1 #include "qemu/osdep.h" 2 #include "trace.h" 3 #include "cpu.h" 4 #include "internals.h" 5 #include "exec/gdbstub.h" 6 #include "exec/helper-proto.h" 7 #include "qemu/host-utils.h" 8 #include "sysemu/arch_init.h" 9 #include "sysemu/sysemu.h" 10 #include "qemu/bitops.h" 11 #include "qemu/crc32c.h" 12 #include "exec/exec-all.h" 13 #include "exec/cpu_ldst.h" 14 #include "arm_ldst.h" 15 #include <zlib.h> /* For crc32 */ 16 #include "exec/semihost.h" 17 #include "sysemu/kvm.h" 18 19 #define ARM_CPU_FREQ 1000000000 /* FIXME: 1 GHz, should be configurable */ 20 21 #ifndef CONFIG_USER_ONLY 22 static bool get_phys_addr(CPUARMState *env, target_ulong address, 23 int access_type, ARMMMUIdx mmu_idx, 24 hwaddr *phys_ptr, MemTxAttrs *attrs, int *prot, 25 target_ulong *page_size, uint32_t *fsr, 26 ARMMMUFaultInfo *fi); 27 28 static bool get_phys_addr_lpae(CPUARMState *env, target_ulong address, 29 int access_type, ARMMMUIdx mmu_idx, 30 hwaddr *phys_ptr, MemTxAttrs *txattrs, int *prot, 31 target_ulong *page_size_ptr, uint32_t *fsr, 32 ARMMMUFaultInfo *fi); 33 34 /* Definitions for the PMCCNTR and PMCR registers */ 35 #define PMCRD 0x8 36 #define PMCRC 0x4 37 #define PMCRE 0x1 38 #endif 39 40 static int vfp_gdb_get_reg(CPUARMState *env, uint8_t *buf, int reg) 41 { 42 int nregs; 43 44 /* VFP data registers are always little-endian. */ 45 nregs = arm_feature(env, ARM_FEATURE_VFP3) ? 32 : 16; 46 if (reg < nregs) { 47 stfq_le_p(buf, env->vfp.regs[reg]); 48 return 8; 49 } 50 if (arm_feature(env, ARM_FEATURE_NEON)) { 51 /* Aliases for Q regs. */ 52 nregs += 16; 53 if (reg < nregs) { 54 stfq_le_p(buf, env->vfp.regs[(reg - 32) * 2]); 55 stfq_le_p(buf + 8, env->vfp.regs[(reg - 32) * 2 + 1]); 56 return 16; 57 } 58 } 59 switch (reg - nregs) { 60 case 0: stl_p(buf, env->vfp.xregs[ARM_VFP_FPSID]); return 4; 61 case 1: stl_p(buf, env->vfp.xregs[ARM_VFP_FPSCR]); return 4; 62 case 2: stl_p(buf, env->vfp.xregs[ARM_VFP_FPEXC]); return 4; 63 } 64 return 0; 65 } 66 67 static int vfp_gdb_set_reg(CPUARMState *env, uint8_t *buf, int reg) 68 { 69 int nregs; 70 71 nregs = arm_feature(env, ARM_FEATURE_VFP3) ? 32 : 16; 72 if (reg < nregs) { 73 env->vfp.regs[reg] = ldfq_le_p(buf); 74 return 8; 75 } 76 if (arm_feature(env, ARM_FEATURE_NEON)) { 77 nregs += 16; 78 if (reg < nregs) { 79 env->vfp.regs[(reg - 32) * 2] = ldfq_le_p(buf); 80 env->vfp.regs[(reg - 32) * 2 + 1] = ldfq_le_p(buf + 8); 81 return 16; 82 } 83 } 84 switch (reg - nregs) { 85 case 0: env->vfp.xregs[ARM_VFP_FPSID] = ldl_p(buf); return 4; 86 case 1: env->vfp.xregs[ARM_VFP_FPSCR] = ldl_p(buf); return 4; 87 case 2: env->vfp.xregs[ARM_VFP_FPEXC] = ldl_p(buf) & (1 << 30); return 4; 88 } 89 return 0; 90 } 91 92 static int aarch64_fpu_gdb_get_reg(CPUARMState *env, uint8_t *buf, int reg) 93 { 94 switch (reg) { 95 case 0 ... 31: 96 /* 128 bit FP register */ 97 stfq_le_p(buf, env->vfp.regs[reg * 2]); 98 stfq_le_p(buf + 8, env->vfp.regs[reg * 2 + 1]); 99 return 16; 100 case 32: 101 /* FPSR */ 102 stl_p(buf, vfp_get_fpsr(env)); 103 return 4; 104 case 33: 105 /* FPCR */ 106 stl_p(buf, vfp_get_fpcr(env)); 107 return 4; 108 default: 109 return 0; 110 } 111 } 112 113 static int aarch64_fpu_gdb_set_reg(CPUARMState *env, uint8_t *buf, int reg) 114 { 115 switch (reg) { 116 case 0 ... 31: 117 /* 128 bit FP register */ 118 env->vfp.regs[reg * 2] = ldfq_le_p(buf); 119 env->vfp.regs[reg * 2 + 1] = ldfq_le_p(buf + 8); 120 return 16; 121 case 32: 122 /* FPSR */ 123 vfp_set_fpsr(env, ldl_p(buf)); 124 return 4; 125 case 33: 126 /* FPCR */ 127 vfp_set_fpcr(env, ldl_p(buf)); 128 return 4; 129 default: 130 return 0; 131 } 132 } 133 134 static uint64_t raw_read(CPUARMState *env, const ARMCPRegInfo *ri) 135 { 136 assert(ri->fieldoffset); 137 if (cpreg_field_is_64bit(ri)) { 138 return CPREG_FIELD64(env, ri); 139 } else { 140 return CPREG_FIELD32(env, ri); 141 } 142 } 143 144 static void raw_write(CPUARMState *env, const ARMCPRegInfo *ri, 145 uint64_t value) 146 { 147 assert(ri->fieldoffset); 148 if (cpreg_field_is_64bit(ri)) { 149 CPREG_FIELD64(env, ri) = value; 150 } else { 151 CPREG_FIELD32(env, ri) = value; 152 } 153 } 154 155 static void *raw_ptr(CPUARMState *env, const ARMCPRegInfo *ri) 156 { 157 return (char *)env + ri->fieldoffset; 158 } 159 160 uint64_t read_raw_cp_reg(CPUARMState *env, const ARMCPRegInfo *ri) 161 { 162 /* Raw read of a coprocessor register (as needed for migration, etc). */ 163 if (ri->type & ARM_CP_CONST) { 164 return ri->resetvalue; 165 } else if (ri->raw_readfn) { 166 return ri->raw_readfn(env, ri); 167 } else if (ri->readfn) { 168 return ri->readfn(env, ri); 169 } else { 170 return raw_read(env, ri); 171 } 172 } 173 174 static void write_raw_cp_reg(CPUARMState *env, const ARMCPRegInfo *ri, 175 uint64_t v) 176 { 177 /* Raw write of a coprocessor register (as needed for migration, etc). 178 * Note that constant registers are treated as write-ignored; the 179 * caller should check for success by whether a readback gives the 180 * value written. 181 */ 182 if (ri->type & ARM_CP_CONST) { 183 return; 184 } else if (ri->raw_writefn) { 185 ri->raw_writefn(env, ri, v); 186 } else if (ri->writefn) { 187 ri->writefn(env, ri, v); 188 } else { 189 raw_write(env, ri, v); 190 } 191 } 192 193 static bool raw_accessors_invalid(const ARMCPRegInfo *ri) 194 { 195 /* Return true if the regdef would cause an assertion if you called 196 * read_raw_cp_reg() or write_raw_cp_reg() on it (ie if it is a 197 * program bug for it not to have the NO_RAW flag). 198 * NB that returning false here doesn't necessarily mean that calling 199 * read/write_raw_cp_reg() is safe, because we can't distinguish "has 200 * read/write access functions which are safe for raw use" from "has 201 * read/write access functions which have side effects but has forgotten 202 * to provide raw access functions". 203 * The tests here line up with the conditions in read/write_raw_cp_reg() 204 * and assertions in raw_read()/raw_write(). 205 */ 206 if ((ri->type & ARM_CP_CONST) || 207 ri->fieldoffset || 208 ((ri->raw_writefn || ri->writefn) && (ri->raw_readfn || ri->readfn))) { 209 return false; 210 } 211 return true; 212 } 213 214 bool write_cpustate_to_list(ARMCPU *cpu) 215 { 216 /* Write the coprocessor state from cpu->env to the (index,value) list. */ 217 int i; 218 bool ok = true; 219 220 for (i = 0; i < cpu->cpreg_array_len; i++) { 221 uint32_t regidx = kvm_to_cpreg_id(cpu->cpreg_indexes[i]); 222 const ARMCPRegInfo *ri; 223 224 ri = get_arm_cp_reginfo(cpu->cp_regs, regidx); 225 if (!ri) { 226 ok = false; 227 continue; 228 } 229 if (ri->type & ARM_CP_NO_RAW) { 230 continue; 231 } 232 cpu->cpreg_values[i] = read_raw_cp_reg(&cpu->env, ri); 233 } 234 return ok; 235 } 236 237 bool write_list_to_cpustate(ARMCPU *cpu) 238 { 239 int i; 240 bool ok = true; 241 242 for (i = 0; i < cpu->cpreg_array_len; i++) { 243 uint32_t regidx = kvm_to_cpreg_id(cpu->cpreg_indexes[i]); 244 uint64_t v = cpu->cpreg_values[i]; 245 const ARMCPRegInfo *ri; 246 247 ri = get_arm_cp_reginfo(cpu->cp_regs, regidx); 248 if (!ri) { 249 ok = false; 250 continue; 251 } 252 if (ri->type & ARM_CP_NO_RAW) { 253 continue; 254 } 255 /* Write value and confirm it reads back as written 256 * (to catch read-only registers and partially read-only 257 * registers where the incoming migration value doesn't match) 258 */ 259 write_raw_cp_reg(&cpu->env, ri, v); 260 if (read_raw_cp_reg(&cpu->env, ri) != v) { 261 ok = false; 262 } 263 } 264 return ok; 265 } 266 267 static void add_cpreg_to_list(gpointer key, gpointer opaque) 268 { 269 ARMCPU *cpu = opaque; 270 uint64_t regidx; 271 const ARMCPRegInfo *ri; 272 273 regidx = *(uint32_t *)key; 274 ri = get_arm_cp_reginfo(cpu->cp_regs, regidx); 275 276 if (!(ri->type & (ARM_CP_NO_RAW|ARM_CP_ALIAS))) { 277 cpu->cpreg_indexes[cpu->cpreg_array_len] = cpreg_to_kvm_id(regidx); 278 /* The value array need not be initialized at this point */ 279 cpu->cpreg_array_len++; 280 } 281 } 282 283 static void count_cpreg(gpointer key, gpointer opaque) 284 { 285 ARMCPU *cpu = opaque; 286 uint64_t regidx; 287 const ARMCPRegInfo *ri; 288 289 regidx = *(uint32_t *)key; 290 ri = get_arm_cp_reginfo(cpu->cp_regs, regidx); 291 292 if (!(ri->type & (ARM_CP_NO_RAW|ARM_CP_ALIAS))) { 293 cpu->cpreg_array_len++; 294 } 295 } 296 297 static gint cpreg_key_compare(gconstpointer a, gconstpointer b) 298 { 299 uint64_t aidx = cpreg_to_kvm_id(*(uint32_t *)a); 300 uint64_t bidx = cpreg_to_kvm_id(*(uint32_t *)b); 301 302 if (aidx > bidx) { 303 return 1; 304 } 305 if (aidx < bidx) { 306 return -1; 307 } 308 return 0; 309 } 310 311 void init_cpreg_list(ARMCPU *cpu) 312 { 313 /* Initialise the cpreg_tuples[] array based on the cp_regs hash. 314 * Note that we require cpreg_tuples[] to be sorted by key ID. 315 */ 316 GList *keys; 317 int arraylen; 318 319 keys = g_hash_table_get_keys(cpu->cp_regs); 320 keys = g_list_sort(keys, cpreg_key_compare); 321 322 cpu->cpreg_array_len = 0; 323 324 g_list_foreach(keys, count_cpreg, cpu); 325 326 arraylen = cpu->cpreg_array_len; 327 cpu->cpreg_indexes = g_new(uint64_t, arraylen); 328 cpu->cpreg_values = g_new(uint64_t, arraylen); 329 cpu->cpreg_vmstate_indexes = g_new(uint64_t, arraylen); 330 cpu->cpreg_vmstate_values = g_new(uint64_t, arraylen); 331 cpu->cpreg_vmstate_array_len = cpu->cpreg_array_len; 332 cpu->cpreg_array_len = 0; 333 334 g_list_foreach(keys, add_cpreg_to_list, cpu); 335 336 assert(cpu->cpreg_array_len == arraylen); 337 338 g_list_free(keys); 339 } 340 341 /* 342 * Some registers are not accessible if EL3.NS=0 and EL3 is using AArch32 but 343 * they are accessible when EL3 is using AArch64 regardless of EL3.NS. 344 * 345 * access_el3_aa32ns: Used to check AArch32 register views. 346 * access_el3_aa32ns_aa64any: Used to check both AArch32/64 register views. 347 */ 348 static CPAccessResult access_el3_aa32ns(CPUARMState *env, 349 const ARMCPRegInfo *ri, 350 bool isread) 351 { 352 bool secure = arm_is_secure_below_el3(env); 353 354 assert(!arm_el_is_aa64(env, 3)); 355 if (secure) { 356 return CP_ACCESS_TRAP_UNCATEGORIZED; 357 } 358 return CP_ACCESS_OK; 359 } 360 361 static CPAccessResult access_el3_aa32ns_aa64any(CPUARMState *env, 362 const ARMCPRegInfo *ri, 363 bool isread) 364 { 365 if (!arm_el_is_aa64(env, 3)) { 366 return access_el3_aa32ns(env, ri, isread); 367 } 368 return CP_ACCESS_OK; 369 } 370 371 /* Some secure-only AArch32 registers trap to EL3 if used from 372 * Secure EL1 (but are just ordinary UNDEF in other non-EL3 contexts). 373 * Note that an access from Secure EL1 can only happen if EL3 is AArch64. 374 * We assume that the .access field is set to PL1_RW. 375 */ 376 static CPAccessResult access_trap_aa32s_el1(CPUARMState *env, 377 const ARMCPRegInfo *ri, 378 bool isread) 379 { 380 if (arm_current_el(env) == 3) { 381 return CP_ACCESS_OK; 382 } 383 if (arm_is_secure_below_el3(env)) { 384 return CP_ACCESS_TRAP_EL3; 385 } 386 /* This will be EL1 NS and EL2 NS, which just UNDEF */ 387 return CP_ACCESS_TRAP_UNCATEGORIZED; 388 } 389 390 /* Check for traps to "powerdown debug" registers, which are controlled 391 * by MDCR.TDOSA 392 */ 393 static CPAccessResult access_tdosa(CPUARMState *env, const ARMCPRegInfo *ri, 394 bool isread) 395 { 396 int el = arm_current_el(env); 397 398 if (el < 2 && (env->cp15.mdcr_el2 & MDCR_TDOSA) 399 && !arm_is_secure_below_el3(env)) { 400 return CP_ACCESS_TRAP_EL2; 401 } 402 if (el < 3 && (env->cp15.mdcr_el3 & MDCR_TDOSA)) { 403 return CP_ACCESS_TRAP_EL3; 404 } 405 return CP_ACCESS_OK; 406 } 407 408 /* Check for traps to "debug ROM" registers, which are controlled 409 * by MDCR_EL2.TDRA for EL2 but by the more general MDCR_EL3.TDA for EL3. 410 */ 411 static CPAccessResult access_tdra(CPUARMState *env, const ARMCPRegInfo *ri, 412 bool isread) 413 { 414 int el = arm_current_el(env); 415 416 if (el < 2 && (env->cp15.mdcr_el2 & MDCR_TDRA) 417 && !arm_is_secure_below_el3(env)) { 418 return CP_ACCESS_TRAP_EL2; 419 } 420 if (el < 3 && (env->cp15.mdcr_el3 & MDCR_TDA)) { 421 return CP_ACCESS_TRAP_EL3; 422 } 423 return CP_ACCESS_OK; 424 } 425 426 /* Check for traps to general debug registers, which are controlled 427 * by MDCR_EL2.TDA for EL2 and MDCR_EL3.TDA for EL3. 428 */ 429 static CPAccessResult access_tda(CPUARMState *env, const ARMCPRegInfo *ri, 430 bool isread) 431 { 432 int el = arm_current_el(env); 433 434 if (el < 2 && (env->cp15.mdcr_el2 & MDCR_TDA) 435 && !arm_is_secure_below_el3(env)) { 436 return CP_ACCESS_TRAP_EL2; 437 } 438 if (el < 3 && (env->cp15.mdcr_el3 & MDCR_TDA)) { 439 return CP_ACCESS_TRAP_EL3; 440 } 441 return CP_ACCESS_OK; 442 } 443 444 /* Check for traps to performance monitor registers, which are controlled 445 * by MDCR_EL2.TPM for EL2 and MDCR_EL3.TPM for EL3. 446 */ 447 static CPAccessResult access_tpm(CPUARMState *env, const ARMCPRegInfo *ri, 448 bool isread) 449 { 450 int el = arm_current_el(env); 451 452 if (el < 2 && (env->cp15.mdcr_el2 & MDCR_TPM) 453 && !arm_is_secure_below_el3(env)) { 454 return CP_ACCESS_TRAP_EL2; 455 } 456 if (el < 3 && (env->cp15.mdcr_el3 & MDCR_TPM)) { 457 return CP_ACCESS_TRAP_EL3; 458 } 459 return CP_ACCESS_OK; 460 } 461 462 static void dacr_write(CPUARMState *env, const ARMCPRegInfo *ri, uint64_t value) 463 { 464 ARMCPU *cpu = arm_env_get_cpu(env); 465 466 raw_write(env, ri, value); 467 tlb_flush(CPU(cpu)); /* Flush TLB as domain not tracked in TLB */ 468 } 469 470 static void fcse_write(CPUARMState *env, const ARMCPRegInfo *ri, uint64_t value) 471 { 472 ARMCPU *cpu = arm_env_get_cpu(env); 473 474 if (raw_read(env, ri) != value) { 475 /* Unlike real hardware the qemu TLB uses virtual addresses, 476 * not modified virtual addresses, so this causes a TLB flush. 477 */ 478 tlb_flush(CPU(cpu)); 479 raw_write(env, ri, value); 480 } 481 } 482 483 static void contextidr_write(CPUARMState *env, const ARMCPRegInfo *ri, 484 uint64_t value) 485 { 486 ARMCPU *cpu = arm_env_get_cpu(env); 487 488 if (raw_read(env, ri) != value && !arm_feature(env, ARM_FEATURE_MPU) 489 && !extended_addresses_enabled(env)) { 490 /* For VMSA (when not using the LPAE long descriptor page table 491 * format) this register includes the ASID, so do a TLB flush. 492 * For PMSA it is purely a process ID and no action is needed. 493 */ 494 tlb_flush(CPU(cpu)); 495 } 496 raw_write(env, ri, value); 497 } 498 499 static void tlbiall_write(CPUARMState *env, const ARMCPRegInfo *ri, 500 uint64_t value) 501 { 502 /* Invalidate all (TLBIALL) */ 503 ARMCPU *cpu = arm_env_get_cpu(env); 504 505 tlb_flush(CPU(cpu)); 506 } 507 508 static void tlbimva_write(CPUARMState *env, const ARMCPRegInfo *ri, 509 uint64_t value) 510 { 511 /* Invalidate single TLB entry by MVA and ASID (TLBIMVA) */ 512 ARMCPU *cpu = arm_env_get_cpu(env); 513 514 tlb_flush_page(CPU(cpu), value & TARGET_PAGE_MASK); 515 } 516 517 static void tlbiasid_write(CPUARMState *env, const ARMCPRegInfo *ri, 518 uint64_t value) 519 { 520 /* Invalidate by ASID (TLBIASID) */ 521 ARMCPU *cpu = arm_env_get_cpu(env); 522 523 tlb_flush(CPU(cpu)); 524 } 525 526 static void tlbimvaa_write(CPUARMState *env, const ARMCPRegInfo *ri, 527 uint64_t value) 528 { 529 /* Invalidate single entry by MVA, all ASIDs (TLBIMVAA) */ 530 ARMCPU *cpu = arm_env_get_cpu(env); 531 532 tlb_flush_page(CPU(cpu), value & TARGET_PAGE_MASK); 533 } 534 535 /* IS variants of TLB operations must affect all cores */ 536 static void tlbiall_is_write(CPUARMState *env, const ARMCPRegInfo *ri, 537 uint64_t value) 538 { 539 CPUState *other_cs; 540 541 CPU_FOREACH(other_cs) { 542 tlb_flush(other_cs); 543 } 544 } 545 546 static void tlbiasid_is_write(CPUARMState *env, const ARMCPRegInfo *ri, 547 uint64_t value) 548 { 549 CPUState *other_cs; 550 551 CPU_FOREACH(other_cs) { 552 tlb_flush(other_cs); 553 } 554 } 555 556 static void tlbimva_is_write(CPUARMState *env, const ARMCPRegInfo *ri, 557 uint64_t value) 558 { 559 CPUState *other_cs; 560 561 CPU_FOREACH(other_cs) { 562 tlb_flush_page(other_cs, value & TARGET_PAGE_MASK); 563 } 564 } 565 566 static void tlbimvaa_is_write(CPUARMState *env, const ARMCPRegInfo *ri, 567 uint64_t value) 568 { 569 CPUState *other_cs; 570 571 CPU_FOREACH(other_cs) { 572 tlb_flush_page(other_cs, value & TARGET_PAGE_MASK); 573 } 574 } 575 576 static void tlbiall_nsnh_write(CPUARMState *env, const ARMCPRegInfo *ri, 577 uint64_t value) 578 { 579 CPUState *cs = ENV_GET_CPU(env); 580 581 tlb_flush_by_mmuidx(cs, ARMMMUIdx_S12NSE1, ARMMMUIdx_S12NSE0, 582 ARMMMUIdx_S2NS, -1); 583 } 584 585 static void tlbiall_nsnh_is_write(CPUARMState *env, const ARMCPRegInfo *ri, 586 uint64_t value) 587 { 588 CPUState *other_cs; 589 590 CPU_FOREACH(other_cs) { 591 tlb_flush_by_mmuidx(other_cs, ARMMMUIdx_S12NSE1, 592 ARMMMUIdx_S12NSE0, ARMMMUIdx_S2NS, -1); 593 } 594 } 595 596 static void tlbiipas2_write(CPUARMState *env, const ARMCPRegInfo *ri, 597 uint64_t value) 598 { 599 /* Invalidate by IPA. This has to invalidate any structures that 600 * contain only stage 2 translation information, but does not need 601 * to apply to structures that contain combined stage 1 and stage 2 602 * translation information. 603 * This must NOP if EL2 isn't implemented or SCR_EL3.NS is zero. 604 */ 605 CPUState *cs = ENV_GET_CPU(env); 606 uint64_t pageaddr; 607 608 if (!arm_feature(env, ARM_FEATURE_EL2) || !(env->cp15.scr_el3 & SCR_NS)) { 609 return; 610 } 611 612 pageaddr = sextract64(value << 12, 0, 40); 613 614 tlb_flush_page_by_mmuidx(cs, pageaddr, ARMMMUIdx_S2NS, -1); 615 } 616 617 static void tlbiipas2_is_write(CPUARMState *env, const ARMCPRegInfo *ri, 618 uint64_t value) 619 { 620 CPUState *other_cs; 621 uint64_t pageaddr; 622 623 if (!arm_feature(env, ARM_FEATURE_EL2) || !(env->cp15.scr_el3 & SCR_NS)) { 624 return; 625 } 626 627 pageaddr = sextract64(value << 12, 0, 40); 628 629 CPU_FOREACH(other_cs) { 630 tlb_flush_page_by_mmuidx(other_cs, pageaddr, ARMMMUIdx_S2NS, -1); 631 } 632 } 633 634 static void tlbiall_hyp_write(CPUARMState *env, const ARMCPRegInfo *ri, 635 uint64_t value) 636 { 637 CPUState *cs = ENV_GET_CPU(env); 638 639 tlb_flush_by_mmuidx(cs, ARMMMUIdx_S1E2, -1); 640 } 641 642 static void tlbiall_hyp_is_write(CPUARMState *env, const ARMCPRegInfo *ri, 643 uint64_t value) 644 { 645 CPUState *other_cs; 646 647 CPU_FOREACH(other_cs) { 648 tlb_flush_by_mmuidx(other_cs, ARMMMUIdx_S1E2, -1); 649 } 650 } 651 652 static void tlbimva_hyp_write(CPUARMState *env, const ARMCPRegInfo *ri, 653 uint64_t value) 654 { 655 CPUState *cs = ENV_GET_CPU(env); 656 uint64_t pageaddr = value & ~MAKE_64BIT_MASK(0, 12); 657 658 tlb_flush_page_by_mmuidx(cs, pageaddr, ARMMMUIdx_S1E2, -1); 659 } 660 661 static void tlbimva_hyp_is_write(CPUARMState *env, const ARMCPRegInfo *ri, 662 uint64_t value) 663 { 664 CPUState *other_cs; 665 uint64_t pageaddr = value & ~MAKE_64BIT_MASK(0, 12); 666 667 CPU_FOREACH(other_cs) { 668 tlb_flush_page_by_mmuidx(other_cs, pageaddr, ARMMMUIdx_S1E2, -1); 669 } 670 } 671 672 static const ARMCPRegInfo cp_reginfo[] = { 673 /* Define the secure and non-secure FCSE identifier CP registers 674 * separately because there is no secure bank in V8 (no _EL3). This allows 675 * the secure register to be properly reset and migrated. There is also no 676 * v8 EL1 version of the register so the non-secure instance stands alone. 677 */ 678 { .name = "FCSEIDR(NS)", 679 .cp = 15, .opc1 = 0, .crn = 13, .crm = 0, .opc2 = 0, 680 .access = PL1_RW, .secure = ARM_CP_SECSTATE_NS, 681 .fieldoffset = offsetof(CPUARMState, cp15.fcseidr_ns), 682 .resetvalue = 0, .writefn = fcse_write, .raw_writefn = raw_write, }, 683 { .name = "FCSEIDR(S)", 684 .cp = 15, .opc1 = 0, .crn = 13, .crm = 0, .opc2 = 0, 685 .access = PL1_RW, .secure = ARM_CP_SECSTATE_S, 686 .fieldoffset = offsetof(CPUARMState, cp15.fcseidr_s), 687 .resetvalue = 0, .writefn = fcse_write, .raw_writefn = raw_write, }, 688 /* Define the secure and non-secure context identifier CP registers 689 * separately because there is no secure bank in V8 (no _EL3). This allows 690 * the secure register to be properly reset and migrated. In the 691 * non-secure case, the 32-bit register will have reset and migration 692 * disabled during registration as it is handled by the 64-bit instance. 693 */ 694 { .name = "CONTEXTIDR_EL1", .state = ARM_CP_STATE_BOTH, 695 .opc0 = 3, .opc1 = 0, .crn = 13, .crm = 0, .opc2 = 1, 696 .access = PL1_RW, .secure = ARM_CP_SECSTATE_NS, 697 .fieldoffset = offsetof(CPUARMState, cp15.contextidr_el[1]), 698 .resetvalue = 0, .writefn = contextidr_write, .raw_writefn = raw_write, }, 699 { .name = "CONTEXTIDR(S)", .state = ARM_CP_STATE_AA32, 700 .cp = 15, .opc1 = 0, .crn = 13, .crm = 0, .opc2 = 1, 701 .access = PL1_RW, .secure = ARM_CP_SECSTATE_S, 702 .fieldoffset = offsetof(CPUARMState, cp15.contextidr_s), 703 .resetvalue = 0, .writefn = contextidr_write, .raw_writefn = raw_write, }, 704 REGINFO_SENTINEL 705 }; 706 707 static const ARMCPRegInfo not_v8_cp_reginfo[] = { 708 /* NB: Some of these registers exist in v8 but with more precise 709 * definitions that don't use CP_ANY wildcards (mostly in v8_cp_reginfo[]). 710 */ 711 /* MMU Domain access control / MPU write buffer control */ 712 { .name = "DACR", 713 .cp = 15, .opc1 = CP_ANY, .crn = 3, .crm = CP_ANY, .opc2 = CP_ANY, 714 .access = PL1_RW, .resetvalue = 0, 715 .writefn = dacr_write, .raw_writefn = raw_write, 716 .bank_fieldoffsets = { offsetoflow32(CPUARMState, cp15.dacr_s), 717 offsetoflow32(CPUARMState, cp15.dacr_ns) } }, 718 /* ARMv7 allocates a range of implementation defined TLB LOCKDOWN regs. 719 * For v6 and v5, these mappings are overly broad. 720 */ 721 { .name = "TLB_LOCKDOWN", .cp = 15, .crn = 10, .crm = 0, 722 .opc1 = CP_ANY, .opc2 = CP_ANY, .access = PL1_RW, .type = ARM_CP_NOP }, 723 { .name = "TLB_LOCKDOWN", .cp = 15, .crn = 10, .crm = 1, 724 .opc1 = CP_ANY, .opc2 = CP_ANY, .access = PL1_RW, .type = ARM_CP_NOP }, 725 { .name = "TLB_LOCKDOWN", .cp = 15, .crn = 10, .crm = 4, 726 .opc1 = CP_ANY, .opc2 = CP_ANY, .access = PL1_RW, .type = ARM_CP_NOP }, 727 { .name = "TLB_LOCKDOWN", .cp = 15, .crn = 10, .crm = 8, 728 .opc1 = CP_ANY, .opc2 = CP_ANY, .access = PL1_RW, .type = ARM_CP_NOP }, 729 /* Cache maintenance ops; some of this space may be overridden later. */ 730 { .name = "CACHEMAINT", .cp = 15, .crn = 7, .crm = CP_ANY, 731 .opc1 = 0, .opc2 = CP_ANY, .access = PL1_W, 732 .type = ARM_CP_NOP | ARM_CP_OVERRIDE }, 733 REGINFO_SENTINEL 734 }; 735 736 static const ARMCPRegInfo not_v6_cp_reginfo[] = { 737 /* Not all pre-v6 cores implemented this WFI, so this is slightly 738 * over-broad. 739 */ 740 { .name = "WFI_v5", .cp = 15, .crn = 7, .crm = 8, .opc1 = 0, .opc2 = 2, 741 .access = PL1_W, .type = ARM_CP_WFI }, 742 REGINFO_SENTINEL 743 }; 744 745 static const ARMCPRegInfo not_v7_cp_reginfo[] = { 746 /* Standard v6 WFI (also used in some pre-v6 cores); not in v7 (which 747 * is UNPREDICTABLE; we choose to NOP as most implementations do). 748 */ 749 { .name = "WFI_v6", .cp = 15, .crn = 7, .crm = 0, .opc1 = 0, .opc2 = 4, 750 .access = PL1_W, .type = ARM_CP_WFI }, 751 /* L1 cache lockdown. Not architectural in v6 and earlier but in practice 752 * implemented in 926, 946, 1026, 1136, 1176 and 11MPCore. StrongARM and 753 * OMAPCP will override this space. 754 */ 755 { .name = "DLOCKDOWN", .cp = 15, .crn = 9, .crm = 0, .opc1 = 0, .opc2 = 0, 756 .access = PL1_RW, .fieldoffset = offsetof(CPUARMState, cp15.c9_data), 757 .resetvalue = 0 }, 758 { .name = "ILOCKDOWN", .cp = 15, .crn = 9, .crm = 0, .opc1 = 0, .opc2 = 1, 759 .access = PL1_RW, .fieldoffset = offsetof(CPUARMState, cp15.c9_insn), 760 .resetvalue = 0 }, 761 /* v6 doesn't have the cache ID registers but Linux reads them anyway */ 762 { .name = "DUMMY", .cp = 15, .crn = 0, .crm = 0, .opc1 = 1, .opc2 = CP_ANY, 763 .access = PL1_R, .type = ARM_CP_CONST | ARM_CP_NO_RAW, 764 .resetvalue = 0 }, 765 /* We don't implement pre-v7 debug but most CPUs had at least a DBGDIDR; 766 * implementing it as RAZ means the "debug architecture version" bits 767 * will read as a reserved value, which should cause Linux to not try 768 * to use the debug hardware. 769 */ 770 { .name = "DBGDIDR", .cp = 14, .crn = 0, .crm = 0, .opc1 = 0, .opc2 = 0, 771 .access = PL0_R, .type = ARM_CP_CONST, .resetvalue = 0 }, 772 /* MMU TLB control. Note that the wildcarding means we cover not just 773 * the unified TLB ops but also the dside/iside/inner-shareable variants. 774 */ 775 { .name = "TLBIALL", .cp = 15, .crn = 8, .crm = CP_ANY, 776 .opc1 = CP_ANY, .opc2 = 0, .access = PL1_W, .writefn = tlbiall_write, 777 .type = ARM_CP_NO_RAW }, 778 { .name = "TLBIMVA", .cp = 15, .crn = 8, .crm = CP_ANY, 779 .opc1 = CP_ANY, .opc2 = 1, .access = PL1_W, .writefn = tlbimva_write, 780 .type = ARM_CP_NO_RAW }, 781 { .name = "TLBIASID", .cp = 15, .crn = 8, .crm = CP_ANY, 782 .opc1 = CP_ANY, .opc2 = 2, .access = PL1_W, .writefn = tlbiasid_write, 783 .type = ARM_CP_NO_RAW }, 784 { .name = "TLBIMVAA", .cp = 15, .crn = 8, .crm = CP_ANY, 785 .opc1 = CP_ANY, .opc2 = 3, .access = PL1_W, .writefn = tlbimvaa_write, 786 .type = ARM_CP_NO_RAW }, 787 { .name = "PRRR", .cp = 15, .crn = 10, .crm = 2, 788 .opc1 = 0, .opc2 = 0, .access = PL1_RW, .type = ARM_CP_NOP }, 789 { .name = "NMRR", .cp = 15, .crn = 10, .crm = 2, 790 .opc1 = 0, .opc2 = 1, .access = PL1_RW, .type = ARM_CP_NOP }, 791 REGINFO_SENTINEL 792 }; 793 794 static void cpacr_write(CPUARMState *env, const ARMCPRegInfo *ri, 795 uint64_t value) 796 { 797 uint32_t mask = 0; 798 799 /* In ARMv8 most bits of CPACR_EL1 are RES0. */ 800 if (!arm_feature(env, ARM_FEATURE_V8)) { 801 /* ARMv7 defines bits for unimplemented coprocessors as RAZ/WI. 802 * ASEDIS [31] and D32DIS [30] are both UNK/SBZP without VFP. 803 * TRCDIS [28] is RAZ/WI since we do not implement a trace macrocell. 804 */ 805 if (arm_feature(env, ARM_FEATURE_VFP)) { 806 /* VFP coprocessor: cp10 & cp11 [23:20] */ 807 mask |= (1 << 31) | (1 << 30) | (0xf << 20); 808 809 if (!arm_feature(env, ARM_FEATURE_NEON)) { 810 /* ASEDIS [31] bit is RAO/WI */ 811 value |= (1 << 31); 812 } 813 814 /* VFPv3 and upwards with NEON implement 32 double precision 815 * registers (D0-D31). 816 */ 817 if (!arm_feature(env, ARM_FEATURE_NEON) || 818 !arm_feature(env, ARM_FEATURE_VFP3)) { 819 /* D32DIS [30] is RAO/WI if D16-31 are not implemented. */ 820 value |= (1 << 30); 821 } 822 } 823 value &= mask; 824 } 825 env->cp15.cpacr_el1 = value; 826 } 827 828 static CPAccessResult cpacr_access(CPUARMState *env, const ARMCPRegInfo *ri, 829 bool isread) 830 { 831 if (arm_feature(env, ARM_FEATURE_V8)) { 832 /* Check if CPACR accesses are to be trapped to EL2 */ 833 if (arm_current_el(env) == 1 && 834 (env->cp15.cptr_el[2] & CPTR_TCPAC) && !arm_is_secure(env)) { 835 return CP_ACCESS_TRAP_EL2; 836 /* Check if CPACR accesses are to be trapped to EL3 */ 837 } else if (arm_current_el(env) < 3 && 838 (env->cp15.cptr_el[3] & CPTR_TCPAC)) { 839 return CP_ACCESS_TRAP_EL3; 840 } 841 } 842 843 return CP_ACCESS_OK; 844 } 845 846 static CPAccessResult cptr_access(CPUARMState *env, const ARMCPRegInfo *ri, 847 bool isread) 848 { 849 /* Check if CPTR accesses are set to trap to EL3 */ 850 if (arm_current_el(env) == 2 && (env->cp15.cptr_el[3] & CPTR_TCPAC)) { 851 return CP_ACCESS_TRAP_EL3; 852 } 853 854 return CP_ACCESS_OK; 855 } 856 857 static const ARMCPRegInfo v6_cp_reginfo[] = { 858 /* prefetch by MVA in v6, NOP in v7 */ 859 { .name = "MVA_prefetch", 860 .cp = 15, .crn = 7, .crm = 13, .opc1 = 0, .opc2 = 1, 861 .access = PL1_W, .type = ARM_CP_NOP }, 862 /* We need to break the TB after ISB to execute self-modifying code 863 * correctly and also to take any pending interrupts immediately. 864 * So use arm_cp_write_ignore() function instead of ARM_CP_NOP flag. 865 */ 866 { .name = "ISB", .cp = 15, .crn = 7, .crm = 5, .opc1 = 0, .opc2 = 4, 867 .access = PL0_W, .type = ARM_CP_NO_RAW, .writefn = arm_cp_write_ignore }, 868 { .name = "DSB", .cp = 15, .crn = 7, .crm = 10, .opc1 = 0, .opc2 = 4, 869 .access = PL0_W, .type = ARM_CP_NOP }, 870 { .name = "DMB", .cp = 15, .crn = 7, .crm = 10, .opc1 = 0, .opc2 = 5, 871 .access = PL0_W, .type = ARM_CP_NOP }, 872 { .name = "IFAR", .cp = 15, .crn = 6, .crm = 0, .opc1 = 0, .opc2 = 2, 873 .access = PL1_RW, 874 .bank_fieldoffsets = { offsetof(CPUARMState, cp15.ifar_s), 875 offsetof(CPUARMState, cp15.ifar_ns) }, 876 .resetvalue = 0, }, 877 /* Watchpoint Fault Address Register : should actually only be present 878 * for 1136, 1176, 11MPCore. 879 */ 880 { .name = "WFAR", .cp = 15, .crn = 6, .crm = 0, .opc1 = 0, .opc2 = 1, 881 .access = PL1_RW, .type = ARM_CP_CONST, .resetvalue = 0, }, 882 { .name = "CPACR", .state = ARM_CP_STATE_BOTH, .opc0 = 3, 883 .crn = 1, .crm = 0, .opc1 = 0, .opc2 = 2, .accessfn = cpacr_access, 884 .access = PL1_RW, .fieldoffset = offsetof(CPUARMState, cp15.cpacr_el1), 885 .resetvalue = 0, .writefn = cpacr_write }, 886 REGINFO_SENTINEL 887 }; 888 889 static CPAccessResult pmreg_access(CPUARMState *env, const ARMCPRegInfo *ri, 890 bool isread) 891 { 892 /* Performance monitor registers user accessibility is controlled 893 * by PMUSERENR. MDCR_EL2.TPM and MDCR_EL3.TPM allow configurable 894 * trapping to EL2 or EL3 for other accesses. 895 */ 896 int el = arm_current_el(env); 897 898 if (el == 0 && !env->cp15.c9_pmuserenr) { 899 return CP_ACCESS_TRAP; 900 } 901 if (el < 2 && (env->cp15.mdcr_el2 & MDCR_TPM) 902 && !arm_is_secure_below_el3(env)) { 903 return CP_ACCESS_TRAP_EL2; 904 } 905 if (el < 3 && (env->cp15.mdcr_el3 & MDCR_TPM)) { 906 return CP_ACCESS_TRAP_EL3; 907 } 908 909 return CP_ACCESS_OK; 910 } 911 912 #ifndef CONFIG_USER_ONLY 913 914 static inline bool arm_ccnt_enabled(CPUARMState *env) 915 { 916 /* This does not support checking PMCCFILTR_EL0 register */ 917 918 if (!(env->cp15.c9_pmcr & PMCRE)) { 919 return false; 920 } 921 922 return true; 923 } 924 925 void pmccntr_sync(CPUARMState *env) 926 { 927 uint64_t temp_ticks; 928 929 temp_ticks = muldiv64(qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL), 930 ARM_CPU_FREQ, NANOSECONDS_PER_SECOND); 931 932 if (env->cp15.c9_pmcr & PMCRD) { 933 /* Increment once every 64 processor clock cycles */ 934 temp_ticks /= 64; 935 } 936 937 if (arm_ccnt_enabled(env)) { 938 env->cp15.c15_ccnt = temp_ticks - env->cp15.c15_ccnt; 939 } 940 } 941 942 static void pmcr_write(CPUARMState *env, const ARMCPRegInfo *ri, 943 uint64_t value) 944 { 945 pmccntr_sync(env); 946 947 if (value & PMCRC) { 948 /* The counter has been reset */ 949 env->cp15.c15_ccnt = 0; 950 } 951 952 /* only the DP, X, D and E bits are writable */ 953 env->cp15.c9_pmcr &= ~0x39; 954 env->cp15.c9_pmcr |= (value & 0x39); 955 956 pmccntr_sync(env); 957 } 958 959 static uint64_t pmccntr_read(CPUARMState *env, const ARMCPRegInfo *ri) 960 { 961 uint64_t total_ticks; 962 963 if (!arm_ccnt_enabled(env)) { 964 /* Counter is disabled, do not change value */ 965 return env->cp15.c15_ccnt; 966 } 967 968 total_ticks = muldiv64(qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL), 969 ARM_CPU_FREQ, NANOSECONDS_PER_SECOND); 970 971 if (env->cp15.c9_pmcr & PMCRD) { 972 /* Increment once every 64 processor clock cycles */ 973 total_ticks /= 64; 974 } 975 return total_ticks - env->cp15.c15_ccnt; 976 } 977 978 static void pmccntr_write(CPUARMState *env, const ARMCPRegInfo *ri, 979 uint64_t value) 980 { 981 uint64_t total_ticks; 982 983 if (!arm_ccnt_enabled(env)) { 984 /* Counter is disabled, set the absolute value */ 985 env->cp15.c15_ccnt = value; 986 return; 987 } 988 989 total_ticks = muldiv64(qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL), 990 ARM_CPU_FREQ, NANOSECONDS_PER_SECOND); 991 992 if (env->cp15.c9_pmcr & PMCRD) { 993 /* Increment once every 64 processor clock cycles */ 994 total_ticks /= 64; 995 } 996 env->cp15.c15_ccnt = total_ticks - value; 997 } 998 999 static void pmccntr_write32(CPUARMState *env, const ARMCPRegInfo *ri, 1000 uint64_t value) 1001 { 1002 uint64_t cur_val = pmccntr_read(env, NULL); 1003 1004 pmccntr_write(env, ri, deposit64(cur_val, 0, 32, value)); 1005 } 1006 1007 #else /* CONFIG_USER_ONLY */ 1008 1009 void pmccntr_sync(CPUARMState *env) 1010 { 1011 } 1012 1013 #endif 1014 1015 static void pmccfiltr_write(CPUARMState *env, const ARMCPRegInfo *ri, 1016 uint64_t value) 1017 { 1018 pmccntr_sync(env); 1019 env->cp15.pmccfiltr_el0 = value & 0x7E000000; 1020 pmccntr_sync(env); 1021 } 1022 1023 static void pmcntenset_write(CPUARMState *env, const ARMCPRegInfo *ri, 1024 uint64_t value) 1025 { 1026 value &= (1 << 31); 1027 env->cp15.c9_pmcnten |= value; 1028 } 1029 1030 static void pmcntenclr_write(CPUARMState *env, const ARMCPRegInfo *ri, 1031 uint64_t value) 1032 { 1033 value &= (1 << 31); 1034 env->cp15.c9_pmcnten &= ~value; 1035 } 1036 1037 static void pmovsr_write(CPUARMState *env, const ARMCPRegInfo *ri, 1038 uint64_t value) 1039 { 1040 env->cp15.c9_pmovsr &= ~value; 1041 } 1042 1043 static void pmxevtyper_write(CPUARMState *env, const ARMCPRegInfo *ri, 1044 uint64_t value) 1045 { 1046 env->cp15.c9_pmxevtyper = value & 0xff; 1047 } 1048 1049 static void pmuserenr_write(CPUARMState *env, const ARMCPRegInfo *ri, 1050 uint64_t value) 1051 { 1052 env->cp15.c9_pmuserenr = value & 1; 1053 } 1054 1055 static void pmintenset_write(CPUARMState *env, const ARMCPRegInfo *ri, 1056 uint64_t value) 1057 { 1058 /* We have no event counters so only the C bit can be changed */ 1059 value &= (1 << 31); 1060 env->cp15.c9_pminten |= value; 1061 } 1062 1063 static void pmintenclr_write(CPUARMState *env, const ARMCPRegInfo *ri, 1064 uint64_t value) 1065 { 1066 value &= (1 << 31); 1067 env->cp15.c9_pminten &= ~value; 1068 } 1069 1070 static void vbar_write(CPUARMState *env, const ARMCPRegInfo *ri, 1071 uint64_t value) 1072 { 1073 /* Note that even though the AArch64 view of this register has bits 1074 * [10:0] all RES0 we can only mask the bottom 5, to comply with the 1075 * architectural requirements for bits which are RES0 only in some 1076 * contexts. (ARMv8 would permit us to do no masking at all, but ARMv7 1077 * requires the bottom five bits to be RAZ/WI because they're UNK/SBZP.) 1078 */ 1079 raw_write(env, ri, value & ~0x1FULL); 1080 } 1081 1082 static void scr_write(CPUARMState *env, const ARMCPRegInfo *ri, uint64_t value) 1083 { 1084 /* We only mask off bits that are RES0 both for AArch64 and AArch32. 1085 * For bits that vary between AArch32/64, code needs to check the 1086 * current execution mode before directly using the feature bit. 1087 */ 1088 uint32_t valid_mask = SCR_AARCH64_MASK | SCR_AARCH32_MASK; 1089 1090 if (!arm_feature(env, ARM_FEATURE_EL2)) { 1091 valid_mask &= ~SCR_HCE; 1092 1093 /* On ARMv7, SMD (or SCD as it is called in v7) is only 1094 * supported if EL2 exists. The bit is UNK/SBZP when 1095 * EL2 is unavailable. In QEMU ARMv7, we force it to always zero 1096 * when EL2 is unavailable. 1097 * On ARMv8, this bit is always available. 1098 */ 1099 if (arm_feature(env, ARM_FEATURE_V7) && 1100 !arm_feature(env, ARM_FEATURE_V8)) { 1101 valid_mask &= ~SCR_SMD; 1102 } 1103 } 1104 1105 /* Clear all-context RES0 bits. */ 1106 value &= valid_mask; 1107 raw_write(env, ri, value); 1108 } 1109 1110 static uint64_t ccsidr_read(CPUARMState *env, const ARMCPRegInfo *ri) 1111 { 1112 ARMCPU *cpu = arm_env_get_cpu(env); 1113 1114 /* Acquire the CSSELR index from the bank corresponding to the CCSIDR 1115 * bank 1116 */ 1117 uint32_t index = A32_BANKED_REG_GET(env, csselr, 1118 ri->secure & ARM_CP_SECSTATE_S); 1119 1120 return cpu->ccsidr[index]; 1121 } 1122 1123 static void csselr_write(CPUARMState *env, const ARMCPRegInfo *ri, 1124 uint64_t value) 1125 { 1126 raw_write(env, ri, value & 0xf); 1127 } 1128 1129 static uint64_t isr_read(CPUARMState *env, const ARMCPRegInfo *ri) 1130 { 1131 CPUState *cs = ENV_GET_CPU(env); 1132 uint64_t ret = 0; 1133 1134 if (cs->interrupt_request & CPU_INTERRUPT_HARD) { 1135 ret |= CPSR_I; 1136 } 1137 if (cs->interrupt_request & CPU_INTERRUPT_FIQ) { 1138 ret |= CPSR_F; 1139 } 1140 /* External aborts are not possible in QEMU so A bit is always clear */ 1141 return ret; 1142 } 1143 1144 static const ARMCPRegInfo v7_cp_reginfo[] = { 1145 /* the old v6 WFI, UNPREDICTABLE in v7 but we choose to NOP */ 1146 { .name = "NOP", .cp = 15, .crn = 7, .crm = 0, .opc1 = 0, .opc2 = 4, 1147 .access = PL1_W, .type = ARM_CP_NOP }, 1148 /* Performance monitors are implementation defined in v7, 1149 * but with an ARM recommended set of registers, which we 1150 * follow (although we don't actually implement any counters) 1151 * 1152 * Performance registers fall into three categories: 1153 * (a) always UNDEF in PL0, RW in PL1 (PMINTENSET, PMINTENCLR) 1154 * (b) RO in PL0 (ie UNDEF on write), RW in PL1 (PMUSERENR) 1155 * (c) UNDEF in PL0 if PMUSERENR.EN==0, otherwise accessible (all others) 1156 * For the cases controlled by PMUSERENR we must set .access to PL0_RW 1157 * or PL0_RO as appropriate and then check PMUSERENR in the helper fn. 1158 */ 1159 { .name = "PMCNTENSET", .cp = 15, .crn = 9, .crm = 12, .opc1 = 0, .opc2 = 1, 1160 .access = PL0_RW, .type = ARM_CP_ALIAS, 1161 .fieldoffset = offsetoflow32(CPUARMState, cp15.c9_pmcnten), 1162 .writefn = pmcntenset_write, 1163 .accessfn = pmreg_access, 1164 .raw_writefn = raw_write }, 1165 { .name = "PMCNTENSET_EL0", .state = ARM_CP_STATE_AA64, 1166 .opc0 = 3, .opc1 = 3, .crn = 9, .crm = 12, .opc2 = 1, 1167 .access = PL0_RW, .accessfn = pmreg_access, 1168 .fieldoffset = offsetof(CPUARMState, cp15.c9_pmcnten), .resetvalue = 0, 1169 .writefn = pmcntenset_write, .raw_writefn = raw_write }, 1170 { .name = "PMCNTENCLR", .cp = 15, .crn = 9, .crm = 12, .opc1 = 0, .opc2 = 2, 1171 .access = PL0_RW, 1172 .fieldoffset = offsetoflow32(CPUARMState, cp15.c9_pmcnten), 1173 .accessfn = pmreg_access, 1174 .writefn = pmcntenclr_write, 1175 .type = ARM_CP_ALIAS }, 1176 { .name = "PMCNTENCLR_EL0", .state = ARM_CP_STATE_AA64, 1177 .opc0 = 3, .opc1 = 3, .crn = 9, .crm = 12, .opc2 = 2, 1178 .access = PL0_RW, .accessfn = pmreg_access, 1179 .type = ARM_CP_ALIAS, 1180 .fieldoffset = offsetof(CPUARMState, cp15.c9_pmcnten), 1181 .writefn = pmcntenclr_write }, 1182 { .name = "PMOVSR", .cp = 15, .crn = 9, .crm = 12, .opc1 = 0, .opc2 = 3, 1183 .access = PL0_RW, .fieldoffset = offsetof(CPUARMState, cp15.c9_pmovsr), 1184 .accessfn = pmreg_access, 1185 .writefn = pmovsr_write, 1186 .raw_writefn = raw_write }, 1187 { .name = "PMOVSCLR_EL0", .state = ARM_CP_STATE_AA64, 1188 .opc0 = 3, .opc1 = 3, .crn = 9, .crm = 12, .opc2 = 3, 1189 .access = PL0_RW, .accessfn = pmreg_access, 1190 .type = ARM_CP_ALIAS, 1191 .fieldoffset = offsetof(CPUARMState, cp15.c9_pmovsr), 1192 .writefn = pmovsr_write, 1193 .raw_writefn = raw_write }, 1194 /* Unimplemented so WI. */ 1195 { .name = "PMSWINC", .cp = 15, .crn = 9, .crm = 12, .opc1 = 0, .opc2 = 4, 1196 .access = PL0_W, .accessfn = pmreg_access, .type = ARM_CP_NOP }, 1197 /* Since we don't implement any events, writing to PMSELR is UNPREDICTABLE. 1198 * We choose to RAZ/WI. 1199 */ 1200 { .name = "PMSELR", .cp = 15, .crn = 9, .crm = 12, .opc1 = 0, .opc2 = 5, 1201 .access = PL0_RW, .type = ARM_CP_CONST, .resetvalue = 0, 1202 .accessfn = pmreg_access }, 1203 #ifndef CONFIG_USER_ONLY 1204 { .name = "PMCCNTR", .cp = 15, .crn = 9, .crm = 13, .opc1 = 0, .opc2 = 0, 1205 .access = PL0_RW, .resetvalue = 0, .type = ARM_CP_IO, 1206 .readfn = pmccntr_read, .writefn = pmccntr_write32, 1207 .accessfn = pmreg_access }, 1208 { .name = "PMCCNTR_EL0", .state = ARM_CP_STATE_AA64, 1209 .opc0 = 3, .opc1 = 3, .crn = 9, .crm = 13, .opc2 = 0, 1210 .access = PL0_RW, .accessfn = pmreg_access, 1211 .type = ARM_CP_IO, 1212 .readfn = pmccntr_read, .writefn = pmccntr_write, }, 1213 #endif 1214 { .name = "PMCCFILTR_EL0", .state = ARM_CP_STATE_AA64, 1215 .opc0 = 3, .opc1 = 3, .crn = 14, .crm = 15, .opc2 = 7, 1216 .writefn = pmccfiltr_write, 1217 .access = PL0_RW, .accessfn = pmreg_access, 1218 .type = ARM_CP_IO, 1219 .fieldoffset = offsetof(CPUARMState, cp15.pmccfiltr_el0), 1220 .resetvalue = 0, }, 1221 { .name = "PMXEVTYPER", .cp = 15, .crn = 9, .crm = 13, .opc1 = 0, .opc2 = 1, 1222 .access = PL0_RW, 1223 .fieldoffset = offsetof(CPUARMState, cp15.c9_pmxevtyper), 1224 .accessfn = pmreg_access, .writefn = pmxevtyper_write, 1225 .raw_writefn = raw_write }, 1226 /* Unimplemented, RAZ/WI. */ 1227 { .name = "PMXEVCNTR", .cp = 15, .crn = 9, .crm = 13, .opc1 = 0, .opc2 = 2, 1228 .access = PL0_RW, .type = ARM_CP_CONST, .resetvalue = 0, 1229 .accessfn = pmreg_access }, 1230 { .name = "PMUSERENR", .cp = 15, .crn = 9, .crm = 14, .opc1 = 0, .opc2 = 0, 1231 .access = PL0_R | PL1_RW, .accessfn = access_tpm, 1232 .fieldoffset = offsetof(CPUARMState, cp15.c9_pmuserenr), 1233 .resetvalue = 0, 1234 .writefn = pmuserenr_write, .raw_writefn = raw_write }, 1235 { .name = "PMUSERENR_EL0", .state = ARM_CP_STATE_AA64, 1236 .opc0 = 3, .opc1 = 3, .crn = 9, .crm = 14, .opc2 = 0, 1237 .access = PL0_R | PL1_RW, .accessfn = access_tpm, .type = ARM_CP_ALIAS, 1238 .fieldoffset = offsetof(CPUARMState, cp15.c9_pmuserenr), 1239 .resetvalue = 0, 1240 .writefn = pmuserenr_write, .raw_writefn = raw_write }, 1241 { .name = "PMINTENSET", .cp = 15, .crn = 9, .crm = 14, .opc1 = 0, .opc2 = 1, 1242 .access = PL1_RW, .accessfn = access_tpm, 1243 .fieldoffset = offsetof(CPUARMState, cp15.c9_pminten), 1244 .resetvalue = 0, 1245 .writefn = pmintenset_write, .raw_writefn = raw_write }, 1246 { .name = "PMINTENCLR", .cp = 15, .crn = 9, .crm = 14, .opc1 = 0, .opc2 = 2, 1247 .access = PL1_RW, .accessfn = access_tpm, .type = ARM_CP_ALIAS, 1248 .fieldoffset = offsetof(CPUARMState, cp15.c9_pminten), 1249 .writefn = pmintenclr_write, }, 1250 { .name = "PMINTENCLR_EL1", .state = ARM_CP_STATE_AA64, 1251 .opc0 = 3, .opc1 = 0, .crn = 9, .crm = 14, .opc2 = 2, 1252 .access = PL1_RW, .accessfn = access_tpm, .type = ARM_CP_ALIAS, 1253 .fieldoffset = offsetof(CPUARMState, cp15.c9_pminten), 1254 .writefn = pmintenclr_write }, 1255 { .name = "CCSIDR", .state = ARM_CP_STATE_BOTH, 1256 .opc0 = 3, .crn = 0, .crm = 0, .opc1 = 1, .opc2 = 0, 1257 .access = PL1_R, .readfn = ccsidr_read, .type = ARM_CP_NO_RAW }, 1258 { .name = "CSSELR", .state = ARM_CP_STATE_BOTH, 1259 .opc0 = 3, .crn = 0, .crm = 0, .opc1 = 2, .opc2 = 0, 1260 .access = PL1_RW, .writefn = csselr_write, .resetvalue = 0, 1261 .bank_fieldoffsets = { offsetof(CPUARMState, cp15.csselr_s), 1262 offsetof(CPUARMState, cp15.csselr_ns) } }, 1263 /* Auxiliary ID register: this actually has an IMPDEF value but for now 1264 * just RAZ for all cores: 1265 */ 1266 { .name = "AIDR", .state = ARM_CP_STATE_BOTH, 1267 .opc0 = 3, .opc1 = 1, .crn = 0, .crm = 0, .opc2 = 7, 1268 .access = PL1_R, .type = ARM_CP_CONST, .resetvalue = 0 }, 1269 /* Auxiliary fault status registers: these also are IMPDEF, and we 1270 * choose to RAZ/WI for all cores. 1271 */ 1272 { .name = "AFSR0_EL1", .state = ARM_CP_STATE_BOTH, 1273 .opc0 = 3, .opc1 = 0, .crn = 5, .crm = 1, .opc2 = 0, 1274 .access = PL1_RW, .type = ARM_CP_CONST, .resetvalue = 0 }, 1275 { .name = "AFSR1_EL1", .state = ARM_CP_STATE_BOTH, 1276 .opc0 = 3, .opc1 = 0, .crn = 5, .crm = 1, .opc2 = 1, 1277 .access = PL1_RW, .type = ARM_CP_CONST, .resetvalue = 0 }, 1278 /* MAIR can just read-as-written because we don't implement caches 1279 * and so don't need to care about memory attributes. 1280 */ 1281 { .name = "MAIR_EL1", .state = ARM_CP_STATE_AA64, 1282 .opc0 = 3, .opc1 = 0, .crn = 10, .crm = 2, .opc2 = 0, 1283 .access = PL1_RW, .fieldoffset = offsetof(CPUARMState, cp15.mair_el[1]), 1284 .resetvalue = 0 }, 1285 { .name = "MAIR_EL3", .state = ARM_CP_STATE_AA64, 1286 .opc0 = 3, .opc1 = 6, .crn = 10, .crm = 2, .opc2 = 0, 1287 .access = PL3_RW, .fieldoffset = offsetof(CPUARMState, cp15.mair_el[3]), 1288 .resetvalue = 0 }, 1289 /* For non-long-descriptor page tables these are PRRR and NMRR; 1290 * regardless they still act as reads-as-written for QEMU. 1291 */ 1292 /* MAIR0/1 are defined separately from their 64-bit counterpart which 1293 * allows them to assign the correct fieldoffset based on the endianness 1294 * handled in the field definitions. 1295 */ 1296 { .name = "MAIR0", .state = ARM_CP_STATE_AA32, 1297 .cp = 15, .opc1 = 0, .crn = 10, .crm = 2, .opc2 = 0, .access = PL1_RW, 1298 .bank_fieldoffsets = { offsetof(CPUARMState, cp15.mair0_s), 1299 offsetof(CPUARMState, cp15.mair0_ns) }, 1300 .resetfn = arm_cp_reset_ignore }, 1301 { .name = "MAIR1", .state = ARM_CP_STATE_AA32, 1302 .cp = 15, .opc1 = 0, .crn = 10, .crm = 2, .opc2 = 1, .access = PL1_RW, 1303 .bank_fieldoffsets = { offsetof(CPUARMState, cp15.mair1_s), 1304 offsetof(CPUARMState, cp15.mair1_ns) }, 1305 .resetfn = arm_cp_reset_ignore }, 1306 { .name = "ISR_EL1", .state = ARM_CP_STATE_BOTH, 1307 .opc0 = 3, .opc1 = 0, .crn = 12, .crm = 1, .opc2 = 0, 1308 .type = ARM_CP_NO_RAW, .access = PL1_R, .readfn = isr_read }, 1309 /* 32 bit ITLB invalidates */ 1310 { .name = "ITLBIALL", .cp = 15, .opc1 = 0, .crn = 8, .crm = 5, .opc2 = 0, 1311 .type = ARM_CP_NO_RAW, .access = PL1_W, .writefn = tlbiall_write }, 1312 { .name = "ITLBIMVA", .cp = 15, .opc1 = 0, .crn = 8, .crm = 5, .opc2 = 1, 1313 .type = ARM_CP_NO_RAW, .access = PL1_W, .writefn = tlbimva_write }, 1314 { .name = "ITLBIASID", .cp = 15, .opc1 = 0, .crn = 8, .crm = 5, .opc2 = 2, 1315 .type = ARM_CP_NO_RAW, .access = PL1_W, .writefn = tlbiasid_write }, 1316 /* 32 bit DTLB invalidates */ 1317 { .name = "DTLBIALL", .cp = 15, .opc1 = 0, .crn = 8, .crm = 6, .opc2 = 0, 1318 .type = ARM_CP_NO_RAW, .access = PL1_W, .writefn = tlbiall_write }, 1319 { .name = "DTLBIMVA", .cp = 15, .opc1 = 0, .crn = 8, .crm = 6, .opc2 = 1, 1320 .type = ARM_CP_NO_RAW, .access = PL1_W, .writefn = tlbimva_write }, 1321 { .name = "DTLBIASID", .cp = 15, .opc1 = 0, .crn = 8, .crm = 6, .opc2 = 2, 1322 .type = ARM_CP_NO_RAW, .access = PL1_W, .writefn = tlbiasid_write }, 1323 /* 32 bit TLB invalidates */ 1324 { .name = "TLBIALL", .cp = 15, .opc1 = 0, .crn = 8, .crm = 7, .opc2 = 0, 1325 .type = ARM_CP_NO_RAW, .access = PL1_W, .writefn = tlbiall_write }, 1326 { .name = "TLBIMVA", .cp = 15, .opc1 = 0, .crn = 8, .crm = 7, .opc2 = 1, 1327 .type = ARM_CP_NO_RAW, .access = PL1_W, .writefn = tlbimva_write }, 1328 { .name = "TLBIASID", .cp = 15, .opc1 = 0, .crn = 8, .crm = 7, .opc2 = 2, 1329 .type = ARM_CP_NO_RAW, .access = PL1_W, .writefn = tlbiasid_write }, 1330 { .name = "TLBIMVAA", .cp = 15, .opc1 = 0, .crn = 8, .crm = 7, .opc2 = 3, 1331 .type = ARM_CP_NO_RAW, .access = PL1_W, .writefn = tlbimvaa_write }, 1332 REGINFO_SENTINEL 1333 }; 1334 1335 static const ARMCPRegInfo v7mp_cp_reginfo[] = { 1336 /* 32 bit TLB invalidates, Inner Shareable */ 1337 { .name = "TLBIALLIS", .cp = 15, .opc1 = 0, .crn = 8, .crm = 3, .opc2 = 0, 1338 .type = ARM_CP_NO_RAW, .access = PL1_W, .writefn = tlbiall_is_write }, 1339 { .name = "TLBIMVAIS", .cp = 15, .opc1 = 0, .crn = 8, .crm = 3, .opc2 = 1, 1340 .type = ARM_CP_NO_RAW, .access = PL1_W, .writefn = tlbimva_is_write }, 1341 { .name = "TLBIASIDIS", .cp = 15, .opc1 = 0, .crn = 8, .crm = 3, .opc2 = 2, 1342 .type = ARM_CP_NO_RAW, .access = PL1_W, 1343 .writefn = tlbiasid_is_write }, 1344 { .name = "TLBIMVAAIS", .cp = 15, .opc1 = 0, .crn = 8, .crm = 3, .opc2 = 3, 1345 .type = ARM_CP_NO_RAW, .access = PL1_W, 1346 .writefn = tlbimvaa_is_write }, 1347 REGINFO_SENTINEL 1348 }; 1349 1350 static void teecr_write(CPUARMState *env, const ARMCPRegInfo *ri, 1351 uint64_t value) 1352 { 1353 value &= 1; 1354 env->teecr = value; 1355 } 1356 1357 static CPAccessResult teehbr_access(CPUARMState *env, const ARMCPRegInfo *ri, 1358 bool isread) 1359 { 1360 if (arm_current_el(env) == 0 && (env->teecr & 1)) { 1361 return CP_ACCESS_TRAP; 1362 } 1363 return CP_ACCESS_OK; 1364 } 1365 1366 static const ARMCPRegInfo t2ee_cp_reginfo[] = { 1367 { .name = "TEECR", .cp = 14, .crn = 0, .crm = 0, .opc1 = 6, .opc2 = 0, 1368 .access = PL1_RW, .fieldoffset = offsetof(CPUARMState, teecr), 1369 .resetvalue = 0, 1370 .writefn = teecr_write }, 1371 { .name = "TEEHBR", .cp = 14, .crn = 1, .crm = 0, .opc1 = 6, .opc2 = 0, 1372 .access = PL0_RW, .fieldoffset = offsetof(CPUARMState, teehbr), 1373 .accessfn = teehbr_access, .resetvalue = 0 }, 1374 REGINFO_SENTINEL 1375 }; 1376 1377 static const ARMCPRegInfo v6k_cp_reginfo[] = { 1378 { .name = "TPIDR_EL0", .state = ARM_CP_STATE_AA64, 1379 .opc0 = 3, .opc1 = 3, .opc2 = 2, .crn = 13, .crm = 0, 1380 .access = PL0_RW, 1381 .fieldoffset = offsetof(CPUARMState, cp15.tpidr_el[0]), .resetvalue = 0 }, 1382 { .name = "TPIDRURW", .cp = 15, .crn = 13, .crm = 0, .opc1 = 0, .opc2 = 2, 1383 .access = PL0_RW, 1384 .bank_fieldoffsets = { offsetoflow32(CPUARMState, cp15.tpidrurw_s), 1385 offsetoflow32(CPUARMState, cp15.tpidrurw_ns) }, 1386 .resetfn = arm_cp_reset_ignore }, 1387 { .name = "TPIDRRO_EL0", .state = ARM_CP_STATE_AA64, 1388 .opc0 = 3, .opc1 = 3, .opc2 = 3, .crn = 13, .crm = 0, 1389 .access = PL0_R|PL1_W, 1390 .fieldoffset = offsetof(CPUARMState, cp15.tpidrro_el[0]), 1391 .resetvalue = 0}, 1392 { .name = "TPIDRURO", .cp = 15, .crn = 13, .crm = 0, .opc1 = 0, .opc2 = 3, 1393 .access = PL0_R|PL1_W, 1394 .bank_fieldoffsets = { offsetoflow32(CPUARMState, cp15.tpidruro_s), 1395 offsetoflow32(CPUARMState, cp15.tpidruro_ns) }, 1396 .resetfn = arm_cp_reset_ignore }, 1397 { .name = "TPIDR_EL1", .state = ARM_CP_STATE_AA64, 1398 .opc0 = 3, .opc1 = 0, .opc2 = 4, .crn = 13, .crm = 0, 1399 .access = PL1_RW, 1400 .fieldoffset = offsetof(CPUARMState, cp15.tpidr_el[1]), .resetvalue = 0 }, 1401 { .name = "TPIDRPRW", .opc1 = 0, .cp = 15, .crn = 13, .crm = 0, .opc2 = 4, 1402 .access = PL1_RW, 1403 .bank_fieldoffsets = { offsetoflow32(CPUARMState, cp15.tpidrprw_s), 1404 offsetoflow32(CPUARMState, cp15.tpidrprw_ns) }, 1405 .resetvalue = 0 }, 1406 REGINFO_SENTINEL 1407 }; 1408 1409 #ifndef CONFIG_USER_ONLY 1410 1411 static CPAccessResult gt_cntfrq_access(CPUARMState *env, const ARMCPRegInfo *ri, 1412 bool isread) 1413 { 1414 /* CNTFRQ: not visible from PL0 if both PL0PCTEN and PL0VCTEN are zero. 1415 * Writable only at the highest implemented exception level. 1416 */ 1417 int el = arm_current_el(env); 1418 1419 switch (el) { 1420 case 0: 1421 if (!extract32(env->cp15.c14_cntkctl, 0, 2)) { 1422 return CP_ACCESS_TRAP; 1423 } 1424 break; 1425 case 1: 1426 if (!isread && ri->state == ARM_CP_STATE_AA32 && 1427 arm_is_secure_below_el3(env)) { 1428 /* Accesses from 32-bit Secure EL1 UNDEF (*not* trap to EL3!) */ 1429 return CP_ACCESS_TRAP_UNCATEGORIZED; 1430 } 1431 break; 1432 case 2: 1433 case 3: 1434 break; 1435 } 1436 1437 if (!isread && el < arm_highest_el(env)) { 1438 return CP_ACCESS_TRAP_UNCATEGORIZED; 1439 } 1440 1441 return CP_ACCESS_OK; 1442 } 1443 1444 static CPAccessResult gt_counter_access(CPUARMState *env, int timeridx, 1445 bool isread) 1446 { 1447 unsigned int cur_el = arm_current_el(env); 1448 bool secure = arm_is_secure(env); 1449 1450 /* CNT[PV]CT: not visible from PL0 if ELO[PV]CTEN is zero */ 1451 if (cur_el == 0 && 1452 !extract32(env->cp15.c14_cntkctl, timeridx, 1)) { 1453 return CP_ACCESS_TRAP; 1454 } 1455 1456 if (arm_feature(env, ARM_FEATURE_EL2) && 1457 timeridx == GTIMER_PHYS && !secure && cur_el < 2 && 1458 !extract32(env->cp15.cnthctl_el2, 0, 1)) { 1459 return CP_ACCESS_TRAP_EL2; 1460 } 1461 return CP_ACCESS_OK; 1462 } 1463 1464 static CPAccessResult gt_timer_access(CPUARMState *env, int timeridx, 1465 bool isread) 1466 { 1467 unsigned int cur_el = arm_current_el(env); 1468 bool secure = arm_is_secure(env); 1469 1470 /* CNT[PV]_CVAL, CNT[PV]_CTL, CNT[PV]_TVAL: not visible from PL0 if 1471 * EL0[PV]TEN is zero. 1472 */ 1473 if (cur_el == 0 && 1474 !extract32(env->cp15.c14_cntkctl, 9 - timeridx, 1)) { 1475 return CP_ACCESS_TRAP; 1476 } 1477 1478 if (arm_feature(env, ARM_FEATURE_EL2) && 1479 timeridx == GTIMER_PHYS && !secure && cur_el < 2 && 1480 !extract32(env->cp15.cnthctl_el2, 1, 1)) { 1481 return CP_ACCESS_TRAP_EL2; 1482 } 1483 return CP_ACCESS_OK; 1484 } 1485 1486 static CPAccessResult gt_pct_access(CPUARMState *env, 1487 const ARMCPRegInfo *ri, 1488 bool isread) 1489 { 1490 return gt_counter_access(env, GTIMER_PHYS, isread); 1491 } 1492 1493 static CPAccessResult gt_vct_access(CPUARMState *env, 1494 const ARMCPRegInfo *ri, 1495 bool isread) 1496 { 1497 return gt_counter_access(env, GTIMER_VIRT, isread); 1498 } 1499 1500 static CPAccessResult gt_ptimer_access(CPUARMState *env, const ARMCPRegInfo *ri, 1501 bool isread) 1502 { 1503 return gt_timer_access(env, GTIMER_PHYS, isread); 1504 } 1505 1506 static CPAccessResult gt_vtimer_access(CPUARMState *env, const ARMCPRegInfo *ri, 1507 bool isread) 1508 { 1509 return gt_timer_access(env, GTIMER_VIRT, isread); 1510 } 1511 1512 static CPAccessResult gt_stimer_access(CPUARMState *env, 1513 const ARMCPRegInfo *ri, 1514 bool isread) 1515 { 1516 /* The AArch64 register view of the secure physical timer is 1517 * always accessible from EL3, and configurably accessible from 1518 * Secure EL1. 1519 */ 1520 switch (arm_current_el(env)) { 1521 case 1: 1522 if (!arm_is_secure(env)) { 1523 return CP_ACCESS_TRAP; 1524 } 1525 if (!(env->cp15.scr_el3 & SCR_ST)) { 1526 return CP_ACCESS_TRAP_EL3; 1527 } 1528 return CP_ACCESS_OK; 1529 case 0: 1530 case 2: 1531 return CP_ACCESS_TRAP; 1532 case 3: 1533 return CP_ACCESS_OK; 1534 default: 1535 g_assert_not_reached(); 1536 } 1537 } 1538 1539 static uint64_t gt_get_countervalue(CPUARMState *env) 1540 { 1541 return qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL) / GTIMER_SCALE; 1542 } 1543 1544 static void gt_recalc_timer(ARMCPU *cpu, int timeridx) 1545 { 1546 ARMGenericTimer *gt = &cpu->env.cp15.c14_timer[timeridx]; 1547 1548 if (gt->ctl & 1) { 1549 /* Timer enabled: calculate and set current ISTATUS, irq, and 1550 * reset timer to when ISTATUS next has to change 1551 */ 1552 uint64_t offset = timeridx == GTIMER_VIRT ? 1553 cpu->env.cp15.cntvoff_el2 : 0; 1554 uint64_t count = gt_get_countervalue(&cpu->env); 1555 /* Note that this must be unsigned 64 bit arithmetic: */ 1556 int istatus = count - offset >= gt->cval; 1557 uint64_t nexttick; 1558 int irqstate; 1559 1560 gt->ctl = deposit32(gt->ctl, 2, 1, istatus); 1561 1562 irqstate = (istatus && !(gt->ctl & 2)); 1563 qemu_set_irq(cpu->gt_timer_outputs[timeridx], irqstate); 1564 1565 if (istatus) { 1566 /* Next transition is when count rolls back over to zero */ 1567 nexttick = UINT64_MAX; 1568 } else { 1569 /* Next transition is when we hit cval */ 1570 nexttick = gt->cval + offset; 1571 } 1572 /* Note that the desired next expiry time might be beyond the 1573 * signed-64-bit range of a QEMUTimer -- in this case we just 1574 * set the timer for as far in the future as possible. When the 1575 * timer expires we will reset the timer for any remaining period. 1576 */ 1577 if (nexttick > INT64_MAX / GTIMER_SCALE) { 1578 nexttick = INT64_MAX / GTIMER_SCALE; 1579 } 1580 timer_mod(cpu->gt_timer[timeridx], nexttick); 1581 trace_arm_gt_recalc(timeridx, irqstate, nexttick); 1582 } else { 1583 /* Timer disabled: ISTATUS and timer output always clear */ 1584 gt->ctl &= ~4; 1585 qemu_set_irq(cpu->gt_timer_outputs[timeridx], 0); 1586 timer_del(cpu->gt_timer[timeridx]); 1587 trace_arm_gt_recalc_disabled(timeridx); 1588 } 1589 } 1590 1591 static void gt_timer_reset(CPUARMState *env, const ARMCPRegInfo *ri, 1592 int timeridx) 1593 { 1594 ARMCPU *cpu = arm_env_get_cpu(env); 1595 1596 timer_del(cpu->gt_timer[timeridx]); 1597 } 1598 1599 static uint64_t gt_cnt_read(CPUARMState *env, const ARMCPRegInfo *ri) 1600 { 1601 return gt_get_countervalue(env); 1602 } 1603 1604 static uint64_t gt_virt_cnt_read(CPUARMState *env, const ARMCPRegInfo *ri) 1605 { 1606 return gt_get_countervalue(env) - env->cp15.cntvoff_el2; 1607 } 1608 1609 static void gt_cval_write(CPUARMState *env, const ARMCPRegInfo *ri, 1610 int timeridx, 1611 uint64_t value) 1612 { 1613 trace_arm_gt_cval_write(timeridx, value); 1614 env->cp15.c14_timer[timeridx].cval = value; 1615 gt_recalc_timer(arm_env_get_cpu(env), timeridx); 1616 } 1617 1618 static uint64_t gt_tval_read(CPUARMState *env, const ARMCPRegInfo *ri, 1619 int timeridx) 1620 { 1621 uint64_t offset = timeridx == GTIMER_VIRT ? env->cp15.cntvoff_el2 : 0; 1622 1623 return (uint32_t)(env->cp15.c14_timer[timeridx].cval - 1624 (gt_get_countervalue(env) - offset)); 1625 } 1626 1627 static void gt_tval_write(CPUARMState *env, const ARMCPRegInfo *ri, 1628 int timeridx, 1629 uint64_t value) 1630 { 1631 uint64_t offset = timeridx == GTIMER_VIRT ? env->cp15.cntvoff_el2 : 0; 1632 1633 trace_arm_gt_tval_write(timeridx, value); 1634 env->cp15.c14_timer[timeridx].cval = gt_get_countervalue(env) - offset + 1635 sextract64(value, 0, 32); 1636 gt_recalc_timer(arm_env_get_cpu(env), timeridx); 1637 } 1638 1639 static void gt_ctl_write(CPUARMState *env, const ARMCPRegInfo *ri, 1640 int timeridx, 1641 uint64_t value) 1642 { 1643 ARMCPU *cpu = arm_env_get_cpu(env); 1644 uint32_t oldval = env->cp15.c14_timer[timeridx].ctl; 1645 1646 trace_arm_gt_ctl_write(timeridx, value); 1647 env->cp15.c14_timer[timeridx].ctl = deposit64(oldval, 0, 2, value); 1648 if ((oldval ^ value) & 1) { 1649 /* Enable toggled */ 1650 gt_recalc_timer(cpu, timeridx); 1651 } else if ((oldval ^ value) & 2) { 1652 /* IMASK toggled: don't need to recalculate, 1653 * just set the interrupt line based on ISTATUS 1654 */ 1655 int irqstate = (oldval & 4) && !(value & 2); 1656 1657 trace_arm_gt_imask_toggle(timeridx, irqstate); 1658 qemu_set_irq(cpu->gt_timer_outputs[timeridx], irqstate); 1659 } 1660 } 1661 1662 static void gt_phys_timer_reset(CPUARMState *env, const ARMCPRegInfo *ri) 1663 { 1664 gt_timer_reset(env, ri, GTIMER_PHYS); 1665 } 1666 1667 static void gt_phys_cval_write(CPUARMState *env, const ARMCPRegInfo *ri, 1668 uint64_t value) 1669 { 1670 gt_cval_write(env, ri, GTIMER_PHYS, value); 1671 } 1672 1673 static uint64_t gt_phys_tval_read(CPUARMState *env, const ARMCPRegInfo *ri) 1674 { 1675 return gt_tval_read(env, ri, GTIMER_PHYS); 1676 } 1677 1678 static void gt_phys_tval_write(CPUARMState *env, const ARMCPRegInfo *ri, 1679 uint64_t value) 1680 { 1681 gt_tval_write(env, ri, GTIMER_PHYS, value); 1682 } 1683 1684 static void gt_phys_ctl_write(CPUARMState *env, const ARMCPRegInfo *ri, 1685 uint64_t value) 1686 { 1687 gt_ctl_write(env, ri, GTIMER_PHYS, value); 1688 } 1689 1690 static void gt_virt_timer_reset(CPUARMState *env, const ARMCPRegInfo *ri) 1691 { 1692 gt_timer_reset(env, ri, GTIMER_VIRT); 1693 } 1694 1695 static void gt_virt_cval_write(CPUARMState *env, const ARMCPRegInfo *ri, 1696 uint64_t value) 1697 { 1698 gt_cval_write(env, ri, GTIMER_VIRT, value); 1699 } 1700 1701 static uint64_t gt_virt_tval_read(CPUARMState *env, const ARMCPRegInfo *ri) 1702 { 1703 return gt_tval_read(env, ri, GTIMER_VIRT); 1704 } 1705 1706 static void gt_virt_tval_write(CPUARMState *env, const ARMCPRegInfo *ri, 1707 uint64_t value) 1708 { 1709 gt_tval_write(env, ri, GTIMER_VIRT, value); 1710 } 1711 1712 static void gt_virt_ctl_write(CPUARMState *env, const ARMCPRegInfo *ri, 1713 uint64_t value) 1714 { 1715 gt_ctl_write(env, ri, GTIMER_VIRT, value); 1716 } 1717 1718 static void gt_cntvoff_write(CPUARMState *env, const ARMCPRegInfo *ri, 1719 uint64_t value) 1720 { 1721 ARMCPU *cpu = arm_env_get_cpu(env); 1722 1723 trace_arm_gt_cntvoff_write(value); 1724 raw_write(env, ri, value); 1725 gt_recalc_timer(cpu, GTIMER_VIRT); 1726 } 1727 1728 static void gt_hyp_timer_reset(CPUARMState *env, const ARMCPRegInfo *ri) 1729 { 1730 gt_timer_reset(env, ri, GTIMER_HYP); 1731 } 1732 1733 static void gt_hyp_cval_write(CPUARMState *env, const ARMCPRegInfo *ri, 1734 uint64_t value) 1735 { 1736 gt_cval_write(env, ri, GTIMER_HYP, value); 1737 } 1738 1739 static uint64_t gt_hyp_tval_read(CPUARMState *env, const ARMCPRegInfo *ri) 1740 { 1741 return gt_tval_read(env, ri, GTIMER_HYP); 1742 } 1743 1744 static void gt_hyp_tval_write(CPUARMState *env, const ARMCPRegInfo *ri, 1745 uint64_t value) 1746 { 1747 gt_tval_write(env, ri, GTIMER_HYP, value); 1748 } 1749 1750 static void gt_hyp_ctl_write(CPUARMState *env, const ARMCPRegInfo *ri, 1751 uint64_t value) 1752 { 1753 gt_ctl_write(env, ri, GTIMER_HYP, value); 1754 } 1755 1756 static void gt_sec_timer_reset(CPUARMState *env, const ARMCPRegInfo *ri) 1757 { 1758 gt_timer_reset(env, ri, GTIMER_SEC); 1759 } 1760 1761 static void gt_sec_cval_write(CPUARMState *env, const ARMCPRegInfo *ri, 1762 uint64_t value) 1763 { 1764 gt_cval_write(env, ri, GTIMER_SEC, value); 1765 } 1766 1767 static uint64_t gt_sec_tval_read(CPUARMState *env, const ARMCPRegInfo *ri) 1768 { 1769 return gt_tval_read(env, ri, GTIMER_SEC); 1770 } 1771 1772 static void gt_sec_tval_write(CPUARMState *env, const ARMCPRegInfo *ri, 1773 uint64_t value) 1774 { 1775 gt_tval_write(env, ri, GTIMER_SEC, value); 1776 } 1777 1778 static void gt_sec_ctl_write(CPUARMState *env, const ARMCPRegInfo *ri, 1779 uint64_t value) 1780 { 1781 gt_ctl_write(env, ri, GTIMER_SEC, value); 1782 } 1783 1784 void arm_gt_ptimer_cb(void *opaque) 1785 { 1786 ARMCPU *cpu = opaque; 1787 1788 gt_recalc_timer(cpu, GTIMER_PHYS); 1789 } 1790 1791 void arm_gt_vtimer_cb(void *opaque) 1792 { 1793 ARMCPU *cpu = opaque; 1794 1795 gt_recalc_timer(cpu, GTIMER_VIRT); 1796 } 1797 1798 void arm_gt_htimer_cb(void *opaque) 1799 { 1800 ARMCPU *cpu = opaque; 1801 1802 gt_recalc_timer(cpu, GTIMER_HYP); 1803 } 1804 1805 void arm_gt_stimer_cb(void *opaque) 1806 { 1807 ARMCPU *cpu = opaque; 1808 1809 gt_recalc_timer(cpu, GTIMER_SEC); 1810 } 1811 1812 static const ARMCPRegInfo generic_timer_cp_reginfo[] = { 1813 /* Note that CNTFRQ is purely reads-as-written for the benefit 1814 * of software; writing it doesn't actually change the timer frequency. 1815 * Our reset value matches the fixed frequency we implement the timer at. 1816 */ 1817 { .name = "CNTFRQ", .cp = 15, .crn = 14, .crm = 0, .opc1 = 0, .opc2 = 0, 1818 .type = ARM_CP_ALIAS, 1819 .access = PL1_RW | PL0_R, .accessfn = gt_cntfrq_access, 1820 .fieldoffset = offsetoflow32(CPUARMState, cp15.c14_cntfrq), 1821 }, 1822 { .name = "CNTFRQ_EL0", .state = ARM_CP_STATE_AA64, 1823 .opc0 = 3, .opc1 = 3, .crn = 14, .crm = 0, .opc2 = 0, 1824 .access = PL1_RW | PL0_R, .accessfn = gt_cntfrq_access, 1825 .fieldoffset = offsetof(CPUARMState, cp15.c14_cntfrq), 1826 .resetvalue = (1000 * 1000 * 1000) / GTIMER_SCALE, 1827 }, 1828 /* overall control: mostly access permissions */ 1829 { .name = "CNTKCTL", .state = ARM_CP_STATE_BOTH, 1830 .opc0 = 3, .opc1 = 0, .crn = 14, .crm = 1, .opc2 = 0, 1831 .access = PL1_RW, 1832 .fieldoffset = offsetof(CPUARMState, cp15.c14_cntkctl), 1833 .resetvalue = 0, 1834 }, 1835 /* per-timer control */ 1836 { .name = "CNTP_CTL", .cp = 15, .crn = 14, .crm = 2, .opc1 = 0, .opc2 = 1, 1837 .secure = ARM_CP_SECSTATE_NS, 1838 .type = ARM_CP_IO | ARM_CP_ALIAS, .access = PL1_RW | PL0_R, 1839 .accessfn = gt_ptimer_access, 1840 .fieldoffset = offsetoflow32(CPUARMState, 1841 cp15.c14_timer[GTIMER_PHYS].ctl), 1842 .writefn = gt_phys_ctl_write, .raw_writefn = raw_write, 1843 }, 1844 { .name = "CNTP_CTL(S)", 1845 .cp = 15, .crn = 14, .crm = 2, .opc1 = 0, .opc2 = 1, 1846 .secure = ARM_CP_SECSTATE_S, 1847 .type = ARM_CP_IO | ARM_CP_ALIAS, .access = PL1_RW | PL0_R, 1848 .accessfn = gt_ptimer_access, 1849 .fieldoffset = offsetoflow32(CPUARMState, 1850 cp15.c14_timer[GTIMER_SEC].ctl), 1851 .writefn = gt_sec_ctl_write, .raw_writefn = raw_write, 1852 }, 1853 { .name = "CNTP_CTL_EL0", .state = ARM_CP_STATE_AA64, 1854 .opc0 = 3, .opc1 = 3, .crn = 14, .crm = 2, .opc2 = 1, 1855 .type = ARM_CP_IO, .access = PL1_RW | PL0_R, 1856 .accessfn = gt_ptimer_access, 1857 .fieldoffset = offsetof(CPUARMState, cp15.c14_timer[GTIMER_PHYS].ctl), 1858 .resetvalue = 0, 1859 .writefn = gt_phys_ctl_write, .raw_writefn = raw_write, 1860 }, 1861 { .name = "CNTV_CTL", .cp = 15, .crn = 14, .crm = 3, .opc1 = 0, .opc2 = 1, 1862 .type = ARM_CP_IO | ARM_CP_ALIAS, .access = PL1_RW | PL0_R, 1863 .accessfn = gt_vtimer_access, 1864 .fieldoffset = offsetoflow32(CPUARMState, 1865 cp15.c14_timer[GTIMER_VIRT].ctl), 1866 .writefn = gt_virt_ctl_write, .raw_writefn = raw_write, 1867 }, 1868 { .name = "CNTV_CTL_EL0", .state = ARM_CP_STATE_AA64, 1869 .opc0 = 3, .opc1 = 3, .crn = 14, .crm = 3, .opc2 = 1, 1870 .type = ARM_CP_IO, .access = PL1_RW | PL0_R, 1871 .accessfn = gt_vtimer_access, 1872 .fieldoffset = offsetof(CPUARMState, cp15.c14_timer[GTIMER_VIRT].ctl), 1873 .resetvalue = 0, 1874 .writefn = gt_virt_ctl_write, .raw_writefn = raw_write, 1875 }, 1876 /* TimerValue views: a 32 bit downcounting view of the underlying state */ 1877 { .name = "CNTP_TVAL", .cp = 15, .crn = 14, .crm = 2, .opc1 = 0, .opc2 = 0, 1878 .secure = ARM_CP_SECSTATE_NS, 1879 .type = ARM_CP_NO_RAW | ARM_CP_IO, .access = PL1_RW | PL0_R, 1880 .accessfn = gt_ptimer_access, 1881 .readfn = gt_phys_tval_read, .writefn = gt_phys_tval_write, 1882 }, 1883 { .name = "CNTP_TVAL(S)", 1884 .cp = 15, .crn = 14, .crm = 2, .opc1 = 0, .opc2 = 0, 1885 .secure = ARM_CP_SECSTATE_S, 1886 .type = ARM_CP_NO_RAW | ARM_CP_IO, .access = PL1_RW | PL0_R, 1887 .accessfn = gt_ptimer_access, 1888 .readfn = gt_sec_tval_read, .writefn = gt_sec_tval_write, 1889 }, 1890 { .name = "CNTP_TVAL_EL0", .state = ARM_CP_STATE_AA64, 1891 .opc0 = 3, .opc1 = 3, .crn = 14, .crm = 2, .opc2 = 0, 1892 .type = ARM_CP_NO_RAW | ARM_CP_IO, .access = PL1_RW | PL0_R, 1893 .accessfn = gt_ptimer_access, .resetfn = gt_phys_timer_reset, 1894 .readfn = gt_phys_tval_read, .writefn = gt_phys_tval_write, 1895 }, 1896 { .name = "CNTV_TVAL", .cp = 15, .crn = 14, .crm = 3, .opc1 = 0, .opc2 = 0, 1897 .type = ARM_CP_NO_RAW | ARM_CP_IO, .access = PL1_RW | PL0_R, 1898 .accessfn = gt_vtimer_access, 1899 .readfn = gt_virt_tval_read, .writefn = gt_virt_tval_write, 1900 }, 1901 { .name = "CNTV_TVAL_EL0", .state = ARM_CP_STATE_AA64, 1902 .opc0 = 3, .opc1 = 3, .crn = 14, .crm = 3, .opc2 = 0, 1903 .type = ARM_CP_NO_RAW | ARM_CP_IO, .access = PL1_RW | PL0_R, 1904 .accessfn = gt_vtimer_access, .resetfn = gt_virt_timer_reset, 1905 .readfn = gt_virt_tval_read, .writefn = gt_virt_tval_write, 1906 }, 1907 /* The counter itself */ 1908 { .name = "CNTPCT", .cp = 15, .crm = 14, .opc1 = 0, 1909 .access = PL0_R, .type = ARM_CP_64BIT | ARM_CP_NO_RAW | ARM_CP_IO, 1910 .accessfn = gt_pct_access, 1911 .readfn = gt_cnt_read, .resetfn = arm_cp_reset_ignore, 1912 }, 1913 { .name = "CNTPCT_EL0", .state = ARM_CP_STATE_AA64, 1914 .opc0 = 3, .opc1 = 3, .crn = 14, .crm = 0, .opc2 = 1, 1915 .access = PL0_R, .type = ARM_CP_NO_RAW | ARM_CP_IO, 1916 .accessfn = gt_pct_access, .readfn = gt_cnt_read, 1917 }, 1918 { .name = "CNTVCT", .cp = 15, .crm = 14, .opc1 = 1, 1919 .access = PL0_R, .type = ARM_CP_64BIT | ARM_CP_NO_RAW | ARM_CP_IO, 1920 .accessfn = gt_vct_access, 1921 .readfn = gt_virt_cnt_read, .resetfn = arm_cp_reset_ignore, 1922 }, 1923 { .name = "CNTVCT_EL0", .state = ARM_CP_STATE_AA64, 1924 .opc0 = 3, .opc1 = 3, .crn = 14, .crm = 0, .opc2 = 2, 1925 .access = PL0_R, .type = ARM_CP_NO_RAW | ARM_CP_IO, 1926 .accessfn = gt_vct_access, .readfn = gt_virt_cnt_read, 1927 }, 1928 /* Comparison value, indicating when the timer goes off */ 1929 { .name = "CNTP_CVAL", .cp = 15, .crm = 14, .opc1 = 2, 1930 .secure = ARM_CP_SECSTATE_NS, 1931 .access = PL1_RW | PL0_R, 1932 .type = ARM_CP_64BIT | ARM_CP_IO | ARM_CP_ALIAS, 1933 .fieldoffset = offsetof(CPUARMState, cp15.c14_timer[GTIMER_PHYS].cval), 1934 .accessfn = gt_ptimer_access, 1935 .writefn = gt_phys_cval_write, .raw_writefn = raw_write, 1936 }, 1937 { .name = "CNTP_CVAL(S)", .cp = 15, .crm = 14, .opc1 = 2, 1938 .secure = ARM_CP_SECSTATE_S, 1939 .access = PL1_RW | PL0_R, 1940 .type = ARM_CP_64BIT | ARM_CP_IO | ARM_CP_ALIAS, 1941 .fieldoffset = offsetof(CPUARMState, cp15.c14_timer[GTIMER_SEC].cval), 1942 .accessfn = gt_ptimer_access, 1943 .writefn = gt_sec_cval_write, .raw_writefn = raw_write, 1944 }, 1945 { .name = "CNTP_CVAL_EL0", .state = ARM_CP_STATE_AA64, 1946 .opc0 = 3, .opc1 = 3, .crn = 14, .crm = 2, .opc2 = 2, 1947 .access = PL1_RW | PL0_R, 1948 .type = ARM_CP_IO, 1949 .fieldoffset = offsetof(CPUARMState, cp15.c14_timer[GTIMER_PHYS].cval), 1950 .resetvalue = 0, .accessfn = gt_ptimer_access, 1951 .writefn = gt_phys_cval_write, .raw_writefn = raw_write, 1952 }, 1953 { .name = "CNTV_CVAL", .cp = 15, .crm = 14, .opc1 = 3, 1954 .access = PL1_RW | PL0_R, 1955 .type = ARM_CP_64BIT | ARM_CP_IO | ARM_CP_ALIAS, 1956 .fieldoffset = offsetof(CPUARMState, cp15.c14_timer[GTIMER_VIRT].cval), 1957 .accessfn = gt_vtimer_access, 1958 .writefn = gt_virt_cval_write, .raw_writefn = raw_write, 1959 }, 1960 { .name = "CNTV_CVAL_EL0", .state = ARM_CP_STATE_AA64, 1961 .opc0 = 3, .opc1 = 3, .crn = 14, .crm = 3, .opc2 = 2, 1962 .access = PL1_RW | PL0_R, 1963 .type = ARM_CP_IO, 1964 .fieldoffset = offsetof(CPUARMState, cp15.c14_timer[GTIMER_VIRT].cval), 1965 .resetvalue = 0, .accessfn = gt_vtimer_access, 1966 .writefn = gt_virt_cval_write, .raw_writefn = raw_write, 1967 }, 1968 /* Secure timer -- this is actually restricted to only EL3 1969 * and configurably Secure-EL1 via the accessfn. 1970 */ 1971 { .name = "CNTPS_TVAL_EL1", .state = ARM_CP_STATE_AA64, 1972 .opc0 = 3, .opc1 = 7, .crn = 14, .crm = 2, .opc2 = 0, 1973 .type = ARM_CP_NO_RAW | ARM_CP_IO, .access = PL1_RW, 1974 .accessfn = gt_stimer_access, 1975 .readfn = gt_sec_tval_read, 1976 .writefn = gt_sec_tval_write, 1977 .resetfn = gt_sec_timer_reset, 1978 }, 1979 { .name = "CNTPS_CTL_EL1", .state = ARM_CP_STATE_AA64, 1980 .opc0 = 3, .opc1 = 7, .crn = 14, .crm = 2, .opc2 = 1, 1981 .type = ARM_CP_IO, .access = PL1_RW, 1982 .accessfn = gt_stimer_access, 1983 .fieldoffset = offsetof(CPUARMState, cp15.c14_timer[GTIMER_SEC].ctl), 1984 .resetvalue = 0, 1985 .writefn = gt_sec_ctl_write, .raw_writefn = raw_write, 1986 }, 1987 { .name = "CNTPS_CVAL_EL1", .state = ARM_CP_STATE_AA64, 1988 .opc0 = 3, .opc1 = 7, .crn = 14, .crm = 2, .opc2 = 2, 1989 .type = ARM_CP_IO, .access = PL1_RW, 1990 .accessfn = gt_stimer_access, 1991 .fieldoffset = offsetof(CPUARMState, cp15.c14_timer[GTIMER_SEC].cval), 1992 .writefn = gt_sec_cval_write, .raw_writefn = raw_write, 1993 }, 1994 REGINFO_SENTINEL 1995 }; 1996 1997 #else 1998 /* In user-mode none of the generic timer registers are accessible, 1999 * and their implementation depends on QEMU_CLOCK_VIRTUAL and qdev gpio outputs, 2000 * so instead just don't register any of them. 2001 */ 2002 static const ARMCPRegInfo generic_timer_cp_reginfo[] = { 2003 REGINFO_SENTINEL 2004 }; 2005 2006 #endif 2007 2008 static void par_write(CPUARMState *env, const ARMCPRegInfo *ri, uint64_t value) 2009 { 2010 if (arm_feature(env, ARM_FEATURE_LPAE)) { 2011 raw_write(env, ri, value); 2012 } else if (arm_feature(env, ARM_FEATURE_V7)) { 2013 raw_write(env, ri, value & 0xfffff6ff); 2014 } else { 2015 raw_write(env, ri, value & 0xfffff1ff); 2016 } 2017 } 2018 2019 #ifndef CONFIG_USER_ONLY 2020 /* get_phys_addr() isn't present for user-mode-only targets */ 2021 2022 static CPAccessResult ats_access(CPUARMState *env, const ARMCPRegInfo *ri, 2023 bool isread) 2024 { 2025 if (ri->opc2 & 4) { 2026 /* The ATS12NSO* operations must trap to EL3 if executed in 2027 * Secure EL1 (which can only happen if EL3 is AArch64). 2028 * They are simply UNDEF if executed from NS EL1. 2029 * They function normally from EL2 or EL3. 2030 */ 2031 if (arm_current_el(env) == 1) { 2032 if (arm_is_secure_below_el3(env)) { 2033 return CP_ACCESS_TRAP_UNCATEGORIZED_EL3; 2034 } 2035 return CP_ACCESS_TRAP_UNCATEGORIZED; 2036 } 2037 } 2038 return CP_ACCESS_OK; 2039 } 2040 2041 static uint64_t do_ats_write(CPUARMState *env, uint64_t value, 2042 int access_type, ARMMMUIdx mmu_idx) 2043 { 2044 hwaddr phys_addr; 2045 target_ulong page_size; 2046 int prot; 2047 uint32_t fsr; 2048 bool ret; 2049 uint64_t par64; 2050 MemTxAttrs attrs = {}; 2051 ARMMMUFaultInfo fi = {}; 2052 2053 ret = get_phys_addr(env, value, access_type, mmu_idx, 2054 &phys_addr, &attrs, &prot, &page_size, &fsr, &fi); 2055 if (extended_addresses_enabled(env)) { 2056 /* fsr is a DFSR/IFSR value for the long descriptor 2057 * translation table format, but with WnR always clear. 2058 * Convert it to a 64-bit PAR. 2059 */ 2060 par64 = (1 << 11); /* LPAE bit always set */ 2061 if (!ret) { 2062 par64 |= phys_addr & ~0xfffULL; 2063 if (!attrs.secure) { 2064 par64 |= (1 << 9); /* NS */ 2065 } 2066 /* We don't set the ATTR or SH fields in the PAR. */ 2067 } else { 2068 par64 |= 1; /* F */ 2069 par64 |= (fsr & 0x3f) << 1; /* FS */ 2070 /* Note that S2WLK and FSTAGE are always zero, because we don't 2071 * implement virtualization and therefore there can't be a stage 2 2072 * fault. 2073 */ 2074 } 2075 } else { 2076 /* fsr is a DFSR/IFSR value for the short descriptor 2077 * translation table format (with WnR always clear). 2078 * Convert it to a 32-bit PAR. 2079 */ 2080 if (!ret) { 2081 /* We do not set any attribute bits in the PAR */ 2082 if (page_size == (1 << 24) 2083 && arm_feature(env, ARM_FEATURE_V7)) { 2084 par64 = (phys_addr & 0xff000000) | (1 << 1); 2085 } else { 2086 par64 = phys_addr & 0xfffff000; 2087 } 2088 if (!attrs.secure) { 2089 par64 |= (1 << 9); /* NS */ 2090 } 2091 } else { 2092 par64 = ((fsr & (1 << 10)) >> 5) | ((fsr & (1 << 12)) >> 6) | 2093 ((fsr & 0xf) << 1) | 1; 2094 } 2095 } 2096 return par64; 2097 } 2098 2099 static void ats_write(CPUARMState *env, const ARMCPRegInfo *ri, uint64_t value) 2100 { 2101 int access_type = ri->opc2 & 1; 2102 uint64_t par64; 2103 ARMMMUIdx mmu_idx; 2104 int el = arm_current_el(env); 2105 bool secure = arm_is_secure_below_el3(env); 2106 2107 switch (ri->opc2 & 6) { 2108 case 0: 2109 /* stage 1 current state PL1: ATS1CPR, ATS1CPW */ 2110 switch (el) { 2111 case 3: 2112 mmu_idx = ARMMMUIdx_S1E3; 2113 break; 2114 case 2: 2115 mmu_idx = ARMMMUIdx_S1NSE1; 2116 break; 2117 case 1: 2118 mmu_idx = secure ? ARMMMUIdx_S1SE1 : ARMMMUIdx_S1NSE1; 2119 break; 2120 default: 2121 g_assert_not_reached(); 2122 } 2123 break; 2124 case 2: 2125 /* stage 1 current state PL0: ATS1CUR, ATS1CUW */ 2126 switch (el) { 2127 case 3: 2128 mmu_idx = ARMMMUIdx_S1SE0; 2129 break; 2130 case 2: 2131 mmu_idx = ARMMMUIdx_S1NSE0; 2132 break; 2133 case 1: 2134 mmu_idx = secure ? ARMMMUIdx_S1SE0 : ARMMMUIdx_S1NSE0; 2135 break; 2136 default: 2137 g_assert_not_reached(); 2138 } 2139 break; 2140 case 4: 2141 /* stage 1+2 NonSecure PL1: ATS12NSOPR, ATS12NSOPW */ 2142 mmu_idx = ARMMMUIdx_S12NSE1; 2143 break; 2144 case 6: 2145 /* stage 1+2 NonSecure PL0: ATS12NSOUR, ATS12NSOUW */ 2146 mmu_idx = ARMMMUIdx_S12NSE0; 2147 break; 2148 default: 2149 g_assert_not_reached(); 2150 } 2151 2152 par64 = do_ats_write(env, value, access_type, mmu_idx); 2153 2154 A32_BANKED_CURRENT_REG_SET(env, par, par64); 2155 } 2156 2157 static void ats1h_write(CPUARMState *env, const ARMCPRegInfo *ri, 2158 uint64_t value) 2159 { 2160 int access_type = ri->opc2 & 1; 2161 uint64_t par64; 2162 2163 par64 = do_ats_write(env, value, access_type, ARMMMUIdx_S2NS); 2164 2165 A32_BANKED_CURRENT_REG_SET(env, par, par64); 2166 } 2167 2168 static CPAccessResult at_s1e2_access(CPUARMState *env, const ARMCPRegInfo *ri, 2169 bool isread) 2170 { 2171 if (arm_current_el(env) == 3 && !(env->cp15.scr_el3 & SCR_NS)) { 2172 return CP_ACCESS_TRAP; 2173 } 2174 return CP_ACCESS_OK; 2175 } 2176 2177 static void ats_write64(CPUARMState *env, const ARMCPRegInfo *ri, 2178 uint64_t value) 2179 { 2180 int access_type = ri->opc2 & 1; 2181 ARMMMUIdx mmu_idx; 2182 int secure = arm_is_secure_below_el3(env); 2183 2184 switch (ri->opc2 & 6) { 2185 case 0: 2186 switch (ri->opc1) { 2187 case 0: /* AT S1E1R, AT S1E1W */ 2188 mmu_idx = secure ? ARMMMUIdx_S1SE1 : ARMMMUIdx_S1NSE1; 2189 break; 2190 case 4: /* AT S1E2R, AT S1E2W */ 2191 mmu_idx = ARMMMUIdx_S1E2; 2192 break; 2193 case 6: /* AT S1E3R, AT S1E3W */ 2194 mmu_idx = ARMMMUIdx_S1E3; 2195 break; 2196 default: 2197 g_assert_not_reached(); 2198 } 2199 break; 2200 case 2: /* AT S1E0R, AT S1E0W */ 2201 mmu_idx = secure ? ARMMMUIdx_S1SE0 : ARMMMUIdx_S1NSE0; 2202 break; 2203 case 4: /* AT S12E1R, AT S12E1W */ 2204 mmu_idx = secure ? ARMMMUIdx_S1SE1 : ARMMMUIdx_S12NSE1; 2205 break; 2206 case 6: /* AT S12E0R, AT S12E0W */ 2207 mmu_idx = secure ? ARMMMUIdx_S1SE0 : ARMMMUIdx_S12NSE0; 2208 break; 2209 default: 2210 g_assert_not_reached(); 2211 } 2212 2213 env->cp15.par_el[1] = do_ats_write(env, value, access_type, mmu_idx); 2214 } 2215 #endif 2216 2217 static const ARMCPRegInfo vapa_cp_reginfo[] = { 2218 { .name = "PAR", .cp = 15, .crn = 7, .crm = 4, .opc1 = 0, .opc2 = 0, 2219 .access = PL1_RW, .resetvalue = 0, 2220 .bank_fieldoffsets = { offsetoflow32(CPUARMState, cp15.par_s), 2221 offsetoflow32(CPUARMState, cp15.par_ns) }, 2222 .writefn = par_write }, 2223 #ifndef CONFIG_USER_ONLY 2224 /* This underdecoding is safe because the reginfo is NO_RAW. */ 2225 { .name = "ATS", .cp = 15, .crn = 7, .crm = 8, .opc1 = 0, .opc2 = CP_ANY, 2226 .access = PL1_W, .accessfn = ats_access, 2227 .writefn = ats_write, .type = ARM_CP_NO_RAW }, 2228 #endif 2229 REGINFO_SENTINEL 2230 }; 2231 2232 /* Return basic MPU access permission bits. */ 2233 static uint32_t simple_mpu_ap_bits(uint32_t val) 2234 { 2235 uint32_t ret; 2236 uint32_t mask; 2237 int i; 2238 ret = 0; 2239 mask = 3; 2240 for (i = 0; i < 16; i += 2) { 2241 ret |= (val >> i) & mask; 2242 mask <<= 2; 2243 } 2244 return ret; 2245 } 2246 2247 /* Pad basic MPU access permission bits to extended format. */ 2248 static uint32_t extended_mpu_ap_bits(uint32_t val) 2249 { 2250 uint32_t ret; 2251 uint32_t mask; 2252 int i; 2253 ret = 0; 2254 mask = 3; 2255 for (i = 0; i < 16; i += 2) { 2256 ret |= (val & mask) << i; 2257 mask <<= 2; 2258 } 2259 return ret; 2260 } 2261 2262 static void pmsav5_data_ap_write(CPUARMState *env, const ARMCPRegInfo *ri, 2263 uint64_t value) 2264 { 2265 env->cp15.pmsav5_data_ap = extended_mpu_ap_bits(value); 2266 } 2267 2268 static uint64_t pmsav5_data_ap_read(CPUARMState *env, const ARMCPRegInfo *ri) 2269 { 2270 return simple_mpu_ap_bits(env->cp15.pmsav5_data_ap); 2271 } 2272 2273 static void pmsav5_insn_ap_write(CPUARMState *env, const ARMCPRegInfo *ri, 2274 uint64_t value) 2275 { 2276 env->cp15.pmsav5_insn_ap = extended_mpu_ap_bits(value); 2277 } 2278 2279 static uint64_t pmsav5_insn_ap_read(CPUARMState *env, const ARMCPRegInfo *ri) 2280 { 2281 return simple_mpu_ap_bits(env->cp15.pmsav5_insn_ap); 2282 } 2283 2284 static uint64_t pmsav7_read(CPUARMState *env, const ARMCPRegInfo *ri) 2285 { 2286 uint32_t *u32p = *(uint32_t **)raw_ptr(env, ri); 2287 2288 if (!u32p) { 2289 return 0; 2290 } 2291 2292 u32p += env->cp15.c6_rgnr; 2293 return *u32p; 2294 } 2295 2296 static void pmsav7_write(CPUARMState *env, const ARMCPRegInfo *ri, 2297 uint64_t value) 2298 { 2299 ARMCPU *cpu = arm_env_get_cpu(env); 2300 uint32_t *u32p = *(uint32_t **)raw_ptr(env, ri); 2301 2302 if (!u32p) { 2303 return; 2304 } 2305 2306 u32p += env->cp15.c6_rgnr; 2307 tlb_flush(CPU(cpu)); /* Mappings may have changed - purge! */ 2308 *u32p = value; 2309 } 2310 2311 static void pmsav7_reset(CPUARMState *env, const ARMCPRegInfo *ri) 2312 { 2313 ARMCPU *cpu = arm_env_get_cpu(env); 2314 uint32_t *u32p = *(uint32_t **)raw_ptr(env, ri); 2315 2316 if (!u32p) { 2317 return; 2318 } 2319 2320 memset(u32p, 0, sizeof(*u32p) * cpu->pmsav7_dregion); 2321 } 2322 2323 static void pmsav7_rgnr_write(CPUARMState *env, const ARMCPRegInfo *ri, 2324 uint64_t value) 2325 { 2326 ARMCPU *cpu = arm_env_get_cpu(env); 2327 uint32_t nrgs = cpu->pmsav7_dregion; 2328 2329 if (value >= nrgs) { 2330 qemu_log_mask(LOG_GUEST_ERROR, 2331 "PMSAv7 RGNR write >= # supported regions, %" PRIu32 2332 " > %" PRIu32 "\n", (uint32_t)value, nrgs); 2333 return; 2334 } 2335 2336 raw_write(env, ri, value); 2337 } 2338 2339 static const ARMCPRegInfo pmsav7_cp_reginfo[] = { 2340 { .name = "DRBAR", .cp = 15, .crn = 6, .opc1 = 0, .crm = 1, .opc2 = 0, 2341 .access = PL1_RW, .type = ARM_CP_NO_RAW, 2342 .fieldoffset = offsetof(CPUARMState, pmsav7.drbar), 2343 .readfn = pmsav7_read, .writefn = pmsav7_write, .resetfn = pmsav7_reset }, 2344 { .name = "DRSR", .cp = 15, .crn = 6, .opc1 = 0, .crm = 1, .opc2 = 2, 2345 .access = PL1_RW, .type = ARM_CP_NO_RAW, 2346 .fieldoffset = offsetof(CPUARMState, pmsav7.drsr), 2347 .readfn = pmsav7_read, .writefn = pmsav7_write, .resetfn = pmsav7_reset }, 2348 { .name = "DRACR", .cp = 15, .crn = 6, .opc1 = 0, .crm = 1, .opc2 = 4, 2349 .access = PL1_RW, .type = ARM_CP_NO_RAW, 2350 .fieldoffset = offsetof(CPUARMState, pmsav7.dracr), 2351 .readfn = pmsav7_read, .writefn = pmsav7_write, .resetfn = pmsav7_reset }, 2352 { .name = "RGNR", .cp = 15, .crn = 6, .opc1 = 0, .crm = 2, .opc2 = 0, 2353 .access = PL1_RW, 2354 .fieldoffset = offsetof(CPUARMState, cp15.c6_rgnr), 2355 .writefn = pmsav7_rgnr_write }, 2356 REGINFO_SENTINEL 2357 }; 2358 2359 static const ARMCPRegInfo pmsav5_cp_reginfo[] = { 2360 { .name = "DATA_AP", .cp = 15, .crn = 5, .crm = 0, .opc1 = 0, .opc2 = 0, 2361 .access = PL1_RW, .type = ARM_CP_ALIAS, 2362 .fieldoffset = offsetof(CPUARMState, cp15.pmsav5_data_ap), 2363 .readfn = pmsav5_data_ap_read, .writefn = pmsav5_data_ap_write, }, 2364 { .name = "INSN_AP", .cp = 15, .crn = 5, .crm = 0, .opc1 = 0, .opc2 = 1, 2365 .access = PL1_RW, .type = ARM_CP_ALIAS, 2366 .fieldoffset = offsetof(CPUARMState, cp15.pmsav5_insn_ap), 2367 .readfn = pmsav5_insn_ap_read, .writefn = pmsav5_insn_ap_write, }, 2368 { .name = "DATA_EXT_AP", .cp = 15, .crn = 5, .crm = 0, .opc1 = 0, .opc2 = 2, 2369 .access = PL1_RW, 2370 .fieldoffset = offsetof(CPUARMState, cp15.pmsav5_data_ap), 2371 .resetvalue = 0, }, 2372 { .name = "INSN_EXT_AP", .cp = 15, .crn = 5, .crm = 0, .opc1 = 0, .opc2 = 3, 2373 .access = PL1_RW, 2374 .fieldoffset = offsetof(CPUARMState, cp15.pmsav5_insn_ap), 2375 .resetvalue = 0, }, 2376 { .name = "DCACHE_CFG", .cp = 15, .crn = 2, .crm = 0, .opc1 = 0, .opc2 = 0, 2377 .access = PL1_RW, 2378 .fieldoffset = offsetof(CPUARMState, cp15.c2_data), .resetvalue = 0, }, 2379 { .name = "ICACHE_CFG", .cp = 15, .crn = 2, .crm = 0, .opc1 = 0, .opc2 = 1, 2380 .access = PL1_RW, 2381 .fieldoffset = offsetof(CPUARMState, cp15.c2_insn), .resetvalue = 0, }, 2382 /* Protection region base and size registers */ 2383 { .name = "946_PRBS0", .cp = 15, .crn = 6, .crm = 0, .opc1 = 0, 2384 .opc2 = CP_ANY, .access = PL1_RW, .resetvalue = 0, 2385 .fieldoffset = offsetof(CPUARMState, cp15.c6_region[0]) }, 2386 { .name = "946_PRBS1", .cp = 15, .crn = 6, .crm = 1, .opc1 = 0, 2387 .opc2 = CP_ANY, .access = PL1_RW, .resetvalue = 0, 2388 .fieldoffset = offsetof(CPUARMState, cp15.c6_region[1]) }, 2389 { .name = "946_PRBS2", .cp = 15, .crn = 6, .crm = 2, .opc1 = 0, 2390 .opc2 = CP_ANY, .access = PL1_RW, .resetvalue = 0, 2391 .fieldoffset = offsetof(CPUARMState, cp15.c6_region[2]) }, 2392 { .name = "946_PRBS3", .cp = 15, .crn = 6, .crm = 3, .opc1 = 0, 2393 .opc2 = CP_ANY, .access = PL1_RW, .resetvalue = 0, 2394 .fieldoffset = offsetof(CPUARMState, cp15.c6_region[3]) }, 2395 { .name = "946_PRBS4", .cp = 15, .crn = 6, .crm = 4, .opc1 = 0, 2396 .opc2 = CP_ANY, .access = PL1_RW, .resetvalue = 0, 2397 .fieldoffset = offsetof(CPUARMState, cp15.c6_region[4]) }, 2398 { .name = "946_PRBS5", .cp = 15, .crn = 6, .crm = 5, .opc1 = 0, 2399 .opc2 = CP_ANY, .access = PL1_RW, .resetvalue = 0, 2400 .fieldoffset = offsetof(CPUARMState, cp15.c6_region[5]) }, 2401 { .name = "946_PRBS6", .cp = 15, .crn = 6, .crm = 6, .opc1 = 0, 2402 .opc2 = CP_ANY, .access = PL1_RW, .resetvalue = 0, 2403 .fieldoffset = offsetof(CPUARMState, cp15.c6_region[6]) }, 2404 { .name = "946_PRBS7", .cp = 15, .crn = 6, .crm = 7, .opc1 = 0, 2405 .opc2 = CP_ANY, .access = PL1_RW, .resetvalue = 0, 2406 .fieldoffset = offsetof(CPUARMState, cp15.c6_region[7]) }, 2407 REGINFO_SENTINEL 2408 }; 2409 2410 static void vmsa_ttbcr_raw_write(CPUARMState *env, const ARMCPRegInfo *ri, 2411 uint64_t value) 2412 { 2413 TCR *tcr = raw_ptr(env, ri); 2414 int maskshift = extract32(value, 0, 3); 2415 2416 if (!arm_feature(env, ARM_FEATURE_V8)) { 2417 if (arm_feature(env, ARM_FEATURE_LPAE) && (value & TTBCR_EAE)) { 2418 /* Pre ARMv8 bits [21:19], [15:14] and [6:3] are UNK/SBZP when 2419 * using Long-desciptor translation table format */ 2420 value &= ~((7 << 19) | (3 << 14) | (0xf << 3)); 2421 } else if (arm_feature(env, ARM_FEATURE_EL3)) { 2422 /* In an implementation that includes the Security Extensions 2423 * TTBCR has additional fields PD0 [4] and PD1 [5] for 2424 * Short-descriptor translation table format. 2425 */ 2426 value &= TTBCR_PD1 | TTBCR_PD0 | TTBCR_N; 2427 } else { 2428 value &= TTBCR_N; 2429 } 2430 } 2431 2432 /* Update the masks corresponding to the TCR bank being written 2433 * Note that we always calculate mask and base_mask, but 2434 * they are only used for short-descriptor tables (ie if EAE is 0); 2435 * for long-descriptor tables the TCR fields are used differently 2436 * and the mask and base_mask values are meaningless. 2437 */ 2438 tcr->raw_tcr = value; 2439 tcr->mask = ~(((uint32_t)0xffffffffu) >> maskshift); 2440 tcr->base_mask = ~((uint32_t)0x3fffu >> maskshift); 2441 } 2442 2443 static void vmsa_ttbcr_write(CPUARMState *env, const ARMCPRegInfo *ri, 2444 uint64_t value) 2445 { 2446 ARMCPU *cpu = arm_env_get_cpu(env); 2447 2448 if (arm_feature(env, ARM_FEATURE_LPAE)) { 2449 /* With LPAE the TTBCR could result in a change of ASID 2450 * via the TTBCR.A1 bit, so do a TLB flush. 2451 */ 2452 tlb_flush(CPU(cpu)); 2453 } 2454 vmsa_ttbcr_raw_write(env, ri, value); 2455 } 2456 2457 static void vmsa_ttbcr_reset(CPUARMState *env, const ARMCPRegInfo *ri) 2458 { 2459 TCR *tcr = raw_ptr(env, ri); 2460 2461 /* Reset both the TCR as well as the masks corresponding to the bank of 2462 * the TCR being reset. 2463 */ 2464 tcr->raw_tcr = 0; 2465 tcr->mask = 0; 2466 tcr->base_mask = 0xffffc000u; 2467 } 2468 2469 static void vmsa_tcr_el1_write(CPUARMState *env, const ARMCPRegInfo *ri, 2470 uint64_t value) 2471 { 2472 ARMCPU *cpu = arm_env_get_cpu(env); 2473 TCR *tcr = raw_ptr(env, ri); 2474 2475 /* For AArch64 the A1 bit could result in a change of ASID, so TLB flush. */ 2476 tlb_flush(CPU(cpu)); 2477 tcr->raw_tcr = value; 2478 } 2479 2480 static void vmsa_ttbr_write(CPUARMState *env, const ARMCPRegInfo *ri, 2481 uint64_t value) 2482 { 2483 /* 64 bit accesses to the TTBRs can change the ASID and so we 2484 * must flush the TLB. 2485 */ 2486 if (cpreg_field_is_64bit(ri)) { 2487 ARMCPU *cpu = arm_env_get_cpu(env); 2488 2489 tlb_flush(CPU(cpu)); 2490 } 2491 raw_write(env, ri, value); 2492 } 2493 2494 static void vttbr_write(CPUARMState *env, const ARMCPRegInfo *ri, 2495 uint64_t value) 2496 { 2497 ARMCPU *cpu = arm_env_get_cpu(env); 2498 CPUState *cs = CPU(cpu); 2499 2500 /* Accesses to VTTBR may change the VMID so we must flush the TLB. */ 2501 if (raw_read(env, ri) != value) { 2502 tlb_flush_by_mmuidx(cs, ARMMMUIdx_S12NSE1, ARMMMUIdx_S12NSE0, 2503 ARMMMUIdx_S2NS, -1); 2504 raw_write(env, ri, value); 2505 } 2506 } 2507 2508 static const ARMCPRegInfo vmsa_pmsa_cp_reginfo[] = { 2509 { .name = "DFSR", .cp = 15, .crn = 5, .crm = 0, .opc1 = 0, .opc2 = 0, 2510 .access = PL1_RW, .type = ARM_CP_ALIAS, 2511 .bank_fieldoffsets = { offsetoflow32(CPUARMState, cp15.dfsr_s), 2512 offsetoflow32(CPUARMState, cp15.dfsr_ns) }, }, 2513 { .name = "IFSR", .cp = 15, .crn = 5, .crm = 0, .opc1 = 0, .opc2 = 1, 2514 .access = PL1_RW, .resetvalue = 0, 2515 .bank_fieldoffsets = { offsetoflow32(CPUARMState, cp15.ifsr_s), 2516 offsetoflow32(CPUARMState, cp15.ifsr_ns) } }, 2517 { .name = "DFAR", .cp = 15, .opc1 = 0, .crn = 6, .crm = 0, .opc2 = 0, 2518 .access = PL1_RW, .resetvalue = 0, 2519 .bank_fieldoffsets = { offsetof(CPUARMState, cp15.dfar_s), 2520 offsetof(CPUARMState, cp15.dfar_ns) } }, 2521 { .name = "FAR_EL1", .state = ARM_CP_STATE_AA64, 2522 .opc0 = 3, .crn = 6, .crm = 0, .opc1 = 0, .opc2 = 0, 2523 .access = PL1_RW, .fieldoffset = offsetof(CPUARMState, cp15.far_el[1]), 2524 .resetvalue = 0, }, 2525 REGINFO_SENTINEL 2526 }; 2527 2528 static const ARMCPRegInfo vmsa_cp_reginfo[] = { 2529 { .name = "ESR_EL1", .state = ARM_CP_STATE_AA64, 2530 .opc0 = 3, .crn = 5, .crm = 2, .opc1 = 0, .opc2 = 0, 2531 .access = PL1_RW, 2532 .fieldoffset = offsetof(CPUARMState, cp15.esr_el[1]), .resetvalue = 0, }, 2533 { .name = "TTBR0_EL1", .state = ARM_CP_STATE_BOTH, 2534 .opc0 = 3, .opc1 = 0, .crn = 2, .crm = 0, .opc2 = 0, 2535 .access = PL1_RW, .writefn = vmsa_ttbr_write, .resetvalue = 0, 2536 .bank_fieldoffsets = { offsetof(CPUARMState, cp15.ttbr0_s), 2537 offsetof(CPUARMState, cp15.ttbr0_ns) } }, 2538 { .name = "TTBR1_EL1", .state = ARM_CP_STATE_BOTH, 2539 .opc0 = 3, .opc1 = 0, .crn = 2, .crm = 0, .opc2 = 1, 2540 .access = PL1_RW, .writefn = vmsa_ttbr_write, .resetvalue = 0, 2541 .bank_fieldoffsets = { offsetof(CPUARMState, cp15.ttbr1_s), 2542 offsetof(CPUARMState, cp15.ttbr1_ns) } }, 2543 { .name = "TCR_EL1", .state = ARM_CP_STATE_AA64, 2544 .opc0 = 3, .crn = 2, .crm = 0, .opc1 = 0, .opc2 = 2, 2545 .access = PL1_RW, .writefn = vmsa_tcr_el1_write, 2546 .resetfn = vmsa_ttbcr_reset, .raw_writefn = raw_write, 2547 .fieldoffset = offsetof(CPUARMState, cp15.tcr_el[1]) }, 2548 { .name = "TTBCR", .cp = 15, .crn = 2, .crm = 0, .opc1 = 0, .opc2 = 2, 2549 .access = PL1_RW, .type = ARM_CP_ALIAS, .writefn = vmsa_ttbcr_write, 2550 .raw_writefn = vmsa_ttbcr_raw_write, 2551 .bank_fieldoffsets = { offsetoflow32(CPUARMState, cp15.tcr_el[3]), 2552 offsetoflow32(CPUARMState, cp15.tcr_el[1])} }, 2553 REGINFO_SENTINEL 2554 }; 2555 2556 static void omap_ticonfig_write(CPUARMState *env, const ARMCPRegInfo *ri, 2557 uint64_t value) 2558 { 2559 env->cp15.c15_ticonfig = value & 0xe7; 2560 /* The OS_TYPE bit in this register changes the reported CPUID! */ 2561 env->cp15.c0_cpuid = (value & (1 << 5)) ? 2562 ARM_CPUID_TI915T : ARM_CPUID_TI925T; 2563 } 2564 2565 static void omap_threadid_write(CPUARMState *env, const ARMCPRegInfo *ri, 2566 uint64_t value) 2567 { 2568 env->cp15.c15_threadid = value & 0xffff; 2569 } 2570 2571 static void omap_wfi_write(CPUARMState *env, const ARMCPRegInfo *ri, 2572 uint64_t value) 2573 { 2574 /* Wait-for-interrupt (deprecated) */ 2575 cpu_interrupt(CPU(arm_env_get_cpu(env)), CPU_INTERRUPT_HALT); 2576 } 2577 2578 static void omap_cachemaint_write(CPUARMState *env, const ARMCPRegInfo *ri, 2579 uint64_t value) 2580 { 2581 /* On OMAP there are registers indicating the max/min index of dcache lines 2582 * containing a dirty line; cache flush operations have to reset these. 2583 */ 2584 env->cp15.c15_i_max = 0x000; 2585 env->cp15.c15_i_min = 0xff0; 2586 } 2587 2588 static const ARMCPRegInfo omap_cp_reginfo[] = { 2589 { .name = "DFSR", .cp = 15, .crn = 5, .crm = CP_ANY, 2590 .opc1 = CP_ANY, .opc2 = CP_ANY, .access = PL1_RW, .type = ARM_CP_OVERRIDE, 2591 .fieldoffset = offsetoflow32(CPUARMState, cp15.esr_el[1]), 2592 .resetvalue = 0, }, 2593 { .name = "", .cp = 15, .crn = 15, .crm = 0, .opc1 = 0, .opc2 = 0, 2594 .access = PL1_RW, .type = ARM_CP_NOP }, 2595 { .name = "TICONFIG", .cp = 15, .crn = 15, .crm = 1, .opc1 = 0, .opc2 = 0, 2596 .access = PL1_RW, 2597 .fieldoffset = offsetof(CPUARMState, cp15.c15_ticonfig), .resetvalue = 0, 2598 .writefn = omap_ticonfig_write }, 2599 { .name = "IMAX", .cp = 15, .crn = 15, .crm = 2, .opc1 = 0, .opc2 = 0, 2600 .access = PL1_RW, 2601 .fieldoffset = offsetof(CPUARMState, cp15.c15_i_max), .resetvalue = 0, }, 2602 { .name = "IMIN", .cp = 15, .crn = 15, .crm = 3, .opc1 = 0, .opc2 = 0, 2603 .access = PL1_RW, .resetvalue = 0xff0, 2604 .fieldoffset = offsetof(CPUARMState, cp15.c15_i_min) }, 2605 { .name = "THREADID", .cp = 15, .crn = 15, .crm = 4, .opc1 = 0, .opc2 = 0, 2606 .access = PL1_RW, 2607 .fieldoffset = offsetof(CPUARMState, cp15.c15_threadid), .resetvalue = 0, 2608 .writefn = omap_threadid_write }, 2609 { .name = "TI925T_STATUS", .cp = 15, .crn = 15, 2610 .crm = 8, .opc1 = 0, .opc2 = 0, .access = PL1_RW, 2611 .type = ARM_CP_NO_RAW, 2612 .readfn = arm_cp_read_zero, .writefn = omap_wfi_write, }, 2613 /* TODO: Peripheral port remap register: 2614 * On OMAP2 mcr p15, 0, rn, c15, c2, 4 sets up the interrupt controller 2615 * base address at $rn & ~0xfff and map size of 0x200 << ($rn & 0xfff), 2616 * when MMU is off. 2617 */ 2618 { .name = "OMAP_CACHEMAINT", .cp = 15, .crn = 7, .crm = CP_ANY, 2619 .opc1 = 0, .opc2 = CP_ANY, .access = PL1_W, 2620 .type = ARM_CP_OVERRIDE | ARM_CP_NO_RAW, 2621 .writefn = omap_cachemaint_write }, 2622 { .name = "C9", .cp = 15, .crn = 9, 2623 .crm = CP_ANY, .opc1 = CP_ANY, .opc2 = CP_ANY, .access = PL1_RW, 2624 .type = ARM_CP_CONST | ARM_CP_OVERRIDE, .resetvalue = 0 }, 2625 REGINFO_SENTINEL 2626 }; 2627 2628 static void xscale_cpar_write(CPUARMState *env, const ARMCPRegInfo *ri, 2629 uint64_t value) 2630 { 2631 env->cp15.c15_cpar = value & 0x3fff; 2632 } 2633 2634 static const ARMCPRegInfo xscale_cp_reginfo[] = { 2635 { .name = "XSCALE_CPAR", 2636 .cp = 15, .crn = 15, .crm = 1, .opc1 = 0, .opc2 = 0, .access = PL1_RW, 2637 .fieldoffset = offsetof(CPUARMState, cp15.c15_cpar), .resetvalue = 0, 2638 .writefn = xscale_cpar_write, }, 2639 { .name = "XSCALE_AUXCR", 2640 .cp = 15, .crn = 1, .crm = 0, .opc1 = 0, .opc2 = 1, .access = PL1_RW, 2641 .fieldoffset = offsetof(CPUARMState, cp15.c1_xscaleauxcr), 2642 .resetvalue = 0, }, 2643 /* XScale specific cache-lockdown: since we have no cache we NOP these 2644 * and hope the guest does not really rely on cache behaviour. 2645 */ 2646 { .name = "XSCALE_LOCK_ICACHE_LINE", 2647 .cp = 15, .opc1 = 0, .crn = 9, .crm = 1, .opc2 = 0, 2648 .access = PL1_W, .type = ARM_CP_NOP }, 2649 { .name = "XSCALE_UNLOCK_ICACHE", 2650 .cp = 15, .opc1 = 0, .crn = 9, .crm = 1, .opc2 = 1, 2651 .access = PL1_W, .type = ARM_CP_NOP }, 2652 { .name = "XSCALE_DCACHE_LOCK", 2653 .cp = 15, .opc1 = 0, .crn = 9, .crm = 2, .opc2 = 0, 2654 .access = PL1_RW, .type = ARM_CP_NOP }, 2655 { .name = "XSCALE_UNLOCK_DCACHE", 2656 .cp = 15, .opc1 = 0, .crn = 9, .crm = 2, .opc2 = 1, 2657 .access = PL1_W, .type = ARM_CP_NOP }, 2658 REGINFO_SENTINEL 2659 }; 2660 2661 static const ARMCPRegInfo dummy_c15_cp_reginfo[] = { 2662 /* RAZ/WI the whole crn=15 space, when we don't have a more specific 2663 * implementation of this implementation-defined space. 2664 * Ideally this should eventually disappear in favour of actually 2665 * implementing the correct behaviour for all cores. 2666 */ 2667 { .name = "C15_IMPDEF", .cp = 15, .crn = 15, 2668 .crm = CP_ANY, .opc1 = CP_ANY, .opc2 = CP_ANY, 2669 .access = PL1_RW, 2670 .type = ARM_CP_CONST | ARM_CP_NO_RAW | ARM_CP_OVERRIDE, 2671 .resetvalue = 0 }, 2672 REGINFO_SENTINEL 2673 }; 2674 2675 static const ARMCPRegInfo cache_dirty_status_cp_reginfo[] = { 2676 /* Cache status: RAZ because we have no cache so it's always clean */ 2677 { .name = "CDSR", .cp = 15, .crn = 7, .crm = 10, .opc1 = 0, .opc2 = 6, 2678 .access = PL1_R, .type = ARM_CP_CONST | ARM_CP_NO_RAW, 2679 .resetvalue = 0 }, 2680 REGINFO_SENTINEL 2681 }; 2682 2683 static const ARMCPRegInfo cache_block_ops_cp_reginfo[] = { 2684 /* We never have a a block transfer operation in progress */ 2685 { .name = "BXSR", .cp = 15, .crn = 7, .crm = 12, .opc1 = 0, .opc2 = 4, 2686 .access = PL0_R, .type = ARM_CP_CONST | ARM_CP_NO_RAW, 2687 .resetvalue = 0 }, 2688 /* The cache ops themselves: these all NOP for QEMU */ 2689 { .name = "IICR", .cp = 15, .crm = 5, .opc1 = 0, 2690 .access = PL1_W, .type = ARM_CP_NOP|ARM_CP_64BIT }, 2691 { .name = "IDCR", .cp = 15, .crm = 6, .opc1 = 0, 2692 .access = PL1_W, .type = ARM_CP_NOP|ARM_CP_64BIT }, 2693 { .name = "CDCR", .cp = 15, .crm = 12, .opc1 = 0, 2694 .access = PL0_W, .type = ARM_CP_NOP|ARM_CP_64BIT }, 2695 { .name = "PIR", .cp = 15, .crm = 12, .opc1 = 1, 2696 .access = PL0_W, .type = ARM_CP_NOP|ARM_CP_64BIT }, 2697 { .name = "PDR", .cp = 15, .crm = 12, .opc1 = 2, 2698 .access = PL0_W, .type = ARM_CP_NOP|ARM_CP_64BIT }, 2699 { .name = "CIDCR", .cp = 15, .crm = 14, .opc1 = 0, 2700 .access = PL1_W, .type = ARM_CP_NOP|ARM_CP_64BIT }, 2701 REGINFO_SENTINEL 2702 }; 2703 2704 static const ARMCPRegInfo cache_test_clean_cp_reginfo[] = { 2705 /* The cache test-and-clean instructions always return (1 << 30) 2706 * to indicate that there are no dirty cache lines. 2707 */ 2708 { .name = "TC_DCACHE", .cp = 15, .crn = 7, .crm = 10, .opc1 = 0, .opc2 = 3, 2709 .access = PL0_R, .type = ARM_CP_CONST | ARM_CP_NO_RAW, 2710 .resetvalue = (1 << 30) }, 2711 { .name = "TCI_DCACHE", .cp = 15, .crn = 7, .crm = 14, .opc1 = 0, .opc2 = 3, 2712 .access = PL0_R, .type = ARM_CP_CONST | ARM_CP_NO_RAW, 2713 .resetvalue = (1 << 30) }, 2714 REGINFO_SENTINEL 2715 }; 2716 2717 static const ARMCPRegInfo strongarm_cp_reginfo[] = { 2718 /* Ignore ReadBuffer accesses */ 2719 { .name = "C9_READBUFFER", .cp = 15, .crn = 9, 2720 .crm = CP_ANY, .opc1 = CP_ANY, .opc2 = CP_ANY, 2721 .access = PL1_RW, .resetvalue = 0, 2722 .type = ARM_CP_CONST | ARM_CP_OVERRIDE | ARM_CP_NO_RAW }, 2723 REGINFO_SENTINEL 2724 }; 2725 2726 static uint64_t midr_read(CPUARMState *env, const ARMCPRegInfo *ri) 2727 { 2728 ARMCPU *cpu = arm_env_get_cpu(env); 2729 unsigned int cur_el = arm_current_el(env); 2730 bool secure = arm_is_secure(env); 2731 2732 if (arm_feature(&cpu->env, ARM_FEATURE_EL2) && !secure && cur_el == 1) { 2733 return env->cp15.vpidr_el2; 2734 } 2735 return raw_read(env, ri); 2736 } 2737 2738 static uint64_t mpidr_read_val(CPUARMState *env) 2739 { 2740 ARMCPU *cpu = ARM_CPU(arm_env_get_cpu(env)); 2741 uint64_t mpidr = cpu->mp_affinity; 2742 2743 if (arm_feature(env, ARM_FEATURE_V7MP)) { 2744 mpidr |= (1U << 31); 2745 /* Cores which are uniprocessor (non-coherent) 2746 * but still implement the MP extensions set 2747 * bit 30. (For instance, Cortex-R5). 2748 */ 2749 if (cpu->mp_is_up) { 2750 mpidr |= (1u << 30); 2751 } 2752 } 2753 return mpidr; 2754 } 2755 2756 static uint64_t mpidr_read(CPUARMState *env, const ARMCPRegInfo *ri) 2757 { 2758 unsigned int cur_el = arm_current_el(env); 2759 bool secure = arm_is_secure(env); 2760 2761 if (arm_feature(env, ARM_FEATURE_EL2) && !secure && cur_el == 1) { 2762 return env->cp15.vmpidr_el2; 2763 } 2764 return mpidr_read_val(env); 2765 } 2766 2767 static const ARMCPRegInfo mpidr_cp_reginfo[] = { 2768 { .name = "MPIDR", .state = ARM_CP_STATE_BOTH, 2769 .opc0 = 3, .crn = 0, .crm = 0, .opc1 = 0, .opc2 = 5, 2770 .access = PL1_R, .readfn = mpidr_read, .type = ARM_CP_NO_RAW }, 2771 REGINFO_SENTINEL 2772 }; 2773 2774 static const ARMCPRegInfo lpae_cp_reginfo[] = { 2775 /* NOP AMAIR0/1 */ 2776 { .name = "AMAIR0", .state = ARM_CP_STATE_BOTH, 2777 .opc0 = 3, .crn = 10, .crm = 3, .opc1 = 0, .opc2 = 0, 2778 .access = PL1_RW, .type = ARM_CP_CONST, 2779 .resetvalue = 0 }, 2780 /* AMAIR1 is mapped to AMAIR_EL1[63:32] */ 2781 { .name = "AMAIR1", .cp = 15, .crn = 10, .crm = 3, .opc1 = 0, .opc2 = 1, 2782 .access = PL1_RW, .type = ARM_CP_CONST, 2783 .resetvalue = 0 }, 2784 { .name = "PAR", .cp = 15, .crm = 7, .opc1 = 0, 2785 .access = PL1_RW, .type = ARM_CP_64BIT, .resetvalue = 0, 2786 .bank_fieldoffsets = { offsetof(CPUARMState, cp15.par_s), 2787 offsetof(CPUARMState, cp15.par_ns)} }, 2788 { .name = "TTBR0", .cp = 15, .crm = 2, .opc1 = 0, 2789 .access = PL1_RW, .type = ARM_CP_64BIT | ARM_CP_ALIAS, 2790 .bank_fieldoffsets = { offsetof(CPUARMState, cp15.ttbr0_s), 2791 offsetof(CPUARMState, cp15.ttbr0_ns) }, 2792 .writefn = vmsa_ttbr_write, }, 2793 { .name = "TTBR1", .cp = 15, .crm = 2, .opc1 = 1, 2794 .access = PL1_RW, .type = ARM_CP_64BIT | ARM_CP_ALIAS, 2795 .bank_fieldoffsets = { offsetof(CPUARMState, cp15.ttbr1_s), 2796 offsetof(CPUARMState, cp15.ttbr1_ns) }, 2797 .writefn = vmsa_ttbr_write, }, 2798 REGINFO_SENTINEL 2799 }; 2800 2801 static uint64_t aa64_fpcr_read(CPUARMState *env, const ARMCPRegInfo *ri) 2802 { 2803 return vfp_get_fpcr(env); 2804 } 2805 2806 static void aa64_fpcr_write(CPUARMState *env, const ARMCPRegInfo *ri, 2807 uint64_t value) 2808 { 2809 vfp_set_fpcr(env, value); 2810 } 2811 2812 static uint64_t aa64_fpsr_read(CPUARMState *env, const ARMCPRegInfo *ri) 2813 { 2814 return vfp_get_fpsr(env); 2815 } 2816 2817 static void aa64_fpsr_write(CPUARMState *env, const ARMCPRegInfo *ri, 2818 uint64_t value) 2819 { 2820 vfp_set_fpsr(env, value); 2821 } 2822 2823 static CPAccessResult aa64_daif_access(CPUARMState *env, const ARMCPRegInfo *ri, 2824 bool isread) 2825 { 2826 if (arm_current_el(env) == 0 && !(env->cp15.sctlr_el[1] & SCTLR_UMA)) { 2827 return CP_ACCESS_TRAP; 2828 } 2829 return CP_ACCESS_OK; 2830 } 2831 2832 static void aa64_daif_write(CPUARMState *env, const ARMCPRegInfo *ri, 2833 uint64_t value) 2834 { 2835 env->daif = value & PSTATE_DAIF; 2836 } 2837 2838 static CPAccessResult aa64_cacheop_access(CPUARMState *env, 2839 const ARMCPRegInfo *ri, 2840 bool isread) 2841 { 2842 /* Cache invalidate/clean: NOP, but EL0 must UNDEF unless 2843 * SCTLR_EL1.UCI is set. 2844 */ 2845 if (arm_current_el(env) == 0 && !(env->cp15.sctlr_el[1] & SCTLR_UCI)) { 2846 return CP_ACCESS_TRAP; 2847 } 2848 return CP_ACCESS_OK; 2849 } 2850 2851 /* See: D4.7.2 TLB maintenance requirements and the TLB maintenance instructions 2852 * Page D4-1736 (DDI0487A.b) 2853 */ 2854 2855 static void tlbi_aa64_vmalle1_write(CPUARMState *env, const ARMCPRegInfo *ri, 2856 uint64_t value) 2857 { 2858 ARMCPU *cpu = arm_env_get_cpu(env); 2859 CPUState *cs = CPU(cpu); 2860 2861 if (arm_is_secure_below_el3(env)) { 2862 tlb_flush_by_mmuidx(cs, ARMMMUIdx_S1SE1, ARMMMUIdx_S1SE0, -1); 2863 } else { 2864 tlb_flush_by_mmuidx(cs, ARMMMUIdx_S12NSE1, ARMMMUIdx_S12NSE0, -1); 2865 } 2866 } 2867 2868 static void tlbi_aa64_vmalle1is_write(CPUARMState *env, const ARMCPRegInfo *ri, 2869 uint64_t value) 2870 { 2871 bool sec = arm_is_secure_below_el3(env); 2872 CPUState *other_cs; 2873 2874 CPU_FOREACH(other_cs) { 2875 if (sec) { 2876 tlb_flush_by_mmuidx(other_cs, ARMMMUIdx_S1SE1, ARMMMUIdx_S1SE0, -1); 2877 } else { 2878 tlb_flush_by_mmuidx(other_cs, ARMMMUIdx_S12NSE1, 2879 ARMMMUIdx_S12NSE0, -1); 2880 } 2881 } 2882 } 2883 2884 static void tlbi_aa64_alle1_write(CPUARMState *env, const ARMCPRegInfo *ri, 2885 uint64_t value) 2886 { 2887 /* Note that the 'ALL' scope must invalidate both stage 1 and 2888 * stage 2 translations, whereas most other scopes only invalidate 2889 * stage 1 translations. 2890 */ 2891 ARMCPU *cpu = arm_env_get_cpu(env); 2892 CPUState *cs = CPU(cpu); 2893 2894 if (arm_is_secure_below_el3(env)) { 2895 tlb_flush_by_mmuidx(cs, ARMMMUIdx_S1SE1, ARMMMUIdx_S1SE0, -1); 2896 } else { 2897 if (arm_feature(env, ARM_FEATURE_EL2)) { 2898 tlb_flush_by_mmuidx(cs, ARMMMUIdx_S12NSE1, ARMMMUIdx_S12NSE0, 2899 ARMMMUIdx_S2NS, -1); 2900 } else { 2901 tlb_flush_by_mmuidx(cs, ARMMMUIdx_S12NSE1, ARMMMUIdx_S12NSE0, -1); 2902 } 2903 } 2904 } 2905 2906 static void tlbi_aa64_alle2_write(CPUARMState *env, const ARMCPRegInfo *ri, 2907 uint64_t value) 2908 { 2909 ARMCPU *cpu = arm_env_get_cpu(env); 2910 CPUState *cs = CPU(cpu); 2911 2912 tlb_flush_by_mmuidx(cs, ARMMMUIdx_S1E2, -1); 2913 } 2914 2915 static void tlbi_aa64_alle3_write(CPUARMState *env, const ARMCPRegInfo *ri, 2916 uint64_t value) 2917 { 2918 ARMCPU *cpu = arm_env_get_cpu(env); 2919 CPUState *cs = CPU(cpu); 2920 2921 tlb_flush_by_mmuidx(cs, ARMMMUIdx_S1E3, -1); 2922 } 2923 2924 static void tlbi_aa64_alle1is_write(CPUARMState *env, const ARMCPRegInfo *ri, 2925 uint64_t value) 2926 { 2927 /* Note that the 'ALL' scope must invalidate both stage 1 and 2928 * stage 2 translations, whereas most other scopes only invalidate 2929 * stage 1 translations. 2930 */ 2931 bool sec = arm_is_secure_below_el3(env); 2932 bool has_el2 = arm_feature(env, ARM_FEATURE_EL2); 2933 CPUState *other_cs; 2934 2935 CPU_FOREACH(other_cs) { 2936 if (sec) { 2937 tlb_flush_by_mmuidx(other_cs, ARMMMUIdx_S1SE1, ARMMMUIdx_S1SE0, -1); 2938 } else if (has_el2) { 2939 tlb_flush_by_mmuidx(other_cs, ARMMMUIdx_S12NSE1, 2940 ARMMMUIdx_S12NSE0, ARMMMUIdx_S2NS, -1); 2941 } else { 2942 tlb_flush_by_mmuidx(other_cs, ARMMMUIdx_S12NSE1, 2943 ARMMMUIdx_S12NSE0, -1); 2944 } 2945 } 2946 } 2947 2948 static void tlbi_aa64_alle2is_write(CPUARMState *env, const ARMCPRegInfo *ri, 2949 uint64_t value) 2950 { 2951 CPUState *other_cs; 2952 2953 CPU_FOREACH(other_cs) { 2954 tlb_flush_by_mmuidx(other_cs, ARMMMUIdx_S1E2, -1); 2955 } 2956 } 2957 2958 static void tlbi_aa64_alle3is_write(CPUARMState *env, const ARMCPRegInfo *ri, 2959 uint64_t value) 2960 { 2961 CPUState *other_cs; 2962 2963 CPU_FOREACH(other_cs) { 2964 tlb_flush_by_mmuidx(other_cs, ARMMMUIdx_S1E3, -1); 2965 } 2966 } 2967 2968 static void tlbi_aa64_vae1_write(CPUARMState *env, const ARMCPRegInfo *ri, 2969 uint64_t value) 2970 { 2971 /* Invalidate by VA, EL1&0 (AArch64 version). 2972 * Currently handles all of VAE1, VAAE1, VAALE1 and VALE1, 2973 * since we don't support flush-for-specific-ASID-only or 2974 * flush-last-level-only. 2975 */ 2976 ARMCPU *cpu = arm_env_get_cpu(env); 2977 CPUState *cs = CPU(cpu); 2978 uint64_t pageaddr = sextract64(value << 12, 0, 56); 2979 2980 if (arm_is_secure_below_el3(env)) { 2981 tlb_flush_page_by_mmuidx(cs, pageaddr, ARMMMUIdx_S1SE1, 2982 ARMMMUIdx_S1SE0, -1); 2983 } else { 2984 tlb_flush_page_by_mmuidx(cs, pageaddr, ARMMMUIdx_S12NSE1, 2985 ARMMMUIdx_S12NSE0, -1); 2986 } 2987 } 2988 2989 static void tlbi_aa64_vae2_write(CPUARMState *env, const ARMCPRegInfo *ri, 2990 uint64_t value) 2991 { 2992 /* Invalidate by VA, EL2 2993 * Currently handles both VAE2 and VALE2, since we don't support 2994 * flush-last-level-only. 2995 */ 2996 ARMCPU *cpu = arm_env_get_cpu(env); 2997 CPUState *cs = CPU(cpu); 2998 uint64_t pageaddr = sextract64(value << 12, 0, 56); 2999 3000 tlb_flush_page_by_mmuidx(cs, pageaddr, ARMMMUIdx_S1E2, -1); 3001 } 3002 3003 static void tlbi_aa64_vae3_write(CPUARMState *env, const ARMCPRegInfo *ri, 3004 uint64_t value) 3005 { 3006 /* Invalidate by VA, EL3 3007 * Currently handles both VAE3 and VALE3, since we don't support 3008 * flush-last-level-only. 3009 */ 3010 ARMCPU *cpu = arm_env_get_cpu(env); 3011 CPUState *cs = CPU(cpu); 3012 uint64_t pageaddr = sextract64(value << 12, 0, 56); 3013 3014 tlb_flush_page_by_mmuidx(cs, pageaddr, ARMMMUIdx_S1E3, -1); 3015 } 3016 3017 static void tlbi_aa64_vae1is_write(CPUARMState *env, const ARMCPRegInfo *ri, 3018 uint64_t value) 3019 { 3020 bool sec = arm_is_secure_below_el3(env); 3021 CPUState *other_cs; 3022 uint64_t pageaddr = sextract64(value << 12, 0, 56); 3023 3024 CPU_FOREACH(other_cs) { 3025 if (sec) { 3026 tlb_flush_page_by_mmuidx(other_cs, pageaddr, ARMMMUIdx_S1SE1, 3027 ARMMMUIdx_S1SE0, -1); 3028 } else { 3029 tlb_flush_page_by_mmuidx(other_cs, pageaddr, ARMMMUIdx_S12NSE1, 3030 ARMMMUIdx_S12NSE0, -1); 3031 } 3032 } 3033 } 3034 3035 static void tlbi_aa64_vae2is_write(CPUARMState *env, const ARMCPRegInfo *ri, 3036 uint64_t value) 3037 { 3038 CPUState *other_cs; 3039 uint64_t pageaddr = sextract64(value << 12, 0, 56); 3040 3041 CPU_FOREACH(other_cs) { 3042 tlb_flush_page_by_mmuidx(other_cs, pageaddr, ARMMMUIdx_S1E2, -1); 3043 } 3044 } 3045 3046 static void tlbi_aa64_vae3is_write(CPUARMState *env, const ARMCPRegInfo *ri, 3047 uint64_t value) 3048 { 3049 CPUState *other_cs; 3050 uint64_t pageaddr = sextract64(value << 12, 0, 56); 3051 3052 CPU_FOREACH(other_cs) { 3053 tlb_flush_page_by_mmuidx(other_cs, pageaddr, ARMMMUIdx_S1E3, -1); 3054 } 3055 } 3056 3057 static void tlbi_aa64_ipas2e1_write(CPUARMState *env, const ARMCPRegInfo *ri, 3058 uint64_t value) 3059 { 3060 /* Invalidate by IPA. This has to invalidate any structures that 3061 * contain only stage 2 translation information, but does not need 3062 * to apply to structures that contain combined stage 1 and stage 2 3063 * translation information. 3064 * This must NOP if EL2 isn't implemented or SCR_EL3.NS is zero. 3065 */ 3066 ARMCPU *cpu = arm_env_get_cpu(env); 3067 CPUState *cs = CPU(cpu); 3068 uint64_t pageaddr; 3069 3070 if (!arm_feature(env, ARM_FEATURE_EL2) || !(env->cp15.scr_el3 & SCR_NS)) { 3071 return; 3072 } 3073 3074 pageaddr = sextract64(value << 12, 0, 48); 3075 3076 tlb_flush_page_by_mmuidx(cs, pageaddr, ARMMMUIdx_S2NS, -1); 3077 } 3078 3079 static void tlbi_aa64_ipas2e1is_write(CPUARMState *env, const ARMCPRegInfo *ri, 3080 uint64_t value) 3081 { 3082 CPUState *other_cs; 3083 uint64_t pageaddr; 3084 3085 if (!arm_feature(env, ARM_FEATURE_EL2) || !(env->cp15.scr_el3 & SCR_NS)) { 3086 return; 3087 } 3088 3089 pageaddr = sextract64(value << 12, 0, 48); 3090 3091 CPU_FOREACH(other_cs) { 3092 tlb_flush_page_by_mmuidx(other_cs, pageaddr, ARMMMUIdx_S2NS, -1); 3093 } 3094 } 3095 3096 static CPAccessResult aa64_zva_access(CPUARMState *env, const ARMCPRegInfo *ri, 3097 bool isread) 3098 { 3099 /* We don't implement EL2, so the only control on DC ZVA is the 3100 * bit in the SCTLR which can prohibit access for EL0. 3101 */ 3102 if (arm_current_el(env) == 0 && !(env->cp15.sctlr_el[1] & SCTLR_DZE)) { 3103 return CP_ACCESS_TRAP; 3104 } 3105 return CP_ACCESS_OK; 3106 } 3107 3108 static uint64_t aa64_dczid_read(CPUARMState *env, const ARMCPRegInfo *ri) 3109 { 3110 ARMCPU *cpu = arm_env_get_cpu(env); 3111 int dzp_bit = 1 << 4; 3112 3113 /* DZP indicates whether DC ZVA access is allowed */ 3114 if (aa64_zva_access(env, NULL, false) == CP_ACCESS_OK) { 3115 dzp_bit = 0; 3116 } 3117 return cpu->dcz_blocksize | dzp_bit; 3118 } 3119 3120 static CPAccessResult sp_el0_access(CPUARMState *env, const ARMCPRegInfo *ri, 3121 bool isread) 3122 { 3123 if (!(env->pstate & PSTATE_SP)) { 3124 /* Access to SP_EL0 is undefined if it's being used as 3125 * the stack pointer. 3126 */ 3127 return CP_ACCESS_TRAP_UNCATEGORIZED; 3128 } 3129 return CP_ACCESS_OK; 3130 } 3131 3132 static uint64_t spsel_read(CPUARMState *env, const ARMCPRegInfo *ri) 3133 { 3134 return env->pstate & PSTATE_SP; 3135 } 3136 3137 static void spsel_write(CPUARMState *env, const ARMCPRegInfo *ri, uint64_t val) 3138 { 3139 update_spsel(env, val); 3140 } 3141 3142 static void sctlr_write(CPUARMState *env, const ARMCPRegInfo *ri, 3143 uint64_t value) 3144 { 3145 ARMCPU *cpu = arm_env_get_cpu(env); 3146 3147 if (raw_read(env, ri) == value) { 3148 /* Skip the TLB flush if nothing actually changed; Linux likes 3149 * to do a lot of pointless SCTLR writes. 3150 */ 3151 return; 3152 } 3153 3154 raw_write(env, ri, value); 3155 /* ??? Lots of these bits are not implemented. */ 3156 /* This may enable/disable the MMU, so do a TLB flush. */ 3157 tlb_flush(CPU(cpu)); 3158 } 3159 3160 static CPAccessResult fpexc32_access(CPUARMState *env, const ARMCPRegInfo *ri, 3161 bool isread) 3162 { 3163 if ((env->cp15.cptr_el[2] & CPTR_TFP) && arm_current_el(env) == 2) { 3164 return CP_ACCESS_TRAP_FP_EL2; 3165 } 3166 if (env->cp15.cptr_el[3] & CPTR_TFP) { 3167 return CP_ACCESS_TRAP_FP_EL3; 3168 } 3169 return CP_ACCESS_OK; 3170 } 3171 3172 static void sdcr_write(CPUARMState *env, const ARMCPRegInfo *ri, 3173 uint64_t value) 3174 { 3175 env->cp15.mdcr_el3 = value & SDCR_VALID_MASK; 3176 } 3177 3178 static const ARMCPRegInfo v8_cp_reginfo[] = { 3179 /* Minimal set of EL0-visible registers. This will need to be expanded 3180 * significantly for system emulation of AArch64 CPUs. 3181 */ 3182 { .name = "NZCV", .state = ARM_CP_STATE_AA64, 3183 .opc0 = 3, .opc1 = 3, .opc2 = 0, .crn = 4, .crm = 2, 3184 .access = PL0_RW, .type = ARM_CP_NZCV }, 3185 { .name = "DAIF", .state = ARM_CP_STATE_AA64, 3186 .opc0 = 3, .opc1 = 3, .opc2 = 1, .crn = 4, .crm = 2, 3187 .type = ARM_CP_NO_RAW, 3188 .access = PL0_RW, .accessfn = aa64_daif_access, 3189 .fieldoffset = offsetof(CPUARMState, daif), 3190 .writefn = aa64_daif_write, .resetfn = arm_cp_reset_ignore }, 3191 { .name = "FPCR", .state = ARM_CP_STATE_AA64, 3192 .opc0 = 3, .opc1 = 3, .opc2 = 0, .crn = 4, .crm = 4, 3193 .access = PL0_RW, .readfn = aa64_fpcr_read, .writefn = aa64_fpcr_write }, 3194 { .name = "FPSR", .state = ARM_CP_STATE_AA64, 3195 .opc0 = 3, .opc1 = 3, .opc2 = 1, .crn = 4, .crm = 4, 3196 .access = PL0_RW, .readfn = aa64_fpsr_read, .writefn = aa64_fpsr_write }, 3197 { .name = "DCZID_EL0", .state = ARM_CP_STATE_AA64, 3198 .opc0 = 3, .opc1 = 3, .opc2 = 7, .crn = 0, .crm = 0, 3199 .access = PL0_R, .type = ARM_CP_NO_RAW, 3200 .readfn = aa64_dczid_read }, 3201 { .name = "DC_ZVA", .state = ARM_CP_STATE_AA64, 3202 .opc0 = 1, .opc1 = 3, .crn = 7, .crm = 4, .opc2 = 1, 3203 .access = PL0_W, .type = ARM_CP_DC_ZVA, 3204 #ifndef CONFIG_USER_ONLY 3205 /* Avoid overhead of an access check that always passes in user-mode */ 3206 .accessfn = aa64_zva_access, 3207 #endif 3208 }, 3209 { .name = "CURRENTEL", .state = ARM_CP_STATE_AA64, 3210 .opc0 = 3, .opc1 = 0, .opc2 = 2, .crn = 4, .crm = 2, 3211 .access = PL1_R, .type = ARM_CP_CURRENTEL }, 3212 /* Cache ops: all NOPs since we don't emulate caches */ 3213 { .name = "IC_IALLUIS", .state = ARM_CP_STATE_AA64, 3214 .opc0 = 1, .opc1 = 0, .crn = 7, .crm = 1, .opc2 = 0, 3215 .access = PL1_W, .type = ARM_CP_NOP }, 3216 { .name = "IC_IALLU", .state = ARM_CP_STATE_AA64, 3217 .opc0 = 1, .opc1 = 0, .crn = 7, .crm = 5, .opc2 = 0, 3218 .access = PL1_W, .type = ARM_CP_NOP }, 3219 { .name = "IC_IVAU", .state = ARM_CP_STATE_AA64, 3220 .opc0 = 1, .opc1 = 3, .crn = 7, .crm = 5, .opc2 = 1, 3221 .access = PL0_W, .type = ARM_CP_NOP, 3222 .accessfn = aa64_cacheop_access }, 3223 { .name = "DC_IVAC", .state = ARM_CP_STATE_AA64, 3224 .opc0 = 1, .opc1 = 0, .crn = 7, .crm = 6, .opc2 = 1, 3225 .access = PL1_W, .type = ARM_CP_NOP }, 3226 { .name = "DC_ISW", .state = ARM_CP_STATE_AA64, 3227 .opc0 = 1, .opc1 = 0, .crn = 7, .crm = 6, .opc2 = 2, 3228 .access = PL1_W, .type = ARM_CP_NOP }, 3229 { .name = "DC_CVAC", .state = ARM_CP_STATE_AA64, 3230 .opc0 = 1, .opc1 = 3, .crn = 7, .crm = 10, .opc2 = 1, 3231 .access = PL0_W, .type = ARM_CP_NOP, 3232 .accessfn = aa64_cacheop_access }, 3233 { .name = "DC_CSW", .state = ARM_CP_STATE_AA64, 3234 .opc0 = 1, .opc1 = 0, .crn = 7, .crm = 10, .opc2 = 2, 3235 .access = PL1_W, .type = ARM_CP_NOP }, 3236 { .name = "DC_CVAU", .state = ARM_CP_STATE_AA64, 3237 .opc0 = 1, .opc1 = 3, .crn = 7, .crm = 11, .opc2 = 1, 3238 .access = PL0_W, .type = ARM_CP_NOP, 3239 .accessfn = aa64_cacheop_access }, 3240 { .name = "DC_CIVAC", .state = ARM_CP_STATE_AA64, 3241 .opc0 = 1, .opc1 = 3, .crn = 7, .crm = 14, .opc2 = 1, 3242 .access = PL0_W, .type = ARM_CP_NOP, 3243 .accessfn = aa64_cacheop_access }, 3244 { .name = "DC_CISW", .state = ARM_CP_STATE_AA64, 3245 .opc0 = 1, .opc1 = 0, .crn = 7, .crm = 14, .opc2 = 2, 3246 .access = PL1_W, .type = ARM_CP_NOP }, 3247 /* TLBI operations */ 3248 { .name = "TLBI_VMALLE1IS", .state = ARM_CP_STATE_AA64, 3249 .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 3, .opc2 = 0, 3250 .access = PL1_W, .type = ARM_CP_NO_RAW, 3251 .writefn = tlbi_aa64_vmalle1is_write }, 3252 { .name = "TLBI_VAE1IS", .state = ARM_CP_STATE_AA64, 3253 .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 3, .opc2 = 1, 3254 .access = PL1_W, .type = ARM_CP_NO_RAW, 3255 .writefn = tlbi_aa64_vae1is_write }, 3256 { .name = "TLBI_ASIDE1IS", .state = ARM_CP_STATE_AA64, 3257 .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 3, .opc2 = 2, 3258 .access = PL1_W, .type = ARM_CP_NO_RAW, 3259 .writefn = tlbi_aa64_vmalle1is_write }, 3260 { .name = "TLBI_VAAE1IS", .state = ARM_CP_STATE_AA64, 3261 .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 3, .opc2 = 3, 3262 .access = PL1_W, .type = ARM_CP_NO_RAW, 3263 .writefn = tlbi_aa64_vae1is_write }, 3264 { .name = "TLBI_VALE1IS", .state = ARM_CP_STATE_AA64, 3265 .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 3, .opc2 = 5, 3266 .access = PL1_W, .type = ARM_CP_NO_RAW, 3267 .writefn = tlbi_aa64_vae1is_write }, 3268 { .name = "TLBI_VAALE1IS", .state = ARM_CP_STATE_AA64, 3269 .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 3, .opc2 = 7, 3270 .access = PL1_W, .type = ARM_CP_NO_RAW, 3271 .writefn = tlbi_aa64_vae1is_write }, 3272 { .name = "TLBI_VMALLE1", .state = ARM_CP_STATE_AA64, 3273 .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 7, .opc2 = 0, 3274 .access = PL1_W, .type = ARM_CP_NO_RAW, 3275 .writefn = tlbi_aa64_vmalle1_write }, 3276 { .name = "TLBI_VAE1", .state = ARM_CP_STATE_AA64, 3277 .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 7, .opc2 = 1, 3278 .access = PL1_W, .type = ARM_CP_NO_RAW, 3279 .writefn = tlbi_aa64_vae1_write }, 3280 { .name = "TLBI_ASIDE1", .state = ARM_CP_STATE_AA64, 3281 .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 7, .opc2 = 2, 3282 .access = PL1_W, .type = ARM_CP_NO_RAW, 3283 .writefn = tlbi_aa64_vmalle1_write }, 3284 { .name = "TLBI_VAAE1", .state = ARM_CP_STATE_AA64, 3285 .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 7, .opc2 = 3, 3286 .access = PL1_W, .type = ARM_CP_NO_RAW, 3287 .writefn = tlbi_aa64_vae1_write }, 3288 { .name = "TLBI_VALE1", .state = ARM_CP_STATE_AA64, 3289 .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 7, .opc2 = 5, 3290 .access = PL1_W, .type = ARM_CP_NO_RAW, 3291 .writefn = tlbi_aa64_vae1_write }, 3292 { .name = "TLBI_VAALE1", .state = ARM_CP_STATE_AA64, 3293 .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 7, .opc2 = 7, 3294 .access = PL1_W, .type = ARM_CP_NO_RAW, 3295 .writefn = tlbi_aa64_vae1_write }, 3296 { .name = "TLBI_IPAS2E1IS", .state = ARM_CP_STATE_AA64, 3297 .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 0, .opc2 = 1, 3298 .access = PL2_W, .type = ARM_CP_NO_RAW, 3299 .writefn = tlbi_aa64_ipas2e1is_write }, 3300 { .name = "TLBI_IPAS2LE1IS", .state = ARM_CP_STATE_AA64, 3301 .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 0, .opc2 = 5, 3302 .access = PL2_W, .type = ARM_CP_NO_RAW, 3303 .writefn = tlbi_aa64_ipas2e1is_write }, 3304 { .name = "TLBI_ALLE1IS", .state = ARM_CP_STATE_AA64, 3305 .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 3, .opc2 = 4, 3306 .access = PL2_W, .type = ARM_CP_NO_RAW, 3307 .writefn = tlbi_aa64_alle1is_write }, 3308 { .name = "TLBI_VMALLS12E1IS", .state = ARM_CP_STATE_AA64, 3309 .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 3, .opc2 = 6, 3310 .access = PL2_W, .type = ARM_CP_NO_RAW, 3311 .writefn = tlbi_aa64_alle1is_write }, 3312 { .name = "TLBI_IPAS2E1", .state = ARM_CP_STATE_AA64, 3313 .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 4, .opc2 = 1, 3314 .access = PL2_W, .type = ARM_CP_NO_RAW, 3315 .writefn = tlbi_aa64_ipas2e1_write }, 3316 { .name = "TLBI_IPAS2LE1", .state = ARM_CP_STATE_AA64, 3317 .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 4, .opc2 = 5, 3318 .access = PL2_W, .type = ARM_CP_NO_RAW, 3319 .writefn = tlbi_aa64_ipas2e1_write }, 3320 { .name = "TLBI_ALLE1", .state = ARM_CP_STATE_AA64, 3321 .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 7, .opc2 = 4, 3322 .access = PL2_W, .type = ARM_CP_NO_RAW, 3323 .writefn = tlbi_aa64_alle1_write }, 3324 { .name = "TLBI_VMALLS12E1", .state = ARM_CP_STATE_AA64, 3325 .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 7, .opc2 = 6, 3326 .access = PL2_W, .type = ARM_CP_NO_RAW, 3327 .writefn = tlbi_aa64_alle1is_write }, 3328 #ifndef CONFIG_USER_ONLY 3329 /* 64 bit address translation operations */ 3330 { .name = "AT_S1E1R", .state = ARM_CP_STATE_AA64, 3331 .opc0 = 1, .opc1 = 0, .crn = 7, .crm = 8, .opc2 = 0, 3332 .access = PL1_W, .type = ARM_CP_NO_RAW, .writefn = ats_write64 }, 3333 { .name = "AT_S1E1W", .state = ARM_CP_STATE_AA64, 3334 .opc0 = 1, .opc1 = 0, .crn = 7, .crm = 8, .opc2 = 1, 3335 .access = PL1_W, .type = ARM_CP_NO_RAW, .writefn = ats_write64 }, 3336 { .name = "AT_S1E0R", .state = ARM_CP_STATE_AA64, 3337 .opc0 = 1, .opc1 = 0, .crn = 7, .crm = 8, .opc2 = 2, 3338 .access = PL1_W, .type = ARM_CP_NO_RAW, .writefn = ats_write64 }, 3339 { .name = "AT_S1E0W", .state = ARM_CP_STATE_AA64, 3340 .opc0 = 1, .opc1 = 0, .crn = 7, .crm = 8, .opc2 = 3, 3341 .access = PL1_W, .type = ARM_CP_NO_RAW, .writefn = ats_write64 }, 3342 { .name = "AT_S12E1R", .state = ARM_CP_STATE_AA64, 3343 .opc0 = 1, .opc1 = 4, .crn = 7, .crm = 8, .opc2 = 4, 3344 .access = PL2_W, .type = ARM_CP_NO_RAW, .writefn = ats_write64 }, 3345 { .name = "AT_S12E1W", .state = ARM_CP_STATE_AA64, 3346 .opc0 = 1, .opc1 = 4, .crn = 7, .crm = 8, .opc2 = 5, 3347 .access = PL2_W, .type = ARM_CP_NO_RAW, .writefn = ats_write64 }, 3348 { .name = "AT_S12E0R", .state = ARM_CP_STATE_AA64, 3349 .opc0 = 1, .opc1 = 4, .crn = 7, .crm = 8, .opc2 = 6, 3350 .access = PL2_W, .type = ARM_CP_NO_RAW, .writefn = ats_write64 }, 3351 { .name = "AT_S12E0W", .state = ARM_CP_STATE_AA64, 3352 .opc0 = 1, .opc1 = 4, .crn = 7, .crm = 8, .opc2 = 7, 3353 .access = PL2_W, .type = ARM_CP_NO_RAW, .writefn = ats_write64 }, 3354 /* AT S1E2* are elsewhere as they UNDEF from EL3 if EL2 is not present */ 3355 { .name = "AT_S1E3R", .state = ARM_CP_STATE_AA64, 3356 .opc0 = 1, .opc1 = 6, .crn = 7, .crm = 8, .opc2 = 0, 3357 .access = PL3_W, .type = ARM_CP_NO_RAW, .writefn = ats_write64 }, 3358 { .name = "AT_S1E3W", .state = ARM_CP_STATE_AA64, 3359 .opc0 = 1, .opc1 = 6, .crn = 7, .crm = 8, .opc2 = 1, 3360 .access = PL3_W, .type = ARM_CP_NO_RAW, .writefn = ats_write64 }, 3361 { .name = "PAR_EL1", .state = ARM_CP_STATE_AA64, 3362 .type = ARM_CP_ALIAS, 3363 .opc0 = 3, .opc1 = 0, .crn = 7, .crm = 4, .opc2 = 0, 3364 .access = PL1_RW, .resetvalue = 0, 3365 .fieldoffset = offsetof(CPUARMState, cp15.par_el[1]), 3366 .writefn = par_write }, 3367 #endif 3368 /* TLB invalidate last level of translation table walk */ 3369 { .name = "TLBIMVALIS", .cp = 15, .opc1 = 0, .crn = 8, .crm = 3, .opc2 = 5, 3370 .type = ARM_CP_NO_RAW, .access = PL1_W, .writefn = tlbimva_is_write }, 3371 { .name = "TLBIMVAALIS", .cp = 15, .opc1 = 0, .crn = 8, .crm = 3, .opc2 = 7, 3372 .type = ARM_CP_NO_RAW, .access = PL1_W, 3373 .writefn = tlbimvaa_is_write }, 3374 { .name = "TLBIMVAL", .cp = 15, .opc1 = 0, .crn = 8, .crm = 7, .opc2 = 5, 3375 .type = ARM_CP_NO_RAW, .access = PL1_W, .writefn = tlbimva_write }, 3376 { .name = "TLBIMVAAL", .cp = 15, .opc1 = 0, .crn = 8, .crm = 7, .opc2 = 7, 3377 .type = ARM_CP_NO_RAW, .access = PL1_W, .writefn = tlbimvaa_write }, 3378 { .name = "TLBIMVALH", .cp = 15, .opc1 = 4, .crn = 8, .crm = 7, .opc2 = 5, 3379 .type = ARM_CP_NO_RAW, .access = PL2_W, 3380 .writefn = tlbimva_hyp_write }, 3381 { .name = "TLBIMVALHIS", 3382 .cp = 15, .opc1 = 4, .crn = 8, .crm = 3, .opc2 = 5, 3383 .type = ARM_CP_NO_RAW, .access = PL2_W, 3384 .writefn = tlbimva_hyp_is_write }, 3385 { .name = "TLBIIPAS2", 3386 .cp = 15, .opc1 = 4, .crn = 8, .crm = 4, .opc2 = 1, 3387 .type = ARM_CP_NO_RAW, .access = PL2_W, 3388 .writefn = tlbiipas2_write }, 3389 { .name = "TLBIIPAS2IS", 3390 .cp = 15, .opc1 = 4, .crn = 8, .crm = 0, .opc2 = 1, 3391 .type = ARM_CP_NO_RAW, .access = PL2_W, 3392 .writefn = tlbiipas2_is_write }, 3393 { .name = "TLBIIPAS2L", 3394 .cp = 15, .opc1 = 4, .crn = 8, .crm = 4, .opc2 = 5, 3395 .type = ARM_CP_NO_RAW, .access = PL2_W, 3396 .writefn = tlbiipas2_write }, 3397 { .name = "TLBIIPAS2LIS", 3398 .cp = 15, .opc1 = 4, .crn = 8, .crm = 0, .opc2 = 5, 3399 .type = ARM_CP_NO_RAW, .access = PL2_W, 3400 .writefn = tlbiipas2_is_write }, 3401 /* 32 bit cache operations */ 3402 { .name = "ICIALLUIS", .cp = 15, .opc1 = 0, .crn = 7, .crm = 1, .opc2 = 0, 3403 .type = ARM_CP_NOP, .access = PL1_W }, 3404 { .name = "BPIALLUIS", .cp = 15, .opc1 = 0, .crn = 7, .crm = 1, .opc2 = 6, 3405 .type = ARM_CP_NOP, .access = PL1_W }, 3406 { .name = "ICIALLU", .cp = 15, .opc1 = 0, .crn = 7, .crm = 5, .opc2 = 0, 3407 .type = ARM_CP_NOP, .access = PL1_W }, 3408 { .name = "ICIMVAU", .cp = 15, .opc1 = 0, .crn = 7, .crm = 5, .opc2 = 1, 3409 .type = ARM_CP_NOP, .access = PL1_W }, 3410 { .name = "BPIALL", .cp = 15, .opc1 = 0, .crn = 7, .crm = 5, .opc2 = 6, 3411 .type = ARM_CP_NOP, .access = PL1_W }, 3412 { .name = "BPIMVA", .cp = 15, .opc1 = 0, .crn = 7, .crm = 5, .opc2 = 7, 3413 .type = ARM_CP_NOP, .access = PL1_W }, 3414 { .name = "DCIMVAC", .cp = 15, .opc1 = 0, .crn = 7, .crm = 6, .opc2 = 1, 3415 .type = ARM_CP_NOP, .access = PL1_W }, 3416 { .name = "DCISW", .cp = 15, .opc1 = 0, .crn = 7, .crm = 6, .opc2 = 2, 3417 .type = ARM_CP_NOP, .access = PL1_W }, 3418 { .name = "DCCMVAC", .cp = 15, .opc1 = 0, .crn = 7, .crm = 10, .opc2 = 1, 3419 .type = ARM_CP_NOP, .access = PL1_W }, 3420 { .name = "DCCSW", .cp = 15, .opc1 = 0, .crn = 7, .crm = 10, .opc2 = 2, 3421 .type = ARM_CP_NOP, .access = PL1_W }, 3422 { .name = "DCCMVAU", .cp = 15, .opc1 = 0, .crn = 7, .crm = 11, .opc2 = 1, 3423 .type = ARM_CP_NOP, .access = PL1_W }, 3424 { .name = "DCCIMVAC", .cp = 15, .opc1 = 0, .crn = 7, .crm = 14, .opc2 = 1, 3425 .type = ARM_CP_NOP, .access = PL1_W }, 3426 { .name = "DCCISW", .cp = 15, .opc1 = 0, .crn = 7, .crm = 14, .opc2 = 2, 3427 .type = ARM_CP_NOP, .access = PL1_W }, 3428 /* MMU Domain access control / MPU write buffer control */ 3429 { .name = "DACR", .cp = 15, .opc1 = 0, .crn = 3, .crm = 0, .opc2 = 0, 3430 .access = PL1_RW, .resetvalue = 0, 3431 .writefn = dacr_write, .raw_writefn = raw_write, 3432 .bank_fieldoffsets = { offsetoflow32(CPUARMState, cp15.dacr_s), 3433 offsetoflow32(CPUARMState, cp15.dacr_ns) } }, 3434 { .name = "ELR_EL1", .state = ARM_CP_STATE_AA64, 3435 .type = ARM_CP_ALIAS, 3436 .opc0 = 3, .opc1 = 0, .crn = 4, .crm = 0, .opc2 = 1, 3437 .access = PL1_RW, 3438 .fieldoffset = offsetof(CPUARMState, elr_el[1]) }, 3439 { .name = "SPSR_EL1", .state = ARM_CP_STATE_AA64, 3440 .type = ARM_CP_ALIAS, 3441 .opc0 = 3, .opc1 = 0, .crn = 4, .crm = 0, .opc2 = 0, 3442 .access = PL1_RW, 3443 .fieldoffset = offsetof(CPUARMState, banked_spsr[BANK_SVC]) }, 3444 /* We rely on the access checks not allowing the guest to write to the 3445 * state field when SPSel indicates that it's being used as the stack 3446 * pointer. 3447 */ 3448 { .name = "SP_EL0", .state = ARM_CP_STATE_AA64, 3449 .opc0 = 3, .opc1 = 0, .crn = 4, .crm = 1, .opc2 = 0, 3450 .access = PL1_RW, .accessfn = sp_el0_access, 3451 .type = ARM_CP_ALIAS, 3452 .fieldoffset = offsetof(CPUARMState, sp_el[0]) }, 3453 { .name = "SP_EL1", .state = ARM_CP_STATE_AA64, 3454 .opc0 = 3, .opc1 = 4, .crn = 4, .crm = 1, .opc2 = 0, 3455 .access = PL2_RW, .type = ARM_CP_ALIAS, 3456 .fieldoffset = offsetof(CPUARMState, sp_el[1]) }, 3457 { .name = "SPSel", .state = ARM_CP_STATE_AA64, 3458 .opc0 = 3, .opc1 = 0, .crn = 4, .crm = 2, .opc2 = 0, 3459 .type = ARM_CP_NO_RAW, 3460 .access = PL1_RW, .readfn = spsel_read, .writefn = spsel_write }, 3461 { .name = "FPEXC32_EL2", .state = ARM_CP_STATE_AA64, 3462 .opc0 = 3, .opc1 = 4, .crn = 5, .crm = 3, .opc2 = 0, 3463 .type = ARM_CP_ALIAS, 3464 .fieldoffset = offsetof(CPUARMState, vfp.xregs[ARM_VFP_FPEXC]), 3465 .access = PL2_RW, .accessfn = fpexc32_access }, 3466 { .name = "DACR32_EL2", .state = ARM_CP_STATE_AA64, 3467 .opc0 = 3, .opc1 = 4, .crn = 3, .crm = 0, .opc2 = 0, 3468 .access = PL2_RW, .resetvalue = 0, 3469 .writefn = dacr_write, .raw_writefn = raw_write, 3470 .fieldoffset = offsetof(CPUARMState, cp15.dacr32_el2) }, 3471 { .name = "IFSR32_EL2", .state = ARM_CP_STATE_AA64, 3472 .opc0 = 3, .opc1 = 4, .crn = 5, .crm = 0, .opc2 = 1, 3473 .access = PL2_RW, .resetvalue = 0, 3474 .fieldoffset = offsetof(CPUARMState, cp15.ifsr32_el2) }, 3475 { .name = "SPSR_IRQ", .state = ARM_CP_STATE_AA64, 3476 .type = ARM_CP_ALIAS, 3477 .opc0 = 3, .opc1 = 4, .crn = 4, .crm = 3, .opc2 = 0, 3478 .access = PL2_RW, 3479 .fieldoffset = offsetof(CPUARMState, banked_spsr[BANK_IRQ]) }, 3480 { .name = "SPSR_ABT", .state = ARM_CP_STATE_AA64, 3481 .type = ARM_CP_ALIAS, 3482 .opc0 = 3, .opc1 = 4, .crn = 4, .crm = 3, .opc2 = 1, 3483 .access = PL2_RW, 3484 .fieldoffset = offsetof(CPUARMState, banked_spsr[BANK_ABT]) }, 3485 { .name = "SPSR_UND", .state = ARM_CP_STATE_AA64, 3486 .type = ARM_CP_ALIAS, 3487 .opc0 = 3, .opc1 = 4, .crn = 4, .crm = 3, .opc2 = 2, 3488 .access = PL2_RW, 3489 .fieldoffset = offsetof(CPUARMState, banked_spsr[BANK_UND]) }, 3490 { .name = "SPSR_FIQ", .state = ARM_CP_STATE_AA64, 3491 .type = ARM_CP_ALIAS, 3492 .opc0 = 3, .opc1 = 4, .crn = 4, .crm = 3, .opc2 = 3, 3493 .access = PL2_RW, 3494 .fieldoffset = offsetof(CPUARMState, banked_spsr[BANK_FIQ]) }, 3495 { .name = "MDCR_EL3", .state = ARM_CP_STATE_AA64, 3496 .opc0 = 3, .opc1 = 6, .crn = 1, .crm = 3, .opc2 = 1, 3497 .resetvalue = 0, 3498 .access = PL3_RW, .fieldoffset = offsetof(CPUARMState, cp15.mdcr_el3) }, 3499 { .name = "SDCR", .type = ARM_CP_ALIAS, 3500 .cp = 15, .opc1 = 0, .crn = 1, .crm = 3, .opc2 = 1, 3501 .access = PL1_RW, .accessfn = access_trap_aa32s_el1, 3502 .writefn = sdcr_write, 3503 .fieldoffset = offsetoflow32(CPUARMState, cp15.mdcr_el3) }, 3504 REGINFO_SENTINEL 3505 }; 3506 3507 /* Used to describe the behaviour of EL2 regs when EL2 does not exist. */ 3508 static const ARMCPRegInfo el3_no_el2_cp_reginfo[] = { 3509 { .name = "VBAR_EL2", .state = ARM_CP_STATE_AA64, 3510 .opc0 = 3, .opc1 = 4, .crn = 12, .crm = 0, .opc2 = 0, 3511 .access = PL2_RW, 3512 .readfn = arm_cp_read_zero, .writefn = arm_cp_write_ignore }, 3513 { .name = "HCR_EL2", .state = ARM_CP_STATE_AA64, 3514 .type = ARM_CP_NO_RAW, 3515 .opc0 = 3, .opc1 = 4, .crn = 1, .crm = 1, .opc2 = 0, 3516 .access = PL2_RW, 3517 .readfn = arm_cp_read_zero, .writefn = arm_cp_write_ignore }, 3518 { .name = "CPTR_EL2", .state = ARM_CP_STATE_BOTH, 3519 .opc0 = 3, .opc1 = 4, .crn = 1, .crm = 1, .opc2 = 2, 3520 .access = PL2_RW, .type = ARM_CP_CONST, .resetvalue = 0 }, 3521 { .name = "MAIR_EL2", .state = ARM_CP_STATE_BOTH, 3522 .opc0 = 3, .opc1 = 4, .crn = 10, .crm = 2, .opc2 = 0, 3523 .access = PL2_RW, .type = ARM_CP_CONST, 3524 .resetvalue = 0 }, 3525 { .name = "HMAIR1", .state = ARM_CP_STATE_AA32, 3526 .opc1 = 4, .crn = 10, .crm = 2, .opc2 = 1, 3527 .access = PL2_RW, .type = ARM_CP_CONST, .resetvalue = 0 }, 3528 { .name = "AMAIR_EL2", .state = ARM_CP_STATE_BOTH, 3529 .opc0 = 3, .opc1 = 4, .crn = 10, .crm = 3, .opc2 = 0, 3530 .access = PL2_RW, .type = ARM_CP_CONST, 3531 .resetvalue = 0 }, 3532 { .name = "HMAIR1", .state = ARM_CP_STATE_AA32, 3533 .opc1 = 4, .crn = 10, .crm = 3, .opc2 = 1, 3534 .access = PL2_RW, .type = ARM_CP_CONST, 3535 .resetvalue = 0 }, 3536 { .name = "AFSR0_EL2", .state = ARM_CP_STATE_BOTH, 3537 .opc0 = 3, .opc1 = 4, .crn = 5, .crm = 1, .opc2 = 0, 3538 .access = PL2_RW, .type = ARM_CP_CONST, 3539 .resetvalue = 0 }, 3540 { .name = "AFSR1_EL2", .state = ARM_CP_STATE_BOTH, 3541 .opc0 = 3, .opc1 = 4, .crn = 5, .crm = 1, .opc2 = 1, 3542 .access = PL2_RW, .type = ARM_CP_CONST, 3543 .resetvalue = 0 }, 3544 { .name = "TCR_EL2", .state = ARM_CP_STATE_BOTH, 3545 .opc0 = 3, .opc1 = 4, .crn = 2, .crm = 0, .opc2 = 2, 3546 .access = PL2_RW, .type = ARM_CP_CONST, .resetvalue = 0 }, 3547 { .name = "VTCR_EL2", .state = ARM_CP_STATE_BOTH, 3548 .opc0 = 3, .opc1 = 4, .crn = 2, .crm = 1, .opc2 = 2, 3549 .access = PL2_RW, .accessfn = access_el3_aa32ns_aa64any, 3550 .type = ARM_CP_CONST, .resetvalue = 0 }, 3551 { .name = "VTTBR", .state = ARM_CP_STATE_AA32, 3552 .cp = 15, .opc1 = 6, .crm = 2, 3553 .access = PL2_RW, .accessfn = access_el3_aa32ns, 3554 .type = ARM_CP_CONST | ARM_CP_64BIT, .resetvalue = 0 }, 3555 { .name = "VTTBR_EL2", .state = ARM_CP_STATE_AA64, 3556 .opc0 = 3, .opc1 = 4, .crn = 2, .crm = 1, .opc2 = 0, 3557 .access = PL2_RW, .type = ARM_CP_CONST, .resetvalue = 0 }, 3558 { .name = "SCTLR_EL2", .state = ARM_CP_STATE_BOTH, 3559 .opc0 = 3, .opc1 = 4, .crn = 1, .crm = 0, .opc2 = 0, 3560 .access = PL2_RW, .type = ARM_CP_CONST, .resetvalue = 0 }, 3561 { .name = "TPIDR_EL2", .state = ARM_CP_STATE_BOTH, 3562 .opc0 = 3, .opc1 = 4, .crn = 13, .crm = 0, .opc2 = 2, 3563 .access = PL2_RW, .type = ARM_CP_CONST, .resetvalue = 0 }, 3564 { .name = "TTBR0_EL2", .state = ARM_CP_STATE_AA64, 3565 .opc0 = 3, .opc1 = 4, .crn = 2, .crm = 0, .opc2 = 0, 3566 .access = PL2_RW, .type = ARM_CP_CONST, .resetvalue = 0 }, 3567 { .name = "HTTBR", .cp = 15, .opc1 = 4, .crm = 2, 3568 .access = PL2_RW, .type = ARM_CP_64BIT | ARM_CP_CONST, 3569 .resetvalue = 0 }, 3570 { .name = "CNTHCTL_EL2", .state = ARM_CP_STATE_BOTH, 3571 .opc0 = 3, .opc1 = 4, .crn = 14, .crm = 1, .opc2 = 0, 3572 .access = PL2_RW, .type = ARM_CP_CONST, .resetvalue = 0 }, 3573 { .name = "CNTVOFF_EL2", .state = ARM_CP_STATE_AA64, 3574 .opc0 = 3, .opc1 = 4, .crn = 14, .crm = 0, .opc2 = 3, 3575 .access = PL2_RW, .type = ARM_CP_CONST, .resetvalue = 0 }, 3576 { .name = "CNTVOFF", .cp = 15, .opc1 = 4, .crm = 14, 3577 .access = PL2_RW, .type = ARM_CP_64BIT | ARM_CP_CONST, 3578 .resetvalue = 0 }, 3579 { .name = "CNTHP_CVAL_EL2", .state = ARM_CP_STATE_AA64, 3580 .opc0 = 3, .opc1 = 4, .crn = 14, .crm = 2, .opc2 = 2, 3581 .access = PL2_RW, .type = ARM_CP_CONST, .resetvalue = 0 }, 3582 { .name = "CNTHP_CVAL", .cp = 15, .opc1 = 6, .crm = 14, 3583 .access = PL2_RW, .type = ARM_CP_64BIT | ARM_CP_CONST, 3584 .resetvalue = 0 }, 3585 { .name = "CNTHP_TVAL_EL2", .state = ARM_CP_STATE_BOTH, 3586 .opc0 = 3, .opc1 = 4, .crn = 14, .crm = 2, .opc2 = 0, 3587 .access = PL2_RW, .type = ARM_CP_CONST, .resetvalue = 0 }, 3588 { .name = "CNTHP_CTL_EL2", .state = ARM_CP_STATE_BOTH, 3589 .opc0 = 3, .opc1 = 4, .crn = 14, .crm = 2, .opc2 = 1, 3590 .access = PL2_RW, .type = ARM_CP_CONST, .resetvalue = 0 }, 3591 { .name = "MDCR_EL2", .state = ARM_CP_STATE_BOTH, 3592 .opc0 = 3, .opc1 = 4, .crn = 1, .crm = 1, .opc2 = 1, 3593 .access = PL2_RW, .accessfn = access_tda, 3594 .type = ARM_CP_CONST, .resetvalue = 0 }, 3595 { .name = "HPFAR_EL2", .state = ARM_CP_STATE_BOTH, 3596 .opc0 = 3, .opc1 = 4, .crn = 6, .crm = 0, .opc2 = 4, 3597 .access = PL2_RW, .accessfn = access_el3_aa32ns_aa64any, 3598 .type = ARM_CP_CONST, .resetvalue = 0 }, 3599 { .name = "HSTR_EL2", .state = ARM_CP_STATE_BOTH, 3600 .opc0 = 3, .opc1 = 4, .crn = 1, .crm = 1, .opc2 = 3, 3601 .access = PL2_RW, .type = ARM_CP_CONST, .resetvalue = 0 }, 3602 REGINFO_SENTINEL 3603 }; 3604 3605 static void hcr_write(CPUARMState *env, const ARMCPRegInfo *ri, uint64_t value) 3606 { 3607 ARMCPU *cpu = arm_env_get_cpu(env); 3608 uint64_t valid_mask = HCR_MASK; 3609 3610 if (arm_feature(env, ARM_FEATURE_EL3)) { 3611 valid_mask &= ~HCR_HCD; 3612 } else { 3613 valid_mask &= ~HCR_TSC; 3614 } 3615 3616 /* Clear RES0 bits. */ 3617 value &= valid_mask; 3618 3619 /* These bits change the MMU setup: 3620 * HCR_VM enables stage 2 translation 3621 * HCR_PTW forbids certain page-table setups 3622 * HCR_DC Disables stage1 and enables stage2 translation 3623 */ 3624 if ((raw_read(env, ri) ^ value) & (HCR_VM | HCR_PTW | HCR_DC)) { 3625 tlb_flush(CPU(cpu)); 3626 } 3627 raw_write(env, ri, value); 3628 } 3629 3630 static const ARMCPRegInfo el2_cp_reginfo[] = { 3631 { .name = "HCR_EL2", .state = ARM_CP_STATE_AA64, 3632 .opc0 = 3, .opc1 = 4, .crn = 1, .crm = 1, .opc2 = 0, 3633 .access = PL2_RW, .fieldoffset = offsetof(CPUARMState, cp15.hcr_el2), 3634 .writefn = hcr_write }, 3635 { .name = "ELR_EL2", .state = ARM_CP_STATE_AA64, 3636 .type = ARM_CP_ALIAS, 3637 .opc0 = 3, .opc1 = 4, .crn = 4, .crm = 0, .opc2 = 1, 3638 .access = PL2_RW, 3639 .fieldoffset = offsetof(CPUARMState, elr_el[2]) }, 3640 { .name = "ESR_EL2", .state = ARM_CP_STATE_AA64, 3641 .opc0 = 3, .opc1 = 4, .crn = 5, .crm = 2, .opc2 = 0, 3642 .access = PL2_RW, .fieldoffset = offsetof(CPUARMState, cp15.esr_el[2]) }, 3643 { .name = "FAR_EL2", .state = ARM_CP_STATE_AA64, 3644 .opc0 = 3, .opc1 = 4, .crn = 6, .crm = 0, .opc2 = 0, 3645 .access = PL2_RW, .fieldoffset = offsetof(CPUARMState, cp15.far_el[2]) }, 3646 { .name = "SPSR_EL2", .state = ARM_CP_STATE_AA64, 3647 .type = ARM_CP_ALIAS, 3648 .opc0 = 3, .opc1 = 4, .crn = 4, .crm = 0, .opc2 = 0, 3649 .access = PL2_RW, 3650 .fieldoffset = offsetof(CPUARMState, banked_spsr[BANK_HYP]) }, 3651 { .name = "VBAR_EL2", .state = ARM_CP_STATE_AA64, 3652 .opc0 = 3, .opc1 = 4, .crn = 12, .crm = 0, .opc2 = 0, 3653 .access = PL2_RW, .writefn = vbar_write, 3654 .fieldoffset = offsetof(CPUARMState, cp15.vbar_el[2]), 3655 .resetvalue = 0 }, 3656 { .name = "SP_EL2", .state = ARM_CP_STATE_AA64, 3657 .opc0 = 3, .opc1 = 6, .crn = 4, .crm = 1, .opc2 = 0, 3658 .access = PL3_RW, .type = ARM_CP_ALIAS, 3659 .fieldoffset = offsetof(CPUARMState, sp_el[2]) }, 3660 { .name = "CPTR_EL2", .state = ARM_CP_STATE_BOTH, 3661 .opc0 = 3, .opc1 = 4, .crn = 1, .crm = 1, .opc2 = 2, 3662 .access = PL2_RW, .accessfn = cptr_access, .resetvalue = 0, 3663 .fieldoffset = offsetof(CPUARMState, cp15.cptr_el[2]) }, 3664 { .name = "MAIR_EL2", .state = ARM_CP_STATE_BOTH, 3665 .opc0 = 3, .opc1 = 4, .crn = 10, .crm = 2, .opc2 = 0, 3666 .access = PL2_RW, .fieldoffset = offsetof(CPUARMState, cp15.mair_el[2]), 3667 .resetvalue = 0 }, 3668 { .name = "HMAIR1", .state = ARM_CP_STATE_AA32, 3669 .opc1 = 4, .crn = 10, .crm = 2, .opc2 = 1, 3670 .access = PL2_RW, .type = ARM_CP_ALIAS, 3671 .fieldoffset = offsetofhigh32(CPUARMState, cp15.mair_el[2]) }, 3672 { .name = "AMAIR_EL2", .state = ARM_CP_STATE_BOTH, 3673 .opc0 = 3, .opc1 = 4, .crn = 10, .crm = 3, .opc2 = 0, 3674 .access = PL2_RW, .type = ARM_CP_CONST, 3675 .resetvalue = 0 }, 3676 /* HAMAIR1 is mapped to AMAIR_EL2[63:32] */ 3677 { .name = "HMAIR1", .state = ARM_CP_STATE_AA32, 3678 .opc1 = 4, .crn = 10, .crm = 3, .opc2 = 1, 3679 .access = PL2_RW, .type = ARM_CP_CONST, 3680 .resetvalue = 0 }, 3681 { .name = "AFSR0_EL2", .state = ARM_CP_STATE_BOTH, 3682 .opc0 = 3, .opc1 = 4, .crn = 5, .crm = 1, .opc2 = 0, 3683 .access = PL2_RW, .type = ARM_CP_CONST, 3684 .resetvalue = 0 }, 3685 { .name = "AFSR1_EL2", .state = ARM_CP_STATE_BOTH, 3686 .opc0 = 3, .opc1 = 4, .crn = 5, .crm = 1, .opc2 = 1, 3687 .access = PL2_RW, .type = ARM_CP_CONST, 3688 .resetvalue = 0 }, 3689 { .name = "TCR_EL2", .state = ARM_CP_STATE_BOTH, 3690 .opc0 = 3, .opc1 = 4, .crn = 2, .crm = 0, .opc2 = 2, 3691 .access = PL2_RW, 3692 /* no .writefn needed as this can't cause an ASID change; 3693 * no .raw_writefn or .resetfn needed as we never use mask/base_mask 3694 */ 3695 .fieldoffset = offsetof(CPUARMState, cp15.tcr_el[2]) }, 3696 { .name = "VTCR", .state = ARM_CP_STATE_AA32, 3697 .cp = 15, .opc1 = 4, .crn = 2, .crm = 1, .opc2 = 2, 3698 .type = ARM_CP_ALIAS, 3699 .access = PL2_RW, .accessfn = access_el3_aa32ns, 3700 .fieldoffset = offsetof(CPUARMState, cp15.vtcr_el2) }, 3701 { .name = "VTCR_EL2", .state = ARM_CP_STATE_AA64, 3702 .opc0 = 3, .opc1 = 4, .crn = 2, .crm = 1, .opc2 = 2, 3703 .access = PL2_RW, 3704 /* no .writefn needed as this can't cause an ASID change; 3705 * no .raw_writefn or .resetfn needed as we never use mask/base_mask 3706 */ 3707 .fieldoffset = offsetof(CPUARMState, cp15.vtcr_el2) }, 3708 { .name = "VTTBR", .state = ARM_CP_STATE_AA32, 3709 .cp = 15, .opc1 = 6, .crm = 2, 3710 .type = ARM_CP_64BIT | ARM_CP_ALIAS, 3711 .access = PL2_RW, .accessfn = access_el3_aa32ns, 3712 .fieldoffset = offsetof(CPUARMState, cp15.vttbr_el2), 3713 .writefn = vttbr_write }, 3714 { .name = "VTTBR_EL2", .state = ARM_CP_STATE_AA64, 3715 .opc0 = 3, .opc1 = 4, .crn = 2, .crm = 1, .opc2 = 0, 3716 .access = PL2_RW, .writefn = vttbr_write, 3717 .fieldoffset = offsetof(CPUARMState, cp15.vttbr_el2) }, 3718 { .name = "SCTLR_EL2", .state = ARM_CP_STATE_BOTH, 3719 .opc0 = 3, .opc1 = 4, .crn = 1, .crm = 0, .opc2 = 0, 3720 .access = PL2_RW, .raw_writefn = raw_write, .writefn = sctlr_write, 3721 .fieldoffset = offsetof(CPUARMState, cp15.sctlr_el[2]) }, 3722 { .name = "TPIDR_EL2", .state = ARM_CP_STATE_BOTH, 3723 .opc0 = 3, .opc1 = 4, .crn = 13, .crm = 0, .opc2 = 2, 3724 .access = PL2_RW, .resetvalue = 0, 3725 .fieldoffset = offsetof(CPUARMState, cp15.tpidr_el[2]) }, 3726 { .name = "TTBR0_EL2", .state = ARM_CP_STATE_AA64, 3727 .opc0 = 3, .opc1 = 4, .crn = 2, .crm = 0, .opc2 = 0, 3728 .access = PL2_RW, .resetvalue = 0, 3729 .fieldoffset = offsetof(CPUARMState, cp15.ttbr0_el[2]) }, 3730 { .name = "HTTBR", .cp = 15, .opc1 = 4, .crm = 2, 3731 .access = PL2_RW, .type = ARM_CP_64BIT | ARM_CP_ALIAS, 3732 .fieldoffset = offsetof(CPUARMState, cp15.ttbr0_el[2]) }, 3733 { .name = "TLBIALLNSNH", 3734 .cp = 15, .opc1 = 4, .crn = 8, .crm = 7, .opc2 = 4, 3735 .type = ARM_CP_NO_RAW, .access = PL2_W, 3736 .writefn = tlbiall_nsnh_write }, 3737 { .name = "TLBIALLNSNHIS", 3738 .cp = 15, .opc1 = 4, .crn = 8, .crm = 3, .opc2 = 4, 3739 .type = ARM_CP_NO_RAW, .access = PL2_W, 3740 .writefn = tlbiall_nsnh_is_write }, 3741 { .name = "TLBIALLH", .cp = 15, .opc1 = 4, .crn = 8, .crm = 7, .opc2 = 0, 3742 .type = ARM_CP_NO_RAW, .access = PL2_W, 3743 .writefn = tlbiall_hyp_write }, 3744 { .name = "TLBIALLHIS", .cp = 15, .opc1 = 4, .crn = 8, .crm = 3, .opc2 = 0, 3745 .type = ARM_CP_NO_RAW, .access = PL2_W, 3746 .writefn = tlbiall_hyp_is_write }, 3747 { .name = "TLBIMVAH", .cp = 15, .opc1 = 4, .crn = 8, .crm = 7, .opc2 = 1, 3748 .type = ARM_CP_NO_RAW, .access = PL2_W, 3749 .writefn = tlbimva_hyp_write }, 3750 { .name = "TLBIMVAHIS", .cp = 15, .opc1 = 4, .crn = 8, .crm = 3, .opc2 = 1, 3751 .type = ARM_CP_NO_RAW, .access = PL2_W, 3752 .writefn = tlbimva_hyp_is_write }, 3753 { .name = "TLBI_ALLE2", .state = ARM_CP_STATE_AA64, 3754 .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 7, .opc2 = 0, 3755 .type = ARM_CP_NO_RAW, .access = PL2_W, 3756 .writefn = tlbi_aa64_alle2_write }, 3757 { .name = "TLBI_VAE2", .state = ARM_CP_STATE_AA64, 3758 .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 7, .opc2 = 1, 3759 .type = ARM_CP_NO_RAW, .access = PL2_W, 3760 .writefn = tlbi_aa64_vae2_write }, 3761 { .name = "TLBI_VALE2", .state = ARM_CP_STATE_AA64, 3762 .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 7, .opc2 = 5, 3763 .access = PL2_W, .type = ARM_CP_NO_RAW, 3764 .writefn = tlbi_aa64_vae2_write }, 3765 { .name = "TLBI_ALLE2IS", .state = ARM_CP_STATE_AA64, 3766 .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 3, .opc2 = 0, 3767 .access = PL2_W, .type = ARM_CP_NO_RAW, 3768 .writefn = tlbi_aa64_alle2is_write }, 3769 { .name = "TLBI_VAE2IS", .state = ARM_CP_STATE_AA64, 3770 .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 3, .opc2 = 1, 3771 .type = ARM_CP_NO_RAW, .access = PL2_W, 3772 .writefn = tlbi_aa64_vae2is_write }, 3773 { .name = "TLBI_VALE2IS", .state = ARM_CP_STATE_AA64, 3774 .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 3, .opc2 = 5, 3775 .access = PL2_W, .type = ARM_CP_NO_RAW, 3776 .writefn = tlbi_aa64_vae2is_write }, 3777 #ifndef CONFIG_USER_ONLY 3778 /* Unlike the other EL2-related AT operations, these must 3779 * UNDEF from EL3 if EL2 is not implemented, which is why we 3780 * define them here rather than with the rest of the AT ops. 3781 */ 3782 { .name = "AT_S1E2R", .state = ARM_CP_STATE_AA64, 3783 .opc0 = 1, .opc1 = 4, .crn = 7, .crm = 8, .opc2 = 0, 3784 .access = PL2_W, .accessfn = at_s1e2_access, 3785 .type = ARM_CP_NO_RAW, .writefn = ats_write64 }, 3786 { .name = "AT_S1E2W", .state = ARM_CP_STATE_AA64, 3787 .opc0 = 1, .opc1 = 4, .crn = 7, .crm = 8, .opc2 = 1, 3788 .access = PL2_W, .accessfn = at_s1e2_access, 3789 .type = ARM_CP_NO_RAW, .writefn = ats_write64 }, 3790 /* The AArch32 ATS1H* operations are CONSTRAINED UNPREDICTABLE 3791 * if EL2 is not implemented; we choose to UNDEF. Behaviour at EL3 3792 * with SCR.NS == 0 outside Monitor mode is UNPREDICTABLE; we choose 3793 * to behave as if SCR.NS was 1. 3794 */ 3795 { .name = "ATS1HR", .cp = 15, .opc1 = 4, .crn = 7, .crm = 8, .opc2 = 0, 3796 .access = PL2_W, 3797 .writefn = ats1h_write, .type = ARM_CP_NO_RAW }, 3798 { .name = "ATS1HW", .cp = 15, .opc1 = 4, .crn = 7, .crm = 8, .opc2 = 1, 3799 .access = PL2_W, 3800 .writefn = ats1h_write, .type = ARM_CP_NO_RAW }, 3801 { .name = "CNTHCTL_EL2", .state = ARM_CP_STATE_BOTH, 3802 .opc0 = 3, .opc1 = 4, .crn = 14, .crm = 1, .opc2 = 0, 3803 /* ARMv7 requires bit 0 and 1 to reset to 1. ARMv8 defines the 3804 * reset values as IMPDEF. We choose to reset to 3 to comply with 3805 * both ARMv7 and ARMv8. 3806 */ 3807 .access = PL2_RW, .resetvalue = 3, 3808 .fieldoffset = offsetof(CPUARMState, cp15.cnthctl_el2) }, 3809 { .name = "CNTVOFF_EL2", .state = ARM_CP_STATE_AA64, 3810 .opc0 = 3, .opc1 = 4, .crn = 14, .crm = 0, .opc2 = 3, 3811 .access = PL2_RW, .type = ARM_CP_IO, .resetvalue = 0, 3812 .writefn = gt_cntvoff_write, 3813 .fieldoffset = offsetof(CPUARMState, cp15.cntvoff_el2) }, 3814 { .name = "CNTVOFF", .cp = 15, .opc1 = 4, .crm = 14, 3815 .access = PL2_RW, .type = ARM_CP_64BIT | ARM_CP_ALIAS | ARM_CP_IO, 3816 .writefn = gt_cntvoff_write, 3817 .fieldoffset = offsetof(CPUARMState, cp15.cntvoff_el2) }, 3818 { .name = "CNTHP_CVAL_EL2", .state = ARM_CP_STATE_AA64, 3819 .opc0 = 3, .opc1 = 4, .crn = 14, .crm = 2, .opc2 = 2, 3820 .fieldoffset = offsetof(CPUARMState, cp15.c14_timer[GTIMER_HYP].cval), 3821 .type = ARM_CP_IO, .access = PL2_RW, 3822 .writefn = gt_hyp_cval_write, .raw_writefn = raw_write }, 3823 { .name = "CNTHP_CVAL", .cp = 15, .opc1 = 6, .crm = 14, 3824 .fieldoffset = offsetof(CPUARMState, cp15.c14_timer[GTIMER_HYP].cval), 3825 .access = PL2_RW, .type = ARM_CP_64BIT | ARM_CP_IO, 3826 .writefn = gt_hyp_cval_write, .raw_writefn = raw_write }, 3827 { .name = "CNTHP_TVAL_EL2", .state = ARM_CP_STATE_BOTH, 3828 .opc0 = 3, .opc1 = 4, .crn = 14, .crm = 2, .opc2 = 0, 3829 .type = ARM_CP_NO_RAW | ARM_CP_IO, .access = PL2_RW, 3830 .resetfn = gt_hyp_timer_reset, 3831 .readfn = gt_hyp_tval_read, .writefn = gt_hyp_tval_write }, 3832 { .name = "CNTHP_CTL_EL2", .state = ARM_CP_STATE_BOTH, 3833 .type = ARM_CP_IO, 3834 .opc0 = 3, .opc1 = 4, .crn = 14, .crm = 2, .opc2 = 1, 3835 .access = PL2_RW, 3836 .fieldoffset = offsetof(CPUARMState, cp15.c14_timer[GTIMER_HYP].ctl), 3837 .resetvalue = 0, 3838 .writefn = gt_hyp_ctl_write, .raw_writefn = raw_write }, 3839 #endif 3840 /* The only field of MDCR_EL2 that has a defined architectural reset value 3841 * is MDCR_EL2.HPMN which should reset to the value of PMCR_EL0.N; but we 3842 * don't impelment any PMU event counters, so using zero as a reset 3843 * value for MDCR_EL2 is okay 3844 */ 3845 { .name = "MDCR_EL2", .state = ARM_CP_STATE_BOTH, 3846 .opc0 = 3, .opc1 = 4, .crn = 1, .crm = 1, .opc2 = 1, 3847 .access = PL2_RW, .resetvalue = 0, 3848 .fieldoffset = offsetof(CPUARMState, cp15.mdcr_el2), }, 3849 { .name = "HPFAR", .state = ARM_CP_STATE_AA32, 3850 .cp = 15, .opc1 = 4, .crn = 6, .crm = 0, .opc2 = 4, 3851 .access = PL2_RW, .accessfn = access_el3_aa32ns, 3852 .fieldoffset = offsetof(CPUARMState, cp15.hpfar_el2) }, 3853 { .name = "HPFAR_EL2", .state = ARM_CP_STATE_AA64, 3854 .opc0 = 3, .opc1 = 4, .crn = 6, .crm = 0, .opc2 = 4, 3855 .access = PL2_RW, 3856 .fieldoffset = offsetof(CPUARMState, cp15.hpfar_el2) }, 3857 { .name = "HSTR_EL2", .state = ARM_CP_STATE_BOTH, 3858 .cp = 15, .opc0 = 3, .opc1 = 4, .crn = 1, .crm = 1, .opc2 = 3, 3859 .access = PL2_RW, 3860 .fieldoffset = offsetof(CPUARMState, cp15.hstr_el2) }, 3861 REGINFO_SENTINEL 3862 }; 3863 3864 static CPAccessResult nsacr_access(CPUARMState *env, const ARMCPRegInfo *ri, 3865 bool isread) 3866 { 3867 /* The NSACR is RW at EL3, and RO for NS EL1 and NS EL2. 3868 * At Secure EL1 it traps to EL3. 3869 */ 3870 if (arm_current_el(env) == 3) { 3871 return CP_ACCESS_OK; 3872 } 3873 if (arm_is_secure_below_el3(env)) { 3874 return CP_ACCESS_TRAP_EL3; 3875 } 3876 /* Accesses from EL1 NS and EL2 NS are UNDEF for write but allow reads. */ 3877 if (isread) { 3878 return CP_ACCESS_OK; 3879 } 3880 return CP_ACCESS_TRAP_UNCATEGORIZED; 3881 } 3882 3883 static const ARMCPRegInfo el3_cp_reginfo[] = { 3884 { .name = "SCR_EL3", .state = ARM_CP_STATE_AA64, 3885 .opc0 = 3, .opc1 = 6, .crn = 1, .crm = 1, .opc2 = 0, 3886 .access = PL3_RW, .fieldoffset = offsetof(CPUARMState, cp15.scr_el3), 3887 .resetvalue = 0, .writefn = scr_write }, 3888 { .name = "SCR", .type = ARM_CP_ALIAS, 3889 .cp = 15, .opc1 = 0, .crn = 1, .crm = 1, .opc2 = 0, 3890 .access = PL1_RW, .accessfn = access_trap_aa32s_el1, 3891 .fieldoffset = offsetoflow32(CPUARMState, cp15.scr_el3), 3892 .writefn = scr_write }, 3893 { .name = "SDER32_EL3", .state = ARM_CP_STATE_AA64, 3894 .opc0 = 3, .opc1 = 6, .crn = 1, .crm = 1, .opc2 = 1, 3895 .access = PL3_RW, .resetvalue = 0, 3896 .fieldoffset = offsetof(CPUARMState, cp15.sder) }, 3897 { .name = "SDER", 3898 .cp = 15, .opc1 = 0, .crn = 1, .crm = 1, .opc2 = 1, 3899 .access = PL3_RW, .resetvalue = 0, 3900 .fieldoffset = offsetoflow32(CPUARMState, cp15.sder) }, 3901 { .name = "MVBAR", .cp = 15, .opc1 = 0, .crn = 12, .crm = 0, .opc2 = 1, 3902 .access = PL1_RW, .accessfn = access_trap_aa32s_el1, 3903 .writefn = vbar_write, .resetvalue = 0, 3904 .fieldoffset = offsetof(CPUARMState, cp15.mvbar) }, 3905 { .name = "TTBR0_EL3", .state = ARM_CP_STATE_AA64, 3906 .opc0 = 3, .opc1 = 6, .crn = 2, .crm = 0, .opc2 = 0, 3907 .access = PL3_RW, .writefn = vmsa_ttbr_write, .resetvalue = 0, 3908 .fieldoffset = offsetof(CPUARMState, cp15.ttbr0_el[3]) }, 3909 { .name = "TCR_EL3", .state = ARM_CP_STATE_AA64, 3910 .opc0 = 3, .opc1 = 6, .crn = 2, .crm = 0, .opc2 = 2, 3911 .access = PL3_RW, 3912 /* no .writefn needed as this can't cause an ASID change; 3913 * we must provide a .raw_writefn and .resetfn because we handle 3914 * reset and migration for the AArch32 TTBCR(S), which might be 3915 * using mask and base_mask. 3916 */ 3917 .resetfn = vmsa_ttbcr_reset, .raw_writefn = vmsa_ttbcr_raw_write, 3918 .fieldoffset = offsetof(CPUARMState, cp15.tcr_el[3]) }, 3919 { .name = "ELR_EL3", .state = ARM_CP_STATE_AA64, 3920 .type = ARM_CP_ALIAS, 3921 .opc0 = 3, .opc1 = 6, .crn = 4, .crm = 0, .opc2 = 1, 3922 .access = PL3_RW, 3923 .fieldoffset = offsetof(CPUARMState, elr_el[3]) }, 3924 { .name = "ESR_EL3", .state = ARM_CP_STATE_AA64, 3925 .opc0 = 3, .opc1 = 6, .crn = 5, .crm = 2, .opc2 = 0, 3926 .access = PL3_RW, .fieldoffset = offsetof(CPUARMState, cp15.esr_el[3]) }, 3927 { .name = "FAR_EL3", .state = ARM_CP_STATE_AA64, 3928 .opc0 = 3, .opc1 = 6, .crn = 6, .crm = 0, .opc2 = 0, 3929 .access = PL3_RW, .fieldoffset = offsetof(CPUARMState, cp15.far_el[3]) }, 3930 { .name = "SPSR_EL3", .state = ARM_CP_STATE_AA64, 3931 .type = ARM_CP_ALIAS, 3932 .opc0 = 3, .opc1 = 6, .crn = 4, .crm = 0, .opc2 = 0, 3933 .access = PL3_RW, 3934 .fieldoffset = offsetof(CPUARMState, banked_spsr[BANK_MON]) }, 3935 { .name = "VBAR_EL3", .state = ARM_CP_STATE_AA64, 3936 .opc0 = 3, .opc1 = 6, .crn = 12, .crm = 0, .opc2 = 0, 3937 .access = PL3_RW, .writefn = vbar_write, 3938 .fieldoffset = offsetof(CPUARMState, cp15.vbar_el[3]), 3939 .resetvalue = 0 }, 3940 { .name = "CPTR_EL3", .state = ARM_CP_STATE_AA64, 3941 .opc0 = 3, .opc1 = 6, .crn = 1, .crm = 1, .opc2 = 2, 3942 .access = PL3_RW, .accessfn = cptr_access, .resetvalue = 0, 3943 .fieldoffset = offsetof(CPUARMState, cp15.cptr_el[3]) }, 3944 { .name = "TPIDR_EL3", .state = ARM_CP_STATE_AA64, 3945 .opc0 = 3, .opc1 = 6, .crn = 13, .crm = 0, .opc2 = 2, 3946 .access = PL3_RW, .resetvalue = 0, 3947 .fieldoffset = offsetof(CPUARMState, cp15.tpidr_el[3]) }, 3948 { .name = "AMAIR_EL3", .state = ARM_CP_STATE_AA64, 3949 .opc0 = 3, .opc1 = 6, .crn = 10, .crm = 3, .opc2 = 0, 3950 .access = PL3_RW, .type = ARM_CP_CONST, 3951 .resetvalue = 0 }, 3952 { .name = "AFSR0_EL3", .state = ARM_CP_STATE_BOTH, 3953 .opc0 = 3, .opc1 = 6, .crn = 5, .crm = 1, .opc2 = 0, 3954 .access = PL3_RW, .type = ARM_CP_CONST, 3955 .resetvalue = 0 }, 3956 { .name = "AFSR1_EL3", .state = ARM_CP_STATE_BOTH, 3957 .opc0 = 3, .opc1 = 6, .crn = 5, .crm = 1, .opc2 = 1, 3958 .access = PL3_RW, .type = ARM_CP_CONST, 3959 .resetvalue = 0 }, 3960 { .name = "TLBI_ALLE3IS", .state = ARM_CP_STATE_AA64, 3961 .opc0 = 1, .opc1 = 6, .crn = 8, .crm = 3, .opc2 = 0, 3962 .access = PL3_W, .type = ARM_CP_NO_RAW, 3963 .writefn = tlbi_aa64_alle3is_write }, 3964 { .name = "TLBI_VAE3IS", .state = ARM_CP_STATE_AA64, 3965 .opc0 = 1, .opc1 = 6, .crn = 8, .crm = 3, .opc2 = 1, 3966 .access = PL3_W, .type = ARM_CP_NO_RAW, 3967 .writefn = tlbi_aa64_vae3is_write }, 3968 { .name = "TLBI_VALE3IS", .state = ARM_CP_STATE_AA64, 3969 .opc0 = 1, .opc1 = 6, .crn = 8, .crm = 3, .opc2 = 5, 3970 .access = PL3_W, .type = ARM_CP_NO_RAW, 3971 .writefn = tlbi_aa64_vae3is_write }, 3972 { .name = "TLBI_ALLE3", .state = ARM_CP_STATE_AA64, 3973 .opc0 = 1, .opc1 = 6, .crn = 8, .crm = 7, .opc2 = 0, 3974 .access = PL3_W, .type = ARM_CP_NO_RAW, 3975 .writefn = tlbi_aa64_alle3_write }, 3976 { .name = "TLBI_VAE3", .state = ARM_CP_STATE_AA64, 3977 .opc0 = 1, .opc1 = 6, .crn = 8, .crm = 7, .opc2 = 1, 3978 .access = PL3_W, .type = ARM_CP_NO_RAW, 3979 .writefn = tlbi_aa64_vae3_write }, 3980 { .name = "TLBI_VALE3", .state = ARM_CP_STATE_AA64, 3981 .opc0 = 1, .opc1 = 6, .crn = 8, .crm = 7, .opc2 = 5, 3982 .access = PL3_W, .type = ARM_CP_NO_RAW, 3983 .writefn = tlbi_aa64_vae3_write }, 3984 REGINFO_SENTINEL 3985 }; 3986 3987 static CPAccessResult ctr_el0_access(CPUARMState *env, const ARMCPRegInfo *ri, 3988 bool isread) 3989 { 3990 /* Only accessible in EL0 if SCTLR.UCT is set (and only in AArch64, 3991 * but the AArch32 CTR has its own reginfo struct) 3992 */ 3993 if (arm_current_el(env) == 0 && !(env->cp15.sctlr_el[1] & SCTLR_UCT)) { 3994 return CP_ACCESS_TRAP; 3995 } 3996 return CP_ACCESS_OK; 3997 } 3998 3999 static void oslar_write(CPUARMState *env, const ARMCPRegInfo *ri, 4000 uint64_t value) 4001 { 4002 /* Writes to OSLAR_EL1 may update the OS lock status, which can be 4003 * read via a bit in OSLSR_EL1. 4004 */ 4005 int oslock; 4006 4007 if (ri->state == ARM_CP_STATE_AA32) { 4008 oslock = (value == 0xC5ACCE55); 4009 } else { 4010 oslock = value & 1; 4011 } 4012 4013 env->cp15.oslsr_el1 = deposit32(env->cp15.oslsr_el1, 1, 1, oslock); 4014 } 4015 4016 static const ARMCPRegInfo debug_cp_reginfo[] = { 4017 /* DBGDRAR, DBGDSAR: always RAZ since we don't implement memory mapped 4018 * debug components. The AArch64 version of DBGDRAR is named MDRAR_EL1; 4019 * unlike DBGDRAR it is never accessible from EL0. 4020 * DBGDSAR is deprecated and must RAZ from v8 anyway, so it has no AArch64 4021 * accessor. 4022 */ 4023 { .name = "DBGDRAR", .cp = 14, .crn = 1, .crm = 0, .opc1 = 0, .opc2 = 0, 4024 .access = PL0_R, .accessfn = access_tdra, 4025 .type = ARM_CP_CONST, .resetvalue = 0 }, 4026 { .name = "MDRAR_EL1", .state = ARM_CP_STATE_AA64, 4027 .opc0 = 2, .opc1 = 0, .crn = 1, .crm = 0, .opc2 = 0, 4028 .access = PL1_R, .accessfn = access_tdra, 4029 .type = ARM_CP_CONST, .resetvalue = 0 }, 4030 { .name = "DBGDSAR", .cp = 14, .crn = 2, .crm = 0, .opc1 = 0, .opc2 = 0, 4031 .access = PL0_R, .accessfn = access_tdra, 4032 .type = ARM_CP_CONST, .resetvalue = 0 }, 4033 /* Monitor debug system control register; the 32-bit alias is DBGDSCRext. */ 4034 { .name = "MDSCR_EL1", .state = ARM_CP_STATE_BOTH, 4035 .cp = 14, .opc0 = 2, .opc1 = 0, .crn = 0, .crm = 2, .opc2 = 2, 4036 .access = PL1_RW, .accessfn = access_tda, 4037 .fieldoffset = offsetof(CPUARMState, cp15.mdscr_el1), 4038 .resetvalue = 0 }, 4039 /* MDCCSR_EL0, aka DBGDSCRint. This is a read-only mirror of MDSCR_EL1. 4040 * We don't implement the configurable EL0 access. 4041 */ 4042 { .name = "MDCCSR_EL0", .state = ARM_CP_STATE_BOTH, 4043 .cp = 14, .opc0 = 2, .opc1 = 0, .crn = 0, .crm = 1, .opc2 = 0, 4044 .type = ARM_CP_ALIAS, 4045 .access = PL1_R, .accessfn = access_tda, 4046 .fieldoffset = offsetof(CPUARMState, cp15.mdscr_el1), }, 4047 { .name = "OSLAR_EL1", .state = ARM_CP_STATE_BOTH, 4048 .cp = 14, .opc0 = 2, .opc1 = 0, .crn = 1, .crm = 0, .opc2 = 4, 4049 .access = PL1_W, .type = ARM_CP_NO_RAW, 4050 .accessfn = access_tdosa, 4051 .writefn = oslar_write }, 4052 { .name = "OSLSR_EL1", .state = ARM_CP_STATE_BOTH, 4053 .cp = 14, .opc0 = 2, .opc1 = 0, .crn = 1, .crm = 1, .opc2 = 4, 4054 .access = PL1_R, .resetvalue = 10, 4055 .accessfn = access_tdosa, 4056 .fieldoffset = offsetof(CPUARMState, cp15.oslsr_el1) }, 4057 /* Dummy OSDLR_EL1: 32-bit Linux will read this */ 4058 { .name = "OSDLR_EL1", .state = ARM_CP_STATE_BOTH, 4059 .cp = 14, .opc0 = 2, .opc1 = 0, .crn = 1, .crm = 3, .opc2 = 4, 4060 .access = PL1_RW, .accessfn = access_tdosa, 4061 .type = ARM_CP_NOP }, 4062 /* Dummy DBGVCR: Linux wants to clear this on startup, but we don't 4063 * implement vector catch debug events yet. 4064 */ 4065 { .name = "DBGVCR", 4066 .cp = 14, .opc1 = 0, .crn = 0, .crm = 7, .opc2 = 0, 4067 .access = PL1_RW, .accessfn = access_tda, 4068 .type = ARM_CP_NOP }, 4069 /* Dummy DBGVCR32_EL2 (which is only for a 64-bit hypervisor 4070 * to save and restore a 32-bit guest's DBGVCR) 4071 */ 4072 { .name = "DBGVCR32_EL2", .state = ARM_CP_STATE_AA64, 4073 .opc0 = 2, .opc1 = 4, .crn = 0, .crm = 7, .opc2 = 0, 4074 .access = PL2_RW, .accessfn = access_tda, 4075 .type = ARM_CP_NOP }, 4076 /* Dummy MDCCINT_EL1, since we don't implement the Debug Communications 4077 * Channel but Linux may try to access this register. The 32-bit 4078 * alias is DBGDCCINT. 4079 */ 4080 { .name = "MDCCINT_EL1", .state = ARM_CP_STATE_BOTH, 4081 .cp = 14, .opc0 = 2, .opc1 = 0, .crn = 0, .crm = 2, .opc2 = 0, 4082 .access = PL1_RW, .accessfn = access_tda, 4083 .type = ARM_CP_NOP }, 4084 REGINFO_SENTINEL 4085 }; 4086 4087 static const ARMCPRegInfo debug_lpae_cp_reginfo[] = { 4088 /* 64 bit access versions of the (dummy) debug registers */ 4089 { .name = "DBGDRAR", .cp = 14, .crm = 1, .opc1 = 0, 4090 .access = PL0_R, .type = ARM_CP_CONST|ARM_CP_64BIT, .resetvalue = 0 }, 4091 { .name = "DBGDSAR", .cp = 14, .crm = 2, .opc1 = 0, 4092 .access = PL0_R, .type = ARM_CP_CONST|ARM_CP_64BIT, .resetvalue = 0 }, 4093 REGINFO_SENTINEL 4094 }; 4095 4096 void hw_watchpoint_update(ARMCPU *cpu, int n) 4097 { 4098 CPUARMState *env = &cpu->env; 4099 vaddr len = 0; 4100 vaddr wvr = env->cp15.dbgwvr[n]; 4101 uint64_t wcr = env->cp15.dbgwcr[n]; 4102 int mask; 4103 int flags = BP_CPU | BP_STOP_BEFORE_ACCESS; 4104 4105 if (env->cpu_watchpoint[n]) { 4106 cpu_watchpoint_remove_by_ref(CPU(cpu), env->cpu_watchpoint[n]); 4107 env->cpu_watchpoint[n] = NULL; 4108 } 4109 4110 if (!extract64(wcr, 0, 1)) { 4111 /* E bit clear : watchpoint disabled */ 4112 return; 4113 } 4114 4115 switch (extract64(wcr, 3, 2)) { 4116 case 0: 4117 /* LSC 00 is reserved and must behave as if the wp is disabled */ 4118 return; 4119 case 1: 4120 flags |= BP_MEM_READ; 4121 break; 4122 case 2: 4123 flags |= BP_MEM_WRITE; 4124 break; 4125 case 3: 4126 flags |= BP_MEM_ACCESS; 4127 break; 4128 } 4129 4130 /* Attempts to use both MASK and BAS fields simultaneously are 4131 * CONSTRAINED UNPREDICTABLE; we opt to ignore BAS in this case, 4132 * thus generating a watchpoint for every byte in the masked region. 4133 */ 4134 mask = extract64(wcr, 24, 4); 4135 if (mask == 1 || mask == 2) { 4136 /* Reserved values of MASK; we must act as if the mask value was 4137 * some non-reserved value, or as if the watchpoint were disabled. 4138 * We choose the latter. 4139 */ 4140 return; 4141 } else if (mask) { 4142 /* Watchpoint covers an aligned area up to 2GB in size */ 4143 len = 1ULL << mask; 4144 /* If masked bits in WVR are not zero it's CONSTRAINED UNPREDICTABLE 4145 * whether the watchpoint fires when the unmasked bits match; we opt 4146 * to generate the exceptions. 4147 */ 4148 wvr &= ~(len - 1); 4149 } else { 4150 /* Watchpoint covers bytes defined by the byte address select bits */ 4151 int bas = extract64(wcr, 5, 8); 4152 int basstart; 4153 4154 if (bas == 0) { 4155 /* This must act as if the watchpoint is disabled */ 4156 return; 4157 } 4158 4159 if (extract64(wvr, 2, 1)) { 4160 /* Deprecated case of an only 4-aligned address. BAS[7:4] are 4161 * ignored, and BAS[3:0] define which bytes to watch. 4162 */ 4163 bas &= 0xf; 4164 } 4165 /* The BAS bits are supposed to be programmed to indicate a contiguous 4166 * range of bytes. Otherwise it is CONSTRAINED UNPREDICTABLE whether 4167 * we fire for each byte in the word/doubleword addressed by the WVR. 4168 * We choose to ignore any non-zero bits after the first range of 1s. 4169 */ 4170 basstart = ctz32(bas); 4171 len = cto32(bas >> basstart); 4172 wvr += basstart; 4173 } 4174 4175 cpu_watchpoint_insert(CPU(cpu), wvr, len, flags, 4176 &env->cpu_watchpoint[n]); 4177 } 4178 4179 void hw_watchpoint_update_all(ARMCPU *cpu) 4180 { 4181 int i; 4182 CPUARMState *env = &cpu->env; 4183 4184 /* Completely clear out existing QEMU watchpoints and our array, to 4185 * avoid possible stale entries following migration load. 4186 */ 4187 cpu_watchpoint_remove_all(CPU(cpu), BP_CPU); 4188 memset(env->cpu_watchpoint, 0, sizeof(env->cpu_watchpoint)); 4189 4190 for (i = 0; i < ARRAY_SIZE(cpu->env.cpu_watchpoint); i++) { 4191 hw_watchpoint_update(cpu, i); 4192 } 4193 } 4194 4195 static void dbgwvr_write(CPUARMState *env, const ARMCPRegInfo *ri, 4196 uint64_t value) 4197 { 4198 ARMCPU *cpu = arm_env_get_cpu(env); 4199 int i = ri->crm; 4200 4201 /* Bits [63:49] are hardwired to the value of bit [48]; that is, the 4202 * register reads and behaves as if values written are sign extended. 4203 * Bits [1:0] are RES0. 4204 */ 4205 value = sextract64(value, 0, 49) & ~3ULL; 4206 4207 raw_write(env, ri, value); 4208 hw_watchpoint_update(cpu, i); 4209 } 4210 4211 static void dbgwcr_write(CPUARMState *env, const ARMCPRegInfo *ri, 4212 uint64_t value) 4213 { 4214 ARMCPU *cpu = arm_env_get_cpu(env); 4215 int i = ri->crm; 4216 4217 raw_write(env, ri, value); 4218 hw_watchpoint_update(cpu, i); 4219 } 4220 4221 void hw_breakpoint_update(ARMCPU *cpu, int n) 4222 { 4223 CPUARMState *env = &cpu->env; 4224 uint64_t bvr = env->cp15.dbgbvr[n]; 4225 uint64_t bcr = env->cp15.dbgbcr[n]; 4226 vaddr addr; 4227 int bt; 4228 int flags = BP_CPU; 4229 4230 if (env->cpu_breakpoint[n]) { 4231 cpu_breakpoint_remove_by_ref(CPU(cpu), env->cpu_breakpoint[n]); 4232 env->cpu_breakpoint[n] = NULL; 4233 } 4234 4235 if (!extract64(bcr, 0, 1)) { 4236 /* E bit clear : watchpoint disabled */ 4237 return; 4238 } 4239 4240 bt = extract64(bcr, 20, 4); 4241 4242 switch (bt) { 4243 case 4: /* unlinked address mismatch (reserved if AArch64) */ 4244 case 5: /* linked address mismatch (reserved if AArch64) */ 4245 qemu_log_mask(LOG_UNIMP, 4246 "arm: address mismatch breakpoint types not implemented"); 4247 return; 4248 case 0: /* unlinked address match */ 4249 case 1: /* linked address match */ 4250 { 4251 /* Bits [63:49] are hardwired to the value of bit [48]; that is, 4252 * we behave as if the register was sign extended. Bits [1:0] are 4253 * RES0. The BAS field is used to allow setting breakpoints on 16 4254 * bit wide instructions; it is CONSTRAINED UNPREDICTABLE whether 4255 * a bp will fire if the addresses covered by the bp and the addresses 4256 * covered by the insn overlap but the insn doesn't start at the 4257 * start of the bp address range. We choose to require the insn and 4258 * the bp to have the same address. The constraints on writing to 4259 * BAS enforced in dbgbcr_write mean we have only four cases: 4260 * 0b0000 => no breakpoint 4261 * 0b0011 => breakpoint on addr 4262 * 0b1100 => breakpoint on addr + 2 4263 * 0b1111 => breakpoint on addr 4264 * See also figure D2-3 in the v8 ARM ARM (DDI0487A.c). 4265 */ 4266 int bas = extract64(bcr, 5, 4); 4267 addr = sextract64(bvr, 0, 49) & ~3ULL; 4268 if (bas == 0) { 4269 return; 4270 } 4271 if (bas == 0xc) { 4272 addr += 2; 4273 } 4274 break; 4275 } 4276 case 2: /* unlinked context ID match */ 4277 case 8: /* unlinked VMID match (reserved if no EL2) */ 4278 case 10: /* unlinked context ID and VMID match (reserved if no EL2) */ 4279 qemu_log_mask(LOG_UNIMP, 4280 "arm: unlinked context breakpoint types not implemented"); 4281 return; 4282 case 9: /* linked VMID match (reserved if no EL2) */ 4283 case 11: /* linked context ID and VMID match (reserved if no EL2) */ 4284 case 3: /* linked context ID match */ 4285 default: 4286 /* We must generate no events for Linked context matches (unless 4287 * they are linked to by some other bp/wp, which is handled in 4288 * updates for the linking bp/wp). We choose to also generate no events 4289 * for reserved values. 4290 */ 4291 return; 4292 } 4293 4294 cpu_breakpoint_insert(CPU(cpu), addr, flags, &env->cpu_breakpoint[n]); 4295 } 4296 4297 void hw_breakpoint_update_all(ARMCPU *cpu) 4298 { 4299 int i; 4300 CPUARMState *env = &cpu->env; 4301 4302 /* Completely clear out existing QEMU breakpoints and our array, to 4303 * avoid possible stale entries following migration load. 4304 */ 4305 cpu_breakpoint_remove_all(CPU(cpu), BP_CPU); 4306 memset(env->cpu_breakpoint, 0, sizeof(env->cpu_breakpoint)); 4307 4308 for (i = 0; i < ARRAY_SIZE(cpu->env.cpu_breakpoint); i++) { 4309 hw_breakpoint_update(cpu, i); 4310 } 4311 } 4312 4313 static void dbgbvr_write(CPUARMState *env, const ARMCPRegInfo *ri, 4314 uint64_t value) 4315 { 4316 ARMCPU *cpu = arm_env_get_cpu(env); 4317 int i = ri->crm; 4318 4319 raw_write(env, ri, value); 4320 hw_breakpoint_update(cpu, i); 4321 } 4322 4323 static void dbgbcr_write(CPUARMState *env, const ARMCPRegInfo *ri, 4324 uint64_t value) 4325 { 4326 ARMCPU *cpu = arm_env_get_cpu(env); 4327 int i = ri->crm; 4328 4329 /* BAS[3] is a read-only copy of BAS[2], and BAS[1] a read-only 4330 * copy of BAS[0]. 4331 */ 4332 value = deposit64(value, 6, 1, extract64(value, 5, 1)); 4333 value = deposit64(value, 8, 1, extract64(value, 7, 1)); 4334 4335 raw_write(env, ri, value); 4336 hw_breakpoint_update(cpu, i); 4337 } 4338 4339 static void define_debug_regs(ARMCPU *cpu) 4340 { 4341 /* Define v7 and v8 architectural debug registers. 4342 * These are just dummy implementations for now. 4343 */ 4344 int i; 4345 int wrps, brps, ctx_cmps; 4346 ARMCPRegInfo dbgdidr = { 4347 .name = "DBGDIDR", .cp = 14, .crn = 0, .crm = 0, .opc1 = 0, .opc2 = 0, 4348 .access = PL0_R, .accessfn = access_tda, 4349 .type = ARM_CP_CONST, .resetvalue = cpu->dbgdidr, 4350 }; 4351 4352 /* Note that all these register fields hold "number of Xs minus 1". */ 4353 brps = extract32(cpu->dbgdidr, 24, 4); 4354 wrps = extract32(cpu->dbgdidr, 28, 4); 4355 ctx_cmps = extract32(cpu->dbgdidr, 20, 4); 4356 4357 assert(ctx_cmps <= brps); 4358 4359 /* The DBGDIDR and ID_AA64DFR0_EL1 define various properties 4360 * of the debug registers such as number of breakpoints; 4361 * check that if they both exist then they agree. 4362 */ 4363 if (arm_feature(&cpu->env, ARM_FEATURE_AARCH64)) { 4364 assert(extract32(cpu->id_aa64dfr0, 12, 4) == brps); 4365 assert(extract32(cpu->id_aa64dfr0, 20, 4) == wrps); 4366 assert(extract32(cpu->id_aa64dfr0, 28, 4) == ctx_cmps); 4367 } 4368 4369 define_one_arm_cp_reg(cpu, &dbgdidr); 4370 define_arm_cp_regs(cpu, debug_cp_reginfo); 4371 4372 if (arm_feature(&cpu->env, ARM_FEATURE_LPAE)) { 4373 define_arm_cp_regs(cpu, debug_lpae_cp_reginfo); 4374 } 4375 4376 for (i = 0; i < brps + 1; i++) { 4377 ARMCPRegInfo dbgregs[] = { 4378 { .name = "DBGBVR", .state = ARM_CP_STATE_BOTH, 4379 .cp = 14, .opc0 = 2, .opc1 = 0, .crn = 0, .crm = i, .opc2 = 4, 4380 .access = PL1_RW, .accessfn = access_tda, 4381 .fieldoffset = offsetof(CPUARMState, cp15.dbgbvr[i]), 4382 .writefn = dbgbvr_write, .raw_writefn = raw_write 4383 }, 4384 { .name = "DBGBCR", .state = ARM_CP_STATE_BOTH, 4385 .cp = 14, .opc0 = 2, .opc1 = 0, .crn = 0, .crm = i, .opc2 = 5, 4386 .access = PL1_RW, .accessfn = access_tda, 4387 .fieldoffset = offsetof(CPUARMState, cp15.dbgbcr[i]), 4388 .writefn = dbgbcr_write, .raw_writefn = raw_write 4389 }, 4390 REGINFO_SENTINEL 4391 }; 4392 define_arm_cp_regs(cpu, dbgregs); 4393 } 4394 4395 for (i = 0; i < wrps + 1; i++) { 4396 ARMCPRegInfo dbgregs[] = { 4397 { .name = "DBGWVR", .state = ARM_CP_STATE_BOTH, 4398 .cp = 14, .opc0 = 2, .opc1 = 0, .crn = 0, .crm = i, .opc2 = 6, 4399 .access = PL1_RW, .accessfn = access_tda, 4400 .fieldoffset = offsetof(CPUARMState, cp15.dbgwvr[i]), 4401 .writefn = dbgwvr_write, .raw_writefn = raw_write 4402 }, 4403 { .name = "DBGWCR", .state = ARM_CP_STATE_BOTH, 4404 .cp = 14, .opc0 = 2, .opc1 = 0, .crn = 0, .crm = i, .opc2 = 7, 4405 .access = PL1_RW, .accessfn = access_tda, 4406 .fieldoffset = offsetof(CPUARMState, cp15.dbgwcr[i]), 4407 .writefn = dbgwcr_write, .raw_writefn = raw_write 4408 }, 4409 REGINFO_SENTINEL 4410 }; 4411 define_arm_cp_regs(cpu, dbgregs); 4412 } 4413 } 4414 4415 void register_cp_regs_for_features(ARMCPU *cpu) 4416 { 4417 /* Register all the coprocessor registers based on feature bits */ 4418 CPUARMState *env = &cpu->env; 4419 if (arm_feature(env, ARM_FEATURE_M)) { 4420 /* M profile has no coprocessor registers */ 4421 return; 4422 } 4423 4424 define_arm_cp_regs(cpu, cp_reginfo); 4425 if (!arm_feature(env, ARM_FEATURE_V8)) { 4426 /* Must go early as it is full of wildcards that may be 4427 * overridden by later definitions. 4428 */ 4429 define_arm_cp_regs(cpu, not_v8_cp_reginfo); 4430 } 4431 4432 if (arm_feature(env, ARM_FEATURE_V6)) { 4433 /* The ID registers all have impdef reset values */ 4434 ARMCPRegInfo v6_idregs[] = { 4435 { .name = "ID_PFR0", .state = ARM_CP_STATE_BOTH, 4436 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 1, .opc2 = 0, 4437 .access = PL1_R, .type = ARM_CP_CONST, 4438 .resetvalue = cpu->id_pfr0 }, 4439 { .name = "ID_PFR1", .state = ARM_CP_STATE_BOTH, 4440 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 1, .opc2 = 1, 4441 .access = PL1_R, .type = ARM_CP_CONST, 4442 .resetvalue = cpu->id_pfr1 }, 4443 { .name = "ID_DFR0", .state = ARM_CP_STATE_BOTH, 4444 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 1, .opc2 = 2, 4445 .access = PL1_R, .type = ARM_CP_CONST, 4446 .resetvalue = cpu->id_dfr0 }, 4447 { .name = "ID_AFR0", .state = ARM_CP_STATE_BOTH, 4448 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 1, .opc2 = 3, 4449 .access = PL1_R, .type = ARM_CP_CONST, 4450 .resetvalue = cpu->id_afr0 }, 4451 { .name = "ID_MMFR0", .state = ARM_CP_STATE_BOTH, 4452 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 1, .opc2 = 4, 4453 .access = PL1_R, .type = ARM_CP_CONST, 4454 .resetvalue = cpu->id_mmfr0 }, 4455 { .name = "ID_MMFR1", .state = ARM_CP_STATE_BOTH, 4456 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 1, .opc2 = 5, 4457 .access = PL1_R, .type = ARM_CP_CONST, 4458 .resetvalue = cpu->id_mmfr1 }, 4459 { .name = "ID_MMFR2", .state = ARM_CP_STATE_BOTH, 4460 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 1, .opc2 = 6, 4461 .access = PL1_R, .type = ARM_CP_CONST, 4462 .resetvalue = cpu->id_mmfr2 }, 4463 { .name = "ID_MMFR3", .state = ARM_CP_STATE_BOTH, 4464 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 1, .opc2 = 7, 4465 .access = PL1_R, .type = ARM_CP_CONST, 4466 .resetvalue = cpu->id_mmfr3 }, 4467 { .name = "ID_ISAR0", .state = ARM_CP_STATE_BOTH, 4468 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 2, .opc2 = 0, 4469 .access = PL1_R, .type = ARM_CP_CONST, 4470 .resetvalue = cpu->id_isar0 }, 4471 { .name = "ID_ISAR1", .state = ARM_CP_STATE_BOTH, 4472 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 2, .opc2 = 1, 4473 .access = PL1_R, .type = ARM_CP_CONST, 4474 .resetvalue = cpu->id_isar1 }, 4475 { .name = "ID_ISAR2", .state = ARM_CP_STATE_BOTH, 4476 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 2, .opc2 = 2, 4477 .access = PL1_R, .type = ARM_CP_CONST, 4478 .resetvalue = cpu->id_isar2 }, 4479 { .name = "ID_ISAR3", .state = ARM_CP_STATE_BOTH, 4480 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 2, .opc2 = 3, 4481 .access = PL1_R, .type = ARM_CP_CONST, 4482 .resetvalue = cpu->id_isar3 }, 4483 { .name = "ID_ISAR4", .state = ARM_CP_STATE_BOTH, 4484 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 2, .opc2 = 4, 4485 .access = PL1_R, .type = ARM_CP_CONST, 4486 .resetvalue = cpu->id_isar4 }, 4487 { .name = "ID_ISAR5", .state = ARM_CP_STATE_BOTH, 4488 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 2, .opc2 = 5, 4489 .access = PL1_R, .type = ARM_CP_CONST, 4490 .resetvalue = cpu->id_isar5 }, 4491 { .name = "ID_MMFR4", .state = ARM_CP_STATE_BOTH, 4492 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 2, .opc2 = 6, 4493 .access = PL1_R, .type = ARM_CP_CONST, 4494 .resetvalue = cpu->id_mmfr4 }, 4495 /* 7 is as yet unallocated and must RAZ */ 4496 { .name = "ID_ISAR7_RESERVED", .state = ARM_CP_STATE_BOTH, 4497 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 2, .opc2 = 7, 4498 .access = PL1_R, .type = ARM_CP_CONST, 4499 .resetvalue = 0 }, 4500 REGINFO_SENTINEL 4501 }; 4502 define_arm_cp_regs(cpu, v6_idregs); 4503 define_arm_cp_regs(cpu, v6_cp_reginfo); 4504 } else { 4505 define_arm_cp_regs(cpu, not_v6_cp_reginfo); 4506 } 4507 if (arm_feature(env, ARM_FEATURE_V6K)) { 4508 define_arm_cp_regs(cpu, v6k_cp_reginfo); 4509 } 4510 if (arm_feature(env, ARM_FEATURE_V7MP) && 4511 !arm_feature(env, ARM_FEATURE_MPU)) { 4512 define_arm_cp_regs(cpu, v7mp_cp_reginfo); 4513 } 4514 if (arm_feature(env, ARM_FEATURE_V7)) { 4515 /* v7 performance monitor control register: same implementor 4516 * field as main ID register, and we implement only the cycle 4517 * count register. 4518 */ 4519 #ifndef CONFIG_USER_ONLY 4520 ARMCPRegInfo pmcr = { 4521 .name = "PMCR", .cp = 15, .crn = 9, .crm = 12, .opc1 = 0, .opc2 = 0, 4522 .access = PL0_RW, 4523 .type = ARM_CP_IO | ARM_CP_ALIAS, 4524 .fieldoffset = offsetoflow32(CPUARMState, cp15.c9_pmcr), 4525 .accessfn = pmreg_access, .writefn = pmcr_write, 4526 .raw_writefn = raw_write, 4527 }; 4528 ARMCPRegInfo pmcr64 = { 4529 .name = "PMCR_EL0", .state = ARM_CP_STATE_AA64, 4530 .opc0 = 3, .opc1 = 3, .crn = 9, .crm = 12, .opc2 = 0, 4531 .access = PL0_RW, .accessfn = pmreg_access, 4532 .type = ARM_CP_IO, 4533 .fieldoffset = offsetof(CPUARMState, cp15.c9_pmcr), 4534 .resetvalue = cpu->midr & 0xff000000, 4535 .writefn = pmcr_write, .raw_writefn = raw_write, 4536 }; 4537 define_one_arm_cp_reg(cpu, &pmcr); 4538 define_one_arm_cp_reg(cpu, &pmcr64); 4539 #endif 4540 ARMCPRegInfo clidr = { 4541 .name = "CLIDR", .state = ARM_CP_STATE_BOTH, 4542 .opc0 = 3, .crn = 0, .crm = 0, .opc1 = 1, .opc2 = 1, 4543 .access = PL1_R, .type = ARM_CP_CONST, .resetvalue = cpu->clidr 4544 }; 4545 define_one_arm_cp_reg(cpu, &clidr); 4546 define_arm_cp_regs(cpu, v7_cp_reginfo); 4547 define_debug_regs(cpu); 4548 } else { 4549 define_arm_cp_regs(cpu, not_v7_cp_reginfo); 4550 } 4551 if (arm_feature(env, ARM_FEATURE_V8)) { 4552 /* AArch64 ID registers, which all have impdef reset values. 4553 * Note that within the ID register ranges the unused slots 4554 * must all RAZ, not UNDEF; future architecture versions may 4555 * define new registers here. 4556 */ 4557 ARMCPRegInfo v8_idregs[] = { 4558 { .name = "ID_AA64PFR0_EL1", .state = ARM_CP_STATE_AA64, 4559 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 4, .opc2 = 0, 4560 .access = PL1_R, .type = ARM_CP_CONST, 4561 .resetvalue = cpu->id_aa64pfr0 }, 4562 { .name = "ID_AA64PFR1_EL1", .state = ARM_CP_STATE_AA64, 4563 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 4, .opc2 = 1, 4564 .access = PL1_R, .type = ARM_CP_CONST, 4565 .resetvalue = cpu->id_aa64pfr1}, 4566 { .name = "ID_AA64PFR2_EL1_RESERVED", .state = ARM_CP_STATE_AA64, 4567 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 4, .opc2 = 2, 4568 .access = PL1_R, .type = ARM_CP_CONST, 4569 .resetvalue = 0 }, 4570 { .name = "ID_AA64PFR3_EL1_RESERVED", .state = ARM_CP_STATE_AA64, 4571 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 4, .opc2 = 3, 4572 .access = PL1_R, .type = ARM_CP_CONST, 4573 .resetvalue = 0 }, 4574 { .name = "ID_AA64PFR4_EL1_RESERVED", .state = ARM_CP_STATE_AA64, 4575 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 4, .opc2 = 4, 4576 .access = PL1_R, .type = ARM_CP_CONST, 4577 .resetvalue = 0 }, 4578 { .name = "ID_AA64PFR5_EL1_RESERVED", .state = ARM_CP_STATE_AA64, 4579 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 4, .opc2 = 5, 4580 .access = PL1_R, .type = ARM_CP_CONST, 4581 .resetvalue = 0 }, 4582 { .name = "ID_AA64PFR6_EL1_RESERVED", .state = ARM_CP_STATE_AA64, 4583 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 4, .opc2 = 6, 4584 .access = PL1_R, .type = ARM_CP_CONST, 4585 .resetvalue = 0 }, 4586 { .name = "ID_AA64PFR7_EL1_RESERVED", .state = ARM_CP_STATE_AA64, 4587 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 4, .opc2 = 7, 4588 .access = PL1_R, .type = ARM_CP_CONST, 4589 .resetvalue = 0 }, 4590 { .name = "ID_AA64DFR0_EL1", .state = ARM_CP_STATE_AA64, 4591 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 5, .opc2 = 0, 4592 .access = PL1_R, .type = ARM_CP_CONST, 4593 /* We mask out the PMUVer field, because we don't currently 4594 * implement the PMU. Not advertising it prevents the guest 4595 * from trying to use it and getting UNDEFs on registers we 4596 * don't implement. 4597 */ 4598 .resetvalue = cpu->id_aa64dfr0 & ~0xf00 }, 4599 { .name = "ID_AA64DFR1_EL1", .state = ARM_CP_STATE_AA64, 4600 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 5, .opc2 = 1, 4601 .access = PL1_R, .type = ARM_CP_CONST, 4602 .resetvalue = cpu->id_aa64dfr1 }, 4603 { .name = "ID_AA64DFR2_EL1_RESERVED", .state = ARM_CP_STATE_AA64, 4604 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 5, .opc2 = 2, 4605 .access = PL1_R, .type = ARM_CP_CONST, 4606 .resetvalue = 0 }, 4607 { .name = "ID_AA64DFR3_EL1_RESERVED", .state = ARM_CP_STATE_AA64, 4608 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 5, .opc2 = 3, 4609 .access = PL1_R, .type = ARM_CP_CONST, 4610 .resetvalue = 0 }, 4611 { .name = "ID_AA64AFR0_EL1", .state = ARM_CP_STATE_AA64, 4612 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 5, .opc2 = 4, 4613 .access = PL1_R, .type = ARM_CP_CONST, 4614 .resetvalue = cpu->id_aa64afr0 }, 4615 { .name = "ID_AA64AFR1_EL1", .state = ARM_CP_STATE_AA64, 4616 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 5, .opc2 = 5, 4617 .access = PL1_R, .type = ARM_CP_CONST, 4618 .resetvalue = cpu->id_aa64afr1 }, 4619 { .name = "ID_AA64AFR2_EL1_RESERVED", .state = ARM_CP_STATE_AA64, 4620 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 5, .opc2 = 6, 4621 .access = PL1_R, .type = ARM_CP_CONST, 4622 .resetvalue = 0 }, 4623 { .name = "ID_AA64AFR3_EL1_RESERVED", .state = ARM_CP_STATE_AA64, 4624 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 5, .opc2 = 7, 4625 .access = PL1_R, .type = ARM_CP_CONST, 4626 .resetvalue = 0 }, 4627 { .name = "ID_AA64ISAR0_EL1", .state = ARM_CP_STATE_AA64, 4628 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 6, .opc2 = 0, 4629 .access = PL1_R, .type = ARM_CP_CONST, 4630 .resetvalue = cpu->id_aa64isar0 }, 4631 { .name = "ID_AA64ISAR1_EL1", .state = ARM_CP_STATE_AA64, 4632 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 6, .opc2 = 1, 4633 .access = PL1_R, .type = ARM_CP_CONST, 4634 .resetvalue = cpu->id_aa64isar1 }, 4635 { .name = "ID_AA64ISAR2_EL1_RESERVED", .state = ARM_CP_STATE_AA64, 4636 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 6, .opc2 = 2, 4637 .access = PL1_R, .type = ARM_CP_CONST, 4638 .resetvalue = 0 }, 4639 { .name = "ID_AA64ISAR3_EL1_RESERVED", .state = ARM_CP_STATE_AA64, 4640 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 6, .opc2 = 3, 4641 .access = PL1_R, .type = ARM_CP_CONST, 4642 .resetvalue = 0 }, 4643 { .name = "ID_AA64ISAR4_EL1_RESERVED", .state = ARM_CP_STATE_AA64, 4644 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 6, .opc2 = 4, 4645 .access = PL1_R, .type = ARM_CP_CONST, 4646 .resetvalue = 0 }, 4647 { .name = "ID_AA64ISAR5_EL1_RESERVED", .state = ARM_CP_STATE_AA64, 4648 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 6, .opc2 = 5, 4649 .access = PL1_R, .type = ARM_CP_CONST, 4650 .resetvalue = 0 }, 4651 { .name = "ID_AA64ISAR6_EL1_RESERVED", .state = ARM_CP_STATE_AA64, 4652 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 6, .opc2 = 6, 4653 .access = PL1_R, .type = ARM_CP_CONST, 4654 .resetvalue = 0 }, 4655 { .name = "ID_AA64ISAR7_EL1_RESERVED", .state = ARM_CP_STATE_AA64, 4656 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 6, .opc2 = 7, 4657 .access = PL1_R, .type = ARM_CP_CONST, 4658 .resetvalue = 0 }, 4659 { .name = "ID_AA64MMFR0_EL1", .state = ARM_CP_STATE_AA64, 4660 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 7, .opc2 = 0, 4661 .access = PL1_R, .type = ARM_CP_CONST, 4662 .resetvalue = cpu->id_aa64mmfr0 }, 4663 { .name = "ID_AA64MMFR1_EL1", .state = ARM_CP_STATE_AA64, 4664 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 7, .opc2 = 1, 4665 .access = PL1_R, .type = ARM_CP_CONST, 4666 .resetvalue = cpu->id_aa64mmfr1 }, 4667 { .name = "ID_AA64MMFR2_EL1_RESERVED", .state = ARM_CP_STATE_AA64, 4668 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 7, .opc2 = 2, 4669 .access = PL1_R, .type = ARM_CP_CONST, 4670 .resetvalue = 0 }, 4671 { .name = "ID_AA64MMFR3_EL1_RESERVED", .state = ARM_CP_STATE_AA64, 4672 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 7, .opc2 = 3, 4673 .access = PL1_R, .type = ARM_CP_CONST, 4674 .resetvalue = 0 }, 4675 { .name = "ID_AA64MMFR4_EL1_RESERVED", .state = ARM_CP_STATE_AA64, 4676 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 7, .opc2 = 4, 4677 .access = PL1_R, .type = ARM_CP_CONST, 4678 .resetvalue = 0 }, 4679 { .name = "ID_AA64MMFR5_EL1_RESERVED", .state = ARM_CP_STATE_AA64, 4680 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 7, .opc2 = 5, 4681 .access = PL1_R, .type = ARM_CP_CONST, 4682 .resetvalue = 0 }, 4683 { .name = "ID_AA64MMFR6_EL1_RESERVED", .state = ARM_CP_STATE_AA64, 4684 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 7, .opc2 = 6, 4685 .access = PL1_R, .type = ARM_CP_CONST, 4686 .resetvalue = 0 }, 4687 { .name = "ID_AA64MMFR7_EL1_RESERVED", .state = ARM_CP_STATE_AA64, 4688 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 7, .opc2 = 7, 4689 .access = PL1_R, .type = ARM_CP_CONST, 4690 .resetvalue = 0 }, 4691 { .name = "MVFR0_EL1", .state = ARM_CP_STATE_AA64, 4692 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 3, .opc2 = 0, 4693 .access = PL1_R, .type = ARM_CP_CONST, 4694 .resetvalue = cpu->mvfr0 }, 4695 { .name = "MVFR1_EL1", .state = ARM_CP_STATE_AA64, 4696 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 3, .opc2 = 1, 4697 .access = PL1_R, .type = ARM_CP_CONST, 4698 .resetvalue = cpu->mvfr1 }, 4699 { .name = "MVFR2_EL1", .state = ARM_CP_STATE_AA64, 4700 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 3, .opc2 = 2, 4701 .access = PL1_R, .type = ARM_CP_CONST, 4702 .resetvalue = cpu->mvfr2 }, 4703 { .name = "MVFR3_EL1_RESERVED", .state = ARM_CP_STATE_AA64, 4704 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 3, .opc2 = 3, 4705 .access = PL1_R, .type = ARM_CP_CONST, 4706 .resetvalue = 0 }, 4707 { .name = "MVFR4_EL1_RESERVED", .state = ARM_CP_STATE_AA64, 4708 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 3, .opc2 = 4, 4709 .access = PL1_R, .type = ARM_CP_CONST, 4710 .resetvalue = 0 }, 4711 { .name = "MVFR5_EL1_RESERVED", .state = ARM_CP_STATE_AA64, 4712 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 3, .opc2 = 5, 4713 .access = PL1_R, .type = ARM_CP_CONST, 4714 .resetvalue = 0 }, 4715 { .name = "MVFR6_EL1_RESERVED", .state = ARM_CP_STATE_AA64, 4716 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 3, .opc2 = 6, 4717 .access = PL1_R, .type = ARM_CP_CONST, 4718 .resetvalue = 0 }, 4719 { .name = "MVFR7_EL1_RESERVED", .state = ARM_CP_STATE_AA64, 4720 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 3, .opc2 = 7, 4721 .access = PL1_R, .type = ARM_CP_CONST, 4722 .resetvalue = 0 }, 4723 { .name = "PMCEID0", .state = ARM_CP_STATE_AA32, 4724 .cp = 15, .opc1 = 0, .crn = 9, .crm = 12, .opc2 = 6, 4725 .access = PL0_R, .accessfn = pmreg_access, .type = ARM_CP_CONST, 4726 .resetvalue = cpu->pmceid0 }, 4727 { .name = "PMCEID0_EL0", .state = ARM_CP_STATE_AA64, 4728 .opc0 = 3, .opc1 = 3, .crn = 9, .crm = 12, .opc2 = 6, 4729 .access = PL0_R, .accessfn = pmreg_access, .type = ARM_CP_CONST, 4730 .resetvalue = cpu->pmceid0 }, 4731 { .name = "PMCEID1", .state = ARM_CP_STATE_AA32, 4732 .cp = 15, .opc1 = 0, .crn = 9, .crm = 12, .opc2 = 7, 4733 .access = PL0_R, .accessfn = pmreg_access, .type = ARM_CP_CONST, 4734 .resetvalue = cpu->pmceid1 }, 4735 { .name = "PMCEID1_EL0", .state = ARM_CP_STATE_AA64, 4736 .opc0 = 3, .opc1 = 3, .crn = 9, .crm = 12, .opc2 = 7, 4737 .access = PL0_R, .accessfn = pmreg_access, .type = ARM_CP_CONST, 4738 .resetvalue = cpu->pmceid1 }, 4739 REGINFO_SENTINEL 4740 }; 4741 /* RVBAR_EL1 is only implemented if EL1 is the highest EL */ 4742 if (!arm_feature(env, ARM_FEATURE_EL3) && 4743 !arm_feature(env, ARM_FEATURE_EL2)) { 4744 ARMCPRegInfo rvbar = { 4745 .name = "RVBAR_EL1", .state = ARM_CP_STATE_AA64, 4746 .opc0 = 3, .opc1 = 0, .crn = 12, .crm = 0, .opc2 = 1, 4747 .type = ARM_CP_CONST, .access = PL1_R, .resetvalue = cpu->rvbar 4748 }; 4749 define_one_arm_cp_reg(cpu, &rvbar); 4750 } 4751 define_arm_cp_regs(cpu, v8_idregs); 4752 define_arm_cp_regs(cpu, v8_cp_reginfo); 4753 } 4754 if (arm_feature(env, ARM_FEATURE_EL2)) { 4755 uint64_t vmpidr_def = mpidr_read_val(env); 4756 ARMCPRegInfo vpidr_regs[] = { 4757 { .name = "VPIDR", .state = ARM_CP_STATE_AA32, 4758 .cp = 15, .opc1 = 4, .crn = 0, .crm = 0, .opc2 = 0, 4759 .access = PL2_RW, .accessfn = access_el3_aa32ns, 4760 .resetvalue = cpu->midr, 4761 .fieldoffset = offsetof(CPUARMState, cp15.vpidr_el2) }, 4762 { .name = "VPIDR_EL2", .state = ARM_CP_STATE_AA64, 4763 .opc0 = 3, .opc1 = 4, .crn = 0, .crm = 0, .opc2 = 0, 4764 .access = PL2_RW, .resetvalue = cpu->midr, 4765 .fieldoffset = offsetof(CPUARMState, cp15.vpidr_el2) }, 4766 { .name = "VMPIDR", .state = ARM_CP_STATE_AA32, 4767 .cp = 15, .opc1 = 4, .crn = 0, .crm = 0, .opc2 = 5, 4768 .access = PL2_RW, .accessfn = access_el3_aa32ns, 4769 .resetvalue = vmpidr_def, 4770 .fieldoffset = offsetof(CPUARMState, cp15.vmpidr_el2) }, 4771 { .name = "VMPIDR_EL2", .state = ARM_CP_STATE_AA64, 4772 .opc0 = 3, .opc1 = 4, .crn = 0, .crm = 0, .opc2 = 5, 4773 .access = PL2_RW, 4774 .resetvalue = vmpidr_def, 4775 .fieldoffset = offsetof(CPUARMState, cp15.vmpidr_el2) }, 4776 REGINFO_SENTINEL 4777 }; 4778 define_arm_cp_regs(cpu, vpidr_regs); 4779 define_arm_cp_regs(cpu, el2_cp_reginfo); 4780 /* RVBAR_EL2 is only implemented if EL2 is the highest EL */ 4781 if (!arm_feature(env, ARM_FEATURE_EL3)) { 4782 ARMCPRegInfo rvbar = { 4783 .name = "RVBAR_EL2", .state = ARM_CP_STATE_AA64, 4784 .opc0 = 3, .opc1 = 4, .crn = 12, .crm = 0, .opc2 = 1, 4785 .type = ARM_CP_CONST, .access = PL2_R, .resetvalue = cpu->rvbar 4786 }; 4787 define_one_arm_cp_reg(cpu, &rvbar); 4788 } 4789 } else { 4790 /* If EL2 is missing but higher ELs are enabled, we need to 4791 * register the no_el2 reginfos. 4792 */ 4793 if (arm_feature(env, ARM_FEATURE_EL3)) { 4794 /* When EL3 exists but not EL2, VPIDR and VMPIDR take the value 4795 * of MIDR_EL1 and MPIDR_EL1. 4796 */ 4797 ARMCPRegInfo vpidr_regs[] = { 4798 { .name = "VPIDR_EL2", .state = ARM_CP_STATE_BOTH, 4799 .opc0 = 3, .opc1 = 4, .crn = 0, .crm = 0, .opc2 = 0, 4800 .access = PL2_RW, .accessfn = access_el3_aa32ns_aa64any, 4801 .type = ARM_CP_CONST, .resetvalue = cpu->midr, 4802 .fieldoffset = offsetof(CPUARMState, cp15.vpidr_el2) }, 4803 { .name = "VMPIDR_EL2", .state = ARM_CP_STATE_BOTH, 4804 .opc0 = 3, .opc1 = 4, .crn = 0, .crm = 0, .opc2 = 5, 4805 .access = PL2_RW, .accessfn = access_el3_aa32ns_aa64any, 4806 .type = ARM_CP_NO_RAW, 4807 .writefn = arm_cp_write_ignore, .readfn = mpidr_read }, 4808 REGINFO_SENTINEL 4809 }; 4810 define_arm_cp_regs(cpu, vpidr_regs); 4811 define_arm_cp_regs(cpu, el3_no_el2_cp_reginfo); 4812 } 4813 } 4814 if (arm_feature(env, ARM_FEATURE_EL3)) { 4815 define_arm_cp_regs(cpu, el3_cp_reginfo); 4816 ARMCPRegInfo el3_regs[] = { 4817 { .name = "RVBAR_EL3", .state = ARM_CP_STATE_AA64, 4818 .opc0 = 3, .opc1 = 6, .crn = 12, .crm = 0, .opc2 = 1, 4819 .type = ARM_CP_CONST, .access = PL3_R, .resetvalue = cpu->rvbar }, 4820 { .name = "SCTLR_EL3", .state = ARM_CP_STATE_AA64, 4821 .opc0 = 3, .opc1 = 6, .crn = 1, .crm = 0, .opc2 = 0, 4822 .access = PL3_RW, 4823 .raw_writefn = raw_write, .writefn = sctlr_write, 4824 .fieldoffset = offsetof(CPUARMState, cp15.sctlr_el[3]), 4825 .resetvalue = cpu->reset_sctlr }, 4826 REGINFO_SENTINEL 4827 }; 4828 4829 define_arm_cp_regs(cpu, el3_regs); 4830 } 4831 /* The behaviour of NSACR is sufficiently various that we don't 4832 * try to describe it in a single reginfo: 4833 * if EL3 is 64 bit, then trap to EL3 from S EL1, 4834 * reads as constant 0xc00 from NS EL1 and NS EL2 4835 * if EL3 is 32 bit, then RW at EL3, RO at NS EL1 and NS EL2 4836 * if v7 without EL3, register doesn't exist 4837 * if v8 without EL3, reads as constant 0xc00 from NS EL1 and NS EL2 4838 */ 4839 if (arm_feature(env, ARM_FEATURE_EL3)) { 4840 if (arm_feature(env, ARM_FEATURE_AARCH64)) { 4841 ARMCPRegInfo nsacr = { 4842 .name = "NSACR", .type = ARM_CP_CONST, 4843 .cp = 15, .opc1 = 0, .crn = 1, .crm = 1, .opc2 = 2, 4844 .access = PL1_RW, .accessfn = nsacr_access, 4845 .resetvalue = 0xc00 4846 }; 4847 define_one_arm_cp_reg(cpu, &nsacr); 4848 } else { 4849 ARMCPRegInfo nsacr = { 4850 .name = "NSACR", 4851 .cp = 15, .opc1 = 0, .crn = 1, .crm = 1, .opc2 = 2, 4852 .access = PL3_RW | PL1_R, 4853 .resetvalue = 0, 4854 .fieldoffset = offsetof(CPUARMState, cp15.nsacr) 4855 }; 4856 define_one_arm_cp_reg(cpu, &nsacr); 4857 } 4858 } else { 4859 if (arm_feature(env, ARM_FEATURE_V8)) { 4860 ARMCPRegInfo nsacr = { 4861 .name = "NSACR", .type = ARM_CP_CONST, 4862 .cp = 15, .opc1 = 0, .crn = 1, .crm = 1, .opc2 = 2, 4863 .access = PL1_R, 4864 .resetvalue = 0xc00 4865 }; 4866 define_one_arm_cp_reg(cpu, &nsacr); 4867 } 4868 } 4869 4870 if (arm_feature(env, ARM_FEATURE_MPU)) { 4871 if (arm_feature(env, ARM_FEATURE_V6)) { 4872 /* PMSAv6 not implemented */ 4873 assert(arm_feature(env, ARM_FEATURE_V7)); 4874 define_arm_cp_regs(cpu, vmsa_pmsa_cp_reginfo); 4875 define_arm_cp_regs(cpu, pmsav7_cp_reginfo); 4876 } else { 4877 define_arm_cp_regs(cpu, pmsav5_cp_reginfo); 4878 } 4879 } else { 4880 define_arm_cp_regs(cpu, vmsa_pmsa_cp_reginfo); 4881 define_arm_cp_regs(cpu, vmsa_cp_reginfo); 4882 } 4883 if (arm_feature(env, ARM_FEATURE_THUMB2EE)) { 4884 define_arm_cp_regs(cpu, t2ee_cp_reginfo); 4885 } 4886 if (arm_feature(env, ARM_FEATURE_GENERIC_TIMER)) { 4887 define_arm_cp_regs(cpu, generic_timer_cp_reginfo); 4888 } 4889 if (arm_feature(env, ARM_FEATURE_VAPA)) { 4890 define_arm_cp_regs(cpu, vapa_cp_reginfo); 4891 } 4892 if (arm_feature(env, ARM_FEATURE_CACHE_TEST_CLEAN)) { 4893 define_arm_cp_regs(cpu, cache_test_clean_cp_reginfo); 4894 } 4895 if (arm_feature(env, ARM_FEATURE_CACHE_DIRTY_REG)) { 4896 define_arm_cp_regs(cpu, cache_dirty_status_cp_reginfo); 4897 } 4898 if (arm_feature(env, ARM_FEATURE_CACHE_BLOCK_OPS)) { 4899 define_arm_cp_regs(cpu, cache_block_ops_cp_reginfo); 4900 } 4901 if (arm_feature(env, ARM_FEATURE_OMAPCP)) { 4902 define_arm_cp_regs(cpu, omap_cp_reginfo); 4903 } 4904 if (arm_feature(env, ARM_FEATURE_STRONGARM)) { 4905 define_arm_cp_regs(cpu, strongarm_cp_reginfo); 4906 } 4907 if (arm_feature(env, ARM_FEATURE_XSCALE)) { 4908 define_arm_cp_regs(cpu, xscale_cp_reginfo); 4909 } 4910 if (arm_feature(env, ARM_FEATURE_DUMMY_C15_REGS)) { 4911 define_arm_cp_regs(cpu, dummy_c15_cp_reginfo); 4912 } 4913 if (arm_feature(env, ARM_FEATURE_LPAE)) { 4914 define_arm_cp_regs(cpu, lpae_cp_reginfo); 4915 } 4916 /* Slightly awkwardly, the OMAP and StrongARM cores need all of 4917 * cp15 crn=0 to be writes-ignored, whereas for other cores they should 4918 * be read-only (ie write causes UNDEF exception). 4919 */ 4920 { 4921 ARMCPRegInfo id_pre_v8_midr_cp_reginfo[] = { 4922 /* Pre-v8 MIDR space. 4923 * Note that the MIDR isn't a simple constant register because 4924 * of the TI925 behaviour where writes to another register can 4925 * cause the MIDR value to change. 4926 * 4927 * Unimplemented registers in the c15 0 0 0 space default to 4928 * MIDR. Define MIDR first as this entire space, then CTR, TCMTR 4929 * and friends override accordingly. 4930 */ 4931 { .name = "MIDR", 4932 .cp = 15, .crn = 0, .crm = 0, .opc1 = 0, .opc2 = CP_ANY, 4933 .access = PL1_R, .resetvalue = cpu->midr, 4934 .writefn = arm_cp_write_ignore, .raw_writefn = raw_write, 4935 .readfn = midr_read, 4936 .fieldoffset = offsetof(CPUARMState, cp15.c0_cpuid), 4937 .type = ARM_CP_OVERRIDE }, 4938 /* crn = 0 op1 = 0 crm = 3..7 : currently unassigned; we RAZ. */ 4939 { .name = "DUMMY", 4940 .cp = 15, .crn = 0, .crm = 3, .opc1 = 0, .opc2 = CP_ANY, 4941 .access = PL1_R, .type = ARM_CP_CONST, .resetvalue = 0 }, 4942 { .name = "DUMMY", 4943 .cp = 15, .crn = 0, .crm = 4, .opc1 = 0, .opc2 = CP_ANY, 4944 .access = PL1_R, .type = ARM_CP_CONST, .resetvalue = 0 }, 4945 { .name = "DUMMY", 4946 .cp = 15, .crn = 0, .crm = 5, .opc1 = 0, .opc2 = CP_ANY, 4947 .access = PL1_R, .type = ARM_CP_CONST, .resetvalue = 0 }, 4948 { .name = "DUMMY", 4949 .cp = 15, .crn = 0, .crm = 6, .opc1 = 0, .opc2 = CP_ANY, 4950 .access = PL1_R, .type = ARM_CP_CONST, .resetvalue = 0 }, 4951 { .name = "DUMMY", 4952 .cp = 15, .crn = 0, .crm = 7, .opc1 = 0, .opc2 = CP_ANY, 4953 .access = PL1_R, .type = ARM_CP_CONST, .resetvalue = 0 }, 4954 REGINFO_SENTINEL 4955 }; 4956 ARMCPRegInfo id_v8_midr_cp_reginfo[] = { 4957 { .name = "MIDR_EL1", .state = ARM_CP_STATE_BOTH, 4958 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 0, .opc2 = 0, 4959 .access = PL1_R, .type = ARM_CP_NO_RAW, .resetvalue = cpu->midr, 4960 .fieldoffset = offsetof(CPUARMState, cp15.c0_cpuid), 4961 .readfn = midr_read }, 4962 /* crn = 0 op1 = 0 crm = 0 op2 = 4,7 : AArch32 aliases of MIDR */ 4963 { .name = "MIDR", .type = ARM_CP_ALIAS | ARM_CP_CONST, 4964 .cp = 15, .crn = 0, .crm = 0, .opc1 = 0, .opc2 = 4, 4965 .access = PL1_R, .resetvalue = cpu->midr }, 4966 { .name = "MIDR", .type = ARM_CP_ALIAS | ARM_CP_CONST, 4967 .cp = 15, .crn = 0, .crm = 0, .opc1 = 0, .opc2 = 7, 4968 .access = PL1_R, .resetvalue = cpu->midr }, 4969 { .name = "REVIDR_EL1", .state = ARM_CP_STATE_BOTH, 4970 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 0, .opc2 = 6, 4971 .access = PL1_R, .type = ARM_CP_CONST, .resetvalue = cpu->revidr }, 4972 REGINFO_SENTINEL 4973 }; 4974 ARMCPRegInfo id_cp_reginfo[] = { 4975 /* These are common to v8 and pre-v8 */ 4976 { .name = "CTR", 4977 .cp = 15, .crn = 0, .crm = 0, .opc1 = 0, .opc2 = 1, 4978 .access = PL1_R, .type = ARM_CP_CONST, .resetvalue = cpu->ctr }, 4979 { .name = "CTR_EL0", .state = ARM_CP_STATE_AA64, 4980 .opc0 = 3, .opc1 = 3, .opc2 = 1, .crn = 0, .crm = 0, 4981 .access = PL0_R, .accessfn = ctr_el0_access, 4982 .type = ARM_CP_CONST, .resetvalue = cpu->ctr }, 4983 /* TCMTR and TLBTR exist in v8 but have no 64-bit versions */ 4984 { .name = "TCMTR", 4985 .cp = 15, .crn = 0, .crm = 0, .opc1 = 0, .opc2 = 2, 4986 .access = PL1_R, .type = ARM_CP_CONST, .resetvalue = 0 }, 4987 REGINFO_SENTINEL 4988 }; 4989 /* TLBTR is specific to VMSA */ 4990 ARMCPRegInfo id_tlbtr_reginfo = { 4991 .name = "TLBTR", 4992 .cp = 15, .crn = 0, .crm = 0, .opc1 = 0, .opc2 = 3, 4993 .access = PL1_R, .type = ARM_CP_CONST, .resetvalue = 0, 4994 }; 4995 /* MPUIR is specific to PMSA V6+ */ 4996 ARMCPRegInfo id_mpuir_reginfo = { 4997 .name = "MPUIR", 4998 .cp = 15, .crn = 0, .crm = 0, .opc1 = 0, .opc2 = 4, 4999 .access = PL1_R, .type = ARM_CP_CONST, 5000 .resetvalue = cpu->pmsav7_dregion << 8 5001 }; 5002 ARMCPRegInfo crn0_wi_reginfo = { 5003 .name = "CRN0_WI", .cp = 15, .crn = 0, .crm = CP_ANY, 5004 .opc1 = CP_ANY, .opc2 = CP_ANY, .access = PL1_W, 5005 .type = ARM_CP_NOP | ARM_CP_OVERRIDE 5006 }; 5007 if (arm_feature(env, ARM_FEATURE_OMAPCP) || 5008 arm_feature(env, ARM_FEATURE_STRONGARM)) { 5009 ARMCPRegInfo *r; 5010 /* Register the blanket "writes ignored" value first to cover the 5011 * whole space. Then update the specific ID registers to allow write 5012 * access, so that they ignore writes rather than causing them to 5013 * UNDEF. 5014 */ 5015 define_one_arm_cp_reg(cpu, &crn0_wi_reginfo); 5016 for (r = id_pre_v8_midr_cp_reginfo; 5017 r->type != ARM_CP_SENTINEL; r++) { 5018 r->access = PL1_RW; 5019 } 5020 for (r = id_cp_reginfo; r->type != ARM_CP_SENTINEL; r++) { 5021 r->access = PL1_RW; 5022 } 5023 id_tlbtr_reginfo.access = PL1_RW; 5024 id_tlbtr_reginfo.access = PL1_RW; 5025 } 5026 if (arm_feature(env, ARM_FEATURE_V8)) { 5027 define_arm_cp_regs(cpu, id_v8_midr_cp_reginfo); 5028 } else { 5029 define_arm_cp_regs(cpu, id_pre_v8_midr_cp_reginfo); 5030 } 5031 define_arm_cp_regs(cpu, id_cp_reginfo); 5032 if (!arm_feature(env, ARM_FEATURE_MPU)) { 5033 define_one_arm_cp_reg(cpu, &id_tlbtr_reginfo); 5034 } else if (arm_feature(env, ARM_FEATURE_V7)) { 5035 define_one_arm_cp_reg(cpu, &id_mpuir_reginfo); 5036 } 5037 } 5038 5039 if (arm_feature(env, ARM_FEATURE_MPIDR)) { 5040 define_arm_cp_regs(cpu, mpidr_cp_reginfo); 5041 } 5042 5043 if (arm_feature(env, ARM_FEATURE_AUXCR)) { 5044 ARMCPRegInfo auxcr_reginfo[] = { 5045 { .name = "ACTLR_EL1", .state = ARM_CP_STATE_BOTH, 5046 .opc0 = 3, .opc1 = 0, .crn = 1, .crm = 0, .opc2 = 1, 5047 .access = PL1_RW, .type = ARM_CP_CONST, 5048 .resetvalue = cpu->reset_auxcr }, 5049 { .name = "ACTLR_EL2", .state = ARM_CP_STATE_BOTH, 5050 .opc0 = 3, .opc1 = 4, .crn = 1, .crm = 0, .opc2 = 1, 5051 .access = PL2_RW, .type = ARM_CP_CONST, 5052 .resetvalue = 0 }, 5053 { .name = "ACTLR_EL3", .state = ARM_CP_STATE_AA64, 5054 .opc0 = 3, .opc1 = 6, .crn = 1, .crm = 0, .opc2 = 1, 5055 .access = PL3_RW, .type = ARM_CP_CONST, 5056 .resetvalue = 0 }, 5057 REGINFO_SENTINEL 5058 }; 5059 define_arm_cp_regs(cpu, auxcr_reginfo); 5060 } 5061 5062 if (arm_feature(env, ARM_FEATURE_CBAR)) { 5063 if (arm_feature(env, ARM_FEATURE_AARCH64)) { 5064 /* 32 bit view is [31:18] 0...0 [43:32]. */ 5065 uint32_t cbar32 = (extract64(cpu->reset_cbar, 18, 14) << 18) 5066 | extract64(cpu->reset_cbar, 32, 12); 5067 ARMCPRegInfo cbar_reginfo[] = { 5068 { .name = "CBAR", 5069 .type = ARM_CP_CONST, 5070 .cp = 15, .crn = 15, .crm = 0, .opc1 = 4, .opc2 = 0, 5071 .access = PL1_R, .resetvalue = cpu->reset_cbar }, 5072 { .name = "CBAR_EL1", .state = ARM_CP_STATE_AA64, 5073 .type = ARM_CP_CONST, 5074 .opc0 = 3, .opc1 = 1, .crn = 15, .crm = 3, .opc2 = 0, 5075 .access = PL1_R, .resetvalue = cbar32 }, 5076 REGINFO_SENTINEL 5077 }; 5078 /* We don't implement a r/w 64 bit CBAR currently */ 5079 assert(arm_feature(env, ARM_FEATURE_CBAR_RO)); 5080 define_arm_cp_regs(cpu, cbar_reginfo); 5081 } else { 5082 ARMCPRegInfo cbar = { 5083 .name = "CBAR", 5084 .cp = 15, .crn = 15, .crm = 0, .opc1 = 4, .opc2 = 0, 5085 .access = PL1_R|PL3_W, .resetvalue = cpu->reset_cbar, 5086 .fieldoffset = offsetof(CPUARMState, 5087 cp15.c15_config_base_address) 5088 }; 5089 if (arm_feature(env, ARM_FEATURE_CBAR_RO)) { 5090 cbar.access = PL1_R; 5091 cbar.fieldoffset = 0; 5092 cbar.type = ARM_CP_CONST; 5093 } 5094 define_one_arm_cp_reg(cpu, &cbar); 5095 } 5096 } 5097 5098 if (arm_feature(env, ARM_FEATURE_VBAR)) { 5099 ARMCPRegInfo vbar_cp_reginfo[] = { 5100 { .name = "VBAR", .state = ARM_CP_STATE_BOTH, 5101 .opc0 = 3, .crn = 12, .crm = 0, .opc1 = 0, .opc2 = 0, 5102 .access = PL1_RW, .writefn = vbar_write, 5103 .bank_fieldoffsets = { offsetof(CPUARMState, cp15.vbar_s), 5104 offsetof(CPUARMState, cp15.vbar_ns) }, 5105 .resetvalue = 0 }, 5106 REGINFO_SENTINEL 5107 }; 5108 define_arm_cp_regs(cpu, vbar_cp_reginfo); 5109 } 5110 5111 /* Generic registers whose values depend on the implementation */ 5112 { 5113 ARMCPRegInfo sctlr = { 5114 .name = "SCTLR", .state = ARM_CP_STATE_BOTH, 5115 .opc0 = 3, .opc1 = 0, .crn = 1, .crm = 0, .opc2 = 0, 5116 .access = PL1_RW, 5117 .bank_fieldoffsets = { offsetof(CPUARMState, cp15.sctlr_s), 5118 offsetof(CPUARMState, cp15.sctlr_ns) }, 5119 .writefn = sctlr_write, .resetvalue = cpu->reset_sctlr, 5120 .raw_writefn = raw_write, 5121 }; 5122 if (arm_feature(env, ARM_FEATURE_XSCALE)) { 5123 /* Normally we would always end the TB on an SCTLR write, but Linux 5124 * arch/arm/mach-pxa/sleep.S expects two instructions following 5125 * an MMU enable to execute from cache. Imitate this behaviour. 5126 */ 5127 sctlr.type |= ARM_CP_SUPPRESS_TB_END; 5128 } 5129 define_one_arm_cp_reg(cpu, &sctlr); 5130 } 5131 } 5132 5133 ARMCPU *cpu_arm_init(const char *cpu_model) 5134 { 5135 return ARM_CPU(cpu_generic_init(TYPE_ARM_CPU, cpu_model)); 5136 } 5137 5138 void arm_cpu_register_gdb_regs_for_features(ARMCPU *cpu) 5139 { 5140 CPUState *cs = CPU(cpu); 5141 CPUARMState *env = &cpu->env; 5142 5143 if (arm_feature(env, ARM_FEATURE_AARCH64)) { 5144 gdb_register_coprocessor(cs, aarch64_fpu_gdb_get_reg, 5145 aarch64_fpu_gdb_set_reg, 5146 34, "aarch64-fpu.xml", 0); 5147 } else if (arm_feature(env, ARM_FEATURE_NEON)) { 5148 gdb_register_coprocessor(cs, vfp_gdb_get_reg, vfp_gdb_set_reg, 5149 51, "arm-neon.xml", 0); 5150 } else if (arm_feature(env, ARM_FEATURE_VFP3)) { 5151 gdb_register_coprocessor(cs, vfp_gdb_get_reg, vfp_gdb_set_reg, 5152 35, "arm-vfp3.xml", 0); 5153 } else if (arm_feature(env, ARM_FEATURE_VFP)) { 5154 gdb_register_coprocessor(cs, vfp_gdb_get_reg, vfp_gdb_set_reg, 5155 19, "arm-vfp.xml", 0); 5156 } 5157 } 5158 5159 /* Sort alphabetically by type name, except for "any". */ 5160 static gint arm_cpu_list_compare(gconstpointer a, gconstpointer b) 5161 { 5162 ObjectClass *class_a = (ObjectClass *)a; 5163 ObjectClass *class_b = (ObjectClass *)b; 5164 const char *name_a, *name_b; 5165 5166 name_a = object_class_get_name(class_a); 5167 name_b = object_class_get_name(class_b); 5168 if (strcmp(name_a, "any-" TYPE_ARM_CPU) == 0) { 5169 return 1; 5170 } else if (strcmp(name_b, "any-" TYPE_ARM_CPU) == 0) { 5171 return -1; 5172 } else { 5173 return strcmp(name_a, name_b); 5174 } 5175 } 5176 5177 static void arm_cpu_list_entry(gpointer data, gpointer user_data) 5178 { 5179 ObjectClass *oc = data; 5180 CPUListState *s = user_data; 5181 const char *typename; 5182 char *name; 5183 5184 typename = object_class_get_name(oc); 5185 name = g_strndup(typename, strlen(typename) - strlen("-" TYPE_ARM_CPU)); 5186 (*s->cpu_fprintf)(s->file, " %s\n", 5187 name); 5188 g_free(name); 5189 } 5190 5191 void arm_cpu_list(FILE *f, fprintf_function cpu_fprintf) 5192 { 5193 CPUListState s = { 5194 .file = f, 5195 .cpu_fprintf = cpu_fprintf, 5196 }; 5197 GSList *list; 5198 5199 list = object_class_get_list(TYPE_ARM_CPU, false); 5200 list = g_slist_sort(list, arm_cpu_list_compare); 5201 (*cpu_fprintf)(f, "Available CPUs:\n"); 5202 g_slist_foreach(list, arm_cpu_list_entry, &s); 5203 g_slist_free(list); 5204 #ifdef CONFIG_KVM 5205 /* The 'host' CPU type is dynamically registered only if KVM is 5206 * enabled, so we have to special-case it here: 5207 */ 5208 (*cpu_fprintf)(f, " host (only available in KVM mode)\n"); 5209 #endif 5210 } 5211 5212 static void arm_cpu_add_definition(gpointer data, gpointer user_data) 5213 { 5214 ObjectClass *oc = data; 5215 CpuDefinitionInfoList **cpu_list = user_data; 5216 CpuDefinitionInfoList *entry; 5217 CpuDefinitionInfo *info; 5218 const char *typename; 5219 5220 typename = object_class_get_name(oc); 5221 info = g_malloc0(sizeof(*info)); 5222 info->name = g_strndup(typename, 5223 strlen(typename) - strlen("-" TYPE_ARM_CPU)); 5224 info->q_typename = g_strdup(typename); 5225 5226 entry = g_malloc0(sizeof(*entry)); 5227 entry->value = info; 5228 entry->next = *cpu_list; 5229 *cpu_list = entry; 5230 } 5231 5232 CpuDefinitionInfoList *arch_query_cpu_definitions(Error **errp) 5233 { 5234 CpuDefinitionInfoList *cpu_list = NULL; 5235 GSList *list; 5236 5237 list = object_class_get_list(TYPE_ARM_CPU, false); 5238 g_slist_foreach(list, arm_cpu_add_definition, &cpu_list); 5239 g_slist_free(list); 5240 5241 return cpu_list; 5242 } 5243 5244 static void add_cpreg_to_hashtable(ARMCPU *cpu, const ARMCPRegInfo *r, 5245 void *opaque, int state, int secstate, 5246 int crm, int opc1, int opc2) 5247 { 5248 /* Private utility function for define_one_arm_cp_reg_with_opaque(): 5249 * add a single reginfo struct to the hash table. 5250 */ 5251 uint32_t *key = g_new(uint32_t, 1); 5252 ARMCPRegInfo *r2 = g_memdup(r, sizeof(ARMCPRegInfo)); 5253 int is64 = (r->type & ARM_CP_64BIT) ? 1 : 0; 5254 int ns = (secstate & ARM_CP_SECSTATE_NS) ? 1 : 0; 5255 5256 /* Reset the secure state to the specific incoming state. This is 5257 * necessary as the register may have been defined with both states. 5258 */ 5259 r2->secure = secstate; 5260 5261 if (r->bank_fieldoffsets[0] && r->bank_fieldoffsets[1]) { 5262 /* Register is banked (using both entries in array). 5263 * Overwriting fieldoffset as the array is only used to define 5264 * banked registers but later only fieldoffset is used. 5265 */ 5266 r2->fieldoffset = r->bank_fieldoffsets[ns]; 5267 } 5268 5269 if (state == ARM_CP_STATE_AA32) { 5270 if (r->bank_fieldoffsets[0] && r->bank_fieldoffsets[1]) { 5271 /* If the register is banked then we don't need to migrate or 5272 * reset the 32-bit instance in certain cases: 5273 * 5274 * 1) If the register has both 32-bit and 64-bit instances then we 5275 * can count on the 64-bit instance taking care of the 5276 * non-secure bank. 5277 * 2) If ARMv8 is enabled then we can count on a 64-bit version 5278 * taking care of the secure bank. This requires that separate 5279 * 32 and 64-bit definitions are provided. 5280 */ 5281 if ((r->state == ARM_CP_STATE_BOTH && ns) || 5282 (arm_feature(&cpu->env, ARM_FEATURE_V8) && !ns)) { 5283 r2->type |= ARM_CP_ALIAS; 5284 } 5285 } else if ((secstate != r->secure) && !ns) { 5286 /* The register is not banked so we only want to allow migration of 5287 * the non-secure instance. 5288 */ 5289 r2->type |= ARM_CP_ALIAS; 5290 } 5291 5292 if (r->state == ARM_CP_STATE_BOTH) { 5293 /* We assume it is a cp15 register if the .cp field is left unset. 5294 */ 5295 if (r2->cp == 0) { 5296 r2->cp = 15; 5297 } 5298 5299 #ifdef HOST_WORDS_BIGENDIAN 5300 if (r2->fieldoffset) { 5301 r2->fieldoffset += sizeof(uint32_t); 5302 } 5303 #endif 5304 } 5305 } 5306 if (state == ARM_CP_STATE_AA64) { 5307 /* To allow abbreviation of ARMCPRegInfo 5308 * definitions, we treat cp == 0 as equivalent to 5309 * the value for "standard guest-visible sysreg". 5310 * STATE_BOTH definitions are also always "standard 5311 * sysreg" in their AArch64 view (the .cp value may 5312 * be non-zero for the benefit of the AArch32 view). 5313 */ 5314 if (r->cp == 0 || r->state == ARM_CP_STATE_BOTH) { 5315 r2->cp = CP_REG_ARM64_SYSREG_CP; 5316 } 5317 *key = ENCODE_AA64_CP_REG(r2->cp, r2->crn, crm, 5318 r2->opc0, opc1, opc2); 5319 } else { 5320 *key = ENCODE_CP_REG(r2->cp, is64, ns, r2->crn, crm, opc1, opc2); 5321 } 5322 if (opaque) { 5323 r2->opaque = opaque; 5324 } 5325 /* reginfo passed to helpers is correct for the actual access, 5326 * and is never ARM_CP_STATE_BOTH: 5327 */ 5328 r2->state = state; 5329 /* Make sure reginfo passed to helpers for wildcarded regs 5330 * has the correct crm/opc1/opc2 for this reg, not CP_ANY: 5331 */ 5332 r2->crm = crm; 5333 r2->opc1 = opc1; 5334 r2->opc2 = opc2; 5335 /* By convention, for wildcarded registers only the first 5336 * entry is used for migration; the others are marked as 5337 * ALIAS so we don't try to transfer the register 5338 * multiple times. Special registers (ie NOP/WFI) are 5339 * never migratable and not even raw-accessible. 5340 */ 5341 if ((r->type & ARM_CP_SPECIAL)) { 5342 r2->type |= ARM_CP_NO_RAW; 5343 } 5344 if (((r->crm == CP_ANY) && crm != 0) || 5345 ((r->opc1 == CP_ANY) && opc1 != 0) || 5346 ((r->opc2 == CP_ANY) && opc2 != 0)) { 5347 r2->type |= ARM_CP_ALIAS; 5348 } 5349 5350 /* Check that raw accesses are either forbidden or handled. Note that 5351 * we can't assert this earlier because the setup of fieldoffset for 5352 * banked registers has to be done first. 5353 */ 5354 if (!(r2->type & ARM_CP_NO_RAW)) { 5355 assert(!raw_accessors_invalid(r2)); 5356 } 5357 5358 /* Overriding of an existing definition must be explicitly 5359 * requested. 5360 */ 5361 if (!(r->type & ARM_CP_OVERRIDE)) { 5362 ARMCPRegInfo *oldreg; 5363 oldreg = g_hash_table_lookup(cpu->cp_regs, key); 5364 if (oldreg && !(oldreg->type & ARM_CP_OVERRIDE)) { 5365 fprintf(stderr, "Register redefined: cp=%d %d bit " 5366 "crn=%d crm=%d opc1=%d opc2=%d, " 5367 "was %s, now %s\n", r2->cp, 32 + 32 * is64, 5368 r2->crn, r2->crm, r2->opc1, r2->opc2, 5369 oldreg->name, r2->name); 5370 g_assert_not_reached(); 5371 } 5372 } 5373 g_hash_table_insert(cpu->cp_regs, key, r2); 5374 } 5375 5376 5377 void define_one_arm_cp_reg_with_opaque(ARMCPU *cpu, 5378 const ARMCPRegInfo *r, void *opaque) 5379 { 5380 /* Define implementations of coprocessor registers. 5381 * We store these in a hashtable because typically 5382 * there are less than 150 registers in a space which 5383 * is 16*16*16*8*8 = 262144 in size. 5384 * Wildcarding is supported for the crm, opc1 and opc2 fields. 5385 * If a register is defined twice then the second definition is 5386 * used, so this can be used to define some generic registers and 5387 * then override them with implementation specific variations. 5388 * At least one of the original and the second definition should 5389 * include ARM_CP_OVERRIDE in its type bits -- this is just a guard 5390 * against accidental use. 5391 * 5392 * The state field defines whether the register is to be 5393 * visible in the AArch32 or AArch64 execution state. If the 5394 * state is set to ARM_CP_STATE_BOTH then we synthesise a 5395 * reginfo structure for the AArch32 view, which sees the lower 5396 * 32 bits of the 64 bit register. 5397 * 5398 * Only registers visible in AArch64 may set r->opc0; opc0 cannot 5399 * be wildcarded. AArch64 registers are always considered to be 64 5400 * bits; the ARM_CP_64BIT* flag applies only to the AArch32 view of 5401 * the register, if any. 5402 */ 5403 int crm, opc1, opc2, state; 5404 int crmmin = (r->crm == CP_ANY) ? 0 : r->crm; 5405 int crmmax = (r->crm == CP_ANY) ? 15 : r->crm; 5406 int opc1min = (r->opc1 == CP_ANY) ? 0 : r->opc1; 5407 int opc1max = (r->opc1 == CP_ANY) ? 7 : r->opc1; 5408 int opc2min = (r->opc2 == CP_ANY) ? 0 : r->opc2; 5409 int opc2max = (r->opc2 == CP_ANY) ? 7 : r->opc2; 5410 /* 64 bit registers have only CRm and Opc1 fields */ 5411 assert(!((r->type & ARM_CP_64BIT) && (r->opc2 || r->crn))); 5412 /* op0 only exists in the AArch64 encodings */ 5413 assert((r->state != ARM_CP_STATE_AA32) || (r->opc0 == 0)); 5414 /* AArch64 regs are all 64 bit so ARM_CP_64BIT is meaningless */ 5415 assert((r->state != ARM_CP_STATE_AA64) || !(r->type & ARM_CP_64BIT)); 5416 /* The AArch64 pseudocode CheckSystemAccess() specifies that op1 5417 * encodes a minimum access level for the register. We roll this 5418 * runtime check into our general permission check code, so check 5419 * here that the reginfo's specified permissions are strict enough 5420 * to encompass the generic architectural permission check. 5421 */ 5422 if (r->state != ARM_CP_STATE_AA32) { 5423 int mask = 0; 5424 switch (r->opc1) { 5425 case 0: case 1: case 2: 5426 /* min_EL EL1 */ 5427 mask = PL1_RW; 5428 break; 5429 case 3: 5430 /* min_EL EL0 */ 5431 mask = PL0_RW; 5432 break; 5433 case 4: 5434 /* min_EL EL2 */ 5435 mask = PL2_RW; 5436 break; 5437 case 5: 5438 /* unallocated encoding, so not possible */ 5439 assert(false); 5440 break; 5441 case 6: 5442 /* min_EL EL3 */ 5443 mask = PL3_RW; 5444 break; 5445 case 7: 5446 /* min_EL EL1, secure mode only (we don't check the latter) */ 5447 mask = PL1_RW; 5448 break; 5449 default: 5450 /* broken reginfo with out-of-range opc1 */ 5451 assert(false); 5452 break; 5453 } 5454 /* assert our permissions are not too lax (stricter is fine) */ 5455 assert((r->access & ~mask) == 0); 5456 } 5457 5458 /* Check that the register definition has enough info to handle 5459 * reads and writes if they are permitted. 5460 */ 5461 if (!(r->type & (ARM_CP_SPECIAL|ARM_CP_CONST))) { 5462 if (r->access & PL3_R) { 5463 assert((r->fieldoffset || 5464 (r->bank_fieldoffsets[0] && r->bank_fieldoffsets[1])) || 5465 r->readfn); 5466 } 5467 if (r->access & PL3_W) { 5468 assert((r->fieldoffset || 5469 (r->bank_fieldoffsets[0] && r->bank_fieldoffsets[1])) || 5470 r->writefn); 5471 } 5472 } 5473 /* Bad type field probably means missing sentinel at end of reg list */ 5474 assert(cptype_valid(r->type)); 5475 for (crm = crmmin; crm <= crmmax; crm++) { 5476 for (opc1 = opc1min; opc1 <= opc1max; opc1++) { 5477 for (opc2 = opc2min; opc2 <= opc2max; opc2++) { 5478 for (state = ARM_CP_STATE_AA32; 5479 state <= ARM_CP_STATE_AA64; state++) { 5480 if (r->state != state && r->state != ARM_CP_STATE_BOTH) { 5481 continue; 5482 } 5483 if (state == ARM_CP_STATE_AA32) { 5484 /* Under AArch32 CP registers can be common 5485 * (same for secure and non-secure world) or banked. 5486 */ 5487 switch (r->secure) { 5488 case ARM_CP_SECSTATE_S: 5489 case ARM_CP_SECSTATE_NS: 5490 add_cpreg_to_hashtable(cpu, r, opaque, state, 5491 r->secure, crm, opc1, opc2); 5492 break; 5493 default: 5494 add_cpreg_to_hashtable(cpu, r, opaque, state, 5495 ARM_CP_SECSTATE_S, 5496 crm, opc1, opc2); 5497 add_cpreg_to_hashtable(cpu, r, opaque, state, 5498 ARM_CP_SECSTATE_NS, 5499 crm, opc1, opc2); 5500 break; 5501 } 5502 } else { 5503 /* AArch64 registers get mapped to non-secure instance 5504 * of AArch32 */ 5505 add_cpreg_to_hashtable(cpu, r, opaque, state, 5506 ARM_CP_SECSTATE_NS, 5507 crm, opc1, opc2); 5508 } 5509 } 5510 } 5511 } 5512 } 5513 } 5514 5515 void define_arm_cp_regs_with_opaque(ARMCPU *cpu, 5516 const ARMCPRegInfo *regs, void *opaque) 5517 { 5518 /* Define a whole list of registers */ 5519 const ARMCPRegInfo *r; 5520 for (r = regs; r->type != ARM_CP_SENTINEL; r++) { 5521 define_one_arm_cp_reg_with_opaque(cpu, r, opaque); 5522 } 5523 } 5524 5525 const ARMCPRegInfo *get_arm_cp_reginfo(GHashTable *cpregs, uint32_t encoded_cp) 5526 { 5527 return g_hash_table_lookup(cpregs, &encoded_cp); 5528 } 5529 5530 void arm_cp_write_ignore(CPUARMState *env, const ARMCPRegInfo *ri, 5531 uint64_t value) 5532 { 5533 /* Helper coprocessor write function for write-ignore registers */ 5534 } 5535 5536 uint64_t arm_cp_read_zero(CPUARMState *env, const ARMCPRegInfo *ri) 5537 { 5538 /* Helper coprocessor write function for read-as-zero registers */ 5539 return 0; 5540 } 5541 5542 void arm_cp_reset_ignore(CPUARMState *env, const ARMCPRegInfo *opaque) 5543 { 5544 /* Helper coprocessor reset function for do-nothing-on-reset registers */ 5545 } 5546 5547 static int bad_mode_switch(CPUARMState *env, int mode, CPSRWriteType write_type) 5548 { 5549 /* Return true if it is not valid for us to switch to 5550 * this CPU mode (ie all the UNPREDICTABLE cases in 5551 * the ARM ARM CPSRWriteByInstr pseudocode). 5552 */ 5553 5554 /* Changes to or from Hyp via MSR and CPS are illegal. */ 5555 if (write_type == CPSRWriteByInstr && 5556 ((env->uncached_cpsr & CPSR_M) == ARM_CPU_MODE_HYP || 5557 mode == ARM_CPU_MODE_HYP)) { 5558 return 1; 5559 } 5560 5561 switch (mode) { 5562 case ARM_CPU_MODE_USR: 5563 return 0; 5564 case ARM_CPU_MODE_SYS: 5565 case ARM_CPU_MODE_SVC: 5566 case ARM_CPU_MODE_ABT: 5567 case ARM_CPU_MODE_UND: 5568 case ARM_CPU_MODE_IRQ: 5569 case ARM_CPU_MODE_FIQ: 5570 /* Note that we don't implement the IMPDEF NSACR.RFR which in v7 5571 * allows FIQ mode to be Secure-only. (In v8 this doesn't exist.) 5572 */ 5573 /* If HCR.TGE is set then changes from Monitor to NS PL1 via MSR 5574 * and CPS are treated as illegal mode changes. 5575 */ 5576 if (write_type == CPSRWriteByInstr && 5577 (env->cp15.hcr_el2 & HCR_TGE) && 5578 (env->uncached_cpsr & CPSR_M) == ARM_CPU_MODE_MON && 5579 !arm_is_secure_below_el3(env)) { 5580 return 1; 5581 } 5582 return 0; 5583 case ARM_CPU_MODE_HYP: 5584 return !arm_feature(env, ARM_FEATURE_EL2) 5585 || arm_current_el(env) < 2 || arm_is_secure(env); 5586 case ARM_CPU_MODE_MON: 5587 return arm_current_el(env) < 3; 5588 default: 5589 return 1; 5590 } 5591 } 5592 5593 uint32_t cpsr_read(CPUARMState *env) 5594 { 5595 int ZF; 5596 ZF = (env->ZF == 0); 5597 return env->uncached_cpsr | (env->NF & 0x80000000) | (ZF << 30) | 5598 (env->CF << 29) | ((env->VF & 0x80000000) >> 3) | (env->QF << 27) 5599 | (env->thumb << 5) | ((env->condexec_bits & 3) << 25) 5600 | ((env->condexec_bits & 0xfc) << 8) 5601 | (env->GE << 16) | (env->daif & CPSR_AIF); 5602 } 5603 5604 void cpsr_write(CPUARMState *env, uint32_t val, uint32_t mask, 5605 CPSRWriteType write_type) 5606 { 5607 uint32_t changed_daif; 5608 5609 if (mask & CPSR_NZCV) { 5610 env->ZF = (~val) & CPSR_Z; 5611 env->NF = val; 5612 env->CF = (val >> 29) & 1; 5613 env->VF = (val << 3) & 0x80000000; 5614 } 5615 if (mask & CPSR_Q) 5616 env->QF = ((val & CPSR_Q) != 0); 5617 if (mask & CPSR_T) 5618 env->thumb = ((val & CPSR_T) != 0); 5619 if (mask & CPSR_IT_0_1) { 5620 env->condexec_bits &= ~3; 5621 env->condexec_bits |= (val >> 25) & 3; 5622 } 5623 if (mask & CPSR_IT_2_7) { 5624 env->condexec_bits &= 3; 5625 env->condexec_bits |= (val >> 8) & 0xfc; 5626 } 5627 if (mask & CPSR_GE) { 5628 env->GE = (val >> 16) & 0xf; 5629 } 5630 5631 /* In a V7 implementation that includes the security extensions but does 5632 * not include Virtualization Extensions the SCR.FW and SCR.AW bits control 5633 * whether non-secure software is allowed to change the CPSR_F and CPSR_A 5634 * bits respectively. 5635 * 5636 * In a V8 implementation, it is permitted for privileged software to 5637 * change the CPSR A/F bits regardless of the SCR.AW/FW bits. 5638 */ 5639 if (write_type != CPSRWriteRaw && !arm_feature(env, ARM_FEATURE_V8) && 5640 arm_feature(env, ARM_FEATURE_EL3) && 5641 !arm_feature(env, ARM_FEATURE_EL2) && 5642 !arm_is_secure(env)) { 5643 5644 changed_daif = (env->daif ^ val) & mask; 5645 5646 if (changed_daif & CPSR_A) { 5647 /* Check to see if we are allowed to change the masking of async 5648 * abort exceptions from a non-secure state. 5649 */ 5650 if (!(env->cp15.scr_el3 & SCR_AW)) { 5651 qemu_log_mask(LOG_GUEST_ERROR, 5652 "Ignoring attempt to switch CPSR_A flag from " 5653 "non-secure world with SCR.AW bit clear\n"); 5654 mask &= ~CPSR_A; 5655 } 5656 } 5657 5658 if (changed_daif & CPSR_F) { 5659 /* Check to see if we are allowed to change the masking of FIQ 5660 * exceptions from a non-secure state. 5661 */ 5662 if (!(env->cp15.scr_el3 & SCR_FW)) { 5663 qemu_log_mask(LOG_GUEST_ERROR, 5664 "Ignoring attempt to switch CPSR_F flag from " 5665 "non-secure world with SCR.FW bit clear\n"); 5666 mask &= ~CPSR_F; 5667 } 5668 5669 /* Check whether non-maskable FIQ (NMFI) support is enabled. 5670 * If this bit is set software is not allowed to mask 5671 * FIQs, but is allowed to set CPSR_F to 0. 5672 */ 5673 if ((A32_BANKED_CURRENT_REG_GET(env, sctlr) & SCTLR_NMFI) && 5674 (val & CPSR_F)) { 5675 qemu_log_mask(LOG_GUEST_ERROR, 5676 "Ignoring attempt to enable CPSR_F flag " 5677 "(non-maskable FIQ [NMFI] support enabled)\n"); 5678 mask &= ~CPSR_F; 5679 } 5680 } 5681 } 5682 5683 env->daif &= ~(CPSR_AIF & mask); 5684 env->daif |= val & CPSR_AIF & mask; 5685 5686 if (write_type != CPSRWriteRaw && 5687 ((env->uncached_cpsr ^ val) & mask & CPSR_M)) { 5688 if ((env->uncached_cpsr & CPSR_M) == ARM_CPU_MODE_USR) { 5689 /* Note that we can only get here in USR mode if this is a 5690 * gdb stub write; for this case we follow the architectural 5691 * behaviour for guest writes in USR mode of ignoring an attempt 5692 * to switch mode. (Those are caught by translate.c for writes 5693 * triggered by guest instructions.) 5694 */ 5695 mask &= ~CPSR_M; 5696 } else if (bad_mode_switch(env, val & CPSR_M, write_type)) { 5697 /* Attempt to switch to an invalid mode: this is UNPREDICTABLE in 5698 * v7, and has defined behaviour in v8: 5699 * + leave CPSR.M untouched 5700 * + allow changes to the other CPSR fields 5701 * + set PSTATE.IL 5702 * For user changes via the GDB stub, we don't set PSTATE.IL, 5703 * as this would be unnecessarily harsh for a user error. 5704 */ 5705 mask &= ~CPSR_M; 5706 if (write_type != CPSRWriteByGDBStub && 5707 arm_feature(env, ARM_FEATURE_V8)) { 5708 mask |= CPSR_IL; 5709 val |= CPSR_IL; 5710 } 5711 } else { 5712 switch_mode(env, val & CPSR_M); 5713 } 5714 } 5715 mask &= ~CACHED_CPSR_BITS; 5716 env->uncached_cpsr = (env->uncached_cpsr & ~mask) | (val & mask); 5717 } 5718 5719 /* Sign/zero extend */ 5720 uint32_t HELPER(sxtb16)(uint32_t x) 5721 { 5722 uint32_t res; 5723 res = (uint16_t)(int8_t)x; 5724 res |= (uint32_t)(int8_t)(x >> 16) << 16; 5725 return res; 5726 } 5727 5728 uint32_t HELPER(uxtb16)(uint32_t x) 5729 { 5730 uint32_t res; 5731 res = (uint16_t)(uint8_t)x; 5732 res |= (uint32_t)(uint8_t)(x >> 16) << 16; 5733 return res; 5734 } 5735 5736 int32_t HELPER(sdiv)(int32_t num, int32_t den) 5737 { 5738 if (den == 0) 5739 return 0; 5740 if (num == INT_MIN && den == -1) 5741 return INT_MIN; 5742 return num / den; 5743 } 5744 5745 uint32_t HELPER(udiv)(uint32_t num, uint32_t den) 5746 { 5747 if (den == 0) 5748 return 0; 5749 return num / den; 5750 } 5751 5752 uint32_t HELPER(rbit)(uint32_t x) 5753 { 5754 return revbit32(x); 5755 } 5756 5757 #if defined(CONFIG_USER_ONLY) 5758 5759 /* These should probably raise undefined insn exceptions. */ 5760 void HELPER(v7m_msr)(CPUARMState *env, uint32_t reg, uint32_t val) 5761 { 5762 ARMCPU *cpu = arm_env_get_cpu(env); 5763 5764 cpu_abort(CPU(cpu), "v7m_msr %d\n", reg); 5765 } 5766 5767 uint32_t HELPER(v7m_mrs)(CPUARMState *env, uint32_t reg) 5768 { 5769 ARMCPU *cpu = arm_env_get_cpu(env); 5770 5771 cpu_abort(CPU(cpu), "v7m_mrs %d\n", reg); 5772 return 0; 5773 } 5774 5775 void switch_mode(CPUARMState *env, int mode) 5776 { 5777 ARMCPU *cpu = arm_env_get_cpu(env); 5778 5779 if (mode != ARM_CPU_MODE_USR) { 5780 cpu_abort(CPU(cpu), "Tried to switch out of user mode\n"); 5781 } 5782 } 5783 5784 uint32_t arm_phys_excp_target_el(CPUState *cs, uint32_t excp_idx, 5785 uint32_t cur_el, bool secure) 5786 { 5787 return 1; 5788 } 5789 5790 void aarch64_sync_64_to_32(CPUARMState *env) 5791 { 5792 g_assert_not_reached(); 5793 } 5794 5795 #else 5796 5797 void switch_mode(CPUARMState *env, int mode) 5798 { 5799 int old_mode; 5800 int i; 5801 5802 old_mode = env->uncached_cpsr & CPSR_M; 5803 if (mode == old_mode) 5804 return; 5805 5806 if (old_mode == ARM_CPU_MODE_FIQ) { 5807 memcpy (env->fiq_regs, env->regs + 8, 5 * sizeof(uint32_t)); 5808 memcpy (env->regs + 8, env->usr_regs, 5 * sizeof(uint32_t)); 5809 } else if (mode == ARM_CPU_MODE_FIQ) { 5810 memcpy (env->usr_regs, env->regs + 8, 5 * sizeof(uint32_t)); 5811 memcpy (env->regs + 8, env->fiq_regs, 5 * sizeof(uint32_t)); 5812 } 5813 5814 i = bank_number(old_mode); 5815 env->banked_r13[i] = env->regs[13]; 5816 env->banked_r14[i] = env->regs[14]; 5817 env->banked_spsr[i] = env->spsr; 5818 5819 i = bank_number(mode); 5820 env->regs[13] = env->banked_r13[i]; 5821 env->regs[14] = env->banked_r14[i]; 5822 env->spsr = env->banked_spsr[i]; 5823 } 5824 5825 /* Physical Interrupt Target EL Lookup Table 5826 * 5827 * [ From ARM ARM section G1.13.4 (Table G1-15) ] 5828 * 5829 * The below multi-dimensional table is used for looking up the target 5830 * exception level given numerous condition criteria. Specifically, the 5831 * target EL is based on SCR and HCR routing controls as well as the 5832 * currently executing EL and secure state. 5833 * 5834 * Dimensions: 5835 * target_el_table[2][2][2][2][2][4] 5836 * | | | | | +--- Current EL 5837 * | | | | +------ Non-secure(0)/Secure(1) 5838 * | | | +--------- HCR mask override 5839 * | | +------------ SCR exec state control 5840 * | +--------------- SCR mask override 5841 * +------------------ 32-bit(0)/64-bit(1) EL3 5842 * 5843 * The table values are as such: 5844 * 0-3 = EL0-EL3 5845 * -1 = Cannot occur 5846 * 5847 * The ARM ARM target EL table includes entries indicating that an "exception 5848 * is not taken". The two cases where this is applicable are: 5849 * 1) An exception is taken from EL3 but the SCR does not have the exception 5850 * routed to EL3. 5851 * 2) An exception is taken from EL2 but the HCR does not have the exception 5852 * routed to EL2. 5853 * In these two cases, the below table contain a target of EL1. This value is 5854 * returned as it is expected that the consumer of the table data will check 5855 * for "target EL >= current EL" to ensure the exception is not taken. 5856 * 5857 * SCR HCR 5858 * 64 EA AMO From 5859 * BIT IRQ IMO Non-secure Secure 5860 * EL3 FIQ RW FMO EL0 EL1 EL2 EL3 EL0 EL1 EL2 EL3 5861 */ 5862 static const int8_t target_el_table[2][2][2][2][2][4] = { 5863 {{{{/* 0 0 0 0 */{ 1, 1, 2, -1 },{ 3, -1, -1, 3 },}, 5864 {/* 0 0 0 1 */{ 2, 2, 2, -1 },{ 3, -1, -1, 3 },},}, 5865 {{/* 0 0 1 0 */{ 1, 1, 2, -1 },{ 3, -1, -1, 3 },}, 5866 {/* 0 0 1 1 */{ 2, 2, 2, -1 },{ 3, -1, -1, 3 },},},}, 5867 {{{/* 0 1 0 0 */{ 3, 3, 3, -1 },{ 3, -1, -1, 3 },}, 5868 {/* 0 1 0 1 */{ 3, 3, 3, -1 },{ 3, -1, -1, 3 },},}, 5869 {{/* 0 1 1 0 */{ 3, 3, 3, -1 },{ 3, -1, -1, 3 },}, 5870 {/* 0 1 1 1 */{ 3, 3, 3, -1 },{ 3, -1, -1, 3 },},},},}, 5871 {{{{/* 1 0 0 0 */{ 1, 1, 2, -1 },{ 1, 1, -1, 1 },}, 5872 {/* 1 0 0 1 */{ 2, 2, 2, -1 },{ 1, 1, -1, 1 },},}, 5873 {{/* 1 0 1 0 */{ 1, 1, 1, -1 },{ 1, 1, -1, 1 },}, 5874 {/* 1 0 1 1 */{ 2, 2, 2, -1 },{ 1, 1, -1, 1 },},},}, 5875 {{{/* 1 1 0 0 */{ 3, 3, 3, -1 },{ 3, 3, -1, 3 },}, 5876 {/* 1 1 0 1 */{ 3, 3, 3, -1 },{ 3, 3, -1, 3 },},}, 5877 {{/* 1 1 1 0 */{ 3, 3, 3, -1 },{ 3, 3, -1, 3 },}, 5878 {/* 1 1 1 1 */{ 3, 3, 3, -1 },{ 3, 3, -1, 3 },},},},}, 5879 }; 5880 5881 /* 5882 * Determine the target EL for physical exceptions 5883 */ 5884 uint32_t arm_phys_excp_target_el(CPUState *cs, uint32_t excp_idx, 5885 uint32_t cur_el, bool secure) 5886 { 5887 CPUARMState *env = cs->env_ptr; 5888 int rw; 5889 int scr; 5890 int hcr; 5891 int target_el; 5892 /* Is the highest EL AArch64? */ 5893 int is64 = arm_feature(env, ARM_FEATURE_AARCH64); 5894 5895 if (arm_feature(env, ARM_FEATURE_EL3)) { 5896 rw = ((env->cp15.scr_el3 & SCR_RW) == SCR_RW); 5897 } else { 5898 /* Either EL2 is the highest EL (and so the EL2 register width 5899 * is given by is64); or there is no EL2 or EL3, in which case 5900 * the value of 'rw' does not affect the table lookup anyway. 5901 */ 5902 rw = is64; 5903 } 5904 5905 switch (excp_idx) { 5906 case EXCP_IRQ: 5907 scr = ((env->cp15.scr_el3 & SCR_IRQ) == SCR_IRQ); 5908 hcr = ((env->cp15.hcr_el2 & HCR_IMO) == HCR_IMO); 5909 break; 5910 case EXCP_FIQ: 5911 scr = ((env->cp15.scr_el3 & SCR_FIQ) == SCR_FIQ); 5912 hcr = ((env->cp15.hcr_el2 & HCR_FMO) == HCR_FMO); 5913 break; 5914 default: 5915 scr = ((env->cp15.scr_el3 & SCR_EA) == SCR_EA); 5916 hcr = ((env->cp15.hcr_el2 & HCR_AMO) == HCR_AMO); 5917 break; 5918 }; 5919 5920 /* If HCR.TGE is set then HCR is treated as being 1 */ 5921 hcr |= ((env->cp15.hcr_el2 & HCR_TGE) == HCR_TGE); 5922 5923 /* Perform a table-lookup for the target EL given the current state */ 5924 target_el = target_el_table[is64][scr][rw][hcr][secure][cur_el]; 5925 5926 assert(target_el > 0); 5927 5928 return target_el; 5929 } 5930 5931 static void v7m_push(CPUARMState *env, uint32_t val) 5932 { 5933 CPUState *cs = CPU(arm_env_get_cpu(env)); 5934 5935 env->regs[13] -= 4; 5936 stl_phys(cs->as, env->regs[13], val); 5937 } 5938 5939 static uint32_t v7m_pop(CPUARMState *env) 5940 { 5941 CPUState *cs = CPU(arm_env_get_cpu(env)); 5942 uint32_t val; 5943 5944 val = ldl_phys(cs->as, env->regs[13]); 5945 env->regs[13] += 4; 5946 return val; 5947 } 5948 5949 /* Switch to V7M main or process stack pointer. */ 5950 static void switch_v7m_sp(CPUARMState *env, int process) 5951 { 5952 uint32_t tmp; 5953 if (env->v7m.current_sp != process) { 5954 tmp = env->v7m.other_sp; 5955 env->v7m.other_sp = env->regs[13]; 5956 env->regs[13] = tmp; 5957 env->v7m.current_sp = process; 5958 } 5959 } 5960 5961 static void do_v7m_exception_exit(CPUARMState *env) 5962 { 5963 uint32_t type; 5964 uint32_t xpsr; 5965 5966 type = env->regs[15]; 5967 if (env->v7m.exception != 0) 5968 armv7m_nvic_complete_irq(env->nvic, env->v7m.exception); 5969 5970 /* Switch to the target stack. */ 5971 switch_v7m_sp(env, (type & 4) != 0); 5972 /* Pop registers. */ 5973 env->regs[0] = v7m_pop(env); 5974 env->regs[1] = v7m_pop(env); 5975 env->regs[2] = v7m_pop(env); 5976 env->regs[3] = v7m_pop(env); 5977 env->regs[12] = v7m_pop(env); 5978 env->regs[14] = v7m_pop(env); 5979 env->regs[15] = v7m_pop(env); 5980 if (env->regs[15] & 1) { 5981 qemu_log_mask(LOG_GUEST_ERROR, 5982 "M profile return from interrupt with misaligned " 5983 "PC is UNPREDICTABLE\n"); 5984 /* Actual hardware seems to ignore the lsbit, and there are several 5985 * RTOSes out there which incorrectly assume the r15 in the stack 5986 * frame should be a Thumb-style "lsbit indicates ARM/Thumb" value. 5987 */ 5988 env->regs[15] &= ~1U; 5989 } 5990 xpsr = v7m_pop(env); 5991 xpsr_write(env, xpsr, 0xfffffdff); 5992 /* Undo stack alignment. */ 5993 if (xpsr & 0x200) 5994 env->regs[13] |= 4; 5995 /* ??? The exception return type specifies Thread/Handler mode. However 5996 this is also implied by the xPSR value. Not sure what to do 5997 if there is a mismatch. */ 5998 /* ??? Likewise for mismatches between the CONTROL register and the stack 5999 pointer. */ 6000 } 6001 6002 static void arm_log_exception(int idx) 6003 { 6004 if (qemu_loglevel_mask(CPU_LOG_INT)) { 6005 const char *exc = NULL; 6006 6007 if (idx >= 0 && idx < ARRAY_SIZE(excnames)) { 6008 exc = excnames[idx]; 6009 } 6010 if (!exc) { 6011 exc = "unknown"; 6012 } 6013 qemu_log_mask(CPU_LOG_INT, "Taking exception %d [%s]\n", idx, exc); 6014 } 6015 } 6016 6017 void arm_v7m_cpu_do_interrupt(CPUState *cs) 6018 { 6019 ARMCPU *cpu = ARM_CPU(cs); 6020 CPUARMState *env = &cpu->env; 6021 uint32_t xpsr = xpsr_read(env); 6022 uint32_t lr; 6023 uint32_t addr; 6024 6025 arm_log_exception(cs->exception_index); 6026 6027 lr = 0xfffffff1; 6028 if (env->v7m.current_sp) 6029 lr |= 4; 6030 if (env->v7m.exception == 0) 6031 lr |= 8; 6032 6033 /* For exceptions we just mark as pending on the NVIC, and let that 6034 handle it. */ 6035 /* TODO: Need to escalate if the current priority is higher than the 6036 one we're raising. */ 6037 switch (cs->exception_index) { 6038 case EXCP_UDEF: 6039 armv7m_nvic_set_pending(env->nvic, ARMV7M_EXCP_USAGE); 6040 return; 6041 case EXCP_SWI: 6042 /* The PC already points to the next instruction. */ 6043 armv7m_nvic_set_pending(env->nvic, ARMV7M_EXCP_SVC); 6044 return; 6045 case EXCP_PREFETCH_ABORT: 6046 case EXCP_DATA_ABORT: 6047 /* TODO: if we implemented the MPU registers, this is where we 6048 * should set the MMFAR, etc from exception.fsr and exception.vaddress. 6049 */ 6050 armv7m_nvic_set_pending(env->nvic, ARMV7M_EXCP_MEM); 6051 return; 6052 case EXCP_BKPT: 6053 if (semihosting_enabled()) { 6054 int nr; 6055 nr = arm_lduw_code(env, env->regs[15], arm_sctlr_b(env)) & 0xff; 6056 if (nr == 0xab) { 6057 env->regs[15] += 2; 6058 qemu_log_mask(CPU_LOG_INT, 6059 "...handling as semihosting call 0x%x\n", 6060 env->regs[0]); 6061 env->regs[0] = do_arm_semihosting(env); 6062 return; 6063 } 6064 } 6065 armv7m_nvic_set_pending(env->nvic, ARMV7M_EXCP_DEBUG); 6066 return; 6067 case EXCP_IRQ: 6068 env->v7m.exception = armv7m_nvic_acknowledge_irq(env->nvic); 6069 break; 6070 case EXCP_EXCEPTION_EXIT: 6071 do_v7m_exception_exit(env); 6072 return; 6073 default: 6074 cpu_abort(cs, "Unhandled exception 0x%x\n", cs->exception_index); 6075 return; /* Never happens. Keep compiler happy. */ 6076 } 6077 6078 /* Align stack pointer. */ 6079 /* ??? Should only do this if Configuration Control Register 6080 STACKALIGN bit is set. */ 6081 if (env->regs[13] & 4) { 6082 env->regs[13] -= 4; 6083 xpsr |= 0x200; 6084 } 6085 /* Switch to the handler mode. */ 6086 v7m_push(env, xpsr); 6087 v7m_push(env, env->regs[15]); 6088 v7m_push(env, env->regs[14]); 6089 v7m_push(env, env->regs[12]); 6090 v7m_push(env, env->regs[3]); 6091 v7m_push(env, env->regs[2]); 6092 v7m_push(env, env->regs[1]); 6093 v7m_push(env, env->regs[0]); 6094 switch_v7m_sp(env, 0); 6095 /* Clear IT bits */ 6096 env->condexec_bits = 0; 6097 env->regs[14] = lr; 6098 addr = ldl_phys(cs->as, env->v7m.vecbase + env->v7m.exception * 4); 6099 env->regs[15] = addr & 0xfffffffe; 6100 env->thumb = addr & 1; 6101 } 6102 6103 /* Function used to synchronize QEMU's AArch64 register set with AArch32 6104 * register set. This is necessary when switching between AArch32 and AArch64 6105 * execution state. 6106 */ 6107 void aarch64_sync_32_to_64(CPUARMState *env) 6108 { 6109 int i; 6110 uint32_t mode = env->uncached_cpsr & CPSR_M; 6111 6112 /* We can blanket copy R[0:7] to X[0:7] */ 6113 for (i = 0; i < 8; i++) { 6114 env->xregs[i] = env->regs[i]; 6115 } 6116 6117 /* Unless we are in FIQ mode, x8-x12 come from the user registers r8-r12. 6118 * Otherwise, they come from the banked user regs. 6119 */ 6120 if (mode == ARM_CPU_MODE_FIQ) { 6121 for (i = 8; i < 13; i++) { 6122 env->xregs[i] = env->usr_regs[i - 8]; 6123 } 6124 } else { 6125 for (i = 8; i < 13; i++) { 6126 env->xregs[i] = env->regs[i]; 6127 } 6128 } 6129 6130 /* Registers x13-x23 are the various mode SP and FP registers. Registers 6131 * r13 and r14 are only copied if we are in that mode, otherwise we copy 6132 * from the mode banked register. 6133 */ 6134 if (mode == ARM_CPU_MODE_USR || mode == ARM_CPU_MODE_SYS) { 6135 env->xregs[13] = env->regs[13]; 6136 env->xregs[14] = env->regs[14]; 6137 } else { 6138 env->xregs[13] = env->banked_r13[bank_number(ARM_CPU_MODE_USR)]; 6139 /* HYP is an exception in that it is copied from r14 */ 6140 if (mode == ARM_CPU_MODE_HYP) { 6141 env->xregs[14] = env->regs[14]; 6142 } else { 6143 env->xregs[14] = env->banked_r14[bank_number(ARM_CPU_MODE_USR)]; 6144 } 6145 } 6146 6147 if (mode == ARM_CPU_MODE_HYP) { 6148 env->xregs[15] = env->regs[13]; 6149 } else { 6150 env->xregs[15] = env->banked_r13[bank_number(ARM_CPU_MODE_HYP)]; 6151 } 6152 6153 if (mode == ARM_CPU_MODE_IRQ) { 6154 env->xregs[16] = env->regs[14]; 6155 env->xregs[17] = env->regs[13]; 6156 } else { 6157 env->xregs[16] = env->banked_r14[bank_number(ARM_CPU_MODE_IRQ)]; 6158 env->xregs[17] = env->banked_r13[bank_number(ARM_CPU_MODE_IRQ)]; 6159 } 6160 6161 if (mode == ARM_CPU_MODE_SVC) { 6162 env->xregs[18] = env->regs[14]; 6163 env->xregs[19] = env->regs[13]; 6164 } else { 6165 env->xregs[18] = env->banked_r14[bank_number(ARM_CPU_MODE_SVC)]; 6166 env->xregs[19] = env->banked_r13[bank_number(ARM_CPU_MODE_SVC)]; 6167 } 6168 6169 if (mode == ARM_CPU_MODE_ABT) { 6170 env->xregs[20] = env->regs[14]; 6171 env->xregs[21] = env->regs[13]; 6172 } else { 6173 env->xregs[20] = env->banked_r14[bank_number(ARM_CPU_MODE_ABT)]; 6174 env->xregs[21] = env->banked_r13[bank_number(ARM_CPU_MODE_ABT)]; 6175 } 6176 6177 if (mode == ARM_CPU_MODE_UND) { 6178 env->xregs[22] = env->regs[14]; 6179 env->xregs[23] = env->regs[13]; 6180 } else { 6181 env->xregs[22] = env->banked_r14[bank_number(ARM_CPU_MODE_UND)]; 6182 env->xregs[23] = env->banked_r13[bank_number(ARM_CPU_MODE_UND)]; 6183 } 6184 6185 /* Registers x24-x30 are mapped to r8-r14 in FIQ mode. If we are in FIQ 6186 * mode, then we can copy from r8-r14. Otherwise, we copy from the 6187 * FIQ bank for r8-r14. 6188 */ 6189 if (mode == ARM_CPU_MODE_FIQ) { 6190 for (i = 24; i < 31; i++) { 6191 env->xregs[i] = env->regs[i - 16]; /* X[24:30] <- R[8:14] */ 6192 } 6193 } else { 6194 for (i = 24; i < 29; i++) { 6195 env->xregs[i] = env->fiq_regs[i - 24]; 6196 } 6197 env->xregs[29] = env->banked_r13[bank_number(ARM_CPU_MODE_FIQ)]; 6198 env->xregs[30] = env->banked_r14[bank_number(ARM_CPU_MODE_FIQ)]; 6199 } 6200 6201 env->pc = env->regs[15]; 6202 } 6203 6204 /* Function used to synchronize QEMU's AArch32 register set with AArch64 6205 * register set. This is necessary when switching between AArch32 and AArch64 6206 * execution state. 6207 */ 6208 void aarch64_sync_64_to_32(CPUARMState *env) 6209 { 6210 int i; 6211 uint32_t mode = env->uncached_cpsr & CPSR_M; 6212 6213 /* We can blanket copy X[0:7] to R[0:7] */ 6214 for (i = 0; i < 8; i++) { 6215 env->regs[i] = env->xregs[i]; 6216 } 6217 6218 /* Unless we are in FIQ mode, r8-r12 come from the user registers x8-x12. 6219 * Otherwise, we copy x8-x12 into the banked user regs. 6220 */ 6221 if (mode == ARM_CPU_MODE_FIQ) { 6222 for (i = 8; i < 13; i++) { 6223 env->usr_regs[i - 8] = env->xregs[i]; 6224 } 6225 } else { 6226 for (i = 8; i < 13; i++) { 6227 env->regs[i] = env->xregs[i]; 6228 } 6229 } 6230 6231 /* Registers r13 & r14 depend on the current mode. 6232 * If we are in a given mode, we copy the corresponding x registers to r13 6233 * and r14. Otherwise, we copy the x register to the banked r13 and r14 6234 * for the mode. 6235 */ 6236 if (mode == ARM_CPU_MODE_USR || mode == ARM_CPU_MODE_SYS) { 6237 env->regs[13] = env->xregs[13]; 6238 env->regs[14] = env->xregs[14]; 6239 } else { 6240 env->banked_r13[bank_number(ARM_CPU_MODE_USR)] = env->xregs[13]; 6241 6242 /* HYP is an exception in that it does not have its own banked r14 but 6243 * shares the USR r14 6244 */ 6245 if (mode == ARM_CPU_MODE_HYP) { 6246 env->regs[14] = env->xregs[14]; 6247 } else { 6248 env->banked_r14[bank_number(ARM_CPU_MODE_USR)] = env->xregs[14]; 6249 } 6250 } 6251 6252 if (mode == ARM_CPU_MODE_HYP) { 6253 env->regs[13] = env->xregs[15]; 6254 } else { 6255 env->banked_r13[bank_number(ARM_CPU_MODE_HYP)] = env->xregs[15]; 6256 } 6257 6258 if (mode == ARM_CPU_MODE_IRQ) { 6259 env->regs[14] = env->xregs[16]; 6260 env->regs[13] = env->xregs[17]; 6261 } else { 6262 env->banked_r14[bank_number(ARM_CPU_MODE_IRQ)] = env->xregs[16]; 6263 env->banked_r13[bank_number(ARM_CPU_MODE_IRQ)] = env->xregs[17]; 6264 } 6265 6266 if (mode == ARM_CPU_MODE_SVC) { 6267 env->regs[14] = env->xregs[18]; 6268 env->regs[13] = env->xregs[19]; 6269 } else { 6270 env->banked_r14[bank_number(ARM_CPU_MODE_SVC)] = env->xregs[18]; 6271 env->banked_r13[bank_number(ARM_CPU_MODE_SVC)] = env->xregs[19]; 6272 } 6273 6274 if (mode == ARM_CPU_MODE_ABT) { 6275 env->regs[14] = env->xregs[20]; 6276 env->regs[13] = env->xregs[21]; 6277 } else { 6278 env->banked_r14[bank_number(ARM_CPU_MODE_ABT)] = env->xregs[20]; 6279 env->banked_r13[bank_number(ARM_CPU_MODE_ABT)] = env->xregs[21]; 6280 } 6281 6282 if (mode == ARM_CPU_MODE_UND) { 6283 env->regs[14] = env->xregs[22]; 6284 env->regs[13] = env->xregs[23]; 6285 } else { 6286 env->banked_r14[bank_number(ARM_CPU_MODE_UND)] = env->xregs[22]; 6287 env->banked_r13[bank_number(ARM_CPU_MODE_UND)] = env->xregs[23]; 6288 } 6289 6290 /* Registers x24-x30 are mapped to r8-r14 in FIQ mode. If we are in FIQ 6291 * mode, then we can copy to r8-r14. Otherwise, we copy to the 6292 * FIQ bank for r8-r14. 6293 */ 6294 if (mode == ARM_CPU_MODE_FIQ) { 6295 for (i = 24; i < 31; i++) { 6296 env->regs[i - 16] = env->xregs[i]; /* X[24:30] -> R[8:14] */ 6297 } 6298 } else { 6299 for (i = 24; i < 29; i++) { 6300 env->fiq_regs[i - 24] = env->xregs[i]; 6301 } 6302 env->banked_r13[bank_number(ARM_CPU_MODE_FIQ)] = env->xregs[29]; 6303 env->banked_r14[bank_number(ARM_CPU_MODE_FIQ)] = env->xregs[30]; 6304 } 6305 6306 env->regs[15] = env->pc; 6307 } 6308 6309 static void arm_cpu_do_interrupt_aarch32(CPUState *cs) 6310 { 6311 ARMCPU *cpu = ARM_CPU(cs); 6312 CPUARMState *env = &cpu->env; 6313 uint32_t addr; 6314 uint32_t mask; 6315 int new_mode; 6316 uint32_t offset; 6317 uint32_t moe; 6318 6319 /* If this is a debug exception we must update the DBGDSCR.MOE bits */ 6320 switch (env->exception.syndrome >> ARM_EL_EC_SHIFT) { 6321 case EC_BREAKPOINT: 6322 case EC_BREAKPOINT_SAME_EL: 6323 moe = 1; 6324 break; 6325 case EC_WATCHPOINT: 6326 case EC_WATCHPOINT_SAME_EL: 6327 moe = 10; 6328 break; 6329 case EC_AA32_BKPT: 6330 moe = 3; 6331 break; 6332 case EC_VECTORCATCH: 6333 moe = 5; 6334 break; 6335 default: 6336 moe = 0; 6337 break; 6338 } 6339 6340 if (moe) { 6341 env->cp15.mdscr_el1 = deposit64(env->cp15.mdscr_el1, 2, 4, moe); 6342 } 6343 6344 /* TODO: Vectored interrupt controller. */ 6345 switch (cs->exception_index) { 6346 case EXCP_UDEF: 6347 new_mode = ARM_CPU_MODE_UND; 6348 addr = 0x04; 6349 mask = CPSR_I; 6350 if (env->thumb) 6351 offset = 2; 6352 else 6353 offset = 4; 6354 break; 6355 case EXCP_SWI: 6356 new_mode = ARM_CPU_MODE_SVC; 6357 addr = 0x08; 6358 mask = CPSR_I; 6359 /* The PC already points to the next instruction. */ 6360 offset = 0; 6361 break; 6362 case EXCP_BKPT: 6363 env->exception.fsr = 2; 6364 /* Fall through to prefetch abort. */ 6365 case EXCP_PREFETCH_ABORT: 6366 A32_BANKED_CURRENT_REG_SET(env, ifsr, env->exception.fsr); 6367 A32_BANKED_CURRENT_REG_SET(env, ifar, env->exception.vaddress); 6368 qemu_log_mask(CPU_LOG_INT, "...with IFSR 0x%x IFAR 0x%x\n", 6369 env->exception.fsr, (uint32_t)env->exception.vaddress); 6370 new_mode = ARM_CPU_MODE_ABT; 6371 addr = 0x0c; 6372 mask = CPSR_A | CPSR_I; 6373 offset = 4; 6374 break; 6375 case EXCP_DATA_ABORT: 6376 A32_BANKED_CURRENT_REG_SET(env, dfsr, env->exception.fsr); 6377 A32_BANKED_CURRENT_REG_SET(env, dfar, env->exception.vaddress); 6378 qemu_log_mask(CPU_LOG_INT, "...with DFSR 0x%x DFAR 0x%x\n", 6379 env->exception.fsr, 6380 (uint32_t)env->exception.vaddress); 6381 new_mode = ARM_CPU_MODE_ABT; 6382 addr = 0x10; 6383 mask = CPSR_A | CPSR_I; 6384 offset = 8; 6385 break; 6386 case EXCP_IRQ: 6387 new_mode = ARM_CPU_MODE_IRQ; 6388 addr = 0x18; 6389 /* Disable IRQ and imprecise data aborts. */ 6390 mask = CPSR_A | CPSR_I; 6391 offset = 4; 6392 if (env->cp15.scr_el3 & SCR_IRQ) { 6393 /* IRQ routed to monitor mode */ 6394 new_mode = ARM_CPU_MODE_MON; 6395 mask |= CPSR_F; 6396 } 6397 break; 6398 case EXCP_FIQ: 6399 new_mode = ARM_CPU_MODE_FIQ; 6400 addr = 0x1c; 6401 /* Disable FIQ, IRQ and imprecise data aborts. */ 6402 mask = CPSR_A | CPSR_I | CPSR_F; 6403 if (env->cp15.scr_el3 & SCR_FIQ) { 6404 /* FIQ routed to monitor mode */ 6405 new_mode = ARM_CPU_MODE_MON; 6406 } 6407 offset = 4; 6408 break; 6409 case EXCP_VIRQ: 6410 new_mode = ARM_CPU_MODE_IRQ; 6411 addr = 0x18; 6412 /* Disable IRQ and imprecise data aborts. */ 6413 mask = CPSR_A | CPSR_I; 6414 offset = 4; 6415 break; 6416 case EXCP_VFIQ: 6417 new_mode = ARM_CPU_MODE_FIQ; 6418 addr = 0x1c; 6419 /* Disable FIQ, IRQ and imprecise data aborts. */ 6420 mask = CPSR_A | CPSR_I | CPSR_F; 6421 offset = 4; 6422 break; 6423 case EXCP_SMC: 6424 new_mode = ARM_CPU_MODE_MON; 6425 addr = 0x08; 6426 mask = CPSR_A | CPSR_I | CPSR_F; 6427 offset = 0; 6428 break; 6429 default: 6430 cpu_abort(cs, "Unhandled exception 0x%x\n", cs->exception_index); 6431 return; /* Never happens. Keep compiler happy. */ 6432 } 6433 6434 if (new_mode == ARM_CPU_MODE_MON) { 6435 addr += env->cp15.mvbar; 6436 } else if (A32_BANKED_CURRENT_REG_GET(env, sctlr) & SCTLR_V) { 6437 /* High vectors. When enabled, base address cannot be remapped. */ 6438 addr += 0xffff0000; 6439 } else { 6440 /* ARM v7 architectures provide a vector base address register to remap 6441 * the interrupt vector table. 6442 * This register is only followed in non-monitor mode, and is banked. 6443 * Note: only bits 31:5 are valid. 6444 */ 6445 addr += A32_BANKED_CURRENT_REG_GET(env, vbar); 6446 } 6447 6448 if ((env->uncached_cpsr & CPSR_M) == ARM_CPU_MODE_MON) { 6449 env->cp15.scr_el3 &= ~SCR_NS; 6450 } 6451 6452 switch_mode (env, new_mode); 6453 /* For exceptions taken to AArch32 we must clear the SS bit in both 6454 * PSTATE and in the old-state value we save to SPSR_<mode>, so zero it now. 6455 */ 6456 env->uncached_cpsr &= ~PSTATE_SS; 6457 env->spsr = cpsr_read(env); 6458 /* Clear IT bits. */ 6459 env->condexec_bits = 0; 6460 /* Switch to the new mode, and to the correct instruction set. */ 6461 env->uncached_cpsr = (env->uncached_cpsr & ~CPSR_M) | new_mode; 6462 /* Set new mode endianness */ 6463 env->uncached_cpsr &= ~CPSR_E; 6464 if (env->cp15.sctlr_el[arm_current_el(env)] & SCTLR_EE) { 6465 env->uncached_cpsr |= CPSR_E; 6466 } 6467 env->daif |= mask; 6468 /* this is a lie, as the was no c1_sys on V4T/V5, but who cares 6469 * and we should just guard the thumb mode on V4 */ 6470 if (arm_feature(env, ARM_FEATURE_V4T)) { 6471 env->thumb = (A32_BANKED_CURRENT_REG_GET(env, sctlr) & SCTLR_TE) != 0; 6472 } 6473 env->regs[14] = env->regs[15] + offset; 6474 env->regs[15] = addr; 6475 } 6476 6477 /* Handle exception entry to a target EL which is using AArch64 */ 6478 static void arm_cpu_do_interrupt_aarch64(CPUState *cs) 6479 { 6480 ARMCPU *cpu = ARM_CPU(cs); 6481 CPUARMState *env = &cpu->env; 6482 unsigned int new_el = env->exception.target_el; 6483 target_ulong addr = env->cp15.vbar_el[new_el]; 6484 unsigned int new_mode = aarch64_pstate_mode(new_el, true); 6485 6486 if (arm_current_el(env) < new_el) { 6487 /* Entry vector offset depends on whether the implemented EL 6488 * immediately lower than the target level is using AArch32 or AArch64 6489 */ 6490 bool is_aa64; 6491 6492 switch (new_el) { 6493 case 3: 6494 is_aa64 = (env->cp15.scr_el3 & SCR_RW) != 0; 6495 break; 6496 case 2: 6497 is_aa64 = (env->cp15.hcr_el2 & HCR_RW) != 0; 6498 break; 6499 case 1: 6500 is_aa64 = is_a64(env); 6501 break; 6502 default: 6503 g_assert_not_reached(); 6504 } 6505 6506 if (is_aa64) { 6507 addr += 0x400; 6508 } else { 6509 addr += 0x600; 6510 } 6511 } else if (pstate_read(env) & PSTATE_SP) { 6512 addr += 0x200; 6513 } 6514 6515 switch (cs->exception_index) { 6516 case EXCP_PREFETCH_ABORT: 6517 case EXCP_DATA_ABORT: 6518 env->cp15.far_el[new_el] = env->exception.vaddress; 6519 qemu_log_mask(CPU_LOG_INT, "...with FAR 0x%" PRIx64 "\n", 6520 env->cp15.far_el[new_el]); 6521 /* fall through */ 6522 case EXCP_BKPT: 6523 case EXCP_UDEF: 6524 case EXCP_SWI: 6525 case EXCP_HVC: 6526 case EXCP_HYP_TRAP: 6527 case EXCP_SMC: 6528 env->cp15.esr_el[new_el] = env->exception.syndrome; 6529 break; 6530 case EXCP_IRQ: 6531 case EXCP_VIRQ: 6532 addr += 0x80; 6533 break; 6534 case EXCP_FIQ: 6535 case EXCP_VFIQ: 6536 addr += 0x100; 6537 break; 6538 case EXCP_SEMIHOST: 6539 qemu_log_mask(CPU_LOG_INT, 6540 "...handling as semihosting call 0x%" PRIx64 "\n", 6541 env->xregs[0]); 6542 env->xregs[0] = do_arm_semihosting(env); 6543 return; 6544 default: 6545 cpu_abort(cs, "Unhandled exception 0x%x\n", cs->exception_index); 6546 } 6547 6548 if (is_a64(env)) { 6549 env->banked_spsr[aarch64_banked_spsr_index(new_el)] = pstate_read(env); 6550 aarch64_save_sp(env, arm_current_el(env)); 6551 env->elr_el[new_el] = env->pc; 6552 } else { 6553 env->banked_spsr[aarch64_banked_spsr_index(new_el)] = cpsr_read(env); 6554 env->elr_el[new_el] = env->regs[15]; 6555 6556 aarch64_sync_32_to_64(env); 6557 6558 env->condexec_bits = 0; 6559 } 6560 qemu_log_mask(CPU_LOG_INT, "...with ELR 0x%" PRIx64 "\n", 6561 env->elr_el[new_el]); 6562 6563 pstate_write(env, PSTATE_DAIF | new_mode); 6564 env->aarch64 = 1; 6565 aarch64_restore_sp(env, new_el); 6566 6567 env->pc = addr; 6568 6569 qemu_log_mask(CPU_LOG_INT, "...to EL%d PC 0x%" PRIx64 " PSTATE 0x%x\n", 6570 new_el, env->pc, pstate_read(env)); 6571 } 6572 6573 static inline bool check_for_semihosting(CPUState *cs) 6574 { 6575 /* Check whether this exception is a semihosting call; if so 6576 * then handle it and return true; otherwise return false. 6577 */ 6578 ARMCPU *cpu = ARM_CPU(cs); 6579 CPUARMState *env = &cpu->env; 6580 6581 if (is_a64(env)) { 6582 if (cs->exception_index == EXCP_SEMIHOST) { 6583 /* This is always the 64-bit semihosting exception. 6584 * The "is this usermode" and "is semihosting enabled" 6585 * checks have been done at translate time. 6586 */ 6587 qemu_log_mask(CPU_LOG_INT, 6588 "...handling as semihosting call 0x%" PRIx64 "\n", 6589 env->xregs[0]); 6590 env->xregs[0] = do_arm_semihosting(env); 6591 return true; 6592 } 6593 return false; 6594 } else { 6595 uint32_t imm; 6596 6597 /* Only intercept calls from privileged modes, to provide some 6598 * semblance of security. 6599 */ 6600 if (cs->exception_index != EXCP_SEMIHOST && 6601 (!semihosting_enabled() || 6602 ((env->uncached_cpsr & CPSR_M) == ARM_CPU_MODE_USR))) { 6603 return false; 6604 } 6605 6606 switch (cs->exception_index) { 6607 case EXCP_SEMIHOST: 6608 /* This is always a semihosting call; the "is this usermode" 6609 * and "is semihosting enabled" checks have been done at 6610 * translate time. 6611 */ 6612 break; 6613 case EXCP_SWI: 6614 /* Check for semihosting interrupt. */ 6615 if (env->thumb) { 6616 imm = arm_lduw_code(env, env->regs[15] - 2, arm_sctlr_b(env)) 6617 & 0xff; 6618 if (imm == 0xab) { 6619 break; 6620 } 6621 } else { 6622 imm = arm_ldl_code(env, env->regs[15] - 4, arm_sctlr_b(env)) 6623 & 0xffffff; 6624 if (imm == 0x123456) { 6625 break; 6626 } 6627 } 6628 return false; 6629 case EXCP_BKPT: 6630 /* See if this is a semihosting syscall. */ 6631 if (env->thumb) { 6632 imm = arm_lduw_code(env, env->regs[15], arm_sctlr_b(env)) 6633 & 0xff; 6634 if (imm == 0xab) { 6635 env->regs[15] += 2; 6636 break; 6637 } 6638 } 6639 return false; 6640 default: 6641 return false; 6642 } 6643 6644 qemu_log_mask(CPU_LOG_INT, 6645 "...handling as semihosting call 0x%x\n", 6646 env->regs[0]); 6647 env->regs[0] = do_arm_semihosting(env); 6648 return true; 6649 } 6650 } 6651 6652 /* Handle a CPU exception for A and R profile CPUs. 6653 * Do any appropriate logging, handle PSCI calls, and then hand off 6654 * to the AArch64-entry or AArch32-entry function depending on the 6655 * target exception level's register width. 6656 */ 6657 void arm_cpu_do_interrupt(CPUState *cs) 6658 { 6659 ARMCPU *cpu = ARM_CPU(cs); 6660 CPUARMState *env = &cpu->env; 6661 unsigned int new_el = env->exception.target_el; 6662 6663 assert(!IS_M(env)); 6664 6665 arm_log_exception(cs->exception_index); 6666 qemu_log_mask(CPU_LOG_INT, "...from EL%d to EL%d\n", arm_current_el(env), 6667 new_el); 6668 if (qemu_loglevel_mask(CPU_LOG_INT) 6669 && !excp_is_internal(cs->exception_index)) { 6670 qemu_log_mask(CPU_LOG_INT, "...with ESR %x/0x%" PRIx32 "\n", 6671 env->exception.syndrome >> ARM_EL_EC_SHIFT, 6672 env->exception.syndrome); 6673 } 6674 6675 if (arm_is_psci_call(cpu, cs->exception_index)) { 6676 arm_handle_psci_call(cpu); 6677 qemu_log_mask(CPU_LOG_INT, "...handled as PSCI call\n"); 6678 return; 6679 } 6680 6681 /* Semihosting semantics depend on the register width of the 6682 * code that caused the exception, not the target exception level, 6683 * so must be handled here. 6684 */ 6685 if (check_for_semihosting(cs)) { 6686 return; 6687 } 6688 6689 assert(!excp_is_internal(cs->exception_index)); 6690 if (arm_el_is_aa64(env, new_el)) { 6691 arm_cpu_do_interrupt_aarch64(cs); 6692 } else { 6693 arm_cpu_do_interrupt_aarch32(cs); 6694 } 6695 6696 arm_call_el_change_hook(cpu); 6697 6698 if (!kvm_enabled()) { 6699 cs->interrupt_request |= CPU_INTERRUPT_EXITTB; 6700 } 6701 } 6702 6703 /* Return the exception level which controls this address translation regime */ 6704 static inline uint32_t regime_el(CPUARMState *env, ARMMMUIdx mmu_idx) 6705 { 6706 switch (mmu_idx) { 6707 case ARMMMUIdx_S2NS: 6708 case ARMMMUIdx_S1E2: 6709 return 2; 6710 case ARMMMUIdx_S1E3: 6711 return 3; 6712 case ARMMMUIdx_S1SE0: 6713 return arm_el_is_aa64(env, 3) ? 1 : 3; 6714 case ARMMMUIdx_S1SE1: 6715 case ARMMMUIdx_S1NSE0: 6716 case ARMMMUIdx_S1NSE1: 6717 return 1; 6718 default: 6719 g_assert_not_reached(); 6720 } 6721 } 6722 6723 /* Return true if this address translation regime is secure */ 6724 static inline bool regime_is_secure(CPUARMState *env, ARMMMUIdx mmu_idx) 6725 { 6726 switch (mmu_idx) { 6727 case ARMMMUIdx_S12NSE0: 6728 case ARMMMUIdx_S12NSE1: 6729 case ARMMMUIdx_S1NSE0: 6730 case ARMMMUIdx_S1NSE1: 6731 case ARMMMUIdx_S1E2: 6732 case ARMMMUIdx_S2NS: 6733 return false; 6734 case ARMMMUIdx_S1E3: 6735 case ARMMMUIdx_S1SE0: 6736 case ARMMMUIdx_S1SE1: 6737 return true; 6738 default: 6739 g_assert_not_reached(); 6740 } 6741 } 6742 6743 /* Return the SCTLR value which controls this address translation regime */ 6744 static inline uint32_t regime_sctlr(CPUARMState *env, ARMMMUIdx mmu_idx) 6745 { 6746 return env->cp15.sctlr_el[regime_el(env, mmu_idx)]; 6747 } 6748 6749 /* Return true if the specified stage of address translation is disabled */ 6750 static inline bool regime_translation_disabled(CPUARMState *env, 6751 ARMMMUIdx mmu_idx) 6752 { 6753 if (mmu_idx == ARMMMUIdx_S2NS) { 6754 return (env->cp15.hcr_el2 & HCR_VM) == 0; 6755 } 6756 return (regime_sctlr(env, mmu_idx) & SCTLR_M) == 0; 6757 } 6758 6759 static inline bool regime_translation_big_endian(CPUARMState *env, 6760 ARMMMUIdx mmu_idx) 6761 { 6762 return (regime_sctlr(env, mmu_idx) & SCTLR_EE) != 0; 6763 } 6764 6765 /* Return the TCR controlling this translation regime */ 6766 static inline TCR *regime_tcr(CPUARMState *env, ARMMMUIdx mmu_idx) 6767 { 6768 if (mmu_idx == ARMMMUIdx_S2NS) { 6769 return &env->cp15.vtcr_el2; 6770 } 6771 return &env->cp15.tcr_el[regime_el(env, mmu_idx)]; 6772 } 6773 6774 /* Returns TBI0 value for current regime el */ 6775 uint32_t arm_regime_tbi0(CPUARMState *env, ARMMMUIdx mmu_idx) 6776 { 6777 TCR *tcr; 6778 uint32_t el; 6779 6780 /* For EL0 and EL1, TBI is controlled by stage 1's TCR, so convert 6781 * a stage 1+2 mmu index into the appropriate stage 1 mmu index. 6782 */ 6783 if (mmu_idx == ARMMMUIdx_S12NSE0 || mmu_idx == ARMMMUIdx_S12NSE1) { 6784 mmu_idx += ARMMMUIdx_S1NSE0; 6785 } 6786 6787 tcr = regime_tcr(env, mmu_idx); 6788 el = regime_el(env, mmu_idx); 6789 6790 if (el > 1) { 6791 return extract64(tcr->raw_tcr, 20, 1); 6792 } else { 6793 return extract64(tcr->raw_tcr, 37, 1); 6794 } 6795 } 6796 6797 /* Returns TBI1 value for current regime el */ 6798 uint32_t arm_regime_tbi1(CPUARMState *env, ARMMMUIdx mmu_idx) 6799 { 6800 TCR *tcr; 6801 uint32_t el; 6802 6803 /* For EL0 and EL1, TBI is controlled by stage 1's TCR, so convert 6804 * a stage 1+2 mmu index into the appropriate stage 1 mmu index. 6805 */ 6806 if (mmu_idx == ARMMMUIdx_S12NSE0 || mmu_idx == ARMMMUIdx_S12NSE1) { 6807 mmu_idx += ARMMMUIdx_S1NSE0; 6808 } 6809 6810 tcr = regime_tcr(env, mmu_idx); 6811 el = regime_el(env, mmu_idx); 6812 6813 if (el > 1) { 6814 return 0; 6815 } else { 6816 return extract64(tcr->raw_tcr, 38, 1); 6817 } 6818 } 6819 6820 /* Return the TTBR associated with this translation regime */ 6821 static inline uint64_t regime_ttbr(CPUARMState *env, ARMMMUIdx mmu_idx, 6822 int ttbrn) 6823 { 6824 if (mmu_idx == ARMMMUIdx_S2NS) { 6825 return env->cp15.vttbr_el2; 6826 } 6827 if (ttbrn == 0) { 6828 return env->cp15.ttbr0_el[regime_el(env, mmu_idx)]; 6829 } else { 6830 return env->cp15.ttbr1_el[regime_el(env, mmu_idx)]; 6831 } 6832 } 6833 6834 /* Return true if the translation regime is using LPAE format page tables */ 6835 static inline bool regime_using_lpae_format(CPUARMState *env, 6836 ARMMMUIdx mmu_idx) 6837 { 6838 int el = regime_el(env, mmu_idx); 6839 if (el == 2 || arm_el_is_aa64(env, el)) { 6840 return true; 6841 } 6842 if (arm_feature(env, ARM_FEATURE_LPAE) 6843 && (regime_tcr(env, mmu_idx)->raw_tcr & TTBCR_EAE)) { 6844 return true; 6845 } 6846 return false; 6847 } 6848 6849 /* Returns true if the stage 1 translation regime is using LPAE format page 6850 * tables. Used when raising alignment exceptions, whose FSR changes depending 6851 * on whether the long or short descriptor format is in use. */ 6852 bool arm_s1_regime_using_lpae_format(CPUARMState *env, ARMMMUIdx mmu_idx) 6853 { 6854 if (mmu_idx == ARMMMUIdx_S12NSE0 || mmu_idx == ARMMMUIdx_S12NSE1) { 6855 mmu_idx += ARMMMUIdx_S1NSE0; 6856 } 6857 6858 return regime_using_lpae_format(env, mmu_idx); 6859 } 6860 6861 static inline bool regime_is_user(CPUARMState *env, ARMMMUIdx mmu_idx) 6862 { 6863 switch (mmu_idx) { 6864 case ARMMMUIdx_S1SE0: 6865 case ARMMMUIdx_S1NSE0: 6866 return true; 6867 default: 6868 return false; 6869 case ARMMMUIdx_S12NSE0: 6870 case ARMMMUIdx_S12NSE1: 6871 g_assert_not_reached(); 6872 } 6873 } 6874 6875 /* Translate section/page access permissions to page 6876 * R/W protection flags 6877 * 6878 * @env: CPUARMState 6879 * @mmu_idx: MMU index indicating required translation regime 6880 * @ap: The 3-bit access permissions (AP[2:0]) 6881 * @domain_prot: The 2-bit domain access permissions 6882 */ 6883 static inline int ap_to_rw_prot(CPUARMState *env, ARMMMUIdx mmu_idx, 6884 int ap, int domain_prot) 6885 { 6886 bool is_user = regime_is_user(env, mmu_idx); 6887 6888 if (domain_prot == 3) { 6889 return PAGE_READ | PAGE_WRITE; 6890 } 6891 6892 switch (ap) { 6893 case 0: 6894 if (arm_feature(env, ARM_FEATURE_V7)) { 6895 return 0; 6896 } 6897 switch (regime_sctlr(env, mmu_idx) & (SCTLR_S | SCTLR_R)) { 6898 case SCTLR_S: 6899 return is_user ? 0 : PAGE_READ; 6900 case SCTLR_R: 6901 return PAGE_READ; 6902 default: 6903 return 0; 6904 } 6905 case 1: 6906 return is_user ? 0 : PAGE_READ | PAGE_WRITE; 6907 case 2: 6908 if (is_user) { 6909 return PAGE_READ; 6910 } else { 6911 return PAGE_READ | PAGE_WRITE; 6912 } 6913 case 3: 6914 return PAGE_READ | PAGE_WRITE; 6915 case 4: /* Reserved. */ 6916 return 0; 6917 case 5: 6918 return is_user ? 0 : PAGE_READ; 6919 case 6: 6920 return PAGE_READ; 6921 case 7: 6922 if (!arm_feature(env, ARM_FEATURE_V6K)) { 6923 return 0; 6924 } 6925 return PAGE_READ; 6926 default: 6927 g_assert_not_reached(); 6928 } 6929 } 6930 6931 /* Translate section/page access permissions to page 6932 * R/W protection flags. 6933 * 6934 * @ap: The 2-bit simple AP (AP[2:1]) 6935 * @is_user: TRUE if accessing from PL0 6936 */ 6937 static inline int simple_ap_to_rw_prot_is_user(int ap, bool is_user) 6938 { 6939 switch (ap) { 6940 case 0: 6941 return is_user ? 0 : PAGE_READ | PAGE_WRITE; 6942 case 1: 6943 return PAGE_READ | PAGE_WRITE; 6944 case 2: 6945 return is_user ? 0 : PAGE_READ; 6946 case 3: 6947 return PAGE_READ; 6948 default: 6949 g_assert_not_reached(); 6950 } 6951 } 6952 6953 static inline int 6954 simple_ap_to_rw_prot(CPUARMState *env, ARMMMUIdx mmu_idx, int ap) 6955 { 6956 return simple_ap_to_rw_prot_is_user(ap, regime_is_user(env, mmu_idx)); 6957 } 6958 6959 /* Translate S2 section/page access permissions to protection flags 6960 * 6961 * @env: CPUARMState 6962 * @s2ap: The 2-bit stage2 access permissions (S2AP) 6963 * @xn: XN (execute-never) bit 6964 */ 6965 static int get_S2prot(CPUARMState *env, int s2ap, int xn) 6966 { 6967 int prot = 0; 6968 6969 if (s2ap & 1) { 6970 prot |= PAGE_READ; 6971 } 6972 if (s2ap & 2) { 6973 prot |= PAGE_WRITE; 6974 } 6975 if (!xn) { 6976 if (arm_el_is_aa64(env, 2) || prot & PAGE_READ) { 6977 prot |= PAGE_EXEC; 6978 } 6979 } 6980 return prot; 6981 } 6982 6983 /* Translate section/page access permissions to protection flags 6984 * 6985 * @env: CPUARMState 6986 * @mmu_idx: MMU index indicating required translation regime 6987 * @is_aa64: TRUE if AArch64 6988 * @ap: The 2-bit simple AP (AP[2:1]) 6989 * @ns: NS (non-secure) bit 6990 * @xn: XN (execute-never) bit 6991 * @pxn: PXN (privileged execute-never) bit 6992 */ 6993 static int get_S1prot(CPUARMState *env, ARMMMUIdx mmu_idx, bool is_aa64, 6994 int ap, int ns, int xn, int pxn) 6995 { 6996 bool is_user = regime_is_user(env, mmu_idx); 6997 int prot_rw, user_rw; 6998 bool have_wxn; 6999 int wxn = 0; 7000 7001 assert(mmu_idx != ARMMMUIdx_S2NS); 7002 7003 user_rw = simple_ap_to_rw_prot_is_user(ap, true); 7004 if (is_user) { 7005 prot_rw = user_rw; 7006 } else { 7007 prot_rw = simple_ap_to_rw_prot_is_user(ap, false); 7008 } 7009 7010 if (ns && arm_is_secure(env) && (env->cp15.scr_el3 & SCR_SIF)) { 7011 return prot_rw; 7012 } 7013 7014 /* TODO have_wxn should be replaced with 7015 * ARM_FEATURE_V8 || (ARM_FEATURE_V7 && ARM_FEATURE_EL2) 7016 * when ARM_FEATURE_EL2 starts getting set. For now we assume all LPAE 7017 * compatible processors have EL2, which is required for [U]WXN. 7018 */ 7019 have_wxn = arm_feature(env, ARM_FEATURE_LPAE); 7020 7021 if (have_wxn) { 7022 wxn = regime_sctlr(env, mmu_idx) & SCTLR_WXN; 7023 } 7024 7025 if (is_aa64) { 7026 switch (regime_el(env, mmu_idx)) { 7027 case 1: 7028 if (!is_user) { 7029 xn = pxn || (user_rw & PAGE_WRITE); 7030 } 7031 break; 7032 case 2: 7033 case 3: 7034 break; 7035 } 7036 } else if (arm_feature(env, ARM_FEATURE_V7)) { 7037 switch (regime_el(env, mmu_idx)) { 7038 case 1: 7039 case 3: 7040 if (is_user) { 7041 xn = xn || !(user_rw & PAGE_READ); 7042 } else { 7043 int uwxn = 0; 7044 if (have_wxn) { 7045 uwxn = regime_sctlr(env, mmu_idx) & SCTLR_UWXN; 7046 } 7047 xn = xn || !(prot_rw & PAGE_READ) || pxn || 7048 (uwxn && (user_rw & PAGE_WRITE)); 7049 } 7050 break; 7051 case 2: 7052 break; 7053 } 7054 } else { 7055 xn = wxn = 0; 7056 } 7057 7058 if (xn || (wxn && (prot_rw & PAGE_WRITE))) { 7059 return prot_rw; 7060 } 7061 return prot_rw | PAGE_EXEC; 7062 } 7063 7064 static bool get_level1_table_address(CPUARMState *env, ARMMMUIdx mmu_idx, 7065 uint32_t *table, uint32_t address) 7066 { 7067 /* Note that we can only get here for an AArch32 PL0/PL1 lookup */ 7068 TCR *tcr = regime_tcr(env, mmu_idx); 7069 7070 if (address & tcr->mask) { 7071 if (tcr->raw_tcr & TTBCR_PD1) { 7072 /* Translation table walk disabled for TTBR1 */ 7073 return false; 7074 } 7075 *table = regime_ttbr(env, mmu_idx, 1) & 0xffffc000; 7076 } else { 7077 if (tcr->raw_tcr & TTBCR_PD0) { 7078 /* Translation table walk disabled for TTBR0 */ 7079 return false; 7080 } 7081 *table = regime_ttbr(env, mmu_idx, 0) & tcr->base_mask; 7082 } 7083 *table |= (address >> 18) & 0x3ffc; 7084 return true; 7085 } 7086 7087 /* Translate a S1 pagetable walk through S2 if needed. */ 7088 static hwaddr S1_ptw_translate(CPUARMState *env, ARMMMUIdx mmu_idx, 7089 hwaddr addr, MemTxAttrs txattrs, 7090 uint32_t *fsr, 7091 ARMMMUFaultInfo *fi) 7092 { 7093 if ((mmu_idx == ARMMMUIdx_S1NSE0 || mmu_idx == ARMMMUIdx_S1NSE1) && 7094 !regime_translation_disabled(env, ARMMMUIdx_S2NS)) { 7095 target_ulong s2size; 7096 hwaddr s2pa; 7097 int s2prot; 7098 int ret; 7099 7100 ret = get_phys_addr_lpae(env, addr, 0, ARMMMUIdx_S2NS, &s2pa, 7101 &txattrs, &s2prot, &s2size, fsr, fi); 7102 if (ret) { 7103 fi->s2addr = addr; 7104 fi->stage2 = true; 7105 fi->s1ptw = true; 7106 return ~0; 7107 } 7108 addr = s2pa; 7109 } 7110 return addr; 7111 } 7112 7113 /* All loads done in the course of a page table walk go through here. 7114 * TODO: rather than ignoring errors from physical memory reads (which 7115 * are external aborts in ARM terminology) we should propagate this 7116 * error out so that we can turn it into a Data Abort if this walk 7117 * was being done for a CPU load/store or an address translation instruction 7118 * (but not if it was for a debug access). 7119 */ 7120 static uint32_t arm_ldl_ptw(CPUState *cs, hwaddr addr, bool is_secure, 7121 ARMMMUIdx mmu_idx, uint32_t *fsr, 7122 ARMMMUFaultInfo *fi) 7123 { 7124 ARMCPU *cpu = ARM_CPU(cs); 7125 CPUARMState *env = &cpu->env; 7126 MemTxAttrs attrs = {}; 7127 AddressSpace *as; 7128 7129 attrs.secure = is_secure; 7130 as = arm_addressspace(cs, attrs); 7131 addr = S1_ptw_translate(env, mmu_idx, addr, attrs, fsr, fi); 7132 if (fi->s1ptw) { 7133 return 0; 7134 } 7135 if (regime_translation_big_endian(env, mmu_idx)) { 7136 return address_space_ldl_be(as, addr, attrs, NULL); 7137 } else { 7138 return address_space_ldl_le(as, addr, attrs, NULL); 7139 } 7140 } 7141 7142 static uint64_t arm_ldq_ptw(CPUState *cs, hwaddr addr, bool is_secure, 7143 ARMMMUIdx mmu_idx, uint32_t *fsr, 7144 ARMMMUFaultInfo *fi) 7145 { 7146 ARMCPU *cpu = ARM_CPU(cs); 7147 CPUARMState *env = &cpu->env; 7148 MemTxAttrs attrs = {}; 7149 AddressSpace *as; 7150 7151 attrs.secure = is_secure; 7152 as = arm_addressspace(cs, attrs); 7153 addr = S1_ptw_translate(env, mmu_idx, addr, attrs, fsr, fi); 7154 if (fi->s1ptw) { 7155 return 0; 7156 } 7157 if (regime_translation_big_endian(env, mmu_idx)) { 7158 return address_space_ldq_be(as, addr, attrs, NULL); 7159 } else { 7160 return address_space_ldq_le(as, addr, attrs, NULL); 7161 } 7162 } 7163 7164 static bool get_phys_addr_v5(CPUARMState *env, uint32_t address, 7165 int access_type, ARMMMUIdx mmu_idx, 7166 hwaddr *phys_ptr, int *prot, 7167 target_ulong *page_size, uint32_t *fsr, 7168 ARMMMUFaultInfo *fi) 7169 { 7170 CPUState *cs = CPU(arm_env_get_cpu(env)); 7171 int code; 7172 uint32_t table; 7173 uint32_t desc; 7174 int type; 7175 int ap; 7176 int domain = 0; 7177 int domain_prot; 7178 hwaddr phys_addr; 7179 uint32_t dacr; 7180 7181 /* Pagetable walk. */ 7182 /* Lookup l1 descriptor. */ 7183 if (!get_level1_table_address(env, mmu_idx, &table, address)) { 7184 /* Section translation fault if page walk is disabled by PD0 or PD1 */ 7185 code = 5; 7186 goto do_fault; 7187 } 7188 desc = arm_ldl_ptw(cs, table, regime_is_secure(env, mmu_idx), 7189 mmu_idx, fsr, fi); 7190 type = (desc & 3); 7191 domain = (desc >> 5) & 0x0f; 7192 if (regime_el(env, mmu_idx) == 1) { 7193 dacr = env->cp15.dacr_ns; 7194 } else { 7195 dacr = env->cp15.dacr_s; 7196 } 7197 domain_prot = (dacr >> (domain * 2)) & 3; 7198 if (type == 0) { 7199 /* Section translation fault. */ 7200 code = 5; 7201 goto do_fault; 7202 } 7203 if (domain_prot == 0 || domain_prot == 2) { 7204 if (type == 2) 7205 code = 9; /* Section domain fault. */ 7206 else 7207 code = 11; /* Page domain fault. */ 7208 goto do_fault; 7209 } 7210 if (type == 2) { 7211 /* 1Mb section. */ 7212 phys_addr = (desc & 0xfff00000) | (address & 0x000fffff); 7213 ap = (desc >> 10) & 3; 7214 code = 13; 7215 *page_size = 1024 * 1024; 7216 } else { 7217 /* Lookup l2 entry. */ 7218 if (type == 1) { 7219 /* Coarse pagetable. */ 7220 table = (desc & 0xfffffc00) | ((address >> 10) & 0x3fc); 7221 } else { 7222 /* Fine pagetable. */ 7223 table = (desc & 0xfffff000) | ((address >> 8) & 0xffc); 7224 } 7225 desc = arm_ldl_ptw(cs, table, regime_is_secure(env, mmu_idx), 7226 mmu_idx, fsr, fi); 7227 switch (desc & 3) { 7228 case 0: /* Page translation fault. */ 7229 code = 7; 7230 goto do_fault; 7231 case 1: /* 64k page. */ 7232 phys_addr = (desc & 0xffff0000) | (address & 0xffff); 7233 ap = (desc >> (4 + ((address >> 13) & 6))) & 3; 7234 *page_size = 0x10000; 7235 break; 7236 case 2: /* 4k page. */ 7237 phys_addr = (desc & 0xfffff000) | (address & 0xfff); 7238 ap = (desc >> (4 + ((address >> 9) & 6))) & 3; 7239 *page_size = 0x1000; 7240 break; 7241 case 3: /* 1k page, or ARMv6/XScale "extended small (4k) page" */ 7242 if (type == 1) { 7243 /* ARMv6/XScale extended small page format */ 7244 if (arm_feature(env, ARM_FEATURE_XSCALE) 7245 || arm_feature(env, ARM_FEATURE_V6)) { 7246 phys_addr = (desc & 0xfffff000) | (address & 0xfff); 7247 *page_size = 0x1000; 7248 } else { 7249 /* UNPREDICTABLE in ARMv5; we choose to take a 7250 * page translation fault. 7251 */ 7252 code = 7; 7253 goto do_fault; 7254 } 7255 } else { 7256 phys_addr = (desc & 0xfffffc00) | (address & 0x3ff); 7257 *page_size = 0x400; 7258 } 7259 ap = (desc >> 4) & 3; 7260 break; 7261 default: 7262 /* Never happens, but compiler isn't smart enough to tell. */ 7263 abort(); 7264 } 7265 code = 15; 7266 } 7267 *prot = ap_to_rw_prot(env, mmu_idx, ap, domain_prot); 7268 *prot |= *prot ? PAGE_EXEC : 0; 7269 if (!(*prot & (1 << access_type))) { 7270 /* Access permission fault. */ 7271 goto do_fault; 7272 } 7273 *phys_ptr = phys_addr; 7274 return false; 7275 do_fault: 7276 *fsr = code | (domain << 4); 7277 return true; 7278 } 7279 7280 static bool get_phys_addr_v6(CPUARMState *env, uint32_t address, 7281 int access_type, ARMMMUIdx mmu_idx, 7282 hwaddr *phys_ptr, MemTxAttrs *attrs, int *prot, 7283 target_ulong *page_size, uint32_t *fsr, 7284 ARMMMUFaultInfo *fi) 7285 { 7286 CPUState *cs = CPU(arm_env_get_cpu(env)); 7287 int code; 7288 uint32_t table; 7289 uint32_t desc; 7290 uint32_t xn; 7291 uint32_t pxn = 0; 7292 int type; 7293 int ap; 7294 int domain = 0; 7295 int domain_prot; 7296 hwaddr phys_addr; 7297 uint32_t dacr; 7298 bool ns; 7299 7300 /* Pagetable walk. */ 7301 /* Lookup l1 descriptor. */ 7302 if (!get_level1_table_address(env, mmu_idx, &table, address)) { 7303 /* Section translation fault if page walk is disabled by PD0 or PD1 */ 7304 code = 5; 7305 goto do_fault; 7306 } 7307 desc = arm_ldl_ptw(cs, table, regime_is_secure(env, mmu_idx), 7308 mmu_idx, fsr, fi); 7309 type = (desc & 3); 7310 if (type == 0 || (type == 3 && !arm_feature(env, ARM_FEATURE_PXN))) { 7311 /* Section translation fault, or attempt to use the encoding 7312 * which is Reserved on implementations without PXN. 7313 */ 7314 code = 5; 7315 goto do_fault; 7316 } 7317 if ((type == 1) || !(desc & (1 << 18))) { 7318 /* Page or Section. */ 7319 domain = (desc >> 5) & 0x0f; 7320 } 7321 if (regime_el(env, mmu_idx) == 1) { 7322 dacr = env->cp15.dacr_ns; 7323 } else { 7324 dacr = env->cp15.dacr_s; 7325 } 7326 domain_prot = (dacr >> (domain * 2)) & 3; 7327 if (domain_prot == 0 || domain_prot == 2) { 7328 if (type != 1) { 7329 code = 9; /* Section domain fault. */ 7330 } else { 7331 code = 11; /* Page domain fault. */ 7332 } 7333 goto do_fault; 7334 } 7335 if (type != 1) { 7336 if (desc & (1 << 18)) { 7337 /* Supersection. */ 7338 phys_addr = (desc & 0xff000000) | (address & 0x00ffffff); 7339 phys_addr |= (uint64_t)extract32(desc, 20, 4) << 32; 7340 phys_addr |= (uint64_t)extract32(desc, 5, 4) << 36; 7341 *page_size = 0x1000000; 7342 } else { 7343 /* Section. */ 7344 phys_addr = (desc & 0xfff00000) | (address & 0x000fffff); 7345 *page_size = 0x100000; 7346 } 7347 ap = ((desc >> 10) & 3) | ((desc >> 13) & 4); 7348 xn = desc & (1 << 4); 7349 pxn = desc & 1; 7350 code = 13; 7351 ns = extract32(desc, 19, 1); 7352 } else { 7353 if (arm_feature(env, ARM_FEATURE_PXN)) { 7354 pxn = (desc >> 2) & 1; 7355 } 7356 ns = extract32(desc, 3, 1); 7357 /* Lookup l2 entry. */ 7358 table = (desc & 0xfffffc00) | ((address >> 10) & 0x3fc); 7359 desc = arm_ldl_ptw(cs, table, regime_is_secure(env, mmu_idx), 7360 mmu_idx, fsr, fi); 7361 ap = ((desc >> 4) & 3) | ((desc >> 7) & 4); 7362 switch (desc & 3) { 7363 case 0: /* Page translation fault. */ 7364 code = 7; 7365 goto do_fault; 7366 case 1: /* 64k page. */ 7367 phys_addr = (desc & 0xffff0000) | (address & 0xffff); 7368 xn = desc & (1 << 15); 7369 *page_size = 0x10000; 7370 break; 7371 case 2: case 3: /* 4k page. */ 7372 phys_addr = (desc & 0xfffff000) | (address & 0xfff); 7373 xn = desc & 1; 7374 *page_size = 0x1000; 7375 break; 7376 default: 7377 /* Never happens, but compiler isn't smart enough to tell. */ 7378 abort(); 7379 } 7380 code = 15; 7381 } 7382 if (domain_prot == 3) { 7383 *prot = PAGE_READ | PAGE_WRITE | PAGE_EXEC; 7384 } else { 7385 if (pxn && !regime_is_user(env, mmu_idx)) { 7386 xn = 1; 7387 } 7388 if (xn && access_type == 2) 7389 goto do_fault; 7390 7391 if (arm_feature(env, ARM_FEATURE_V6K) && 7392 (regime_sctlr(env, mmu_idx) & SCTLR_AFE)) { 7393 /* The simplified model uses AP[0] as an access control bit. */ 7394 if ((ap & 1) == 0) { 7395 /* Access flag fault. */ 7396 code = (code == 15) ? 6 : 3; 7397 goto do_fault; 7398 } 7399 *prot = simple_ap_to_rw_prot(env, mmu_idx, ap >> 1); 7400 } else { 7401 *prot = ap_to_rw_prot(env, mmu_idx, ap, domain_prot); 7402 } 7403 if (*prot && !xn) { 7404 *prot |= PAGE_EXEC; 7405 } 7406 if (!(*prot & (1 << access_type))) { 7407 /* Access permission fault. */ 7408 goto do_fault; 7409 } 7410 } 7411 if (ns) { 7412 /* The NS bit will (as required by the architecture) have no effect if 7413 * the CPU doesn't support TZ or this is a non-secure translation 7414 * regime, because the attribute will already be non-secure. 7415 */ 7416 attrs->secure = false; 7417 } 7418 *phys_ptr = phys_addr; 7419 return false; 7420 do_fault: 7421 *fsr = code | (domain << 4); 7422 return true; 7423 } 7424 7425 /* Fault type for long-descriptor MMU fault reporting; this corresponds 7426 * to bits [5..2] in the STATUS field in long-format DFSR/IFSR. 7427 */ 7428 typedef enum { 7429 translation_fault = 1, 7430 access_fault = 2, 7431 permission_fault = 3, 7432 } MMUFaultType; 7433 7434 /* 7435 * check_s2_mmu_setup 7436 * @cpu: ARMCPU 7437 * @is_aa64: True if the translation regime is in AArch64 state 7438 * @startlevel: Suggested starting level 7439 * @inputsize: Bitsize of IPAs 7440 * @stride: Page-table stride (See the ARM ARM) 7441 * 7442 * Returns true if the suggested S2 translation parameters are OK and 7443 * false otherwise. 7444 */ 7445 static bool check_s2_mmu_setup(ARMCPU *cpu, bool is_aa64, int level, 7446 int inputsize, int stride) 7447 { 7448 const int grainsize = stride + 3; 7449 int startsizecheck; 7450 7451 /* Negative levels are never allowed. */ 7452 if (level < 0) { 7453 return false; 7454 } 7455 7456 startsizecheck = inputsize - ((3 - level) * stride + grainsize); 7457 if (startsizecheck < 1 || startsizecheck > stride + 4) { 7458 return false; 7459 } 7460 7461 if (is_aa64) { 7462 CPUARMState *env = &cpu->env; 7463 unsigned int pamax = arm_pamax(cpu); 7464 7465 switch (stride) { 7466 case 13: /* 64KB Pages. */ 7467 if (level == 0 || (level == 1 && pamax <= 42)) { 7468 return false; 7469 } 7470 break; 7471 case 11: /* 16KB Pages. */ 7472 if (level == 0 || (level == 1 && pamax <= 40)) { 7473 return false; 7474 } 7475 break; 7476 case 9: /* 4KB Pages. */ 7477 if (level == 0 && pamax <= 42) { 7478 return false; 7479 } 7480 break; 7481 default: 7482 g_assert_not_reached(); 7483 } 7484 7485 /* Inputsize checks. */ 7486 if (inputsize > pamax && 7487 (arm_el_is_aa64(env, 1) || inputsize > 40)) { 7488 /* This is CONSTRAINED UNPREDICTABLE and we choose to fault. */ 7489 return false; 7490 } 7491 } else { 7492 /* AArch32 only supports 4KB pages. Assert on that. */ 7493 assert(stride == 9); 7494 7495 if (level == 0) { 7496 return false; 7497 } 7498 } 7499 return true; 7500 } 7501 7502 static bool get_phys_addr_lpae(CPUARMState *env, target_ulong address, 7503 int access_type, ARMMMUIdx mmu_idx, 7504 hwaddr *phys_ptr, MemTxAttrs *txattrs, int *prot, 7505 target_ulong *page_size_ptr, uint32_t *fsr, 7506 ARMMMUFaultInfo *fi) 7507 { 7508 ARMCPU *cpu = arm_env_get_cpu(env); 7509 CPUState *cs = CPU(cpu); 7510 /* Read an LPAE long-descriptor translation table. */ 7511 MMUFaultType fault_type = translation_fault; 7512 uint32_t level; 7513 uint32_t epd = 0; 7514 int32_t t0sz, t1sz; 7515 uint32_t tg; 7516 uint64_t ttbr; 7517 int ttbr_select; 7518 hwaddr descaddr, indexmask, indexmask_grainsize; 7519 uint32_t tableattrs; 7520 target_ulong page_size; 7521 uint32_t attrs; 7522 int32_t stride = 9; 7523 int32_t addrsize; 7524 int inputsize; 7525 int32_t tbi = 0; 7526 TCR *tcr = regime_tcr(env, mmu_idx); 7527 int ap, ns, xn, pxn; 7528 uint32_t el = regime_el(env, mmu_idx); 7529 bool ttbr1_valid = true; 7530 uint64_t descaddrmask; 7531 bool aarch64 = arm_el_is_aa64(env, el); 7532 7533 /* TODO: 7534 * This code does not handle the different format TCR for VTCR_EL2. 7535 * This code also does not support shareability levels. 7536 * Attribute and permission bit handling should also be checked when adding 7537 * support for those page table walks. 7538 */ 7539 if (aarch64) { 7540 level = 0; 7541 addrsize = 64; 7542 if (el > 1) { 7543 if (mmu_idx != ARMMMUIdx_S2NS) { 7544 tbi = extract64(tcr->raw_tcr, 20, 1); 7545 } 7546 } else { 7547 if (extract64(address, 55, 1)) { 7548 tbi = extract64(tcr->raw_tcr, 38, 1); 7549 } else { 7550 tbi = extract64(tcr->raw_tcr, 37, 1); 7551 } 7552 } 7553 tbi *= 8; 7554 7555 /* If we are in 64-bit EL2 or EL3 then there is no TTBR1, so mark it 7556 * invalid. 7557 */ 7558 if (el > 1) { 7559 ttbr1_valid = false; 7560 } 7561 } else { 7562 level = 1; 7563 addrsize = 32; 7564 /* There is no TTBR1 for EL2 */ 7565 if (el == 2) { 7566 ttbr1_valid = false; 7567 } 7568 } 7569 7570 /* Determine whether this address is in the region controlled by 7571 * TTBR0 or TTBR1 (or if it is in neither region and should fault). 7572 * This is a Non-secure PL0/1 stage 1 translation, so controlled by 7573 * TTBCR/TTBR0/TTBR1 in accordance with ARM ARM DDI0406C table B-32: 7574 */ 7575 if (aarch64) { 7576 /* AArch64 translation. */ 7577 t0sz = extract32(tcr->raw_tcr, 0, 6); 7578 t0sz = MIN(t0sz, 39); 7579 t0sz = MAX(t0sz, 16); 7580 } else if (mmu_idx != ARMMMUIdx_S2NS) { 7581 /* AArch32 stage 1 translation. */ 7582 t0sz = extract32(tcr->raw_tcr, 0, 3); 7583 } else { 7584 /* AArch32 stage 2 translation. */ 7585 bool sext = extract32(tcr->raw_tcr, 4, 1); 7586 bool sign = extract32(tcr->raw_tcr, 3, 1); 7587 /* Address size is 40-bit for a stage 2 translation, 7588 * and t0sz can be negative (from -8 to 7), 7589 * so we need to adjust it to use the TTBR selecting logic below. 7590 */ 7591 addrsize = 40; 7592 t0sz = sextract32(tcr->raw_tcr, 0, 4) + 8; 7593 7594 /* If the sign-extend bit is not the same as t0sz[3], the result 7595 * is unpredictable. Flag this as a guest error. */ 7596 if (sign != sext) { 7597 qemu_log_mask(LOG_GUEST_ERROR, 7598 "AArch32: VTCR.S / VTCR.T0SZ[3] mismatch\n"); 7599 } 7600 } 7601 t1sz = extract32(tcr->raw_tcr, 16, 6); 7602 if (aarch64) { 7603 t1sz = MIN(t1sz, 39); 7604 t1sz = MAX(t1sz, 16); 7605 } 7606 if (t0sz && !extract64(address, addrsize - t0sz, t0sz - tbi)) { 7607 /* there is a ttbr0 region and we are in it (high bits all zero) */ 7608 ttbr_select = 0; 7609 } else if (ttbr1_valid && t1sz && 7610 !extract64(~address, addrsize - t1sz, t1sz - tbi)) { 7611 /* there is a ttbr1 region and we are in it (high bits all one) */ 7612 ttbr_select = 1; 7613 } else if (!t0sz) { 7614 /* ttbr0 region is "everything not in the ttbr1 region" */ 7615 ttbr_select = 0; 7616 } else if (!t1sz && ttbr1_valid) { 7617 /* ttbr1 region is "everything not in the ttbr0 region" */ 7618 ttbr_select = 1; 7619 } else { 7620 /* in the gap between the two regions, this is a Translation fault */ 7621 fault_type = translation_fault; 7622 goto do_fault; 7623 } 7624 7625 /* Note that QEMU ignores shareability and cacheability attributes, 7626 * so we don't need to do anything with the SH, ORGN, IRGN fields 7627 * in the TTBCR. Similarly, TTBCR:A1 selects whether we get the 7628 * ASID from TTBR0 or TTBR1, but QEMU's TLB doesn't currently 7629 * implement any ASID-like capability so we can ignore it (instead 7630 * we will always flush the TLB any time the ASID is changed). 7631 */ 7632 if (ttbr_select == 0) { 7633 ttbr = regime_ttbr(env, mmu_idx, 0); 7634 if (el < 2) { 7635 epd = extract32(tcr->raw_tcr, 7, 1); 7636 } 7637 inputsize = addrsize - t0sz; 7638 7639 tg = extract32(tcr->raw_tcr, 14, 2); 7640 if (tg == 1) { /* 64KB pages */ 7641 stride = 13; 7642 } 7643 if (tg == 2) { /* 16KB pages */ 7644 stride = 11; 7645 } 7646 } else { 7647 /* We should only be here if TTBR1 is valid */ 7648 assert(ttbr1_valid); 7649 7650 ttbr = regime_ttbr(env, mmu_idx, 1); 7651 epd = extract32(tcr->raw_tcr, 23, 1); 7652 inputsize = addrsize - t1sz; 7653 7654 tg = extract32(tcr->raw_tcr, 30, 2); 7655 if (tg == 3) { /* 64KB pages */ 7656 stride = 13; 7657 } 7658 if (tg == 1) { /* 16KB pages */ 7659 stride = 11; 7660 } 7661 } 7662 7663 /* Here we should have set up all the parameters for the translation: 7664 * inputsize, ttbr, epd, stride, tbi 7665 */ 7666 7667 if (epd) { 7668 /* Translation table walk disabled => Translation fault on TLB miss 7669 * Note: This is always 0 on 64-bit EL2 and EL3. 7670 */ 7671 goto do_fault; 7672 } 7673 7674 if (mmu_idx != ARMMMUIdx_S2NS) { 7675 /* The starting level depends on the virtual address size (which can 7676 * be up to 48 bits) and the translation granule size. It indicates 7677 * the number of strides (stride bits at a time) needed to 7678 * consume the bits of the input address. In the pseudocode this is: 7679 * level = 4 - RoundUp((inputsize - grainsize) / stride) 7680 * where their 'inputsize' is our 'inputsize', 'grainsize' is 7681 * our 'stride + 3' and 'stride' is our 'stride'. 7682 * Applying the usual "rounded up m/n is (m+n-1)/n" and simplifying: 7683 * = 4 - (inputsize - stride - 3 + stride - 1) / stride 7684 * = 4 - (inputsize - 4) / stride; 7685 */ 7686 level = 4 - (inputsize - 4) / stride; 7687 } else { 7688 /* For stage 2 translations the starting level is specified by the 7689 * VTCR_EL2.SL0 field (whose interpretation depends on the page size) 7690 */ 7691 uint32_t sl0 = extract32(tcr->raw_tcr, 6, 2); 7692 uint32_t startlevel; 7693 bool ok; 7694 7695 if (!aarch64 || stride == 9) { 7696 /* AArch32 or 4KB pages */ 7697 startlevel = 2 - sl0; 7698 } else { 7699 /* 16KB or 64KB pages */ 7700 startlevel = 3 - sl0; 7701 } 7702 7703 /* Check that the starting level is valid. */ 7704 ok = check_s2_mmu_setup(cpu, aarch64, startlevel, 7705 inputsize, stride); 7706 if (!ok) { 7707 fault_type = translation_fault; 7708 goto do_fault; 7709 } 7710 level = startlevel; 7711 } 7712 7713 indexmask_grainsize = (1ULL << (stride + 3)) - 1; 7714 indexmask = (1ULL << (inputsize - (stride * (4 - level)))) - 1; 7715 7716 /* Now we can extract the actual base address from the TTBR */ 7717 descaddr = extract64(ttbr, 0, 48); 7718 descaddr &= ~indexmask; 7719 7720 /* The address field in the descriptor goes up to bit 39 for ARMv7 7721 * but up to bit 47 for ARMv8, but we use the descaddrmask 7722 * up to bit 39 for AArch32, because we don't need other bits in that case 7723 * to construct next descriptor address (anyway they should be all zeroes). 7724 */ 7725 descaddrmask = ((1ull << (aarch64 ? 48 : 40)) - 1) & 7726 ~indexmask_grainsize; 7727 7728 /* Secure accesses start with the page table in secure memory and 7729 * can be downgraded to non-secure at any step. Non-secure accesses 7730 * remain non-secure. We implement this by just ORing in the NSTable/NS 7731 * bits at each step. 7732 */ 7733 tableattrs = regime_is_secure(env, mmu_idx) ? 0 : (1 << 4); 7734 for (;;) { 7735 uint64_t descriptor; 7736 bool nstable; 7737 7738 descaddr |= (address >> (stride * (4 - level))) & indexmask; 7739 descaddr &= ~7ULL; 7740 nstable = extract32(tableattrs, 4, 1); 7741 descriptor = arm_ldq_ptw(cs, descaddr, !nstable, mmu_idx, fsr, fi); 7742 if (fi->s1ptw) { 7743 goto do_fault; 7744 } 7745 7746 if (!(descriptor & 1) || 7747 (!(descriptor & 2) && (level == 3))) { 7748 /* Invalid, or the Reserved level 3 encoding */ 7749 goto do_fault; 7750 } 7751 descaddr = descriptor & descaddrmask; 7752 7753 if ((descriptor & 2) && (level < 3)) { 7754 /* Table entry. The top five bits are attributes which may 7755 * propagate down through lower levels of the table (and 7756 * which are all arranged so that 0 means "no effect", so 7757 * we can gather them up by ORing in the bits at each level). 7758 */ 7759 tableattrs |= extract64(descriptor, 59, 5); 7760 level++; 7761 indexmask = indexmask_grainsize; 7762 continue; 7763 } 7764 /* Block entry at level 1 or 2, or page entry at level 3. 7765 * These are basically the same thing, although the number 7766 * of bits we pull in from the vaddr varies. 7767 */ 7768 page_size = (1ULL << ((stride * (4 - level)) + 3)); 7769 descaddr |= (address & (page_size - 1)); 7770 /* Extract attributes from the descriptor */ 7771 attrs = extract64(descriptor, 2, 10) 7772 | (extract64(descriptor, 52, 12) << 10); 7773 7774 if (mmu_idx == ARMMMUIdx_S2NS) { 7775 /* Stage 2 table descriptors do not include any attribute fields */ 7776 break; 7777 } 7778 /* Merge in attributes from table descriptors */ 7779 attrs |= extract32(tableattrs, 0, 2) << 11; /* XN, PXN */ 7780 attrs |= extract32(tableattrs, 3, 1) << 5; /* APTable[1] => AP[2] */ 7781 /* The sense of AP[1] vs APTable[0] is reversed, as APTable[0] == 1 7782 * means "force PL1 access only", which means forcing AP[1] to 0. 7783 */ 7784 if (extract32(tableattrs, 2, 1)) { 7785 attrs &= ~(1 << 4); 7786 } 7787 attrs |= nstable << 3; /* NS */ 7788 break; 7789 } 7790 /* Here descaddr is the final physical address, and attributes 7791 * are all in attrs. 7792 */ 7793 fault_type = access_fault; 7794 if ((attrs & (1 << 8)) == 0) { 7795 /* Access flag */ 7796 goto do_fault; 7797 } 7798 7799 ap = extract32(attrs, 4, 2); 7800 xn = extract32(attrs, 12, 1); 7801 7802 if (mmu_idx == ARMMMUIdx_S2NS) { 7803 ns = true; 7804 *prot = get_S2prot(env, ap, xn); 7805 } else { 7806 ns = extract32(attrs, 3, 1); 7807 pxn = extract32(attrs, 11, 1); 7808 *prot = get_S1prot(env, mmu_idx, aarch64, ap, ns, xn, pxn); 7809 } 7810 7811 fault_type = permission_fault; 7812 if (!(*prot & (1 << access_type))) { 7813 goto do_fault; 7814 } 7815 7816 if (ns) { 7817 /* The NS bit will (as required by the architecture) have no effect if 7818 * the CPU doesn't support TZ or this is a non-secure translation 7819 * regime, because the attribute will already be non-secure. 7820 */ 7821 txattrs->secure = false; 7822 } 7823 *phys_ptr = descaddr; 7824 *page_size_ptr = page_size; 7825 return false; 7826 7827 do_fault: 7828 /* Long-descriptor format IFSR/DFSR value */ 7829 *fsr = (1 << 9) | (fault_type << 2) | level; 7830 /* Tag the error as S2 for failed S1 PTW at S2 or ordinary S2. */ 7831 fi->stage2 = fi->s1ptw || (mmu_idx == ARMMMUIdx_S2NS); 7832 return true; 7833 } 7834 7835 static inline void get_phys_addr_pmsav7_default(CPUARMState *env, 7836 ARMMMUIdx mmu_idx, 7837 int32_t address, int *prot) 7838 { 7839 *prot = PAGE_READ | PAGE_WRITE; 7840 switch (address) { 7841 case 0xF0000000 ... 0xFFFFFFFF: 7842 if (regime_sctlr(env, mmu_idx) & SCTLR_V) { /* hivecs execing is ok */ 7843 *prot |= PAGE_EXEC; 7844 } 7845 break; 7846 case 0x00000000 ... 0x7FFFFFFF: 7847 *prot |= PAGE_EXEC; 7848 break; 7849 } 7850 7851 } 7852 7853 static bool get_phys_addr_pmsav7(CPUARMState *env, uint32_t address, 7854 int access_type, ARMMMUIdx mmu_idx, 7855 hwaddr *phys_ptr, int *prot, uint32_t *fsr) 7856 { 7857 ARMCPU *cpu = arm_env_get_cpu(env); 7858 int n; 7859 bool is_user = regime_is_user(env, mmu_idx); 7860 7861 *phys_ptr = address; 7862 *prot = 0; 7863 7864 if (regime_translation_disabled(env, mmu_idx)) { /* MPU disabled */ 7865 get_phys_addr_pmsav7_default(env, mmu_idx, address, prot); 7866 } else { /* MPU enabled */ 7867 for (n = (int)cpu->pmsav7_dregion - 1; n >= 0; n--) { 7868 /* region search */ 7869 uint32_t base = env->pmsav7.drbar[n]; 7870 uint32_t rsize = extract32(env->pmsav7.drsr[n], 1, 5); 7871 uint32_t rmask; 7872 bool srdis = false; 7873 7874 if (!(env->pmsav7.drsr[n] & 0x1)) { 7875 continue; 7876 } 7877 7878 if (!rsize) { 7879 qemu_log_mask(LOG_GUEST_ERROR, "DRSR.Rsize field can not be 0"); 7880 continue; 7881 } 7882 rsize++; 7883 rmask = (1ull << rsize) - 1; 7884 7885 if (base & rmask) { 7886 qemu_log_mask(LOG_GUEST_ERROR, "DRBAR %" PRIx32 " misaligned " 7887 "to DRSR region size, mask = %" PRIx32, 7888 base, rmask); 7889 continue; 7890 } 7891 7892 if (address < base || address > base + rmask) { 7893 continue; 7894 } 7895 7896 /* Region matched */ 7897 7898 if (rsize >= 8) { /* no subregions for regions < 256 bytes */ 7899 int i, snd; 7900 uint32_t srdis_mask; 7901 7902 rsize -= 3; /* sub region size (power of 2) */ 7903 snd = ((address - base) >> rsize) & 0x7; 7904 srdis = extract32(env->pmsav7.drsr[n], snd + 8, 1); 7905 7906 srdis_mask = srdis ? 0x3 : 0x0; 7907 for (i = 2; i <= 8 && rsize < TARGET_PAGE_BITS; i *= 2) { 7908 /* This will check in groups of 2, 4 and then 8, whether 7909 * the subregion bits are consistent. rsize is incremented 7910 * back up to give the region size, considering consistent 7911 * adjacent subregions as one region. Stop testing if rsize 7912 * is already big enough for an entire QEMU page. 7913 */ 7914 int snd_rounded = snd & ~(i - 1); 7915 uint32_t srdis_multi = extract32(env->pmsav7.drsr[n], 7916 snd_rounded + 8, i); 7917 if (srdis_mask ^ srdis_multi) { 7918 break; 7919 } 7920 srdis_mask = (srdis_mask << i) | srdis_mask; 7921 rsize++; 7922 } 7923 } 7924 if (rsize < TARGET_PAGE_BITS) { 7925 qemu_log_mask(LOG_UNIMP, "No support for MPU (sub)region" 7926 "alignment of %" PRIu32 " bits. Minimum is %d\n", 7927 rsize, TARGET_PAGE_BITS); 7928 continue; 7929 } 7930 if (srdis) { 7931 continue; 7932 } 7933 break; 7934 } 7935 7936 if (n == -1) { /* no hits */ 7937 if (cpu->pmsav7_dregion && 7938 (is_user || !(regime_sctlr(env, mmu_idx) & SCTLR_BR))) { 7939 /* background fault */ 7940 *fsr = 0; 7941 return true; 7942 } 7943 get_phys_addr_pmsav7_default(env, mmu_idx, address, prot); 7944 } else { /* a MPU hit! */ 7945 uint32_t ap = extract32(env->pmsav7.dracr[n], 8, 3); 7946 7947 if (is_user) { /* User mode AP bit decoding */ 7948 switch (ap) { 7949 case 0: 7950 case 1: 7951 case 5: 7952 break; /* no access */ 7953 case 3: 7954 *prot |= PAGE_WRITE; 7955 /* fall through */ 7956 case 2: 7957 case 6: 7958 *prot |= PAGE_READ | PAGE_EXEC; 7959 break; 7960 default: 7961 qemu_log_mask(LOG_GUEST_ERROR, 7962 "Bad value for AP bits in DRACR %" 7963 PRIx32 "\n", ap); 7964 } 7965 } else { /* Priv. mode AP bits decoding */ 7966 switch (ap) { 7967 case 0: 7968 break; /* no access */ 7969 case 1: 7970 case 2: 7971 case 3: 7972 *prot |= PAGE_WRITE; 7973 /* fall through */ 7974 case 5: 7975 case 6: 7976 *prot |= PAGE_READ | PAGE_EXEC; 7977 break; 7978 default: 7979 qemu_log_mask(LOG_GUEST_ERROR, 7980 "Bad value for AP bits in DRACR %" 7981 PRIx32 "\n", ap); 7982 } 7983 } 7984 7985 /* execute never */ 7986 if (env->pmsav7.dracr[n] & (1 << 12)) { 7987 *prot &= ~PAGE_EXEC; 7988 } 7989 } 7990 } 7991 7992 *fsr = 0x00d; /* Permission fault */ 7993 return !(*prot & (1 << access_type)); 7994 } 7995 7996 static bool get_phys_addr_pmsav5(CPUARMState *env, uint32_t address, 7997 int access_type, ARMMMUIdx mmu_idx, 7998 hwaddr *phys_ptr, int *prot, uint32_t *fsr) 7999 { 8000 int n; 8001 uint32_t mask; 8002 uint32_t base; 8003 bool is_user = regime_is_user(env, mmu_idx); 8004 8005 *phys_ptr = address; 8006 for (n = 7; n >= 0; n--) { 8007 base = env->cp15.c6_region[n]; 8008 if ((base & 1) == 0) { 8009 continue; 8010 } 8011 mask = 1 << ((base >> 1) & 0x1f); 8012 /* Keep this shift separate from the above to avoid an 8013 (undefined) << 32. */ 8014 mask = (mask << 1) - 1; 8015 if (((base ^ address) & ~mask) == 0) { 8016 break; 8017 } 8018 } 8019 if (n < 0) { 8020 *fsr = 2; 8021 return true; 8022 } 8023 8024 if (access_type == 2) { 8025 mask = env->cp15.pmsav5_insn_ap; 8026 } else { 8027 mask = env->cp15.pmsav5_data_ap; 8028 } 8029 mask = (mask >> (n * 4)) & 0xf; 8030 switch (mask) { 8031 case 0: 8032 *fsr = 1; 8033 return true; 8034 case 1: 8035 if (is_user) { 8036 *fsr = 1; 8037 return true; 8038 } 8039 *prot = PAGE_READ | PAGE_WRITE; 8040 break; 8041 case 2: 8042 *prot = PAGE_READ; 8043 if (!is_user) { 8044 *prot |= PAGE_WRITE; 8045 } 8046 break; 8047 case 3: 8048 *prot = PAGE_READ | PAGE_WRITE; 8049 break; 8050 case 5: 8051 if (is_user) { 8052 *fsr = 1; 8053 return true; 8054 } 8055 *prot = PAGE_READ; 8056 break; 8057 case 6: 8058 *prot = PAGE_READ; 8059 break; 8060 default: 8061 /* Bad permission. */ 8062 *fsr = 1; 8063 return true; 8064 } 8065 *prot |= PAGE_EXEC; 8066 return false; 8067 } 8068 8069 /* get_phys_addr - get the physical address for this virtual address 8070 * 8071 * Find the physical address corresponding to the given virtual address, 8072 * by doing a translation table walk on MMU based systems or using the 8073 * MPU state on MPU based systems. 8074 * 8075 * Returns false if the translation was successful. Otherwise, phys_ptr, attrs, 8076 * prot and page_size may not be filled in, and the populated fsr value provides 8077 * information on why the translation aborted, in the format of a 8078 * DFSR/IFSR fault register, with the following caveats: 8079 * * we honour the short vs long DFSR format differences. 8080 * * the WnR bit is never set (the caller must do this). 8081 * * for PSMAv5 based systems we don't bother to return a full FSR format 8082 * value. 8083 * 8084 * @env: CPUARMState 8085 * @address: virtual address to get physical address for 8086 * @access_type: 0 for read, 1 for write, 2 for execute 8087 * @mmu_idx: MMU index indicating required translation regime 8088 * @phys_ptr: set to the physical address corresponding to the virtual address 8089 * @attrs: set to the memory transaction attributes to use 8090 * @prot: set to the permissions for the page containing phys_ptr 8091 * @page_size: set to the size of the page containing phys_ptr 8092 * @fsr: set to the DFSR/IFSR value on failure 8093 */ 8094 static bool get_phys_addr(CPUARMState *env, target_ulong address, 8095 int access_type, ARMMMUIdx mmu_idx, 8096 hwaddr *phys_ptr, MemTxAttrs *attrs, int *prot, 8097 target_ulong *page_size, uint32_t *fsr, 8098 ARMMMUFaultInfo *fi) 8099 { 8100 if (mmu_idx == ARMMMUIdx_S12NSE0 || mmu_idx == ARMMMUIdx_S12NSE1) { 8101 /* Call ourselves recursively to do the stage 1 and then stage 2 8102 * translations. 8103 */ 8104 if (arm_feature(env, ARM_FEATURE_EL2)) { 8105 hwaddr ipa; 8106 int s2_prot; 8107 int ret; 8108 8109 ret = get_phys_addr(env, address, access_type, 8110 mmu_idx + ARMMMUIdx_S1NSE0, &ipa, attrs, 8111 prot, page_size, fsr, fi); 8112 8113 /* If S1 fails or S2 is disabled, return early. */ 8114 if (ret || regime_translation_disabled(env, ARMMMUIdx_S2NS)) { 8115 *phys_ptr = ipa; 8116 return ret; 8117 } 8118 8119 /* S1 is done. Now do S2 translation. */ 8120 ret = get_phys_addr_lpae(env, ipa, access_type, ARMMMUIdx_S2NS, 8121 phys_ptr, attrs, &s2_prot, 8122 page_size, fsr, fi); 8123 fi->s2addr = ipa; 8124 /* Combine the S1 and S2 perms. */ 8125 *prot &= s2_prot; 8126 return ret; 8127 } else { 8128 /* 8129 * For non-EL2 CPUs a stage1+stage2 translation is just stage 1. 8130 */ 8131 mmu_idx += ARMMMUIdx_S1NSE0; 8132 } 8133 } 8134 8135 /* The page table entries may downgrade secure to non-secure, but 8136 * cannot upgrade an non-secure translation regime's attributes 8137 * to secure. 8138 */ 8139 attrs->secure = regime_is_secure(env, mmu_idx); 8140 attrs->user = regime_is_user(env, mmu_idx); 8141 8142 /* Fast Context Switch Extension. This doesn't exist at all in v8. 8143 * In v7 and earlier it affects all stage 1 translations. 8144 */ 8145 if (address < 0x02000000 && mmu_idx != ARMMMUIdx_S2NS 8146 && !arm_feature(env, ARM_FEATURE_V8)) { 8147 if (regime_el(env, mmu_idx) == 3) { 8148 address += env->cp15.fcseidr_s; 8149 } else { 8150 address += env->cp15.fcseidr_ns; 8151 } 8152 } 8153 8154 /* pmsav7 has special handling for when MPU is disabled so call it before 8155 * the common MMU/MPU disabled check below. 8156 */ 8157 if (arm_feature(env, ARM_FEATURE_MPU) && 8158 arm_feature(env, ARM_FEATURE_V7)) { 8159 *page_size = TARGET_PAGE_SIZE; 8160 return get_phys_addr_pmsav7(env, address, access_type, mmu_idx, 8161 phys_ptr, prot, fsr); 8162 } 8163 8164 if (regime_translation_disabled(env, mmu_idx)) { 8165 /* MMU/MPU disabled. */ 8166 *phys_ptr = address; 8167 *prot = PAGE_READ | PAGE_WRITE | PAGE_EXEC; 8168 *page_size = TARGET_PAGE_SIZE; 8169 return 0; 8170 } 8171 8172 if (arm_feature(env, ARM_FEATURE_MPU)) { 8173 /* Pre-v7 MPU */ 8174 *page_size = TARGET_PAGE_SIZE; 8175 return get_phys_addr_pmsav5(env, address, access_type, mmu_idx, 8176 phys_ptr, prot, fsr); 8177 } 8178 8179 if (regime_using_lpae_format(env, mmu_idx)) { 8180 return get_phys_addr_lpae(env, address, access_type, mmu_idx, phys_ptr, 8181 attrs, prot, page_size, fsr, fi); 8182 } else if (regime_sctlr(env, mmu_idx) & SCTLR_XP) { 8183 return get_phys_addr_v6(env, address, access_type, mmu_idx, phys_ptr, 8184 attrs, prot, page_size, fsr, fi); 8185 } else { 8186 return get_phys_addr_v5(env, address, access_type, mmu_idx, phys_ptr, 8187 prot, page_size, fsr, fi); 8188 } 8189 } 8190 8191 /* Walk the page table and (if the mapping exists) add the page 8192 * to the TLB. Return false on success, or true on failure. Populate 8193 * fsr with ARM DFSR/IFSR fault register format value on failure. 8194 */ 8195 bool arm_tlb_fill(CPUState *cs, vaddr address, 8196 int access_type, int mmu_idx, uint32_t *fsr, 8197 ARMMMUFaultInfo *fi) 8198 { 8199 ARMCPU *cpu = ARM_CPU(cs); 8200 CPUARMState *env = &cpu->env; 8201 hwaddr phys_addr; 8202 target_ulong page_size; 8203 int prot; 8204 int ret; 8205 MemTxAttrs attrs = {}; 8206 8207 ret = get_phys_addr(env, address, access_type, mmu_idx, &phys_addr, 8208 &attrs, &prot, &page_size, fsr, fi); 8209 if (!ret) { 8210 /* Map a single [sub]page. */ 8211 phys_addr &= TARGET_PAGE_MASK; 8212 address &= TARGET_PAGE_MASK; 8213 tlb_set_page_with_attrs(cs, address, phys_addr, attrs, 8214 prot, mmu_idx, page_size); 8215 return 0; 8216 } 8217 8218 return ret; 8219 } 8220 8221 hwaddr arm_cpu_get_phys_page_attrs_debug(CPUState *cs, vaddr addr, 8222 MemTxAttrs *attrs) 8223 { 8224 ARMCPU *cpu = ARM_CPU(cs); 8225 CPUARMState *env = &cpu->env; 8226 hwaddr phys_addr; 8227 target_ulong page_size; 8228 int prot; 8229 bool ret; 8230 uint32_t fsr; 8231 ARMMMUFaultInfo fi = {}; 8232 8233 *attrs = (MemTxAttrs) {}; 8234 8235 ret = get_phys_addr(env, addr, 0, cpu_mmu_index(env, false), &phys_addr, 8236 attrs, &prot, &page_size, &fsr, &fi); 8237 8238 if (ret) { 8239 return -1; 8240 } 8241 return phys_addr; 8242 } 8243 8244 uint32_t HELPER(v7m_mrs)(CPUARMState *env, uint32_t reg) 8245 { 8246 ARMCPU *cpu = arm_env_get_cpu(env); 8247 8248 switch (reg) { 8249 case 0: /* APSR */ 8250 return xpsr_read(env) & 0xf8000000; 8251 case 1: /* IAPSR */ 8252 return xpsr_read(env) & 0xf80001ff; 8253 case 2: /* EAPSR */ 8254 return xpsr_read(env) & 0xff00fc00; 8255 case 3: /* xPSR */ 8256 return xpsr_read(env) & 0xff00fdff; 8257 case 5: /* IPSR */ 8258 return xpsr_read(env) & 0x000001ff; 8259 case 6: /* EPSR */ 8260 return xpsr_read(env) & 0x0700fc00; 8261 case 7: /* IEPSR */ 8262 return xpsr_read(env) & 0x0700edff; 8263 case 8: /* MSP */ 8264 return env->v7m.current_sp ? env->v7m.other_sp : env->regs[13]; 8265 case 9: /* PSP */ 8266 return env->v7m.current_sp ? env->regs[13] : env->v7m.other_sp; 8267 case 16: /* PRIMASK */ 8268 return (env->daif & PSTATE_I) != 0; 8269 case 17: /* BASEPRI */ 8270 case 18: /* BASEPRI_MAX */ 8271 return env->v7m.basepri; 8272 case 19: /* FAULTMASK */ 8273 return (env->daif & PSTATE_F) != 0; 8274 case 20: /* CONTROL */ 8275 return env->v7m.control; 8276 default: 8277 /* ??? For debugging only. */ 8278 cpu_abort(CPU(cpu), "Unimplemented system register read (%d)\n", reg); 8279 return 0; 8280 } 8281 } 8282 8283 void HELPER(v7m_msr)(CPUARMState *env, uint32_t reg, uint32_t val) 8284 { 8285 ARMCPU *cpu = arm_env_get_cpu(env); 8286 8287 switch (reg) { 8288 case 0: /* APSR */ 8289 xpsr_write(env, val, 0xf8000000); 8290 break; 8291 case 1: /* IAPSR */ 8292 xpsr_write(env, val, 0xf8000000); 8293 break; 8294 case 2: /* EAPSR */ 8295 xpsr_write(env, val, 0xfe00fc00); 8296 break; 8297 case 3: /* xPSR */ 8298 xpsr_write(env, val, 0xfe00fc00); 8299 break; 8300 case 5: /* IPSR */ 8301 /* IPSR bits are readonly. */ 8302 break; 8303 case 6: /* EPSR */ 8304 xpsr_write(env, val, 0x0600fc00); 8305 break; 8306 case 7: /* IEPSR */ 8307 xpsr_write(env, val, 0x0600fc00); 8308 break; 8309 case 8: /* MSP */ 8310 if (env->v7m.current_sp) 8311 env->v7m.other_sp = val; 8312 else 8313 env->regs[13] = val; 8314 break; 8315 case 9: /* PSP */ 8316 if (env->v7m.current_sp) 8317 env->regs[13] = val; 8318 else 8319 env->v7m.other_sp = val; 8320 break; 8321 case 16: /* PRIMASK */ 8322 if (val & 1) { 8323 env->daif |= PSTATE_I; 8324 } else { 8325 env->daif &= ~PSTATE_I; 8326 } 8327 break; 8328 case 17: /* BASEPRI */ 8329 env->v7m.basepri = val & 0xff; 8330 break; 8331 case 18: /* BASEPRI_MAX */ 8332 val &= 0xff; 8333 if (val != 0 && (val < env->v7m.basepri || env->v7m.basepri == 0)) 8334 env->v7m.basepri = val; 8335 break; 8336 case 19: /* FAULTMASK */ 8337 if (val & 1) { 8338 env->daif |= PSTATE_F; 8339 } else { 8340 env->daif &= ~PSTATE_F; 8341 } 8342 break; 8343 case 20: /* CONTROL */ 8344 env->v7m.control = val & 3; 8345 switch_v7m_sp(env, (val & 2) != 0); 8346 break; 8347 default: 8348 /* ??? For debugging only. */ 8349 cpu_abort(CPU(cpu), "Unimplemented system register write (%d)\n", reg); 8350 return; 8351 } 8352 } 8353 8354 #endif 8355 8356 void HELPER(dc_zva)(CPUARMState *env, uint64_t vaddr_in) 8357 { 8358 /* Implement DC ZVA, which zeroes a fixed-length block of memory. 8359 * Note that we do not implement the (architecturally mandated) 8360 * alignment fault for attempts to use this on Device memory 8361 * (which matches the usual QEMU behaviour of not implementing either 8362 * alignment faults or any memory attribute handling). 8363 */ 8364 8365 ARMCPU *cpu = arm_env_get_cpu(env); 8366 uint64_t blocklen = 4 << cpu->dcz_blocksize; 8367 uint64_t vaddr = vaddr_in & ~(blocklen - 1); 8368 8369 #ifndef CONFIG_USER_ONLY 8370 { 8371 /* Slightly awkwardly, QEMU's TARGET_PAGE_SIZE may be less than 8372 * the block size so we might have to do more than one TLB lookup. 8373 * We know that in fact for any v8 CPU the page size is at least 4K 8374 * and the block size must be 2K or less, but TARGET_PAGE_SIZE is only 8375 * 1K as an artefact of legacy v5 subpage support being present in the 8376 * same QEMU executable. 8377 */ 8378 int maxidx = DIV_ROUND_UP(blocklen, TARGET_PAGE_SIZE); 8379 void *hostaddr[maxidx]; 8380 int try, i; 8381 unsigned mmu_idx = cpu_mmu_index(env, false); 8382 TCGMemOpIdx oi = make_memop_idx(MO_UB, mmu_idx); 8383 8384 for (try = 0; try < 2; try++) { 8385 8386 for (i = 0; i < maxidx; i++) { 8387 hostaddr[i] = tlb_vaddr_to_host(env, 8388 vaddr + TARGET_PAGE_SIZE * i, 8389 1, mmu_idx); 8390 if (!hostaddr[i]) { 8391 break; 8392 } 8393 } 8394 if (i == maxidx) { 8395 /* If it's all in the TLB it's fair game for just writing to; 8396 * we know we don't need to update dirty status, etc. 8397 */ 8398 for (i = 0; i < maxidx - 1; i++) { 8399 memset(hostaddr[i], 0, TARGET_PAGE_SIZE); 8400 } 8401 memset(hostaddr[i], 0, blocklen - (i * TARGET_PAGE_SIZE)); 8402 return; 8403 } 8404 /* OK, try a store and see if we can populate the tlb. This 8405 * might cause an exception if the memory isn't writable, 8406 * in which case we will longjmp out of here. We must for 8407 * this purpose use the actual register value passed to us 8408 * so that we get the fault address right. 8409 */ 8410 helper_ret_stb_mmu(env, vaddr_in, 0, oi, GETPC()); 8411 /* Now we can populate the other TLB entries, if any */ 8412 for (i = 0; i < maxidx; i++) { 8413 uint64_t va = vaddr + TARGET_PAGE_SIZE * i; 8414 if (va != (vaddr_in & TARGET_PAGE_MASK)) { 8415 helper_ret_stb_mmu(env, va, 0, oi, GETPC()); 8416 } 8417 } 8418 } 8419 8420 /* Slow path (probably attempt to do this to an I/O device or 8421 * similar, or clearing of a block of code we have translations 8422 * cached for). Just do a series of byte writes as the architecture 8423 * demands. It's not worth trying to use a cpu_physical_memory_map(), 8424 * memset(), unmap() sequence here because: 8425 * + we'd need to account for the blocksize being larger than a page 8426 * + the direct-RAM access case is almost always going to be dealt 8427 * with in the fastpath code above, so there's no speed benefit 8428 * + we would have to deal with the map returning NULL because the 8429 * bounce buffer was in use 8430 */ 8431 for (i = 0; i < blocklen; i++) { 8432 helper_ret_stb_mmu(env, vaddr + i, 0, oi, GETPC()); 8433 } 8434 } 8435 #else 8436 memset(g2h(vaddr), 0, blocklen); 8437 #endif 8438 } 8439 8440 /* Note that signed overflow is undefined in C. The following routines are 8441 careful to use unsigned types where modulo arithmetic is required. 8442 Failure to do so _will_ break on newer gcc. */ 8443 8444 /* Signed saturating arithmetic. */ 8445 8446 /* Perform 16-bit signed saturating addition. */ 8447 static inline uint16_t add16_sat(uint16_t a, uint16_t b) 8448 { 8449 uint16_t res; 8450 8451 res = a + b; 8452 if (((res ^ a) & 0x8000) && !((a ^ b) & 0x8000)) { 8453 if (a & 0x8000) 8454 res = 0x8000; 8455 else 8456 res = 0x7fff; 8457 } 8458 return res; 8459 } 8460 8461 /* Perform 8-bit signed saturating addition. */ 8462 static inline uint8_t add8_sat(uint8_t a, uint8_t b) 8463 { 8464 uint8_t res; 8465 8466 res = a + b; 8467 if (((res ^ a) & 0x80) && !((a ^ b) & 0x80)) { 8468 if (a & 0x80) 8469 res = 0x80; 8470 else 8471 res = 0x7f; 8472 } 8473 return res; 8474 } 8475 8476 /* Perform 16-bit signed saturating subtraction. */ 8477 static inline uint16_t sub16_sat(uint16_t a, uint16_t b) 8478 { 8479 uint16_t res; 8480 8481 res = a - b; 8482 if (((res ^ a) & 0x8000) && ((a ^ b) & 0x8000)) { 8483 if (a & 0x8000) 8484 res = 0x8000; 8485 else 8486 res = 0x7fff; 8487 } 8488 return res; 8489 } 8490 8491 /* Perform 8-bit signed saturating subtraction. */ 8492 static inline uint8_t sub8_sat(uint8_t a, uint8_t b) 8493 { 8494 uint8_t res; 8495 8496 res = a - b; 8497 if (((res ^ a) & 0x80) && ((a ^ b) & 0x80)) { 8498 if (a & 0x80) 8499 res = 0x80; 8500 else 8501 res = 0x7f; 8502 } 8503 return res; 8504 } 8505 8506 #define ADD16(a, b, n) RESULT(add16_sat(a, b), n, 16); 8507 #define SUB16(a, b, n) RESULT(sub16_sat(a, b), n, 16); 8508 #define ADD8(a, b, n) RESULT(add8_sat(a, b), n, 8); 8509 #define SUB8(a, b, n) RESULT(sub8_sat(a, b), n, 8); 8510 #define PFX q 8511 8512 #include "op_addsub.h" 8513 8514 /* Unsigned saturating arithmetic. */ 8515 static inline uint16_t add16_usat(uint16_t a, uint16_t b) 8516 { 8517 uint16_t res; 8518 res = a + b; 8519 if (res < a) 8520 res = 0xffff; 8521 return res; 8522 } 8523 8524 static inline uint16_t sub16_usat(uint16_t a, uint16_t b) 8525 { 8526 if (a > b) 8527 return a - b; 8528 else 8529 return 0; 8530 } 8531 8532 static inline uint8_t add8_usat(uint8_t a, uint8_t b) 8533 { 8534 uint8_t res; 8535 res = a + b; 8536 if (res < a) 8537 res = 0xff; 8538 return res; 8539 } 8540 8541 static inline uint8_t sub8_usat(uint8_t a, uint8_t b) 8542 { 8543 if (a > b) 8544 return a - b; 8545 else 8546 return 0; 8547 } 8548 8549 #define ADD16(a, b, n) RESULT(add16_usat(a, b), n, 16); 8550 #define SUB16(a, b, n) RESULT(sub16_usat(a, b), n, 16); 8551 #define ADD8(a, b, n) RESULT(add8_usat(a, b), n, 8); 8552 #define SUB8(a, b, n) RESULT(sub8_usat(a, b), n, 8); 8553 #define PFX uq 8554 8555 #include "op_addsub.h" 8556 8557 /* Signed modulo arithmetic. */ 8558 #define SARITH16(a, b, n, op) do { \ 8559 int32_t sum; \ 8560 sum = (int32_t)(int16_t)(a) op (int32_t)(int16_t)(b); \ 8561 RESULT(sum, n, 16); \ 8562 if (sum >= 0) \ 8563 ge |= 3 << (n * 2); \ 8564 } while(0) 8565 8566 #define SARITH8(a, b, n, op) do { \ 8567 int32_t sum; \ 8568 sum = (int32_t)(int8_t)(a) op (int32_t)(int8_t)(b); \ 8569 RESULT(sum, n, 8); \ 8570 if (sum >= 0) \ 8571 ge |= 1 << n; \ 8572 } while(0) 8573 8574 8575 #define ADD16(a, b, n) SARITH16(a, b, n, +) 8576 #define SUB16(a, b, n) SARITH16(a, b, n, -) 8577 #define ADD8(a, b, n) SARITH8(a, b, n, +) 8578 #define SUB8(a, b, n) SARITH8(a, b, n, -) 8579 #define PFX s 8580 #define ARITH_GE 8581 8582 #include "op_addsub.h" 8583 8584 /* Unsigned modulo arithmetic. */ 8585 #define ADD16(a, b, n) do { \ 8586 uint32_t sum; \ 8587 sum = (uint32_t)(uint16_t)(a) + (uint32_t)(uint16_t)(b); \ 8588 RESULT(sum, n, 16); \ 8589 if ((sum >> 16) == 1) \ 8590 ge |= 3 << (n * 2); \ 8591 } while(0) 8592 8593 #define ADD8(a, b, n) do { \ 8594 uint32_t sum; \ 8595 sum = (uint32_t)(uint8_t)(a) + (uint32_t)(uint8_t)(b); \ 8596 RESULT(sum, n, 8); \ 8597 if ((sum >> 8) == 1) \ 8598 ge |= 1 << n; \ 8599 } while(0) 8600 8601 #define SUB16(a, b, n) do { \ 8602 uint32_t sum; \ 8603 sum = (uint32_t)(uint16_t)(a) - (uint32_t)(uint16_t)(b); \ 8604 RESULT(sum, n, 16); \ 8605 if ((sum >> 16) == 0) \ 8606 ge |= 3 << (n * 2); \ 8607 } while(0) 8608 8609 #define SUB8(a, b, n) do { \ 8610 uint32_t sum; \ 8611 sum = (uint32_t)(uint8_t)(a) - (uint32_t)(uint8_t)(b); \ 8612 RESULT(sum, n, 8); \ 8613 if ((sum >> 8) == 0) \ 8614 ge |= 1 << n; \ 8615 } while(0) 8616 8617 #define PFX u 8618 #define ARITH_GE 8619 8620 #include "op_addsub.h" 8621 8622 /* Halved signed arithmetic. */ 8623 #define ADD16(a, b, n) \ 8624 RESULT(((int32_t)(int16_t)(a) + (int32_t)(int16_t)(b)) >> 1, n, 16) 8625 #define SUB16(a, b, n) \ 8626 RESULT(((int32_t)(int16_t)(a) - (int32_t)(int16_t)(b)) >> 1, n, 16) 8627 #define ADD8(a, b, n) \ 8628 RESULT(((int32_t)(int8_t)(a) + (int32_t)(int8_t)(b)) >> 1, n, 8) 8629 #define SUB8(a, b, n) \ 8630 RESULT(((int32_t)(int8_t)(a) - (int32_t)(int8_t)(b)) >> 1, n, 8) 8631 #define PFX sh 8632 8633 #include "op_addsub.h" 8634 8635 /* Halved unsigned arithmetic. */ 8636 #define ADD16(a, b, n) \ 8637 RESULT(((uint32_t)(uint16_t)(a) + (uint32_t)(uint16_t)(b)) >> 1, n, 16) 8638 #define SUB16(a, b, n) \ 8639 RESULT(((uint32_t)(uint16_t)(a) - (uint32_t)(uint16_t)(b)) >> 1, n, 16) 8640 #define ADD8(a, b, n) \ 8641 RESULT(((uint32_t)(uint8_t)(a) + (uint32_t)(uint8_t)(b)) >> 1, n, 8) 8642 #define SUB8(a, b, n) \ 8643 RESULT(((uint32_t)(uint8_t)(a) - (uint32_t)(uint8_t)(b)) >> 1, n, 8) 8644 #define PFX uh 8645 8646 #include "op_addsub.h" 8647 8648 static inline uint8_t do_usad(uint8_t a, uint8_t b) 8649 { 8650 if (a > b) 8651 return a - b; 8652 else 8653 return b - a; 8654 } 8655 8656 /* Unsigned sum of absolute byte differences. */ 8657 uint32_t HELPER(usad8)(uint32_t a, uint32_t b) 8658 { 8659 uint32_t sum; 8660 sum = do_usad(a, b); 8661 sum += do_usad(a >> 8, b >> 8); 8662 sum += do_usad(a >> 16, b >>16); 8663 sum += do_usad(a >> 24, b >> 24); 8664 return sum; 8665 } 8666 8667 /* For ARMv6 SEL instruction. */ 8668 uint32_t HELPER(sel_flags)(uint32_t flags, uint32_t a, uint32_t b) 8669 { 8670 uint32_t mask; 8671 8672 mask = 0; 8673 if (flags & 1) 8674 mask |= 0xff; 8675 if (flags & 2) 8676 mask |= 0xff00; 8677 if (flags & 4) 8678 mask |= 0xff0000; 8679 if (flags & 8) 8680 mask |= 0xff000000; 8681 return (a & mask) | (b & ~mask); 8682 } 8683 8684 /* VFP support. We follow the convention used for VFP instructions: 8685 Single precision routines have a "s" suffix, double precision a 8686 "d" suffix. */ 8687 8688 /* Convert host exception flags to vfp form. */ 8689 static inline int vfp_exceptbits_from_host(int host_bits) 8690 { 8691 int target_bits = 0; 8692 8693 if (host_bits & float_flag_invalid) 8694 target_bits |= 1; 8695 if (host_bits & float_flag_divbyzero) 8696 target_bits |= 2; 8697 if (host_bits & float_flag_overflow) 8698 target_bits |= 4; 8699 if (host_bits & (float_flag_underflow | float_flag_output_denormal)) 8700 target_bits |= 8; 8701 if (host_bits & float_flag_inexact) 8702 target_bits |= 0x10; 8703 if (host_bits & float_flag_input_denormal) 8704 target_bits |= 0x80; 8705 return target_bits; 8706 } 8707 8708 uint32_t HELPER(vfp_get_fpscr)(CPUARMState *env) 8709 { 8710 int i; 8711 uint32_t fpscr; 8712 8713 fpscr = (env->vfp.xregs[ARM_VFP_FPSCR] & 0xffc8ffff) 8714 | (env->vfp.vec_len << 16) 8715 | (env->vfp.vec_stride << 20); 8716 i = get_float_exception_flags(&env->vfp.fp_status); 8717 i |= get_float_exception_flags(&env->vfp.standard_fp_status); 8718 fpscr |= vfp_exceptbits_from_host(i); 8719 return fpscr; 8720 } 8721 8722 uint32_t vfp_get_fpscr(CPUARMState *env) 8723 { 8724 return HELPER(vfp_get_fpscr)(env); 8725 } 8726 8727 /* Convert vfp exception flags to target form. */ 8728 static inline int vfp_exceptbits_to_host(int target_bits) 8729 { 8730 int host_bits = 0; 8731 8732 if (target_bits & 1) 8733 host_bits |= float_flag_invalid; 8734 if (target_bits & 2) 8735 host_bits |= float_flag_divbyzero; 8736 if (target_bits & 4) 8737 host_bits |= float_flag_overflow; 8738 if (target_bits & 8) 8739 host_bits |= float_flag_underflow; 8740 if (target_bits & 0x10) 8741 host_bits |= float_flag_inexact; 8742 if (target_bits & 0x80) 8743 host_bits |= float_flag_input_denormal; 8744 return host_bits; 8745 } 8746 8747 void HELPER(vfp_set_fpscr)(CPUARMState *env, uint32_t val) 8748 { 8749 int i; 8750 uint32_t changed; 8751 8752 changed = env->vfp.xregs[ARM_VFP_FPSCR]; 8753 env->vfp.xregs[ARM_VFP_FPSCR] = (val & 0xffc8ffff); 8754 env->vfp.vec_len = (val >> 16) & 7; 8755 env->vfp.vec_stride = (val >> 20) & 3; 8756 8757 changed ^= val; 8758 if (changed & (3 << 22)) { 8759 i = (val >> 22) & 3; 8760 switch (i) { 8761 case FPROUNDING_TIEEVEN: 8762 i = float_round_nearest_even; 8763 break; 8764 case FPROUNDING_POSINF: 8765 i = float_round_up; 8766 break; 8767 case FPROUNDING_NEGINF: 8768 i = float_round_down; 8769 break; 8770 case FPROUNDING_ZERO: 8771 i = float_round_to_zero; 8772 break; 8773 } 8774 set_float_rounding_mode(i, &env->vfp.fp_status); 8775 } 8776 if (changed & (1 << 24)) { 8777 set_flush_to_zero((val & (1 << 24)) != 0, &env->vfp.fp_status); 8778 set_flush_inputs_to_zero((val & (1 << 24)) != 0, &env->vfp.fp_status); 8779 } 8780 if (changed & (1 << 25)) 8781 set_default_nan_mode((val & (1 << 25)) != 0, &env->vfp.fp_status); 8782 8783 i = vfp_exceptbits_to_host(val); 8784 set_float_exception_flags(i, &env->vfp.fp_status); 8785 set_float_exception_flags(0, &env->vfp.standard_fp_status); 8786 } 8787 8788 void vfp_set_fpscr(CPUARMState *env, uint32_t val) 8789 { 8790 HELPER(vfp_set_fpscr)(env, val); 8791 } 8792 8793 #define VFP_HELPER(name, p) HELPER(glue(glue(vfp_,name),p)) 8794 8795 #define VFP_BINOP(name) \ 8796 float32 VFP_HELPER(name, s)(float32 a, float32 b, void *fpstp) \ 8797 { \ 8798 float_status *fpst = fpstp; \ 8799 return float32_ ## name(a, b, fpst); \ 8800 } \ 8801 float64 VFP_HELPER(name, d)(float64 a, float64 b, void *fpstp) \ 8802 { \ 8803 float_status *fpst = fpstp; \ 8804 return float64_ ## name(a, b, fpst); \ 8805 } 8806 VFP_BINOP(add) 8807 VFP_BINOP(sub) 8808 VFP_BINOP(mul) 8809 VFP_BINOP(div) 8810 VFP_BINOP(min) 8811 VFP_BINOP(max) 8812 VFP_BINOP(minnum) 8813 VFP_BINOP(maxnum) 8814 #undef VFP_BINOP 8815 8816 float32 VFP_HELPER(neg, s)(float32 a) 8817 { 8818 return float32_chs(a); 8819 } 8820 8821 float64 VFP_HELPER(neg, d)(float64 a) 8822 { 8823 return float64_chs(a); 8824 } 8825 8826 float32 VFP_HELPER(abs, s)(float32 a) 8827 { 8828 return float32_abs(a); 8829 } 8830 8831 float64 VFP_HELPER(abs, d)(float64 a) 8832 { 8833 return float64_abs(a); 8834 } 8835 8836 float32 VFP_HELPER(sqrt, s)(float32 a, CPUARMState *env) 8837 { 8838 return float32_sqrt(a, &env->vfp.fp_status); 8839 } 8840 8841 float64 VFP_HELPER(sqrt, d)(float64 a, CPUARMState *env) 8842 { 8843 return float64_sqrt(a, &env->vfp.fp_status); 8844 } 8845 8846 /* XXX: check quiet/signaling case */ 8847 #define DO_VFP_cmp(p, type) \ 8848 void VFP_HELPER(cmp, p)(type a, type b, CPUARMState *env) \ 8849 { \ 8850 uint32_t flags; \ 8851 switch(type ## _compare_quiet(a, b, &env->vfp.fp_status)) { \ 8852 case 0: flags = 0x6; break; \ 8853 case -1: flags = 0x8; break; \ 8854 case 1: flags = 0x2; break; \ 8855 default: case 2: flags = 0x3; break; \ 8856 } \ 8857 env->vfp.xregs[ARM_VFP_FPSCR] = (flags << 28) \ 8858 | (env->vfp.xregs[ARM_VFP_FPSCR] & 0x0fffffff); \ 8859 } \ 8860 void VFP_HELPER(cmpe, p)(type a, type b, CPUARMState *env) \ 8861 { \ 8862 uint32_t flags; \ 8863 switch(type ## _compare(a, b, &env->vfp.fp_status)) { \ 8864 case 0: flags = 0x6; break; \ 8865 case -1: flags = 0x8; break; \ 8866 case 1: flags = 0x2; break; \ 8867 default: case 2: flags = 0x3; break; \ 8868 } \ 8869 env->vfp.xregs[ARM_VFP_FPSCR] = (flags << 28) \ 8870 | (env->vfp.xregs[ARM_VFP_FPSCR] & 0x0fffffff); \ 8871 } 8872 DO_VFP_cmp(s, float32) 8873 DO_VFP_cmp(d, float64) 8874 #undef DO_VFP_cmp 8875 8876 /* Integer to float and float to integer conversions */ 8877 8878 #define CONV_ITOF(name, fsz, sign) \ 8879 float##fsz HELPER(name)(uint32_t x, void *fpstp) \ 8880 { \ 8881 float_status *fpst = fpstp; \ 8882 return sign##int32_to_##float##fsz((sign##int32_t)x, fpst); \ 8883 } 8884 8885 #define CONV_FTOI(name, fsz, sign, round) \ 8886 uint32_t HELPER(name)(float##fsz x, void *fpstp) \ 8887 { \ 8888 float_status *fpst = fpstp; \ 8889 if (float##fsz##_is_any_nan(x)) { \ 8890 float_raise(float_flag_invalid, fpst); \ 8891 return 0; \ 8892 } \ 8893 return float##fsz##_to_##sign##int32##round(x, fpst); \ 8894 } 8895 8896 #define FLOAT_CONVS(name, p, fsz, sign) \ 8897 CONV_ITOF(vfp_##name##to##p, fsz, sign) \ 8898 CONV_FTOI(vfp_to##name##p, fsz, sign, ) \ 8899 CONV_FTOI(vfp_to##name##z##p, fsz, sign, _round_to_zero) 8900 8901 FLOAT_CONVS(si, s, 32, ) 8902 FLOAT_CONVS(si, d, 64, ) 8903 FLOAT_CONVS(ui, s, 32, u) 8904 FLOAT_CONVS(ui, d, 64, u) 8905 8906 #undef CONV_ITOF 8907 #undef CONV_FTOI 8908 #undef FLOAT_CONVS 8909 8910 /* floating point conversion */ 8911 float64 VFP_HELPER(fcvtd, s)(float32 x, CPUARMState *env) 8912 { 8913 float64 r = float32_to_float64(x, &env->vfp.fp_status); 8914 /* ARM requires that S<->D conversion of any kind of NaN generates 8915 * a quiet NaN by forcing the most significant frac bit to 1. 8916 */ 8917 return float64_maybe_silence_nan(r, &env->vfp.fp_status); 8918 } 8919 8920 float32 VFP_HELPER(fcvts, d)(float64 x, CPUARMState *env) 8921 { 8922 float32 r = float64_to_float32(x, &env->vfp.fp_status); 8923 /* ARM requires that S<->D conversion of any kind of NaN generates 8924 * a quiet NaN by forcing the most significant frac bit to 1. 8925 */ 8926 return float32_maybe_silence_nan(r, &env->vfp.fp_status); 8927 } 8928 8929 /* VFP3 fixed point conversion. */ 8930 #define VFP_CONV_FIX_FLOAT(name, p, fsz, isz, itype) \ 8931 float##fsz HELPER(vfp_##name##to##p)(uint##isz##_t x, uint32_t shift, \ 8932 void *fpstp) \ 8933 { \ 8934 float_status *fpst = fpstp; \ 8935 float##fsz tmp; \ 8936 tmp = itype##_to_##float##fsz(x, fpst); \ 8937 return float##fsz##_scalbn(tmp, -(int)shift, fpst); \ 8938 } 8939 8940 /* Notice that we want only input-denormal exception flags from the 8941 * scalbn operation: the other possible flags (overflow+inexact if 8942 * we overflow to infinity, output-denormal) aren't correct for the 8943 * complete scale-and-convert operation. 8944 */ 8945 #define VFP_CONV_FLOAT_FIX_ROUND(name, p, fsz, isz, itype, round) \ 8946 uint##isz##_t HELPER(vfp_to##name##p##round)(float##fsz x, \ 8947 uint32_t shift, \ 8948 void *fpstp) \ 8949 { \ 8950 float_status *fpst = fpstp; \ 8951 int old_exc_flags = get_float_exception_flags(fpst); \ 8952 float##fsz tmp; \ 8953 if (float##fsz##_is_any_nan(x)) { \ 8954 float_raise(float_flag_invalid, fpst); \ 8955 return 0; \ 8956 } \ 8957 tmp = float##fsz##_scalbn(x, shift, fpst); \ 8958 old_exc_flags |= get_float_exception_flags(fpst) \ 8959 & float_flag_input_denormal; \ 8960 set_float_exception_flags(old_exc_flags, fpst); \ 8961 return float##fsz##_to_##itype##round(tmp, fpst); \ 8962 } 8963 8964 #define VFP_CONV_FIX(name, p, fsz, isz, itype) \ 8965 VFP_CONV_FIX_FLOAT(name, p, fsz, isz, itype) \ 8966 VFP_CONV_FLOAT_FIX_ROUND(name, p, fsz, isz, itype, _round_to_zero) \ 8967 VFP_CONV_FLOAT_FIX_ROUND(name, p, fsz, isz, itype, ) 8968 8969 #define VFP_CONV_FIX_A64(name, p, fsz, isz, itype) \ 8970 VFP_CONV_FIX_FLOAT(name, p, fsz, isz, itype) \ 8971 VFP_CONV_FLOAT_FIX_ROUND(name, p, fsz, isz, itype, ) 8972 8973 VFP_CONV_FIX(sh, d, 64, 64, int16) 8974 VFP_CONV_FIX(sl, d, 64, 64, int32) 8975 VFP_CONV_FIX_A64(sq, d, 64, 64, int64) 8976 VFP_CONV_FIX(uh, d, 64, 64, uint16) 8977 VFP_CONV_FIX(ul, d, 64, 64, uint32) 8978 VFP_CONV_FIX_A64(uq, d, 64, 64, uint64) 8979 VFP_CONV_FIX(sh, s, 32, 32, int16) 8980 VFP_CONV_FIX(sl, s, 32, 32, int32) 8981 VFP_CONV_FIX_A64(sq, s, 32, 64, int64) 8982 VFP_CONV_FIX(uh, s, 32, 32, uint16) 8983 VFP_CONV_FIX(ul, s, 32, 32, uint32) 8984 VFP_CONV_FIX_A64(uq, s, 32, 64, uint64) 8985 #undef VFP_CONV_FIX 8986 #undef VFP_CONV_FIX_FLOAT 8987 #undef VFP_CONV_FLOAT_FIX_ROUND 8988 8989 /* Set the current fp rounding mode and return the old one. 8990 * The argument is a softfloat float_round_ value. 8991 */ 8992 uint32_t HELPER(set_rmode)(uint32_t rmode, CPUARMState *env) 8993 { 8994 float_status *fp_status = &env->vfp.fp_status; 8995 8996 uint32_t prev_rmode = get_float_rounding_mode(fp_status); 8997 set_float_rounding_mode(rmode, fp_status); 8998 8999 return prev_rmode; 9000 } 9001 9002 /* Set the current fp rounding mode in the standard fp status and return 9003 * the old one. This is for NEON instructions that need to change the 9004 * rounding mode but wish to use the standard FPSCR values for everything 9005 * else. Always set the rounding mode back to the correct value after 9006 * modifying it. 9007 * The argument is a softfloat float_round_ value. 9008 */ 9009 uint32_t HELPER(set_neon_rmode)(uint32_t rmode, CPUARMState *env) 9010 { 9011 float_status *fp_status = &env->vfp.standard_fp_status; 9012 9013 uint32_t prev_rmode = get_float_rounding_mode(fp_status); 9014 set_float_rounding_mode(rmode, fp_status); 9015 9016 return prev_rmode; 9017 } 9018 9019 /* Half precision conversions. */ 9020 static float32 do_fcvt_f16_to_f32(uint32_t a, CPUARMState *env, float_status *s) 9021 { 9022 int ieee = (env->vfp.xregs[ARM_VFP_FPSCR] & (1 << 26)) == 0; 9023 float32 r = float16_to_float32(make_float16(a), ieee, s); 9024 if (ieee) { 9025 return float32_maybe_silence_nan(r, s); 9026 } 9027 return r; 9028 } 9029 9030 static uint32_t do_fcvt_f32_to_f16(float32 a, CPUARMState *env, float_status *s) 9031 { 9032 int ieee = (env->vfp.xregs[ARM_VFP_FPSCR] & (1 << 26)) == 0; 9033 float16 r = float32_to_float16(a, ieee, s); 9034 if (ieee) { 9035 r = float16_maybe_silence_nan(r, s); 9036 } 9037 return float16_val(r); 9038 } 9039 9040 float32 HELPER(neon_fcvt_f16_to_f32)(uint32_t a, CPUARMState *env) 9041 { 9042 return do_fcvt_f16_to_f32(a, env, &env->vfp.standard_fp_status); 9043 } 9044 9045 uint32_t HELPER(neon_fcvt_f32_to_f16)(float32 a, CPUARMState *env) 9046 { 9047 return do_fcvt_f32_to_f16(a, env, &env->vfp.standard_fp_status); 9048 } 9049 9050 float32 HELPER(vfp_fcvt_f16_to_f32)(uint32_t a, CPUARMState *env) 9051 { 9052 return do_fcvt_f16_to_f32(a, env, &env->vfp.fp_status); 9053 } 9054 9055 uint32_t HELPER(vfp_fcvt_f32_to_f16)(float32 a, CPUARMState *env) 9056 { 9057 return do_fcvt_f32_to_f16(a, env, &env->vfp.fp_status); 9058 } 9059 9060 float64 HELPER(vfp_fcvt_f16_to_f64)(uint32_t a, CPUARMState *env) 9061 { 9062 int ieee = (env->vfp.xregs[ARM_VFP_FPSCR] & (1 << 26)) == 0; 9063 float64 r = float16_to_float64(make_float16(a), ieee, &env->vfp.fp_status); 9064 if (ieee) { 9065 return float64_maybe_silence_nan(r, &env->vfp.fp_status); 9066 } 9067 return r; 9068 } 9069 9070 uint32_t HELPER(vfp_fcvt_f64_to_f16)(float64 a, CPUARMState *env) 9071 { 9072 int ieee = (env->vfp.xregs[ARM_VFP_FPSCR] & (1 << 26)) == 0; 9073 float16 r = float64_to_float16(a, ieee, &env->vfp.fp_status); 9074 if (ieee) { 9075 r = float16_maybe_silence_nan(r, &env->vfp.fp_status); 9076 } 9077 return float16_val(r); 9078 } 9079 9080 #define float32_two make_float32(0x40000000) 9081 #define float32_three make_float32(0x40400000) 9082 #define float32_one_point_five make_float32(0x3fc00000) 9083 9084 float32 HELPER(recps_f32)(float32 a, float32 b, CPUARMState *env) 9085 { 9086 float_status *s = &env->vfp.standard_fp_status; 9087 if ((float32_is_infinity(a) && float32_is_zero_or_denormal(b)) || 9088 (float32_is_infinity(b) && float32_is_zero_or_denormal(a))) { 9089 if (!(float32_is_zero(a) || float32_is_zero(b))) { 9090 float_raise(float_flag_input_denormal, s); 9091 } 9092 return float32_two; 9093 } 9094 return float32_sub(float32_two, float32_mul(a, b, s), s); 9095 } 9096 9097 float32 HELPER(rsqrts_f32)(float32 a, float32 b, CPUARMState *env) 9098 { 9099 float_status *s = &env->vfp.standard_fp_status; 9100 float32 product; 9101 if ((float32_is_infinity(a) && float32_is_zero_or_denormal(b)) || 9102 (float32_is_infinity(b) && float32_is_zero_or_denormal(a))) { 9103 if (!(float32_is_zero(a) || float32_is_zero(b))) { 9104 float_raise(float_flag_input_denormal, s); 9105 } 9106 return float32_one_point_five; 9107 } 9108 product = float32_mul(a, b, s); 9109 return float32_div(float32_sub(float32_three, product, s), float32_two, s); 9110 } 9111 9112 /* NEON helpers. */ 9113 9114 /* Constants 256 and 512 are used in some helpers; we avoid relying on 9115 * int->float conversions at run-time. */ 9116 #define float64_256 make_float64(0x4070000000000000LL) 9117 #define float64_512 make_float64(0x4080000000000000LL) 9118 #define float32_maxnorm make_float32(0x7f7fffff) 9119 #define float64_maxnorm make_float64(0x7fefffffffffffffLL) 9120 9121 /* Reciprocal functions 9122 * 9123 * The algorithm that must be used to calculate the estimate 9124 * is specified by the ARM ARM, see FPRecipEstimate() 9125 */ 9126 9127 static float64 recip_estimate(float64 a, float_status *real_fp_status) 9128 { 9129 /* These calculations mustn't set any fp exception flags, 9130 * so we use a local copy of the fp_status. 9131 */ 9132 float_status dummy_status = *real_fp_status; 9133 float_status *s = &dummy_status; 9134 /* q = (int)(a * 512.0) */ 9135 float64 q = float64_mul(float64_512, a, s); 9136 int64_t q_int = float64_to_int64_round_to_zero(q, s); 9137 9138 /* r = 1.0 / (((double)q + 0.5) / 512.0) */ 9139 q = int64_to_float64(q_int, s); 9140 q = float64_add(q, float64_half, s); 9141 q = float64_div(q, float64_512, s); 9142 q = float64_div(float64_one, q, s); 9143 9144 /* s = (int)(256.0 * r + 0.5) */ 9145 q = float64_mul(q, float64_256, s); 9146 q = float64_add(q, float64_half, s); 9147 q_int = float64_to_int64_round_to_zero(q, s); 9148 9149 /* return (double)s / 256.0 */ 9150 return float64_div(int64_to_float64(q_int, s), float64_256, s); 9151 } 9152 9153 /* Common wrapper to call recip_estimate */ 9154 static float64 call_recip_estimate(float64 num, int off, float_status *fpst) 9155 { 9156 uint64_t val64 = float64_val(num); 9157 uint64_t frac = extract64(val64, 0, 52); 9158 int64_t exp = extract64(val64, 52, 11); 9159 uint64_t sbit; 9160 float64 scaled, estimate; 9161 9162 /* Generate the scaled number for the estimate function */ 9163 if (exp == 0) { 9164 if (extract64(frac, 51, 1) == 0) { 9165 exp = -1; 9166 frac = extract64(frac, 0, 50) << 2; 9167 } else { 9168 frac = extract64(frac, 0, 51) << 1; 9169 } 9170 } 9171 9172 /* scaled = '0' : '01111111110' : fraction<51:44> : Zeros(44); */ 9173 scaled = make_float64((0x3feULL << 52) 9174 | extract64(frac, 44, 8) << 44); 9175 9176 estimate = recip_estimate(scaled, fpst); 9177 9178 /* Build new result */ 9179 val64 = float64_val(estimate); 9180 sbit = 0x8000000000000000ULL & val64; 9181 exp = off - exp; 9182 frac = extract64(val64, 0, 52); 9183 9184 if (exp == 0) { 9185 frac = 1ULL << 51 | extract64(frac, 1, 51); 9186 } else if (exp == -1) { 9187 frac = 1ULL << 50 | extract64(frac, 2, 50); 9188 exp = 0; 9189 } 9190 9191 return make_float64(sbit | (exp << 52) | frac); 9192 } 9193 9194 static bool round_to_inf(float_status *fpst, bool sign_bit) 9195 { 9196 switch (fpst->float_rounding_mode) { 9197 case float_round_nearest_even: /* Round to Nearest */ 9198 return true; 9199 case float_round_up: /* Round to +Inf */ 9200 return !sign_bit; 9201 case float_round_down: /* Round to -Inf */ 9202 return sign_bit; 9203 case float_round_to_zero: /* Round to Zero */ 9204 return false; 9205 } 9206 9207 g_assert_not_reached(); 9208 } 9209 9210 float32 HELPER(recpe_f32)(float32 input, void *fpstp) 9211 { 9212 float_status *fpst = fpstp; 9213 float32 f32 = float32_squash_input_denormal(input, fpst); 9214 uint32_t f32_val = float32_val(f32); 9215 uint32_t f32_sbit = 0x80000000ULL & f32_val; 9216 int32_t f32_exp = extract32(f32_val, 23, 8); 9217 uint32_t f32_frac = extract32(f32_val, 0, 23); 9218 float64 f64, r64; 9219 uint64_t r64_val; 9220 int64_t r64_exp; 9221 uint64_t r64_frac; 9222 9223 if (float32_is_any_nan(f32)) { 9224 float32 nan = f32; 9225 if (float32_is_signaling_nan(f32, fpst)) { 9226 float_raise(float_flag_invalid, fpst); 9227 nan = float32_maybe_silence_nan(f32, fpst); 9228 } 9229 if (fpst->default_nan_mode) { 9230 nan = float32_default_nan(fpst); 9231 } 9232 return nan; 9233 } else if (float32_is_infinity(f32)) { 9234 return float32_set_sign(float32_zero, float32_is_neg(f32)); 9235 } else if (float32_is_zero(f32)) { 9236 float_raise(float_flag_divbyzero, fpst); 9237 return float32_set_sign(float32_infinity, float32_is_neg(f32)); 9238 } else if ((f32_val & ~(1ULL << 31)) < (1ULL << 21)) { 9239 /* Abs(value) < 2.0^-128 */ 9240 float_raise(float_flag_overflow | float_flag_inexact, fpst); 9241 if (round_to_inf(fpst, f32_sbit)) { 9242 return float32_set_sign(float32_infinity, float32_is_neg(f32)); 9243 } else { 9244 return float32_set_sign(float32_maxnorm, float32_is_neg(f32)); 9245 } 9246 } else if (f32_exp >= 253 && fpst->flush_to_zero) { 9247 float_raise(float_flag_underflow, fpst); 9248 return float32_set_sign(float32_zero, float32_is_neg(f32)); 9249 } 9250 9251 9252 f64 = make_float64(((int64_t)(f32_exp) << 52) | (int64_t)(f32_frac) << 29); 9253 r64 = call_recip_estimate(f64, 253, fpst); 9254 r64_val = float64_val(r64); 9255 r64_exp = extract64(r64_val, 52, 11); 9256 r64_frac = extract64(r64_val, 0, 52); 9257 9258 /* result = sign : result_exp<7:0> : fraction<51:29>; */ 9259 return make_float32(f32_sbit | 9260 (r64_exp & 0xff) << 23 | 9261 extract64(r64_frac, 29, 24)); 9262 } 9263 9264 float64 HELPER(recpe_f64)(float64 input, void *fpstp) 9265 { 9266 float_status *fpst = fpstp; 9267 float64 f64 = float64_squash_input_denormal(input, fpst); 9268 uint64_t f64_val = float64_val(f64); 9269 uint64_t f64_sbit = 0x8000000000000000ULL & f64_val; 9270 int64_t f64_exp = extract64(f64_val, 52, 11); 9271 float64 r64; 9272 uint64_t r64_val; 9273 int64_t r64_exp; 9274 uint64_t r64_frac; 9275 9276 /* Deal with any special cases */ 9277 if (float64_is_any_nan(f64)) { 9278 float64 nan = f64; 9279 if (float64_is_signaling_nan(f64, fpst)) { 9280 float_raise(float_flag_invalid, fpst); 9281 nan = float64_maybe_silence_nan(f64, fpst); 9282 } 9283 if (fpst->default_nan_mode) { 9284 nan = float64_default_nan(fpst); 9285 } 9286 return nan; 9287 } else if (float64_is_infinity(f64)) { 9288 return float64_set_sign(float64_zero, float64_is_neg(f64)); 9289 } else if (float64_is_zero(f64)) { 9290 float_raise(float_flag_divbyzero, fpst); 9291 return float64_set_sign(float64_infinity, float64_is_neg(f64)); 9292 } else if ((f64_val & ~(1ULL << 63)) < (1ULL << 50)) { 9293 /* Abs(value) < 2.0^-1024 */ 9294 float_raise(float_flag_overflow | float_flag_inexact, fpst); 9295 if (round_to_inf(fpst, f64_sbit)) { 9296 return float64_set_sign(float64_infinity, float64_is_neg(f64)); 9297 } else { 9298 return float64_set_sign(float64_maxnorm, float64_is_neg(f64)); 9299 } 9300 } else if (f64_exp >= 2045 && fpst->flush_to_zero) { 9301 float_raise(float_flag_underflow, fpst); 9302 return float64_set_sign(float64_zero, float64_is_neg(f64)); 9303 } 9304 9305 r64 = call_recip_estimate(f64, 2045, fpst); 9306 r64_val = float64_val(r64); 9307 r64_exp = extract64(r64_val, 52, 11); 9308 r64_frac = extract64(r64_val, 0, 52); 9309 9310 /* result = sign : result_exp<10:0> : fraction<51:0> */ 9311 return make_float64(f64_sbit | 9312 ((r64_exp & 0x7ff) << 52) | 9313 r64_frac); 9314 } 9315 9316 /* The algorithm that must be used to calculate the estimate 9317 * is specified by the ARM ARM. 9318 */ 9319 static float64 recip_sqrt_estimate(float64 a, float_status *real_fp_status) 9320 { 9321 /* These calculations mustn't set any fp exception flags, 9322 * so we use a local copy of the fp_status. 9323 */ 9324 float_status dummy_status = *real_fp_status; 9325 float_status *s = &dummy_status; 9326 float64 q; 9327 int64_t q_int; 9328 9329 if (float64_lt(a, float64_half, s)) { 9330 /* range 0.25 <= a < 0.5 */ 9331 9332 /* a in units of 1/512 rounded down */ 9333 /* q0 = (int)(a * 512.0); */ 9334 q = float64_mul(float64_512, a, s); 9335 q_int = float64_to_int64_round_to_zero(q, s); 9336 9337 /* reciprocal root r */ 9338 /* r = 1.0 / sqrt(((double)q0 + 0.5) / 512.0); */ 9339 q = int64_to_float64(q_int, s); 9340 q = float64_add(q, float64_half, s); 9341 q = float64_div(q, float64_512, s); 9342 q = float64_sqrt(q, s); 9343 q = float64_div(float64_one, q, s); 9344 } else { 9345 /* range 0.5 <= a < 1.0 */ 9346 9347 /* a in units of 1/256 rounded down */ 9348 /* q1 = (int)(a * 256.0); */ 9349 q = float64_mul(float64_256, a, s); 9350 int64_t q_int = float64_to_int64_round_to_zero(q, s); 9351 9352 /* reciprocal root r */ 9353 /* r = 1.0 /sqrt(((double)q1 + 0.5) / 256); */ 9354 q = int64_to_float64(q_int, s); 9355 q = float64_add(q, float64_half, s); 9356 q = float64_div(q, float64_256, s); 9357 q = float64_sqrt(q, s); 9358 q = float64_div(float64_one, q, s); 9359 } 9360 /* r in units of 1/256 rounded to nearest */ 9361 /* s = (int)(256.0 * r + 0.5); */ 9362 9363 q = float64_mul(q, float64_256,s ); 9364 q = float64_add(q, float64_half, s); 9365 q_int = float64_to_int64_round_to_zero(q, s); 9366 9367 /* return (double)s / 256.0;*/ 9368 return float64_div(int64_to_float64(q_int, s), float64_256, s); 9369 } 9370 9371 float32 HELPER(rsqrte_f32)(float32 input, void *fpstp) 9372 { 9373 float_status *s = fpstp; 9374 float32 f32 = float32_squash_input_denormal(input, s); 9375 uint32_t val = float32_val(f32); 9376 uint32_t f32_sbit = 0x80000000 & val; 9377 int32_t f32_exp = extract32(val, 23, 8); 9378 uint32_t f32_frac = extract32(val, 0, 23); 9379 uint64_t f64_frac; 9380 uint64_t val64; 9381 int result_exp; 9382 float64 f64; 9383 9384 if (float32_is_any_nan(f32)) { 9385 float32 nan = f32; 9386 if (float32_is_signaling_nan(f32, s)) { 9387 float_raise(float_flag_invalid, s); 9388 nan = float32_maybe_silence_nan(f32, s); 9389 } 9390 if (s->default_nan_mode) { 9391 nan = float32_default_nan(s); 9392 } 9393 return nan; 9394 } else if (float32_is_zero(f32)) { 9395 float_raise(float_flag_divbyzero, s); 9396 return float32_set_sign(float32_infinity, float32_is_neg(f32)); 9397 } else if (float32_is_neg(f32)) { 9398 float_raise(float_flag_invalid, s); 9399 return float32_default_nan(s); 9400 } else if (float32_is_infinity(f32)) { 9401 return float32_zero; 9402 } 9403 9404 /* Scale and normalize to a double-precision value between 0.25 and 1.0, 9405 * preserving the parity of the exponent. */ 9406 9407 f64_frac = ((uint64_t) f32_frac) << 29; 9408 if (f32_exp == 0) { 9409 while (extract64(f64_frac, 51, 1) == 0) { 9410 f64_frac = f64_frac << 1; 9411 f32_exp = f32_exp-1; 9412 } 9413 f64_frac = extract64(f64_frac, 0, 51) << 1; 9414 } 9415 9416 if (extract64(f32_exp, 0, 1) == 0) { 9417 f64 = make_float64(((uint64_t) f32_sbit) << 32 9418 | (0x3feULL << 52) 9419 | f64_frac); 9420 } else { 9421 f64 = make_float64(((uint64_t) f32_sbit) << 32 9422 | (0x3fdULL << 52) 9423 | f64_frac); 9424 } 9425 9426 result_exp = (380 - f32_exp) / 2; 9427 9428 f64 = recip_sqrt_estimate(f64, s); 9429 9430 val64 = float64_val(f64); 9431 9432 val = ((result_exp & 0xff) << 23) 9433 | ((val64 >> 29) & 0x7fffff); 9434 return make_float32(val); 9435 } 9436 9437 float64 HELPER(rsqrte_f64)(float64 input, void *fpstp) 9438 { 9439 float_status *s = fpstp; 9440 float64 f64 = float64_squash_input_denormal(input, s); 9441 uint64_t val = float64_val(f64); 9442 uint64_t f64_sbit = 0x8000000000000000ULL & val; 9443 int64_t f64_exp = extract64(val, 52, 11); 9444 uint64_t f64_frac = extract64(val, 0, 52); 9445 int64_t result_exp; 9446 uint64_t result_frac; 9447 9448 if (float64_is_any_nan(f64)) { 9449 float64 nan = f64; 9450 if (float64_is_signaling_nan(f64, s)) { 9451 float_raise(float_flag_invalid, s); 9452 nan = float64_maybe_silence_nan(f64, s); 9453 } 9454 if (s->default_nan_mode) { 9455 nan = float64_default_nan(s); 9456 } 9457 return nan; 9458 } else if (float64_is_zero(f64)) { 9459 float_raise(float_flag_divbyzero, s); 9460 return float64_set_sign(float64_infinity, float64_is_neg(f64)); 9461 } else if (float64_is_neg(f64)) { 9462 float_raise(float_flag_invalid, s); 9463 return float64_default_nan(s); 9464 } else if (float64_is_infinity(f64)) { 9465 return float64_zero; 9466 } 9467 9468 /* Scale and normalize to a double-precision value between 0.25 and 1.0, 9469 * preserving the parity of the exponent. */ 9470 9471 if (f64_exp == 0) { 9472 while (extract64(f64_frac, 51, 1) == 0) { 9473 f64_frac = f64_frac << 1; 9474 f64_exp = f64_exp - 1; 9475 } 9476 f64_frac = extract64(f64_frac, 0, 51) << 1; 9477 } 9478 9479 if (extract64(f64_exp, 0, 1) == 0) { 9480 f64 = make_float64(f64_sbit 9481 | (0x3feULL << 52) 9482 | f64_frac); 9483 } else { 9484 f64 = make_float64(f64_sbit 9485 | (0x3fdULL << 52) 9486 | f64_frac); 9487 } 9488 9489 result_exp = (3068 - f64_exp) / 2; 9490 9491 f64 = recip_sqrt_estimate(f64, s); 9492 9493 result_frac = extract64(float64_val(f64), 0, 52); 9494 9495 return make_float64(f64_sbit | 9496 ((result_exp & 0x7ff) << 52) | 9497 result_frac); 9498 } 9499 9500 uint32_t HELPER(recpe_u32)(uint32_t a, void *fpstp) 9501 { 9502 float_status *s = fpstp; 9503 float64 f64; 9504 9505 if ((a & 0x80000000) == 0) { 9506 return 0xffffffff; 9507 } 9508 9509 f64 = make_float64((0x3feULL << 52) 9510 | ((int64_t)(a & 0x7fffffff) << 21)); 9511 9512 f64 = recip_estimate(f64, s); 9513 9514 return 0x80000000 | ((float64_val(f64) >> 21) & 0x7fffffff); 9515 } 9516 9517 uint32_t HELPER(rsqrte_u32)(uint32_t a, void *fpstp) 9518 { 9519 float_status *fpst = fpstp; 9520 float64 f64; 9521 9522 if ((a & 0xc0000000) == 0) { 9523 return 0xffffffff; 9524 } 9525 9526 if (a & 0x80000000) { 9527 f64 = make_float64((0x3feULL << 52) 9528 | ((uint64_t)(a & 0x7fffffff) << 21)); 9529 } else { /* bits 31-30 == '01' */ 9530 f64 = make_float64((0x3fdULL << 52) 9531 | ((uint64_t)(a & 0x3fffffff) << 22)); 9532 } 9533 9534 f64 = recip_sqrt_estimate(f64, fpst); 9535 9536 return 0x80000000 | ((float64_val(f64) >> 21) & 0x7fffffff); 9537 } 9538 9539 /* VFPv4 fused multiply-accumulate */ 9540 float32 VFP_HELPER(muladd, s)(float32 a, float32 b, float32 c, void *fpstp) 9541 { 9542 float_status *fpst = fpstp; 9543 return float32_muladd(a, b, c, 0, fpst); 9544 } 9545 9546 float64 VFP_HELPER(muladd, d)(float64 a, float64 b, float64 c, void *fpstp) 9547 { 9548 float_status *fpst = fpstp; 9549 return float64_muladd(a, b, c, 0, fpst); 9550 } 9551 9552 /* ARMv8 round to integral */ 9553 float32 HELPER(rints_exact)(float32 x, void *fp_status) 9554 { 9555 return float32_round_to_int(x, fp_status); 9556 } 9557 9558 float64 HELPER(rintd_exact)(float64 x, void *fp_status) 9559 { 9560 return float64_round_to_int(x, fp_status); 9561 } 9562 9563 float32 HELPER(rints)(float32 x, void *fp_status) 9564 { 9565 int old_flags = get_float_exception_flags(fp_status), new_flags; 9566 float32 ret; 9567 9568 ret = float32_round_to_int(x, fp_status); 9569 9570 /* Suppress any inexact exceptions the conversion produced */ 9571 if (!(old_flags & float_flag_inexact)) { 9572 new_flags = get_float_exception_flags(fp_status); 9573 set_float_exception_flags(new_flags & ~float_flag_inexact, fp_status); 9574 } 9575 9576 return ret; 9577 } 9578 9579 float64 HELPER(rintd)(float64 x, void *fp_status) 9580 { 9581 int old_flags = get_float_exception_flags(fp_status), new_flags; 9582 float64 ret; 9583 9584 ret = float64_round_to_int(x, fp_status); 9585 9586 new_flags = get_float_exception_flags(fp_status); 9587 9588 /* Suppress any inexact exceptions the conversion produced */ 9589 if (!(old_flags & float_flag_inexact)) { 9590 new_flags = get_float_exception_flags(fp_status); 9591 set_float_exception_flags(new_flags & ~float_flag_inexact, fp_status); 9592 } 9593 9594 return ret; 9595 } 9596 9597 /* Convert ARM rounding mode to softfloat */ 9598 int arm_rmode_to_sf(int rmode) 9599 { 9600 switch (rmode) { 9601 case FPROUNDING_TIEAWAY: 9602 rmode = float_round_ties_away; 9603 break; 9604 case FPROUNDING_ODD: 9605 /* FIXME: add support for TIEAWAY and ODD */ 9606 qemu_log_mask(LOG_UNIMP, "arm: unimplemented rounding mode: %d\n", 9607 rmode); 9608 case FPROUNDING_TIEEVEN: 9609 default: 9610 rmode = float_round_nearest_even; 9611 break; 9612 case FPROUNDING_POSINF: 9613 rmode = float_round_up; 9614 break; 9615 case FPROUNDING_NEGINF: 9616 rmode = float_round_down; 9617 break; 9618 case FPROUNDING_ZERO: 9619 rmode = float_round_to_zero; 9620 break; 9621 } 9622 return rmode; 9623 } 9624 9625 /* CRC helpers. 9626 * The upper bytes of val (above the number specified by 'bytes') must have 9627 * been zeroed out by the caller. 9628 */ 9629 uint32_t HELPER(crc32)(uint32_t acc, uint32_t val, uint32_t bytes) 9630 { 9631 uint8_t buf[4]; 9632 9633 stl_le_p(buf, val); 9634 9635 /* zlib crc32 converts the accumulator and output to one's complement. */ 9636 return crc32(acc ^ 0xffffffff, buf, bytes) ^ 0xffffffff; 9637 } 9638 9639 uint32_t HELPER(crc32c)(uint32_t acc, uint32_t val, uint32_t bytes) 9640 { 9641 uint8_t buf[4]; 9642 9643 stl_le_p(buf, val); 9644 9645 /* Linux crc32c converts the output to one's complement. */ 9646 return crc32c(acc, buf, bytes) ^ 0xffffffff; 9647 } 9648