* no .writefn needed as this can't cause an ASID change */ 6392 .resetvalue = 0, 6393 .fieldoffset = offsetof(CPUARMState, cp15.tcr_el[3]) }, 6394 { .name = "ELR_EL3", .state = ARM_CP_STATE_AA64, 6395 .type = ARM_CP_ALIAS, 6396 .opc0 = 3, .opc1 = 6, .crn = 4, .crm = 0, .opc2 = 1, 6397 .access = PL3_RW, 6398 .fieldoffset = offsetof(CPUARMState, elr_el[3]) }, 6399 { .name = "ESR_EL3", .state = ARM_CP_STATE_AA64, 6400 .opc0 = 3, .opc1 = 6, .crn = 5, .crm = 2, .opc2 = 0, 6401 .access = PL3_RW, .fieldoffset = offsetof(CPUARMState, cp15.esr_el[3]) }, 6402 { .name = "FAR_EL3", .state = ARM_CP_STATE_AA64, 6403 .opc0 = 3, .opc1 = 6, .crn = 6, .crm = 0, .opc2 = 0, 6404 .access = PL3_RW, .fieldoffset = offsetof(CPUARMState, cp15.far_el[3]) }, 6405 { .name = "SPSR_EL3", .state = ARM_CP_STATE_AA64, 6406 .type = ARM_CP_ALIAS, 6407 .opc0 = 3, .opc1 = 6, .crn = 4, .crm = 0, .opc2 = 0, 6408 .access = PL3_RW, 6409 .fieldoffset = offsetof(CPUARMState, banked_spsr[BANK_MON]) }, 6410 { .name = "VBAR_EL3", .state = ARM_CP_STATE_AA64, 6411 .opc0 = 3, .opc1 = 6, .crn = 12, .crm = 0, .opc2 = 0, 6412 .access = PL3_RW, .writefn = vbar_write, 6413 .fieldoffset = offsetof(CPUARMState, cp15.vbar_el[3]), 6414 .resetvalue = 0 }, 6415 { .name = "CPTR_EL3", .state = ARM_CP_STATE_AA64, 6416 .opc0 = 3, .opc1 = 6, .crn = 1, .crm = 1, .opc2 = 2, 6417 .access = PL3_RW, .accessfn = cptr_access, .resetvalue = 0, 6418 .fieldoffset = offsetof(CPUARMState, cp15.cptr_el[3]) }, 6419 { .name = "TPIDR_EL3", .state = ARM_CP_STATE_AA64, 6420 .opc0 = 3, .opc1 = 6, .crn = 13, .crm = 0, .opc2 = 2, 6421 .access = PL3_RW, .resetvalue = 0, 6422 .fieldoffset = offsetof(CPUARMState, cp15.tpidr_el[3]) }, 6423 { .name = "AMAIR_EL3", .state = ARM_CP_STATE_AA64, 6424 .opc0 = 3, .opc1 = 6, .crn = 10, .crm = 3, .opc2 = 0, 6425 .access = PL3_RW, .type = ARM_CP_CONST, 6426 .resetvalue = 0 }, 6427 { .name = "AFSR0_EL3", .state = ARM_CP_STATE_BOTH, 6428 .opc0 = 3, .opc1 = 6, .crn = 5, .crm = 1, .opc2 = 0, 6429 .access = PL3_RW, .type = ARM_CP_CONST, 6430 .resetvalue = 0 }, 6431 { .name = "AFSR1_EL3", .state = ARM_CP_STATE_BOTH, 6432 .opc0 = 3, .opc1 = 6, .crn = 5, .crm = 1, .opc2 = 1, 6433 .access = PL3_RW, .type = ARM_CP_CONST, 6434 .resetvalue = 0 }, 6435 { .name = "TLBI_ALLE3IS", .state = ARM_CP_STATE_AA64, 6436 .opc0 = 1, .opc1 = 6, .crn = 8, .crm = 3, .opc2 = 0, 6437 .access = PL3_W, .type = ARM_CP_NO_RAW, 6438 .writefn = tlbi_aa64_alle3is_write }, 6439 { .name = "TLBI_VAE3IS", .state = ARM_CP_STATE_AA64, 6440 .opc0 = 1, .opc1 = 6, .crn = 8, .crm = 3, .opc2 = 1, 6441 .access = PL3_W, .type = ARM_CP_NO_RAW, 6442 .writefn = tlbi_aa64_vae3is_write }, 6443 { .name = "TLBI_VALE3IS", .state = ARM_CP_STATE_AA64, 6444 .opc0 = 1, .opc1 = 6, .crn = 8, .crm = 3, .opc2 = 5, 6445 .access = PL3_W, .type = ARM_CP_NO_RAW, 6446 .writefn = tlbi_aa64_vae3is_write }, 6447 { .name = "TLBI_ALLE3", .state = ARM_CP_STATE_AA64, 6448 .opc0 = 1, .opc1 = 6, .crn = 8, .crm = 7, .opc2 = 0, 6449 .access = PL3_W, .type = ARM_CP_NO_RAW, 6450 .writefn = tlbi_aa64_alle3_write }, 6451 { .name = "TLBI_VAE3", .state = ARM_CP_STATE_AA64, 6452 .opc0 = 1, .opc1 = 6, .crn = 8, .crm = 7, .opc2 = 1, 6453 .access = PL3_W, .type = ARM_CP_NO_RAW, 6454 .writefn = tlbi_aa64_vae3_write }, 6455 { .name = "TLBI_VALE3", .state = ARM_CP_STATE_AA64, 6456 .opc0 = 1, .opc1 = 6, .crn = 8, .crm = 7, .opc2 = 5, 6457 .access = PL3_W, .type = ARM_CP_NO_RAW, 6458 .writefn = tlbi_aa64_vae3_write }, 6459 }; 6460 6461 #ifndef CONFIG_USER_ONLY 6462 /* Test if system register redirection is to occur in the current state. */ 6463 static bool redirect_for_e2h(CPUARMState *env) 6464 { 6465 return arm_current_el(env) == 2 && (arm_hcr_el2_eff(env) & HCR_E2H); 6466 } 6467 6468 static uint64_t el2_e2h_read(CPUARMState *env, const ARMCPRegInfo *ri) 6469 { 6470 CPReadFn *readfn; 6471 6472 if (redirect_for_e2h(env)) { 6473 /* Switch to the saved EL2 version of the register. */ 6474 ri = ri->opaque; 6475 readfn = ri->readfn; 6476 } else { 6477 readfn = ri->orig_readfn; 6478 } 6479 if (readfn == NULL) { 6480 readfn = raw_read; 6481 } 6482 return readfn(env, ri); 6483 } 6484 6485 static void el2_e2h_write(CPUARMState *env, const ARMCPRegInfo *ri, 6486 uint64_t value) 6487 { 6488 CPWriteFn *writefn; 6489 6490 if (redirect_for_e2h(env)) { 6491 /* Switch to the saved EL2 version of the register. */ 6492 ri = ri->opaque; 6493 writefn = ri->writefn; 6494 } else { 6495 writefn = ri->orig_writefn; 6496 } 6497 if (writefn == NULL) { 6498 writefn = raw_write; 6499 } 6500 writefn(env, ri, value); 6501 } 6502 6503 static void define_arm_vh_e2h_redirects_aliases(ARMCPU *cpu) 6504 { 6505 struct E2HAlias { 6506 uint32_t src_key, dst_key, new_key; 6507 const char *src_name, *dst_name, *new_name; 6508 bool (*feature)(const ARMISARegisters *id); 6509 }; 6510 6511 #define K(op0, op1, crn, crm, op2) \ 6512 ENCODE_AA64_CP_REG(CP_REG_ARM64_SYSREG_CP, crn, crm, op0, op1, op2) 6513 6514 static const struct E2HAlias aliases[] = { 6515 { K(3, 0, 1, 0, 0), K(3, 4, 1, 0, 0), K(3, 5, 1, 0, 0), 6516 "SCTLR", "SCTLR_EL2", "SCTLR_EL12" }, 6517 { K(3, 0, 1, 0, 2), K(3, 4, 1, 1, 2), K(3, 5, 1, 0, 2), 6518 "CPACR", "CPTR_EL2", "CPACR_EL12" }, 6519 { K(3, 0, 2, 0, 0), K(3, 4, 2, 0, 0), K(3, 5, 2, 0, 0), 6520 "TTBR0_EL1", "TTBR0_EL2", "TTBR0_EL12" }, 6521 { K(3, 0, 2, 0, 1), K(3, 4, 2, 0, 1), K(3, 5, 2, 0, 1), 6522 "TTBR1_EL1", "TTBR1_EL2", "TTBR1_EL12" }, 6523 { K(3, 0, 2, 0, 2), K(3, 4, 2, 0, 2), K(3, 5, 2, 0, 2), 6524 "TCR_EL1", "TCR_EL2", "TCR_EL12" }, 6525 { K(3, 0, 4, 0, 0), K(3, 4, 4, 0, 0), K(3, 5, 4, 0, 0), 6526 "SPSR_EL1", "SPSR_EL2", "SPSR_EL12" }, 6527 { K(3, 0, 4, 0, 1), K(3, 4, 4, 0, 1), K(3, 5, 4, 0, 1), 6528 "ELR_EL1", "ELR_EL2", "ELR_EL12" }, 6529 { K(3, 0, 5, 1, 0), K(3, 4, 5, 1, 0), K(3, 5, 5, 1, 0), 6530 "AFSR0_EL1", "AFSR0_EL2", "AFSR0_EL12" }, 6531 { K(3, 0, 5, 1, 1), K(3, 4, 5, 1, 1), K(3, 5, 5, 1, 1), 6532 "AFSR1_EL1", "AFSR1_EL2", "AFSR1_EL12" }, 6533 { K(3, 0, 5, 2, 0), K(3, 4, 5, 2, 0), K(3, 5, 5, 2, 0), 6534 "ESR_EL1", "ESR_EL2", "ESR_EL12" }, 6535 { K(3, 0, 6, 0, 0), K(3, 4, 6, 0, 0), K(3, 5, 6, 0, 0), 6536 "FAR_EL1", "FAR_EL2", "FAR_EL12" }, 6537 { K(3, 0, 10, 2, 0), K(3, 4, 10, 2, 0), K(3, 5, 10, 2, 0), 6538 "MAIR_EL1", "MAIR_EL2", "MAIR_EL12" }, 6539 { K(3, 0, 10, 3, 0), K(3, 4, 10, 3, 0), K(3, 5, 10, 3, 0), 6540 "AMAIR0", "AMAIR_EL2", "AMAIR_EL12" }, 6541 { K(3, 0, 12, 0, 0), K(3, 4, 12, 0, 0), K(3, 5, 12, 0, 0), 6542 "VBAR", "VBAR_EL2", "VBAR_EL12" }, 6543 { K(3, 0, 13, 0, 1), K(3, 4, 13, 0, 1), K(3, 5, 13, 0, 1), 6544 "CONTEXTIDR_EL1", "CONTEXTIDR_EL2", "CONTEXTIDR_EL12" }, 6545 { K(3, 0, 14, 1, 0), K(3, 4, 14, 1, 0), K(3, 5, 14, 1, 0), 6546 "CNTKCTL", "CNTHCTL_EL2", "CNTKCTL_EL12" }, 6547 6548 /* 6549 * Note that redirection of ZCR is mentioned in the description 6550 * of ZCR_EL2, and aliasing in the description of ZCR_EL1, but 6551 * not in the summary table. 6552 */ 6553 { K(3, 0, 1, 2, 0), K(3, 4, 1, 2, 0), K(3, 5, 1, 2, 0), 6554 "ZCR_EL1", "ZCR_EL2", "ZCR_EL12", isar_feature_aa64_sve }, 6555 { K(3, 0, 1, 2, 6), K(3, 4, 1, 2, 6), K(3, 5, 1, 2, 6), 6556 "SMCR_EL1", "SMCR_EL2", "SMCR_EL12", isar_feature_aa64_sme }, 6557 6558 { K(3, 0, 5, 6, 0), K(3, 4, 5, 6, 0), K(3, 5, 5, 6, 0), 6559 "TFSR_EL1", "TFSR_EL2", "TFSR_EL12", isar_feature_aa64_mte }, 6560 6561 { K(3, 0, 13, 0, 7), K(3, 4, 13, 0, 7), K(3, 5, 13, 0, 7), 6562 "SCXTNUM_EL1", "SCXTNUM_EL2", "SCXTNUM_EL12", 6563 isar_feature_aa64_scxtnum }, 6564 6565 /* TODO: ARMv8.2-SPE -- PMSCR_EL2 */ 6566 /* TODO: ARMv8.4-Trace -- TRFCR_EL2 */ 6567 }; 6568 #undef K 6569 6570 size_t i; 6571 6572 for (i = 0; i < ARRAY_SIZE(aliases); i++) { 6573 const struct E2HAlias *a = &aliases[i]; 6574 ARMCPRegInfo *src_reg, *dst_reg, *new_reg; 6575 bool ok; 6576 6577 if (a->feature && !a->feature(&cpu->isar)) { 6578 continue; 6579 } 6580 6581 src_reg = g_hash_table_lookup(cpu->cp_regs, 6582 (gpointer)(uintptr_t)a->src_key); 6583 dst_reg = g_hash_table_lookup(cpu->cp_regs, 6584 (gpointer)(uintptr_t)a->dst_key); 6585 g_assert(src_reg != NULL); 6586 g_assert(dst_reg != NULL); 6587 6588 /* Cross-compare names to detect typos in the keys. */ 6589 g_assert(strcmp(src_reg->name, a->src_name) == 0); 6590 g_assert(strcmp(dst_reg->name, a->dst_name) == 0); 6591 6592 /* None of the core system registers use opaque; we will. */ 6593 g_assert(src_reg->opaque == NULL); 6594 6595 /* Create alias before redirection so we dup the right data. */ 6596 new_reg = g_memdup(src_reg, sizeof(ARMCPRegInfo)); 6597 6598 new_reg->name = a->new_name; 6599 new_reg->type |= ARM_CP_ALIAS; 6600 /* Remove PL1/PL0 access, leaving PL2/PL3 R/W in place. */ 6601 new_reg->access &= PL2_RW | PL3_RW; 6602 6603 ok = g_hash_table_insert(cpu->cp_regs, 6604 (gpointer)(uintptr_t)a->new_key, new_reg); 6605 g_assert(ok); 6606 6607 src_reg->opaque = dst_reg; 6608 src_reg->orig_readfn = src_reg->readfn ?: raw_read; 6609 src_reg->orig_writefn = src_reg->writefn ?: raw_write; 6610 if (!src_reg->raw_readfn) { 6611 src_reg->raw_readfn = raw_read; 6612 } 6613 if (!src_reg->raw_writefn) { 6614 src_reg->raw_writefn = raw_write; 6615 } 6616 src_reg->readfn = el2_e2h_read; 6617 src_reg->writefn = el2_e2h_write; 6618 } 6619 } 6620 #endif 6621 6622 static CPAccessResult ctr_el0_access(CPUARMState *env, const ARMCPRegInfo *ri, 6623 bool isread) 6624 { 6625 int cur_el = arm_current_el(env); 6626 6627 if (cur_el < 2) { 6628 uint64_t hcr = arm_hcr_el2_eff(env); 6629 6630 if (cur_el == 0) { 6631 if ((hcr & (HCR_E2H | HCR_TGE)) == (HCR_E2H | HCR_TGE)) { 6632 if (!(env->cp15.sctlr_el[2] & SCTLR_UCT)) { 6633 return CP_ACCESS_TRAP_EL2; 6634 } 6635 } else { 6636 if (!(env->cp15.sctlr_el[1] & SCTLR_UCT)) { 6637 return CP_ACCESS_TRAP; 6638 } 6639 if (hcr & HCR_TID2) { 6640 return CP_ACCESS_TRAP_EL2; 6641 } 6642 } 6643 } else if (hcr & HCR_TID2) { 6644 return CP_ACCESS_TRAP_EL2; 6645 } 6646 } 6647 6648 if (arm_current_el(env) < 2 && arm_hcr_el2_eff(env) & HCR_TID2) { 6649 return CP_ACCESS_TRAP_EL2; 6650 } 6651 6652 return CP_ACCESS_OK; 6653 } 6654 6655 /* 6656 * Check for traps to RAS registers, which are controlled 6657 * by HCR_EL2.TERR and SCR_EL3.TERR. 6658 */ 6659 static CPAccessResult access_terr(CPUARMState *env, const ARMCPRegInfo *ri, 6660 bool isread) 6661 { 6662 int el = arm_current_el(env); 6663 6664 if (el < 2 && (arm_hcr_el2_eff(env) & HCR_TERR)) { 6665 return CP_ACCESS_TRAP_EL2; 6666 } 6667 if (el < 3 && (env->cp15.scr_el3 & SCR_TERR)) { 6668 return CP_ACCESS_TRAP_EL3; 6669 } 6670 return CP_ACCESS_OK; 6671 } 6672 6673 static uint64_t disr_read(CPUARMState *env, const ARMCPRegInfo *ri) 6674 { 6675 int el = arm_current_el(env); 6676 6677 if (el < 2 && (arm_hcr_el2_eff(env) & HCR_AMO)) { 6678 return env->cp15.vdisr_el2; 6679 } 6680 if (el < 3 && (env->cp15.scr_el3 & SCR_EA)) { 6681 return 0; /* RAZ/WI */ 6682 } 6683 return env->cp15.disr_el1; 6684 } 6685 6686 static void disr_write(CPUARMState *env, const ARMCPRegInfo *ri, uint64_t val) 6687 { 6688 int el = arm_current_el(env); 6689 6690 if (el < 2 && (arm_hcr_el2_eff(env) & HCR_AMO)) { 6691 env->cp15.vdisr_el2 = val; 6692 return; 6693 } 6694 if (el < 3 && (env->cp15.scr_el3 & SCR_EA)) { 6695 return; /* RAZ/WI */ 6696 } 6697 env->cp15.disr_el1 = val; 6698 } 6699 6700 /* 6701 * Minimal RAS implementation with no Error Records. 6702 * Which means that all of the Error Record registers: 6703 * ERXADDR_EL1 6704 * ERXCTLR_EL1 6705 * ERXFR_EL1 6706 * ERXMISC0_EL1 6707 * ERXMISC1_EL1 6708 * ERXMISC2_EL1 6709 * ERXMISC3_EL1 6710 * ERXPFGCDN_EL1 (RASv1p1) 6711 * ERXPFGCTL_EL1 (RASv1p1) 6712 * ERXPFGF_EL1 (RASv1p1) 6713 * ERXSTATUS_EL1 6714 * and 6715 * ERRSELR_EL1 6716 * may generate UNDEFINED, which is the effect we get by not 6717 * listing them at all. 6718 * 6719 * These registers have fine-grained trap bits, but UNDEF-to-EL1 6720 * is higher priority than FGT-to-EL2 so we do not need to list them 6721 * in order to check for an FGT. 6722 */ 6723 static const ARMCPRegInfo minimal_ras_reginfo[] = { 6724 { .name = "DISR_EL1", .state = ARM_CP_STATE_BOTH, 6725 .opc0 = 3, .opc1 = 0, .crn = 12, .crm = 1, .opc2 = 1, 6726 .access = PL1_RW, .fieldoffset = offsetof(CPUARMState, cp15.disr_el1), 6727 .readfn = disr_read, .writefn = disr_write, .raw_writefn = raw_write }, 6728 { .name = "ERRIDR_EL1", .state = ARM_CP_STATE_BOTH, 6729 .opc0 = 3, .opc1 = 0, .crn = 5, .crm = 3, .opc2 = 0, 6730 .access = PL1_R, .accessfn = access_terr, 6731 .fgt = FGT_ERRIDR_EL1, 6732 .type = ARM_CP_CONST, .resetvalue = 0 }, 6733 { .name = "VDISR_EL2", .state = ARM_CP_STATE_BOTH, 6734 .opc0 = 3, .opc1 = 4, .crn = 12, .crm = 1, .opc2 = 1, 6735 .access = PL2_RW, .fieldoffset = offsetof(CPUARMState, cp15.vdisr_el2) }, 6736 { .name = "VSESR_EL2", .state = ARM_CP_STATE_BOTH, 6737 .opc0 = 3, .opc1 = 4, .crn = 5, .crm = 2, .opc2 = 3, 6738 .access = PL2_RW, .fieldoffset = offsetof(CPUARMState, cp15.vsesr_el2) }, 6739 }; 6740 6741 /* 6742 * Return the exception level to which exceptions should be taken 6743 * via SVEAccessTrap. This excludes the check for whether the exception 6744 * should be routed through AArch64.AdvSIMDFPAccessTrap. That can easily 6745 * be found by testing 0 < fp_exception_el < sve_exception_el. 6746 * 6747 * C.f. the ARM pseudocode function CheckSVEEnabled. Note that the 6748 * pseudocode does *not* separate out the FP trap checks, but has them 6749 * all in one function. 6750 */ 6751 int sve_exception_el(CPUARMState *env, int el) 6752 { 6753 #ifndef CONFIG_USER_ONLY 6754 if (el <= 1 && !el_is_in_host(env, el)) { 6755 switch (FIELD_EX64(env->cp15.cpacr_el1, CPACR_EL1, ZEN)) { 6756 case 1: 6757 if (el != 0) { 6758 break; 6759 } 6760 /* fall through */ 6761 case 0: 6762 case 2: 6763 return 1; 6764 } 6765 } 6766 6767 if (el <= 2 && arm_is_el2_enabled(env)) { 6768 /* CPTR_EL2 changes format with HCR_EL2.E2H (regardless of TGE). */ 6769 if (env->cp15.hcr_el2 & HCR_E2H) { 6770 switch (FIELD_EX64(env->cp15.cptr_el[2], CPTR_EL2, ZEN)) { 6771 case 1: 6772 if (el != 0 || !(env->cp15.hcr_el2 & HCR_TGE)) { 6773 break; 6774 } 6775 /* fall through */ 6776 case 0: 6777 case 2: 6778 return 2; 6779 } 6780 } else { 6781 if (FIELD_EX64(env->cp15.cptr_el[2], CPTR_EL2, TZ)) { 6782 return 2; 6783 } 6784 } 6785 } 6786 6787 /* CPTR_EL3. Since EZ is negative we must check for EL3. */ 6788 if (arm_feature(env, ARM_FEATURE_EL3) 6789 && !FIELD_EX64(env->cp15.cptr_el[3], CPTR_EL3, EZ)) { 6790 return 3; 6791 } 6792 #endif 6793 return 0; 6794 } 6795 6796 /* 6797 * Return the exception level to which exceptions should be taken for SME. 6798 * C.f. the ARM pseudocode function CheckSMEAccess. 6799 */ 6800 int sme_exception_el(CPUARMState *env, int el) 6801 { 6802 #ifndef CONFIG_USER_ONLY 6803 if (el <= 1 && !el_is_in_host(env, el)) { 6804 switch (FIELD_EX64(env->cp15.cpacr_el1, CPACR_EL1, SMEN)) { 6805 case 1: 6806 if (el != 0) { 6807 break; 6808 } 6809 /* fall through */ 6810 case 0: 6811 case 2: 6812 return 1; 6813 } 6814 } 6815 6816 if (el <= 2 && arm_is_el2_enabled(env)) { 6817 /* CPTR_EL2 changes format with HCR_EL2.E2H (regardless of TGE). */ 6818 if (env->cp15.hcr_el2 & HCR_E2H) { 6819 switch (FIELD_EX64(env->cp15.cptr_el[2], CPTR_EL2, SMEN)) { 6820 case 1: 6821 if (el != 0 || !(env->cp15.hcr_el2 & HCR_TGE)) { 6822 break; 6823 } 6824 /* fall through */ 6825 case 0: 6826 case 2: 6827 return 2; 6828 } 6829 } else { 6830 if (FIELD_EX64(env->cp15.cptr_el[2], CPTR_EL2, TSM)) { 6831 return 2; 6832 } 6833 } 6834 } 6835 6836 /* CPTR_EL3. Since ESM is negative we must check for EL3. */ 6837 if (arm_feature(env, ARM_FEATURE_EL3) 6838 && !FIELD_EX64(env->cp15.cptr_el[3], CPTR_EL3, ESM)) { 6839 return 3; 6840 } 6841 #endif 6842 return 0; 6843 } 6844 6845 /* 6846 * Given that SVE is enabled, return the vector length for EL. 6847 */ 6848 uint32_t sve_vqm1_for_el_sm(CPUARMState *env, int el, bool sm) 6849 { 6850 ARMCPU *cpu = env_archcpu(env); 6851 uint64_t *cr = env->vfp.zcr_el; 6852 uint32_t map = cpu->sve_vq.map; 6853 uint32_t len = ARM_MAX_VQ - 1; 6854 6855 if (sm) { 6856 cr = env->vfp.smcr_el; 6857 map = cpu->sme_vq.map; 6858 } 6859 6860 if (el <= 1 && !el_is_in_host(env, el)) { 6861 len = MIN(len, 0xf & (uint32_t)cr[1]); 6862 } 6863 if (el <= 2 && arm_feature(env, ARM_FEATURE_EL2)) { 6864 len = MIN(len, 0xf & (uint32_t)cr[2]); 6865 } 6866 if (arm_feature(env, ARM_FEATURE_EL3)) { 6867 len = MIN(len, 0xf & (uint32_t)cr[3]); 6868 } 6869 6870 map &= MAKE_64BIT_MASK(0, len + 1); 6871 if (map != 0) { 6872 return 31 - clz32(map); 6873 } 6874 6875 /* Bit 0 is always set for Normal SVE -- not so for Streaming SVE. */ 6876 assert(sm); 6877 return ctz32(cpu->sme_vq.map); 6878 } 6879 6880 uint32_t sve_vqm1_for_el(CPUARMState *env, int el) 6881 { 6882 return sve_vqm1_for_el_sm(env, el, FIELD_EX64(env->svcr, SVCR, SM)); 6883 } 6884 6885 static void zcr_write(CPUARMState *env, const ARMCPRegInfo *ri, 6886 uint64_t value) 6887 { 6888 int cur_el = arm_current_el(env); 6889 int old_len = sve_vqm1_for_el(env, cur_el); 6890 int new_len; 6891 6892 /* Bits other than [3:0] are RAZ/WI. */ 6893 QEMU_BUILD_BUG_ON(ARM_MAX_VQ > 16); 6894 raw_write(env, ri, value & 0xf); 6895 6896 /* 6897 * Because we arrived here, we know both FP and SVE are enabled; 6898 * otherwise we would have trapped access to the ZCR_ELn register. 6899 */ 6900 new_len = sve_vqm1_for_el(env, cur_el); 6901 if (new_len < old_len) { 6902 aarch64_sve_narrow_vq(env, new_len + 1); 6903 } 6904 } 6905 6906 static const ARMCPRegInfo zcr_reginfo[] = { 6907 { .name = "ZCR_EL1", .state = ARM_CP_STATE_AA64, 6908 .opc0 = 3, .opc1 = 0, .crn = 1, .crm = 2, .opc2 = 0, 6909 .access = PL1_RW, .type = ARM_CP_SVE, 6910 .fieldoffset = offsetof(CPUARMState, vfp.zcr_el[1]), 6911 .writefn = zcr_write, .raw_writefn = raw_write }, 6912 { .name = "ZCR_EL2", .state = ARM_CP_STATE_AA64, 6913 .opc0 = 3, .opc1 = 4, .crn = 1, .crm = 2, .opc2 = 0, 6914 .access = PL2_RW, .type = ARM_CP_SVE, 6915 .fieldoffset = offsetof(CPUARMState, vfp.zcr_el[2]), 6916 .writefn = zcr_write, .raw_writefn = raw_write }, 6917 { .name = "ZCR_EL3", .state = ARM_CP_STATE_AA64, 6918 .opc0 = 3, .opc1 = 6, .crn = 1, .crm = 2, .opc2 = 0, 6919 .access = PL3_RW, .type = ARM_CP_SVE, 6920 .fieldoffset = offsetof(CPUARMState, vfp.zcr_el[3]), 6921 .writefn = zcr_write, .raw_writefn = raw_write }, 6922 }; 6923 6924 #ifdef TARGET_AARCH64 6925 static CPAccessResult access_tpidr2(CPUARMState *env, const ARMCPRegInfo *ri, 6926 bool isread) 6927 { 6928 int el = arm_current_el(env); 6929 6930 if (el == 0) { 6931 uint64_t sctlr = arm_sctlr(env, el); 6932 if (!(sctlr & SCTLR_EnTP2)) { 6933 return CP_ACCESS_TRAP; 6934 } 6935 } 6936 /* TODO: FEAT_FGT */ 6937 if (el < 3 6938 && arm_feature(env, ARM_FEATURE_EL3) 6939 && !(env->cp15.scr_el3 & SCR_ENTP2)) { 6940 return CP_ACCESS_TRAP_EL3; 6941 } 6942 return CP_ACCESS_OK; 6943 } 6944 6945 static CPAccessResult access_esm(CPUARMState *env, const ARMCPRegInfo *ri, 6946 bool isread) 6947 { 6948 /* TODO: FEAT_FGT for SMPRI_EL1 but not SMPRIMAP_EL2 */ 6949 if (arm_current_el(env) < 3 6950 && arm_feature(env, ARM_FEATURE_EL3) 6951 && !FIELD_EX64(env->cp15.cptr_el[3], CPTR_EL3, ESM)) { 6952 return CP_ACCESS_TRAP_EL3; 6953 } 6954 return CP_ACCESS_OK; 6955 } 6956 6957 /* ResetSVEState */ 6958 static void arm_reset_sve_state(CPUARMState *env) 6959 { 6960 memset(env->vfp.zregs, 0, sizeof(env->vfp.zregs)); 6961 /* Recall that FFR is stored as pregs[16]. */ 6962 memset(env->vfp.pregs, 0, sizeof(env->vfp.pregs)); 6963 vfp_set_fpcr(env, 0x0800009f); 6964 } 6965 6966 void aarch64_set_svcr(CPUARMState *env, uint64_t new, uint64_t mask) 6967 { 6968 uint64_t change = (env->svcr ^ new) & mask; 6969 6970 if (change == 0) { 6971 return; 6972 } 6973 env->svcr ^= change; 6974 6975 if (change & R_SVCR_SM_MASK) { 6976 arm_reset_sve_state(env); 6977 } 6978 6979 /* 6980 * ResetSMEState. 6981 * 6982 * SetPSTATE_ZA zeros on enable and disable. We can zero this only 6983 * on enable: while disabled, the storage is inaccessible and the 6984 * value does not matter. We're not saving the storage in vmstate 6985 * when disabled either. 6986 */ 6987 if (change & new & R_SVCR_ZA_MASK) { 6988 memset(env->zarray, 0, sizeof(env->zarray)); 6989 } 6990 6991 if (tcg_enabled()) { 6992 arm_rebuild_hflags(env); 6993 } 6994 } 6995 6996 static void svcr_write(CPUARMState *env, const ARMCPRegInfo *ri, 6997 uint64_t value) 6998 { 6999 aarch64_set_svcr(env, value, -1); 7000 } 7001 7002 static void smcr_write(CPUARMState *env, const ARMCPRegInfo *ri, 7003 uint64_t value) 7004 { 7005 int cur_el = arm_current_el(env); 7006 int old_len = sve_vqm1_for_el(env, cur_el); 7007 int new_len; 7008 7009 QEMU_BUILD_BUG_ON(ARM_MAX_VQ > R_SMCR_LEN_MASK + 1); 7010 value &= R_SMCR_LEN_MASK | R_SMCR_FA64_MASK; 7011 raw_write(env, ri, value); 7012 7013 /* 7014 * Note that it is CONSTRAINED UNPREDICTABLE what happens to ZA storage 7015 * when SVL is widened (old values kept, or zeros). Choose to keep the 7016 * current values for simplicity. But for QEMU internals, we must still 7017 * apply the narrower SVL to the Zregs and Pregs -- see the comment 7018 * above aarch64_sve_narrow_vq. 7019 */ 7020 new_len = sve_vqm1_for_el(env, cur_el); 7021 if (new_len < old_len) { 7022 aarch64_sve_narrow_vq(env, new_len + 1); 7023 } 7024 } 7025 7026 static const ARMCPRegInfo sme_reginfo[] = { 7027 { .name = "TPIDR2_EL0", .state = ARM_CP_STATE_AA64, 7028 .opc0 = 3, .opc1 = 3, .crn = 13, .crm = 0, .opc2 = 5, 7029 .access = PL0_RW, .accessfn = access_tpidr2, 7030 .fgt = FGT_NTPIDR2_EL0, 7031 .fieldoffset = offsetof(CPUARMState, cp15.tpidr2_el0) }, 7032 { .name = "SVCR", .state = ARM_CP_STATE_AA64, 7033 .opc0 = 3, .opc1 = 3, .crn = 4, .crm = 2, .opc2 = 2, 7034 .access = PL0_RW, .type = ARM_CP_SME, 7035 .fieldoffset = offsetof(CPUARMState, svcr), 7036 .writefn = svcr_write, .raw_writefn = raw_write }, 7037 { .name = "SMCR_EL1", .state = ARM_CP_STATE_AA64, 7038 .opc0 = 3, .opc1 = 0, .crn = 1, .crm = 2, .opc2 = 6, 7039 .access = PL1_RW, .type = ARM_CP_SME, 7040 .fieldoffset = offsetof(CPUARMState, vfp.smcr_el[1]), 7041 .writefn = smcr_write, .raw_writefn = raw_write }, 7042 { .name = "SMCR_EL2", .state = ARM_CP_STATE_AA64, 7043 .opc0 = 3, .opc1 = 4, .crn = 1, .crm = 2, .opc2 = 6, 7044 .access = PL2_RW, .type = ARM_CP_SME, 7045 .fieldoffset = offsetof(CPUARMState, vfp.smcr_el[2]), 7046 .writefn = smcr_write, .raw_writefn = raw_write }, 7047 { .name = "SMCR_EL3", .state = ARM_CP_STATE_AA64, 7048 .opc0 = 3, .opc1 = 6, .crn = 1, .crm = 2, .opc2 = 6, 7049 .access = PL3_RW, .type = ARM_CP_SME, 7050 .fieldoffset = offsetof(CPUARMState, vfp.smcr_el[3]), 7051 .writefn = smcr_write, .raw_writefn = raw_write }, 7052 { .name = "SMIDR_EL1", .state = ARM_CP_STATE_AA64, 7053 .opc0 = 3, .opc1 = 1, .crn = 0, .crm = 0, .opc2 = 6, 7054 .access = PL1_R, .accessfn = access_aa64_tid1, 7055 /* 7056 * IMPLEMENTOR = 0 (software) 7057 * REVISION = 0 (implementation defined) 7058 * SMPS = 0 (no streaming execution priority in QEMU) 7059 * AFFINITY = 0 (streaming sve mode not shared with other PEs) 7060 */ 7061 .type = ARM_CP_CONST, .resetvalue = 0, }, 7062 /* 7063 * Because SMIDR_EL1.SMPS is 0, SMPRI_EL1 and SMPRIMAP_EL2 are RES 0. 7064 */ 7065 { .name = "SMPRI_EL1", .state = ARM_CP_STATE_AA64, 7066 .opc0 = 3, .opc1 = 0, .crn = 1, .crm = 2, .opc2 = 4, 7067 .access = PL1_RW, .accessfn = access_esm, 7068 .fgt = FGT_NSMPRI_EL1, 7069 .type = ARM_CP_CONST, .resetvalue = 0 }, 7070 { .name = "SMPRIMAP_EL2", .state = ARM_CP_STATE_AA64, 7071 .opc0 = 3, .opc1 = 4, .crn = 1, .crm = 2, .opc2 = 5, 7072 .access = PL2_RW, .accessfn = access_esm, 7073 .type = ARM_CP_CONST, .resetvalue = 0 }, 7074 }; 7075 7076 static void tlbi_aa64_paall_write(CPUARMState *env, const ARMCPRegInfo *ri, 7077 uint64_t value) 7078 { 7079 CPUState *cs = env_cpu(env); 7080 7081 tlb_flush(cs); 7082 } 7083 7084 static void gpccr_write(CPUARMState *env, const ARMCPRegInfo *ri, 7085 uint64_t value) 7086 { 7087 /* L0GPTSZ is RO; other bits not mentioned are RES0. */ 7088 uint64_t rw_mask = R_GPCCR_PPS_MASK | R_GPCCR_IRGN_MASK | 7089 R_GPCCR_ORGN_MASK | R_GPCCR_SH_MASK | R_GPCCR_PGS_MASK | 7090 R_GPCCR_GPC_MASK | R_GPCCR_GPCP_MASK; 7091 7092 env->cp15.gpccr_el3 = (value & rw_mask) | (env->cp15.gpccr_el3 & ~rw_mask); 7093 } 7094 7095 static void gpccr_reset(CPUARMState *env, const ARMCPRegInfo *ri) 7096 { 7097 env->cp15.gpccr_el3 = FIELD_DP64(0, GPCCR, L0GPTSZ, 7098 env_archcpu(env)->reset_l0gptsz); 7099 } 7100 7101 static void tlbi_aa64_paallos_write(CPUARMState *env, const ARMCPRegInfo *ri, 7102 uint64_t value) 7103 { 7104 CPUState *cs = env_cpu(env); 7105 7106 tlb_flush_all_cpus_synced(cs); 7107 } 7108 7109 static const ARMCPRegInfo rme_reginfo[] = { 7110 { .name = "GPCCR_EL3", .state = ARM_CP_STATE_AA64, 7111 .opc0 = 3, .opc1 = 6, .crn = 2, .crm = 1, .opc2 = 6, 7112 .access = PL3_RW, .writefn = gpccr_write, .resetfn = gpccr_reset, 7113 .fieldoffset = offsetof(CPUARMState, cp15.gpccr_el3) }, 7114 { .name = "GPTBR_EL3", .state = ARM_CP_STATE_AA64, 7115 .opc0 = 3, .opc1 = 6, .crn = 2, .crm = 1, .opc2 = 4, 7116 .access = PL3_RW, .fieldoffset = offsetof(CPUARMState, cp15.gptbr_el3) }, 7117 { .name = "MFAR_EL3", .state = ARM_CP_STATE_AA64, 7118 .opc0 = 3, .opc1 = 6, .crn = 6, .crm = 0, .opc2 = 5, 7119 .access = PL3_RW, .fieldoffset = offsetof(CPUARMState, cp15.mfar_el3) }, 7120 { .name = "TLBI_PAALL", .state = ARM_CP_STATE_AA64, 7121 .opc0 = 1, .opc1 = 6, .crn = 8, .crm = 7, .opc2 = 4, 7122 .access = PL3_W, .type = ARM_CP_NO_RAW, 7123 .writefn = tlbi_aa64_paall_write }, 7124 { .name = "TLBI_PAALLOS", .state = ARM_CP_STATE_AA64, 7125 .opc0 = 1, .opc1 = 6, .crn = 8, .crm = 1, .opc2 = 4, 7126 .access = PL3_W, .type = ARM_CP_NO_RAW, 7127 .writefn = tlbi_aa64_paallos_write }, 7128 /* 7129 * QEMU does not have a way to invalidate by physical address, thus 7130 * invalidating a range of physical addresses is accomplished by 7131 * flushing all tlb entries in the outer shareable domain, 7132 * just like PAALLOS. 7133 */ 7134 { .name = "TLBI_RPALOS", .state = ARM_CP_STATE_AA64, 7135 .opc0 = 1, .opc1 = 6, .crn = 8, .crm = 4, .opc2 = 7, 7136 .access = PL3_W, .type = ARM_CP_NO_RAW, 7137 .writefn = tlbi_aa64_paallos_write }, 7138 { .name = "TLBI_RPAOS", .state = ARM_CP_STATE_AA64, 7139 .opc0 = 1, .opc1 = 6, .crn = 8, .crm = 4, .opc2 = 3, 7140 .access = PL3_W, .type = ARM_CP_NO_RAW, 7141 .writefn = tlbi_aa64_paallos_write }, 7142 { .name = "DC_CIPAPA", .state = ARM_CP_STATE_AA64, 7143 .opc0 = 1, .opc1 = 6, .crn = 7, .crm = 14, .opc2 = 1, 7144 .access = PL3_W, .type = ARM_CP_NOP }, 7145 }; 7146 7147 static const ARMCPRegInfo rme_mte_reginfo[] = { 7148 { .name = "DC_CIGDPAPA", .state = ARM_CP_STATE_AA64, 7149 .opc0 = 1, .opc1 = 6, .crn = 7, .crm = 14, .opc2 = 5, 7150 .access = PL3_W, .type = ARM_CP_NOP }, 7151 }; 7152 #endif /* TARGET_AARCH64 */ 7153 7154 static void define_pmu_regs(ARMCPU *cpu) 7155 { 7156 /* 7157 * v7 performance monitor control register: same implementor 7158 * field as main ID register, and we implement four counters in 7159 * addition to the cycle count register. 7160 */ 7161 unsigned int i, pmcrn = pmu_num_counters(&cpu->env); 7162 ARMCPRegInfo pmcr = { 7163 .name = "PMCR", .cp = 15, .crn = 9, .crm = 12, .opc1 = 0, .opc2 = 0, 7164 .access = PL0_RW, 7165 .fgt = FGT_PMCR_EL0, 7166 .type = ARM_CP_IO | ARM_CP_ALIAS, 7167 .fieldoffset = offsetoflow32(CPUARMState, cp15.c9_pmcr), 7168 .accessfn = pmreg_access, .writefn = pmcr_write, 7169 .raw_writefn = raw_write, 7170 }; 7171 ARMCPRegInfo pmcr64 = { 7172 .name = "PMCR_EL0", .state = ARM_CP_STATE_AA64, 7173 .opc0 = 3, .opc1 = 3, .crn = 9, .crm = 12, .opc2 = 0, 7174 .access = PL0_RW, .accessfn = pmreg_access, 7175 .fgt = FGT_PMCR_EL0, 7176 .type = ARM_CP_IO, 7177 .fieldoffset = offsetof(CPUARMState, cp15.c9_pmcr), 7178 .resetvalue = cpu->isar.reset_pmcr_el0, 7179 .writefn = pmcr_write, .raw_writefn = raw_write, 7180 }; 7181 7182 define_one_arm_cp_reg(cpu, &pmcr); 7183 define_one_arm_cp_reg(cpu, &pmcr64); 7184 for (i = 0; i < pmcrn; i++) { 7185 char *pmevcntr_name = g_strdup_printf("PMEVCNTR%d", i); 7186 char *pmevcntr_el0_name = g_strdup_printf("PMEVCNTR%d_EL0", i); 7187 char *pmevtyper_name = g_strdup_printf("PMEVTYPER%d", i); 7188 char *pmevtyper_el0_name = g_strdup_printf("PMEVTYPER%d_EL0", i); 7189 ARMCPRegInfo pmev_regs[] = { 7190 { .name = pmevcntr_name, .cp = 15, .crn = 14, 7191 .crm = 8 | (3 & (i >> 3)), .opc1 = 0, .opc2 = i & 7, 7192 .access = PL0_RW, .type = ARM_CP_IO | ARM_CP_ALIAS, 7193 .fgt = FGT_PMEVCNTRN_EL0, 7194 .readfn = pmevcntr_readfn, .writefn = pmevcntr_writefn, 7195 .accessfn = pmreg_access_xevcntr }, 7196 { .name = pmevcntr_el0_name, .state = ARM_CP_STATE_AA64, 7197 .opc0 = 3, .opc1 = 3, .crn = 14, .crm = 8 | (3 & (i >> 3)), 7198 .opc2 = i & 7, .access = PL0_RW, .accessfn = pmreg_access_xevcntr, 7199 .type = ARM_CP_IO, 7200 .fgt = FGT_PMEVCNTRN_EL0, 7201 .readfn = pmevcntr_readfn, .writefn = pmevcntr_writefn, 7202 .raw_readfn = pmevcntr_rawread, 7203 .raw_writefn = pmevcntr_rawwrite }, 7204 { .name = pmevtyper_name, .cp = 15, .crn = 14, 7205 .crm = 12 | (3 & (i >> 3)), .opc1 = 0, .opc2 = i & 7, 7206 .access = PL0_RW, .type = ARM_CP_IO | ARM_CP_ALIAS, 7207 .fgt = FGT_PMEVTYPERN_EL0, 7208 .readfn = pmevtyper_readfn, .writefn = pmevtyper_writefn, 7209 .accessfn = pmreg_access }, 7210 { .name = pmevtyper_el0_name, .state = ARM_CP_STATE_AA64, 7211 .opc0 = 3, .opc1 = 3, .crn = 14, .crm = 12 | (3 & (i >> 3)), 7212 .opc2 = i & 7, .access = PL0_RW, .accessfn = pmreg_access, 7213 .fgt = FGT_PMEVTYPERN_EL0, 7214 .type = ARM_CP_IO, 7215 .readfn = pmevtyper_readfn, .writefn = pmevtyper_writefn, 7216 .raw_writefn = pmevtyper_rawwrite }, 7217 }; 7218 define_arm_cp_regs(cpu, pmev_regs); 7219 g_free(pmevcntr_name); 7220 g_free(pmevcntr_el0_name); 7221 g_free(pmevtyper_name); 7222 g_free(pmevtyper_el0_name); 7223 } 7224 if (cpu_isar_feature(aa32_pmuv3p1, cpu)) { 7225 ARMCPRegInfo v81_pmu_regs[] = { 7226 { .name = "PMCEID2", .state = ARM_CP_STATE_AA32, 7227 .cp = 15, .opc1 = 0, .crn = 9, .crm = 14, .opc2 = 4, 7228 .access = PL0_R, .accessfn = pmreg_access, .type = ARM_CP_CONST, 7229 .fgt = FGT_PMCEIDN_EL0, 7230 .resetvalue = extract64(cpu->pmceid0, 32, 32) }, 7231 { .name = "PMCEID3", .state = ARM_CP_STATE_AA32, 7232 .cp = 15, .opc1 = 0, .crn = 9, .crm = 14, .opc2 = 5, 7233 .access = PL0_R, .accessfn = pmreg_access, .type = ARM_CP_CONST, 7234 .fgt = FGT_PMCEIDN_EL0, 7235 .resetvalue = extract64(cpu->pmceid1, 32, 32) }, 7236 }; 7237 define_arm_cp_regs(cpu, v81_pmu_regs); 7238 } 7239 if (cpu_isar_feature(any_pmuv3p4, cpu)) { 7240 static const ARMCPRegInfo v84_pmmir = { 7241 .name = "PMMIR_EL1", .state = ARM_CP_STATE_BOTH, 7242 .opc0 = 3, .opc1 = 0, .crn = 9, .crm = 14, .opc2 = 6, 7243 .access = PL1_R, .accessfn = pmreg_access, .type = ARM_CP_CONST, 7244 .fgt = FGT_PMMIR_EL1, 7245 .resetvalue = 0 7246 }; 7247 define_one_arm_cp_reg(cpu, &v84_pmmir); 7248 } 7249 } 7250 7251 #ifndef CONFIG_USER_ONLY 7252 /* 7253 * We don't know until after realize whether there's a GICv3 7254 * attached, and that is what registers the gicv3 sysregs. 7255 * So we have to fill in the GIC fields in ID_PFR/ID_PFR1_EL1/ID_AA64PFR0_EL1 7256 * at runtime. 7257 */ 7258 static uint64_t id_pfr1_read(CPUARMState *env, const ARMCPRegInfo *ri) 7259 { 7260 ARMCPU *cpu = env_archcpu(env); 7261 uint64_t pfr1 = cpu->isar.id_pfr1; 7262 7263 if (env->gicv3state) { 7264 pfr1 |= 1 << 28; 7265 } 7266 return pfr1; 7267 } 7268 7269 static uint64_t id_aa64pfr0_read(CPUARMState *env, const ARMCPRegInfo *ri) 7270 { 7271 ARMCPU *cpu = env_archcpu(env); 7272 uint64_t pfr0 = cpu->isar.id_aa64pfr0; 7273 7274 if (env->gicv3state) { 7275 pfr0 |= 1 << 24; 7276 } 7277 return pfr0; 7278 } 7279 #endif 7280 7281 /* 7282 * Shared logic between LORID and the rest of the LOR* registers. 7283 * Secure state exclusion has already been dealt with. 7284 */ 7285 static CPAccessResult access_lor_ns(CPUARMState *env, 7286 const ARMCPRegInfo *ri, bool isread) 7287 { 7288 int el = arm_current_el(env); 7289 7290 if (el < 2 && (arm_hcr_el2_eff(env) & HCR_TLOR)) { 7291 return CP_ACCESS_TRAP_EL2; 7292 } 7293 if (el < 3 && (env->cp15.scr_el3 & SCR_TLOR)) { 7294 return CP_ACCESS_TRAP_EL3; 7295 } 7296 return CP_ACCESS_OK; 7297 } 7298 7299 static CPAccessResult access_lor_other(CPUARMState *env, 7300 const ARMCPRegInfo *ri, bool isread) 7301 { 7302 if (arm_is_secure_below_el3(env)) { 7303 /* Access denied in secure mode. */ 7304 return CP_ACCESS_TRAP; 7305 } 7306 return access_lor_ns(env, ri, isread); 7307 } 7308 7309 /* 7310 * A trivial implementation of ARMv8.1-LOR leaves all of these 7311 * registers fixed at 0, which indicates that there are zero 7312 * supported Limited Ordering regions. 7313 */ 7314 static const ARMCPRegInfo lor_reginfo[] = { 7315 { .name = "LORSA_EL1", .state = ARM_CP_STATE_AA64, 7316 .opc0 = 3, .opc1 = 0, .crn = 10, .crm = 4, .opc2 = 0, 7317 .access = PL1_RW, .accessfn = access_lor_other, 7318 .fgt = FGT_LORSA_EL1, 7319 .type = ARM_CP_CONST, .resetvalue = 0 }, 7320 { .name = "LOREA_EL1", .state = ARM_CP_STATE_AA64, 7321 .opc0 = 3, .opc1 = 0, .crn = 10, .crm = 4, .opc2 = 1, 7322 .access = PL1_RW, .accessfn = access_lor_other, 7323 .fgt = FGT_LOREA_EL1, 7324 .type = ARM_CP_CONST, .resetvalue = 0 }, 7325 { .name = "LORN_EL1", .state = ARM_CP_STATE_AA64, 7326 .opc0 = 3, .opc1 = 0, .crn = 10, .crm = 4, .opc2 = 2, 7327 .access = PL1_RW, .accessfn = access_lor_other, 7328 .fgt = FGT_LORN_EL1, 7329 .type = ARM_CP_CONST, .resetvalue = 0 }, 7330 { .name = "LORC_EL1", .state = ARM_CP_STATE_AA64, 7331 .opc0 = 3, .opc1 = 0, .crn = 10, .crm = 4, .opc2 = 3, 7332 .access = PL1_RW, .accessfn = access_lor_other, 7333 .fgt = FGT_LORC_EL1, 7334 .type = ARM_CP_CONST, .resetvalue = 0 }, 7335 { .name = "LORID_EL1", .state = ARM_CP_STATE_AA64, 7336 .opc0 = 3, .opc1 = 0, .crn = 10, .crm = 4, .opc2 = 7, 7337 .access = PL1_R, .accessfn = access_lor_ns, 7338 .fgt = FGT_LORID_EL1, 7339 .type = ARM_CP_CONST, .resetvalue = 0 }, 7340 }; 7341 7342 #ifdef TARGET_AARCH64 7343 static CPAccessResult access_pauth(CPUARMState *env, const ARMCPRegInfo *ri, 7344 bool isread) 7345 { 7346 int el = arm_current_el(env); 7347 7348 if (el < 2 && 7349 arm_is_el2_enabled(env) && 7350 !(arm_hcr_el2_eff(env) & HCR_APK)) { 7351 return CP_ACCESS_TRAP_EL2; 7352 } 7353 if (el < 3 && 7354 arm_feature(env, ARM_FEATURE_EL3) && 7355 !(env->cp15.scr_el3 & SCR_APK)) { 7356 return CP_ACCESS_TRAP_EL3; 7357 } 7358 return CP_ACCESS_OK; 7359 } 7360 7361 static const ARMCPRegInfo pauth_reginfo[] = { 7362 { .name = "APDAKEYLO_EL1", .state = ARM_CP_STATE_AA64, 7363 .opc0 = 3, .opc1 = 0, .crn = 2, .crm = 2, .opc2 = 0, 7364 .access = PL1_RW, .accessfn = access_pauth, 7365 .fgt = FGT_APDAKEY, 7366 .fieldoffset = offsetof(CPUARMState, keys.apda.lo) }, 7367 { .name = "APDAKEYHI_EL1", .state = ARM_CP_STATE_AA64, 7368 .opc0 = 3, .opc1 = 0, .crn = 2, .crm = 2, .opc2 = 1, 7369 .access = PL1_RW, .accessfn = access_pauth, 7370 .fgt = FGT_APDAKEY, 7371 .fieldoffset = offsetof(CPUARMState, keys.apda.hi) }, 7372 { .name = "APDBKEYLO_EL1", .state = ARM_CP_STATE_AA64, 7373 .opc0 = 3, .opc1 = 0, .crn = 2, .crm = 2, .opc2 = 2, 7374 .access = PL1_RW, .accessfn = access_pauth, 7375 .fgt = FGT_APDBKEY, 7376 .fieldoffset = offsetof(CPUARMState, keys.apdb.lo) }, 7377 { .name = "APDBKEYHI_EL1", .state = ARM_CP_STATE_AA64, 7378 .opc0 = 3, .opc1 = 0, .crn = 2, .crm = 2, .opc2 = 3, 7379 .access = PL1_RW, .accessfn = access_pauth, 7380 .fgt = FGT_APDBKEY, 7381 .fieldoffset = offsetof(CPUARMState, keys.apdb.hi) }, 7382 { .name = "APGAKEYLO_EL1", .state = ARM_CP_STATE_AA64, 7383 .opc0 = 3, .opc1 = 0, .crn = 2, .crm = 3, .opc2 = 0, 7384 .access = PL1_RW, .accessfn = access_pauth, 7385 .fgt = FGT_APGAKEY, 7386 .fieldoffset = offsetof(CPUARMState, keys.apga.lo) }, 7387 { .name = "APGAKEYHI_EL1", .state = ARM_CP_STATE_AA64, 7388 .opc0 = 3, .opc1 = 0, .crn = 2, .crm = 3, .opc2 = 1, 7389 .access = PL1_RW, .accessfn = access_pauth, 7390 .fgt = FGT_APGAKEY, 7391 .fieldoffset = offsetof(CPUARMState, keys.apga.hi) }, 7392 { .name = "APIAKEYLO_EL1", .state = ARM_CP_STATE_AA64, 7393 .opc0 = 3, .opc1 = 0, .crn = 2, .crm = 1, .opc2 = 0, 7394 .access = PL1_RW, .accessfn = access_pauth, 7395 .fgt = FGT_APIAKEY, 7396 .fieldoffset = offsetof(CPUARMState, keys.apia.lo) }, 7397 { .name = "APIAKEYHI_EL1", .state = ARM_CP_STATE_AA64, 7398 .opc0 = 3, .opc1 = 0, .crn = 2, .crm = 1, .opc2 = 1, 7399 .access = PL1_RW, .accessfn = access_pauth, 7400 .fgt = FGT_APIAKEY, 7401 .fieldoffset = offsetof(CPUARMState, keys.apia.hi) }, 7402 { .name = "APIBKEYLO_EL1", .state = ARM_CP_STATE_AA64, 7403 .opc0 = 3, .opc1 = 0, .crn = 2, .crm = 1, .opc2 = 2, 7404 .access = PL1_RW, .accessfn = access_pauth, 7405 .fgt = FGT_APIBKEY, 7406 .fieldoffset = offsetof(CPUARMState, keys.apib.lo) }, 7407 { .name = "APIBKEYHI_EL1", .state = ARM_CP_STATE_AA64, 7408 .opc0 = 3, .opc1 = 0, .crn = 2, .crm = 1, .opc2 = 3, 7409 .access = PL1_RW, .accessfn = access_pauth, 7410 .fgt = FGT_APIBKEY, 7411 .fieldoffset = offsetof(CPUARMState, keys.apib.hi) }, 7412 }; 7413 7414 static const ARMCPRegInfo tlbirange_reginfo[] = { 7415 { .name = "TLBI_RVAE1IS", .state = ARM_CP_STATE_AA64, 7416 .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 2, .opc2 = 1, 7417 .access = PL1_W, .accessfn = access_ttlbis, .type = ARM_CP_NO_RAW, 7418 .fgt = FGT_TLBIRVAE1IS, 7419 .writefn = tlbi_aa64_rvae1is_write }, 7420 { .name = "TLBI_RVAAE1IS", .state = ARM_CP_STATE_AA64, 7421 .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 2, .opc2 = 3, 7422 .access = PL1_W, .accessfn = access_ttlbis, .type = ARM_CP_NO_RAW, 7423 .fgt = FGT_TLBIRVAAE1IS, 7424 .writefn = tlbi_aa64_rvae1is_write }, 7425 { .name = "TLBI_RVALE1IS", .state = ARM_CP_STATE_AA64, 7426 .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 2, .opc2 = 5, 7427 .access = PL1_W, .accessfn = access_ttlbis, .type = ARM_CP_NO_RAW, 7428 .fgt = FGT_TLBIRVALE1IS, 7429 .writefn = tlbi_aa64_rvae1is_write }, 7430 { .name = "TLBI_RVAALE1IS", .state = ARM_CP_STATE_AA64, 7431 .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 2, .opc2 = 7, 7432 .access = PL1_W, .accessfn = access_ttlbis, .type = ARM_CP_NO_RAW, 7433 .fgt = FGT_TLBIRVAALE1IS, 7434 .writefn = tlbi_aa64_rvae1is_write }, 7435 { .name = "TLBI_RVAE1OS", .state = ARM_CP_STATE_AA64, 7436 .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 5, .opc2 = 1, 7437 .access = PL1_W, .accessfn = access_ttlbos, .type = ARM_CP_NO_RAW, 7438 .fgt = FGT_TLBIRVAE1OS, 7439 .writefn = tlbi_aa64_rvae1is_write }, 7440 { .name = "TLBI_RVAAE1OS", .state = ARM_CP_STATE_AA64, 7441 .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 5, .opc2 = 3, 7442 .access = PL1_W, .accessfn = access_ttlbos, .type = ARM_CP_NO_RAW, 7443 .fgt = FGT_TLBIRVAAE1OS, 7444 .writefn = tlbi_aa64_rvae1is_write }, 7445 { .name = "TLBI_RVALE1OS", .state = ARM_CP_STATE_AA64, 7446 .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 5, .opc2 = 5, 7447 .access = PL1_W, .accessfn = access_ttlbos, .type = ARM_CP_NO_RAW, 7448 .fgt = FGT_TLBIRVALE1OS, 7449 .writefn = tlbi_aa64_rvae1is_write }, 7450 { .name = "TLBI_RVAALE1OS", .state = ARM_CP_STATE_AA64, 7451 .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 5, .opc2 = 7, 7452 .access = PL1_W, .accessfn = access_ttlbos, .type = ARM_CP_NO_RAW, 7453 .fgt = FGT_TLBIRVAALE1OS, 7454 .writefn = tlbi_aa64_rvae1is_write }, 7455 { .name = "TLBI_RVAE1", .state = ARM_CP_STATE_AA64, 7456 .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 6, .opc2 = 1, 7457 .access = PL1_W, .accessfn = access_ttlb, .type = ARM_CP_NO_RAW, 7458 .fgt = FGT_TLBIRVAE1, 7459 .writefn = tlbi_aa64_rvae1_write }, 7460 { .name = "TLBI_RVAAE1", .state = ARM_CP_STATE_AA64, 7461 .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 6, .opc2 = 3, 7462 .access = PL1_W, .accessfn = access_ttlb, .type = ARM_CP_NO_RAW, 7463 .fgt = FGT_TLBIRVAAE1, 7464 .writefn = tlbi_aa64_rvae1_write }, 7465 { .name = "TLBI_RVALE1", .state = ARM_CP_STATE_AA64, 7466 .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 6, .opc2 = 5, 7467 .access = PL1_W, .accessfn = access_ttlb, .type = ARM_CP_NO_RAW, 7468 .fgt = FGT_TLBIRVALE1, 7469 .writefn = tlbi_aa64_rvae1_write }, 7470 { .name = "TLBI_RVAALE1", .state = ARM_CP_STATE_AA64, 7471 .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 6, .opc2 = 7, 7472 .access = PL1_W, .accessfn = access_ttlb, .type = ARM_CP_NO_RAW, 7473 .fgt = FGT_TLBIRVAALE1, 7474 .writefn = tlbi_aa64_rvae1_write }, 7475 { .name = "TLBI_RIPAS2E1IS", .state = ARM_CP_STATE_AA64, 7476 .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 0, .opc2 = 2, 7477 .access = PL2_W, .type = ARM_CP_NO_RAW, 7478 .writefn = tlbi_aa64_ripas2e1is_write }, 7479 { .name = "TLBI_RIPAS2LE1IS", .state = ARM_CP_STATE_AA64, 7480 .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 0, .opc2 = 6, 7481 .access = PL2_W, .type = ARM_CP_NO_RAW, 7482 .writefn = tlbi_aa64_ripas2e1is_write }, 7483 { .name = "TLBI_RVAE2IS", .state = ARM_CP_STATE_AA64, 7484 .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 2, .opc2 = 1, 7485 .access = PL2_W, .type = ARM_CP_NO_RAW | ARM_CP_EL3_NO_EL2_UNDEF, 7486 .writefn = tlbi_aa64_rvae2is_write }, 7487 { .name = "TLBI_RVALE2IS", .state = ARM_CP_STATE_AA64, 7488 .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 2, .opc2 = 5, 7489 .access = PL2_W, .type = ARM_CP_NO_RAW | ARM_CP_EL3_NO_EL2_UNDEF, 7490 .writefn = tlbi_aa64_rvae2is_write }, 7491 { .name = "TLBI_RIPAS2E1", .state = ARM_CP_STATE_AA64, 7492 .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 4, .opc2 = 2, 7493 .access = PL2_W, .type = ARM_CP_NO_RAW, 7494 .writefn = tlbi_aa64_ripas2e1_write }, 7495 { .name = "TLBI_RIPAS2LE1", .state = ARM_CP_STATE_AA64, 7496 .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 4, .opc2 = 6, 7497 .access = PL2_W, .type = ARM_CP_NO_RAW, 7498 .writefn = tlbi_aa64_ripas2e1_write }, 7499 { .name = "TLBI_RVAE2OS", .state = ARM_CP_STATE_AA64, 7500 .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 5, .opc2 = 1, 7501 .access = PL2_W, .type = ARM_CP_NO_RAW | ARM_CP_EL3_NO_EL2_UNDEF, 7502 .writefn = tlbi_aa64_rvae2is_write }, 7503 { .name = "TLBI_RVALE2OS", .state = ARM_CP_STATE_AA64, 7504 .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 5, .opc2 = 5, 7505 .access = PL2_W, .type = ARM_CP_NO_RAW | ARM_CP_EL3_NO_EL2_UNDEF, 7506 .writefn = tlbi_aa64_rvae2is_write }, 7507 { .name = "TLBI_RVAE2", .state = ARM_CP_STATE_AA64, 7508 .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 6, .opc2 = 1, 7509 .access = PL2_W, .type = ARM_CP_NO_RAW | ARM_CP_EL3_NO_EL2_UNDEF, 7510 .writefn = tlbi_aa64_rvae2_write }, 7511 { .name = "TLBI_RVALE2", .state = ARM_CP_STATE_AA64, 7512 .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 6, .opc2 = 5, 7513 .access = PL2_W, .type = ARM_CP_NO_RAW | ARM_CP_EL3_NO_EL2_UNDEF, 7514 .writefn = tlbi_aa64_rvae2_write }, 7515 { .name = "TLBI_RVAE3IS", .state = ARM_CP_STATE_AA64, 7516 .opc0 = 1, .opc1 = 6, .crn = 8, .crm = 2, .opc2 = 1, 7517 .access = PL3_W, .type = ARM_CP_NO_RAW, 7518 .writefn = tlbi_aa64_rvae3is_write }, 7519 { .name = "TLBI_RVALE3IS", .state = ARM_CP_STATE_AA64, 7520 .opc0 = 1, .opc1 = 6, .crn = 8, .crm = 2, .opc2 = 5, 7521 .access = PL3_W, .type = ARM_CP_NO_RAW, 7522 .writefn = tlbi_aa64_rvae3is_write }, 7523 { .name = "TLBI_RVAE3OS", .state = ARM_CP_STATE_AA64, 7524 .opc0 = 1, .opc1 = 6, .crn = 8, .crm = 5, .opc2 = 1, 7525 .access = PL3_W, .type = ARM_CP_NO_RAW, 7526 .writefn = tlbi_aa64_rvae3is_write }, 7527 { .name = "TLBI_RVALE3OS", .state = ARM_CP_STATE_AA64, 7528 .opc0 = 1, .opc1 = 6, .crn = 8, .crm = 5, .opc2 = 5, 7529 .access = PL3_W, .type = ARM_CP_NO_RAW, 7530 .writefn = tlbi_aa64_rvae3is_write }, 7531 { .name = "TLBI_RVAE3", .state = ARM_CP_STATE_AA64, 7532 .opc0 = 1, .opc1 = 6, .crn = 8, .crm = 6, .opc2 = 1, 7533 .access = PL3_W, .type = ARM_CP_NO_RAW, 7534 .writefn = tlbi_aa64_rvae3_write }, 7535 { .name = "TLBI_RVALE3", .state = ARM_CP_STATE_AA64, 7536 .opc0 = 1, .opc1 = 6, .crn = 8, .crm = 6, .opc2 = 5, 7537 .access = PL3_W, .type = ARM_CP_NO_RAW, 7538 .writefn = tlbi_aa64_rvae3_write }, 7539 }; 7540 7541 static const ARMCPRegInfo tlbios_reginfo[] = { 7542 { .name = "TLBI_VMALLE1OS", .state = ARM_CP_STATE_AA64, 7543 .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 1, .opc2 = 0, 7544 .access = PL1_W, .accessfn = access_ttlbos, .type = ARM_CP_NO_RAW, 7545 .fgt = FGT_TLBIVMALLE1OS, 7546 .writefn = tlbi_aa64_vmalle1is_write }, 7547 { .name = "TLBI_VAE1OS", .state = ARM_CP_STATE_AA64, 7548 .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 1, .opc2 = 1, 7549 .fgt = FGT_TLBIVAE1OS, 7550 .access = PL1_W, .accessfn = access_ttlbos, .type = ARM_CP_NO_RAW, 7551 .writefn = tlbi_aa64_vae1is_write }, 7552 { .name = "TLBI_ASIDE1OS", .state = ARM_CP_STATE_AA64, 7553 .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 1, .opc2 = 2, 7554 .access = PL1_W, .accessfn = access_ttlbos, .type = ARM_CP_NO_RAW, 7555 .fgt = FGT_TLBIASIDE1OS, 7556 .writefn = tlbi_aa64_vmalle1is_write }, 7557 { .name = "TLBI_VAAE1OS", .state = ARM_CP_STATE_AA64, 7558 .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 1, .opc2 = 3, 7559 .access = PL1_W, .accessfn = access_ttlbos, .type = ARM_CP_NO_RAW, 7560 .fgt = FGT_TLBIVAAE1OS, 7561 .writefn = tlbi_aa64_vae1is_write }, 7562 { .name = "TLBI_VALE1OS", .state = ARM_CP_STATE_AA64, 7563 .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 1, .opc2 = 5, 7564 .access = PL1_W, .accessfn = access_ttlbos, .type = ARM_CP_NO_RAW, 7565 .fgt = FGT_TLBIVALE1OS, 7566 .writefn = tlbi_aa64_vae1is_write }, 7567 { .name = "TLBI_VAALE1OS", .state = ARM_CP_STATE_AA64, 7568 .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 1, .opc2 = 7, 7569 .access = PL1_W, .accessfn = access_ttlbos, .type = ARM_CP_NO_RAW, 7570 .fgt = FGT_TLBIVAALE1OS, 7571 .writefn = tlbi_aa64_vae1is_write }, 7572 { .name = "TLBI_ALLE2OS", .state = ARM_CP_STATE_AA64, 7573 .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 1, .opc2 = 0, 7574 .access = PL2_W, .type = ARM_CP_NO_RAW | ARM_CP_EL3_NO_EL2_UNDEF, 7575 .writefn = tlbi_aa64_alle2is_write }, 7576 { .name = "TLBI_VAE2OS", .state = ARM_CP_STATE_AA64, 7577 .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 1, .opc2 = 1, 7578 .access = PL2_W, .type = ARM_CP_NO_RAW | ARM_CP_EL3_NO_EL2_UNDEF, 7579 .writefn = tlbi_aa64_vae2is_write }, 7580 { .name = "TLBI_ALLE1OS", .state = ARM_CP_STATE_AA64, 7581 .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 1, .opc2 = 4, 7582 .access = PL2_W, .type = ARM_CP_NO_RAW, 7583 .writefn = tlbi_aa64_alle1is_write }, 7584 { .name = "TLBI_VALE2OS", .state = ARM_CP_STATE_AA64, 7585 .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 1, .opc2 = 5, 7586 .access = PL2_W, .type = ARM_CP_NO_RAW | ARM_CP_EL3_NO_EL2_UNDEF, 7587 .writefn = tlbi_aa64_vae2is_write }, 7588 { .name = "TLBI_VMALLS12E1OS", .state = ARM_CP_STATE_AA64, 7589 .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 1, .opc2 = 6, 7590 .access = PL2_W, .type = ARM_CP_NO_RAW, 7591 .writefn = tlbi_aa64_alle1is_write }, 7592 { .name = "TLBI_IPAS2E1OS", .state = ARM_CP_STATE_AA64, 7593 .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 4, .opc2 = 0, 7594 .access = PL2_W, .type = ARM_CP_NOP }, 7595 { .name = "TLBI_RIPAS2E1OS", .state = ARM_CP_STATE_AA64, 7596 .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 4, .opc2 = 3, 7597 .access = PL2_W, .type = ARM_CP_NOP }, 7598 { .name = "TLBI_IPAS2LE1OS", .state = ARM_CP_STATE_AA64, 7599 .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 4, .opc2 = 4, 7600 .access = PL2_W, .type = ARM_CP_NOP }, 7601 { .name = "TLBI_RIPAS2LE1OS", .state = ARM_CP_STATE_AA64, 7602 .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 4, .opc2 = 7, 7603 .access = PL2_W, .type = ARM_CP_NOP }, 7604 { .name = "TLBI_ALLE3OS", .state = ARM_CP_STATE_AA64, 7605 .opc0 = 1, .opc1 = 6, .crn = 8, .crm = 1, .opc2 = 0, 7606 .access = PL3_W, .type = ARM_CP_NO_RAW, 7607 .writefn = tlbi_aa64_alle3is_write }, 7608 { .name = "TLBI_VAE3OS", .state = ARM_CP_STATE_AA64, 7609 .opc0 = 1, .opc1 = 6, .crn = 8, .crm = 1, .opc2 = 1, 7610 .access = PL3_W, .type = ARM_CP_NO_RAW, 7611 .writefn = tlbi_aa64_vae3is_write }, 7612 { .name = "TLBI_VALE3OS", .state = ARM_CP_STATE_AA64, 7613 .opc0 = 1, .opc1 = 6, .crn = 8, .crm = 1, .opc2 = 5, 7614 .access = PL3_W, .type = ARM_CP_NO_RAW, 7615 .writefn = tlbi_aa64_vae3is_write }, 7616 }; 7617 7618 static uint64_t rndr_readfn(CPUARMState *env, const ARMCPRegInfo *ri) 7619 { 7620 Error *err = NULL; 7621 uint64_t ret; 7622 7623 /* Success sets NZCV = 0000. */ 7624 env->NF = env->CF = env->VF = 0, env->ZF = 1; 7625 7626 if (qemu_guest_getrandom(&ret, sizeof(ret), &err) < 0) { 7627 /* 7628 * ??? Failed, for unknown reasons in the crypto subsystem. 7629 * The best we can do is log the reason and return the 7630 * timed-out indication to the guest. There is no reason 7631 * we know to expect this failure to be transitory, so the 7632 * guest may well hang retrying the operation. 7633 */ 7634 qemu_log_mask(LOG_UNIMP, "%s: Crypto failure: %s", 7635 ri->name, error_get_pretty(err)); 7636 error_free(err); 7637 7638 env->ZF = 0; /* NZCF = 0100 */ 7639 return 0; 7640 } 7641 return ret; 7642 } 7643 7644 /* We do not support re-seeding, so the two registers operate the same. */ 7645 static const ARMCPRegInfo rndr_reginfo[] = { 7646 { .name = "RNDR", .state = ARM_CP_STATE_AA64, 7647 .type = ARM_CP_NO_RAW | ARM_CP_SUPPRESS_TB_END | ARM_CP_IO, 7648 .opc0 = 3, .opc1 = 3, .crn = 2, .crm = 4, .opc2 = 0, 7649 .access = PL0_R, .readfn = rndr_readfn }, 7650 { .name = "RNDRRS", .state = ARM_CP_STATE_AA64, 7651 .type = ARM_CP_NO_RAW | ARM_CP_SUPPRESS_TB_END | ARM_CP_IO, 7652 .opc0 = 3, .opc1 = 3, .crn = 2, .crm = 4, .opc2 = 1, 7653 .access = PL0_R, .readfn = rndr_readfn }, 7654 }; 7655 7656 static void dccvap_writefn(CPUARMState *env, const ARMCPRegInfo *opaque, 7657 uint64_t value) 7658 { 7659 ARMCPU *cpu = env_archcpu(env); 7660 /* CTR_EL0 System register -> DminLine, bits [19:16] */ 7661 uint64_t dline_size = 4 << ((cpu->ctr >> 16) & 0xF); 7662 uint64_t vaddr_in = (uint64_t) value; 7663 uint64_t vaddr = vaddr_in & ~(dline_size - 1); 7664 void *haddr; 7665 int mem_idx = cpu_mmu_index(env, false); 7666 7667 /* This won't be crossing page boundaries */ 7668 haddr = probe_read(env, vaddr, dline_size, mem_idx, GETPC()); 7669 if (haddr) { 7670 #ifndef CONFIG_USER_ONLY 7671 7672 ram_addr_t offset; 7673 MemoryRegion *mr; 7674 7675 /* RCU lock is already being held */ 7676 mr = memory_region_from_host(haddr, &offset); 7677 7678 if (mr) { 7679 memory_region_writeback(mr, offset, dline_size); 7680 } 7681 #endif /*CONFIG_USER_ONLY*/ 7682 } 7683 } 7684 7685 static const ARMCPRegInfo dcpop_reg[] = { 7686 { .name = "DC_CVAP", .state = ARM_CP_STATE_AA64, 7687 .opc0 = 1, .opc1 = 3, .crn = 7, .crm = 12, .opc2 = 1, 7688 .access = PL0_W, .type = ARM_CP_NO_RAW | ARM_CP_SUPPRESS_TB_END, 7689 .fgt = FGT_DCCVAP, 7690 .accessfn = aa64_cacheop_poc_access, .writefn = dccvap_writefn }, 7691 }; 7692 7693 static const ARMCPRegInfo dcpodp_reg[] = { 7694 { .name = "DC_CVADP", .state = ARM_CP_STATE_AA64, 7695 .opc0 = 1, .opc1 = 3, .crn = 7, .crm = 13, .opc2 = 1, 7696 .access = PL0_W, .type = ARM_CP_NO_RAW | ARM_CP_SUPPRESS_TB_END, 7697 .fgt = FGT_DCCVADP, 7698 .accessfn = aa64_cacheop_poc_access, .writefn = dccvap_writefn }, 7699 }; 7700 7701 static CPAccessResult access_aa64_tid5(CPUARMState *env, const ARMCPRegInfo *ri, 7702 bool isread) 7703 { 7704 if ((arm_current_el(env) < 2) && (arm_hcr_el2_eff(env) & HCR_TID5)) { 7705 return CP_ACCESS_TRAP_EL2; 7706 } 7707 7708 return CP_ACCESS_OK; 7709 } 7710 7711 static CPAccessResult access_mte(CPUARMState *env, const ARMCPRegInfo *ri, 7712 bool isread) 7713 { 7714 int el = arm_current_el(env); 7715 7716 if (el < 2 && arm_is_el2_enabled(env)) { 7717 uint64_t hcr = arm_hcr_el2_eff(env); 7718 if (!(hcr & HCR_ATA) && (!(hcr & HCR_E2H) || !(hcr & HCR_TGE))) { 7719 return CP_ACCESS_TRAP_EL2; 7720 } 7721 } 7722 if (el < 3 && 7723 arm_feature(env, ARM_FEATURE_EL3) && 7724 !(env->cp15.scr_el3 & SCR_ATA)) { 7725 return CP_ACCESS_TRAP_EL3; 7726 } 7727 return CP_ACCESS_OK; 7728 } 7729 7730 static uint64_t tco_read(CPUARMState *env, const ARMCPRegInfo *ri) 7731 { 7732 return env->pstate & PSTATE_TCO; 7733 } 7734 7735 static void tco_write(CPUARMState *env, const ARMCPRegInfo *ri, uint64_t val) 7736 { 7737 env->pstate = (env->pstate & ~PSTATE_TCO) | (val & PSTATE_TCO); 7738 } 7739 7740 static const ARMCPRegInfo mte_reginfo[] = { 7741 { .name = "TFSRE0_EL1", .state = ARM_CP_STATE_AA64, 7742 .opc0 = 3, .opc1 = 0, .crn = 5, .crm = 6, .opc2 = 1, 7743 .access = PL1_RW, .accessfn = access_mte, 7744 .fieldoffset = offsetof(CPUARMState, cp15.tfsr_el[0]) }, 7745 { .name = "TFSR_EL1", .state = ARM_CP_STATE_AA64, 7746 .opc0 = 3, .opc1 = 0, .crn = 5, .crm = 6, .opc2 = 0, 7747 .access = PL1_RW, .accessfn = access_mte, 7748 .fieldoffset = offsetof(CPUARMState, cp15.tfsr_el[1]) }, 7749 { .name = "TFSR_EL2", .state = ARM_CP_STATE_AA64, 7750 .opc0 = 3, .opc1 = 4, .crn = 5, .crm = 6, .opc2 = 0, 7751 .access = PL2_RW, .accessfn = access_mte, 7752 .fieldoffset = offsetof(CPUARMState, cp15.tfsr_el[2]) }, 7753 { .name = "TFSR_EL3", .state = ARM_CP_STATE_AA64, 7754 .opc0 = 3, .opc1 = 6, .crn = 5, .crm = 6, .opc2 = 0, 7755 .access = PL3_RW, 7756 .fieldoffset = offsetof(CPUARMState, cp15.tfsr_el[3]) }, 7757 { .name = "RGSR_EL1", .state = ARM_CP_STATE_AA64, 7758 .opc0 = 3, .opc1 = 0, .crn = 1, .crm = 0, .opc2 = 5, 7759 .access = PL1_RW, .accessfn = access_mte, 7760 .fieldoffset = offsetof(CPUARMState, cp15.rgsr_el1) }, 7761 { .name = "GCR_EL1", .state = ARM_CP_STATE_AA64, 7762 .opc0 = 3, .opc1 = 0, .crn = 1, .crm = 0, .opc2 = 6, 7763 .access = PL1_RW, .accessfn = access_mte, 7764 .fieldoffset = offsetof(CPUARMState, cp15.gcr_el1) }, 7765 { .name = "TCO", .state = ARM_CP_STATE_AA64, 7766 .opc0 = 3, .opc1 = 3, .crn = 4, .crm = 2, .opc2 = 7, 7767 .type = ARM_CP_NO_RAW, 7768 .access = PL0_RW, .readfn = tco_read, .writefn = tco_write }, 7769 { .name = "DC_IGVAC", .state = ARM_CP_STATE_AA64, 7770 .opc0 = 1, .opc1 = 0, .crn = 7, .crm = 6, .opc2 = 3, 7771 .type = ARM_CP_NOP, .access = PL1_W, 7772 .fgt = FGT_DCIVAC, 7773 .accessfn = aa64_cacheop_poc_access }, 7774 { .name = "DC_IGSW", .state = ARM_CP_STATE_AA64, 7775 .opc0 = 1, .opc1 = 0, .crn = 7, .crm = 6, .opc2 = 4, 7776 .fgt = FGT_DCISW, 7777 .type = ARM_CP_NOP, .access = PL1_W, .accessfn = access_tsw }, 7778 { .name = "DC_IGDVAC", .state = ARM_CP_STATE_AA64, 7779 .opc0 = 1, .opc1 = 0, .crn = 7, .crm = 6, .opc2 = 5, 7780 .type = ARM_CP_NOP, .access = PL1_W, 7781 .fgt = FGT_DCIVAC, 7782 .accessfn = aa64_cacheop_poc_access }, 7783 { .name = "DC_IGDSW", .state = ARM_CP_STATE_AA64, 7784 .opc0 = 1, .opc1 = 0, .crn = 7, .crm = 6, .opc2 = 6, 7785 .fgt = FGT_DCISW, 7786 .type = ARM_CP_NOP, .access = PL1_W, .accessfn = access_tsw }, 7787 { .name = "DC_CGSW", .state = ARM_CP_STATE_AA64, 7788 .opc0 = 1, .opc1 = 0, .crn = 7, .crm = 10, .opc2 = 4, 7789 .fgt = FGT_DCCSW, 7790 .type = ARM_CP_NOP, .access = PL1_W, .accessfn = access_tsw }, 7791 { .name = "DC_CGDSW", .state = ARM_CP_STATE_AA64, 7792 .opc0 = 1, .opc1 = 0, .crn = 7, .crm = 10, .opc2 = 6, 7793 .fgt = FGT_DCCSW, 7794 .type = ARM_CP_NOP, .access = PL1_W, .accessfn = access_tsw }, 7795 { .name = "DC_CIGSW", .state = ARM_CP_STATE_AA64, 7796 .opc0 = 1, .opc1 = 0, .crn = 7, .crm = 14, .opc2 = 4, 7797 .fgt = FGT_DCCISW, 7798 .type = ARM_CP_NOP, .access = PL1_W, .accessfn = access_tsw }, 7799 { .name = "DC_CIGDSW", .state = ARM_CP_STATE_AA64, 7800 .opc0 = 1, .opc1 = 0, .crn = 7, .crm = 14, .opc2 = 6, 7801 .fgt = FGT_DCCISW, 7802 .type = ARM_CP_NOP, .access = PL1_W, .accessfn = access_tsw }, 7803 }; 7804 7805 static const ARMCPRegInfo mte_tco_ro_reginfo[] = { 7806 { .name = "TCO", .state = ARM_CP_STATE_AA64, 7807 .opc0 = 3, .opc1 = 3, .crn = 4, .crm = 2, .opc2 = 7, 7808 .type = ARM_CP_CONST, .access = PL0_RW, }, 7809 }; 7810 7811 static const ARMCPRegInfo mte_el0_cacheop_reginfo[] = { 7812 { .name = "DC_CGVAC", .state = ARM_CP_STATE_AA64, 7813 .opc0 = 1, .opc1 = 3, .crn = 7, .crm = 10, .opc2 = 3, 7814 .type = ARM_CP_NOP, .access = PL0_W, 7815 .fgt = FGT_DCCVAC, 7816 .accessfn = aa64_cacheop_poc_access }, 7817 { .name = "DC_CGDVAC", .state = ARM_CP_STATE_AA64, 7818 .opc0 = 1, .opc1 = 3, .crn = 7, .crm = 10, .opc2 = 5, 7819 .type = ARM_CP_NOP, .access = PL0_W, 7820 .fgt = FGT_DCCVAC, 7821 .accessfn = aa64_cacheop_poc_access }, 7822 { .name = "DC_CGVAP", .state = ARM_CP_STATE_AA64, 7823 .opc0 = 1, .opc1 = 3, .crn = 7, .crm = 12, .opc2 = 3, 7824 .type = ARM_CP_NOP, .access = PL0_W, 7825 .fgt = FGT_DCCVAP, 7826 .accessfn = aa64_cacheop_poc_access }, 7827 { .name = "DC_CGDVAP", .state = ARM_CP_STATE_AA64, 7828 .opc0 = 1, .opc1 = 3, .crn = 7, .crm = 12, .opc2 = 5, 7829 .type = ARM_CP_NOP, .access = PL0_W, 7830 .fgt = FGT_DCCVAP, 7831 .accessfn = aa64_cacheop_poc_access }, 7832 { .name = "DC_CGVADP", .state = ARM_CP_STATE_AA64, 7833 .opc0 = 1, .opc1 = 3, .crn = 7, .crm = 13, .opc2 = 3, 7834 .type = ARM_CP_NOP, .access = PL0_W, 7835 .fgt = FGT_DCCVADP, 7836 .accessfn = aa64_cacheop_poc_access }, 7837 { .name = "DC_CGDVADP", .state = ARM_CP_STATE_AA64, 7838 .opc0 = 1, .opc1 = 3, .crn = 7, .crm = 13, .opc2 = 5, 7839 .type = ARM_CP_NOP, .access = PL0_W, 7840 .fgt = FGT_DCCVADP, 7841 .accessfn = aa64_cacheop_poc_access }, 7842 { .name = "DC_CIGVAC", .state = ARM_CP_STATE_AA64, 7843 .opc0 = 1, .opc1 = 3, .crn = 7, .crm = 14, .opc2 = 3, 7844 .type = ARM_CP_NOP, .access = PL0_W, 7845 .fgt = FGT_DCCIVAC, 7846 .accessfn = aa64_cacheop_poc_access }, 7847 { .name = "DC_CIGDVAC", .state = ARM_CP_STATE_AA64, 7848 .opc0 = 1, .opc1 = 3, .crn = 7, .crm = 14, .opc2 = 5, 7849 .type = ARM_CP_NOP, .access = PL0_W, 7850 .fgt = FGT_DCCIVAC, 7851 .accessfn = aa64_cacheop_poc_access }, 7852 { .name = "DC_GVA", .state = ARM_CP_STATE_AA64, 7853 .opc0 = 1, .opc1 = 3, .crn = 7, .crm = 4, .opc2 = 3, 7854 .access = PL0_W, .type = ARM_CP_DC_GVA, 7855 #ifndef CONFIG_USER_ONLY 7856 /* Avoid overhead of an access check that always passes in user-mode */ 7857 .accessfn = aa64_zva_access, 7858 .fgt = FGT_DCZVA, 7859 #endif 7860 }, 7861 { .name = "DC_GZVA", .state = ARM_CP_STATE_AA64, 7862 .opc0 = 1, .opc1 = 3, .crn = 7, .crm = 4, .opc2 = 4, 7863 .access = PL0_W, .type = ARM_CP_DC_GZVA, 7864 #ifndef CONFIG_USER_ONLY 7865 /* Avoid overhead of an access check that always passes in user-mode */ 7866 .accessfn = aa64_zva_access, 7867 .fgt = FGT_DCZVA, 7868 #endif 7869 }, 7870 }; 7871 7872 static CPAccessResult access_scxtnum(CPUARMState *env, const ARMCPRegInfo *ri, 7873 bool isread) 7874 { 7875 uint64_t hcr = arm_hcr_el2_eff(env); 7876 int el = arm_current_el(env); 7877 7878 if (el == 0 && !((hcr & HCR_E2H) && (hcr & HCR_TGE))) { 7879 if (env->cp15.sctlr_el[1] & SCTLR_TSCXT) { 7880 if (hcr & HCR_TGE) { 7881 return CP_ACCESS_TRAP_EL2; 7882 } 7883 return CP_ACCESS_TRAP; 7884 } 7885 } else if (el < 2 && (env->cp15.sctlr_el[2] & SCTLR_TSCXT)) { 7886 return CP_ACCESS_TRAP_EL2; 7887 } 7888 if (el < 2 && arm_is_el2_enabled(env) && !(hcr & HCR_ENSCXT)) { 7889 return CP_ACCESS_TRAP_EL2; 7890 } 7891 if (el < 3 7892 && arm_feature(env, ARM_FEATURE_EL3) 7893 && !(env->cp15.scr_el3 & SCR_ENSCXT)) { 7894 return CP_ACCESS_TRAP_EL3; 7895 } 7896 return CP_ACCESS_OK; 7897 } 7898 7899 static const ARMCPRegInfo scxtnum_reginfo[] = { 7900 { .name = "SCXTNUM_EL0", .state = ARM_CP_STATE_AA64, 7901 .opc0 = 3, .opc1 = 3, .crn = 13, .crm = 0, .opc2 = 7, 7902 .access = PL0_RW, .accessfn = access_scxtnum, 7903 .fgt = FGT_SCXTNUM_EL0, 7904 .fieldoffset = offsetof(CPUARMState, scxtnum_el[0]) }, 7905 { .name = "SCXTNUM_EL1", .state = ARM_CP_STATE_AA64, 7906 .opc0 = 3, .opc1 = 0, .crn = 13, .crm = 0, .opc2 = 7, 7907 .access = PL1_RW, .accessfn = access_scxtnum, 7908 .fgt = FGT_SCXTNUM_EL1, 7909 .fieldoffset = offsetof(CPUARMState, scxtnum_el[1]) }, 7910 { .name = "SCXTNUM_EL2", .state = ARM_CP_STATE_AA64, 7911 .opc0 = 3, .opc1 = 4, .crn = 13, .crm = 0, .opc2 = 7, 7912 .access = PL2_RW, .accessfn = access_scxtnum, 7913 .fieldoffset = offsetof(CPUARMState, scxtnum_el[2]) }, 7914 { .name = "SCXTNUM_EL3", .state = ARM_CP_STATE_AA64, 7915 .opc0 = 3, .opc1 = 6, .crn = 13, .crm = 0, .opc2 = 7, 7916 .access = PL3_RW, 7917 .fieldoffset = offsetof(CPUARMState, scxtnum_el[3]) }, 7918 }; 7919 7920 static CPAccessResult access_fgt(CPUARMState *env, const ARMCPRegInfo *ri, 7921 bool isread) 7922 { 7923 if (arm_current_el(env) == 2 && 7924 arm_feature(env, ARM_FEATURE_EL3) && !(env->cp15.scr_el3 & SCR_FGTEN)) { 7925 return CP_ACCESS_TRAP_EL3; 7926 } 7927 return CP_ACCESS_OK; 7928 } 7929 7930 static const ARMCPRegInfo fgt_reginfo[] = { 7931 { .name = "HFGRTR_EL2", .state = ARM_CP_STATE_AA64, 7932 .opc0 = 3, .opc1 = 4, .crn = 1, .crm = 1, .opc2 = 4, 7933 .access = PL2_RW, .accessfn = access_fgt, 7934 .fieldoffset = offsetof(CPUARMState, cp15.fgt_read[FGTREG_HFGRTR]) }, 7935 { .name = "HFGWTR_EL2", .state = ARM_CP_STATE_AA64, 7936 .opc0 = 3, .opc1 = 4, .crn = 1, .crm = 1, .opc2 = 5, 7937 .access = PL2_RW, .accessfn = access_fgt, 7938 .fieldoffset = offsetof(CPUARMState, cp15.fgt_write[FGTREG_HFGWTR]) }, 7939 { .name = "HDFGRTR_EL2", .state = ARM_CP_STATE_AA64, 7940 .opc0 = 3, .opc1 = 4, .crn = 3, .crm = 1, .opc2 = 4, 7941 .access = PL2_RW, .accessfn = access_fgt, 7942 .fieldoffset = offsetof(CPUARMState, cp15.fgt_read[FGTREG_HDFGRTR]) }, 7943 { .name = "HDFGWTR_EL2", .state = ARM_CP_STATE_AA64, 7944 .opc0 = 3, .opc1 = 4, .crn = 3, .crm = 1, .opc2 = 5, 7945 .access = PL2_RW, .accessfn = access_fgt, 7946 .fieldoffset = offsetof(CPUARMState, cp15.fgt_write[FGTREG_HDFGWTR]) }, 7947 { .name = "HFGITR_EL2", .state = ARM_CP_STATE_AA64, 7948 .opc0 = 3, .opc1 = 4, .crn = 1, .crm = 1, .opc2 = 6, 7949 .access = PL2_RW, .accessfn = access_fgt, 7950 .fieldoffset = offsetof(CPUARMState, cp15.fgt_exec[FGTREG_HFGITR]) }, 7951 }; 7952 #endif /* TARGET_AARCH64 */ 7953 7954 static CPAccessResult access_predinv(CPUARMState *env, const ARMCPRegInfo *ri, 7955 bool isread) 7956 { 7957 int el = arm_current_el(env); 7958 7959 if (el == 0) { 7960 uint64_t sctlr = arm_sctlr(env, el); 7961 if (!(sctlr & SCTLR_EnRCTX)) { 7962 return CP_ACCESS_TRAP; 7963 } 7964 } else if (el == 1) { 7965 uint64_t hcr = arm_hcr_el2_eff(env); 7966 if (hcr & HCR_NV) { 7967 return CP_ACCESS_TRAP_EL2; 7968 } 7969 } 7970 return CP_ACCESS_OK; 7971 } 7972 7973 static const ARMCPRegInfo predinv_reginfo[] = { 7974 { .name = "CFP_RCTX", .state = ARM_CP_STATE_AA64, 7975 .opc0 = 1, .opc1 = 3, .crn = 7, .crm = 3, .opc2 = 4, 7976 .fgt = FGT_CFPRCTX, 7977 .type = ARM_CP_NOP, .access = PL0_W, .accessfn = access_predinv }, 7978 { .name = "DVP_RCTX", .state = ARM_CP_STATE_AA64, 7979 .opc0 = 1, .opc1 = 3, .crn = 7, .crm = 3, .opc2 = 5, 7980 .fgt = FGT_DVPRCTX, 7981 .type = ARM_CP_NOP, .access = PL0_W, .accessfn = access_predinv }, 7982 { .name = "CPP_RCTX", .state = ARM_CP_STATE_AA64, 7983 .opc0 = 1, .opc1 = 3, .crn = 7, .crm = 3, .opc2 = 7, 7984 .fgt = FGT_CPPRCTX, 7985 .type = ARM_CP_NOP, .access = PL0_W, .accessfn = access_predinv }, 7986 /* 7987 * Note the AArch32 opcodes have a different OPC1. 7988 */ 7989 { .name = "CFPRCTX", .state = ARM_CP_STATE_AA32, 7990 .cp = 15, .opc1 = 0, .crn = 7, .crm = 3, .opc2 = 4, 7991 .fgt = FGT_CFPRCTX, 7992 .type = ARM_CP_NOP, .access = PL0_W, .accessfn = access_predinv }, 7993 { .name = "DVPRCTX", .state = ARM_CP_STATE_AA32, 7994 .cp = 15, .opc1 = 0, .crn = 7, .crm = 3, .opc2 = 5, 7995 .fgt = FGT_DVPRCTX, 7996 .type = ARM_CP_NOP, .access = PL0_W, .accessfn = access_predinv }, 7997 { .name = "CPPRCTX", .state = ARM_CP_STATE_AA32, 7998 .cp = 15, .opc1 = 0, .crn = 7, .crm = 3, .opc2 = 7, 7999 .fgt = FGT_CPPRCTX, 8000 .type = ARM_CP_NOP, .access = PL0_W, .accessfn = access_predinv }, 8001 }; 8002 8003 static uint64_t ccsidr2_read(CPUARMState *env, const ARMCPRegInfo *ri) 8004 { 8005 /* Read the high 32 bits of the current CCSIDR */ 8006 return extract64(ccsidr_read(env, ri), 32, 32); 8007 } 8008 8009 static const ARMCPRegInfo ccsidr2_reginfo[] = { 8010 { .name = "CCSIDR2", .state = ARM_CP_STATE_BOTH, 8011 .opc0 = 3, .opc1 = 1, .crn = 0, .crm = 0, .opc2 = 2, 8012 .access = PL1_R, 8013 .accessfn = access_tid4, 8014 .readfn = ccsidr2_read, .type = ARM_CP_NO_RAW }, 8015 }; 8016 8017 static CPAccessResult access_aa64_tid3(CPUARMState *env, const ARMCPRegInfo *ri, 8018 bool isread) 8019 { 8020 if ((arm_current_el(env) < 2) && (arm_hcr_el2_eff(env) & HCR_TID3)) { 8021 return CP_ACCESS_TRAP_EL2; 8022 } 8023 8024 return CP_ACCESS_OK; 8025 } 8026 8027 static CPAccessResult access_aa32_tid3(CPUARMState *env, const ARMCPRegInfo *ri, 8028 bool isread) 8029 { 8030 if (arm_feature(env, ARM_FEATURE_V8)) { 8031 return access_aa64_tid3(env, ri, isread); 8032 } 8033 8034 return CP_ACCESS_OK; 8035 } 8036 8037 static CPAccessResult access_jazelle(CPUARMState *env, const ARMCPRegInfo *ri, 8038 bool isread) 8039 { 8040 if (arm_current_el(env) == 1 && (arm_hcr_el2_eff(env) & HCR_TID0)) { 8041 return CP_ACCESS_TRAP_EL2; 8042 } 8043 8044 return CP_ACCESS_OK; 8045 } 8046 8047 static CPAccessResult access_joscr_jmcr(CPUARMState *env, 8048 const ARMCPRegInfo *ri, bool isread) 8049 { 8050 /* 8051 * HSTR.TJDBX traps JOSCR and JMCR accesses, but it exists only 8052 * in v7A, not in v8A. 8053 */ 8054 if (!arm_feature(env, ARM_FEATURE_V8) && 8055 arm_current_el(env) < 2 && !arm_is_secure_below_el3(env) && 8056 (env->cp15.hstr_el2 & HSTR_TJDBX)) { 8057 return CP_ACCESS_TRAP_EL2; 8058 } 8059 return CP_ACCESS_OK; 8060 } 8061 8062 static const ARMCPRegInfo jazelle_regs[] = { 8063 { .name = "JIDR", 8064 .cp = 14, .crn = 0, .crm = 0, .opc1 = 7, .opc2 = 0, 8065 .access = PL1_R, .accessfn = access_jazelle, 8066 .type = ARM_CP_CONST, .resetvalue = 0 }, 8067 { .name = "JOSCR", 8068 .cp = 14, .crn = 1, .crm = 0, .opc1 = 7, .opc2 = 0, 8069 .accessfn = access_joscr_jmcr, 8070 .access = PL1_RW, .type = ARM_CP_CONST, .resetvalue = 0 }, 8071 { .name = "JMCR", 8072 .cp = 14, .crn = 2, .crm = 0, .opc1 = 7, .opc2 = 0, 8073 .accessfn = access_joscr_jmcr, 8074 .access = PL1_RW, .type = ARM_CP_CONST, .resetvalue = 0 }, 8075 }; 8076 8077 static const ARMCPRegInfo contextidr_el2 = { 8078 .name = "CONTEXTIDR_EL2", .state = ARM_CP_STATE_AA64, 8079 .opc0 = 3, .opc1 = 4, .crn = 13, .crm = 0, .opc2 = 1, 8080 .access = PL2_RW, 8081 .fieldoffset = offsetof(CPUARMState, cp15.contextidr_el[2]) 8082 }; 8083 8084 static const ARMCPRegInfo vhe_reginfo[] = { 8085 { .name = "TTBR1_EL2", .state = ARM_CP_STATE_AA64, 8086 .opc0 = 3, .opc1 = 4, .crn = 2, .crm = 0, .opc2 = 1, 8087 .access = PL2_RW, .writefn = vmsa_tcr_ttbr_el2_write, 8088 .raw_writefn = raw_write, 8089 .fieldoffset = offsetof(CPUARMState, cp15.ttbr1_el[2]) }, 8090 #ifndef CONFIG_USER_ONLY 8091 { .name = "CNTHV_CVAL_EL2", .state = ARM_CP_STATE_AA64, 8092 .opc0 = 3, .opc1 = 4, .crn = 14, .crm = 3, .opc2 = 2, 8093 .fieldoffset = 8094 offsetof(CPUARMState, cp15.c14_timer[GTIMER_HYPVIRT].cval), 8095 .type = ARM_CP_IO, .access = PL2_RW, 8096 .writefn = gt_hv_cval_write, .raw_writefn = raw_write }, 8097 { .name = "CNTHV_TVAL_EL2", .state = ARM_CP_STATE_BOTH, 8098 .opc0 = 3, .opc1 = 4, .crn = 14, .crm = 3, .opc2 = 0, 8099 .type = ARM_CP_NO_RAW | ARM_CP_IO, .access = PL2_RW, 8100 .resetfn = gt_hv_timer_reset, 8101 .readfn = gt_hv_tval_read, .writefn = gt_hv_tval_write }, 8102 { .name = "CNTHV_CTL_EL2", .state = ARM_CP_STATE_BOTH, 8103 .type = ARM_CP_IO, 8104 .opc0 = 3, .opc1 = 4, .crn = 14, .crm = 3, .opc2 = 1, 8105 .access = PL2_RW, 8106 .fieldoffset = offsetof(CPUARMState, cp15.c14_timer[GTIMER_HYPVIRT].ctl), 8107 .writefn = gt_hv_ctl_write, .raw_writefn = raw_write }, 8108 { .name = "CNTP_CTL_EL02", .state = ARM_CP_STATE_AA64, 8109 .opc0 = 3, .opc1 = 5, .crn = 14, .crm = 2, .opc2 = 1, 8110 .type = ARM_CP_IO | ARM_CP_ALIAS, 8111 .access = PL2_RW, .accessfn = e2h_access, 8112 .fieldoffset = offsetof(CPUARMState, cp15.c14_timer[GTIMER_PHYS].ctl), 8113 .writefn = gt_phys_ctl_write, .raw_writefn = raw_write }, 8114 { .name = "CNTV_CTL_EL02", .state = ARM_CP_STATE_AA64, 8115 .opc0 = 3, .opc1 = 5, .crn = 14, .crm = 3, .opc2 = 1, 8116 .type = ARM_CP_IO | ARM_CP_ALIAS, 8117 .access = PL2_RW, .accessfn = e2h_access, 8118 .fieldoffset = offsetof(CPUARMState, cp15.c14_timer[GTIMER_VIRT].ctl), 8119 .writefn = gt_virt_ctl_write, .raw_writefn = raw_write }, 8120 { .name = "CNTP_TVAL_EL02", .state = ARM_CP_STATE_AA64, 8121 .opc0 = 3, .opc1 = 5, .crn = 14, .crm = 2, .opc2 = 0, 8122 .type = ARM_CP_NO_RAW | ARM_CP_IO | ARM_CP_ALIAS, 8123 .access = PL2_RW, .accessfn = e2h_access, 8124 .readfn = gt_phys_tval_read, .writefn = gt_phys_tval_write }, 8125 { .name = "CNTV_TVAL_EL02", .state = ARM_CP_STATE_AA64, 8126 .opc0 = 3, .opc1 = 5, .crn = 14, .crm = 3, .opc2 = 0, 8127 .type = ARM_CP_NO_RAW | ARM_CP_IO | ARM_CP_ALIAS, 8128 .access = PL2_RW, .accessfn = e2h_access, 8129 .readfn = gt_virt_tval_read, .writefn = gt_virt_tval_write }, 8130 { .name = "CNTP_CVAL_EL02", .state = ARM_CP_STATE_AA64, 8131 .opc0 = 3, .opc1 = 5, .crn = 14, .crm = 2, .opc2 = 2, 8132 .type = ARM_CP_IO | ARM_CP_ALIAS, 8133 .fieldoffset = offsetof(CPUARMState, cp15.c14_timer[GTIMER_PHYS].cval), 8134 .access = PL2_RW, .accessfn = e2h_access, 8135 .writefn = gt_phys_cval_write, .raw_writefn = raw_write }, 8136 { .name = "CNTV_CVAL_EL02", .state = ARM_CP_STATE_AA64, 8137 .opc0 = 3, .opc1 = 5, .crn = 14, .crm = 3, .opc2 = 2, 8138 .type = ARM_CP_IO | ARM_CP_ALIAS, 8139 .fieldoffset = offsetof(CPUARMState, cp15.c14_timer[GTIMER_VIRT].cval), 8140 .access = PL2_RW, .accessfn = e2h_access, 8141 .writefn = gt_virt_cval_write, .raw_writefn = raw_write }, 8142 #endif 8143 }; 8144 8145 #ifndef CONFIG_USER_ONLY 8146 static const ARMCPRegInfo ats1e1_reginfo[] = { 8147 { .name = "AT_S1E1RP", .state = ARM_CP_STATE_AA64, 8148 .opc0 = 1, .opc1 = 0, .crn = 7, .crm = 9, .opc2 = 0, 8149 .access = PL1_W, .type = ARM_CP_NO_RAW | ARM_CP_RAISES_EXC, 8150 .fgt = FGT_ATS1E1RP, 8151 .accessfn = at_e012_access, .writefn = ats_write64 }, 8152 { .name = "AT_S1E1WP", .state = ARM_CP_STATE_AA64, 8153 .opc0 = 1, .opc1 = 0, .crn = 7, .crm = 9, .opc2 = 1, 8154 .access = PL1_W, .type = ARM_CP_NO_RAW | ARM_CP_RAISES_EXC, 8155 .fgt = FGT_ATS1E1WP, 8156 .accessfn = at_e012_access, .writefn = ats_write64 }, 8157 }; 8158 8159 static const ARMCPRegInfo ats1cp_reginfo[] = { 8160 { .name = "ATS1CPRP", 8161 .cp = 15, .opc1 = 0, .crn = 7, .crm = 9, .opc2 = 0, 8162 .access = PL1_W, .type = ARM_CP_NO_RAW | ARM_CP_RAISES_EXC, 8163 .writefn = ats_write }, 8164 { .name = "ATS1CPWP", 8165 .cp = 15, .opc1 = 0, .crn = 7, .crm = 9, .opc2 = 1, 8166 .access = PL1_W, .type = ARM_CP_NO_RAW | ARM_CP_RAISES_EXC, 8167 .writefn = ats_write }, 8168 }; 8169 #endif 8170 8171 /* 8172 * ACTLR2 and HACTLR2 map to ACTLR_EL1[63:32] and 8173 * ACTLR_EL2[63:32]. They exist only if the ID_MMFR4.AC2 field 8174 * is non-zero, which is never for ARMv7, optionally in ARMv8 8175 * and mandatorily for ARMv8.2 and up. 8176 * ACTLR2 is banked for S and NS if EL3 is AArch32. Since QEMU's 8177 * implementation is RAZ/WI we can ignore this detail, as we 8178 * do for ACTLR. 8179 */ 8180 static const ARMCPRegInfo actlr2_hactlr2_reginfo[] = { 8181 { .name = "ACTLR2", .state = ARM_CP_STATE_AA32, 8182 .cp = 15, .opc1 = 0, .crn = 1, .crm = 0, .opc2 = 3, 8183 .access = PL1_RW, .accessfn = access_tacr, 8184 .type = ARM_CP_CONST, .resetvalue = 0 }, 8185 { .name = "HACTLR2", .state = ARM_CP_STATE_AA32, 8186 .cp = 15, .opc1 = 4, .crn = 1, .crm = 0, .opc2 = 3, 8187 .access = PL2_RW, .type = ARM_CP_CONST, 8188 .resetvalue = 0 }, 8189 }; 8190 8191 void register_cp_regs_for_features(ARMCPU *cpu) 8192 { 8193 /* Register all the coprocessor registers based on feature bits */ 8194 CPUARMState *env = &cpu->env; 8195 if (arm_feature(env, ARM_FEATURE_M)) { 8196 /* M profile has no coprocessor registers */ 8197 return; 8198 } 8199 8200 define_arm_cp_regs(cpu, cp_reginfo); 8201 if (!arm_feature(env, ARM_FEATURE_V8)) { 8202 /* 8203 * Must go early as it is full of wildcards that may be 8204 * overridden by later definitions. 8205 */ 8206 define_arm_cp_regs(cpu, not_v8_cp_reginfo); 8207 } 8208 8209 if (arm_feature(env, ARM_FEATURE_V6)) { 8210 /* The ID registers all have impdef reset values */ 8211 ARMCPRegInfo v6_idregs[] = { 8212 { .name = "ID_PFR0", .state = ARM_CP_STATE_BOTH, 8213 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 1, .opc2 = 0, 8214 .access = PL1_R, .type = ARM_CP_CONST, 8215 .accessfn = access_aa32_tid3, 8216 .resetvalue = cpu->isar.id_pfr0 }, 8217 /* 8218 * ID_PFR1 is not a plain ARM_CP_CONST because we don't know 8219 * the value of the GIC field until after we define these regs. 8220 */ 8221 { .name = "ID_PFR1", .state = ARM_CP_STATE_BOTH, 8222 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 1, .opc2 = 1, 8223 .access = PL1_R, .type = ARM_CP_NO_RAW, 8224 .accessfn = access_aa32_tid3, 8225 #ifdef CONFIG_USER_ONLY 8226 .type = ARM_CP_CONST, 8227 .resetvalue = cpu->isar.id_pfr1, 8228 #else 8229 .type = ARM_CP_NO_RAW, 8230 .accessfn = access_aa32_tid3, 8231 .readfn = id_pfr1_read, 8232 .writefn = arm_cp_write_ignore 8233 #endif 8234 }, 8235 { .name = "ID_DFR0", .state = ARM_CP_STATE_BOTH, 8236 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 1, .opc2 = 2, 8237 .access = PL1_R, .type = ARM_CP_CONST, 8238 .accessfn = access_aa32_tid3, 8239 .resetvalue = cpu->isar.id_dfr0 }, 8240 { .name = "ID_AFR0", .state = ARM_CP_STATE_BOTH, 8241 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 1, .opc2 = 3, 8242 .access = PL1_R, .type = ARM_CP_CONST, 8243 .accessfn = access_aa32_tid3, 8244 .resetvalue = cpu->id_afr0 }, 8245 { .name = "ID_MMFR0", .state = ARM_CP_STATE_BOTH, 8246 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 1, .opc2 = 4, 8247 .access = PL1_R, .type = ARM_CP_CONST, 8248 .accessfn = access_aa32_tid3, 8249 .resetvalue = cpu->isar.id_mmfr0 }, 8250 { .name = "ID_MMFR1", .state = ARM_CP_STATE_BOTH, 8251 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 1, .opc2 = 5, 8252 .access = PL1_R, .type = ARM_CP_CONST, 8253 .accessfn = access_aa32_tid3, 8254 .resetvalue = cpu->isar.id_mmfr1 }, 8255 { .name = "ID_MMFR2", .state = ARM_CP_STATE_BOTH, 8256 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 1, .opc2 = 6, 8257 .access = PL1_R, .type = ARM_CP_CONST, 8258 .accessfn = access_aa32_tid3, 8259 .resetvalue = cpu->isar.id_mmfr2 }, 8260 { .name = "ID_MMFR3", .state = ARM_CP_STATE_BOTH, 8261 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 1, .opc2 = 7, 8262 .access = PL1_R, .type = ARM_CP_CONST, 8263 .accessfn = access_aa32_tid3, 8264 .resetvalue = cpu->isar.id_mmfr3 }, 8265 { .name = "ID_ISAR0", .state = ARM_CP_STATE_BOTH, 8266 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 2, .opc2 = 0, 8267 .access = PL1_R, .type = ARM_CP_CONST, 8268 .accessfn = access_aa32_tid3, 8269 .resetvalue = cpu->isar.id_isar0 }, 8270 { .name = "ID_ISAR1", .state = ARM_CP_STATE_BOTH, 8271 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 2, .opc2 = 1, 8272 .access = PL1_R, .type = ARM_CP_CONST, 8273 .accessfn = access_aa32_tid3, 8274 .resetvalue = cpu->isar.id_isar1 }, 8275 { .name = "ID_ISAR2", .state = ARM_CP_STATE_BOTH, 8276 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 2, .opc2 = 2, 8277 .access = PL1_R, .type = ARM_CP_CONST, 8278 .accessfn = access_aa32_tid3, 8279 .resetvalue = cpu->isar.id_isar2 }, 8280 { .name = "ID_ISAR3", .state = ARM_CP_STATE_BOTH, 8281 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 2, .opc2 = 3, 8282 .access = PL1_R, .type = ARM_CP_CONST, 8283 .accessfn = access_aa32_tid3, 8284 .resetvalue = cpu->isar.id_isar3 }, 8285 { .name = "ID_ISAR4", .state = ARM_CP_STATE_BOTH, 8286 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 2, .opc2 = 4, 8287 .access = PL1_R, .type = ARM_CP_CONST, 8288 .accessfn = access_aa32_tid3, 8289 .resetvalue = cpu->isar.id_isar4 }, 8290 { .name = "ID_ISAR5", .state = ARM_CP_STATE_BOTH, 8291 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 2, .opc2 = 5, 8292 .access = PL1_R, .type = ARM_CP_CONST, 8293 .accessfn = access_aa32_tid3, 8294 .resetvalue = cpu->isar.id_isar5 }, 8295 { .name = "ID_MMFR4", .state = ARM_CP_STATE_BOTH, 8296 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 2, .opc2 = 6, 8297 .access = PL1_R, .type = ARM_CP_CONST, 8298 .accessfn = access_aa32_tid3, 8299 .resetvalue = cpu->isar.id_mmfr4 }, 8300 { .name = "ID_ISAR6", .state = ARM_CP_STATE_BOTH, 8301 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 2, .opc2 = 7, 8302 .access = PL1_R, .type = ARM_CP_CONST, 8303 .accessfn = access_aa32_tid3, 8304 .resetvalue = cpu->isar.id_isar6 }, 8305 }; 8306 define_arm_cp_regs(cpu, v6_idregs); 8307 define_arm_cp_regs(cpu, v6_cp_reginfo); 8308 } else { 8309 define_arm_cp_regs(cpu, not_v6_cp_reginfo); 8310 } 8311 if (arm_feature(env, ARM_FEATURE_V6K)) { 8312 define_arm_cp_regs(cpu, v6k_cp_reginfo); 8313 } 8314 if (arm_feature(env, ARM_FEATURE_V7MP) && 8315 !arm_feature(env, ARM_FEATURE_PMSA)) { 8316 define_arm_cp_regs(cpu, v7mp_cp_reginfo); 8317 } 8318 if (arm_feature(env, ARM_FEATURE_V7VE)) { 8319 define_arm_cp_regs(cpu, pmovsset_cp_reginfo); 8320 } 8321 if (arm_feature(env, ARM_FEATURE_V7)) { 8322 ARMCPRegInfo clidr = { 8323 .name = "CLIDR", .state = ARM_CP_STATE_BOTH, 8324 .opc0 = 3, .crn = 0, .crm = 0, .opc1 = 1, .opc2 = 1, 8325 .access = PL1_R, .type = ARM_CP_CONST, 8326 .accessfn = access_tid4, 8327 .fgt = FGT_CLIDR_EL1, 8328 .resetvalue = cpu->clidr 8329 }; 8330 define_one_arm_cp_reg(cpu, &clidr); 8331 define_arm_cp_regs(cpu, v7_cp_reginfo); 8332 define_debug_regs(cpu); 8333 define_pmu_regs(cpu); 8334 } else { 8335 define_arm_cp_regs(cpu, not_v7_cp_reginfo); 8336 } 8337 if (arm_feature(env, ARM_FEATURE_V8)) { 8338 /* 8339 * v8 ID registers, which all have impdef reset values. 8340 * Note that within the ID register ranges the unused slots 8341 * must all RAZ, not UNDEF; future architecture versions may 8342 * define new registers here. 8343 * ID registers which are AArch64 views of the AArch32 ID registers 8344 * which already existed in v6 and v7 are handled elsewhere, 8345 * in v6_idregs[]. 8346 */ 8347 int i; 8348 ARMCPRegInfo v8_idregs[] = { 8349 /* 8350 * ID_AA64PFR0_EL1 is not a plain ARM_CP_CONST in system 8351 * emulation because we don't know the right value for the 8352 * GIC field until after we define these regs. 8353 */ 8354 { .name = "ID_AA64PFR0_EL1", .state = ARM_CP_STATE_AA64, 8355 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 4, .opc2 = 0, 8356 .access = PL1_R, 8357 #ifdef CONFIG_USER_ONLY 8358 .type = ARM_CP_CONST, 8359 .resetvalue = cpu->isar.id_aa64pfr0 8360 #else 8361 .type = ARM_CP_NO_RAW, 8362 .accessfn = access_aa64_tid3, 8363 .readfn = id_aa64pfr0_read, 8364 .writefn = arm_cp_write_ignore 8365 #endif 8366 }, 8367 { .name = "ID_AA64PFR1_EL1", .state = ARM_CP_STATE_AA64, 8368 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 4, .opc2 = 1, 8369 .access = PL1_R, .type = ARM_CP_CONST, 8370 .accessfn = access_aa64_tid3, 8371 .resetvalue = cpu->isar.id_aa64pfr1}, 8372 { .name = "ID_AA64PFR2_EL1_RESERVED", .state = ARM_CP_STATE_AA64, 8373 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 4, .opc2 = 2, 8374 .access = PL1_R, .type = ARM_CP_CONST, 8375 .accessfn = access_aa64_tid3, 8376 .resetvalue = 0 }, 8377 { .name = "ID_AA64PFR3_EL1_RESERVED", .state = ARM_CP_STATE_AA64, 8378 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 4, .opc2 = 3, 8379 .access = PL1_R, .type = ARM_CP_CONST, 8380 .accessfn = access_aa64_tid3, 8381 .resetvalue = 0 }, 8382 { .name = "ID_AA64ZFR0_EL1", .state = ARM_CP_STATE_AA64, 8383 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 4, .opc2 = 4, 8384 .access = PL1_R, .type = ARM_CP_CONST, 8385 .accessfn = access_aa64_tid3, 8386 .resetvalue = cpu->isar.id_aa64zfr0 }, 8387 { .name = "ID_AA64SMFR0_EL1", .state = ARM_CP_STATE_AA64, 8388 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 4, .opc2 = 5, 8389 .access = PL1_R, .type = ARM_CP_CONST, 8390 .accessfn = access_aa64_tid3, 8391 .resetvalue = cpu->isar.id_aa64smfr0 }, 8392 { .name = "ID_AA64PFR6_EL1_RESERVED", .state = ARM_CP_STATE_AA64, 8393 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 4, .opc2 = 6, 8394 .access = PL1_R, .type = ARM_CP_CONST, 8395 .accessfn = access_aa64_tid3, 8396 .resetvalue = 0 }, 8397 { .name = "ID_AA64PFR7_EL1_RESERVED", .state = ARM_CP_STATE_AA64, 8398 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 4, .opc2 = 7, 8399 .access = PL1_R, .type = ARM_CP_CONST, 8400 .accessfn = access_aa64_tid3, 8401 .resetvalue = 0 }, 8402 { .name = "ID_AA64DFR0_EL1", .state = ARM_CP_STATE_AA64, 8403 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 5, .opc2 = 0, 8404 .access = PL1_R, .type = ARM_CP_CONST, 8405 .accessfn = access_aa64_tid3, 8406 .resetvalue = cpu->isar.id_aa64dfr0 }, 8407 { .name = "ID_AA64DFR1_EL1", .state = ARM_CP_STATE_AA64, 8408 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 5, .opc2 = 1, 8409 .access = PL1_R, .type = ARM_CP_CONST, 8410 .accessfn = access_aa64_tid3, 8411 .resetvalue = cpu->isar.id_aa64dfr1 }, 8412 { .name = "ID_AA64DFR2_EL1_RESERVED", .state = ARM_CP_STATE_AA64, 8413 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 5, .opc2 = 2, 8414 .access = PL1_R, .type = ARM_CP_CONST, 8415 .accessfn = access_aa64_tid3, 8416 .resetvalue = 0 }, 8417 { .name = "ID_AA64DFR3_EL1_RESERVED", .state = ARM_CP_STATE_AA64, 8418 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 5, .opc2 = 3, 8419 .access = PL1_R, .type = ARM_CP_CONST, 8420 .accessfn = access_aa64_tid3, 8421 .resetvalue = 0 }, 8422 { .name = "ID_AA64AFR0_EL1", .state = ARM_CP_STATE_AA64, 8423 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 5, .opc2 = 4, 8424 .access = PL1_R, .type = ARM_CP_CONST, 8425 .accessfn = access_aa64_tid3, 8426 .resetvalue = cpu->id_aa64afr0 }, 8427 { .name = "ID_AA64AFR1_EL1", .state = ARM_CP_STATE_AA64, 8428 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 5, .opc2 = 5, 8429 .access = PL1_R, .type = ARM_CP_CONST, 8430 .accessfn = access_aa64_tid3, 8431 .resetvalue = cpu->id_aa64afr1 }, 8432 { .name = "ID_AA64AFR2_EL1_RESERVED", .state = ARM_CP_STATE_AA64, 8433 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 5, .opc2 = 6, 8434 .access = PL1_R, .type = ARM_CP_CONST, 8435 .accessfn = access_aa64_tid3, 8436 .resetvalue = 0 }, 8437 { .name = "ID_AA64AFR3_EL1_RESERVED", .state = ARM_CP_STATE_AA64, 8438 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 5, .opc2 = 7, 8439 .access = PL1_R, .type = ARM_CP_CONST, 8440 .accessfn = access_aa64_tid3, 8441 .resetvalue = 0 }, 8442 { .name = "ID_AA64ISAR0_EL1", .state = ARM_CP_STATE_AA64, 8443 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 6, .opc2 = 0, 8444 .access = PL1_R, .type = ARM_CP_CONST, 8445 .accessfn = access_aa64_tid3, 8446 .resetvalue = cpu->isar.id_aa64isar0 }, 8447 { .name = "ID_AA64ISAR1_EL1", .state = ARM_CP_STATE_AA64, 8448 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 6, .opc2 = 1, 8449 .access = PL1_R, .type = ARM_CP_CONST, 8450 .accessfn = access_aa64_tid3, 8451 .resetvalue = cpu->isar.id_aa64isar1 }, 8452 { .name = "ID_AA64ISAR2_EL1", .state = ARM_CP_STATE_AA64, 8453 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 6, .opc2 = 2, 8454 .access = PL1_R, .type = ARM_CP_CONST, 8455 .accessfn = access_aa64_tid3, 8456 .resetvalue = cpu->isar.id_aa64isar2 }, 8457 { .name = "ID_AA64ISAR3_EL1_RESERVED", .state = ARM_CP_STATE_AA64, 8458 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 6, .opc2 = 3, 8459 .access = PL1_R, .type = ARM_CP_CONST, 8460 .accessfn = access_aa64_tid3, 8461 .resetvalue = 0 }, 8462 { .name = "ID_AA64ISAR4_EL1_RESERVED", .state = ARM_CP_STATE_AA64, 8463 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 6, .opc2 = 4, 8464 .access = PL1_R, .type = ARM_CP_CONST, 8465 .accessfn = access_aa64_tid3, 8466 .resetvalue = 0 }, 8467 { .name = "ID_AA64ISAR5_EL1_RESERVED", .state = ARM_CP_STATE_AA64, 8468 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 6, .opc2 = 5, 8469 .access = PL1_R, .type = ARM_CP_CONST, 8470 .accessfn = access_aa64_tid3, 8471 .resetvalue = 0 }, 8472 { .name = "ID_AA64ISAR6_EL1_RESERVED", .state = ARM_CP_STATE_AA64, 8473 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 6, .opc2 = 6, 8474 .access = PL1_R, .type = ARM_CP_CONST, 8475 .accessfn = access_aa64_tid3, 8476 .resetvalue = 0 }, 8477 { .name = "ID_AA64ISAR7_EL1_RESERVED", .state = ARM_CP_STATE_AA64, 8478 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 6, .opc2 = 7, 8479 .access = PL1_R, .type = ARM_CP_CONST, 8480 .accessfn = access_aa64_tid3, 8481 .resetvalue = 0 }, 8482 { .name = "ID_AA64MMFR0_EL1", .state = ARM_CP_STATE_AA64, 8483 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 7, .opc2 = 0, 8484 .access = PL1_R, .type = ARM_CP_CONST, 8485 .accessfn = access_aa64_tid3, 8486 .resetvalue = cpu->isar.id_aa64mmfr0 }, 8487 { .name = "ID_AA64MMFR1_EL1", .state = ARM_CP_STATE_AA64, 8488 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 7, .opc2 = 1, 8489 .access = PL1_R, .type = ARM_CP_CONST, 8490 .accessfn = access_aa64_tid3, 8491 .resetvalue = cpu->isar.id_aa64mmfr1 }, 8492 { .name = "ID_AA64MMFR2_EL1", .state = ARM_CP_STATE_AA64, 8493 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 7, .opc2 = 2, 8494 .access = PL1_R, .type = ARM_CP_CONST, 8495 .accessfn = access_aa64_tid3, 8496 .resetvalue = cpu->isar.id_aa64mmfr2 }, 8497 { .name = "ID_AA64MMFR3_EL1_RESERVED", .state = ARM_CP_STATE_AA64, 8498 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 7, .opc2 = 3, 8499 .access = PL1_R, .type = ARM_CP_CONST, 8500 .accessfn = access_aa64_tid3, 8501 .resetvalue = 0 }, 8502 { .name = "ID_AA64MMFR4_EL1_RESERVED", .state = ARM_CP_STATE_AA64, 8503 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 7, .opc2 = 4, 8504 .access = PL1_R, .type = ARM_CP_CONST, 8505 .accessfn = access_aa64_tid3, 8506 .resetvalue = 0 }, 8507 { .name = "ID_AA64MMFR5_EL1_RESERVED", .state = ARM_CP_STATE_AA64, 8508 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 7, .opc2 = 5, 8509 .access = PL1_R, .type = ARM_CP_CONST, 8510 .accessfn = access_aa64_tid3, 8511 .resetvalue = 0 }, 8512 { .name = "ID_AA64MMFR6_EL1_RESERVED", .state = ARM_CP_STATE_AA64, 8513 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 7, .opc2 = 6, 8514 .access = PL1_R, .type = ARM_CP_CONST, 8515 .accessfn = access_aa64_tid3, 8516 .resetvalue = 0 }, 8517 { .name = "ID_AA64MMFR7_EL1_RESERVED", .state = ARM_CP_STATE_AA64, 8518 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 7, .opc2 = 7, 8519 .access = PL1_R, .type = ARM_CP_CONST, 8520 .accessfn = access_aa64_tid3, 8521 .resetvalue = 0 }, 8522 { .name = "MVFR0_EL1", .state = ARM_CP_STATE_AA64, 8523 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 3, .opc2 = 0, 8524 .access = PL1_R, .type = ARM_CP_CONST, 8525 .accessfn = access_aa64_tid3, 8526 .resetvalue = cpu->isar.mvfr0 }, 8527 { .name = "MVFR1_EL1", .state = ARM_CP_STATE_AA64, 8528 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 3, .opc2 = 1, 8529 .access = PL1_R, .type = ARM_CP_CONST, 8530 .accessfn = access_aa64_tid3, 8531 .resetvalue = cpu->isar.mvfr1 }, 8532 { .name = "MVFR2_EL1", .state = ARM_CP_STATE_AA64, 8533 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 3, .opc2 = 2, 8534 .access = PL1_R, .type = ARM_CP_CONST, 8535 .accessfn = access_aa64_tid3, 8536 .resetvalue = cpu->isar.mvfr2 }, 8537 /* 8538 * "0, c0, c3, {0,1,2}" are the encodings corresponding to 8539 * AArch64 MVFR[012]_EL1. Define the STATE_AA32 encoding 8540 * as RAZ, since it is in the "reserved for future ID 8541 * registers, RAZ" part of the AArch32 encoding space. 8542 */ 8543 { .name = "RES_0_C0_C3_0", .state = ARM_CP_STATE_AA32, 8544 .cp = 15, .opc1 = 0, .crn = 0, .crm = 3, .opc2 = 0, 8545 .access = PL1_R, .type = ARM_CP_CONST, 8546 .accessfn = access_aa64_tid3, 8547 .resetvalue = 0 }, 8548 { .name = "RES_0_C0_C3_1", .state = ARM_CP_STATE_AA32, 8549 .cp = 15, .opc1 = 0, .crn = 0, .crm = 3, .opc2 = 1, 8550 .access = PL1_R, .type = ARM_CP_CONST, 8551 .accessfn = access_aa64_tid3, 8552 .resetvalue = 0 }, 8553 { .name = "RES_0_C0_C3_2", .state = ARM_CP_STATE_AA32, 8554 .cp = 15, .opc1 = 0, .crn = 0, .crm = 3, .opc2 = 2, 8555 .access = PL1_R, .type = ARM_CP_CONST, 8556 .accessfn = access_aa64_tid3, 8557 .resetvalue = 0 }, 8558 /* 8559 * Other encodings in "0, c0, c3, ..." are STATE_BOTH because 8560 * they're also RAZ for AArch64, and in v8 are gradually 8561 * being filled with AArch64-view-of-AArch32-ID-register 8562 * for new ID registers. 8563 */ 8564 { .name = "RES_0_C0_C3_3", .state = ARM_CP_STATE_BOTH, 8565 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 3, .opc2 = 3, 8566 .access = PL1_R, .type = ARM_CP_CONST, 8567 .accessfn = access_aa64_tid3, 8568 .resetvalue = 0 }, 8569 { .name = "ID_PFR2", .state = ARM_CP_STATE_BOTH, 8570 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 3, .opc2 = 4, 8571 .access = PL1_R, .type = ARM_CP_CONST, 8572 .accessfn = access_aa64_tid3, 8573 .resetvalue = cpu->isar.id_pfr2 }, 8574 { .name = "ID_DFR1", .state = ARM_CP_STATE_BOTH, 8575 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 3, .opc2 = 5, 8576 .access = PL1_R, .type = ARM_CP_CONST, 8577 .accessfn = access_aa64_tid3, 8578 .resetvalue = cpu->isar.id_dfr1 }, 8579 { .name = "ID_MMFR5", .state = ARM_CP_STATE_BOTH, 8580 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 3, .opc2 = 6, 8581 .access = PL1_R, .type = ARM_CP_CONST, 8582 .accessfn = access_aa64_tid3, 8583 .resetvalue = cpu->isar.id_mmfr5 }, 8584 { .name = "RES_0_C0_C3_7", .state = ARM_CP_STATE_BOTH, 8585 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 3, .opc2 = 7, 8586 .access = PL1_R, .type = ARM_CP_CONST, 8587 .accessfn = access_aa64_tid3, 8588 .resetvalue = 0 }, 8589 { .name = "PMCEID0", .state = ARM_CP_STATE_AA32, 8590 .cp = 15, .opc1 = 0, .crn = 9, .crm = 12, .opc2 = 6, 8591 .access = PL0_R, .accessfn = pmreg_access, .type = ARM_CP_CONST, 8592 .fgt = FGT_PMCEIDN_EL0, 8593 .resetvalue = extract64(cpu->pmceid0, 0, 32) }, 8594 { .name = "PMCEID0_EL0", .state = ARM_CP_STATE_AA64, 8595 .opc0 = 3, .opc1 = 3, .crn = 9, .crm = 12, .opc2 = 6, 8596 .access = PL0_R, .accessfn = pmreg_access, .type = ARM_CP_CONST, 8597 .fgt = FGT_PMCEIDN_EL0, 8598 .resetvalue = cpu->pmceid0 }, 8599 { .name = "PMCEID1", .state = ARM_CP_STATE_AA32, 8600 .cp = 15, .opc1 = 0, .crn = 9, .crm = 12, .opc2 = 7, 8601 .access = PL0_R, .accessfn = pmreg_access, .type = ARM_CP_CONST, 8602 .fgt = FGT_PMCEIDN_EL0, 8603 .resetvalue = extract64(cpu->pmceid1, 0, 32) }, 8604 { .name = "PMCEID1_EL0", .state = ARM_CP_STATE_AA64, 8605 .opc0 = 3, .opc1 = 3, .crn = 9, .crm = 12, .opc2 = 7, 8606 .access = PL0_R, .accessfn = pmreg_access, .type = ARM_CP_CONST, 8607 .fgt = FGT_PMCEIDN_EL0, 8608 .resetvalue = cpu->pmceid1 }, 8609 }; 8610 #ifdef CONFIG_USER_ONLY 8611 static const ARMCPRegUserSpaceInfo v8_user_idregs[] = { 8612 { .name = "ID_AA64PFR0_EL1", 8613 .exported_bits = R_ID_AA64PFR0_FP_MASK | 8614 R_ID_AA64PFR0_ADVSIMD_MASK | 8615 R_ID_AA64PFR0_SVE_MASK | 8616 R_ID_AA64PFR0_DIT_MASK, 8617 .fixed_bits = (0x1u << R_ID_AA64PFR0_EL0_SHIFT) | 8618 (0x1u << R_ID_AA64PFR0_EL1_SHIFT) }, 8619 { .name = "ID_AA64PFR1_EL1", 8620 .exported_bits = R_ID_AA64PFR1_BT_MASK | 8621 R_ID_AA64PFR1_SSBS_MASK | 8622 R_ID_AA64PFR1_MTE_MASK | 8623 R_ID_AA64PFR1_SME_MASK }, 8624 { .name = "ID_AA64PFR*_EL1_RESERVED", 8625 .is_glob = true }, 8626 { .name = "ID_AA64ZFR0_EL1", 8627 .exported_bits = R_ID_AA64ZFR0_SVEVER_MASK | 8628 R_ID_AA64ZFR0_AES_MASK | 8629 R_ID_AA64ZFR0_BITPERM_MASK | 8630 R_ID_AA64ZFR0_BFLOAT16_MASK | 8631 R_ID_AA64ZFR0_SHA3_MASK | 8632 R_ID_AA64ZFR0_SM4_MASK | 8633 R_ID_AA64ZFR0_I8MM_MASK | 8634 R_ID_AA64ZFR0_F32MM_MASK | 8635 R_ID_AA64ZFR0_F64MM_MASK }, 8636 { .name = "ID_AA64SMFR0_EL1", 8637 .exported_bits = R_ID_AA64SMFR0_F32F32_MASK | 8638 R_ID_AA64SMFR0_BI32I32_MASK | 8639 R_ID_AA64SMFR0_B16F32_MASK | 8640 R_ID_AA64SMFR0_F16F32_MASK | 8641 R_ID_AA64SMFR0_I8I32_MASK | 8642 R_ID_AA64SMFR0_F16F16_MASK | 8643 R_ID_AA64SMFR0_B16B16_MASK | 8644 R_ID_AA64SMFR0_I16I32_MASK | 8645 R_ID_AA64SMFR0_F64F64_MASK | 8646 R_ID_AA64SMFR0_I16I64_MASK | 8647 R_ID_AA64SMFR0_SMEVER_MASK | 8648 R_ID_AA64SMFR0_FA64_MASK }, 8649 { .name = "ID_AA64MMFR0_EL1", 8650 .exported_bits = R_ID_AA64MMFR0_ECV_MASK, 8651 .fixed_bits = (0xfu << R_ID_AA64MMFR0_TGRAN64_SHIFT) | 8652 (0xfu << R_ID_AA64MMFR0_TGRAN4_SHIFT) }, 8653 { .name = "ID_AA64MMFR1_EL1", 8654 .exported_bits = R_ID_AA64MMFR1_AFP_MASK }, 8655 { .name = "ID_AA64MMFR2_EL1", 8656 .exported_bits = R_ID_AA64MMFR2_AT_MASK }, 8657 { .name = "ID_AA64MMFR*_EL1_RESERVED", 8658 .is_glob = true }, 8659 { .name = "ID_AA64DFR0_EL1", 8660 .fixed_bits = (0x6u << R_ID_AA64DFR0_DEBUGVER_SHIFT) }, 8661 { .name = "ID_AA64DFR1_EL1" }, 8662 { .name = "ID_AA64DFR*_EL1_RESERVED", 8663 .is_glob = true }, 8664 { .name = "ID_AA64AFR*", 8665 .is_glob = true }, 8666 { .name = "ID_AA64ISAR0_EL1", 8667 .exported_bits = R_ID_AA64ISAR0_AES_MASK | 8668 R_ID_AA64ISAR0_SHA1_MASK | 8669 R_ID_AA64ISAR0_SHA2_MASK | 8670 R_ID_AA64ISAR0_CRC32_MASK | 8671 R_ID_AA64ISAR0_ATOMIC_MASK | 8672 R_ID_AA64ISAR0_RDM_MASK | 8673 R_ID_AA64ISAR0_SHA3_MASK | 8674 R_ID_AA64ISAR0_SM3_MASK | 8675 R_ID_AA64ISAR0_SM4_MASK | 8676 R_ID_AA64ISAR0_DP_MASK | 8677 R_ID_AA64ISAR0_FHM_MASK | 8678 R_ID_AA64ISAR0_TS_MASK | 8679 R_ID_AA64ISAR0_RNDR_MASK }, 8680 { .name = "ID_AA64ISAR1_EL1", 8681 .exported_bits = R_ID_AA64ISAR1_DPB_MASK | 8682 R_ID_AA64ISAR1_APA_MASK | 8683 R_ID_AA64ISAR1_API_MASK | 8684 R_ID_AA64ISAR1_JSCVT_MASK | 8685 R_ID_AA64ISAR1_FCMA_MASK | 8686 R_ID_AA64ISAR1_LRCPC_MASK | 8687 R_ID_AA64ISAR1_GPA_MASK | 8688 R_ID_AA64ISAR1_GPI_MASK | 8689 R_ID_AA64ISAR1_FRINTTS_MASK | 8690 R_ID_AA64ISAR1_SB_MASK | 8691 R_ID_AA64ISAR1_BF16_MASK | 8692 R_ID_AA64ISAR1_DGH_MASK | 8693 R_ID_AA64ISAR1_I8MM_MASK }, 8694 { .name = "ID_AA64ISAR2_EL1", 8695 .exported_bits = R_ID_AA64ISAR2_WFXT_MASK | 8696 R_ID_AA64ISAR2_RPRES_MASK | 8697 R_ID_AA64ISAR2_GPA3_MASK | 8698 R_ID_AA64ISAR2_APA3_MASK | 8699 R_ID_AA64ISAR2_MOPS_MASK | 8700 R_ID_AA64ISAR2_BC_MASK | 8701 R_ID_AA64ISAR2_RPRFM_MASK | 8702 R_ID_AA64ISAR2_CSSC_MASK }, 8703 { .name = "ID_AA64ISAR*_EL1_RESERVED", 8704 .is_glob = true }, 8705 }; 8706 modify_arm_cp_regs(v8_idregs, v8_user_idregs); 8707 #endif 8708 /* 8709 * RVBAR_EL1 and RMR_EL1 only implemented if EL1 is the highest EL. 8710 * TODO: For RMR, a write with bit 1 set should do something with 8711 * cpu_reset(). In the meantime, "the bit is strictly a request", 8712 * so we are in spec just ignoring writes. 8713 */ 8714 if (!arm_feature(env, ARM_FEATURE_EL3) && 8715 !arm_feature(env, ARM_FEATURE_EL2)) { 8716 ARMCPRegInfo el1_reset_regs[] = { 8717 { .name = "RVBAR_EL1", .state = ARM_CP_STATE_BOTH, 8718 .opc0 = 3, .opc1 = 0, .crn = 12, .crm = 0, .opc2 = 1, 8719 .access = PL1_R, 8720 .fieldoffset = offsetof(CPUARMState, cp15.rvbar) }, 8721 { .name = "RMR_EL1", .state = ARM_CP_STATE_BOTH, 8722 .opc0 = 3, .opc1 = 0, .crn = 12, .crm = 0, .opc2 = 2, 8723 .access = PL1_RW, .type = ARM_CP_CONST, 8724 .resetvalue = arm_feature(env, ARM_FEATURE_AARCH64) } 8725 }; 8726 define_arm_cp_regs(cpu, el1_reset_regs); 8727 } 8728 define_arm_cp_regs(cpu, v8_idregs); 8729 define_arm_cp_regs(cpu, v8_cp_reginfo); 8730 8731 for (i = 4; i < 16; i++) { 8732 /* 8733 * Encodings in "0, c0, {c4-c7}, {0-7}" are RAZ for AArch32. 8734 * For pre-v8 cores there are RAZ patterns for these in 8735 * id_pre_v8_midr_cp_reginfo[]; for v8 we do that here. 8736 * v8 extends the "must RAZ" part of the ID register space 8737 * to also cover c0, 0, c{8-15}, {0-7}. 8738 * These are STATE_AA32 because in the AArch64 sysreg space 8739 * c4-c7 is where the AArch64 ID registers live (and we've 8740 * already defined those in v8_idregs[]), and c8-c15 are not 8741 * "must RAZ" for AArch64. 8742 */ 8743 g_autofree char *name = g_strdup_printf("RES_0_C0_C%d_X", i); 8744 ARMCPRegInfo v8_aa32_raz_idregs = { 8745 .name = name, 8746 .state = ARM_CP_STATE_AA32, 8747 .cp = 15, .opc1 = 0, .crn = 0, .crm = i, .opc2 = CP_ANY, 8748 .access = PL1_R, .type = ARM_CP_CONST, 8749 .accessfn = access_aa64_tid3, 8750 .resetvalue = 0 }; 8751 define_one_arm_cp_reg(cpu, &v8_aa32_raz_idregs); 8752 } 8753 } 8754 8755 /* 8756 * Register the base EL2 cpregs. 8757 * Pre v8, these registers are implemented only as part of the 8758 * Virtualization Extensions (EL2 present). Beginning with v8, 8759 * if EL2 is missing but EL3 is enabled, mostly these become 8760 * RES0 from EL3, with some specific exceptions. 8761 */ 8762 if (arm_feature(env, ARM_FEATURE_EL2) 8763 || (arm_feature(env, ARM_FEATURE_EL3) 8764 && arm_feature(env, ARM_FEATURE_V8))) { 8765 uint64_t vmpidr_def = mpidr_read_val(env); 8766 ARMCPRegInfo vpidr_regs[] = { 8767 { .name = "VPIDR", .state = ARM_CP_STATE_AA32, 8768 .cp = 15, .opc1 = 4, .crn = 0, .crm = 0, .opc2 = 0, 8769 .access = PL2_RW, .accessfn = access_el3_aa32ns, 8770 .resetvalue = cpu->midr, 8771 .type = ARM_CP_ALIAS | ARM_CP_EL3_NO_EL2_C_NZ, 8772 .fieldoffset = offsetoflow32(CPUARMState, cp15.vpidr_el2) }, 8773 { .name = "VPIDR_EL2", .state = ARM_CP_STATE_AA64, 8774 .opc0 = 3, .opc1 = 4, .crn = 0, .crm = 0, .opc2 = 0, 8775 .access = PL2_RW, .resetvalue = cpu->midr, 8776 .type = ARM_CP_EL3_NO_EL2_C_NZ, 8777 .fieldoffset = offsetof(CPUARMState, cp15.vpidr_el2) }, 8778 { .name = "VMPIDR", .state = ARM_CP_STATE_AA32, 8779 .cp = 15, .opc1 = 4, .crn = 0, .crm = 0, .opc2 = 5, 8780 .access = PL2_RW, .accessfn = access_el3_aa32ns, 8781 .resetvalue = vmpidr_def, 8782 .type = ARM_CP_ALIAS | ARM_CP_EL3_NO_EL2_C_NZ, 8783 .fieldoffset = offsetoflow32(CPUARMState, cp15.vmpidr_el2) }, 8784 { .name = "VMPIDR_EL2", .state = ARM_CP_STATE_AA64, 8785 .opc0 = 3, .opc1 = 4, .crn = 0, .crm = 0, .opc2 = 5, 8786 .access = PL2_RW, .resetvalue = vmpidr_def, 8787 .type = ARM_CP_EL3_NO_EL2_C_NZ, 8788 .fieldoffset = offsetof(CPUARMState, cp15.vmpidr_el2) }, 8789 }; 8790 /* 8791 * The only field of MDCR_EL2 that has a defined architectural reset 8792 * value is MDCR_EL2.HPMN which should reset to the value of PMCR_EL0.N. 8793 */ 8794 ARMCPRegInfo mdcr_el2 = { 8795 .name = "MDCR_EL2", .state = ARM_CP_STATE_BOTH, .type = ARM_CP_IO, 8796 .opc0 = 3, .opc1 = 4, .crn = 1, .crm = 1, .opc2 = 1, 8797 .writefn = mdcr_el2_write, 8798 .access = PL2_RW, .resetvalue = pmu_num_counters(env), 8799 .fieldoffset = offsetof(CPUARMState, cp15.mdcr_el2), 8800 }; 8801 define_one_arm_cp_reg(cpu, &mdcr_el2); 8802 define_arm_cp_regs(cpu, vpidr_regs); 8803 define_arm_cp_regs(cpu, el2_cp_reginfo); 8804 if (arm_feature(env, ARM_FEATURE_V8)) { 8805 define_arm_cp_regs(cpu, el2_v8_cp_reginfo); 8806 } 8807 if (cpu_isar_feature(aa64_sel2, cpu)) { 8808 define_arm_cp_regs(cpu, el2_sec_cp_reginfo); 8809 } 8810 /* 8811 * RVBAR_EL2 and RMR_EL2 only implemented if EL2 is the highest EL. 8812 * See commentary near RMR_EL1. 8813 */ 8814 if (!arm_feature(env, ARM_FEATURE_EL3)) { 8815 static const ARMCPRegInfo el2_reset_regs[] = { 8816 { .name = "RVBAR_EL2", .state = ARM_CP_STATE_AA64, 8817 .opc0 = 3, .opc1 = 4, .crn = 12, .crm = 0, .opc2 = 1, 8818 .access = PL2_R, 8819 .fieldoffset = offsetof(CPUARMState, cp15.rvbar) }, 8820 { .name = "RVBAR", .type = ARM_CP_ALIAS, 8821 .cp = 15, .opc1 = 0, .crn = 12, .crm = 0, .opc2 = 1, 8822 .access = PL2_R, 8823 .fieldoffset = offsetof(CPUARMState, cp15.rvbar) }, 8824 { .name = "RMR_EL2", .state = ARM_CP_STATE_AA64, 8825 .opc0 = 3, .opc1 = 4, .crn = 12, .crm = 0, .opc2 = 2, 8826 .access = PL2_RW, .type = ARM_CP_CONST, .resetvalue = 1 }, 8827 }; 8828 define_arm_cp_regs(cpu, el2_reset_regs); 8829 } 8830 } 8831 8832 /* Register the base EL3 cpregs. */ 8833 if (arm_feature(env, ARM_FEATURE_EL3)) { 8834 define_arm_cp_regs(cpu, el3_cp_reginfo); 8835 ARMCPRegInfo el3_regs[] = { 8836 { .name = "RVBAR_EL3", .state = ARM_CP_STATE_AA64, 8837 .opc0 = 3, .opc1 = 6, .crn = 12, .crm = 0, .opc2 = 1, 8838 .access = PL3_R, 8839 .fieldoffset = offsetof(CPUARMState, cp15.rvbar), }, 8840 { .name = "RMR_EL3", .state = ARM_CP_STATE_AA64, 8841 .opc0 = 3, .opc1 = 6, .crn = 12, .crm = 0, .opc2 = 2, 8842 .access = PL3_RW, .type = ARM_CP_CONST, .resetvalue = 1 }, 8843 { .name = "RMR", .state = ARM_CP_STATE_AA32, 8844 .cp = 15, .opc1 = 0, .crn = 12, .crm = 0, .opc2 = 2, 8845 .access = PL3_RW, .type = ARM_CP_CONST, 8846 .resetvalue = arm_feature(env, ARM_FEATURE_AARCH64) }, 8847 { .name = "SCTLR_EL3", .state = ARM_CP_STATE_AA64, 8848 .opc0 = 3, .opc1 = 6, .crn = 1, .crm = 0, .opc2 = 0, 8849 .access = PL3_RW, 8850 .raw_writefn = raw_write, .writefn = sctlr_write, 8851 .fieldoffset = offsetof(CPUARMState, cp15.sctlr_el[3]), 8852 .resetvalue = cpu->reset_sctlr }, 8853 }; 8854 8855 define_arm_cp_regs(cpu, el3_regs); 8856 } 8857 /* 8858 * The behaviour of NSACR is sufficiently various that we don't 8859 * try to describe it in a single reginfo: 8860 * if EL3 is 64 bit, then trap to EL3 from S EL1, 8861 * reads as constant 0xc00 from NS EL1 and NS EL2 8862 * if EL3 is 32 bit, then RW at EL3, RO at NS EL1 and NS EL2 8863 * if v7 without EL3, register doesn't exist 8864 * if v8 without EL3, reads as constant 0xc00 from NS EL1 and NS EL2 8865 */ 8866 if (arm_feature(env, ARM_FEATURE_EL3)) { 8867 if (arm_feature(env, ARM_FEATURE_AARCH64)) { 8868 static const ARMCPRegInfo nsacr = { 8869 .name = "NSACR", .type = ARM_CP_CONST, 8870 .cp = 15, .opc1 = 0, .crn = 1, .crm = 1, .opc2 = 2, 8871 .access = PL1_RW, .accessfn = nsacr_access, 8872 .resetvalue = 0xc00 8873 }; 8874 define_one_arm_cp_reg(cpu, &nsacr); 8875 } else { 8876 static const ARMCPRegInfo nsacr = { 8877 .name = "NSACR", 8878 .cp = 15, .opc1 = 0, .crn = 1, .crm = 1, .opc2 = 2, 8879 .access = PL3_RW | PL1_R, 8880 .resetvalue = 0, 8881 .fieldoffset = offsetof(CPUARMState, cp15.nsacr) 8882 }; 8883 define_one_arm_cp_reg(cpu, &nsacr); 8884 } 8885 } else { 8886 if (arm_feature(env, ARM_FEATURE_V8)) { 8887 static const ARMCPRegInfo nsacr = { 8888 .name = "NSACR", .type = ARM_CP_CONST, 8889 .cp = 15, .opc1 = 0, .crn = 1, .crm = 1, .opc2 = 2, 8890 .access = PL1_R, 8891 .resetvalue = 0xc00 8892 }; 8893 define_one_arm_cp_reg(cpu, &nsacr); 8894 } 8895 } 8896 8897 if (arm_feature(env, ARM_FEATURE_PMSA)) { 8898 if (arm_feature(env, ARM_FEATURE_V6)) { 8899 /* PMSAv6 not implemented */ 8900 assert(arm_feature(env, ARM_FEATURE_V7)); 8901 define_arm_cp_regs(cpu, vmsa_pmsa_cp_reginfo); 8902 define_arm_cp_regs(cpu, pmsav7_cp_reginfo); 8903 } else { 8904 define_arm_cp_regs(cpu, pmsav5_cp_reginfo); 8905 } 8906 } else { 8907 define_arm_cp_regs(cpu, vmsa_pmsa_cp_reginfo); 8908 define_arm_cp_regs(cpu, vmsa_cp_reginfo); 8909 /* TTCBR2 is introduced with ARMv8.2-AA32HPD. */ 8910 if (cpu_isar_feature(aa32_hpd, cpu)) { 8911 define_one_arm_cp_reg(cpu, &ttbcr2_reginfo); 8912 } 8913 } 8914 if (arm_feature(env, ARM_FEATURE_THUMB2EE)) { 8915 define_arm_cp_regs(cpu, t2ee_cp_reginfo); 8916 } 8917 if (arm_feature(env, ARM_FEATURE_GENERIC_TIMER)) { 8918 define_arm_cp_regs(cpu, generic_timer_cp_reginfo); 8919 } 8920 if (arm_feature(env, ARM_FEATURE_VAPA)) { 8921 define_arm_cp_regs(cpu, vapa_cp_reginfo); 8922 } 8923 if (arm_feature(env, ARM_FEATURE_CACHE_TEST_CLEAN)) { 8924 define_arm_cp_regs(cpu, cache_test_clean_cp_reginfo); 8925 } 8926 if (arm_feature(env, ARM_FEATURE_CACHE_DIRTY_REG)) { 8927 define_arm_cp_regs(cpu, cache_dirty_status_cp_reginfo); 8928 } 8929 if (arm_feature(env, ARM_FEATURE_CACHE_BLOCK_OPS)) { 8930 define_arm_cp_regs(cpu, cache_block_ops_cp_reginfo); 8931 } 8932 if (arm_feature(env, ARM_FEATURE_OMAPCP)) { 8933 define_arm_cp_regs(cpu, omap_cp_reginfo); 8934 } 8935 if (arm_feature(env, ARM_FEATURE_STRONGARM)) { 8936 define_arm_cp_regs(cpu, strongarm_cp_reginfo); 8937 } 8938 if (arm_feature(env, ARM_FEATURE_XSCALE)) { 8939 define_arm_cp_regs(cpu, xscale_cp_reginfo); 8940 } 8941 if (arm_feature(env, ARM_FEATURE_DUMMY_C15_REGS)) { 8942 define_arm_cp_regs(cpu, dummy_c15_cp_reginfo); 8943 } 8944 if (arm_feature(env, ARM_FEATURE_LPAE)) { 8945 define_arm_cp_regs(cpu, lpae_cp_reginfo); 8946 } 8947 if (cpu_isar_feature(aa32_jazelle, cpu)) { 8948 define_arm_cp_regs(cpu, jazelle_regs); 8949 } 8950 /* 8951 * Slightly awkwardly, the OMAP and StrongARM cores need all of 8952 * cp15 crn=0 to be writes-ignored, whereas for other cores they should 8953 * be read-only (ie write causes UNDEF exception). 8954 */ 8955 { 8956 ARMCPRegInfo id_pre_v8_midr_cp_reginfo[] = { 8957 /* 8958 * Pre-v8 MIDR space. 8959 * Note that the MIDR isn't a simple constant register because 8960 * of the TI925 behaviour where writes to another register can 8961 * cause the MIDR value to change. 8962 * 8963 * Unimplemented registers in the c15 0 0 0 space default to 8964 * MIDR. Define MIDR first as this entire space, then CTR, TCMTR 8965 * and friends override accordingly. 8966 */ 8967 { .name = "MIDR", 8968 .cp = 15, .crn = 0, .crm = 0, .opc1 = 0, .opc2 = CP_ANY, 8969 .access = PL1_R, .resetvalue = cpu->midr, 8970 .writefn = arm_cp_write_ignore, .raw_writefn = raw_write, 8971 .readfn = midr_read, 8972 .fieldoffset = offsetof(CPUARMState, cp15.c0_cpuid), 8973 .type = ARM_CP_OVERRIDE }, 8974 /* crn = 0 op1 = 0 crm = 3..7 : currently unassigned; we RAZ. */ 8975 { .name = "DUMMY", 8976 .cp = 15, .crn = 0, .crm = 3, .opc1 = 0, .opc2 = CP_ANY, 8977 .access = PL1_R, .type = ARM_CP_CONST, .resetvalue = 0 }, 8978 { .name = "DUMMY", 8979 .cp = 15, .crn = 0, .crm = 4, .opc1 = 0, .opc2 = CP_ANY, 8980 .access = PL1_R, .type = ARM_CP_CONST, .resetvalue = 0 }, 8981 { .name = "DUMMY", 8982 .cp = 15, .crn = 0, .crm = 5, .opc1 = 0, .opc2 = CP_ANY, 8983 .access = PL1_R, .type = ARM_CP_CONST, .resetvalue = 0 }, 8984 { .name = "DUMMY", 8985 .cp = 15, .crn = 0, .crm = 6, .opc1 = 0, .opc2 = CP_ANY, 8986 .access = PL1_R, .type = ARM_CP_CONST, .resetvalue = 0 }, 8987 { .name = "DUMMY", 8988 .cp = 15, .crn = 0, .crm = 7, .opc1 = 0, .opc2 = CP_ANY, 8989 .access = PL1_R, .type = ARM_CP_CONST, .resetvalue = 0 }, 8990 }; 8991 ARMCPRegInfo id_v8_midr_cp_reginfo[] = { 8992 { .name = "MIDR_EL1", .state = ARM_CP_STATE_BOTH, 8993 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 0, .opc2 = 0, 8994 .access = PL1_R, .type = ARM_CP_NO_RAW, .resetvalue = cpu->midr, 8995 .fgt = FGT_MIDR_EL1, 8996 .fieldoffset = offsetof(CPUARMState, cp15.c0_cpuid), 8997 .readfn = midr_read }, 8998 /* crn = 0 op1 = 0 crm = 0 op2 = 7 : AArch32 aliases of MIDR */ 8999 { .name = "MIDR", .type = ARM_CP_ALIAS | ARM_CP_CONST, 9000 .cp = 15, .crn = 0, .crm = 0, .opc1 = 0, .opc2 = 7, 9001 .access = PL1_R, .resetvalue = cpu->midr }, 9002 { .name = "REVIDR_EL1", .state = ARM_CP_STATE_BOTH, 9003 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 0, .opc2 = 6, 9004 .access = PL1_R, 9005 .accessfn = access_aa64_tid1, 9006 .fgt = FGT_REVIDR_EL1, 9007 .type = ARM_CP_CONST, .resetvalue = cpu->revidr }, 9008 }; 9009 ARMCPRegInfo id_v8_midr_alias_cp_reginfo = { 9010 .name = "MIDR", .type = ARM_CP_ALIAS | ARM_CP_CONST, 9011 .cp = 15, .crn = 0, .crm = 0, .opc1 = 0, .opc2 = 4, 9012 .access = PL1_R, .resetvalue = cpu->midr 9013 }; 9014 ARMCPRegInfo id_cp_reginfo[] = { 9015 /* These are common to v8 and pre-v8 */ 9016 { .name = "CTR", 9017 .cp = 15, .crn = 0, .crm = 0, .opc1 = 0, .opc2 = 1, 9018 .access = PL1_R, .accessfn = ctr_el0_access, 9019 .type = ARM_CP_CONST, .resetvalue = cpu->ctr }, 9020 { .name = "CTR_EL0", .state = ARM_CP_STATE_AA64, 9021 .opc0 = 3, .opc1 = 3, .opc2 = 1, .crn = 0, .crm = 0, 9022 .access = PL0_R, .accessfn = ctr_el0_access, 9023 .fgt = FGT_CTR_EL0, 9024 .type = ARM_CP_CONST, .resetvalue = cpu->ctr }, 9025 /* TCMTR and TLBTR exist in v8 but have no 64-bit versions */ 9026 { .name = "TCMTR", 9027 .cp = 15, .crn = 0, .crm = 0, .opc1 = 0, .opc2 = 2, 9028 .access = PL1_R, 9029 .accessfn = access_aa32_tid1, 9030 .type = ARM_CP_CONST, .resetvalue = 0 }, 9031 }; 9032 /* TLBTR is specific to VMSA */ 9033 ARMCPRegInfo id_tlbtr_reginfo = { 9034 .name = "TLBTR", 9035 .cp = 15, .crn = 0, .crm = 0, .opc1 = 0, .opc2 = 3, 9036 .access = PL1_R, 9037 .accessfn = access_aa32_tid1, 9038 .type = ARM_CP_CONST, .resetvalue = 0, 9039 }; 9040 /* MPUIR is specific to PMSA V6+ */ 9041 ARMCPRegInfo id_mpuir_reginfo = { 9042 .name = "MPUIR", 9043 .cp = 15, .crn = 0, .crm = 0, .opc1 = 0, .opc2 = 4, 9044 .access = PL1_R, .type = ARM_CP_CONST, 9045 .resetvalue = cpu->pmsav7_dregion << 8 9046 }; 9047 /* HMPUIR is specific to PMSA V8 */ 9048 ARMCPRegInfo id_hmpuir_reginfo = { 9049 .name = "HMPUIR", 9050 .cp = 15, .opc1 = 4, .crn = 0, .crm = 0, .opc2 = 4, 9051 .access = PL2_R, .type = ARM_CP_CONST, 9052 .resetvalue = cpu->pmsav8r_hdregion 9053 }; 9054 static const ARMCPRegInfo crn0_wi_reginfo = { 9055 .name = "CRN0_WI", .cp = 15, .crn = 0, .crm = CP_ANY, 9056 .opc1 = CP_ANY, .opc2 = CP_ANY, .access = PL1_W, 9057 .type = ARM_CP_NOP | ARM_CP_OVERRIDE 9058 }; 9059 #ifdef CONFIG_USER_ONLY 9060 static const ARMCPRegUserSpaceInfo id_v8_user_midr_cp_reginfo[] = { 9061 { .name = "MIDR_EL1", 9062 .exported_bits = R_MIDR_EL1_REVISION_MASK | 9063 R_MIDR_EL1_PARTNUM_MASK | 9064 R_MIDR_EL1_ARCHITECTURE_MASK | 9065 R_MIDR_EL1_VARIANT_MASK | 9066 R_MIDR_EL1_IMPLEMENTER_MASK }, 9067 { .name = "REVIDR_EL1" }, 9068 }; 9069 modify_arm_cp_regs(id_v8_midr_cp_reginfo, id_v8_user_midr_cp_reginfo); 9070 #endif 9071 if (arm_feature(env, ARM_FEATURE_OMAPCP) || 9072 arm_feature(env, ARM_FEATURE_STRONGARM)) { 9073 size_t i; 9074 /* 9075 * Register the blanket "writes ignored" value first to cover the 9076 * whole space. Then update the specific ID registers to allow write 9077 * access, so that they ignore writes rather than causing them to 9078 * UNDEF. 9079 */ 9080 define_one_arm_cp_reg(cpu, &crn0_wi_reginfo); 9081 for (i = 0; i < ARRAY_SIZE(id_pre_v8_midr_cp_reginfo); ++i) { 9082 id_pre_v8_midr_cp_reginfo[i].access = PL1_RW; 9083 } 9084 for (i = 0; i < ARRAY_SIZE(id_cp_reginfo); ++i) { 9085 id_cp_reginfo[i].access = PL1_RW; 9086 } 9087 id_mpuir_reginfo.access = PL1_RW; 9088 id_tlbtr_reginfo.access = PL1_RW; 9089 } 9090 if (arm_feature(env, ARM_FEATURE_V8)) { 9091 define_arm_cp_regs(cpu, id_v8_midr_cp_reginfo); 9092 if (!arm_feature(env, ARM_FEATURE_PMSA)) { 9093 define_one_arm_cp_reg(cpu, &id_v8_midr_alias_cp_reginfo); 9094 } 9095 } else { 9096 define_arm_cp_regs(cpu, id_pre_v8_midr_cp_reginfo); 9097 } 9098 define_arm_cp_regs(cpu, id_cp_reginfo); 9099 if (!arm_feature(env, ARM_FEATURE_PMSA)) { 9100 define_one_arm_cp_reg(cpu, &id_tlbtr_reginfo); 9101 } else if (arm_feature(env, ARM_FEATURE_PMSA) && 9102 arm_feature(env, ARM_FEATURE_V8)) { 9103 uint32_t i = 0; 9104 char *tmp_string; 9105 9106 define_one_arm_cp_reg(cpu, &id_mpuir_reginfo); 9107 define_one_arm_cp_reg(cpu, &id_hmpuir_reginfo); 9108 define_arm_cp_regs(cpu, pmsav8r_cp_reginfo); 9109 9110 /* Register alias is only valid for first 32 indexes */ 9111 for (i = 0; i < MIN(cpu->pmsav7_dregion, 32); ++i) { 9112 uint8_t crm = 0b1000 | extract32(i, 1, 3); 9113 uint8_t opc1 = extract32(i, 4, 1); 9114 uint8_t opc2 = extract32(i, 0, 1) << 2; 9115 9116 tmp_string = g_strdup_printf("PRBAR%u", i); 9117 ARMCPRegInfo tmp_prbarn_reginfo = { 9118 .name = tmp_string, .type = ARM_CP_ALIAS | ARM_CP_NO_RAW, 9119 .cp = 15, .opc1 = opc1, .crn = 6, .crm = crm, .opc2 = opc2, 9120 .access = PL1_RW, .resetvalue = 0, 9121 .accessfn = access_tvm_trvm, 9122 .writefn = pmsav8r_regn_write, .readfn = pmsav8r_regn_read 9123 }; 9124 define_one_arm_cp_reg(cpu, &tmp_prbarn_reginfo); 9125 g_free(tmp_string); 9126 9127 opc2 = extract32(i, 0, 1) << 2 | 0x1; 9128 tmp_string = g_strdup_printf("PRLAR%u", i); 9129 ARMCPRegInfo tmp_prlarn_reginfo = { 9130 .name = tmp_string, .type = ARM_CP_ALIAS | ARM_CP_NO_RAW, 9131 .cp = 15, .opc1 = opc1, .crn = 6, .crm = crm, .opc2 = opc2, 9132 .access = PL1_RW, .resetvalue = 0, 9133 .accessfn = access_tvm_trvm, 9134 .writefn = pmsav8r_regn_write, .readfn = pmsav8r_regn_read 9135 }; 9136 define_one_arm_cp_reg(cpu, &tmp_prlarn_reginfo); 9137 g_free(tmp_string); 9138 } 9139 9140 /* Register alias is only valid for first 32 indexes */ 9141 for (i = 0; i < MIN(cpu->pmsav8r_hdregion, 32); ++i) { 9142 uint8_t crm = 0b1000 | extract32(i, 1, 3); 9143 uint8_t opc1 = 0b100 | extract32(i, 4, 1); 9144 uint8_t opc2 = extract32(i, 0, 1) << 2; 9145 9146 tmp_string = g_strdup_printf("HPRBAR%u", i); 9147 ARMCPRegInfo tmp_hprbarn_reginfo = { 9148 .name = tmp_string, 9149 .type = ARM_CP_NO_RAW, 9150 .cp = 15, .opc1 = opc1, .crn = 6, .crm = crm, .opc2 = opc2, 9151 .access = PL2_RW, .resetvalue = 0, 9152 .writefn = pmsav8r_regn_write, .readfn = pmsav8r_regn_read 9153 }; 9154 define_one_arm_cp_reg(cpu, &tmp_hprbarn_reginfo); 9155 g_free(tmp_string); 9156 9157 opc2 = extract32(i, 0, 1) << 2 | 0x1; 9158 tmp_string = g_strdup_printf("HPRLAR%u", i); 9159 ARMCPRegInfo tmp_hprlarn_reginfo = { 9160 .name = tmp_string, 9161 .type = ARM_CP_NO_RAW, 9162 .cp = 15, .opc1 = opc1, .crn = 6, .crm = crm, .opc2 = opc2, 9163 .access = PL2_RW, .resetvalue = 0, 9164 .writefn = pmsav8r_regn_write, .readfn = pmsav8r_regn_read 9165 }; 9166 define_one_arm_cp_reg(cpu, &tmp_hprlarn_reginfo); 9167 g_free(tmp_string); 9168 } 9169 } else if (arm_feature(env, ARM_FEATURE_V7)) { 9170 define_one_arm_cp_reg(cpu, &id_mpuir_reginfo); 9171 } 9172 } 9173 9174 if (arm_feature(env, ARM_FEATURE_MPIDR)) { 9175 ARMCPRegInfo mpidr_cp_reginfo[] = { 9176 { .name = "MPIDR_EL1", .state = ARM_CP_STATE_BOTH, 9177 .opc0 = 3, .crn = 0, .crm = 0, .opc1 = 0, .opc2 = 5, 9178 .fgt = FGT_MPIDR_EL1, 9179 .access = PL1_R, .readfn = mpidr_read, .type = ARM_CP_NO_RAW }, 9180 }; 9181 #ifdef CONFIG_USER_ONLY 9182 static const ARMCPRegUserSpaceInfo mpidr_user_cp_reginfo[] = { 9183 { .name = "MPIDR_EL1", 9184 .fixed_bits = 0x0000000080000000 }, 9185 }; 9186 modify_arm_cp_regs(mpidr_cp_reginfo, mpidr_user_cp_reginfo); 9187 #endif 9188 define_arm_cp_regs(cpu, mpidr_cp_reginfo); 9189 } 9190 9191 if (arm_feature(env, ARM_FEATURE_AUXCR)) { 9192 ARMCPRegInfo auxcr_reginfo[] = { 9193 { .name = "ACTLR_EL1", .state = ARM_CP_STATE_BOTH, 9194 .opc0 = 3, .opc1 = 0, .crn = 1, .crm = 0, .opc2 = 1, 9195 .access = PL1_RW, .accessfn = access_tacr, 9196 .type = ARM_CP_CONST, .resetvalue = cpu->reset_auxcr }, 9197 { .name = "ACTLR_EL2", .state = ARM_CP_STATE_BOTH, 9198 .opc0 = 3, .opc1 = 4, .crn = 1, .crm = 0, .opc2 = 1, 9199 .access = PL2_RW, .type = ARM_CP_CONST, 9200 .resetvalue = 0 }, 9201 { .name = "ACTLR_EL3", .state = ARM_CP_STATE_AA64, 9202 .opc0 = 3, .opc1 = 6, .crn = 1, .crm = 0, .opc2 = 1, 9203 .access = PL3_RW, .type = ARM_CP_CONST, 9204 .resetvalue = 0 }, 9205 }; 9206 define_arm_cp_regs(cpu, auxcr_reginfo); 9207 if (cpu_isar_feature(aa32_ac2, cpu)) { 9208 define_arm_cp_regs(cpu, actlr2_hactlr2_reginfo); 9209 } 9210 } 9211 9212 if (arm_feature(env, ARM_FEATURE_CBAR)) { 9213 /* 9214 * CBAR is IMPDEF, but common on Arm Cortex-A implementations. 9215 * There are two flavours: 9216 * (1) older 32-bit only cores have a simple 32-bit CBAR 9217 * (2) 64-bit cores have a 64-bit CBAR visible to AArch64, plus a 9218 * 32-bit register visible to AArch32 at a different encoding 9219 * to the "flavour 1" register and with the bits rearranged to 9220 * be able to squash a 64-bit address into the 32-bit view. 9221 * We distinguish the two via the ARM_FEATURE_AARCH64 flag, but 9222 * in future if we support AArch32-only configs of some of the 9223 * AArch64 cores we might need to add a specific feature flag 9224 * to indicate cores with "flavour 2" CBAR. 9225 */ 9226 if (arm_feature(env, ARM_FEATURE_AARCH64)) { 9227 /* 32 bit view is [31:18] 0...0 [43:32]. */ 9228 uint32_t cbar32 = (extract64(cpu->reset_cbar, 18, 14) << 18) 9229 | extract64(cpu->reset_cbar, 32, 12); 9230 ARMCPRegInfo cbar_reginfo[] = { 9231 { .name = "CBAR", 9232 .type = ARM_CP_CONST, 9233 .cp = 15, .crn = 15, .crm = 3, .opc1 = 1, .opc2 = 0, 9234 .access = PL1_R, .resetvalue = cbar32 }, 9235 { .name = "CBAR_EL1", .state = ARM_CP_STATE_AA64, 9236 .type = ARM_CP_CONST, 9237 .opc0 = 3, .opc1 = 1, .crn = 15, .crm = 3, .opc2 = 0, 9238 .access = PL1_R, .resetvalue = cpu->reset_cbar }, 9239 }; 9240 /* We don't implement a r/w 64 bit CBAR currently */ 9241 assert(arm_feature(env, ARM_FEATURE_CBAR_RO)); 9242 define_arm_cp_regs(cpu, cbar_reginfo); 9243 } else { 9244 ARMCPRegInfo cbar = { 9245 .name = "CBAR", 9246 .cp = 15, .crn = 15, .crm = 0, .opc1 = 4, .opc2 = 0, 9247 .access = PL1_R | PL3_W, .resetvalue = cpu->reset_cbar, 9248 .fieldoffset = offsetof(CPUARMState, 9249 cp15.c15_config_base_address) 9250 }; 9251 if (arm_feature(env, ARM_FEATURE_CBAR_RO)) { 9252 cbar.access = PL1_R; 9253 cbar.fieldoffset = 0; 9254 cbar.type = ARM_CP_CONST; 9255 } 9256 define_one_arm_cp_reg(cpu, &cbar); 9257 } 9258 } 9259 9260 if (arm_feature(env, ARM_FEATURE_VBAR)) { 9261 static const ARMCPRegInfo vbar_cp_reginfo[] = { 9262 { .name = "VBAR", .state = ARM_CP_STATE_BOTH, 9263 .opc0 = 3, .crn = 12, .crm = 0, .opc1 = 0, .opc2 = 0, 9264 .access = PL1_RW, .writefn = vbar_write, 9265 .fgt = FGT_VBAR_EL1, 9266 .bank_fieldoffsets = { offsetof(CPUARMState, cp15.vbar_s), 9267 offsetof(CPUARMState, cp15.vbar_ns) }, 9268 .resetvalue = 0 }, 9269 }; 9270 define_arm_cp_regs(cpu, vbar_cp_reginfo); 9271 } 9272 9273 /* Generic registers whose values depend on the implementation */ 9274 { 9275 ARMCPRegInfo sctlr = { 9276 .name = "SCTLR", .state = ARM_CP_STATE_BOTH, 9277 .opc0 = 3, .opc1 = 0, .crn = 1, .crm = 0, .opc2 = 0, 9278 .access = PL1_RW, .accessfn = access_tvm_trvm, 9279 .fgt = FGT_SCTLR_EL1, 9280 .bank_fieldoffsets = { offsetof(CPUARMState, cp15.sctlr_s), 9281 offsetof(CPUARMState, cp15.sctlr_ns) }, 9282 .writefn = sctlr_write, .resetvalue = cpu->reset_sctlr, 9283 .raw_writefn = raw_write, 9284 }; 9285 if (arm_feature(env, ARM_FEATURE_XSCALE)) { 9286 /* 9287 * Normally we would always end the TB on an SCTLR write, but Linux 9288 * arch/arm/mach-pxa/sleep.S expects two instructions following 9289 * an MMU enable to execute from cache. Imitate this behaviour. 9290 */ 9291 sctlr.type |= ARM_CP_SUPPRESS_TB_END; 9292 } 9293 define_one_arm_cp_reg(cpu, &sctlr); 9294 9295 if (arm_feature(env, ARM_FEATURE_PMSA) && 9296 arm_feature(env, ARM_FEATURE_V8)) { 9297 ARMCPRegInfo vsctlr = { 9298 .name = "VSCTLR", .state = ARM_CP_STATE_AA32, 9299 .cp = 15, .opc1 = 4, .crn = 2, .crm = 0, .opc2 = 0, 9300 .access = PL2_RW, .resetvalue = 0x0, 9301 .fieldoffset = offsetoflow32(CPUARMState, cp15.vsctlr), 9302 }; 9303 define_one_arm_cp_reg(cpu, &vsctlr); 9304 } 9305 } 9306 9307 if (cpu_isar_feature(aa64_lor, cpu)) { 9308 define_arm_cp_regs(cpu, lor_reginfo); 9309 } 9310 if (cpu_isar_feature(aa64_pan, cpu)) { 9311 define_one_arm_cp_reg(cpu, &pan_reginfo); 9312 } 9313 #ifndef CONFIG_USER_ONLY 9314 if (cpu_isar_feature(aa64_ats1e1, cpu)) { 9315 define_arm_cp_regs(cpu, ats1e1_reginfo); 9316 } 9317 if (cpu_isar_feature(aa32_ats1e1, cpu)) { 9318 define_arm_cp_regs(cpu, ats1cp_reginfo); 9319 } 9320 #endif 9321 if (cpu_isar_feature(aa64_uao, cpu)) { 9322 define_one_arm_cp_reg(cpu, &uao_reginfo); 9323 } 9324 9325 if (cpu_isar_feature(aa64_dit, cpu)) { 9326 define_one_arm_cp_reg(cpu, &dit_reginfo); 9327 } 9328 if (cpu_isar_feature(aa64_ssbs, cpu)) { 9329 define_one_arm_cp_reg(cpu, &ssbs_reginfo); 9330 } 9331 if (cpu_isar_feature(any_ras, cpu)) { 9332 define_arm_cp_regs(cpu, minimal_ras_reginfo); 9333 } 9334 9335 if (cpu_isar_feature(aa64_vh, cpu) || 9336 cpu_isar_feature(aa64_debugv8p2, cpu)) { 9337 define_one_arm_cp_reg(cpu, &contextidr_el2); 9338 } 9339 if (arm_feature(env, ARM_FEATURE_EL2) && cpu_isar_feature(aa64_vh, cpu)) { 9340 define_arm_cp_regs(cpu, vhe_reginfo); 9341 } 9342 9343 if (cpu_isar_feature(aa64_sve, cpu)) { 9344 define_arm_cp_regs(cpu, zcr_reginfo); 9345 } 9346 9347 if (cpu_isar_feature(aa64_hcx, cpu)) { 9348 define_one_arm_cp_reg(cpu, &hcrx_el2_reginfo); 9349 } 9350 9351 #ifdef TARGET_AARCH64 9352 if (cpu_isar_feature(aa64_sme, cpu)) { 9353 define_arm_cp_regs(cpu, sme_reginfo); 9354 } 9355 if (cpu_isar_feature(aa64_pauth, cpu)) { 9356 define_arm_cp_regs(cpu, pauth_reginfo); 9357 } 9358 if (cpu_isar_feature(aa64_rndr, cpu)) { 9359 define_arm_cp_regs(cpu, rndr_reginfo); 9360 } 9361 if (cpu_isar_feature(aa64_tlbirange, cpu)) { 9362 define_arm_cp_regs(cpu, tlbirange_reginfo); 9363 } 9364 if (cpu_isar_feature(aa64_tlbios, cpu)) { 9365 define_arm_cp_regs(cpu, tlbios_reginfo); 9366 } 9367 /* Data Cache clean instructions up to PoP */ 9368 if (cpu_isar_feature(aa64_dcpop, cpu)) { 9369 define_one_arm_cp_reg(cpu, dcpop_reg); 9370 9371 if (cpu_isar_feature(aa64_dcpodp, cpu)) { 9372 define_one_arm_cp_reg(cpu, dcpodp_reg); 9373 } 9374 } 9375 9376 /* 9377 * If full MTE is enabled, add all of the system registers. 9378 * If only "instructions available at EL0" are enabled, 9379 * then define only a RAZ/WI version of PSTATE.TCO. 9380 */ 9381 if (cpu_isar_feature(aa64_mte, cpu)) { 9382 ARMCPRegInfo gmid_reginfo = { 9383 .name = "GMID_EL1", .state = ARM_CP_STATE_AA64, 9384 .opc0 = 3, .opc1 = 1, .crn = 0, .crm = 0, .opc2 = 4, 9385 .access = PL1_R, .accessfn = access_aa64_tid5, 9386 .type = ARM_CP_CONST, .resetvalue = cpu->gm_blocksize, 9387 }; 9388 define_one_arm_cp_reg(cpu, &gmid_reginfo); 9389 define_arm_cp_regs(cpu, mte_reginfo); 9390 define_arm_cp_regs(cpu, mte_el0_cacheop_reginfo); 9391 } else if (cpu_isar_feature(aa64_mte_insn_reg, cpu)) { 9392 define_arm_cp_regs(cpu, mte_tco_ro_reginfo); 9393 define_arm_cp_regs(cpu, mte_el0_cacheop_reginfo); 9394 } 9395 9396 if (cpu_isar_feature(aa64_scxtnum, cpu)) { 9397 define_arm_cp_regs(cpu, scxtnum_reginfo); 9398 } 9399 9400 if (cpu_isar_feature(aa64_fgt, cpu)) { 9401 define_arm_cp_regs(cpu, fgt_reginfo); 9402 } 9403 9404 if (cpu_isar_feature(aa64_rme, cpu)) { 9405 define_arm_cp_regs(cpu, rme_reginfo); 9406 if (cpu_isar_feature(aa64_mte, cpu)) { 9407 define_arm_cp_regs(cpu, rme_mte_reginfo); 9408 } 9409 } 9410 #endif 9411 9412 if (cpu_isar_feature(any_predinv, cpu)) { 9413 define_arm_cp_regs(cpu, predinv_reginfo); 9414 } 9415 9416 if (cpu_isar_feature(any_ccidx, cpu)) { 9417 define_arm_cp_regs(cpu, ccsidr2_reginfo); 9418 } 9419 9420 #ifndef CONFIG_USER_ONLY 9421 /* 9422 * Register redirections and aliases must be done last, 9423 * after the registers from the other extensions have been defined. 9424 */ 9425 if (arm_feature(env, ARM_FEATURE_EL2) && cpu_isar_feature(aa64_vh, cpu)) { 9426 define_arm_vh_e2h_redirects_aliases(cpu); 9427 } 9428 #endif 9429 } 9430 9431 /* Sort alphabetically by type name, except for "any". */ 9432 static gint arm_cpu_list_compare(gconstpointer a, gconstpointer b) 9433 { 9434 ObjectClass *class_a = (ObjectClass *)a; 9435 ObjectClass *class_b = (ObjectClass *)b; 9436 const char *name_a, *name_b; 9437 9438 name_a = object_class_get_name(class_a); 9439 name_b = object_class_get_name(class_b); 9440 if (strcmp(name_a, "any-" TYPE_ARM_CPU) == 0) { 9441 return 1; 9442 } else if (strcmp(name_b, "any-" TYPE_ARM_CPU) == 0) { 9443 return -1; 9444 } else { 9445 return strcmp(name_a, name_b); 9446 } 9447 } 9448 9449 static void arm_cpu_list_entry(gpointer data, gpointer user_data) 9450 { 9451 ObjectClass *oc = data; 9452 CPUClass *cc = CPU_CLASS(oc); 9453 const char *typename; 9454 char *name; 9455 9456 typename = object_class_get_name(oc); 9457 name = g_strndup(typename, strlen(typename) - strlen("-" TYPE_ARM_CPU)); 9458 if (cc->deprecation_note) { 9459 qemu_printf(" %s (deprecated)\n", name); 9460 } else { 9461 qemu_printf(" %s\n", name); 9462 } 9463 g_free(name); 9464 } 9465 9466 void arm_cpu_list(void) 9467 { 9468 GSList *list; 9469 9470 list = object_class_get_list(TYPE_ARM_CPU, false); 9471 list = g_slist_sort(list, arm_cpu_list_compare); 9472 qemu_printf("Available CPUs:\n"); 9473 g_slist_foreach(list, arm_cpu_list_entry, NULL); 9474 g_slist_free(list); 9475 } 9476 9477 /* 9478 * Private utility function for define_one_arm_cp_reg_with_opaque(): 9479 * add a single reginfo struct to the hash table. 9480 */ 9481 static void add_cpreg_to_hashtable(ARMCPU *cpu, const ARMCPRegInfo *r, 9482 void *opaque, CPState state, 9483 CPSecureState secstate, 9484 int crm, int opc1, int opc2, 9485 const char *name) 9486 { 9487 CPUARMState *env = &cpu->env; 9488 uint32_t key; 9489 ARMCPRegInfo *r2; 9490 bool is64 = r->type & ARM_CP_64BIT; 9491 bool ns = secstate & ARM_CP_SECSTATE_NS; 9492 int cp = r->cp; 9493 size_t name_len; 9494 bool make_const; 9495 9496 switch (state) { 9497 case ARM_CP_STATE_AA32: 9498 /* We assume it is a cp15 register if the .cp field is left unset. */ 9499 if (cp == 0 && r->state == ARM_CP_STATE_BOTH) { 9500 cp = 15; 9501 } 9502 key = ENCODE_CP_REG(cp, is64, ns, r->crn, crm, opc1, opc2); 9503 break; 9504 case ARM_CP_STATE_AA64: 9505 /* 9506 * To allow abbreviation of ARMCPRegInfo definitions, we treat 9507 * cp == 0 as equivalent to the value for "standard guest-visible 9508 * sysreg". STATE_BOTH definitions are also always "standard sysreg" 9509 * in their AArch64 view (the .cp value may be non-zero for the 9510 * benefit of the AArch32 view). 9511 */ 9512 if (cp == 0 || r->state == ARM_CP_STATE_BOTH) { 9513 cp = CP_REG_ARM64_SYSREG_CP; 9514 } 9515 key = ENCODE_AA64_CP_REG(cp, r->crn, crm, r->opc0, opc1, opc2); 9516 break; 9517 default: 9518 g_assert_not_reached(); 9519 } 9520 9521 /* Overriding of an existing definition must be explicitly requested. */ 9522 if (!(r->type & ARM_CP_OVERRIDE)) { 9523 const ARMCPRegInfo *oldreg = get_arm_cp_reginfo(cpu->cp_regs, key); 9524 if (oldreg) { 9525 assert(oldreg->type & ARM_CP_OVERRIDE); 9526 } 9527 } 9528 9529 /* 9530 * Eliminate registers that are not present because the EL is missing. 9531 * Doing this here makes it easier to put all registers for a given 9532 * feature into the same ARMCPRegInfo array and define them all at once. 9533 */ 9534 make_const = false; 9535 if (arm_feature(env, ARM_FEATURE_EL3)) { 9536 /* 9537 * An EL2 register without EL2 but with EL3 is (usually) RES0. 9538 * See rule RJFFP in section D1.1.3 of DDI0487H.a. 9539 */ 9540 int min_el = ctz32(r->access) / 2; 9541 if (min_el == 2 && !arm_feature(env, ARM_FEATURE_EL2)) { 9542 if (r->type & ARM_CP_EL3_NO_EL2_UNDEF) { 9543 return; 9544 } 9545 make_const = !(r->type & ARM_CP_EL3_NO_EL2_KEEP); 9546 } 9547 } else { 9548 CPAccessRights max_el = (arm_feature(env, ARM_FEATURE_EL2) 9549 ? PL2_RW : PL1_RW); 9550 if ((r->access & max_el) == 0) { 9551 return; 9552 } 9553 } 9554 9555 /* Combine cpreg and name into one allocation. */ 9556 name_len = strlen(name) + 1; 9557 r2 = g_malloc(sizeof(*r2) + name_len); 9558 *r2 = *r; 9559 r2->name = memcpy(r2 + 1, name, name_len); 9560 9561 /* 9562 * Update fields to match the instantiation, overwiting wildcards 9563 * such as CP_ANY, ARM_CP_STATE_BOTH, or ARM_CP_SECSTATE_BOTH. 9564 */ 9565 r2->cp = cp; 9566 r2->crm = crm; 9567 r2->opc1 = opc1; 9568 r2->opc2 = opc2; 9569 r2->state = state; 9570 r2->secure = secstate; 9571 if (opaque) { 9572 r2->opaque = opaque; 9573 } 9574 9575 if (make_const) { 9576 /* This should not have been a very special register to begin. */ 9577 int old_special = r2->type & ARM_CP_SPECIAL_MASK; 9578 assert(old_special == 0 || old_special == ARM_CP_NOP); 9579 /* 9580 * Set the special function to CONST, retaining the other flags. 9581 * This is important for e.g. ARM_CP_SVE so that we still 9582 * take the SVE trap if CPTR_EL3.EZ == 0. 9583 */ 9584 r2->type = (r2->type & ~ARM_CP_SPECIAL_MASK) | ARM_CP_CONST; 9585 /* 9586 * Usually, these registers become RES0, but there are a few 9587 * special cases like VPIDR_EL2 which have a constant non-zero 9588 * value with writes ignored. 9589 */ 9590 if (!(r->type & ARM_CP_EL3_NO_EL2_C_NZ)) { 9591 r2->resetvalue = 0; 9592 } 9593 /* 9594 * ARM_CP_CONST has precedence, so removing the callbacks and 9595 * offsets are not strictly necessary, but it is potentially 9596 * less confusing to debug later. 9597 */ 9598 r2->readfn = NULL; 9599 r2->writefn = NULL; 9600 r2->raw_readfn = NULL; 9601 r2->raw_writefn = NULL; 9602 r2->resetfn = NULL; 9603 r2->fieldoffset = 0; 9604 r2->bank_fieldoffsets[0] = 0; 9605 r2->bank_fieldoffsets[1] = 0; 9606 } else { 9607 bool isbanked = r->bank_fieldoffsets[0] && r->bank_fieldoffsets[1]; 9608 9609 if (isbanked) { 9610 /* 9611 * Register is banked (using both entries in array). 9612 * Overwriting fieldoffset as the array is only used to define 9613 * banked registers but later only fieldoffset is used. 9614 */ 9615 r2->fieldoffset = r->bank_fieldoffsets[ns]; 9616 } 9617 if (state == ARM_CP_STATE_AA32) { 9618 if (isbanked) { 9619 /* 9620 * If the register is banked then we don't need to migrate or 9621 * reset the 32-bit instance in certain cases: 9622 * 9623 * 1) If the register has both 32-bit and 64-bit instances 9624 * then we can count on the 64-bit instance taking care 9625 * of the non-secure bank. 9626 * 2) If ARMv8 is enabled then we can count on a 64-bit 9627 * version taking care of the secure bank. This requires 9628 * that separate 32 and 64-bit definitions are provided. 9629 */ 9630 if ((r->state == ARM_CP_STATE_BOTH && ns) || 9631 (arm_feature(env, ARM_FEATURE_V8) && !ns)) { 9632 r2->type |= ARM_CP_ALIAS; 9633 } 9634 } else if ((secstate != r->secure) && !ns) { 9635 /* 9636 * The register is not banked so we only want to allow 9637 * migration of the non-secure instance. 9638 */ 9639 r2->type |= ARM_CP_ALIAS; 9640 } 9641 9642 if (HOST_BIG_ENDIAN && 9643 r->state == ARM_CP_STATE_BOTH && r2->fieldoffset) { 9644 r2->fieldoffset += sizeof(uint32_t); 9645 } 9646 } 9647 } 9648 9649 /* 9650 * By convention, for wildcarded registers only the first 9651 * entry is used for migration; the others are marked as 9652 * ALIAS so we don't try to transfer the register 9653 * multiple times. Special registers (ie NOP/WFI) are 9654 * never migratable and not even raw-accessible. 9655 */ 9656 if (r2->type & ARM_CP_SPECIAL_MASK) { 9657 r2->type |= ARM_CP_NO_RAW; 9658 } 9659 if (((r->crm == CP_ANY) && crm != 0) || 9660 ((r->opc1 == CP_ANY) && opc1 != 0) || 9661 ((r->opc2 == CP_ANY) && opc2 != 0)) { 9662 r2->type |= ARM_CP_ALIAS | ARM_CP_NO_GDB; 9663 } 9664 9665 /* 9666 * Check that raw accesses are either forbidden or handled. Note that 9667 * we can't assert this earlier because the setup of fieldoffset for 9668 * banked registers has to be done first. 9669 */ 9670 if (!(r2->type & ARM_CP_NO_RAW)) { 9671 assert(!raw_accessors_invalid(r2)); 9672 } 9673 9674 g_hash_table_insert(cpu->cp_regs, (gpointer)(uintptr_t)key, r2); 9675 } 9676 9677 9678 void define_one_arm_cp_reg_with_opaque(ARMCPU *cpu, 9679 const ARMCPRegInfo *r, void *opaque) 9680 { 9681 /* 9682 * Define implementations of coprocessor registers. 9683 * We store these in a hashtable because typically 9684 * there are less than 150 registers in a space which 9685 * is 16*16*16*8*8 = 262144 in size. 9686 * Wildcarding is supported for the crm, opc1 and opc2 fields. 9687 * If a register is defined twice then the second definition is 9688 * used, so this can be used to define some generic registers and 9689 * then override them with implementation specific variations. 9690 * At least one of the original and the second definition should 9691 * include ARM_CP_OVERRIDE in its type bits -- this is just a guard 9692 * against accidental use. 9693 * 9694 * The state field defines whether the register is to be 9695 * visible in the AArch32 or AArch64 execution state. If the 9696 * state is set to ARM_CP_STATE_BOTH then we synthesise a 9697 * reginfo structure for the AArch32 view, which sees the lower 9698 * 32 bits of the 64 bit register. 9699 * 9700 * Only registers visible in AArch64 may set r->opc0; opc0 cannot 9701 * be wildcarded. AArch64 registers are always considered to be 64 9702 * bits; the ARM_CP_64BIT* flag applies only to the AArch32 view of 9703 * the register, if any. 9704 */ 9705 int crm, opc1, opc2; 9706 int crmmin = (r->crm == CP_ANY) ? 0 : r->crm; 9707 int crmmax = (r->crm == CP_ANY) ? 15 : r->crm; 9708 int opc1min = (r->opc1 == CP_ANY) ? 0 : r->opc1; 9709 int opc1max = (r->opc1 == CP_ANY) ? 7 : r->opc1; 9710 int opc2min = (r->opc2 == CP_ANY) ? 0 : r->opc2; 9711 int opc2max = (r->opc2 == CP_ANY) ? 7 : r->opc2; 9712 CPState state; 9713 9714 /* 64 bit registers have only CRm and Opc1 fields */ 9715 assert(!((r->type & ARM_CP_64BIT) && (r->opc2 || r->crn))); 9716 /* op0 only exists in the AArch64 encodings */ 9717 assert((r->state != ARM_CP_STATE_AA32) || (r->opc0 == 0)); 9718 /* AArch64 regs are all 64 bit so ARM_CP_64BIT is meaningless */ 9719 assert((r->state != ARM_CP_STATE_AA64) || !(r->type & ARM_CP_64BIT)); 9720 /* 9721 * This API is only for Arm's system coprocessors (14 and 15) or 9722 * (M-profile or v7A-and-earlier only) for implementation defined 9723 * coprocessors in the range 0..7. Our decode assumes this, since 9724 * 8..13 can be used for other insns including VFP and Neon. See 9725 * valid_cp() in translate.c. Assert here that we haven't tried 9726 * to use an invalid coprocessor number. 9727 */ 9728 switch (r->state) { 9729 case ARM_CP_STATE_BOTH: 9730 /* 0 has a special meaning, but otherwise the same rules as AA32. */ 9731 if (r->cp == 0) { 9732 break; 9733 } 9734 /* fall through */ 9735 case ARM_CP_STATE_AA32: 9736 if (arm_feature(&cpu->env, ARM_FEATURE_V8) && 9737 !arm_feature(&cpu->env, ARM_FEATURE_M)) { 9738 assert(r->cp >= 14 && r->cp <= 15); 9739 } else { 9740 assert(r->cp < 8 || (r->cp >= 14 && r->cp <= 15)); 9741 } 9742 break; 9743 case ARM_CP_STATE_AA64: 9744 assert(r->cp == 0 || r->cp == CP_REG_ARM64_SYSREG_CP); 9745 break; 9746 default: 9747 g_assert_not_reached(); 9748 } 9749 /* 9750 * The AArch64 pseudocode CheckSystemAccess() specifies that op1 9751 * encodes a minimum access level for the register. We roll this 9752 * runtime check into our general permission check code, so check 9753 * here that the reginfo's specified permissions are strict enough 9754 * to encompass the generic architectural permission check. 9755 */ 9756 if (r->state != ARM_CP_STATE_AA32) { 9757 CPAccessRights mask; 9758 switch (r->opc1) { 9759 case 0: 9760 /* min_EL EL1, but some accessible to EL0 via kernel ABI */ 9761 mask = PL0U_R | PL1_RW; 9762 break; 9763 case 1: case 2: 9764 /* min_EL EL1 */ 9765 mask = PL1_RW; 9766 break; 9767 case 3: 9768 /* min_EL EL0 */ 9769 mask = PL0_RW; 9770 break; 9771 case 4: 9772 case 5: 9773 /* min_EL EL2 */ 9774 mask = PL2_RW; 9775 break; 9776 case 6: 9777 /* min_EL EL3 */ 9778 mask = PL3_RW; 9779 break; 9780 case 7: 9781 /* min_EL EL1, secure mode only (we don't check the latter) */ 9782 mask = PL1_RW; 9783 break; 9784 default: 9785 /* broken reginfo with out-of-range opc1 */ 9786 g_assert_not_reached(); 9787 } 9788 /* assert our permissions are not too lax (stricter is fine) */ 9789 assert((r->access & ~mask) == 0); 9790 } 9791 9792 /* 9793 * Check that the register definition has enough info to handle 9794 * reads and writes if they are permitted. 9795 */ 9796 if (!(r->type & (ARM_CP_SPECIAL_MASK | ARM_CP_CONST))) { 9797 if (r->access & PL3_R) { 9798 assert((r->fieldoffset || 9799 (r->bank_fieldoffsets[0] && r->bank_fieldoffsets[1])) || 9800 r->readfn); 9801 } 9802 if (r->access & PL3_W) { 9803 assert((r->fieldoffset || 9804 (r->bank_fieldoffsets[0] && r->bank_fieldoffsets[1])) || 9805 r->writefn); 9806 } 9807 } 9808 9809 for (crm = crmmin; crm <= crmmax; crm++) { 9810 for (opc1 = opc1min; opc1 <= opc1max; opc1++) { 9811 for (opc2 = opc2min; opc2 <= opc2max; opc2++) { 9812 for (state = ARM_CP_STATE_AA32; 9813 state <= ARM_CP_STATE_AA64; state++) { 9814 if (r->state != state && r->state != ARM_CP_STATE_BOTH) { 9815 continue; 9816 } 9817 if (state == ARM_CP_STATE_AA32) { 9818 /* 9819 * Under AArch32 CP registers can be common 9820 * (same for secure and non-secure world) or banked. 9821 */ 9822 char *name; 9823 9824 switch (r->secure) { 9825 case ARM_CP_SECSTATE_S: 9826 case ARM_CP_SECSTATE_NS: 9827 add_cpreg_to_hashtable(cpu, r, opaque, state, 9828 r->secure, crm, opc1, opc2, 9829 r->name); 9830 break; 9831 case ARM_CP_SECSTATE_BOTH: 9832 name = g_strdup_printf("%s_S", r->name); 9833 add_cpreg_to_hashtable(cpu, r, opaque, state, 9834 ARM_CP_SECSTATE_S, 9835 crm, opc1, opc2, name); 9836 g_free(name); 9837 add_cpreg_to_hashtable(cpu, r, opaque, state, 9838 ARM_CP_SECSTATE_NS, 9839 crm, opc1, opc2, r->name); 9840 break; 9841 default: 9842 g_assert_not_reached(); 9843 } 9844 } else { 9845 /* 9846 * AArch64 registers get mapped to non-secure instance 9847 * of AArch32 9848 */ 9849 add_cpreg_to_hashtable(cpu, r, opaque, state, 9850 ARM_CP_SECSTATE_NS, 9851 crm, opc1, opc2, r->name); 9852 } 9853 } 9854 } 9855 } 9856 } 9857 } 9858 9859 /* Define a whole list of registers */ 9860 void define_arm_cp_regs_with_opaque_len(ARMCPU *cpu, const ARMCPRegInfo *regs, 9861 void *opaque, size_t len) 9862 { 9863 size_t i; 9864 for (i = 0; i < len; ++i) { 9865 define_one_arm_cp_reg_with_opaque(cpu, regs + i, opaque); 9866 } 9867 } 9868 9869 /* 9870 * Modify ARMCPRegInfo for access from userspace. 9871 * 9872 * This is a data driven modification directed by 9873 * ARMCPRegUserSpaceInfo. All registers become ARM_CP_CONST as 9874 * user-space cannot alter any values and dynamic values pertaining to 9875 * execution state are hidden from user space view anyway. 9876 */ 9877 void modify_arm_cp_regs_with_len(ARMCPRegInfo *regs, size_t regs_len, 9878 const ARMCPRegUserSpaceInfo *mods, 9879 size_t mods_len) 9880 { 9881 for (size_t mi = 0; mi < mods_len; ++mi) { 9882 const ARMCPRegUserSpaceInfo *m = mods + mi; 9883 GPatternSpec *pat = NULL; 9884 9885 if (m->is_glob) { 9886 pat = g_pattern_spec_new(m->name); 9887 } 9888 for (size_t ri = 0; ri < regs_len; ++ri) { 9889 ARMCPRegInfo *r = regs + ri; 9890 9891 if (pat && g_pattern_match_string(pat, r->name)) { 9892 r->type = ARM_CP_CONST; 9893 r->access = PL0U_R; 9894 r->resetvalue = 0; 9895 /* continue */ 9896 } else if (strcmp(r->name, m->name) == 0) { 9897 r->type = ARM_CP_CONST; 9898 r->access = PL0U_R; 9899 r->resetvalue &= m->exported_bits; 9900 r->resetvalue |= m->fixed_bits; 9901 break; 9902 } 9903 } 9904 if (pat) { 9905 g_pattern_spec_free(pat); 9906 } 9907 } 9908 } 9909 9910 const ARMCPRegInfo *get_arm_cp_reginfo(GHashTable *cpregs, uint32_t encoded_cp) 9911 { 9912 return g_hash_table_lookup(cpregs, (gpointer)(uintptr_t)encoded_cp); 9913 } 9914 9915 void arm_cp_write_ignore(CPUARMState *env, const ARMCPRegInfo *ri, 9916 uint64_t value) 9917 { 9918 /* Helper coprocessor write function for write-ignore registers */ 9919 } 9920 9921 uint64_t arm_cp_read_zero(CPUARMState *env, const ARMCPRegInfo *ri) 9922 { 9923 /* Helper coprocessor write function for read-as-zero registers */ 9924 return 0; 9925 } 9926 9927 void arm_cp_reset_ignore(CPUARMState *env, const ARMCPRegInfo *opaque) 9928 { 9929 /* Helper coprocessor reset function for do-nothing-on-reset registers */ 9930 } 9931 9932 static int bad_mode_switch(CPUARMState *env, int mode, CPSRWriteType write_type) 9933 { 9934 /* 9935 * Return true if it is not valid for us to switch to 9936 * this CPU mode (ie all the UNPREDICTABLE cases in 9937 * the ARM ARM CPSRWriteByInstr pseudocode). 9938 */ 9939 9940 /* Changes to or from Hyp via MSR and CPS are illegal. */ 9941 if (write_type == CPSRWriteByInstr && 9942 ((env->uncached_cpsr & CPSR_M) == ARM_CPU_MODE_HYP || 9943 mode == ARM_CPU_MODE_HYP)) { 9944 return 1; 9945 } 9946 9947 switch (mode) { 9948 case ARM_CPU_MODE_USR: 9949 return 0; 9950 case ARM_CPU_MODE_SYS: 9951 case ARM_CPU_MODE_SVC: 9952 case ARM_CPU_MODE_ABT: 9953 case ARM_CPU_MODE_UND: 9954 case ARM_CPU_MODE_IRQ: 9955 case ARM_CPU_MODE_FIQ: 9956 /* 9957 * Note that we don't implement the IMPDEF NSACR.RFR which in v7 9958 * allows FIQ mode to be Secure-only. (In v8 this doesn't exist.) 9959 */ 9960 /* 9961 * If HCR.TGE is set then changes from Monitor to NS PL1 via MSR 9962 * and CPS are treated as illegal mode changes. 9963 */ 9964 if (write_type == CPSRWriteByInstr && 9965 (env->uncached_cpsr & CPSR_M) == ARM_CPU_MODE_MON && 9966 (arm_hcr_el2_eff(env) & HCR_TGE)) { 9967 return 1; 9968 } 9969 return 0; 9970 case ARM_CPU_MODE_HYP: 9971 return !arm_is_el2_enabled(env) || arm_current_el(env) < 2; 9972 case ARM_CPU_MODE_MON: 9973 return arm_current_el(env) < 3; 9974 default: 9975 return 1; 9976 } 9977 } 9978 9979 uint32_t cpsr_read(CPUARMState *env) 9980 { 9981 int ZF; 9982 ZF = (env->ZF == 0); 9983 return env->uncached_cpsr | (env->NF & 0x80000000) | (ZF << 30) | 9984 (env->CF << 29) | ((env->VF & 0x80000000) >> 3) | (env->QF << 27) 9985 | (env->thumb << 5) | ((env->condexec_bits & 3) << 25) 9986 | ((env->condexec_bits & 0xfc) << 8) 9987 | (env->GE << 16) | (env->daif & CPSR_AIF); 9988 } 9989 9990 void cpsr_write(CPUARMState *env, uint32_t val, uint32_t mask, 9991 CPSRWriteType write_type) 9992 { 9993 uint32_t changed_daif; 9994 bool rebuild_hflags = (write_type != CPSRWriteRaw) && 9995 (mask & (CPSR_M | CPSR_E | CPSR_IL)); 9996 9997 if (mask & CPSR_NZCV) { 9998 env->ZF = (~val) & CPSR_Z; 9999 env->NF = val; 10000 env->CF = (val >> 29) & 1; 10001 env->VF = (val << 3) & 0x80000000; 10002 } 10003 if (mask & CPSR_Q) { 10004 env->QF = ((val & CPSR_Q) != 0); 10005 } 10006 if (mask & CPSR_T) { 10007 env->thumb = ((val & CPSR_T) != 0); 10008 } 10009 if (mask & CPSR_IT_0_1) { 10010 env->condexec_bits &= ~3; 10011 env->condexec_bits |= (val >> 25) & 3; 10012 } 10013 if (mask & CPSR_IT_2_7) { 10014 env->condexec_bits &= 3; 10015 env->condexec_bits |= (val >> 8) & 0xfc; 10016 } 10017 if (mask & CPSR_GE) { 10018 env->GE = (val >> 16) & 0xf; 10019 } 10020 10021 /* 10022 * In a V7 implementation that includes the security extensions but does 10023 * not include Virtualization Extensions the SCR.FW and SCR.AW bits control 10024 * whether non-secure software is allowed to change the CPSR_F and CPSR_A 10025 * bits respectively. 10026 * 10027 * In a V8 implementation, it is permitted for privileged software to 10028 * change the CPSR A/F bits regardless of the SCR.AW/FW bits. 10029 */ 10030 if (write_type != CPSRWriteRaw && !arm_feature(env, ARM_FEATURE_V8) && 10031 arm_feature(env, ARM_FEATURE_EL3) && 10032 !arm_feature(env, ARM_FEATURE_EL2) && 10033 !arm_is_secure(env)) { 10034 10035 changed_daif = (env->daif ^ val) & mask; 10036 10037 if (changed_daif & CPSR_A) { 10038 /* 10039 * Check to see if we are allowed to change the masking of async 10040 * abort exceptions from a non-secure state. 10041 */ 10042 if (!(env->cp15.scr_el3 & SCR_AW)) { 10043 qemu_log_mask(LOG_GUEST_ERROR, 10044 "Ignoring attempt to switch CPSR_A flag from " 10045 "non-secure world with SCR.AW bit clear\n"); 10046 mask &= ~CPSR_A; 10047 } 10048 } 10049 10050 if (changed_daif & CPSR_F) { 10051 /* 10052 * Check to see if we are allowed to change the masking of FIQ 10053 * exceptions from a non-secure state. 10054 */ 10055 if (!(env->cp15.scr_el3 & SCR_FW)) { 10056 qemu_log_mask(LOG_GUEST_ERROR, 10057 "Ignoring attempt to switch CPSR_F flag from " 10058 "non-secure world with SCR.FW bit clear\n"); 10059 mask &= ~CPSR_F; 10060 } 10061 10062 /* 10063 * Check whether non-maskable FIQ (NMFI) support is enabled. 10064 * If this bit is set software is not allowed to mask 10065 * FIQs, but is allowed to set CPSR_F to 0. 10066 */ 10067 if ((A32_BANKED_CURRENT_REG_GET(env, sctlr) & SCTLR_NMFI) && 10068 (val & CPSR_F)) { 10069 qemu_log_mask(LOG_GUEST_ERROR, 10070 "Ignoring attempt to enable CPSR_F flag " 10071 "(non-maskable FIQ [NMFI] support enabled)\n"); 10072 mask &= ~CPSR_F; 10073 } 10074 } 10075 } 10076 10077 env->daif &= ~(CPSR_AIF & mask); 10078 env->daif |= val & CPSR_AIF & mask; 10079 10080 if (write_type != CPSRWriteRaw && 10081 ((env->uncached_cpsr ^ val) & mask & CPSR_M)) { 10082 if ((env->uncached_cpsr & CPSR_M) == ARM_CPU_MODE_USR) { 10083 /* 10084 * Note that we can only get here in USR mode if this is a 10085 * gdb stub write; for this case we follow the architectural 10086 * behaviour for guest writes in USR mode of ignoring an attempt 10087 * to switch mode. (Those are caught by translate.c for writes 10088 * triggered by guest instructions.) 10089 */ 10090 mask &= ~CPSR_M; 10091 } else if (bad_mode_switch(env, val & CPSR_M, write_type)) { 10092 /* 10093 * Attempt to switch to an invalid mode: this is UNPREDICTABLE in 10094 * v7, and has defined behaviour in v8: 10095 * + leave CPSR.M untouched 10096 * + allow changes to the other CPSR fields 10097 * + set PSTATE.IL 10098 * For user changes via the GDB stub, we don't set PSTATE.IL, 10099 * as this would be unnecessarily harsh for a user error. 10100 */ 10101 mask &= ~CPSR_M; 10102 if (write_type != CPSRWriteByGDBStub && 10103 arm_feature(env, ARM_FEATURE_V8)) { 10104 mask |= CPSR_IL; 10105 val |= CPSR_IL; 10106 } 10107 qemu_log_mask(LOG_GUEST_ERROR, 10108 "Illegal AArch32 mode switch attempt from %s to %s\n", 10109 aarch32_mode_name(env->uncached_cpsr), 10110 aarch32_mode_name(val)); 10111 } else { 10112 qemu_log_mask(CPU_LOG_INT, "%s %s to %s PC 0x%" PRIx32 "\n", 10113 write_type == CPSRWriteExceptionReturn ? 10114 "Exception return from AArch32" : 10115 "AArch32 mode switch from", 10116 aarch32_mode_name(env->uncached_cpsr), 10117 aarch32_mode_name(val), env->regs[15]); 10118 switch_mode(env, val & CPSR_M); 10119 } 10120 } 10121 mask &= ~CACHED_CPSR_BITS; 10122 env->uncached_cpsr = (env->uncached_cpsr & ~mask) | (val & mask); 10123 if (tcg_enabled() && rebuild_hflags) { 10124 arm_rebuild_hflags(env); 10125 } 10126 } 10127 10128 /* Sign/zero extend */ 10129 uint32_t HELPER(sxtb16)(uint32_t x) 10130 { 10131 uint32_t res; 10132 res = (uint16_t)(int8_t)x; 10133 res |= (uint32_t)(int8_t)(x >> 16) << 16; 10134 return res; 10135 } 10136 10137 static void handle_possible_div0_trap(CPUARMState *env, uintptr_t ra) 10138 { 10139 /* 10140 * Take a division-by-zero exception if necessary; otherwise return 10141 * to get the usual non-trapping division behaviour (result of 0) 10142 */ 10143 if (arm_feature(env, ARM_FEATURE_M) 10144 && (env->v7m.ccr[env->v7m.secure] & R_V7M_CCR_DIV_0_TRP_MASK)) { 10145 raise_exception_ra(env, EXCP_DIVBYZERO, 0, 1, ra); 10146 } 10147 } 10148 10149 uint32_t HELPER(uxtb16)(uint32_t x) 10150 { 10151 uint32_t res; 10152 res = (uint16_t)(uint8_t)x; 10153 res |= (uint32_t)(uint8_t)(x >> 16) << 16; 10154 return res; 10155 } 10156 10157 int32_t HELPER(sdiv)(CPUARMState *env, int32_t num, int32_t den) 10158 { 10159 if (den == 0) { 10160 handle_possible_div0_trap(env, GETPC()); 10161 return 0; 10162 } 10163 if (num == INT_MIN && den == -1) { 10164 return INT_MIN; 10165 } 10166 return num / den; 10167 } 10168 10169 uint32_t HELPER(udiv)(CPUARMState *env, uint32_t num, uint32_t den) 10170 { 10171 if (den == 0) { 10172 handle_possible_div0_trap(env, GETPC()); 10173 return 0; 10174 } 10175 return num / den; 10176 } 10177 10178 uint32_t HELPER(rbit)(uint32_t x) 10179 { 10180 return revbit32(x); 10181 } 10182 10183 #ifdef CONFIG_USER_ONLY 10184 10185 static void switch_mode(CPUARMState *env, int mode) 10186 { 10187 ARMCPU *cpu = env_archcpu(env); 10188 10189 if (mode != ARM_CPU_MODE_USR) { 10190 cpu_abort(CPU(cpu), "Tried to switch out of user mode\n"); 10191 } 10192 } 10193 10194 uint32_t arm_phys_excp_target_el(CPUState *cs, uint32_t excp_idx, 10195 uint32_t cur_el, bool secure) 10196 { 10197 return 1; 10198 } 10199 10200 void aarch64_sync_64_to_32(CPUARMState *env) 10201 { 10202 g_assert_not_reached(); 10203 } 10204 10205 #else 10206 10207 static void switch_mode(CPUARMState *env, int mode) 10208 { 10209 int old_mode; 10210 int i; 10211 10212 old_mode = env->uncached_cpsr & CPSR_M; 10213 if (mode == old_mode) { 10214 return; 10215 } 10216 10217 if (old_mode == ARM_CPU_MODE_FIQ) { 10218 memcpy(env->fiq_regs, env->regs + 8, 5 * sizeof(uint32_t)); 10219 memcpy(env->regs + 8, env->usr_regs, 5 * sizeof(uint32_t)); 10220 } else if (mode == ARM_CPU_MODE_FIQ) { 10221 memcpy(env->usr_regs, env->regs + 8, 5 * sizeof(uint32_t)); 10222 memcpy(env->regs + 8, env->fiq_regs, 5 * sizeof(uint32_t)); 10223 } 10224 10225 i = bank_number(old_mode); 10226 env->banked_r13[i] = env->regs[13]; 10227 env->banked_spsr[i] = env->spsr; 10228 10229 i = bank_number(mode); 10230 env->regs[13] = env->banked_r13[i]; 10231 env->spsr = env->banked_spsr[i]; 10232 10233 env->banked_r14[r14_bank_number(old_mode)] = env->regs[14]; 10234 env->regs[14] = env->banked_r14[r14_bank_number(mode)]; 10235 } 10236 10237 /* 10238 * Physical Interrupt Target EL Lookup Table 10239 * 10240 * [ From ARM ARM section G1.13.4 (Table G1-15) ] 10241 * 10242 * The below multi-dimensional table is used for looking up the target 10243 * exception level given numerous condition criteria. Specifically, the 10244 * target EL is based on SCR and HCR routing controls as well as the 10245 * currently executing EL and secure state. 10246 * 10247 * Dimensions: 10248 * target_el_table[2][2][2][2][2][4] 10249 * | | | | | +--- Current EL 10250 * | | | | +------ Non-secure(0)/Secure(1) 10251 * | | | +--------- HCR mask override 10252 * | | +------------ SCR exec state control 10253 * | +--------------- SCR mask override 10254 * +------------------ 32-bit(0)/64-bit(1) EL3 10255 * 10256 * The table values are as such: 10257 * 0-3 = EL0-EL3 10258 * -1 = Cannot occur 10259 * 10260 * The ARM ARM target EL table includes entries indicating that an "exception 10261 * is not taken". The two cases where this is applicable are: 10262 * 1) An exception is taken from EL3 but the SCR does not have the exception 10263 * routed to EL3. 10264 * 2) An exception is taken from EL2 but the HCR does not have the exception 10265 * routed to EL2. 10266 * In these two cases, the below table contain a target of EL1. This value is 10267 * returned as it is expected that the consumer of the table data will check 10268 * for "target EL >= current EL" to ensure the exception is not taken. 10269 * 10270 * SCR HCR 10271 * 64 EA AMO From 10272 * BIT IRQ IMO Non-secure Secure 10273 * EL3 FIQ RW FMO EL0 EL1 EL2 EL3 EL0 EL1 EL2 EL3 10274 */ 10275 static const int8_t target_el_table[2][2][2][2][2][4] = { 10276 {{{{/* 0 0 0 0 */{ 1, 1, 2, -1 },{ 3, -1, -1, 3 },}, 10277 {/* 0 0 0 1 */{ 2, 2, 2, -1 },{ 3, -1, -1, 3 },},}, 10278 {{/* 0 0 1 0 */{ 1, 1, 2, -1 },{ 3, -1, -1, 3 },}, 10279 {/* 0 0 1 1 */{ 2, 2, 2, -1 },{ 3, -1, -1, 3 },},},}, 10280 {{{/* 0 1 0 0 */{ 3, 3, 3, -1 },{ 3, -1, -1, 3 },}, 10281 {/* 0 1 0 1 */{ 3, 3, 3, -1 },{ 3, -1, -1, 3 },},}, 10282 {{/* 0 1 1 0 */{ 3, 3, 3, -1 },{ 3, -1, -1, 3 },}, 10283 {/* 0 1 1 1 */{ 3, 3, 3, -1 },{ 3, -1, -1, 3 },},},},}, 10284 {{{{/* 1 0 0 0 */{ 1, 1, 2, -1 },{ 1, 1, -1, 1 },}, 10285 {/* 1 0 0 1 */{ 2, 2, 2, -1 },{ 2, 2, -1, 1 },},}, 10286 {{/* 1 0 1 0 */{ 1, 1, 1, -1 },{ 1, 1, 1, 1 },}, 10287 {/* 1 0 1 1 */{ 2, 2, 2, -1 },{ 2, 2, 2, 1 },},},}, 10288 {{{/* 1 1 0 0 */{ 3, 3, 3, -1 },{ 3, 3, -1, 3 },}, 10289 {/* 1 1 0 1 */{ 3, 3, 3, -1 },{ 3, 3, -1, 3 },},}, 10290 {{/* 1 1 1 0 */{ 3, 3, 3, -1 },{ 3, 3, 3, 3 },}, 10291 {/* 1 1 1 1 */{ 3, 3, 3, -1 },{ 3, 3, 3, 3 },},},},}, 10292 }; 10293 10294 /* 10295 * Determine the target EL for physical exceptions 10296 */ 10297 uint32_t arm_phys_excp_target_el(CPUState *cs, uint32_t excp_idx, 10298 uint32_t cur_el, bool secure) 10299 { 10300 CPUARMState *env = cs->env_ptr; 10301 bool rw; 10302 bool scr; 10303 bool hcr; 10304 int target_el; 10305 /* Is the highest EL AArch64? */ 10306 bool is64 = arm_feature(env, ARM_FEATURE_AARCH64); 10307 uint64_t hcr_el2; 10308 10309 if (arm_feature(env, ARM_FEATURE_EL3)) { 10310 rw = ((env->cp15.scr_el3 & SCR_RW) == SCR_RW); 10311 } else { 10312 /* 10313 * Either EL2 is the highest EL (and so the EL2 register width 10314 * is given by is64); or there is no EL2 or EL3, in which case 10315 * the value of 'rw' does not affect the table lookup anyway. 10316 */ 10317 rw = is64; 10318 } 10319 10320 hcr_el2 = arm_hcr_el2_eff(env); 10321 switch (excp_idx) { 10322 case EXCP_IRQ: 10323 scr = ((env->cp15.scr_el3 & SCR_IRQ) == SCR_IRQ); 10324 hcr = hcr_el2 & HCR_IMO; 10325 break; 10326 case EXCP_FIQ: 10327 scr = ((env->cp15.scr_el3 & SCR_FIQ) == SCR_FIQ); 10328 hcr = hcr_el2 & HCR_FMO; 10329 break; 10330 default: 10331 scr = ((env->cp15.scr_el3 & SCR_EA) == SCR_EA); 10332 hcr = hcr_el2 & HCR_AMO; 10333 break; 10334 }; 10335 10336 /* 10337 * For these purposes, TGE and AMO/IMO/FMO both force the 10338 * interrupt to EL2. Fold TGE into the bit extracted above. 10339 */ 10340 hcr |= (hcr_el2 & HCR_TGE) != 0; 10341 10342 /* Perform a table-lookup for the target EL given the current state */ 10343 target_el = target_el_table[is64][scr][rw][hcr][secure][cur_el]; 10344 10345 assert(target_el > 0); 10346 10347 return target_el; 10348 } 10349 10350 void arm_log_exception(CPUState *cs) 10351 { 10352 int idx = cs->exception_index; 10353 10354 if (qemu_loglevel_mask(CPU_LOG_INT)) { 10355 const char *exc = NULL; 10356 static const char * const excnames[] = { 10357 [EXCP_UDEF] = "Undefined Instruction", 10358 [EXCP_SWI] = "SVC", 10359 [EXCP_PREFETCH_ABORT] = "Prefetch Abort", 10360 [EXCP_DATA_ABORT] = "Data Abort", 10361 [EXCP_IRQ] = "IRQ", 10362 [EXCP_FIQ] = "FIQ", 10363 [EXCP_BKPT] = "Breakpoint", 10364 [EXCP_EXCEPTION_EXIT] = "QEMU v7M exception exit", 10365 [EXCP_KERNEL_TRAP] = "QEMU intercept of kernel commpage", 10366 [EXCP_HVC] = "Hypervisor Call", 10367 [EXCP_HYP_TRAP] = "Hypervisor Trap", 10368 [EXCP_SMC] = "Secure Monitor Call", 10369 [EXCP_VIRQ] = "Virtual IRQ", 10370 [EXCP_VFIQ] = "Virtual FIQ", 10371 [EXCP_SEMIHOST] = "Semihosting call", 10372 [EXCP_NOCP] = "v7M NOCP UsageFault", 10373 [EXCP_INVSTATE] = "v7M INVSTATE UsageFault", 10374 [EXCP_STKOF] = "v8M STKOF UsageFault", 10375 [EXCP_LAZYFP] = "v7M exception during lazy FP stacking", 10376 [EXCP_LSERR] = "v8M LSERR UsageFault", 10377 [EXCP_UNALIGNED] = "v7M UNALIGNED UsageFault", 10378 [EXCP_DIVBYZERO] = "v7M DIVBYZERO UsageFault", 10379 [EXCP_VSERR] = "Virtual SERR", 10380 [EXCP_GPC] = "Granule Protection Check", 10381 }; 10382 10383 if (idx >= 0 && idx < ARRAY_SIZE(excnames)) { 10384 exc = excnames[idx]; 10385 } 10386 if (!exc) { 10387 exc = "unknown"; 10388 } 10389 qemu_log_mask(CPU_LOG_INT, "Taking exception %d [%s] on CPU %d\n", 10390 idx, exc, cs->cpu_index); 10391 } 10392 } 10393 10394 /* 10395 * Function used to synchronize QEMU's AArch64 register set with AArch32 10396 * register set. This is necessary when switching between AArch32 and AArch64 10397 * execution state. 10398 */ 10399 void aarch64_sync_32_to_64(CPUARMState *env) 10400 { 10401 int i; 10402 uint32_t mode = env->uncached_cpsr & CPSR_M; 10403 10404 /* We can blanket copy R[0:7] to X[0:7] */ 10405 for (i = 0; i < 8; i++) { 10406 env->xregs[i] = env->regs[i]; 10407 } 10408 10409 /* 10410 * Unless we are in FIQ mode, x8-x12 come from the user registers r8-r12. 10411 * Otherwise, they come from the banked user regs. 10412 */ 10413 if (mode == ARM_CPU_MODE_FIQ) { 10414 for (i = 8; i < 13; i++) { 10415 env->xregs[i] = env->usr_regs[i - 8]; 10416 } 10417 } else { 10418 for (i = 8; i < 13; i++) { 10419 env->xregs[i] = env->regs[i]; 10420 } 10421 } 10422 10423 /* 10424 * Registers x13-x23 are the various mode SP and FP registers. Registers 10425 * r13 and r14 are only copied if we are in that mode, otherwise we copy 10426 * from the mode banked register. 10427 */ 10428 if (mode == ARM_CPU_MODE_USR || mode == ARM_CPU_MODE_SYS) { 10429 env->xregs[13] = env->regs[13]; 10430 env->xregs[14] = env->regs[14]; 10431 } else { 10432 env->xregs[13] = env->banked_r13[bank_number(ARM_CPU_MODE_USR)]; 10433 /* HYP is an exception in that it is copied from r14 */ 10434 if (mode == ARM_CPU_MODE_HYP) { 10435 env->xregs[14] = env->regs[14]; 10436 } else { 10437 env->xregs[14] = env->banked_r14[r14_bank_number(ARM_CPU_MODE_USR)]; 10438 } 10439 } 10440 10441 if (mode == ARM_CPU_MODE_HYP) { 10442 env->xregs[15] = env->regs[13]; 10443 } else { 10444 env->xregs[15] = env->banked_r13[bank_number(ARM_CPU_MODE_HYP)]; 10445 } 10446 10447 if (mode == ARM_CPU_MODE_IRQ) { 10448 env->xregs[16] = env->regs[14]; 10449 env->xregs[17] = env->regs[13]; 10450 } else { 10451 env->xregs[16] = env->banked_r14[r14_bank_number(ARM_CPU_MODE_IRQ)]; 10452 env->xregs[17] = env->banked_r13[bank_number(ARM_CPU_MODE_IRQ)]; 10453 } 10454 10455 if (mode == ARM_CPU_MODE_SVC) { 10456 env->xregs[18] = env->regs[14]; 10457 env->xregs[19] = env->regs[13]; 10458 } else { 10459 env->xregs[18] = env->banked_r14[r14_bank_number(ARM_CPU_MODE_SVC)]; 10460 env->xregs[19] = env->banked_r13[bank_number(ARM_CPU_MODE_SVC)]; 10461 } 10462 10463 if (mode == ARM_CPU_MODE_ABT) { 10464 env->xregs[20] = env->regs[14]; 10465 env->xregs[21] = env->regs[13]; 10466 } else { 10467 env->xregs[20] = env->banked_r14[r14_bank_number(ARM_CPU_MODE_ABT)]; 10468 env->xregs[21] = env->banked_r13[bank_number(ARM_CPU_MODE_ABT)]; 10469 } 10470 10471 if (mode == ARM_CPU_MODE_UND) { 10472 env->xregs[22] = env->regs[14]; 10473 env->xregs[23] = env->regs[13]; 10474 } else { 10475 env->xregs[22] = env->banked_r14[r14_bank_number(ARM_CPU_MODE_UND)]; 10476 env->xregs[23] = env->banked_r13[bank_number(ARM_CPU_MODE_UND)]; 10477 } 10478 10479 /* 10480 * Registers x24-x30 are mapped to r8-r14 in FIQ mode. If we are in FIQ 10481 * mode, then we can copy from r8-r14. Otherwise, we copy from the 10482 * FIQ bank for r8-r14. 10483 */ 10484 if (mode == ARM_CPU_MODE_FIQ) { 10485 for (i = 24; i < 31; i++) { 10486 env->xregs[i] = env->regs[i - 16]; /* X[24:30] <- R[8:14] */ 10487 } 10488 } else { 10489 for (i = 24; i < 29; i++) { 10490 env->xregs[i] = env->fiq_regs[i - 24]; 10491 } 10492 env->xregs[29] = env->banked_r13[bank_number(ARM_CPU_MODE_FIQ)]; 10493 env->xregs[30] = env->banked_r14[r14_bank_number(ARM_CPU_MODE_FIQ)]; 10494 } 10495 10496 env->pc = env->regs[15]; 10497 } 10498 10499 /* 10500 * Function used to synchronize QEMU's AArch32 register set with AArch64 10501 * register set. This is necessary when switching between AArch32 and AArch64 10502 * execution state. 10503 */ 10504 void aarch64_sync_64_to_32(CPUARMState *env) 10505 { 10506 int i; 10507 uint32_t mode = env->uncached_cpsr & CPSR_M; 10508 10509 /* We can blanket copy X[0:7] to R[0:7] */ 10510 for (i = 0; i < 8; i++) { 10511 env->regs[i] = env->xregs[i]; 10512 } 10513 10514 /* 10515 * Unless we are in FIQ mode, r8-r12 come from the user registers x8-x12. 10516 * Otherwise, we copy x8-x12 into the banked user regs. 10517 */ 10518 if (mode == ARM_CPU_MODE_FIQ) { 10519 for (i = 8; i < 13; i++) { 10520 env->usr_regs[i - 8] = env->xregs[i]; 10521 } 10522 } else { 10523 for (i = 8; i < 13; i++) { 10524 env->regs[i] = env->xregs[i]; 10525 } 10526 } 10527 10528 /* 10529 * Registers r13 & r14 depend on the current mode. 10530 * If we are in a given mode, we copy the corresponding x registers to r13 10531 * and r14. Otherwise, we copy the x register to the banked r13 and r14 10532 * for the mode. 10533 */ 10534 if (mode == ARM_CPU_MODE_USR || mode == ARM_CPU_MODE_SYS) { 10535 env->regs[13] = env->xregs[13]; 10536 env->regs[14] = env->xregs[14]; 10537 } else { 10538 env->banked_r13[bank_number(ARM_CPU_MODE_USR)] = env->xregs[13]; 10539 10540 /* 10541 * HYP is an exception in that it does not have its own banked r14 but 10542 * shares the USR r14 10543 */ 10544 if (mode == ARM_CPU_MODE_HYP) { 10545 env->regs[14] = env->xregs[14]; 10546 } else { 10547 env->banked_r14[r14_bank_number(ARM_CPU_MODE_USR)] = env->xregs[14]; 10548 } 10549 } 10550 10551 if (mode == ARM_CPU_MODE_HYP) { 10552 env->regs[13] = env->xregs[15]; 10553 } else { 10554 env->banked_r13[bank_number(ARM_CPU_MODE_HYP)] = env->xregs[15]; 10555 } 10556 10557 if (mode == ARM_CPU_MODE_IRQ) { 10558 env->regs[14] = env->xregs[16]; 10559 env->regs[13] = env->xregs[17]; 10560 } else { 10561 env->banked_r14[r14_bank_number(ARM_CPU_MODE_IRQ)] = env->xregs[16]; 10562 env->banked_r13[bank_number(ARM_CPU_MODE_IRQ)] = env->xregs[17]; 10563 } 10564 10565 if (mode == ARM_CPU_MODE_SVC) { 10566 env->regs[14] = env->xregs[18]; 10567 env->regs[13] = env->xregs[19]; 10568 } else { 10569 env->banked_r14[r14_bank_number(ARM_CPU_MODE_SVC)] = env->xregs[18]; 10570 env->banked_r13[bank_number(ARM_CPU_MODE_SVC)] = env->xregs[19]; 10571 } 10572 10573 if (mode == ARM_CPU_MODE_ABT) { 10574 env->regs[14] = env->xregs[20]; 10575 env->regs[13] = env->xregs[21]; 10576 } else { 10577 env->banked_r14[r14_bank_number(ARM_CPU_MODE_ABT)] = env->xregs[20]; 10578 env->banked_r13[bank_number(ARM_CPU_MODE_ABT)] = env->xregs[21]; 10579 } 10580 10581 if (mode == ARM_CPU_MODE_UND) { 10582 env->regs[14] = env->xregs[22]; 10583 env->regs[13] = env->xregs[23]; 10584 } else { 10585 env->banked_r14[r14_bank_number(ARM_CPU_MODE_UND)] = env->xregs[22]; 10586 env->banked_r13[bank_number(ARM_CPU_MODE_UND)] = env->xregs[23]; 10587 } 10588 10589 /* 10590 * Registers x24-x30 are mapped to r8-r14 in FIQ mode. If we are in FIQ 10591 * mode, then we can copy to r8-r14. Otherwise, we copy to the 10592 * FIQ bank for r8-r14. 10593 */ 10594 if (mode == ARM_CPU_MODE_FIQ) { 10595 for (i = 24; i < 31; i++) { 10596 env->regs[i - 16] = env->xregs[i]; /* X[24:30] -> R[8:14] */ 10597 } 10598 } else { 10599 for (i = 24; i < 29; i++) { 10600 env->fiq_regs[i - 24] = env->xregs[i]; 10601 } 10602 env->banked_r13[bank_number(ARM_CPU_MODE_FIQ)] = env->xregs[29]; 10603 env->banked_r14[r14_bank_number(ARM_CPU_MODE_FIQ)] = env->xregs[30]; 10604 } 10605 10606 env->regs[15] = env->pc; 10607 } 10608 10609 static void take_aarch32_exception(CPUARMState *env, int new_mode, 10610 uint32_t mask, uint32_t offset, 10611 uint32_t newpc) 10612 { 10613 int new_el; 10614 10615 /* Change the CPU state so as to actually take the exception. */ 10616 switch_mode(env, new_mode); 10617 10618 /* 10619 * For exceptions taken to AArch32 we must clear the SS bit in both 10620 * PSTATE and in the old-state value we save to SPSR_<mode>, so zero it now. 10621 */ 10622 env->pstate &= ~PSTATE_SS; 10623 env->spsr = cpsr_read(env); 10624 /* Clear IT bits. */ 10625 env->condexec_bits = 0; 10626 /* Switch to the new mode, and to the correct instruction set. */ 10627 env->uncached_cpsr = (env->uncached_cpsr & ~CPSR_M) | new_mode; 10628 10629 /* This must be after mode switching. */ 10630 new_el = arm_current_el(env); 10631 10632 /* Set new mode endianness */ 10633 env->uncached_cpsr &= ~CPSR_E; 10634 if (env->cp15.sctlr_el[new_el] & SCTLR_EE) { 10635 env->uncached_cpsr |= CPSR_E; 10636 } 10637 /* J and IL must always be cleared for exception entry */ 10638 env->uncached_cpsr &= ~(CPSR_IL | CPSR_J); 10639 env->daif |= mask; 10640 10641 if (cpu_isar_feature(aa32_ssbs, env_archcpu(env))) { 10642 if (env->cp15.sctlr_el[new_el] & SCTLR_DSSBS_32) { 10643 env->uncached_cpsr |= CPSR_SSBS; 10644 } else { 10645 env->uncached_cpsr &= ~CPSR_SSBS; 10646 } 10647 } 10648 10649 if (new_mode == ARM_CPU_MODE_HYP) { 10650 env->thumb = (env->cp15.sctlr_el[2] & SCTLR_TE) != 0; 10651 env->elr_el[2] = env->regs[15]; 10652 } else { 10653 /* CPSR.PAN is normally preserved preserved unless... */ 10654 if (cpu_isar_feature(aa32_pan, env_archcpu(env))) { 10655 switch (new_el) { 10656 case 3: 10657 if (!arm_is_secure_below_el3(env)) { 10658 /* ... the target is EL3, from non-secure state. */ 10659 env->uncached_cpsr &= ~CPSR_PAN; 10660 break; 10661 } 10662 /* ... the target is EL3, from secure state ... */ 10663 /* fall through */ 10664 case 1: 10665 /* ... the target is EL1 and SCTLR.SPAN is 0. */ 10666 if (!(env->cp15.sctlr_el[new_el] & SCTLR_SPAN)) { 10667 env->uncached_cpsr |= CPSR_PAN; 10668 } 10669 break; 10670 } 10671 } 10672 /* 10673 * this is a lie, as there was no c1_sys on V4T/V5, but who cares 10674 * and we should just guard the thumb mode on V4 10675 */ 10676 if (arm_feature(env, ARM_FEATURE_V4T)) { 10677 env->thumb = 10678 (A32_BANKED_CURRENT_REG_GET(env, sctlr) & SCTLR_TE) != 0; 10679 } 10680 env->regs[14] = env->regs[15] + offset; 10681 } 10682 env->regs[15] = newpc; 10683 10684 if (tcg_enabled()) { 10685 arm_rebuild_hflags(env); 10686 } 10687 } 10688 10689 static void arm_cpu_do_interrupt_aarch32_hyp(CPUState *cs) 10690 { 10691 /* 10692 * Handle exception entry to Hyp mode; this is sufficiently 10693 * different to entry to other AArch32 modes that we handle it 10694 * separately here. 10695 * 10696 * The vector table entry used is always the 0x14 Hyp mode entry point, 10697 * unless this is an UNDEF/SVC/HVC/abort taken from Hyp to Hyp. 10698 * The offset applied to the preferred return address is always zero 10699 * (see DDI0487C.a section G1.12.3). 10700 * PSTATE A/I/F masks are set based only on the SCR.EA/IRQ/FIQ values. 10701 */ 10702 uint32_t addr, mask; 10703 ARMCPU *cpu = ARM_CPU(cs); 10704 CPUARMState *env = &cpu->env; 10705 10706 switch (cs->exception_index) { 10707 case EXCP_UDEF: 10708 addr = 0x04; 10709 break; 10710 case EXCP_SWI: 10711 addr = 0x08; 10712 break; 10713 case EXCP_BKPT: 10714 /* Fall through to prefetch abort. */ 10715 case EXCP_PREFETCH_ABORT: 10716 env->cp15.ifar_s = env->exception.vaddress; 10717 qemu_log_mask(CPU_LOG_INT, "...with HIFAR 0x%x\n", 10718 (uint32_t)env->exception.vaddress); 10719 addr = 0x0c; 10720 break; 10721 case EXCP_DATA_ABORT: 10722 env->cp15.dfar_s = env->exception.vaddress; 10723 qemu_log_mask(CPU_LOG_INT, "...with HDFAR 0x%x\n", 10724 (uint32_t)env->exception.vaddress); 10725 addr = 0x10; 10726 break; 10727 case EXCP_IRQ: 10728 addr = 0x18; 10729 break; 10730 case EXCP_FIQ: 10731 addr = 0x1c; 10732 break; 10733 case EXCP_HVC: 10734 addr = 0x08; 10735 break; 10736 case EXCP_HYP_TRAP: 10737 addr = 0x14; 10738 break; 10739 default: 10740 cpu_abort(cs, "Unhandled exception 0x%x\n", cs->exception_index); 10741 } 10742 10743 if (cs->exception_index != EXCP_IRQ && cs->exception_index != EXCP_FIQ) { 10744 if (!arm_feature(env, ARM_FEATURE_V8)) { 10745 /* 10746 * QEMU syndrome values are v8-style. v7 has the IL bit 10747 * UNK/SBZP for "field not valid" cases, where v8 uses RES1. 10748 * If this is a v7 CPU, squash the IL bit in those cases. 10749 */ 10750 if (cs->exception_index == EXCP_PREFETCH_ABORT || 10751 (cs->exception_index == EXCP_DATA_ABORT && 10752 !(env->exception.syndrome & ARM_EL_ISV)) || 10753 syn_get_ec(env->exception.syndrome) == EC_UNCATEGORIZED) { 10754 env->exception.syndrome &= ~ARM_EL_IL; 10755 } 10756 } 10757 env->cp15.esr_el[2] = env->exception.syndrome; 10758 } 10759 10760 if (arm_current_el(env) != 2 && addr < 0x14) { 10761 addr = 0x14; 10762 } 10763 10764 mask = 0; 10765 if (!(env->cp15.scr_el3 & SCR_EA)) { 10766 mask |= CPSR_A; 10767 } 10768 if (!(env->cp15.scr_el3 & SCR_IRQ)) { 10769 mask |= CPSR_I; 10770 } 10771 if (!(env->cp15.scr_el3 & SCR_FIQ)) { 10772 mask |= CPSR_F; 10773 } 10774 10775 addr += env->cp15.hvbar; 10776 10777 take_aarch32_exception(env, ARM_CPU_MODE_HYP, mask, 0, addr); 10778 } 10779 10780 static void arm_cpu_do_interrupt_aarch32(CPUState *cs) 10781 { 10782 ARMCPU *cpu = ARM_CPU(cs); 10783 CPUARMState *env = &cpu->env; 10784 uint32_t addr; 10785 uint32_t mask; 10786 int new_mode; 10787 uint32_t offset; 10788 uint32_t moe; 10789 10790 /* If this is a debug exception we must update the DBGDSCR.MOE bits */ 10791 switch (syn_get_ec(env->exception.syndrome)) { 10792 case EC_BREAKPOINT: 10793 case EC_BREAKPOINT_SAME_EL: 10794 moe = 1; 10795 break; 10796 case EC_WATCHPOINT: 10797 case EC_WATCHPOINT_SAME_EL: 10798 moe = 10; 10799 break; 10800 case EC_AA32_BKPT: 10801 moe = 3; 10802 break; 10803 case EC_VECTORCATCH: 10804 moe = 5; 10805 break; 10806 default: 10807 moe = 0; 10808 break; 10809 } 10810 10811 if (moe) { 10812 env->cp15.mdscr_el1 = deposit64(env->cp15.mdscr_el1, 2, 4, moe); 10813 } 10814 10815 if (env->exception.target_el == 2) { 10816 arm_cpu_do_interrupt_aarch32_hyp(cs); 10817 return; 10818 } 10819 10820 switch (cs->exception_index) { 10821 case EXCP_UDEF: 10822 new_mode = ARM_CPU_MODE_UND; 10823 addr = 0x04; 10824 mask = CPSR_I; 10825 if (env->thumb) { 10826 offset = 2; 10827 } else { 10828 offset = 4; 10829 } 10830 break; 10831 case EXCP_SWI: 10832 new_mode = ARM_CPU_MODE_SVC; 10833 addr = 0x08; 10834 mask = CPSR_I; 10835 /* The PC already points to the next instruction. */ 10836 offset = 0; 10837 break; 10838 case EXCP_BKPT: 10839 /* Fall through to prefetch abort. */ 10840 case EXCP_PREFETCH_ABORT: 10841 A32_BANKED_CURRENT_REG_SET(env, ifsr, env->exception.fsr); 10842 A32_BANKED_CURRENT_REG_SET(env, ifar, env->exception.vaddress); 10843 qemu_log_mask(CPU_LOG_INT, "...with IFSR 0x%x IFAR 0x%x\n", 10844 env->exception.fsr, (uint32_t)env->exception.vaddress); 10845 new_mode = ARM_CPU_MODE_ABT; 10846 addr = 0x0c; 10847 mask = CPSR_A | CPSR_I; 10848 offset = 4; 10849 break; 10850 case EXCP_DATA_ABORT: 10851 A32_BANKED_CURRENT_REG_SET(env, dfsr, env->exception.fsr); 10852 A32_BANKED_CURRENT_REG_SET(env, dfar, env->exception.vaddress); 10853 qemu_log_mask(CPU_LOG_INT, "...with DFSR 0x%x DFAR 0x%x\n", 10854 env->exception.fsr, 10855 (uint32_t)env->exception.vaddress); 10856 new_mode = ARM_CPU_MODE_ABT; 10857 addr = 0x10; 10858 mask = CPSR_A | CPSR_I; 10859 offset = 8; 10860 break; 10861 case EXCP_IRQ: 10862 new_mode = ARM_CPU_MODE_IRQ; 10863 addr = 0x18; 10864 /* Disable IRQ and imprecise data aborts. */ 10865 mask = CPSR_A | CPSR_I; 10866 offset = 4; 10867 if (env->cp15.scr_el3 & SCR_IRQ) { 10868 /* IRQ routed to monitor mode */ 10869 new_mode = ARM_CPU_MODE_MON; 10870 mask |= CPSR_F; 10871 } 10872 break; 10873 case EXCP_FIQ: 10874 new_mode = ARM_CPU_MODE_FIQ; 10875 addr = 0x1c; 10876 /* Disable FIQ, IRQ and imprecise data aborts. */ 10877 mask = CPSR_A | CPSR_I | CPSR_F; 10878 if (env->cp15.scr_el3 & SCR_FIQ) { 10879 /* FIQ routed to monitor mode */ 10880 new_mode = ARM_CPU_MODE_MON; 10881 } 10882 offset = 4; 10883 break; 10884 case EXCP_VIRQ: 10885 new_mode = ARM_CPU_MODE_IRQ; 10886 addr = 0x18; 10887 /* Disable IRQ and imprecise data aborts. */ 10888 mask = CPSR_A | CPSR_I; 10889 offset = 4; 10890 break; 10891 case EXCP_VFIQ: 10892 new_mode = ARM_CPU_MODE_FIQ; 10893 addr = 0x1c; 10894 /* Disable FIQ, IRQ and imprecise data aborts. */ 10895 mask = CPSR_A | CPSR_I | CPSR_F; 10896 offset = 4; 10897 break; 10898 case EXCP_VSERR: 10899 { 10900 /* 10901 * Note that this is reported as a data abort, but the DFAR 10902 * has an UNKNOWN value. Construct the SError syndrome from 10903 * AET and ExT fields. 10904 */ 10905 ARMMMUFaultInfo fi = { .type = ARMFault_AsyncExternal, }; 10906 10907 if (extended_addresses_enabled(env)) { 10908 env->exception.fsr = arm_fi_to_lfsc(&fi); 10909 } else { 10910 env->exception.fsr = arm_fi_to_sfsc(&fi); 10911 } 10912 env->exception.fsr |= env->cp15.vsesr_el2 & 0xd000; 10913 A32_BANKED_CURRENT_REG_SET(env, dfsr, env->exception.fsr); 10914 qemu_log_mask(CPU_LOG_INT, "...with IFSR 0x%x\n", 10915 env->exception.fsr); 10916 10917 new_mode = ARM_CPU_MODE_ABT; 10918 addr = 0x10; 10919 mask = CPSR_A | CPSR_I; 10920 offset = 8; 10921 } 10922 break; 10923 case EXCP_SMC: 10924 new_mode = ARM_CPU_MODE_MON; 10925 addr = 0x08; 10926 mask = CPSR_A | CPSR_I | CPSR_F; 10927 offset = 0; 10928 break; 10929 default: 10930 cpu_abort(cs, "Unhandled exception 0x%x\n", cs->exception_index); 10931 return; /* Never happens. Keep compiler happy. */ 10932 } 10933 10934 if (new_mode == ARM_CPU_MODE_MON) { 10935 addr += env->cp15.mvbar; 10936 } else if (A32_BANKED_CURRENT_REG_GET(env, sctlr) & SCTLR_V) { 10937 /* High vectors. When enabled, base address cannot be remapped. */ 10938 addr += 0xffff0000; 10939 } else { 10940 /* 10941 * ARM v7 architectures provide a vector base address register to remap 10942 * the interrupt vector table. 10943 * This register is only followed in non-monitor mode, and is banked. 10944 * Note: only bits 31:5 are valid. 10945 */ 10946 addr += A32_BANKED_CURRENT_REG_GET(env, vbar); 10947 } 10948 10949 if ((env->uncached_cpsr & CPSR_M) == ARM_CPU_MODE_MON) { 10950 env->cp15.scr_el3 &= ~SCR_NS; 10951 } 10952 10953 take_aarch32_exception(env, new_mode, mask, offset, addr); 10954 } 10955 10956 static int aarch64_regnum(CPUARMState *env, int aarch32_reg) 10957 { 10958 /* 10959 * Return the register number of the AArch64 view of the AArch32 10960 * register @aarch32_reg. The CPUARMState CPSR is assumed to still 10961 * be that of the AArch32 mode the exception came from. 10962 */ 10963 int mode = env->uncached_cpsr & CPSR_M; 10964 10965 switch (aarch32_reg) { 10966 case 0 ... 7: 10967 return aarch32_reg; 10968 case 8 ... 12: 10969 return mode == ARM_CPU_MODE_FIQ ? aarch32_reg + 16 : aarch32_reg; 10970 case 13: 10971 switch (mode) { 10972 case ARM_CPU_MODE_USR: 10973 case ARM_CPU_MODE_SYS: 10974 return 13; 10975 case ARM_CPU_MODE_HYP: 10976 return 15; 10977 case ARM_CPU_MODE_IRQ: 10978 return 17; 10979 case ARM_CPU_MODE_SVC: 10980 return 19; 10981 case ARM_CPU_MODE_ABT: 10982 return 21; 10983 case ARM_CPU_MODE_UND: 10984 return 23; 10985 case ARM_CPU_MODE_FIQ: 10986 return 29; 10987 default: 10988 g_assert_not_reached(); 10989 } 10990 case 14: 10991 switch (mode) { 10992 case ARM_CPU_MODE_USR: 10993 case ARM_CPU_MODE_SYS: 10994 case ARM_CPU_MODE_HYP: 10995 return 14; 10996 case ARM_CPU_MODE_IRQ: 10997 return 16; 10998 case ARM_CPU_MODE_SVC: 10999 return 18; 11000 case ARM_CPU_MODE_ABT: 11001 return 20; 11002 case ARM_CPU_MODE_UND: 11003 return 22; 11004 case ARM_CPU_MODE_FIQ: 11005 return 30; 11006 default: 11007 g_assert_not_reached(); 11008 } 11009 case 15: 11010 return 31; 11011 default: 11012 g_assert_not_reached(); 11013 } 11014 } 11015 11016 static uint32_t cpsr_read_for_spsr_elx(CPUARMState *env) 11017 { 11018 uint32_t ret = cpsr_read(env); 11019 11020 /* Move DIT to the correct location for SPSR_ELx */ 11021 if (ret & CPSR_DIT) { 11022 ret &= ~CPSR_DIT; 11023 ret |= PSTATE_DIT; 11024 } 11025 /* Merge PSTATE.SS into SPSR_ELx */ 11026 ret |= env->pstate & PSTATE_SS; 11027 11028 return ret; 11029 } 11030 11031 static bool syndrome_is_sync_extabt(uint32_t syndrome) 11032 { 11033 /* Return true if this syndrome value is a synchronous external abort */ 11034 switch (syn_get_ec(syndrome)) { 11035 case EC_INSNABORT: 11036 case EC_INSNABORT_SAME_EL: 11037 case EC_DATAABORT: 11038 case EC_DATAABORT_SAME_EL: 11039 /* Look at fault status code for all the synchronous ext abort cases */ 11040 switch (syndrome & 0x3f) { 11041 case 0x10: 11042 case 0x13: 11043 case 0x14: 11044 case 0x15: 11045 case 0x16: 11046 case 0x17: 11047 return true; 11048 default: 11049 return false; 11050 } 11051 default: 11052 return false; 11053 } 11054 } 11055 11056 /* Handle exception entry to a target EL which is using AArch64 */ 11057 static void arm_cpu_do_interrupt_aarch64(CPUState *cs) 11058 { 11059 ARMCPU *cpu = ARM_CPU(cs); 11060 CPUARMState *env = &cpu->env; 11061 unsigned int new_el = env->exception.target_el; 11062 target_ulong addr = env->cp15.vbar_el[new_el]; 11063 unsigned int new_mode = aarch64_pstate_mode(new_el, true); 11064 unsigned int old_mode; 11065 unsigned int cur_el = arm_current_el(env); 11066 int rt; 11067 11068 if (tcg_enabled()) { 11069 /* 11070 * Note that new_el can never be 0. If cur_el is 0, then 11071 * el0_a64 is is_a64(), else el0_a64 is ignored. 11072 */ 11073 aarch64_sve_change_el(env, cur_el, new_el, is_a64(env)); 11074 } 11075 11076 if (cur_el < new_el) { 11077 /* 11078 * Entry vector offset depends on whether the implemented EL 11079 * immediately lower than the target level is using AArch32 or AArch64 11080 */ 11081 bool is_aa64; 11082 uint64_t hcr; 11083 11084 switch (new_el) { 11085 case 3: 11086 is_aa64 = (env->cp15.scr_el3 & SCR_RW) != 0; 11087 break; 11088 case 2: 11089 hcr = arm_hcr_el2_eff(env); 11090 if ((hcr & (HCR_E2H | HCR_TGE)) != (HCR_E2H | HCR_TGE)) { 11091 is_aa64 = (hcr & HCR_RW) != 0; 11092 break; 11093 } 11094 /* fall through */ 11095 case 1: 11096 is_aa64 = is_a64(env); 11097 break; 11098 default: 11099 g_assert_not_reached(); 11100 } 11101 11102 if (is_aa64) { 11103 addr += 0x400; 11104 } else { 11105 addr += 0x600; 11106 } 11107 } else if (pstate_read(env) & PSTATE_SP) { 11108 addr += 0x200; 11109 } 11110 11111 switch (cs->exception_index) { 11112 case EXCP_GPC: 11113 qemu_log_mask(CPU_LOG_INT, "...with MFAR 0x%" PRIx64 "\n", 11114 env->cp15.mfar_el3); 11115 /* fall through */ 11116 case EXCP_PREFETCH_ABORT: 11117 case EXCP_DATA_ABORT: 11118 /* 11119 * FEAT_DoubleFault allows synchronous external aborts taken to EL3 11120 * to be taken to the SError vector entrypoint. 11121 */ 11122 if (new_el == 3 && (env->cp15.scr_el3 & SCR_EASE) && 11123 syndrome_is_sync_extabt(env->exception.syndrome)) { 11124 addr += 0x180; 11125 } 11126 env->cp15.far_el[new_el] = env->exception.vaddress; 11127 qemu_log_mask(CPU_LOG_INT, "...with FAR 0x%" PRIx64 "\n", 11128 env->cp15.far_el[new_el]); 11129 /* fall through */ 11130 case EXCP_BKPT: 11131 case EXCP_UDEF: 11132 case EXCP_SWI: 11133 case EXCP_HVC: 11134 case EXCP_HYP_TRAP: 11135 case EXCP_SMC: 11136 switch (syn_get_ec(env->exception.syndrome)) { 11137 case EC_ADVSIMDFPACCESSTRAP: 11138 /* 11139 * QEMU internal FP/SIMD syndromes from AArch32 include the 11140 * TA and coproc fields which are only exposed if the exception 11141 * is taken to AArch32 Hyp mode. Mask them out to get a valid 11142 * AArch64 format syndrome. 11143 */ 11144 env->exception.syndrome &= ~MAKE_64BIT_MASK(0, 20); 11145 break; 11146 case EC_CP14RTTRAP: 11147 case EC_CP15RTTRAP: 11148 case EC_CP14DTTRAP: 11149 /* 11150 * For a trap on AArch32 MRC/MCR/LDC/STC the Rt field is currently 11151 * the raw register field from the insn; when taking this to 11152 * AArch64 we must convert it to the AArch64 view of the register 11153 * number. Notice that we read a 4-bit AArch32 register number and 11154 * write back a 5-bit AArch64 one. 11155 */ 11156 rt = extract32(env->exception.syndrome, 5, 4); 11157 rt = aarch64_regnum(env, rt); 11158 env->exception.syndrome = deposit32(env->exception.syndrome, 11159 5, 5, rt); 11160 break; 11161 case EC_CP15RRTTRAP: 11162 case EC_CP14RRTTRAP: 11163 /* Similarly for MRRC/MCRR traps for Rt and Rt2 fields */ 11164 rt = extract32(env->exception.syndrome, 5, 4); 11165 rt = aarch64_regnum(env, rt); 11166 env->exception.syndrome = deposit32(env->exception.syndrome, 11167 5, 5, rt); 11168 rt = extract32(env->exception.syndrome, 10, 4); 11169 rt = aarch64_regnum(env, rt); 11170 env->exception.syndrome = deposit32(env->exception.syndrome, 11171 10, 5, rt); 11172 break; 11173 } 11174 env->cp15.esr_el[new_el] = env->exception.syndrome; 11175 break; 11176 case EXCP_IRQ: 11177 case EXCP_VIRQ: 11178 addr += 0x80; 11179 break; 11180 case EXCP_FIQ: 11181 case EXCP_VFIQ: 11182 addr += 0x100; 11183 break; 11184 case EXCP_VSERR: 11185 addr += 0x180; 11186 /* Construct the SError syndrome from IDS and ISS fields. */ 11187 env->exception.syndrome = syn_serror(env->cp15.vsesr_el2 & 0x1ffffff); 11188 env->cp15.esr_el[new_el] = env->exception.syndrome; 11189 break; 11190 default: 11191 cpu_abort(cs, "Unhandled exception 0x%x\n", cs->exception_index); 11192 } 11193 11194 if (is_a64(env)) { 11195 old_mode = pstate_read(env); 11196 aarch64_save_sp(env, arm_current_el(env)); 11197 env->elr_el[new_el] = env->pc; 11198 } else { 11199 old_mode = cpsr_read_for_spsr_elx(env); 11200 env->elr_el[new_el] = env->regs[15]; 11201 11202 aarch64_sync_32_to_64(env); 11203 11204 env->condexec_bits = 0; 11205 } 11206 env->banked_spsr[aarch64_banked_spsr_index(new_el)] = old_mode; 11207 11208 qemu_log_mask(CPU_LOG_INT, "...with ELR 0x%" PRIx64 "\n", 11209 env->elr_el[new_el]); 11210 11211 if (cpu_isar_feature(aa64_pan, cpu)) { 11212 /* The value of PSTATE.PAN is normally preserved, except when ... */ 11213 new_mode |= old_mode & PSTATE_PAN; 11214 switch (new_el) { 11215 case 2: 11216 /* ... the target is EL2 with HCR_EL2.{E2H,TGE} == '11' ... */ 11217 if ((arm_hcr_el2_eff(env) & (HCR_E2H | HCR_TGE)) 11218 != (HCR_E2H | HCR_TGE)) { 11219 break; 11220 } 11221 /* fall through */ 11222 case 1: 11223 /* ... the target is EL1 ... */ 11224 /* ... and SCTLR_ELx.SPAN == 0, then set to 1. */ 11225 if ((env->cp15.sctlr_el[new_el] & SCTLR_SPAN) == 0) { 11226 new_mode |= PSTATE_PAN; 11227 } 11228 break; 11229 } 11230 } 11231 if (cpu_isar_feature(aa64_mte, cpu)) { 11232 new_mode |= PSTATE_TCO; 11233 } 11234 11235 if (cpu_isar_feature(aa64_ssbs, cpu)) { 11236 if (env->cp15.sctlr_el[new_el] & SCTLR_DSSBS_64) { 11237 new_mode |= PSTATE_SSBS; 11238 } else { 11239 new_mode &= ~PSTATE_SSBS; 11240 } 11241 } 11242 11243 pstate_write(env, PSTATE_DAIF | new_mode); 11244 env->aarch64 = true; 11245 aarch64_restore_sp(env, new_el); 11246 11247 if (tcg_enabled()) { 11248 helper_rebuild_hflags_a64(env, new_el); 11249 } 11250 11251 env->pc = addr; 11252 11253 qemu_log_mask(CPU_LOG_INT, "...to EL%d PC 0x%" PRIx64 " PSTATE 0x%x\n", 11254 new_el, env->pc, pstate_read(env)); 11255 } 11256 11257 /* 11258 * Do semihosting call and set the appropriate return value. All the 11259 * permission and validity checks have been done at translate time. 11260 * 11261 * We only see semihosting exceptions in TCG only as they are not 11262 * trapped to the hypervisor in KVM. 11263 */ 11264 #ifdef CONFIG_TCG 11265 static void tcg_handle_semihosting(CPUState *cs) 11266 { 11267 ARMCPU *cpu = ARM_CPU(cs); 11268 CPUARMState *env = &cpu->env; 11269 11270 if (is_a64(env)) { 11271 qemu_log_mask(CPU_LOG_INT, 11272 "...handling as semihosting call 0x%" PRIx64 "\n", 11273 env->xregs[0]); 11274 do_common_semihosting(cs); 11275 env->pc += 4; 11276 } else { 11277 qemu_log_mask(CPU_LOG_INT, 11278 "...handling as semihosting call 0x%x\n", 11279 env->regs[0]); 11280 do_common_semihosting(cs); 11281 env->regs[15] += env->thumb ? 2 : 4; 11282 } 11283 } 11284 #endif 11285 11286 /* 11287 * Handle a CPU exception for A and R profile CPUs. 11288 * Do any appropriate logging, handle PSCI calls, and then hand off 11289 * to the AArch64-entry or AArch32-entry function depending on the 11290 * target exception level's register width. 11291 * 11292 * Note: this is used for both TCG (as the do_interrupt tcg op), 11293 * and KVM to re-inject guest debug exceptions, and to 11294 * inject a Synchronous-External-Abort. 11295 */ 11296 void arm_cpu_do_interrupt(CPUState *cs) 11297 { 11298 ARMCPU *cpu = ARM_CPU(cs); 11299 CPUARMState *env = &cpu->env; 11300 unsigned int new_el = env->exception.target_el; 11301 11302 assert(!arm_feature(env, ARM_FEATURE_M)); 11303 11304 arm_log_exception(cs); 11305 qemu_log_mask(CPU_LOG_INT, "...from EL%d to EL%d\n", arm_current_el(env), 11306 new_el); 11307 if (qemu_loglevel_mask(CPU_LOG_INT) 11308 && !excp_is_internal(cs->exception_index)) { 11309 qemu_log_mask(CPU_LOG_INT, "...with ESR 0x%x/0x%" PRIx32 "\n", 11310 syn_get_ec(env->exception.syndrome), 11311 env->exception.syndrome); 11312 } 11313 11314 if (tcg_enabled() && arm_is_psci_call(cpu, cs->exception_index)) { 11315 arm_handle_psci_call(cpu); 11316 qemu_log_mask(CPU_LOG_INT, "...handled as PSCI call\n"); 11317 return; 11318 } 11319 11320 /* 11321 * Semihosting semantics depend on the register width of the code 11322 * that caused the exception, not the target exception level, so 11323 * must be handled here. 11324 */ 11325 #ifdef CONFIG_TCG 11326 if (cs->exception_index == EXCP_SEMIHOST) { 11327 tcg_handle_semihosting(cs); 11328 return; 11329 } 11330 #endif 11331 11332 /* 11333 * Hooks may change global state so BQL should be held, also the 11334 * BQL needs to be held for any modification of 11335 * cs->interrupt_request. 11336 */ 11337 g_assert(qemu_mutex_iothread_locked()); 11338 11339 arm_call_pre_el_change_hook(cpu); 11340 11341 assert(!excp_is_internal(cs->exception_index)); 11342 if (arm_el_is_aa64(env, new_el)) { 11343 arm_cpu_do_interrupt_aarch64(cs); 11344 } else { 11345 arm_cpu_do_interrupt_aarch32(cs); 11346 } 11347 11348 arm_call_el_change_hook(cpu); 11349 11350 if (!kvm_enabled()) { 11351 cs->interrupt_request |= CPU_INTERRUPT_EXITTB; 11352 } 11353 } 11354 #endif /* !CONFIG_USER_ONLY */ 11355 11356 uint64_t arm_sctlr(CPUARMState *env, int el) 11357 { 11358 /* Only EL0 needs to be adjusted for EL1&0 or EL2&0. */ 11359 if (el == 0) { 11360 ARMMMUIdx mmu_idx = arm_mmu_idx_el(env, 0); 11361 el = mmu_idx == ARMMMUIdx_E20_0 ? 2 : 1; 11362 } 11363 return env->cp15.sctlr_el[el]; 11364 } 11365 11366 int aa64_va_parameter_tbi(uint64_t tcr, ARMMMUIdx mmu_idx) 11367 { 11368 if (regime_has_2_ranges(mmu_idx)) { 11369 return extract64(tcr, 37, 2); 11370 } else if (regime_is_stage2(mmu_idx)) { 11371 return 0; /* VTCR_EL2 */ 11372 } else { 11373 /* Replicate the single TBI bit so we always have 2 bits. */ 11374 return extract32(tcr, 20, 1) * 3; 11375 } 11376 } 11377 11378 int aa64_va_parameter_tbid(uint64_t tcr, ARMMMUIdx mmu_idx) 11379 { 11380 if (regime_has_2_ranges(mmu_idx)) { 11381 return extract64(tcr, 51, 2); 11382 } else if (regime_is_stage2(mmu_idx)) { 11383 return 0; /* VTCR_EL2 */ 11384 } else { 11385 /* Replicate the single TBID bit so we always have 2 bits. */ 11386 return extract32(tcr, 29, 1) * 3; 11387 } 11388 } 11389 11390 int aa64_va_parameter_tcma(uint64_t tcr, ARMMMUIdx mmu_idx) 11391 { 11392 if (regime_has_2_ranges(mmu_idx)) { 11393 return extract64(tcr, 57, 2); 11394 } else { 11395 /* Replicate the single TCMA bit so we always have 2 bits. */ 11396 return extract32(tcr, 30, 1) * 3; 11397 } 11398 } 11399 11400 static ARMGranuleSize tg0_to_gran_size(int tg) 11401 { 11402 switch (tg) { 11403 case 0: 11404 return Gran4K; 11405 case 1: 11406 return Gran64K; 11407 case 2: 11408 return Gran16K; 11409 default: 11410 return GranInvalid; 11411 } 11412 } 11413 11414 static ARMGranuleSize tg1_to_gran_size(int tg) 11415 { 11416 switch (tg) { 11417 case 1: 11418 return Gran16K; 11419 case 2: 11420 return Gran4K; 11421 case 3: 11422 return Gran64K; 11423 default: 11424 return GranInvalid; 11425 } 11426 } 11427 11428 static inline bool have4k(ARMCPU *cpu, bool stage2) 11429 { 11430 return stage2 ? cpu_isar_feature(aa64_tgran4_2, cpu) 11431 : cpu_isar_feature(aa64_tgran4, cpu); 11432 } 11433 11434 static inline bool have16k(ARMCPU *cpu, bool stage2) 11435 { 11436 return stage2 ? cpu_isar_feature(aa64_tgran16_2, cpu) 11437 : cpu_isar_feature(aa64_tgran16, cpu); 11438 } 11439 11440 static inline bool have64k(ARMCPU *cpu, bool stage2) 11441 { 11442 return stage2 ? cpu_isar_feature(aa64_tgran64_2, cpu) 11443 : cpu_isar_feature(aa64_tgran64, cpu); 11444 } 11445 11446 static ARMGranuleSize sanitize_gran_size(ARMCPU *cpu, ARMGranuleSize gran, 11447 bool stage2) 11448 { 11449 switch (gran) { 11450 case Gran4K: 11451 if (have4k(cpu, stage2)) { 11452 return gran; 11453 } 11454 break; 11455 case Gran16K: 11456 if (have16k(cpu, stage2)) { 11457 return gran; 11458 } 11459 break; 11460 case Gran64K: 11461 if (have64k(cpu, stage2)) { 11462 return gran; 11463 } 11464 break; 11465 case GranInvalid: 11466 break; 11467 } 11468 /* 11469 * If the guest selects a granule size that isn't implemented, 11470 * the architecture requires that we behave as if it selected one 11471 * that is (with an IMPDEF choice of which one to pick). We choose 11472 * to implement the smallest supported granule size. 11473 */ 11474 if (have4k(cpu, stage2)) { 11475 return Gran4K; 11476 } 11477 if (have16k(cpu, stage2)) { 11478 return Gran16K; 11479 } 11480 assert(have64k(cpu, stage2)); 11481 return Gran64K; 11482 } 11483 11484 ARMVAParameters aa64_va_parameters(CPUARMState *env, uint64_t va, 11485 ARMMMUIdx mmu_idx, bool data, 11486 bool el1_is_aa32) 11487 { 11488 uint64_t tcr = regime_tcr(env, mmu_idx); 11489 bool epd, hpd, tsz_oob, ds, ha, hd; 11490 int select, tsz, tbi, max_tsz, min_tsz, ps, sh; 11491 ARMGranuleSize gran; 11492 ARMCPU *cpu = env_archcpu(env); 11493 bool stage2 = regime_is_stage2(mmu_idx); 11494 11495 if (!regime_has_2_ranges(mmu_idx)) { 11496 select = 0; 11497 tsz = extract32(tcr, 0, 6); 11498 gran = tg0_to_gran_size(extract32(tcr, 14, 2)); 11499 if (stage2) { 11500 /* VTCR_EL2 */ 11501 hpd = false; 11502 } else { 11503 hpd = extract32(tcr, 24, 1); 11504 } 11505 epd = false; 11506 sh = extract32(tcr, 12, 2); 11507 ps = extract32(tcr, 16, 3); 11508 ha = extract32(tcr, 21, 1) && cpu_isar_feature(aa64_hafs, cpu); 11509 hd = extract32(tcr, 22, 1) && cpu_isar_feature(aa64_hdbs, cpu); 11510 ds = extract64(tcr, 32, 1); 11511 } else { 11512 bool e0pd; 11513 11514 /* 11515 * Bit 55 is always between the two regions, and is canonical for 11516 * determining if address tagging is enabled. 11517 */ 11518 select = extract64(va, 55, 1); 11519 if (!select) { 11520 tsz = extract32(tcr, 0, 6); 11521 gran = tg0_to_gran_size(extract32(tcr, 14, 2)); 11522 epd = extract32(tcr, 7, 1); 11523 sh = extract32(tcr, 12, 2); 11524 hpd = extract64(tcr, 41, 1); 11525 e0pd = extract64(tcr, 55, 1); 11526 } else { 11527 tsz = extract32(tcr, 16, 6); 11528 gran = tg1_to_gran_size(extract32(tcr, 30, 2)); 11529 epd = extract32(tcr, 23, 1); 11530 sh = extract32(tcr, 28, 2); 11531 hpd = extract64(tcr, 42, 1); 11532 e0pd = extract64(tcr, 56, 1); 11533 } 11534 ps = extract64(tcr, 32, 3); 11535 ha = extract64(tcr, 39, 1) && cpu_isar_feature(aa64_hafs, cpu); 11536 hd = extract64(tcr, 40, 1) && cpu_isar_feature(aa64_hdbs, cpu); 11537 ds = extract64(tcr, 59, 1); 11538 11539 if (e0pd && cpu_isar_feature(aa64_e0pd, cpu) && 11540 regime_is_user(env, mmu_idx)) { 11541 epd = true; 11542 } 11543 } 11544 11545 gran = sanitize_gran_size(cpu, gran, stage2); 11546 11547 if (cpu_isar_feature(aa64_st, cpu)) { 11548 max_tsz = 48 - (gran == Gran64K); 11549 } else { 11550 max_tsz = 39; 11551 } 11552 11553 /* 11554 * DS is RES0 unless FEAT_LPA2 is supported for the given page size; 11555 * adjust the effective value of DS, as documented. 11556 */ 11557 min_tsz = 16; 11558 if (gran == Gran64K) { 11559 if (cpu_isar_feature(aa64_lva, cpu)) { 11560 min_tsz = 12; 11561 } 11562 ds = false; 11563 } else if (ds) { 11564 if (regime_is_stage2(mmu_idx)) { 11565 if (gran == Gran16K) { 11566 ds = cpu_isar_feature(aa64_tgran16_2_lpa2, cpu); 11567 } else { 11568 ds = cpu_isar_feature(aa64_tgran4_2_lpa2, cpu); 11569 } 11570 } else { 11571 if (gran == Gran16K) { 11572 ds = cpu_isar_feature(aa64_tgran16_lpa2, cpu); 11573 } else { 11574 ds = cpu_isar_feature(aa64_tgran4_lpa2, cpu); 11575 } 11576 } 11577 if (ds) { 11578 min_tsz = 12; 11579 } 11580 } 11581 11582 if (stage2 && el1_is_aa32) { 11583 /* 11584 * For AArch32 EL1 the min txsz (and thus max IPA size) requirements 11585 * are loosened: a configured IPA of 40 bits is permitted even if 11586 * the implemented PA is less than that (and so a 40 bit IPA would 11587 * fault for an AArch64 EL1). See R_DTLMN. 11588 */ 11589 min_tsz = MIN(min_tsz, 24); 11590 } 11591 11592 if (tsz > max_tsz) { 11593 tsz = max_tsz; 11594 tsz_oob = true; 11595 } else if (tsz < min_tsz) { 11596 tsz = min_tsz; 11597 tsz_oob = true; 11598 } else { 11599 tsz_oob = false; 11600 } 11601 11602 /* Present TBI as a composite with TBID. */ 11603 tbi = aa64_va_parameter_tbi(tcr, mmu_idx); 11604 if (!data) { 11605 tbi &= ~aa64_va_parameter_tbid(tcr, mmu_idx); 11606 } 11607 tbi = (tbi >> select) & 1; 11608 11609 return (ARMVAParameters) { 11610 .tsz = tsz, 11611 .ps = ps, 11612 .sh = sh, 11613 .select = select, 11614 .tbi = tbi, 11615 .epd = epd, 11616 .hpd = hpd, 11617 .tsz_oob = tsz_oob, 11618 .ds = ds, 11619 .ha = ha, 11620 .hd = ha && hd, 11621 .gran = gran, 11622 }; 11623 } 11624 11625 /* 11626 * Note that signed overflow is undefined in C. The following routines are 11627 * careful to use unsigned types where modulo arithmetic is required. 11628 * Failure to do so _will_ break on newer gcc. 11629 */ 11630 11631 /* Signed saturating arithmetic. */ 11632 11633 /* Perform 16-bit signed saturating addition. */ 11634 static inline uint16_t add16_sat(uint16_t a, uint16_t b) 11635 { 11636 uint16_t res; 11637 11638 res = a + b; 11639 if (((res ^ a) & 0x8000) && !((a ^ b) & 0x8000)) { 11640 if (a & 0x8000) { 11641 res = 0x8000; 11642 } else { 11643 res = 0x7fff; 11644 } 11645 } 11646 return res; 11647 } 11648 11649 /* Perform 8-bit signed saturating addition. */ 11650 static inline uint8_t add8_sat(uint8_t a, uint8_t b) 11651 { 11652 uint8_t res; 11653 11654 res = a + b; 11655 if (((res ^ a) & 0x80) && !((a ^ b) & 0x80)) { 11656 if (a & 0x80) { 11657 res = 0x80; 11658 } else { 11659 res = 0x7f; 11660 } 11661 } 11662 return res; 11663 } 11664 11665 /* Perform 16-bit signed saturating subtraction. */ 11666 static inline uint16_t sub16_sat(uint16_t a, uint16_t b) 11667 { 11668 uint16_t res; 11669 11670 res = a - b; 11671 if (((res ^ a) & 0x8000) && ((a ^ b) & 0x8000)) { 11672 if (a & 0x8000) { 11673 res = 0x8000; 11674 } else { 11675 res = 0x7fff; 11676 } 11677 } 11678 return res; 11679 } 11680 11681 /* Perform 8-bit signed saturating subtraction. */ 11682 static inline uint8_t sub8_sat(uint8_t a, uint8_t b) 11683 { 11684 uint8_t res; 11685 11686 res = a - b; 11687 if (((res ^ a) & 0x80) && ((a ^ b) & 0x80)) { 11688 if (a & 0x80) { 11689 res = 0x80; 11690 } else { 11691 res = 0x7f; 11692 } 11693 } 11694 return res; 11695 } 11696 11697 #define ADD16(a, b, n) RESULT(add16_sat(a, b), n, 16); 11698 #define SUB16(a, b, n) RESULT(sub16_sat(a, b), n, 16); 11699 #define ADD8(a, b, n) RESULT(add8_sat(a, b), n, 8); 11700 #define SUB8(a, b, n) RESULT(sub8_sat(a, b), n, 8); 11701 #define PFX q 11702 11703 #include "op_addsub.h" 11704 11705 /* Unsigned saturating arithmetic. */ 11706 static inline uint16_t add16_usat(uint16_t a, uint16_t b) 11707 { 11708 uint16_t res; 11709 res = a + b; 11710 if (res < a) { 11711 res = 0xffff; 11712 } 11713 return res; 11714 } 11715 11716 static inline uint16_t sub16_usat(uint16_t a, uint16_t b) 11717 { 11718 if (a > b) { 11719 return a - b; 11720 } else { 11721 return 0; 11722 } 11723 } 11724 11725 static inline uint8_t add8_usat(uint8_t a, uint8_t b) 11726 { 11727 uint8_t res; 11728 res = a + b; 11729 if (res < a) { 11730 res = 0xff; 11731 } 11732 return res; 11733 } 11734 11735 static inline uint8_t sub8_usat(uint8_t a, uint8_t b) 11736 { 11737 if (a > b) { 11738 return a - b; 11739 } else { 11740 return 0; 11741 } 11742 } 11743 11744 #define ADD16(a, b, n) RESULT(add16_usat(a, b), n, 16); 11745 #define SUB16(a, b, n) RESULT(sub16_usat(a, b), n, 16); 11746 #define ADD8(a, b, n) RESULT(add8_usat(a, b), n, 8); 11747 #define SUB8(a, b, n) RESULT(sub8_usat(a, b), n, 8); 11748 #define PFX uq 11749 11750 #include "op_addsub.h" 11751 11752 /* Signed modulo arithmetic. */ 11753 #define SARITH16(a, b, n, op) do { \ 11754 int32_t sum; \ 11755 sum = (int32_t)(int16_t)(a) op (int32_t)(int16_t)(b); \ 11756 RESULT(sum, n, 16); \ 11757 if (sum >= 0) \ 11758 ge |= 3 << (n * 2); \ 11759 } while (0) 11760 11761 #define SARITH8(a, b, n, op) do { \ 11762 int32_t sum; \ 11763 sum = (int32_t)(int8_t)(a) op (int32_t)(int8_t)(b); \ 11764 RESULT(sum, n, 8); \ 11765 if (sum >= 0) \ 11766 ge |= 1 << n; \ 11767 } while (0) 11768 11769 11770 #define ADD16(a, b, n) SARITH16(a, b, n, +) 11771 #define SUB16(a, b, n) SARITH16(a, b, n, -) 11772 #define ADD8(a, b, n) SARITH8(a, b, n, +) 11773 #define SUB8(a, b, n) SARITH8(a, b, n, -) 11774 #define PFX s 11775 #define ARITH_GE 11776 11777 #include "op_addsub.h" 11778 11779 /* Unsigned modulo arithmetic. */ 11780 #define ADD16(a, b, n) do { \ 11781 uint32_t sum; \ 11782 sum = (uint32_t)(uint16_t)(a) + (uint32_t)(uint16_t)(b); \ 11783 RESULT(sum, n, 16); \ 11784 if ((sum >> 16) == 1) \ 11785 ge |= 3 << (n * 2); \ 11786 } while (0) 11787 11788 #define ADD8(a, b, n) do { \ 11789 uint32_t sum; \ 11790 sum = (uint32_t)(uint8_t)(a) + (uint32_t)(uint8_t)(b); \ 11791 RESULT(sum, n, 8); \ 11792 if ((sum >> 8) == 1) \ 11793 ge |= 1 << n; \ 11794 } while (0) 11795 11796 #define SUB16(a, b, n) do { \ 11797 uint32_t sum; \ 11798 sum = (uint32_t)(uint16_t)(a) - (uint32_t)(uint16_t)(b); \ 11799 RESULT(sum, n, 16); \ 11800 if ((sum >> 16) == 0) \ 11801 ge |= 3 << (n * 2); \ 11802 } while (0) 11803 11804 #define SUB8(a, b, n) do { \ 11805 uint32_t sum; \ 11806 sum = (uint32_t)(uint8_t)(a) - (uint32_t)(uint8_t)(b); \ 11807 RESULT(sum, n, 8); \ 11808 if ((sum >> 8) == 0) \ 11809 ge |= 1 << n; \ 11810 } while (0) 11811 11812 #define PFX u 11813 #define ARITH_GE 11814 11815 #include "op_addsub.h" 11816 11817 /* Halved signed arithmetic. */ 11818 #define ADD16(a, b, n) \ 11819 RESULT(((int32_t)(int16_t)(a) + (int32_t)(int16_t)(b)) >> 1, n, 16) 11820 #define SUB16(a, b, n) \ 11821 RESULT(((int32_t)(int16_t)(a) - (int32_t)(int16_t)(b)) >> 1, n, 16) 11822 #define ADD8(a, b, n) \ 11823 RESULT(((int32_t)(int8_t)(a) + (int32_t)(int8_t)(b)) >> 1, n, 8) 11824 #define SUB8(a, b, n) \ 11825 RESULT(((int32_t)(int8_t)(a) - (int32_t)(int8_t)(b)) >> 1, n, 8) 11826 #define PFX sh 11827 11828 #include "op_addsub.h" 11829 11830 /* Halved unsigned arithmetic. */ 11831 #define ADD16(a, b, n) \ 11832 RESULT(((uint32_t)(uint16_t)(a) + (uint32_t)(uint16_t)(b)) >> 1, n, 16) 11833 #define SUB16(a, b, n) \ 11834 RESULT(((uint32_t)(uint16_t)(a) - (uint32_t)(uint16_t)(b)) >> 1, n, 16) 11835 #define ADD8(a, b, n) \ 11836 RESULT(((uint32_t)(uint8_t)(a) + (uint32_t)(uint8_t)(b)) >> 1, n, 8) 11837 #define SUB8(a, b, n) \ 11838 RESULT(((uint32_t)(uint8_t)(a) - (uint32_t)(uint8_t)(b)) >> 1, n, 8) 11839 #define PFX uh 11840 11841 #include "op_addsub.h" 11842 11843 static inline uint8_t do_usad(uint8_t a, uint8_t b) 11844 { 11845 if (a > b) { 11846 return a - b; 11847 } else { 11848 return b - a; 11849 } 11850 } 11851 11852 /* Unsigned sum of absolute byte differences. */ 11853 uint32_t HELPER(usad8)(uint32_t a, uint32_t b) 11854 { 11855 uint32_t sum; 11856 sum = do_usad(a, b); 11857 sum += do_usad(a >> 8, b >> 8); 11858 sum += do_usad(a >> 16, b >> 16); 11859 sum += do_usad(a >> 24, b >> 24); 11860 return sum; 11861 } 11862 11863 /* For ARMv6 SEL instruction. */ 11864 uint32_t HELPER(sel_flags)(uint32_t flags, uint32_t a, uint32_t b) 11865 { 11866 uint32_t mask; 11867 11868 mask = 0; 11869 if (flags & 1) { 11870 mask |= 0xff; 11871 } 11872 if (flags & 2) { 11873 mask |= 0xff00; 11874 } 11875 if (flags & 4) { 11876 mask |= 0xff0000; 11877 } 11878 if (flags & 8) { 11879 mask |= 0xff000000; 11880 } 11881 return (a & mask) | (b & ~mask); 11882 } 11883 11884 /* 11885 * CRC helpers. 11886 * The upper bytes of val (above the number specified by 'bytes') must have 11887 * been zeroed out by the caller. 11888 */ 11889 uint32_t HELPER(crc32)(uint32_t acc, uint32_t val, uint32_t bytes) 11890 { 11891 uint8_t buf[4]; 11892 11893 stl_le_p(buf, val); 11894 11895 /* zlib crc32 converts the accumulator and output to one's complement. */ 11896 return crc32(acc ^ 0xffffffff, buf, bytes) ^ 0xffffffff; 11897 } 11898 11899 uint32_t HELPER(crc32c)(uint32_t acc, uint32_t val, uint32_t bytes) 11900 { 11901 uint8_t buf[4]; 11902 11903 stl_le_p(buf, val); 11904 11905 /* Linux crc32c converts the output to one's complement. */ 11906 return crc32c(acc, buf, bytes) ^ 0xffffffff; 11907 } 11908 11909 /* 11910 * Return the exception level to which FP-disabled exceptions should 11911 * be taken, or 0 if FP is enabled. 11912 */ 11913 int fp_exception_el(CPUARMState *env, int cur_el) 11914 { 11915 #ifndef CONFIG_USER_ONLY 11916 uint64_t hcr_el2; 11917 11918 /* 11919 * CPACR and the CPTR registers don't exist before v6, so FP is 11920 * always accessible 11921 */ 11922 if (!arm_feature(env, ARM_FEATURE_V6)) { 11923 return 0; 11924 } 11925 11926 if (arm_feature(env, ARM_FEATURE_M)) { 11927 /* CPACR can cause a NOCP UsageFault taken to current security state */ 11928 if (!v7m_cpacr_pass(env, env->v7m.secure, cur_el != 0)) { 11929 return 1; 11930 } 11931 11932 if (arm_feature(env, ARM_FEATURE_M_SECURITY) && !env->v7m.secure) { 11933 if (!extract32(env->v7m.nsacr, 10, 1)) { 11934 /* FP insns cause a NOCP UsageFault taken to Secure */ 11935 return 3; 11936 } 11937 } 11938 11939 return 0; 11940 } 11941 11942 hcr_el2 = arm_hcr_el2_eff(env); 11943 11944 /* 11945 * The CPACR controls traps to EL1, or PL1 if we're 32 bit: 11946 * 0, 2 : trap EL0 and EL1/PL1 accesses 11947 * 1 : trap only EL0 accesses 11948 * 3 : trap no accesses 11949 * This register is ignored if E2H+TGE are both set. 11950 */ 11951 if ((hcr_el2 & (HCR_E2H | HCR_TGE)) != (HCR_E2H | HCR_TGE)) { 11952 int fpen = FIELD_EX64(env->cp15.cpacr_el1, CPACR_EL1, FPEN); 11953 11954 switch (fpen) { 11955 case 1: 11956 if (cur_el != 0) { 11957 break; 11958 } 11959 /* fall through */ 11960 case 0: 11961 case 2: 11962 /* Trap from Secure PL0 or PL1 to Secure PL1. */ 11963 if (!arm_el_is_aa64(env, 3) 11964 && (cur_el == 3 || arm_is_secure_below_el3(env))) { 11965 return 3; 11966 } 11967 if (cur_el <= 1) { 11968 return 1; 11969 } 11970 break; 11971 } 11972 } 11973 11974 /* 11975 * The NSACR allows A-profile AArch32 EL3 and M-profile secure mode 11976 * to control non-secure access to the FPU. It doesn't have any 11977 * effect if EL3 is AArch64 or if EL3 doesn't exist at all. 11978 */ 11979 if ((arm_feature(env, ARM_FEATURE_EL3) && !arm_el_is_aa64(env, 3) && 11980 cur_el <= 2 && !arm_is_secure_below_el3(env))) { 11981 if (!extract32(env->cp15.nsacr, 10, 1)) { 11982 /* FP insns act as UNDEF */ 11983 return cur_el == 2 ? 2 : 1; 11984 } 11985 } 11986 11987 /* 11988 * CPTR_EL2 is present in v7VE or v8, and changes format 11989 * with HCR_EL2.E2H (regardless of TGE). 11990 */ 11991 if (cur_el <= 2) { 11992 if (hcr_el2 & HCR_E2H) { 11993 switch (FIELD_EX64(env->cp15.cptr_el[2], CPTR_EL2, FPEN)) { 11994 case 1: 11995 if (cur_el != 0 || !(hcr_el2 & HCR_TGE)) { 11996 break; 11997 } 11998 /* fall through */ 11999 case 0: 12000 case 2: 12001 return 2; 12002 } 12003 } else if (arm_is_el2_enabled(env)) { 12004 if (FIELD_EX64(env->cp15.cptr_el[2], CPTR_EL2, TFP)) { 12005 return 2; 12006 } 12007 } 12008 } 12009 12010 /* CPTR_EL3 : present in v8 */ 12011 if (FIELD_EX64(env->cp15.cptr_el[3], CPTR_EL3, TFP)) { 12012 /* Trap all FP ops to EL3 */ 12013 return 3; 12014 } 12015 #endif 12016 return 0; 12017 } 12018 12019 /* Return the exception level we're running at if this is our mmu_idx */ 12020 int arm_mmu_idx_to_el(ARMMMUIdx mmu_idx) 12021 { 12022 if (mmu_idx & ARM_MMU_IDX_M) { 12023 return mmu_idx & ARM_MMU_IDX_M_PRIV; 12024 } 12025 12026 switch (mmu_idx) { 12027 case ARMMMUIdx_E10_0: 12028 case ARMMMUIdx_E20_0: 12029 return 0; 12030 case ARMMMUIdx_E10_1: 12031 case ARMMMUIdx_E10_1_PAN: 12032 return 1; 12033 case ARMMMUIdx_E2: 12034 case ARMMMUIdx_E20_2: 12035 case ARMMMUIdx_E20_2_PAN: 12036 return 2; 12037 case ARMMMUIdx_E3: 12038 return 3; 12039 default: 12040 g_assert_not_reached(); 12041 } 12042 } 12043 12044 #ifndef CONFIG_TCG 12045 ARMMMUIdx arm_v7m_mmu_idx_for_secstate(CPUARMState *env, bool secstate) 12046 { 12047 g_assert_not_reached(); 12048 } 12049 #endif 12050 12051 static bool arm_pan_enabled(CPUARMState *env) 12052 { 12053 if (is_a64(env)) { 12054 return env->pstate & PSTATE_PAN; 12055 } else { 12056 return env->uncached_cpsr & CPSR_PAN; 12057 } 12058 } 12059 12060 ARMMMUIdx arm_mmu_idx_el(CPUARMState *env, int el) 12061 { 12062 ARMMMUIdx idx; 12063 uint64_t hcr; 12064 12065 if (arm_feature(env, ARM_FEATURE_M)) { 12066 return arm_v7m_mmu_idx_for_secstate(env, env->v7m.secure); 12067 } 12068 12069 /* See ARM pseudo-function ELIsInHost. */ 12070 switch (el) { 12071 case 0: 12072 hcr = arm_hcr_el2_eff(env); 12073 if ((hcr & (HCR_E2H | HCR_TGE)) == (HCR_E2H | HCR_TGE)) { 12074 idx = ARMMMUIdx_E20_0; 12075 } else { 12076 idx = ARMMMUIdx_E10_0; 12077 } 12078 break; 12079 case 1: 12080 if (arm_pan_enabled(env)) { 12081 idx = ARMMMUIdx_E10_1_PAN; 12082 } else { 12083 idx = ARMMMUIdx_E10_1; 12084 } 12085 break; 12086 case 2: 12087 /* Note that TGE does not apply at EL2. */ 12088 if (arm_hcr_el2_eff(env) & HCR_E2H) { 12089 if (arm_pan_enabled(env)) { 12090 idx = ARMMMUIdx_E20_2_PAN; 12091 } else { 12092 idx = ARMMMUIdx_E20_2; 12093 } 12094 } else { 12095 idx = ARMMMUIdx_E2; 12096 } 12097 break; 12098 case 3: 12099 return ARMMMUIdx_E3; 12100 default: 12101 g_assert_not_reached(); 12102 } 12103 12104 return idx; 12105 } 12106 12107 ARMMMUIdx arm_mmu_idx(CPUARMState *env) 12108 { 12109 return arm_mmu_idx_el(env, arm_current_el(env)); 12110 } 12111 12112 static bool mve_no_pred(CPUARMState *env) 12113 { 12114 /* 12115 * Return true if there is definitely no predication of MVE 12116 * instructions by VPR or LTPSIZE. (Returning false even if there 12117 * isn't any predication is OK; generated code will just be 12118 * a little worse.) 12119 * If the CPU does not implement MVE then this TB flag is always 0. 12120 * 12121 * NOTE: if you change this logic, the "recalculate s->mve_no_pred" 12122 * logic in gen_update_fp_context() needs to be updated to match. 12123 * 12124 * We do not include the effect of the ECI bits here -- they are 12125 * tracked in other TB flags. This simplifies the logic for 12126 * "when did we emit code that changes the MVE_NO_PRED TB flag 12127 * and thus need to end the TB?". 12128 */ 12129 if (cpu_isar_feature(aa32_mve, env_archcpu(env))) { 12130 return false; 12131 } 12132 if (env->v7m.vpr) { 12133 return false; 12134 } 12135 if (env->v7m.ltpsize < 4) { 12136 return false; 12137 } 12138 return true; 12139 } 12140 12141 void cpu_get_tb_cpu_state(CPUARMState *env, vaddr *pc, 12142 uint64_t *cs_base, uint32_t *pflags) 12143 { 12144 CPUARMTBFlags flags; 12145 12146 assert_hflags_rebuild_correctly(env); 12147 flags = env->hflags; 12148 12149 if (EX_TBFLAG_ANY(flags, AARCH64_STATE)) { 12150 *pc = env->pc; 12151 if (cpu_isar_feature(aa64_bti, env_archcpu(env))) { 12152 DP_TBFLAG_A64(flags, BTYPE, env->btype); 12153 } 12154 } else { 12155 *pc = env->regs[15]; 12156 12157 if (arm_feature(env, ARM_FEATURE_M)) { 12158 if (arm_feature(env, ARM_FEATURE_M_SECURITY) && 12159 FIELD_EX32(env->v7m.fpccr[M_REG_S], V7M_FPCCR, S) 12160 != env->v7m.secure) { 12161 DP_TBFLAG_M32(flags, FPCCR_S_WRONG, 1); 12162 } 12163 12164 if ((env->v7m.fpccr[env->v7m.secure] & R_V7M_FPCCR_ASPEN_MASK) && 12165 (!(env->v7m.control[M_REG_S] & R_V7M_CONTROL_FPCA_MASK) || 12166 (env->v7m.secure && 12167 !(env->v7m.control[M_REG_S] & R_V7M_CONTROL_SFPA_MASK)))) { 12168 /* 12169 * ASPEN is set, but FPCA/SFPA indicate that there is no 12170 * active FP context; we must create a new FP context before 12171 * executing any FP insn. 12172 */ 12173 DP_TBFLAG_M32(flags, NEW_FP_CTXT_NEEDED, 1); 12174 } 12175 12176 bool is_secure = env->v7m.fpccr[M_REG_S] & R_V7M_FPCCR_S_MASK; 12177 if (env->v7m.fpccr[is_secure] & R_V7M_FPCCR_LSPACT_MASK) { 12178 DP_TBFLAG_M32(flags, LSPACT, 1); 12179 } 12180 12181 if (mve_no_pred(env)) { 12182 DP_TBFLAG_M32(flags, MVE_NO_PRED, 1); 12183 } 12184 } else { 12185 /* 12186 * Note that XSCALE_CPAR shares bits with VECSTRIDE. 12187 * Note that VECLEN+VECSTRIDE are RES0 for M-profile. 12188 */ 12189 if (arm_feature(env, ARM_FEATURE_XSCALE)) { 12190 DP_TBFLAG_A32(flags, XSCALE_CPAR, env->cp15.c15_cpar); 12191 } else { 12192 DP_TBFLAG_A32(flags, VECLEN, env->vfp.vec_len); 12193 DP_TBFLAG_A32(flags, VECSTRIDE, env->vfp.vec_stride); 12194 } 12195 if (env->vfp.xregs[ARM_VFP_FPEXC] & (1 << 30)) { 12196 DP_TBFLAG_A32(flags, VFPEN, 1); 12197 } 12198 } 12199 12200 DP_TBFLAG_AM32(flags, THUMB, env->thumb); 12201 DP_TBFLAG_AM32(flags, CONDEXEC, env->condexec_bits); 12202 } 12203 12204 /* 12205 * The SS_ACTIVE and PSTATE_SS bits correspond to the state machine 12206 * states defined in the ARM ARM for software singlestep: 12207 * SS_ACTIVE PSTATE.SS State 12208 * 0 x Inactive (the TB flag for SS is always 0) 12209 * 1 0 Active-pending 12210 * 1 1 Active-not-pending 12211 * SS_ACTIVE is set in hflags; PSTATE__SS is computed every TB. 12212 */ 12213 if (EX_TBFLAG_ANY(flags, SS_ACTIVE) && (env->pstate & PSTATE_SS)) { 12214 DP_TBFLAG_ANY(flags, PSTATE__SS, 1); 12215 } 12216 12217 *pflags = flags.flags; 12218 *cs_base = flags.flags2; 12219 } 12220 12221 #ifdef TARGET_AARCH64 12222 /* 12223 * The manual says that when SVE is enabled and VQ is widened the 12224 * implementation is allowed to zero the previously inaccessible 12225 * portion of the registers. The corollary to that is that when 12226 * SVE is enabled and VQ is narrowed we are also allowed to zero 12227 * the now inaccessible portion of the registers. 12228 * 12229 * The intent of this is that no predicate bit beyond VQ is ever set. 12230 * Which means that some operations on predicate registers themselves 12231 * may operate on full uint64_t or even unrolled across the maximum 12232 * uint64_t[4]. Performing 4 bits of host arithmetic unconditionally 12233 * may well be cheaper than conditionals to restrict the operation 12234 * to the relevant portion of a uint16_t[16]. 12235 */ 12236 void aarch64_sve_narrow_vq(CPUARMState *env, unsigned vq) 12237 { 12238 int i, j; 12239 uint64_t pmask; 12240 12241 assert(vq >= 1 && vq <= ARM_MAX_VQ); 12242 assert(vq <= env_archcpu(env)->sve_max_vq); 12243 12244 /* Zap the high bits of the zregs. */ 12245 for (i = 0; i < 32; i++) { 12246 memset(&env->vfp.zregs[i].d[2 * vq], 0, 16 * (ARM_MAX_VQ - vq)); 12247 } 12248 12249 /* Zap the high bits of the pregs and ffr. */ 12250 pmask = 0; 12251 if (vq & 3) { 12252 pmask = ~(-1ULL << (16 * (vq & 3))); 12253 } 12254 for (j = vq / 4; j < ARM_MAX_VQ / 4; j++) { 12255 for (i = 0; i < 17; ++i) { 12256 env->vfp.pregs[i].p[j] &= pmask; 12257 } 12258 pmask = 0; 12259 } 12260 } 12261 12262 static uint32_t sve_vqm1_for_el_sm_ena(CPUARMState *env, int el, bool sm) 12263 { 12264 int exc_el; 12265 12266 if (sm) { 12267 exc_el = sme_exception_el(env, el); 12268 } else { 12269 exc_el = sve_exception_el(env, el); 12270 } 12271 if (exc_el) { 12272 return 0; /* disabled */ 12273 } 12274 return sve_vqm1_for_el_sm(env, el, sm); 12275 } 12276 12277 /* 12278 * Notice a change in SVE vector size when changing EL. 12279 */ 12280 void aarch64_sve_change_el(CPUARMState *env, int old_el, 12281 int new_el, bool el0_a64) 12282 { 12283 ARMCPU *cpu = env_archcpu(env); 12284 int old_len, new_len; 12285 bool old_a64, new_a64, sm; 12286 12287 /* Nothing to do if no SVE. */ 12288 if (!cpu_isar_feature(aa64_sve, cpu)) { 12289 return; 12290 } 12291 12292 /* Nothing to do if FP is disabled in either EL. */ 12293 if (fp_exception_el(env, old_el) || fp_exception_el(env, new_el)) { 12294 return; 12295 } 12296 12297 old_a64 = old_el ? arm_el_is_aa64(env, old_el) : el0_a64; 12298 new_a64 = new_el ? arm_el_is_aa64(env, new_el) : el0_a64; 12299 12300 /* 12301 * Both AArch64.TakeException and AArch64.ExceptionReturn 12302 * invoke ResetSVEState when taking an exception from, or 12303 * returning to, AArch32 state when PSTATE.SM is enabled. 12304 */ 12305 sm = FIELD_EX64(env->svcr, SVCR, SM); 12306 if (old_a64 != new_a64 && sm) { 12307 arm_reset_sve_state(env); 12308 return; 12309 } 12310 12311 /* 12312 * DDI0584A.d sec 3.2: "If SVE instructions are disabled or trapped 12313 * at ELx, or not available because the EL is in AArch32 state, then 12314 * for all purposes other than a direct read, the ZCR_ELx.LEN field 12315 * has an effective value of 0". 12316 * 12317 * Consider EL2 (aa64, vq=4) -> EL0 (aa32) -> EL1 (aa64, vq=0). 12318 * If we ignore aa32 state, we would fail to see the vq4->vq0 transition 12319 * from EL2->EL1. Thus we go ahead and narrow when entering aa32 so that 12320 * we already have the correct register contents when encountering the 12321 * vq0->vq0 transition between EL0->EL1. 12322 */ 12323 old_len = new_len = 0; 12324 if (old_a64) { 12325 old_len = sve_vqm1_for_el_sm_ena(env, old_el, sm); 12326 } 12327 if (new_a64) { 12328 new_len = sve_vqm1_for_el_sm_ena(env, new_el, sm); 12329 } 12330 12331 /* When changing vector length, clear inaccessible state. */ 12332 if (new_len < old_len) { 12333 aarch64_sve_narrow_vq(env, new_len + 1); 12334 } 12335 } 12336 #endif 12337 12338 #ifndef CONFIG_USER_ONLY 12339 ARMSecuritySpace arm_security_space(CPUARMState *env) 12340 { 12341 if (arm_feature(env, ARM_FEATURE_M)) { 12342 return arm_secure_to_space(env->v7m.secure); 12343 } 12344 12345 /* 12346 * If EL3 is not supported then the secure state is implementation 12347 * defined, in which case QEMU defaults to non-secure. 12348 */ 12349 if (!arm_feature(env, ARM_FEATURE_EL3)) { 12350 return ARMSS_NonSecure; 12351 } 12352 12353 /* Check for AArch64 EL3 or AArch32 Mon. */ 12354 if (is_a64(env)) { 12355 if (extract32(env->pstate, 2, 2) == 3) { 12356 if (cpu_isar_feature(aa64_rme, env_archcpu(env))) { 12357 return ARMSS_Root; 12358 } else { 12359 return ARMSS_Secure; 12360 } 12361 } 12362 } else { 12363 if ((env->uncached_cpsr & CPSR_M) == ARM_CPU_MODE_MON) { 12364 return ARMSS_Secure; 12365 } 12366 } 12367 12368 return arm_security_space_below_el3(env); 12369 } 12370 12371 ARMSecuritySpace arm_security_space_below_el3(CPUARMState *env) 12372 { 12373 assert(!arm_feature(env, ARM_FEATURE_M)); 12374 12375 /* 12376 * If EL3 is not supported then the secure state is implementation 12377 * defined, in which case QEMU defaults to non-secure. 12378 */ 12379 if (!arm_feature(env, ARM_FEATURE_EL3)) { 12380 return ARMSS_NonSecure; 12381 } 12382 12383 /* 12384 * Note NSE cannot be set without RME, and NSE & !NS is Reserved. 12385 * Ignoring NSE when !NS retains consistency without having to 12386 * modify other predicates. 12387 */ 12388 if (!(env->cp15.scr_el3 & SCR_NS)) { 12389 return ARMSS_Secure; 12390 } else if (env->cp15.scr_el3 & SCR_NSE) { 12391 return ARMSS_Realm; 12392 } else { 12393 return ARMSS_NonSecure; 12394 } 12395 } 12396 #endif /* !CONFIG_USER_ONLY */ 12397