1 /* 2 * ARM generic helpers. 3 * 4 * This code is licensed under the GNU GPL v2 or later. 5 * 6 * SPDX-License-Identifier: GPL-2.0-or-later 7 */ 8 9 #include "qemu/osdep.h" 10 #include "qemu/log.h" 11 #include "trace.h" 12 #include "cpu.h" 13 #include "internals.h" 14 #include "cpu-features.h" 15 #include "exec/helper-proto.h" 16 #include "qemu/main-loop.h" 17 #include "qemu/timer.h" 18 #include "qemu/bitops.h" 19 #include "qemu/crc32c.h" 20 #include "qemu/qemu-print.h" 21 #include "exec/exec-all.h" 22 #include <zlib.h> /* For crc32 */ 23 #include "hw/irq.h" 24 #include "sysemu/cpu-timers.h" 25 #include "sysemu/kvm.h" 26 #include "sysemu/tcg.h" 27 #include "qapi/error.h" 28 #include "qemu/guest-random.h" 29 #ifdef CONFIG_TCG 30 #include "semihosting/common-semi.h" 31 #endif 32 #include "cpregs.h" 33 #include "target/arm/gtimer.h" 34 35 #define ARM_CPU_FREQ 1000000000 /* FIXME: 1 GHz, should be configurable */ 36 37 static void switch_mode(CPUARMState *env, int mode); 38 39 static uint64_t raw_read(CPUARMState *env, const ARMCPRegInfo *ri) 40 { 41 assert(ri->fieldoffset); 42 if (cpreg_field_is_64bit(ri)) { 43 return CPREG_FIELD64(env, ri); 44 } else { 45 return CPREG_FIELD32(env, ri); 46 } 47 } 48 49 void raw_write(CPUARMState *env, const ARMCPRegInfo *ri, uint64_t value) 50 { 51 assert(ri->fieldoffset); 52 if (cpreg_field_is_64bit(ri)) { 53 CPREG_FIELD64(env, ri) = value; 54 } else { 55 CPREG_FIELD32(env, ri) = value; 56 } 57 } 58 59 static void *raw_ptr(CPUARMState *env, const ARMCPRegInfo *ri) 60 { 61 return (char *)env + ri->fieldoffset; 62 } 63 64 uint64_t read_raw_cp_reg(CPUARMState *env, const ARMCPRegInfo *ri) 65 { 66 /* Raw read of a coprocessor register (as needed for migration, etc). */ 67 if (ri->type & ARM_CP_CONST) { 68 return ri->resetvalue; 69 } else if (ri->raw_readfn) { 70 return ri->raw_readfn(env, ri); 71 } else if (ri->readfn) { 72 return ri->readfn(env, ri); 73 } else { 74 return raw_read(env, ri); 75 } 76 } 77 78 static void write_raw_cp_reg(CPUARMState *env, const ARMCPRegInfo *ri, 79 uint64_t v) 80 { 81 /* 82 * Raw write of a coprocessor register (as needed for migration, etc). 83 * Note that constant registers are treated as write-ignored; the 84 * caller should check for success by whether a readback gives the 85 * value written. 86 */ 87 if (ri->type & ARM_CP_CONST) { 88 return; 89 } else if (ri->raw_writefn) { 90 ri->raw_writefn(env, ri, v); 91 } else if (ri->writefn) { 92 ri->writefn(env, ri, v); 93 } else { 94 raw_write(env, ri, v); 95 } 96 } 97 98 static bool raw_accessors_invalid(const ARMCPRegInfo *ri) 99 { 100 /* 101 * Return true if the regdef would cause an assertion if you called 102 * read_raw_cp_reg() or write_raw_cp_reg() on it (ie if it is a 103 * program bug for it not to have the NO_RAW flag). 104 * NB that returning false here doesn't necessarily mean that calling 105 * read/write_raw_cp_reg() is safe, because we can't distinguish "has 106 * read/write access functions which are safe for raw use" from "has 107 * read/write access functions which have side effects but has forgotten 108 * to provide raw access functions". 109 * The tests here line up with the conditions in read/write_raw_cp_reg() 110 * and assertions in raw_read()/raw_write(). 111 */ 112 if ((ri->type & ARM_CP_CONST) || 113 ri->fieldoffset || 114 ((ri->raw_writefn || ri->writefn) && (ri->raw_readfn || ri->readfn))) { 115 return false; 116 } 117 return true; 118 } 119 120 bool write_cpustate_to_list(ARMCPU *cpu, bool kvm_sync) 121 { 122 /* Write the coprocessor state from cpu->env to the (index,value) list. */ 123 int i; 124 bool ok = true; 125 126 for (i = 0; i < cpu->cpreg_array_len; i++) { 127 uint32_t regidx = kvm_to_cpreg_id(cpu->cpreg_indexes[i]); 128 const ARMCPRegInfo *ri; 129 uint64_t newval; 130 131 ri = get_arm_cp_reginfo(cpu->cp_regs, regidx); 132 if (!ri) { 133 ok = false; 134 continue; 135 } 136 if (ri->type & ARM_CP_NO_RAW) { 137 continue; 138 } 139 140 newval = read_raw_cp_reg(&cpu->env, ri); 141 if (kvm_sync) { 142 /* 143 * Only sync if the previous list->cpustate sync succeeded. 144 * Rather than tracking the success/failure state for every 145 * item in the list, we just recheck "does the raw write we must 146 * have made in write_list_to_cpustate() read back OK" here. 147 */ 148 uint64_t oldval = cpu->cpreg_values[i]; 149 150 if (oldval == newval) { 151 continue; 152 } 153 154 write_raw_cp_reg(&cpu->env, ri, oldval); 155 if (read_raw_cp_reg(&cpu->env, ri) != oldval) { 156 continue; 157 } 158 159 write_raw_cp_reg(&cpu->env, ri, newval); 160 } 161 cpu->cpreg_values[i] = newval; 162 } 163 return ok; 164 } 165 166 bool write_list_to_cpustate(ARMCPU *cpu) 167 { 168 int i; 169 bool ok = true; 170 171 for (i = 0; i < cpu->cpreg_array_len; i++) { 172 uint32_t regidx = kvm_to_cpreg_id(cpu->cpreg_indexes[i]); 173 uint64_t v = cpu->cpreg_values[i]; 174 const ARMCPRegInfo *ri; 175 176 ri = get_arm_cp_reginfo(cpu->cp_regs, regidx); 177 if (!ri) { 178 ok = false; 179 continue; 180 } 181 if (ri->type & ARM_CP_NO_RAW) { 182 continue; 183 } 184 /* 185 * Write value and confirm it reads back as written 186 * (to catch read-only registers and partially read-only 187 * registers where the incoming migration value doesn't match) 188 */ 189 write_raw_cp_reg(&cpu->env, ri, v); 190 if (read_raw_cp_reg(&cpu->env, ri) != v) { 191 ok = false; 192 } 193 } 194 return ok; 195 } 196 197 static void add_cpreg_to_list(gpointer key, gpointer opaque) 198 { 199 ARMCPU *cpu = opaque; 200 uint32_t regidx = (uintptr_t)key; 201 const ARMCPRegInfo *ri = get_arm_cp_reginfo(cpu->cp_regs, regidx); 202 203 if (!(ri->type & (ARM_CP_NO_RAW | ARM_CP_ALIAS))) { 204 cpu->cpreg_indexes[cpu->cpreg_array_len] = cpreg_to_kvm_id(regidx); 205 /* The value array need not be initialized at this point */ 206 cpu->cpreg_array_len++; 207 } 208 } 209 210 static void count_cpreg(gpointer key, gpointer opaque) 211 { 212 ARMCPU *cpu = opaque; 213 const ARMCPRegInfo *ri; 214 215 ri = g_hash_table_lookup(cpu->cp_regs, key); 216 217 if (!(ri->type & (ARM_CP_NO_RAW | ARM_CP_ALIAS))) { 218 cpu->cpreg_array_len++; 219 } 220 } 221 222 static gint cpreg_key_compare(gconstpointer a, gconstpointer b) 223 { 224 uint64_t aidx = cpreg_to_kvm_id((uintptr_t)a); 225 uint64_t bidx = cpreg_to_kvm_id((uintptr_t)b); 226 227 if (aidx > bidx) { 228 return 1; 229 } 230 if (aidx < bidx) { 231 return -1; 232 } 233 return 0; 234 } 235 236 void init_cpreg_list(ARMCPU *cpu) 237 { 238 /* 239 * Initialise the cpreg_tuples[] array based on the cp_regs hash. 240 * Note that we require cpreg_tuples[] to be sorted by key ID. 241 */ 242 GList *keys; 243 int arraylen; 244 245 keys = g_hash_table_get_keys(cpu->cp_regs); 246 keys = g_list_sort(keys, cpreg_key_compare); 247 248 cpu->cpreg_array_len = 0; 249 250 g_list_foreach(keys, count_cpreg, cpu); 251 252 arraylen = cpu->cpreg_array_len; 253 cpu->cpreg_indexes = g_new(uint64_t, arraylen); 254 cpu->cpreg_values = g_new(uint64_t, arraylen); 255 cpu->cpreg_vmstate_indexes = g_new(uint64_t, arraylen); 256 cpu->cpreg_vmstate_values = g_new(uint64_t, arraylen); 257 cpu->cpreg_vmstate_array_len = cpu->cpreg_array_len; 258 cpu->cpreg_array_len = 0; 259 260 g_list_foreach(keys, add_cpreg_to_list, cpu); 261 262 assert(cpu->cpreg_array_len == arraylen); 263 264 g_list_free(keys); 265 } 266 267 static bool arm_pan_enabled(CPUARMState *env) 268 { 269 if (is_a64(env)) { 270 if ((arm_hcr_el2_eff(env) & (HCR_NV | HCR_NV1)) == (HCR_NV | HCR_NV1)) { 271 return false; 272 } 273 return env->pstate & PSTATE_PAN; 274 } else { 275 return env->uncached_cpsr & CPSR_PAN; 276 } 277 } 278 279 /* 280 * Some registers are not accessible from AArch32 EL3 if SCR.NS == 0. 281 */ 282 static CPAccessResult access_el3_aa32ns(CPUARMState *env, 283 const ARMCPRegInfo *ri, 284 bool isread) 285 { 286 if (!is_a64(env) && arm_current_el(env) == 3 && 287 arm_is_secure_below_el3(env)) { 288 return CP_ACCESS_TRAP_UNCATEGORIZED; 289 } 290 return CP_ACCESS_OK; 291 } 292 293 /* 294 * Some secure-only AArch32 registers trap to EL3 if used from 295 * Secure EL1 (but are just ordinary UNDEF in other non-EL3 contexts). 296 * Note that an access from Secure EL1 can only happen if EL3 is AArch64. 297 * We assume that the .access field is set to PL1_RW. 298 */ 299 static CPAccessResult access_trap_aa32s_el1(CPUARMState *env, 300 const ARMCPRegInfo *ri, 301 bool isread) 302 { 303 if (arm_current_el(env) == 3) { 304 return CP_ACCESS_OK; 305 } 306 if (arm_is_secure_below_el3(env)) { 307 if (env->cp15.scr_el3 & SCR_EEL2) { 308 return CP_ACCESS_TRAP_EL2; 309 } 310 return CP_ACCESS_TRAP_EL3; 311 } 312 /* This will be EL1 NS and EL2 NS, which just UNDEF */ 313 return CP_ACCESS_TRAP_UNCATEGORIZED; 314 } 315 316 /* 317 * Check for traps to performance monitor registers, which are controlled 318 * by MDCR_EL2.TPM for EL2 and MDCR_EL3.TPM for EL3. 319 */ 320 static CPAccessResult access_tpm(CPUARMState *env, const ARMCPRegInfo *ri, 321 bool isread) 322 { 323 int el = arm_current_el(env); 324 uint64_t mdcr_el2 = arm_mdcr_el2_eff(env); 325 326 if (el < 2 && (mdcr_el2 & MDCR_TPM)) { 327 return CP_ACCESS_TRAP_EL2; 328 } 329 if (el < 3 && (env->cp15.mdcr_el3 & MDCR_TPM)) { 330 return CP_ACCESS_TRAP_EL3; 331 } 332 return CP_ACCESS_OK; 333 } 334 335 /* Check for traps from EL1 due to HCR_EL2.TVM and HCR_EL2.TRVM. */ 336 CPAccessResult access_tvm_trvm(CPUARMState *env, const ARMCPRegInfo *ri, 337 bool isread) 338 { 339 if (arm_current_el(env) == 1) { 340 uint64_t trap = isread ? HCR_TRVM : HCR_TVM; 341 if (arm_hcr_el2_eff(env) & trap) { 342 return CP_ACCESS_TRAP_EL2; 343 } 344 } 345 return CP_ACCESS_OK; 346 } 347 348 /* Check for traps from EL1 due to HCR_EL2.TSW. */ 349 static CPAccessResult access_tsw(CPUARMState *env, const ARMCPRegInfo *ri, 350 bool isread) 351 { 352 if (arm_current_el(env) == 1 && (arm_hcr_el2_eff(env) & HCR_TSW)) { 353 return CP_ACCESS_TRAP_EL2; 354 } 355 return CP_ACCESS_OK; 356 } 357 358 /* Check for traps from EL1 due to HCR_EL2.TACR. */ 359 static CPAccessResult access_tacr(CPUARMState *env, const ARMCPRegInfo *ri, 360 bool isread) 361 { 362 if (arm_current_el(env) == 1 && (arm_hcr_el2_eff(env) & HCR_TACR)) { 363 return CP_ACCESS_TRAP_EL2; 364 } 365 return CP_ACCESS_OK; 366 } 367 368 /* Check for traps from EL1 due to HCR_EL2.TTLB. */ 369 static CPAccessResult access_ttlb(CPUARMState *env, const ARMCPRegInfo *ri, 370 bool isread) 371 { 372 if (arm_current_el(env) == 1 && (arm_hcr_el2_eff(env) & HCR_TTLB)) { 373 return CP_ACCESS_TRAP_EL2; 374 } 375 return CP_ACCESS_OK; 376 } 377 378 /* Check for traps from EL1 due to HCR_EL2.TTLB or TTLBIS. */ 379 static CPAccessResult access_ttlbis(CPUARMState *env, const ARMCPRegInfo *ri, 380 bool isread) 381 { 382 if (arm_current_el(env) == 1 && 383 (arm_hcr_el2_eff(env) & (HCR_TTLB | HCR_TTLBIS))) { 384 return CP_ACCESS_TRAP_EL2; 385 } 386 return CP_ACCESS_OK; 387 } 388 389 #ifdef TARGET_AARCH64 390 /* Check for traps from EL1 due to HCR_EL2.TTLB or TTLBOS. */ 391 static CPAccessResult access_ttlbos(CPUARMState *env, const ARMCPRegInfo *ri, 392 bool isread) 393 { 394 if (arm_current_el(env) == 1 && 395 (arm_hcr_el2_eff(env) & (HCR_TTLB | HCR_TTLBOS))) { 396 return CP_ACCESS_TRAP_EL2; 397 } 398 return CP_ACCESS_OK; 399 } 400 #endif 401 402 static void dacr_write(CPUARMState *env, const ARMCPRegInfo *ri, uint64_t value) 403 { 404 ARMCPU *cpu = env_archcpu(env); 405 406 raw_write(env, ri, value); 407 tlb_flush(CPU(cpu)); /* Flush TLB as domain not tracked in TLB */ 408 } 409 410 static void fcse_write(CPUARMState *env, const ARMCPRegInfo *ri, uint64_t value) 411 { 412 ARMCPU *cpu = env_archcpu(env); 413 414 if (raw_read(env, ri) != value) { 415 /* 416 * Unlike real hardware the qemu TLB uses virtual addresses, 417 * not modified virtual addresses, so this causes a TLB flush. 418 */ 419 tlb_flush(CPU(cpu)); 420 raw_write(env, ri, value); 421 } 422 } 423 424 static void contextidr_write(CPUARMState *env, const ARMCPRegInfo *ri, 425 uint64_t value) 426 { 427 ARMCPU *cpu = env_archcpu(env); 428 429 if (raw_read(env, ri) != value && !arm_feature(env, ARM_FEATURE_PMSA) 430 && !extended_addresses_enabled(env)) { 431 /* 432 * For VMSA (when not using the LPAE long descriptor page table 433 * format) this register includes the ASID, so do a TLB flush. 434 * For PMSA it is purely a process ID and no action is needed. 435 */ 436 tlb_flush(CPU(cpu)); 437 } 438 raw_write(env, ri, value); 439 } 440 441 static int alle1_tlbmask(CPUARMState *env) 442 { 443 /* 444 * Note that the 'ALL' scope must invalidate both stage 1 and 445 * stage 2 translations, whereas most other scopes only invalidate 446 * stage 1 translations. 447 */ 448 return (ARMMMUIdxBit_E10_1 | 449 ARMMMUIdxBit_E10_1_PAN | 450 ARMMMUIdxBit_E10_0 | 451 ARMMMUIdxBit_Stage2 | 452 ARMMMUIdxBit_Stage2_S); 453 } 454 455 456 /* IS variants of TLB operations must affect all cores */ 457 static void tlbiall_is_write(CPUARMState *env, const ARMCPRegInfo *ri, 458 uint64_t value) 459 { 460 CPUState *cs = env_cpu(env); 461 462 tlb_flush_all_cpus_synced(cs); 463 } 464 465 static void tlbiasid_is_write(CPUARMState *env, const ARMCPRegInfo *ri, 466 uint64_t value) 467 { 468 CPUState *cs = env_cpu(env); 469 470 tlb_flush_all_cpus_synced(cs); 471 } 472 473 static void tlbimva_is_write(CPUARMState *env, const ARMCPRegInfo *ri, 474 uint64_t value) 475 { 476 CPUState *cs = env_cpu(env); 477 478 tlb_flush_page_all_cpus_synced(cs, value & TARGET_PAGE_MASK); 479 } 480 481 static void tlbimvaa_is_write(CPUARMState *env, const ARMCPRegInfo *ri, 482 uint64_t value) 483 { 484 CPUState *cs = env_cpu(env); 485 486 tlb_flush_page_all_cpus_synced(cs, value & TARGET_PAGE_MASK); 487 } 488 489 /* 490 * Non-IS variants of TLB operations are upgraded to 491 * IS versions if we are at EL1 and HCR_EL2.FB is effectively set to 492 * force broadcast of these operations. 493 */ 494 static bool tlb_force_broadcast(CPUARMState *env) 495 { 496 return arm_current_el(env) == 1 && (arm_hcr_el2_eff(env) & HCR_FB); 497 } 498 499 static void tlbiall_write(CPUARMState *env, const ARMCPRegInfo *ri, 500 uint64_t value) 501 { 502 /* Invalidate all (TLBIALL) */ 503 CPUState *cs = env_cpu(env); 504 505 if (tlb_force_broadcast(env)) { 506 tlb_flush_all_cpus_synced(cs); 507 } else { 508 tlb_flush(cs); 509 } 510 } 511 512 static void tlbimva_write(CPUARMState *env, const ARMCPRegInfo *ri, 513 uint64_t value) 514 { 515 /* Invalidate single TLB entry by MVA and ASID (TLBIMVA) */ 516 CPUState *cs = env_cpu(env); 517 518 value &= TARGET_PAGE_MASK; 519 if (tlb_force_broadcast(env)) { 520 tlb_flush_page_all_cpus_synced(cs, value); 521 } else { 522 tlb_flush_page(cs, value); 523 } 524 } 525 526 static void tlbiasid_write(CPUARMState *env, const ARMCPRegInfo *ri, 527 uint64_t value) 528 { 529 /* Invalidate by ASID (TLBIASID) */ 530 CPUState *cs = env_cpu(env); 531 532 if (tlb_force_broadcast(env)) { 533 tlb_flush_all_cpus_synced(cs); 534 } else { 535 tlb_flush(cs); 536 } 537 } 538 539 static void tlbimvaa_write(CPUARMState *env, const ARMCPRegInfo *ri, 540 uint64_t value) 541 { 542 /* Invalidate single entry by MVA, all ASIDs (TLBIMVAA) */ 543 CPUState *cs = env_cpu(env); 544 545 value &= TARGET_PAGE_MASK; 546 if (tlb_force_broadcast(env)) { 547 tlb_flush_page_all_cpus_synced(cs, value); 548 } else { 549 tlb_flush_page(cs, value); 550 } 551 } 552 553 static void tlbiall_nsnh_write(CPUARMState *env, const ARMCPRegInfo *ri, 554 uint64_t value) 555 { 556 CPUState *cs = env_cpu(env); 557 558 tlb_flush_by_mmuidx(cs, alle1_tlbmask(env)); 559 } 560 561 static void tlbiall_nsnh_is_write(CPUARMState *env, const ARMCPRegInfo *ri, 562 uint64_t value) 563 { 564 CPUState *cs = env_cpu(env); 565 566 tlb_flush_by_mmuidx_all_cpus_synced(cs, alle1_tlbmask(env)); 567 } 568 569 570 static void tlbiall_hyp_write(CPUARMState *env, const ARMCPRegInfo *ri, 571 uint64_t value) 572 { 573 CPUState *cs = env_cpu(env); 574 575 tlb_flush_by_mmuidx(cs, ARMMMUIdxBit_E2); 576 } 577 578 static void tlbiall_hyp_is_write(CPUARMState *env, const ARMCPRegInfo *ri, 579 uint64_t value) 580 { 581 CPUState *cs = env_cpu(env); 582 583 tlb_flush_by_mmuidx_all_cpus_synced(cs, ARMMMUIdxBit_E2); 584 } 585 586 static void tlbimva_hyp_write(CPUARMState *env, const ARMCPRegInfo *ri, 587 uint64_t value) 588 { 589 CPUState *cs = env_cpu(env); 590 uint64_t pageaddr = value & ~MAKE_64BIT_MASK(0, 12); 591 592 tlb_flush_page_by_mmuidx(cs, pageaddr, ARMMMUIdxBit_E2); 593 } 594 595 static void tlbimva_hyp_is_write(CPUARMState *env, const ARMCPRegInfo *ri, 596 uint64_t value) 597 { 598 CPUState *cs = env_cpu(env); 599 uint64_t pageaddr = value & ~MAKE_64BIT_MASK(0, 12); 600 601 tlb_flush_page_by_mmuidx_all_cpus_synced(cs, pageaddr, 602 ARMMMUIdxBit_E2); 603 } 604 605 static void tlbiipas2_hyp_write(CPUARMState *env, const ARMCPRegInfo *ri, 606 uint64_t value) 607 { 608 CPUState *cs = env_cpu(env); 609 uint64_t pageaddr = (value & MAKE_64BIT_MASK(0, 28)) << 12; 610 611 tlb_flush_page_by_mmuidx(cs, pageaddr, ARMMMUIdxBit_Stage2); 612 } 613 614 static void tlbiipas2is_hyp_write(CPUARMState *env, const ARMCPRegInfo *ri, 615 uint64_t value) 616 { 617 CPUState *cs = env_cpu(env); 618 uint64_t pageaddr = (value & MAKE_64BIT_MASK(0, 28)) << 12; 619 620 tlb_flush_page_by_mmuidx_all_cpus_synced(cs, pageaddr, ARMMMUIdxBit_Stage2); 621 } 622 623 static const ARMCPRegInfo cp_reginfo[] = { 624 /* 625 * Define the secure and non-secure FCSE identifier CP registers 626 * separately because there is no secure bank in V8 (no _EL3). This allows 627 * the secure register to be properly reset and migrated. There is also no 628 * v8 EL1 version of the register so the non-secure instance stands alone. 629 */ 630 { .name = "FCSEIDR", 631 .cp = 15, .opc1 = 0, .crn = 13, .crm = 0, .opc2 = 0, 632 .access = PL1_RW, .secure = ARM_CP_SECSTATE_NS, 633 .fieldoffset = offsetof(CPUARMState, cp15.fcseidr_ns), 634 .resetvalue = 0, .writefn = fcse_write, .raw_writefn = raw_write, }, 635 { .name = "FCSEIDR_S", 636 .cp = 15, .opc1 = 0, .crn = 13, .crm = 0, .opc2 = 0, 637 .access = PL1_RW, .secure = ARM_CP_SECSTATE_S, 638 .fieldoffset = offsetof(CPUARMState, cp15.fcseidr_s), 639 .resetvalue = 0, .writefn = fcse_write, .raw_writefn = raw_write, }, 640 /* 641 * Define the secure and non-secure context identifier CP registers 642 * separately because there is no secure bank in V8 (no _EL3). This allows 643 * the secure register to be properly reset and migrated. In the 644 * non-secure case, the 32-bit register will have reset and migration 645 * disabled during registration as it is handled by the 64-bit instance. 646 */ 647 { .name = "CONTEXTIDR_EL1", .state = ARM_CP_STATE_BOTH, 648 .opc0 = 3, .opc1 = 0, .crn = 13, .crm = 0, .opc2 = 1, 649 .access = PL1_RW, .accessfn = access_tvm_trvm, 650 .fgt = FGT_CONTEXTIDR_EL1, 651 .nv2_redirect_offset = 0x108 | NV2_REDIR_NV1, 652 .secure = ARM_CP_SECSTATE_NS, 653 .fieldoffset = offsetof(CPUARMState, cp15.contextidr_el[1]), 654 .resetvalue = 0, .writefn = contextidr_write, .raw_writefn = raw_write, }, 655 { .name = "CONTEXTIDR_S", .state = ARM_CP_STATE_AA32, 656 .cp = 15, .opc1 = 0, .crn = 13, .crm = 0, .opc2 = 1, 657 .access = PL1_RW, .accessfn = access_tvm_trvm, 658 .secure = ARM_CP_SECSTATE_S, 659 .fieldoffset = offsetof(CPUARMState, cp15.contextidr_s), 660 .resetvalue = 0, .writefn = contextidr_write, .raw_writefn = raw_write, }, 661 }; 662 663 static const ARMCPRegInfo not_v8_cp_reginfo[] = { 664 /* 665 * NB: Some of these registers exist in v8 but with more precise 666 * definitions that don't use CP_ANY wildcards (mostly in v8_cp_reginfo[]). 667 */ 668 /* MMU Domain access control / MPU write buffer control */ 669 { .name = "DACR", 670 .cp = 15, .opc1 = CP_ANY, .crn = 3, .crm = CP_ANY, .opc2 = CP_ANY, 671 .access = PL1_RW, .accessfn = access_tvm_trvm, .resetvalue = 0, 672 .writefn = dacr_write, .raw_writefn = raw_write, 673 .bank_fieldoffsets = { offsetoflow32(CPUARMState, cp15.dacr_s), 674 offsetoflow32(CPUARMState, cp15.dacr_ns) } }, 675 /* 676 * ARMv7 allocates a range of implementation defined TLB LOCKDOWN regs. 677 * For v6 and v5, these mappings are overly broad. 678 */ 679 { .name = "TLB_LOCKDOWN", .cp = 15, .crn = 10, .crm = 0, 680 .opc1 = CP_ANY, .opc2 = CP_ANY, .access = PL1_RW, .type = ARM_CP_NOP }, 681 { .name = "TLB_LOCKDOWN", .cp = 15, .crn = 10, .crm = 1, 682 .opc1 = CP_ANY, .opc2 = CP_ANY, .access = PL1_RW, .type = ARM_CP_NOP }, 683 { .name = "TLB_LOCKDOWN", .cp = 15, .crn = 10, .crm = 4, 684 .opc1 = CP_ANY, .opc2 = CP_ANY, .access = PL1_RW, .type = ARM_CP_NOP }, 685 { .name = "TLB_LOCKDOWN", .cp = 15, .crn = 10, .crm = 8, 686 .opc1 = CP_ANY, .opc2 = CP_ANY, .access = PL1_RW, .type = ARM_CP_NOP }, 687 /* Cache maintenance ops; some of this space may be overridden later. */ 688 { .name = "CACHEMAINT", .cp = 15, .crn = 7, .crm = CP_ANY, 689 .opc1 = 0, .opc2 = CP_ANY, .access = PL1_W, 690 .type = ARM_CP_NOP | ARM_CP_OVERRIDE }, 691 }; 692 693 static const ARMCPRegInfo not_v6_cp_reginfo[] = { 694 /* 695 * Not all pre-v6 cores implemented this WFI, so this is slightly 696 * over-broad. 697 */ 698 { .name = "WFI_v5", .cp = 15, .crn = 7, .crm = 8, .opc1 = 0, .opc2 = 2, 699 .access = PL1_W, .type = ARM_CP_WFI }, 700 }; 701 702 static const ARMCPRegInfo not_v7_cp_reginfo[] = { 703 /* 704 * Standard v6 WFI (also used in some pre-v6 cores); not in v7 (which 705 * is UNPREDICTABLE; we choose to NOP as most implementations do). 706 */ 707 { .name = "WFI_v6", .cp = 15, .crn = 7, .crm = 0, .opc1 = 0, .opc2 = 4, 708 .access = PL1_W, .type = ARM_CP_WFI }, 709 /* 710 * L1 cache lockdown. Not architectural in v6 and earlier but in practice 711 * implemented in 926, 946, 1026, 1136, 1176 and 11MPCore. StrongARM and 712 * OMAPCP will override this space. 713 */ 714 { .name = "DLOCKDOWN", .cp = 15, .crn = 9, .crm = 0, .opc1 = 0, .opc2 = 0, 715 .access = PL1_RW, .fieldoffset = offsetof(CPUARMState, cp15.c9_data), 716 .resetvalue = 0 }, 717 { .name = "ILOCKDOWN", .cp = 15, .crn = 9, .crm = 0, .opc1 = 0, .opc2 = 1, 718 .access = PL1_RW, .fieldoffset = offsetof(CPUARMState, cp15.c9_insn), 719 .resetvalue = 0 }, 720 /* v6 doesn't have the cache ID registers but Linux reads them anyway */ 721 { .name = "DUMMY", .cp = 15, .crn = 0, .crm = 0, .opc1 = 1, .opc2 = CP_ANY, 722 .access = PL1_R, .type = ARM_CP_CONST | ARM_CP_NO_RAW, 723 .resetvalue = 0 }, 724 /* 725 * We don't implement pre-v7 debug but most CPUs had at least a DBGDIDR; 726 * implementing it as RAZ means the "debug architecture version" bits 727 * will read as a reserved value, which should cause Linux to not try 728 * to use the debug hardware. 729 */ 730 { .name = "DBGDIDR", .cp = 14, .crn = 0, .crm = 0, .opc1 = 0, .opc2 = 0, 731 .access = PL0_R, .type = ARM_CP_CONST, .resetvalue = 0 }, 732 /* 733 * MMU TLB control. Note that the wildcarding means we cover not just 734 * the unified TLB ops but also the dside/iside/inner-shareable variants. 735 */ 736 { .name = "TLBIALL", .cp = 15, .crn = 8, .crm = CP_ANY, 737 .opc1 = CP_ANY, .opc2 = 0, .access = PL1_W, .writefn = tlbiall_write, 738 .type = ARM_CP_NO_RAW }, 739 { .name = "TLBIMVA", .cp = 15, .crn = 8, .crm = CP_ANY, 740 .opc1 = CP_ANY, .opc2 = 1, .access = PL1_W, .writefn = tlbimva_write, 741 .type = ARM_CP_NO_RAW }, 742 { .name = "TLBIASID", .cp = 15, .crn = 8, .crm = CP_ANY, 743 .opc1 = CP_ANY, .opc2 = 2, .access = PL1_W, .writefn = tlbiasid_write, 744 .type = ARM_CP_NO_RAW }, 745 { .name = "TLBIMVAA", .cp = 15, .crn = 8, .crm = CP_ANY, 746 .opc1 = CP_ANY, .opc2 = 3, .access = PL1_W, .writefn = tlbimvaa_write, 747 .type = ARM_CP_NO_RAW }, 748 { .name = "PRRR", .cp = 15, .crn = 10, .crm = 2, 749 .opc1 = 0, .opc2 = 0, .access = PL1_RW, .type = ARM_CP_NOP }, 750 { .name = "NMRR", .cp = 15, .crn = 10, .crm = 2, 751 .opc1 = 0, .opc2 = 1, .access = PL1_RW, .type = ARM_CP_NOP }, 752 }; 753 754 static void cpacr_write(CPUARMState *env, const ARMCPRegInfo *ri, 755 uint64_t value) 756 { 757 uint32_t mask = 0; 758 759 /* In ARMv8 most bits of CPACR_EL1 are RES0. */ 760 if (!arm_feature(env, ARM_FEATURE_V8)) { 761 /* 762 * ARMv7 defines bits for unimplemented coprocessors as RAZ/WI. 763 * ASEDIS [31] and D32DIS [30] are both UNK/SBZP without VFP. 764 * TRCDIS [28] is RAZ/WI since we do not implement a trace macrocell. 765 */ 766 if (cpu_isar_feature(aa32_vfp_simd, env_archcpu(env))) { 767 /* VFP coprocessor: cp10 & cp11 [23:20] */ 768 mask |= R_CPACR_ASEDIS_MASK | 769 R_CPACR_D32DIS_MASK | 770 R_CPACR_CP11_MASK | 771 R_CPACR_CP10_MASK; 772 773 if (!arm_feature(env, ARM_FEATURE_NEON)) { 774 /* ASEDIS [31] bit is RAO/WI */ 775 value |= R_CPACR_ASEDIS_MASK; 776 } 777 778 /* 779 * VFPv3 and upwards with NEON implement 32 double precision 780 * registers (D0-D31). 781 */ 782 if (!cpu_isar_feature(aa32_simd_r32, env_archcpu(env))) { 783 /* D32DIS [30] is RAO/WI if D16-31 are not implemented. */ 784 value |= R_CPACR_D32DIS_MASK; 785 } 786 } 787 value &= mask; 788 } 789 790 /* 791 * For A-profile AArch32 EL3 (but not M-profile secure mode), if NSACR.CP10 792 * is 0 then CPACR.{CP11,CP10} ignore writes and read as 0b00. 793 */ 794 if (arm_feature(env, ARM_FEATURE_EL3) && !arm_el_is_aa64(env, 3) && 795 !arm_is_secure(env) && !extract32(env->cp15.nsacr, 10, 1)) { 796 mask = R_CPACR_CP11_MASK | R_CPACR_CP10_MASK; 797 value = (value & ~mask) | (env->cp15.cpacr_el1 & mask); 798 } 799 800 env->cp15.cpacr_el1 = value; 801 } 802 803 static uint64_t cpacr_read(CPUARMState *env, const ARMCPRegInfo *ri) 804 { 805 /* 806 * For A-profile AArch32 EL3 (but not M-profile secure mode), if NSACR.CP10 807 * is 0 then CPACR.{CP11,CP10} ignore writes and read as 0b00. 808 */ 809 uint64_t value = env->cp15.cpacr_el1; 810 811 if (arm_feature(env, ARM_FEATURE_EL3) && !arm_el_is_aa64(env, 3) && 812 !arm_is_secure(env) && !extract32(env->cp15.nsacr, 10, 1)) { 813 value = ~(R_CPACR_CP11_MASK | R_CPACR_CP10_MASK); 814 } 815 return value; 816 } 817 818 819 static void cpacr_reset(CPUARMState *env, const ARMCPRegInfo *ri) 820 { 821 /* 822 * Call cpacr_write() so that we reset with the correct RAO bits set 823 * for our CPU features. 824 */ 825 cpacr_write(env, ri, 0); 826 } 827 828 static CPAccessResult cpacr_access(CPUARMState *env, const ARMCPRegInfo *ri, 829 bool isread) 830 { 831 if (arm_feature(env, ARM_FEATURE_V8)) { 832 /* Check if CPACR accesses are to be trapped to EL2 */ 833 if (arm_current_el(env) == 1 && arm_is_el2_enabled(env) && 834 FIELD_EX64(env->cp15.cptr_el[2], CPTR_EL2, TCPAC)) { 835 return CP_ACCESS_TRAP_EL2; 836 /* Check if CPACR accesses are to be trapped to EL3 */ 837 } else if (arm_current_el(env) < 3 && 838 FIELD_EX64(env->cp15.cptr_el[3], CPTR_EL3, TCPAC)) { 839 return CP_ACCESS_TRAP_EL3; 840 } 841 } 842 843 return CP_ACCESS_OK; 844 } 845 846 static CPAccessResult cptr_access(CPUARMState *env, const ARMCPRegInfo *ri, 847 bool isread) 848 { 849 /* Check if CPTR accesses are set to trap to EL3 */ 850 if (arm_current_el(env) == 2 && 851 FIELD_EX64(env->cp15.cptr_el[3], CPTR_EL3, TCPAC)) { 852 return CP_ACCESS_TRAP_EL3; 853 } 854 855 return CP_ACCESS_OK; 856 } 857 858 static const ARMCPRegInfo v6_cp_reginfo[] = { 859 /* prefetch by MVA in v6, NOP in v7 */ 860 { .name = "MVA_prefetch", 861 .cp = 15, .crn = 7, .crm = 13, .opc1 = 0, .opc2 = 1, 862 .access = PL1_W, .type = ARM_CP_NOP }, 863 /* 864 * We need to break the TB after ISB to execute self-modifying code 865 * correctly and also to take any pending interrupts immediately. 866 * So use arm_cp_write_ignore() function instead of ARM_CP_NOP flag. 867 */ 868 { .name = "ISB", .cp = 15, .crn = 7, .crm = 5, .opc1 = 0, .opc2 = 4, 869 .access = PL0_W, .type = ARM_CP_NO_RAW, .writefn = arm_cp_write_ignore }, 870 { .name = "DSB", .cp = 15, .crn = 7, .crm = 10, .opc1 = 0, .opc2 = 4, 871 .access = PL0_W, .type = ARM_CP_NOP }, 872 { .name = "DMB", .cp = 15, .crn = 7, .crm = 10, .opc1 = 0, .opc2 = 5, 873 .access = PL0_W, .type = ARM_CP_NOP }, 874 { .name = "IFAR", .cp = 15, .crn = 6, .crm = 0, .opc1 = 0, .opc2 = 2, 875 .access = PL1_RW, .accessfn = access_tvm_trvm, 876 .bank_fieldoffsets = { offsetof(CPUARMState, cp15.ifar_s), 877 offsetof(CPUARMState, cp15.ifar_ns) }, 878 .resetvalue = 0, }, 879 /* 880 * Watchpoint Fault Address Register : should actually only be present 881 * for 1136, 1176, 11MPCore. 882 */ 883 { .name = "WFAR", .cp = 15, .crn = 6, .crm = 0, .opc1 = 0, .opc2 = 1, 884 .access = PL1_RW, .type = ARM_CP_CONST, .resetvalue = 0, }, 885 { .name = "CPACR", .state = ARM_CP_STATE_BOTH, .opc0 = 3, 886 .crn = 1, .crm = 0, .opc1 = 0, .opc2 = 2, .accessfn = cpacr_access, 887 .fgt = FGT_CPACR_EL1, 888 .nv2_redirect_offset = 0x100 | NV2_REDIR_NV1, 889 .access = PL1_RW, .fieldoffset = offsetof(CPUARMState, cp15.cpacr_el1), 890 .resetfn = cpacr_reset, .writefn = cpacr_write, .readfn = cpacr_read }, 891 }; 892 893 typedef struct pm_event { 894 uint16_t number; /* PMEVTYPER.evtCount is 16 bits wide */ 895 /* If the event is supported on this CPU (used to generate PMCEID[01]) */ 896 bool (*supported)(CPUARMState *); 897 /* 898 * Retrieve the current count of the underlying event. The programmed 899 * counters hold a difference from the return value from this function 900 */ 901 uint64_t (*get_count)(CPUARMState *); 902 /* 903 * Return how many nanoseconds it will take (at a minimum) for count events 904 * to occur. A negative value indicates the counter will never overflow, or 905 * that the counter has otherwise arranged for the overflow bit to be set 906 * and the PMU interrupt to be raised on overflow. 907 */ 908 int64_t (*ns_per_count)(uint64_t); 909 } pm_event; 910 911 static bool event_always_supported(CPUARMState *env) 912 { 913 return true; 914 } 915 916 static uint64_t swinc_get_count(CPUARMState *env) 917 { 918 /* 919 * SW_INCR events are written directly to the pmevcntr's by writes to 920 * PMSWINC, so there is no underlying count maintained by the PMU itself 921 */ 922 return 0; 923 } 924 925 static int64_t swinc_ns_per(uint64_t ignored) 926 { 927 return -1; 928 } 929 930 /* 931 * Return the underlying cycle count for the PMU cycle counters. If we're in 932 * usermode, simply return 0. 933 */ 934 static uint64_t cycles_get_count(CPUARMState *env) 935 { 936 #ifndef CONFIG_USER_ONLY 937 return muldiv64(qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL), 938 ARM_CPU_FREQ, NANOSECONDS_PER_SECOND); 939 #else 940 return cpu_get_host_ticks(); 941 #endif 942 } 943 944 #ifndef CONFIG_USER_ONLY 945 static int64_t cycles_ns_per(uint64_t cycles) 946 { 947 return (ARM_CPU_FREQ / NANOSECONDS_PER_SECOND) * cycles; 948 } 949 950 static bool instructions_supported(CPUARMState *env) 951 { 952 /* Precise instruction counting */ 953 return icount_enabled() == ICOUNT_PRECISE; 954 } 955 956 static uint64_t instructions_get_count(CPUARMState *env) 957 { 958 assert(icount_enabled() == ICOUNT_PRECISE); 959 return (uint64_t)icount_get_raw(); 960 } 961 962 static int64_t instructions_ns_per(uint64_t icount) 963 { 964 assert(icount_enabled() == ICOUNT_PRECISE); 965 return icount_to_ns((int64_t)icount); 966 } 967 #endif 968 969 static bool pmuv3p1_events_supported(CPUARMState *env) 970 { 971 /* For events which are supported in any v8.1 PMU */ 972 return cpu_isar_feature(any_pmuv3p1, env_archcpu(env)); 973 } 974 975 static bool pmuv3p4_events_supported(CPUARMState *env) 976 { 977 /* For events which are supported in any v8.1 PMU */ 978 return cpu_isar_feature(any_pmuv3p4, env_archcpu(env)); 979 } 980 981 static uint64_t zero_event_get_count(CPUARMState *env) 982 { 983 /* For events which on QEMU never fire, so their count is always zero */ 984 return 0; 985 } 986 987 static int64_t zero_event_ns_per(uint64_t cycles) 988 { 989 /* An event which never fires can never overflow */ 990 return -1; 991 } 992 993 static const pm_event pm_events[] = { 994 { .number = 0x000, /* SW_INCR */ 995 .supported = event_always_supported, 996 .get_count = swinc_get_count, 997 .ns_per_count = swinc_ns_per, 998 }, 999 #ifndef CONFIG_USER_ONLY 1000 { .number = 0x008, /* INST_RETIRED, Instruction architecturally executed */ 1001 .supported = instructions_supported, 1002 .get_count = instructions_get_count, 1003 .ns_per_count = instructions_ns_per, 1004 }, 1005 { .number = 0x011, /* CPU_CYCLES, Cycle */ 1006 .supported = event_always_supported, 1007 .get_count = cycles_get_count, 1008 .ns_per_count = cycles_ns_per, 1009 }, 1010 #endif 1011 { .number = 0x023, /* STALL_FRONTEND */ 1012 .supported = pmuv3p1_events_supported, 1013 .get_count = zero_event_get_count, 1014 .ns_per_count = zero_event_ns_per, 1015 }, 1016 { .number = 0x024, /* STALL_BACKEND */ 1017 .supported = pmuv3p1_events_supported, 1018 .get_count = zero_event_get_count, 1019 .ns_per_count = zero_event_ns_per, 1020 }, 1021 { .number = 0x03c, /* STALL */ 1022 .supported = pmuv3p4_events_supported, 1023 .get_count = zero_event_get_count, 1024 .ns_per_count = zero_event_ns_per, 1025 }, 1026 }; 1027 1028 /* 1029 * Note: Before increasing MAX_EVENT_ID beyond 0x3f into the 0x40xx range of 1030 * events (i.e. the statistical profiling extension), this implementation 1031 * should first be updated to something sparse instead of the current 1032 * supported_event_map[] array. 1033 */ 1034 #define MAX_EVENT_ID 0x3c 1035 #define UNSUPPORTED_EVENT UINT16_MAX 1036 static uint16_t supported_event_map[MAX_EVENT_ID + 1]; 1037 1038 /* 1039 * Called upon CPU initialization to initialize PMCEID[01]_EL0 and build a map 1040 * of ARM event numbers to indices in our pm_events array. 1041 * 1042 * Note: Events in the 0x40XX range are not currently supported. 1043 */ 1044 void pmu_init(ARMCPU *cpu) 1045 { 1046 unsigned int i; 1047 1048 /* 1049 * Empty supported_event_map and cpu->pmceid[01] before adding supported 1050 * events to them 1051 */ 1052 for (i = 0; i < ARRAY_SIZE(supported_event_map); i++) { 1053 supported_event_map[i] = UNSUPPORTED_EVENT; 1054 } 1055 cpu->pmceid0 = 0; 1056 cpu->pmceid1 = 0; 1057 1058 for (i = 0; i < ARRAY_SIZE(pm_events); i++) { 1059 const pm_event *cnt = &pm_events[i]; 1060 assert(cnt->number <= MAX_EVENT_ID); 1061 /* We do not currently support events in the 0x40xx range */ 1062 assert(cnt->number <= 0x3f); 1063 1064 if (cnt->supported(&cpu->env)) { 1065 supported_event_map[cnt->number] = i; 1066 uint64_t event_mask = 1ULL << (cnt->number & 0x1f); 1067 if (cnt->number & 0x20) { 1068 cpu->pmceid1 |= event_mask; 1069 } else { 1070 cpu->pmceid0 |= event_mask; 1071 } 1072 } 1073 } 1074 } 1075 1076 /* 1077 * Check at runtime whether a PMU event is supported for the current machine 1078 */ 1079 static bool event_supported(uint16_t number) 1080 { 1081 if (number > MAX_EVENT_ID) { 1082 return false; 1083 } 1084 return supported_event_map[number] != UNSUPPORTED_EVENT; 1085 } 1086 1087 static CPAccessResult pmreg_access(CPUARMState *env, const ARMCPRegInfo *ri, 1088 bool isread) 1089 { 1090 /* 1091 * Performance monitor registers user accessibility is controlled 1092 * by PMUSERENR. MDCR_EL2.TPM and MDCR_EL3.TPM allow configurable 1093 * trapping to EL2 or EL3 for other accesses. 1094 */ 1095 int el = arm_current_el(env); 1096 uint64_t mdcr_el2 = arm_mdcr_el2_eff(env); 1097 1098 if (el == 0 && !(env->cp15.c9_pmuserenr & 1)) { 1099 return CP_ACCESS_TRAP; 1100 } 1101 if (el < 2 && (mdcr_el2 & MDCR_TPM)) { 1102 return CP_ACCESS_TRAP_EL2; 1103 } 1104 if (el < 3 && (env->cp15.mdcr_el3 & MDCR_TPM)) { 1105 return CP_ACCESS_TRAP_EL3; 1106 } 1107 1108 return CP_ACCESS_OK; 1109 } 1110 1111 static CPAccessResult pmreg_access_xevcntr(CPUARMState *env, 1112 const ARMCPRegInfo *ri, 1113 bool isread) 1114 { 1115 /* ER: event counter read trap control */ 1116 if (arm_feature(env, ARM_FEATURE_V8) 1117 && arm_current_el(env) == 0 1118 && (env->cp15.c9_pmuserenr & (1 << 3)) != 0 1119 && isread) { 1120 return CP_ACCESS_OK; 1121 } 1122 1123 return pmreg_access(env, ri, isread); 1124 } 1125 1126 static CPAccessResult pmreg_access_swinc(CPUARMState *env, 1127 const ARMCPRegInfo *ri, 1128 bool isread) 1129 { 1130 /* SW: software increment write trap control */ 1131 if (arm_feature(env, ARM_FEATURE_V8) 1132 && arm_current_el(env) == 0 1133 && (env->cp15.c9_pmuserenr & (1 << 1)) != 0 1134 && !isread) { 1135 return CP_ACCESS_OK; 1136 } 1137 1138 return pmreg_access(env, ri, isread); 1139 } 1140 1141 static CPAccessResult pmreg_access_selr(CPUARMState *env, 1142 const ARMCPRegInfo *ri, 1143 bool isread) 1144 { 1145 /* ER: event counter read trap control */ 1146 if (arm_feature(env, ARM_FEATURE_V8) 1147 && arm_current_el(env) == 0 1148 && (env->cp15.c9_pmuserenr & (1 << 3)) != 0) { 1149 return CP_ACCESS_OK; 1150 } 1151 1152 return pmreg_access(env, ri, isread); 1153 } 1154 1155 static CPAccessResult pmreg_access_ccntr(CPUARMState *env, 1156 const ARMCPRegInfo *ri, 1157 bool isread) 1158 { 1159 /* CR: cycle counter read trap control */ 1160 if (arm_feature(env, ARM_FEATURE_V8) 1161 && arm_current_el(env) == 0 1162 && (env->cp15.c9_pmuserenr & (1 << 2)) != 0 1163 && isread) { 1164 return CP_ACCESS_OK; 1165 } 1166 1167 return pmreg_access(env, ri, isread); 1168 } 1169 1170 /* 1171 * Bits in MDCR_EL2 and MDCR_EL3 which pmu_counter_enabled() looks at. 1172 * We use these to decide whether we need to wrap a write to MDCR_EL2 1173 * or MDCR_EL3 in pmu_op_start()/pmu_op_finish() calls. 1174 */ 1175 #define MDCR_EL2_PMU_ENABLE_BITS \ 1176 (MDCR_HPME | MDCR_HPMD | MDCR_HPMN | MDCR_HCCD | MDCR_HLP) 1177 #define MDCR_EL3_PMU_ENABLE_BITS (MDCR_SPME | MDCR_SCCD) 1178 1179 /* 1180 * Returns true if the counter (pass 31 for PMCCNTR) should count events using 1181 * the current EL, security state, and register configuration. 1182 */ 1183 static bool pmu_counter_enabled(CPUARMState *env, uint8_t counter) 1184 { 1185 uint64_t filter; 1186 bool e, p, u, nsk, nsu, nsh, m; 1187 bool enabled, prohibited = false, filtered; 1188 bool secure = arm_is_secure(env); 1189 int el = arm_current_el(env); 1190 uint64_t mdcr_el2; 1191 uint8_t hpmn; 1192 1193 /* 1194 * We might be called for M-profile cores where MDCR_EL2 doesn't 1195 * exist and arm_mdcr_el2_eff() will assert, so this early-exit check 1196 * must be before we read that value. 1197 */ 1198 if (!arm_feature(env, ARM_FEATURE_PMU)) { 1199 return false; 1200 } 1201 1202 mdcr_el2 = arm_mdcr_el2_eff(env); 1203 hpmn = mdcr_el2 & MDCR_HPMN; 1204 1205 if (!arm_feature(env, ARM_FEATURE_EL2) || 1206 (counter < hpmn || counter == 31)) { 1207 e = env->cp15.c9_pmcr & PMCRE; 1208 } else { 1209 e = mdcr_el2 & MDCR_HPME; 1210 } 1211 enabled = e && (env->cp15.c9_pmcnten & (1 << counter)); 1212 1213 /* Is event counting prohibited? */ 1214 if (el == 2 && (counter < hpmn || counter == 31)) { 1215 prohibited = mdcr_el2 & MDCR_HPMD; 1216 } 1217 if (secure) { 1218 prohibited = prohibited || !(env->cp15.mdcr_el3 & MDCR_SPME); 1219 } 1220 1221 if (counter == 31) { 1222 /* 1223 * The cycle counter defaults to running. PMCR.DP says "disable 1224 * the cycle counter when event counting is prohibited". 1225 * Some MDCR bits disable the cycle counter specifically. 1226 */ 1227 prohibited = prohibited && env->cp15.c9_pmcr & PMCRDP; 1228 if (cpu_isar_feature(any_pmuv3p5, env_archcpu(env))) { 1229 if (secure) { 1230 prohibited = prohibited || (env->cp15.mdcr_el3 & MDCR_SCCD); 1231 } 1232 if (el == 2) { 1233 prohibited = prohibited || (mdcr_el2 & MDCR_HCCD); 1234 } 1235 } 1236 } 1237 1238 if (counter == 31) { 1239 filter = env->cp15.pmccfiltr_el0; 1240 } else { 1241 filter = env->cp15.c14_pmevtyper[counter]; 1242 } 1243 1244 p = filter & PMXEVTYPER_P; 1245 u = filter & PMXEVTYPER_U; 1246 nsk = arm_feature(env, ARM_FEATURE_EL3) && (filter & PMXEVTYPER_NSK); 1247 nsu = arm_feature(env, ARM_FEATURE_EL3) && (filter & PMXEVTYPER_NSU); 1248 nsh = arm_feature(env, ARM_FEATURE_EL2) && (filter & PMXEVTYPER_NSH); 1249 m = arm_el_is_aa64(env, 1) && 1250 arm_feature(env, ARM_FEATURE_EL3) && (filter & PMXEVTYPER_M); 1251 1252 if (el == 0) { 1253 filtered = secure ? u : u != nsu; 1254 } else if (el == 1) { 1255 filtered = secure ? p : p != nsk; 1256 } else if (el == 2) { 1257 filtered = !nsh; 1258 } else { /* EL3 */ 1259 filtered = m != p; 1260 } 1261 1262 if (counter != 31) { 1263 /* 1264 * If not checking PMCCNTR, ensure the counter is setup to an event we 1265 * support 1266 */ 1267 uint16_t event = filter & PMXEVTYPER_EVTCOUNT; 1268 if (!event_supported(event)) { 1269 return false; 1270 } 1271 } 1272 1273 return enabled && !prohibited && !filtered; 1274 } 1275 1276 static void pmu_update_irq(CPUARMState *env) 1277 { 1278 ARMCPU *cpu = env_archcpu(env); 1279 qemu_set_irq(cpu->pmu_interrupt, (env->cp15.c9_pmcr & PMCRE) && 1280 (env->cp15.c9_pminten & env->cp15.c9_pmovsr)); 1281 } 1282 1283 static bool pmccntr_clockdiv_enabled(CPUARMState *env) 1284 { 1285 /* 1286 * Return true if the clock divider is enabled and the cycle counter 1287 * is supposed to tick only once every 64 clock cycles. This is 1288 * controlled by PMCR.D, but if PMCR.LC is set to enable the long 1289 * (64-bit) cycle counter PMCR.D has no effect. 1290 */ 1291 return (env->cp15.c9_pmcr & (PMCRD | PMCRLC)) == PMCRD; 1292 } 1293 1294 static bool pmevcntr_is_64_bit(CPUARMState *env, int counter) 1295 { 1296 /* Return true if the specified event counter is configured to be 64 bit */ 1297 1298 /* This isn't intended to be used with the cycle counter */ 1299 assert(counter < 31); 1300 1301 if (!cpu_isar_feature(any_pmuv3p5, env_archcpu(env))) { 1302 return false; 1303 } 1304 1305 if (arm_feature(env, ARM_FEATURE_EL2)) { 1306 /* 1307 * MDCR_EL2.HLP still applies even when EL2 is disabled in the 1308 * current security state, so we don't use arm_mdcr_el2_eff() here. 1309 */ 1310 bool hlp = env->cp15.mdcr_el2 & MDCR_HLP; 1311 int hpmn = env->cp15.mdcr_el2 & MDCR_HPMN; 1312 1313 if (counter >= hpmn) { 1314 return hlp; 1315 } 1316 } 1317 return env->cp15.c9_pmcr & PMCRLP; 1318 } 1319 1320 /* 1321 * Ensure c15_ccnt is the guest-visible count so that operations such as 1322 * enabling/disabling the counter or filtering, modifying the count itself, 1323 * etc. can be done logically. This is essentially a no-op if the counter is 1324 * not enabled at the time of the call. 1325 */ 1326 static void pmccntr_op_start(CPUARMState *env) 1327 { 1328 uint64_t cycles = cycles_get_count(env); 1329 1330 if (pmu_counter_enabled(env, 31)) { 1331 uint64_t eff_cycles = cycles; 1332 if (pmccntr_clockdiv_enabled(env)) { 1333 eff_cycles /= 64; 1334 } 1335 1336 uint64_t new_pmccntr = eff_cycles - env->cp15.c15_ccnt_delta; 1337 1338 uint64_t overflow_mask = env->cp15.c9_pmcr & PMCRLC ? \ 1339 1ull << 63 : 1ull << 31; 1340 if (env->cp15.c15_ccnt & ~new_pmccntr & overflow_mask) { 1341 env->cp15.c9_pmovsr |= (1ULL << 31); 1342 pmu_update_irq(env); 1343 } 1344 1345 env->cp15.c15_ccnt = new_pmccntr; 1346 } 1347 env->cp15.c15_ccnt_delta = cycles; 1348 } 1349 1350 /* 1351 * If PMCCNTR is enabled, recalculate the delta between the clock and the 1352 * guest-visible count. A call to pmccntr_op_finish should follow every call to 1353 * pmccntr_op_start. 1354 */ 1355 static void pmccntr_op_finish(CPUARMState *env) 1356 { 1357 if (pmu_counter_enabled(env, 31)) { 1358 #ifndef CONFIG_USER_ONLY 1359 /* Calculate when the counter will next overflow */ 1360 uint64_t remaining_cycles = -env->cp15.c15_ccnt; 1361 if (!(env->cp15.c9_pmcr & PMCRLC)) { 1362 remaining_cycles = (uint32_t)remaining_cycles; 1363 } 1364 int64_t overflow_in = cycles_ns_per(remaining_cycles); 1365 1366 if (overflow_in > 0) { 1367 int64_t overflow_at; 1368 1369 if (!sadd64_overflow(qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL), 1370 overflow_in, &overflow_at)) { 1371 ARMCPU *cpu = env_archcpu(env); 1372 timer_mod_anticipate_ns(cpu->pmu_timer, overflow_at); 1373 } 1374 } 1375 #endif 1376 1377 uint64_t prev_cycles = env->cp15.c15_ccnt_delta; 1378 if (pmccntr_clockdiv_enabled(env)) { 1379 prev_cycles /= 64; 1380 } 1381 env->cp15.c15_ccnt_delta = prev_cycles - env->cp15.c15_ccnt; 1382 } 1383 } 1384 1385 static void pmevcntr_op_start(CPUARMState *env, uint8_t counter) 1386 { 1387 1388 uint16_t event = env->cp15.c14_pmevtyper[counter] & PMXEVTYPER_EVTCOUNT; 1389 uint64_t count = 0; 1390 if (event_supported(event)) { 1391 uint16_t event_idx = supported_event_map[event]; 1392 count = pm_events[event_idx].get_count(env); 1393 } 1394 1395 if (pmu_counter_enabled(env, counter)) { 1396 uint64_t new_pmevcntr = count - env->cp15.c14_pmevcntr_delta[counter]; 1397 uint64_t overflow_mask = pmevcntr_is_64_bit(env, counter) ? 1398 1ULL << 63 : 1ULL << 31; 1399 1400 if (env->cp15.c14_pmevcntr[counter] & ~new_pmevcntr & overflow_mask) { 1401 env->cp15.c9_pmovsr |= (1 << counter); 1402 pmu_update_irq(env); 1403 } 1404 env->cp15.c14_pmevcntr[counter] = new_pmevcntr; 1405 } 1406 env->cp15.c14_pmevcntr_delta[counter] = count; 1407 } 1408 1409 static void pmevcntr_op_finish(CPUARMState *env, uint8_t counter) 1410 { 1411 if (pmu_counter_enabled(env, counter)) { 1412 #ifndef CONFIG_USER_ONLY 1413 uint16_t event = env->cp15.c14_pmevtyper[counter] & PMXEVTYPER_EVTCOUNT; 1414 uint16_t event_idx = supported_event_map[event]; 1415 uint64_t delta = -(env->cp15.c14_pmevcntr[counter] + 1); 1416 int64_t overflow_in; 1417 1418 if (!pmevcntr_is_64_bit(env, counter)) { 1419 delta = (uint32_t)delta; 1420 } 1421 overflow_in = pm_events[event_idx].ns_per_count(delta); 1422 1423 if (overflow_in > 0) { 1424 int64_t overflow_at; 1425 1426 if (!sadd64_overflow(qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL), 1427 overflow_in, &overflow_at)) { 1428 ARMCPU *cpu = env_archcpu(env); 1429 timer_mod_anticipate_ns(cpu->pmu_timer, overflow_at); 1430 } 1431 } 1432 #endif 1433 1434 env->cp15.c14_pmevcntr_delta[counter] -= 1435 env->cp15.c14_pmevcntr[counter]; 1436 } 1437 } 1438 1439 void pmu_op_start(CPUARMState *env) 1440 { 1441 unsigned int i; 1442 pmccntr_op_start(env); 1443 for (i = 0; i < pmu_num_counters(env); i++) { 1444 pmevcntr_op_start(env, i); 1445 } 1446 } 1447 1448 void pmu_op_finish(CPUARMState *env) 1449 { 1450 unsigned int i; 1451 pmccntr_op_finish(env); 1452 for (i = 0; i < pmu_num_counters(env); i++) { 1453 pmevcntr_op_finish(env, i); 1454 } 1455 } 1456 1457 void pmu_pre_el_change(ARMCPU *cpu, void *ignored) 1458 { 1459 pmu_op_start(&cpu->env); 1460 } 1461 1462 void pmu_post_el_change(ARMCPU *cpu, void *ignored) 1463 { 1464 pmu_op_finish(&cpu->env); 1465 } 1466 1467 void arm_pmu_timer_cb(void *opaque) 1468 { 1469 ARMCPU *cpu = opaque; 1470 1471 /* 1472 * Update all the counter values based on the current underlying counts, 1473 * triggering interrupts to be raised, if necessary. pmu_op_finish() also 1474 * has the effect of setting the cpu->pmu_timer to the next earliest time a 1475 * counter may expire. 1476 */ 1477 pmu_op_start(&cpu->env); 1478 pmu_op_finish(&cpu->env); 1479 } 1480 1481 static void pmcr_write(CPUARMState *env, const ARMCPRegInfo *ri, 1482 uint64_t value) 1483 { 1484 pmu_op_start(env); 1485 1486 if (value & PMCRC) { 1487 /* The counter has been reset */ 1488 env->cp15.c15_ccnt = 0; 1489 } 1490 1491 if (value & PMCRP) { 1492 unsigned int i; 1493 for (i = 0; i < pmu_num_counters(env); i++) { 1494 env->cp15.c14_pmevcntr[i] = 0; 1495 } 1496 } 1497 1498 env->cp15.c9_pmcr &= ~PMCR_WRITABLE_MASK; 1499 env->cp15.c9_pmcr |= (value & PMCR_WRITABLE_MASK); 1500 1501 pmu_op_finish(env); 1502 } 1503 1504 static uint64_t pmcr_read(CPUARMState *env, const ARMCPRegInfo *ri) 1505 { 1506 uint64_t pmcr = env->cp15.c9_pmcr; 1507 1508 /* 1509 * If EL2 is implemented and enabled for the current security state, reads 1510 * of PMCR.N from EL1 or EL0 return the value of MDCR_EL2.HPMN or HDCR.HPMN. 1511 */ 1512 if (arm_current_el(env) <= 1 && arm_is_el2_enabled(env)) { 1513 pmcr &= ~PMCRN_MASK; 1514 pmcr |= (env->cp15.mdcr_el2 & MDCR_HPMN) << PMCRN_SHIFT; 1515 } 1516 1517 return pmcr; 1518 } 1519 1520 static void pmswinc_write(CPUARMState *env, const ARMCPRegInfo *ri, 1521 uint64_t value) 1522 { 1523 unsigned int i; 1524 uint64_t overflow_mask, new_pmswinc; 1525 1526 for (i = 0; i < pmu_num_counters(env); i++) { 1527 /* Increment a counter's count iff: */ 1528 if ((value & (1 << i)) && /* counter's bit is set */ 1529 /* counter is enabled and not filtered */ 1530 pmu_counter_enabled(env, i) && 1531 /* counter is SW_INCR */ 1532 (env->cp15.c14_pmevtyper[i] & PMXEVTYPER_EVTCOUNT) == 0x0) { 1533 pmevcntr_op_start(env, i); 1534 1535 /* 1536 * Detect if this write causes an overflow since we can't predict 1537 * PMSWINC overflows like we can for other events 1538 */ 1539 new_pmswinc = env->cp15.c14_pmevcntr[i] + 1; 1540 1541 overflow_mask = pmevcntr_is_64_bit(env, i) ? 1542 1ULL << 63 : 1ULL << 31; 1543 1544 if (env->cp15.c14_pmevcntr[i] & ~new_pmswinc & overflow_mask) { 1545 env->cp15.c9_pmovsr |= (1 << i); 1546 pmu_update_irq(env); 1547 } 1548 1549 env->cp15.c14_pmevcntr[i] = new_pmswinc; 1550 1551 pmevcntr_op_finish(env, i); 1552 } 1553 } 1554 } 1555 1556 static uint64_t pmccntr_read(CPUARMState *env, const ARMCPRegInfo *ri) 1557 { 1558 uint64_t ret; 1559 pmccntr_op_start(env); 1560 ret = env->cp15.c15_ccnt; 1561 pmccntr_op_finish(env); 1562 return ret; 1563 } 1564 1565 static void pmselr_write(CPUARMState *env, const ARMCPRegInfo *ri, 1566 uint64_t value) 1567 { 1568 /* 1569 * The value of PMSELR.SEL affects the behavior of PMXEVTYPER and 1570 * PMXEVCNTR. We allow [0..31] to be written to PMSELR here; in the 1571 * meanwhile, we check PMSELR.SEL when PMXEVTYPER and PMXEVCNTR are 1572 * accessed. 1573 */ 1574 env->cp15.c9_pmselr = value & 0x1f; 1575 } 1576 1577 static void pmccntr_write(CPUARMState *env, const ARMCPRegInfo *ri, 1578 uint64_t value) 1579 { 1580 pmccntr_op_start(env); 1581 env->cp15.c15_ccnt = value; 1582 pmccntr_op_finish(env); 1583 } 1584 1585 static void pmccntr_write32(CPUARMState *env, const ARMCPRegInfo *ri, 1586 uint64_t value) 1587 { 1588 uint64_t cur_val = pmccntr_read(env, NULL); 1589 1590 pmccntr_write(env, ri, deposit64(cur_val, 0, 32, value)); 1591 } 1592 1593 static void pmccfiltr_write(CPUARMState *env, const ARMCPRegInfo *ri, 1594 uint64_t value) 1595 { 1596 pmccntr_op_start(env); 1597 env->cp15.pmccfiltr_el0 = value & PMCCFILTR_EL0; 1598 pmccntr_op_finish(env); 1599 } 1600 1601 static void pmccfiltr_write_a32(CPUARMState *env, const ARMCPRegInfo *ri, 1602 uint64_t value) 1603 { 1604 pmccntr_op_start(env); 1605 /* M is not accessible from AArch32 */ 1606 env->cp15.pmccfiltr_el0 = (env->cp15.pmccfiltr_el0 & PMCCFILTR_M) | 1607 (value & PMCCFILTR); 1608 pmccntr_op_finish(env); 1609 } 1610 1611 static uint64_t pmccfiltr_read_a32(CPUARMState *env, const ARMCPRegInfo *ri) 1612 { 1613 /* M is not visible in AArch32 */ 1614 return env->cp15.pmccfiltr_el0 & PMCCFILTR; 1615 } 1616 1617 static void pmcntenset_write(CPUARMState *env, const ARMCPRegInfo *ri, 1618 uint64_t value) 1619 { 1620 pmu_op_start(env); 1621 value &= pmu_counter_mask(env); 1622 env->cp15.c9_pmcnten |= value; 1623 pmu_op_finish(env); 1624 } 1625 1626 static void pmcntenclr_write(CPUARMState *env, const ARMCPRegInfo *ri, 1627 uint64_t value) 1628 { 1629 pmu_op_start(env); 1630 value &= pmu_counter_mask(env); 1631 env->cp15.c9_pmcnten &= ~value; 1632 pmu_op_finish(env); 1633 } 1634 1635 static void pmovsr_write(CPUARMState *env, const ARMCPRegInfo *ri, 1636 uint64_t value) 1637 { 1638 value &= pmu_counter_mask(env); 1639 env->cp15.c9_pmovsr &= ~value; 1640 pmu_update_irq(env); 1641 } 1642 1643 static void pmovsset_write(CPUARMState *env, const ARMCPRegInfo *ri, 1644 uint64_t value) 1645 { 1646 value &= pmu_counter_mask(env); 1647 env->cp15.c9_pmovsr |= value; 1648 pmu_update_irq(env); 1649 } 1650 1651 static void pmevtyper_write(CPUARMState *env, const ARMCPRegInfo *ri, 1652 uint64_t value, const uint8_t counter) 1653 { 1654 if (counter == 31) { 1655 pmccfiltr_write(env, ri, value); 1656 } else if (counter < pmu_num_counters(env)) { 1657 pmevcntr_op_start(env, counter); 1658 1659 /* 1660 * If this counter's event type is changing, store the current 1661 * underlying count for the new type in c14_pmevcntr_delta[counter] so 1662 * pmevcntr_op_finish has the correct baseline when it converts back to 1663 * a delta. 1664 */ 1665 uint16_t old_event = env->cp15.c14_pmevtyper[counter] & 1666 PMXEVTYPER_EVTCOUNT; 1667 uint16_t new_event = value & PMXEVTYPER_EVTCOUNT; 1668 if (old_event != new_event) { 1669 uint64_t count = 0; 1670 if (event_supported(new_event)) { 1671 uint16_t event_idx = supported_event_map[new_event]; 1672 count = pm_events[event_idx].get_count(env); 1673 } 1674 env->cp15.c14_pmevcntr_delta[counter] = count; 1675 } 1676 1677 env->cp15.c14_pmevtyper[counter] = value & PMXEVTYPER_MASK; 1678 pmevcntr_op_finish(env, counter); 1679 } 1680 /* 1681 * Attempts to access PMXEVTYPER are CONSTRAINED UNPREDICTABLE when 1682 * PMSELR value is equal to or greater than the number of implemented 1683 * counters, but not equal to 0x1f. We opt to behave as a RAZ/WI. 1684 */ 1685 } 1686 1687 static uint64_t pmevtyper_read(CPUARMState *env, const ARMCPRegInfo *ri, 1688 const uint8_t counter) 1689 { 1690 if (counter == 31) { 1691 return env->cp15.pmccfiltr_el0; 1692 } else if (counter < pmu_num_counters(env)) { 1693 return env->cp15.c14_pmevtyper[counter]; 1694 } else { 1695 /* 1696 * We opt to behave as a RAZ/WI when attempts to access PMXEVTYPER 1697 * are CONSTRAINED UNPREDICTABLE. See comments in pmevtyper_write(). 1698 */ 1699 return 0; 1700 } 1701 } 1702 1703 static void pmevtyper_writefn(CPUARMState *env, const ARMCPRegInfo *ri, 1704 uint64_t value) 1705 { 1706 uint8_t counter = ((ri->crm & 3) << 3) | (ri->opc2 & 7); 1707 pmevtyper_write(env, ri, value, counter); 1708 } 1709 1710 static void pmevtyper_rawwrite(CPUARMState *env, const ARMCPRegInfo *ri, 1711 uint64_t value) 1712 { 1713 uint8_t counter = ((ri->crm & 3) << 3) | (ri->opc2 & 7); 1714 env->cp15.c14_pmevtyper[counter] = value; 1715 1716 /* 1717 * pmevtyper_rawwrite is called between a pair of pmu_op_start and 1718 * pmu_op_finish calls when loading saved state for a migration. Because 1719 * we're potentially updating the type of event here, the value written to 1720 * c14_pmevcntr_delta by the preceding pmu_op_start call may be for a 1721 * different counter type. Therefore, we need to set this value to the 1722 * current count for the counter type we're writing so that pmu_op_finish 1723 * has the correct count for its calculation. 1724 */ 1725 uint16_t event = value & PMXEVTYPER_EVTCOUNT; 1726 if (event_supported(event)) { 1727 uint16_t event_idx = supported_event_map[event]; 1728 env->cp15.c14_pmevcntr_delta[counter] = 1729 pm_events[event_idx].get_count(env); 1730 } 1731 } 1732 1733 static uint64_t pmevtyper_readfn(CPUARMState *env, const ARMCPRegInfo *ri) 1734 { 1735 uint8_t counter = ((ri->crm & 3) << 3) | (ri->opc2 & 7); 1736 return pmevtyper_read(env, ri, counter); 1737 } 1738 1739 static void pmxevtyper_write(CPUARMState *env, const ARMCPRegInfo *ri, 1740 uint64_t value) 1741 { 1742 pmevtyper_write(env, ri, value, env->cp15.c9_pmselr & 31); 1743 } 1744 1745 static uint64_t pmxevtyper_read(CPUARMState *env, const ARMCPRegInfo *ri) 1746 { 1747 return pmevtyper_read(env, ri, env->cp15.c9_pmselr & 31); 1748 } 1749 1750 static void pmevcntr_write(CPUARMState *env, const ARMCPRegInfo *ri, 1751 uint64_t value, uint8_t counter) 1752 { 1753 if (!cpu_isar_feature(any_pmuv3p5, env_archcpu(env))) { 1754 /* Before FEAT_PMUv3p5, top 32 bits of event counters are RES0 */ 1755 value &= MAKE_64BIT_MASK(0, 32); 1756 } 1757 if (counter < pmu_num_counters(env)) { 1758 pmevcntr_op_start(env, counter); 1759 env->cp15.c14_pmevcntr[counter] = value; 1760 pmevcntr_op_finish(env, counter); 1761 } 1762 /* 1763 * We opt to behave as a RAZ/WI when attempts to access PM[X]EVCNTR 1764 * are CONSTRAINED UNPREDICTABLE. 1765 */ 1766 } 1767 1768 static uint64_t pmevcntr_read(CPUARMState *env, const ARMCPRegInfo *ri, 1769 uint8_t counter) 1770 { 1771 if (counter < pmu_num_counters(env)) { 1772 uint64_t ret; 1773 pmevcntr_op_start(env, counter); 1774 ret = env->cp15.c14_pmevcntr[counter]; 1775 pmevcntr_op_finish(env, counter); 1776 if (!cpu_isar_feature(any_pmuv3p5, env_archcpu(env))) { 1777 /* Before FEAT_PMUv3p5, top 32 bits of event counters are RES0 */ 1778 ret &= MAKE_64BIT_MASK(0, 32); 1779 } 1780 return ret; 1781 } else { 1782 /* 1783 * We opt to behave as a RAZ/WI when attempts to access PM[X]EVCNTR 1784 * are CONSTRAINED UNPREDICTABLE. 1785 */ 1786 return 0; 1787 } 1788 } 1789 1790 static void pmevcntr_writefn(CPUARMState *env, const ARMCPRegInfo *ri, 1791 uint64_t value) 1792 { 1793 uint8_t counter = ((ri->crm & 3) << 3) | (ri->opc2 & 7); 1794 pmevcntr_write(env, ri, value, counter); 1795 } 1796 1797 static uint64_t pmevcntr_readfn(CPUARMState *env, const ARMCPRegInfo *ri) 1798 { 1799 uint8_t counter = ((ri->crm & 3) << 3) | (ri->opc2 & 7); 1800 return pmevcntr_read(env, ri, counter); 1801 } 1802 1803 static void pmevcntr_rawwrite(CPUARMState *env, const ARMCPRegInfo *ri, 1804 uint64_t value) 1805 { 1806 uint8_t counter = ((ri->crm & 3) << 3) | (ri->opc2 & 7); 1807 assert(counter < pmu_num_counters(env)); 1808 env->cp15.c14_pmevcntr[counter] = value; 1809 pmevcntr_write(env, ri, value, counter); 1810 } 1811 1812 static uint64_t pmevcntr_rawread(CPUARMState *env, const ARMCPRegInfo *ri) 1813 { 1814 uint8_t counter = ((ri->crm & 3) << 3) | (ri->opc2 & 7); 1815 assert(counter < pmu_num_counters(env)); 1816 return env->cp15.c14_pmevcntr[counter]; 1817 } 1818 1819 static void pmxevcntr_write(CPUARMState *env, const ARMCPRegInfo *ri, 1820 uint64_t value) 1821 { 1822 pmevcntr_write(env, ri, value, env->cp15.c9_pmselr & 31); 1823 } 1824 1825 static uint64_t pmxevcntr_read(CPUARMState *env, const ARMCPRegInfo *ri) 1826 { 1827 return pmevcntr_read(env, ri, env->cp15.c9_pmselr & 31); 1828 } 1829 1830 static void pmuserenr_write(CPUARMState *env, const ARMCPRegInfo *ri, 1831 uint64_t value) 1832 { 1833 if (arm_feature(env, ARM_FEATURE_V8)) { 1834 env->cp15.c9_pmuserenr = value & 0xf; 1835 } else { 1836 env->cp15.c9_pmuserenr = value & 1; 1837 } 1838 } 1839 1840 static void pmintenset_write(CPUARMState *env, const ARMCPRegInfo *ri, 1841 uint64_t value) 1842 { 1843 /* We have no event counters so only the C bit can be changed */ 1844 value &= pmu_counter_mask(env); 1845 env->cp15.c9_pminten |= value; 1846 pmu_update_irq(env); 1847 } 1848 1849 static void pmintenclr_write(CPUARMState *env, const ARMCPRegInfo *ri, 1850 uint64_t value) 1851 { 1852 value &= pmu_counter_mask(env); 1853 env->cp15.c9_pminten &= ~value; 1854 pmu_update_irq(env); 1855 } 1856 1857 static void vbar_write(CPUARMState *env, const ARMCPRegInfo *ri, 1858 uint64_t value) 1859 { 1860 /* 1861 * Note that even though the AArch64 view of this register has bits 1862 * [10:0] all RES0 we can only mask the bottom 5, to comply with the 1863 * architectural requirements for bits which are RES0 only in some 1864 * contexts. (ARMv8 would permit us to do no masking at all, but ARMv7 1865 * requires the bottom five bits to be RAZ/WI because they're UNK/SBZP.) 1866 */ 1867 raw_write(env, ri, value & ~0x1FULL); 1868 } 1869 1870 static void scr_write(CPUARMState *env, const ARMCPRegInfo *ri, uint64_t value) 1871 { 1872 /* Begin with base v8.0 state. */ 1873 uint64_t valid_mask = 0x3fff; 1874 ARMCPU *cpu = env_archcpu(env); 1875 uint64_t changed; 1876 1877 /* 1878 * Because SCR_EL3 is the "real" cpreg and SCR is the alias, reset always 1879 * passes the reginfo for SCR_EL3, which has type ARM_CP_STATE_AA64. 1880 * Instead, choose the format based on the mode of EL3. 1881 */ 1882 if (arm_el_is_aa64(env, 3)) { 1883 value |= SCR_FW | SCR_AW; /* RES1 */ 1884 valid_mask &= ~SCR_NET; /* RES0 */ 1885 1886 if (!cpu_isar_feature(aa64_aa32_el1, cpu) && 1887 !cpu_isar_feature(aa64_aa32_el2, cpu)) { 1888 value |= SCR_RW; /* RAO/WI */ 1889 } 1890 if (cpu_isar_feature(aa64_ras, cpu)) { 1891 valid_mask |= SCR_TERR; 1892 } 1893 if (cpu_isar_feature(aa64_lor, cpu)) { 1894 valid_mask |= SCR_TLOR; 1895 } 1896 if (cpu_isar_feature(aa64_pauth, cpu)) { 1897 valid_mask |= SCR_API | SCR_APK; 1898 } 1899 if (cpu_isar_feature(aa64_sel2, cpu)) { 1900 valid_mask |= SCR_EEL2; 1901 } else if (cpu_isar_feature(aa64_rme, cpu)) { 1902 /* With RME and without SEL2, NS is RES1 (R_GSWWH, I_DJJQJ). */ 1903 value |= SCR_NS; 1904 } 1905 if (cpu_isar_feature(aa64_mte, cpu)) { 1906 valid_mask |= SCR_ATA; 1907 } 1908 if (cpu_isar_feature(aa64_scxtnum, cpu)) { 1909 valid_mask |= SCR_ENSCXT; 1910 } 1911 if (cpu_isar_feature(aa64_doublefault, cpu)) { 1912 valid_mask |= SCR_EASE | SCR_NMEA; 1913 } 1914 if (cpu_isar_feature(aa64_sme, cpu)) { 1915 valid_mask |= SCR_ENTP2; 1916 } 1917 if (cpu_isar_feature(aa64_hcx, cpu)) { 1918 valid_mask |= SCR_HXEN; 1919 } 1920 if (cpu_isar_feature(aa64_fgt, cpu)) { 1921 valid_mask |= SCR_FGTEN; 1922 } 1923 if (cpu_isar_feature(aa64_rme, cpu)) { 1924 valid_mask |= SCR_NSE | SCR_GPF; 1925 } 1926 if (cpu_isar_feature(aa64_ecv, cpu)) { 1927 valid_mask |= SCR_ECVEN; 1928 } 1929 } else { 1930 valid_mask &= ~(SCR_RW | SCR_ST); 1931 if (cpu_isar_feature(aa32_ras, cpu)) { 1932 valid_mask |= SCR_TERR; 1933 } 1934 } 1935 1936 if (!arm_feature(env, ARM_FEATURE_EL2)) { 1937 valid_mask &= ~SCR_HCE; 1938 1939 /* 1940 * On ARMv7, SMD (or SCD as it is called in v7) is only 1941 * supported if EL2 exists. The bit is UNK/SBZP when 1942 * EL2 is unavailable. In QEMU ARMv7, we force it to always zero 1943 * when EL2 is unavailable. 1944 * On ARMv8, this bit is always available. 1945 */ 1946 if (arm_feature(env, ARM_FEATURE_V7) && 1947 !arm_feature(env, ARM_FEATURE_V8)) { 1948 valid_mask &= ~SCR_SMD; 1949 } 1950 } 1951 1952 /* Clear all-context RES0 bits. */ 1953 value &= valid_mask; 1954 changed = env->cp15.scr_el3 ^ value; 1955 env->cp15.scr_el3 = value; 1956 1957 /* 1958 * If SCR_EL3.{NS,NSE} changes, i.e. change of security state, 1959 * we must invalidate all TLBs below EL3. 1960 */ 1961 if (changed & (SCR_NS | SCR_NSE)) { 1962 tlb_flush_by_mmuidx(env_cpu(env), (ARMMMUIdxBit_E10_0 | 1963 ARMMMUIdxBit_E20_0 | 1964 ARMMMUIdxBit_E10_1 | 1965 ARMMMUIdxBit_E20_2 | 1966 ARMMMUIdxBit_E10_1_PAN | 1967 ARMMMUIdxBit_E20_2_PAN | 1968 ARMMMUIdxBit_E2)); 1969 } 1970 } 1971 1972 static void scr_reset(CPUARMState *env, const ARMCPRegInfo *ri) 1973 { 1974 /* 1975 * scr_write will set the RES1 bits on an AArch64-only CPU. 1976 * The reset value will be 0x30 on an AArch64-only CPU and 0 otherwise. 1977 */ 1978 scr_write(env, ri, 0); 1979 } 1980 1981 static CPAccessResult access_tid4(CPUARMState *env, 1982 const ARMCPRegInfo *ri, 1983 bool isread) 1984 { 1985 if (arm_current_el(env) == 1 && 1986 (arm_hcr_el2_eff(env) & (HCR_TID2 | HCR_TID4))) { 1987 return CP_ACCESS_TRAP_EL2; 1988 } 1989 1990 return CP_ACCESS_OK; 1991 } 1992 1993 static uint64_t ccsidr_read(CPUARMState *env, const ARMCPRegInfo *ri) 1994 { 1995 ARMCPU *cpu = env_archcpu(env); 1996 1997 /* 1998 * Acquire the CSSELR index from the bank corresponding to the CCSIDR 1999 * bank 2000 */ 2001 uint32_t index = A32_BANKED_REG_GET(env, csselr, 2002 ri->secure & ARM_CP_SECSTATE_S); 2003 2004 return cpu->ccsidr[index]; 2005 } 2006 2007 static void csselr_write(CPUARMState *env, const ARMCPRegInfo *ri, 2008 uint64_t value) 2009 { 2010 raw_write(env, ri, value & 0xf); 2011 } 2012 2013 static uint64_t isr_read(CPUARMState *env, const ARMCPRegInfo *ri) 2014 { 2015 CPUState *cs = env_cpu(env); 2016 bool el1 = arm_current_el(env) == 1; 2017 uint64_t hcr_el2 = el1 ? arm_hcr_el2_eff(env) : 0; 2018 uint64_t ret = 0; 2019 2020 if (hcr_el2 & HCR_IMO) { 2021 if (cs->interrupt_request & CPU_INTERRUPT_VIRQ) { 2022 ret |= CPSR_I; 2023 } 2024 } else { 2025 if (cs->interrupt_request & CPU_INTERRUPT_HARD) { 2026 ret |= CPSR_I; 2027 } 2028 } 2029 2030 if (hcr_el2 & HCR_FMO) { 2031 if (cs->interrupt_request & CPU_INTERRUPT_VFIQ) { 2032 ret |= CPSR_F; 2033 } 2034 } else { 2035 if (cs->interrupt_request & CPU_INTERRUPT_FIQ) { 2036 ret |= CPSR_F; 2037 } 2038 } 2039 2040 if (hcr_el2 & HCR_AMO) { 2041 if (cs->interrupt_request & CPU_INTERRUPT_VSERR) { 2042 ret |= CPSR_A; 2043 } 2044 } 2045 2046 return ret; 2047 } 2048 2049 static CPAccessResult access_aa64_tid1(CPUARMState *env, const ARMCPRegInfo *ri, 2050 bool isread) 2051 { 2052 if (arm_current_el(env) == 1 && (arm_hcr_el2_eff(env) & HCR_TID1)) { 2053 return CP_ACCESS_TRAP_EL2; 2054 } 2055 2056 return CP_ACCESS_OK; 2057 } 2058 2059 static CPAccessResult access_aa32_tid1(CPUARMState *env, const ARMCPRegInfo *ri, 2060 bool isread) 2061 { 2062 if (arm_feature(env, ARM_FEATURE_V8)) { 2063 return access_aa64_tid1(env, ri, isread); 2064 } 2065 2066 return CP_ACCESS_OK; 2067 } 2068 2069 static const ARMCPRegInfo v7_cp_reginfo[] = { 2070 /* the old v6 WFI, UNPREDICTABLE in v7 but we choose to NOP */ 2071 { .name = "NOP", .cp = 15, .crn = 7, .crm = 0, .opc1 = 0, .opc2 = 4, 2072 .access = PL1_W, .type = ARM_CP_NOP }, 2073 /* 2074 * Performance monitors are implementation defined in v7, 2075 * but with an ARM recommended set of registers, which we 2076 * follow. 2077 * 2078 * Performance registers fall into three categories: 2079 * (a) always UNDEF in PL0, RW in PL1 (PMINTENSET, PMINTENCLR) 2080 * (b) RO in PL0 (ie UNDEF on write), RW in PL1 (PMUSERENR) 2081 * (c) UNDEF in PL0 if PMUSERENR.EN==0, otherwise accessible (all others) 2082 * For the cases controlled by PMUSERENR we must set .access to PL0_RW 2083 * or PL0_RO as appropriate and then check PMUSERENR in the helper fn. 2084 */ 2085 { .name = "PMCNTENSET", .cp = 15, .crn = 9, .crm = 12, .opc1 = 0, .opc2 = 1, 2086 .access = PL0_RW, .type = ARM_CP_ALIAS | ARM_CP_IO, 2087 .fieldoffset = offsetoflow32(CPUARMState, cp15.c9_pmcnten), 2088 .writefn = pmcntenset_write, 2089 .accessfn = pmreg_access, 2090 .fgt = FGT_PMCNTEN, 2091 .raw_writefn = raw_write }, 2092 { .name = "PMCNTENSET_EL0", .state = ARM_CP_STATE_AA64, .type = ARM_CP_IO, 2093 .opc0 = 3, .opc1 = 3, .crn = 9, .crm = 12, .opc2 = 1, 2094 .access = PL0_RW, .accessfn = pmreg_access, 2095 .fgt = FGT_PMCNTEN, 2096 .fieldoffset = offsetof(CPUARMState, cp15.c9_pmcnten), .resetvalue = 0, 2097 .writefn = pmcntenset_write, .raw_writefn = raw_write }, 2098 { .name = "PMCNTENCLR", .cp = 15, .crn = 9, .crm = 12, .opc1 = 0, .opc2 = 2, 2099 .access = PL0_RW, 2100 .fieldoffset = offsetoflow32(CPUARMState, cp15.c9_pmcnten), 2101 .accessfn = pmreg_access, 2102 .fgt = FGT_PMCNTEN, 2103 .writefn = pmcntenclr_write, 2104 .type = ARM_CP_ALIAS | ARM_CP_IO }, 2105 { .name = "PMCNTENCLR_EL0", .state = ARM_CP_STATE_AA64, 2106 .opc0 = 3, .opc1 = 3, .crn = 9, .crm = 12, .opc2 = 2, 2107 .access = PL0_RW, .accessfn = pmreg_access, 2108 .fgt = FGT_PMCNTEN, 2109 .type = ARM_CP_ALIAS | ARM_CP_IO, 2110 .fieldoffset = offsetof(CPUARMState, cp15.c9_pmcnten), 2111 .writefn = pmcntenclr_write }, 2112 { .name = "PMOVSR", .cp = 15, .crn = 9, .crm = 12, .opc1 = 0, .opc2 = 3, 2113 .access = PL0_RW, .type = ARM_CP_IO, 2114 .fieldoffset = offsetoflow32(CPUARMState, cp15.c9_pmovsr), 2115 .accessfn = pmreg_access, 2116 .fgt = FGT_PMOVS, 2117 .writefn = pmovsr_write, 2118 .raw_writefn = raw_write }, 2119 { .name = "PMOVSCLR_EL0", .state = ARM_CP_STATE_AA64, 2120 .opc0 = 3, .opc1 = 3, .crn = 9, .crm = 12, .opc2 = 3, 2121 .access = PL0_RW, .accessfn = pmreg_access, 2122 .fgt = FGT_PMOVS, 2123 .type = ARM_CP_ALIAS | ARM_CP_IO, 2124 .fieldoffset = offsetof(CPUARMState, cp15.c9_pmovsr), 2125 .writefn = pmovsr_write, 2126 .raw_writefn = raw_write }, 2127 { .name = "PMSWINC", .cp = 15, .crn = 9, .crm = 12, .opc1 = 0, .opc2 = 4, 2128 .access = PL0_W, .accessfn = pmreg_access_swinc, 2129 .fgt = FGT_PMSWINC_EL0, 2130 .type = ARM_CP_NO_RAW | ARM_CP_IO, 2131 .writefn = pmswinc_write }, 2132 { .name = "PMSWINC_EL0", .state = ARM_CP_STATE_AA64, 2133 .opc0 = 3, .opc1 = 3, .crn = 9, .crm = 12, .opc2 = 4, 2134 .access = PL0_W, .accessfn = pmreg_access_swinc, 2135 .fgt = FGT_PMSWINC_EL0, 2136 .type = ARM_CP_NO_RAW | ARM_CP_IO, 2137 .writefn = pmswinc_write }, 2138 { .name = "PMSELR", .cp = 15, .crn = 9, .crm = 12, .opc1 = 0, .opc2 = 5, 2139 .access = PL0_RW, .type = ARM_CP_ALIAS, 2140 .fgt = FGT_PMSELR_EL0, 2141 .fieldoffset = offsetoflow32(CPUARMState, cp15.c9_pmselr), 2142 .accessfn = pmreg_access_selr, .writefn = pmselr_write, 2143 .raw_writefn = raw_write}, 2144 { .name = "PMSELR_EL0", .state = ARM_CP_STATE_AA64, 2145 .opc0 = 3, .opc1 = 3, .crn = 9, .crm = 12, .opc2 = 5, 2146 .access = PL0_RW, .accessfn = pmreg_access_selr, 2147 .fgt = FGT_PMSELR_EL0, 2148 .fieldoffset = offsetof(CPUARMState, cp15.c9_pmselr), 2149 .writefn = pmselr_write, .raw_writefn = raw_write, }, 2150 { .name = "PMCCNTR", .cp = 15, .crn = 9, .crm = 13, .opc1 = 0, .opc2 = 0, 2151 .access = PL0_RW, .resetvalue = 0, .type = ARM_CP_ALIAS | ARM_CP_IO, 2152 .fgt = FGT_PMCCNTR_EL0, 2153 .readfn = pmccntr_read, .writefn = pmccntr_write32, 2154 .accessfn = pmreg_access_ccntr }, 2155 { .name = "PMCCNTR_EL0", .state = ARM_CP_STATE_AA64, 2156 .opc0 = 3, .opc1 = 3, .crn = 9, .crm = 13, .opc2 = 0, 2157 .access = PL0_RW, .accessfn = pmreg_access_ccntr, 2158 .fgt = FGT_PMCCNTR_EL0, 2159 .type = ARM_CP_IO, 2160 .fieldoffset = offsetof(CPUARMState, cp15.c15_ccnt), 2161 .readfn = pmccntr_read, .writefn = pmccntr_write, 2162 .raw_readfn = raw_read, .raw_writefn = raw_write, }, 2163 { .name = "PMCCFILTR", .cp = 15, .opc1 = 0, .crn = 14, .crm = 15, .opc2 = 7, 2164 .writefn = pmccfiltr_write_a32, .readfn = pmccfiltr_read_a32, 2165 .access = PL0_RW, .accessfn = pmreg_access, 2166 .fgt = FGT_PMCCFILTR_EL0, 2167 .type = ARM_CP_ALIAS | ARM_CP_IO, 2168 .resetvalue = 0, }, 2169 { .name = "PMCCFILTR_EL0", .state = ARM_CP_STATE_AA64, 2170 .opc0 = 3, .opc1 = 3, .crn = 14, .crm = 15, .opc2 = 7, 2171 .writefn = pmccfiltr_write, .raw_writefn = raw_write, 2172 .access = PL0_RW, .accessfn = pmreg_access, 2173 .fgt = FGT_PMCCFILTR_EL0, 2174 .type = ARM_CP_IO, 2175 .fieldoffset = offsetof(CPUARMState, cp15.pmccfiltr_el0), 2176 .resetvalue = 0, }, 2177 { .name = "PMXEVTYPER", .cp = 15, .crn = 9, .crm = 13, .opc1 = 0, .opc2 = 1, 2178 .access = PL0_RW, .type = ARM_CP_NO_RAW | ARM_CP_IO, 2179 .accessfn = pmreg_access, 2180 .fgt = FGT_PMEVTYPERN_EL0, 2181 .writefn = pmxevtyper_write, .readfn = pmxevtyper_read }, 2182 { .name = "PMXEVTYPER_EL0", .state = ARM_CP_STATE_AA64, 2183 .opc0 = 3, .opc1 = 3, .crn = 9, .crm = 13, .opc2 = 1, 2184 .access = PL0_RW, .type = ARM_CP_NO_RAW | ARM_CP_IO, 2185 .accessfn = pmreg_access, 2186 .fgt = FGT_PMEVTYPERN_EL0, 2187 .writefn = pmxevtyper_write, .readfn = pmxevtyper_read }, 2188 { .name = "PMXEVCNTR", .cp = 15, .crn = 9, .crm = 13, .opc1 = 0, .opc2 = 2, 2189 .access = PL0_RW, .type = ARM_CP_NO_RAW | ARM_CP_IO, 2190 .accessfn = pmreg_access_xevcntr, 2191 .fgt = FGT_PMEVCNTRN_EL0, 2192 .writefn = pmxevcntr_write, .readfn = pmxevcntr_read }, 2193 { .name = "PMXEVCNTR_EL0", .state = ARM_CP_STATE_AA64, 2194 .opc0 = 3, .opc1 = 3, .crn = 9, .crm = 13, .opc2 = 2, 2195 .access = PL0_RW, .type = ARM_CP_NO_RAW | ARM_CP_IO, 2196 .accessfn = pmreg_access_xevcntr, 2197 .fgt = FGT_PMEVCNTRN_EL0, 2198 .writefn = pmxevcntr_write, .readfn = pmxevcntr_read }, 2199 { .name = "PMUSERENR", .cp = 15, .crn = 9, .crm = 14, .opc1 = 0, .opc2 = 0, 2200 .access = PL0_R | PL1_RW, .accessfn = access_tpm, 2201 .fieldoffset = offsetoflow32(CPUARMState, cp15.c9_pmuserenr), 2202 .resetvalue = 0, 2203 .writefn = pmuserenr_write, .raw_writefn = raw_write }, 2204 { .name = "PMUSERENR_EL0", .state = ARM_CP_STATE_AA64, 2205 .opc0 = 3, .opc1 = 3, .crn = 9, .crm = 14, .opc2 = 0, 2206 .access = PL0_R | PL1_RW, .accessfn = access_tpm, .type = ARM_CP_ALIAS, 2207 .fieldoffset = offsetof(CPUARMState, cp15.c9_pmuserenr), 2208 .resetvalue = 0, 2209 .writefn = pmuserenr_write, .raw_writefn = raw_write }, 2210 { .name = "PMINTENSET", .cp = 15, .crn = 9, .crm = 14, .opc1 = 0, .opc2 = 1, 2211 .access = PL1_RW, .accessfn = access_tpm, 2212 .fgt = FGT_PMINTEN, 2213 .type = ARM_CP_ALIAS | ARM_CP_IO, 2214 .fieldoffset = offsetoflow32(CPUARMState, cp15.c9_pminten), 2215 .resetvalue = 0, 2216 .writefn = pmintenset_write, .raw_writefn = raw_write }, 2217 { .name = "PMINTENSET_EL1", .state = ARM_CP_STATE_AA64, 2218 .opc0 = 3, .opc1 = 0, .crn = 9, .crm = 14, .opc2 = 1, 2219 .access = PL1_RW, .accessfn = access_tpm, 2220 .fgt = FGT_PMINTEN, 2221 .type = ARM_CP_IO, 2222 .fieldoffset = offsetof(CPUARMState, cp15.c9_pminten), 2223 .writefn = pmintenset_write, .raw_writefn = raw_write, 2224 .resetvalue = 0x0 }, 2225 { .name = "PMINTENCLR", .cp = 15, .crn = 9, .crm = 14, .opc1 = 0, .opc2 = 2, 2226 .access = PL1_RW, .accessfn = access_tpm, 2227 .fgt = FGT_PMINTEN, 2228 .type = ARM_CP_ALIAS | ARM_CP_IO | ARM_CP_NO_RAW, 2229 .fieldoffset = offsetof(CPUARMState, cp15.c9_pminten), 2230 .writefn = pmintenclr_write, }, 2231 { .name = "PMINTENCLR_EL1", .state = ARM_CP_STATE_AA64, 2232 .opc0 = 3, .opc1 = 0, .crn = 9, .crm = 14, .opc2 = 2, 2233 .access = PL1_RW, .accessfn = access_tpm, 2234 .fgt = FGT_PMINTEN, 2235 .type = ARM_CP_ALIAS | ARM_CP_IO | ARM_CP_NO_RAW, 2236 .fieldoffset = offsetof(CPUARMState, cp15.c9_pminten), 2237 .writefn = pmintenclr_write }, 2238 { .name = "CCSIDR", .state = ARM_CP_STATE_BOTH, 2239 .opc0 = 3, .crn = 0, .crm = 0, .opc1 = 1, .opc2 = 0, 2240 .access = PL1_R, 2241 .accessfn = access_tid4, 2242 .fgt = FGT_CCSIDR_EL1, 2243 .readfn = ccsidr_read, .type = ARM_CP_NO_RAW }, 2244 { .name = "CSSELR", .state = ARM_CP_STATE_BOTH, 2245 .opc0 = 3, .crn = 0, .crm = 0, .opc1 = 2, .opc2 = 0, 2246 .access = PL1_RW, 2247 .accessfn = access_tid4, 2248 .fgt = FGT_CSSELR_EL1, 2249 .writefn = csselr_write, .resetvalue = 0, 2250 .bank_fieldoffsets = { offsetof(CPUARMState, cp15.csselr_s), 2251 offsetof(CPUARMState, cp15.csselr_ns) } }, 2252 /* 2253 * Auxiliary ID register: this actually has an IMPDEF value but for now 2254 * just RAZ for all cores: 2255 */ 2256 { .name = "AIDR", .state = ARM_CP_STATE_BOTH, 2257 .opc0 = 3, .opc1 = 1, .crn = 0, .crm = 0, .opc2 = 7, 2258 .access = PL1_R, .type = ARM_CP_CONST, 2259 .accessfn = access_aa64_tid1, 2260 .fgt = FGT_AIDR_EL1, 2261 .resetvalue = 0 }, 2262 /* 2263 * Auxiliary fault status registers: these also are IMPDEF, and we 2264 * choose to RAZ/WI for all cores. 2265 */ 2266 { .name = "AFSR0_EL1", .state = ARM_CP_STATE_BOTH, 2267 .opc0 = 3, .opc1 = 0, .crn = 5, .crm = 1, .opc2 = 0, 2268 .access = PL1_RW, .accessfn = access_tvm_trvm, 2269 .fgt = FGT_AFSR0_EL1, 2270 .nv2_redirect_offset = 0x128 | NV2_REDIR_NV1, 2271 .type = ARM_CP_CONST, .resetvalue = 0 }, 2272 { .name = "AFSR1_EL1", .state = ARM_CP_STATE_BOTH, 2273 .opc0 = 3, .opc1 = 0, .crn = 5, .crm = 1, .opc2 = 1, 2274 .access = PL1_RW, .accessfn = access_tvm_trvm, 2275 .fgt = FGT_AFSR1_EL1, 2276 .nv2_redirect_offset = 0x130 | NV2_REDIR_NV1, 2277 .type = ARM_CP_CONST, .resetvalue = 0 }, 2278 /* 2279 * MAIR can just read-as-written because we don't implement caches 2280 * and so don't need to care about memory attributes. 2281 */ 2282 { .name = "MAIR_EL1", .state = ARM_CP_STATE_AA64, 2283 .opc0 = 3, .opc1 = 0, .crn = 10, .crm = 2, .opc2 = 0, 2284 .access = PL1_RW, .accessfn = access_tvm_trvm, 2285 .fgt = FGT_MAIR_EL1, 2286 .nv2_redirect_offset = 0x140 | NV2_REDIR_NV1, 2287 .fieldoffset = offsetof(CPUARMState, cp15.mair_el[1]), 2288 .resetvalue = 0 }, 2289 { .name = "MAIR_EL3", .state = ARM_CP_STATE_AA64, 2290 .opc0 = 3, .opc1 = 6, .crn = 10, .crm = 2, .opc2 = 0, 2291 .access = PL3_RW, .fieldoffset = offsetof(CPUARMState, cp15.mair_el[3]), 2292 .resetvalue = 0 }, 2293 /* 2294 * For non-long-descriptor page tables these are PRRR and NMRR; 2295 * regardless they still act as reads-as-written for QEMU. 2296 */ 2297 /* 2298 * MAIR0/1 are defined separately from their 64-bit counterpart which 2299 * allows them to assign the correct fieldoffset based on the endianness 2300 * handled in the field definitions. 2301 */ 2302 { .name = "MAIR0", .state = ARM_CP_STATE_AA32, 2303 .cp = 15, .opc1 = 0, .crn = 10, .crm = 2, .opc2 = 0, 2304 .access = PL1_RW, .accessfn = access_tvm_trvm, 2305 .bank_fieldoffsets = { offsetof(CPUARMState, cp15.mair0_s), 2306 offsetof(CPUARMState, cp15.mair0_ns) }, 2307 .resetfn = arm_cp_reset_ignore }, 2308 { .name = "MAIR1", .state = ARM_CP_STATE_AA32, 2309 .cp = 15, .opc1 = 0, .crn = 10, .crm = 2, .opc2 = 1, 2310 .access = PL1_RW, .accessfn = access_tvm_trvm, 2311 .bank_fieldoffsets = { offsetof(CPUARMState, cp15.mair1_s), 2312 offsetof(CPUARMState, cp15.mair1_ns) }, 2313 .resetfn = arm_cp_reset_ignore }, 2314 { .name = "ISR_EL1", .state = ARM_CP_STATE_BOTH, 2315 .opc0 = 3, .opc1 = 0, .crn = 12, .crm = 1, .opc2 = 0, 2316 .fgt = FGT_ISR_EL1, 2317 .type = ARM_CP_NO_RAW, .access = PL1_R, .readfn = isr_read }, 2318 /* 32 bit ITLB invalidates */ 2319 { .name = "ITLBIALL", .cp = 15, .opc1 = 0, .crn = 8, .crm = 5, .opc2 = 0, 2320 .type = ARM_CP_NO_RAW, .access = PL1_W, .accessfn = access_ttlb, 2321 .writefn = tlbiall_write }, 2322 { .name = "ITLBIMVA", .cp = 15, .opc1 = 0, .crn = 8, .crm = 5, .opc2 = 1, 2323 .type = ARM_CP_NO_RAW, .access = PL1_W, .accessfn = access_ttlb, 2324 .writefn = tlbimva_write }, 2325 { .name = "ITLBIASID", .cp = 15, .opc1 = 0, .crn = 8, .crm = 5, .opc2 = 2, 2326 .type = ARM_CP_NO_RAW, .access = PL1_W, .accessfn = access_ttlb, 2327 .writefn = tlbiasid_write }, 2328 /* 32 bit DTLB invalidates */ 2329 { .name = "DTLBIALL", .cp = 15, .opc1 = 0, .crn = 8, .crm = 6, .opc2 = 0, 2330 .type = ARM_CP_NO_RAW, .access = PL1_W, .accessfn = access_ttlb, 2331 .writefn = tlbiall_write }, 2332 { .name = "DTLBIMVA", .cp = 15, .opc1 = 0, .crn = 8, .crm = 6, .opc2 = 1, 2333 .type = ARM_CP_NO_RAW, .access = PL1_W, .accessfn = access_ttlb, 2334 .writefn = tlbimva_write }, 2335 { .name = "DTLBIASID", .cp = 15, .opc1 = 0, .crn = 8, .crm = 6, .opc2 = 2, 2336 .type = ARM_CP_NO_RAW, .access = PL1_W, .accessfn = access_ttlb, 2337 .writefn = tlbiasid_write }, 2338 /* 32 bit TLB invalidates */ 2339 { .name = "TLBIALL", .cp = 15, .opc1 = 0, .crn = 8, .crm = 7, .opc2 = 0, 2340 .type = ARM_CP_NO_RAW, .access = PL1_W, .accessfn = access_ttlb, 2341 .writefn = tlbiall_write }, 2342 { .name = "TLBIMVA", .cp = 15, .opc1 = 0, .crn = 8, .crm = 7, .opc2 = 1, 2343 .type = ARM_CP_NO_RAW, .access = PL1_W, .accessfn = access_ttlb, 2344 .writefn = tlbimva_write }, 2345 { .name = "TLBIASID", .cp = 15, .opc1 = 0, .crn = 8, .crm = 7, .opc2 = 2, 2346 .type = ARM_CP_NO_RAW, .access = PL1_W, .accessfn = access_ttlb, 2347 .writefn = tlbiasid_write }, 2348 { .name = "TLBIMVAA", .cp = 15, .opc1 = 0, .crn = 8, .crm = 7, .opc2 = 3, 2349 .type = ARM_CP_NO_RAW, .access = PL1_W, .accessfn = access_ttlb, 2350 .writefn = tlbimvaa_write }, 2351 }; 2352 2353 static const ARMCPRegInfo v7mp_cp_reginfo[] = { 2354 /* 32 bit TLB invalidates, Inner Shareable */ 2355 { .name = "TLBIALLIS", .cp = 15, .opc1 = 0, .crn = 8, .crm = 3, .opc2 = 0, 2356 .type = ARM_CP_NO_RAW, .access = PL1_W, .accessfn = access_ttlbis, 2357 .writefn = tlbiall_is_write }, 2358 { .name = "TLBIMVAIS", .cp = 15, .opc1 = 0, .crn = 8, .crm = 3, .opc2 = 1, 2359 .type = ARM_CP_NO_RAW, .access = PL1_W, .accessfn = access_ttlbis, 2360 .writefn = tlbimva_is_write }, 2361 { .name = "TLBIASIDIS", .cp = 15, .opc1 = 0, .crn = 8, .crm = 3, .opc2 = 2, 2362 .type = ARM_CP_NO_RAW, .access = PL1_W, .accessfn = access_ttlbis, 2363 .writefn = tlbiasid_is_write }, 2364 { .name = "TLBIMVAAIS", .cp = 15, .opc1 = 0, .crn = 8, .crm = 3, .opc2 = 3, 2365 .type = ARM_CP_NO_RAW, .access = PL1_W, .accessfn = access_ttlbis, 2366 .writefn = tlbimvaa_is_write }, 2367 }; 2368 2369 static const ARMCPRegInfo pmovsset_cp_reginfo[] = { 2370 /* PMOVSSET is not implemented in v7 before v7ve */ 2371 { .name = "PMOVSSET", .cp = 15, .opc1 = 0, .crn = 9, .crm = 14, .opc2 = 3, 2372 .access = PL0_RW, .accessfn = pmreg_access, 2373 .fgt = FGT_PMOVS, 2374 .type = ARM_CP_ALIAS | ARM_CP_IO, 2375 .fieldoffset = offsetoflow32(CPUARMState, cp15.c9_pmovsr), 2376 .writefn = pmovsset_write, 2377 .raw_writefn = raw_write }, 2378 { .name = "PMOVSSET_EL0", .state = ARM_CP_STATE_AA64, 2379 .opc0 = 3, .opc1 = 3, .crn = 9, .crm = 14, .opc2 = 3, 2380 .access = PL0_RW, .accessfn = pmreg_access, 2381 .fgt = FGT_PMOVS, 2382 .type = ARM_CP_ALIAS | ARM_CP_IO, 2383 .fieldoffset = offsetof(CPUARMState, cp15.c9_pmovsr), 2384 .writefn = pmovsset_write, 2385 .raw_writefn = raw_write }, 2386 }; 2387 2388 static void teecr_write(CPUARMState *env, const ARMCPRegInfo *ri, 2389 uint64_t value) 2390 { 2391 value &= 1; 2392 env->teecr = value; 2393 } 2394 2395 static CPAccessResult teecr_access(CPUARMState *env, const ARMCPRegInfo *ri, 2396 bool isread) 2397 { 2398 /* 2399 * HSTR.TTEE only exists in v7A, not v8A, but v8A doesn't have T2EE 2400 * at all, so we don't need to check whether we're v8A. 2401 */ 2402 if (arm_current_el(env) < 2 && !arm_is_secure_below_el3(env) && 2403 (env->cp15.hstr_el2 & HSTR_TTEE)) { 2404 return CP_ACCESS_TRAP_EL2; 2405 } 2406 return CP_ACCESS_OK; 2407 } 2408 2409 static CPAccessResult teehbr_access(CPUARMState *env, const ARMCPRegInfo *ri, 2410 bool isread) 2411 { 2412 if (arm_current_el(env) == 0 && (env->teecr & 1)) { 2413 return CP_ACCESS_TRAP; 2414 } 2415 return teecr_access(env, ri, isread); 2416 } 2417 2418 static const ARMCPRegInfo t2ee_cp_reginfo[] = { 2419 { .name = "TEECR", .cp = 14, .crn = 0, .crm = 0, .opc1 = 6, .opc2 = 0, 2420 .access = PL1_RW, .fieldoffset = offsetof(CPUARMState, teecr), 2421 .resetvalue = 0, 2422 .writefn = teecr_write, .accessfn = teecr_access }, 2423 { .name = "TEEHBR", .cp = 14, .crn = 1, .crm = 0, .opc1 = 6, .opc2 = 0, 2424 .access = PL0_RW, .fieldoffset = offsetof(CPUARMState, teehbr), 2425 .accessfn = teehbr_access, .resetvalue = 0 }, 2426 }; 2427 2428 static const ARMCPRegInfo v6k_cp_reginfo[] = { 2429 { .name = "TPIDR_EL0", .state = ARM_CP_STATE_AA64, 2430 .opc0 = 3, .opc1 = 3, .opc2 = 2, .crn = 13, .crm = 0, 2431 .access = PL0_RW, 2432 .fgt = FGT_TPIDR_EL0, 2433 .fieldoffset = offsetof(CPUARMState, cp15.tpidr_el[0]), .resetvalue = 0 }, 2434 { .name = "TPIDRURW", .cp = 15, .crn = 13, .crm = 0, .opc1 = 0, .opc2 = 2, 2435 .access = PL0_RW, 2436 .fgt = FGT_TPIDR_EL0, 2437 .bank_fieldoffsets = { offsetoflow32(CPUARMState, cp15.tpidrurw_s), 2438 offsetoflow32(CPUARMState, cp15.tpidrurw_ns) }, 2439 .resetfn = arm_cp_reset_ignore }, 2440 { .name = "TPIDRRO_EL0", .state = ARM_CP_STATE_AA64, 2441 .opc0 = 3, .opc1 = 3, .opc2 = 3, .crn = 13, .crm = 0, 2442 .access = PL0_R | PL1_W, 2443 .fgt = FGT_TPIDRRO_EL0, 2444 .fieldoffset = offsetof(CPUARMState, cp15.tpidrro_el[0]), 2445 .resetvalue = 0}, 2446 { .name = "TPIDRURO", .cp = 15, .crn = 13, .crm = 0, .opc1 = 0, .opc2 = 3, 2447 .access = PL0_R | PL1_W, 2448 .fgt = FGT_TPIDRRO_EL0, 2449 .bank_fieldoffsets = { offsetoflow32(CPUARMState, cp15.tpidruro_s), 2450 offsetoflow32(CPUARMState, cp15.tpidruro_ns) }, 2451 .resetfn = arm_cp_reset_ignore }, 2452 { .name = "TPIDR_EL1", .state = ARM_CP_STATE_AA64, 2453 .opc0 = 3, .opc1 = 0, .opc2 = 4, .crn = 13, .crm = 0, 2454 .access = PL1_RW, 2455 .fgt = FGT_TPIDR_EL1, 2456 .fieldoffset = offsetof(CPUARMState, cp15.tpidr_el[1]), .resetvalue = 0 }, 2457 { .name = "TPIDRPRW", .opc1 = 0, .cp = 15, .crn = 13, .crm = 0, .opc2 = 4, 2458 .access = PL1_RW, 2459 .bank_fieldoffsets = { offsetoflow32(CPUARMState, cp15.tpidrprw_s), 2460 offsetoflow32(CPUARMState, cp15.tpidrprw_ns) }, 2461 .resetvalue = 0 }, 2462 }; 2463 2464 #ifndef CONFIG_USER_ONLY 2465 2466 static CPAccessResult gt_cntfrq_access(CPUARMState *env, const ARMCPRegInfo *ri, 2467 bool isread) 2468 { 2469 /* 2470 * CNTFRQ: not visible from PL0 if both PL0PCTEN and PL0VCTEN are zero. 2471 * Writable only at the highest implemented exception level. 2472 */ 2473 int el = arm_current_el(env); 2474 uint64_t hcr; 2475 uint32_t cntkctl; 2476 2477 switch (el) { 2478 case 0: 2479 hcr = arm_hcr_el2_eff(env); 2480 if ((hcr & (HCR_E2H | HCR_TGE)) == (HCR_E2H | HCR_TGE)) { 2481 cntkctl = env->cp15.cnthctl_el2; 2482 } else { 2483 cntkctl = env->cp15.c14_cntkctl; 2484 } 2485 if (!extract32(cntkctl, 0, 2)) { 2486 return CP_ACCESS_TRAP; 2487 } 2488 break; 2489 case 1: 2490 if (!isread && ri->state == ARM_CP_STATE_AA32 && 2491 arm_is_secure_below_el3(env)) { 2492 /* Accesses from 32-bit Secure EL1 UNDEF (*not* trap to EL3!) */ 2493 return CP_ACCESS_TRAP_UNCATEGORIZED; 2494 } 2495 break; 2496 case 2: 2497 case 3: 2498 break; 2499 } 2500 2501 if (!isread && el < arm_highest_el(env)) { 2502 return CP_ACCESS_TRAP_UNCATEGORIZED; 2503 } 2504 2505 return CP_ACCESS_OK; 2506 } 2507 2508 static CPAccessResult gt_counter_access(CPUARMState *env, int timeridx, 2509 bool isread) 2510 { 2511 unsigned int cur_el = arm_current_el(env); 2512 bool has_el2 = arm_is_el2_enabled(env); 2513 uint64_t hcr = arm_hcr_el2_eff(env); 2514 2515 switch (cur_el) { 2516 case 0: 2517 /* If HCR_EL2.<E2H,TGE> == '11': check CNTHCTL_EL2.EL0[PV]CTEN. */ 2518 if ((hcr & (HCR_E2H | HCR_TGE)) == (HCR_E2H | HCR_TGE)) { 2519 return (extract32(env->cp15.cnthctl_el2, timeridx, 1) 2520 ? CP_ACCESS_OK : CP_ACCESS_TRAP_EL2); 2521 } 2522 2523 /* CNT[PV]CT: not visible from PL0 if EL0[PV]CTEN is zero */ 2524 if (!extract32(env->cp15.c14_cntkctl, timeridx, 1)) { 2525 return CP_ACCESS_TRAP; 2526 } 2527 /* fall through */ 2528 case 1: 2529 /* Check CNTHCTL_EL2.EL1PCTEN, which changes location based on E2H. */ 2530 if (has_el2 && timeridx == GTIMER_PHYS && 2531 (hcr & HCR_E2H 2532 ? !extract32(env->cp15.cnthctl_el2, 10, 1) 2533 : !extract32(env->cp15.cnthctl_el2, 0, 1))) { 2534 return CP_ACCESS_TRAP_EL2; 2535 } 2536 if (has_el2 && timeridx == GTIMER_VIRT) { 2537 if (FIELD_EX64(env->cp15.cnthctl_el2, CNTHCTL, EL1TVCT)) { 2538 return CP_ACCESS_TRAP_EL2; 2539 } 2540 } 2541 break; 2542 } 2543 return CP_ACCESS_OK; 2544 } 2545 2546 static CPAccessResult gt_timer_access(CPUARMState *env, int timeridx, 2547 bool isread) 2548 { 2549 unsigned int cur_el = arm_current_el(env); 2550 bool has_el2 = arm_is_el2_enabled(env); 2551 uint64_t hcr = arm_hcr_el2_eff(env); 2552 2553 switch (cur_el) { 2554 case 0: 2555 if ((hcr & (HCR_E2H | HCR_TGE)) == (HCR_E2H | HCR_TGE)) { 2556 /* If HCR_EL2.<E2H,TGE> == '11': check CNTHCTL_EL2.EL0[PV]TEN. */ 2557 return (extract32(env->cp15.cnthctl_el2, 9 - timeridx, 1) 2558 ? CP_ACCESS_OK : CP_ACCESS_TRAP_EL2); 2559 } 2560 2561 /* 2562 * CNT[PV]_CVAL, CNT[PV]_CTL, CNT[PV]_TVAL: not visible from 2563 * EL0 if EL0[PV]TEN is zero. 2564 */ 2565 if (!extract32(env->cp15.c14_cntkctl, 9 - timeridx, 1)) { 2566 return CP_ACCESS_TRAP; 2567 } 2568 /* fall through */ 2569 2570 case 1: 2571 if (has_el2 && timeridx == GTIMER_PHYS) { 2572 if (hcr & HCR_E2H) { 2573 /* If HCR_EL2.<E2H,TGE> == '10': check CNTHCTL_EL2.EL1PTEN. */ 2574 if (!extract32(env->cp15.cnthctl_el2, 11, 1)) { 2575 return CP_ACCESS_TRAP_EL2; 2576 } 2577 } else { 2578 /* If HCR_EL2.<E2H> == 0: check CNTHCTL_EL2.EL1PCEN. */ 2579 if (!extract32(env->cp15.cnthctl_el2, 1, 1)) { 2580 return CP_ACCESS_TRAP_EL2; 2581 } 2582 } 2583 } 2584 if (has_el2 && timeridx == GTIMER_VIRT) { 2585 if (FIELD_EX64(env->cp15.cnthctl_el2, CNTHCTL, EL1TVT)) { 2586 return CP_ACCESS_TRAP_EL2; 2587 } 2588 } 2589 break; 2590 } 2591 return CP_ACCESS_OK; 2592 } 2593 2594 static CPAccessResult gt_pct_access(CPUARMState *env, 2595 const ARMCPRegInfo *ri, 2596 bool isread) 2597 { 2598 return gt_counter_access(env, GTIMER_PHYS, isread); 2599 } 2600 2601 static CPAccessResult gt_vct_access(CPUARMState *env, 2602 const ARMCPRegInfo *ri, 2603 bool isread) 2604 { 2605 return gt_counter_access(env, GTIMER_VIRT, isread); 2606 } 2607 2608 static CPAccessResult gt_ptimer_access(CPUARMState *env, const ARMCPRegInfo *ri, 2609 bool isread) 2610 { 2611 return gt_timer_access(env, GTIMER_PHYS, isread); 2612 } 2613 2614 static CPAccessResult gt_vtimer_access(CPUARMState *env, const ARMCPRegInfo *ri, 2615 bool isread) 2616 { 2617 return gt_timer_access(env, GTIMER_VIRT, isread); 2618 } 2619 2620 static CPAccessResult gt_stimer_access(CPUARMState *env, 2621 const ARMCPRegInfo *ri, 2622 bool isread) 2623 { 2624 /* 2625 * The AArch64 register view of the secure physical timer is 2626 * always accessible from EL3, and configurably accessible from 2627 * Secure EL1. 2628 */ 2629 switch (arm_current_el(env)) { 2630 case 1: 2631 if (!arm_is_secure(env)) { 2632 return CP_ACCESS_TRAP; 2633 } 2634 if (!(env->cp15.scr_el3 & SCR_ST)) { 2635 return CP_ACCESS_TRAP_EL3; 2636 } 2637 return CP_ACCESS_OK; 2638 case 0: 2639 case 2: 2640 return CP_ACCESS_TRAP; 2641 case 3: 2642 return CP_ACCESS_OK; 2643 default: 2644 g_assert_not_reached(); 2645 } 2646 } 2647 2648 static uint64_t gt_get_countervalue(CPUARMState *env) 2649 { 2650 ARMCPU *cpu = env_archcpu(env); 2651 2652 return qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL) / gt_cntfrq_period_ns(cpu); 2653 } 2654 2655 static void gt_update_irq(ARMCPU *cpu, int timeridx) 2656 { 2657 CPUARMState *env = &cpu->env; 2658 uint64_t cnthctl = env->cp15.cnthctl_el2; 2659 ARMSecuritySpace ss = arm_security_space(env); 2660 /* ISTATUS && !IMASK */ 2661 int irqstate = (env->cp15.c14_timer[timeridx].ctl & 6) == 4; 2662 2663 /* 2664 * If bit CNTHCTL_EL2.CNT[VP]MASK is set, it overrides IMASK. 2665 * It is RES0 in Secure and NonSecure state. 2666 */ 2667 if ((ss == ARMSS_Root || ss == ARMSS_Realm) && 2668 ((timeridx == GTIMER_VIRT && (cnthctl & R_CNTHCTL_CNTVMASK_MASK)) || 2669 (timeridx == GTIMER_PHYS && (cnthctl & R_CNTHCTL_CNTPMASK_MASK)))) { 2670 irqstate = 0; 2671 } 2672 2673 qemu_set_irq(cpu->gt_timer_outputs[timeridx], irqstate); 2674 trace_arm_gt_update_irq(timeridx, irqstate); 2675 } 2676 2677 void gt_rme_post_el_change(ARMCPU *cpu, void *ignored) 2678 { 2679 /* 2680 * Changing security state between Root and Secure/NonSecure, which may 2681 * happen when switching EL, can change the effective value of CNTHCTL_EL2 2682 * mask bits. Update the IRQ state accordingly. 2683 */ 2684 gt_update_irq(cpu, GTIMER_VIRT); 2685 gt_update_irq(cpu, GTIMER_PHYS); 2686 } 2687 2688 static uint64_t gt_phys_raw_cnt_offset(CPUARMState *env) 2689 { 2690 if ((env->cp15.scr_el3 & SCR_ECVEN) && 2691 FIELD_EX64(env->cp15.cnthctl_el2, CNTHCTL, ECV) && 2692 arm_is_el2_enabled(env) && 2693 (arm_hcr_el2_eff(env) & (HCR_E2H | HCR_TGE)) != (HCR_E2H | HCR_TGE)) { 2694 return env->cp15.cntpoff_el2; 2695 } 2696 return 0; 2697 } 2698 2699 static uint64_t gt_phys_cnt_offset(CPUARMState *env) 2700 { 2701 if (arm_current_el(env) >= 2) { 2702 return 0; 2703 } 2704 return gt_phys_raw_cnt_offset(env); 2705 } 2706 2707 static void gt_recalc_timer(ARMCPU *cpu, int timeridx) 2708 { 2709 ARMGenericTimer *gt = &cpu->env.cp15.c14_timer[timeridx]; 2710 2711 if (gt->ctl & 1) { 2712 /* 2713 * Timer enabled: calculate and set current ISTATUS, irq, and 2714 * reset timer to when ISTATUS next has to change 2715 */ 2716 uint64_t offset = timeridx == GTIMER_VIRT ? 2717 cpu->env.cp15.cntvoff_el2 : gt_phys_raw_cnt_offset(&cpu->env); 2718 uint64_t count = gt_get_countervalue(&cpu->env); 2719 /* Note that this must be unsigned 64 bit arithmetic: */ 2720 int istatus = count - offset >= gt->cval; 2721 uint64_t nexttick; 2722 2723 gt->ctl = deposit32(gt->ctl, 2, 1, istatus); 2724 2725 if (istatus) { 2726 /* 2727 * Next transition is when (count - offset) rolls back over to 0. 2728 * If offset > count then this is when count == offset; 2729 * if offset <= count then this is when count == offset + 2^64 2730 * For the latter case we set nexttick to an "as far in future 2731 * as possible" value and let the code below handle it. 2732 */ 2733 if (offset > count) { 2734 nexttick = offset; 2735 } else { 2736 nexttick = UINT64_MAX; 2737 } 2738 } else { 2739 /* 2740 * Next transition is when (count - offset) == cval, i.e. 2741 * when count == (cval + offset). 2742 * If that would overflow, then again we set up the next interrupt 2743 * for "as far in the future as possible" for the code below. 2744 */ 2745 if (uadd64_overflow(gt->cval, offset, &nexttick)) { 2746 nexttick = UINT64_MAX; 2747 } 2748 } 2749 /* 2750 * Note that the desired next expiry time might be beyond the 2751 * signed-64-bit range of a QEMUTimer -- in this case we just 2752 * set the timer for as far in the future as possible. When the 2753 * timer expires we will reset the timer for any remaining period. 2754 */ 2755 if (nexttick > INT64_MAX / gt_cntfrq_period_ns(cpu)) { 2756 timer_mod_ns(cpu->gt_timer[timeridx], INT64_MAX); 2757 } else { 2758 timer_mod(cpu->gt_timer[timeridx], nexttick); 2759 } 2760 trace_arm_gt_recalc(timeridx, nexttick); 2761 } else { 2762 /* Timer disabled: ISTATUS and timer output always clear */ 2763 gt->ctl &= ~4; 2764 timer_del(cpu->gt_timer[timeridx]); 2765 trace_arm_gt_recalc_disabled(timeridx); 2766 } 2767 gt_update_irq(cpu, timeridx); 2768 } 2769 2770 static void gt_timer_reset(CPUARMState *env, const ARMCPRegInfo *ri, 2771 int timeridx) 2772 { 2773 ARMCPU *cpu = env_archcpu(env); 2774 2775 timer_del(cpu->gt_timer[timeridx]); 2776 } 2777 2778 static uint64_t gt_cnt_read(CPUARMState *env, const ARMCPRegInfo *ri) 2779 { 2780 return gt_get_countervalue(env) - gt_phys_cnt_offset(env); 2781 } 2782 2783 static uint64_t gt_virt_cnt_offset(CPUARMState *env) 2784 { 2785 uint64_t hcr; 2786 2787 switch (arm_current_el(env)) { 2788 case 2: 2789 hcr = arm_hcr_el2_eff(env); 2790 if (hcr & HCR_E2H) { 2791 return 0; 2792 } 2793 break; 2794 case 0: 2795 hcr = arm_hcr_el2_eff(env); 2796 if ((hcr & (HCR_E2H | HCR_TGE)) == (HCR_E2H | HCR_TGE)) { 2797 return 0; 2798 } 2799 break; 2800 } 2801 2802 return env->cp15.cntvoff_el2; 2803 } 2804 2805 static uint64_t gt_virt_cnt_read(CPUARMState *env, const ARMCPRegInfo *ri) 2806 { 2807 return gt_get_countervalue(env) - gt_virt_cnt_offset(env); 2808 } 2809 2810 static void gt_cval_write(CPUARMState *env, const ARMCPRegInfo *ri, 2811 int timeridx, 2812 uint64_t value) 2813 { 2814 trace_arm_gt_cval_write(timeridx, value); 2815 env->cp15.c14_timer[timeridx].cval = value; 2816 gt_recalc_timer(env_archcpu(env), timeridx); 2817 } 2818 2819 static uint64_t gt_tval_read(CPUARMState *env, const ARMCPRegInfo *ri, 2820 int timeridx) 2821 { 2822 uint64_t offset = 0; 2823 2824 switch (timeridx) { 2825 case GTIMER_VIRT: 2826 case GTIMER_HYPVIRT: 2827 offset = gt_virt_cnt_offset(env); 2828 break; 2829 case GTIMER_PHYS: 2830 offset = gt_phys_cnt_offset(env); 2831 break; 2832 } 2833 2834 return (uint32_t)(env->cp15.c14_timer[timeridx].cval - 2835 (gt_get_countervalue(env) - offset)); 2836 } 2837 2838 static void gt_tval_write(CPUARMState *env, const ARMCPRegInfo *ri, 2839 int timeridx, 2840 uint64_t value) 2841 { 2842 uint64_t offset = 0; 2843 2844 switch (timeridx) { 2845 case GTIMER_VIRT: 2846 case GTIMER_HYPVIRT: 2847 offset = gt_virt_cnt_offset(env); 2848 break; 2849 case GTIMER_PHYS: 2850 offset = gt_phys_cnt_offset(env); 2851 break; 2852 } 2853 2854 trace_arm_gt_tval_write(timeridx, value); 2855 env->cp15.c14_timer[timeridx].cval = gt_get_countervalue(env) - offset + 2856 sextract64(value, 0, 32); 2857 gt_recalc_timer(env_archcpu(env), timeridx); 2858 } 2859 2860 static void gt_ctl_write(CPUARMState *env, const ARMCPRegInfo *ri, 2861 int timeridx, 2862 uint64_t value) 2863 { 2864 ARMCPU *cpu = env_archcpu(env); 2865 uint32_t oldval = env->cp15.c14_timer[timeridx].ctl; 2866 2867 trace_arm_gt_ctl_write(timeridx, value); 2868 env->cp15.c14_timer[timeridx].ctl = deposit64(oldval, 0, 2, value); 2869 if ((oldval ^ value) & 1) { 2870 /* Enable toggled */ 2871 gt_recalc_timer(cpu, timeridx); 2872 } else if ((oldval ^ value) & 2) { 2873 /* 2874 * IMASK toggled: don't need to recalculate, 2875 * just set the interrupt line based on ISTATUS 2876 */ 2877 trace_arm_gt_imask_toggle(timeridx); 2878 gt_update_irq(cpu, timeridx); 2879 } 2880 } 2881 2882 static void gt_phys_timer_reset(CPUARMState *env, const ARMCPRegInfo *ri) 2883 { 2884 gt_timer_reset(env, ri, GTIMER_PHYS); 2885 } 2886 2887 static void gt_phys_cval_write(CPUARMState *env, const ARMCPRegInfo *ri, 2888 uint64_t value) 2889 { 2890 gt_cval_write(env, ri, GTIMER_PHYS, value); 2891 } 2892 2893 static uint64_t gt_phys_tval_read(CPUARMState *env, const ARMCPRegInfo *ri) 2894 { 2895 return gt_tval_read(env, ri, GTIMER_PHYS); 2896 } 2897 2898 static void gt_phys_tval_write(CPUARMState *env, const ARMCPRegInfo *ri, 2899 uint64_t value) 2900 { 2901 gt_tval_write(env, ri, GTIMER_PHYS, value); 2902 } 2903 2904 static void gt_phys_ctl_write(CPUARMState *env, const ARMCPRegInfo *ri, 2905 uint64_t value) 2906 { 2907 gt_ctl_write(env, ri, GTIMER_PHYS, value); 2908 } 2909 2910 static int gt_phys_redir_timeridx(CPUARMState *env) 2911 { 2912 switch (arm_mmu_idx(env)) { 2913 case ARMMMUIdx_E20_0: 2914 case ARMMMUIdx_E20_2: 2915 case ARMMMUIdx_E20_2_PAN: 2916 return GTIMER_HYP; 2917 default: 2918 return GTIMER_PHYS; 2919 } 2920 } 2921 2922 static int gt_virt_redir_timeridx(CPUARMState *env) 2923 { 2924 switch (arm_mmu_idx(env)) { 2925 case ARMMMUIdx_E20_0: 2926 case ARMMMUIdx_E20_2: 2927 case ARMMMUIdx_E20_2_PAN: 2928 return GTIMER_HYPVIRT; 2929 default: 2930 return GTIMER_VIRT; 2931 } 2932 } 2933 2934 static uint64_t gt_phys_redir_cval_read(CPUARMState *env, 2935 const ARMCPRegInfo *ri) 2936 { 2937 int timeridx = gt_phys_redir_timeridx(env); 2938 return env->cp15.c14_timer[timeridx].cval; 2939 } 2940 2941 static void gt_phys_redir_cval_write(CPUARMState *env, const ARMCPRegInfo *ri, 2942 uint64_t value) 2943 { 2944 int timeridx = gt_phys_redir_timeridx(env); 2945 gt_cval_write(env, ri, timeridx, value); 2946 } 2947 2948 static uint64_t gt_phys_redir_tval_read(CPUARMState *env, 2949 const ARMCPRegInfo *ri) 2950 { 2951 int timeridx = gt_phys_redir_timeridx(env); 2952 return gt_tval_read(env, ri, timeridx); 2953 } 2954 2955 static void gt_phys_redir_tval_write(CPUARMState *env, const ARMCPRegInfo *ri, 2956 uint64_t value) 2957 { 2958 int timeridx = gt_phys_redir_timeridx(env); 2959 gt_tval_write(env, ri, timeridx, value); 2960 } 2961 2962 static uint64_t gt_phys_redir_ctl_read(CPUARMState *env, 2963 const ARMCPRegInfo *ri) 2964 { 2965 int timeridx = gt_phys_redir_timeridx(env); 2966 return env->cp15.c14_timer[timeridx].ctl; 2967 } 2968 2969 static void gt_phys_redir_ctl_write(CPUARMState *env, const ARMCPRegInfo *ri, 2970 uint64_t value) 2971 { 2972 int timeridx = gt_phys_redir_timeridx(env); 2973 gt_ctl_write(env, ri, timeridx, value); 2974 } 2975 2976 static void gt_virt_timer_reset(CPUARMState *env, const ARMCPRegInfo *ri) 2977 { 2978 gt_timer_reset(env, ri, GTIMER_VIRT); 2979 } 2980 2981 static void gt_virt_cval_write(CPUARMState *env, const ARMCPRegInfo *ri, 2982 uint64_t value) 2983 { 2984 gt_cval_write(env, ri, GTIMER_VIRT, value); 2985 } 2986 2987 static uint64_t gt_virt_tval_read(CPUARMState *env, const ARMCPRegInfo *ri) 2988 { 2989 return gt_tval_read(env, ri, GTIMER_VIRT); 2990 } 2991 2992 static void gt_virt_tval_write(CPUARMState *env, const ARMCPRegInfo *ri, 2993 uint64_t value) 2994 { 2995 gt_tval_write(env, ri, GTIMER_VIRT, value); 2996 } 2997 2998 static void gt_virt_ctl_write(CPUARMState *env, const ARMCPRegInfo *ri, 2999 uint64_t value) 3000 { 3001 gt_ctl_write(env, ri, GTIMER_VIRT, value); 3002 } 3003 3004 static void gt_cnthctl_write(CPUARMState *env, const ARMCPRegInfo *ri, 3005 uint64_t value) 3006 { 3007 ARMCPU *cpu = env_archcpu(env); 3008 uint32_t oldval = env->cp15.cnthctl_el2; 3009 uint32_t valid_mask = 3010 R_CNTHCTL_EL0PCTEN_E2H1_MASK | 3011 R_CNTHCTL_EL0VCTEN_E2H1_MASK | 3012 R_CNTHCTL_EVNTEN_MASK | 3013 R_CNTHCTL_EVNTDIR_MASK | 3014 R_CNTHCTL_EVNTI_MASK | 3015 R_CNTHCTL_EL0VTEN_MASK | 3016 R_CNTHCTL_EL0PTEN_MASK | 3017 R_CNTHCTL_EL1PCTEN_E2H1_MASK | 3018 R_CNTHCTL_EL1PTEN_MASK; 3019 3020 if (cpu_isar_feature(aa64_rme, cpu)) { 3021 valid_mask |= R_CNTHCTL_CNTVMASK_MASK | R_CNTHCTL_CNTPMASK_MASK; 3022 } 3023 if (cpu_isar_feature(aa64_ecv_traps, cpu)) { 3024 valid_mask |= 3025 R_CNTHCTL_EL1TVT_MASK | 3026 R_CNTHCTL_EL1TVCT_MASK | 3027 R_CNTHCTL_EL1NVPCT_MASK | 3028 R_CNTHCTL_EL1NVVCT_MASK | 3029 R_CNTHCTL_EVNTIS_MASK; 3030 } 3031 if (cpu_isar_feature(aa64_ecv, cpu)) { 3032 valid_mask |= R_CNTHCTL_ECV_MASK; 3033 } 3034 3035 /* Clear RES0 bits */ 3036 value &= valid_mask; 3037 3038 raw_write(env, ri, value); 3039 3040 if ((oldval ^ value) & R_CNTHCTL_CNTVMASK_MASK) { 3041 gt_update_irq(cpu, GTIMER_VIRT); 3042 } else if ((oldval ^ value) & R_CNTHCTL_CNTPMASK_MASK) { 3043 gt_update_irq(cpu, GTIMER_PHYS); 3044 } 3045 } 3046 3047 static void gt_cntvoff_write(CPUARMState *env, const ARMCPRegInfo *ri, 3048 uint64_t value) 3049 { 3050 ARMCPU *cpu = env_archcpu(env); 3051 3052 trace_arm_gt_cntvoff_write(value); 3053 raw_write(env, ri, value); 3054 gt_recalc_timer(cpu, GTIMER_VIRT); 3055 } 3056 3057 static uint64_t gt_virt_redir_cval_read(CPUARMState *env, 3058 const ARMCPRegInfo *ri) 3059 { 3060 int timeridx = gt_virt_redir_timeridx(env); 3061 return env->cp15.c14_timer[timeridx].cval; 3062 } 3063 3064 static void gt_virt_redir_cval_write(CPUARMState *env, const ARMCPRegInfo *ri, 3065 uint64_t value) 3066 { 3067 int timeridx = gt_virt_redir_timeridx(env); 3068 gt_cval_write(env, ri, timeridx, value); 3069 } 3070 3071 static uint64_t gt_virt_redir_tval_read(CPUARMState *env, 3072 const ARMCPRegInfo *ri) 3073 { 3074 int timeridx = gt_virt_redir_timeridx(env); 3075 return gt_tval_read(env, ri, timeridx); 3076 } 3077 3078 static void gt_virt_redir_tval_write(CPUARMState *env, const ARMCPRegInfo *ri, 3079 uint64_t value) 3080 { 3081 int timeridx = gt_virt_redir_timeridx(env); 3082 gt_tval_write(env, ri, timeridx, value); 3083 } 3084 3085 static uint64_t gt_virt_redir_ctl_read(CPUARMState *env, 3086 const ARMCPRegInfo *ri) 3087 { 3088 int timeridx = gt_virt_redir_timeridx(env); 3089 return env->cp15.c14_timer[timeridx].ctl; 3090 } 3091 3092 static void gt_virt_redir_ctl_write(CPUARMState *env, const ARMCPRegInfo *ri, 3093 uint64_t value) 3094 { 3095 int timeridx = gt_virt_redir_timeridx(env); 3096 gt_ctl_write(env, ri, timeridx, value); 3097 } 3098 3099 static void gt_hyp_timer_reset(CPUARMState *env, const ARMCPRegInfo *ri) 3100 { 3101 gt_timer_reset(env, ri, GTIMER_HYP); 3102 } 3103 3104 static void gt_hyp_cval_write(CPUARMState *env, const ARMCPRegInfo *ri, 3105 uint64_t value) 3106 { 3107 gt_cval_write(env, ri, GTIMER_HYP, value); 3108 } 3109 3110 static uint64_t gt_hyp_tval_read(CPUARMState *env, const ARMCPRegInfo *ri) 3111 { 3112 return gt_tval_read(env, ri, GTIMER_HYP); 3113 } 3114 3115 static void gt_hyp_tval_write(CPUARMState *env, const ARMCPRegInfo *ri, 3116 uint64_t value) 3117 { 3118 gt_tval_write(env, ri, GTIMER_HYP, value); 3119 } 3120 3121 static void gt_hyp_ctl_write(CPUARMState *env, const ARMCPRegInfo *ri, 3122 uint64_t value) 3123 { 3124 gt_ctl_write(env, ri, GTIMER_HYP, value); 3125 } 3126 3127 static void gt_sec_timer_reset(CPUARMState *env, const ARMCPRegInfo *ri) 3128 { 3129 gt_timer_reset(env, ri, GTIMER_SEC); 3130 } 3131 3132 static void gt_sec_cval_write(CPUARMState *env, const ARMCPRegInfo *ri, 3133 uint64_t value) 3134 { 3135 gt_cval_write(env, ri, GTIMER_SEC, value); 3136 } 3137 3138 static uint64_t gt_sec_tval_read(CPUARMState *env, const ARMCPRegInfo *ri) 3139 { 3140 return gt_tval_read(env, ri, GTIMER_SEC); 3141 } 3142 3143 static void gt_sec_tval_write(CPUARMState *env, const ARMCPRegInfo *ri, 3144 uint64_t value) 3145 { 3146 gt_tval_write(env, ri, GTIMER_SEC, value); 3147 } 3148 3149 static void gt_sec_ctl_write(CPUARMState *env, const ARMCPRegInfo *ri, 3150 uint64_t value) 3151 { 3152 gt_ctl_write(env, ri, GTIMER_SEC, value); 3153 } 3154 3155 static void gt_hv_timer_reset(CPUARMState *env, const ARMCPRegInfo *ri) 3156 { 3157 gt_timer_reset(env, ri, GTIMER_HYPVIRT); 3158 } 3159 3160 static void gt_hv_cval_write(CPUARMState *env, const ARMCPRegInfo *ri, 3161 uint64_t value) 3162 { 3163 gt_cval_write(env, ri, GTIMER_HYPVIRT, value); 3164 } 3165 3166 static uint64_t gt_hv_tval_read(CPUARMState *env, const ARMCPRegInfo *ri) 3167 { 3168 return gt_tval_read(env, ri, GTIMER_HYPVIRT); 3169 } 3170 3171 static void gt_hv_tval_write(CPUARMState *env, const ARMCPRegInfo *ri, 3172 uint64_t value) 3173 { 3174 gt_tval_write(env, ri, GTIMER_HYPVIRT, value); 3175 } 3176 3177 static void gt_hv_ctl_write(CPUARMState *env, const ARMCPRegInfo *ri, 3178 uint64_t value) 3179 { 3180 gt_ctl_write(env, ri, GTIMER_HYPVIRT, value); 3181 } 3182 3183 void arm_gt_ptimer_cb(void *opaque) 3184 { 3185 ARMCPU *cpu = opaque; 3186 3187 gt_recalc_timer(cpu, GTIMER_PHYS); 3188 } 3189 3190 void arm_gt_vtimer_cb(void *opaque) 3191 { 3192 ARMCPU *cpu = opaque; 3193 3194 gt_recalc_timer(cpu, GTIMER_VIRT); 3195 } 3196 3197 void arm_gt_htimer_cb(void *opaque) 3198 { 3199 ARMCPU *cpu = opaque; 3200 3201 gt_recalc_timer(cpu, GTIMER_HYP); 3202 } 3203 3204 void arm_gt_stimer_cb(void *opaque) 3205 { 3206 ARMCPU *cpu = opaque; 3207 3208 gt_recalc_timer(cpu, GTIMER_SEC); 3209 } 3210 3211 void arm_gt_hvtimer_cb(void *opaque) 3212 { 3213 ARMCPU *cpu = opaque; 3214 3215 gt_recalc_timer(cpu, GTIMER_HYPVIRT); 3216 } 3217 3218 static void arm_gt_cntfrq_reset(CPUARMState *env, const ARMCPRegInfo *opaque) 3219 { 3220 ARMCPU *cpu = env_archcpu(env); 3221 3222 cpu->env.cp15.c14_cntfrq = cpu->gt_cntfrq_hz; 3223 } 3224 3225 static const ARMCPRegInfo generic_timer_cp_reginfo[] = { 3226 /* 3227 * Note that CNTFRQ is purely reads-as-written for the benefit 3228 * of software; writing it doesn't actually change the timer frequency. 3229 * Our reset value matches the fixed frequency we implement the timer at. 3230 */ 3231 { .name = "CNTFRQ", .cp = 15, .crn = 14, .crm = 0, .opc1 = 0, .opc2 = 0, 3232 .type = ARM_CP_ALIAS, 3233 .access = PL1_RW | PL0_R, .accessfn = gt_cntfrq_access, 3234 .fieldoffset = offsetoflow32(CPUARMState, cp15.c14_cntfrq), 3235 }, 3236 { .name = "CNTFRQ_EL0", .state = ARM_CP_STATE_AA64, 3237 .opc0 = 3, .opc1 = 3, .crn = 14, .crm = 0, .opc2 = 0, 3238 .access = PL1_RW | PL0_R, .accessfn = gt_cntfrq_access, 3239 .fieldoffset = offsetof(CPUARMState, cp15.c14_cntfrq), 3240 .resetfn = arm_gt_cntfrq_reset, 3241 }, 3242 /* overall control: mostly access permissions */ 3243 { .name = "CNTKCTL", .state = ARM_CP_STATE_BOTH, 3244 .opc0 = 3, .opc1 = 0, .crn = 14, .crm = 1, .opc2 = 0, 3245 .access = PL1_RW, 3246 .fieldoffset = offsetof(CPUARMState, cp15.c14_cntkctl), 3247 .resetvalue = 0, 3248 }, 3249 /* per-timer control */ 3250 { .name = "CNTP_CTL", .cp = 15, .crn = 14, .crm = 2, .opc1 = 0, .opc2 = 1, 3251 .secure = ARM_CP_SECSTATE_NS, 3252 .type = ARM_CP_IO | ARM_CP_ALIAS, .access = PL0_RW, 3253 .accessfn = gt_ptimer_access, 3254 .fieldoffset = offsetoflow32(CPUARMState, 3255 cp15.c14_timer[GTIMER_PHYS].ctl), 3256 .readfn = gt_phys_redir_ctl_read, .raw_readfn = raw_read, 3257 .writefn = gt_phys_redir_ctl_write, .raw_writefn = raw_write, 3258 }, 3259 { .name = "CNTP_CTL_S", 3260 .cp = 15, .crn = 14, .crm = 2, .opc1 = 0, .opc2 = 1, 3261 .secure = ARM_CP_SECSTATE_S, 3262 .type = ARM_CP_IO | ARM_CP_ALIAS, .access = PL0_RW, 3263 .accessfn = gt_ptimer_access, 3264 .fieldoffset = offsetoflow32(CPUARMState, 3265 cp15.c14_timer[GTIMER_SEC].ctl), 3266 .writefn = gt_sec_ctl_write, .raw_writefn = raw_write, 3267 }, 3268 { .name = "CNTP_CTL_EL0", .state = ARM_CP_STATE_AA64, 3269 .opc0 = 3, .opc1 = 3, .crn = 14, .crm = 2, .opc2 = 1, 3270 .type = ARM_CP_IO, .access = PL0_RW, 3271 .accessfn = gt_ptimer_access, 3272 .nv2_redirect_offset = 0x180 | NV2_REDIR_NV1, 3273 .fieldoffset = offsetof(CPUARMState, cp15.c14_timer[GTIMER_PHYS].ctl), 3274 .resetvalue = 0, 3275 .readfn = gt_phys_redir_ctl_read, .raw_readfn = raw_read, 3276 .writefn = gt_phys_redir_ctl_write, .raw_writefn = raw_write, 3277 }, 3278 { .name = "CNTV_CTL", .cp = 15, .crn = 14, .crm = 3, .opc1 = 0, .opc2 = 1, 3279 .type = ARM_CP_IO | ARM_CP_ALIAS, .access = PL0_RW, 3280 .accessfn = gt_vtimer_access, 3281 .fieldoffset = offsetoflow32(CPUARMState, 3282 cp15.c14_timer[GTIMER_VIRT].ctl), 3283 .readfn = gt_virt_redir_ctl_read, .raw_readfn = raw_read, 3284 .writefn = gt_virt_redir_ctl_write, .raw_writefn = raw_write, 3285 }, 3286 { .name = "CNTV_CTL_EL0", .state = ARM_CP_STATE_AA64, 3287 .opc0 = 3, .opc1 = 3, .crn = 14, .crm = 3, .opc2 = 1, 3288 .type = ARM_CP_IO, .access = PL0_RW, 3289 .accessfn = gt_vtimer_access, 3290 .nv2_redirect_offset = 0x170 | NV2_REDIR_NV1, 3291 .fieldoffset = offsetof(CPUARMState, cp15.c14_timer[GTIMER_VIRT].ctl), 3292 .resetvalue = 0, 3293 .readfn = gt_virt_redir_ctl_read, .raw_readfn = raw_read, 3294 .writefn = gt_virt_redir_ctl_write, .raw_writefn = raw_write, 3295 }, 3296 /* TimerValue views: a 32 bit downcounting view of the underlying state */ 3297 { .name = "CNTP_TVAL", .cp = 15, .crn = 14, .crm = 2, .opc1 = 0, .opc2 = 0, 3298 .secure = ARM_CP_SECSTATE_NS, 3299 .type = ARM_CP_NO_RAW | ARM_CP_IO, .access = PL0_RW, 3300 .accessfn = gt_ptimer_access, 3301 .readfn = gt_phys_redir_tval_read, .writefn = gt_phys_redir_tval_write, 3302 }, 3303 { .name = "CNTP_TVAL_S", 3304 .cp = 15, .crn = 14, .crm = 2, .opc1 = 0, .opc2 = 0, 3305 .secure = ARM_CP_SECSTATE_S, 3306 .type = ARM_CP_NO_RAW | ARM_CP_IO, .access = PL0_RW, 3307 .accessfn = gt_ptimer_access, 3308 .readfn = gt_sec_tval_read, .writefn = gt_sec_tval_write, 3309 }, 3310 { .name = "CNTP_TVAL_EL0", .state = ARM_CP_STATE_AA64, 3311 .opc0 = 3, .opc1 = 3, .crn = 14, .crm = 2, .opc2 = 0, 3312 .type = ARM_CP_NO_RAW | ARM_CP_IO, .access = PL0_RW, 3313 .accessfn = gt_ptimer_access, .resetfn = gt_phys_timer_reset, 3314 .readfn = gt_phys_redir_tval_read, .writefn = gt_phys_redir_tval_write, 3315 }, 3316 { .name = "CNTV_TVAL", .cp = 15, .crn = 14, .crm = 3, .opc1 = 0, .opc2 = 0, 3317 .type = ARM_CP_NO_RAW | ARM_CP_IO, .access = PL0_RW, 3318 .accessfn = gt_vtimer_access, 3319 .readfn = gt_virt_redir_tval_read, .writefn = gt_virt_redir_tval_write, 3320 }, 3321 { .name = "CNTV_TVAL_EL0", .state = ARM_CP_STATE_AA64, 3322 .opc0 = 3, .opc1 = 3, .crn = 14, .crm = 3, .opc2 = 0, 3323 .type = ARM_CP_NO_RAW | ARM_CP_IO, .access = PL0_RW, 3324 .accessfn = gt_vtimer_access, .resetfn = gt_virt_timer_reset, 3325 .readfn = gt_virt_redir_tval_read, .writefn = gt_virt_redir_tval_write, 3326 }, 3327 /* The counter itself */ 3328 { .name = "CNTPCT", .cp = 15, .crm = 14, .opc1 = 0, 3329 .access = PL0_R, .type = ARM_CP_64BIT | ARM_CP_NO_RAW | ARM_CP_IO, 3330 .accessfn = gt_pct_access, 3331 .readfn = gt_cnt_read, .resetfn = arm_cp_reset_ignore, 3332 }, 3333 { .name = "CNTPCT_EL0", .state = ARM_CP_STATE_AA64, 3334 .opc0 = 3, .opc1 = 3, .crn = 14, .crm = 0, .opc2 = 1, 3335 .access = PL0_R, .type = ARM_CP_NO_RAW | ARM_CP_IO, 3336 .accessfn = gt_pct_access, .readfn = gt_cnt_read, 3337 }, 3338 { .name = "CNTVCT", .cp = 15, .crm = 14, .opc1 = 1, 3339 .access = PL0_R, .type = ARM_CP_64BIT | ARM_CP_NO_RAW | ARM_CP_IO, 3340 .accessfn = gt_vct_access, 3341 .readfn = gt_virt_cnt_read, .resetfn = arm_cp_reset_ignore, 3342 }, 3343 { .name = "CNTVCT_EL0", .state = ARM_CP_STATE_AA64, 3344 .opc0 = 3, .opc1 = 3, .crn = 14, .crm = 0, .opc2 = 2, 3345 .access = PL0_R, .type = ARM_CP_NO_RAW | ARM_CP_IO, 3346 .accessfn = gt_vct_access, .readfn = gt_virt_cnt_read, 3347 }, 3348 /* Comparison value, indicating when the timer goes off */ 3349 { .name = "CNTP_CVAL", .cp = 15, .crm = 14, .opc1 = 2, 3350 .secure = ARM_CP_SECSTATE_NS, 3351 .access = PL0_RW, 3352 .type = ARM_CP_64BIT | ARM_CP_IO | ARM_CP_ALIAS, 3353 .fieldoffset = offsetof(CPUARMState, cp15.c14_timer[GTIMER_PHYS].cval), 3354 .accessfn = gt_ptimer_access, 3355 .readfn = gt_phys_redir_cval_read, .raw_readfn = raw_read, 3356 .writefn = gt_phys_redir_cval_write, .raw_writefn = raw_write, 3357 }, 3358 { .name = "CNTP_CVAL_S", .cp = 15, .crm = 14, .opc1 = 2, 3359 .secure = ARM_CP_SECSTATE_S, 3360 .access = PL0_RW, 3361 .type = ARM_CP_64BIT | ARM_CP_IO | ARM_CP_ALIAS, 3362 .fieldoffset = offsetof(CPUARMState, cp15.c14_timer[GTIMER_SEC].cval), 3363 .accessfn = gt_ptimer_access, 3364 .writefn = gt_sec_cval_write, .raw_writefn = raw_write, 3365 }, 3366 { .name = "CNTP_CVAL_EL0", .state = ARM_CP_STATE_AA64, 3367 .opc0 = 3, .opc1 = 3, .crn = 14, .crm = 2, .opc2 = 2, 3368 .access = PL0_RW, 3369 .type = ARM_CP_IO, 3370 .nv2_redirect_offset = 0x178 | NV2_REDIR_NV1, 3371 .fieldoffset = offsetof(CPUARMState, cp15.c14_timer[GTIMER_PHYS].cval), 3372 .resetvalue = 0, .accessfn = gt_ptimer_access, 3373 .readfn = gt_phys_redir_cval_read, .raw_readfn = raw_read, 3374 .writefn = gt_phys_redir_cval_write, .raw_writefn = raw_write, 3375 }, 3376 { .name = "CNTV_CVAL", .cp = 15, .crm = 14, .opc1 = 3, 3377 .access = PL0_RW, 3378 .type = ARM_CP_64BIT | ARM_CP_IO | ARM_CP_ALIAS, 3379 .fieldoffset = offsetof(CPUARMState, cp15.c14_timer[GTIMER_VIRT].cval), 3380 .accessfn = gt_vtimer_access, 3381 .readfn = gt_virt_redir_cval_read, .raw_readfn = raw_read, 3382 .writefn = gt_virt_redir_cval_write, .raw_writefn = raw_write, 3383 }, 3384 { .name = "CNTV_CVAL_EL0", .state = ARM_CP_STATE_AA64, 3385 .opc0 = 3, .opc1 = 3, .crn = 14, .crm = 3, .opc2 = 2, 3386 .access = PL0_RW, 3387 .type = ARM_CP_IO, 3388 .nv2_redirect_offset = 0x168 | NV2_REDIR_NV1, 3389 .fieldoffset = offsetof(CPUARMState, cp15.c14_timer[GTIMER_VIRT].cval), 3390 .resetvalue = 0, .accessfn = gt_vtimer_access, 3391 .readfn = gt_virt_redir_cval_read, .raw_readfn = raw_read, 3392 .writefn = gt_virt_redir_cval_write, .raw_writefn = raw_write, 3393 }, 3394 /* 3395 * Secure timer -- this is actually restricted to only EL3 3396 * and configurably Secure-EL1 via the accessfn. 3397 */ 3398 { .name = "CNTPS_TVAL_EL1", .state = ARM_CP_STATE_AA64, 3399 .opc0 = 3, .opc1 = 7, .crn = 14, .crm = 2, .opc2 = 0, 3400 .type = ARM_CP_NO_RAW | ARM_CP_IO, .access = PL1_RW, 3401 .accessfn = gt_stimer_access, 3402 .readfn = gt_sec_tval_read, 3403 .writefn = gt_sec_tval_write, 3404 .resetfn = gt_sec_timer_reset, 3405 }, 3406 { .name = "CNTPS_CTL_EL1", .state = ARM_CP_STATE_AA64, 3407 .opc0 = 3, .opc1 = 7, .crn = 14, .crm = 2, .opc2 = 1, 3408 .type = ARM_CP_IO, .access = PL1_RW, 3409 .accessfn = gt_stimer_access, 3410 .fieldoffset = offsetof(CPUARMState, cp15.c14_timer[GTIMER_SEC].ctl), 3411 .resetvalue = 0, 3412 .writefn = gt_sec_ctl_write, .raw_writefn = raw_write, 3413 }, 3414 { .name = "CNTPS_CVAL_EL1", .state = ARM_CP_STATE_AA64, 3415 .opc0 = 3, .opc1 = 7, .crn = 14, .crm = 2, .opc2 = 2, 3416 .type = ARM_CP_IO, .access = PL1_RW, 3417 .accessfn = gt_stimer_access, 3418 .fieldoffset = offsetof(CPUARMState, cp15.c14_timer[GTIMER_SEC].cval), 3419 .writefn = gt_sec_cval_write, .raw_writefn = raw_write, 3420 }, 3421 }; 3422 3423 /* 3424 * FEAT_ECV adds extra views of CNTVCT_EL0 and CNTPCT_EL0 which 3425 * are "self-synchronizing". For QEMU all sysregs are self-synchronizing, 3426 * so our implementations here are identical to the normal registers. 3427 */ 3428 static const ARMCPRegInfo gen_timer_ecv_cp_reginfo[] = { 3429 { .name = "CNTVCTSS", .cp = 15, .crm = 14, .opc1 = 9, 3430 .access = PL0_R, .type = ARM_CP_64BIT | ARM_CP_NO_RAW | ARM_CP_IO, 3431 .accessfn = gt_vct_access, 3432 .readfn = gt_virt_cnt_read, .resetfn = arm_cp_reset_ignore, 3433 }, 3434 { .name = "CNTVCTSS_EL0", .state = ARM_CP_STATE_AA64, 3435 .opc0 = 3, .opc1 = 3, .crn = 14, .crm = 0, .opc2 = 6, 3436 .access = PL0_R, .type = ARM_CP_NO_RAW | ARM_CP_IO, 3437 .accessfn = gt_vct_access, .readfn = gt_virt_cnt_read, 3438 }, 3439 { .name = "CNTPCTSS", .cp = 15, .crm = 14, .opc1 = 8, 3440 .access = PL0_R, .type = ARM_CP_64BIT | ARM_CP_NO_RAW | ARM_CP_IO, 3441 .accessfn = gt_pct_access, 3442 .readfn = gt_cnt_read, .resetfn = arm_cp_reset_ignore, 3443 }, 3444 { .name = "CNTPCTSS_EL0", .state = ARM_CP_STATE_AA64, 3445 .opc0 = 3, .opc1 = 3, .crn = 14, .crm = 0, .opc2 = 5, 3446 .access = PL0_R, .type = ARM_CP_NO_RAW | ARM_CP_IO, 3447 .accessfn = gt_pct_access, .readfn = gt_cnt_read, 3448 }, 3449 }; 3450 3451 static CPAccessResult gt_cntpoff_access(CPUARMState *env, 3452 const ARMCPRegInfo *ri, 3453 bool isread) 3454 { 3455 if (arm_current_el(env) == 2 && !(env->cp15.scr_el3 & SCR_ECVEN)) { 3456 return CP_ACCESS_TRAP_EL3; 3457 } 3458 return CP_ACCESS_OK; 3459 } 3460 3461 static void gt_cntpoff_write(CPUARMState *env, const ARMCPRegInfo *ri, 3462 uint64_t value) 3463 { 3464 ARMCPU *cpu = env_archcpu(env); 3465 3466 trace_arm_gt_cntpoff_write(value); 3467 raw_write(env, ri, value); 3468 gt_recalc_timer(cpu, GTIMER_PHYS); 3469 } 3470 3471 static const ARMCPRegInfo gen_timer_cntpoff_reginfo = { 3472 .name = "CNTPOFF_EL2", .state = ARM_CP_STATE_AA64, 3473 .opc0 = 3, .opc1 = 4, .crn = 14, .crm = 0, .opc2 = 6, 3474 .access = PL2_RW, .type = ARM_CP_IO, .resetvalue = 0, 3475 .accessfn = gt_cntpoff_access, .writefn = gt_cntpoff_write, 3476 .nv2_redirect_offset = 0x1a8, 3477 .fieldoffset = offsetof(CPUARMState, cp15.cntpoff_el2), 3478 }; 3479 #else 3480 3481 /* 3482 * In user-mode most of the generic timer registers are inaccessible 3483 * however modern kernels (4.12+) allow access to cntvct_el0 3484 */ 3485 3486 static uint64_t gt_virt_cnt_read(CPUARMState *env, const ARMCPRegInfo *ri) 3487 { 3488 ARMCPU *cpu = env_archcpu(env); 3489 3490 /* 3491 * Currently we have no support for QEMUTimer in linux-user so we 3492 * can't call gt_get_countervalue(env), instead we directly 3493 * call the lower level functions. 3494 */ 3495 return cpu_get_clock() / gt_cntfrq_period_ns(cpu); 3496 } 3497 3498 static const ARMCPRegInfo generic_timer_cp_reginfo[] = { 3499 { .name = "CNTFRQ_EL0", .state = ARM_CP_STATE_AA64, 3500 .opc0 = 3, .opc1 = 3, .crn = 14, .crm = 0, .opc2 = 0, 3501 .type = ARM_CP_CONST, .access = PL0_R /* no PL1_RW in linux-user */, 3502 .fieldoffset = offsetof(CPUARMState, cp15.c14_cntfrq), 3503 .resetvalue = NANOSECONDS_PER_SECOND / GTIMER_SCALE, 3504 }, 3505 { .name = "CNTVCT_EL0", .state = ARM_CP_STATE_AA64, 3506 .opc0 = 3, .opc1 = 3, .crn = 14, .crm = 0, .opc2 = 2, 3507 .access = PL0_R, .type = ARM_CP_NO_RAW | ARM_CP_IO, 3508 .readfn = gt_virt_cnt_read, 3509 }, 3510 }; 3511 3512 /* 3513 * CNTVCTSS_EL0 has the same trap conditions as CNTVCT_EL0, so it also 3514 * is exposed to userspace by Linux. 3515 */ 3516 static const ARMCPRegInfo gen_timer_ecv_cp_reginfo[] = { 3517 { .name = "CNTVCTSS_EL0", .state = ARM_CP_STATE_AA64, 3518 .opc0 = 3, .opc1 = 3, .crn = 14, .crm = 0, .opc2 = 6, 3519 .access = PL0_R, .type = ARM_CP_NO_RAW | ARM_CP_IO, 3520 .readfn = gt_virt_cnt_read, 3521 }, 3522 }; 3523 3524 #endif 3525 3526 static void par_write(CPUARMState *env, const ARMCPRegInfo *ri, uint64_t value) 3527 { 3528 if (arm_feature(env, ARM_FEATURE_LPAE)) { 3529 raw_write(env, ri, value); 3530 } else if (arm_feature(env, ARM_FEATURE_V7)) { 3531 raw_write(env, ri, value & 0xfffff6ff); 3532 } else { 3533 raw_write(env, ri, value & 0xfffff1ff); 3534 } 3535 } 3536 3537 #ifndef CONFIG_USER_ONLY 3538 /* get_phys_addr() isn't present for user-mode-only targets */ 3539 3540 static CPAccessResult ats_access(CPUARMState *env, const ARMCPRegInfo *ri, 3541 bool isread) 3542 { 3543 if (ri->opc2 & 4) { 3544 /* 3545 * The ATS12NSO* operations must trap to EL3 or EL2 if executed in 3546 * Secure EL1 (which can only happen if EL3 is AArch64). 3547 * They are simply UNDEF if executed from NS EL1. 3548 * They function normally from EL2 or EL3. 3549 */ 3550 if (arm_current_el(env) == 1) { 3551 if (arm_is_secure_below_el3(env)) { 3552 if (env->cp15.scr_el3 & SCR_EEL2) { 3553 return CP_ACCESS_TRAP_EL2; 3554 } 3555 return CP_ACCESS_TRAP_EL3; 3556 } 3557 return CP_ACCESS_TRAP_UNCATEGORIZED; 3558 } 3559 } 3560 return CP_ACCESS_OK; 3561 } 3562 3563 #ifdef CONFIG_TCG 3564 static int par_el1_shareability(GetPhysAddrResult *res) 3565 { 3566 /* 3567 * The PAR_EL1.SH field must be 0b10 for Device or Normal-NC 3568 * memory -- see pseudocode PAREncodeShareability(). 3569 */ 3570 if (((res->cacheattrs.attrs & 0xf0) == 0) || 3571 res->cacheattrs.attrs == 0x44 || res->cacheattrs.attrs == 0x40) { 3572 return 2; 3573 } 3574 return res->cacheattrs.shareability; 3575 } 3576 3577 static uint64_t do_ats_write(CPUARMState *env, uint64_t value, 3578 MMUAccessType access_type, ARMMMUIdx mmu_idx, 3579 ARMSecuritySpace ss) 3580 { 3581 bool ret; 3582 uint64_t par64; 3583 bool format64 = false; 3584 ARMMMUFaultInfo fi = {}; 3585 GetPhysAddrResult res = {}; 3586 3587 /* 3588 * I_MXTJT: Granule protection checks are not performed on the final address 3589 * of a successful translation. 3590 */ 3591 ret = get_phys_addr_with_space_nogpc(env, value, access_type, mmu_idx, ss, 3592 &res, &fi); 3593 3594 /* 3595 * ATS operations only do S1 or S1+S2 translations, so we never 3596 * have to deal with the ARMCacheAttrs format for S2 only. 3597 */ 3598 assert(!res.cacheattrs.is_s2_format); 3599 3600 if (ret) { 3601 /* 3602 * Some kinds of translation fault must cause exceptions rather 3603 * than being reported in the PAR. 3604 */ 3605 int current_el = arm_current_el(env); 3606 int target_el; 3607 uint32_t syn, fsr, fsc; 3608 bool take_exc = false; 3609 3610 if (fi.s1ptw && current_el == 1 3611 && arm_mmu_idx_is_stage1_of_2(mmu_idx)) { 3612 /* 3613 * Synchronous stage 2 fault on an access made as part of the 3614 * translation table walk for AT S1E0* or AT S1E1* insn 3615 * executed from NS EL1. If this is a synchronous external abort 3616 * and SCR_EL3.EA == 1, then we take a synchronous external abort 3617 * to EL3. Otherwise the fault is taken as an exception to EL2, 3618 * and HPFAR_EL2 holds the faulting IPA. 3619 */ 3620 if (fi.type == ARMFault_SyncExternalOnWalk && 3621 (env->cp15.scr_el3 & SCR_EA)) { 3622 target_el = 3; 3623 } else { 3624 env->cp15.hpfar_el2 = extract64(fi.s2addr, 12, 47) << 4; 3625 if (arm_is_secure_below_el3(env) && fi.s1ns) { 3626 env->cp15.hpfar_el2 |= HPFAR_NS; 3627 } 3628 target_el = 2; 3629 } 3630 take_exc = true; 3631 } else if (fi.type == ARMFault_SyncExternalOnWalk) { 3632 /* 3633 * Synchronous external aborts during a translation table walk 3634 * are taken as Data Abort exceptions. 3635 */ 3636 if (fi.stage2) { 3637 if (current_el == 3) { 3638 target_el = 3; 3639 } else { 3640 target_el = 2; 3641 } 3642 } else { 3643 target_el = exception_target_el(env); 3644 } 3645 take_exc = true; 3646 } 3647 3648 if (take_exc) { 3649 /* Construct FSR and FSC using same logic as arm_deliver_fault() */ 3650 if (target_el == 2 || arm_el_is_aa64(env, target_el) || 3651 arm_s1_regime_using_lpae_format(env, mmu_idx)) { 3652 fsr = arm_fi_to_lfsc(&fi); 3653 fsc = extract32(fsr, 0, 6); 3654 } else { 3655 fsr = arm_fi_to_sfsc(&fi); 3656 fsc = 0x3f; 3657 } 3658 /* 3659 * Report exception with ESR indicating a fault due to a 3660 * translation table walk for a cache maintenance instruction. 3661 */ 3662 syn = syn_data_abort_no_iss(current_el == target_el, 0, 3663 fi.ea, 1, fi.s1ptw, 1, fsc); 3664 env->exception.vaddress = value; 3665 env->exception.fsr = fsr; 3666 raise_exception(env, EXCP_DATA_ABORT, syn, target_el); 3667 } 3668 } 3669 3670 if (is_a64(env)) { 3671 format64 = true; 3672 } else if (arm_feature(env, ARM_FEATURE_LPAE)) { 3673 /* 3674 * ATS1Cxx: 3675 * * TTBCR.EAE determines whether the result is returned using the 3676 * 32-bit or the 64-bit PAR format 3677 * * Instructions executed in Hyp mode always use the 64bit format 3678 * 3679 * ATS1S2NSOxx uses the 64bit format if any of the following is true: 3680 * * The Non-secure TTBCR.EAE bit is set to 1 3681 * * The implementation includes EL2, and the value of HCR.VM is 1 3682 * 3683 * (Note that HCR.DC makes HCR.VM behave as if it is 1.) 3684 * 3685 * ATS1Hx always uses the 64bit format. 3686 */ 3687 format64 = arm_s1_regime_using_lpae_format(env, mmu_idx); 3688 3689 if (arm_feature(env, ARM_FEATURE_EL2)) { 3690 if (mmu_idx == ARMMMUIdx_E10_0 || 3691 mmu_idx == ARMMMUIdx_E10_1 || 3692 mmu_idx == ARMMMUIdx_E10_1_PAN) { 3693 format64 |= env->cp15.hcr_el2 & (HCR_VM | HCR_DC); 3694 } else { 3695 format64 |= arm_current_el(env) == 2; 3696 } 3697 } 3698 } 3699 3700 if (format64) { 3701 /* Create a 64-bit PAR */ 3702 par64 = (1 << 11); /* LPAE bit always set */ 3703 if (!ret) { 3704 par64 |= res.f.phys_addr & ~0xfffULL; 3705 if (!res.f.attrs.secure) { 3706 par64 |= (1 << 9); /* NS */ 3707 } 3708 par64 |= (uint64_t)res.cacheattrs.attrs << 56; /* ATTR */ 3709 par64 |= par_el1_shareability(&res) << 7; /* SH */ 3710 } else { 3711 uint32_t fsr = arm_fi_to_lfsc(&fi); 3712 3713 par64 |= 1; /* F */ 3714 par64 |= (fsr & 0x3f) << 1; /* FS */ 3715 if (fi.stage2) { 3716 par64 |= (1 << 9); /* S */ 3717 } 3718 if (fi.s1ptw) { 3719 par64 |= (1 << 8); /* PTW */ 3720 } 3721 } 3722 } else { 3723 /* 3724 * fsr is a DFSR/IFSR value for the short descriptor 3725 * translation table format (with WnR always clear). 3726 * Convert it to a 32-bit PAR. 3727 */ 3728 if (!ret) { 3729 /* We do not set any attribute bits in the PAR */ 3730 if (res.f.lg_page_size == 24 3731 && arm_feature(env, ARM_FEATURE_V7)) { 3732 par64 = (res.f.phys_addr & 0xff000000) | (1 << 1); 3733 } else { 3734 par64 = res.f.phys_addr & 0xfffff000; 3735 } 3736 if (!res.f.attrs.secure) { 3737 par64 |= (1 << 9); /* NS */ 3738 } 3739 } else { 3740 uint32_t fsr = arm_fi_to_sfsc(&fi); 3741 3742 par64 = ((fsr & (1 << 10)) >> 5) | ((fsr & (1 << 12)) >> 6) | 3743 ((fsr & 0xf) << 1) | 1; 3744 } 3745 } 3746 return par64; 3747 } 3748 #endif /* CONFIG_TCG */ 3749 3750 static void ats_write(CPUARMState *env, const ARMCPRegInfo *ri, uint64_t value) 3751 { 3752 #ifdef CONFIG_TCG 3753 MMUAccessType access_type = ri->opc2 & 1 ? MMU_DATA_STORE : MMU_DATA_LOAD; 3754 uint64_t par64; 3755 ARMMMUIdx mmu_idx; 3756 int el = arm_current_el(env); 3757 ARMSecuritySpace ss = arm_security_space(env); 3758 3759 switch (ri->opc2 & 6) { 3760 case 0: 3761 /* stage 1 current state PL1: ATS1CPR, ATS1CPW, ATS1CPRP, ATS1CPWP */ 3762 switch (el) { 3763 case 3: 3764 mmu_idx = ARMMMUIdx_E3; 3765 break; 3766 case 2: 3767 g_assert(ss != ARMSS_Secure); /* ARMv8.4-SecEL2 is 64-bit only */ 3768 /* fall through */ 3769 case 1: 3770 if (ri->crm == 9 && arm_pan_enabled(env)) { 3771 mmu_idx = ARMMMUIdx_Stage1_E1_PAN; 3772 } else { 3773 mmu_idx = ARMMMUIdx_Stage1_E1; 3774 } 3775 break; 3776 default: 3777 g_assert_not_reached(); 3778 } 3779 break; 3780 case 2: 3781 /* stage 1 current state PL0: ATS1CUR, ATS1CUW */ 3782 switch (el) { 3783 case 3: 3784 mmu_idx = ARMMMUIdx_E10_0; 3785 break; 3786 case 2: 3787 g_assert(ss != ARMSS_Secure); /* ARMv8.4-SecEL2 is 64-bit only */ 3788 mmu_idx = ARMMMUIdx_Stage1_E0; 3789 break; 3790 case 1: 3791 mmu_idx = ARMMMUIdx_Stage1_E0; 3792 break; 3793 default: 3794 g_assert_not_reached(); 3795 } 3796 break; 3797 case 4: 3798 /* stage 1+2 NonSecure PL1: ATS12NSOPR, ATS12NSOPW */ 3799 mmu_idx = ARMMMUIdx_E10_1; 3800 ss = ARMSS_NonSecure; 3801 break; 3802 case 6: 3803 /* stage 1+2 NonSecure PL0: ATS12NSOUR, ATS12NSOUW */ 3804 mmu_idx = ARMMMUIdx_E10_0; 3805 ss = ARMSS_NonSecure; 3806 break; 3807 default: 3808 g_assert_not_reached(); 3809 } 3810 3811 par64 = do_ats_write(env, value, access_type, mmu_idx, ss); 3812 3813 A32_BANKED_CURRENT_REG_SET(env, par, par64); 3814 #else 3815 /* Handled by hardware accelerator. */ 3816 g_assert_not_reached(); 3817 #endif /* CONFIG_TCG */ 3818 } 3819 3820 static void ats1h_write(CPUARMState *env, const ARMCPRegInfo *ri, 3821 uint64_t value) 3822 { 3823 #ifdef CONFIG_TCG 3824 MMUAccessType access_type = ri->opc2 & 1 ? MMU_DATA_STORE : MMU_DATA_LOAD; 3825 uint64_t par64; 3826 3827 /* There is no SecureEL2 for AArch32. */ 3828 par64 = do_ats_write(env, value, access_type, ARMMMUIdx_E2, 3829 ARMSS_NonSecure); 3830 3831 A32_BANKED_CURRENT_REG_SET(env, par, par64); 3832 #else 3833 /* Handled by hardware accelerator. */ 3834 g_assert_not_reached(); 3835 #endif /* CONFIG_TCG */ 3836 } 3837 3838 static CPAccessResult at_e012_access(CPUARMState *env, const ARMCPRegInfo *ri, 3839 bool isread) 3840 { 3841 /* 3842 * R_NYXTL: instruction is UNDEFINED if it applies to an Exception level 3843 * lower than EL3 and the combination SCR_EL3.{NSE,NS} is reserved. This can 3844 * only happen when executing at EL3 because that combination also causes an 3845 * illegal exception return. We don't need to check FEAT_RME either, because 3846 * scr_write() ensures that the NSE bit is not set otherwise. 3847 */ 3848 if ((env->cp15.scr_el3 & (SCR_NSE | SCR_NS)) == SCR_NSE) { 3849 return CP_ACCESS_TRAP; 3850 } 3851 return CP_ACCESS_OK; 3852 } 3853 3854 static CPAccessResult at_s1e2_access(CPUARMState *env, const ARMCPRegInfo *ri, 3855 bool isread) 3856 { 3857 if (arm_current_el(env) == 3 && 3858 !(env->cp15.scr_el3 & (SCR_NS | SCR_EEL2))) { 3859 return CP_ACCESS_TRAP; 3860 } 3861 return at_e012_access(env, ri, isread); 3862 } 3863 3864 static CPAccessResult at_s1e01_access(CPUARMState *env, const ARMCPRegInfo *ri, 3865 bool isread) 3866 { 3867 if (arm_current_el(env) == 1 && (arm_hcr_el2_eff(env) & HCR_AT)) { 3868 return CP_ACCESS_TRAP_EL2; 3869 } 3870 return at_e012_access(env, ri, isread); 3871 } 3872 3873 static void ats_write64(CPUARMState *env, const ARMCPRegInfo *ri, 3874 uint64_t value) 3875 { 3876 #ifdef CONFIG_TCG 3877 MMUAccessType access_type = ri->opc2 & 1 ? MMU_DATA_STORE : MMU_DATA_LOAD; 3878 ARMMMUIdx mmu_idx; 3879 uint64_t hcr_el2 = arm_hcr_el2_eff(env); 3880 bool regime_e20 = (hcr_el2 & (HCR_E2H | HCR_TGE)) == (HCR_E2H | HCR_TGE); 3881 3882 switch (ri->opc2 & 6) { 3883 case 0: 3884 switch (ri->opc1) { 3885 case 0: /* AT S1E1R, AT S1E1W, AT S1E1RP, AT S1E1WP */ 3886 if (ri->crm == 9 && arm_pan_enabled(env)) { 3887 mmu_idx = regime_e20 ? 3888 ARMMMUIdx_E20_2_PAN : ARMMMUIdx_Stage1_E1_PAN; 3889 } else { 3890 mmu_idx = regime_e20 ? ARMMMUIdx_E20_2 : ARMMMUIdx_Stage1_E1; 3891 } 3892 break; 3893 case 4: /* AT S1E2R, AT S1E2W */ 3894 mmu_idx = hcr_el2 & HCR_E2H ? ARMMMUIdx_E20_2 : ARMMMUIdx_E2; 3895 break; 3896 case 6: /* AT S1E3R, AT S1E3W */ 3897 mmu_idx = ARMMMUIdx_E3; 3898 break; 3899 default: 3900 g_assert_not_reached(); 3901 } 3902 break; 3903 case 2: /* AT S1E0R, AT S1E0W */ 3904 mmu_idx = regime_e20 ? ARMMMUIdx_E20_0 : ARMMMUIdx_Stage1_E0; 3905 break; 3906 case 4: /* AT S12E1R, AT S12E1W */ 3907 mmu_idx = regime_e20 ? ARMMMUIdx_E20_2 : ARMMMUIdx_E10_1; 3908 break; 3909 case 6: /* AT S12E0R, AT S12E0W */ 3910 mmu_idx = regime_e20 ? ARMMMUIdx_E20_0 : ARMMMUIdx_E10_0; 3911 break; 3912 default: 3913 g_assert_not_reached(); 3914 } 3915 3916 env->cp15.par_el[1] = do_ats_write(env, value, access_type, 3917 mmu_idx, arm_security_space(env)); 3918 #else 3919 /* Handled by hardware accelerator. */ 3920 g_assert_not_reached(); 3921 #endif /* CONFIG_TCG */ 3922 } 3923 #endif 3924 3925 /* Return basic MPU access permission bits. */ 3926 static uint32_t simple_mpu_ap_bits(uint32_t val) 3927 { 3928 uint32_t ret; 3929 uint32_t mask; 3930 int i; 3931 ret = 0; 3932 mask = 3; 3933 for (i = 0; i < 16; i += 2) { 3934 ret |= (val >> i) & mask; 3935 mask <<= 2; 3936 } 3937 return ret; 3938 } 3939 3940 /* Pad basic MPU access permission bits to extended format. */ 3941 static uint32_t extended_mpu_ap_bits(uint32_t val) 3942 { 3943 uint32_t ret; 3944 uint32_t mask; 3945 int i; 3946 ret = 0; 3947 mask = 3; 3948 for (i = 0; i < 16; i += 2) { 3949 ret |= (val & mask) << i; 3950 mask <<= 2; 3951 } 3952 return ret; 3953 } 3954 3955 static void pmsav5_data_ap_write(CPUARMState *env, const ARMCPRegInfo *ri, 3956 uint64_t value) 3957 { 3958 env->cp15.pmsav5_data_ap = extended_mpu_ap_bits(value); 3959 } 3960 3961 static uint64_t pmsav5_data_ap_read(CPUARMState *env, const ARMCPRegInfo *ri) 3962 { 3963 return simple_mpu_ap_bits(env->cp15.pmsav5_data_ap); 3964 } 3965 3966 static void pmsav5_insn_ap_write(CPUARMState *env, const ARMCPRegInfo *ri, 3967 uint64_t value) 3968 { 3969 env->cp15.pmsav5_insn_ap = extended_mpu_ap_bits(value); 3970 } 3971 3972 static uint64_t pmsav5_insn_ap_read(CPUARMState *env, const ARMCPRegInfo *ri) 3973 { 3974 return simple_mpu_ap_bits(env->cp15.pmsav5_insn_ap); 3975 } 3976 3977 static uint64_t pmsav7_read(CPUARMState *env, const ARMCPRegInfo *ri) 3978 { 3979 uint32_t *u32p = *(uint32_t **)raw_ptr(env, ri); 3980 3981 if (!u32p) { 3982 return 0; 3983 } 3984 3985 u32p += env->pmsav7.rnr[M_REG_NS]; 3986 return *u32p; 3987 } 3988 3989 static void pmsav7_write(CPUARMState *env, const ARMCPRegInfo *ri, 3990 uint64_t value) 3991 { 3992 ARMCPU *cpu = env_archcpu(env); 3993 uint32_t *u32p = *(uint32_t **)raw_ptr(env, ri); 3994 3995 if (!u32p) { 3996 return; 3997 } 3998 3999 u32p += env->pmsav7.rnr[M_REG_NS]; 4000 tlb_flush(CPU(cpu)); /* Mappings may have changed - purge! */ 4001 *u32p = value; 4002 } 4003 4004 static void pmsav7_rgnr_write(CPUARMState *env, const ARMCPRegInfo *ri, 4005 uint64_t value) 4006 { 4007 ARMCPU *cpu = env_archcpu(env); 4008 uint32_t nrgs = cpu->pmsav7_dregion; 4009 4010 if (value >= nrgs) { 4011 qemu_log_mask(LOG_GUEST_ERROR, 4012 "PMSAv7 RGNR write >= # supported regions, %" PRIu32 4013 " > %" PRIu32 "\n", (uint32_t)value, nrgs); 4014 return; 4015 } 4016 4017 raw_write(env, ri, value); 4018 } 4019 4020 static void prbar_write(CPUARMState *env, const ARMCPRegInfo *ri, 4021 uint64_t value) 4022 { 4023 ARMCPU *cpu = env_archcpu(env); 4024 4025 tlb_flush(CPU(cpu)); /* Mappings may have changed - purge! */ 4026 env->pmsav8.rbar[M_REG_NS][env->pmsav7.rnr[M_REG_NS]] = value; 4027 } 4028 4029 static uint64_t prbar_read(CPUARMState *env, const ARMCPRegInfo *ri) 4030 { 4031 return env->pmsav8.rbar[M_REG_NS][env->pmsav7.rnr[M_REG_NS]]; 4032 } 4033 4034 static void prlar_write(CPUARMState *env, const ARMCPRegInfo *ri, 4035 uint64_t value) 4036 { 4037 ARMCPU *cpu = env_archcpu(env); 4038 4039 tlb_flush(CPU(cpu)); /* Mappings may have changed - purge! */ 4040 env->pmsav8.rlar[M_REG_NS][env->pmsav7.rnr[M_REG_NS]] = value; 4041 } 4042 4043 static uint64_t prlar_read(CPUARMState *env, const ARMCPRegInfo *ri) 4044 { 4045 return env->pmsav8.rlar[M_REG_NS][env->pmsav7.rnr[M_REG_NS]]; 4046 } 4047 4048 static void prselr_write(CPUARMState *env, const ARMCPRegInfo *ri, 4049 uint64_t value) 4050 { 4051 ARMCPU *cpu = env_archcpu(env); 4052 4053 /* 4054 * Ignore writes that would select not implemented region. 4055 * This is architecturally UNPREDICTABLE. 4056 */ 4057 if (value >= cpu->pmsav7_dregion) { 4058 return; 4059 } 4060 4061 env->pmsav7.rnr[M_REG_NS] = value; 4062 } 4063 4064 static void hprbar_write(CPUARMState *env, const ARMCPRegInfo *ri, 4065 uint64_t value) 4066 { 4067 ARMCPU *cpu = env_archcpu(env); 4068 4069 tlb_flush(CPU(cpu)); /* Mappings may have changed - purge! */ 4070 env->pmsav8.hprbar[env->pmsav8.hprselr] = value; 4071 } 4072 4073 static uint64_t hprbar_read(CPUARMState *env, const ARMCPRegInfo *ri) 4074 { 4075 return env->pmsav8.hprbar[env->pmsav8.hprselr]; 4076 } 4077 4078 static void hprlar_write(CPUARMState *env, const ARMCPRegInfo *ri, 4079 uint64_t value) 4080 { 4081 ARMCPU *cpu = env_archcpu(env); 4082 4083 tlb_flush(CPU(cpu)); /* Mappings may have changed - purge! */ 4084 env->pmsav8.hprlar[env->pmsav8.hprselr] = value; 4085 } 4086 4087 static uint64_t hprlar_read(CPUARMState *env, const ARMCPRegInfo *ri) 4088 { 4089 return env->pmsav8.hprlar[env->pmsav8.hprselr]; 4090 } 4091 4092 static void hprenr_write(CPUARMState *env, const ARMCPRegInfo *ri, 4093 uint64_t value) 4094 { 4095 uint32_t n; 4096 uint32_t bit; 4097 ARMCPU *cpu = env_archcpu(env); 4098 4099 /* Ignore writes to unimplemented regions */ 4100 int rmax = MIN(cpu->pmsav8r_hdregion, 32); 4101 value &= MAKE_64BIT_MASK(0, rmax); 4102 4103 tlb_flush(CPU(cpu)); /* Mappings may have changed - purge! */ 4104 4105 /* Register alias is only valid for first 32 indexes */ 4106 for (n = 0; n < rmax; ++n) { 4107 bit = extract32(value, n, 1); 4108 env->pmsav8.hprlar[n] = deposit32( 4109 env->pmsav8.hprlar[n], 0, 1, bit); 4110 } 4111 } 4112 4113 static uint64_t hprenr_read(CPUARMState *env, const ARMCPRegInfo *ri) 4114 { 4115 uint32_t n; 4116 uint32_t result = 0x0; 4117 ARMCPU *cpu = env_archcpu(env); 4118 4119 /* Register alias is only valid for first 32 indexes */ 4120 for (n = 0; n < MIN(cpu->pmsav8r_hdregion, 32); ++n) { 4121 if (env->pmsav8.hprlar[n] & 0x1) { 4122 result |= (0x1 << n); 4123 } 4124 } 4125 return result; 4126 } 4127 4128 static void hprselr_write(CPUARMState *env, const ARMCPRegInfo *ri, 4129 uint64_t value) 4130 { 4131 ARMCPU *cpu = env_archcpu(env); 4132 4133 /* 4134 * Ignore writes that would select not implemented region. 4135 * This is architecturally UNPREDICTABLE. 4136 */ 4137 if (value >= cpu->pmsav8r_hdregion) { 4138 return; 4139 } 4140 4141 env->pmsav8.hprselr = value; 4142 } 4143 4144 static void pmsav8r_regn_write(CPUARMState *env, const ARMCPRegInfo *ri, 4145 uint64_t value) 4146 { 4147 ARMCPU *cpu = env_archcpu(env); 4148 uint8_t index = (extract32(ri->opc0, 0, 1) << 4) | 4149 (extract32(ri->crm, 0, 3) << 1) | extract32(ri->opc2, 2, 1); 4150 4151 tlb_flush(CPU(cpu)); /* Mappings may have changed - purge! */ 4152 4153 if (ri->opc1 & 4) { 4154 if (index >= cpu->pmsav8r_hdregion) { 4155 return; 4156 } 4157 if (ri->opc2 & 0x1) { 4158 env->pmsav8.hprlar[index] = value; 4159 } else { 4160 env->pmsav8.hprbar[index] = value; 4161 } 4162 } else { 4163 if (index >= cpu->pmsav7_dregion) { 4164 return; 4165 } 4166 if (ri->opc2 & 0x1) { 4167 env->pmsav8.rlar[M_REG_NS][index] = value; 4168 } else { 4169 env->pmsav8.rbar[M_REG_NS][index] = value; 4170 } 4171 } 4172 } 4173 4174 static uint64_t pmsav8r_regn_read(CPUARMState *env, const ARMCPRegInfo *ri) 4175 { 4176 ARMCPU *cpu = env_archcpu(env); 4177 uint8_t index = (extract32(ri->opc0, 0, 1) << 4) | 4178 (extract32(ri->crm, 0, 3) << 1) | extract32(ri->opc2, 2, 1); 4179 4180 if (ri->opc1 & 4) { 4181 if (index >= cpu->pmsav8r_hdregion) { 4182 return 0x0; 4183 } 4184 if (ri->opc2 & 0x1) { 4185 return env->pmsav8.hprlar[index]; 4186 } else { 4187 return env->pmsav8.hprbar[index]; 4188 } 4189 } else { 4190 if (index >= cpu->pmsav7_dregion) { 4191 return 0x0; 4192 } 4193 if (ri->opc2 & 0x1) { 4194 return env->pmsav8.rlar[M_REG_NS][index]; 4195 } else { 4196 return env->pmsav8.rbar[M_REG_NS][index]; 4197 } 4198 } 4199 } 4200 4201 static const ARMCPRegInfo pmsav8r_cp_reginfo[] = { 4202 { .name = "PRBAR", 4203 .cp = 15, .opc1 = 0, .crn = 6, .crm = 3, .opc2 = 0, 4204 .access = PL1_RW, .type = ARM_CP_NO_RAW, 4205 .accessfn = access_tvm_trvm, 4206 .readfn = prbar_read, .writefn = prbar_write }, 4207 { .name = "PRLAR", 4208 .cp = 15, .opc1 = 0, .crn = 6, .crm = 3, .opc2 = 1, 4209 .access = PL1_RW, .type = ARM_CP_NO_RAW, 4210 .accessfn = access_tvm_trvm, 4211 .readfn = prlar_read, .writefn = prlar_write }, 4212 { .name = "PRSELR", .resetvalue = 0, 4213 .cp = 15, .opc1 = 0, .crn = 6, .crm = 2, .opc2 = 1, 4214 .access = PL1_RW, .accessfn = access_tvm_trvm, 4215 .writefn = prselr_write, 4216 .fieldoffset = offsetof(CPUARMState, pmsav7.rnr[M_REG_NS]) }, 4217 { .name = "HPRBAR", .resetvalue = 0, 4218 .cp = 15, .opc1 = 4, .crn = 6, .crm = 3, .opc2 = 0, 4219 .access = PL2_RW, .type = ARM_CP_NO_RAW, 4220 .readfn = hprbar_read, .writefn = hprbar_write }, 4221 { .name = "HPRLAR", 4222 .cp = 15, .opc1 = 4, .crn = 6, .crm = 3, .opc2 = 1, 4223 .access = PL2_RW, .type = ARM_CP_NO_RAW, 4224 .readfn = hprlar_read, .writefn = hprlar_write }, 4225 { .name = "HPRSELR", .resetvalue = 0, 4226 .cp = 15, .opc1 = 4, .crn = 6, .crm = 2, .opc2 = 1, 4227 .access = PL2_RW, 4228 .writefn = hprselr_write, 4229 .fieldoffset = offsetof(CPUARMState, pmsav8.hprselr) }, 4230 { .name = "HPRENR", 4231 .cp = 15, .opc1 = 4, .crn = 6, .crm = 1, .opc2 = 1, 4232 .access = PL2_RW, .type = ARM_CP_NO_RAW, 4233 .readfn = hprenr_read, .writefn = hprenr_write }, 4234 }; 4235 4236 static const ARMCPRegInfo pmsav7_cp_reginfo[] = { 4237 /* 4238 * Reset for all these registers is handled in arm_cpu_reset(), 4239 * because the PMSAv7 is also used by M-profile CPUs, which do 4240 * not register cpregs but still need the state to be reset. 4241 */ 4242 { .name = "DRBAR", .cp = 15, .crn = 6, .opc1 = 0, .crm = 1, .opc2 = 0, 4243 .access = PL1_RW, .type = ARM_CP_NO_RAW, 4244 .fieldoffset = offsetof(CPUARMState, pmsav7.drbar), 4245 .readfn = pmsav7_read, .writefn = pmsav7_write, 4246 .resetfn = arm_cp_reset_ignore }, 4247 { .name = "DRSR", .cp = 15, .crn = 6, .opc1 = 0, .crm = 1, .opc2 = 2, 4248 .access = PL1_RW, .type = ARM_CP_NO_RAW, 4249 .fieldoffset = offsetof(CPUARMState, pmsav7.drsr), 4250 .readfn = pmsav7_read, .writefn = pmsav7_write, 4251 .resetfn = arm_cp_reset_ignore }, 4252 { .name = "DRACR", .cp = 15, .crn = 6, .opc1 = 0, .crm = 1, .opc2 = 4, 4253 .access = PL1_RW, .type = ARM_CP_NO_RAW, 4254 .fieldoffset = offsetof(CPUARMState, pmsav7.dracr), 4255 .readfn = pmsav7_read, .writefn = pmsav7_write, 4256 .resetfn = arm_cp_reset_ignore }, 4257 { .name = "RGNR", .cp = 15, .crn = 6, .opc1 = 0, .crm = 2, .opc2 = 0, 4258 .access = PL1_RW, 4259 .fieldoffset = offsetof(CPUARMState, pmsav7.rnr[M_REG_NS]), 4260 .writefn = pmsav7_rgnr_write, 4261 .resetfn = arm_cp_reset_ignore }, 4262 }; 4263 4264 static const ARMCPRegInfo pmsav5_cp_reginfo[] = { 4265 { .name = "DATA_AP", .cp = 15, .crn = 5, .crm = 0, .opc1 = 0, .opc2 = 0, 4266 .access = PL1_RW, .type = ARM_CP_ALIAS, 4267 .fieldoffset = offsetof(CPUARMState, cp15.pmsav5_data_ap), 4268 .readfn = pmsav5_data_ap_read, .writefn = pmsav5_data_ap_write, }, 4269 { .name = "INSN_AP", .cp = 15, .crn = 5, .crm = 0, .opc1 = 0, .opc2 = 1, 4270 .access = PL1_RW, .type = ARM_CP_ALIAS, 4271 .fieldoffset = offsetof(CPUARMState, cp15.pmsav5_insn_ap), 4272 .readfn = pmsav5_insn_ap_read, .writefn = pmsav5_insn_ap_write, }, 4273 { .name = "DATA_EXT_AP", .cp = 15, .crn = 5, .crm = 0, .opc1 = 0, .opc2 = 2, 4274 .access = PL1_RW, 4275 .fieldoffset = offsetof(CPUARMState, cp15.pmsav5_data_ap), 4276 .resetvalue = 0, }, 4277 { .name = "INSN_EXT_AP", .cp = 15, .crn = 5, .crm = 0, .opc1 = 0, .opc2 = 3, 4278 .access = PL1_RW, 4279 .fieldoffset = offsetof(CPUARMState, cp15.pmsav5_insn_ap), 4280 .resetvalue = 0, }, 4281 { .name = "DCACHE_CFG", .cp = 15, .crn = 2, .crm = 0, .opc1 = 0, .opc2 = 0, 4282 .access = PL1_RW, 4283 .fieldoffset = offsetof(CPUARMState, cp15.c2_data), .resetvalue = 0, }, 4284 { .name = "ICACHE_CFG", .cp = 15, .crn = 2, .crm = 0, .opc1 = 0, .opc2 = 1, 4285 .access = PL1_RW, 4286 .fieldoffset = offsetof(CPUARMState, cp15.c2_insn), .resetvalue = 0, }, 4287 /* Protection region base and size registers */ 4288 { .name = "946_PRBS0", .cp = 15, .crn = 6, .crm = 0, .opc1 = 0, 4289 .opc2 = CP_ANY, .access = PL1_RW, .resetvalue = 0, 4290 .fieldoffset = offsetof(CPUARMState, cp15.c6_region[0]) }, 4291 { .name = "946_PRBS1", .cp = 15, .crn = 6, .crm = 1, .opc1 = 0, 4292 .opc2 = CP_ANY, .access = PL1_RW, .resetvalue = 0, 4293 .fieldoffset = offsetof(CPUARMState, cp15.c6_region[1]) }, 4294 { .name = "946_PRBS2", .cp = 15, .crn = 6, .crm = 2, .opc1 = 0, 4295 .opc2 = CP_ANY, .access = PL1_RW, .resetvalue = 0, 4296 .fieldoffset = offsetof(CPUARMState, cp15.c6_region[2]) }, 4297 { .name = "946_PRBS3", .cp = 15, .crn = 6, .crm = 3, .opc1 = 0, 4298 .opc2 = CP_ANY, .access = PL1_RW, .resetvalue = 0, 4299 .fieldoffset = offsetof(CPUARMState, cp15.c6_region[3]) }, 4300 { .name = "946_PRBS4", .cp = 15, .crn = 6, .crm = 4, .opc1 = 0, 4301 .opc2 = CP_ANY, .access = PL1_RW, .resetvalue = 0, 4302 .fieldoffset = offsetof(CPUARMState, cp15.c6_region[4]) }, 4303 { .name = "946_PRBS5", .cp = 15, .crn = 6, .crm = 5, .opc1 = 0, 4304 .opc2 = CP_ANY, .access = PL1_RW, .resetvalue = 0, 4305 .fieldoffset = offsetof(CPUARMState, cp15.c6_region[5]) }, 4306 { .name = "946_PRBS6", .cp = 15, .crn = 6, .crm = 6, .opc1 = 0, 4307 .opc2 = CP_ANY, .access = PL1_RW, .resetvalue = 0, 4308 .fieldoffset = offsetof(CPUARMState, cp15.c6_region[6]) }, 4309 { .name = "946_PRBS7", .cp = 15, .crn = 6, .crm = 7, .opc1 = 0, 4310 .opc2 = CP_ANY, .access = PL1_RW, .resetvalue = 0, 4311 .fieldoffset = offsetof(CPUARMState, cp15.c6_region[7]) }, 4312 }; 4313 4314 static void vmsa_ttbcr_write(CPUARMState *env, const ARMCPRegInfo *ri, 4315 uint64_t value) 4316 { 4317 ARMCPU *cpu = env_archcpu(env); 4318 4319 if (!arm_feature(env, ARM_FEATURE_V8)) { 4320 if (arm_feature(env, ARM_FEATURE_LPAE) && (value & TTBCR_EAE)) { 4321 /* 4322 * Pre ARMv8 bits [21:19], [15:14] and [6:3] are UNK/SBZP when 4323 * using Long-descriptor translation table format 4324 */ 4325 value &= ~((7 << 19) | (3 << 14) | (0xf << 3)); 4326 } else if (arm_feature(env, ARM_FEATURE_EL3)) { 4327 /* 4328 * In an implementation that includes the Security Extensions 4329 * TTBCR has additional fields PD0 [4] and PD1 [5] for 4330 * Short-descriptor translation table format. 4331 */ 4332 value &= TTBCR_PD1 | TTBCR_PD0 | TTBCR_N; 4333 } else { 4334 value &= TTBCR_N; 4335 } 4336 } 4337 4338 if (arm_feature(env, ARM_FEATURE_LPAE)) { 4339 /* 4340 * With LPAE the TTBCR could result in a change of ASID 4341 * via the TTBCR.A1 bit, so do a TLB flush. 4342 */ 4343 tlb_flush(CPU(cpu)); 4344 } 4345 raw_write(env, ri, value); 4346 } 4347 4348 static void vmsa_tcr_el12_write(CPUARMState *env, const ARMCPRegInfo *ri, 4349 uint64_t value) 4350 { 4351 ARMCPU *cpu = env_archcpu(env); 4352 4353 /* For AArch64 the A1 bit could result in a change of ASID, so TLB flush. */ 4354 tlb_flush(CPU(cpu)); 4355 raw_write(env, ri, value); 4356 } 4357 4358 static void vmsa_ttbr_write(CPUARMState *env, const ARMCPRegInfo *ri, 4359 uint64_t value) 4360 { 4361 /* If the ASID changes (with a 64-bit write), we must flush the TLB. */ 4362 if (cpreg_field_is_64bit(ri) && 4363 extract64(raw_read(env, ri) ^ value, 48, 16) != 0) { 4364 ARMCPU *cpu = env_archcpu(env); 4365 tlb_flush(CPU(cpu)); 4366 } 4367 raw_write(env, ri, value); 4368 } 4369 4370 static void vmsa_tcr_ttbr_el2_write(CPUARMState *env, const ARMCPRegInfo *ri, 4371 uint64_t value) 4372 { 4373 /* 4374 * If we are running with E2&0 regime, then an ASID is active. 4375 * Flush if that might be changing. Note we're not checking 4376 * TCR_EL2.A1 to know if this is really the TTBRx_EL2 that 4377 * holds the active ASID, only checking the field that might. 4378 */ 4379 if (extract64(raw_read(env, ri) ^ value, 48, 16) && 4380 (arm_hcr_el2_eff(env) & HCR_E2H)) { 4381 uint16_t mask = ARMMMUIdxBit_E20_2 | 4382 ARMMMUIdxBit_E20_2_PAN | 4383 ARMMMUIdxBit_E20_0; 4384 tlb_flush_by_mmuidx(env_cpu(env), mask); 4385 } 4386 raw_write(env, ri, value); 4387 } 4388 4389 static void vttbr_write(CPUARMState *env, const ARMCPRegInfo *ri, 4390 uint64_t value) 4391 { 4392 ARMCPU *cpu = env_archcpu(env); 4393 CPUState *cs = CPU(cpu); 4394 4395 /* 4396 * A change in VMID to the stage2 page table (Stage2) invalidates 4397 * the stage2 and combined stage 1&2 tlbs (EL10_1 and EL10_0). 4398 */ 4399 if (extract64(raw_read(env, ri) ^ value, 48, 16) != 0) { 4400 tlb_flush_by_mmuidx(cs, alle1_tlbmask(env)); 4401 } 4402 raw_write(env, ri, value); 4403 } 4404 4405 static const ARMCPRegInfo vmsa_pmsa_cp_reginfo[] = { 4406 { .name = "DFSR", .cp = 15, .crn = 5, .crm = 0, .opc1 = 0, .opc2 = 0, 4407 .access = PL1_RW, .accessfn = access_tvm_trvm, .type = ARM_CP_ALIAS, 4408 .bank_fieldoffsets = { offsetoflow32(CPUARMState, cp15.dfsr_s), 4409 offsetoflow32(CPUARMState, cp15.dfsr_ns) }, }, 4410 { .name = "IFSR", .cp = 15, .crn = 5, .crm = 0, .opc1 = 0, .opc2 = 1, 4411 .access = PL1_RW, .accessfn = access_tvm_trvm, .resetvalue = 0, 4412 .bank_fieldoffsets = { offsetoflow32(CPUARMState, cp15.ifsr_s), 4413 offsetoflow32(CPUARMState, cp15.ifsr_ns) } }, 4414 { .name = "DFAR", .cp = 15, .opc1 = 0, .crn = 6, .crm = 0, .opc2 = 0, 4415 .access = PL1_RW, .accessfn = access_tvm_trvm, .resetvalue = 0, 4416 .bank_fieldoffsets = { offsetof(CPUARMState, cp15.dfar_s), 4417 offsetof(CPUARMState, cp15.dfar_ns) } }, 4418 { .name = "FAR_EL1", .state = ARM_CP_STATE_AA64, 4419 .opc0 = 3, .crn = 6, .crm = 0, .opc1 = 0, .opc2 = 0, 4420 .access = PL1_RW, .accessfn = access_tvm_trvm, 4421 .fgt = FGT_FAR_EL1, 4422 .nv2_redirect_offset = 0x220 | NV2_REDIR_NV1, 4423 .fieldoffset = offsetof(CPUARMState, cp15.far_el[1]), 4424 .resetvalue = 0, }, 4425 }; 4426 4427 static const ARMCPRegInfo vmsa_cp_reginfo[] = { 4428 { .name = "ESR_EL1", .state = ARM_CP_STATE_AA64, 4429 .opc0 = 3, .crn = 5, .crm = 2, .opc1 = 0, .opc2 = 0, 4430 .access = PL1_RW, .accessfn = access_tvm_trvm, 4431 .fgt = FGT_ESR_EL1, 4432 .nv2_redirect_offset = 0x138 | NV2_REDIR_NV1, 4433 .fieldoffset = offsetof(CPUARMState, cp15.esr_el[1]), .resetvalue = 0, }, 4434 { .name = "TTBR0_EL1", .state = ARM_CP_STATE_BOTH, 4435 .opc0 = 3, .opc1 = 0, .crn = 2, .crm = 0, .opc2 = 0, 4436 .access = PL1_RW, .accessfn = access_tvm_trvm, 4437 .fgt = FGT_TTBR0_EL1, 4438 .nv2_redirect_offset = 0x200 | NV2_REDIR_NV1, 4439 .writefn = vmsa_ttbr_write, .resetvalue = 0, .raw_writefn = raw_write, 4440 .bank_fieldoffsets = { offsetof(CPUARMState, cp15.ttbr0_s), 4441 offsetof(CPUARMState, cp15.ttbr0_ns) } }, 4442 { .name = "TTBR1_EL1", .state = ARM_CP_STATE_BOTH, 4443 .opc0 = 3, .opc1 = 0, .crn = 2, .crm = 0, .opc2 = 1, 4444 .access = PL1_RW, .accessfn = access_tvm_trvm, 4445 .fgt = FGT_TTBR1_EL1, 4446 .nv2_redirect_offset = 0x210 | NV2_REDIR_NV1, 4447 .writefn = vmsa_ttbr_write, .resetvalue = 0, .raw_writefn = raw_write, 4448 .bank_fieldoffsets = { offsetof(CPUARMState, cp15.ttbr1_s), 4449 offsetof(CPUARMState, cp15.ttbr1_ns) } }, 4450 { .name = "TCR_EL1", .state = ARM_CP_STATE_AA64, 4451 .opc0 = 3, .crn = 2, .crm = 0, .opc1 = 0, .opc2 = 2, 4452 .access = PL1_RW, .accessfn = access_tvm_trvm, 4453 .fgt = FGT_TCR_EL1, 4454 .nv2_redirect_offset = 0x120 | NV2_REDIR_NV1, 4455 .writefn = vmsa_tcr_el12_write, 4456 .raw_writefn = raw_write, 4457 .resetvalue = 0, 4458 .fieldoffset = offsetof(CPUARMState, cp15.tcr_el[1]) }, 4459 { .name = "TTBCR", .cp = 15, .crn = 2, .crm = 0, .opc1 = 0, .opc2 = 2, 4460 .access = PL1_RW, .accessfn = access_tvm_trvm, 4461 .type = ARM_CP_ALIAS, .writefn = vmsa_ttbcr_write, 4462 .raw_writefn = raw_write, 4463 .bank_fieldoffsets = { offsetoflow32(CPUARMState, cp15.tcr_el[3]), 4464 offsetoflow32(CPUARMState, cp15.tcr_el[1])} }, 4465 }; 4466 4467 /* 4468 * Note that unlike TTBCR, writing to TTBCR2 does not require flushing 4469 * qemu tlbs nor adjusting cached masks. 4470 */ 4471 static const ARMCPRegInfo ttbcr2_reginfo = { 4472 .name = "TTBCR2", .cp = 15, .opc1 = 0, .crn = 2, .crm = 0, .opc2 = 3, 4473 .access = PL1_RW, .accessfn = access_tvm_trvm, 4474 .type = ARM_CP_ALIAS, 4475 .bank_fieldoffsets = { 4476 offsetofhigh32(CPUARMState, cp15.tcr_el[3]), 4477 offsetofhigh32(CPUARMState, cp15.tcr_el[1]), 4478 }, 4479 }; 4480 4481 static void omap_ticonfig_write(CPUARMState *env, const ARMCPRegInfo *ri, 4482 uint64_t value) 4483 { 4484 env->cp15.c15_ticonfig = value & 0xe7; 4485 /* The OS_TYPE bit in this register changes the reported CPUID! */ 4486 env->cp15.c0_cpuid = (value & (1 << 5)) ? 4487 ARM_CPUID_TI915T : ARM_CPUID_TI925T; 4488 } 4489 4490 static void omap_threadid_write(CPUARMState *env, const ARMCPRegInfo *ri, 4491 uint64_t value) 4492 { 4493 env->cp15.c15_threadid = value & 0xffff; 4494 } 4495 4496 static void omap_wfi_write(CPUARMState *env, const ARMCPRegInfo *ri, 4497 uint64_t value) 4498 { 4499 /* Wait-for-interrupt (deprecated) */ 4500 cpu_interrupt(env_cpu(env), CPU_INTERRUPT_HALT); 4501 } 4502 4503 static void omap_cachemaint_write(CPUARMState *env, const ARMCPRegInfo *ri, 4504 uint64_t value) 4505 { 4506 /* 4507 * On OMAP there are registers indicating the max/min index of dcache lines 4508 * containing a dirty line; cache flush operations have to reset these. 4509 */ 4510 env->cp15.c15_i_max = 0x000; 4511 env->cp15.c15_i_min = 0xff0; 4512 } 4513 4514 static const ARMCPRegInfo omap_cp_reginfo[] = { 4515 { .name = "DFSR", .cp = 15, .crn = 5, .crm = CP_ANY, 4516 .opc1 = CP_ANY, .opc2 = CP_ANY, .access = PL1_RW, .type = ARM_CP_OVERRIDE, 4517 .fieldoffset = offsetoflow32(CPUARMState, cp15.esr_el[1]), 4518 .resetvalue = 0, }, 4519 { .name = "", .cp = 15, .crn = 15, .crm = 0, .opc1 = 0, .opc2 = 0, 4520 .access = PL1_RW, .type = ARM_CP_NOP }, 4521 { .name = "TICONFIG", .cp = 15, .crn = 15, .crm = 1, .opc1 = 0, .opc2 = 0, 4522 .access = PL1_RW, 4523 .fieldoffset = offsetof(CPUARMState, cp15.c15_ticonfig), .resetvalue = 0, 4524 .writefn = omap_ticonfig_write }, 4525 { .name = "IMAX", .cp = 15, .crn = 15, .crm = 2, .opc1 = 0, .opc2 = 0, 4526 .access = PL1_RW, 4527 .fieldoffset = offsetof(CPUARMState, cp15.c15_i_max), .resetvalue = 0, }, 4528 { .name = "IMIN", .cp = 15, .crn = 15, .crm = 3, .opc1 = 0, .opc2 = 0, 4529 .access = PL1_RW, .resetvalue = 0xff0, 4530 .fieldoffset = offsetof(CPUARMState, cp15.c15_i_min) }, 4531 { .name = "THREADID", .cp = 15, .crn = 15, .crm = 4, .opc1 = 0, .opc2 = 0, 4532 .access = PL1_RW, 4533 .fieldoffset = offsetof(CPUARMState, cp15.c15_threadid), .resetvalue = 0, 4534 .writefn = omap_threadid_write }, 4535 { .name = "TI925T_STATUS", .cp = 15, .crn = 15, 4536 .crm = 8, .opc1 = 0, .opc2 = 0, .access = PL1_RW, 4537 .type = ARM_CP_NO_RAW, 4538 .readfn = arm_cp_read_zero, .writefn = omap_wfi_write, }, 4539 /* 4540 * TODO: Peripheral port remap register: 4541 * On OMAP2 mcr p15, 0, rn, c15, c2, 4 sets up the interrupt controller 4542 * base address at $rn & ~0xfff and map size of 0x200 << ($rn & 0xfff), 4543 * when MMU is off. 4544 */ 4545 { .name = "OMAP_CACHEMAINT", .cp = 15, .crn = 7, .crm = CP_ANY, 4546 .opc1 = 0, .opc2 = CP_ANY, .access = PL1_W, 4547 .type = ARM_CP_OVERRIDE | ARM_CP_NO_RAW, 4548 .writefn = omap_cachemaint_write }, 4549 { .name = "C9", .cp = 15, .crn = 9, 4550 .crm = CP_ANY, .opc1 = CP_ANY, .opc2 = CP_ANY, .access = PL1_RW, 4551 .type = ARM_CP_CONST | ARM_CP_OVERRIDE, .resetvalue = 0 }, 4552 }; 4553 4554 static void xscale_cpar_write(CPUARMState *env, const ARMCPRegInfo *ri, 4555 uint64_t value) 4556 { 4557 env->cp15.c15_cpar = value & 0x3fff; 4558 } 4559 4560 static const ARMCPRegInfo xscale_cp_reginfo[] = { 4561 { .name = "XSCALE_CPAR", 4562 .cp = 15, .crn = 15, .crm = 1, .opc1 = 0, .opc2 = 0, .access = PL1_RW, 4563 .fieldoffset = offsetof(CPUARMState, cp15.c15_cpar), .resetvalue = 0, 4564 .writefn = xscale_cpar_write, }, 4565 { .name = "XSCALE_AUXCR", 4566 .cp = 15, .crn = 1, .crm = 0, .opc1 = 0, .opc2 = 1, .access = PL1_RW, 4567 .fieldoffset = offsetof(CPUARMState, cp15.c1_xscaleauxcr), 4568 .resetvalue = 0, }, 4569 /* 4570 * XScale specific cache-lockdown: since we have no cache we NOP these 4571 * and hope the guest does not really rely on cache behaviour. 4572 */ 4573 { .name = "XSCALE_LOCK_ICACHE_LINE", 4574 .cp = 15, .opc1 = 0, .crn = 9, .crm = 1, .opc2 = 0, 4575 .access = PL1_W, .type = ARM_CP_NOP }, 4576 { .name = "XSCALE_UNLOCK_ICACHE", 4577 .cp = 15, .opc1 = 0, .crn = 9, .crm = 1, .opc2 = 1, 4578 .access = PL1_W, .type = ARM_CP_NOP }, 4579 { .name = "XSCALE_DCACHE_LOCK", 4580 .cp = 15, .opc1 = 0, .crn = 9, .crm = 2, .opc2 = 0, 4581 .access = PL1_RW, .type = ARM_CP_NOP }, 4582 { .name = "XSCALE_UNLOCK_DCACHE", 4583 .cp = 15, .opc1 = 0, .crn = 9, .crm = 2, .opc2 = 1, 4584 .access = PL1_W, .type = ARM_CP_NOP }, 4585 }; 4586 4587 static const ARMCPRegInfo dummy_c15_cp_reginfo[] = { 4588 /* 4589 * RAZ/WI the whole crn=15 space, when we don't have a more specific 4590 * implementation of this implementation-defined space. 4591 * Ideally this should eventually disappear in favour of actually 4592 * implementing the correct behaviour for all cores. 4593 */ 4594 { .name = "C15_IMPDEF", .cp = 15, .crn = 15, 4595 .crm = CP_ANY, .opc1 = CP_ANY, .opc2 = CP_ANY, 4596 .access = PL1_RW, 4597 .type = ARM_CP_CONST | ARM_CP_NO_RAW | ARM_CP_OVERRIDE, 4598 .resetvalue = 0 }, 4599 }; 4600 4601 static const ARMCPRegInfo cache_dirty_status_cp_reginfo[] = { 4602 /* Cache status: RAZ because we have no cache so it's always clean */ 4603 { .name = "CDSR", .cp = 15, .crn = 7, .crm = 10, .opc1 = 0, .opc2 = 6, 4604 .access = PL1_R, .type = ARM_CP_CONST | ARM_CP_NO_RAW, 4605 .resetvalue = 0 }, 4606 }; 4607 4608 static const ARMCPRegInfo cache_block_ops_cp_reginfo[] = { 4609 /* We never have a block transfer operation in progress */ 4610 { .name = "BXSR", .cp = 15, .crn = 7, .crm = 12, .opc1 = 0, .opc2 = 4, 4611 .access = PL0_R, .type = ARM_CP_CONST | ARM_CP_NO_RAW, 4612 .resetvalue = 0 }, 4613 /* The cache ops themselves: these all NOP for QEMU */ 4614 { .name = "IICR", .cp = 15, .crm = 5, .opc1 = 0, 4615 .access = PL1_W, .type = ARM_CP_NOP | ARM_CP_64BIT }, 4616 { .name = "IDCR", .cp = 15, .crm = 6, .opc1 = 0, 4617 .access = PL1_W, .type = ARM_CP_NOP | ARM_CP_64BIT }, 4618 { .name = "CDCR", .cp = 15, .crm = 12, .opc1 = 0, 4619 .access = PL0_W, .type = ARM_CP_NOP | ARM_CP_64BIT }, 4620 { .name = "PIR", .cp = 15, .crm = 12, .opc1 = 1, 4621 .access = PL0_W, .type = ARM_CP_NOP | ARM_CP_64BIT }, 4622 { .name = "PDR", .cp = 15, .crm = 12, .opc1 = 2, 4623 .access = PL0_W, .type = ARM_CP_NOP | ARM_CP_64BIT }, 4624 { .name = "CIDCR", .cp = 15, .crm = 14, .opc1 = 0, 4625 .access = PL1_W, .type = ARM_CP_NOP | ARM_CP_64BIT }, 4626 }; 4627 4628 static const ARMCPRegInfo cache_test_clean_cp_reginfo[] = { 4629 /* 4630 * The cache test-and-clean instructions always return (1 << 30) 4631 * to indicate that there are no dirty cache lines. 4632 */ 4633 { .name = "TC_DCACHE", .cp = 15, .crn = 7, .crm = 10, .opc1 = 0, .opc2 = 3, 4634 .access = PL0_R, .type = ARM_CP_CONST | ARM_CP_NO_RAW, 4635 .resetvalue = (1 << 30) }, 4636 { .name = "TCI_DCACHE", .cp = 15, .crn = 7, .crm = 14, .opc1 = 0, .opc2 = 3, 4637 .access = PL0_R, .type = ARM_CP_CONST | ARM_CP_NO_RAW, 4638 .resetvalue = (1 << 30) }, 4639 }; 4640 4641 static const ARMCPRegInfo strongarm_cp_reginfo[] = { 4642 /* Ignore ReadBuffer accesses */ 4643 { .name = "C9_READBUFFER", .cp = 15, .crn = 9, 4644 .crm = CP_ANY, .opc1 = CP_ANY, .opc2 = CP_ANY, 4645 .access = PL1_RW, .resetvalue = 0, 4646 .type = ARM_CP_CONST | ARM_CP_OVERRIDE | ARM_CP_NO_RAW }, 4647 }; 4648 4649 static uint64_t midr_read(CPUARMState *env, const ARMCPRegInfo *ri) 4650 { 4651 unsigned int cur_el = arm_current_el(env); 4652 4653 if (arm_is_el2_enabled(env) && cur_el == 1) { 4654 return env->cp15.vpidr_el2; 4655 } 4656 return raw_read(env, ri); 4657 } 4658 4659 static uint64_t mpidr_read_val(CPUARMState *env) 4660 { 4661 ARMCPU *cpu = env_archcpu(env); 4662 uint64_t mpidr = cpu->mp_affinity; 4663 4664 if (arm_feature(env, ARM_FEATURE_V7MP)) { 4665 mpidr |= (1U << 31); 4666 /* 4667 * Cores which are uniprocessor (non-coherent) 4668 * but still implement the MP extensions set 4669 * bit 30. (For instance, Cortex-R5). 4670 */ 4671 if (cpu->mp_is_up) { 4672 mpidr |= (1u << 30); 4673 } 4674 } 4675 return mpidr; 4676 } 4677 4678 static uint64_t mpidr_read(CPUARMState *env, const ARMCPRegInfo *ri) 4679 { 4680 unsigned int cur_el = arm_current_el(env); 4681 4682 if (arm_is_el2_enabled(env) && cur_el == 1) { 4683 return env->cp15.vmpidr_el2; 4684 } 4685 return mpidr_read_val(env); 4686 } 4687 4688 static const ARMCPRegInfo lpae_cp_reginfo[] = { 4689 /* NOP AMAIR0/1 */ 4690 { .name = "AMAIR0", .state = ARM_CP_STATE_BOTH, 4691 .opc0 = 3, .crn = 10, .crm = 3, .opc1 = 0, .opc2 = 0, 4692 .access = PL1_RW, .accessfn = access_tvm_trvm, 4693 .fgt = FGT_AMAIR_EL1, 4694 .nv2_redirect_offset = 0x148 | NV2_REDIR_NV1, 4695 .type = ARM_CP_CONST, .resetvalue = 0 }, 4696 /* AMAIR1 is mapped to AMAIR_EL1[63:32] */ 4697 { .name = "AMAIR1", .cp = 15, .crn = 10, .crm = 3, .opc1 = 0, .opc2 = 1, 4698 .access = PL1_RW, .accessfn = access_tvm_trvm, 4699 .type = ARM_CP_CONST, .resetvalue = 0 }, 4700 { .name = "PAR", .cp = 15, .crm = 7, .opc1 = 0, 4701 .access = PL1_RW, .type = ARM_CP_64BIT, .resetvalue = 0, 4702 .bank_fieldoffsets = { offsetof(CPUARMState, cp15.par_s), 4703 offsetof(CPUARMState, cp15.par_ns)} }, 4704 { .name = "TTBR0", .cp = 15, .crm = 2, .opc1 = 0, 4705 .access = PL1_RW, .accessfn = access_tvm_trvm, 4706 .type = ARM_CP_64BIT | ARM_CP_ALIAS, 4707 .bank_fieldoffsets = { offsetof(CPUARMState, cp15.ttbr0_s), 4708 offsetof(CPUARMState, cp15.ttbr0_ns) }, 4709 .writefn = vmsa_ttbr_write, .raw_writefn = raw_write }, 4710 { .name = "TTBR1", .cp = 15, .crm = 2, .opc1 = 1, 4711 .access = PL1_RW, .accessfn = access_tvm_trvm, 4712 .type = ARM_CP_64BIT | ARM_CP_ALIAS, 4713 .bank_fieldoffsets = { offsetof(CPUARMState, cp15.ttbr1_s), 4714 offsetof(CPUARMState, cp15.ttbr1_ns) }, 4715 .writefn = vmsa_ttbr_write, .raw_writefn = raw_write }, 4716 }; 4717 4718 static uint64_t aa64_fpcr_read(CPUARMState *env, const ARMCPRegInfo *ri) 4719 { 4720 return vfp_get_fpcr(env); 4721 } 4722 4723 static void aa64_fpcr_write(CPUARMState *env, const ARMCPRegInfo *ri, 4724 uint64_t value) 4725 { 4726 vfp_set_fpcr(env, value); 4727 } 4728 4729 static uint64_t aa64_fpsr_read(CPUARMState *env, const ARMCPRegInfo *ri) 4730 { 4731 return vfp_get_fpsr(env); 4732 } 4733 4734 static void aa64_fpsr_write(CPUARMState *env, const ARMCPRegInfo *ri, 4735 uint64_t value) 4736 { 4737 vfp_set_fpsr(env, value); 4738 } 4739 4740 static CPAccessResult aa64_daif_access(CPUARMState *env, const ARMCPRegInfo *ri, 4741 bool isread) 4742 { 4743 if (arm_current_el(env) == 0 && !(arm_sctlr(env, 0) & SCTLR_UMA)) { 4744 return CP_ACCESS_TRAP; 4745 } 4746 return CP_ACCESS_OK; 4747 } 4748 4749 static void aa64_daif_write(CPUARMState *env, const ARMCPRegInfo *ri, 4750 uint64_t value) 4751 { 4752 env->daif = value & PSTATE_DAIF; 4753 } 4754 4755 static uint64_t aa64_pan_read(CPUARMState *env, const ARMCPRegInfo *ri) 4756 { 4757 return env->pstate & PSTATE_PAN; 4758 } 4759 4760 static void aa64_pan_write(CPUARMState *env, const ARMCPRegInfo *ri, 4761 uint64_t value) 4762 { 4763 env->pstate = (env->pstate & ~PSTATE_PAN) | (value & PSTATE_PAN); 4764 } 4765 4766 static const ARMCPRegInfo pan_reginfo = { 4767 .name = "PAN", .state = ARM_CP_STATE_AA64, 4768 .opc0 = 3, .opc1 = 0, .crn = 4, .crm = 2, .opc2 = 3, 4769 .type = ARM_CP_NO_RAW, .access = PL1_RW, 4770 .readfn = aa64_pan_read, .writefn = aa64_pan_write 4771 }; 4772 4773 static uint64_t aa64_uao_read(CPUARMState *env, const ARMCPRegInfo *ri) 4774 { 4775 return env->pstate & PSTATE_UAO; 4776 } 4777 4778 static void aa64_uao_write(CPUARMState *env, const ARMCPRegInfo *ri, 4779 uint64_t value) 4780 { 4781 env->pstate = (env->pstate & ~PSTATE_UAO) | (value & PSTATE_UAO); 4782 } 4783 4784 static const ARMCPRegInfo uao_reginfo = { 4785 .name = "UAO", .state = ARM_CP_STATE_AA64, 4786 .opc0 = 3, .opc1 = 0, .crn = 4, .crm = 2, .opc2 = 4, 4787 .type = ARM_CP_NO_RAW, .access = PL1_RW, 4788 .readfn = aa64_uao_read, .writefn = aa64_uao_write 4789 }; 4790 4791 static uint64_t aa64_dit_read(CPUARMState *env, const ARMCPRegInfo *ri) 4792 { 4793 return env->pstate & PSTATE_DIT; 4794 } 4795 4796 static void aa64_dit_write(CPUARMState *env, const ARMCPRegInfo *ri, 4797 uint64_t value) 4798 { 4799 env->pstate = (env->pstate & ~PSTATE_DIT) | (value & PSTATE_DIT); 4800 } 4801 4802 static const ARMCPRegInfo dit_reginfo = { 4803 .name = "DIT", .state = ARM_CP_STATE_AA64, 4804 .opc0 = 3, .opc1 = 3, .crn = 4, .crm = 2, .opc2 = 5, 4805 .type = ARM_CP_NO_RAW, .access = PL0_RW, 4806 .readfn = aa64_dit_read, .writefn = aa64_dit_write 4807 }; 4808 4809 static uint64_t aa64_ssbs_read(CPUARMState *env, const ARMCPRegInfo *ri) 4810 { 4811 return env->pstate & PSTATE_SSBS; 4812 } 4813 4814 static void aa64_ssbs_write(CPUARMState *env, const ARMCPRegInfo *ri, 4815 uint64_t value) 4816 { 4817 env->pstate = (env->pstate & ~PSTATE_SSBS) | (value & PSTATE_SSBS); 4818 } 4819 4820 static const ARMCPRegInfo ssbs_reginfo = { 4821 .name = "SSBS", .state = ARM_CP_STATE_AA64, 4822 .opc0 = 3, .opc1 = 3, .crn = 4, .crm = 2, .opc2 = 6, 4823 .type = ARM_CP_NO_RAW, .access = PL0_RW, 4824 .readfn = aa64_ssbs_read, .writefn = aa64_ssbs_write 4825 }; 4826 4827 static CPAccessResult aa64_cacheop_poc_access(CPUARMState *env, 4828 const ARMCPRegInfo *ri, 4829 bool isread) 4830 { 4831 /* Cache invalidate/clean to Point of Coherency or Persistence... */ 4832 switch (arm_current_el(env)) { 4833 case 0: 4834 /* ... EL0 must UNDEF unless SCTLR_EL1.UCI is set. */ 4835 if (!(arm_sctlr(env, 0) & SCTLR_UCI)) { 4836 return CP_ACCESS_TRAP; 4837 } 4838 /* fall through */ 4839 case 1: 4840 /* ... EL1 must trap to EL2 if HCR_EL2.TPCP is set. */ 4841 if (arm_hcr_el2_eff(env) & HCR_TPCP) { 4842 return CP_ACCESS_TRAP_EL2; 4843 } 4844 break; 4845 } 4846 return CP_ACCESS_OK; 4847 } 4848 4849 static CPAccessResult do_cacheop_pou_access(CPUARMState *env, uint64_t hcrflags) 4850 { 4851 /* Cache invalidate/clean to Point of Unification... */ 4852 switch (arm_current_el(env)) { 4853 case 0: 4854 /* ... EL0 must UNDEF unless SCTLR_EL1.UCI is set. */ 4855 if (!(arm_sctlr(env, 0) & SCTLR_UCI)) { 4856 return CP_ACCESS_TRAP; 4857 } 4858 /* fall through */ 4859 case 1: 4860 /* ... EL1 must trap to EL2 if relevant HCR_EL2 flags are set. */ 4861 if (arm_hcr_el2_eff(env) & hcrflags) { 4862 return CP_ACCESS_TRAP_EL2; 4863 } 4864 break; 4865 } 4866 return CP_ACCESS_OK; 4867 } 4868 4869 static CPAccessResult access_ticab(CPUARMState *env, const ARMCPRegInfo *ri, 4870 bool isread) 4871 { 4872 return do_cacheop_pou_access(env, HCR_TICAB | HCR_TPU); 4873 } 4874 4875 static CPAccessResult access_tocu(CPUARMState *env, const ARMCPRegInfo *ri, 4876 bool isread) 4877 { 4878 return do_cacheop_pou_access(env, HCR_TOCU | HCR_TPU); 4879 } 4880 4881 /* 4882 * See: D4.7.2 TLB maintenance requirements and the TLB maintenance instructions 4883 * Page D4-1736 (DDI0487A.b) 4884 */ 4885 4886 static int vae1_tlbmask(CPUARMState *env) 4887 { 4888 uint64_t hcr = arm_hcr_el2_eff(env); 4889 uint16_t mask; 4890 4891 if ((hcr & (HCR_E2H | HCR_TGE)) == (HCR_E2H | HCR_TGE)) { 4892 mask = ARMMMUIdxBit_E20_2 | 4893 ARMMMUIdxBit_E20_2_PAN | 4894 ARMMMUIdxBit_E20_0; 4895 } else { 4896 mask = ARMMMUIdxBit_E10_1 | 4897 ARMMMUIdxBit_E10_1_PAN | 4898 ARMMMUIdxBit_E10_0; 4899 } 4900 return mask; 4901 } 4902 4903 static int vae2_tlbmask(CPUARMState *env) 4904 { 4905 uint64_t hcr = arm_hcr_el2_eff(env); 4906 uint16_t mask; 4907 4908 if (hcr & HCR_E2H) { 4909 mask = ARMMMUIdxBit_E20_2 | 4910 ARMMMUIdxBit_E20_2_PAN | 4911 ARMMMUIdxBit_E20_0; 4912 } else { 4913 mask = ARMMMUIdxBit_E2; 4914 } 4915 return mask; 4916 } 4917 4918 /* Return 56 if TBI is enabled, 64 otherwise. */ 4919 static int tlbbits_for_regime(CPUARMState *env, ARMMMUIdx mmu_idx, 4920 uint64_t addr) 4921 { 4922 uint64_t tcr = regime_tcr(env, mmu_idx); 4923 int tbi = aa64_va_parameter_tbi(tcr, mmu_idx); 4924 int select = extract64(addr, 55, 1); 4925 4926 return (tbi >> select) & 1 ? 56 : 64; 4927 } 4928 4929 static int vae1_tlbbits(CPUARMState *env, uint64_t addr) 4930 { 4931 uint64_t hcr = arm_hcr_el2_eff(env); 4932 ARMMMUIdx mmu_idx; 4933 4934 /* Only the regime of the mmu_idx below is significant. */ 4935 if ((hcr & (HCR_E2H | HCR_TGE)) == (HCR_E2H | HCR_TGE)) { 4936 mmu_idx = ARMMMUIdx_E20_0; 4937 } else { 4938 mmu_idx = ARMMMUIdx_E10_0; 4939 } 4940 4941 return tlbbits_for_regime(env, mmu_idx, addr); 4942 } 4943 4944 static int vae2_tlbbits(CPUARMState *env, uint64_t addr) 4945 { 4946 uint64_t hcr = arm_hcr_el2_eff(env); 4947 ARMMMUIdx mmu_idx; 4948 4949 /* 4950 * Only the regime of the mmu_idx below is significant. 4951 * Regime EL2&0 has two ranges with separate TBI configuration, while EL2 4952 * only has one. 4953 */ 4954 if (hcr & HCR_E2H) { 4955 mmu_idx = ARMMMUIdx_E20_2; 4956 } else { 4957 mmu_idx = ARMMMUIdx_E2; 4958 } 4959 4960 return tlbbits_for_regime(env, mmu_idx, addr); 4961 } 4962 4963 static void tlbi_aa64_vmalle1is_write(CPUARMState *env, const ARMCPRegInfo *ri, 4964 uint64_t value) 4965 { 4966 CPUState *cs = env_cpu(env); 4967 int mask = vae1_tlbmask(env); 4968 4969 tlb_flush_by_mmuidx_all_cpus_synced(cs, mask); 4970 } 4971 4972 static void tlbi_aa64_vmalle1_write(CPUARMState *env, const ARMCPRegInfo *ri, 4973 uint64_t value) 4974 { 4975 CPUState *cs = env_cpu(env); 4976 int mask = vae1_tlbmask(env); 4977 4978 if (tlb_force_broadcast(env)) { 4979 tlb_flush_by_mmuidx_all_cpus_synced(cs, mask); 4980 } else { 4981 tlb_flush_by_mmuidx(cs, mask); 4982 } 4983 } 4984 4985 static int e2_tlbmask(CPUARMState *env) 4986 { 4987 return (ARMMMUIdxBit_E20_0 | 4988 ARMMMUIdxBit_E20_2 | 4989 ARMMMUIdxBit_E20_2_PAN | 4990 ARMMMUIdxBit_E2); 4991 } 4992 4993 static void tlbi_aa64_alle1_write(CPUARMState *env, const ARMCPRegInfo *ri, 4994 uint64_t value) 4995 { 4996 CPUState *cs = env_cpu(env); 4997 int mask = alle1_tlbmask(env); 4998 4999 tlb_flush_by_mmuidx(cs, mask); 5000 } 5001 5002 static void tlbi_aa64_alle2_write(CPUARMState *env, const ARMCPRegInfo *ri, 5003 uint64_t value) 5004 { 5005 CPUState *cs = env_cpu(env); 5006 int mask = e2_tlbmask(env); 5007 5008 tlb_flush_by_mmuidx(cs, mask); 5009 } 5010 5011 static void tlbi_aa64_alle3_write(CPUARMState *env, const ARMCPRegInfo *ri, 5012 uint64_t value) 5013 { 5014 ARMCPU *cpu = env_archcpu(env); 5015 CPUState *cs = CPU(cpu); 5016 5017 tlb_flush_by_mmuidx(cs, ARMMMUIdxBit_E3); 5018 } 5019 5020 static void tlbi_aa64_alle1is_write(CPUARMState *env, const ARMCPRegInfo *ri, 5021 uint64_t value) 5022 { 5023 CPUState *cs = env_cpu(env); 5024 int mask = alle1_tlbmask(env); 5025 5026 tlb_flush_by_mmuidx_all_cpus_synced(cs, mask); 5027 } 5028 5029 static void tlbi_aa64_alle2is_write(CPUARMState *env, const ARMCPRegInfo *ri, 5030 uint64_t value) 5031 { 5032 CPUState *cs = env_cpu(env); 5033 int mask = e2_tlbmask(env); 5034 5035 tlb_flush_by_mmuidx_all_cpus_synced(cs, mask); 5036 } 5037 5038 static void tlbi_aa64_alle3is_write(CPUARMState *env, const ARMCPRegInfo *ri, 5039 uint64_t value) 5040 { 5041 CPUState *cs = env_cpu(env); 5042 5043 tlb_flush_by_mmuidx_all_cpus_synced(cs, ARMMMUIdxBit_E3); 5044 } 5045 5046 static void tlbi_aa64_vae2_write(CPUARMState *env, const ARMCPRegInfo *ri, 5047 uint64_t value) 5048 { 5049 /* 5050 * Invalidate by VA, EL2 5051 * Currently handles both VAE2 and VALE2, since we don't support 5052 * flush-last-level-only. 5053 */ 5054 CPUState *cs = env_cpu(env); 5055 int mask = vae2_tlbmask(env); 5056 uint64_t pageaddr = sextract64(value << 12, 0, 56); 5057 int bits = vae2_tlbbits(env, pageaddr); 5058 5059 tlb_flush_page_bits_by_mmuidx(cs, pageaddr, mask, bits); 5060 } 5061 5062 static void tlbi_aa64_vae3_write(CPUARMState *env, const ARMCPRegInfo *ri, 5063 uint64_t value) 5064 { 5065 /* 5066 * Invalidate by VA, EL3 5067 * Currently handles both VAE3 and VALE3, since we don't support 5068 * flush-last-level-only. 5069 */ 5070 ARMCPU *cpu = env_archcpu(env); 5071 CPUState *cs = CPU(cpu); 5072 uint64_t pageaddr = sextract64(value << 12, 0, 56); 5073 5074 tlb_flush_page_by_mmuidx(cs, pageaddr, ARMMMUIdxBit_E3); 5075 } 5076 5077 static void tlbi_aa64_vae1is_write(CPUARMState *env, const ARMCPRegInfo *ri, 5078 uint64_t value) 5079 { 5080 CPUState *cs = env_cpu(env); 5081 int mask = vae1_tlbmask(env); 5082 uint64_t pageaddr = sextract64(value << 12, 0, 56); 5083 int bits = vae1_tlbbits(env, pageaddr); 5084 5085 tlb_flush_page_bits_by_mmuidx_all_cpus_synced(cs, pageaddr, mask, bits); 5086 } 5087 5088 static void tlbi_aa64_vae1_write(CPUARMState *env, const ARMCPRegInfo *ri, 5089 uint64_t value) 5090 { 5091 /* 5092 * Invalidate by VA, EL1&0 (AArch64 version). 5093 * Currently handles all of VAE1, VAAE1, VAALE1 and VALE1, 5094 * since we don't support flush-for-specific-ASID-only or 5095 * flush-last-level-only. 5096 */ 5097 CPUState *cs = env_cpu(env); 5098 int mask = vae1_tlbmask(env); 5099 uint64_t pageaddr = sextract64(value << 12, 0, 56); 5100 int bits = vae1_tlbbits(env, pageaddr); 5101 5102 if (tlb_force_broadcast(env)) { 5103 tlb_flush_page_bits_by_mmuidx_all_cpus_synced(cs, pageaddr, mask, bits); 5104 } else { 5105 tlb_flush_page_bits_by_mmuidx(cs, pageaddr, mask, bits); 5106 } 5107 } 5108 5109 static void tlbi_aa64_vae2is_write(CPUARMState *env, const ARMCPRegInfo *ri, 5110 uint64_t value) 5111 { 5112 CPUState *cs = env_cpu(env); 5113 int mask = vae2_tlbmask(env); 5114 uint64_t pageaddr = sextract64(value << 12, 0, 56); 5115 int bits = vae2_tlbbits(env, pageaddr); 5116 5117 tlb_flush_page_bits_by_mmuidx_all_cpus_synced(cs, pageaddr, mask, bits); 5118 } 5119 5120 static void tlbi_aa64_vae3is_write(CPUARMState *env, const ARMCPRegInfo *ri, 5121 uint64_t value) 5122 { 5123 CPUState *cs = env_cpu(env); 5124 uint64_t pageaddr = sextract64(value << 12, 0, 56); 5125 int bits = tlbbits_for_regime(env, ARMMMUIdx_E3, pageaddr); 5126 5127 tlb_flush_page_bits_by_mmuidx_all_cpus_synced(cs, pageaddr, 5128 ARMMMUIdxBit_E3, bits); 5129 } 5130 5131 static int ipas2e1_tlbmask(CPUARMState *env, int64_t value) 5132 { 5133 /* 5134 * The MSB of value is the NS field, which only applies if SEL2 5135 * is implemented and SCR_EL3.NS is not set (i.e. in secure mode). 5136 */ 5137 return (value >= 0 5138 && cpu_isar_feature(aa64_sel2, env_archcpu(env)) 5139 && arm_is_secure_below_el3(env) 5140 ? ARMMMUIdxBit_Stage2_S 5141 : ARMMMUIdxBit_Stage2); 5142 } 5143 5144 static void tlbi_aa64_ipas2e1_write(CPUARMState *env, const ARMCPRegInfo *ri, 5145 uint64_t value) 5146 { 5147 CPUState *cs = env_cpu(env); 5148 int mask = ipas2e1_tlbmask(env, value); 5149 uint64_t pageaddr = sextract64(value << 12, 0, 56); 5150 5151 if (tlb_force_broadcast(env)) { 5152 tlb_flush_page_by_mmuidx_all_cpus_synced(cs, pageaddr, mask); 5153 } else { 5154 tlb_flush_page_by_mmuidx(cs, pageaddr, mask); 5155 } 5156 } 5157 5158 static void tlbi_aa64_ipas2e1is_write(CPUARMState *env, const ARMCPRegInfo *ri, 5159 uint64_t value) 5160 { 5161 CPUState *cs = env_cpu(env); 5162 int mask = ipas2e1_tlbmask(env, value); 5163 uint64_t pageaddr = sextract64(value << 12, 0, 56); 5164 5165 tlb_flush_page_by_mmuidx_all_cpus_synced(cs, pageaddr, mask); 5166 } 5167 5168 #ifdef TARGET_AARCH64 5169 typedef struct { 5170 uint64_t base; 5171 uint64_t length; 5172 } TLBIRange; 5173 5174 static ARMGranuleSize tlbi_range_tg_to_gran_size(int tg) 5175 { 5176 /* 5177 * Note that the TLBI range TG field encoding differs from both 5178 * TG0 and TG1 encodings. 5179 */ 5180 switch (tg) { 5181 case 1: 5182 return Gran4K; 5183 case 2: 5184 return Gran16K; 5185 case 3: 5186 return Gran64K; 5187 default: 5188 return GranInvalid; 5189 } 5190 } 5191 5192 static TLBIRange tlbi_aa64_get_range(CPUARMState *env, ARMMMUIdx mmuidx, 5193 uint64_t value) 5194 { 5195 unsigned int page_size_granule, page_shift, num, scale, exponent; 5196 /* Extract one bit to represent the va selector in use. */ 5197 uint64_t select = sextract64(value, 36, 1); 5198 ARMVAParameters param = aa64_va_parameters(env, select, mmuidx, true, false); 5199 TLBIRange ret = { }; 5200 ARMGranuleSize gran; 5201 5202 page_size_granule = extract64(value, 46, 2); 5203 gran = tlbi_range_tg_to_gran_size(page_size_granule); 5204 5205 /* The granule encoded in value must match the granule in use. */ 5206 if (gran != param.gran) { 5207 qemu_log_mask(LOG_GUEST_ERROR, "Invalid tlbi page size granule %d\n", 5208 page_size_granule); 5209 return ret; 5210 } 5211 5212 page_shift = arm_granule_bits(gran); 5213 num = extract64(value, 39, 5); 5214 scale = extract64(value, 44, 2); 5215 exponent = (5 * scale) + 1; 5216 5217 ret.length = (num + 1) << (exponent + page_shift); 5218 5219 if (param.select) { 5220 ret.base = sextract64(value, 0, 37); 5221 } else { 5222 ret.base = extract64(value, 0, 37); 5223 } 5224 if (param.ds) { 5225 /* 5226 * With DS=1, BaseADDR is always shifted 16 so that it is able 5227 * to address all 52 va bits. The input address is perforce 5228 * aligned on a 64k boundary regardless of translation granule. 5229 */ 5230 page_shift = 16; 5231 } 5232 ret.base <<= page_shift; 5233 5234 return ret; 5235 } 5236 5237 static void do_rvae_write(CPUARMState *env, uint64_t value, 5238 int idxmap, bool synced) 5239 { 5240 ARMMMUIdx one_idx = ARM_MMU_IDX_A | ctz32(idxmap); 5241 TLBIRange range; 5242 int bits; 5243 5244 range = tlbi_aa64_get_range(env, one_idx, value); 5245 bits = tlbbits_for_regime(env, one_idx, range.base); 5246 5247 if (synced) { 5248 tlb_flush_range_by_mmuidx_all_cpus_synced(env_cpu(env), 5249 range.base, 5250 range.length, 5251 idxmap, 5252 bits); 5253 } else { 5254 tlb_flush_range_by_mmuidx(env_cpu(env), range.base, 5255 range.length, idxmap, bits); 5256 } 5257 } 5258 5259 static void tlbi_aa64_rvae1_write(CPUARMState *env, 5260 const ARMCPRegInfo *ri, 5261 uint64_t value) 5262 { 5263 /* 5264 * Invalidate by VA range, EL1&0. 5265 * Currently handles all of RVAE1, RVAAE1, RVAALE1 and RVALE1, 5266 * since we don't support flush-for-specific-ASID-only or 5267 * flush-last-level-only. 5268 */ 5269 5270 do_rvae_write(env, value, vae1_tlbmask(env), 5271 tlb_force_broadcast(env)); 5272 } 5273 5274 static void tlbi_aa64_rvae1is_write(CPUARMState *env, 5275 const ARMCPRegInfo *ri, 5276 uint64_t value) 5277 { 5278 /* 5279 * Invalidate by VA range, Inner/Outer Shareable EL1&0. 5280 * Currently handles all of RVAE1IS, RVAE1OS, RVAAE1IS, RVAAE1OS, 5281 * RVAALE1IS, RVAALE1OS, RVALE1IS and RVALE1OS, since we don't support 5282 * flush-for-specific-ASID-only, flush-last-level-only or inner/outer 5283 * shareable specific flushes. 5284 */ 5285 5286 do_rvae_write(env, value, vae1_tlbmask(env), true); 5287 } 5288 5289 static void tlbi_aa64_rvae2_write(CPUARMState *env, 5290 const ARMCPRegInfo *ri, 5291 uint64_t value) 5292 { 5293 /* 5294 * Invalidate by VA range, EL2. 5295 * Currently handles all of RVAE2 and RVALE2, 5296 * since we don't support flush-for-specific-ASID-only or 5297 * flush-last-level-only. 5298 */ 5299 5300 do_rvae_write(env, value, vae2_tlbmask(env), 5301 tlb_force_broadcast(env)); 5302 5303 5304 } 5305 5306 static void tlbi_aa64_rvae2is_write(CPUARMState *env, 5307 const ARMCPRegInfo *ri, 5308 uint64_t value) 5309 { 5310 /* 5311 * Invalidate by VA range, Inner/Outer Shareable, EL2. 5312 * Currently handles all of RVAE2IS, RVAE2OS, RVALE2IS and RVALE2OS, 5313 * since we don't support flush-for-specific-ASID-only, 5314 * flush-last-level-only or inner/outer shareable specific flushes. 5315 */ 5316 5317 do_rvae_write(env, value, vae2_tlbmask(env), true); 5318 5319 } 5320 5321 static void tlbi_aa64_rvae3_write(CPUARMState *env, 5322 const ARMCPRegInfo *ri, 5323 uint64_t value) 5324 { 5325 /* 5326 * Invalidate by VA range, EL3. 5327 * Currently handles all of RVAE3 and RVALE3, 5328 * since we don't support flush-for-specific-ASID-only or 5329 * flush-last-level-only. 5330 */ 5331 5332 do_rvae_write(env, value, ARMMMUIdxBit_E3, tlb_force_broadcast(env)); 5333 } 5334 5335 static void tlbi_aa64_rvae3is_write(CPUARMState *env, 5336 const ARMCPRegInfo *ri, 5337 uint64_t value) 5338 { 5339 /* 5340 * Invalidate by VA range, EL3, Inner/Outer Shareable. 5341 * Currently handles all of RVAE3IS, RVAE3OS, RVALE3IS and RVALE3OS, 5342 * since we don't support flush-for-specific-ASID-only, 5343 * flush-last-level-only or inner/outer specific flushes. 5344 */ 5345 5346 do_rvae_write(env, value, ARMMMUIdxBit_E3, true); 5347 } 5348 5349 static void tlbi_aa64_ripas2e1_write(CPUARMState *env, const ARMCPRegInfo *ri, 5350 uint64_t value) 5351 { 5352 do_rvae_write(env, value, ipas2e1_tlbmask(env, value), 5353 tlb_force_broadcast(env)); 5354 } 5355 5356 static void tlbi_aa64_ripas2e1is_write(CPUARMState *env, 5357 const ARMCPRegInfo *ri, 5358 uint64_t value) 5359 { 5360 do_rvae_write(env, value, ipas2e1_tlbmask(env, value), true); 5361 } 5362 #endif 5363 5364 static CPAccessResult aa64_zva_access(CPUARMState *env, const ARMCPRegInfo *ri, 5365 bool isread) 5366 { 5367 int cur_el = arm_current_el(env); 5368 5369 if (cur_el < 2) { 5370 uint64_t hcr = arm_hcr_el2_eff(env); 5371 5372 if (cur_el == 0) { 5373 if ((hcr & (HCR_E2H | HCR_TGE)) == (HCR_E2H | HCR_TGE)) { 5374 if (!(env->cp15.sctlr_el[2] & SCTLR_DZE)) { 5375 return CP_ACCESS_TRAP_EL2; 5376 } 5377 } else { 5378 if (!(env->cp15.sctlr_el[1] & SCTLR_DZE)) { 5379 return CP_ACCESS_TRAP; 5380 } 5381 if (hcr & HCR_TDZ) { 5382 return CP_ACCESS_TRAP_EL2; 5383 } 5384 } 5385 } else if (hcr & HCR_TDZ) { 5386 return CP_ACCESS_TRAP_EL2; 5387 } 5388 } 5389 return CP_ACCESS_OK; 5390 } 5391 5392 static uint64_t aa64_dczid_read(CPUARMState *env, const ARMCPRegInfo *ri) 5393 { 5394 ARMCPU *cpu = env_archcpu(env); 5395 int dzp_bit = 1 << 4; 5396 5397 /* DZP indicates whether DC ZVA access is allowed */ 5398 if (aa64_zva_access(env, NULL, false) == CP_ACCESS_OK) { 5399 dzp_bit = 0; 5400 } 5401 return cpu->dcz_blocksize | dzp_bit; 5402 } 5403 5404 static CPAccessResult sp_el0_access(CPUARMState *env, const ARMCPRegInfo *ri, 5405 bool isread) 5406 { 5407 if (!(env->pstate & PSTATE_SP)) { 5408 /* 5409 * Access to SP_EL0 is undefined if it's being used as 5410 * the stack pointer. 5411 */ 5412 return CP_ACCESS_TRAP_UNCATEGORIZED; 5413 } 5414 return CP_ACCESS_OK; 5415 } 5416 5417 static uint64_t spsel_read(CPUARMState *env, const ARMCPRegInfo *ri) 5418 { 5419 return env->pstate & PSTATE_SP; 5420 } 5421 5422 static void spsel_write(CPUARMState *env, const ARMCPRegInfo *ri, uint64_t val) 5423 { 5424 update_spsel(env, val); 5425 } 5426 5427 static void sctlr_write(CPUARMState *env, const ARMCPRegInfo *ri, 5428 uint64_t value) 5429 { 5430 ARMCPU *cpu = env_archcpu(env); 5431 5432 if (arm_feature(env, ARM_FEATURE_PMSA) && !cpu->has_mpu) { 5433 /* M bit is RAZ/WI for PMSA with no MPU implemented */ 5434 value &= ~SCTLR_M; 5435 } 5436 5437 /* ??? Lots of these bits are not implemented. */ 5438 5439 if (ri->state == ARM_CP_STATE_AA64 && !cpu_isar_feature(aa64_mte, cpu)) { 5440 if (ri->opc1 == 6) { /* SCTLR_EL3 */ 5441 value &= ~(SCTLR_ITFSB | SCTLR_TCF | SCTLR_ATA); 5442 } else { 5443 value &= ~(SCTLR_ITFSB | SCTLR_TCF0 | SCTLR_TCF | 5444 SCTLR_ATA0 | SCTLR_ATA); 5445 } 5446 } 5447 5448 if (raw_read(env, ri) == value) { 5449 /* 5450 * Skip the TLB flush if nothing actually changed; Linux likes 5451 * to do a lot of pointless SCTLR writes. 5452 */ 5453 return; 5454 } 5455 5456 raw_write(env, ri, value); 5457 5458 /* This may enable/disable the MMU, so do a TLB flush. */ 5459 tlb_flush(CPU(cpu)); 5460 5461 if (tcg_enabled() && ri->type & ARM_CP_SUPPRESS_TB_END) { 5462 /* 5463 * Normally we would always end the TB on an SCTLR write; see the 5464 * comment in ARMCPRegInfo sctlr initialization below for why Xscale 5465 * is special. Setting ARM_CP_SUPPRESS_TB_END also stops the rebuild 5466 * of hflags from the translator, so do it here. 5467 */ 5468 arm_rebuild_hflags(env); 5469 } 5470 } 5471 5472 static void mdcr_el3_write(CPUARMState *env, const ARMCPRegInfo *ri, 5473 uint64_t value) 5474 { 5475 /* 5476 * Some MDCR_EL3 bits affect whether PMU counters are running: 5477 * if we are trying to change any of those then we must 5478 * bracket this update with PMU start/finish calls. 5479 */ 5480 bool pmu_op = (env->cp15.mdcr_el3 ^ value) & MDCR_EL3_PMU_ENABLE_BITS; 5481 5482 if (pmu_op) { 5483 pmu_op_start(env); 5484 } 5485 env->cp15.mdcr_el3 = value; 5486 if (pmu_op) { 5487 pmu_op_finish(env); 5488 } 5489 } 5490 5491 static void sdcr_write(CPUARMState *env, const ARMCPRegInfo *ri, 5492 uint64_t value) 5493 { 5494 /* Not all bits defined for MDCR_EL3 exist in the AArch32 SDCR */ 5495 mdcr_el3_write(env, ri, value & SDCR_VALID_MASK); 5496 } 5497 5498 static void mdcr_el2_write(CPUARMState *env, const ARMCPRegInfo *ri, 5499 uint64_t value) 5500 { 5501 /* 5502 * Some MDCR_EL2 bits affect whether PMU counters are running: 5503 * if we are trying to change any of those then we must 5504 * bracket this update with PMU start/finish calls. 5505 */ 5506 bool pmu_op = (env->cp15.mdcr_el2 ^ value) & MDCR_EL2_PMU_ENABLE_BITS; 5507 5508 if (pmu_op) { 5509 pmu_op_start(env); 5510 } 5511 env->cp15.mdcr_el2 = value; 5512 if (pmu_op) { 5513 pmu_op_finish(env); 5514 } 5515 } 5516 5517 static CPAccessResult access_nv1(CPUARMState *env, const ARMCPRegInfo *ri, 5518 bool isread) 5519 { 5520 if (arm_current_el(env) == 1) { 5521 uint64_t hcr_nv = arm_hcr_el2_eff(env) & (HCR_NV | HCR_NV1 | HCR_NV2); 5522 5523 if (hcr_nv == (HCR_NV | HCR_NV1)) { 5524 return CP_ACCESS_TRAP_EL2; 5525 } 5526 } 5527 return CP_ACCESS_OK; 5528 } 5529 5530 #ifdef CONFIG_USER_ONLY 5531 /* 5532 * `IC IVAU` is handled to improve compatibility with JITs that dual-map their 5533 * code to get around W^X restrictions, where one region is writable and the 5534 * other is executable. 5535 * 5536 * Since the executable region is never written to we cannot detect code 5537 * changes when running in user mode, and rely on the emulated JIT telling us 5538 * that the code has changed by executing this instruction. 5539 */ 5540 static void ic_ivau_write(CPUARMState *env, const ARMCPRegInfo *ri, 5541 uint64_t value) 5542 { 5543 uint64_t icache_line_mask, start_address, end_address; 5544 const ARMCPU *cpu; 5545 5546 cpu = env_archcpu(env); 5547 5548 icache_line_mask = (4 << extract32(cpu->ctr, 0, 4)) - 1; 5549 start_address = value & ~icache_line_mask; 5550 end_address = value | icache_line_mask; 5551 5552 mmap_lock(); 5553 5554 tb_invalidate_phys_range(start_address, end_address); 5555 5556 mmap_unlock(); 5557 } 5558 #endif 5559 5560 static const ARMCPRegInfo v8_cp_reginfo[] = { 5561 /* 5562 * Minimal set of EL0-visible registers. This will need to be expanded 5563 * significantly for system emulation of AArch64 CPUs. 5564 */ 5565 { .name = "NZCV", .state = ARM_CP_STATE_AA64, 5566 .opc0 = 3, .opc1 = 3, .opc2 = 0, .crn = 4, .crm = 2, 5567 .access = PL0_RW, .type = ARM_CP_NZCV }, 5568 { .name = "DAIF", .state = ARM_CP_STATE_AA64, 5569 .opc0 = 3, .opc1 = 3, .opc2 = 1, .crn = 4, .crm = 2, 5570 .type = ARM_CP_NO_RAW, 5571 .access = PL0_RW, .accessfn = aa64_daif_access, 5572 .fieldoffset = offsetof(CPUARMState, daif), 5573 .writefn = aa64_daif_write, .resetfn = arm_cp_reset_ignore }, 5574 { .name = "FPCR", .state = ARM_CP_STATE_AA64, 5575 .opc0 = 3, .opc1 = 3, .opc2 = 0, .crn = 4, .crm = 4, 5576 .access = PL0_RW, .type = ARM_CP_FPU | ARM_CP_SUPPRESS_TB_END, 5577 .readfn = aa64_fpcr_read, .writefn = aa64_fpcr_write }, 5578 { .name = "FPSR", .state = ARM_CP_STATE_AA64, 5579 .opc0 = 3, .opc1 = 3, .opc2 = 1, .crn = 4, .crm = 4, 5580 .access = PL0_RW, .type = ARM_CP_FPU | ARM_CP_SUPPRESS_TB_END, 5581 .readfn = aa64_fpsr_read, .writefn = aa64_fpsr_write }, 5582 { .name = "DCZID_EL0", .state = ARM_CP_STATE_AA64, 5583 .opc0 = 3, .opc1 = 3, .opc2 = 7, .crn = 0, .crm = 0, 5584 .access = PL0_R, .type = ARM_CP_NO_RAW, 5585 .fgt = FGT_DCZID_EL0, 5586 .readfn = aa64_dczid_read }, 5587 { .name = "DC_ZVA", .state = ARM_CP_STATE_AA64, 5588 .opc0 = 1, .opc1 = 3, .crn = 7, .crm = 4, .opc2 = 1, 5589 .access = PL0_W, .type = ARM_CP_DC_ZVA, 5590 #ifndef CONFIG_USER_ONLY 5591 /* Avoid overhead of an access check that always passes in user-mode */ 5592 .accessfn = aa64_zva_access, 5593 .fgt = FGT_DCZVA, 5594 #endif 5595 }, 5596 { .name = "CURRENTEL", .state = ARM_CP_STATE_AA64, 5597 .opc0 = 3, .opc1 = 0, .opc2 = 2, .crn = 4, .crm = 2, 5598 .access = PL1_R, .type = ARM_CP_CURRENTEL }, 5599 /* 5600 * Instruction cache ops. All of these except `IC IVAU` NOP because we 5601 * don't emulate caches. 5602 */ 5603 { .name = "IC_IALLUIS", .state = ARM_CP_STATE_AA64, 5604 .opc0 = 1, .opc1 = 0, .crn = 7, .crm = 1, .opc2 = 0, 5605 .access = PL1_W, .type = ARM_CP_NOP, 5606 .fgt = FGT_ICIALLUIS, 5607 .accessfn = access_ticab }, 5608 { .name = "IC_IALLU", .state = ARM_CP_STATE_AA64, 5609 .opc0 = 1, .opc1 = 0, .crn = 7, .crm = 5, .opc2 = 0, 5610 .access = PL1_W, .type = ARM_CP_NOP, 5611 .fgt = FGT_ICIALLU, 5612 .accessfn = access_tocu }, 5613 { .name = "IC_IVAU", .state = ARM_CP_STATE_AA64, 5614 .opc0 = 1, .opc1 = 3, .crn = 7, .crm = 5, .opc2 = 1, 5615 .access = PL0_W, 5616 .fgt = FGT_ICIVAU, 5617 .accessfn = access_tocu, 5618 #ifdef CONFIG_USER_ONLY 5619 .type = ARM_CP_NO_RAW, 5620 .writefn = ic_ivau_write 5621 #else 5622 .type = ARM_CP_NOP 5623 #endif 5624 }, 5625 /* Cache ops: all NOPs since we don't emulate caches */ 5626 { .name = "DC_IVAC", .state = ARM_CP_STATE_AA64, 5627 .opc0 = 1, .opc1 = 0, .crn = 7, .crm = 6, .opc2 = 1, 5628 .access = PL1_W, .accessfn = aa64_cacheop_poc_access, 5629 .fgt = FGT_DCIVAC, 5630 .type = ARM_CP_NOP }, 5631 { .name = "DC_ISW", .state = ARM_CP_STATE_AA64, 5632 .opc0 = 1, .opc1 = 0, .crn = 7, .crm = 6, .opc2 = 2, 5633 .fgt = FGT_DCISW, 5634 .access = PL1_W, .accessfn = access_tsw, .type = ARM_CP_NOP }, 5635 { .name = "DC_CVAC", .state = ARM_CP_STATE_AA64, 5636 .opc0 = 1, .opc1 = 3, .crn = 7, .crm = 10, .opc2 = 1, 5637 .access = PL0_W, .type = ARM_CP_NOP, 5638 .fgt = FGT_DCCVAC, 5639 .accessfn = aa64_cacheop_poc_access }, 5640 { .name = "DC_CSW", .state = ARM_CP_STATE_AA64, 5641 .opc0 = 1, .opc1 = 0, .crn = 7, .crm = 10, .opc2 = 2, 5642 .fgt = FGT_DCCSW, 5643 .access = PL1_W, .accessfn = access_tsw, .type = ARM_CP_NOP }, 5644 { .name = "DC_CVAU", .state = ARM_CP_STATE_AA64, 5645 .opc0 = 1, .opc1 = 3, .crn = 7, .crm = 11, .opc2 = 1, 5646 .access = PL0_W, .type = ARM_CP_NOP, 5647 .fgt = FGT_DCCVAU, 5648 .accessfn = access_tocu }, 5649 { .name = "DC_CIVAC", .state = ARM_CP_STATE_AA64, 5650 .opc0 = 1, .opc1 = 3, .crn = 7, .crm = 14, .opc2 = 1, 5651 .access = PL0_W, .type = ARM_CP_NOP, 5652 .fgt = FGT_DCCIVAC, 5653 .accessfn = aa64_cacheop_poc_access }, 5654 { .name = "DC_CISW", .state = ARM_CP_STATE_AA64, 5655 .opc0 = 1, .opc1 = 0, .crn = 7, .crm = 14, .opc2 = 2, 5656 .fgt = FGT_DCCISW, 5657 .access = PL1_W, .accessfn = access_tsw, .type = ARM_CP_NOP }, 5658 /* TLBI operations */ 5659 { .name = "TLBI_VMALLE1IS", .state = ARM_CP_STATE_AA64, 5660 .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 3, .opc2 = 0, 5661 .access = PL1_W, .accessfn = access_ttlbis, .type = ARM_CP_NO_RAW, 5662 .fgt = FGT_TLBIVMALLE1IS, 5663 .writefn = tlbi_aa64_vmalle1is_write }, 5664 { .name = "TLBI_VAE1IS", .state = ARM_CP_STATE_AA64, 5665 .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 3, .opc2 = 1, 5666 .access = PL1_W, .accessfn = access_ttlbis, .type = ARM_CP_NO_RAW, 5667 .fgt = FGT_TLBIVAE1IS, 5668 .writefn = tlbi_aa64_vae1is_write }, 5669 { .name = "TLBI_ASIDE1IS", .state = ARM_CP_STATE_AA64, 5670 .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 3, .opc2 = 2, 5671 .access = PL1_W, .accessfn = access_ttlbis, .type = ARM_CP_NO_RAW, 5672 .fgt = FGT_TLBIASIDE1IS, 5673 .writefn = tlbi_aa64_vmalle1is_write }, 5674 { .name = "TLBI_VAAE1IS", .state = ARM_CP_STATE_AA64, 5675 .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 3, .opc2 = 3, 5676 .access = PL1_W, .accessfn = access_ttlbis, .type = ARM_CP_NO_RAW, 5677 .fgt = FGT_TLBIVAAE1IS, 5678 .writefn = tlbi_aa64_vae1is_write }, 5679 { .name = "TLBI_VALE1IS", .state = ARM_CP_STATE_AA64, 5680 .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 3, .opc2 = 5, 5681 .access = PL1_W, .accessfn = access_ttlbis, .type = ARM_CP_NO_RAW, 5682 .fgt = FGT_TLBIVALE1IS, 5683 .writefn = tlbi_aa64_vae1is_write }, 5684 { .name = "TLBI_VAALE1IS", .state = ARM_CP_STATE_AA64, 5685 .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 3, .opc2 = 7, 5686 .access = PL1_W, .accessfn = access_ttlbis, .type = ARM_CP_NO_RAW, 5687 .fgt = FGT_TLBIVAALE1IS, 5688 .writefn = tlbi_aa64_vae1is_write }, 5689 { .name = "TLBI_VMALLE1", .state = ARM_CP_STATE_AA64, 5690 .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 7, .opc2 = 0, 5691 .access = PL1_W, .accessfn = access_ttlb, .type = ARM_CP_NO_RAW, 5692 .fgt = FGT_TLBIVMALLE1, 5693 .writefn = tlbi_aa64_vmalle1_write }, 5694 { .name = "TLBI_VAE1", .state = ARM_CP_STATE_AA64, 5695 .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 7, .opc2 = 1, 5696 .access = PL1_W, .accessfn = access_ttlb, .type = ARM_CP_NO_RAW, 5697 .fgt = FGT_TLBIVAE1, 5698 .writefn = tlbi_aa64_vae1_write }, 5699 { .name = "TLBI_ASIDE1", .state = ARM_CP_STATE_AA64, 5700 .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 7, .opc2 = 2, 5701 .access = PL1_W, .accessfn = access_ttlb, .type = ARM_CP_NO_RAW, 5702 .fgt = FGT_TLBIASIDE1, 5703 .writefn = tlbi_aa64_vmalle1_write }, 5704 { .name = "TLBI_VAAE1", .state = ARM_CP_STATE_AA64, 5705 .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 7, .opc2 = 3, 5706 .access = PL1_W, .accessfn = access_ttlb, .type = ARM_CP_NO_RAW, 5707 .fgt = FGT_TLBIVAAE1, 5708 .writefn = tlbi_aa64_vae1_write }, 5709 { .name = "TLBI_VALE1", .state = ARM_CP_STATE_AA64, 5710 .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 7, .opc2 = 5, 5711 .access = PL1_W, .accessfn = access_ttlb, .type = ARM_CP_NO_RAW, 5712 .fgt = FGT_TLBIVALE1, 5713 .writefn = tlbi_aa64_vae1_write }, 5714 { .name = "TLBI_VAALE1", .state = ARM_CP_STATE_AA64, 5715 .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 7, .opc2 = 7, 5716 .access = PL1_W, .accessfn = access_ttlb, .type = ARM_CP_NO_RAW, 5717 .fgt = FGT_TLBIVAALE1, 5718 .writefn = tlbi_aa64_vae1_write }, 5719 { .name = "TLBI_IPAS2E1IS", .state = ARM_CP_STATE_AA64, 5720 .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 0, .opc2 = 1, 5721 .access = PL2_W, .type = ARM_CP_NO_RAW, 5722 .writefn = tlbi_aa64_ipas2e1is_write }, 5723 { .name = "TLBI_IPAS2LE1IS", .state = ARM_CP_STATE_AA64, 5724 .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 0, .opc2 = 5, 5725 .access = PL2_W, .type = ARM_CP_NO_RAW, 5726 .writefn = tlbi_aa64_ipas2e1is_write }, 5727 { .name = "TLBI_ALLE1IS", .state = ARM_CP_STATE_AA64, 5728 .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 3, .opc2 = 4, 5729 .access = PL2_W, .type = ARM_CP_NO_RAW, 5730 .writefn = tlbi_aa64_alle1is_write }, 5731 { .name = "TLBI_VMALLS12E1IS", .state = ARM_CP_STATE_AA64, 5732 .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 3, .opc2 = 6, 5733 .access = PL2_W, .type = ARM_CP_NO_RAW, 5734 .writefn = tlbi_aa64_alle1is_write }, 5735 { .name = "TLBI_IPAS2E1", .state = ARM_CP_STATE_AA64, 5736 .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 4, .opc2 = 1, 5737 .access = PL2_W, .type = ARM_CP_NO_RAW, 5738 .writefn = tlbi_aa64_ipas2e1_write }, 5739 { .name = "TLBI_IPAS2LE1", .state = ARM_CP_STATE_AA64, 5740 .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 4, .opc2 = 5, 5741 .access = PL2_W, .type = ARM_CP_NO_RAW, 5742 .writefn = tlbi_aa64_ipas2e1_write }, 5743 { .name = "TLBI_ALLE1", .state = ARM_CP_STATE_AA64, 5744 .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 7, .opc2 = 4, 5745 .access = PL2_W, .type = ARM_CP_NO_RAW, 5746 .writefn = tlbi_aa64_alle1_write }, 5747 { .name = "TLBI_VMALLS12E1", .state = ARM_CP_STATE_AA64, 5748 .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 7, .opc2 = 6, 5749 .access = PL2_W, .type = ARM_CP_NO_RAW, 5750 .writefn = tlbi_aa64_alle1is_write }, 5751 #ifndef CONFIG_USER_ONLY 5752 /* 64 bit address translation operations */ 5753 { .name = "AT_S1E1R", .state = ARM_CP_STATE_AA64, 5754 .opc0 = 1, .opc1 = 0, .crn = 7, .crm = 8, .opc2 = 0, 5755 .access = PL1_W, .type = ARM_CP_NO_RAW | ARM_CP_RAISES_EXC, 5756 .fgt = FGT_ATS1E1R, 5757 .accessfn = at_s1e01_access, .writefn = ats_write64 }, 5758 { .name = "AT_S1E1W", .state = ARM_CP_STATE_AA64, 5759 .opc0 = 1, .opc1 = 0, .crn = 7, .crm = 8, .opc2 = 1, 5760 .access = PL1_W, .type = ARM_CP_NO_RAW | ARM_CP_RAISES_EXC, 5761 .fgt = FGT_ATS1E1W, 5762 .accessfn = at_s1e01_access, .writefn = ats_write64 }, 5763 { .name = "AT_S1E0R", .state = ARM_CP_STATE_AA64, 5764 .opc0 = 1, .opc1 = 0, .crn = 7, .crm = 8, .opc2 = 2, 5765 .access = PL1_W, .type = ARM_CP_NO_RAW | ARM_CP_RAISES_EXC, 5766 .fgt = FGT_ATS1E0R, 5767 .accessfn = at_s1e01_access, .writefn = ats_write64 }, 5768 { .name = "AT_S1E0W", .state = ARM_CP_STATE_AA64, 5769 .opc0 = 1, .opc1 = 0, .crn = 7, .crm = 8, .opc2 = 3, 5770 .access = PL1_W, .type = ARM_CP_NO_RAW | ARM_CP_RAISES_EXC, 5771 .fgt = FGT_ATS1E0W, 5772 .accessfn = at_s1e01_access, .writefn = ats_write64 }, 5773 { .name = "AT_S12E1R", .state = ARM_CP_STATE_AA64, 5774 .opc0 = 1, .opc1 = 4, .crn = 7, .crm = 8, .opc2 = 4, 5775 .access = PL2_W, .type = ARM_CP_NO_RAW | ARM_CP_RAISES_EXC, 5776 .accessfn = at_e012_access, .writefn = ats_write64 }, 5777 { .name = "AT_S12E1W", .state = ARM_CP_STATE_AA64, 5778 .opc0 = 1, .opc1 = 4, .crn = 7, .crm = 8, .opc2 = 5, 5779 .access = PL2_W, .type = ARM_CP_NO_RAW | ARM_CP_RAISES_EXC, 5780 .accessfn = at_e012_access, .writefn = ats_write64 }, 5781 { .name = "AT_S12E0R", .state = ARM_CP_STATE_AA64, 5782 .opc0 = 1, .opc1 = 4, .crn = 7, .crm = 8, .opc2 = 6, 5783 .access = PL2_W, .type = ARM_CP_NO_RAW | ARM_CP_RAISES_EXC, 5784 .accessfn = at_e012_access, .writefn = ats_write64 }, 5785 { .name = "AT_S12E0W", .state = ARM_CP_STATE_AA64, 5786 .opc0 = 1, .opc1 = 4, .crn = 7, .crm = 8, .opc2 = 7, 5787 .access = PL2_W, .type = ARM_CP_NO_RAW | ARM_CP_RAISES_EXC, 5788 .accessfn = at_e012_access, .writefn = ats_write64 }, 5789 /* AT S1E2* are elsewhere as they UNDEF from EL3 if EL2 is not present */ 5790 { .name = "AT_S1E3R", .state = ARM_CP_STATE_AA64, 5791 .opc0 = 1, .opc1 = 6, .crn = 7, .crm = 8, .opc2 = 0, 5792 .access = PL3_W, .type = ARM_CP_NO_RAW | ARM_CP_RAISES_EXC, 5793 .writefn = ats_write64 }, 5794 { .name = "AT_S1E3W", .state = ARM_CP_STATE_AA64, 5795 .opc0 = 1, .opc1 = 6, .crn = 7, .crm = 8, .opc2 = 1, 5796 .access = PL3_W, .type = ARM_CP_NO_RAW | ARM_CP_RAISES_EXC, 5797 .writefn = ats_write64 }, 5798 { .name = "PAR_EL1", .state = ARM_CP_STATE_AA64, 5799 .type = ARM_CP_ALIAS, 5800 .opc0 = 3, .opc1 = 0, .crn = 7, .crm = 4, .opc2 = 0, 5801 .access = PL1_RW, .resetvalue = 0, 5802 .fgt = FGT_PAR_EL1, 5803 .fieldoffset = offsetof(CPUARMState, cp15.par_el[1]), 5804 .writefn = par_write }, 5805 #endif 5806 /* TLB invalidate last level of translation table walk */ 5807 { .name = "TLBIMVALIS", .cp = 15, .opc1 = 0, .crn = 8, .crm = 3, .opc2 = 5, 5808 .type = ARM_CP_NO_RAW, .access = PL1_W, .accessfn = access_ttlbis, 5809 .writefn = tlbimva_is_write }, 5810 { .name = "TLBIMVAALIS", .cp = 15, .opc1 = 0, .crn = 8, .crm = 3, .opc2 = 7, 5811 .type = ARM_CP_NO_RAW, .access = PL1_W, .accessfn = access_ttlbis, 5812 .writefn = tlbimvaa_is_write }, 5813 { .name = "TLBIMVAL", .cp = 15, .opc1 = 0, .crn = 8, .crm = 7, .opc2 = 5, 5814 .type = ARM_CP_NO_RAW, .access = PL1_W, .accessfn = access_ttlb, 5815 .writefn = tlbimva_write }, 5816 { .name = "TLBIMVAAL", .cp = 15, .opc1 = 0, .crn = 8, .crm = 7, .opc2 = 7, 5817 .type = ARM_CP_NO_RAW, .access = PL1_W, .accessfn = access_ttlb, 5818 .writefn = tlbimvaa_write }, 5819 { .name = "TLBIMVALH", .cp = 15, .opc1 = 4, .crn = 8, .crm = 7, .opc2 = 5, 5820 .type = ARM_CP_NO_RAW, .access = PL2_W, 5821 .writefn = tlbimva_hyp_write }, 5822 { .name = "TLBIMVALHIS", 5823 .cp = 15, .opc1 = 4, .crn = 8, .crm = 3, .opc2 = 5, 5824 .type = ARM_CP_NO_RAW, .access = PL2_W, 5825 .writefn = tlbimva_hyp_is_write }, 5826 { .name = "TLBIIPAS2", 5827 .cp = 15, .opc1 = 4, .crn = 8, .crm = 4, .opc2 = 1, 5828 .type = ARM_CP_NO_RAW, .access = PL2_W, 5829 .writefn = tlbiipas2_hyp_write }, 5830 { .name = "TLBIIPAS2IS", 5831 .cp = 15, .opc1 = 4, .crn = 8, .crm = 0, .opc2 = 1, 5832 .type = ARM_CP_NO_RAW, .access = PL2_W, 5833 .writefn = tlbiipas2is_hyp_write }, 5834 { .name = "TLBIIPAS2L", 5835 .cp = 15, .opc1 = 4, .crn = 8, .crm = 4, .opc2 = 5, 5836 .type = ARM_CP_NO_RAW, .access = PL2_W, 5837 .writefn = tlbiipas2_hyp_write }, 5838 { .name = "TLBIIPAS2LIS", 5839 .cp = 15, .opc1 = 4, .crn = 8, .crm = 0, .opc2 = 5, 5840 .type = ARM_CP_NO_RAW, .access = PL2_W, 5841 .writefn = tlbiipas2is_hyp_write }, 5842 /* 32 bit cache operations */ 5843 { .name = "ICIALLUIS", .cp = 15, .opc1 = 0, .crn = 7, .crm = 1, .opc2 = 0, 5844 .type = ARM_CP_NOP, .access = PL1_W, .accessfn = access_ticab }, 5845 { .name = "BPIALLUIS", .cp = 15, .opc1 = 0, .crn = 7, .crm = 1, .opc2 = 6, 5846 .type = ARM_CP_NOP, .access = PL1_W }, 5847 { .name = "ICIALLU", .cp = 15, .opc1 = 0, .crn = 7, .crm = 5, .opc2 = 0, 5848 .type = ARM_CP_NOP, .access = PL1_W, .accessfn = access_tocu }, 5849 { .name = "ICIMVAU", .cp = 15, .opc1 = 0, .crn = 7, .crm = 5, .opc2 = 1, 5850 .type = ARM_CP_NOP, .access = PL1_W, .accessfn = access_tocu }, 5851 { .name = "BPIALL", .cp = 15, .opc1 = 0, .crn = 7, .crm = 5, .opc2 = 6, 5852 .type = ARM_CP_NOP, .access = PL1_W }, 5853 { .name = "BPIMVA", .cp = 15, .opc1 = 0, .crn = 7, .crm = 5, .opc2 = 7, 5854 .type = ARM_CP_NOP, .access = PL1_W }, 5855 { .name = "DCIMVAC", .cp = 15, .opc1 = 0, .crn = 7, .crm = 6, .opc2 = 1, 5856 .type = ARM_CP_NOP, .access = PL1_W, .accessfn = aa64_cacheop_poc_access }, 5857 { .name = "DCISW", .cp = 15, .opc1 = 0, .crn = 7, .crm = 6, .opc2 = 2, 5858 .type = ARM_CP_NOP, .access = PL1_W, .accessfn = access_tsw }, 5859 { .name = "DCCMVAC", .cp = 15, .opc1 = 0, .crn = 7, .crm = 10, .opc2 = 1, 5860 .type = ARM_CP_NOP, .access = PL1_W, .accessfn = aa64_cacheop_poc_access }, 5861 { .name = "DCCSW", .cp = 15, .opc1 = 0, .crn = 7, .crm = 10, .opc2 = 2, 5862 .type = ARM_CP_NOP, .access = PL1_W, .accessfn = access_tsw }, 5863 { .name = "DCCMVAU", .cp = 15, .opc1 = 0, .crn = 7, .crm = 11, .opc2 = 1, 5864 .type = ARM_CP_NOP, .access = PL1_W, .accessfn = access_tocu }, 5865 { .name = "DCCIMVAC", .cp = 15, .opc1 = 0, .crn = 7, .crm = 14, .opc2 = 1, 5866 .type = ARM_CP_NOP, .access = PL1_W, .accessfn = aa64_cacheop_poc_access }, 5867 { .name = "DCCISW", .cp = 15, .opc1 = 0, .crn = 7, .crm = 14, .opc2 = 2, 5868 .type = ARM_CP_NOP, .access = PL1_W, .accessfn = access_tsw }, 5869 /* MMU Domain access control / MPU write buffer control */ 5870 { .name = "DACR", .cp = 15, .opc1 = 0, .crn = 3, .crm = 0, .opc2 = 0, 5871 .access = PL1_RW, .accessfn = access_tvm_trvm, .resetvalue = 0, 5872 .writefn = dacr_write, .raw_writefn = raw_write, 5873 .bank_fieldoffsets = { offsetoflow32(CPUARMState, cp15.dacr_s), 5874 offsetoflow32(CPUARMState, cp15.dacr_ns) } }, 5875 { .name = "ELR_EL1", .state = ARM_CP_STATE_AA64, 5876 .type = ARM_CP_ALIAS, 5877 .opc0 = 3, .opc1 = 0, .crn = 4, .crm = 0, .opc2 = 1, 5878 .access = PL1_RW, .accessfn = access_nv1, 5879 .nv2_redirect_offset = 0x230 | NV2_REDIR_NV1, 5880 .fieldoffset = offsetof(CPUARMState, elr_el[1]) }, 5881 { .name = "SPSR_EL1", .state = ARM_CP_STATE_AA64, 5882 .type = ARM_CP_ALIAS, 5883 .opc0 = 3, .opc1 = 0, .crn = 4, .crm = 0, .opc2 = 0, 5884 .access = PL1_RW, .accessfn = access_nv1, 5885 .nv2_redirect_offset = 0x160 | NV2_REDIR_NV1, 5886 .fieldoffset = offsetof(CPUARMState, banked_spsr[BANK_SVC]) }, 5887 /* 5888 * We rely on the access checks not allowing the guest to write to the 5889 * state field when SPSel indicates that it's being used as the stack 5890 * pointer. 5891 */ 5892 { .name = "SP_EL0", .state = ARM_CP_STATE_AA64, 5893 .opc0 = 3, .opc1 = 0, .crn = 4, .crm = 1, .opc2 = 0, 5894 .access = PL1_RW, .accessfn = sp_el0_access, 5895 .type = ARM_CP_ALIAS, 5896 .fieldoffset = offsetof(CPUARMState, sp_el[0]) }, 5897 { .name = "SP_EL1", .state = ARM_CP_STATE_AA64, 5898 .opc0 = 3, .opc1 = 4, .crn = 4, .crm = 1, .opc2 = 0, 5899 .nv2_redirect_offset = 0x240, 5900 .access = PL2_RW, .type = ARM_CP_ALIAS | ARM_CP_EL3_NO_EL2_KEEP, 5901 .fieldoffset = offsetof(CPUARMState, sp_el[1]) }, 5902 { .name = "SPSel", .state = ARM_CP_STATE_AA64, 5903 .opc0 = 3, .opc1 = 0, .crn = 4, .crm = 2, .opc2 = 0, 5904 .type = ARM_CP_NO_RAW, 5905 .access = PL1_RW, .readfn = spsel_read, .writefn = spsel_write }, 5906 { .name = "SPSR_IRQ", .state = ARM_CP_STATE_AA64, 5907 .type = ARM_CP_ALIAS, 5908 .opc0 = 3, .opc1 = 4, .crn = 4, .crm = 3, .opc2 = 0, 5909 .access = PL2_RW, 5910 .fieldoffset = offsetof(CPUARMState, banked_spsr[BANK_IRQ]) }, 5911 { .name = "SPSR_ABT", .state = ARM_CP_STATE_AA64, 5912 .type = ARM_CP_ALIAS, 5913 .opc0 = 3, .opc1 = 4, .crn = 4, .crm = 3, .opc2 = 1, 5914 .access = PL2_RW, 5915 .fieldoffset = offsetof(CPUARMState, banked_spsr[BANK_ABT]) }, 5916 { .name = "SPSR_UND", .state = ARM_CP_STATE_AA64, 5917 .type = ARM_CP_ALIAS, 5918 .opc0 = 3, .opc1 = 4, .crn = 4, .crm = 3, .opc2 = 2, 5919 .access = PL2_RW, 5920 .fieldoffset = offsetof(CPUARMState, banked_spsr[BANK_UND]) }, 5921 { .name = "SPSR_FIQ", .state = ARM_CP_STATE_AA64, 5922 .type = ARM_CP_ALIAS, 5923 .opc0 = 3, .opc1 = 4, .crn = 4, .crm = 3, .opc2 = 3, 5924 .access = PL2_RW, 5925 .fieldoffset = offsetof(CPUARMState, banked_spsr[BANK_FIQ]) }, 5926 { .name = "MDCR_EL3", .state = ARM_CP_STATE_AA64, 5927 .type = ARM_CP_IO, 5928 .opc0 = 3, .opc1 = 6, .crn = 1, .crm = 3, .opc2 = 1, 5929 .resetvalue = 0, 5930 .access = PL3_RW, 5931 .writefn = mdcr_el3_write, 5932 .fieldoffset = offsetof(CPUARMState, cp15.mdcr_el3) }, 5933 { .name = "SDCR", .type = ARM_CP_ALIAS | ARM_CP_IO, 5934 .cp = 15, .opc1 = 0, .crn = 1, .crm = 3, .opc2 = 1, 5935 .access = PL1_RW, .accessfn = access_trap_aa32s_el1, 5936 .writefn = sdcr_write, 5937 .fieldoffset = offsetoflow32(CPUARMState, cp15.mdcr_el3) }, 5938 }; 5939 5940 /* These are present only when EL1 supports AArch32 */ 5941 static const ARMCPRegInfo v8_aa32_el1_reginfo[] = { 5942 { .name = "FPEXC32_EL2", .state = ARM_CP_STATE_AA64, 5943 .opc0 = 3, .opc1 = 4, .crn = 5, .crm = 3, .opc2 = 0, 5944 .access = PL2_RW, 5945 .type = ARM_CP_ALIAS | ARM_CP_FPU | ARM_CP_EL3_NO_EL2_KEEP, 5946 .fieldoffset = offsetof(CPUARMState, vfp.xregs[ARM_VFP_FPEXC]) }, 5947 { .name = "DACR32_EL2", .state = ARM_CP_STATE_AA64, 5948 .opc0 = 3, .opc1 = 4, .crn = 3, .crm = 0, .opc2 = 0, 5949 .access = PL2_RW, .resetvalue = 0, .type = ARM_CP_EL3_NO_EL2_KEEP, 5950 .writefn = dacr_write, .raw_writefn = raw_write, 5951 .fieldoffset = offsetof(CPUARMState, cp15.dacr32_el2) }, 5952 { .name = "IFSR32_EL2", .state = ARM_CP_STATE_AA64, 5953 .opc0 = 3, .opc1 = 4, .crn = 5, .crm = 0, .opc2 = 1, 5954 .access = PL2_RW, .resetvalue = 0, .type = ARM_CP_EL3_NO_EL2_KEEP, 5955 .fieldoffset = offsetof(CPUARMState, cp15.ifsr32_el2) }, 5956 }; 5957 5958 static void do_hcr_write(CPUARMState *env, uint64_t value, uint64_t valid_mask) 5959 { 5960 ARMCPU *cpu = env_archcpu(env); 5961 5962 if (arm_feature(env, ARM_FEATURE_V8)) { 5963 valid_mask |= MAKE_64BIT_MASK(0, 34); /* ARMv8.0 */ 5964 } else { 5965 valid_mask |= MAKE_64BIT_MASK(0, 28); /* ARMv7VE */ 5966 } 5967 5968 if (arm_feature(env, ARM_FEATURE_EL3)) { 5969 valid_mask &= ~HCR_HCD; 5970 } else if (cpu->psci_conduit != QEMU_PSCI_CONDUIT_SMC) { 5971 /* 5972 * Architecturally HCR.TSC is RES0 if EL3 is not implemented. 5973 * However, if we're using the SMC PSCI conduit then QEMU is 5974 * effectively acting like EL3 firmware and so the guest at 5975 * EL2 should retain the ability to prevent EL1 from being 5976 * able to make SMC calls into the ersatz firmware, so in 5977 * that case HCR.TSC should be read/write. 5978 */ 5979 valid_mask &= ~HCR_TSC; 5980 } 5981 5982 if (arm_feature(env, ARM_FEATURE_AARCH64)) { 5983 if (cpu_isar_feature(aa64_vh, cpu)) { 5984 valid_mask |= HCR_E2H; 5985 } 5986 if (cpu_isar_feature(aa64_ras, cpu)) { 5987 valid_mask |= HCR_TERR | HCR_TEA; 5988 } 5989 if (cpu_isar_feature(aa64_lor, cpu)) { 5990 valid_mask |= HCR_TLOR; 5991 } 5992 if (cpu_isar_feature(aa64_pauth, cpu)) { 5993 valid_mask |= HCR_API | HCR_APK; 5994 } 5995 if (cpu_isar_feature(aa64_mte, cpu)) { 5996 valid_mask |= HCR_ATA | HCR_DCT | HCR_TID5; 5997 } 5998 if (cpu_isar_feature(aa64_scxtnum, cpu)) { 5999 valid_mask |= HCR_ENSCXT; 6000 } 6001 if (cpu_isar_feature(aa64_fwb, cpu)) { 6002 valid_mask |= HCR_FWB; 6003 } 6004 if (cpu_isar_feature(aa64_rme, cpu)) { 6005 valid_mask |= HCR_GPF; 6006 } 6007 if (cpu_isar_feature(aa64_nv, cpu)) { 6008 valid_mask |= HCR_NV | HCR_NV1 | HCR_AT; 6009 } 6010 if (cpu_isar_feature(aa64_nv2, cpu)) { 6011 valid_mask |= HCR_NV2; 6012 } 6013 } 6014 6015 if (cpu_isar_feature(any_evt, cpu)) { 6016 valid_mask |= HCR_TTLBIS | HCR_TTLBOS | HCR_TICAB | HCR_TOCU | HCR_TID4; 6017 } else if (cpu_isar_feature(any_half_evt, cpu)) { 6018 valid_mask |= HCR_TICAB | HCR_TOCU | HCR_TID4; 6019 } 6020 6021 /* Clear RES0 bits. */ 6022 value &= valid_mask; 6023 6024 /* 6025 * These bits change the MMU setup: 6026 * HCR_VM enables stage 2 translation 6027 * HCR_PTW forbids certain page-table setups 6028 * HCR_DC disables stage1 and enables stage2 translation 6029 * HCR_DCT enables tagging on (disabled) stage1 translation 6030 * HCR_FWB changes the interpretation of stage2 descriptor bits 6031 * HCR_NV and HCR_NV1 affect interpretation of descriptor bits 6032 */ 6033 if ((env->cp15.hcr_el2 ^ value) & 6034 (HCR_VM | HCR_PTW | HCR_DC | HCR_DCT | HCR_FWB | HCR_NV | HCR_NV1)) { 6035 tlb_flush(CPU(cpu)); 6036 } 6037 env->cp15.hcr_el2 = value; 6038 6039 /* 6040 * Updates to VI and VF require us to update the status of 6041 * virtual interrupts, which are the logical OR of these bits 6042 * and the state of the input lines from the GIC. (This requires 6043 * that we have the BQL, which is done by marking the 6044 * reginfo structs as ARM_CP_IO.) 6045 * Note that if a write to HCR pends a VIRQ or VFIQ it is never 6046 * possible for it to be taken immediately, because VIRQ and 6047 * VFIQ are masked unless running at EL0 or EL1, and HCR 6048 * can only be written at EL2. 6049 */ 6050 g_assert(bql_locked()); 6051 arm_cpu_update_virq(cpu); 6052 arm_cpu_update_vfiq(cpu); 6053 arm_cpu_update_vserr(cpu); 6054 } 6055 6056 static void hcr_write(CPUARMState *env, const ARMCPRegInfo *ri, uint64_t value) 6057 { 6058 do_hcr_write(env, value, 0); 6059 } 6060 6061 static void hcr_writehigh(CPUARMState *env, const ARMCPRegInfo *ri, 6062 uint64_t value) 6063 { 6064 /* Handle HCR2 write, i.e. write to high half of HCR_EL2 */ 6065 value = deposit64(env->cp15.hcr_el2, 32, 32, value); 6066 do_hcr_write(env, value, MAKE_64BIT_MASK(0, 32)); 6067 } 6068 6069 static void hcr_writelow(CPUARMState *env, const ARMCPRegInfo *ri, 6070 uint64_t value) 6071 { 6072 /* Handle HCR write, i.e. write to low half of HCR_EL2 */ 6073 value = deposit64(env->cp15.hcr_el2, 0, 32, value); 6074 do_hcr_write(env, value, MAKE_64BIT_MASK(32, 32)); 6075 } 6076 6077 /* 6078 * Return the effective value of HCR_EL2, at the given security state. 6079 * Bits that are not included here: 6080 * RW (read from SCR_EL3.RW as needed) 6081 */ 6082 uint64_t arm_hcr_el2_eff_secstate(CPUARMState *env, ARMSecuritySpace space) 6083 { 6084 uint64_t ret = env->cp15.hcr_el2; 6085 6086 assert(space != ARMSS_Root); 6087 6088 if (!arm_is_el2_enabled_secstate(env, space)) { 6089 /* 6090 * "This register has no effect if EL2 is not enabled in the 6091 * current Security state". This is ARMv8.4-SecEL2 speak for 6092 * !(SCR_EL3.NS==1 || SCR_EL3.EEL2==1). 6093 * 6094 * Prior to that, the language was "In an implementation that 6095 * includes EL3, when the value of SCR_EL3.NS is 0 the PE behaves 6096 * as if this field is 0 for all purposes other than a direct 6097 * read or write access of HCR_EL2". With lots of enumeration 6098 * on a per-field basis. In current QEMU, this is condition 6099 * is arm_is_secure_below_el3. 6100 * 6101 * Since the v8.4 language applies to the entire register, and 6102 * appears to be backward compatible, use that. 6103 */ 6104 return 0; 6105 } 6106 6107 /* 6108 * For a cpu that supports both aarch64 and aarch32, we can set bits 6109 * in HCR_EL2 (e.g. via EL3) that are RES0 when we enter EL2 as aa32. 6110 * Ignore all of the bits in HCR+HCR2 that are not valid for aarch32. 6111 */ 6112 if (!arm_el_is_aa64(env, 2)) { 6113 uint64_t aa32_valid; 6114 6115 /* 6116 * These bits are up-to-date as of ARMv8.6. 6117 * For HCR, it's easiest to list just the 2 bits that are invalid. 6118 * For HCR2, list those that are valid. 6119 */ 6120 aa32_valid = MAKE_64BIT_MASK(0, 32) & ~(HCR_RW | HCR_TDZ); 6121 aa32_valid |= (HCR_CD | HCR_ID | HCR_TERR | HCR_TEA | HCR_MIOCNCE | 6122 HCR_TID4 | HCR_TICAB | HCR_TOCU | HCR_TTLBIS); 6123 ret &= aa32_valid; 6124 } 6125 6126 if (ret & HCR_TGE) { 6127 /* These bits are up-to-date as of ARMv8.6. */ 6128 if (ret & HCR_E2H) { 6129 ret &= ~(HCR_VM | HCR_FMO | HCR_IMO | HCR_AMO | 6130 HCR_BSU_MASK | HCR_DC | HCR_TWI | HCR_TWE | 6131 HCR_TID0 | HCR_TID2 | HCR_TPCP | HCR_TPU | 6132 HCR_TDZ | HCR_CD | HCR_ID | HCR_MIOCNCE | 6133 HCR_TID4 | HCR_TICAB | HCR_TOCU | HCR_ENSCXT | 6134 HCR_TTLBIS | HCR_TTLBOS | HCR_TID5); 6135 } else { 6136 ret |= HCR_FMO | HCR_IMO | HCR_AMO; 6137 } 6138 ret &= ~(HCR_SWIO | HCR_PTW | HCR_VF | HCR_VI | HCR_VSE | 6139 HCR_FB | HCR_TID1 | HCR_TID3 | HCR_TSC | HCR_TACR | 6140 HCR_TSW | HCR_TTLB | HCR_TVM | HCR_HCD | HCR_TRVM | 6141 HCR_TLOR); 6142 } 6143 6144 return ret; 6145 } 6146 6147 uint64_t arm_hcr_el2_eff(CPUARMState *env) 6148 { 6149 if (arm_feature(env, ARM_FEATURE_M)) { 6150 return 0; 6151 } 6152 return arm_hcr_el2_eff_secstate(env, arm_security_space_below_el3(env)); 6153 } 6154 6155 /* 6156 * Corresponds to ARM pseudocode function ELIsInHost(). 6157 */ 6158 bool el_is_in_host(CPUARMState *env, int el) 6159 { 6160 uint64_t mask; 6161 6162 /* 6163 * Since we only care about E2H and TGE, we can skip arm_hcr_el2_eff(). 6164 * Perform the simplest bit tests first, and validate EL2 afterward. 6165 */ 6166 if (el & 1) { 6167 return false; /* EL1 or EL3 */ 6168 } 6169 6170 /* 6171 * Note that hcr_write() checks isar_feature_aa64_vh(), 6172 * aka HaveVirtHostExt(), in allowing HCR_E2H to be set. 6173 */ 6174 mask = el ? HCR_E2H : HCR_E2H | HCR_TGE; 6175 if ((env->cp15.hcr_el2 & mask) != mask) { 6176 return false; 6177 } 6178 6179 /* TGE and/or E2H set: double check those bits are currently legal. */ 6180 return arm_is_el2_enabled(env) && arm_el_is_aa64(env, 2); 6181 } 6182 6183 static void hcrx_write(CPUARMState *env, const ARMCPRegInfo *ri, 6184 uint64_t value) 6185 { 6186 uint64_t valid_mask = 0; 6187 6188 /* FEAT_MOPS adds MSCEn and MCE2 */ 6189 if (cpu_isar_feature(aa64_mops, env_archcpu(env))) { 6190 valid_mask |= HCRX_MSCEN | HCRX_MCE2; 6191 } 6192 6193 /* Clear RES0 bits. */ 6194 env->cp15.hcrx_el2 = value & valid_mask; 6195 } 6196 6197 static CPAccessResult access_hxen(CPUARMState *env, const ARMCPRegInfo *ri, 6198 bool isread) 6199 { 6200 if (arm_current_el(env) == 2 6201 && arm_feature(env, ARM_FEATURE_EL3) 6202 && !(env->cp15.scr_el3 & SCR_HXEN)) { 6203 return CP_ACCESS_TRAP_EL3; 6204 } 6205 return CP_ACCESS_OK; 6206 } 6207 6208 static const ARMCPRegInfo hcrx_el2_reginfo = { 6209 .name = "HCRX_EL2", .state = ARM_CP_STATE_AA64, 6210 .opc0 = 3, .opc1 = 4, .crn = 1, .crm = 2, .opc2 = 2, 6211 .access = PL2_RW, .writefn = hcrx_write, .accessfn = access_hxen, 6212 .nv2_redirect_offset = 0xa0, 6213 .fieldoffset = offsetof(CPUARMState, cp15.hcrx_el2), 6214 }; 6215 6216 /* Return the effective value of HCRX_EL2. */ 6217 uint64_t arm_hcrx_el2_eff(CPUARMState *env) 6218 { 6219 /* 6220 * The bits in this register behave as 0 for all purposes other than 6221 * direct reads of the register if SCR_EL3.HXEn is 0. 6222 * If EL2 is not enabled in the current security state, then the 6223 * bit may behave as if 0, or as if 1, depending on the bit. 6224 * For the moment, we treat the EL2-disabled case as taking 6225 * priority over the HXEn-disabled case. This is true for the only 6226 * bit for a feature which we implement where the answer is different 6227 * for the two cases (MSCEn for FEAT_MOPS). 6228 * This may need to be revisited for future bits. 6229 */ 6230 if (!arm_is_el2_enabled(env)) { 6231 uint64_t hcrx = 0; 6232 if (cpu_isar_feature(aa64_mops, env_archcpu(env))) { 6233 /* MSCEn behaves as 1 if EL2 is not enabled */ 6234 hcrx |= HCRX_MSCEN; 6235 } 6236 return hcrx; 6237 } 6238 if (arm_feature(env, ARM_FEATURE_EL3) && !(env->cp15.scr_el3 & SCR_HXEN)) { 6239 return 0; 6240 } 6241 return env->cp15.hcrx_el2; 6242 } 6243 6244 static void cptr_el2_write(CPUARMState *env, const ARMCPRegInfo *ri, 6245 uint64_t value) 6246 { 6247 /* 6248 * For A-profile AArch32 EL3, if NSACR.CP10 6249 * is 0 then HCPTR.{TCP11,TCP10} ignore writes and read as 1. 6250 */ 6251 if (arm_feature(env, ARM_FEATURE_EL3) && !arm_el_is_aa64(env, 3) && 6252 !arm_is_secure(env) && !extract32(env->cp15.nsacr, 10, 1)) { 6253 uint64_t mask = R_HCPTR_TCP11_MASK | R_HCPTR_TCP10_MASK; 6254 value = (value & ~mask) | (env->cp15.cptr_el[2] & mask); 6255 } 6256 env->cp15.cptr_el[2] = value; 6257 } 6258 6259 static uint64_t cptr_el2_read(CPUARMState *env, const ARMCPRegInfo *ri) 6260 { 6261 /* 6262 * For A-profile AArch32 EL3, if NSACR.CP10 6263 * is 0 then HCPTR.{TCP11,TCP10} ignore writes and read as 1. 6264 */ 6265 uint64_t value = env->cp15.cptr_el[2]; 6266 6267 if (arm_feature(env, ARM_FEATURE_EL3) && !arm_el_is_aa64(env, 3) && 6268 !arm_is_secure(env) && !extract32(env->cp15.nsacr, 10, 1)) { 6269 value |= R_HCPTR_TCP11_MASK | R_HCPTR_TCP10_MASK; 6270 } 6271 return value; 6272 } 6273 6274 static const ARMCPRegInfo el2_cp_reginfo[] = { 6275 { .name = "HCR_EL2", .state = ARM_CP_STATE_AA64, 6276 .type = ARM_CP_IO, 6277 .opc0 = 3, .opc1 = 4, .crn = 1, .crm = 1, .opc2 = 0, 6278 .access = PL2_RW, .fieldoffset = offsetof(CPUARMState, cp15.hcr_el2), 6279 .nv2_redirect_offset = 0x78, 6280 .writefn = hcr_write, .raw_writefn = raw_write }, 6281 { .name = "HCR", .state = ARM_CP_STATE_AA32, 6282 .type = ARM_CP_ALIAS | ARM_CP_IO, 6283 .cp = 15, .opc1 = 4, .crn = 1, .crm = 1, .opc2 = 0, 6284 .access = PL2_RW, .fieldoffset = offsetof(CPUARMState, cp15.hcr_el2), 6285 .writefn = hcr_writelow }, 6286 { .name = "HACR_EL2", .state = ARM_CP_STATE_BOTH, 6287 .opc0 = 3, .opc1 = 4, .crn = 1, .crm = 1, .opc2 = 7, 6288 .access = PL2_RW, .type = ARM_CP_CONST, .resetvalue = 0 }, 6289 { .name = "ELR_EL2", .state = ARM_CP_STATE_AA64, 6290 .type = ARM_CP_ALIAS | ARM_CP_NV2_REDIRECT, 6291 .opc0 = 3, .opc1 = 4, .crn = 4, .crm = 0, .opc2 = 1, 6292 .access = PL2_RW, 6293 .fieldoffset = offsetof(CPUARMState, elr_el[2]) }, 6294 { .name = "ESR_EL2", .state = ARM_CP_STATE_BOTH, 6295 .type = ARM_CP_NV2_REDIRECT, 6296 .opc0 = 3, .opc1 = 4, .crn = 5, .crm = 2, .opc2 = 0, 6297 .access = PL2_RW, .fieldoffset = offsetof(CPUARMState, cp15.esr_el[2]) }, 6298 { .name = "FAR_EL2", .state = ARM_CP_STATE_BOTH, 6299 .type = ARM_CP_NV2_REDIRECT, 6300 .opc0 = 3, .opc1 = 4, .crn = 6, .crm = 0, .opc2 = 0, 6301 .access = PL2_RW, .fieldoffset = offsetof(CPUARMState, cp15.far_el[2]) }, 6302 { .name = "HIFAR", .state = ARM_CP_STATE_AA32, 6303 .type = ARM_CP_ALIAS, 6304 .cp = 15, .opc1 = 4, .crn = 6, .crm = 0, .opc2 = 2, 6305 .access = PL2_RW, 6306 .fieldoffset = offsetofhigh32(CPUARMState, cp15.far_el[2]) }, 6307 { .name = "SPSR_EL2", .state = ARM_CP_STATE_AA64, 6308 .type = ARM_CP_ALIAS | ARM_CP_NV2_REDIRECT, 6309 .opc0 = 3, .opc1 = 4, .crn = 4, .crm = 0, .opc2 = 0, 6310 .access = PL2_RW, 6311 .fieldoffset = offsetof(CPUARMState, banked_spsr[BANK_HYP]) }, 6312 { .name = "VBAR_EL2", .state = ARM_CP_STATE_BOTH, 6313 .opc0 = 3, .opc1 = 4, .crn = 12, .crm = 0, .opc2 = 0, 6314 .access = PL2_RW, .writefn = vbar_write, 6315 .fieldoffset = offsetof(CPUARMState, cp15.vbar_el[2]), 6316 .resetvalue = 0 }, 6317 { .name = "SP_EL2", .state = ARM_CP_STATE_AA64, 6318 .opc0 = 3, .opc1 = 6, .crn = 4, .crm = 1, .opc2 = 0, 6319 .access = PL3_RW, .type = ARM_CP_ALIAS, 6320 .fieldoffset = offsetof(CPUARMState, sp_el[2]) }, 6321 { .name = "CPTR_EL2", .state = ARM_CP_STATE_BOTH, 6322 .opc0 = 3, .opc1 = 4, .crn = 1, .crm = 1, .opc2 = 2, 6323 .access = PL2_RW, .accessfn = cptr_access, .resetvalue = 0, 6324 .fieldoffset = offsetof(CPUARMState, cp15.cptr_el[2]), 6325 .readfn = cptr_el2_read, .writefn = cptr_el2_write }, 6326 { .name = "MAIR_EL2", .state = ARM_CP_STATE_BOTH, 6327 .opc0 = 3, .opc1 = 4, .crn = 10, .crm = 2, .opc2 = 0, 6328 .access = PL2_RW, .fieldoffset = offsetof(CPUARMState, cp15.mair_el[2]), 6329 .resetvalue = 0 }, 6330 { .name = "HMAIR1", .state = ARM_CP_STATE_AA32, 6331 .cp = 15, .opc1 = 4, .crn = 10, .crm = 2, .opc2 = 1, 6332 .access = PL2_RW, .type = ARM_CP_ALIAS, 6333 .fieldoffset = offsetofhigh32(CPUARMState, cp15.mair_el[2]) }, 6334 { .name = "AMAIR_EL2", .state = ARM_CP_STATE_BOTH, 6335 .opc0 = 3, .opc1 = 4, .crn = 10, .crm = 3, .opc2 = 0, 6336 .access = PL2_RW, .type = ARM_CP_CONST, 6337 .resetvalue = 0 }, 6338 /* HAMAIR1 is mapped to AMAIR_EL2[63:32] */ 6339 { .name = "HAMAIR1", .state = ARM_CP_STATE_AA32, 6340 .cp = 15, .opc1 = 4, .crn = 10, .crm = 3, .opc2 = 1, 6341 .access = PL2_RW, .type = ARM_CP_CONST, 6342 .resetvalue = 0 }, 6343 { .name = "AFSR0_EL2", .state = ARM_CP_STATE_BOTH, 6344 .opc0 = 3, .opc1 = 4, .crn = 5, .crm = 1, .opc2 = 0, 6345 .access = PL2_RW, .type = ARM_CP_CONST, 6346 .resetvalue = 0 }, 6347 { .name = "AFSR1_EL2", .state = ARM_CP_STATE_BOTH, 6348 .opc0 = 3, .opc1 = 4, .crn = 5, .crm = 1, .opc2 = 1, 6349 .access = PL2_RW, .type = ARM_CP_CONST, 6350 .resetvalue = 0 }, 6351 { .name = "TCR_EL2", .state = ARM_CP_STATE_BOTH, 6352 .opc0 = 3, .opc1 = 4, .crn = 2, .crm = 0, .opc2 = 2, 6353 .access = PL2_RW, .writefn = vmsa_tcr_el12_write, 6354 .raw_writefn = raw_write, 6355 .fieldoffset = offsetof(CPUARMState, cp15.tcr_el[2]) }, 6356 { .name = "VTCR", .state = ARM_CP_STATE_AA32, 6357 .cp = 15, .opc1 = 4, .crn = 2, .crm = 1, .opc2 = 2, 6358 .type = ARM_CP_ALIAS, 6359 .access = PL2_RW, .accessfn = access_el3_aa32ns, 6360 .fieldoffset = offsetoflow32(CPUARMState, cp15.vtcr_el2) }, 6361 { .name = "VTCR_EL2", .state = ARM_CP_STATE_AA64, 6362 .opc0 = 3, .opc1 = 4, .crn = 2, .crm = 1, .opc2 = 2, 6363 .access = PL2_RW, 6364 .nv2_redirect_offset = 0x40, 6365 /* no .writefn needed as this can't cause an ASID change */ 6366 .fieldoffset = offsetof(CPUARMState, cp15.vtcr_el2) }, 6367 { .name = "VTTBR", .state = ARM_CP_STATE_AA32, 6368 .cp = 15, .opc1 = 6, .crm = 2, 6369 .type = ARM_CP_64BIT | ARM_CP_ALIAS, 6370 .access = PL2_RW, .accessfn = access_el3_aa32ns, 6371 .fieldoffset = offsetof(CPUARMState, cp15.vttbr_el2), 6372 .writefn = vttbr_write, .raw_writefn = raw_write }, 6373 { .name = "VTTBR_EL2", .state = ARM_CP_STATE_AA64, 6374 .opc0 = 3, .opc1 = 4, .crn = 2, .crm = 1, .opc2 = 0, 6375 .access = PL2_RW, .writefn = vttbr_write, .raw_writefn = raw_write, 6376 .nv2_redirect_offset = 0x20, 6377 .fieldoffset = offsetof(CPUARMState, cp15.vttbr_el2) }, 6378 { .name = "SCTLR_EL2", .state = ARM_CP_STATE_BOTH, 6379 .opc0 = 3, .opc1 = 4, .crn = 1, .crm = 0, .opc2 = 0, 6380 .access = PL2_RW, .raw_writefn = raw_write, .writefn = sctlr_write, 6381 .fieldoffset = offsetof(CPUARMState, cp15.sctlr_el[2]) }, 6382 { .name = "TPIDR_EL2", .state = ARM_CP_STATE_BOTH, 6383 .opc0 = 3, .opc1 = 4, .crn = 13, .crm = 0, .opc2 = 2, 6384 .access = PL2_RW, .resetvalue = 0, 6385 .nv2_redirect_offset = 0x90, 6386 .fieldoffset = offsetof(CPUARMState, cp15.tpidr_el[2]) }, 6387 { .name = "TTBR0_EL2", .state = ARM_CP_STATE_AA64, 6388 .opc0 = 3, .opc1 = 4, .crn = 2, .crm = 0, .opc2 = 0, 6389 .access = PL2_RW, .resetvalue = 0, 6390 .writefn = vmsa_tcr_ttbr_el2_write, .raw_writefn = raw_write, 6391 .fieldoffset = offsetof(CPUARMState, cp15.ttbr0_el[2]) }, 6392 { .name = "HTTBR", .cp = 15, .opc1 = 4, .crm = 2, 6393 .access = PL2_RW, .type = ARM_CP_64BIT | ARM_CP_ALIAS, 6394 .fieldoffset = offsetof(CPUARMState, cp15.ttbr0_el[2]) }, 6395 { .name = "TLBIALLNSNH", 6396 .cp = 15, .opc1 = 4, .crn = 8, .crm = 7, .opc2 = 4, 6397 .type = ARM_CP_NO_RAW, .access = PL2_W, 6398 .writefn = tlbiall_nsnh_write }, 6399 { .name = "TLBIALLNSNHIS", 6400 .cp = 15, .opc1 = 4, .crn = 8, .crm = 3, .opc2 = 4, 6401 .type = ARM_CP_NO_RAW, .access = PL2_W, 6402 .writefn = tlbiall_nsnh_is_write }, 6403 { .name = "TLBIALLH", .cp = 15, .opc1 = 4, .crn = 8, .crm = 7, .opc2 = 0, 6404 .type = ARM_CP_NO_RAW, .access = PL2_W, 6405 .writefn = tlbiall_hyp_write }, 6406 { .name = "TLBIALLHIS", .cp = 15, .opc1 = 4, .crn = 8, .crm = 3, .opc2 = 0, 6407 .type = ARM_CP_NO_RAW, .access = PL2_W, 6408 .writefn = tlbiall_hyp_is_write }, 6409 { .name = "TLBIMVAH", .cp = 15, .opc1 = 4, .crn = 8, .crm = 7, .opc2 = 1, 6410 .type = ARM_CP_NO_RAW, .access = PL2_W, 6411 .writefn = tlbimva_hyp_write }, 6412 { .name = "TLBIMVAHIS", .cp = 15, .opc1 = 4, .crn = 8, .crm = 3, .opc2 = 1, 6413 .type = ARM_CP_NO_RAW, .access = PL2_W, 6414 .writefn = tlbimva_hyp_is_write }, 6415 { .name = "TLBI_ALLE2", .state = ARM_CP_STATE_AA64, 6416 .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 7, .opc2 = 0, 6417 .access = PL2_W, .type = ARM_CP_NO_RAW | ARM_CP_EL3_NO_EL2_UNDEF, 6418 .writefn = tlbi_aa64_alle2_write }, 6419 { .name = "TLBI_VAE2", .state = ARM_CP_STATE_AA64, 6420 .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 7, .opc2 = 1, 6421 .access = PL2_W, .type = ARM_CP_NO_RAW | ARM_CP_EL3_NO_EL2_UNDEF, 6422 .writefn = tlbi_aa64_vae2_write }, 6423 { .name = "TLBI_VALE2", .state = ARM_CP_STATE_AA64, 6424 .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 7, .opc2 = 5, 6425 .access = PL2_W, .type = ARM_CP_NO_RAW | ARM_CP_EL3_NO_EL2_UNDEF, 6426 .writefn = tlbi_aa64_vae2_write }, 6427 { .name = "TLBI_ALLE2IS", .state = ARM_CP_STATE_AA64, 6428 .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 3, .opc2 = 0, 6429 .access = PL2_W, .type = ARM_CP_NO_RAW | ARM_CP_EL3_NO_EL2_UNDEF, 6430 .writefn = tlbi_aa64_alle2is_write }, 6431 { .name = "TLBI_VAE2IS", .state = ARM_CP_STATE_AA64, 6432 .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 3, .opc2 = 1, 6433 .access = PL2_W, .type = ARM_CP_NO_RAW | ARM_CP_EL3_NO_EL2_UNDEF, 6434 .writefn = tlbi_aa64_vae2is_write }, 6435 { .name = "TLBI_VALE2IS", .state = ARM_CP_STATE_AA64, 6436 .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 3, .opc2 = 5, 6437 .access = PL2_W, .type = ARM_CP_NO_RAW | ARM_CP_EL3_NO_EL2_UNDEF, 6438 .writefn = tlbi_aa64_vae2is_write }, 6439 #ifndef CONFIG_USER_ONLY 6440 /* 6441 * Unlike the other EL2-related AT operations, these must 6442 * UNDEF from EL3 if EL2 is not implemented, which is why we 6443 * define them here rather than with the rest of the AT ops. 6444 */ 6445 { .name = "AT_S1E2R", .state = ARM_CP_STATE_AA64, 6446 .opc0 = 1, .opc1 = 4, .crn = 7, .crm = 8, .opc2 = 0, 6447 .access = PL2_W, .accessfn = at_s1e2_access, 6448 .type = ARM_CP_NO_RAW | ARM_CP_RAISES_EXC | ARM_CP_EL3_NO_EL2_UNDEF, 6449 .writefn = ats_write64 }, 6450 { .name = "AT_S1E2W", .state = ARM_CP_STATE_AA64, 6451 .opc0 = 1, .opc1 = 4, .crn = 7, .crm = 8, .opc2 = 1, 6452 .access = PL2_W, .accessfn = at_s1e2_access, 6453 .type = ARM_CP_NO_RAW | ARM_CP_RAISES_EXC | ARM_CP_EL3_NO_EL2_UNDEF, 6454 .writefn = ats_write64 }, 6455 /* 6456 * The AArch32 ATS1H* operations are CONSTRAINED UNPREDICTABLE 6457 * if EL2 is not implemented; we choose to UNDEF. Behaviour at EL3 6458 * with SCR.NS == 0 outside Monitor mode is UNPREDICTABLE; we choose 6459 * to behave as if SCR.NS was 1. 6460 */ 6461 { .name = "ATS1HR", .cp = 15, .opc1 = 4, .crn = 7, .crm = 8, .opc2 = 0, 6462 .access = PL2_W, 6463 .writefn = ats1h_write, .type = ARM_CP_NO_RAW | ARM_CP_RAISES_EXC }, 6464 { .name = "ATS1HW", .cp = 15, .opc1 = 4, .crn = 7, .crm = 8, .opc2 = 1, 6465 .access = PL2_W, 6466 .writefn = ats1h_write, .type = ARM_CP_NO_RAW | ARM_CP_RAISES_EXC }, 6467 { .name = "CNTHCTL_EL2", .state = ARM_CP_STATE_BOTH, 6468 .opc0 = 3, .opc1 = 4, .crn = 14, .crm = 1, .opc2 = 0, 6469 /* 6470 * ARMv7 requires bit 0 and 1 to reset to 1. ARMv8 defines the 6471 * reset values as IMPDEF. We choose to reset to 3 to comply with 6472 * both ARMv7 and ARMv8. 6473 */ 6474 .access = PL2_RW, .type = ARM_CP_IO, .resetvalue = 3, 6475 .writefn = gt_cnthctl_write, .raw_writefn = raw_write, 6476 .fieldoffset = offsetof(CPUARMState, cp15.cnthctl_el2) }, 6477 { .name = "CNTVOFF_EL2", .state = ARM_CP_STATE_AA64, 6478 .opc0 = 3, .opc1 = 4, .crn = 14, .crm = 0, .opc2 = 3, 6479 .access = PL2_RW, .type = ARM_CP_IO, .resetvalue = 0, 6480 .writefn = gt_cntvoff_write, 6481 .nv2_redirect_offset = 0x60, 6482 .fieldoffset = offsetof(CPUARMState, cp15.cntvoff_el2) }, 6483 { .name = "CNTVOFF", .cp = 15, .opc1 = 4, .crm = 14, 6484 .access = PL2_RW, .type = ARM_CP_64BIT | ARM_CP_ALIAS | ARM_CP_IO, 6485 .writefn = gt_cntvoff_write, 6486 .fieldoffset = offsetof(CPUARMState, cp15.cntvoff_el2) }, 6487 { .name = "CNTHP_CVAL_EL2", .state = ARM_CP_STATE_AA64, 6488 .opc0 = 3, .opc1 = 4, .crn = 14, .crm = 2, .opc2 = 2, 6489 .fieldoffset = offsetof(CPUARMState, cp15.c14_timer[GTIMER_HYP].cval), 6490 .type = ARM_CP_IO, .access = PL2_RW, 6491 .writefn = gt_hyp_cval_write, .raw_writefn = raw_write }, 6492 { .name = "CNTHP_CVAL", .cp = 15, .opc1 = 6, .crm = 14, 6493 .fieldoffset = offsetof(CPUARMState, cp15.c14_timer[GTIMER_HYP].cval), 6494 .access = PL2_RW, .type = ARM_CP_64BIT | ARM_CP_IO, 6495 .writefn = gt_hyp_cval_write, .raw_writefn = raw_write }, 6496 { .name = "CNTHP_TVAL_EL2", .state = ARM_CP_STATE_BOTH, 6497 .opc0 = 3, .opc1 = 4, .crn = 14, .crm = 2, .opc2 = 0, 6498 .type = ARM_CP_NO_RAW | ARM_CP_IO, .access = PL2_RW, 6499 .resetfn = gt_hyp_timer_reset, 6500 .readfn = gt_hyp_tval_read, .writefn = gt_hyp_tval_write }, 6501 { .name = "CNTHP_CTL_EL2", .state = ARM_CP_STATE_BOTH, 6502 .type = ARM_CP_IO, 6503 .opc0 = 3, .opc1 = 4, .crn = 14, .crm = 2, .opc2 = 1, 6504 .access = PL2_RW, 6505 .fieldoffset = offsetof(CPUARMState, cp15.c14_timer[GTIMER_HYP].ctl), 6506 .resetvalue = 0, 6507 .writefn = gt_hyp_ctl_write, .raw_writefn = raw_write }, 6508 #endif 6509 { .name = "HPFAR", .state = ARM_CP_STATE_AA32, 6510 .cp = 15, .opc1 = 4, .crn = 6, .crm = 0, .opc2 = 4, 6511 .access = PL2_RW, .accessfn = access_el3_aa32ns, 6512 .fieldoffset = offsetof(CPUARMState, cp15.hpfar_el2) }, 6513 { .name = "HPFAR_EL2", .state = ARM_CP_STATE_AA64, 6514 .opc0 = 3, .opc1 = 4, .crn = 6, .crm = 0, .opc2 = 4, 6515 .access = PL2_RW, 6516 .fieldoffset = offsetof(CPUARMState, cp15.hpfar_el2) }, 6517 { .name = "HSTR_EL2", .state = ARM_CP_STATE_BOTH, 6518 .cp = 15, .opc0 = 3, .opc1 = 4, .crn = 1, .crm = 1, .opc2 = 3, 6519 .access = PL2_RW, 6520 .nv2_redirect_offset = 0x80, 6521 .fieldoffset = offsetof(CPUARMState, cp15.hstr_el2) }, 6522 }; 6523 6524 static const ARMCPRegInfo el2_v8_cp_reginfo[] = { 6525 { .name = "HCR2", .state = ARM_CP_STATE_AA32, 6526 .type = ARM_CP_ALIAS | ARM_CP_IO, 6527 .cp = 15, .opc1 = 4, .crn = 1, .crm = 1, .opc2 = 4, 6528 .access = PL2_RW, 6529 .fieldoffset = offsetofhigh32(CPUARMState, cp15.hcr_el2), 6530 .writefn = hcr_writehigh }, 6531 }; 6532 6533 static CPAccessResult sel2_access(CPUARMState *env, const ARMCPRegInfo *ri, 6534 bool isread) 6535 { 6536 if (arm_current_el(env) == 3 || arm_is_secure_below_el3(env)) { 6537 return CP_ACCESS_OK; 6538 } 6539 return CP_ACCESS_TRAP_UNCATEGORIZED; 6540 } 6541 6542 static const ARMCPRegInfo el2_sec_cp_reginfo[] = { 6543 { .name = "VSTTBR_EL2", .state = ARM_CP_STATE_AA64, 6544 .opc0 = 3, .opc1 = 4, .crn = 2, .crm = 6, .opc2 = 0, 6545 .access = PL2_RW, .accessfn = sel2_access, 6546 .nv2_redirect_offset = 0x30, 6547 .fieldoffset = offsetof(CPUARMState, cp15.vsttbr_el2) }, 6548 { .name = "VSTCR_EL2", .state = ARM_CP_STATE_AA64, 6549 .opc0 = 3, .opc1 = 4, .crn = 2, .crm = 6, .opc2 = 2, 6550 .access = PL2_RW, .accessfn = sel2_access, 6551 .nv2_redirect_offset = 0x48, 6552 .fieldoffset = offsetof(CPUARMState, cp15.vstcr_el2) }, 6553 }; 6554 6555 static CPAccessResult nsacr_access(CPUARMState *env, const ARMCPRegInfo *ri, 6556 bool isread) 6557 { 6558 /* 6559 * The NSACR is RW at EL3, and RO for NS EL1 and NS EL2. 6560 * At Secure EL1 it traps to EL3 or EL2. 6561 */ 6562 if (arm_current_el(env) == 3) { 6563 return CP_ACCESS_OK; 6564 } 6565 if (arm_is_secure_below_el3(env)) { 6566 if (env->cp15.scr_el3 & SCR_EEL2) { 6567 return CP_ACCESS_TRAP_EL2; 6568 } 6569 return CP_ACCESS_TRAP_EL3; 6570 } 6571 /* Accesses from EL1 NS and EL2 NS are UNDEF for write but allow reads. */ 6572 if (isread) { 6573 return CP_ACCESS_OK; 6574 } 6575 return CP_ACCESS_TRAP_UNCATEGORIZED; 6576 } 6577 6578 static const ARMCPRegInfo el3_cp_reginfo[] = { 6579 { .name = "SCR_EL3", .state = ARM_CP_STATE_AA64, 6580 .opc0 = 3, .opc1 = 6, .crn = 1, .crm = 1, .opc2 = 0, 6581 .access = PL3_RW, .fieldoffset = offsetof(CPUARMState, cp15.scr_el3), 6582 .resetfn = scr_reset, .writefn = scr_write, .raw_writefn = raw_write }, 6583 { .name = "SCR", .type = ARM_CP_ALIAS | ARM_CP_NEWEL, 6584 .cp = 15, .opc1 = 0, .crn = 1, .crm = 1, .opc2 = 0, 6585 .access = PL1_RW, .accessfn = access_trap_aa32s_el1, 6586 .fieldoffset = offsetoflow32(CPUARMState, cp15.scr_el3), 6587 .writefn = scr_write, .raw_writefn = raw_write }, 6588 { .name = "SDER32_EL3", .state = ARM_CP_STATE_AA64, 6589 .opc0 = 3, .opc1 = 6, .crn = 1, .crm = 1, .opc2 = 1, 6590 .access = PL3_RW, .resetvalue = 0, 6591 .fieldoffset = offsetof(CPUARMState, cp15.sder) }, 6592 { .name = "SDER", 6593 .cp = 15, .opc1 = 0, .crn = 1, .crm = 1, .opc2 = 1, 6594 .access = PL3_RW, .resetvalue = 0, 6595 .fieldoffset = offsetoflow32(CPUARMState, cp15.sder) }, 6596 { .name = "MVBAR", .cp = 15, .opc1 = 0, .crn = 12, .crm = 0, .opc2 = 1, 6597 .access = PL1_RW, .accessfn = access_trap_aa32s_el1, 6598 .writefn = vbar_write, .resetvalue = 0, 6599 .fieldoffset = offsetof(CPUARMState, cp15.mvbar) }, 6600 { .name = "TTBR0_EL3", .state = ARM_CP_STATE_AA64, 6601 .opc0 = 3, .opc1 = 6, .crn = 2, .crm = 0, .opc2 = 0, 6602 .access = PL3_RW, .resetvalue = 0, 6603 .fieldoffset = offsetof(CPUARMState, cp15.ttbr0_el[3]) }, 6604 { .name = "TCR_EL3", .state = ARM_CP_STATE_AA64, 6605 .opc0 = 3, .opc1 = 6, .crn = 2, .crm = 0, .opc2 = 2, 6606 .access = PL3_RW, 6607 /* no .writefn needed as this can't cause an ASID change */ 6608 .resetvalue = 0, 6609 .fieldoffset = offsetof(CPUARMState, cp15.tcr_el[3]) }, 6610 { .name = "ELR_EL3", .state = ARM_CP_STATE_AA64, 6611 .type = ARM_CP_ALIAS, 6612 .opc0 = 3, .opc1 = 6, .crn = 4, .crm = 0, .opc2 = 1, 6613 .access = PL3_RW, 6614 .fieldoffset = offsetof(CPUARMState, elr_el[3]) }, 6615 { .name = "ESR_EL3", .state = ARM_CP_STATE_AA64, 6616 .opc0 = 3, .opc1 = 6, .crn = 5, .crm = 2, .opc2 = 0, 6617 .access = PL3_RW, .fieldoffset = offsetof(CPUARMState, cp15.esr_el[3]) }, 6618 { .name = "FAR_EL3", .state = ARM_CP_STATE_AA64, 6619 .opc0 = 3, .opc1 = 6, .crn = 6, .crm = 0, .opc2 = 0, 6620 .access = PL3_RW, .fieldoffset = offsetof(CPUARMState, cp15.far_el[3]) }, 6621 { .name = "SPSR_EL3", .state = ARM_CP_STATE_AA64, 6622 .type = ARM_CP_ALIAS, 6623 .opc0 = 3, .opc1 = 6, .crn = 4, .crm = 0, .opc2 = 0, 6624 .access = PL3_RW, 6625 .fieldoffset = offsetof(CPUARMState, banked_spsr[BANK_MON]) }, 6626 { .name = "VBAR_EL3", .state = ARM_CP_STATE_AA64, 6627 .opc0 = 3, .opc1 = 6, .crn = 12, .crm = 0, .opc2 = 0, 6628 .access = PL3_RW, .writefn = vbar_write, 6629 .fieldoffset = offsetof(CPUARMState, cp15.vbar_el[3]), 6630 .resetvalue = 0 }, 6631 { .name = "CPTR_EL3", .state = ARM_CP_STATE_AA64, 6632 .opc0 = 3, .opc1 = 6, .crn = 1, .crm = 1, .opc2 = 2, 6633 .access = PL3_RW, .accessfn = cptr_access, .resetvalue = 0, 6634 .fieldoffset = offsetof(CPUARMState, cp15.cptr_el[3]) }, 6635 { .name = "TPIDR_EL3", .state = ARM_CP_STATE_AA64, 6636 .opc0 = 3, .opc1 = 6, .crn = 13, .crm = 0, .opc2 = 2, 6637 .access = PL3_RW, .resetvalue = 0, 6638 .fieldoffset = offsetof(CPUARMState, cp15.tpidr_el[3]) }, 6639 { .name = "AMAIR_EL3", .state = ARM_CP_STATE_AA64, 6640 .opc0 = 3, .opc1 = 6, .crn = 10, .crm = 3, .opc2 = 0, 6641 .access = PL3_RW, .type = ARM_CP_CONST, 6642 .resetvalue = 0 }, 6643 { .name = "AFSR0_EL3", .state = ARM_CP_STATE_BOTH, 6644 .opc0 = 3, .opc1 = 6, .crn = 5, .crm = 1, .opc2 = 0, 6645 .access = PL3_RW, .type = ARM_CP_CONST, 6646 .resetvalue = 0 }, 6647 { .name = "AFSR1_EL3", .state = ARM_CP_STATE_BOTH, 6648 .opc0 = 3, .opc1 = 6, .crn = 5, .crm = 1, .opc2 = 1, 6649 .access = PL3_RW, .type = ARM_CP_CONST, 6650 .resetvalue = 0 }, 6651 { .name = "TLBI_ALLE3IS", .state = ARM_CP_STATE_AA64, 6652 .opc0 = 1, .opc1 = 6, .crn = 8, .crm = 3, .opc2 = 0, 6653 .access = PL3_W, .type = ARM_CP_NO_RAW, 6654 .writefn = tlbi_aa64_alle3is_write }, 6655 { .name = "TLBI_VAE3IS", .state = ARM_CP_STATE_AA64, 6656 .opc0 = 1, .opc1 = 6, .crn = 8, .crm = 3, .opc2 = 1, 6657 .access = PL3_W, .type = ARM_CP_NO_RAW, 6658 .writefn = tlbi_aa64_vae3is_write }, 6659 { .name = "TLBI_VALE3IS", .state = ARM_CP_STATE_AA64, 6660 .opc0 = 1, .opc1 = 6, .crn = 8, .crm = 3, .opc2 = 5, 6661 .access = PL3_W, .type = ARM_CP_NO_RAW, 6662 .writefn = tlbi_aa64_vae3is_write }, 6663 { .name = "TLBI_ALLE3", .state = ARM_CP_STATE_AA64, 6664 .opc0 = 1, .opc1 = 6, .crn = 8, .crm = 7, .opc2 = 0, 6665 .access = PL3_W, .type = ARM_CP_NO_RAW, 6666 .writefn = tlbi_aa64_alle3_write }, 6667 { .name = "TLBI_VAE3", .state = ARM_CP_STATE_AA64, 6668 .opc0 = 1, .opc1 = 6, .crn = 8, .crm = 7, .opc2 = 1, 6669 .access = PL3_W, .type = ARM_CP_NO_RAW, 6670 .writefn = tlbi_aa64_vae3_write }, 6671 { .name = "TLBI_VALE3", .state = ARM_CP_STATE_AA64, 6672 .opc0 = 1, .opc1 = 6, .crn = 8, .crm = 7, .opc2 = 5, 6673 .access = PL3_W, .type = ARM_CP_NO_RAW, 6674 .writefn = tlbi_aa64_vae3_write }, 6675 }; 6676 6677 #ifndef CONFIG_USER_ONLY 6678 6679 static CPAccessResult e2h_access(CPUARMState *env, const ARMCPRegInfo *ri, 6680 bool isread) 6681 { 6682 if (arm_current_el(env) == 1) { 6683 /* This must be a FEAT_NV access */ 6684 return CP_ACCESS_OK; 6685 } 6686 if (!(arm_hcr_el2_eff(env) & HCR_E2H)) { 6687 return CP_ACCESS_TRAP_UNCATEGORIZED; 6688 } 6689 return CP_ACCESS_OK; 6690 } 6691 6692 static CPAccessResult access_el1nvpct(CPUARMState *env, const ARMCPRegInfo *ri, 6693 bool isread) 6694 { 6695 if (arm_current_el(env) == 1) { 6696 /* This must be a FEAT_NV access with NVx == 101 */ 6697 if (FIELD_EX64(env->cp15.cnthctl_el2, CNTHCTL, EL1NVPCT)) { 6698 return CP_ACCESS_TRAP_EL2; 6699 } 6700 } 6701 return e2h_access(env, ri, isread); 6702 } 6703 6704 static CPAccessResult access_el1nvvct(CPUARMState *env, const ARMCPRegInfo *ri, 6705 bool isread) 6706 { 6707 if (arm_current_el(env) == 1) { 6708 /* This must be a FEAT_NV access with NVx == 101 */ 6709 if (FIELD_EX64(env->cp15.cnthctl_el2, CNTHCTL, EL1NVVCT)) { 6710 return CP_ACCESS_TRAP_EL2; 6711 } 6712 } 6713 return e2h_access(env, ri, isread); 6714 } 6715 6716 /* Test if system register redirection is to occur in the current state. */ 6717 static bool redirect_for_e2h(CPUARMState *env) 6718 { 6719 return arm_current_el(env) == 2 && (arm_hcr_el2_eff(env) & HCR_E2H); 6720 } 6721 6722 static uint64_t el2_e2h_read(CPUARMState *env, const ARMCPRegInfo *ri) 6723 { 6724 CPReadFn *readfn; 6725 6726 if (redirect_for_e2h(env)) { 6727 /* Switch to the saved EL2 version of the register. */ 6728 ri = ri->opaque; 6729 readfn = ri->readfn; 6730 } else { 6731 readfn = ri->orig_readfn; 6732 } 6733 if (readfn == NULL) { 6734 readfn = raw_read; 6735 } 6736 return readfn(env, ri); 6737 } 6738 6739 static void el2_e2h_write(CPUARMState *env, const ARMCPRegInfo *ri, 6740 uint64_t value) 6741 { 6742 CPWriteFn *writefn; 6743 6744 if (redirect_for_e2h(env)) { 6745 /* Switch to the saved EL2 version of the register. */ 6746 ri = ri->opaque; 6747 writefn = ri->writefn; 6748 } else { 6749 writefn = ri->orig_writefn; 6750 } 6751 if (writefn == NULL) { 6752 writefn = raw_write; 6753 } 6754 writefn(env, ri, value); 6755 } 6756 6757 static uint64_t el2_e2h_e12_read(CPUARMState *env, const ARMCPRegInfo *ri) 6758 { 6759 /* Pass the EL1 register accessor its ri, not the EL12 alias ri */ 6760 return ri->orig_readfn(env, ri->opaque); 6761 } 6762 6763 static void el2_e2h_e12_write(CPUARMState *env, const ARMCPRegInfo *ri, 6764 uint64_t value) 6765 { 6766 /* Pass the EL1 register accessor its ri, not the EL12 alias ri */ 6767 return ri->orig_writefn(env, ri->opaque, value); 6768 } 6769 6770 static CPAccessResult el2_e2h_e12_access(CPUARMState *env, 6771 const ARMCPRegInfo *ri, 6772 bool isread) 6773 { 6774 if (arm_current_el(env) == 1) { 6775 /* 6776 * This must be a FEAT_NV access (will either trap or redirect 6777 * to memory). None of the registers with _EL12 aliases want to 6778 * apply their trap controls for this kind of access, so don't 6779 * call the orig_accessfn or do the "UNDEF when E2H is 0" check. 6780 */ 6781 return CP_ACCESS_OK; 6782 } 6783 /* FOO_EL12 aliases only exist when E2H is 1; otherwise they UNDEF */ 6784 if (!(arm_hcr_el2_eff(env) & HCR_E2H)) { 6785 return CP_ACCESS_TRAP_UNCATEGORIZED; 6786 } 6787 if (ri->orig_accessfn) { 6788 return ri->orig_accessfn(env, ri->opaque, isread); 6789 } 6790 return CP_ACCESS_OK; 6791 } 6792 6793 static void define_arm_vh_e2h_redirects_aliases(ARMCPU *cpu) 6794 { 6795 struct E2HAlias { 6796 uint32_t src_key, dst_key, new_key; 6797 const char *src_name, *dst_name, *new_name; 6798 bool (*feature)(const ARMISARegisters *id); 6799 }; 6800 6801 #define K(op0, op1, crn, crm, op2) \ 6802 ENCODE_AA64_CP_REG(CP_REG_ARM64_SYSREG_CP, crn, crm, op0, op1, op2) 6803 6804 static const struct E2HAlias aliases[] = { 6805 { K(3, 0, 1, 0, 0), K(3, 4, 1, 0, 0), K(3, 5, 1, 0, 0), 6806 "SCTLR", "SCTLR_EL2", "SCTLR_EL12" }, 6807 { K(3, 0, 1, 0, 2), K(3, 4, 1, 1, 2), K(3, 5, 1, 0, 2), 6808 "CPACR", "CPTR_EL2", "CPACR_EL12" }, 6809 { K(3, 0, 2, 0, 0), K(3, 4, 2, 0, 0), K(3, 5, 2, 0, 0), 6810 "TTBR0_EL1", "TTBR0_EL2", "TTBR0_EL12" }, 6811 { K(3, 0, 2, 0, 1), K(3, 4, 2, 0, 1), K(3, 5, 2, 0, 1), 6812 "TTBR1_EL1", "TTBR1_EL2", "TTBR1_EL12" }, 6813 { K(3, 0, 2, 0, 2), K(3, 4, 2, 0, 2), K(3, 5, 2, 0, 2), 6814 "TCR_EL1", "TCR_EL2", "TCR_EL12" }, 6815 { K(3, 0, 4, 0, 0), K(3, 4, 4, 0, 0), K(3, 5, 4, 0, 0), 6816 "SPSR_EL1", "SPSR_EL2", "SPSR_EL12" }, 6817 { K(3, 0, 4, 0, 1), K(3, 4, 4, 0, 1), K(3, 5, 4, 0, 1), 6818 "ELR_EL1", "ELR_EL2", "ELR_EL12" }, 6819 { K(3, 0, 5, 1, 0), K(3, 4, 5, 1, 0), K(3, 5, 5, 1, 0), 6820 "AFSR0_EL1", "AFSR0_EL2", "AFSR0_EL12" }, 6821 { K(3, 0, 5, 1, 1), K(3, 4, 5, 1, 1), K(3, 5, 5, 1, 1), 6822 "AFSR1_EL1", "AFSR1_EL2", "AFSR1_EL12" }, 6823 { K(3, 0, 5, 2, 0), K(3, 4, 5, 2, 0), K(3, 5, 5, 2, 0), 6824 "ESR_EL1", "ESR_EL2", "ESR_EL12" }, 6825 { K(3, 0, 6, 0, 0), K(3, 4, 6, 0, 0), K(3, 5, 6, 0, 0), 6826 "FAR_EL1", "FAR_EL2", "FAR_EL12" }, 6827 { K(3, 0, 10, 2, 0), K(3, 4, 10, 2, 0), K(3, 5, 10, 2, 0), 6828 "MAIR_EL1", "MAIR_EL2", "MAIR_EL12" }, 6829 { K(3, 0, 10, 3, 0), K(3, 4, 10, 3, 0), K(3, 5, 10, 3, 0), 6830 "AMAIR0", "AMAIR_EL2", "AMAIR_EL12" }, 6831 { K(3, 0, 12, 0, 0), K(3, 4, 12, 0, 0), K(3, 5, 12, 0, 0), 6832 "VBAR", "VBAR_EL2", "VBAR_EL12" }, 6833 { K(3, 0, 13, 0, 1), K(3, 4, 13, 0, 1), K(3, 5, 13, 0, 1), 6834 "CONTEXTIDR_EL1", "CONTEXTIDR_EL2", "CONTEXTIDR_EL12" }, 6835 { K(3, 0, 14, 1, 0), K(3, 4, 14, 1, 0), K(3, 5, 14, 1, 0), 6836 "CNTKCTL", "CNTHCTL_EL2", "CNTKCTL_EL12" }, 6837 6838 /* 6839 * Note that redirection of ZCR is mentioned in the description 6840 * of ZCR_EL2, and aliasing in the description of ZCR_EL1, but 6841 * not in the summary table. 6842 */ 6843 { K(3, 0, 1, 2, 0), K(3, 4, 1, 2, 0), K(3, 5, 1, 2, 0), 6844 "ZCR_EL1", "ZCR_EL2", "ZCR_EL12", isar_feature_aa64_sve }, 6845 { K(3, 0, 1, 2, 6), K(3, 4, 1, 2, 6), K(3, 5, 1, 2, 6), 6846 "SMCR_EL1", "SMCR_EL2", "SMCR_EL12", isar_feature_aa64_sme }, 6847 6848 { K(3, 0, 5, 6, 0), K(3, 4, 5, 6, 0), K(3, 5, 5, 6, 0), 6849 "TFSR_EL1", "TFSR_EL2", "TFSR_EL12", isar_feature_aa64_mte }, 6850 6851 { K(3, 0, 13, 0, 7), K(3, 4, 13, 0, 7), K(3, 5, 13, 0, 7), 6852 "SCXTNUM_EL1", "SCXTNUM_EL2", "SCXTNUM_EL12", 6853 isar_feature_aa64_scxtnum }, 6854 6855 /* TODO: ARMv8.2-SPE -- PMSCR_EL2 */ 6856 /* TODO: ARMv8.4-Trace -- TRFCR_EL2 */ 6857 }; 6858 #undef K 6859 6860 size_t i; 6861 6862 for (i = 0; i < ARRAY_SIZE(aliases); i++) { 6863 const struct E2HAlias *a = &aliases[i]; 6864 ARMCPRegInfo *src_reg, *dst_reg, *new_reg; 6865 bool ok; 6866 6867 if (a->feature && !a->feature(&cpu->isar)) { 6868 continue; 6869 } 6870 6871 src_reg = g_hash_table_lookup(cpu->cp_regs, 6872 (gpointer)(uintptr_t)a->src_key); 6873 dst_reg = g_hash_table_lookup(cpu->cp_regs, 6874 (gpointer)(uintptr_t)a->dst_key); 6875 g_assert(src_reg != NULL); 6876 g_assert(dst_reg != NULL); 6877 6878 /* Cross-compare names to detect typos in the keys. */ 6879 g_assert(strcmp(src_reg->name, a->src_name) == 0); 6880 g_assert(strcmp(dst_reg->name, a->dst_name) == 0); 6881 6882 /* None of the core system registers use opaque; we will. */ 6883 g_assert(src_reg->opaque == NULL); 6884 6885 /* Create alias before redirection so we dup the right data. */ 6886 new_reg = g_memdup(src_reg, sizeof(ARMCPRegInfo)); 6887 6888 new_reg->name = a->new_name; 6889 new_reg->type |= ARM_CP_ALIAS; 6890 /* Remove PL1/PL0 access, leaving PL2/PL3 R/W in place. */ 6891 new_reg->access &= PL2_RW | PL3_RW; 6892 /* The new_reg op fields are as per new_key, not the target reg */ 6893 new_reg->crn = (a->new_key & CP_REG_ARM64_SYSREG_CRN_MASK) 6894 >> CP_REG_ARM64_SYSREG_CRN_SHIFT; 6895 new_reg->crm = (a->new_key & CP_REG_ARM64_SYSREG_CRM_MASK) 6896 >> CP_REG_ARM64_SYSREG_CRM_SHIFT; 6897 new_reg->opc0 = (a->new_key & CP_REG_ARM64_SYSREG_OP0_MASK) 6898 >> CP_REG_ARM64_SYSREG_OP0_SHIFT; 6899 new_reg->opc1 = (a->new_key & CP_REG_ARM64_SYSREG_OP1_MASK) 6900 >> CP_REG_ARM64_SYSREG_OP1_SHIFT; 6901 new_reg->opc2 = (a->new_key & CP_REG_ARM64_SYSREG_OP2_MASK) 6902 >> CP_REG_ARM64_SYSREG_OP2_SHIFT; 6903 new_reg->opaque = src_reg; 6904 new_reg->orig_readfn = src_reg->readfn ?: raw_read; 6905 new_reg->orig_writefn = src_reg->writefn ?: raw_write; 6906 new_reg->orig_accessfn = src_reg->accessfn; 6907 if (!new_reg->raw_readfn) { 6908 new_reg->raw_readfn = raw_read; 6909 } 6910 if (!new_reg->raw_writefn) { 6911 new_reg->raw_writefn = raw_write; 6912 } 6913 new_reg->readfn = el2_e2h_e12_read; 6914 new_reg->writefn = el2_e2h_e12_write; 6915 new_reg->accessfn = el2_e2h_e12_access; 6916 6917 /* 6918 * If the _EL1 register is redirected to memory by FEAT_NV2, 6919 * then it shares the offset with the _EL12 register, 6920 * and which one is redirected depends on HCR_EL2.NV1. 6921 */ 6922 if (new_reg->nv2_redirect_offset) { 6923 assert(new_reg->nv2_redirect_offset & NV2_REDIR_NV1); 6924 new_reg->nv2_redirect_offset &= ~NV2_REDIR_NV1; 6925 new_reg->nv2_redirect_offset |= NV2_REDIR_NO_NV1; 6926 } 6927 6928 ok = g_hash_table_insert(cpu->cp_regs, 6929 (gpointer)(uintptr_t)a->new_key, new_reg); 6930 g_assert(ok); 6931 6932 src_reg->opaque = dst_reg; 6933 src_reg->orig_readfn = src_reg->readfn ?: raw_read; 6934 src_reg->orig_writefn = src_reg->writefn ?: raw_write; 6935 if (!src_reg->raw_readfn) { 6936 src_reg->raw_readfn = raw_read; 6937 } 6938 if (!src_reg->raw_writefn) { 6939 src_reg->raw_writefn = raw_write; 6940 } 6941 src_reg->readfn = el2_e2h_read; 6942 src_reg->writefn = el2_e2h_write; 6943 } 6944 } 6945 #endif 6946 6947 static CPAccessResult ctr_el0_access(CPUARMState *env, const ARMCPRegInfo *ri, 6948 bool isread) 6949 { 6950 int cur_el = arm_current_el(env); 6951 6952 if (cur_el < 2) { 6953 uint64_t hcr = arm_hcr_el2_eff(env); 6954 6955 if (cur_el == 0) { 6956 if ((hcr & (HCR_E2H | HCR_TGE)) == (HCR_E2H | HCR_TGE)) { 6957 if (!(env->cp15.sctlr_el[2] & SCTLR_UCT)) { 6958 return CP_ACCESS_TRAP_EL2; 6959 } 6960 } else { 6961 if (!(env->cp15.sctlr_el[1] & SCTLR_UCT)) { 6962 return CP_ACCESS_TRAP; 6963 } 6964 if (hcr & HCR_TID2) { 6965 return CP_ACCESS_TRAP_EL2; 6966 } 6967 } 6968 } else if (hcr & HCR_TID2) { 6969 return CP_ACCESS_TRAP_EL2; 6970 } 6971 } 6972 6973 if (arm_current_el(env) < 2 && arm_hcr_el2_eff(env) & HCR_TID2) { 6974 return CP_ACCESS_TRAP_EL2; 6975 } 6976 6977 return CP_ACCESS_OK; 6978 } 6979 6980 /* 6981 * Check for traps to RAS registers, which are controlled 6982 * by HCR_EL2.TERR and SCR_EL3.TERR. 6983 */ 6984 static CPAccessResult access_terr(CPUARMState *env, const ARMCPRegInfo *ri, 6985 bool isread) 6986 { 6987 int el = arm_current_el(env); 6988 6989 if (el < 2 && (arm_hcr_el2_eff(env) & HCR_TERR)) { 6990 return CP_ACCESS_TRAP_EL2; 6991 } 6992 if (el < 3 && (env->cp15.scr_el3 & SCR_TERR)) { 6993 return CP_ACCESS_TRAP_EL3; 6994 } 6995 return CP_ACCESS_OK; 6996 } 6997 6998 static uint64_t disr_read(CPUARMState *env, const ARMCPRegInfo *ri) 6999 { 7000 int el = arm_current_el(env); 7001 7002 if (el < 2 && (arm_hcr_el2_eff(env) & HCR_AMO)) { 7003 return env->cp15.vdisr_el2; 7004 } 7005 if (el < 3 && (env->cp15.scr_el3 & SCR_EA)) { 7006 return 0; /* RAZ/WI */ 7007 } 7008 return env->cp15.disr_el1; 7009 } 7010 7011 static void disr_write(CPUARMState *env, const ARMCPRegInfo *ri, uint64_t val) 7012 { 7013 int el = arm_current_el(env); 7014 7015 if (el < 2 && (arm_hcr_el2_eff(env) & HCR_AMO)) { 7016 env->cp15.vdisr_el2 = val; 7017 return; 7018 } 7019 if (el < 3 && (env->cp15.scr_el3 & SCR_EA)) { 7020 return; /* RAZ/WI */ 7021 } 7022 env->cp15.disr_el1 = val; 7023 } 7024 7025 /* 7026 * Minimal RAS implementation with no Error Records. 7027 * Which means that all of the Error Record registers: 7028 * ERXADDR_EL1 7029 * ERXCTLR_EL1 7030 * ERXFR_EL1 7031 * ERXMISC0_EL1 7032 * ERXMISC1_EL1 7033 * ERXMISC2_EL1 7034 * ERXMISC3_EL1 7035 * ERXPFGCDN_EL1 (RASv1p1) 7036 * ERXPFGCTL_EL1 (RASv1p1) 7037 * ERXPFGF_EL1 (RASv1p1) 7038 * ERXSTATUS_EL1 7039 * and 7040 * ERRSELR_EL1 7041 * may generate UNDEFINED, which is the effect we get by not 7042 * listing them at all. 7043 * 7044 * These registers have fine-grained trap bits, but UNDEF-to-EL1 7045 * is higher priority than FGT-to-EL2 so we do not need to list them 7046 * in order to check for an FGT. 7047 */ 7048 static const ARMCPRegInfo minimal_ras_reginfo[] = { 7049 { .name = "DISR_EL1", .state = ARM_CP_STATE_BOTH, 7050 .opc0 = 3, .opc1 = 0, .crn = 12, .crm = 1, .opc2 = 1, 7051 .access = PL1_RW, .fieldoffset = offsetof(CPUARMState, cp15.disr_el1), 7052 .readfn = disr_read, .writefn = disr_write, .raw_writefn = raw_write }, 7053 { .name = "ERRIDR_EL1", .state = ARM_CP_STATE_BOTH, 7054 .opc0 = 3, .opc1 = 0, .crn = 5, .crm = 3, .opc2 = 0, 7055 .access = PL1_R, .accessfn = access_terr, 7056 .fgt = FGT_ERRIDR_EL1, 7057 .type = ARM_CP_CONST, .resetvalue = 0 }, 7058 { .name = "VDISR_EL2", .state = ARM_CP_STATE_BOTH, 7059 .opc0 = 3, .opc1 = 4, .crn = 12, .crm = 1, .opc2 = 1, 7060 .nv2_redirect_offset = 0x500, 7061 .access = PL2_RW, .fieldoffset = offsetof(CPUARMState, cp15.vdisr_el2) }, 7062 { .name = "VSESR_EL2", .state = ARM_CP_STATE_BOTH, 7063 .opc0 = 3, .opc1 = 4, .crn = 5, .crm = 2, .opc2 = 3, 7064 .nv2_redirect_offset = 0x508, 7065 .access = PL2_RW, .fieldoffset = offsetof(CPUARMState, cp15.vsesr_el2) }, 7066 }; 7067 7068 /* 7069 * Return the exception level to which exceptions should be taken 7070 * via SVEAccessTrap. This excludes the check for whether the exception 7071 * should be routed through AArch64.AdvSIMDFPAccessTrap. That can easily 7072 * be found by testing 0 < fp_exception_el < sve_exception_el. 7073 * 7074 * C.f. the ARM pseudocode function CheckSVEEnabled. Note that the 7075 * pseudocode does *not* separate out the FP trap checks, but has them 7076 * all in one function. 7077 */ 7078 int sve_exception_el(CPUARMState *env, int el) 7079 { 7080 #ifndef CONFIG_USER_ONLY 7081 if (el <= 1 && !el_is_in_host(env, el)) { 7082 switch (FIELD_EX64(env->cp15.cpacr_el1, CPACR_EL1, ZEN)) { 7083 case 1: 7084 if (el != 0) { 7085 break; 7086 } 7087 /* fall through */ 7088 case 0: 7089 case 2: 7090 return 1; 7091 } 7092 } 7093 7094 if (el <= 2 && arm_is_el2_enabled(env)) { 7095 /* CPTR_EL2 changes format with HCR_EL2.E2H (regardless of TGE). */ 7096 if (env->cp15.hcr_el2 & HCR_E2H) { 7097 switch (FIELD_EX64(env->cp15.cptr_el[2], CPTR_EL2, ZEN)) { 7098 case 1: 7099 if (el != 0 || !(env->cp15.hcr_el2 & HCR_TGE)) { 7100 break; 7101 } 7102 /* fall through */ 7103 case 0: 7104 case 2: 7105 return 2; 7106 } 7107 } else { 7108 if (FIELD_EX64(env->cp15.cptr_el[2], CPTR_EL2, TZ)) { 7109 return 2; 7110 } 7111 } 7112 } 7113 7114 /* CPTR_EL3. Since EZ is negative we must check for EL3. */ 7115 if (arm_feature(env, ARM_FEATURE_EL3) 7116 && !FIELD_EX64(env->cp15.cptr_el[3], CPTR_EL3, EZ)) { 7117 return 3; 7118 } 7119 #endif 7120 return 0; 7121 } 7122 7123 /* 7124 * Return the exception level to which exceptions should be taken for SME. 7125 * C.f. the ARM pseudocode function CheckSMEAccess. 7126 */ 7127 int sme_exception_el(CPUARMState *env, int el) 7128 { 7129 #ifndef CONFIG_USER_ONLY 7130 if (el <= 1 && !el_is_in_host(env, el)) { 7131 switch (FIELD_EX64(env->cp15.cpacr_el1, CPACR_EL1, SMEN)) { 7132 case 1: 7133 if (el != 0) { 7134 break; 7135 } 7136 /* fall through */ 7137 case 0: 7138 case 2: 7139 return 1; 7140 } 7141 } 7142 7143 if (el <= 2 && arm_is_el2_enabled(env)) { 7144 /* CPTR_EL2 changes format with HCR_EL2.E2H (regardless of TGE). */ 7145 if (env->cp15.hcr_el2 & HCR_E2H) { 7146 switch (FIELD_EX64(env->cp15.cptr_el[2], CPTR_EL2, SMEN)) { 7147 case 1: 7148 if (el != 0 || !(env->cp15.hcr_el2 & HCR_TGE)) { 7149 break; 7150 } 7151 /* fall through */ 7152 case 0: 7153 case 2: 7154 return 2; 7155 } 7156 } else { 7157 if (FIELD_EX64(env->cp15.cptr_el[2], CPTR_EL2, TSM)) { 7158 return 2; 7159 } 7160 } 7161 } 7162 7163 /* CPTR_EL3. Since ESM is negative we must check for EL3. */ 7164 if (arm_feature(env, ARM_FEATURE_EL3) 7165 && !FIELD_EX64(env->cp15.cptr_el[3], CPTR_EL3, ESM)) { 7166 return 3; 7167 } 7168 #endif 7169 return 0; 7170 } 7171 7172 /* 7173 * Given that SVE is enabled, return the vector length for EL. 7174 */ 7175 uint32_t sve_vqm1_for_el_sm(CPUARMState *env, int el, bool sm) 7176 { 7177 ARMCPU *cpu = env_archcpu(env); 7178 uint64_t *cr = env->vfp.zcr_el; 7179 uint32_t map = cpu->sve_vq.map; 7180 uint32_t len = ARM_MAX_VQ - 1; 7181 7182 if (sm) { 7183 cr = env->vfp.smcr_el; 7184 map = cpu->sme_vq.map; 7185 } 7186 7187 if (el <= 1 && !el_is_in_host(env, el)) { 7188 len = MIN(len, 0xf & (uint32_t)cr[1]); 7189 } 7190 if (el <= 2 && arm_feature(env, ARM_FEATURE_EL2)) { 7191 len = MIN(len, 0xf & (uint32_t)cr[2]); 7192 } 7193 if (arm_feature(env, ARM_FEATURE_EL3)) { 7194 len = MIN(len, 0xf & (uint32_t)cr[3]); 7195 } 7196 7197 map &= MAKE_64BIT_MASK(0, len + 1); 7198 if (map != 0) { 7199 return 31 - clz32(map); 7200 } 7201 7202 /* Bit 0 is always set for Normal SVE -- not so for Streaming SVE. */ 7203 assert(sm); 7204 return ctz32(cpu->sme_vq.map); 7205 } 7206 7207 uint32_t sve_vqm1_for_el(CPUARMState *env, int el) 7208 { 7209 return sve_vqm1_for_el_sm(env, el, FIELD_EX64(env->svcr, SVCR, SM)); 7210 } 7211 7212 static void zcr_write(CPUARMState *env, const ARMCPRegInfo *ri, 7213 uint64_t value) 7214 { 7215 int cur_el = arm_current_el(env); 7216 int old_len = sve_vqm1_for_el(env, cur_el); 7217 int new_len; 7218 7219 /* Bits other than [3:0] are RAZ/WI. */ 7220 QEMU_BUILD_BUG_ON(ARM_MAX_VQ > 16); 7221 raw_write(env, ri, value & 0xf); 7222 7223 /* 7224 * Because we arrived here, we know both FP and SVE are enabled; 7225 * otherwise we would have trapped access to the ZCR_ELn register. 7226 */ 7227 new_len = sve_vqm1_for_el(env, cur_el); 7228 if (new_len < old_len) { 7229 aarch64_sve_narrow_vq(env, new_len + 1); 7230 } 7231 } 7232 7233 static const ARMCPRegInfo zcr_reginfo[] = { 7234 { .name = "ZCR_EL1", .state = ARM_CP_STATE_AA64, 7235 .opc0 = 3, .opc1 = 0, .crn = 1, .crm = 2, .opc2 = 0, 7236 .nv2_redirect_offset = 0x1e0 | NV2_REDIR_NV1, 7237 .access = PL1_RW, .type = ARM_CP_SVE, 7238 .fieldoffset = offsetof(CPUARMState, vfp.zcr_el[1]), 7239 .writefn = zcr_write, .raw_writefn = raw_write }, 7240 { .name = "ZCR_EL2", .state = ARM_CP_STATE_AA64, 7241 .opc0 = 3, .opc1 = 4, .crn = 1, .crm = 2, .opc2 = 0, 7242 .access = PL2_RW, .type = ARM_CP_SVE, 7243 .fieldoffset = offsetof(CPUARMState, vfp.zcr_el[2]), 7244 .writefn = zcr_write, .raw_writefn = raw_write }, 7245 { .name = "ZCR_EL3", .state = ARM_CP_STATE_AA64, 7246 .opc0 = 3, .opc1 = 6, .crn = 1, .crm = 2, .opc2 = 0, 7247 .access = PL3_RW, .type = ARM_CP_SVE, 7248 .fieldoffset = offsetof(CPUARMState, vfp.zcr_el[3]), 7249 .writefn = zcr_write, .raw_writefn = raw_write }, 7250 }; 7251 7252 #ifdef TARGET_AARCH64 7253 static CPAccessResult access_tpidr2(CPUARMState *env, const ARMCPRegInfo *ri, 7254 bool isread) 7255 { 7256 int el = arm_current_el(env); 7257 7258 if (el == 0) { 7259 uint64_t sctlr = arm_sctlr(env, el); 7260 if (!(sctlr & SCTLR_EnTP2)) { 7261 return CP_ACCESS_TRAP; 7262 } 7263 } 7264 /* TODO: FEAT_FGT */ 7265 if (el < 3 7266 && arm_feature(env, ARM_FEATURE_EL3) 7267 && !(env->cp15.scr_el3 & SCR_ENTP2)) { 7268 return CP_ACCESS_TRAP_EL3; 7269 } 7270 return CP_ACCESS_OK; 7271 } 7272 7273 static CPAccessResult access_smprimap(CPUARMState *env, const ARMCPRegInfo *ri, 7274 bool isread) 7275 { 7276 /* If EL1 this is a FEAT_NV access and CPTR_EL3.ESM doesn't apply */ 7277 if (arm_current_el(env) == 2 7278 && arm_feature(env, ARM_FEATURE_EL3) 7279 && !FIELD_EX64(env->cp15.cptr_el[3], CPTR_EL3, ESM)) { 7280 return CP_ACCESS_TRAP_EL3; 7281 } 7282 return CP_ACCESS_OK; 7283 } 7284 7285 static CPAccessResult access_smpri(CPUARMState *env, const ARMCPRegInfo *ri, 7286 bool isread) 7287 { 7288 if (arm_current_el(env) < 3 7289 && arm_feature(env, ARM_FEATURE_EL3) 7290 && !FIELD_EX64(env->cp15.cptr_el[3], CPTR_EL3, ESM)) { 7291 return CP_ACCESS_TRAP_EL3; 7292 } 7293 return CP_ACCESS_OK; 7294 } 7295 7296 /* ResetSVEState */ 7297 static void arm_reset_sve_state(CPUARMState *env) 7298 { 7299 memset(env->vfp.zregs, 0, sizeof(env->vfp.zregs)); 7300 /* Recall that FFR is stored as pregs[16]. */ 7301 memset(env->vfp.pregs, 0, sizeof(env->vfp.pregs)); 7302 vfp_set_fpcr(env, 0x0800009f); 7303 } 7304 7305 void aarch64_set_svcr(CPUARMState *env, uint64_t new, uint64_t mask) 7306 { 7307 uint64_t change = (env->svcr ^ new) & mask; 7308 7309 if (change == 0) { 7310 return; 7311 } 7312 env->svcr ^= change; 7313 7314 if (change & R_SVCR_SM_MASK) { 7315 arm_reset_sve_state(env); 7316 } 7317 7318 /* 7319 * ResetSMEState. 7320 * 7321 * SetPSTATE_ZA zeros on enable and disable. We can zero this only 7322 * on enable: while disabled, the storage is inaccessible and the 7323 * value does not matter. We're not saving the storage in vmstate 7324 * when disabled either. 7325 */ 7326 if (change & new & R_SVCR_ZA_MASK) { 7327 memset(env->zarray, 0, sizeof(env->zarray)); 7328 } 7329 7330 if (tcg_enabled()) { 7331 arm_rebuild_hflags(env); 7332 } 7333 } 7334 7335 static void svcr_write(CPUARMState *env, const ARMCPRegInfo *ri, 7336 uint64_t value) 7337 { 7338 aarch64_set_svcr(env, value, -1); 7339 } 7340 7341 static void smcr_write(CPUARMState *env, const ARMCPRegInfo *ri, 7342 uint64_t value) 7343 { 7344 int cur_el = arm_current_el(env); 7345 int old_len = sve_vqm1_for_el(env, cur_el); 7346 int new_len; 7347 7348 QEMU_BUILD_BUG_ON(ARM_MAX_VQ > R_SMCR_LEN_MASK + 1); 7349 value &= R_SMCR_LEN_MASK | R_SMCR_FA64_MASK; 7350 raw_write(env, ri, value); 7351 7352 /* 7353 * Note that it is CONSTRAINED UNPREDICTABLE what happens to ZA storage 7354 * when SVL is widened (old values kept, or zeros). Choose to keep the 7355 * current values for simplicity. But for QEMU internals, we must still 7356 * apply the narrower SVL to the Zregs and Pregs -- see the comment 7357 * above aarch64_sve_narrow_vq. 7358 */ 7359 new_len = sve_vqm1_for_el(env, cur_el); 7360 if (new_len < old_len) { 7361 aarch64_sve_narrow_vq(env, new_len + 1); 7362 } 7363 } 7364 7365 static const ARMCPRegInfo sme_reginfo[] = { 7366 { .name = "TPIDR2_EL0", .state = ARM_CP_STATE_AA64, 7367 .opc0 = 3, .opc1 = 3, .crn = 13, .crm = 0, .opc2 = 5, 7368 .access = PL0_RW, .accessfn = access_tpidr2, 7369 .fgt = FGT_NTPIDR2_EL0, 7370 .fieldoffset = offsetof(CPUARMState, cp15.tpidr2_el0) }, 7371 { .name = "SVCR", .state = ARM_CP_STATE_AA64, 7372 .opc0 = 3, .opc1 = 3, .crn = 4, .crm = 2, .opc2 = 2, 7373 .access = PL0_RW, .type = ARM_CP_SME, 7374 .fieldoffset = offsetof(CPUARMState, svcr), 7375 .writefn = svcr_write, .raw_writefn = raw_write }, 7376 { .name = "SMCR_EL1", .state = ARM_CP_STATE_AA64, 7377 .opc0 = 3, .opc1 = 0, .crn = 1, .crm = 2, .opc2 = 6, 7378 .nv2_redirect_offset = 0x1f0 | NV2_REDIR_NV1, 7379 .access = PL1_RW, .type = ARM_CP_SME, 7380 .fieldoffset = offsetof(CPUARMState, vfp.smcr_el[1]), 7381 .writefn = smcr_write, .raw_writefn = raw_write }, 7382 { .name = "SMCR_EL2", .state = ARM_CP_STATE_AA64, 7383 .opc0 = 3, .opc1 = 4, .crn = 1, .crm = 2, .opc2 = 6, 7384 .access = PL2_RW, .type = ARM_CP_SME, 7385 .fieldoffset = offsetof(CPUARMState, vfp.smcr_el[2]), 7386 .writefn = smcr_write, .raw_writefn = raw_write }, 7387 { .name = "SMCR_EL3", .state = ARM_CP_STATE_AA64, 7388 .opc0 = 3, .opc1 = 6, .crn = 1, .crm = 2, .opc2 = 6, 7389 .access = PL3_RW, .type = ARM_CP_SME, 7390 .fieldoffset = offsetof(CPUARMState, vfp.smcr_el[3]), 7391 .writefn = smcr_write, .raw_writefn = raw_write }, 7392 { .name = "SMIDR_EL1", .state = ARM_CP_STATE_AA64, 7393 .opc0 = 3, .opc1 = 1, .crn = 0, .crm = 0, .opc2 = 6, 7394 .access = PL1_R, .accessfn = access_aa64_tid1, 7395 /* 7396 * IMPLEMENTOR = 0 (software) 7397 * REVISION = 0 (implementation defined) 7398 * SMPS = 0 (no streaming execution priority in QEMU) 7399 * AFFINITY = 0 (streaming sve mode not shared with other PEs) 7400 */ 7401 .type = ARM_CP_CONST, .resetvalue = 0, }, 7402 /* 7403 * Because SMIDR_EL1.SMPS is 0, SMPRI_EL1 and SMPRIMAP_EL2 are RES 0. 7404 */ 7405 { .name = "SMPRI_EL1", .state = ARM_CP_STATE_AA64, 7406 .opc0 = 3, .opc1 = 0, .crn = 1, .crm = 2, .opc2 = 4, 7407 .access = PL1_RW, .accessfn = access_smpri, 7408 .fgt = FGT_NSMPRI_EL1, 7409 .type = ARM_CP_CONST, .resetvalue = 0 }, 7410 { .name = "SMPRIMAP_EL2", .state = ARM_CP_STATE_AA64, 7411 .opc0 = 3, .opc1 = 4, .crn = 1, .crm = 2, .opc2 = 5, 7412 .nv2_redirect_offset = 0x1f8, 7413 .access = PL2_RW, .accessfn = access_smprimap, 7414 .type = ARM_CP_CONST, .resetvalue = 0 }, 7415 }; 7416 7417 static void tlbi_aa64_paall_write(CPUARMState *env, const ARMCPRegInfo *ri, 7418 uint64_t value) 7419 { 7420 CPUState *cs = env_cpu(env); 7421 7422 tlb_flush(cs); 7423 } 7424 7425 static void gpccr_write(CPUARMState *env, const ARMCPRegInfo *ri, 7426 uint64_t value) 7427 { 7428 /* L0GPTSZ is RO; other bits not mentioned are RES0. */ 7429 uint64_t rw_mask = R_GPCCR_PPS_MASK | R_GPCCR_IRGN_MASK | 7430 R_GPCCR_ORGN_MASK | R_GPCCR_SH_MASK | R_GPCCR_PGS_MASK | 7431 R_GPCCR_GPC_MASK | R_GPCCR_GPCP_MASK; 7432 7433 env->cp15.gpccr_el3 = (value & rw_mask) | (env->cp15.gpccr_el3 & ~rw_mask); 7434 } 7435 7436 static void gpccr_reset(CPUARMState *env, const ARMCPRegInfo *ri) 7437 { 7438 env->cp15.gpccr_el3 = FIELD_DP64(0, GPCCR, L0GPTSZ, 7439 env_archcpu(env)->reset_l0gptsz); 7440 } 7441 7442 static void tlbi_aa64_paallos_write(CPUARMState *env, const ARMCPRegInfo *ri, 7443 uint64_t value) 7444 { 7445 CPUState *cs = env_cpu(env); 7446 7447 tlb_flush_all_cpus_synced(cs); 7448 } 7449 7450 static const ARMCPRegInfo rme_reginfo[] = { 7451 { .name = "GPCCR_EL3", .state = ARM_CP_STATE_AA64, 7452 .opc0 = 3, .opc1 = 6, .crn = 2, .crm = 1, .opc2 = 6, 7453 .access = PL3_RW, .writefn = gpccr_write, .resetfn = gpccr_reset, 7454 .fieldoffset = offsetof(CPUARMState, cp15.gpccr_el3) }, 7455 { .name = "GPTBR_EL3", .state = ARM_CP_STATE_AA64, 7456 .opc0 = 3, .opc1 = 6, .crn = 2, .crm = 1, .opc2 = 4, 7457 .access = PL3_RW, .fieldoffset = offsetof(CPUARMState, cp15.gptbr_el3) }, 7458 { .name = "MFAR_EL3", .state = ARM_CP_STATE_AA64, 7459 .opc0 = 3, .opc1 = 6, .crn = 6, .crm = 0, .opc2 = 5, 7460 .access = PL3_RW, .fieldoffset = offsetof(CPUARMState, cp15.mfar_el3) }, 7461 { .name = "TLBI_PAALL", .state = ARM_CP_STATE_AA64, 7462 .opc0 = 1, .opc1 = 6, .crn = 8, .crm = 7, .opc2 = 4, 7463 .access = PL3_W, .type = ARM_CP_NO_RAW, 7464 .writefn = tlbi_aa64_paall_write }, 7465 { .name = "TLBI_PAALLOS", .state = ARM_CP_STATE_AA64, 7466 .opc0 = 1, .opc1 = 6, .crn = 8, .crm = 1, .opc2 = 4, 7467 .access = PL3_W, .type = ARM_CP_NO_RAW, 7468 .writefn = tlbi_aa64_paallos_write }, 7469 /* 7470 * QEMU does not have a way to invalidate by physical address, thus 7471 * invalidating a range of physical addresses is accomplished by 7472 * flushing all tlb entries in the outer shareable domain, 7473 * just like PAALLOS. 7474 */ 7475 { .name = "TLBI_RPALOS", .state = ARM_CP_STATE_AA64, 7476 .opc0 = 1, .opc1 = 6, .crn = 8, .crm = 4, .opc2 = 7, 7477 .access = PL3_W, .type = ARM_CP_NO_RAW, 7478 .writefn = tlbi_aa64_paallos_write }, 7479 { .name = "TLBI_RPAOS", .state = ARM_CP_STATE_AA64, 7480 .opc0 = 1, .opc1 = 6, .crn = 8, .crm = 4, .opc2 = 3, 7481 .access = PL3_W, .type = ARM_CP_NO_RAW, 7482 .writefn = tlbi_aa64_paallos_write }, 7483 { .name = "DC_CIPAPA", .state = ARM_CP_STATE_AA64, 7484 .opc0 = 1, .opc1 = 6, .crn = 7, .crm = 14, .opc2 = 1, 7485 .access = PL3_W, .type = ARM_CP_NOP }, 7486 }; 7487 7488 static const ARMCPRegInfo rme_mte_reginfo[] = { 7489 { .name = "DC_CIGDPAPA", .state = ARM_CP_STATE_AA64, 7490 .opc0 = 1, .opc1 = 6, .crn = 7, .crm = 14, .opc2 = 5, 7491 .access = PL3_W, .type = ARM_CP_NOP }, 7492 }; 7493 #endif /* TARGET_AARCH64 */ 7494 7495 static void define_pmu_regs(ARMCPU *cpu) 7496 { 7497 /* 7498 * v7 performance monitor control register: same implementor 7499 * field as main ID register, and we implement four counters in 7500 * addition to the cycle count register. 7501 */ 7502 unsigned int i, pmcrn = pmu_num_counters(&cpu->env); 7503 ARMCPRegInfo pmcr = { 7504 .name = "PMCR", .cp = 15, .crn = 9, .crm = 12, .opc1 = 0, .opc2 = 0, 7505 .access = PL0_RW, 7506 .fgt = FGT_PMCR_EL0, 7507 .type = ARM_CP_IO | ARM_CP_ALIAS, 7508 .fieldoffset = offsetoflow32(CPUARMState, cp15.c9_pmcr), 7509 .accessfn = pmreg_access, 7510 .readfn = pmcr_read, .raw_readfn = raw_read, 7511 .writefn = pmcr_write, .raw_writefn = raw_write, 7512 }; 7513 ARMCPRegInfo pmcr64 = { 7514 .name = "PMCR_EL0", .state = ARM_CP_STATE_AA64, 7515 .opc0 = 3, .opc1 = 3, .crn = 9, .crm = 12, .opc2 = 0, 7516 .access = PL0_RW, .accessfn = pmreg_access, 7517 .fgt = FGT_PMCR_EL0, 7518 .type = ARM_CP_IO, 7519 .fieldoffset = offsetof(CPUARMState, cp15.c9_pmcr), 7520 .resetvalue = cpu->isar.reset_pmcr_el0, 7521 .readfn = pmcr_read, .raw_readfn = raw_read, 7522 .writefn = pmcr_write, .raw_writefn = raw_write, 7523 }; 7524 7525 define_one_arm_cp_reg(cpu, &pmcr); 7526 define_one_arm_cp_reg(cpu, &pmcr64); 7527 for (i = 0; i < pmcrn; i++) { 7528 char *pmevcntr_name = g_strdup_printf("PMEVCNTR%d", i); 7529 char *pmevcntr_el0_name = g_strdup_printf("PMEVCNTR%d_EL0", i); 7530 char *pmevtyper_name = g_strdup_printf("PMEVTYPER%d", i); 7531 char *pmevtyper_el0_name = g_strdup_printf("PMEVTYPER%d_EL0", i); 7532 ARMCPRegInfo pmev_regs[] = { 7533 { .name = pmevcntr_name, .cp = 15, .crn = 14, 7534 .crm = 8 | (3 & (i >> 3)), .opc1 = 0, .opc2 = i & 7, 7535 .access = PL0_RW, .type = ARM_CP_IO | ARM_CP_ALIAS, 7536 .fgt = FGT_PMEVCNTRN_EL0, 7537 .readfn = pmevcntr_readfn, .writefn = pmevcntr_writefn, 7538 .accessfn = pmreg_access_xevcntr }, 7539 { .name = pmevcntr_el0_name, .state = ARM_CP_STATE_AA64, 7540 .opc0 = 3, .opc1 = 3, .crn = 14, .crm = 8 | (3 & (i >> 3)), 7541 .opc2 = i & 7, .access = PL0_RW, .accessfn = pmreg_access_xevcntr, 7542 .type = ARM_CP_IO, 7543 .fgt = FGT_PMEVCNTRN_EL0, 7544 .readfn = pmevcntr_readfn, .writefn = pmevcntr_writefn, 7545 .raw_readfn = pmevcntr_rawread, 7546 .raw_writefn = pmevcntr_rawwrite }, 7547 { .name = pmevtyper_name, .cp = 15, .crn = 14, 7548 .crm = 12 | (3 & (i >> 3)), .opc1 = 0, .opc2 = i & 7, 7549 .access = PL0_RW, .type = ARM_CP_IO | ARM_CP_ALIAS, 7550 .fgt = FGT_PMEVTYPERN_EL0, 7551 .readfn = pmevtyper_readfn, .writefn = pmevtyper_writefn, 7552 .accessfn = pmreg_access }, 7553 { .name = pmevtyper_el0_name, .state = ARM_CP_STATE_AA64, 7554 .opc0 = 3, .opc1 = 3, .crn = 14, .crm = 12 | (3 & (i >> 3)), 7555 .opc2 = i & 7, .access = PL0_RW, .accessfn = pmreg_access, 7556 .fgt = FGT_PMEVTYPERN_EL0, 7557 .type = ARM_CP_IO, 7558 .readfn = pmevtyper_readfn, .writefn = pmevtyper_writefn, 7559 .raw_writefn = pmevtyper_rawwrite }, 7560 }; 7561 define_arm_cp_regs(cpu, pmev_regs); 7562 g_free(pmevcntr_name); 7563 g_free(pmevcntr_el0_name); 7564 g_free(pmevtyper_name); 7565 g_free(pmevtyper_el0_name); 7566 } 7567 if (cpu_isar_feature(aa32_pmuv3p1, cpu)) { 7568 ARMCPRegInfo v81_pmu_regs[] = { 7569 { .name = "PMCEID2", .state = ARM_CP_STATE_AA32, 7570 .cp = 15, .opc1 = 0, .crn = 9, .crm = 14, .opc2 = 4, 7571 .access = PL0_R, .accessfn = pmreg_access, .type = ARM_CP_CONST, 7572 .fgt = FGT_PMCEIDN_EL0, 7573 .resetvalue = extract64(cpu->pmceid0, 32, 32) }, 7574 { .name = "PMCEID3", .state = ARM_CP_STATE_AA32, 7575 .cp = 15, .opc1 = 0, .crn = 9, .crm = 14, .opc2 = 5, 7576 .access = PL0_R, .accessfn = pmreg_access, .type = ARM_CP_CONST, 7577 .fgt = FGT_PMCEIDN_EL0, 7578 .resetvalue = extract64(cpu->pmceid1, 32, 32) }, 7579 }; 7580 define_arm_cp_regs(cpu, v81_pmu_regs); 7581 } 7582 if (cpu_isar_feature(any_pmuv3p4, cpu)) { 7583 static const ARMCPRegInfo v84_pmmir = { 7584 .name = "PMMIR_EL1", .state = ARM_CP_STATE_BOTH, 7585 .opc0 = 3, .opc1 = 0, .crn = 9, .crm = 14, .opc2 = 6, 7586 .access = PL1_R, .accessfn = pmreg_access, .type = ARM_CP_CONST, 7587 .fgt = FGT_PMMIR_EL1, 7588 .resetvalue = 0 7589 }; 7590 define_one_arm_cp_reg(cpu, &v84_pmmir); 7591 } 7592 } 7593 7594 #ifndef CONFIG_USER_ONLY 7595 /* 7596 * We don't know until after realize whether there's a GICv3 7597 * attached, and that is what registers the gicv3 sysregs. 7598 * So we have to fill in the GIC fields in ID_PFR/ID_PFR1_EL1/ID_AA64PFR0_EL1 7599 * at runtime. 7600 */ 7601 static uint64_t id_pfr1_read(CPUARMState *env, const ARMCPRegInfo *ri) 7602 { 7603 ARMCPU *cpu = env_archcpu(env); 7604 uint64_t pfr1 = cpu->isar.id_pfr1; 7605 7606 if (env->gicv3state) { 7607 pfr1 |= 1 << 28; 7608 } 7609 return pfr1; 7610 } 7611 7612 static uint64_t id_aa64pfr0_read(CPUARMState *env, const ARMCPRegInfo *ri) 7613 { 7614 ARMCPU *cpu = env_archcpu(env); 7615 uint64_t pfr0 = cpu->isar.id_aa64pfr0; 7616 7617 if (env->gicv3state) { 7618 pfr0 |= 1 << 24; 7619 } 7620 return pfr0; 7621 } 7622 #endif 7623 7624 /* 7625 * Shared logic between LORID and the rest of the LOR* registers. 7626 * Secure state exclusion has already been dealt with. 7627 */ 7628 static CPAccessResult access_lor_ns(CPUARMState *env, 7629 const ARMCPRegInfo *ri, bool isread) 7630 { 7631 int el = arm_current_el(env); 7632 7633 if (el < 2 && (arm_hcr_el2_eff(env) & HCR_TLOR)) { 7634 return CP_ACCESS_TRAP_EL2; 7635 } 7636 if (el < 3 && (env->cp15.scr_el3 & SCR_TLOR)) { 7637 return CP_ACCESS_TRAP_EL3; 7638 } 7639 return CP_ACCESS_OK; 7640 } 7641 7642 static CPAccessResult access_lor_other(CPUARMState *env, 7643 const ARMCPRegInfo *ri, bool isread) 7644 { 7645 if (arm_is_secure_below_el3(env)) { 7646 /* Access denied in secure mode. */ 7647 return CP_ACCESS_TRAP; 7648 } 7649 return access_lor_ns(env, ri, isread); 7650 } 7651 7652 /* 7653 * A trivial implementation of ARMv8.1-LOR leaves all of these 7654 * registers fixed at 0, which indicates that there are zero 7655 * supported Limited Ordering regions. 7656 */ 7657 static const ARMCPRegInfo lor_reginfo[] = { 7658 { .name = "LORSA_EL1", .state = ARM_CP_STATE_AA64, 7659 .opc0 = 3, .opc1 = 0, .crn = 10, .crm = 4, .opc2 = 0, 7660 .access = PL1_RW, .accessfn = access_lor_other, 7661 .fgt = FGT_LORSA_EL1, 7662 .type = ARM_CP_CONST, .resetvalue = 0 }, 7663 { .name = "LOREA_EL1", .state = ARM_CP_STATE_AA64, 7664 .opc0 = 3, .opc1 = 0, .crn = 10, .crm = 4, .opc2 = 1, 7665 .access = PL1_RW, .accessfn = access_lor_other, 7666 .fgt = FGT_LOREA_EL1, 7667 .type = ARM_CP_CONST, .resetvalue = 0 }, 7668 { .name = "LORN_EL1", .state = ARM_CP_STATE_AA64, 7669 .opc0 = 3, .opc1 = 0, .crn = 10, .crm = 4, .opc2 = 2, 7670 .access = PL1_RW, .accessfn = access_lor_other, 7671 .fgt = FGT_LORN_EL1, 7672 .type = ARM_CP_CONST, .resetvalue = 0 }, 7673 { .name = "LORC_EL1", .state = ARM_CP_STATE_AA64, 7674 .opc0 = 3, .opc1 = 0, .crn = 10, .crm = 4, .opc2 = 3, 7675 .access = PL1_RW, .accessfn = access_lor_other, 7676 .fgt = FGT_LORC_EL1, 7677 .type = ARM_CP_CONST, .resetvalue = 0 }, 7678 { .name = "LORID_EL1", .state = ARM_CP_STATE_AA64, 7679 .opc0 = 3, .opc1 = 0, .crn = 10, .crm = 4, .opc2 = 7, 7680 .access = PL1_R, .accessfn = access_lor_ns, 7681 .fgt = FGT_LORID_EL1, 7682 .type = ARM_CP_CONST, .resetvalue = 0 }, 7683 }; 7684 7685 #ifdef TARGET_AARCH64 7686 static CPAccessResult access_pauth(CPUARMState *env, const ARMCPRegInfo *ri, 7687 bool isread) 7688 { 7689 int el = arm_current_el(env); 7690 7691 if (el < 2 && 7692 arm_is_el2_enabled(env) && 7693 !(arm_hcr_el2_eff(env) & HCR_APK)) { 7694 return CP_ACCESS_TRAP_EL2; 7695 } 7696 if (el < 3 && 7697 arm_feature(env, ARM_FEATURE_EL3) && 7698 !(env->cp15.scr_el3 & SCR_APK)) { 7699 return CP_ACCESS_TRAP_EL3; 7700 } 7701 return CP_ACCESS_OK; 7702 } 7703 7704 static const ARMCPRegInfo pauth_reginfo[] = { 7705 { .name = "APDAKEYLO_EL1", .state = ARM_CP_STATE_AA64, 7706 .opc0 = 3, .opc1 = 0, .crn = 2, .crm = 2, .opc2 = 0, 7707 .access = PL1_RW, .accessfn = access_pauth, 7708 .fgt = FGT_APDAKEY, 7709 .fieldoffset = offsetof(CPUARMState, keys.apda.lo) }, 7710 { .name = "APDAKEYHI_EL1", .state = ARM_CP_STATE_AA64, 7711 .opc0 = 3, .opc1 = 0, .crn = 2, .crm = 2, .opc2 = 1, 7712 .access = PL1_RW, .accessfn = access_pauth, 7713 .fgt = FGT_APDAKEY, 7714 .fieldoffset = offsetof(CPUARMState, keys.apda.hi) }, 7715 { .name = "APDBKEYLO_EL1", .state = ARM_CP_STATE_AA64, 7716 .opc0 = 3, .opc1 = 0, .crn = 2, .crm = 2, .opc2 = 2, 7717 .access = PL1_RW, .accessfn = access_pauth, 7718 .fgt = FGT_APDBKEY, 7719 .fieldoffset = offsetof(CPUARMState, keys.apdb.lo) }, 7720 { .name = "APDBKEYHI_EL1", .state = ARM_CP_STATE_AA64, 7721 .opc0 = 3, .opc1 = 0, .crn = 2, .crm = 2, .opc2 = 3, 7722 .access = PL1_RW, .accessfn = access_pauth, 7723 .fgt = FGT_APDBKEY, 7724 .fieldoffset = offsetof(CPUARMState, keys.apdb.hi) }, 7725 { .name = "APGAKEYLO_EL1", .state = ARM_CP_STATE_AA64, 7726 .opc0 = 3, .opc1 = 0, .crn = 2, .crm = 3, .opc2 = 0, 7727 .access = PL1_RW, .accessfn = access_pauth, 7728 .fgt = FGT_APGAKEY, 7729 .fieldoffset = offsetof(CPUARMState, keys.apga.lo) }, 7730 { .name = "APGAKEYHI_EL1", .state = ARM_CP_STATE_AA64, 7731 .opc0 = 3, .opc1 = 0, .crn = 2, .crm = 3, .opc2 = 1, 7732 .access = PL1_RW, .accessfn = access_pauth, 7733 .fgt = FGT_APGAKEY, 7734 .fieldoffset = offsetof(CPUARMState, keys.apga.hi) }, 7735 { .name = "APIAKEYLO_EL1", .state = ARM_CP_STATE_AA64, 7736 .opc0 = 3, .opc1 = 0, .crn = 2, .crm = 1, .opc2 = 0, 7737 .access = PL1_RW, .accessfn = access_pauth, 7738 .fgt = FGT_APIAKEY, 7739 .fieldoffset = offsetof(CPUARMState, keys.apia.lo) }, 7740 { .name = "APIAKEYHI_EL1", .state = ARM_CP_STATE_AA64, 7741 .opc0 = 3, .opc1 = 0, .crn = 2, .crm = 1, .opc2 = 1, 7742 .access = PL1_RW, .accessfn = access_pauth, 7743 .fgt = FGT_APIAKEY, 7744 .fieldoffset = offsetof(CPUARMState, keys.apia.hi) }, 7745 { .name = "APIBKEYLO_EL1", .state = ARM_CP_STATE_AA64, 7746 .opc0 = 3, .opc1 = 0, .crn = 2, .crm = 1, .opc2 = 2, 7747 .access = PL1_RW, .accessfn = access_pauth, 7748 .fgt = FGT_APIBKEY, 7749 .fieldoffset = offsetof(CPUARMState, keys.apib.lo) }, 7750 { .name = "APIBKEYHI_EL1", .state = ARM_CP_STATE_AA64, 7751 .opc0 = 3, .opc1 = 0, .crn = 2, .crm = 1, .opc2 = 3, 7752 .access = PL1_RW, .accessfn = access_pauth, 7753 .fgt = FGT_APIBKEY, 7754 .fieldoffset = offsetof(CPUARMState, keys.apib.hi) }, 7755 }; 7756 7757 static const ARMCPRegInfo tlbirange_reginfo[] = { 7758 { .name = "TLBI_RVAE1IS", .state = ARM_CP_STATE_AA64, 7759 .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 2, .opc2 = 1, 7760 .access = PL1_W, .accessfn = access_ttlbis, .type = ARM_CP_NO_RAW, 7761 .fgt = FGT_TLBIRVAE1IS, 7762 .writefn = tlbi_aa64_rvae1is_write }, 7763 { .name = "TLBI_RVAAE1IS", .state = ARM_CP_STATE_AA64, 7764 .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 2, .opc2 = 3, 7765 .access = PL1_W, .accessfn = access_ttlbis, .type = ARM_CP_NO_RAW, 7766 .fgt = FGT_TLBIRVAAE1IS, 7767 .writefn = tlbi_aa64_rvae1is_write }, 7768 { .name = "TLBI_RVALE1IS", .state = ARM_CP_STATE_AA64, 7769 .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 2, .opc2 = 5, 7770 .access = PL1_W, .accessfn = access_ttlbis, .type = ARM_CP_NO_RAW, 7771 .fgt = FGT_TLBIRVALE1IS, 7772 .writefn = tlbi_aa64_rvae1is_write }, 7773 { .name = "TLBI_RVAALE1IS", .state = ARM_CP_STATE_AA64, 7774 .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 2, .opc2 = 7, 7775 .access = PL1_W, .accessfn = access_ttlbis, .type = ARM_CP_NO_RAW, 7776 .fgt = FGT_TLBIRVAALE1IS, 7777 .writefn = tlbi_aa64_rvae1is_write }, 7778 { .name = "TLBI_RVAE1OS", .state = ARM_CP_STATE_AA64, 7779 .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 5, .opc2 = 1, 7780 .access = PL1_W, .accessfn = access_ttlbos, .type = ARM_CP_NO_RAW, 7781 .fgt = FGT_TLBIRVAE1OS, 7782 .writefn = tlbi_aa64_rvae1is_write }, 7783 { .name = "TLBI_RVAAE1OS", .state = ARM_CP_STATE_AA64, 7784 .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 5, .opc2 = 3, 7785 .access = PL1_W, .accessfn = access_ttlbos, .type = ARM_CP_NO_RAW, 7786 .fgt = FGT_TLBIRVAAE1OS, 7787 .writefn = tlbi_aa64_rvae1is_write }, 7788 { .name = "TLBI_RVALE1OS", .state = ARM_CP_STATE_AA64, 7789 .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 5, .opc2 = 5, 7790 .access = PL1_W, .accessfn = access_ttlbos, .type = ARM_CP_NO_RAW, 7791 .fgt = FGT_TLBIRVALE1OS, 7792 .writefn = tlbi_aa64_rvae1is_write }, 7793 { .name = "TLBI_RVAALE1OS", .state = ARM_CP_STATE_AA64, 7794 .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 5, .opc2 = 7, 7795 .access = PL1_W, .accessfn = access_ttlbos, .type = ARM_CP_NO_RAW, 7796 .fgt = FGT_TLBIRVAALE1OS, 7797 .writefn = tlbi_aa64_rvae1is_write }, 7798 { .name = "TLBI_RVAE1", .state = ARM_CP_STATE_AA64, 7799 .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 6, .opc2 = 1, 7800 .access = PL1_W, .accessfn = access_ttlb, .type = ARM_CP_NO_RAW, 7801 .fgt = FGT_TLBIRVAE1, 7802 .writefn = tlbi_aa64_rvae1_write }, 7803 { .name = "TLBI_RVAAE1", .state = ARM_CP_STATE_AA64, 7804 .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 6, .opc2 = 3, 7805 .access = PL1_W, .accessfn = access_ttlb, .type = ARM_CP_NO_RAW, 7806 .fgt = FGT_TLBIRVAAE1, 7807 .writefn = tlbi_aa64_rvae1_write }, 7808 { .name = "TLBI_RVALE1", .state = ARM_CP_STATE_AA64, 7809 .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 6, .opc2 = 5, 7810 .access = PL1_W, .accessfn = access_ttlb, .type = ARM_CP_NO_RAW, 7811 .fgt = FGT_TLBIRVALE1, 7812 .writefn = tlbi_aa64_rvae1_write }, 7813 { .name = "TLBI_RVAALE1", .state = ARM_CP_STATE_AA64, 7814 .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 6, .opc2 = 7, 7815 .access = PL1_W, .accessfn = access_ttlb, .type = ARM_CP_NO_RAW, 7816 .fgt = FGT_TLBIRVAALE1, 7817 .writefn = tlbi_aa64_rvae1_write }, 7818 { .name = "TLBI_RIPAS2E1IS", .state = ARM_CP_STATE_AA64, 7819 .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 0, .opc2 = 2, 7820 .access = PL2_W, .type = ARM_CP_NO_RAW, 7821 .writefn = tlbi_aa64_ripas2e1is_write }, 7822 { .name = "TLBI_RIPAS2LE1IS", .state = ARM_CP_STATE_AA64, 7823 .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 0, .opc2 = 6, 7824 .access = PL2_W, .type = ARM_CP_NO_RAW, 7825 .writefn = tlbi_aa64_ripas2e1is_write }, 7826 { .name = "TLBI_RVAE2IS", .state = ARM_CP_STATE_AA64, 7827 .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 2, .opc2 = 1, 7828 .access = PL2_W, .type = ARM_CP_NO_RAW | ARM_CP_EL3_NO_EL2_UNDEF, 7829 .writefn = tlbi_aa64_rvae2is_write }, 7830 { .name = "TLBI_RVALE2IS", .state = ARM_CP_STATE_AA64, 7831 .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 2, .opc2 = 5, 7832 .access = PL2_W, .type = ARM_CP_NO_RAW | ARM_CP_EL3_NO_EL2_UNDEF, 7833 .writefn = tlbi_aa64_rvae2is_write }, 7834 { .name = "TLBI_RIPAS2E1", .state = ARM_CP_STATE_AA64, 7835 .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 4, .opc2 = 2, 7836 .access = PL2_W, .type = ARM_CP_NO_RAW, 7837 .writefn = tlbi_aa64_ripas2e1_write }, 7838 { .name = "TLBI_RIPAS2LE1", .state = ARM_CP_STATE_AA64, 7839 .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 4, .opc2 = 6, 7840 .access = PL2_W, .type = ARM_CP_NO_RAW, 7841 .writefn = tlbi_aa64_ripas2e1_write }, 7842 { .name = "TLBI_RVAE2OS", .state = ARM_CP_STATE_AA64, 7843 .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 5, .opc2 = 1, 7844 .access = PL2_W, .type = ARM_CP_NO_RAW | ARM_CP_EL3_NO_EL2_UNDEF, 7845 .writefn = tlbi_aa64_rvae2is_write }, 7846 { .name = "TLBI_RVALE2OS", .state = ARM_CP_STATE_AA64, 7847 .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 5, .opc2 = 5, 7848 .access = PL2_W, .type = ARM_CP_NO_RAW | ARM_CP_EL3_NO_EL2_UNDEF, 7849 .writefn = tlbi_aa64_rvae2is_write }, 7850 { .name = "TLBI_RVAE2", .state = ARM_CP_STATE_AA64, 7851 .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 6, .opc2 = 1, 7852 .access = PL2_W, .type = ARM_CP_NO_RAW | ARM_CP_EL3_NO_EL2_UNDEF, 7853 .writefn = tlbi_aa64_rvae2_write }, 7854 { .name = "TLBI_RVALE2", .state = ARM_CP_STATE_AA64, 7855 .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 6, .opc2 = 5, 7856 .access = PL2_W, .type = ARM_CP_NO_RAW | ARM_CP_EL3_NO_EL2_UNDEF, 7857 .writefn = tlbi_aa64_rvae2_write }, 7858 { .name = "TLBI_RVAE3IS", .state = ARM_CP_STATE_AA64, 7859 .opc0 = 1, .opc1 = 6, .crn = 8, .crm = 2, .opc2 = 1, 7860 .access = PL3_W, .type = ARM_CP_NO_RAW, 7861 .writefn = tlbi_aa64_rvae3is_write }, 7862 { .name = "TLBI_RVALE3IS", .state = ARM_CP_STATE_AA64, 7863 .opc0 = 1, .opc1 = 6, .crn = 8, .crm = 2, .opc2 = 5, 7864 .access = PL3_W, .type = ARM_CP_NO_RAW, 7865 .writefn = tlbi_aa64_rvae3is_write }, 7866 { .name = "TLBI_RVAE3OS", .state = ARM_CP_STATE_AA64, 7867 .opc0 = 1, .opc1 = 6, .crn = 8, .crm = 5, .opc2 = 1, 7868 .access = PL3_W, .type = ARM_CP_NO_RAW, 7869 .writefn = tlbi_aa64_rvae3is_write }, 7870 { .name = "TLBI_RVALE3OS", .state = ARM_CP_STATE_AA64, 7871 .opc0 = 1, .opc1 = 6, .crn = 8, .crm = 5, .opc2 = 5, 7872 .access = PL3_W, .type = ARM_CP_NO_RAW, 7873 .writefn = tlbi_aa64_rvae3is_write }, 7874 { .name = "TLBI_RVAE3", .state = ARM_CP_STATE_AA64, 7875 .opc0 = 1, .opc1 = 6, .crn = 8, .crm = 6, .opc2 = 1, 7876 .access = PL3_W, .type = ARM_CP_NO_RAW, 7877 .writefn = tlbi_aa64_rvae3_write }, 7878 { .name = "TLBI_RVALE3", .state = ARM_CP_STATE_AA64, 7879 .opc0 = 1, .opc1 = 6, .crn = 8, .crm = 6, .opc2 = 5, 7880 .access = PL3_W, .type = ARM_CP_NO_RAW, 7881 .writefn = tlbi_aa64_rvae3_write }, 7882 }; 7883 7884 static const ARMCPRegInfo tlbios_reginfo[] = { 7885 { .name = "TLBI_VMALLE1OS", .state = ARM_CP_STATE_AA64, 7886 .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 1, .opc2 = 0, 7887 .access = PL1_W, .accessfn = access_ttlbos, .type = ARM_CP_NO_RAW, 7888 .fgt = FGT_TLBIVMALLE1OS, 7889 .writefn = tlbi_aa64_vmalle1is_write }, 7890 { .name = "TLBI_VAE1OS", .state = ARM_CP_STATE_AA64, 7891 .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 1, .opc2 = 1, 7892 .fgt = FGT_TLBIVAE1OS, 7893 .access = PL1_W, .accessfn = access_ttlbos, .type = ARM_CP_NO_RAW, 7894 .writefn = tlbi_aa64_vae1is_write }, 7895 { .name = "TLBI_ASIDE1OS", .state = ARM_CP_STATE_AA64, 7896 .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 1, .opc2 = 2, 7897 .access = PL1_W, .accessfn = access_ttlbos, .type = ARM_CP_NO_RAW, 7898 .fgt = FGT_TLBIASIDE1OS, 7899 .writefn = tlbi_aa64_vmalle1is_write }, 7900 { .name = "TLBI_VAAE1OS", .state = ARM_CP_STATE_AA64, 7901 .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 1, .opc2 = 3, 7902 .access = PL1_W, .accessfn = access_ttlbos, .type = ARM_CP_NO_RAW, 7903 .fgt = FGT_TLBIVAAE1OS, 7904 .writefn = tlbi_aa64_vae1is_write }, 7905 { .name = "TLBI_VALE1OS", .state = ARM_CP_STATE_AA64, 7906 .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 1, .opc2 = 5, 7907 .access = PL1_W, .accessfn = access_ttlbos, .type = ARM_CP_NO_RAW, 7908 .fgt = FGT_TLBIVALE1OS, 7909 .writefn = tlbi_aa64_vae1is_write }, 7910 { .name = "TLBI_VAALE1OS", .state = ARM_CP_STATE_AA64, 7911 .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 1, .opc2 = 7, 7912 .access = PL1_W, .accessfn = access_ttlbos, .type = ARM_CP_NO_RAW, 7913 .fgt = FGT_TLBIVAALE1OS, 7914 .writefn = tlbi_aa64_vae1is_write }, 7915 { .name = "TLBI_ALLE2OS", .state = ARM_CP_STATE_AA64, 7916 .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 1, .opc2 = 0, 7917 .access = PL2_W, .type = ARM_CP_NO_RAW | ARM_CP_EL3_NO_EL2_UNDEF, 7918 .writefn = tlbi_aa64_alle2is_write }, 7919 { .name = "TLBI_VAE2OS", .state = ARM_CP_STATE_AA64, 7920 .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 1, .opc2 = 1, 7921 .access = PL2_W, .type = ARM_CP_NO_RAW | ARM_CP_EL3_NO_EL2_UNDEF, 7922 .writefn = tlbi_aa64_vae2is_write }, 7923 { .name = "TLBI_ALLE1OS", .state = ARM_CP_STATE_AA64, 7924 .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 1, .opc2 = 4, 7925 .access = PL2_W, .type = ARM_CP_NO_RAW, 7926 .writefn = tlbi_aa64_alle1is_write }, 7927 { .name = "TLBI_VALE2OS", .state = ARM_CP_STATE_AA64, 7928 .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 1, .opc2 = 5, 7929 .access = PL2_W, .type = ARM_CP_NO_RAW | ARM_CP_EL3_NO_EL2_UNDEF, 7930 .writefn = tlbi_aa64_vae2is_write }, 7931 { .name = "TLBI_VMALLS12E1OS", .state = ARM_CP_STATE_AA64, 7932 .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 1, .opc2 = 6, 7933 .access = PL2_W, .type = ARM_CP_NO_RAW, 7934 .writefn = tlbi_aa64_alle1is_write }, 7935 { .name = "TLBI_IPAS2E1OS", .state = ARM_CP_STATE_AA64, 7936 .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 4, .opc2 = 0, 7937 .access = PL2_W, .type = ARM_CP_NOP }, 7938 { .name = "TLBI_RIPAS2E1OS", .state = ARM_CP_STATE_AA64, 7939 .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 4, .opc2 = 3, 7940 .access = PL2_W, .type = ARM_CP_NOP }, 7941 { .name = "TLBI_IPAS2LE1OS", .state = ARM_CP_STATE_AA64, 7942 .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 4, .opc2 = 4, 7943 .access = PL2_W, .type = ARM_CP_NOP }, 7944 { .name = "TLBI_RIPAS2LE1OS", .state = ARM_CP_STATE_AA64, 7945 .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 4, .opc2 = 7, 7946 .access = PL2_W, .type = ARM_CP_NOP }, 7947 { .name = "TLBI_ALLE3OS", .state = ARM_CP_STATE_AA64, 7948 .opc0 = 1, .opc1 = 6, .crn = 8, .crm = 1, .opc2 = 0, 7949 .access = PL3_W, .type = ARM_CP_NO_RAW, 7950 .writefn = tlbi_aa64_alle3is_write }, 7951 { .name = "TLBI_VAE3OS", .state = ARM_CP_STATE_AA64, 7952 .opc0 = 1, .opc1 = 6, .crn = 8, .crm = 1, .opc2 = 1, 7953 .access = PL3_W, .type = ARM_CP_NO_RAW, 7954 .writefn = tlbi_aa64_vae3is_write }, 7955 { .name = "TLBI_VALE3OS", .state = ARM_CP_STATE_AA64, 7956 .opc0 = 1, .opc1 = 6, .crn = 8, .crm = 1, .opc2 = 5, 7957 .access = PL3_W, .type = ARM_CP_NO_RAW, 7958 .writefn = tlbi_aa64_vae3is_write }, 7959 }; 7960 7961 static uint64_t rndr_readfn(CPUARMState *env, const ARMCPRegInfo *ri) 7962 { 7963 Error *err = NULL; 7964 uint64_t ret; 7965 7966 /* Success sets NZCV = 0000. */ 7967 env->NF = env->CF = env->VF = 0, env->ZF = 1; 7968 7969 if (qemu_guest_getrandom(&ret, sizeof(ret), &err) < 0) { 7970 /* 7971 * ??? Failed, for unknown reasons in the crypto subsystem. 7972 * The best we can do is log the reason and return the 7973 * timed-out indication to the guest. There is no reason 7974 * we know to expect this failure to be transitory, so the 7975 * guest may well hang retrying the operation. 7976 */ 7977 qemu_log_mask(LOG_UNIMP, "%s: Crypto failure: %s", 7978 ri->name, error_get_pretty(err)); 7979 error_free(err); 7980 7981 env->ZF = 0; /* NZCF = 0100 */ 7982 return 0; 7983 } 7984 return ret; 7985 } 7986 7987 /* We do not support re-seeding, so the two registers operate the same. */ 7988 static const ARMCPRegInfo rndr_reginfo[] = { 7989 { .name = "RNDR", .state = ARM_CP_STATE_AA64, 7990 .type = ARM_CP_NO_RAW | ARM_CP_SUPPRESS_TB_END | ARM_CP_IO, 7991 .opc0 = 3, .opc1 = 3, .crn = 2, .crm = 4, .opc2 = 0, 7992 .access = PL0_R, .readfn = rndr_readfn }, 7993 { .name = "RNDRRS", .state = ARM_CP_STATE_AA64, 7994 .type = ARM_CP_NO_RAW | ARM_CP_SUPPRESS_TB_END | ARM_CP_IO, 7995 .opc0 = 3, .opc1 = 3, .crn = 2, .crm = 4, .opc2 = 1, 7996 .access = PL0_R, .readfn = rndr_readfn }, 7997 }; 7998 7999 static void dccvap_writefn(CPUARMState *env, const ARMCPRegInfo *opaque, 8000 uint64_t value) 8001 { 8002 #ifdef CONFIG_TCG 8003 ARMCPU *cpu = env_archcpu(env); 8004 /* CTR_EL0 System register -> DminLine, bits [19:16] */ 8005 uint64_t dline_size = 4 << ((cpu->ctr >> 16) & 0xF); 8006 uint64_t vaddr_in = (uint64_t) value; 8007 uint64_t vaddr = vaddr_in & ~(dline_size - 1); 8008 void *haddr; 8009 int mem_idx = arm_env_mmu_index(env); 8010 8011 /* This won't be crossing page boundaries */ 8012 haddr = probe_read(env, vaddr, dline_size, mem_idx, GETPC()); 8013 if (haddr) { 8014 #ifndef CONFIG_USER_ONLY 8015 8016 ram_addr_t offset; 8017 MemoryRegion *mr; 8018 8019 /* RCU lock is already being held */ 8020 mr = memory_region_from_host(haddr, &offset); 8021 8022 if (mr) { 8023 memory_region_writeback(mr, offset, dline_size); 8024 } 8025 #endif /*CONFIG_USER_ONLY*/ 8026 } 8027 #else 8028 /* Handled by hardware accelerator. */ 8029 g_assert_not_reached(); 8030 #endif /* CONFIG_TCG */ 8031 } 8032 8033 static const ARMCPRegInfo dcpop_reg[] = { 8034 { .name = "DC_CVAP", .state = ARM_CP_STATE_AA64, 8035 .opc0 = 1, .opc1 = 3, .crn = 7, .crm = 12, .opc2 = 1, 8036 .access = PL0_W, .type = ARM_CP_NO_RAW | ARM_CP_SUPPRESS_TB_END, 8037 .fgt = FGT_DCCVAP, 8038 .accessfn = aa64_cacheop_poc_access, .writefn = dccvap_writefn }, 8039 }; 8040 8041 static const ARMCPRegInfo dcpodp_reg[] = { 8042 { .name = "DC_CVADP", .state = ARM_CP_STATE_AA64, 8043 .opc0 = 1, .opc1 = 3, .crn = 7, .crm = 13, .opc2 = 1, 8044 .access = PL0_W, .type = ARM_CP_NO_RAW | ARM_CP_SUPPRESS_TB_END, 8045 .fgt = FGT_DCCVADP, 8046 .accessfn = aa64_cacheop_poc_access, .writefn = dccvap_writefn }, 8047 }; 8048 8049 static CPAccessResult access_aa64_tid5(CPUARMState *env, const ARMCPRegInfo *ri, 8050 bool isread) 8051 { 8052 if ((arm_current_el(env) < 2) && (arm_hcr_el2_eff(env) & HCR_TID5)) { 8053 return CP_ACCESS_TRAP_EL2; 8054 } 8055 8056 return CP_ACCESS_OK; 8057 } 8058 8059 static CPAccessResult access_mte(CPUARMState *env, const ARMCPRegInfo *ri, 8060 bool isread) 8061 { 8062 int el = arm_current_el(env); 8063 if (el < 2 && arm_is_el2_enabled(env)) { 8064 uint64_t hcr = arm_hcr_el2_eff(env); 8065 if (!(hcr & HCR_ATA) && (!(hcr & HCR_E2H) || !(hcr & HCR_TGE))) { 8066 return CP_ACCESS_TRAP_EL2; 8067 } 8068 } 8069 if (el < 3 && 8070 arm_feature(env, ARM_FEATURE_EL3) && 8071 !(env->cp15.scr_el3 & SCR_ATA)) { 8072 return CP_ACCESS_TRAP_EL3; 8073 } 8074 return CP_ACCESS_OK; 8075 } 8076 8077 static CPAccessResult access_tfsr_el1(CPUARMState *env, const ARMCPRegInfo *ri, 8078 bool isread) 8079 { 8080 CPAccessResult nv1 = access_nv1(env, ri, isread); 8081 8082 if (nv1 != CP_ACCESS_OK) { 8083 return nv1; 8084 } 8085 return access_mte(env, ri, isread); 8086 } 8087 8088 static CPAccessResult access_tfsr_el2(CPUARMState *env, const ARMCPRegInfo *ri, 8089 bool isread) 8090 { 8091 /* 8092 * TFSR_EL2: similar to generic access_mte(), but we need to 8093 * account for FEAT_NV. At EL1 this must be a FEAT_NV access; 8094 * if NV2 is enabled then we will redirect this to TFSR_EL1 8095 * after doing the HCR and SCR ATA traps; otherwise this will 8096 * be a trap to EL2 and the HCR/SCR traps do not apply. 8097 */ 8098 int el = arm_current_el(env); 8099 8100 if (el == 1 && (arm_hcr_el2_eff(env) & HCR_NV2)) { 8101 return CP_ACCESS_OK; 8102 } 8103 if (el < 2 && arm_is_el2_enabled(env)) { 8104 uint64_t hcr = arm_hcr_el2_eff(env); 8105 if (!(hcr & HCR_ATA) && (!(hcr & HCR_E2H) || !(hcr & HCR_TGE))) { 8106 return CP_ACCESS_TRAP_EL2; 8107 } 8108 } 8109 if (el < 3 && 8110 arm_feature(env, ARM_FEATURE_EL3) && 8111 !(env->cp15.scr_el3 & SCR_ATA)) { 8112 return CP_ACCESS_TRAP_EL3; 8113 } 8114 return CP_ACCESS_OK; 8115 } 8116 8117 static uint64_t tco_read(CPUARMState *env, const ARMCPRegInfo *ri) 8118 { 8119 return env->pstate & PSTATE_TCO; 8120 } 8121 8122 static void tco_write(CPUARMState *env, const ARMCPRegInfo *ri, uint64_t val) 8123 { 8124 env->pstate = (env->pstate & ~PSTATE_TCO) | (val & PSTATE_TCO); 8125 } 8126 8127 static const ARMCPRegInfo mte_reginfo[] = { 8128 { .name = "TFSRE0_EL1", .state = ARM_CP_STATE_AA64, 8129 .opc0 = 3, .opc1 = 0, .crn = 5, .crm = 6, .opc2 = 1, 8130 .access = PL1_RW, .accessfn = access_mte, 8131 .fieldoffset = offsetof(CPUARMState, cp15.tfsr_el[0]) }, 8132 { .name = "TFSR_EL1", .state = ARM_CP_STATE_AA64, 8133 .opc0 = 3, .opc1 = 0, .crn = 5, .crm = 6, .opc2 = 0, 8134 .access = PL1_RW, .accessfn = access_tfsr_el1, 8135 .nv2_redirect_offset = 0x190 | NV2_REDIR_NV1, 8136 .fieldoffset = offsetof(CPUARMState, cp15.tfsr_el[1]) }, 8137 { .name = "TFSR_EL2", .state = ARM_CP_STATE_AA64, 8138 .type = ARM_CP_NV2_REDIRECT, 8139 .opc0 = 3, .opc1 = 4, .crn = 5, .crm = 6, .opc2 = 0, 8140 .access = PL2_RW, .accessfn = access_tfsr_el2, 8141 .fieldoffset = offsetof(CPUARMState, cp15.tfsr_el[2]) }, 8142 { .name = "TFSR_EL3", .state = ARM_CP_STATE_AA64, 8143 .opc0 = 3, .opc1 = 6, .crn = 5, .crm = 6, .opc2 = 0, 8144 .access = PL3_RW, 8145 .fieldoffset = offsetof(CPUARMState, cp15.tfsr_el[3]) }, 8146 { .name = "RGSR_EL1", .state = ARM_CP_STATE_AA64, 8147 .opc0 = 3, .opc1 = 0, .crn = 1, .crm = 0, .opc2 = 5, 8148 .access = PL1_RW, .accessfn = access_mte, 8149 .fieldoffset = offsetof(CPUARMState, cp15.rgsr_el1) }, 8150 { .name = "GCR_EL1", .state = ARM_CP_STATE_AA64, 8151 .opc0 = 3, .opc1 = 0, .crn = 1, .crm = 0, .opc2 = 6, 8152 .access = PL1_RW, .accessfn = access_mte, 8153 .fieldoffset = offsetof(CPUARMState, cp15.gcr_el1) }, 8154 { .name = "TCO", .state = ARM_CP_STATE_AA64, 8155 .opc0 = 3, .opc1 = 3, .crn = 4, .crm = 2, .opc2 = 7, 8156 .type = ARM_CP_NO_RAW, 8157 .access = PL0_RW, .readfn = tco_read, .writefn = tco_write }, 8158 { .name = "DC_IGVAC", .state = ARM_CP_STATE_AA64, 8159 .opc0 = 1, .opc1 = 0, .crn = 7, .crm = 6, .opc2 = 3, 8160 .type = ARM_CP_NOP, .access = PL1_W, 8161 .fgt = FGT_DCIVAC, 8162 .accessfn = aa64_cacheop_poc_access }, 8163 { .name = "DC_IGSW", .state = ARM_CP_STATE_AA64, 8164 .opc0 = 1, .opc1 = 0, .crn = 7, .crm = 6, .opc2 = 4, 8165 .fgt = FGT_DCISW, 8166 .type = ARM_CP_NOP, .access = PL1_W, .accessfn = access_tsw }, 8167 { .name = "DC_IGDVAC", .state = ARM_CP_STATE_AA64, 8168 .opc0 = 1, .opc1 = 0, .crn = 7, .crm = 6, .opc2 = 5, 8169 .type = ARM_CP_NOP, .access = PL1_W, 8170 .fgt = FGT_DCIVAC, 8171 .accessfn = aa64_cacheop_poc_access }, 8172 { .name = "DC_IGDSW", .state = ARM_CP_STATE_AA64, 8173 .opc0 = 1, .opc1 = 0, .crn = 7, .crm = 6, .opc2 = 6, 8174 .fgt = FGT_DCISW, 8175 .type = ARM_CP_NOP, .access = PL1_W, .accessfn = access_tsw }, 8176 { .name = "DC_CGSW", .state = ARM_CP_STATE_AA64, 8177 .opc0 = 1, .opc1 = 0, .crn = 7, .crm = 10, .opc2 = 4, 8178 .fgt = FGT_DCCSW, 8179 .type = ARM_CP_NOP, .access = PL1_W, .accessfn = access_tsw }, 8180 { .name = "DC_CGDSW", .state = ARM_CP_STATE_AA64, 8181 .opc0 = 1, .opc1 = 0, .crn = 7, .crm = 10, .opc2 = 6, 8182 .fgt = FGT_DCCSW, 8183 .type = ARM_CP_NOP, .access = PL1_W, .accessfn = access_tsw }, 8184 { .name = "DC_CIGSW", .state = ARM_CP_STATE_AA64, 8185 .opc0 = 1, .opc1 = 0, .crn = 7, .crm = 14, .opc2 = 4, 8186 .fgt = FGT_DCCISW, 8187 .type = ARM_CP_NOP, .access = PL1_W, .accessfn = access_tsw }, 8188 { .name = "DC_CIGDSW", .state = ARM_CP_STATE_AA64, 8189 .opc0 = 1, .opc1 = 0, .crn = 7, .crm = 14, .opc2 = 6, 8190 .fgt = FGT_DCCISW, 8191 .type = ARM_CP_NOP, .access = PL1_W, .accessfn = access_tsw }, 8192 }; 8193 8194 static const ARMCPRegInfo mte_tco_ro_reginfo[] = { 8195 { .name = "TCO", .state = ARM_CP_STATE_AA64, 8196 .opc0 = 3, .opc1 = 3, .crn = 4, .crm = 2, .opc2 = 7, 8197 .type = ARM_CP_CONST, .access = PL0_RW, }, 8198 }; 8199 8200 static const ARMCPRegInfo mte_el0_cacheop_reginfo[] = { 8201 { .name = "DC_CGVAC", .state = ARM_CP_STATE_AA64, 8202 .opc0 = 1, .opc1 = 3, .crn = 7, .crm = 10, .opc2 = 3, 8203 .type = ARM_CP_NOP, .access = PL0_W, 8204 .fgt = FGT_DCCVAC, 8205 .accessfn = aa64_cacheop_poc_access }, 8206 { .name = "DC_CGDVAC", .state = ARM_CP_STATE_AA64, 8207 .opc0 = 1, .opc1 = 3, .crn = 7, .crm = 10, .opc2 = 5, 8208 .type = ARM_CP_NOP, .access = PL0_W, 8209 .fgt = FGT_DCCVAC, 8210 .accessfn = aa64_cacheop_poc_access }, 8211 { .name = "DC_CGVAP", .state = ARM_CP_STATE_AA64, 8212 .opc0 = 1, .opc1 = 3, .crn = 7, .crm = 12, .opc2 = 3, 8213 .type = ARM_CP_NOP, .access = PL0_W, 8214 .fgt = FGT_DCCVAP, 8215 .accessfn = aa64_cacheop_poc_access }, 8216 { .name = "DC_CGDVAP", .state = ARM_CP_STATE_AA64, 8217 .opc0 = 1, .opc1 = 3, .crn = 7, .crm = 12, .opc2 = 5, 8218 .type = ARM_CP_NOP, .access = PL0_W, 8219 .fgt = FGT_DCCVAP, 8220 .accessfn = aa64_cacheop_poc_access }, 8221 { .name = "DC_CGVADP", .state = ARM_CP_STATE_AA64, 8222 .opc0 = 1, .opc1 = 3, .crn = 7, .crm = 13, .opc2 = 3, 8223 .type = ARM_CP_NOP, .access = PL0_W, 8224 .fgt = FGT_DCCVADP, 8225 .accessfn = aa64_cacheop_poc_access }, 8226 { .name = "DC_CGDVADP", .state = ARM_CP_STATE_AA64, 8227 .opc0 = 1, .opc1 = 3, .crn = 7, .crm = 13, .opc2 = 5, 8228 .type = ARM_CP_NOP, .access = PL0_W, 8229 .fgt = FGT_DCCVADP, 8230 .accessfn = aa64_cacheop_poc_access }, 8231 { .name = "DC_CIGVAC", .state = ARM_CP_STATE_AA64, 8232 .opc0 = 1, .opc1 = 3, .crn = 7, .crm = 14, .opc2 = 3, 8233 .type = ARM_CP_NOP, .access = PL0_W, 8234 .fgt = FGT_DCCIVAC, 8235 .accessfn = aa64_cacheop_poc_access }, 8236 { .name = "DC_CIGDVAC", .state = ARM_CP_STATE_AA64, 8237 .opc0 = 1, .opc1 = 3, .crn = 7, .crm = 14, .opc2 = 5, 8238 .type = ARM_CP_NOP, .access = PL0_W, 8239 .fgt = FGT_DCCIVAC, 8240 .accessfn = aa64_cacheop_poc_access }, 8241 { .name = "DC_GVA", .state = ARM_CP_STATE_AA64, 8242 .opc0 = 1, .opc1 = 3, .crn = 7, .crm = 4, .opc2 = 3, 8243 .access = PL0_W, .type = ARM_CP_DC_GVA, 8244 #ifndef CONFIG_USER_ONLY 8245 /* Avoid overhead of an access check that always passes in user-mode */ 8246 .accessfn = aa64_zva_access, 8247 .fgt = FGT_DCZVA, 8248 #endif 8249 }, 8250 { .name = "DC_GZVA", .state = ARM_CP_STATE_AA64, 8251 .opc0 = 1, .opc1 = 3, .crn = 7, .crm = 4, .opc2 = 4, 8252 .access = PL0_W, .type = ARM_CP_DC_GZVA, 8253 #ifndef CONFIG_USER_ONLY 8254 /* Avoid overhead of an access check that always passes in user-mode */ 8255 .accessfn = aa64_zva_access, 8256 .fgt = FGT_DCZVA, 8257 #endif 8258 }, 8259 }; 8260 8261 static CPAccessResult access_scxtnum(CPUARMState *env, const ARMCPRegInfo *ri, 8262 bool isread) 8263 { 8264 uint64_t hcr = arm_hcr_el2_eff(env); 8265 int el = arm_current_el(env); 8266 8267 if (el == 0 && !((hcr & HCR_E2H) && (hcr & HCR_TGE))) { 8268 if (env->cp15.sctlr_el[1] & SCTLR_TSCXT) { 8269 if (hcr & HCR_TGE) { 8270 return CP_ACCESS_TRAP_EL2; 8271 } 8272 return CP_ACCESS_TRAP; 8273 } 8274 } else if (el < 2 && (env->cp15.sctlr_el[2] & SCTLR_TSCXT)) { 8275 return CP_ACCESS_TRAP_EL2; 8276 } 8277 if (el < 2 && arm_is_el2_enabled(env) && !(hcr & HCR_ENSCXT)) { 8278 return CP_ACCESS_TRAP_EL2; 8279 } 8280 if (el < 3 8281 && arm_feature(env, ARM_FEATURE_EL3) 8282 && !(env->cp15.scr_el3 & SCR_ENSCXT)) { 8283 return CP_ACCESS_TRAP_EL3; 8284 } 8285 return CP_ACCESS_OK; 8286 } 8287 8288 static CPAccessResult access_scxtnum_el1(CPUARMState *env, 8289 const ARMCPRegInfo *ri, 8290 bool isread) 8291 { 8292 CPAccessResult nv1 = access_nv1(env, ri, isread); 8293 8294 if (nv1 != CP_ACCESS_OK) { 8295 return nv1; 8296 } 8297 return access_scxtnum(env, ri, isread); 8298 } 8299 8300 static const ARMCPRegInfo scxtnum_reginfo[] = { 8301 { .name = "SCXTNUM_EL0", .state = ARM_CP_STATE_AA64, 8302 .opc0 = 3, .opc1 = 3, .crn = 13, .crm = 0, .opc2 = 7, 8303 .access = PL0_RW, .accessfn = access_scxtnum, 8304 .fgt = FGT_SCXTNUM_EL0, 8305 .fieldoffset = offsetof(CPUARMState, scxtnum_el[0]) }, 8306 { .name = "SCXTNUM_EL1", .state = ARM_CP_STATE_AA64, 8307 .opc0 = 3, .opc1 = 0, .crn = 13, .crm = 0, .opc2 = 7, 8308 .access = PL1_RW, .accessfn = access_scxtnum_el1, 8309 .fgt = FGT_SCXTNUM_EL1, 8310 .nv2_redirect_offset = 0x188 | NV2_REDIR_NV1, 8311 .fieldoffset = offsetof(CPUARMState, scxtnum_el[1]) }, 8312 { .name = "SCXTNUM_EL2", .state = ARM_CP_STATE_AA64, 8313 .opc0 = 3, .opc1 = 4, .crn = 13, .crm = 0, .opc2 = 7, 8314 .access = PL2_RW, .accessfn = access_scxtnum, 8315 .fieldoffset = offsetof(CPUARMState, scxtnum_el[2]) }, 8316 { .name = "SCXTNUM_EL3", .state = ARM_CP_STATE_AA64, 8317 .opc0 = 3, .opc1 = 6, .crn = 13, .crm = 0, .opc2 = 7, 8318 .access = PL3_RW, 8319 .fieldoffset = offsetof(CPUARMState, scxtnum_el[3]) }, 8320 }; 8321 8322 static CPAccessResult access_fgt(CPUARMState *env, const ARMCPRegInfo *ri, 8323 bool isread) 8324 { 8325 if (arm_current_el(env) == 2 && 8326 arm_feature(env, ARM_FEATURE_EL3) && !(env->cp15.scr_el3 & SCR_FGTEN)) { 8327 return CP_ACCESS_TRAP_EL3; 8328 } 8329 return CP_ACCESS_OK; 8330 } 8331 8332 static const ARMCPRegInfo fgt_reginfo[] = { 8333 { .name = "HFGRTR_EL2", .state = ARM_CP_STATE_AA64, 8334 .opc0 = 3, .opc1 = 4, .crn = 1, .crm = 1, .opc2 = 4, 8335 .nv2_redirect_offset = 0x1b8, 8336 .access = PL2_RW, .accessfn = access_fgt, 8337 .fieldoffset = offsetof(CPUARMState, cp15.fgt_read[FGTREG_HFGRTR]) }, 8338 { .name = "HFGWTR_EL2", .state = ARM_CP_STATE_AA64, 8339 .opc0 = 3, .opc1 = 4, .crn = 1, .crm = 1, .opc2 = 5, 8340 .nv2_redirect_offset = 0x1c0, 8341 .access = PL2_RW, .accessfn = access_fgt, 8342 .fieldoffset = offsetof(CPUARMState, cp15.fgt_write[FGTREG_HFGWTR]) }, 8343 { .name = "HDFGRTR_EL2", .state = ARM_CP_STATE_AA64, 8344 .opc0 = 3, .opc1 = 4, .crn = 3, .crm = 1, .opc2 = 4, 8345 .nv2_redirect_offset = 0x1d0, 8346 .access = PL2_RW, .accessfn = access_fgt, 8347 .fieldoffset = offsetof(CPUARMState, cp15.fgt_read[FGTREG_HDFGRTR]) }, 8348 { .name = "HDFGWTR_EL2", .state = ARM_CP_STATE_AA64, 8349 .opc0 = 3, .opc1 = 4, .crn = 3, .crm = 1, .opc2 = 5, 8350 .nv2_redirect_offset = 0x1d8, 8351 .access = PL2_RW, .accessfn = access_fgt, 8352 .fieldoffset = offsetof(CPUARMState, cp15.fgt_write[FGTREG_HDFGWTR]) }, 8353 { .name = "HFGITR_EL2", .state = ARM_CP_STATE_AA64, 8354 .opc0 = 3, .opc1 = 4, .crn = 1, .crm = 1, .opc2 = 6, 8355 .nv2_redirect_offset = 0x1c8, 8356 .access = PL2_RW, .accessfn = access_fgt, 8357 .fieldoffset = offsetof(CPUARMState, cp15.fgt_exec[FGTREG_HFGITR]) }, 8358 }; 8359 8360 static void vncr_write(CPUARMState *env, const ARMCPRegInfo *ri, 8361 uint64_t value) 8362 { 8363 /* 8364 * Clear the RES0 bottom 12 bits; this means at runtime we can guarantee 8365 * that VNCR_EL2 + offset is 64-bit aligned. We don't need to do anything 8366 * about the RESS bits at the top -- we choose the "generate an EL2 8367 * translation abort on use" CONSTRAINED UNPREDICTABLE option (i.e. let 8368 * the ptw.c code detect the resulting invalid address). 8369 */ 8370 env->cp15.vncr_el2 = value & ~0xfffULL; 8371 } 8372 8373 static const ARMCPRegInfo nv2_reginfo[] = { 8374 { .name = "VNCR_EL2", .state = ARM_CP_STATE_AA64, 8375 .opc0 = 3, .opc1 = 4, .crn = 2, .crm = 2, .opc2 = 0, 8376 .access = PL2_RW, 8377 .writefn = vncr_write, 8378 .nv2_redirect_offset = 0xb0, 8379 .fieldoffset = offsetof(CPUARMState, cp15.vncr_el2) }, 8380 }; 8381 8382 #endif /* TARGET_AARCH64 */ 8383 8384 static CPAccessResult access_predinv(CPUARMState *env, const ARMCPRegInfo *ri, 8385 bool isread) 8386 { 8387 int el = arm_current_el(env); 8388 8389 if (el == 0) { 8390 uint64_t sctlr = arm_sctlr(env, el); 8391 if (!(sctlr & SCTLR_EnRCTX)) { 8392 return CP_ACCESS_TRAP; 8393 } 8394 } else if (el == 1) { 8395 uint64_t hcr = arm_hcr_el2_eff(env); 8396 if (hcr & HCR_NV) { 8397 return CP_ACCESS_TRAP_EL2; 8398 } 8399 } 8400 return CP_ACCESS_OK; 8401 } 8402 8403 static const ARMCPRegInfo predinv_reginfo[] = { 8404 { .name = "CFP_RCTX", .state = ARM_CP_STATE_AA64, 8405 .opc0 = 1, .opc1 = 3, .crn = 7, .crm = 3, .opc2 = 4, 8406 .fgt = FGT_CFPRCTX, 8407 .type = ARM_CP_NOP, .access = PL0_W, .accessfn = access_predinv }, 8408 { .name = "DVP_RCTX", .state = ARM_CP_STATE_AA64, 8409 .opc0 = 1, .opc1 = 3, .crn = 7, .crm = 3, .opc2 = 5, 8410 .fgt = FGT_DVPRCTX, 8411 .type = ARM_CP_NOP, .access = PL0_W, .accessfn = access_predinv }, 8412 { .name = "CPP_RCTX", .state = ARM_CP_STATE_AA64, 8413 .opc0 = 1, .opc1 = 3, .crn = 7, .crm = 3, .opc2 = 7, 8414 .fgt = FGT_CPPRCTX, 8415 .type = ARM_CP_NOP, .access = PL0_W, .accessfn = access_predinv }, 8416 /* 8417 * Note the AArch32 opcodes have a different OPC1. 8418 */ 8419 { .name = "CFPRCTX", .state = ARM_CP_STATE_AA32, 8420 .cp = 15, .opc1 = 0, .crn = 7, .crm = 3, .opc2 = 4, 8421 .fgt = FGT_CFPRCTX, 8422 .type = ARM_CP_NOP, .access = PL0_W, .accessfn = access_predinv }, 8423 { .name = "DVPRCTX", .state = ARM_CP_STATE_AA32, 8424 .cp = 15, .opc1 = 0, .crn = 7, .crm = 3, .opc2 = 5, 8425 .fgt = FGT_DVPRCTX, 8426 .type = ARM_CP_NOP, .access = PL0_W, .accessfn = access_predinv }, 8427 { .name = "CPPRCTX", .state = ARM_CP_STATE_AA32, 8428 .cp = 15, .opc1 = 0, .crn = 7, .crm = 3, .opc2 = 7, 8429 .fgt = FGT_CPPRCTX, 8430 .type = ARM_CP_NOP, .access = PL0_W, .accessfn = access_predinv }, 8431 }; 8432 8433 static uint64_t ccsidr2_read(CPUARMState *env, const ARMCPRegInfo *ri) 8434 { 8435 /* Read the high 32 bits of the current CCSIDR */ 8436 return extract64(ccsidr_read(env, ri), 32, 32); 8437 } 8438 8439 static const ARMCPRegInfo ccsidr2_reginfo[] = { 8440 { .name = "CCSIDR2", .state = ARM_CP_STATE_BOTH, 8441 .opc0 = 3, .opc1 = 1, .crn = 0, .crm = 0, .opc2 = 2, 8442 .access = PL1_R, 8443 .accessfn = access_tid4, 8444 .readfn = ccsidr2_read, .type = ARM_CP_NO_RAW }, 8445 }; 8446 8447 static CPAccessResult access_aa64_tid3(CPUARMState *env, const ARMCPRegInfo *ri, 8448 bool isread) 8449 { 8450 if ((arm_current_el(env) < 2) && (arm_hcr_el2_eff(env) & HCR_TID3)) { 8451 return CP_ACCESS_TRAP_EL2; 8452 } 8453 8454 return CP_ACCESS_OK; 8455 } 8456 8457 static CPAccessResult access_aa32_tid3(CPUARMState *env, const ARMCPRegInfo *ri, 8458 bool isread) 8459 { 8460 if (arm_feature(env, ARM_FEATURE_V8)) { 8461 return access_aa64_tid3(env, ri, isread); 8462 } 8463 8464 return CP_ACCESS_OK; 8465 } 8466 8467 static CPAccessResult access_jazelle(CPUARMState *env, const ARMCPRegInfo *ri, 8468 bool isread) 8469 { 8470 if (arm_current_el(env) == 1 && (arm_hcr_el2_eff(env) & HCR_TID0)) { 8471 return CP_ACCESS_TRAP_EL2; 8472 } 8473 8474 return CP_ACCESS_OK; 8475 } 8476 8477 static CPAccessResult access_joscr_jmcr(CPUARMState *env, 8478 const ARMCPRegInfo *ri, bool isread) 8479 { 8480 /* 8481 * HSTR.TJDBX traps JOSCR and JMCR accesses, but it exists only 8482 * in v7A, not in v8A. 8483 */ 8484 if (!arm_feature(env, ARM_FEATURE_V8) && 8485 arm_current_el(env) < 2 && !arm_is_secure_below_el3(env) && 8486 (env->cp15.hstr_el2 & HSTR_TJDBX)) { 8487 return CP_ACCESS_TRAP_EL2; 8488 } 8489 return CP_ACCESS_OK; 8490 } 8491 8492 static const ARMCPRegInfo jazelle_regs[] = { 8493 { .name = "JIDR", 8494 .cp = 14, .crn = 0, .crm = 0, .opc1 = 7, .opc2 = 0, 8495 .access = PL1_R, .accessfn = access_jazelle, 8496 .type = ARM_CP_CONST, .resetvalue = 0 }, 8497 { .name = "JOSCR", 8498 .cp = 14, .crn = 1, .crm = 0, .opc1 = 7, .opc2 = 0, 8499 .accessfn = access_joscr_jmcr, 8500 .access = PL1_RW, .type = ARM_CP_CONST, .resetvalue = 0 }, 8501 { .name = "JMCR", 8502 .cp = 14, .crn = 2, .crm = 0, .opc1 = 7, .opc2 = 0, 8503 .accessfn = access_joscr_jmcr, 8504 .access = PL1_RW, .type = ARM_CP_CONST, .resetvalue = 0 }, 8505 }; 8506 8507 static const ARMCPRegInfo contextidr_el2 = { 8508 .name = "CONTEXTIDR_EL2", .state = ARM_CP_STATE_AA64, 8509 .opc0 = 3, .opc1 = 4, .crn = 13, .crm = 0, .opc2 = 1, 8510 .access = PL2_RW, 8511 .fieldoffset = offsetof(CPUARMState, cp15.contextidr_el[2]) 8512 }; 8513 8514 static const ARMCPRegInfo vhe_reginfo[] = { 8515 { .name = "TTBR1_EL2", .state = ARM_CP_STATE_AA64, 8516 .opc0 = 3, .opc1 = 4, .crn = 2, .crm = 0, .opc2 = 1, 8517 .access = PL2_RW, .writefn = vmsa_tcr_ttbr_el2_write, 8518 .raw_writefn = raw_write, 8519 .fieldoffset = offsetof(CPUARMState, cp15.ttbr1_el[2]) }, 8520 #ifndef CONFIG_USER_ONLY 8521 { .name = "CNTHV_CVAL_EL2", .state = ARM_CP_STATE_AA64, 8522 .opc0 = 3, .opc1 = 4, .crn = 14, .crm = 3, .opc2 = 2, 8523 .fieldoffset = 8524 offsetof(CPUARMState, cp15.c14_timer[GTIMER_HYPVIRT].cval), 8525 .type = ARM_CP_IO, .access = PL2_RW, 8526 .writefn = gt_hv_cval_write, .raw_writefn = raw_write }, 8527 { .name = "CNTHV_TVAL_EL2", .state = ARM_CP_STATE_BOTH, 8528 .opc0 = 3, .opc1 = 4, .crn = 14, .crm = 3, .opc2 = 0, 8529 .type = ARM_CP_NO_RAW | ARM_CP_IO, .access = PL2_RW, 8530 .resetfn = gt_hv_timer_reset, 8531 .readfn = gt_hv_tval_read, .writefn = gt_hv_tval_write }, 8532 { .name = "CNTHV_CTL_EL2", .state = ARM_CP_STATE_BOTH, 8533 .type = ARM_CP_IO, 8534 .opc0 = 3, .opc1 = 4, .crn = 14, .crm = 3, .opc2 = 1, 8535 .access = PL2_RW, 8536 .fieldoffset = offsetof(CPUARMState, cp15.c14_timer[GTIMER_HYPVIRT].ctl), 8537 .writefn = gt_hv_ctl_write, .raw_writefn = raw_write }, 8538 { .name = "CNTP_CTL_EL02", .state = ARM_CP_STATE_AA64, 8539 .opc0 = 3, .opc1 = 5, .crn = 14, .crm = 2, .opc2 = 1, 8540 .type = ARM_CP_IO | ARM_CP_ALIAS, 8541 .access = PL2_RW, .accessfn = access_el1nvpct, 8542 .nv2_redirect_offset = 0x180 | NV2_REDIR_NO_NV1, 8543 .fieldoffset = offsetof(CPUARMState, cp15.c14_timer[GTIMER_PHYS].ctl), 8544 .writefn = gt_phys_ctl_write, .raw_writefn = raw_write }, 8545 { .name = "CNTV_CTL_EL02", .state = ARM_CP_STATE_AA64, 8546 .opc0 = 3, .opc1 = 5, .crn = 14, .crm = 3, .opc2 = 1, 8547 .type = ARM_CP_IO | ARM_CP_ALIAS, 8548 .access = PL2_RW, .accessfn = access_el1nvvct, 8549 .nv2_redirect_offset = 0x170 | NV2_REDIR_NO_NV1, 8550 .fieldoffset = offsetof(CPUARMState, cp15.c14_timer[GTIMER_VIRT].ctl), 8551 .writefn = gt_virt_ctl_write, .raw_writefn = raw_write }, 8552 { .name = "CNTP_TVAL_EL02", .state = ARM_CP_STATE_AA64, 8553 .opc0 = 3, .opc1 = 5, .crn = 14, .crm = 2, .opc2 = 0, 8554 .type = ARM_CP_NO_RAW | ARM_CP_IO | ARM_CP_ALIAS, 8555 .access = PL2_RW, .accessfn = e2h_access, 8556 .readfn = gt_phys_tval_read, .writefn = gt_phys_tval_write }, 8557 { .name = "CNTV_TVAL_EL02", .state = ARM_CP_STATE_AA64, 8558 .opc0 = 3, .opc1 = 5, .crn = 14, .crm = 3, .opc2 = 0, 8559 .type = ARM_CP_NO_RAW | ARM_CP_IO | ARM_CP_ALIAS, 8560 .access = PL2_RW, .accessfn = e2h_access, 8561 .readfn = gt_virt_tval_read, .writefn = gt_virt_tval_write }, 8562 { .name = "CNTP_CVAL_EL02", .state = ARM_CP_STATE_AA64, 8563 .opc0 = 3, .opc1 = 5, .crn = 14, .crm = 2, .opc2 = 2, 8564 .type = ARM_CP_IO | ARM_CP_ALIAS, 8565 .fieldoffset = offsetof(CPUARMState, cp15.c14_timer[GTIMER_PHYS].cval), 8566 .nv2_redirect_offset = 0x178 | NV2_REDIR_NO_NV1, 8567 .access = PL2_RW, .accessfn = access_el1nvpct, 8568 .writefn = gt_phys_cval_write, .raw_writefn = raw_write }, 8569 { .name = "CNTV_CVAL_EL02", .state = ARM_CP_STATE_AA64, 8570 .opc0 = 3, .opc1 = 5, .crn = 14, .crm = 3, .opc2 = 2, 8571 .type = ARM_CP_IO | ARM_CP_ALIAS, 8572 .nv2_redirect_offset = 0x168 | NV2_REDIR_NO_NV1, 8573 .fieldoffset = offsetof(CPUARMState, cp15.c14_timer[GTIMER_VIRT].cval), 8574 .access = PL2_RW, .accessfn = access_el1nvvct, 8575 .writefn = gt_virt_cval_write, .raw_writefn = raw_write }, 8576 #endif 8577 }; 8578 8579 #ifndef CONFIG_USER_ONLY 8580 static const ARMCPRegInfo ats1e1_reginfo[] = { 8581 { .name = "AT_S1E1RP", .state = ARM_CP_STATE_AA64, 8582 .opc0 = 1, .opc1 = 0, .crn = 7, .crm = 9, .opc2 = 0, 8583 .access = PL1_W, .type = ARM_CP_NO_RAW | ARM_CP_RAISES_EXC, 8584 .fgt = FGT_ATS1E1RP, 8585 .accessfn = at_s1e01_access, .writefn = ats_write64 }, 8586 { .name = "AT_S1E1WP", .state = ARM_CP_STATE_AA64, 8587 .opc0 = 1, .opc1 = 0, .crn = 7, .crm = 9, .opc2 = 1, 8588 .access = PL1_W, .type = ARM_CP_NO_RAW | ARM_CP_RAISES_EXC, 8589 .fgt = FGT_ATS1E1WP, 8590 .accessfn = at_s1e01_access, .writefn = ats_write64 }, 8591 }; 8592 8593 static const ARMCPRegInfo ats1cp_reginfo[] = { 8594 { .name = "ATS1CPRP", 8595 .cp = 15, .opc1 = 0, .crn = 7, .crm = 9, .opc2 = 0, 8596 .access = PL1_W, .type = ARM_CP_NO_RAW | ARM_CP_RAISES_EXC, 8597 .writefn = ats_write }, 8598 { .name = "ATS1CPWP", 8599 .cp = 15, .opc1 = 0, .crn = 7, .crm = 9, .opc2 = 1, 8600 .access = PL1_W, .type = ARM_CP_NO_RAW | ARM_CP_RAISES_EXC, 8601 .writefn = ats_write }, 8602 }; 8603 #endif 8604 8605 /* 8606 * ACTLR2 and HACTLR2 map to ACTLR_EL1[63:32] and 8607 * ACTLR_EL2[63:32]. They exist only if the ID_MMFR4.AC2 field 8608 * is non-zero, which is never for ARMv7, optionally in ARMv8 8609 * and mandatorily for ARMv8.2 and up. 8610 * ACTLR2 is banked for S and NS if EL3 is AArch32. Since QEMU's 8611 * implementation is RAZ/WI we can ignore this detail, as we 8612 * do for ACTLR. 8613 */ 8614 static const ARMCPRegInfo actlr2_hactlr2_reginfo[] = { 8615 { .name = "ACTLR2", .state = ARM_CP_STATE_AA32, 8616 .cp = 15, .opc1 = 0, .crn = 1, .crm = 0, .opc2 = 3, 8617 .access = PL1_RW, .accessfn = access_tacr, 8618 .type = ARM_CP_CONST, .resetvalue = 0 }, 8619 { .name = "HACTLR2", .state = ARM_CP_STATE_AA32, 8620 .cp = 15, .opc1 = 4, .crn = 1, .crm = 0, .opc2 = 3, 8621 .access = PL2_RW, .type = ARM_CP_CONST, 8622 .resetvalue = 0 }, 8623 }; 8624 8625 void register_cp_regs_for_features(ARMCPU *cpu) 8626 { 8627 /* Register all the coprocessor registers based on feature bits */ 8628 CPUARMState *env = &cpu->env; 8629 if (arm_feature(env, ARM_FEATURE_M)) { 8630 /* M profile has no coprocessor registers */ 8631 return; 8632 } 8633 8634 define_arm_cp_regs(cpu, cp_reginfo); 8635 if (!arm_feature(env, ARM_FEATURE_V8)) { 8636 /* 8637 * Must go early as it is full of wildcards that may be 8638 * overridden by later definitions. 8639 */ 8640 define_arm_cp_regs(cpu, not_v8_cp_reginfo); 8641 } 8642 8643 if (arm_feature(env, ARM_FEATURE_V6)) { 8644 /* The ID registers all have impdef reset values */ 8645 ARMCPRegInfo v6_idregs[] = { 8646 { .name = "ID_PFR0", .state = ARM_CP_STATE_BOTH, 8647 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 1, .opc2 = 0, 8648 .access = PL1_R, .type = ARM_CP_CONST, 8649 .accessfn = access_aa32_tid3, 8650 .resetvalue = cpu->isar.id_pfr0 }, 8651 /* 8652 * ID_PFR1 is not a plain ARM_CP_CONST because we don't know 8653 * the value of the GIC field until after we define these regs. 8654 */ 8655 { .name = "ID_PFR1", .state = ARM_CP_STATE_BOTH, 8656 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 1, .opc2 = 1, 8657 .access = PL1_R, .type = ARM_CP_NO_RAW, 8658 .accessfn = access_aa32_tid3, 8659 #ifdef CONFIG_USER_ONLY 8660 .type = ARM_CP_CONST, 8661 .resetvalue = cpu->isar.id_pfr1, 8662 #else 8663 .type = ARM_CP_NO_RAW, 8664 .accessfn = access_aa32_tid3, 8665 .readfn = id_pfr1_read, 8666 .writefn = arm_cp_write_ignore 8667 #endif 8668 }, 8669 { .name = "ID_DFR0", .state = ARM_CP_STATE_BOTH, 8670 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 1, .opc2 = 2, 8671 .access = PL1_R, .type = ARM_CP_CONST, 8672 .accessfn = access_aa32_tid3, 8673 .resetvalue = cpu->isar.id_dfr0 }, 8674 { .name = "ID_AFR0", .state = ARM_CP_STATE_BOTH, 8675 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 1, .opc2 = 3, 8676 .access = PL1_R, .type = ARM_CP_CONST, 8677 .accessfn = access_aa32_tid3, 8678 .resetvalue = cpu->id_afr0 }, 8679 { .name = "ID_MMFR0", .state = ARM_CP_STATE_BOTH, 8680 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 1, .opc2 = 4, 8681 .access = PL1_R, .type = ARM_CP_CONST, 8682 .accessfn = access_aa32_tid3, 8683 .resetvalue = cpu->isar.id_mmfr0 }, 8684 { .name = "ID_MMFR1", .state = ARM_CP_STATE_BOTH, 8685 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 1, .opc2 = 5, 8686 .access = PL1_R, .type = ARM_CP_CONST, 8687 .accessfn = access_aa32_tid3, 8688 .resetvalue = cpu->isar.id_mmfr1 }, 8689 { .name = "ID_MMFR2", .state = ARM_CP_STATE_BOTH, 8690 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 1, .opc2 = 6, 8691 .access = PL1_R, .type = ARM_CP_CONST, 8692 .accessfn = access_aa32_tid3, 8693 .resetvalue = cpu->isar.id_mmfr2 }, 8694 { .name = "ID_MMFR3", .state = ARM_CP_STATE_BOTH, 8695 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 1, .opc2 = 7, 8696 .access = PL1_R, .type = ARM_CP_CONST, 8697 .accessfn = access_aa32_tid3, 8698 .resetvalue = cpu->isar.id_mmfr3 }, 8699 { .name = "ID_ISAR0", .state = ARM_CP_STATE_BOTH, 8700 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 2, .opc2 = 0, 8701 .access = PL1_R, .type = ARM_CP_CONST, 8702 .accessfn = access_aa32_tid3, 8703 .resetvalue = cpu->isar.id_isar0 }, 8704 { .name = "ID_ISAR1", .state = ARM_CP_STATE_BOTH, 8705 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 2, .opc2 = 1, 8706 .access = PL1_R, .type = ARM_CP_CONST, 8707 .accessfn = access_aa32_tid3, 8708 .resetvalue = cpu->isar.id_isar1 }, 8709 { .name = "ID_ISAR2", .state = ARM_CP_STATE_BOTH, 8710 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 2, .opc2 = 2, 8711 .access = PL1_R, .type = ARM_CP_CONST, 8712 .accessfn = access_aa32_tid3, 8713 .resetvalue = cpu->isar.id_isar2 }, 8714 { .name = "ID_ISAR3", .state = ARM_CP_STATE_BOTH, 8715 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 2, .opc2 = 3, 8716 .access = PL1_R, .type = ARM_CP_CONST, 8717 .accessfn = access_aa32_tid3, 8718 .resetvalue = cpu->isar.id_isar3 }, 8719 { .name = "ID_ISAR4", .state = ARM_CP_STATE_BOTH, 8720 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 2, .opc2 = 4, 8721 .access = PL1_R, .type = ARM_CP_CONST, 8722 .accessfn = access_aa32_tid3, 8723 .resetvalue = cpu->isar.id_isar4 }, 8724 { .name = "ID_ISAR5", .state = ARM_CP_STATE_BOTH, 8725 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 2, .opc2 = 5, 8726 .access = PL1_R, .type = ARM_CP_CONST, 8727 .accessfn = access_aa32_tid3, 8728 .resetvalue = cpu->isar.id_isar5 }, 8729 { .name = "ID_MMFR4", .state = ARM_CP_STATE_BOTH, 8730 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 2, .opc2 = 6, 8731 .access = PL1_R, .type = ARM_CP_CONST, 8732 .accessfn = access_aa32_tid3, 8733 .resetvalue = cpu->isar.id_mmfr4 }, 8734 { .name = "ID_ISAR6", .state = ARM_CP_STATE_BOTH, 8735 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 2, .opc2 = 7, 8736 .access = PL1_R, .type = ARM_CP_CONST, 8737 .accessfn = access_aa32_tid3, 8738 .resetvalue = cpu->isar.id_isar6 }, 8739 }; 8740 define_arm_cp_regs(cpu, v6_idregs); 8741 define_arm_cp_regs(cpu, v6_cp_reginfo); 8742 } else { 8743 define_arm_cp_regs(cpu, not_v6_cp_reginfo); 8744 } 8745 if (arm_feature(env, ARM_FEATURE_V6K)) { 8746 define_arm_cp_regs(cpu, v6k_cp_reginfo); 8747 } 8748 if (arm_feature(env, ARM_FEATURE_V7MP) && 8749 !arm_feature(env, ARM_FEATURE_PMSA)) { 8750 define_arm_cp_regs(cpu, v7mp_cp_reginfo); 8751 } 8752 if (arm_feature(env, ARM_FEATURE_V7VE)) { 8753 define_arm_cp_regs(cpu, pmovsset_cp_reginfo); 8754 } 8755 if (arm_feature(env, ARM_FEATURE_V7)) { 8756 ARMCPRegInfo clidr = { 8757 .name = "CLIDR", .state = ARM_CP_STATE_BOTH, 8758 .opc0 = 3, .crn = 0, .crm = 0, .opc1 = 1, .opc2 = 1, 8759 .access = PL1_R, .type = ARM_CP_CONST, 8760 .accessfn = access_tid4, 8761 .fgt = FGT_CLIDR_EL1, 8762 .resetvalue = cpu->clidr 8763 }; 8764 define_one_arm_cp_reg(cpu, &clidr); 8765 define_arm_cp_regs(cpu, v7_cp_reginfo); 8766 define_debug_regs(cpu); 8767 define_pmu_regs(cpu); 8768 } else { 8769 define_arm_cp_regs(cpu, not_v7_cp_reginfo); 8770 } 8771 if (arm_feature(env, ARM_FEATURE_V8)) { 8772 /* 8773 * v8 ID registers, which all have impdef reset values. 8774 * Note that within the ID register ranges the unused slots 8775 * must all RAZ, not UNDEF; future architecture versions may 8776 * define new registers here. 8777 * ID registers which are AArch64 views of the AArch32 ID registers 8778 * which already existed in v6 and v7 are handled elsewhere, 8779 * in v6_idregs[]. 8780 */ 8781 int i; 8782 ARMCPRegInfo v8_idregs[] = { 8783 /* 8784 * ID_AA64PFR0_EL1 is not a plain ARM_CP_CONST in system 8785 * emulation because we don't know the right value for the 8786 * GIC field until after we define these regs. 8787 */ 8788 { .name = "ID_AA64PFR0_EL1", .state = ARM_CP_STATE_AA64, 8789 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 4, .opc2 = 0, 8790 .access = PL1_R, 8791 #ifdef CONFIG_USER_ONLY 8792 .type = ARM_CP_CONST, 8793 .resetvalue = cpu->isar.id_aa64pfr0 8794 #else 8795 .type = ARM_CP_NO_RAW, 8796 .accessfn = access_aa64_tid3, 8797 .readfn = id_aa64pfr0_read, 8798 .writefn = arm_cp_write_ignore 8799 #endif 8800 }, 8801 { .name = "ID_AA64PFR1_EL1", .state = ARM_CP_STATE_AA64, 8802 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 4, .opc2 = 1, 8803 .access = PL1_R, .type = ARM_CP_CONST, 8804 .accessfn = access_aa64_tid3, 8805 .resetvalue = cpu->isar.id_aa64pfr1}, 8806 { .name = "ID_AA64PFR2_EL1_RESERVED", .state = ARM_CP_STATE_AA64, 8807 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 4, .opc2 = 2, 8808 .access = PL1_R, .type = ARM_CP_CONST, 8809 .accessfn = access_aa64_tid3, 8810 .resetvalue = 0 }, 8811 { .name = "ID_AA64PFR3_EL1_RESERVED", .state = ARM_CP_STATE_AA64, 8812 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 4, .opc2 = 3, 8813 .access = PL1_R, .type = ARM_CP_CONST, 8814 .accessfn = access_aa64_tid3, 8815 .resetvalue = 0 }, 8816 { .name = "ID_AA64ZFR0_EL1", .state = ARM_CP_STATE_AA64, 8817 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 4, .opc2 = 4, 8818 .access = PL1_R, .type = ARM_CP_CONST, 8819 .accessfn = access_aa64_tid3, 8820 .resetvalue = cpu->isar.id_aa64zfr0 }, 8821 { .name = "ID_AA64SMFR0_EL1", .state = ARM_CP_STATE_AA64, 8822 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 4, .opc2 = 5, 8823 .access = PL1_R, .type = ARM_CP_CONST, 8824 .accessfn = access_aa64_tid3, 8825 .resetvalue = cpu->isar.id_aa64smfr0 }, 8826 { .name = "ID_AA64PFR6_EL1_RESERVED", .state = ARM_CP_STATE_AA64, 8827 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 4, .opc2 = 6, 8828 .access = PL1_R, .type = ARM_CP_CONST, 8829 .accessfn = access_aa64_tid3, 8830 .resetvalue = 0 }, 8831 { .name = "ID_AA64PFR7_EL1_RESERVED", .state = ARM_CP_STATE_AA64, 8832 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 4, .opc2 = 7, 8833 .access = PL1_R, .type = ARM_CP_CONST, 8834 .accessfn = access_aa64_tid3, 8835 .resetvalue = 0 }, 8836 { .name = "ID_AA64DFR0_EL1", .state = ARM_CP_STATE_AA64, 8837 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 5, .opc2 = 0, 8838 .access = PL1_R, .type = ARM_CP_CONST, 8839 .accessfn = access_aa64_tid3, 8840 .resetvalue = cpu->isar.id_aa64dfr0 }, 8841 { .name = "ID_AA64DFR1_EL1", .state = ARM_CP_STATE_AA64, 8842 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 5, .opc2 = 1, 8843 .access = PL1_R, .type = ARM_CP_CONST, 8844 .accessfn = access_aa64_tid3, 8845 .resetvalue = cpu->isar.id_aa64dfr1 }, 8846 { .name = "ID_AA64DFR2_EL1_RESERVED", .state = ARM_CP_STATE_AA64, 8847 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 5, .opc2 = 2, 8848 .access = PL1_R, .type = ARM_CP_CONST, 8849 .accessfn = access_aa64_tid3, 8850 .resetvalue = 0 }, 8851 { .name = "ID_AA64DFR3_EL1_RESERVED", .state = ARM_CP_STATE_AA64, 8852 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 5, .opc2 = 3, 8853 .access = PL1_R, .type = ARM_CP_CONST, 8854 .accessfn = access_aa64_tid3, 8855 .resetvalue = 0 }, 8856 { .name = "ID_AA64AFR0_EL1", .state = ARM_CP_STATE_AA64, 8857 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 5, .opc2 = 4, 8858 .access = PL1_R, .type = ARM_CP_CONST, 8859 .accessfn = access_aa64_tid3, 8860 .resetvalue = cpu->id_aa64afr0 }, 8861 { .name = "ID_AA64AFR1_EL1", .state = ARM_CP_STATE_AA64, 8862 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 5, .opc2 = 5, 8863 .access = PL1_R, .type = ARM_CP_CONST, 8864 .accessfn = access_aa64_tid3, 8865 .resetvalue = cpu->id_aa64afr1 }, 8866 { .name = "ID_AA64AFR2_EL1_RESERVED", .state = ARM_CP_STATE_AA64, 8867 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 5, .opc2 = 6, 8868 .access = PL1_R, .type = ARM_CP_CONST, 8869 .accessfn = access_aa64_tid3, 8870 .resetvalue = 0 }, 8871 { .name = "ID_AA64AFR3_EL1_RESERVED", .state = ARM_CP_STATE_AA64, 8872 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 5, .opc2 = 7, 8873 .access = PL1_R, .type = ARM_CP_CONST, 8874 .accessfn = access_aa64_tid3, 8875 .resetvalue = 0 }, 8876 { .name = "ID_AA64ISAR0_EL1", .state = ARM_CP_STATE_AA64, 8877 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 6, .opc2 = 0, 8878 .access = PL1_R, .type = ARM_CP_CONST, 8879 .accessfn = access_aa64_tid3, 8880 .resetvalue = cpu->isar.id_aa64isar0 }, 8881 { .name = "ID_AA64ISAR1_EL1", .state = ARM_CP_STATE_AA64, 8882 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 6, .opc2 = 1, 8883 .access = PL1_R, .type = ARM_CP_CONST, 8884 .accessfn = access_aa64_tid3, 8885 .resetvalue = cpu->isar.id_aa64isar1 }, 8886 { .name = "ID_AA64ISAR2_EL1", .state = ARM_CP_STATE_AA64, 8887 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 6, .opc2 = 2, 8888 .access = PL1_R, .type = ARM_CP_CONST, 8889 .accessfn = access_aa64_tid3, 8890 .resetvalue = cpu->isar.id_aa64isar2 }, 8891 { .name = "ID_AA64ISAR3_EL1_RESERVED", .state = ARM_CP_STATE_AA64, 8892 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 6, .opc2 = 3, 8893 .access = PL1_R, .type = ARM_CP_CONST, 8894 .accessfn = access_aa64_tid3, 8895 .resetvalue = 0 }, 8896 { .name = "ID_AA64ISAR4_EL1_RESERVED", .state = ARM_CP_STATE_AA64, 8897 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 6, .opc2 = 4, 8898 .access = PL1_R, .type = ARM_CP_CONST, 8899 .accessfn = access_aa64_tid3, 8900 .resetvalue = 0 }, 8901 { .name = "ID_AA64ISAR5_EL1_RESERVED", .state = ARM_CP_STATE_AA64, 8902 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 6, .opc2 = 5, 8903 .access = PL1_R, .type = ARM_CP_CONST, 8904 .accessfn = access_aa64_tid3, 8905 .resetvalue = 0 }, 8906 { .name = "ID_AA64ISAR6_EL1_RESERVED", .state = ARM_CP_STATE_AA64, 8907 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 6, .opc2 = 6, 8908 .access = PL1_R, .type = ARM_CP_CONST, 8909 .accessfn = access_aa64_tid3, 8910 .resetvalue = 0 }, 8911 { .name = "ID_AA64ISAR7_EL1_RESERVED", .state = ARM_CP_STATE_AA64, 8912 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 6, .opc2 = 7, 8913 .access = PL1_R, .type = ARM_CP_CONST, 8914 .accessfn = access_aa64_tid3, 8915 .resetvalue = 0 }, 8916 { .name = "ID_AA64MMFR0_EL1", .state = ARM_CP_STATE_AA64, 8917 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 7, .opc2 = 0, 8918 .access = PL1_R, .type = ARM_CP_CONST, 8919 .accessfn = access_aa64_tid3, 8920 .resetvalue = cpu->isar.id_aa64mmfr0 }, 8921 { .name = "ID_AA64MMFR1_EL1", .state = ARM_CP_STATE_AA64, 8922 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 7, .opc2 = 1, 8923 .access = PL1_R, .type = ARM_CP_CONST, 8924 .accessfn = access_aa64_tid3, 8925 .resetvalue = cpu->isar.id_aa64mmfr1 }, 8926 { .name = "ID_AA64MMFR2_EL1", .state = ARM_CP_STATE_AA64, 8927 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 7, .opc2 = 2, 8928 .access = PL1_R, .type = ARM_CP_CONST, 8929 .accessfn = access_aa64_tid3, 8930 .resetvalue = cpu->isar.id_aa64mmfr2 }, 8931 { .name = "ID_AA64MMFR3_EL1_RESERVED", .state = ARM_CP_STATE_AA64, 8932 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 7, .opc2 = 3, 8933 .access = PL1_R, .type = ARM_CP_CONST, 8934 .accessfn = access_aa64_tid3, 8935 .resetvalue = 0 }, 8936 { .name = "ID_AA64MMFR4_EL1_RESERVED", .state = ARM_CP_STATE_AA64, 8937 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 7, .opc2 = 4, 8938 .access = PL1_R, .type = ARM_CP_CONST, 8939 .accessfn = access_aa64_tid3, 8940 .resetvalue = 0 }, 8941 { .name = "ID_AA64MMFR5_EL1_RESERVED", .state = ARM_CP_STATE_AA64, 8942 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 7, .opc2 = 5, 8943 .access = PL1_R, .type = ARM_CP_CONST, 8944 .accessfn = access_aa64_tid3, 8945 .resetvalue = 0 }, 8946 { .name = "ID_AA64MMFR6_EL1_RESERVED", .state = ARM_CP_STATE_AA64, 8947 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 7, .opc2 = 6, 8948 .access = PL1_R, .type = ARM_CP_CONST, 8949 .accessfn = access_aa64_tid3, 8950 .resetvalue = 0 }, 8951 { .name = "ID_AA64MMFR7_EL1_RESERVED", .state = ARM_CP_STATE_AA64, 8952 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 7, .opc2 = 7, 8953 .access = PL1_R, .type = ARM_CP_CONST, 8954 .accessfn = access_aa64_tid3, 8955 .resetvalue = 0 }, 8956 { .name = "MVFR0_EL1", .state = ARM_CP_STATE_AA64, 8957 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 3, .opc2 = 0, 8958 .access = PL1_R, .type = ARM_CP_CONST, 8959 .accessfn = access_aa64_tid3, 8960 .resetvalue = cpu->isar.mvfr0 }, 8961 { .name = "MVFR1_EL1", .state = ARM_CP_STATE_AA64, 8962 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 3, .opc2 = 1, 8963 .access = PL1_R, .type = ARM_CP_CONST, 8964 .accessfn = access_aa64_tid3, 8965 .resetvalue = cpu->isar.mvfr1 }, 8966 { .name = "MVFR2_EL1", .state = ARM_CP_STATE_AA64, 8967 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 3, .opc2 = 2, 8968 .access = PL1_R, .type = ARM_CP_CONST, 8969 .accessfn = access_aa64_tid3, 8970 .resetvalue = cpu->isar.mvfr2 }, 8971 /* 8972 * "0, c0, c3, {0,1,2}" are the encodings corresponding to 8973 * AArch64 MVFR[012]_EL1. Define the STATE_AA32 encoding 8974 * as RAZ, since it is in the "reserved for future ID 8975 * registers, RAZ" part of the AArch32 encoding space. 8976 */ 8977 { .name = "RES_0_C0_C3_0", .state = ARM_CP_STATE_AA32, 8978 .cp = 15, .opc1 = 0, .crn = 0, .crm = 3, .opc2 = 0, 8979 .access = PL1_R, .type = ARM_CP_CONST, 8980 .accessfn = access_aa64_tid3, 8981 .resetvalue = 0 }, 8982 { .name = "RES_0_C0_C3_1", .state = ARM_CP_STATE_AA32, 8983 .cp = 15, .opc1 = 0, .crn = 0, .crm = 3, .opc2 = 1, 8984 .access = PL1_R, .type = ARM_CP_CONST, 8985 .accessfn = access_aa64_tid3, 8986 .resetvalue = 0 }, 8987 { .name = "RES_0_C0_C3_2", .state = ARM_CP_STATE_AA32, 8988 .cp = 15, .opc1 = 0, .crn = 0, .crm = 3, .opc2 = 2, 8989 .access = PL1_R, .type = ARM_CP_CONST, 8990 .accessfn = access_aa64_tid3, 8991 .resetvalue = 0 }, 8992 /* 8993 * Other encodings in "0, c0, c3, ..." are STATE_BOTH because 8994 * they're also RAZ for AArch64, and in v8 are gradually 8995 * being filled with AArch64-view-of-AArch32-ID-register 8996 * for new ID registers. 8997 */ 8998 { .name = "RES_0_C0_C3_3", .state = ARM_CP_STATE_BOTH, 8999 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 3, .opc2 = 3, 9000 .access = PL1_R, .type = ARM_CP_CONST, 9001 .accessfn = access_aa64_tid3, 9002 .resetvalue = 0 }, 9003 { .name = "ID_PFR2", .state = ARM_CP_STATE_BOTH, 9004 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 3, .opc2 = 4, 9005 .access = PL1_R, .type = ARM_CP_CONST, 9006 .accessfn = access_aa64_tid3, 9007 .resetvalue = cpu->isar.id_pfr2 }, 9008 { .name = "ID_DFR1", .state = ARM_CP_STATE_BOTH, 9009 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 3, .opc2 = 5, 9010 .access = PL1_R, .type = ARM_CP_CONST, 9011 .accessfn = access_aa64_tid3, 9012 .resetvalue = cpu->isar.id_dfr1 }, 9013 { .name = "ID_MMFR5", .state = ARM_CP_STATE_BOTH, 9014 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 3, .opc2 = 6, 9015 .access = PL1_R, .type = ARM_CP_CONST, 9016 .accessfn = access_aa64_tid3, 9017 .resetvalue = cpu->isar.id_mmfr5 }, 9018 { .name = "RES_0_C0_C3_7", .state = ARM_CP_STATE_BOTH, 9019 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 3, .opc2 = 7, 9020 .access = PL1_R, .type = ARM_CP_CONST, 9021 .accessfn = access_aa64_tid3, 9022 .resetvalue = 0 }, 9023 { .name = "PMCEID0", .state = ARM_CP_STATE_AA32, 9024 .cp = 15, .opc1 = 0, .crn = 9, .crm = 12, .opc2 = 6, 9025 .access = PL0_R, .accessfn = pmreg_access, .type = ARM_CP_CONST, 9026 .fgt = FGT_PMCEIDN_EL0, 9027 .resetvalue = extract64(cpu->pmceid0, 0, 32) }, 9028 { .name = "PMCEID0_EL0", .state = ARM_CP_STATE_AA64, 9029 .opc0 = 3, .opc1 = 3, .crn = 9, .crm = 12, .opc2 = 6, 9030 .access = PL0_R, .accessfn = pmreg_access, .type = ARM_CP_CONST, 9031 .fgt = FGT_PMCEIDN_EL0, 9032 .resetvalue = cpu->pmceid0 }, 9033 { .name = "PMCEID1", .state = ARM_CP_STATE_AA32, 9034 .cp = 15, .opc1 = 0, .crn = 9, .crm = 12, .opc2 = 7, 9035 .access = PL0_R, .accessfn = pmreg_access, .type = ARM_CP_CONST, 9036 .fgt = FGT_PMCEIDN_EL0, 9037 .resetvalue = extract64(cpu->pmceid1, 0, 32) }, 9038 { .name = "PMCEID1_EL0", .state = ARM_CP_STATE_AA64, 9039 .opc0 = 3, .opc1 = 3, .crn = 9, .crm = 12, .opc2 = 7, 9040 .access = PL0_R, .accessfn = pmreg_access, .type = ARM_CP_CONST, 9041 .fgt = FGT_PMCEIDN_EL0, 9042 .resetvalue = cpu->pmceid1 }, 9043 }; 9044 #ifdef CONFIG_USER_ONLY 9045 static const ARMCPRegUserSpaceInfo v8_user_idregs[] = { 9046 { .name = "ID_AA64PFR0_EL1", 9047 .exported_bits = R_ID_AA64PFR0_FP_MASK | 9048 R_ID_AA64PFR0_ADVSIMD_MASK | 9049 R_ID_AA64PFR0_SVE_MASK | 9050 R_ID_AA64PFR0_DIT_MASK, 9051 .fixed_bits = (0x1u << R_ID_AA64PFR0_EL0_SHIFT) | 9052 (0x1u << R_ID_AA64PFR0_EL1_SHIFT) }, 9053 { .name = "ID_AA64PFR1_EL1", 9054 .exported_bits = R_ID_AA64PFR1_BT_MASK | 9055 R_ID_AA64PFR1_SSBS_MASK | 9056 R_ID_AA64PFR1_MTE_MASK | 9057 R_ID_AA64PFR1_SME_MASK }, 9058 { .name = "ID_AA64PFR*_EL1_RESERVED", 9059 .is_glob = true }, 9060 { .name = "ID_AA64ZFR0_EL1", 9061 .exported_bits = R_ID_AA64ZFR0_SVEVER_MASK | 9062 R_ID_AA64ZFR0_AES_MASK | 9063 R_ID_AA64ZFR0_BITPERM_MASK | 9064 R_ID_AA64ZFR0_BFLOAT16_MASK | 9065 R_ID_AA64ZFR0_B16B16_MASK | 9066 R_ID_AA64ZFR0_SHA3_MASK | 9067 R_ID_AA64ZFR0_SM4_MASK | 9068 R_ID_AA64ZFR0_I8MM_MASK | 9069 R_ID_AA64ZFR0_F32MM_MASK | 9070 R_ID_AA64ZFR0_F64MM_MASK }, 9071 { .name = "ID_AA64SMFR0_EL1", 9072 .exported_bits = R_ID_AA64SMFR0_F32F32_MASK | 9073 R_ID_AA64SMFR0_BI32I32_MASK | 9074 R_ID_AA64SMFR0_B16F32_MASK | 9075 R_ID_AA64SMFR0_F16F32_MASK | 9076 R_ID_AA64SMFR0_I8I32_MASK | 9077 R_ID_AA64SMFR0_F16F16_MASK | 9078 R_ID_AA64SMFR0_B16B16_MASK | 9079 R_ID_AA64SMFR0_I16I32_MASK | 9080 R_ID_AA64SMFR0_F64F64_MASK | 9081 R_ID_AA64SMFR0_I16I64_MASK | 9082 R_ID_AA64SMFR0_SMEVER_MASK | 9083 R_ID_AA64SMFR0_FA64_MASK }, 9084 { .name = "ID_AA64MMFR0_EL1", 9085 .exported_bits = R_ID_AA64MMFR0_ECV_MASK, 9086 .fixed_bits = (0xfu << R_ID_AA64MMFR0_TGRAN64_SHIFT) | 9087 (0xfu << R_ID_AA64MMFR0_TGRAN4_SHIFT) }, 9088 { .name = "ID_AA64MMFR1_EL1", 9089 .exported_bits = R_ID_AA64MMFR1_AFP_MASK }, 9090 { .name = "ID_AA64MMFR2_EL1", 9091 .exported_bits = R_ID_AA64MMFR2_AT_MASK }, 9092 { .name = "ID_AA64MMFR*_EL1_RESERVED", 9093 .is_glob = true }, 9094 { .name = "ID_AA64DFR0_EL1", 9095 .fixed_bits = (0x6u << R_ID_AA64DFR0_DEBUGVER_SHIFT) }, 9096 { .name = "ID_AA64DFR1_EL1" }, 9097 { .name = "ID_AA64DFR*_EL1_RESERVED", 9098 .is_glob = true }, 9099 { .name = "ID_AA64AFR*", 9100 .is_glob = true }, 9101 { .name = "ID_AA64ISAR0_EL1", 9102 .exported_bits = R_ID_AA64ISAR0_AES_MASK | 9103 R_ID_AA64ISAR0_SHA1_MASK | 9104 R_ID_AA64ISAR0_SHA2_MASK | 9105 R_ID_AA64ISAR0_CRC32_MASK | 9106 R_ID_AA64ISAR0_ATOMIC_MASK | 9107 R_ID_AA64ISAR0_RDM_MASK | 9108 R_ID_AA64ISAR0_SHA3_MASK | 9109 R_ID_AA64ISAR0_SM3_MASK | 9110 R_ID_AA64ISAR0_SM4_MASK | 9111 R_ID_AA64ISAR0_DP_MASK | 9112 R_ID_AA64ISAR0_FHM_MASK | 9113 R_ID_AA64ISAR0_TS_MASK | 9114 R_ID_AA64ISAR0_RNDR_MASK }, 9115 { .name = "ID_AA64ISAR1_EL1", 9116 .exported_bits = R_ID_AA64ISAR1_DPB_MASK | 9117 R_ID_AA64ISAR1_APA_MASK | 9118 R_ID_AA64ISAR1_API_MASK | 9119 R_ID_AA64ISAR1_JSCVT_MASK | 9120 R_ID_AA64ISAR1_FCMA_MASK | 9121 R_ID_AA64ISAR1_LRCPC_MASK | 9122 R_ID_AA64ISAR1_GPA_MASK | 9123 R_ID_AA64ISAR1_GPI_MASK | 9124 R_ID_AA64ISAR1_FRINTTS_MASK | 9125 R_ID_AA64ISAR1_SB_MASK | 9126 R_ID_AA64ISAR1_BF16_MASK | 9127 R_ID_AA64ISAR1_DGH_MASK | 9128 R_ID_AA64ISAR1_I8MM_MASK }, 9129 { .name = "ID_AA64ISAR2_EL1", 9130 .exported_bits = R_ID_AA64ISAR2_WFXT_MASK | 9131 R_ID_AA64ISAR2_RPRES_MASK | 9132 R_ID_AA64ISAR2_GPA3_MASK | 9133 R_ID_AA64ISAR2_APA3_MASK | 9134 R_ID_AA64ISAR2_MOPS_MASK | 9135 R_ID_AA64ISAR2_BC_MASK | 9136 R_ID_AA64ISAR2_RPRFM_MASK | 9137 R_ID_AA64ISAR2_CSSC_MASK }, 9138 { .name = "ID_AA64ISAR*_EL1_RESERVED", 9139 .is_glob = true }, 9140 }; 9141 modify_arm_cp_regs(v8_idregs, v8_user_idregs); 9142 #endif 9143 /* 9144 * RVBAR_EL1 and RMR_EL1 only implemented if EL1 is the highest EL. 9145 * TODO: For RMR, a write with bit 1 set should do something with 9146 * cpu_reset(). In the meantime, "the bit is strictly a request", 9147 * so we are in spec just ignoring writes. 9148 */ 9149 if (!arm_feature(env, ARM_FEATURE_EL3) && 9150 !arm_feature(env, ARM_FEATURE_EL2)) { 9151 ARMCPRegInfo el1_reset_regs[] = { 9152 { .name = "RVBAR_EL1", .state = ARM_CP_STATE_BOTH, 9153 .opc0 = 3, .opc1 = 0, .crn = 12, .crm = 0, .opc2 = 1, 9154 .access = PL1_R, 9155 .fieldoffset = offsetof(CPUARMState, cp15.rvbar) }, 9156 { .name = "RMR_EL1", .state = ARM_CP_STATE_BOTH, 9157 .opc0 = 3, .opc1 = 0, .crn = 12, .crm = 0, .opc2 = 2, 9158 .access = PL1_RW, .type = ARM_CP_CONST, 9159 .resetvalue = arm_feature(env, ARM_FEATURE_AARCH64) } 9160 }; 9161 define_arm_cp_regs(cpu, el1_reset_regs); 9162 } 9163 define_arm_cp_regs(cpu, v8_idregs); 9164 define_arm_cp_regs(cpu, v8_cp_reginfo); 9165 if (cpu_isar_feature(aa64_aa32_el1, cpu)) { 9166 define_arm_cp_regs(cpu, v8_aa32_el1_reginfo); 9167 } 9168 9169 for (i = 4; i < 16; i++) { 9170 /* 9171 * Encodings in "0, c0, {c4-c7}, {0-7}" are RAZ for AArch32. 9172 * For pre-v8 cores there are RAZ patterns for these in 9173 * id_pre_v8_midr_cp_reginfo[]; for v8 we do that here. 9174 * v8 extends the "must RAZ" part of the ID register space 9175 * to also cover c0, 0, c{8-15}, {0-7}. 9176 * These are STATE_AA32 because in the AArch64 sysreg space 9177 * c4-c7 is where the AArch64 ID registers live (and we've 9178 * already defined those in v8_idregs[]), and c8-c15 are not 9179 * "must RAZ" for AArch64. 9180 */ 9181 g_autofree char *name = g_strdup_printf("RES_0_C0_C%d_X", i); 9182 ARMCPRegInfo v8_aa32_raz_idregs = { 9183 .name = name, 9184 .state = ARM_CP_STATE_AA32, 9185 .cp = 15, .opc1 = 0, .crn = 0, .crm = i, .opc2 = CP_ANY, 9186 .access = PL1_R, .type = ARM_CP_CONST, 9187 .accessfn = access_aa64_tid3, 9188 .resetvalue = 0 }; 9189 define_one_arm_cp_reg(cpu, &v8_aa32_raz_idregs); 9190 } 9191 } 9192 9193 /* 9194 * Register the base EL2 cpregs. 9195 * Pre v8, these registers are implemented only as part of the 9196 * Virtualization Extensions (EL2 present). Beginning with v8, 9197 * if EL2 is missing but EL3 is enabled, mostly these become 9198 * RES0 from EL3, with some specific exceptions. 9199 */ 9200 if (arm_feature(env, ARM_FEATURE_EL2) 9201 || (arm_feature(env, ARM_FEATURE_EL3) 9202 && arm_feature(env, ARM_FEATURE_V8))) { 9203 uint64_t vmpidr_def = mpidr_read_val(env); 9204 ARMCPRegInfo vpidr_regs[] = { 9205 { .name = "VPIDR", .state = ARM_CP_STATE_AA32, 9206 .cp = 15, .opc1 = 4, .crn = 0, .crm = 0, .opc2 = 0, 9207 .access = PL2_RW, .accessfn = access_el3_aa32ns, 9208 .resetvalue = cpu->midr, 9209 .type = ARM_CP_ALIAS | ARM_CP_EL3_NO_EL2_C_NZ, 9210 .fieldoffset = offsetoflow32(CPUARMState, cp15.vpidr_el2) }, 9211 { .name = "VPIDR_EL2", .state = ARM_CP_STATE_AA64, 9212 .opc0 = 3, .opc1 = 4, .crn = 0, .crm = 0, .opc2 = 0, 9213 .access = PL2_RW, .resetvalue = cpu->midr, 9214 .type = ARM_CP_EL3_NO_EL2_C_NZ, 9215 .nv2_redirect_offset = 0x88, 9216 .fieldoffset = offsetof(CPUARMState, cp15.vpidr_el2) }, 9217 { .name = "VMPIDR", .state = ARM_CP_STATE_AA32, 9218 .cp = 15, .opc1 = 4, .crn = 0, .crm = 0, .opc2 = 5, 9219 .access = PL2_RW, .accessfn = access_el3_aa32ns, 9220 .resetvalue = vmpidr_def, 9221 .type = ARM_CP_ALIAS | ARM_CP_EL3_NO_EL2_C_NZ, 9222 .fieldoffset = offsetoflow32(CPUARMState, cp15.vmpidr_el2) }, 9223 { .name = "VMPIDR_EL2", .state = ARM_CP_STATE_AA64, 9224 .opc0 = 3, .opc1 = 4, .crn = 0, .crm = 0, .opc2 = 5, 9225 .access = PL2_RW, .resetvalue = vmpidr_def, 9226 .type = ARM_CP_EL3_NO_EL2_C_NZ, 9227 .nv2_redirect_offset = 0x50, 9228 .fieldoffset = offsetof(CPUARMState, cp15.vmpidr_el2) }, 9229 }; 9230 /* 9231 * The only field of MDCR_EL2 that has a defined architectural reset 9232 * value is MDCR_EL2.HPMN which should reset to the value of PMCR_EL0.N. 9233 */ 9234 ARMCPRegInfo mdcr_el2 = { 9235 .name = "MDCR_EL2", .state = ARM_CP_STATE_BOTH, .type = ARM_CP_IO, 9236 .opc0 = 3, .opc1 = 4, .crn = 1, .crm = 1, .opc2 = 1, 9237 .writefn = mdcr_el2_write, 9238 .access = PL2_RW, .resetvalue = pmu_num_counters(env), 9239 .fieldoffset = offsetof(CPUARMState, cp15.mdcr_el2), 9240 }; 9241 define_one_arm_cp_reg(cpu, &mdcr_el2); 9242 define_arm_cp_regs(cpu, vpidr_regs); 9243 define_arm_cp_regs(cpu, el2_cp_reginfo); 9244 if (arm_feature(env, ARM_FEATURE_V8)) { 9245 define_arm_cp_regs(cpu, el2_v8_cp_reginfo); 9246 } 9247 if (cpu_isar_feature(aa64_sel2, cpu)) { 9248 define_arm_cp_regs(cpu, el2_sec_cp_reginfo); 9249 } 9250 /* 9251 * RVBAR_EL2 and RMR_EL2 only implemented if EL2 is the highest EL. 9252 * See commentary near RMR_EL1. 9253 */ 9254 if (!arm_feature(env, ARM_FEATURE_EL3)) { 9255 static const ARMCPRegInfo el2_reset_regs[] = { 9256 { .name = "RVBAR_EL2", .state = ARM_CP_STATE_AA64, 9257 .opc0 = 3, .opc1 = 4, .crn = 12, .crm = 0, .opc2 = 1, 9258 .access = PL2_R, 9259 .fieldoffset = offsetof(CPUARMState, cp15.rvbar) }, 9260 { .name = "RVBAR", .type = ARM_CP_ALIAS, 9261 .cp = 15, .opc1 = 0, .crn = 12, .crm = 0, .opc2 = 1, 9262 .access = PL2_R, 9263 .fieldoffset = offsetof(CPUARMState, cp15.rvbar) }, 9264 { .name = "RMR_EL2", .state = ARM_CP_STATE_AA64, 9265 .opc0 = 3, .opc1 = 4, .crn = 12, .crm = 0, .opc2 = 2, 9266 .access = PL2_RW, .type = ARM_CP_CONST, .resetvalue = 1 }, 9267 }; 9268 define_arm_cp_regs(cpu, el2_reset_regs); 9269 } 9270 } 9271 9272 /* Register the base EL3 cpregs. */ 9273 if (arm_feature(env, ARM_FEATURE_EL3)) { 9274 define_arm_cp_regs(cpu, el3_cp_reginfo); 9275 ARMCPRegInfo el3_regs[] = { 9276 { .name = "RVBAR_EL3", .state = ARM_CP_STATE_AA64, 9277 .opc0 = 3, .opc1 = 6, .crn = 12, .crm = 0, .opc2 = 1, 9278 .access = PL3_R, 9279 .fieldoffset = offsetof(CPUARMState, cp15.rvbar), }, 9280 { .name = "RMR_EL3", .state = ARM_CP_STATE_AA64, 9281 .opc0 = 3, .opc1 = 6, .crn = 12, .crm = 0, .opc2 = 2, 9282 .access = PL3_RW, .type = ARM_CP_CONST, .resetvalue = 1 }, 9283 { .name = "RMR", .state = ARM_CP_STATE_AA32, 9284 .cp = 15, .opc1 = 0, .crn = 12, .crm = 0, .opc2 = 2, 9285 .access = PL3_RW, .type = ARM_CP_CONST, 9286 .resetvalue = arm_feature(env, ARM_FEATURE_AARCH64) }, 9287 { .name = "SCTLR_EL3", .state = ARM_CP_STATE_AA64, 9288 .opc0 = 3, .opc1 = 6, .crn = 1, .crm = 0, .opc2 = 0, 9289 .access = PL3_RW, 9290 .raw_writefn = raw_write, .writefn = sctlr_write, 9291 .fieldoffset = offsetof(CPUARMState, cp15.sctlr_el[3]), 9292 .resetvalue = cpu->reset_sctlr }, 9293 }; 9294 9295 define_arm_cp_regs(cpu, el3_regs); 9296 } 9297 /* 9298 * The behaviour of NSACR is sufficiently various that we don't 9299 * try to describe it in a single reginfo: 9300 * if EL3 is 64 bit, then trap to EL3 from S EL1, 9301 * reads as constant 0xc00 from NS EL1 and NS EL2 9302 * if EL3 is 32 bit, then RW at EL3, RO at NS EL1 and NS EL2 9303 * if v7 without EL3, register doesn't exist 9304 * if v8 without EL3, reads as constant 0xc00 from NS EL1 and NS EL2 9305 */ 9306 if (arm_feature(env, ARM_FEATURE_EL3)) { 9307 if (arm_feature(env, ARM_FEATURE_AARCH64)) { 9308 static const ARMCPRegInfo nsacr = { 9309 .name = "NSACR", .type = ARM_CP_CONST, 9310 .cp = 15, .opc1 = 0, .crn = 1, .crm = 1, .opc2 = 2, 9311 .access = PL1_RW, .accessfn = nsacr_access, 9312 .resetvalue = 0xc00 9313 }; 9314 define_one_arm_cp_reg(cpu, &nsacr); 9315 } else { 9316 static const ARMCPRegInfo nsacr = { 9317 .name = "NSACR", 9318 .cp = 15, .opc1 = 0, .crn = 1, .crm = 1, .opc2 = 2, 9319 .access = PL3_RW | PL1_R, 9320 .resetvalue = 0, 9321 .fieldoffset = offsetof(CPUARMState, cp15.nsacr) 9322 }; 9323 define_one_arm_cp_reg(cpu, &nsacr); 9324 } 9325 } else { 9326 if (arm_feature(env, ARM_FEATURE_V8)) { 9327 static const ARMCPRegInfo nsacr = { 9328 .name = "NSACR", .type = ARM_CP_CONST, 9329 .cp = 15, .opc1 = 0, .crn = 1, .crm = 1, .opc2 = 2, 9330 .access = PL1_R, 9331 .resetvalue = 0xc00 9332 }; 9333 define_one_arm_cp_reg(cpu, &nsacr); 9334 } 9335 } 9336 9337 if (arm_feature(env, ARM_FEATURE_PMSA)) { 9338 if (arm_feature(env, ARM_FEATURE_V6)) { 9339 /* PMSAv6 not implemented */ 9340 assert(arm_feature(env, ARM_FEATURE_V7)); 9341 define_arm_cp_regs(cpu, vmsa_pmsa_cp_reginfo); 9342 define_arm_cp_regs(cpu, pmsav7_cp_reginfo); 9343 } else { 9344 define_arm_cp_regs(cpu, pmsav5_cp_reginfo); 9345 } 9346 } else { 9347 define_arm_cp_regs(cpu, vmsa_pmsa_cp_reginfo); 9348 define_arm_cp_regs(cpu, vmsa_cp_reginfo); 9349 /* TTCBR2 is introduced with ARMv8.2-AA32HPD. */ 9350 if (cpu_isar_feature(aa32_hpd, cpu)) { 9351 define_one_arm_cp_reg(cpu, &ttbcr2_reginfo); 9352 } 9353 } 9354 if (arm_feature(env, ARM_FEATURE_THUMB2EE)) { 9355 define_arm_cp_regs(cpu, t2ee_cp_reginfo); 9356 } 9357 if (arm_feature(env, ARM_FEATURE_GENERIC_TIMER)) { 9358 define_arm_cp_regs(cpu, generic_timer_cp_reginfo); 9359 } 9360 if (cpu_isar_feature(aa64_ecv_traps, cpu)) { 9361 define_arm_cp_regs(cpu, gen_timer_ecv_cp_reginfo); 9362 } 9363 #ifndef CONFIG_USER_ONLY 9364 if (cpu_isar_feature(aa64_ecv, cpu)) { 9365 define_one_arm_cp_reg(cpu, &gen_timer_cntpoff_reginfo); 9366 } 9367 #endif 9368 if (arm_feature(env, ARM_FEATURE_VAPA)) { 9369 ARMCPRegInfo vapa_cp_reginfo[] = { 9370 { .name = "PAR", .cp = 15, .crn = 7, .crm = 4, .opc1 = 0, .opc2 = 0, 9371 .access = PL1_RW, .resetvalue = 0, 9372 .bank_fieldoffsets = { offsetoflow32(CPUARMState, cp15.par_s), 9373 offsetoflow32(CPUARMState, cp15.par_ns) }, 9374 .writefn = par_write}, 9375 #ifndef CONFIG_USER_ONLY 9376 /* This underdecoding is safe because the reginfo is NO_RAW. */ 9377 { .name = "ATS", .cp = 15, .crn = 7, .crm = 8, .opc1 = 0, .opc2 = CP_ANY, 9378 .access = PL1_W, .accessfn = ats_access, 9379 .writefn = ats_write, .type = ARM_CP_NO_RAW | ARM_CP_RAISES_EXC }, 9380 #endif 9381 }; 9382 9383 /* 9384 * When LPAE exists this 32-bit PAR register is an alias of the 9385 * 64-bit AArch32 PAR register defined in lpae_cp_reginfo[] 9386 */ 9387 if (arm_feature(env, ARM_FEATURE_LPAE)) { 9388 vapa_cp_reginfo[0].type = ARM_CP_ALIAS | ARM_CP_NO_GDB; 9389 } 9390 define_arm_cp_regs(cpu, vapa_cp_reginfo); 9391 } 9392 if (arm_feature(env, ARM_FEATURE_CACHE_TEST_CLEAN)) { 9393 define_arm_cp_regs(cpu, cache_test_clean_cp_reginfo); 9394 } 9395 if (arm_feature(env, ARM_FEATURE_CACHE_DIRTY_REG)) { 9396 define_arm_cp_regs(cpu, cache_dirty_status_cp_reginfo); 9397 } 9398 if (arm_feature(env, ARM_FEATURE_CACHE_BLOCK_OPS)) { 9399 define_arm_cp_regs(cpu, cache_block_ops_cp_reginfo); 9400 } 9401 if (arm_feature(env, ARM_FEATURE_OMAPCP)) { 9402 define_arm_cp_regs(cpu, omap_cp_reginfo); 9403 } 9404 if (arm_feature(env, ARM_FEATURE_STRONGARM)) { 9405 define_arm_cp_regs(cpu, strongarm_cp_reginfo); 9406 } 9407 if (arm_feature(env, ARM_FEATURE_XSCALE)) { 9408 define_arm_cp_regs(cpu, xscale_cp_reginfo); 9409 } 9410 if (arm_feature(env, ARM_FEATURE_DUMMY_C15_REGS)) { 9411 define_arm_cp_regs(cpu, dummy_c15_cp_reginfo); 9412 } 9413 if (arm_feature(env, ARM_FEATURE_LPAE)) { 9414 define_arm_cp_regs(cpu, lpae_cp_reginfo); 9415 } 9416 if (cpu_isar_feature(aa32_jazelle, cpu)) { 9417 define_arm_cp_regs(cpu, jazelle_regs); 9418 } 9419 /* 9420 * Slightly awkwardly, the OMAP and StrongARM cores need all of 9421 * cp15 crn=0 to be writes-ignored, whereas for other cores they should 9422 * be read-only (ie write causes UNDEF exception). 9423 */ 9424 { 9425 ARMCPRegInfo id_pre_v8_midr_cp_reginfo[] = { 9426 /* 9427 * Pre-v8 MIDR space. 9428 * Note that the MIDR isn't a simple constant register because 9429 * of the TI925 behaviour where writes to another register can 9430 * cause the MIDR value to change. 9431 * 9432 * Unimplemented registers in the c15 0 0 0 space default to 9433 * MIDR. Define MIDR first as this entire space, then CTR, TCMTR 9434 * and friends override accordingly. 9435 */ 9436 { .name = "MIDR", 9437 .cp = 15, .crn = 0, .crm = 0, .opc1 = 0, .opc2 = CP_ANY, 9438 .access = PL1_R, .resetvalue = cpu->midr, 9439 .writefn = arm_cp_write_ignore, .raw_writefn = raw_write, 9440 .readfn = midr_read, 9441 .fieldoffset = offsetof(CPUARMState, cp15.c0_cpuid), 9442 .type = ARM_CP_OVERRIDE }, 9443 /* crn = 0 op1 = 0 crm = 3..7 : currently unassigned; we RAZ. */ 9444 { .name = "DUMMY", 9445 .cp = 15, .crn = 0, .crm = 3, .opc1 = 0, .opc2 = CP_ANY, 9446 .access = PL1_R, .type = ARM_CP_CONST, .resetvalue = 0 }, 9447 { .name = "DUMMY", 9448 .cp = 15, .crn = 0, .crm = 4, .opc1 = 0, .opc2 = CP_ANY, 9449 .access = PL1_R, .type = ARM_CP_CONST, .resetvalue = 0 }, 9450 { .name = "DUMMY", 9451 .cp = 15, .crn = 0, .crm = 5, .opc1 = 0, .opc2 = CP_ANY, 9452 .access = PL1_R, .type = ARM_CP_CONST, .resetvalue = 0 }, 9453 { .name = "DUMMY", 9454 .cp = 15, .crn = 0, .crm = 6, .opc1 = 0, .opc2 = CP_ANY, 9455 .access = PL1_R, .type = ARM_CP_CONST, .resetvalue = 0 }, 9456 { .name = "DUMMY", 9457 .cp = 15, .crn = 0, .crm = 7, .opc1 = 0, .opc2 = CP_ANY, 9458 .access = PL1_R, .type = ARM_CP_CONST, .resetvalue = 0 }, 9459 }; 9460 ARMCPRegInfo id_v8_midr_cp_reginfo[] = { 9461 { .name = "MIDR_EL1", .state = ARM_CP_STATE_BOTH, 9462 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 0, .opc2 = 0, 9463 .access = PL1_R, .type = ARM_CP_NO_RAW, .resetvalue = cpu->midr, 9464 .fgt = FGT_MIDR_EL1, 9465 .fieldoffset = offsetof(CPUARMState, cp15.c0_cpuid), 9466 .readfn = midr_read }, 9467 /* crn = 0 op1 = 0 crm = 0 op2 = 7 : AArch32 aliases of MIDR */ 9468 { .name = "MIDR", .type = ARM_CP_ALIAS | ARM_CP_CONST, 9469 .cp = 15, .crn = 0, .crm = 0, .opc1 = 0, .opc2 = 7, 9470 .access = PL1_R, .resetvalue = cpu->midr }, 9471 { .name = "REVIDR_EL1", .state = ARM_CP_STATE_BOTH, 9472 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 0, .opc2 = 6, 9473 .access = PL1_R, 9474 .accessfn = access_aa64_tid1, 9475 .fgt = FGT_REVIDR_EL1, 9476 .type = ARM_CP_CONST, .resetvalue = cpu->revidr }, 9477 }; 9478 ARMCPRegInfo id_v8_midr_alias_cp_reginfo = { 9479 .name = "MIDR", .type = ARM_CP_ALIAS | ARM_CP_CONST | ARM_CP_NO_GDB, 9480 .cp = 15, .crn = 0, .crm = 0, .opc1 = 0, .opc2 = 4, 9481 .access = PL1_R, .resetvalue = cpu->midr 9482 }; 9483 ARMCPRegInfo id_cp_reginfo[] = { 9484 /* These are common to v8 and pre-v8 */ 9485 { .name = "CTR", 9486 .cp = 15, .crn = 0, .crm = 0, .opc1 = 0, .opc2 = 1, 9487 .access = PL1_R, .accessfn = ctr_el0_access, 9488 .type = ARM_CP_CONST, .resetvalue = cpu->ctr }, 9489 { .name = "CTR_EL0", .state = ARM_CP_STATE_AA64, 9490 .opc0 = 3, .opc1 = 3, .opc2 = 1, .crn = 0, .crm = 0, 9491 .access = PL0_R, .accessfn = ctr_el0_access, 9492 .fgt = FGT_CTR_EL0, 9493 .type = ARM_CP_CONST, .resetvalue = cpu->ctr }, 9494 /* TCMTR and TLBTR exist in v8 but have no 64-bit versions */ 9495 { .name = "TCMTR", 9496 .cp = 15, .crn = 0, .crm = 0, .opc1 = 0, .opc2 = 2, 9497 .access = PL1_R, 9498 .accessfn = access_aa32_tid1, 9499 .type = ARM_CP_CONST, .resetvalue = 0 }, 9500 }; 9501 /* TLBTR is specific to VMSA */ 9502 ARMCPRegInfo id_tlbtr_reginfo = { 9503 .name = "TLBTR", 9504 .cp = 15, .crn = 0, .crm = 0, .opc1 = 0, .opc2 = 3, 9505 .access = PL1_R, 9506 .accessfn = access_aa32_tid1, 9507 .type = ARM_CP_CONST, .resetvalue = 0, 9508 }; 9509 /* MPUIR is specific to PMSA V6+ */ 9510 ARMCPRegInfo id_mpuir_reginfo = { 9511 .name = "MPUIR", 9512 .cp = 15, .crn = 0, .crm = 0, .opc1 = 0, .opc2 = 4, 9513 .access = PL1_R, .type = ARM_CP_CONST, 9514 .resetvalue = cpu->pmsav7_dregion << 8 9515 }; 9516 /* HMPUIR is specific to PMSA V8 */ 9517 ARMCPRegInfo id_hmpuir_reginfo = { 9518 .name = "HMPUIR", 9519 .cp = 15, .opc1 = 4, .crn = 0, .crm = 0, .opc2 = 4, 9520 .access = PL2_R, .type = ARM_CP_CONST, 9521 .resetvalue = cpu->pmsav8r_hdregion 9522 }; 9523 static const ARMCPRegInfo crn0_wi_reginfo = { 9524 .name = "CRN0_WI", .cp = 15, .crn = 0, .crm = CP_ANY, 9525 .opc1 = CP_ANY, .opc2 = CP_ANY, .access = PL1_W, 9526 .type = ARM_CP_NOP | ARM_CP_OVERRIDE 9527 }; 9528 #ifdef CONFIG_USER_ONLY 9529 static const ARMCPRegUserSpaceInfo id_v8_user_midr_cp_reginfo[] = { 9530 { .name = "MIDR_EL1", 9531 .exported_bits = R_MIDR_EL1_REVISION_MASK | 9532 R_MIDR_EL1_PARTNUM_MASK | 9533 R_MIDR_EL1_ARCHITECTURE_MASK | 9534 R_MIDR_EL1_VARIANT_MASK | 9535 R_MIDR_EL1_IMPLEMENTER_MASK }, 9536 { .name = "REVIDR_EL1" }, 9537 }; 9538 modify_arm_cp_regs(id_v8_midr_cp_reginfo, id_v8_user_midr_cp_reginfo); 9539 #endif 9540 if (arm_feature(env, ARM_FEATURE_OMAPCP) || 9541 arm_feature(env, ARM_FEATURE_STRONGARM)) { 9542 size_t i; 9543 /* 9544 * Register the blanket "writes ignored" value first to cover the 9545 * whole space. Then update the specific ID registers to allow write 9546 * access, so that they ignore writes rather than causing them to 9547 * UNDEF. 9548 */ 9549 define_one_arm_cp_reg(cpu, &crn0_wi_reginfo); 9550 for (i = 0; i < ARRAY_SIZE(id_pre_v8_midr_cp_reginfo); ++i) { 9551 id_pre_v8_midr_cp_reginfo[i].access = PL1_RW; 9552 } 9553 for (i = 0; i < ARRAY_SIZE(id_cp_reginfo); ++i) { 9554 id_cp_reginfo[i].access = PL1_RW; 9555 } 9556 id_mpuir_reginfo.access = PL1_RW; 9557 id_tlbtr_reginfo.access = PL1_RW; 9558 } 9559 if (arm_feature(env, ARM_FEATURE_V8)) { 9560 define_arm_cp_regs(cpu, id_v8_midr_cp_reginfo); 9561 if (!arm_feature(env, ARM_FEATURE_PMSA)) { 9562 define_one_arm_cp_reg(cpu, &id_v8_midr_alias_cp_reginfo); 9563 } 9564 } else { 9565 define_arm_cp_regs(cpu, id_pre_v8_midr_cp_reginfo); 9566 } 9567 define_arm_cp_regs(cpu, id_cp_reginfo); 9568 if (!arm_feature(env, ARM_FEATURE_PMSA)) { 9569 define_one_arm_cp_reg(cpu, &id_tlbtr_reginfo); 9570 } else if (arm_feature(env, ARM_FEATURE_PMSA) && 9571 arm_feature(env, ARM_FEATURE_V8)) { 9572 uint32_t i = 0; 9573 char *tmp_string; 9574 9575 define_one_arm_cp_reg(cpu, &id_mpuir_reginfo); 9576 define_one_arm_cp_reg(cpu, &id_hmpuir_reginfo); 9577 define_arm_cp_regs(cpu, pmsav8r_cp_reginfo); 9578 9579 /* Register alias is only valid for first 32 indexes */ 9580 for (i = 0; i < MIN(cpu->pmsav7_dregion, 32); ++i) { 9581 uint8_t crm = 0b1000 | extract32(i, 1, 3); 9582 uint8_t opc1 = extract32(i, 4, 1); 9583 uint8_t opc2 = extract32(i, 0, 1) << 2; 9584 9585 tmp_string = g_strdup_printf("PRBAR%u", i); 9586 ARMCPRegInfo tmp_prbarn_reginfo = { 9587 .name = tmp_string, .type = ARM_CP_ALIAS | ARM_CP_NO_RAW, 9588 .cp = 15, .opc1 = opc1, .crn = 6, .crm = crm, .opc2 = opc2, 9589 .access = PL1_RW, .resetvalue = 0, 9590 .accessfn = access_tvm_trvm, 9591 .writefn = pmsav8r_regn_write, .readfn = pmsav8r_regn_read 9592 }; 9593 define_one_arm_cp_reg(cpu, &tmp_prbarn_reginfo); 9594 g_free(tmp_string); 9595 9596 opc2 = extract32(i, 0, 1) << 2 | 0x1; 9597 tmp_string = g_strdup_printf("PRLAR%u", i); 9598 ARMCPRegInfo tmp_prlarn_reginfo = { 9599 .name = tmp_string, .type = ARM_CP_ALIAS | ARM_CP_NO_RAW, 9600 .cp = 15, .opc1 = opc1, .crn = 6, .crm = crm, .opc2 = opc2, 9601 .access = PL1_RW, .resetvalue = 0, 9602 .accessfn = access_tvm_trvm, 9603 .writefn = pmsav8r_regn_write, .readfn = pmsav8r_regn_read 9604 }; 9605 define_one_arm_cp_reg(cpu, &tmp_prlarn_reginfo); 9606 g_free(tmp_string); 9607 } 9608 9609 /* Register alias is only valid for first 32 indexes */ 9610 for (i = 0; i < MIN(cpu->pmsav8r_hdregion, 32); ++i) { 9611 uint8_t crm = 0b1000 | extract32(i, 1, 3); 9612 uint8_t opc1 = 0b100 | extract32(i, 4, 1); 9613 uint8_t opc2 = extract32(i, 0, 1) << 2; 9614 9615 tmp_string = g_strdup_printf("HPRBAR%u", i); 9616 ARMCPRegInfo tmp_hprbarn_reginfo = { 9617 .name = tmp_string, 9618 .type = ARM_CP_NO_RAW, 9619 .cp = 15, .opc1 = opc1, .crn = 6, .crm = crm, .opc2 = opc2, 9620 .access = PL2_RW, .resetvalue = 0, 9621 .writefn = pmsav8r_regn_write, .readfn = pmsav8r_regn_read 9622 }; 9623 define_one_arm_cp_reg(cpu, &tmp_hprbarn_reginfo); 9624 g_free(tmp_string); 9625 9626 opc2 = extract32(i, 0, 1) << 2 | 0x1; 9627 tmp_string = g_strdup_printf("HPRLAR%u", i); 9628 ARMCPRegInfo tmp_hprlarn_reginfo = { 9629 .name = tmp_string, 9630 .type = ARM_CP_NO_RAW, 9631 .cp = 15, .opc1 = opc1, .crn = 6, .crm = crm, .opc2 = opc2, 9632 .access = PL2_RW, .resetvalue = 0, 9633 .writefn = pmsav8r_regn_write, .readfn = pmsav8r_regn_read 9634 }; 9635 define_one_arm_cp_reg(cpu, &tmp_hprlarn_reginfo); 9636 g_free(tmp_string); 9637 } 9638 } else if (arm_feature(env, ARM_FEATURE_V7)) { 9639 define_one_arm_cp_reg(cpu, &id_mpuir_reginfo); 9640 } 9641 } 9642 9643 if (arm_feature(env, ARM_FEATURE_MPIDR)) { 9644 ARMCPRegInfo mpidr_cp_reginfo[] = { 9645 { .name = "MPIDR_EL1", .state = ARM_CP_STATE_BOTH, 9646 .opc0 = 3, .crn = 0, .crm = 0, .opc1 = 0, .opc2 = 5, 9647 .fgt = FGT_MPIDR_EL1, 9648 .access = PL1_R, .readfn = mpidr_read, .type = ARM_CP_NO_RAW }, 9649 }; 9650 #ifdef CONFIG_USER_ONLY 9651 static const ARMCPRegUserSpaceInfo mpidr_user_cp_reginfo[] = { 9652 { .name = "MPIDR_EL1", 9653 .fixed_bits = 0x0000000080000000 }, 9654 }; 9655 modify_arm_cp_regs(mpidr_cp_reginfo, mpidr_user_cp_reginfo); 9656 #endif 9657 define_arm_cp_regs(cpu, mpidr_cp_reginfo); 9658 } 9659 9660 if (arm_feature(env, ARM_FEATURE_AUXCR)) { 9661 ARMCPRegInfo auxcr_reginfo[] = { 9662 { .name = "ACTLR_EL1", .state = ARM_CP_STATE_BOTH, 9663 .opc0 = 3, .opc1 = 0, .crn = 1, .crm = 0, .opc2 = 1, 9664 .access = PL1_RW, .accessfn = access_tacr, 9665 .nv2_redirect_offset = 0x118, 9666 .type = ARM_CP_CONST, .resetvalue = cpu->reset_auxcr }, 9667 { .name = "ACTLR_EL2", .state = ARM_CP_STATE_BOTH, 9668 .opc0 = 3, .opc1 = 4, .crn = 1, .crm = 0, .opc2 = 1, 9669 .access = PL2_RW, .type = ARM_CP_CONST, 9670 .resetvalue = 0 }, 9671 { .name = "ACTLR_EL3", .state = ARM_CP_STATE_AA64, 9672 .opc0 = 3, .opc1 = 6, .crn = 1, .crm = 0, .opc2 = 1, 9673 .access = PL3_RW, .type = ARM_CP_CONST, 9674 .resetvalue = 0 }, 9675 }; 9676 define_arm_cp_regs(cpu, auxcr_reginfo); 9677 if (cpu_isar_feature(aa32_ac2, cpu)) { 9678 define_arm_cp_regs(cpu, actlr2_hactlr2_reginfo); 9679 } 9680 } 9681 9682 if (arm_feature(env, ARM_FEATURE_CBAR)) { 9683 /* 9684 * CBAR is IMPDEF, but common on Arm Cortex-A implementations. 9685 * There are two flavours: 9686 * (1) older 32-bit only cores have a simple 32-bit CBAR 9687 * (2) 64-bit cores have a 64-bit CBAR visible to AArch64, plus a 9688 * 32-bit register visible to AArch32 at a different encoding 9689 * to the "flavour 1" register and with the bits rearranged to 9690 * be able to squash a 64-bit address into the 32-bit view. 9691 * We distinguish the two via the ARM_FEATURE_AARCH64 flag, but 9692 * in future if we support AArch32-only configs of some of the 9693 * AArch64 cores we might need to add a specific feature flag 9694 * to indicate cores with "flavour 2" CBAR. 9695 */ 9696 if (arm_feature(env, ARM_FEATURE_V8)) { 9697 /* 32 bit view is [31:18] 0...0 [43:32]. */ 9698 uint32_t cbar32 = (extract64(cpu->reset_cbar, 18, 14) << 18) 9699 | extract64(cpu->reset_cbar, 32, 12); 9700 ARMCPRegInfo cbar_reginfo[] = { 9701 { .name = "CBAR", 9702 .type = ARM_CP_CONST, 9703 .cp = 15, .crn = 15, .crm = 3, .opc1 = 1, .opc2 = 0, 9704 .access = PL1_R, .resetvalue = cbar32 }, 9705 { .name = "CBAR_EL1", .state = ARM_CP_STATE_AA64, 9706 .type = ARM_CP_CONST, 9707 .opc0 = 3, .opc1 = 1, .crn = 15, .crm = 3, .opc2 = 0, 9708 .access = PL1_R, .resetvalue = cpu->reset_cbar }, 9709 }; 9710 /* We don't implement a r/w 64 bit CBAR currently */ 9711 assert(arm_feature(env, ARM_FEATURE_CBAR_RO)); 9712 define_arm_cp_regs(cpu, cbar_reginfo); 9713 } else { 9714 ARMCPRegInfo cbar = { 9715 .name = "CBAR", 9716 .cp = 15, .crn = 15, .crm = 0, .opc1 = 4, .opc2 = 0, 9717 .access = PL1_R | PL3_W, .resetvalue = cpu->reset_cbar, 9718 .fieldoffset = offsetof(CPUARMState, 9719 cp15.c15_config_base_address) 9720 }; 9721 if (arm_feature(env, ARM_FEATURE_CBAR_RO)) { 9722 cbar.access = PL1_R; 9723 cbar.fieldoffset = 0; 9724 cbar.type = ARM_CP_CONST; 9725 } 9726 define_one_arm_cp_reg(cpu, &cbar); 9727 } 9728 } 9729 9730 if (arm_feature(env, ARM_FEATURE_VBAR)) { 9731 static const ARMCPRegInfo vbar_cp_reginfo[] = { 9732 { .name = "VBAR", .state = ARM_CP_STATE_BOTH, 9733 .opc0 = 3, .crn = 12, .crm = 0, .opc1 = 0, .opc2 = 0, 9734 .access = PL1_RW, .writefn = vbar_write, 9735 .accessfn = access_nv1, 9736 .fgt = FGT_VBAR_EL1, 9737 .nv2_redirect_offset = 0x250 | NV2_REDIR_NV1, 9738 .bank_fieldoffsets = { offsetof(CPUARMState, cp15.vbar_s), 9739 offsetof(CPUARMState, cp15.vbar_ns) }, 9740 .resetvalue = 0 }, 9741 }; 9742 define_arm_cp_regs(cpu, vbar_cp_reginfo); 9743 } 9744 9745 /* Generic registers whose values depend on the implementation */ 9746 { 9747 ARMCPRegInfo sctlr = { 9748 .name = "SCTLR", .state = ARM_CP_STATE_BOTH, 9749 .opc0 = 3, .opc1 = 0, .crn = 1, .crm = 0, .opc2 = 0, 9750 .access = PL1_RW, .accessfn = access_tvm_trvm, 9751 .fgt = FGT_SCTLR_EL1, 9752 .nv2_redirect_offset = 0x110 | NV2_REDIR_NV1, 9753 .bank_fieldoffsets = { offsetof(CPUARMState, cp15.sctlr_s), 9754 offsetof(CPUARMState, cp15.sctlr_ns) }, 9755 .writefn = sctlr_write, .resetvalue = cpu->reset_sctlr, 9756 .raw_writefn = raw_write, 9757 }; 9758 if (arm_feature(env, ARM_FEATURE_XSCALE)) { 9759 /* 9760 * Normally we would always end the TB on an SCTLR write, but Linux 9761 * arch/arm/mach-pxa/sleep.S expects two instructions following 9762 * an MMU enable to execute from cache. Imitate this behaviour. 9763 */ 9764 sctlr.type |= ARM_CP_SUPPRESS_TB_END; 9765 } 9766 define_one_arm_cp_reg(cpu, &sctlr); 9767 9768 if (arm_feature(env, ARM_FEATURE_PMSA) && 9769 arm_feature(env, ARM_FEATURE_V8)) { 9770 ARMCPRegInfo vsctlr = { 9771 .name = "VSCTLR", .state = ARM_CP_STATE_AA32, 9772 .cp = 15, .opc1 = 4, .crn = 2, .crm = 0, .opc2 = 0, 9773 .access = PL2_RW, .resetvalue = 0x0, 9774 .fieldoffset = offsetoflow32(CPUARMState, cp15.vsctlr), 9775 }; 9776 define_one_arm_cp_reg(cpu, &vsctlr); 9777 } 9778 } 9779 9780 if (cpu_isar_feature(aa64_lor, cpu)) { 9781 define_arm_cp_regs(cpu, lor_reginfo); 9782 } 9783 if (cpu_isar_feature(aa64_pan, cpu)) { 9784 define_one_arm_cp_reg(cpu, &pan_reginfo); 9785 } 9786 #ifndef CONFIG_USER_ONLY 9787 if (cpu_isar_feature(aa64_ats1e1, cpu)) { 9788 define_arm_cp_regs(cpu, ats1e1_reginfo); 9789 } 9790 if (cpu_isar_feature(aa32_ats1e1, cpu)) { 9791 define_arm_cp_regs(cpu, ats1cp_reginfo); 9792 } 9793 #endif 9794 if (cpu_isar_feature(aa64_uao, cpu)) { 9795 define_one_arm_cp_reg(cpu, &uao_reginfo); 9796 } 9797 9798 if (cpu_isar_feature(aa64_dit, cpu)) { 9799 define_one_arm_cp_reg(cpu, &dit_reginfo); 9800 } 9801 if (cpu_isar_feature(aa64_ssbs, cpu)) { 9802 define_one_arm_cp_reg(cpu, &ssbs_reginfo); 9803 } 9804 if (cpu_isar_feature(any_ras, cpu)) { 9805 define_arm_cp_regs(cpu, minimal_ras_reginfo); 9806 } 9807 9808 if (cpu_isar_feature(aa64_vh, cpu) || 9809 cpu_isar_feature(aa64_debugv8p2, cpu)) { 9810 define_one_arm_cp_reg(cpu, &contextidr_el2); 9811 } 9812 if (arm_feature(env, ARM_FEATURE_EL2) && cpu_isar_feature(aa64_vh, cpu)) { 9813 define_arm_cp_regs(cpu, vhe_reginfo); 9814 } 9815 9816 if (cpu_isar_feature(aa64_sve, cpu)) { 9817 define_arm_cp_regs(cpu, zcr_reginfo); 9818 } 9819 9820 if (cpu_isar_feature(aa64_hcx, cpu)) { 9821 define_one_arm_cp_reg(cpu, &hcrx_el2_reginfo); 9822 } 9823 9824 #ifdef TARGET_AARCH64 9825 if (cpu_isar_feature(aa64_sme, cpu)) { 9826 define_arm_cp_regs(cpu, sme_reginfo); 9827 } 9828 if (cpu_isar_feature(aa64_pauth, cpu)) { 9829 define_arm_cp_regs(cpu, pauth_reginfo); 9830 } 9831 if (cpu_isar_feature(aa64_rndr, cpu)) { 9832 define_arm_cp_regs(cpu, rndr_reginfo); 9833 } 9834 if (cpu_isar_feature(aa64_tlbirange, cpu)) { 9835 define_arm_cp_regs(cpu, tlbirange_reginfo); 9836 } 9837 if (cpu_isar_feature(aa64_tlbios, cpu)) { 9838 define_arm_cp_regs(cpu, tlbios_reginfo); 9839 } 9840 /* Data Cache clean instructions up to PoP */ 9841 if (cpu_isar_feature(aa64_dcpop, cpu)) { 9842 define_one_arm_cp_reg(cpu, dcpop_reg); 9843 9844 if (cpu_isar_feature(aa64_dcpodp, cpu)) { 9845 define_one_arm_cp_reg(cpu, dcpodp_reg); 9846 } 9847 } 9848 9849 /* 9850 * If full MTE is enabled, add all of the system registers. 9851 * If only "instructions available at EL0" are enabled, 9852 * then define only a RAZ/WI version of PSTATE.TCO. 9853 */ 9854 if (cpu_isar_feature(aa64_mte, cpu)) { 9855 ARMCPRegInfo gmid_reginfo = { 9856 .name = "GMID_EL1", .state = ARM_CP_STATE_AA64, 9857 .opc0 = 3, .opc1 = 1, .crn = 0, .crm = 0, .opc2 = 4, 9858 .access = PL1_R, .accessfn = access_aa64_tid5, 9859 .type = ARM_CP_CONST, .resetvalue = cpu->gm_blocksize, 9860 }; 9861 define_one_arm_cp_reg(cpu, &gmid_reginfo); 9862 define_arm_cp_regs(cpu, mte_reginfo); 9863 define_arm_cp_regs(cpu, mte_el0_cacheop_reginfo); 9864 } else if (cpu_isar_feature(aa64_mte_insn_reg, cpu)) { 9865 define_arm_cp_regs(cpu, mte_tco_ro_reginfo); 9866 define_arm_cp_regs(cpu, mte_el0_cacheop_reginfo); 9867 } 9868 9869 if (cpu_isar_feature(aa64_scxtnum, cpu)) { 9870 define_arm_cp_regs(cpu, scxtnum_reginfo); 9871 } 9872 9873 if (cpu_isar_feature(aa64_fgt, cpu)) { 9874 define_arm_cp_regs(cpu, fgt_reginfo); 9875 } 9876 9877 if (cpu_isar_feature(aa64_rme, cpu)) { 9878 define_arm_cp_regs(cpu, rme_reginfo); 9879 if (cpu_isar_feature(aa64_mte, cpu)) { 9880 define_arm_cp_regs(cpu, rme_mte_reginfo); 9881 } 9882 } 9883 9884 if (cpu_isar_feature(aa64_nv2, cpu)) { 9885 define_arm_cp_regs(cpu, nv2_reginfo); 9886 } 9887 #endif 9888 9889 if (cpu_isar_feature(any_predinv, cpu)) { 9890 define_arm_cp_regs(cpu, predinv_reginfo); 9891 } 9892 9893 if (cpu_isar_feature(any_ccidx, cpu)) { 9894 define_arm_cp_regs(cpu, ccsidr2_reginfo); 9895 } 9896 9897 #ifndef CONFIG_USER_ONLY 9898 /* 9899 * Register redirections and aliases must be done last, 9900 * after the registers from the other extensions have been defined. 9901 */ 9902 if (arm_feature(env, ARM_FEATURE_EL2) && cpu_isar_feature(aa64_vh, cpu)) { 9903 define_arm_vh_e2h_redirects_aliases(cpu); 9904 } 9905 #endif 9906 } 9907 9908 /* 9909 * Private utility function for define_one_arm_cp_reg_with_opaque(): 9910 * add a single reginfo struct to the hash table. 9911 */ 9912 static void add_cpreg_to_hashtable(ARMCPU *cpu, const ARMCPRegInfo *r, 9913 void *opaque, CPState state, 9914 CPSecureState secstate, 9915 int crm, int opc1, int opc2, 9916 const char *name) 9917 { 9918 CPUARMState *env = &cpu->env; 9919 uint32_t key; 9920 ARMCPRegInfo *r2; 9921 bool is64 = r->type & ARM_CP_64BIT; 9922 bool ns = secstate & ARM_CP_SECSTATE_NS; 9923 int cp = r->cp; 9924 size_t name_len; 9925 bool make_const; 9926 9927 switch (state) { 9928 case ARM_CP_STATE_AA32: 9929 /* We assume it is a cp15 register if the .cp field is left unset. */ 9930 if (cp == 0 && r->state == ARM_CP_STATE_BOTH) { 9931 cp = 15; 9932 } 9933 key = ENCODE_CP_REG(cp, is64, ns, r->crn, crm, opc1, opc2); 9934 break; 9935 case ARM_CP_STATE_AA64: 9936 /* 9937 * To allow abbreviation of ARMCPRegInfo definitions, we treat 9938 * cp == 0 as equivalent to the value for "standard guest-visible 9939 * sysreg". STATE_BOTH definitions are also always "standard sysreg" 9940 * in their AArch64 view (the .cp value may be non-zero for the 9941 * benefit of the AArch32 view). 9942 */ 9943 if (cp == 0 || r->state == ARM_CP_STATE_BOTH) { 9944 cp = CP_REG_ARM64_SYSREG_CP; 9945 } 9946 key = ENCODE_AA64_CP_REG(cp, r->crn, crm, r->opc0, opc1, opc2); 9947 break; 9948 default: 9949 g_assert_not_reached(); 9950 } 9951 9952 /* Overriding of an existing definition must be explicitly requested. */ 9953 if (!(r->type & ARM_CP_OVERRIDE)) { 9954 const ARMCPRegInfo *oldreg = get_arm_cp_reginfo(cpu->cp_regs, key); 9955 if (oldreg) { 9956 assert(oldreg->type & ARM_CP_OVERRIDE); 9957 } 9958 } 9959 9960 /* 9961 * Eliminate registers that are not present because the EL is missing. 9962 * Doing this here makes it easier to put all registers for a given 9963 * feature into the same ARMCPRegInfo array and define them all at once. 9964 */ 9965 make_const = false; 9966 if (arm_feature(env, ARM_FEATURE_EL3)) { 9967 /* 9968 * An EL2 register without EL2 but with EL3 is (usually) RES0. 9969 * See rule RJFFP in section D1.1.3 of DDI0487H.a. 9970 */ 9971 int min_el = ctz32(r->access) / 2; 9972 if (min_el == 2 && !arm_feature(env, ARM_FEATURE_EL2)) { 9973 if (r->type & ARM_CP_EL3_NO_EL2_UNDEF) { 9974 return; 9975 } 9976 make_const = !(r->type & ARM_CP_EL3_NO_EL2_KEEP); 9977 } 9978 } else { 9979 CPAccessRights max_el = (arm_feature(env, ARM_FEATURE_EL2) 9980 ? PL2_RW : PL1_RW); 9981 if ((r->access & max_el) == 0) { 9982 return; 9983 } 9984 } 9985 9986 /* Combine cpreg and name into one allocation. */ 9987 name_len = strlen(name) + 1; 9988 r2 = g_malloc(sizeof(*r2) + name_len); 9989 *r2 = *r; 9990 r2->name = memcpy(r2 + 1, name, name_len); 9991 9992 /* 9993 * Update fields to match the instantiation, overwiting wildcards 9994 * such as CP_ANY, ARM_CP_STATE_BOTH, or ARM_CP_SECSTATE_BOTH. 9995 */ 9996 r2->cp = cp; 9997 r2->crm = crm; 9998 r2->opc1 = opc1; 9999 r2->opc2 = opc2; 10000 r2->state = state; 10001 r2->secure = secstate; 10002 if (opaque) { 10003 r2->opaque = opaque; 10004 } 10005 10006 if (make_const) { 10007 /* This should not have been a very special register to begin. */ 10008 int old_special = r2->type & ARM_CP_SPECIAL_MASK; 10009 assert(old_special == 0 || old_special == ARM_CP_NOP); 10010 /* 10011 * Set the special function to CONST, retaining the other flags. 10012 * This is important for e.g. ARM_CP_SVE so that we still 10013 * take the SVE trap if CPTR_EL3.EZ == 0. 10014 */ 10015 r2->type = (r2->type & ~ARM_CP_SPECIAL_MASK) | ARM_CP_CONST; 10016 /* 10017 * Usually, these registers become RES0, but there are a few 10018 * special cases like VPIDR_EL2 which have a constant non-zero 10019 * value with writes ignored. 10020 */ 10021 if (!(r->type & ARM_CP_EL3_NO_EL2_C_NZ)) { 10022 r2->resetvalue = 0; 10023 } 10024 /* 10025 * ARM_CP_CONST has precedence, so removing the callbacks and 10026 * offsets are not strictly necessary, but it is potentially 10027 * less confusing to debug later. 10028 */ 10029 r2->readfn = NULL; 10030 r2->writefn = NULL; 10031 r2->raw_readfn = NULL; 10032 r2->raw_writefn = NULL; 10033 r2->resetfn = NULL; 10034 r2->fieldoffset = 0; 10035 r2->bank_fieldoffsets[0] = 0; 10036 r2->bank_fieldoffsets[1] = 0; 10037 } else { 10038 bool isbanked = r->bank_fieldoffsets[0] && r->bank_fieldoffsets[1]; 10039 10040 if (isbanked) { 10041 /* 10042 * Register is banked (using both entries in array). 10043 * Overwriting fieldoffset as the array is only used to define 10044 * banked registers but later only fieldoffset is used. 10045 */ 10046 r2->fieldoffset = r->bank_fieldoffsets[ns]; 10047 } 10048 if (state == ARM_CP_STATE_AA32) { 10049 if (isbanked) { 10050 /* 10051 * If the register is banked then we don't need to migrate or 10052 * reset the 32-bit instance in certain cases: 10053 * 10054 * 1) If the register has both 32-bit and 64-bit instances 10055 * then we can count on the 64-bit instance taking care 10056 * of the non-secure bank. 10057 * 2) If ARMv8 is enabled then we can count on a 64-bit 10058 * version taking care of the secure bank. This requires 10059 * that separate 32 and 64-bit definitions are provided. 10060 */ 10061 if ((r->state == ARM_CP_STATE_BOTH && ns) || 10062 (arm_feature(env, ARM_FEATURE_V8) && !ns)) { 10063 r2->type |= ARM_CP_ALIAS; 10064 } 10065 } else if ((secstate != r->secure) && !ns) { 10066 /* 10067 * The register is not banked so we only want to allow 10068 * migration of the non-secure instance. 10069 */ 10070 r2->type |= ARM_CP_ALIAS; 10071 } 10072 10073 if (HOST_BIG_ENDIAN && 10074 r->state == ARM_CP_STATE_BOTH && r2->fieldoffset) { 10075 r2->fieldoffset += sizeof(uint32_t); 10076 } 10077 } 10078 } 10079 10080 /* 10081 * By convention, for wildcarded registers only the first 10082 * entry is used for migration; the others are marked as 10083 * ALIAS so we don't try to transfer the register 10084 * multiple times. Special registers (ie NOP/WFI) are 10085 * never migratable and not even raw-accessible. 10086 */ 10087 if (r2->type & ARM_CP_SPECIAL_MASK) { 10088 r2->type |= ARM_CP_NO_RAW; 10089 } 10090 if (((r->crm == CP_ANY) && crm != 0) || 10091 ((r->opc1 == CP_ANY) && opc1 != 0) || 10092 ((r->opc2 == CP_ANY) && opc2 != 0)) { 10093 r2->type |= ARM_CP_ALIAS | ARM_CP_NO_GDB; 10094 } 10095 10096 /* 10097 * Check that raw accesses are either forbidden or handled. Note that 10098 * we can't assert this earlier because the setup of fieldoffset for 10099 * banked registers has to be done first. 10100 */ 10101 if (!(r2->type & ARM_CP_NO_RAW)) { 10102 assert(!raw_accessors_invalid(r2)); 10103 } 10104 10105 g_hash_table_insert(cpu->cp_regs, (gpointer)(uintptr_t)key, r2); 10106 } 10107 10108 10109 void define_one_arm_cp_reg_with_opaque(ARMCPU *cpu, 10110 const ARMCPRegInfo *r, void *opaque) 10111 { 10112 /* 10113 * Define implementations of coprocessor registers. 10114 * We store these in a hashtable because typically 10115 * there are less than 150 registers in a space which 10116 * is 16*16*16*8*8 = 262144 in size. 10117 * Wildcarding is supported for the crm, opc1 and opc2 fields. 10118 * If a register is defined twice then the second definition is 10119 * used, so this can be used to define some generic registers and 10120 * then override them with implementation specific variations. 10121 * At least one of the original and the second definition should 10122 * include ARM_CP_OVERRIDE in its type bits -- this is just a guard 10123 * against accidental use. 10124 * 10125 * The state field defines whether the register is to be 10126 * visible in the AArch32 or AArch64 execution state. If the 10127 * state is set to ARM_CP_STATE_BOTH then we synthesise a 10128 * reginfo structure for the AArch32 view, which sees the lower 10129 * 32 bits of the 64 bit register. 10130 * 10131 * Only registers visible in AArch64 may set r->opc0; opc0 cannot 10132 * be wildcarded. AArch64 registers are always considered to be 64 10133 * bits; the ARM_CP_64BIT* flag applies only to the AArch32 view of 10134 * the register, if any. 10135 */ 10136 int crm, opc1, opc2; 10137 int crmmin = (r->crm == CP_ANY) ? 0 : r->crm; 10138 int crmmax = (r->crm == CP_ANY) ? 15 : r->crm; 10139 int opc1min = (r->opc1 == CP_ANY) ? 0 : r->opc1; 10140 int opc1max = (r->opc1 == CP_ANY) ? 7 : r->opc1; 10141 int opc2min = (r->opc2 == CP_ANY) ? 0 : r->opc2; 10142 int opc2max = (r->opc2 == CP_ANY) ? 7 : r->opc2; 10143 CPState state; 10144 10145 /* 64 bit registers have only CRm and Opc1 fields */ 10146 assert(!((r->type & ARM_CP_64BIT) && (r->opc2 || r->crn))); 10147 /* op0 only exists in the AArch64 encodings */ 10148 assert((r->state != ARM_CP_STATE_AA32) || (r->opc0 == 0)); 10149 /* AArch64 regs are all 64 bit so ARM_CP_64BIT is meaningless */ 10150 assert((r->state != ARM_CP_STATE_AA64) || !(r->type & ARM_CP_64BIT)); 10151 /* 10152 * This API is only for Arm's system coprocessors (14 and 15) or 10153 * (M-profile or v7A-and-earlier only) for implementation defined 10154 * coprocessors in the range 0..7. Our decode assumes this, since 10155 * 8..13 can be used for other insns including VFP and Neon. See 10156 * valid_cp() in translate.c. Assert here that we haven't tried 10157 * to use an invalid coprocessor number. 10158 */ 10159 switch (r->state) { 10160 case ARM_CP_STATE_BOTH: 10161 /* 0 has a special meaning, but otherwise the same rules as AA32. */ 10162 if (r->cp == 0) { 10163 break; 10164 } 10165 /* fall through */ 10166 case ARM_CP_STATE_AA32: 10167 if (arm_feature(&cpu->env, ARM_FEATURE_V8) && 10168 !arm_feature(&cpu->env, ARM_FEATURE_M)) { 10169 assert(r->cp >= 14 && r->cp <= 15); 10170 } else { 10171 assert(r->cp < 8 || (r->cp >= 14 && r->cp <= 15)); 10172 } 10173 break; 10174 case ARM_CP_STATE_AA64: 10175 assert(r->cp == 0 || r->cp == CP_REG_ARM64_SYSREG_CP); 10176 break; 10177 default: 10178 g_assert_not_reached(); 10179 } 10180 /* 10181 * The AArch64 pseudocode CheckSystemAccess() specifies that op1 10182 * encodes a minimum access level for the register. We roll this 10183 * runtime check into our general permission check code, so check 10184 * here that the reginfo's specified permissions are strict enough 10185 * to encompass the generic architectural permission check. 10186 */ 10187 if (r->state != ARM_CP_STATE_AA32) { 10188 CPAccessRights mask; 10189 switch (r->opc1) { 10190 case 0: 10191 /* min_EL EL1, but some accessible to EL0 via kernel ABI */ 10192 mask = PL0U_R | PL1_RW; 10193 break; 10194 case 1: case 2: 10195 /* min_EL EL1 */ 10196 mask = PL1_RW; 10197 break; 10198 case 3: 10199 /* min_EL EL0 */ 10200 mask = PL0_RW; 10201 break; 10202 case 4: 10203 case 5: 10204 /* min_EL EL2 */ 10205 mask = PL2_RW; 10206 break; 10207 case 6: 10208 /* min_EL EL3 */ 10209 mask = PL3_RW; 10210 break; 10211 case 7: 10212 /* min_EL EL1, secure mode only (we don't check the latter) */ 10213 mask = PL1_RW; 10214 break; 10215 default: 10216 /* broken reginfo with out-of-range opc1 */ 10217 g_assert_not_reached(); 10218 } 10219 /* assert our permissions are not too lax (stricter is fine) */ 10220 assert((r->access & ~mask) == 0); 10221 } 10222 10223 /* 10224 * Check that the register definition has enough info to handle 10225 * reads and writes if they are permitted. 10226 */ 10227 if (!(r->type & (ARM_CP_SPECIAL_MASK | ARM_CP_CONST))) { 10228 if (r->access & PL3_R) { 10229 assert((r->fieldoffset || 10230 (r->bank_fieldoffsets[0] && r->bank_fieldoffsets[1])) || 10231 r->readfn); 10232 } 10233 if (r->access & PL3_W) { 10234 assert((r->fieldoffset || 10235 (r->bank_fieldoffsets[0] && r->bank_fieldoffsets[1])) || 10236 r->writefn); 10237 } 10238 } 10239 10240 for (crm = crmmin; crm <= crmmax; crm++) { 10241 for (opc1 = opc1min; opc1 <= opc1max; opc1++) { 10242 for (opc2 = opc2min; opc2 <= opc2max; opc2++) { 10243 for (state = ARM_CP_STATE_AA32; 10244 state <= ARM_CP_STATE_AA64; state++) { 10245 if (r->state != state && r->state != ARM_CP_STATE_BOTH) { 10246 continue; 10247 } 10248 if (state == ARM_CP_STATE_AA32) { 10249 /* 10250 * Under AArch32 CP registers can be common 10251 * (same for secure and non-secure world) or banked. 10252 */ 10253 char *name; 10254 10255 switch (r->secure) { 10256 case ARM_CP_SECSTATE_S: 10257 case ARM_CP_SECSTATE_NS: 10258 add_cpreg_to_hashtable(cpu, r, opaque, state, 10259 r->secure, crm, opc1, opc2, 10260 r->name); 10261 break; 10262 case ARM_CP_SECSTATE_BOTH: 10263 name = g_strdup_printf("%s_S", r->name); 10264 add_cpreg_to_hashtable(cpu, r, opaque, state, 10265 ARM_CP_SECSTATE_S, 10266 crm, opc1, opc2, name); 10267 g_free(name); 10268 add_cpreg_to_hashtable(cpu, r, opaque, state, 10269 ARM_CP_SECSTATE_NS, 10270 crm, opc1, opc2, r->name); 10271 break; 10272 default: 10273 g_assert_not_reached(); 10274 } 10275 } else { 10276 /* 10277 * AArch64 registers get mapped to non-secure instance 10278 * of AArch32 10279 */ 10280 add_cpreg_to_hashtable(cpu, r, opaque, state, 10281 ARM_CP_SECSTATE_NS, 10282 crm, opc1, opc2, r->name); 10283 } 10284 } 10285 } 10286 } 10287 } 10288 } 10289 10290 /* Define a whole list of registers */ 10291 void define_arm_cp_regs_with_opaque_len(ARMCPU *cpu, const ARMCPRegInfo *regs, 10292 void *opaque, size_t len) 10293 { 10294 size_t i; 10295 for (i = 0; i < len; ++i) { 10296 define_one_arm_cp_reg_with_opaque(cpu, regs + i, opaque); 10297 } 10298 } 10299 10300 /* 10301 * Modify ARMCPRegInfo for access from userspace. 10302 * 10303 * This is a data driven modification directed by 10304 * ARMCPRegUserSpaceInfo. All registers become ARM_CP_CONST as 10305 * user-space cannot alter any values and dynamic values pertaining to 10306 * execution state are hidden from user space view anyway. 10307 */ 10308 void modify_arm_cp_regs_with_len(ARMCPRegInfo *regs, size_t regs_len, 10309 const ARMCPRegUserSpaceInfo *mods, 10310 size_t mods_len) 10311 { 10312 for (size_t mi = 0; mi < mods_len; ++mi) { 10313 const ARMCPRegUserSpaceInfo *m = mods + mi; 10314 GPatternSpec *pat = NULL; 10315 10316 if (m->is_glob) { 10317 pat = g_pattern_spec_new(m->name); 10318 } 10319 for (size_t ri = 0; ri < regs_len; ++ri) { 10320 ARMCPRegInfo *r = regs + ri; 10321 10322 if (pat && g_pattern_match_string(pat, r->name)) { 10323 r->type = ARM_CP_CONST; 10324 r->access = PL0U_R; 10325 r->resetvalue = 0; 10326 /* continue */ 10327 } else if (strcmp(r->name, m->name) == 0) { 10328 r->type = ARM_CP_CONST; 10329 r->access = PL0U_R; 10330 r->resetvalue &= m->exported_bits; 10331 r->resetvalue |= m->fixed_bits; 10332 break; 10333 } 10334 } 10335 if (pat) { 10336 g_pattern_spec_free(pat); 10337 } 10338 } 10339 } 10340 10341 const ARMCPRegInfo *get_arm_cp_reginfo(GHashTable *cpregs, uint32_t encoded_cp) 10342 { 10343 return g_hash_table_lookup(cpregs, (gpointer)(uintptr_t)encoded_cp); 10344 } 10345 10346 void arm_cp_write_ignore(CPUARMState *env, const ARMCPRegInfo *ri, 10347 uint64_t value) 10348 { 10349 /* Helper coprocessor write function for write-ignore registers */ 10350 } 10351 10352 uint64_t arm_cp_read_zero(CPUARMState *env, const ARMCPRegInfo *ri) 10353 { 10354 /* Helper coprocessor write function for read-as-zero registers */ 10355 return 0; 10356 } 10357 10358 void arm_cp_reset_ignore(CPUARMState *env, const ARMCPRegInfo *opaque) 10359 { 10360 /* Helper coprocessor reset function for do-nothing-on-reset registers */ 10361 } 10362 10363 static int bad_mode_switch(CPUARMState *env, int mode, CPSRWriteType write_type) 10364 { 10365 /* 10366 * Return true if it is not valid for us to switch to 10367 * this CPU mode (ie all the UNPREDICTABLE cases in 10368 * the ARM ARM CPSRWriteByInstr pseudocode). 10369 */ 10370 10371 /* Changes to or from Hyp via MSR and CPS are illegal. */ 10372 if (write_type == CPSRWriteByInstr && 10373 ((env->uncached_cpsr & CPSR_M) == ARM_CPU_MODE_HYP || 10374 mode == ARM_CPU_MODE_HYP)) { 10375 return 1; 10376 } 10377 10378 switch (mode) { 10379 case ARM_CPU_MODE_USR: 10380 return 0; 10381 case ARM_CPU_MODE_SYS: 10382 case ARM_CPU_MODE_SVC: 10383 case ARM_CPU_MODE_ABT: 10384 case ARM_CPU_MODE_UND: 10385 case ARM_CPU_MODE_IRQ: 10386 case ARM_CPU_MODE_FIQ: 10387 /* 10388 * Note that we don't implement the IMPDEF NSACR.RFR which in v7 10389 * allows FIQ mode to be Secure-only. (In v8 this doesn't exist.) 10390 */ 10391 /* 10392 * If HCR.TGE is set then changes from Monitor to NS PL1 via MSR 10393 * and CPS are treated as illegal mode changes. 10394 */ 10395 if (write_type == CPSRWriteByInstr && 10396 (env->uncached_cpsr & CPSR_M) == ARM_CPU_MODE_MON && 10397 (arm_hcr_el2_eff(env) & HCR_TGE)) { 10398 return 1; 10399 } 10400 return 0; 10401 case ARM_CPU_MODE_HYP: 10402 return !arm_is_el2_enabled(env) || arm_current_el(env) < 2; 10403 case ARM_CPU_MODE_MON: 10404 return arm_current_el(env) < 3; 10405 default: 10406 return 1; 10407 } 10408 } 10409 10410 uint32_t cpsr_read(CPUARMState *env) 10411 { 10412 int ZF; 10413 ZF = (env->ZF == 0); 10414 return env->uncached_cpsr | (env->NF & 0x80000000) | (ZF << 30) | 10415 (env->CF << 29) | ((env->VF & 0x80000000) >> 3) | (env->QF << 27) 10416 | (env->thumb << 5) | ((env->condexec_bits & 3) << 25) 10417 | ((env->condexec_bits & 0xfc) << 8) 10418 | (env->GE << 16) | (env->daif & CPSR_AIF); 10419 } 10420 10421 void cpsr_write(CPUARMState *env, uint32_t val, uint32_t mask, 10422 CPSRWriteType write_type) 10423 { 10424 uint32_t changed_daif; 10425 bool rebuild_hflags = (write_type != CPSRWriteRaw) && 10426 (mask & (CPSR_M | CPSR_E | CPSR_IL)); 10427 10428 if (mask & CPSR_NZCV) { 10429 env->ZF = (~val) & CPSR_Z; 10430 env->NF = val; 10431 env->CF = (val >> 29) & 1; 10432 env->VF = (val << 3) & 0x80000000; 10433 } 10434 if (mask & CPSR_Q) { 10435 env->QF = ((val & CPSR_Q) != 0); 10436 } 10437 if (mask & CPSR_T) { 10438 env->thumb = ((val & CPSR_T) != 0); 10439 } 10440 if (mask & CPSR_IT_0_1) { 10441 env->condexec_bits &= ~3; 10442 env->condexec_bits |= (val >> 25) & 3; 10443 } 10444 if (mask & CPSR_IT_2_7) { 10445 env->condexec_bits &= 3; 10446 env->condexec_bits |= (val >> 8) & 0xfc; 10447 } 10448 if (mask & CPSR_GE) { 10449 env->GE = (val >> 16) & 0xf; 10450 } 10451 10452 /* 10453 * In a V7 implementation that includes the security extensions but does 10454 * not include Virtualization Extensions the SCR.FW and SCR.AW bits control 10455 * whether non-secure software is allowed to change the CPSR_F and CPSR_A 10456 * bits respectively. 10457 * 10458 * In a V8 implementation, it is permitted for privileged software to 10459 * change the CPSR A/F bits regardless of the SCR.AW/FW bits. 10460 */ 10461 if (write_type != CPSRWriteRaw && !arm_feature(env, ARM_FEATURE_V8) && 10462 arm_feature(env, ARM_FEATURE_EL3) && 10463 !arm_feature(env, ARM_FEATURE_EL2) && 10464 !arm_is_secure(env)) { 10465 10466 changed_daif = (env->daif ^ val) & mask; 10467 10468 if (changed_daif & CPSR_A) { 10469 /* 10470 * Check to see if we are allowed to change the masking of async 10471 * abort exceptions from a non-secure state. 10472 */ 10473 if (!(env->cp15.scr_el3 & SCR_AW)) { 10474 qemu_log_mask(LOG_GUEST_ERROR, 10475 "Ignoring attempt to switch CPSR_A flag from " 10476 "non-secure world with SCR.AW bit clear\n"); 10477 mask &= ~CPSR_A; 10478 } 10479 } 10480 10481 if (changed_daif & CPSR_F) { 10482 /* 10483 * Check to see if we are allowed to change the masking of FIQ 10484 * exceptions from a non-secure state. 10485 */ 10486 if (!(env->cp15.scr_el3 & SCR_FW)) { 10487 qemu_log_mask(LOG_GUEST_ERROR, 10488 "Ignoring attempt to switch CPSR_F flag from " 10489 "non-secure world with SCR.FW bit clear\n"); 10490 mask &= ~CPSR_F; 10491 } 10492 10493 /* 10494 * Check whether non-maskable FIQ (NMFI) support is enabled. 10495 * If this bit is set software is not allowed to mask 10496 * FIQs, but is allowed to set CPSR_F to 0. 10497 */ 10498 if ((A32_BANKED_CURRENT_REG_GET(env, sctlr) & SCTLR_NMFI) && 10499 (val & CPSR_F)) { 10500 qemu_log_mask(LOG_GUEST_ERROR, 10501 "Ignoring attempt to enable CPSR_F flag " 10502 "(non-maskable FIQ [NMFI] support enabled)\n"); 10503 mask &= ~CPSR_F; 10504 } 10505 } 10506 } 10507 10508 env->daif &= ~(CPSR_AIF & mask); 10509 env->daif |= val & CPSR_AIF & mask; 10510 10511 if (write_type != CPSRWriteRaw && 10512 ((env->uncached_cpsr ^ val) & mask & CPSR_M)) { 10513 if ((env->uncached_cpsr & CPSR_M) == ARM_CPU_MODE_USR) { 10514 /* 10515 * Note that we can only get here in USR mode if this is a 10516 * gdb stub write; for this case we follow the architectural 10517 * behaviour for guest writes in USR mode of ignoring an attempt 10518 * to switch mode. (Those are caught by translate.c for writes 10519 * triggered by guest instructions.) 10520 */ 10521 mask &= ~CPSR_M; 10522 } else if (bad_mode_switch(env, val & CPSR_M, write_type)) { 10523 /* 10524 * Attempt to switch to an invalid mode: this is UNPREDICTABLE in 10525 * v7, and has defined behaviour in v8: 10526 * + leave CPSR.M untouched 10527 * + allow changes to the other CPSR fields 10528 * + set PSTATE.IL 10529 * For user changes via the GDB stub, we don't set PSTATE.IL, 10530 * as this would be unnecessarily harsh for a user error. 10531 */ 10532 mask &= ~CPSR_M; 10533 if (write_type != CPSRWriteByGDBStub && 10534 arm_feature(env, ARM_FEATURE_V8)) { 10535 mask |= CPSR_IL; 10536 val |= CPSR_IL; 10537 } 10538 qemu_log_mask(LOG_GUEST_ERROR, 10539 "Illegal AArch32 mode switch attempt from %s to %s\n", 10540 aarch32_mode_name(env->uncached_cpsr), 10541 aarch32_mode_name(val)); 10542 } else { 10543 qemu_log_mask(CPU_LOG_INT, "%s %s to %s PC 0x%" PRIx32 "\n", 10544 write_type == CPSRWriteExceptionReturn ? 10545 "Exception return from AArch32" : 10546 "AArch32 mode switch from", 10547 aarch32_mode_name(env->uncached_cpsr), 10548 aarch32_mode_name(val), env->regs[15]); 10549 switch_mode(env, val & CPSR_M); 10550 } 10551 } 10552 mask &= ~CACHED_CPSR_BITS; 10553 env->uncached_cpsr = (env->uncached_cpsr & ~mask) | (val & mask); 10554 if (tcg_enabled() && rebuild_hflags) { 10555 arm_rebuild_hflags(env); 10556 } 10557 } 10558 10559 #ifdef CONFIG_USER_ONLY 10560 10561 static void switch_mode(CPUARMState *env, int mode) 10562 { 10563 ARMCPU *cpu = env_archcpu(env); 10564 10565 if (mode != ARM_CPU_MODE_USR) { 10566 cpu_abort(CPU(cpu), "Tried to switch out of user mode\n"); 10567 } 10568 } 10569 10570 uint32_t arm_phys_excp_target_el(CPUState *cs, uint32_t excp_idx, 10571 uint32_t cur_el, bool secure) 10572 { 10573 return 1; 10574 } 10575 10576 void aarch64_sync_64_to_32(CPUARMState *env) 10577 { 10578 g_assert_not_reached(); 10579 } 10580 10581 #else 10582 10583 static void switch_mode(CPUARMState *env, int mode) 10584 { 10585 int old_mode; 10586 int i; 10587 10588 old_mode = env->uncached_cpsr & CPSR_M; 10589 if (mode == old_mode) { 10590 return; 10591 } 10592 10593 if (old_mode == ARM_CPU_MODE_FIQ) { 10594 memcpy(env->fiq_regs, env->regs + 8, 5 * sizeof(uint32_t)); 10595 memcpy(env->regs + 8, env->usr_regs, 5 * sizeof(uint32_t)); 10596 } else if (mode == ARM_CPU_MODE_FIQ) { 10597 memcpy(env->usr_regs, env->regs + 8, 5 * sizeof(uint32_t)); 10598 memcpy(env->regs + 8, env->fiq_regs, 5 * sizeof(uint32_t)); 10599 } 10600 10601 i = bank_number(old_mode); 10602 env->banked_r13[i] = env->regs[13]; 10603 env->banked_spsr[i] = env->spsr; 10604 10605 i = bank_number(mode); 10606 env->regs[13] = env->banked_r13[i]; 10607 env->spsr = env->banked_spsr[i]; 10608 10609 env->banked_r14[r14_bank_number(old_mode)] = env->regs[14]; 10610 env->regs[14] = env->banked_r14[r14_bank_number(mode)]; 10611 } 10612 10613 /* 10614 * Physical Interrupt Target EL Lookup Table 10615 * 10616 * [ From ARM ARM section G1.13.4 (Table G1-15) ] 10617 * 10618 * The below multi-dimensional table is used for looking up the target 10619 * exception level given numerous condition criteria. Specifically, the 10620 * target EL is based on SCR and HCR routing controls as well as the 10621 * currently executing EL and secure state. 10622 * 10623 * Dimensions: 10624 * target_el_table[2][2][2][2][2][4] 10625 * | | | | | +--- Current EL 10626 * | | | | +------ Non-secure(0)/Secure(1) 10627 * | | | +--------- HCR mask override 10628 * | | +------------ SCR exec state control 10629 * | +--------------- SCR mask override 10630 * +------------------ 32-bit(0)/64-bit(1) EL3 10631 * 10632 * The table values are as such: 10633 * 0-3 = EL0-EL3 10634 * -1 = Cannot occur 10635 * 10636 * The ARM ARM target EL table includes entries indicating that an "exception 10637 * is not taken". The two cases where this is applicable are: 10638 * 1) An exception is taken from EL3 but the SCR does not have the exception 10639 * routed to EL3. 10640 * 2) An exception is taken from EL2 but the HCR does not have the exception 10641 * routed to EL2. 10642 * In these two cases, the below table contain a target of EL1. This value is 10643 * returned as it is expected that the consumer of the table data will check 10644 * for "target EL >= current EL" to ensure the exception is not taken. 10645 * 10646 * SCR HCR 10647 * 64 EA AMO From 10648 * BIT IRQ IMO Non-secure Secure 10649 * EL3 FIQ RW FMO EL0 EL1 EL2 EL3 EL0 EL1 EL2 EL3 10650 */ 10651 static const int8_t target_el_table[2][2][2][2][2][4] = { 10652 {{{{/* 0 0 0 0 */{ 1, 1, 2, -1 },{ 3, -1, -1, 3 },}, 10653 {/* 0 0 0 1 */{ 2, 2, 2, -1 },{ 3, -1, -1, 3 },},}, 10654 {{/* 0 0 1 0 */{ 1, 1, 2, -1 },{ 3, -1, -1, 3 },}, 10655 {/* 0 0 1 1 */{ 2, 2, 2, -1 },{ 3, -1, -1, 3 },},},}, 10656 {{{/* 0 1 0 0 */{ 3, 3, 3, -1 },{ 3, -1, -1, 3 },}, 10657 {/* 0 1 0 1 */{ 3, 3, 3, -1 },{ 3, -1, -1, 3 },},}, 10658 {{/* 0 1 1 0 */{ 3, 3, 3, -1 },{ 3, -1, -1, 3 },}, 10659 {/* 0 1 1 1 */{ 3, 3, 3, -1 },{ 3, -1, -1, 3 },},},},}, 10660 {{{{/* 1 0 0 0 */{ 1, 1, 2, -1 },{ 1, 1, -1, 1 },}, 10661 {/* 1 0 0 1 */{ 2, 2, 2, -1 },{ 2, 2, -1, 1 },},}, 10662 {{/* 1 0 1 0 */{ 1, 1, 1, -1 },{ 1, 1, 1, 1 },}, 10663 {/* 1 0 1 1 */{ 2, 2, 2, -1 },{ 2, 2, 2, 1 },},},}, 10664 {{{/* 1 1 0 0 */{ 3, 3, 3, -1 },{ 3, 3, -1, 3 },}, 10665 {/* 1 1 0 1 */{ 3, 3, 3, -1 },{ 3, 3, -1, 3 },},}, 10666 {{/* 1 1 1 0 */{ 3, 3, 3, -1 },{ 3, 3, 3, 3 },}, 10667 {/* 1 1 1 1 */{ 3, 3, 3, -1 },{ 3, 3, 3, 3 },},},},}, 10668 }; 10669 10670 /* 10671 * Determine the target EL for physical exceptions 10672 */ 10673 uint32_t arm_phys_excp_target_el(CPUState *cs, uint32_t excp_idx, 10674 uint32_t cur_el, bool secure) 10675 { 10676 CPUARMState *env = cpu_env(cs); 10677 bool rw; 10678 bool scr; 10679 bool hcr; 10680 int target_el; 10681 /* Is the highest EL AArch64? */ 10682 bool is64 = arm_feature(env, ARM_FEATURE_AARCH64); 10683 uint64_t hcr_el2; 10684 10685 if (arm_feature(env, ARM_FEATURE_EL3)) { 10686 rw = ((env->cp15.scr_el3 & SCR_RW) == SCR_RW); 10687 } else { 10688 /* 10689 * Either EL2 is the highest EL (and so the EL2 register width 10690 * is given by is64); or there is no EL2 or EL3, in which case 10691 * the value of 'rw' does not affect the table lookup anyway. 10692 */ 10693 rw = is64; 10694 } 10695 10696 hcr_el2 = arm_hcr_el2_eff(env); 10697 switch (excp_idx) { 10698 case EXCP_IRQ: 10699 scr = ((env->cp15.scr_el3 & SCR_IRQ) == SCR_IRQ); 10700 hcr = hcr_el2 & HCR_IMO; 10701 break; 10702 case EXCP_FIQ: 10703 scr = ((env->cp15.scr_el3 & SCR_FIQ) == SCR_FIQ); 10704 hcr = hcr_el2 & HCR_FMO; 10705 break; 10706 default: 10707 scr = ((env->cp15.scr_el3 & SCR_EA) == SCR_EA); 10708 hcr = hcr_el2 & HCR_AMO; 10709 break; 10710 }; 10711 10712 /* 10713 * For these purposes, TGE and AMO/IMO/FMO both force the 10714 * interrupt to EL2. Fold TGE into the bit extracted above. 10715 */ 10716 hcr |= (hcr_el2 & HCR_TGE) != 0; 10717 10718 /* Perform a table-lookup for the target EL given the current state */ 10719 target_el = target_el_table[is64][scr][rw][hcr][secure][cur_el]; 10720 10721 assert(target_el > 0); 10722 10723 return target_el; 10724 } 10725 10726 void arm_log_exception(CPUState *cs) 10727 { 10728 int idx = cs->exception_index; 10729 10730 if (qemu_loglevel_mask(CPU_LOG_INT)) { 10731 const char *exc = NULL; 10732 static const char * const excnames[] = { 10733 [EXCP_UDEF] = "Undefined Instruction", 10734 [EXCP_SWI] = "SVC", 10735 [EXCP_PREFETCH_ABORT] = "Prefetch Abort", 10736 [EXCP_DATA_ABORT] = "Data Abort", 10737 [EXCP_IRQ] = "IRQ", 10738 [EXCP_FIQ] = "FIQ", 10739 [EXCP_BKPT] = "Breakpoint", 10740 [EXCP_EXCEPTION_EXIT] = "QEMU v7M exception exit", 10741 [EXCP_KERNEL_TRAP] = "QEMU intercept of kernel commpage", 10742 [EXCP_HVC] = "Hypervisor Call", 10743 [EXCP_HYP_TRAP] = "Hypervisor Trap", 10744 [EXCP_SMC] = "Secure Monitor Call", 10745 [EXCP_VIRQ] = "Virtual IRQ", 10746 [EXCP_VFIQ] = "Virtual FIQ", 10747 [EXCP_SEMIHOST] = "Semihosting call", 10748 [EXCP_NOCP] = "v7M NOCP UsageFault", 10749 [EXCP_INVSTATE] = "v7M INVSTATE UsageFault", 10750 [EXCP_STKOF] = "v8M STKOF UsageFault", 10751 [EXCP_LAZYFP] = "v7M exception during lazy FP stacking", 10752 [EXCP_LSERR] = "v8M LSERR UsageFault", 10753 [EXCP_UNALIGNED] = "v7M UNALIGNED UsageFault", 10754 [EXCP_DIVBYZERO] = "v7M DIVBYZERO UsageFault", 10755 [EXCP_VSERR] = "Virtual SERR", 10756 [EXCP_GPC] = "Granule Protection Check", 10757 }; 10758 10759 if (idx >= 0 && idx < ARRAY_SIZE(excnames)) { 10760 exc = excnames[idx]; 10761 } 10762 if (!exc) { 10763 exc = "unknown"; 10764 } 10765 qemu_log_mask(CPU_LOG_INT, "Taking exception %d [%s] on CPU %d\n", 10766 idx, exc, cs->cpu_index); 10767 } 10768 } 10769 10770 /* 10771 * Function used to synchronize QEMU's AArch64 register set with AArch32 10772 * register set. This is necessary when switching between AArch32 and AArch64 10773 * execution state. 10774 */ 10775 void aarch64_sync_32_to_64(CPUARMState *env) 10776 { 10777 int i; 10778 uint32_t mode = env->uncached_cpsr & CPSR_M; 10779 10780 /* We can blanket copy R[0:7] to X[0:7] */ 10781 for (i = 0; i < 8; i++) { 10782 env->xregs[i] = env->regs[i]; 10783 } 10784 10785 /* 10786 * Unless we are in FIQ mode, x8-x12 come from the user registers r8-r12. 10787 * Otherwise, they come from the banked user regs. 10788 */ 10789 if (mode == ARM_CPU_MODE_FIQ) { 10790 for (i = 8; i < 13; i++) { 10791 env->xregs[i] = env->usr_regs[i - 8]; 10792 } 10793 } else { 10794 for (i = 8; i < 13; i++) { 10795 env->xregs[i] = env->regs[i]; 10796 } 10797 } 10798 10799 /* 10800 * Registers x13-x23 are the various mode SP and FP registers. Registers 10801 * r13 and r14 are only copied if we are in that mode, otherwise we copy 10802 * from the mode banked register. 10803 */ 10804 if (mode == ARM_CPU_MODE_USR || mode == ARM_CPU_MODE_SYS) { 10805 env->xregs[13] = env->regs[13]; 10806 env->xregs[14] = env->regs[14]; 10807 } else { 10808 env->xregs[13] = env->banked_r13[bank_number(ARM_CPU_MODE_USR)]; 10809 /* HYP is an exception in that it is copied from r14 */ 10810 if (mode == ARM_CPU_MODE_HYP) { 10811 env->xregs[14] = env->regs[14]; 10812 } else { 10813 env->xregs[14] = env->banked_r14[r14_bank_number(ARM_CPU_MODE_USR)]; 10814 } 10815 } 10816 10817 if (mode == ARM_CPU_MODE_HYP) { 10818 env->xregs[15] = env->regs[13]; 10819 } else { 10820 env->xregs[15] = env->banked_r13[bank_number(ARM_CPU_MODE_HYP)]; 10821 } 10822 10823 if (mode == ARM_CPU_MODE_IRQ) { 10824 env->xregs[16] = env->regs[14]; 10825 env->xregs[17] = env->regs[13]; 10826 } else { 10827 env->xregs[16] = env->banked_r14[r14_bank_number(ARM_CPU_MODE_IRQ)]; 10828 env->xregs[17] = env->banked_r13[bank_number(ARM_CPU_MODE_IRQ)]; 10829 } 10830 10831 if (mode == ARM_CPU_MODE_SVC) { 10832 env->xregs[18] = env->regs[14]; 10833 env->xregs[19] = env->regs[13]; 10834 } else { 10835 env->xregs[18] = env->banked_r14[r14_bank_number(ARM_CPU_MODE_SVC)]; 10836 env->xregs[19] = env->banked_r13[bank_number(ARM_CPU_MODE_SVC)]; 10837 } 10838 10839 if (mode == ARM_CPU_MODE_ABT) { 10840 env->xregs[20] = env->regs[14]; 10841 env->xregs[21] = env->regs[13]; 10842 } else { 10843 env->xregs[20] = env->banked_r14[r14_bank_number(ARM_CPU_MODE_ABT)]; 10844 env->xregs[21] = env->banked_r13[bank_number(ARM_CPU_MODE_ABT)]; 10845 } 10846 10847 if (mode == ARM_CPU_MODE_UND) { 10848 env->xregs[22] = env->regs[14]; 10849 env->xregs[23] = env->regs[13]; 10850 } else { 10851 env->xregs[22] = env->banked_r14[r14_bank_number(ARM_CPU_MODE_UND)]; 10852 env->xregs[23] = env->banked_r13[bank_number(ARM_CPU_MODE_UND)]; 10853 } 10854 10855 /* 10856 * Registers x24-x30 are mapped to r8-r14 in FIQ mode. If we are in FIQ 10857 * mode, then we can copy from r8-r14. Otherwise, we copy from the 10858 * FIQ bank for r8-r14. 10859 */ 10860 if (mode == ARM_CPU_MODE_FIQ) { 10861 for (i = 24; i < 31; i++) { 10862 env->xregs[i] = env->regs[i - 16]; /* X[24:30] <- R[8:14] */ 10863 } 10864 } else { 10865 for (i = 24; i < 29; i++) { 10866 env->xregs[i] = env->fiq_regs[i - 24]; 10867 } 10868 env->xregs[29] = env->banked_r13[bank_number(ARM_CPU_MODE_FIQ)]; 10869 env->xregs[30] = env->banked_r14[r14_bank_number(ARM_CPU_MODE_FIQ)]; 10870 } 10871 10872 env->pc = env->regs[15]; 10873 } 10874 10875 /* 10876 * Function used to synchronize QEMU's AArch32 register set with AArch64 10877 * register set. This is necessary when switching between AArch32 and AArch64 10878 * execution state. 10879 */ 10880 void aarch64_sync_64_to_32(CPUARMState *env) 10881 { 10882 int i; 10883 uint32_t mode = env->uncached_cpsr & CPSR_M; 10884 10885 /* We can blanket copy X[0:7] to R[0:7] */ 10886 for (i = 0; i < 8; i++) { 10887 env->regs[i] = env->xregs[i]; 10888 } 10889 10890 /* 10891 * Unless we are in FIQ mode, r8-r12 come from the user registers x8-x12. 10892 * Otherwise, we copy x8-x12 into the banked user regs. 10893 */ 10894 if (mode == ARM_CPU_MODE_FIQ) { 10895 for (i = 8; i < 13; i++) { 10896 env->usr_regs[i - 8] = env->xregs[i]; 10897 } 10898 } else { 10899 for (i = 8; i < 13; i++) { 10900 env->regs[i] = env->xregs[i]; 10901 } 10902 } 10903 10904 /* 10905 * Registers r13 & r14 depend on the current mode. 10906 * If we are in a given mode, we copy the corresponding x registers to r13 10907 * and r14. Otherwise, we copy the x register to the banked r13 and r14 10908 * for the mode. 10909 */ 10910 if (mode == ARM_CPU_MODE_USR || mode == ARM_CPU_MODE_SYS) { 10911 env->regs[13] = env->xregs[13]; 10912 env->regs[14] = env->xregs[14]; 10913 } else { 10914 env->banked_r13[bank_number(ARM_CPU_MODE_USR)] = env->xregs[13]; 10915 10916 /* 10917 * HYP is an exception in that it does not have its own banked r14 but 10918 * shares the USR r14 10919 */ 10920 if (mode == ARM_CPU_MODE_HYP) { 10921 env->regs[14] = env->xregs[14]; 10922 } else { 10923 env->banked_r14[r14_bank_number(ARM_CPU_MODE_USR)] = env->xregs[14]; 10924 } 10925 } 10926 10927 if (mode == ARM_CPU_MODE_HYP) { 10928 env->regs[13] = env->xregs[15]; 10929 } else { 10930 env->banked_r13[bank_number(ARM_CPU_MODE_HYP)] = env->xregs[15]; 10931 } 10932 10933 if (mode == ARM_CPU_MODE_IRQ) { 10934 env->regs[14] = env->xregs[16]; 10935 env->regs[13] = env->xregs[17]; 10936 } else { 10937 env->banked_r14[r14_bank_number(ARM_CPU_MODE_IRQ)] = env->xregs[16]; 10938 env->banked_r13[bank_number(ARM_CPU_MODE_IRQ)] = env->xregs[17]; 10939 } 10940 10941 if (mode == ARM_CPU_MODE_SVC) { 10942 env->regs[14] = env->xregs[18]; 10943 env->regs[13] = env->xregs[19]; 10944 } else { 10945 env->banked_r14[r14_bank_number(ARM_CPU_MODE_SVC)] = env->xregs[18]; 10946 env->banked_r13[bank_number(ARM_CPU_MODE_SVC)] = env->xregs[19]; 10947 } 10948 10949 if (mode == ARM_CPU_MODE_ABT) { 10950 env->regs[14] = env->xregs[20]; 10951 env->regs[13] = env->xregs[21]; 10952 } else { 10953 env->banked_r14[r14_bank_number(ARM_CPU_MODE_ABT)] = env->xregs[20]; 10954 env->banked_r13[bank_number(ARM_CPU_MODE_ABT)] = env->xregs[21]; 10955 } 10956 10957 if (mode == ARM_CPU_MODE_UND) { 10958 env->regs[14] = env->xregs[22]; 10959 env->regs[13] = env->xregs[23]; 10960 } else { 10961 env->banked_r14[r14_bank_number(ARM_CPU_MODE_UND)] = env->xregs[22]; 10962 env->banked_r13[bank_number(ARM_CPU_MODE_UND)] = env->xregs[23]; 10963 } 10964 10965 /* 10966 * Registers x24-x30 are mapped to r8-r14 in FIQ mode. If we are in FIQ 10967 * mode, then we can copy to r8-r14. Otherwise, we copy to the 10968 * FIQ bank for r8-r14. 10969 */ 10970 if (mode == ARM_CPU_MODE_FIQ) { 10971 for (i = 24; i < 31; i++) { 10972 env->regs[i - 16] = env->xregs[i]; /* X[24:30] -> R[8:14] */ 10973 } 10974 } else { 10975 for (i = 24; i < 29; i++) { 10976 env->fiq_regs[i - 24] = env->xregs[i]; 10977 } 10978 env->banked_r13[bank_number(ARM_CPU_MODE_FIQ)] = env->xregs[29]; 10979 env->banked_r14[r14_bank_number(ARM_CPU_MODE_FIQ)] = env->xregs[30]; 10980 } 10981 10982 env->regs[15] = env->pc; 10983 } 10984 10985 static void take_aarch32_exception(CPUARMState *env, int new_mode, 10986 uint32_t mask, uint32_t offset, 10987 uint32_t newpc) 10988 { 10989 int new_el; 10990 10991 /* Change the CPU state so as to actually take the exception. */ 10992 switch_mode(env, new_mode); 10993 10994 /* 10995 * For exceptions taken to AArch32 we must clear the SS bit in both 10996 * PSTATE and in the old-state value we save to SPSR_<mode>, so zero it now. 10997 */ 10998 env->pstate &= ~PSTATE_SS; 10999 env->spsr = cpsr_read(env); 11000 /* Clear IT bits. */ 11001 env->condexec_bits = 0; 11002 /* Switch to the new mode, and to the correct instruction set. */ 11003 env->uncached_cpsr = (env->uncached_cpsr & ~CPSR_M) | new_mode; 11004 11005 /* This must be after mode switching. */ 11006 new_el = arm_current_el(env); 11007 11008 /* Set new mode endianness */ 11009 env->uncached_cpsr &= ~CPSR_E; 11010 if (env->cp15.sctlr_el[new_el] & SCTLR_EE) { 11011 env->uncached_cpsr |= CPSR_E; 11012 } 11013 /* J and IL must always be cleared for exception entry */ 11014 env->uncached_cpsr &= ~(CPSR_IL | CPSR_J); 11015 env->daif |= mask; 11016 11017 if (cpu_isar_feature(aa32_ssbs, env_archcpu(env))) { 11018 if (env->cp15.sctlr_el[new_el] & SCTLR_DSSBS_32) { 11019 env->uncached_cpsr |= CPSR_SSBS; 11020 } else { 11021 env->uncached_cpsr &= ~CPSR_SSBS; 11022 } 11023 } 11024 11025 if (new_mode == ARM_CPU_MODE_HYP) { 11026 env->thumb = (env->cp15.sctlr_el[2] & SCTLR_TE) != 0; 11027 env->elr_el[2] = env->regs[15]; 11028 } else { 11029 /* CPSR.PAN is normally preserved preserved unless... */ 11030 if (cpu_isar_feature(aa32_pan, env_archcpu(env))) { 11031 switch (new_el) { 11032 case 3: 11033 if (!arm_is_secure_below_el3(env)) { 11034 /* ... the target is EL3, from non-secure state. */ 11035 env->uncached_cpsr &= ~CPSR_PAN; 11036 break; 11037 } 11038 /* ... the target is EL3, from secure state ... */ 11039 /* fall through */ 11040 case 1: 11041 /* ... the target is EL1 and SCTLR.SPAN is 0. */ 11042 if (!(env->cp15.sctlr_el[new_el] & SCTLR_SPAN)) { 11043 env->uncached_cpsr |= CPSR_PAN; 11044 } 11045 break; 11046 } 11047 } 11048 /* 11049 * this is a lie, as there was no c1_sys on V4T/V5, but who cares 11050 * and we should just guard the thumb mode on V4 11051 */ 11052 if (arm_feature(env, ARM_FEATURE_V4T)) { 11053 env->thumb = 11054 (A32_BANKED_CURRENT_REG_GET(env, sctlr) & SCTLR_TE) != 0; 11055 } 11056 env->regs[14] = env->regs[15] + offset; 11057 } 11058 env->regs[15] = newpc; 11059 11060 if (tcg_enabled()) { 11061 arm_rebuild_hflags(env); 11062 } 11063 } 11064 11065 static void arm_cpu_do_interrupt_aarch32_hyp(CPUState *cs) 11066 { 11067 /* 11068 * Handle exception entry to Hyp mode; this is sufficiently 11069 * different to entry to other AArch32 modes that we handle it 11070 * separately here. 11071 * 11072 * The vector table entry used is always the 0x14 Hyp mode entry point, 11073 * unless this is an UNDEF/SVC/HVC/abort taken from Hyp to Hyp. 11074 * The offset applied to the preferred return address is always zero 11075 * (see DDI0487C.a section G1.12.3). 11076 * PSTATE A/I/F masks are set based only on the SCR.EA/IRQ/FIQ values. 11077 */ 11078 uint32_t addr, mask; 11079 ARMCPU *cpu = ARM_CPU(cs); 11080 CPUARMState *env = &cpu->env; 11081 11082 switch (cs->exception_index) { 11083 case EXCP_UDEF: 11084 addr = 0x04; 11085 break; 11086 case EXCP_SWI: 11087 addr = 0x08; 11088 break; 11089 case EXCP_BKPT: 11090 /* Fall through to prefetch abort. */ 11091 case EXCP_PREFETCH_ABORT: 11092 env->cp15.ifar_s = env->exception.vaddress; 11093 qemu_log_mask(CPU_LOG_INT, "...with HIFAR 0x%x\n", 11094 (uint32_t)env->exception.vaddress); 11095 addr = 0x0c; 11096 break; 11097 case EXCP_DATA_ABORT: 11098 env->cp15.dfar_s = env->exception.vaddress; 11099 qemu_log_mask(CPU_LOG_INT, "...with HDFAR 0x%x\n", 11100 (uint32_t)env->exception.vaddress); 11101 addr = 0x10; 11102 break; 11103 case EXCP_IRQ: 11104 addr = 0x18; 11105 break; 11106 case EXCP_FIQ: 11107 addr = 0x1c; 11108 break; 11109 case EXCP_HVC: 11110 addr = 0x08; 11111 break; 11112 case EXCP_HYP_TRAP: 11113 addr = 0x14; 11114 break; 11115 default: 11116 cpu_abort(cs, "Unhandled exception 0x%x\n", cs->exception_index); 11117 } 11118 11119 if (cs->exception_index != EXCP_IRQ && cs->exception_index != EXCP_FIQ) { 11120 if (!arm_feature(env, ARM_FEATURE_V8)) { 11121 /* 11122 * QEMU syndrome values are v8-style. v7 has the IL bit 11123 * UNK/SBZP for "field not valid" cases, where v8 uses RES1. 11124 * If this is a v7 CPU, squash the IL bit in those cases. 11125 */ 11126 if (cs->exception_index == EXCP_PREFETCH_ABORT || 11127 (cs->exception_index == EXCP_DATA_ABORT && 11128 !(env->exception.syndrome & ARM_EL_ISV)) || 11129 syn_get_ec(env->exception.syndrome) == EC_UNCATEGORIZED) { 11130 env->exception.syndrome &= ~ARM_EL_IL; 11131 } 11132 } 11133 env->cp15.esr_el[2] = env->exception.syndrome; 11134 } 11135 11136 if (arm_current_el(env) != 2 && addr < 0x14) { 11137 addr = 0x14; 11138 } 11139 11140 mask = 0; 11141 if (!(env->cp15.scr_el3 & SCR_EA)) { 11142 mask |= CPSR_A; 11143 } 11144 if (!(env->cp15.scr_el3 & SCR_IRQ)) { 11145 mask |= CPSR_I; 11146 } 11147 if (!(env->cp15.scr_el3 & SCR_FIQ)) { 11148 mask |= CPSR_F; 11149 } 11150 11151 addr += env->cp15.hvbar; 11152 11153 take_aarch32_exception(env, ARM_CPU_MODE_HYP, mask, 0, addr); 11154 } 11155 11156 static void arm_cpu_do_interrupt_aarch32(CPUState *cs) 11157 { 11158 ARMCPU *cpu = ARM_CPU(cs); 11159 CPUARMState *env = &cpu->env; 11160 uint32_t addr; 11161 uint32_t mask; 11162 int new_mode; 11163 uint32_t offset; 11164 uint32_t moe; 11165 11166 /* If this is a debug exception we must update the DBGDSCR.MOE bits */ 11167 switch (syn_get_ec(env->exception.syndrome)) { 11168 case EC_BREAKPOINT: 11169 case EC_BREAKPOINT_SAME_EL: 11170 moe = 1; 11171 break; 11172 case EC_WATCHPOINT: 11173 case EC_WATCHPOINT_SAME_EL: 11174 moe = 10; 11175 break; 11176 case EC_AA32_BKPT: 11177 moe = 3; 11178 break; 11179 case EC_VECTORCATCH: 11180 moe = 5; 11181 break; 11182 default: 11183 moe = 0; 11184 break; 11185 } 11186 11187 if (moe) { 11188 env->cp15.mdscr_el1 = deposit64(env->cp15.mdscr_el1, 2, 4, moe); 11189 } 11190 11191 if (env->exception.target_el == 2) { 11192 /* Debug exceptions are reported differently on AArch32 */ 11193 switch (syn_get_ec(env->exception.syndrome)) { 11194 case EC_BREAKPOINT: 11195 case EC_BREAKPOINT_SAME_EL: 11196 case EC_AA32_BKPT: 11197 case EC_VECTORCATCH: 11198 env->exception.syndrome = syn_insn_abort(arm_current_el(env) == 2, 11199 0, 0, 0x22); 11200 break; 11201 case EC_WATCHPOINT: 11202 env->exception.syndrome = syn_set_ec(env->exception.syndrome, 11203 EC_DATAABORT); 11204 break; 11205 case EC_WATCHPOINT_SAME_EL: 11206 env->exception.syndrome = syn_set_ec(env->exception.syndrome, 11207 EC_DATAABORT_SAME_EL); 11208 break; 11209 } 11210 arm_cpu_do_interrupt_aarch32_hyp(cs); 11211 return; 11212 } 11213 11214 switch (cs->exception_index) { 11215 case EXCP_UDEF: 11216 new_mode = ARM_CPU_MODE_UND; 11217 addr = 0x04; 11218 mask = CPSR_I; 11219 if (env->thumb) { 11220 offset = 2; 11221 } else { 11222 offset = 4; 11223 } 11224 break; 11225 case EXCP_SWI: 11226 new_mode = ARM_CPU_MODE_SVC; 11227 addr = 0x08; 11228 mask = CPSR_I; 11229 /* The PC already points to the next instruction. */ 11230 offset = 0; 11231 break; 11232 case EXCP_BKPT: 11233 /* Fall through to prefetch abort. */ 11234 case EXCP_PREFETCH_ABORT: 11235 A32_BANKED_CURRENT_REG_SET(env, ifsr, env->exception.fsr); 11236 A32_BANKED_CURRENT_REG_SET(env, ifar, env->exception.vaddress); 11237 qemu_log_mask(CPU_LOG_INT, "...with IFSR 0x%x IFAR 0x%x\n", 11238 env->exception.fsr, (uint32_t)env->exception.vaddress); 11239 new_mode = ARM_CPU_MODE_ABT; 11240 addr = 0x0c; 11241 mask = CPSR_A | CPSR_I; 11242 offset = 4; 11243 break; 11244 case EXCP_DATA_ABORT: 11245 A32_BANKED_CURRENT_REG_SET(env, dfsr, env->exception.fsr); 11246 A32_BANKED_CURRENT_REG_SET(env, dfar, env->exception.vaddress); 11247 qemu_log_mask(CPU_LOG_INT, "...with DFSR 0x%x DFAR 0x%x\n", 11248 env->exception.fsr, 11249 (uint32_t)env->exception.vaddress); 11250 new_mode = ARM_CPU_MODE_ABT; 11251 addr = 0x10; 11252 mask = CPSR_A | CPSR_I; 11253 offset = 8; 11254 break; 11255 case EXCP_IRQ: 11256 new_mode = ARM_CPU_MODE_IRQ; 11257 addr = 0x18; 11258 /* Disable IRQ and imprecise data aborts. */ 11259 mask = CPSR_A | CPSR_I; 11260 offset = 4; 11261 if (env->cp15.scr_el3 & SCR_IRQ) { 11262 /* IRQ routed to monitor mode */ 11263 new_mode = ARM_CPU_MODE_MON; 11264 mask |= CPSR_F; 11265 } 11266 break; 11267 case EXCP_FIQ: 11268 new_mode = ARM_CPU_MODE_FIQ; 11269 addr = 0x1c; 11270 /* Disable FIQ, IRQ and imprecise data aborts. */ 11271 mask = CPSR_A | CPSR_I | CPSR_F; 11272 if (env->cp15.scr_el3 & SCR_FIQ) { 11273 /* FIQ routed to monitor mode */ 11274 new_mode = ARM_CPU_MODE_MON; 11275 } 11276 offset = 4; 11277 break; 11278 case EXCP_VIRQ: 11279 new_mode = ARM_CPU_MODE_IRQ; 11280 addr = 0x18; 11281 /* Disable IRQ and imprecise data aborts. */ 11282 mask = CPSR_A | CPSR_I; 11283 offset = 4; 11284 break; 11285 case EXCP_VFIQ: 11286 new_mode = ARM_CPU_MODE_FIQ; 11287 addr = 0x1c; 11288 /* Disable FIQ, IRQ and imprecise data aborts. */ 11289 mask = CPSR_A | CPSR_I | CPSR_F; 11290 offset = 4; 11291 break; 11292 case EXCP_VSERR: 11293 { 11294 /* 11295 * Note that this is reported as a data abort, but the DFAR 11296 * has an UNKNOWN value. Construct the SError syndrome from 11297 * AET and ExT fields. 11298 */ 11299 ARMMMUFaultInfo fi = { .type = ARMFault_AsyncExternal, }; 11300 11301 if (extended_addresses_enabled(env)) { 11302 env->exception.fsr = arm_fi_to_lfsc(&fi); 11303 } else { 11304 env->exception.fsr = arm_fi_to_sfsc(&fi); 11305 } 11306 env->exception.fsr |= env->cp15.vsesr_el2 & 0xd000; 11307 A32_BANKED_CURRENT_REG_SET(env, dfsr, env->exception.fsr); 11308 qemu_log_mask(CPU_LOG_INT, "...with IFSR 0x%x\n", 11309 env->exception.fsr); 11310 11311 new_mode = ARM_CPU_MODE_ABT; 11312 addr = 0x10; 11313 mask = CPSR_A | CPSR_I; 11314 offset = 8; 11315 } 11316 break; 11317 case EXCP_SMC: 11318 new_mode = ARM_CPU_MODE_MON; 11319 addr = 0x08; 11320 mask = CPSR_A | CPSR_I | CPSR_F; 11321 offset = 0; 11322 break; 11323 default: 11324 cpu_abort(cs, "Unhandled exception 0x%x\n", cs->exception_index); 11325 return; /* Never happens. Keep compiler happy. */ 11326 } 11327 11328 if (new_mode == ARM_CPU_MODE_MON) { 11329 addr += env->cp15.mvbar; 11330 } else if (A32_BANKED_CURRENT_REG_GET(env, sctlr) & SCTLR_V) { 11331 /* High vectors. When enabled, base address cannot be remapped. */ 11332 addr += 0xffff0000; 11333 } else { 11334 /* 11335 * ARM v7 architectures provide a vector base address register to remap 11336 * the interrupt vector table. 11337 * This register is only followed in non-monitor mode, and is banked. 11338 * Note: only bits 31:5 are valid. 11339 */ 11340 addr += A32_BANKED_CURRENT_REG_GET(env, vbar); 11341 } 11342 11343 if ((env->uncached_cpsr & CPSR_M) == ARM_CPU_MODE_MON) { 11344 env->cp15.scr_el3 &= ~SCR_NS; 11345 } 11346 11347 take_aarch32_exception(env, new_mode, mask, offset, addr); 11348 } 11349 11350 static int aarch64_regnum(CPUARMState *env, int aarch32_reg) 11351 { 11352 /* 11353 * Return the register number of the AArch64 view of the AArch32 11354 * register @aarch32_reg. The CPUARMState CPSR is assumed to still 11355 * be that of the AArch32 mode the exception came from. 11356 */ 11357 int mode = env->uncached_cpsr & CPSR_M; 11358 11359 switch (aarch32_reg) { 11360 case 0 ... 7: 11361 return aarch32_reg; 11362 case 8 ... 12: 11363 return mode == ARM_CPU_MODE_FIQ ? aarch32_reg + 16 : aarch32_reg; 11364 case 13: 11365 switch (mode) { 11366 case ARM_CPU_MODE_USR: 11367 case ARM_CPU_MODE_SYS: 11368 return 13; 11369 case ARM_CPU_MODE_HYP: 11370 return 15; 11371 case ARM_CPU_MODE_IRQ: 11372 return 17; 11373 case ARM_CPU_MODE_SVC: 11374 return 19; 11375 case ARM_CPU_MODE_ABT: 11376 return 21; 11377 case ARM_CPU_MODE_UND: 11378 return 23; 11379 case ARM_CPU_MODE_FIQ: 11380 return 29; 11381 default: 11382 g_assert_not_reached(); 11383 } 11384 case 14: 11385 switch (mode) { 11386 case ARM_CPU_MODE_USR: 11387 case ARM_CPU_MODE_SYS: 11388 case ARM_CPU_MODE_HYP: 11389 return 14; 11390 case ARM_CPU_MODE_IRQ: 11391 return 16; 11392 case ARM_CPU_MODE_SVC: 11393 return 18; 11394 case ARM_CPU_MODE_ABT: 11395 return 20; 11396 case ARM_CPU_MODE_UND: 11397 return 22; 11398 case ARM_CPU_MODE_FIQ: 11399 return 30; 11400 default: 11401 g_assert_not_reached(); 11402 } 11403 case 15: 11404 return 31; 11405 default: 11406 g_assert_not_reached(); 11407 } 11408 } 11409 11410 static uint32_t cpsr_read_for_spsr_elx(CPUARMState *env) 11411 { 11412 uint32_t ret = cpsr_read(env); 11413 11414 /* Move DIT to the correct location for SPSR_ELx */ 11415 if (ret & CPSR_DIT) { 11416 ret &= ~CPSR_DIT; 11417 ret |= PSTATE_DIT; 11418 } 11419 /* Merge PSTATE.SS into SPSR_ELx */ 11420 ret |= env->pstate & PSTATE_SS; 11421 11422 return ret; 11423 } 11424 11425 static bool syndrome_is_sync_extabt(uint32_t syndrome) 11426 { 11427 /* Return true if this syndrome value is a synchronous external abort */ 11428 switch (syn_get_ec(syndrome)) { 11429 case EC_INSNABORT: 11430 case EC_INSNABORT_SAME_EL: 11431 case EC_DATAABORT: 11432 case EC_DATAABORT_SAME_EL: 11433 /* Look at fault status code for all the synchronous ext abort cases */ 11434 switch (syndrome & 0x3f) { 11435 case 0x10: 11436 case 0x13: 11437 case 0x14: 11438 case 0x15: 11439 case 0x16: 11440 case 0x17: 11441 return true; 11442 default: 11443 return false; 11444 } 11445 default: 11446 return false; 11447 } 11448 } 11449 11450 /* Handle exception entry to a target EL which is using AArch64 */ 11451 static void arm_cpu_do_interrupt_aarch64(CPUState *cs) 11452 { 11453 ARMCPU *cpu = ARM_CPU(cs); 11454 CPUARMState *env = &cpu->env; 11455 unsigned int new_el = env->exception.target_el; 11456 target_ulong addr = env->cp15.vbar_el[new_el]; 11457 unsigned int new_mode = aarch64_pstate_mode(new_el, true); 11458 unsigned int old_mode; 11459 unsigned int cur_el = arm_current_el(env); 11460 int rt; 11461 11462 if (tcg_enabled()) { 11463 /* 11464 * Note that new_el can never be 0. If cur_el is 0, then 11465 * el0_a64 is is_a64(), else el0_a64 is ignored. 11466 */ 11467 aarch64_sve_change_el(env, cur_el, new_el, is_a64(env)); 11468 } 11469 11470 if (cur_el < new_el) { 11471 /* 11472 * Entry vector offset depends on whether the implemented EL 11473 * immediately lower than the target level is using AArch32 or AArch64 11474 */ 11475 bool is_aa64; 11476 uint64_t hcr; 11477 11478 switch (new_el) { 11479 case 3: 11480 is_aa64 = (env->cp15.scr_el3 & SCR_RW) != 0; 11481 break; 11482 case 2: 11483 hcr = arm_hcr_el2_eff(env); 11484 if ((hcr & (HCR_E2H | HCR_TGE)) != (HCR_E2H | HCR_TGE)) { 11485 is_aa64 = (hcr & HCR_RW) != 0; 11486 break; 11487 } 11488 /* fall through */ 11489 case 1: 11490 is_aa64 = is_a64(env); 11491 break; 11492 default: 11493 g_assert_not_reached(); 11494 } 11495 11496 if (is_aa64) { 11497 addr += 0x400; 11498 } else { 11499 addr += 0x600; 11500 } 11501 } else if (pstate_read(env) & PSTATE_SP) { 11502 addr += 0x200; 11503 } 11504 11505 switch (cs->exception_index) { 11506 case EXCP_GPC: 11507 qemu_log_mask(CPU_LOG_INT, "...with MFAR 0x%" PRIx64 "\n", 11508 env->cp15.mfar_el3); 11509 /* fall through */ 11510 case EXCP_PREFETCH_ABORT: 11511 case EXCP_DATA_ABORT: 11512 /* 11513 * FEAT_DoubleFault allows synchronous external aborts taken to EL3 11514 * to be taken to the SError vector entrypoint. 11515 */ 11516 if (new_el == 3 && (env->cp15.scr_el3 & SCR_EASE) && 11517 syndrome_is_sync_extabt(env->exception.syndrome)) { 11518 addr += 0x180; 11519 } 11520 env->cp15.far_el[new_el] = env->exception.vaddress; 11521 qemu_log_mask(CPU_LOG_INT, "...with FAR 0x%" PRIx64 "\n", 11522 env->cp15.far_el[new_el]); 11523 /* fall through */ 11524 case EXCP_BKPT: 11525 case EXCP_UDEF: 11526 case EXCP_SWI: 11527 case EXCP_HVC: 11528 case EXCP_HYP_TRAP: 11529 case EXCP_SMC: 11530 switch (syn_get_ec(env->exception.syndrome)) { 11531 case EC_ADVSIMDFPACCESSTRAP: 11532 /* 11533 * QEMU internal FP/SIMD syndromes from AArch32 include the 11534 * TA and coproc fields which are only exposed if the exception 11535 * is taken to AArch32 Hyp mode. Mask them out to get a valid 11536 * AArch64 format syndrome. 11537 */ 11538 env->exception.syndrome &= ~MAKE_64BIT_MASK(0, 20); 11539 break; 11540 case EC_CP14RTTRAP: 11541 case EC_CP15RTTRAP: 11542 case EC_CP14DTTRAP: 11543 /* 11544 * For a trap on AArch32 MRC/MCR/LDC/STC the Rt field is currently 11545 * the raw register field from the insn; when taking this to 11546 * AArch64 we must convert it to the AArch64 view of the register 11547 * number. Notice that we read a 4-bit AArch32 register number and 11548 * write back a 5-bit AArch64 one. 11549 */ 11550 rt = extract32(env->exception.syndrome, 5, 4); 11551 rt = aarch64_regnum(env, rt); 11552 env->exception.syndrome = deposit32(env->exception.syndrome, 11553 5, 5, rt); 11554 break; 11555 case EC_CP15RRTTRAP: 11556 case EC_CP14RRTTRAP: 11557 /* Similarly for MRRC/MCRR traps for Rt and Rt2 fields */ 11558 rt = extract32(env->exception.syndrome, 5, 4); 11559 rt = aarch64_regnum(env, rt); 11560 env->exception.syndrome = deposit32(env->exception.syndrome, 11561 5, 5, rt); 11562 rt = extract32(env->exception.syndrome, 10, 4); 11563 rt = aarch64_regnum(env, rt); 11564 env->exception.syndrome = deposit32(env->exception.syndrome, 11565 10, 5, rt); 11566 break; 11567 } 11568 env->cp15.esr_el[new_el] = env->exception.syndrome; 11569 break; 11570 case EXCP_IRQ: 11571 case EXCP_VIRQ: 11572 addr += 0x80; 11573 break; 11574 case EXCP_FIQ: 11575 case EXCP_VFIQ: 11576 addr += 0x100; 11577 break; 11578 case EXCP_VSERR: 11579 addr += 0x180; 11580 /* Construct the SError syndrome from IDS and ISS fields. */ 11581 env->exception.syndrome = syn_serror(env->cp15.vsesr_el2 & 0x1ffffff); 11582 env->cp15.esr_el[new_el] = env->exception.syndrome; 11583 break; 11584 default: 11585 cpu_abort(cs, "Unhandled exception 0x%x\n", cs->exception_index); 11586 } 11587 11588 if (is_a64(env)) { 11589 old_mode = pstate_read(env); 11590 aarch64_save_sp(env, arm_current_el(env)); 11591 env->elr_el[new_el] = env->pc; 11592 11593 if (cur_el == 1 && new_el == 1) { 11594 uint64_t hcr = arm_hcr_el2_eff(env); 11595 if ((hcr & (HCR_NV | HCR_NV1 | HCR_NV2)) == HCR_NV || 11596 (hcr & (HCR_NV | HCR_NV2)) == (HCR_NV | HCR_NV2)) { 11597 /* 11598 * FEAT_NV, FEAT_NV2 may need to report EL2 in the SPSR 11599 * by setting M[3:2] to 0b10. 11600 * If NV2 is disabled, change SPSR when NV,NV1 == 1,0 (I_ZJRNN) 11601 * If NV2 is enabled, change SPSR when NV is 1 (I_DBTLM) 11602 */ 11603 old_mode = deposit32(old_mode, 2, 2, 2); 11604 } 11605 } 11606 } else { 11607 old_mode = cpsr_read_for_spsr_elx(env); 11608 env->elr_el[new_el] = env->regs[15]; 11609 11610 aarch64_sync_32_to_64(env); 11611 11612 env->condexec_bits = 0; 11613 } 11614 env->banked_spsr[aarch64_banked_spsr_index(new_el)] = old_mode; 11615 11616 qemu_log_mask(CPU_LOG_INT, "...with SPSR 0x%x\n", old_mode); 11617 qemu_log_mask(CPU_LOG_INT, "...with ELR 0x%" PRIx64 "\n", 11618 env->elr_el[new_el]); 11619 11620 if (cpu_isar_feature(aa64_pan, cpu)) { 11621 /* The value of PSTATE.PAN is normally preserved, except when ... */ 11622 new_mode |= old_mode & PSTATE_PAN; 11623 switch (new_el) { 11624 case 2: 11625 /* ... the target is EL2 with HCR_EL2.{E2H,TGE} == '11' ... */ 11626 if ((arm_hcr_el2_eff(env) & (HCR_E2H | HCR_TGE)) 11627 != (HCR_E2H | HCR_TGE)) { 11628 break; 11629 } 11630 /* fall through */ 11631 case 1: 11632 /* ... the target is EL1 ... */ 11633 /* ... and SCTLR_ELx.SPAN == 0, then set to 1. */ 11634 if ((env->cp15.sctlr_el[new_el] & SCTLR_SPAN) == 0) { 11635 new_mode |= PSTATE_PAN; 11636 } 11637 break; 11638 } 11639 } 11640 if (cpu_isar_feature(aa64_mte, cpu)) { 11641 new_mode |= PSTATE_TCO; 11642 } 11643 11644 if (cpu_isar_feature(aa64_ssbs, cpu)) { 11645 if (env->cp15.sctlr_el[new_el] & SCTLR_DSSBS_64) { 11646 new_mode |= PSTATE_SSBS; 11647 } else { 11648 new_mode &= ~PSTATE_SSBS; 11649 } 11650 } 11651 11652 pstate_write(env, PSTATE_DAIF | new_mode); 11653 env->aarch64 = true; 11654 aarch64_restore_sp(env, new_el); 11655 11656 if (tcg_enabled()) { 11657 helper_rebuild_hflags_a64(env, new_el); 11658 } 11659 11660 env->pc = addr; 11661 11662 qemu_log_mask(CPU_LOG_INT, "...to EL%d PC 0x%" PRIx64 " PSTATE 0x%x\n", 11663 new_el, env->pc, pstate_read(env)); 11664 } 11665 11666 /* 11667 * Do semihosting call and set the appropriate return value. All the 11668 * permission and validity checks have been done at translate time. 11669 * 11670 * We only see semihosting exceptions in TCG only as they are not 11671 * trapped to the hypervisor in KVM. 11672 */ 11673 #ifdef CONFIG_TCG 11674 static void tcg_handle_semihosting(CPUState *cs) 11675 { 11676 ARMCPU *cpu = ARM_CPU(cs); 11677 CPUARMState *env = &cpu->env; 11678 11679 if (is_a64(env)) { 11680 qemu_log_mask(CPU_LOG_INT, 11681 "...handling as semihosting call 0x%" PRIx64 "\n", 11682 env->xregs[0]); 11683 do_common_semihosting(cs); 11684 env->pc += 4; 11685 } else { 11686 qemu_log_mask(CPU_LOG_INT, 11687 "...handling as semihosting call 0x%x\n", 11688 env->regs[0]); 11689 do_common_semihosting(cs); 11690 env->regs[15] += env->thumb ? 2 : 4; 11691 } 11692 } 11693 #endif 11694 11695 /* 11696 * Handle a CPU exception for A and R profile CPUs. 11697 * Do any appropriate logging, handle PSCI calls, and then hand off 11698 * to the AArch64-entry or AArch32-entry function depending on the 11699 * target exception level's register width. 11700 * 11701 * Note: this is used for both TCG (as the do_interrupt tcg op), 11702 * and KVM to re-inject guest debug exceptions, and to 11703 * inject a Synchronous-External-Abort. 11704 */ 11705 void arm_cpu_do_interrupt(CPUState *cs) 11706 { 11707 ARMCPU *cpu = ARM_CPU(cs); 11708 CPUARMState *env = &cpu->env; 11709 unsigned int new_el = env->exception.target_el; 11710 11711 assert(!arm_feature(env, ARM_FEATURE_M)); 11712 11713 arm_log_exception(cs); 11714 qemu_log_mask(CPU_LOG_INT, "...from EL%d to EL%d\n", arm_current_el(env), 11715 new_el); 11716 if (qemu_loglevel_mask(CPU_LOG_INT) 11717 && !excp_is_internal(cs->exception_index)) { 11718 qemu_log_mask(CPU_LOG_INT, "...with ESR 0x%x/0x%" PRIx32 "\n", 11719 syn_get_ec(env->exception.syndrome), 11720 env->exception.syndrome); 11721 } 11722 11723 if (tcg_enabled() && arm_is_psci_call(cpu, cs->exception_index)) { 11724 arm_handle_psci_call(cpu); 11725 qemu_log_mask(CPU_LOG_INT, "...handled as PSCI call\n"); 11726 return; 11727 } 11728 11729 /* 11730 * Semihosting semantics depend on the register width of the code 11731 * that caused the exception, not the target exception level, so 11732 * must be handled here. 11733 */ 11734 #ifdef CONFIG_TCG 11735 if (cs->exception_index == EXCP_SEMIHOST) { 11736 tcg_handle_semihosting(cs); 11737 return; 11738 } 11739 #endif 11740 11741 /* 11742 * Hooks may change global state so BQL should be held, also the 11743 * BQL needs to be held for any modification of 11744 * cs->interrupt_request. 11745 */ 11746 g_assert(bql_locked()); 11747 11748 arm_call_pre_el_change_hook(cpu); 11749 11750 assert(!excp_is_internal(cs->exception_index)); 11751 if (arm_el_is_aa64(env, new_el)) { 11752 arm_cpu_do_interrupt_aarch64(cs); 11753 } else { 11754 arm_cpu_do_interrupt_aarch32(cs); 11755 } 11756 11757 arm_call_el_change_hook(cpu); 11758 11759 if (!kvm_enabled()) { 11760 cs->interrupt_request |= CPU_INTERRUPT_EXITTB; 11761 } 11762 } 11763 #endif /* !CONFIG_USER_ONLY */ 11764 11765 uint64_t arm_sctlr(CPUARMState *env, int el) 11766 { 11767 /* Only EL0 needs to be adjusted for EL1&0 or EL2&0. */ 11768 if (el == 0) { 11769 ARMMMUIdx mmu_idx = arm_mmu_idx_el(env, 0); 11770 el = mmu_idx == ARMMMUIdx_E20_0 ? 2 : 1; 11771 } 11772 return env->cp15.sctlr_el[el]; 11773 } 11774 11775 int aa64_va_parameter_tbi(uint64_t tcr, ARMMMUIdx mmu_idx) 11776 { 11777 if (regime_has_2_ranges(mmu_idx)) { 11778 return extract64(tcr, 37, 2); 11779 } else if (regime_is_stage2(mmu_idx)) { 11780 return 0; /* VTCR_EL2 */ 11781 } else { 11782 /* Replicate the single TBI bit so we always have 2 bits. */ 11783 return extract32(tcr, 20, 1) * 3; 11784 } 11785 } 11786 11787 int aa64_va_parameter_tbid(uint64_t tcr, ARMMMUIdx mmu_idx) 11788 { 11789 if (regime_has_2_ranges(mmu_idx)) { 11790 return extract64(tcr, 51, 2); 11791 } else if (regime_is_stage2(mmu_idx)) { 11792 return 0; /* VTCR_EL2 */ 11793 } else { 11794 /* Replicate the single TBID bit so we always have 2 bits. */ 11795 return extract32(tcr, 29, 1) * 3; 11796 } 11797 } 11798 11799 int aa64_va_parameter_tcma(uint64_t tcr, ARMMMUIdx mmu_idx) 11800 { 11801 if (regime_has_2_ranges(mmu_idx)) { 11802 return extract64(tcr, 57, 2); 11803 } else { 11804 /* Replicate the single TCMA bit so we always have 2 bits. */ 11805 return extract32(tcr, 30, 1) * 3; 11806 } 11807 } 11808 11809 static ARMGranuleSize tg0_to_gran_size(int tg) 11810 { 11811 switch (tg) { 11812 case 0: 11813 return Gran4K; 11814 case 1: 11815 return Gran64K; 11816 case 2: 11817 return Gran16K; 11818 default: 11819 return GranInvalid; 11820 } 11821 } 11822 11823 static ARMGranuleSize tg1_to_gran_size(int tg) 11824 { 11825 switch (tg) { 11826 case 1: 11827 return Gran16K; 11828 case 2: 11829 return Gran4K; 11830 case 3: 11831 return Gran64K; 11832 default: 11833 return GranInvalid; 11834 } 11835 } 11836 11837 static inline bool have4k(ARMCPU *cpu, bool stage2) 11838 { 11839 return stage2 ? cpu_isar_feature(aa64_tgran4_2, cpu) 11840 : cpu_isar_feature(aa64_tgran4, cpu); 11841 } 11842 11843 static inline bool have16k(ARMCPU *cpu, bool stage2) 11844 { 11845 return stage2 ? cpu_isar_feature(aa64_tgran16_2, cpu) 11846 : cpu_isar_feature(aa64_tgran16, cpu); 11847 } 11848 11849 static inline bool have64k(ARMCPU *cpu, bool stage2) 11850 { 11851 return stage2 ? cpu_isar_feature(aa64_tgran64_2, cpu) 11852 : cpu_isar_feature(aa64_tgran64, cpu); 11853 } 11854 11855 static ARMGranuleSize sanitize_gran_size(ARMCPU *cpu, ARMGranuleSize gran, 11856 bool stage2) 11857 { 11858 switch (gran) { 11859 case Gran4K: 11860 if (have4k(cpu, stage2)) { 11861 return gran; 11862 } 11863 break; 11864 case Gran16K: 11865 if (have16k(cpu, stage2)) { 11866 return gran; 11867 } 11868 break; 11869 case Gran64K: 11870 if (have64k(cpu, stage2)) { 11871 return gran; 11872 } 11873 break; 11874 case GranInvalid: 11875 break; 11876 } 11877 /* 11878 * If the guest selects a granule size that isn't implemented, 11879 * the architecture requires that we behave as if it selected one 11880 * that is (with an IMPDEF choice of which one to pick). We choose 11881 * to implement the smallest supported granule size. 11882 */ 11883 if (have4k(cpu, stage2)) { 11884 return Gran4K; 11885 } 11886 if (have16k(cpu, stage2)) { 11887 return Gran16K; 11888 } 11889 assert(have64k(cpu, stage2)); 11890 return Gran64K; 11891 } 11892 11893 ARMVAParameters aa64_va_parameters(CPUARMState *env, uint64_t va, 11894 ARMMMUIdx mmu_idx, bool data, 11895 bool el1_is_aa32) 11896 { 11897 uint64_t tcr = regime_tcr(env, mmu_idx); 11898 bool epd, hpd, tsz_oob, ds, ha, hd; 11899 int select, tsz, tbi, max_tsz, min_tsz, ps, sh; 11900 ARMGranuleSize gran; 11901 ARMCPU *cpu = env_archcpu(env); 11902 bool stage2 = regime_is_stage2(mmu_idx); 11903 11904 if (!regime_has_2_ranges(mmu_idx)) { 11905 select = 0; 11906 tsz = extract32(tcr, 0, 6); 11907 gran = tg0_to_gran_size(extract32(tcr, 14, 2)); 11908 if (stage2) { 11909 /* VTCR_EL2 */ 11910 hpd = false; 11911 } else { 11912 hpd = extract32(tcr, 24, 1); 11913 } 11914 epd = false; 11915 sh = extract32(tcr, 12, 2); 11916 ps = extract32(tcr, 16, 3); 11917 ha = extract32(tcr, 21, 1) && cpu_isar_feature(aa64_hafs, cpu); 11918 hd = extract32(tcr, 22, 1) && cpu_isar_feature(aa64_hdbs, cpu); 11919 ds = extract64(tcr, 32, 1); 11920 } else { 11921 bool e0pd; 11922 11923 /* 11924 * Bit 55 is always between the two regions, and is canonical for 11925 * determining if address tagging is enabled. 11926 */ 11927 select = extract64(va, 55, 1); 11928 if (!select) { 11929 tsz = extract32(tcr, 0, 6); 11930 gran = tg0_to_gran_size(extract32(tcr, 14, 2)); 11931 epd = extract32(tcr, 7, 1); 11932 sh = extract32(tcr, 12, 2); 11933 hpd = extract64(tcr, 41, 1); 11934 e0pd = extract64(tcr, 55, 1); 11935 } else { 11936 tsz = extract32(tcr, 16, 6); 11937 gran = tg1_to_gran_size(extract32(tcr, 30, 2)); 11938 epd = extract32(tcr, 23, 1); 11939 sh = extract32(tcr, 28, 2); 11940 hpd = extract64(tcr, 42, 1); 11941 e0pd = extract64(tcr, 56, 1); 11942 } 11943 ps = extract64(tcr, 32, 3); 11944 ha = extract64(tcr, 39, 1) && cpu_isar_feature(aa64_hafs, cpu); 11945 hd = extract64(tcr, 40, 1) && cpu_isar_feature(aa64_hdbs, cpu); 11946 ds = extract64(tcr, 59, 1); 11947 11948 if (e0pd && cpu_isar_feature(aa64_e0pd, cpu) && 11949 regime_is_user(env, mmu_idx)) { 11950 epd = true; 11951 } 11952 } 11953 11954 gran = sanitize_gran_size(cpu, gran, stage2); 11955 11956 if (cpu_isar_feature(aa64_st, cpu)) { 11957 max_tsz = 48 - (gran == Gran64K); 11958 } else { 11959 max_tsz = 39; 11960 } 11961 11962 /* 11963 * DS is RES0 unless FEAT_LPA2 is supported for the given page size; 11964 * adjust the effective value of DS, as documented. 11965 */ 11966 min_tsz = 16; 11967 if (gran == Gran64K) { 11968 if (cpu_isar_feature(aa64_lva, cpu)) { 11969 min_tsz = 12; 11970 } 11971 ds = false; 11972 } else if (ds) { 11973 if (regime_is_stage2(mmu_idx)) { 11974 if (gran == Gran16K) { 11975 ds = cpu_isar_feature(aa64_tgran16_2_lpa2, cpu); 11976 } else { 11977 ds = cpu_isar_feature(aa64_tgran4_2_lpa2, cpu); 11978 } 11979 } else { 11980 if (gran == Gran16K) { 11981 ds = cpu_isar_feature(aa64_tgran16_lpa2, cpu); 11982 } else { 11983 ds = cpu_isar_feature(aa64_tgran4_lpa2, cpu); 11984 } 11985 } 11986 if (ds) { 11987 min_tsz = 12; 11988 } 11989 } 11990 11991 if (stage2 && el1_is_aa32) { 11992 /* 11993 * For AArch32 EL1 the min txsz (and thus max IPA size) requirements 11994 * are loosened: a configured IPA of 40 bits is permitted even if 11995 * the implemented PA is less than that (and so a 40 bit IPA would 11996 * fault for an AArch64 EL1). See R_DTLMN. 11997 */ 11998 min_tsz = MIN(min_tsz, 24); 11999 } 12000 12001 if (tsz > max_tsz) { 12002 tsz = max_tsz; 12003 tsz_oob = true; 12004 } else if (tsz < min_tsz) { 12005 tsz = min_tsz; 12006 tsz_oob = true; 12007 } else { 12008 tsz_oob = false; 12009 } 12010 12011 /* Present TBI as a composite with TBID. */ 12012 tbi = aa64_va_parameter_tbi(tcr, mmu_idx); 12013 if (!data) { 12014 tbi &= ~aa64_va_parameter_tbid(tcr, mmu_idx); 12015 } 12016 tbi = (tbi >> select) & 1; 12017 12018 return (ARMVAParameters) { 12019 .tsz = tsz, 12020 .ps = ps, 12021 .sh = sh, 12022 .select = select, 12023 .tbi = tbi, 12024 .epd = epd, 12025 .hpd = hpd, 12026 .tsz_oob = tsz_oob, 12027 .ds = ds, 12028 .ha = ha, 12029 .hd = ha && hd, 12030 .gran = gran, 12031 }; 12032 } 12033 12034 /* 12035 * Note that signed overflow is undefined in C. The following routines are 12036 * careful to use unsigned types where modulo arithmetic is required. 12037 * Failure to do so _will_ break on newer gcc. 12038 */ 12039 12040 /* Signed saturating arithmetic. */ 12041 12042 /* Perform 16-bit signed saturating addition. */ 12043 static inline uint16_t add16_sat(uint16_t a, uint16_t b) 12044 { 12045 uint16_t res; 12046 12047 res = a + b; 12048 if (((res ^ a) & 0x8000) && !((a ^ b) & 0x8000)) { 12049 if (a & 0x8000) { 12050 res = 0x8000; 12051 } else { 12052 res = 0x7fff; 12053 } 12054 } 12055 return res; 12056 } 12057 12058 /* Perform 8-bit signed saturating addition. */ 12059 static inline uint8_t add8_sat(uint8_t a, uint8_t b) 12060 { 12061 uint8_t res; 12062 12063 res = a + b; 12064 if (((res ^ a) & 0x80) && !((a ^ b) & 0x80)) { 12065 if (a & 0x80) { 12066 res = 0x80; 12067 } else { 12068 res = 0x7f; 12069 } 12070 } 12071 return res; 12072 } 12073 12074 /* Perform 16-bit signed saturating subtraction. */ 12075 static inline uint16_t sub16_sat(uint16_t a, uint16_t b) 12076 { 12077 uint16_t res; 12078 12079 res = a - b; 12080 if (((res ^ a) & 0x8000) && ((a ^ b) & 0x8000)) { 12081 if (a & 0x8000) { 12082 res = 0x8000; 12083 } else { 12084 res = 0x7fff; 12085 } 12086 } 12087 return res; 12088 } 12089 12090 /* Perform 8-bit signed saturating subtraction. */ 12091 static inline uint8_t sub8_sat(uint8_t a, uint8_t b) 12092 { 12093 uint8_t res; 12094 12095 res = a - b; 12096 if (((res ^ a) & 0x80) && ((a ^ b) & 0x80)) { 12097 if (a & 0x80) { 12098 res = 0x80; 12099 } else { 12100 res = 0x7f; 12101 } 12102 } 12103 return res; 12104 } 12105 12106 #define ADD16(a, b, n) RESULT(add16_sat(a, b), n, 16); 12107 #define SUB16(a, b, n) RESULT(sub16_sat(a, b), n, 16); 12108 #define ADD8(a, b, n) RESULT(add8_sat(a, b), n, 8); 12109 #define SUB8(a, b, n) RESULT(sub8_sat(a, b), n, 8); 12110 #define PFX q 12111 12112 #include "op_addsub.h" 12113 12114 /* Unsigned saturating arithmetic. */ 12115 static inline uint16_t add16_usat(uint16_t a, uint16_t b) 12116 { 12117 uint16_t res; 12118 res = a + b; 12119 if (res < a) { 12120 res = 0xffff; 12121 } 12122 return res; 12123 } 12124 12125 static inline uint16_t sub16_usat(uint16_t a, uint16_t b) 12126 { 12127 if (a > b) { 12128 return a - b; 12129 } else { 12130 return 0; 12131 } 12132 } 12133 12134 static inline uint8_t add8_usat(uint8_t a, uint8_t b) 12135 { 12136 uint8_t res; 12137 res = a + b; 12138 if (res < a) { 12139 res = 0xff; 12140 } 12141 return res; 12142 } 12143 12144 static inline uint8_t sub8_usat(uint8_t a, uint8_t b) 12145 { 12146 if (a > b) { 12147 return a - b; 12148 } else { 12149 return 0; 12150 } 12151 } 12152 12153 #define ADD16(a, b, n) RESULT(add16_usat(a, b), n, 16); 12154 #define SUB16(a, b, n) RESULT(sub16_usat(a, b), n, 16); 12155 #define ADD8(a, b, n) RESULT(add8_usat(a, b), n, 8); 12156 #define SUB8(a, b, n) RESULT(sub8_usat(a, b), n, 8); 12157 #define PFX uq 12158 12159 #include "op_addsub.h" 12160 12161 /* Signed modulo arithmetic. */ 12162 #define SARITH16(a, b, n, op) do { \ 12163 int32_t sum; \ 12164 sum = (int32_t)(int16_t)(a) op (int32_t)(int16_t)(b); \ 12165 RESULT(sum, n, 16); \ 12166 if (sum >= 0) \ 12167 ge |= 3 << (n * 2); \ 12168 } while (0) 12169 12170 #define SARITH8(a, b, n, op) do { \ 12171 int32_t sum; \ 12172 sum = (int32_t)(int8_t)(a) op (int32_t)(int8_t)(b); \ 12173 RESULT(sum, n, 8); \ 12174 if (sum >= 0) \ 12175 ge |= 1 << n; \ 12176 } while (0) 12177 12178 12179 #define ADD16(a, b, n) SARITH16(a, b, n, +) 12180 #define SUB16(a, b, n) SARITH16(a, b, n, -) 12181 #define ADD8(a, b, n) SARITH8(a, b, n, +) 12182 #define SUB8(a, b, n) SARITH8(a, b, n, -) 12183 #define PFX s 12184 #define ARITH_GE 12185 12186 #include "op_addsub.h" 12187 12188 /* Unsigned modulo arithmetic. */ 12189 #define ADD16(a, b, n) do { \ 12190 uint32_t sum; \ 12191 sum = (uint32_t)(uint16_t)(a) + (uint32_t)(uint16_t)(b); \ 12192 RESULT(sum, n, 16); \ 12193 if ((sum >> 16) == 1) \ 12194 ge |= 3 << (n * 2); \ 12195 } while (0) 12196 12197 #define ADD8(a, b, n) do { \ 12198 uint32_t sum; \ 12199 sum = (uint32_t)(uint8_t)(a) + (uint32_t)(uint8_t)(b); \ 12200 RESULT(sum, n, 8); \ 12201 if ((sum >> 8) == 1) \ 12202 ge |= 1 << n; \ 12203 } while (0) 12204 12205 #define SUB16(a, b, n) do { \ 12206 uint32_t sum; \ 12207 sum = (uint32_t)(uint16_t)(a) - (uint32_t)(uint16_t)(b); \ 12208 RESULT(sum, n, 16); \ 12209 if ((sum >> 16) == 0) \ 12210 ge |= 3 << (n * 2); \ 12211 } while (0) 12212 12213 #define SUB8(a, b, n) do { \ 12214 uint32_t sum; \ 12215 sum = (uint32_t)(uint8_t)(a) - (uint32_t)(uint8_t)(b); \ 12216 RESULT(sum, n, 8); \ 12217 if ((sum >> 8) == 0) \ 12218 ge |= 1 << n; \ 12219 } while (0) 12220 12221 #define PFX u 12222 #define ARITH_GE 12223 12224 #include "op_addsub.h" 12225 12226 /* Halved signed arithmetic. */ 12227 #define ADD16(a, b, n) \ 12228 RESULT(((int32_t)(int16_t)(a) + (int32_t)(int16_t)(b)) >> 1, n, 16) 12229 #define SUB16(a, b, n) \ 12230 RESULT(((int32_t)(int16_t)(a) - (int32_t)(int16_t)(b)) >> 1, n, 16) 12231 #define ADD8(a, b, n) \ 12232 RESULT(((int32_t)(int8_t)(a) + (int32_t)(int8_t)(b)) >> 1, n, 8) 12233 #define SUB8(a, b, n) \ 12234 RESULT(((int32_t)(int8_t)(a) - (int32_t)(int8_t)(b)) >> 1, n, 8) 12235 #define PFX sh 12236 12237 #include "op_addsub.h" 12238 12239 /* Halved unsigned arithmetic. */ 12240 #define ADD16(a, b, n) \ 12241 RESULT(((uint32_t)(uint16_t)(a) + (uint32_t)(uint16_t)(b)) >> 1, n, 16) 12242 #define SUB16(a, b, n) \ 12243 RESULT(((uint32_t)(uint16_t)(a) - (uint32_t)(uint16_t)(b)) >> 1, n, 16) 12244 #define ADD8(a, b, n) \ 12245 RESULT(((uint32_t)(uint8_t)(a) + (uint32_t)(uint8_t)(b)) >> 1, n, 8) 12246 #define SUB8(a, b, n) \ 12247 RESULT(((uint32_t)(uint8_t)(a) - (uint32_t)(uint8_t)(b)) >> 1, n, 8) 12248 #define PFX uh 12249 12250 #include "op_addsub.h" 12251 12252 static inline uint8_t do_usad(uint8_t a, uint8_t b) 12253 { 12254 if (a > b) { 12255 return a - b; 12256 } else { 12257 return b - a; 12258 } 12259 } 12260 12261 /* Unsigned sum of absolute byte differences. */ 12262 uint32_t HELPER(usad8)(uint32_t a, uint32_t b) 12263 { 12264 uint32_t sum; 12265 sum = do_usad(a, b); 12266 sum += do_usad(a >> 8, b >> 8); 12267 sum += do_usad(a >> 16, b >> 16); 12268 sum += do_usad(a >> 24, b >> 24); 12269 return sum; 12270 } 12271 12272 /* For ARMv6 SEL instruction. */ 12273 uint32_t HELPER(sel_flags)(uint32_t flags, uint32_t a, uint32_t b) 12274 { 12275 uint32_t mask; 12276 12277 mask = 0; 12278 if (flags & 1) { 12279 mask |= 0xff; 12280 } 12281 if (flags & 2) { 12282 mask |= 0xff00; 12283 } 12284 if (flags & 4) { 12285 mask |= 0xff0000; 12286 } 12287 if (flags & 8) { 12288 mask |= 0xff000000; 12289 } 12290 return (a & mask) | (b & ~mask); 12291 } 12292 12293 /* 12294 * CRC helpers. 12295 * The upper bytes of val (above the number specified by 'bytes') must have 12296 * been zeroed out by the caller. 12297 */ 12298 uint32_t HELPER(crc32)(uint32_t acc, uint32_t val, uint32_t bytes) 12299 { 12300 uint8_t buf[4]; 12301 12302 stl_le_p(buf, val); 12303 12304 /* zlib crc32 converts the accumulator and output to one's complement. */ 12305 return crc32(acc ^ 0xffffffff, buf, bytes) ^ 0xffffffff; 12306 } 12307 12308 uint32_t HELPER(crc32c)(uint32_t acc, uint32_t val, uint32_t bytes) 12309 { 12310 uint8_t buf[4]; 12311 12312 stl_le_p(buf, val); 12313 12314 /* Linux crc32c converts the output to one's complement. */ 12315 return crc32c(acc, buf, bytes) ^ 0xffffffff; 12316 } 12317 12318 /* 12319 * Return the exception level to which FP-disabled exceptions should 12320 * be taken, or 0 if FP is enabled. 12321 */ 12322 int fp_exception_el(CPUARMState *env, int cur_el) 12323 { 12324 #ifndef CONFIG_USER_ONLY 12325 uint64_t hcr_el2; 12326 12327 /* 12328 * CPACR and the CPTR registers don't exist before v6, so FP is 12329 * always accessible 12330 */ 12331 if (!arm_feature(env, ARM_FEATURE_V6)) { 12332 return 0; 12333 } 12334 12335 if (arm_feature(env, ARM_FEATURE_M)) { 12336 /* CPACR can cause a NOCP UsageFault taken to current security state */ 12337 if (!v7m_cpacr_pass(env, env->v7m.secure, cur_el != 0)) { 12338 return 1; 12339 } 12340 12341 if (arm_feature(env, ARM_FEATURE_M_SECURITY) && !env->v7m.secure) { 12342 if (!extract32(env->v7m.nsacr, 10, 1)) { 12343 /* FP insns cause a NOCP UsageFault taken to Secure */ 12344 return 3; 12345 } 12346 } 12347 12348 return 0; 12349 } 12350 12351 hcr_el2 = arm_hcr_el2_eff(env); 12352 12353 /* 12354 * The CPACR controls traps to EL1, or PL1 if we're 32 bit: 12355 * 0, 2 : trap EL0 and EL1/PL1 accesses 12356 * 1 : trap only EL0 accesses 12357 * 3 : trap no accesses 12358 * This register is ignored if E2H+TGE are both set. 12359 */ 12360 if ((hcr_el2 & (HCR_E2H | HCR_TGE)) != (HCR_E2H | HCR_TGE)) { 12361 int fpen = FIELD_EX64(env->cp15.cpacr_el1, CPACR_EL1, FPEN); 12362 12363 switch (fpen) { 12364 case 1: 12365 if (cur_el != 0) { 12366 break; 12367 } 12368 /* fall through */ 12369 case 0: 12370 case 2: 12371 /* Trap from Secure PL0 or PL1 to Secure PL1. */ 12372 if (!arm_el_is_aa64(env, 3) 12373 && (cur_el == 3 || arm_is_secure_below_el3(env))) { 12374 return 3; 12375 } 12376 if (cur_el <= 1) { 12377 return 1; 12378 } 12379 break; 12380 } 12381 } 12382 12383 /* 12384 * The NSACR allows A-profile AArch32 EL3 and M-profile secure mode 12385 * to control non-secure access to the FPU. It doesn't have any 12386 * effect if EL3 is AArch64 or if EL3 doesn't exist at all. 12387 */ 12388 if ((arm_feature(env, ARM_FEATURE_EL3) && !arm_el_is_aa64(env, 3) && 12389 cur_el <= 2 && !arm_is_secure_below_el3(env))) { 12390 if (!extract32(env->cp15.nsacr, 10, 1)) { 12391 /* FP insns act as UNDEF */ 12392 return cur_el == 2 ? 2 : 1; 12393 } 12394 } 12395 12396 /* 12397 * CPTR_EL2 is present in v7VE or v8, and changes format 12398 * with HCR_EL2.E2H (regardless of TGE). 12399 */ 12400 if (cur_el <= 2) { 12401 if (hcr_el2 & HCR_E2H) { 12402 switch (FIELD_EX64(env->cp15.cptr_el[2], CPTR_EL2, FPEN)) { 12403 case 1: 12404 if (cur_el != 0 || !(hcr_el2 & HCR_TGE)) { 12405 break; 12406 } 12407 /* fall through */ 12408 case 0: 12409 case 2: 12410 return 2; 12411 } 12412 } else if (arm_is_el2_enabled(env)) { 12413 if (FIELD_EX64(env->cp15.cptr_el[2], CPTR_EL2, TFP)) { 12414 return 2; 12415 } 12416 } 12417 } 12418 12419 /* CPTR_EL3 : present in v8 */ 12420 if (FIELD_EX64(env->cp15.cptr_el[3], CPTR_EL3, TFP)) { 12421 /* Trap all FP ops to EL3 */ 12422 return 3; 12423 } 12424 #endif 12425 return 0; 12426 } 12427 12428 /* Return the exception level we're running at if this is our mmu_idx */ 12429 int arm_mmu_idx_to_el(ARMMMUIdx mmu_idx) 12430 { 12431 if (mmu_idx & ARM_MMU_IDX_M) { 12432 return mmu_idx & ARM_MMU_IDX_M_PRIV; 12433 } 12434 12435 switch (mmu_idx) { 12436 case ARMMMUIdx_E10_0: 12437 case ARMMMUIdx_E20_0: 12438 return 0; 12439 case ARMMMUIdx_E10_1: 12440 case ARMMMUIdx_E10_1_PAN: 12441 return 1; 12442 case ARMMMUIdx_E2: 12443 case ARMMMUIdx_E20_2: 12444 case ARMMMUIdx_E20_2_PAN: 12445 return 2; 12446 case ARMMMUIdx_E3: 12447 return 3; 12448 default: 12449 g_assert_not_reached(); 12450 } 12451 } 12452 12453 #ifndef CONFIG_TCG 12454 ARMMMUIdx arm_v7m_mmu_idx_for_secstate(CPUARMState *env, bool secstate) 12455 { 12456 g_assert_not_reached(); 12457 } 12458 #endif 12459 12460 ARMMMUIdx arm_mmu_idx_el(CPUARMState *env, int el) 12461 { 12462 ARMMMUIdx idx; 12463 uint64_t hcr; 12464 12465 if (arm_feature(env, ARM_FEATURE_M)) { 12466 return arm_v7m_mmu_idx_for_secstate(env, env->v7m.secure); 12467 } 12468 12469 /* See ARM pseudo-function ELIsInHost. */ 12470 switch (el) { 12471 case 0: 12472 hcr = arm_hcr_el2_eff(env); 12473 if ((hcr & (HCR_E2H | HCR_TGE)) == (HCR_E2H | HCR_TGE)) { 12474 idx = ARMMMUIdx_E20_0; 12475 } else { 12476 idx = ARMMMUIdx_E10_0; 12477 } 12478 break; 12479 case 1: 12480 if (arm_pan_enabled(env)) { 12481 idx = ARMMMUIdx_E10_1_PAN; 12482 } else { 12483 idx = ARMMMUIdx_E10_1; 12484 } 12485 break; 12486 case 2: 12487 /* Note that TGE does not apply at EL2. */ 12488 if (arm_hcr_el2_eff(env) & HCR_E2H) { 12489 if (arm_pan_enabled(env)) { 12490 idx = ARMMMUIdx_E20_2_PAN; 12491 } else { 12492 idx = ARMMMUIdx_E20_2; 12493 } 12494 } else { 12495 idx = ARMMMUIdx_E2; 12496 } 12497 break; 12498 case 3: 12499 return ARMMMUIdx_E3; 12500 default: 12501 g_assert_not_reached(); 12502 } 12503 12504 return idx; 12505 } 12506 12507 ARMMMUIdx arm_mmu_idx(CPUARMState *env) 12508 { 12509 return arm_mmu_idx_el(env, arm_current_el(env)); 12510 } 12511 12512 static bool mve_no_pred(CPUARMState *env) 12513 { 12514 /* 12515 * Return true if there is definitely no predication of MVE 12516 * instructions by VPR or LTPSIZE. (Returning false even if there 12517 * isn't any predication is OK; generated code will just be 12518 * a little worse.) 12519 * If the CPU does not implement MVE then this TB flag is always 0. 12520 * 12521 * NOTE: if you change this logic, the "recalculate s->mve_no_pred" 12522 * logic in gen_update_fp_context() needs to be updated to match. 12523 * 12524 * We do not include the effect of the ECI bits here -- they are 12525 * tracked in other TB flags. This simplifies the logic for 12526 * "when did we emit code that changes the MVE_NO_PRED TB flag 12527 * and thus need to end the TB?". 12528 */ 12529 if (cpu_isar_feature(aa32_mve, env_archcpu(env))) { 12530 return false; 12531 } 12532 if (env->v7m.vpr) { 12533 return false; 12534 } 12535 if (env->v7m.ltpsize < 4) { 12536 return false; 12537 } 12538 return true; 12539 } 12540 12541 void cpu_get_tb_cpu_state(CPUARMState *env, vaddr *pc, 12542 uint64_t *cs_base, uint32_t *pflags) 12543 { 12544 CPUARMTBFlags flags; 12545 12546 assert_hflags_rebuild_correctly(env); 12547 flags = env->hflags; 12548 12549 if (EX_TBFLAG_ANY(flags, AARCH64_STATE)) { 12550 *pc = env->pc; 12551 if (cpu_isar_feature(aa64_bti, env_archcpu(env))) { 12552 DP_TBFLAG_A64(flags, BTYPE, env->btype); 12553 } 12554 } else { 12555 *pc = env->regs[15]; 12556 12557 if (arm_feature(env, ARM_FEATURE_M)) { 12558 if (arm_feature(env, ARM_FEATURE_M_SECURITY) && 12559 FIELD_EX32(env->v7m.fpccr[M_REG_S], V7M_FPCCR, S) 12560 != env->v7m.secure) { 12561 DP_TBFLAG_M32(flags, FPCCR_S_WRONG, 1); 12562 } 12563 12564 if ((env->v7m.fpccr[env->v7m.secure] & R_V7M_FPCCR_ASPEN_MASK) && 12565 (!(env->v7m.control[M_REG_S] & R_V7M_CONTROL_FPCA_MASK) || 12566 (env->v7m.secure && 12567 !(env->v7m.control[M_REG_S] & R_V7M_CONTROL_SFPA_MASK)))) { 12568 /* 12569 * ASPEN is set, but FPCA/SFPA indicate that there is no 12570 * active FP context; we must create a new FP context before 12571 * executing any FP insn. 12572 */ 12573 DP_TBFLAG_M32(flags, NEW_FP_CTXT_NEEDED, 1); 12574 } 12575 12576 bool is_secure = env->v7m.fpccr[M_REG_S] & R_V7M_FPCCR_S_MASK; 12577 if (env->v7m.fpccr[is_secure] & R_V7M_FPCCR_LSPACT_MASK) { 12578 DP_TBFLAG_M32(flags, LSPACT, 1); 12579 } 12580 12581 if (mve_no_pred(env)) { 12582 DP_TBFLAG_M32(flags, MVE_NO_PRED, 1); 12583 } 12584 } else { 12585 /* 12586 * Note that XSCALE_CPAR shares bits with VECSTRIDE. 12587 * Note that VECLEN+VECSTRIDE are RES0 for M-profile. 12588 */ 12589 if (arm_feature(env, ARM_FEATURE_XSCALE)) { 12590 DP_TBFLAG_A32(flags, XSCALE_CPAR, env->cp15.c15_cpar); 12591 } else { 12592 DP_TBFLAG_A32(flags, VECLEN, env->vfp.vec_len); 12593 DP_TBFLAG_A32(flags, VECSTRIDE, env->vfp.vec_stride); 12594 } 12595 if (env->vfp.xregs[ARM_VFP_FPEXC] & (1 << 30)) { 12596 DP_TBFLAG_A32(flags, VFPEN, 1); 12597 } 12598 } 12599 12600 DP_TBFLAG_AM32(flags, THUMB, env->thumb); 12601 DP_TBFLAG_AM32(flags, CONDEXEC, env->condexec_bits); 12602 } 12603 12604 /* 12605 * The SS_ACTIVE and PSTATE_SS bits correspond to the state machine 12606 * states defined in the ARM ARM for software singlestep: 12607 * SS_ACTIVE PSTATE.SS State 12608 * 0 x Inactive (the TB flag for SS is always 0) 12609 * 1 0 Active-pending 12610 * 1 1 Active-not-pending 12611 * SS_ACTIVE is set in hflags; PSTATE__SS is computed every TB. 12612 */ 12613 if (EX_TBFLAG_ANY(flags, SS_ACTIVE) && (env->pstate & PSTATE_SS)) { 12614 DP_TBFLAG_ANY(flags, PSTATE__SS, 1); 12615 } 12616 12617 *pflags = flags.flags; 12618 *cs_base = flags.flags2; 12619 } 12620 12621 #ifdef TARGET_AARCH64 12622 /* 12623 * The manual says that when SVE is enabled and VQ is widened the 12624 * implementation is allowed to zero the previously inaccessible 12625 * portion of the registers. The corollary to that is that when 12626 * SVE is enabled and VQ is narrowed we are also allowed to zero 12627 * the now inaccessible portion of the registers. 12628 * 12629 * The intent of this is that no predicate bit beyond VQ is ever set. 12630 * Which means that some operations on predicate registers themselves 12631 * may operate on full uint64_t or even unrolled across the maximum 12632 * uint64_t[4]. Performing 4 bits of host arithmetic unconditionally 12633 * may well be cheaper than conditionals to restrict the operation 12634 * to the relevant portion of a uint16_t[16]. 12635 */ 12636 void aarch64_sve_narrow_vq(CPUARMState *env, unsigned vq) 12637 { 12638 int i, j; 12639 uint64_t pmask; 12640 12641 assert(vq >= 1 && vq <= ARM_MAX_VQ); 12642 assert(vq <= env_archcpu(env)->sve_max_vq); 12643 12644 /* Zap the high bits of the zregs. */ 12645 for (i = 0; i < 32; i++) { 12646 memset(&env->vfp.zregs[i].d[2 * vq], 0, 16 * (ARM_MAX_VQ - vq)); 12647 } 12648 12649 /* Zap the high bits of the pregs and ffr. */ 12650 pmask = 0; 12651 if (vq & 3) { 12652 pmask = ~(-1ULL << (16 * (vq & 3))); 12653 } 12654 for (j = vq / 4; j < ARM_MAX_VQ / 4; j++) { 12655 for (i = 0; i < 17; ++i) { 12656 env->vfp.pregs[i].p[j] &= pmask; 12657 } 12658 pmask = 0; 12659 } 12660 } 12661 12662 static uint32_t sve_vqm1_for_el_sm_ena(CPUARMState *env, int el, bool sm) 12663 { 12664 int exc_el; 12665 12666 if (sm) { 12667 exc_el = sme_exception_el(env, el); 12668 } else { 12669 exc_el = sve_exception_el(env, el); 12670 } 12671 if (exc_el) { 12672 return 0; /* disabled */ 12673 } 12674 return sve_vqm1_for_el_sm(env, el, sm); 12675 } 12676 12677 /* 12678 * Notice a change in SVE vector size when changing EL. 12679 */ 12680 void aarch64_sve_change_el(CPUARMState *env, int old_el, 12681 int new_el, bool el0_a64) 12682 { 12683 ARMCPU *cpu = env_archcpu(env); 12684 int old_len, new_len; 12685 bool old_a64, new_a64, sm; 12686 12687 /* Nothing to do if no SVE. */ 12688 if (!cpu_isar_feature(aa64_sve, cpu)) { 12689 return; 12690 } 12691 12692 /* Nothing to do if FP is disabled in either EL. */ 12693 if (fp_exception_el(env, old_el) || fp_exception_el(env, new_el)) { 12694 return; 12695 } 12696 12697 old_a64 = old_el ? arm_el_is_aa64(env, old_el) : el0_a64; 12698 new_a64 = new_el ? arm_el_is_aa64(env, new_el) : el0_a64; 12699 12700 /* 12701 * Both AArch64.TakeException and AArch64.ExceptionReturn 12702 * invoke ResetSVEState when taking an exception from, or 12703 * returning to, AArch32 state when PSTATE.SM is enabled. 12704 */ 12705 sm = FIELD_EX64(env->svcr, SVCR, SM); 12706 if (old_a64 != new_a64 && sm) { 12707 arm_reset_sve_state(env); 12708 return; 12709 } 12710 12711 /* 12712 * DDI0584A.d sec 3.2: "If SVE instructions are disabled or trapped 12713 * at ELx, or not available because the EL is in AArch32 state, then 12714 * for all purposes other than a direct read, the ZCR_ELx.LEN field 12715 * has an effective value of 0". 12716 * 12717 * Consider EL2 (aa64, vq=4) -> EL0 (aa32) -> EL1 (aa64, vq=0). 12718 * If we ignore aa32 state, we would fail to see the vq4->vq0 transition 12719 * from EL2->EL1. Thus we go ahead and narrow when entering aa32 so that 12720 * we already have the correct register contents when encountering the 12721 * vq0->vq0 transition between EL0->EL1. 12722 */ 12723 old_len = new_len = 0; 12724 if (old_a64) { 12725 old_len = sve_vqm1_for_el_sm_ena(env, old_el, sm); 12726 } 12727 if (new_a64) { 12728 new_len = sve_vqm1_for_el_sm_ena(env, new_el, sm); 12729 } 12730 12731 /* When changing vector length, clear inaccessible state. */ 12732 if (new_len < old_len) { 12733 aarch64_sve_narrow_vq(env, new_len + 1); 12734 } 12735 } 12736 #endif 12737 12738 #ifndef CONFIG_USER_ONLY 12739 ARMSecuritySpace arm_security_space(CPUARMState *env) 12740 { 12741 if (arm_feature(env, ARM_FEATURE_M)) { 12742 return arm_secure_to_space(env->v7m.secure); 12743 } 12744 12745 /* 12746 * If EL3 is not supported then the secure state is implementation 12747 * defined, in which case QEMU defaults to non-secure. 12748 */ 12749 if (!arm_feature(env, ARM_FEATURE_EL3)) { 12750 return ARMSS_NonSecure; 12751 } 12752 12753 /* Check for AArch64 EL3 or AArch32 Mon. */ 12754 if (is_a64(env)) { 12755 if (extract32(env->pstate, 2, 2) == 3) { 12756 if (cpu_isar_feature(aa64_rme, env_archcpu(env))) { 12757 return ARMSS_Root; 12758 } else { 12759 return ARMSS_Secure; 12760 } 12761 } 12762 } else { 12763 if ((env->uncached_cpsr & CPSR_M) == ARM_CPU_MODE_MON) { 12764 return ARMSS_Secure; 12765 } 12766 } 12767 12768 return arm_security_space_below_el3(env); 12769 } 12770 12771 ARMSecuritySpace arm_security_space_below_el3(CPUARMState *env) 12772 { 12773 assert(!arm_feature(env, ARM_FEATURE_M)); 12774 12775 /* 12776 * If EL3 is not supported then the secure state is implementation 12777 * defined, in which case QEMU defaults to non-secure. 12778 */ 12779 if (!arm_feature(env, ARM_FEATURE_EL3)) { 12780 return ARMSS_NonSecure; 12781 } 12782 12783 /* 12784 * Note NSE cannot be set without RME, and NSE & !NS is Reserved. 12785 * Ignoring NSE when !NS retains consistency without having to 12786 * modify other predicates. 12787 */ 12788 if (!(env->cp15.scr_el3 & SCR_NS)) { 12789 return ARMSS_Secure; 12790 } else if (env->cp15.scr_el3 & SCR_NSE) { 12791 return ARMSS_Realm; 12792 } else { 12793 return ARMSS_NonSecure; 12794 } 12795 } 12796 #endif /* !CONFIG_USER_ONLY */ 12797