xref: /openbmc/qemu/target/arm/helper.c (revision a10b9d93)
1 /*
2  * ARM generic helpers.
3  *
4  * This code is licensed under the GNU GPL v2 or later.
5  *
6  * SPDX-License-Identifier: GPL-2.0-or-later
7  */
8 
9 #include "qemu/osdep.h"
10 #include "qemu/units.h"
11 #include "target/arm/idau.h"
12 #include "trace.h"
13 #include "cpu.h"
14 #include "internals.h"
15 #include "exec/gdbstub.h"
16 #include "exec/helper-proto.h"
17 #include "qemu/host-utils.h"
18 #include "qemu/main-loop.h"
19 #include "qemu/bitops.h"
20 #include "qemu/crc32c.h"
21 #include "qemu/qemu-print.h"
22 #include "exec/exec-all.h"
23 #include <zlib.h> /* For crc32 */
24 #include "hw/irq.h"
25 #include "hw/semihosting/semihost.h"
26 #include "sysemu/cpus.h"
27 #include "sysemu/cpu-timers.h"
28 #include "sysemu/kvm.h"
29 #include "sysemu/tcg.h"
30 #include "qemu/range.h"
31 #include "qapi/qapi-commands-machine-target.h"
32 #include "qapi/error.h"
33 #include "qemu/guest-random.h"
34 #ifdef CONFIG_TCG
35 #include "arm_ldst.h"
36 #include "exec/cpu_ldst.h"
37 #include "hw/semihosting/common-semi.h"
38 #endif
39 
40 #define ARM_CPU_FREQ 1000000000 /* FIXME: 1 GHz, should be configurable */
41 
42 #ifndef CONFIG_USER_ONLY
43 
44 static bool get_phys_addr_lpae(CPUARMState *env, uint64_t address,
45                                MMUAccessType access_type, ARMMMUIdx mmu_idx,
46                                bool s1_is_el0,
47                                hwaddr *phys_ptr, MemTxAttrs *txattrs, int *prot,
48                                target_ulong *page_size_ptr,
49                                ARMMMUFaultInfo *fi, ARMCacheAttrs *cacheattrs)
50     __attribute__((nonnull));
51 #endif
52 
53 static void switch_mode(CPUARMState *env, int mode);
54 static int aa64_va_parameter_tbi(uint64_t tcr, ARMMMUIdx mmu_idx);
55 
56 static int vfp_gdb_get_reg(CPUARMState *env, GByteArray *buf, int reg)
57 {
58     ARMCPU *cpu = env_archcpu(env);
59     int nregs = cpu_isar_feature(aa32_simd_r32, cpu) ? 32 : 16;
60 
61     /* VFP data registers are always little-endian.  */
62     if (reg < nregs) {
63         return gdb_get_reg64(buf, *aa32_vfp_dreg(env, reg));
64     }
65     if (arm_feature(env, ARM_FEATURE_NEON)) {
66         /* Aliases for Q regs.  */
67         nregs += 16;
68         if (reg < nregs) {
69             uint64_t *q = aa32_vfp_qreg(env, reg - 32);
70             return gdb_get_reg128(buf, q[0], q[1]);
71         }
72     }
73     switch (reg - nregs) {
74     case 0: return gdb_get_reg32(buf, env->vfp.xregs[ARM_VFP_FPSID]); break;
75     case 1: return gdb_get_reg32(buf, vfp_get_fpscr(env)); break;
76     case 2: return gdb_get_reg32(buf, env->vfp.xregs[ARM_VFP_FPEXC]); break;
77     }
78     return 0;
79 }
80 
81 static int vfp_gdb_set_reg(CPUARMState *env, uint8_t *buf, int reg)
82 {
83     ARMCPU *cpu = env_archcpu(env);
84     int nregs = cpu_isar_feature(aa32_simd_r32, cpu) ? 32 : 16;
85 
86     if (reg < nregs) {
87         *aa32_vfp_dreg(env, reg) = ldq_le_p(buf);
88         return 8;
89     }
90     if (arm_feature(env, ARM_FEATURE_NEON)) {
91         nregs += 16;
92         if (reg < nregs) {
93             uint64_t *q = aa32_vfp_qreg(env, reg - 32);
94             q[0] = ldq_le_p(buf);
95             q[1] = ldq_le_p(buf + 8);
96             return 16;
97         }
98     }
99     switch (reg - nregs) {
100     case 0: env->vfp.xregs[ARM_VFP_FPSID] = ldl_p(buf); return 4;
101     case 1: vfp_set_fpscr(env, ldl_p(buf)); return 4;
102     case 2: env->vfp.xregs[ARM_VFP_FPEXC] = ldl_p(buf) & (1 << 30); return 4;
103     }
104     return 0;
105 }
106 
107 static int aarch64_fpu_gdb_get_reg(CPUARMState *env, GByteArray *buf, int reg)
108 {
109     switch (reg) {
110     case 0 ... 31:
111     {
112         /* 128 bit FP register - quads are in LE order */
113         uint64_t *q = aa64_vfp_qreg(env, reg);
114         return gdb_get_reg128(buf, q[1], q[0]);
115     }
116     case 32:
117         /* FPSR */
118         return gdb_get_reg32(buf, vfp_get_fpsr(env));
119     case 33:
120         /* FPCR */
121         return gdb_get_reg32(buf,vfp_get_fpcr(env));
122     default:
123         return 0;
124     }
125 }
126 
127 static int aarch64_fpu_gdb_set_reg(CPUARMState *env, uint8_t *buf, int reg)
128 {
129     switch (reg) {
130     case 0 ... 31:
131         /* 128 bit FP register */
132         {
133             uint64_t *q = aa64_vfp_qreg(env, reg);
134             q[0] = ldq_le_p(buf);
135             q[1] = ldq_le_p(buf + 8);
136             return 16;
137         }
138     case 32:
139         /* FPSR */
140         vfp_set_fpsr(env, ldl_p(buf));
141         return 4;
142     case 33:
143         /* FPCR */
144         vfp_set_fpcr(env, ldl_p(buf));
145         return 4;
146     default:
147         return 0;
148     }
149 }
150 
151 static uint64_t raw_read(CPUARMState *env, const ARMCPRegInfo *ri)
152 {
153     assert(ri->fieldoffset);
154     if (cpreg_field_is_64bit(ri)) {
155         return CPREG_FIELD64(env, ri);
156     } else {
157         return CPREG_FIELD32(env, ri);
158     }
159 }
160 
161 static void raw_write(CPUARMState *env, const ARMCPRegInfo *ri,
162                       uint64_t value)
163 {
164     assert(ri->fieldoffset);
165     if (cpreg_field_is_64bit(ri)) {
166         CPREG_FIELD64(env, ri) = value;
167     } else {
168         CPREG_FIELD32(env, ri) = value;
169     }
170 }
171 
172 static void *raw_ptr(CPUARMState *env, const ARMCPRegInfo *ri)
173 {
174     return (char *)env + ri->fieldoffset;
175 }
176 
177 uint64_t read_raw_cp_reg(CPUARMState *env, const ARMCPRegInfo *ri)
178 {
179     /* Raw read of a coprocessor register (as needed for migration, etc). */
180     if (ri->type & ARM_CP_CONST) {
181         return ri->resetvalue;
182     } else if (ri->raw_readfn) {
183         return ri->raw_readfn(env, ri);
184     } else if (ri->readfn) {
185         return ri->readfn(env, ri);
186     } else {
187         return raw_read(env, ri);
188     }
189 }
190 
191 static void write_raw_cp_reg(CPUARMState *env, const ARMCPRegInfo *ri,
192                              uint64_t v)
193 {
194     /* Raw write of a coprocessor register (as needed for migration, etc).
195      * Note that constant registers are treated as write-ignored; the
196      * caller should check for success by whether a readback gives the
197      * value written.
198      */
199     if (ri->type & ARM_CP_CONST) {
200         return;
201     } else if (ri->raw_writefn) {
202         ri->raw_writefn(env, ri, v);
203     } else if (ri->writefn) {
204         ri->writefn(env, ri, v);
205     } else {
206         raw_write(env, ri, v);
207     }
208 }
209 
210 /**
211  * arm_get/set_gdb_*: get/set a gdb register
212  * @env: the CPU state
213  * @buf: a buffer to copy to/from
214  * @reg: register number (offset from start of group)
215  *
216  * We return the number of bytes copied
217  */
218 
219 static int arm_gdb_get_sysreg(CPUARMState *env, GByteArray *buf, int reg)
220 {
221     ARMCPU *cpu = env_archcpu(env);
222     const ARMCPRegInfo *ri;
223     uint32_t key;
224 
225     key = cpu->dyn_sysreg_xml.data.cpregs.keys[reg];
226     ri = get_arm_cp_reginfo(cpu->cp_regs, key);
227     if (ri) {
228         if (cpreg_field_is_64bit(ri)) {
229             return gdb_get_reg64(buf, (uint64_t)read_raw_cp_reg(env, ri));
230         } else {
231             return gdb_get_reg32(buf, (uint32_t)read_raw_cp_reg(env, ri));
232         }
233     }
234     return 0;
235 }
236 
237 static int arm_gdb_set_sysreg(CPUARMState *env, uint8_t *buf, int reg)
238 {
239     return 0;
240 }
241 
242 #ifdef TARGET_AARCH64
243 static int arm_gdb_get_svereg(CPUARMState *env, GByteArray *buf, int reg)
244 {
245     ARMCPU *cpu = env_archcpu(env);
246 
247     switch (reg) {
248     /* The first 32 registers are the zregs */
249     case 0 ... 31:
250     {
251         int vq, len = 0;
252         for (vq = 0; vq < cpu->sve_max_vq; vq++) {
253             len += gdb_get_reg128(buf,
254                                   env->vfp.zregs[reg].d[vq * 2 + 1],
255                                   env->vfp.zregs[reg].d[vq * 2]);
256         }
257         return len;
258     }
259     case 32:
260         return gdb_get_reg32(buf, vfp_get_fpsr(env));
261     case 33:
262         return gdb_get_reg32(buf, vfp_get_fpcr(env));
263     /* then 16 predicates and the ffr */
264     case 34 ... 50:
265     {
266         int preg = reg - 34;
267         int vq, len = 0;
268         for (vq = 0; vq < cpu->sve_max_vq; vq = vq + 4) {
269             len += gdb_get_reg64(buf, env->vfp.pregs[preg].p[vq / 4]);
270         }
271         return len;
272     }
273     case 51:
274     {
275         /*
276          * We report in Vector Granules (VG) which is 64bit in a Z reg
277          * while the ZCR works in Vector Quads (VQ) which is 128bit chunks.
278          */
279         int vq = sve_zcr_len_for_el(env, arm_current_el(env)) + 1;
280         return gdb_get_reg64(buf, vq * 2);
281     }
282     default:
283         /* gdbstub asked for something out our range */
284         qemu_log_mask(LOG_UNIMP, "%s: out of range register %d", __func__, reg);
285         break;
286     }
287 
288     return 0;
289 }
290 
291 static int arm_gdb_set_svereg(CPUARMState *env, uint8_t *buf, int reg)
292 {
293     ARMCPU *cpu = env_archcpu(env);
294 
295     /* The first 32 registers are the zregs */
296     switch (reg) {
297     /* The first 32 registers are the zregs */
298     case 0 ... 31:
299     {
300         int vq, len = 0;
301         uint64_t *p = (uint64_t *) buf;
302         for (vq = 0; vq < cpu->sve_max_vq; vq++) {
303             env->vfp.zregs[reg].d[vq * 2 + 1] = *p++;
304             env->vfp.zregs[reg].d[vq * 2] = *p++;
305             len += 16;
306         }
307         return len;
308     }
309     case 32:
310         vfp_set_fpsr(env, *(uint32_t *)buf);
311         return 4;
312     case 33:
313         vfp_set_fpcr(env, *(uint32_t *)buf);
314         return 4;
315     case 34 ... 50:
316     {
317         int preg = reg - 34;
318         int vq, len = 0;
319         uint64_t *p = (uint64_t *) buf;
320         for (vq = 0; vq < cpu->sve_max_vq; vq = vq + 4) {
321             env->vfp.pregs[preg].p[vq / 4] = *p++;
322             len += 8;
323         }
324         return len;
325     }
326     case 51:
327         /* cannot set vg via gdbstub */
328         return 0;
329     default:
330         /* gdbstub asked for something out our range */
331         break;
332     }
333 
334     return 0;
335 }
336 #endif /* TARGET_AARCH64 */
337 
338 static bool raw_accessors_invalid(const ARMCPRegInfo *ri)
339 {
340    /* Return true if the regdef would cause an assertion if you called
341     * read_raw_cp_reg() or write_raw_cp_reg() on it (ie if it is a
342     * program bug for it not to have the NO_RAW flag).
343     * NB that returning false here doesn't necessarily mean that calling
344     * read/write_raw_cp_reg() is safe, because we can't distinguish "has
345     * read/write access functions which are safe for raw use" from "has
346     * read/write access functions which have side effects but has forgotten
347     * to provide raw access functions".
348     * The tests here line up with the conditions in read/write_raw_cp_reg()
349     * and assertions in raw_read()/raw_write().
350     */
351     if ((ri->type & ARM_CP_CONST) ||
352         ri->fieldoffset ||
353         ((ri->raw_writefn || ri->writefn) && (ri->raw_readfn || ri->readfn))) {
354         return false;
355     }
356     return true;
357 }
358 
359 bool write_cpustate_to_list(ARMCPU *cpu, bool kvm_sync)
360 {
361     /* Write the coprocessor state from cpu->env to the (index,value) list. */
362     int i;
363     bool ok = true;
364 
365     for (i = 0; i < cpu->cpreg_array_len; i++) {
366         uint32_t regidx = kvm_to_cpreg_id(cpu->cpreg_indexes[i]);
367         const ARMCPRegInfo *ri;
368         uint64_t newval;
369 
370         ri = get_arm_cp_reginfo(cpu->cp_regs, regidx);
371         if (!ri) {
372             ok = false;
373             continue;
374         }
375         if (ri->type & ARM_CP_NO_RAW) {
376             continue;
377         }
378 
379         newval = read_raw_cp_reg(&cpu->env, ri);
380         if (kvm_sync) {
381             /*
382              * Only sync if the previous list->cpustate sync succeeded.
383              * Rather than tracking the success/failure state for every
384              * item in the list, we just recheck "does the raw write we must
385              * have made in write_list_to_cpustate() read back OK" here.
386              */
387             uint64_t oldval = cpu->cpreg_values[i];
388 
389             if (oldval == newval) {
390                 continue;
391             }
392 
393             write_raw_cp_reg(&cpu->env, ri, oldval);
394             if (read_raw_cp_reg(&cpu->env, ri) != oldval) {
395                 continue;
396             }
397 
398             write_raw_cp_reg(&cpu->env, ri, newval);
399         }
400         cpu->cpreg_values[i] = newval;
401     }
402     return ok;
403 }
404 
405 bool write_list_to_cpustate(ARMCPU *cpu)
406 {
407     int i;
408     bool ok = true;
409 
410     for (i = 0; i < cpu->cpreg_array_len; i++) {
411         uint32_t regidx = kvm_to_cpreg_id(cpu->cpreg_indexes[i]);
412         uint64_t v = cpu->cpreg_values[i];
413         const ARMCPRegInfo *ri;
414 
415         ri = get_arm_cp_reginfo(cpu->cp_regs, regidx);
416         if (!ri) {
417             ok = false;
418             continue;
419         }
420         if (ri->type & ARM_CP_NO_RAW) {
421             continue;
422         }
423         /* Write value and confirm it reads back as written
424          * (to catch read-only registers and partially read-only
425          * registers where the incoming migration value doesn't match)
426          */
427         write_raw_cp_reg(&cpu->env, ri, v);
428         if (read_raw_cp_reg(&cpu->env, ri) != v) {
429             ok = false;
430         }
431     }
432     return ok;
433 }
434 
435 static void add_cpreg_to_list(gpointer key, gpointer opaque)
436 {
437     ARMCPU *cpu = opaque;
438     uint64_t regidx;
439     const ARMCPRegInfo *ri;
440 
441     regidx = *(uint32_t *)key;
442     ri = get_arm_cp_reginfo(cpu->cp_regs, regidx);
443 
444     if (!(ri->type & (ARM_CP_NO_RAW|ARM_CP_ALIAS))) {
445         cpu->cpreg_indexes[cpu->cpreg_array_len] = cpreg_to_kvm_id(regidx);
446         /* The value array need not be initialized at this point */
447         cpu->cpreg_array_len++;
448     }
449 }
450 
451 static void count_cpreg(gpointer key, gpointer opaque)
452 {
453     ARMCPU *cpu = opaque;
454     uint64_t regidx;
455     const ARMCPRegInfo *ri;
456 
457     regidx = *(uint32_t *)key;
458     ri = get_arm_cp_reginfo(cpu->cp_regs, regidx);
459 
460     if (!(ri->type & (ARM_CP_NO_RAW|ARM_CP_ALIAS))) {
461         cpu->cpreg_array_len++;
462     }
463 }
464 
465 static gint cpreg_key_compare(gconstpointer a, gconstpointer b)
466 {
467     uint64_t aidx = cpreg_to_kvm_id(*(uint32_t *)a);
468     uint64_t bidx = cpreg_to_kvm_id(*(uint32_t *)b);
469 
470     if (aidx > bidx) {
471         return 1;
472     }
473     if (aidx < bidx) {
474         return -1;
475     }
476     return 0;
477 }
478 
479 void init_cpreg_list(ARMCPU *cpu)
480 {
481     /* Initialise the cpreg_tuples[] array based on the cp_regs hash.
482      * Note that we require cpreg_tuples[] to be sorted by key ID.
483      */
484     GList *keys;
485     int arraylen;
486 
487     keys = g_hash_table_get_keys(cpu->cp_regs);
488     keys = g_list_sort(keys, cpreg_key_compare);
489 
490     cpu->cpreg_array_len = 0;
491 
492     g_list_foreach(keys, count_cpreg, cpu);
493 
494     arraylen = cpu->cpreg_array_len;
495     cpu->cpreg_indexes = g_new(uint64_t, arraylen);
496     cpu->cpreg_values = g_new(uint64_t, arraylen);
497     cpu->cpreg_vmstate_indexes = g_new(uint64_t, arraylen);
498     cpu->cpreg_vmstate_values = g_new(uint64_t, arraylen);
499     cpu->cpreg_vmstate_array_len = cpu->cpreg_array_len;
500     cpu->cpreg_array_len = 0;
501 
502     g_list_foreach(keys, add_cpreg_to_list, cpu);
503 
504     assert(cpu->cpreg_array_len == arraylen);
505 
506     g_list_free(keys);
507 }
508 
509 /*
510  * Some registers are not accessible from AArch32 EL3 if SCR.NS == 0.
511  */
512 static CPAccessResult access_el3_aa32ns(CPUARMState *env,
513                                         const ARMCPRegInfo *ri,
514                                         bool isread)
515 {
516     if (!is_a64(env) && arm_current_el(env) == 3 &&
517         arm_is_secure_below_el3(env)) {
518         return CP_ACCESS_TRAP_UNCATEGORIZED;
519     }
520     return CP_ACCESS_OK;
521 }
522 
523 /* Some secure-only AArch32 registers trap to EL3 if used from
524  * Secure EL1 (but are just ordinary UNDEF in other non-EL3 contexts).
525  * Note that an access from Secure EL1 can only happen if EL3 is AArch64.
526  * We assume that the .access field is set to PL1_RW.
527  */
528 static CPAccessResult access_trap_aa32s_el1(CPUARMState *env,
529                                             const ARMCPRegInfo *ri,
530                                             bool isread)
531 {
532     if (arm_current_el(env) == 3) {
533         return CP_ACCESS_OK;
534     }
535     if (arm_is_secure_below_el3(env)) {
536         return CP_ACCESS_TRAP_EL3;
537     }
538     /* This will be EL1 NS and EL2 NS, which just UNDEF */
539     return CP_ACCESS_TRAP_UNCATEGORIZED;
540 }
541 
542 /* Check for traps to "powerdown debug" registers, which are controlled
543  * by MDCR.TDOSA
544  */
545 static CPAccessResult access_tdosa(CPUARMState *env, const ARMCPRegInfo *ri,
546                                    bool isread)
547 {
548     int el = arm_current_el(env);
549     bool mdcr_el2_tdosa = (env->cp15.mdcr_el2 & MDCR_TDOSA) ||
550         (env->cp15.mdcr_el2 & MDCR_TDE) ||
551         (arm_hcr_el2_eff(env) & HCR_TGE);
552 
553     if (el < 2 && mdcr_el2_tdosa && !arm_is_secure_below_el3(env)) {
554         return CP_ACCESS_TRAP_EL2;
555     }
556     if (el < 3 && (env->cp15.mdcr_el3 & MDCR_TDOSA)) {
557         return CP_ACCESS_TRAP_EL3;
558     }
559     return CP_ACCESS_OK;
560 }
561 
562 /* Check for traps to "debug ROM" registers, which are controlled
563  * by MDCR_EL2.TDRA for EL2 but by the more general MDCR_EL3.TDA for EL3.
564  */
565 static CPAccessResult access_tdra(CPUARMState *env, const ARMCPRegInfo *ri,
566                                   bool isread)
567 {
568     int el = arm_current_el(env);
569     bool mdcr_el2_tdra = (env->cp15.mdcr_el2 & MDCR_TDRA) ||
570         (env->cp15.mdcr_el2 & MDCR_TDE) ||
571         (arm_hcr_el2_eff(env) & HCR_TGE);
572 
573     if (el < 2 && mdcr_el2_tdra && !arm_is_secure_below_el3(env)) {
574         return CP_ACCESS_TRAP_EL2;
575     }
576     if (el < 3 && (env->cp15.mdcr_el3 & MDCR_TDA)) {
577         return CP_ACCESS_TRAP_EL3;
578     }
579     return CP_ACCESS_OK;
580 }
581 
582 /* Check for traps to general debug registers, which are controlled
583  * by MDCR_EL2.TDA for EL2 and MDCR_EL3.TDA for EL3.
584  */
585 static CPAccessResult access_tda(CPUARMState *env, const ARMCPRegInfo *ri,
586                                   bool isread)
587 {
588     int el = arm_current_el(env);
589     bool mdcr_el2_tda = (env->cp15.mdcr_el2 & MDCR_TDA) ||
590         (env->cp15.mdcr_el2 & MDCR_TDE) ||
591         (arm_hcr_el2_eff(env) & HCR_TGE);
592 
593     if (el < 2 && mdcr_el2_tda && !arm_is_secure_below_el3(env)) {
594         return CP_ACCESS_TRAP_EL2;
595     }
596     if (el < 3 && (env->cp15.mdcr_el3 & MDCR_TDA)) {
597         return CP_ACCESS_TRAP_EL3;
598     }
599     return CP_ACCESS_OK;
600 }
601 
602 /* Check for traps to performance monitor registers, which are controlled
603  * by MDCR_EL2.TPM for EL2 and MDCR_EL3.TPM for EL3.
604  */
605 static CPAccessResult access_tpm(CPUARMState *env, const ARMCPRegInfo *ri,
606                                  bool isread)
607 {
608     int el = arm_current_el(env);
609 
610     if (el < 2 && (env->cp15.mdcr_el2 & MDCR_TPM)
611         && !arm_is_secure_below_el3(env)) {
612         return CP_ACCESS_TRAP_EL2;
613     }
614     if (el < 3 && (env->cp15.mdcr_el3 & MDCR_TPM)) {
615         return CP_ACCESS_TRAP_EL3;
616     }
617     return CP_ACCESS_OK;
618 }
619 
620 /* Check for traps from EL1 due to HCR_EL2.TVM and HCR_EL2.TRVM.  */
621 static CPAccessResult access_tvm_trvm(CPUARMState *env, const ARMCPRegInfo *ri,
622                                       bool isread)
623 {
624     if (arm_current_el(env) == 1) {
625         uint64_t trap = isread ? HCR_TRVM : HCR_TVM;
626         if (arm_hcr_el2_eff(env) & trap) {
627             return CP_ACCESS_TRAP_EL2;
628         }
629     }
630     return CP_ACCESS_OK;
631 }
632 
633 /* Check for traps from EL1 due to HCR_EL2.TSW.  */
634 static CPAccessResult access_tsw(CPUARMState *env, const ARMCPRegInfo *ri,
635                                  bool isread)
636 {
637     if (arm_current_el(env) == 1 && (arm_hcr_el2_eff(env) & HCR_TSW)) {
638         return CP_ACCESS_TRAP_EL2;
639     }
640     return CP_ACCESS_OK;
641 }
642 
643 /* Check for traps from EL1 due to HCR_EL2.TACR.  */
644 static CPAccessResult access_tacr(CPUARMState *env, const ARMCPRegInfo *ri,
645                                   bool isread)
646 {
647     if (arm_current_el(env) == 1 && (arm_hcr_el2_eff(env) & HCR_TACR)) {
648         return CP_ACCESS_TRAP_EL2;
649     }
650     return CP_ACCESS_OK;
651 }
652 
653 /* Check for traps from EL1 due to HCR_EL2.TTLB. */
654 static CPAccessResult access_ttlb(CPUARMState *env, const ARMCPRegInfo *ri,
655                                   bool isread)
656 {
657     if (arm_current_el(env) == 1 && (arm_hcr_el2_eff(env) & HCR_TTLB)) {
658         return CP_ACCESS_TRAP_EL2;
659     }
660     return CP_ACCESS_OK;
661 }
662 
663 static void dacr_write(CPUARMState *env, const ARMCPRegInfo *ri, uint64_t value)
664 {
665     ARMCPU *cpu = env_archcpu(env);
666 
667     raw_write(env, ri, value);
668     tlb_flush(CPU(cpu)); /* Flush TLB as domain not tracked in TLB */
669 }
670 
671 static void fcse_write(CPUARMState *env, const ARMCPRegInfo *ri, uint64_t value)
672 {
673     ARMCPU *cpu = env_archcpu(env);
674 
675     if (raw_read(env, ri) != value) {
676         /* Unlike real hardware the qemu TLB uses virtual addresses,
677          * not modified virtual addresses, so this causes a TLB flush.
678          */
679         tlb_flush(CPU(cpu));
680         raw_write(env, ri, value);
681     }
682 }
683 
684 static void contextidr_write(CPUARMState *env, const ARMCPRegInfo *ri,
685                              uint64_t value)
686 {
687     ARMCPU *cpu = env_archcpu(env);
688 
689     if (raw_read(env, ri) != value && !arm_feature(env, ARM_FEATURE_PMSA)
690         && !extended_addresses_enabled(env)) {
691         /* For VMSA (when not using the LPAE long descriptor page table
692          * format) this register includes the ASID, so do a TLB flush.
693          * For PMSA it is purely a process ID and no action is needed.
694          */
695         tlb_flush(CPU(cpu));
696     }
697     raw_write(env, ri, value);
698 }
699 
700 /* IS variants of TLB operations must affect all cores */
701 static void tlbiall_is_write(CPUARMState *env, const ARMCPRegInfo *ri,
702                              uint64_t value)
703 {
704     CPUState *cs = env_cpu(env);
705 
706     tlb_flush_all_cpus_synced(cs);
707 }
708 
709 static void tlbiasid_is_write(CPUARMState *env, const ARMCPRegInfo *ri,
710                              uint64_t value)
711 {
712     CPUState *cs = env_cpu(env);
713 
714     tlb_flush_all_cpus_synced(cs);
715 }
716 
717 static void tlbimva_is_write(CPUARMState *env, const ARMCPRegInfo *ri,
718                              uint64_t value)
719 {
720     CPUState *cs = env_cpu(env);
721 
722     tlb_flush_page_all_cpus_synced(cs, value & TARGET_PAGE_MASK);
723 }
724 
725 static void tlbimvaa_is_write(CPUARMState *env, const ARMCPRegInfo *ri,
726                              uint64_t value)
727 {
728     CPUState *cs = env_cpu(env);
729 
730     tlb_flush_page_all_cpus_synced(cs, value & TARGET_PAGE_MASK);
731 }
732 
733 /*
734  * Non-IS variants of TLB operations are upgraded to
735  * IS versions if we are at EL1 and HCR_EL2.FB is effectively set to
736  * force broadcast of these operations.
737  */
738 static bool tlb_force_broadcast(CPUARMState *env)
739 {
740     return arm_current_el(env) == 1 && (arm_hcr_el2_eff(env) & HCR_FB);
741 }
742 
743 static void tlbiall_write(CPUARMState *env, const ARMCPRegInfo *ri,
744                           uint64_t value)
745 {
746     /* Invalidate all (TLBIALL) */
747     CPUState *cs = env_cpu(env);
748 
749     if (tlb_force_broadcast(env)) {
750         tlb_flush_all_cpus_synced(cs);
751     } else {
752         tlb_flush(cs);
753     }
754 }
755 
756 static void tlbimva_write(CPUARMState *env, const ARMCPRegInfo *ri,
757                           uint64_t value)
758 {
759     /* Invalidate single TLB entry by MVA and ASID (TLBIMVA) */
760     CPUState *cs = env_cpu(env);
761 
762     value &= TARGET_PAGE_MASK;
763     if (tlb_force_broadcast(env)) {
764         tlb_flush_page_all_cpus_synced(cs, value);
765     } else {
766         tlb_flush_page(cs, value);
767     }
768 }
769 
770 static void tlbiasid_write(CPUARMState *env, const ARMCPRegInfo *ri,
771                            uint64_t value)
772 {
773     /* Invalidate by ASID (TLBIASID) */
774     CPUState *cs = env_cpu(env);
775 
776     if (tlb_force_broadcast(env)) {
777         tlb_flush_all_cpus_synced(cs);
778     } else {
779         tlb_flush(cs);
780     }
781 }
782 
783 static void tlbimvaa_write(CPUARMState *env, const ARMCPRegInfo *ri,
784                            uint64_t value)
785 {
786     /* Invalidate single entry by MVA, all ASIDs (TLBIMVAA) */
787     CPUState *cs = env_cpu(env);
788 
789     value &= TARGET_PAGE_MASK;
790     if (tlb_force_broadcast(env)) {
791         tlb_flush_page_all_cpus_synced(cs, value);
792     } else {
793         tlb_flush_page(cs, value);
794     }
795 }
796 
797 static void tlbiall_nsnh_write(CPUARMState *env, const ARMCPRegInfo *ri,
798                                uint64_t value)
799 {
800     CPUState *cs = env_cpu(env);
801 
802     tlb_flush_by_mmuidx(cs,
803                         ARMMMUIdxBit_E10_1 |
804                         ARMMMUIdxBit_E10_1_PAN |
805                         ARMMMUIdxBit_E10_0);
806 }
807 
808 static void tlbiall_nsnh_is_write(CPUARMState *env, const ARMCPRegInfo *ri,
809                                   uint64_t value)
810 {
811     CPUState *cs = env_cpu(env);
812 
813     tlb_flush_by_mmuidx_all_cpus_synced(cs,
814                                         ARMMMUIdxBit_E10_1 |
815                                         ARMMMUIdxBit_E10_1_PAN |
816                                         ARMMMUIdxBit_E10_0);
817 }
818 
819 
820 static void tlbiall_hyp_write(CPUARMState *env, const ARMCPRegInfo *ri,
821                               uint64_t value)
822 {
823     CPUState *cs = env_cpu(env);
824 
825     tlb_flush_by_mmuidx(cs, ARMMMUIdxBit_E2);
826 }
827 
828 static void tlbiall_hyp_is_write(CPUARMState *env, const ARMCPRegInfo *ri,
829                                  uint64_t value)
830 {
831     CPUState *cs = env_cpu(env);
832 
833     tlb_flush_by_mmuidx_all_cpus_synced(cs, ARMMMUIdxBit_E2);
834 }
835 
836 static void tlbimva_hyp_write(CPUARMState *env, const ARMCPRegInfo *ri,
837                               uint64_t value)
838 {
839     CPUState *cs = env_cpu(env);
840     uint64_t pageaddr = value & ~MAKE_64BIT_MASK(0, 12);
841 
842     tlb_flush_page_by_mmuidx(cs, pageaddr, ARMMMUIdxBit_E2);
843 }
844 
845 static void tlbimva_hyp_is_write(CPUARMState *env, const ARMCPRegInfo *ri,
846                                  uint64_t value)
847 {
848     CPUState *cs = env_cpu(env);
849     uint64_t pageaddr = value & ~MAKE_64BIT_MASK(0, 12);
850 
851     tlb_flush_page_by_mmuidx_all_cpus_synced(cs, pageaddr,
852                                              ARMMMUIdxBit_E2);
853 }
854 
855 static const ARMCPRegInfo cp_reginfo[] = {
856     /* Define the secure and non-secure FCSE identifier CP registers
857      * separately because there is no secure bank in V8 (no _EL3).  This allows
858      * the secure register to be properly reset and migrated. There is also no
859      * v8 EL1 version of the register so the non-secure instance stands alone.
860      */
861     { .name = "FCSEIDR",
862       .cp = 15, .opc1 = 0, .crn = 13, .crm = 0, .opc2 = 0,
863       .access = PL1_RW, .secure = ARM_CP_SECSTATE_NS,
864       .fieldoffset = offsetof(CPUARMState, cp15.fcseidr_ns),
865       .resetvalue = 0, .writefn = fcse_write, .raw_writefn = raw_write, },
866     { .name = "FCSEIDR_S",
867       .cp = 15, .opc1 = 0, .crn = 13, .crm = 0, .opc2 = 0,
868       .access = PL1_RW, .secure = ARM_CP_SECSTATE_S,
869       .fieldoffset = offsetof(CPUARMState, cp15.fcseidr_s),
870       .resetvalue = 0, .writefn = fcse_write, .raw_writefn = raw_write, },
871     /* Define the secure and non-secure context identifier CP registers
872      * separately because there is no secure bank in V8 (no _EL3).  This allows
873      * the secure register to be properly reset and migrated.  In the
874      * non-secure case, the 32-bit register will have reset and migration
875      * disabled during registration as it is handled by the 64-bit instance.
876      */
877     { .name = "CONTEXTIDR_EL1", .state = ARM_CP_STATE_BOTH,
878       .opc0 = 3, .opc1 = 0, .crn = 13, .crm = 0, .opc2 = 1,
879       .access = PL1_RW, .accessfn = access_tvm_trvm,
880       .secure = ARM_CP_SECSTATE_NS,
881       .fieldoffset = offsetof(CPUARMState, cp15.contextidr_el[1]),
882       .resetvalue = 0, .writefn = contextidr_write, .raw_writefn = raw_write, },
883     { .name = "CONTEXTIDR_S", .state = ARM_CP_STATE_AA32,
884       .cp = 15, .opc1 = 0, .crn = 13, .crm = 0, .opc2 = 1,
885       .access = PL1_RW, .accessfn = access_tvm_trvm,
886       .secure = ARM_CP_SECSTATE_S,
887       .fieldoffset = offsetof(CPUARMState, cp15.contextidr_s),
888       .resetvalue = 0, .writefn = contextidr_write, .raw_writefn = raw_write, },
889     REGINFO_SENTINEL
890 };
891 
892 static const ARMCPRegInfo not_v8_cp_reginfo[] = {
893     /* NB: Some of these registers exist in v8 but with more precise
894      * definitions that don't use CP_ANY wildcards (mostly in v8_cp_reginfo[]).
895      */
896     /* MMU Domain access control / MPU write buffer control */
897     { .name = "DACR",
898       .cp = 15, .opc1 = CP_ANY, .crn = 3, .crm = CP_ANY, .opc2 = CP_ANY,
899       .access = PL1_RW, .accessfn = access_tvm_trvm, .resetvalue = 0,
900       .writefn = dacr_write, .raw_writefn = raw_write,
901       .bank_fieldoffsets = { offsetoflow32(CPUARMState, cp15.dacr_s),
902                              offsetoflow32(CPUARMState, cp15.dacr_ns) } },
903     /* ARMv7 allocates a range of implementation defined TLB LOCKDOWN regs.
904      * For v6 and v5, these mappings are overly broad.
905      */
906     { .name = "TLB_LOCKDOWN", .cp = 15, .crn = 10, .crm = 0,
907       .opc1 = CP_ANY, .opc2 = CP_ANY, .access = PL1_RW, .type = ARM_CP_NOP },
908     { .name = "TLB_LOCKDOWN", .cp = 15, .crn = 10, .crm = 1,
909       .opc1 = CP_ANY, .opc2 = CP_ANY, .access = PL1_RW, .type = ARM_CP_NOP },
910     { .name = "TLB_LOCKDOWN", .cp = 15, .crn = 10, .crm = 4,
911       .opc1 = CP_ANY, .opc2 = CP_ANY, .access = PL1_RW, .type = ARM_CP_NOP },
912     { .name = "TLB_LOCKDOWN", .cp = 15, .crn = 10, .crm = 8,
913       .opc1 = CP_ANY, .opc2 = CP_ANY, .access = PL1_RW, .type = ARM_CP_NOP },
914     /* Cache maintenance ops; some of this space may be overridden later. */
915     { .name = "CACHEMAINT", .cp = 15, .crn = 7, .crm = CP_ANY,
916       .opc1 = 0, .opc2 = CP_ANY, .access = PL1_W,
917       .type = ARM_CP_NOP | ARM_CP_OVERRIDE },
918     REGINFO_SENTINEL
919 };
920 
921 static const ARMCPRegInfo not_v6_cp_reginfo[] = {
922     /* Not all pre-v6 cores implemented this WFI, so this is slightly
923      * over-broad.
924      */
925     { .name = "WFI_v5", .cp = 15, .crn = 7, .crm = 8, .opc1 = 0, .opc2 = 2,
926       .access = PL1_W, .type = ARM_CP_WFI },
927     REGINFO_SENTINEL
928 };
929 
930 static const ARMCPRegInfo not_v7_cp_reginfo[] = {
931     /* Standard v6 WFI (also used in some pre-v6 cores); not in v7 (which
932      * is UNPREDICTABLE; we choose to NOP as most implementations do).
933      */
934     { .name = "WFI_v6", .cp = 15, .crn = 7, .crm = 0, .opc1 = 0, .opc2 = 4,
935       .access = PL1_W, .type = ARM_CP_WFI },
936     /* L1 cache lockdown. Not architectural in v6 and earlier but in practice
937      * implemented in 926, 946, 1026, 1136, 1176 and 11MPCore. StrongARM and
938      * OMAPCP will override this space.
939      */
940     { .name = "DLOCKDOWN", .cp = 15, .crn = 9, .crm = 0, .opc1 = 0, .opc2 = 0,
941       .access = PL1_RW, .fieldoffset = offsetof(CPUARMState, cp15.c9_data),
942       .resetvalue = 0 },
943     { .name = "ILOCKDOWN", .cp = 15, .crn = 9, .crm = 0, .opc1 = 0, .opc2 = 1,
944       .access = PL1_RW, .fieldoffset = offsetof(CPUARMState, cp15.c9_insn),
945       .resetvalue = 0 },
946     /* v6 doesn't have the cache ID registers but Linux reads them anyway */
947     { .name = "DUMMY", .cp = 15, .crn = 0, .crm = 0, .opc1 = 1, .opc2 = CP_ANY,
948       .access = PL1_R, .type = ARM_CP_CONST | ARM_CP_NO_RAW,
949       .resetvalue = 0 },
950     /* We don't implement pre-v7 debug but most CPUs had at least a DBGDIDR;
951      * implementing it as RAZ means the "debug architecture version" bits
952      * will read as a reserved value, which should cause Linux to not try
953      * to use the debug hardware.
954      */
955     { .name = "DBGDIDR", .cp = 14, .crn = 0, .crm = 0, .opc1 = 0, .opc2 = 0,
956       .access = PL0_R, .type = ARM_CP_CONST, .resetvalue = 0 },
957     /* MMU TLB control. Note that the wildcarding means we cover not just
958      * the unified TLB ops but also the dside/iside/inner-shareable variants.
959      */
960     { .name = "TLBIALL", .cp = 15, .crn = 8, .crm = CP_ANY,
961       .opc1 = CP_ANY, .opc2 = 0, .access = PL1_W, .writefn = tlbiall_write,
962       .type = ARM_CP_NO_RAW },
963     { .name = "TLBIMVA", .cp = 15, .crn = 8, .crm = CP_ANY,
964       .opc1 = CP_ANY, .opc2 = 1, .access = PL1_W, .writefn = tlbimva_write,
965       .type = ARM_CP_NO_RAW },
966     { .name = "TLBIASID", .cp = 15, .crn = 8, .crm = CP_ANY,
967       .opc1 = CP_ANY, .opc2 = 2, .access = PL1_W, .writefn = tlbiasid_write,
968       .type = ARM_CP_NO_RAW },
969     { .name = "TLBIMVAA", .cp = 15, .crn = 8, .crm = CP_ANY,
970       .opc1 = CP_ANY, .opc2 = 3, .access = PL1_W, .writefn = tlbimvaa_write,
971       .type = ARM_CP_NO_RAW },
972     { .name = "PRRR", .cp = 15, .crn = 10, .crm = 2,
973       .opc1 = 0, .opc2 = 0, .access = PL1_RW, .type = ARM_CP_NOP },
974     { .name = "NMRR", .cp = 15, .crn = 10, .crm = 2,
975       .opc1 = 0, .opc2 = 1, .access = PL1_RW, .type = ARM_CP_NOP },
976     REGINFO_SENTINEL
977 };
978 
979 static void cpacr_write(CPUARMState *env, const ARMCPRegInfo *ri,
980                         uint64_t value)
981 {
982     uint32_t mask = 0;
983 
984     /* In ARMv8 most bits of CPACR_EL1 are RES0. */
985     if (!arm_feature(env, ARM_FEATURE_V8)) {
986         /* ARMv7 defines bits for unimplemented coprocessors as RAZ/WI.
987          * ASEDIS [31] and D32DIS [30] are both UNK/SBZP without VFP.
988          * TRCDIS [28] is RAZ/WI since we do not implement a trace macrocell.
989          */
990         if (cpu_isar_feature(aa32_vfp_simd, env_archcpu(env))) {
991             /* VFP coprocessor: cp10 & cp11 [23:20] */
992             mask |= (1 << 31) | (1 << 30) | (0xf << 20);
993 
994             if (!arm_feature(env, ARM_FEATURE_NEON)) {
995                 /* ASEDIS [31] bit is RAO/WI */
996                 value |= (1 << 31);
997             }
998 
999             /* VFPv3 and upwards with NEON implement 32 double precision
1000              * registers (D0-D31).
1001              */
1002             if (!cpu_isar_feature(aa32_simd_r32, env_archcpu(env))) {
1003                 /* D32DIS [30] is RAO/WI if D16-31 are not implemented. */
1004                 value |= (1 << 30);
1005             }
1006         }
1007         value &= mask;
1008     }
1009 
1010     /*
1011      * For A-profile AArch32 EL3 (but not M-profile secure mode), if NSACR.CP10
1012      * is 0 then CPACR.{CP11,CP10} ignore writes and read as 0b00.
1013      */
1014     if (arm_feature(env, ARM_FEATURE_EL3) && !arm_el_is_aa64(env, 3) &&
1015         !arm_is_secure(env) && !extract32(env->cp15.nsacr, 10, 1)) {
1016         value &= ~(0xf << 20);
1017         value |= env->cp15.cpacr_el1 & (0xf << 20);
1018     }
1019 
1020     env->cp15.cpacr_el1 = value;
1021 }
1022 
1023 static uint64_t cpacr_read(CPUARMState *env, const ARMCPRegInfo *ri)
1024 {
1025     /*
1026      * For A-profile AArch32 EL3 (but not M-profile secure mode), if NSACR.CP10
1027      * is 0 then CPACR.{CP11,CP10} ignore writes and read as 0b00.
1028      */
1029     uint64_t value = env->cp15.cpacr_el1;
1030 
1031     if (arm_feature(env, ARM_FEATURE_EL3) && !arm_el_is_aa64(env, 3) &&
1032         !arm_is_secure(env) && !extract32(env->cp15.nsacr, 10, 1)) {
1033         value &= ~(0xf << 20);
1034     }
1035     return value;
1036 }
1037 
1038 
1039 static void cpacr_reset(CPUARMState *env, const ARMCPRegInfo *ri)
1040 {
1041     /* Call cpacr_write() so that we reset with the correct RAO bits set
1042      * for our CPU features.
1043      */
1044     cpacr_write(env, ri, 0);
1045 }
1046 
1047 static CPAccessResult cpacr_access(CPUARMState *env, const ARMCPRegInfo *ri,
1048                                    bool isread)
1049 {
1050     if (arm_feature(env, ARM_FEATURE_V8)) {
1051         /* Check if CPACR accesses are to be trapped to EL2 */
1052         if (arm_current_el(env) == 1 &&
1053             (env->cp15.cptr_el[2] & CPTR_TCPAC) && !arm_is_secure(env)) {
1054             return CP_ACCESS_TRAP_EL2;
1055         /* Check if CPACR accesses are to be trapped to EL3 */
1056         } else if (arm_current_el(env) < 3 &&
1057                    (env->cp15.cptr_el[3] & CPTR_TCPAC)) {
1058             return CP_ACCESS_TRAP_EL3;
1059         }
1060     }
1061 
1062     return CP_ACCESS_OK;
1063 }
1064 
1065 static CPAccessResult cptr_access(CPUARMState *env, const ARMCPRegInfo *ri,
1066                                   bool isread)
1067 {
1068     /* Check if CPTR accesses are set to trap to EL3 */
1069     if (arm_current_el(env) == 2 && (env->cp15.cptr_el[3] & CPTR_TCPAC)) {
1070         return CP_ACCESS_TRAP_EL3;
1071     }
1072 
1073     return CP_ACCESS_OK;
1074 }
1075 
1076 static const ARMCPRegInfo v6_cp_reginfo[] = {
1077     /* prefetch by MVA in v6, NOP in v7 */
1078     { .name = "MVA_prefetch",
1079       .cp = 15, .crn = 7, .crm = 13, .opc1 = 0, .opc2 = 1,
1080       .access = PL1_W, .type = ARM_CP_NOP },
1081     /* We need to break the TB after ISB to execute self-modifying code
1082      * correctly and also to take any pending interrupts immediately.
1083      * So use arm_cp_write_ignore() function instead of ARM_CP_NOP flag.
1084      */
1085     { .name = "ISB", .cp = 15, .crn = 7, .crm = 5, .opc1 = 0, .opc2 = 4,
1086       .access = PL0_W, .type = ARM_CP_NO_RAW, .writefn = arm_cp_write_ignore },
1087     { .name = "DSB", .cp = 15, .crn = 7, .crm = 10, .opc1 = 0, .opc2 = 4,
1088       .access = PL0_W, .type = ARM_CP_NOP },
1089     { .name = "DMB", .cp = 15, .crn = 7, .crm = 10, .opc1 = 0, .opc2 = 5,
1090       .access = PL0_W, .type = ARM_CP_NOP },
1091     { .name = "IFAR", .cp = 15, .crn = 6, .crm = 0, .opc1 = 0, .opc2 = 2,
1092       .access = PL1_RW, .accessfn = access_tvm_trvm,
1093       .bank_fieldoffsets = { offsetof(CPUARMState, cp15.ifar_s),
1094                              offsetof(CPUARMState, cp15.ifar_ns) },
1095       .resetvalue = 0, },
1096     /* Watchpoint Fault Address Register : should actually only be present
1097      * for 1136, 1176, 11MPCore.
1098      */
1099     { .name = "WFAR", .cp = 15, .crn = 6, .crm = 0, .opc1 = 0, .opc2 = 1,
1100       .access = PL1_RW, .type = ARM_CP_CONST, .resetvalue = 0, },
1101     { .name = "CPACR", .state = ARM_CP_STATE_BOTH, .opc0 = 3,
1102       .crn = 1, .crm = 0, .opc1 = 0, .opc2 = 2, .accessfn = cpacr_access,
1103       .access = PL1_RW, .fieldoffset = offsetof(CPUARMState, cp15.cpacr_el1),
1104       .resetfn = cpacr_reset, .writefn = cpacr_write, .readfn = cpacr_read },
1105     REGINFO_SENTINEL
1106 };
1107 
1108 /* Definitions for the PMU registers */
1109 #define PMCRN_MASK  0xf800
1110 #define PMCRN_SHIFT 11
1111 #define PMCRLC  0x40
1112 #define PMCRDP  0x20
1113 #define PMCRX   0x10
1114 #define PMCRD   0x8
1115 #define PMCRC   0x4
1116 #define PMCRP   0x2
1117 #define PMCRE   0x1
1118 /*
1119  * Mask of PMCR bits writeable by guest (not including WO bits like C, P,
1120  * which can be written as 1 to trigger behaviour but which stay RAZ).
1121  */
1122 #define PMCR_WRITEABLE_MASK (PMCRLC | PMCRDP | PMCRX | PMCRD | PMCRE)
1123 
1124 #define PMXEVTYPER_P          0x80000000
1125 #define PMXEVTYPER_U          0x40000000
1126 #define PMXEVTYPER_NSK        0x20000000
1127 #define PMXEVTYPER_NSU        0x10000000
1128 #define PMXEVTYPER_NSH        0x08000000
1129 #define PMXEVTYPER_M          0x04000000
1130 #define PMXEVTYPER_MT         0x02000000
1131 #define PMXEVTYPER_EVTCOUNT   0x0000ffff
1132 #define PMXEVTYPER_MASK       (PMXEVTYPER_P | PMXEVTYPER_U | PMXEVTYPER_NSK | \
1133                                PMXEVTYPER_NSU | PMXEVTYPER_NSH | \
1134                                PMXEVTYPER_M | PMXEVTYPER_MT | \
1135                                PMXEVTYPER_EVTCOUNT)
1136 
1137 #define PMCCFILTR             0xf8000000
1138 #define PMCCFILTR_M           PMXEVTYPER_M
1139 #define PMCCFILTR_EL0         (PMCCFILTR | PMCCFILTR_M)
1140 
1141 static inline uint32_t pmu_num_counters(CPUARMState *env)
1142 {
1143   return (env->cp15.c9_pmcr & PMCRN_MASK) >> PMCRN_SHIFT;
1144 }
1145 
1146 /* Bits allowed to be set/cleared for PMCNTEN* and PMINTEN* */
1147 static inline uint64_t pmu_counter_mask(CPUARMState *env)
1148 {
1149   return (1 << 31) | ((1 << pmu_num_counters(env)) - 1);
1150 }
1151 
1152 typedef struct pm_event {
1153     uint16_t number; /* PMEVTYPER.evtCount is 16 bits wide */
1154     /* If the event is supported on this CPU (used to generate PMCEID[01]) */
1155     bool (*supported)(CPUARMState *);
1156     /*
1157      * Retrieve the current count of the underlying event. The programmed
1158      * counters hold a difference from the return value from this function
1159      */
1160     uint64_t (*get_count)(CPUARMState *);
1161     /*
1162      * Return how many nanoseconds it will take (at a minimum) for count events
1163      * to occur. A negative value indicates the counter will never overflow, or
1164      * that the counter has otherwise arranged for the overflow bit to be set
1165      * and the PMU interrupt to be raised on overflow.
1166      */
1167     int64_t (*ns_per_count)(uint64_t);
1168 } pm_event;
1169 
1170 static bool event_always_supported(CPUARMState *env)
1171 {
1172     return true;
1173 }
1174 
1175 static uint64_t swinc_get_count(CPUARMState *env)
1176 {
1177     /*
1178      * SW_INCR events are written directly to the pmevcntr's by writes to
1179      * PMSWINC, so there is no underlying count maintained by the PMU itself
1180      */
1181     return 0;
1182 }
1183 
1184 static int64_t swinc_ns_per(uint64_t ignored)
1185 {
1186     return -1;
1187 }
1188 
1189 /*
1190  * Return the underlying cycle count for the PMU cycle counters. If we're in
1191  * usermode, simply return 0.
1192  */
1193 static uint64_t cycles_get_count(CPUARMState *env)
1194 {
1195 #ifndef CONFIG_USER_ONLY
1196     return muldiv64(qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL),
1197                    ARM_CPU_FREQ, NANOSECONDS_PER_SECOND);
1198 #else
1199     return cpu_get_host_ticks();
1200 #endif
1201 }
1202 
1203 #ifndef CONFIG_USER_ONLY
1204 static int64_t cycles_ns_per(uint64_t cycles)
1205 {
1206     return (ARM_CPU_FREQ / NANOSECONDS_PER_SECOND) * cycles;
1207 }
1208 
1209 static bool instructions_supported(CPUARMState *env)
1210 {
1211     return icount_enabled() == 1; /* Precise instruction counting */
1212 }
1213 
1214 static uint64_t instructions_get_count(CPUARMState *env)
1215 {
1216     return (uint64_t)icount_get_raw();
1217 }
1218 
1219 static int64_t instructions_ns_per(uint64_t icount)
1220 {
1221     return icount_to_ns((int64_t)icount);
1222 }
1223 #endif
1224 
1225 static bool pmu_8_1_events_supported(CPUARMState *env)
1226 {
1227     /* For events which are supported in any v8.1 PMU */
1228     return cpu_isar_feature(any_pmu_8_1, env_archcpu(env));
1229 }
1230 
1231 static bool pmu_8_4_events_supported(CPUARMState *env)
1232 {
1233     /* For events which are supported in any v8.1 PMU */
1234     return cpu_isar_feature(any_pmu_8_4, env_archcpu(env));
1235 }
1236 
1237 static uint64_t zero_event_get_count(CPUARMState *env)
1238 {
1239     /* For events which on QEMU never fire, so their count is always zero */
1240     return 0;
1241 }
1242 
1243 static int64_t zero_event_ns_per(uint64_t cycles)
1244 {
1245     /* An event which never fires can never overflow */
1246     return -1;
1247 }
1248 
1249 static const pm_event pm_events[] = {
1250     { .number = 0x000, /* SW_INCR */
1251       .supported = event_always_supported,
1252       .get_count = swinc_get_count,
1253       .ns_per_count = swinc_ns_per,
1254     },
1255 #ifndef CONFIG_USER_ONLY
1256     { .number = 0x008, /* INST_RETIRED, Instruction architecturally executed */
1257       .supported = instructions_supported,
1258       .get_count = instructions_get_count,
1259       .ns_per_count = instructions_ns_per,
1260     },
1261     { .number = 0x011, /* CPU_CYCLES, Cycle */
1262       .supported = event_always_supported,
1263       .get_count = cycles_get_count,
1264       .ns_per_count = cycles_ns_per,
1265     },
1266 #endif
1267     { .number = 0x023, /* STALL_FRONTEND */
1268       .supported = pmu_8_1_events_supported,
1269       .get_count = zero_event_get_count,
1270       .ns_per_count = zero_event_ns_per,
1271     },
1272     { .number = 0x024, /* STALL_BACKEND */
1273       .supported = pmu_8_1_events_supported,
1274       .get_count = zero_event_get_count,
1275       .ns_per_count = zero_event_ns_per,
1276     },
1277     { .number = 0x03c, /* STALL */
1278       .supported = pmu_8_4_events_supported,
1279       .get_count = zero_event_get_count,
1280       .ns_per_count = zero_event_ns_per,
1281     },
1282 };
1283 
1284 /*
1285  * Note: Before increasing MAX_EVENT_ID beyond 0x3f into the 0x40xx range of
1286  * events (i.e. the statistical profiling extension), this implementation
1287  * should first be updated to something sparse instead of the current
1288  * supported_event_map[] array.
1289  */
1290 #define MAX_EVENT_ID 0x3c
1291 #define UNSUPPORTED_EVENT UINT16_MAX
1292 static uint16_t supported_event_map[MAX_EVENT_ID + 1];
1293 
1294 /*
1295  * Called upon CPU initialization to initialize PMCEID[01]_EL0 and build a map
1296  * of ARM event numbers to indices in our pm_events array.
1297  *
1298  * Note: Events in the 0x40XX range are not currently supported.
1299  */
1300 void pmu_init(ARMCPU *cpu)
1301 {
1302     unsigned int i;
1303 
1304     /*
1305      * Empty supported_event_map and cpu->pmceid[01] before adding supported
1306      * events to them
1307      */
1308     for (i = 0; i < ARRAY_SIZE(supported_event_map); i++) {
1309         supported_event_map[i] = UNSUPPORTED_EVENT;
1310     }
1311     cpu->pmceid0 = 0;
1312     cpu->pmceid1 = 0;
1313 
1314     for (i = 0; i < ARRAY_SIZE(pm_events); i++) {
1315         const pm_event *cnt = &pm_events[i];
1316         assert(cnt->number <= MAX_EVENT_ID);
1317         /* We do not currently support events in the 0x40xx range */
1318         assert(cnt->number <= 0x3f);
1319 
1320         if (cnt->supported(&cpu->env)) {
1321             supported_event_map[cnt->number] = i;
1322             uint64_t event_mask = 1ULL << (cnt->number & 0x1f);
1323             if (cnt->number & 0x20) {
1324                 cpu->pmceid1 |= event_mask;
1325             } else {
1326                 cpu->pmceid0 |= event_mask;
1327             }
1328         }
1329     }
1330 }
1331 
1332 /*
1333  * Check at runtime whether a PMU event is supported for the current machine
1334  */
1335 static bool event_supported(uint16_t number)
1336 {
1337     if (number > MAX_EVENT_ID) {
1338         return false;
1339     }
1340     return supported_event_map[number] != UNSUPPORTED_EVENT;
1341 }
1342 
1343 static CPAccessResult pmreg_access(CPUARMState *env, const ARMCPRegInfo *ri,
1344                                    bool isread)
1345 {
1346     /* Performance monitor registers user accessibility is controlled
1347      * by PMUSERENR. MDCR_EL2.TPM and MDCR_EL3.TPM allow configurable
1348      * trapping to EL2 or EL3 for other accesses.
1349      */
1350     int el = arm_current_el(env);
1351 
1352     if (el == 0 && !(env->cp15.c9_pmuserenr & 1)) {
1353         return CP_ACCESS_TRAP;
1354     }
1355     if (el < 2 && (env->cp15.mdcr_el2 & MDCR_TPM)
1356         && !arm_is_secure_below_el3(env)) {
1357         return CP_ACCESS_TRAP_EL2;
1358     }
1359     if (el < 3 && (env->cp15.mdcr_el3 & MDCR_TPM)) {
1360         return CP_ACCESS_TRAP_EL3;
1361     }
1362 
1363     return CP_ACCESS_OK;
1364 }
1365 
1366 static CPAccessResult pmreg_access_xevcntr(CPUARMState *env,
1367                                            const ARMCPRegInfo *ri,
1368                                            bool isread)
1369 {
1370     /* ER: event counter read trap control */
1371     if (arm_feature(env, ARM_FEATURE_V8)
1372         && arm_current_el(env) == 0
1373         && (env->cp15.c9_pmuserenr & (1 << 3)) != 0
1374         && isread) {
1375         return CP_ACCESS_OK;
1376     }
1377 
1378     return pmreg_access(env, ri, isread);
1379 }
1380 
1381 static CPAccessResult pmreg_access_swinc(CPUARMState *env,
1382                                          const ARMCPRegInfo *ri,
1383                                          bool isread)
1384 {
1385     /* SW: software increment write trap control */
1386     if (arm_feature(env, ARM_FEATURE_V8)
1387         && arm_current_el(env) == 0
1388         && (env->cp15.c9_pmuserenr & (1 << 1)) != 0
1389         && !isread) {
1390         return CP_ACCESS_OK;
1391     }
1392 
1393     return pmreg_access(env, ri, isread);
1394 }
1395 
1396 static CPAccessResult pmreg_access_selr(CPUARMState *env,
1397                                         const ARMCPRegInfo *ri,
1398                                         bool isread)
1399 {
1400     /* ER: event counter read trap control */
1401     if (arm_feature(env, ARM_FEATURE_V8)
1402         && arm_current_el(env) == 0
1403         && (env->cp15.c9_pmuserenr & (1 << 3)) != 0) {
1404         return CP_ACCESS_OK;
1405     }
1406 
1407     return pmreg_access(env, ri, isread);
1408 }
1409 
1410 static CPAccessResult pmreg_access_ccntr(CPUARMState *env,
1411                                          const ARMCPRegInfo *ri,
1412                                          bool isread)
1413 {
1414     /* CR: cycle counter read trap control */
1415     if (arm_feature(env, ARM_FEATURE_V8)
1416         && arm_current_el(env) == 0
1417         && (env->cp15.c9_pmuserenr & (1 << 2)) != 0
1418         && isread) {
1419         return CP_ACCESS_OK;
1420     }
1421 
1422     return pmreg_access(env, ri, isread);
1423 }
1424 
1425 /* Returns true if the counter (pass 31 for PMCCNTR) should count events using
1426  * the current EL, security state, and register configuration.
1427  */
1428 static bool pmu_counter_enabled(CPUARMState *env, uint8_t counter)
1429 {
1430     uint64_t filter;
1431     bool e, p, u, nsk, nsu, nsh, m;
1432     bool enabled, prohibited, filtered;
1433     bool secure = arm_is_secure(env);
1434     int el = arm_current_el(env);
1435     uint8_t hpmn = env->cp15.mdcr_el2 & MDCR_HPMN;
1436 
1437     if (!arm_feature(env, ARM_FEATURE_PMU)) {
1438         return false;
1439     }
1440 
1441     if (!arm_feature(env, ARM_FEATURE_EL2) ||
1442             (counter < hpmn || counter == 31)) {
1443         e = env->cp15.c9_pmcr & PMCRE;
1444     } else {
1445         e = env->cp15.mdcr_el2 & MDCR_HPME;
1446     }
1447     enabled = e && (env->cp15.c9_pmcnten & (1 << counter));
1448 
1449     if (!secure) {
1450         if (el == 2 && (counter < hpmn || counter == 31)) {
1451             prohibited = env->cp15.mdcr_el2 & MDCR_HPMD;
1452         } else {
1453             prohibited = false;
1454         }
1455     } else {
1456         prohibited = arm_feature(env, ARM_FEATURE_EL3) &&
1457            !(env->cp15.mdcr_el3 & MDCR_SPME);
1458     }
1459 
1460     if (prohibited && counter == 31) {
1461         prohibited = env->cp15.c9_pmcr & PMCRDP;
1462     }
1463 
1464     if (counter == 31) {
1465         filter = env->cp15.pmccfiltr_el0;
1466     } else {
1467         filter = env->cp15.c14_pmevtyper[counter];
1468     }
1469 
1470     p   = filter & PMXEVTYPER_P;
1471     u   = filter & PMXEVTYPER_U;
1472     nsk = arm_feature(env, ARM_FEATURE_EL3) && (filter & PMXEVTYPER_NSK);
1473     nsu = arm_feature(env, ARM_FEATURE_EL3) && (filter & PMXEVTYPER_NSU);
1474     nsh = arm_feature(env, ARM_FEATURE_EL2) && (filter & PMXEVTYPER_NSH);
1475     m   = arm_el_is_aa64(env, 1) &&
1476               arm_feature(env, ARM_FEATURE_EL3) && (filter & PMXEVTYPER_M);
1477 
1478     if (el == 0) {
1479         filtered = secure ? u : u != nsu;
1480     } else if (el == 1) {
1481         filtered = secure ? p : p != nsk;
1482     } else if (el == 2) {
1483         filtered = !nsh;
1484     } else { /* EL3 */
1485         filtered = m != p;
1486     }
1487 
1488     if (counter != 31) {
1489         /*
1490          * If not checking PMCCNTR, ensure the counter is setup to an event we
1491          * support
1492          */
1493         uint16_t event = filter & PMXEVTYPER_EVTCOUNT;
1494         if (!event_supported(event)) {
1495             return false;
1496         }
1497     }
1498 
1499     return enabled && !prohibited && !filtered;
1500 }
1501 
1502 static void pmu_update_irq(CPUARMState *env)
1503 {
1504     ARMCPU *cpu = env_archcpu(env);
1505     qemu_set_irq(cpu->pmu_interrupt, (env->cp15.c9_pmcr & PMCRE) &&
1506             (env->cp15.c9_pminten & env->cp15.c9_pmovsr));
1507 }
1508 
1509 /*
1510  * Ensure c15_ccnt is the guest-visible count so that operations such as
1511  * enabling/disabling the counter or filtering, modifying the count itself,
1512  * etc. can be done logically. This is essentially a no-op if the counter is
1513  * not enabled at the time of the call.
1514  */
1515 static void pmccntr_op_start(CPUARMState *env)
1516 {
1517     uint64_t cycles = cycles_get_count(env);
1518 
1519     if (pmu_counter_enabled(env, 31)) {
1520         uint64_t eff_cycles = cycles;
1521         if (env->cp15.c9_pmcr & PMCRD) {
1522             /* Increment once every 64 processor clock cycles */
1523             eff_cycles /= 64;
1524         }
1525 
1526         uint64_t new_pmccntr = eff_cycles - env->cp15.c15_ccnt_delta;
1527 
1528         uint64_t overflow_mask = env->cp15.c9_pmcr & PMCRLC ? \
1529                                  1ull << 63 : 1ull << 31;
1530         if (env->cp15.c15_ccnt & ~new_pmccntr & overflow_mask) {
1531             env->cp15.c9_pmovsr |= (1 << 31);
1532             pmu_update_irq(env);
1533         }
1534 
1535         env->cp15.c15_ccnt = new_pmccntr;
1536     }
1537     env->cp15.c15_ccnt_delta = cycles;
1538 }
1539 
1540 /*
1541  * If PMCCNTR is enabled, recalculate the delta between the clock and the
1542  * guest-visible count. A call to pmccntr_op_finish should follow every call to
1543  * pmccntr_op_start.
1544  */
1545 static void pmccntr_op_finish(CPUARMState *env)
1546 {
1547     if (pmu_counter_enabled(env, 31)) {
1548 #ifndef CONFIG_USER_ONLY
1549         /* Calculate when the counter will next overflow */
1550         uint64_t remaining_cycles = -env->cp15.c15_ccnt;
1551         if (!(env->cp15.c9_pmcr & PMCRLC)) {
1552             remaining_cycles = (uint32_t)remaining_cycles;
1553         }
1554         int64_t overflow_in = cycles_ns_per(remaining_cycles);
1555 
1556         if (overflow_in > 0) {
1557             int64_t overflow_at = qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL) +
1558                 overflow_in;
1559             ARMCPU *cpu = env_archcpu(env);
1560             timer_mod_anticipate_ns(cpu->pmu_timer, overflow_at);
1561         }
1562 #endif
1563 
1564         uint64_t prev_cycles = env->cp15.c15_ccnt_delta;
1565         if (env->cp15.c9_pmcr & PMCRD) {
1566             /* Increment once every 64 processor clock cycles */
1567             prev_cycles /= 64;
1568         }
1569         env->cp15.c15_ccnt_delta = prev_cycles - env->cp15.c15_ccnt;
1570     }
1571 }
1572 
1573 static void pmevcntr_op_start(CPUARMState *env, uint8_t counter)
1574 {
1575 
1576     uint16_t event = env->cp15.c14_pmevtyper[counter] & PMXEVTYPER_EVTCOUNT;
1577     uint64_t count = 0;
1578     if (event_supported(event)) {
1579         uint16_t event_idx = supported_event_map[event];
1580         count = pm_events[event_idx].get_count(env);
1581     }
1582 
1583     if (pmu_counter_enabled(env, counter)) {
1584         uint32_t new_pmevcntr = count - env->cp15.c14_pmevcntr_delta[counter];
1585 
1586         if (env->cp15.c14_pmevcntr[counter] & ~new_pmevcntr & INT32_MIN) {
1587             env->cp15.c9_pmovsr |= (1 << counter);
1588             pmu_update_irq(env);
1589         }
1590         env->cp15.c14_pmevcntr[counter] = new_pmevcntr;
1591     }
1592     env->cp15.c14_pmevcntr_delta[counter] = count;
1593 }
1594 
1595 static void pmevcntr_op_finish(CPUARMState *env, uint8_t counter)
1596 {
1597     if (pmu_counter_enabled(env, counter)) {
1598 #ifndef CONFIG_USER_ONLY
1599         uint16_t event = env->cp15.c14_pmevtyper[counter] & PMXEVTYPER_EVTCOUNT;
1600         uint16_t event_idx = supported_event_map[event];
1601         uint64_t delta = UINT32_MAX -
1602             (uint32_t)env->cp15.c14_pmevcntr[counter] + 1;
1603         int64_t overflow_in = pm_events[event_idx].ns_per_count(delta);
1604 
1605         if (overflow_in > 0) {
1606             int64_t overflow_at = qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL) +
1607                 overflow_in;
1608             ARMCPU *cpu = env_archcpu(env);
1609             timer_mod_anticipate_ns(cpu->pmu_timer, overflow_at);
1610         }
1611 #endif
1612 
1613         env->cp15.c14_pmevcntr_delta[counter] -=
1614             env->cp15.c14_pmevcntr[counter];
1615     }
1616 }
1617 
1618 void pmu_op_start(CPUARMState *env)
1619 {
1620     unsigned int i;
1621     pmccntr_op_start(env);
1622     for (i = 0; i < pmu_num_counters(env); i++) {
1623         pmevcntr_op_start(env, i);
1624     }
1625 }
1626 
1627 void pmu_op_finish(CPUARMState *env)
1628 {
1629     unsigned int i;
1630     pmccntr_op_finish(env);
1631     for (i = 0; i < pmu_num_counters(env); i++) {
1632         pmevcntr_op_finish(env, i);
1633     }
1634 }
1635 
1636 void pmu_pre_el_change(ARMCPU *cpu, void *ignored)
1637 {
1638     pmu_op_start(&cpu->env);
1639 }
1640 
1641 void pmu_post_el_change(ARMCPU *cpu, void *ignored)
1642 {
1643     pmu_op_finish(&cpu->env);
1644 }
1645 
1646 void arm_pmu_timer_cb(void *opaque)
1647 {
1648     ARMCPU *cpu = opaque;
1649 
1650     /*
1651      * Update all the counter values based on the current underlying counts,
1652      * triggering interrupts to be raised, if necessary. pmu_op_finish() also
1653      * has the effect of setting the cpu->pmu_timer to the next earliest time a
1654      * counter may expire.
1655      */
1656     pmu_op_start(&cpu->env);
1657     pmu_op_finish(&cpu->env);
1658 }
1659 
1660 static void pmcr_write(CPUARMState *env, const ARMCPRegInfo *ri,
1661                        uint64_t value)
1662 {
1663     pmu_op_start(env);
1664 
1665     if (value & PMCRC) {
1666         /* The counter has been reset */
1667         env->cp15.c15_ccnt = 0;
1668     }
1669 
1670     if (value & PMCRP) {
1671         unsigned int i;
1672         for (i = 0; i < pmu_num_counters(env); i++) {
1673             env->cp15.c14_pmevcntr[i] = 0;
1674         }
1675     }
1676 
1677     env->cp15.c9_pmcr &= ~PMCR_WRITEABLE_MASK;
1678     env->cp15.c9_pmcr |= (value & PMCR_WRITEABLE_MASK);
1679 
1680     pmu_op_finish(env);
1681 }
1682 
1683 static void pmswinc_write(CPUARMState *env, const ARMCPRegInfo *ri,
1684                           uint64_t value)
1685 {
1686     unsigned int i;
1687     for (i = 0; i < pmu_num_counters(env); i++) {
1688         /* Increment a counter's count iff: */
1689         if ((value & (1 << i)) && /* counter's bit is set */
1690                 /* counter is enabled and not filtered */
1691                 pmu_counter_enabled(env, i) &&
1692                 /* counter is SW_INCR */
1693                 (env->cp15.c14_pmevtyper[i] & PMXEVTYPER_EVTCOUNT) == 0x0) {
1694             pmevcntr_op_start(env, i);
1695 
1696             /*
1697              * Detect if this write causes an overflow since we can't predict
1698              * PMSWINC overflows like we can for other events
1699              */
1700             uint32_t new_pmswinc = env->cp15.c14_pmevcntr[i] + 1;
1701 
1702             if (env->cp15.c14_pmevcntr[i] & ~new_pmswinc & INT32_MIN) {
1703                 env->cp15.c9_pmovsr |= (1 << i);
1704                 pmu_update_irq(env);
1705             }
1706 
1707             env->cp15.c14_pmevcntr[i] = new_pmswinc;
1708 
1709             pmevcntr_op_finish(env, i);
1710         }
1711     }
1712 }
1713 
1714 static uint64_t pmccntr_read(CPUARMState *env, const ARMCPRegInfo *ri)
1715 {
1716     uint64_t ret;
1717     pmccntr_op_start(env);
1718     ret = env->cp15.c15_ccnt;
1719     pmccntr_op_finish(env);
1720     return ret;
1721 }
1722 
1723 static void pmselr_write(CPUARMState *env, const ARMCPRegInfo *ri,
1724                          uint64_t value)
1725 {
1726     /* The value of PMSELR.SEL affects the behavior of PMXEVTYPER and
1727      * PMXEVCNTR. We allow [0..31] to be written to PMSELR here; in the
1728      * meanwhile, we check PMSELR.SEL when PMXEVTYPER and PMXEVCNTR are
1729      * accessed.
1730      */
1731     env->cp15.c9_pmselr = value & 0x1f;
1732 }
1733 
1734 static void pmccntr_write(CPUARMState *env, const ARMCPRegInfo *ri,
1735                         uint64_t value)
1736 {
1737     pmccntr_op_start(env);
1738     env->cp15.c15_ccnt = value;
1739     pmccntr_op_finish(env);
1740 }
1741 
1742 static void pmccntr_write32(CPUARMState *env, const ARMCPRegInfo *ri,
1743                             uint64_t value)
1744 {
1745     uint64_t cur_val = pmccntr_read(env, NULL);
1746 
1747     pmccntr_write(env, ri, deposit64(cur_val, 0, 32, value));
1748 }
1749 
1750 static void pmccfiltr_write(CPUARMState *env, const ARMCPRegInfo *ri,
1751                             uint64_t value)
1752 {
1753     pmccntr_op_start(env);
1754     env->cp15.pmccfiltr_el0 = value & PMCCFILTR_EL0;
1755     pmccntr_op_finish(env);
1756 }
1757 
1758 static void pmccfiltr_write_a32(CPUARMState *env, const ARMCPRegInfo *ri,
1759                             uint64_t value)
1760 {
1761     pmccntr_op_start(env);
1762     /* M is not accessible from AArch32 */
1763     env->cp15.pmccfiltr_el0 = (env->cp15.pmccfiltr_el0 & PMCCFILTR_M) |
1764         (value & PMCCFILTR);
1765     pmccntr_op_finish(env);
1766 }
1767 
1768 static uint64_t pmccfiltr_read_a32(CPUARMState *env, const ARMCPRegInfo *ri)
1769 {
1770     /* M is not visible in AArch32 */
1771     return env->cp15.pmccfiltr_el0 & PMCCFILTR;
1772 }
1773 
1774 static void pmcntenset_write(CPUARMState *env, const ARMCPRegInfo *ri,
1775                             uint64_t value)
1776 {
1777     value &= pmu_counter_mask(env);
1778     env->cp15.c9_pmcnten |= value;
1779 }
1780 
1781 static void pmcntenclr_write(CPUARMState *env, const ARMCPRegInfo *ri,
1782                              uint64_t value)
1783 {
1784     value &= pmu_counter_mask(env);
1785     env->cp15.c9_pmcnten &= ~value;
1786 }
1787 
1788 static void pmovsr_write(CPUARMState *env, const ARMCPRegInfo *ri,
1789                          uint64_t value)
1790 {
1791     value &= pmu_counter_mask(env);
1792     env->cp15.c9_pmovsr &= ~value;
1793     pmu_update_irq(env);
1794 }
1795 
1796 static void pmovsset_write(CPUARMState *env, const ARMCPRegInfo *ri,
1797                          uint64_t value)
1798 {
1799     value &= pmu_counter_mask(env);
1800     env->cp15.c9_pmovsr |= value;
1801     pmu_update_irq(env);
1802 }
1803 
1804 static void pmevtyper_write(CPUARMState *env, const ARMCPRegInfo *ri,
1805                              uint64_t value, const uint8_t counter)
1806 {
1807     if (counter == 31) {
1808         pmccfiltr_write(env, ri, value);
1809     } else if (counter < pmu_num_counters(env)) {
1810         pmevcntr_op_start(env, counter);
1811 
1812         /*
1813          * If this counter's event type is changing, store the current
1814          * underlying count for the new type in c14_pmevcntr_delta[counter] so
1815          * pmevcntr_op_finish has the correct baseline when it converts back to
1816          * a delta.
1817          */
1818         uint16_t old_event = env->cp15.c14_pmevtyper[counter] &
1819             PMXEVTYPER_EVTCOUNT;
1820         uint16_t new_event = value & PMXEVTYPER_EVTCOUNT;
1821         if (old_event != new_event) {
1822             uint64_t count = 0;
1823             if (event_supported(new_event)) {
1824                 uint16_t event_idx = supported_event_map[new_event];
1825                 count = pm_events[event_idx].get_count(env);
1826             }
1827             env->cp15.c14_pmevcntr_delta[counter] = count;
1828         }
1829 
1830         env->cp15.c14_pmevtyper[counter] = value & PMXEVTYPER_MASK;
1831         pmevcntr_op_finish(env, counter);
1832     }
1833     /* Attempts to access PMXEVTYPER are CONSTRAINED UNPREDICTABLE when
1834      * PMSELR value is equal to or greater than the number of implemented
1835      * counters, but not equal to 0x1f. We opt to behave as a RAZ/WI.
1836      */
1837 }
1838 
1839 static uint64_t pmevtyper_read(CPUARMState *env, const ARMCPRegInfo *ri,
1840                                const uint8_t counter)
1841 {
1842     if (counter == 31) {
1843         return env->cp15.pmccfiltr_el0;
1844     } else if (counter < pmu_num_counters(env)) {
1845         return env->cp15.c14_pmevtyper[counter];
1846     } else {
1847       /*
1848        * We opt to behave as a RAZ/WI when attempts to access PMXEVTYPER
1849        * are CONSTRAINED UNPREDICTABLE. See comments in pmevtyper_write().
1850        */
1851         return 0;
1852     }
1853 }
1854 
1855 static void pmevtyper_writefn(CPUARMState *env, const ARMCPRegInfo *ri,
1856                               uint64_t value)
1857 {
1858     uint8_t counter = ((ri->crm & 3) << 3) | (ri->opc2 & 7);
1859     pmevtyper_write(env, ri, value, counter);
1860 }
1861 
1862 static void pmevtyper_rawwrite(CPUARMState *env, const ARMCPRegInfo *ri,
1863                                uint64_t value)
1864 {
1865     uint8_t counter = ((ri->crm & 3) << 3) | (ri->opc2 & 7);
1866     env->cp15.c14_pmevtyper[counter] = value;
1867 
1868     /*
1869      * pmevtyper_rawwrite is called between a pair of pmu_op_start and
1870      * pmu_op_finish calls when loading saved state for a migration. Because
1871      * we're potentially updating the type of event here, the value written to
1872      * c14_pmevcntr_delta by the preceeding pmu_op_start call may be for a
1873      * different counter type. Therefore, we need to set this value to the
1874      * current count for the counter type we're writing so that pmu_op_finish
1875      * has the correct count for its calculation.
1876      */
1877     uint16_t event = value & PMXEVTYPER_EVTCOUNT;
1878     if (event_supported(event)) {
1879         uint16_t event_idx = supported_event_map[event];
1880         env->cp15.c14_pmevcntr_delta[counter] =
1881             pm_events[event_idx].get_count(env);
1882     }
1883 }
1884 
1885 static uint64_t pmevtyper_readfn(CPUARMState *env, const ARMCPRegInfo *ri)
1886 {
1887     uint8_t counter = ((ri->crm & 3) << 3) | (ri->opc2 & 7);
1888     return pmevtyper_read(env, ri, counter);
1889 }
1890 
1891 static void pmxevtyper_write(CPUARMState *env, const ARMCPRegInfo *ri,
1892                              uint64_t value)
1893 {
1894     pmevtyper_write(env, ri, value, env->cp15.c9_pmselr & 31);
1895 }
1896 
1897 static uint64_t pmxevtyper_read(CPUARMState *env, const ARMCPRegInfo *ri)
1898 {
1899     return pmevtyper_read(env, ri, env->cp15.c9_pmselr & 31);
1900 }
1901 
1902 static void pmevcntr_write(CPUARMState *env, const ARMCPRegInfo *ri,
1903                              uint64_t value, uint8_t counter)
1904 {
1905     if (counter < pmu_num_counters(env)) {
1906         pmevcntr_op_start(env, counter);
1907         env->cp15.c14_pmevcntr[counter] = value;
1908         pmevcntr_op_finish(env, counter);
1909     }
1910     /*
1911      * We opt to behave as a RAZ/WI when attempts to access PM[X]EVCNTR
1912      * are CONSTRAINED UNPREDICTABLE.
1913      */
1914 }
1915 
1916 static uint64_t pmevcntr_read(CPUARMState *env, const ARMCPRegInfo *ri,
1917                               uint8_t counter)
1918 {
1919     if (counter < pmu_num_counters(env)) {
1920         uint64_t ret;
1921         pmevcntr_op_start(env, counter);
1922         ret = env->cp15.c14_pmevcntr[counter];
1923         pmevcntr_op_finish(env, counter);
1924         return ret;
1925     } else {
1926       /* We opt to behave as a RAZ/WI when attempts to access PM[X]EVCNTR
1927        * are CONSTRAINED UNPREDICTABLE. */
1928         return 0;
1929     }
1930 }
1931 
1932 static void pmevcntr_writefn(CPUARMState *env, const ARMCPRegInfo *ri,
1933                              uint64_t value)
1934 {
1935     uint8_t counter = ((ri->crm & 3) << 3) | (ri->opc2 & 7);
1936     pmevcntr_write(env, ri, value, counter);
1937 }
1938 
1939 static uint64_t pmevcntr_readfn(CPUARMState *env, const ARMCPRegInfo *ri)
1940 {
1941     uint8_t counter = ((ri->crm & 3) << 3) | (ri->opc2 & 7);
1942     return pmevcntr_read(env, ri, counter);
1943 }
1944 
1945 static void pmevcntr_rawwrite(CPUARMState *env, const ARMCPRegInfo *ri,
1946                              uint64_t value)
1947 {
1948     uint8_t counter = ((ri->crm & 3) << 3) | (ri->opc2 & 7);
1949     assert(counter < pmu_num_counters(env));
1950     env->cp15.c14_pmevcntr[counter] = value;
1951     pmevcntr_write(env, ri, value, counter);
1952 }
1953 
1954 static uint64_t pmevcntr_rawread(CPUARMState *env, const ARMCPRegInfo *ri)
1955 {
1956     uint8_t counter = ((ri->crm & 3) << 3) | (ri->opc2 & 7);
1957     assert(counter < pmu_num_counters(env));
1958     return env->cp15.c14_pmevcntr[counter];
1959 }
1960 
1961 static void pmxevcntr_write(CPUARMState *env, const ARMCPRegInfo *ri,
1962                              uint64_t value)
1963 {
1964     pmevcntr_write(env, ri, value, env->cp15.c9_pmselr & 31);
1965 }
1966 
1967 static uint64_t pmxevcntr_read(CPUARMState *env, const ARMCPRegInfo *ri)
1968 {
1969     return pmevcntr_read(env, ri, env->cp15.c9_pmselr & 31);
1970 }
1971 
1972 static void pmuserenr_write(CPUARMState *env, const ARMCPRegInfo *ri,
1973                             uint64_t value)
1974 {
1975     if (arm_feature(env, ARM_FEATURE_V8)) {
1976         env->cp15.c9_pmuserenr = value & 0xf;
1977     } else {
1978         env->cp15.c9_pmuserenr = value & 1;
1979     }
1980 }
1981 
1982 static void pmintenset_write(CPUARMState *env, const ARMCPRegInfo *ri,
1983                              uint64_t value)
1984 {
1985     /* We have no event counters so only the C bit can be changed */
1986     value &= pmu_counter_mask(env);
1987     env->cp15.c9_pminten |= value;
1988     pmu_update_irq(env);
1989 }
1990 
1991 static void pmintenclr_write(CPUARMState *env, const ARMCPRegInfo *ri,
1992                              uint64_t value)
1993 {
1994     value &= pmu_counter_mask(env);
1995     env->cp15.c9_pminten &= ~value;
1996     pmu_update_irq(env);
1997 }
1998 
1999 static void vbar_write(CPUARMState *env, const ARMCPRegInfo *ri,
2000                        uint64_t value)
2001 {
2002     /* Note that even though the AArch64 view of this register has bits
2003      * [10:0] all RES0 we can only mask the bottom 5, to comply with the
2004      * architectural requirements for bits which are RES0 only in some
2005      * contexts. (ARMv8 would permit us to do no masking at all, but ARMv7
2006      * requires the bottom five bits to be RAZ/WI because they're UNK/SBZP.)
2007      */
2008     raw_write(env, ri, value & ~0x1FULL);
2009 }
2010 
2011 static void scr_write(CPUARMState *env, const ARMCPRegInfo *ri, uint64_t value)
2012 {
2013     /* Begin with base v8.0 state.  */
2014     uint32_t valid_mask = 0x3fff;
2015     ARMCPU *cpu = env_archcpu(env);
2016 
2017     if (ri->state == ARM_CP_STATE_AA64) {
2018         value |= SCR_FW | SCR_AW;   /* these two bits are RES1.  */
2019         valid_mask &= ~SCR_NET;
2020 
2021         if (cpu_isar_feature(aa64_lor, cpu)) {
2022             valid_mask |= SCR_TLOR;
2023         }
2024         if (cpu_isar_feature(aa64_pauth, cpu)) {
2025             valid_mask |= SCR_API | SCR_APK;
2026         }
2027         if (cpu_isar_feature(aa64_mte, cpu)) {
2028             valid_mask |= SCR_ATA;
2029         }
2030     } else {
2031         valid_mask &= ~(SCR_RW | SCR_ST);
2032     }
2033 
2034     if (!arm_feature(env, ARM_FEATURE_EL2)) {
2035         valid_mask &= ~SCR_HCE;
2036 
2037         /* On ARMv7, SMD (or SCD as it is called in v7) is only
2038          * supported if EL2 exists. The bit is UNK/SBZP when
2039          * EL2 is unavailable. In QEMU ARMv7, we force it to always zero
2040          * when EL2 is unavailable.
2041          * On ARMv8, this bit is always available.
2042          */
2043         if (arm_feature(env, ARM_FEATURE_V7) &&
2044             !arm_feature(env, ARM_FEATURE_V8)) {
2045             valid_mask &= ~SCR_SMD;
2046         }
2047     }
2048 
2049     /* Clear all-context RES0 bits.  */
2050     value &= valid_mask;
2051     raw_write(env, ri, value);
2052 }
2053 
2054 static CPAccessResult access_aa64_tid2(CPUARMState *env,
2055                                        const ARMCPRegInfo *ri,
2056                                        bool isread)
2057 {
2058     if (arm_current_el(env) == 1 && (arm_hcr_el2_eff(env) & HCR_TID2)) {
2059         return CP_ACCESS_TRAP_EL2;
2060     }
2061 
2062     return CP_ACCESS_OK;
2063 }
2064 
2065 static uint64_t ccsidr_read(CPUARMState *env, const ARMCPRegInfo *ri)
2066 {
2067     ARMCPU *cpu = env_archcpu(env);
2068 
2069     /* Acquire the CSSELR index from the bank corresponding to the CCSIDR
2070      * bank
2071      */
2072     uint32_t index = A32_BANKED_REG_GET(env, csselr,
2073                                         ri->secure & ARM_CP_SECSTATE_S);
2074 
2075     return cpu->ccsidr[index];
2076 }
2077 
2078 static void csselr_write(CPUARMState *env, const ARMCPRegInfo *ri,
2079                          uint64_t value)
2080 {
2081     raw_write(env, ri, value & 0xf);
2082 }
2083 
2084 static uint64_t isr_read(CPUARMState *env, const ARMCPRegInfo *ri)
2085 {
2086     CPUState *cs = env_cpu(env);
2087     uint64_t hcr_el2 = arm_hcr_el2_eff(env);
2088     uint64_t ret = 0;
2089     bool allow_virt = (arm_current_el(env) == 1 &&
2090                        (!arm_is_secure_below_el3(env) ||
2091                         (env->cp15.scr_el3 & SCR_EEL2)));
2092 
2093     if (allow_virt && (hcr_el2 & HCR_IMO)) {
2094         if (cs->interrupt_request & CPU_INTERRUPT_VIRQ) {
2095             ret |= CPSR_I;
2096         }
2097     } else {
2098         if (cs->interrupt_request & CPU_INTERRUPT_HARD) {
2099             ret |= CPSR_I;
2100         }
2101     }
2102 
2103     if (allow_virt && (hcr_el2 & HCR_FMO)) {
2104         if (cs->interrupt_request & CPU_INTERRUPT_VFIQ) {
2105             ret |= CPSR_F;
2106         }
2107     } else {
2108         if (cs->interrupt_request & CPU_INTERRUPT_FIQ) {
2109             ret |= CPSR_F;
2110         }
2111     }
2112 
2113     /* External aborts are not possible in QEMU so A bit is always clear */
2114     return ret;
2115 }
2116 
2117 static CPAccessResult access_aa64_tid1(CPUARMState *env, const ARMCPRegInfo *ri,
2118                                        bool isread)
2119 {
2120     if (arm_current_el(env) == 1 && (arm_hcr_el2_eff(env) & HCR_TID1)) {
2121         return CP_ACCESS_TRAP_EL2;
2122     }
2123 
2124     return CP_ACCESS_OK;
2125 }
2126 
2127 static CPAccessResult access_aa32_tid1(CPUARMState *env, const ARMCPRegInfo *ri,
2128                                        bool isread)
2129 {
2130     if (arm_feature(env, ARM_FEATURE_V8)) {
2131         return access_aa64_tid1(env, ri, isread);
2132     }
2133 
2134     return CP_ACCESS_OK;
2135 }
2136 
2137 static const ARMCPRegInfo v7_cp_reginfo[] = {
2138     /* the old v6 WFI, UNPREDICTABLE in v7 but we choose to NOP */
2139     { .name = "NOP", .cp = 15, .crn = 7, .crm = 0, .opc1 = 0, .opc2 = 4,
2140       .access = PL1_W, .type = ARM_CP_NOP },
2141     /* Performance monitors are implementation defined in v7,
2142      * but with an ARM recommended set of registers, which we
2143      * follow.
2144      *
2145      * Performance registers fall into three categories:
2146      *  (a) always UNDEF in PL0, RW in PL1 (PMINTENSET, PMINTENCLR)
2147      *  (b) RO in PL0 (ie UNDEF on write), RW in PL1 (PMUSERENR)
2148      *  (c) UNDEF in PL0 if PMUSERENR.EN==0, otherwise accessible (all others)
2149      * For the cases controlled by PMUSERENR we must set .access to PL0_RW
2150      * or PL0_RO as appropriate and then check PMUSERENR in the helper fn.
2151      */
2152     { .name = "PMCNTENSET", .cp = 15, .crn = 9, .crm = 12, .opc1 = 0, .opc2 = 1,
2153       .access = PL0_RW, .type = ARM_CP_ALIAS,
2154       .fieldoffset = offsetoflow32(CPUARMState, cp15.c9_pmcnten),
2155       .writefn = pmcntenset_write,
2156       .accessfn = pmreg_access,
2157       .raw_writefn = raw_write },
2158     { .name = "PMCNTENSET_EL0", .state = ARM_CP_STATE_AA64,
2159       .opc0 = 3, .opc1 = 3, .crn = 9, .crm = 12, .opc2 = 1,
2160       .access = PL0_RW, .accessfn = pmreg_access,
2161       .fieldoffset = offsetof(CPUARMState, cp15.c9_pmcnten), .resetvalue = 0,
2162       .writefn = pmcntenset_write, .raw_writefn = raw_write },
2163     { .name = "PMCNTENCLR", .cp = 15, .crn = 9, .crm = 12, .opc1 = 0, .opc2 = 2,
2164       .access = PL0_RW,
2165       .fieldoffset = offsetoflow32(CPUARMState, cp15.c9_pmcnten),
2166       .accessfn = pmreg_access,
2167       .writefn = pmcntenclr_write,
2168       .type = ARM_CP_ALIAS },
2169     { .name = "PMCNTENCLR_EL0", .state = ARM_CP_STATE_AA64,
2170       .opc0 = 3, .opc1 = 3, .crn = 9, .crm = 12, .opc2 = 2,
2171       .access = PL0_RW, .accessfn = pmreg_access,
2172       .type = ARM_CP_ALIAS,
2173       .fieldoffset = offsetof(CPUARMState, cp15.c9_pmcnten),
2174       .writefn = pmcntenclr_write },
2175     { .name = "PMOVSR", .cp = 15, .crn = 9, .crm = 12, .opc1 = 0, .opc2 = 3,
2176       .access = PL0_RW, .type = ARM_CP_IO,
2177       .fieldoffset = offsetoflow32(CPUARMState, cp15.c9_pmovsr),
2178       .accessfn = pmreg_access,
2179       .writefn = pmovsr_write,
2180       .raw_writefn = raw_write },
2181     { .name = "PMOVSCLR_EL0", .state = ARM_CP_STATE_AA64,
2182       .opc0 = 3, .opc1 = 3, .crn = 9, .crm = 12, .opc2 = 3,
2183       .access = PL0_RW, .accessfn = pmreg_access,
2184       .type = ARM_CP_ALIAS | ARM_CP_IO,
2185       .fieldoffset = offsetof(CPUARMState, cp15.c9_pmovsr),
2186       .writefn = pmovsr_write,
2187       .raw_writefn = raw_write },
2188     { .name = "PMSWINC", .cp = 15, .crn = 9, .crm = 12, .opc1 = 0, .opc2 = 4,
2189       .access = PL0_W, .accessfn = pmreg_access_swinc,
2190       .type = ARM_CP_NO_RAW | ARM_CP_IO,
2191       .writefn = pmswinc_write },
2192     { .name = "PMSWINC_EL0", .state = ARM_CP_STATE_AA64,
2193       .opc0 = 3, .opc1 = 3, .crn = 9, .crm = 12, .opc2 = 4,
2194       .access = PL0_W, .accessfn = pmreg_access_swinc,
2195       .type = ARM_CP_NO_RAW | ARM_CP_IO,
2196       .writefn = pmswinc_write },
2197     { .name = "PMSELR", .cp = 15, .crn = 9, .crm = 12, .opc1 = 0, .opc2 = 5,
2198       .access = PL0_RW, .type = ARM_CP_ALIAS,
2199       .fieldoffset = offsetoflow32(CPUARMState, cp15.c9_pmselr),
2200       .accessfn = pmreg_access_selr, .writefn = pmselr_write,
2201       .raw_writefn = raw_write},
2202     { .name = "PMSELR_EL0", .state = ARM_CP_STATE_AA64,
2203       .opc0 = 3, .opc1 = 3, .crn = 9, .crm = 12, .opc2 = 5,
2204       .access = PL0_RW, .accessfn = pmreg_access_selr,
2205       .fieldoffset = offsetof(CPUARMState, cp15.c9_pmselr),
2206       .writefn = pmselr_write, .raw_writefn = raw_write, },
2207     { .name = "PMCCNTR", .cp = 15, .crn = 9, .crm = 13, .opc1 = 0, .opc2 = 0,
2208       .access = PL0_RW, .resetvalue = 0, .type = ARM_CP_ALIAS | ARM_CP_IO,
2209       .readfn = pmccntr_read, .writefn = pmccntr_write32,
2210       .accessfn = pmreg_access_ccntr },
2211     { .name = "PMCCNTR_EL0", .state = ARM_CP_STATE_AA64,
2212       .opc0 = 3, .opc1 = 3, .crn = 9, .crm = 13, .opc2 = 0,
2213       .access = PL0_RW, .accessfn = pmreg_access_ccntr,
2214       .type = ARM_CP_IO,
2215       .fieldoffset = offsetof(CPUARMState, cp15.c15_ccnt),
2216       .readfn = pmccntr_read, .writefn = pmccntr_write,
2217       .raw_readfn = raw_read, .raw_writefn = raw_write, },
2218     { .name = "PMCCFILTR", .cp = 15, .opc1 = 0, .crn = 14, .crm = 15, .opc2 = 7,
2219       .writefn = pmccfiltr_write_a32, .readfn = pmccfiltr_read_a32,
2220       .access = PL0_RW, .accessfn = pmreg_access,
2221       .type = ARM_CP_ALIAS | ARM_CP_IO,
2222       .resetvalue = 0, },
2223     { .name = "PMCCFILTR_EL0", .state = ARM_CP_STATE_AA64,
2224       .opc0 = 3, .opc1 = 3, .crn = 14, .crm = 15, .opc2 = 7,
2225       .writefn = pmccfiltr_write, .raw_writefn = raw_write,
2226       .access = PL0_RW, .accessfn = pmreg_access,
2227       .type = ARM_CP_IO,
2228       .fieldoffset = offsetof(CPUARMState, cp15.pmccfiltr_el0),
2229       .resetvalue = 0, },
2230     { .name = "PMXEVTYPER", .cp = 15, .crn = 9, .crm = 13, .opc1 = 0, .opc2 = 1,
2231       .access = PL0_RW, .type = ARM_CP_NO_RAW | ARM_CP_IO,
2232       .accessfn = pmreg_access,
2233       .writefn = pmxevtyper_write, .readfn = pmxevtyper_read },
2234     { .name = "PMXEVTYPER_EL0", .state = ARM_CP_STATE_AA64,
2235       .opc0 = 3, .opc1 = 3, .crn = 9, .crm = 13, .opc2 = 1,
2236       .access = PL0_RW, .type = ARM_CP_NO_RAW | ARM_CP_IO,
2237       .accessfn = pmreg_access,
2238       .writefn = pmxevtyper_write, .readfn = pmxevtyper_read },
2239     { .name = "PMXEVCNTR", .cp = 15, .crn = 9, .crm = 13, .opc1 = 0, .opc2 = 2,
2240       .access = PL0_RW, .type = ARM_CP_NO_RAW | ARM_CP_IO,
2241       .accessfn = pmreg_access_xevcntr,
2242       .writefn = pmxevcntr_write, .readfn = pmxevcntr_read },
2243     { .name = "PMXEVCNTR_EL0", .state = ARM_CP_STATE_AA64,
2244       .opc0 = 3, .opc1 = 3, .crn = 9, .crm = 13, .opc2 = 2,
2245       .access = PL0_RW, .type = ARM_CP_NO_RAW | ARM_CP_IO,
2246       .accessfn = pmreg_access_xevcntr,
2247       .writefn = pmxevcntr_write, .readfn = pmxevcntr_read },
2248     { .name = "PMUSERENR", .cp = 15, .crn = 9, .crm = 14, .opc1 = 0, .opc2 = 0,
2249       .access = PL0_R | PL1_RW, .accessfn = access_tpm,
2250       .fieldoffset = offsetoflow32(CPUARMState, cp15.c9_pmuserenr),
2251       .resetvalue = 0,
2252       .writefn = pmuserenr_write, .raw_writefn = raw_write },
2253     { .name = "PMUSERENR_EL0", .state = ARM_CP_STATE_AA64,
2254       .opc0 = 3, .opc1 = 3, .crn = 9, .crm = 14, .opc2 = 0,
2255       .access = PL0_R | PL1_RW, .accessfn = access_tpm, .type = ARM_CP_ALIAS,
2256       .fieldoffset = offsetof(CPUARMState, cp15.c9_pmuserenr),
2257       .resetvalue = 0,
2258       .writefn = pmuserenr_write, .raw_writefn = raw_write },
2259     { .name = "PMINTENSET", .cp = 15, .crn = 9, .crm = 14, .opc1 = 0, .opc2 = 1,
2260       .access = PL1_RW, .accessfn = access_tpm,
2261       .type = ARM_CP_ALIAS | ARM_CP_IO,
2262       .fieldoffset = offsetoflow32(CPUARMState, cp15.c9_pminten),
2263       .resetvalue = 0,
2264       .writefn = pmintenset_write, .raw_writefn = raw_write },
2265     { .name = "PMINTENSET_EL1", .state = ARM_CP_STATE_AA64,
2266       .opc0 = 3, .opc1 = 0, .crn = 9, .crm = 14, .opc2 = 1,
2267       .access = PL1_RW, .accessfn = access_tpm,
2268       .type = ARM_CP_IO,
2269       .fieldoffset = offsetof(CPUARMState, cp15.c9_pminten),
2270       .writefn = pmintenset_write, .raw_writefn = raw_write,
2271       .resetvalue = 0x0 },
2272     { .name = "PMINTENCLR", .cp = 15, .crn = 9, .crm = 14, .opc1 = 0, .opc2 = 2,
2273       .access = PL1_RW, .accessfn = access_tpm,
2274       .type = ARM_CP_ALIAS | ARM_CP_IO | ARM_CP_NO_RAW,
2275       .fieldoffset = offsetof(CPUARMState, cp15.c9_pminten),
2276       .writefn = pmintenclr_write, },
2277     { .name = "PMINTENCLR_EL1", .state = ARM_CP_STATE_AA64,
2278       .opc0 = 3, .opc1 = 0, .crn = 9, .crm = 14, .opc2 = 2,
2279       .access = PL1_RW, .accessfn = access_tpm,
2280       .type = ARM_CP_ALIAS | ARM_CP_IO | ARM_CP_NO_RAW,
2281       .fieldoffset = offsetof(CPUARMState, cp15.c9_pminten),
2282       .writefn = pmintenclr_write },
2283     { .name = "CCSIDR", .state = ARM_CP_STATE_BOTH,
2284       .opc0 = 3, .crn = 0, .crm = 0, .opc1 = 1, .opc2 = 0,
2285       .access = PL1_R,
2286       .accessfn = access_aa64_tid2,
2287       .readfn = ccsidr_read, .type = ARM_CP_NO_RAW },
2288     { .name = "CSSELR", .state = ARM_CP_STATE_BOTH,
2289       .opc0 = 3, .crn = 0, .crm = 0, .opc1 = 2, .opc2 = 0,
2290       .access = PL1_RW,
2291       .accessfn = access_aa64_tid2,
2292       .writefn = csselr_write, .resetvalue = 0,
2293       .bank_fieldoffsets = { offsetof(CPUARMState, cp15.csselr_s),
2294                              offsetof(CPUARMState, cp15.csselr_ns) } },
2295     /* Auxiliary ID register: this actually has an IMPDEF value but for now
2296      * just RAZ for all cores:
2297      */
2298     { .name = "AIDR", .state = ARM_CP_STATE_BOTH,
2299       .opc0 = 3, .opc1 = 1, .crn = 0, .crm = 0, .opc2 = 7,
2300       .access = PL1_R, .type = ARM_CP_CONST,
2301       .accessfn = access_aa64_tid1,
2302       .resetvalue = 0 },
2303     /* Auxiliary fault status registers: these also are IMPDEF, and we
2304      * choose to RAZ/WI for all cores.
2305      */
2306     { .name = "AFSR0_EL1", .state = ARM_CP_STATE_BOTH,
2307       .opc0 = 3, .opc1 = 0, .crn = 5, .crm = 1, .opc2 = 0,
2308       .access = PL1_RW, .accessfn = access_tvm_trvm,
2309       .type = ARM_CP_CONST, .resetvalue = 0 },
2310     { .name = "AFSR1_EL1", .state = ARM_CP_STATE_BOTH,
2311       .opc0 = 3, .opc1 = 0, .crn = 5, .crm = 1, .opc2 = 1,
2312       .access = PL1_RW, .accessfn = access_tvm_trvm,
2313       .type = ARM_CP_CONST, .resetvalue = 0 },
2314     /* MAIR can just read-as-written because we don't implement caches
2315      * and so don't need to care about memory attributes.
2316      */
2317     { .name = "MAIR_EL1", .state = ARM_CP_STATE_AA64,
2318       .opc0 = 3, .opc1 = 0, .crn = 10, .crm = 2, .opc2 = 0,
2319       .access = PL1_RW, .accessfn = access_tvm_trvm,
2320       .fieldoffset = offsetof(CPUARMState, cp15.mair_el[1]),
2321       .resetvalue = 0 },
2322     { .name = "MAIR_EL3", .state = ARM_CP_STATE_AA64,
2323       .opc0 = 3, .opc1 = 6, .crn = 10, .crm = 2, .opc2 = 0,
2324       .access = PL3_RW, .fieldoffset = offsetof(CPUARMState, cp15.mair_el[3]),
2325       .resetvalue = 0 },
2326     /* For non-long-descriptor page tables these are PRRR and NMRR;
2327      * regardless they still act as reads-as-written for QEMU.
2328      */
2329      /* MAIR0/1 are defined separately from their 64-bit counterpart which
2330       * allows them to assign the correct fieldoffset based on the endianness
2331       * handled in the field definitions.
2332       */
2333     { .name = "MAIR0", .state = ARM_CP_STATE_AA32,
2334       .cp = 15, .opc1 = 0, .crn = 10, .crm = 2, .opc2 = 0,
2335       .access = PL1_RW, .accessfn = access_tvm_trvm,
2336       .bank_fieldoffsets = { offsetof(CPUARMState, cp15.mair0_s),
2337                              offsetof(CPUARMState, cp15.mair0_ns) },
2338       .resetfn = arm_cp_reset_ignore },
2339     { .name = "MAIR1", .state = ARM_CP_STATE_AA32,
2340       .cp = 15, .opc1 = 0, .crn = 10, .crm = 2, .opc2 = 1,
2341       .access = PL1_RW, .accessfn = access_tvm_trvm,
2342       .bank_fieldoffsets = { offsetof(CPUARMState, cp15.mair1_s),
2343                              offsetof(CPUARMState, cp15.mair1_ns) },
2344       .resetfn = arm_cp_reset_ignore },
2345     { .name = "ISR_EL1", .state = ARM_CP_STATE_BOTH,
2346       .opc0 = 3, .opc1 = 0, .crn = 12, .crm = 1, .opc2 = 0,
2347       .type = ARM_CP_NO_RAW, .access = PL1_R, .readfn = isr_read },
2348     /* 32 bit ITLB invalidates */
2349     { .name = "ITLBIALL", .cp = 15, .opc1 = 0, .crn = 8, .crm = 5, .opc2 = 0,
2350       .type = ARM_CP_NO_RAW, .access = PL1_W, .accessfn = access_ttlb,
2351       .writefn = tlbiall_write },
2352     { .name = "ITLBIMVA", .cp = 15, .opc1 = 0, .crn = 8, .crm = 5, .opc2 = 1,
2353       .type = ARM_CP_NO_RAW, .access = PL1_W, .accessfn = access_ttlb,
2354       .writefn = tlbimva_write },
2355     { .name = "ITLBIASID", .cp = 15, .opc1 = 0, .crn = 8, .crm = 5, .opc2 = 2,
2356       .type = ARM_CP_NO_RAW, .access = PL1_W, .accessfn = access_ttlb,
2357       .writefn = tlbiasid_write },
2358     /* 32 bit DTLB invalidates */
2359     { .name = "DTLBIALL", .cp = 15, .opc1 = 0, .crn = 8, .crm = 6, .opc2 = 0,
2360       .type = ARM_CP_NO_RAW, .access = PL1_W, .accessfn = access_ttlb,
2361       .writefn = tlbiall_write },
2362     { .name = "DTLBIMVA", .cp = 15, .opc1 = 0, .crn = 8, .crm = 6, .opc2 = 1,
2363       .type = ARM_CP_NO_RAW, .access = PL1_W, .accessfn = access_ttlb,
2364       .writefn = tlbimva_write },
2365     { .name = "DTLBIASID", .cp = 15, .opc1 = 0, .crn = 8, .crm = 6, .opc2 = 2,
2366       .type = ARM_CP_NO_RAW, .access = PL1_W, .accessfn = access_ttlb,
2367       .writefn = tlbiasid_write },
2368     /* 32 bit TLB invalidates */
2369     { .name = "TLBIALL", .cp = 15, .opc1 = 0, .crn = 8, .crm = 7, .opc2 = 0,
2370       .type = ARM_CP_NO_RAW, .access = PL1_W, .accessfn = access_ttlb,
2371       .writefn = tlbiall_write },
2372     { .name = "TLBIMVA", .cp = 15, .opc1 = 0, .crn = 8, .crm = 7, .opc2 = 1,
2373       .type = ARM_CP_NO_RAW, .access = PL1_W, .accessfn = access_ttlb,
2374       .writefn = tlbimva_write },
2375     { .name = "TLBIASID", .cp = 15, .opc1 = 0, .crn = 8, .crm = 7, .opc2 = 2,
2376       .type = ARM_CP_NO_RAW, .access = PL1_W, .accessfn = access_ttlb,
2377       .writefn = tlbiasid_write },
2378     { .name = "TLBIMVAA", .cp = 15, .opc1 = 0, .crn = 8, .crm = 7, .opc2 = 3,
2379       .type = ARM_CP_NO_RAW, .access = PL1_W, .accessfn = access_ttlb,
2380       .writefn = tlbimvaa_write },
2381     REGINFO_SENTINEL
2382 };
2383 
2384 static const ARMCPRegInfo v7mp_cp_reginfo[] = {
2385     /* 32 bit TLB invalidates, Inner Shareable */
2386     { .name = "TLBIALLIS", .cp = 15, .opc1 = 0, .crn = 8, .crm = 3, .opc2 = 0,
2387       .type = ARM_CP_NO_RAW, .access = PL1_W, .accessfn = access_ttlb,
2388       .writefn = tlbiall_is_write },
2389     { .name = "TLBIMVAIS", .cp = 15, .opc1 = 0, .crn = 8, .crm = 3, .opc2 = 1,
2390       .type = ARM_CP_NO_RAW, .access = PL1_W, .accessfn = access_ttlb,
2391       .writefn = tlbimva_is_write },
2392     { .name = "TLBIASIDIS", .cp = 15, .opc1 = 0, .crn = 8, .crm = 3, .opc2 = 2,
2393       .type = ARM_CP_NO_RAW, .access = PL1_W, .accessfn = access_ttlb,
2394       .writefn = tlbiasid_is_write },
2395     { .name = "TLBIMVAAIS", .cp = 15, .opc1 = 0, .crn = 8, .crm = 3, .opc2 = 3,
2396       .type = ARM_CP_NO_RAW, .access = PL1_W, .accessfn = access_ttlb,
2397       .writefn = tlbimvaa_is_write },
2398     REGINFO_SENTINEL
2399 };
2400 
2401 static const ARMCPRegInfo pmovsset_cp_reginfo[] = {
2402     /* PMOVSSET is not implemented in v7 before v7ve */
2403     { .name = "PMOVSSET", .cp = 15, .opc1 = 0, .crn = 9, .crm = 14, .opc2 = 3,
2404       .access = PL0_RW, .accessfn = pmreg_access,
2405       .type = ARM_CP_ALIAS | ARM_CP_IO,
2406       .fieldoffset = offsetoflow32(CPUARMState, cp15.c9_pmovsr),
2407       .writefn = pmovsset_write,
2408       .raw_writefn = raw_write },
2409     { .name = "PMOVSSET_EL0", .state = ARM_CP_STATE_AA64,
2410       .opc0 = 3, .opc1 = 3, .crn = 9, .crm = 14, .opc2 = 3,
2411       .access = PL0_RW, .accessfn = pmreg_access,
2412       .type = ARM_CP_ALIAS | ARM_CP_IO,
2413       .fieldoffset = offsetof(CPUARMState, cp15.c9_pmovsr),
2414       .writefn = pmovsset_write,
2415       .raw_writefn = raw_write },
2416     REGINFO_SENTINEL
2417 };
2418 
2419 static void teecr_write(CPUARMState *env, const ARMCPRegInfo *ri,
2420                         uint64_t value)
2421 {
2422     value &= 1;
2423     env->teecr = value;
2424 }
2425 
2426 static CPAccessResult teehbr_access(CPUARMState *env, const ARMCPRegInfo *ri,
2427                                     bool isread)
2428 {
2429     if (arm_current_el(env) == 0 && (env->teecr & 1)) {
2430         return CP_ACCESS_TRAP;
2431     }
2432     return CP_ACCESS_OK;
2433 }
2434 
2435 static const ARMCPRegInfo t2ee_cp_reginfo[] = {
2436     { .name = "TEECR", .cp = 14, .crn = 0, .crm = 0, .opc1 = 6, .opc2 = 0,
2437       .access = PL1_RW, .fieldoffset = offsetof(CPUARMState, teecr),
2438       .resetvalue = 0,
2439       .writefn = teecr_write },
2440     { .name = "TEEHBR", .cp = 14, .crn = 1, .crm = 0, .opc1 = 6, .opc2 = 0,
2441       .access = PL0_RW, .fieldoffset = offsetof(CPUARMState, teehbr),
2442       .accessfn = teehbr_access, .resetvalue = 0 },
2443     REGINFO_SENTINEL
2444 };
2445 
2446 static const ARMCPRegInfo v6k_cp_reginfo[] = {
2447     { .name = "TPIDR_EL0", .state = ARM_CP_STATE_AA64,
2448       .opc0 = 3, .opc1 = 3, .opc2 = 2, .crn = 13, .crm = 0,
2449       .access = PL0_RW,
2450       .fieldoffset = offsetof(CPUARMState, cp15.tpidr_el[0]), .resetvalue = 0 },
2451     { .name = "TPIDRURW", .cp = 15, .crn = 13, .crm = 0, .opc1 = 0, .opc2 = 2,
2452       .access = PL0_RW,
2453       .bank_fieldoffsets = { offsetoflow32(CPUARMState, cp15.tpidrurw_s),
2454                              offsetoflow32(CPUARMState, cp15.tpidrurw_ns) },
2455       .resetfn = arm_cp_reset_ignore },
2456     { .name = "TPIDRRO_EL0", .state = ARM_CP_STATE_AA64,
2457       .opc0 = 3, .opc1 = 3, .opc2 = 3, .crn = 13, .crm = 0,
2458       .access = PL0_R|PL1_W,
2459       .fieldoffset = offsetof(CPUARMState, cp15.tpidrro_el[0]),
2460       .resetvalue = 0},
2461     { .name = "TPIDRURO", .cp = 15, .crn = 13, .crm = 0, .opc1 = 0, .opc2 = 3,
2462       .access = PL0_R|PL1_W,
2463       .bank_fieldoffsets = { offsetoflow32(CPUARMState, cp15.tpidruro_s),
2464                              offsetoflow32(CPUARMState, cp15.tpidruro_ns) },
2465       .resetfn = arm_cp_reset_ignore },
2466     { .name = "TPIDR_EL1", .state = ARM_CP_STATE_AA64,
2467       .opc0 = 3, .opc1 = 0, .opc2 = 4, .crn = 13, .crm = 0,
2468       .access = PL1_RW,
2469       .fieldoffset = offsetof(CPUARMState, cp15.tpidr_el[1]), .resetvalue = 0 },
2470     { .name = "TPIDRPRW", .opc1 = 0, .cp = 15, .crn = 13, .crm = 0, .opc2 = 4,
2471       .access = PL1_RW,
2472       .bank_fieldoffsets = { offsetoflow32(CPUARMState, cp15.tpidrprw_s),
2473                              offsetoflow32(CPUARMState, cp15.tpidrprw_ns) },
2474       .resetvalue = 0 },
2475     REGINFO_SENTINEL
2476 };
2477 
2478 #ifndef CONFIG_USER_ONLY
2479 
2480 static CPAccessResult gt_cntfrq_access(CPUARMState *env, const ARMCPRegInfo *ri,
2481                                        bool isread)
2482 {
2483     /* CNTFRQ: not visible from PL0 if both PL0PCTEN and PL0VCTEN are zero.
2484      * Writable only at the highest implemented exception level.
2485      */
2486     int el = arm_current_el(env);
2487     uint64_t hcr;
2488     uint32_t cntkctl;
2489 
2490     switch (el) {
2491     case 0:
2492         hcr = arm_hcr_el2_eff(env);
2493         if ((hcr & (HCR_E2H | HCR_TGE)) == (HCR_E2H | HCR_TGE)) {
2494             cntkctl = env->cp15.cnthctl_el2;
2495         } else {
2496             cntkctl = env->cp15.c14_cntkctl;
2497         }
2498         if (!extract32(cntkctl, 0, 2)) {
2499             return CP_ACCESS_TRAP;
2500         }
2501         break;
2502     case 1:
2503         if (!isread && ri->state == ARM_CP_STATE_AA32 &&
2504             arm_is_secure_below_el3(env)) {
2505             /* Accesses from 32-bit Secure EL1 UNDEF (*not* trap to EL3!) */
2506             return CP_ACCESS_TRAP_UNCATEGORIZED;
2507         }
2508         break;
2509     case 2:
2510     case 3:
2511         break;
2512     }
2513 
2514     if (!isread && el < arm_highest_el(env)) {
2515         return CP_ACCESS_TRAP_UNCATEGORIZED;
2516     }
2517 
2518     return CP_ACCESS_OK;
2519 }
2520 
2521 static CPAccessResult gt_counter_access(CPUARMState *env, int timeridx,
2522                                         bool isread)
2523 {
2524     unsigned int cur_el = arm_current_el(env);
2525     bool secure = arm_is_secure(env);
2526     uint64_t hcr = arm_hcr_el2_eff(env);
2527 
2528     switch (cur_el) {
2529     case 0:
2530         /* If HCR_EL2.<E2H,TGE> == '11': check CNTHCTL_EL2.EL0[PV]CTEN. */
2531         if ((hcr & (HCR_E2H | HCR_TGE)) == (HCR_E2H | HCR_TGE)) {
2532             return (extract32(env->cp15.cnthctl_el2, timeridx, 1)
2533                     ? CP_ACCESS_OK : CP_ACCESS_TRAP_EL2);
2534         }
2535 
2536         /* CNT[PV]CT: not visible from PL0 if EL0[PV]CTEN is zero */
2537         if (!extract32(env->cp15.c14_cntkctl, timeridx, 1)) {
2538             return CP_ACCESS_TRAP;
2539         }
2540 
2541         /* If HCR_EL2.<E2H,TGE> == '10': check CNTHCTL_EL2.EL1PCTEN. */
2542         if (hcr & HCR_E2H) {
2543             if (timeridx == GTIMER_PHYS &&
2544                 !extract32(env->cp15.cnthctl_el2, 10, 1)) {
2545                 return CP_ACCESS_TRAP_EL2;
2546             }
2547         } else {
2548             /* If HCR_EL2.<E2H> == 0: check CNTHCTL_EL2.EL1PCEN. */
2549             if (arm_feature(env, ARM_FEATURE_EL2) &&
2550                 timeridx == GTIMER_PHYS && !secure &&
2551                 !extract32(env->cp15.cnthctl_el2, 1, 1)) {
2552                 return CP_ACCESS_TRAP_EL2;
2553             }
2554         }
2555         break;
2556 
2557     case 1:
2558         /* Check CNTHCTL_EL2.EL1PCTEN, which changes location based on E2H. */
2559         if (arm_feature(env, ARM_FEATURE_EL2) &&
2560             timeridx == GTIMER_PHYS && !secure &&
2561             (hcr & HCR_E2H
2562              ? !extract32(env->cp15.cnthctl_el2, 10, 1)
2563              : !extract32(env->cp15.cnthctl_el2, 0, 1))) {
2564             return CP_ACCESS_TRAP_EL2;
2565         }
2566         break;
2567     }
2568     return CP_ACCESS_OK;
2569 }
2570 
2571 static CPAccessResult gt_timer_access(CPUARMState *env, int timeridx,
2572                                       bool isread)
2573 {
2574     unsigned int cur_el = arm_current_el(env);
2575     bool secure = arm_is_secure(env);
2576     uint64_t hcr = arm_hcr_el2_eff(env);
2577 
2578     switch (cur_el) {
2579     case 0:
2580         if ((hcr & (HCR_E2H | HCR_TGE)) == (HCR_E2H | HCR_TGE)) {
2581             /* If HCR_EL2.<E2H,TGE> == '11': check CNTHCTL_EL2.EL0[PV]TEN. */
2582             return (extract32(env->cp15.cnthctl_el2, 9 - timeridx, 1)
2583                     ? CP_ACCESS_OK : CP_ACCESS_TRAP_EL2);
2584         }
2585 
2586         /*
2587          * CNT[PV]_CVAL, CNT[PV]_CTL, CNT[PV]_TVAL: not visible from
2588          * EL0 if EL0[PV]TEN is zero.
2589          */
2590         if (!extract32(env->cp15.c14_cntkctl, 9 - timeridx, 1)) {
2591             return CP_ACCESS_TRAP;
2592         }
2593         /* fall through */
2594 
2595     case 1:
2596         if (arm_feature(env, ARM_FEATURE_EL2) &&
2597             timeridx == GTIMER_PHYS && !secure) {
2598             if (hcr & HCR_E2H) {
2599                 /* If HCR_EL2.<E2H,TGE> == '10': check CNTHCTL_EL2.EL1PTEN. */
2600                 if (!extract32(env->cp15.cnthctl_el2, 11, 1)) {
2601                     return CP_ACCESS_TRAP_EL2;
2602                 }
2603             } else {
2604                 /* If HCR_EL2.<E2H> == 0: check CNTHCTL_EL2.EL1PCEN. */
2605                 if (!extract32(env->cp15.cnthctl_el2, 1, 1)) {
2606                     return CP_ACCESS_TRAP_EL2;
2607                 }
2608             }
2609         }
2610         break;
2611     }
2612     return CP_ACCESS_OK;
2613 }
2614 
2615 static CPAccessResult gt_pct_access(CPUARMState *env,
2616                                     const ARMCPRegInfo *ri,
2617                                     bool isread)
2618 {
2619     return gt_counter_access(env, GTIMER_PHYS, isread);
2620 }
2621 
2622 static CPAccessResult gt_vct_access(CPUARMState *env,
2623                                     const ARMCPRegInfo *ri,
2624                                     bool isread)
2625 {
2626     return gt_counter_access(env, GTIMER_VIRT, isread);
2627 }
2628 
2629 static CPAccessResult gt_ptimer_access(CPUARMState *env, const ARMCPRegInfo *ri,
2630                                        bool isread)
2631 {
2632     return gt_timer_access(env, GTIMER_PHYS, isread);
2633 }
2634 
2635 static CPAccessResult gt_vtimer_access(CPUARMState *env, const ARMCPRegInfo *ri,
2636                                        bool isread)
2637 {
2638     return gt_timer_access(env, GTIMER_VIRT, isread);
2639 }
2640 
2641 static CPAccessResult gt_stimer_access(CPUARMState *env,
2642                                        const ARMCPRegInfo *ri,
2643                                        bool isread)
2644 {
2645     /* The AArch64 register view of the secure physical timer is
2646      * always accessible from EL3, and configurably accessible from
2647      * Secure EL1.
2648      */
2649     switch (arm_current_el(env)) {
2650     case 1:
2651         if (!arm_is_secure(env)) {
2652             return CP_ACCESS_TRAP;
2653         }
2654         if (!(env->cp15.scr_el3 & SCR_ST)) {
2655             return CP_ACCESS_TRAP_EL3;
2656         }
2657         return CP_ACCESS_OK;
2658     case 0:
2659     case 2:
2660         return CP_ACCESS_TRAP;
2661     case 3:
2662         return CP_ACCESS_OK;
2663     default:
2664         g_assert_not_reached();
2665     }
2666 }
2667 
2668 static uint64_t gt_get_countervalue(CPUARMState *env)
2669 {
2670     ARMCPU *cpu = env_archcpu(env);
2671 
2672     return qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL) / gt_cntfrq_period_ns(cpu);
2673 }
2674 
2675 static void gt_recalc_timer(ARMCPU *cpu, int timeridx)
2676 {
2677     ARMGenericTimer *gt = &cpu->env.cp15.c14_timer[timeridx];
2678 
2679     if (gt->ctl & 1) {
2680         /* Timer enabled: calculate and set current ISTATUS, irq, and
2681          * reset timer to when ISTATUS next has to change
2682          */
2683         uint64_t offset = timeridx == GTIMER_VIRT ?
2684                                       cpu->env.cp15.cntvoff_el2 : 0;
2685         uint64_t count = gt_get_countervalue(&cpu->env);
2686         /* Note that this must be unsigned 64 bit arithmetic: */
2687         int istatus = count - offset >= gt->cval;
2688         uint64_t nexttick;
2689         int irqstate;
2690 
2691         gt->ctl = deposit32(gt->ctl, 2, 1, istatus);
2692 
2693         irqstate = (istatus && !(gt->ctl & 2));
2694         qemu_set_irq(cpu->gt_timer_outputs[timeridx], irqstate);
2695 
2696         if (istatus) {
2697             /* Next transition is when count rolls back over to zero */
2698             nexttick = UINT64_MAX;
2699         } else {
2700             /* Next transition is when we hit cval */
2701             nexttick = gt->cval + offset;
2702         }
2703         /* Note that the desired next expiry time might be beyond the
2704          * signed-64-bit range of a QEMUTimer -- in this case we just
2705          * set the timer for as far in the future as possible. When the
2706          * timer expires we will reset the timer for any remaining period.
2707          */
2708         if (nexttick > INT64_MAX / gt_cntfrq_period_ns(cpu)) {
2709             timer_mod_ns(cpu->gt_timer[timeridx], INT64_MAX);
2710         } else {
2711             timer_mod(cpu->gt_timer[timeridx], nexttick);
2712         }
2713         trace_arm_gt_recalc(timeridx, irqstate, nexttick);
2714     } else {
2715         /* Timer disabled: ISTATUS and timer output always clear */
2716         gt->ctl &= ~4;
2717         qemu_set_irq(cpu->gt_timer_outputs[timeridx], 0);
2718         timer_del(cpu->gt_timer[timeridx]);
2719         trace_arm_gt_recalc_disabled(timeridx);
2720     }
2721 }
2722 
2723 static void gt_timer_reset(CPUARMState *env, const ARMCPRegInfo *ri,
2724                            int timeridx)
2725 {
2726     ARMCPU *cpu = env_archcpu(env);
2727 
2728     timer_del(cpu->gt_timer[timeridx]);
2729 }
2730 
2731 static uint64_t gt_cnt_read(CPUARMState *env, const ARMCPRegInfo *ri)
2732 {
2733     return gt_get_countervalue(env);
2734 }
2735 
2736 static uint64_t gt_virt_cnt_offset(CPUARMState *env)
2737 {
2738     uint64_t hcr;
2739 
2740     switch (arm_current_el(env)) {
2741     case 2:
2742         hcr = arm_hcr_el2_eff(env);
2743         if (hcr & HCR_E2H) {
2744             return 0;
2745         }
2746         break;
2747     case 0:
2748         hcr = arm_hcr_el2_eff(env);
2749         if ((hcr & (HCR_E2H | HCR_TGE)) == (HCR_E2H | HCR_TGE)) {
2750             return 0;
2751         }
2752         break;
2753     }
2754 
2755     return env->cp15.cntvoff_el2;
2756 }
2757 
2758 static uint64_t gt_virt_cnt_read(CPUARMState *env, const ARMCPRegInfo *ri)
2759 {
2760     return gt_get_countervalue(env) - gt_virt_cnt_offset(env);
2761 }
2762 
2763 static void gt_cval_write(CPUARMState *env, const ARMCPRegInfo *ri,
2764                           int timeridx,
2765                           uint64_t value)
2766 {
2767     trace_arm_gt_cval_write(timeridx, value);
2768     env->cp15.c14_timer[timeridx].cval = value;
2769     gt_recalc_timer(env_archcpu(env), timeridx);
2770 }
2771 
2772 static uint64_t gt_tval_read(CPUARMState *env, const ARMCPRegInfo *ri,
2773                              int timeridx)
2774 {
2775     uint64_t offset = 0;
2776 
2777     switch (timeridx) {
2778     case GTIMER_VIRT:
2779     case GTIMER_HYPVIRT:
2780         offset = gt_virt_cnt_offset(env);
2781         break;
2782     }
2783 
2784     return (uint32_t)(env->cp15.c14_timer[timeridx].cval -
2785                       (gt_get_countervalue(env) - offset));
2786 }
2787 
2788 static void gt_tval_write(CPUARMState *env, const ARMCPRegInfo *ri,
2789                           int timeridx,
2790                           uint64_t value)
2791 {
2792     uint64_t offset = 0;
2793 
2794     switch (timeridx) {
2795     case GTIMER_VIRT:
2796     case GTIMER_HYPVIRT:
2797         offset = gt_virt_cnt_offset(env);
2798         break;
2799     }
2800 
2801     trace_arm_gt_tval_write(timeridx, value);
2802     env->cp15.c14_timer[timeridx].cval = gt_get_countervalue(env) - offset +
2803                                          sextract64(value, 0, 32);
2804     gt_recalc_timer(env_archcpu(env), timeridx);
2805 }
2806 
2807 static void gt_ctl_write(CPUARMState *env, const ARMCPRegInfo *ri,
2808                          int timeridx,
2809                          uint64_t value)
2810 {
2811     ARMCPU *cpu = env_archcpu(env);
2812     uint32_t oldval = env->cp15.c14_timer[timeridx].ctl;
2813 
2814     trace_arm_gt_ctl_write(timeridx, value);
2815     env->cp15.c14_timer[timeridx].ctl = deposit64(oldval, 0, 2, value);
2816     if ((oldval ^ value) & 1) {
2817         /* Enable toggled */
2818         gt_recalc_timer(cpu, timeridx);
2819     } else if ((oldval ^ value) & 2) {
2820         /* IMASK toggled: don't need to recalculate,
2821          * just set the interrupt line based on ISTATUS
2822          */
2823         int irqstate = (oldval & 4) && !(value & 2);
2824 
2825         trace_arm_gt_imask_toggle(timeridx, irqstate);
2826         qemu_set_irq(cpu->gt_timer_outputs[timeridx], irqstate);
2827     }
2828 }
2829 
2830 static void gt_phys_timer_reset(CPUARMState *env, const ARMCPRegInfo *ri)
2831 {
2832     gt_timer_reset(env, ri, GTIMER_PHYS);
2833 }
2834 
2835 static void gt_phys_cval_write(CPUARMState *env, const ARMCPRegInfo *ri,
2836                                uint64_t value)
2837 {
2838     gt_cval_write(env, ri, GTIMER_PHYS, value);
2839 }
2840 
2841 static uint64_t gt_phys_tval_read(CPUARMState *env, const ARMCPRegInfo *ri)
2842 {
2843     return gt_tval_read(env, ri, GTIMER_PHYS);
2844 }
2845 
2846 static void gt_phys_tval_write(CPUARMState *env, const ARMCPRegInfo *ri,
2847                                uint64_t value)
2848 {
2849     gt_tval_write(env, ri, GTIMER_PHYS, value);
2850 }
2851 
2852 static void gt_phys_ctl_write(CPUARMState *env, const ARMCPRegInfo *ri,
2853                               uint64_t value)
2854 {
2855     gt_ctl_write(env, ri, GTIMER_PHYS, value);
2856 }
2857 
2858 static int gt_phys_redir_timeridx(CPUARMState *env)
2859 {
2860     switch (arm_mmu_idx(env)) {
2861     case ARMMMUIdx_E20_0:
2862     case ARMMMUIdx_E20_2:
2863     case ARMMMUIdx_E20_2_PAN:
2864         return GTIMER_HYP;
2865     default:
2866         return GTIMER_PHYS;
2867     }
2868 }
2869 
2870 static int gt_virt_redir_timeridx(CPUARMState *env)
2871 {
2872     switch (arm_mmu_idx(env)) {
2873     case ARMMMUIdx_E20_0:
2874     case ARMMMUIdx_E20_2:
2875     case ARMMMUIdx_E20_2_PAN:
2876         return GTIMER_HYPVIRT;
2877     default:
2878         return GTIMER_VIRT;
2879     }
2880 }
2881 
2882 static uint64_t gt_phys_redir_cval_read(CPUARMState *env,
2883                                         const ARMCPRegInfo *ri)
2884 {
2885     int timeridx = gt_phys_redir_timeridx(env);
2886     return env->cp15.c14_timer[timeridx].cval;
2887 }
2888 
2889 static void gt_phys_redir_cval_write(CPUARMState *env, const ARMCPRegInfo *ri,
2890                                      uint64_t value)
2891 {
2892     int timeridx = gt_phys_redir_timeridx(env);
2893     gt_cval_write(env, ri, timeridx, value);
2894 }
2895 
2896 static uint64_t gt_phys_redir_tval_read(CPUARMState *env,
2897                                         const ARMCPRegInfo *ri)
2898 {
2899     int timeridx = gt_phys_redir_timeridx(env);
2900     return gt_tval_read(env, ri, timeridx);
2901 }
2902 
2903 static void gt_phys_redir_tval_write(CPUARMState *env, const ARMCPRegInfo *ri,
2904                                      uint64_t value)
2905 {
2906     int timeridx = gt_phys_redir_timeridx(env);
2907     gt_tval_write(env, ri, timeridx, value);
2908 }
2909 
2910 static uint64_t gt_phys_redir_ctl_read(CPUARMState *env,
2911                                        const ARMCPRegInfo *ri)
2912 {
2913     int timeridx = gt_phys_redir_timeridx(env);
2914     return env->cp15.c14_timer[timeridx].ctl;
2915 }
2916 
2917 static void gt_phys_redir_ctl_write(CPUARMState *env, const ARMCPRegInfo *ri,
2918                                     uint64_t value)
2919 {
2920     int timeridx = gt_phys_redir_timeridx(env);
2921     gt_ctl_write(env, ri, timeridx, value);
2922 }
2923 
2924 static void gt_virt_timer_reset(CPUARMState *env, const ARMCPRegInfo *ri)
2925 {
2926     gt_timer_reset(env, ri, GTIMER_VIRT);
2927 }
2928 
2929 static void gt_virt_cval_write(CPUARMState *env, const ARMCPRegInfo *ri,
2930                                uint64_t value)
2931 {
2932     gt_cval_write(env, ri, GTIMER_VIRT, value);
2933 }
2934 
2935 static uint64_t gt_virt_tval_read(CPUARMState *env, const ARMCPRegInfo *ri)
2936 {
2937     return gt_tval_read(env, ri, GTIMER_VIRT);
2938 }
2939 
2940 static void gt_virt_tval_write(CPUARMState *env, const ARMCPRegInfo *ri,
2941                                uint64_t value)
2942 {
2943     gt_tval_write(env, ri, GTIMER_VIRT, value);
2944 }
2945 
2946 static void gt_virt_ctl_write(CPUARMState *env, const ARMCPRegInfo *ri,
2947                               uint64_t value)
2948 {
2949     gt_ctl_write(env, ri, GTIMER_VIRT, value);
2950 }
2951 
2952 static void gt_cntvoff_write(CPUARMState *env, const ARMCPRegInfo *ri,
2953                               uint64_t value)
2954 {
2955     ARMCPU *cpu = env_archcpu(env);
2956 
2957     trace_arm_gt_cntvoff_write(value);
2958     raw_write(env, ri, value);
2959     gt_recalc_timer(cpu, GTIMER_VIRT);
2960 }
2961 
2962 static uint64_t gt_virt_redir_cval_read(CPUARMState *env,
2963                                         const ARMCPRegInfo *ri)
2964 {
2965     int timeridx = gt_virt_redir_timeridx(env);
2966     return env->cp15.c14_timer[timeridx].cval;
2967 }
2968 
2969 static void gt_virt_redir_cval_write(CPUARMState *env, const ARMCPRegInfo *ri,
2970                                      uint64_t value)
2971 {
2972     int timeridx = gt_virt_redir_timeridx(env);
2973     gt_cval_write(env, ri, timeridx, value);
2974 }
2975 
2976 static uint64_t gt_virt_redir_tval_read(CPUARMState *env,
2977                                         const ARMCPRegInfo *ri)
2978 {
2979     int timeridx = gt_virt_redir_timeridx(env);
2980     return gt_tval_read(env, ri, timeridx);
2981 }
2982 
2983 static void gt_virt_redir_tval_write(CPUARMState *env, const ARMCPRegInfo *ri,
2984                                      uint64_t value)
2985 {
2986     int timeridx = gt_virt_redir_timeridx(env);
2987     gt_tval_write(env, ri, timeridx, value);
2988 }
2989 
2990 static uint64_t gt_virt_redir_ctl_read(CPUARMState *env,
2991                                        const ARMCPRegInfo *ri)
2992 {
2993     int timeridx = gt_virt_redir_timeridx(env);
2994     return env->cp15.c14_timer[timeridx].ctl;
2995 }
2996 
2997 static void gt_virt_redir_ctl_write(CPUARMState *env, const ARMCPRegInfo *ri,
2998                                     uint64_t value)
2999 {
3000     int timeridx = gt_virt_redir_timeridx(env);
3001     gt_ctl_write(env, ri, timeridx, value);
3002 }
3003 
3004 static void gt_hyp_timer_reset(CPUARMState *env, const ARMCPRegInfo *ri)
3005 {
3006     gt_timer_reset(env, ri, GTIMER_HYP);
3007 }
3008 
3009 static void gt_hyp_cval_write(CPUARMState *env, const ARMCPRegInfo *ri,
3010                               uint64_t value)
3011 {
3012     gt_cval_write(env, ri, GTIMER_HYP, value);
3013 }
3014 
3015 static uint64_t gt_hyp_tval_read(CPUARMState *env, const ARMCPRegInfo *ri)
3016 {
3017     return gt_tval_read(env, ri, GTIMER_HYP);
3018 }
3019 
3020 static void gt_hyp_tval_write(CPUARMState *env, const ARMCPRegInfo *ri,
3021                               uint64_t value)
3022 {
3023     gt_tval_write(env, ri, GTIMER_HYP, value);
3024 }
3025 
3026 static void gt_hyp_ctl_write(CPUARMState *env, const ARMCPRegInfo *ri,
3027                               uint64_t value)
3028 {
3029     gt_ctl_write(env, ri, GTIMER_HYP, value);
3030 }
3031 
3032 static void gt_sec_timer_reset(CPUARMState *env, const ARMCPRegInfo *ri)
3033 {
3034     gt_timer_reset(env, ri, GTIMER_SEC);
3035 }
3036 
3037 static void gt_sec_cval_write(CPUARMState *env, const ARMCPRegInfo *ri,
3038                               uint64_t value)
3039 {
3040     gt_cval_write(env, ri, GTIMER_SEC, value);
3041 }
3042 
3043 static uint64_t gt_sec_tval_read(CPUARMState *env, const ARMCPRegInfo *ri)
3044 {
3045     return gt_tval_read(env, ri, GTIMER_SEC);
3046 }
3047 
3048 static void gt_sec_tval_write(CPUARMState *env, const ARMCPRegInfo *ri,
3049                               uint64_t value)
3050 {
3051     gt_tval_write(env, ri, GTIMER_SEC, value);
3052 }
3053 
3054 static void gt_sec_ctl_write(CPUARMState *env, const ARMCPRegInfo *ri,
3055                               uint64_t value)
3056 {
3057     gt_ctl_write(env, ri, GTIMER_SEC, value);
3058 }
3059 
3060 static void gt_hv_timer_reset(CPUARMState *env, const ARMCPRegInfo *ri)
3061 {
3062     gt_timer_reset(env, ri, GTIMER_HYPVIRT);
3063 }
3064 
3065 static void gt_hv_cval_write(CPUARMState *env, const ARMCPRegInfo *ri,
3066                              uint64_t value)
3067 {
3068     gt_cval_write(env, ri, GTIMER_HYPVIRT, value);
3069 }
3070 
3071 static uint64_t gt_hv_tval_read(CPUARMState *env, const ARMCPRegInfo *ri)
3072 {
3073     return gt_tval_read(env, ri, GTIMER_HYPVIRT);
3074 }
3075 
3076 static void gt_hv_tval_write(CPUARMState *env, const ARMCPRegInfo *ri,
3077                              uint64_t value)
3078 {
3079     gt_tval_write(env, ri, GTIMER_HYPVIRT, value);
3080 }
3081 
3082 static void gt_hv_ctl_write(CPUARMState *env, const ARMCPRegInfo *ri,
3083                             uint64_t value)
3084 {
3085     gt_ctl_write(env, ri, GTIMER_HYPVIRT, value);
3086 }
3087 
3088 void arm_gt_ptimer_cb(void *opaque)
3089 {
3090     ARMCPU *cpu = opaque;
3091 
3092     gt_recalc_timer(cpu, GTIMER_PHYS);
3093 }
3094 
3095 void arm_gt_vtimer_cb(void *opaque)
3096 {
3097     ARMCPU *cpu = opaque;
3098 
3099     gt_recalc_timer(cpu, GTIMER_VIRT);
3100 }
3101 
3102 void arm_gt_htimer_cb(void *opaque)
3103 {
3104     ARMCPU *cpu = opaque;
3105 
3106     gt_recalc_timer(cpu, GTIMER_HYP);
3107 }
3108 
3109 void arm_gt_stimer_cb(void *opaque)
3110 {
3111     ARMCPU *cpu = opaque;
3112 
3113     gt_recalc_timer(cpu, GTIMER_SEC);
3114 }
3115 
3116 void arm_gt_hvtimer_cb(void *opaque)
3117 {
3118     ARMCPU *cpu = opaque;
3119 
3120     gt_recalc_timer(cpu, GTIMER_HYPVIRT);
3121 }
3122 
3123 static void arm_gt_cntfrq_reset(CPUARMState *env, const ARMCPRegInfo *opaque)
3124 {
3125     ARMCPU *cpu = env_archcpu(env);
3126 
3127     cpu->env.cp15.c14_cntfrq = cpu->gt_cntfrq_hz;
3128 }
3129 
3130 static const ARMCPRegInfo generic_timer_cp_reginfo[] = {
3131     /* Note that CNTFRQ is purely reads-as-written for the benefit
3132      * of software; writing it doesn't actually change the timer frequency.
3133      * Our reset value matches the fixed frequency we implement the timer at.
3134      */
3135     { .name = "CNTFRQ", .cp = 15, .crn = 14, .crm = 0, .opc1 = 0, .opc2 = 0,
3136       .type = ARM_CP_ALIAS,
3137       .access = PL1_RW | PL0_R, .accessfn = gt_cntfrq_access,
3138       .fieldoffset = offsetoflow32(CPUARMState, cp15.c14_cntfrq),
3139     },
3140     { .name = "CNTFRQ_EL0", .state = ARM_CP_STATE_AA64,
3141       .opc0 = 3, .opc1 = 3, .crn = 14, .crm = 0, .opc2 = 0,
3142       .access = PL1_RW | PL0_R, .accessfn = gt_cntfrq_access,
3143       .fieldoffset = offsetof(CPUARMState, cp15.c14_cntfrq),
3144       .resetfn = arm_gt_cntfrq_reset,
3145     },
3146     /* overall control: mostly access permissions */
3147     { .name = "CNTKCTL", .state = ARM_CP_STATE_BOTH,
3148       .opc0 = 3, .opc1 = 0, .crn = 14, .crm = 1, .opc2 = 0,
3149       .access = PL1_RW,
3150       .fieldoffset = offsetof(CPUARMState, cp15.c14_cntkctl),
3151       .resetvalue = 0,
3152     },
3153     /* per-timer control */
3154     { .name = "CNTP_CTL", .cp = 15, .crn = 14, .crm = 2, .opc1 = 0, .opc2 = 1,
3155       .secure = ARM_CP_SECSTATE_NS,
3156       .type = ARM_CP_IO | ARM_CP_ALIAS, .access = PL0_RW,
3157       .accessfn = gt_ptimer_access,
3158       .fieldoffset = offsetoflow32(CPUARMState,
3159                                    cp15.c14_timer[GTIMER_PHYS].ctl),
3160       .readfn = gt_phys_redir_ctl_read, .raw_readfn = raw_read,
3161       .writefn = gt_phys_redir_ctl_write, .raw_writefn = raw_write,
3162     },
3163     { .name = "CNTP_CTL_S",
3164       .cp = 15, .crn = 14, .crm = 2, .opc1 = 0, .opc2 = 1,
3165       .secure = ARM_CP_SECSTATE_S,
3166       .type = ARM_CP_IO | ARM_CP_ALIAS, .access = PL0_RW,
3167       .accessfn = gt_ptimer_access,
3168       .fieldoffset = offsetoflow32(CPUARMState,
3169                                    cp15.c14_timer[GTIMER_SEC].ctl),
3170       .writefn = gt_sec_ctl_write, .raw_writefn = raw_write,
3171     },
3172     { .name = "CNTP_CTL_EL0", .state = ARM_CP_STATE_AA64,
3173       .opc0 = 3, .opc1 = 3, .crn = 14, .crm = 2, .opc2 = 1,
3174       .type = ARM_CP_IO, .access = PL0_RW,
3175       .accessfn = gt_ptimer_access,
3176       .fieldoffset = offsetof(CPUARMState, cp15.c14_timer[GTIMER_PHYS].ctl),
3177       .resetvalue = 0,
3178       .readfn = gt_phys_redir_ctl_read, .raw_readfn = raw_read,
3179       .writefn = gt_phys_redir_ctl_write, .raw_writefn = raw_write,
3180     },
3181     { .name = "CNTV_CTL", .cp = 15, .crn = 14, .crm = 3, .opc1 = 0, .opc2 = 1,
3182       .type = ARM_CP_IO | ARM_CP_ALIAS, .access = PL0_RW,
3183       .accessfn = gt_vtimer_access,
3184       .fieldoffset = offsetoflow32(CPUARMState,
3185                                    cp15.c14_timer[GTIMER_VIRT].ctl),
3186       .readfn = gt_virt_redir_ctl_read, .raw_readfn = raw_read,
3187       .writefn = gt_virt_redir_ctl_write, .raw_writefn = raw_write,
3188     },
3189     { .name = "CNTV_CTL_EL0", .state = ARM_CP_STATE_AA64,
3190       .opc0 = 3, .opc1 = 3, .crn = 14, .crm = 3, .opc2 = 1,
3191       .type = ARM_CP_IO, .access = PL0_RW,
3192       .accessfn = gt_vtimer_access,
3193       .fieldoffset = offsetof(CPUARMState, cp15.c14_timer[GTIMER_VIRT].ctl),
3194       .resetvalue = 0,
3195       .readfn = gt_virt_redir_ctl_read, .raw_readfn = raw_read,
3196       .writefn = gt_virt_redir_ctl_write, .raw_writefn = raw_write,
3197     },
3198     /* TimerValue views: a 32 bit downcounting view of the underlying state */
3199     { .name = "CNTP_TVAL", .cp = 15, .crn = 14, .crm = 2, .opc1 = 0, .opc2 = 0,
3200       .secure = ARM_CP_SECSTATE_NS,
3201       .type = ARM_CP_NO_RAW | ARM_CP_IO, .access = PL0_RW,
3202       .accessfn = gt_ptimer_access,
3203       .readfn = gt_phys_redir_tval_read, .writefn = gt_phys_redir_tval_write,
3204     },
3205     { .name = "CNTP_TVAL_S",
3206       .cp = 15, .crn = 14, .crm = 2, .opc1 = 0, .opc2 = 0,
3207       .secure = ARM_CP_SECSTATE_S,
3208       .type = ARM_CP_NO_RAW | ARM_CP_IO, .access = PL0_RW,
3209       .accessfn = gt_ptimer_access,
3210       .readfn = gt_sec_tval_read, .writefn = gt_sec_tval_write,
3211     },
3212     { .name = "CNTP_TVAL_EL0", .state = ARM_CP_STATE_AA64,
3213       .opc0 = 3, .opc1 = 3, .crn = 14, .crm = 2, .opc2 = 0,
3214       .type = ARM_CP_NO_RAW | ARM_CP_IO, .access = PL0_RW,
3215       .accessfn = gt_ptimer_access, .resetfn = gt_phys_timer_reset,
3216       .readfn = gt_phys_redir_tval_read, .writefn = gt_phys_redir_tval_write,
3217     },
3218     { .name = "CNTV_TVAL", .cp = 15, .crn = 14, .crm = 3, .opc1 = 0, .opc2 = 0,
3219       .type = ARM_CP_NO_RAW | ARM_CP_IO, .access = PL0_RW,
3220       .accessfn = gt_vtimer_access,
3221       .readfn = gt_virt_redir_tval_read, .writefn = gt_virt_redir_tval_write,
3222     },
3223     { .name = "CNTV_TVAL_EL0", .state = ARM_CP_STATE_AA64,
3224       .opc0 = 3, .opc1 = 3, .crn = 14, .crm = 3, .opc2 = 0,
3225       .type = ARM_CP_NO_RAW | ARM_CP_IO, .access = PL0_RW,
3226       .accessfn = gt_vtimer_access, .resetfn = gt_virt_timer_reset,
3227       .readfn = gt_virt_redir_tval_read, .writefn = gt_virt_redir_tval_write,
3228     },
3229     /* The counter itself */
3230     { .name = "CNTPCT", .cp = 15, .crm = 14, .opc1 = 0,
3231       .access = PL0_R, .type = ARM_CP_64BIT | ARM_CP_NO_RAW | ARM_CP_IO,
3232       .accessfn = gt_pct_access,
3233       .readfn = gt_cnt_read, .resetfn = arm_cp_reset_ignore,
3234     },
3235     { .name = "CNTPCT_EL0", .state = ARM_CP_STATE_AA64,
3236       .opc0 = 3, .opc1 = 3, .crn = 14, .crm = 0, .opc2 = 1,
3237       .access = PL0_R, .type = ARM_CP_NO_RAW | ARM_CP_IO,
3238       .accessfn = gt_pct_access, .readfn = gt_cnt_read,
3239     },
3240     { .name = "CNTVCT", .cp = 15, .crm = 14, .opc1 = 1,
3241       .access = PL0_R, .type = ARM_CP_64BIT | ARM_CP_NO_RAW | ARM_CP_IO,
3242       .accessfn = gt_vct_access,
3243       .readfn = gt_virt_cnt_read, .resetfn = arm_cp_reset_ignore,
3244     },
3245     { .name = "CNTVCT_EL0", .state = ARM_CP_STATE_AA64,
3246       .opc0 = 3, .opc1 = 3, .crn = 14, .crm = 0, .opc2 = 2,
3247       .access = PL0_R, .type = ARM_CP_NO_RAW | ARM_CP_IO,
3248       .accessfn = gt_vct_access, .readfn = gt_virt_cnt_read,
3249     },
3250     /* Comparison value, indicating when the timer goes off */
3251     { .name = "CNTP_CVAL", .cp = 15, .crm = 14, .opc1 = 2,
3252       .secure = ARM_CP_SECSTATE_NS,
3253       .access = PL0_RW,
3254       .type = ARM_CP_64BIT | ARM_CP_IO | ARM_CP_ALIAS,
3255       .fieldoffset = offsetof(CPUARMState, cp15.c14_timer[GTIMER_PHYS].cval),
3256       .accessfn = gt_ptimer_access,
3257       .readfn = gt_phys_redir_cval_read, .raw_readfn = raw_read,
3258       .writefn = gt_phys_redir_cval_write, .raw_writefn = raw_write,
3259     },
3260     { .name = "CNTP_CVAL_S", .cp = 15, .crm = 14, .opc1 = 2,
3261       .secure = ARM_CP_SECSTATE_S,
3262       .access = PL0_RW,
3263       .type = ARM_CP_64BIT | ARM_CP_IO | ARM_CP_ALIAS,
3264       .fieldoffset = offsetof(CPUARMState, cp15.c14_timer[GTIMER_SEC].cval),
3265       .accessfn = gt_ptimer_access,
3266       .writefn = gt_sec_cval_write, .raw_writefn = raw_write,
3267     },
3268     { .name = "CNTP_CVAL_EL0", .state = ARM_CP_STATE_AA64,
3269       .opc0 = 3, .opc1 = 3, .crn = 14, .crm = 2, .opc2 = 2,
3270       .access = PL0_RW,
3271       .type = ARM_CP_IO,
3272       .fieldoffset = offsetof(CPUARMState, cp15.c14_timer[GTIMER_PHYS].cval),
3273       .resetvalue = 0, .accessfn = gt_ptimer_access,
3274       .readfn = gt_phys_redir_cval_read, .raw_readfn = raw_read,
3275       .writefn = gt_phys_redir_cval_write, .raw_writefn = raw_write,
3276     },
3277     { .name = "CNTV_CVAL", .cp = 15, .crm = 14, .opc1 = 3,
3278       .access = PL0_RW,
3279       .type = ARM_CP_64BIT | ARM_CP_IO | ARM_CP_ALIAS,
3280       .fieldoffset = offsetof(CPUARMState, cp15.c14_timer[GTIMER_VIRT].cval),
3281       .accessfn = gt_vtimer_access,
3282       .readfn = gt_virt_redir_cval_read, .raw_readfn = raw_read,
3283       .writefn = gt_virt_redir_cval_write, .raw_writefn = raw_write,
3284     },
3285     { .name = "CNTV_CVAL_EL0", .state = ARM_CP_STATE_AA64,
3286       .opc0 = 3, .opc1 = 3, .crn = 14, .crm = 3, .opc2 = 2,
3287       .access = PL0_RW,
3288       .type = ARM_CP_IO,
3289       .fieldoffset = offsetof(CPUARMState, cp15.c14_timer[GTIMER_VIRT].cval),
3290       .resetvalue = 0, .accessfn = gt_vtimer_access,
3291       .readfn = gt_virt_redir_cval_read, .raw_readfn = raw_read,
3292       .writefn = gt_virt_redir_cval_write, .raw_writefn = raw_write,
3293     },
3294     /* Secure timer -- this is actually restricted to only EL3
3295      * and configurably Secure-EL1 via the accessfn.
3296      */
3297     { .name = "CNTPS_TVAL_EL1", .state = ARM_CP_STATE_AA64,
3298       .opc0 = 3, .opc1 = 7, .crn = 14, .crm = 2, .opc2 = 0,
3299       .type = ARM_CP_NO_RAW | ARM_CP_IO, .access = PL1_RW,
3300       .accessfn = gt_stimer_access,
3301       .readfn = gt_sec_tval_read,
3302       .writefn = gt_sec_tval_write,
3303       .resetfn = gt_sec_timer_reset,
3304     },
3305     { .name = "CNTPS_CTL_EL1", .state = ARM_CP_STATE_AA64,
3306       .opc0 = 3, .opc1 = 7, .crn = 14, .crm = 2, .opc2 = 1,
3307       .type = ARM_CP_IO, .access = PL1_RW,
3308       .accessfn = gt_stimer_access,
3309       .fieldoffset = offsetof(CPUARMState, cp15.c14_timer[GTIMER_SEC].ctl),
3310       .resetvalue = 0,
3311       .writefn = gt_sec_ctl_write, .raw_writefn = raw_write,
3312     },
3313     { .name = "CNTPS_CVAL_EL1", .state = ARM_CP_STATE_AA64,
3314       .opc0 = 3, .opc1 = 7, .crn = 14, .crm = 2, .opc2 = 2,
3315       .type = ARM_CP_IO, .access = PL1_RW,
3316       .accessfn = gt_stimer_access,
3317       .fieldoffset = offsetof(CPUARMState, cp15.c14_timer[GTIMER_SEC].cval),
3318       .writefn = gt_sec_cval_write, .raw_writefn = raw_write,
3319     },
3320     REGINFO_SENTINEL
3321 };
3322 
3323 static CPAccessResult e2h_access(CPUARMState *env, const ARMCPRegInfo *ri,
3324                                  bool isread)
3325 {
3326     if (!(arm_hcr_el2_eff(env) & HCR_E2H)) {
3327         return CP_ACCESS_TRAP;
3328     }
3329     return CP_ACCESS_OK;
3330 }
3331 
3332 #else
3333 
3334 /* In user-mode most of the generic timer registers are inaccessible
3335  * however modern kernels (4.12+) allow access to cntvct_el0
3336  */
3337 
3338 static uint64_t gt_virt_cnt_read(CPUARMState *env, const ARMCPRegInfo *ri)
3339 {
3340     ARMCPU *cpu = env_archcpu(env);
3341 
3342     /* Currently we have no support for QEMUTimer in linux-user so we
3343      * can't call gt_get_countervalue(env), instead we directly
3344      * call the lower level functions.
3345      */
3346     return cpu_get_clock() / gt_cntfrq_period_ns(cpu);
3347 }
3348 
3349 static const ARMCPRegInfo generic_timer_cp_reginfo[] = {
3350     { .name = "CNTFRQ_EL0", .state = ARM_CP_STATE_AA64,
3351       .opc0 = 3, .opc1 = 3, .crn = 14, .crm = 0, .opc2 = 0,
3352       .type = ARM_CP_CONST, .access = PL0_R /* no PL1_RW in linux-user */,
3353       .fieldoffset = offsetof(CPUARMState, cp15.c14_cntfrq),
3354       .resetvalue = NANOSECONDS_PER_SECOND / GTIMER_SCALE,
3355     },
3356     { .name = "CNTVCT_EL0", .state = ARM_CP_STATE_AA64,
3357       .opc0 = 3, .opc1 = 3, .crn = 14, .crm = 0, .opc2 = 2,
3358       .access = PL0_R, .type = ARM_CP_NO_RAW | ARM_CP_IO,
3359       .readfn = gt_virt_cnt_read,
3360     },
3361     REGINFO_SENTINEL
3362 };
3363 
3364 #endif
3365 
3366 static void par_write(CPUARMState *env, const ARMCPRegInfo *ri, uint64_t value)
3367 {
3368     if (arm_feature(env, ARM_FEATURE_LPAE)) {
3369         raw_write(env, ri, value);
3370     } else if (arm_feature(env, ARM_FEATURE_V7)) {
3371         raw_write(env, ri, value & 0xfffff6ff);
3372     } else {
3373         raw_write(env, ri, value & 0xfffff1ff);
3374     }
3375 }
3376 
3377 #ifndef CONFIG_USER_ONLY
3378 /* get_phys_addr() isn't present for user-mode-only targets */
3379 
3380 static CPAccessResult ats_access(CPUARMState *env, const ARMCPRegInfo *ri,
3381                                  bool isread)
3382 {
3383     if (ri->opc2 & 4) {
3384         /* The ATS12NSO* operations must trap to EL3 if executed in
3385          * Secure EL1 (which can only happen if EL3 is AArch64).
3386          * They are simply UNDEF if executed from NS EL1.
3387          * They function normally from EL2 or EL3.
3388          */
3389         if (arm_current_el(env) == 1) {
3390             if (arm_is_secure_below_el3(env)) {
3391                 return CP_ACCESS_TRAP_UNCATEGORIZED_EL3;
3392             }
3393             return CP_ACCESS_TRAP_UNCATEGORIZED;
3394         }
3395     }
3396     return CP_ACCESS_OK;
3397 }
3398 
3399 #ifdef CONFIG_TCG
3400 static uint64_t do_ats_write(CPUARMState *env, uint64_t value,
3401                              MMUAccessType access_type, ARMMMUIdx mmu_idx)
3402 {
3403     hwaddr phys_addr;
3404     target_ulong page_size;
3405     int prot;
3406     bool ret;
3407     uint64_t par64;
3408     bool format64 = false;
3409     MemTxAttrs attrs = {};
3410     ARMMMUFaultInfo fi = {};
3411     ARMCacheAttrs cacheattrs = {};
3412 
3413     ret = get_phys_addr(env, value, access_type, mmu_idx, &phys_addr, &attrs,
3414                         &prot, &page_size, &fi, &cacheattrs);
3415 
3416     if (ret) {
3417         /*
3418          * Some kinds of translation fault must cause exceptions rather
3419          * than being reported in the PAR.
3420          */
3421         int current_el = arm_current_el(env);
3422         int target_el;
3423         uint32_t syn, fsr, fsc;
3424         bool take_exc = false;
3425 
3426         if (fi.s1ptw && current_el == 1 && !arm_is_secure(env)
3427             && arm_mmu_idx_is_stage1_of_2(mmu_idx)) {
3428             /*
3429              * Synchronous stage 2 fault on an access made as part of the
3430              * translation table walk for AT S1E0* or AT S1E1* insn
3431              * executed from NS EL1. If this is a synchronous external abort
3432              * and SCR_EL3.EA == 1, then we take a synchronous external abort
3433              * to EL3. Otherwise the fault is taken as an exception to EL2,
3434              * and HPFAR_EL2 holds the faulting IPA.
3435              */
3436             if (fi.type == ARMFault_SyncExternalOnWalk &&
3437                 (env->cp15.scr_el3 & SCR_EA)) {
3438                 target_el = 3;
3439             } else {
3440                 env->cp15.hpfar_el2 = extract64(fi.s2addr, 12, 47) << 4;
3441                 target_el = 2;
3442             }
3443             take_exc = true;
3444         } else if (fi.type == ARMFault_SyncExternalOnWalk) {
3445             /*
3446              * Synchronous external aborts during a translation table walk
3447              * are taken as Data Abort exceptions.
3448              */
3449             if (fi.stage2) {
3450                 if (current_el == 3) {
3451                     target_el = 3;
3452                 } else {
3453                     target_el = 2;
3454                 }
3455             } else {
3456                 target_el = exception_target_el(env);
3457             }
3458             take_exc = true;
3459         }
3460 
3461         if (take_exc) {
3462             /* Construct FSR and FSC using same logic as arm_deliver_fault() */
3463             if (target_el == 2 || arm_el_is_aa64(env, target_el) ||
3464                 arm_s1_regime_using_lpae_format(env, mmu_idx)) {
3465                 fsr = arm_fi_to_lfsc(&fi);
3466                 fsc = extract32(fsr, 0, 6);
3467             } else {
3468                 fsr = arm_fi_to_sfsc(&fi);
3469                 fsc = 0x3f;
3470             }
3471             /*
3472              * Report exception with ESR indicating a fault due to a
3473              * translation table walk for a cache maintenance instruction.
3474              */
3475             syn = syn_data_abort_no_iss(current_el == target_el, 0,
3476                                         fi.ea, 1, fi.s1ptw, 1, fsc);
3477             env->exception.vaddress = value;
3478             env->exception.fsr = fsr;
3479             raise_exception(env, EXCP_DATA_ABORT, syn, target_el);
3480         }
3481     }
3482 
3483     if (is_a64(env)) {
3484         format64 = true;
3485     } else if (arm_feature(env, ARM_FEATURE_LPAE)) {
3486         /*
3487          * ATS1Cxx:
3488          * * TTBCR.EAE determines whether the result is returned using the
3489          *   32-bit or the 64-bit PAR format
3490          * * Instructions executed in Hyp mode always use the 64bit format
3491          *
3492          * ATS1S2NSOxx uses the 64bit format if any of the following is true:
3493          * * The Non-secure TTBCR.EAE bit is set to 1
3494          * * The implementation includes EL2, and the value of HCR.VM is 1
3495          *
3496          * (Note that HCR.DC makes HCR.VM behave as if it is 1.)
3497          *
3498          * ATS1Hx always uses the 64bit format.
3499          */
3500         format64 = arm_s1_regime_using_lpae_format(env, mmu_idx);
3501 
3502         if (arm_feature(env, ARM_FEATURE_EL2)) {
3503             if (mmu_idx == ARMMMUIdx_E10_0 ||
3504                 mmu_idx == ARMMMUIdx_E10_1 ||
3505                 mmu_idx == ARMMMUIdx_E10_1_PAN) {
3506                 format64 |= env->cp15.hcr_el2 & (HCR_VM | HCR_DC);
3507             } else {
3508                 format64 |= arm_current_el(env) == 2;
3509             }
3510         }
3511     }
3512 
3513     if (format64) {
3514         /* Create a 64-bit PAR */
3515         par64 = (1 << 11); /* LPAE bit always set */
3516         if (!ret) {
3517             par64 |= phys_addr & ~0xfffULL;
3518             if (!attrs.secure) {
3519                 par64 |= (1 << 9); /* NS */
3520             }
3521             par64 |= (uint64_t)cacheattrs.attrs << 56; /* ATTR */
3522             par64 |= cacheattrs.shareability << 7; /* SH */
3523         } else {
3524             uint32_t fsr = arm_fi_to_lfsc(&fi);
3525 
3526             par64 |= 1; /* F */
3527             par64 |= (fsr & 0x3f) << 1; /* FS */
3528             if (fi.stage2) {
3529                 par64 |= (1 << 9); /* S */
3530             }
3531             if (fi.s1ptw) {
3532                 par64 |= (1 << 8); /* PTW */
3533             }
3534         }
3535     } else {
3536         /* fsr is a DFSR/IFSR value for the short descriptor
3537          * translation table format (with WnR always clear).
3538          * Convert it to a 32-bit PAR.
3539          */
3540         if (!ret) {
3541             /* We do not set any attribute bits in the PAR */
3542             if (page_size == (1 << 24)
3543                 && arm_feature(env, ARM_FEATURE_V7)) {
3544                 par64 = (phys_addr & 0xff000000) | (1 << 1);
3545             } else {
3546                 par64 = phys_addr & 0xfffff000;
3547             }
3548             if (!attrs.secure) {
3549                 par64 |= (1 << 9); /* NS */
3550             }
3551         } else {
3552             uint32_t fsr = arm_fi_to_sfsc(&fi);
3553 
3554             par64 = ((fsr & (1 << 10)) >> 5) | ((fsr & (1 << 12)) >> 6) |
3555                     ((fsr & 0xf) << 1) | 1;
3556         }
3557     }
3558     return par64;
3559 }
3560 #endif /* CONFIG_TCG */
3561 
3562 static void ats_write(CPUARMState *env, const ARMCPRegInfo *ri, uint64_t value)
3563 {
3564 #ifdef CONFIG_TCG
3565     MMUAccessType access_type = ri->opc2 & 1 ? MMU_DATA_STORE : MMU_DATA_LOAD;
3566     uint64_t par64;
3567     ARMMMUIdx mmu_idx;
3568     int el = arm_current_el(env);
3569     bool secure = arm_is_secure_below_el3(env);
3570 
3571     switch (ri->opc2 & 6) {
3572     case 0:
3573         /* stage 1 current state PL1: ATS1CPR, ATS1CPW, ATS1CPRP, ATS1CPWP */
3574         switch (el) {
3575         case 3:
3576             mmu_idx = ARMMMUIdx_SE3;
3577             break;
3578         case 2:
3579             g_assert(!secure);  /* TODO: ARMv8.4-SecEL2 */
3580             /* fall through */
3581         case 1:
3582             if (ri->crm == 9 && (env->uncached_cpsr & CPSR_PAN)) {
3583                 mmu_idx = (secure ? ARMMMUIdx_SE10_1_PAN
3584                            : ARMMMUIdx_Stage1_E1_PAN);
3585             } else {
3586                 mmu_idx = secure ? ARMMMUIdx_SE10_1 : ARMMMUIdx_Stage1_E1;
3587             }
3588             break;
3589         default:
3590             g_assert_not_reached();
3591         }
3592         break;
3593     case 2:
3594         /* stage 1 current state PL0: ATS1CUR, ATS1CUW */
3595         switch (el) {
3596         case 3:
3597             mmu_idx = ARMMMUIdx_SE10_0;
3598             break;
3599         case 2:
3600             mmu_idx = ARMMMUIdx_Stage1_E0;
3601             break;
3602         case 1:
3603             mmu_idx = secure ? ARMMMUIdx_SE10_0 : ARMMMUIdx_Stage1_E0;
3604             break;
3605         default:
3606             g_assert_not_reached();
3607         }
3608         break;
3609     case 4:
3610         /* stage 1+2 NonSecure PL1: ATS12NSOPR, ATS12NSOPW */
3611         mmu_idx = ARMMMUIdx_E10_1;
3612         break;
3613     case 6:
3614         /* stage 1+2 NonSecure PL0: ATS12NSOUR, ATS12NSOUW */
3615         mmu_idx = ARMMMUIdx_E10_0;
3616         break;
3617     default:
3618         g_assert_not_reached();
3619     }
3620 
3621     par64 = do_ats_write(env, value, access_type, mmu_idx);
3622 
3623     A32_BANKED_CURRENT_REG_SET(env, par, par64);
3624 #else
3625     /* Handled by hardware accelerator. */
3626     g_assert_not_reached();
3627 #endif /* CONFIG_TCG */
3628 }
3629 
3630 static void ats1h_write(CPUARMState *env, const ARMCPRegInfo *ri,
3631                         uint64_t value)
3632 {
3633 #ifdef CONFIG_TCG
3634     MMUAccessType access_type = ri->opc2 & 1 ? MMU_DATA_STORE : MMU_DATA_LOAD;
3635     uint64_t par64;
3636 
3637     par64 = do_ats_write(env, value, access_type, ARMMMUIdx_E2);
3638 
3639     A32_BANKED_CURRENT_REG_SET(env, par, par64);
3640 #else
3641     /* Handled by hardware accelerator. */
3642     g_assert_not_reached();
3643 #endif /* CONFIG_TCG */
3644 }
3645 
3646 static CPAccessResult at_s1e2_access(CPUARMState *env, const ARMCPRegInfo *ri,
3647                                      bool isread)
3648 {
3649     if (arm_current_el(env) == 3 && !(env->cp15.scr_el3 & SCR_NS)) {
3650         return CP_ACCESS_TRAP;
3651     }
3652     return CP_ACCESS_OK;
3653 }
3654 
3655 static void ats_write64(CPUARMState *env, const ARMCPRegInfo *ri,
3656                         uint64_t value)
3657 {
3658 #ifdef CONFIG_TCG
3659     MMUAccessType access_type = ri->opc2 & 1 ? MMU_DATA_STORE : MMU_DATA_LOAD;
3660     ARMMMUIdx mmu_idx;
3661     int secure = arm_is_secure_below_el3(env);
3662 
3663     switch (ri->opc2 & 6) {
3664     case 0:
3665         switch (ri->opc1) {
3666         case 0: /* AT S1E1R, AT S1E1W, AT S1E1RP, AT S1E1WP */
3667             if (ri->crm == 9 && (env->pstate & PSTATE_PAN)) {
3668                 mmu_idx = (secure ? ARMMMUIdx_SE10_1_PAN
3669                            : ARMMMUIdx_Stage1_E1_PAN);
3670             } else {
3671                 mmu_idx = secure ? ARMMMUIdx_SE10_1 : ARMMMUIdx_Stage1_E1;
3672             }
3673             break;
3674         case 4: /* AT S1E2R, AT S1E2W */
3675             mmu_idx = ARMMMUIdx_E2;
3676             break;
3677         case 6: /* AT S1E3R, AT S1E3W */
3678             mmu_idx = ARMMMUIdx_SE3;
3679             break;
3680         default:
3681             g_assert_not_reached();
3682         }
3683         break;
3684     case 2: /* AT S1E0R, AT S1E0W */
3685         mmu_idx = secure ? ARMMMUIdx_SE10_0 : ARMMMUIdx_Stage1_E0;
3686         break;
3687     case 4: /* AT S12E1R, AT S12E1W */
3688         mmu_idx = secure ? ARMMMUIdx_SE10_1 : ARMMMUIdx_E10_1;
3689         break;
3690     case 6: /* AT S12E0R, AT S12E0W */
3691         mmu_idx = secure ? ARMMMUIdx_SE10_0 : ARMMMUIdx_E10_0;
3692         break;
3693     default:
3694         g_assert_not_reached();
3695     }
3696 
3697     env->cp15.par_el[1] = do_ats_write(env, value, access_type, mmu_idx);
3698 #else
3699     /* Handled by hardware accelerator. */
3700     g_assert_not_reached();
3701 #endif /* CONFIG_TCG */
3702 }
3703 #endif
3704 
3705 static const ARMCPRegInfo vapa_cp_reginfo[] = {
3706     { .name = "PAR", .cp = 15, .crn = 7, .crm = 4, .opc1 = 0, .opc2 = 0,
3707       .access = PL1_RW, .resetvalue = 0,
3708       .bank_fieldoffsets = { offsetoflow32(CPUARMState, cp15.par_s),
3709                              offsetoflow32(CPUARMState, cp15.par_ns) },
3710       .writefn = par_write },
3711 #ifndef CONFIG_USER_ONLY
3712     /* This underdecoding is safe because the reginfo is NO_RAW. */
3713     { .name = "ATS", .cp = 15, .crn = 7, .crm = 8, .opc1 = 0, .opc2 = CP_ANY,
3714       .access = PL1_W, .accessfn = ats_access,
3715       .writefn = ats_write, .type = ARM_CP_NO_RAW | ARM_CP_RAISES_EXC },
3716 #endif
3717     REGINFO_SENTINEL
3718 };
3719 
3720 /* Return basic MPU access permission bits.  */
3721 static uint32_t simple_mpu_ap_bits(uint32_t val)
3722 {
3723     uint32_t ret;
3724     uint32_t mask;
3725     int i;
3726     ret = 0;
3727     mask = 3;
3728     for (i = 0; i < 16; i += 2) {
3729         ret |= (val >> i) & mask;
3730         mask <<= 2;
3731     }
3732     return ret;
3733 }
3734 
3735 /* Pad basic MPU access permission bits to extended format.  */
3736 static uint32_t extended_mpu_ap_bits(uint32_t val)
3737 {
3738     uint32_t ret;
3739     uint32_t mask;
3740     int i;
3741     ret = 0;
3742     mask = 3;
3743     for (i = 0; i < 16; i += 2) {
3744         ret |= (val & mask) << i;
3745         mask <<= 2;
3746     }
3747     return ret;
3748 }
3749 
3750 static void pmsav5_data_ap_write(CPUARMState *env, const ARMCPRegInfo *ri,
3751                                  uint64_t value)
3752 {
3753     env->cp15.pmsav5_data_ap = extended_mpu_ap_bits(value);
3754 }
3755 
3756 static uint64_t pmsav5_data_ap_read(CPUARMState *env, const ARMCPRegInfo *ri)
3757 {
3758     return simple_mpu_ap_bits(env->cp15.pmsav5_data_ap);
3759 }
3760 
3761 static void pmsav5_insn_ap_write(CPUARMState *env, const ARMCPRegInfo *ri,
3762                                  uint64_t value)
3763 {
3764     env->cp15.pmsav5_insn_ap = extended_mpu_ap_bits(value);
3765 }
3766 
3767 static uint64_t pmsav5_insn_ap_read(CPUARMState *env, const ARMCPRegInfo *ri)
3768 {
3769     return simple_mpu_ap_bits(env->cp15.pmsav5_insn_ap);
3770 }
3771 
3772 static uint64_t pmsav7_read(CPUARMState *env, const ARMCPRegInfo *ri)
3773 {
3774     uint32_t *u32p = *(uint32_t **)raw_ptr(env, ri);
3775 
3776     if (!u32p) {
3777         return 0;
3778     }
3779 
3780     u32p += env->pmsav7.rnr[M_REG_NS];
3781     return *u32p;
3782 }
3783 
3784 static void pmsav7_write(CPUARMState *env, const ARMCPRegInfo *ri,
3785                          uint64_t value)
3786 {
3787     ARMCPU *cpu = env_archcpu(env);
3788     uint32_t *u32p = *(uint32_t **)raw_ptr(env, ri);
3789 
3790     if (!u32p) {
3791         return;
3792     }
3793 
3794     u32p += env->pmsav7.rnr[M_REG_NS];
3795     tlb_flush(CPU(cpu)); /* Mappings may have changed - purge! */
3796     *u32p = value;
3797 }
3798 
3799 static void pmsav7_rgnr_write(CPUARMState *env, const ARMCPRegInfo *ri,
3800                               uint64_t value)
3801 {
3802     ARMCPU *cpu = env_archcpu(env);
3803     uint32_t nrgs = cpu->pmsav7_dregion;
3804 
3805     if (value >= nrgs) {
3806         qemu_log_mask(LOG_GUEST_ERROR,
3807                       "PMSAv7 RGNR write >= # supported regions, %" PRIu32
3808                       " > %" PRIu32 "\n", (uint32_t)value, nrgs);
3809         return;
3810     }
3811 
3812     raw_write(env, ri, value);
3813 }
3814 
3815 static const ARMCPRegInfo pmsav7_cp_reginfo[] = {
3816     /* Reset for all these registers is handled in arm_cpu_reset(),
3817      * because the PMSAv7 is also used by M-profile CPUs, which do
3818      * not register cpregs but still need the state to be reset.
3819      */
3820     { .name = "DRBAR", .cp = 15, .crn = 6, .opc1 = 0, .crm = 1, .opc2 = 0,
3821       .access = PL1_RW, .type = ARM_CP_NO_RAW,
3822       .fieldoffset = offsetof(CPUARMState, pmsav7.drbar),
3823       .readfn = pmsav7_read, .writefn = pmsav7_write,
3824       .resetfn = arm_cp_reset_ignore },
3825     { .name = "DRSR", .cp = 15, .crn = 6, .opc1 = 0, .crm = 1, .opc2 = 2,
3826       .access = PL1_RW, .type = ARM_CP_NO_RAW,
3827       .fieldoffset = offsetof(CPUARMState, pmsav7.drsr),
3828       .readfn = pmsav7_read, .writefn = pmsav7_write,
3829       .resetfn = arm_cp_reset_ignore },
3830     { .name = "DRACR", .cp = 15, .crn = 6, .opc1 = 0, .crm = 1, .opc2 = 4,
3831       .access = PL1_RW, .type = ARM_CP_NO_RAW,
3832       .fieldoffset = offsetof(CPUARMState, pmsav7.dracr),
3833       .readfn = pmsav7_read, .writefn = pmsav7_write,
3834       .resetfn = arm_cp_reset_ignore },
3835     { .name = "RGNR", .cp = 15, .crn = 6, .opc1 = 0, .crm = 2, .opc2 = 0,
3836       .access = PL1_RW,
3837       .fieldoffset = offsetof(CPUARMState, pmsav7.rnr[M_REG_NS]),
3838       .writefn = pmsav7_rgnr_write,
3839       .resetfn = arm_cp_reset_ignore },
3840     REGINFO_SENTINEL
3841 };
3842 
3843 static const ARMCPRegInfo pmsav5_cp_reginfo[] = {
3844     { .name = "DATA_AP", .cp = 15, .crn = 5, .crm = 0, .opc1 = 0, .opc2 = 0,
3845       .access = PL1_RW, .type = ARM_CP_ALIAS,
3846       .fieldoffset = offsetof(CPUARMState, cp15.pmsav5_data_ap),
3847       .readfn = pmsav5_data_ap_read, .writefn = pmsav5_data_ap_write, },
3848     { .name = "INSN_AP", .cp = 15, .crn = 5, .crm = 0, .opc1 = 0, .opc2 = 1,
3849       .access = PL1_RW, .type = ARM_CP_ALIAS,
3850       .fieldoffset = offsetof(CPUARMState, cp15.pmsav5_insn_ap),
3851       .readfn = pmsav5_insn_ap_read, .writefn = pmsav5_insn_ap_write, },
3852     { .name = "DATA_EXT_AP", .cp = 15, .crn = 5, .crm = 0, .opc1 = 0, .opc2 = 2,
3853       .access = PL1_RW,
3854       .fieldoffset = offsetof(CPUARMState, cp15.pmsav5_data_ap),
3855       .resetvalue = 0, },
3856     { .name = "INSN_EXT_AP", .cp = 15, .crn = 5, .crm = 0, .opc1 = 0, .opc2 = 3,
3857       .access = PL1_RW,
3858       .fieldoffset = offsetof(CPUARMState, cp15.pmsav5_insn_ap),
3859       .resetvalue = 0, },
3860     { .name = "DCACHE_CFG", .cp = 15, .crn = 2, .crm = 0, .opc1 = 0, .opc2 = 0,
3861       .access = PL1_RW,
3862       .fieldoffset = offsetof(CPUARMState, cp15.c2_data), .resetvalue = 0, },
3863     { .name = "ICACHE_CFG", .cp = 15, .crn = 2, .crm = 0, .opc1 = 0, .opc2 = 1,
3864       .access = PL1_RW,
3865       .fieldoffset = offsetof(CPUARMState, cp15.c2_insn), .resetvalue = 0, },
3866     /* Protection region base and size registers */
3867     { .name = "946_PRBS0", .cp = 15, .crn = 6, .crm = 0, .opc1 = 0,
3868       .opc2 = CP_ANY, .access = PL1_RW, .resetvalue = 0,
3869       .fieldoffset = offsetof(CPUARMState, cp15.c6_region[0]) },
3870     { .name = "946_PRBS1", .cp = 15, .crn = 6, .crm = 1, .opc1 = 0,
3871       .opc2 = CP_ANY, .access = PL1_RW, .resetvalue = 0,
3872       .fieldoffset = offsetof(CPUARMState, cp15.c6_region[1]) },
3873     { .name = "946_PRBS2", .cp = 15, .crn = 6, .crm = 2, .opc1 = 0,
3874       .opc2 = CP_ANY, .access = PL1_RW, .resetvalue = 0,
3875       .fieldoffset = offsetof(CPUARMState, cp15.c6_region[2]) },
3876     { .name = "946_PRBS3", .cp = 15, .crn = 6, .crm = 3, .opc1 = 0,
3877       .opc2 = CP_ANY, .access = PL1_RW, .resetvalue = 0,
3878       .fieldoffset = offsetof(CPUARMState, cp15.c6_region[3]) },
3879     { .name = "946_PRBS4", .cp = 15, .crn = 6, .crm = 4, .opc1 = 0,
3880       .opc2 = CP_ANY, .access = PL1_RW, .resetvalue = 0,
3881       .fieldoffset = offsetof(CPUARMState, cp15.c6_region[4]) },
3882     { .name = "946_PRBS5", .cp = 15, .crn = 6, .crm = 5, .opc1 = 0,
3883       .opc2 = CP_ANY, .access = PL1_RW, .resetvalue = 0,
3884       .fieldoffset = offsetof(CPUARMState, cp15.c6_region[5]) },
3885     { .name = "946_PRBS6", .cp = 15, .crn = 6, .crm = 6, .opc1 = 0,
3886       .opc2 = CP_ANY, .access = PL1_RW, .resetvalue = 0,
3887       .fieldoffset = offsetof(CPUARMState, cp15.c6_region[6]) },
3888     { .name = "946_PRBS7", .cp = 15, .crn = 6, .crm = 7, .opc1 = 0,
3889       .opc2 = CP_ANY, .access = PL1_RW, .resetvalue = 0,
3890       .fieldoffset = offsetof(CPUARMState, cp15.c6_region[7]) },
3891     REGINFO_SENTINEL
3892 };
3893 
3894 static void vmsa_ttbcr_raw_write(CPUARMState *env, const ARMCPRegInfo *ri,
3895                                  uint64_t value)
3896 {
3897     TCR *tcr = raw_ptr(env, ri);
3898     int maskshift = extract32(value, 0, 3);
3899 
3900     if (!arm_feature(env, ARM_FEATURE_V8)) {
3901         if (arm_feature(env, ARM_FEATURE_LPAE) && (value & TTBCR_EAE)) {
3902             /* Pre ARMv8 bits [21:19], [15:14] and [6:3] are UNK/SBZP when
3903              * using Long-desciptor translation table format */
3904             value &= ~((7 << 19) | (3 << 14) | (0xf << 3));
3905         } else if (arm_feature(env, ARM_FEATURE_EL3)) {
3906             /* In an implementation that includes the Security Extensions
3907              * TTBCR has additional fields PD0 [4] and PD1 [5] for
3908              * Short-descriptor translation table format.
3909              */
3910             value &= TTBCR_PD1 | TTBCR_PD0 | TTBCR_N;
3911         } else {
3912             value &= TTBCR_N;
3913         }
3914     }
3915 
3916     /* Update the masks corresponding to the TCR bank being written
3917      * Note that we always calculate mask and base_mask, but
3918      * they are only used for short-descriptor tables (ie if EAE is 0);
3919      * for long-descriptor tables the TCR fields are used differently
3920      * and the mask and base_mask values are meaningless.
3921      */
3922     tcr->raw_tcr = value;
3923     tcr->mask = ~(((uint32_t)0xffffffffu) >> maskshift);
3924     tcr->base_mask = ~((uint32_t)0x3fffu >> maskshift);
3925 }
3926 
3927 static void vmsa_ttbcr_write(CPUARMState *env, const ARMCPRegInfo *ri,
3928                              uint64_t value)
3929 {
3930     ARMCPU *cpu = env_archcpu(env);
3931     TCR *tcr = raw_ptr(env, ri);
3932 
3933     if (arm_feature(env, ARM_FEATURE_LPAE)) {
3934         /* With LPAE the TTBCR could result in a change of ASID
3935          * via the TTBCR.A1 bit, so do a TLB flush.
3936          */
3937         tlb_flush(CPU(cpu));
3938     }
3939     /* Preserve the high half of TCR_EL1, set via TTBCR2.  */
3940     value = deposit64(tcr->raw_tcr, 0, 32, value);
3941     vmsa_ttbcr_raw_write(env, ri, value);
3942 }
3943 
3944 static void vmsa_ttbcr_reset(CPUARMState *env, const ARMCPRegInfo *ri)
3945 {
3946     TCR *tcr = raw_ptr(env, ri);
3947 
3948     /* Reset both the TCR as well as the masks corresponding to the bank of
3949      * the TCR being reset.
3950      */
3951     tcr->raw_tcr = 0;
3952     tcr->mask = 0;
3953     tcr->base_mask = 0xffffc000u;
3954 }
3955 
3956 static void vmsa_tcr_el12_write(CPUARMState *env, const ARMCPRegInfo *ri,
3957                                uint64_t value)
3958 {
3959     ARMCPU *cpu = env_archcpu(env);
3960     TCR *tcr = raw_ptr(env, ri);
3961 
3962     /* For AArch64 the A1 bit could result in a change of ASID, so TLB flush. */
3963     tlb_flush(CPU(cpu));
3964     tcr->raw_tcr = value;
3965 }
3966 
3967 static void vmsa_ttbr_write(CPUARMState *env, const ARMCPRegInfo *ri,
3968                             uint64_t value)
3969 {
3970     /* If the ASID changes (with a 64-bit write), we must flush the TLB.  */
3971     if (cpreg_field_is_64bit(ri) &&
3972         extract64(raw_read(env, ri) ^ value, 48, 16) != 0) {
3973         ARMCPU *cpu = env_archcpu(env);
3974         tlb_flush(CPU(cpu));
3975     }
3976     raw_write(env, ri, value);
3977 }
3978 
3979 static void vmsa_tcr_ttbr_el2_write(CPUARMState *env, const ARMCPRegInfo *ri,
3980                                     uint64_t value)
3981 {
3982     /*
3983      * If we are running with E2&0 regime, then an ASID is active.
3984      * Flush if that might be changing.  Note we're not checking
3985      * TCR_EL2.A1 to know if this is really the TTBRx_EL2 that
3986      * holds the active ASID, only checking the field that might.
3987      */
3988     if (extract64(raw_read(env, ri) ^ value, 48, 16) &&
3989         (arm_hcr_el2_eff(env) & HCR_E2H)) {
3990         tlb_flush_by_mmuidx(env_cpu(env),
3991                             ARMMMUIdxBit_E20_2 |
3992                             ARMMMUIdxBit_E20_2_PAN |
3993                             ARMMMUIdxBit_E20_0);
3994     }
3995     raw_write(env, ri, value);
3996 }
3997 
3998 static void vttbr_write(CPUARMState *env, const ARMCPRegInfo *ri,
3999                         uint64_t value)
4000 {
4001     ARMCPU *cpu = env_archcpu(env);
4002     CPUState *cs = CPU(cpu);
4003 
4004     /*
4005      * A change in VMID to the stage2 page table (Stage2) invalidates
4006      * the combined stage 1&2 tlbs (EL10_1 and EL10_0).
4007      */
4008     if (raw_read(env, ri) != value) {
4009         tlb_flush_by_mmuidx(cs,
4010                             ARMMMUIdxBit_E10_1 |
4011                             ARMMMUIdxBit_E10_1_PAN |
4012                             ARMMMUIdxBit_E10_0);
4013         raw_write(env, ri, value);
4014     }
4015 }
4016 
4017 static const ARMCPRegInfo vmsa_pmsa_cp_reginfo[] = {
4018     { .name = "DFSR", .cp = 15, .crn = 5, .crm = 0, .opc1 = 0, .opc2 = 0,
4019       .access = PL1_RW, .accessfn = access_tvm_trvm, .type = ARM_CP_ALIAS,
4020       .bank_fieldoffsets = { offsetoflow32(CPUARMState, cp15.dfsr_s),
4021                              offsetoflow32(CPUARMState, cp15.dfsr_ns) }, },
4022     { .name = "IFSR", .cp = 15, .crn = 5, .crm = 0, .opc1 = 0, .opc2 = 1,
4023       .access = PL1_RW, .accessfn = access_tvm_trvm, .resetvalue = 0,
4024       .bank_fieldoffsets = { offsetoflow32(CPUARMState, cp15.ifsr_s),
4025                              offsetoflow32(CPUARMState, cp15.ifsr_ns) } },
4026     { .name = "DFAR", .cp = 15, .opc1 = 0, .crn = 6, .crm = 0, .opc2 = 0,
4027       .access = PL1_RW, .accessfn = access_tvm_trvm, .resetvalue = 0,
4028       .bank_fieldoffsets = { offsetof(CPUARMState, cp15.dfar_s),
4029                              offsetof(CPUARMState, cp15.dfar_ns) } },
4030     { .name = "FAR_EL1", .state = ARM_CP_STATE_AA64,
4031       .opc0 = 3, .crn = 6, .crm = 0, .opc1 = 0, .opc2 = 0,
4032       .access = PL1_RW, .accessfn = access_tvm_trvm,
4033       .fieldoffset = offsetof(CPUARMState, cp15.far_el[1]),
4034       .resetvalue = 0, },
4035     REGINFO_SENTINEL
4036 };
4037 
4038 static const ARMCPRegInfo vmsa_cp_reginfo[] = {
4039     { .name = "ESR_EL1", .state = ARM_CP_STATE_AA64,
4040       .opc0 = 3, .crn = 5, .crm = 2, .opc1 = 0, .opc2 = 0,
4041       .access = PL1_RW, .accessfn = access_tvm_trvm,
4042       .fieldoffset = offsetof(CPUARMState, cp15.esr_el[1]), .resetvalue = 0, },
4043     { .name = "TTBR0_EL1", .state = ARM_CP_STATE_BOTH,
4044       .opc0 = 3, .opc1 = 0, .crn = 2, .crm = 0, .opc2 = 0,
4045       .access = PL1_RW, .accessfn = access_tvm_trvm,
4046       .writefn = vmsa_ttbr_write, .resetvalue = 0,
4047       .bank_fieldoffsets = { offsetof(CPUARMState, cp15.ttbr0_s),
4048                              offsetof(CPUARMState, cp15.ttbr0_ns) } },
4049     { .name = "TTBR1_EL1", .state = ARM_CP_STATE_BOTH,
4050       .opc0 = 3, .opc1 = 0, .crn = 2, .crm = 0, .opc2 = 1,
4051       .access = PL1_RW, .accessfn = access_tvm_trvm,
4052       .writefn = vmsa_ttbr_write, .resetvalue = 0,
4053       .bank_fieldoffsets = { offsetof(CPUARMState, cp15.ttbr1_s),
4054                              offsetof(CPUARMState, cp15.ttbr1_ns) } },
4055     { .name = "TCR_EL1", .state = ARM_CP_STATE_AA64,
4056       .opc0 = 3, .crn = 2, .crm = 0, .opc1 = 0, .opc2 = 2,
4057       .access = PL1_RW, .accessfn = access_tvm_trvm,
4058       .writefn = vmsa_tcr_el12_write,
4059       .resetfn = vmsa_ttbcr_reset, .raw_writefn = raw_write,
4060       .fieldoffset = offsetof(CPUARMState, cp15.tcr_el[1]) },
4061     { .name = "TTBCR", .cp = 15, .crn = 2, .crm = 0, .opc1 = 0, .opc2 = 2,
4062       .access = PL1_RW, .accessfn = access_tvm_trvm,
4063       .type = ARM_CP_ALIAS, .writefn = vmsa_ttbcr_write,
4064       .raw_writefn = vmsa_ttbcr_raw_write,
4065       .bank_fieldoffsets = { offsetoflow32(CPUARMState, cp15.tcr_el[3]),
4066                              offsetoflow32(CPUARMState, cp15.tcr_el[1])} },
4067     REGINFO_SENTINEL
4068 };
4069 
4070 /* Note that unlike TTBCR, writing to TTBCR2 does not require flushing
4071  * qemu tlbs nor adjusting cached masks.
4072  */
4073 static const ARMCPRegInfo ttbcr2_reginfo = {
4074     .name = "TTBCR2", .cp = 15, .opc1 = 0, .crn = 2, .crm = 0, .opc2 = 3,
4075     .access = PL1_RW, .accessfn = access_tvm_trvm,
4076     .type = ARM_CP_ALIAS,
4077     .bank_fieldoffsets = { offsetofhigh32(CPUARMState, cp15.tcr_el[3]),
4078                            offsetofhigh32(CPUARMState, cp15.tcr_el[1]) },
4079 };
4080 
4081 static void omap_ticonfig_write(CPUARMState *env, const ARMCPRegInfo *ri,
4082                                 uint64_t value)
4083 {
4084     env->cp15.c15_ticonfig = value & 0xe7;
4085     /* The OS_TYPE bit in this register changes the reported CPUID! */
4086     env->cp15.c0_cpuid = (value & (1 << 5)) ?
4087         ARM_CPUID_TI915T : ARM_CPUID_TI925T;
4088 }
4089 
4090 static void omap_threadid_write(CPUARMState *env, const ARMCPRegInfo *ri,
4091                                 uint64_t value)
4092 {
4093     env->cp15.c15_threadid = value & 0xffff;
4094 }
4095 
4096 static void omap_wfi_write(CPUARMState *env, const ARMCPRegInfo *ri,
4097                            uint64_t value)
4098 {
4099     /* Wait-for-interrupt (deprecated) */
4100     cpu_interrupt(env_cpu(env), CPU_INTERRUPT_HALT);
4101 }
4102 
4103 static void omap_cachemaint_write(CPUARMState *env, const ARMCPRegInfo *ri,
4104                                   uint64_t value)
4105 {
4106     /* On OMAP there are registers indicating the max/min index of dcache lines
4107      * containing a dirty line; cache flush operations have to reset these.
4108      */
4109     env->cp15.c15_i_max = 0x000;
4110     env->cp15.c15_i_min = 0xff0;
4111 }
4112 
4113 static const ARMCPRegInfo omap_cp_reginfo[] = {
4114     { .name = "DFSR", .cp = 15, .crn = 5, .crm = CP_ANY,
4115       .opc1 = CP_ANY, .opc2 = CP_ANY, .access = PL1_RW, .type = ARM_CP_OVERRIDE,
4116       .fieldoffset = offsetoflow32(CPUARMState, cp15.esr_el[1]),
4117       .resetvalue = 0, },
4118     { .name = "", .cp = 15, .crn = 15, .crm = 0, .opc1 = 0, .opc2 = 0,
4119       .access = PL1_RW, .type = ARM_CP_NOP },
4120     { .name = "TICONFIG", .cp = 15, .crn = 15, .crm = 1, .opc1 = 0, .opc2 = 0,
4121       .access = PL1_RW,
4122       .fieldoffset = offsetof(CPUARMState, cp15.c15_ticonfig), .resetvalue = 0,
4123       .writefn = omap_ticonfig_write },
4124     { .name = "IMAX", .cp = 15, .crn = 15, .crm = 2, .opc1 = 0, .opc2 = 0,
4125       .access = PL1_RW,
4126       .fieldoffset = offsetof(CPUARMState, cp15.c15_i_max), .resetvalue = 0, },
4127     { .name = "IMIN", .cp = 15, .crn = 15, .crm = 3, .opc1 = 0, .opc2 = 0,
4128       .access = PL1_RW, .resetvalue = 0xff0,
4129       .fieldoffset = offsetof(CPUARMState, cp15.c15_i_min) },
4130     { .name = "THREADID", .cp = 15, .crn = 15, .crm = 4, .opc1 = 0, .opc2 = 0,
4131       .access = PL1_RW,
4132       .fieldoffset = offsetof(CPUARMState, cp15.c15_threadid), .resetvalue = 0,
4133       .writefn = omap_threadid_write },
4134     { .name = "TI925T_STATUS", .cp = 15, .crn = 15,
4135       .crm = 8, .opc1 = 0, .opc2 = 0, .access = PL1_RW,
4136       .type = ARM_CP_NO_RAW,
4137       .readfn = arm_cp_read_zero, .writefn = omap_wfi_write, },
4138     /* TODO: Peripheral port remap register:
4139      * On OMAP2 mcr p15, 0, rn, c15, c2, 4 sets up the interrupt controller
4140      * base address at $rn & ~0xfff and map size of 0x200 << ($rn & 0xfff),
4141      * when MMU is off.
4142      */
4143     { .name = "OMAP_CACHEMAINT", .cp = 15, .crn = 7, .crm = CP_ANY,
4144       .opc1 = 0, .opc2 = CP_ANY, .access = PL1_W,
4145       .type = ARM_CP_OVERRIDE | ARM_CP_NO_RAW,
4146       .writefn = omap_cachemaint_write },
4147     { .name = "C9", .cp = 15, .crn = 9,
4148       .crm = CP_ANY, .opc1 = CP_ANY, .opc2 = CP_ANY, .access = PL1_RW,
4149       .type = ARM_CP_CONST | ARM_CP_OVERRIDE, .resetvalue = 0 },
4150     REGINFO_SENTINEL
4151 };
4152 
4153 static void xscale_cpar_write(CPUARMState *env, const ARMCPRegInfo *ri,
4154                               uint64_t value)
4155 {
4156     env->cp15.c15_cpar = value & 0x3fff;
4157 }
4158 
4159 static const ARMCPRegInfo xscale_cp_reginfo[] = {
4160     { .name = "XSCALE_CPAR",
4161       .cp = 15, .crn = 15, .crm = 1, .opc1 = 0, .opc2 = 0, .access = PL1_RW,
4162       .fieldoffset = offsetof(CPUARMState, cp15.c15_cpar), .resetvalue = 0,
4163       .writefn = xscale_cpar_write, },
4164     { .name = "XSCALE_AUXCR",
4165       .cp = 15, .crn = 1, .crm = 0, .opc1 = 0, .opc2 = 1, .access = PL1_RW,
4166       .fieldoffset = offsetof(CPUARMState, cp15.c1_xscaleauxcr),
4167       .resetvalue = 0, },
4168     /* XScale specific cache-lockdown: since we have no cache we NOP these
4169      * and hope the guest does not really rely on cache behaviour.
4170      */
4171     { .name = "XSCALE_LOCK_ICACHE_LINE",
4172       .cp = 15, .opc1 = 0, .crn = 9, .crm = 1, .opc2 = 0,
4173       .access = PL1_W, .type = ARM_CP_NOP },
4174     { .name = "XSCALE_UNLOCK_ICACHE",
4175       .cp = 15, .opc1 = 0, .crn = 9, .crm = 1, .opc2 = 1,
4176       .access = PL1_W, .type = ARM_CP_NOP },
4177     { .name = "XSCALE_DCACHE_LOCK",
4178       .cp = 15, .opc1 = 0, .crn = 9, .crm = 2, .opc2 = 0,
4179       .access = PL1_RW, .type = ARM_CP_NOP },
4180     { .name = "XSCALE_UNLOCK_DCACHE",
4181       .cp = 15, .opc1 = 0, .crn = 9, .crm = 2, .opc2 = 1,
4182       .access = PL1_W, .type = ARM_CP_NOP },
4183     REGINFO_SENTINEL
4184 };
4185 
4186 static const ARMCPRegInfo dummy_c15_cp_reginfo[] = {
4187     /* RAZ/WI the whole crn=15 space, when we don't have a more specific
4188      * implementation of this implementation-defined space.
4189      * Ideally this should eventually disappear in favour of actually
4190      * implementing the correct behaviour for all cores.
4191      */
4192     { .name = "C15_IMPDEF", .cp = 15, .crn = 15,
4193       .crm = CP_ANY, .opc1 = CP_ANY, .opc2 = CP_ANY,
4194       .access = PL1_RW,
4195       .type = ARM_CP_CONST | ARM_CP_NO_RAW | ARM_CP_OVERRIDE,
4196       .resetvalue = 0 },
4197     REGINFO_SENTINEL
4198 };
4199 
4200 static const ARMCPRegInfo cache_dirty_status_cp_reginfo[] = {
4201     /* Cache status: RAZ because we have no cache so it's always clean */
4202     { .name = "CDSR", .cp = 15, .crn = 7, .crm = 10, .opc1 = 0, .opc2 = 6,
4203       .access = PL1_R, .type = ARM_CP_CONST | ARM_CP_NO_RAW,
4204       .resetvalue = 0 },
4205     REGINFO_SENTINEL
4206 };
4207 
4208 static const ARMCPRegInfo cache_block_ops_cp_reginfo[] = {
4209     /* We never have a a block transfer operation in progress */
4210     { .name = "BXSR", .cp = 15, .crn = 7, .crm = 12, .opc1 = 0, .opc2 = 4,
4211       .access = PL0_R, .type = ARM_CP_CONST | ARM_CP_NO_RAW,
4212       .resetvalue = 0 },
4213     /* The cache ops themselves: these all NOP for QEMU */
4214     { .name = "IICR", .cp = 15, .crm = 5, .opc1 = 0,
4215       .access = PL1_W, .type = ARM_CP_NOP|ARM_CP_64BIT },
4216     { .name = "IDCR", .cp = 15, .crm = 6, .opc1 = 0,
4217       .access = PL1_W, .type = ARM_CP_NOP|ARM_CP_64BIT },
4218     { .name = "CDCR", .cp = 15, .crm = 12, .opc1 = 0,
4219       .access = PL0_W, .type = ARM_CP_NOP|ARM_CP_64BIT },
4220     { .name = "PIR", .cp = 15, .crm = 12, .opc1 = 1,
4221       .access = PL0_W, .type = ARM_CP_NOP|ARM_CP_64BIT },
4222     { .name = "PDR", .cp = 15, .crm = 12, .opc1 = 2,
4223       .access = PL0_W, .type = ARM_CP_NOP|ARM_CP_64BIT },
4224     { .name = "CIDCR", .cp = 15, .crm = 14, .opc1 = 0,
4225       .access = PL1_W, .type = ARM_CP_NOP|ARM_CP_64BIT },
4226     REGINFO_SENTINEL
4227 };
4228 
4229 static const ARMCPRegInfo cache_test_clean_cp_reginfo[] = {
4230     /* The cache test-and-clean instructions always return (1 << 30)
4231      * to indicate that there are no dirty cache lines.
4232      */
4233     { .name = "TC_DCACHE", .cp = 15, .crn = 7, .crm = 10, .opc1 = 0, .opc2 = 3,
4234       .access = PL0_R, .type = ARM_CP_CONST | ARM_CP_NO_RAW,
4235       .resetvalue = (1 << 30) },
4236     { .name = "TCI_DCACHE", .cp = 15, .crn = 7, .crm = 14, .opc1 = 0, .opc2 = 3,
4237       .access = PL0_R, .type = ARM_CP_CONST | ARM_CP_NO_RAW,
4238       .resetvalue = (1 << 30) },
4239     REGINFO_SENTINEL
4240 };
4241 
4242 static const ARMCPRegInfo strongarm_cp_reginfo[] = {
4243     /* Ignore ReadBuffer accesses */
4244     { .name = "C9_READBUFFER", .cp = 15, .crn = 9,
4245       .crm = CP_ANY, .opc1 = CP_ANY, .opc2 = CP_ANY,
4246       .access = PL1_RW, .resetvalue = 0,
4247       .type = ARM_CP_CONST | ARM_CP_OVERRIDE | ARM_CP_NO_RAW },
4248     REGINFO_SENTINEL
4249 };
4250 
4251 static uint64_t midr_read(CPUARMState *env, const ARMCPRegInfo *ri)
4252 {
4253     ARMCPU *cpu = env_archcpu(env);
4254     unsigned int cur_el = arm_current_el(env);
4255     bool secure = arm_is_secure(env);
4256 
4257     if (arm_feature(&cpu->env, ARM_FEATURE_EL2) && !secure && cur_el == 1) {
4258         return env->cp15.vpidr_el2;
4259     }
4260     return raw_read(env, ri);
4261 }
4262 
4263 static uint64_t mpidr_read_val(CPUARMState *env)
4264 {
4265     ARMCPU *cpu = env_archcpu(env);
4266     uint64_t mpidr = cpu->mp_affinity;
4267 
4268     if (arm_feature(env, ARM_FEATURE_V7MP)) {
4269         mpidr |= (1U << 31);
4270         /* Cores which are uniprocessor (non-coherent)
4271          * but still implement the MP extensions set
4272          * bit 30. (For instance, Cortex-R5).
4273          */
4274         if (cpu->mp_is_up) {
4275             mpidr |= (1u << 30);
4276         }
4277     }
4278     return mpidr;
4279 }
4280 
4281 static uint64_t mpidr_read(CPUARMState *env, const ARMCPRegInfo *ri)
4282 {
4283     unsigned int cur_el = arm_current_el(env);
4284     bool secure = arm_is_secure(env);
4285 
4286     if (arm_feature(env, ARM_FEATURE_EL2) && !secure && cur_el == 1) {
4287         return env->cp15.vmpidr_el2;
4288     }
4289     return mpidr_read_val(env);
4290 }
4291 
4292 static const ARMCPRegInfo lpae_cp_reginfo[] = {
4293     /* NOP AMAIR0/1 */
4294     { .name = "AMAIR0", .state = ARM_CP_STATE_BOTH,
4295       .opc0 = 3, .crn = 10, .crm = 3, .opc1 = 0, .opc2 = 0,
4296       .access = PL1_RW, .accessfn = access_tvm_trvm,
4297       .type = ARM_CP_CONST, .resetvalue = 0 },
4298     /* AMAIR1 is mapped to AMAIR_EL1[63:32] */
4299     { .name = "AMAIR1", .cp = 15, .crn = 10, .crm = 3, .opc1 = 0, .opc2 = 1,
4300       .access = PL1_RW, .accessfn = access_tvm_trvm,
4301       .type = ARM_CP_CONST, .resetvalue = 0 },
4302     { .name = "PAR", .cp = 15, .crm = 7, .opc1 = 0,
4303       .access = PL1_RW, .type = ARM_CP_64BIT, .resetvalue = 0,
4304       .bank_fieldoffsets = { offsetof(CPUARMState, cp15.par_s),
4305                              offsetof(CPUARMState, cp15.par_ns)} },
4306     { .name = "TTBR0", .cp = 15, .crm = 2, .opc1 = 0,
4307       .access = PL1_RW, .accessfn = access_tvm_trvm,
4308       .type = ARM_CP_64BIT | ARM_CP_ALIAS,
4309       .bank_fieldoffsets = { offsetof(CPUARMState, cp15.ttbr0_s),
4310                              offsetof(CPUARMState, cp15.ttbr0_ns) },
4311       .writefn = vmsa_ttbr_write, },
4312     { .name = "TTBR1", .cp = 15, .crm = 2, .opc1 = 1,
4313       .access = PL1_RW, .accessfn = access_tvm_trvm,
4314       .type = ARM_CP_64BIT | ARM_CP_ALIAS,
4315       .bank_fieldoffsets = { offsetof(CPUARMState, cp15.ttbr1_s),
4316                              offsetof(CPUARMState, cp15.ttbr1_ns) },
4317       .writefn = vmsa_ttbr_write, },
4318     REGINFO_SENTINEL
4319 };
4320 
4321 static uint64_t aa64_fpcr_read(CPUARMState *env, const ARMCPRegInfo *ri)
4322 {
4323     return vfp_get_fpcr(env);
4324 }
4325 
4326 static void aa64_fpcr_write(CPUARMState *env, const ARMCPRegInfo *ri,
4327                             uint64_t value)
4328 {
4329     vfp_set_fpcr(env, value);
4330 }
4331 
4332 static uint64_t aa64_fpsr_read(CPUARMState *env, const ARMCPRegInfo *ri)
4333 {
4334     return vfp_get_fpsr(env);
4335 }
4336 
4337 static void aa64_fpsr_write(CPUARMState *env, const ARMCPRegInfo *ri,
4338                             uint64_t value)
4339 {
4340     vfp_set_fpsr(env, value);
4341 }
4342 
4343 static CPAccessResult aa64_daif_access(CPUARMState *env, const ARMCPRegInfo *ri,
4344                                        bool isread)
4345 {
4346     if (arm_current_el(env) == 0 && !(arm_sctlr(env, 0) & SCTLR_UMA)) {
4347         return CP_ACCESS_TRAP;
4348     }
4349     return CP_ACCESS_OK;
4350 }
4351 
4352 static void aa64_daif_write(CPUARMState *env, const ARMCPRegInfo *ri,
4353                             uint64_t value)
4354 {
4355     env->daif = value & PSTATE_DAIF;
4356 }
4357 
4358 static uint64_t aa64_pan_read(CPUARMState *env, const ARMCPRegInfo *ri)
4359 {
4360     return env->pstate & PSTATE_PAN;
4361 }
4362 
4363 static void aa64_pan_write(CPUARMState *env, const ARMCPRegInfo *ri,
4364                            uint64_t value)
4365 {
4366     env->pstate = (env->pstate & ~PSTATE_PAN) | (value & PSTATE_PAN);
4367 }
4368 
4369 static const ARMCPRegInfo pan_reginfo = {
4370     .name = "PAN", .state = ARM_CP_STATE_AA64,
4371     .opc0 = 3, .opc1 = 0, .crn = 4, .crm = 2, .opc2 = 3,
4372     .type = ARM_CP_NO_RAW, .access = PL1_RW,
4373     .readfn = aa64_pan_read, .writefn = aa64_pan_write
4374 };
4375 
4376 static uint64_t aa64_uao_read(CPUARMState *env, const ARMCPRegInfo *ri)
4377 {
4378     return env->pstate & PSTATE_UAO;
4379 }
4380 
4381 static void aa64_uao_write(CPUARMState *env, const ARMCPRegInfo *ri,
4382                            uint64_t value)
4383 {
4384     env->pstate = (env->pstate & ~PSTATE_UAO) | (value & PSTATE_UAO);
4385 }
4386 
4387 static const ARMCPRegInfo uao_reginfo = {
4388     .name = "UAO", .state = ARM_CP_STATE_AA64,
4389     .opc0 = 3, .opc1 = 0, .crn = 4, .crm = 2, .opc2 = 4,
4390     .type = ARM_CP_NO_RAW, .access = PL1_RW,
4391     .readfn = aa64_uao_read, .writefn = aa64_uao_write
4392 };
4393 
4394 static CPAccessResult aa64_cacheop_poc_access(CPUARMState *env,
4395                                               const ARMCPRegInfo *ri,
4396                                               bool isread)
4397 {
4398     /* Cache invalidate/clean to Point of Coherency or Persistence...  */
4399     switch (arm_current_el(env)) {
4400     case 0:
4401         /* ... EL0 must UNDEF unless SCTLR_EL1.UCI is set.  */
4402         if (!(arm_sctlr(env, 0) & SCTLR_UCI)) {
4403             return CP_ACCESS_TRAP;
4404         }
4405         /* fall through */
4406     case 1:
4407         /* ... EL1 must trap to EL2 if HCR_EL2.TPCP is set.  */
4408         if (arm_hcr_el2_eff(env) & HCR_TPCP) {
4409             return CP_ACCESS_TRAP_EL2;
4410         }
4411         break;
4412     }
4413     return CP_ACCESS_OK;
4414 }
4415 
4416 static CPAccessResult aa64_cacheop_pou_access(CPUARMState *env,
4417                                               const ARMCPRegInfo *ri,
4418                                               bool isread)
4419 {
4420     /* Cache invalidate/clean to Point of Unification... */
4421     switch (arm_current_el(env)) {
4422     case 0:
4423         /* ... EL0 must UNDEF unless SCTLR_EL1.UCI is set.  */
4424         if (!(arm_sctlr(env, 0) & SCTLR_UCI)) {
4425             return CP_ACCESS_TRAP;
4426         }
4427         /* fall through */
4428     case 1:
4429         /* ... EL1 must trap to EL2 if HCR_EL2.TPU is set.  */
4430         if (arm_hcr_el2_eff(env) & HCR_TPU) {
4431             return CP_ACCESS_TRAP_EL2;
4432         }
4433         break;
4434     }
4435     return CP_ACCESS_OK;
4436 }
4437 
4438 /* See: D4.7.2 TLB maintenance requirements and the TLB maintenance instructions
4439  * Page D4-1736 (DDI0487A.b)
4440  */
4441 
4442 static int vae1_tlbmask(CPUARMState *env)
4443 {
4444     /* Since we exclude secure first, we may read HCR_EL2 directly. */
4445     if (arm_is_secure_below_el3(env)) {
4446         return ARMMMUIdxBit_SE10_1 |
4447                ARMMMUIdxBit_SE10_1_PAN |
4448                ARMMMUIdxBit_SE10_0;
4449     } else if ((env->cp15.hcr_el2 & (HCR_E2H | HCR_TGE))
4450                == (HCR_E2H | HCR_TGE)) {
4451         return ARMMMUIdxBit_E20_2 |
4452                ARMMMUIdxBit_E20_2_PAN |
4453                ARMMMUIdxBit_E20_0;
4454     } else {
4455         return ARMMMUIdxBit_E10_1 |
4456                ARMMMUIdxBit_E10_1_PAN |
4457                ARMMMUIdxBit_E10_0;
4458     }
4459 }
4460 
4461 /* Return 56 if TBI is enabled, 64 otherwise. */
4462 static int tlbbits_for_regime(CPUARMState *env, ARMMMUIdx mmu_idx,
4463                               uint64_t addr)
4464 {
4465     uint64_t tcr = regime_tcr(env, mmu_idx)->raw_tcr;
4466     int tbi = aa64_va_parameter_tbi(tcr, mmu_idx);
4467     int select = extract64(addr, 55, 1);
4468 
4469     return (tbi >> select) & 1 ? 56 : 64;
4470 }
4471 
4472 static int vae1_tlbbits(CPUARMState *env, uint64_t addr)
4473 {
4474     ARMMMUIdx mmu_idx;
4475 
4476     /* Only the regime of the mmu_idx below is significant. */
4477     if (arm_is_secure_below_el3(env)) {
4478         mmu_idx = ARMMMUIdx_SE10_0;
4479     } else if ((env->cp15.hcr_el2 & (HCR_E2H | HCR_TGE))
4480                == (HCR_E2H | HCR_TGE)) {
4481         mmu_idx = ARMMMUIdx_E20_0;
4482     } else {
4483         mmu_idx = ARMMMUIdx_E10_0;
4484     }
4485     return tlbbits_for_regime(env, mmu_idx, addr);
4486 }
4487 
4488 static void tlbi_aa64_vmalle1is_write(CPUARMState *env, const ARMCPRegInfo *ri,
4489                                       uint64_t value)
4490 {
4491     CPUState *cs = env_cpu(env);
4492     int mask = vae1_tlbmask(env);
4493 
4494     tlb_flush_by_mmuidx_all_cpus_synced(cs, mask);
4495 }
4496 
4497 static void tlbi_aa64_vmalle1_write(CPUARMState *env, const ARMCPRegInfo *ri,
4498                                     uint64_t value)
4499 {
4500     CPUState *cs = env_cpu(env);
4501     int mask = vae1_tlbmask(env);
4502 
4503     if (tlb_force_broadcast(env)) {
4504         tlb_flush_by_mmuidx_all_cpus_synced(cs, mask);
4505     } else {
4506         tlb_flush_by_mmuidx(cs, mask);
4507     }
4508 }
4509 
4510 static int alle1_tlbmask(CPUARMState *env)
4511 {
4512     /*
4513      * Note that the 'ALL' scope must invalidate both stage 1 and
4514      * stage 2 translations, whereas most other scopes only invalidate
4515      * stage 1 translations.
4516      */
4517     if (arm_is_secure_below_el3(env)) {
4518         return ARMMMUIdxBit_SE10_1 |
4519                ARMMMUIdxBit_SE10_1_PAN |
4520                ARMMMUIdxBit_SE10_0;
4521     } else {
4522         return ARMMMUIdxBit_E10_1 |
4523                ARMMMUIdxBit_E10_1_PAN |
4524                ARMMMUIdxBit_E10_0;
4525     }
4526 }
4527 
4528 static int e2_tlbmask(CPUARMState *env)
4529 {
4530     /* TODO: ARMv8.4-SecEL2 */
4531     return ARMMMUIdxBit_E20_0 |
4532            ARMMMUIdxBit_E20_2 |
4533            ARMMMUIdxBit_E20_2_PAN |
4534            ARMMMUIdxBit_E2;
4535 }
4536 
4537 static void tlbi_aa64_alle1_write(CPUARMState *env, const ARMCPRegInfo *ri,
4538                                   uint64_t value)
4539 {
4540     CPUState *cs = env_cpu(env);
4541     int mask = alle1_tlbmask(env);
4542 
4543     tlb_flush_by_mmuidx(cs, mask);
4544 }
4545 
4546 static void tlbi_aa64_alle2_write(CPUARMState *env, const ARMCPRegInfo *ri,
4547                                   uint64_t value)
4548 {
4549     CPUState *cs = env_cpu(env);
4550     int mask = e2_tlbmask(env);
4551 
4552     tlb_flush_by_mmuidx(cs, mask);
4553 }
4554 
4555 static void tlbi_aa64_alle3_write(CPUARMState *env, const ARMCPRegInfo *ri,
4556                                   uint64_t value)
4557 {
4558     ARMCPU *cpu = env_archcpu(env);
4559     CPUState *cs = CPU(cpu);
4560 
4561     tlb_flush_by_mmuidx(cs, ARMMMUIdxBit_SE3);
4562 }
4563 
4564 static void tlbi_aa64_alle1is_write(CPUARMState *env, const ARMCPRegInfo *ri,
4565                                     uint64_t value)
4566 {
4567     CPUState *cs = env_cpu(env);
4568     int mask = alle1_tlbmask(env);
4569 
4570     tlb_flush_by_mmuidx_all_cpus_synced(cs, mask);
4571 }
4572 
4573 static void tlbi_aa64_alle2is_write(CPUARMState *env, const ARMCPRegInfo *ri,
4574                                     uint64_t value)
4575 {
4576     CPUState *cs = env_cpu(env);
4577     int mask = e2_tlbmask(env);
4578 
4579     tlb_flush_by_mmuidx_all_cpus_synced(cs, mask);
4580 }
4581 
4582 static void tlbi_aa64_alle3is_write(CPUARMState *env, const ARMCPRegInfo *ri,
4583                                     uint64_t value)
4584 {
4585     CPUState *cs = env_cpu(env);
4586 
4587     tlb_flush_by_mmuidx_all_cpus_synced(cs, ARMMMUIdxBit_SE3);
4588 }
4589 
4590 static void tlbi_aa64_vae2_write(CPUARMState *env, const ARMCPRegInfo *ri,
4591                                  uint64_t value)
4592 {
4593     /* Invalidate by VA, EL2
4594      * Currently handles both VAE2 and VALE2, since we don't support
4595      * flush-last-level-only.
4596      */
4597     CPUState *cs = env_cpu(env);
4598     int mask = e2_tlbmask(env);
4599     uint64_t pageaddr = sextract64(value << 12, 0, 56);
4600 
4601     tlb_flush_page_by_mmuidx(cs, pageaddr, mask);
4602 }
4603 
4604 static void tlbi_aa64_vae3_write(CPUARMState *env, const ARMCPRegInfo *ri,
4605                                  uint64_t value)
4606 {
4607     /* Invalidate by VA, EL3
4608      * Currently handles both VAE3 and VALE3, since we don't support
4609      * flush-last-level-only.
4610      */
4611     ARMCPU *cpu = env_archcpu(env);
4612     CPUState *cs = CPU(cpu);
4613     uint64_t pageaddr = sextract64(value << 12, 0, 56);
4614 
4615     tlb_flush_page_by_mmuidx(cs, pageaddr, ARMMMUIdxBit_SE3);
4616 }
4617 
4618 static void tlbi_aa64_vae1is_write(CPUARMState *env, const ARMCPRegInfo *ri,
4619                                    uint64_t value)
4620 {
4621     CPUState *cs = env_cpu(env);
4622     int mask = vae1_tlbmask(env);
4623     uint64_t pageaddr = sextract64(value << 12, 0, 56);
4624     int bits = vae1_tlbbits(env, pageaddr);
4625 
4626     tlb_flush_page_bits_by_mmuidx_all_cpus_synced(cs, pageaddr, mask, bits);
4627 }
4628 
4629 static void tlbi_aa64_vae1_write(CPUARMState *env, const ARMCPRegInfo *ri,
4630                                  uint64_t value)
4631 {
4632     /* Invalidate by VA, EL1&0 (AArch64 version).
4633      * Currently handles all of VAE1, VAAE1, VAALE1 and VALE1,
4634      * since we don't support flush-for-specific-ASID-only or
4635      * flush-last-level-only.
4636      */
4637     CPUState *cs = env_cpu(env);
4638     int mask = vae1_tlbmask(env);
4639     uint64_t pageaddr = sextract64(value << 12, 0, 56);
4640     int bits = vae1_tlbbits(env, pageaddr);
4641 
4642     if (tlb_force_broadcast(env)) {
4643         tlb_flush_page_bits_by_mmuidx_all_cpus_synced(cs, pageaddr, mask, bits);
4644     } else {
4645         tlb_flush_page_bits_by_mmuidx(cs, pageaddr, mask, bits);
4646     }
4647 }
4648 
4649 static void tlbi_aa64_vae2is_write(CPUARMState *env, const ARMCPRegInfo *ri,
4650                                    uint64_t value)
4651 {
4652     CPUState *cs = env_cpu(env);
4653     uint64_t pageaddr = sextract64(value << 12, 0, 56);
4654     int bits = tlbbits_for_regime(env, ARMMMUIdx_E2, pageaddr);
4655 
4656     tlb_flush_page_bits_by_mmuidx_all_cpus_synced(cs, pageaddr,
4657                                                   ARMMMUIdxBit_E2, bits);
4658 }
4659 
4660 static void tlbi_aa64_vae3is_write(CPUARMState *env, const ARMCPRegInfo *ri,
4661                                    uint64_t value)
4662 {
4663     CPUState *cs = env_cpu(env);
4664     uint64_t pageaddr = sextract64(value << 12, 0, 56);
4665     int bits = tlbbits_for_regime(env, ARMMMUIdx_SE3, pageaddr);
4666 
4667     tlb_flush_page_bits_by_mmuidx_all_cpus_synced(cs, pageaddr,
4668                                                   ARMMMUIdxBit_SE3, bits);
4669 }
4670 
4671 static CPAccessResult aa64_zva_access(CPUARMState *env, const ARMCPRegInfo *ri,
4672                                       bool isread)
4673 {
4674     int cur_el = arm_current_el(env);
4675 
4676     if (cur_el < 2) {
4677         uint64_t hcr = arm_hcr_el2_eff(env);
4678 
4679         if (cur_el == 0) {
4680             if ((hcr & (HCR_E2H | HCR_TGE)) == (HCR_E2H | HCR_TGE)) {
4681                 if (!(env->cp15.sctlr_el[2] & SCTLR_DZE)) {
4682                     return CP_ACCESS_TRAP_EL2;
4683                 }
4684             } else {
4685                 if (!(env->cp15.sctlr_el[1] & SCTLR_DZE)) {
4686                     return CP_ACCESS_TRAP;
4687                 }
4688                 if (hcr & HCR_TDZ) {
4689                     return CP_ACCESS_TRAP_EL2;
4690                 }
4691             }
4692         } else if (hcr & HCR_TDZ) {
4693             return CP_ACCESS_TRAP_EL2;
4694         }
4695     }
4696     return CP_ACCESS_OK;
4697 }
4698 
4699 static uint64_t aa64_dczid_read(CPUARMState *env, const ARMCPRegInfo *ri)
4700 {
4701     ARMCPU *cpu = env_archcpu(env);
4702     int dzp_bit = 1 << 4;
4703 
4704     /* DZP indicates whether DC ZVA access is allowed */
4705     if (aa64_zva_access(env, NULL, false) == CP_ACCESS_OK) {
4706         dzp_bit = 0;
4707     }
4708     return cpu->dcz_blocksize | dzp_bit;
4709 }
4710 
4711 static CPAccessResult sp_el0_access(CPUARMState *env, const ARMCPRegInfo *ri,
4712                                     bool isread)
4713 {
4714     if (!(env->pstate & PSTATE_SP)) {
4715         /* Access to SP_EL0 is undefined if it's being used as
4716          * the stack pointer.
4717          */
4718         return CP_ACCESS_TRAP_UNCATEGORIZED;
4719     }
4720     return CP_ACCESS_OK;
4721 }
4722 
4723 static uint64_t spsel_read(CPUARMState *env, const ARMCPRegInfo *ri)
4724 {
4725     return env->pstate & PSTATE_SP;
4726 }
4727 
4728 static void spsel_write(CPUARMState *env, const ARMCPRegInfo *ri, uint64_t val)
4729 {
4730     update_spsel(env, val);
4731 }
4732 
4733 static void sctlr_write(CPUARMState *env, const ARMCPRegInfo *ri,
4734                         uint64_t value)
4735 {
4736     ARMCPU *cpu = env_archcpu(env);
4737 
4738     if (arm_feature(env, ARM_FEATURE_PMSA) && !cpu->has_mpu) {
4739         /* M bit is RAZ/WI for PMSA with no MPU implemented */
4740         value &= ~SCTLR_M;
4741     }
4742 
4743     /* ??? Lots of these bits are not implemented.  */
4744 
4745     if (ri->state == ARM_CP_STATE_AA64 && !cpu_isar_feature(aa64_mte, cpu)) {
4746         if (ri->opc1 == 6) { /* SCTLR_EL3 */
4747             value &= ~(SCTLR_ITFSB | SCTLR_TCF | SCTLR_ATA);
4748         } else {
4749             value &= ~(SCTLR_ITFSB | SCTLR_TCF0 | SCTLR_TCF |
4750                        SCTLR_ATA0 | SCTLR_ATA);
4751         }
4752     }
4753 
4754     if (raw_read(env, ri) == value) {
4755         /* Skip the TLB flush if nothing actually changed; Linux likes
4756          * to do a lot of pointless SCTLR writes.
4757          */
4758         return;
4759     }
4760 
4761     raw_write(env, ri, value);
4762 
4763     /* This may enable/disable the MMU, so do a TLB flush.  */
4764     tlb_flush(CPU(cpu));
4765 
4766     if (ri->type & ARM_CP_SUPPRESS_TB_END) {
4767         /*
4768          * Normally we would always end the TB on an SCTLR write; see the
4769          * comment in ARMCPRegInfo sctlr initialization below for why Xscale
4770          * is special.  Setting ARM_CP_SUPPRESS_TB_END also stops the rebuild
4771          * of hflags from the translator, so do it here.
4772          */
4773         arm_rebuild_hflags(env);
4774     }
4775 }
4776 
4777 static CPAccessResult fpexc32_access(CPUARMState *env, const ARMCPRegInfo *ri,
4778                                      bool isread)
4779 {
4780     if ((env->cp15.cptr_el[2] & CPTR_TFP) && arm_current_el(env) == 2) {
4781         return CP_ACCESS_TRAP_FP_EL2;
4782     }
4783     if (env->cp15.cptr_el[3] & CPTR_TFP) {
4784         return CP_ACCESS_TRAP_FP_EL3;
4785     }
4786     return CP_ACCESS_OK;
4787 }
4788 
4789 static void sdcr_write(CPUARMState *env, const ARMCPRegInfo *ri,
4790                        uint64_t value)
4791 {
4792     env->cp15.mdcr_el3 = value & SDCR_VALID_MASK;
4793 }
4794 
4795 static const ARMCPRegInfo v8_cp_reginfo[] = {
4796     /* Minimal set of EL0-visible registers. This will need to be expanded
4797      * significantly for system emulation of AArch64 CPUs.
4798      */
4799     { .name = "NZCV", .state = ARM_CP_STATE_AA64,
4800       .opc0 = 3, .opc1 = 3, .opc2 = 0, .crn = 4, .crm = 2,
4801       .access = PL0_RW, .type = ARM_CP_NZCV },
4802     { .name = "DAIF", .state = ARM_CP_STATE_AA64,
4803       .opc0 = 3, .opc1 = 3, .opc2 = 1, .crn = 4, .crm = 2,
4804       .type = ARM_CP_NO_RAW,
4805       .access = PL0_RW, .accessfn = aa64_daif_access,
4806       .fieldoffset = offsetof(CPUARMState, daif),
4807       .writefn = aa64_daif_write, .resetfn = arm_cp_reset_ignore },
4808     { .name = "FPCR", .state = ARM_CP_STATE_AA64,
4809       .opc0 = 3, .opc1 = 3, .opc2 = 0, .crn = 4, .crm = 4,
4810       .access = PL0_RW, .type = ARM_CP_FPU | ARM_CP_SUPPRESS_TB_END,
4811       .readfn = aa64_fpcr_read, .writefn = aa64_fpcr_write },
4812     { .name = "FPSR", .state = ARM_CP_STATE_AA64,
4813       .opc0 = 3, .opc1 = 3, .opc2 = 1, .crn = 4, .crm = 4,
4814       .access = PL0_RW, .type = ARM_CP_FPU | ARM_CP_SUPPRESS_TB_END,
4815       .readfn = aa64_fpsr_read, .writefn = aa64_fpsr_write },
4816     { .name = "DCZID_EL0", .state = ARM_CP_STATE_AA64,
4817       .opc0 = 3, .opc1 = 3, .opc2 = 7, .crn = 0, .crm = 0,
4818       .access = PL0_R, .type = ARM_CP_NO_RAW,
4819       .readfn = aa64_dczid_read },
4820     { .name = "DC_ZVA", .state = ARM_CP_STATE_AA64,
4821       .opc0 = 1, .opc1 = 3, .crn = 7, .crm = 4, .opc2 = 1,
4822       .access = PL0_W, .type = ARM_CP_DC_ZVA,
4823 #ifndef CONFIG_USER_ONLY
4824       /* Avoid overhead of an access check that always passes in user-mode */
4825       .accessfn = aa64_zva_access,
4826 #endif
4827     },
4828     { .name = "CURRENTEL", .state = ARM_CP_STATE_AA64,
4829       .opc0 = 3, .opc1 = 0, .opc2 = 2, .crn = 4, .crm = 2,
4830       .access = PL1_R, .type = ARM_CP_CURRENTEL },
4831     /* Cache ops: all NOPs since we don't emulate caches */
4832     { .name = "IC_IALLUIS", .state = ARM_CP_STATE_AA64,
4833       .opc0 = 1, .opc1 = 0, .crn = 7, .crm = 1, .opc2 = 0,
4834       .access = PL1_W, .type = ARM_CP_NOP,
4835       .accessfn = aa64_cacheop_pou_access },
4836     { .name = "IC_IALLU", .state = ARM_CP_STATE_AA64,
4837       .opc0 = 1, .opc1 = 0, .crn = 7, .crm = 5, .opc2 = 0,
4838       .access = PL1_W, .type = ARM_CP_NOP,
4839       .accessfn = aa64_cacheop_pou_access },
4840     { .name = "IC_IVAU", .state = ARM_CP_STATE_AA64,
4841       .opc0 = 1, .opc1 = 3, .crn = 7, .crm = 5, .opc2 = 1,
4842       .access = PL0_W, .type = ARM_CP_NOP,
4843       .accessfn = aa64_cacheop_pou_access },
4844     { .name = "DC_IVAC", .state = ARM_CP_STATE_AA64,
4845       .opc0 = 1, .opc1 = 0, .crn = 7, .crm = 6, .opc2 = 1,
4846       .access = PL1_W, .accessfn = aa64_cacheop_poc_access,
4847       .type = ARM_CP_NOP },
4848     { .name = "DC_ISW", .state = ARM_CP_STATE_AA64,
4849       .opc0 = 1, .opc1 = 0, .crn = 7, .crm = 6, .opc2 = 2,
4850       .access = PL1_W, .accessfn = access_tsw, .type = ARM_CP_NOP },
4851     { .name = "DC_CVAC", .state = ARM_CP_STATE_AA64,
4852       .opc0 = 1, .opc1 = 3, .crn = 7, .crm = 10, .opc2 = 1,
4853       .access = PL0_W, .type = ARM_CP_NOP,
4854       .accessfn = aa64_cacheop_poc_access },
4855     { .name = "DC_CSW", .state = ARM_CP_STATE_AA64,
4856       .opc0 = 1, .opc1 = 0, .crn = 7, .crm = 10, .opc2 = 2,
4857       .access = PL1_W, .accessfn = access_tsw, .type = ARM_CP_NOP },
4858     { .name = "DC_CVAU", .state = ARM_CP_STATE_AA64,
4859       .opc0 = 1, .opc1 = 3, .crn = 7, .crm = 11, .opc2 = 1,
4860       .access = PL0_W, .type = ARM_CP_NOP,
4861       .accessfn = aa64_cacheop_pou_access },
4862     { .name = "DC_CIVAC", .state = ARM_CP_STATE_AA64,
4863       .opc0 = 1, .opc1 = 3, .crn = 7, .crm = 14, .opc2 = 1,
4864       .access = PL0_W, .type = ARM_CP_NOP,
4865       .accessfn = aa64_cacheop_poc_access },
4866     { .name = "DC_CISW", .state = ARM_CP_STATE_AA64,
4867       .opc0 = 1, .opc1 = 0, .crn = 7, .crm = 14, .opc2 = 2,
4868       .access = PL1_W, .accessfn = access_tsw, .type = ARM_CP_NOP },
4869     /* TLBI operations */
4870     { .name = "TLBI_VMALLE1IS", .state = ARM_CP_STATE_AA64,
4871       .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 3, .opc2 = 0,
4872       .access = PL1_W, .accessfn = access_ttlb, .type = ARM_CP_NO_RAW,
4873       .writefn = tlbi_aa64_vmalle1is_write },
4874     { .name = "TLBI_VAE1IS", .state = ARM_CP_STATE_AA64,
4875       .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 3, .opc2 = 1,
4876       .access = PL1_W, .accessfn = access_ttlb, .type = ARM_CP_NO_RAW,
4877       .writefn = tlbi_aa64_vae1is_write },
4878     { .name = "TLBI_ASIDE1IS", .state = ARM_CP_STATE_AA64,
4879       .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 3, .opc2 = 2,
4880       .access = PL1_W, .accessfn = access_ttlb, .type = ARM_CP_NO_RAW,
4881       .writefn = tlbi_aa64_vmalle1is_write },
4882     { .name = "TLBI_VAAE1IS", .state = ARM_CP_STATE_AA64,
4883       .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 3, .opc2 = 3,
4884       .access = PL1_W, .accessfn = access_ttlb, .type = ARM_CP_NO_RAW,
4885       .writefn = tlbi_aa64_vae1is_write },
4886     { .name = "TLBI_VALE1IS", .state = ARM_CP_STATE_AA64,
4887       .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 3, .opc2 = 5,
4888       .access = PL1_W, .accessfn = access_ttlb, .type = ARM_CP_NO_RAW,
4889       .writefn = tlbi_aa64_vae1is_write },
4890     { .name = "TLBI_VAALE1IS", .state = ARM_CP_STATE_AA64,
4891       .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 3, .opc2 = 7,
4892       .access = PL1_W, .accessfn = access_ttlb, .type = ARM_CP_NO_RAW,
4893       .writefn = tlbi_aa64_vae1is_write },
4894     { .name = "TLBI_VMALLE1", .state = ARM_CP_STATE_AA64,
4895       .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 7, .opc2 = 0,
4896       .access = PL1_W, .accessfn = access_ttlb, .type = ARM_CP_NO_RAW,
4897       .writefn = tlbi_aa64_vmalle1_write },
4898     { .name = "TLBI_VAE1", .state = ARM_CP_STATE_AA64,
4899       .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 7, .opc2 = 1,
4900       .access = PL1_W, .accessfn = access_ttlb, .type = ARM_CP_NO_RAW,
4901       .writefn = tlbi_aa64_vae1_write },
4902     { .name = "TLBI_ASIDE1", .state = ARM_CP_STATE_AA64,
4903       .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 7, .opc2 = 2,
4904       .access = PL1_W, .accessfn = access_ttlb, .type = ARM_CP_NO_RAW,
4905       .writefn = tlbi_aa64_vmalle1_write },
4906     { .name = "TLBI_VAAE1", .state = ARM_CP_STATE_AA64,
4907       .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 7, .opc2 = 3,
4908       .access = PL1_W, .accessfn = access_ttlb, .type = ARM_CP_NO_RAW,
4909       .writefn = tlbi_aa64_vae1_write },
4910     { .name = "TLBI_VALE1", .state = ARM_CP_STATE_AA64,
4911       .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 7, .opc2 = 5,
4912       .access = PL1_W, .accessfn = access_ttlb, .type = ARM_CP_NO_RAW,
4913       .writefn = tlbi_aa64_vae1_write },
4914     { .name = "TLBI_VAALE1", .state = ARM_CP_STATE_AA64,
4915       .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 7, .opc2 = 7,
4916       .access = PL1_W, .accessfn = access_ttlb, .type = ARM_CP_NO_RAW,
4917       .writefn = tlbi_aa64_vae1_write },
4918     { .name = "TLBI_IPAS2E1IS", .state = ARM_CP_STATE_AA64,
4919       .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 0, .opc2 = 1,
4920       .access = PL2_W, .type = ARM_CP_NOP },
4921     { .name = "TLBI_IPAS2LE1IS", .state = ARM_CP_STATE_AA64,
4922       .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 0, .opc2 = 5,
4923       .access = PL2_W, .type = ARM_CP_NOP },
4924     { .name = "TLBI_ALLE1IS", .state = ARM_CP_STATE_AA64,
4925       .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 3, .opc2 = 4,
4926       .access = PL2_W, .type = ARM_CP_NO_RAW,
4927       .writefn = tlbi_aa64_alle1is_write },
4928     { .name = "TLBI_VMALLS12E1IS", .state = ARM_CP_STATE_AA64,
4929       .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 3, .opc2 = 6,
4930       .access = PL2_W, .type = ARM_CP_NO_RAW,
4931       .writefn = tlbi_aa64_alle1is_write },
4932     { .name = "TLBI_IPAS2E1", .state = ARM_CP_STATE_AA64,
4933       .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 4, .opc2 = 1,
4934       .access = PL2_W, .type = ARM_CP_NOP },
4935     { .name = "TLBI_IPAS2LE1", .state = ARM_CP_STATE_AA64,
4936       .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 4, .opc2 = 5,
4937       .access = PL2_W, .type = ARM_CP_NOP },
4938     { .name = "TLBI_ALLE1", .state = ARM_CP_STATE_AA64,
4939       .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 7, .opc2 = 4,
4940       .access = PL2_W, .type = ARM_CP_NO_RAW,
4941       .writefn = tlbi_aa64_alle1_write },
4942     { .name = "TLBI_VMALLS12E1", .state = ARM_CP_STATE_AA64,
4943       .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 7, .opc2 = 6,
4944       .access = PL2_W, .type = ARM_CP_NO_RAW,
4945       .writefn = tlbi_aa64_alle1is_write },
4946 #ifndef CONFIG_USER_ONLY
4947     /* 64 bit address translation operations */
4948     { .name = "AT_S1E1R", .state = ARM_CP_STATE_AA64,
4949       .opc0 = 1, .opc1 = 0, .crn = 7, .crm = 8, .opc2 = 0,
4950       .access = PL1_W, .type = ARM_CP_NO_RAW | ARM_CP_RAISES_EXC,
4951       .writefn = ats_write64 },
4952     { .name = "AT_S1E1W", .state = ARM_CP_STATE_AA64,
4953       .opc0 = 1, .opc1 = 0, .crn = 7, .crm = 8, .opc2 = 1,
4954       .access = PL1_W, .type = ARM_CP_NO_RAW | ARM_CP_RAISES_EXC,
4955       .writefn = ats_write64 },
4956     { .name = "AT_S1E0R", .state = ARM_CP_STATE_AA64,
4957       .opc0 = 1, .opc1 = 0, .crn = 7, .crm = 8, .opc2 = 2,
4958       .access = PL1_W, .type = ARM_CP_NO_RAW | ARM_CP_RAISES_EXC,
4959       .writefn = ats_write64 },
4960     { .name = "AT_S1E0W", .state = ARM_CP_STATE_AA64,
4961       .opc0 = 1, .opc1 = 0, .crn = 7, .crm = 8, .opc2 = 3,
4962       .access = PL1_W, .type = ARM_CP_NO_RAW | ARM_CP_RAISES_EXC,
4963       .writefn = ats_write64 },
4964     { .name = "AT_S12E1R", .state = ARM_CP_STATE_AA64,
4965       .opc0 = 1, .opc1 = 4, .crn = 7, .crm = 8, .opc2 = 4,
4966       .access = PL2_W, .type = ARM_CP_NO_RAW | ARM_CP_RAISES_EXC,
4967       .writefn = ats_write64 },
4968     { .name = "AT_S12E1W", .state = ARM_CP_STATE_AA64,
4969       .opc0 = 1, .opc1 = 4, .crn = 7, .crm = 8, .opc2 = 5,
4970       .access = PL2_W, .type = ARM_CP_NO_RAW | ARM_CP_RAISES_EXC,
4971       .writefn = ats_write64 },
4972     { .name = "AT_S12E0R", .state = ARM_CP_STATE_AA64,
4973       .opc0 = 1, .opc1 = 4, .crn = 7, .crm = 8, .opc2 = 6,
4974       .access = PL2_W, .type = ARM_CP_NO_RAW | ARM_CP_RAISES_EXC,
4975       .writefn = ats_write64 },
4976     { .name = "AT_S12E0W", .state = ARM_CP_STATE_AA64,
4977       .opc0 = 1, .opc1 = 4, .crn = 7, .crm = 8, .opc2 = 7,
4978       .access = PL2_W, .type = ARM_CP_NO_RAW | ARM_CP_RAISES_EXC,
4979       .writefn = ats_write64 },
4980     /* AT S1E2* are elsewhere as they UNDEF from EL3 if EL2 is not present */
4981     { .name = "AT_S1E3R", .state = ARM_CP_STATE_AA64,
4982       .opc0 = 1, .opc1 = 6, .crn = 7, .crm = 8, .opc2 = 0,
4983       .access = PL3_W, .type = ARM_CP_NO_RAW | ARM_CP_RAISES_EXC,
4984       .writefn = ats_write64 },
4985     { .name = "AT_S1E3W", .state = ARM_CP_STATE_AA64,
4986       .opc0 = 1, .opc1 = 6, .crn = 7, .crm = 8, .opc2 = 1,
4987       .access = PL3_W, .type = ARM_CP_NO_RAW | ARM_CP_RAISES_EXC,
4988       .writefn = ats_write64 },
4989     { .name = "PAR_EL1", .state = ARM_CP_STATE_AA64,
4990       .type = ARM_CP_ALIAS,
4991       .opc0 = 3, .opc1 = 0, .crn = 7, .crm = 4, .opc2 = 0,
4992       .access = PL1_RW, .resetvalue = 0,
4993       .fieldoffset = offsetof(CPUARMState, cp15.par_el[1]),
4994       .writefn = par_write },
4995 #endif
4996     /* TLB invalidate last level of translation table walk */
4997     { .name = "TLBIMVALIS", .cp = 15, .opc1 = 0, .crn = 8, .crm = 3, .opc2 = 5,
4998       .type = ARM_CP_NO_RAW, .access = PL1_W, .accessfn = access_ttlb,
4999       .writefn = tlbimva_is_write },
5000     { .name = "TLBIMVAALIS", .cp = 15, .opc1 = 0, .crn = 8, .crm = 3, .opc2 = 7,
5001       .type = ARM_CP_NO_RAW, .access = PL1_W, .accessfn = access_ttlb,
5002       .writefn = tlbimvaa_is_write },
5003     { .name = "TLBIMVAL", .cp = 15, .opc1 = 0, .crn = 8, .crm = 7, .opc2 = 5,
5004       .type = ARM_CP_NO_RAW, .access = PL1_W, .accessfn = access_ttlb,
5005       .writefn = tlbimva_write },
5006     { .name = "TLBIMVAAL", .cp = 15, .opc1 = 0, .crn = 8, .crm = 7, .opc2 = 7,
5007       .type = ARM_CP_NO_RAW, .access = PL1_W, .accessfn = access_ttlb,
5008       .writefn = tlbimvaa_write },
5009     { .name = "TLBIMVALH", .cp = 15, .opc1 = 4, .crn = 8, .crm = 7, .opc2 = 5,
5010       .type = ARM_CP_NO_RAW, .access = PL2_W,
5011       .writefn = tlbimva_hyp_write },
5012     { .name = "TLBIMVALHIS",
5013       .cp = 15, .opc1 = 4, .crn = 8, .crm = 3, .opc2 = 5,
5014       .type = ARM_CP_NO_RAW, .access = PL2_W,
5015       .writefn = tlbimva_hyp_is_write },
5016     { .name = "TLBIIPAS2",
5017       .cp = 15, .opc1 = 4, .crn = 8, .crm = 4, .opc2 = 1,
5018       .type = ARM_CP_NOP, .access = PL2_W },
5019     { .name = "TLBIIPAS2IS",
5020       .cp = 15, .opc1 = 4, .crn = 8, .crm = 0, .opc2 = 1,
5021       .type = ARM_CP_NOP, .access = PL2_W },
5022     { .name = "TLBIIPAS2L",
5023       .cp = 15, .opc1 = 4, .crn = 8, .crm = 4, .opc2 = 5,
5024       .type = ARM_CP_NOP, .access = PL2_W },
5025     { .name = "TLBIIPAS2LIS",
5026       .cp = 15, .opc1 = 4, .crn = 8, .crm = 0, .opc2 = 5,
5027       .type = ARM_CP_NOP, .access = PL2_W },
5028     /* 32 bit cache operations */
5029     { .name = "ICIALLUIS", .cp = 15, .opc1 = 0, .crn = 7, .crm = 1, .opc2 = 0,
5030       .type = ARM_CP_NOP, .access = PL1_W, .accessfn = aa64_cacheop_pou_access },
5031     { .name = "BPIALLUIS", .cp = 15, .opc1 = 0, .crn = 7, .crm = 1, .opc2 = 6,
5032       .type = ARM_CP_NOP, .access = PL1_W },
5033     { .name = "ICIALLU", .cp = 15, .opc1 = 0, .crn = 7, .crm = 5, .opc2 = 0,
5034       .type = ARM_CP_NOP, .access = PL1_W, .accessfn = aa64_cacheop_pou_access },
5035     { .name = "ICIMVAU", .cp = 15, .opc1 = 0, .crn = 7, .crm = 5, .opc2 = 1,
5036       .type = ARM_CP_NOP, .access = PL1_W, .accessfn = aa64_cacheop_pou_access },
5037     { .name = "BPIALL", .cp = 15, .opc1 = 0, .crn = 7, .crm = 5, .opc2 = 6,
5038       .type = ARM_CP_NOP, .access = PL1_W },
5039     { .name = "BPIMVA", .cp = 15, .opc1 = 0, .crn = 7, .crm = 5, .opc2 = 7,
5040       .type = ARM_CP_NOP, .access = PL1_W },
5041     { .name = "DCIMVAC", .cp = 15, .opc1 = 0, .crn = 7, .crm = 6, .opc2 = 1,
5042       .type = ARM_CP_NOP, .access = PL1_W, .accessfn = aa64_cacheop_poc_access },
5043     { .name = "DCISW", .cp = 15, .opc1 = 0, .crn = 7, .crm = 6, .opc2 = 2,
5044       .type = ARM_CP_NOP, .access = PL1_W, .accessfn = access_tsw },
5045     { .name = "DCCMVAC", .cp = 15, .opc1 = 0, .crn = 7, .crm = 10, .opc2 = 1,
5046       .type = ARM_CP_NOP, .access = PL1_W, .accessfn = aa64_cacheop_poc_access },
5047     { .name = "DCCSW", .cp = 15, .opc1 = 0, .crn = 7, .crm = 10, .opc2 = 2,
5048       .type = ARM_CP_NOP, .access = PL1_W, .accessfn = access_tsw },
5049     { .name = "DCCMVAU", .cp = 15, .opc1 = 0, .crn = 7, .crm = 11, .opc2 = 1,
5050       .type = ARM_CP_NOP, .access = PL1_W, .accessfn = aa64_cacheop_pou_access },
5051     { .name = "DCCIMVAC", .cp = 15, .opc1 = 0, .crn = 7, .crm = 14, .opc2 = 1,
5052       .type = ARM_CP_NOP, .access = PL1_W, .accessfn = aa64_cacheop_poc_access },
5053     { .name = "DCCISW", .cp = 15, .opc1 = 0, .crn = 7, .crm = 14, .opc2 = 2,
5054       .type = ARM_CP_NOP, .access = PL1_W, .accessfn = access_tsw },
5055     /* MMU Domain access control / MPU write buffer control */
5056     { .name = "DACR", .cp = 15, .opc1 = 0, .crn = 3, .crm = 0, .opc2 = 0,
5057       .access = PL1_RW, .accessfn = access_tvm_trvm, .resetvalue = 0,
5058       .writefn = dacr_write, .raw_writefn = raw_write,
5059       .bank_fieldoffsets = { offsetoflow32(CPUARMState, cp15.dacr_s),
5060                              offsetoflow32(CPUARMState, cp15.dacr_ns) } },
5061     { .name = "ELR_EL1", .state = ARM_CP_STATE_AA64,
5062       .type = ARM_CP_ALIAS,
5063       .opc0 = 3, .opc1 = 0, .crn = 4, .crm = 0, .opc2 = 1,
5064       .access = PL1_RW,
5065       .fieldoffset = offsetof(CPUARMState, elr_el[1]) },
5066     { .name = "SPSR_EL1", .state = ARM_CP_STATE_AA64,
5067       .type = ARM_CP_ALIAS,
5068       .opc0 = 3, .opc1 = 0, .crn = 4, .crm = 0, .opc2 = 0,
5069       .access = PL1_RW,
5070       .fieldoffset = offsetof(CPUARMState, banked_spsr[BANK_SVC]) },
5071     /* We rely on the access checks not allowing the guest to write to the
5072      * state field when SPSel indicates that it's being used as the stack
5073      * pointer.
5074      */
5075     { .name = "SP_EL0", .state = ARM_CP_STATE_AA64,
5076       .opc0 = 3, .opc1 = 0, .crn = 4, .crm = 1, .opc2 = 0,
5077       .access = PL1_RW, .accessfn = sp_el0_access,
5078       .type = ARM_CP_ALIAS,
5079       .fieldoffset = offsetof(CPUARMState, sp_el[0]) },
5080     { .name = "SP_EL1", .state = ARM_CP_STATE_AA64,
5081       .opc0 = 3, .opc1 = 4, .crn = 4, .crm = 1, .opc2 = 0,
5082       .access = PL2_RW, .type = ARM_CP_ALIAS,
5083       .fieldoffset = offsetof(CPUARMState, sp_el[1]) },
5084     { .name = "SPSel", .state = ARM_CP_STATE_AA64,
5085       .opc0 = 3, .opc1 = 0, .crn = 4, .crm = 2, .opc2 = 0,
5086       .type = ARM_CP_NO_RAW,
5087       .access = PL1_RW, .readfn = spsel_read, .writefn = spsel_write },
5088     { .name = "FPEXC32_EL2", .state = ARM_CP_STATE_AA64,
5089       .opc0 = 3, .opc1 = 4, .crn = 5, .crm = 3, .opc2 = 0,
5090       .type = ARM_CP_ALIAS,
5091       .fieldoffset = offsetof(CPUARMState, vfp.xregs[ARM_VFP_FPEXC]),
5092       .access = PL2_RW, .accessfn = fpexc32_access },
5093     { .name = "DACR32_EL2", .state = ARM_CP_STATE_AA64,
5094       .opc0 = 3, .opc1 = 4, .crn = 3, .crm = 0, .opc2 = 0,
5095       .access = PL2_RW, .resetvalue = 0,
5096       .writefn = dacr_write, .raw_writefn = raw_write,
5097       .fieldoffset = offsetof(CPUARMState, cp15.dacr32_el2) },
5098     { .name = "IFSR32_EL2", .state = ARM_CP_STATE_AA64,
5099       .opc0 = 3, .opc1 = 4, .crn = 5, .crm = 0, .opc2 = 1,
5100       .access = PL2_RW, .resetvalue = 0,
5101       .fieldoffset = offsetof(CPUARMState, cp15.ifsr32_el2) },
5102     { .name = "SPSR_IRQ", .state = ARM_CP_STATE_AA64,
5103       .type = ARM_CP_ALIAS,
5104       .opc0 = 3, .opc1 = 4, .crn = 4, .crm = 3, .opc2 = 0,
5105       .access = PL2_RW,
5106       .fieldoffset = offsetof(CPUARMState, banked_spsr[BANK_IRQ]) },
5107     { .name = "SPSR_ABT", .state = ARM_CP_STATE_AA64,
5108       .type = ARM_CP_ALIAS,
5109       .opc0 = 3, .opc1 = 4, .crn = 4, .crm = 3, .opc2 = 1,
5110       .access = PL2_RW,
5111       .fieldoffset = offsetof(CPUARMState, banked_spsr[BANK_ABT]) },
5112     { .name = "SPSR_UND", .state = ARM_CP_STATE_AA64,
5113       .type = ARM_CP_ALIAS,
5114       .opc0 = 3, .opc1 = 4, .crn = 4, .crm = 3, .opc2 = 2,
5115       .access = PL2_RW,
5116       .fieldoffset = offsetof(CPUARMState, banked_spsr[BANK_UND]) },
5117     { .name = "SPSR_FIQ", .state = ARM_CP_STATE_AA64,
5118       .type = ARM_CP_ALIAS,
5119       .opc0 = 3, .opc1 = 4, .crn = 4, .crm = 3, .opc2 = 3,
5120       .access = PL2_RW,
5121       .fieldoffset = offsetof(CPUARMState, banked_spsr[BANK_FIQ]) },
5122     { .name = "MDCR_EL3", .state = ARM_CP_STATE_AA64,
5123       .opc0 = 3, .opc1 = 6, .crn = 1, .crm = 3, .opc2 = 1,
5124       .resetvalue = 0,
5125       .access = PL3_RW, .fieldoffset = offsetof(CPUARMState, cp15.mdcr_el3) },
5126     { .name = "SDCR", .type = ARM_CP_ALIAS,
5127       .cp = 15, .opc1 = 0, .crn = 1, .crm = 3, .opc2 = 1,
5128       .access = PL1_RW, .accessfn = access_trap_aa32s_el1,
5129       .writefn = sdcr_write,
5130       .fieldoffset = offsetoflow32(CPUARMState, cp15.mdcr_el3) },
5131     REGINFO_SENTINEL
5132 };
5133 
5134 /* Used to describe the behaviour of EL2 regs when EL2 does not exist.  */
5135 static const ARMCPRegInfo el3_no_el2_cp_reginfo[] = {
5136     { .name = "VBAR_EL2", .state = ARM_CP_STATE_BOTH,
5137       .opc0 = 3, .opc1 = 4, .crn = 12, .crm = 0, .opc2 = 0,
5138       .access = PL2_RW,
5139       .readfn = arm_cp_read_zero, .writefn = arm_cp_write_ignore },
5140     { .name = "HCR_EL2", .state = ARM_CP_STATE_BOTH,
5141       .opc0 = 3, .opc1 = 4, .crn = 1, .crm = 1, .opc2 = 0,
5142       .access = PL2_RW,
5143       .type = ARM_CP_CONST, .resetvalue = 0 },
5144     { .name = "HACR_EL2", .state = ARM_CP_STATE_BOTH,
5145       .opc0 = 3, .opc1 = 4, .crn = 1, .crm = 1, .opc2 = 7,
5146       .access = PL2_RW, .type = ARM_CP_CONST, .resetvalue = 0 },
5147     { .name = "ESR_EL2", .state = ARM_CP_STATE_BOTH,
5148       .opc0 = 3, .opc1 = 4, .crn = 5, .crm = 2, .opc2 = 0,
5149       .access = PL2_RW,
5150       .type = ARM_CP_CONST, .resetvalue = 0 },
5151     { .name = "CPTR_EL2", .state = ARM_CP_STATE_BOTH,
5152       .opc0 = 3, .opc1 = 4, .crn = 1, .crm = 1, .opc2 = 2,
5153       .access = PL2_RW, .type = ARM_CP_CONST, .resetvalue = 0 },
5154     { .name = "MAIR_EL2", .state = ARM_CP_STATE_BOTH,
5155       .opc0 = 3, .opc1 = 4, .crn = 10, .crm = 2, .opc2 = 0,
5156       .access = PL2_RW, .type = ARM_CP_CONST,
5157       .resetvalue = 0 },
5158     { .name = "HMAIR1", .state = ARM_CP_STATE_AA32,
5159       .cp = 15, .opc1 = 4, .crn = 10, .crm = 2, .opc2 = 1,
5160       .access = PL2_RW, .type = ARM_CP_CONST, .resetvalue = 0 },
5161     { .name = "AMAIR_EL2", .state = ARM_CP_STATE_BOTH,
5162       .opc0 = 3, .opc1 = 4, .crn = 10, .crm = 3, .opc2 = 0,
5163       .access = PL2_RW, .type = ARM_CP_CONST,
5164       .resetvalue = 0 },
5165     { .name = "HAMAIR1", .state = ARM_CP_STATE_AA32,
5166       .cp = 15, .opc1 = 4, .crn = 10, .crm = 3, .opc2 = 1,
5167       .access = PL2_RW, .type = ARM_CP_CONST,
5168       .resetvalue = 0 },
5169     { .name = "AFSR0_EL2", .state = ARM_CP_STATE_BOTH,
5170       .opc0 = 3, .opc1 = 4, .crn = 5, .crm = 1, .opc2 = 0,
5171       .access = PL2_RW, .type = ARM_CP_CONST,
5172       .resetvalue = 0 },
5173     { .name = "AFSR1_EL2", .state = ARM_CP_STATE_BOTH,
5174       .opc0 = 3, .opc1 = 4, .crn = 5, .crm = 1, .opc2 = 1,
5175       .access = PL2_RW, .type = ARM_CP_CONST,
5176       .resetvalue = 0 },
5177     { .name = "TCR_EL2", .state = ARM_CP_STATE_BOTH,
5178       .opc0 = 3, .opc1 = 4, .crn = 2, .crm = 0, .opc2 = 2,
5179       .access = PL2_RW, .type = ARM_CP_CONST, .resetvalue = 0 },
5180     { .name = "VTCR_EL2", .state = ARM_CP_STATE_BOTH,
5181       .opc0 = 3, .opc1 = 4, .crn = 2, .crm = 1, .opc2 = 2,
5182       .access = PL2_RW, .accessfn = access_el3_aa32ns,
5183       .type = ARM_CP_CONST, .resetvalue = 0 },
5184     { .name = "VTTBR", .state = ARM_CP_STATE_AA32,
5185       .cp = 15, .opc1 = 6, .crm = 2,
5186       .access = PL2_RW, .accessfn = access_el3_aa32ns,
5187       .type = ARM_CP_CONST | ARM_CP_64BIT, .resetvalue = 0 },
5188     { .name = "VTTBR_EL2", .state = ARM_CP_STATE_AA64,
5189       .opc0 = 3, .opc1 = 4, .crn = 2, .crm = 1, .opc2 = 0,
5190       .access = PL2_RW, .type = ARM_CP_CONST, .resetvalue = 0 },
5191     { .name = "SCTLR_EL2", .state = ARM_CP_STATE_BOTH,
5192       .opc0 = 3, .opc1 = 4, .crn = 1, .crm = 0, .opc2 = 0,
5193       .access = PL2_RW, .type = ARM_CP_CONST, .resetvalue = 0 },
5194     { .name = "TPIDR_EL2", .state = ARM_CP_STATE_BOTH,
5195       .opc0 = 3, .opc1 = 4, .crn = 13, .crm = 0, .opc2 = 2,
5196       .access = PL2_RW, .type = ARM_CP_CONST, .resetvalue = 0 },
5197     { .name = "TTBR0_EL2", .state = ARM_CP_STATE_AA64,
5198       .opc0 = 3, .opc1 = 4, .crn = 2, .crm = 0, .opc2 = 0,
5199       .access = PL2_RW, .type = ARM_CP_CONST, .resetvalue = 0 },
5200     { .name = "HTTBR", .cp = 15, .opc1 = 4, .crm = 2,
5201       .access = PL2_RW, .type = ARM_CP_64BIT | ARM_CP_CONST,
5202       .resetvalue = 0 },
5203     { .name = "CNTHCTL_EL2", .state = ARM_CP_STATE_BOTH,
5204       .opc0 = 3, .opc1 = 4, .crn = 14, .crm = 1, .opc2 = 0,
5205       .access = PL2_RW, .type = ARM_CP_CONST, .resetvalue = 0 },
5206     { .name = "CNTVOFF_EL2", .state = ARM_CP_STATE_AA64,
5207       .opc0 = 3, .opc1 = 4, .crn = 14, .crm = 0, .opc2 = 3,
5208       .access = PL2_RW, .type = ARM_CP_CONST, .resetvalue = 0 },
5209     { .name = "CNTVOFF", .cp = 15, .opc1 = 4, .crm = 14,
5210       .access = PL2_RW, .type = ARM_CP_64BIT | ARM_CP_CONST,
5211       .resetvalue = 0 },
5212     { .name = "CNTHP_CVAL_EL2", .state = ARM_CP_STATE_AA64,
5213       .opc0 = 3, .opc1 = 4, .crn = 14, .crm = 2, .opc2 = 2,
5214       .access = PL2_RW, .type = ARM_CP_CONST, .resetvalue = 0 },
5215     { .name = "CNTHP_CVAL", .cp = 15, .opc1 = 6, .crm = 14,
5216       .access = PL2_RW, .type = ARM_CP_64BIT | ARM_CP_CONST,
5217       .resetvalue = 0 },
5218     { .name = "CNTHP_TVAL_EL2", .state = ARM_CP_STATE_BOTH,
5219       .opc0 = 3, .opc1 = 4, .crn = 14, .crm = 2, .opc2 = 0,
5220       .access = PL2_RW, .type = ARM_CP_CONST, .resetvalue = 0 },
5221     { .name = "CNTHP_CTL_EL2", .state = ARM_CP_STATE_BOTH,
5222       .opc0 = 3, .opc1 = 4, .crn = 14, .crm = 2, .opc2 = 1,
5223       .access = PL2_RW, .type = ARM_CP_CONST, .resetvalue = 0 },
5224     { .name = "MDCR_EL2", .state = ARM_CP_STATE_BOTH,
5225       .opc0 = 3, .opc1 = 4, .crn = 1, .crm = 1, .opc2 = 1,
5226       .access = PL2_RW, .accessfn = access_tda,
5227       .type = ARM_CP_CONST, .resetvalue = 0 },
5228     { .name = "HPFAR_EL2", .state = ARM_CP_STATE_BOTH,
5229       .opc0 = 3, .opc1 = 4, .crn = 6, .crm = 0, .opc2 = 4,
5230       .access = PL2_RW, .accessfn = access_el3_aa32ns,
5231       .type = ARM_CP_CONST, .resetvalue = 0 },
5232     { .name = "HSTR_EL2", .state = ARM_CP_STATE_BOTH,
5233       .opc0 = 3, .opc1 = 4, .crn = 1, .crm = 1, .opc2 = 3,
5234       .access = PL2_RW, .type = ARM_CP_CONST, .resetvalue = 0 },
5235     { .name = "FAR_EL2", .state = ARM_CP_STATE_BOTH,
5236       .opc0 = 3, .opc1 = 4, .crn = 6, .crm = 0, .opc2 = 0,
5237       .access = PL2_RW, .type = ARM_CP_CONST, .resetvalue = 0 },
5238     { .name = "HIFAR", .state = ARM_CP_STATE_AA32,
5239       .type = ARM_CP_CONST,
5240       .cp = 15, .opc1 = 4, .crn = 6, .crm = 0, .opc2 = 2,
5241       .access = PL2_RW, .resetvalue = 0 },
5242     REGINFO_SENTINEL
5243 };
5244 
5245 /* Ditto, but for registers which exist in ARMv8 but not v7 */
5246 static const ARMCPRegInfo el3_no_el2_v8_cp_reginfo[] = {
5247     { .name = "HCR2", .state = ARM_CP_STATE_AA32,
5248       .cp = 15, .opc1 = 4, .crn = 1, .crm = 1, .opc2 = 4,
5249       .access = PL2_RW,
5250       .type = ARM_CP_CONST, .resetvalue = 0 },
5251     REGINFO_SENTINEL
5252 };
5253 
5254 static void do_hcr_write(CPUARMState *env, uint64_t value, uint64_t valid_mask)
5255 {
5256     ARMCPU *cpu = env_archcpu(env);
5257 
5258     if (arm_feature(env, ARM_FEATURE_V8)) {
5259         valid_mask |= MAKE_64BIT_MASK(0, 34);  /* ARMv8.0 */
5260     } else {
5261         valid_mask |= MAKE_64BIT_MASK(0, 28);  /* ARMv7VE */
5262     }
5263 
5264     if (arm_feature(env, ARM_FEATURE_EL3)) {
5265         valid_mask &= ~HCR_HCD;
5266     } else if (cpu->psci_conduit != QEMU_PSCI_CONDUIT_SMC) {
5267         /* Architecturally HCR.TSC is RES0 if EL3 is not implemented.
5268          * However, if we're using the SMC PSCI conduit then QEMU is
5269          * effectively acting like EL3 firmware and so the guest at
5270          * EL2 should retain the ability to prevent EL1 from being
5271          * able to make SMC calls into the ersatz firmware, so in
5272          * that case HCR.TSC should be read/write.
5273          */
5274         valid_mask &= ~HCR_TSC;
5275     }
5276 
5277     if (arm_feature(env, ARM_FEATURE_AARCH64)) {
5278         if (cpu_isar_feature(aa64_vh, cpu)) {
5279             valid_mask |= HCR_E2H;
5280         }
5281         if (cpu_isar_feature(aa64_lor, cpu)) {
5282             valid_mask |= HCR_TLOR;
5283         }
5284         if (cpu_isar_feature(aa64_pauth, cpu)) {
5285             valid_mask |= HCR_API | HCR_APK;
5286         }
5287         if (cpu_isar_feature(aa64_mte, cpu)) {
5288             valid_mask |= HCR_ATA | HCR_DCT | HCR_TID5;
5289         }
5290     }
5291 
5292     /* Clear RES0 bits.  */
5293     value &= valid_mask;
5294 
5295     /*
5296      * These bits change the MMU setup:
5297      * HCR_VM enables stage 2 translation
5298      * HCR_PTW forbids certain page-table setups
5299      * HCR_DC disables stage1 and enables stage2 translation
5300      * HCR_DCT enables tagging on (disabled) stage1 translation
5301      */
5302     if ((env->cp15.hcr_el2 ^ value) & (HCR_VM | HCR_PTW | HCR_DC | HCR_DCT)) {
5303         tlb_flush(CPU(cpu));
5304     }
5305     env->cp15.hcr_el2 = value;
5306 
5307     /*
5308      * Updates to VI and VF require us to update the status of
5309      * virtual interrupts, which are the logical OR of these bits
5310      * and the state of the input lines from the GIC. (This requires
5311      * that we have the iothread lock, which is done by marking the
5312      * reginfo structs as ARM_CP_IO.)
5313      * Note that if a write to HCR pends a VIRQ or VFIQ it is never
5314      * possible for it to be taken immediately, because VIRQ and
5315      * VFIQ are masked unless running at EL0 or EL1, and HCR
5316      * can only be written at EL2.
5317      */
5318     g_assert(qemu_mutex_iothread_locked());
5319     arm_cpu_update_virq(cpu);
5320     arm_cpu_update_vfiq(cpu);
5321 }
5322 
5323 static void hcr_write(CPUARMState *env, const ARMCPRegInfo *ri, uint64_t value)
5324 {
5325     do_hcr_write(env, value, 0);
5326 }
5327 
5328 static void hcr_writehigh(CPUARMState *env, const ARMCPRegInfo *ri,
5329                           uint64_t value)
5330 {
5331     /* Handle HCR2 write, i.e. write to high half of HCR_EL2 */
5332     value = deposit64(env->cp15.hcr_el2, 32, 32, value);
5333     do_hcr_write(env, value, MAKE_64BIT_MASK(0, 32));
5334 }
5335 
5336 static void hcr_writelow(CPUARMState *env, const ARMCPRegInfo *ri,
5337                          uint64_t value)
5338 {
5339     /* Handle HCR write, i.e. write to low half of HCR_EL2 */
5340     value = deposit64(env->cp15.hcr_el2, 0, 32, value);
5341     do_hcr_write(env, value, MAKE_64BIT_MASK(32, 32));
5342 }
5343 
5344 /*
5345  * Return the effective value of HCR_EL2.
5346  * Bits that are not included here:
5347  * RW       (read from SCR_EL3.RW as needed)
5348  */
5349 uint64_t arm_hcr_el2_eff(CPUARMState *env)
5350 {
5351     uint64_t ret = env->cp15.hcr_el2;
5352 
5353     if (arm_is_secure_below_el3(env)) {
5354         /*
5355          * "This register has no effect if EL2 is not enabled in the
5356          * current Security state".  This is ARMv8.4-SecEL2 speak for
5357          * !(SCR_EL3.NS==1 || SCR_EL3.EEL2==1).
5358          *
5359          * Prior to that, the language was "In an implementation that
5360          * includes EL3, when the value of SCR_EL3.NS is 0 the PE behaves
5361          * as if this field is 0 for all purposes other than a direct
5362          * read or write access of HCR_EL2".  With lots of enumeration
5363          * on a per-field basis.  In current QEMU, this is condition
5364          * is arm_is_secure_below_el3.
5365          *
5366          * Since the v8.4 language applies to the entire register, and
5367          * appears to be backward compatible, use that.
5368          */
5369         return 0;
5370     }
5371 
5372     /*
5373      * For a cpu that supports both aarch64 and aarch32, we can set bits
5374      * in HCR_EL2 (e.g. via EL3) that are RES0 when we enter EL2 as aa32.
5375      * Ignore all of the bits in HCR+HCR2 that are not valid for aarch32.
5376      */
5377     if (!arm_el_is_aa64(env, 2)) {
5378         uint64_t aa32_valid;
5379 
5380         /*
5381          * These bits are up-to-date as of ARMv8.6.
5382          * For HCR, it's easiest to list just the 2 bits that are invalid.
5383          * For HCR2, list those that are valid.
5384          */
5385         aa32_valid = MAKE_64BIT_MASK(0, 32) & ~(HCR_RW | HCR_TDZ);
5386         aa32_valid |= (HCR_CD | HCR_ID | HCR_TERR | HCR_TEA | HCR_MIOCNCE |
5387                        HCR_TID4 | HCR_TICAB | HCR_TOCU | HCR_TTLBIS);
5388         ret &= aa32_valid;
5389     }
5390 
5391     if (ret & HCR_TGE) {
5392         /* These bits are up-to-date as of ARMv8.6.  */
5393         if (ret & HCR_E2H) {
5394             ret &= ~(HCR_VM | HCR_FMO | HCR_IMO | HCR_AMO |
5395                      HCR_BSU_MASK | HCR_DC | HCR_TWI | HCR_TWE |
5396                      HCR_TID0 | HCR_TID2 | HCR_TPCP | HCR_TPU |
5397                      HCR_TDZ | HCR_CD | HCR_ID | HCR_MIOCNCE |
5398                      HCR_TID4 | HCR_TICAB | HCR_TOCU | HCR_ENSCXT |
5399                      HCR_TTLBIS | HCR_TTLBOS | HCR_TID5);
5400         } else {
5401             ret |= HCR_FMO | HCR_IMO | HCR_AMO;
5402         }
5403         ret &= ~(HCR_SWIO | HCR_PTW | HCR_VF | HCR_VI | HCR_VSE |
5404                  HCR_FB | HCR_TID1 | HCR_TID3 | HCR_TSC | HCR_TACR |
5405                  HCR_TSW | HCR_TTLB | HCR_TVM | HCR_HCD | HCR_TRVM |
5406                  HCR_TLOR);
5407     }
5408 
5409     return ret;
5410 }
5411 
5412 static void cptr_el2_write(CPUARMState *env, const ARMCPRegInfo *ri,
5413                            uint64_t value)
5414 {
5415     /*
5416      * For A-profile AArch32 EL3, if NSACR.CP10
5417      * is 0 then HCPTR.{TCP11,TCP10} ignore writes and read as 1.
5418      */
5419     if (arm_feature(env, ARM_FEATURE_EL3) && !arm_el_is_aa64(env, 3) &&
5420         !arm_is_secure(env) && !extract32(env->cp15.nsacr, 10, 1)) {
5421         value &= ~(0x3 << 10);
5422         value |= env->cp15.cptr_el[2] & (0x3 << 10);
5423     }
5424     env->cp15.cptr_el[2] = value;
5425 }
5426 
5427 static uint64_t cptr_el2_read(CPUARMState *env, const ARMCPRegInfo *ri)
5428 {
5429     /*
5430      * For A-profile AArch32 EL3, if NSACR.CP10
5431      * is 0 then HCPTR.{TCP11,TCP10} ignore writes and read as 1.
5432      */
5433     uint64_t value = env->cp15.cptr_el[2];
5434 
5435     if (arm_feature(env, ARM_FEATURE_EL3) && !arm_el_is_aa64(env, 3) &&
5436         !arm_is_secure(env) && !extract32(env->cp15.nsacr, 10, 1)) {
5437         value |= 0x3 << 10;
5438     }
5439     return value;
5440 }
5441 
5442 static const ARMCPRegInfo el2_cp_reginfo[] = {
5443     { .name = "HCR_EL2", .state = ARM_CP_STATE_AA64,
5444       .type = ARM_CP_IO,
5445       .opc0 = 3, .opc1 = 4, .crn = 1, .crm = 1, .opc2 = 0,
5446       .access = PL2_RW, .fieldoffset = offsetof(CPUARMState, cp15.hcr_el2),
5447       .writefn = hcr_write },
5448     { .name = "HCR", .state = ARM_CP_STATE_AA32,
5449       .type = ARM_CP_ALIAS | ARM_CP_IO,
5450       .cp = 15, .opc1 = 4, .crn = 1, .crm = 1, .opc2 = 0,
5451       .access = PL2_RW, .fieldoffset = offsetof(CPUARMState, cp15.hcr_el2),
5452       .writefn = hcr_writelow },
5453     { .name = "HACR_EL2", .state = ARM_CP_STATE_BOTH,
5454       .opc0 = 3, .opc1 = 4, .crn = 1, .crm = 1, .opc2 = 7,
5455       .access = PL2_RW, .type = ARM_CP_CONST, .resetvalue = 0 },
5456     { .name = "ELR_EL2", .state = ARM_CP_STATE_AA64,
5457       .type = ARM_CP_ALIAS,
5458       .opc0 = 3, .opc1 = 4, .crn = 4, .crm = 0, .opc2 = 1,
5459       .access = PL2_RW,
5460       .fieldoffset = offsetof(CPUARMState, elr_el[2]) },
5461     { .name = "ESR_EL2", .state = ARM_CP_STATE_BOTH,
5462       .opc0 = 3, .opc1 = 4, .crn = 5, .crm = 2, .opc2 = 0,
5463       .access = PL2_RW, .fieldoffset = offsetof(CPUARMState, cp15.esr_el[2]) },
5464     { .name = "FAR_EL2", .state = ARM_CP_STATE_BOTH,
5465       .opc0 = 3, .opc1 = 4, .crn = 6, .crm = 0, .opc2 = 0,
5466       .access = PL2_RW, .fieldoffset = offsetof(CPUARMState, cp15.far_el[2]) },
5467     { .name = "HIFAR", .state = ARM_CP_STATE_AA32,
5468       .type = ARM_CP_ALIAS,
5469       .cp = 15, .opc1 = 4, .crn = 6, .crm = 0, .opc2 = 2,
5470       .access = PL2_RW,
5471       .fieldoffset = offsetofhigh32(CPUARMState, cp15.far_el[2]) },
5472     { .name = "SPSR_EL2", .state = ARM_CP_STATE_AA64,
5473       .type = ARM_CP_ALIAS,
5474       .opc0 = 3, .opc1 = 4, .crn = 4, .crm = 0, .opc2 = 0,
5475       .access = PL2_RW,
5476       .fieldoffset = offsetof(CPUARMState, banked_spsr[BANK_HYP]) },
5477     { .name = "VBAR_EL2", .state = ARM_CP_STATE_BOTH,
5478       .opc0 = 3, .opc1 = 4, .crn = 12, .crm = 0, .opc2 = 0,
5479       .access = PL2_RW, .writefn = vbar_write,
5480       .fieldoffset = offsetof(CPUARMState, cp15.vbar_el[2]),
5481       .resetvalue = 0 },
5482     { .name = "SP_EL2", .state = ARM_CP_STATE_AA64,
5483       .opc0 = 3, .opc1 = 6, .crn = 4, .crm = 1, .opc2 = 0,
5484       .access = PL3_RW, .type = ARM_CP_ALIAS,
5485       .fieldoffset = offsetof(CPUARMState, sp_el[2]) },
5486     { .name = "CPTR_EL2", .state = ARM_CP_STATE_BOTH,
5487       .opc0 = 3, .opc1 = 4, .crn = 1, .crm = 1, .opc2 = 2,
5488       .access = PL2_RW, .accessfn = cptr_access, .resetvalue = 0,
5489       .fieldoffset = offsetof(CPUARMState, cp15.cptr_el[2]),
5490       .readfn = cptr_el2_read, .writefn = cptr_el2_write },
5491     { .name = "MAIR_EL2", .state = ARM_CP_STATE_BOTH,
5492       .opc0 = 3, .opc1 = 4, .crn = 10, .crm = 2, .opc2 = 0,
5493       .access = PL2_RW, .fieldoffset = offsetof(CPUARMState, cp15.mair_el[2]),
5494       .resetvalue = 0 },
5495     { .name = "HMAIR1", .state = ARM_CP_STATE_AA32,
5496       .cp = 15, .opc1 = 4, .crn = 10, .crm = 2, .opc2 = 1,
5497       .access = PL2_RW, .type = ARM_CP_ALIAS,
5498       .fieldoffset = offsetofhigh32(CPUARMState, cp15.mair_el[2]) },
5499     { .name = "AMAIR_EL2", .state = ARM_CP_STATE_BOTH,
5500       .opc0 = 3, .opc1 = 4, .crn = 10, .crm = 3, .opc2 = 0,
5501       .access = PL2_RW, .type = ARM_CP_CONST,
5502       .resetvalue = 0 },
5503     /* HAMAIR1 is mapped to AMAIR_EL2[63:32] */
5504     { .name = "HAMAIR1", .state = ARM_CP_STATE_AA32,
5505       .cp = 15, .opc1 = 4, .crn = 10, .crm = 3, .opc2 = 1,
5506       .access = PL2_RW, .type = ARM_CP_CONST,
5507       .resetvalue = 0 },
5508     { .name = "AFSR0_EL2", .state = ARM_CP_STATE_BOTH,
5509       .opc0 = 3, .opc1 = 4, .crn = 5, .crm = 1, .opc2 = 0,
5510       .access = PL2_RW, .type = ARM_CP_CONST,
5511       .resetvalue = 0 },
5512     { .name = "AFSR1_EL2", .state = ARM_CP_STATE_BOTH,
5513       .opc0 = 3, .opc1 = 4, .crn = 5, .crm = 1, .opc2 = 1,
5514       .access = PL2_RW, .type = ARM_CP_CONST,
5515       .resetvalue = 0 },
5516     { .name = "TCR_EL2", .state = ARM_CP_STATE_BOTH,
5517       .opc0 = 3, .opc1 = 4, .crn = 2, .crm = 0, .opc2 = 2,
5518       .access = PL2_RW, .writefn = vmsa_tcr_el12_write,
5519       /* no .raw_writefn or .resetfn needed as we never use mask/base_mask */
5520       .fieldoffset = offsetof(CPUARMState, cp15.tcr_el[2]) },
5521     { .name = "VTCR", .state = ARM_CP_STATE_AA32,
5522       .cp = 15, .opc1 = 4, .crn = 2, .crm = 1, .opc2 = 2,
5523       .type = ARM_CP_ALIAS,
5524       .access = PL2_RW, .accessfn = access_el3_aa32ns,
5525       .fieldoffset = offsetof(CPUARMState, cp15.vtcr_el2) },
5526     { .name = "VTCR_EL2", .state = ARM_CP_STATE_AA64,
5527       .opc0 = 3, .opc1 = 4, .crn = 2, .crm = 1, .opc2 = 2,
5528       .access = PL2_RW,
5529       /* no .writefn needed as this can't cause an ASID change;
5530        * no .raw_writefn or .resetfn needed as we never use mask/base_mask
5531        */
5532       .fieldoffset = offsetof(CPUARMState, cp15.vtcr_el2) },
5533     { .name = "VTTBR", .state = ARM_CP_STATE_AA32,
5534       .cp = 15, .opc1 = 6, .crm = 2,
5535       .type = ARM_CP_64BIT | ARM_CP_ALIAS,
5536       .access = PL2_RW, .accessfn = access_el3_aa32ns,
5537       .fieldoffset = offsetof(CPUARMState, cp15.vttbr_el2),
5538       .writefn = vttbr_write },
5539     { .name = "VTTBR_EL2", .state = ARM_CP_STATE_AA64,
5540       .opc0 = 3, .opc1 = 4, .crn = 2, .crm = 1, .opc2 = 0,
5541       .access = PL2_RW, .writefn = vttbr_write,
5542       .fieldoffset = offsetof(CPUARMState, cp15.vttbr_el2) },
5543     { .name = "SCTLR_EL2", .state = ARM_CP_STATE_BOTH,
5544       .opc0 = 3, .opc1 = 4, .crn = 1, .crm = 0, .opc2 = 0,
5545       .access = PL2_RW, .raw_writefn = raw_write, .writefn = sctlr_write,
5546       .fieldoffset = offsetof(CPUARMState, cp15.sctlr_el[2]) },
5547     { .name = "TPIDR_EL2", .state = ARM_CP_STATE_BOTH,
5548       .opc0 = 3, .opc1 = 4, .crn = 13, .crm = 0, .opc2 = 2,
5549       .access = PL2_RW, .resetvalue = 0,
5550       .fieldoffset = offsetof(CPUARMState, cp15.tpidr_el[2]) },
5551     { .name = "TTBR0_EL2", .state = ARM_CP_STATE_AA64,
5552       .opc0 = 3, .opc1 = 4, .crn = 2, .crm = 0, .opc2 = 0,
5553       .access = PL2_RW, .resetvalue = 0, .writefn = vmsa_tcr_ttbr_el2_write,
5554       .fieldoffset = offsetof(CPUARMState, cp15.ttbr0_el[2]) },
5555     { .name = "HTTBR", .cp = 15, .opc1 = 4, .crm = 2,
5556       .access = PL2_RW, .type = ARM_CP_64BIT | ARM_CP_ALIAS,
5557       .fieldoffset = offsetof(CPUARMState, cp15.ttbr0_el[2]) },
5558     { .name = "TLBIALLNSNH",
5559       .cp = 15, .opc1 = 4, .crn = 8, .crm = 7, .opc2 = 4,
5560       .type = ARM_CP_NO_RAW, .access = PL2_W,
5561       .writefn = tlbiall_nsnh_write },
5562     { .name = "TLBIALLNSNHIS",
5563       .cp = 15, .opc1 = 4, .crn = 8, .crm = 3, .opc2 = 4,
5564       .type = ARM_CP_NO_RAW, .access = PL2_W,
5565       .writefn = tlbiall_nsnh_is_write },
5566     { .name = "TLBIALLH", .cp = 15, .opc1 = 4, .crn = 8, .crm = 7, .opc2 = 0,
5567       .type = ARM_CP_NO_RAW, .access = PL2_W,
5568       .writefn = tlbiall_hyp_write },
5569     { .name = "TLBIALLHIS", .cp = 15, .opc1 = 4, .crn = 8, .crm = 3, .opc2 = 0,
5570       .type = ARM_CP_NO_RAW, .access = PL2_W,
5571       .writefn = tlbiall_hyp_is_write },
5572     { .name = "TLBIMVAH", .cp = 15, .opc1 = 4, .crn = 8, .crm = 7, .opc2 = 1,
5573       .type = ARM_CP_NO_RAW, .access = PL2_W,
5574       .writefn = tlbimva_hyp_write },
5575     { .name = "TLBIMVAHIS", .cp = 15, .opc1 = 4, .crn = 8, .crm = 3, .opc2 = 1,
5576       .type = ARM_CP_NO_RAW, .access = PL2_W,
5577       .writefn = tlbimva_hyp_is_write },
5578     { .name = "TLBI_ALLE2", .state = ARM_CP_STATE_AA64,
5579       .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 7, .opc2 = 0,
5580       .type = ARM_CP_NO_RAW, .access = PL2_W,
5581       .writefn = tlbi_aa64_alle2_write },
5582     { .name = "TLBI_VAE2", .state = ARM_CP_STATE_AA64,
5583       .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 7, .opc2 = 1,
5584       .type = ARM_CP_NO_RAW, .access = PL2_W,
5585       .writefn = tlbi_aa64_vae2_write },
5586     { .name = "TLBI_VALE2", .state = ARM_CP_STATE_AA64,
5587       .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 7, .opc2 = 5,
5588       .access = PL2_W, .type = ARM_CP_NO_RAW,
5589       .writefn = tlbi_aa64_vae2_write },
5590     { .name = "TLBI_ALLE2IS", .state = ARM_CP_STATE_AA64,
5591       .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 3, .opc2 = 0,
5592       .access = PL2_W, .type = ARM_CP_NO_RAW,
5593       .writefn = tlbi_aa64_alle2is_write },
5594     { .name = "TLBI_VAE2IS", .state = ARM_CP_STATE_AA64,
5595       .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 3, .opc2 = 1,
5596       .type = ARM_CP_NO_RAW, .access = PL2_W,
5597       .writefn = tlbi_aa64_vae2is_write },
5598     { .name = "TLBI_VALE2IS", .state = ARM_CP_STATE_AA64,
5599       .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 3, .opc2 = 5,
5600       .access = PL2_W, .type = ARM_CP_NO_RAW,
5601       .writefn = tlbi_aa64_vae2is_write },
5602 #ifndef CONFIG_USER_ONLY
5603     /* Unlike the other EL2-related AT operations, these must
5604      * UNDEF from EL3 if EL2 is not implemented, which is why we
5605      * define them here rather than with the rest of the AT ops.
5606      */
5607     { .name = "AT_S1E2R", .state = ARM_CP_STATE_AA64,
5608       .opc0 = 1, .opc1 = 4, .crn = 7, .crm = 8, .opc2 = 0,
5609       .access = PL2_W, .accessfn = at_s1e2_access,
5610       .type = ARM_CP_NO_RAW | ARM_CP_RAISES_EXC, .writefn = ats_write64 },
5611     { .name = "AT_S1E2W", .state = ARM_CP_STATE_AA64,
5612       .opc0 = 1, .opc1 = 4, .crn = 7, .crm = 8, .opc2 = 1,
5613       .access = PL2_W, .accessfn = at_s1e2_access,
5614       .type = ARM_CP_NO_RAW | ARM_CP_RAISES_EXC, .writefn = ats_write64 },
5615     /* The AArch32 ATS1H* operations are CONSTRAINED UNPREDICTABLE
5616      * if EL2 is not implemented; we choose to UNDEF. Behaviour at EL3
5617      * with SCR.NS == 0 outside Monitor mode is UNPREDICTABLE; we choose
5618      * to behave as if SCR.NS was 1.
5619      */
5620     { .name = "ATS1HR", .cp = 15, .opc1 = 4, .crn = 7, .crm = 8, .opc2 = 0,
5621       .access = PL2_W,
5622       .writefn = ats1h_write, .type = ARM_CP_NO_RAW | ARM_CP_RAISES_EXC },
5623     { .name = "ATS1HW", .cp = 15, .opc1 = 4, .crn = 7, .crm = 8, .opc2 = 1,
5624       .access = PL2_W,
5625       .writefn = ats1h_write, .type = ARM_CP_NO_RAW | ARM_CP_RAISES_EXC },
5626     { .name = "CNTHCTL_EL2", .state = ARM_CP_STATE_BOTH,
5627       .opc0 = 3, .opc1 = 4, .crn = 14, .crm = 1, .opc2 = 0,
5628       /* ARMv7 requires bit 0 and 1 to reset to 1. ARMv8 defines the
5629        * reset values as IMPDEF. We choose to reset to 3 to comply with
5630        * both ARMv7 and ARMv8.
5631        */
5632       .access = PL2_RW, .resetvalue = 3,
5633       .fieldoffset = offsetof(CPUARMState, cp15.cnthctl_el2) },
5634     { .name = "CNTVOFF_EL2", .state = ARM_CP_STATE_AA64,
5635       .opc0 = 3, .opc1 = 4, .crn = 14, .crm = 0, .opc2 = 3,
5636       .access = PL2_RW, .type = ARM_CP_IO, .resetvalue = 0,
5637       .writefn = gt_cntvoff_write,
5638       .fieldoffset = offsetof(CPUARMState, cp15.cntvoff_el2) },
5639     { .name = "CNTVOFF", .cp = 15, .opc1 = 4, .crm = 14,
5640       .access = PL2_RW, .type = ARM_CP_64BIT | ARM_CP_ALIAS | ARM_CP_IO,
5641       .writefn = gt_cntvoff_write,
5642       .fieldoffset = offsetof(CPUARMState, cp15.cntvoff_el2) },
5643     { .name = "CNTHP_CVAL_EL2", .state = ARM_CP_STATE_AA64,
5644       .opc0 = 3, .opc1 = 4, .crn = 14, .crm = 2, .opc2 = 2,
5645       .fieldoffset = offsetof(CPUARMState, cp15.c14_timer[GTIMER_HYP].cval),
5646       .type = ARM_CP_IO, .access = PL2_RW,
5647       .writefn = gt_hyp_cval_write, .raw_writefn = raw_write },
5648     { .name = "CNTHP_CVAL", .cp = 15, .opc1 = 6, .crm = 14,
5649       .fieldoffset = offsetof(CPUARMState, cp15.c14_timer[GTIMER_HYP].cval),
5650       .access = PL2_RW, .type = ARM_CP_64BIT | ARM_CP_IO,
5651       .writefn = gt_hyp_cval_write, .raw_writefn = raw_write },
5652     { .name = "CNTHP_TVAL_EL2", .state = ARM_CP_STATE_BOTH,
5653       .opc0 = 3, .opc1 = 4, .crn = 14, .crm = 2, .opc2 = 0,
5654       .type = ARM_CP_NO_RAW | ARM_CP_IO, .access = PL2_RW,
5655       .resetfn = gt_hyp_timer_reset,
5656       .readfn = gt_hyp_tval_read, .writefn = gt_hyp_tval_write },
5657     { .name = "CNTHP_CTL_EL2", .state = ARM_CP_STATE_BOTH,
5658       .type = ARM_CP_IO,
5659       .opc0 = 3, .opc1 = 4, .crn = 14, .crm = 2, .opc2 = 1,
5660       .access = PL2_RW,
5661       .fieldoffset = offsetof(CPUARMState, cp15.c14_timer[GTIMER_HYP].ctl),
5662       .resetvalue = 0,
5663       .writefn = gt_hyp_ctl_write, .raw_writefn = raw_write },
5664 #endif
5665     /* The only field of MDCR_EL2 that has a defined architectural reset value
5666      * is MDCR_EL2.HPMN which should reset to the value of PMCR_EL0.N; but we
5667      * don't implement any PMU event counters, so using zero as a reset
5668      * value for MDCR_EL2 is okay
5669      */
5670     { .name = "MDCR_EL2", .state = ARM_CP_STATE_BOTH,
5671       .opc0 = 3, .opc1 = 4, .crn = 1, .crm = 1, .opc2 = 1,
5672       .access = PL2_RW, .resetvalue = 0,
5673       .fieldoffset = offsetof(CPUARMState, cp15.mdcr_el2), },
5674     { .name = "HPFAR", .state = ARM_CP_STATE_AA32,
5675       .cp = 15, .opc1 = 4, .crn = 6, .crm = 0, .opc2 = 4,
5676       .access = PL2_RW, .accessfn = access_el3_aa32ns,
5677       .fieldoffset = offsetof(CPUARMState, cp15.hpfar_el2) },
5678     { .name = "HPFAR_EL2", .state = ARM_CP_STATE_AA64,
5679       .opc0 = 3, .opc1 = 4, .crn = 6, .crm = 0, .opc2 = 4,
5680       .access = PL2_RW,
5681       .fieldoffset = offsetof(CPUARMState, cp15.hpfar_el2) },
5682     { .name = "HSTR_EL2", .state = ARM_CP_STATE_BOTH,
5683       .cp = 15, .opc0 = 3, .opc1 = 4, .crn = 1, .crm = 1, .opc2 = 3,
5684       .access = PL2_RW,
5685       .fieldoffset = offsetof(CPUARMState, cp15.hstr_el2) },
5686     REGINFO_SENTINEL
5687 };
5688 
5689 static const ARMCPRegInfo el2_v8_cp_reginfo[] = {
5690     { .name = "HCR2", .state = ARM_CP_STATE_AA32,
5691       .type = ARM_CP_ALIAS | ARM_CP_IO,
5692       .cp = 15, .opc1 = 4, .crn = 1, .crm = 1, .opc2 = 4,
5693       .access = PL2_RW,
5694       .fieldoffset = offsetofhigh32(CPUARMState, cp15.hcr_el2),
5695       .writefn = hcr_writehigh },
5696     REGINFO_SENTINEL
5697 };
5698 
5699 static CPAccessResult nsacr_access(CPUARMState *env, const ARMCPRegInfo *ri,
5700                                    bool isread)
5701 {
5702     /* The NSACR is RW at EL3, and RO for NS EL1 and NS EL2.
5703      * At Secure EL1 it traps to EL3.
5704      */
5705     if (arm_current_el(env) == 3) {
5706         return CP_ACCESS_OK;
5707     }
5708     if (arm_is_secure_below_el3(env)) {
5709         return CP_ACCESS_TRAP_EL3;
5710     }
5711     /* Accesses from EL1 NS and EL2 NS are UNDEF for write but allow reads. */
5712     if (isread) {
5713         return CP_ACCESS_OK;
5714     }
5715     return CP_ACCESS_TRAP_UNCATEGORIZED;
5716 }
5717 
5718 static const ARMCPRegInfo el3_cp_reginfo[] = {
5719     { .name = "SCR_EL3", .state = ARM_CP_STATE_AA64,
5720       .opc0 = 3, .opc1 = 6, .crn = 1, .crm = 1, .opc2 = 0,
5721       .access = PL3_RW, .fieldoffset = offsetof(CPUARMState, cp15.scr_el3),
5722       .resetvalue = 0, .writefn = scr_write },
5723     { .name = "SCR",  .type = ARM_CP_ALIAS | ARM_CP_NEWEL,
5724       .cp = 15, .opc1 = 0, .crn = 1, .crm = 1, .opc2 = 0,
5725       .access = PL1_RW, .accessfn = access_trap_aa32s_el1,
5726       .fieldoffset = offsetoflow32(CPUARMState, cp15.scr_el3),
5727       .writefn = scr_write },
5728     { .name = "SDER32_EL3", .state = ARM_CP_STATE_AA64,
5729       .opc0 = 3, .opc1 = 6, .crn = 1, .crm = 1, .opc2 = 1,
5730       .access = PL3_RW, .resetvalue = 0,
5731       .fieldoffset = offsetof(CPUARMState, cp15.sder) },
5732     { .name = "SDER",
5733       .cp = 15, .opc1 = 0, .crn = 1, .crm = 1, .opc2 = 1,
5734       .access = PL3_RW, .resetvalue = 0,
5735       .fieldoffset = offsetoflow32(CPUARMState, cp15.sder) },
5736     { .name = "MVBAR", .cp = 15, .opc1 = 0, .crn = 12, .crm = 0, .opc2 = 1,
5737       .access = PL1_RW, .accessfn = access_trap_aa32s_el1,
5738       .writefn = vbar_write, .resetvalue = 0,
5739       .fieldoffset = offsetof(CPUARMState, cp15.mvbar) },
5740     { .name = "TTBR0_EL3", .state = ARM_CP_STATE_AA64,
5741       .opc0 = 3, .opc1 = 6, .crn = 2, .crm = 0, .opc2 = 0,
5742       .access = PL3_RW, .resetvalue = 0,
5743       .fieldoffset = offsetof(CPUARMState, cp15.ttbr0_el[3]) },
5744     { .name = "TCR_EL3", .state = ARM_CP_STATE_AA64,
5745       .opc0 = 3, .opc1 = 6, .crn = 2, .crm = 0, .opc2 = 2,
5746       .access = PL3_RW,
5747       /* no .writefn needed as this can't cause an ASID change;
5748        * we must provide a .raw_writefn and .resetfn because we handle
5749        * reset and migration for the AArch32 TTBCR(S), which might be
5750        * using mask and base_mask.
5751        */
5752       .resetfn = vmsa_ttbcr_reset, .raw_writefn = vmsa_ttbcr_raw_write,
5753       .fieldoffset = offsetof(CPUARMState, cp15.tcr_el[3]) },
5754     { .name = "ELR_EL3", .state = ARM_CP_STATE_AA64,
5755       .type = ARM_CP_ALIAS,
5756       .opc0 = 3, .opc1 = 6, .crn = 4, .crm = 0, .opc2 = 1,
5757       .access = PL3_RW,
5758       .fieldoffset = offsetof(CPUARMState, elr_el[3]) },
5759     { .name = "ESR_EL3", .state = ARM_CP_STATE_AA64,
5760       .opc0 = 3, .opc1 = 6, .crn = 5, .crm = 2, .opc2 = 0,
5761       .access = PL3_RW, .fieldoffset = offsetof(CPUARMState, cp15.esr_el[3]) },
5762     { .name = "FAR_EL3", .state = ARM_CP_STATE_AA64,
5763       .opc0 = 3, .opc1 = 6, .crn = 6, .crm = 0, .opc2 = 0,
5764       .access = PL3_RW, .fieldoffset = offsetof(CPUARMState, cp15.far_el[3]) },
5765     { .name = "SPSR_EL3", .state = ARM_CP_STATE_AA64,
5766       .type = ARM_CP_ALIAS,
5767       .opc0 = 3, .opc1 = 6, .crn = 4, .crm = 0, .opc2 = 0,
5768       .access = PL3_RW,
5769       .fieldoffset = offsetof(CPUARMState, banked_spsr[BANK_MON]) },
5770     { .name = "VBAR_EL3", .state = ARM_CP_STATE_AA64,
5771       .opc0 = 3, .opc1 = 6, .crn = 12, .crm = 0, .opc2 = 0,
5772       .access = PL3_RW, .writefn = vbar_write,
5773       .fieldoffset = offsetof(CPUARMState, cp15.vbar_el[3]),
5774       .resetvalue = 0 },
5775     { .name = "CPTR_EL3", .state = ARM_CP_STATE_AA64,
5776       .opc0 = 3, .opc1 = 6, .crn = 1, .crm = 1, .opc2 = 2,
5777       .access = PL3_RW, .accessfn = cptr_access, .resetvalue = 0,
5778       .fieldoffset = offsetof(CPUARMState, cp15.cptr_el[3]) },
5779     { .name = "TPIDR_EL3", .state = ARM_CP_STATE_AA64,
5780       .opc0 = 3, .opc1 = 6, .crn = 13, .crm = 0, .opc2 = 2,
5781       .access = PL3_RW, .resetvalue = 0,
5782       .fieldoffset = offsetof(CPUARMState, cp15.tpidr_el[3]) },
5783     { .name = "AMAIR_EL3", .state = ARM_CP_STATE_AA64,
5784       .opc0 = 3, .opc1 = 6, .crn = 10, .crm = 3, .opc2 = 0,
5785       .access = PL3_RW, .type = ARM_CP_CONST,
5786       .resetvalue = 0 },
5787     { .name = "AFSR0_EL3", .state = ARM_CP_STATE_BOTH,
5788       .opc0 = 3, .opc1 = 6, .crn = 5, .crm = 1, .opc2 = 0,
5789       .access = PL3_RW, .type = ARM_CP_CONST,
5790       .resetvalue = 0 },
5791     { .name = "AFSR1_EL3", .state = ARM_CP_STATE_BOTH,
5792       .opc0 = 3, .opc1 = 6, .crn = 5, .crm = 1, .opc2 = 1,
5793       .access = PL3_RW, .type = ARM_CP_CONST,
5794       .resetvalue = 0 },
5795     { .name = "TLBI_ALLE3IS", .state = ARM_CP_STATE_AA64,
5796       .opc0 = 1, .opc1 = 6, .crn = 8, .crm = 3, .opc2 = 0,
5797       .access = PL3_W, .type = ARM_CP_NO_RAW,
5798       .writefn = tlbi_aa64_alle3is_write },
5799     { .name = "TLBI_VAE3IS", .state = ARM_CP_STATE_AA64,
5800       .opc0 = 1, .opc1 = 6, .crn = 8, .crm = 3, .opc2 = 1,
5801       .access = PL3_W, .type = ARM_CP_NO_RAW,
5802       .writefn = tlbi_aa64_vae3is_write },
5803     { .name = "TLBI_VALE3IS", .state = ARM_CP_STATE_AA64,
5804       .opc0 = 1, .opc1 = 6, .crn = 8, .crm = 3, .opc2 = 5,
5805       .access = PL3_W, .type = ARM_CP_NO_RAW,
5806       .writefn = tlbi_aa64_vae3is_write },
5807     { .name = "TLBI_ALLE3", .state = ARM_CP_STATE_AA64,
5808       .opc0 = 1, .opc1 = 6, .crn = 8, .crm = 7, .opc2 = 0,
5809       .access = PL3_W, .type = ARM_CP_NO_RAW,
5810       .writefn = tlbi_aa64_alle3_write },
5811     { .name = "TLBI_VAE3", .state = ARM_CP_STATE_AA64,
5812       .opc0 = 1, .opc1 = 6, .crn = 8, .crm = 7, .opc2 = 1,
5813       .access = PL3_W, .type = ARM_CP_NO_RAW,
5814       .writefn = tlbi_aa64_vae3_write },
5815     { .name = "TLBI_VALE3", .state = ARM_CP_STATE_AA64,
5816       .opc0 = 1, .opc1 = 6, .crn = 8, .crm = 7, .opc2 = 5,
5817       .access = PL3_W, .type = ARM_CP_NO_RAW,
5818       .writefn = tlbi_aa64_vae3_write },
5819     REGINFO_SENTINEL
5820 };
5821 
5822 #ifndef CONFIG_USER_ONLY
5823 /* Test if system register redirection is to occur in the current state.  */
5824 static bool redirect_for_e2h(CPUARMState *env)
5825 {
5826     return arm_current_el(env) == 2 && (arm_hcr_el2_eff(env) & HCR_E2H);
5827 }
5828 
5829 static uint64_t el2_e2h_read(CPUARMState *env, const ARMCPRegInfo *ri)
5830 {
5831     CPReadFn *readfn;
5832 
5833     if (redirect_for_e2h(env)) {
5834         /* Switch to the saved EL2 version of the register.  */
5835         ri = ri->opaque;
5836         readfn = ri->readfn;
5837     } else {
5838         readfn = ri->orig_readfn;
5839     }
5840     if (readfn == NULL) {
5841         readfn = raw_read;
5842     }
5843     return readfn(env, ri);
5844 }
5845 
5846 static void el2_e2h_write(CPUARMState *env, const ARMCPRegInfo *ri,
5847                           uint64_t value)
5848 {
5849     CPWriteFn *writefn;
5850 
5851     if (redirect_for_e2h(env)) {
5852         /* Switch to the saved EL2 version of the register.  */
5853         ri = ri->opaque;
5854         writefn = ri->writefn;
5855     } else {
5856         writefn = ri->orig_writefn;
5857     }
5858     if (writefn == NULL) {
5859         writefn = raw_write;
5860     }
5861     writefn(env, ri, value);
5862 }
5863 
5864 static void define_arm_vh_e2h_redirects_aliases(ARMCPU *cpu)
5865 {
5866     struct E2HAlias {
5867         uint32_t src_key, dst_key, new_key;
5868         const char *src_name, *dst_name, *new_name;
5869         bool (*feature)(const ARMISARegisters *id);
5870     };
5871 
5872 #define K(op0, op1, crn, crm, op2) \
5873     ENCODE_AA64_CP_REG(CP_REG_ARM64_SYSREG_CP, crn, crm, op0, op1, op2)
5874 
5875     static const struct E2HAlias aliases[] = {
5876         { K(3, 0,  1, 0, 0), K(3, 4,  1, 0, 0), K(3, 5, 1, 0, 0),
5877           "SCTLR", "SCTLR_EL2", "SCTLR_EL12" },
5878         { K(3, 0,  1, 0, 2), K(3, 4,  1, 1, 2), K(3, 5, 1, 0, 2),
5879           "CPACR", "CPTR_EL2", "CPACR_EL12" },
5880         { K(3, 0,  2, 0, 0), K(3, 4,  2, 0, 0), K(3, 5, 2, 0, 0),
5881           "TTBR0_EL1", "TTBR0_EL2", "TTBR0_EL12" },
5882         { K(3, 0,  2, 0, 1), K(3, 4,  2, 0, 1), K(3, 5, 2, 0, 1),
5883           "TTBR1_EL1", "TTBR1_EL2", "TTBR1_EL12" },
5884         { K(3, 0,  2, 0, 2), K(3, 4,  2, 0, 2), K(3, 5, 2, 0, 2),
5885           "TCR_EL1", "TCR_EL2", "TCR_EL12" },
5886         { K(3, 0,  4, 0, 0), K(3, 4,  4, 0, 0), K(3, 5, 4, 0, 0),
5887           "SPSR_EL1", "SPSR_EL2", "SPSR_EL12" },
5888         { K(3, 0,  4, 0, 1), K(3, 4,  4, 0, 1), K(3, 5, 4, 0, 1),
5889           "ELR_EL1", "ELR_EL2", "ELR_EL12" },
5890         { K(3, 0,  5, 1, 0), K(3, 4,  5, 1, 0), K(3, 5, 5, 1, 0),
5891           "AFSR0_EL1", "AFSR0_EL2", "AFSR0_EL12" },
5892         { K(3, 0,  5, 1, 1), K(3, 4,  5, 1, 1), K(3, 5, 5, 1, 1),
5893           "AFSR1_EL1", "AFSR1_EL2", "AFSR1_EL12" },
5894         { K(3, 0,  5, 2, 0), K(3, 4,  5, 2, 0), K(3, 5, 5, 2, 0),
5895           "ESR_EL1", "ESR_EL2", "ESR_EL12" },
5896         { K(3, 0,  6, 0, 0), K(3, 4,  6, 0, 0), K(3, 5, 6, 0, 0),
5897           "FAR_EL1", "FAR_EL2", "FAR_EL12" },
5898         { K(3, 0, 10, 2, 0), K(3, 4, 10, 2, 0), K(3, 5, 10, 2, 0),
5899           "MAIR_EL1", "MAIR_EL2", "MAIR_EL12" },
5900         { K(3, 0, 10, 3, 0), K(3, 4, 10, 3, 0), K(3, 5, 10, 3, 0),
5901           "AMAIR0", "AMAIR_EL2", "AMAIR_EL12" },
5902         { K(3, 0, 12, 0, 0), K(3, 4, 12, 0, 0), K(3, 5, 12, 0, 0),
5903           "VBAR", "VBAR_EL2", "VBAR_EL12" },
5904         { K(3, 0, 13, 0, 1), K(3, 4, 13, 0, 1), K(3, 5, 13, 0, 1),
5905           "CONTEXTIDR_EL1", "CONTEXTIDR_EL2", "CONTEXTIDR_EL12" },
5906         { K(3, 0, 14, 1, 0), K(3, 4, 14, 1, 0), K(3, 5, 14, 1, 0),
5907           "CNTKCTL", "CNTHCTL_EL2", "CNTKCTL_EL12" },
5908 
5909         /*
5910          * Note that redirection of ZCR is mentioned in the description
5911          * of ZCR_EL2, and aliasing in the description of ZCR_EL1, but
5912          * not in the summary table.
5913          */
5914         { K(3, 0,  1, 2, 0), K(3, 4,  1, 2, 0), K(3, 5, 1, 2, 0),
5915           "ZCR_EL1", "ZCR_EL2", "ZCR_EL12", isar_feature_aa64_sve },
5916 
5917         { K(3, 0,  5, 6, 0), K(3, 4,  5, 6, 0), K(3, 5, 5, 6, 0),
5918           "TFSR_EL1", "TFSR_EL2", "TFSR_EL12", isar_feature_aa64_mte },
5919 
5920         /* TODO: ARMv8.2-SPE -- PMSCR_EL2 */
5921         /* TODO: ARMv8.4-Trace -- TRFCR_EL2 */
5922     };
5923 #undef K
5924 
5925     size_t i;
5926 
5927     for (i = 0; i < ARRAY_SIZE(aliases); i++) {
5928         const struct E2HAlias *a = &aliases[i];
5929         ARMCPRegInfo *src_reg, *dst_reg;
5930 
5931         if (a->feature && !a->feature(&cpu->isar)) {
5932             continue;
5933         }
5934 
5935         src_reg = g_hash_table_lookup(cpu->cp_regs, &a->src_key);
5936         dst_reg = g_hash_table_lookup(cpu->cp_regs, &a->dst_key);
5937         g_assert(src_reg != NULL);
5938         g_assert(dst_reg != NULL);
5939 
5940         /* Cross-compare names to detect typos in the keys.  */
5941         g_assert(strcmp(src_reg->name, a->src_name) == 0);
5942         g_assert(strcmp(dst_reg->name, a->dst_name) == 0);
5943 
5944         /* None of the core system registers use opaque; we will.  */
5945         g_assert(src_reg->opaque == NULL);
5946 
5947         /* Create alias before redirection so we dup the right data. */
5948         if (a->new_key) {
5949             ARMCPRegInfo *new_reg = g_memdup(src_reg, sizeof(ARMCPRegInfo));
5950             uint32_t *new_key = g_memdup(&a->new_key, sizeof(uint32_t));
5951             bool ok;
5952 
5953             new_reg->name = a->new_name;
5954             new_reg->type |= ARM_CP_ALIAS;
5955             /* Remove PL1/PL0 access, leaving PL2/PL3 R/W in place.  */
5956             new_reg->access &= PL2_RW | PL3_RW;
5957 
5958             ok = g_hash_table_insert(cpu->cp_regs, new_key, new_reg);
5959             g_assert(ok);
5960         }
5961 
5962         src_reg->opaque = dst_reg;
5963         src_reg->orig_readfn = src_reg->readfn ?: raw_read;
5964         src_reg->orig_writefn = src_reg->writefn ?: raw_write;
5965         if (!src_reg->raw_readfn) {
5966             src_reg->raw_readfn = raw_read;
5967         }
5968         if (!src_reg->raw_writefn) {
5969             src_reg->raw_writefn = raw_write;
5970         }
5971         src_reg->readfn = el2_e2h_read;
5972         src_reg->writefn = el2_e2h_write;
5973     }
5974 }
5975 #endif
5976 
5977 static CPAccessResult ctr_el0_access(CPUARMState *env, const ARMCPRegInfo *ri,
5978                                      bool isread)
5979 {
5980     int cur_el = arm_current_el(env);
5981 
5982     if (cur_el < 2) {
5983         uint64_t hcr = arm_hcr_el2_eff(env);
5984 
5985         if (cur_el == 0) {
5986             if ((hcr & (HCR_E2H | HCR_TGE)) == (HCR_E2H | HCR_TGE)) {
5987                 if (!(env->cp15.sctlr_el[2] & SCTLR_UCT)) {
5988                     return CP_ACCESS_TRAP_EL2;
5989                 }
5990             } else {
5991                 if (!(env->cp15.sctlr_el[1] & SCTLR_UCT)) {
5992                     return CP_ACCESS_TRAP;
5993                 }
5994                 if (hcr & HCR_TID2) {
5995                     return CP_ACCESS_TRAP_EL2;
5996                 }
5997             }
5998         } else if (hcr & HCR_TID2) {
5999             return CP_ACCESS_TRAP_EL2;
6000         }
6001     }
6002 
6003     if (arm_current_el(env) < 2 && arm_hcr_el2_eff(env) & HCR_TID2) {
6004         return CP_ACCESS_TRAP_EL2;
6005     }
6006 
6007     return CP_ACCESS_OK;
6008 }
6009 
6010 static void oslar_write(CPUARMState *env, const ARMCPRegInfo *ri,
6011                         uint64_t value)
6012 {
6013     /* Writes to OSLAR_EL1 may update the OS lock status, which can be
6014      * read via a bit in OSLSR_EL1.
6015      */
6016     int oslock;
6017 
6018     if (ri->state == ARM_CP_STATE_AA32) {
6019         oslock = (value == 0xC5ACCE55);
6020     } else {
6021         oslock = value & 1;
6022     }
6023 
6024     env->cp15.oslsr_el1 = deposit32(env->cp15.oslsr_el1, 1, 1, oslock);
6025 }
6026 
6027 static const ARMCPRegInfo debug_cp_reginfo[] = {
6028     /* DBGDRAR, DBGDSAR: always RAZ since we don't implement memory mapped
6029      * debug components. The AArch64 version of DBGDRAR is named MDRAR_EL1;
6030      * unlike DBGDRAR it is never accessible from EL0.
6031      * DBGDSAR is deprecated and must RAZ from v8 anyway, so it has no AArch64
6032      * accessor.
6033      */
6034     { .name = "DBGDRAR", .cp = 14, .crn = 1, .crm = 0, .opc1 = 0, .opc2 = 0,
6035       .access = PL0_R, .accessfn = access_tdra,
6036       .type = ARM_CP_CONST, .resetvalue = 0 },
6037     { .name = "MDRAR_EL1", .state = ARM_CP_STATE_AA64,
6038       .opc0 = 2, .opc1 = 0, .crn = 1, .crm = 0, .opc2 = 0,
6039       .access = PL1_R, .accessfn = access_tdra,
6040       .type = ARM_CP_CONST, .resetvalue = 0 },
6041     { .name = "DBGDSAR", .cp = 14, .crn = 2, .crm = 0, .opc1 = 0, .opc2 = 0,
6042       .access = PL0_R, .accessfn = access_tdra,
6043       .type = ARM_CP_CONST, .resetvalue = 0 },
6044     /* Monitor debug system control register; the 32-bit alias is DBGDSCRext. */
6045     { .name = "MDSCR_EL1", .state = ARM_CP_STATE_BOTH,
6046       .cp = 14, .opc0 = 2, .opc1 = 0, .crn = 0, .crm = 2, .opc2 = 2,
6047       .access = PL1_RW, .accessfn = access_tda,
6048       .fieldoffset = offsetof(CPUARMState, cp15.mdscr_el1),
6049       .resetvalue = 0 },
6050     /* MDCCSR_EL0, aka DBGDSCRint. This is a read-only mirror of MDSCR_EL1.
6051      * We don't implement the configurable EL0 access.
6052      */
6053     { .name = "MDCCSR_EL0", .state = ARM_CP_STATE_BOTH,
6054       .cp = 14, .opc0 = 2, .opc1 = 0, .crn = 0, .crm = 1, .opc2 = 0,
6055       .type = ARM_CP_ALIAS,
6056       .access = PL1_R, .accessfn = access_tda,
6057       .fieldoffset = offsetof(CPUARMState, cp15.mdscr_el1), },
6058     { .name = "OSLAR_EL1", .state = ARM_CP_STATE_BOTH,
6059       .cp = 14, .opc0 = 2, .opc1 = 0, .crn = 1, .crm = 0, .opc2 = 4,
6060       .access = PL1_W, .type = ARM_CP_NO_RAW,
6061       .accessfn = access_tdosa,
6062       .writefn = oslar_write },
6063     { .name = "OSLSR_EL1", .state = ARM_CP_STATE_BOTH,
6064       .cp = 14, .opc0 = 2, .opc1 = 0, .crn = 1, .crm = 1, .opc2 = 4,
6065       .access = PL1_R, .resetvalue = 10,
6066       .accessfn = access_tdosa,
6067       .fieldoffset = offsetof(CPUARMState, cp15.oslsr_el1) },
6068     /* Dummy OSDLR_EL1: 32-bit Linux will read this */
6069     { .name = "OSDLR_EL1", .state = ARM_CP_STATE_BOTH,
6070       .cp = 14, .opc0 = 2, .opc1 = 0, .crn = 1, .crm = 3, .opc2 = 4,
6071       .access = PL1_RW, .accessfn = access_tdosa,
6072       .type = ARM_CP_NOP },
6073     /* Dummy DBGVCR: Linux wants to clear this on startup, but we don't
6074      * implement vector catch debug events yet.
6075      */
6076     { .name = "DBGVCR",
6077       .cp = 14, .opc1 = 0, .crn = 0, .crm = 7, .opc2 = 0,
6078       .access = PL1_RW, .accessfn = access_tda,
6079       .type = ARM_CP_NOP },
6080     /* Dummy DBGVCR32_EL2 (which is only for a 64-bit hypervisor
6081      * to save and restore a 32-bit guest's DBGVCR)
6082      */
6083     { .name = "DBGVCR32_EL2", .state = ARM_CP_STATE_AA64,
6084       .opc0 = 2, .opc1 = 4, .crn = 0, .crm = 7, .opc2 = 0,
6085       .access = PL2_RW, .accessfn = access_tda,
6086       .type = ARM_CP_NOP },
6087     /* Dummy MDCCINT_EL1, since we don't implement the Debug Communications
6088      * Channel but Linux may try to access this register. The 32-bit
6089      * alias is DBGDCCINT.
6090      */
6091     { .name = "MDCCINT_EL1", .state = ARM_CP_STATE_BOTH,
6092       .cp = 14, .opc0 = 2, .opc1 = 0, .crn = 0, .crm = 2, .opc2 = 0,
6093       .access = PL1_RW, .accessfn = access_tda,
6094       .type = ARM_CP_NOP },
6095     REGINFO_SENTINEL
6096 };
6097 
6098 static const ARMCPRegInfo debug_lpae_cp_reginfo[] = {
6099     /* 64 bit access versions of the (dummy) debug registers */
6100     { .name = "DBGDRAR", .cp = 14, .crm = 1, .opc1 = 0,
6101       .access = PL0_R, .type = ARM_CP_CONST|ARM_CP_64BIT, .resetvalue = 0 },
6102     { .name = "DBGDSAR", .cp = 14, .crm = 2, .opc1 = 0,
6103       .access = PL0_R, .type = ARM_CP_CONST|ARM_CP_64BIT, .resetvalue = 0 },
6104     REGINFO_SENTINEL
6105 };
6106 
6107 /* Return the exception level to which exceptions should be taken
6108  * via SVEAccessTrap.  If an exception should be routed through
6109  * AArch64.AdvSIMDFPAccessTrap, return 0; fp_exception_el should
6110  * take care of raising that exception.
6111  * C.f. the ARM pseudocode function CheckSVEEnabled.
6112  */
6113 int sve_exception_el(CPUARMState *env, int el)
6114 {
6115 #ifndef CONFIG_USER_ONLY
6116     uint64_t hcr_el2 = arm_hcr_el2_eff(env);
6117 
6118     if (el <= 1 && (hcr_el2 & (HCR_E2H | HCR_TGE)) != (HCR_E2H | HCR_TGE)) {
6119         bool disabled = false;
6120 
6121         /* The CPACR.ZEN controls traps to EL1:
6122          * 0, 2 : trap EL0 and EL1 accesses
6123          * 1    : trap only EL0 accesses
6124          * 3    : trap no accesses
6125          */
6126         if (!extract32(env->cp15.cpacr_el1, 16, 1)) {
6127             disabled = true;
6128         } else if (!extract32(env->cp15.cpacr_el1, 17, 1)) {
6129             disabled = el == 0;
6130         }
6131         if (disabled) {
6132             /* route_to_el2 */
6133             return hcr_el2 & HCR_TGE ? 2 : 1;
6134         }
6135 
6136         /* Check CPACR.FPEN.  */
6137         if (!extract32(env->cp15.cpacr_el1, 20, 1)) {
6138             disabled = true;
6139         } else if (!extract32(env->cp15.cpacr_el1, 21, 1)) {
6140             disabled = el == 0;
6141         }
6142         if (disabled) {
6143             return 0;
6144         }
6145     }
6146 
6147     /* CPTR_EL2.  Since TZ and TFP are positive,
6148      * they will be zero when EL2 is not present.
6149      */
6150     if (el <= 2 && !arm_is_secure_below_el3(env)) {
6151         if (env->cp15.cptr_el[2] & CPTR_TZ) {
6152             return 2;
6153         }
6154         if (env->cp15.cptr_el[2] & CPTR_TFP) {
6155             return 0;
6156         }
6157     }
6158 
6159     /* CPTR_EL3.  Since EZ is negative we must check for EL3.  */
6160     if (arm_feature(env, ARM_FEATURE_EL3)
6161         && !(env->cp15.cptr_el[3] & CPTR_EZ)) {
6162         return 3;
6163     }
6164 #endif
6165     return 0;
6166 }
6167 
6168 static uint32_t sve_zcr_get_valid_len(ARMCPU *cpu, uint32_t start_len)
6169 {
6170     uint32_t end_len;
6171 
6172     end_len = start_len &= 0xf;
6173     if (!test_bit(start_len, cpu->sve_vq_map)) {
6174         end_len = find_last_bit(cpu->sve_vq_map, start_len);
6175         assert(end_len < start_len);
6176     }
6177     return end_len;
6178 }
6179 
6180 /*
6181  * Given that SVE is enabled, return the vector length for EL.
6182  */
6183 uint32_t sve_zcr_len_for_el(CPUARMState *env, int el)
6184 {
6185     ARMCPU *cpu = env_archcpu(env);
6186     uint32_t zcr_len = cpu->sve_max_vq - 1;
6187 
6188     if (el <= 1) {
6189         zcr_len = MIN(zcr_len, 0xf & (uint32_t)env->vfp.zcr_el[1]);
6190     }
6191     if (el <= 2 && arm_feature(env, ARM_FEATURE_EL2)) {
6192         zcr_len = MIN(zcr_len, 0xf & (uint32_t)env->vfp.zcr_el[2]);
6193     }
6194     if (arm_feature(env, ARM_FEATURE_EL3)) {
6195         zcr_len = MIN(zcr_len, 0xf & (uint32_t)env->vfp.zcr_el[3]);
6196     }
6197 
6198     return sve_zcr_get_valid_len(cpu, zcr_len);
6199 }
6200 
6201 static void zcr_write(CPUARMState *env, const ARMCPRegInfo *ri,
6202                       uint64_t value)
6203 {
6204     int cur_el = arm_current_el(env);
6205     int old_len = sve_zcr_len_for_el(env, cur_el);
6206     int new_len;
6207 
6208     /* Bits other than [3:0] are RAZ/WI.  */
6209     QEMU_BUILD_BUG_ON(ARM_MAX_VQ > 16);
6210     raw_write(env, ri, value & 0xf);
6211 
6212     /*
6213      * Because we arrived here, we know both FP and SVE are enabled;
6214      * otherwise we would have trapped access to the ZCR_ELn register.
6215      */
6216     new_len = sve_zcr_len_for_el(env, cur_el);
6217     if (new_len < old_len) {
6218         aarch64_sve_narrow_vq(env, new_len + 1);
6219     }
6220 }
6221 
6222 static const ARMCPRegInfo zcr_el1_reginfo = {
6223     .name = "ZCR_EL1", .state = ARM_CP_STATE_AA64,
6224     .opc0 = 3, .opc1 = 0, .crn = 1, .crm = 2, .opc2 = 0,
6225     .access = PL1_RW, .type = ARM_CP_SVE,
6226     .fieldoffset = offsetof(CPUARMState, vfp.zcr_el[1]),
6227     .writefn = zcr_write, .raw_writefn = raw_write
6228 };
6229 
6230 static const ARMCPRegInfo zcr_el2_reginfo = {
6231     .name = "ZCR_EL2", .state = ARM_CP_STATE_AA64,
6232     .opc0 = 3, .opc1 = 4, .crn = 1, .crm = 2, .opc2 = 0,
6233     .access = PL2_RW, .type = ARM_CP_SVE,
6234     .fieldoffset = offsetof(CPUARMState, vfp.zcr_el[2]),
6235     .writefn = zcr_write, .raw_writefn = raw_write
6236 };
6237 
6238 static const ARMCPRegInfo zcr_no_el2_reginfo = {
6239     .name = "ZCR_EL2", .state = ARM_CP_STATE_AA64,
6240     .opc0 = 3, .opc1 = 4, .crn = 1, .crm = 2, .opc2 = 0,
6241     .access = PL2_RW, .type = ARM_CP_SVE,
6242     .readfn = arm_cp_read_zero, .writefn = arm_cp_write_ignore
6243 };
6244 
6245 static const ARMCPRegInfo zcr_el3_reginfo = {
6246     .name = "ZCR_EL3", .state = ARM_CP_STATE_AA64,
6247     .opc0 = 3, .opc1 = 6, .crn = 1, .crm = 2, .opc2 = 0,
6248     .access = PL3_RW, .type = ARM_CP_SVE,
6249     .fieldoffset = offsetof(CPUARMState, vfp.zcr_el[3]),
6250     .writefn = zcr_write, .raw_writefn = raw_write
6251 };
6252 
6253 void hw_watchpoint_update(ARMCPU *cpu, int n)
6254 {
6255     CPUARMState *env = &cpu->env;
6256     vaddr len = 0;
6257     vaddr wvr = env->cp15.dbgwvr[n];
6258     uint64_t wcr = env->cp15.dbgwcr[n];
6259     int mask;
6260     int flags = BP_CPU | BP_STOP_BEFORE_ACCESS;
6261 
6262     if (env->cpu_watchpoint[n]) {
6263         cpu_watchpoint_remove_by_ref(CPU(cpu), env->cpu_watchpoint[n]);
6264         env->cpu_watchpoint[n] = NULL;
6265     }
6266 
6267     if (!extract64(wcr, 0, 1)) {
6268         /* E bit clear : watchpoint disabled */
6269         return;
6270     }
6271 
6272     switch (extract64(wcr, 3, 2)) {
6273     case 0:
6274         /* LSC 00 is reserved and must behave as if the wp is disabled */
6275         return;
6276     case 1:
6277         flags |= BP_MEM_READ;
6278         break;
6279     case 2:
6280         flags |= BP_MEM_WRITE;
6281         break;
6282     case 3:
6283         flags |= BP_MEM_ACCESS;
6284         break;
6285     }
6286 
6287     /* Attempts to use both MASK and BAS fields simultaneously are
6288      * CONSTRAINED UNPREDICTABLE; we opt to ignore BAS in this case,
6289      * thus generating a watchpoint for every byte in the masked region.
6290      */
6291     mask = extract64(wcr, 24, 4);
6292     if (mask == 1 || mask == 2) {
6293         /* Reserved values of MASK; we must act as if the mask value was
6294          * some non-reserved value, or as if the watchpoint were disabled.
6295          * We choose the latter.
6296          */
6297         return;
6298     } else if (mask) {
6299         /* Watchpoint covers an aligned area up to 2GB in size */
6300         len = 1ULL << mask;
6301         /* If masked bits in WVR are not zero it's CONSTRAINED UNPREDICTABLE
6302          * whether the watchpoint fires when the unmasked bits match; we opt
6303          * to generate the exceptions.
6304          */
6305         wvr &= ~(len - 1);
6306     } else {
6307         /* Watchpoint covers bytes defined by the byte address select bits */
6308         int bas = extract64(wcr, 5, 8);
6309         int basstart;
6310 
6311         if (extract64(wvr, 2, 1)) {
6312             /* Deprecated case of an only 4-aligned address. BAS[7:4] are
6313              * ignored, and BAS[3:0] define which bytes to watch.
6314              */
6315             bas &= 0xf;
6316         }
6317 
6318         if (bas == 0) {
6319             /* This must act as if the watchpoint is disabled */
6320             return;
6321         }
6322 
6323         /* The BAS bits are supposed to be programmed to indicate a contiguous
6324          * range of bytes. Otherwise it is CONSTRAINED UNPREDICTABLE whether
6325          * we fire for each byte in the word/doubleword addressed by the WVR.
6326          * We choose to ignore any non-zero bits after the first range of 1s.
6327          */
6328         basstart = ctz32(bas);
6329         len = cto32(bas >> basstart);
6330         wvr += basstart;
6331     }
6332 
6333     cpu_watchpoint_insert(CPU(cpu), wvr, len, flags,
6334                           &env->cpu_watchpoint[n]);
6335 }
6336 
6337 void hw_watchpoint_update_all(ARMCPU *cpu)
6338 {
6339     int i;
6340     CPUARMState *env = &cpu->env;
6341 
6342     /* Completely clear out existing QEMU watchpoints and our array, to
6343      * avoid possible stale entries following migration load.
6344      */
6345     cpu_watchpoint_remove_all(CPU(cpu), BP_CPU);
6346     memset(env->cpu_watchpoint, 0, sizeof(env->cpu_watchpoint));
6347 
6348     for (i = 0; i < ARRAY_SIZE(cpu->env.cpu_watchpoint); i++) {
6349         hw_watchpoint_update(cpu, i);
6350     }
6351 }
6352 
6353 static void dbgwvr_write(CPUARMState *env, const ARMCPRegInfo *ri,
6354                          uint64_t value)
6355 {
6356     ARMCPU *cpu = env_archcpu(env);
6357     int i = ri->crm;
6358 
6359     /* Bits [63:49] are hardwired to the value of bit [48]; that is, the
6360      * register reads and behaves as if values written are sign extended.
6361      * Bits [1:0] are RES0.
6362      */
6363     value = sextract64(value, 0, 49) & ~3ULL;
6364 
6365     raw_write(env, ri, value);
6366     hw_watchpoint_update(cpu, i);
6367 }
6368 
6369 static void dbgwcr_write(CPUARMState *env, const ARMCPRegInfo *ri,
6370                          uint64_t value)
6371 {
6372     ARMCPU *cpu = env_archcpu(env);
6373     int i = ri->crm;
6374 
6375     raw_write(env, ri, value);
6376     hw_watchpoint_update(cpu, i);
6377 }
6378 
6379 void hw_breakpoint_update(ARMCPU *cpu, int n)
6380 {
6381     CPUARMState *env = &cpu->env;
6382     uint64_t bvr = env->cp15.dbgbvr[n];
6383     uint64_t bcr = env->cp15.dbgbcr[n];
6384     vaddr addr;
6385     int bt;
6386     int flags = BP_CPU;
6387 
6388     if (env->cpu_breakpoint[n]) {
6389         cpu_breakpoint_remove_by_ref(CPU(cpu), env->cpu_breakpoint[n]);
6390         env->cpu_breakpoint[n] = NULL;
6391     }
6392 
6393     if (!extract64(bcr, 0, 1)) {
6394         /* E bit clear : watchpoint disabled */
6395         return;
6396     }
6397 
6398     bt = extract64(bcr, 20, 4);
6399 
6400     switch (bt) {
6401     case 4: /* unlinked address mismatch (reserved if AArch64) */
6402     case 5: /* linked address mismatch (reserved if AArch64) */
6403         qemu_log_mask(LOG_UNIMP,
6404                       "arm: address mismatch breakpoint types not implemented\n");
6405         return;
6406     case 0: /* unlinked address match */
6407     case 1: /* linked address match */
6408     {
6409         /* Bits [63:49] are hardwired to the value of bit [48]; that is,
6410          * we behave as if the register was sign extended. Bits [1:0] are
6411          * RES0. The BAS field is used to allow setting breakpoints on 16
6412          * bit wide instructions; it is CONSTRAINED UNPREDICTABLE whether
6413          * a bp will fire if the addresses covered by the bp and the addresses
6414          * covered by the insn overlap but the insn doesn't start at the
6415          * start of the bp address range. We choose to require the insn and
6416          * the bp to have the same address. The constraints on writing to
6417          * BAS enforced in dbgbcr_write mean we have only four cases:
6418          *  0b0000  => no breakpoint
6419          *  0b0011  => breakpoint on addr
6420          *  0b1100  => breakpoint on addr + 2
6421          *  0b1111  => breakpoint on addr
6422          * See also figure D2-3 in the v8 ARM ARM (DDI0487A.c).
6423          */
6424         int bas = extract64(bcr, 5, 4);
6425         addr = sextract64(bvr, 0, 49) & ~3ULL;
6426         if (bas == 0) {
6427             return;
6428         }
6429         if (bas == 0xc) {
6430             addr += 2;
6431         }
6432         break;
6433     }
6434     case 2: /* unlinked context ID match */
6435     case 8: /* unlinked VMID match (reserved if no EL2) */
6436     case 10: /* unlinked context ID and VMID match (reserved if no EL2) */
6437         qemu_log_mask(LOG_UNIMP,
6438                       "arm: unlinked context breakpoint types not implemented\n");
6439         return;
6440     case 9: /* linked VMID match (reserved if no EL2) */
6441     case 11: /* linked context ID and VMID match (reserved if no EL2) */
6442     case 3: /* linked context ID match */
6443     default:
6444         /* We must generate no events for Linked context matches (unless
6445          * they are linked to by some other bp/wp, which is handled in
6446          * updates for the linking bp/wp). We choose to also generate no events
6447          * for reserved values.
6448          */
6449         return;
6450     }
6451 
6452     cpu_breakpoint_insert(CPU(cpu), addr, flags, &env->cpu_breakpoint[n]);
6453 }
6454 
6455 void hw_breakpoint_update_all(ARMCPU *cpu)
6456 {
6457     int i;
6458     CPUARMState *env = &cpu->env;
6459 
6460     /* Completely clear out existing QEMU breakpoints and our array, to
6461      * avoid possible stale entries following migration load.
6462      */
6463     cpu_breakpoint_remove_all(CPU(cpu), BP_CPU);
6464     memset(env->cpu_breakpoint, 0, sizeof(env->cpu_breakpoint));
6465 
6466     for (i = 0; i < ARRAY_SIZE(cpu->env.cpu_breakpoint); i++) {
6467         hw_breakpoint_update(cpu, i);
6468     }
6469 }
6470 
6471 static void dbgbvr_write(CPUARMState *env, const ARMCPRegInfo *ri,
6472                          uint64_t value)
6473 {
6474     ARMCPU *cpu = env_archcpu(env);
6475     int i = ri->crm;
6476 
6477     raw_write(env, ri, value);
6478     hw_breakpoint_update(cpu, i);
6479 }
6480 
6481 static void dbgbcr_write(CPUARMState *env, const ARMCPRegInfo *ri,
6482                          uint64_t value)
6483 {
6484     ARMCPU *cpu = env_archcpu(env);
6485     int i = ri->crm;
6486 
6487     /* BAS[3] is a read-only copy of BAS[2], and BAS[1] a read-only
6488      * copy of BAS[0].
6489      */
6490     value = deposit64(value, 6, 1, extract64(value, 5, 1));
6491     value = deposit64(value, 8, 1, extract64(value, 7, 1));
6492 
6493     raw_write(env, ri, value);
6494     hw_breakpoint_update(cpu, i);
6495 }
6496 
6497 static void define_debug_regs(ARMCPU *cpu)
6498 {
6499     /* Define v7 and v8 architectural debug registers.
6500      * These are just dummy implementations for now.
6501      */
6502     int i;
6503     int wrps, brps, ctx_cmps;
6504     ARMCPRegInfo dbgdidr = {
6505         .name = "DBGDIDR", .cp = 14, .crn = 0, .crm = 0, .opc1 = 0, .opc2 = 0,
6506         .access = PL0_R, .accessfn = access_tda,
6507         .type = ARM_CP_CONST, .resetvalue = cpu->isar.dbgdidr,
6508     };
6509 
6510     /* Note that all these register fields hold "number of Xs minus 1". */
6511     brps = arm_num_brps(cpu);
6512     wrps = arm_num_wrps(cpu);
6513     ctx_cmps = arm_num_ctx_cmps(cpu);
6514 
6515     assert(ctx_cmps <= brps);
6516 
6517     define_one_arm_cp_reg(cpu, &dbgdidr);
6518     define_arm_cp_regs(cpu, debug_cp_reginfo);
6519 
6520     if (arm_feature(&cpu->env, ARM_FEATURE_LPAE)) {
6521         define_arm_cp_regs(cpu, debug_lpae_cp_reginfo);
6522     }
6523 
6524     for (i = 0; i < brps; i++) {
6525         ARMCPRegInfo dbgregs[] = {
6526             { .name = "DBGBVR", .state = ARM_CP_STATE_BOTH,
6527               .cp = 14, .opc0 = 2, .opc1 = 0, .crn = 0, .crm = i, .opc2 = 4,
6528               .access = PL1_RW, .accessfn = access_tda,
6529               .fieldoffset = offsetof(CPUARMState, cp15.dbgbvr[i]),
6530               .writefn = dbgbvr_write, .raw_writefn = raw_write
6531             },
6532             { .name = "DBGBCR", .state = ARM_CP_STATE_BOTH,
6533               .cp = 14, .opc0 = 2, .opc1 = 0, .crn = 0, .crm = i, .opc2 = 5,
6534               .access = PL1_RW, .accessfn = access_tda,
6535               .fieldoffset = offsetof(CPUARMState, cp15.dbgbcr[i]),
6536               .writefn = dbgbcr_write, .raw_writefn = raw_write
6537             },
6538             REGINFO_SENTINEL
6539         };
6540         define_arm_cp_regs(cpu, dbgregs);
6541     }
6542 
6543     for (i = 0; i < wrps; i++) {
6544         ARMCPRegInfo dbgregs[] = {
6545             { .name = "DBGWVR", .state = ARM_CP_STATE_BOTH,
6546               .cp = 14, .opc0 = 2, .opc1 = 0, .crn = 0, .crm = i, .opc2 = 6,
6547               .access = PL1_RW, .accessfn = access_tda,
6548               .fieldoffset = offsetof(CPUARMState, cp15.dbgwvr[i]),
6549               .writefn = dbgwvr_write, .raw_writefn = raw_write
6550             },
6551             { .name = "DBGWCR", .state = ARM_CP_STATE_BOTH,
6552               .cp = 14, .opc0 = 2, .opc1 = 0, .crn = 0, .crm = i, .opc2 = 7,
6553               .access = PL1_RW, .accessfn = access_tda,
6554               .fieldoffset = offsetof(CPUARMState, cp15.dbgwcr[i]),
6555               .writefn = dbgwcr_write, .raw_writefn = raw_write
6556             },
6557             REGINFO_SENTINEL
6558         };
6559         define_arm_cp_regs(cpu, dbgregs);
6560     }
6561 }
6562 
6563 static void define_pmu_regs(ARMCPU *cpu)
6564 {
6565     /*
6566      * v7 performance monitor control register: same implementor
6567      * field as main ID register, and we implement four counters in
6568      * addition to the cycle count register.
6569      */
6570     unsigned int i, pmcrn = 4;
6571     ARMCPRegInfo pmcr = {
6572         .name = "PMCR", .cp = 15, .crn = 9, .crm = 12, .opc1 = 0, .opc2 = 0,
6573         .access = PL0_RW,
6574         .type = ARM_CP_IO | ARM_CP_ALIAS,
6575         .fieldoffset = offsetoflow32(CPUARMState, cp15.c9_pmcr),
6576         .accessfn = pmreg_access, .writefn = pmcr_write,
6577         .raw_writefn = raw_write,
6578     };
6579     ARMCPRegInfo pmcr64 = {
6580         .name = "PMCR_EL0", .state = ARM_CP_STATE_AA64,
6581         .opc0 = 3, .opc1 = 3, .crn = 9, .crm = 12, .opc2 = 0,
6582         .access = PL0_RW, .accessfn = pmreg_access,
6583         .type = ARM_CP_IO,
6584         .fieldoffset = offsetof(CPUARMState, cp15.c9_pmcr),
6585         .resetvalue = (cpu->midr & 0xff000000) | (pmcrn << PMCRN_SHIFT) |
6586                       PMCRLC,
6587         .writefn = pmcr_write, .raw_writefn = raw_write,
6588     };
6589     define_one_arm_cp_reg(cpu, &pmcr);
6590     define_one_arm_cp_reg(cpu, &pmcr64);
6591     for (i = 0; i < pmcrn; i++) {
6592         char *pmevcntr_name = g_strdup_printf("PMEVCNTR%d", i);
6593         char *pmevcntr_el0_name = g_strdup_printf("PMEVCNTR%d_EL0", i);
6594         char *pmevtyper_name = g_strdup_printf("PMEVTYPER%d", i);
6595         char *pmevtyper_el0_name = g_strdup_printf("PMEVTYPER%d_EL0", i);
6596         ARMCPRegInfo pmev_regs[] = {
6597             { .name = pmevcntr_name, .cp = 15, .crn = 14,
6598               .crm = 8 | (3 & (i >> 3)), .opc1 = 0, .opc2 = i & 7,
6599               .access = PL0_RW, .type = ARM_CP_IO | ARM_CP_ALIAS,
6600               .readfn = pmevcntr_readfn, .writefn = pmevcntr_writefn,
6601               .accessfn = pmreg_access },
6602             { .name = pmevcntr_el0_name, .state = ARM_CP_STATE_AA64,
6603               .opc0 = 3, .opc1 = 3, .crn = 14, .crm = 8 | (3 & (i >> 3)),
6604               .opc2 = i & 7, .access = PL0_RW, .accessfn = pmreg_access,
6605               .type = ARM_CP_IO,
6606               .readfn = pmevcntr_readfn, .writefn = pmevcntr_writefn,
6607               .raw_readfn = pmevcntr_rawread,
6608               .raw_writefn = pmevcntr_rawwrite },
6609             { .name = pmevtyper_name, .cp = 15, .crn = 14,
6610               .crm = 12 | (3 & (i >> 3)), .opc1 = 0, .opc2 = i & 7,
6611               .access = PL0_RW, .type = ARM_CP_IO | ARM_CP_ALIAS,
6612               .readfn = pmevtyper_readfn, .writefn = pmevtyper_writefn,
6613               .accessfn = pmreg_access },
6614             { .name = pmevtyper_el0_name, .state = ARM_CP_STATE_AA64,
6615               .opc0 = 3, .opc1 = 3, .crn = 14, .crm = 12 | (3 & (i >> 3)),
6616               .opc2 = i & 7, .access = PL0_RW, .accessfn = pmreg_access,
6617               .type = ARM_CP_IO,
6618               .readfn = pmevtyper_readfn, .writefn = pmevtyper_writefn,
6619               .raw_writefn = pmevtyper_rawwrite },
6620             REGINFO_SENTINEL
6621         };
6622         define_arm_cp_regs(cpu, pmev_regs);
6623         g_free(pmevcntr_name);
6624         g_free(pmevcntr_el0_name);
6625         g_free(pmevtyper_name);
6626         g_free(pmevtyper_el0_name);
6627     }
6628     if (cpu_isar_feature(aa32_pmu_8_1, cpu)) {
6629         ARMCPRegInfo v81_pmu_regs[] = {
6630             { .name = "PMCEID2", .state = ARM_CP_STATE_AA32,
6631               .cp = 15, .opc1 = 0, .crn = 9, .crm = 14, .opc2 = 4,
6632               .access = PL0_R, .accessfn = pmreg_access, .type = ARM_CP_CONST,
6633               .resetvalue = extract64(cpu->pmceid0, 32, 32) },
6634             { .name = "PMCEID3", .state = ARM_CP_STATE_AA32,
6635               .cp = 15, .opc1 = 0, .crn = 9, .crm = 14, .opc2 = 5,
6636               .access = PL0_R, .accessfn = pmreg_access, .type = ARM_CP_CONST,
6637               .resetvalue = extract64(cpu->pmceid1, 32, 32) },
6638             REGINFO_SENTINEL
6639         };
6640         define_arm_cp_regs(cpu, v81_pmu_regs);
6641     }
6642     if (cpu_isar_feature(any_pmu_8_4, cpu)) {
6643         static const ARMCPRegInfo v84_pmmir = {
6644             .name = "PMMIR_EL1", .state = ARM_CP_STATE_BOTH,
6645             .opc0 = 3, .opc1 = 0, .crn = 9, .crm = 14, .opc2 = 6,
6646             .access = PL1_R, .accessfn = pmreg_access, .type = ARM_CP_CONST,
6647             .resetvalue = 0
6648         };
6649         define_one_arm_cp_reg(cpu, &v84_pmmir);
6650     }
6651 }
6652 
6653 /* We don't know until after realize whether there's a GICv3
6654  * attached, and that is what registers the gicv3 sysregs.
6655  * So we have to fill in the GIC fields in ID_PFR/ID_PFR1_EL1/ID_AA64PFR0_EL1
6656  * at runtime.
6657  */
6658 static uint64_t id_pfr1_read(CPUARMState *env, const ARMCPRegInfo *ri)
6659 {
6660     ARMCPU *cpu = env_archcpu(env);
6661     uint64_t pfr1 = cpu->isar.id_pfr1;
6662 
6663     if (env->gicv3state) {
6664         pfr1 |= 1 << 28;
6665     }
6666     return pfr1;
6667 }
6668 
6669 #ifndef CONFIG_USER_ONLY
6670 static uint64_t id_aa64pfr0_read(CPUARMState *env, const ARMCPRegInfo *ri)
6671 {
6672     ARMCPU *cpu = env_archcpu(env);
6673     uint64_t pfr0 = cpu->isar.id_aa64pfr0;
6674 
6675     if (env->gicv3state) {
6676         pfr0 |= 1 << 24;
6677     }
6678     return pfr0;
6679 }
6680 #endif
6681 
6682 /* Shared logic between LORID and the rest of the LOR* registers.
6683  * Secure state exclusion has already been dealt with.
6684  */
6685 static CPAccessResult access_lor_ns(CPUARMState *env,
6686                                     const ARMCPRegInfo *ri, bool isread)
6687 {
6688     int el = arm_current_el(env);
6689 
6690     if (el < 2 && (arm_hcr_el2_eff(env) & HCR_TLOR)) {
6691         return CP_ACCESS_TRAP_EL2;
6692     }
6693     if (el < 3 && (env->cp15.scr_el3 & SCR_TLOR)) {
6694         return CP_ACCESS_TRAP_EL3;
6695     }
6696     return CP_ACCESS_OK;
6697 }
6698 
6699 static CPAccessResult access_lor_other(CPUARMState *env,
6700                                        const ARMCPRegInfo *ri, bool isread)
6701 {
6702     if (arm_is_secure_below_el3(env)) {
6703         /* Access denied in secure mode.  */
6704         return CP_ACCESS_TRAP;
6705     }
6706     return access_lor_ns(env, ri, isread);
6707 }
6708 
6709 /*
6710  * A trivial implementation of ARMv8.1-LOR leaves all of these
6711  * registers fixed at 0, which indicates that there are zero
6712  * supported Limited Ordering regions.
6713  */
6714 static const ARMCPRegInfo lor_reginfo[] = {
6715     { .name = "LORSA_EL1", .state = ARM_CP_STATE_AA64,
6716       .opc0 = 3, .opc1 = 0, .crn = 10, .crm = 4, .opc2 = 0,
6717       .access = PL1_RW, .accessfn = access_lor_other,
6718       .type = ARM_CP_CONST, .resetvalue = 0 },
6719     { .name = "LOREA_EL1", .state = ARM_CP_STATE_AA64,
6720       .opc0 = 3, .opc1 = 0, .crn = 10, .crm = 4, .opc2 = 1,
6721       .access = PL1_RW, .accessfn = access_lor_other,
6722       .type = ARM_CP_CONST, .resetvalue = 0 },
6723     { .name = "LORN_EL1", .state = ARM_CP_STATE_AA64,
6724       .opc0 = 3, .opc1 = 0, .crn = 10, .crm = 4, .opc2 = 2,
6725       .access = PL1_RW, .accessfn = access_lor_other,
6726       .type = ARM_CP_CONST, .resetvalue = 0 },
6727     { .name = "LORC_EL1", .state = ARM_CP_STATE_AA64,
6728       .opc0 = 3, .opc1 = 0, .crn = 10, .crm = 4, .opc2 = 3,
6729       .access = PL1_RW, .accessfn = access_lor_other,
6730       .type = ARM_CP_CONST, .resetvalue = 0 },
6731     { .name = "LORID_EL1", .state = ARM_CP_STATE_AA64,
6732       .opc0 = 3, .opc1 = 0, .crn = 10, .crm = 4, .opc2 = 7,
6733       .access = PL1_R, .accessfn = access_lor_ns,
6734       .type = ARM_CP_CONST, .resetvalue = 0 },
6735     REGINFO_SENTINEL
6736 };
6737 
6738 #ifdef TARGET_AARCH64
6739 static CPAccessResult access_pauth(CPUARMState *env, const ARMCPRegInfo *ri,
6740                                    bool isread)
6741 {
6742     int el = arm_current_el(env);
6743 
6744     if (el < 2 &&
6745         arm_feature(env, ARM_FEATURE_EL2) &&
6746         !(arm_hcr_el2_eff(env) & HCR_APK)) {
6747         return CP_ACCESS_TRAP_EL2;
6748     }
6749     if (el < 3 &&
6750         arm_feature(env, ARM_FEATURE_EL3) &&
6751         !(env->cp15.scr_el3 & SCR_APK)) {
6752         return CP_ACCESS_TRAP_EL3;
6753     }
6754     return CP_ACCESS_OK;
6755 }
6756 
6757 static const ARMCPRegInfo pauth_reginfo[] = {
6758     { .name = "APDAKEYLO_EL1", .state = ARM_CP_STATE_AA64,
6759       .opc0 = 3, .opc1 = 0, .crn = 2, .crm = 2, .opc2 = 0,
6760       .access = PL1_RW, .accessfn = access_pauth,
6761       .fieldoffset = offsetof(CPUARMState, keys.apda.lo) },
6762     { .name = "APDAKEYHI_EL1", .state = ARM_CP_STATE_AA64,
6763       .opc0 = 3, .opc1 = 0, .crn = 2, .crm = 2, .opc2 = 1,
6764       .access = PL1_RW, .accessfn = access_pauth,
6765       .fieldoffset = offsetof(CPUARMState, keys.apda.hi) },
6766     { .name = "APDBKEYLO_EL1", .state = ARM_CP_STATE_AA64,
6767       .opc0 = 3, .opc1 = 0, .crn = 2, .crm = 2, .opc2 = 2,
6768       .access = PL1_RW, .accessfn = access_pauth,
6769       .fieldoffset = offsetof(CPUARMState, keys.apdb.lo) },
6770     { .name = "APDBKEYHI_EL1", .state = ARM_CP_STATE_AA64,
6771       .opc0 = 3, .opc1 = 0, .crn = 2, .crm = 2, .opc2 = 3,
6772       .access = PL1_RW, .accessfn = access_pauth,
6773       .fieldoffset = offsetof(CPUARMState, keys.apdb.hi) },
6774     { .name = "APGAKEYLO_EL1", .state = ARM_CP_STATE_AA64,
6775       .opc0 = 3, .opc1 = 0, .crn = 2, .crm = 3, .opc2 = 0,
6776       .access = PL1_RW, .accessfn = access_pauth,
6777       .fieldoffset = offsetof(CPUARMState, keys.apga.lo) },
6778     { .name = "APGAKEYHI_EL1", .state = ARM_CP_STATE_AA64,
6779       .opc0 = 3, .opc1 = 0, .crn = 2, .crm = 3, .opc2 = 1,
6780       .access = PL1_RW, .accessfn = access_pauth,
6781       .fieldoffset = offsetof(CPUARMState, keys.apga.hi) },
6782     { .name = "APIAKEYLO_EL1", .state = ARM_CP_STATE_AA64,
6783       .opc0 = 3, .opc1 = 0, .crn = 2, .crm = 1, .opc2 = 0,
6784       .access = PL1_RW, .accessfn = access_pauth,
6785       .fieldoffset = offsetof(CPUARMState, keys.apia.lo) },
6786     { .name = "APIAKEYHI_EL1", .state = ARM_CP_STATE_AA64,
6787       .opc0 = 3, .opc1 = 0, .crn = 2, .crm = 1, .opc2 = 1,
6788       .access = PL1_RW, .accessfn = access_pauth,
6789       .fieldoffset = offsetof(CPUARMState, keys.apia.hi) },
6790     { .name = "APIBKEYLO_EL1", .state = ARM_CP_STATE_AA64,
6791       .opc0 = 3, .opc1 = 0, .crn = 2, .crm = 1, .opc2 = 2,
6792       .access = PL1_RW, .accessfn = access_pauth,
6793       .fieldoffset = offsetof(CPUARMState, keys.apib.lo) },
6794     { .name = "APIBKEYHI_EL1", .state = ARM_CP_STATE_AA64,
6795       .opc0 = 3, .opc1 = 0, .crn = 2, .crm = 1, .opc2 = 3,
6796       .access = PL1_RW, .accessfn = access_pauth,
6797       .fieldoffset = offsetof(CPUARMState, keys.apib.hi) },
6798     REGINFO_SENTINEL
6799 };
6800 
6801 static uint64_t rndr_readfn(CPUARMState *env, const ARMCPRegInfo *ri)
6802 {
6803     Error *err = NULL;
6804     uint64_t ret;
6805 
6806     /* Success sets NZCV = 0000.  */
6807     env->NF = env->CF = env->VF = 0, env->ZF = 1;
6808 
6809     if (qemu_guest_getrandom(&ret, sizeof(ret), &err) < 0) {
6810         /*
6811          * ??? Failed, for unknown reasons in the crypto subsystem.
6812          * The best we can do is log the reason and return the
6813          * timed-out indication to the guest.  There is no reason
6814          * we know to expect this failure to be transitory, so the
6815          * guest may well hang retrying the operation.
6816          */
6817         qemu_log_mask(LOG_UNIMP, "%s: Crypto failure: %s",
6818                       ri->name, error_get_pretty(err));
6819         error_free(err);
6820 
6821         env->ZF = 0; /* NZCF = 0100 */
6822         return 0;
6823     }
6824     return ret;
6825 }
6826 
6827 /* We do not support re-seeding, so the two registers operate the same.  */
6828 static const ARMCPRegInfo rndr_reginfo[] = {
6829     { .name = "RNDR", .state = ARM_CP_STATE_AA64,
6830       .type = ARM_CP_NO_RAW | ARM_CP_SUPPRESS_TB_END | ARM_CP_IO,
6831       .opc0 = 3, .opc1 = 3, .crn = 2, .crm = 4, .opc2 = 0,
6832       .access = PL0_R, .readfn = rndr_readfn },
6833     { .name = "RNDRRS", .state = ARM_CP_STATE_AA64,
6834       .type = ARM_CP_NO_RAW | ARM_CP_SUPPRESS_TB_END | ARM_CP_IO,
6835       .opc0 = 3, .opc1 = 3, .crn = 2, .crm = 4, .opc2 = 1,
6836       .access = PL0_R, .readfn = rndr_readfn },
6837     REGINFO_SENTINEL
6838 };
6839 
6840 #ifndef CONFIG_USER_ONLY
6841 static void dccvap_writefn(CPUARMState *env, const ARMCPRegInfo *opaque,
6842                           uint64_t value)
6843 {
6844     ARMCPU *cpu = env_archcpu(env);
6845     /* CTR_EL0 System register -> DminLine, bits [19:16] */
6846     uint64_t dline_size = 4 << ((cpu->ctr >> 16) & 0xF);
6847     uint64_t vaddr_in = (uint64_t) value;
6848     uint64_t vaddr = vaddr_in & ~(dline_size - 1);
6849     void *haddr;
6850     int mem_idx = cpu_mmu_index(env, false);
6851 
6852     /* This won't be crossing page boundaries */
6853     haddr = probe_read(env, vaddr, dline_size, mem_idx, GETPC());
6854     if (haddr) {
6855 
6856         ram_addr_t offset;
6857         MemoryRegion *mr;
6858 
6859         /* RCU lock is already being held */
6860         mr = memory_region_from_host(haddr, &offset);
6861 
6862         if (mr) {
6863             memory_region_writeback(mr, offset, dline_size);
6864         }
6865     }
6866 }
6867 
6868 static const ARMCPRegInfo dcpop_reg[] = {
6869     { .name = "DC_CVAP", .state = ARM_CP_STATE_AA64,
6870       .opc0 = 1, .opc1 = 3, .crn = 7, .crm = 12, .opc2 = 1,
6871       .access = PL0_W, .type = ARM_CP_NO_RAW | ARM_CP_SUPPRESS_TB_END,
6872       .accessfn = aa64_cacheop_poc_access, .writefn = dccvap_writefn },
6873     REGINFO_SENTINEL
6874 };
6875 
6876 static const ARMCPRegInfo dcpodp_reg[] = {
6877     { .name = "DC_CVADP", .state = ARM_CP_STATE_AA64,
6878       .opc0 = 1, .opc1 = 3, .crn = 7, .crm = 13, .opc2 = 1,
6879       .access = PL0_W, .type = ARM_CP_NO_RAW | ARM_CP_SUPPRESS_TB_END,
6880       .accessfn = aa64_cacheop_poc_access, .writefn = dccvap_writefn },
6881     REGINFO_SENTINEL
6882 };
6883 #endif /*CONFIG_USER_ONLY*/
6884 
6885 static CPAccessResult access_aa64_tid5(CPUARMState *env, const ARMCPRegInfo *ri,
6886                                        bool isread)
6887 {
6888     if ((arm_current_el(env) < 2) && (arm_hcr_el2_eff(env) & HCR_TID5)) {
6889         return CP_ACCESS_TRAP_EL2;
6890     }
6891 
6892     return CP_ACCESS_OK;
6893 }
6894 
6895 static CPAccessResult access_mte(CPUARMState *env, const ARMCPRegInfo *ri,
6896                                  bool isread)
6897 {
6898     int el = arm_current_el(env);
6899 
6900     if (el < 2 && arm_feature(env, ARM_FEATURE_EL2)) {
6901         uint64_t hcr = arm_hcr_el2_eff(env);
6902         if (!(hcr & HCR_ATA) && (!(hcr & HCR_E2H) || !(hcr & HCR_TGE))) {
6903             return CP_ACCESS_TRAP_EL2;
6904         }
6905     }
6906     if (el < 3 &&
6907         arm_feature(env, ARM_FEATURE_EL3) &&
6908         !(env->cp15.scr_el3 & SCR_ATA)) {
6909         return CP_ACCESS_TRAP_EL3;
6910     }
6911     return CP_ACCESS_OK;
6912 }
6913 
6914 static uint64_t tco_read(CPUARMState *env, const ARMCPRegInfo *ri)
6915 {
6916     return env->pstate & PSTATE_TCO;
6917 }
6918 
6919 static void tco_write(CPUARMState *env, const ARMCPRegInfo *ri, uint64_t val)
6920 {
6921     env->pstate = (env->pstate & ~PSTATE_TCO) | (val & PSTATE_TCO);
6922 }
6923 
6924 static const ARMCPRegInfo mte_reginfo[] = {
6925     { .name = "TFSRE0_EL1", .state = ARM_CP_STATE_AA64,
6926       .opc0 = 3, .opc1 = 0, .crn = 5, .crm = 6, .opc2 = 1,
6927       .access = PL1_RW, .accessfn = access_mte,
6928       .fieldoffset = offsetof(CPUARMState, cp15.tfsr_el[0]) },
6929     { .name = "TFSR_EL1", .state = ARM_CP_STATE_AA64,
6930       .opc0 = 3, .opc1 = 0, .crn = 5, .crm = 6, .opc2 = 0,
6931       .access = PL1_RW, .accessfn = access_mte,
6932       .fieldoffset = offsetof(CPUARMState, cp15.tfsr_el[1]) },
6933     { .name = "TFSR_EL2", .state = ARM_CP_STATE_AA64,
6934       .opc0 = 3, .opc1 = 4, .crn = 5, .crm = 6, .opc2 = 0,
6935       .access = PL2_RW, .accessfn = access_mte,
6936       .fieldoffset = offsetof(CPUARMState, cp15.tfsr_el[2]) },
6937     { .name = "TFSR_EL3", .state = ARM_CP_STATE_AA64,
6938       .opc0 = 3, .opc1 = 6, .crn = 5, .crm = 6, .opc2 = 0,
6939       .access = PL3_RW,
6940       .fieldoffset = offsetof(CPUARMState, cp15.tfsr_el[3]) },
6941     { .name = "RGSR_EL1", .state = ARM_CP_STATE_AA64,
6942       .opc0 = 3, .opc1 = 0, .crn = 1, .crm = 0, .opc2 = 5,
6943       .access = PL1_RW, .accessfn = access_mte,
6944       .fieldoffset = offsetof(CPUARMState, cp15.rgsr_el1) },
6945     { .name = "GCR_EL1", .state = ARM_CP_STATE_AA64,
6946       .opc0 = 3, .opc1 = 0, .crn = 1, .crm = 0, .opc2 = 6,
6947       .access = PL1_RW, .accessfn = access_mte,
6948       .fieldoffset = offsetof(CPUARMState, cp15.gcr_el1) },
6949     { .name = "GMID_EL1", .state = ARM_CP_STATE_AA64,
6950       .opc0 = 3, .opc1 = 1, .crn = 0, .crm = 0, .opc2 = 4,
6951       .access = PL1_R, .accessfn = access_aa64_tid5,
6952       .type = ARM_CP_CONST, .resetvalue = GMID_EL1_BS },
6953     { .name = "TCO", .state = ARM_CP_STATE_AA64,
6954       .opc0 = 3, .opc1 = 3, .crn = 4, .crm = 2, .opc2 = 7,
6955       .type = ARM_CP_NO_RAW,
6956       .access = PL0_RW, .readfn = tco_read, .writefn = tco_write },
6957     { .name = "DC_IGVAC", .state = ARM_CP_STATE_AA64,
6958       .opc0 = 1, .opc1 = 0, .crn = 7, .crm = 6, .opc2 = 3,
6959       .type = ARM_CP_NOP, .access = PL1_W,
6960       .accessfn = aa64_cacheop_poc_access },
6961     { .name = "DC_IGSW", .state = ARM_CP_STATE_AA64,
6962       .opc0 = 1, .opc1 = 0, .crn = 7, .crm = 6, .opc2 = 4,
6963       .type = ARM_CP_NOP, .access = PL1_W, .accessfn = access_tsw },
6964     { .name = "DC_IGDVAC", .state = ARM_CP_STATE_AA64,
6965       .opc0 = 1, .opc1 = 0, .crn = 7, .crm = 6, .opc2 = 5,
6966       .type = ARM_CP_NOP, .access = PL1_W,
6967       .accessfn = aa64_cacheop_poc_access },
6968     { .name = "DC_IGDSW", .state = ARM_CP_STATE_AA64,
6969       .opc0 = 1, .opc1 = 0, .crn = 7, .crm = 6, .opc2 = 6,
6970       .type = ARM_CP_NOP, .access = PL1_W, .accessfn = access_tsw },
6971     { .name = "DC_CGSW", .state = ARM_CP_STATE_AA64,
6972       .opc0 = 1, .opc1 = 0, .crn = 7, .crm = 10, .opc2 = 4,
6973       .type = ARM_CP_NOP, .access = PL1_W, .accessfn = access_tsw },
6974     { .name = "DC_CGDSW", .state = ARM_CP_STATE_AA64,
6975       .opc0 = 1, .opc1 = 0, .crn = 7, .crm = 10, .opc2 = 6,
6976       .type = ARM_CP_NOP, .access = PL1_W, .accessfn = access_tsw },
6977     { .name = "DC_CIGSW", .state = ARM_CP_STATE_AA64,
6978       .opc0 = 1, .opc1 = 0, .crn = 7, .crm = 14, .opc2 = 4,
6979       .type = ARM_CP_NOP, .access = PL1_W, .accessfn = access_tsw },
6980     { .name = "DC_CIGDSW", .state = ARM_CP_STATE_AA64,
6981       .opc0 = 1, .opc1 = 0, .crn = 7, .crm = 14, .opc2 = 6,
6982       .type = ARM_CP_NOP, .access = PL1_W, .accessfn = access_tsw },
6983     REGINFO_SENTINEL
6984 };
6985 
6986 static const ARMCPRegInfo mte_tco_ro_reginfo[] = {
6987     { .name = "TCO", .state = ARM_CP_STATE_AA64,
6988       .opc0 = 3, .opc1 = 3, .crn = 4, .crm = 2, .opc2 = 7,
6989       .type = ARM_CP_CONST, .access = PL0_RW, },
6990     REGINFO_SENTINEL
6991 };
6992 
6993 static const ARMCPRegInfo mte_el0_cacheop_reginfo[] = {
6994     { .name = "DC_CGVAC", .state = ARM_CP_STATE_AA64,
6995       .opc0 = 1, .opc1 = 3, .crn = 7, .crm = 10, .opc2 = 3,
6996       .type = ARM_CP_NOP, .access = PL0_W,
6997       .accessfn = aa64_cacheop_poc_access },
6998     { .name = "DC_CGDVAC", .state = ARM_CP_STATE_AA64,
6999       .opc0 = 1, .opc1 = 3, .crn = 7, .crm = 10, .opc2 = 5,
7000       .type = ARM_CP_NOP, .access = PL0_W,
7001       .accessfn = aa64_cacheop_poc_access },
7002     { .name = "DC_CGVAP", .state = ARM_CP_STATE_AA64,
7003       .opc0 = 1, .opc1 = 3, .crn = 7, .crm = 12, .opc2 = 3,
7004       .type = ARM_CP_NOP, .access = PL0_W,
7005       .accessfn = aa64_cacheop_poc_access },
7006     { .name = "DC_CGDVAP", .state = ARM_CP_STATE_AA64,
7007       .opc0 = 1, .opc1 = 3, .crn = 7, .crm = 12, .opc2 = 5,
7008       .type = ARM_CP_NOP, .access = PL0_W,
7009       .accessfn = aa64_cacheop_poc_access },
7010     { .name = "DC_CGVADP", .state = ARM_CP_STATE_AA64,
7011       .opc0 = 1, .opc1 = 3, .crn = 7, .crm = 13, .opc2 = 3,
7012       .type = ARM_CP_NOP, .access = PL0_W,
7013       .accessfn = aa64_cacheop_poc_access },
7014     { .name = "DC_CGDVADP", .state = ARM_CP_STATE_AA64,
7015       .opc0 = 1, .opc1 = 3, .crn = 7, .crm = 13, .opc2 = 5,
7016       .type = ARM_CP_NOP, .access = PL0_W,
7017       .accessfn = aa64_cacheop_poc_access },
7018     { .name = "DC_CIGVAC", .state = ARM_CP_STATE_AA64,
7019       .opc0 = 1, .opc1 = 3, .crn = 7, .crm = 14, .opc2 = 3,
7020       .type = ARM_CP_NOP, .access = PL0_W,
7021       .accessfn = aa64_cacheop_poc_access },
7022     { .name = "DC_CIGDVAC", .state = ARM_CP_STATE_AA64,
7023       .opc0 = 1, .opc1 = 3, .crn = 7, .crm = 14, .opc2 = 5,
7024       .type = ARM_CP_NOP, .access = PL0_W,
7025       .accessfn = aa64_cacheop_poc_access },
7026     { .name = "DC_GVA", .state = ARM_CP_STATE_AA64,
7027       .opc0 = 1, .opc1 = 3, .crn = 7, .crm = 4, .opc2 = 3,
7028       .access = PL0_W, .type = ARM_CP_DC_GVA,
7029 #ifndef CONFIG_USER_ONLY
7030       /* Avoid overhead of an access check that always passes in user-mode */
7031       .accessfn = aa64_zva_access,
7032 #endif
7033     },
7034     { .name = "DC_GZVA", .state = ARM_CP_STATE_AA64,
7035       .opc0 = 1, .opc1 = 3, .crn = 7, .crm = 4, .opc2 = 4,
7036       .access = PL0_W, .type = ARM_CP_DC_GZVA,
7037 #ifndef CONFIG_USER_ONLY
7038       /* Avoid overhead of an access check that always passes in user-mode */
7039       .accessfn = aa64_zva_access,
7040 #endif
7041     },
7042     REGINFO_SENTINEL
7043 };
7044 
7045 #endif
7046 
7047 static CPAccessResult access_predinv(CPUARMState *env, const ARMCPRegInfo *ri,
7048                                      bool isread)
7049 {
7050     int el = arm_current_el(env);
7051 
7052     if (el == 0) {
7053         uint64_t sctlr = arm_sctlr(env, el);
7054         if (!(sctlr & SCTLR_EnRCTX)) {
7055             return CP_ACCESS_TRAP;
7056         }
7057     } else if (el == 1) {
7058         uint64_t hcr = arm_hcr_el2_eff(env);
7059         if (hcr & HCR_NV) {
7060             return CP_ACCESS_TRAP_EL2;
7061         }
7062     }
7063     return CP_ACCESS_OK;
7064 }
7065 
7066 static const ARMCPRegInfo predinv_reginfo[] = {
7067     { .name = "CFP_RCTX", .state = ARM_CP_STATE_AA64,
7068       .opc0 = 1, .opc1 = 3, .crn = 7, .crm = 3, .opc2 = 4,
7069       .type = ARM_CP_NOP, .access = PL0_W, .accessfn = access_predinv },
7070     { .name = "DVP_RCTX", .state = ARM_CP_STATE_AA64,
7071       .opc0 = 1, .opc1 = 3, .crn = 7, .crm = 3, .opc2 = 5,
7072       .type = ARM_CP_NOP, .access = PL0_W, .accessfn = access_predinv },
7073     { .name = "CPP_RCTX", .state = ARM_CP_STATE_AA64,
7074       .opc0 = 1, .opc1 = 3, .crn = 7, .crm = 3, .opc2 = 7,
7075       .type = ARM_CP_NOP, .access = PL0_W, .accessfn = access_predinv },
7076     /*
7077      * Note the AArch32 opcodes have a different OPC1.
7078      */
7079     { .name = "CFPRCTX", .state = ARM_CP_STATE_AA32,
7080       .cp = 15, .opc1 = 0, .crn = 7, .crm = 3, .opc2 = 4,
7081       .type = ARM_CP_NOP, .access = PL0_W, .accessfn = access_predinv },
7082     { .name = "DVPRCTX", .state = ARM_CP_STATE_AA32,
7083       .cp = 15, .opc1 = 0, .crn = 7, .crm = 3, .opc2 = 5,
7084       .type = ARM_CP_NOP, .access = PL0_W, .accessfn = access_predinv },
7085     { .name = "CPPRCTX", .state = ARM_CP_STATE_AA32,
7086       .cp = 15, .opc1 = 0, .crn = 7, .crm = 3, .opc2 = 7,
7087       .type = ARM_CP_NOP, .access = PL0_W, .accessfn = access_predinv },
7088     REGINFO_SENTINEL
7089 };
7090 
7091 static uint64_t ccsidr2_read(CPUARMState *env, const ARMCPRegInfo *ri)
7092 {
7093     /* Read the high 32 bits of the current CCSIDR */
7094     return extract64(ccsidr_read(env, ri), 32, 32);
7095 }
7096 
7097 static const ARMCPRegInfo ccsidr2_reginfo[] = {
7098     { .name = "CCSIDR2", .state = ARM_CP_STATE_BOTH,
7099       .opc0 = 3, .opc1 = 1, .crn = 0, .crm = 0, .opc2 = 2,
7100       .access = PL1_R,
7101       .accessfn = access_aa64_tid2,
7102       .readfn = ccsidr2_read, .type = ARM_CP_NO_RAW },
7103     REGINFO_SENTINEL
7104 };
7105 
7106 static CPAccessResult access_aa64_tid3(CPUARMState *env, const ARMCPRegInfo *ri,
7107                                        bool isread)
7108 {
7109     if ((arm_current_el(env) < 2) && (arm_hcr_el2_eff(env) & HCR_TID3)) {
7110         return CP_ACCESS_TRAP_EL2;
7111     }
7112 
7113     return CP_ACCESS_OK;
7114 }
7115 
7116 static CPAccessResult access_aa32_tid3(CPUARMState *env, const ARMCPRegInfo *ri,
7117                                        bool isread)
7118 {
7119     if (arm_feature(env, ARM_FEATURE_V8)) {
7120         return access_aa64_tid3(env, ri, isread);
7121     }
7122 
7123     return CP_ACCESS_OK;
7124 }
7125 
7126 static CPAccessResult access_jazelle(CPUARMState *env, const ARMCPRegInfo *ri,
7127                                      bool isread)
7128 {
7129     if (arm_current_el(env) == 1 && (arm_hcr_el2_eff(env) & HCR_TID0)) {
7130         return CP_ACCESS_TRAP_EL2;
7131     }
7132 
7133     return CP_ACCESS_OK;
7134 }
7135 
7136 static const ARMCPRegInfo jazelle_regs[] = {
7137     { .name = "JIDR",
7138       .cp = 14, .crn = 0, .crm = 0, .opc1 = 7, .opc2 = 0,
7139       .access = PL1_R, .accessfn = access_jazelle,
7140       .type = ARM_CP_CONST, .resetvalue = 0 },
7141     { .name = "JOSCR",
7142       .cp = 14, .crn = 1, .crm = 0, .opc1 = 7, .opc2 = 0,
7143       .access = PL1_RW, .type = ARM_CP_CONST, .resetvalue = 0 },
7144     { .name = "JMCR",
7145       .cp = 14, .crn = 2, .crm = 0, .opc1 = 7, .opc2 = 0,
7146       .access = PL1_RW, .type = ARM_CP_CONST, .resetvalue = 0 },
7147     REGINFO_SENTINEL
7148 };
7149 
7150 static const ARMCPRegInfo vhe_reginfo[] = {
7151     { .name = "CONTEXTIDR_EL2", .state = ARM_CP_STATE_AA64,
7152       .opc0 = 3, .opc1 = 4, .crn = 13, .crm = 0, .opc2 = 1,
7153       .access = PL2_RW,
7154       .fieldoffset = offsetof(CPUARMState, cp15.contextidr_el[2]) },
7155     { .name = "TTBR1_EL2", .state = ARM_CP_STATE_AA64,
7156       .opc0 = 3, .opc1 = 4, .crn = 2, .crm = 0, .opc2 = 1,
7157       .access = PL2_RW, .writefn = vmsa_tcr_ttbr_el2_write,
7158       .fieldoffset = offsetof(CPUARMState, cp15.ttbr1_el[2]) },
7159 #ifndef CONFIG_USER_ONLY
7160     { .name = "CNTHV_CVAL_EL2", .state = ARM_CP_STATE_AA64,
7161       .opc0 = 3, .opc1 = 4, .crn = 14, .crm = 3, .opc2 = 2,
7162       .fieldoffset =
7163         offsetof(CPUARMState, cp15.c14_timer[GTIMER_HYPVIRT].cval),
7164       .type = ARM_CP_IO, .access = PL2_RW,
7165       .writefn = gt_hv_cval_write, .raw_writefn = raw_write },
7166     { .name = "CNTHV_TVAL_EL2", .state = ARM_CP_STATE_BOTH,
7167       .opc0 = 3, .opc1 = 4, .crn = 14, .crm = 3, .opc2 = 0,
7168       .type = ARM_CP_NO_RAW | ARM_CP_IO, .access = PL2_RW,
7169       .resetfn = gt_hv_timer_reset,
7170       .readfn = gt_hv_tval_read, .writefn = gt_hv_tval_write },
7171     { .name = "CNTHV_CTL_EL2", .state = ARM_CP_STATE_BOTH,
7172       .type = ARM_CP_IO,
7173       .opc0 = 3, .opc1 = 4, .crn = 14, .crm = 3, .opc2 = 1,
7174       .access = PL2_RW,
7175       .fieldoffset = offsetof(CPUARMState, cp15.c14_timer[GTIMER_HYPVIRT].ctl),
7176       .writefn = gt_hv_ctl_write, .raw_writefn = raw_write },
7177     { .name = "CNTP_CTL_EL02", .state = ARM_CP_STATE_AA64,
7178       .opc0 = 3, .opc1 = 5, .crn = 14, .crm = 2, .opc2 = 1,
7179       .type = ARM_CP_IO | ARM_CP_ALIAS,
7180       .access = PL2_RW, .accessfn = e2h_access,
7181       .fieldoffset = offsetof(CPUARMState, cp15.c14_timer[GTIMER_PHYS].ctl),
7182       .writefn = gt_phys_ctl_write, .raw_writefn = raw_write },
7183     { .name = "CNTV_CTL_EL02", .state = ARM_CP_STATE_AA64,
7184       .opc0 = 3, .opc1 = 5, .crn = 14, .crm = 3, .opc2 = 1,
7185       .type = ARM_CP_IO | ARM_CP_ALIAS,
7186       .access = PL2_RW, .accessfn = e2h_access,
7187       .fieldoffset = offsetof(CPUARMState, cp15.c14_timer[GTIMER_VIRT].ctl),
7188       .writefn = gt_virt_ctl_write, .raw_writefn = raw_write },
7189     { .name = "CNTP_TVAL_EL02", .state = ARM_CP_STATE_AA64,
7190       .opc0 = 3, .opc1 = 5, .crn = 14, .crm = 2, .opc2 = 0,
7191       .type = ARM_CP_NO_RAW | ARM_CP_IO | ARM_CP_ALIAS,
7192       .access = PL2_RW, .accessfn = e2h_access,
7193       .readfn = gt_phys_tval_read, .writefn = gt_phys_tval_write },
7194     { .name = "CNTV_TVAL_EL02", .state = ARM_CP_STATE_AA64,
7195       .opc0 = 3, .opc1 = 5, .crn = 14, .crm = 3, .opc2 = 0,
7196       .type = ARM_CP_NO_RAW | ARM_CP_IO | ARM_CP_ALIAS,
7197       .access = PL2_RW, .accessfn = e2h_access,
7198       .readfn = gt_virt_tval_read, .writefn = gt_virt_tval_write },
7199     { .name = "CNTP_CVAL_EL02", .state = ARM_CP_STATE_AA64,
7200       .opc0 = 3, .opc1 = 5, .crn = 14, .crm = 2, .opc2 = 2,
7201       .type = ARM_CP_IO | ARM_CP_ALIAS,
7202       .fieldoffset = offsetof(CPUARMState, cp15.c14_timer[GTIMER_PHYS].cval),
7203       .access = PL2_RW, .accessfn = e2h_access,
7204       .writefn = gt_phys_cval_write, .raw_writefn = raw_write },
7205     { .name = "CNTV_CVAL_EL02", .state = ARM_CP_STATE_AA64,
7206       .opc0 = 3, .opc1 = 5, .crn = 14, .crm = 3, .opc2 = 2,
7207       .type = ARM_CP_IO | ARM_CP_ALIAS,
7208       .fieldoffset = offsetof(CPUARMState, cp15.c14_timer[GTIMER_VIRT].cval),
7209       .access = PL2_RW, .accessfn = e2h_access,
7210       .writefn = gt_virt_cval_write, .raw_writefn = raw_write },
7211 #endif
7212     REGINFO_SENTINEL
7213 };
7214 
7215 #ifndef CONFIG_USER_ONLY
7216 static const ARMCPRegInfo ats1e1_reginfo[] = {
7217     { .name = "AT_S1E1R", .state = ARM_CP_STATE_AA64,
7218       .opc0 = 1, .opc1 = 0, .crn = 7, .crm = 9, .opc2 = 0,
7219       .access = PL1_W, .type = ARM_CP_NO_RAW | ARM_CP_RAISES_EXC,
7220       .writefn = ats_write64 },
7221     { .name = "AT_S1E1W", .state = ARM_CP_STATE_AA64,
7222       .opc0 = 1, .opc1 = 0, .crn = 7, .crm = 9, .opc2 = 1,
7223       .access = PL1_W, .type = ARM_CP_NO_RAW | ARM_CP_RAISES_EXC,
7224       .writefn = ats_write64 },
7225     REGINFO_SENTINEL
7226 };
7227 
7228 static const ARMCPRegInfo ats1cp_reginfo[] = {
7229     { .name = "ATS1CPRP",
7230       .cp = 15, .opc1 = 0, .crn = 7, .crm = 9, .opc2 = 0,
7231       .access = PL1_W, .type = ARM_CP_NO_RAW | ARM_CP_RAISES_EXC,
7232       .writefn = ats_write },
7233     { .name = "ATS1CPWP",
7234       .cp = 15, .opc1 = 0, .crn = 7, .crm = 9, .opc2 = 1,
7235       .access = PL1_W, .type = ARM_CP_NO_RAW | ARM_CP_RAISES_EXC,
7236       .writefn = ats_write },
7237     REGINFO_SENTINEL
7238 };
7239 #endif
7240 
7241 /*
7242  * ACTLR2 and HACTLR2 map to ACTLR_EL1[63:32] and
7243  * ACTLR_EL2[63:32]. They exist only if the ID_MMFR4.AC2 field
7244  * is non-zero, which is never for ARMv7, optionally in ARMv8
7245  * and mandatorily for ARMv8.2 and up.
7246  * ACTLR2 is banked for S and NS if EL3 is AArch32. Since QEMU's
7247  * implementation is RAZ/WI we can ignore this detail, as we
7248  * do for ACTLR.
7249  */
7250 static const ARMCPRegInfo actlr2_hactlr2_reginfo[] = {
7251     { .name = "ACTLR2", .state = ARM_CP_STATE_AA32,
7252       .cp = 15, .opc1 = 0, .crn = 1, .crm = 0, .opc2 = 3,
7253       .access = PL1_RW, .accessfn = access_tacr,
7254       .type = ARM_CP_CONST, .resetvalue = 0 },
7255     { .name = "HACTLR2", .state = ARM_CP_STATE_AA32,
7256       .cp = 15, .opc1 = 4, .crn = 1, .crm = 0, .opc2 = 3,
7257       .access = PL2_RW, .type = ARM_CP_CONST,
7258       .resetvalue = 0 },
7259     REGINFO_SENTINEL
7260 };
7261 
7262 void register_cp_regs_for_features(ARMCPU *cpu)
7263 {
7264     /* Register all the coprocessor registers based on feature bits */
7265     CPUARMState *env = &cpu->env;
7266     if (arm_feature(env, ARM_FEATURE_M)) {
7267         /* M profile has no coprocessor registers */
7268         return;
7269     }
7270 
7271     define_arm_cp_regs(cpu, cp_reginfo);
7272     if (!arm_feature(env, ARM_FEATURE_V8)) {
7273         /* Must go early as it is full of wildcards that may be
7274          * overridden by later definitions.
7275          */
7276         define_arm_cp_regs(cpu, not_v8_cp_reginfo);
7277     }
7278 
7279     if (arm_feature(env, ARM_FEATURE_V6)) {
7280         /* The ID registers all have impdef reset values */
7281         ARMCPRegInfo v6_idregs[] = {
7282             { .name = "ID_PFR0", .state = ARM_CP_STATE_BOTH,
7283               .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 1, .opc2 = 0,
7284               .access = PL1_R, .type = ARM_CP_CONST,
7285               .accessfn = access_aa32_tid3,
7286               .resetvalue = cpu->isar.id_pfr0 },
7287             /* ID_PFR1 is not a plain ARM_CP_CONST because we don't know
7288              * the value of the GIC field until after we define these regs.
7289              */
7290             { .name = "ID_PFR1", .state = ARM_CP_STATE_BOTH,
7291               .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 1, .opc2 = 1,
7292               .access = PL1_R, .type = ARM_CP_NO_RAW,
7293               .accessfn = access_aa32_tid3,
7294               .readfn = id_pfr1_read,
7295               .writefn = arm_cp_write_ignore },
7296             { .name = "ID_DFR0", .state = ARM_CP_STATE_BOTH,
7297               .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 1, .opc2 = 2,
7298               .access = PL1_R, .type = ARM_CP_CONST,
7299               .accessfn = access_aa32_tid3,
7300               .resetvalue = cpu->isar.id_dfr0 },
7301             { .name = "ID_AFR0", .state = ARM_CP_STATE_BOTH,
7302               .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 1, .opc2 = 3,
7303               .access = PL1_R, .type = ARM_CP_CONST,
7304               .accessfn = access_aa32_tid3,
7305               .resetvalue = cpu->id_afr0 },
7306             { .name = "ID_MMFR0", .state = ARM_CP_STATE_BOTH,
7307               .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 1, .opc2 = 4,
7308               .access = PL1_R, .type = ARM_CP_CONST,
7309               .accessfn = access_aa32_tid3,
7310               .resetvalue = cpu->isar.id_mmfr0 },
7311             { .name = "ID_MMFR1", .state = ARM_CP_STATE_BOTH,
7312               .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 1, .opc2 = 5,
7313               .access = PL1_R, .type = ARM_CP_CONST,
7314               .accessfn = access_aa32_tid3,
7315               .resetvalue = cpu->isar.id_mmfr1 },
7316             { .name = "ID_MMFR2", .state = ARM_CP_STATE_BOTH,
7317               .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 1, .opc2 = 6,
7318               .access = PL1_R, .type = ARM_CP_CONST,
7319               .accessfn = access_aa32_tid3,
7320               .resetvalue = cpu->isar.id_mmfr2 },
7321             { .name = "ID_MMFR3", .state = ARM_CP_STATE_BOTH,
7322               .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 1, .opc2 = 7,
7323               .access = PL1_R, .type = ARM_CP_CONST,
7324               .accessfn = access_aa32_tid3,
7325               .resetvalue = cpu->isar.id_mmfr3 },
7326             { .name = "ID_ISAR0", .state = ARM_CP_STATE_BOTH,
7327               .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 2, .opc2 = 0,
7328               .access = PL1_R, .type = ARM_CP_CONST,
7329               .accessfn = access_aa32_tid3,
7330               .resetvalue = cpu->isar.id_isar0 },
7331             { .name = "ID_ISAR1", .state = ARM_CP_STATE_BOTH,
7332               .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 2, .opc2 = 1,
7333               .access = PL1_R, .type = ARM_CP_CONST,
7334               .accessfn = access_aa32_tid3,
7335               .resetvalue = cpu->isar.id_isar1 },
7336             { .name = "ID_ISAR2", .state = ARM_CP_STATE_BOTH,
7337               .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 2, .opc2 = 2,
7338               .access = PL1_R, .type = ARM_CP_CONST,
7339               .accessfn = access_aa32_tid3,
7340               .resetvalue = cpu->isar.id_isar2 },
7341             { .name = "ID_ISAR3", .state = ARM_CP_STATE_BOTH,
7342               .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 2, .opc2 = 3,
7343               .access = PL1_R, .type = ARM_CP_CONST,
7344               .accessfn = access_aa32_tid3,
7345               .resetvalue = cpu->isar.id_isar3 },
7346             { .name = "ID_ISAR4", .state = ARM_CP_STATE_BOTH,
7347               .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 2, .opc2 = 4,
7348               .access = PL1_R, .type = ARM_CP_CONST,
7349               .accessfn = access_aa32_tid3,
7350               .resetvalue = cpu->isar.id_isar4 },
7351             { .name = "ID_ISAR5", .state = ARM_CP_STATE_BOTH,
7352               .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 2, .opc2 = 5,
7353               .access = PL1_R, .type = ARM_CP_CONST,
7354               .accessfn = access_aa32_tid3,
7355               .resetvalue = cpu->isar.id_isar5 },
7356             { .name = "ID_MMFR4", .state = ARM_CP_STATE_BOTH,
7357               .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 2, .opc2 = 6,
7358               .access = PL1_R, .type = ARM_CP_CONST,
7359               .accessfn = access_aa32_tid3,
7360               .resetvalue = cpu->isar.id_mmfr4 },
7361             { .name = "ID_ISAR6", .state = ARM_CP_STATE_BOTH,
7362               .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 2, .opc2 = 7,
7363               .access = PL1_R, .type = ARM_CP_CONST,
7364               .accessfn = access_aa32_tid3,
7365               .resetvalue = cpu->isar.id_isar6 },
7366             REGINFO_SENTINEL
7367         };
7368         define_arm_cp_regs(cpu, v6_idregs);
7369         define_arm_cp_regs(cpu, v6_cp_reginfo);
7370     } else {
7371         define_arm_cp_regs(cpu, not_v6_cp_reginfo);
7372     }
7373     if (arm_feature(env, ARM_FEATURE_V6K)) {
7374         define_arm_cp_regs(cpu, v6k_cp_reginfo);
7375     }
7376     if (arm_feature(env, ARM_FEATURE_V7MP) &&
7377         !arm_feature(env, ARM_FEATURE_PMSA)) {
7378         define_arm_cp_regs(cpu, v7mp_cp_reginfo);
7379     }
7380     if (arm_feature(env, ARM_FEATURE_V7VE)) {
7381         define_arm_cp_regs(cpu, pmovsset_cp_reginfo);
7382     }
7383     if (arm_feature(env, ARM_FEATURE_V7)) {
7384         ARMCPRegInfo clidr = {
7385             .name = "CLIDR", .state = ARM_CP_STATE_BOTH,
7386             .opc0 = 3, .crn = 0, .crm = 0, .opc1 = 1, .opc2 = 1,
7387             .access = PL1_R, .type = ARM_CP_CONST,
7388             .accessfn = access_aa64_tid2,
7389             .resetvalue = cpu->clidr
7390         };
7391         define_one_arm_cp_reg(cpu, &clidr);
7392         define_arm_cp_regs(cpu, v7_cp_reginfo);
7393         define_debug_regs(cpu);
7394         define_pmu_regs(cpu);
7395     } else {
7396         define_arm_cp_regs(cpu, not_v7_cp_reginfo);
7397     }
7398     if (arm_feature(env, ARM_FEATURE_V8)) {
7399         /* AArch64 ID registers, which all have impdef reset values.
7400          * Note that within the ID register ranges the unused slots
7401          * must all RAZ, not UNDEF; future architecture versions may
7402          * define new registers here.
7403          */
7404         ARMCPRegInfo v8_idregs[] = {
7405             /*
7406              * ID_AA64PFR0_EL1 is not a plain ARM_CP_CONST in system
7407              * emulation because we don't know the right value for the
7408              * GIC field until after we define these regs.
7409              */
7410             { .name = "ID_AA64PFR0_EL1", .state = ARM_CP_STATE_AA64,
7411               .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 4, .opc2 = 0,
7412               .access = PL1_R,
7413 #ifdef CONFIG_USER_ONLY
7414               .type = ARM_CP_CONST,
7415               .resetvalue = cpu->isar.id_aa64pfr0
7416 #else
7417               .type = ARM_CP_NO_RAW,
7418               .accessfn = access_aa64_tid3,
7419               .readfn = id_aa64pfr0_read,
7420               .writefn = arm_cp_write_ignore
7421 #endif
7422             },
7423             { .name = "ID_AA64PFR1_EL1", .state = ARM_CP_STATE_AA64,
7424               .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 4, .opc2 = 1,
7425               .access = PL1_R, .type = ARM_CP_CONST,
7426               .accessfn = access_aa64_tid3,
7427               .resetvalue = cpu->isar.id_aa64pfr1},
7428             { .name = "ID_AA64PFR2_EL1_RESERVED", .state = ARM_CP_STATE_AA64,
7429               .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 4, .opc2 = 2,
7430               .access = PL1_R, .type = ARM_CP_CONST,
7431               .accessfn = access_aa64_tid3,
7432               .resetvalue = 0 },
7433             { .name = "ID_AA64PFR3_EL1_RESERVED", .state = ARM_CP_STATE_AA64,
7434               .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 4, .opc2 = 3,
7435               .access = PL1_R, .type = ARM_CP_CONST,
7436               .accessfn = access_aa64_tid3,
7437               .resetvalue = 0 },
7438             { .name = "ID_AA64ZFR0_EL1", .state = ARM_CP_STATE_AA64,
7439               .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 4, .opc2 = 4,
7440               .access = PL1_R, .type = ARM_CP_CONST,
7441               .accessfn = access_aa64_tid3,
7442               /* At present, only SVEver == 0 is defined anyway.  */
7443               .resetvalue = 0 },
7444             { .name = "ID_AA64PFR5_EL1_RESERVED", .state = ARM_CP_STATE_AA64,
7445               .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 4, .opc2 = 5,
7446               .access = PL1_R, .type = ARM_CP_CONST,
7447               .accessfn = access_aa64_tid3,
7448               .resetvalue = 0 },
7449             { .name = "ID_AA64PFR6_EL1_RESERVED", .state = ARM_CP_STATE_AA64,
7450               .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 4, .opc2 = 6,
7451               .access = PL1_R, .type = ARM_CP_CONST,
7452               .accessfn = access_aa64_tid3,
7453               .resetvalue = 0 },
7454             { .name = "ID_AA64PFR7_EL1_RESERVED", .state = ARM_CP_STATE_AA64,
7455               .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 4, .opc2 = 7,
7456               .access = PL1_R, .type = ARM_CP_CONST,
7457               .accessfn = access_aa64_tid3,
7458               .resetvalue = 0 },
7459             { .name = "ID_AA64DFR0_EL1", .state = ARM_CP_STATE_AA64,
7460               .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 5, .opc2 = 0,
7461               .access = PL1_R, .type = ARM_CP_CONST,
7462               .accessfn = access_aa64_tid3,
7463               .resetvalue = cpu->isar.id_aa64dfr0 },
7464             { .name = "ID_AA64DFR1_EL1", .state = ARM_CP_STATE_AA64,
7465               .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 5, .opc2 = 1,
7466               .access = PL1_R, .type = ARM_CP_CONST,
7467               .accessfn = access_aa64_tid3,
7468               .resetvalue = cpu->isar.id_aa64dfr1 },
7469             { .name = "ID_AA64DFR2_EL1_RESERVED", .state = ARM_CP_STATE_AA64,
7470               .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 5, .opc2 = 2,
7471               .access = PL1_R, .type = ARM_CP_CONST,
7472               .accessfn = access_aa64_tid3,
7473               .resetvalue = 0 },
7474             { .name = "ID_AA64DFR3_EL1_RESERVED", .state = ARM_CP_STATE_AA64,
7475               .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 5, .opc2 = 3,
7476               .access = PL1_R, .type = ARM_CP_CONST,
7477               .accessfn = access_aa64_tid3,
7478               .resetvalue = 0 },
7479             { .name = "ID_AA64AFR0_EL1", .state = ARM_CP_STATE_AA64,
7480               .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 5, .opc2 = 4,
7481               .access = PL1_R, .type = ARM_CP_CONST,
7482               .accessfn = access_aa64_tid3,
7483               .resetvalue = cpu->id_aa64afr0 },
7484             { .name = "ID_AA64AFR1_EL1", .state = ARM_CP_STATE_AA64,
7485               .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 5, .opc2 = 5,
7486               .access = PL1_R, .type = ARM_CP_CONST,
7487               .accessfn = access_aa64_tid3,
7488               .resetvalue = cpu->id_aa64afr1 },
7489             { .name = "ID_AA64AFR2_EL1_RESERVED", .state = ARM_CP_STATE_AA64,
7490               .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 5, .opc2 = 6,
7491               .access = PL1_R, .type = ARM_CP_CONST,
7492               .accessfn = access_aa64_tid3,
7493               .resetvalue = 0 },
7494             { .name = "ID_AA64AFR3_EL1_RESERVED", .state = ARM_CP_STATE_AA64,
7495               .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 5, .opc2 = 7,
7496               .access = PL1_R, .type = ARM_CP_CONST,
7497               .accessfn = access_aa64_tid3,
7498               .resetvalue = 0 },
7499             { .name = "ID_AA64ISAR0_EL1", .state = ARM_CP_STATE_AA64,
7500               .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 6, .opc2 = 0,
7501               .access = PL1_R, .type = ARM_CP_CONST,
7502               .accessfn = access_aa64_tid3,
7503               .resetvalue = cpu->isar.id_aa64isar0 },
7504             { .name = "ID_AA64ISAR1_EL1", .state = ARM_CP_STATE_AA64,
7505               .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 6, .opc2 = 1,
7506               .access = PL1_R, .type = ARM_CP_CONST,
7507               .accessfn = access_aa64_tid3,
7508               .resetvalue = cpu->isar.id_aa64isar1 },
7509             { .name = "ID_AA64ISAR2_EL1_RESERVED", .state = ARM_CP_STATE_AA64,
7510               .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 6, .opc2 = 2,
7511               .access = PL1_R, .type = ARM_CP_CONST,
7512               .accessfn = access_aa64_tid3,
7513               .resetvalue = 0 },
7514             { .name = "ID_AA64ISAR3_EL1_RESERVED", .state = ARM_CP_STATE_AA64,
7515               .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 6, .opc2 = 3,
7516               .access = PL1_R, .type = ARM_CP_CONST,
7517               .accessfn = access_aa64_tid3,
7518               .resetvalue = 0 },
7519             { .name = "ID_AA64ISAR4_EL1_RESERVED", .state = ARM_CP_STATE_AA64,
7520               .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 6, .opc2 = 4,
7521               .access = PL1_R, .type = ARM_CP_CONST,
7522               .accessfn = access_aa64_tid3,
7523               .resetvalue = 0 },
7524             { .name = "ID_AA64ISAR5_EL1_RESERVED", .state = ARM_CP_STATE_AA64,
7525               .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 6, .opc2 = 5,
7526               .access = PL1_R, .type = ARM_CP_CONST,
7527               .accessfn = access_aa64_tid3,
7528               .resetvalue = 0 },
7529             { .name = "ID_AA64ISAR6_EL1_RESERVED", .state = ARM_CP_STATE_AA64,
7530               .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 6, .opc2 = 6,
7531               .access = PL1_R, .type = ARM_CP_CONST,
7532               .accessfn = access_aa64_tid3,
7533               .resetvalue = 0 },
7534             { .name = "ID_AA64ISAR7_EL1_RESERVED", .state = ARM_CP_STATE_AA64,
7535               .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 6, .opc2 = 7,
7536               .access = PL1_R, .type = ARM_CP_CONST,
7537               .accessfn = access_aa64_tid3,
7538               .resetvalue = 0 },
7539             { .name = "ID_AA64MMFR0_EL1", .state = ARM_CP_STATE_AA64,
7540               .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 7, .opc2 = 0,
7541               .access = PL1_R, .type = ARM_CP_CONST,
7542               .accessfn = access_aa64_tid3,
7543               .resetvalue = cpu->isar.id_aa64mmfr0 },
7544             { .name = "ID_AA64MMFR1_EL1", .state = ARM_CP_STATE_AA64,
7545               .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 7, .opc2 = 1,
7546               .access = PL1_R, .type = ARM_CP_CONST,
7547               .accessfn = access_aa64_tid3,
7548               .resetvalue = cpu->isar.id_aa64mmfr1 },
7549             { .name = "ID_AA64MMFR2_EL1", .state = ARM_CP_STATE_AA64,
7550               .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 7, .opc2 = 2,
7551               .access = PL1_R, .type = ARM_CP_CONST,
7552               .accessfn = access_aa64_tid3,
7553               .resetvalue = cpu->isar.id_aa64mmfr2 },
7554             { .name = "ID_AA64MMFR3_EL1_RESERVED", .state = ARM_CP_STATE_AA64,
7555               .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 7, .opc2 = 3,
7556               .access = PL1_R, .type = ARM_CP_CONST,
7557               .accessfn = access_aa64_tid3,
7558               .resetvalue = 0 },
7559             { .name = "ID_AA64MMFR4_EL1_RESERVED", .state = ARM_CP_STATE_AA64,
7560               .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 7, .opc2 = 4,
7561               .access = PL1_R, .type = ARM_CP_CONST,
7562               .accessfn = access_aa64_tid3,
7563               .resetvalue = 0 },
7564             { .name = "ID_AA64MMFR5_EL1_RESERVED", .state = ARM_CP_STATE_AA64,
7565               .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 7, .opc2 = 5,
7566               .access = PL1_R, .type = ARM_CP_CONST,
7567               .accessfn = access_aa64_tid3,
7568               .resetvalue = 0 },
7569             { .name = "ID_AA64MMFR6_EL1_RESERVED", .state = ARM_CP_STATE_AA64,
7570               .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 7, .opc2 = 6,
7571               .access = PL1_R, .type = ARM_CP_CONST,
7572               .accessfn = access_aa64_tid3,
7573               .resetvalue = 0 },
7574             { .name = "ID_AA64MMFR7_EL1_RESERVED", .state = ARM_CP_STATE_AA64,
7575               .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 7, .opc2 = 7,
7576               .access = PL1_R, .type = ARM_CP_CONST,
7577               .accessfn = access_aa64_tid3,
7578               .resetvalue = 0 },
7579             { .name = "MVFR0_EL1", .state = ARM_CP_STATE_AA64,
7580               .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 3, .opc2 = 0,
7581               .access = PL1_R, .type = ARM_CP_CONST,
7582               .accessfn = access_aa64_tid3,
7583               .resetvalue = cpu->isar.mvfr0 },
7584             { .name = "MVFR1_EL1", .state = ARM_CP_STATE_AA64,
7585               .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 3, .opc2 = 1,
7586               .access = PL1_R, .type = ARM_CP_CONST,
7587               .accessfn = access_aa64_tid3,
7588               .resetvalue = cpu->isar.mvfr1 },
7589             { .name = "MVFR2_EL1", .state = ARM_CP_STATE_AA64,
7590               .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 3, .opc2 = 2,
7591               .access = PL1_R, .type = ARM_CP_CONST,
7592               .accessfn = access_aa64_tid3,
7593               .resetvalue = cpu->isar.mvfr2 },
7594             { .name = "MVFR3_EL1_RESERVED", .state = ARM_CP_STATE_AA64,
7595               .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 3, .opc2 = 3,
7596               .access = PL1_R, .type = ARM_CP_CONST,
7597               .accessfn = access_aa64_tid3,
7598               .resetvalue = 0 },
7599             { .name = "MVFR4_EL1_RESERVED", .state = ARM_CP_STATE_AA64,
7600               .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 3, .opc2 = 4,
7601               .access = PL1_R, .type = ARM_CP_CONST,
7602               .accessfn = access_aa64_tid3,
7603               .resetvalue = 0 },
7604             { .name = "MVFR5_EL1_RESERVED", .state = ARM_CP_STATE_AA64,
7605               .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 3, .opc2 = 5,
7606               .access = PL1_R, .type = ARM_CP_CONST,
7607               .accessfn = access_aa64_tid3,
7608               .resetvalue = 0 },
7609             { .name = "MVFR6_EL1_RESERVED", .state = ARM_CP_STATE_AA64,
7610               .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 3, .opc2 = 6,
7611               .access = PL1_R, .type = ARM_CP_CONST,
7612               .accessfn = access_aa64_tid3,
7613               .resetvalue = 0 },
7614             { .name = "MVFR7_EL1_RESERVED", .state = ARM_CP_STATE_AA64,
7615               .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 3, .opc2 = 7,
7616               .access = PL1_R, .type = ARM_CP_CONST,
7617               .accessfn = access_aa64_tid3,
7618               .resetvalue = 0 },
7619             { .name = "PMCEID0", .state = ARM_CP_STATE_AA32,
7620               .cp = 15, .opc1 = 0, .crn = 9, .crm = 12, .opc2 = 6,
7621               .access = PL0_R, .accessfn = pmreg_access, .type = ARM_CP_CONST,
7622               .resetvalue = extract64(cpu->pmceid0, 0, 32) },
7623             { .name = "PMCEID0_EL0", .state = ARM_CP_STATE_AA64,
7624               .opc0 = 3, .opc1 = 3, .crn = 9, .crm = 12, .opc2 = 6,
7625               .access = PL0_R, .accessfn = pmreg_access, .type = ARM_CP_CONST,
7626               .resetvalue = cpu->pmceid0 },
7627             { .name = "PMCEID1", .state = ARM_CP_STATE_AA32,
7628               .cp = 15, .opc1 = 0, .crn = 9, .crm = 12, .opc2 = 7,
7629               .access = PL0_R, .accessfn = pmreg_access, .type = ARM_CP_CONST,
7630               .resetvalue = extract64(cpu->pmceid1, 0, 32) },
7631             { .name = "PMCEID1_EL0", .state = ARM_CP_STATE_AA64,
7632               .opc0 = 3, .opc1 = 3, .crn = 9, .crm = 12, .opc2 = 7,
7633               .access = PL0_R, .accessfn = pmreg_access, .type = ARM_CP_CONST,
7634               .resetvalue = cpu->pmceid1 },
7635             REGINFO_SENTINEL
7636         };
7637 #ifdef CONFIG_USER_ONLY
7638         ARMCPRegUserSpaceInfo v8_user_idregs[] = {
7639             { .name = "ID_AA64PFR0_EL1",
7640               .exported_bits = 0x000f000f00ff0000,
7641               .fixed_bits    = 0x0000000000000011 },
7642             { .name = "ID_AA64PFR1_EL1",
7643               .exported_bits = 0x00000000000000f0 },
7644             { .name = "ID_AA64PFR*_EL1_RESERVED",
7645               .is_glob = true                     },
7646             { .name = "ID_AA64ZFR0_EL1"           },
7647             { .name = "ID_AA64MMFR0_EL1",
7648               .fixed_bits    = 0x00000000ff000000 },
7649             { .name = "ID_AA64MMFR1_EL1"          },
7650             { .name = "ID_AA64MMFR*_EL1_RESERVED",
7651               .is_glob = true                     },
7652             { .name = "ID_AA64DFR0_EL1",
7653               .fixed_bits    = 0x0000000000000006 },
7654             { .name = "ID_AA64DFR1_EL1"           },
7655             { .name = "ID_AA64DFR*_EL1_RESERVED",
7656               .is_glob = true                     },
7657             { .name = "ID_AA64AFR*",
7658               .is_glob = true                     },
7659             { .name = "ID_AA64ISAR0_EL1",
7660               .exported_bits = 0x00fffffff0fffff0 },
7661             { .name = "ID_AA64ISAR1_EL1",
7662               .exported_bits = 0x000000f0ffffffff },
7663             { .name = "ID_AA64ISAR*_EL1_RESERVED",
7664               .is_glob = true                     },
7665             REGUSERINFO_SENTINEL
7666         };
7667         modify_arm_cp_regs(v8_idregs, v8_user_idregs);
7668 #endif
7669         /* RVBAR_EL1 is only implemented if EL1 is the highest EL */
7670         if (!arm_feature(env, ARM_FEATURE_EL3) &&
7671             !arm_feature(env, ARM_FEATURE_EL2)) {
7672             ARMCPRegInfo rvbar = {
7673                 .name = "RVBAR_EL1", .state = ARM_CP_STATE_AA64,
7674                 .opc0 = 3, .opc1 = 0, .crn = 12, .crm = 0, .opc2 = 1,
7675                 .type = ARM_CP_CONST, .access = PL1_R, .resetvalue = cpu->rvbar
7676             };
7677             define_one_arm_cp_reg(cpu, &rvbar);
7678         }
7679         define_arm_cp_regs(cpu, v8_idregs);
7680         define_arm_cp_regs(cpu, v8_cp_reginfo);
7681     }
7682     if (arm_feature(env, ARM_FEATURE_EL2)) {
7683         uint64_t vmpidr_def = mpidr_read_val(env);
7684         ARMCPRegInfo vpidr_regs[] = {
7685             { .name = "VPIDR", .state = ARM_CP_STATE_AA32,
7686               .cp = 15, .opc1 = 4, .crn = 0, .crm = 0, .opc2 = 0,
7687               .access = PL2_RW, .accessfn = access_el3_aa32ns,
7688               .resetvalue = cpu->midr, .type = ARM_CP_ALIAS,
7689               .fieldoffset = offsetoflow32(CPUARMState, cp15.vpidr_el2) },
7690             { .name = "VPIDR_EL2", .state = ARM_CP_STATE_AA64,
7691               .opc0 = 3, .opc1 = 4, .crn = 0, .crm = 0, .opc2 = 0,
7692               .access = PL2_RW, .resetvalue = cpu->midr,
7693               .fieldoffset = offsetof(CPUARMState, cp15.vpidr_el2) },
7694             { .name = "VMPIDR", .state = ARM_CP_STATE_AA32,
7695               .cp = 15, .opc1 = 4, .crn = 0, .crm = 0, .opc2 = 5,
7696               .access = PL2_RW, .accessfn = access_el3_aa32ns,
7697               .resetvalue = vmpidr_def, .type = ARM_CP_ALIAS,
7698               .fieldoffset = offsetoflow32(CPUARMState, cp15.vmpidr_el2) },
7699             { .name = "VMPIDR_EL2", .state = ARM_CP_STATE_AA64,
7700               .opc0 = 3, .opc1 = 4, .crn = 0, .crm = 0, .opc2 = 5,
7701               .access = PL2_RW,
7702               .resetvalue = vmpidr_def,
7703               .fieldoffset = offsetof(CPUARMState, cp15.vmpidr_el2) },
7704             REGINFO_SENTINEL
7705         };
7706         define_arm_cp_regs(cpu, vpidr_regs);
7707         define_arm_cp_regs(cpu, el2_cp_reginfo);
7708         if (arm_feature(env, ARM_FEATURE_V8)) {
7709             define_arm_cp_regs(cpu, el2_v8_cp_reginfo);
7710         }
7711         /* RVBAR_EL2 is only implemented if EL2 is the highest EL */
7712         if (!arm_feature(env, ARM_FEATURE_EL3)) {
7713             ARMCPRegInfo rvbar = {
7714                 .name = "RVBAR_EL2", .state = ARM_CP_STATE_AA64,
7715                 .opc0 = 3, .opc1 = 4, .crn = 12, .crm = 0, .opc2 = 1,
7716                 .type = ARM_CP_CONST, .access = PL2_R, .resetvalue = cpu->rvbar
7717             };
7718             define_one_arm_cp_reg(cpu, &rvbar);
7719         }
7720     } else {
7721         /* If EL2 is missing but higher ELs are enabled, we need to
7722          * register the no_el2 reginfos.
7723          */
7724         if (arm_feature(env, ARM_FEATURE_EL3)) {
7725             /* When EL3 exists but not EL2, VPIDR and VMPIDR take the value
7726              * of MIDR_EL1 and MPIDR_EL1.
7727              */
7728             ARMCPRegInfo vpidr_regs[] = {
7729                 { .name = "VPIDR_EL2", .state = ARM_CP_STATE_BOTH,
7730                   .opc0 = 3, .opc1 = 4, .crn = 0, .crm = 0, .opc2 = 0,
7731                   .access = PL2_RW, .accessfn = access_el3_aa32ns,
7732                   .type = ARM_CP_CONST, .resetvalue = cpu->midr,
7733                   .fieldoffset = offsetof(CPUARMState, cp15.vpidr_el2) },
7734                 { .name = "VMPIDR_EL2", .state = ARM_CP_STATE_BOTH,
7735                   .opc0 = 3, .opc1 = 4, .crn = 0, .crm = 0, .opc2 = 5,
7736                   .access = PL2_RW, .accessfn = access_el3_aa32ns,
7737                   .type = ARM_CP_NO_RAW,
7738                   .writefn = arm_cp_write_ignore, .readfn = mpidr_read },
7739                 REGINFO_SENTINEL
7740             };
7741             define_arm_cp_regs(cpu, vpidr_regs);
7742             define_arm_cp_regs(cpu, el3_no_el2_cp_reginfo);
7743             if (arm_feature(env, ARM_FEATURE_V8)) {
7744                 define_arm_cp_regs(cpu, el3_no_el2_v8_cp_reginfo);
7745             }
7746         }
7747     }
7748     if (arm_feature(env, ARM_FEATURE_EL3)) {
7749         define_arm_cp_regs(cpu, el3_cp_reginfo);
7750         ARMCPRegInfo el3_regs[] = {
7751             { .name = "RVBAR_EL3", .state = ARM_CP_STATE_AA64,
7752               .opc0 = 3, .opc1 = 6, .crn = 12, .crm = 0, .opc2 = 1,
7753               .type = ARM_CP_CONST, .access = PL3_R, .resetvalue = cpu->rvbar },
7754             { .name = "SCTLR_EL3", .state = ARM_CP_STATE_AA64,
7755               .opc0 = 3, .opc1 = 6, .crn = 1, .crm = 0, .opc2 = 0,
7756               .access = PL3_RW,
7757               .raw_writefn = raw_write, .writefn = sctlr_write,
7758               .fieldoffset = offsetof(CPUARMState, cp15.sctlr_el[3]),
7759               .resetvalue = cpu->reset_sctlr },
7760             REGINFO_SENTINEL
7761         };
7762 
7763         define_arm_cp_regs(cpu, el3_regs);
7764     }
7765     /* The behaviour of NSACR is sufficiently various that we don't
7766      * try to describe it in a single reginfo:
7767      *  if EL3 is 64 bit, then trap to EL3 from S EL1,
7768      *     reads as constant 0xc00 from NS EL1 and NS EL2
7769      *  if EL3 is 32 bit, then RW at EL3, RO at NS EL1 and NS EL2
7770      *  if v7 without EL3, register doesn't exist
7771      *  if v8 without EL3, reads as constant 0xc00 from NS EL1 and NS EL2
7772      */
7773     if (arm_feature(env, ARM_FEATURE_EL3)) {
7774         if (arm_feature(env, ARM_FEATURE_AARCH64)) {
7775             ARMCPRegInfo nsacr = {
7776                 .name = "NSACR", .type = ARM_CP_CONST,
7777                 .cp = 15, .opc1 = 0, .crn = 1, .crm = 1, .opc2 = 2,
7778                 .access = PL1_RW, .accessfn = nsacr_access,
7779                 .resetvalue = 0xc00
7780             };
7781             define_one_arm_cp_reg(cpu, &nsacr);
7782         } else {
7783             ARMCPRegInfo nsacr = {
7784                 .name = "NSACR",
7785                 .cp = 15, .opc1 = 0, .crn = 1, .crm = 1, .opc2 = 2,
7786                 .access = PL3_RW | PL1_R,
7787                 .resetvalue = 0,
7788                 .fieldoffset = offsetof(CPUARMState, cp15.nsacr)
7789             };
7790             define_one_arm_cp_reg(cpu, &nsacr);
7791         }
7792     } else {
7793         if (arm_feature(env, ARM_FEATURE_V8)) {
7794             ARMCPRegInfo nsacr = {
7795                 .name = "NSACR", .type = ARM_CP_CONST,
7796                 .cp = 15, .opc1 = 0, .crn = 1, .crm = 1, .opc2 = 2,
7797                 .access = PL1_R,
7798                 .resetvalue = 0xc00
7799             };
7800             define_one_arm_cp_reg(cpu, &nsacr);
7801         }
7802     }
7803 
7804     if (arm_feature(env, ARM_FEATURE_PMSA)) {
7805         if (arm_feature(env, ARM_FEATURE_V6)) {
7806             /* PMSAv6 not implemented */
7807             assert(arm_feature(env, ARM_FEATURE_V7));
7808             define_arm_cp_regs(cpu, vmsa_pmsa_cp_reginfo);
7809             define_arm_cp_regs(cpu, pmsav7_cp_reginfo);
7810         } else {
7811             define_arm_cp_regs(cpu, pmsav5_cp_reginfo);
7812         }
7813     } else {
7814         define_arm_cp_regs(cpu, vmsa_pmsa_cp_reginfo);
7815         define_arm_cp_regs(cpu, vmsa_cp_reginfo);
7816         /* TTCBR2 is introduced with ARMv8.2-AA32HPD.  */
7817         if (cpu_isar_feature(aa32_hpd, cpu)) {
7818             define_one_arm_cp_reg(cpu, &ttbcr2_reginfo);
7819         }
7820     }
7821     if (arm_feature(env, ARM_FEATURE_THUMB2EE)) {
7822         define_arm_cp_regs(cpu, t2ee_cp_reginfo);
7823     }
7824     if (arm_feature(env, ARM_FEATURE_GENERIC_TIMER)) {
7825         define_arm_cp_regs(cpu, generic_timer_cp_reginfo);
7826     }
7827     if (arm_feature(env, ARM_FEATURE_VAPA)) {
7828         define_arm_cp_regs(cpu, vapa_cp_reginfo);
7829     }
7830     if (arm_feature(env, ARM_FEATURE_CACHE_TEST_CLEAN)) {
7831         define_arm_cp_regs(cpu, cache_test_clean_cp_reginfo);
7832     }
7833     if (arm_feature(env, ARM_FEATURE_CACHE_DIRTY_REG)) {
7834         define_arm_cp_regs(cpu, cache_dirty_status_cp_reginfo);
7835     }
7836     if (arm_feature(env, ARM_FEATURE_CACHE_BLOCK_OPS)) {
7837         define_arm_cp_regs(cpu, cache_block_ops_cp_reginfo);
7838     }
7839     if (arm_feature(env, ARM_FEATURE_OMAPCP)) {
7840         define_arm_cp_regs(cpu, omap_cp_reginfo);
7841     }
7842     if (arm_feature(env, ARM_FEATURE_STRONGARM)) {
7843         define_arm_cp_regs(cpu, strongarm_cp_reginfo);
7844     }
7845     if (arm_feature(env, ARM_FEATURE_XSCALE)) {
7846         define_arm_cp_regs(cpu, xscale_cp_reginfo);
7847     }
7848     if (arm_feature(env, ARM_FEATURE_DUMMY_C15_REGS)) {
7849         define_arm_cp_regs(cpu, dummy_c15_cp_reginfo);
7850     }
7851     if (arm_feature(env, ARM_FEATURE_LPAE)) {
7852         define_arm_cp_regs(cpu, lpae_cp_reginfo);
7853     }
7854     if (cpu_isar_feature(aa32_jazelle, cpu)) {
7855         define_arm_cp_regs(cpu, jazelle_regs);
7856     }
7857     /* Slightly awkwardly, the OMAP and StrongARM cores need all of
7858      * cp15 crn=0 to be writes-ignored, whereas for other cores they should
7859      * be read-only (ie write causes UNDEF exception).
7860      */
7861     {
7862         ARMCPRegInfo id_pre_v8_midr_cp_reginfo[] = {
7863             /* Pre-v8 MIDR space.
7864              * Note that the MIDR isn't a simple constant register because
7865              * of the TI925 behaviour where writes to another register can
7866              * cause the MIDR value to change.
7867              *
7868              * Unimplemented registers in the c15 0 0 0 space default to
7869              * MIDR. Define MIDR first as this entire space, then CTR, TCMTR
7870              * and friends override accordingly.
7871              */
7872             { .name = "MIDR",
7873               .cp = 15, .crn = 0, .crm = 0, .opc1 = 0, .opc2 = CP_ANY,
7874               .access = PL1_R, .resetvalue = cpu->midr,
7875               .writefn = arm_cp_write_ignore, .raw_writefn = raw_write,
7876               .readfn = midr_read,
7877               .fieldoffset = offsetof(CPUARMState, cp15.c0_cpuid),
7878               .type = ARM_CP_OVERRIDE },
7879             /* crn = 0 op1 = 0 crm = 3..7 : currently unassigned; we RAZ. */
7880             { .name = "DUMMY",
7881               .cp = 15, .crn = 0, .crm = 3, .opc1 = 0, .opc2 = CP_ANY,
7882               .access = PL1_R, .type = ARM_CP_CONST, .resetvalue = 0 },
7883             { .name = "DUMMY",
7884               .cp = 15, .crn = 0, .crm = 4, .opc1 = 0, .opc2 = CP_ANY,
7885               .access = PL1_R, .type = ARM_CP_CONST, .resetvalue = 0 },
7886             { .name = "DUMMY",
7887               .cp = 15, .crn = 0, .crm = 5, .opc1 = 0, .opc2 = CP_ANY,
7888               .access = PL1_R, .type = ARM_CP_CONST, .resetvalue = 0 },
7889             { .name = "DUMMY",
7890               .cp = 15, .crn = 0, .crm = 6, .opc1 = 0, .opc2 = CP_ANY,
7891               .access = PL1_R, .type = ARM_CP_CONST, .resetvalue = 0 },
7892             { .name = "DUMMY",
7893               .cp = 15, .crn = 0, .crm = 7, .opc1 = 0, .opc2 = CP_ANY,
7894               .access = PL1_R, .type = ARM_CP_CONST, .resetvalue = 0 },
7895             REGINFO_SENTINEL
7896         };
7897         ARMCPRegInfo id_v8_midr_cp_reginfo[] = {
7898             { .name = "MIDR_EL1", .state = ARM_CP_STATE_BOTH,
7899               .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 0, .opc2 = 0,
7900               .access = PL1_R, .type = ARM_CP_NO_RAW, .resetvalue = cpu->midr,
7901               .fieldoffset = offsetof(CPUARMState, cp15.c0_cpuid),
7902               .readfn = midr_read },
7903             /* crn = 0 op1 = 0 crm = 0 op2 = 4,7 : AArch32 aliases of MIDR */
7904             { .name = "MIDR", .type = ARM_CP_ALIAS | ARM_CP_CONST,
7905               .cp = 15, .crn = 0, .crm = 0, .opc1 = 0, .opc2 = 4,
7906               .access = PL1_R, .resetvalue = cpu->midr },
7907             { .name = "MIDR", .type = ARM_CP_ALIAS | ARM_CP_CONST,
7908               .cp = 15, .crn = 0, .crm = 0, .opc1 = 0, .opc2 = 7,
7909               .access = PL1_R, .resetvalue = cpu->midr },
7910             { .name = "REVIDR_EL1", .state = ARM_CP_STATE_BOTH,
7911               .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 0, .opc2 = 6,
7912               .access = PL1_R,
7913               .accessfn = access_aa64_tid1,
7914               .type = ARM_CP_CONST, .resetvalue = cpu->revidr },
7915             REGINFO_SENTINEL
7916         };
7917         ARMCPRegInfo id_cp_reginfo[] = {
7918             /* These are common to v8 and pre-v8 */
7919             { .name = "CTR",
7920               .cp = 15, .crn = 0, .crm = 0, .opc1 = 0, .opc2 = 1,
7921               .access = PL1_R, .accessfn = ctr_el0_access,
7922               .type = ARM_CP_CONST, .resetvalue = cpu->ctr },
7923             { .name = "CTR_EL0", .state = ARM_CP_STATE_AA64,
7924               .opc0 = 3, .opc1 = 3, .opc2 = 1, .crn = 0, .crm = 0,
7925               .access = PL0_R, .accessfn = ctr_el0_access,
7926               .type = ARM_CP_CONST, .resetvalue = cpu->ctr },
7927             /* TCMTR and TLBTR exist in v8 but have no 64-bit versions */
7928             { .name = "TCMTR",
7929               .cp = 15, .crn = 0, .crm = 0, .opc1 = 0, .opc2 = 2,
7930               .access = PL1_R,
7931               .accessfn = access_aa32_tid1,
7932               .type = ARM_CP_CONST, .resetvalue = 0 },
7933             REGINFO_SENTINEL
7934         };
7935         /* TLBTR is specific to VMSA */
7936         ARMCPRegInfo id_tlbtr_reginfo = {
7937               .name = "TLBTR",
7938               .cp = 15, .crn = 0, .crm = 0, .opc1 = 0, .opc2 = 3,
7939               .access = PL1_R,
7940               .accessfn = access_aa32_tid1,
7941               .type = ARM_CP_CONST, .resetvalue = 0,
7942         };
7943         /* MPUIR is specific to PMSA V6+ */
7944         ARMCPRegInfo id_mpuir_reginfo = {
7945               .name = "MPUIR",
7946               .cp = 15, .crn = 0, .crm = 0, .opc1 = 0, .opc2 = 4,
7947               .access = PL1_R, .type = ARM_CP_CONST,
7948               .resetvalue = cpu->pmsav7_dregion << 8
7949         };
7950         ARMCPRegInfo crn0_wi_reginfo = {
7951             .name = "CRN0_WI", .cp = 15, .crn = 0, .crm = CP_ANY,
7952             .opc1 = CP_ANY, .opc2 = CP_ANY, .access = PL1_W,
7953             .type = ARM_CP_NOP | ARM_CP_OVERRIDE
7954         };
7955 #ifdef CONFIG_USER_ONLY
7956         ARMCPRegUserSpaceInfo id_v8_user_midr_cp_reginfo[] = {
7957             { .name = "MIDR_EL1",
7958               .exported_bits = 0x00000000ffffffff },
7959             { .name = "REVIDR_EL1"                },
7960             REGUSERINFO_SENTINEL
7961         };
7962         modify_arm_cp_regs(id_v8_midr_cp_reginfo, id_v8_user_midr_cp_reginfo);
7963 #endif
7964         if (arm_feature(env, ARM_FEATURE_OMAPCP) ||
7965             arm_feature(env, ARM_FEATURE_STRONGARM)) {
7966             ARMCPRegInfo *r;
7967             /* Register the blanket "writes ignored" value first to cover the
7968              * whole space. Then update the specific ID registers to allow write
7969              * access, so that they ignore writes rather than causing them to
7970              * UNDEF.
7971              */
7972             define_one_arm_cp_reg(cpu, &crn0_wi_reginfo);
7973             for (r = id_pre_v8_midr_cp_reginfo;
7974                  r->type != ARM_CP_SENTINEL; r++) {
7975                 r->access = PL1_RW;
7976             }
7977             for (r = id_cp_reginfo; r->type != ARM_CP_SENTINEL; r++) {
7978                 r->access = PL1_RW;
7979             }
7980             id_mpuir_reginfo.access = PL1_RW;
7981             id_tlbtr_reginfo.access = PL1_RW;
7982         }
7983         if (arm_feature(env, ARM_FEATURE_V8)) {
7984             define_arm_cp_regs(cpu, id_v8_midr_cp_reginfo);
7985         } else {
7986             define_arm_cp_regs(cpu, id_pre_v8_midr_cp_reginfo);
7987         }
7988         define_arm_cp_regs(cpu, id_cp_reginfo);
7989         if (!arm_feature(env, ARM_FEATURE_PMSA)) {
7990             define_one_arm_cp_reg(cpu, &id_tlbtr_reginfo);
7991         } else if (arm_feature(env, ARM_FEATURE_V7)) {
7992             define_one_arm_cp_reg(cpu, &id_mpuir_reginfo);
7993         }
7994     }
7995 
7996     if (arm_feature(env, ARM_FEATURE_MPIDR)) {
7997         ARMCPRegInfo mpidr_cp_reginfo[] = {
7998             { .name = "MPIDR_EL1", .state = ARM_CP_STATE_BOTH,
7999               .opc0 = 3, .crn = 0, .crm = 0, .opc1 = 0, .opc2 = 5,
8000               .access = PL1_R, .readfn = mpidr_read, .type = ARM_CP_NO_RAW },
8001             REGINFO_SENTINEL
8002         };
8003 #ifdef CONFIG_USER_ONLY
8004         ARMCPRegUserSpaceInfo mpidr_user_cp_reginfo[] = {
8005             { .name = "MPIDR_EL1",
8006               .fixed_bits = 0x0000000080000000 },
8007             REGUSERINFO_SENTINEL
8008         };
8009         modify_arm_cp_regs(mpidr_cp_reginfo, mpidr_user_cp_reginfo);
8010 #endif
8011         define_arm_cp_regs(cpu, mpidr_cp_reginfo);
8012     }
8013 
8014     if (arm_feature(env, ARM_FEATURE_AUXCR)) {
8015         ARMCPRegInfo auxcr_reginfo[] = {
8016             { .name = "ACTLR_EL1", .state = ARM_CP_STATE_BOTH,
8017               .opc0 = 3, .opc1 = 0, .crn = 1, .crm = 0, .opc2 = 1,
8018               .access = PL1_RW, .accessfn = access_tacr,
8019               .type = ARM_CP_CONST, .resetvalue = cpu->reset_auxcr },
8020             { .name = "ACTLR_EL2", .state = ARM_CP_STATE_BOTH,
8021               .opc0 = 3, .opc1 = 4, .crn = 1, .crm = 0, .opc2 = 1,
8022               .access = PL2_RW, .type = ARM_CP_CONST,
8023               .resetvalue = 0 },
8024             { .name = "ACTLR_EL3", .state = ARM_CP_STATE_AA64,
8025               .opc0 = 3, .opc1 = 6, .crn = 1, .crm = 0, .opc2 = 1,
8026               .access = PL3_RW, .type = ARM_CP_CONST,
8027               .resetvalue = 0 },
8028             REGINFO_SENTINEL
8029         };
8030         define_arm_cp_regs(cpu, auxcr_reginfo);
8031         if (cpu_isar_feature(aa32_ac2, cpu)) {
8032             define_arm_cp_regs(cpu, actlr2_hactlr2_reginfo);
8033         }
8034     }
8035 
8036     if (arm_feature(env, ARM_FEATURE_CBAR)) {
8037         /*
8038          * CBAR is IMPDEF, but common on Arm Cortex-A implementations.
8039          * There are two flavours:
8040          *  (1) older 32-bit only cores have a simple 32-bit CBAR
8041          *  (2) 64-bit cores have a 64-bit CBAR visible to AArch64, plus a
8042          *      32-bit register visible to AArch32 at a different encoding
8043          *      to the "flavour 1" register and with the bits rearranged to
8044          *      be able to squash a 64-bit address into the 32-bit view.
8045          * We distinguish the two via the ARM_FEATURE_AARCH64 flag, but
8046          * in future if we support AArch32-only configs of some of the
8047          * AArch64 cores we might need to add a specific feature flag
8048          * to indicate cores with "flavour 2" CBAR.
8049          */
8050         if (arm_feature(env, ARM_FEATURE_AARCH64)) {
8051             /* 32 bit view is [31:18] 0...0 [43:32]. */
8052             uint32_t cbar32 = (extract64(cpu->reset_cbar, 18, 14) << 18)
8053                 | extract64(cpu->reset_cbar, 32, 12);
8054             ARMCPRegInfo cbar_reginfo[] = {
8055                 { .name = "CBAR",
8056                   .type = ARM_CP_CONST,
8057                   .cp = 15, .crn = 15, .crm = 3, .opc1 = 1, .opc2 = 0,
8058                   .access = PL1_R, .resetvalue = cbar32 },
8059                 { .name = "CBAR_EL1", .state = ARM_CP_STATE_AA64,
8060                   .type = ARM_CP_CONST,
8061                   .opc0 = 3, .opc1 = 1, .crn = 15, .crm = 3, .opc2 = 0,
8062                   .access = PL1_R, .resetvalue = cpu->reset_cbar },
8063                 REGINFO_SENTINEL
8064             };
8065             /* We don't implement a r/w 64 bit CBAR currently */
8066             assert(arm_feature(env, ARM_FEATURE_CBAR_RO));
8067             define_arm_cp_regs(cpu, cbar_reginfo);
8068         } else {
8069             ARMCPRegInfo cbar = {
8070                 .name = "CBAR",
8071                 .cp = 15, .crn = 15, .crm = 0, .opc1 = 4, .opc2 = 0,
8072                 .access = PL1_R|PL3_W, .resetvalue = cpu->reset_cbar,
8073                 .fieldoffset = offsetof(CPUARMState,
8074                                         cp15.c15_config_base_address)
8075             };
8076             if (arm_feature(env, ARM_FEATURE_CBAR_RO)) {
8077                 cbar.access = PL1_R;
8078                 cbar.fieldoffset = 0;
8079                 cbar.type = ARM_CP_CONST;
8080             }
8081             define_one_arm_cp_reg(cpu, &cbar);
8082         }
8083     }
8084 
8085     if (arm_feature(env, ARM_FEATURE_VBAR)) {
8086         ARMCPRegInfo vbar_cp_reginfo[] = {
8087             { .name = "VBAR", .state = ARM_CP_STATE_BOTH,
8088               .opc0 = 3, .crn = 12, .crm = 0, .opc1 = 0, .opc2 = 0,
8089               .access = PL1_RW, .writefn = vbar_write,
8090               .bank_fieldoffsets = { offsetof(CPUARMState, cp15.vbar_s),
8091                                      offsetof(CPUARMState, cp15.vbar_ns) },
8092               .resetvalue = 0 },
8093             REGINFO_SENTINEL
8094         };
8095         define_arm_cp_regs(cpu, vbar_cp_reginfo);
8096     }
8097 
8098     /* Generic registers whose values depend on the implementation */
8099     {
8100         ARMCPRegInfo sctlr = {
8101             .name = "SCTLR", .state = ARM_CP_STATE_BOTH,
8102             .opc0 = 3, .opc1 = 0, .crn = 1, .crm = 0, .opc2 = 0,
8103             .access = PL1_RW, .accessfn = access_tvm_trvm,
8104             .bank_fieldoffsets = { offsetof(CPUARMState, cp15.sctlr_s),
8105                                    offsetof(CPUARMState, cp15.sctlr_ns) },
8106             .writefn = sctlr_write, .resetvalue = cpu->reset_sctlr,
8107             .raw_writefn = raw_write,
8108         };
8109         if (arm_feature(env, ARM_FEATURE_XSCALE)) {
8110             /* Normally we would always end the TB on an SCTLR write, but Linux
8111              * arch/arm/mach-pxa/sleep.S expects two instructions following
8112              * an MMU enable to execute from cache.  Imitate this behaviour.
8113              */
8114             sctlr.type |= ARM_CP_SUPPRESS_TB_END;
8115         }
8116         define_one_arm_cp_reg(cpu, &sctlr);
8117     }
8118 
8119     if (cpu_isar_feature(aa64_lor, cpu)) {
8120         define_arm_cp_regs(cpu, lor_reginfo);
8121     }
8122     if (cpu_isar_feature(aa64_pan, cpu)) {
8123         define_one_arm_cp_reg(cpu, &pan_reginfo);
8124     }
8125 #ifndef CONFIG_USER_ONLY
8126     if (cpu_isar_feature(aa64_ats1e1, cpu)) {
8127         define_arm_cp_regs(cpu, ats1e1_reginfo);
8128     }
8129     if (cpu_isar_feature(aa32_ats1e1, cpu)) {
8130         define_arm_cp_regs(cpu, ats1cp_reginfo);
8131     }
8132 #endif
8133     if (cpu_isar_feature(aa64_uao, cpu)) {
8134         define_one_arm_cp_reg(cpu, &uao_reginfo);
8135     }
8136 
8137     if (arm_feature(env, ARM_FEATURE_EL2) && cpu_isar_feature(aa64_vh, cpu)) {
8138         define_arm_cp_regs(cpu, vhe_reginfo);
8139     }
8140 
8141     if (cpu_isar_feature(aa64_sve, cpu)) {
8142         define_one_arm_cp_reg(cpu, &zcr_el1_reginfo);
8143         if (arm_feature(env, ARM_FEATURE_EL2)) {
8144             define_one_arm_cp_reg(cpu, &zcr_el2_reginfo);
8145         } else {
8146             define_one_arm_cp_reg(cpu, &zcr_no_el2_reginfo);
8147         }
8148         if (arm_feature(env, ARM_FEATURE_EL3)) {
8149             define_one_arm_cp_reg(cpu, &zcr_el3_reginfo);
8150         }
8151     }
8152 
8153 #ifdef TARGET_AARCH64
8154     if (cpu_isar_feature(aa64_pauth, cpu)) {
8155         define_arm_cp_regs(cpu, pauth_reginfo);
8156     }
8157     if (cpu_isar_feature(aa64_rndr, cpu)) {
8158         define_arm_cp_regs(cpu, rndr_reginfo);
8159     }
8160 #ifndef CONFIG_USER_ONLY
8161     /* Data Cache clean instructions up to PoP */
8162     if (cpu_isar_feature(aa64_dcpop, cpu)) {
8163         define_one_arm_cp_reg(cpu, dcpop_reg);
8164 
8165         if (cpu_isar_feature(aa64_dcpodp, cpu)) {
8166             define_one_arm_cp_reg(cpu, dcpodp_reg);
8167         }
8168     }
8169 #endif /*CONFIG_USER_ONLY*/
8170 
8171     /*
8172      * If full MTE is enabled, add all of the system registers.
8173      * If only "instructions available at EL0" are enabled,
8174      * then define only a RAZ/WI version of PSTATE.TCO.
8175      */
8176     if (cpu_isar_feature(aa64_mte, cpu)) {
8177         define_arm_cp_regs(cpu, mte_reginfo);
8178         define_arm_cp_regs(cpu, mte_el0_cacheop_reginfo);
8179     } else if (cpu_isar_feature(aa64_mte_insn_reg, cpu)) {
8180         define_arm_cp_regs(cpu, mte_tco_ro_reginfo);
8181         define_arm_cp_regs(cpu, mte_el0_cacheop_reginfo);
8182     }
8183 #endif
8184 
8185     if (cpu_isar_feature(any_predinv, cpu)) {
8186         define_arm_cp_regs(cpu, predinv_reginfo);
8187     }
8188 
8189     if (cpu_isar_feature(any_ccidx, cpu)) {
8190         define_arm_cp_regs(cpu, ccsidr2_reginfo);
8191     }
8192 
8193 #ifndef CONFIG_USER_ONLY
8194     /*
8195      * Register redirections and aliases must be done last,
8196      * after the registers from the other extensions have been defined.
8197      */
8198     if (arm_feature(env, ARM_FEATURE_EL2) && cpu_isar_feature(aa64_vh, cpu)) {
8199         define_arm_vh_e2h_redirects_aliases(cpu);
8200     }
8201 #endif
8202 }
8203 
8204 void arm_cpu_register_gdb_regs_for_features(ARMCPU *cpu)
8205 {
8206     CPUState *cs = CPU(cpu);
8207     CPUARMState *env = &cpu->env;
8208 
8209     if (arm_feature(env, ARM_FEATURE_AARCH64)) {
8210         /*
8211          * The lower part of each SVE register aliases to the FPU
8212          * registers so we don't need to include both.
8213          */
8214 #ifdef TARGET_AARCH64
8215         if (isar_feature_aa64_sve(&cpu->isar)) {
8216             gdb_register_coprocessor(cs, arm_gdb_get_svereg, arm_gdb_set_svereg,
8217                                      arm_gen_dynamic_svereg_xml(cs, cs->gdb_num_regs),
8218                                      "sve-registers.xml", 0);
8219         } else
8220 #endif
8221         {
8222             gdb_register_coprocessor(cs, aarch64_fpu_gdb_get_reg,
8223                                      aarch64_fpu_gdb_set_reg,
8224                                      34, "aarch64-fpu.xml", 0);
8225         }
8226     } else if (arm_feature(env, ARM_FEATURE_NEON)) {
8227         gdb_register_coprocessor(cs, vfp_gdb_get_reg, vfp_gdb_set_reg,
8228                                  51, "arm-neon.xml", 0);
8229     } else if (cpu_isar_feature(aa32_simd_r32, cpu)) {
8230         gdb_register_coprocessor(cs, vfp_gdb_get_reg, vfp_gdb_set_reg,
8231                                  35, "arm-vfp3.xml", 0);
8232     } else if (cpu_isar_feature(aa32_vfp_simd, cpu)) {
8233         gdb_register_coprocessor(cs, vfp_gdb_get_reg, vfp_gdb_set_reg,
8234                                  19, "arm-vfp.xml", 0);
8235     }
8236     gdb_register_coprocessor(cs, arm_gdb_get_sysreg, arm_gdb_set_sysreg,
8237                              arm_gen_dynamic_sysreg_xml(cs, cs->gdb_num_regs),
8238                              "system-registers.xml", 0);
8239 
8240 }
8241 
8242 /* Sort alphabetically by type name, except for "any". */
8243 static gint arm_cpu_list_compare(gconstpointer a, gconstpointer b)
8244 {
8245     ObjectClass *class_a = (ObjectClass *)a;
8246     ObjectClass *class_b = (ObjectClass *)b;
8247     const char *name_a, *name_b;
8248 
8249     name_a = object_class_get_name(class_a);
8250     name_b = object_class_get_name(class_b);
8251     if (strcmp(name_a, "any-" TYPE_ARM_CPU) == 0) {
8252         return 1;
8253     } else if (strcmp(name_b, "any-" TYPE_ARM_CPU) == 0) {
8254         return -1;
8255     } else {
8256         return strcmp(name_a, name_b);
8257     }
8258 }
8259 
8260 static void arm_cpu_list_entry(gpointer data, gpointer user_data)
8261 {
8262     ObjectClass *oc = data;
8263     const char *typename;
8264     char *name;
8265 
8266     typename = object_class_get_name(oc);
8267     name = g_strndup(typename, strlen(typename) - strlen("-" TYPE_ARM_CPU));
8268     qemu_printf("  %s\n", name);
8269     g_free(name);
8270 }
8271 
8272 void arm_cpu_list(void)
8273 {
8274     GSList *list;
8275 
8276     list = object_class_get_list(TYPE_ARM_CPU, false);
8277     list = g_slist_sort(list, arm_cpu_list_compare);
8278     qemu_printf("Available CPUs:\n");
8279     g_slist_foreach(list, arm_cpu_list_entry, NULL);
8280     g_slist_free(list);
8281 }
8282 
8283 static void arm_cpu_add_definition(gpointer data, gpointer user_data)
8284 {
8285     ObjectClass *oc = data;
8286     CpuDefinitionInfoList **cpu_list = user_data;
8287     CpuDefinitionInfo *info;
8288     const char *typename;
8289 
8290     typename = object_class_get_name(oc);
8291     info = g_malloc0(sizeof(*info));
8292     info->name = g_strndup(typename,
8293                            strlen(typename) - strlen("-" TYPE_ARM_CPU));
8294     info->q_typename = g_strdup(typename);
8295 
8296     QAPI_LIST_PREPEND(*cpu_list, info);
8297 }
8298 
8299 CpuDefinitionInfoList *qmp_query_cpu_definitions(Error **errp)
8300 {
8301     CpuDefinitionInfoList *cpu_list = NULL;
8302     GSList *list;
8303 
8304     list = object_class_get_list(TYPE_ARM_CPU, false);
8305     g_slist_foreach(list, arm_cpu_add_definition, &cpu_list);
8306     g_slist_free(list);
8307 
8308     return cpu_list;
8309 }
8310 
8311 static void add_cpreg_to_hashtable(ARMCPU *cpu, const ARMCPRegInfo *r,
8312                                    void *opaque, int state, int secstate,
8313                                    int crm, int opc1, int opc2,
8314                                    const char *name)
8315 {
8316     /* Private utility function for define_one_arm_cp_reg_with_opaque():
8317      * add a single reginfo struct to the hash table.
8318      */
8319     uint32_t *key = g_new(uint32_t, 1);
8320     ARMCPRegInfo *r2 = g_memdup(r, sizeof(ARMCPRegInfo));
8321     int is64 = (r->type & ARM_CP_64BIT) ? 1 : 0;
8322     int ns = (secstate & ARM_CP_SECSTATE_NS) ? 1 : 0;
8323 
8324     r2->name = g_strdup(name);
8325     /* Reset the secure state to the specific incoming state.  This is
8326      * necessary as the register may have been defined with both states.
8327      */
8328     r2->secure = secstate;
8329 
8330     if (r->bank_fieldoffsets[0] && r->bank_fieldoffsets[1]) {
8331         /* Register is banked (using both entries in array).
8332          * Overwriting fieldoffset as the array is only used to define
8333          * banked registers but later only fieldoffset is used.
8334          */
8335         r2->fieldoffset = r->bank_fieldoffsets[ns];
8336     }
8337 
8338     if (state == ARM_CP_STATE_AA32) {
8339         if (r->bank_fieldoffsets[0] && r->bank_fieldoffsets[1]) {
8340             /* If the register is banked then we don't need to migrate or
8341              * reset the 32-bit instance in certain cases:
8342              *
8343              * 1) If the register has both 32-bit and 64-bit instances then we
8344              *    can count on the 64-bit instance taking care of the
8345              *    non-secure bank.
8346              * 2) If ARMv8 is enabled then we can count on a 64-bit version
8347              *    taking care of the secure bank.  This requires that separate
8348              *    32 and 64-bit definitions are provided.
8349              */
8350             if ((r->state == ARM_CP_STATE_BOTH && ns) ||
8351                 (arm_feature(&cpu->env, ARM_FEATURE_V8) && !ns)) {
8352                 r2->type |= ARM_CP_ALIAS;
8353             }
8354         } else if ((secstate != r->secure) && !ns) {
8355             /* The register is not banked so we only want to allow migration of
8356              * the non-secure instance.
8357              */
8358             r2->type |= ARM_CP_ALIAS;
8359         }
8360 
8361         if (r->state == ARM_CP_STATE_BOTH) {
8362             /* We assume it is a cp15 register if the .cp field is left unset.
8363              */
8364             if (r2->cp == 0) {
8365                 r2->cp = 15;
8366             }
8367 
8368 #ifdef HOST_WORDS_BIGENDIAN
8369             if (r2->fieldoffset) {
8370                 r2->fieldoffset += sizeof(uint32_t);
8371             }
8372 #endif
8373         }
8374     }
8375     if (state == ARM_CP_STATE_AA64) {
8376         /* To allow abbreviation of ARMCPRegInfo
8377          * definitions, we treat cp == 0 as equivalent to
8378          * the value for "standard guest-visible sysreg".
8379          * STATE_BOTH definitions are also always "standard
8380          * sysreg" in their AArch64 view (the .cp value may
8381          * be non-zero for the benefit of the AArch32 view).
8382          */
8383         if (r->cp == 0 || r->state == ARM_CP_STATE_BOTH) {
8384             r2->cp = CP_REG_ARM64_SYSREG_CP;
8385         }
8386         *key = ENCODE_AA64_CP_REG(r2->cp, r2->crn, crm,
8387                                   r2->opc0, opc1, opc2);
8388     } else {
8389         *key = ENCODE_CP_REG(r2->cp, is64, ns, r2->crn, crm, opc1, opc2);
8390     }
8391     if (opaque) {
8392         r2->opaque = opaque;
8393     }
8394     /* reginfo passed to helpers is correct for the actual access,
8395      * and is never ARM_CP_STATE_BOTH:
8396      */
8397     r2->state = state;
8398     /* Make sure reginfo passed to helpers for wildcarded regs
8399      * has the correct crm/opc1/opc2 for this reg, not CP_ANY:
8400      */
8401     r2->crm = crm;
8402     r2->opc1 = opc1;
8403     r2->opc2 = opc2;
8404     /* By convention, for wildcarded registers only the first
8405      * entry is used for migration; the others are marked as
8406      * ALIAS so we don't try to transfer the register
8407      * multiple times. Special registers (ie NOP/WFI) are
8408      * never migratable and not even raw-accessible.
8409      */
8410     if ((r->type & ARM_CP_SPECIAL)) {
8411         r2->type |= ARM_CP_NO_RAW;
8412     }
8413     if (((r->crm == CP_ANY) && crm != 0) ||
8414         ((r->opc1 == CP_ANY) && opc1 != 0) ||
8415         ((r->opc2 == CP_ANY) && opc2 != 0)) {
8416         r2->type |= ARM_CP_ALIAS | ARM_CP_NO_GDB;
8417     }
8418 
8419     /* Check that raw accesses are either forbidden or handled. Note that
8420      * we can't assert this earlier because the setup of fieldoffset for
8421      * banked registers has to be done first.
8422      */
8423     if (!(r2->type & ARM_CP_NO_RAW)) {
8424         assert(!raw_accessors_invalid(r2));
8425     }
8426 
8427     /* Overriding of an existing definition must be explicitly
8428      * requested.
8429      */
8430     if (!(r->type & ARM_CP_OVERRIDE)) {
8431         ARMCPRegInfo *oldreg;
8432         oldreg = g_hash_table_lookup(cpu->cp_regs, key);
8433         if (oldreg && !(oldreg->type & ARM_CP_OVERRIDE)) {
8434             fprintf(stderr, "Register redefined: cp=%d %d bit "
8435                     "crn=%d crm=%d opc1=%d opc2=%d, "
8436                     "was %s, now %s\n", r2->cp, 32 + 32 * is64,
8437                     r2->crn, r2->crm, r2->opc1, r2->opc2,
8438                     oldreg->name, r2->name);
8439             g_assert_not_reached();
8440         }
8441     }
8442     g_hash_table_insert(cpu->cp_regs, key, r2);
8443 }
8444 
8445 
8446 void define_one_arm_cp_reg_with_opaque(ARMCPU *cpu,
8447                                        const ARMCPRegInfo *r, void *opaque)
8448 {
8449     /* Define implementations of coprocessor registers.
8450      * We store these in a hashtable because typically
8451      * there are less than 150 registers in a space which
8452      * is 16*16*16*8*8 = 262144 in size.
8453      * Wildcarding is supported for the crm, opc1 and opc2 fields.
8454      * If a register is defined twice then the second definition is
8455      * used, so this can be used to define some generic registers and
8456      * then override them with implementation specific variations.
8457      * At least one of the original and the second definition should
8458      * include ARM_CP_OVERRIDE in its type bits -- this is just a guard
8459      * against accidental use.
8460      *
8461      * The state field defines whether the register is to be
8462      * visible in the AArch32 or AArch64 execution state. If the
8463      * state is set to ARM_CP_STATE_BOTH then we synthesise a
8464      * reginfo structure for the AArch32 view, which sees the lower
8465      * 32 bits of the 64 bit register.
8466      *
8467      * Only registers visible in AArch64 may set r->opc0; opc0 cannot
8468      * be wildcarded. AArch64 registers are always considered to be 64
8469      * bits; the ARM_CP_64BIT* flag applies only to the AArch32 view of
8470      * the register, if any.
8471      */
8472     int crm, opc1, opc2, state;
8473     int crmmin = (r->crm == CP_ANY) ? 0 : r->crm;
8474     int crmmax = (r->crm == CP_ANY) ? 15 : r->crm;
8475     int opc1min = (r->opc1 == CP_ANY) ? 0 : r->opc1;
8476     int opc1max = (r->opc1 == CP_ANY) ? 7 : r->opc1;
8477     int opc2min = (r->opc2 == CP_ANY) ? 0 : r->opc2;
8478     int opc2max = (r->opc2 == CP_ANY) ? 7 : r->opc2;
8479     /* 64 bit registers have only CRm and Opc1 fields */
8480     assert(!((r->type & ARM_CP_64BIT) && (r->opc2 || r->crn)));
8481     /* op0 only exists in the AArch64 encodings */
8482     assert((r->state != ARM_CP_STATE_AA32) || (r->opc0 == 0));
8483     /* AArch64 regs are all 64 bit so ARM_CP_64BIT is meaningless */
8484     assert((r->state != ARM_CP_STATE_AA64) || !(r->type & ARM_CP_64BIT));
8485     /*
8486      * This API is only for Arm's system coprocessors (14 and 15) or
8487      * (M-profile or v7A-and-earlier only) for implementation defined
8488      * coprocessors in the range 0..7.  Our decode assumes this, since
8489      * 8..13 can be used for other insns including VFP and Neon. See
8490      * valid_cp() in translate.c.  Assert here that we haven't tried
8491      * to use an invalid coprocessor number.
8492      */
8493     switch (r->state) {
8494     case ARM_CP_STATE_BOTH:
8495         /* 0 has a special meaning, but otherwise the same rules as AA32. */
8496         if (r->cp == 0) {
8497             break;
8498         }
8499         /* fall through */
8500     case ARM_CP_STATE_AA32:
8501         if (arm_feature(&cpu->env, ARM_FEATURE_V8) &&
8502             !arm_feature(&cpu->env, ARM_FEATURE_M)) {
8503             assert(r->cp >= 14 && r->cp <= 15);
8504         } else {
8505             assert(r->cp < 8 || (r->cp >= 14 && r->cp <= 15));
8506         }
8507         break;
8508     case ARM_CP_STATE_AA64:
8509         assert(r->cp == 0 || r->cp == CP_REG_ARM64_SYSREG_CP);
8510         break;
8511     default:
8512         g_assert_not_reached();
8513     }
8514     /* The AArch64 pseudocode CheckSystemAccess() specifies that op1
8515      * encodes a minimum access level for the register. We roll this
8516      * runtime check into our general permission check code, so check
8517      * here that the reginfo's specified permissions are strict enough
8518      * to encompass the generic architectural permission check.
8519      */
8520     if (r->state != ARM_CP_STATE_AA32) {
8521         int mask = 0;
8522         switch (r->opc1) {
8523         case 0:
8524             /* min_EL EL1, but some accessible to EL0 via kernel ABI */
8525             mask = PL0U_R | PL1_RW;
8526             break;
8527         case 1: case 2:
8528             /* min_EL EL1 */
8529             mask = PL1_RW;
8530             break;
8531         case 3:
8532             /* min_EL EL0 */
8533             mask = PL0_RW;
8534             break;
8535         case 4:
8536         case 5:
8537             /* min_EL EL2 */
8538             mask = PL2_RW;
8539             break;
8540         case 6:
8541             /* min_EL EL3 */
8542             mask = PL3_RW;
8543             break;
8544         case 7:
8545             /* min_EL EL1, secure mode only (we don't check the latter) */
8546             mask = PL1_RW;
8547             break;
8548         default:
8549             /* broken reginfo with out-of-range opc1 */
8550             assert(false);
8551             break;
8552         }
8553         /* assert our permissions are not too lax (stricter is fine) */
8554         assert((r->access & ~mask) == 0);
8555     }
8556 
8557     /* Check that the register definition has enough info to handle
8558      * reads and writes if they are permitted.
8559      */
8560     if (!(r->type & (ARM_CP_SPECIAL|ARM_CP_CONST))) {
8561         if (r->access & PL3_R) {
8562             assert((r->fieldoffset ||
8563                    (r->bank_fieldoffsets[0] && r->bank_fieldoffsets[1])) ||
8564                    r->readfn);
8565         }
8566         if (r->access & PL3_W) {
8567             assert((r->fieldoffset ||
8568                    (r->bank_fieldoffsets[0] && r->bank_fieldoffsets[1])) ||
8569                    r->writefn);
8570         }
8571     }
8572     /* Bad type field probably means missing sentinel at end of reg list */
8573     assert(cptype_valid(r->type));
8574     for (crm = crmmin; crm <= crmmax; crm++) {
8575         for (opc1 = opc1min; opc1 <= opc1max; opc1++) {
8576             for (opc2 = opc2min; opc2 <= opc2max; opc2++) {
8577                 for (state = ARM_CP_STATE_AA32;
8578                      state <= ARM_CP_STATE_AA64; state++) {
8579                     if (r->state != state && r->state != ARM_CP_STATE_BOTH) {
8580                         continue;
8581                     }
8582                     if (state == ARM_CP_STATE_AA32) {
8583                         /* Under AArch32 CP registers can be common
8584                          * (same for secure and non-secure world) or banked.
8585                          */
8586                         char *name;
8587 
8588                         switch (r->secure) {
8589                         case ARM_CP_SECSTATE_S:
8590                         case ARM_CP_SECSTATE_NS:
8591                             add_cpreg_to_hashtable(cpu, r, opaque, state,
8592                                                    r->secure, crm, opc1, opc2,
8593                                                    r->name);
8594                             break;
8595                         default:
8596                             name = g_strdup_printf("%s_S", r->name);
8597                             add_cpreg_to_hashtable(cpu, r, opaque, state,
8598                                                    ARM_CP_SECSTATE_S,
8599                                                    crm, opc1, opc2, name);
8600                             g_free(name);
8601                             add_cpreg_to_hashtable(cpu, r, opaque, state,
8602                                                    ARM_CP_SECSTATE_NS,
8603                                                    crm, opc1, opc2, r->name);
8604                             break;
8605                         }
8606                     } else {
8607                         /* AArch64 registers get mapped to non-secure instance
8608                          * of AArch32 */
8609                         add_cpreg_to_hashtable(cpu, r, opaque, state,
8610                                                ARM_CP_SECSTATE_NS,
8611                                                crm, opc1, opc2, r->name);
8612                     }
8613                 }
8614             }
8615         }
8616     }
8617 }
8618 
8619 void define_arm_cp_regs_with_opaque(ARMCPU *cpu,
8620                                     const ARMCPRegInfo *regs, void *opaque)
8621 {
8622     /* Define a whole list of registers */
8623     const ARMCPRegInfo *r;
8624     for (r = regs; r->type != ARM_CP_SENTINEL; r++) {
8625         define_one_arm_cp_reg_with_opaque(cpu, r, opaque);
8626     }
8627 }
8628 
8629 /*
8630  * Modify ARMCPRegInfo for access from userspace.
8631  *
8632  * This is a data driven modification directed by
8633  * ARMCPRegUserSpaceInfo. All registers become ARM_CP_CONST as
8634  * user-space cannot alter any values and dynamic values pertaining to
8635  * execution state are hidden from user space view anyway.
8636  */
8637 void modify_arm_cp_regs(ARMCPRegInfo *regs, const ARMCPRegUserSpaceInfo *mods)
8638 {
8639     const ARMCPRegUserSpaceInfo *m;
8640     ARMCPRegInfo *r;
8641 
8642     for (m = mods; m->name; m++) {
8643         GPatternSpec *pat = NULL;
8644         if (m->is_glob) {
8645             pat = g_pattern_spec_new(m->name);
8646         }
8647         for (r = regs; r->type != ARM_CP_SENTINEL; r++) {
8648             if (pat && g_pattern_match_string(pat, r->name)) {
8649                 r->type = ARM_CP_CONST;
8650                 r->access = PL0U_R;
8651                 r->resetvalue = 0;
8652                 /* continue */
8653             } else if (strcmp(r->name, m->name) == 0) {
8654                 r->type = ARM_CP_CONST;
8655                 r->access = PL0U_R;
8656                 r->resetvalue &= m->exported_bits;
8657                 r->resetvalue |= m->fixed_bits;
8658                 break;
8659             }
8660         }
8661         if (pat) {
8662             g_pattern_spec_free(pat);
8663         }
8664     }
8665 }
8666 
8667 const ARMCPRegInfo *get_arm_cp_reginfo(GHashTable *cpregs, uint32_t encoded_cp)
8668 {
8669     return g_hash_table_lookup(cpregs, &encoded_cp);
8670 }
8671 
8672 void arm_cp_write_ignore(CPUARMState *env, const ARMCPRegInfo *ri,
8673                          uint64_t value)
8674 {
8675     /* Helper coprocessor write function for write-ignore registers */
8676 }
8677 
8678 uint64_t arm_cp_read_zero(CPUARMState *env, const ARMCPRegInfo *ri)
8679 {
8680     /* Helper coprocessor write function for read-as-zero registers */
8681     return 0;
8682 }
8683 
8684 void arm_cp_reset_ignore(CPUARMState *env, const ARMCPRegInfo *opaque)
8685 {
8686     /* Helper coprocessor reset function for do-nothing-on-reset registers */
8687 }
8688 
8689 static int bad_mode_switch(CPUARMState *env, int mode, CPSRWriteType write_type)
8690 {
8691     /* Return true if it is not valid for us to switch to
8692      * this CPU mode (ie all the UNPREDICTABLE cases in
8693      * the ARM ARM CPSRWriteByInstr pseudocode).
8694      */
8695 
8696     /* Changes to or from Hyp via MSR and CPS are illegal. */
8697     if (write_type == CPSRWriteByInstr &&
8698         ((env->uncached_cpsr & CPSR_M) == ARM_CPU_MODE_HYP ||
8699          mode == ARM_CPU_MODE_HYP)) {
8700         return 1;
8701     }
8702 
8703     switch (mode) {
8704     case ARM_CPU_MODE_USR:
8705         return 0;
8706     case ARM_CPU_MODE_SYS:
8707     case ARM_CPU_MODE_SVC:
8708     case ARM_CPU_MODE_ABT:
8709     case ARM_CPU_MODE_UND:
8710     case ARM_CPU_MODE_IRQ:
8711     case ARM_CPU_MODE_FIQ:
8712         /* Note that we don't implement the IMPDEF NSACR.RFR which in v7
8713          * allows FIQ mode to be Secure-only. (In v8 this doesn't exist.)
8714          */
8715         /* If HCR.TGE is set then changes from Monitor to NS PL1 via MSR
8716          * and CPS are treated as illegal mode changes.
8717          */
8718         if (write_type == CPSRWriteByInstr &&
8719             (env->uncached_cpsr & CPSR_M) == ARM_CPU_MODE_MON &&
8720             (arm_hcr_el2_eff(env) & HCR_TGE)) {
8721             return 1;
8722         }
8723         return 0;
8724     case ARM_CPU_MODE_HYP:
8725         return !arm_feature(env, ARM_FEATURE_EL2)
8726             || arm_current_el(env) < 2 || arm_is_secure_below_el3(env);
8727     case ARM_CPU_MODE_MON:
8728         return arm_current_el(env) < 3;
8729     default:
8730         return 1;
8731     }
8732 }
8733 
8734 uint32_t cpsr_read(CPUARMState *env)
8735 {
8736     int ZF;
8737     ZF = (env->ZF == 0);
8738     return env->uncached_cpsr | (env->NF & 0x80000000) | (ZF << 30) |
8739         (env->CF << 29) | ((env->VF & 0x80000000) >> 3) | (env->QF << 27)
8740         | (env->thumb << 5) | ((env->condexec_bits & 3) << 25)
8741         | ((env->condexec_bits & 0xfc) << 8)
8742         | (env->GE << 16) | (env->daif & CPSR_AIF);
8743 }
8744 
8745 void cpsr_write(CPUARMState *env, uint32_t val, uint32_t mask,
8746                 CPSRWriteType write_type)
8747 {
8748     uint32_t changed_daif;
8749 
8750     if (mask & CPSR_NZCV) {
8751         env->ZF = (~val) & CPSR_Z;
8752         env->NF = val;
8753         env->CF = (val >> 29) & 1;
8754         env->VF = (val << 3) & 0x80000000;
8755     }
8756     if (mask & CPSR_Q)
8757         env->QF = ((val & CPSR_Q) != 0);
8758     if (mask & CPSR_T)
8759         env->thumb = ((val & CPSR_T) != 0);
8760     if (mask & CPSR_IT_0_1) {
8761         env->condexec_bits &= ~3;
8762         env->condexec_bits |= (val >> 25) & 3;
8763     }
8764     if (mask & CPSR_IT_2_7) {
8765         env->condexec_bits &= 3;
8766         env->condexec_bits |= (val >> 8) & 0xfc;
8767     }
8768     if (mask & CPSR_GE) {
8769         env->GE = (val >> 16) & 0xf;
8770     }
8771 
8772     /* In a V7 implementation that includes the security extensions but does
8773      * not include Virtualization Extensions the SCR.FW and SCR.AW bits control
8774      * whether non-secure software is allowed to change the CPSR_F and CPSR_A
8775      * bits respectively.
8776      *
8777      * In a V8 implementation, it is permitted for privileged software to
8778      * change the CPSR A/F bits regardless of the SCR.AW/FW bits.
8779      */
8780     if (write_type != CPSRWriteRaw && !arm_feature(env, ARM_FEATURE_V8) &&
8781         arm_feature(env, ARM_FEATURE_EL3) &&
8782         !arm_feature(env, ARM_FEATURE_EL2) &&
8783         !arm_is_secure(env)) {
8784 
8785         changed_daif = (env->daif ^ val) & mask;
8786 
8787         if (changed_daif & CPSR_A) {
8788             /* Check to see if we are allowed to change the masking of async
8789              * abort exceptions from a non-secure state.
8790              */
8791             if (!(env->cp15.scr_el3 & SCR_AW)) {
8792                 qemu_log_mask(LOG_GUEST_ERROR,
8793                               "Ignoring attempt to switch CPSR_A flag from "
8794                               "non-secure world with SCR.AW bit clear\n");
8795                 mask &= ~CPSR_A;
8796             }
8797         }
8798 
8799         if (changed_daif & CPSR_F) {
8800             /* Check to see if we are allowed to change the masking of FIQ
8801              * exceptions from a non-secure state.
8802              */
8803             if (!(env->cp15.scr_el3 & SCR_FW)) {
8804                 qemu_log_mask(LOG_GUEST_ERROR,
8805                               "Ignoring attempt to switch CPSR_F flag from "
8806                               "non-secure world with SCR.FW bit clear\n");
8807                 mask &= ~CPSR_F;
8808             }
8809 
8810             /* Check whether non-maskable FIQ (NMFI) support is enabled.
8811              * If this bit is set software is not allowed to mask
8812              * FIQs, but is allowed to set CPSR_F to 0.
8813              */
8814             if ((A32_BANKED_CURRENT_REG_GET(env, sctlr) & SCTLR_NMFI) &&
8815                 (val & CPSR_F)) {
8816                 qemu_log_mask(LOG_GUEST_ERROR,
8817                               "Ignoring attempt to enable CPSR_F flag "
8818                               "(non-maskable FIQ [NMFI] support enabled)\n");
8819                 mask &= ~CPSR_F;
8820             }
8821         }
8822     }
8823 
8824     env->daif &= ~(CPSR_AIF & mask);
8825     env->daif |= val & CPSR_AIF & mask;
8826 
8827     if (write_type != CPSRWriteRaw &&
8828         ((env->uncached_cpsr ^ val) & mask & CPSR_M)) {
8829         if ((env->uncached_cpsr & CPSR_M) == ARM_CPU_MODE_USR) {
8830             /* Note that we can only get here in USR mode if this is a
8831              * gdb stub write; for this case we follow the architectural
8832              * behaviour for guest writes in USR mode of ignoring an attempt
8833              * to switch mode. (Those are caught by translate.c for writes
8834              * triggered by guest instructions.)
8835              */
8836             mask &= ~CPSR_M;
8837         } else if (bad_mode_switch(env, val & CPSR_M, write_type)) {
8838             /* Attempt to switch to an invalid mode: this is UNPREDICTABLE in
8839              * v7, and has defined behaviour in v8:
8840              *  + leave CPSR.M untouched
8841              *  + allow changes to the other CPSR fields
8842              *  + set PSTATE.IL
8843              * For user changes via the GDB stub, we don't set PSTATE.IL,
8844              * as this would be unnecessarily harsh for a user error.
8845              */
8846             mask &= ~CPSR_M;
8847             if (write_type != CPSRWriteByGDBStub &&
8848                 arm_feature(env, ARM_FEATURE_V8)) {
8849                 mask |= CPSR_IL;
8850                 val |= CPSR_IL;
8851             }
8852             qemu_log_mask(LOG_GUEST_ERROR,
8853                           "Illegal AArch32 mode switch attempt from %s to %s\n",
8854                           aarch32_mode_name(env->uncached_cpsr),
8855                           aarch32_mode_name(val));
8856         } else {
8857             qemu_log_mask(CPU_LOG_INT, "%s %s to %s PC 0x%" PRIx32 "\n",
8858                           write_type == CPSRWriteExceptionReturn ?
8859                           "Exception return from AArch32" :
8860                           "AArch32 mode switch from",
8861                           aarch32_mode_name(env->uncached_cpsr),
8862                           aarch32_mode_name(val), env->regs[15]);
8863             switch_mode(env, val & CPSR_M);
8864         }
8865     }
8866     mask &= ~CACHED_CPSR_BITS;
8867     env->uncached_cpsr = (env->uncached_cpsr & ~mask) | (val & mask);
8868 }
8869 
8870 /* Sign/zero extend */
8871 uint32_t HELPER(sxtb16)(uint32_t x)
8872 {
8873     uint32_t res;
8874     res = (uint16_t)(int8_t)x;
8875     res |= (uint32_t)(int8_t)(x >> 16) << 16;
8876     return res;
8877 }
8878 
8879 uint32_t HELPER(uxtb16)(uint32_t x)
8880 {
8881     uint32_t res;
8882     res = (uint16_t)(uint8_t)x;
8883     res |= (uint32_t)(uint8_t)(x >> 16) << 16;
8884     return res;
8885 }
8886 
8887 int32_t HELPER(sdiv)(int32_t num, int32_t den)
8888 {
8889     if (den == 0)
8890       return 0;
8891     if (num == INT_MIN && den == -1)
8892       return INT_MIN;
8893     return num / den;
8894 }
8895 
8896 uint32_t HELPER(udiv)(uint32_t num, uint32_t den)
8897 {
8898     if (den == 0)
8899       return 0;
8900     return num / den;
8901 }
8902 
8903 uint32_t HELPER(rbit)(uint32_t x)
8904 {
8905     return revbit32(x);
8906 }
8907 
8908 #ifdef CONFIG_USER_ONLY
8909 
8910 static void switch_mode(CPUARMState *env, int mode)
8911 {
8912     ARMCPU *cpu = env_archcpu(env);
8913 
8914     if (mode != ARM_CPU_MODE_USR) {
8915         cpu_abort(CPU(cpu), "Tried to switch out of user mode\n");
8916     }
8917 }
8918 
8919 uint32_t arm_phys_excp_target_el(CPUState *cs, uint32_t excp_idx,
8920                                  uint32_t cur_el, bool secure)
8921 {
8922     return 1;
8923 }
8924 
8925 void aarch64_sync_64_to_32(CPUARMState *env)
8926 {
8927     g_assert_not_reached();
8928 }
8929 
8930 #else
8931 
8932 static void switch_mode(CPUARMState *env, int mode)
8933 {
8934     int old_mode;
8935     int i;
8936 
8937     old_mode = env->uncached_cpsr & CPSR_M;
8938     if (mode == old_mode)
8939         return;
8940 
8941     if (old_mode == ARM_CPU_MODE_FIQ) {
8942         memcpy (env->fiq_regs, env->regs + 8, 5 * sizeof(uint32_t));
8943         memcpy (env->regs + 8, env->usr_regs, 5 * sizeof(uint32_t));
8944     } else if (mode == ARM_CPU_MODE_FIQ) {
8945         memcpy (env->usr_regs, env->regs + 8, 5 * sizeof(uint32_t));
8946         memcpy (env->regs + 8, env->fiq_regs, 5 * sizeof(uint32_t));
8947     }
8948 
8949     i = bank_number(old_mode);
8950     env->banked_r13[i] = env->regs[13];
8951     env->banked_spsr[i] = env->spsr;
8952 
8953     i = bank_number(mode);
8954     env->regs[13] = env->banked_r13[i];
8955     env->spsr = env->banked_spsr[i];
8956 
8957     env->banked_r14[r14_bank_number(old_mode)] = env->regs[14];
8958     env->regs[14] = env->banked_r14[r14_bank_number(mode)];
8959 }
8960 
8961 /* Physical Interrupt Target EL Lookup Table
8962  *
8963  * [ From ARM ARM section G1.13.4 (Table G1-15) ]
8964  *
8965  * The below multi-dimensional table is used for looking up the target
8966  * exception level given numerous condition criteria.  Specifically, the
8967  * target EL is based on SCR and HCR routing controls as well as the
8968  * currently executing EL and secure state.
8969  *
8970  *    Dimensions:
8971  *    target_el_table[2][2][2][2][2][4]
8972  *                    |  |  |  |  |  +--- Current EL
8973  *                    |  |  |  |  +------ Non-secure(0)/Secure(1)
8974  *                    |  |  |  +--------- HCR mask override
8975  *                    |  |  +------------ SCR exec state control
8976  *                    |  +--------------- SCR mask override
8977  *                    +------------------ 32-bit(0)/64-bit(1) EL3
8978  *
8979  *    The table values are as such:
8980  *    0-3 = EL0-EL3
8981  *     -1 = Cannot occur
8982  *
8983  * The ARM ARM target EL table includes entries indicating that an "exception
8984  * is not taken".  The two cases where this is applicable are:
8985  *    1) An exception is taken from EL3 but the SCR does not have the exception
8986  *    routed to EL3.
8987  *    2) An exception is taken from EL2 but the HCR does not have the exception
8988  *    routed to EL2.
8989  * In these two cases, the below table contain a target of EL1.  This value is
8990  * returned as it is expected that the consumer of the table data will check
8991  * for "target EL >= current EL" to ensure the exception is not taken.
8992  *
8993  *            SCR     HCR
8994  *         64  EA     AMO                 From
8995  *        BIT IRQ     IMO      Non-secure         Secure
8996  *        EL3 FIQ  RW FMO   EL0 EL1 EL2 EL3   EL0 EL1 EL2 EL3
8997  */
8998 static const int8_t target_el_table[2][2][2][2][2][4] = {
8999     {{{{/* 0   0   0   0 */{ 1,  1,  2, -1 },{ 3, -1, -1,  3 },},
9000        {/* 0   0   0   1 */{ 2,  2,  2, -1 },{ 3, -1, -1,  3 },},},
9001       {{/* 0   0   1   0 */{ 1,  1,  2, -1 },{ 3, -1, -1,  3 },},
9002        {/* 0   0   1   1 */{ 2,  2,  2, -1 },{ 3, -1, -1,  3 },},},},
9003      {{{/* 0   1   0   0 */{ 3,  3,  3, -1 },{ 3, -1, -1,  3 },},
9004        {/* 0   1   0   1 */{ 3,  3,  3, -1 },{ 3, -1, -1,  3 },},},
9005       {{/* 0   1   1   0 */{ 3,  3,  3, -1 },{ 3, -1, -1,  3 },},
9006        {/* 0   1   1   1 */{ 3,  3,  3, -1 },{ 3, -1, -1,  3 },},},},},
9007     {{{{/* 1   0   0   0 */{ 1,  1,  2, -1 },{ 1,  1, -1,  1 },},
9008        {/* 1   0   0   1 */{ 2,  2,  2, -1 },{ 1,  1, -1,  1 },},},
9009       {{/* 1   0   1   0 */{ 1,  1,  1, -1 },{ 1,  1, -1,  1 },},
9010        {/* 1   0   1   1 */{ 2,  2,  2, -1 },{ 1,  1, -1,  1 },},},},
9011      {{{/* 1   1   0   0 */{ 3,  3,  3, -1 },{ 3,  3, -1,  3 },},
9012        {/* 1   1   0   1 */{ 3,  3,  3, -1 },{ 3,  3, -1,  3 },},},
9013       {{/* 1   1   1   0 */{ 3,  3,  3, -1 },{ 3,  3, -1,  3 },},
9014        {/* 1   1   1   1 */{ 3,  3,  3, -1 },{ 3,  3, -1,  3 },},},},},
9015 };
9016 
9017 /*
9018  * Determine the target EL for physical exceptions
9019  */
9020 uint32_t arm_phys_excp_target_el(CPUState *cs, uint32_t excp_idx,
9021                                  uint32_t cur_el, bool secure)
9022 {
9023     CPUARMState *env = cs->env_ptr;
9024     bool rw;
9025     bool scr;
9026     bool hcr;
9027     int target_el;
9028     /* Is the highest EL AArch64? */
9029     bool is64 = arm_feature(env, ARM_FEATURE_AARCH64);
9030     uint64_t hcr_el2;
9031 
9032     if (arm_feature(env, ARM_FEATURE_EL3)) {
9033         rw = ((env->cp15.scr_el3 & SCR_RW) == SCR_RW);
9034     } else {
9035         /* Either EL2 is the highest EL (and so the EL2 register width
9036          * is given by is64); or there is no EL2 or EL3, in which case
9037          * the value of 'rw' does not affect the table lookup anyway.
9038          */
9039         rw = is64;
9040     }
9041 
9042     hcr_el2 = arm_hcr_el2_eff(env);
9043     switch (excp_idx) {
9044     case EXCP_IRQ:
9045         scr = ((env->cp15.scr_el3 & SCR_IRQ) == SCR_IRQ);
9046         hcr = hcr_el2 & HCR_IMO;
9047         break;
9048     case EXCP_FIQ:
9049         scr = ((env->cp15.scr_el3 & SCR_FIQ) == SCR_FIQ);
9050         hcr = hcr_el2 & HCR_FMO;
9051         break;
9052     default:
9053         scr = ((env->cp15.scr_el3 & SCR_EA) == SCR_EA);
9054         hcr = hcr_el2 & HCR_AMO;
9055         break;
9056     };
9057 
9058     /*
9059      * For these purposes, TGE and AMO/IMO/FMO both force the
9060      * interrupt to EL2.  Fold TGE into the bit extracted above.
9061      */
9062     hcr |= (hcr_el2 & HCR_TGE) != 0;
9063 
9064     /* Perform a table-lookup for the target EL given the current state */
9065     target_el = target_el_table[is64][scr][rw][hcr][secure][cur_el];
9066 
9067     assert(target_el > 0);
9068 
9069     return target_el;
9070 }
9071 
9072 void arm_log_exception(int idx)
9073 {
9074     if (qemu_loglevel_mask(CPU_LOG_INT)) {
9075         const char *exc = NULL;
9076         static const char * const excnames[] = {
9077             [EXCP_UDEF] = "Undefined Instruction",
9078             [EXCP_SWI] = "SVC",
9079             [EXCP_PREFETCH_ABORT] = "Prefetch Abort",
9080             [EXCP_DATA_ABORT] = "Data Abort",
9081             [EXCP_IRQ] = "IRQ",
9082             [EXCP_FIQ] = "FIQ",
9083             [EXCP_BKPT] = "Breakpoint",
9084             [EXCP_EXCEPTION_EXIT] = "QEMU v7M exception exit",
9085             [EXCP_KERNEL_TRAP] = "QEMU intercept of kernel commpage",
9086             [EXCP_HVC] = "Hypervisor Call",
9087             [EXCP_HYP_TRAP] = "Hypervisor Trap",
9088             [EXCP_SMC] = "Secure Monitor Call",
9089             [EXCP_VIRQ] = "Virtual IRQ",
9090             [EXCP_VFIQ] = "Virtual FIQ",
9091             [EXCP_SEMIHOST] = "Semihosting call",
9092             [EXCP_NOCP] = "v7M NOCP UsageFault",
9093             [EXCP_INVSTATE] = "v7M INVSTATE UsageFault",
9094             [EXCP_STKOF] = "v8M STKOF UsageFault",
9095             [EXCP_LAZYFP] = "v7M exception during lazy FP stacking",
9096             [EXCP_LSERR] = "v8M LSERR UsageFault",
9097             [EXCP_UNALIGNED] = "v7M UNALIGNED UsageFault",
9098         };
9099 
9100         if (idx >= 0 && idx < ARRAY_SIZE(excnames)) {
9101             exc = excnames[idx];
9102         }
9103         if (!exc) {
9104             exc = "unknown";
9105         }
9106         qemu_log_mask(CPU_LOG_INT, "Taking exception %d [%s]\n", idx, exc);
9107     }
9108 }
9109 
9110 /*
9111  * Function used to synchronize QEMU's AArch64 register set with AArch32
9112  * register set.  This is necessary when switching between AArch32 and AArch64
9113  * execution state.
9114  */
9115 void aarch64_sync_32_to_64(CPUARMState *env)
9116 {
9117     int i;
9118     uint32_t mode = env->uncached_cpsr & CPSR_M;
9119 
9120     /* We can blanket copy R[0:7] to X[0:7] */
9121     for (i = 0; i < 8; i++) {
9122         env->xregs[i] = env->regs[i];
9123     }
9124 
9125     /*
9126      * Unless we are in FIQ mode, x8-x12 come from the user registers r8-r12.
9127      * Otherwise, they come from the banked user regs.
9128      */
9129     if (mode == ARM_CPU_MODE_FIQ) {
9130         for (i = 8; i < 13; i++) {
9131             env->xregs[i] = env->usr_regs[i - 8];
9132         }
9133     } else {
9134         for (i = 8; i < 13; i++) {
9135             env->xregs[i] = env->regs[i];
9136         }
9137     }
9138 
9139     /*
9140      * Registers x13-x23 are the various mode SP and FP registers. Registers
9141      * r13 and r14 are only copied if we are in that mode, otherwise we copy
9142      * from the mode banked register.
9143      */
9144     if (mode == ARM_CPU_MODE_USR || mode == ARM_CPU_MODE_SYS) {
9145         env->xregs[13] = env->regs[13];
9146         env->xregs[14] = env->regs[14];
9147     } else {
9148         env->xregs[13] = env->banked_r13[bank_number(ARM_CPU_MODE_USR)];
9149         /* HYP is an exception in that it is copied from r14 */
9150         if (mode == ARM_CPU_MODE_HYP) {
9151             env->xregs[14] = env->regs[14];
9152         } else {
9153             env->xregs[14] = env->banked_r14[r14_bank_number(ARM_CPU_MODE_USR)];
9154         }
9155     }
9156 
9157     if (mode == ARM_CPU_MODE_HYP) {
9158         env->xregs[15] = env->regs[13];
9159     } else {
9160         env->xregs[15] = env->banked_r13[bank_number(ARM_CPU_MODE_HYP)];
9161     }
9162 
9163     if (mode == ARM_CPU_MODE_IRQ) {
9164         env->xregs[16] = env->regs[14];
9165         env->xregs[17] = env->regs[13];
9166     } else {
9167         env->xregs[16] = env->banked_r14[r14_bank_number(ARM_CPU_MODE_IRQ)];
9168         env->xregs[17] = env->banked_r13[bank_number(ARM_CPU_MODE_IRQ)];
9169     }
9170 
9171     if (mode == ARM_CPU_MODE_SVC) {
9172         env->xregs[18] = env->regs[14];
9173         env->xregs[19] = env->regs[13];
9174     } else {
9175         env->xregs[18] = env->banked_r14[r14_bank_number(ARM_CPU_MODE_SVC)];
9176         env->xregs[19] = env->banked_r13[bank_number(ARM_CPU_MODE_SVC)];
9177     }
9178 
9179     if (mode == ARM_CPU_MODE_ABT) {
9180         env->xregs[20] = env->regs[14];
9181         env->xregs[21] = env->regs[13];
9182     } else {
9183         env->xregs[20] = env->banked_r14[r14_bank_number(ARM_CPU_MODE_ABT)];
9184         env->xregs[21] = env->banked_r13[bank_number(ARM_CPU_MODE_ABT)];
9185     }
9186 
9187     if (mode == ARM_CPU_MODE_UND) {
9188         env->xregs[22] = env->regs[14];
9189         env->xregs[23] = env->regs[13];
9190     } else {
9191         env->xregs[22] = env->banked_r14[r14_bank_number(ARM_CPU_MODE_UND)];
9192         env->xregs[23] = env->banked_r13[bank_number(ARM_CPU_MODE_UND)];
9193     }
9194 
9195     /*
9196      * Registers x24-x30 are mapped to r8-r14 in FIQ mode.  If we are in FIQ
9197      * mode, then we can copy from r8-r14.  Otherwise, we copy from the
9198      * FIQ bank for r8-r14.
9199      */
9200     if (mode == ARM_CPU_MODE_FIQ) {
9201         for (i = 24; i < 31; i++) {
9202             env->xregs[i] = env->regs[i - 16];   /* X[24:30] <- R[8:14] */
9203         }
9204     } else {
9205         for (i = 24; i < 29; i++) {
9206             env->xregs[i] = env->fiq_regs[i - 24];
9207         }
9208         env->xregs[29] = env->banked_r13[bank_number(ARM_CPU_MODE_FIQ)];
9209         env->xregs[30] = env->banked_r14[r14_bank_number(ARM_CPU_MODE_FIQ)];
9210     }
9211 
9212     env->pc = env->regs[15];
9213 }
9214 
9215 /*
9216  * Function used to synchronize QEMU's AArch32 register set with AArch64
9217  * register set.  This is necessary when switching between AArch32 and AArch64
9218  * execution state.
9219  */
9220 void aarch64_sync_64_to_32(CPUARMState *env)
9221 {
9222     int i;
9223     uint32_t mode = env->uncached_cpsr & CPSR_M;
9224 
9225     /* We can blanket copy X[0:7] to R[0:7] */
9226     for (i = 0; i < 8; i++) {
9227         env->regs[i] = env->xregs[i];
9228     }
9229 
9230     /*
9231      * Unless we are in FIQ mode, r8-r12 come from the user registers x8-x12.
9232      * Otherwise, we copy x8-x12 into the banked user regs.
9233      */
9234     if (mode == ARM_CPU_MODE_FIQ) {
9235         for (i = 8; i < 13; i++) {
9236             env->usr_regs[i - 8] = env->xregs[i];
9237         }
9238     } else {
9239         for (i = 8; i < 13; i++) {
9240             env->regs[i] = env->xregs[i];
9241         }
9242     }
9243 
9244     /*
9245      * Registers r13 & r14 depend on the current mode.
9246      * If we are in a given mode, we copy the corresponding x registers to r13
9247      * and r14.  Otherwise, we copy the x register to the banked r13 and r14
9248      * for the mode.
9249      */
9250     if (mode == ARM_CPU_MODE_USR || mode == ARM_CPU_MODE_SYS) {
9251         env->regs[13] = env->xregs[13];
9252         env->regs[14] = env->xregs[14];
9253     } else {
9254         env->banked_r13[bank_number(ARM_CPU_MODE_USR)] = env->xregs[13];
9255 
9256         /*
9257          * HYP is an exception in that it does not have its own banked r14 but
9258          * shares the USR r14
9259          */
9260         if (mode == ARM_CPU_MODE_HYP) {
9261             env->regs[14] = env->xregs[14];
9262         } else {
9263             env->banked_r14[r14_bank_number(ARM_CPU_MODE_USR)] = env->xregs[14];
9264         }
9265     }
9266 
9267     if (mode == ARM_CPU_MODE_HYP) {
9268         env->regs[13] = env->xregs[15];
9269     } else {
9270         env->banked_r13[bank_number(ARM_CPU_MODE_HYP)] = env->xregs[15];
9271     }
9272 
9273     if (mode == ARM_CPU_MODE_IRQ) {
9274         env->regs[14] = env->xregs[16];
9275         env->regs[13] = env->xregs[17];
9276     } else {
9277         env->banked_r14[r14_bank_number(ARM_CPU_MODE_IRQ)] = env->xregs[16];
9278         env->banked_r13[bank_number(ARM_CPU_MODE_IRQ)] = env->xregs[17];
9279     }
9280 
9281     if (mode == ARM_CPU_MODE_SVC) {
9282         env->regs[14] = env->xregs[18];
9283         env->regs[13] = env->xregs[19];
9284     } else {
9285         env->banked_r14[r14_bank_number(ARM_CPU_MODE_SVC)] = env->xregs[18];
9286         env->banked_r13[bank_number(ARM_CPU_MODE_SVC)] = env->xregs[19];
9287     }
9288 
9289     if (mode == ARM_CPU_MODE_ABT) {
9290         env->regs[14] = env->xregs[20];
9291         env->regs[13] = env->xregs[21];
9292     } else {
9293         env->banked_r14[r14_bank_number(ARM_CPU_MODE_ABT)] = env->xregs[20];
9294         env->banked_r13[bank_number(ARM_CPU_MODE_ABT)] = env->xregs[21];
9295     }
9296 
9297     if (mode == ARM_CPU_MODE_UND) {
9298         env->regs[14] = env->xregs[22];
9299         env->regs[13] = env->xregs[23];
9300     } else {
9301         env->banked_r14[r14_bank_number(ARM_CPU_MODE_UND)] = env->xregs[22];
9302         env->banked_r13[bank_number(ARM_CPU_MODE_UND)] = env->xregs[23];
9303     }
9304 
9305     /* Registers x24-x30 are mapped to r8-r14 in FIQ mode.  If we are in FIQ
9306      * mode, then we can copy to r8-r14.  Otherwise, we copy to the
9307      * FIQ bank for r8-r14.
9308      */
9309     if (mode == ARM_CPU_MODE_FIQ) {
9310         for (i = 24; i < 31; i++) {
9311             env->regs[i - 16] = env->xregs[i];   /* X[24:30] -> R[8:14] */
9312         }
9313     } else {
9314         for (i = 24; i < 29; i++) {
9315             env->fiq_regs[i - 24] = env->xregs[i];
9316         }
9317         env->banked_r13[bank_number(ARM_CPU_MODE_FIQ)] = env->xregs[29];
9318         env->banked_r14[r14_bank_number(ARM_CPU_MODE_FIQ)] = env->xregs[30];
9319     }
9320 
9321     env->regs[15] = env->pc;
9322 }
9323 
9324 static void take_aarch32_exception(CPUARMState *env, int new_mode,
9325                                    uint32_t mask, uint32_t offset,
9326                                    uint32_t newpc)
9327 {
9328     int new_el;
9329 
9330     /* Change the CPU state so as to actually take the exception. */
9331     switch_mode(env, new_mode);
9332 
9333     /*
9334      * For exceptions taken to AArch32 we must clear the SS bit in both
9335      * PSTATE and in the old-state value we save to SPSR_<mode>, so zero it now.
9336      */
9337     env->uncached_cpsr &= ~PSTATE_SS;
9338     env->spsr = cpsr_read(env);
9339     /* Clear IT bits.  */
9340     env->condexec_bits = 0;
9341     /* Switch to the new mode, and to the correct instruction set.  */
9342     env->uncached_cpsr = (env->uncached_cpsr & ~CPSR_M) | new_mode;
9343 
9344     /* This must be after mode switching. */
9345     new_el = arm_current_el(env);
9346 
9347     /* Set new mode endianness */
9348     env->uncached_cpsr &= ~CPSR_E;
9349     if (env->cp15.sctlr_el[new_el] & SCTLR_EE) {
9350         env->uncached_cpsr |= CPSR_E;
9351     }
9352     /* J and IL must always be cleared for exception entry */
9353     env->uncached_cpsr &= ~(CPSR_IL | CPSR_J);
9354     env->daif |= mask;
9355 
9356     if (new_mode == ARM_CPU_MODE_HYP) {
9357         env->thumb = (env->cp15.sctlr_el[2] & SCTLR_TE) != 0;
9358         env->elr_el[2] = env->regs[15];
9359     } else {
9360         /* CPSR.PAN is normally preserved preserved unless...  */
9361         if (cpu_isar_feature(aa32_pan, env_archcpu(env))) {
9362             switch (new_el) {
9363             case 3:
9364                 if (!arm_is_secure_below_el3(env)) {
9365                     /* ... the target is EL3, from non-secure state.  */
9366                     env->uncached_cpsr &= ~CPSR_PAN;
9367                     break;
9368                 }
9369                 /* ... the target is EL3, from secure state ... */
9370                 /* fall through */
9371             case 1:
9372                 /* ... the target is EL1 and SCTLR.SPAN is 0.  */
9373                 if (!(env->cp15.sctlr_el[new_el] & SCTLR_SPAN)) {
9374                     env->uncached_cpsr |= CPSR_PAN;
9375                 }
9376                 break;
9377             }
9378         }
9379         /*
9380          * this is a lie, as there was no c1_sys on V4T/V5, but who cares
9381          * and we should just guard the thumb mode on V4
9382          */
9383         if (arm_feature(env, ARM_FEATURE_V4T)) {
9384             env->thumb =
9385                 (A32_BANKED_CURRENT_REG_GET(env, sctlr) & SCTLR_TE) != 0;
9386         }
9387         env->regs[14] = env->regs[15] + offset;
9388     }
9389     env->regs[15] = newpc;
9390     arm_rebuild_hflags(env);
9391 }
9392 
9393 static void arm_cpu_do_interrupt_aarch32_hyp(CPUState *cs)
9394 {
9395     /*
9396      * Handle exception entry to Hyp mode; this is sufficiently
9397      * different to entry to other AArch32 modes that we handle it
9398      * separately here.
9399      *
9400      * The vector table entry used is always the 0x14 Hyp mode entry point,
9401      * unless this is an UNDEF/HVC/abort taken from Hyp to Hyp.
9402      * The offset applied to the preferred return address is always zero
9403      * (see DDI0487C.a section G1.12.3).
9404      * PSTATE A/I/F masks are set based only on the SCR.EA/IRQ/FIQ values.
9405      */
9406     uint32_t addr, mask;
9407     ARMCPU *cpu = ARM_CPU(cs);
9408     CPUARMState *env = &cpu->env;
9409 
9410     switch (cs->exception_index) {
9411     case EXCP_UDEF:
9412         addr = 0x04;
9413         break;
9414     case EXCP_SWI:
9415         addr = 0x14;
9416         break;
9417     case EXCP_BKPT:
9418         /* Fall through to prefetch abort.  */
9419     case EXCP_PREFETCH_ABORT:
9420         env->cp15.ifar_s = env->exception.vaddress;
9421         qemu_log_mask(CPU_LOG_INT, "...with HIFAR 0x%x\n",
9422                       (uint32_t)env->exception.vaddress);
9423         addr = 0x0c;
9424         break;
9425     case EXCP_DATA_ABORT:
9426         env->cp15.dfar_s = env->exception.vaddress;
9427         qemu_log_mask(CPU_LOG_INT, "...with HDFAR 0x%x\n",
9428                       (uint32_t)env->exception.vaddress);
9429         addr = 0x10;
9430         break;
9431     case EXCP_IRQ:
9432         addr = 0x18;
9433         break;
9434     case EXCP_FIQ:
9435         addr = 0x1c;
9436         break;
9437     case EXCP_HVC:
9438         addr = 0x08;
9439         break;
9440     case EXCP_HYP_TRAP:
9441         addr = 0x14;
9442         break;
9443     default:
9444         cpu_abort(cs, "Unhandled exception 0x%x\n", cs->exception_index);
9445     }
9446 
9447     if (cs->exception_index != EXCP_IRQ && cs->exception_index != EXCP_FIQ) {
9448         if (!arm_feature(env, ARM_FEATURE_V8)) {
9449             /*
9450              * QEMU syndrome values are v8-style. v7 has the IL bit
9451              * UNK/SBZP for "field not valid" cases, where v8 uses RES1.
9452              * If this is a v7 CPU, squash the IL bit in those cases.
9453              */
9454             if (cs->exception_index == EXCP_PREFETCH_ABORT ||
9455                 (cs->exception_index == EXCP_DATA_ABORT &&
9456                  !(env->exception.syndrome & ARM_EL_ISV)) ||
9457                 syn_get_ec(env->exception.syndrome) == EC_UNCATEGORIZED) {
9458                 env->exception.syndrome &= ~ARM_EL_IL;
9459             }
9460         }
9461         env->cp15.esr_el[2] = env->exception.syndrome;
9462     }
9463 
9464     if (arm_current_el(env) != 2 && addr < 0x14) {
9465         addr = 0x14;
9466     }
9467 
9468     mask = 0;
9469     if (!(env->cp15.scr_el3 & SCR_EA)) {
9470         mask |= CPSR_A;
9471     }
9472     if (!(env->cp15.scr_el3 & SCR_IRQ)) {
9473         mask |= CPSR_I;
9474     }
9475     if (!(env->cp15.scr_el3 & SCR_FIQ)) {
9476         mask |= CPSR_F;
9477     }
9478 
9479     addr += env->cp15.hvbar;
9480 
9481     take_aarch32_exception(env, ARM_CPU_MODE_HYP, mask, 0, addr);
9482 }
9483 
9484 static void arm_cpu_do_interrupt_aarch32(CPUState *cs)
9485 {
9486     ARMCPU *cpu = ARM_CPU(cs);
9487     CPUARMState *env = &cpu->env;
9488     uint32_t addr;
9489     uint32_t mask;
9490     int new_mode;
9491     uint32_t offset;
9492     uint32_t moe;
9493 
9494     /* If this is a debug exception we must update the DBGDSCR.MOE bits */
9495     switch (syn_get_ec(env->exception.syndrome)) {
9496     case EC_BREAKPOINT:
9497     case EC_BREAKPOINT_SAME_EL:
9498         moe = 1;
9499         break;
9500     case EC_WATCHPOINT:
9501     case EC_WATCHPOINT_SAME_EL:
9502         moe = 10;
9503         break;
9504     case EC_AA32_BKPT:
9505         moe = 3;
9506         break;
9507     case EC_VECTORCATCH:
9508         moe = 5;
9509         break;
9510     default:
9511         moe = 0;
9512         break;
9513     }
9514 
9515     if (moe) {
9516         env->cp15.mdscr_el1 = deposit64(env->cp15.mdscr_el1, 2, 4, moe);
9517     }
9518 
9519     if (env->exception.target_el == 2) {
9520         arm_cpu_do_interrupt_aarch32_hyp(cs);
9521         return;
9522     }
9523 
9524     switch (cs->exception_index) {
9525     case EXCP_UDEF:
9526         new_mode = ARM_CPU_MODE_UND;
9527         addr = 0x04;
9528         mask = CPSR_I;
9529         if (env->thumb)
9530             offset = 2;
9531         else
9532             offset = 4;
9533         break;
9534     case EXCP_SWI:
9535         new_mode = ARM_CPU_MODE_SVC;
9536         addr = 0x08;
9537         mask = CPSR_I;
9538         /* The PC already points to the next instruction.  */
9539         offset = 0;
9540         break;
9541     case EXCP_BKPT:
9542         /* Fall through to prefetch abort.  */
9543     case EXCP_PREFETCH_ABORT:
9544         A32_BANKED_CURRENT_REG_SET(env, ifsr, env->exception.fsr);
9545         A32_BANKED_CURRENT_REG_SET(env, ifar, env->exception.vaddress);
9546         qemu_log_mask(CPU_LOG_INT, "...with IFSR 0x%x IFAR 0x%x\n",
9547                       env->exception.fsr, (uint32_t)env->exception.vaddress);
9548         new_mode = ARM_CPU_MODE_ABT;
9549         addr = 0x0c;
9550         mask = CPSR_A | CPSR_I;
9551         offset = 4;
9552         break;
9553     case EXCP_DATA_ABORT:
9554         A32_BANKED_CURRENT_REG_SET(env, dfsr, env->exception.fsr);
9555         A32_BANKED_CURRENT_REG_SET(env, dfar, env->exception.vaddress);
9556         qemu_log_mask(CPU_LOG_INT, "...with DFSR 0x%x DFAR 0x%x\n",
9557                       env->exception.fsr,
9558                       (uint32_t)env->exception.vaddress);
9559         new_mode = ARM_CPU_MODE_ABT;
9560         addr = 0x10;
9561         mask = CPSR_A | CPSR_I;
9562         offset = 8;
9563         break;
9564     case EXCP_IRQ:
9565         new_mode = ARM_CPU_MODE_IRQ;
9566         addr = 0x18;
9567         /* Disable IRQ and imprecise data aborts.  */
9568         mask = CPSR_A | CPSR_I;
9569         offset = 4;
9570         if (env->cp15.scr_el3 & SCR_IRQ) {
9571             /* IRQ routed to monitor mode */
9572             new_mode = ARM_CPU_MODE_MON;
9573             mask |= CPSR_F;
9574         }
9575         break;
9576     case EXCP_FIQ:
9577         new_mode = ARM_CPU_MODE_FIQ;
9578         addr = 0x1c;
9579         /* Disable FIQ, IRQ and imprecise data aborts.  */
9580         mask = CPSR_A | CPSR_I | CPSR_F;
9581         if (env->cp15.scr_el3 & SCR_FIQ) {
9582             /* FIQ routed to monitor mode */
9583             new_mode = ARM_CPU_MODE_MON;
9584         }
9585         offset = 4;
9586         break;
9587     case EXCP_VIRQ:
9588         new_mode = ARM_CPU_MODE_IRQ;
9589         addr = 0x18;
9590         /* Disable IRQ and imprecise data aborts.  */
9591         mask = CPSR_A | CPSR_I;
9592         offset = 4;
9593         break;
9594     case EXCP_VFIQ:
9595         new_mode = ARM_CPU_MODE_FIQ;
9596         addr = 0x1c;
9597         /* Disable FIQ, IRQ and imprecise data aborts.  */
9598         mask = CPSR_A | CPSR_I | CPSR_F;
9599         offset = 4;
9600         break;
9601     case EXCP_SMC:
9602         new_mode = ARM_CPU_MODE_MON;
9603         addr = 0x08;
9604         mask = CPSR_A | CPSR_I | CPSR_F;
9605         offset = 0;
9606         break;
9607     default:
9608         cpu_abort(cs, "Unhandled exception 0x%x\n", cs->exception_index);
9609         return; /* Never happens.  Keep compiler happy.  */
9610     }
9611 
9612     if (new_mode == ARM_CPU_MODE_MON) {
9613         addr += env->cp15.mvbar;
9614     } else if (A32_BANKED_CURRENT_REG_GET(env, sctlr) & SCTLR_V) {
9615         /* High vectors. When enabled, base address cannot be remapped. */
9616         addr += 0xffff0000;
9617     } else {
9618         /* ARM v7 architectures provide a vector base address register to remap
9619          * the interrupt vector table.
9620          * This register is only followed in non-monitor mode, and is banked.
9621          * Note: only bits 31:5 are valid.
9622          */
9623         addr += A32_BANKED_CURRENT_REG_GET(env, vbar);
9624     }
9625 
9626     if ((env->uncached_cpsr & CPSR_M) == ARM_CPU_MODE_MON) {
9627         env->cp15.scr_el3 &= ~SCR_NS;
9628     }
9629 
9630     take_aarch32_exception(env, new_mode, mask, offset, addr);
9631 }
9632 
9633 static int aarch64_regnum(CPUARMState *env, int aarch32_reg)
9634 {
9635     /*
9636      * Return the register number of the AArch64 view of the AArch32
9637      * register @aarch32_reg. The CPUARMState CPSR is assumed to still
9638      * be that of the AArch32 mode the exception came from.
9639      */
9640     int mode = env->uncached_cpsr & CPSR_M;
9641 
9642     switch (aarch32_reg) {
9643     case 0 ... 7:
9644         return aarch32_reg;
9645     case 8 ... 12:
9646         return mode == ARM_CPU_MODE_FIQ ? aarch32_reg + 16 : aarch32_reg;
9647     case 13:
9648         switch (mode) {
9649         case ARM_CPU_MODE_USR:
9650         case ARM_CPU_MODE_SYS:
9651             return 13;
9652         case ARM_CPU_MODE_HYP:
9653             return 15;
9654         case ARM_CPU_MODE_IRQ:
9655             return 17;
9656         case ARM_CPU_MODE_SVC:
9657             return 19;
9658         case ARM_CPU_MODE_ABT:
9659             return 21;
9660         case ARM_CPU_MODE_UND:
9661             return 23;
9662         case ARM_CPU_MODE_FIQ:
9663             return 29;
9664         default:
9665             g_assert_not_reached();
9666         }
9667     case 14:
9668         switch (mode) {
9669         case ARM_CPU_MODE_USR:
9670         case ARM_CPU_MODE_SYS:
9671         case ARM_CPU_MODE_HYP:
9672             return 14;
9673         case ARM_CPU_MODE_IRQ:
9674             return 16;
9675         case ARM_CPU_MODE_SVC:
9676             return 18;
9677         case ARM_CPU_MODE_ABT:
9678             return 20;
9679         case ARM_CPU_MODE_UND:
9680             return 22;
9681         case ARM_CPU_MODE_FIQ:
9682             return 30;
9683         default:
9684             g_assert_not_reached();
9685         }
9686     case 15:
9687         return 31;
9688     default:
9689         g_assert_not_reached();
9690     }
9691 }
9692 
9693 /* Handle exception entry to a target EL which is using AArch64 */
9694 static void arm_cpu_do_interrupt_aarch64(CPUState *cs)
9695 {
9696     ARMCPU *cpu = ARM_CPU(cs);
9697     CPUARMState *env = &cpu->env;
9698     unsigned int new_el = env->exception.target_el;
9699     target_ulong addr = env->cp15.vbar_el[new_el];
9700     unsigned int new_mode = aarch64_pstate_mode(new_el, true);
9701     unsigned int old_mode;
9702     unsigned int cur_el = arm_current_el(env);
9703     int rt;
9704 
9705     /*
9706      * Note that new_el can never be 0.  If cur_el is 0, then
9707      * el0_a64 is is_a64(), else el0_a64 is ignored.
9708      */
9709     aarch64_sve_change_el(env, cur_el, new_el, is_a64(env));
9710 
9711     if (cur_el < new_el) {
9712         /* Entry vector offset depends on whether the implemented EL
9713          * immediately lower than the target level is using AArch32 or AArch64
9714          */
9715         bool is_aa64;
9716         uint64_t hcr;
9717 
9718         switch (new_el) {
9719         case 3:
9720             is_aa64 = (env->cp15.scr_el3 & SCR_RW) != 0;
9721             break;
9722         case 2:
9723             hcr = arm_hcr_el2_eff(env);
9724             if ((hcr & (HCR_E2H | HCR_TGE)) != (HCR_E2H | HCR_TGE)) {
9725                 is_aa64 = (hcr & HCR_RW) != 0;
9726                 break;
9727             }
9728             /* fall through */
9729         case 1:
9730             is_aa64 = is_a64(env);
9731             break;
9732         default:
9733             g_assert_not_reached();
9734         }
9735 
9736         if (is_aa64) {
9737             addr += 0x400;
9738         } else {
9739             addr += 0x600;
9740         }
9741     } else if (pstate_read(env) & PSTATE_SP) {
9742         addr += 0x200;
9743     }
9744 
9745     switch (cs->exception_index) {
9746     case EXCP_PREFETCH_ABORT:
9747     case EXCP_DATA_ABORT:
9748         env->cp15.far_el[new_el] = env->exception.vaddress;
9749         qemu_log_mask(CPU_LOG_INT, "...with FAR 0x%" PRIx64 "\n",
9750                       env->cp15.far_el[new_el]);
9751         /* fall through */
9752     case EXCP_BKPT:
9753     case EXCP_UDEF:
9754     case EXCP_SWI:
9755     case EXCP_HVC:
9756     case EXCP_HYP_TRAP:
9757     case EXCP_SMC:
9758         switch (syn_get_ec(env->exception.syndrome)) {
9759         case EC_ADVSIMDFPACCESSTRAP:
9760             /*
9761              * QEMU internal FP/SIMD syndromes from AArch32 include the
9762              * TA and coproc fields which are only exposed if the exception
9763              * is taken to AArch32 Hyp mode. Mask them out to get a valid
9764              * AArch64 format syndrome.
9765              */
9766             env->exception.syndrome &= ~MAKE_64BIT_MASK(0, 20);
9767             break;
9768         case EC_CP14RTTRAP:
9769         case EC_CP15RTTRAP:
9770         case EC_CP14DTTRAP:
9771             /*
9772              * For a trap on AArch32 MRC/MCR/LDC/STC the Rt field is currently
9773              * the raw register field from the insn; when taking this to
9774              * AArch64 we must convert it to the AArch64 view of the register
9775              * number. Notice that we read a 4-bit AArch32 register number and
9776              * write back a 5-bit AArch64 one.
9777              */
9778             rt = extract32(env->exception.syndrome, 5, 4);
9779             rt = aarch64_regnum(env, rt);
9780             env->exception.syndrome = deposit32(env->exception.syndrome,
9781                                                 5, 5, rt);
9782             break;
9783         case EC_CP15RRTTRAP:
9784         case EC_CP14RRTTRAP:
9785             /* Similarly for MRRC/MCRR traps for Rt and Rt2 fields */
9786             rt = extract32(env->exception.syndrome, 5, 4);
9787             rt = aarch64_regnum(env, rt);
9788             env->exception.syndrome = deposit32(env->exception.syndrome,
9789                                                 5, 5, rt);
9790             rt = extract32(env->exception.syndrome, 10, 4);
9791             rt = aarch64_regnum(env, rt);
9792             env->exception.syndrome = deposit32(env->exception.syndrome,
9793                                                 10, 5, rt);
9794             break;
9795         }
9796         env->cp15.esr_el[new_el] = env->exception.syndrome;
9797         break;
9798     case EXCP_IRQ:
9799     case EXCP_VIRQ:
9800         addr += 0x80;
9801         break;
9802     case EXCP_FIQ:
9803     case EXCP_VFIQ:
9804         addr += 0x100;
9805         break;
9806     default:
9807         cpu_abort(cs, "Unhandled exception 0x%x\n", cs->exception_index);
9808     }
9809 
9810     if (is_a64(env)) {
9811         old_mode = pstate_read(env);
9812         aarch64_save_sp(env, arm_current_el(env));
9813         env->elr_el[new_el] = env->pc;
9814     } else {
9815         old_mode = cpsr_read(env);
9816         env->elr_el[new_el] = env->regs[15];
9817 
9818         aarch64_sync_32_to_64(env);
9819 
9820         env->condexec_bits = 0;
9821     }
9822     env->banked_spsr[aarch64_banked_spsr_index(new_el)] = old_mode;
9823 
9824     qemu_log_mask(CPU_LOG_INT, "...with ELR 0x%" PRIx64 "\n",
9825                   env->elr_el[new_el]);
9826 
9827     if (cpu_isar_feature(aa64_pan, cpu)) {
9828         /* The value of PSTATE.PAN is normally preserved, except when ... */
9829         new_mode |= old_mode & PSTATE_PAN;
9830         switch (new_el) {
9831         case 2:
9832             /* ... the target is EL2 with HCR_EL2.{E2H,TGE} == '11' ...  */
9833             if ((arm_hcr_el2_eff(env) & (HCR_E2H | HCR_TGE))
9834                 != (HCR_E2H | HCR_TGE)) {
9835                 break;
9836             }
9837             /* fall through */
9838         case 1:
9839             /* ... the target is EL1 ... */
9840             /* ... and SCTLR_ELx.SPAN == 0, then set to 1.  */
9841             if ((env->cp15.sctlr_el[new_el] & SCTLR_SPAN) == 0) {
9842                 new_mode |= PSTATE_PAN;
9843             }
9844             break;
9845         }
9846     }
9847     if (cpu_isar_feature(aa64_mte, cpu)) {
9848         new_mode |= PSTATE_TCO;
9849     }
9850 
9851     pstate_write(env, PSTATE_DAIF | new_mode);
9852     env->aarch64 = 1;
9853     aarch64_restore_sp(env, new_el);
9854     helper_rebuild_hflags_a64(env, new_el);
9855 
9856     env->pc = addr;
9857 
9858     qemu_log_mask(CPU_LOG_INT, "...to EL%d PC 0x%" PRIx64 " PSTATE 0x%x\n",
9859                   new_el, env->pc, pstate_read(env));
9860 }
9861 
9862 /*
9863  * Do semihosting call and set the appropriate return value. All the
9864  * permission and validity checks have been done at translate time.
9865  *
9866  * We only see semihosting exceptions in TCG only as they are not
9867  * trapped to the hypervisor in KVM.
9868  */
9869 #ifdef CONFIG_TCG
9870 static void handle_semihosting(CPUState *cs)
9871 {
9872     ARMCPU *cpu = ARM_CPU(cs);
9873     CPUARMState *env = &cpu->env;
9874 
9875     if (is_a64(env)) {
9876         qemu_log_mask(CPU_LOG_INT,
9877                       "...handling as semihosting call 0x%" PRIx64 "\n",
9878                       env->xregs[0]);
9879         env->xregs[0] = do_common_semihosting(cs);
9880         env->pc += 4;
9881     } else {
9882         qemu_log_mask(CPU_LOG_INT,
9883                       "...handling as semihosting call 0x%x\n",
9884                       env->regs[0]);
9885         env->regs[0] = do_common_semihosting(cs);
9886         env->regs[15] += env->thumb ? 2 : 4;
9887     }
9888 }
9889 #endif
9890 
9891 /* Handle a CPU exception for A and R profile CPUs.
9892  * Do any appropriate logging, handle PSCI calls, and then hand off
9893  * to the AArch64-entry or AArch32-entry function depending on the
9894  * target exception level's register width.
9895  */
9896 void arm_cpu_do_interrupt(CPUState *cs)
9897 {
9898     ARMCPU *cpu = ARM_CPU(cs);
9899     CPUARMState *env = &cpu->env;
9900     unsigned int new_el = env->exception.target_el;
9901 
9902     assert(!arm_feature(env, ARM_FEATURE_M));
9903 
9904     arm_log_exception(cs->exception_index);
9905     qemu_log_mask(CPU_LOG_INT, "...from EL%d to EL%d\n", arm_current_el(env),
9906                   new_el);
9907     if (qemu_loglevel_mask(CPU_LOG_INT)
9908         && !excp_is_internal(cs->exception_index)) {
9909         qemu_log_mask(CPU_LOG_INT, "...with ESR 0x%x/0x%" PRIx32 "\n",
9910                       syn_get_ec(env->exception.syndrome),
9911                       env->exception.syndrome);
9912     }
9913 
9914     if (arm_is_psci_call(cpu, cs->exception_index)) {
9915         arm_handle_psci_call(cpu);
9916         qemu_log_mask(CPU_LOG_INT, "...handled as PSCI call\n");
9917         return;
9918     }
9919 
9920     /*
9921      * Semihosting semantics depend on the register width of the code
9922      * that caused the exception, not the target exception level, so
9923      * must be handled here.
9924      */
9925 #ifdef CONFIG_TCG
9926     if (cs->exception_index == EXCP_SEMIHOST) {
9927         handle_semihosting(cs);
9928         return;
9929     }
9930 #endif
9931 
9932     /* Hooks may change global state so BQL should be held, also the
9933      * BQL needs to be held for any modification of
9934      * cs->interrupt_request.
9935      */
9936     g_assert(qemu_mutex_iothread_locked());
9937 
9938     arm_call_pre_el_change_hook(cpu);
9939 
9940     assert(!excp_is_internal(cs->exception_index));
9941     if (arm_el_is_aa64(env, new_el)) {
9942         arm_cpu_do_interrupt_aarch64(cs);
9943     } else {
9944         arm_cpu_do_interrupt_aarch32(cs);
9945     }
9946 
9947     arm_call_el_change_hook(cpu);
9948 
9949     if (!kvm_enabled()) {
9950         cs->interrupt_request |= CPU_INTERRUPT_EXITTB;
9951     }
9952 }
9953 #endif /* !CONFIG_USER_ONLY */
9954 
9955 uint64_t arm_sctlr(CPUARMState *env, int el)
9956 {
9957     /* Only EL0 needs to be adjusted for EL1&0 or EL2&0. */
9958     if (el == 0) {
9959         ARMMMUIdx mmu_idx = arm_mmu_idx_el(env, 0);
9960         el = (mmu_idx == ARMMMUIdx_E20_0 ? 2 : 1);
9961     }
9962     return env->cp15.sctlr_el[el];
9963 }
9964 
9965 /* Return the SCTLR value which controls this address translation regime */
9966 static inline uint64_t regime_sctlr(CPUARMState *env, ARMMMUIdx mmu_idx)
9967 {
9968     return env->cp15.sctlr_el[regime_el(env, mmu_idx)];
9969 }
9970 
9971 #ifndef CONFIG_USER_ONLY
9972 
9973 /* Return true if the specified stage of address translation is disabled */
9974 static inline bool regime_translation_disabled(CPUARMState *env,
9975                                                ARMMMUIdx mmu_idx)
9976 {
9977     if (arm_feature(env, ARM_FEATURE_M)) {
9978         switch (env->v7m.mpu_ctrl[regime_is_secure(env, mmu_idx)] &
9979                 (R_V7M_MPU_CTRL_ENABLE_MASK | R_V7M_MPU_CTRL_HFNMIENA_MASK)) {
9980         case R_V7M_MPU_CTRL_ENABLE_MASK:
9981             /* Enabled, but not for HardFault and NMI */
9982             return mmu_idx & ARM_MMU_IDX_M_NEGPRI;
9983         case R_V7M_MPU_CTRL_ENABLE_MASK | R_V7M_MPU_CTRL_HFNMIENA_MASK:
9984             /* Enabled for all cases */
9985             return false;
9986         case 0:
9987         default:
9988             /* HFNMIENA set and ENABLE clear is UNPREDICTABLE, but
9989              * we warned about that in armv7m_nvic.c when the guest set it.
9990              */
9991             return true;
9992         }
9993     }
9994 
9995     if (mmu_idx == ARMMMUIdx_Stage2) {
9996         /* HCR.DC means HCR.VM behaves as 1 */
9997         return (env->cp15.hcr_el2 & (HCR_DC | HCR_VM)) == 0;
9998     }
9999 
10000     if (env->cp15.hcr_el2 & HCR_TGE) {
10001         /* TGE means that NS EL0/1 act as if SCTLR_EL1.M is zero */
10002         if (!regime_is_secure(env, mmu_idx) && regime_el(env, mmu_idx) == 1) {
10003             return true;
10004         }
10005     }
10006 
10007     if ((env->cp15.hcr_el2 & HCR_DC) && arm_mmu_idx_is_stage1_of_2(mmu_idx)) {
10008         /* HCR.DC means SCTLR_EL1.M behaves as 0 */
10009         return true;
10010     }
10011 
10012     return (regime_sctlr(env, mmu_idx) & SCTLR_M) == 0;
10013 }
10014 
10015 static inline bool regime_translation_big_endian(CPUARMState *env,
10016                                                  ARMMMUIdx mmu_idx)
10017 {
10018     return (regime_sctlr(env, mmu_idx) & SCTLR_EE) != 0;
10019 }
10020 
10021 /* Return the TTBR associated with this translation regime */
10022 static inline uint64_t regime_ttbr(CPUARMState *env, ARMMMUIdx mmu_idx,
10023                                    int ttbrn)
10024 {
10025     if (mmu_idx == ARMMMUIdx_Stage2) {
10026         return env->cp15.vttbr_el2;
10027     }
10028     if (ttbrn == 0) {
10029         return env->cp15.ttbr0_el[regime_el(env, mmu_idx)];
10030     } else {
10031         return env->cp15.ttbr1_el[regime_el(env, mmu_idx)];
10032     }
10033 }
10034 
10035 #endif /* !CONFIG_USER_ONLY */
10036 
10037 /* Convert a possible stage1+2 MMU index into the appropriate
10038  * stage 1 MMU index
10039  */
10040 static inline ARMMMUIdx stage_1_mmu_idx(ARMMMUIdx mmu_idx)
10041 {
10042     switch (mmu_idx) {
10043     case ARMMMUIdx_E10_0:
10044         return ARMMMUIdx_Stage1_E0;
10045     case ARMMMUIdx_E10_1:
10046         return ARMMMUIdx_Stage1_E1;
10047     case ARMMMUIdx_E10_1_PAN:
10048         return ARMMMUIdx_Stage1_E1_PAN;
10049     default:
10050         return mmu_idx;
10051     }
10052 }
10053 
10054 /* Return true if the translation regime is using LPAE format page tables */
10055 static inline bool regime_using_lpae_format(CPUARMState *env,
10056                                             ARMMMUIdx mmu_idx)
10057 {
10058     int el = regime_el(env, mmu_idx);
10059     if (el == 2 || arm_el_is_aa64(env, el)) {
10060         return true;
10061     }
10062     if (arm_feature(env, ARM_FEATURE_LPAE)
10063         && (regime_tcr(env, mmu_idx)->raw_tcr & TTBCR_EAE)) {
10064         return true;
10065     }
10066     return false;
10067 }
10068 
10069 /* Returns true if the stage 1 translation regime is using LPAE format page
10070  * tables. Used when raising alignment exceptions, whose FSR changes depending
10071  * on whether the long or short descriptor format is in use. */
10072 bool arm_s1_regime_using_lpae_format(CPUARMState *env, ARMMMUIdx mmu_idx)
10073 {
10074     mmu_idx = stage_1_mmu_idx(mmu_idx);
10075 
10076     return regime_using_lpae_format(env, mmu_idx);
10077 }
10078 
10079 #ifndef CONFIG_USER_ONLY
10080 static inline bool regime_is_user(CPUARMState *env, ARMMMUIdx mmu_idx)
10081 {
10082     switch (mmu_idx) {
10083     case ARMMMUIdx_SE10_0:
10084     case ARMMMUIdx_E20_0:
10085     case ARMMMUIdx_Stage1_E0:
10086     case ARMMMUIdx_MUser:
10087     case ARMMMUIdx_MSUser:
10088     case ARMMMUIdx_MUserNegPri:
10089     case ARMMMUIdx_MSUserNegPri:
10090         return true;
10091     default:
10092         return false;
10093     case ARMMMUIdx_E10_0:
10094     case ARMMMUIdx_E10_1:
10095     case ARMMMUIdx_E10_1_PAN:
10096         g_assert_not_reached();
10097     }
10098 }
10099 
10100 /* Translate section/page access permissions to page
10101  * R/W protection flags
10102  *
10103  * @env:         CPUARMState
10104  * @mmu_idx:     MMU index indicating required translation regime
10105  * @ap:          The 3-bit access permissions (AP[2:0])
10106  * @domain_prot: The 2-bit domain access permissions
10107  */
10108 static inline int ap_to_rw_prot(CPUARMState *env, ARMMMUIdx mmu_idx,
10109                                 int ap, int domain_prot)
10110 {
10111     bool is_user = regime_is_user(env, mmu_idx);
10112 
10113     if (domain_prot == 3) {
10114         return PAGE_READ | PAGE_WRITE;
10115     }
10116 
10117     switch (ap) {
10118     case 0:
10119         if (arm_feature(env, ARM_FEATURE_V7)) {
10120             return 0;
10121         }
10122         switch (regime_sctlr(env, mmu_idx) & (SCTLR_S | SCTLR_R)) {
10123         case SCTLR_S:
10124             return is_user ? 0 : PAGE_READ;
10125         case SCTLR_R:
10126             return PAGE_READ;
10127         default:
10128             return 0;
10129         }
10130     case 1:
10131         return is_user ? 0 : PAGE_READ | PAGE_WRITE;
10132     case 2:
10133         if (is_user) {
10134             return PAGE_READ;
10135         } else {
10136             return PAGE_READ | PAGE_WRITE;
10137         }
10138     case 3:
10139         return PAGE_READ | PAGE_WRITE;
10140     case 4: /* Reserved.  */
10141         return 0;
10142     case 5:
10143         return is_user ? 0 : PAGE_READ;
10144     case 6:
10145         return PAGE_READ;
10146     case 7:
10147         if (!arm_feature(env, ARM_FEATURE_V6K)) {
10148             return 0;
10149         }
10150         return PAGE_READ;
10151     default:
10152         g_assert_not_reached();
10153     }
10154 }
10155 
10156 /* Translate section/page access permissions to page
10157  * R/W protection flags.
10158  *
10159  * @ap:      The 2-bit simple AP (AP[2:1])
10160  * @is_user: TRUE if accessing from PL0
10161  */
10162 static inline int simple_ap_to_rw_prot_is_user(int ap, bool is_user)
10163 {
10164     switch (ap) {
10165     case 0:
10166         return is_user ? 0 : PAGE_READ | PAGE_WRITE;
10167     case 1:
10168         return PAGE_READ | PAGE_WRITE;
10169     case 2:
10170         return is_user ? 0 : PAGE_READ;
10171     case 3:
10172         return PAGE_READ;
10173     default:
10174         g_assert_not_reached();
10175     }
10176 }
10177 
10178 static inline int
10179 simple_ap_to_rw_prot(CPUARMState *env, ARMMMUIdx mmu_idx, int ap)
10180 {
10181     return simple_ap_to_rw_prot_is_user(ap, regime_is_user(env, mmu_idx));
10182 }
10183 
10184 /* Translate S2 section/page access permissions to protection flags
10185  *
10186  * @env:     CPUARMState
10187  * @s2ap:    The 2-bit stage2 access permissions (S2AP)
10188  * @xn:      XN (execute-never) bits
10189  * @s1_is_el0: true if this is S2 of an S1+2 walk for EL0
10190  */
10191 static int get_S2prot(CPUARMState *env, int s2ap, int xn, bool s1_is_el0)
10192 {
10193     int prot = 0;
10194 
10195     if (s2ap & 1) {
10196         prot |= PAGE_READ;
10197     }
10198     if (s2ap & 2) {
10199         prot |= PAGE_WRITE;
10200     }
10201 
10202     if (cpu_isar_feature(any_tts2uxn, env_archcpu(env))) {
10203         switch (xn) {
10204         case 0:
10205             prot |= PAGE_EXEC;
10206             break;
10207         case 1:
10208             if (s1_is_el0) {
10209                 prot |= PAGE_EXEC;
10210             }
10211             break;
10212         case 2:
10213             break;
10214         case 3:
10215             if (!s1_is_el0) {
10216                 prot |= PAGE_EXEC;
10217             }
10218             break;
10219         default:
10220             g_assert_not_reached();
10221         }
10222     } else {
10223         if (!extract32(xn, 1, 1)) {
10224             if (arm_el_is_aa64(env, 2) || prot & PAGE_READ) {
10225                 prot |= PAGE_EXEC;
10226             }
10227         }
10228     }
10229     return prot;
10230 }
10231 
10232 /* Translate section/page access permissions to protection flags
10233  *
10234  * @env:     CPUARMState
10235  * @mmu_idx: MMU index indicating required translation regime
10236  * @is_aa64: TRUE if AArch64
10237  * @ap:      The 2-bit simple AP (AP[2:1])
10238  * @ns:      NS (non-secure) bit
10239  * @xn:      XN (execute-never) bit
10240  * @pxn:     PXN (privileged execute-never) bit
10241  */
10242 static int get_S1prot(CPUARMState *env, ARMMMUIdx mmu_idx, bool is_aa64,
10243                       int ap, int ns, int xn, int pxn)
10244 {
10245     bool is_user = regime_is_user(env, mmu_idx);
10246     int prot_rw, user_rw;
10247     bool have_wxn;
10248     int wxn = 0;
10249 
10250     assert(mmu_idx != ARMMMUIdx_Stage2);
10251 
10252     user_rw = simple_ap_to_rw_prot_is_user(ap, true);
10253     if (is_user) {
10254         prot_rw = user_rw;
10255     } else {
10256         if (user_rw && regime_is_pan(env, mmu_idx)) {
10257             /* PAN forbids data accesses but doesn't affect insn fetch */
10258             prot_rw = 0;
10259         } else {
10260             prot_rw = simple_ap_to_rw_prot_is_user(ap, false);
10261         }
10262     }
10263 
10264     if (ns && arm_is_secure(env) && (env->cp15.scr_el3 & SCR_SIF)) {
10265         return prot_rw;
10266     }
10267 
10268     /* TODO have_wxn should be replaced with
10269      *   ARM_FEATURE_V8 || (ARM_FEATURE_V7 && ARM_FEATURE_EL2)
10270      * when ARM_FEATURE_EL2 starts getting set. For now we assume all LPAE
10271      * compatible processors have EL2, which is required for [U]WXN.
10272      */
10273     have_wxn = arm_feature(env, ARM_FEATURE_LPAE);
10274 
10275     if (have_wxn) {
10276         wxn = regime_sctlr(env, mmu_idx) & SCTLR_WXN;
10277     }
10278 
10279     if (is_aa64) {
10280         if (regime_has_2_ranges(mmu_idx) && !is_user) {
10281             xn = pxn || (user_rw & PAGE_WRITE);
10282         }
10283     } else if (arm_feature(env, ARM_FEATURE_V7)) {
10284         switch (regime_el(env, mmu_idx)) {
10285         case 1:
10286         case 3:
10287             if (is_user) {
10288                 xn = xn || !(user_rw & PAGE_READ);
10289             } else {
10290                 int uwxn = 0;
10291                 if (have_wxn) {
10292                     uwxn = regime_sctlr(env, mmu_idx) & SCTLR_UWXN;
10293                 }
10294                 xn = xn || !(prot_rw & PAGE_READ) || pxn ||
10295                      (uwxn && (user_rw & PAGE_WRITE));
10296             }
10297             break;
10298         case 2:
10299             break;
10300         }
10301     } else {
10302         xn = wxn = 0;
10303     }
10304 
10305     if (xn || (wxn && (prot_rw & PAGE_WRITE))) {
10306         return prot_rw;
10307     }
10308     return prot_rw | PAGE_EXEC;
10309 }
10310 
10311 static bool get_level1_table_address(CPUARMState *env, ARMMMUIdx mmu_idx,
10312                                      uint32_t *table, uint32_t address)
10313 {
10314     /* Note that we can only get here for an AArch32 PL0/PL1 lookup */
10315     TCR *tcr = regime_tcr(env, mmu_idx);
10316 
10317     if (address & tcr->mask) {
10318         if (tcr->raw_tcr & TTBCR_PD1) {
10319             /* Translation table walk disabled for TTBR1 */
10320             return false;
10321         }
10322         *table = regime_ttbr(env, mmu_idx, 1) & 0xffffc000;
10323     } else {
10324         if (tcr->raw_tcr & TTBCR_PD0) {
10325             /* Translation table walk disabled for TTBR0 */
10326             return false;
10327         }
10328         *table = regime_ttbr(env, mmu_idx, 0) & tcr->base_mask;
10329     }
10330     *table |= (address >> 18) & 0x3ffc;
10331     return true;
10332 }
10333 
10334 /* Translate a S1 pagetable walk through S2 if needed.  */
10335 static hwaddr S1_ptw_translate(CPUARMState *env, ARMMMUIdx mmu_idx,
10336                                hwaddr addr, MemTxAttrs txattrs,
10337                                ARMMMUFaultInfo *fi)
10338 {
10339     if (arm_mmu_idx_is_stage1_of_2(mmu_idx) &&
10340         !regime_translation_disabled(env, ARMMMUIdx_Stage2)) {
10341         target_ulong s2size;
10342         hwaddr s2pa;
10343         int s2prot;
10344         int ret;
10345         ARMCacheAttrs cacheattrs = {};
10346 
10347         ret = get_phys_addr_lpae(env, addr, MMU_DATA_LOAD, ARMMMUIdx_Stage2,
10348                                  false,
10349                                  &s2pa, &txattrs, &s2prot, &s2size, fi,
10350                                  &cacheattrs);
10351         if (ret) {
10352             assert(fi->type != ARMFault_None);
10353             fi->s2addr = addr;
10354             fi->stage2 = true;
10355             fi->s1ptw = true;
10356             return ~0;
10357         }
10358         if ((env->cp15.hcr_el2 & HCR_PTW) && (cacheattrs.attrs & 0xf0) == 0) {
10359             /*
10360              * PTW set and S1 walk touched S2 Device memory:
10361              * generate Permission fault.
10362              */
10363             fi->type = ARMFault_Permission;
10364             fi->s2addr = addr;
10365             fi->stage2 = true;
10366             fi->s1ptw = true;
10367             return ~0;
10368         }
10369         addr = s2pa;
10370     }
10371     return addr;
10372 }
10373 
10374 /* All loads done in the course of a page table walk go through here. */
10375 static uint32_t arm_ldl_ptw(CPUState *cs, hwaddr addr, bool is_secure,
10376                             ARMMMUIdx mmu_idx, ARMMMUFaultInfo *fi)
10377 {
10378     ARMCPU *cpu = ARM_CPU(cs);
10379     CPUARMState *env = &cpu->env;
10380     MemTxAttrs attrs = {};
10381     MemTxResult result = MEMTX_OK;
10382     AddressSpace *as;
10383     uint32_t data;
10384 
10385     attrs.secure = is_secure;
10386     as = arm_addressspace(cs, attrs);
10387     addr = S1_ptw_translate(env, mmu_idx, addr, attrs, fi);
10388     if (fi->s1ptw) {
10389         return 0;
10390     }
10391     if (regime_translation_big_endian(env, mmu_idx)) {
10392         data = address_space_ldl_be(as, addr, attrs, &result);
10393     } else {
10394         data = address_space_ldl_le(as, addr, attrs, &result);
10395     }
10396     if (result == MEMTX_OK) {
10397         return data;
10398     }
10399     fi->type = ARMFault_SyncExternalOnWalk;
10400     fi->ea = arm_extabort_type(result);
10401     return 0;
10402 }
10403 
10404 static uint64_t arm_ldq_ptw(CPUState *cs, hwaddr addr, bool is_secure,
10405                             ARMMMUIdx mmu_idx, ARMMMUFaultInfo *fi)
10406 {
10407     ARMCPU *cpu = ARM_CPU(cs);
10408     CPUARMState *env = &cpu->env;
10409     MemTxAttrs attrs = {};
10410     MemTxResult result = MEMTX_OK;
10411     AddressSpace *as;
10412     uint64_t data;
10413 
10414     attrs.secure = is_secure;
10415     as = arm_addressspace(cs, attrs);
10416     addr = S1_ptw_translate(env, mmu_idx, addr, attrs, fi);
10417     if (fi->s1ptw) {
10418         return 0;
10419     }
10420     if (regime_translation_big_endian(env, mmu_idx)) {
10421         data = address_space_ldq_be(as, addr, attrs, &result);
10422     } else {
10423         data = address_space_ldq_le(as, addr, attrs, &result);
10424     }
10425     if (result == MEMTX_OK) {
10426         return data;
10427     }
10428     fi->type = ARMFault_SyncExternalOnWalk;
10429     fi->ea = arm_extabort_type(result);
10430     return 0;
10431 }
10432 
10433 static bool get_phys_addr_v5(CPUARMState *env, uint32_t address,
10434                              MMUAccessType access_type, ARMMMUIdx mmu_idx,
10435                              hwaddr *phys_ptr, int *prot,
10436                              target_ulong *page_size,
10437                              ARMMMUFaultInfo *fi)
10438 {
10439     CPUState *cs = env_cpu(env);
10440     int level = 1;
10441     uint32_t table;
10442     uint32_t desc;
10443     int type;
10444     int ap;
10445     int domain = 0;
10446     int domain_prot;
10447     hwaddr phys_addr;
10448     uint32_t dacr;
10449 
10450     /* Pagetable walk.  */
10451     /* Lookup l1 descriptor.  */
10452     if (!get_level1_table_address(env, mmu_idx, &table, address)) {
10453         /* Section translation fault if page walk is disabled by PD0 or PD1 */
10454         fi->type = ARMFault_Translation;
10455         goto do_fault;
10456     }
10457     desc = arm_ldl_ptw(cs, table, regime_is_secure(env, mmu_idx),
10458                        mmu_idx, fi);
10459     if (fi->type != ARMFault_None) {
10460         goto do_fault;
10461     }
10462     type = (desc & 3);
10463     domain = (desc >> 5) & 0x0f;
10464     if (regime_el(env, mmu_idx) == 1) {
10465         dacr = env->cp15.dacr_ns;
10466     } else {
10467         dacr = env->cp15.dacr_s;
10468     }
10469     domain_prot = (dacr >> (domain * 2)) & 3;
10470     if (type == 0) {
10471         /* Section translation fault.  */
10472         fi->type = ARMFault_Translation;
10473         goto do_fault;
10474     }
10475     if (type != 2) {
10476         level = 2;
10477     }
10478     if (domain_prot == 0 || domain_prot == 2) {
10479         fi->type = ARMFault_Domain;
10480         goto do_fault;
10481     }
10482     if (type == 2) {
10483         /* 1Mb section.  */
10484         phys_addr = (desc & 0xfff00000) | (address & 0x000fffff);
10485         ap = (desc >> 10) & 3;
10486         *page_size = 1024 * 1024;
10487     } else {
10488         /* Lookup l2 entry.  */
10489         if (type == 1) {
10490             /* Coarse pagetable.  */
10491             table = (desc & 0xfffffc00) | ((address >> 10) & 0x3fc);
10492         } else {
10493             /* Fine pagetable.  */
10494             table = (desc & 0xfffff000) | ((address >> 8) & 0xffc);
10495         }
10496         desc = arm_ldl_ptw(cs, table, regime_is_secure(env, mmu_idx),
10497                            mmu_idx, fi);
10498         if (fi->type != ARMFault_None) {
10499             goto do_fault;
10500         }
10501         switch (desc & 3) {
10502         case 0: /* Page translation fault.  */
10503             fi->type = ARMFault_Translation;
10504             goto do_fault;
10505         case 1: /* 64k page.  */
10506             phys_addr = (desc & 0xffff0000) | (address & 0xffff);
10507             ap = (desc >> (4 + ((address >> 13) & 6))) & 3;
10508             *page_size = 0x10000;
10509             break;
10510         case 2: /* 4k page.  */
10511             phys_addr = (desc & 0xfffff000) | (address & 0xfff);
10512             ap = (desc >> (4 + ((address >> 9) & 6))) & 3;
10513             *page_size = 0x1000;
10514             break;
10515         case 3: /* 1k page, or ARMv6/XScale "extended small (4k) page" */
10516             if (type == 1) {
10517                 /* ARMv6/XScale extended small page format */
10518                 if (arm_feature(env, ARM_FEATURE_XSCALE)
10519                     || arm_feature(env, ARM_FEATURE_V6)) {
10520                     phys_addr = (desc & 0xfffff000) | (address & 0xfff);
10521                     *page_size = 0x1000;
10522                 } else {
10523                     /* UNPREDICTABLE in ARMv5; we choose to take a
10524                      * page translation fault.
10525                      */
10526                     fi->type = ARMFault_Translation;
10527                     goto do_fault;
10528                 }
10529             } else {
10530                 phys_addr = (desc & 0xfffffc00) | (address & 0x3ff);
10531                 *page_size = 0x400;
10532             }
10533             ap = (desc >> 4) & 3;
10534             break;
10535         default:
10536             /* Never happens, but compiler isn't smart enough to tell.  */
10537             abort();
10538         }
10539     }
10540     *prot = ap_to_rw_prot(env, mmu_idx, ap, domain_prot);
10541     *prot |= *prot ? PAGE_EXEC : 0;
10542     if (!(*prot & (1 << access_type))) {
10543         /* Access permission fault.  */
10544         fi->type = ARMFault_Permission;
10545         goto do_fault;
10546     }
10547     *phys_ptr = phys_addr;
10548     return false;
10549 do_fault:
10550     fi->domain = domain;
10551     fi->level = level;
10552     return true;
10553 }
10554 
10555 static bool get_phys_addr_v6(CPUARMState *env, uint32_t address,
10556                              MMUAccessType access_type, ARMMMUIdx mmu_idx,
10557                              hwaddr *phys_ptr, MemTxAttrs *attrs, int *prot,
10558                              target_ulong *page_size, ARMMMUFaultInfo *fi)
10559 {
10560     CPUState *cs = env_cpu(env);
10561     ARMCPU *cpu = env_archcpu(env);
10562     int level = 1;
10563     uint32_t table;
10564     uint32_t desc;
10565     uint32_t xn;
10566     uint32_t pxn = 0;
10567     int type;
10568     int ap;
10569     int domain = 0;
10570     int domain_prot;
10571     hwaddr phys_addr;
10572     uint32_t dacr;
10573     bool ns;
10574 
10575     /* Pagetable walk.  */
10576     /* Lookup l1 descriptor.  */
10577     if (!get_level1_table_address(env, mmu_idx, &table, address)) {
10578         /* Section translation fault if page walk is disabled by PD0 or PD1 */
10579         fi->type = ARMFault_Translation;
10580         goto do_fault;
10581     }
10582     desc = arm_ldl_ptw(cs, table, regime_is_secure(env, mmu_idx),
10583                        mmu_idx, fi);
10584     if (fi->type != ARMFault_None) {
10585         goto do_fault;
10586     }
10587     type = (desc & 3);
10588     if (type == 0 || (type == 3 && !cpu_isar_feature(aa32_pxn, cpu))) {
10589         /* Section translation fault, or attempt to use the encoding
10590          * which is Reserved on implementations without PXN.
10591          */
10592         fi->type = ARMFault_Translation;
10593         goto do_fault;
10594     }
10595     if ((type == 1) || !(desc & (1 << 18))) {
10596         /* Page or Section.  */
10597         domain = (desc >> 5) & 0x0f;
10598     }
10599     if (regime_el(env, mmu_idx) == 1) {
10600         dacr = env->cp15.dacr_ns;
10601     } else {
10602         dacr = env->cp15.dacr_s;
10603     }
10604     if (type == 1) {
10605         level = 2;
10606     }
10607     domain_prot = (dacr >> (domain * 2)) & 3;
10608     if (domain_prot == 0 || domain_prot == 2) {
10609         /* Section or Page domain fault */
10610         fi->type = ARMFault_Domain;
10611         goto do_fault;
10612     }
10613     if (type != 1) {
10614         if (desc & (1 << 18)) {
10615             /* Supersection.  */
10616             phys_addr = (desc & 0xff000000) | (address & 0x00ffffff);
10617             phys_addr |= (uint64_t)extract32(desc, 20, 4) << 32;
10618             phys_addr |= (uint64_t)extract32(desc, 5, 4) << 36;
10619             *page_size = 0x1000000;
10620         } else {
10621             /* Section.  */
10622             phys_addr = (desc & 0xfff00000) | (address & 0x000fffff);
10623             *page_size = 0x100000;
10624         }
10625         ap = ((desc >> 10) & 3) | ((desc >> 13) & 4);
10626         xn = desc & (1 << 4);
10627         pxn = desc & 1;
10628         ns = extract32(desc, 19, 1);
10629     } else {
10630         if (cpu_isar_feature(aa32_pxn, cpu)) {
10631             pxn = (desc >> 2) & 1;
10632         }
10633         ns = extract32(desc, 3, 1);
10634         /* Lookup l2 entry.  */
10635         table = (desc & 0xfffffc00) | ((address >> 10) & 0x3fc);
10636         desc = arm_ldl_ptw(cs, table, regime_is_secure(env, mmu_idx),
10637                            mmu_idx, fi);
10638         if (fi->type != ARMFault_None) {
10639             goto do_fault;
10640         }
10641         ap = ((desc >> 4) & 3) | ((desc >> 7) & 4);
10642         switch (desc & 3) {
10643         case 0: /* Page translation fault.  */
10644             fi->type = ARMFault_Translation;
10645             goto do_fault;
10646         case 1: /* 64k page.  */
10647             phys_addr = (desc & 0xffff0000) | (address & 0xffff);
10648             xn = desc & (1 << 15);
10649             *page_size = 0x10000;
10650             break;
10651         case 2: case 3: /* 4k page.  */
10652             phys_addr = (desc & 0xfffff000) | (address & 0xfff);
10653             xn = desc & 1;
10654             *page_size = 0x1000;
10655             break;
10656         default:
10657             /* Never happens, but compiler isn't smart enough to tell.  */
10658             abort();
10659         }
10660     }
10661     if (domain_prot == 3) {
10662         *prot = PAGE_READ | PAGE_WRITE | PAGE_EXEC;
10663     } else {
10664         if (pxn && !regime_is_user(env, mmu_idx)) {
10665             xn = 1;
10666         }
10667         if (xn && access_type == MMU_INST_FETCH) {
10668             fi->type = ARMFault_Permission;
10669             goto do_fault;
10670         }
10671 
10672         if (arm_feature(env, ARM_FEATURE_V6K) &&
10673                 (regime_sctlr(env, mmu_idx) & SCTLR_AFE)) {
10674             /* The simplified model uses AP[0] as an access control bit.  */
10675             if ((ap & 1) == 0) {
10676                 /* Access flag fault.  */
10677                 fi->type = ARMFault_AccessFlag;
10678                 goto do_fault;
10679             }
10680             *prot = simple_ap_to_rw_prot(env, mmu_idx, ap >> 1);
10681         } else {
10682             *prot = ap_to_rw_prot(env, mmu_idx, ap, domain_prot);
10683         }
10684         if (*prot && !xn) {
10685             *prot |= PAGE_EXEC;
10686         }
10687         if (!(*prot & (1 << access_type))) {
10688             /* Access permission fault.  */
10689             fi->type = ARMFault_Permission;
10690             goto do_fault;
10691         }
10692     }
10693     if (ns) {
10694         /* The NS bit will (as required by the architecture) have no effect if
10695          * the CPU doesn't support TZ or this is a non-secure translation
10696          * regime, because the attribute will already be non-secure.
10697          */
10698         attrs->secure = false;
10699     }
10700     *phys_ptr = phys_addr;
10701     return false;
10702 do_fault:
10703     fi->domain = domain;
10704     fi->level = level;
10705     return true;
10706 }
10707 
10708 /*
10709  * check_s2_mmu_setup
10710  * @cpu:        ARMCPU
10711  * @is_aa64:    True if the translation regime is in AArch64 state
10712  * @startlevel: Suggested starting level
10713  * @inputsize:  Bitsize of IPAs
10714  * @stride:     Page-table stride (See the ARM ARM)
10715  *
10716  * Returns true if the suggested S2 translation parameters are OK and
10717  * false otherwise.
10718  */
10719 static bool check_s2_mmu_setup(ARMCPU *cpu, bool is_aa64, int level,
10720                                int inputsize, int stride)
10721 {
10722     const int grainsize = stride + 3;
10723     int startsizecheck;
10724 
10725     /* Negative levels are never allowed.  */
10726     if (level < 0) {
10727         return false;
10728     }
10729 
10730     startsizecheck = inputsize - ((3 - level) * stride + grainsize);
10731     if (startsizecheck < 1 || startsizecheck > stride + 4) {
10732         return false;
10733     }
10734 
10735     if (is_aa64) {
10736         CPUARMState *env = &cpu->env;
10737         unsigned int pamax = arm_pamax(cpu);
10738 
10739         switch (stride) {
10740         case 13: /* 64KB Pages.  */
10741             if (level == 0 || (level == 1 && pamax <= 42)) {
10742                 return false;
10743             }
10744             break;
10745         case 11: /* 16KB Pages.  */
10746             if (level == 0 || (level == 1 && pamax <= 40)) {
10747                 return false;
10748             }
10749             break;
10750         case 9: /* 4KB Pages.  */
10751             if (level == 0 && pamax <= 42) {
10752                 return false;
10753             }
10754             break;
10755         default:
10756             g_assert_not_reached();
10757         }
10758 
10759         /* Inputsize checks.  */
10760         if (inputsize > pamax &&
10761             (arm_el_is_aa64(env, 1) || inputsize > 40)) {
10762             /* This is CONSTRAINED UNPREDICTABLE and we choose to fault.  */
10763             return false;
10764         }
10765     } else {
10766         /* AArch32 only supports 4KB pages. Assert on that.  */
10767         assert(stride == 9);
10768 
10769         if (level == 0) {
10770             return false;
10771         }
10772     }
10773     return true;
10774 }
10775 
10776 /* Translate from the 4-bit stage 2 representation of
10777  * memory attributes (without cache-allocation hints) to
10778  * the 8-bit representation of the stage 1 MAIR registers
10779  * (which includes allocation hints).
10780  *
10781  * ref: shared/translation/attrs/S2AttrDecode()
10782  *      .../S2ConvertAttrsHints()
10783  */
10784 static uint8_t convert_stage2_attrs(CPUARMState *env, uint8_t s2attrs)
10785 {
10786     uint8_t hiattr = extract32(s2attrs, 2, 2);
10787     uint8_t loattr = extract32(s2attrs, 0, 2);
10788     uint8_t hihint = 0, lohint = 0;
10789 
10790     if (hiattr != 0) { /* normal memory */
10791         if ((env->cp15.hcr_el2 & HCR_CD) != 0) { /* cache disabled */
10792             hiattr = loattr = 1; /* non-cacheable */
10793         } else {
10794             if (hiattr != 1) { /* Write-through or write-back */
10795                 hihint = 3; /* RW allocate */
10796             }
10797             if (loattr != 1) { /* Write-through or write-back */
10798                 lohint = 3; /* RW allocate */
10799             }
10800         }
10801     }
10802 
10803     return (hiattr << 6) | (hihint << 4) | (loattr << 2) | lohint;
10804 }
10805 #endif /* !CONFIG_USER_ONLY */
10806 
10807 static int aa64_va_parameter_tbi(uint64_t tcr, ARMMMUIdx mmu_idx)
10808 {
10809     if (regime_has_2_ranges(mmu_idx)) {
10810         return extract64(tcr, 37, 2);
10811     } else if (mmu_idx == ARMMMUIdx_Stage2) {
10812         return 0; /* VTCR_EL2 */
10813     } else {
10814         /* Replicate the single TBI bit so we always have 2 bits.  */
10815         return extract32(tcr, 20, 1) * 3;
10816     }
10817 }
10818 
10819 static int aa64_va_parameter_tbid(uint64_t tcr, ARMMMUIdx mmu_idx)
10820 {
10821     if (regime_has_2_ranges(mmu_idx)) {
10822         return extract64(tcr, 51, 2);
10823     } else if (mmu_idx == ARMMMUIdx_Stage2) {
10824         return 0; /* VTCR_EL2 */
10825     } else {
10826         /* Replicate the single TBID bit so we always have 2 bits.  */
10827         return extract32(tcr, 29, 1) * 3;
10828     }
10829 }
10830 
10831 static int aa64_va_parameter_tcma(uint64_t tcr, ARMMMUIdx mmu_idx)
10832 {
10833     if (regime_has_2_ranges(mmu_idx)) {
10834         return extract64(tcr, 57, 2);
10835     } else {
10836         /* Replicate the single TCMA bit so we always have 2 bits.  */
10837         return extract32(tcr, 30, 1) * 3;
10838     }
10839 }
10840 
10841 ARMVAParameters aa64_va_parameters(CPUARMState *env, uint64_t va,
10842                                    ARMMMUIdx mmu_idx, bool data)
10843 {
10844     uint64_t tcr = regime_tcr(env, mmu_idx)->raw_tcr;
10845     bool epd, hpd, using16k, using64k;
10846     int select, tsz, tbi, max_tsz;
10847 
10848     if (!regime_has_2_ranges(mmu_idx)) {
10849         select = 0;
10850         tsz = extract32(tcr, 0, 6);
10851         using64k = extract32(tcr, 14, 1);
10852         using16k = extract32(tcr, 15, 1);
10853         if (mmu_idx == ARMMMUIdx_Stage2) {
10854             /* VTCR_EL2 */
10855             hpd = false;
10856         } else {
10857             hpd = extract32(tcr, 24, 1);
10858         }
10859         epd = false;
10860     } else {
10861         /*
10862          * Bit 55 is always between the two regions, and is canonical for
10863          * determining if address tagging is enabled.
10864          */
10865         select = extract64(va, 55, 1);
10866         if (!select) {
10867             tsz = extract32(tcr, 0, 6);
10868             epd = extract32(tcr, 7, 1);
10869             using64k = extract32(tcr, 14, 1);
10870             using16k = extract32(tcr, 15, 1);
10871             hpd = extract64(tcr, 41, 1);
10872         } else {
10873             int tg = extract32(tcr, 30, 2);
10874             using16k = tg == 1;
10875             using64k = tg == 3;
10876             tsz = extract32(tcr, 16, 6);
10877             epd = extract32(tcr, 23, 1);
10878             hpd = extract64(tcr, 42, 1);
10879         }
10880     }
10881 
10882     if (cpu_isar_feature(aa64_st, env_archcpu(env))) {
10883         max_tsz = 48 - using64k;
10884     } else {
10885         max_tsz = 39;
10886     }
10887 
10888     tsz = MIN(tsz, max_tsz);
10889     tsz = MAX(tsz, 16);  /* TODO: ARMv8.2-LVA  */
10890 
10891     /* Present TBI as a composite with TBID.  */
10892     tbi = aa64_va_parameter_tbi(tcr, mmu_idx);
10893     if (!data) {
10894         tbi &= ~aa64_va_parameter_tbid(tcr, mmu_idx);
10895     }
10896     tbi = (tbi >> select) & 1;
10897 
10898     return (ARMVAParameters) {
10899         .tsz = tsz,
10900         .select = select,
10901         .tbi = tbi,
10902         .epd = epd,
10903         .hpd = hpd,
10904         .using16k = using16k,
10905         .using64k = using64k,
10906     };
10907 }
10908 
10909 #ifndef CONFIG_USER_ONLY
10910 static ARMVAParameters aa32_va_parameters(CPUARMState *env, uint32_t va,
10911                                           ARMMMUIdx mmu_idx)
10912 {
10913     uint64_t tcr = regime_tcr(env, mmu_idx)->raw_tcr;
10914     uint32_t el = regime_el(env, mmu_idx);
10915     int select, tsz;
10916     bool epd, hpd;
10917 
10918     if (mmu_idx == ARMMMUIdx_Stage2) {
10919         /* VTCR */
10920         bool sext = extract32(tcr, 4, 1);
10921         bool sign = extract32(tcr, 3, 1);
10922 
10923         /*
10924          * If the sign-extend bit is not the same as t0sz[3], the result
10925          * is unpredictable. Flag this as a guest error.
10926          */
10927         if (sign != sext) {
10928             qemu_log_mask(LOG_GUEST_ERROR,
10929                           "AArch32: VTCR.S / VTCR.T0SZ[3] mismatch\n");
10930         }
10931         tsz = sextract32(tcr, 0, 4) + 8;
10932         select = 0;
10933         hpd = false;
10934         epd = false;
10935     } else if (el == 2) {
10936         /* HTCR */
10937         tsz = extract32(tcr, 0, 3);
10938         select = 0;
10939         hpd = extract64(tcr, 24, 1);
10940         epd = false;
10941     } else {
10942         int t0sz = extract32(tcr, 0, 3);
10943         int t1sz = extract32(tcr, 16, 3);
10944 
10945         if (t1sz == 0) {
10946             select = va > (0xffffffffu >> t0sz);
10947         } else {
10948             /* Note that we will detect errors later.  */
10949             select = va >= ~(0xffffffffu >> t1sz);
10950         }
10951         if (!select) {
10952             tsz = t0sz;
10953             epd = extract32(tcr, 7, 1);
10954             hpd = extract64(tcr, 41, 1);
10955         } else {
10956             tsz = t1sz;
10957             epd = extract32(tcr, 23, 1);
10958             hpd = extract64(tcr, 42, 1);
10959         }
10960         /* For aarch32, hpd0 is not enabled without t2e as well.  */
10961         hpd &= extract32(tcr, 6, 1);
10962     }
10963 
10964     return (ARMVAParameters) {
10965         .tsz = tsz,
10966         .select = select,
10967         .epd = epd,
10968         .hpd = hpd,
10969     };
10970 }
10971 
10972 /**
10973  * get_phys_addr_lpae: perform one stage of page table walk, LPAE format
10974  *
10975  * Returns false if the translation was successful. Otherwise, phys_ptr, attrs,
10976  * prot and page_size may not be filled in, and the populated fsr value provides
10977  * information on why the translation aborted, in the format of a long-format
10978  * DFSR/IFSR fault register, with the following caveats:
10979  *  * the WnR bit is never set (the caller must do this).
10980  *
10981  * @env: CPUARMState
10982  * @address: virtual address to get physical address for
10983  * @access_type: MMU_DATA_LOAD, MMU_DATA_STORE or MMU_INST_FETCH
10984  * @mmu_idx: MMU index indicating required translation regime
10985  * @s1_is_el0: if @mmu_idx is ARMMMUIdx_Stage2 (so this is a stage 2 page table
10986  *             walk), must be true if this is stage 2 of a stage 1+2 walk for an
10987  *             EL0 access). If @mmu_idx is anything else, @s1_is_el0 is ignored.
10988  * @phys_ptr: set to the physical address corresponding to the virtual address
10989  * @attrs: set to the memory transaction attributes to use
10990  * @prot: set to the permissions for the page containing phys_ptr
10991  * @page_size_ptr: set to the size of the page containing phys_ptr
10992  * @fi: set to fault info if the translation fails
10993  * @cacheattrs: (if non-NULL) set to the cacheability/shareability attributes
10994  */
10995 static bool get_phys_addr_lpae(CPUARMState *env, uint64_t address,
10996                                MMUAccessType access_type, ARMMMUIdx mmu_idx,
10997                                bool s1_is_el0,
10998                                hwaddr *phys_ptr, MemTxAttrs *txattrs, int *prot,
10999                                target_ulong *page_size_ptr,
11000                                ARMMMUFaultInfo *fi, ARMCacheAttrs *cacheattrs)
11001 {
11002     ARMCPU *cpu = env_archcpu(env);
11003     CPUState *cs = CPU(cpu);
11004     /* Read an LPAE long-descriptor translation table. */
11005     ARMFaultType fault_type = ARMFault_Translation;
11006     uint32_t level;
11007     ARMVAParameters param;
11008     uint64_t ttbr;
11009     hwaddr descaddr, indexmask, indexmask_grainsize;
11010     uint32_t tableattrs;
11011     target_ulong page_size;
11012     uint32_t attrs;
11013     int32_t stride;
11014     int addrsize, inputsize;
11015     TCR *tcr = regime_tcr(env, mmu_idx);
11016     int ap, ns, xn, pxn;
11017     uint32_t el = regime_el(env, mmu_idx);
11018     uint64_t descaddrmask;
11019     bool aarch64 = arm_el_is_aa64(env, el);
11020     bool guarded = false;
11021 
11022     /* TODO: This code does not support shareability levels. */
11023     if (aarch64) {
11024         param = aa64_va_parameters(env, address, mmu_idx,
11025                                    access_type != MMU_INST_FETCH);
11026         level = 0;
11027         addrsize = 64 - 8 * param.tbi;
11028         inputsize = 64 - param.tsz;
11029     } else {
11030         param = aa32_va_parameters(env, address, mmu_idx);
11031         level = 1;
11032         addrsize = (mmu_idx == ARMMMUIdx_Stage2 ? 40 : 32);
11033         inputsize = addrsize - param.tsz;
11034     }
11035 
11036     /*
11037      * We determined the region when collecting the parameters, but we
11038      * have not yet validated that the address is valid for the region.
11039      * Extract the top bits and verify that they all match select.
11040      *
11041      * For aa32, if inputsize == addrsize, then we have selected the
11042      * region by exclusion in aa32_va_parameters and there is no more
11043      * validation to do here.
11044      */
11045     if (inputsize < addrsize) {
11046         target_ulong top_bits = sextract64(address, inputsize,
11047                                            addrsize - inputsize);
11048         if (-top_bits != param.select) {
11049             /* The gap between the two regions is a Translation fault */
11050             fault_type = ARMFault_Translation;
11051             goto do_fault;
11052         }
11053     }
11054 
11055     if (param.using64k) {
11056         stride = 13;
11057     } else if (param.using16k) {
11058         stride = 11;
11059     } else {
11060         stride = 9;
11061     }
11062 
11063     /* Note that QEMU ignores shareability and cacheability attributes,
11064      * so we don't need to do anything with the SH, ORGN, IRGN fields
11065      * in the TTBCR.  Similarly, TTBCR:A1 selects whether we get the
11066      * ASID from TTBR0 or TTBR1, but QEMU's TLB doesn't currently
11067      * implement any ASID-like capability so we can ignore it (instead
11068      * we will always flush the TLB any time the ASID is changed).
11069      */
11070     ttbr = regime_ttbr(env, mmu_idx, param.select);
11071 
11072     /* Here we should have set up all the parameters for the translation:
11073      * inputsize, ttbr, epd, stride, tbi
11074      */
11075 
11076     if (param.epd) {
11077         /* Translation table walk disabled => Translation fault on TLB miss
11078          * Note: This is always 0 on 64-bit EL2 and EL3.
11079          */
11080         goto do_fault;
11081     }
11082 
11083     if (mmu_idx != ARMMMUIdx_Stage2) {
11084         /* The starting level depends on the virtual address size (which can
11085          * be up to 48 bits) and the translation granule size. It indicates
11086          * the number of strides (stride bits at a time) needed to
11087          * consume the bits of the input address. In the pseudocode this is:
11088          *  level = 4 - RoundUp((inputsize - grainsize) / stride)
11089          * where their 'inputsize' is our 'inputsize', 'grainsize' is
11090          * our 'stride + 3' and 'stride' is our 'stride'.
11091          * Applying the usual "rounded up m/n is (m+n-1)/n" and simplifying:
11092          * = 4 - (inputsize - stride - 3 + stride - 1) / stride
11093          * = 4 - (inputsize - 4) / stride;
11094          */
11095         level = 4 - (inputsize - 4) / stride;
11096     } else {
11097         /* For stage 2 translations the starting level is specified by the
11098          * VTCR_EL2.SL0 field (whose interpretation depends on the page size)
11099          */
11100         uint32_t sl0 = extract32(tcr->raw_tcr, 6, 2);
11101         uint32_t startlevel;
11102         bool ok;
11103 
11104         if (!aarch64 || stride == 9) {
11105             /* AArch32 or 4KB pages */
11106             startlevel = 2 - sl0;
11107 
11108             if (cpu_isar_feature(aa64_st, cpu)) {
11109                 startlevel &= 3;
11110             }
11111         } else {
11112             /* 16KB or 64KB pages */
11113             startlevel = 3 - sl0;
11114         }
11115 
11116         /* Check that the starting level is valid. */
11117         ok = check_s2_mmu_setup(cpu, aarch64, startlevel,
11118                                 inputsize, stride);
11119         if (!ok) {
11120             fault_type = ARMFault_Translation;
11121             goto do_fault;
11122         }
11123         level = startlevel;
11124     }
11125 
11126     indexmask_grainsize = (1ULL << (stride + 3)) - 1;
11127     indexmask = (1ULL << (inputsize - (stride * (4 - level)))) - 1;
11128 
11129     /* Now we can extract the actual base address from the TTBR */
11130     descaddr = extract64(ttbr, 0, 48);
11131     /*
11132      * We rely on this masking to clear the RES0 bits at the bottom of the TTBR
11133      * and also to mask out CnP (bit 0) which could validly be non-zero.
11134      */
11135     descaddr &= ~indexmask;
11136 
11137     /* The address field in the descriptor goes up to bit 39 for ARMv7
11138      * but up to bit 47 for ARMv8, but we use the descaddrmask
11139      * up to bit 39 for AArch32, because we don't need other bits in that case
11140      * to construct next descriptor address (anyway they should be all zeroes).
11141      */
11142     descaddrmask = ((1ull << (aarch64 ? 48 : 40)) - 1) &
11143                    ~indexmask_grainsize;
11144 
11145     /* Secure accesses start with the page table in secure memory and
11146      * can be downgraded to non-secure at any step. Non-secure accesses
11147      * remain non-secure. We implement this by just ORing in the NSTable/NS
11148      * bits at each step.
11149      */
11150     tableattrs = regime_is_secure(env, mmu_idx) ? 0 : (1 << 4);
11151     for (;;) {
11152         uint64_t descriptor;
11153         bool nstable;
11154 
11155         descaddr |= (address >> (stride * (4 - level))) & indexmask;
11156         descaddr &= ~7ULL;
11157         nstable = extract32(tableattrs, 4, 1);
11158         descriptor = arm_ldq_ptw(cs, descaddr, !nstable, mmu_idx, fi);
11159         if (fi->type != ARMFault_None) {
11160             goto do_fault;
11161         }
11162 
11163         if (!(descriptor & 1) ||
11164             (!(descriptor & 2) && (level == 3))) {
11165             /* Invalid, or the Reserved level 3 encoding */
11166             goto do_fault;
11167         }
11168         descaddr = descriptor & descaddrmask;
11169 
11170         if ((descriptor & 2) && (level < 3)) {
11171             /* Table entry. The top five bits are attributes which may
11172              * propagate down through lower levels of the table (and
11173              * which are all arranged so that 0 means "no effect", so
11174              * we can gather them up by ORing in the bits at each level).
11175              */
11176             tableattrs |= extract64(descriptor, 59, 5);
11177             level++;
11178             indexmask = indexmask_grainsize;
11179             continue;
11180         }
11181         /* Block entry at level 1 or 2, or page entry at level 3.
11182          * These are basically the same thing, although the number
11183          * of bits we pull in from the vaddr varies.
11184          */
11185         page_size = (1ULL << ((stride * (4 - level)) + 3));
11186         descaddr |= (address & (page_size - 1));
11187         /* Extract attributes from the descriptor */
11188         attrs = extract64(descriptor, 2, 10)
11189             | (extract64(descriptor, 52, 12) << 10);
11190 
11191         if (mmu_idx == ARMMMUIdx_Stage2) {
11192             /* Stage 2 table descriptors do not include any attribute fields */
11193             break;
11194         }
11195         /* Merge in attributes from table descriptors */
11196         attrs |= nstable << 3; /* NS */
11197         guarded = extract64(descriptor, 50, 1);  /* GP */
11198         if (param.hpd) {
11199             /* HPD disables all the table attributes except NSTable.  */
11200             break;
11201         }
11202         attrs |= extract32(tableattrs, 0, 2) << 11;     /* XN, PXN */
11203         /* The sense of AP[1] vs APTable[0] is reversed, as APTable[0] == 1
11204          * means "force PL1 access only", which means forcing AP[1] to 0.
11205          */
11206         attrs &= ~(extract32(tableattrs, 2, 1) << 4);   /* !APT[0] => AP[1] */
11207         attrs |= extract32(tableattrs, 3, 1) << 5;      /* APT[1] => AP[2] */
11208         break;
11209     }
11210     /* Here descaddr is the final physical address, and attributes
11211      * are all in attrs.
11212      */
11213     fault_type = ARMFault_AccessFlag;
11214     if ((attrs & (1 << 8)) == 0) {
11215         /* Access flag */
11216         goto do_fault;
11217     }
11218 
11219     ap = extract32(attrs, 4, 2);
11220 
11221     if (mmu_idx == ARMMMUIdx_Stage2) {
11222         ns = true;
11223         xn = extract32(attrs, 11, 2);
11224         *prot = get_S2prot(env, ap, xn, s1_is_el0);
11225     } else {
11226         ns = extract32(attrs, 3, 1);
11227         xn = extract32(attrs, 12, 1);
11228         pxn = extract32(attrs, 11, 1);
11229         *prot = get_S1prot(env, mmu_idx, aarch64, ap, ns, xn, pxn);
11230     }
11231 
11232     fault_type = ARMFault_Permission;
11233     if (!(*prot & (1 << access_type))) {
11234         goto do_fault;
11235     }
11236 
11237     if (ns) {
11238         /* The NS bit will (as required by the architecture) have no effect if
11239          * the CPU doesn't support TZ or this is a non-secure translation
11240          * regime, because the attribute will already be non-secure.
11241          */
11242         txattrs->secure = false;
11243     }
11244     /* When in aarch64 mode, and BTI is enabled, remember GP in the IOTLB.  */
11245     if (aarch64 && guarded && cpu_isar_feature(aa64_bti, cpu)) {
11246         arm_tlb_bti_gp(txattrs) = true;
11247     }
11248 
11249     if (mmu_idx == ARMMMUIdx_Stage2) {
11250         cacheattrs->attrs = convert_stage2_attrs(env, extract32(attrs, 0, 4));
11251     } else {
11252         /* Index into MAIR registers for cache attributes */
11253         uint8_t attrindx = extract32(attrs, 0, 3);
11254         uint64_t mair = env->cp15.mair_el[regime_el(env, mmu_idx)];
11255         assert(attrindx <= 7);
11256         cacheattrs->attrs = extract64(mair, attrindx * 8, 8);
11257     }
11258     cacheattrs->shareability = extract32(attrs, 6, 2);
11259 
11260     *phys_ptr = descaddr;
11261     *page_size_ptr = page_size;
11262     return false;
11263 
11264 do_fault:
11265     fi->type = fault_type;
11266     fi->level = level;
11267     /* Tag the error as S2 for failed S1 PTW at S2 or ordinary S2.  */
11268     fi->stage2 = fi->s1ptw || (mmu_idx == ARMMMUIdx_Stage2);
11269     return true;
11270 }
11271 
11272 static inline void get_phys_addr_pmsav7_default(CPUARMState *env,
11273                                                 ARMMMUIdx mmu_idx,
11274                                                 int32_t address, int *prot)
11275 {
11276     if (!arm_feature(env, ARM_FEATURE_M)) {
11277         *prot = PAGE_READ | PAGE_WRITE;
11278         switch (address) {
11279         case 0xF0000000 ... 0xFFFFFFFF:
11280             if (regime_sctlr(env, mmu_idx) & SCTLR_V) {
11281                 /* hivecs execing is ok */
11282                 *prot |= PAGE_EXEC;
11283             }
11284             break;
11285         case 0x00000000 ... 0x7FFFFFFF:
11286             *prot |= PAGE_EXEC;
11287             break;
11288         }
11289     } else {
11290         /* Default system address map for M profile cores.
11291          * The architecture specifies which regions are execute-never;
11292          * at the MPU level no other checks are defined.
11293          */
11294         switch (address) {
11295         case 0x00000000 ... 0x1fffffff: /* ROM */
11296         case 0x20000000 ... 0x3fffffff: /* SRAM */
11297         case 0x60000000 ... 0x7fffffff: /* RAM */
11298         case 0x80000000 ... 0x9fffffff: /* RAM */
11299             *prot = PAGE_READ | PAGE_WRITE | PAGE_EXEC;
11300             break;
11301         case 0x40000000 ... 0x5fffffff: /* Peripheral */
11302         case 0xa0000000 ... 0xbfffffff: /* Device */
11303         case 0xc0000000 ... 0xdfffffff: /* Device */
11304         case 0xe0000000 ... 0xffffffff: /* System */
11305             *prot = PAGE_READ | PAGE_WRITE;
11306             break;
11307         default:
11308             g_assert_not_reached();
11309         }
11310     }
11311 }
11312 
11313 static bool pmsav7_use_background_region(ARMCPU *cpu,
11314                                          ARMMMUIdx mmu_idx, bool is_user)
11315 {
11316     /* Return true if we should use the default memory map as a
11317      * "background" region if there are no hits against any MPU regions.
11318      */
11319     CPUARMState *env = &cpu->env;
11320 
11321     if (is_user) {
11322         return false;
11323     }
11324 
11325     if (arm_feature(env, ARM_FEATURE_M)) {
11326         return env->v7m.mpu_ctrl[regime_is_secure(env, mmu_idx)]
11327             & R_V7M_MPU_CTRL_PRIVDEFENA_MASK;
11328     } else {
11329         return regime_sctlr(env, mmu_idx) & SCTLR_BR;
11330     }
11331 }
11332 
11333 static inline bool m_is_ppb_region(CPUARMState *env, uint32_t address)
11334 {
11335     /* True if address is in the M profile PPB region 0xe0000000 - 0xe00fffff */
11336     return arm_feature(env, ARM_FEATURE_M) &&
11337         extract32(address, 20, 12) == 0xe00;
11338 }
11339 
11340 static inline bool m_is_system_region(CPUARMState *env, uint32_t address)
11341 {
11342     /* True if address is in the M profile system region
11343      * 0xe0000000 - 0xffffffff
11344      */
11345     return arm_feature(env, ARM_FEATURE_M) && extract32(address, 29, 3) == 0x7;
11346 }
11347 
11348 static bool get_phys_addr_pmsav7(CPUARMState *env, uint32_t address,
11349                                  MMUAccessType access_type, ARMMMUIdx mmu_idx,
11350                                  hwaddr *phys_ptr, int *prot,
11351                                  target_ulong *page_size,
11352                                  ARMMMUFaultInfo *fi)
11353 {
11354     ARMCPU *cpu = env_archcpu(env);
11355     int n;
11356     bool is_user = regime_is_user(env, mmu_idx);
11357 
11358     *phys_ptr = address;
11359     *page_size = TARGET_PAGE_SIZE;
11360     *prot = 0;
11361 
11362     if (regime_translation_disabled(env, mmu_idx) ||
11363         m_is_ppb_region(env, address)) {
11364         /* MPU disabled or M profile PPB access: use default memory map.
11365          * The other case which uses the default memory map in the
11366          * v7M ARM ARM pseudocode is exception vector reads from the vector
11367          * table. In QEMU those accesses are done in arm_v7m_load_vector(),
11368          * which always does a direct read using address_space_ldl(), rather
11369          * than going via this function, so we don't need to check that here.
11370          */
11371         get_phys_addr_pmsav7_default(env, mmu_idx, address, prot);
11372     } else { /* MPU enabled */
11373         for (n = (int)cpu->pmsav7_dregion - 1; n >= 0; n--) {
11374             /* region search */
11375             uint32_t base = env->pmsav7.drbar[n];
11376             uint32_t rsize = extract32(env->pmsav7.drsr[n], 1, 5);
11377             uint32_t rmask;
11378             bool srdis = false;
11379 
11380             if (!(env->pmsav7.drsr[n] & 0x1)) {
11381                 continue;
11382             }
11383 
11384             if (!rsize) {
11385                 qemu_log_mask(LOG_GUEST_ERROR,
11386                               "DRSR[%d]: Rsize field cannot be 0\n", n);
11387                 continue;
11388             }
11389             rsize++;
11390             rmask = (1ull << rsize) - 1;
11391 
11392             if (base & rmask) {
11393                 qemu_log_mask(LOG_GUEST_ERROR,
11394                               "DRBAR[%d]: 0x%" PRIx32 " misaligned "
11395                               "to DRSR region size, mask = 0x%" PRIx32 "\n",
11396                               n, base, rmask);
11397                 continue;
11398             }
11399 
11400             if (address < base || address > base + rmask) {
11401                 /*
11402                  * Address not in this region. We must check whether the
11403                  * region covers addresses in the same page as our address.
11404                  * In that case we must not report a size that covers the
11405                  * whole page for a subsequent hit against a different MPU
11406                  * region or the background region, because it would result in
11407                  * incorrect TLB hits for subsequent accesses to addresses that
11408                  * are in this MPU region.
11409                  */
11410                 if (ranges_overlap(base, rmask,
11411                                    address & TARGET_PAGE_MASK,
11412                                    TARGET_PAGE_SIZE)) {
11413                     *page_size = 1;
11414                 }
11415                 continue;
11416             }
11417 
11418             /* Region matched */
11419 
11420             if (rsize >= 8) { /* no subregions for regions < 256 bytes */
11421                 int i, snd;
11422                 uint32_t srdis_mask;
11423 
11424                 rsize -= 3; /* sub region size (power of 2) */
11425                 snd = ((address - base) >> rsize) & 0x7;
11426                 srdis = extract32(env->pmsav7.drsr[n], snd + 8, 1);
11427 
11428                 srdis_mask = srdis ? 0x3 : 0x0;
11429                 for (i = 2; i <= 8 && rsize < TARGET_PAGE_BITS; i *= 2) {
11430                     /* This will check in groups of 2, 4 and then 8, whether
11431                      * the subregion bits are consistent. rsize is incremented
11432                      * back up to give the region size, considering consistent
11433                      * adjacent subregions as one region. Stop testing if rsize
11434                      * is already big enough for an entire QEMU page.
11435                      */
11436                     int snd_rounded = snd & ~(i - 1);
11437                     uint32_t srdis_multi = extract32(env->pmsav7.drsr[n],
11438                                                      snd_rounded + 8, i);
11439                     if (srdis_mask ^ srdis_multi) {
11440                         break;
11441                     }
11442                     srdis_mask = (srdis_mask << i) | srdis_mask;
11443                     rsize++;
11444                 }
11445             }
11446             if (srdis) {
11447                 continue;
11448             }
11449             if (rsize < TARGET_PAGE_BITS) {
11450                 *page_size = 1 << rsize;
11451             }
11452             break;
11453         }
11454 
11455         if (n == -1) { /* no hits */
11456             if (!pmsav7_use_background_region(cpu, mmu_idx, is_user)) {
11457                 /* background fault */
11458                 fi->type = ARMFault_Background;
11459                 return true;
11460             }
11461             get_phys_addr_pmsav7_default(env, mmu_idx, address, prot);
11462         } else { /* a MPU hit! */
11463             uint32_t ap = extract32(env->pmsav7.dracr[n], 8, 3);
11464             uint32_t xn = extract32(env->pmsav7.dracr[n], 12, 1);
11465 
11466             if (m_is_system_region(env, address)) {
11467                 /* System space is always execute never */
11468                 xn = 1;
11469             }
11470 
11471             if (is_user) { /* User mode AP bit decoding */
11472                 switch (ap) {
11473                 case 0:
11474                 case 1:
11475                 case 5:
11476                     break; /* no access */
11477                 case 3:
11478                     *prot |= PAGE_WRITE;
11479                     /* fall through */
11480                 case 2:
11481                 case 6:
11482                     *prot |= PAGE_READ | PAGE_EXEC;
11483                     break;
11484                 case 7:
11485                     /* for v7M, same as 6; for R profile a reserved value */
11486                     if (arm_feature(env, ARM_FEATURE_M)) {
11487                         *prot |= PAGE_READ | PAGE_EXEC;
11488                         break;
11489                     }
11490                     /* fall through */
11491                 default:
11492                     qemu_log_mask(LOG_GUEST_ERROR,
11493                                   "DRACR[%d]: Bad value for AP bits: 0x%"
11494                                   PRIx32 "\n", n, ap);
11495                 }
11496             } else { /* Priv. mode AP bits decoding */
11497                 switch (ap) {
11498                 case 0:
11499                     break; /* no access */
11500                 case 1:
11501                 case 2:
11502                 case 3:
11503                     *prot |= PAGE_WRITE;
11504                     /* fall through */
11505                 case 5:
11506                 case 6:
11507                     *prot |= PAGE_READ | PAGE_EXEC;
11508                     break;
11509                 case 7:
11510                     /* for v7M, same as 6; for R profile a reserved value */
11511                     if (arm_feature(env, ARM_FEATURE_M)) {
11512                         *prot |= PAGE_READ | PAGE_EXEC;
11513                         break;
11514                     }
11515                     /* fall through */
11516                 default:
11517                     qemu_log_mask(LOG_GUEST_ERROR,
11518                                   "DRACR[%d]: Bad value for AP bits: 0x%"
11519                                   PRIx32 "\n", n, ap);
11520                 }
11521             }
11522 
11523             /* execute never */
11524             if (xn) {
11525                 *prot &= ~PAGE_EXEC;
11526             }
11527         }
11528     }
11529 
11530     fi->type = ARMFault_Permission;
11531     fi->level = 1;
11532     return !(*prot & (1 << access_type));
11533 }
11534 
11535 static bool v8m_is_sau_exempt(CPUARMState *env,
11536                               uint32_t address, MMUAccessType access_type)
11537 {
11538     /* The architecture specifies that certain address ranges are
11539      * exempt from v8M SAU/IDAU checks.
11540      */
11541     return
11542         (access_type == MMU_INST_FETCH && m_is_system_region(env, address)) ||
11543         (address >= 0xe0000000 && address <= 0xe0002fff) ||
11544         (address >= 0xe000e000 && address <= 0xe000efff) ||
11545         (address >= 0xe002e000 && address <= 0xe002efff) ||
11546         (address >= 0xe0040000 && address <= 0xe0041fff) ||
11547         (address >= 0xe00ff000 && address <= 0xe00fffff);
11548 }
11549 
11550 void v8m_security_lookup(CPUARMState *env, uint32_t address,
11551                                 MMUAccessType access_type, ARMMMUIdx mmu_idx,
11552                                 V8M_SAttributes *sattrs)
11553 {
11554     /* Look up the security attributes for this address. Compare the
11555      * pseudocode SecurityCheck() function.
11556      * We assume the caller has zero-initialized *sattrs.
11557      */
11558     ARMCPU *cpu = env_archcpu(env);
11559     int r;
11560     bool idau_exempt = false, idau_ns = true, idau_nsc = true;
11561     int idau_region = IREGION_NOTVALID;
11562     uint32_t addr_page_base = address & TARGET_PAGE_MASK;
11563     uint32_t addr_page_limit = addr_page_base + (TARGET_PAGE_SIZE - 1);
11564 
11565     if (cpu->idau) {
11566         IDAUInterfaceClass *iic = IDAU_INTERFACE_GET_CLASS(cpu->idau);
11567         IDAUInterface *ii = IDAU_INTERFACE(cpu->idau);
11568 
11569         iic->check(ii, address, &idau_region, &idau_exempt, &idau_ns,
11570                    &idau_nsc);
11571     }
11572 
11573     if (access_type == MMU_INST_FETCH && extract32(address, 28, 4) == 0xf) {
11574         /* 0xf0000000..0xffffffff is always S for insn fetches */
11575         return;
11576     }
11577 
11578     if (idau_exempt || v8m_is_sau_exempt(env, address, access_type)) {
11579         sattrs->ns = !regime_is_secure(env, mmu_idx);
11580         return;
11581     }
11582 
11583     if (idau_region != IREGION_NOTVALID) {
11584         sattrs->irvalid = true;
11585         sattrs->iregion = idau_region;
11586     }
11587 
11588     switch (env->sau.ctrl & 3) {
11589     case 0: /* SAU.ENABLE == 0, SAU.ALLNS == 0 */
11590         break;
11591     case 2: /* SAU.ENABLE == 0, SAU.ALLNS == 1 */
11592         sattrs->ns = true;
11593         break;
11594     default: /* SAU.ENABLE == 1 */
11595         for (r = 0; r < cpu->sau_sregion; r++) {
11596             if (env->sau.rlar[r] & 1) {
11597                 uint32_t base = env->sau.rbar[r] & ~0x1f;
11598                 uint32_t limit = env->sau.rlar[r] | 0x1f;
11599 
11600                 if (base <= address && limit >= address) {
11601                     if (base > addr_page_base || limit < addr_page_limit) {
11602                         sattrs->subpage = true;
11603                     }
11604                     if (sattrs->srvalid) {
11605                         /* If we hit in more than one region then we must report
11606                          * as Secure, not NS-Callable, with no valid region
11607                          * number info.
11608                          */
11609                         sattrs->ns = false;
11610                         sattrs->nsc = false;
11611                         sattrs->sregion = 0;
11612                         sattrs->srvalid = false;
11613                         break;
11614                     } else {
11615                         if (env->sau.rlar[r] & 2) {
11616                             sattrs->nsc = true;
11617                         } else {
11618                             sattrs->ns = true;
11619                         }
11620                         sattrs->srvalid = true;
11621                         sattrs->sregion = r;
11622                     }
11623                 } else {
11624                     /*
11625                      * Address not in this region. We must check whether the
11626                      * region covers addresses in the same page as our address.
11627                      * In that case we must not report a size that covers the
11628                      * whole page for a subsequent hit against a different MPU
11629                      * region or the background region, because it would result
11630                      * in incorrect TLB hits for subsequent accesses to
11631                      * addresses that are in this MPU region.
11632                      */
11633                     if (limit >= base &&
11634                         ranges_overlap(base, limit - base + 1,
11635                                        addr_page_base,
11636                                        TARGET_PAGE_SIZE)) {
11637                         sattrs->subpage = true;
11638                     }
11639                 }
11640             }
11641         }
11642         break;
11643     }
11644 
11645     /*
11646      * The IDAU will override the SAU lookup results if it specifies
11647      * higher security than the SAU does.
11648      */
11649     if (!idau_ns) {
11650         if (sattrs->ns || (!idau_nsc && sattrs->nsc)) {
11651             sattrs->ns = false;
11652             sattrs->nsc = idau_nsc;
11653         }
11654     }
11655 }
11656 
11657 bool pmsav8_mpu_lookup(CPUARMState *env, uint32_t address,
11658                               MMUAccessType access_type, ARMMMUIdx mmu_idx,
11659                               hwaddr *phys_ptr, MemTxAttrs *txattrs,
11660                               int *prot, bool *is_subpage,
11661                               ARMMMUFaultInfo *fi, uint32_t *mregion)
11662 {
11663     /* Perform a PMSAv8 MPU lookup (without also doing the SAU check
11664      * that a full phys-to-virt translation does).
11665      * mregion is (if not NULL) set to the region number which matched,
11666      * or -1 if no region number is returned (MPU off, address did not
11667      * hit a region, address hit in multiple regions).
11668      * We set is_subpage to true if the region hit doesn't cover the
11669      * entire TARGET_PAGE the address is within.
11670      */
11671     ARMCPU *cpu = env_archcpu(env);
11672     bool is_user = regime_is_user(env, mmu_idx);
11673     uint32_t secure = regime_is_secure(env, mmu_idx);
11674     int n;
11675     int matchregion = -1;
11676     bool hit = false;
11677     uint32_t addr_page_base = address & TARGET_PAGE_MASK;
11678     uint32_t addr_page_limit = addr_page_base + (TARGET_PAGE_SIZE - 1);
11679 
11680     *is_subpage = false;
11681     *phys_ptr = address;
11682     *prot = 0;
11683     if (mregion) {
11684         *mregion = -1;
11685     }
11686 
11687     /* Unlike the ARM ARM pseudocode, we don't need to check whether this
11688      * was an exception vector read from the vector table (which is always
11689      * done using the default system address map), because those accesses
11690      * are done in arm_v7m_load_vector(), which always does a direct
11691      * read using address_space_ldl(), rather than going via this function.
11692      */
11693     if (regime_translation_disabled(env, mmu_idx)) { /* MPU disabled */
11694         hit = true;
11695     } else if (m_is_ppb_region(env, address)) {
11696         hit = true;
11697     } else {
11698         if (pmsav7_use_background_region(cpu, mmu_idx, is_user)) {
11699             hit = true;
11700         }
11701 
11702         for (n = (int)cpu->pmsav7_dregion - 1; n >= 0; n--) {
11703             /* region search */
11704             /* Note that the base address is bits [31:5] from the register
11705              * with bits [4:0] all zeroes, but the limit address is bits
11706              * [31:5] from the register with bits [4:0] all ones.
11707              */
11708             uint32_t base = env->pmsav8.rbar[secure][n] & ~0x1f;
11709             uint32_t limit = env->pmsav8.rlar[secure][n] | 0x1f;
11710 
11711             if (!(env->pmsav8.rlar[secure][n] & 0x1)) {
11712                 /* Region disabled */
11713                 continue;
11714             }
11715 
11716             if (address < base || address > limit) {
11717                 /*
11718                  * Address not in this region. We must check whether the
11719                  * region covers addresses in the same page as our address.
11720                  * In that case we must not report a size that covers the
11721                  * whole page for a subsequent hit against a different MPU
11722                  * region or the background region, because it would result in
11723                  * incorrect TLB hits for subsequent accesses to addresses that
11724                  * are in this MPU region.
11725                  */
11726                 if (limit >= base &&
11727                     ranges_overlap(base, limit - base + 1,
11728                                    addr_page_base,
11729                                    TARGET_PAGE_SIZE)) {
11730                     *is_subpage = true;
11731                 }
11732                 continue;
11733             }
11734 
11735             if (base > addr_page_base || limit < addr_page_limit) {
11736                 *is_subpage = true;
11737             }
11738 
11739             if (matchregion != -1) {
11740                 /* Multiple regions match -- always a failure (unlike
11741                  * PMSAv7 where highest-numbered-region wins)
11742                  */
11743                 fi->type = ARMFault_Permission;
11744                 fi->level = 1;
11745                 return true;
11746             }
11747 
11748             matchregion = n;
11749             hit = true;
11750         }
11751     }
11752 
11753     if (!hit) {
11754         /* background fault */
11755         fi->type = ARMFault_Background;
11756         return true;
11757     }
11758 
11759     if (matchregion == -1) {
11760         /* hit using the background region */
11761         get_phys_addr_pmsav7_default(env, mmu_idx, address, prot);
11762     } else {
11763         uint32_t ap = extract32(env->pmsav8.rbar[secure][matchregion], 1, 2);
11764         uint32_t xn = extract32(env->pmsav8.rbar[secure][matchregion], 0, 1);
11765         bool pxn = false;
11766 
11767         if (arm_feature(env, ARM_FEATURE_V8_1M)) {
11768             pxn = extract32(env->pmsav8.rlar[secure][matchregion], 4, 1);
11769         }
11770 
11771         if (m_is_system_region(env, address)) {
11772             /* System space is always execute never */
11773             xn = 1;
11774         }
11775 
11776         *prot = simple_ap_to_rw_prot(env, mmu_idx, ap);
11777         if (*prot && !xn && !(pxn && !is_user)) {
11778             *prot |= PAGE_EXEC;
11779         }
11780         /* We don't need to look the attribute up in the MAIR0/MAIR1
11781          * registers because that only tells us about cacheability.
11782          */
11783         if (mregion) {
11784             *mregion = matchregion;
11785         }
11786     }
11787 
11788     fi->type = ARMFault_Permission;
11789     fi->level = 1;
11790     return !(*prot & (1 << access_type));
11791 }
11792 
11793 
11794 static bool get_phys_addr_pmsav8(CPUARMState *env, uint32_t address,
11795                                  MMUAccessType access_type, ARMMMUIdx mmu_idx,
11796                                  hwaddr *phys_ptr, MemTxAttrs *txattrs,
11797                                  int *prot, target_ulong *page_size,
11798                                  ARMMMUFaultInfo *fi)
11799 {
11800     uint32_t secure = regime_is_secure(env, mmu_idx);
11801     V8M_SAttributes sattrs = {};
11802     bool ret;
11803     bool mpu_is_subpage;
11804 
11805     if (arm_feature(env, ARM_FEATURE_M_SECURITY)) {
11806         v8m_security_lookup(env, address, access_type, mmu_idx, &sattrs);
11807         if (access_type == MMU_INST_FETCH) {
11808             /* Instruction fetches always use the MMU bank and the
11809              * transaction attribute determined by the fetch address,
11810              * regardless of CPU state. This is painful for QEMU
11811              * to handle, because it would mean we need to encode
11812              * into the mmu_idx not just the (user, negpri) information
11813              * for the current security state but also that for the
11814              * other security state, which would balloon the number
11815              * of mmu_idx values needed alarmingly.
11816              * Fortunately we can avoid this because it's not actually
11817              * possible to arbitrarily execute code from memory with
11818              * the wrong security attribute: it will always generate
11819              * an exception of some kind or another, apart from the
11820              * special case of an NS CPU executing an SG instruction
11821              * in S&NSC memory. So we always just fail the translation
11822              * here and sort things out in the exception handler
11823              * (including possibly emulating an SG instruction).
11824              */
11825             if (sattrs.ns != !secure) {
11826                 if (sattrs.nsc) {
11827                     fi->type = ARMFault_QEMU_NSCExec;
11828                 } else {
11829                     fi->type = ARMFault_QEMU_SFault;
11830                 }
11831                 *page_size = sattrs.subpage ? 1 : TARGET_PAGE_SIZE;
11832                 *phys_ptr = address;
11833                 *prot = 0;
11834                 return true;
11835             }
11836         } else {
11837             /* For data accesses we always use the MMU bank indicated
11838              * by the current CPU state, but the security attributes
11839              * might downgrade a secure access to nonsecure.
11840              */
11841             if (sattrs.ns) {
11842                 txattrs->secure = false;
11843             } else if (!secure) {
11844                 /* NS access to S memory must fault.
11845                  * Architecturally we should first check whether the
11846                  * MPU information for this address indicates that we
11847                  * are doing an unaligned access to Device memory, which
11848                  * should generate a UsageFault instead. QEMU does not
11849                  * currently check for that kind of unaligned access though.
11850                  * If we added it we would need to do so as a special case
11851                  * for M_FAKE_FSR_SFAULT in arm_v7m_cpu_do_interrupt().
11852                  */
11853                 fi->type = ARMFault_QEMU_SFault;
11854                 *page_size = sattrs.subpage ? 1 : TARGET_PAGE_SIZE;
11855                 *phys_ptr = address;
11856                 *prot = 0;
11857                 return true;
11858             }
11859         }
11860     }
11861 
11862     ret = pmsav8_mpu_lookup(env, address, access_type, mmu_idx, phys_ptr,
11863                             txattrs, prot, &mpu_is_subpage, fi, NULL);
11864     *page_size = sattrs.subpage || mpu_is_subpage ? 1 : TARGET_PAGE_SIZE;
11865     return ret;
11866 }
11867 
11868 static bool get_phys_addr_pmsav5(CPUARMState *env, uint32_t address,
11869                                  MMUAccessType access_type, ARMMMUIdx mmu_idx,
11870                                  hwaddr *phys_ptr, int *prot,
11871                                  ARMMMUFaultInfo *fi)
11872 {
11873     int n;
11874     uint32_t mask;
11875     uint32_t base;
11876     bool is_user = regime_is_user(env, mmu_idx);
11877 
11878     if (regime_translation_disabled(env, mmu_idx)) {
11879         /* MPU disabled.  */
11880         *phys_ptr = address;
11881         *prot = PAGE_READ | PAGE_WRITE | PAGE_EXEC;
11882         return false;
11883     }
11884 
11885     *phys_ptr = address;
11886     for (n = 7; n >= 0; n--) {
11887         base = env->cp15.c6_region[n];
11888         if ((base & 1) == 0) {
11889             continue;
11890         }
11891         mask = 1 << ((base >> 1) & 0x1f);
11892         /* Keep this shift separate from the above to avoid an
11893            (undefined) << 32.  */
11894         mask = (mask << 1) - 1;
11895         if (((base ^ address) & ~mask) == 0) {
11896             break;
11897         }
11898     }
11899     if (n < 0) {
11900         fi->type = ARMFault_Background;
11901         return true;
11902     }
11903 
11904     if (access_type == MMU_INST_FETCH) {
11905         mask = env->cp15.pmsav5_insn_ap;
11906     } else {
11907         mask = env->cp15.pmsav5_data_ap;
11908     }
11909     mask = (mask >> (n * 4)) & 0xf;
11910     switch (mask) {
11911     case 0:
11912         fi->type = ARMFault_Permission;
11913         fi->level = 1;
11914         return true;
11915     case 1:
11916         if (is_user) {
11917             fi->type = ARMFault_Permission;
11918             fi->level = 1;
11919             return true;
11920         }
11921         *prot = PAGE_READ | PAGE_WRITE;
11922         break;
11923     case 2:
11924         *prot = PAGE_READ;
11925         if (!is_user) {
11926             *prot |= PAGE_WRITE;
11927         }
11928         break;
11929     case 3:
11930         *prot = PAGE_READ | PAGE_WRITE;
11931         break;
11932     case 5:
11933         if (is_user) {
11934             fi->type = ARMFault_Permission;
11935             fi->level = 1;
11936             return true;
11937         }
11938         *prot = PAGE_READ;
11939         break;
11940     case 6:
11941         *prot = PAGE_READ;
11942         break;
11943     default:
11944         /* Bad permission.  */
11945         fi->type = ARMFault_Permission;
11946         fi->level = 1;
11947         return true;
11948     }
11949     *prot |= PAGE_EXEC;
11950     return false;
11951 }
11952 
11953 /* Combine either inner or outer cacheability attributes for normal
11954  * memory, according to table D4-42 and pseudocode procedure
11955  * CombineS1S2AttrHints() of ARM DDI 0487B.b (the ARMv8 ARM).
11956  *
11957  * NB: only stage 1 includes allocation hints (RW bits), leading to
11958  * some asymmetry.
11959  */
11960 static uint8_t combine_cacheattr_nibble(uint8_t s1, uint8_t s2)
11961 {
11962     if (s1 == 4 || s2 == 4) {
11963         /* non-cacheable has precedence */
11964         return 4;
11965     } else if (extract32(s1, 2, 2) == 0 || extract32(s1, 2, 2) == 2) {
11966         /* stage 1 write-through takes precedence */
11967         return s1;
11968     } else if (extract32(s2, 2, 2) == 2) {
11969         /* stage 2 write-through takes precedence, but the allocation hint
11970          * is still taken from stage 1
11971          */
11972         return (2 << 2) | extract32(s1, 0, 2);
11973     } else { /* write-back */
11974         return s1;
11975     }
11976 }
11977 
11978 /* Combine S1 and S2 cacheability/shareability attributes, per D4.5.4
11979  * and CombineS1S2Desc()
11980  *
11981  * @s1:      Attributes from stage 1 walk
11982  * @s2:      Attributes from stage 2 walk
11983  */
11984 static ARMCacheAttrs combine_cacheattrs(ARMCacheAttrs s1, ARMCacheAttrs s2)
11985 {
11986     uint8_t s1lo, s2lo, s1hi, s2hi;
11987     ARMCacheAttrs ret;
11988     bool tagged = false;
11989 
11990     if (s1.attrs == 0xf0) {
11991         tagged = true;
11992         s1.attrs = 0xff;
11993     }
11994 
11995     s1lo = extract32(s1.attrs, 0, 4);
11996     s2lo = extract32(s2.attrs, 0, 4);
11997     s1hi = extract32(s1.attrs, 4, 4);
11998     s2hi = extract32(s2.attrs, 4, 4);
11999 
12000     /* Combine shareability attributes (table D4-43) */
12001     if (s1.shareability == 2 || s2.shareability == 2) {
12002         /* if either are outer-shareable, the result is outer-shareable */
12003         ret.shareability = 2;
12004     } else if (s1.shareability == 3 || s2.shareability == 3) {
12005         /* if either are inner-shareable, the result is inner-shareable */
12006         ret.shareability = 3;
12007     } else {
12008         /* both non-shareable */
12009         ret.shareability = 0;
12010     }
12011 
12012     /* Combine memory type and cacheability attributes */
12013     if (s1hi == 0 || s2hi == 0) {
12014         /* Device has precedence over normal */
12015         if (s1lo == 0 || s2lo == 0) {
12016             /* nGnRnE has precedence over anything */
12017             ret.attrs = 0;
12018         } else if (s1lo == 4 || s2lo == 4) {
12019             /* non-Reordering has precedence over Reordering */
12020             ret.attrs = 4;  /* nGnRE */
12021         } else if (s1lo == 8 || s2lo == 8) {
12022             /* non-Gathering has precedence over Gathering */
12023             ret.attrs = 8;  /* nGRE */
12024         } else {
12025             ret.attrs = 0xc; /* GRE */
12026         }
12027 
12028         /* Any location for which the resultant memory type is any
12029          * type of Device memory is always treated as Outer Shareable.
12030          */
12031         ret.shareability = 2;
12032     } else { /* Normal memory */
12033         /* Outer/inner cacheability combine independently */
12034         ret.attrs = combine_cacheattr_nibble(s1hi, s2hi) << 4
12035                   | combine_cacheattr_nibble(s1lo, s2lo);
12036 
12037         if (ret.attrs == 0x44) {
12038             /* Any location for which the resultant memory type is Normal
12039              * Inner Non-cacheable, Outer Non-cacheable is always treated
12040              * as Outer Shareable.
12041              */
12042             ret.shareability = 2;
12043         }
12044     }
12045 
12046     /* TODO: CombineS1S2Desc does not consider transient, only WB, RWA. */
12047     if (tagged && ret.attrs == 0xff) {
12048         ret.attrs = 0xf0;
12049     }
12050 
12051     return ret;
12052 }
12053 
12054 
12055 /* get_phys_addr - get the physical address for this virtual address
12056  *
12057  * Find the physical address corresponding to the given virtual address,
12058  * by doing a translation table walk on MMU based systems or using the
12059  * MPU state on MPU based systems.
12060  *
12061  * Returns false if the translation was successful. Otherwise, phys_ptr, attrs,
12062  * prot and page_size may not be filled in, and the populated fsr value provides
12063  * information on why the translation aborted, in the format of a
12064  * DFSR/IFSR fault register, with the following caveats:
12065  *  * we honour the short vs long DFSR format differences.
12066  *  * the WnR bit is never set (the caller must do this).
12067  *  * for PSMAv5 based systems we don't bother to return a full FSR format
12068  *    value.
12069  *
12070  * @env: CPUARMState
12071  * @address: virtual address to get physical address for
12072  * @access_type: 0 for read, 1 for write, 2 for execute
12073  * @mmu_idx: MMU index indicating required translation regime
12074  * @phys_ptr: set to the physical address corresponding to the virtual address
12075  * @attrs: set to the memory transaction attributes to use
12076  * @prot: set to the permissions for the page containing phys_ptr
12077  * @page_size: set to the size of the page containing phys_ptr
12078  * @fi: set to fault info if the translation fails
12079  * @cacheattrs: (if non-NULL) set to the cacheability/shareability attributes
12080  */
12081 bool get_phys_addr(CPUARMState *env, target_ulong address,
12082                    MMUAccessType access_type, ARMMMUIdx mmu_idx,
12083                    hwaddr *phys_ptr, MemTxAttrs *attrs, int *prot,
12084                    target_ulong *page_size,
12085                    ARMMMUFaultInfo *fi, ARMCacheAttrs *cacheattrs)
12086 {
12087     if (mmu_idx == ARMMMUIdx_E10_0 ||
12088         mmu_idx == ARMMMUIdx_E10_1 ||
12089         mmu_idx == ARMMMUIdx_E10_1_PAN) {
12090         /* Call ourselves recursively to do the stage 1 and then stage 2
12091          * translations.
12092          */
12093         if (arm_feature(env, ARM_FEATURE_EL2)) {
12094             hwaddr ipa;
12095             int s2_prot;
12096             int ret;
12097             ARMCacheAttrs cacheattrs2 = {};
12098 
12099             ret = get_phys_addr(env, address, access_type,
12100                                 stage_1_mmu_idx(mmu_idx), &ipa, attrs,
12101                                 prot, page_size, fi, cacheattrs);
12102 
12103             /* If S1 fails or S2 is disabled, return early.  */
12104             if (ret || regime_translation_disabled(env, ARMMMUIdx_Stage2)) {
12105                 *phys_ptr = ipa;
12106                 return ret;
12107             }
12108 
12109             /* S1 is done. Now do S2 translation.  */
12110             ret = get_phys_addr_lpae(env, ipa, access_type, ARMMMUIdx_Stage2,
12111                                      mmu_idx == ARMMMUIdx_E10_0,
12112                                      phys_ptr, attrs, &s2_prot,
12113                                      page_size, fi, &cacheattrs2);
12114             fi->s2addr = ipa;
12115             /* Combine the S1 and S2 perms.  */
12116             *prot &= s2_prot;
12117 
12118             /* If S2 fails, return early.  */
12119             if (ret) {
12120                 return ret;
12121             }
12122 
12123             /* Combine the S1 and S2 cache attributes. */
12124             if (env->cp15.hcr_el2 & HCR_DC) {
12125                 /*
12126                  * HCR.DC forces the first stage attributes to
12127                  *  Normal Non-Shareable,
12128                  *  Inner Write-Back Read-Allocate Write-Allocate,
12129                  *  Outer Write-Back Read-Allocate Write-Allocate.
12130                  * Do not overwrite Tagged within attrs.
12131                  */
12132                 if (cacheattrs->attrs != 0xf0) {
12133                     cacheattrs->attrs = 0xff;
12134                 }
12135                 cacheattrs->shareability = 0;
12136             }
12137             *cacheattrs = combine_cacheattrs(*cacheattrs, cacheattrs2);
12138             return 0;
12139         } else {
12140             /*
12141              * For non-EL2 CPUs a stage1+stage2 translation is just stage 1.
12142              */
12143             mmu_idx = stage_1_mmu_idx(mmu_idx);
12144         }
12145     }
12146 
12147     /* The page table entries may downgrade secure to non-secure, but
12148      * cannot upgrade an non-secure translation regime's attributes
12149      * to secure.
12150      */
12151     attrs->secure = regime_is_secure(env, mmu_idx);
12152     attrs->user = regime_is_user(env, mmu_idx);
12153 
12154     /* Fast Context Switch Extension. This doesn't exist at all in v8.
12155      * In v7 and earlier it affects all stage 1 translations.
12156      */
12157     if (address < 0x02000000 && mmu_idx != ARMMMUIdx_Stage2
12158         && !arm_feature(env, ARM_FEATURE_V8)) {
12159         if (regime_el(env, mmu_idx) == 3) {
12160             address += env->cp15.fcseidr_s;
12161         } else {
12162             address += env->cp15.fcseidr_ns;
12163         }
12164     }
12165 
12166     if (arm_feature(env, ARM_FEATURE_PMSA)) {
12167         bool ret;
12168         *page_size = TARGET_PAGE_SIZE;
12169 
12170         if (arm_feature(env, ARM_FEATURE_V8)) {
12171             /* PMSAv8 */
12172             ret = get_phys_addr_pmsav8(env, address, access_type, mmu_idx,
12173                                        phys_ptr, attrs, prot, page_size, fi);
12174         } else if (arm_feature(env, ARM_FEATURE_V7)) {
12175             /* PMSAv7 */
12176             ret = get_phys_addr_pmsav7(env, address, access_type, mmu_idx,
12177                                        phys_ptr, prot, page_size, fi);
12178         } else {
12179             /* Pre-v7 MPU */
12180             ret = get_phys_addr_pmsav5(env, address, access_type, mmu_idx,
12181                                        phys_ptr, prot, fi);
12182         }
12183         qemu_log_mask(CPU_LOG_MMU, "PMSA MPU lookup for %s at 0x%08" PRIx32
12184                       " mmu_idx %u -> %s (prot %c%c%c)\n",
12185                       access_type == MMU_DATA_LOAD ? "reading" :
12186                       (access_type == MMU_DATA_STORE ? "writing" : "execute"),
12187                       (uint32_t)address, mmu_idx,
12188                       ret ? "Miss" : "Hit",
12189                       *prot & PAGE_READ ? 'r' : '-',
12190                       *prot & PAGE_WRITE ? 'w' : '-',
12191                       *prot & PAGE_EXEC ? 'x' : '-');
12192 
12193         return ret;
12194     }
12195 
12196     /* Definitely a real MMU, not an MPU */
12197 
12198     if (regime_translation_disabled(env, mmu_idx)) {
12199         uint64_t hcr;
12200         uint8_t memattr;
12201 
12202         /*
12203          * MMU disabled.  S1 addresses within aa64 translation regimes are
12204          * still checked for bounds -- see AArch64.TranslateAddressS1Off.
12205          */
12206         if (mmu_idx != ARMMMUIdx_Stage2) {
12207             int r_el = regime_el(env, mmu_idx);
12208             if (arm_el_is_aa64(env, r_el)) {
12209                 int pamax = arm_pamax(env_archcpu(env));
12210                 uint64_t tcr = env->cp15.tcr_el[r_el].raw_tcr;
12211                 int addrtop, tbi;
12212 
12213                 tbi = aa64_va_parameter_tbi(tcr, mmu_idx);
12214                 if (access_type == MMU_INST_FETCH) {
12215                     tbi &= ~aa64_va_parameter_tbid(tcr, mmu_idx);
12216                 }
12217                 tbi = (tbi >> extract64(address, 55, 1)) & 1;
12218                 addrtop = (tbi ? 55 : 63);
12219 
12220                 if (extract64(address, pamax, addrtop - pamax + 1) != 0) {
12221                     fi->type = ARMFault_AddressSize;
12222                     fi->level = 0;
12223                     fi->stage2 = false;
12224                     return 1;
12225                 }
12226 
12227                 /*
12228                  * When TBI is disabled, we've just validated that all of the
12229                  * bits above PAMax are zero, so logically we only need to
12230                  * clear the top byte for TBI.  But it's clearer to follow
12231                  * the pseudocode set of addrdesc.paddress.
12232                  */
12233                 address = extract64(address, 0, 52);
12234             }
12235         }
12236         *phys_ptr = address;
12237         *prot = PAGE_READ | PAGE_WRITE | PAGE_EXEC;
12238         *page_size = TARGET_PAGE_SIZE;
12239 
12240         /* Fill in cacheattr a-la AArch64.TranslateAddressS1Off. */
12241         hcr = arm_hcr_el2_eff(env);
12242         cacheattrs->shareability = 0;
12243         if (hcr & HCR_DC) {
12244             if (hcr & HCR_DCT) {
12245                 memattr = 0xf0;  /* Tagged, Normal, WB, RWA */
12246             } else {
12247                 memattr = 0xff;  /* Normal, WB, RWA */
12248             }
12249         } else if (access_type == MMU_INST_FETCH) {
12250             if (regime_sctlr(env, mmu_idx) & SCTLR_I) {
12251                 memattr = 0xee;  /* Normal, WT, RA, NT */
12252             } else {
12253                 memattr = 0x44;  /* Normal, NC, No */
12254             }
12255             cacheattrs->shareability = 2; /* outer sharable */
12256         } else {
12257             memattr = 0x00;      /* Device, nGnRnE */
12258         }
12259         cacheattrs->attrs = memattr;
12260         return 0;
12261     }
12262 
12263     if (regime_using_lpae_format(env, mmu_idx)) {
12264         return get_phys_addr_lpae(env, address, access_type, mmu_idx, false,
12265                                   phys_ptr, attrs, prot, page_size,
12266                                   fi, cacheattrs);
12267     } else if (regime_sctlr(env, mmu_idx) & SCTLR_XP) {
12268         return get_phys_addr_v6(env, address, access_type, mmu_idx,
12269                                 phys_ptr, attrs, prot, page_size, fi);
12270     } else {
12271         return get_phys_addr_v5(env, address, access_type, mmu_idx,
12272                                     phys_ptr, prot, page_size, fi);
12273     }
12274 }
12275 
12276 hwaddr arm_cpu_get_phys_page_attrs_debug(CPUState *cs, vaddr addr,
12277                                          MemTxAttrs *attrs)
12278 {
12279     ARMCPU *cpu = ARM_CPU(cs);
12280     CPUARMState *env = &cpu->env;
12281     hwaddr phys_addr;
12282     target_ulong page_size;
12283     int prot;
12284     bool ret;
12285     ARMMMUFaultInfo fi = {};
12286     ARMMMUIdx mmu_idx = arm_mmu_idx(env);
12287     ARMCacheAttrs cacheattrs = {};
12288 
12289     *attrs = (MemTxAttrs) {};
12290 
12291     ret = get_phys_addr(env, addr, 0, mmu_idx, &phys_addr,
12292                         attrs, &prot, &page_size, &fi, &cacheattrs);
12293 
12294     if (ret) {
12295         return -1;
12296     }
12297     return phys_addr;
12298 }
12299 
12300 #endif
12301 
12302 /* Note that signed overflow is undefined in C.  The following routines are
12303    careful to use unsigned types where modulo arithmetic is required.
12304    Failure to do so _will_ break on newer gcc.  */
12305 
12306 /* Signed saturating arithmetic.  */
12307 
12308 /* Perform 16-bit signed saturating addition.  */
12309 static inline uint16_t add16_sat(uint16_t a, uint16_t b)
12310 {
12311     uint16_t res;
12312 
12313     res = a + b;
12314     if (((res ^ a) & 0x8000) && !((a ^ b) & 0x8000)) {
12315         if (a & 0x8000)
12316             res = 0x8000;
12317         else
12318             res = 0x7fff;
12319     }
12320     return res;
12321 }
12322 
12323 /* Perform 8-bit signed saturating addition.  */
12324 static inline uint8_t add8_sat(uint8_t a, uint8_t b)
12325 {
12326     uint8_t res;
12327 
12328     res = a + b;
12329     if (((res ^ a) & 0x80) && !((a ^ b) & 0x80)) {
12330         if (a & 0x80)
12331             res = 0x80;
12332         else
12333             res = 0x7f;
12334     }
12335     return res;
12336 }
12337 
12338 /* Perform 16-bit signed saturating subtraction.  */
12339 static inline uint16_t sub16_sat(uint16_t a, uint16_t b)
12340 {
12341     uint16_t res;
12342 
12343     res = a - b;
12344     if (((res ^ a) & 0x8000) && ((a ^ b) & 0x8000)) {
12345         if (a & 0x8000)
12346             res = 0x8000;
12347         else
12348             res = 0x7fff;
12349     }
12350     return res;
12351 }
12352 
12353 /* Perform 8-bit signed saturating subtraction.  */
12354 static inline uint8_t sub8_sat(uint8_t a, uint8_t b)
12355 {
12356     uint8_t res;
12357 
12358     res = a - b;
12359     if (((res ^ a) & 0x80) && ((a ^ b) & 0x80)) {
12360         if (a & 0x80)
12361             res = 0x80;
12362         else
12363             res = 0x7f;
12364     }
12365     return res;
12366 }
12367 
12368 #define ADD16(a, b, n) RESULT(add16_sat(a, b), n, 16);
12369 #define SUB16(a, b, n) RESULT(sub16_sat(a, b), n, 16);
12370 #define ADD8(a, b, n)  RESULT(add8_sat(a, b), n, 8);
12371 #define SUB8(a, b, n)  RESULT(sub8_sat(a, b), n, 8);
12372 #define PFX q
12373 
12374 #include "op_addsub.h"
12375 
12376 /* Unsigned saturating arithmetic.  */
12377 static inline uint16_t add16_usat(uint16_t a, uint16_t b)
12378 {
12379     uint16_t res;
12380     res = a + b;
12381     if (res < a)
12382         res = 0xffff;
12383     return res;
12384 }
12385 
12386 static inline uint16_t sub16_usat(uint16_t a, uint16_t b)
12387 {
12388     if (a > b)
12389         return a - b;
12390     else
12391         return 0;
12392 }
12393 
12394 static inline uint8_t add8_usat(uint8_t a, uint8_t b)
12395 {
12396     uint8_t res;
12397     res = a + b;
12398     if (res < a)
12399         res = 0xff;
12400     return res;
12401 }
12402 
12403 static inline uint8_t sub8_usat(uint8_t a, uint8_t b)
12404 {
12405     if (a > b)
12406         return a - b;
12407     else
12408         return 0;
12409 }
12410 
12411 #define ADD16(a, b, n) RESULT(add16_usat(a, b), n, 16);
12412 #define SUB16(a, b, n) RESULT(sub16_usat(a, b), n, 16);
12413 #define ADD8(a, b, n)  RESULT(add8_usat(a, b), n, 8);
12414 #define SUB8(a, b, n)  RESULT(sub8_usat(a, b), n, 8);
12415 #define PFX uq
12416 
12417 #include "op_addsub.h"
12418 
12419 /* Signed modulo arithmetic.  */
12420 #define SARITH16(a, b, n, op) do { \
12421     int32_t sum; \
12422     sum = (int32_t)(int16_t)(a) op (int32_t)(int16_t)(b); \
12423     RESULT(sum, n, 16); \
12424     if (sum >= 0) \
12425         ge |= 3 << (n * 2); \
12426     } while(0)
12427 
12428 #define SARITH8(a, b, n, op) do { \
12429     int32_t sum; \
12430     sum = (int32_t)(int8_t)(a) op (int32_t)(int8_t)(b); \
12431     RESULT(sum, n, 8); \
12432     if (sum >= 0) \
12433         ge |= 1 << n; \
12434     } while(0)
12435 
12436 
12437 #define ADD16(a, b, n) SARITH16(a, b, n, +)
12438 #define SUB16(a, b, n) SARITH16(a, b, n, -)
12439 #define ADD8(a, b, n)  SARITH8(a, b, n, +)
12440 #define SUB8(a, b, n)  SARITH8(a, b, n, -)
12441 #define PFX s
12442 #define ARITH_GE
12443 
12444 #include "op_addsub.h"
12445 
12446 /* Unsigned modulo arithmetic.  */
12447 #define ADD16(a, b, n) do { \
12448     uint32_t sum; \
12449     sum = (uint32_t)(uint16_t)(a) + (uint32_t)(uint16_t)(b); \
12450     RESULT(sum, n, 16); \
12451     if ((sum >> 16) == 1) \
12452         ge |= 3 << (n * 2); \
12453     } while(0)
12454 
12455 #define ADD8(a, b, n) do { \
12456     uint32_t sum; \
12457     sum = (uint32_t)(uint8_t)(a) + (uint32_t)(uint8_t)(b); \
12458     RESULT(sum, n, 8); \
12459     if ((sum >> 8) == 1) \
12460         ge |= 1 << n; \
12461     } while(0)
12462 
12463 #define SUB16(a, b, n) do { \
12464     uint32_t sum; \
12465     sum = (uint32_t)(uint16_t)(a) - (uint32_t)(uint16_t)(b); \
12466     RESULT(sum, n, 16); \
12467     if ((sum >> 16) == 0) \
12468         ge |= 3 << (n * 2); \
12469     } while(0)
12470 
12471 #define SUB8(a, b, n) do { \
12472     uint32_t sum; \
12473     sum = (uint32_t)(uint8_t)(a) - (uint32_t)(uint8_t)(b); \
12474     RESULT(sum, n, 8); \
12475     if ((sum >> 8) == 0) \
12476         ge |= 1 << n; \
12477     } while(0)
12478 
12479 #define PFX u
12480 #define ARITH_GE
12481 
12482 #include "op_addsub.h"
12483 
12484 /* Halved signed arithmetic.  */
12485 #define ADD16(a, b, n) \
12486   RESULT(((int32_t)(int16_t)(a) + (int32_t)(int16_t)(b)) >> 1, n, 16)
12487 #define SUB16(a, b, n) \
12488   RESULT(((int32_t)(int16_t)(a) - (int32_t)(int16_t)(b)) >> 1, n, 16)
12489 #define ADD8(a, b, n) \
12490   RESULT(((int32_t)(int8_t)(a) + (int32_t)(int8_t)(b)) >> 1, n, 8)
12491 #define SUB8(a, b, n) \
12492   RESULT(((int32_t)(int8_t)(a) - (int32_t)(int8_t)(b)) >> 1, n, 8)
12493 #define PFX sh
12494 
12495 #include "op_addsub.h"
12496 
12497 /* Halved unsigned arithmetic.  */
12498 #define ADD16(a, b, n) \
12499   RESULT(((uint32_t)(uint16_t)(a) + (uint32_t)(uint16_t)(b)) >> 1, n, 16)
12500 #define SUB16(a, b, n) \
12501   RESULT(((uint32_t)(uint16_t)(a) - (uint32_t)(uint16_t)(b)) >> 1, n, 16)
12502 #define ADD8(a, b, n) \
12503   RESULT(((uint32_t)(uint8_t)(a) + (uint32_t)(uint8_t)(b)) >> 1, n, 8)
12504 #define SUB8(a, b, n) \
12505   RESULT(((uint32_t)(uint8_t)(a) - (uint32_t)(uint8_t)(b)) >> 1, n, 8)
12506 #define PFX uh
12507 
12508 #include "op_addsub.h"
12509 
12510 static inline uint8_t do_usad(uint8_t a, uint8_t b)
12511 {
12512     if (a > b)
12513         return a - b;
12514     else
12515         return b - a;
12516 }
12517 
12518 /* Unsigned sum of absolute byte differences.  */
12519 uint32_t HELPER(usad8)(uint32_t a, uint32_t b)
12520 {
12521     uint32_t sum;
12522     sum = do_usad(a, b);
12523     sum += do_usad(a >> 8, b >> 8);
12524     sum += do_usad(a >> 16, b >> 16);
12525     sum += do_usad(a >> 24, b >> 24);
12526     return sum;
12527 }
12528 
12529 /* For ARMv6 SEL instruction.  */
12530 uint32_t HELPER(sel_flags)(uint32_t flags, uint32_t a, uint32_t b)
12531 {
12532     uint32_t mask;
12533 
12534     mask = 0;
12535     if (flags & 1)
12536         mask |= 0xff;
12537     if (flags & 2)
12538         mask |= 0xff00;
12539     if (flags & 4)
12540         mask |= 0xff0000;
12541     if (flags & 8)
12542         mask |= 0xff000000;
12543     return (a & mask) | (b & ~mask);
12544 }
12545 
12546 /* CRC helpers.
12547  * The upper bytes of val (above the number specified by 'bytes') must have
12548  * been zeroed out by the caller.
12549  */
12550 uint32_t HELPER(crc32)(uint32_t acc, uint32_t val, uint32_t bytes)
12551 {
12552     uint8_t buf[4];
12553 
12554     stl_le_p(buf, val);
12555 
12556     /* zlib crc32 converts the accumulator and output to one's complement.  */
12557     return crc32(acc ^ 0xffffffff, buf, bytes) ^ 0xffffffff;
12558 }
12559 
12560 uint32_t HELPER(crc32c)(uint32_t acc, uint32_t val, uint32_t bytes)
12561 {
12562     uint8_t buf[4];
12563 
12564     stl_le_p(buf, val);
12565 
12566     /* Linux crc32c converts the output to one's complement.  */
12567     return crc32c(acc, buf, bytes) ^ 0xffffffff;
12568 }
12569 
12570 /* Return the exception level to which FP-disabled exceptions should
12571  * be taken, or 0 if FP is enabled.
12572  */
12573 int fp_exception_el(CPUARMState *env, int cur_el)
12574 {
12575 #ifndef CONFIG_USER_ONLY
12576     /* CPACR and the CPTR registers don't exist before v6, so FP is
12577      * always accessible
12578      */
12579     if (!arm_feature(env, ARM_FEATURE_V6)) {
12580         return 0;
12581     }
12582 
12583     if (arm_feature(env, ARM_FEATURE_M)) {
12584         /* CPACR can cause a NOCP UsageFault taken to current security state */
12585         if (!v7m_cpacr_pass(env, env->v7m.secure, cur_el != 0)) {
12586             return 1;
12587         }
12588 
12589         if (arm_feature(env, ARM_FEATURE_M_SECURITY) && !env->v7m.secure) {
12590             if (!extract32(env->v7m.nsacr, 10, 1)) {
12591                 /* FP insns cause a NOCP UsageFault taken to Secure */
12592                 return 3;
12593             }
12594         }
12595 
12596         return 0;
12597     }
12598 
12599     /* The CPACR controls traps to EL1, or PL1 if we're 32 bit:
12600      * 0, 2 : trap EL0 and EL1/PL1 accesses
12601      * 1    : trap only EL0 accesses
12602      * 3    : trap no accesses
12603      * This register is ignored if E2H+TGE are both set.
12604      */
12605     if ((arm_hcr_el2_eff(env) & (HCR_E2H | HCR_TGE)) != (HCR_E2H | HCR_TGE)) {
12606         int fpen = extract32(env->cp15.cpacr_el1, 20, 2);
12607 
12608         switch (fpen) {
12609         case 0:
12610         case 2:
12611             if (cur_el == 0 || cur_el == 1) {
12612                 /* Trap to PL1, which might be EL1 or EL3 */
12613                 if (arm_is_secure(env) && !arm_el_is_aa64(env, 3)) {
12614                     return 3;
12615                 }
12616                 return 1;
12617             }
12618             if (cur_el == 3 && !is_a64(env)) {
12619                 /* Secure PL1 running at EL3 */
12620                 return 3;
12621             }
12622             break;
12623         case 1:
12624             if (cur_el == 0) {
12625                 return 1;
12626             }
12627             break;
12628         case 3:
12629             break;
12630         }
12631     }
12632 
12633     /*
12634      * The NSACR allows A-profile AArch32 EL3 and M-profile secure mode
12635      * to control non-secure access to the FPU. It doesn't have any
12636      * effect if EL3 is AArch64 or if EL3 doesn't exist at all.
12637      */
12638     if ((arm_feature(env, ARM_FEATURE_EL3) && !arm_el_is_aa64(env, 3) &&
12639          cur_el <= 2 && !arm_is_secure_below_el3(env))) {
12640         if (!extract32(env->cp15.nsacr, 10, 1)) {
12641             /* FP insns act as UNDEF */
12642             return cur_el == 2 ? 2 : 1;
12643         }
12644     }
12645 
12646     /* For the CPTR registers we don't need to guard with an ARM_FEATURE
12647      * check because zero bits in the registers mean "don't trap".
12648      */
12649 
12650     /* CPTR_EL2 : present in v7VE or v8 */
12651     if (cur_el <= 2 && extract32(env->cp15.cptr_el[2], 10, 1)
12652         && !arm_is_secure_below_el3(env)) {
12653         /* Trap FP ops at EL2, NS-EL1 or NS-EL0 to EL2 */
12654         return 2;
12655     }
12656 
12657     /* CPTR_EL3 : present in v8 */
12658     if (extract32(env->cp15.cptr_el[3], 10, 1)) {
12659         /* Trap all FP ops to EL3 */
12660         return 3;
12661     }
12662 #endif
12663     return 0;
12664 }
12665 
12666 /* Return the exception level we're running at if this is our mmu_idx */
12667 int arm_mmu_idx_to_el(ARMMMUIdx mmu_idx)
12668 {
12669     if (mmu_idx & ARM_MMU_IDX_M) {
12670         return mmu_idx & ARM_MMU_IDX_M_PRIV;
12671     }
12672 
12673     switch (mmu_idx) {
12674     case ARMMMUIdx_E10_0:
12675     case ARMMMUIdx_E20_0:
12676     case ARMMMUIdx_SE10_0:
12677         return 0;
12678     case ARMMMUIdx_E10_1:
12679     case ARMMMUIdx_E10_1_PAN:
12680     case ARMMMUIdx_SE10_1:
12681     case ARMMMUIdx_SE10_1_PAN:
12682         return 1;
12683     case ARMMMUIdx_E2:
12684     case ARMMMUIdx_E20_2:
12685     case ARMMMUIdx_E20_2_PAN:
12686         return 2;
12687     case ARMMMUIdx_SE3:
12688         return 3;
12689     default:
12690         g_assert_not_reached();
12691     }
12692 }
12693 
12694 #ifndef CONFIG_TCG
12695 ARMMMUIdx arm_v7m_mmu_idx_for_secstate(CPUARMState *env, bool secstate)
12696 {
12697     g_assert_not_reached();
12698 }
12699 #endif
12700 
12701 ARMMMUIdx arm_mmu_idx_el(CPUARMState *env, int el)
12702 {
12703     if (arm_feature(env, ARM_FEATURE_M)) {
12704         return arm_v7m_mmu_idx_for_secstate(env, env->v7m.secure);
12705     }
12706 
12707     /* See ARM pseudo-function ELIsInHost.  */
12708     switch (el) {
12709     case 0:
12710         if (arm_is_secure_below_el3(env)) {
12711             return ARMMMUIdx_SE10_0;
12712         }
12713         if ((env->cp15.hcr_el2 & (HCR_E2H | HCR_TGE)) == (HCR_E2H | HCR_TGE)
12714             && arm_el_is_aa64(env, 2)) {
12715             return ARMMMUIdx_E20_0;
12716         }
12717         return ARMMMUIdx_E10_0;
12718     case 1:
12719         if (arm_is_secure_below_el3(env)) {
12720             if (env->pstate & PSTATE_PAN) {
12721                 return ARMMMUIdx_SE10_1_PAN;
12722             }
12723             return ARMMMUIdx_SE10_1;
12724         }
12725         if (env->pstate & PSTATE_PAN) {
12726             return ARMMMUIdx_E10_1_PAN;
12727         }
12728         return ARMMMUIdx_E10_1;
12729     case 2:
12730         /* TODO: ARMv8.4-SecEL2 */
12731         /* Note that TGE does not apply at EL2.  */
12732         if ((env->cp15.hcr_el2 & HCR_E2H) && arm_el_is_aa64(env, 2)) {
12733             if (env->pstate & PSTATE_PAN) {
12734                 return ARMMMUIdx_E20_2_PAN;
12735             }
12736             return ARMMMUIdx_E20_2;
12737         }
12738         return ARMMMUIdx_E2;
12739     case 3:
12740         return ARMMMUIdx_SE3;
12741     default:
12742         g_assert_not_reached();
12743     }
12744 }
12745 
12746 ARMMMUIdx arm_mmu_idx(CPUARMState *env)
12747 {
12748     return arm_mmu_idx_el(env, arm_current_el(env));
12749 }
12750 
12751 #ifndef CONFIG_USER_ONLY
12752 ARMMMUIdx arm_stage1_mmu_idx(CPUARMState *env)
12753 {
12754     return stage_1_mmu_idx(arm_mmu_idx(env));
12755 }
12756 #endif
12757 
12758 static uint32_t rebuild_hflags_common(CPUARMState *env, int fp_el,
12759                                       ARMMMUIdx mmu_idx, uint32_t flags)
12760 {
12761     flags = FIELD_DP32(flags, TBFLAG_ANY, FPEXC_EL, fp_el);
12762     flags = FIELD_DP32(flags, TBFLAG_ANY, MMUIDX,
12763                        arm_to_core_mmu_idx(mmu_idx));
12764 
12765     if (arm_singlestep_active(env)) {
12766         flags = FIELD_DP32(flags, TBFLAG_ANY, SS_ACTIVE, 1);
12767     }
12768     return flags;
12769 }
12770 
12771 static uint32_t rebuild_hflags_common_32(CPUARMState *env, int fp_el,
12772                                          ARMMMUIdx mmu_idx, uint32_t flags)
12773 {
12774     bool sctlr_b = arm_sctlr_b(env);
12775 
12776     if (sctlr_b) {
12777         flags = FIELD_DP32(flags, TBFLAG_A32, SCTLR_B, 1);
12778     }
12779     if (arm_cpu_data_is_big_endian_a32(env, sctlr_b)) {
12780         flags = FIELD_DP32(flags, TBFLAG_ANY, BE_DATA, 1);
12781     }
12782     flags = FIELD_DP32(flags, TBFLAG_A32, NS, !access_secure_reg(env));
12783 
12784     return rebuild_hflags_common(env, fp_el, mmu_idx, flags);
12785 }
12786 
12787 static uint32_t rebuild_hflags_m32(CPUARMState *env, int fp_el,
12788                                    ARMMMUIdx mmu_idx)
12789 {
12790     uint32_t flags = 0;
12791 
12792     if (arm_v7m_is_handler_mode(env)) {
12793         flags = FIELD_DP32(flags, TBFLAG_M32, HANDLER, 1);
12794     }
12795 
12796     /*
12797      * v8M always applies stack limit checks unless CCR.STKOFHFNMIGN
12798      * is suppressing them because the requested execution priority
12799      * is less than 0.
12800      */
12801     if (arm_feature(env, ARM_FEATURE_V8) &&
12802         !((mmu_idx & ARM_MMU_IDX_M_NEGPRI) &&
12803           (env->v7m.ccr[env->v7m.secure] & R_V7M_CCR_STKOFHFNMIGN_MASK))) {
12804         flags = FIELD_DP32(flags, TBFLAG_M32, STACKCHECK, 1);
12805     }
12806 
12807     return rebuild_hflags_common_32(env, fp_el, mmu_idx, flags);
12808 }
12809 
12810 static uint32_t rebuild_hflags_aprofile(CPUARMState *env)
12811 {
12812     int flags = 0;
12813 
12814     flags = FIELD_DP32(flags, TBFLAG_ANY, DEBUG_TARGET_EL,
12815                        arm_debug_target_el(env));
12816     return flags;
12817 }
12818 
12819 static uint32_t rebuild_hflags_a32(CPUARMState *env, int fp_el,
12820                                    ARMMMUIdx mmu_idx)
12821 {
12822     uint32_t flags = rebuild_hflags_aprofile(env);
12823 
12824     if (arm_el_is_aa64(env, 1)) {
12825         flags = FIELD_DP32(flags, TBFLAG_A32, VFPEN, 1);
12826     }
12827 
12828     if (arm_current_el(env) < 2 && env->cp15.hstr_el2 &&
12829         (arm_hcr_el2_eff(env) & (HCR_E2H | HCR_TGE)) != (HCR_E2H | HCR_TGE)) {
12830         flags = FIELD_DP32(flags, TBFLAG_A32, HSTR_ACTIVE, 1);
12831     }
12832 
12833     return rebuild_hflags_common_32(env, fp_el, mmu_idx, flags);
12834 }
12835 
12836 static uint32_t rebuild_hflags_a64(CPUARMState *env, int el, int fp_el,
12837                                    ARMMMUIdx mmu_idx)
12838 {
12839     uint32_t flags = rebuild_hflags_aprofile(env);
12840     ARMMMUIdx stage1 = stage_1_mmu_idx(mmu_idx);
12841     uint64_t tcr = regime_tcr(env, mmu_idx)->raw_tcr;
12842     uint64_t sctlr;
12843     int tbii, tbid;
12844 
12845     flags = FIELD_DP32(flags, TBFLAG_ANY, AARCH64_STATE, 1);
12846 
12847     /* Get control bits for tagged addresses.  */
12848     tbid = aa64_va_parameter_tbi(tcr, mmu_idx);
12849     tbii = tbid & ~aa64_va_parameter_tbid(tcr, mmu_idx);
12850 
12851     flags = FIELD_DP32(flags, TBFLAG_A64, TBII, tbii);
12852     flags = FIELD_DP32(flags, TBFLAG_A64, TBID, tbid);
12853 
12854     if (cpu_isar_feature(aa64_sve, env_archcpu(env))) {
12855         int sve_el = sve_exception_el(env, el);
12856         uint32_t zcr_len;
12857 
12858         /*
12859          * If SVE is disabled, but FP is enabled,
12860          * then the effective len is 0.
12861          */
12862         if (sve_el != 0 && fp_el == 0) {
12863             zcr_len = 0;
12864         } else {
12865             zcr_len = sve_zcr_len_for_el(env, el);
12866         }
12867         flags = FIELD_DP32(flags, TBFLAG_A64, SVEEXC_EL, sve_el);
12868         flags = FIELD_DP32(flags, TBFLAG_A64, ZCR_LEN, zcr_len);
12869     }
12870 
12871     sctlr = regime_sctlr(env, stage1);
12872 
12873     if (arm_cpu_data_is_big_endian_a64(el, sctlr)) {
12874         flags = FIELD_DP32(flags, TBFLAG_ANY, BE_DATA, 1);
12875     }
12876 
12877     if (cpu_isar_feature(aa64_pauth, env_archcpu(env))) {
12878         /*
12879          * In order to save space in flags, we record only whether
12880          * pauth is "inactive", meaning all insns are implemented as
12881          * a nop, or "active" when some action must be performed.
12882          * The decision of which action to take is left to a helper.
12883          */
12884         if (sctlr & (SCTLR_EnIA | SCTLR_EnIB | SCTLR_EnDA | SCTLR_EnDB)) {
12885             flags = FIELD_DP32(flags, TBFLAG_A64, PAUTH_ACTIVE, 1);
12886         }
12887     }
12888 
12889     if (cpu_isar_feature(aa64_bti, env_archcpu(env))) {
12890         /* Note that SCTLR_EL[23].BT == SCTLR_BT1.  */
12891         if (sctlr & (el == 0 ? SCTLR_BT0 : SCTLR_BT1)) {
12892             flags = FIELD_DP32(flags, TBFLAG_A64, BT, 1);
12893         }
12894     }
12895 
12896     /* Compute the condition for using AccType_UNPRIV for LDTR et al. */
12897     if (!(env->pstate & PSTATE_UAO)) {
12898         switch (mmu_idx) {
12899         case ARMMMUIdx_E10_1:
12900         case ARMMMUIdx_E10_1_PAN:
12901         case ARMMMUIdx_SE10_1:
12902         case ARMMMUIdx_SE10_1_PAN:
12903             /* TODO: ARMv8.3-NV */
12904             flags = FIELD_DP32(flags, TBFLAG_A64, UNPRIV, 1);
12905             break;
12906         case ARMMMUIdx_E20_2:
12907         case ARMMMUIdx_E20_2_PAN:
12908             /* TODO: ARMv8.4-SecEL2 */
12909             /*
12910              * Note that EL20_2 is gated by HCR_EL2.E2H == 1, but EL20_0 is
12911              * gated by HCR_EL2.<E2H,TGE> == '11', and so is LDTR.
12912              */
12913             if (env->cp15.hcr_el2 & HCR_TGE) {
12914                 flags = FIELD_DP32(flags, TBFLAG_A64, UNPRIV, 1);
12915             }
12916             break;
12917         default:
12918             break;
12919         }
12920     }
12921 
12922     if (cpu_isar_feature(aa64_mte, env_archcpu(env))) {
12923         /*
12924          * Set MTE_ACTIVE if any access may be Checked, and leave clear
12925          * if all accesses must be Unchecked:
12926          * 1) If no TBI, then there are no tags in the address to check,
12927          * 2) If Tag Check Override, then all accesses are Unchecked,
12928          * 3) If Tag Check Fail == 0, then Checked access have no effect,
12929          * 4) If no Allocation Tag Access, then all accesses are Unchecked.
12930          */
12931         if (allocation_tag_access_enabled(env, el, sctlr)) {
12932             flags = FIELD_DP32(flags, TBFLAG_A64, ATA, 1);
12933             if (tbid
12934                 && !(env->pstate & PSTATE_TCO)
12935                 && (sctlr & (el == 0 ? SCTLR_TCF0 : SCTLR_TCF))) {
12936                 flags = FIELD_DP32(flags, TBFLAG_A64, MTE_ACTIVE, 1);
12937             }
12938         }
12939         /* And again for unprivileged accesses, if required.  */
12940         if (FIELD_EX32(flags, TBFLAG_A64, UNPRIV)
12941             && tbid
12942             && !(env->pstate & PSTATE_TCO)
12943             && (sctlr & SCTLR_TCF)
12944             && allocation_tag_access_enabled(env, 0, sctlr)) {
12945             flags = FIELD_DP32(flags, TBFLAG_A64, MTE0_ACTIVE, 1);
12946         }
12947         /* Cache TCMA as well as TBI. */
12948         flags = FIELD_DP32(flags, TBFLAG_A64, TCMA,
12949                            aa64_va_parameter_tcma(tcr, mmu_idx));
12950     }
12951 
12952     return rebuild_hflags_common(env, fp_el, mmu_idx, flags);
12953 }
12954 
12955 static uint32_t rebuild_hflags_internal(CPUARMState *env)
12956 {
12957     int el = arm_current_el(env);
12958     int fp_el = fp_exception_el(env, el);
12959     ARMMMUIdx mmu_idx = arm_mmu_idx_el(env, el);
12960 
12961     if (is_a64(env)) {
12962         return rebuild_hflags_a64(env, el, fp_el, mmu_idx);
12963     } else if (arm_feature(env, ARM_FEATURE_M)) {
12964         return rebuild_hflags_m32(env, fp_el, mmu_idx);
12965     } else {
12966         return rebuild_hflags_a32(env, fp_el, mmu_idx);
12967     }
12968 }
12969 
12970 void arm_rebuild_hflags(CPUARMState *env)
12971 {
12972     env->hflags = rebuild_hflags_internal(env);
12973 }
12974 
12975 /*
12976  * If we have triggered a EL state change we can't rely on the
12977  * translator having passed it to us, we need to recompute.
12978  */
12979 void HELPER(rebuild_hflags_m32_newel)(CPUARMState *env)
12980 {
12981     int el = arm_current_el(env);
12982     int fp_el = fp_exception_el(env, el);
12983     ARMMMUIdx mmu_idx = arm_mmu_idx_el(env, el);
12984     env->hflags = rebuild_hflags_m32(env, fp_el, mmu_idx);
12985 }
12986 
12987 void HELPER(rebuild_hflags_m32)(CPUARMState *env, int el)
12988 {
12989     int fp_el = fp_exception_el(env, el);
12990     ARMMMUIdx mmu_idx = arm_mmu_idx_el(env, el);
12991 
12992     env->hflags = rebuild_hflags_m32(env, fp_el, mmu_idx);
12993 }
12994 
12995 /*
12996  * If we have triggered a EL state change we can't rely on the
12997  * translator having passed it to us, we need to recompute.
12998  */
12999 void HELPER(rebuild_hflags_a32_newel)(CPUARMState *env)
13000 {
13001     int el = arm_current_el(env);
13002     int fp_el = fp_exception_el(env, el);
13003     ARMMMUIdx mmu_idx = arm_mmu_idx_el(env, el);
13004     env->hflags = rebuild_hflags_a32(env, fp_el, mmu_idx);
13005 }
13006 
13007 void HELPER(rebuild_hflags_a32)(CPUARMState *env, int el)
13008 {
13009     int fp_el = fp_exception_el(env, el);
13010     ARMMMUIdx mmu_idx = arm_mmu_idx_el(env, el);
13011 
13012     env->hflags = rebuild_hflags_a32(env, fp_el, mmu_idx);
13013 }
13014 
13015 void HELPER(rebuild_hflags_a64)(CPUARMState *env, int el)
13016 {
13017     int fp_el = fp_exception_el(env, el);
13018     ARMMMUIdx mmu_idx = arm_mmu_idx_el(env, el);
13019 
13020     env->hflags = rebuild_hflags_a64(env, el, fp_el, mmu_idx);
13021 }
13022 
13023 static inline void assert_hflags_rebuild_correctly(CPUARMState *env)
13024 {
13025 #ifdef CONFIG_DEBUG_TCG
13026     uint32_t env_flags_current = env->hflags;
13027     uint32_t env_flags_rebuilt = rebuild_hflags_internal(env);
13028 
13029     if (unlikely(env_flags_current != env_flags_rebuilt)) {
13030         fprintf(stderr, "TCG hflags mismatch (current:0x%08x rebuilt:0x%08x)\n",
13031                 env_flags_current, env_flags_rebuilt);
13032         abort();
13033     }
13034 #endif
13035 }
13036 
13037 void cpu_get_tb_cpu_state(CPUARMState *env, target_ulong *pc,
13038                           target_ulong *cs_base, uint32_t *pflags)
13039 {
13040     uint32_t flags = env->hflags;
13041     uint32_t pstate_for_ss;
13042 
13043     *cs_base = 0;
13044     assert_hflags_rebuild_correctly(env);
13045 
13046     if (FIELD_EX32(flags, TBFLAG_ANY, AARCH64_STATE)) {
13047         *pc = env->pc;
13048         if (cpu_isar_feature(aa64_bti, env_archcpu(env))) {
13049             flags = FIELD_DP32(flags, TBFLAG_A64, BTYPE, env->btype);
13050         }
13051         pstate_for_ss = env->pstate;
13052     } else {
13053         *pc = env->regs[15];
13054 
13055         if (arm_feature(env, ARM_FEATURE_M)) {
13056             if (arm_feature(env, ARM_FEATURE_M_SECURITY) &&
13057                 FIELD_EX32(env->v7m.fpccr[M_REG_S], V7M_FPCCR, S)
13058                 != env->v7m.secure) {
13059                 flags = FIELD_DP32(flags, TBFLAG_M32, FPCCR_S_WRONG, 1);
13060             }
13061 
13062             if ((env->v7m.fpccr[env->v7m.secure] & R_V7M_FPCCR_ASPEN_MASK) &&
13063                 (!(env->v7m.control[M_REG_S] & R_V7M_CONTROL_FPCA_MASK) ||
13064                  (env->v7m.secure &&
13065                   !(env->v7m.control[M_REG_S] & R_V7M_CONTROL_SFPA_MASK)))) {
13066                 /*
13067                  * ASPEN is set, but FPCA/SFPA indicate that there is no
13068                  * active FP context; we must create a new FP context before
13069                  * executing any FP insn.
13070                  */
13071                 flags = FIELD_DP32(flags, TBFLAG_M32, NEW_FP_CTXT_NEEDED, 1);
13072             }
13073 
13074             bool is_secure = env->v7m.fpccr[M_REG_S] & R_V7M_FPCCR_S_MASK;
13075             if (env->v7m.fpccr[is_secure] & R_V7M_FPCCR_LSPACT_MASK) {
13076                 flags = FIELD_DP32(flags, TBFLAG_M32, LSPACT, 1);
13077             }
13078         } else {
13079             /*
13080              * Note that XSCALE_CPAR shares bits with VECSTRIDE.
13081              * Note that VECLEN+VECSTRIDE are RES0 for M-profile.
13082              */
13083             if (arm_feature(env, ARM_FEATURE_XSCALE)) {
13084                 flags = FIELD_DP32(flags, TBFLAG_A32,
13085                                    XSCALE_CPAR, env->cp15.c15_cpar);
13086             } else {
13087                 flags = FIELD_DP32(flags, TBFLAG_A32, VECLEN,
13088                                    env->vfp.vec_len);
13089                 flags = FIELD_DP32(flags, TBFLAG_A32, VECSTRIDE,
13090                                    env->vfp.vec_stride);
13091             }
13092             if (env->vfp.xregs[ARM_VFP_FPEXC] & (1 << 30)) {
13093                 flags = FIELD_DP32(flags, TBFLAG_A32, VFPEN, 1);
13094             }
13095         }
13096 
13097         flags = FIELD_DP32(flags, TBFLAG_AM32, THUMB, env->thumb);
13098         flags = FIELD_DP32(flags, TBFLAG_AM32, CONDEXEC, env->condexec_bits);
13099         pstate_for_ss = env->uncached_cpsr;
13100     }
13101 
13102     /*
13103      * The SS_ACTIVE and PSTATE_SS bits correspond to the state machine
13104      * states defined in the ARM ARM for software singlestep:
13105      *  SS_ACTIVE   PSTATE.SS   State
13106      *     0            x       Inactive (the TB flag for SS is always 0)
13107      *     1            0       Active-pending
13108      *     1            1       Active-not-pending
13109      * SS_ACTIVE is set in hflags; PSTATE_SS is computed every TB.
13110      */
13111     if (FIELD_EX32(flags, TBFLAG_ANY, SS_ACTIVE) &&
13112         (pstate_for_ss & PSTATE_SS)) {
13113         flags = FIELD_DP32(flags, TBFLAG_ANY, PSTATE_SS, 1);
13114     }
13115 
13116     *pflags = flags;
13117 }
13118 
13119 #ifdef TARGET_AARCH64
13120 /*
13121  * The manual says that when SVE is enabled and VQ is widened the
13122  * implementation is allowed to zero the previously inaccessible
13123  * portion of the registers.  The corollary to that is that when
13124  * SVE is enabled and VQ is narrowed we are also allowed to zero
13125  * the now inaccessible portion of the registers.
13126  *
13127  * The intent of this is that no predicate bit beyond VQ is ever set.
13128  * Which means that some operations on predicate registers themselves
13129  * may operate on full uint64_t or even unrolled across the maximum
13130  * uint64_t[4].  Performing 4 bits of host arithmetic unconditionally
13131  * may well be cheaper than conditionals to restrict the operation
13132  * to the relevant portion of a uint16_t[16].
13133  */
13134 void aarch64_sve_narrow_vq(CPUARMState *env, unsigned vq)
13135 {
13136     int i, j;
13137     uint64_t pmask;
13138 
13139     assert(vq >= 1 && vq <= ARM_MAX_VQ);
13140     assert(vq <= env_archcpu(env)->sve_max_vq);
13141 
13142     /* Zap the high bits of the zregs.  */
13143     for (i = 0; i < 32; i++) {
13144         memset(&env->vfp.zregs[i].d[2 * vq], 0, 16 * (ARM_MAX_VQ - vq));
13145     }
13146 
13147     /* Zap the high bits of the pregs and ffr.  */
13148     pmask = 0;
13149     if (vq & 3) {
13150         pmask = ~(-1ULL << (16 * (vq & 3)));
13151     }
13152     for (j = vq / 4; j < ARM_MAX_VQ / 4; j++) {
13153         for (i = 0; i < 17; ++i) {
13154             env->vfp.pregs[i].p[j] &= pmask;
13155         }
13156         pmask = 0;
13157     }
13158 }
13159 
13160 /*
13161  * Notice a change in SVE vector size when changing EL.
13162  */
13163 void aarch64_sve_change_el(CPUARMState *env, int old_el,
13164                            int new_el, bool el0_a64)
13165 {
13166     ARMCPU *cpu = env_archcpu(env);
13167     int old_len, new_len;
13168     bool old_a64, new_a64;
13169 
13170     /* Nothing to do if no SVE.  */
13171     if (!cpu_isar_feature(aa64_sve, cpu)) {
13172         return;
13173     }
13174 
13175     /* Nothing to do if FP is disabled in either EL.  */
13176     if (fp_exception_el(env, old_el) || fp_exception_el(env, new_el)) {
13177         return;
13178     }
13179 
13180     /*
13181      * DDI0584A.d sec 3.2: "If SVE instructions are disabled or trapped
13182      * at ELx, or not available because the EL is in AArch32 state, then
13183      * for all purposes other than a direct read, the ZCR_ELx.LEN field
13184      * has an effective value of 0".
13185      *
13186      * Consider EL2 (aa64, vq=4) -> EL0 (aa32) -> EL1 (aa64, vq=0).
13187      * If we ignore aa32 state, we would fail to see the vq4->vq0 transition
13188      * from EL2->EL1.  Thus we go ahead and narrow when entering aa32 so that
13189      * we already have the correct register contents when encountering the
13190      * vq0->vq0 transition between EL0->EL1.
13191      */
13192     old_a64 = old_el ? arm_el_is_aa64(env, old_el) : el0_a64;
13193     old_len = (old_a64 && !sve_exception_el(env, old_el)
13194                ? sve_zcr_len_for_el(env, old_el) : 0);
13195     new_a64 = new_el ? arm_el_is_aa64(env, new_el) : el0_a64;
13196     new_len = (new_a64 && !sve_exception_el(env, new_el)
13197                ? sve_zcr_len_for_el(env, new_el) : 0);
13198 
13199     /* When changing vector length, clear inaccessible state.  */
13200     if (new_len < old_len) {
13201         aarch64_sve_narrow_vq(env, new_len + 1);
13202     }
13203 }
13204 #endif
13205