xref: /openbmc/qemu/target/arm/helper.c (revision 9901c576f6c02d43206e5faaf6e362ab7ea83246)
1 #include "qemu/osdep.h"
2 #include "trace.h"
3 #include "cpu.h"
4 #include "internals.h"
5 #include "exec/gdbstub.h"
6 #include "exec/helper-proto.h"
7 #include "qemu/host-utils.h"
8 #include "sysemu/arch_init.h"
9 #include "sysemu/sysemu.h"
10 #include "qemu/bitops.h"
11 #include "qemu/crc32c.h"
12 #include "exec/exec-all.h"
13 #include "exec/cpu_ldst.h"
14 #include "arm_ldst.h"
15 #include <zlib.h> /* For crc32 */
16 #include "exec/semihost.h"
17 #include "sysemu/kvm.h"
18 
19 #define ARM_CPU_FREQ 1000000000 /* FIXME: 1 GHz, should be configurable */
20 
21 #ifndef CONFIG_USER_ONLY
22 static bool get_phys_addr(CPUARMState *env, target_ulong address,
23                           MMUAccessType access_type, ARMMMUIdx mmu_idx,
24                           hwaddr *phys_ptr, MemTxAttrs *attrs, int *prot,
25                           target_ulong *page_size, uint32_t *fsr,
26                           ARMMMUFaultInfo *fi);
27 
28 static bool get_phys_addr_lpae(CPUARMState *env, target_ulong address,
29                                MMUAccessType access_type, ARMMMUIdx mmu_idx,
30                                hwaddr *phys_ptr, MemTxAttrs *txattrs, int *prot,
31                                target_ulong *page_size_ptr, uint32_t *fsr,
32                                ARMMMUFaultInfo *fi);
33 
34 /* Definitions for the PMCCNTR and PMCR registers */
35 #define PMCRD   0x8
36 #define PMCRC   0x4
37 #define PMCRE   0x1
38 #endif
39 
40 static int vfp_gdb_get_reg(CPUARMState *env, uint8_t *buf, int reg)
41 {
42     int nregs;
43 
44     /* VFP data registers are always little-endian.  */
45     nregs = arm_feature(env, ARM_FEATURE_VFP3) ? 32 : 16;
46     if (reg < nregs) {
47         stfq_le_p(buf, env->vfp.regs[reg]);
48         return 8;
49     }
50     if (arm_feature(env, ARM_FEATURE_NEON)) {
51         /* Aliases for Q regs.  */
52         nregs += 16;
53         if (reg < nregs) {
54             stfq_le_p(buf, env->vfp.regs[(reg - 32) * 2]);
55             stfq_le_p(buf + 8, env->vfp.regs[(reg - 32) * 2 + 1]);
56             return 16;
57         }
58     }
59     switch (reg - nregs) {
60     case 0: stl_p(buf, env->vfp.xregs[ARM_VFP_FPSID]); return 4;
61     case 1: stl_p(buf, env->vfp.xregs[ARM_VFP_FPSCR]); return 4;
62     case 2: stl_p(buf, env->vfp.xregs[ARM_VFP_FPEXC]); return 4;
63     }
64     return 0;
65 }
66 
67 static int vfp_gdb_set_reg(CPUARMState *env, uint8_t *buf, int reg)
68 {
69     int nregs;
70 
71     nregs = arm_feature(env, ARM_FEATURE_VFP3) ? 32 : 16;
72     if (reg < nregs) {
73         env->vfp.regs[reg] = ldfq_le_p(buf);
74         return 8;
75     }
76     if (arm_feature(env, ARM_FEATURE_NEON)) {
77         nregs += 16;
78         if (reg < nregs) {
79             env->vfp.regs[(reg - 32) * 2] = ldfq_le_p(buf);
80             env->vfp.regs[(reg - 32) * 2 + 1] = ldfq_le_p(buf + 8);
81             return 16;
82         }
83     }
84     switch (reg - nregs) {
85     case 0: env->vfp.xregs[ARM_VFP_FPSID] = ldl_p(buf); return 4;
86     case 1: env->vfp.xregs[ARM_VFP_FPSCR] = ldl_p(buf); return 4;
87     case 2: env->vfp.xregs[ARM_VFP_FPEXC] = ldl_p(buf) & (1 << 30); return 4;
88     }
89     return 0;
90 }
91 
92 static int aarch64_fpu_gdb_get_reg(CPUARMState *env, uint8_t *buf, int reg)
93 {
94     switch (reg) {
95     case 0 ... 31:
96         /* 128 bit FP register */
97         stfq_le_p(buf, env->vfp.regs[reg * 2]);
98         stfq_le_p(buf + 8, env->vfp.regs[reg * 2 + 1]);
99         return 16;
100     case 32:
101         /* FPSR */
102         stl_p(buf, vfp_get_fpsr(env));
103         return 4;
104     case 33:
105         /* FPCR */
106         stl_p(buf, vfp_get_fpcr(env));
107         return 4;
108     default:
109         return 0;
110     }
111 }
112 
113 static int aarch64_fpu_gdb_set_reg(CPUARMState *env, uint8_t *buf, int reg)
114 {
115     switch (reg) {
116     case 0 ... 31:
117         /* 128 bit FP register */
118         env->vfp.regs[reg * 2] = ldfq_le_p(buf);
119         env->vfp.regs[reg * 2 + 1] = ldfq_le_p(buf + 8);
120         return 16;
121     case 32:
122         /* FPSR */
123         vfp_set_fpsr(env, ldl_p(buf));
124         return 4;
125     case 33:
126         /* FPCR */
127         vfp_set_fpcr(env, ldl_p(buf));
128         return 4;
129     default:
130         return 0;
131     }
132 }
133 
134 static uint64_t raw_read(CPUARMState *env, const ARMCPRegInfo *ri)
135 {
136     assert(ri->fieldoffset);
137     if (cpreg_field_is_64bit(ri)) {
138         return CPREG_FIELD64(env, ri);
139     } else {
140         return CPREG_FIELD32(env, ri);
141     }
142 }
143 
144 static void raw_write(CPUARMState *env, const ARMCPRegInfo *ri,
145                       uint64_t value)
146 {
147     assert(ri->fieldoffset);
148     if (cpreg_field_is_64bit(ri)) {
149         CPREG_FIELD64(env, ri) = value;
150     } else {
151         CPREG_FIELD32(env, ri) = value;
152     }
153 }
154 
155 static void *raw_ptr(CPUARMState *env, const ARMCPRegInfo *ri)
156 {
157     return (char *)env + ri->fieldoffset;
158 }
159 
160 uint64_t read_raw_cp_reg(CPUARMState *env, const ARMCPRegInfo *ri)
161 {
162     /* Raw read of a coprocessor register (as needed for migration, etc). */
163     if (ri->type & ARM_CP_CONST) {
164         return ri->resetvalue;
165     } else if (ri->raw_readfn) {
166         return ri->raw_readfn(env, ri);
167     } else if (ri->readfn) {
168         return ri->readfn(env, ri);
169     } else {
170         return raw_read(env, ri);
171     }
172 }
173 
174 static void write_raw_cp_reg(CPUARMState *env, const ARMCPRegInfo *ri,
175                              uint64_t v)
176 {
177     /* Raw write of a coprocessor register (as needed for migration, etc).
178      * Note that constant registers are treated as write-ignored; the
179      * caller should check for success by whether a readback gives the
180      * value written.
181      */
182     if (ri->type & ARM_CP_CONST) {
183         return;
184     } else if (ri->raw_writefn) {
185         ri->raw_writefn(env, ri, v);
186     } else if (ri->writefn) {
187         ri->writefn(env, ri, v);
188     } else {
189         raw_write(env, ri, v);
190     }
191 }
192 
193 static bool raw_accessors_invalid(const ARMCPRegInfo *ri)
194 {
195    /* Return true if the regdef would cause an assertion if you called
196     * read_raw_cp_reg() or write_raw_cp_reg() on it (ie if it is a
197     * program bug for it not to have the NO_RAW flag).
198     * NB that returning false here doesn't necessarily mean that calling
199     * read/write_raw_cp_reg() is safe, because we can't distinguish "has
200     * read/write access functions which are safe for raw use" from "has
201     * read/write access functions which have side effects but has forgotten
202     * to provide raw access functions".
203     * The tests here line up with the conditions in read/write_raw_cp_reg()
204     * and assertions in raw_read()/raw_write().
205     */
206     if ((ri->type & ARM_CP_CONST) ||
207         ri->fieldoffset ||
208         ((ri->raw_writefn || ri->writefn) && (ri->raw_readfn || ri->readfn))) {
209         return false;
210     }
211     return true;
212 }
213 
214 bool write_cpustate_to_list(ARMCPU *cpu)
215 {
216     /* Write the coprocessor state from cpu->env to the (index,value) list. */
217     int i;
218     bool ok = true;
219 
220     for (i = 0; i < cpu->cpreg_array_len; i++) {
221         uint32_t regidx = kvm_to_cpreg_id(cpu->cpreg_indexes[i]);
222         const ARMCPRegInfo *ri;
223 
224         ri = get_arm_cp_reginfo(cpu->cp_regs, regidx);
225         if (!ri) {
226             ok = false;
227             continue;
228         }
229         if (ri->type & ARM_CP_NO_RAW) {
230             continue;
231         }
232         cpu->cpreg_values[i] = read_raw_cp_reg(&cpu->env, ri);
233     }
234     return ok;
235 }
236 
237 bool write_list_to_cpustate(ARMCPU *cpu)
238 {
239     int i;
240     bool ok = true;
241 
242     for (i = 0; i < cpu->cpreg_array_len; i++) {
243         uint32_t regidx = kvm_to_cpreg_id(cpu->cpreg_indexes[i]);
244         uint64_t v = cpu->cpreg_values[i];
245         const ARMCPRegInfo *ri;
246 
247         ri = get_arm_cp_reginfo(cpu->cp_regs, regidx);
248         if (!ri) {
249             ok = false;
250             continue;
251         }
252         if (ri->type & ARM_CP_NO_RAW) {
253             continue;
254         }
255         /* Write value and confirm it reads back as written
256          * (to catch read-only registers and partially read-only
257          * registers where the incoming migration value doesn't match)
258          */
259         write_raw_cp_reg(&cpu->env, ri, v);
260         if (read_raw_cp_reg(&cpu->env, ri) != v) {
261             ok = false;
262         }
263     }
264     return ok;
265 }
266 
267 static void add_cpreg_to_list(gpointer key, gpointer opaque)
268 {
269     ARMCPU *cpu = opaque;
270     uint64_t regidx;
271     const ARMCPRegInfo *ri;
272 
273     regidx = *(uint32_t *)key;
274     ri = get_arm_cp_reginfo(cpu->cp_regs, regidx);
275 
276     if (!(ri->type & (ARM_CP_NO_RAW|ARM_CP_ALIAS))) {
277         cpu->cpreg_indexes[cpu->cpreg_array_len] = cpreg_to_kvm_id(regidx);
278         /* The value array need not be initialized at this point */
279         cpu->cpreg_array_len++;
280     }
281 }
282 
283 static void count_cpreg(gpointer key, gpointer opaque)
284 {
285     ARMCPU *cpu = opaque;
286     uint64_t regidx;
287     const ARMCPRegInfo *ri;
288 
289     regidx = *(uint32_t *)key;
290     ri = get_arm_cp_reginfo(cpu->cp_regs, regidx);
291 
292     if (!(ri->type & (ARM_CP_NO_RAW|ARM_CP_ALIAS))) {
293         cpu->cpreg_array_len++;
294     }
295 }
296 
297 static gint cpreg_key_compare(gconstpointer a, gconstpointer b)
298 {
299     uint64_t aidx = cpreg_to_kvm_id(*(uint32_t *)a);
300     uint64_t bidx = cpreg_to_kvm_id(*(uint32_t *)b);
301 
302     if (aidx > bidx) {
303         return 1;
304     }
305     if (aidx < bidx) {
306         return -1;
307     }
308     return 0;
309 }
310 
311 void init_cpreg_list(ARMCPU *cpu)
312 {
313     /* Initialise the cpreg_tuples[] array based on the cp_regs hash.
314      * Note that we require cpreg_tuples[] to be sorted by key ID.
315      */
316     GList *keys;
317     int arraylen;
318 
319     keys = g_hash_table_get_keys(cpu->cp_regs);
320     keys = g_list_sort(keys, cpreg_key_compare);
321 
322     cpu->cpreg_array_len = 0;
323 
324     g_list_foreach(keys, count_cpreg, cpu);
325 
326     arraylen = cpu->cpreg_array_len;
327     cpu->cpreg_indexes = g_new(uint64_t, arraylen);
328     cpu->cpreg_values = g_new(uint64_t, arraylen);
329     cpu->cpreg_vmstate_indexes = g_new(uint64_t, arraylen);
330     cpu->cpreg_vmstate_values = g_new(uint64_t, arraylen);
331     cpu->cpreg_vmstate_array_len = cpu->cpreg_array_len;
332     cpu->cpreg_array_len = 0;
333 
334     g_list_foreach(keys, add_cpreg_to_list, cpu);
335 
336     assert(cpu->cpreg_array_len == arraylen);
337 
338     g_list_free(keys);
339 }
340 
341 /*
342  * Some registers are not accessible if EL3.NS=0 and EL3 is using AArch32 but
343  * they are accessible when EL3 is using AArch64 regardless of EL3.NS.
344  *
345  * access_el3_aa32ns: Used to check AArch32 register views.
346  * access_el3_aa32ns_aa64any: Used to check both AArch32/64 register views.
347  */
348 static CPAccessResult access_el3_aa32ns(CPUARMState *env,
349                                         const ARMCPRegInfo *ri,
350                                         bool isread)
351 {
352     bool secure = arm_is_secure_below_el3(env);
353 
354     assert(!arm_el_is_aa64(env, 3));
355     if (secure) {
356         return CP_ACCESS_TRAP_UNCATEGORIZED;
357     }
358     return CP_ACCESS_OK;
359 }
360 
361 static CPAccessResult access_el3_aa32ns_aa64any(CPUARMState *env,
362                                                 const ARMCPRegInfo *ri,
363                                                 bool isread)
364 {
365     if (!arm_el_is_aa64(env, 3)) {
366         return access_el3_aa32ns(env, ri, isread);
367     }
368     return CP_ACCESS_OK;
369 }
370 
371 /* Some secure-only AArch32 registers trap to EL3 if used from
372  * Secure EL1 (but are just ordinary UNDEF in other non-EL3 contexts).
373  * Note that an access from Secure EL1 can only happen if EL3 is AArch64.
374  * We assume that the .access field is set to PL1_RW.
375  */
376 static CPAccessResult access_trap_aa32s_el1(CPUARMState *env,
377                                             const ARMCPRegInfo *ri,
378                                             bool isread)
379 {
380     if (arm_current_el(env) == 3) {
381         return CP_ACCESS_OK;
382     }
383     if (arm_is_secure_below_el3(env)) {
384         return CP_ACCESS_TRAP_EL3;
385     }
386     /* This will be EL1 NS and EL2 NS, which just UNDEF */
387     return CP_ACCESS_TRAP_UNCATEGORIZED;
388 }
389 
390 /* Check for traps to "powerdown debug" registers, which are controlled
391  * by MDCR.TDOSA
392  */
393 static CPAccessResult access_tdosa(CPUARMState *env, const ARMCPRegInfo *ri,
394                                    bool isread)
395 {
396     int el = arm_current_el(env);
397 
398     if (el < 2 && (env->cp15.mdcr_el2 & MDCR_TDOSA)
399         && !arm_is_secure_below_el3(env)) {
400         return CP_ACCESS_TRAP_EL2;
401     }
402     if (el < 3 && (env->cp15.mdcr_el3 & MDCR_TDOSA)) {
403         return CP_ACCESS_TRAP_EL3;
404     }
405     return CP_ACCESS_OK;
406 }
407 
408 /* Check for traps to "debug ROM" registers, which are controlled
409  * by MDCR_EL2.TDRA for EL2 but by the more general MDCR_EL3.TDA for EL3.
410  */
411 static CPAccessResult access_tdra(CPUARMState *env, const ARMCPRegInfo *ri,
412                                   bool isread)
413 {
414     int el = arm_current_el(env);
415 
416     if (el < 2 && (env->cp15.mdcr_el2 & MDCR_TDRA)
417         && !arm_is_secure_below_el3(env)) {
418         return CP_ACCESS_TRAP_EL2;
419     }
420     if (el < 3 && (env->cp15.mdcr_el3 & MDCR_TDA)) {
421         return CP_ACCESS_TRAP_EL3;
422     }
423     return CP_ACCESS_OK;
424 }
425 
426 /* Check for traps to general debug registers, which are controlled
427  * by MDCR_EL2.TDA for EL2 and MDCR_EL3.TDA for EL3.
428  */
429 static CPAccessResult access_tda(CPUARMState *env, const ARMCPRegInfo *ri,
430                                   bool isread)
431 {
432     int el = arm_current_el(env);
433 
434     if (el < 2 && (env->cp15.mdcr_el2 & MDCR_TDA)
435         && !arm_is_secure_below_el3(env)) {
436         return CP_ACCESS_TRAP_EL2;
437     }
438     if (el < 3 && (env->cp15.mdcr_el3 & MDCR_TDA)) {
439         return CP_ACCESS_TRAP_EL3;
440     }
441     return CP_ACCESS_OK;
442 }
443 
444 /* Check for traps to performance monitor registers, which are controlled
445  * by MDCR_EL2.TPM for EL2 and MDCR_EL3.TPM for EL3.
446  */
447 static CPAccessResult access_tpm(CPUARMState *env, const ARMCPRegInfo *ri,
448                                  bool isread)
449 {
450     int el = arm_current_el(env);
451 
452     if (el < 2 && (env->cp15.mdcr_el2 & MDCR_TPM)
453         && !arm_is_secure_below_el3(env)) {
454         return CP_ACCESS_TRAP_EL2;
455     }
456     if (el < 3 && (env->cp15.mdcr_el3 & MDCR_TPM)) {
457         return CP_ACCESS_TRAP_EL3;
458     }
459     return CP_ACCESS_OK;
460 }
461 
462 static void dacr_write(CPUARMState *env, const ARMCPRegInfo *ri, uint64_t value)
463 {
464     ARMCPU *cpu = arm_env_get_cpu(env);
465 
466     raw_write(env, ri, value);
467     tlb_flush(CPU(cpu)); /* Flush TLB as domain not tracked in TLB */
468 }
469 
470 static void fcse_write(CPUARMState *env, const ARMCPRegInfo *ri, uint64_t value)
471 {
472     ARMCPU *cpu = arm_env_get_cpu(env);
473 
474     if (raw_read(env, ri) != value) {
475         /* Unlike real hardware the qemu TLB uses virtual addresses,
476          * not modified virtual addresses, so this causes a TLB flush.
477          */
478         tlb_flush(CPU(cpu));
479         raw_write(env, ri, value);
480     }
481 }
482 
483 static void contextidr_write(CPUARMState *env, const ARMCPRegInfo *ri,
484                              uint64_t value)
485 {
486     ARMCPU *cpu = arm_env_get_cpu(env);
487 
488     if (raw_read(env, ri) != value && !arm_feature(env, ARM_FEATURE_PMSA)
489         && !extended_addresses_enabled(env)) {
490         /* For VMSA (when not using the LPAE long descriptor page table
491          * format) this register includes the ASID, so do a TLB flush.
492          * For PMSA it is purely a process ID and no action is needed.
493          */
494         tlb_flush(CPU(cpu));
495     }
496     raw_write(env, ri, value);
497 }
498 
499 static void tlbiall_write(CPUARMState *env, const ARMCPRegInfo *ri,
500                           uint64_t value)
501 {
502     /* Invalidate all (TLBIALL) */
503     ARMCPU *cpu = arm_env_get_cpu(env);
504 
505     tlb_flush(CPU(cpu));
506 }
507 
508 static void tlbimva_write(CPUARMState *env, const ARMCPRegInfo *ri,
509                           uint64_t value)
510 {
511     /* Invalidate single TLB entry by MVA and ASID (TLBIMVA) */
512     ARMCPU *cpu = arm_env_get_cpu(env);
513 
514     tlb_flush_page(CPU(cpu), value & TARGET_PAGE_MASK);
515 }
516 
517 static void tlbiasid_write(CPUARMState *env, const ARMCPRegInfo *ri,
518                            uint64_t value)
519 {
520     /* Invalidate by ASID (TLBIASID) */
521     ARMCPU *cpu = arm_env_get_cpu(env);
522 
523     tlb_flush(CPU(cpu));
524 }
525 
526 static void tlbimvaa_write(CPUARMState *env, const ARMCPRegInfo *ri,
527                            uint64_t value)
528 {
529     /* Invalidate single entry by MVA, all ASIDs (TLBIMVAA) */
530     ARMCPU *cpu = arm_env_get_cpu(env);
531 
532     tlb_flush_page(CPU(cpu), value & TARGET_PAGE_MASK);
533 }
534 
535 /* IS variants of TLB operations must affect all cores */
536 static void tlbiall_is_write(CPUARMState *env, const ARMCPRegInfo *ri,
537                              uint64_t value)
538 {
539     CPUState *cs = ENV_GET_CPU(env);
540 
541     tlb_flush_all_cpus_synced(cs);
542 }
543 
544 static void tlbiasid_is_write(CPUARMState *env, const ARMCPRegInfo *ri,
545                              uint64_t value)
546 {
547     CPUState *cs = ENV_GET_CPU(env);
548 
549     tlb_flush_all_cpus_synced(cs);
550 }
551 
552 static void tlbimva_is_write(CPUARMState *env, const ARMCPRegInfo *ri,
553                              uint64_t value)
554 {
555     CPUState *cs = ENV_GET_CPU(env);
556 
557     tlb_flush_page_all_cpus_synced(cs, value & TARGET_PAGE_MASK);
558 }
559 
560 static void tlbimvaa_is_write(CPUARMState *env, const ARMCPRegInfo *ri,
561                              uint64_t value)
562 {
563     CPUState *cs = ENV_GET_CPU(env);
564 
565     tlb_flush_page_all_cpus_synced(cs, value & TARGET_PAGE_MASK);
566 }
567 
568 static void tlbiall_nsnh_write(CPUARMState *env, const ARMCPRegInfo *ri,
569                                uint64_t value)
570 {
571     CPUState *cs = ENV_GET_CPU(env);
572 
573     tlb_flush_by_mmuidx(cs,
574                         ARMMMUIdxBit_S12NSE1 |
575                         ARMMMUIdxBit_S12NSE0 |
576                         ARMMMUIdxBit_S2NS);
577 }
578 
579 static void tlbiall_nsnh_is_write(CPUARMState *env, const ARMCPRegInfo *ri,
580                                   uint64_t value)
581 {
582     CPUState *cs = ENV_GET_CPU(env);
583 
584     tlb_flush_by_mmuidx_all_cpus_synced(cs,
585                                         ARMMMUIdxBit_S12NSE1 |
586                                         ARMMMUIdxBit_S12NSE0 |
587                                         ARMMMUIdxBit_S2NS);
588 }
589 
590 static void tlbiipas2_write(CPUARMState *env, const ARMCPRegInfo *ri,
591                             uint64_t value)
592 {
593     /* Invalidate by IPA. This has to invalidate any structures that
594      * contain only stage 2 translation information, but does not need
595      * to apply to structures that contain combined stage 1 and stage 2
596      * translation information.
597      * This must NOP if EL2 isn't implemented or SCR_EL3.NS is zero.
598      */
599     CPUState *cs = ENV_GET_CPU(env);
600     uint64_t pageaddr;
601 
602     if (!arm_feature(env, ARM_FEATURE_EL2) || !(env->cp15.scr_el3 & SCR_NS)) {
603         return;
604     }
605 
606     pageaddr = sextract64(value << 12, 0, 40);
607 
608     tlb_flush_page_by_mmuidx(cs, pageaddr, ARMMMUIdxBit_S2NS);
609 }
610 
611 static void tlbiipas2_is_write(CPUARMState *env, const ARMCPRegInfo *ri,
612                                uint64_t value)
613 {
614     CPUState *cs = ENV_GET_CPU(env);
615     uint64_t pageaddr;
616 
617     if (!arm_feature(env, ARM_FEATURE_EL2) || !(env->cp15.scr_el3 & SCR_NS)) {
618         return;
619     }
620 
621     pageaddr = sextract64(value << 12, 0, 40);
622 
623     tlb_flush_page_by_mmuidx_all_cpus_synced(cs, pageaddr,
624                                              ARMMMUIdxBit_S2NS);
625 }
626 
627 static void tlbiall_hyp_write(CPUARMState *env, const ARMCPRegInfo *ri,
628                               uint64_t value)
629 {
630     CPUState *cs = ENV_GET_CPU(env);
631 
632     tlb_flush_by_mmuidx(cs, ARMMMUIdxBit_S1E2);
633 }
634 
635 static void tlbiall_hyp_is_write(CPUARMState *env, const ARMCPRegInfo *ri,
636                                  uint64_t value)
637 {
638     CPUState *cs = ENV_GET_CPU(env);
639 
640     tlb_flush_by_mmuidx_all_cpus_synced(cs, ARMMMUIdxBit_S1E2);
641 }
642 
643 static void tlbimva_hyp_write(CPUARMState *env, const ARMCPRegInfo *ri,
644                               uint64_t value)
645 {
646     CPUState *cs = ENV_GET_CPU(env);
647     uint64_t pageaddr = value & ~MAKE_64BIT_MASK(0, 12);
648 
649     tlb_flush_page_by_mmuidx(cs, pageaddr, ARMMMUIdxBit_S1E2);
650 }
651 
652 static void tlbimva_hyp_is_write(CPUARMState *env, const ARMCPRegInfo *ri,
653                                  uint64_t value)
654 {
655     CPUState *cs = ENV_GET_CPU(env);
656     uint64_t pageaddr = value & ~MAKE_64BIT_MASK(0, 12);
657 
658     tlb_flush_page_by_mmuidx_all_cpus_synced(cs, pageaddr,
659                                              ARMMMUIdxBit_S1E2);
660 }
661 
662 static const ARMCPRegInfo cp_reginfo[] = {
663     /* Define the secure and non-secure FCSE identifier CP registers
664      * separately because there is no secure bank in V8 (no _EL3).  This allows
665      * the secure register to be properly reset and migrated. There is also no
666      * v8 EL1 version of the register so the non-secure instance stands alone.
667      */
668     { .name = "FCSEIDR(NS)",
669       .cp = 15, .opc1 = 0, .crn = 13, .crm = 0, .opc2 = 0,
670       .access = PL1_RW, .secure = ARM_CP_SECSTATE_NS,
671       .fieldoffset = offsetof(CPUARMState, cp15.fcseidr_ns),
672       .resetvalue = 0, .writefn = fcse_write, .raw_writefn = raw_write, },
673     { .name = "FCSEIDR(S)",
674       .cp = 15, .opc1 = 0, .crn = 13, .crm = 0, .opc2 = 0,
675       .access = PL1_RW, .secure = ARM_CP_SECSTATE_S,
676       .fieldoffset = offsetof(CPUARMState, cp15.fcseidr_s),
677       .resetvalue = 0, .writefn = fcse_write, .raw_writefn = raw_write, },
678     /* Define the secure and non-secure context identifier CP registers
679      * separately because there is no secure bank in V8 (no _EL3).  This allows
680      * the secure register to be properly reset and migrated.  In the
681      * non-secure case, the 32-bit register will have reset and migration
682      * disabled during registration as it is handled by the 64-bit instance.
683      */
684     { .name = "CONTEXTIDR_EL1", .state = ARM_CP_STATE_BOTH,
685       .opc0 = 3, .opc1 = 0, .crn = 13, .crm = 0, .opc2 = 1,
686       .access = PL1_RW, .secure = ARM_CP_SECSTATE_NS,
687       .fieldoffset = offsetof(CPUARMState, cp15.contextidr_el[1]),
688       .resetvalue = 0, .writefn = contextidr_write, .raw_writefn = raw_write, },
689     { .name = "CONTEXTIDR(S)", .state = ARM_CP_STATE_AA32,
690       .cp = 15, .opc1 = 0, .crn = 13, .crm = 0, .opc2 = 1,
691       .access = PL1_RW, .secure = ARM_CP_SECSTATE_S,
692       .fieldoffset = offsetof(CPUARMState, cp15.contextidr_s),
693       .resetvalue = 0, .writefn = contextidr_write, .raw_writefn = raw_write, },
694     REGINFO_SENTINEL
695 };
696 
697 static const ARMCPRegInfo not_v8_cp_reginfo[] = {
698     /* NB: Some of these registers exist in v8 but with more precise
699      * definitions that don't use CP_ANY wildcards (mostly in v8_cp_reginfo[]).
700      */
701     /* MMU Domain access control / MPU write buffer control */
702     { .name = "DACR",
703       .cp = 15, .opc1 = CP_ANY, .crn = 3, .crm = CP_ANY, .opc2 = CP_ANY,
704       .access = PL1_RW, .resetvalue = 0,
705       .writefn = dacr_write, .raw_writefn = raw_write,
706       .bank_fieldoffsets = { offsetoflow32(CPUARMState, cp15.dacr_s),
707                              offsetoflow32(CPUARMState, cp15.dacr_ns) } },
708     /* ARMv7 allocates a range of implementation defined TLB LOCKDOWN regs.
709      * For v6 and v5, these mappings are overly broad.
710      */
711     { .name = "TLB_LOCKDOWN", .cp = 15, .crn = 10, .crm = 0,
712       .opc1 = CP_ANY, .opc2 = CP_ANY, .access = PL1_RW, .type = ARM_CP_NOP },
713     { .name = "TLB_LOCKDOWN", .cp = 15, .crn = 10, .crm = 1,
714       .opc1 = CP_ANY, .opc2 = CP_ANY, .access = PL1_RW, .type = ARM_CP_NOP },
715     { .name = "TLB_LOCKDOWN", .cp = 15, .crn = 10, .crm = 4,
716       .opc1 = CP_ANY, .opc2 = CP_ANY, .access = PL1_RW, .type = ARM_CP_NOP },
717     { .name = "TLB_LOCKDOWN", .cp = 15, .crn = 10, .crm = 8,
718       .opc1 = CP_ANY, .opc2 = CP_ANY, .access = PL1_RW, .type = ARM_CP_NOP },
719     /* Cache maintenance ops; some of this space may be overridden later. */
720     { .name = "CACHEMAINT", .cp = 15, .crn = 7, .crm = CP_ANY,
721       .opc1 = 0, .opc2 = CP_ANY, .access = PL1_W,
722       .type = ARM_CP_NOP | ARM_CP_OVERRIDE },
723     REGINFO_SENTINEL
724 };
725 
726 static const ARMCPRegInfo not_v6_cp_reginfo[] = {
727     /* Not all pre-v6 cores implemented this WFI, so this is slightly
728      * over-broad.
729      */
730     { .name = "WFI_v5", .cp = 15, .crn = 7, .crm = 8, .opc1 = 0, .opc2 = 2,
731       .access = PL1_W, .type = ARM_CP_WFI },
732     REGINFO_SENTINEL
733 };
734 
735 static const ARMCPRegInfo not_v7_cp_reginfo[] = {
736     /* Standard v6 WFI (also used in some pre-v6 cores); not in v7 (which
737      * is UNPREDICTABLE; we choose to NOP as most implementations do).
738      */
739     { .name = "WFI_v6", .cp = 15, .crn = 7, .crm = 0, .opc1 = 0, .opc2 = 4,
740       .access = PL1_W, .type = ARM_CP_WFI },
741     /* L1 cache lockdown. Not architectural in v6 and earlier but in practice
742      * implemented in 926, 946, 1026, 1136, 1176 and 11MPCore. StrongARM and
743      * OMAPCP will override this space.
744      */
745     { .name = "DLOCKDOWN", .cp = 15, .crn = 9, .crm = 0, .opc1 = 0, .opc2 = 0,
746       .access = PL1_RW, .fieldoffset = offsetof(CPUARMState, cp15.c9_data),
747       .resetvalue = 0 },
748     { .name = "ILOCKDOWN", .cp = 15, .crn = 9, .crm = 0, .opc1 = 0, .opc2 = 1,
749       .access = PL1_RW, .fieldoffset = offsetof(CPUARMState, cp15.c9_insn),
750       .resetvalue = 0 },
751     /* v6 doesn't have the cache ID registers but Linux reads them anyway */
752     { .name = "DUMMY", .cp = 15, .crn = 0, .crm = 0, .opc1 = 1, .opc2 = CP_ANY,
753       .access = PL1_R, .type = ARM_CP_CONST | ARM_CP_NO_RAW,
754       .resetvalue = 0 },
755     /* We don't implement pre-v7 debug but most CPUs had at least a DBGDIDR;
756      * implementing it as RAZ means the "debug architecture version" bits
757      * will read as a reserved value, which should cause Linux to not try
758      * to use the debug hardware.
759      */
760     { .name = "DBGDIDR", .cp = 14, .crn = 0, .crm = 0, .opc1 = 0, .opc2 = 0,
761       .access = PL0_R, .type = ARM_CP_CONST, .resetvalue = 0 },
762     /* MMU TLB control. Note that the wildcarding means we cover not just
763      * the unified TLB ops but also the dside/iside/inner-shareable variants.
764      */
765     { .name = "TLBIALL", .cp = 15, .crn = 8, .crm = CP_ANY,
766       .opc1 = CP_ANY, .opc2 = 0, .access = PL1_W, .writefn = tlbiall_write,
767       .type = ARM_CP_NO_RAW },
768     { .name = "TLBIMVA", .cp = 15, .crn = 8, .crm = CP_ANY,
769       .opc1 = CP_ANY, .opc2 = 1, .access = PL1_W, .writefn = tlbimva_write,
770       .type = ARM_CP_NO_RAW },
771     { .name = "TLBIASID", .cp = 15, .crn = 8, .crm = CP_ANY,
772       .opc1 = CP_ANY, .opc2 = 2, .access = PL1_W, .writefn = tlbiasid_write,
773       .type = ARM_CP_NO_RAW },
774     { .name = "TLBIMVAA", .cp = 15, .crn = 8, .crm = CP_ANY,
775       .opc1 = CP_ANY, .opc2 = 3, .access = PL1_W, .writefn = tlbimvaa_write,
776       .type = ARM_CP_NO_RAW },
777     { .name = "PRRR", .cp = 15, .crn = 10, .crm = 2,
778       .opc1 = 0, .opc2 = 0, .access = PL1_RW, .type = ARM_CP_NOP },
779     { .name = "NMRR", .cp = 15, .crn = 10, .crm = 2,
780       .opc1 = 0, .opc2 = 1, .access = PL1_RW, .type = ARM_CP_NOP },
781     REGINFO_SENTINEL
782 };
783 
784 static void cpacr_write(CPUARMState *env, const ARMCPRegInfo *ri,
785                         uint64_t value)
786 {
787     uint32_t mask = 0;
788 
789     /* In ARMv8 most bits of CPACR_EL1 are RES0. */
790     if (!arm_feature(env, ARM_FEATURE_V8)) {
791         /* ARMv7 defines bits for unimplemented coprocessors as RAZ/WI.
792          * ASEDIS [31] and D32DIS [30] are both UNK/SBZP without VFP.
793          * TRCDIS [28] is RAZ/WI since we do not implement a trace macrocell.
794          */
795         if (arm_feature(env, ARM_FEATURE_VFP)) {
796             /* VFP coprocessor: cp10 & cp11 [23:20] */
797             mask |= (1 << 31) | (1 << 30) | (0xf << 20);
798 
799             if (!arm_feature(env, ARM_FEATURE_NEON)) {
800                 /* ASEDIS [31] bit is RAO/WI */
801                 value |= (1 << 31);
802             }
803 
804             /* VFPv3 and upwards with NEON implement 32 double precision
805              * registers (D0-D31).
806              */
807             if (!arm_feature(env, ARM_FEATURE_NEON) ||
808                     !arm_feature(env, ARM_FEATURE_VFP3)) {
809                 /* D32DIS [30] is RAO/WI if D16-31 are not implemented. */
810                 value |= (1 << 30);
811             }
812         }
813         value &= mask;
814     }
815     env->cp15.cpacr_el1 = value;
816 }
817 
818 static CPAccessResult cpacr_access(CPUARMState *env, const ARMCPRegInfo *ri,
819                                    bool isread)
820 {
821     if (arm_feature(env, ARM_FEATURE_V8)) {
822         /* Check if CPACR accesses are to be trapped to EL2 */
823         if (arm_current_el(env) == 1 &&
824             (env->cp15.cptr_el[2] & CPTR_TCPAC) && !arm_is_secure(env)) {
825             return CP_ACCESS_TRAP_EL2;
826         /* Check if CPACR accesses are to be trapped to EL3 */
827         } else if (arm_current_el(env) < 3 &&
828                    (env->cp15.cptr_el[3] & CPTR_TCPAC)) {
829             return CP_ACCESS_TRAP_EL3;
830         }
831     }
832 
833     return CP_ACCESS_OK;
834 }
835 
836 static CPAccessResult cptr_access(CPUARMState *env, const ARMCPRegInfo *ri,
837                                   bool isread)
838 {
839     /* Check if CPTR accesses are set to trap to EL3 */
840     if (arm_current_el(env) == 2 && (env->cp15.cptr_el[3] & CPTR_TCPAC)) {
841         return CP_ACCESS_TRAP_EL3;
842     }
843 
844     return CP_ACCESS_OK;
845 }
846 
847 static const ARMCPRegInfo v6_cp_reginfo[] = {
848     /* prefetch by MVA in v6, NOP in v7 */
849     { .name = "MVA_prefetch",
850       .cp = 15, .crn = 7, .crm = 13, .opc1 = 0, .opc2 = 1,
851       .access = PL1_W, .type = ARM_CP_NOP },
852     /* We need to break the TB after ISB to execute self-modifying code
853      * correctly and also to take any pending interrupts immediately.
854      * So use arm_cp_write_ignore() function instead of ARM_CP_NOP flag.
855      */
856     { .name = "ISB", .cp = 15, .crn = 7, .crm = 5, .opc1 = 0, .opc2 = 4,
857       .access = PL0_W, .type = ARM_CP_NO_RAW, .writefn = arm_cp_write_ignore },
858     { .name = "DSB", .cp = 15, .crn = 7, .crm = 10, .opc1 = 0, .opc2 = 4,
859       .access = PL0_W, .type = ARM_CP_NOP },
860     { .name = "DMB", .cp = 15, .crn = 7, .crm = 10, .opc1 = 0, .opc2 = 5,
861       .access = PL0_W, .type = ARM_CP_NOP },
862     { .name = "IFAR", .cp = 15, .crn = 6, .crm = 0, .opc1 = 0, .opc2 = 2,
863       .access = PL1_RW,
864       .bank_fieldoffsets = { offsetof(CPUARMState, cp15.ifar_s),
865                              offsetof(CPUARMState, cp15.ifar_ns) },
866       .resetvalue = 0, },
867     /* Watchpoint Fault Address Register : should actually only be present
868      * for 1136, 1176, 11MPCore.
869      */
870     { .name = "WFAR", .cp = 15, .crn = 6, .crm = 0, .opc1 = 0, .opc2 = 1,
871       .access = PL1_RW, .type = ARM_CP_CONST, .resetvalue = 0, },
872     { .name = "CPACR", .state = ARM_CP_STATE_BOTH, .opc0 = 3,
873       .crn = 1, .crm = 0, .opc1 = 0, .opc2 = 2, .accessfn = cpacr_access,
874       .access = PL1_RW, .fieldoffset = offsetof(CPUARMState, cp15.cpacr_el1),
875       .resetvalue = 0, .writefn = cpacr_write },
876     REGINFO_SENTINEL
877 };
878 
879 static CPAccessResult pmreg_access(CPUARMState *env, const ARMCPRegInfo *ri,
880                                    bool isread)
881 {
882     /* Performance monitor registers user accessibility is controlled
883      * by PMUSERENR. MDCR_EL2.TPM and MDCR_EL3.TPM allow configurable
884      * trapping to EL2 or EL3 for other accesses.
885      */
886     int el = arm_current_el(env);
887 
888     if (el == 0 && !(env->cp15.c9_pmuserenr & 1)) {
889         return CP_ACCESS_TRAP;
890     }
891     if (el < 2 && (env->cp15.mdcr_el2 & MDCR_TPM)
892         && !arm_is_secure_below_el3(env)) {
893         return CP_ACCESS_TRAP_EL2;
894     }
895     if (el < 3 && (env->cp15.mdcr_el3 & MDCR_TPM)) {
896         return CP_ACCESS_TRAP_EL3;
897     }
898 
899     return CP_ACCESS_OK;
900 }
901 
902 static CPAccessResult pmreg_access_xevcntr(CPUARMState *env,
903                                            const ARMCPRegInfo *ri,
904                                            bool isread)
905 {
906     /* ER: event counter read trap control */
907     if (arm_feature(env, ARM_FEATURE_V8)
908         && arm_current_el(env) == 0
909         && (env->cp15.c9_pmuserenr & (1 << 3)) != 0
910         && isread) {
911         return CP_ACCESS_OK;
912     }
913 
914     return pmreg_access(env, ri, isread);
915 }
916 
917 static CPAccessResult pmreg_access_swinc(CPUARMState *env,
918                                          const ARMCPRegInfo *ri,
919                                          bool isread)
920 {
921     /* SW: software increment write trap control */
922     if (arm_feature(env, ARM_FEATURE_V8)
923         && arm_current_el(env) == 0
924         && (env->cp15.c9_pmuserenr & (1 << 1)) != 0
925         && !isread) {
926         return CP_ACCESS_OK;
927     }
928 
929     return pmreg_access(env, ri, isread);
930 }
931 
932 #ifndef CONFIG_USER_ONLY
933 
934 static CPAccessResult pmreg_access_selr(CPUARMState *env,
935                                         const ARMCPRegInfo *ri,
936                                         bool isread)
937 {
938     /* ER: event counter read trap control */
939     if (arm_feature(env, ARM_FEATURE_V8)
940         && arm_current_el(env) == 0
941         && (env->cp15.c9_pmuserenr & (1 << 3)) != 0) {
942         return CP_ACCESS_OK;
943     }
944 
945     return pmreg_access(env, ri, isread);
946 }
947 
948 static CPAccessResult pmreg_access_ccntr(CPUARMState *env,
949                                          const ARMCPRegInfo *ri,
950                                          bool isread)
951 {
952     /* CR: cycle counter read trap control */
953     if (arm_feature(env, ARM_FEATURE_V8)
954         && arm_current_el(env) == 0
955         && (env->cp15.c9_pmuserenr & (1 << 2)) != 0
956         && isread) {
957         return CP_ACCESS_OK;
958     }
959 
960     return pmreg_access(env, ri, isread);
961 }
962 
963 static inline bool arm_ccnt_enabled(CPUARMState *env)
964 {
965     /* This does not support checking PMCCFILTR_EL0 register */
966 
967     if (!(env->cp15.c9_pmcr & PMCRE)) {
968         return false;
969     }
970 
971     return true;
972 }
973 
974 void pmccntr_sync(CPUARMState *env)
975 {
976     uint64_t temp_ticks;
977 
978     temp_ticks = muldiv64(qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL),
979                           ARM_CPU_FREQ, NANOSECONDS_PER_SECOND);
980 
981     if (env->cp15.c9_pmcr & PMCRD) {
982         /* Increment once every 64 processor clock cycles */
983         temp_ticks /= 64;
984     }
985 
986     if (arm_ccnt_enabled(env)) {
987         env->cp15.c15_ccnt = temp_ticks - env->cp15.c15_ccnt;
988     }
989 }
990 
991 static void pmcr_write(CPUARMState *env, const ARMCPRegInfo *ri,
992                        uint64_t value)
993 {
994     pmccntr_sync(env);
995 
996     if (value & PMCRC) {
997         /* The counter has been reset */
998         env->cp15.c15_ccnt = 0;
999     }
1000 
1001     /* only the DP, X, D and E bits are writable */
1002     env->cp15.c9_pmcr &= ~0x39;
1003     env->cp15.c9_pmcr |= (value & 0x39);
1004 
1005     pmccntr_sync(env);
1006 }
1007 
1008 static uint64_t pmccntr_read(CPUARMState *env, const ARMCPRegInfo *ri)
1009 {
1010     uint64_t total_ticks;
1011 
1012     if (!arm_ccnt_enabled(env)) {
1013         /* Counter is disabled, do not change value */
1014         return env->cp15.c15_ccnt;
1015     }
1016 
1017     total_ticks = muldiv64(qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL),
1018                            ARM_CPU_FREQ, NANOSECONDS_PER_SECOND);
1019 
1020     if (env->cp15.c9_pmcr & PMCRD) {
1021         /* Increment once every 64 processor clock cycles */
1022         total_ticks /= 64;
1023     }
1024     return total_ticks - env->cp15.c15_ccnt;
1025 }
1026 
1027 static void pmselr_write(CPUARMState *env, const ARMCPRegInfo *ri,
1028                          uint64_t value)
1029 {
1030     /* The value of PMSELR.SEL affects the behavior of PMXEVTYPER and
1031      * PMXEVCNTR. We allow [0..31] to be written to PMSELR here; in the
1032      * meanwhile, we check PMSELR.SEL when PMXEVTYPER and PMXEVCNTR are
1033      * accessed.
1034      */
1035     env->cp15.c9_pmselr = value & 0x1f;
1036 }
1037 
1038 static void pmccntr_write(CPUARMState *env, const ARMCPRegInfo *ri,
1039                         uint64_t value)
1040 {
1041     uint64_t total_ticks;
1042 
1043     if (!arm_ccnt_enabled(env)) {
1044         /* Counter is disabled, set the absolute value */
1045         env->cp15.c15_ccnt = value;
1046         return;
1047     }
1048 
1049     total_ticks = muldiv64(qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL),
1050                            ARM_CPU_FREQ, NANOSECONDS_PER_SECOND);
1051 
1052     if (env->cp15.c9_pmcr & PMCRD) {
1053         /* Increment once every 64 processor clock cycles */
1054         total_ticks /= 64;
1055     }
1056     env->cp15.c15_ccnt = total_ticks - value;
1057 }
1058 
1059 static void pmccntr_write32(CPUARMState *env, const ARMCPRegInfo *ri,
1060                             uint64_t value)
1061 {
1062     uint64_t cur_val = pmccntr_read(env, NULL);
1063 
1064     pmccntr_write(env, ri, deposit64(cur_val, 0, 32, value));
1065 }
1066 
1067 #else /* CONFIG_USER_ONLY */
1068 
1069 void pmccntr_sync(CPUARMState *env)
1070 {
1071 }
1072 
1073 #endif
1074 
1075 static void pmccfiltr_write(CPUARMState *env, const ARMCPRegInfo *ri,
1076                             uint64_t value)
1077 {
1078     pmccntr_sync(env);
1079     env->cp15.pmccfiltr_el0 = value & 0x7E000000;
1080     pmccntr_sync(env);
1081 }
1082 
1083 static void pmcntenset_write(CPUARMState *env, const ARMCPRegInfo *ri,
1084                             uint64_t value)
1085 {
1086     value &= (1 << 31);
1087     env->cp15.c9_pmcnten |= value;
1088 }
1089 
1090 static void pmcntenclr_write(CPUARMState *env, const ARMCPRegInfo *ri,
1091                              uint64_t value)
1092 {
1093     value &= (1 << 31);
1094     env->cp15.c9_pmcnten &= ~value;
1095 }
1096 
1097 static void pmovsr_write(CPUARMState *env, const ARMCPRegInfo *ri,
1098                          uint64_t value)
1099 {
1100     env->cp15.c9_pmovsr &= ~value;
1101 }
1102 
1103 static void pmxevtyper_write(CPUARMState *env, const ARMCPRegInfo *ri,
1104                              uint64_t value)
1105 {
1106     /* Attempts to access PMXEVTYPER are CONSTRAINED UNPREDICTABLE when
1107      * PMSELR value is equal to or greater than the number of implemented
1108      * counters, but not equal to 0x1f. We opt to behave as a RAZ/WI.
1109      */
1110     if (env->cp15.c9_pmselr == 0x1f) {
1111         pmccfiltr_write(env, ri, value);
1112     }
1113 }
1114 
1115 static uint64_t pmxevtyper_read(CPUARMState *env, const ARMCPRegInfo *ri)
1116 {
1117     /* We opt to behave as a RAZ/WI when attempts to access PMXEVTYPER
1118      * are CONSTRAINED UNPREDICTABLE. See comments in pmxevtyper_write().
1119      */
1120     if (env->cp15.c9_pmselr == 0x1f) {
1121         return env->cp15.pmccfiltr_el0;
1122     } else {
1123         return 0;
1124     }
1125 }
1126 
1127 static void pmuserenr_write(CPUARMState *env, const ARMCPRegInfo *ri,
1128                             uint64_t value)
1129 {
1130     if (arm_feature(env, ARM_FEATURE_V8)) {
1131         env->cp15.c9_pmuserenr = value & 0xf;
1132     } else {
1133         env->cp15.c9_pmuserenr = value & 1;
1134     }
1135 }
1136 
1137 static void pmintenset_write(CPUARMState *env, const ARMCPRegInfo *ri,
1138                              uint64_t value)
1139 {
1140     /* We have no event counters so only the C bit can be changed */
1141     value &= (1 << 31);
1142     env->cp15.c9_pminten |= value;
1143 }
1144 
1145 static void pmintenclr_write(CPUARMState *env, const ARMCPRegInfo *ri,
1146                              uint64_t value)
1147 {
1148     value &= (1 << 31);
1149     env->cp15.c9_pminten &= ~value;
1150 }
1151 
1152 static void vbar_write(CPUARMState *env, const ARMCPRegInfo *ri,
1153                        uint64_t value)
1154 {
1155     /* Note that even though the AArch64 view of this register has bits
1156      * [10:0] all RES0 we can only mask the bottom 5, to comply with the
1157      * architectural requirements for bits which are RES0 only in some
1158      * contexts. (ARMv8 would permit us to do no masking at all, but ARMv7
1159      * requires the bottom five bits to be RAZ/WI because they're UNK/SBZP.)
1160      */
1161     raw_write(env, ri, value & ~0x1FULL);
1162 }
1163 
1164 static void scr_write(CPUARMState *env, const ARMCPRegInfo *ri, uint64_t value)
1165 {
1166     /* We only mask off bits that are RES0 both for AArch64 and AArch32.
1167      * For bits that vary between AArch32/64, code needs to check the
1168      * current execution mode before directly using the feature bit.
1169      */
1170     uint32_t valid_mask = SCR_AARCH64_MASK | SCR_AARCH32_MASK;
1171 
1172     if (!arm_feature(env, ARM_FEATURE_EL2)) {
1173         valid_mask &= ~SCR_HCE;
1174 
1175         /* On ARMv7, SMD (or SCD as it is called in v7) is only
1176          * supported if EL2 exists. The bit is UNK/SBZP when
1177          * EL2 is unavailable. In QEMU ARMv7, we force it to always zero
1178          * when EL2 is unavailable.
1179          * On ARMv8, this bit is always available.
1180          */
1181         if (arm_feature(env, ARM_FEATURE_V7) &&
1182             !arm_feature(env, ARM_FEATURE_V8)) {
1183             valid_mask &= ~SCR_SMD;
1184         }
1185     }
1186 
1187     /* Clear all-context RES0 bits.  */
1188     value &= valid_mask;
1189     raw_write(env, ri, value);
1190 }
1191 
1192 static uint64_t ccsidr_read(CPUARMState *env, const ARMCPRegInfo *ri)
1193 {
1194     ARMCPU *cpu = arm_env_get_cpu(env);
1195 
1196     /* Acquire the CSSELR index from the bank corresponding to the CCSIDR
1197      * bank
1198      */
1199     uint32_t index = A32_BANKED_REG_GET(env, csselr,
1200                                         ri->secure & ARM_CP_SECSTATE_S);
1201 
1202     return cpu->ccsidr[index];
1203 }
1204 
1205 static void csselr_write(CPUARMState *env, const ARMCPRegInfo *ri,
1206                          uint64_t value)
1207 {
1208     raw_write(env, ri, value & 0xf);
1209 }
1210 
1211 static uint64_t isr_read(CPUARMState *env, const ARMCPRegInfo *ri)
1212 {
1213     CPUState *cs = ENV_GET_CPU(env);
1214     uint64_t ret = 0;
1215 
1216     if (cs->interrupt_request & CPU_INTERRUPT_HARD) {
1217         ret |= CPSR_I;
1218     }
1219     if (cs->interrupt_request & CPU_INTERRUPT_FIQ) {
1220         ret |= CPSR_F;
1221     }
1222     /* External aborts are not possible in QEMU so A bit is always clear */
1223     return ret;
1224 }
1225 
1226 static const ARMCPRegInfo v7_cp_reginfo[] = {
1227     /* the old v6 WFI, UNPREDICTABLE in v7 but we choose to NOP */
1228     { .name = "NOP", .cp = 15, .crn = 7, .crm = 0, .opc1 = 0, .opc2 = 4,
1229       .access = PL1_W, .type = ARM_CP_NOP },
1230     /* Performance monitors are implementation defined in v7,
1231      * but with an ARM recommended set of registers, which we
1232      * follow (although we don't actually implement any counters)
1233      *
1234      * Performance registers fall into three categories:
1235      *  (a) always UNDEF in PL0, RW in PL1 (PMINTENSET, PMINTENCLR)
1236      *  (b) RO in PL0 (ie UNDEF on write), RW in PL1 (PMUSERENR)
1237      *  (c) UNDEF in PL0 if PMUSERENR.EN==0, otherwise accessible (all others)
1238      * For the cases controlled by PMUSERENR we must set .access to PL0_RW
1239      * or PL0_RO as appropriate and then check PMUSERENR in the helper fn.
1240      */
1241     { .name = "PMCNTENSET", .cp = 15, .crn = 9, .crm = 12, .opc1 = 0, .opc2 = 1,
1242       .access = PL0_RW, .type = ARM_CP_ALIAS,
1243       .fieldoffset = offsetoflow32(CPUARMState, cp15.c9_pmcnten),
1244       .writefn = pmcntenset_write,
1245       .accessfn = pmreg_access,
1246       .raw_writefn = raw_write },
1247     { .name = "PMCNTENSET_EL0", .state = ARM_CP_STATE_AA64,
1248       .opc0 = 3, .opc1 = 3, .crn = 9, .crm = 12, .opc2 = 1,
1249       .access = PL0_RW, .accessfn = pmreg_access,
1250       .fieldoffset = offsetof(CPUARMState, cp15.c9_pmcnten), .resetvalue = 0,
1251       .writefn = pmcntenset_write, .raw_writefn = raw_write },
1252     { .name = "PMCNTENCLR", .cp = 15, .crn = 9, .crm = 12, .opc1 = 0, .opc2 = 2,
1253       .access = PL0_RW,
1254       .fieldoffset = offsetoflow32(CPUARMState, cp15.c9_pmcnten),
1255       .accessfn = pmreg_access,
1256       .writefn = pmcntenclr_write,
1257       .type = ARM_CP_ALIAS },
1258     { .name = "PMCNTENCLR_EL0", .state = ARM_CP_STATE_AA64,
1259       .opc0 = 3, .opc1 = 3, .crn = 9, .crm = 12, .opc2 = 2,
1260       .access = PL0_RW, .accessfn = pmreg_access,
1261       .type = ARM_CP_ALIAS,
1262       .fieldoffset = offsetof(CPUARMState, cp15.c9_pmcnten),
1263       .writefn = pmcntenclr_write },
1264     { .name = "PMOVSR", .cp = 15, .crn = 9, .crm = 12, .opc1 = 0, .opc2 = 3,
1265       .access = PL0_RW, .fieldoffset = offsetof(CPUARMState, cp15.c9_pmovsr),
1266       .accessfn = pmreg_access,
1267       .writefn = pmovsr_write,
1268       .raw_writefn = raw_write },
1269     { .name = "PMOVSCLR_EL0", .state = ARM_CP_STATE_AA64,
1270       .opc0 = 3, .opc1 = 3, .crn = 9, .crm = 12, .opc2 = 3,
1271       .access = PL0_RW, .accessfn = pmreg_access,
1272       .type = ARM_CP_ALIAS,
1273       .fieldoffset = offsetof(CPUARMState, cp15.c9_pmovsr),
1274       .writefn = pmovsr_write,
1275       .raw_writefn = raw_write },
1276     /* Unimplemented so WI. */
1277     { .name = "PMSWINC", .cp = 15, .crn = 9, .crm = 12, .opc1 = 0, .opc2 = 4,
1278       .access = PL0_W, .accessfn = pmreg_access_swinc, .type = ARM_CP_NOP },
1279 #ifndef CONFIG_USER_ONLY
1280     { .name = "PMSELR", .cp = 15, .crn = 9, .crm = 12, .opc1 = 0, .opc2 = 5,
1281       .access = PL0_RW, .type = ARM_CP_ALIAS,
1282       .fieldoffset = offsetoflow32(CPUARMState, cp15.c9_pmselr),
1283       .accessfn = pmreg_access_selr, .writefn = pmselr_write,
1284       .raw_writefn = raw_write},
1285     { .name = "PMSELR_EL0", .state = ARM_CP_STATE_AA64,
1286       .opc0 = 3, .opc1 = 3, .crn = 9, .crm = 12, .opc2 = 5,
1287       .access = PL0_RW, .accessfn = pmreg_access_selr,
1288       .fieldoffset = offsetof(CPUARMState, cp15.c9_pmselr),
1289       .writefn = pmselr_write, .raw_writefn = raw_write, },
1290     { .name = "PMCCNTR", .cp = 15, .crn = 9, .crm = 13, .opc1 = 0, .opc2 = 0,
1291       .access = PL0_RW, .resetvalue = 0, .type = ARM_CP_IO,
1292       .readfn = pmccntr_read, .writefn = pmccntr_write32,
1293       .accessfn = pmreg_access_ccntr },
1294     { .name = "PMCCNTR_EL0", .state = ARM_CP_STATE_AA64,
1295       .opc0 = 3, .opc1 = 3, .crn = 9, .crm = 13, .opc2 = 0,
1296       .access = PL0_RW, .accessfn = pmreg_access_ccntr,
1297       .type = ARM_CP_IO,
1298       .readfn = pmccntr_read, .writefn = pmccntr_write, },
1299 #endif
1300     { .name = "PMCCFILTR_EL0", .state = ARM_CP_STATE_AA64,
1301       .opc0 = 3, .opc1 = 3, .crn = 14, .crm = 15, .opc2 = 7,
1302       .writefn = pmccfiltr_write,
1303       .access = PL0_RW, .accessfn = pmreg_access,
1304       .type = ARM_CP_IO,
1305       .fieldoffset = offsetof(CPUARMState, cp15.pmccfiltr_el0),
1306       .resetvalue = 0, },
1307     { .name = "PMXEVTYPER", .cp = 15, .crn = 9, .crm = 13, .opc1 = 0, .opc2 = 1,
1308       .access = PL0_RW, .type = ARM_CP_NO_RAW, .accessfn = pmreg_access,
1309       .writefn = pmxevtyper_write, .readfn = pmxevtyper_read },
1310     { .name = "PMXEVTYPER_EL0", .state = ARM_CP_STATE_AA64,
1311       .opc0 = 3, .opc1 = 3, .crn = 9, .crm = 13, .opc2 = 1,
1312       .access = PL0_RW, .type = ARM_CP_NO_RAW, .accessfn = pmreg_access,
1313       .writefn = pmxevtyper_write, .readfn = pmxevtyper_read },
1314     /* Unimplemented, RAZ/WI. */
1315     { .name = "PMXEVCNTR", .cp = 15, .crn = 9, .crm = 13, .opc1 = 0, .opc2 = 2,
1316       .access = PL0_RW, .type = ARM_CP_CONST, .resetvalue = 0,
1317       .accessfn = pmreg_access_xevcntr },
1318     { .name = "PMUSERENR", .cp = 15, .crn = 9, .crm = 14, .opc1 = 0, .opc2 = 0,
1319       .access = PL0_R | PL1_RW, .accessfn = access_tpm,
1320       .fieldoffset = offsetof(CPUARMState, cp15.c9_pmuserenr),
1321       .resetvalue = 0,
1322       .writefn = pmuserenr_write, .raw_writefn = raw_write },
1323     { .name = "PMUSERENR_EL0", .state = ARM_CP_STATE_AA64,
1324       .opc0 = 3, .opc1 = 3, .crn = 9, .crm = 14, .opc2 = 0,
1325       .access = PL0_R | PL1_RW, .accessfn = access_tpm, .type = ARM_CP_ALIAS,
1326       .fieldoffset = offsetof(CPUARMState, cp15.c9_pmuserenr),
1327       .resetvalue = 0,
1328       .writefn = pmuserenr_write, .raw_writefn = raw_write },
1329     { .name = "PMINTENSET", .cp = 15, .crn = 9, .crm = 14, .opc1 = 0, .opc2 = 1,
1330       .access = PL1_RW, .accessfn = access_tpm,
1331       .type = ARM_CP_ALIAS,
1332       .fieldoffset = offsetoflow32(CPUARMState, cp15.c9_pminten),
1333       .resetvalue = 0,
1334       .writefn = pmintenset_write, .raw_writefn = raw_write },
1335     { .name = "PMINTENSET_EL1", .state = ARM_CP_STATE_AA64,
1336       .opc0 = 3, .opc1 = 0, .crn = 9, .crm = 14, .opc2 = 1,
1337       .access = PL1_RW, .accessfn = access_tpm,
1338       .type = ARM_CP_IO,
1339       .fieldoffset = offsetof(CPUARMState, cp15.c9_pminten),
1340       .writefn = pmintenset_write, .raw_writefn = raw_write,
1341       .resetvalue = 0x0 },
1342     { .name = "PMINTENCLR", .cp = 15, .crn = 9, .crm = 14, .opc1 = 0, .opc2 = 2,
1343       .access = PL1_RW, .accessfn = access_tpm, .type = ARM_CP_ALIAS,
1344       .fieldoffset = offsetof(CPUARMState, cp15.c9_pminten),
1345       .writefn = pmintenclr_write, },
1346     { .name = "PMINTENCLR_EL1", .state = ARM_CP_STATE_AA64,
1347       .opc0 = 3, .opc1 = 0, .crn = 9, .crm = 14, .opc2 = 2,
1348       .access = PL1_RW, .accessfn = access_tpm, .type = ARM_CP_ALIAS,
1349       .fieldoffset = offsetof(CPUARMState, cp15.c9_pminten),
1350       .writefn = pmintenclr_write },
1351     { .name = "CCSIDR", .state = ARM_CP_STATE_BOTH,
1352       .opc0 = 3, .crn = 0, .crm = 0, .opc1 = 1, .opc2 = 0,
1353       .access = PL1_R, .readfn = ccsidr_read, .type = ARM_CP_NO_RAW },
1354     { .name = "CSSELR", .state = ARM_CP_STATE_BOTH,
1355       .opc0 = 3, .crn = 0, .crm = 0, .opc1 = 2, .opc2 = 0,
1356       .access = PL1_RW, .writefn = csselr_write, .resetvalue = 0,
1357       .bank_fieldoffsets = { offsetof(CPUARMState, cp15.csselr_s),
1358                              offsetof(CPUARMState, cp15.csselr_ns) } },
1359     /* Auxiliary ID register: this actually has an IMPDEF value but for now
1360      * just RAZ for all cores:
1361      */
1362     { .name = "AIDR", .state = ARM_CP_STATE_BOTH,
1363       .opc0 = 3, .opc1 = 1, .crn = 0, .crm = 0, .opc2 = 7,
1364       .access = PL1_R, .type = ARM_CP_CONST, .resetvalue = 0 },
1365     /* Auxiliary fault status registers: these also are IMPDEF, and we
1366      * choose to RAZ/WI for all cores.
1367      */
1368     { .name = "AFSR0_EL1", .state = ARM_CP_STATE_BOTH,
1369       .opc0 = 3, .opc1 = 0, .crn = 5, .crm = 1, .opc2 = 0,
1370       .access = PL1_RW, .type = ARM_CP_CONST, .resetvalue = 0 },
1371     { .name = "AFSR1_EL1", .state = ARM_CP_STATE_BOTH,
1372       .opc0 = 3, .opc1 = 0, .crn = 5, .crm = 1, .opc2 = 1,
1373       .access = PL1_RW, .type = ARM_CP_CONST, .resetvalue = 0 },
1374     /* MAIR can just read-as-written because we don't implement caches
1375      * and so don't need to care about memory attributes.
1376      */
1377     { .name = "MAIR_EL1", .state = ARM_CP_STATE_AA64,
1378       .opc0 = 3, .opc1 = 0, .crn = 10, .crm = 2, .opc2 = 0,
1379       .access = PL1_RW, .fieldoffset = offsetof(CPUARMState, cp15.mair_el[1]),
1380       .resetvalue = 0 },
1381     { .name = "MAIR_EL3", .state = ARM_CP_STATE_AA64,
1382       .opc0 = 3, .opc1 = 6, .crn = 10, .crm = 2, .opc2 = 0,
1383       .access = PL3_RW, .fieldoffset = offsetof(CPUARMState, cp15.mair_el[3]),
1384       .resetvalue = 0 },
1385     /* For non-long-descriptor page tables these are PRRR and NMRR;
1386      * regardless they still act as reads-as-written for QEMU.
1387      */
1388      /* MAIR0/1 are defined separately from their 64-bit counterpart which
1389       * allows them to assign the correct fieldoffset based on the endianness
1390       * handled in the field definitions.
1391       */
1392     { .name = "MAIR0", .state = ARM_CP_STATE_AA32,
1393       .cp = 15, .opc1 = 0, .crn = 10, .crm = 2, .opc2 = 0, .access = PL1_RW,
1394       .bank_fieldoffsets = { offsetof(CPUARMState, cp15.mair0_s),
1395                              offsetof(CPUARMState, cp15.mair0_ns) },
1396       .resetfn = arm_cp_reset_ignore },
1397     { .name = "MAIR1", .state = ARM_CP_STATE_AA32,
1398       .cp = 15, .opc1 = 0, .crn = 10, .crm = 2, .opc2 = 1, .access = PL1_RW,
1399       .bank_fieldoffsets = { offsetof(CPUARMState, cp15.mair1_s),
1400                              offsetof(CPUARMState, cp15.mair1_ns) },
1401       .resetfn = arm_cp_reset_ignore },
1402     { .name = "ISR_EL1", .state = ARM_CP_STATE_BOTH,
1403       .opc0 = 3, .opc1 = 0, .crn = 12, .crm = 1, .opc2 = 0,
1404       .type = ARM_CP_NO_RAW, .access = PL1_R, .readfn = isr_read },
1405     /* 32 bit ITLB invalidates */
1406     { .name = "ITLBIALL", .cp = 15, .opc1 = 0, .crn = 8, .crm = 5, .opc2 = 0,
1407       .type = ARM_CP_NO_RAW, .access = PL1_W, .writefn = tlbiall_write },
1408     { .name = "ITLBIMVA", .cp = 15, .opc1 = 0, .crn = 8, .crm = 5, .opc2 = 1,
1409       .type = ARM_CP_NO_RAW, .access = PL1_W, .writefn = tlbimva_write },
1410     { .name = "ITLBIASID", .cp = 15, .opc1 = 0, .crn = 8, .crm = 5, .opc2 = 2,
1411       .type = ARM_CP_NO_RAW, .access = PL1_W, .writefn = tlbiasid_write },
1412     /* 32 bit DTLB invalidates */
1413     { .name = "DTLBIALL", .cp = 15, .opc1 = 0, .crn = 8, .crm = 6, .opc2 = 0,
1414       .type = ARM_CP_NO_RAW, .access = PL1_W, .writefn = tlbiall_write },
1415     { .name = "DTLBIMVA", .cp = 15, .opc1 = 0, .crn = 8, .crm = 6, .opc2 = 1,
1416       .type = ARM_CP_NO_RAW, .access = PL1_W, .writefn = tlbimva_write },
1417     { .name = "DTLBIASID", .cp = 15, .opc1 = 0, .crn = 8, .crm = 6, .opc2 = 2,
1418       .type = ARM_CP_NO_RAW, .access = PL1_W, .writefn = tlbiasid_write },
1419     /* 32 bit TLB invalidates */
1420     { .name = "TLBIALL", .cp = 15, .opc1 = 0, .crn = 8, .crm = 7, .opc2 = 0,
1421       .type = ARM_CP_NO_RAW, .access = PL1_W, .writefn = tlbiall_write },
1422     { .name = "TLBIMVA", .cp = 15, .opc1 = 0, .crn = 8, .crm = 7, .opc2 = 1,
1423       .type = ARM_CP_NO_RAW, .access = PL1_W, .writefn = tlbimva_write },
1424     { .name = "TLBIASID", .cp = 15, .opc1 = 0, .crn = 8, .crm = 7, .opc2 = 2,
1425       .type = ARM_CP_NO_RAW, .access = PL1_W, .writefn = tlbiasid_write },
1426     { .name = "TLBIMVAA", .cp = 15, .opc1 = 0, .crn = 8, .crm = 7, .opc2 = 3,
1427       .type = ARM_CP_NO_RAW, .access = PL1_W, .writefn = tlbimvaa_write },
1428     REGINFO_SENTINEL
1429 };
1430 
1431 static const ARMCPRegInfo v7mp_cp_reginfo[] = {
1432     /* 32 bit TLB invalidates, Inner Shareable */
1433     { .name = "TLBIALLIS", .cp = 15, .opc1 = 0, .crn = 8, .crm = 3, .opc2 = 0,
1434       .type = ARM_CP_NO_RAW, .access = PL1_W, .writefn = tlbiall_is_write },
1435     { .name = "TLBIMVAIS", .cp = 15, .opc1 = 0, .crn = 8, .crm = 3, .opc2 = 1,
1436       .type = ARM_CP_NO_RAW, .access = PL1_W, .writefn = tlbimva_is_write },
1437     { .name = "TLBIASIDIS", .cp = 15, .opc1 = 0, .crn = 8, .crm = 3, .opc2 = 2,
1438       .type = ARM_CP_NO_RAW, .access = PL1_W,
1439       .writefn = tlbiasid_is_write },
1440     { .name = "TLBIMVAAIS", .cp = 15, .opc1 = 0, .crn = 8, .crm = 3, .opc2 = 3,
1441       .type = ARM_CP_NO_RAW, .access = PL1_W,
1442       .writefn = tlbimvaa_is_write },
1443     REGINFO_SENTINEL
1444 };
1445 
1446 static void teecr_write(CPUARMState *env, const ARMCPRegInfo *ri,
1447                         uint64_t value)
1448 {
1449     value &= 1;
1450     env->teecr = value;
1451 }
1452 
1453 static CPAccessResult teehbr_access(CPUARMState *env, const ARMCPRegInfo *ri,
1454                                     bool isread)
1455 {
1456     if (arm_current_el(env) == 0 && (env->teecr & 1)) {
1457         return CP_ACCESS_TRAP;
1458     }
1459     return CP_ACCESS_OK;
1460 }
1461 
1462 static const ARMCPRegInfo t2ee_cp_reginfo[] = {
1463     { .name = "TEECR", .cp = 14, .crn = 0, .crm = 0, .opc1 = 6, .opc2 = 0,
1464       .access = PL1_RW, .fieldoffset = offsetof(CPUARMState, teecr),
1465       .resetvalue = 0,
1466       .writefn = teecr_write },
1467     { .name = "TEEHBR", .cp = 14, .crn = 1, .crm = 0, .opc1 = 6, .opc2 = 0,
1468       .access = PL0_RW, .fieldoffset = offsetof(CPUARMState, teehbr),
1469       .accessfn = teehbr_access, .resetvalue = 0 },
1470     REGINFO_SENTINEL
1471 };
1472 
1473 static const ARMCPRegInfo v6k_cp_reginfo[] = {
1474     { .name = "TPIDR_EL0", .state = ARM_CP_STATE_AA64,
1475       .opc0 = 3, .opc1 = 3, .opc2 = 2, .crn = 13, .crm = 0,
1476       .access = PL0_RW,
1477       .fieldoffset = offsetof(CPUARMState, cp15.tpidr_el[0]), .resetvalue = 0 },
1478     { .name = "TPIDRURW", .cp = 15, .crn = 13, .crm = 0, .opc1 = 0, .opc2 = 2,
1479       .access = PL0_RW,
1480       .bank_fieldoffsets = { offsetoflow32(CPUARMState, cp15.tpidrurw_s),
1481                              offsetoflow32(CPUARMState, cp15.tpidrurw_ns) },
1482       .resetfn = arm_cp_reset_ignore },
1483     { .name = "TPIDRRO_EL0", .state = ARM_CP_STATE_AA64,
1484       .opc0 = 3, .opc1 = 3, .opc2 = 3, .crn = 13, .crm = 0,
1485       .access = PL0_R|PL1_W,
1486       .fieldoffset = offsetof(CPUARMState, cp15.tpidrro_el[0]),
1487       .resetvalue = 0},
1488     { .name = "TPIDRURO", .cp = 15, .crn = 13, .crm = 0, .opc1 = 0, .opc2 = 3,
1489       .access = PL0_R|PL1_W,
1490       .bank_fieldoffsets = { offsetoflow32(CPUARMState, cp15.tpidruro_s),
1491                              offsetoflow32(CPUARMState, cp15.tpidruro_ns) },
1492       .resetfn = arm_cp_reset_ignore },
1493     { .name = "TPIDR_EL1", .state = ARM_CP_STATE_AA64,
1494       .opc0 = 3, .opc1 = 0, .opc2 = 4, .crn = 13, .crm = 0,
1495       .access = PL1_RW,
1496       .fieldoffset = offsetof(CPUARMState, cp15.tpidr_el[1]), .resetvalue = 0 },
1497     { .name = "TPIDRPRW", .opc1 = 0, .cp = 15, .crn = 13, .crm = 0, .opc2 = 4,
1498       .access = PL1_RW,
1499       .bank_fieldoffsets = { offsetoflow32(CPUARMState, cp15.tpidrprw_s),
1500                              offsetoflow32(CPUARMState, cp15.tpidrprw_ns) },
1501       .resetvalue = 0 },
1502     REGINFO_SENTINEL
1503 };
1504 
1505 #ifndef CONFIG_USER_ONLY
1506 
1507 static CPAccessResult gt_cntfrq_access(CPUARMState *env, const ARMCPRegInfo *ri,
1508                                        bool isread)
1509 {
1510     /* CNTFRQ: not visible from PL0 if both PL0PCTEN and PL0VCTEN are zero.
1511      * Writable only at the highest implemented exception level.
1512      */
1513     int el = arm_current_el(env);
1514 
1515     switch (el) {
1516     case 0:
1517         if (!extract32(env->cp15.c14_cntkctl, 0, 2)) {
1518             return CP_ACCESS_TRAP;
1519         }
1520         break;
1521     case 1:
1522         if (!isread && ri->state == ARM_CP_STATE_AA32 &&
1523             arm_is_secure_below_el3(env)) {
1524             /* Accesses from 32-bit Secure EL1 UNDEF (*not* trap to EL3!) */
1525             return CP_ACCESS_TRAP_UNCATEGORIZED;
1526         }
1527         break;
1528     case 2:
1529     case 3:
1530         break;
1531     }
1532 
1533     if (!isread && el < arm_highest_el(env)) {
1534         return CP_ACCESS_TRAP_UNCATEGORIZED;
1535     }
1536 
1537     return CP_ACCESS_OK;
1538 }
1539 
1540 static CPAccessResult gt_counter_access(CPUARMState *env, int timeridx,
1541                                         bool isread)
1542 {
1543     unsigned int cur_el = arm_current_el(env);
1544     bool secure = arm_is_secure(env);
1545 
1546     /* CNT[PV]CT: not visible from PL0 if ELO[PV]CTEN is zero */
1547     if (cur_el == 0 &&
1548         !extract32(env->cp15.c14_cntkctl, timeridx, 1)) {
1549         return CP_ACCESS_TRAP;
1550     }
1551 
1552     if (arm_feature(env, ARM_FEATURE_EL2) &&
1553         timeridx == GTIMER_PHYS && !secure && cur_el < 2 &&
1554         !extract32(env->cp15.cnthctl_el2, 0, 1)) {
1555         return CP_ACCESS_TRAP_EL2;
1556     }
1557     return CP_ACCESS_OK;
1558 }
1559 
1560 static CPAccessResult gt_timer_access(CPUARMState *env, int timeridx,
1561                                       bool isread)
1562 {
1563     unsigned int cur_el = arm_current_el(env);
1564     bool secure = arm_is_secure(env);
1565 
1566     /* CNT[PV]_CVAL, CNT[PV]_CTL, CNT[PV]_TVAL: not visible from PL0 if
1567      * EL0[PV]TEN is zero.
1568      */
1569     if (cur_el == 0 &&
1570         !extract32(env->cp15.c14_cntkctl, 9 - timeridx, 1)) {
1571         return CP_ACCESS_TRAP;
1572     }
1573 
1574     if (arm_feature(env, ARM_FEATURE_EL2) &&
1575         timeridx == GTIMER_PHYS && !secure && cur_el < 2 &&
1576         !extract32(env->cp15.cnthctl_el2, 1, 1)) {
1577         return CP_ACCESS_TRAP_EL2;
1578     }
1579     return CP_ACCESS_OK;
1580 }
1581 
1582 static CPAccessResult gt_pct_access(CPUARMState *env,
1583                                     const ARMCPRegInfo *ri,
1584                                     bool isread)
1585 {
1586     return gt_counter_access(env, GTIMER_PHYS, isread);
1587 }
1588 
1589 static CPAccessResult gt_vct_access(CPUARMState *env,
1590                                     const ARMCPRegInfo *ri,
1591                                     bool isread)
1592 {
1593     return gt_counter_access(env, GTIMER_VIRT, isread);
1594 }
1595 
1596 static CPAccessResult gt_ptimer_access(CPUARMState *env, const ARMCPRegInfo *ri,
1597                                        bool isread)
1598 {
1599     return gt_timer_access(env, GTIMER_PHYS, isread);
1600 }
1601 
1602 static CPAccessResult gt_vtimer_access(CPUARMState *env, const ARMCPRegInfo *ri,
1603                                        bool isread)
1604 {
1605     return gt_timer_access(env, GTIMER_VIRT, isread);
1606 }
1607 
1608 static CPAccessResult gt_stimer_access(CPUARMState *env,
1609                                        const ARMCPRegInfo *ri,
1610                                        bool isread)
1611 {
1612     /* The AArch64 register view of the secure physical timer is
1613      * always accessible from EL3, and configurably accessible from
1614      * Secure EL1.
1615      */
1616     switch (arm_current_el(env)) {
1617     case 1:
1618         if (!arm_is_secure(env)) {
1619             return CP_ACCESS_TRAP;
1620         }
1621         if (!(env->cp15.scr_el3 & SCR_ST)) {
1622             return CP_ACCESS_TRAP_EL3;
1623         }
1624         return CP_ACCESS_OK;
1625     case 0:
1626     case 2:
1627         return CP_ACCESS_TRAP;
1628     case 3:
1629         return CP_ACCESS_OK;
1630     default:
1631         g_assert_not_reached();
1632     }
1633 }
1634 
1635 static uint64_t gt_get_countervalue(CPUARMState *env)
1636 {
1637     return qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL) / GTIMER_SCALE;
1638 }
1639 
1640 static void gt_recalc_timer(ARMCPU *cpu, int timeridx)
1641 {
1642     ARMGenericTimer *gt = &cpu->env.cp15.c14_timer[timeridx];
1643 
1644     if (gt->ctl & 1) {
1645         /* Timer enabled: calculate and set current ISTATUS, irq, and
1646          * reset timer to when ISTATUS next has to change
1647          */
1648         uint64_t offset = timeridx == GTIMER_VIRT ?
1649                                       cpu->env.cp15.cntvoff_el2 : 0;
1650         uint64_t count = gt_get_countervalue(&cpu->env);
1651         /* Note that this must be unsigned 64 bit arithmetic: */
1652         int istatus = count - offset >= gt->cval;
1653         uint64_t nexttick;
1654         int irqstate;
1655 
1656         gt->ctl = deposit32(gt->ctl, 2, 1, istatus);
1657 
1658         irqstate = (istatus && !(gt->ctl & 2));
1659         qemu_set_irq(cpu->gt_timer_outputs[timeridx], irqstate);
1660 
1661         if (istatus) {
1662             /* Next transition is when count rolls back over to zero */
1663             nexttick = UINT64_MAX;
1664         } else {
1665             /* Next transition is when we hit cval */
1666             nexttick = gt->cval + offset;
1667         }
1668         /* Note that the desired next expiry time might be beyond the
1669          * signed-64-bit range of a QEMUTimer -- in this case we just
1670          * set the timer for as far in the future as possible. When the
1671          * timer expires we will reset the timer for any remaining period.
1672          */
1673         if (nexttick > INT64_MAX / GTIMER_SCALE) {
1674             nexttick = INT64_MAX / GTIMER_SCALE;
1675         }
1676         timer_mod(cpu->gt_timer[timeridx], nexttick);
1677         trace_arm_gt_recalc(timeridx, irqstate, nexttick);
1678     } else {
1679         /* Timer disabled: ISTATUS and timer output always clear */
1680         gt->ctl &= ~4;
1681         qemu_set_irq(cpu->gt_timer_outputs[timeridx], 0);
1682         timer_del(cpu->gt_timer[timeridx]);
1683         trace_arm_gt_recalc_disabled(timeridx);
1684     }
1685 }
1686 
1687 static void gt_timer_reset(CPUARMState *env, const ARMCPRegInfo *ri,
1688                            int timeridx)
1689 {
1690     ARMCPU *cpu = arm_env_get_cpu(env);
1691 
1692     timer_del(cpu->gt_timer[timeridx]);
1693 }
1694 
1695 static uint64_t gt_cnt_read(CPUARMState *env, const ARMCPRegInfo *ri)
1696 {
1697     return gt_get_countervalue(env);
1698 }
1699 
1700 static uint64_t gt_virt_cnt_read(CPUARMState *env, const ARMCPRegInfo *ri)
1701 {
1702     return gt_get_countervalue(env) - env->cp15.cntvoff_el2;
1703 }
1704 
1705 static void gt_cval_write(CPUARMState *env, const ARMCPRegInfo *ri,
1706                           int timeridx,
1707                           uint64_t value)
1708 {
1709     trace_arm_gt_cval_write(timeridx, value);
1710     env->cp15.c14_timer[timeridx].cval = value;
1711     gt_recalc_timer(arm_env_get_cpu(env), timeridx);
1712 }
1713 
1714 static uint64_t gt_tval_read(CPUARMState *env, const ARMCPRegInfo *ri,
1715                              int timeridx)
1716 {
1717     uint64_t offset = timeridx == GTIMER_VIRT ? env->cp15.cntvoff_el2 : 0;
1718 
1719     return (uint32_t)(env->cp15.c14_timer[timeridx].cval -
1720                       (gt_get_countervalue(env) - offset));
1721 }
1722 
1723 static void gt_tval_write(CPUARMState *env, const ARMCPRegInfo *ri,
1724                           int timeridx,
1725                           uint64_t value)
1726 {
1727     uint64_t offset = timeridx == GTIMER_VIRT ? env->cp15.cntvoff_el2 : 0;
1728 
1729     trace_arm_gt_tval_write(timeridx, value);
1730     env->cp15.c14_timer[timeridx].cval = gt_get_countervalue(env) - offset +
1731                                          sextract64(value, 0, 32);
1732     gt_recalc_timer(arm_env_get_cpu(env), timeridx);
1733 }
1734 
1735 static void gt_ctl_write(CPUARMState *env, const ARMCPRegInfo *ri,
1736                          int timeridx,
1737                          uint64_t value)
1738 {
1739     ARMCPU *cpu = arm_env_get_cpu(env);
1740     uint32_t oldval = env->cp15.c14_timer[timeridx].ctl;
1741 
1742     trace_arm_gt_ctl_write(timeridx, value);
1743     env->cp15.c14_timer[timeridx].ctl = deposit64(oldval, 0, 2, value);
1744     if ((oldval ^ value) & 1) {
1745         /* Enable toggled */
1746         gt_recalc_timer(cpu, timeridx);
1747     } else if ((oldval ^ value) & 2) {
1748         /* IMASK toggled: don't need to recalculate,
1749          * just set the interrupt line based on ISTATUS
1750          */
1751         int irqstate = (oldval & 4) && !(value & 2);
1752 
1753         trace_arm_gt_imask_toggle(timeridx, irqstate);
1754         qemu_set_irq(cpu->gt_timer_outputs[timeridx], irqstate);
1755     }
1756 }
1757 
1758 static void gt_phys_timer_reset(CPUARMState *env, const ARMCPRegInfo *ri)
1759 {
1760     gt_timer_reset(env, ri, GTIMER_PHYS);
1761 }
1762 
1763 static void gt_phys_cval_write(CPUARMState *env, const ARMCPRegInfo *ri,
1764                                uint64_t value)
1765 {
1766     gt_cval_write(env, ri, GTIMER_PHYS, value);
1767 }
1768 
1769 static uint64_t gt_phys_tval_read(CPUARMState *env, const ARMCPRegInfo *ri)
1770 {
1771     return gt_tval_read(env, ri, GTIMER_PHYS);
1772 }
1773 
1774 static void gt_phys_tval_write(CPUARMState *env, const ARMCPRegInfo *ri,
1775                                uint64_t value)
1776 {
1777     gt_tval_write(env, ri, GTIMER_PHYS, value);
1778 }
1779 
1780 static void gt_phys_ctl_write(CPUARMState *env, const ARMCPRegInfo *ri,
1781                               uint64_t value)
1782 {
1783     gt_ctl_write(env, ri, GTIMER_PHYS, value);
1784 }
1785 
1786 static void gt_virt_timer_reset(CPUARMState *env, const ARMCPRegInfo *ri)
1787 {
1788     gt_timer_reset(env, ri, GTIMER_VIRT);
1789 }
1790 
1791 static void gt_virt_cval_write(CPUARMState *env, const ARMCPRegInfo *ri,
1792                                uint64_t value)
1793 {
1794     gt_cval_write(env, ri, GTIMER_VIRT, value);
1795 }
1796 
1797 static uint64_t gt_virt_tval_read(CPUARMState *env, const ARMCPRegInfo *ri)
1798 {
1799     return gt_tval_read(env, ri, GTIMER_VIRT);
1800 }
1801 
1802 static void gt_virt_tval_write(CPUARMState *env, const ARMCPRegInfo *ri,
1803                                uint64_t value)
1804 {
1805     gt_tval_write(env, ri, GTIMER_VIRT, value);
1806 }
1807 
1808 static void gt_virt_ctl_write(CPUARMState *env, const ARMCPRegInfo *ri,
1809                               uint64_t value)
1810 {
1811     gt_ctl_write(env, ri, GTIMER_VIRT, value);
1812 }
1813 
1814 static void gt_cntvoff_write(CPUARMState *env, const ARMCPRegInfo *ri,
1815                               uint64_t value)
1816 {
1817     ARMCPU *cpu = arm_env_get_cpu(env);
1818 
1819     trace_arm_gt_cntvoff_write(value);
1820     raw_write(env, ri, value);
1821     gt_recalc_timer(cpu, GTIMER_VIRT);
1822 }
1823 
1824 static void gt_hyp_timer_reset(CPUARMState *env, const ARMCPRegInfo *ri)
1825 {
1826     gt_timer_reset(env, ri, GTIMER_HYP);
1827 }
1828 
1829 static void gt_hyp_cval_write(CPUARMState *env, const ARMCPRegInfo *ri,
1830                               uint64_t value)
1831 {
1832     gt_cval_write(env, ri, GTIMER_HYP, value);
1833 }
1834 
1835 static uint64_t gt_hyp_tval_read(CPUARMState *env, const ARMCPRegInfo *ri)
1836 {
1837     return gt_tval_read(env, ri, GTIMER_HYP);
1838 }
1839 
1840 static void gt_hyp_tval_write(CPUARMState *env, const ARMCPRegInfo *ri,
1841                               uint64_t value)
1842 {
1843     gt_tval_write(env, ri, GTIMER_HYP, value);
1844 }
1845 
1846 static void gt_hyp_ctl_write(CPUARMState *env, const ARMCPRegInfo *ri,
1847                               uint64_t value)
1848 {
1849     gt_ctl_write(env, ri, GTIMER_HYP, value);
1850 }
1851 
1852 static void gt_sec_timer_reset(CPUARMState *env, const ARMCPRegInfo *ri)
1853 {
1854     gt_timer_reset(env, ri, GTIMER_SEC);
1855 }
1856 
1857 static void gt_sec_cval_write(CPUARMState *env, const ARMCPRegInfo *ri,
1858                               uint64_t value)
1859 {
1860     gt_cval_write(env, ri, GTIMER_SEC, value);
1861 }
1862 
1863 static uint64_t gt_sec_tval_read(CPUARMState *env, const ARMCPRegInfo *ri)
1864 {
1865     return gt_tval_read(env, ri, GTIMER_SEC);
1866 }
1867 
1868 static void gt_sec_tval_write(CPUARMState *env, const ARMCPRegInfo *ri,
1869                               uint64_t value)
1870 {
1871     gt_tval_write(env, ri, GTIMER_SEC, value);
1872 }
1873 
1874 static void gt_sec_ctl_write(CPUARMState *env, const ARMCPRegInfo *ri,
1875                               uint64_t value)
1876 {
1877     gt_ctl_write(env, ri, GTIMER_SEC, value);
1878 }
1879 
1880 void arm_gt_ptimer_cb(void *opaque)
1881 {
1882     ARMCPU *cpu = opaque;
1883 
1884     gt_recalc_timer(cpu, GTIMER_PHYS);
1885 }
1886 
1887 void arm_gt_vtimer_cb(void *opaque)
1888 {
1889     ARMCPU *cpu = opaque;
1890 
1891     gt_recalc_timer(cpu, GTIMER_VIRT);
1892 }
1893 
1894 void arm_gt_htimer_cb(void *opaque)
1895 {
1896     ARMCPU *cpu = opaque;
1897 
1898     gt_recalc_timer(cpu, GTIMER_HYP);
1899 }
1900 
1901 void arm_gt_stimer_cb(void *opaque)
1902 {
1903     ARMCPU *cpu = opaque;
1904 
1905     gt_recalc_timer(cpu, GTIMER_SEC);
1906 }
1907 
1908 static const ARMCPRegInfo generic_timer_cp_reginfo[] = {
1909     /* Note that CNTFRQ is purely reads-as-written for the benefit
1910      * of software; writing it doesn't actually change the timer frequency.
1911      * Our reset value matches the fixed frequency we implement the timer at.
1912      */
1913     { .name = "CNTFRQ", .cp = 15, .crn = 14, .crm = 0, .opc1 = 0, .opc2 = 0,
1914       .type = ARM_CP_ALIAS,
1915       .access = PL1_RW | PL0_R, .accessfn = gt_cntfrq_access,
1916       .fieldoffset = offsetoflow32(CPUARMState, cp15.c14_cntfrq),
1917     },
1918     { .name = "CNTFRQ_EL0", .state = ARM_CP_STATE_AA64,
1919       .opc0 = 3, .opc1 = 3, .crn = 14, .crm = 0, .opc2 = 0,
1920       .access = PL1_RW | PL0_R, .accessfn = gt_cntfrq_access,
1921       .fieldoffset = offsetof(CPUARMState, cp15.c14_cntfrq),
1922       .resetvalue = (1000 * 1000 * 1000) / GTIMER_SCALE,
1923     },
1924     /* overall control: mostly access permissions */
1925     { .name = "CNTKCTL", .state = ARM_CP_STATE_BOTH,
1926       .opc0 = 3, .opc1 = 0, .crn = 14, .crm = 1, .opc2 = 0,
1927       .access = PL1_RW,
1928       .fieldoffset = offsetof(CPUARMState, cp15.c14_cntkctl),
1929       .resetvalue = 0,
1930     },
1931     /* per-timer control */
1932     { .name = "CNTP_CTL", .cp = 15, .crn = 14, .crm = 2, .opc1 = 0, .opc2 = 1,
1933       .secure = ARM_CP_SECSTATE_NS,
1934       .type = ARM_CP_IO | ARM_CP_ALIAS, .access = PL1_RW | PL0_R,
1935       .accessfn = gt_ptimer_access,
1936       .fieldoffset = offsetoflow32(CPUARMState,
1937                                    cp15.c14_timer[GTIMER_PHYS].ctl),
1938       .writefn = gt_phys_ctl_write, .raw_writefn = raw_write,
1939     },
1940     { .name = "CNTP_CTL(S)",
1941       .cp = 15, .crn = 14, .crm = 2, .opc1 = 0, .opc2 = 1,
1942       .secure = ARM_CP_SECSTATE_S,
1943       .type = ARM_CP_IO | ARM_CP_ALIAS, .access = PL1_RW | PL0_R,
1944       .accessfn = gt_ptimer_access,
1945       .fieldoffset = offsetoflow32(CPUARMState,
1946                                    cp15.c14_timer[GTIMER_SEC].ctl),
1947       .writefn = gt_sec_ctl_write, .raw_writefn = raw_write,
1948     },
1949     { .name = "CNTP_CTL_EL0", .state = ARM_CP_STATE_AA64,
1950       .opc0 = 3, .opc1 = 3, .crn = 14, .crm = 2, .opc2 = 1,
1951       .type = ARM_CP_IO, .access = PL1_RW | PL0_R,
1952       .accessfn = gt_ptimer_access,
1953       .fieldoffset = offsetof(CPUARMState, cp15.c14_timer[GTIMER_PHYS].ctl),
1954       .resetvalue = 0,
1955       .writefn = gt_phys_ctl_write, .raw_writefn = raw_write,
1956     },
1957     { .name = "CNTV_CTL", .cp = 15, .crn = 14, .crm = 3, .opc1 = 0, .opc2 = 1,
1958       .type = ARM_CP_IO | ARM_CP_ALIAS, .access = PL1_RW | PL0_R,
1959       .accessfn = gt_vtimer_access,
1960       .fieldoffset = offsetoflow32(CPUARMState,
1961                                    cp15.c14_timer[GTIMER_VIRT].ctl),
1962       .writefn = gt_virt_ctl_write, .raw_writefn = raw_write,
1963     },
1964     { .name = "CNTV_CTL_EL0", .state = ARM_CP_STATE_AA64,
1965       .opc0 = 3, .opc1 = 3, .crn = 14, .crm = 3, .opc2 = 1,
1966       .type = ARM_CP_IO, .access = PL1_RW | PL0_R,
1967       .accessfn = gt_vtimer_access,
1968       .fieldoffset = offsetof(CPUARMState, cp15.c14_timer[GTIMER_VIRT].ctl),
1969       .resetvalue = 0,
1970       .writefn = gt_virt_ctl_write, .raw_writefn = raw_write,
1971     },
1972     /* TimerValue views: a 32 bit downcounting view of the underlying state */
1973     { .name = "CNTP_TVAL", .cp = 15, .crn = 14, .crm = 2, .opc1 = 0, .opc2 = 0,
1974       .secure = ARM_CP_SECSTATE_NS,
1975       .type = ARM_CP_NO_RAW | ARM_CP_IO, .access = PL1_RW | PL0_R,
1976       .accessfn = gt_ptimer_access,
1977       .readfn = gt_phys_tval_read, .writefn = gt_phys_tval_write,
1978     },
1979     { .name = "CNTP_TVAL(S)",
1980       .cp = 15, .crn = 14, .crm = 2, .opc1 = 0, .opc2 = 0,
1981       .secure = ARM_CP_SECSTATE_S,
1982       .type = ARM_CP_NO_RAW | ARM_CP_IO, .access = PL1_RW | PL0_R,
1983       .accessfn = gt_ptimer_access,
1984       .readfn = gt_sec_tval_read, .writefn = gt_sec_tval_write,
1985     },
1986     { .name = "CNTP_TVAL_EL0", .state = ARM_CP_STATE_AA64,
1987       .opc0 = 3, .opc1 = 3, .crn = 14, .crm = 2, .opc2 = 0,
1988       .type = ARM_CP_NO_RAW | ARM_CP_IO, .access = PL1_RW | PL0_R,
1989       .accessfn = gt_ptimer_access, .resetfn = gt_phys_timer_reset,
1990       .readfn = gt_phys_tval_read, .writefn = gt_phys_tval_write,
1991     },
1992     { .name = "CNTV_TVAL", .cp = 15, .crn = 14, .crm = 3, .opc1 = 0, .opc2 = 0,
1993       .type = ARM_CP_NO_RAW | ARM_CP_IO, .access = PL1_RW | PL0_R,
1994       .accessfn = gt_vtimer_access,
1995       .readfn = gt_virt_tval_read, .writefn = gt_virt_tval_write,
1996     },
1997     { .name = "CNTV_TVAL_EL0", .state = ARM_CP_STATE_AA64,
1998       .opc0 = 3, .opc1 = 3, .crn = 14, .crm = 3, .opc2 = 0,
1999       .type = ARM_CP_NO_RAW | ARM_CP_IO, .access = PL1_RW | PL0_R,
2000       .accessfn = gt_vtimer_access, .resetfn = gt_virt_timer_reset,
2001       .readfn = gt_virt_tval_read, .writefn = gt_virt_tval_write,
2002     },
2003     /* The counter itself */
2004     { .name = "CNTPCT", .cp = 15, .crm = 14, .opc1 = 0,
2005       .access = PL0_R, .type = ARM_CP_64BIT | ARM_CP_NO_RAW | ARM_CP_IO,
2006       .accessfn = gt_pct_access,
2007       .readfn = gt_cnt_read, .resetfn = arm_cp_reset_ignore,
2008     },
2009     { .name = "CNTPCT_EL0", .state = ARM_CP_STATE_AA64,
2010       .opc0 = 3, .opc1 = 3, .crn = 14, .crm = 0, .opc2 = 1,
2011       .access = PL0_R, .type = ARM_CP_NO_RAW | ARM_CP_IO,
2012       .accessfn = gt_pct_access, .readfn = gt_cnt_read,
2013     },
2014     { .name = "CNTVCT", .cp = 15, .crm = 14, .opc1 = 1,
2015       .access = PL0_R, .type = ARM_CP_64BIT | ARM_CP_NO_RAW | ARM_CP_IO,
2016       .accessfn = gt_vct_access,
2017       .readfn = gt_virt_cnt_read, .resetfn = arm_cp_reset_ignore,
2018     },
2019     { .name = "CNTVCT_EL0", .state = ARM_CP_STATE_AA64,
2020       .opc0 = 3, .opc1 = 3, .crn = 14, .crm = 0, .opc2 = 2,
2021       .access = PL0_R, .type = ARM_CP_NO_RAW | ARM_CP_IO,
2022       .accessfn = gt_vct_access, .readfn = gt_virt_cnt_read,
2023     },
2024     /* Comparison value, indicating when the timer goes off */
2025     { .name = "CNTP_CVAL", .cp = 15, .crm = 14, .opc1 = 2,
2026       .secure = ARM_CP_SECSTATE_NS,
2027       .access = PL1_RW | PL0_R,
2028       .type = ARM_CP_64BIT | ARM_CP_IO | ARM_CP_ALIAS,
2029       .fieldoffset = offsetof(CPUARMState, cp15.c14_timer[GTIMER_PHYS].cval),
2030       .accessfn = gt_ptimer_access,
2031       .writefn = gt_phys_cval_write, .raw_writefn = raw_write,
2032     },
2033     { .name = "CNTP_CVAL(S)", .cp = 15, .crm = 14, .opc1 = 2,
2034       .secure = ARM_CP_SECSTATE_S,
2035       .access = PL1_RW | PL0_R,
2036       .type = ARM_CP_64BIT | ARM_CP_IO | ARM_CP_ALIAS,
2037       .fieldoffset = offsetof(CPUARMState, cp15.c14_timer[GTIMER_SEC].cval),
2038       .accessfn = gt_ptimer_access,
2039       .writefn = gt_sec_cval_write, .raw_writefn = raw_write,
2040     },
2041     { .name = "CNTP_CVAL_EL0", .state = ARM_CP_STATE_AA64,
2042       .opc0 = 3, .opc1 = 3, .crn = 14, .crm = 2, .opc2 = 2,
2043       .access = PL1_RW | PL0_R,
2044       .type = ARM_CP_IO,
2045       .fieldoffset = offsetof(CPUARMState, cp15.c14_timer[GTIMER_PHYS].cval),
2046       .resetvalue = 0, .accessfn = gt_ptimer_access,
2047       .writefn = gt_phys_cval_write, .raw_writefn = raw_write,
2048     },
2049     { .name = "CNTV_CVAL", .cp = 15, .crm = 14, .opc1 = 3,
2050       .access = PL1_RW | PL0_R,
2051       .type = ARM_CP_64BIT | ARM_CP_IO | ARM_CP_ALIAS,
2052       .fieldoffset = offsetof(CPUARMState, cp15.c14_timer[GTIMER_VIRT].cval),
2053       .accessfn = gt_vtimer_access,
2054       .writefn = gt_virt_cval_write, .raw_writefn = raw_write,
2055     },
2056     { .name = "CNTV_CVAL_EL0", .state = ARM_CP_STATE_AA64,
2057       .opc0 = 3, .opc1 = 3, .crn = 14, .crm = 3, .opc2 = 2,
2058       .access = PL1_RW | PL0_R,
2059       .type = ARM_CP_IO,
2060       .fieldoffset = offsetof(CPUARMState, cp15.c14_timer[GTIMER_VIRT].cval),
2061       .resetvalue = 0, .accessfn = gt_vtimer_access,
2062       .writefn = gt_virt_cval_write, .raw_writefn = raw_write,
2063     },
2064     /* Secure timer -- this is actually restricted to only EL3
2065      * and configurably Secure-EL1 via the accessfn.
2066      */
2067     { .name = "CNTPS_TVAL_EL1", .state = ARM_CP_STATE_AA64,
2068       .opc0 = 3, .opc1 = 7, .crn = 14, .crm = 2, .opc2 = 0,
2069       .type = ARM_CP_NO_RAW | ARM_CP_IO, .access = PL1_RW,
2070       .accessfn = gt_stimer_access,
2071       .readfn = gt_sec_tval_read,
2072       .writefn = gt_sec_tval_write,
2073       .resetfn = gt_sec_timer_reset,
2074     },
2075     { .name = "CNTPS_CTL_EL1", .state = ARM_CP_STATE_AA64,
2076       .opc0 = 3, .opc1 = 7, .crn = 14, .crm = 2, .opc2 = 1,
2077       .type = ARM_CP_IO, .access = PL1_RW,
2078       .accessfn = gt_stimer_access,
2079       .fieldoffset = offsetof(CPUARMState, cp15.c14_timer[GTIMER_SEC].ctl),
2080       .resetvalue = 0,
2081       .writefn = gt_sec_ctl_write, .raw_writefn = raw_write,
2082     },
2083     { .name = "CNTPS_CVAL_EL1", .state = ARM_CP_STATE_AA64,
2084       .opc0 = 3, .opc1 = 7, .crn = 14, .crm = 2, .opc2 = 2,
2085       .type = ARM_CP_IO, .access = PL1_RW,
2086       .accessfn = gt_stimer_access,
2087       .fieldoffset = offsetof(CPUARMState, cp15.c14_timer[GTIMER_SEC].cval),
2088       .writefn = gt_sec_cval_write, .raw_writefn = raw_write,
2089     },
2090     REGINFO_SENTINEL
2091 };
2092 
2093 #else
2094 /* In user-mode none of the generic timer registers are accessible,
2095  * and their implementation depends on QEMU_CLOCK_VIRTUAL and qdev gpio outputs,
2096  * so instead just don't register any of them.
2097  */
2098 static const ARMCPRegInfo generic_timer_cp_reginfo[] = {
2099     REGINFO_SENTINEL
2100 };
2101 
2102 #endif
2103 
2104 static void par_write(CPUARMState *env, const ARMCPRegInfo *ri, uint64_t value)
2105 {
2106     if (arm_feature(env, ARM_FEATURE_LPAE)) {
2107         raw_write(env, ri, value);
2108     } else if (arm_feature(env, ARM_FEATURE_V7)) {
2109         raw_write(env, ri, value & 0xfffff6ff);
2110     } else {
2111         raw_write(env, ri, value & 0xfffff1ff);
2112     }
2113 }
2114 
2115 #ifndef CONFIG_USER_ONLY
2116 /* get_phys_addr() isn't present for user-mode-only targets */
2117 
2118 static CPAccessResult ats_access(CPUARMState *env, const ARMCPRegInfo *ri,
2119                                  bool isread)
2120 {
2121     if (ri->opc2 & 4) {
2122         /* The ATS12NSO* operations must trap to EL3 if executed in
2123          * Secure EL1 (which can only happen if EL3 is AArch64).
2124          * They are simply UNDEF if executed from NS EL1.
2125          * They function normally from EL2 or EL3.
2126          */
2127         if (arm_current_el(env) == 1) {
2128             if (arm_is_secure_below_el3(env)) {
2129                 return CP_ACCESS_TRAP_UNCATEGORIZED_EL3;
2130             }
2131             return CP_ACCESS_TRAP_UNCATEGORIZED;
2132         }
2133     }
2134     return CP_ACCESS_OK;
2135 }
2136 
2137 static uint64_t do_ats_write(CPUARMState *env, uint64_t value,
2138                              MMUAccessType access_type, ARMMMUIdx mmu_idx)
2139 {
2140     hwaddr phys_addr;
2141     target_ulong page_size;
2142     int prot;
2143     uint32_t fsr;
2144     bool ret;
2145     uint64_t par64;
2146     MemTxAttrs attrs = {};
2147     ARMMMUFaultInfo fi = {};
2148 
2149     ret = get_phys_addr(env, value, access_type, mmu_idx,
2150                         &phys_addr, &attrs, &prot, &page_size, &fsr, &fi);
2151     if (extended_addresses_enabled(env)) {
2152         /* fsr is a DFSR/IFSR value for the long descriptor
2153          * translation table format, but with WnR always clear.
2154          * Convert it to a 64-bit PAR.
2155          */
2156         par64 = (1 << 11); /* LPAE bit always set */
2157         if (!ret) {
2158             par64 |= phys_addr & ~0xfffULL;
2159             if (!attrs.secure) {
2160                 par64 |= (1 << 9); /* NS */
2161             }
2162             /* We don't set the ATTR or SH fields in the PAR. */
2163         } else {
2164             par64 |= 1; /* F */
2165             par64 |= (fsr & 0x3f) << 1; /* FS */
2166             /* Note that S2WLK and FSTAGE are always zero, because we don't
2167              * implement virtualization and therefore there can't be a stage 2
2168              * fault.
2169              */
2170         }
2171     } else {
2172         /* fsr is a DFSR/IFSR value for the short descriptor
2173          * translation table format (with WnR always clear).
2174          * Convert it to a 32-bit PAR.
2175          */
2176         if (!ret) {
2177             /* We do not set any attribute bits in the PAR */
2178             if (page_size == (1 << 24)
2179                 && arm_feature(env, ARM_FEATURE_V7)) {
2180                 par64 = (phys_addr & 0xff000000) | (1 << 1);
2181             } else {
2182                 par64 = phys_addr & 0xfffff000;
2183             }
2184             if (!attrs.secure) {
2185                 par64 |= (1 << 9); /* NS */
2186             }
2187         } else {
2188             par64 = ((fsr & (1 << 10)) >> 5) | ((fsr & (1 << 12)) >> 6) |
2189                     ((fsr & 0xf) << 1) | 1;
2190         }
2191     }
2192     return par64;
2193 }
2194 
2195 static void ats_write(CPUARMState *env, const ARMCPRegInfo *ri, uint64_t value)
2196 {
2197     MMUAccessType access_type = ri->opc2 & 1 ? MMU_DATA_STORE : MMU_DATA_LOAD;
2198     uint64_t par64;
2199     ARMMMUIdx mmu_idx;
2200     int el = arm_current_el(env);
2201     bool secure = arm_is_secure_below_el3(env);
2202 
2203     switch (ri->opc2 & 6) {
2204     case 0:
2205         /* stage 1 current state PL1: ATS1CPR, ATS1CPW */
2206         switch (el) {
2207         case 3:
2208             mmu_idx = ARMMMUIdx_S1E3;
2209             break;
2210         case 2:
2211             mmu_idx = ARMMMUIdx_S1NSE1;
2212             break;
2213         case 1:
2214             mmu_idx = secure ? ARMMMUIdx_S1SE1 : ARMMMUIdx_S1NSE1;
2215             break;
2216         default:
2217             g_assert_not_reached();
2218         }
2219         break;
2220     case 2:
2221         /* stage 1 current state PL0: ATS1CUR, ATS1CUW */
2222         switch (el) {
2223         case 3:
2224             mmu_idx = ARMMMUIdx_S1SE0;
2225             break;
2226         case 2:
2227             mmu_idx = ARMMMUIdx_S1NSE0;
2228             break;
2229         case 1:
2230             mmu_idx = secure ? ARMMMUIdx_S1SE0 : ARMMMUIdx_S1NSE0;
2231             break;
2232         default:
2233             g_assert_not_reached();
2234         }
2235         break;
2236     case 4:
2237         /* stage 1+2 NonSecure PL1: ATS12NSOPR, ATS12NSOPW */
2238         mmu_idx = ARMMMUIdx_S12NSE1;
2239         break;
2240     case 6:
2241         /* stage 1+2 NonSecure PL0: ATS12NSOUR, ATS12NSOUW */
2242         mmu_idx = ARMMMUIdx_S12NSE0;
2243         break;
2244     default:
2245         g_assert_not_reached();
2246     }
2247 
2248     par64 = do_ats_write(env, value, access_type, mmu_idx);
2249 
2250     A32_BANKED_CURRENT_REG_SET(env, par, par64);
2251 }
2252 
2253 static void ats1h_write(CPUARMState *env, const ARMCPRegInfo *ri,
2254                         uint64_t value)
2255 {
2256     MMUAccessType access_type = ri->opc2 & 1 ? MMU_DATA_STORE : MMU_DATA_LOAD;
2257     uint64_t par64;
2258 
2259     par64 = do_ats_write(env, value, access_type, ARMMMUIdx_S2NS);
2260 
2261     A32_BANKED_CURRENT_REG_SET(env, par, par64);
2262 }
2263 
2264 static CPAccessResult at_s1e2_access(CPUARMState *env, const ARMCPRegInfo *ri,
2265                                      bool isread)
2266 {
2267     if (arm_current_el(env) == 3 && !(env->cp15.scr_el3 & SCR_NS)) {
2268         return CP_ACCESS_TRAP;
2269     }
2270     return CP_ACCESS_OK;
2271 }
2272 
2273 static void ats_write64(CPUARMState *env, const ARMCPRegInfo *ri,
2274                         uint64_t value)
2275 {
2276     MMUAccessType access_type = ri->opc2 & 1 ? MMU_DATA_STORE : MMU_DATA_LOAD;
2277     ARMMMUIdx mmu_idx;
2278     int secure = arm_is_secure_below_el3(env);
2279 
2280     switch (ri->opc2 & 6) {
2281     case 0:
2282         switch (ri->opc1) {
2283         case 0: /* AT S1E1R, AT S1E1W */
2284             mmu_idx = secure ? ARMMMUIdx_S1SE1 : ARMMMUIdx_S1NSE1;
2285             break;
2286         case 4: /* AT S1E2R, AT S1E2W */
2287             mmu_idx = ARMMMUIdx_S1E2;
2288             break;
2289         case 6: /* AT S1E3R, AT S1E3W */
2290             mmu_idx = ARMMMUIdx_S1E3;
2291             break;
2292         default:
2293             g_assert_not_reached();
2294         }
2295         break;
2296     case 2: /* AT S1E0R, AT S1E0W */
2297         mmu_idx = secure ? ARMMMUIdx_S1SE0 : ARMMMUIdx_S1NSE0;
2298         break;
2299     case 4: /* AT S12E1R, AT S12E1W */
2300         mmu_idx = secure ? ARMMMUIdx_S1SE1 : ARMMMUIdx_S12NSE1;
2301         break;
2302     case 6: /* AT S12E0R, AT S12E0W */
2303         mmu_idx = secure ? ARMMMUIdx_S1SE0 : ARMMMUIdx_S12NSE0;
2304         break;
2305     default:
2306         g_assert_not_reached();
2307     }
2308 
2309     env->cp15.par_el[1] = do_ats_write(env, value, access_type, mmu_idx);
2310 }
2311 #endif
2312 
2313 static const ARMCPRegInfo vapa_cp_reginfo[] = {
2314     { .name = "PAR", .cp = 15, .crn = 7, .crm = 4, .opc1 = 0, .opc2 = 0,
2315       .access = PL1_RW, .resetvalue = 0,
2316       .bank_fieldoffsets = { offsetoflow32(CPUARMState, cp15.par_s),
2317                              offsetoflow32(CPUARMState, cp15.par_ns) },
2318       .writefn = par_write },
2319 #ifndef CONFIG_USER_ONLY
2320     /* This underdecoding is safe because the reginfo is NO_RAW. */
2321     { .name = "ATS", .cp = 15, .crn = 7, .crm = 8, .opc1 = 0, .opc2 = CP_ANY,
2322       .access = PL1_W, .accessfn = ats_access,
2323       .writefn = ats_write, .type = ARM_CP_NO_RAW },
2324 #endif
2325     REGINFO_SENTINEL
2326 };
2327 
2328 /* Return basic MPU access permission bits.  */
2329 static uint32_t simple_mpu_ap_bits(uint32_t val)
2330 {
2331     uint32_t ret;
2332     uint32_t mask;
2333     int i;
2334     ret = 0;
2335     mask = 3;
2336     for (i = 0; i < 16; i += 2) {
2337         ret |= (val >> i) & mask;
2338         mask <<= 2;
2339     }
2340     return ret;
2341 }
2342 
2343 /* Pad basic MPU access permission bits to extended format.  */
2344 static uint32_t extended_mpu_ap_bits(uint32_t val)
2345 {
2346     uint32_t ret;
2347     uint32_t mask;
2348     int i;
2349     ret = 0;
2350     mask = 3;
2351     for (i = 0; i < 16; i += 2) {
2352         ret |= (val & mask) << i;
2353         mask <<= 2;
2354     }
2355     return ret;
2356 }
2357 
2358 static void pmsav5_data_ap_write(CPUARMState *env, const ARMCPRegInfo *ri,
2359                                  uint64_t value)
2360 {
2361     env->cp15.pmsav5_data_ap = extended_mpu_ap_bits(value);
2362 }
2363 
2364 static uint64_t pmsav5_data_ap_read(CPUARMState *env, const ARMCPRegInfo *ri)
2365 {
2366     return simple_mpu_ap_bits(env->cp15.pmsav5_data_ap);
2367 }
2368 
2369 static void pmsav5_insn_ap_write(CPUARMState *env, const ARMCPRegInfo *ri,
2370                                  uint64_t value)
2371 {
2372     env->cp15.pmsav5_insn_ap = extended_mpu_ap_bits(value);
2373 }
2374 
2375 static uint64_t pmsav5_insn_ap_read(CPUARMState *env, const ARMCPRegInfo *ri)
2376 {
2377     return simple_mpu_ap_bits(env->cp15.pmsav5_insn_ap);
2378 }
2379 
2380 static uint64_t pmsav7_read(CPUARMState *env, const ARMCPRegInfo *ri)
2381 {
2382     uint32_t *u32p = *(uint32_t **)raw_ptr(env, ri);
2383 
2384     if (!u32p) {
2385         return 0;
2386     }
2387 
2388     u32p += env->pmsav7.rnr[M_REG_NS];
2389     return *u32p;
2390 }
2391 
2392 static void pmsav7_write(CPUARMState *env, const ARMCPRegInfo *ri,
2393                          uint64_t value)
2394 {
2395     ARMCPU *cpu = arm_env_get_cpu(env);
2396     uint32_t *u32p = *(uint32_t **)raw_ptr(env, ri);
2397 
2398     if (!u32p) {
2399         return;
2400     }
2401 
2402     u32p += env->pmsav7.rnr[M_REG_NS];
2403     tlb_flush(CPU(cpu)); /* Mappings may have changed - purge! */
2404     *u32p = value;
2405 }
2406 
2407 static void pmsav7_rgnr_write(CPUARMState *env, const ARMCPRegInfo *ri,
2408                               uint64_t value)
2409 {
2410     ARMCPU *cpu = arm_env_get_cpu(env);
2411     uint32_t nrgs = cpu->pmsav7_dregion;
2412 
2413     if (value >= nrgs) {
2414         qemu_log_mask(LOG_GUEST_ERROR,
2415                       "PMSAv7 RGNR write >= # supported regions, %" PRIu32
2416                       " > %" PRIu32 "\n", (uint32_t)value, nrgs);
2417         return;
2418     }
2419 
2420     raw_write(env, ri, value);
2421 }
2422 
2423 static const ARMCPRegInfo pmsav7_cp_reginfo[] = {
2424     /* Reset for all these registers is handled in arm_cpu_reset(),
2425      * because the PMSAv7 is also used by M-profile CPUs, which do
2426      * not register cpregs but still need the state to be reset.
2427      */
2428     { .name = "DRBAR", .cp = 15, .crn = 6, .opc1 = 0, .crm = 1, .opc2 = 0,
2429       .access = PL1_RW, .type = ARM_CP_NO_RAW,
2430       .fieldoffset = offsetof(CPUARMState, pmsav7.drbar),
2431       .readfn = pmsav7_read, .writefn = pmsav7_write,
2432       .resetfn = arm_cp_reset_ignore },
2433     { .name = "DRSR", .cp = 15, .crn = 6, .opc1 = 0, .crm = 1, .opc2 = 2,
2434       .access = PL1_RW, .type = ARM_CP_NO_RAW,
2435       .fieldoffset = offsetof(CPUARMState, pmsav7.drsr),
2436       .readfn = pmsav7_read, .writefn = pmsav7_write,
2437       .resetfn = arm_cp_reset_ignore },
2438     { .name = "DRACR", .cp = 15, .crn = 6, .opc1 = 0, .crm = 1, .opc2 = 4,
2439       .access = PL1_RW, .type = ARM_CP_NO_RAW,
2440       .fieldoffset = offsetof(CPUARMState, pmsav7.dracr),
2441       .readfn = pmsav7_read, .writefn = pmsav7_write,
2442       .resetfn = arm_cp_reset_ignore },
2443     { .name = "RGNR", .cp = 15, .crn = 6, .opc1 = 0, .crm = 2, .opc2 = 0,
2444       .access = PL1_RW,
2445       .fieldoffset = offsetof(CPUARMState, pmsav7.rnr[M_REG_NS]),
2446       .writefn = pmsav7_rgnr_write,
2447       .resetfn = arm_cp_reset_ignore },
2448     REGINFO_SENTINEL
2449 };
2450 
2451 static const ARMCPRegInfo pmsav5_cp_reginfo[] = {
2452     { .name = "DATA_AP", .cp = 15, .crn = 5, .crm = 0, .opc1 = 0, .opc2 = 0,
2453       .access = PL1_RW, .type = ARM_CP_ALIAS,
2454       .fieldoffset = offsetof(CPUARMState, cp15.pmsav5_data_ap),
2455       .readfn = pmsav5_data_ap_read, .writefn = pmsav5_data_ap_write, },
2456     { .name = "INSN_AP", .cp = 15, .crn = 5, .crm = 0, .opc1 = 0, .opc2 = 1,
2457       .access = PL1_RW, .type = ARM_CP_ALIAS,
2458       .fieldoffset = offsetof(CPUARMState, cp15.pmsav5_insn_ap),
2459       .readfn = pmsav5_insn_ap_read, .writefn = pmsav5_insn_ap_write, },
2460     { .name = "DATA_EXT_AP", .cp = 15, .crn = 5, .crm = 0, .opc1 = 0, .opc2 = 2,
2461       .access = PL1_RW,
2462       .fieldoffset = offsetof(CPUARMState, cp15.pmsav5_data_ap),
2463       .resetvalue = 0, },
2464     { .name = "INSN_EXT_AP", .cp = 15, .crn = 5, .crm = 0, .opc1 = 0, .opc2 = 3,
2465       .access = PL1_RW,
2466       .fieldoffset = offsetof(CPUARMState, cp15.pmsav5_insn_ap),
2467       .resetvalue = 0, },
2468     { .name = "DCACHE_CFG", .cp = 15, .crn = 2, .crm = 0, .opc1 = 0, .opc2 = 0,
2469       .access = PL1_RW,
2470       .fieldoffset = offsetof(CPUARMState, cp15.c2_data), .resetvalue = 0, },
2471     { .name = "ICACHE_CFG", .cp = 15, .crn = 2, .crm = 0, .opc1 = 0, .opc2 = 1,
2472       .access = PL1_RW,
2473       .fieldoffset = offsetof(CPUARMState, cp15.c2_insn), .resetvalue = 0, },
2474     /* Protection region base and size registers */
2475     { .name = "946_PRBS0", .cp = 15, .crn = 6, .crm = 0, .opc1 = 0,
2476       .opc2 = CP_ANY, .access = PL1_RW, .resetvalue = 0,
2477       .fieldoffset = offsetof(CPUARMState, cp15.c6_region[0]) },
2478     { .name = "946_PRBS1", .cp = 15, .crn = 6, .crm = 1, .opc1 = 0,
2479       .opc2 = CP_ANY, .access = PL1_RW, .resetvalue = 0,
2480       .fieldoffset = offsetof(CPUARMState, cp15.c6_region[1]) },
2481     { .name = "946_PRBS2", .cp = 15, .crn = 6, .crm = 2, .opc1 = 0,
2482       .opc2 = CP_ANY, .access = PL1_RW, .resetvalue = 0,
2483       .fieldoffset = offsetof(CPUARMState, cp15.c6_region[2]) },
2484     { .name = "946_PRBS3", .cp = 15, .crn = 6, .crm = 3, .opc1 = 0,
2485       .opc2 = CP_ANY, .access = PL1_RW, .resetvalue = 0,
2486       .fieldoffset = offsetof(CPUARMState, cp15.c6_region[3]) },
2487     { .name = "946_PRBS4", .cp = 15, .crn = 6, .crm = 4, .opc1 = 0,
2488       .opc2 = CP_ANY, .access = PL1_RW, .resetvalue = 0,
2489       .fieldoffset = offsetof(CPUARMState, cp15.c6_region[4]) },
2490     { .name = "946_PRBS5", .cp = 15, .crn = 6, .crm = 5, .opc1 = 0,
2491       .opc2 = CP_ANY, .access = PL1_RW, .resetvalue = 0,
2492       .fieldoffset = offsetof(CPUARMState, cp15.c6_region[5]) },
2493     { .name = "946_PRBS6", .cp = 15, .crn = 6, .crm = 6, .opc1 = 0,
2494       .opc2 = CP_ANY, .access = PL1_RW, .resetvalue = 0,
2495       .fieldoffset = offsetof(CPUARMState, cp15.c6_region[6]) },
2496     { .name = "946_PRBS7", .cp = 15, .crn = 6, .crm = 7, .opc1 = 0,
2497       .opc2 = CP_ANY, .access = PL1_RW, .resetvalue = 0,
2498       .fieldoffset = offsetof(CPUARMState, cp15.c6_region[7]) },
2499     REGINFO_SENTINEL
2500 };
2501 
2502 static void vmsa_ttbcr_raw_write(CPUARMState *env, const ARMCPRegInfo *ri,
2503                                  uint64_t value)
2504 {
2505     TCR *tcr = raw_ptr(env, ri);
2506     int maskshift = extract32(value, 0, 3);
2507 
2508     if (!arm_feature(env, ARM_FEATURE_V8)) {
2509         if (arm_feature(env, ARM_FEATURE_LPAE) && (value & TTBCR_EAE)) {
2510             /* Pre ARMv8 bits [21:19], [15:14] and [6:3] are UNK/SBZP when
2511              * using Long-desciptor translation table format */
2512             value &= ~((7 << 19) | (3 << 14) | (0xf << 3));
2513         } else if (arm_feature(env, ARM_FEATURE_EL3)) {
2514             /* In an implementation that includes the Security Extensions
2515              * TTBCR has additional fields PD0 [4] and PD1 [5] for
2516              * Short-descriptor translation table format.
2517              */
2518             value &= TTBCR_PD1 | TTBCR_PD0 | TTBCR_N;
2519         } else {
2520             value &= TTBCR_N;
2521         }
2522     }
2523 
2524     /* Update the masks corresponding to the TCR bank being written
2525      * Note that we always calculate mask and base_mask, but
2526      * they are only used for short-descriptor tables (ie if EAE is 0);
2527      * for long-descriptor tables the TCR fields are used differently
2528      * and the mask and base_mask values are meaningless.
2529      */
2530     tcr->raw_tcr = value;
2531     tcr->mask = ~(((uint32_t)0xffffffffu) >> maskshift);
2532     tcr->base_mask = ~((uint32_t)0x3fffu >> maskshift);
2533 }
2534 
2535 static void vmsa_ttbcr_write(CPUARMState *env, const ARMCPRegInfo *ri,
2536                              uint64_t value)
2537 {
2538     ARMCPU *cpu = arm_env_get_cpu(env);
2539 
2540     if (arm_feature(env, ARM_FEATURE_LPAE)) {
2541         /* With LPAE the TTBCR could result in a change of ASID
2542          * via the TTBCR.A1 bit, so do a TLB flush.
2543          */
2544         tlb_flush(CPU(cpu));
2545     }
2546     vmsa_ttbcr_raw_write(env, ri, value);
2547 }
2548 
2549 static void vmsa_ttbcr_reset(CPUARMState *env, const ARMCPRegInfo *ri)
2550 {
2551     TCR *tcr = raw_ptr(env, ri);
2552 
2553     /* Reset both the TCR as well as the masks corresponding to the bank of
2554      * the TCR being reset.
2555      */
2556     tcr->raw_tcr = 0;
2557     tcr->mask = 0;
2558     tcr->base_mask = 0xffffc000u;
2559 }
2560 
2561 static void vmsa_tcr_el1_write(CPUARMState *env, const ARMCPRegInfo *ri,
2562                                uint64_t value)
2563 {
2564     ARMCPU *cpu = arm_env_get_cpu(env);
2565     TCR *tcr = raw_ptr(env, ri);
2566 
2567     /* For AArch64 the A1 bit could result in a change of ASID, so TLB flush. */
2568     tlb_flush(CPU(cpu));
2569     tcr->raw_tcr = value;
2570 }
2571 
2572 static void vmsa_ttbr_write(CPUARMState *env, const ARMCPRegInfo *ri,
2573                             uint64_t value)
2574 {
2575     /* 64 bit accesses to the TTBRs can change the ASID and so we
2576      * must flush the TLB.
2577      */
2578     if (cpreg_field_is_64bit(ri)) {
2579         ARMCPU *cpu = arm_env_get_cpu(env);
2580 
2581         tlb_flush(CPU(cpu));
2582     }
2583     raw_write(env, ri, value);
2584 }
2585 
2586 static void vttbr_write(CPUARMState *env, const ARMCPRegInfo *ri,
2587                         uint64_t value)
2588 {
2589     ARMCPU *cpu = arm_env_get_cpu(env);
2590     CPUState *cs = CPU(cpu);
2591 
2592     /* Accesses to VTTBR may change the VMID so we must flush the TLB.  */
2593     if (raw_read(env, ri) != value) {
2594         tlb_flush_by_mmuidx(cs,
2595                             ARMMMUIdxBit_S12NSE1 |
2596                             ARMMMUIdxBit_S12NSE0 |
2597                             ARMMMUIdxBit_S2NS);
2598         raw_write(env, ri, value);
2599     }
2600 }
2601 
2602 static const ARMCPRegInfo vmsa_pmsa_cp_reginfo[] = {
2603     { .name = "DFSR", .cp = 15, .crn = 5, .crm = 0, .opc1 = 0, .opc2 = 0,
2604       .access = PL1_RW, .type = ARM_CP_ALIAS,
2605       .bank_fieldoffsets = { offsetoflow32(CPUARMState, cp15.dfsr_s),
2606                              offsetoflow32(CPUARMState, cp15.dfsr_ns) }, },
2607     { .name = "IFSR", .cp = 15, .crn = 5, .crm = 0, .opc1 = 0, .opc2 = 1,
2608       .access = PL1_RW, .resetvalue = 0,
2609       .bank_fieldoffsets = { offsetoflow32(CPUARMState, cp15.ifsr_s),
2610                              offsetoflow32(CPUARMState, cp15.ifsr_ns) } },
2611     { .name = "DFAR", .cp = 15, .opc1 = 0, .crn = 6, .crm = 0, .opc2 = 0,
2612       .access = PL1_RW, .resetvalue = 0,
2613       .bank_fieldoffsets = { offsetof(CPUARMState, cp15.dfar_s),
2614                              offsetof(CPUARMState, cp15.dfar_ns) } },
2615     { .name = "FAR_EL1", .state = ARM_CP_STATE_AA64,
2616       .opc0 = 3, .crn = 6, .crm = 0, .opc1 = 0, .opc2 = 0,
2617       .access = PL1_RW, .fieldoffset = offsetof(CPUARMState, cp15.far_el[1]),
2618       .resetvalue = 0, },
2619     REGINFO_SENTINEL
2620 };
2621 
2622 static const ARMCPRegInfo vmsa_cp_reginfo[] = {
2623     { .name = "ESR_EL1", .state = ARM_CP_STATE_AA64,
2624       .opc0 = 3, .crn = 5, .crm = 2, .opc1 = 0, .opc2 = 0,
2625       .access = PL1_RW,
2626       .fieldoffset = offsetof(CPUARMState, cp15.esr_el[1]), .resetvalue = 0, },
2627     { .name = "TTBR0_EL1", .state = ARM_CP_STATE_BOTH,
2628       .opc0 = 3, .opc1 = 0, .crn = 2, .crm = 0, .opc2 = 0,
2629       .access = PL1_RW, .writefn = vmsa_ttbr_write, .resetvalue = 0,
2630       .bank_fieldoffsets = { offsetof(CPUARMState, cp15.ttbr0_s),
2631                              offsetof(CPUARMState, cp15.ttbr0_ns) } },
2632     { .name = "TTBR1_EL1", .state = ARM_CP_STATE_BOTH,
2633       .opc0 = 3, .opc1 = 0, .crn = 2, .crm = 0, .opc2 = 1,
2634       .access = PL1_RW, .writefn = vmsa_ttbr_write, .resetvalue = 0,
2635       .bank_fieldoffsets = { offsetof(CPUARMState, cp15.ttbr1_s),
2636                              offsetof(CPUARMState, cp15.ttbr1_ns) } },
2637     { .name = "TCR_EL1", .state = ARM_CP_STATE_AA64,
2638       .opc0 = 3, .crn = 2, .crm = 0, .opc1 = 0, .opc2 = 2,
2639       .access = PL1_RW, .writefn = vmsa_tcr_el1_write,
2640       .resetfn = vmsa_ttbcr_reset, .raw_writefn = raw_write,
2641       .fieldoffset = offsetof(CPUARMState, cp15.tcr_el[1]) },
2642     { .name = "TTBCR", .cp = 15, .crn = 2, .crm = 0, .opc1 = 0, .opc2 = 2,
2643       .access = PL1_RW, .type = ARM_CP_ALIAS, .writefn = vmsa_ttbcr_write,
2644       .raw_writefn = vmsa_ttbcr_raw_write,
2645       .bank_fieldoffsets = { offsetoflow32(CPUARMState, cp15.tcr_el[3]),
2646                              offsetoflow32(CPUARMState, cp15.tcr_el[1])} },
2647     REGINFO_SENTINEL
2648 };
2649 
2650 static void omap_ticonfig_write(CPUARMState *env, const ARMCPRegInfo *ri,
2651                                 uint64_t value)
2652 {
2653     env->cp15.c15_ticonfig = value & 0xe7;
2654     /* The OS_TYPE bit in this register changes the reported CPUID! */
2655     env->cp15.c0_cpuid = (value & (1 << 5)) ?
2656         ARM_CPUID_TI915T : ARM_CPUID_TI925T;
2657 }
2658 
2659 static void omap_threadid_write(CPUARMState *env, const ARMCPRegInfo *ri,
2660                                 uint64_t value)
2661 {
2662     env->cp15.c15_threadid = value & 0xffff;
2663 }
2664 
2665 static void omap_wfi_write(CPUARMState *env, const ARMCPRegInfo *ri,
2666                            uint64_t value)
2667 {
2668     /* Wait-for-interrupt (deprecated) */
2669     cpu_interrupt(CPU(arm_env_get_cpu(env)), CPU_INTERRUPT_HALT);
2670 }
2671 
2672 static void omap_cachemaint_write(CPUARMState *env, const ARMCPRegInfo *ri,
2673                                   uint64_t value)
2674 {
2675     /* On OMAP there are registers indicating the max/min index of dcache lines
2676      * containing a dirty line; cache flush operations have to reset these.
2677      */
2678     env->cp15.c15_i_max = 0x000;
2679     env->cp15.c15_i_min = 0xff0;
2680 }
2681 
2682 static const ARMCPRegInfo omap_cp_reginfo[] = {
2683     { .name = "DFSR", .cp = 15, .crn = 5, .crm = CP_ANY,
2684       .opc1 = CP_ANY, .opc2 = CP_ANY, .access = PL1_RW, .type = ARM_CP_OVERRIDE,
2685       .fieldoffset = offsetoflow32(CPUARMState, cp15.esr_el[1]),
2686       .resetvalue = 0, },
2687     { .name = "", .cp = 15, .crn = 15, .crm = 0, .opc1 = 0, .opc2 = 0,
2688       .access = PL1_RW, .type = ARM_CP_NOP },
2689     { .name = "TICONFIG", .cp = 15, .crn = 15, .crm = 1, .opc1 = 0, .opc2 = 0,
2690       .access = PL1_RW,
2691       .fieldoffset = offsetof(CPUARMState, cp15.c15_ticonfig), .resetvalue = 0,
2692       .writefn = omap_ticonfig_write },
2693     { .name = "IMAX", .cp = 15, .crn = 15, .crm = 2, .opc1 = 0, .opc2 = 0,
2694       .access = PL1_RW,
2695       .fieldoffset = offsetof(CPUARMState, cp15.c15_i_max), .resetvalue = 0, },
2696     { .name = "IMIN", .cp = 15, .crn = 15, .crm = 3, .opc1 = 0, .opc2 = 0,
2697       .access = PL1_RW, .resetvalue = 0xff0,
2698       .fieldoffset = offsetof(CPUARMState, cp15.c15_i_min) },
2699     { .name = "THREADID", .cp = 15, .crn = 15, .crm = 4, .opc1 = 0, .opc2 = 0,
2700       .access = PL1_RW,
2701       .fieldoffset = offsetof(CPUARMState, cp15.c15_threadid), .resetvalue = 0,
2702       .writefn = omap_threadid_write },
2703     { .name = "TI925T_STATUS", .cp = 15, .crn = 15,
2704       .crm = 8, .opc1 = 0, .opc2 = 0, .access = PL1_RW,
2705       .type = ARM_CP_NO_RAW,
2706       .readfn = arm_cp_read_zero, .writefn = omap_wfi_write, },
2707     /* TODO: Peripheral port remap register:
2708      * On OMAP2 mcr p15, 0, rn, c15, c2, 4 sets up the interrupt controller
2709      * base address at $rn & ~0xfff and map size of 0x200 << ($rn & 0xfff),
2710      * when MMU is off.
2711      */
2712     { .name = "OMAP_CACHEMAINT", .cp = 15, .crn = 7, .crm = CP_ANY,
2713       .opc1 = 0, .opc2 = CP_ANY, .access = PL1_W,
2714       .type = ARM_CP_OVERRIDE | ARM_CP_NO_RAW,
2715       .writefn = omap_cachemaint_write },
2716     { .name = "C9", .cp = 15, .crn = 9,
2717       .crm = CP_ANY, .opc1 = CP_ANY, .opc2 = CP_ANY, .access = PL1_RW,
2718       .type = ARM_CP_CONST | ARM_CP_OVERRIDE, .resetvalue = 0 },
2719     REGINFO_SENTINEL
2720 };
2721 
2722 static void xscale_cpar_write(CPUARMState *env, const ARMCPRegInfo *ri,
2723                               uint64_t value)
2724 {
2725     env->cp15.c15_cpar = value & 0x3fff;
2726 }
2727 
2728 static const ARMCPRegInfo xscale_cp_reginfo[] = {
2729     { .name = "XSCALE_CPAR",
2730       .cp = 15, .crn = 15, .crm = 1, .opc1 = 0, .opc2 = 0, .access = PL1_RW,
2731       .fieldoffset = offsetof(CPUARMState, cp15.c15_cpar), .resetvalue = 0,
2732       .writefn = xscale_cpar_write, },
2733     { .name = "XSCALE_AUXCR",
2734       .cp = 15, .crn = 1, .crm = 0, .opc1 = 0, .opc2 = 1, .access = PL1_RW,
2735       .fieldoffset = offsetof(CPUARMState, cp15.c1_xscaleauxcr),
2736       .resetvalue = 0, },
2737     /* XScale specific cache-lockdown: since we have no cache we NOP these
2738      * and hope the guest does not really rely on cache behaviour.
2739      */
2740     { .name = "XSCALE_LOCK_ICACHE_LINE",
2741       .cp = 15, .opc1 = 0, .crn = 9, .crm = 1, .opc2 = 0,
2742       .access = PL1_W, .type = ARM_CP_NOP },
2743     { .name = "XSCALE_UNLOCK_ICACHE",
2744       .cp = 15, .opc1 = 0, .crn = 9, .crm = 1, .opc2 = 1,
2745       .access = PL1_W, .type = ARM_CP_NOP },
2746     { .name = "XSCALE_DCACHE_LOCK",
2747       .cp = 15, .opc1 = 0, .crn = 9, .crm = 2, .opc2 = 0,
2748       .access = PL1_RW, .type = ARM_CP_NOP },
2749     { .name = "XSCALE_UNLOCK_DCACHE",
2750       .cp = 15, .opc1 = 0, .crn = 9, .crm = 2, .opc2 = 1,
2751       .access = PL1_W, .type = ARM_CP_NOP },
2752     REGINFO_SENTINEL
2753 };
2754 
2755 static const ARMCPRegInfo dummy_c15_cp_reginfo[] = {
2756     /* RAZ/WI the whole crn=15 space, when we don't have a more specific
2757      * implementation of this implementation-defined space.
2758      * Ideally this should eventually disappear in favour of actually
2759      * implementing the correct behaviour for all cores.
2760      */
2761     { .name = "C15_IMPDEF", .cp = 15, .crn = 15,
2762       .crm = CP_ANY, .opc1 = CP_ANY, .opc2 = CP_ANY,
2763       .access = PL1_RW,
2764       .type = ARM_CP_CONST | ARM_CP_NO_RAW | ARM_CP_OVERRIDE,
2765       .resetvalue = 0 },
2766     REGINFO_SENTINEL
2767 };
2768 
2769 static const ARMCPRegInfo cache_dirty_status_cp_reginfo[] = {
2770     /* Cache status: RAZ because we have no cache so it's always clean */
2771     { .name = "CDSR", .cp = 15, .crn = 7, .crm = 10, .opc1 = 0, .opc2 = 6,
2772       .access = PL1_R, .type = ARM_CP_CONST | ARM_CP_NO_RAW,
2773       .resetvalue = 0 },
2774     REGINFO_SENTINEL
2775 };
2776 
2777 static const ARMCPRegInfo cache_block_ops_cp_reginfo[] = {
2778     /* We never have a a block transfer operation in progress */
2779     { .name = "BXSR", .cp = 15, .crn = 7, .crm = 12, .opc1 = 0, .opc2 = 4,
2780       .access = PL0_R, .type = ARM_CP_CONST | ARM_CP_NO_RAW,
2781       .resetvalue = 0 },
2782     /* The cache ops themselves: these all NOP for QEMU */
2783     { .name = "IICR", .cp = 15, .crm = 5, .opc1 = 0,
2784       .access = PL1_W, .type = ARM_CP_NOP|ARM_CP_64BIT },
2785     { .name = "IDCR", .cp = 15, .crm = 6, .opc1 = 0,
2786       .access = PL1_W, .type = ARM_CP_NOP|ARM_CP_64BIT },
2787     { .name = "CDCR", .cp = 15, .crm = 12, .opc1 = 0,
2788       .access = PL0_W, .type = ARM_CP_NOP|ARM_CP_64BIT },
2789     { .name = "PIR", .cp = 15, .crm = 12, .opc1 = 1,
2790       .access = PL0_W, .type = ARM_CP_NOP|ARM_CP_64BIT },
2791     { .name = "PDR", .cp = 15, .crm = 12, .opc1 = 2,
2792       .access = PL0_W, .type = ARM_CP_NOP|ARM_CP_64BIT },
2793     { .name = "CIDCR", .cp = 15, .crm = 14, .opc1 = 0,
2794       .access = PL1_W, .type = ARM_CP_NOP|ARM_CP_64BIT },
2795     REGINFO_SENTINEL
2796 };
2797 
2798 static const ARMCPRegInfo cache_test_clean_cp_reginfo[] = {
2799     /* The cache test-and-clean instructions always return (1 << 30)
2800      * to indicate that there are no dirty cache lines.
2801      */
2802     { .name = "TC_DCACHE", .cp = 15, .crn = 7, .crm = 10, .opc1 = 0, .opc2 = 3,
2803       .access = PL0_R, .type = ARM_CP_CONST | ARM_CP_NO_RAW,
2804       .resetvalue = (1 << 30) },
2805     { .name = "TCI_DCACHE", .cp = 15, .crn = 7, .crm = 14, .opc1 = 0, .opc2 = 3,
2806       .access = PL0_R, .type = ARM_CP_CONST | ARM_CP_NO_RAW,
2807       .resetvalue = (1 << 30) },
2808     REGINFO_SENTINEL
2809 };
2810 
2811 static const ARMCPRegInfo strongarm_cp_reginfo[] = {
2812     /* Ignore ReadBuffer accesses */
2813     { .name = "C9_READBUFFER", .cp = 15, .crn = 9,
2814       .crm = CP_ANY, .opc1 = CP_ANY, .opc2 = CP_ANY,
2815       .access = PL1_RW, .resetvalue = 0,
2816       .type = ARM_CP_CONST | ARM_CP_OVERRIDE | ARM_CP_NO_RAW },
2817     REGINFO_SENTINEL
2818 };
2819 
2820 static uint64_t midr_read(CPUARMState *env, const ARMCPRegInfo *ri)
2821 {
2822     ARMCPU *cpu = arm_env_get_cpu(env);
2823     unsigned int cur_el = arm_current_el(env);
2824     bool secure = arm_is_secure(env);
2825 
2826     if (arm_feature(&cpu->env, ARM_FEATURE_EL2) && !secure && cur_el == 1) {
2827         return env->cp15.vpidr_el2;
2828     }
2829     return raw_read(env, ri);
2830 }
2831 
2832 static uint64_t mpidr_read_val(CPUARMState *env)
2833 {
2834     ARMCPU *cpu = ARM_CPU(arm_env_get_cpu(env));
2835     uint64_t mpidr = cpu->mp_affinity;
2836 
2837     if (arm_feature(env, ARM_FEATURE_V7MP)) {
2838         mpidr |= (1U << 31);
2839         /* Cores which are uniprocessor (non-coherent)
2840          * but still implement the MP extensions set
2841          * bit 30. (For instance, Cortex-R5).
2842          */
2843         if (cpu->mp_is_up) {
2844             mpidr |= (1u << 30);
2845         }
2846     }
2847     return mpidr;
2848 }
2849 
2850 static uint64_t mpidr_read(CPUARMState *env, const ARMCPRegInfo *ri)
2851 {
2852     unsigned int cur_el = arm_current_el(env);
2853     bool secure = arm_is_secure(env);
2854 
2855     if (arm_feature(env, ARM_FEATURE_EL2) && !secure && cur_el == 1) {
2856         return env->cp15.vmpidr_el2;
2857     }
2858     return mpidr_read_val(env);
2859 }
2860 
2861 static const ARMCPRegInfo mpidr_cp_reginfo[] = {
2862     { .name = "MPIDR", .state = ARM_CP_STATE_BOTH,
2863       .opc0 = 3, .crn = 0, .crm = 0, .opc1 = 0, .opc2 = 5,
2864       .access = PL1_R, .readfn = mpidr_read, .type = ARM_CP_NO_RAW },
2865     REGINFO_SENTINEL
2866 };
2867 
2868 static const ARMCPRegInfo lpae_cp_reginfo[] = {
2869     /* NOP AMAIR0/1 */
2870     { .name = "AMAIR0", .state = ARM_CP_STATE_BOTH,
2871       .opc0 = 3, .crn = 10, .crm = 3, .opc1 = 0, .opc2 = 0,
2872       .access = PL1_RW, .type = ARM_CP_CONST,
2873       .resetvalue = 0 },
2874     /* AMAIR1 is mapped to AMAIR_EL1[63:32] */
2875     { .name = "AMAIR1", .cp = 15, .crn = 10, .crm = 3, .opc1 = 0, .opc2 = 1,
2876       .access = PL1_RW, .type = ARM_CP_CONST,
2877       .resetvalue = 0 },
2878     { .name = "PAR", .cp = 15, .crm = 7, .opc1 = 0,
2879       .access = PL1_RW, .type = ARM_CP_64BIT, .resetvalue = 0,
2880       .bank_fieldoffsets = { offsetof(CPUARMState, cp15.par_s),
2881                              offsetof(CPUARMState, cp15.par_ns)} },
2882     { .name = "TTBR0", .cp = 15, .crm = 2, .opc1 = 0,
2883       .access = PL1_RW, .type = ARM_CP_64BIT | ARM_CP_ALIAS,
2884       .bank_fieldoffsets = { offsetof(CPUARMState, cp15.ttbr0_s),
2885                              offsetof(CPUARMState, cp15.ttbr0_ns) },
2886       .writefn = vmsa_ttbr_write, },
2887     { .name = "TTBR1", .cp = 15, .crm = 2, .opc1 = 1,
2888       .access = PL1_RW, .type = ARM_CP_64BIT | ARM_CP_ALIAS,
2889       .bank_fieldoffsets = { offsetof(CPUARMState, cp15.ttbr1_s),
2890                              offsetof(CPUARMState, cp15.ttbr1_ns) },
2891       .writefn = vmsa_ttbr_write, },
2892     REGINFO_SENTINEL
2893 };
2894 
2895 static uint64_t aa64_fpcr_read(CPUARMState *env, const ARMCPRegInfo *ri)
2896 {
2897     return vfp_get_fpcr(env);
2898 }
2899 
2900 static void aa64_fpcr_write(CPUARMState *env, const ARMCPRegInfo *ri,
2901                             uint64_t value)
2902 {
2903     vfp_set_fpcr(env, value);
2904 }
2905 
2906 static uint64_t aa64_fpsr_read(CPUARMState *env, const ARMCPRegInfo *ri)
2907 {
2908     return vfp_get_fpsr(env);
2909 }
2910 
2911 static void aa64_fpsr_write(CPUARMState *env, const ARMCPRegInfo *ri,
2912                             uint64_t value)
2913 {
2914     vfp_set_fpsr(env, value);
2915 }
2916 
2917 static CPAccessResult aa64_daif_access(CPUARMState *env, const ARMCPRegInfo *ri,
2918                                        bool isread)
2919 {
2920     if (arm_current_el(env) == 0 && !(env->cp15.sctlr_el[1] & SCTLR_UMA)) {
2921         return CP_ACCESS_TRAP;
2922     }
2923     return CP_ACCESS_OK;
2924 }
2925 
2926 static void aa64_daif_write(CPUARMState *env, const ARMCPRegInfo *ri,
2927                             uint64_t value)
2928 {
2929     env->daif = value & PSTATE_DAIF;
2930 }
2931 
2932 static CPAccessResult aa64_cacheop_access(CPUARMState *env,
2933                                           const ARMCPRegInfo *ri,
2934                                           bool isread)
2935 {
2936     /* Cache invalidate/clean: NOP, but EL0 must UNDEF unless
2937      * SCTLR_EL1.UCI is set.
2938      */
2939     if (arm_current_el(env) == 0 && !(env->cp15.sctlr_el[1] & SCTLR_UCI)) {
2940         return CP_ACCESS_TRAP;
2941     }
2942     return CP_ACCESS_OK;
2943 }
2944 
2945 /* See: D4.7.2 TLB maintenance requirements and the TLB maintenance instructions
2946  * Page D4-1736 (DDI0487A.b)
2947  */
2948 
2949 static void tlbi_aa64_vmalle1_write(CPUARMState *env, const ARMCPRegInfo *ri,
2950                                     uint64_t value)
2951 {
2952     CPUState *cs = ENV_GET_CPU(env);
2953 
2954     if (arm_is_secure_below_el3(env)) {
2955         tlb_flush_by_mmuidx(cs,
2956                             ARMMMUIdxBit_S1SE1 |
2957                             ARMMMUIdxBit_S1SE0);
2958     } else {
2959         tlb_flush_by_mmuidx(cs,
2960                             ARMMMUIdxBit_S12NSE1 |
2961                             ARMMMUIdxBit_S12NSE0);
2962     }
2963 }
2964 
2965 static void tlbi_aa64_vmalle1is_write(CPUARMState *env, const ARMCPRegInfo *ri,
2966                                       uint64_t value)
2967 {
2968     CPUState *cs = ENV_GET_CPU(env);
2969     bool sec = arm_is_secure_below_el3(env);
2970 
2971     if (sec) {
2972         tlb_flush_by_mmuidx_all_cpus_synced(cs,
2973                                             ARMMMUIdxBit_S1SE1 |
2974                                             ARMMMUIdxBit_S1SE0);
2975     } else {
2976         tlb_flush_by_mmuidx_all_cpus_synced(cs,
2977                                             ARMMMUIdxBit_S12NSE1 |
2978                                             ARMMMUIdxBit_S12NSE0);
2979     }
2980 }
2981 
2982 static void tlbi_aa64_alle1_write(CPUARMState *env, const ARMCPRegInfo *ri,
2983                                   uint64_t value)
2984 {
2985     /* Note that the 'ALL' scope must invalidate both stage 1 and
2986      * stage 2 translations, whereas most other scopes only invalidate
2987      * stage 1 translations.
2988      */
2989     ARMCPU *cpu = arm_env_get_cpu(env);
2990     CPUState *cs = CPU(cpu);
2991 
2992     if (arm_is_secure_below_el3(env)) {
2993         tlb_flush_by_mmuidx(cs,
2994                             ARMMMUIdxBit_S1SE1 |
2995                             ARMMMUIdxBit_S1SE0);
2996     } else {
2997         if (arm_feature(env, ARM_FEATURE_EL2)) {
2998             tlb_flush_by_mmuidx(cs,
2999                                 ARMMMUIdxBit_S12NSE1 |
3000                                 ARMMMUIdxBit_S12NSE0 |
3001                                 ARMMMUIdxBit_S2NS);
3002         } else {
3003             tlb_flush_by_mmuidx(cs,
3004                                 ARMMMUIdxBit_S12NSE1 |
3005                                 ARMMMUIdxBit_S12NSE0);
3006         }
3007     }
3008 }
3009 
3010 static void tlbi_aa64_alle2_write(CPUARMState *env, const ARMCPRegInfo *ri,
3011                                   uint64_t value)
3012 {
3013     ARMCPU *cpu = arm_env_get_cpu(env);
3014     CPUState *cs = CPU(cpu);
3015 
3016     tlb_flush_by_mmuidx(cs, ARMMMUIdxBit_S1E2);
3017 }
3018 
3019 static void tlbi_aa64_alle3_write(CPUARMState *env, const ARMCPRegInfo *ri,
3020                                   uint64_t value)
3021 {
3022     ARMCPU *cpu = arm_env_get_cpu(env);
3023     CPUState *cs = CPU(cpu);
3024 
3025     tlb_flush_by_mmuidx(cs, ARMMMUIdxBit_S1E3);
3026 }
3027 
3028 static void tlbi_aa64_alle1is_write(CPUARMState *env, const ARMCPRegInfo *ri,
3029                                     uint64_t value)
3030 {
3031     /* Note that the 'ALL' scope must invalidate both stage 1 and
3032      * stage 2 translations, whereas most other scopes only invalidate
3033      * stage 1 translations.
3034      */
3035     CPUState *cs = ENV_GET_CPU(env);
3036     bool sec = arm_is_secure_below_el3(env);
3037     bool has_el2 = arm_feature(env, ARM_FEATURE_EL2);
3038 
3039     if (sec) {
3040         tlb_flush_by_mmuidx_all_cpus_synced(cs,
3041                                             ARMMMUIdxBit_S1SE1 |
3042                                             ARMMMUIdxBit_S1SE0);
3043     } else if (has_el2) {
3044         tlb_flush_by_mmuidx_all_cpus_synced(cs,
3045                                             ARMMMUIdxBit_S12NSE1 |
3046                                             ARMMMUIdxBit_S12NSE0 |
3047                                             ARMMMUIdxBit_S2NS);
3048     } else {
3049           tlb_flush_by_mmuidx_all_cpus_synced(cs,
3050                                               ARMMMUIdxBit_S12NSE1 |
3051                                               ARMMMUIdxBit_S12NSE0);
3052     }
3053 }
3054 
3055 static void tlbi_aa64_alle2is_write(CPUARMState *env, const ARMCPRegInfo *ri,
3056                                     uint64_t value)
3057 {
3058     CPUState *cs = ENV_GET_CPU(env);
3059 
3060     tlb_flush_by_mmuidx_all_cpus_synced(cs, ARMMMUIdxBit_S1E2);
3061 }
3062 
3063 static void tlbi_aa64_alle3is_write(CPUARMState *env, const ARMCPRegInfo *ri,
3064                                     uint64_t value)
3065 {
3066     CPUState *cs = ENV_GET_CPU(env);
3067 
3068     tlb_flush_by_mmuidx_all_cpus_synced(cs, ARMMMUIdxBit_S1E3);
3069 }
3070 
3071 static void tlbi_aa64_vae1_write(CPUARMState *env, const ARMCPRegInfo *ri,
3072                                  uint64_t value)
3073 {
3074     /* Invalidate by VA, EL1&0 (AArch64 version).
3075      * Currently handles all of VAE1, VAAE1, VAALE1 and VALE1,
3076      * since we don't support flush-for-specific-ASID-only or
3077      * flush-last-level-only.
3078      */
3079     ARMCPU *cpu = arm_env_get_cpu(env);
3080     CPUState *cs = CPU(cpu);
3081     uint64_t pageaddr = sextract64(value << 12, 0, 56);
3082 
3083     if (arm_is_secure_below_el3(env)) {
3084         tlb_flush_page_by_mmuidx(cs, pageaddr,
3085                                  ARMMMUIdxBit_S1SE1 |
3086                                  ARMMMUIdxBit_S1SE0);
3087     } else {
3088         tlb_flush_page_by_mmuidx(cs, pageaddr,
3089                                  ARMMMUIdxBit_S12NSE1 |
3090                                  ARMMMUIdxBit_S12NSE0);
3091     }
3092 }
3093 
3094 static void tlbi_aa64_vae2_write(CPUARMState *env, const ARMCPRegInfo *ri,
3095                                  uint64_t value)
3096 {
3097     /* Invalidate by VA, EL2
3098      * Currently handles both VAE2 and VALE2, since we don't support
3099      * flush-last-level-only.
3100      */
3101     ARMCPU *cpu = arm_env_get_cpu(env);
3102     CPUState *cs = CPU(cpu);
3103     uint64_t pageaddr = sextract64(value << 12, 0, 56);
3104 
3105     tlb_flush_page_by_mmuidx(cs, pageaddr, ARMMMUIdxBit_S1E2);
3106 }
3107 
3108 static void tlbi_aa64_vae3_write(CPUARMState *env, const ARMCPRegInfo *ri,
3109                                  uint64_t value)
3110 {
3111     /* Invalidate by VA, EL3
3112      * Currently handles both VAE3 and VALE3, since we don't support
3113      * flush-last-level-only.
3114      */
3115     ARMCPU *cpu = arm_env_get_cpu(env);
3116     CPUState *cs = CPU(cpu);
3117     uint64_t pageaddr = sextract64(value << 12, 0, 56);
3118 
3119     tlb_flush_page_by_mmuidx(cs, pageaddr, ARMMMUIdxBit_S1E3);
3120 }
3121 
3122 static void tlbi_aa64_vae1is_write(CPUARMState *env, const ARMCPRegInfo *ri,
3123                                    uint64_t value)
3124 {
3125     ARMCPU *cpu = arm_env_get_cpu(env);
3126     CPUState *cs = CPU(cpu);
3127     bool sec = arm_is_secure_below_el3(env);
3128     uint64_t pageaddr = sextract64(value << 12, 0, 56);
3129 
3130     if (sec) {
3131         tlb_flush_page_by_mmuidx_all_cpus_synced(cs, pageaddr,
3132                                                  ARMMMUIdxBit_S1SE1 |
3133                                                  ARMMMUIdxBit_S1SE0);
3134     } else {
3135         tlb_flush_page_by_mmuidx_all_cpus_synced(cs, pageaddr,
3136                                                  ARMMMUIdxBit_S12NSE1 |
3137                                                  ARMMMUIdxBit_S12NSE0);
3138     }
3139 }
3140 
3141 static void tlbi_aa64_vae2is_write(CPUARMState *env, const ARMCPRegInfo *ri,
3142                                    uint64_t value)
3143 {
3144     CPUState *cs = ENV_GET_CPU(env);
3145     uint64_t pageaddr = sextract64(value << 12, 0, 56);
3146 
3147     tlb_flush_page_by_mmuidx_all_cpus_synced(cs, pageaddr,
3148                                              ARMMMUIdxBit_S1E2);
3149 }
3150 
3151 static void tlbi_aa64_vae3is_write(CPUARMState *env, const ARMCPRegInfo *ri,
3152                                    uint64_t value)
3153 {
3154     CPUState *cs = ENV_GET_CPU(env);
3155     uint64_t pageaddr = sextract64(value << 12, 0, 56);
3156 
3157     tlb_flush_page_by_mmuidx_all_cpus_synced(cs, pageaddr,
3158                                              ARMMMUIdxBit_S1E3);
3159 }
3160 
3161 static void tlbi_aa64_ipas2e1_write(CPUARMState *env, const ARMCPRegInfo *ri,
3162                                     uint64_t value)
3163 {
3164     /* Invalidate by IPA. This has to invalidate any structures that
3165      * contain only stage 2 translation information, but does not need
3166      * to apply to structures that contain combined stage 1 and stage 2
3167      * translation information.
3168      * This must NOP if EL2 isn't implemented or SCR_EL3.NS is zero.
3169      */
3170     ARMCPU *cpu = arm_env_get_cpu(env);
3171     CPUState *cs = CPU(cpu);
3172     uint64_t pageaddr;
3173 
3174     if (!arm_feature(env, ARM_FEATURE_EL2) || !(env->cp15.scr_el3 & SCR_NS)) {
3175         return;
3176     }
3177 
3178     pageaddr = sextract64(value << 12, 0, 48);
3179 
3180     tlb_flush_page_by_mmuidx(cs, pageaddr, ARMMMUIdxBit_S2NS);
3181 }
3182 
3183 static void tlbi_aa64_ipas2e1is_write(CPUARMState *env, const ARMCPRegInfo *ri,
3184                                       uint64_t value)
3185 {
3186     CPUState *cs = ENV_GET_CPU(env);
3187     uint64_t pageaddr;
3188 
3189     if (!arm_feature(env, ARM_FEATURE_EL2) || !(env->cp15.scr_el3 & SCR_NS)) {
3190         return;
3191     }
3192 
3193     pageaddr = sextract64(value << 12, 0, 48);
3194 
3195     tlb_flush_page_by_mmuidx_all_cpus_synced(cs, pageaddr,
3196                                              ARMMMUIdxBit_S2NS);
3197 }
3198 
3199 static CPAccessResult aa64_zva_access(CPUARMState *env, const ARMCPRegInfo *ri,
3200                                       bool isread)
3201 {
3202     /* We don't implement EL2, so the only control on DC ZVA is the
3203      * bit in the SCTLR which can prohibit access for EL0.
3204      */
3205     if (arm_current_el(env) == 0 && !(env->cp15.sctlr_el[1] & SCTLR_DZE)) {
3206         return CP_ACCESS_TRAP;
3207     }
3208     return CP_ACCESS_OK;
3209 }
3210 
3211 static uint64_t aa64_dczid_read(CPUARMState *env, const ARMCPRegInfo *ri)
3212 {
3213     ARMCPU *cpu = arm_env_get_cpu(env);
3214     int dzp_bit = 1 << 4;
3215 
3216     /* DZP indicates whether DC ZVA access is allowed */
3217     if (aa64_zva_access(env, NULL, false) == CP_ACCESS_OK) {
3218         dzp_bit = 0;
3219     }
3220     return cpu->dcz_blocksize | dzp_bit;
3221 }
3222 
3223 static CPAccessResult sp_el0_access(CPUARMState *env, const ARMCPRegInfo *ri,
3224                                     bool isread)
3225 {
3226     if (!(env->pstate & PSTATE_SP)) {
3227         /* Access to SP_EL0 is undefined if it's being used as
3228          * the stack pointer.
3229          */
3230         return CP_ACCESS_TRAP_UNCATEGORIZED;
3231     }
3232     return CP_ACCESS_OK;
3233 }
3234 
3235 static uint64_t spsel_read(CPUARMState *env, const ARMCPRegInfo *ri)
3236 {
3237     return env->pstate & PSTATE_SP;
3238 }
3239 
3240 static void spsel_write(CPUARMState *env, const ARMCPRegInfo *ri, uint64_t val)
3241 {
3242     update_spsel(env, val);
3243 }
3244 
3245 static void sctlr_write(CPUARMState *env, const ARMCPRegInfo *ri,
3246                         uint64_t value)
3247 {
3248     ARMCPU *cpu = arm_env_get_cpu(env);
3249 
3250     if (raw_read(env, ri) == value) {
3251         /* Skip the TLB flush if nothing actually changed; Linux likes
3252          * to do a lot of pointless SCTLR writes.
3253          */
3254         return;
3255     }
3256 
3257     if (arm_feature(env, ARM_FEATURE_PMSA) && !cpu->has_mpu) {
3258         /* M bit is RAZ/WI for PMSA with no MPU implemented */
3259         value &= ~SCTLR_M;
3260     }
3261 
3262     raw_write(env, ri, value);
3263     /* ??? Lots of these bits are not implemented.  */
3264     /* This may enable/disable the MMU, so do a TLB flush.  */
3265     tlb_flush(CPU(cpu));
3266 }
3267 
3268 static CPAccessResult fpexc32_access(CPUARMState *env, const ARMCPRegInfo *ri,
3269                                      bool isread)
3270 {
3271     if ((env->cp15.cptr_el[2] & CPTR_TFP) && arm_current_el(env) == 2) {
3272         return CP_ACCESS_TRAP_FP_EL2;
3273     }
3274     if (env->cp15.cptr_el[3] & CPTR_TFP) {
3275         return CP_ACCESS_TRAP_FP_EL3;
3276     }
3277     return CP_ACCESS_OK;
3278 }
3279 
3280 static void sdcr_write(CPUARMState *env, const ARMCPRegInfo *ri,
3281                        uint64_t value)
3282 {
3283     env->cp15.mdcr_el3 = value & SDCR_VALID_MASK;
3284 }
3285 
3286 static const ARMCPRegInfo v8_cp_reginfo[] = {
3287     /* Minimal set of EL0-visible registers. This will need to be expanded
3288      * significantly for system emulation of AArch64 CPUs.
3289      */
3290     { .name = "NZCV", .state = ARM_CP_STATE_AA64,
3291       .opc0 = 3, .opc1 = 3, .opc2 = 0, .crn = 4, .crm = 2,
3292       .access = PL0_RW, .type = ARM_CP_NZCV },
3293     { .name = "DAIF", .state = ARM_CP_STATE_AA64,
3294       .opc0 = 3, .opc1 = 3, .opc2 = 1, .crn = 4, .crm = 2,
3295       .type = ARM_CP_NO_RAW,
3296       .access = PL0_RW, .accessfn = aa64_daif_access,
3297       .fieldoffset = offsetof(CPUARMState, daif),
3298       .writefn = aa64_daif_write, .resetfn = arm_cp_reset_ignore },
3299     { .name = "FPCR", .state = ARM_CP_STATE_AA64,
3300       .opc0 = 3, .opc1 = 3, .opc2 = 0, .crn = 4, .crm = 4,
3301       .access = PL0_RW, .readfn = aa64_fpcr_read, .writefn = aa64_fpcr_write },
3302     { .name = "FPSR", .state = ARM_CP_STATE_AA64,
3303       .opc0 = 3, .opc1 = 3, .opc2 = 1, .crn = 4, .crm = 4,
3304       .access = PL0_RW, .readfn = aa64_fpsr_read, .writefn = aa64_fpsr_write },
3305     { .name = "DCZID_EL0", .state = ARM_CP_STATE_AA64,
3306       .opc0 = 3, .opc1 = 3, .opc2 = 7, .crn = 0, .crm = 0,
3307       .access = PL0_R, .type = ARM_CP_NO_RAW,
3308       .readfn = aa64_dczid_read },
3309     { .name = "DC_ZVA", .state = ARM_CP_STATE_AA64,
3310       .opc0 = 1, .opc1 = 3, .crn = 7, .crm = 4, .opc2 = 1,
3311       .access = PL0_W, .type = ARM_CP_DC_ZVA,
3312 #ifndef CONFIG_USER_ONLY
3313       /* Avoid overhead of an access check that always passes in user-mode */
3314       .accessfn = aa64_zva_access,
3315 #endif
3316     },
3317     { .name = "CURRENTEL", .state = ARM_CP_STATE_AA64,
3318       .opc0 = 3, .opc1 = 0, .opc2 = 2, .crn = 4, .crm = 2,
3319       .access = PL1_R, .type = ARM_CP_CURRENTEL },
3320     /* Cache ops: all NOPs since we don't emulate caches */
3321     { .name = "IC_IALLUIS", .state = ARM_CP_STATE_AA64,
3322       .opc0 = 1, .opc1 = 0, .crn = 7, .crm = 1, .opc2 = 0,
3323       .access = PL1_W, .type = ARM_CP_NOP },
3324     { .name = "IC_IALLU", .state = ARM_CP_STATE_AA64,
3325       .opc0 = 1, .opc1 = 0, .crn = 7, .crm = 5, .opc2 = 0,
3326       .access = PL1_W, .type = ARM_CP_NOP },
3327     { .name = "IC_IVAU", .state = ARM_CP_STATE_AA64,
3328       .opc0 = 1, .opc1 = 3, .crn = 7, .crm = 5, .opc2 = 1,
3329       .access = PL0_W, .type = ARM_CP_NOP,
3330       .accessfn = aa64_cacheop_access },
3331     { .name = "DC_IVAC", .state = ARM_CP_STATE_AA64,
3332       .opc0 = 1, .opc1 = 0, .crn = 7, .crm = 6, .opc2 = 1,
3333       .access = PL1_W, .type = ARM_CP_NOP },
3334     { .name = "DC_ISW", .state = ARM_CP_STATE_AA64,
3335       .opc0 = 1, .opc1 = 0, .crn = 7, .crm = 6, .opc2 = 2,
3336       .access = PL1_W, .type = ARM_CP_NOP },
3337     { .name = "DC_CVAC", .state = ARM_CP_STATE_AA64,
3338       .opc0 = 1, .opc1 = 3, .crn = 7, .crm = 10, .opc2 = 1,
3339       .access = PL0_W, .type = ARM_CP_NOP,
3340       .accessfn = aa64_cacheop_access },
3341     { .name = "DC_CSW", .state = ARM_CP_STATE_AA64,
3342       .opc0 = 1, .opc1 = 0, .crn = 7, .crm = 10, .opc2 = 2,
3343       .access = PL1_W, .type = ARM_CP_NOP },
3344     { .name = "DC_CVAU", .state = ARM_CP_STATE_AA64,
3345       .opc0 = 1, .opc1 = 3, .crn = 7, .crm = 11, .opc2 = 1,
3346       .access = PL0_W, .type = ARM_CP_NOP,
3347       .accessfn = aa64_cacheop_access },
3348     { .name = "DC_CIVAC", .state = ARM_CP_STATE_AA64,
3349       .opc0 = 1, .opc1 = 3, .crn = 7, .crm = 14, .opc2 = 1,
3350       .access = PL0_W, .type = ARM_CP_NOP,
3351       .accessfn = aa64_cacheop_access },
3352     { .name = "DC_CISW", .state = ARM_CP_STATE_AA64,
3353       .opc0 = 1, .opc1 = 0, .crn = 7, .crm = 14, .opc2 = 2,
3354       .access = PL1_W, .type = ARM_CP_NOP },
3355     /* TLBI operations */
3356     { .name = "TLBI_VMALLE1IS", .state = ARM_CP_STATE_AA64,
3357       .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 3, .opc2 = 0,
3358       .access = PL1_W, .type = ARM_CP_NO_RAW,
3359       .writefn = tlbi_aa64_vmalle1is_write },
3360     { .name = "TLBI_VAE1IS", .state = ARM_CP_STATE_AA64,
3361       .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 3, .opc2 = 1,
3362       .access = PL1_W, .type = ARM_CP_NO_RAW,
3363       .writefn = tlbi_aa64_vae1is_write },
3364     { .name = "TLBI_ASIDE1IS", .state = ARM_CP_STATE_AA64,
3365       .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 3, .opc2 = 2,
3366       .access = PL1_W, .type = ARM_CP_NO_RAW,
3367       .writefn = tlbi_aa64_vmalle1is_write },
3368     { .name = "TLBI_VAAE1IS", .state = ARM_CP_STATE_AA64,
3369       .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 3, .opc2 = 3,
3370       .access = PL1_W, .type = ARM_CP_NO_RAW,
3371       .writefn = tlbi_aa64_vae1is_write },
3372     { .name = "TLBI_VALE1IS", .state = ARM_CP_STATE_AA64,
3373       .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 3, .opc2 = 5,
3374       .access = PL1_W, .type = ARM_CP_NO_RAW,
3375       .writefn = tlbi_aa64_vae1is_write },
3376     { .name = "TLBI_VAALE1IS", .state = ARM_CP_STATE_AA64,
3377       .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 3, .opc2 = 7,
3378       .access = PL1_W, .type = ARM_CP_NO_RAW,
3379       .writefn = tlbi_aa64_vae1is_write },
3380     { .name = "TLBI_VMALLE1", .state = ARM_CP_STATE_AA64,
3381       .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 7, .opc2 = 0,
3382       .access = PL1_W, .type = ARM_CP_NO_RAW,
3383       .writefn = tlbi_aa64_vmalle1_write },
3384     { .name = "TLBI_VAE1", .state = ARM_CP_STATE_AA64,
3385       .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 7, .opc2 = 1,
3386       .access = PL1_W, .type = ARM_CP_NO_RAW,
3387       .writefn = tlbi_aa64_vae1_write },
3388     { .name = "TLBI_ASIDE1", .state = ARM_CP_STATE_AA64,
3389       .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 7, .opc2 = 2,
3390       .access = PL1_W, .type = ARM_CP_NO_RAW,
3391       .writefn = tlbi_aa64_vmalle1_write },
3392     { .name = "TLBI_VAAE1", .state = ARM_CP_STATE_AA64,
3393       .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 7, .opc2 = 3,
3394       .access = PL1_W, .type = ARM_CP_NO_RAW,
3395       .writefn = tlbi_aa64_vae1_write },
3396     { .name = "TLBI_VALE1", .state = ARM_CP_STATE_AA64,
3397       .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 7, .opc2 = 5,
3398       .access = PL1_W, .type = ARM_CP_NO_RAW,
3399       .writefn = tlbi_aa64_vae1_write },
3400     { .name = "TLBI_VAALE1", .state = ARM_CP_STATE_AA64,
3401       .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 7, .opc2 = 7,
3402       .access = PL1_W, .type = ARM_CP_NO_RAW,
3403       .writefn = tlbi_aa64_vae1_write },
3404     { .name = "TLBI_IPAS2E1IS", .state = ARM_CP_STATE_AA64,
3405       .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 0, .opc2 = 1,
3406       .access = PL2_W, .type = ARM_CP_NO_RAW,
3407       .writefn = tlbi_aa64_ipas2e1is_write },
3408     { .name = "TLBI_IPAS2LE1IS", .state = ARM_CP_STATE_AA64,
3409       .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 0, .opc2 = 5,
3410       .access = PL2_W, .type = ARM_CP_NO_RAW,
3411       .writefn = tlbi_aa64_ipas2e1is_write },
3412     { .name = "TLBI_ALLE1IS", .state = ARM_CP_STATE_AA64,
3413       .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 3, .opc2 = 4,
3414       .access = PL2_W, .type = ARM_CP_NO_RAW,
3415       .writefn = tlbi_aa64_alle1is_write },
3416     { .name = "TLBI_VMALLS12E1IS", .state = ARM_CP_STATE_AA64,
3417       .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 3, .opc2 = 6,
3418       .access = PL2_W, .type = ARM_CP_NO_RAW,
3419       .writefn = tlbi_aa64_alle1is_write },
3420     { .name = "TLBI_IPAS2E1", .state = ARM_CP_STATE_AA64,
3421       .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 4, .opc2 = 1,
3422       .access = PL2_W, .type = ARM_CP_NO_RAW,
3423       .writefn = tlbi_aa64_ipas2e1_write },
3424     { .name = "TLBI_IPAS2LE1", .state = ARM_CP_STATE_AA64,
3425       .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 4, .opc2 = 5,
3426       .access = PL2_W, .type = ARM_CP_NO_RAW,
3427       .writefn = tlbi_aa64_ipas2e1_write },
3428     { .name = "TLBI_ALLE1", .state = ARM_CP_STATE_AA64,
3429       .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 7, .opc2 = 4,
3430       .access = PL2_W, .type = ARM_CP_NO_RAW,
3431       .writefn = tlbi_aa64_alle1_write },
3432     { .name = "TLBI_VMALLS12E1", .state = ARM_CP_STATE_AA64,
3433       .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 7, .opc2 = 6,
3434       .access = PL2_W, .type = ARM_CP_NO_RAW,
3435       .writefn = tlbi_aa64_alle1is_write },
3436 #ifndef CONFIG_USER_ONLY
3437     /* 64 bit address translation operations */
3438     { .name = "AT_S1E1R", .state = ARM_CP_STATE_AA64,
3439       .opc0 = 1, .opc1 = 0, .crn = 7, .crm = 8, .opc2 = 0,
3440       .access = PL1_W, .type = ARM_CP_NO_RAW, .writefn = ats_write64 },
3441     { .name = "AT_S1E1W", .state = ARM_CP_STATE_AA64,
3442       .opc0 = 1, .opc1 = 0, .crn = 7, .crm = 8, .opc2 = 1,
3443       .access = PL1_W, .type = ARM_CP_NO_RAW, .writefn = ats_write64 },
3444     { .name = "AT_S1E0R", .state = ARM_CP_STATE_AA64,
3445       .opc0 = 1, .opc1 = 0, .crn = 7, .crm = 8, .opc2 = 2,
3446       .access = PL1_W, .type = ARM_CP_NO_RAW, .writefn = ats_write64 },
3447     { .name = "AT_S1E0W", .state = ARM_CP_STATE_AA64,
3448       .opc0 = 1, .opc1 = 0, .crn = 7, .crm = 8, .opc2 = 3,
3449       .access = PL1_W, .type = ARM_CP_NO_RAW, .writefn = ats_write64 },
3450     { .name = "AT_S12E1R", .state = ARM_CP_STATE_AA64,
3451       .opc0 = 1, .opc1 = 4, .crn = 7, .crm = 8, .opc2 = 4,
3452       .access = PL2_W, .type = ARM_CP_NO_RAW, .writefn = ats_write64 },
3453     { .name = "AT_S12E1W", .state = ARM_CP_STATE_AA64,
3454       .opc0 = 1, .opc1 = 4, .crn = 7, .crm = 8, .opc2 = 5,
3455       .access = PL2_W, .type = ARM_CP_NO_RAW, .writefn = ats_write64 },
3456     { .name = "AT_S12E0R", .state = ARM_CP_STATE_AA64,
3457       .opc0 = 1, .opc1 = 4, .crn = 7, .crm = 8, .opc2 = 6,
3458       .access = PL2_W, .type = ARM_CP_NO_RAW, .writefn = ats_write64 },
3459     { .name = "AT_S12E0W", .state = ARM_CP_STATE_AA64,
3460       .opc0 = 1, .opc1 = 4, .crn = 7, .crm = 8, .opc2 = 7,
3461       .access = PL2_W, .type = ARM_CP_NO_RAW, .writefn = ats_write64 },
3462     /* AT S1E2* are elsewhere as they UNDEF from EL3 if EL2 is not present */
3463     { .name = "AT_S1E3R", .state = ARM_CP_STATE_AA64,
3464       .opc0 = 1, .opc1 = 6, .crn = 7, .crm = 8, .opc2 = 0,
3465       .access = PL3_W, .type = ARM_CP_NO_RAW, .writefn = ats_write64 },
3466     { .name = "AT_S1E3W", .state = ARM_CP_STATE_AA64,
3467       .opc0 = 1, .opc1 = 6, .crn = 7, .crm = 8, .opc2 = 1,
3468       .access = PL3_W, .type = ARM_CP_NO_RAW, .writefn = ats_write64 },
3469     { .name = "PAR_EL1", .state = ARM_CP_STATE_AA64,
3470       .type = ARM_CP_ALIAS,
3471       .opc0 = 3, .opc1 = 0, .crn = 7, .crm = 4, .opc2 = 0,
3472       .access = PL1_RW, .resetvalue = 0,
3473       .fieldoffset = offsetof(CPUARMState, cp15.par_el[1]),
3474       .writefn = par_write },
3475 #endif
3476     /* TLB invalidate last level of translation table walk */
3477     { .name = "TLBIMVALIS", .cp = 15, .opc1 = 0, .crn = 8, .crm = 3, .opc2 = 5,
3478       .type = ARM_CP_NO_RAW, .access = PL1_W, .writefn = tlbimva_is_write },
3479     { .name = "TLBIMVAALIS", .cp = 15, .opc1 = 0, .crn = 8, .crm = 3, .opc2 = 7,
3480       .type = ARM_CP_NO_RAW, .access = PL1_W,
3481       .writefn = tlbimvaa_is_write },
3482     { .name = "TLBIMVAL", .cp = 15, .opc1 = 0, .crn = 8, .crm = 7, .opc2 = 5,
3483       .type = ARM_CP_NO_RAW, .access = PL1_W, .writefn = tlbimva_write },
3484     { .name = "TLBIMVAAL", .cp = 15, .opc1 = 0, .crn = 8, .crm = 7, .opc2 = 7,
3485       .type = ARM_CP_NO_RAW, .access = PL1_W, .writefn = tlbimvaa_write },
3486     { .name = "TLBIMVALH", .cp = 15, .opc1 = 4, .crn = 8, .crm = 7, .opc2 = 5,
3487       .type = ARM_CP_NO_RAW, .access = PL2_W,
3488       .writefn = tlbimva_hyp_write },
3489     { .name = "TLBIMVALHIS",
3490       .cp = 15, .opc1 = 4, .crn = 8, .crm = 3, .opc2 = 5,
3491       .type = ARM_CP_NO_RAW, .access = PL2_W,
3492       .writefn = tlbimva_hyp_is_write },
3493     { .name = "TLBIIPAS2",
3494       .cp = 15, .opc1 = 4, .crn = 8, .crm = 4, .opc2 = 1,
3495       .type = ARM_CP_NO_RAW, .access = PL2_W,
3496       .writefn = tlbiipas2_write },
3497     { .name = "TLBIIPAS2IS",
3498       .cp = 15, .opc1 = 4, .crn = 8, .crm = 0, .opc2 = 1,
3499       .type = ARM_CP_NO_RAW, .access = PL2_W,
3500       .writefn = tlbiipas2_is_write },
3501     { .name = "TLBIIPAS2L",
3502       .cp = 15, .opc1 = 4, .crn = 8, .crm = 4, .opc2 = 5,
3503       .type = ARM_CP_NO_RAW, .access = PL2_W,
3504       .writefn = tlbiipas2_write },
3505     { .name = "TLBIIPAS2LIS",
3506       .cp = 15, .opc1 = 4, .crn = 8, .crm = 0, .opc2 = 5,
3507       .type = ARM_CP_NO_RAW, .access = PL2_W,
3508       .writefn = tlbiipas2_is_write },
3509     /* 32 bit cache operations */
3510     { .name = "ICIALLUIS", .cp = 15, .opc1 = 0, .crn = 7, .crm = 1, .opc2 = 0,
3511       .type = ARM_CP_NOP, .access = PL1_W },
3512     { .name = "BPIALLUIS", .cp = 15, .opc1 = 0, .crn = 7, .crm = 1, .opc2 = 6,
3513       .type = ARM_CP_NOP, .access = PL1_W },
3514     { .name = "ICIALLU", .cp = 15, .opc1 = 0, .crn = 7, .crm = 5, .opc2 = 0,
3515       .type = ARM_CP_NOP, .access = PL1_W },
3516     { .name = "ICIMVAU", .cp = 15, .opc1 = 0, .crn = 7, .crm = 5, .opc2 = 1,
3517       .type = ARM_CP_NOP, .access = PL1_W },
3518     { .name = "BPIALL", .cp = 15, .opc1 = 0, .crn = 7, .crm = 5, .opc2 = 6,
3519       .type = ARM_CP_NOP, .access = PL1_W },
3520     { .name = "BPIMVA", .cp = 15, .opc1 = 0, .crn = 7, .crm = 5, .opc2 = 7,
3521       .type = ARM_CP_NOP, .access = PL1_W },
3522     { .name = "DCIMVAC", .cp = 15, .opc1 = 0, .crn = 7, .crm = 6, .opc2 = 1,
3523       .type = ARM_CP_NOP, .access = PL1_W },
3524     { .name = "DCISW", .cp = 15, .opc1 = 0, .crn = 7, .crm = 6, .opc2 = 2,
3525       .type = ARM_CP_NOP, .access = PL1_W },
3526     { .name = "DCCMVAC", .cp = 15, .opc1 = 0, .crn = 7, .crm = 10, .opc2 = 1,
3527       .type = ARM_CP_NOP, .access = PL1_W },
3528     { .name = "DCCSW", .cp = 15, .opc1 = 0, .crn = 7, .crm = 10, .opc2 = 2,
3529       .type = ARM_CP_NOP, .access = PL1_W },
3530     { .name = "DCCMVAU", .cp = 15, .opc1 = 0, .crn = 7, .crm = 11, .opc2 = 1,
3531       .type = ARM_CP_NOP, .access = PL1_W },
3532     { .name = "DCCIMVAC", .cp = 15, .opc1 = 0, .crn = 7, .crm = 14, .opc2 = 1,
3533       .type = ARM_CP_NOP, .access = PL1_W },
3534     { .name = "DCCISW", .cp = 15, .opc1 = 0, .crn = 7, .crm = 14, .opc2 = 2,
3535       .type = ARM_CP_NOP, .access = PL1_W },
3536     /* MMU Domain access control / MPU write buffer control */
3537     { .name = "DACR", .cp = 15, .opc1 = 0, .crn = 3, .crm = 0, .opc2 = 0,
3538       .access = PL1_RW, .resetvalue = 0,
3539       .writefn = dacr_write, .raw_writefn = raw_write,
3540       .bank_fieldoffsets = { offsetoflow32(CPUARMState, cp15.dacr_s),
3541                              offsetoflow32(CPUARMState, cp15.dacr_ns) } },
3542     { .name = "ELR_EL1", .state = ARM_CP_STATE_AA64,
3543       .type = ARM_CP_ALIAS,
3544       .opc0 = 3, .opc1 = 0, .crn = 4, .crm = 0, .opc2 = 1,
3545       .access = PL1_RW,
3546       .fieldoffset = offsetof(CPUARMState, elr_el[1]) },
3547     { .name = "SPSR_EL1", .state = ARM_CP_STATE_AA64,
3548       .type = ARM_CP_ALIAS,
3549       .opc0 = 3, .opc1 = 0, .crn = 4, .crm = 0, .opc2 = 0,
3550       .access = PL1_RW,
3551       .fieldoffset = offsetof(CPUARMState, banked_spsr[BANK_SVC]) },
3552     /* We rely on the access checks not allowing the guest to write to the
3553      * state field when SPSel indicates that it's being used as the stack
3554      * pointer.
3555      */
3556     { .name = "SP_EL0", .state = ARM_CP_STATE_AA64,
3557       .opc0 = 3, .opc1 = 0, .crn = 4, .crm = 1, .opc2 = 0,
3558       .access = PL1_RW, .accessfn = sp_el0_access,
3559       .type = ARM_CP_ALIAS,
3560       .fieldoffset = offsetof(CPUARMState, sp_el[0]) },
3561     { .name = "SP_EL1", .state = ARM_CP_STATE_AA64,
3562       .opc0 = 3, .opc1 = 4, .crn = 4, .crm = 1, .opc2 = 0,
3563       .access = PL2_RW, .type = ARM_CP_ALIAS,
3564       .fieldoffset = offsetof(CPUARMState, sp_el[1]) },
3565     { .name = "SPSel", .state = ARM_CP_STATE_AA64,
3566       .opc0 = 3, .opc1 = 0, .crn = 4, .crm = 2, .opc2 = 0,
3567       .type = ARM_CP_NO_RAW,
3568       .access = PL1_RW, .readfn = spsel_read, .writefn = spsel_write },
3569     { .name = "FPEXC32_EL2", .state = ARM_CP_STATE_AA64,
3570       .opc0 = 3, .opc1 = 4, .crn = 5, .crm = 3, .opc2 = 0,
3571       .type = ARM_CP_ALIAS,
3572       .fieldoffset = offsetof(CPUARMState, vfp.xregs[ARM_VFP_FPEXC]),
3573       .access = PL2_RW, .accessfn = fpexc32_access },
3574     { .name = "DACR32_EL2", .state = ARM_CP_STATE_AA64,
3575       .opc0 = 3, .opc1 = 4, .crn = 3, .crm = 0, .opc2 = 0,
3576       .access = PL2_RW, .resetvalue = 0,
3577       .writefn = dacr_write, .raw_writefn = raw_write,
3578       .fieldoffset = offsetof(CPUARMState, cp15.dacr32_el2) },
3579     { .name = "IFSR32_EL2", .state = ARM_CP_STATE_AA64,
3580       .opc0 = 3, .opc1 = 4, .crn = 5, .crm = 0, .opc2 = 1,
3581       .access = PL2_RW, .resetvalue = 0,
3582       .fieldoffset = offsetof(CPUARMState, cp15.ifsr32_el2) },
3583     { .name = "SPSR_IRQ", .state = ARM_CP_STATE_AA64,
3584       .type = ARM_CP_ALIAS,
3585       .opc0 = 3, .opc1 = 4, .crn = 4, .crm = 3, .opc2 = 0,
3586       .access = PL2_RW,
3587       .fieldoffset = offsetof(CPUARMState, banked_spsr[BANK_IRQ]) },
3588     { .name = "SPSR_ABT", .state = ARM_CP_STATE_AA64,
3589       .type = ARM_CP_ALIAS,
3590       .opc0 = 3, .opc1 = 4, .crn = 4, .crm = 3, .opc2 = 1,
3591       .access = PL2_RW,
3592       .fieldoffset = offsetof(CPUARMState, banked_spsr[BANK_ABT]) },
3593     { .name = "SPSR_UND", .state = ARM_CP_STATE_AA64,
3594       .type = ARM_CP_ALIAS,
3595       .opc0 = 3, .opc1 = 4, .crn = 4, .crm = 3, .opc2 = 2,
3596       .access = PL2_RW,
3597       .fieldoffset = offsetof(CPUARMState, banked_spsr[BANK_UND]) },
3598     { .name = "SPSR_FIQ", .state = ARM_CP_STATE_AA64,
3599       .type = ARM_CP_ALIAS,
3600       .opc0 = 3, .opc1 = 4, .crn = 4, .crm = 3, .opc2 = 3,
3601       .access = PL2_RW,
3602       .fieldoffset = offsetof(CPUARMState, banked_spsr[BANK_FIQ]) },
3603     { .name = "MDCR_EL3", .state = ARM_CP_STATE_AA64,
3604       .opc0 = 3, .opc1 = 6, .crn = 1, .crm = 3, .opc2 = 1,
3605       .resetvalue = 0,
3606       .access = PL3_RW, .fieldoffset = offsetof(CPUARMState, cp15.mdcr_el3) },
3607     { .name = "SDCR", .type = ARM_CP_ALIAS,
3608       .cp = 15, .opc1 = 0, .crn = 1, .crm = 3, .opc2 = 1,
3609       .access = PL1_RW, .accessfn = access_trap_aa32s_el1,
3610       .writefn = sdcr_write,
3611       .fieldoffset = offsetoflow32(CPUARMState, cp15.mdcr_el3) },
3612     REGINFO_SENTINEL
3613 };
3614 
3615 /* Used to describe the behaviour of EL2 regs when EL2 does not exist.  */
3616 static const ARMCPRegInfo el3_no_el2_cp_reginfo[] = {
3617     { .name = "VBAR_EL2", .state = ARM_CP_STATE_AA64,
3618       .opc0 = 3, .opc1 = 4, .crn = 12, .crm = 0, .opc2 = 0,
3619       .access = PL2_RW,
3620       .readfn = arm_cp_read_zero, .writefn = arm_cp_write_ignore },
3621     { .name = "HCR_EL2", .state = ARM_CP_STATE_AA64,
3622       .type = ARM_CP_NO_RAW,
3623       .opc0 = 3, .opc1 = 4, .crn = 1, .crm = 1, .opc2 = 0,
3624       .access = PL2_RW,
3625       .readfn = arm_cp_read_zero, .writefn = arm_cp_write_ignore },
3626     { .name = "CPTR_EL2", .state = ARM_CP_STATE_BOTH,
3627       .opc0 = 3, .opc1 = 4, .crn = 1, .crm = 1, .opc2 = 2,
3628       .access = PL2_RW, .type = ARM_CP_CONST, .resetvalue = 0 },
3629     { .name = "MAIR_EL2", .state = ARM_CP_STATE_BOTH,
3630       .opc0 = 3, .opc1 = 4, .crn = 10, .crm = 2, .opc2 = 0,
3631       .access = PL2_RW, .type = ARM_CP_CONST,
3632       .resetvalue = 0 },
3633     { .name = "HMAIR1", .state = ARM_CP_STATE_AA32,
3634       .opc1 = 4, .crn = 10, .crm = 2, .opc2 = 1,
3635       .access = PL2_RW, .type = ARM_CP_CONST, .resetvalue = 0 },
3636     { .name = "AMAIR_EL2", .state = ARM_CP_STATE_BOTH,
3637       .opc0 = 3, .opc1 = 4, .crn = 10, .crm = 3, .opc2 = 0,
3638       .access = PL2_RW, .type = ARM_CP_CONST,
3639       .resetvalue = 0 },
3640     { .name = "HMAIR1", .state = ARM_CP_STATE_AA32,
3641       .opc1 = 4, .crn = 10, .crm = 3, .opc2 = 1,
3642       .access = PL2_RW, .type = ARM_CP_CONST,
3643       .resetvalue = 0 },
3644     { .name = "AFSR0_EL2", .state = ARM_CP_STATE_BOTH,
3645       .opc0 = 3, .opc1 = 4, .crn = 5, .crm = 1, .opc2 = 0,
3646       .access = PL2_RW, .type = ARM_CP_CONST,
3647       .resetvalue = 0 },
3648     { .name = "AFSR1_EL2", .state = ARM_CP_STATE_BOTH,
3649       .opc0 = 3, .opc1 = 4, .crn = 5, .crm = 1, .opc2 = 1,
3650       .access = PL2_RW, .type = ARM_CP_CONST,
3651       .resetvalue = 0 },
3652     { .name = "TCR_EL2", .state = ARM_CP_STATE_BOTH,
3653       .opc0 = 3, .opc1 = 4, .crn = 2, .crm = 0, .opc2 = 2,
3654       .access = PL2_RW, .type = ARM_CP_CONST, .resetvalue = 0 },
3655     { .name = "VTCR_EL2", .state = ARM_CP_STATE_BOTH,
3656       .opc0 = 3, .opc1 = 4, .crn = 2, .crm = 1, .opc2 = 2,
3657       .access = PL2_RW, .accessfn = access_el3_aa32ns_aa64any,
3658       .type = ARM_CP_CONST, .resetvalue = 0 },
3659     { .name = "VTTBR", .state = ARM_CP_STATE_AA32,
3660       .cp = 15, .opc1 = 6, .crm = 2,
3661       .access = PL2_RW, .accessfn = access_el3_aa32ns,
3662       .type = ARM_CP_CONST | ARM_CP_64BIT, .resetvalue = 0 },
3663     { .name = "VTTBR_EL2", .state = ARM_CP_STATE_AA64,
3664       .opc0 = 3, .opc1 = 4, .crn = 2, .crm = 1, .opc2 = 0,
3665       .access = PL2_RW, .type = ARM_CP_CONST, .resetvalue = 0 },
3666     { .name = "SCTLR_EL2", .state = ARM_CP_STATE_BOTH,
3667       .opc0 = 3, .opc1 = 4, .crn = 1, .crm = 0, .opc2 = 0,
3668       .access = PL2_RW, .type = ARM_CP_CONST, .resetvalue = 0 },
3669     { .name = "TPIDR_EL2", .state = ARM_CP_STATE_BOTH,
3670       .opc0 = 3, .opc1 = 4, .crn = 13, .crm = 0, .opc2 = 2,
3671       .access = PL2_RW, .type = ARM_CP_CONST, .resetvalue = 0 },
3672     { .name = "TTBR0_EL2", .state = ARM_CP_STATE_AA64,
3673       .opc0 = 3, .opc1 = 4, .crn = 2, .crm = 0, .opc2 = 0,
3674       .access = PL2_RW, .type = ARM_CP_CONST, .resetvalue = 0 },
3675     { .name = "HTTBR", .cp = 15, .opc1 = 4, .crm = 2,
3676       .access = PL2_RW, .type = ARM_CP_64BIT | ARM_CP_CONST,
3677       .resetvalue = 0 },
3678     { .name = "CNTHCTL_EL2", .state = ARM_CP_STATE_BOTH,
3679       .opc0 = 3, .opc1 = 4, .crn = 14, .crm = 1, .opc2 = 0,
3680       .access = PL2_RW, .type = ARM_CP_CONST, .resetvalue = 0 },
3681     { .name = "CNTVOFF_EL2", .state = ARM_CP_STATE_AA64,
3682       .opc0 = 3, .opc1 = 4, .crn = 14, .crm = 0, .opc2 = 3,
3683       .access = PL2_RW, .type = ARM_CP_CONST, .resetvalue = 0 },
3684     { .name = "CNTVOFF", .cp = 15, .opc1 = 4, .crm = 14,
3685       .access = PL2_RW, .type = ARM_CP_64BIT | ARM_CP_CONST,
3686       .resetvalue = 0 },
3687     { .name = "CNTHP_CVAL_EL2", .state = ARM_CP_STATE_AA64,
3688       .opc0 = 3, .opc1 = 4, .crn = 14, .crm = 2, .opc2 = 2,
3689       .access = PL2_RW, .type = ARM_CP_CONST, .resetvalue = 0 },
3690     { .name = "CNTHP_CVAL", .cp = 15, .opc1 = 6, .crm = 14,
3691       .access = PL2_RW, .type = ARM_CP_64BIT | ARM_CP_CONST,
3692       .resetvalue = 0 },
3693     { .name = "CNTHP_TVAL_EL2", .state = ARM_CP_STATE_BOTH,
3694       .opc0 = 3, .opc1 = 4, .crn = 14, .crm = 2, .opc2 = 0,
3695       .access = PL2_RW, .type = ARM_CP_CONST, .resetvalue = 0 },
3696     { .name = "CNTHP_CTL_EL2", .state = ARM_CP_STATE_BOTH,
3697       .opc0 = 3, .opc1 = 4, .crn = 14, .crm = 2, .opc2 = 1,
3698       .access = PL2_RW, .type = ARM_CP_CONST, .resetvalue = 0 },
3699     { .name = "MDCR_EL2", .state = ARM_CP_STATE_BOTH,
3700       .opc0 = 3, .opc1 = 4, .crn = 1, .crm = 1, .opc2 = 1,
3701       .access = PL2_RW, .accessfn = access_tda,
3702       .type = ARM_CP_CONST, .resetvalue = 0 },
3703     { .name = "HPFAR_EL2", .state = ARM_CP_STATE_BOTH,
3704       .opc0 = 3, .opc1 = 4, .crn = 6, .crm = 0, .opc2 = 4,
3705       .access = PL2_RW, .accessfn = access_el3_aa32ns_aa64any,
3706       .type = ARM_CP_CONST, .resetvalue = 0 },
3707     { .name = "HSTR_EL2", .state = ARM_CP_STATE_BOTH,
3708       .opc0 = 3, .opc1 = 4, .crn = 1, .crm = 1, .opc2 = 3,
3709       .access = PL2_RW, .type = ARM_CP_CONST, .resetvalue = 0 },
3710     REGINFO_SENTINEL
3711 };
3712 
3713 static void hcr_write(CPUARMState *env, const ARMCPRegInfo *ri, uint64_t value)
3714 {
3715     ARMCPU *cpu = arm_env_get_cpu(env);
3716     uint64_t valid_mask = HCR_MASK;
3717 
3718     if (arm_feature(env, ARM_FEATURE_EL3)) {
3719         valid_mask &= ~HCR_HCD;
3720     } else if (cpu->psci_conduit != QEMU_PSCI_CONDUIT_SMC) {
3721         /* Architecturally HCR.TSC is RES0 if EL3 is not implemented.
3722          * However, if we're using the SMC PSCI conduit then QEMU is
3723          * effectively acting like EL3 firmware and so the guest at
3724          * EL2 should retain the ability to prevent EL1 from being
3725          * able to make SMC calls into the ersatz firmware, so in
3726          * that case HCR.TSC should be read/write.
3727          */
3728         valid_mask &= ~HCR_TSC;
3729     }
3730 
3731     /* Clear RES0 bits.  */
3732     value &= valid_mask;
3733 
3734     /* These bits change the MMU setup:
3735      * HCR_VM enables stage 2 translation
3736      * HCR_PTW forbids certain page-table setups
3737      * HCR_DC Disables stage1 and enables stage2 translation
3738      */
3739     if ((raw_read(env, ri) ^ value) & (HCR_VM | HCR_PTW | HCR_DC)) {
3740         tlb_flush(CPU(cpu));
3741     }
3742     raw_write(env, ri, value);
3743 }
3744 
3745 static const ARMCPRegInfo el2_cp_reginfo[] = {
3746     { .name = "HCR_EL2", .state = ARM_CP_STATE_AA64,
3747       .opc0 = 3, .opc1 = 4, .crn = 1, .crm = 1, .opc2 = 0,
3748       .access = PL2_RW, .fieldoffset = offsetof(CPUARMState, cp15.hcr_el2),
3749       .writefn = hcr_write },
3750     { .name = "ELR_EL2", .state = ARM_CP_STATE_AA64,
3751       .type = ARM_CP_ALIAS,
3752       .opc0 = 3, .opc1 = 4, .crn = 4, .crm = 0, .opc2 = 1,
3753       .access = PL2_RW,
3754       .fieldoffset = offsetof(CPUARMState, elr_el[2]) },
3755     { .name = "ESR_EL2", .state = ARM_CP_STATE_AA64,
3756       .opc0 = 3, .opc1 = 4, .crn = 5, .crm = 2, .opc2 = 0,
3757       .access = PL2_RW, .fieldoffset = offsetof(CPUARMState, cp15.esr_el[2]) },
3758     { .name = "FAR_EL2", .state = ARM_CP_STATE_AA64,
3759       .opc0 = 3, .opc1 = 4, .crn = 6, .crm = 0, .opc2 = 0,
3760       .access = PL2_RW, .fieldoffset = offsetof(CPUARMState, cp15.far_el[2]) },
3761     { .name = "SPSR_EL2", .state = ARM_CP_STATE_AA64,
3762       .type = ARM_CP_ALIAS,
3763       .opc0 = 3, .opc1 = 4, .crn = 4, .crm = 0, .opc2 = 0,
3764       .access = PL2_RW,
3765       .fieldoffset = offsetof(CPUARMState, banked_spsr[BANK_HYP]) },
3766     { .name = "VBAR_EL2", .state = ARM_CP_STATE_AA64,
3767       .opc0 = 3, .opc1 = 4, .crn = 12, .crm = 0, .opc2 = 0,
3768       .access = PL2_RW, .writefn = vbar_write,
3769       .fieldoffset = offsetof(CPUARMState, cp15.vbar_el[2]),
3770       .resetvalue = 0 },
3771     { .name = "SP_EL2", .state = ARM_CP_STATE_AA64,
3772       .opc0 = 3, .opc1 = 6, .crn = 4, .crm = 1, .opc2 = 0,
3773       .access = PL3_RW, .type = ARM_CP_ALIAS,
3774       .fieldoffset = offsetof(CPUARMState, sp_el[2]) },
3775     { .name = "CPTR_EL2", .state = ARM_CP_STATE_BOTH,
3776       .opc0 = 3, .opc1 = 4, .crn = 1, .crm = 1, .opc2 = 2,
3777       .access = PL2_RW, .accessfn = cptr_access, .resetvalue = 0,
3778       .fieldoffset = offsetof(CPUARMState, cp15.cptr_el[2]) },
3779     { .name = "MAIR_EL2", .state = ARM_CP_STATE_BOTH,
3780       .opc0 = 3, .opc1 = 4, .crn = 10, .crm = 2, .opc2 = 0,
3781       .access = PL2_RW, .fieldoffset = offsetof(CPUARMState, cp15.mair_el[2]),
3782       .resetvalue = 0 },
3783     { .name = "HMAIR1", .state = ARM_CP_STATE_AA32,
3784       .opc1 = 4, .crn = 10, .crm = 2, .opc2 = 1,
3785       .access = PL2_RW, .type = ARM_CP_ALIAS,
3786       .fieldoffset = offsetofhigh32(CPUARMState, cp15.mair_el[2]) },
3787     { .name = "AMAIR_EL2", .state = ARM_CP_STATE_BOTH,
3788       .opc0 = 3, .opc1 = 4, .crn = 10, .crm = 3, .opc2 = 0,
3789       .access = PL2_RW, .type = ARM_CP_CONST,
3790       .resetvalue = 0 },
3791     /* HAMAIR1 is mapped to AMAIR_EL2[63:32] */
3792     { .name = "HMAIR1", .state = ARM_CP_STATE_AA32,
3793       .opc1 = 4, .crn = 10, .crm = 3, .opc2 = 1,
3794       .access = PL2_RW, .type = ARM_CP_CONST,
3795       .resetvalue = 0 },
3796     { .name = "AFSR0_EL2", .state = ARM_CP_STATE_BOTH,
3797       .opc0 = 3, .opc1 = 4, .crn = 5, .crm = 1, .opc2 = 0,
3798       .access = PL2_RW, .type = ARM_CP_CONST,
3799       .resetvalue = 0 },
3800     { .name = "AFSR1_EL2", .state = ARM_CP_STATE_BOTH,
3801       .opc0 = 3, .opc1 = 4, .crn = 5, .crm = 1, .opc2 = 1,
3802       .access = PL2_RW, .type = ARM_CP_CONST,
3803       .resetvalue = 0 },
3804     { .name = "TCR_EL2", .state = ARM_CP_STATE_BOTH,
3805       .opc0 = 3, .opc1 = 4, .crn = 2, .crm = 0, .opc2 = 2,
3806       .access = PL2_RW,
3807       /* no .writefn needed as this can't cause an ASID change;
3808        * no .raw_writefn or .resetfn needed as we never use mask/base_mask
3809        */
3810       .fieldoffset = offsetof(CPUARMState, cp15.tcr_el[2]) },
3811     { .name = "VTCR", .state = ARM_CP_STATE_AA32,
3812       .cp = 15, .opc1 = 4, .crn = 2, .crm = 1, .opc2 = 2,
3813       .type = ARM_CP_ALIAS,
3814       .access = PL2_RW, .accessfn = access_el3_aa32ns,
3815       .fieldoffset = offsetof(CPUARMState, cp15.vtcr_el2) },
3816     { .name = "VTCR_EL2", .state = ARM_CP_STATE_AA64,
3817       .opc0 = 3, .opc1 = 4, .crn = 2, .crm = 1, .opc2 = 2,
3818       .access = PL2_RW,
3819       /* no .writefn needed as this can't cause an ASID change;
3820        * no .raw_writefn or .resetfn needed as we never use mask/base_mask
3821        */
3822       .fieldoffset = offsetof(CPUARMState, cp15.vtcr_el2) },
3823     { .name = "VTTBR", .state = ARM_CP_STATE_AA32,
3824       .cp = 15, .opc1 = 6, .crm = 2,
3825       .type = ARM_CP_64BIT | ARM_CP_ALIAS,
3826       .access = PL2_RW, .accessfn = access_el3_aa32ns,
3827       .fieldoffset = offsetof(CPUARMState, cp15.vttbr_el2),
3828       .writefn = vttbr_write },
3829     { .name = "VTTBR_EL2", .state = ARM_CP_STATE_AA64,
3830       .opc0 = 3, .opc1 = 4, .crn = 2, .crm = 1, .opc2 = 0,
3831       .access = PL2_RW, .writefn = vttbr_write,
3832       .fieldoffset = offsetof(CPUARMState, cp15.vttbr_el2) },
3833     { .name = "SCTLR_EL2", .state = ARM_CP_STATE_BOTH,
3834       .opc0 = 3, .opc1 = 4, .crn = 1, .crm = 0, .opc2 = 0,
3835       .access = PL2_RW, .raw_writefn = raw_write, .writefn = sctlr_write,
3836       .fieldoffset = offsetof(CPUARMState, cp15.sctlr_el[2]) },
3837     { .name = "TPIDR_EL2", .state = ARM_CP_STATE_BOTH,
3838       .opc0 = 3, .opc1 = 4, .crn = 13, .crm = 0, .opc2 = 2,
3839       .access = PL2_RW, .resetvalue = 0,
3840       .fieldoffset = offsetof(CPUARMState, cp15.tpidr_el[2]) },
3841     { .name = "TTBR0_EL2", .state = ARM_CP_STATE_AA64,
3842       .opc0 = 3, .opc1 = 4, .crn = 2, .crm = 0, .opc2 = 0,
3843       .access = PL2_RW, .resetvalue = 0,
3844       .fieldoffset = offsetof(CPUARMState, cp15.ttbr0_el[2]) },
3845     { .name = "HTTBR", .cp = 15, .opc1 = 4, .crm = 2,
3846       .access = PL2_RW, .type = ARM_CP_64BIT | ARM_CP_ALIAS,
3847       .fieldoffset = offsetof(CPUARMState, cp15.ttbr0_el[2]) },
3848     { .name = "TLBIALLNSNH",
3849       .cp = 15, .opc1 = 4, .crn = 8, .crm = 7, .opc2 = 4,
3850       .type = ARM_CP_NO_RAW, .access = PL2_W,
3851       .writefn = tlbiall_nsnh_write },
3852     { .name = "TLBIALLNSNHIS",
3853       .cp = 15, .opc1 = 4, .crn = 8, .crm = 3, .opc2 = 4,
3854       .type = ARM_CP_NO_RAW, .access = PL2_W,
3855       .writefn = tlbiall_nsnh_is_write },
3856     { .name = "TLBIALLH", .cp = 15, .opc1 = 4, .crn = 8, .crm = 7, .opc2 = 0,
3857       .type = ARM_CP_NO_RAW, .access = PL2_W,
3858       .writefn = tlbiall_hyp_write },
3859     { .name = "TLBIALLHIS", .cp = 15, .opc1 = 4, .crn = 8, .crm = 3, .opc2 = 0,
3860       .type = ARM_CP_NO_RAW, .access = PL2_W,
3861       .writefn = tlbiall_hyp_is_write },
3862     { .name = "TLBIMVAH", .cp = 15, .opc1 = 4, .crn = 8, .crm = 7, .opc2 = 1,
3863       .type = ARM_CP_NO_RAW, .access = PL2_W,
3864       .writefn = tlbimva_hyp_write },
3865     { .name = "TLBIMVAHIS", .cp = 15, .opc1 = 4, .crn = 8, .crm = 3, .opc2 = 1,
3866       .type = ARM_CP_NO_RAW, .access = PL2_W,
3867       .writefn = tlbimva_hyp_is_write },
3868     { .name = "TLBI_ALLE2", .state = ARM_CP_STATE_AA64,
3869       .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 7, .opc2 = 0,
3870       .type = ARM_CP_NO_RAW, .access = PL2_W,
3871       .writefn = tlbi_aa64_alle2_write },
3872     { .name = "TLBI_VAE2", .state = ARM_CP_STATE_AA64,
3873       .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 7, .opc2 = 1,
3874       .type = ARM_CP_NO_RAW, .access = PL2_W,
3875       .writefn = tlbi_aa64_vae2_write },
3876     { .name = "TLBI_VALE2", .state = ARM_CP_STATE_AA64,
3877       .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 7, .opc2 = 5,
3878       .access = PL2_W, .type = ARM_CP_NO_RAW,
3879       .writefn = tlbi_aa64_vae2_write },
3880     { .name = "TLBI_ALLE2IS", .state = ARM_CP_STATE_AA64,
3881       .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 3, .opc2 = 0,
3882       .access = PL2_W, .type = ARM_CP_NO_RAW,
3883       .writefn = tlbi_aa64_alle2is_write },
3884     { .name = "TLBI_VAE2IS", .state = ARM_CP_STATE_AA64,
3885       .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 3, .opc2 = 1,
3886       .type = ARM_CP_NO_RAW, .access = PL2_W,
3887       .writefn = tlbi_aa64_vae2is_write },
3888     { .name = "TLBI_VALE2IS", .state = ARM_CP_STATE_AA64,
3889       .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 3, .opc2 = 5,
3890       .access = PL2_W, .type = ARM_CP_NO_RAW,
3891       .writefn = tlbi_aa64_vae2is_write },
3892 #ifndef CONFIG_USER_ONLY
3893     /* Unlike the other EL2-related AT operations, these must
3894      * UNDEF from EL3 if EL2 is not implemented, which is why we
3895      * define them here rather than with the rest of the AT ops.
3896      */
3897     { .name = "AT_S1E2R", .state = ARM_CP_STATE_AA64,
3898       .opc0 = 1, .opc1 = 4, .crn = 7, .crm = 8, .opc2 = 0,
3899       .access = PL2_W, .accessfn = at_s1e2_access,
3900       .type = ARM_CP_NO_RAW, .writefn = ats_write64 },
3901     { .name = "AT_S1E2W", .state = ARM_CP_STATE_AA64,
3902       .opc0 = 1, .opc1 = 4, .crn = 7, .crm = 8, .opc2 = 1,
3903       .access = PL2_W, .accessfn = at_s1e2_access,
3904       .type = ARM_CP_NO_RAW, .writefn = ats_write64 },
3905     /* The AArch32 ATS1H* operations are CONSTRAINED UNPREDICTABLE
3906      * if EL2 is not implemented; we choose to UNDEF. Behaviour at EL3
3907      * with SCR.NS == 0 outside Monitor mode is UNPREDICTABLE; we choose
3908      * to behave as if SCR.NS was 1.
3909      */
3910     { .name = "ATS1HR", .cp = 15, .opc1 = 4, .crn = 7, .crm = 8, .opc2 = 0,
3911       .access = PL2_W,
3912       .writefn = ats1h_write, .type = ARM_CP_NO_RAW },
3913     { .name = "ATS1HW", .cp = 15, .opc1 = 4, .crn = 7, .crm = 8, .opc2 = 1,
3914       .access = PL2_W,
3915       .writefn = ats1h_write, .type = ARM_CP_NO_RAW },
3916     { .name = "CNTHCTL_EL2", .state = ARM_CP_STATE_BOTH,
3917       .opc0 = 3, .opc1 = 4, .crn = 14, .crm = 1, .opc2 = 0,
3918       /* ARMv7 requires bit 0 and 1 to reset to 1. ARMv8 defines the
3919        * reset values as IMPDEF. We choose to reset to 3 to comply with
3920        * both ARMv7 and ARMv8.
3921        */
3922       .access = PL2_RW, .resetvalue = 3,
3923       .fieldoffset = offsetof(CPUARMState, cp15.cnthctl_el2) },
3924     { .name = "CNTVOFF_EL2", .state = ARM_CP_STATE_AA64,
3925       .opc0 = 3, .opc1 = 4, .crn = 14, .crm = 0, .opc2 = 3,
3926       .access = PL2_RW, .type = ARM_CP_IO, .resetvalue = 0,
3927       .writefn = gt_cntvoff_write,
3928       .fieldoffset = offsetof(CPUARMState, cp15.cntvoff_el2) },
3929     { .name = "CNTVOFF", .cp = 15, .opc1 = 4, .crm = 14,
3930       .access = PL2_RW, .type = ARM_CP_64BIT | ARM_CP_ALIAS | ARM_CP_IO,
3931       .writefn = gt_cntvoff_write,
3932       .fieldoffset = offsetof(CPUARMState, cp15.cntvoff_el2) },
3933     { .name = "CNTHP_CVAL_EL2", .state = ARM_CP_STATE_AA64,
3934       .opc0 = 3, .opc1 = 4, .crn = 14, .crm = 2, .opc2 = 2,
3935       .fieldoffset = offsetof(CPUARMState, cp15.c14_timer[GTIMER_HYP].cval),
3936       .type = ARM_CP_IO, .access = PL2_RW,
3937       .writefn = gt_hyp_cval_write, .raw_writefn = raw_write },
3938     { .name = "CNTHP_CVAL", .cp = 15, .opc1 = 6, .crm = 14,
3939       .fieldoffset = offsetof(CPUARMState, cp15.c14_timer[GTIMER_HYP].cval),
3940       .access = PL2_RW, .type = ARM_CP_64BIT | ARM_CP_IO,
3941       .writefn = gt_hyp_cval_write, .raw_writefn = raw_write },
3942     { .name = "CNTHP_TVAL_EL2", .state = ARM_CP_STATE_BOTH,
3943       .opc0 = 3, .opc1 = 4, .crn = 14, .crm = 2, .opc2 = 0,
3944       .type = ARM_CP_NO_RAW | ARM_CP_IO, .access = PL2_RW,
3945       .resetfn = gt_hyp_timer_reset,
3946       .readfn = gt_hyp_tval_read, .writefn = gt_hyp_tval_write },
3947     { .name = "CNTHP_CTL_EL2", .state = ARM_CP_STATE_BOTH,
3948       .type = ARM_CP_IO,
3949       .opc0 = 3, .opc1 = 4, .crn = 14, .crm = 2, .opc2 = 1,
3950       .access = PL2_RW,
3951       .fieldoffset = offsetof(CPUARMState, cp15.c14_timer[GTIMER_HYP].ctl),
3952       .resetvalue = 0,
3953       .writefn = gt_hyp_ctl_write, .raw_writefn = raw_write },
3954 #endif
3955     /* The only field of MDCR_EL2 that has a defined architectural reset value
3956      * is MDCR_EL2.HPMN which should reset to the value of PMCR_EL0.N; but we
3957      * don't impelment any PMU event counters, so using zero as a reset
3958      * value for MDCR_EL2 is okay
3959      */
3960     { .name = "MDCR_EL2", .state = ARM_CP_STATE_BOTH,
3961       .opc0 = 3, .opc1 = 4, .crn = 1, .crm = 1, .opc2 = 1,
3962       .access = PL2_RW, .resetvalue = 0,
3963       .fieldoffset = offsetof(CPUARMState, cp15.mdcr_el2), },
3964     { .name = "HPFAR", .state = ARM_CP_STATE_AA32,
3965       .cp = 15, .opc1 = 4, .crn = 6, .crm = 0, .opc2 = 4,
3966       .access = PL2_RW, .accessfn = access_el3_aa32ns,
3967       .fieldoffset = offsetof(CPUARMState, cp15.hpfar_el2) },
3968     { .name = "HPFAR_EL2", .state = ARM_CP_STATE_AA64,
3969       .opc0 = 3, .opc1 = 4, .crn = 6, .crm = 0, .opc2 = 4,
3970       .access = PL2_RW,
3971       .fieldoffset = offsetof(CPUARMState, cp15.hpfar_el2) },
3972     { .name = "HSTR_EL2", .state = ARM_CP_STATE_BOTH,
3973       .cp = 15, .opc0 = 3, .opc1 = 4, .crn = 1, .crm = 1, .opc2 = 3,
3974       .access = PL2_RW,
3975       .fieldoffset = offsetof(CPUARMState, cp15.hstr_el2) },
3976     REGINFO_SENTINEL
3977 };
3978 
3979 static CPAccessResult nsacr_access(CPUARMState *env, const ARMCPRegInfo *ri,
3980                                    bool isread)
3981 {
3982     /* The NSACR is RW at EL3, and RO for NS EL1 and NS EL2.
3983      * At Secure EL1 it traps to EL3.
3984      */
3985     if (arm_current_el(env) == 3) {
3986         return CP_ACCESS_OK;
3987     }
3988     if (arm_is_secure_below_el3(env)) {
3989         return CP_ACCESS_TRAP_EL3;
3990     }
3991     /* Accesses from EL1 NS and EL2 NS are UNDEF for write but allow reads. */
3992     if (isread) {
3993         return CP_ACCESS_OK;
3994     }
3995     return CP_ACCESS_TRAP_UNCATEGORIZED;
3996 }
3997 
3998 static const ARMCPRegInfo el3_cp_reginfo[] = {
3999     { .name = "SCR_EL3", .state = ARM_CP_STATE_AA64,
4000       .opc0 = 3, .opc1 = 6, .crn = 1, .crm = 1, .opc2 = 0,
4001       .access = PL3_RW, .fieldoffset = offsetof(CPUARMState, cp15.scr_el3),
4002       .resetvalue = 0, .writefn = scr_write },
4003     { .name = "SCR",  .type = ARM_CP_ALIAS,
4004       .cp = 15, .opc1 = 0, .crn = 1, .crm = 1, .opc2 = 0,
4005       .access = PL1_RW, .accessfn = access_trap_aa32s_el1,
4006       .fieldoffset = offsetoflow32(CPUARMState, cp15.scr_el3),
4007       .writefn = scr_write },
4008     { .name = "SDER32_EL3", .state = ARM_CP_STATE_AA64,
4009       .opc0 = 3, .opc1 = 6, .crn = 1, .crm = 1, .opc2 = 1,
4010       .access = PL3_RW, .resetvalue = 0,
4011       .fieldoffset = offsetof(CPUARMState, cp15.sder) },
4012     { .name = "SDER",
4013       .cp = 15, .opc1 = 0, .crn = 1, .crm = 1, .opc2 = 1,
4014       .access = PL3_RW, .resetvalue = 0,
4015       .fieldoffset = offsetoflow32(CPUARMState, cp15.sder) },
4016     { .name = "MVBAR", .cp = 15, .opc1 = 0, .crn = 12, .crm = 0, .opc2 = 1,
4017       .access = PL1_RW, .accessfn = access_trap_aa32s_el1,
4018       .writefn = vbar_write, .resetvalue = 0,
4019       .fieldoffset = offsetof(CPUARMState, cp15.mvbar) },
4020     { .name = "TTBR0_EL3", .state = ARM_CP_STATE_AA64,
4021       .opc0 = 3, .opc1 = 6, .crn = 2, .crm = 0, .opc2 = 0,
4022       .access = PL3_RW, .writefn = vmsa_ttbr_write, .resetvalue = 0,
4023       .fieldoffset = offsetof(CPUARMState, cp15.ttbr0_el[3]) },
4024     { .name = "TCR_EL3", .state = ARM_CP_STATE_AA64,
4025       .opc0 = 3, .opc1 = 6, .crn = 2, .crm = 0, .opc2 = 2,
4026       .access = PL3_RW,
4027       /* no .writefn needed as this can't cause an ASID change;
4028        * we must provide a .raw_writefn and .resetfn because we handle
4029        * reset and migration for the AArch32 TTBCR(S), which might be
4030        * using mask and base_mask.
4031        */
4032       .resetfn = vmsa_ttbcr_reset, .raw_writefn = vmsa_ttbcr_raw_write,
4033       .fieldoffset = offsetof(CPUARMState, cp15.tcr_el[3]) },
4034     { .name = "ELR_EL3", .state = ARM_CP_STATE_AA64,
4035       .type = ARM_CP_ALIAS,
4036       .opc0 = 3, .opc1 = 6, .crn = 4, .crm = 0, .opc2 = 1,
4037       .access = PL3_RW,
4038       .fieldoffset = offsetof(CPUARMState, elr_el[3]) },
4039     { .name = "ESR_EL3", .state = ARM_CP_STATE_AA64,
4040       .opc0 = 3, .opc1 = 6, .crn = 5, .crm = 2, .opc2 = 0,
4041       .access = PL3_RW, .fieldoffset = offsetof(CPUARMState, cp15.esr_el[3]) },
4042     { .name = "FAR_EL3", .state = ARM_CP_STATE_AA64,
4043       .opc0 = 3, .opc1 = 6, .crn = 6, .crm = 0, .opc2 = 0,
4044       .access = PL3_RW, .fieldoffset = offsetof(CPUARMState, cp15.far_el[3]) },
4045     { .name = "SPSR_EL3", .state = ARM_CP_STATE_AA64,
4046       .type = ARM_CP_ALIAS,
4047       .opc0 = 3, .opc1 = 6, .crn = 4, .crm = 0, .opc2 = 0,
4048       .access = PL3_RW,
4049       .fieldoffset = offsetof(CPUARMState, banked_spsr[BANK_MON]) },
4050     { .name = "VBAR_EL3", .state = ARM_CP_STATE_AA64,
4051       .opc0 = 3, .opc1 = 6, .crn = 12, .crm = 0, .opc2 = 0,
4052       .access = PL3_RW, .writefn = vbar_write,
4053       .fieldoffset = offsetof(CPUARMState, cp15.vbar_el[3]),
4054       .resetvalue = 0 },
4055     { .name = "CPTR_EL3", .state = ARM_CP_STATE_AA64,
4056       .opc0 = 3, .opc1 = 6, .crn = 1, .crm = 1, .opc2 = 2,
4057       .access = PL3_RW, .accessfn = cptr_access, .resetvalue = 0,
4058       .fieldoffset = offsetof(CPUARMState, cp15.cptr_el[3]) },
4059     { .name = "TPIDR_EL3", .state = ARM_CP_STATE_AA64,
4060       .opc0 = 3, .opc1 = 6, .crn = 13, .crm = 0, .opc2 = 2,
4061       .access = PL3_RW, .resetvalue = 0,
4062       .fieldoffset = offsetof(CPUARMState, cp15.tpidr_el[3]) },
4063     { .name = "AMAIR_EL3", .state = ARM_CP_STATE_AA64,
4064       .opc0 = 3, .opc1 = 6, .crn = 10, .crm = 3, .opc2 = 0,
4065       .access = PL3_RW, .type = ARM_CP_CONST,
4066       .resetvalue = 0 },
4067     { .name = "AFSR0_EL3", .state = ARM_CP_STATE_BOTH,
4068       .opc0 = 3, .opc1 = 6, .crn = 5, .crm = 1, .opc2 = 0,
4069       .access = PL3_RW, .type = ARM_CP_CONST,
4070       .resetvalue = 0 },
4071     { .name = "AFSR1_EL3", .state = ARM_CP_STATE_BOTH,
4072       .opc0 = 3, .opc1 = 6, .crn = 5, .crm = 1, .opc2 = 1,
4073       .access = PL3_RW, .type = ARM_CP_CONST,
4074       .resetvalue = 0 },
4075     { .name = "TLBI_ALLE3IS", .state = ARM_CP_STATE_AA64,
4076       .opc0 = 1, .opc1 = 6, .crn = 8, .crm = 3, .opc2 = 0,
4077       .access = PL3_W, .type = ARM_CP_NO_RAW,
4078       .writefn = tlbi_aa64_alle3is_write },
4079     { .name = "TLBI_VAE3IS", .state = ARM_CP_STATE_AA64,
4080       .opc0 = 1, .opc1 = 6, .crn = 8, .crm = 3, .opc2 = 1,
4081       .access = PL3_W, .type = ARM_CP_NO_RAW,
4082       .writefn = tlbi_aa64_vae3is_write },
4083     { .name = "TLBI_VALE3IS", .state = ARM_CP_STATE_AA64,
4084       .opc0 = 1, .opc1 = 6, .crn = 8, .crm = 3, .opc2 = 5,
4085       .access = PL3_W, .type = ARM_CP_NO_RAW,
4086       .writefn = tlbi_aa64_vae3is_write },
4087     { .name = "TLBI_ALLE3", .state = ARM_CP_STATE_AA64,
4088       .opc0 = 1, .opc1 = 6, .crn = 8, .crm = 7, .opc2 = 0,
4089       .access = PL3_W, .type = ARM_CP_NO_RAW,
4090       .writefn = tlbi_aa64_alle3_write },
4091     { .name = "TLBI_VAE3", .state = ARM_CP_STATE_AA64,
4092       .opc0 = 1, .opc1 = 6, .crn = 8, .crm = 7, .opc2 = 1,
4093       .access = PL3_W, .type = ARM_CP_NO_RAW,
4094       .writefn = tlbi_aa64_vae3_write },
4095     { .name = "TLBI_VALE3", .state = ARM_CP_STATE_AA64,
4096       .opc0 = 1, .opc1 = 6, .crn = 8, .crm = 7, .opc2 = 5,
4097       .access = PL3_W, .type = ARM_CP_NO_RAW,
4098       .writefn = tlbi_aa64_vae3_write },
4099     REGINFO_SENTINEL
4100 };
4101 
4102 static CPAccessResult ctr_el0_access(CPUARMState *env, const ARMCPRegInfo *ri,
4103                                      bool isread)
4104 {
4105     /* Only accessible in EL0 if SCTLR.UCT is set (and only in AArch64,
4106      * but the AArch32 CTR has its own reginfo struct)
4107      */
4108     if (arm_current_el(env) == 0 && !(env->cp15.sctlr_el[1] & SCTLR_UCT)) {
4109         return CP_ACCESS_TRAP;
4110     }
4111     return CP_ACCESS_OK;
4112 }
4113 
4114 static void oslar_write(CPUARMState *env, const ARMCPRegInfo *ri,
4115                         uint64_t value)
4116 {
4117     /* Writes to OSLAR_EL1 may update the OS lock status, which can be
4118      * read via a bit in OSLSR_EL1.
4119      */
4120     int oslock;
4121 
4122     if (ri->state == ARM_CP_STATE_AA32) {
4123         oslock = (value == 0xC5ACCE55);
4124     } else {
4125         oslock = value & 1;
4126     }
4127 
4128     env->cp15.oslsr_el1 = deposit32(env->cp15.oslsr_el1, 1, 1, oslock);
4129 }
4130 
4131 static const ARMCPRegInfo debug_cp_reginfo[] = {
4132     /* DBGDRAR, DBGDSAR: always RAZ since we don't implement memory mapped
4133      * debug components. The AArch64 version of DBGDRAR is named MDRAR_EL1;
4134      * unlike DBGDRAR it is never accessible from EL0.
4135      * DBGDSAR is deprecated and must RAZ from v8 anyway, so it has no AArch64
4136      * accessor.
4137      */
4138     { .name = "DBGDRAR", .cp = 14, .crn = 1, .crm = 0, .opc1 = 0, .opc2 = 0,
4139       .access = PL0_R, .accessfn = access_tdra,
4140       .type = ARM_CP_CONST, .resetvalue = 0 },
4141     { .name = "MDRAR_EL1", .state = ARM_CP_STATE_AA64,
4142       .opc0 = 2, .opc1 = 0, .crn = 1, .crm = 0, .opc2 = 0,
4143       .access = PL1_R, .accessfn = access_tdra,
4144       .type = ARM_CP_CONST, .resetvalue = 0 },
4145     { .name = "DBGDSAR", .cp = 14, .crn = 2, .crm = 0, .opc1 = 0, .opc2 = 0,
4146       .access = PL0_R, .accessfn = access_tdra,
4147       .type = ARM_CP_CONST, .resetvalue = 0 },
4148     /* Monitor debug system control register; the 32-bit alias is DBGDSCRext. */
4149     { .name = "MDSCR_EL1", .state = ARM_CP_STATE_BOTH,
4150       .cp = 14, .opc0 = 2, .opc1 = 0, .crn = 0, .crm = 2, .opc2 = 2,
4151       .access = PL1_RW, .accessfn = access_tda,
4152       .fieldoffset = offsetof(CPUARMState, cp15.mdscr_el1),
4153       .resetvalue = 0 },
4154     /* MDCCSR_EL0, aka DBGDSCRint. This is a read-only mirror of MDSCR_EL1.
4155      * We don't implement the configurable EL0 access.
4156      */
4157     { .name = "MDCCSR_EL0", .state = ARM_CP_STATE_BOTH,
4158       .cp = 14, .opc0 = 2, .opc1 = 0, .crn = 0, .crm = 1, .opc2 = 0,
4159       .type = ARM_CP_ALIAS,
4160       .access = PL1_R, .accessfn = access_tda,
4161       .fieldoffset = offsetof(CPUARMState, cp15.mdscr_el1), },
4162     { .name = "OSLAR_EL1", .state = ARM_CP_STATE_BOTH,
4163       .cp = 14, .opc0 = 2, .opc1 = 0, .crn = 1, .crm = 0, .opc2 = 4,
4164       .access = PL1_W, .type = ARM_CP_NO_RAW,
4165       .accessfn = access_tdosa,
4166       .writefn = oslar_write },
4167     { .name = "OSLSR_EL1", .state = ARM_CP_STATE_BOTH,
4168       .cp = 14, .opc0 = 2, .opc1 = 0, .crn = 1, .crm = 1, .opc2 = 4,
4169       .access = PL1_R, .resetvalue = 10,
4170       .accessfn = access_tdosa,
4171       .fieldoffset = offsetof(CPUARMState, cp15.oslsr_el1) },
4172     /* Dummy OSDLR_EL1: 32-bit Linux will read this */
4173     { .name = "OSDLR_EL1", .state = ARM_CP_STATE_BOTH,
4174       .cp = 14, .opc0 = 2, .opc1 = 0, .crn = 1, .crm = 3, .opc2 = 4,
4175       .access = PL1_RW, .accessfn = access_tdosa,
4176       .type = ARM_CP_NOP },
4177     /* Dummy DBGVCR: Linux wants to clear this on startup, but we don't
4178      * implement vector catch debug events yet.
4179      */
4180     { .name = "DBGVCR",
4181       .cp = 14, .opc1 = 0, .crn = 0, .crm = 7, .opc2 = 0,
4182       .access = PL1_RW, .accessfn = access_tda,
4183       .type = ARM_CP_NOP },
4184     /* Dummy DBGVCR32_EL2 (which is only for a 64-bit hypervisor
4185      * to save and restore a 32-bit guest's DBGVCR)
4186      */
4187     { .name = "DBGVCR32_EL2", .state = ARM_CP_STATE_AA64,
4188       .opc0 = 2, .opc1 = 4, .crn = 0, .crm = 7, .opc2 = 0,
4189       .access = PL2_RW, .accessfn = access_tda,
4190       .type = ARM_CP_NOP },
4191     /* Dummy MDCCINT_EL1, since we don't implement the Debug Communications
4192      * Channel but Linux may try to access this register. The 32-bit
4193      * alias is DBGDCCINT.
4194      */
4195     { .name = "MDCCINT_EL1", .state = ARM_CP_STATE_BOTH,
4196       .cp = 14, .opc0 = 2, .opc1 = 0, .crn = 0, .crm = 2, .opc2 = 0,
4197       .access = PL1_RW, .accessfn = access_tda,
4198       .type = ARM_CP_NOP },
4199     REGINFO_SENTINEL
4200 };
4201 
4202 static const ARMCPRegInfo debug_lpae_cp_reginfo[] = {
4203     /* 64 bit access versions of the (dummy) debug registers */
4204     { .name = "DBGDRAR", .cp = 14, .crm = 1, .opc1 = 0,
4205       .access = PL0_R, .type = ARM_CP_CONST|ARM_CP_64BIT, .resetvalue = 0 },
4206     { .name = "DBGDSAR", .cp = 14, .crm = 2, .opc1 = 0,
4207       .access = PL0_R, .type = ARM_CP_CONST|ARM_CP_64BIT, .resetvalue = 0 },
4208     REGINFO_SENTINEL
4209 };
4210 
4211 void hw_watchpoint_update(ARMCPU *cpu, int n)
4212 {
4213     CPUARMState *env = &cpu->env;
4214     vaddr len = 0;
4215     vaddr wvr = env->cp15.dbgwvr[n];
4216     uint64_t wcr = env->cp15.dbgwcr[n];
4217     int mask;
4218     int flags = BP_CPU | BP_STOP_BEFORE_ACCESS;
4219 
4220     if (env->cpu_watchpoint[n]) {
4221         cpu_watchpoint_remove_by_ref(CPU(cpu), env->cpu_watchpoint[n]);
4222         env->cpu_watchpoint[n] = NULL;
4223     }
4224 
4225     if (!extract64(wcr, 0, 1)) {
4226         /* E bit clear : watchpoint disabled */
4227         return;
4228     }
4229 
4230     switch (extract64(wcr, 3, 2)) {
4231     case 0:
4232         /* LSC 00 is reserved and must behave as if the wp is disabled */
4233         return;
4234     case 1:
4235         flags |= BP_MEM_READ;
4236         break;
4237     case 2:
4238         flags |= BP_MEM_WRITE;
4239         break;
4240     case 3:
4241         flags |= BP_MEM_ACCESS;
4242         break;
4243     }
4244 
4245     /* Attempts to use both MASK and BAS fields simultaneously are
4246      * CONSTRAINED UNPREDICTABLE; we opt to ignore BAS in this case,
4247      * thus generating a watchpoint for every byte in the masked region.
4248      */
4249     mask = extract64(wcr, 24, 4);
4250     if (mask == 1 || mask == 2) {
4251         /* Reserved values of MASK; we must act as if the mask value was
4252          * some non-reserved value, or as if the watchpoint were disabled.
4253          * We choose the latter.
4254          */
4255         return;
4256     } else if (mask) {
4257         /* Watchpoint covers an aligned area up to 2GB in size */
4258         len = 1ULL << mask;
4259         /* If masked bits in WVR are not zero it's CONSTRAINED UNPREDICTABLE
4260          * whether the watchpoint fires when the unmasked bits match; we opt
4261          * to generate the exceptions.
4262          */
4263         wvr &= ~(len - 1);
4264     } else {
4265         /* Watchpoint covers bytes defined by the byte address select bits */
4266         int bas = extract64(wcr, 5, 8);
4267         int basstart;
4268 
4269         if (bas == 0) {
4270             /* This must act as if the watchpoint is disabled */
4271             return;
4272         }
4273 
4274         if (extract64(wvr, 2, 1)) {
4275             /* Deprecated case of an only 4-aligned address. BAS[7:4] are
4276              * ignored, and BAS[3:0] define which bytes to watch.
4277              */
4278             bas &= 0xf;
4279         }
4280         /* The BAS bits are supposed to be programmed to indicate a contiguous
4281          * range of bytes. Otherwise it is CONSTRAINED UNPREDICTABLE whether
4282          * we fire for each byte in the word/doubleword addressed by the WVR.
4283          * We choose to ignore any non-zero bits after the first range of 1s.
4284          */
4285         basstart = ctz32(bas);
4286         len = cto32(bas >> basstart);
4287         wvr += basstart;
4288     }
4289 
4290     cpu_watchpoint_insert(CPU(cpu), wvr, len, flags,
4291                           &env->cpu_watchpoint[n]);
4292 }
4293 
4294 void hw_watchpoint_update_all(ARMCPU *cpu)
4295 {
4296     int i;
4297     CPUARMState *env = &cpu->env;
4298 
4299     /* Completely clear out existing QEMU watchpoints and our array, to
4300      * avoid possible stale entries following migration load.
4301      */
4302     cpu_watchpoint_remove_all(CPU(cpu), BP_CPU);
4303     memset(env->cpu_watchpoint, 0, sizeof(env->cpu_watchpoint));
4304 
4305     for (i = 0; i < ARRAY_SIZE(cpu->env.cpu_watchpoint); i++) {
4306         hw_watchpoint_update(cpu, i);
4307     }
4308 }
4309 
4310 static void dbgwvr_write(CPUARMState *env, const ARMCPRegInfo *ri,
4311                          uint64_t value)
4312 {
4313     ARMCPU *cpu = arm_env_get_cpu(env);
4314     int i = ri->crm;
4315 
4316     /* Bits [63:49] are hardwired to the value of bit [48]; that is, the
4317      * register reads and behaves as if values written are sign extended.
4318      * Bits [1:0] are RES0.
4319      */
4320     value = sextract64(value, 0, 49) & ~3ULL;
4321 
4322     raw_write(env, ri, value);
4323     hw_watchpoint_update(cpu, i);
4324 }
4325 
4326 static void dbgwcr_write(CPUARMState *env, const ARMCPRegInfo *ri,
4327                          uint64_t value)
4328 {
4329     ARMCPU *cpu = arm_env_get_cpu(env);
4330     int i = ri->crm;
4331 
4332     raw_write(env, ri, value);
4333     hw_watchpoint_update(cpu, i);
4334 }
4335 
4336 void hw_breakpoint_update(ARMCPU *cpu, int n)
4337 {
4338     CPUARMState *env = &cpu->env;
4339     uint64_t bvr = env->cp15.dbgbvr[n];
4340     uint64_t bcr = env->cp15.dbgbcr[n];
4341     vaddr addr;
4342     int bt;
4343     int flags = BP_CPU;
4344 
4345     if (env->cpu_breakpoint[n]) {
4346         cpu_breakpoint_remove_by_ref(CPU(cpu), env->cpu_breakpoint[n]);
4347         env->cpu_breakpoint[n] = NULL;
4348     }
4349 
4350     if (!extract64(bcr, 0, 1)) {
4351         /* E bit clear : watchpoint disabled */
4352         return;
4353     }
4354 
4355     bt = extract64(bcr, 20, 4);
4356 
4357     switch (bt) {
4358     case 4: /* unlinked address mismatch (reserved if AArch64) */
4359     case 5: /* linked address mismatch (reserved if AArch64) */
4360         qemu_log_mask(LOG_UNIMP,
4361                       "arm: address mismatch breakpoint types not implemented");
4362         return;
4363     case 0: /* unlinked address match */
4364     case 1: /* linked address match */
4365     {
4366         /* Bits [63:49] are hardwired to the value of bit [48]; that is,
4367          * we behave as if the register was sign extended. Bits [1:0] are
4368          * RES0. The BAS field is used to allow setting breakpoints on 16
4369          * bit wide instructions; it is CONSTRAINED UNPREDICTABLE whether
4370          * a bp will fire if the addresses covered by the bp and the addresses
4371          * covered by the insn overlap but the insn doesn't start at the
4372          * start of the bp address range. We choose to require the insn and
4373          * the bp to have the same address. The constraints on writing to
4374          * BAS enforced in dbgbcr_write mean we have only four cases:
4375          *  0b0000  => no breakpoint
4376          *  0b0011  => breakpoint on addr
4377          *  0b1100  => breakpoint on addr + 2
4378          *  0b1111  => breakpoint on addr
4379          * See also figure D2-3 in the v8 ARM ARM (DDI0487A.c).
4380          */
4381         int bas = extract64(bcr, 5, 4);
4382         addr = sextract64(bvr, 0, 49) & ~3ULL;
4383         if (bas == 0) {
4384             return;
4385         }
4386         if (bas == 0xc) {
4387             addr += 2;
4388         }
4389         break;
4390     }
4391     case 2: /* unlinked context ID match */
4392     case 8: /* unlinked VMID match (reserved if no EL2) */
4393     case 10: /* unlinked context ID and VMID match (reserved if no EL2) */
4394         qemu_log_mask(LOG_UNIMP,
4395                       "arm: unlinked context breakpoint types not implemented");
4396         return;
4397     case 9: /* linked VMID match (reserved if no EL2) */
4398     case 11: /* linked context ID and VMID match (reserved if no EL2) */
4399     case 3: /* linked context ID match */
4400     default:
4401         /* We must generate no events for Linked context matches (unless
4402          * they are linked to by some other bp/wp, which is handled in
4403          * updates for the linking bp/wp). We choose to also generate no events
4404          * for reserved values.
4405          */
4406         return;
4407     }
4408 
4409     cpu_breakpoint_insert(CPU(cpu), addr, flags, &env->cpu_breakpoint[n]);
4410 }
4411 
4412 void hw_breakpoint_update_all(ARMCPU *cpu)
4413 {
4414     int i;
4415     CPUARMState *env = &cpu->env;
4416 
4417     /* Completely clear out existing QEMU breakpoints and our array, to
4418      * avoid possible stale entries following migration load.
4419      */
4420     cpu_breakpoint_remove_all(CPU(cpu), BP_CPU);
4421     memset(env->cpu_breakpoint, 0, sizeof(env->cpu_breakpoint));
4422 
4423     for (i = 0; i < ARRAY_SIZE(cpu->env.cpu_breakpoint); i++) {
4424         hw_breakpoint_update(cpu, i);
4425     }
4426 }
4427 
4428 static void dbgbvr_write(CPUARMState *env, const ARMCPRegInfo *ri,
4429                          uint64_t value)
4430 {
4431     ARMCPU *cpu = arm_env_get_cpu(env);
4432     int i = ri->crm;
4433 
4434     raw_write(env, ri, value);
4435     hw_breakpoint_update(cpu, i);
4436 }
4437 
4438 static void dbgbcr_write(CPUARMState *env, const ARMCPRegInfo *ri,
4439                          uint64_t value)
4440 {
4441     ARMCPU *cpu = arm_env_get_cpu(env);
4442     int i = ri->crm;
4443 
4444     /* BAS[3] is a read-only copy of BAS[2], and BAS[1] a read-only
4445      * copy of BAS[0].
4446      */
4447     value = deposit64(value, 6, 1, extract64(value, 5, 1));
4448     value = deposit64(value, 8, 1, extract64(value, 7, 1));
4449 
4450     raw_write(env, ri, value);
4451     hw_breakpoint_update(cpu, i);
4452 }
4453 
4454 static void define_debug_regs(ARMCPU *cpu)
4455 {
4456     /* Define v7 and v8 architectural debug registers.
4457      * These are just dummy implementations for now.
4458      */
4459     int i;
4460     int wrps, brps, ctx_cmps;
4461     ARMCPRegInfo dbgdidr = {
4462         .name = "DBGDIDR", .cp = 14, .crn = 0, .crm = 0, .opc1 = 0, .opc2 = 0,
4463         .access = PL0_R, .accessfn = access_tda,
4464         .type = ARM_CP_CONST, .resetvalue = cpu->dbgdidr,
4465     };
4466 
4467     /* Note that all these register fields hold "number of Xs minus 1". */
4468     brps = extract32(cpu->dbgdidr, 24, 4);
4469     wrps = extract32(cpu->dbgdidr, 28, 4);
4470     ctx_cmps = extract32(cpu->dbgdidr, 20, 4);
4471 
4472     assert(ctx_cmps <= brps);
4473 
4474     /* The DBGDIDR and ID_AA64DFR0_EL1 define various properties
4475      * of the debug registers such as number of breakpoints;
4476      * check that if they both exist then they agree.
4477      */
4478     if (arm_feature(&cpu->env, ARM_FEATURE_AARCH64)) {
4479         assert(extract32(cpu->id_aa64dfr0, 12, 4) == brps);
4480         assert(extract32(cpu->id_aa64dfr0, 20, 4) == wrps);
4481         assert(extract32(cpu->id_aa64dfr0, 28, 4) == ctx_cmps);
4482     }
4483 
4484     define_one_arm_cp_reg(cpu, &dbgdidr);
4485     define_arm_cp_regs(cpu, debug_cp_reginfo);
4486 
4487     if (arm_feature(&cpu->env, ARM_FEATURE_LPAE)) {
4488         define_arm_cp_regs(cpu, debug_lpae_cp_reginfo);
4489     }
4490 
4491     for (i = 0; i < brps + 1; i++) {
4492         ARMCPRegInfo dbgregs[] = {
4493             { .name = "DBGBVR", .state = ARM_CP_STATE_BOTH,
4494               .cp = 14, .opc0 = 2, .opc1 = 0, .crn = 0, .crm = i, .opc2 = 4,
4495               .access = PL1_RW, .accessfn = access_tda,
4496               .fieldoffset = offsetof(CPUARMState, cp15.dbgbvr[i]),
4497               .writefn = dbgbvr_write, .raw_writefn = raw_write
4498             },
4499             { .name = "DBGBCR", .state = ARM_CP_STATE_BOTH,
4500               .cp = 14, .opc0 = 2, .opc1 = 0, .crn = 0, .crm = i, .opc2 = 5,
4501               .access = PL1_RW, .accessfn = access_tda,
4502               .fieldoffset = offsetof(CPUARMState, cp15.dbgbcr[i]),
4503               .writefn = dbgbcr_write, .raw_writefn = raw_write
4504             },
4505             REGINFO_SENTINEL
4506         };
4507         define_arm_cp_regs(cpu, dbgregs);
4508     }
4509 
4510     for (i = 0; i < wrps + 1; i++) {
4511         ARMCPRegInfo dbgregs[] = {
4512             { .name = "DBGWVR", .state = ARM_CP_STATE_BOTH,
4513               .cp = 14, .opc0 = 2, .opc1 = 0, .crn = 0, .crm = i, .opc2 = 6,
4514               .access = PL1_RW, .accessfn = access_tda,
4515               .fieldoffset = offsetof(CPUARMState, cp15.dbgwvr[i]),
4516               .writefn = dbgwvr_write, .raw_writefn = raw_write
4517             },
4518             { .name = "DBGWCR", .state = ARM_CP_STATE_BOTH,
4519               .cp = 14, .opc0 = 2, .opc1 = 0, .crn = 0, .crm = i, .opc2 = 7,
4520               .access = PL1_RW, .accessfn = access_tda,
4521               .fieldoffset = offsetof(CPUARMState, cp15.dbgwcr[i]),
4522               .writefn = dbgwcr_write, .raw_writefn = raw_write
4523             },
4524             REGINFO_SENTINEL
4525         };
4526         define_arm_cp_regs(cpu, dbgregs);
4527     }
4528 }
4529 
4530 void register_cp_regs_for_features(ARMCPU *cpu)
4531 {
4532     /* Register all the coprocessor registers based on feature bits */
4533     CPUARMState *env = &cpu->env;
4534     if (arm_feature(env, ARM_FEATURE_M)) {
4535         /* M profile has no coprocessor registers */
4536         return;
4537     }
4538 
4539     define_arm_cp_regs(cpu, cp_reginfo);
4540     if (!arm_feature(env, ARM_FEATURE_V8)) {
4541         /* Must go early as it is full of wildcards that may be
4542          * overridden by later definitions.
4543          */
4544         define_arm_cp_regs(cpu, not_v8_cp_reginfo);
4545     }
4546 
4547     if (arm_feature(env, ARM_FEATURE_V6)) {
4548         /* The ID registers all have impdef reset values */
4549         ARMCPRegInfo v6_idregs[] = {
4550             { .name = "ID_PFR0", .state = ARM_CP_STATE_BOTH,
4551               .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 1, .opc2 = 0,
4552               .access = PL1_R, .type = ARM_CP_CONST,
4553               .resetvalue = cpu->id_pfr0 },
4554             { .name = "ID_PFR1", .state = ARM_CP_STATE_BOTH,
4555               .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 1, .opc2 = 1,
4556               .access = PL1_R, .type = ARM_CP_CONST,
4557               .resetvalue = cpu->id_pfr1 },
4558             { .name = "ID_DFR0", .state = ARM_CP_STATE_BOTH,
4559               .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 1, .opc2 = 2,
4560               .access = PL1_R, .type = ARM_CP_CONST,
4561               .resetvalue = cpu->id_dfr0 },
4562             { .name = "ID_AFR0", .state = ARM_CP_STATE_BOTH,
4563               .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 1, .opc2 = 3,
4564               .access = PL1_R, .type = ARM_CP_CONST,
4565               .resetvalue = cpu->id_afr0 },
4566             { .name = "ID_MMFR0", .state = ARM_CP_STATE_BOTH,
4567               .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 1, .opc2 = 4,
4568               .access = PL1_R, .type = ARM_CP_CONST,
4569               .resetvalue = cpu->id_mmfr0 },
4570             { .name = "ID_MMFR1", .state = ARM_CP_STATE_BOTH,
4571               .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 1, .opc2 = 5,
4572               .access = PL1_R, .type = ARM_CP_CONST,
4573               .resetvalue = cpu->id_mmfr1 },
4574             { .name = "ID_MMFR2", .state = ARM_CP_STATE_BOTH,
4575               .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 1, .opc2 = 6,
4576               .access = PL1_R, .type = ARM_CP_CONST,
4577               .resetvalue = cpu->id_mmfr2 },
4578             { .name = "ID_MMFR3", .state = ARM_CP_STATE_BOTH,
4579               .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 1, .opc2 = 7,
4580               .access = PL1_R, .type = ARM_CP_CONST,
4581               .resetvalue = cpu->id_mmfr3 },
4582             { .name = "ID_ISAR0", .state = ARM_CP_STATE_BOTH,
4583               .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 2, .opc2 = 0,
4584               .access = PL1_R, .type = ARM_CP_CONST,
4585               .resetvalue = cpu->id_isar0 },
4586             { .name = "ID_ISAR1", .state = ARM_CP_STATE_BOTH,
4587               .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 2, .opc2 = 1,
4588               .access = PL1_R, .type = ARM_CP_CONST,
4589               .resetvalue = cpu->id_isar1 },
4590             { .name = "ID_ISAR2", .state = ARM_CP_STATE_BOTH,
4591               .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 2, .opc2 = 2,
4592               .access = PL1_R, .type = ARM_CP_CONST,
4593               .resetvalue = cpu->id_isar2 },
4594             { .name = "ID_ISAR3", .state = ARM_CP_STATE_BOTH,
4595               .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 2, .opc2 = 3,
4596               .access = PL1_R, .type = ARM_CP_CONST,
4597               .resetvalue = cpu->id_isar3 },
4598             { .name = "ID_ISAR4", .state = ARM_CP_STATE_BOTH,
4599               .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 2, .opc2 = 4,
4600               .access = PL1_R, .type = ARM_CP_CONST,
4601               .resetvalue = cpu->id_isar4 },
4602             { .name = "ID_ISAR5", .state = ARM_CP_STATE_BOTH,
4603               .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 2, .opc2 = 5,
4604               .access = PL1_R, .type = ARM_CP_CONST,
4605               .resetvalue = cpu->id_isar5 },
4606             { .name = "ID_MMFR4", .state = ARM_CP_STATE_BOTH,
4607               .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 2, .opc2 = 6,
4608               .access = PL1_R, .type = ARM_CP_CONST,
4609               .resetvalue = cpu->id_mmfr4 },
4610             /* 7 is as yet unallocated and must RAZ */
4611             { .name = "ID_ISAR7_RESERVED", .state = ARM_CP_STATE_BOTH,
4612               .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 2, .opc2 = 7,
4613               .access = PL1_R, .type = ARM_CP_CONST,
4614               .resetvalue = 0 },
4615             REGINFO_SENTINEL
4616         };
4617         define_arm_cp_regs(cpu, v6_idregs);
4618         define_arm_cp_regs(cpu, v6_cp_reginfo);
4619     } else {
4620         define_arm_cp_regs(cpu, not_v6_cp_reginfo);
4621     }
4622     if (arm_feature(env, ARM_FEATURE_V6K)) {
4623         define_arm_cp_regs(cpu, v6k_cp_reginfo);
4624     }
4625     if (arm_feature(env, ARM_FEATURE_V7MP) &&
4626         !arm_feature(env, ARM_FEATURE_PMSA)) {
4627         define_arm_cp_regs(cpu, v7mp_cp_reginfo);
4628     }
4629     if (arm_feature(env, ARM_FEATURE_V7)) {
4630         /* v7 performance monitor control register: same implementor
4631          * field as main ID register, and we implement only the cycle
4632          * count register.
4633          */
4634 #ifndef CONFIG_USER_ONLY
4635         ARMCPRegInfo pmcr = {
4636             .name = "PMCR", .cp = 15, .crn = 9, .crm = 12, .opc1 = 0, .opc2 = 0,
4637             .access = PL0_RW,
4638             .type = ARM_CP_IO | ARM_CP_ALIAS,
4639             .fieldoffset = offsetoflow32(CPUARMState, cp15.c9_pmcr),
4640             .accessfn = pmreg_access, .writefn = pmcr_write,
4641             .raw_writefn = raw_write,
4642         };
4643         ARMCPRegInfo pmcr64 = {
4644             .name = "PMCR_EL0", .state = ARM_CP_STATE_AA64,
4645             .opc0 = 3, .opc1 = 3, .crn = 9, .crm = 12, .opc2 = 0,
4646             .access = PL0_RW, .accessfn = pmreg_access,
4647             .type = ARM_CP_IO,
4648             .fieldoffset = offsetof(CPUARMState, cp15.c9_pmcr),
4649             .resetvalue = cpu->midr & 0xff000000,
4650             .writefn = pmcr_write, .raw_writefn = raw_write,
4651         };
4652         define_one_arm_cp_reg(cpu, &pmcr);
4653         define_one_arm_cp_reg(cpu, &pmcr64);
4654 #endif
4655         ARMCPRegInfo clidr = {
4656             .name = "CLIDR", .state = ARM_CP_STATE_BOTH,
4657             .opc0 = 3, .crn = 0, .crm = 0, .opc1 = 1, .opc2 = 1,
4658             .access = PL1_R, .type = ARM_CP_CONST, .resetvalue = cpu->clidr
4659         };
4660         define_one_arm_cp_reg(cpu, &clidr);
4661         define_arm_cp_regs(cpu, v7_cp_reginfo);
4662         define_debug_regs(cpu);
4663     } else {
4664         define_arm_cp_regs(cpu, not_v7_cp_reginfo);
4665     }
4666     if (arm_feature(env, ARM_FEATURE_V8)) {
4667         /* AArch64 ID registers, which all have impdef reset values.
4668          * Note that within the ID register ranges the unused slots
4669          * must all RAZ, not UNDEF; future architecture versions may
4670          * define new registers here.
4671          */
4672         ARMCPRegInfo v8_idregs[] = {
4673             { .name = "ID_AA64PFR0_EL1", .state = ARM_CP_STATE_AA64,
4674               .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 4, .opc2 = 0,
4675               .access = PL1_R, .type = ARM_CP_CONST,
4676               .resetvalue = cpu->id_aa64pfr0 },
4677             { .name = "ID_AA64PFR1_EL1", .state = ARM_CP_STATE_AA64,
4678               .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 4, .opc2 = 1,
4679               .access = PL1_R, .type = ARM_CP_CONST,
4680               .resetvalue = cpu->id_aa64pfr1},
4681             { .name = "ID_AA64PFR2_EL1_RESERVED", .state = ARM_CP_STATE_AA64,
4682               .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 4, .opc2 = 2,
4683               .access = PL1_R, .type = ARM_CP_CONST,
4684               .resetvalue = 0 },
4685             { .name = "ID_AA64PFR3_EL1_RESERVED", .state = ARM_CP_STATE_AA64,
4686               .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 4, .opc2 = 3,
4687               .access = PL1_R, .type = ARM_CP_CONST,
4688               .resetvalue = 0 },
4689             { .name = "ID_AA64PFR4_EL1_RESERVED", .state = ARM_CP_STATE_AA64,
4690               .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 4, .opc2 = 4,
4691               .access = PL1_R, .type = ARM_CP_CONST,
4692               .resetvalue = 0 },
4693             { .name = "ID_AA64PFR5_EL1_RESERVED", .state = ARM_CP_STATE_AA64,
4694               .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 4, .opc2 = 5,
4695               .access = PL1_R, .type = ARM_CP_CONST,
4696               .resetvalue = 0 },
4697             { .name = "ID_AA64PFR6_EL1_RESERVED", .state = ARM_CP_STATE_AA64,
4698               .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 4, .opc2 = 6,
4699               .access = PL1_R, .type = ARM_CP_CONST,
4700               .resetvalue = 0 },
4701             { .name = "ID_AA64PFR7_EL1_RESERVED", .state = ARM_CP_STATE_AA64,
4702               .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 4, .opc2 = 7,
4703               .access = PL1_R, .type = ARM_CP_CONST,
4704               .resetvalue = 0 },
4705             { .name = "ID_AA64DFR0_EL1", .state = ARM_CP_STATE_AA64,
4706               .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 5, .opc2 = 0,
4707               .access = PL1_R, .type = ARM_CP_CONST,
4708               .resetvalue = cpu->id_aa64dfr0 },
4709             { .name = "ID_AA64DFR1_EL1", .state = ARM_CP_STATE_AA64,
4710               .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 5, .opc2 = 1,
4711               .access = PL1_R, .type = ARM_CP_CONST,
4712               .resetvalue = cpu->id_aa64dfr1 },
4713             { .name = "ID_AA64DFR2_EL1_RESERVED", .state = ARM_CP_STATE_AA64,
4714               .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 5, .opc2 = 2,
4715               .access = PL1_R, .type = ARM_CP_CONST,
4716               .resetvalue = 0 },
4717             { .name = "ID_AA64DFR3_EL1_RESERVED", .state = ARM_CP_STATE_AA64,
4718               .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 5, .opc2 = 3,
4719               .access = PL1_R, .type = ARM_CP_CONST,
4720               .resetvalue = 0 },
4721             { .name = "ID_AA64AFR0_EL1", .state = ARM_CP_STATE_AA64,
4722               .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 5, .opc2 = 4,
4723               .access = PL1_R, .type = ARM_CP_CONST,
4724               .resetvalue = cpu->id_aa64afr0 },
4725             { .name = "ID_AA64AFR1_EL1", .state = ARM_CP_STATE_AA64,
4726               .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 5, .opc2 = 5,
4727               .access = PL1_R, .type = ARM_CP_CONST,
4728               .resetvalue = cpu->id_aa64afr1 },
4729             { .name = "ID_AA64AFR2_EL1_RESERVED", .state = ARM_CP_STATE_AA64,
4730               .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 5, .opc2 = 6,
4731               .access = PL1_R, .type = ARM_CP_CONST,
4732               .resetvalue = 0 },
4733             { .name = "ID_AA64AFR3_EL1_RESERVED", .state = ARM_CP_STATE_AA64,
4734               .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 5, .opc2 = 7,
4735               .access = PL1_R, .type = ARM_CP_CONST,
4736               .resetvalue = 0 },
4737             { .name = "ID_AA64ISAR0_EL1", .state = ARM_CP_STATE_AA64,
4738               .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 6, .opc2 = 0,
4739               .access = PL1_R, .type = ARM_CP_CONST,
4740               .resetvalue = cpu->id_aa64isar0 },
4741             { .name = "ID_AA64ISAR1_EL1", .state = ARM_CP_STATE_AA64,
4742               .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 6, .opc2 = 1,
4743               .access = PL1_R, .type = ARM_CP_CONST,
4744               .resetvalue = cpu->id_aa64isar1 },
4745             { .name = "ID_AA64ISAR2_EL1_RESERVED", .state = ARM_CP_STATE_AA64,
4746               .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 6, .opc2 = 2,
4747               .access = PL1_R, .type = ARM_CP_CONST,
4748               .resetvalue = 0 },
4749             { .name = "ID_AA64ISAR3_EL1_RESERVED", .state = ARM_CP_STATE_AA64,
4750               .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 6, .opc2 = 3,
4751               .access = PL1_R, .type = ARM_CP_CONST,
4752               .resetvalue = 0 },
4753             { .name = "ID_AA64ISAR4_EL1_RESERVED", .state = ARM_CP_STATE_AA64,
4754               .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 6, .opc2 = 4,
4755               .access = PL1_R, .type = ARM_CP_CONST,
4756               .resetvalue = 0 },
4757             { .name = "ID_AA64ISAR5_EL1_RESERVED", .state = ARM_CP_STATE_AA64,
4758               .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 6, .opc2 = 5,
4759               .access = PL1_R, .type = ARM_CP_CONST,
4760               .resetvalue = 0 },
4761             { .name = "ID_AA64ISAR6_EL1_RESERVED", .state = ARM_CP_STATE_AA64,
4762               .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 6, .opc2 = 6,
4763               .access = PL1_R, .type = ARM_CP_CONST,
4764               .resetvalue = 0 },
4765             { .name = "ID_AA64ISAR7_EL1_RESERVED", .state = ARM_CP_STATE_AA64,
4766               .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 6, .opc2 = 7,
4767               .access = PL1_R, .type = ARM_CP_CONST,
4768               .resetvalue = 0 },
4769             { .name = "ID_AA64MMFR0_EL1", .state = ARM_CP_STATE_AA64,
4770               .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 7, .opc2 = 0,
4771               .access = PL1_R, .type = ARM_CP_CONST,
4772               .resetvalue = cpu->id_aa64mmfr0 },
4773             { .name = "ID_AA64MMFR1_EL1", .state = ARM_CP_STATE_AA64,
4774               .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 7, .opc2 = 1,
4775               .access = PL1_R, .type = ARM_CP_CONST,
4776               .resetvalue = cpu->id_aa64mmfr1 },
4777             { .name = "ID_AA64MMFR2_EL1_RESERVED", .state = ARM_CP_STATE_AA64,
4778               .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 7, .opc2 = 2,
4779               .access = PL1_R, .type = ARM_CP_CONST,
4780               .resetvalue = 0 },
4781             { .name = "ID_AA64MMFR3_EL1_RESERVED", .state = ARM_CP_STATE_AA64,
4782               .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 7, .opc2 = 3,
4783               .access = PL1_R, .type = ARM_CP_CONST,
4784               .resetvalue = 0 },
4785             { .name = "ID_AA64MMFR4_EL1_RESERVED", .state = ARM_CP_STATE_AA64,
4786               .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 7, .opc2 = 4,
4787               .access = PL1_R, .type = ARM_CP_CONST,
4788               .resetvalue = 0 },
4789             { .name = "ID_AA64MMFR5_EL1_RESERVED", .state = ARM_CP_STATE_AA64,
4790               .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 7, .opc2 = 5,
4791               .access = PL1_R, .type = ARM_CP_CONST,
4792               .resetvalue = 0 },
4793             { .name = "ID_AA64MMFR6_EL1_RESERVED", .state = ARM_CP_STATE_AA64,
4794               .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 7, .opc2 = 6,
4795               .access = PL1_R, .type = ARM_CP_CONST,
4796               .resetvalue = 0 },
4797             { .name = "ID_AA64MMFR7_EL1_RESERVED", .state = ARM_CP_STATE_AA64,
4798               .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 7, .opc2 = 7,
4799               .access = PL1_R, .type = ARM_CP_CONST,
4800               .resetvalue = 0 },
4801             { .name = "MVFR0_EL1", .state = ARM_CP_STATE_AA64,
4802               .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 3, .opc2 = 0,
4803               .access = PL1_R, .type = ARM_CP_CONST,
4804               .resetvalue = cpu->mvfr0 },
4805             { .name = "MVFR1_EL1", .state = ARM_CP_STATE_AA64,
4806               .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 3, .opc2 = 1,
4807               .access = PL1_R, .type = ARM_CP_CONST,
4808               .resetvalue = cpu->mvfr1 },
4809             { .name = "MVFR2_EL1", .state = ARM_CP_STATE_AA64,
4810               .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 3, .opc2 = 2,
4811               .access = PL1_R, .type = ARM_CP_CONST,
4812               .resetvalue = cpu->mvfr2 },
4813             { .name = "MVFR3_EL1_RESERVED", .state = ARM_CP_STATE_AA64,
4814               .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 3, .opc2 = 3,
4815               .access = PL1_R, .type = ARM_CP_CONST,
4816               .resetvalue = 0 },
4817             { .name = "MVFR4_EL1_RESERVED", .state = ARM_CP_STATE_AA64,
4818               .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 3, .opc2 = 4,
4819               .access = PL1_R, .type = ARM_CP_CONST,
4820               .resetvalue = 0 },
4821             { .name = "MVFR5_EL1_RESERVED", .state = ARM_CP_STATE_AA64,
4822               .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 3, .opc2 = 5,
4823               .access = PL1_R, .type = ARM_CP_CONST,
4824               .resetvalue = 0 },
4825             { .name = "MVFR6_EL1_RESERVED", .state = ARM_CP_STATE_AA64,
4826               .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 3, .opc2 = 6,
4827               .access = PL1_R, .type = ARM_CP_CONST,
4828               .resetvalue = 0 },
4829             { .name = "MVFR7_EL1_RESERVED", .state = ARM_CP_STATE_AA64,
4830               .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 3, .opc2 = 7,
4831               .access = PL1_R, .type = ARM_CP_CONST,
4832               .resetvalue = 0 },
4833             { .name = "PMCEID0", .state = ARM_CP_STATE_AA32,
4834               .cp = 15, .opc1 = 0, .crn = 9, .crm = 12, .opc2 = 6,
4835               .access = PL0_R, .accessfn = pmreg_access, .type = ARM_CP_CONST,
4836               .resetvalue = cpu->pmceid0 },
4837             { .name = "PMCEID0_EL0", .state = ARM_CP_STATE_AA64,
4838               .opc0 = 3, .opc1 = 3, .crn = 9, .crm = 12, .opc2 = 6,
4839               .access = PL0_R, .accessfn = pmreg_access, .type = ARM_CP_CONST,
4840               .resetvalue = cpu->pmceid0 },
4841             { .name = "PMCEID1", .state = ARM_CP_STATE_AA32,
4842               .cp = 15, .opc1 = 0, .crn = 9, .crm = 12, .opc2 = 7,
4843               .access = PL0_R, .accessfn = pmreg_access, .type = ARM_CP_CONST,
4844               .resetvalue = cpu->pmceid1 },
4845             { .name = "PMCEID1_EL0", .state = ARM_CP_STATE_AA64,
4846               .opc0 = 3, .opc1 = 3, .crn = 9, .crm = 12, .opc2 = 7,
4847               .access = PL0_R, .accessfn = pmreg_access, .type = ARM_CP_CONST,
4848               .resetvalue = cpu->pmceid1 },
4849             REGINFO_SENTINEL
4850         };
4851         /* RVBAR_EL1 is only implemented if EL1 is the highest EL */
4852         if (!arm_feature(env, ARM_FEATURE_EL3) &&
4853             !arm_feature(env, ARM_FEATURE_EL2)) {
4854             ARMCPRegInfo rvbar = {
4855                 .name = "RVBAR_EL1", .state = ARM_CP_STATE_AA64,
4856                 .opc0 = 3, .opc1 = 0, .crn = 12, .crm = 0, .opc2 = 1,
4857                 .type = ARM_CP_CONST, .access = PL1_R, .resetvalue = cpu->rvbar
4858             };
4859             define_one_arm_cp_reg(cpu, &rvbar);
4860         }
4861         define_arm_cp_regs(cpu, v8_idregs);
4862         define_arm_cp_regs(cpu, v8_cp_reginfo);
4863     }
4864     if (arm_feature(env, ARM_FEATURE_EL2)) {
4865         uint64_t vmpidr_def = mpidr_read_val(env);
4866         ARMCPRegInfo vpidr_regs[] = {
4867             { .name = "VPIDR", .state = ARM_CP_STATE_AA32,
4868               .cp = 15, .opc1 = 4, .crn = 0, .crm = 0, .opc2 = 0,
4869               .access = PL2_RW, .accessfn = access_el3_aa32ns,
4870               .resetvalue = cpu->midr,
4871               .fieldoffset = offsetof(CPUARMState, cp15.vpidr_el2) },
4872             { .name = "VPIDR_EL2", .state = ARM_CP_STATE_AA64,
4873               .opc0 = 3, .opc1 = 4, .crn = 0, .crm = 0, .opc2 = 0,
4874               .access = PL2_RW, .resetvalue = cpu->midr,
4875               .fieldoffset = offsetof(CPUARMState, cp15.vpidr_el2) },
4876             { .name = "VMPIDR", .state = ARM_CP_STATE_AA32,
4877               .cp = 15, .opc1 = 4, .crn = 0, .crm = 0, .opc2 = 5,
4878               .access = PL2_RW, .accessfn = access_el3_aa32ns,
4879               .resetvalue = vmpidr_def,
4880               .fieldoffset = offsetof(CPUARMState, cp15.vmpidr_el2) },
4881             { .name = "VMPIDR_EL2", .state = ARM_CP_STATE_AA64,
4882               .opc0 = 3, .opc1 = 4, .crn = 0, .crm = 0, .opc2 = 5,
4883               .access = PL2_RW,
4884               .resetvalue = vmpidr_def,
4885               .fieldoffset = offsetof(CPUARMState, cp15.vmpidr_el2) },
4886             REGINFO_SENTINEL
4887         };
4888         define_arm_cp_regs(cpu, vpidr_regs);
4889         define_arm_cp_regs(cpu, el2_cp_reginfo);
4890         /* RVBAR_EL2 is only implemented if EL2 is the highest EL */
4891         if (!arm_feature(env, ARM_FEATURE_EL3)) {
4892             ARMCPRegInfo rvbar = {
4893                 .name = "RVBAR_EL2", .state = ARM_CP_STATE_AA64,
4894                 .opc0 = 3, .opc1 = 4, .crn = 12, .crm = 0, .opc2 = 1,
4895                 .type = ARM_CP_CONST, .access = PL2_R, .resetvalue = cpu->rvbar
4896             };
4897             define_one_arm_cp_reg(cpu, &rvbar);
4898         }
4899     } else {
4900         /* If EL2 is missing but higher ELs are enabled, we need to
4901          * register the no_el2 reginfos.
4902          */
4903         if (arm_feature(env, ARM_FEATURE_EL3)) {
4904             /* When EL3 exists but not EL2, VPIDR and VMPIDR take the value
4905              * of MIDR_EL1 and MPIDR_EL1.
4906              */
4907             ARMCPRegInfo vpidr_regs[] = {
4908                 { .name = "VPIDR_EL2", .state = ARM_CP_STATE_BOTH,
4909                   .opc0 = 3, .opc1 = 4, .crn = 0, .crm = 0, .opc2 = 0,
4910                   .access = PL2_RW, .accessfn = access_el3_aa32ns_aa64any,
4911                   .type = ARM_CP_CONST, .resetvalue = cpu->midr,
4912                   .fieldoffset = offsetof(CPUARMState, cp15.vpidr_el2) },
4913                 { .name = "VMPIDR_EL2", .state = ARM_CP_STATE_BOTH,
4914                   .opc0 = 3, .opc1 = 4, .crn = 0, .crm = 0, .opc2 = 5,
4915                   .access = PL2_RW, .accessfn = access_el3_aa32ns_aa64any,
4916                   .type = ARM_CP_NO_RAW,
4917                   .writefn = arm_cp_write_ignore, .readfn = mpidr_read },
4918                 REGINFO_SENTINEL
4919             };
4920             define_arm_cp_regs(cpu, vpidr_regs);
4921             define_arm_cp_regs(cpu, el3_no_el2_cp_reginfo);
4922         }
4923     }
4924     if (arm_feature(env, ARM_FEATURE_EL3)) {
4925         define_arm_cp_regs(cpu, el3_cp_reginfo);
4926         ARMCPRegInfo el3_regs[] = {
4927             { .name = "RVBAR_EL3", .state = ARM_CP_STATE_AA64,
4928               .opc0 = 3, .opc1 = 6, .crn = 12, .crm = 0, .opc2 = 1,
4929               .type = ARM_CP_CONST, .access = PL3_R, .resetvalue = cpu->rvbar },
4930             { .name = "SCTLR_EL3", .state = ARM_CP_STATE_AA64,
4931               .opc0 = 3, .opc1 = 6, .crn = 1, .crm = 0, .opc2 = 0,
4932               .access = PL3_RW,
4933               .raw_writefn = raw_write, .writefn = sctlr_write,
4934               .fieldoffset = offsetof(CPUARMState, cp15.sctlr_el[3]),
4935               .resetvalue = cpu->reset_sctlr },
4936             REGINFO_SENTINEL
4937         };
4938 
4939         define_arm_cp_regs(cpu, el3_regs);
4940     }
4941     /* The behaviour of NSACR is sufficiently various that we don't
4942      * try to describe it in a single reginfo:
4943      *  if EL3 is 64 bit, then trap to EL3 from S EL1,
4944      *     reads as constant 0xc00 from NS EL1 and NS EL2
4945      *  if EL3 is 32 bit, then RW at EL3, RO at NS EL1 and NS EL2
4946      *  if v7 without EL3, register doesn't exist
4947      *  if v8 without EL3, reads as constant 0xc00 from NS EL1 and NS EL2
4948      */
4949     if (arm_feature(env, ARM_FEATURE_EL3)) {
4950         if (arm_feature(env, ARM_FEATURE_AARCH64)) {
4951             ARMCPRegInfo nsacr = {
4952                 .name = "NSACR", .type = ARM_CP_CONST,
4953                 .cp = 15, .opc1 = 0, .crn = 1, .crm = 1, .opc2 = 2,
4954                 .access = PL1_RW, .accessfn = nsacr_access,
4955                 .resetvalue = 0xc00
4956             };
4957             define_one_arm_cp_reg(cpu, &nsacr);
4958         } else {
4959             ARMCPRegInfo nsacr = {
4960                 .name = "NSACR",
4961                 .cp = 15, .opc1 = 0, .crn = 1, .crm = 1, .opc2 = 2,
4962                 .access = PL3_RW | PL1_R,
4963                 .resetvalue = 0,
4964                 .fieldoffset = offsetof(CPUARMState, cp15.nsacr)
4965             };
4966             define_one_arm_cp_reg(cpu, &nsacr);
4967         }
4968     } else {
4969         if (arm_feature(env, ARM_FEATURE_V8)) {
4970             ARMCPRegInfo nsacr = {
4971                 .name = "NSACR", .type = ARM_CP_CONST,
4972                 .cp = 15, .opc1 = 0, .crn = 1, .crm = 1, .opc2 = 2,
4973                 .access = PL1_R,
4974                 .resetvalue = 0xc00
4975             };
4976             define_one_arm_cp_reg(cpu, &nsacr);
4977         }
4978     }
4979 
4980     if (arm_feature(env, ARM_FEATURE_PMSA)) {
4981         if (arm_feature(env, ARM_FEATURE_V6)) {
4982             /* PMSAv6 not implemented */
4983             assert(arm_feature(env, ARM_FEATURE_V7));
4984             define_arm_cp_regs(cpu, vmsa_pmsa_cp_reginfo);
4985             define_arm_cp_regs(cpu, pmsav7_cp_reginfo);
4986         } else {
4987             define_arm_cp_regs(cpu, pmsav5_cp_reginfo);
4988         }
4989     } else {
4990         define_arm_cp_regs(cpu, vmsa_pmsa_cp_reginfo);
4991         define_arm_cp_regs(cpu, vmsa_cp_reginfo);
4992     }
4993     if (arm_feature(env, ARM_FEATURE_THUMB2EE)) {
4994         define_arm_cp_regs(cpu, t2ee_cp_reginfo);
4995     }
4996     if (arm_feature(env, ARM_FEATURE_GENERIC_TIMER)) {
4997         define_arm_cp_regs(cpu, generic_timer_cp_reginfo);
4998     }
4999     if (arm_feature(env, ARM_FEATURE_VAPA)) {
5000         define_arm_cp_regs(cpu, vapa_cp_reginfo);
5001     }
5002     if (arm_feature(env, ARM_FEATURE_CACHE_TEST_CLEAN)) {
5003         define_arm_cp_regs(cpu, cache_test_clean_cp_reginfo);
5004     }
5005     if (arm_feature(env, ARM_FEATURE_CACHE_DIRTY_REG)) {
5006         define_arm_cp_regs(cpu, cache_dirty_status_cp_reginfo);
5007     }
5008     if (arm_feature(env, ARM_FEATURE_CACHE_BLOCK_OPS)) {
5009         define_arm_cp_regs(cpu, cache_block_ops_cp_reginfo);
5010     }
5011     if (arm_feature(env, ARM_FEATURE_OMAPCP)) {
5012         define_arm_cp_regs(cpu, omap_cp_reginfo);
5013     }
5014     if (arm_feature(env, ARM_FEATURE_STRONGARM)) {
5015         define_arm_cp_regs(cpu, strongarm_cp_reginfo);
5016     }
5017     if (arm_feature(env, ARM_FEATURE_XSCALE)) {
5018         define_arm_cp_regs(cpu, xscale_cp_reginfo);
5019     }
5020     if (arm_feature(env, ARM_FEATURE_DUMMY_C15_REGS)) {
5021         define_arm_cp_regs(cpu, dummy_c15_cp_reginfo);
5022     }
5023     if (arm_feature(env, ARM_FEATURE_LPAE)) {
5024         define_arm_cp_regs(cpu, lpae_cp_reginfo);
5025     }
5026     /* Slightly awkwardly, the OMAP and StrongARM cores need all of
5027      * cp15 crn=0 to be writes-ignored, whereas for other cores they should
5028      * be read-only (ie write causes UNDEF exception).
5029      */
5030     {
5031         ARMCPRegInfo id_pre_v8_midr_cp_reginfo[] = {
5032             /* Pre-v8 MIDR space.
5033              * Note that the MIDR isn't a simple constant register because
5034              * of the TI925 behaviour where writes to another register can
5035              * cause the MIDR value to change.
5036              *
5037              * Unimplemented registers in the c15 0 0 0 space default to
5038              * MIDR. Define MIDR first as this entire space, then CTR, TCMTR
5039              * and friends override accordingly.
5040              */
5041             { .name = "MIDR",
5042               .cp = 15, .crn = 0, .crm = 0, .opc1 = 0, .opc2 = CP_ANY,
5043               .access = PL1_R, .resetvalue = cpu->midr,
5044               .writefn = arm_cp_write_ignore, .raw_writefn = raw_write,
5045               .readfn = midr_read,
5046               .fieldoffset = offsetof(CPUARMState, cp15.c0_cpuid),
5047               .type = ARM_CP_OVERRIDE },
5048             /* crn = 0 op1 = 0 crm = 3..7 : currently unassigned; we RAZ. */
5049             { .name = "DUMMY",
5050               .cp = 15, .crn = 0, .crm = 3, .opc1 = 0, .opc2 = CP_ANY,
5051               .access = PL1_R, .type = ARM_CP_CONST, .resetvalue = 0 },
5052             { .name = "DUMMY",
5053               .cp = 15, .crn = 0, .crm = 4, .opc1 = 0, .opc2 = CP_ANY,
5054               .access = PL1_R, .type = ARM_CP_CONST, .resetvalue = 0 },
5055             { .name = "DUMMY",
5056               .cp = 15, .crn = 0, .crm = 5, .opc1 = 0, .opc2 = CP_ANY,
5057               .access = PL1_R, .type = ARM_CP_CONST, .resetvalue = 0 },
5058             { .name = "DUMMY",
5059               .cp = 15, .crn = 0, .crm = 6, .opc1 = 0, .opc2 = CP_ANY,
5060               .access = PL1_R, .type = ARM_CP_CONST, .resetvalue = 0 },
5061             { .name = "DUMMY",
5062               .cp = 15, .crn = 0, .crm = 7, .opc1 = 0, .opc2 = CP_ANY,
5063               .access = PL1_R, .type = ARM_CP_CONST, .resetvalue = 0 },
5064             REGINFO_SENTINEL
5065         };
5066         ARMCPRegInfo id_v8_midr_cp_reginfo[] = {
5067             { .name = "MIDR_EL1", .state = ARM_CP_STATE_BOTH,
5068               .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 0, .opc2 = 0,
5069               .access = PL1_R, .type = ARM_CP_NO_RAW, .resetvalue = cpu->midr,
5070               .fieldoffset = offsetof(CPUARMState, cp15.c0_cpuid),
5071               .readfn = midr_read },
5072             /* crn = 0 op1 = 0 crm = 0 op2 = 4,7 : AArch32 aliases of MIDR */
5073             { .name = "MIDR", .type = ARM_CP_ALIAS | ARM_CP_CONST,
5074               .cp = 15, .crn = 0, .crm = 0, .opc1 = 0, .opc2 = 4,
5075               .access = PL1_R, .resetvalue = cpu->midr },
5076             { .name = "MIDR", .type = ARM_CP_ALIAS | ARM_CP_CONST,
5077               .cp = 15, .crn = 0, .crm = 0, .opc1 = 0, .opc2 = 7,
5078               .access = PL1_R, .resetvalue = cpu->midr },
5079             { .name = "REVIDR_EL1", .state = ARM_CP_STATE_BOTH,
5080               .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 0, .opc2 = 6,
5081               .access = PL1_R, .type = ARM_CP_CONST, .resetvalue = cpu->revidr },
5082             REGINFO_SENTINEL
5083         };
5084         ARMCPRegInfo id_cp_reginfo[] = {
5085             /* These are common to v8 and pre-v8 */
5086             { .name = "CTR",
5087               .cp = 15, .crn = 0, .crm = 0, .opc1 = 0, .opc2 = 1,
5088               .access = PL1_R, .type = ARM_CP_CONST, .resetvalue = cpu->ctr },
5089             { .name = "CTR_EL0", .state = ARM_CP_STATE_AA64,
5090               .opc0 = 3, .opc1 = 3, .opc2 = 1, .crn = 0, .crm = 0,
5091               .access = PL0_R, .accessfn = ctr_el0_access,
5092               .type = ARM_CP_CONST, .resetvalue = cpu->ctr },
5093             /* TCMTR and TLBTR exist in v8 but have no 64-bit versions */
5094             { .name = "TCMTR",
5095               .cp = 15, .crn = 0, .crm = 0, .opc1 = 0, .opc2 = 2,
5096               .access = PL1_R, .type = ARM_CP_CONST, .resetvalue = 0 },
5097             REGINFO_SENTINEL
5098         };
5099         /* TLBTR is specific to VMSA */
5100         ARMCPRegInfo id_tlbtr_reginfo = {
5101               .name = "TLBTR",
5102               .cp = 15, .crn = 0, .crm = 0, .opc1 = 0, .opc2 = 3,
5103               .access = PL1_R, .type = ARM_CP_CONST, .resetvalue = 0,
5104         };
5105         /* MPUIR is specific to PMSA V6+ */
5106         ARMCPRegInfo id_mpuir_reginfo = {
5107               .name = "MPUIR",
5108               .cp = 15, .crn = 0, .crm = 0, .opc1 = 0, .opc2 = 4,
5109               .access = PL1_R, .type = ARM_CP_CONST,
5110               .resetvalue = cpu->pmsav7_dregion << 8
5111         };
5112         ARMCPRegInfo crn0_wi_reginfo = {
5113             .name = "CRN0_WI", .cp = 15, .crn = 0, .crm = CP_ANY,
5114             .opc1 = CP_ANY, .opc2 = CP_ANY, .access = PL1_W,
5115             .type = ARM_CP_NOP | ARM_CP_OVERRIDE
5116         };
5117         if (arm_feature(env, ARM_FEATURE_OMAPCP) ||
5118             arm_feature(env, ARM_FEATURE_STRONGARM)) {
5119             ARMCPRegInfo *r;
5120             /* Register the blanket "writes ignored" value first to cover the
5121              * whole space. Then update the specific ID registers to allow write
5122              * access, so that they ignore writes rather than causing them to
5123              * UNDEF.
5124              */
5125             define_one_arm_cp_reg(cpu, &crn0_wi_reginfo);
5126             for (r = id_pre_v8_midr_cp_reginfo;
5127                  r->type != ARM_CP_SENTINEL; r++) {
5128                 r->access = PL1_RW;
5129             }
5130             for (r = id_cp_reginfo; r->type != ARM_CP_SENTINEL; r++) {
5131                 r->access = PL1_RW;
5132             }
5133             id_tlbtr_reginfo.access = PL1_RW;
5134             id_tlbtr_reginfo.access = PL1_RW;
5135         }
5136         if (arm_feature(env, ARM_FEATURE_V8)) {
5137             define_arm_cp_regs(cpu, id_v8_midr_cp_reginfo);
5138         } else {
5139             define_arm_cp_regs(cpu, id_pre_v8_midr_cp_reginfo);
5140         }
5141         define_arm_cp_regs(cpu, id_cp_reginfo);
5142         if (!arm_feature(env, ARM_FEATURE_PMSA)) {
5143             define_one_arm_cp_reg(cpu, &id_tlbtr_reginfo);
5144         } else if (arm_feature(env, ARM_FEATURE_V7)) {
5145             define_one_arm_cp_reg(cpu, &id_mpuir_reginfo);
5146         }
5147     }
5148 
5149     if (arm_feature(env, ARM_FEATURE_MPIDR)) {
5150         define_arm_cp_regs(cpu, mpidr_cp_reginfo);
5151     }
5152 
5153     if (arm_feature(env, ARM_FEATURE_AUXCR)) {
5154         ARMCPRegInfo auxcr_reginfo[] = {
5155             { .name = "ACTLR_EL1", .state = ARM_CP_STATE_BOTH,
5156               .opc0 = 3, .opc1 = 0, .crn = 1, .crm = 0, .opc2 = 1,
5157               .access = PL1_RW, .type = ARM_CP_CONST,
5158               .resetvalue = cpu->reset_auxcr },
5159             { .name = "ACTLR_EL2", .state = ARM_CP_STATE_BOTH,
5160               .opc0 = 3, .opc1 = 4, .crn = 1, .crm = 0, .opc2 = 1,
5161               .access = PL2_RW, .type = ARM_CP_CONST,
5162               .resetvalue = 0 },
5163             { .name = "ACTLR_EL3", .state = ARM_CP_STATE_AA64,
5164               .opc0 = 3, .opc1 = 6, .crn = 1, .crm = 0, .opc2 = 1,
5165               .access = PL3_RW, .type = ARM_CP_CONST,
5166               .resetvalue = 0 },
5167             REGINFO_SENTINEL
5168         };
5169         define_arm_cp_regs(cpu, auxcr_reginfo);
5170     }
5171 
5172     if (arm_feature(env, ARM_FEATURE_CBAR)) {
5173         if (arm_feature(env, ARM_FEATURE_AARCH64)) {
5174             /* 32 bit view is [31:18] 0...0 [43:32]. */
5175             uint32_t cbar32 = (extract64(cpu->reset_cbar, 18, 14) << 18)
5176                 | extract64(cpu->reset_cbar, 32, 12);
5177             ARMCPRegInfo cbar_reginfo[] = {
5178                 { .name = "CBAR",
5179                   .type = ARM_CP_CONST,
5180                   .cp = 15, .crn = 15, .crm = 0, .opc1 = 4, .opc2 = 0,
5181                   .access = PL1_R, .resetvalue = cpu->reset_cbar },
5182                 { .name = "CBAR_EL1", .state = ARM_CP_STATE_AA64,
5183                   .type = ARM_CP_CONST,
5184                   .opc0 = 3, .opc1 = 1, .crn = 15, .crm = 3, .opc2 = 0,
5185                   .access = PL1_R, .resetvalue = cbar32 },
5186                 REGINFO_SENTINEL
5187             };
5188             /* We don't implement a r/w 64 bit CBAR currently */
5189             assert(arm_feature(env, ARM_FEATURE_CBAR_RO));
5190             define_arm_cp_regs(cpu, cbar_reginfo);
5191         } else {
5192             ARMCPRegInfo cbar = {
5193                 .name = "CBAR",
5194                 .cp = 15, .crn = 15, .crm = 0, .opc1 = 4, .opc2 = 0,
5195                 .access = PL1_R|PL3_W, .resetvalue = cpu->reset_cbar,
5196                 .fieldoffset = offsetof(CPUARMState,
5197                                         cp15.c15_config_base_address)
5198             };
5199             if (arm_feature(env, ARM_FEATURE_CBAR_RO)) {
5200                 cbar.access = PL1_R;
5201                 cbar.fieldoffset = 0;
5202                 cbar.type = ARM_CP_CONST;
5203             }
5204             define_one_arm_cp_reg(cpu, &cbar);
5205         }
5206     }
5207 
5208     if (arm_feature(env, ARM_FEATURE_VBAR)) {
5209         ARMCPRegInfo vbar_cp_reginfo[] = {
5210             { .name = "VBAR", .state = ARM_CP_STATE_BOTH,
5211               .opc0 = 3, .crn = 12, .crm = 0, .opc1 = 0, .opc2 = 0,
5212               .access = PL1_RW, .writefn = vbar_write,
5213               .bank_fieldoffsets = { offsetof(CPUARMState, cp15.vbar_s),
5214                                      offsetof(CPUARMState, cp15.vbar_ns) },
5215               .resetvalue = 0 },
5216             REGINFO_SENTINEL
5217         };
5218         define_arm_cp_regs(cpu, vbar_cp_reginfo);
5219     }
5220 
5221     /* Generic registers whose values depend on the implementation */
5222     {
5223         ARMCPRegInfo sctlr = {
5224             .name = "SCTLR", .state = ARM_CP_STATE_BOTH,
5225             .opc0 = 3, .opc1 = 0, .crn = 1, .crm = 0, .opc2 = 0,
5226             .access = PL1_RW,
5227             .bank_fieldoffsets = { offsetof(CPUARMState, cp15.sctlr_s),
5228                                    offsetof(CPUARMState, cp15.sctlr_ns) },
5229             .writefn = sctlr_write, .resetvalue = cpu->reset_sctlr,
5230             .raw_writefn = raw_write,
5231         };
5232         if (arm_feature(env, ARM_FEATURE_XSCALE)) {
5233             /* Normally we would always end the TB on an SCTLR write, but Linux
5234              * arch/arm/mach-pxa/sleep.S expects two instructions following
5235              * an MMU enable to execute from cache.  Imitate this behaviour.
5236              */
5237             sctlr.type |= ARM_CP_SUPPRESS_TB_END;
5238         }
5239         define_one_arm_cp_reg(cpu, &sctlr);
5240     }
5241 }
5242 
5243 void arm_cpu_register_gdb_regs_for_features(ARMCPU *cpu)
5244 {
5245     CPUState *cs = CPU(cpu);
5246     CPUARMState *env = &cpu->env;
5247 
5248     if (arm_feature(env, ARM_FEATURE_AARCH64)) {
5249         gdb_register_coprocessor(cs, aarch64_fpu_gdb_get_reg,
5250                                  aarch64_fpu_gdb_set_reg,
5251                                  34, "aarch64-fpu.xml", 0);
5252     } else if (arm_feature(env, ARM_FEATURE_NEON)) {
5253         gdb_register_coprocessor(cs, vfp_gdb_get_reg, vfp_gdb_set_reg,
5254                                  51, "arm-neon.xml", 0);
5255     } else if (arm_feature(env, ARM_FEATURE_VFP3)) {
5256         gdb_register_coprocessor(cs, vfp_gdb_get_reg, vfp_gdb_set_reg,
5257                                  35, "arm-vfp3.xml", 0);
5258     } else if (arm_feature(env, ARM_FEATURE_VFP)) {
5259         gdb_register_coprocessor(cs, vfp_gdb_get_reg, vfp_gdb_set_reg,
5260                                  19, "arm-vfp.xml", 0);
5261     }
5262 }
5263 
5264 /* Sort alphabetically by type name, except for "any". */
5265 static gint arm_cpu_list_compare(gconstpointer a, gconstpointer b)
5266 {
5267     ObjectClass *class_a = (ObjectClass *)a;
5268     ObjectClass *class_b = (ObjectClass *)b;
5269     const char *name_a, *name_b;
5270 
5271     name_a = object_class_get_name(class_a);
5272     name_b = object_class_get_name(class_b);
5273     if (strcmp(name_a, "any-" TYPE_ARM_CPU) == 0) {
5274         return 1;
5275     } else if (strcmp(name_b, "any-" TYPE_ARM_CPU) == 0) {
5276         return -1;
5277     } else {
5278         return strcmp(name_a, name_b);
5279     }
5280 }
5281 
5282 static void arm_cpu_list_entry(gpointer data, gpointer user_data)
5283 {
5284     ObjectClass *oc = data;
5285     CPUListState *s = user_data;
5286     const char *typename;
5287     char *name;
5288 
5289     typename = object_class_get_name(oc);
5290     name = g_strndup(typename, strlen(typename) - strlen("-" TYPE_ARM_CPU));
5291     (*s->cpu_fprintf)(s->file, "  %s\n",
5292                       name);
5293     g_free(name);
5294 }
5295 
5296 void arm_cpu_list(FILE *f, fprintf_function cpu_fprintf)
5297 {
5298     CPUListState s = {
5299         .file = f,
5300         .cpu_fprintf = cpu_fprintf,
5301     };
5302     GSList *list;
5303 
5304     list = object_class_get_list(TYPE_ARM_CPU, false);
5305     list = g_slist_sort(list, arm_cpu_list_compare);
5306     (*cpu_fprintf)(f, "Available CPUs:\n");
5307     g_slist_foreach(list, arm_cpu_list_entry, &s);
5308     g_slist_free(list);
5309 #ifdef CONFIG_KVM
5310     /* The 'host' CPU type is dynamically registered only if KVM is
5311      * enabled, so we have to special-case it here:
5312      */
5313     (*cpu_fprintf)(f, "  host (only available in KVM mode)\n");
5314 #endif
5315 }
5316 
5317 static void arm_cpu_add_definition(gpointer data, gpointer user_data)
5318 {
5319     ObjectClass *oc = data;
5320     CpuDefinitionInfoList **cpu_list = user_data;
5321     CpuDefinitionInfoList *entry;
5322     CpuDefinitionInfo *info;
5323     const char *typename;
5324 
5325     typename = object_class_get_name(oc);
5326     info = g_malloc0(sizeof(*info));
5327     info->name = g_strndup(typename,
5328                            strlen(typename) - strlen("-" TYPE_ARM_CPU));
5329     info->q_typename = g_strdup(typename);
5330 
5331     entry = g_malloc0(sizeof(*entry));
5332     entry->value = info;
5333     entry->next = *cpu_list;
5334     *cpu_list = entry;
5335 }
5336 
5337 CpuDefinitionInfoList *arch_query_cpu_definitions(Error **errp)
5338 {
5339     CpuDefinitionInfoList *cpu_list = NULL;
5340     GSList *list;
5341 
5342     list = object_class_get_list(TYPE_ARM_CPU, false);
5343     g_slist_foreach(list, arm_cpu_add_definition, &cpu_list);
5344     g_slist_free(list);
5345 
5346     return cpu_list;
5347 }
5348 
5349 static void add_cpreg_to_hashtable(ARMCPU *cpu, const ARMCPRegInfo *r,
5350                                    void *opaque, int state, int secstate,
5351                                    int crm, int opc1, int opc2)
5352 {
5353     /* Private utility function for define_one_arm_cp_reg_with_opaque():
5354      * add a single reginfo struct to the hash table.
5355      */
5356     uint32_t *key = g_new(uint32_t, 1);
5357     ARMCPRegInfo *r2 = g_memdup(r, sizeof(ARMCPRegInfo));
5358     int is64 = (r->type & ARM_CP_64BIT) ? 1 : 0;
5359     int ns = (secstate & ARM_CP_SECSTATE_NS) ? 1 : 0;
5360 
5361     /* Reset the secure state to the specific incoming state.  This is
5362      * necessary as the register may have been defined with both states.
5363      */
5364     r2->secure = secstate;
5365 
5366     if (r->bank_fieldoffsets[0] && r->bank_fieldoffsets[1]) {
5367         /* Register is banked (using both entries in array).
5368          * Overwriting fieldoffset as the array is only used to define
5369          * banked registers but later only fieldoffset is used.
5370          */
5371         r2->fieldoffset = r->bank_fieldoffsets[ns];
5372     }
5373 
5374     if (state == ARM_CP_STATE_AA32) {
5375         if (r->bank_fieldoffsets[0] && r->bank_fieldoffsets[1]) {
5376             /* If the register is banked then we don't need to migrate or
5377              * reset the 32-bit instance in certain cases:
5378              *
5379              * 1) If the register has both 32-bit and 64-bit instances then we
5380              *    can count on the 64-bit instance taking care of the
5381              *    non-secure bank.
5382              * 2) If ARMv8 is enabled then we can count on a 64-bit version
5383              *    taking care of the secure bank.  This requires that separate
5384              *    32 and 64-bit definitions are provided.
5385              */
5386             if ((r->state == ARM_CP_STATE_BOTH && ns) ||
5387                 (arm_feature(&cpu->env, ARM_FEATURE_V8) && !ns)) {
5388                 r2->type |= ARM_CP_ALIAS;
5389             }
5390         } else if ((secstate != r->secure) && !ns) {
5391             /* The register is not banked so we only want to allow migration of
5392              * the non-secure instance.
5393              */
5394             r2->type |= ARM_CP_ALIAS;
5395         }
5396 
5397         if (r->state == ARM_CP_STATE_BOTH) {
5398             /* We assume it is a cp15 register if the .cp field is left unset.
5399              */
5400             if (r2->cp == 0) {
5401                 r2->cp = 15;
5402             }
5403 
5404 #ifdef HOST_WORDS_BIGENDIAN
5405             if (r2->fieldoffset) {
5406                 r2->fieldoffset += sizeof(uint32_t);
5407             }
5408 #endif
5409         }
5410     }
5411     if (state == ARM_CP_STATE_AA64) {
5412         /* To allow abbreviation of ARMCPRegInfo
5413          * definitions, we treat cp == 0 as equivalent to
5414          * the value for "standard guest-visible sysreg".
5415          * STATE_BOTH definitions are also always "standard
5416          * sysreg" in their AArch64 view (the .cp value may
5417          * be non-zero for the benefit of the AArch32 view).
5418          */
5419         if (r->cp == 0 || r->state == ARM_CP_STATE_BOTH) {
5420             r2->cp = CP_REG_ARM64_SYSREG_CP;
5421         }
5422         *key = ENCODE_AA64_CP_REG(r2->cp, r2->crn, crm,
5423                                   r2->opc0, opc1, opc2);
5424     } else {
5425         *key = ENCODE_CP_REG(r2->cp, is64, ns, r2->crn, crm, opc1, opc2);
5426     }
5427     if (opaque) {
5428         r2->opaque = opaque;
5429     }
5430     /* reginfo passed to helpers is correct for the actual access,
5431      * and is never ARM_CP_STATE_BOTH:
5432      */
5433     r2->state = state;
5434     /* Make sure reginfo passed to helpers for wildcarded regs
5435      * has the correct crm/opc1/opc2 for this reg, not CP_ANY:
5436      */
5437     r2->crm = crm;
5438     r2->opc1 = opc1;
5439     r2->opc2 = opc2;
5440     /* By convention, for wildcarded registers only the first
5441      * entry is used for migration; the others are marked as
5442      * ALIAS so we don't try to transfer the register
5443      * multiple times. Special registers (ie NOP/WFI) are
5444      * never migratable and not even raw-accessible.
5445      */
5446     if ((r->type & ARM_CP_SPECIAL)) {
5447         r2->type |= ARM_CP_NO_RAW;
5448     }
5449     if (((r->crm == CP_ANY) && crm != 0) ||
5450         ((r->opc1 == CP_ANY) && opc1 != 0) ||
5451         ((r->opc2 == CP_ANY) && opc2 != 0)) {
5452         r2->type |= ARM_CP_ALIAS;
5453     }
5454 
5455     /* Check that raw accesses are either forbidden or handled. Note that
5456      * we can't assert this earlier because the setup of fieldoffset for
5457      * banked registers has to be done first.
5458      */
5459     if (!(r2->type & ARM_CP_NO_RAW)) {
5460         assert(!raw_accessors_invalid(r2));
5461     }
5462 
5463     /* Overriding of an existing definition must be explicitly
5464      * requested.
5465      */
5466     if (!(r->type & ARM_CP_OVERRIDE)) {
5467         ARMCPRegInfo *oldreg;
5468         oldreg = g_hash_table_lookup(cpu->cp_regs, key);
5469         if (oldreg && !(oldreg->type & ARM_CP_OVERRIDE)) {
5470             fprintf(stderr, "Register redefined: cp=%d %d bit "
5471                     "crn=%d crm=%d opc1=%d opc2=%d, "
5472                     "was %s, now %s\n", r2->cp, 32 + 32 * is64,
5473                     r2->crn, r2->crm, r2->opc1, r2->opc2,
5474                     oldreg->name, r2->name);
5475             g_assert_not_reached();
5476         }
5477     }
5478     g_hash_table_insert(cpu->cp_regs, key, r2);
5479 }
5480 
5481 
5482 void define_one_arm_cp_reg_with_opaque(ARMCPU *cpu,
5483                                        const ARMCPRegInfo *r, void *opaque)
5484 {
5485     /* Define implementations of coprocessor registers.
5486      * We store these in a hashtable because typically
5487      * there are less than 150 registers in a space which
5488      * is 16*16*16*8*8 = 262144 in size.
5489      * Wildcarding is supported for the crm, opc1 and opc2 fields.
5490      * If a register is defined twice then the second definition is
5491      * used, so this can be used to define some generic registers and
5492      * then override them with implementation specific variations.
5493      * At least one of the original and the second definition should
5494      * include ARM_CP_OVERRIDE in its type bits -- this is just a guard
5495      * against accidental use.
5496      *
5497      * The state field defines whether the register is to be
5498      * visible in the AArch32 or AArch64 execution state. If the
5499      * state is set to ARM_CP_STATE_BOTH then we synthesise a
5500      * reginfo structure for the AArch32 view, which sees the lower
5501      * 32 bits of the 64 bit register.
5502      *
5503      * Only registers visible in AArch64 may set r->opc0; opc0 cannot
5504      * be wildcarded. AArch64 registers are always considered to be 64
5505      * bits; the ARM_CP_64BIT* flag applies only to the AArch32 view of
5506      * the register, if any.
5507      */
5508     int crm, opc1, opc2, state;
5509     int crmmin = (r->crm == CP_ANY) ? 0 : r->crm;
5510     int crmmax = (r->crm == CP_ANY) ? 15 : r->crm;
5511     int opc1min = (r->opc1 == CP_ANY) ? 0 : r->opc1;
5512     int opc1max = (r->opc1 == CP_ANY) ? 7 : r->opc1;
5513     int opc2min = (r->opc2 == CP_ANY) ? 0 : r->opc2;
5514     int opc2max = (r->opc2 == CP_ANY) ? 7 : r->opc2;
5515     /* 64 bit registers have only CRm and Opc1 fields */
5516     assert(!((r->type & ARM_CP_64BIT) && (r->opc2 || r->crn)));
5517     /* op0 only exists in the AArch64 encodings */
5518     assert((r->state != ARM_CP_STATE_AA32) || (r->opc0 == 0));
5519     /* AArch64 regs are all 64 bit so ARM_CP_64BIT is meaningless */
5520     assert((r->state != ARM_CP_STATE_AA64) || !(r->type & ARM_CP_64BIT));
5521     /* The AArch64 pseudocode CheckSystemAccess() specifies that op1
5522      * encodes a minimum access level for the register. We roll this
5523      * runtime check into our general permission check code, so check
5524      * here that the reginfo's specified permissions are strict enough
5525      * to encompass the generic architectural permission check.
5526      */
5527     if (r->state != ARM_CP_STATE_AA32) {
5528         int mask = 0;
5529         switch (r->opc1) {
5530         case 0: case 1: case 2:
5531             /* min_EL EL1 */
5532             mask = PL1_RW;
5533             break;
5534         case 3:
5535             /* min_EL EL0 */
5536             mask = PL0_RW;
5537             break;
5538         case 4:
5539             /* min_EL EL2 */
5540             mask = PL2_RW;
5541             break;
5542         case 5:
5543             /* unallocated encoding, so not possible */
5544             assert(false);
5545             break;
5546         case 6:
5547             /* min_EL EL3 */
5548             mask = PL3_RW;
5549             break;
5550         case 7:
5551             /* min_EL EL1, secure mode only (we don't check the latter) */
5552             mask = PL1_RW;
5553             break;
5554         default:
5555             /* broken reginfo with out-of-range opc1 */
5556             assert(false);
5557             break;
5558         }
5559         /* assert our permissions are not too lax (stricter is fine) */
5560         assert((r->access & ~mask) == 0);
5561     }
5562 
5563     /* Check that the register definition has enough info to handle
5564      * reads and writes if they are permitted.
5565      */
5566     if (!(r->type & (ARM_CP_SPECIAL|ARM_CP_CONST))) {
5567         if (r->access & PL3_R) {
5568             assert((r->fieldoffset ||
5569                    (r->bank_fieldoffsets[0] && r->bank_fieldoffsets[1])) ||
5570                    r->readfn);
5571         }
5572         if (r->access & PL3_W) {
5573             assert((r->fieldoffset ||
5574                    (r->bank_fieldoffsets[0] && r->bank_fieldoffsets[1])) ||
5575                    r->writefn);
5576         }
5577     }
5578     /* Bad type field probably means missing sentinel at end of reg list */
5579     assert(cptype_valid(r->type));
5580     for (crm = crmmin; crm <= crmmax; crm++) {
5581         for (opc1 = opc1min; opc1 <= opc1max; opc1++) {
5582             for (opc2 = opc2min; opc2 <= opc2max; opc2++) {
5583                 for (state = ARM_CP_STATE_AA32;
5584                      state <= ARM_CP_STATE_AA64; state++) {
5585                     if (r->state != state && r->state != ARM_CP_STATE_BOTH) {
5586                         continue;
5587                     }
5588                     if (state == ARM_CP_STATE_AA32) {
5589                         /* Under AArch32 CP registers can be common
5590                          * (same for secure and non-secure world) or banked.
5591                          */
5592                         switch (r->secure) {
5593                         case ARM_CP_SECSTATE_S:
5594                         case ARM_CP_SECSTATE_NS:
5595                             add_cpreg_to_hashtable(cpu, r, opaque, state,
5596                                                    r->secure, crm, opc1, opc2);
5597                             break;
5598                         default:
5599                             add_cpreg_to_hashtable(cpu, r, opaque, state,
5600                                                    ARM_CP_SECSTATE_S,
5601                                                    crm, opc1, opc2);
5602                             add_cpreg_to_hashtable(cpu, r, opaque, state,
5603                                                    ARM_CP_SECSTATE_NS,
5604                                                    crm, opc1, opc2);
5605                             break;
5606                         }
5607                     } else {
5608                         /* AArch64 registers get mapped to non-secure instance
5609                          * of AArch32 */
5610                         add_cpreg_to_hashtable(cpu, r, opaque, state,
5611                                                ARM_CP_SECSTATE_NS,
5612                                                crm, opc1, opc2);
5613                     }
5614                 }
5615             }
5616         }
5617     }
5618 }
5619 
5620 void define_arm_cp_regs_with_opaque(ARMCPU *cpu,
5621                                     const ARMCPRegInfo *regs, void *opaque)
5622 {
5623     /* Define a whole list of registers */
5624     const ARMCPRegInfo *r;
5625     for (r = regs; r->type != ARM_CP_SENTINEL; r++) {
5626         define_one_arm_cp_reg_with_opaque(cpu, r, opaque);
5627     }
5628 }
5629 
5630 const ARMCPRegInfo *get_arm_cp_reginfo(GHashTable *cpregs, uint32_t encoded_cp)
5631 {
5632     return g_hash_table_lookup(cpregs, &encoded_cp);
5633 }
5634 
5635 void arm_cp_write_ignore(CPUARMState *env, const ARMCPRegInfo *ri,
5636                          uint64_t value)
5637 {
5638     /* Helper coprocessor write function for write-ignore registers */
5639 }
5640 
5641 uint64_t arm_cp_read_zero(CPUARMState *env, const ARMCPRegInfo *ri)
5642 {
5643     /* Helper coprocessor write function for read-as-zero registers */
5644     return 0;
5645 }
5646 
5647 void arm_cp_reset_ignore(CPUARMState *env, const ARMCPRegInfo *opaque)
5648 {
5649     /* Helper coprocessor reset function for do-nothing-on-reset registers */
5650 }
5651 
5652 static int bad_mode_switch(CPUARMState *env, int mode, CPSRWriteType write_type)
5653 {
5654     /* Return true if it is not valid for us to switch to
5655      * this CPU mode (ie all the UNPREDICTABLE cases in
5656      * the ARM ARM CPSRWriteByInstr pseudocode).
5657      */
5658 
5659     /* Changes to or from Hyp via MSR and CPS are illegal. */
5660     if (write_type == CPSRWriteByInstr &&
5661         ((env->uncached_cpsr & CPSR_M) == ARM_CPU_MODE_HYP ||
5662          mode == ARM_CPU_MODE_HYP)) {
5663         return 1;
5664     }
5665 
5666     switch (mode) {
5667     case ARM_CPU_MODE_USR:
5668         return 0;
5669     case ARM_CPU_MODE_SYS:
5670     case ARM_CPU_MODE_SVC:
5671     case ARM_CPU_MODE_ABT:
5672     case ARM_CPU_MODE_UND:
5673     case ARM_CPU_MODE_IRQ:
5674     case ARM_CPU_MODE_FIQ:
5675         /* Note that we don't implement the IMPDEF NSACR.RFR which in v7
5676          * allows FIQ mode to be Secure-only. (In v8 this doesn't exist.)
5677          */
5678         /* If HCR.TGE is set then changes from Monitor to NS PL1 via MSR
5679          * and CPS are treated as illegal mode changes.
5680          */
5681         if (write_type == CPSRWriteByInstr &&
5682             (env->cp15.hcr_el2 & HCR_TGE) &&
5683             (env->uncached_cpsr & CPSR_M) == ARM_CPU_MODE_MON &&
5684             !arm_is_secure_below_el3(env)) {
5685             return 1;
5686         }
5687         return 0;
5688     case ARM_CPU_MODE_HYP:
5689         return !arm_feature(env, ARM_FEATURE_EL2)
5690             || arm_current_el(env) < 2 || arm_is_secure(env);
5691     case ARM_CPU_MODE_MON:
5692         return arm_current_el(env) < 3;
5693     default:
5694         return 1;
5695     }
5696 }
5697 
5698 uint32_t cpsr_read(CPUARMState *env)
5699 {
5700     int ZF;
5701     ZF = (env->ZF == 0);
5702     return env->uncached_cpsr | (env->NF & 0x80000000) | (ZF << 30) |
5703         (env->CF << 29) | ((env->VF & 0x80000000) >> 3) | (env->QF << 27)
5704         | (env->thumb << 5) | ((env->condexec_bits & 3) << 25)
5705         | ((env->condexec_bits & 0xfc) << 8)
5706         | (env->GE << 16) | (env->daif & CPSR_AIF);
5707 }
5708 
5709 void cpsr_write(CPUARMState *env, uint32_t val, uint32_t mask,
5710                 CPSRWriteType write_type)
5711 {
5712     uint32_t changed_daif;
5713 
5714     if (mask & CPSR_NZCV) {
5715         env->ZF = (~val) & CPSR_Z;
5716         env->NF = val;
5717         env->CF = (val >> 29) & 1;
5718         env->VF = (val << 3) & 0x80000000;
5719     }
5720     if (mask & CPSR_Q)
5721         env->QF = ((val & CPSR_Q) != 0);
5722     if (mask & CPSR_T)
5723         env->thumb = ((val & CPSR_T) != 0);
5724     if (mask & CPSR_IT_0_1) {
5725         env->condexec_bits &= ~3;
5726         env->condexec_bits |= (val >> 25) & 3;
5727     }
5728     if (mask & CPSR_IT_2_7) {
5729         env->condexec_bits &= 3;
5730         env->condexec_bits |= (val >> 8) & 0xfc;
5731     }
5732     if (mask & CPSR_GE) {
5733         env->GE = (val >> 16) & 0xf;
5734     }
5735 
5736     /* In a V7 implementation that includes the security extensions but does
5737      * not include Virtualization Extensions the SCR.FW and SCR.AW bits control
5738      * whether non-secure software is allowed to change the CPSR_F and CPSR_A
5739      * bits respectively.
5740      *
5741      * In a V8 implementation, it is permitted for privileged software to
5742      * change the CPSR A/F bits regardless of the SCR.AW/FW bits.
5743      */
5744     if (write_type != CPSRWriteRaw && !arm_feature(env, ARM_FEATURE_V8) &&
5745         arm_feature(env, ARM_FEATURE_EL3) &&
5746         !arm_feature(env, ARM_FEATURE_EL2) &&
5747         !arm_is_secure(env)) {
5748 
5749         changed_daif = (env->daif ^ val) & mask;
5750 
5751         if (changed_daif & CPSR_A) {
5752             /* Check to see if we are allowed to change the masking of async
5753              * abort exceptions from a non-secure state.
5754              */
5755             if (!(env->cp15.scr_el3 & SCR_AW)) {
5756                 qemu_log_mask(LOG_GUEST_ERROR,
5757                               "Ignoring attempt to switch CPSR_A flag from "
5758                               "non-secure world with SCR.AW bit clear\n");
5759                 mask &= ~CPSR_A;
5760             }
5761         }
5762 
5763         if (changed_daif & CPSR_F) {
5764             /* Check to see if we are allowed to change the masking of FIQ
5765              * exceptions from a non-secure state.
5766              */
5767             if (!(env->cp15.scr_el3 & SCR_FW)) {
5768                 qemu_log_mask(LOG_GUEST_ERROR,
5769                               "Ignoring attempt to switch CPSR_F flag from "
5770                               "non-secure world with SCR.FW bit clear\n");
5771                 mask &= ~CPSR_F;
5772             }
5773 
5774             /* Check whether non-maskable FIQ (NMFI) support is enabled.
5775              * If this bit is set software is not allowed to mask
5776              * FIQs, but is allowed to set CPSR_F to 0.
5777              */
5778             if ((A32_BANKED_CURRENT_REG_GET(env, sctlr) & SCTLR_NMFI) &&
5779                 (val & CPSR_F)) {
5780                 qemu_log_mask(LOG_GUEST_ERROR,
5781                               "Ignoring attempt to enable CPSR_F flag "
5782                               "(non-maskable FIQ [NMFI] support enabled)\n");
5783                 mask &= ~CPSR_F;
5784             }
5785         }
5786     }
5787 
5788     env->daif &= ~(CPSR_AIF & mask);
5789     env->daif |= val & CPSR_AIF & mask;
5790 
5791     if (write_type != CPSRWriteRaw &&
5792         ((env->uncached_cpsr ^ val) & mask & CPSR_M)) {
5793         if ((env->uncached_cpsr & CPSR_M) == ARM_CPU_MODE_USR) {
5794             /* Note that we can only get here in USR mode if this is a
5795              * gdb stub write; for this case we follow the architectural
5796              * behaviour for guest writes in USR mode of ignoring an attempt
5797              * to switch mode. (Those are caught by translate.c for writes
5798              * triggered by guest instructions.)
5799              */
5800             mask &= ~CPSR_M;
5801         } else if (bad_mode_switch(env, val & CPSR_M, write_type)) {
5802             /* Attempt to switch to an invalid mode: this is UNPREDICTABLE in
5803              * v7, and has defined behaviour in v8:
5804              *  + leave CPSR.M untouched
5805              *  + allow changes to the other CPSR fields
5806              *  + set PSTATE.IL
5807              * For user changes via the GDB stub, we don't set PSTATE.IL,
5808              * as this would be unnecessarily harsh for a user error.
5809              */
5810             mask &= ~CPSR_M;
5811             if (write_type != CPSRWriteByGDBStub &&
5812                 arm_feature(env, ARM_FEATURE_V8)) {
5813                 mask |= CPSR_IL;
5814                 val |= CPSR_IL;
5815             }
5816         } else {
5817             switch_mode(env, val & CPSR_M);
5818         }
5819     }
5820     mask &= ~CACHED_CPSR_BITS;
5821     env->uncached_cpsr = (env->uncached_cpsr & ~mask) | (val & mask);
5822 }
5823 
5824 /* Sign/zero extend */
5825 uint32_t HELPER(sxtb16)(uint32_t x)
5826 {
5827     uint32_t res;
5828     res = (uint16_t)(int8_t)x;
5829     res |= (uint32_t)(int8_t)(x >> 16) << 16;
5830     return res;
5831 }
5832 
5833 uint32_t HELPER(uxtb16)(uint32_t x)
5834 {
5835     uint32_t res;
5836     res = (uint16_t)(uint8_t)x;
5837     res |= (uint32_t)(uint8_t)(x >> 16) << 16;
5838     return res;
5839 }
5840 
5841 int32_t HELPER(sdiv)(int32_t num, int32_t den)
5842 {
5843     if (den == 0)
5844       return 0;
5845     if (num == INT_MIN && den == -1)
5846       return INT_MIN;
5847     return num / den;
5848 }
5849 
5850 uint32_t HELPER(udiv)(uint32_t num, uint32_t den)
5851 {
5852     if (den == 0)
5853       return 0;
5854     return num / den;
5855 }
5856 
5857 uint32_t HELPER(rbit)(uint32_t x)
5858 {
5859     return revbit32(x);
5860 }
5861 
5862 #if defined(CONFIG_USER_ONLY)
5863 
5864 /* These should probably raise undefined insn exceptions.  */
5865 void HELPER(v7m_msr)(CPUARMState *env, uint32_t reg, uint32_t val)
5866 {
5867     ARMCPU *cpu = arm_env_get_cpu(env);
5868 
5869     cpu_abort(CPU(cpu), "v7m_msr %d\n", reg);
5870 }
5871 
5872 uint32_t HELPER(v7m_mrs)(CPUARMState *env, uint32_t reg)
5873 {
5874     ARMCPU *cpu = arm_env_get_cpu(env);
5875 
5876     cpu_abort(CPU(cpu), "v7m_mrs %d\n", reg);
5877     return 0;
5878 }
5879 
5880 void HELPER(v7m_bxns)(CPUARMState *env, uint32_t dest)
5881 {
5882     /* translate.c should never generate calls here in user-only mode */
5883     g_assert_not_reached();
5884 }
5885 
5886 void switch_mode(CPUARMState *env, int mode)
5887 {
5888     ARMCPU *cpu = arm_env_get_cpu(env);
5889 
5890     if (mode != ARM_CPU_MODE_USR) {
5891         cpu_abort(CPU(cpu), "Tried to switch out of user mode\n");
5892     }
5893 }
5894 
5895 uint32_t arm_phys_excp_target_el(CPUState *cs, uint32_t excp_idx,
5896                                  uint32_t cur_el, bool secure)
5897 {
5898     return 1;
5899 }
5900 
5901 void aarch64_sync_64_to_32(CPUARMState *env)
5902 {
5903     g_assert_not_reached();
5904 }
5905 
5906 #else
5907 
5908 void switch_mode(CPUARMState *env, int mode)
5909 {
5910     int old_mode;
5911     int i;
5912 
5913     old_mode = env->uncached_cpsr & CPSR_M;
5914     if (mode == old_mode)
5915         return;
5916 
5917     if (old_mode == ARM_CPU_MODE_FIQ) {
5918         memcpy (env->fiq_regs, env->regs + 8, 5 * sizeof(uint32_t));
5919         memcpy (env->regs + 8, env->usr_regs, 5 * sizeof(uint32_t));
5920     } else if (mode == ARM_CPU_MODE_FIQ) {
5921         memcpy (env->usr_regs, env->regs + 8, 5 * sizeof(uint32_t));
5922         memcpy (env->regs + 8, env->fiq_regs, 5 * sizeof(uint32_t));
5923     }
5924 
5925     i = bank_number(old_mode);
5926     env->banked_r13[i] = env->regs[13];
5927     env->banked_r14[i] = env->regs[14];
5928     env->banked_spsr[i] = env->spsr;
5929 
5930     i = bank_number(mode);
5931     env->regs[13] = env->banked_r13[i];
5932     env->regs[14] = env->banked_r14[i];
5933     env->spsr = env->banked_spsr[i];
5934 }
5935 
5936 /* Physical Interrupt Target EL Lookup Table
5937  *
5938  * [ From ARM ARM section G1.13.4 (Table G1-15) ]
5939  *
5940  * The below multi-dimensional table is used for looking up the target
5941  * exception level given numerous condition criteria.  Specifically, the
5942  * target EL is based on SCR and HCR routing controls as well as the
5943  * currently executing EL and secure state.
5944  *
5945  *    Dimensions:
5946  *    target_el_table[2][2][2][2][2][4]
5947  *                    |  |  |  |  |  +--- Current EL
5948  *                    |  |  |  |  +------ Non-secure(0)/Secure(1)
5949  *                    |  |  |  +--------- HCR mask override
5950  *                    |  |  +------------ SCR exec state control
5951  *                    |  +--------------- SCR mask override
5952  *                    +------------------ 32-bit(0)/64-bit(1) EL3
5953  *
5954  *    The table values are as such:
5955  *    0-3 = EL0-EL3
5956  *     -1 = Cannot occur
5957  *
5958  * The ARM ARM target EL table includes entries indicating that an "exception
5959  * is not taken".  The two cases where this is applicable are:
5960  *    1) An exception is taken from EL3 but the SCR does not have the exception
5961  *    routed to EL3.
5962  *    2) An exception is taken from EL2 but the HCR does not have the exception
5963  *    routed to EL2.
5964  * In these two cases, the below table contain a target of EL1.  This value is
5965  * returned as it is expected that the consumer of the table data will check
5966  * for "target EL >= current EL" to ensure the exception is not taken.
5967  *
5968  *            SCR     HCR
5969  *         64  EA     AMO                 From
5970  *        BIT IRQ     IMO      Non-secure         Secure
5971  *        EL3 FIQ  RW FMO   EL0 EL1 EL2 EL3   EL0 EL1 EL2 EL3
5972  */
5973 static const int8_t target_el_table[2][2][2][2][2][4] = {
5974     {{{{/* 0   0   0   0 */{ 1,  1,  2, -1 },{ 3, -1, -1,  3 },},
5975        {/* 0   0   0   1 */{ 2,  2,  2, -1 },{ 3, -1, -1,  3 },},},
5976       {{/* 0   0   1   0 */{ 1,  1,  2, -1 },{ 3, -1, -1,  3 },},
5977        {/* 0   0   1   1 */{ 2,  2,  2, -1 },{ 3, -1, -1,  3 },},},},
5978      {{{/* 0   1   0   0 */{ 3,  3,  3, -1 },{ 3, -1, -1,  3 },},
5979        {/* 0   1   0   1 */{ 3,  3,  3, -1 },{ 3, -1, -1,  3 },},},
5980       {{/* 0   1   1   0 */{ 3,  3,  3, -1 },{ 3, -1, -1,  3 },},
5981        {/* 0   1   1   1 */{ 3,  3,  3, -1 },{ 3, -1, -1,  3 },},},},},
5982     {{{{/* 1   0   0   0 */{ 1,  1,  2, -1 },{ 1,  1, -1,  1 },},
5983        {/* 1   0   0   1 */{ 2,  2,  2, -1 },{ 1,  1, -1,  1 },},},
5984       {{/* 1   0   1   0 */{ 1,  1,  1, -1 },{ 1,  1, -1,  1 },},
5985        {/* 1   0   1   1 */{ 2,  2,  2, -1 },{ 1,  1, -1,  1 },},},},
5986      {{{/* 1   1   0   0 */{ 3,  3,  3, -1 },{ 3,  3, -1,  3 },},
5987        {/* 1   1   0   1 */{ 3,  3,  3, -1 },{ 3,  3, -1,  3 },},},
5988       {{/* 1   1   1   0 */{ 3,  3,  3, -1 },{ 3,  3, -1,  3 },},
5989        {/* 1   1   1   1 */{ 3,  3,  3, -1 },{ 3,  3, -1,  3 },},},},},
5990 };
5991 
5992 /*
5993  * Determine the target EL for physical exceptions
5994  */
5995 uint32_t arm_phys_excp_target_el(CPUState *cs, uint32_t excp_idx,
5996                                  uint32_t cur_el, bool secure)
5997 {
5998     CPUARMState *env = cs->env_ptr;
5999     int rw;
6000     int scr;
6001     int hcr;
6002     int target_el;
6003     /* Is the highest EL AArch64? */
6004     int is64 = arm_feature(env, ARM_FEATURE_AARCH64);
6005 
6006     if (arm_feature(env, ARM_FEATURE_EL3)) {
6007         rw = ((env->cp15.scr_el3 & SCR_RW) == SCR_RW);
6008     } else {
6009         /* Either EL2 is the highest EL (and so the EL2 register width
6010          * is given by is64); or there is no EL2 or EL3, in which case
6011          * the value of 'rw' does not affect the table lookup anyway.
6012          */
6013         rw = is64;
6014     }
6015 
6016     switch (excp_idx) {
6017     case EXCP_IRQ:
6018         scr = ((env->cp15.scr_el3 & SCR_IRQ) == SCR_IRQ);
6019         hcr = ((env->cp15.hcr_el2 & HCR_IMO) == HCR_IMO);
6020         break;
6021     case EXCP_FIQ:
6022         scr = ((env->cp15.scr_el3 & SCR_FIQ) == SCR_FIQ);
6023         hcr = ((env->cp15.hcr_el2 & HCR_FMO) == HCR_FMO);
6024         break;
6025     default:
6026         scr = ((env->cp15.scr_el3 & SCR_EA) == SCR_EA);
6027         hcr = ((env->cp15.hcr_el2 & HCR_AMO) == HCR_AMO);
6028         break;
6029     };
6030 
6031     /* If HCR.TGE is set then HCR is treated as being 1 */
6032     hcr |= ((env->cp15.hcr_el2 & HCR_TGE) == HCR_TGE);
6033 
6034     /* Perform a table-lookup for the target EL given the current state */
6035     target_el = target_el_table[is64][scr][rw][hcr][secure][cur_el];
6036 
6037     assert(target_el > 0);
6038 
6039     return target_el;
6040 }
6041 
6042 static void v7m_push(CPUARMState *env, uint32_t val)
6043 {
6044     CPUState *cs = CPU(arm_env_get_cpu(env));
6045 
6046     env->regs[13] -= 4;
6047     stl_phys(cs->as, env->regs[13], val);
6048 }
6049 
6050 /* Return true if we're using the process stack pointer (not the MSP) */
6051 static bool v7m_using_psp(CPUARMState *env)
6052 {
6053     /* Handler mode always uses the main stack; for thread mode
6054      * the CONTROL.SPSEL bit determines the answer.
6055      * Note that in v7M it is not possible to be in Handler mode with
6056      * CONTROL.SPSEL non-zero, but in v8M it is, so we must check both.
6057      */
6058     return !arm_v7m_is_handler_mode(env) &&
6059         env->v7m.control[env->v7m.secure] & R_V7M_CONTROL_SPSEL_MASK;
6060 }
6061 
6062 /* Write to v7M CONTROL.SPSEL bit for the specified security bank.
6063  * This may change the current stack pointer between Main and Process
6064  * stack pointers if it is done for the CONTROL register for the current
6065  * security state.
6066  */
6067 static void write_v7m_control_spsel_for_secstate(CPUARMState *env,
6068                                                  bool new_spsel,
6069                                                  bool secstate)
6070 {
6071     bool old_is_psp = v7m_using_psp(env);
6072 
6073     env->v7m.control[secstate] =
6074         deposit32(env->v7m.control[secstate],
6075                   R_V7M_CONTROL_SPSEL_SHIFT,
6076                   R_V7M_CONTROL_SPSEL_LENGTH, new_spsel);
6077 
6078     if (secstate == env->v7m.secure) {
6079         bool new_is_psp = v7m_using_psp(env);
6080         uint32_t tmp;
6081 
6082         if (old_is_psp != new_is_psp) {
6083             tmp = env->v7m.other_sp;
6084             env->v7m.other_sp = env->regs[13];
6085             env->regs[13] = tmp;
6086         }
6087     }
6088 }
6089 
6090 /* Write to v7M CONTROL.SPSEL bit. This may change the current
6091  * stack pointer between Main and Process stack pointers.
6092  */
6093 static void write_v7m_control_spsel(CPUARMState *env, bool new_spsel)
6094 {
6095     write_v7m_control_spsel_for_secstate(env, new_spsel, env->v7m.secure);
6096 }
6097 
6098 void write_v7m_exception(CPUARMState *env, uint32_t new_exc)
6099 {
6100     /* Write a new value to v7m.exception, thus transitioning into or out
6101      * of Handler mode; this may result in a change of active stack pointer.
6102      */
6103     bool new_is_psp, old_is_psp = v7m_using_psp(env);
6104     uint32_t tmp;
6105 
6106     env->v7m.exception = new_exc;
6107 
6108     new_is_psp = v7m_using_psp(env);
6109 
6110     if (old_is_psp != new_is_psp) {
6111         tmp = env->v7m.other_sp;
6112         env->v7m.other_sp = env->regs[13];
6113         env->regs[13] = tmp;
6114     }
6115 }
6116 
6117 /* Switch M profile security state between NS and S */
6118 static void switch_v7m_security_state(CPUARMState *env, bool new_secstate)
6119 {
6120     uint32_t new_ss_msp, new_ss_psp;
6121 
6122     if (env->v7m.secure == new_secstate) {
6123         return;
6124     }
6125 
6126     /* All the banked state is accessed by looking at env->v7m.secure
6127      * except for the stack pointer; rearrange the SP appropriately.
6128      */
6129     new_ss_msp = env->v7m.other_ss_msp;
6130     new_ss_psp = env->v7m.other_ss_psp;
6131 
6132     if (v7m_using_psp(env)) {
6133         env->v7m.other_ss_psp = env->regs[13];
6134         env->v7m.other_ss_msp = env->v7m.other_sp;
6135     } else {
6136         env->v7m.other_ss_msp = env->regs[13];
6137         env->v7m.other_ss_psp = env->v7m.other_sp;
6138     }
6139 
6140     env->v7m.secure = new_secstate;
6141 
6142     if (v7m_using_psp(env)) {
6143         env->regs[13] = new_ss_psp;
6144         env->v7m.other_sp = new_ss_msp;
6145     } else {
6146         env->regs[13] = new_ss_msp;
6147         env->v7m.other_sp = new_ss_psp;
6148     }
6149 }
6150 
6151 void HELPER(v7m_bxns)(CPUARMState *env, uint32_t dest)
6152 {
6153     /* Handle v7M BXNS:
6154      *  - if the return value is a magic value, do exception return (like BX)
6155      *  - otherwise bit 0 of the return value is the target security state
6156      */
6157     if (dest >= 0xff000000) {
6158         /* This is an exception return magic value; put it where
6159          * do_v7m_exception_exit() expects and raise EXCEPTION_EXIT.
6160          * Note that if we ever add gen_ss_advance() singlestep support to
6161          * M profile this should count as an "instruction execution complete"
6162          * event (compare gen_bx_excret_final_code()).
6163          */
6164         env->regs[15] = dest & ~1;
6165         env->thumb = dest & 1;
6166         HELPER(exception_internal)(env, EXCP_EXCEPTION_EXIT);
6167         /* notreached */
6168     }
6169 
6170     /* translate.c should have made BXNS UNDEF unless we're secure */
6171     assert(env->v7m.secure);
6172 
6173     switch_v7m_security_state(env, dest & 1);
6174     env->thumb = 1;
6175     env->regs[15] = dest & ~1;
6176 }
6177 
6178 static uint32_t *get_v7m_sp_ptr(CPUARMState *env, bool secure, bool threadmode,
6179                                 bool spsel)
6180 {
6181     /* Return a pointer to the location where we currently store the
6182      * stack pointer for the requested security state and thread mode.
6183      * This pointer will become invalid if the CPU state is updated
6184      * such that the stack pointers are switched around (eg changing
6185      * the SPSEL control bit).
6186      * Compare the v8M ARM ARM pseudocode LookUpSP_with_security_mode().
6187      * Unlike that pseudocode, we require the caller to pass us in the
6188      * SPSEL control bit value; this is because we also use this
6189      * function in handling of pushing of the callee-saves registers
6190      * part of the v8M stack frame (pseudocode PushCalleeStack()),
6191      * and in the tailchain codepath the SPSEL bit comes from the exception
6192      * return magic LR value from the previous exception. The pseudocode
6193      * opencodes the stack-selection in PushCalleeStack(), but we prefer
6194      * to make this utility function generic enough to do the job.
6195      */
6196     bool want_psp = threadmode && spsel;
6197 
6198     if (secure == env->v7m.secure) {
6199         if (want_psp == v7m_using_psp(env)) {
6200             return &env->regs[13];
6201         } else {
6202             return &env->v7m.other_sp;
6203         }
6204     } else {
6205         if (want_psp) {
6206             return &env->v7m.other_ss_psp;
6207         } else {
6208             return &env->v7m.other_ss_msp;
6209         }
6210     }
6211 }
6212 
6213 static uint32_t arm_v7m_load_vector(ARMCPU *cpu, bool targets_secure)
6214 {
6215     CPUState *cs = CPU(cpu);
6216     CPUARMState *env = &cpu->env;
6217     MemTxResult result;
6218     hwaddr vec = env->v7m.vecbase[targets_secure] + env->v7m.exception * 4;
6219     uint32_t addr;
6220 
6221     addr = address_space_ldl(cs->as, vec,
6222                              MEMTXATTRS_UNSPECIFIED, &result);
6223     if (result != MEMTX_OK) {
6224         /* Architecturally this should cause a HardFault setting HSFR.VECTTBL,
6225          * which would then be immediately followed by our failing to load
6226          * the entry vector for that HardFault, which is a Lockup case.
6227          * Since we don't model Lockup, we just report this guest error
6228          * via cpu_abort().
6229          */
6230         cpu_abort(cs, "Failed to read from %s exception vector table "
6231                   "entry %08x\n", targets_secure ? "secure" : "nonsecure",
6232                   (unsigned)vec);
6233     }
6234     return addr;
6235 }
6236 
6237 static void v7m_push_callee_stack(ARMCPU *cpu, uint32_t lr, bool dotailchain)
6238 {
6239     /* For v8M, push the callee-saves register part of the stack frame.
6240      * Compare the v8M pseudocode PushCalleeStack().
6241      * In the tailchaining case this may not be the current stack.
6242      */
6243     CPUARMState *env = &cpu->env;
6244     CPUState *cs = CPU(cpu);
6245     uint32_t *frame_sp_p;
6246     uint32_t frameptr;
6247 
6248     if (dotailchain) {
6249         frame_sp_p = get_v7m_sp_ptr(env, true,
6250                                     lr & R_V7M_EXCRET_MODE_MASK,
6251                                     lr & R_V7M_EXCRET_SPSEL_MASK);
6252     } else {
6253         frame_sp_p = &env->regs[13];
6254     }
6255 
6256     frameptr = *frame_sp_p - 0x28;
6257 
6258     stl_phys(cs->as, frameptr, 0xfefa125b);
6259     stl_phys(cs->as, frameptr + 0x8, env->regs[4]);
6260     stl_phys(cs->as, frameptr + 0xc, env->regs[5]);
6261     stl_phys(cs->as, frameptr + 0x10, env->regs[6]);
6262     stl_phys(cs->as, frameptr + 0x14, env->regs[7]);
6263     stl_phys(cs->as, frameptr + 0x18, env->regs[8]);
6264     stl_phys(cs->as, frameptr + 0x1c, env->regs[9]);
6265     stl_phys(cs->as, frameptr + 0x20, env->regs[10]);
6266     stl_phys(cs->as, frameptr + 0x24, env->regs[11]);
6267 
6268     *frame_sp_p = frameptr;
6269 }
6270 
6271 static void v7m_exception_taken(ARMCPU *cpu, uint32_t lr, bool dotailchain)
6272 {
6273     /* Do the "take the exception" parts of exception entry,
6274      * but not the pushing of state to the stack. This is
6275      * similar to the pseudocode ExceptionTaken() function.
6276      */
6277     CPUARMState *env = &cpu->env;
6278     uint32_t addr;
6279     bool targets_secure;
6280 
6281     targets_secure = armv7m_nvic_acknowledge_irq(env->nvic);
6282 
6283     if (arm_feature(env, ARM_FEATURE_V8)) {
6284         if (arm_feature(env, ARM_FEATURE_M_SECURITY) &&
6285             (lr & R_V7M_EXCRET_S_MASK)) {
6286             /* The background code (the owner of the registers in the
6287              * exception frame) is Secure. This means it may either already
6288              * have or now needs to push callee-saves registers.
6289              */
6290             if (targets_secure) {
6291                 if (dotailchain && !(lr & R_V7M_EXCRET_ES_MASK)) {
6292                     /* We took an exception from Secure to NonSecure
6293                      * (which means the callee-saved registers got stacked)
6294                      * and are now tailchaining to a Secure exception.
6295                      * Clear DCRS so eventual return from this Secure
6296                      * exception unstacks the callee-saved registers.
6297                      */
6298                     lr &= ~R_V7M_EXCRET_DCRS_MASK;
6299                 }
6300             } else {
6301                 /* We're going to a non-secure exception; push the
6302                  * callee-saves registers to the stack now, if they're
6303                  * not already saved.
6304                  */
6305                 if (lr & R_V7M_EXCRET_DCRS_MASK &&
6306                     !(dotailchain && (lr & R_V7M_EXCRET_ES_MASK))) {
6307                     v7m_push_callee_stack(cpu, lr, dotailchain);
6308                 }
6309                 lr |= R_V7M_EXCRET_DCRS_MASK;
6310             }
6311         }
6312 
6313         lr &= ~R_V7M_EXCRET_ES_MASK;
6314         if (targets_secure || !arm_feature(env, ARM_FEATURE_M_SECURITY)) {
6315             lr |= R_V7M_EXCRET_ES_MASK;
6316         }
6317         lr &= ~R_V7M_EXCRET_SPSEL_MASK;
6318         if (env->v7m.control[targets_secure] & R_V7M_CONTROL_SPSEL_MASK) {
6319             lr |= R_V7M_EXCRET_SPSEL_MASK;
6320         }
6321 
6322         /* Clear registers if necessary to prevent non-secure exception
6323          * code being able to see register values from secure code.
6324          * Where register values become architecturally UNKNOWN we leave
6325          * them with their previous values.
6326          */
6327         if (arm_feature(env, ARM_FEATURE_M_SECURITY)) {
6328             if (!targets_secure) {
6329                 /* Always clear the caller-saved registers (they have been
6330                  * pushed to the stack earlier in v7m_push_stack()).
6331                  * Clear callee-saved registers if the background code is
6332                  * Secure (in which case these regs were saved in
6333                  * v7m_push_callee_stack()).
6334                  */
6335                 int i;
6336 
6337                 for (i = 0; i < 13; i++) {
6338                     /* r4..r11 are callee-saves, zero only if EXCRET.S == 1 */
6339                     if (i < 4 || i > 11 || (lr & R_V7M_EXCRET_S_MASK)) {
6340                         env->regs[i] = 0;
6341                     }
6342                 }
6343                 /* Clear EAPSR */
6344                 xpsr_write(env, 0, XPSR_NZCV | XPSR_Q | XPSR_GE | XPSR_IT);
6345             }
6346         }
6347     }
6348 
6349     /* Switch to target security state -- must do this before writing SPSEL */
6350     switch_v7m_security_state(env, targets_secure);
6351     write_v7m_control_spsel(env, 0);
6352     arm_clear_exclusive(env);
6353     /* Clear IT bits */
6354     env->condexec_bits = 0;
6355     env->regs[14] = lr;
6356     addr = arm_v7m_load_vector(cpu, targets_secure);
6357     env->regs[15] = addr & 0xfffffffe;
6358     env->thumb = addr & 1;
6359 }
6360 
6361 static void v7m_push_stack(ARMCPU *cpu)
6362 {
6363     /* Do the "set up stack frame" part of exception entry,
6364      * similar to pseudocode PushStack().
6365      */
6366     CPUARMState *env = &cpu->env;
6367     uint32_t xpsr = xpsr_read(env);
6368 
6369     /* Align stack pointer if the guest wants that */
6370     if ((env->regs[13] & 4) &&
6371         (env->v7m.ccr[env->v7m.secure] & R_V7M_CCR_STKALIGN_MASK)) {
6372         env->regs[13] -= 4;
6373         xpsr |= XPSR_SPREALIGN;
6374     }
6375     /* Switch to the handler mode.  */
6376     v7m_push(env, xpsr);
6377     v7m_push(env, env->regs[15]);
6378     v7m_push(env, env->regs[14]);
6379     v7m_push(env, env->regs[12]);
6380     v7m_push(env, env->regs[3]);
6381     v7m_push(env, env->regs[2]);
6382     v7m_push(env, env->regs[1]);
6383     v7m_push(env, env->regs[0]);
6384 }
6385 
6386 static void do_v7m_exception_exit(ARMCPU *cpu)
6387 {
6388     CPUARMState *env = &cpu->env;
6389     CPUState *cs = CPU(cpu);
6390     uint32_t excret;
6391     uint32_t xpsr;
6392     bool ufault = false;
6393     bool sfault = false;
6394     bool return_to_sp_process;
6395     bool return_to_handler;
6396     bool rettobase = false;
6397     bool exc_secure = false;
6398     bool return_to_secure;
6399 
6400     /* We can only get here from an EXCP_EXCEPTION_EXIT, and
6401      * gen_bx_excret() enforces the architectural rule
6402      * that jumps to magic addresses don't have magic behaviour unless
6403      * we're in Handler mode (compare pseudocode BXWritePC()).
6404      */
6405     assert(arm_v7m_is_handler_mode(env));
6406 
6407     /* In the spec pseudocode ExceptionReturn() is called directly
6408      * from BXWritePC() and gets the full target PC value including
6409      * bit zero. In QEMU's implementation we treat it as a normal
6410      * jump-to-register (which is then caught later on), and so split
6411      * the target value up between env->regs[15] and env->thumb in
6412      * gen_bx(). Reconstitute it.
6413      */
6414     excret = env->regs[15];
6415     if (env->thumb) {
6416         excret |= 1;
6417     }
6418 
6419     qemu_log_mask(CPU_LOG_INT, "Exception return: magic PC %" PRIx32
6420                   " previous exception %d\n",
6421                   excret, env->v7m.exception);
6422 
6423     if ((excret & R_V7M_EXCRET_RES1_MASK) != R_V7M_EXCRET_RES1_MASK) {
6424         qemu_log_mask(LOG_GUEST_ERROR, "M profile: zero high bits in exception "
6425                       "exit PC value 0x%" PRIx32 " are UNPREDICTABLE\n",
6426                       excret);
6427     }
6428 
6429     if (arm_feature(env, ARM_FEATURE_M_SECURITY)) {
6430         /* EXC_RETURN.ES validation check (R_SMFL). We must do this before
6431          * we pick which FAULTMASK to clear.
6432          */
6433         if (!env->v7m.secure &&
6434             ((excret & R_V7M_EXCRET_ES_MASK) ||
6435              !(excret & R_V7M_EXCRET_DCRS_MASK))) {
6436             sfault = 1;
6437             /* For all other purposes, treat ES as 0 (R_HXSR) */
6438             excret &= ~R_V7M_EXCRET_ES_MASK;
6439         }
6440     }
6441 
6442     if (env->v7m.exception != ARMV7M_EXCP_NMI) {
6443         /* Auto-clear FAULTMASK on return from other than NMI.
6444          * If the security extension is implemented then this only
6445          * happens if the raw execution priority is >= 0; the
6446          * value of the ES bit in the exception return value indicates
6447          * which security state's faultmask to clear. (v8M ARM ARM R_KBNF.)
6448          */
6449         if (arm_feature(env, ARM_FEATURE_M_SECURITY)) {
6450             exc_secure = excret & R_V7M_EXCRET_ES_MASK;
6451             if (armv7m_nvic_raw_execution_priority(env->nvic) >= 0) {
6452                 env->v7m.faultmask[exc_secure] = 0;
6453             }
6454         } else {
6455             env->v7m.faultmask[M_REG_NS] = 0;
6456         }
6457     }
6458 
6459     switch (armv7m_nvic_complete_irq(env->nvic, env->v7m.exception,
6460                                      exc_secure)) {
6461     case -1:
6462         /* attempt to exit an exception that isn't active */
6463         ufault = true;
6464         break;
6465     case 0:
6466         /* still an irq active now */
6467         break;
6468     case 1:
6469         /* we returned to base exception level, no nesting.
6470          * (In the pseudocode this is written using "NestedActivation != 1"
6471          * where we have 'rettobase == false'.)
6472          */
6473         rettobase = true;
6474         break;
6475     default:
6476         g_assert_not_reached();
6477     }
6478 
6479     return_to_handler = !(excret & R_V7M_EXCRET_MODE_MASK);
6480     return_to_sp_process = excret & R_V7M_EXCRET_SPSEL_MASK;
6481     return_to_secure = arm_feature(env, ARM_FEATURE_M_SECURITY) &&
6482         (excret & R_V7M_EXCRET_S_MASK);
6483 
6484     if (arm_feature(env, ARM_FEATURE_V8)) {
6485         if (!arm_feature(env, ARM_FEATURE_M_SECURITY)) {
6486             /* UNPREDICTABLE if S == 1 or DCRS == 0 or ES == 1 (R_XLCP);
6487              * we choose to take the UsageFault.
6488              */
6489             if ((excret & R_V7M_EXCRET_S_MASK) ||
6490                 (excret & R_V7M_EXCRET_ES_MASK) ||
6491                 !(excret & R_V7M_EXCRET_DCRS_MASK)) {
6492                 ufault = true;
6493             }
6494         }
6495         if (excret & R_V7M_EXCRET_RES0_MASK) {
6496             ufault = true;
6497         }
6498     } else {
6499         /* For v7M we only recognize certain combinations of the low bits */
6500         switch (excret & 0xf) {
6501         case 1: /* Return to Handler */
6502             break;
6503         case 13: /* Return to Thread using Process stack */
6504         case 9: /* Return to Thread using Main stack */
6505             /* We only need to check NONBASETHRDENA for v7M, because in
6506              * v8M this bit does not exist (it is RES1).
6507              */
6508             if (!rettobase &&
6509                 !(env->v7m.ccr[env->v7m.secure] &
6510                   R_V7M_CCR_NONBASETHRDENA_MASK)) {
6511                 ufault = true;
6512             }
6513             break;
6514         default:
6515             ufault = true;
6516         }
6517     }
6518 
6519     if (sfault) {
6520         env->v7m.sfsr |= R_V7M_SFSR_INVER_MASK;
6521         armv7m_nvic_set_pending(env->nvic, ARMV7M_EXCP_SECURE, false);
6522         v7m_exception_taken(cpu, excret, true);
6523         qemu_log_mask(CPU_LOG_INT, "...taking SecureFault on existing "
6524                       "stackframe: failed EXC_RETURN.ES validity check\n");
6525         return;
6526     }
6527 
6528     if (ufault) {
6529         /* Bad exception return: instead of popping the exception
6530          * stack, directly take a usage fault on the current stack.
6531          */
6532         env->v7m.cfsr[env->v7m.secure] |= R_V7M_CFSR_INVPC_MASK;
6533         armv7m_nvic_set_pending(env->nvic, ARMV7M_EXCP_USAGE, env->v7m.secure);
6534         v7m_exception_taken(cpu, excret, true);
6535         qemu_log_mask(CPU_LOG_INT, "...taking UsageFault on existing "
6536                       "stackframe: failed exception return integrity check\n");
6537         return;
6538     }
6539 
6540     /* Set CONTROL.SPSEL from excret.SPSEL. Since we're still in
6541      * Handler mode (and will be until we write the new XPSR.Interrupt
6542      * field) this does not switch around the current stack pointer.
6543      */
6544     write_v7m_control_spsel_for_secstate(env, return_to_sp_process, exc_secure);
6545 
6546     switch_v7m_security_state(env, return_to_secure);
6547 
6548     {
6549         /* The stack pointer we should be reading the exception frame from
6550          * depends on bits in the magic exception return type value (and
6551          * for v8M isn't necessarily the stack pointer we will eventually
6552          * end up resuming execution with). Get a pointer to the location
6553          * in the CPU state struct where the SP we need is currently being
6554          * stored; we will use and modify it in place.
6555          * We use this limited C variable scope so we don't accidentally
6556          * use 'frame_sp_p' after we do something that makes it invalid.
6557          */
6558         uint32_t *frame_sp_p = get_v7m_sp_ptr(env,
6559                                               return_to_secure,
6560                                               !return_to_handler,
6561                                               return_to_sp_process);
6562         uint32_t frameptr = *frame_sp_p;
6563 
6564         if (!QEMU_IS_ALIGNED(frameptr, 8) &&
6565             arm_feature(env, ARM_FEATURE_V8)) {
6566             qemu_log_mask(LOG_GUEST_ERROR,
6567                           "M profile exception return with non-8-aligned SP "
6568                           "for destination state is UNPREDICTABLE\n");
6569         }
6570 
6571         /* Do we need to pop callee-saved registers? */
6572         if (return_to_secure &&
6573             ((excret & R_V7M_EXCRET_ES_MASK) == 0 ||
6574              (excret & R_V7M_EXCRET_DCRS_MASK) == 0)) {
6575             uint32_t expected_sig = 0xfefa125b;
6576             uint32_t actual_sig = ldl_phys(cs->as, frameptr);
6577 
6578             if (expected_sig != actual_sig) {
6579                 /* Take a SecureFault on the current stack */
6580                 env->v7m.sfsr |= R_V7M_SFSR_INVIS_MASK;
6581                 armv7m_nvic_set_pending(env->nvic, ARMV7M_EXCP_SECURE, false);
6582                 v7m_exception_taken(cpu, excret, true);
6583                 qemu_log_mask(CPU_LOG_INT, "...taking SecureFault on existing "
6584                               "stackframe: failed exception return integrity "
6585                               "signature check\n");
6586                 return;
6587             }
6588 
6589             env->regs[4] = ldl_phys(cs->as, frameptr + 0x8);
6590             env->regs[5] = ldl_phys(cs->as, frameptr + 0xc);
6591             env->regs[6] = ldl_phys(cs->as, frameptr + 0x10);
6592             env->regs[7] = ldl_phys(cs->as, frameptr + 0x14);
6593             env->regs[8] = ldl_phys(cs->as, frameptr + 0x18);
6594             env->regs[9] = ldl_phys(cs->as, frameptr + 0x1c);
6595             env->regs[10] = ldl_phys(cs->as, frameptr + 0x20);
6596             env->regs[11] = ldl_phys(cs->as, frameptr + 0x24);
6597 
6598             frameptr += 0x28;
6599         }
6600 
6601         /* Pop registers. TODO: make these accesses use the correct
6602          * attributes and address space (S/NS, priv/unpriv) and handle
6603          * memory transaction failures.
6604          */
6605         env->regs[0] = ldl_phys(cs->as, frameptr);
6606         env->regs[1] = ldl_phys(cs->as, frameptr + 0x4);
6607         env->regs[2] = ldl_phys(cs->as, frameptr + 0x8);
6608         env->regs[3] = ldl_phys(cs->as, frameptr + 0xc);
6609         env->regs[12] = ldl_phys(cs->as, frameptr + 0x10);
6610         env->regs[14] = ldl_phys(cs->as, frameptr + 0x14);
6611         env->regs[15] = ldl_phys(cs->as, frameptr + 0x18);
6612 
6613         /* Returning from an exception with a PC with bit 0 set is defined
6614          * behaviour on v8M (bit 0 is ignored), but for v7M it was specified
6615          * to be UNPREDICTABLE. In practice actual v7M hardware seems to ignore
6616          * the lsbit, and there are several RTOSes out there which incorrectly
6617          * assume the r15 in the stack frame should be a Thumb-style "lsbit
6618          * indicates ARM/Thumb" value, so ignore the bit on v7M as well, but
6619          * complain about the badly behaved guest.
6620          */
6621         if (env->regs[15] & 1) {
6622             env->regs[15] &= ~1U;
6623             if (!arm_feature(env, ARM_FEATURE_V8)) {
6624                 qemu_log_mask(LOG_GUEST_ERROR,
6625                               "M profile return from interrupt with misaligned "
6626                               "PC is UNPREDICTABLE on v7M\n");
6627             }
6628         }
6629 
6630         xpsr = ldl_phys(cs->as, frameptr + 0x1c);
6631 
6632         if (arm_feature(env, ARM_FEATURE_V8)) {
6633             /* For v8M we have to check whether the xPSR exception field
6634              * matches the EXCRET value for return to handler/thread
6635              * before we commit to changing the SP and xPSR.
6636              */
6637             bool will_be_handler = (xpsr & XPSR_EXCP) != 0;
6638             if (return_to_handler != will_be_handler) {
6639                 /* Take an INVPC UsageFault on the current stack.
6640                  * By this point we will have switched to the security state
6641                  * for the background state, so this UsageFault will target
6642                  * that state.
6643                  */
6644                 armv7m_nvic_set_pending(env->nvic, ARMV7M_EXCP_USAGE,
6645                                         env->v7m.secure);
6646                 env->v7m.cfsr[env->v7m.secure] |= R_V7M_CFSR_INVPC_MASK;
6647                 v7m_exception_taken(cpu, excret, true);
6648                 qemu_log_mask(CPU_LOG_INT, "...taking UsageFault on existing "
6649                               "stackframe: failed exception return integrity "
6650                               "check\n");
6651                 return;
6652             }
6653         }
6654 
6655         /* Commit to consuming the stack frame */
6656         frameptr += 0x20;
6657         /* Undo stack alignment (the SPREALIGN bit indicates that the original
6658          * pre-exception SP was not 8-aligned and we added a padding word to
6659          * align it, so we undo this by ORing in the bit that increases it
6660          * from the current 8-aligned value to the 8-unaligned value. (Adding 4
6661          * would work too but a logical OR is how the pseudocode specifies it.)
6662          */
6663         if (xpsr & XPSR_SPREALIGN) {
6664             frameptr |= 4;
6665         }
6666         *frame_sp_p = frameptr;
6667     }
6668     /* This xpsr_write() will invalidate frame_sp_p as it may switch stack */
6669     xpsr_write(env, xpsr, ~XPSR_SPREALIGN);
6670 
6671     /* The restored xPSR exception field will be zero if we're
6672      * resuming in Thread mode. If that doesn't match what the
6673      * exception return excret specified then this is a UsageFault.
6674      * v7M requires we make this check here; v8M did it earlier.
6675      */
6676     if (return_to_handler != arm_v7m_is_handler_mode(env)) {
6677         /* Take an INVPC UsageFault by pushing the stack again;
6678          * we know we're v7M so this is never a Secure UsageFault.
6679          */
6680         assert(!arm_feature(env, ARM_FEATURE_V8));
6681         armv7m_nvic_set_pending(env->nvic, ARMV7M_EXCP_USAGE, false);
6682         env->v7m.cfsr[env->v7m.secure] |= R_V7M_CFSR_INVPC_MASK;
6683         v7m_push_stack(cpu);
6684         v7m_exception_taken(cpu, excret, false);
6685         qemu_log_mask(CPU_LOG_INT, "...taking UsageFault on new stackframe: "
6686                       "failed exception return integrity check\n");
6687         return;
6688     }
6689 
6690     /* Otherwise, we have a successful exception exit. */
6691     arm_clear_exclusive(env);
6692     qemu_log_mask(CPU_LOG_INT, "...successful exception return\n");
6693 }
6694 
6695 static void arm_log_exception(int idx)
6696 {
6697     if (qemu_loglevel_mask(CPU_LOG_INT)) {
6698         const char *exc = NULL;
6699         static const char * const excnames[] = {
6700             [EXCP_UDEF] = "Undefined Instruction",
6701             [EXCP_SWI] = "SVC",
6702             [EXCP_PREFETCH_ABORT] = "Prefetch Abort",
6703             [EXCP_DATA_ABORT] = "Data Abort",
6704             [EXCP_IRQ] = "IRQ",
6705             [EXCP_FIQ] = "FIQ",
6706             [EXCP_BKPT] = "Breakpoint",
6707             [EXCP_EXCEPTION_EXIT] = "QEMU v7M exception exit",
6708             [EXCP_KERNEL_TRAP] = "QEMU intercept of kernel commpage",
6709             [EXCP_HVC] = "Hypervisor Call",
6710             [EXCP_HYP_TRAP] = "Hypervisor Trap",
6711             [EXCP_SMC] = "Secure Monitor Call",
6712             [EXCP_VIRQ] = "Virtual IRQ",
6713             [EXCP_VFIQ] = "Virtual FIQ",
6714             [EXCP_SEMIHOST] = "Semihosting call",
6715             [EXCP_NOCP] = "v7M NOCP UsageFault",
6716             [EXCP_INVSTATE] = "v7M INVSTATE UsageFault",
6717         };
6718 
6719         if (idx >= 0 && idx < ARRAY_SIZE(excnames)) {
6720             exc = excnames[idx];
6721         }
6722         if (!exc) {
6723             exc = "unknown";
6724         }
6725         qemu_log_mask(CPU_LOG_INT, "Taking exception %d [%s]\n", idx, exc);
6726     }
6727 }
6728 
6729 void arm_v7m_cpu_do_interrupt(CPUState *cs)
6730 {
6731     ARMCPU *cpu = ARM_CPU(cs);
6732     CPUARMState *env = &cpu->env;
6733     uint32_t lr;
6734 
6735     arm_log_exception(cs->exception_index);
6736 
6737     /* For exceptions we just mark as pending on the NVIC, and let that
6738        handle it.  */
6739     switch (cs->exception_index) {
6740     case EXCP_UDEF:
6741         armv7m_nvic_set_pending(env->nvic, ARMV7M_EXCP_USAGE, env->v7m.secure);
6742         env->v7m.cfsr[env->v7m.secure] |= R_V7M_CFSR_UNDEFINSTR_MASK;
6743         break;
6744     case EXCP_NOCP:
6745         armv7m_nvic_set_pending(env->nvic, ARMV7M_EXCP_USAGE, env->v7m.secure);
6746         env->v7m.cfsr[env->v7m.secure] |= R_V7M_CFSR_NOCP_MASK;
6747         break;
6748     case EXCP_INVSTATE:
6749         armv7m_nvic_set_pending(env->nvic, ARMV7M_EXCP_USAGE, env->v7m.secure);
6750         env->v7m.cfsr[env->v7m.secure] |= R_V7M_CFSR_INVSTATE_MASK;
6751         break;
6752     case EXCP_SWI:
6753         /* The PC already points to the next instruction.  */
6754         armv7m_nvic_set_pending(env->nvic, ARMV7M_EXCP_SVC, env->v7m.secure);
6755         break;
6756     case EXCP_PREFETCH_ABORT:
6757     case EXCP_DATA_ABORT:
6758         /* Note that for M profile we don't have a guest facing FSR, but
6759          * the env->exception.fsr will be populated by the code that
6760          * raises the fault, in the A profile short-descriptor format.
6761          */
6762         switch (env->exception.fsr & 0xf) {
6763         case 0x8: /* External Abort */
6764             switch (cs->exception_index) {
6765             case EXCP_PREFETCH_ABORT:
6766                 env->v7m.cfsr[M_REG_NS] |= R_V7M_CFSR_IBUSERR_MASK;
6767                 qemu_log_mask(CPU_LOG_INT, "...with CFSR.IBUSERR\n");
6768                 break;
6769             case EXCP_DATA_ABORT:
6770                 env->v7m.cfsr[M_REG_NS] |=
6771                     (R_V7M_CFSR_PRECISERR_MASK | R_V7M_CFSR_BFARVALID_MASK);
6772                 env->v7m.bfar = env->exception.vaddress;
6773                 qemu_log_mask(CPU_LOG_INT,
6774                               "...with CFSR.PRECISERR and BFAR 0x%x\n",
6775                               env->v7m.bfar);
6776                 break;
6777             }
6778             armv7m_nvic_set_pending(env->nvic, ARMV7M_EXCP_BUS, false);
6779             break;
6780         default:
6781             /* All other FSR values are either MPU faults or "can't happen
6782              * for M profile" cases.
6783              */
6784             switch (cs->exception_index) {
6785             case EXCP_PREFETCH_ABORT:
6786                 env->v7m.cfsr[env->v7m.secure] |= R_V7M_CFSR_IACCVIOL_MASK;
6787                 qemu_log_mask(CPU_LOG_INT, "...with CFSR.IACCVIOL\n");
6788                 break;
6789             case EXCP_DATA_ABORT:
6790                 env->v7m.cfsr[env->v7m.secure] |=
6791                     (R_V7M_CFSR_DACCVIOL_MASK | R_V7M_CFSR_MMARVALID_MASK);
6792                 env->v7m.mmfar[env->v7m.secure] = env->exception.vaddress;
6793                 qemu_log_mask(CPU_LOG_INT,
6794                               "...with CFSR.DACCVIOL and MMFAR 0x%x\n",
6795                               env->v7m.mmfar[env->v7m.secure]);
6796                 break;
6797             }
6798             armv7m_nvic_set_pending(env->nvic, ARMV7M_EXCP_MEM,
6799                                     env->v7m.secure);
6800             break;
6801         }
6802         break;
6803     case EXCP_BKPT:
6804         if (semihosting_enabled()) {
6805             int nr;
6806             nr = arm_lduw_code(env, env->regs[15], arm_sctlr_b(env)) & 0xff;
6807             if (nr == 0xab) {
6808                 env->regs[15] += 2;
6809                 qemu_log_mask(CPU_LOG_INT,
6810                               "...handling as semihosting call 0x%x\n",
6811                               env->regs[0]);
6812                 env->regs[0] = do_arm_semihosting(env);
6813                 return;
6814             }
6815         }
6816         armv7m_nvic_set_pending(env->nvic, ARMV7M_EXCP_DEBUG, false);
6817         break;
6818     case EXCP_IRQ:
6819         break;
6820     case EXCP_EXCEPTION_EXIT:
6821         do_v7m_exception_exit(cpu);
6822         return;
6823     default:
6824         cpu_abort(cs, "Unhandled exception 0x%x\n", cs->exception_index);
6825         return; /* Never happens.  Keep compiler happy.  */
6826     }
6827 
6828     if (arm_feature(env, ARM_FEATURE_V8)) {
6829         lr = R_V7M_EXCRET_RES1_MASK |
6830             R_V7M_EXCRET_DCRS_MASK |
6831             R_V7M_EXCRET_FTYPE_MASK;
6832         /* The S bit indicates whether we should return to Secure
6833          * or NonSecure (ie our current state).
6834          * The ES bit indicates whether we're taking this exception
6835          * to Secure or NonSecure (ie our target state). We set it
6836          * later, in v7m_exception_taken().
6837          * The SPSEL bit is also set in v7m_exception_taken() for v8M.
6838          * This corresponds to the ARM ARM pseudocode for v8M setting
6839          * some LR bits in PushStack() and some in ExceptionTaken();
6840          * the distinction matters for the tailchain cases where we
6841          * can take an exception without pushing the stack.
6842          */
6843         if (env->v7m.secure) {
6844             lr |= R_V7M_EXCRET_S_MASK;
6845         }
6846     } else {
6847         lr = R_V7M_EXCRET_RES1_MASK |
6848             R_V7M_EXCRET_S_MASK |
6849             R_V7M_EXCRET_DCRS_MASK |
6850             R_V7M_EXCRET_FTYPE_MASK |
6851             R_V7M_EXCRET_ES_MASK;
6852         if (env->v7m.control[M_REG_NS] & R_V7M_CONTROL_SPSEL_MASK) {
6853             lr |= R_V7M_EXCRET_SPSEL_MASK;
6854         }
6855     }
6856     if (!arm_v7m_is_handler_mode(env)) {
6857         lr |= R_V7M_EXCRET_MODE_MASK;
6858     }
6859 
6860     v7m_push_stack(cpu);
6861     v7m_exception_taken(cpu, lr, false);
6862     qemu_log_mask(CPU_LOG_INT, "... as %d\n", env->v7m.exception);
6863 }
6864 
6865 /* Function used to synchronize QEMU's AArch64 register set with AArch32
6866  * register set.  This is necessary when switching between AArch32 and AArch64
6867  * execution state.
6868  */
6869 void aarch64_sync_32_to_64(CPUARMState *env)
6870 {
6871     int i;
6872     uint32_t mode = env->uncached_cpsr & CPSR_M;
6873 
6874     /* We can blanket copy R[0:7] to X[0:7] */
6875     for (i = 0; i < 8; i++) {
6876         env->xregs[i] = env->regs[i];
6877     }
6878 
6879     /* Unless we are in FIQ mode, x8-x12 come from the user registers r8-r12.
6880      * Otherwise, they come from the banked user regs.
6881      */
6882     if (mode == ARM_CPU_MODE_FIQ) {
6883         for (i = 8; i < 13; i++) {
6884             env->xregs[i] = env->usr_regs[i - 8];
6885         }
6886     } else {
6887         for (i = 8; i < 13; i++) {
6888             env->xregs[i] = env->regs[i];
6889         }
6890     }
6891 
6892     /* Registers x13-x23 are the various mode SP and FP registers. Registers
6893      * r13 and r14 are only copied if we are in that mode, otherwise we copy
6894      * from the mode banked register.
6895      */
6896     if (mode == ARM_CPU_MODE_USR || mode == ARM_CPU_MODE_SYS) {
6897         env->xregs[13] = env->regs[13];
6898         env->xregs[14] = env->regs[14];
6899     } else {
6900         env->xregs[13] = env->banked_r13[bank_number(ARM_CPU_MODE_USR)];
6901         /* HYP is an exception in that it is copied from r14 */
6902         if (mode == ARM_CPU_MODE_HYP) {
6903             env->xregs[14] = env->regs[14];
6904         } else {
6905             env->xregs[14] = env->banked_r14[bank_number(ARM_CPU_MODE_USR)];
6906         }
6907     }
6908 
6909     if (mode == ARM_CPU_MODE_HYP) {
6910         env->xregs[15] = env->regs[13];
6911     } else {
6912         env->xregs[15] = env->banked_r13[bank_number(ARM_CPU_MODE_HYP)];
6913     }
6914 
6915     if (mode == ARM_CPU_MODE_IRQ) {
6916         env->xregs[16] = env->regs[14];
6917         env->xregs[17] = env->regs[13];
6918     } else {
6919         env->xregs[16] = env->banked_r14[bank_number(ARM_CPU_MODE_IRQ)];
6920         env->xregs[17] = env->banked_r13[bank_number(ARM_CPU_MODE_IRQ)];
6921     }
6922 
6923     if (mode == ARM_CPU_MODE_SVC) {
6924         env->xregs[18] = env->regs[14];
6925         env->xregs[19] = env->regs[13];
6926     } else {
6927         env->xregs[18] = env->banked_r14[bank_number(ARM_CPU_MODE_SVC)];
6928         env->xregs[19] = env->banked_r13[bank_number(ARM_CPU_MODE_SVC)];
6929     }
6930 
6931     if (mode == ARM_CPU_MODE_ABT) {
6932         env->xregs[20] = env->regs[14];
6933         env->xregs[21] = env->regs[13];
6934     } else {
6935         env->xregs[20] = env->banked_r14[bank_number(ARM_CPU_MODE_ABT)];
6936         env->xregs[21] = env->banked_r13[bank_number(ARM_CPU_MODE_ABT)];
6937     }
6938 
6939     if (mode == ARM_CPU_MODE_UND) {
6940         env->xregs[22] = env->regs[14];
6941         env->xregs[23] = env->regs[13];
6942     } else {
6943         env->xregs[22] = env->banked_r14[bank_number(ARM_CPU_MODE_UND)];
6944         env->xregs[23] = env->banked_r13[bank_number(ARM_CPU_MODE_UND)];
6945     }
6946 
6947     /* Registers x24-x30 are mapped to r8-r14 in FIQ mode.  If we are in FIQ
6948      * mode, then we can copy from r8-r14.  Otherwise, we copy from the
6949      * FIQ bank for r8-r14.
6950      */
6951     if (mode == ARM_CPU_MODE_FIQ) {
6952         for (i = 24; i < 31; i++) {
6953             env->xregs[i] = env->regs[i - 16];   /* X[24:30] <- R[8:14] */
6954         }
6955     } else {
6956         for (i = 24; i < 29; i++) {
6957             env->xregs[i] = env->fiq_regs[i - 24];
6958         }
6959         env->xregs[29] = env->banked_r13[bank_number(ARM_CPU_MODE_FIQ)];
6960         env->xregs[30] = env->banked_r14[bank_number(ARM_CPU_MODE_FIQ)];
6961     }
6962 
6963     env->pc = env->regs[15];
6964 }
6965 
6966 /* Function used to synchronize QEMU's AArch32 register set with AArch64
6967  * register set.  This is necessary when switching between AArch32 and AArch64
6968  * execution state.
6969  */
6970 void aarch64_sync_64_to_32(CPUARMState *env)
6971 {
6972     int i;
6973     uint32_t mode = env->uncached_cpsr & CPSR_M;
6974 
6975     /* We can blanket copy X[0:7] to R[0:7] */
6976     for (i = 0; i < 8; i++) {
6977         env->regs[i] = env->xregs[i];
6978     }
6979 
6980     /* Unless we are in FIQ mode, r8-r12 come from the user registers x8-x12.
6981      * Otherwise, we copy x8-x12 into the banked user regs.
6982      */
6983     if (mode == ARM_CPU_MODE_FIQ) {
6984         for (i = 8; i < 13; i++) {
6985             env->usr_regs[i - 8] = env->xregs[i];
6986         }
6987     } else {
6988         for (i = 8; i < 13; i++) {
6989             env->regs[i] = env->xregs[i];
6990         }
6991     }
6992 
6993     /* Registers r13 & r14 depend on the current mode.
6994      * If we are in a given mode, we copy the corresponding x registers to r13
6995      * and r14.  Otherwise, we copy the x register to the banked r13 and r14
6996      * for the mode.
6997      */
6998     if (mode == ARM_CPU_MODE_USR || mode == ARM_CPU_MODE_SYS) {
6999         env->regs[13] = env->xregs[13];
7000         env->regs[14] = env->xregs[14];
7001     } else {
7002         env->banked_r13[bank_number(ARM_CPU_MODE_USR)] = env->xregs[13];
7003 
7004         /* HYP is an exception in that it does not have its own banked r14 but
7005          * shares the USR r14
7006          */
7007         if (mode == ARM_CPU_MODE_HYP) {
7008             env->regs[14] = env->xregs[14];
7009         } else {
7010             env->banked_r14[bank_number(ARM_CPU_MODE_USR)] = env->xregs[14];
7011         }
7012     }
7013 
7014     if (mode == ARM_CPU_MODE_HYP) {
7015         env->regs[13] = env->xregs[15];
7016     } else {
7017         env->banked_r13[bank_number(ARM_CPU_MODE_HYP)] = env->xregs[15];
7018     }
7019 
7020     if (mode == ARM_CPU_MODE_IRQ) {
7021         env->regs[14] = env->xregs[16];
7022         env->regs[13] = env->xregs[17];
7023     } else {
7024         env->banked_r14[bank_number(ARM_CPU_MODE_IRQ)] = env->xregs[16];
7025         env->banked_r13[bank_number(ARM_CPU_MODE_IRQ)] = env->xregs[17];
7026     }
7027 
7028     if (mode == ARM_CPU_MODE_SVC) {
7029         env->regs[14] = env->xregs[18];
7030         env->regs[13] = env->xregs[19];
7031     } else {
7032         env->banked_r14[bank_number(ARM_CPU_MODE_SVC)] = env->xregs[18];
7033         env->banked_r13[bank_number(ARM_CPU_MODE_SVC)] = env->xregs[19];
7034     }
7035 
7036     if (mode == ARM_CPU_MODE_ABT) {
7037         env->regs[14] = env->xregs[20];
7038         env->regs[13] = env->xregs[21];
7039     } else {
7040         env->banked_r14[bank_number(ARM_CPU_MODE_ABT)] = env->xregs[20];
7041         env->banked_r13[bank_number(ARM_CPU_MODE_ABT)] = env->xregs[21];
7042     }
7043 
7044     if (mode == ARM_CPU_MODE_UND) {
7045         env->regs[14] = env->xregs[22];
7046         env->regs[13] = env->xregs[23];
7047     } else {
7048         env->banked_r14[bank_number(ARM_CPU_MODE_UND)] = env->xregs[22];
7049         env->banked_r13[bank_number(ARM_CPU_MODE_UND)] = env->xregs[23];
7050     }
7051 
7052     /* Registers x24-x30 are mapped to r8-r14 in FIQ mode.  If we are in FIQ
7053      * mode, then we can copy to r8-r14.  Otherwise, we copy to the
7054      * FIQ bank for r8-r14.
7055      */
7056     if (mode == ARM_CPU_MODE_FIQ) {
7057         for (i = 24; i < 31; i++) {
7058             env->regs[i - 16] = env->xregs[i];   /* X[24:30] -> R[8:14] */
7059         }
7060     } else {
7061         for (i = 24; i < 29; i++) {
7062             env->fiq_regs[i - 24] = env->xregs[i];
7063         }
7064         env->banked_r13[bank_number(ARM_CPU_MODE_FIQ)] = env->xregs[29];
7065         env->banked_r14[bank_number(ARM_CPU_MODE_FIQ)] = env->xregs[30];
7066     }
7067 
7068     env->regs[15] = env->pc;
7069 }
7070 
7071 static void arm_cpu_do_interrupt_aarch32(CPUState *cs)
7072 {
7073     ARMCPU *cpu = ARM_CPU(cs);
7074     CPUARMState *env = &cpu->env;
7075     uint32_t addr;
7076     uint32_t mask;
7077     int new_mode;
7078     uint32_t offset;
7079     uint32_t moe;
7080 
7081     /* If this is a debug exception we must update the DBGDSCR.MOE bits */
7082     switch (env->exception.syndrome >> ARM_EL_EC_SHIFT) {
7083     case EC_BREAKPOINT:
7084     case EC_BREAKPOINT_SAME_EL:
7085         moe = 1;
7086         break;
7087     case EC_WATCHPOINT:
7088     case EC_WATCHPOINT_SAME_EL:
7089         moe = 10;
7090         break;
7091     case EC_AA32_BKPT:
7092         moe = 3;
7093         break;
7094     case EC_VECTORCATCH:
7095         moe = 5;
7096         break;
7097     default:
7098         moe = 0;
7099         break;
7100     }
7101 
7102     if (moe) {
7103         env->cp15.mdscr_el1 = deposit64(env->cp15.mdscr_el1, 2, 4, moe);
7104     }
7105 
7106     /* TODO: Vectored interrupt controller.  */
7107     switch (cs->exception_index) {
7108     case EXCP_UDEF:
7109         new_mode = ARM_CPU_MODE_UND;
7110         addr = 0x04;
7111         mask = CPSR_I;
7112         if (env->thumb)
7113             offset = 2;
7114         else
7115             offset = 4;
7116         break;
7117     case EXCP_SWI:
7118         new_mode = ARM_CPU_MODE_SVC;
7119         addr = 0x08;
7120         mask = CPSR_I;
7121         /* The PC already points to the next instruction.  */
7122         offset = 0;
7123         break;
7124     case EXCP_BKPT:
7125         env->exception.fsr = 2;
7126         /* Fall through to prefetch abort.  */
7127     case EXCP_PREFETCH_ABORT:
7128         A32_BANKED_CURRENT_REG_SET(env, ifsr, env->exception.fsr);
7129         A32_BANKED_CURRENT_REG_SET(env, ifar, env->exception.vaddress);
7130         qemu_log_mask(CPU_LOG_INT, "...with IFSR 0x%x IFAR 0x%x\n",
7131                       env->exception.fsr, (uint32_t)env->exception.vaddress);
7132         new_mode = ARM_CPU_MODE_ABT;
7133         addr = 0x0c;
7134         mask = CPSR_A | CPSR_I;
7135         offset = 4;
7136         break;
7137     case EXCP_DATA_ABORT:
7138         A32_BANKED_CURRENT_REG_SET(env, dfsr, env->exception.fsr);
7139         A32_BANKED_CURRENT_REG_SET(env, dfar, env->exception.vaddress);
7140         qemu_log_mask(CPU_LOG_INT, "...with DFSR 0x%x DFAR 0x%x\n",
7141                       env->exception.fsr,
7142                       (uint32_t)env->exception.vaddress);
7143         new_mode = ARM_CPU_MODE_ABT;
7144         addr = 0x10;
7145         mask = CPSR_A | CPSR_I;
7146         offset = 8;
7147         break;
7148     case EXCP_IRQ:
7149         new_mode = ARM_CPU_MODE_IRQ;
7150         addr = 0x18;
7151         /* Disable IRQ and imprecise data aborts.  */
7152         mask = CPSR_A | CPSR_I;
7153         offset = 4;
7154         if (env->cp15.scr_el3 & SCR_IRQ) {
7155             /* IRQ routed to monitor mode */
7156             new_mode = ARM_CPU_MODE_MON;
7157             mask |= CPSR_F;
7158         }
7159         break;
7160     case EXCP_FIQ:
7161         new_mode = ARM_CPU_MODE_FIQ;
7162         addr = 0x1c;
7163         /* Disable FIQ, IRQ and imprecise data aborts.  */
7164         mask = CPSR_A | CPSR_I | CPSR_F;
7165         if (env->cp15.scr_el3 & SCR_FIQ) {
7166             /* FIQ routed to monitor mode */
7167             new_mode = ARM_CPU_MODE_MON;
7168         }
7169         offset = 4;
7170         break;
7171     case EXCP_VIRQ:
7172         new_mode = ARM_CPU_MODE_IRQ;
7173         addr = 0x18;
7174         /* Disable IRQ and imprecise data aborts.  */
7175         mask = CPSR_A | CPSR_I;
7176         offset = 4;
7177         break;
7178     case EXCP_VFIQ:
7179         new_mode = ARM_CPU_MODE_FIQ;
7180         addr = 0x1c;
7181         /* Disable FIQ, IRQ and imprecise data aborts.  */
7182         mask = CPSR_A | CPSR_I | CPSR_F;
7183         offset = 4;
7184         break;
7185     case EXCP_SMC:
7186         new_mode = ARM_CPU_MODE_MON;
7187         addr = 0x08;
7188         mask = CPSR_A | CPSR_I | CPSR_F;
7189         offset = 0;
7190         break;
7191     default:
7192         cpu_abort(cs, "Unhandled exception 0x%x\n", cs->exception_index);
7193         return; /* Never happens.  Keep compiler happy.  */
7194     }
7195 
7196     if (new_mode == ARM_CPU_MODE_MON) {
7197         addr += env->cp15.mvbar;
7198     } else if (A32_BANKED_CURRENT_REG_GET(env, sctlr) & SCTLR_V) {
7199         /* High vectors. When enabled, base address cannot be remapped. */
7200         addr += 0xffff0000;
7201     } else {
7202         /* ARM v7 architectures provide a vector base address register to remap
7203          * the interrupt vector table.
7204          * This register is only followed in non-monitor mode, and is banked.
7205          * Note: only bits 31:5 are valid.
7206          */
7207         addr += A32_BANKED_CURRENT_REG_GET(env, vbar);
7208     }
7209 
7210     if ((env->uncached_cpsr & CPSR_M) == ARM_CPU_MODE_MON) {
7211         env->cp15.scr_el3 &= ~SCR_NS;
7212     }
7213 
7214     switch_mode (env, new_mode);
7215     /* For exceptions taken to AArch32 we must clear the SS bit in both
7216      * PSTATE and in the old-state value we save to SPSR_<mode>, so zero it now.
7217      */
7218     env->uncached_cpsr &= ~PSTATE_SS;
7219     env->spsr = cpsr_read(env);
7220     /* Clear IT bits.  */
7221     env->condexec_bits = 0;
7222     /* Switch to the new mode, and to the correct instruction set.  */
7223     env->uncached_cpsr = (env->uncached_cpsr & ~CPSR_M) | new_mode;
7224     /* Set new mode endianness */
7225     env->uncached_cpsr &= ~CPSR_E;
7226     if (env->cp15.sctlr_el[arm_current_el(env)] & SCTLR_EE) {
7227         env->uncached_cpsr |= CPSR_E;
7228     }
7229     env->daif |= mask;
7230     /* this is a lie, as the was no c1_sys on V4T/V5, but who cares
7231      * and we should just guard the thumb mode on V4 */
7232     if (arm_feature(env, ARM_FEATURE_V4T)) {
7233         env->thumb = (A32_BANKED_CURRENT_REG_GET(env, sctlr) & SCTLR_TE) != 0;
7234     }
7235     env->regs[14] = env->regs[15] + offset;
7236     env->regs[15] = addr;
7237 }
7238 
7239 /* Handle exception entry to a target EL which is using AArch64 */
7240 static void arm_cpu_do_interrupt_aarch64(CPUState *cs)
7241 {
7242     ARMCPU *cpu = ARM_CPU(cs);
7243     CPUARMState *env = &cpu->env;
7244     unsigned int new_el = env->exception.target_el;
7245     target_ulong addr = env->cp15.vbar_el[new_el];
7246     unsigned int new_mode = aarch64_pstate_mode(new_el, true);
7247 
7248     if (arm_current_el(env) < new_el) {
7249         /* Entry vector offset depends on whether the implemented EL
7250          * immediately lower than the target level is using AArch32 or AArch64
7251          */
7252         bool is_aa64;
7253 
7254         switch (new_el) {
7255         case 3:
7256             is_aa64 = (env->cp15.scr_el3 & SCR_RW) != 0;
7257             break;
7258         case 2:
7259             is_aa64 = (env->cp15.hcr_el2 & HCR_RW) != 0;
7260             break;
7261         case 1:
7262             is_aa64 = is_a64(env);
7263             break;
7264         default:
7265             g_assert_not_reached();
7266         }
7267 
7268         if (is_aa64) {
7269             addr += 0x400;
7270         } else {
7271             addr += 0x600;
7272         }
7273     } else if (pstate_read(env) & PSTATE_SP) {
7274         addr += 0x200;
7275     }
7276 
7277     switch (cs->exception_index) {
7278     case EXCP_PREFETCH_ABORT:
7279     case EXCP_DATA_ABORT:
7280         env->cp15.far_el[new_el] = env->exception.vaddress;
7281         qemu_log_mask(CPU_LOG_INT, "...with FAR 0x%" PRIx64 "\n",
7282                       env->cp15.far_el[new_el]);
7283         /* fall through */
7284     case EXCP_BKPT:
7285     case EXCP_UDEF:
7286     case EXCP_SWI:
7287     case EXCP_HVC:
7288     case EXCP_HYP_TRAP:
7289     case EXCP_SMC:
7290         env->cp15.esr_el[new_el] = env->exception.syndrome;
7291         break;
7292     case EXCP_IRQ:
7293     case EXCP_VIRQ:
7294         addr += 0x80;
7295         break;
7296     case EXCP_FIQ:
7297     case EXCP_VFIQ:
7298         addr += 0x100;
7299         break;
7300     case EXCP_SEMIHOST:
7301         qemu_log_mask(CPU_LOG_INT,
7302                       "...handling as semihosting call 0x%" PRIx64 "\n",
7303                       env->xregs[0]);
7304         env->xregs[0] = do_arm_semihosting(env);
7305         return;
7306     default:
7307         cpu_abort(cs, "Unhandled exception 0x%x\n", cs->exception_index);
7308     }
7309 
7310     if (is_a64(env)) {
7311         env->banked_spsr[aarch64_banked_spsr_index(new_el)] = pstate_read(env);
7312         aarch64_save_sp(env, arm_current_el(env));
7313         env->elr_el[new_el] = env->pc;
7314     } else {
7315         env->banked_spsr[aarch64_banked_spsr_index(new_el)] = cpsr_read(env);
7316         env->elr_el[new_el] = env->regs[15];
7317 
7318         aarch64_sync_32_to_64(env);
7319 
7320         env->condexec_bits = 0;
7321     }
7322     qemu_log_mask(CPU_LOG_INT, "...with ELR 0x%" PRIx64 "\n",
7323                   env->elr_el[new_el]);
7324 
7325     pstate_write(env, PSTATE_DAIF | new_mode);
7326     env->aarch64 = 1;
7327     aarch64_restore_sp(env, new_el);
7328 
7329     env->pc = addr;
7330 
7331     qemu_log_mask(CPU_LOG_INT, "...to EL%d PC 0x%" PRIx64 " PSTATE 0x%x\n",
7332                   new_el, env->pc, pstate_read(env));
7333 }
7334 
7335 static inline bool check_for_semihosting(CPUState *cs)
7336 {
7337     /* Check whether this exception is a semihosting call; if so
7338      * then handle it and return true; otherwise return false.
7339      */
7340     ARMCPU *cpu = ARM_CPU(cs);
7341     CPUARMState *env = &cpu->env;
7342 
7343     if (is_a64(env)) {
7344         if (cs->exception_index == EXCP_SEMIHOST) {
7345             /* This is always the 64-bit semihosting exception.
7346              * The "is this usermode" and "is semihosting enabled"
7347              * checks have been done at translate time.
7348              */
7349             qemu_log_mask(CPU_LOG_INT,
7350                           "...handling as semihosting call 0x%" PRIx64 "\n",
7351                           env->xregs[0]);
7352             env->xregs[0] = do_arm_semihosting(env);
7353             return true;
7354         }
7355         return false;
7356     } else {
7357         uint32_t imm;
7358 
7359         /* Only intercept calls from privileged modes, to provide some
7360          * semblance of security.
7361          */
7362         if (cs->exception_index != EXCP_SEMIHOST &&
7363             (!semihosting_enabled() ||
7364              ((env->uncached_cpsr & CPSR_M) == ARM_CPU_MODE_USR))) {
7365             return false;
7366         }
7367 
7368         switch (cs->exception_index) {
7369         case EXCP_SEMIHOST:
7370             /* This is always a semihosting call; the "is this usermode"
7371              * and "is semihosting enabled" checks have been done at
7372              * translate time.
7373              */
7374             break;
7375         case EXCP_SWI:
7376             /* Check for semihosting interrupt.  */
7377             if (env->thumb) {
7378                 imm = arm_lduw_code(env, env->regs[15] - 2, arm_sctlr_b(env))
7379                     & 0xff;
7380                 if (imm == 0xab) {
7381                     break;
7382                 }
7383             } else {
7384                 imm = arm_ldl_code(env, env->regs[15] - 4, arm_sctlr_b(env))
7385                     & 0xffffff;
7386                 if (imm == 0x123456) {
7387                     break;
7388                 }
7389             }
7390             return false;
7391         case EXCP_BKPT:
7392             /* See if this is a semihosting syscall.  */
7393             if (env->thumb) {
7394                 imm = arm_lduw_code(env, env->regs[15], arm_sctlr_b(env))
7395                     & 0xff;
7396                 if (imm == 0xab) {
7397                     env->regs[15] += 2;
7398                     break;
7399                 }
7400             }
7401             return false;
7402         default:
7403             return false;
7404         }
7405 
7406         qemu_log_mask(CPU_LOG_INT,
7407                       "...handling as semihosting call 0x%x\n",
7408                       env->regs[0]);
7409         env->regs[0] = do_arm_semihosting(env);
7410         return true;
7411     }
7412 }
7413 
7414 /* Handle a CPU exception for A and R profile CPUs.
7415  * Do any appropriate logging, handle PSCI calls, and then hand off
7416  * to the AArch64-entry or AArch32-entry function depending on the
7417  * target exception level's register width.
7418  */
7419 void arm_cpu_do_interrupt(CPUState *cs)
7420 {
7421     ARMCPU *cpu = ARM_CPU(cs);
7422     CPUARMState *env = &cpu->env;
7423     unsigned int new_el = env->exception.target_el;
7424 
7425     assert(!arm_feature(env, ARM_FEATURE_M));
7426 
7427     arm_log_exception(cs->exception_index);
7428     qemu_log_mask(CPU_LOG_INT, "...from EL%d to EL%d\n", arm_current_el(env),
7429                   new_el);
7430     if (qemu_loglevel_mask(CPU_LOG_INT)
7431         && !excp_is_internal(cs->exception_index)) {
7432         qemu_log_mask(CPU_LOG_INT, "...with ESR 0x%x/0x%" PRIx32 "\n",
7433                       env->exception.syndrome >> ARM_EL_EC_SHIFT,
7434                       env->exception.syndrome);
7435     }
7436 
7437     if (arm_is_psci_call(cpu, cs->exception_index)) {
7438         arm_handle_psci_call(cpu);
7439         qemu_log_mask(CPU_LOG_INT, "...handled as PSCI call\n");
7440         return;
7441     }
7442 
7443     /* Semihosting semantics depend on the register width of the
7444      * code that caused the exception, not the target exception level,
7445      * so must be handled here.
7446      */
7447     if (check_for_semihosting(cs)) {
7448         return;
7449     }
7450 
7451     assert(!excp_is_internal(cs->exception_index));
7452     if (arm_el_is_aa64(env, new_el)) {
7453         arm_cpu_do_interrupt_aarch64(cs);
7454     } else {
7455         arm_cpu_do_interrupt_aarch32(cs);
7456     }
7457 
7458     /* Hooks may change global state so BQL should be held, also the
7459      * BQL needs to be held for any modification of
7460      * cs->interrupt_request.
7461      */
7462     g_assert(qemu_mutex_iothread_locked());
7463 
7464     arm_call_el_change_hook(cpu);
7465 
7466     if (!kvm_enabled()) {
7467         cs->interrupt_request |= CPU_INTERRUPT_EXITTB;
7468     }
7469 }
7470 
7471 /* Return the exception level which controls this address translation regime */
7472 static inline uint32_t regime_el(CPUARMState *env, ARMMMUIdx mmu_idx)
7473 {
7474     switch (mmu_idx) {
7475     case ARMMMUIdx_S2NS:
7476     case ARMMMUIdx_S1E2:
7477         return 2;
7478     case ARMMMUIdx_S1E3:
7479         return 3;
7480     case ARMMMUIdx_S1SE0:
7481         return arm_el_is_aa64(env, 3) ? 1 : 3;
7482     case ARMMMUIdx_S1SE1:
7483     case ARMMMUIdx_S1NSE0:
7484     case ARMMMUIdx_S1NSE1:
7485     case ARMMMUIdx_MPriv:
7486     case ARMMMUIdx_MNegPri:
7487     case ARMMMUIdx_MUser:
7488     case ARMMMUIdx_MSPriv:
7489     case ARMMMUIdx_MSNegPri:
7490     case ARMMMUIdx_MSUser:
7491         return 1;
7492     default:
7493         g_assert_not_reached();
7494     }
7495 }
7496 
7497 /* Return the SCTLR value which controls this address translation regime */
7498 static inline uint32_t regime_sctlr(CPUARMState *env, ARMMMUIdx mmu_idx)
7499 {
7500     return env->cp15.sctlr_el[regime_el(env, mmu_idx)];
7501 }
7502 
7503 /* Return true if the specified stage of address translation is disabled */
7504 static inline bool regime_translation_disabled(CPUARMState *env,
7505                                                ARMMMUIdx mmu_idx)
7506 {
7507     if (arm_feature(env, ARM_FEATURE_M)) {
7508         switch (env->v7m.mpu_ctrl[regime_is_secure(env, mmu_idx)] &
7509                 (R_V7M_MPU_CTRL_ENABLE_MASK | R_V7M_MPU_CTRL_HFNMIENA_MASK)) {
7510         case R_V7M_MPU_CTRL_ENABLE_MASK:
7511             /* Enabled, but not for HardFault and NMI */
7512             return mmu_idx == ARMMMUIdx_MNegPri ||
7513                 mmu_idx == ARMMMUIdx_MSNegPri;
7514         case R_V7M_MPU_CTRL_ENABLE_MASK | R_V7M_MPU_CTRL_HFNMIENA_MASK:
7515             /* Enabled for all cases */
7516             return false;
7517         case 0:
7518         default:
7519             /* HFNMIENA set and ENABLE clear is UNPREDICTABLE, but
7520              * we warned about that in armv7m_nvic.c when the guest set it.
7521              */
7522             return true;
7523         }
7524     }
7525 
7526     if (mmu_idx == ARMMMUIdx_S2NS) {
7527         return (env->cp15.hcr_el2 & HCR_VM) == 0;
7528     }
7529     return (regime_sctlr(env, mmu_idx) & SCTLR_M) == 0;
7530 }
7531 
7532 static inline bool regime_translation_big_endian(CPUARMState *env,
7533                                                  ARMMMUIdx mmu_idx)
7534 {
7535     return (regime_sctlr(env, mmu_idx) & SCTLR_EE) != 0;
7536 }
7537 
7538 /* Return the TCR controlling this translation regime */
7539 static inline TCR *regime_tcr(CPUARMState *env, ARMMMUIdx mmu_idx)
7540 {
7541     if (mmu_idx == ARMMMUIdx_S2NS) {
7542         return &env->cp15.vtcr_el2;
7543     }
7544     return &env->cp15.tcr_el[regime_el(env, mmu_idx)];
7545 }
7546 
7547 /* Convert a possible stage1+2 MMU index into the appropriate
7548  * stage 1 MMU index
7549  */
7550 static inline ARMMMUIdx stage_1_mmu_idx(ARMMMUIdx mmu_idx)
7551 {
7552     if (mmu_idx == ARMMMUIdx_S12NSE0 || mmu_idx == ARMMMUIdx_S12NSE1) {
7553         mmu_idx += (ARMMMUIdx_S1NSE0 - ARMMMUIdx_S12NSE0);
7554     }
7555     return mmu_idx;
7556 }
7557 
7558 /* Returns TBI0 value for current regime el */
7559 uint32_t arm_regime_tbi0(CPUARMState *env, ARMMMUIdx mmu_idx)
7560 {
7561     TCR *tcr;
7562     uint32_t el;
7563 
7564     /* For EL0 and EL1, TBI is controlled by stage 1's TCR, so convert
7565      * a stage 1+2 mmu index into the appropriate stage 1 mmu index.
7566      */
7567     mmu_idx = stage_1_mmu_idx(mmu_idx);
7568 
7569     tcr = regime_tcr(env, mmu_idx);
7570     el = regime_el(env, mmu_idx);
7571 
7572     if (el > 1) {
7573         return extract64(tcr->raw_tcr, 20, 1);
7574     } else {
7575         return extract64(tcr->raw_tcr, 37, 1);
7576     }
7577 }
7578 
7579 /* Returns TBI1 value for current regime el */
7580 uint32_t arm_regime_tbi1(CPUARMState *env, ARMMMUIdx mmu_idx)
7581 {
7582     TCR *tcr;
7583     uint32_t el;
7584 
7585     /* For EL0 and EL1, TBI is controlled by stage 1's TCR, so convert
7586      * a stage 1+2 mmu index into the appropriate stage 1 mmu index.
7587      */
7588     mmu_idx = stage_1_mmu_idx(mmu_idx);
7589 
7590     tcr = regime_tcr(env, mmu_idx);
7591     el = regime_el(env, mmu_idx);
7592 
7593     if (el > 1) {
7594         return 0;
7595     } else {
7596         return extract64(tcr->raw_tcr, 38, 1);
7597     }
7598 }
7599 
7600 /* Return the TTBR associated with this translation regime */
7601 static inline uint64_t regime_ttbr(CPUARMState *env, ARMMMUIdx mmu_idx,
7602                                    int ttbrn)
7603 {
7604     if (mmu_idx == ARMMMUIdx_S2NS) {
7605         return env->cp15.vttbr_el2;
7606     }
7607     if (ttbrn == 0) {
7608         return env->cp15.ttbr0_el[regime_el(env, mmu_idx)];
7609     } else {
7610         return env->cp15.ttbr1_el[regime_el(env, mmu_idx)];
7611     }
7612 }
7613 
7614 /* Return true if the translation regime is using LPAE format page tables */
7615 static inline bool regime_using_lpae_format(CPUARMState *env,
7616                                             ARMMMUIdx mmu_idx)
7617 {
7618     int el = regime_el(env, mmu_idx);
7619     if (el == 2 || arm_el_is_aa64(env, el)) {
7620         return true;
7621     }
7622     if (arm_feature(env, ARM_FEATURE_LPAE)
7623         && (regime_tcr(env, mmu_idx)->raw_tcr & TTBCR_EAE)) {
7624         return true;
7625     }
7626     return false;
7627 }
7628 
7629 /* Returns true if the stage 1 translation regime is using LPAE format page
7630  * tables. Used when raising alignment exceptions, whose FSR changes depending
7631  * on whether the long or short descriptor format is in use. */
7632 bool arm_s1_regime_using_lpae_format(CPUARMState *env, ARMMMUIdx mmu_idx)
7633 {
7634     mmu_idx = stage_1_mmu_idx(mmu_idx);
7635 
7636     return regime_using_lpae_format(env, mmu_idx);
7637 }
7638 
7639 static inline bool regime_is_user(CPUARMState *env, ARMMMUIdx mmu_idx)
7640 {
7641     switch (mmu_idx) {
7642     case ARMMMUIdx_S1SE0:
7643     case ARMMMUIdx_S1NSE0:
7644     case ARMMMUIdx_MUser:
7645         return true;
7646     default:
7647         return false;
7648     case ARMMMUIdx_S12NSE0:
7649     case ARMMMUIdx_S12NSE1:
7650         g_assert_not_reached();
7651     }
7652 }
7653 
7654 /* Translate section/page access permissions to page
7655  * R/W protection flags
7656  *
7657  * @env:         CPUARMState
7658  * @mmu_idx:     MMU index indicating required translation regime
7659  * @ap:          The 3-bit access permissions (AP[2:0])
7660  * @domain_prot: The 2-bit domain access permissions
7661  */
7662 static inline int ap_to_rw_prot(CPUARMState *env, ARMMMUIdx mmu_idx,
7663                                 int ap, int domain_prot)
7664 {
7665     bool is_user = regime_is_user(env, mmu_idx);
7666 
7667     if (domain_prot == 3) {
7668         return PAGE_READ | PAGE_WRITE;
7669     }
7670 
7671     switch (ap) {
7672     case 0:
7673         if (arm_feature(env, ARM_FEATURE_V7)) {
7674             return 0;
7675         }
7676         switch (regime_sctlr(env, mmu_idx) & (SCTLR_S | SCTLR_R)) {
7677         case SCTLR_S:
7678             return is_user ? 0 : PAGE_READ;
7679         case SCTLR_R:
7680             return PAGE_READ;
7681         default:
7682             return 0;
7683         }
7684     case 1:
7685         return is_user ? 0 : PAGE_READ | PAGE_WRITE;
7686     case 2:
7687         if (is_user) {
7688             return PAGE_READ;
7689         } else {
7690             return PAGE_READ | PAGE_WRITE;
7691         }
7692     case 3:
7693         return PAGE_READ | PAGE_WRITE;
7694     case 4: /* Reserved.  */
7695         return 0;
7696     case 5:
7697         return is_user ? 0 : PAGE_READ;
7698     case 6:
7699         return PAGE_READ;
7700     case 7:
7701         if (!arm_feature(env, ARM_FEATURE_V6K)) {
7702             return 0;
7703         }
7704         return PAGE_READ;
7705     default:
7706         g_assert_not_reached();
7707     }
7708 }
7709 
7710 /* Translate section/page access permissions to page
7711  * R/W protection flags.
7712  *
7713  * @ap:      The 2-bit simple AP (AP[2:1])
7714  * @is_user: TRUE if accessing from PL0
7715  */
7716 static inline int simple_ap_to_rw_prot_is_user(int ap, bool is_user)
7717 {
7718     switch (ap) {
7719     case 0:
7720         return is_user ? 0 : PAGE_READ | PAGE_WRITE;
7721     case 1:
7722         return PAGE_READ | PAGE_WRITE;
7723     case 2:
7724         return is_user ? 0 : PAGE_READ;
7725     case 3:
7726         return PAGE_READ;
7727     default:
7728         g_assert_not_reached();
7729     }
7730 }
7731 
7732 static inline int
7733 simple_ap_to_rw_prot(CPUARMState *env, ARMMMUIdx mmu_idx, int ap)
7734 {
7735     return simple_ap_to_rw_prot_is_user(ap, regime_is_user(env, mmu_idx));
7736 }
7737 
7738 /* Translate S2 section/page access permissions to protection flags
7739  *
7740  * @env:     CPUARMState
7741  * @s2ap:    The 2-bit stage2 access permissions (S2AP)
7742  * @xn:      XN (execute-never) bit
7743  */
7744 static int get_S2prot(CPUARMState *env, int s2ap, int xn)
7745 {
7746     int prot = 0;
7747 
7748     if (s2ap & 1) {
7749         prot |= PAGE_READ;
7750     }
7751     if (s2ap & 2) {
7752         prot |= PAGE_WRITE;
7753     }
7754     if (!xn) {
7755         if (arm_el_is_aa64(env, 2) || prot & PAGE_READ) {
7756             prot |= PAGE_EXEC;
7757         }
7758     }
7759     return prot;
7760 }
7761 
7762 /* Translate section/page access permissions to protection flags
7763  *
7764  * @env:     CPUARMState
7765  * @mmu_idx: MMU index indicating required translation regime
7766  * @is_aa64: TRUE if AArch64
7767  * @ap:      The 2-bit simple AP (AP[2:1])
7768  * @ns:      NS (non-secure) bit
7769  * @xn:      XN (execute-never) bit
7770  * @pxn:     PXN (privileged execute-never) bit
7771  */
7772 static int get_S1prot(CPUARMState *env, ARMMMUIdx mmu_idx, bool is_aa64,
7773                       int ap, int ns, int xn, int pxn)
7774 {
7775     bool is_user = regime_is_user(env, mmu_idx);
7776     int prot_rw, user_rw;
7777     bool have_wxn;
7778     int wxn = 0;
7779 
7780     assert(mmu_idx != ARMMMUIdx_S2NS);
7781 
7782     user_rw = simple_ap_to_rw_prot_is_user(ap, true);
7783     if (is_user) {
7784         prot_rw = user_rw;
7785     } else {
7786         prot_rw = simple_ap_to_rw_prot_is_user(ap, false);
7787     }
7788 
7789     if (ns && arm_is_secure(env) && (env->cp15.scr_el3 & SCR_SIF)) {
7790         return prot_rw;
7791     }
7792 
7793     /* TODO have_wxn should be replaced with
7794      *   ARM_FEATURE_V8 || (ARM_FEATURE_V7 && ARM_FEATURE_EL2)
7795      * when ARM_FEATURE_EL2 starts getting set. For now we assume all LPAE
7796      * compatible processors have EL2, which is required for [U]WXN.
7797      */
7798     have_wxn = arm_feature(env, ARM_FEATURE_LPAE);
7799 
7800     if (have_wxn) {
7801         wxn = regime_sctlr(env, mmu_idx) & SCTLR_WXN;
7802     }
7803 
7804     if (is_aa64) {
7805         switch (regime_el(env, mmu_idx)) {
7806         case 1:
7807             if (!is_user) {
7808                 xn = pxn || (user_rw & PAGE_WRITE);
7809             }
7810             break;
7811         case 2:
7812         case 3:
7813             break;
7814         }
7815     } else if (arm_feature(env, ARM_FEATURE_V7)) {
7816         switch (regime_el(env, mmu_idx)) {
7817         case 1:
7818         case 3:
7819             if (is_user) {
7820                 xn = xn || !(user_rw & PAGE_READ);
7821             } else {
7822                 int uwxn = 0;
7823                 if (have_wxn) {
7824                     uwxn = regime_sctlr(env, mmu_idx) & SCTLR_UWXN;
7825                 }
7826                 xn = xn || !(prot_rw & PAGE_READ) || pxn ||
7827                      (uwxn && (user_rw & PAGE_WRITE));
7828             }
7829             break;
7830         case 2:
7831             break;
7832         }
7833     } else {
7834         xn = wxn = 0;
7835     }
7836 
7837     if (xn || (wxn && (prot_rw & PAGE_WRITE))) {
7838         return prot_rw;
7839     }
7840     return prot_rw | PAGE_EXEC;
7841 }
7842 
7843 static bool get_level1_table_address(CPUARMState *env, ARMMMUIdx mmu_idx,
7844                                      uint32_t *table, uint32_t address)
7845 {
7846     /* Note that we can only get here for an AArch32 PL0/PL1 lookup */
7847     TCR *tcr = regime_tcr(env, mmu_idx);
7848 
7849     if (address & tcr->mask) {
7850         if (tcr->raw_tcr & TTBCR_PD1) {
7851             /* Translation table walk disabled for TTBR1 */
7852             return false;
7853         }
7854         *table = regime_ttbr(env, mmu_idx, 1) & 0xffffc000;
7855     } else {
7856         if (tcr->raw_tcr & TTBCR_PD0) {
7857             /* Translation table walk disabled for TTBR0 */
7858             return false;
7859         }
7860         *table = regime_ttbr(env, mmu_idx, 0) & tcr->base_mask;
7861     }
7862     *table |= (address >> 18) & 0x3ffc;
7863     return true;
7864 }
7865 
7866 /* Translate a S1 pagetable walk through S2 if needed.  */
7867 static hwaddr S1_ptw_translate(CPUARMState *env, ARMMMUIdx mmu_idx,
7868                                hwaddr addr, MemTxAttrs txattrs,
7869                                uint32_t *fsr,
7870                                ARMMMUFaultInfo *fi)
7871 {
7872     if ((mmu_idx == ARMMMUIdx_S1NSE0 || mmu_idx == ARMMMUIdx_S1NSE1) &&
7873         !regime_translation_disabled(env, ARMMMUIdx_S2NS)) {
7874         target_ulong s2size;
7875         hwaddr s2pa;
7876         int s2prot;
7877         int ret;
7878 
7879         ret = get_phys_addr_lpae(env, addr, 0, ARMMMUIdx_S2NS, &s2pa,
7880                                  &txattrs, &s2prot, &s2size, fsr, fi);
7881         if (ret) {
7882             fi->s2addr = addr;
7883             fi->stage2 = true;
7884             fi->s1ptw = true;
7885             return ~0;
7886         }
7887         addr = s2pa;
7888     }
7889     return addr;
7890 }
7891 
7892 /* All loads done in the course of a page table walk go through here.
7893  * TODO: rather than ignoring errors from physical memory reads (which
7894  * are external aborts in ARM terminology) we should propagate this
7895  * error out so that we can turn it into a Data Abort if this walk
7896  * was being done for a CPU load/store or an address translation instruction
7897  * (but not if it was for a debug access).
7898  */
7899 static uint32_t arm_ldl_ptw(CPUState *cs, hwaddr addr, bool is_secure,
7900                             ARMMMUIdx mmu_idx, uint32_t *fsr,
7901                             ARMMMUFaultInfo *fi)
7902 {
7903     ARMCPU *cpu = ARM_CPU(cs);
7904     CPUARMState *env = &cpu->env;
7905     MemTxAttrs attrs = {};
7906     AddressSpace *as;
7907 
7908     attrs.secure = is_secure;
7909     as = arm_addressspace(cs, attrs);
7910     addr = S1_ptw_translate(env, mmu_idx, addr, attrs, fsr, fi);
7911     if (fi->s1ptw) {
7912         return 0;
7913     }
7914     if (regime_translation_big_endian(env, mmu_idx)) {
7915         return address_space_ldl_be(as, addr, attrs, NULL);
7916     } else {
7917         return address_space_ldl_le(as, addr, attrs, NULL);
7918     }
7919 }
7920 
7921 static uint64_t arm_ldq_ptw(CPUState *cs, hwaddr addr, bool is_secure,
7922                             ARMMMUIdx mmu_idx, uint32_t *fsr,
7923                             ARMMMUFaultInfo *fi)
7924 {
7925     ARMCPU *cpu = ARM_CPU(cs);
7926     CPUARMState *env = &cpu->env;
7927     MemTxAttrs attrs = {};
7928     AddressSpace *as;
7929 
7930     attrs.secure = is_secure;
7931     as = arm_addressspace(cs, attrs);
7932     addr = S1_ptw_translate(env, mmu_idx, addr, attrs, fsr, fi);
7933     if (fi->s1ptw) {
7934         return 0;
7935     }
7936     if (regime_translation_big_endian(env, mmu_idx)) {
7937         return address_space_ldq_be(as, addr, attrs, NULL);
7938     } else {
7939         return address_space_ldq_le(as, addr, attrs, NULL);
7940     }
7941 }
7942 
7943 static bool get_phys_addr_v5(CPUARMState *env, uint32_t address,
7944                              MMUAccessType access_type, ARMMMUIdx mmu_idx,
7945                              hwaddr *phys_ptr, int *prot,
7946                              target_ulong *page_size, uint32_t *fsr,
7947                              ARMMMUFaultInfo *fi)
7948 {
7949     CPUState *cs = CPU(arm_env_get_cpu(env));
7950     int code;
7951     uint32_t table;
7952     uint32_t desc;
7953     int type;
7954     int ap;
7955     int domain = 0;
7956     int domain_prot;
7957     hwaddr phys_addr;
7958     uint32_t dacr;
7959 
7960     /* Pagetable walk.  */
7961     /* Lookup l1 descriptor.  */
7962     if (!get_level1_table_address(env, mmu_idx, &table, address)) {
7963         /* Section translation fault if page walk is disabled by PD0 or PD1 */
7964         code = 5;
7965         goto do_fault;
7966     }
7967     desc = arm_ldl_ptw(cs, table, regime_is_secure(env, mmu_idx),
7968                        mmu_idx, fsr, fi);
7969     type = (desc & 3);
7970     domain = (desc >> 5) & 0x0f;
7971     if (regime_el(env, mmu_idx) == 1) {
7972         dacr = env->cp15.dacr_ns;
7973     } else {
7974         dacr = env->cp15.dacr_s;
7975     }
7976     domain_prot = (dacr >> (domain * 2)) & 3;
7977     if (type == 0) {
7978         /* Section translation fault.  */
7979         code = 5;
7980         goto do_fault;
7981     }
7982     if (domain_prot == 0 || domain_prot == 2) {
7983         if (type == 2)
7984             code = 9; /* Section domain fault.  */
7985         else
7986             code = 11; /* Page domain fault.  */
7987         goto do_fault;
7988     }
7989     if (type == 2) {
7990         /* 1Mb section.  */
7991         phys_addr = (desc & 0xfff00000) | (address & 0x000fffff);
7992         ap = (desc >> 10) & 3;
7993         code = 13;
7994         *page_size = 1024 * 1024;
7995     } else {
7996         /* Lookup l2 entry.  */
7997         if (type == 1) {
7998             /* Coarse pagetable.  */
7999             table = (desc & 0xfffffc00) | ((address >> 10) & 0x3fc);
8000         } else {
8001             /* Fine pagetable.  */
8002             table = (desc & 0xfffff000) | ((address >> 8) & 0xffc);
8003         }
8004         desc = arm_ldl_ptw(cs, table, regime_is_secure(env, mmu_idx),
8005                            mmu_idx, fsr, fi);
8006         switch (desc & 3) {
8007         case 0: /* Page translation fault.  */
8008             code = 7;
8009             goto do_fault;
8010         case 1: /* 64k page.  */
8011             phys_addr = (desc & 0xffff0000) | (address & 0xffff);
8012             ap = (desc >> (4 + ((address >> 13) & 6))) & 3;
8013             *page_size = 0x10000;
8014             break;
8015         case 2: /* 4k page.  */
8016             phys_addr = (desc & 0xfffff000) | (address & 0xfff);
8017             ap = (desc >> (4 + ((address >> 9) & 6))) & 3;
8018             *page_size = 0x1000;
8019             break;
8020         case 3: /* 1k page, or ARMv6/XScale "extended small (4k) page" */
8021             if (type == 1) {
8022                 /* ARMv6/XScale extended small page format */
8023                 if (arm_feature(env, ARM_FEATURE_XSCALE)
8024                     || arm_feature(env, ARM_FEATURE_V6)) {
8025                     phys_addr = (desc & 0xfffff000) | (address & 0xfff);
8026                     *page_size = 0x1000;
8027                 } else {
8028                     /* UNPREDICTABLE in ARMv5; we choose to take a
8029                      * page translation fault.
8030                      */
8031                     code = 7;
8032                     goto do_fault;
8033                 }
8034             } else {
8035                 phys_addr = (desc & 0xfffffc00) | (address & 0x3ff);
8036                 *page_size = 0x400;
8037             }
8038             ap = (desc >> 4) & 3;
8039             break;
8040         default:
8041             /* Never happens, but compiler isn't smart enough to tell.  */
8042             abort();
8043         }
8044         code = 15;
8045     }
8046     *prot = ap_to_rw_prot(env, mmu_idx, ap, domain_prot);
8047     *prot |= *prot ? PAGE_EXEC : 0;
8048     if (!(*prot & (1 << access_type))) {
8049         /* Access permission fault.  */
8050         goto do_fault;
8051     }
8052     *phys_ptr = phys_addr;
8053     return false;
8054 do_fault:
8055     *fsr = code | (domain << 4);
8056     return true;
8057 }
8058 
8059 static bool get_phys_addr_v6(CPUARMState *env, uint32_t address,
8060                              MMUAccessType access_type, ARMMMUIdx mmu_idx,
8061                              hwaddr *phys_ptr, MemTxAttrs *attrs, int *prot,
8062                              target_ulong *page_size, uint32_t *fsr,
8063                              ARMMMUFaultInfo *fi)
8064 {
8065     CPUState *cs = CPU(arm_env_get_cpu(env));
8066     int code;
8067     uint32_t table;
8068     uint32_t desc;
8069     uint32_t xn;
8070     uint32_t pxn = 0;
8071     int type;
8072     int ap;
8073     int domain = 0;
8074     int domain_prot;
8075     hwaddr phys_addr;
8076     uint32_t dacr;
8077     bool ns;
8078 
8079     /* Pagetable walk.  */
8080     /* Lookup l1 descriptor.  */
8081     if (!get_level1_table_address(env, mmu_idx, &table, address)) {
8082         /* Section translation fault if page walk is disabled by PD0 or PD1 */
8083         code = 5;
8084         goto do_fault;
8085     }
8086     desc = arm_ldl_ptw(cs, table, regime_is_secure(env, mmu_idx),
8087                        mmu_idx, fsr, fi);
8088     type = (desc & 3);
8089     if (type == 0 || (type == 3 && !arm_feature(env, ARM_FEATURE_PXN))) {
8090         /* Section translation fault, or attempt to use the encoding
8091          * which is Reserved on implementations without PXN.
8092          */
8093         code = 5;
8094         goto do_fault;
8095     }
8096     if ((type == 1) || !(desc & (1 << 18))) {
8097         /* Page or Section.  */
8098         domain = (desc >> 5) & 0x0f;
8099     }
8100     if (regime_el(env, mmu_idx) == 1) {
8101         dacr = env->cp15.dacr_ns;
8102     } else {
8103         dacr = env->cp15.dacr_s;
8104     }
8105     domain_prot = (dacr >> (domain * 2)) & 3;
8106     if (domain_prot == 0 || domain_prot == 2) {
8107         if (type != 1) {
8108             code = 9; /* Section domain fault.  */
8109         } else {
8110             code = 11; /* Page domain fault.  */
8111         }
8112         goto do_fault;
8113     }
8114     if (type != 1) {
8115         if (desc & (1 << 18)) {
8116             /* Supersection.  */
8117             phys_addr = (desc & 0xff000000) | (address & 0x00ffffff);
8118             phys_addr |= (uint64_t)extract32(desc, 20, 4) << 32;
8119             phys_addr |= (uint64_t)extract32(desc, 5, 4) << 36;
8120             *page_size = 0x1000000;
8121         } else {
8122             /* Section.  */
8123             phys_addr = (desc & 0xfff00000) | (address & 0x000fffff);
8124             *page_size = 0x100000;
8125         }
8126         ap = ((desc >> 10) & 3) | ((desc >> 13) & 4);
8127         xn = desc & (1 << 4);
8128         pxn = desc & 1;
8129         code = 13;
8130         ns = extract32(desc, 19, 1);
8131     } else {
8132         if (arm_feature(env, ARM_FEATURE_PXN)) {
8133             pxn = (desc >> 2) & 1;
8134         }
8135         ns = extract32(desc, 3, 1);
8136         /* Lookup l2 entry.  */
8137         table = (desc & 0xfffffc00) | ((address >> 10) & 0x3fc);
8138         desc = arm_ldl_ptw(cs, table, regime_is_secure(env, mmu_idx),
8139                            mmu_idx, fsr, fi);
8140         ap = ((desc >> 4) & 3) | ((desc >> 7) & 4);
8141         switch (desc & 3) {
8142         case 0: /* Page translation fault.  */
8143             code = 7;
8144             goto do_fault;
8145         case 1: /* 64k page.  */
8146             phys_addr = (desc & 0xffff0000) | (address & 0xffff);
8147             xn = desc & (1 << 15);
8148             *page_size = 0x10000;
8149             break;
8150         case 2: case 3: /* 4k page.  */
8151             phys_addr = (desc & 0xfffff000) | (address & 0xfff);
8152             xn = desc & 1;
8153             *page_size = 0x1000;
8154             break;
8155         default:
8156             /* Never happens, but compiler isn't smart enough to tell.  */
8157             abort();
8158         }
8159         code = 15;
8160     }
8161     if (domain_prot == 3) {
8162         *prot = PAGE_READ | PAGE_WRITE | PAGE_EXEC;
8163     } else {
8164         if (pxn && !regime_is_user(env, mmu_idx)) {
8165             xn = 1;
8166         }
8167         if (xn && access_type == MMU_INST_FETCH)
8168             goto do_fault;
8169 
8170         if (arm_feature(env, ARM_FEATURE_V6K) &&
8171                 (regime_sctlr(env, mmu_idx) & SCTLR_AFE)) {
8172             /* The simplified model uses AP[0] as an access control bit.  */
8173             if ((ap & 1) == 0) {
8174                 /* Access flag fault.  */
8175                 code = (code == 15) ? 6 : 3;
8176                 goto do_fault;
8177             }
8178             *prot = simple_ap_to_rw_prot(env, mmu_idx, ap >> 1);
8179         } else {
8180             *prot = ap_to_rw_prot(env, mmu_idx, ap, domain_prot);
8181         }
8182         if (*prot && !xn) {
8183             *prot |= PAGE_EXEC;
8184         }
8185         if (!(*prot & (1 << access_type))) {
8186             /* Access permission fault.  */
8187             goto do_fault;
8188         }
8189     }
8190     if (ns) {
8191         /* The NS bit will (as required by the architecture) have no effect if
8192          * the CPU doesn't support TZ or this is a non-secure translation
8193          * regime, because the attribute will already be non-secure.
8194          */
8195         attrs->secure = false;
8196     }
8197     *phys_ptr = phys_addr;
8198     return false;
8199 do_fault:
8200     *fsr = code | (domain << 4);
8201     return true;
8202 }
8203 
8204 /* Fault type for long-descriptor MMU fault reporting; this corresponds
8205  * to bits [5..2] in the STATUS field in long-format DFSR/IFSR.
8206  */
8207 typedef enum {
8208     translation_fault = 1,
8209     access_fault = 2,
8210     permission_fault = 3,
8211 } MMUFaultType;
8212 
8213 /*
8214  * check_s2_mmu_setup
8215  * @cpu:        ARMCPU
8216  * @is_aa64:    True if the translation regime is in AArch64 state
8217  * @startlevel: Suggested starting level
8218  * @inputsize:  Bitsize of IPAs
8219  * @stride:     Page-table stride (See the ARM ARM)
8220  *
8221  * Returns true if the suggested S2 translation parameters are OK and
8222  * false otherwise.
8223  */
8224 static bool check_s2_mmu_setup(ARMCPU *cpu, bool is_aa64, int level,
8225                                int inputsize, int stride)
8226 {
8227     const int grainsize = stride + 3;
8228     int startsizecheck;
8229 
8230     /* Negative levels are never allowed.  */
8231     if (level < 0) {
8232         return false;
8233     }
8234 
8235     startsizecheck = inputsize - ((3 - level) * stride + grainsize);
8236     if (startsizecheck < 1 || startsizecheck > stride + 4) {
8237         return false;
8238     }
8239 
8240     if (is_aa64) {
8241         CPUARMState *env = &cpu->env;
8242         unsigned int pamax = arm_pamax(cpu);
8243 
8244         switch (stride) {
8245         case 13: /* 64KB Pages.  */
8246             if (level == 0 || (level == 1 && pamax <= 42)) {
8247                 return false;
8248             }
8249             break;
8250         case 11: /* 16KB Pages.  */
8251             if (level == 0 || (level == 1 && pamax <= 40)) {
8252                 return false;
8253             }
8254             break;
8255         case 9: /* 4KB Pages.  */
8256             if (level == 0 && pamax <= 42) {
8257                 return false;
8258             }
8259             break;
8260         default:
8261             g_assert_not_reached();
8262         }
8263 
8264         /* Inputsize checks.  */
8265         if (inputsize > pamax &&
8266             (arm_el_is_aa64(env, 1) || inputsize > 40)) {
8267             /* This is CONSTRAINED UNPREDICTABLE and we choose to fault.  */
8268             return false;
8269         }
8270     } else {
8271         /* AArch32 only supports 4KB pages. Assert on that.  */
8272         assert(stride == 9);
8273 
8274         if (level == 0) {
8275             return false;
8276         }
8277     }
8278     return true;
8279 }
8280 
8281 static bool get_phys_addr_lpae(CPUARMState *env, target_ulong address,
8282                                MMUAccessType access_type, ARMMMUIdx mmu_idx,
8283                                hwaddr *phys_ptr, MemTxAttrs *txattrs, int *prot,
8284                                target_ulong *page_size_ptr, uint32_t *fsr,
8285                                ARMMMUFaultInfo *fi)
8286 {
8287     ARMCPU *cpu = arm_env_get_cpu(env);
8288     CPUState *cs = CPU(cpu);
8289     /* Read an LPAE long-descriptor translation table. */
8290     MMUFaultType fault_type = translation_fault;
8291     uint32_t level;
8292     uint32_t epd = 0;
8293     int32_t t0sz, t1sz;
8294     uint32_t tg;
8295     uint64_t ttbr;
8296     int ttbr_select;
8297     hwaddr descaddr, indexmask, indexmask_grainsize;
8298     uint32_t tableattrs;
8299     target_ulong page_size;
8300     uint32_t attrs;
8301     int32_t stride = 9;
8302     int32_t addrsize;
8303     int inputsize;
8304     int32_t tbi = 0;
8305     TCR *tcr = regime_tcr(env, mmu_idx);
8306     int ap, ns, xn, pxn;
8307     uint32_t el = regime_el(env, mmu_idx);
8308     bool ttbr1_valid = true;
8309     uint64_t descaddrmask;
8310     bool aarch64 = arm_el_is_aa64(env, el);
8311 
8312     /* TODO:
8313      * This code does not handle the different format TCR for VTCR_EL2.
8314      * This code also does not support shareability levels.
8315      * Attribute and permission bit handling should also be checked when adding
8316      * support for those page table walks.
8317      */
8318     if (aarch64) {
8319         level = 0;
8320         addrsize = 64;
8321         if (el > 1) {
8322             if (mmu_idx != ARMMMUIdx_S2NS) {
8323                 tbi = extract64(tcr->raw_tcr, 20, 1);
8324             }
8325         } else {
8326             if (extract64(address, 55, 1)) {
8327                 tbi = extract64(tcr->raw_tcr, 38, 1);
8328             } else {
8329                 tbi = extract64(tcr->raw_tcr, 37, 1);
8330             }
8331         }
8332         tbi *= 8;
8333 
8334         /* If we are in 64-bit EL2 or EL3 then there is no TTBR1, so mark it
8335          * invalid.
8336          */
8337         if (el > 1) {
8338             ttbr1_valid = false;
8339         }
8340     } else {
8341         level = 1;
8342         addrsize = 32;
8343         /* There is no TTBR1 for EL2 */
8344         if (el == 2) {
8345             ttbr1_valid = false;
8346         }
8347     }
8348 
8349     /* Determine whether this address is in the region controlled by
8350      * TTBR0 or TTBR1 (or if it is in neither region and should fault).
8351      * This is a Non-secure PL0/1 stage 1 translation, so controlled by
8352      * TTBCR/TTBR0/TTBR1 in accordance with ARM ARM DDI0406C table B-32:
8353      */
8354     if (aarch64) {
8355         /* AArch64 translation.  */
8356         t0sz = extract32(tcr->raw_tcr, 0, 6);
8357         t0sz = MIN(t0sz, 39);
8358         t0sz = MAX(t0sz, 16);
8359     } else if (mmu_idx != ARMMMUIdx_S2NS) {
8360         /* AArch32 stage 1 translation.  */
8361         t0sz = extract32(tcr->raw_tcr, 0, 3);
8362     } else {
8363         /* AArch32 stage 2 translation.  */
8364         bool sext = extract32(tcr->raw_tcr, 4, 1);
8365         bool sign = extract32(tcr->raw_tcr, 3, 1);
8366         /* Address size is 40-bit for a stage 2 translation,
8367          * and t0sz can be negative (from -8 to 7),
8368          * so we need to adjust it to use the TTBR selecting logic below.
8369          */
8370         addrsize = 40;
8371         t0sz = sextract32(tcr->raw_tcr, 0, 4) + 8;
8372 
8373         /* If the sign-extend bit is not the same as t0sz[3], the result
8374          * is unpredictable. Flag this as a guest error.  */
8375         if (sign != sext) {
8376             qemu_log_mask(LOG_GUEST_ERROR,
8377                           "AArch32: VTCR.S / VTCR.T0SZ[3] mismatch\n");
8378         }
8379     }
8380     t1sz = extract32(tcr->raw_tcr, 16, 6);
8381     if (aarch64) {
8382         t1sz = MIN(t1sz, 39);
8383         t1sz = MAX(t1sz, 16);
8384     }
8385     if (t0sz && !extract64(address, addrsize - t0sz, t0sz - tbi)) {
8386         /* there is a ttbr0 region and we are in it (high bits all zero) */
8387         ttbr_select = 0;
8388     } else if (ttbr1_valid && t1sz &&
8389                !extract64(~address, addrsize - t1sz, t1sz - tbi)) {
8390         /* there is a ttbr1 region and we are in it (high bits all one) */
8391         ttbr_select = 1;
8392     } else if (!t0sz) {
8393         /* ttbr0 region is "everything not in the ttbr1 region" */
8394         ttbr_select = 0;
8395     } else if (!t1sz && ttbr1_valid) {
8396         /* ttbr1 region is "everything not in the ttbr0 region" */
8397         ttbr_select = 1;
8398     } else {
8399         /* in the gap between the two regions, this is a Translation fault */
8400         fault_type = translation_fault;
8401         goto do_fault;
8402     }
8403 
8404     /* Note that QEMU ignores shareability and cacheability attributes,
8405      * so we don't need to do anything with the SH, ORGN, IRGN fields
8406      * in the TTBCR.  Similarly, TTBCR:A1 selects whether we get the
8407      * ASID from TTBR0 or TTBR1, but QEMU's TLB doesn't currently
8408      * implement any ASID-like capability so we can ignore it (instead
8409      * we will always flush the TLB any time the ASID is changed).
8410      */
8411     if (ttbr_select == 0) {
8412         ttbr = regime_ttbr(env, mmu_idx, 0);
8413         if (el < 2) {
8414             epd = extract32(tcr->raw_tcr, 7, 1);
8415         }
8416         inputsize = addrsize - t0sz;
8417 
8418         tg = extract32(tcr->raw_tcr, 14, 2);
8419         if (tg == 1) { /* 64KB pages */
8420             stride = 13;
8421         }
8422         if (tg == 2) { /* 16KB pages */
8423             stride = 11;
8424         }
8425     } else {
8426         /* We should only be here if TTBR1 is valid */
8427         assert(ttbr1_valid);
8428 
8429         ttbr = regime_ttbr(env, mmu_idx, 1);
8430         epd = extract32(tcr->raw_tcr, 23, 1);
8431         inputsize = addrsize - t1sz;
8432 
8433         tg = extract32(tcr->raw_tcr, 30, 2);
8434         if (tg == 3)  { /* 64KB pages */
8435             stride = 13;
8436         }
8437         if (tg == 1) { /* 16KB pages */
8438             stride = 11;
8439         }
8440     }
8441 
8442     /* Here we should have set up all the parameters for the translation:
8443      * inputsize, ttbr, epd, stride, tbi
8444      */
8445 
8446     if (epd) {
8447         /* Translation table walk disabled => Translation fault on TLB miss
8448          * Note: This is always 0 on 64-bit EL2 and EL3.
8449          */
8450         goto do_fault;
8451     }
8452 
8453     if (mmu_idx != ARMMMUIdx_S2NS) {
8454         /* The starting level depends on the virtual address size (which can
8455          * be up to 48 bits) and the translation granule size. It indicates
8456          * the number of strides (stride bits at a time) needed to
8457          * consume the bits of the input address. In the pseudocode this is:
8458          *  level = 4 - RoundUp((inputsize - grainsize) / stride)
8459          * where their 'inputsize' is our 'inputsize', 'grainsize' is
8460          * our 'stride + 3' and 'stride' is our 'stride'.
8461          * Applying the usual "rounded up m/n is (m+n-1)/n" and simplifying:
8462          * = 4 - (inputsize - stride - 3 + stride - 1) / stride
8463          * = 4 - (inputsize - 4) / stride;
8464          */
8465         level = 4 - (inputsize - 4) / stride;
8466     } else {
8467         /* For stage 2 translations the starting level is specified by the
8468          * VTCR_EL2.SL0 field (whose interpretation depends on the page size)
8469          */
8470         uint32_t sl0 = extract32(tcr->raw_tcr, 6, 2);
8471         uint32_t startlevel;
8472         bool ok;
8473 
8474         if (!aarch64 || stride == 9) {
8475             /* AArch32 or 4KB pages */
8476             startlevel = 2 - sl0;
8477         } else {
8478             /* 16KB or 64KB pages */
8479             startlevel = 3 - sl0;
8480         }
8481 
8482         /* Check that the starting level is valid. */
8483         ok = check_s2_mmu_setup(cpu, aarch64, startlevel,
8484                                 inputsize, stride);
8485         if (!ok) {
8486             fault_type = translation_fault;
8487             goto do_fault;
8488         }
8489         level = startlevel;
8490     }
8491 
8492     indexmask_grainsize = (1ULL << (stride + 3)) - 1;
8493     indexmask = (1ULL << (inputsize - (stride * (4 - level)))) - 1;
8494 
8495     /* Now we can extract the actual base address from the TTBR */
8496     descaddr = extract64(ttbr, 0, 48);
8497     descaddr &= ~indexmask;
8498 
8499     /* The address field in the descriptor goes up to bit 39 for ARMv7
8500      * but up to bit 47 for ARMv8, but we use the descaddrmask
8501      * up to bit 39 for AArch32, because we don't need other bits in that case
8502      * to construct next descriptor address (anyway they should be all zeroes).
8503      */
8504     descaddrmask = ((1ull << (aarch64 ? 48 : 40)) - 1) &
8505                    ~indexmask_grainsize;
8506 
8507     /* Secure accesses start with the page table in secure memory and
8508      * can be downgraded to non-secure at any step. Non-secure accesses
8509      * remain non-secure. We implement this by just ORing in the NSTable/NS
8510      * bits at each step.
8511      */
8512     tableattrs = regime_is_secure(env, mmu_idx) ? 0 : (1 << 4);
8513     for (;;) {
8514         uint64_t descriptor;
8515         bool nstable;
8516 
8517         descaddr |= (address >> (stride * (4 - level))) & indexmask;
8518         descaddr &= ~7ULL;
8519         nstable = extract32(tableattrs, 4, 1);
8520         descriptor = arm_ldq_ptw(cs, descaddr, !nstable, mmu_idx, fsr, fi);
8521         if (fi->s1ptw) {
8522             goto do_fault;
8523         }
8524 
8525         if (!(descriptor & 1) ||
8526             (!(descriptor & 2) && (level == 3))) {
8527             /* Invalid, or the Reserved level 3 encoding */
8528             goto do_fault;
8529         }
8530         descaddr = descriptor & descaddrmask;
8531 
8532         if ((descriptor & 2) && (level < 3)) {
8533             /* Table entry. The top five bits are attributes which  may
8534              * propagate down through lower levels of the table (and
8535              * which are all arranged so that 0 means "no effect", so
8536              * we can gather them up by ORing in the bits at each level).
8537              */
8538             tableattrs |= extract64(descriptor, 59, 5);
8539             level++;
8540             indexmask = indexmask_grainsize;
8541             continue;
8542         }
8543         /* Block entry at level 1 or 2, or page entry at level 3.
8544          * These are basically the same thing, although the number
8545          * of bits we pull in from the vaddr varies.
8546          */
8547         page_size = (1ULL << ((stride * (4 - level)) + 3));
8548         descaddr |= (address & (page_size - 1));
8549         /* Extract attributes from the descriptor */
8550         attrs = extract64(descriptor, 2, 10)
8551             | (extract64(descriptor, 52, 12) << 10);
8552 
8553         if (mmu_idx == ARMMMUIdx_S2NS) {
8554             /* Stage 2 table descriptors do not include any attribute fields */
8555             break;
8556         }
8557         /* Merge in attributes from table descriptors */
8558         attrs |= extract32(tableattrs, 0, 2) << 11; /* XN, PXN */
8559         attrs |= extract32(tableattrs, 3, 1) << 5; /* APTable[1] => AP[2] */
8560         /* The sense of AP[1] vs APTable[0] is reversed, as APTable[0] == 1
8561          * means "force PL1 access only", which means forcing AP[1] to 0.
8562          */
8563         if (extract32(tableattrs, 2, 1)) {
8564             attrs &= ~(1 << 4);
8565         }
8566         attrs |= nstable << 3; /* NS */
8567         break;
8568     }
8569     /* Here descaddr is the final physical address, and attributes
8570      * are all in attrs.
8571      */
8572     fault_type = access_fault;
8573     if ((attrs & (1 << 8)) == 0) {
8574         /* Access flag */
8575         goto do_fault;
8576     }
8577 
8578     ap = extract32(attrs, 4, 2);
8579     xn = extract32(attrs, 12, 1);
8580 
8581     if (mmu_idx == ARMMMUIdx_S2NS) {
8582         ns = true;
8583         *prot = get_S2prot(env, ap, xn);
8584     } else {
8585         ns = extract32(attrs, 3, 1);
8586         pxn = extract32(attrs, 11, 1);
8587         *prot = get_S1prot(env, mmu_idx, aarch64, ap, ns, xn, pxn);
8588     }
8589 
8590     fault_type = permission_fault;
8591     if (!(*prot & (1 << access_type))) {
8592         goto do_fault;
8593     }
8594 
8595     if (ns) {
8596         /* The NS bit will (as required by the architecture) have no effect if
8597          * the CPU doesn't support TZ or this is a non-secure translation
8598          * regime, because the attribute will already be non-secure.
8599          */
8600         txattrs->secure = false;
8601     }
8602     *phys_ptr = descaddr;
8603     *page_size_ptr = page_size;
8604     return false;
8605 
8606 do_fault:
8607     /* Long-descriptor format IFSR/DFSR value */
8608     *fsr = (1 << 9) | (fault_type << 2) | level;
8609     /* Tag the error as S2 for failed S1 PTW at S2 or ordinary S2.  */
8610     fi->stage2 = fi->s1ptw || (mmu_idx == ARMMMUIdx_S2NS);
8611     return true;
8612 }
8613 
8614 static inline void get_phys_addr_pmsav7_default(CPUARMState *env,
8615                                                 ARMMMUIdx mmu_idx,
8616                                                 int32_t address, int *prot)
8617 {
8618     if (!arm_feature(env, ARM_FEATURE_M)) {
8619         *prot = PAGE_READ | PAGE_WRITE;
8620         switch (address) {
8621         case 0xF0000000 ... 0xFFFFFFFF:
8622             if (regime_sctlr(env, mmu_idx) & SCTLR_V) {
8623                 /* hivecs execing is ok */
8624                 *prot |= PAGE_EXEC;
8625             }
8626             break;
8627         case 0x00000000 ... 0x7FFFFFFF:
8628             *prot |= PAGE_EXEC;
8629             break;
8630         }
8631     } else {
8632         /* Default system address map for M profile cores.
8633          * The architecture specifies which regions are execute-never;
8634          * at the MPU level no other checks are defined.
8635          */
8636         switch (address) {
8637         case 0x00000000 ... 0x1fffffff: /* ROM */
8638         case 0x20000000 ... 0x3fffffff: /* SRAM */
8639         case 0x60000000 ... 0x7fffffff: /* RAM */
8640         case 0x80000000 ... 0x9fffffff: /* RAM */
8641             *prot = PAGE_READ | PAGE_WRITE | PAGE_EXEC;
8642             break;
8643         case 0x40000000 ... 0x5fffffff: /* Peripheral */
8644         case 0xa0000000 ... 0xbfffffff: /* Device */
8645         case 0xc0000000 ... 0xdfffffff: /* Device */
8646         case 0xe0000000 ... 0xffffffff: /* System */
8647             *prot = PAGE_READ | PAGE_WRITE;
8648             break;
8649         default:
8650             g_assert_not_reached();
8651         }
8652     }
8653 }
8654 
8655 static bool pmsav7_use_background_region(ARMCPU *cpu,
8656                                          ARMMMUIdx mmu_idx, bool is_user)
8657 {
8658     /* Return true if we should use the default memory map as a
8659      * "background" region if there are no hits against any MPU regions.
8660      */
8661     CPUARMState *env = &cpu->env;
8662 
8663     if (is_user) {
8664         return false;
8665     }
8666 
8667     if (arm_feature(env, ARM_FEATURE_M)) {
8668         return env->v7m.mpu_ctrl[regime_is_secure(env, mmu_idx)]
8669             & R_V7M_MPU_CTRL_PRIVDEFENA_MASK;
8670     } else {
8671         return regime_sctlr(env, mmu_idx) & SCTLR_BR;
8672     }
8673 }
8674 
8675 static inline bool m_is_ppb_region(CPUARMState *env, uint32_t address)
8676 {
8677     /* True if address is in the M profile PPB region 0xe0000000 - 0xe00fffff */
8678     return arm_feature(env, ARM_FEATURE_M) &&
8679         extract32(address, 20, 12) == 0xe00;
8680 }
8681 
8682 static inline bool m_is_system_region(CPUARMState *env, uint32_t address)
8683 {
8684     /* True if address is in the M profile system region
8685      * 0xe0000000 - 0xffffffff
8686      */
8687     return arm_feature(env, ARM_FEATURE_M) && extract32(address, 29, 3) == 0x7;
8688 }
8689 
8690 static bool get_phys_addr_pmsav7(CPUARMState *env, uint32_t address,
8691                                  MMUAccessType access_type, ARMMMUIdx mmu_idx,
8692                                  hwaddr *phys_ptr, int *prot, uint32_t *fsr)
8693 {
8694     ARMCPU *cpu = arm_env_get_cpu(env);
8695     int n;
8696     bool is_user = regime_is_user(env, mmu_idx);
8697 
8698     *phys_ptr = address;
8699     *prot = 0;
8700 
8701     if (regime_translation_disabled(env, mmu_idx) ||
8702         m_is_ppb_region(env, address)) {
8703         /* MPU disabled or M profile PPB access: use default memory map.
8704          * The other case which uses the default memory map in the
8705          * v7M ARM ARM pseudocode is exception vector reads from the vector
8706          * table. In QEMU those accesses are done in arm_v7m_load_vector(),
8707          * which always does a direct read using address_space_ldl(), rather
8708          * than going via this function, so we don't need to check that here.
8709          */
8710         get_phys_addr_pmsav7_default(env, mmu_idx, address, prot);
8711     } else { /* MPU enabled */
8712         for (n = (int)cpu->pmsav7_dregion - 1; n >= 0; n--) {
8713             /* region search */
8714             uint32_t base = env->pmsav7.drbar[n];
8715             uint32_t rsize = extract32(env->pmsav7.drsr[n], 1, 5);
8716             uint32_t rmask;
8717             bool srdis = false;
8718 
8719             if (!(env->pmsav7.drsr[n] & 0x1)) {
8720                 continue;
8721             }
8722 
8723             if (!rsize) {
8724                 qemu_log_mask(LOG_GUEST_ERROR,
8725                               "DRSR[%d]: Rsize field cannot be 0\n", n);
8726                 continue;
8727             }
8728             rsize++;
8729             rmask = (1ull << rsize) - 1;
8730 
8731             if (base & rmask) {
8732                 qemu_log_mask(LOG_GUEST_ERROR,
8733                               "DRBAR[%d]: 0x%" PRIx32 " misaligned "
8734                               "to DRSR region size, mask = 0x%" PRIx32 "\n",
8735                               n, base, rmask);
8736                 continue;
8737             }
8738 
8739             if (address < base || address > base + rmask) {
8740                 continue;
8741             }
8742 
8743             /* Region matched */
8744 
8745             if (rsize >= 8) { /* no subregions for regions < 256 bytes */
8746                 int i, snd;
8747                 uint32_t srdis_mask;
8748 
8749                 rsize -= 3; /* sub region size (power of 2) */
8750                 snd = ((address - base) >> rsize) & 0x7;
8751                 srdis = extract32(env->pmsav7.drsr[n], snd + 8, 1);
8752 
8753                 srdis_mask = srdis ? 0x3 : 0x0;
8754                 for (i = 2; i <= 8 && rsize < TARGET_PAGE_BITS; i *= 2) {
8755                     /* This will check in groups of 2, 4 and then 8, whether
8756                      * the subregion bits are consistent. rsize is incremented
8757                      * back up to give the region size, considering consistent
8758                      * adjacent subregions as one region. Stop testing if rsize
8759                      * is already big enough for an entire QEMU page.
8760                      */
8761                     int snd_rounded = snd & ~(i - 1);
8762                     uint32_t srdis_multi = extract32(env->pmsav7.drsr[n],
8763                                                      snd_rounded + 8, i);
8764                     if (srdis_mask ^ srdis_multi) {
8765                         break;
8766                     }
8767                     srdis_mask = (srdis_mask << i) | srdis_mask;
8768                     rsize++;
8769                 }
8770             }
8771             if (rsize < TARGET_PAGE_BITS) {
8772                 qemu_log_mask(LOG_UNIMP,
8773                               "DRSR[%d]: No support for MPU (sub)region "
8774                               "alignment of %" PRIu32 " bits. Minimum is %d\n",
8775                               n, rsize, TARGET_PAGE_BITS);
8776                 continue;
8777             }
8778             if (srdis) {
8779                 continue;
8780             }
8781             break;
8782         }
8783 
8784         if (n == -1) { /* no hits */
8785             if (!pmsav7_use_background_region(cpu, mmu_idx, is_user)) {
8786                 /* background fault */
8787                 *fsr = 0;
8788                 return true;
8789             }
8790             get_phys_addr_pmsav7_default(env, mmu_idx, address, prot);
8791         } else { /* a MPU hit! */
8792             uint32_t ap = extract32(env->pmsav7.dracr[n], 8, 3);
8793             uint32_t xn = extract32(env->pmsav7.dracr[n], 12, 1);
8794 
8795             if (m_is_system_region(env, address)) {
8796                 /* System space is always execute never */
8797                 xn = 1;
8798             }
8799 
8800             if (is_user) { /* User mode AP bit decoding */
8801                 switch (ap) {
8802                 case 0:
8803                 case 1:
8804                 case 5:
8805                     break; /* no access */
8806                 case 3:
8807                     *prot |= PAGE_WRITE;
8808                     /* fall through */
8809                 case 2:
8810                 case 6:
8811                     *prot |= PAGE_READ | PAGE_EXEC;
8812                     break;
8813                 default:
8814                     qemu_log_mask(LOG_GUEST_ERROR,
8815                                   "DRACR[%d]: Bad value for AP bits: 0x%"
8816                                   PRIx32 "\n", n, ap);
8817                 }
8818             } else { /* Priv. mode AP bits decoding */
8819                 switch (ap) {
8820                 case 0:
8821                     break; /* no access */
8822                 case 1:
8823                 case 2:
8824                 case 3:
8825                     *prot |= PAGE_WRITE;
8826                     /* fall through */
8827                 case 5:
8828                 case 6:
8829                     *prot |= PAGE_READ | PAGE_EXEC;
8830                     break;
8831                 default:
8832                     qemu_log_mask(LOG_GUEST_ERROR,
8833                                   "DRACR[%d]: Bad value for AP bits: 0x%"
8834                                   PRIx32 "\n", n, ap);
8835                 }
8836             }
8837 
8838             /* execute never */
8839             if (xn) {
8840                 *prot &= ~PAGE_EXEC;
8841             }
8842         }
8843     }
8844 
8845     *fsr = 0x00d; /* Permission fault */
8846     return !(*prot & (1 << access_type));
8847 }
8848 
8849 static bool get_phys_addr_pmsav8(CPUARMState *env, uint32_t address,
8850                                  MMUAccessType access_type, ARMMMUIdx mmu_idx,
8851                                  hwaddr *phys_ptr, int *prot, uint32_t *fsr)
8852 {
8853     ARMCPU *cpu = arm_env_get_cpu(env);
8854     bool is_user = regime_is_user(env, mmu_idx);
8855     uint32_t secure = regime_is_secure(env, mmu_idx);
8856     int n;
8857     int matchregion = -1;
8858     bool hit = false;
8859 
8860     *phys_ptr = address;
8861     *prot = 0;
8862 
8863     /* Unlike the ARM ARM pseudocode, we don't need to check whether this
8864      * was an exception vector read from the vector table (which is always
8865      * done using the default system address map), because those accesses
8866      * are done in arm_v7m_load_vector(), which always does a direct
8867      * read using address_space_ldl(), rather than going via this function.
8868      */
8869     if (regime_translation_disabled(env, mmu_idx)) { /* MPU disabled */
8870         hit = true;
8871     } else if (m_is_ppb_region(env, address)) {
8872         hit = true;
8873     } else if (pmsav7_use_background_region(cpu, mmu_idx, is_user)) {
8874         hit = true;
8875     } else {
8876         for (n = (int)cpu->pmsav7_dregion - 1; n >= 0; n--) {
8877             /* region search */
8878             /* Note that the base address is bits [31:5] from the register
8879              * with bits [4:0] all zeroes, but the limit address is bits
8880              * [31:5] from the register with bits [4:0] all ones.
8881              */
8882             uint32_t base = env->pmsav8.rbar[secure][n] & ~0x1f;
8883             uint32_t limit = env->pmsav8.rlar[secure][n] | 0x1f;
8884 
8885             if (!(env->pmsav8.rlar[secure][n] & 0x1)) {
8886                 /* Region disabled */
8887                 continue;
8888             }
8889 
8890             if (address < base || address > limit) {
8891                 continue;
8892             }
8893 
8894             if (hit) {
8895                 /* Multiple regions match -- always a failure (unlike
8896                  * PMSAv7 where highest-numbered-region wins)
8897                  */
8898                 *fsr = 0x00d; /* permission fault */
8899                 return true;
8900             }
8901 
8902             matchregion = n;
8903             hit = true;
8904 
8905             if (base & ~TARGET_PAGE_MASK) {
8906                 qemu_log_mask(LOG_UNIMP,
8907                               "MPU_RBAR[%d]: No support for MPU region base"
8908                               "address of 0x%" PRIx32 ". Minimum alignment is "
8909                               "%d\n",
8910                               n, base, TARGET_PAGE_BITS);
8911                 continue;
8912             }
8913             if ((limit + 1) & ~TARGET_PAGE_MASK) {
8914                 qemu_log_mask(LOG_UNIMP,
8915                               "MPU_RBAR[%d]: No support for MPU region limit"
8916                               "address of 0x%" PRIx32 ". Minimum alignment is "
8917                               "%d\n",
8918                               n, limit, TARGET_PAGE_BITS);
8919                 continue;
8920             }
8921         }
8922     }
8923 
8924     if (!hit) {
8925         /* background fault */
8926         *fsr = 0;
8927         return true;
8928     }
8929 
8930     if (matchregion == -1) {
8931         /* hit using the background region */
8932         get_phys_addr_pmsav7_default(env, mmu_idx, address, prot);
8933     } else {
8934         uint32_t ap = extract32(env->pmsav8.rbar[secure][matchregion], 1, 2);
8935         uint32_t xn = extract32(env->pmsav8.rbar[secure][matchregion], 0, 1);
8936 
8937         if (m_is_system_region(env, address)) {
8938             /* System space is always execute never */
8939             xn = 1;
8940         }
8941 
8942         *prot = simple_ap_to_rw_prot(env, mmu_idx, ap);
8943         if (*prot && !xn) {
8944             *prot |= PAGE_EXEC;
8945         }
8946         /* We don't need to look the attribute up in the MAIR0/MAIR1
8947          * registers because that only tells us about cacheability.
8948          */
8949     }
8950 
8951     *fsr = 0x00d; /* Permission fault */
8952     return !(*prot & (1 << access_type));
8953 }
8954 
8955 static bool get_phys_addr_pmsav5(CPUARMState *env, uint32_t address,
8956                                  MMUAccessType access_type, ARMMMUIdx mmu_idx,
8957                                  hwaddr *phys_ptr, int *prot, uint32_t *fsr)
8958 {
8959     int n;
8960     uint32_t mask;
8961     uint32_t base;
8962     bool is_user = regime_is_user(env, mmu_idx);
8963 
8964     if (regime_translation_disabled(env, mmu_idx)) {
8965         /* MPU disabled.  */
8966         *phys_ptr = address;
8967         *prot = PAGE_READ | PAGE_WRITE | PAGE_EXEC;
8968         return false;
8969     }
8970 
8971     *phys_ptr = address;
8972     for (n = 7; n >= 0; n--) {
8973         base = env->cp15.c6_region[n];
8974         if ((base & 1) == 0) {
8975             continue;
8976         }
8977         mask = 1 << ((base >> 1) & 0x1f);
8978         /* Keep this shift separate from the above to avoid an
8979            (undefined) << 32.  */
8980         mask = (mask << 1) - 1;
8981         if (((base ^ address) & ~mask) == 0) {
8982             break;
8983         }
8984     }
8985     if (n < 0) {
8986         *fsr = 2;
8987         return true;
8988     }
8989 
8990     if (access_type == MMU_INST_FETCH) {
8991         mask = env->cp15.pmsav5_insn_ap;
8992     } else {
8993         mask = env->cp15.pmsav5_data_ap;
8994     }
8995     mask = (mask >> (n * 4)) & 0xf;
8996     switch (mask) {
8997     case 0:
8998         *fsr = 1;
8999         return true;
9000     case 1:
9001         if (is_user) {
9002             *fsr = 1;
9003             return true;
9004         }
9005         *prot = PAGE_READ | PAGE_WRITE;
9006         break;
9007     case 2:
9008         *prot = PAGE_READ;
9009         if (!is_user) {
9010             *prot |= PAGE_WRITE;
9011         }
9012         break;
9013     case 3:
9014         *prot = PAGE_READ | PAGE_WRITE;
9015         break;
9016     case 5:
9017         if (is_user) {
9018             *fsr = 1;
9019             return true;
9020         }
9021         *prot = PAGE_READ;
9022         break;
9023     case 6:
9024         *prot = PAGE_READ;
9025         break;
9026     default:
9027         /* Bad permission.  */
9028         *fsr = 1;
9029         return true;
9030     }
9031     *prot |= PAGE_EXEC;
9032     return false;
9033 }
9034 
9035 /* get_phys_addr - get the physical address for this virtual address
9036  *
9037  * Find the physical address corresponding to the given virtual address,
9038  * by doing a translation table walk on MMU based systems or using the
9039  * MPU state on MPU based systems.
9040  *
9041  * Returns false if the translation was successful. Otherwise, phys_ptr, attrs,
9042  * prot and page_size may not be filled in, and the populated fsr value provides
9043  * information on why the translation aborted, in the format of a
9044  * DFSR/IFSR fault register, with the following caveats:
9045  *  * we honour the short vs long DFSR format differences.
9046  *  * the WnR bit is never set (the caller must do this).
9047  *  * for PSMAv5 based systems we don't bother to return a full FSR format
9048  *    value.
9049  *
9050  * @env: CPUARMState
9051  * @address: virtual address to get physical address for
9052  * @access_type: 0 for read, 1 for write, 2 for execute
9053  * @mmu_idx: MMU index indicating required translation regime
9054  * @phys_ptr: set to the physical address corresponding to the virtual address
9055  * @attrs: set to the memory transaction attributes to use
9056  * @prot: set to the permissions for the page containing phys_ptr
9057  * @page_size: set to the size of the page containing phys_ptr
9058  * @fsr: set to the DFSR/IFSR value on failure
9059  */
9060 static bool get_phys_addr(CPUARMState *env, target_ulong address,
9061                           MMUAccessType access_type, ARMMMUIdx mmu_idx,
9062                           hwaddr *phys_ptr, MemTxAttrs *attrs, int *prot,
9063                           target_ulong *page_size, uint32_t *fsr,
9064                           ARMMMUFaultInfo *fi)
9065 {
9066     if (mmu_idx == ARMMMUIdx_S12NSE0 || mmu_idx == ARMMMUIdx_S12NSE1) {
9067         /* Call ourselves recursively to do the stage 1 and then stage 2
9068          * translations.
9069          */
9070         if (arm_feature(env, ARM_FEATURE_EL2)) {
9071             hwaddr ipa;
9072             int s2_prot;
9073             int ret;
9074 
9075             ret = get_phys_addr(env, address, access_type,
9076                                 stage_1_mmu_idx(mmu_idx), &ipa, attrs,
9077                                 prot, page_size, fsr, fi);
9078 
9079             /* If S1 fails or S2 is disabled, return early.  */
9080             if (ret || regime_translation_disabled(env, ARMMMUIdx_S2NS)) {
9081                 *phys_ptr = ipa;
9082                 return ret;
9083             }
9084 
9085             /* S1 is done. Now do S2 translation.  */
9086             ret = get_phys_addr_lpae(env, ipa, access_type, ARMMMUIdx_S2NS,
9087                                      phys_ptr, attrs, &s2_prot,
9088                                      page_size, fsr, fi);
9089             fi->s2addr = ipa;
9090             /* Combine the S1 and S2 perms.  */
9091             *prot &= s2_prot;
9092             return ret;
9093         } else {
9094             /*
9095              * For non-EL2 CPUs a stage1+stage2 translation is just stage 1.
9096              */
9097             mmu_idx = stage_1_mmu_idx(mmu_idx);
9098         }
9099     }
9100 
9101     /* The page table entries may downgrade secure to non-secure, but
9102      * cannot upgrade an non-secure translation regime's attributes
9103      * to secure.
9104      */
9105     attrs->secure = regime_is_secure(env, mmu_idx);
9106     attrs->user = regime_is_user(env, mmu_idx);
9107 
9108     /* Fast Context Switch Extension. This doesn't exist at all in v8.
9109      * In v7 and earlier it affects all stage 1 translations.
9110      */
9111     if (address < 0x02000000 && mmu_idx != ARMMMUIdx_S2NS
9112         && !arm_feature(env, ARM_FEATURE_V8)) {
9113         if (regime_el(env, mmu_idx) == 3) {
9114             address += env->cp15.fcseidr_s;
9115         } else {
9116             address += env->cp15.fcseidr_ns;
9117         }
9118     }
9119 
9120     if (arm_feature(env, ARM_FEATURE_PMSA)) {
9121         bool ret;
9122         *page_size = TARGET_PAGE_SIZE;
9123 
9124         if (arm_feature(env, ARM_FEATURE_V8)) {
9125             /* PMSAv8 */
9126             ret = get_phys_addr_pmsav8(env, address, access_type, mmu_idx,
9127                                        phys_ptr, prot, fsr);
9128         } else if (arm_feature(env, ARM_FEATURE_V7)) {
9129             /* PMSAv7 */
9130             ret = get_phys_addr_pmsav7(env, address, access_type, mmu_idx,
9131                                        phys_ptr, prot, fsr);
9132         } else {
9133             /* Pre-v7 MPU */
9134             ret = get_phys_addr_pmsav5(env, address, access_type, mmu_idx,
9135                                        phys_ptr, prot, fsr);
9136         }
9137         qemu_log_mask(CPU_LOG_MMU, "PMSA MPU lookup for %s at 0x%08" PRIx32
9138                       " mmu_idx %u -> %s (prot %c%c%c)\n",
9139                       access_type == MMU_DATA_LOAD ? "reading" :
9140                       (access_type == MMU_DATA_STORE ? "writing" : "execute"),
9141                       (uint32_t)address, mmu_idx,
9142                       ret ? "Miss" : "Hit",
9143                       *prot & PAGE_READ ? 'r' : '-',
9144                       *prot & PAGE_WRITE ? 'w' : '-',
9145                       *prot & PAGE_EXEC ? 'x' : '-');
9146 
9147         return ret;
9148     }
9149 
9150     /* Definitely a real MMU, not an MPU */
9151 
9152     if (regime_translation_disabled(env, mmu_idx)) {
9153         /* MMU disabled. */
9154         *phys_ptr = address;
9155         *prot = PAGE_READ | PAGE_WRITE | PAGE_EXEC;
9156         *page_size = TARGET_PAGE_SIZE;
9157         return 0;
9158     }
9159 
9160     if (regime_using_lpae_format(env, mmu_idx)) {
9161         return get_phys_addr_lpae(env, address, access_type, mmu_idx, phys_ptr,
9162                                   attrs, prot, page_size, fsr, fi);
9163     } else if (regime_sctlr(env, mmu_idx) & SCTLR_XP) {
9164         return get_phys_addr_v6(env, address, access_type, mmu_idx, phys_ptr,
9165                                 attrs, prot, page_size, fsr, fi);
9166     } else {
9167         return get_phys_addr_v5(env, address, access_type, mmu_idx, phys_ptr,
9168                                 prot, page_size, fsr, fi);
9169     }
9170 }
9171 
9172 /* Walk the page table and (if the mapping exists) add the page
9173  * to the TLB. Return false on success, or true on failure. Populate
9174  * fsr with ARM DFSR/IFSR fault register format value on failure.
9175  */
9176 bool arm_tlb_fill(CPUState *cs, vaddr address,
9177                   MMUAccessType access_type, int mmu_idx, uint32_t *fsr,
9178                   ARMMMUFaultInfo *fi)
9179 {
9180     ARMCPU *cpu = ARM_CPU(cs);
9181     CPUARMState *env = &cpu->env;
9182     hwaddr phys_addr;
9183     target_ulong page_size;
9184     int prot;
9185     int ret;
9186     MemTxAttrs attrs = {};
9187 
9188     ret = get_phys_addr(env, address, access_type,
9189                         core_to_arm_mmu_idx(env, mmu_idx), &phys_addr,
9190                         &attrs, &prot, &page_size, fsr, fi);
9191     if (!ret) {
9192         /* Map a single [sub]page.  */
9193         phys_addr &= TARGET_PAGE_MASK;
9194         address &= TARGET_PAGE_MASK;
9195         tlb_set_page_with_attrs(cs, address, phys_addr, attrs,
9196                                 prot, mmu_idx, page_size);
9197         return 0;
9198     }
9199 
9200     return ret;
9201 }
9202 
9203 hwaddr arm_cpu_get_phys_page_attrs_debug(CPUState *cs, vaddr addr,
9204                                          MemTxAttrs *attrs)
9205 {
9206     ARMCPU *cpu = ARM_CPU(cs);
9207     CPUARMState *env = &cpu->env;
9208     hwaddr phys_addr;
9209     target_ulong page_size;
9210     int prot;
9211     bool ret;
9212     uint32_t fsr;
9213     ARMMMUFaultInfo fi = {};
9214     ARMMMUIdx mmu_idx = core_to_arm_mmu_idx(env, cpu_mmu_index(env, false));
9215 
9216     *attrs = (MemTxAttrs) {};
9217 
9218     ret = get_phys_addr(env, addr, 0, mmu_idx, &phys_addr,
9219                         attrs, &prot, &page_size, &fsr, &fi);
9220 
9221     if (ret) {
9222         return -1;
9223     }
9224     return phys_addr;
9225 }
9226 
9227 uint32_t HELPER(v7m_mrs)(CPUARMState *env, uint32_t reg)
9228 {
9229     uint32_t mask;
9230     unsigned el = arm_current_el(env);
9231 
9232     /* First handle registers which unprivileged can read */
9233 
9234     switch (reg) {
9235     case 0 ... 7: /* xPSR sub-fields */
9236         mask = 0;
9237         if ((reg & 1) && el) {
9238             mask |= XPSR_EXCP; /* IPSR (unpriv. reads as zero) */
9239         }
9240         if (!(reg & 4)) {
9241             mask |= XPSR_NZCV | XPSR_Q; /* APSR */
9242         }
9243         /* EPSR reads as zero */
9244         return xpsr_read(env) & mask;
9245         break;
9246     case 20: /* CONTROL */
9247         return env->v7m.control[env->v7m.secure];
9248     case 0x94: /* CONTROL_NS */
9249         /* We have to handle this here because unprivileged Secure code
9250          * can read the NS CONTROL register.
9251          */
9252         if (!env->v7m.secure) {
9253             return 0;
9254         }
9255         return env->v7m.control[M_REG_NS];
9256     }
9257 
9258     if (el == 0) {
9259         return 0; /* unprivileged reads others as zero */
9260     }
9261 
9262     if (arm_feature(env, ARM_FEATURE_M_SECURITY)) {
9263         switch (reg) {
9264         case 0x88: /* MSP_NS */
9265             if (!env->v7m.secure) {
9266                 return 0;
9267             }
9268             return env->v7m.other_ss_msp;
9269         case 0x89: /* PSP_NS */
9270             if (!env->v7m.secure) {
9271                 return 0;
9272             }
9273             return env->v7m.other_ss_psp;
9274         case 0x90: /* PRIMASK_NS */
9275             if (!env->v7m.secure) {
9276                 return 0;
9277             }
9278             return env->v7m.primask[M_REG_NS];
9279         case 0x91: /* BASEPRI_NS */
9280             if (!env->v7m.secure) {
9281                 return 0;
9282             }
9283             return env->v7m.basepri[M_REG_NS];
9284         case 0x93: /* FAULTMASK_NS */
9285             if (!env->v7m.secure) {
9286                 return 0;
9287             }
9288             return env->v7m.faultmask[M_REG_NS];
9289         case 0x98: /* SP_NS */
9290         {
9291             /* This gives the non-secure SP selected based on whether we're
9292              * currently in handler mode or not, using the NS CONTROL.SPSEL.
9293              */
9294             bool spsel = env->v7m.control[M_REG_NS] & R_V7M_CONTROL_SPSEL_MASK;
9295 
9296             if (!env->v7m.secure) {
9297                 return 0;
9298             }
9299             if (!arm_v7m_is_handler_mode(env) && spsel) {
9300                 return env->v7m.other_ss_psp;
9301             } else {
9302                 return env->v7m.other_ss_msp;
9303             }
9304         }
9305         default:
9306             break;
9307         }
9308     }
9309 
9310     switch (reg) {
9311     case 8: /* MSP */
9312         return (env->v7m.control[env->v7m.secure] & R_V7M_CONTROL_SPSEL_MASK) ?
9313             env->v7m.other_sp : env->regs[13];
9314     case 9: /* PSP */
9315         return (env->v7m.control[env->v7m.secure] & R_V7M_CONTROL_SPSEL_MASK) ?
9316             env->regs[13] : env->v7m.other_sp;
9317     case 16: /* PRIMASK */
9318         return env->v7m.primask[env->v7m.secure];
9319     case 17: /* BASEPRI */
9320     case 18: /* BASEPRI_MAX */
9321         return env->v7m.basepri[env->v7m.secure];
9322     case 19: /* FAULTMASK */
9323         return env->v7m.faultmask[env->v7m.secure];
9324     default:
9325         qemu_log_mask(LOG_GUEST_ERROR, "Attempt to read unknown special"
9326                                        " register %d\n", reg);
9327         return 0;
9328     }
9329 }
9330 
9331 void HELPER(v7m_msr)(CPUARMState *env, uint32_t maskreg, uint32_t val)
9332 {
9333     /* We're passed bits [11..0] of the instruction; extract
9334      * SYSm and the mask bits.
9335      * Invalid combinations of SYSm and mask are UNPREDICTABLE;
9336      * we choose to treat them as if the mask bits were valid.
9337      * NB that the pseudocode 'mask' variable is bits [11..10],
9338      * whereas ours is [11..8].
9339      */
9340     uint32_t mask = extract32(maskreg, 8, 4);
9341     uint32_t reg = extract32(maskreg, 0, 8);
9342 
9343     if (arm_current_el(env) == 0 && reg > 7) {
9344         /* only xPSR sub-fields may be written by unprivileged */
9345         return;
9346     }
9347 
9348     if (arm_feature(env, ARM_FEATURE_M_SECURITY)) {
9349         switch (reg) {
9350         case 0x88: /* MSP_NS */
9351             if (!env->v7m.secure) {
9352                 return;
9353             }
9354             env->v7m.other_ss_msp = val;
9355             return;
9356         case 0x89: /* PSP_NS */
9357             if (!env->v7m.secure) {
9358                 return;
9359             }
9360             env->v7m.other_ss_psp = val;
9361             return;
9362         case 0x90: /* PRIMASK_NS */
9363             if (!env->v7m.secure) {
9364                 return;
9365             }
9366             env->v7m.primask[M_REG_NS] = val & 1;
9367             return;
9368         case 0x91: /* BASEPRI_NS */
9369             if (!env->v7m.secure) {
9370                 return;
9371             }
9372             env->v7m.basepri[M_REG_NS] = val & 0xff;
9373             return;
9374         case 0x93: /* FAULTMASK_NS */
9375             if (!env->v7m.secure) {
9376                 return;
9377             }
9378             env->v7m.faultmask[M_REG_NS] = val & 1;
9379             return;
9380         case 0x98: /* SP_NS */
9381         {
9382             /* This gives the non-secure SP selected based on whether we're
9383              * currently in handler mode or not, using the NS CONTROL.SPSEL.
9384              */
9385             bool spsel = env->v7m.control[M_REG_NS] & R_V7M_CONTROL_SPSEL_MASK;
9386 
9387             if (!env->v7m.secure) {
9388                 return;
9389             }
9390             if (!arm_v7m_is_handler_mode(env) && spsel) {
9391                 env->v7m.other_ss_psp = val;
9392             } else {
9393                 env->v7m.other_ss_msp = val;
9394             }
9395             return;
9396         }
9397         default:
9398             break;
9399         }
9400     }
9401 
9402     switch (reg) {
9403     case 0 ... 7: /* xPSR sub-fields */
9404         /* only APSR is actually writable */
9405         if (!(reg & 4)) {
9406             uint32_t apsrmask = 0;
9407 
9408             if (mask & 8) {
9409                 apsrmask |= XPSR_NZCV | XPSR_Q;
9410             }
9411             if ((mask & 4) && arm_feature(env, ARM_FEATURE_THUMB_DSP)) {
9412                 apsrmask |= XPSR_GE;
9413             }
9414             xpsr_write(env, val, apsrmask);
9415         }
9416         break;
9417     case 8: /* MSP */
9418         if (env->v7m.control[env->v7m.secure] & R_V7M_CONTROL_SPSEL_MASK) {
9419             env->v7m.other_sp = val;
9420         } else {
9421             env->regs[13] = val;
9422         }
9423         break;
9424     case 9: /* PSP */
9425         if (env->v7m.control[env->v7m.secure] & R_V7M_CONTROL_SPSEL_MASK) {
9426             env->regs[13] = val;
9427         } else {
9428             env->v7m.other_sp = val;
9429         }
9430         break;
9431     case 16: /* PRIMASK */
9432         env->v7m.primask[env->v7m.secure] = val & 1;
9433         break;
9434     case 17: /* BASEPRI */
9435         env->v7m.basepri[env->v7m.secure] = val & 0xff;
9436         break;
9437     case 18: /* BASEPRI_MAX */
9438         val &= 0xff;
9439         if (val != 0 && (val < env->v7m.basepri[env->v7m.secure]
9440                          || env->v7m.basepri[env->v7m.secure] == 0)) {
9441             env->v7m.basepri[env->v7m.secure] = val;
9442         }
9443         break;
9444     case 19: /* FAULTMASK */
9445         env->v7m.faultmask[env->v7m.secure] = val & 1;
9446         break;
9447     case 20: /* CONTROL */
9448         /* Writing to the SPSEL bit only has an effect if we are in
9449          * thread mode; other bits can be updated by any privileged code.
9450          * write_v7m_control_spsel() deals with updating the SPSEL bit in
9451          * env->v7m.control, so we only need update the others.
9452          */
9453         if (!arm_v7m_is_handler_mode(env)) {
9454             write_v7m_control_spsel(env, (val & R_V7M_CONTROL_SPSEL_MASK) != 0);
9455         }
9456         env->v7m.control[env->v7m.secure] &= ~R_V7M_CONTROL_NPRIV_MASK;
9457         env->v7m.control[env->v7m.secure] |= val & R_V7M_CONTROL_NPRIV_MASK;
9458         break;
9459     default:
9460         qemu_log_mask(LOG_GUEST_ERROR, "Attempt to write unknown special"
9461                                        " register %d\n", reg);
9462         return;
9463     }
9464 }
9465 
9466 #endif
9467 
9468 void HELPER(dc_zva)(CPUARMState *env, uint64_t vaddr_in)
9469 {
9470     /* Implement DC ZVA, which zeroes a fixed-length block of memory.
9471      * Note that we do not implement the (architecturally mandated)
9472      * alignment fault for attempts to use this on Device memory
9473      * (which matches the usual QEMU behaviour of not implementing either
9474      * alignment faults or any memory attribute handling).
9475      */
9476 
9477     ARMCPU *cpu = arm_env_get_cpu(env);
9478     uint64_t blocklen = 4 << cpu->dcz_blocksize;
9479     uint64_t vaddr = vaddr_in & ~(blocklen - 1);
9480 
9481 #ifndef CONFIG_USER_ONLY
9482     {
9483         /* Slightly awkwardly, QEMU's TARGET_PAGE_SIZE may be less than
9484          * the block size so we might have to do more than one TLB lookup.
9485          * We know that in fact for any v8 CPU the page size is at least 4K
9486          * and the block size must be 2K or less, but TARGET_PAGE_SIZE is only
9487          * 1K as an artefact of legacy v5 subpage support being present in the
9488          * same QEMU executable.
9489          */
9490         int maxidx = DIV_ROUND_UP(blocklen, TARGET_PAGE_SIZE);
9491         void *hostaddr[maxidx];
9492         int try, i;
9493         unsigned mmu_idx = cpu_mmu_index(env, false);
9494         TCGMemOpIdx oi = make_memop_idx(MO_UB, mmu_idx);
9495 
9496         for (try = 0; try < 2; try++) {
9497 
9498             for (i = 0; i < maxidx; i++) {
9499                 hostaddr[i] = tlb_vaddr_to_host(env,
9500                                                 vaddr + TARGET_PAGE_SIZE * i,
9501                                                 1, mmu_idx);
9502                 if (!hostaddr[i]) {
9503                     break;
9504                 }
9505             }
9506             if (i == maxidx) {
9507                 /* If it's all in the TLB it's fair game for just writing to;
9508                  * we know we don't need to update dirty status, etc.
9509                  */
9510                 for (i = 0; i < maxidx - 1; i++) {
9511                     memset(hostaddr[i], 0, TARGET_PAGE_SIZE);
9512                 }
9513                 memset(hostaddr[i], 0, blocklen - (i * TARGET_PAGE_SIZE));
9514                 return;
9515             }
9516             /* OK, try a store and see if we can populate the tlb. This
9517              * might cause an exception if the memory isn't writable,
9518              * in which case we will longjmp out of here. We must for
9519              * this purpose use the actual register value passed to us
9520              * so that we get the fault address right.
9521              */
9522             helper_ret_stb_mmu(env, vaddr_in, 0, oi, GETPC());
9523             /* Now we can populate the other TLB entries, if any */
9524             for (i = 0; i < maxidx; i++) {
9525                 uint64_t va = vaddr + TARGET_PAGE_SIZE * i;
9526                 if (va != (vaddr_in & TARGET_PAGE_MASK)) {
9527                     helper_ret_stb_mmu(env, va, 0, oi, GETPC());
9528                 }
9529             }
9530         }
9531 
9532         /* Slow path (probably attempt to do this to an I/O device or
9533          * similar, or clearing of a block of code we have translations
9534          * cached for). Just do a series of byte writes as the architecture
9535          * demands. It's not worth trying to use a cpu_physical_memory_map(),
9536          * memset(), unmap() sequence here because:
9537          *  + we'd need to account for the blocksize being larger than a page
9538          *  + the direct-RAM access case is almost always going to be dealt
9539          *    with in the fastpath code above, so there's no speed benefit
9540          *  + we would have to deal with the map returning NULL because the
9541          *    bounce buffer was in use
9542          */
9543         for (i = 0; i < blocklen; i++) {
9544             helper_ret_stb_mmu(env, vaddr + i, 0, oi, GETPC());
9545         }
9546     }
9547 #else
9548     memset(g2h(vaddr), 0, blocklen);
9549 #endif
9550 }
9551 
9552 /* Note that signed overflow is undefined in C.  The following routines are
9553    careful to use unsigned types where modulo arithmetic is required.
9554    Failure to do so _will_ break on newer gcc.  */
9555 
9556 /* Signed saturating arithmetic.  */
9557 
9558 /* Perform 16-bit signed saturating addition.  */
9559 static inline uint16_t add16_sat(uint16_t a, uint16_t b)
9560 {
9561     uint16_t res;
9562 
9563     res = a + b;
9564     if (((res ^ a) & 0x8000) && !((a ^ b) & 0x8000)) {
9565         if (a & 0x8000)
9566             res = 0x8000;
9567         else
9568             res = 0x7fff;
9569     }
9570     return res;
9571 }
9572 
9573 /* Perform 8-bit signed saturating addition.  */
9574 static inline uint8_t add8_sat(uint8_t a, uint8_t b)
9575 {
9576     uint8_t res;
9577 
9578     res = a + b;
9579     if (((res ^ a) & 0x80) && !((a ^ b) & 0x80)) {
9580         if (a & 0x80)
9581             res = 0x80;
9582         else
9583             res = 0x7f;
9584     }
9585     return res;
9586 }
9587 
9588 /* Perform 16-bit signed saturating subtraction.  */
9589 static inline uint16_t sub16_sat(uint16_t a, uint16_t b)
9590 {
9591     uint16_t res;
9592 
9593     res = a - b;
9594     if (((res ^ a) & 0x8000) && ((a ^ b) & 0x8000)) {
9595         if (a & 0x8000)
9596             res = 0x8000;
9597         else
9598             res = 0x7fff;
9599     }
9600     return res;
9601 }
9602 
9603 /* Perform 8-bit signed saturating subtraction.  */
9604 static inline uint8_t sub8_sat(uint8_t a, uint8_t b)
9605 {
9606     uint8_t res;
9607 
9608     res = a - b;
9609     if (((res ^ a) & 0x80) && ((a ^ b) & 0x80)) {
9610         if (a & 0x80)
9611             res = 0x80;
9612         else
9613             res = 0x7f;
9614     }
9615     return res;
9616 }
9617 
9618 #define ADD16(a, b, n) RESULT(add16_sat(a, b), n, 16);
9619 #define SUB16(a, b, n) RESULT(sub16_sat(a, b), n, 16);
9620 #define ADD8(a, b, n)  RESULT(add8_sat(a, b), n, 8);
9621 #define SUB8(a, b, n)  RESULT(sub8_sat(a, b), n, 8);
9622 #define PFX q
9623 
9624 #include "op_addsub.h"
9625 
9626 /* Unsigned saturating arithmetic.  */
9627 static inline uint16_t add16_usat(uint16_t a, uint16_t b)
9628 {
9629     uint16_t res;
9630     res = a + b;
9631     if (res < a)
9632         res = 0xffff;
9633     return res;
9634 }
9635 
9636 static inline uint16_t sub16_usat(uint16_t a, uint16_t b)
9637 {
9638     if (a > b)
9639         return a - b;
9640     else
9641         return 0;
9642 }
9643 
9644 static inline uint8_t add8_usat(uint8_t a, uint8_t b)
9645 {
9646     uint8_t res;
9647     res = a + b;
9648     if (res < a)
9649         res = 0xff;
9650     return res;
9651 }
9652 
9653 static inline uint8_t sub8_usat(uint8_t a, uint8_t b)
9654 {
9655     if (a > b)
9656         return a - b;
9657     else
9658         return 0;
9659 }
9660 
9661 #define ADD16(a, b, n) RESULT(add16_usat(a, b), n, 16);
9662 #define SUB16(a, b, n) RESULT(sub16_usat(a, b), n, 16);
9663 #define ADD8(a, b, n)  RESULT(add8_usat(a, b), n, 8);
9664 #define SUB8(a, b, n)  RESULT(sub8_usat(a, b), n, 8);
9665 #define PFX uq
9666 
9667 #include "op_addsub.h"
9668 
9669 /* Signed modulo arithmetic.  */
9670 #define SARITH16(a, b, n, op) do { \
9671     int32_t sum; \
9672     sum = (int32_t)(int16_t)(a) op (int32_t)(int16_t)(b); \
9673     RESULT(sum, n, 16); \
9674     if (sum >= 0) \
9675         ge |= 3 << (n * 2); \
9676     } while(0)
9677 
9678 #define SARITH8(a, b, n, op) do { \
9679     int32_t sum; \
9680     sum = (int32_t)(int8_t)(a) op (int32_t)(int8_t)(b); \
9681     RESULT(sum, n, 8); \
9682     if (sum >= 0) \
9683         ge |= 1 << n; \
9684     } while(0)
9685 
9686 
9687 #define ADD16(a, b, n) SARITH16(a, b, n, +)
9688 #define SUB16(a, b, n) SARITH16(a, b, n, -)
9689 #define ADD8(a, b, n)  SARITH8(a, b, n, +)
9690 #define SUB8(a, b, n)  SARITH8(a, b, n, -)
9691 #define PFX s
9692 #define ARITH_GE
9693 
9694 #include "op_addsub.h"
9695 
9696 /* Unsigned modulo arithmetic.  */
9697 #define ADD16(a, b, n) do { \
9698     uint32_t sum; \
9699     sum = (uint32_t)(uint16_t)(a) + (uint32_t)(uint16_t)(b); \
9700     RESULT(sum, n, 16); \
9701     if ((sum >> 16) == 1) \
9702         ge |= 3 << (n * 2); \
9703     } while(0)
9704 
9705 #define ADD8(a, b, n) do { \
9706     uint32_t sum; \
9707     sum = (uint32_t)(uint8_t)(a) + (uint32_t)(uint8_t)(b); \
9708     RESULT(sum, n, 8); \
9709     if ((sum >> 8) == 1) \
9710         ge |= 1 << n; \
9711     } while(0)
9712 
9713 #define SUB16(a, b, n) do { \
9714     uint32_t sum; \
9715     sum = (uint32_t)(uint16_t)(a) - (uint32_t)(uint16_t)(b); \
9716     RESULT(sum, n, 16); \
9717     if ((sum >> 16) == 0) \
9718         ge |= 3 << (n * 2); \
9719     } while(0)
9720 
9721 #define SUB8(a, b, n) do { \
9722     uint32_t sum; \
9723     sum = (uint32_t)(uint8_t)(a) - (uint32_t)(uint8_t)(b); \
9724     RESULT(sum, n, 8); \
9725     if ((sum >> 8) == 0) \
9726         ge |= 1 << n; \
9727     } while(0)
9728 
9729 #define PFX u
9730 #define ARITH_GE
9731 
9732 #include "op_addsub.h"
9733 
9734 /* Halved signed arithmetic.  */
9735 #define ADD16(a, b, n) \
9736   RESULT(((int32_t)(int16_t)(a) + (int32_t)(int16_t)(b)) >> 1, n, 16)
9737 #define SUB16(a, b, n) \
9738   RESULT(((int32_t)(int16_t)(a) - (int32_t)(int16_t)(b)) >> 1, n, 16)
9739 #define ADD8(a, b, n) \
9740   RESULT(((int32_t)(int8_t)(a) + (int32_t)(int8_t)(b)) >> 1, n, 8)
9741 #define SUB8(a, b, n) \
9742   RESULT(((int32_t)(int8_t)(a) - (int32_t)(int8_t)(b)) >> 1, n, 8)
9743 #define PFX sh
9744 
9745 #include "op_addsub.h"
9746 
9747 /* Halved unsigned arithmetic.  */
9748 #define ADD16(a, b, n) \
9749   RESULT(((uint32_t)(uint16_t)(a) + (uint32_t)(uint16_t)(b)) >> 1, n, 16)
9750 #define SUB16(a, b, n) \
9751   RESULT(((uint32_t)(uint16_t)(a) - (uint32_t)(uint16_t)(b)) >> 1, n, 16)
9752 #define ADD8(a, b, n) \
9753   RESULT(((uint32_t)(uint8_t)(a) + (uint32_t)(uint8_t)(b)) >> 1, n, 8)
9754 #define SUB8(a, b, n) \
9755   RESULT(((uint32_t)(uint8_t)(a) - (uint32_t)(uint8_t)(b)) >> 1, n, 8)
9756 #define PFX uh
9757 
9758 #include "op_addsub.h"
9759 
9760 static inline uint8_t do_usad(uint8_t a, uint8_t b)
9761 {
9762     if (a > b)
9763         return a - b;
9764     else
9765         return b - a;
9766 }
9767 
9768 /* Unsigned sum of absolute byte differences.  */
9769 uint32_t HELPER(usad8)(uint32_t a, uint32_t b)
9770 {
9771     uint32_t sum;
9772     sum = do_usad(a, b);
9773     sum += do_usad(a >> 8, b >> 8);
9774     sum += do_usad(a >> 16, b >>16);
9775     sum += do_usad(a >> 24, b >> 24);
9776     return sum;
9777 }
9778 
9779 /* For ARMv6 SEL instruction.  */
9780 uint32_t HELPER(sel_flags)(uint32_t flags, uint32_t a, uint32_t b)
9781 {
9782     uint32_t mask;
9783 
9784     mask = 0;
9785     if (flags & 1)
9786         mask |= 0xff;
9787     if (flags & 2)
9788         mask |= 0xff00;
9789     if (flags & 4)
9790         mask |= 0xff0000;
9791     if (flags & 8)
9792         mask |= 0xff000000;
9793     return (a & mask) | (b & ~mask);
9794 }
9795 
9796 /* VFP support.  We follow the convention used for VFP instructions:
9797    Single precision routines have a "s" suffix, double precision a
9798    "d" suffix.  */
9799 
9800 /* Convert host exception flags to vfp form.  */
9801 static inline int vfp_exceptbits_from_host(int host_bits)
9802 {
9803     int target_bits = 0;
9804 
9805     if (host_bits & float_flag_invalid)
9806         target_bits |= 1;
9807     if (host_bits & float_flag_divbyzero)
9808         target_bits |= 2;
9809     if (host_bits & float_flag_overflow)
9810         target_bits |= 4;
9811     if (host_bits & (float_flag_underflow | float_flag_output_denormal))
9812         target_bits |= 8;
9813     if (host_bits & float_flag_inexact)
9814         target_bits |= 0x10;
9815     if (host_bits & float_flag_input_denormal)
9816         target_bits |= 0x80;
9817     return target_bits;
9818 }
9819 
9820 uint32_t HELPER(vfp_get_fpscr)(CPUARMState *env)
9821 {
9822     int i;
9823     uint32_t fpscr;
9824 
9825     fpscr = (env->vfp.xregs[ARM_VFP_FPSCR] & 0xffc8ffff)
9826             | (env->vfp.vec_len << 16)
9827             | (env->vfp.vec_stride << 20);
9828     i = get_float_exception_flags(&env->vfp.fp_status);
9829     i |= get_float_exception_flags(&env->vfp.standard_fp_status);
9830     fpscr |= vfp_exceptbits_from_host(i);
9831     return fpscr;
9832 }
9833 
9834 uint32_t vfp_get_fpscr(CPUARMState *env)
9835 {
9836     return HELPER(vfp_get_fpscr)(env);
9837 }
9838 
9839 /* Convert vfp exception flags to target form.  */
9840 static inline int vfp_exceptbits_to_host(int target_bits)
9841 {
9842     int host_bits = 0;
9843 
9844     if (target_bits & 1)
9845         host_bits |= float_flag_invalid;
9846     if (target_bits & 2)
9847         host_bits |= float_flag_divbyzero;
9848     if (target_bits & 4)
9849         host_bits |= float_flag_overflow;
9850     if (target_bits & 8)
9851         host_bits |= float_flag_underflow;
9852     if (target_bits & 0x10)
9853         host_bits |= float_flag_inexact;
9854     if (target_bits & 0x80)
9855         host_bits |= float_flag_input_denormal;
9856     return host_bits;
9857 }
9858 
9859 void HELPER(vfp_set_fpscr)(CPUARMState *env, uint32_t val)
9860 {
9861     int i;
9862     uint32_t changed;
9863 
9864     changed = env->vfp.xregs[ARM_VFP_FPSCR];
9865     env->vfp.xregs[ARM_VFP_FPSCR] = (val & 0xffc8ffff);
9866     env->vfp.vec_len = (val >> 16) & 7;
9867     env->vfp.vec_stride = (val >> 20) & 3;
9868 
9869     changed ^= val;
9870     if (changed & (3 << 22)) {
9871         i = (val >> 22) & 3;
9872         switch (i) {
9873         case FPROUNDING_TIEEVEN:
9874             i = float_round_nearest_even;
9875             break;
9876         case FPROUNDING_POSINF:
9877             i = float_round_up;
9878             break;
9879         case FPROUNDING_NEGINF:
9880             i = float_round_down;
9881             break;
9882         case FPROUNDING_ZERO:
9883             i = float_round_to_zero;
9884             break;
9885         }
9886         set_float_rounding_mode(i, &env->vfp.fp_status);
9887     }
9888     if (changed & (1 << 24)) {
9889         set_flush_to_zero((val & (1 << 24)) != 0, &env->vfp.fp_status);
9890         set_flush_inputs_to_zero((val & (1 << 24)) != 0, &env->vfp.fp_status);
9891     }
9892     if (changed & (1 << 25))
9893         set_default_nan_mode((val & (1 << 25)) != 0, &env->vfp.fp_status);
9894 
9895     i = vfp_exceptbits_to_host(val);
9896     set_float_exception_flags(i, &env->vfp.fp_status);
9897     set_float_exception_flags(0, &env->vfp.standard_fp_status);
9898 }
9899 
9900 void vfp_set_fpscr(CPUARMState *env, uint32_t val)
9901 {
9902     HELPER(vfp_set_fpscr)(env, val);
9903 }
9904 
9905 #define VFP_HELPER(name, p) HELPER(glue(glue(vfp_,name),p))
9906 
9907 #define VFP_BINOP(name) \
9908 float32 VFP_HELPER(name, s)(float32 a, float32 b, void *fpstp) \
9909 { \
9910     float_status *fpst = fpstp; \
9911     return float32_ ## name(a, b, fpst); \
9912 } \
9913 float64 VFP_HELPER(name, d)(float64 a, float64 b, void *fpstp) \
9914 { \
9915     float_status *fpst = fpstp; \
9916     return float64_ ## name(a, b, fpst); \
9917 }
9918 VFP_BINOP(add)
9919 VFP_BINOP(sub)
9920 VFP_BINOP(mul)
9921 VFP_BINOP(div)
9922 VFP_BINOP(min)
9923 VFP_BINOP(max)
9924 VFP_BINOP(minnum)
9925 VFP_BINOP(maxnum)
9926 #undef VFP_BINOP
9927 
9928 float32 VFP_HELPER(neg, s)(float32 a)
9929 {
9930     return float32_chs(a);
9931 }
9932 
9933 float64 VFP_HELPER(neg, d)(float64 a)
9934 {
9935     return float64_chs(a);
9936 }
9937 
9938 float32 VFP_HELPER(abs, s)(float32 a)
9939 {
9940     return float32_abs(a);
9941 }
9942 
9943 float64 VFP_HELPER(abs, d)(float64 a)
9944 {
9945     return float64_abs(a);
9946 }
9947 
9948 float32 VFP_HELPER(sqrt, s)(float32 a, CPUARMState *env)
9949 {
9950     return float32_sqrt(a, &env->vfp.fp_status);
9951 }
9952 
9953 float64 VFP_HELPER(sqrt, d)(float64 a, CPUARMState *env)
9954 {
9955     return float64_sqrt(a, &env->vfp.fp_status);
9956 }
9957 
9958 /* XXX: check quiet/signaling case */
9959 #define DO_VFP_cmp(p, type) \
9960 void VFP_HELPER(cmp, p)(type a, type b, CPUARMState *env)  \
9961 { \
9962     uint32_t flags; \
9963     switch(type ## _compare_quiet(a, b, &env->vfp.fp_status)) { \
9964     case 0: flags = 0x6; break; \
9965     case -1: flags = 0x8; break; \
9966     case 1: flags = 0x2; break; \
9967     default: case 2: flags = 0x3; break; \
9968     } \
9969     env->vfp.xregs[ARM_VFP_FPSCR] = (flags << 28) \
9970         | (env->vfp.xregs[ARM_VFP_FPSCR] & 0x0fffffff); \
9971 } \
9972 void VFP_HELPER(cmpe, p)(type a, type b, CPUARMState *env) \
9973 { \
9974     uint32_t flags; \
9975     switch(type ## _compare(a, b, &env->vfp.fp_status)) { \
9976     case 0: flags = 0x6; break; \
9977     case -1: flags = 0x8; break; \
9978     case 1: flags = 0x2; break; \
9979     default: case 2: flags = 0x3; break; \
9980     } \
9981     env->vfp.xregs[ARM_VFP_FPSCR] = (flags << 28) \
9982         | (env->vfp.xregs[ARM_VFP_FPSCR] & 0x0fffffff); \
9983 }
9984 DO_VFP_cmp(s, float32)
9985 DO_VFP_cmp(d, float64)
9986 #undef DO_VFP_cmp
9987 
9988 /* Integer to float and float to integer conversions */
9989 
9990 #define CONV_ITOF(name, fsz, sign) \
9991     float##fsz HELPER(name)(uint32_t x, void *fpstp) \
9992 { \
9993     float_status *fpst = fpstp; \
9994     return sign##int32_to_##float##fsz((sign##int32_t)x, fpst); \
9995 }
9996 
9997 #define CONV_FTOI(name, fsz, sign, round) \
9998 uint32_t HELPER(name)(float##fsz x, void *fpstp) \
9999 { \
10000     float_status *fpst = fpstp; \
10001     if (float##fsz##_is_any_nan(x)) { \
10002         float_raise(float_flag_invalid, fpst); \
10003         return 0; \
10004     } \
10005     return float##fsz##_to_##sign##int32##round(x, fpst); \
10006 }
10007 
10008 #define FLOAT_CONVS(name, p, fsz, sign) \
10009 CONV_ITOF(vfp_##name##to##p, fsz, sign) \
10010 CONV_FTOI(vfp_to##name##p, fsz, sign, ) \
10011 CONV_FTOI(vfp_to##name##z##p, fsz, sign, _round_to_zero)
10012 
10013 FLOAT_CONVS(si, s, 32, )
10014 FLOAT_CONVS(si, d, 64, )
10015 FLOAT_CONVS(ui, s, 32, u)
10016 FLOAT_CONVS(ui, d, 64, u)
10017 
10018 #undef CONV_ITOF
10019 #undef CONV_FTOI
10020 #undef FLOAT_CONVS
10021 
10022 /* floating point conversion */
10023 float64 VFP_HELPER(fcvtd, s)(float32 x, CPUARMState *env)
10024 {
10025     float64 r = float32_to_float64(x, &env->vfp.fp_status);
10026     /* ARM requires that S<->D conversion of any kind of NaN generates
10027      * a quiet NaN by forcing the most significant frac bit to 1.
10028      */
10029     return float64_maybe_silence_nan(r, &env->vfp.fp_status);
10030 }
10031 
10032 float32 VFP_HELPER(fcvts, d)(float64 x, CPUARMState *env)
10033 {
10034     float32 r =  float64_to_float32(x, &env->vfp.fp_status);
10035     /* ARM requires that S<->D conversion of any kind of NaN generates
10036      * a quiet NaN by forcing the most significant frac bit to 1.
10037      */
10038     return float32_maybe_silence_nan(r, &env->vfp.fp_status);
10039 }
10040 
10041 /* VFP3 fixed point conversion.  */
10042 #define VFP_CONV_FIX_FLOAT(name, p, fsz, isz, itype) \
10043 float##fsz HELPER(vfp_##name##to##p)(uint##isz##_t  x, uint32_t shift, \
10044                                      void *fpstp) \
10045 { \
10046     float_status *fpst = fpstp; \
10047     float##fsz tmp; \
10048     tmp = itype##_to_##float##fsz(x, fpst); \
10049     return float##fsz##_scalbn(tmp, -(int)shift, fpst); \
10050 }
10051 
10052 /* Notice that we want only input-denormal exception flags from the
10053  * scalbn operation: the other possible flags (overflow+inexact if
10054  * we overflow to infinity, output-denormal) aren't correct for the
10055  * complete scale-and-convert operation.
10056  */
10057 #define VFP_CONV_FLOAT_FIX_ROUND(name, p, fsz, isz, itype, round) \
10058 uint##isz##_t HELPER(vfp_to##name##p##round)(float##fsz x, \
10059                                              uint32_t shift, \
10060                                              void *fpstp) \
10061 { \
10062     float_status *fpst = fpstp; \
10063     int old_exc_flags = get_float_exception_flags(fpst); \
10064     float##fsz tmp; \
10065     if (float##fsz##_is_any_nan(x)) { \
10066         float_raise(float_flag_invalid, fpst); \
10067         return 0; \
10068     } \
10069     tmp = float##fsz##_scalbn(x, shift, fpst); \
10070     old_exc_flags |= get_float_exception_flags(fpst) \
10071         & float_flag_input_denormal; \
10072     set_float_exception_flags(old_exc_flags, fpst); \
10073     return float##fsz##_to_##itype##round(tmp, fpst); \
10074 }
10075 
10076 #define VFP_CONV_FIX(name, p, fsz, isz, itype)                   \
10077 VFP_CONV_FIX_FLOAT(name, p, fsz, isz, itype)                     \
10078 VFP_CONV_FLOAT_FIX_ROUND(name, p, fsz, isz, itype, _round_to_zero) \
10079 VFP_CONV_FLOAT_FIX_ROUND(name, p, fsz, isz, itype, )
10080 
10081 #define VFP_CONV_FIX_A64(name, p, fsz, isz, itype)               \
10082 VFP_CONV_FIX_FLOAT(name, p, fsz, isz, itype)                     \
10083 VFP_CONV_FLOAT_FIX_ROUND(name, p, fsz, isz, itype, )
10084 
10085 VFP_CONV_FIX(sh, d, 64, 64, int16)
10086 VFP_CONV_FIX(sl, d, 64, 64, int32)
10087 VFP_CONV_FIX_A64(sq, d, 64, 64, int64)
10088 VFP_CONV_FIX(uh, d, 64, 64, uint16)
10089 VFP_CONV_FIX(ul, d, 64, 64, uint32)
10090 VFP_CONV_FIX_A64(uq, d, 64, 64, uint64)
10091 VFP_CONV_FIX(sh, s, 32, 32, int16)
10092 VFP_CONV_FIX(sl, s, 32, 32, int32)
10093 VFP_CONV_FIX_A64(sq, s, 32, 64, int64)
10094 VFP_CONV_FIX(uh, s, 32, 32, uint16)
10095 VFP_CONV_FIX(ul, s, 32, 32, uint32)
10096 VFP_CONV_FIX_A64(uq, s, 32, 64, uint64)
10097 #undef VFP_CONV_FIX
10098 #undef VFP_CONV_FIX_FLOAT
10099 #undef VFP_CONV_FLOAT_FIX_ROUND
10100 
10101 /* Set the current fp rounding mode and return the old one.
10102  * The argument is a softfloat float_round_ value.
10103  */
10104 uint32_t HELPER(set_rmode)(uint32_t rmode, CPUARMState *env)
10105 {
10106     float_status *fp_status = &env->vfp.fp_status;
10107 
10108     uint32_t prev_rmode = get_float_rounding_mode(fp_status);
10109     set_float_rounding_mode(rmode, fp_status);
10110 
10111     return prev_rmode;
10112 }
10113 
10114 /* Set the current fp rounding mode in the standard fp status and return
10115  * the old one. This is for NEON instructions that need to change the
10116  * rounding mode but wish to use the standard FPSCR values for everything
10117  * else. Always set the rounding mode back to the correct value after
10118  * modifying it.
10119  * The argument is a softfloat float_round_ value.
10120  */
10121 uint32_t HELPER(set_neon_rmode)(uint32_t rmode, CPUARMState *env)
10122 {
10123     float_status *fp_status = &env->vfp.standard_fp_status;
10124 
10125     uint32_t prev_rmode = get_float_rounding_mode(fp_status);
10126     set_float_rounding_mode(rmode, fp_status);
10127 
10128     return prev_rmode;
10129 }
10130 
10131 /* Half precision conversions.  */
10132 static float32 do_fcvt_f16_to_f32(uint32_t a, CPUARMState *env, float_status *s)
10133 {
10134     int ieee = (env->vfp.xregs[ARM_VFP_FPSCR] & (1 << 26)) == 0;
10135     float32 r = float16_to_float32(make_float16(a), ieee, s);
10136     if (ieee) {
10137         return float32_maybe_silence_nan(r, s);
10138     }
10139     return r;
10140 }
10141 
10142 static uint32_t do_fcvt_f32_to_f16(float32 a, CPUARMState *env, float_status *s)
10143 {
10144     int ieee = (env->vfp.xregs[ARM_VFP_FPSCR] & (1 << 26)) == 0;
10145     float16 r = float32_to_float16(a, ieee, s);
10146     if (ieee) {
10147         r = float16_maybe_silence_nan(r, s);
10148     }
10149     return float16_val(r);
10150 }
10151 
10152 float32 HELPER(neon_fcvt_f16_to_f32)(uint32_t a, CPUARMState *env)
10153 {
10154     return do_fcvt_f16_to_f32(a, env, &env->vfp.standard_fp_status);
10155 }
10156 
10157 uint32_t HELPER(neon_fcvt_f32_to_f16)(float32 a, CPUARMState *env)
10158 {
10159     return do_fcvt_f32_to_f16(a, env, &env->vfp.standard_fp_status);
10160 }
10161 
10162 float32 HELPER(vfp_fcvt_f16_to_f32)(uint32_t a, CPUARMState *env)
10163 {
10164     return do_fcvt_f16_to_f32(a, env, &env->vfp.fp_status);
10165 }
10166 
10167 uint32_t HELPER(vfp_fcvt_f32_to_f16)(float32 a, CPUARMState *env)
10168 {
10169     return do_fcvt_f32_to_f16(a, env, &env->vfp.fp_status);
10170 }
10171 
10172 float64 HELPER(vfp_fcvt_f16_to_f64)(uint32_t a, CPUARMState *env)
10173 {
10174     int ieee = (env->vfp.xregs[ARM_VFP_FPSCR] & (1 << 26)) == 0;
10175     float64 r = float16_to_float64(make_float16(a), ieee, &env->vfp.fp_status);
10176     if (ieee) {
10177         return float64_maybe_silence_nan(r, &env->vfp.fp_status);
10178     }
10179     return r;
10180 }
10181 
10182 uint32_t HELPER(vfp_fcvt_f64_to_f16)(float64 a, CPUARMState *env)
10183 {
10184     int ieee = (env->vfp.xregs[ARM_VFP_FPSCR] & (1 << 26)) == 0;
10185     float16 r = float64_to_float16(a, ieee, &env->vfp.fp_status);
10186     if (ieee) {
10187         r = float16_maybe_silence_nan(r, &env->vfp.fp_status);
10188     }
10189     return float16_val(r);
10190 }
10191 
10192 #define float32_two make_float32(0x40000000)
10193 #define float32_three make_float32(0x40400000)
10194 #define float32_one_point_five make_float32(0x3fc00000)
10195 
10196 float32 HELPER(recps_f32)(float32 a, float32 b, CPUARMState *env)
10197 {
10198     float_status *s = &env->vfp.standard_fp_status;
10199     if ((float32_is_infinity(a) && float32_is_zero_or_denormal(b)) ||
10200         (float32_is_infinity(b) && float32_is_zero_or_denormal(a))) {
10201         if (!(float32_is_zero(a) || float32_is_zero(b))) {
10202             float_raise(float_flag_input_denormal, s);
10203         }
10204         return float32_two;
10205     }
10206     return float32_sub(float32_two, float32_mul(a, b, s), s);
10207 }
10208 
10209 float32 HELPER(rsqrts_f32)(float32 a, float32 b, CPUARMState *env)
10210 {
10211     float_status *s = &env->vfp.standard_fp_status;
10212     float32 product;
10213     if ((float32_is_infinity(a) && float32_is_zero_or_denormal(b)) ||
10214         (float32_is_infinity(b) && float32_is_zero_or_denormal(a))) {
10215         if (!(float32_is_zero(a) || float32_is_zero(b))) {
10216             float_raise(float_flag_input_denormal, s);
10217         }
10218         return float32_one_point_five;
10219     }
10220     product = float32_mul(a, b, s);
10221     return float32_div(float32_sub(float32_three, product, s), float32_two, s);
10222 }
10223 
10224 /* NEON helpers.  */
10225 
10226 /* Constants 256 and 512 are used in some helpers; we avoid relying on
10227  * int->float conversions at run-time.  */
10228 #define float64_256 make_float64(0x4070000000000000LL)
10229 #define float64_512 make_float64(0x4080000000000000LL)
10230 #define float32_maxnorm make_float32(0x7f7fffff)
10231 #define float64_maxnorm make_float64(0x7fefffffffffffffLL)
10232 
10233 /* Reciprocal functions
10234  *
10235  * The algorithm that must be used to calculate the estimate
10236  * is specified by the ARM ARM, see FPRecipEstimate()
10237  */
10238 
10239 static float64 recip_estimate(float64 a, float_status *real_fp_status)
10240 {
10241     /* These calculations mustn't set any fp exception flags,
10242      * so we use a local copy of the fp_status.
10243      */
10244     float_status dummy_status = *real_fp_status;
10245     float_status *s = &dummy_status;
10246     /* q = (int)(a * 512.0) */
10247     float64 q = float64_mul(float64_512, a, s);
10248     int64_t q_int = float64_to_int64_round_to_zero(q, s);
10249 
10250     /* r = 1.0 / (((double)q + 0.5) / 512.0) */
10251     q = int64_to_float64(q_int, s);
10252     q = float64_add(q, float64_half, s);
10253     q = float64_div(q, float64_512, s);
10254     q = float64_div(float64_one, q, s);
10255 
10256     /* s = (int)(256.0 * r + 0.5) */
10257     q = float64_mul(q, float64_256, s);
10258     q = float64_add(q, float64_half, s);
10259     q_int = float64_to_int64_round_to_zero(q, s);
10260 
10261     /* return (double)s / 256.0 */
10262     return float64_div(int64_to_float64(q_int, s), float64_256, s);
10263 }
10264 
10265 /* Common wrapper to call recip_estimate */
10266 static float64 call_recip_estimate(float64 num, int off, float_status *fpst)
10267 {
10268     uint64_t val64 = float64_val(num);
10269     uint64_t frac = extract64(val64, 0, 52);
10270     int64_t exp = extract64(val64, 52, 11);
10271     uint64_t sbit;
10272     float64 scaled, estimate;
10273 
10274     /* Generate the scaled number for the estimate function */
10275     if (exp == 0) {
10276         if (extract64(frac, 51, 1) == 0) {
10277             exp = -1;
10278             frac = extract64(frac, 0, 50) << 2;
10279         } else {
10280             frac = extract64(frac, 0, 51) << 1;
10281         }
10282     }
10283 
10284     /* scaled = '0' : '01111111110' : fraction<51:44> : Zeros(44); */
10285     scaled = make_float64((0x3feULL << 52)
10286                           | extract64(frac, 44, 8) << 44);
10287 
10288     estimate = recip_estimate(scaled, fpst);
10289 
10290     /* Build new result */
10291     val64 = float64_val(estimate);
10292     sbit = 0x8000000000000000ULL & val64;
10293     exp = off - exp;
10294     frac = extract64(val64, 0, 52);
10295 
10296     if (exp == 0) {
10297         frac = 1ULL << 51 | extract64(frac, 1, 51);
10298     } else if (exp == -1) {
10299         frac = 1ULL << 50 | extract64(frac, 2, 50);
10300         exp = 0;
10301     }
10302 
10303     return make_float64(sbit | (exp << 52) | frac);
10304 }
10305 
10306 static bool round_to_inf(float_status *fpst, bool sign_bit)
10307 {
10308     switch (fpst->float_rounding_mode) {
10309     case float_round_nearest_even: /* Round to Nearest */
10310         return true;
10311     case float_round_up: /* Round to +Inf */
10312         return !sign_bit;
10313     case float_round_down: /* Round to -Inf */
10314         return sign_bit;
10315     case float_round_to_zero: /* Round to Zero */
10316         return false;
10317     }
10318 
10319     g_assert_not_reached();
10320 }
10321 
10322 float32 HELPER(recpe_f32)(float32 input, void *fpstp)
10323 {
10324     float_status *fpst = fpstp;
10325     float32 f32 = float32_squash_input_denormal(input, fpst);
10326     uint32_t f32_val = float32_val(f32);
10327     uint32_t f32_sbit = 0x80000000ULL & f32_val;
10328     int32_t f32_exp = extract32(f32_val, 23, 8);
10329     uint32_t f32_frac = extract32(f32_val, 0, 23);
10330     float64 f64, r64;
10331     uint64_t r64_val;
10332     int64_t r64_exp;
10333     uint64_t r64_frac;
10334 
10335     if (float32_is_any_nan(f32)) {
10336         float32 nan = f32;
10337         if (float32_is_signaling_nan(f32, fpst)) {
10338             float_raise(float_flag_invalid, fpst);
10339             nan = float32_maybe_silence_nan(f32, fpst);
10340         }
10341         if (fpst->default_nan_mode) {
10342             nan =  float32_default_nan(fpst);
10343         }
10344         return nan;
10345     } else if (float32_is_infinity(f32)) {
10346         return float32_set_sign(float32_zero, float32_is_neg(f32));
10347     } else if (float32_is_zero(f32)) {
10348         float_raise(float_flag_divbyzero, fpst);
10349         return float32_set_sign(float32_infinity, float32_is_neg(f32));
10350     } else if ((f32_val & ~(1ULL << 31)) < (1ULL << 21)) {
10351         /* Abs(value) < 2.0^-128 */
10352         float_raise(float_flag_overflow | float_flag_inexact, fpst);
10353         if (round_to_inf(fpst, f32_sbit)) {
10354             return float32_set_sign(float32_infinity, float32_is_neg(f32));
10355         } else {
10356             return float32_set_sign(float32_maxnorm, float32_is_neg(f32));
10357         }
10358     } else if (f32_exp >= 253 && fpst->flush_to_zero) {
10359         float_raise(float_flag_underflow, fpst);
10360         return float32_set_sign(float32_zero, float32_is_neg(f32));
10361     }
10362 
10363 
10364     f64 = make_float64(((int64_t)(f32_exp) << 52) | (int64_t)(f32_frac) << 29);
10365     r64 = call_recip_estimate(f64, 253, fpst);
10366     r64_val = float64_val(r64);
10367     r64_exp = extract64(r64_val, 52, 11);
10368     r64_frac = extract64(r64_val, 0, 52);
10369 
10370     /* result = sign : result_exp<7:0> : fraction<51:29>; */
10371     return make_float32(f32_sbit |
10372                         (r64_exp & 0xff) << 23 |
10373                         extract64(r64_frac, 29, 24));
10374 }
10375 
10376 float64 HELPER(recpe_f64)(float64 input, void *fpstp)
10377 {
10378     float_status *fpst = fpstp;
10379     float64 f64 = float64_squash_input_denormal(input, fpst);
10380     uint64_t f64_val = float64_val(f64);
10381     uint64_t f64_sbit = 0x8000000000000000ULL & f64_val;
10382     int64_t f64_exp = extract64(f64_val, 52, 11);
10383     float64 r64;
10384     uint64_t r64_val;
10385     int64_t r64_exp;
10386     uint64_t r64_frac;
10387 
10388     /* Deal with any special cases */
10389     if (float64_is_any_nan(f64)) {
10390         float64 nan = f64;
10391         if (float64_is_signaling_nan(f64, fpst)) {
10392             float_raise(float_flag_invalid, fpst);
10393             nan = float64_maybe_silence_nan(f64, fpst);
10394         }
10395         if (fpst->default_nan_mode) {
10396             nan =  float64_default_nan(fpst);
10397         }
10398         return nan;
10399     } else if (float64_is_infinity(f64)) {
10400         return float64_set_sign(float64_zero, float64_is_neg(f64));
10401     } else if (float64_is_zero(f64)) {
10402         float_raise(float_flag_divbyzero, fpst);
10403         return float64_set_sign(float64_infinity, float64_is_neg(f64));
10404     } else if ((f64_val & ~(1ULL << 63)) < (1ULL << 50)) {
10405         /* Abs(value) < 2.0^-1024 */
10406         float_raise(float_flag_overflow | float_flag_inexact, fpst);
10407         if (round_to_inf(fpst, f64_sbit)) {
10408             return float64_set_sign(float64_infinity, float64_is_neg(f64));
10409         } else {
10410             return float64_set_sign(float64_maxnorm, float64_is_neg(f64));
10411         }
10412     } else if (f64_exp >= 2045 && fpst->flush_to_zero) {
10413         float_raise(float_flag_underflow, fpst);
10414         return float64_set_sign(float64_zero, float64_is_neg(f64));
10415     }
10416 
10417     r64 = call_recip_estimate(f64, 2045, fpst);
10418     r64_val = float64_val(r64);
10419     r64_exp = extract64(r64_val, 52, 11);
10420     r64_frac = extract64(r64_val, 0, 52);
10421 
10422     /* result = sign : result_exp<10:0> : fraction<51:0> */
10423     return make_float64(f64_sbit |
10424                         ((r64_exp & 0x7ff) << 52) |
10425                         r64_frac);
10426 }
10427 
10428 /* The algorithm that must be used to calculate the estimate
10429  * is specified by the ARM ARM.
10430  */
10431 static float64 recip_sqrt_estimate(float64 a, float_status *real_fp_status)
10432 {
10433     /* These calculations mustn't set any fp exception flags,
10434      * so we use a local copy of the fp_status.
10435      */
10436     float_status dummy_status = *real_fp_status;
10437     float_status *s = &dummy_status;
10438     float64 q;
10439     int64_t q_int;
10440 
10441     if (float64_lt(a, float64_half, s)) {
10442         /* range 0.25 <= a < 0.5 */
10443 
10444         /* a in units of 1/512 rounded down */
10445         /* q0 = (int)(a * 512.0);  */
10446         q = float64_mul(float64_512, a, s);
10447         q_int = float64_to_int64_round_to_zero(q, s);
10448 
10449         /* reciprocal root r */
10450         /* r = 1.0 / sqrt(((double)q0 + 0.5) / 512.0);  */
10451         q = int64_to_float64(q_int, s);
10452         q = float64_add(q, float64_half, s);
10453         q = float64_div(q, float64_512, s);
10454         q = float64_sqrt(q, s);
10455         q = float64_div(float64_one, q, s);
10456     } else {
10457         /* range 0.5 <= a < 1.0 */
10458 
10459         /* a in units of 1/256 rounded down */
10460         /* q1 = (int)(a * 256.0); */
10461         q = float64_mul(float64_256, a, s);
10462         int64_t q_int = float64_to_int64_round_to_zero(q, s);
10463 
10464         /* reciprocal root r */
10465         /* r = 1.0 /sqrt(((double)q1 + 0.5) / 256); */
10466         q = int64_to_float64(q_int, s);
10467         q = float64_add(q, float64_half, s);
10468         q = float64_div(q, float64_256, s);
10469         q = float64_sqrt(q, s);
10470         q = float64_div(float64_one, q, s);
10471     }
10472     /* r in units of 1/256 rounded to nearest */
10473     /* s = (int)(256.0 * r + 0.5); */
10474 
10475     q = float64_mul(q, float64_256,s );
10476     q = float64_add(q, float64_half, s);
10477     q_int = float64_to_int64_round_to_zero(q, s);
10478 
10479     /* return (double)s / 256.0;*/
10480     return float64_div(int64_to_float64(q_int, s), float64_256, s);
10481 }
10482 
10483 float32 HELPER(rsqrte_f32)(float32 input, void *fpstp)
10484 {
10485     float_status *s = fpstp;
10486     float32 f32 = float32_squash_input_denormal(input, s);
10487     uint32_t val = float32_val(f32);
10488     uint32_t f32_sbit = 0x80000000 & val;
10489     int32_t f32_exp = extract32(val, 23, 8);
10490     uint32_t f32_frac = extract32(val, 0, 23);
10491     uint64_t f64_frac;
10492     uint64_t val64;
10493     int result_exp;
10494     float64 f64;
10495 
10496     if (float32_is_any_nan(f32)) {
10497         float32 nan = f32;
10498         if (float32_is_signaling_nan(f32, s)) {
10499             float_raise(float_flag_invalid, s);
10500             nan = float32_maybe_silence_nan(f32, s);
10501         }
10502         if (s->default_nan_mode) {
10503             nan =  float32_default_nan(s);
10504         }
10505         return nan;
10506     } else if (float32_is_zero(f32)) {
10507         float_raise(float_flag_divbyzero, s);
10508         return float32_set_sign(float32_infinity, float32_is_neg(f32));
10509     } else if (float32_is_neg(f32)) {
10510         float_raise(float_flag_invalid, s);
10511         return float32_default_nan(s);
10512     } else if (float32_is_infinity(f32)) {
10513         return float32_zero;
10514     }
10515 
10516     /* Scale and normalize to a double-precision value between 0.25 and 1.0,
10517      * preserving the parity of the exponent.  */
10518 
10519     f64_frac = ((uint64_t) f32_frac) << 29;
10520     if (f32_exp == 0) {
10521         while (extract64(f64_frac, 51, 1) == 0) {
10522             f64_frac = f64_frac << 1;
10523             f32_exp = f32_exp-1;
10524         }
10525         f64_frac = extract64(f64_frac, 0, 51) << 1;
10526     }
10527 
10528     if (extract64(f32_exp, 0, 1) == 0) {
10529         f64 = make_float64(((uint64_t) f32_sbit) << 32
10530                            | (0x3feULL << 52)
10531                            | f64_frac);
10532     } else {
10533         f64 = make_float64(((uint64_t) f32_sbit) << 32
10534                            | (0x3fdULL << 52)
10535                            | f64_frac);
10536     }
10537 
10538     result_exp = (380 - f32_exp) / 2;
10539 
10540     f64 = recip_sqrt_estimate(f64, s);
10541 
10542     val64 = float64_val(f64);
10543 
10544     val = ((result_exp & 0xff) << 23)
10545         | ((val64 >> 29)  & 0x7fffff);
10546     return make_float32(val);
10547 }
10548 
10549 float64 HELPER(rsqrte_f64)(float64 input, void *fpstp)
10550 {
10551     float_status *s = fpstp;
10552     float64 f64 = float64_squash_input_denormal(input, s);
10553     uint64_t val = float64_val(f64);
10554     uint64_t f64_sbit = 0x8000000000000000ULL & val;
10555     int64_t f64_exp = extract64(val, 52, 11);
10556     uint64_t f64_frac = extract64(val, 0, 52);
10557     int64_t result_exp;
10558     uint64_t result_frac;
10559 
10560     if (float64_is_any_nan(f64)) {
10561         float64 nan = f64;
10562         if (float64_is_signaling_nan(f64, s)) {
10563             float_raise(float_flag_invalid, s);
10564             nan = float64_maybe_silence_nan(f64, s);
10565         }
10566         if (s->default_nan_mode) {
10567             nan =  float64_default_nan(s);
10568         }
10569         return nan;
10570     } else if (float64_is_zero(f64)) {
10571         float_raise(float_flag_divbyzero, s);
10572         return float64_set_sign(float64_infinity, float64_is_neg(f64));
10573     } else if (float64_is_neg(f64)) {
10574         float_raise(float_flag_invalid, s);
10575         return float64_default_nan(s);
10576     } else if (float64_is_infinity(f64)) {
10577         return float64_zero;
10578     }
10579 
10580     /* Scale and normalize to a double-precision value between 0.25 and 1.0,
10581      * preserving the parity of the exponent.  */
10582 
10583     if (f64_exp == 0) {
10584         while (extract64(f64_frac, 51, 1) == 0) {
10585             f64_frac = f64_frac << 1;
10586             f64_exp = f64_exp - 1;
10587         }
10588         f64_frac = extract64(f64_frac, 0, 51) << 1;
10589     }
10590 
10591     if (extract64(f64_exp, 0, 1) == 0) {
10592         f64 = make_float64(f64_sbit
10593                            | (0x3feULL << 52)
10594                            | f64_frac);
10595     } else {
10596         f64 = make_float64(f64_sbit
10597                            | (0x3fdULL << 52)
10598                            | f64_frac);
10599     }
10600 
10601     result_exp = (3068 - f64_exp) / 2;
10602 
10603     f64 = recip_sqrt_estimate(f64, s);
10604 
10605     result_frac = extract64(float64_val(f64), 0, 52);
10606 
10607     return make_float64(f64_sbit |
10608                         ((result_exp & 0x7ff) << 52) |
10609                         result_frac);
10610 }
10611 
10612 uint32_t HELPER(recpe_u32)(uint32_t a, void *fpstp)
10613 {
10614     float_status *s = fpstp;
10615     float64 f64;
10616 
10617     if ((a & 0x80000000) == 0) {
10618         return 0xffffffff;
10619     }
10620 
10621     f64 = make_float64((0x3feULL << 52)
10622                        | ((int64_t)(a & 0x7fffffff) << 21));
10623 
10624     f64 = recip_estimate(f64, s);
10625 
10626     return 0x80000000 | ((float64_val(f64) >> 21) & 0x7fffffff);
10627 }
10628 
10629 uint32_t HELPER(rsqrte_u32)(uint32_t a, void *fpstp)
10630 {
10631     float_status *fpst = fpstp;
10632     float64 f64;
10633 
10634     if ((a & 0xc0000000) == 0) {
10635         return 0xffffffff;
10636     }
10637 
10638     if (a & 0x80000000) {
10639         f64 = make_float64((0x3feULL << 52)
10640                            | ((uint64_t)(a & 0x7fffffff) << 21));
10641     } else { /* bits 31-30 == '01' */
10642         f64 = make_float64((0x3fdULL << 52)
10643                            | ((uint64_t)(a & 0x3fffffff) << 22));
10644     }
10645 
10646     f64 = recip_sqrt_estimate(f64, fpst);
10647 
10648     return 0x80000000 | ((float64_val(f64) >> 21) & 0x7fffffff);
10649 }
10650 
10651 /* VFPv4 fused multiply-accumulate */
10652 float32 VFP_HELPER(muladd, s)(float32 a, float32 b, float32 c, void *fpstp)
10653 {
10654     float_status *fpst = fpstp;
10655     return float32_muladd(a, b, c, 0, fpst);
10656 }
10657 
10658 float64 VFP_HELPER(muladd, d)(float64 a, float64 b, float64 c, void *fpstp)
10659 {
10660     float_status *fpst = fpstp;
10661     return float64_muladd(a, b, c, 0, fpst);
10662 }
10663 
10664 /* ARMv8 round to integral */
10665 float32 HELPER(rints_exact)(float32 x, void *fp_status)
10666 {
10667     return float32_round_to_int(x, fp_status);
10668 }
10669 
10670 float64 HELPER(rintd_exact)(float64 x, void *fp_status)
10671 {
10672     return float64_round_to_int(x, fp_status);
10673 }
10674 
10675 float32 HELPER(rints)(float32 x, void *fp_status)
10676 {
10677     int old_flags = get_float_exception_flags(fp_status), new_flags;
10678     float32 ret;
10679 
10680     ret = float32_round_to_int(x, fp_status);
10681 
10682     /* Suppress any inexact exceptions the conversion produced */
10683     if (!(old_flags & float_flag_inexact)) {
10684         new_flags = get_float_exception_flags(fp_status);
10685         set_float_exception_flags(new_flags & ~float_flag_inexact, fp_status);
10686     }
10687 
10688     return ret;
10689 }
10690 
10691 float64 HELPER(rintd)(float64 x, void *fp_status)
10692 {
10693     int old_flags = get_float_exception_flags(fp_status), new_flags;
10694     float64 ret;
10695 
10696     ret = float64_round_to_int(x, fp_status);
10697 
10698     new_flags = get_float_exception_flags(fp_status);
10699 
10700     /* Suppress any inexact exceptions the conversion produced */
10701     if (!(old_flags & float_flag_inexact)) {
10702         new_flags = get_float_exception_flags(fp_status);
10703         set_float_exception_flags(new_flags & ~float_flag_inexact, fp_status);
10704     }
10705 
10706     return ret;
10707 }
10708 
10709 /* Convert ARM rounding mode to softfloat */
10710 int arm_rmode_to_sf(int rmode)
10711 {
10712     switch (rmode) {
10713     case FPROUNDING_TIEAWAY:
10714         rmode = float_round_ties_away;
10715         break;
10716     case FPROUNDING_ODD:
10717         /* FIXME: add support for TIEAWAY and ODD */
10718         qemu_log_mask(LOG_UNIMP, "arm: unimplemented rounding mode: %d\n",
10719                       rmode);
10720     case FPROUNDING_TIEEVEN:
10721     default:
10722         rmode = float_round_nearest_even;
10723         break;
10724     case FPROUNDING_POSINF:
10725         rmode = float_round_up;
10726         break;
10727     case FPROUNDING_NEGINF:
10728         rmode = float_round_down;
10729         break;
10730     case FPROUNDING_ZERO:
10731         rmode = float_round_to_zero;
10732         break;
10733     }
10734     return rmode;
10735 }
10736 
10737 /* CRC helpers.
10738  * The upper bytes of val (above the number specified by 'bytes') must have
10739  * been zeroed out by the caller.
10740  */
10741 uint32_t HELPER(crc32)(uint32_t acc, uint32_t val, uint32_t bytes)
10742 {
10743     uint8_t buf[4];
10744 
10745     stl_le_p(buf, val);
10746 
10747     /* zlib crc32 converts the accumulator and output to one's complement.  */
10748     return crc32(acc ^ 0xffffffff, buf, bytes) ^ 0xffffffff;
10749 }
10750 
10751 uint32_t HELPER(crc32c)(uint32_t acc, uint32_t val, uint32_t bytes)
10752 {
10753     uint8_t buf[4];
10754 
10755     stl_le_p(buf, val);
10756 
10757     /* Linux crc32c converts the output to one's complement.  */
10758     return crc32c(acc, buf, bytes) ^ 0xffffffff;
10759 }
10760