1 /* 2 * ARM generic helpers. 3 * 4 * This code is licensed under the GNU GPL v2 or later. 5 * 6 * SPDX-License-Identifier: GPL-2.0-or-later 7 */ 8 9 #include "qemu/osdep.h" 10 #include "qemu/units.h" 11 #include "target/arm/idau.h" 12 #include "trace.h" 13 #include "cpu.h" 14 #include "internals.h" 15 #include "exec/gdbstub.h" 16 #include "exec/helper-proto.h" 17 #include "qemu/host-utils.h" 18 #include "qemu/main-loop.h" 19 #include "qemu/bitops.h" 20 #include "qemu/crc32c.h" 21 #include "qemu/qemu-print.h" 22 #include "exec/exec-all.h" 23 #include <zlib.h> /* For crc32 */ 24 #include "hw/irq.h" 25 #include "hw/semihosting/semihost.h" 26 #include "sysemu/cpus.h" 27 #include "sysemu/cpu-timers.h" 28 #include "sysemu/kvm.h" 29 #include "sysemu/tcg.h" 30 #include "qemu/range.h" 31 #include "qapi/qapi-commands-machine-target.h" 32 #include "qapi/error.h" 33 #include "qemu/guest-random.h" 34 #ifdef CONFIG_TCG 35 #include "arm_ldst.h" 36 #include "exec/cpu_ldst.h" 37 #include "hw/semihosting/common-semi.h" 38 #endif 39 40 #define ARM_CPU_FREQ 1000000000 /* FIXME: 1 GHz, should be configurable */ 41 42 #ifndef CONFIG_USER_ONLY 43 44 static bool get_phys_addr_lpae(CPUARMState *env, uint64_t address, 45 MMUAccessType access_type, ARMMMUIdx mmu_idx, 46 bool s1_is_el0, 47 hwaddr *phys_ptr, MemTxAttrs *txattrs, int *prot, 48 target_ulong *page_size_ptr, 49 ARMMMUFaultInfo *fi, ARMCacheAttrs *cacheattrs) 50 __attribute__((nonnull)); 51 #endif 52 53 static void switch_mode(CPUARMState *env, int mode); 54 static int aa64_va_parameter_tbi(uint64_t tcr, ARMMMUIdx mmu_idx); 55 56 static int vfp_gdb_get_reg(CPUARMState *env, GByteArray *buf, int reg) 57 { 58 ARMCPU *cpu = env_archcpu(env); 59 int nregs = cpu_isar_feature(aa32_simd_r32, cpu) ? 32 : 16; 60 61 /* VFP data registers are always little-endian. */ 62 if (reg < nregs) { 63 return gdb_get_reg64(buf, *aa32_vfp_dreg(env, reg)); 64 } 65 if (arm_feature(env, ARM_FEATURE_NEON)) { 66 /* Aliases for Q regs. */ 67 nregs += 16; 68 if (reg < nregs) { 69 uint64_t *q = aa32_vfp_qreg(env, reg - 32); 70 return gdb_get_reg128(buf, q[0], q[1]); 71 } 72 } 73 switch (reg - nregs) { 74 case 0: return gdb_get_reg32(buf, env->vfp.xregs[ARM_VFP_FPSID]); break; 75 case 1: return gdb_get_reg32(buf, vfp_get_fpscr(env)); break; 76 case 2: return gdb_get_reg32(buf, env->vfp.xregs[ARM_VFP_FPEXC]); break; 77 } 78 return 0; 79 } 80 81 static int vfp_gdb_set_reg(CPUARMState *env, uint8_t *buf, int reg) 82 { 83 ARMCPU *cpu = env_archcpu(env); 84 int nregs = cpu_isar_feature(aa32_simd_r32, cpu) ? 32 : 16; 85 86 if (reg < nregs) { 87 *aa32_vfp_dreg(env, reg) = ldq_le_p(buf); 88 return 8; 89 } 90 if (arm_feature(env, ARM_FEATURE_NEON)) { 91 nregs += 16; 92 if (reg < nregs) { 93 uint64_t *q = aa32_vfp_qreg(env, reg - 32); 94 q[0] = ldq_le_p(buf); 95 q[1] = ldq_le_p(buf + 8); 96 return 16; 97 } 98 } 99 switch (reg - nregs) { 100 case 0: env->vfp.xregs[ARM_VFP_FPSID] = ldl_p(buf); return 4; 101 case 1: vfp_set_fpscr(env, ldl_p(buf)); return 4; 102 case 2: env->vfp.xregs[ARM_VFP_FPEXC] = ldl_p(buf) & (1 << 30); return 4; 103 } 104 return 0; 105 } 106 107 static int aarch64_fpu_gdb_get_reg(CPUARMState *env, GByteArray *buf, int reg) 108 { 109 switch (reg) { 110 case 0 ... 31: 111 { 112 /* 128 bit FP register - quads are in LE order */ 113 uint64_t *q = aa64_vfp_qreg(env, reg); 114 return gdb_get_reg128(buf, q[1], q[0]); 115 } 116 case 32: 117 /* FPSR */ 118 return gdb_get_reg32(buf, vfp_get_fpsr(env)); 119 case 33: 120 /* FPCR */ 121 return gdb_get_reg32(buf,vfp_get_fpcr(env)); 122 default: 123 return 0; 124 } 125 } 126 127 static int aarch64_fpu_gdb_set_reg(CPUARMState *env, uint8_t *buf, int reg) 128 { 129 switch (reg) { 130 case 0 ... 31: 131 /* 128 bit FP register */ 132 { 133 uint64_t *q = aa64_vfp_qreg(env, reg); 134 q[0] = ldq_le_p(buf); 135 q[1] = ldq_le_p(buf + 8); 136 return 16; 137 } 138 case 32: 139 /* FPSR */ 140 vfp_set_fpsr(env, ldl_p(buf)); 141 return 4; 142 case 33: 143 /* FPCR */ 144 vfp_set_fpcr(env, ldl_p(buf)); 145 return 4; 146 default: 147 return 0; 148 } 149 } 150 151 static uint64_t raw_read(CPUARMState *env, const ARMCPRegInfo *ri) 152 { 153 assert(ri->fieldoffset); 154 if (cpreg_field_is_64bit(ri)) { 155 return CPREG_FIELD64(env, ri); 156 } else { 157 return CPREG_FIELD32(env, ri); 158 } 159 } 160 161 static void raw_write(CPUARMState *env, const ARMCPRegInfo *ri, 162 uint64_t value) 163 { 164 assert(ri->fieldoffset); 165 if (cpreg_field_is_64bit(ri)) { 166 CPREG_FIELD64(env, ri) = value; 167 } else { 168 CPREG_FIELD32(env, ri) = value; 169 } 170 } 171 172 static void *raw_ptr(CPUARMState *env, const ARMCPRegInfo *ri) 173 { 174 return (char *)env + ri->fieldoffset; 175 } 176 177 uint64_t read_raw_cp_reg(CPUARMState *env, const ARMCPRegInfo *ri) 178 { 179 /* Raw read of a coprocessor register (as needed for migration, etc). */ 180 if (ri->type & ARM_CP_CONST) { 181 return ri->resetvalue; 182 } else if (ri->raw_readfn) { 183 return ri->raw_readfn(env, ri); 184 } else if (ri->readfn) { 185 return ri->readfn(env, ri); 186 } else { 187 return raw_read(env, ri); 188 } 189 } 190 191 static void write_raw_cp_reg(CPUARMState *env, const ARMCPRegInfo *ri, 192 uint64_t v) 193 { 194 /* Raw write of a coprocessor register (as needed for migration, etc). 195 * Note that constant registers are treated as write-ignored; the 196 * caller should check for success by whether a readback gives the 197 * value written. 198 */ 199 if (ri->type & ARM_CP_CONST) { 200 return; 201 } else if (ri->raw_writefn) { 202 ri->raw_writefn(env, ri, v); 203 } else if (ri->writefn) { 204 ri->writefn(env, ri, v); 205 } else { 206 raw_write(env, ri, v); 207 } 208 } 209 210 /** 211 * arm_get/set_gdb_*: get/set a gdb register 212 * @env: the CPU state 213 * @buf: a buffer to copy to/from 214 * @reg: register number (offset from start of group) 215 * 216 * We return the number of bytes copied 217 */ 218 219 static int arm_gdb_get_sysreg(CPUARMState *env, GByteArray *buf, int reg) 220 { 221 ARMCPU *cpu = env_archcpu(env); 222 const ARMCPRegInfo *ri; 223 uint32_t key; 224 225 key = cpu->dyn_sysreg_xml.data.cpregs.keys[reg]; 226 ri = get_arm_cp_reginfo(cpu->cp_regs, key); 227 if (ri) { 228 if (cpreg_field_is_64bit(ri)) { 229 return gdb_get_reg64(buf, (uint64_t)read_raw_cp_reg(env, ri)); 230 } else { 231 return gdb_get_reg32(buf, (uint32_t)read_raw_cp_reg(env, ri)); 232 } 233 } 234 return 0; 235 } 236 237 static int arm_gdb_set_sysreg(CPUARMState *env, uint8_t *buf, int reg) 238 { 239 return 0; 240 } 241 242 #ifdef TARGET_AARCH64 243 static int arm_gdb_get_svereg(CPUARMState *env, GByteArray *buf, int reg) 244 { 245 ARMCPU *cpu = env_archcpu(env); 246 247 switch (reg) { 248 /* The first 32 registers are the zregs */ 249 case 0 ... 31: 250 { 251 int vq, len = 0; 252 for (vq = 0; vq < cpu->sve_max_vq; vq++) { 253 len += gdb_get_reg128(buf, 254 env->vfp.zregs[reg].d[vq * 2 + 1], 255 env->vfp.zregs[reg].d[vq * 2]); 256 } 257 return len; 258 } 259 case 32: 260 return gdb_get_reg32(buf, vfp_get_fpsr(env)); 261 case 33: 262 return gdb_get_reg32(buf, vfp_get_fpcr(env)); 263 /* then 16 predicates and the ffr */ 264 case 34 ... 50: 265 { 266 int preg = reg - 34; 267 int vq, len = 0; 268 for (vq = 0; vq < cpu->sve_max_vq; vq = vq + 4) { 269 len += gdb_get_reg64(buf, env->vfp.pregs[preg].p[vq / 4]); 270 } 271 return len; 272 } 273 case 51: 274 { 275 /* 276 * We report in Vector Granules (VG) which is 64bit in a Z reg 277 * while the ZCR works in Vector Quads (VQ) which is 128bit chunks. 278 */ 279 int vq = sve_zcr_len_for_el(env, arm_current_el(env)) + 1; 280 return gdb_get_reg64(buf, vq * 2); 281 } 282 default: 283 /* gdbstub asked for something out our range */ 284 qemu_log_mask(LOG_UNIMP, "%s: out of range register %d", __func__, reg); 285 break; 286 } 287 288 return 0; 289 } 290 291 static int arm_gdb_set_svereg(CPUARMState *env, uint8_t *buf, int reg) 292 { 293 ARMCPU *cpu = env_archcpu(env); 294 295 /* The first 32 registers are the zregs */ 296 switch (reg) { 297 /* The first 32 registers are the zregs */ 298 case 0 ... 31: 299 { 300 int vq, len = 0; 301 uint64_t *p = (uint64_t *) buf; 302 for (vq = 0; vq < cpu->sve_max_vq; vq++) { 303 env->vfp.zregs[reg].d[vq * 2 + 1] = *p++; 304 env->vfp.zregs[reg].d[vq * 2] = *p++; 305 len += 16; 306 } 307 return len; 308 } 309 case 32: 310 vfp_set_fpsr(env, *(uint32_t *)buf); 311 return 4; 312 case 33: 313 vfp_set_fpcr(env, *(uint32_t *)buf); 314 return 4; 315 case 34 ... 50: 316 { 317 int preg = reg - 34; 318 int vq, len = 0; 319 uint64_t *p = (uint64_t *) buf; 320 for (vq = 0; vq < cpu->sve_max_vq; vq = vq + 4) { 321 env->vfp.pregs[preg].p[vq / 4] = *p++; 322 len += 8; 323 } 324 return len; 325 } 326 case 51: 327 /* cannot set vg via gdbstub */ 328 return 0; 329 default: 330 /* gdbstub asked for something out our range */ 331 break; 332 } 333 334 return 0; 335 } 336 #endif /* TARGET_AARCH64 */ 337 338 static bool raw_accessors_invalid(const ARMCPRegInfo *ri) 339 { 340 /* Return true if the regdef would cause an assertion if you called 341 * read_raw_cp_reg() or write_raw_cp_reg() on it (ie if it is a 342 * program bug for it not to have the NO_RAW flag). 343 * NB that returning false here doesn't necessarily mean that calling 344 * read/write_raw_cp_reg() is safe, because we can't distinguish "has 345 * read/write access functions which are safe for raw use" from "has 346 * read/write access functions which have side effects but has forgotten 347 * to provide raw access functions". 348 * The tests here line up with the conditions in read/write_raw_cp_reg() 349 * and assertions in raw_read()/raw_write(). 350 */ 351 if ((ri->type & ARM_CP_CONST) || 352 ri->fieldoffset || 353 ((ri->raw_writefn || ri->writefn) && (ri->raw_readfn || ri->readfn))) { 354 return false; 355 } 356 return true; 357 } 358 359 bool write_cpustate_to_list(ARMCPU *cpu, bool kvm_sync) 360 { 361 /* Write the coprocessor state from cpu->env to the (index,value) list. */ 362 int i; 363 bool ok = true; 364 365 for (i = 0; i < cpu->cpreg_array_len; i++) { 366 uint32_t regidx = kvm_to_cpreg_id(cpu->cpreg_indexes[i]); 367 const ARMCPRegInfo *ri; 368 uint64_t newval; 369 370 ri = get_arm_cp_reginfo(cpu->cp_regs, regidx); 371 if (!ri) { 372 ok = false; 373 continue; 374 } 375 if (ri->type & ARM_CP_NO_RAW) { 376 continue; 377 } 378 379 newval = read_raw_cp_reg(&cpu->env, ri); 380 if (kvm_sync) { 381 /* 382 * Only sync if the previous list->cpustate sync succeeded. 383 * Rather than tracking the success/failure state for every 384 * item in the list, we just recheck "does the raw write we must 385 * have made in write_list_to_cpustate() read back OK" here. 386 */ 387 uint64_t oldval = cpu->cpreg_values[i]; 388 389 if (oldval == newval) { 390 continue; 391 } 392 393 write_raw_cp_reg(&cpu->env, ri, oldval); 394 if (read_raw_cp_reg(&cpu->env, ri) != oldval) { 395 continue; 396 } 397 398 write_raw_cp_reg(&cpu->env, ri, newval); 399 } 400 cpu->cpreg_values[i] = newval; 401 } 402 return ok; 403 } 404 405 bool write_list_to_cpustate(ARMCPU *cpu) 406 { 407 int i; 408 bool ok = true; 409 410 for (i = 0; i < cpu->cpreg_array_len; i++) { 411 uint32_t regidx = kvm_to_cpreg_id(cpu->cpreg_indexes[i]); 412 uint64_t v = cpu->cpreg_values[i]; 413 const ARMCPRegInfo *ri; 414 415 ri = get_arm_cp_reginfo(cpu->cp_regs, regidx); 416 if (!ri) { 417 ok = false; 418 continue; 419 } 420 if (ri->type & ARM_CP_NO_RAW) { 421 continue; 422 } 423 /* Write value and confirm it reads back as written 424 * (to catch read-only registers and partially read-only 425 * registers where the incoming migration value doesn't match) 426 */ 427 write_raw_cp_reg(&cpu->env, ri, v); 428 if (read_raw_cp_reg(&cpu->env, ri) != v) { 429 ok = false; 430 } 431 } 432 return ok; 433 } 434 435 static void add_cpreg_to_list(gpointer key, gpointer opaque) 436 { 437 ARMCPU *cpu = opaque; 438 uint64_t regidx; 439 const ARMCPRegInfo *ri; 440 441 regidx = *(uint32_t *)key; 442 ri = get_arm_cp_reginfo(cpu->cp_regs, regidx); 443 444 if (!(ri->type & (ARM_CP_NO_RAW|ARM_CP_ALIAS))) { 445 cpu->cpreg_indexes[cpu->cpreg_array_len] = cpreg_to_kvm_id(regidx); 446 /* The value array need not be initialized at this point */ 447 cpu->cpreg_array_len++; 448 } 449 } 450 451 static void count_cpreg(gpointer key, gpointer opaque) 452 { 453 ARMCPU *cpu = opaque; 454 uint64_t regidx; 455 const ARMCPRegInfo *ri; 456 457 regidx = *(uint32_t *)key; 458 ri = get_arm_cp_reginfo(cpu->cp_regs, regidx); 459 460 if (!(ri->type & (ARM_CP_NO_RAW|ARM_CP_ALIAS))) { 461 cpu->cpreg_array_len++; 462 } 463 } 464 465 static gint cpreg_key_compare(gconstpointer a, gconstpointer b) 466 { 467 uint64_t aidx = cpreg_to_kvm_id(*(uint32_t *)a); 468 uint64_t bidx = cpreg_to_kvm_id(*(uint32_t *)b); 469 470 if (aidx > bidx) { 471 return 1; 472 } 473 if (aidx < bidx) { 474 return -1; 475 } 476 return 0; 477 } 478 479 void init_cpreg_list(ARMCPU *cpu) 480 { 481 /* Initialise the cpreg_tuples[] array based on the cp_regs hash. 482 * Note that we require cpreg_tuples[] to be sorted by key ID. 483 */ 484 GList *keys; 485 int arraylen; 486 487 keys = g_hash_table_get_keys(cpu->cp_regs); 488 keys = g_list_sort(keys, cpreg_key_compare); 489 490 cpu->cpreg_array_len = 0; 491 492 g_list_foreach(keys, count_cpreg, cpu); 493 494 arraylen = cpu->cpreg_array_len; 495 cpu->cpreg_indexes = g_new(uint64_t, arraylen); 496 cpu->cpreg_values = g_new(uint64_t, arraylen); 497 cpu->cpreg_vmstate_indexes = g_new(uint64_t, arraylen); 498 cpu->cpreg_vmstate_values = g_new(uint64_t, arraylen); 499 cpu->cpreg_vmstate_array_len = cpu->cpreg_array_len; 500 cpu->cpreg_array_len = 0; 501 502 g_list_foreach(keys, add_cpreg_to_list, cpu); 503 504 assert(cpu->cpreg_array_len == arraylen); 505 506 g_list_free(keys); 507 } 508 509 /* 510 * Some registers are not accessible from AArch32 EL3 if SCR.NS == 0. 511 */ 512 static CPAccessResult access_el3_aa32ns(CPUARMState *env, 513 const ARMCPRegInfo *ri, 514 bool isread) 515 { 516 if (!is_a64(env) && arm_current_el(env) == 3 && 517 arm_is_secure_below_el3(env)) { 518 return CP_ACCESS_TRAP_UNCATEGORIZED; 519 } 520 return CP_ACCESS_OK; 521 } 522 523 /* Some secure-only AArch32 registers trap to EL3 if used from 524 * Secure EL1 (but are just ordinary UNDEF in other non-EL3 contexts). 525 * Note that an access from Secure EL1 can only happen if EL3 is AArch64. 526 * We assume that the .access field is set to PL1_RW. 527 */ 528 static CPAccessResult access_trap_aa32s_el1(CPUARMState *env, 529 const ARMCPRegInfo *ri, 530 bool isread) 531 { 532 if (arm_current_el(env) == 3) { 533 return CP_ACCESS_OK; 534 } 535 if (arm_is_secure_below_el3(env)) { 536 if (env->cp15.scr_el3 & SCR_EEL2) { 537 return CP_ACCESS_TRAP_EL2; 538 } 539 return CP_ACCESS_TRAP_EL3; 540 } 541 /* This will be EL1 NS and EL2 NS, which just UNDEF */ 542 return CP_ACCESS_TRAP_UNCATEGORIZED; 543 } 544 545 static uint64_t arm_mdcr_el2_eff(CPUARMState *env) 546 { 547 return arm_is_el2_enabled(env) ? env->cp15.mdcr_el2 : 0; 548 } 549 550 /* Check for traps to "powerdown debug" registers, which are controlled 551 * by MDCR.TDOSA 552 */ 553 static CPAccessResult access_tdosa(CPUARMState *env, const ARMCPRegInfo *ri, 554 bool isread) 555 { 556 int el = arm_current_el(env); 557 uint64_t mdcr_el2 = arm_mdcr_el2_eff(env); 558 bool mdcr_el2_tdosa = (mdcr_el2 & MDCR_TDOSA) || (mdcr_el2 & MDCR_TDE) || 559 (arm_hcr_el2_eff(env) & HCR_TGE); 560 561 if (el < 2 && mdcr_el2_tdosa) { 562 return CP_ACCESS_TRAP_EL2; 563 } 564 if (el < 3 && (env->cp15.mdcr_el3 & MDCR_TDOSA)) { 565 return CP_ACCESS_TRAP_EL3; 566 } 567 return CP_ACCESS_OK; 568 } 569 570 /* Check for traps to "debug ROM" registers, which are controlled 571 * by MDCR_EL2.TDRA for EL2 but by the more general MDCR_EL3.TDA for EL3. 572 */ 573 static CPAccessResult access_tdra(CPUARMState *env, const ARMCPRegInfo *ri, 574 bool isread) 575 { 576 int el = arm_current_el(env); 577 uint64_t mdcr_el2 = arm_mdcr_el2_eff(env); 578 bool mdcr_el2_tdra = (mdcr_el2 & MDCR_TDRA) || (mdcr_el2 & MDCR_TDE) || 579 (arm_hcr_el2_eff(env) & HCR_TGE); 580 581 if (el < 2 && mdcr_el2_tdra) { 582 return CP_ACCESS_TRAP_EL2; 583 } 584 if (el < 3 && (env->cp15.mdcr_el3 & MDCR_TDA)) { 585 return CP_ACCESS_TRAP_EL3; 586 } 587 return CP_ACCESS_OK; 588 } 589 590 /* Check for traps to general debug registers, which are controlled 591 * by MDCR_EL2.TDA for EL2 and MDCR_EL3.TDA for EL3. 592 */ 593 static CPAccessResult access_tda(CPUARMState *env, const ARMCPRegInfo *ri, 594 bool isread) 595 { 596 int el = arm_current_el(env); 597 uint64_t mdcr_el2 = arm_mdcr_el2_eff(env); 598 bool mdcr_el2_tda = (mdcr_el2 & MDCR_TDA) || (mdcr_el2 & MDCR_TDE) || 599 (arm_hcr_el2_eff(env) & HCR_TGE); 600 601 if (el < 2 && mdcr_el2_tda) { 602 return CP_ACCESS_TRAP_EL2; 603 } 604 if (el < 3 && (env->cp15.mdcr_el3 & MDCR_TDA)) { 605 return CP_ACCESS_TRAP_EL3; 606 } 607 return CP_ACCESS_OK; 608 } 609 610 /* Check for traps to performance monitor registers, which are controlled 611 * by MDCR_EL2.TPM for EL2 and MDCR_EL3.TPM for EL3. 612 */ 613 static CPAccessResult access_tpm(CPUARMState *env, const ARMCPRegInfo *ri, 614 bool isread) 615 { 616 int el = arm_current_el(env); 617 uint64_t mdcr_el2 = arm_mdcr_el2_eff(env); 618 619 if (el < 2 && (mdcr_el2 & MDCR_TPM)) { 620 return CP_ACCESS_TRAP_EL2; 621 } 622 if (el < 3 && (env->cp15.mdcr_el3 & MDCR_TPM)) { 623 return CP_ACCESS_TRAP_EL3; 624 } 625 return CP_ACCESS_OK; 626 } 627 628 /* Check for traps from EL1 due to HCR_EL2.TVM and HCR_EL2.TRVM. */ 629 static CPAccessResult access_tvm_trvm(CPUARMState *env, const ARMCPRegInfo *ri, 630 bool isread) 631 { 632 if (arm_current_el(env) == 1) { 633 uint64_t trap = isread ? HCR_TRVM : HCR_TVM; 634 if (arm_hcr_el2_eff(env) & trap) { 635 return CP_ACCESS_TRAP_EL2; 636 } 637 } 638 return CP_ACCESS_OK; 639 } 640 641 /* Check for traps from EL1 due to HCR_EL2.TSW. */ 642 static CPAccessResult access_tsw(CPUARMState *env, const ARMCPRegInfo *ri, 643 bool isread) 644 { 645 if (arm_current_el(env) == 1 && (arm_hcr_el2_eff(env) & HCR_TSW)) { 646 return CP_ACCESS_TRAP_EL2; 647 } 648 return CP_ACCESS_OK; 649 } 650 651 /* Check for traps from EL1 due to HCR_EL2.TACR. */ 652 static CPAccessResult access_tacr(CPUARMState *env, const ARMCPRegInfo *ri, 653 bool isread) 654 { 655 if (arm_current_el(env) == 1 && (arm_hcr_el2_eff(env) & HCR_TACR)) { 656 return CP_ACCESS_TRAP_EL2; 657 } 658 return CP_ACCESS_OK; 659 } 660 661 /* Check for traps from EL1 due to HCR_EL2.TTLB. */ 662 static CPAccessResult access_ttlb(CPUARMState *env, const ARMCPRegInfo *ri, 663 bool isread) 664 { 665 if (arm_current_el(env) == 1 && (arm_hcr_el2_eff(env) & HCR_TTLB)) { 666 return CP_ACCESS_TRAP_EL2; 667 } 668 return CP_ACCESS_OK; 669 } 670 671 static void dacr_write(CPUARMState *env, const ARMCPRegInfo *ri, uint64_t value) 672 { 673 ARMCPU *cpu = env_archcpu(env); 674 675 raw_write(env, ri, value); 676 tlb_flush(CPU(cpu)); /* Flush TLB as domain not tracked in TLB */ 677 } 678 679 static void fcse_write(CPUARMState *env, const ARMCPRegInfo *ri, uint64_t value) 680 { 681 ARMCPU *cpu = env_archcpu(env); 682 683 if (raw_read(env, ri) != value) { 684 /* Unlike real hardware the qemu TLB uses virtual addresses, 685 * not modified virtual addresses, so this causes a TLB flush. 686 */ 687 tlb_flush(CPU(cpu)); 688 raw_write(env, ri, value); 689 } 690 } 691 692 static void contextidr_write(CPUARMState *env, const ARMCPRegInfo *ri, 693 uint64_t value) 694 { 695 ARMCPU *cpu = env_archcpu(env); 696 697 if (raw_read(env, ri) != value && !arm_feature(env, ARM_FEATURE_PMSA) 698 && !extended_addresses_enabled(env)) { 699 /* For VMSA (when not using the LPAE long descriptor page table 700 * format) this register includes the ASID, so do a TLB flush. 701 * For PMSA it is purely a process ID and no action is needed. 702 */ 703 tlb_flush(CPU(cpu)); 704 } 705 raw_write(env, ri, value); 706 } 707 708 /* IS variants of TLB operations must affect all cores */ 709 static void tlbiall_is_write(CPUARMState *env, const ARMCPRegInfo *ri, 710 uint64_t value) 711 { 712 CPUState *cs = env_cpu(env); 713 714 tlb_flush_all_cpus_synced(cs); 715 } 716 717 static void tlbiasid_is_write(CPUARMState *env, const ARMCPRegInfo *ri, 718 uint64_t value) 719 { 720 CPUState *cs = env_cpu(env); 721 722 tlb_flush_all_cpus_synced(cs); 723 } 724 725 static void tlbimva_is_write(CPUARMState *env, const ARMCPRegInfo *ri, 726 uint64_t value) 727 { 728 CPUState *cs = env_cpu(env); 729 730 tlb_flush_page_all_cpus_synced(cs, value & TARGET_PAGE_MASK); 731 } 732 733 static void tlbimvaa_is_write(CPUARMState *env, const ARMCPRegInfo *ri, 734 uint64_t value) 735 { 736 CPUState *cs = env_cpu(env); 737 738 tlb_flush_page_all_cpus_synced(cs, value & TARGET_PAGE_MASK); 739 } 740 741 /* 742 * Non-IS variants of TLB operations are upgraded to 743 * IS versions if we are at EL1 and HCR_EL2.FB is effectively set to 744 * force broadcast of these operations. 745 */ 746 static bool tlb_force_broadcast(CPUARMState *env) 747 { 748 return arm_current_el(env) == 1 && (arm_hcr_el2_eff(env) & HCR_FB); 749 } 750 751 static void tlbiall_write(CPUARMState *env, const ARMCPRegInfo *ri, 752 uint64_t value) 753 { 754 /* Invalidate all (TLBIALL) */ 755 CPUState *cs = env_cpu(env); 756 757 if (tlb_force_broadcast(env)) { 758 tlb_flush_all_cpus_synced(cs); 759 } else { 760 tlb_flush(cs); 761 } 762 } 763 764 static void tlbimva_write(CPUARMState *env, const ARMCPRegInfo *ri, 765 uint64_t value) 766 { 767 /* Invalidate single TLB entry by MVA and ASID (TLBIMVA) */ 768 CPUState *cs = env_cpu(env); 769 770 value &= TARGET_PAGE_MASK; 771 if (tlb_force_broadcast(env)) { 772 tlb_flush_page_all_cpus_synced(cs, value); 773 } else { 774 tlb_flush_page(cs, value); 775 } 776 } 777 778 static void tlbiasid_write(CPUARMState *env, const ARMCPRegInfo *ri, 779 uint64_t value) 780 { 781 /* Invalidate by ASID (TLBIASID) */ 782 CPUState *cs = env_cpu(env); 783 784 if (tlb_force_broadcast(env)) { 785 tlb_flush_all_cpus_synced(cs); 786 } else { 787 tlb_flush(cs); 788 } 789 } 790 791 static void tlbimvaa_write(CPUARMState *env, const ARMCPRegInfo *ri, 792 uint64_t value) 793 { 794 /* Invalidate single entry by MVA, all ASIDs (TLBIMVAA) */ 795 CPUState *cs = env_cpu(env); 796 797 value &= TARGET_PAGE_MASK; 798 if (tlb_force_broadcast(env)) { 799 tlb_flush_page_all_cpus_synced(cs, value); 800 } else { 801 tlb_flush_page(cs, value); 802 } 803 } 804 805 static void tlbiall_nsnh_write(CPUARMState *env, const ARMCPRegInfo *ri, 806 uint64_t value) 807 { 808 CPUState *cs = env_cpu(env); 809 810 tlb_flush_by_mmuidx(cs, 811 ARMMMUIdxBit_E10_1 | 812 ARMMMUIdxBit_E10_1_PAN | 813 ARMMMUIdxBit_E10_0); 814 } 815 816 static void tlbiall_nsnh_is_write(CPUARMState *env, const ARMCPRegInfo *ri, 817 uint64_t value) 818 { 819 CPUState *cs = env_cpu(env); 820 821 tlb_flush_by_mmuidx_all_cpus_synced(cs, 822 ARMMMUIdxBit_E10_1 | 823 ARMMMUIdxBit_E10_1_PAN | 824 ARMMMUIdxBit_E10_0); 825 } 826 827 828 static void tlbiall_hyp_write(CPUARMState *env, const ARMCPRegInfo *ri, 829 uint64_t value) 830 { 831 CPUState *cs = env_cpu(env); 832 833 tlb_flush_by_mmuidx(cs, ARMMMUIdxBit_E2); 834 } 835 836 static void tlbiall_hyp_is_write(CPUARMState *env, const ARMCPRegInfo *ri, 837 uint64_t value) 838 { 839 CPUState *cs = env_cpu(env); 840 841 tlb_flush_by_mmuidx_all_cpus_synced(cs, ARMMMUIdxBit_E2); 842 } 843 844 static void tlbimva_hyp_write(CPUARMState *env, const ARMCPRegInfo *ri, 845 uint64_t value) 846 { 847 CPUState *cs = env_cpu(env); 848 uint64_t pageaddr = value & ~MAKE_64BIT_MASK(0, 12); 849 850 tlb_flush_page_by_mmuidx(cs, pageaddr, ARMMMUIdxBit_E2); 851 } 852 853 static void tlbimva_hyp_is_write(CPUARMState *env, const ARMCPRegInfo *ri, 854 uint64_t value) 855 { 856 CPUState *cs = env_cpu(env); 857 uint64_t pageaddr = value & ~MAKE_64BIT_MASK(0, 12); 858 859 tlb_flush_page_by_mmuidx_all_cpus_synced(cs, pageaddr, 860 ARMMMUIdxBit_E2); 861 } 862 863 static const ARMCPRegInfo cp_reginfo[] = { 864 /* Define the secure and non-secure FCSE identifier CP registers 865 * separately because there is no secure bank in V8 (no _EL3). This allows 866 * the secure register to be properly reset and migrated. There is also no 867 * v8 EL1 version of the register so the non-secure instance stands alone. 868 */ 869 { .name = "FCSEIDR", 870 .cp = 15, .opc1 = 0, .crn = 13, .crm = 0, .opc2 = 0, 871 .access = PL1_RW, .secure = ARM_CP_SECSTATE_NS, 872 .fieldoffset = offsetof(CPUARMState, cp15.fcseidr_ns), 873 .resetvalue = 0, .writefn = fcse_write, .raw_writefn = raw_write, }, 874 { .name = "FCSEIDR_S", 875 .cp = 15, .opc1 = 0, .crn = 13, .crm = 0, .opc2 = 0, 876 .access = PL1_RW, .secure = ARM_CP_SECSTATE_S, 877 .fieldoffset = offsetof(CPUARMState, cp15.fcseidr_s), 878 .resetvalue = 0, .writefn = fcse_write, .raw_writefn = raw_write, }, 879 /* Define the secure and non-secure context identifier CP registers 880 * separately because there is no secure bank in V8 (no _EL3). This allows 881 * the secure register to be properly reset and migrated. In the 882 * non-secure case, the 32-bit register will have reset and migration 883 * disabled during registration as it is handled by the 64-bit instance. 884 */ 885 { .name = "CONTEXTIDR_EL1", .state = ARM_CP_STATE_BOTH, 886 .opc0 = 3, .opc1 = 0, .crn = 13, .crm = 0, .opc2 = 1, 887 .access = PL1_RW, .accessfn = access_tvm_trvm, 888 .secure = ARM_CP_SECSTATE_NS, 889 .fieldoffset = offsetof(CPUARMState, cp15.contextidr_el[1]), 890 .resetvalue = 0, .writefn = contextidr_write, .raw_writefn = raw_write, }, 891 { .name = "CONTEXTIDR_S", .state = ARM_CP_STATE_AA32, 892 .cp = 15, .opc1 = 0, .crn = 13, .crm = 0, .opc2 = 1, 893 .access = PL1_RW, .accessfn = access_tvm_trvm, 894 .secure = ARM_CP_SECSTATE_S, 895 .fieldoffset = offsetof(CPUARMState, cp15.contextidr_s), 896 .resetvalue = 0, .writefn = contextidr_write, .raw_writefn = raw_write, }, 897 REGINFO_SENTINEL 898 }; 899 900 static const ARMCPRegInfo not_v8_cp_reginfo[] = { 901 /* NB: Some of these registers exist in v8 but with more precise 902 * definitions that don't use CP_ANY wildcards (mostly in v8_cp_reginfo[]). 903 */ 904 /* MMU Domain access control / MPU write buffer control */ 905 { .name = "DACR", 906 .cp = 15, .opc1 = CP_ANY, .crn = 3, .crm = CP_ANY, .opc2 = CP_ANY, 907 .access = PL1_RW, .accessfn = access_tvm_trvm, .resetvalue = 0, 908 .writefn = dacr_write, .raw_writefn = raw_write, 909 .bank_fieldoffsets = { offsetoflow32(CPUARMState, cp15.dacr_s), 910 offsetoflow32(CPUARMState, cp15.dacr_ns) } }, 911 /* ARMv7 allocates a range of implementation defined TLB LOCKDOWN regs. 912 * For v6 and v5, these mappings are overly broad. 913 */ 914 { .name = "TLB_LOCKDOWN", .cp = 15, .crn = 10, .crm = 0, 915 .opc1 = CP_ANY, .opc2 = CP_ANY, .access = PL1_RW, .type = ARM_CP_NOP }, 916 { .name = "TLB_LOCKDOWN", .cp = 15, .crn = 10, .crm = 1, 917 .opc1 = CP_ANY, .opc2 = CP_ANY, .access = PL1_RW, .type = ARM_CP_NOP }, 918 { .name = "TLB_LOCKDOWN", .cp = 15, .crn = 10, .crm = 4, 919 .opc1 = CP_ANY, .opc2 = CP_ANY, .access = PL1_RW, .type = ARM_CP_NOP }, 920 { .name = "TLB_LOCKDOWN", .cp = 15, .crn = 10, .crm = 8, 921 .opc1 = CP_ANY, .opc2 = CP_ANY, .access = PL1_RW, .type = ARM_CP_NOP }, 922 /* Cache maintenance ops; some of this space may be overridden later. */ 923 { .name = "CACHEMAINT", .cp = 15, .crn = 7, .crm = CP_ANY, 924 .opc1 = 0, .opc2 = CP_ANY, .access = PL1_W, 925 .type = ARM_CP_NOP | ARM_CP_OVERRIDE }, 926 REGINFO_SENTINEL 927 }; 928 929 static const ARMCPRegInfo not_v6_cp_reginfo[] = { 930 /* Not all pre-v6 cores implemented this WFI, so this is slightly 931 * over-broad. 932 */ 933 { .name = "WFI_v5", .cp = 15, .crn = 7, .crm = 8, .opc1 = 0, .opc2 = 2, 934 .access = PL1_W, .type = ARM_CP_WFI }, 935 REGINFO_SENTINEL 936 }; 937 938 static const ARMCPRegInfo not_v7_cp_reginfo[] = { 939 /* Standard v6 WFI (also used in some pre-v6 cores); not in v7 (which 940 * is UNPREDICTABLE; we choose to NOP as most implementations do). 941 */ 942 { .name = "WFI_v6", .cp = 15, .crn = 7, .crm = 0, .opc1 = 0, .opc2 = 4, 943 .access = PL1_W, .type = ARM_CP_WFI }, 944 /* L1 cache lockdown. Not architectural in v6 and earlier but in practice 945 * implemented in 926, 946, 1026, 1136, 1176 and 11MPCore. StrongARM and 946 * OMAPCP will override this space. 947 */ 948 { .name = "DLOCKDOWN", .cp = 15, .crn = 9, .crm = 0, .opc1 = 0, .opc2 = 0, 949 .access = PL1_RW, .fieldoffset = offsetof(CPUARMState, cp15.c9_data), 950 .resetvalue = 0 }, 951 { .name = "ILOCKDOWN", .cp = 15, .crn = 9, .crm = 0, .opc1 = 0, .opc2 = 1, 952 .access = PL1_RW, .fieldoffset = offsetof(CPUARMState, cp15.c9_insn), 953 .resetvalue = 0 }, 954 /* v6 doesn't have the cache ID registers but Linux reads them anyway */ 955 { .name = "DUMMY", .cp = 15, .crn = 0, .crm = 0, .opc1 = 1, .opc2 = CP_ANY, 956 .access = PL1_R, .type = ARM_CP_CONST | ARM_CP_NO_RAW, 957 .resetvalue = 0 }, 958 /* We don't implement pre-v7 debug but most CPUs had at least a DBGDIDR; 959 * implementing it as RAZ means the "debug architecture version" bits 960 * will read as a reserved value, which should cause Linux to not try 961 * to use the debug hardware. 962 */ 963 { .name = "DBGDIDR", .cp = 14, .crn = 0, .crm = 0, .opc1 = 0, .opc2 = 0, 964 .access = PL0_R, .type = ARM_CP_CONST, .resetvalue = 0 }, 965 /* MMU TLB control. Note that the wildcarding means we cover not just 966 * the unified TLB ops but also the dside/iside/inner-shareable variants. 967 */ 968 { .name = "TLBIALL", .cp = 15, .crn = 8, .crm = CP_ANY, 969 .opc1 = CP_ANY, .opc2 = 0, .access = PL1_W, .writefn = tlbiall_write, 970 .type = ARM_CP_NO_RAW }, 971 { .name = "TLBIMVA", .cp = 15, .crn = 8, .crm = CP_ANY, 972 .opc1 = CP_ANY, .opc2 = 1, .access = PL1_W, .writefn = tlbimva_write, 973 .type = ARM_CP_NO_RAW }, 974 { .name = "TLBIASID", .cp = 15, .crn = 8, .crm = CP_ANY, 975 .opc1 = CP_ANY, .opc2 = 2, .access = PL1_W, .writefn = tlbiasid_write, 976 .type = ARM_CP_NO_RAW }, 977 { .name = "TLBIMVAA", .cp = 15, .crn = 8, .crm = CP_ANY, 978 .opc1 = CP_ANY, .opc2 = 3, .access = PL1_W, .writefn = tlbimvaa_write, 979 .type = ARM_CP_NO_RAW }, 980 { .name = "PRRR", .cp = 15, .crn = 10, .crm = 2, 981 .opc1 = 0, .opc2 = 0, .access = PL1_RW, .type = ARM_CP_NOP }, 982 { .name = "NMRR", .cp = 15, .crn = 10, .crm = 2, 983 .opc1 = 0, .opc2 = 1, .access = PL1_RW, .type = ARM_CP_NOP }, 984 REGINFO_SENTINEL 985 }; 986 987 static void cpacr_write(CPUARMState *env, const ARMCPRegInfo *ri, 988 uint64_t value) 989 { 990 uint32_t mask = 0; 991 992 /* In ARMv8 most bits of CPACR_EL1 are RES0. */ 993 if (!arm_feature(env, ARM_FEATURE_V8)) { 994 /* ARMv7 defines bits for unimplemented coprocessors as RAZ/WI. 995 * ASEDIS [31] and D32DIS [30] are both UNK/SBZP without VFP. 996 * TRCDIS [28] is RAZ/WI since we do not implement a trace macrocell. 997 */ 998 if (cpu_isar_feature(aa32_vfp_simd, env_archcpu(env))) { 999 /* VFP coprocessor: cp10 & cp11 [23:20] */ 1000 mask |= (1 << 31) | (1 << 30) | (0xf << 20); 1001 1002 if (!arm_feature(env, ARM_FEATURE_NEON)) { 1003 /* ASEDIS [31] bit is RAO/WI */ 1004 value |= (1 << 31); 1005 } 1006 1007 /* VFPv3 and upwards with NEON implement 32 double precision 1008 * registers (D0-D31). 1009 */ 1010 if (!cpu_isar_feature(aa32_simd_r32, env_archcpu(env))) { 1011 /* D32DIS [30] is RAO/WI if D16-31 are not implemented. */ 1012 value |= (1 << 30); 1013 } 1014 } 1015 value &= mask; 1016 } 1017 1018 /* 1019 * For A-profile AArch32 EL3 (but not M-profile secure mode), if NSACR.CP10 1020 * is 0 then CPACR.{CP11,CP10} ignore writes and read as 0b00. 1021 */ 1022 if (arm_feature(env, ARM_FEATURE_EL3) && !arm_el_is_aa64(env, 3) && 1023 !arm_is_secure(env) && !extract32(env->cp15.nsacr, 10, 1)) { 1024 value &= ~(0xf << 20); 1025 value |= env->cp15.cpacr_el1 & (0xf << 20); 1026 } 1027 1028 env->cp15.cpacr_el1 = value; 1029 } 1030 1031 static uint64_t cpacr_read(CPUARMState *env, const ARMCPRegInfo *ri) 1032 { 1033 /* 1034 * For A-profile AArch32 EL3 (but not M-profile secure mode), if NSACR.CP10 1035 * is 0 then CPACR.{CP11,CP10} ignore writes and read as 0b00. 1036 */ 1037 uint64_t value = env->cp15.cpacr_el1; 1038 1039 if (arm_feature(env, ARM_FEATURE_EL3) && !arm_el_is_aa64(env, 3) && 1040 !arm_is_secure(env) && !extract32(env->cp15.nsacr, 10, 1)) { 1041 value &= ~(0xf << 20); 1042 } 1043 return value; 1044 } 1045 1046 1047 static void cpacr_reset(CPUARMState *env, const ARMCPRegInfo *ri) 1048 { 1049 /* Call cpacr_write() so that we reset with the correct RAO bits set 1050 * for our CPU features. 1051 */ 1052 cpacr_write(env, ri, 0); 1053 } 1054 1055 static CPAccessResult cpacr_access(CPUARMState *env, const ARMCPRegInfo *ri, 1056 bool isread) 1057 { 1058 if (arm_feature(env, ARM_FEATURE_V8)) { 1059 /* Check if CPACR accesses are to be trapped to EL2 */ 1060 if (arm_current_el(env) == 1 && arm_is_el2_enabled(env) && 1061 (env->cp15.cptr_el[2] & CPTR_TCPAC)) { 1062 return CP_ACCESS_TRAP_EL2; 1063 /* Check if CPACR accesses are to be trapped to EL3 */ 1064 } else if (arm_current_el(env) < 3 && 1065 (env->cp15.cptr_el[3] & CPTR_TCPAC)) { 1066 return CP_ACCESS_TRAP_EL3; 1067 } 1068 } 1069 1070 return CP_ACCESS_OK; 1071 } 1072 1073 static CPAccessResult cptr_access(CPUARMState *env, const ARMCPRegInfo *ri, 1074 bool isread) 1075 { 1076 /* Check if CPTR accesses are set to trap to EL3 */ 1077 if (arm_current_el(env) == 2 && (env->cp15.cptr_el[3] & CPTR_TCPAC)) { 1078 return CP_ACCESS_TRAP_EL3; 1079 } 1080 1081 return CP_ACCESS_OK; 1082 } 1083 1084 static const ARMCPRegInfo v6_cp_reginfo[] = { 1085 /* prefetch by MVA in v6, NOP in v7 */ 1086 { .name = "MVA_prefetch", 1087 .cp = 15, .crn = 7, .crm = 13, .opc1 = 0, .opc2 = 1, 1088 .access = PL1_W, .type = ARM_CP_NOP }, 1089 /* We need to break the TB after ISB to execute self-modifying code 1090 * correctly and also to take any pending interrupts immediately. 1091 * So use arm_cp_write_ignore() function instead of ARM_CP_NOP flag. 1092 */ 1093 { .name = "ISB", .cp = 15, .crn = 7, .crm = 5, .opc1 = 0, .opc2 = 4, 1094 .access = PL0_W, .type = ARM_CP_NO_RAW, .writefn = arm_cp_write_ignore }, 1095 { .name = "DSB", .cp = 15, .crn = 7, .crm = 10, .opc1 = 0, .opc2 = 4, 1096 .access = PL0_W, .type = ARM_CP_NOP }, 1097 { .name = "DMB", .cp = 15, .crn = 7, .crm = 10, .opc1 = 0, .opc2 = 5, 1098 .access = PL0_W, .type = ARM_CP_NOP }, 1099 { .name = "IFAR", .cp = 15, .crn = 6, .crm = 0, .opc1 = 0, .opc2 = 2, 1100 .access = PL1_RW, .accessfn = access_tvm_trvm, 1101 .bank_fieldoffsets = { offsetof(CPUARMState, cp15.ifar_s), 1102 offsetof(CPUARMState, cp15.ifar_ns) }, 1103 .resetvalue = 0, }, 1104 /* Watchpoint Fault Address Register : should actually only be present 1105 * for 1136, 1176, 11MPCore. 1106 */ 1107 { .name = "WFAR", .cp = 15, .crn = 6, .crm = 0, .opc1 = 0, .opc2 = 1, 1108 .access = PL1_RW, .type = ARM_CP_CONST, .resetvalue = 0, }, 1109 { .name = "CPACR", .state = ARM_CP_STATE_BOTH, .opc0 = 3, 1110 .crn = 1, .crm = 0, .opc1 = 0, .opc2 = 2, .accessfn = cpacr_access, 1111 .access = PL1_RW, .fieldoffset = offsetof(CPUARMState, cp15.cpacr_el1), 1112 .resetfn = cpacr_reset, .writefn = cpacr_write, .readfn = cpacr_read }, 1113 REGINFO_SENTINEL 1114 }; 1115 1116 /* Definitions for the PMU registers */ 1117 #define PMCRN_MASK 0xf800 1118 #define PMCRN_SHIFT 11 1119 #define PMCRLC 0x40 1120 #define PMCRDP 0x20 1121 #define PMCRX 0x10 1122 #define PMCRD 0x8 1123 #define PMCRC 0x4 1124 #define PMCRP 0x2 1125 #define PMCRE 0x1 1126 /* 1127 * Mask of PMCR bits writeable by guest (not including WO bits like C, P, 1128 * which can be written as 1 to trigger behaviour but which stay RAZ). 1129 */ 1130 #define PMCR_WRITEABLE_MASK (PMCRLC | PMCRDP | PMCRX | PMCRD | PMCRE) 1131 1132 #define PMXEVTYPER_P 0x80000000 1133 #define PMXEVTYPER_U 0x40000000 1134 #define PMXEVTYPER_NSK 0x20000000 1135 #define PMXEVTYPER_NSU 0x10000000 1136 #define PMXEVTYPER_NSH 0x08000000 1137 #define PMXEVTYPER_M 0x04000000 1138 #define PMXEVTYPER_MT 0x02000000 1139 #define PMXEVTYPER_EVTCOUNT 0x0000ffff 1140 #define PMXEVTYPER_MASK (PMXEVTYPER_P | PMXEVTYPER_U | PMXEVTYPER_NSK | \ 1141 PMXEVTYPER_NSU | PMXEVTYPER_NSH | \ 1142 PMXEVTYPER_M | PMXEVTYPER_MT | \ 1143 PMXEVTYPER_EVTCOUNT) 1144 1145 #define PMCCFILTR 0xf8000000 1146 #define PMCCFILTR_M PMXEVTYPER_M 1147 #define PMCCFILTR_EL0 (PMCCFILTR | PMCCFILTR_M) 1148 1149 static inline uint32_t pmu_num_counters(CPUARMState *env) 1150 { 1151 return (env->cp15.c9_pmcr & PMCRN_MASK) >> PMCRN_SHIFT; 1152 } 1153 1154 /* Bits allowed to be set/cleared for PMCNTEN* and PMINTEN* */ 1155 static inline uint64_t pmu_counter_mask(CPUARMState *env) 1156 { 1157 return (1 << 31) | ((1 << pmu_num_counters(env)) - 1); 1158 } 1159 1160 typedef struct pm_event { 1161 uint16_t number; /* PMEVTYPER.evtCount is 16 bits wide */ 1162 /* If the event is supported on this CPU (used to generate PMCEID[01]) */ 1163 bool (*supported)(CPUARMState *); 1164 /* 1165 * Retrieve the current count of the underlying event. The programmed 1166 * counters hold a difference from the return value from this function 1167 */ 1168 uint64_t (*get_count)(CPUARMState *); 1169 /* 1170 * Return how many nanoseconds it will take (at a minimum) for count events 1171 * to occur. A negative value indicates the counter will never overflow, or 1172 * that the counter has otherwise arranged for the overflow bit to be set 1173 * and the PMU interrupt to be raised on overflow. 1174 */ 1175 int64_t (*ns_per_count)(uint64_t); 1176 } pm_event; 1177 1178 static bool event_always_supported(CPUARMState *env) 1179 { 1180 return true; 1181 } 1182 1183 static uint64_t swinc_get_count(CPUARMState *env) 1184 { 1185 /* 1186 * SW_INCR events are written directly to the pmevcntr's by writes to 1187 * PMSWINC, so there is no underlying count maintained by the PMU itself 1188 */ 1189 return 0; 1190 } 1191 1192 static int64_t swinc_ns_per(uint64_t ignored) 1193 { 1194 return -1; 1195 } 1196 1197 /* 1198 * Return the underlying cycle count for the PMU cycle counters. If we're in 1199 * usermode, simply return 0. 1200 */ 1201 static uint64_t cycles_get_count(CPUARMState *env) 1202 { 1203 #ifndef CONFIG_USER_ONLY 1204 return muldiv64(qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL), 1205 ARM_CPU_FREQ, NANOSECONDS_PER_SECOND); 1206 #else 1207 return cpu_get_host_ticks(); 1208 #endif 1209 } 1210 1211 #ifndef CONFIG_USER_ONLY 1212 static int64_t cycles_ns_per(uint64_t cycles) 1213 { 1214 return (ARM_CPU_FREQ / NANOSECONDS_PER_SECOND) * cycles; 1215 } 1216 1217 static bool instructions_supported(CPUARMState *env) 1218 { 1219 return icount_enabled() == 1; /* Precise instruction counting */ 1220 } 1221 1222 static uint64_t instructions_get_count(CPUARMState *env) 1223 { 1224 return (uint64_t)icount_get_raw(); 1225 } 1226 1227 static int64_t instructions_ns_per(uint64_t icount) 1228 { 1229 return icount_to_ns((int64_t)icount); 1230 } 1231 #endif 1232 1233 static bool pmu_8_1_events_supported(CPUARMState *env) 1234 { 1235 /* For events which are supported in any v8.1 PMU */ 1236 return cpu_isar_feature(any_pmu_8_1, env_archcpu(env)); 1237 } 1238 1239 static bool pmu_8_4_events_supported(CPUARMState *env) 1240 { 1241 /* For events which are supported in any v8.1 PMU */ 1242 return cpu_isar_feature(any_pmu_8_4, env_archcpu(env)); 1243 } 1244 1245 static uint64_t zero_event_get_count(CPUARMState *env) 1246 { 1247 /* For events which on QEMU never fire, so their count is always zero */ 1248 return 0; 1249 } 1250 1251 static int64_t zero_event_ns_per(uint64_t cycles) 1252 { 1253 /* An event which never fires can never overflow */ 1254 return -1; 1255 } 1256 1257 static const pm_event pm_events[] = { 1258 { .number = 0x000, /* SW_INCR */ 1259 .supported = event_always_supported, 1260 .get_count = swinc_get_count, 1261 .ns_per_count = swinc_ns_per, 1262 }, 1263 #ifndef CONFIG_USER_ONLY 1264 { .number = 0x008, /* INST_RETIRED, Instruction architecturally executed */ 1265 .supported = instructions_supported, 1266 .get_count = instructions_get_count, 1267 .ns_per_count = instructions_ns_per, 1268 }, 1269 { .number = 0x011, /* CPU_CYCLES, Cycle */ 1270 .supported = event_always_supported, 1271 .get_count = cycles_get_count, 1272 .ns_per_count = cycles_ns_per, 1273 }, 1274 #endif 1275 { .number = 0x023, /* STALL_FRONTEND */ 1276 .supported = pmu_8_1_events_supported, 1277 .get_count = zero_event_get_count, 1278 .ns_per_count = zero_event_ns_per, 1279 }, 1280 { .number = 0x024, /* STALL_BACKEND */ 1281 .supported = pmu_8_1_events_supported, 1282 .get_count = zero_event_get_count, 1283 .ns_per_count = zero_event_ns_per, 1284 }, 1285 { .number = 0x03c, /* STALL */ 1286 .supported = pmu_8_4_events_supported, 1287 .get_count = zero_event_get_count, 1288 .ns_per_count = zero_event_ns_per, 1289 }, 1290 }; 1291 1292 /* 1293 * Note: Before increasing MAX_EVENT_ID beyond 0x3f into the 0x40xx range of 1294 * events (i.e. the statistical profiling extension), this implementation 1295 * should first be updated to something sparse instead of the current 1296 * supported_event_map[] array. 1297 */ 1298 #define MAX_EVENT_ID 0x3c 1299 #define UNSUPPORTED_EVENT UINT16_MAX 1300 static uint16_t supported_event_map[MAX_EVENT_ID + 1]; 1301 1302 /* 1303 * Called upon CPU initialization to initialize PMCEID[01]_EL0 and build a map 1304 * of ARM event numbers to indices in our pm_events array. 1305 * 1306 * Note: Events in the 0x40XX range are not currently supported. 1307 */ 1308 void pmu_init(ARMCPU *cpu) 1309 { 1310 unsigned int i; 1311 1312 /* 1313 * Empty supported_event_map and cpu->pmceid[01] before adding supported 1314 * events to them 1315 */ 1316 for (i = 0; i < ARRAY_SIZE(supported_event_map); i++) { 1317 supported_event_map[i] = UNSUPPORTED_EVENT; 1318 } 1319 cpu->pmceid0 = 0; 1320 cpu->pmceid1 = 0; 1321 1322 for (i = 0; i < ARRAY_SIZE(pm_events); i++) { 1323 const pm_event *cnt = &pm_events[i]; 1324 assert(cnt->number <= MAX_EVENT_ID); 1325 /* We do not currently support events in the 0x40xx range */ 1326 assert(cnt->number <= 0x3f); 1327 1328 if (cnt->supported(&cpu->env)) { 1329 supported_event_map[cnt->number] = i; 1330 uint64_t event_mask = 1ULL << (cnt->number & 0x1f); 1331 if (cnt->number & 0x20) { 1332 cpu->pmceid1 |= event_mask; 1333 } else { 1334 cpu->pmceid0 |= event_mask; 1335 } 1336 } 1337 } 1338 } 1339 1340 /* 1341 * Check at runtime whether a PMU event is supported for the current machine 1342 */ 1343 static bool event_supported(uint16_t number) 1344 { 1345 if (number > MAX_EVENT_ID) { 1346 return false; 1347 } 1348 return supported_event_map[number] != UNSUPPORTED_EVENT; 1349 } 1350 1351 static CPAccessResult pmreg_access(CPUARMState *env, const ARMCPRegInfo *ri, 1352 bool isread) 1353 { 1354 /* Performance monitor registers user accessibility is controlled 1355 * by PMUSERENR. MDCR_EL2.TPM and MDCR_EL3.TPM allow configurable 1356 * trapping to EL2 or EL3 for other accesses. 1357 */ 1358 int el = arm_current_el(env); 1359 uint64_t mdcr_el2 = arm_mdcr_el2_eff(env); 1360 1361 if (el == 0 && !(env->cp15.c9_pmuserenr & 1)) { 1362 return CP_ACCESS_TRAP; 1363 } 1364 if (el < 2 && (mdcr_el2 & MDCR_TPM)) { 1365 return CP_ACCESS_TRAP_EL2; 1366 } 1367 if (el < 3 && (env->cp15.mdcr_el3 & MDCR_TPM)) { 1368 return CP_ACCESS_TRAP_EL3; 1369 } 1370 1371 return CP_ACCESS_OK; 1372 } 1373 1374 static CPAccessResult pmreg_access_xevcntr(CPUARMState *env, 1375 const ARMCPRegInfo *ri, 1376 bool isread) 1377 { 1378 /* ER: event counter read trap control */ 1379 if (arm_feature(env, ARM_FEATURE_V8) 1380 && arm_current_el(env) == 0 1381 && (env->cp15.c9_pmuserenr & (1 << 3)) != 0 1382 && isread) { 1383 return CP_ACCESS_OK; 1384 } 1385 1386 return pmreg_access(env, ri, isread); 1387 } 1388 1389 static CPAccessResult pmreg_access_swinc(CPUARMState *env, 1390 const ARMCPRegInfo *ri, 1391 bool isread) 1392 { 1393 /* SW: software increment write trap control */ 1394 if (arm_feature(env, ARM_FEATURE_V8) 1395 && arm_current_el(env) == 0 1396 && (env->cp15.c9_pmuserenr & (1 << 1)) != 0 1397 && !isread) { 1398 return CP_ACCESS_OK; 1399 } 1400 1401 return pmreg_access(env, ri, isread); 1402 } 1403 1404 static CPAccessResult pmreg_access_selr(CPUARMState *env, 1405 const ARMCPRegInfo *ri, 1406 bool isread) 1407 { 1408 /* ER: event counter read trap control */ 1409 if (arm_feature(env, ARM_FEATURE_V8) 1410 && arm_current_el(env) == 0 1411 && (env->cp15.c9_pmuserenr & (1 << 3)) != 0) { 1412 return CP_ACCESS_OK; 1413 } 1414 1415 return pmreg_access(env, ri, isread); 1416 } 1417 1418 static CPAccessResult pmreg_access_ccntr(CPUARMState *env, 1419 const ARMCPRegInfo *ri, 1420 bool isread) 1421 { 1422 /* CR: cycle counter read trap control */ 1423 if (arm_feature(env, ARM_FEATURE_V8) 1424 && arm_current_el(env) == 0 1425 && (env->cp15.c9_pmuserenr & (1 << 2)) != 0 1426 && isread) { 1427 return CP_ACCESS_OK; 1428 } 1429 1430 return pmreg_access(env, ri, isread); 1431 } 1432 1433 /* Returns true if the counter (pass 31 for PMCCNTR) should count events using 1434 * the current EL, security state, and register configuration. 1435 */ 1436 static bool pmu_counter_enabled(CPUARMState *env, uint8_t counter) 1437 { 1438 uint64_t filter; 1439 bool e, p, u, nsk, nsu, nsh, m; 1440 bool enabled, prohibited, filtered; 1441 bool secure = arm_is_secure(env); 1442 int el = arm_current_el(env); 1443 uint64_t mdcr_el2 = arm_mdcr_el2_eff(env); 1444 uint8_t hpmn = mdcr_el2 & MDCR_HPMN; 1445 1446 if (!arm_feature(env, ARM_FEATURE_PMU)) { 1447 return false; 1448 } 1449 1450 if (!arm_feature(env, ARM_FEATURE_EL2) || 1451 (counter < hpmn || counter == 31)) { 1452 e = env->cp15.c9_pmcr & PMCRE; 1453 } else { 1454 e = mdcr_el2 & MDCR_HPME; 1455 } 1456 enabled = e && (env->cp15.c9_pmcnten & (1 << counter)); 1457 1458 if (!secure) { 1459 if (el == 2 && (counter < hpmn || counter == 31)) { 1460 prohibited = mdcr_el2 & MDCR_HPMD; 1461 } else { 1462 prohibited = false; 1463 } 1464 } else { 1465 prohibited = arm_feature(env, ARM_FEATURE_EL3) && 1466 !(env->cp15.mdcr_el3 & MDCR_SPME); 1467 } 1468 1469 if (prohibited && counter == 31) { 1470 prohibited = env->cp15.c9_pmcr & PMCRDP; 1471 } 1472 1473 if (counter == 31) { 1474 filter = env->cp15.pmccfiltr_el0; 1475 } else { 1476 filter = env->cp15.c14_pmevtyper[counter]; 1477 } 1478 1479 p = filter & PMXEVTYPER_P; 1480 u = filter & PMXEVTYPER_U; 1481 nsk = arm_feature(env, ARM_FEATURE_EL3) && (filter & PMXEVTYPER_NSK); 1482 nsu = arm_feature(env, ARM_FEATURE_EL3) && (filter & PMXEVTYPER_NSU); 1483 nsh = arm_feature(env, ARM_FEATURE_EL2) && (filter & PMXEVTYPER_NSH); 1484 m = arm_el_is_aa64(env, 1) && 1485 arm_feature(env, ARM_FEATURE_EL3) && (filter & PMXEVTYPER_M); 1486 1487 if (el == 0) { 1488 filtered = secure ? u : u != nsu; 1489 } else if (el == 1) { 1490 filtered = secure ? p : p != nsk; 1491 } else if (el == 2) { 1492 filtered = !nsh; 1493 } else { /* EL3 */ 1494 filtered = m != p; 1495 } 1496 1497 if (counter != 31) { 1498 /* 1499 * If not checking PMCCNTR, ensure the counter is setup to an event we 1500 * support 1501 */ 1502 uint16_t event = filter & PMXEVTYPER_EVTCOUNT; 1503 if (!event_supported(event)) { 1504 return false; 1505 } 1506 } 1507 1508 return enabled && !prohibited && !filtered; 1509 } 1510 1511 static void pmu_update_irq(CPUARMState *env) 1512 { 1513 ARMCPU *cpu = env_archcpu(env); 1514 qemu_set_irq(cpu->pmu_interrupt, (env->cp15.c9_pmcr & PMCRE) && 1515 (env->cp15.c9_pminten & env->cp15.c9_pmovsr)); 1516 } 1517 1518 /* 1519 * Ensure c15_ccnt is the guest-visible count so that operations such as 1520 * enabling/disabling the counter or filtering, modifying the count itself, 1521 * etc. can be done logically. This is essentially a no-op if the counter is 1522 * not enabled at the time of the call. 1523 */ 1524 static void pmccntr_op_start(CPUARMState *env) 1525 { 1526 uint64_t cycles = cycles_get_count(env); 1527 1528 if (pmu_counter_enabled(env, 31)) { 1529 uint64_t eff_cycles = cycles; 1530 if (env->cp15.c9_pmcr & PMCRD) { 1531 /* Increment once every 64 processor clock cycles */ 1532 eff_cycles /= 64; 1533 } 1534 1535 uint64_t new_pmccntr = eff_cycles - env->cp15.c15_ccnt_delta; 1536 1537 uint64_t overflow_mask = env->cp15.c9_pmcr & PMCRLC ? \ 1538 1ull << 63 : 1ull << 31; 1539 if (env->cp15.c15_ccnt & ~new_pmccntr & overflow_mask) { 1540 env->cp15.c9_pmovsr |= (1 << 31); 1541 pmu_update_irq(env); 1542 } 1543 1544 env->cp15.c15_ccnt = new_pmccntr; 1545 } 1546 env->cp15.c15_ccnt_delta = cycles; 1547 } 1548 1549 /* 1550 * If PMCCNTR is enabled, recalculate the delta between the clock and the 1551 * guest-visible count. A call to pmccntr_op_finish should follow every call to 1552 * pmccntr_op_start. 1553 */ 1554 static void pmccntr_op_finish(CPUARMState *env) 1555 { 1556 if (pmu_counter_enabled(env, 31)) { 1557 #ifndef CONFIG_USER_ONLY 1558 /* Calculate when the counter will next overflow */ 1559 uint64_t remaining_cycles = -env->cp15.c15_ccnt; 1560 if (!(env->cp15.c9_pmcr & PMCRLC)) { 1561 remaining_cycles = (uint32_t)remaining_cycles; 1562 } 1563 int64_t overflow_in = cycles_ns_per(remaining_cycles); 1564 1565 if (overflow_in > 0) { 1566 int64_t overflow_at = qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL) + 1567 overflow_in; 1568 ARMCPU *cpu = env_archcpu(env); 1569 timer_mod_anticipate_ns(cpu->pmu_timer, overflow_at); 1570 } 1571 #endif 1572 1573 uint64_t prev_cycles = env->cp15.c15_ccnt_delta; 1574 if (env->cp15.c9_pmcr & PMCRD) { 1575 /* Increment once every 64 processor clock cycles */ 1576 prev_cycles /= 64; 1577 } 1578 env->cp15.c15_ccnt_delta = prev_cycles - env->cp15.c15_ccnt; 1579 } 1580 } 1581 1582 static void pmevcntr_op_start(CPUARMState *env, uint8_t counter) 1583 { 1584 1585 uint16_t event = env->cp15.c14_pmevtyper[counter] & PMXEVTYPER_EVTCOUNT; 1586 uint64_t count = 0; 1587 if (event_supported(event)) { 1588 uint16_t event_idx = supported_event_map[event]; 1589 count = pm_events[event_idx].get_count(env); 1590 } 1591 1592 if (pmu_counter_enabled(env, counter)) { 1593 uint32_t new_pmevcntr = count - env->cp15.c14_pmevcntr_delta[counter]; 1594 1595 if (env->cp15.c14_pmevcntr[counter] & ~new_pmevcntr & INT32_MIN) { 1596 env->cp15.c9_pmovsr |= (1 << counter); 1597 pmu_update_irq(env); 1598 } 1599 env->cp15.c14_pmevcntr[counter] = new_pmevcntr; 1600 } 1601 env->cp15.c14_pmevcntr_delta[counter] = count; 1602 } 1603 1604 static void pmevcntr_op_finish(CPUARMState *env, uint8_t counter) 1605 { 1606 if (pmu_counter_enabled(env, counter)) { 1607 #ifndef CONFIG_USER_ONLY 1608 uint16_t event = env->cp15.c14_pmevtyper[counter] & PMXEVTYPER_EVTCOUNT; 1609 uint16_t event_idx = supported_event_map[event]; 1610 uint64_t delta = UINT32_MAX - 1611 (uint32_t)env->cp15.c14_pmevcntr[counter] + 1; 1612 int64_t overflow_in = pm_events[event_idx].ns_per_count(delta); 1613 1614 if (overflow_in > 0) { 1615 int64_t overflow_at = qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL) + 1616 overflow_in; 1617 ARMCPU *cpu = env_archcpu(env); 1618 timer_mod_anticipate_ns(cpu->pmu_timer, overflow_at); 1619 } 1620 #endif 1621 1622 env->cp15.c14_pmevcntr_delta[counter] -= 1623 env->cp15.c14_pmevcntr[counter]; 1624 } 1625 } 1626 1627 void pmu_op_start(CPUARMState *env) 1628 { 1629 unsigned int i; 1630 pmccntr_op_start(env); 1631 for (i = 0; i < pmu_num_counters(env); i++) { 1632 pmevcntr_op_start(env, i); 1633 } 1634 } 1635 1636 void pmu_op_finish(CPUARMState *env) 1637 { 1638 unsigned int i; 1639 pmccntr_op_finish(env); 1640 for (i = 0; i < pmu_num_counters(env); i++) { 1641 pmevcntr_op_finish(env, i); 1642 } 1643 } 1644 1645 void pmu_pre_el_change(ARMCPU *cpu, void *ignored) 1646 { 1647 pmu_op_start(&cpu->env); 1648 } 1649 1650 void pmu_post_el_change(ARMCPU *cpu, void *ignored) 1651 { 1652 pmu_op_finish(&cpu->env); 1653 } 1654 1655 void arm_pmu_timer_cb(void *opaque) 1656 { 1657 ARMCPU *cpu = opaque; 1658 1659 /* 1660 * Update all the counter values based on the current underlying counts, 1661 * triggering interrupts to be raised, if necessary. pmu_op_finish() also 1662 * has the effect of setting the cpu->pmu_timer to the next earliest time a 1663 * counter may expire. 1664 */ 1665 pmu_op_start(&cpu->env); 1666 pmu_op_finish(&cpu->env); 1667 } 1668 1669 static void pmcr_write(CPUARMState *env, const ARMCPRegInfo *ri, 1670 uint64_t value) 1671 { 1672 pmu_op_start(env); 1673 1674 if (value & PMCRC) { 1675 /* The counter has been reset */ 1676 env->cp15.c15_ccnt = 0; 1677 } 1678 1679 if (value & PMCRP) { 1680 unsigned int i; 1681 for (i = 0; i < pmu_num_counters(env); i++) { 1682 env->cp15.c14_pmevcntr[i] = 0; 1683 } 1684 } 1685 1686 env->cp15.c9_pmcr &= ~PMCR_WRITEABLE_MASK; 1687 env->cp15.c9_pmcr |= (value & PMCR_WRITEABLE_MASK); 1688 1689 pmu_op_finish(env); 1690 } 1691 1692 static void pmswinc_write(CPUARMState *env, const ARMCPRegInfo *ri, 1693 uint64_t value) 1694 { 1695 unsigned int i; 1696 for (i = 0; i < pmu_num_counters(env); i++) { 1697 /* Increment a counter's count iff: */ 1698 if ((value & (1 << i)) && /* counter's bit is set */ 1699 /* counter is enabled and not filtered */ 1700 pmu_counter_enabled(env, i) && 1701 /* counter is SW_INCR */ 1702 (env->cp15.c14_pmevtyper[i] & PMXEVTYPER_EVTCOUNT) == 0x0) { 1703 pmevcntr_op_start(env, i); 1704 1705 /* 1706 * Detect if this write causes an overflow since we can't predict 1707 * PMSWINC overflows like we can for other events 1708 */ 1709 uint32_t new_pmswinc = env->cp15.c14_pmevcntr[i] + 1; 1710 1711 if (env->cp15.c14_pmevcntr[i] & ~new_pmswinc & INT32_MIN) { 1712 env->cp15.c9_pmovsr |= (1 << i); 1713 pmu_update_irq(env); 1714 } 1715 1716 env->cp15.c14_pmevcntr[i] = new_pmswinc; 1717 1718 pmevcntr_op_finish(env, i); 1719 } 1720 } 1721 } 1722 1723 static uint64_t pmccntr_read(CPUARMState *env, const ARMCPRegInfo *ri) 1724 { 1725 uint64_t ret; 1726 pmccntr_op_start(env); 1727 ret = env->cp15.c15_ccnt; 1728 pmccntr_op_finish(env); 1729 return ret; 1730 } 1731 1732 static void pmselr_write(CPUARMState *env, const ARMCPRegInfo *ri, 1733 uint64_t value) 1734 { 1735 /* The value of PMSELR.SEL affects the behavior of PMXEVTYPER and 1736 * PMXEVCNTR. We allow [0..31] to be written to PMSELR here; in the 1737 * meanwhile, we check PMSELR.SEL when PMXEVTYPER and PMXEVCNTR are 1738 * accessed. 1739 */ 1740 env->cp15.c9_pmselr = value & 0x1f; 1741 } 1742 1743 static void pmccntr_write(CPUARMState *env, const ARMCPRegInfo *ri, 1744 uint64_t value) 1745 { 1746 pmccntr_op_start(env); 1747 env->cp15.c15_ccnt = value; 1748 pmccntr_op_finish(env); 1749 } 1750 1751 static void pmccntr_write32(CPUARMState *env, const ARMCPRegInfo *ri, 1752 uint64_t value) 1753 { 1754 uint64_t cur_val = pmccntr_read(env, NULL); 1755 1756 pmccntr_write(env, ri, deposit64(cur_val, 0, 32, value)); 1757 } 1758 1759 static void pmccfiltr_write(CPUARMState *env, const ARMCPRegInfo *ri, 1760 uint64_t value) 1761 { 1762 pmccntr_op_start(env); 1763 env->cp15.pmccfiltr_el0 = value & PMCCFILTR_EL0; 1764 pmccntr_op_finish(env); 1765 } 1766 1767 static void pmccfiltr_write_a32(CPUARMState *env, const ARMCPRegInfo *ri, 1768 uint64_t value) 1769 { 1770 pmccntr_op_start(env); 1771 /* M is not accessible from AArch32 */ 1772 env->cp15.pmccfiltr_el0 = (env->cp15.pmccfiltr_el0 & PMCCFILTR_M) | 1773 (value & PMCCFILTR); 1774 pmccntr_op_finish(env); 1775 } 1776 1777 static uint64_t pmccfiltr_read_a32(CPUARMState *env, const ARMCPRegInfo *ri) 1778 { 1779 /* M is not visible in AArch32 */ 1780 return env->cp15.pmccfiltr_el0 & PMCCFILTR; 1781 } 1782 1783 static void pmcntenset_write(CPUARMState *env, const ARMCPRegInfo *ri, 1784 uint64_t value) 1785 { 1786 value &= pmu_counter_mask(env); 1787 env->cp15.c9_pmcnten |= value; 1788 } 1789 1790 static void pmcntenclr_write(CPUARMState *env, const ARMCPRegInfo *ri, 1791 uint64_t value) 1792 { 1793 value &= pmu_counter_mask(env); 1794 env->cp15.c9_pmcnten &= ~value; 1795 } 1796 1797 static void pmovsr_write(CPUARMState *env, const ARMCPRegInfo *ri, 1798 uint64_t value) 1799 { 1800 value &= pmu_counter_mask(env); 1801 env->cp15.c9_pmovsr &= ~value; 1802 pmu_update_irq(env); 1803 } 1804 1805 static void pmovsset_write(CPUARMState *env, const ARMCPRegInfo *ri, 1806 uint64_t value) 1807 { 1808 value &= pmu_counter_mask(env); 1809 env->cp15.c9_pmovsr |= value; 1810 pmu_update_irq(env); 1811 } 1812 1813 static void pmevtyper_write(CPUARMState *env, const ARMCPRegInfo *ri, 1814 uint64_t value, const uint8_t counter) 1815 { 1816 if (counter == 31) { 1817 pmccfiltr_write(env, ri, value); 1818 } else if (counter < pmu_num_counters(env)) { 1819 pmevcntr_op_start(env, counter); 1820 1821 /* 1822 * If this counter's event type is changing, store the current 1823 * underlying count for the new type in c14_pmevcntr_delta[counter] so 1824 * pmevcntr_op_finish has the correct baseline when it converts back to 1825 * a delta. 1826 */ 1827 uint16_t old_event = env->cp15.c14_pmevtyper[counter] & 1828 PMXEVTYPER_EVTCOUNT; 1829 uint16_t new_event = value & PMXEVTYPER_EVTCOUNT; 1830 if (old_event != new_event) { 1831 uint64_t count = 0; 1832 if (event_supported(new_event)) { 1833 uint16_t event_idx = supported_event_map[new_event]; 1834 count = pm_events[event_idx].get_count(env); 1835 } 1836 env->cp15.c14_pmevcntr_delta[counter] = count; 1837 } 1838 1839 env->cp15.c14_pmevtyper[counter] = value & PMXEVTYPER_MASK; 1840 pmevcntr_op_finish(env, counter); 1841 } 1842 /* Attempts to access PMXEVTYPER are CONSTRAINED UNPREDICTABLE when 1843 * PMSELR value is equal to or greater than the number of implemented 1844 * counters, but not equal to 0x1f. We opt to behave as a RAZ/WI. 1845 */ 1846 } 1847 1848 static uint64_t pmevtyper_read(CPUARMState *env, const ARMCPRegInfo *ri, 1849 const uint8_t counter) 1850 { 1851 if (counter == 31) { 1852 return env->cp15.pmccfiltr_el0; 1853 } else if (counter < pmu_num_counters(env)) { 1854 return env->cp15.c14_pmevtyper[counter]; 1855 } else { 1856 /* 1857 * We opt to behave as a RAZ/WI when attempts to access PMXEVTYPER 1858 * are CONSTRAINED UNPREDICTABLE. See comments in pmevtyper_write(). 1859 */ 1860 return 0; 1861 } 1862 } 1863 1864 static void pmevtyper_writefn(CPUARMState *env, const ARMCPRegInfo *ri, 1865 uint64_t value) 1866 { 1867 uint8_t counter = ((ri->crm & 3) << 3) | (ri->opc2 & 7); 1868 pmevtyper_write(env, ri, value, counter); 1869 } 1870 1871 static void pmevtyper_rawwrite(CPUARMState *env, const ARMCPRegInfo *ri, 1872 uint64_t value) 1873 { 1874 uint8_t counter = ((ri->crm & 3) << 3) | (ri->opc2 & 7); 1875 env->cp15.c14_pmevtyper[counter] = value; 1876 1877 /* 1878 * pmevtyper_rawwrite is called between a pair of pmu_op_start and 1879 * pmu_op_finish calls when loading saved state for a migration. Because 1880 * we're potentially updating the type of event here, the value written to 1881 * c14_pmevcntr_delta by the preceeding pmu_op_start call may be for a 1882 * different counter type. Therefore, we need to set this value to the 1883 * current count for the counter type we're writing so that pmu_op_finish 1884 * has the correct count for its calculation. 1885 */ 1886 uint16_t event = value & PMXEVTYPER_EVTCOUNT; 1887 if (event_supported(event)) { 1888 uint16_t event_idx = supported_event_map[event]; 1889 env->cp15.c14_pmevcntr_delta[counter] = 1890 pm_events[event_idx].get_count(env); 1891 } 1892 } 1893 1894 static uint64_t pmevtyper_readfn(CPUARMState *env, const ARMCPRegInfo *ri) 1895 { 1896 uint8_t counter = ((ri->crm & 3) << 3) | (ri->opc2 & 7); 1897 return pmevtyper_read(env, ri, counter); 1898 } 1899 1900 static void pmxevtyper_write(CPUARMState *env, const ARMCPRegInfo *ri, 1901 uint64_t value) 1902 { 1903 pmevtyper_write(env, ri, value, env->cp15.c9_pmselr & 31); 1904 } 1905 1906 static uint64_t pmxevtyper_read(CPUARMState *env, const ARMCPRegInfo *ri) 1907 { 1908 return pmevtyper_read(env, ri, env->cp15.c9_pmselr & 31); 1909 } 1910 1911 static void pmevcntr_write(CPUARMState *env, const ARMCPRegInfo *ri, 1912 uint64_t value, uint8_t counter) 1913 { 1914 if (counter < pmu_num_counters(env)) { 1915 pmevcntr_op_start(env, counter); 1916 env->cp15.c14_pmevcntr[counter] = value; 1917 pmevcntr_op_finish(env, counter); 1918 } 1919 /* 1920 * We opt to behave as a RAZ/WI when attempts to access PM[X]EVCNTR 1921 * are CONSTRAINED UNPREDICTABLE. 1922 */ 1923 } 1924 1925 static uint64_t pmevcntr_read(CPUARMState *env, const ARMCPRegInfo *ri, 1926 uint8_t counter) 1927 { 1928 if (counter < pmu_num_counters(env)) { 1929 uint64_t ret; 1930 pmevcntr_op_start(env, counter); 1931 ret = env->cp15.c14_pmevcntr[counter]; 1932 pmevcntr_op_finish(env, counter); 1933 return ret; 1934 } else { 1935 /* We opt to behave as a RAZ/WI when attempts to access PM[X]EVCNTR 1936 * are CONSTRAINED UNPREDICTABLE. */ 1937 return 0; 1938 } 1939 } 1940 1941 static void pmevcntr_writefn(CPUARMState *env, const ARMCPRegInfo *ri, 1942 uint64_t value) 1943 { 1944 uint8_t counter = ((ri->crm & 3) << 3) | (ri->opc2 & 7); 1945 pmevcntr_write(env, ri, value, counter); 1946 } 1947 1948 static uint64_t pmevcntr_readfn(CPUARMState *env, const ARMCPRegInfo *ri) 1949 { 1950 uint8_t counter = ((ri->crm & 3) << 3) | (ri->opc2 & 7); 1951 return pmevcntr_read(env, ri, counter); 1952 } 1953 1954 static void pmevcntr_rawwrite(CPUARMState *env, const ARMCPRegInfo *ri, 1955 uint64_t value) 1956 { 1957 uint8_t counter = ((ri->crm & 3) << 3) | (ri->opc2 & 7); 1958 assert(counter < pmu_num_counters(env)); 1959 env->cp15.c14_pmevcntr[counter] = value; 1960 pmevcntr_write(env, ri, value, counter); 1961 } 1962 1963 static uint64_t pmevcntr_rawread(CPUARMState *env, const ARMCPRegInfo *ri) 1964 { 1965 uint8_t counter = ((ri->crm & 3) << 3) | (ri->opc2 & 7); 1966 assert(counter < pmu_num_counters(env)); 1967 return env->cp15.c14_pmevcntr[counter]; 1968 } 1969 1970 static void pmxevcntr_write(CPUARMState *env, const ARMCPRegInfo *ri, 1971 uint64_t value) 1972 { 1973 pmevcntr_write(env, ri, value, env->cp15.c9_pmselr & 31); 1974 } 1975 1976 static uint64_t pmxevcntr_read(CPUARMState *env, const ARMCPRegInfo *ri) 1977 { 1978 return pmevcntr_read(env, ri, env->cp15.c9_pmselr & 31); 1979 } 1980 1981 static void pmuserenr_write(CPUARMState *env, const ARMCPRegInfo *ri, 1982 uint64_t value) 1983 { 1984 if (arm_feature(env, ARM_FEATURE_V8)) { 1985 env->cp15.c9_pmuserenr = value & 0xf; 1986 } else { 1987 env->cp15.c9_pmuserenr = value & 1; 1988 } 1989 } 1990 1991 static void pmintenset_write(CPUARMState *env, const ARMCPRegInfo *ri, 1992 uint64_t value) 1993 { 1994 /* We have no event counters so only the C bit can be changed */ 1995 value &= pmu_counter_mask(env); 1996 env->cp15.c9_pminten |= value; 1997 pmu_update_irq(env); 1998 } 1999 2000 static void pmintenclr_write(CPUARMState *env, const ARMCPRegInfo *ri, 2001 uint64_t value) 2002 { 2003 value &= pmu_counter_mask(env); 2004 env->cp15.c9_pminten &= ~value; 2005 pmu_update_irq(env); 2006 } 2007 2008 static void vbar_write(CPUARMState *env, const ARMCPRegInfo *ri, 2009 uint64_t value) 2010 { 2011 /* Note that even though the AArch64 view of this register has bits 2012 * [10:0] all RES0 we can only mask the bottom 5, to comply with the 2013 * architectural requirements for bits which are RES0 only in some 2014 * contexts. (ARMv8 would permit us to do no masking at all, but ARMv7 2015 * requires the bottom five bits to be RAZ/WI because they're UNK/SBZP.) 2016 */ 2017 raw_write(env, ri, value & ~0x1FULL); 2018 } 2019 2020 static void scr_write(CPUARMState *env, const ARMCPRegInfo *ri, uint64_t value) 2021 { 2022 /* Begin with base v8.0 state. */ 2023 uint32_t valid_mask = 0x3fff; 2024 ARMCPU *cpu = env_archcpu(env); 2025 2026 if (ri->state == ARM_CP_STATE_AA64) { 2027 if (arm_feature(env, ARM_FEATURE_AARCH64) && 2028 !cpu_isar_feature(aa64_aa32_el1, cpu)) { 2029 value |= SCR_FW | SCR_AW; /* these two bits are RES1. */ 2030 } 2031 valid_mask &= ~SCR_NET; 2032 2033 if (cpu_isar_feature(aa64_lor, cpu)) { 2034 valid_mask |= SCR_TLOR; 2035 } 2036 if (cpu_isar_feature(aa64_pauth, cpu)) { 2037 valid_mask |= SCR_API | SCR_APK; 2038 } 2039 if (cpu_isar_feature(aa64_sel2, cpu)) { 2040 valid_mask |= SCR_EEL2; 2041 } 2042 if (cpu_isar_feature(aa64_mte, cpu)) { 2043 valid_mask |= SCR_ATA; 2044 } 2045 } else { 2046 valid_mask &= ~(SCR_RW | SCR_ST); 2047 } 2048 2049 if (!arm_feature(env, ARM_FEATURE_EL2)) { 2050 valid_mask &= ~SCR_HCE; 2051 2052 /* On ARMv7, SMD (or SCD as it is called in v7) is only 2053 * supported if EL2 exists. The bit is UNK/SBZP when 2054 * EL2 is unavailable. In QEMU ARMv7, we force it to always zero 2055 * when EL2 is unavailable. 2056 * On ARMv8, this bit is always available. 2057 */ 2058 if (arm_feature(env, ARM_FEATURE_V7) && 2059 !arm_feature(env, ARM_FEATURE_V8)) { 2060 valid_mask &= ~SCR_SMD; 2061 } 2062 } 2063 2064 /* Clear all-context RES0 bits. */ 2065 value &= valid_mask; 2066 raw_write(env, ri, value); 2067 } 2068 2069 static void scr_reset(CPUARMState *env, const ARMCPRegInfo *ri) 2070 { 2071 /* 2072 * scr_write will set the RES1 bits on an AArch64-only CPU. 2073 * The reset value will be 0x30 on an AArch64-only CPU and 0 otherwise. 2074 */ 2075 scr_write(env, ri, 0); 2076 } 2077 2078 static CPAccessResult access_aa64_tid2(CPUARMState *env, 2079 const ARMCPRegInfo *ri, 2080 bool isread) 2081 { 2082 if (arm_current_el(env) == 1 && (arm_hcr_el2_eff(env) & HCR_TID2)) { 2083 return CP_ACCESS_TRAP_EL2; 2084 } 2085 2086 return CP_ACCESS_OK; 2087 } 2088 2089 static uint64_t ccsidr_read(CPUARMState *env, const ARMCPRegInfo *ri) 2090 { 2091 ARMCPU *cpu = env_archcpu(env); 2092 2093 /* Acquire the CSSELR index from the bank corresponding to the CCSIDR 2094 * bank 2095 */ 2096 uint32_t index = A32_BANKED_REG_GET(env, csselr, 2097 ri->secure & ARM_CP_SECSTATE_S); 2098 2099 return cpu->ccsidr[index]; 2100 } 2101 2102 static void csselr_write(CPUARMState *env, const ARMCPRegInfo *ri, 2103 uint64_t value) 2104 { 2105 raw_write(env, ri, value & 0xf); 2106 } 2107 2108 static uint64_t isr_read(CPUARMState *env, const ARMCPRegInfo *ri) 2109 { 2110 CPUState *cs = env_cpu(env); 2111 bool el1 = arm_current_el(env) == 1; 2112 uint64_t hcr_el2 = el1 ? arm_hcr_el2_eff(env) : 0; 2113 uint64_t ret = 0; 2114 2115 if (hcr_el2 & HCR_IMO) { 2116 if (cs->interrupt_request & CPU_INTERRUPT_VIRQ) { 2117 ret |= CPSR_I; 2118 } 2119 } else { 2120 if (cs->interrupt_request & CPU_INTERRUPT_HARD) { 2121 ret |= CPSR_I; 2122 } 2123 } 2124 2125 if (hcr_el2 & HCR_FMO) { 2126 if (cs->interrupt_request & CPU_INTERRUPT_VFIQ) { 2127 ret |= CPSR_F; 2128 } 2129 } else { 2130 if (cs->interrupt_request & CPU_INTERRUPT_FIQ) { 2131 ret |= CPSR_F; 2132 } 2133 } 2134 2135 /* External aborts are not possible in QEMU so A bit is always clear */ 2136 return ret; 2137 } 2138 2139 static CPAccessResult access_aa64_tid1(CPUARMState *env, const ARMCPRegInfo *ri, 2140 bool isread) 2141 { 2142 if (arm_current_el(env) == 1 && (arm_hcr_el2_eff(env) & HCR_TID1)) { 2143 return CP_ACCESS_TRAP_EL2; 2144 } 2145 2146 return CP_ACCESS_OK; 2147 } 2148 2149 static CPAccessResult access_aa32_tid1(CPUARMState *env, const ARMCPRegInfo *ri, 2150 bool isread) 2151 { 2152 if (arm_feature(env, ARM_FEATURE_V8)) { 2153 return access_aa64_tid1(env, ri, isread); 2154 } 2155 2156 return CP_ACCESS_OK; 2157 } 2158 2159 static const ARMCPRegInfo v7_cp_reginfo[] = { 2160 /* the old v6 WFI, UNPREDICTABLE in v7 but we choose to NOP */ 2161 { .name = "NOP", .cp = 15, .crn = 7, .crm = 0, .opc1 = 0, .opc2 = 4, 2162 .access = PL1_W, .type = ARM_CP_NOP }, 2163 /* Performance monitors are implementation defined in v7, 2164 * but with an ARM recommended set of registers, which we 2165 * follow. 2166 * 2167 * Performance registers fall into three categories: 2168 * (a) always UNDEF in PL0, RW in PL1 (PMINTENSET, PMINTENCLR) 2169 * (b) RO in PL0 (ie UNDEF on write), RW in PL1 (PMUSERENR) 2170 * (c) UNDEF in PL0 if PMUSERENR.EN==0, otherwise accessible (all others) 2171 * For the cases controlled by PMUSERENR we must set .access to PL0_RW 2172 * or PL0_RO as appropriate and then check PMUSERENR in the helper fn. 2173 */ 2174 { .name = "PMCNTENSET", .cp = 15, .crn = 9, .crm = 12, .opc1 = 0, .opc2 = 1, 2175 .access = PL0_RW, .type = ARM_CP_ALIAS, 2176 .fieldoffset = offsetoflow32(CPUARMState, cp15.c9_pmcnten), 2177 .writefn = pmcntenset_write, 2178 .accessfn = pmreg_access, 2179 .raw_writefn = raw_write }, 2180 { .name = "PMCNTENSET_EL0", .state = ARM_CP_STATE_AA64, 2181 .opc0 = 3, .opc1 = 3, .crn = 9, .crm = 12, .opc2 = 1, 2182 .access = PL0_RW, .accessfn = pmreg_access, 2183 .fieldoffset = offsetof(CPUARMState, cp15.c9_pmcnten), .resetvalue = 0, 2184 .writefn = pmcntenset_write, .raw_writefn = raw_write }, 2185 { .name = "PMCNTENCLR", .cp = 15, .crn = 9, .crm = 12, .opc1 = 0, .opc2 = 2, 2186 .access = PL0_RW, 2187 .fieldoffset = offsetoflow32(CPUARMState, cp15.c9_pmcnten), 2188 .accessfn = pmreg_access, 2189 .writefn = pmcntenclr_write, 2190 .type = ARM_CP_ALIAS }, 2191 { .name = "PMCNTENCLR_EL0", .state = ARM_CP_STATE_AA64, 2192 .opc0 = 3, .opc1 = 3, .crn = 9, .crm = 12, .opc2 = 2, 2193 .access = PL0_RW, .accessfn = pmreg_access, 2194 .type = ARM_CP_ALIAS, 2195 .fieldoffset = offsetof(CPUARMState, cp15.c9_pmcnten), 2196 .writefn = pmcntenclr_write }, 2197 { .name = "PMOVSR", .cp = 15, .crn = 9, .crm = 12, .opc1 = 0, .opc2 = 3, 2198 .access = PL0_RW, .type = ARM_CP_IO, 2199 .fieldoffset = offsetoflow32(CPUARMState, cp15.c9_pmovsr), 2200 .accessfn = pmreg_access, 2201 .writefn = pmovsr_write, 2202 .raw_writefn = raw_write }, 2203 { .name = "PMOVSCLR_EL0", .state = ARM_CP_STATE_AA64, 2204 .opc0 = 3, .opc1 = 3, .crn = 9, .crm = 12, .opc2 = 3, 2205 .access = PL0_RW, .accessfn = pmreg_access, 2206 .type = ARM_CP_ALIAS | ARM_CP_IO, 2207 .fieldoffset = offsetof(CPUARMState, cp15.c9_pmovsr), 2208 .writefn = pmovsr_write, 2209 .raw_writefn = raw_write }, 2210 { .name = "PMSWINC", .cp = 15, .crn = 9, .crm = 12, .opc1 = 0, .opc2 = 4, 2211 .access = PL0_W, .accessfn = pmreg_access_swinc, 2212 .type = ARM_CP_NO_RAW | ARM_CP_IO, 2213 .writefn = pmswinc_write }, 2214 { .name = "PMSWINC_EL0", .state = ARM_CP_STATE_AA64, 2215 .opc0 = 3, .opc1 = 3, .crn = 9, .crm = 12, .opc2 = 4, 2216 .access = PL0_W, .accessfn = pmreg_access_swinc, 2217 .type = ARM_CP_NO_RAW | ARM_CP_IO, 2218 .writefn = pmswinc_write }, 2219 { .name = "PMSELR", .cp = 15, .crn = 9, .crm = 12, .opc1 = 0, .opc2 = 5, 2220 .access = PL0_RW, .type = ARM_CP_ALIAS, 2221 .fieldoffset = offsetoflow32(CPUARMState, cp15.c9_pmselr), 2222 .accessfn = pmreg_access_selr, .writefn = pmselr_write, 2223 .raw_writefn = raw_write}, 2224 { .name = "PMSELR_EL0", .state = ARM_CP_STATE_AA64, 2225 .opc0 = 3, .opc1 = 3, .crn = 9, .crm = 12, .opc2 = 5, 2226 .access = PL0_RW, .accessfn = pmreg_access_selr, 2227 .fieldoffset = offsetof(CPUARMState, cp15.c9_pmselr), 2228 .writefn = pmselr_write, .raw_writefn = raw_write, }, 2229 { .name = "PMCCNTR", .cp = 15, .crn = 9, .crm = 13, .opc1 = 0, .opc2 = 0, 2230 .access = PL0_RW, .resetvalue = 0, .type = ARM_CP_ALIAS | ARM_CP_IO, 2231 .readfn = pmccntr_read, .writefn = pmccntr_write32, 2232 .accessfn = pmreg_access_ccntr }, 2233 { .name = "PMCCNTR_EL0", .state = ARM_CP_STATE_AA64, 2234 .opc0 = 3, .opc1 = 3, .crn = 9, .crm = 13, .opc2 = 0, 2235 .access = PL0_RW, .accessfn = pmreg_access_ccntr, 2236 .type = ARM_CP_IO, 2237 .fieldoffset = offsetof(CPUARMState, cp15.c15_ccnt), 2238 .readfn = pmccntr_read, .writefn = pmccntr_write, 2239 .raw_readfn = raw_read, .raw_writefn = raw_write, }, 2240 { .name = "PMCCFILTR", .cp = 15, .opc1 = 0, .crn = 14, .crm = 15, .opc2 = 7, 2241 .writefn = pmccfiltr_write_a32, .readfn = pmccfiltr_read_a32, 2242 .access = PL0_RW, .accessfn = pmreg_access, 2243 .type = ARM_CP_ALIAS | ARM_CP_IO, 2244 .resetvalue = 0, }, 2245 { .name = "PMCCFILTR_EL0", .state = ARM_CP_STATE_AA64, 2246 .opc0 = 3, .opc1 = 3, .crn = 14, .crm = 15, .opc2 = 7, 2247 .writefn = pmccfiltr_write, .raw_writefn = raw_write, 2248 .access = PL0_RW, .accessfn = pmreg_access, 2249 .type = ARM_CP_IO, 2250 .fieldoffset = offsetof(CPUARMState, cp15.pmccfiltr_el0), 2251 .resetvalue = 0, }, 2252 { .name = "PMXEVTYPER", .cp = 15, .crn = 9, .crm = 13, .opc1 = 0, .opc2 = 1, 2253 .access = PL0_RW, .type = ARM_CP_NO_RAW | ARM_CP_IO, 2254 .accessfn = pmreg_access, 2255 .writefn = pmxevtyper_write, .readfn = pmxevtyper_read }, 2256 { .name = "PMXEVTYPER_EL0", .state = ARM_CP_STATE_AA64, 2257 .opc0 = 3, .opc1 = 3, .crn = 9, .crm = 13, .opc2 = 1, 2258 .access = PL0_RW, .type = ARM_CP_NO_RAW | ARM_CP_IO, 2259 .accessfn = pmreg_access, 2260 .writefn = pmxevtyper_write, .readfn = pmxevtyper_read }, 2261 { .name = "PMXEVCNTR", .cp = 15, .crn = 9, .crm = 13, .opc1 = 0, .opc2 = 2, 2262 .access = PL0_RW, .type = ARM_CP_NO_RAW | ARM_CP_IO, 2263 .accessfn = pmreg_access_xevcntr, 2264 .writefn = pmxevcntr_write, .readfn = pmxevcntr_read }, 2265 { .name = "PMXEVCNTR_EL0", .state = ARM_CP_STATE_AA64, 2266 .opc0 = 3, .opc1 = 3, .crn = 9, .crm = 13, .opc2 = 2, 2267 .access = PL0_RW, .type = ARM_CP_NO_RAW | ARM_CP_IO, 2268 .accessfn = pmreg_access_xevcntr, 2269 .writefn = pmxevcntr_write, .readfn = pmxevcntr_read }, 2270 { .name = "PMUSERENR", .cp = 15, .crn = 9, .crm = 14, .opc1 = 0, .opc2 = 0, 2271 .access = PL0_R | PL1_RW, .accessfn = access_tpm, 2272 .fieldoffset = offsetoflow32(CPUARMState, cp15.c9_pmuserenr), 2273 .resetvalue = 0, 2274 .writefn = pmuserenr_write, .raw_writefn = raw_write }, 2275 { .name = "PMUSERENR_EL0", .state = ARM_CP_STATE_AA64, 2276 .opc0 = 3, .opc1 = 3, .crn = 9, .crm = 14, .opc2 = 0, 2277 .access = PL0_R | PL1_RW, .accessfn = access_tpm, .type = ARM_CP_ALIAS, 2278 .fieldoffset = offsetof(CPUARMState, cp15.c9_pmuserenr), 2279 .resetvalue = 0, 2280 .writefn = pmuserenr_write, .raw_writefn = raw_write }, 2281 { .name = "PMINTENSET", .cp = 15, .crn = 9, .crm = 14, .opc1 = 0, .opc2 = 1, 2282 .access = PL1_RW, .accessfn = access_tpm, 2283 .type = ARM_CP_ALIAS | ARM_CP_IO, 2284 .fieldoffset = offsetoflow32(CPUARMState, cp15.c9_pminten), 2285 .resetvalue = 0, 2286 .writefn = pmintenset_write, .raw_writefn = raw_write }, 2287 { .name = "PMINTENSET_EL1", .state = ARM_CP_STATE_AA64, 2288 .opc0 = 3, .opc1 = 0, .crn = 9, .crm = 14, .opc2 = 1, 2289 .access = PL1_RW, .accessfn = access_tpm, 2290 .type = ARM_CP_IO, 2291 .fieldoffset = offsetof(CPUARMState, cp15.c9_pminten), 2292 .writefn = pmintenset_write, .raw_writefn = raw_write, 2293 .resetvalue = 0x0 }, 2294 { .name = "PMINTENCLR", .cp = 15, .crn = 9, .crm = 14, .opc1 = 0, .opc2 = 2, 2295 .access = PL1_RW, .accessfn = access_tpm, 2296 .type = ARM_CP_ALIAS | ARM_CP_IO | ARM_CP_NO_RAW, 2297 .fieldoffset = offsetof(CPUARMState, cp15.c9_pminten), 2298 .writefn = pmintenclr_write, }, 2299 { .name = "PMINTENCLR_EL1", .state = ARM_CP_STATE_AA64, 2300 .opc0 = 3, .opc1 = 0, .crn = 9, .crm = 14, .opc2 = 2, 2301 .access = PL1_RW, .accessfn = access_tpm, 2302 .type = ARM_CP_ALIAS | ARM_CP_IO | ARM_CP_NO_RAW, 2303 .fieldoffset = offsetof(CPUARMState, cp15.c9_pminten), 2304 .writefn = pmintenclr_write }, 2305 { .name = "CCSIDR", .state = ARM_CP_STATE_BOTH, 2306 .opc0 = 3, .crn = 0, .crm = 0, .opc1 = 1, .opc2 = 0, 2307 .access = PL1_R, 2308 .accessfn = access_aa64_tid2, 2309 .readfn = ccsidr_read, .type = ARM_CP_NO_RAW }, 2310 { .name = "CSSELR", .state = ARM_CP_STATE_BOTH, 2311 .opc0 = 3, .crn = 0, .crm = 0, .opc1 = 2, .opc2 = 0, 2312 .access = PL1_RW, 2313 .accessfn = access_aa64_tid2, 2314 .writefn = csselr_write, .resetvalue = 0, 2315 .bank_fieldoffsets = { offsetof(CPUARMState, cp15.csselr_s), 2316 offsetof(CPUARMState, cp15.csselr_ns) } }, 2317 /* Auxiliary ID register: this actually has an IMPDEF value but for now 2318 * just RAZ for all cores: 2319 */ 2320 { .name = "AIDR", .state = ARM_CP_STATE_BOTH, 2321 .opc0 = 3, .opc1 = 1, .crn = 0, .crm = 0, .opc2 = 7, 2322 .access = PL1_R, .type = ARM_CP_CONST, 2323 .accessfn = access_aa64_tid1, 2324 .resetvalue = 0 }, 2325 /* Auxiliary fault status registers: these also are IMPDEF, and we 2326 * choose to RAZ/WI for all cores. 2327 */ 2328 { .name = "AFSR0_EL1", .state = ARM_CP_STATE_BOTH, 2329 .opc0 = 3, .opc1 = 0, .crn = 5, .crm = 1, .opc2 = 0, 2330 .access = PL1_RW, .accessfn = access_tvm_trvm, 2331 .type = ARM_CP_CONST, .resetvalue = 0 }, 2332 { .name = "AFSR1_EL1", .state = ARM_CP_STATE_BOTH, 2333 .opc0 = 3, .opc1 = 0, .crn = 5, .crm = 1, .opc2 = 1, 2334 .access = PL1_RW, .accessfn = access_tvm_trvm, 2335 .type = ARM_CP_CONST, .resetvalue = 0 }, 2336 /* MAIR can just read-as-written because we don't implement caches 2337 * and so don't need to care about memory attributes. 2338 */ 2339 { .name = "MAIR_EL1", .state = ARM_CP_STATE_AA64, 2340 .opc0 = 3, .opc1 = 0, .crn = 10, .crm = 2, .opc2 = 0, 2341 .access = PL1_RW, .accessfn = access_tvm_trvm, 2342 .fieldoffset = offsetof(CPUARMState, cp15.mair_el[1]), 2343 .resetvalue = 0 }, 2344 { .name = "MAIR_EL3", .state = ARM_CP_STATE_AA64, 2345 .opc0 = 3, .opc1 = 6, .crn = 10, .crm = 2, .opc2 = 0, 2346 .access = PL3_RW, .fieldoffset = offsetof(CPUARMState, cp15.mair_el[3]), 2347 .resetvalue = 0 }, 2348 /* For non-long-descriptor page tables these are PRRR and NMRR; 2349 * regardless they still act as reads-as-written for QEMU. 2350 */ 2351 /* MAIR0/1 are defined separately from their 64-bit counterpart which 2352 * allows them to assign the correct fieldoffset based on the endianness 2353 * handled in the field definitions. 2354 */ 2355 { .name = "MAIR0", .state = ARM_CP_STATE_AA32, 2356 .cp = 15, .opc1 = 0, .crn = 10, .crm = 2, .opc2 = 0, 2357 .access = PL1_RW, .accessfn = access_tvm_trvm, 2358 .bank_fieldoffsets = { offsetof(CPUARMState, cp15.mair0_s), 2359 offsetof(CPUARMState, cp15.mair0_ns) }, 2360 .resetfn = arm_cp_reset_ignore }, 2361 { .name = "MAIR1", .state = ARM_CP_STATE_AA32, 2362 .cp = 15, .opc1 = 0, .crn = 10, .crm = 2, .opc2 = 1, 2363 .access = PL1_RW, .accessfn = access_tvm_trvm, 2364 .bank_fieldoffsets = { offsetof(CPUARMState, cp15.mair1_s), 2365 offsetof(CPUARMState, cp15.mair1_ns) }, 2366 .resetfn = arm_cp_reset_ignore }, 2367 { .name = "ISR_EL1", .state = ARM_CP_STATE_BOTH, 2368 .opc0 = 3, .opc1 = 0, .crn = 12, .crm = 1, .opc2 = 0, 2369 .type = ARM_CP_NO_RAW, .access = PL1_R, .readfn = isr_read }, 2370 /* 32 bit ITLB invalidates */ 2371 { .name = "ITLBIALL", .cp = 15, .opc1 = 0, .crn = 8, .crm = 5, .opc2 = 0, 2372 .type = ARM_CP_NO_RAW, .access = PL1_W, .accessfn = access_ttlb, 2373 .writefn = tlbiall_write }, 2374 { .name = "ITLBIMVA", .cp = 15, .opc1 = 0, .crn = 8, .crm = 5, .opc2 = 1, 2375 .type = ARM_CP_NO_RAW, .access = PL1_W, .accessfn = access_ttlb, 2376 .writefn = tlbimva_write }, 2377 { .name = "ITLBIASID", .cp = 15, .opc1 = 0, .crn = 8, .crm = 5, .opc2 = 2, 2378 .type = ARM_CP_NO_RAW, .access = PL1_W, .accessfn = access_ttlb, 2379 .writefn = tlbiasid_write }, 2380 /* 32 bit DTLB invalidates */ 2381 { .name = "DTLBIALL", .cp = 15, .opc1 = 0, .crn = 8, .crm = 6, .opc2 = 0, 2382 .type = ARM_CP_NO_RAW, .access = PL1_W, .accessfn = access_ttlb, 2383 .writefn = tlbiall_write }, 2384 { .name = "DTLBIMVA", .cp = 15, .opc1 = 0, .crn = 8, .crm = 6, .opc2 = 1, 2385 .type = ARM_CP_NO_RAW, .access = PL1_W, .accessfn = access_ttlb, 2386 .writefn = tlbimva_write }, 2387 { .name = "DTLBIASID", .cp = 15, .opc1 = 0, .crn = 8, .crm = 6, .opc2 = 2, 2388 .type = ARM_CP_NO_RAW, .access = PL1_W, .accessfn = access_ttlb, 2389 .writefn = tlbiasid_write }, 2390 /* 32 bit TLB invalidates */ 2391 { .name = "TLBIALL", .cp = 15, .opc1 = 0, .crn = 8, .crm = 7, .opc2 = 0, 2392 .type = ARM_CP_NO_RAW, .access = PL1_W, .accessfn = access_ttlb, 2393 .writefn = tlbiall_write }, 2394 { .name = "TLBIMVA", .cp = 15, .opc1 = 0, .crn = 8, .crm = 7, .opc2 = 1, 2395 .type = ARM_CP_NO_RAW, .access = PL1_W, .accessfn = access_ttlb, 2396 .writefn = tlbimva_write }, 2397 { .name = "TLBIASID", .cp = 15, .opc1 = 0, .crn = 8, .crm = 7, .opc2 = 2, 2398 .type = ARM_CP_NO_RAW, .access = PL1_W, .accessfn = access_ttlb, 2399 .writefn = tlbiasid_write }, 2400 { .name = "TLBIMVAA", .cp = 15, .opc1 = 0, .crn = 8, .crm = 7, .opc2 = 3, 2401 .type = ARM_CP_NO_RAW, .access = PL1_W, .accessfn = access_ttlb, 2402 .writefn = tlbimvaa_write }, 2403 REGINFO_SENTINEL 2404 }; 2405 2406 static const ARMCPRegInfo v7mp_cp_reginfo[] = { 2407 /* 32 bit TLB invalidates, Inner Shareable */ 2408 { .name = "TLBIALLIS", .cp = 15, .opc1 = 0, .crn = 8, .crm = 3, .opc2 = 0, 2409 .type = ARM_CP_NO_RAW, .access = PL1_W, .accessfn = access_ttlb, 2410 .writefn = tlbiall_is_write }, 2411 { .name = "TLBIMVAIS", .cp = 15, .opc1 = 0, .crn = 8, .crm = 3, .opc2 = 1, 2412 .type = ARM_CP_NO_RAW, .access = PL1_W, .accessfn = access_ttlb, 2413 .writefn = tlbimva_is_write }, 2414 { .name = "TLBIASIDIS", .cp = 15, .opc1 = 0, .crn = 8, .crm = 3, .opc2 = 2, 2415 .type = ARM_CP_NO_RAW, .access = PL1_W, .accessfn = access_ttlb, 2416 .writefn = tlbiasid_is_write }, 2417 { .name = "TLBIMVAAIS", .cp = 15, .opc1 = 0, .crn = 8, .crm = 3, .opc2 = 3, 2418 .type = ARM_CP_NO_RAW, .access = PL1_W, .accessfn = access_ttlb, 2419 .writefn = tlbimvaa_is_write }, 2420 REGINFO_SENTINEL 2421 }; 2422 2423 static const ARMCPRegInfo pmovsset_cp_reginfo[] = { 2424 /* PMOVSSET is not implemented in v7 before v7ve */ 2425 { .name = "PMOVSSET", .cp = 15, .opc1 = 0, .crn = 9, .crm = 14, .opc2 = 3, 2426 .access = PL0_RW, .accessfn = pmreg_access, 2427 .type = ARM_CP_ALIAS | ARM_CP_IO, 2428 .fieldoffset = offsetoflow32(CPUARMState, cp15.c9_pmovsr), 2429 .writefn = pmovsset_write, 2430 .raw_writefn = raw_write }, 2431 { .name = "PMOVSSET_EL0", .state = ARM_CP_STATE_AA64, 2432 .opc0 = 3, .opc1 = 3, .crn = 9, .crm = 14, .opc2 = 3, 2433 .access = PL0_RW, .accessfn = pmreg_access, 2434 .type = ARM_CP_ALIAS | ARM_CP_IO, 2435 .fieldoffset = offsetof(CPUARMState, cp15.c9_pmovsr), 2436 .writefn = pmovsset_write, 2437 .raw_writefn = raw_write }, 2438 REGINFO_SENTINEL 2439 }; 2440 2441 static void teecr_write(CPUARMState *env, const ARMCPRegInfo *ri, 2442 uint64_t value) 2443 { 2444 value &= 1; 2445 env->teecr = value; 2446 } 2447 2448 static CPAccessResult teehbr_access(CPUARMState *env, const ARMCPRegInfo *ri, 2449 bool isread) 2450 { 2451 if (arm_current_el(env) == 0 && (env->teecr & 1)) { 2452 return CP_ACCESS_TRAP; 2453 } 2454 return CP_ACCESS_OK; 2455 } 2456 2457 static const ARMCPRegInfo t2ee_cp_reginfo[] = { 2458 { .name = "TEECR", .cp = 14, .crn = 0, .crm = 0, .opc1 = 6, .opc2 = 0, 2459 .access = PL1_RW, .fieldoffset = offsetof(CPUARMState, teecr), 2460 .resetvalue = 0, 2461 .writefn = teecr_write }, 2462 { .name = "TEEHBR", .cp = 14, .crn = 1, .crm = 0, .opc1 = 6, .opc2 = 0, 2463 .access = PL0_RW, .fieldoffset = offsetof(CPUARMState, teehbr), 2464 .accessfn = teehbr_access, .resetvalue = 0 }, 2465 REGINFO_SENTINEL 2466 }; 2467 2468 static const ARMCPRegInfo v6k_cp_reginfo[] = { 2469 { .name = "TPIDR_EL0", .state = ARM_CP_STATE_AA64, 2470 .opc0 = 3, .opc1 = 3, .opc2 = 2, .crn = 13, .crm = 0, 2471 .access = PL0_RW, 2472 .fieldoffset = offsetof(CPUARMState, cp15.tpidr_el[0]), .resetvalue = 0 }, 2473 { .name = "TPIDRURW", .cp = 15, .crn = 13, .crm = 0, .opc1 = 0, .opc2 = 2, 2474 .access = PL0_RW, 2475 .bank_fieldoffsets = { offsetoflow32(CPUARMState, cp15.tpidrurw_s), 2476 offsetoflow32(CPUARMState, cp15.tpidrurw_ns) }, 2477 .resetfn = arm_cp_reset_ignore }, 2478 { .name = "TPIDRRO_EL0", .state = ARM_CP_STATE_AA64, 2479 .opc0 = 3, .opc1 = 3, .opc2 = 3, .crn = 13, .crm = 0, 2480 .access = PL0_R|PL1_W, 2481 .fieldoffset = offsetof(CPUARMState, cp15.tpidrro_el[0]), 2482 .resetvalue = 0}, 2483 { .name = "TPIDRURO", .cp = 15, .crn = 13, .crm = 0, .opc1 = 0, .opc2 = 3, 2484 .access = PL0_R|PL1_W, 2485 .bank_fieldoffsets = { offsetoflow32(CPUARMState, cp15.tpidruro_s), 2486 offsetoflow32(CPUARMState, cp15.tpidruro_ns) }, 2487 .resetfn = arm_cp_reset_ignore }, 2488 { .name = "TPIDR_EL1", .state = ARM_CP_STATE_AA64, 2489 .opc0 = 3, .opc1 = 0, .opc2 = 4, .crn = 13, .crm = 0, 2490 .access = PL1_RW, 2491 .fieldoffset = offsetof(CPUARMState, cp15.tpidr_el[1]), .resetvalue = 0 }, 2492 { .name = "TPIDRPRW", .opc1 = 0, .cp = 15, .crn = 13, .crm = 0, .opc2 = 4, 2493 .access = PL1_RW, 2494 .bank_fieldoffsets = { offsetoflow32(CPUARMState, cp15.tpidrprw_s), 2495 offsetoflow32(CPUARMState, cp15.tpidrprw_ns) }, 2496 .resetvalue = 0 }, 2497 REGINFO_SENTINEL 2498 }; 2499 2500 #ifndef CONFIG_USER_ONLY 2501 2502 static CPAccessResult gt_cntfrq_access(CPUARMState *env, const ARMCPRegInfo *ri, 2503 bool isread) 2504 { 2505 /* CNTFRQ: not visible from PL0 if both PL0PCTEN and PL0VCTEN are zero. 2506 * Writable only at the highest implemented exception level. 2507 */ 2508 int el = arm_current_el(env); 2509 uint64_t hcr; 2510 uint32_t cntkctl; 2511 2512 switch (el) { 2513 case 0: 2514 hcr = arm_hcr_el2_eff(env); 2515 if ((hcr & (HCR_E2H | HCR_TGE)) == (HCR_E2H | HCR_TGE)) { 2516 cntkctl = env->cp15.cnthctl_el2; 2517 } else { 2518 cntkctl = env->cp15.c14_cntkctl; 2519 } 2520 if (!extract32(cntkctl, 0, 2)) { 2521 return CP_ACCESS_TRAP; 2522 } 2523 break; 2524 case 1: 2525 if (!isread && ri->state == ARM_CP_STATE_AA32 && 2526 arm_is_secure_below_el3(env)) { 2527 /* Accesses from 32-bit Secure EL1 UNDEF (*not* trap to EL3!) */ 2528 return CP_ACCESS_TRAP_UNCATEGORIZED; 2529 } 2530 break; 2531 case 2: 2532 case 3: 2533 break; 2534 } 2535 2536 if (!isread && el < arm_highest_el(env)) { 2537 return CP_ACCESS_TRAP_UNCATEGORIZED; 2538 } 2539 2540 return CP_ACCESS_OK; 2541 } 2542 2543 static CPAccessResult gt_counter_access(CPUARMState *env, int timeridx, 2544 bool isread) 2545 { 2546 unsigned int cur_el = arm_current_el(env); 2547 bool has_el2 = arm_is_el2_enabled(env); 2548 uint64_t hcr = arm_hcr_el2_eff(env); 2549 2550 switch (cur_el) { 2551 case 0: 2552 /* If HCR_EL2.<E2H,TGE> == '11': check CNTHCTL_EL2.EL0[PV]CTEN. */ 2553 if ((hcr & (HCR_E2H | HCR_TGE)) == (HCR_E2H | HCR_TGE)) { 2554 return (extract32(env->cp15.cnthctl_el2, timeridx, 1) 2555 ? CP_ACCESS_OK : CP_ACCESS_TRAP_EL2); 2556 } 2557 2558 /* CNT[PV]CT: not visible from PL0 if EL0[PV]CTEN is zero */ 2559 if (!extract32(env->cp15.c14_cntkctl, timeridx, 1)) { 2560 return CP_ACCESS_TRAP; 2561 } 2562 2563 /* If HCR_EL2.<E2H,TGE> == '10': check CNTHCTL_EL2.EL1PCTEN. */ 2564 if (hcr & HCR_E2H) { 2565 if (timeridx == GTIMER_PHYS && 2566 !extract32(env->cp15.cnthctl_el2, 10, 1)) { 2567 return CP_ACCESS_TRAP_EL2; 2568 } 2569 } else { 2570 /* If HCR_EL2.<E2H> == 0: check CNTHCTL_EL2.EL1PCEN. */ 2571 if (has_el2 && timeridx == GTIMER_PHYS && 2572 !extract32(env->cp15.cnthctl_el2, 1, 1)) { 2573 return CP_ACCESS_TRAP_EL2; 2574 } 2575 } 2576 break; 2577 2578 case 1: 2579 /* Check CNTHCTL_EL2.EL1PCTEN, which changes location based on E2H. */ 2580 if (has_el2 && timeridx == GTIMER_PHYS && 2581 (hcr & HCR_E2H 2582 ? !extract32(env->cp15.cnthctl_el2, 10, 1) 2583 : !extract32(env->cp15.cnthctl_el2, 0, 1))) { 2584 return CP_ACCESS_TRAP_EL2; 2585 } 2586 break; 2587 } 2588 return CP_ACCESS_OK; 2589 } 2590 2591 static CPAccessResult gt_timer_access(CPUARMState *env, int timeridx, 2592 bool isread) 2593 { 2594 unsigned int cur_el = arm_current_el(env); 2595 bool has_el2 = arm_is_el2_enabled(env); 2596 uint64_t hcr = arm_hcr_el2_eff(env); 2597 2598 switch (cur_el) { 2599 case 0: 2600 if ((hcr & (HCR_E2H | HCR_TGE)) == (HCR_E2H | HCR_TGE)) { 2601 /* If HCR_EL2.<E2H,TGE> == '11': check CNTHCTL_EL2.EL0[PV]TEN. */ 2602 return (extract32(env->cp15.cnthctl_el2, 9 - timeridx, 1) 2603 ? CP_ACCESS_OK : CP_ACCESS_TRAP_EL2); 2604 } 2605 2606 /* 2607 * CNT[PV]_CVAL, CNT[PV]_CTL, CNT[PV]_TVAL: not visible from 2608 * EL0 if EL0[PV]TEN is zero. 2609 */ 2610 if (!extract32(env->cp15.c14_cntkctl, 9 - timeridx, 1)) { 2611 return CP_ACCESS_TRAP; 2612 } 2613 /* fall through */ 2614 2615 case 1: 2616 if (has_el2 && timeridx == GTIMER_PHYS) { 2617 if (hcr & HCR_E2H) { 2618 /* If HCR_EL2.<E2H,TGE> == '10': check CNTHCTL_EL2.EL1PTEN. */ 2619 if (!extract32(env->cp15.cnthctl_el2, 11, 1)) { 2620 return CP_ACCESS_TRAP_EL2; 2621 } 2622 } else { 2623 /* If HCR_EL2.<E2H> == 0: check CNTHCTL_EL2.EL1PCEN. */ 2624 if (!extract32(env->cp15.cnthctl_el2, 1, 1)) { 2625 return CP_ACCESS_TRAP_EL2; 2626 } 2627 } 2628 } 2629 break; 2630 } 2631 return CP_ACCESS_OK; 2632 } 2633 2634 static CPAccessResult gt_pct_access(CPUARMState *env, 2635 const ARMCPRegInfo *ri, 2636 bool isread) 2637 { 2638 return gt_counter_access(env, GTIMER_PHYS, isread); 2639 } 2640 2641 static CPAccessResult gt_vct_access(CPUARMState *env, 2642 const ARMCPRegInfo *ri, 2643 bool isread) 2644 { 2645 return gt_counter_access(env, GTIMER_VIRT, isread); 2646 } 2647 2648 static CPAccessResult gt_ptimer_access(CPUARMState *env, const ARMCPRegInfo *ri, 2649 bool isread) 2650 { 2651 return gt_timer_access(env, GTIMER_PHYS, isread); 2652 } 2653 2654 static CPAccessResult gt_vtimer_access(CPUARMState *env, const ARMCPRegInfo *ri, 2655 bool isread) 2656 { 2657 return gt_timer_access(env, GTIMER_VIRT, isread); 2658 } 2659 2660 static CPAccessResult gt_stimer_access(CPUARMState *env, 2661 const ARMCPRegInfo *ri, 2662 bool isread) 2663 { 2664 /* The AArch64 register view of the secure physical timer is 2665 * always accessible from EL3, and configurably accessible from 2666 * Secure EL1. 2667 */ 2668 switch (arm_current_el(env)) { 2669 case 1: 2670 if (!arm_is_secure(env)) { 2671 return CP_ACCESS_TRAP; 2672 } 2673 if (!(env->cp15.scr_el3 & SCR_ST)) { 2674 return CP_ACCESS_TRAP_EL3; 2675 } 2676 return CP_ACCESS_OK; 2677 case 0: 2678 case 2: 2679 return CP_ACCESS_TRAP; 2680 case 3: 2681 return CP_ACCESS_OK; 2682 default: 2683 g_assert_not_reached(); 2684 } 2685 } 2686 2687 static uint64_t gt_get_countervalue(CPUARMState *env) 2688 { 2689 ARMCPU *cpu = env_archcpu(env); 2690 2691 return qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL) / gt_cntfrq_period_ns(cpu); 2692 } 2693 2694 static void gt_recalc_timer(ARMCPU *cpu, int timeridx) 2695 { 2696 ARMGenericTimer *gt = &cpu->env.cp15.c14_timer[timeridx]; 2697 2698 if (gt->ctl & 1) { 2699 /* Timer enabled: calculate and set current ISTATUS, irq, and 2700 * reset timer to when ISTATUS next has to change 2701 */ 2702 uint64_t offset = timeridx == GTIMER_VIRT ? 2703 cpu->env.cp15.cntvoff_el2 : 0; 2704 uint64_t count = gt_get_countervalue(&cpu->env); 2705 /* Note that this must be unsigned 64 bit arithmetic: */ 2706 int istatus = count - offset >= gt->cval; 2707 uint64_t nexttick; 2708 int irqstate; 2709 2710 gt->ctl = deposit32(gt->ctl, 2, 1, istatus); 2711 2712 irqstate = (istatus && !(gt->ctl & 2)); 2713 qemu_set_irq(cpu->gt_timer_outputs[timeridx], irqstate); 2714 2715 if (istatus) { 2716 /* Next transition is when count rolls back over to zero */ 2717 nexttick = UINT64_MAX; 2718 } else { 2719 /* Next transition is when we hit cval */ 2720 nexttick = gt->cval + offset; 2721 } 2722 /* Note that the desired next expiry time might be beyond the 2723 * signed-64-bit range of a QEMUTimer -- in this case we just 2724 * set the timer for as far in the future as possible. When the 2725 * timer expires we will reset the timer for any remaining period. 2726 */ 2727 if (nexttick > INT64_MAX / gt_cntfrq_period_ns(cpu)) { 2728 timer_mod_ns(cpu->gt_timer[timeridx], INT64_MAX); 2729 } else { 2730 timer_mod(cpu->gt_timer[timeridx], nexttick); 2731 } 2732 trace_arm_gt_recalc(timeridx, irqstate, nexttick); 2733 } else { 2734 /* Timer disabled: ISTATUS and timer output always clear */ 2735 gt->ctl &= ~4; 2736 qemu_set_irq(cpu->gt_timer_outputs[timeridx], 0); 2737 timer_del(cpu->gt_timer[timeridx]); 2738 trace_arm_gt_recalc_disabled(timeridx); 2739 } 2740 } 2741 2742 static void gt_timer_reset(CPUARMState *env, const ARMCPRegInfo *ri, 2743 int timeridx) 2744 { 2745 ARMCPU *cpu = env_archcpu(env); 2746 2747 timer_del(cpu->gt_timer[timeridx]); 2748 } 2749 2750 static uint64_t gt_cnt_read(CPUARMState *env, const ARMCPRegInfo *ri) 2751 { 2752 return gt_get_countervalue(env); 2753 } 2754 2755 static uint64_t gt_virt_cnt_offset(CPUARMState *env) 2756 { 2757 uint64_t hcr; 2758 2759 switch (arm_current_el(env)) { 2760 case 2: 2761 hcr = arm_hcr_el2_eff(env); 2762 if (hcr & HCR_E2H) { 2763 return 0; 2764 } 2765 break; 2766 case 0: 2767 hcr = arm_hcr_el2_eff(env); 2768 if ((hcr & (HCR_E2H | HCR_TGE)) == (HCR_E2H | HCR_TGE)) { 2769 return 0; 2770 } 2771 break; 2772 } 2773 2774 return env->cp15.cntvoff_el2; 2775 } 2776 2777 static uint64_t gt_virt_cnt_read(CPUARMState *env, const ARMCPRegInfo *ri) 2778 { 2779 return gt_get_countervalue(env) - gt_virt_cnt_offset(env); 2780 } 2781 2782 static void gt_cval_write(CPUARMState *env, const ARMCPRegInfo *ri, 2783 int timeridx, 2784 uint64_t value) 2785 { 2786 trace_arm_gt_cval_write(timeridx, value); 2787 env->cp15.c14_timer[timeridx].cval = value; 2788 gt_recalc_timer(env_archcpu(env), timeridx); 2789 } 2790 2791 static uint64_t gt_tval_read(CPUARMState *env, const ARMCPRegInfo *ri, 2792 int timeridx) 2793 { 2794 uint64_t offset = 0; 2795 2796 switch (timeridx) { 2797 case GTIMER_VIRT: 2798 case GTIMER_HYPVIRT: 2799 offset = gt_virt_cnt_offset(env); 2800 break; 2801 } 2802 2803 return (uint32_t)(env->cp15.c14_timer[timeridx].cval - 2804 (gt_get_countervalue(env) - offset)); 2805 } 2806 2807 static void gt_tval_write(CPUARMState *env, const ARMCPRegInfo *ri, 2808 int timeridx, 2809 uint64_t value) 2810 { 2811 uint64_t offset = 0; 2812 2813 switch (timeridx) { 2814 case GTIMER_VIRT: 2815 case GTIMER_HYPVIRT: 2816 offset = gt_virt_cnt_offset(env); 2817 break; 2818 } 2819 2820 trace_arm_gt_tval_write(timeridx, value); 2821 env->cp15.c14_timer[timeridx].cval = gt_get_countervalue(env) - offset + 2822 sextract64(value, 0, 32); 2823 gt_recalc_timer(env_archcpu(env), timeridx); 2824 } 2825 2826 static void gt_ctl_write(CPUARMState *env, const ARMCPRegInfo *ri, 2827 int timeridx, 2828 uint64_t value) 2829 { 2830 ARMCPU *cpu = env_archcpu(env); 2831 uint32_t oldval = env->cp15.c14_timer[timeridx].ctl; 2832 2833 trace_arm_gt_ctl_write(timeridx, value); 2834 env->cp15.c14_timer[timeridx].ctl = deposit64(oldval, 0, 2, value); 2835 if ((oldval ^ value) & 1) { 2836 /* Enable toggled */ 2837 gt_recalc_timer(cpu, timeridx); 2838 } else if ((oldval ^ value) & 2) { 2839 /* IMASK toggled: don't need to recalculate, 2840 * just set the interrupt line based on ISTATUS 2841 */ 2842 int irqstate = (oldval & 4) && !(value & 2); 2843 2844 trace_arm_gt_imask_toggle(timeridx, irqstate); 2845 qemu_set_irq(cpu->gt_timer_outputs[timeridx], irqstate); 2846 } 2847 } 2848 2849 static void gt_phys_timer_reset(CPUARMState *env, const ARMCPRegInfo *ri) 2850 { 2851 gt_timer_reset(env, ri, GTIMER_PHYS); 2852 } 2853 2854 static void gt_phys_cval_write(CPUARMState *env, const ARMCPRegInfo *ri, 2855 uint64_t value) 2856 { 2857 gt_cval_write(env, ri, GTIMER_PHYS, value); 2858 } 2859 2860 static uint64_t gt_phys_tval_read(CPUARMState *env, const ARMCPRegInfo *ri) 2861 { 2862 return gt_tval_read(env, ri, GTIMER_PHYS); 2863 } 2864 2865 static void gt_phys_tval_write(CPUARMState *env, const ARMCPRegInfo *ri, 2866 uint64_t value) 2867 { 2868 gt_tval_write(env, ri, GTIMER_PHYS, value); 2869 } 2870 2871 static void gt_phys_ctl_write(CPUARMState *env, const ARMCPRegInfo *ri, 2872 uint64_t value) 2873 { 2874 gt_ctl_write(env, ri, GTIMER_PHYS, value); 2875 } 2876 2877 static int gt_phys_redir_timeridx(CPUARMState *env) 2878 { 2879 switch (arm_mmu_idx(env)) { 2880 case ARMMMUIdx_E20_0: 2881 case ARMMMUIdx_E20_2: 2882 case ARMMMUIdx_E20_2_PAN: 2883 case ARMMMUIdx_SE20_0: 2884 case ARMMMUIdx_SE20_2: 2885 case ARMMMUIdx_SE20_2_PAN: 2886 return GTIMER_HYP; 2887 default: 2888 return GTIMER_PHYS; 2889 } 2890 } 2891 2892 static int gt_virt_redir_timeridx(CPUARMState *env) 2893 { 2894 switch (arm_mmu_idx(env)) { 2895 case ARMMMUIdx_E20_0: 2896 case ARMMMUIdx_E20_2: 2897 case ARMMMUIdx_E20_2_PAN: 2898 case ARMMMUIdx_SE20_0: 2899 case ARMMMUIdx_SE20_2: 2900 case ARMMMUIdx_SE20_2_PAN: 2901 return GTIMER_HYPVIRT; 2902 default: 2903 return GTIMER_VIRT; 2904 } 2905 } 2906 2907 static uint64_t gt_phys_redir_cval_read(CPUARMState *env, 2908 const ARMCPRegInfo *ri) 2909 { 2910 int timeridx = gt_phys_redir_timeridx(env); 2911 return env->cp15.c14_timer[timeridx].cval; 2912 } 2913 2914 static void gt_phys_redir_cval_write(CPUARMState *env, const ARMCPRegInfo *ri, 2915 uint64_t value) 2916 { 2917 int timeridx = gt_phys_redir_timeridx(env); 2918 gt_cval_write(env, ri, timeridx, value); 2919 } 2920 2921 static uint64_t gt_phys_redir_tval_read(CPUARMState *env, 2922 const ARMCPRegInfo *ri) 2923 { 2924 int timeridx = gt_phys_redir_timeridx(env); 2925 return gt_tval_read(env, ri, timeridx); 2926 } 2927 2928 static void gt_phys_redir_tval_write(CPUARMState *env, const ARMCPRegInfo *ri, 2929 uint64_t value) 2930 { 2931 int timeridx = gt_phys_redir_timeridx(env); 2932 gt_tval_write(env, ri, timeridx, value); 2933 } 2934 2935 static uint64_t gt_phys_redir_ctl_read(CPUARMState *env, 2936 const ARMCPRegInfo *ri) 2937 { 2938 int timeridx = gt_phys_redir_timeridx(env); 2939 return env->cp15.c14_timer[timeridx].ctl; 2940 } 2941 2942 static void gt_phys_redir_ctl_write(CPUARMState *env, const ARMCPRegInfo *ri, 2943 uint64_t value) 2944 { 2945 int timeridx = gt_phys_redir_timeridx(env); 2946 gt_ctl_write(env, ri, timeridx, value); 2947 } 2948 2949 static void gt_virt_timer_reset(CPUARMState *env, const ARMCPRegInfo *ri) 2950 { 2951 gt_timer_reset(env, ri, GTIMER_VIRT); 2952 } 2953 2954 static void gt_virt_cval_write(CPUARMState *env, const ARMCPRegInfo *ri, 2955 uint64_t value) 2956 { 2957 gt_cval_write(env, ri, GTIMER_VIRT, value); 2958 } 2959 2960 static uint64_t gt_virt_tval_read(CPUARMState *env, const ARMCPRegInfo *ri) 2961 { 2962 return gt_tval_read(env, ri, GTIMER_VIRT); 2963 } 2964 2965 static void gt_virt_tval_write(CPUARMState *env, const ARMCPRegInfo *ri, 2966 uint64_t value) 2967 { 2968 gt_tval_write(env, ri, GTIMER_VIRT, value); 2969 } 2970 2971 static void gt_virt_ctl_write(CPUARMState *env, const ARMCPRegInfo *ri, 2972 uint64_t value) 2973 { 2974 gt_ctl_write(env, ri, GTIMER_VIRT, value); 2975 } 2976 2977 static void gt_cntvoff_write(CPUARMState *env, const ARMCPRegInfo *ri, 2978 uint64_t value) 2979 { 2980 ARMCPU *cpu = env_archcpu(env); 2981 2982 trace_arm_gt_cntvoff_write(value); 2983 raw_write(env, ri, value); 2984 gt_recalc_timer(cpu, GTIMER_VIRT); 2985 } 2986 2987 static uint64_t gt_virt_redir_cval_read(CPUARMState *env, 2988 const ARMCPRegInfo *ri) 2989 { 2990 int timeridx = gt_virt_redir_timeridx(env); 2991 return env->cp15.c14_timer[timeridx].cval; 2992 } 2993 2994 static void gt_virt_redir_cval_write(CPUARMState *env, const ARMCPRegInfo *ri, 2995 uint64_t value) 2996 { 2997 int timeridx = gt_virt_redir_timeridx(env); 2998 gt_cval_write(env, ri, timeridx, value); 2999 } 3000 3001 static uint64_t gt_virt_redir_tval_read(CPUARMState *env, 3002 const ARMCPRegInfo *ri) 3003 { 3004 int timeridx = gt_virt_redir_timeridx(env); 3005 return gt_tval_read(env, ri, timeridx); 3006 } 3007 3008 static void gt_virt_redir_tval_write(CPUARMState *env, const ARMCPRegInfo *ri, 3009 uint64_t value) 3010 { 3011 int timeridx = gt_virt_redir_timeridx(env); 3012 gt_tval_write(env, ri, timeridx, value); 3013 } 3014 3015 static uint64_t gt_virt_redir_ctl_read(CPUARMState *env, 3016 const ARMCPRegInfo *ri) 3017 { 3018 int timeridx = gt_virt_redir_timeridx(env); 3019 return env->cp15.c14_timer[timeridx].ctl; 3020 } 3021 3022 static void gt_virt_redir_ctl_write(CPUARMState *env, const ARMCPRegInfo *ri, 3023 uint64_t value) 3024 { 3025 int timeridx = gt_virt_redir_timeridx(env); 3026 gt_ctl_write(env, ri, timeridx, value); 3027 } 3028 3029 static void gt_hyp_timer_reset(CPUARMState *env, const ARMCPRegInfo *ri) 3030 { 3031 gt_timer_reset(env, ri, GTIMER_HYP); 3032 } 3033 3034 static void gt_hyp_cval_write(CPUARMState *env, const ARMCPRegInfo *ri, 3035 uint64_t value) 3036 { 3037 gt_cval_write(env, ri, GTIMER_HYP, value); 3038 } 3039 3040 static uint64_t gt_hyp_tval_read(CPUARMState *env, const ARMCPRegInfo *ri) 3041 { 3042 return gt_tval_read(env, ri, GTIMER_HYP); 3043 } 3044 3045 static void gt_hyp_tval_write(CPUARMState *env, const ARMCPRegInfo *ri, 3046 uint64_t value) 3047 { 3048 gt_tval_write(env, ri, GTIMER_HYP, value); 3049 } 3050 3051 static void gt_hyp_ctl_write(CPUARMState *env, const ARMCPRegInfo *ri, 3052 uint64_t value) 3053 { 3054 gt_ctl_write(env, ri, GTIMER_HYP, value); 3055 } 3056 3057 static void gt_sec_timer_reset(CPUARMState *env, const ARMCPRegInfo *ri) 3058 { 3059 gt_timer_reset(env, ri, GTIMER_SEC); 3060 } 3061 3062 static void gt_sec_cval_write(CPUARMState *env, const ARMCPRegInfo *ri, 3063 uint64_t value) 3064 { 3065 gt_cval_write(env, ri, GTIMER_SEC, value); 3066 } 3067 3068 static uint64_t gt_sec_tval_read(CPUARMState *env, const ARMCPRegInfo *ri) 3069 { 3070 return gt_tval_read(env, ri, GTIMER_SEC); 3071 } 3072 3073 static void gt_sec_tval_write(CPUARMState *env, const ARMCPRegInfo *ri, 3074 uint64_t value) 3075 { 3076 gt_tval_write(env, ri, GTIMER_SEC, value); 3077 } 3078 3079 static void gt_sec_ctl_write(CPUARMState *env, const ARMCPRegInfo *ri, 3080 uint64_t value) 3081 { 3082 gt_ctl_write(env, ri, GTIMER_SEC, value); 3083 } 3084 3085 static void gt_hv_timer_reset(CPUARMState *env, const ARMCPRegInfo *ri) 3086 { 3087 gt_timer_reset(env, ri, GTIMER_HYPVIRT); 3088 } 3089 3090 static void gt_hv_cval_write(CPUARMState *env, const ARMCPRegInfo *ri, 3091 uint64_t value) 3092 { 3093 gt_cval_write(env, ri, GTIMER_HYPVIRT, value); 3094 } 3095 3096 static uint64_t gt_hv_tval_read(CPUARMState *env, const ARMCPRegInfo *ri) 3097 { 3098 return gt_tval_read(env, ri, GTIMER_HYPVIRT); 3099 } 3100 3101 static void gt_hv_tval_write(CPUARMState *env, const ARMCPRegInfo *ri, 3102 uint64_t value) 3103 { 3104 gt_tval_write(env, ri, GTIMER_HYPVIRT, value); 3105 } 3106 3107 static void gt_hv_ctl_write(CPUARMState *env, const ARMCPRegInfo *ri, 3108 uint64_t value) 3109 { 3110 gt_ctl_write(env, ri, GTIMER_HYPVIRT, value); 3111 } 3112 3113 void arm_gt_ptimer_cb(void *opaque) 3114 { 3115 ARMCPU *cpu = opaque; 3116 3117 gt_recalc_timer(cpu, GTIMER_PHYS); 3118 } 3119 3120 void arm_gt_vtimer_cb(void *opaque) 3121 { 3122 ARMCPU *cpu = opaque; 3123 3124 gt_recalc_timer(cpu, GTIMER_VIRT); 3125 } 3126 3127 void arm_gt_htimer_cb(void *opaque) 3128 { 3129 ARMCPU *cpu = opaque; 3130 3131 gt_recalc_timer(cpu, GTIMER_HYP); 3132 } 3133 3134 void arm_gt_stimer_cb(void *opaque) 3135 { 3136 ARMCPU *cpu = opaque; 3137 3138 gt_recalc_timer(cpu, GTIMER_SEC); 3139 } 3140 3141 void arm_gt_hvtimer_cb(void *opaque) 3142 { 3143 ARMCPU *cpu = opaque; 3144 3145 gt_recalc_timer(cpu, GTIMER_HYPVIRT); 3146 } 3147 3148 static void arm_gt_cntfrq_reset(CPUARMState *env, const ARMCPRegInfo *opaque) 3149 { 3150 ARMCPU *cpu = env_archcpu(env); 3151 3152 cpu->env.cp15.c14_cntfrq = cpu->gt_cntfrq_hz; 3153 } 3154 3155 static const ARMCPRegInfo generic_timer_cp_reginfo[] = { 3156 /* Note that CNTFRQ is purely reads-as-written for the benefit 3157 * of software; writing it doesn't actually change the timer frequency. 3158 * Our reset value matches the fixed frequency we implement the timer at. 3159 */ 3160 { .name = "CNTFRQ", .cp = 15, .crn = 14, .crm = 0, .opc1 = 0, .opc2 = 0, 3161 .type = ARM_CP_ALIAS, 3162 .access = PL1_RW | PL0_R, .accessfn = gt_cntfrq_access, 3163 .fieldoffset = offsetoflow32(CPUARMState, cp15.c14_cntfrq), 3164 }, 3165 { .name = "CNTFRQ_EL0", .state = ARM_CP_STATE_AA64, 3166 .opc0 = 3, .opc1 = 3, .crn = 14, .crm = 0, .opc2 = 0, 3167 .access = PL1_RW | PL0_R, .accessfn = gt_cntfrq_access, 3168 .fieldoffset = offsetof(CPUARMState, cp15.c14_cntfrq), 3169 .resetfn = arm_gt_cntfrq_reset, 3170 }, 3171 /* overall control: mostly access permissions */ 3172 { .name = "CNTKCTL", .state = ARM_CP_STATE_BOTH, 3173 .opc0 = 3, .opc1 = 0, .crn = 14, .crm = 1, .opc2 = 0, 3174 .access = PL1_RW, 3175 .fieldoffset = offsetof(CPUARMState, cp15.c14_cntkctl), 3176 .resetvalue = 0, 3177 }, 3178 /* per-timer control */ 3179 { .name = "CNTP_CTL", .cp = 15, .crn = 14, .crm = 2, .opc1 = 0, .opc2 = 1, 3180 .secure = ARM_CP_SECSTATE_NS, 3181 .type = ARM_CP_IO | ARM_CP_ALIAS, .access = PL0_RW, 3182 .accessfn = gt_ptimer_access, 3183 .fieldoffset = offsetoflow32(CPUARMState, 3184 cp15.c14_timer[GTIMER_PHYS].ctl), 3185 .readfn = gt_phys_redir_ctl_read, .raw_readfn = raw_read, 3186 .writefn = gt_phys_redir_ctl_write, .raw_writefn = raw_write, 3187 }, 3188 { .name = "CNTP_CTL_S", 3189 .cp = 15, .crn = 14, .crm = 2, .opc1 = 0, .opc2 = 1, 3190 .secure = ARM_CP_SECSTATE_S, 3191 .type = ARM_CP_IO | ARM_CP_ALIAS, .access = PL0_RW, 3192 .accessfn = gt_ptimer_access, 3193 .fieldoffset = offsetoflow32(CPUARMState, 3194 cp15.c14_timer[GTIMER_SEC].ctl), 3195 .writefn = gt_sec_ctl_write, .raw_writefn = raw_write, 3196 }, 3197 { .name = "CNTP_CTL_EL0", .state = ARM_CP_STATE_AA64, 3198 .opc0 = 3, .opc1 = 3, .crn = 14, .crm = 2, .opc2 = 1, 3199 .type = ARM_CP_IO, .access = PL0_RW, 3200 .accessfn = gt_ptimer_access, 3201 .fieldoffset = offsetof(CPUARMState, cp15.c14_timer[GTIMER_PHYS].ctl), 3202 .resetvalue = 0, 3203 .readfn = gt_phys_redir_ctl_read, .raw_readfn = raw_read, 3204 .writefn = gt_phys_redir_ctl_write, .raw_writefn = raw_write, 3205 }, 3206 { .name = "CNTV_CTL", .cp = 15, .crn = 14, .crm = 3, .opc1 = 0, .opc2 = 1, 3207 .type = ARM_CP_IO | ARM_CP_ALIAS, .access = PL0_RW, 3208 .accessfn = gt_vtimer_access, 3209 .fieldoffset = offsetoflow32(CPUARMState, 3210 cp15.c14_timer[GTIMER_VIRT].ctl), 3211 .readfn = gt_virt_redir_ctl_read, .raw_readfn = raw_read, 3212 .writefn = gt_virt_redir_ctl_write, .raw_writefn = raw_write, 3213 }, 3214 { .name = "CNTV_CTL_EL0", .state = ARM_CP_STATE_AA64, 3215 .opc0 = 3, .opc1 = 3, .crn = 14, .crm = 3, .opc2 = 1, 3216 .type = ARM_CP_IO, .access = PL0_RW, 3217 .accessfn = gt_vtimer_access, 3218 .fieldoffset = offsetof(CPUARMState, cp15.c14_timer[GTIMER_VIRT].ctl), 3219 .resetvalue = 0, 3220 .readfn = gt_virt_redir_ctl_read, .raw_readfn = raw_read, 3221 .writefn = gt_virt_redir_ctl_write, .raw_writefn = raw_write, 3222 }, 3223 /* TimerValue views: a 32 bit downcounting view of the underlying state */ 3224 { .name = "CNTP_TVAL", .cp = 15, .crn = 14, .crm = 2, .opc1 = 0, .opc2 = 0, 3225 .secure = ARM_CP_SECSTATE_NS, 3226 .type = ARM_CP_NO_RAW | ARM_CP_IO, .access = PL0_RW, 3227 .accessfn = gt_ptimer_access, 3228 .readfn = gt_phys_redir_tval_read, .writefn = gt_phys_redir_tval_write, 3229 }, 3230 { .name = "CNTP_TVAL_S", 3231 .cp = 15, .crn = 14, .crm = 2, .opc1 = 0, .opc2 = 0, 3232 .secure = ARM_CP_SECSTATE_S, 3233 .type = ARM_CP_NO_RAW | ARM_CP_IO, .access = PL0_RW, 3234 .accessfn = gt_ptimer_access, 3235 .readfn = gt_sec_tval_read, .writefn = gt_sec_tval_write, 3236 }, 3237 { .name = "CNTP_TVAL_EL0", .state = ARM_CP_STATE_AA64, 3238 .opc0 = 3, .opc1 = 3, .crn = 14, .crm = 2, .opc2 = 0, 3239 .type = ARM_CP_NO_RAW | ARM_CP_IO, .access = PL0_RW, 3240 .accessfn = gt_ptimer_access, .resetfn = gt_phys_timer_reset, 3241 .readfn = gt_phys_redir_tval_read, .writefn = gt_phys_redir_tval_write, 3242 }, 3243 { .name = "CNTV_TVAL", .cp = 15, .crn = 14, .crm = 3, .opc1 = 0, .opc2 = 0, 3244 .type = ARM_CP_NO_RAW | ARM_CP_IO, .access = PL0_RW, 3245 .accessfn = gt_vtimer_access, 3246 .readfn = gt_virt_redir_tval_read, .writefn = gt_virt_redir_tval_write, 3247 }, 3248 { .name = "CNTV_TVAL_EL0", .state = ARM_CP_STATE_AA64, 3249 .opc0 = 3, .opc1 = 3, .crn = 14, .crm = 3, .opc2 = 0, 3250 .type = ARM_CP_NO_RAW | ARM_CP_IO, .access = PL0_RW, 3251 .accessfn = gt_vtimer_access, .resetfn = gt_virt_timer_reset, 3252 .readfn = gt_virt_redir_tval_read, .writefn = gt_virt_redir_tval_write, 3253 }, 3254 /* The counter itself */ 3255 { .name = "CNTPCT", .cp = 15, .crm = 14, .opc1 = 0, 3256 .access = PL0_R, .type = ARM_CP_64BIT | ARM_CP_NO_RAW | ARM_CP_IO, 3257 .accessfn = gt_pct_access, 3258 .readfn = gt_cnt_read, .resetfn = arm_cp_reset_ignore, 3259 }, 3260 { .name = "CNTPCT_EL0", .state = ARM_CP_STATE_AA64, 3261 .opc0 = 3, .opc1 = 3, .crn = 14, .crm = 0, .opc2 = 1, 3262 .access = PL0_R, .type = ARM_CP_NO_RAW | ARM_CP_IO, 3263 .accessfn = gt_pct_access, .readfn = gt_cnt_read, 3264 }, 3265 { .name = "CNTVCT", .cp = 15, .crm = 14, .opc1 = 1, 3266 .access = PL0_R, .type = ARM_CP_64BIT | ARM_CP_NO_RAW | ARM_CP_IO, 3267 .accessfn = gt_vct_access, 3268 .readfn = gt_virt_cnt_read, .resetfn = arm_cp_reset_ignore, 3269 }, 3270 { .name = "CNTVCT_EL0", .state = ARM_CP_STATE_AA64, 3271 .opc0 = 3, .opc1 = 3, .crn = 14, .crm = 0, .opc2 = 2, 3272 .access = PL0_R, .type = ARM_CP_NO_RAW | ARM_CP_IO, 3273 .accessfn = gt_vct_access, .readfn = gt_virt_cnt_read, 3274 }, 3275 /* Comparison value, indicating when the timer goes off */ 3276 { .name = "CNTP_CVAL", .cp = 15, .crm = 14, .opc1 = 2, 3277 .secure = ARM_CP_SECSTATE_NS, 3278 .access = PL0_RW, 3279 .type = ARM_CP_64BIT | ARM_CP_IO | ARM_CP_ALIAS, 3280 .fieldoffset = offsetof(CPUARMState, cp15.c14_timer[GTIMER_PHYS].cval), 3281 .accessfn = gt_ptimer_access, 3282 .readfn = gt_phys_redir_cval_read, .raw_readfn = raw_read, 3283 .writefn = gt_phys_redir_cval_write, .raw_writefn = raw_write, 3284 }, 3285 { .name = "CNTP_CVAL_S", .cp = 15, .crm = 14, .opc1 = 2, 3286 .secure = ARM_CP_SECSTATE_S, 3287 .access = PL0_RW, 3288 .type = ARM_CP_64BIT | ARM_CP_IO | ARM_CP_ALIAS, 3289 .fieldoffset = offsetof(CPUARMState, cp15.c14_timer[GTIMER_SEC].cval), 3290 .accessfn = gt_ptimer_access, 3291 .writefn = gt_sec_cval_write, .raw_writefn = raw_write, 3292 }, 3293 { .name = "CNTP_CVAL_EL0", .state = ARM_CP_STATE_AA64, 3294 .opc0 = 3, .opc1 = 3, .crn = 14, .crm = 2, .opc2 = 2, 3295 .access = PL0_RW, 3296 .type = ARM_CP_IO, 3297 .fieldoffset = offsetof(CPUARMState, cp15.c14_timer[GTIMER_PHYS].cval), 3298 .resetvalue = 0, .accessfn = gt_ptimer_access, 3299 .readfn = gt_phys_redir_cval_read, .raw_readfn = raw_read, 3300 .writefn = gt_phys_redir_cval_write, .raw_writefn = raw_write, 3301 }, 3302 { .name = "CNTV_CVAL", .cp = 15, .crm = 14, .opc1 = 3, 3303 .access = PL0_RW, 3304 .type = ARM_CP_64BIT | ARM_CP_IO | ARM_CP_ALIAS, 3305 .fieldoffset = offsetof(CPUARMState, cp15.c14_timer[GTIMER_VIRT].cval), 3306 .accessfn = gt_vtimer_access, 3307 .readfn = gt_virt_redir_cval_read, .raw_readfn = raw_read, 3308 .writefn = gt_virt_redir_cval_write, .raw_writefn = raw_write, 3309 }, 3310 { .name = "CNTV_CVAL_EL0", .state = ARM_CP_STATE_AA64, 3311 .opc0 = 3, .opc1 = 3, .crn = 14, .crm = 3, .opc2 = 2, 3312 .access = PL0_RW, 3313 .type = ARM_CP_IO, 3314 .fieldoffset = offsetof(CPUARMState, cp15.c14_timer[GTIMER_VIRT].cval), 3315 .resetvalue = 0, .accessfn = gt_vtimer_access, 3316 .readfn = gt_virt_redir_cval_read, .raw_readfn = raw_read, 3317 .writefn = gt_virt_redir_cval_write, .raw_writefn = raw_write, 3318 }, 3319 /* Secure timer -- this is actually restricted to only EL3 3320 * and configurably Secure-EL1 via the accessfn. 3321 */ 3322 { .name = "CNTPS_TVAL_EL1", .state = ARM_CP_STATE_AA64, 3323 .opc0 = 3, .opc1 = 7, .crn = 14, .crm = 2, .opc2 = 0, 3324 .type = ARM_CP_NO_RAW | ARM_CP_IO, .access = PL1_RW, 3325 .accessfn = gt_stimer_access, 3326 .readfn = gt_sec_tval_read, 3327 .writefn = gt_sec_tval_write, 3328 .resetfn = gt_sec_timer_reset, 3329 }, 3330 { .name = "CNTPS_CTL_EL1", .state = ARM_CP_STATE_AA64, 3331 .opc0 = 3, .opc1 = 7, .crn = 14, .crm = 2, .opc2 = 1, 3332 .type = ARM_CP_IO, .access = PL1_RW, 3333 .accessfn = gt_stimer_access, 3334 .fieldoffset = offsetof(CPUARMState, cp15.c14_timer[GTIMER_SEC].ctl), 3335 .resetvalue = 0, 3336 .writefn = gt_sec_ctl_write, .raw_writefn = raw_write, 3337 }, 3338 { .name = "CNTPS_CVAL_EL1", .state = ARM_CP_STATE_AA64, 3339 .opc0 = 3, .opc1 = 7, .crn = 14, .crm = 2, .opc2 = 2, 3340 .type = ARM_CP_IO, .access = PL1_RW, 3341 .accessfn = gt_stimer_access, 3342 .fieldoffset = offsetof(CPUARMState, cp15.c14_timer[GTIMER_SEC].cval), 3343 .writefn = gt_sec_cval_write, .raw_writefn = raw_write, 3344 }, 3345 REGINFO_SENTINEL 3346 }; 3347 3348 static CPAccessResult e2h_access(CPUARMState *env, const ARMCPRegInfo *ri, 3349 bool isread) 3350 { 3351 if (!(arm_hcr_el2_eff(env) & HCR_E2H)) { 3352 return CP_ACCESS_TRAP; 3353 } 3354 return CP_ACCESS_OK; 3355 } 3356 3357 #else 3358 3359 /* In user-mode most of the generic timer registers are inaccessible 3360 * however modern kernels (4.12+) allow access to cntvct_el0 3361 */ 3362 3363 static uint64_t gt_virt_cnt_read(CPUARMState *env, const ARMCPRegInfo *ri) 3364 { 3365 ARMCPU *cpu = env_archcpu(env); 3366 3367 /* Currently we have no support for QEMUTimer in linux-user so we 3368 * can't call gt_get_countervalue(env), instead we directly 3369 * call the lower level functions. 3370 */ 3371 return cpu_get_clock() / gt_cntfrq_period_ns(cpu); 3372 } 3373 3374 static const ARMCPRegInfo generic_timer_cp_reginfo[] = { 3375 { .name = "CNTFRQ_EL0", .state = ARM_CP_STATE_AA64, 3376 .opc0 = 3, .opc1 = 3, .crn = 14, .crm = 0, .opc2 = 0, 3377 .type = ARM_CP_CONST, .access = PL0_R /* no PL1_RW in linux-user */, 3378 .fieldoffset = offsetof(CPUARMState, cp15.c14_cntfrq), 3379 .resetvalue = NANOSECONDS_PER_SECOND / GTIMER_SCALE, 3380 }, 3381 { .name = "CNTVCT_EL0", .state = ARM_CP_STATE_AA64, 3382 .opc0 = 3, .opc1 = 3, .crn = 14, .crm = 0, .opc2 = 2, 3383 .access = PL0_R, .type = ARM_CP_NO_RAW | ARM_CP_IO, 3384 .readfn = gt_virt_cnt_read, 3385 }, 3386 REGINFO_SENTINEL 3387 }; 3388 3389 #endif 3390 3391 static void par_write(CPUARMState *env, const ARMCPRegInfo *ri, uint64_t value) 3392 { 3393 if (arm_feature(env, ARM_FEATURE_LPAE)) { 3394 raw_write(env, ri, value); 3395 } else if (arm_feature(env, ARM_FEATURE_V7)) { 3396 raw_write(env, ri, value & 0xfffff6ff); 3397 } else { 3398 raw_write(env, ri, value & 0xfffff1ff); 3399 } 3400 } 3401 3402 #ifndef CONFIG_USER_ONLY 3403 /* get_phys_addr() isn't present for user-mode-only targets */ 3404 3405 static CPAccessResult ats_access(CPUARMState *env, const ARMCPRegInfo *ri, 3406 bool isread) 3407 { 3408 if (ri->opc2 & 4) { 3409 /* The ATS12NSO* operations must trap to EL3 or EL2 if executed in 3410 * Secure EL1 (which can only happen if EL3 is AArch64). 3411 * They are simply UNDEF if executed from NS EL1. 3412 * They function normally from EL2 or EL3. 3413 */ 3414 if (arm_current_el(env) == 1) { 3415 if (arm_is_secure_below_el3(env)) { 3416 if (env->cp15.scr_el3 & SCR_EEL2) { 3417 return CP_ACCESS_TRAP_UNCATEGORIZED_EL2; 3418 } 3419 return CP_ACCESS_TRAP_UNCATEGORIZED_EL3; 3420 } 3421 return CP_ACCESS_TRAP_UNCATEGORIZED; 3422 } 3423 } 3424 return CP_ACCESS_OK; 3425 } 3426 3427 #ifdef CONFIG_TCG 3428 static uint64_t do_ats_write(CPUARMState *env, uint64_t value, 3429 MMUAccessType access_type, ARMMMUIdx mmu_idx) 3430 { 3431 hwaddr phys_addr; 3432 target_ulong page_size; 3433 int prot; 3434 bool ret; 3435 uint64_t par64; 3436 bool format64 = false; 3437 MemTxAttrs attrs = {}; 3438 ARMMMUFaultInfo fi = {}; 3439 ARMCacheAttrs cacheattrs = {}; 3440 3441 ret = get_phys_addr(env, value, access_type, mmu_idx, &phys_addr, &attrs, 3442 &prot, &page_size, &fi, &cacheattrs); 3443 3444 if (ret) { 3445 /* 3446 * Some kinds of translation fault must cause exceptions rather 3447 * than being reported in the PAR. 3448 */ 3449 int current_el = arm_current_el(env); 3450 int target_el; 3451 uint32_t syn, fsr, fsc; 3452 bool take_exc = false; 3453 3454 if (fi.s1ptw && current_el == 1 3455 && arm_mmu_idx_is_stage1_of_2(mmu_idx)) { 3456 /* 3457 * Synchronous stage 2 fault on an access made as part of the 3458 * translation table walk for AT S1E0* or AT S1E1* insn 3459 * executed from NS EL1. If this is a synchronous external abort 3460 * and SCR_EL3.EA == 1, then we take a synchronous external abort 3461 * to EL3. Otherwise the fault is taken as an exception to EL2, 3462 * and HPFAR_EL2 holds the faulting IPA. 3463 */ 3464 if (fi.type == ARMFault_SyncExternalOnWalk && 3465 (env->cp15.scr_el3 & SCR_EA)) { 3466 target_el = 3; 3467 } else { 3468 env->cp15.hpfar_el2 = extract64(fi.s2addr, 12, 47) << 4; 3469 if (arm_is_secure_below_el3(env) && fi.s1ns) { 3470 env->cp15.hpfar_el2 |= HPFAR_NS; 3471 } 3472 target_el = 2; 3473 } 3474 take_exc = true; 3475 } else if (fi.type == ARMFault_SyncExternalOnWalk) { 3476 /* 3477 * Synchronous external aborts during a translation table walk 3478 * are taken as Data Abort exceptions. 3479 */ 3480 if (fi.stage2) { 3481 if (current_el == 3) { 3482 target_el = 3; 3483 } else { 3484 target_el = 2; 3485 } 3486 } else { 3487 target_el = exception_target_el(env); 3488 } 3489 take_exc = true; 3490 } 3491 3492 if (take_exc) { 3493 /* Construct FSR and FSC using same logic as arm_deliver_fault() */ 3494 if (target_el == 2 || arm_el_is_aa64(env, target_el) || 3495 arm_s1_regime_using_lpae_format(env, mmu_idx)) { 3496 fsr = arm_fi_to_lfsc(&fi); 3497 fsc = extract32(fsr, 0, 6); 3498 } else { 3499 fsr = arm_fi_to_sfsc(&fi); 3500 fsc = 0x3f; 3501 } 3502 /* 3503 * Report exception with ESR indicating a fault due to a 3504 * translation table walk for a cache maintenance instruction. 3505 */ 3506 syn = syn_data_abort_no_iss(current_el == target_el, 0, 3507 fi.ea, 1, fi.s1ptw, 1, fsc); 3508 env->exception.vaddress = value; 3509 env->exception.fsr = fsr; 3510 raise_exception(env, EXCP_DATA_ABORT, syn, target_el); 3511 } 3512 } 3513 3514 if (is_a64(env)) { 3515 format64 = true; 3516 } else if (arm_feature(env, ARM_FEATURE_LPAE)) { 3517 /* 3518 * ATS1Cxx: 3519 * * TTBCR.EAE determines whether the result is returned using the 3520 * 32-bit or the 64-bit PAR format 3521 * * Instructions executed in Hyp mode always use the 64bit format 3522 * 3523 * ATS1S2NSOxx uses the 64bit format if any of the following is true: 3524 * * The Non-secure TTBCR.EAE bit is set to 1 3525 * * The implementation includes EL2, and the value of HCR.VM is 1 3526 * 3527 * (Note that HCR.DC makes HCR.VM behave as if it is 1.) 3528 * 3529 * ATS1Hx always uses the 64bit format. 3530 */ 3531 format64 = arm_s1_regime_using_lpae_format(env, mmu_idx); 3532 3533 if (arm_feature(env, ARM_FEATURE_EL2)) { 3534 if (mmu_idx == ARMMMUIdx_E10_0 || 3535 mmu_idx == ARMMMUIdx_E10_1 || 3536 mmu_idx == ARMMMUIdx_E10_1_PAN) { 3537 format64 |= env->cp15.hcr_el2 & (HCR_VM | HCR_DC); 3538 } else { 3539 format64 |= arm_current_el(env) == 2; 3540 } 3541 } 3542 } 3543 3544 if (format64) { 3545 /* Create a 64-bit PAR */ 3546 par64 = (1 << 11); /* LPAE bit always set */ 3547 if (!ret) { 3548 par64 |= phys_addr & ~0xfffULL; 3549 if (!attrs.secure) { 3550 par64 |= (1 << 9); /* NS */ 3551 } 3552 par64 |= (uint64_t)cacheattrs.attrs << 56; /* ATTR */ 3553 par64 |= cacheattrs.shareability << 7; /* SH */ 3554 } else { 3555 uint32_t fsr = arm_fi_to_lfsc(&fi); 3556 3557 par64 |= 1; /* F */ 3558 par64 |= (fsr & 0x3f) << 1; /* FS */ 3559 if (fi.stage2) { 3560 par64 |= (1 << 9); /* S */ 3561 } 3562 if (fi.s1ptw) { 3563 par64 |= (1 << 8); /* PTW */ 3564 } 3565 } 3566 } else { 3567 /* fsr is a DFSR/IFSR value for the short descriptor 3568 * translation table format (with WnR always clear). 3569 * Convert it to a 32-bit PAR. 3570 */ 3571 if (!ret) { 3572 /* We do not set any attribute bits in the PAR */ 3573 if (page_size == (1 << 24) 3574 && arm_feature(env, ARM_FEATURE_V7)) { 3575 par64 = (phys_addr & 0xff000000) | (1 << 1); 3576 } else { 3577 par64 = phys_addr & 0xfffff000; 3578 } 3579 if (!attrs.secure) { 3580 par64 |= (1 << 9); /* NS */ 3581 } 3582 } else { 3583 uint32_t fsr = arm_fi_to_sfsc(&fi); 3584 3585 par64 = ((fsr & (1 << 10)) >> 5) | ((fsr & (1 << 12)) >> 6) | 3586 ((fsr & 0xf) << 1) | 1; 3587 } 3588 } 3589 return par64; 3590 } 3591 #endif /* CONFIG_TCG */ 3592 3593 static void ats_write(CPUARMState *env, const ARMCPRegInfo *ri, uint64_t value) 3594 { 3595 #ifdef CONFIG_TCG 3596 MMUAccessType access_type = ri->opc2 & 1 ? MMU_DATA_STORE : MMU_DATA_LOAD; 3597 uint64_t par64; 3598 ARMMMUIdx mmu_idx; 3599 int el = arm_current_el(env); 3600 bool secure = arm_is_secure_below_el3(env); 3601 3602 switch (ri->opc2 & 6) { 3603 case 0: 3604 /* stage 1 current state PL1: ATS1CPR, ATS1CPW, ATS1CPRP, ATS1CPWP */ 3605 switch (el) { 3606 case 3: 3607 mmu_idx = ARMMMUIdx_SE3; 3608 break; 3609 case 2: 3610 g_assert(!secure); /* ARMv8.4-SecEL2 is 64-bit only */ 3611 /* fall through */ 3612 case 1: 3613 if (ri->crm == 9 && (env->uncached_cpsr & CPSR_PAN)) { 3614 mmu_idx = (secure ? ARMMMUIdx_Stage1_SE1_PAN 3615 : ARMMMUIdx_Stage1_E1_PAN); 3616 } else { 3617 mmu_idx = secure ? ARMMMUIdx_Stage1_SE1 : ARMMMUIdx_Stage1_E1; 3618 } 3619 break; 3620 default: 3621 g_assert_not_reached(); 3622 } 3623 break; 3624 case 2: 3625 /* stage 1 current state PL0: ATS1CUR, ATS1CUW */ 3626 switch (el) { 3627 case 3: 3628 mmu_idx = ARMMMUIdx_SE10_0; 3629 break; 3630 case 2: 3631 g_assert(!secure); /* ARMv8.4-SecEL2 is 64-bit only */ 3632 mmu_idx = ARMMMUIdx_Stage1_E0; 3633 break; 3634 case 1: 3635 mmu_idx = secure ? ARMMMUIdx_Stage1_SE0 : ARMMMUIdx_Stage1_E0; 3636 break; 3637 default: 3638 g_assert_not_reached(); 3639 } 3640 break; 3641 case 4: 3642 /* stage 1+2 NonSecure PL1: ATS12NSOPR, ATS12NSOPW */ 3643 mmu_idx = ARMMMUIdx_E10_1; 3644 break; 3645 case 6: 3646 /* stage 1+2 NonSecure PL0: ATS12NSOUR, ATS12NSOUW */ 3647 mmu_idx = ARMMMUIdx_E10_0; 3648 break; 3649 default: 3650 g_assert_not_reached(); 3651 } 3652 3653 par64 = do_ats_write(env, value, access_type, mmu_idx); 3654 3655 A32_BANKED_CURRENT_REG_SET(env, par, par64); 3656 #else 3657 /* Handled by hardware accelerator. */ 3658 g_assert_not_reached(); 3659 #endif /* CONFIG_TCG */ 3660 } 3661 3662 static void ats1h_write(CPUARMState *env, const ARMCPRegInfo *ri, 3663 uint64_t value) 3664 { 3665 #ifdef CONFIG_TCG 3666 MMUAccessType access_type = ri->opc2 & 1 ? MMU_DATA_STORE : MMU_DATA_LOAD; 3667 uint64_t par64; 3668 3669 par64 = do_ats_write(env, value, access_type, ARMMMUIdx_E2); 3670 3671 A32_BANKED_CURRENT_REG_SET(env, par, par64); 3672 #else 3673 /* Handled by hardware accelerator. */ 3674 g_assert_not_reached(); 3675 #endif /* CONFIG_TCG */ 3676 } 3677 3678 static CPAccessResult at_s1e2_access(CPUARMState *env, const ARMCPRegInfo *ri, 3679 bool isread) 3680 { 3681 if (arm_current_el(env) == 3 && 3682 !(env->cp15.scr_el3 & (SCR_NS | SCR_EEL2))) { 3683 return CP_ACCESS_TRAP; 3684 } 3685 return CP_ACCESS_OK; 3686 } 3687 3688 static void ats_write64(CPUARMState *env, const ARMCPRegInfo *ri, 3689 uint64_t value) 3690 { 3691 #ifdef CONFIG_TCG 3692 MMUAccessType access_type = ri->opc2 & 1 ? MMU_DATA_STORE : MMU_DATA_LOAD; 3693 ARMMMUIdx mmu_idx; 3694 int secure = arm_is_secure_below_el3(env); 3695 3696 switch (ri->opc2 & 6) { 3697 case 0: 3698 switch (ri->opc1) { 3699 case 0: /* AT S1E1R, AT S1E1W, AT S1E1RP, AT S1E1WP */ 3700 if (ri->crm == 9 && (env->pstate & PSTATE_PAN)) { 3701 mmu_idx = (secure ? ARMMMUIdx_Stage1_SE1_PAN 3702 : ARMMMUIdx_Stage1_E1_PAN); 3703 } else { 3704 mmu_idx = secure ? ARMMMUIdx_Stage1_SE1 : ARMMMUIdx_Stage1_E1; 3705 } 3706 break; 3707 case 4: /* AT S1E2R, AT S1E2W */ 3708 mmu_idx = secure ? ARMMMUIdx_SE2 : ARMMMUIdx_E2; 3709 break; 3710 case 6: /* AT S1E3R, AT S1E3W */ 3711 mmu_idx = ARMMMUIdx_SE3; 3712 break; 3713 default: 3714 g_assert_not_reached(); 3715 } 3716 break; 3717 case 2: /* AT S1E0R, AT S1E0W */ 3718 mmu_idx = secure ? ARMMMUIdx_Stage1_SE0 : ARMMMUIdx_Stage1_E0; 3719 break; 3720 case 4: /* AT S12E1R, AT S12E1W */ 3721 mmu_idx = secure ? ARMMMUIdx_SE10_1 : ARMMMUIdx_E10_1; 3722 break; 3723 case 6: /* AT S12E0R, AT S12E0W */ 3724 mmu_idx = secure ? ARMMMUIdx_SE10_0 : ARMMMUIdx_E10_0; 3725 break; 3726 default: 3727 g_assert_not_reached(); 3728 } 3729 3730 env->cp15.par_el[1] = do_ats_write(env, value, access_type, mmu_idx); 3731 #else 3732 /* Handled by hardware accelerator. */ 3733 g_assert_not_reached(); 3734 #endif /* CONFIG_TCG */ 3735 } 3736 #endif 3737 3738 static const ARMCPRegInfo vapa_cp_reginfo[] = { 3739 { .name = "PAR", .cp = 15, .crn = 7, .crm = 4, .opc1 = 0, .opc2 = 0, 3740 .access = PL1_RW, .resetvalue = 0, 3741 .bank_fieldoffsets = { offsetoflow32(CPUARMState, cp15.par_s), 3742 offsetoflow32(CPUARMState, cp15.par_ns) }, 3743 .writefn = par_write }, 3744 #ifndef CONFIG_USER_ONLY 3745 /* This underdecoding is safe because the reginfo is NO_RAW. */ 3746 { .name = "ATS", .cp = 15, .crn = 7, .crm = 8, .opc1 = 0, .opc2 = CP_ANY, 3747 .access = PL1_W, .accessfn = ats_access, 3748 .writefn = ats_write, .type = ARM_CP_NO_RAW | ARM_CP_RAISES_EXC }, 3749 #endif 3750 REGINFO_SENTINEL 3751 }; 3752 3753 /* Return basic MPU access permission bits. */ 3754 static uint32_t simple_mpu_ap_bits(uint32_t val) 3755 { 3756 uint32_t ret; 3757 uint32_t mask; 3758 int i; 3759 ret = 0; 3760 mask = 3; 3761 for (i = 0; i < 16; i += 2) { 3762 ret |= (val >> i) & mask; 3763 mask <<= 2; 3764 } 3765 return ret; 3766 } 3767 3768 /* Pad basic MPU access permission bits to extended format. */ 3769 static uint32_t extended_mpu_ap_bits(uint32_t val) 3770 { 3771 uint32_t ret; 3772 uint32_t mask; 3773 int i; 3774 ret = 0; 3775 mask = 3; 3776 for (i = 0; i < 16; i += 2) { 3777 ret |= (val & mask) << i; 3778 mask <<= 2; 3779 } 3780 return ret; 3781 } 3782 3783 static void pmsav5_data_ap_write(CPUARMState *env, const ARMCPRegInfo *ri, 3784 uint64_t value) 3785 { 3786 env->cp15.pmsav5_data_ap = extended_mpu_ap_bits(value); 3787 } 3788 3789 static uint64_t pmsav5_data_ap_read(CPUARMState *env, const ARMCPRegInfo *ri) 3790 { 3791 return simple_mpu_ap_bits(env->cp15.pmsav5_data_ap); 3792 } 3793 3794 static void pmsav5_insn_ap_write(CPUARMState *env, const ARMCPRegInfo *ri, 3795 uint64_t value) 3796 { 3797 env->cp15.pmsav5_insn_ap = extended_mpu_ap_bits(value); 3798 } 3799 3800 static uint64_t pmsav5_insn_ap_read(CPUARMState *env, const ARMCPRegInfo *ri) 3801 { 3802 return simple_mpu_ap_bits(env->cp15.pmsav5_insn_ap); 3803 } 3804 3805 static uint64_t pmsav7_read(CPUARMState *env, const ARMCPRegInfo *ri) 3806 { 3807 uint32_t *u32p = *(uint32_t **)raw_ptr(env, ri); 3808 3809 if (!u32p) { 3810 return 0; 3811 } 3812 3813 u32p += env->pmsav7.rnr[M_REG_NS]; 3814 return *u32p; 3815 } 3816 3817 static void pmsav7_write(CPUARMState *env, const ARMCPRegInfo *ri, 3818 uint64_t value) 3819 { 3820 ARMCPU *cpu = env_archcpu(env); 3821 uint32_t *u32p = *(uint32_t **)raw_ptr(env, ri); 3822 3823 if (!u32p) { 3824 return; 3825 } 3826 3827 u32p += env->pmsav7.rnr[M_REG_NS]; 3828 tlb_flush(CPU(cpu)); /* Mappings may have changed - purge! */ 3829 *u32p = value; 3830 } 3831 3832 static void pmsav7_rgnr_write(CPUARMState *env, const ARMCPRegInfo *ri, 3833 uint64_t value) 3834 { 3835 ARMCPU *cpu = env_archcpu(env); 3836 uint32_t nrgs = cpu->pmsav7_dregion; 3837 3838 if (value >= nrgs) { 3839 qemu_log_mask(LOG_GUEST_ERROR, 3840 "PMSAv7 RGNR write >= # supported regions, %" PRIu32 3841 " > %" PRIu32 "\n", (uint32_t)value, nrgs); 3842 return; 3843 } 3844 3845 raw_write(env, ri, value); 3846 } 3847 3848 static const ARMCPRegInfo pmsav7_cp_reginfo[] = { 3849 /* Reset for all these registers is handled in arm_cpu_reset(), 3850 * because the PMSAv7 is also used by M-profile CPUs, which do 3851 * not register cpregs but still need the state to be reset. 3852 */ 3853 { .name = "DRBAR", .cp = 15, .crn = 6, .opc1 = 0, .crm = 1, .opc2 = 0, 3854 .access = PL1_RW, .type = ARM_CP_NO_RAW, 3855 .fieldoffset = offsetof(CPUARMState, pmsav7.drbar), 3856 .readfn = pmsav7_read, .writefn = pmsav7_write, 3857 .resetfn = arm_cp_reset_ignore }, 3858 { .name = "DRSR", .cp = 15, .crn = 6, .opc1 = 0, .crm = 1, .opc2 = 2, 3859 .access = PL1_RW, .type = ARM_CP_NO_RAW, 3860 .fieldoffset = offsetof(CPUARMState, pmsav7.drsr), 3861 .readfn = pmsav7_read, .writefn = pmsav7_write, 3862 .resetfn = arm_cp_reset_ignore }, 3863 { .name = "DRACR", .cp = 15, .crn = 6, .opc1 = 0, .crm = 1, .opc2 = 4, 3864 .access = PL1_RW, .type = ARM_CP_NO_RAW, 3865 .fieldoffset = offsetof(CPUARMState, pmsav7.dracr), 3866 .readfn = pmsav7_read, .writefn = pmsav7_write, 3867 .resetfn = arm_cp_reset_ignore }, 3868 { .name = "RGNR", .cp = 15, .crn = 6, .opc1 = 0, .crm = 2, .opc2 = 0, 3869 .access = PL1_RW, 3870 .fieldoffset = offsetof(CPUARMState, pmsav7.rnr[M_REG_NS]), 3871 .writefn = pmsav7_rgnr_write, 3872 .resetfn = arm_cp_reset_ignore }, 3873 REGINFO_SENTINEL 3874 }; 3875 3876 static const ARMCPRegInfo pmsav5_cp_reginfo[] = { 3877 { .name = "DATA_AP", .cp = 15, .crn = 5, .crm = 0, .opc1 = 0, .opc2 = 0, 3878 .access = PL1_RW, .type = ARM_CP_ALIAS, 3879 .fieldoffset = offsetof(CPUARMState, cp15.pmsav5_data_ap), 3880 .readfn = pmsav5_data_ap_read, .writefn = pmsav5_data_ap_write, }, 3881 { .name = "INSN_AP", .cp = 15, .crn = 5, .crm = 0, .opc1 = 0, .opc2 = 1, 3882 .access = PL1_RW, .type = ARM_CP_ALIAS, 3883 .fieldoffset = offsetof(CPUARMState, cp15.pmsav5_insn_ap), 3884 .readfn = pmsav5_insn_ap_read, .writefn = pmsav5_insn_ap_write, }, 3885 { .name = "DATA_EXT_AP", .cp = 15, .crn = 5, .crm = 0, .opc1 = 0, .opc2 = 2, 3886 .access = PL1_RW, 3887 .fieldoffset = offsetof(CPUARMState, cp15.pmsav5_data_ap), 3888 .resetvalue = 0, }, 3889 { .name = "INSN_EXT_AP", .cp = 15, .crn = 5, .crm = 0, .opc1 = 0, .opc2 = 3, 3890 .access = PL1_RW, 3891 .fieldoffset = offsetof(CPUARMState, cp15.pmsav5_insn_ap), 3892 .resetvalue = 0, }, 3893 { .name = "DCACHE_CFG", .cp = 15, .crn = 2, .crm = 0, .opc1 = 0, .opc2 = 0, 3894 .access = PL1_RW, 3895 .fieldoffset = offsetof(CPUARMState, cp15.c2_data), .resetvalue = 0, }, 3896 { .name = "ICACHE_CFG", .cp = 15, .crn = 2, .crm = 0, .opc1 = 0, .opc2 = 1, 3897 .access = PL1_RW, 3898 .fieldoffset = offsetof(CPUARMState, cp15.c2_insn), .resetvalue = 0, }, 3899 /* Protection region base and size registers */ 3900 { .name = "946_PRBS0", .cp = 15, .crn = 6, .crm = 0, .opc1 = 0, 3901 .opc2 = CP_ANY, .access = PL1_RW, .resetvalue = 0, 3902 .fieldoffset = offsetof(CPUARMState, cp15.c6_region[0]) }, 3903 { .name = "946_PRBS1", .cp = 15, .crn = 6, .crm = 1, .opc1 = 0, 3904 .opc2 = CP_ANY, .access = PL1_RW, .resetvalue = 0, 3905 .fieldoffset = offsetof(CPUARMState, cp15.c6_region[1]) }, 3906 { .name = "946_PRBS2", .cp = 15, .crn = 6, .crm = 2, .opc1 = 0, 3907 .opc2 = CP_ANY, .access = PL1_RW, .resetvalue = 0, 3908 .fieldoffset = offsetof(CPUARMState, cp15.c6_region[2]) }, 3909 { .name = "946_PRBS3", .cp = 15, .crn = 6, .crm = 3, .opc1 = 0, 3910 .opc2 = CP_ANY, .access = PL1_RW, .resetvalue = 0, 3911 .fieldoffset = offsetof(CPUARMState, cp15.c6_region[3]) }, 3912 { .name = "946_PRBS4", .cp = 15, .crn = 6, .crm = 4, .opc1 = 0, 3913 .opc2 = CP_ANY, .access = PL1_RW, .resetvalue = 0, 3914 .fieldoffset = offsetof(CPUARMState, cp15.c6_region[4]) }, 3915 { .name = "946_PRBS5", .cp = 15, .crn = 6, .crm = 5, .opc1 = 0, 3916 .opc2 = CP_ANY, .access = PL1_RW, .resetvalue = 0, 3917 .fieldoffset = offsetof(CPUARMState, cp15.c6_region[5]) }, 3918 { .name = "946_PRBS6", .cp = 15, .crn = 6, .crm = 6, .opc1 = 0, 3919 .opc2 = CP_ANY, .access = PL1_RW, .resetvalue = 0, 3920 .fieldoffset = offsetof(CPUARMState, cp15.c6_region[6]) }, 3921 { .name = "946_PRBS7", .cp = 15, .crn = 6, .crm = 7, .opc1 = 0, 3922 .opc2 = CP_ANY, .access = PL1_RW, .resetvalue = 0, 3923 .fieldoffset = offsetof(CPUARMState, cp15.c6_region[7]) }, 3924 REGINFO_SENTINEL 3925 }; 3926 3927 static void vmsa_ttbcr_raw_write(CPUARMState *env, const ARMCPRegInfo *ri, 3928 uint64_t value) 3929 { 3930 TCR *tcr = raw_ptr(env, ri); 3931 int maskshift = extract32(value, 0, 3); 3932 3933 if (!arm_feature(env, ARM_FEATURE_V8)) { 3934 if (arm_feature(env, ARM_FEATURE_LPAE) && (value & TTBCR_EAE)) { 3935 /* Pre ARMv8 bits [21:19], [15:14] and [6:3] are UNK/SBZP when 3936 * using Long-desciptor translation table format */ 3937 value &= ~((7 << 19) | (3 << 14) | (0xf << 3)); 3938 } else if (arm_feature(env, ARM_FEATURE_EL3)) { 3939 /* In an implementation that includes the Security Extensions 3940 * TTBCR has additional fields PD0 [4] and PD1 [5] for 3941 * Short-descriptor translation table format. 3942 */ 3943 value &= TTBCR_PD1 | TTBCR_PD0 | TTBCR_N; 3944 } else { 3945 value &= TTBCR_N; 3946 } 3947 } 3948 3949 /* Update the masks corresponding to the TCR bank being written 3950 * Note that we always calculate mask and base_mask, but 3951 * they are only used for short-descriptor tables (ie if EAE is 0); 3952 * for long-descriptor tables the TCR fields are used differently 3953 * and the mask and base_mask values are meaningless. 3954 */ 3955 tcr->raw_tcr = value; 3956 tcr->mask = ~(((uint32_t)0xffffffffu) >> maskshift); 3957 tcr->base_mask = ~((uint32_t)0x3fffu >> maskshift); 3958 } 3959 3960 static void vmsa_ttbcr_write(CPUARMState *env, const ARMCPRegInfo *ri, 3961 uint64_t value) 3962 { 3963 ARMCPU *cpu = env_archcpu(env); 3964 TCR *tcr = raw_ptr(env, ri); 3965 3966 if (arm_feature(env, ARM_FEATURE_LPAE)) { 3967 /* With LPAE the TTBCR could result in a change of ASID 3968 * via the TTBCR.A1 bit, so do a TLB flush. 3969 */ 3970 tlb_flush(CPU(cpu)); 3971 } 3972 /* Preserve the high half of TCR_EL1, set via TTBCR2. */ 3973 value = deposit64(tcr->raw_tcr, 0, 32, value); 3974 vmsa_ttbcr_raw_write(env, ri, value); 3975 } 3976 3977 static void vmsa_ttbcr_reset(CPUARMState *env, const ARMCPRegInfo *ri) 3978 { 3979 TCR *tcr = raw_ptr(env, ri); 3980 3981 /* Reset both the TCR as well as the masks corresponding to the bank of 3982 * the TCR being reset. 3983 */ 3984 tcr->raw_tcr = 0; 3985 tcr->mask = 0; 3986 tcr->base_mask = 0xffffc000u; 3987 } 3988 3989 static void vmsa_tcr_el12_write(CPUARMState *env, const ARMCPRegInfo *ri, 3990 uint64_t value) 3991 { 3992 ARMCPU *cpu = env_archcpu(env); 3993 TCR *tcr = raw_ptr(env, ri); 3994 3995 /* For AArch64 the A1 bit could result in a change of ASID, so TLB flush. */ 3996 tlb_flush(CPU(cpu)); 3997 tcr->raw_tcr = value; 3998 } 3999 4000 static void vmsa_ttbr_write(CPUARMState *env, const ARMCPRegInfo *ri, 4001 uint64_t value) 4002 { 4003 /* If the ASID changes (with a 64-bit write), we must flush the TLB. */ 4004 if (cpreg_field_is_64bit(ri) && 4005 extract64(raw_read(env, ri) ^ value, 48, 16) != 0) { 4006 ARMCPU *cpu = env_archcpu(env); 4007 tlb_flush(CPU(cpu)); 4008 } 4009 raw_write(env, ri, value); 4010 } 4011 4012 static void vmsa_tcr_ttbr_el2_write(CPUARMState *env, const ARMCPRegInfo *ri, 4013 uint64_t value) 4014 { 4015 /* 4016 * If we are running with E2&0 regime, then an ASID is active. 4017 * Flush if that might be changing. Note we're not checking 4018 * TCR_EL2.A1 to know if this is really the TTBRx_EL2 that 4019 * holds the active ASID, only checking the field that might. 4020 */ 4021 if (extract64(raw_read(env, ri) ^ value, 48, 16) && 4022 (arm_hcr_el2_eff(env) & HCR_E2H)) { 4023 uint16_t mask = ARMMMUIdxBit_E20_2 | 4024 ARMMMUIdxBit_E20_2_PAN | 4025 ARMMMUIdxBit_E20_0; 4026 4027 if (arm_is_secure_below_el3(env)) { 4028 mask >>= ARM_MMU_IDX_A_NS; 4029 } 4030 4031 tlb_flush_by_mmuidx(env_cpu(env), mask); 4032 } 4033 raw_write(env, ri, value); 4034 } 4035 4036 static void vttbr_write(CPUARMState *env, const ARMCPRegInfo *ri, 4037 uint64_t value) 4038 { 4039 ARMCPU *cpu = env_archcpu(env); 4040 CPUState *cs = CPU(cpu); 4041 4042 /* 4043 * A change in VMID to the stage2 page table (Stage2) invalidates 4044 * the combined stage 1&2 tlbs (EL10_1 and EL10_0). 4045 */ 4046 if (raw_read(env, ri) != value) { 4047 uint16_t mask = ARMMMUIdxBit_E10_1 | 4048 ARMMMUIdxBit_E10_1_PAN | 4049 ARMMMUIdxBit_E10_0; 4050 4051 if (arm_is_secure_below_el3(env)) { 4052 mask >>= ARM_MMU_IDX_A_NS; 4053 } 4054 4055 tlb_flush_by_mmuidx(cs, mask); 4056 raw_write(env, ri, value); 4057 } 4058 } 4059 4060 static const ARMCPRegInfo vmsa_pmsa_cp_reginfo[] = { 4061 { .name = "DFSR", .cp = 15, .crn = 5, .crm = 0, .opc1 = 0, .opc2 = 0, 4062 .access = PL1_RW, .accessfn = access_tvm_trvm, .type = ARM_CP_ALIAS, 4063 .bank_fieldoffsets = { offsetoflow32(CPUARMState, cp15.dfsr_s), 4064 offsetoflow32(CPUARMState, cp15.dfsr_ns) }, }, 4065 { .name = "IFSR", .cp = 15, .crn = 5, .crm = 0, .opc1 = 0, .opc2 = 1, 4066 .access = PL1_RW, .accessfn = access_tvm_trvm, .resetvalue = 0, 4067 .bank_fieldoffsets = { offsetoflow32(CPUARMState, cp15.ifsr_s), 4068 offsetoflow32(CPUARMState, cp15.ifsr_ns) } }, 4069 { .name = "DFAR", .cp = 15, .opc1 = 0, .crn = 6, .crm = 0, .opc2 = 0, 4070 .access = PL1_RW, .accessfn = access_tvm_trvm, .resetvalue = 0, 4071 .bank_fieldoffsets = { offsetof(CPUARMState, cp15.dfar_s), 4072 offsetof(CPUARMState, cp15.dfar_ns) } }, 4073 { .name = "FAR_EL1", .state = ARM_CP_STATE_AA64, 4074 .opc0 = 3, .crn = 6, .crm = 0, .opc1 = 0, .opc2 = 0, 4075 .access = PL1_RW, .accessfn = access_tvm_trvm, 4076 .fieldoffset = offsetof(CPUARMState, cp15.far_el[1]), 4077 .resetvalue = 0, }, 4078 REGINFO_SENTINEL 4079 }; 4080 4081 static const ARMCPRegInfo vmsa_cp_reginfo[] = { 4082 { .name = "ESR_EL1", .state = ARM_CP_STATE_AA64, 4083 .opc0 = 3, .crn = 5, .crm = 2, .opc1 = 0, .opc2 = 0, 4084 .access = PL1_RW, .accessfn = access_tvm_trvm, 4085 .fieldoffset = offsetof(CPUARMState, cp15.esr_el[1]), .resetvalue = 0, }, 4086 { .name = "TTBR0_EL1", .state = ARM_CP_STATE_BOTH, 4087 .opc0 = 3, .opc1 = 0, .crn = 2, .crm = 0, .opc2 = 0, 4088 .access = PL1_RW, .accessfn = access_tvm_trvm, 4089 .writefn = vmsa_ttbr_write, .resetvalue = 0, 4090 .bank_fieldoffsets = { offsetof(CPUARMState, cp15.ttbr0_s), 4091 offsetof(CPUARMState, cp15.ttbr0_ns) } }, 4092 { .name = "TTBR1_EL1", .state = ARM_CP_STATE_BOTH, 4093 .opc0 = 3, .opc1 = 0, .crn = 2, .crm = 0, .opc2 = 1, 4094 .access = PL1_RW, .accessfn = access_tvm_trvm, 4095 .writefn = vmsa_ttbr_write, .resetvalue = 0, 4096 .bank_fieldoffsets = { offsetof(CPUARMState, cp15.ttbr1_s), 4097 offsetof(CPUARMState, cp15.ttbr1_ns) } }, 4098 { .name = "TCR_EL1", .state = ARM_CP_STATE_AA64, 4099 .opc0 = 3, .crn = 2, .crm = 0, .opc1 = 0, .opc2 = 2, 4100 .access = PL1_RW, .accessfn = access_tvm_trvm, 4101 .writefn = vmsa_tcr_el12_write, 4102 .resetfn = vmsa_ttbcr_reset, .raw_writefn = raw_write, 4103 .fieldoffset = offsetof(CPUARMState, cp15.tcr_el[1]) }, 4104 { .name = "TTBCR", .cp = 15, .crn = 2, .crm = 0, .opc1 = 0, .opc2 = 2, 4105 .access = PL1_RW, .accessfn = access_tvm_trvm, 4106 .type = ARM_CP_ALIAS, .writefn = vmsa_ttbcr_write, 4107 .raw_writefn = vmsa_ttbcr_raw_write, 4108 .bank_fieldoffsets = { offsetoflow32(CPUARMState, cp15.tcr_el[3]), 4109 offsetoflow32(CPUARMState, cp15.tcr_el[1])} }, 4110 REGINFO_SENTINEL 4111 }; 4112 4113 /* Note that unlike TTBCR, writing to TTBCR2 does not require flushing 4114 * qemu tlbs nor adjusting cached masks. 4115 */ 4116 static const ARMCPRegInfo ttbcr2_reginfo = { 4117 .name = "TTBCR2", .cp = 15, .opc1 = 0, .crn = 2, .crm = 0, .opc2 = 3, 4118 .access = PL1_RW, .accessfn = access_tvm_trvm, 4119 .type = ARM_CP_ALIAS, 4120 .bank_fieldoffsets = { offsetofhigh32(CPUARMState, cp15.tcr_el[3]), 4121 offsetofhigh32(CPUARMState, cp15.tcr_el[1]) }, 4122 }; 4123 4124 static void omap_ticonfig_write(CPUARMState *env, const ARMCPRegInfo *ri, 4125 uint64_t value) 4126 { 4127 env->cp15.c15_ticonfig = value & 0xe7; 4128 /* The OS_TYPE bit in this register changes the reported CPUID! */ 4129 env->cp15.c0_cpuid = (value & (1 << 5)) ? 4130 ARM_CPUID_TI915T : ARM_CPUID_TI925T; 4131 } 4132 4133 static void omap_threadid_write(CPUARMState *env, const ARMCPRegInfo *ri, 4134 uint64_t value) 4135 { 4136 env->cp15.c15_threadid = value & 0xffff; 4137 } 4138 4139 static void omap_wfi_write(CPUARMState *env, const ARMCPRegInfo *ri, 4140 uint64_t value) 4141 { 4142 /* Wait-for-interrupt (deprecated) */ 4143 cpu_interrupt(env_cpu(env), CPU_INTERRUPT_HALT); 4144 } 4145 4146 static void omap_cachemaint_write(CPUARMState *env, const ARMCPRegInfo *ri, 4147 uint64_t value) 4148 { 4149 /* On OMAP there are registers indicating the max/min index of dcache lines 4150 * containing a dirty line; cache flush operations have to reset these. 4151 */ 4152 env->cp15.c15_i_max = 0x000; 4153 env->cp15.c15_i_min = 0xff0; 4154 } 4155 4156 static const ARMCPRegInfo omap_cp_reginfo[] = { 4157 { .name = "DFSR", .cp = 15, .crn = 5, .crm = CP_ANY, 4158 .opc1 = CP_ANY, .opc2 = CP_ANY, .access = PL1_RW, .type = ARM_CP_OVERRIDE, 4159 .fieldoffset = offsetoflow32(CPUARMState, cp15.esr_el[1]), 4160 .resetvalue = 0, }, 4161 { .name = "", .cp = 15, .crn = 15, .crm = 0, .opc1 = 0, .opc2 = 0, 4162 .access = PL1_RW, .type = ARM_CP_NOP }, 4163 { .name = "TICONFIG", .cp = 15, .crn = 15, .crm = 1, .opc1 = 0, .opc2 = 0, 4164 .access = PL1_RW, 4165 .fieldoffset = offsetof(CPUARMState, cp15.c15_ticonfig), .resetvalue = 0, 4166 .writefn = omap_ticonfig_write }, 4167 { .name = "IMAX", .cp = 15, .crn = 15, .crm = 2, .opc1 = 0, .opc2 = 0, 4168 .access = PL1_RW, 4169 .fieldoffset = offsetof(CPUARMState, cp15.c15_i_max), .resetvalue = 0, }, 4170 { .name = "IMIN", .cp = 15, .crn = 15, .crm = 3, .opc1 = 0, .opc2 = 0, 4171 .access = PL1_RW, .resetvalue = 0xff0, 4172 .fieldoffset = offsetof(CPUARMState, cp15.c15_i_min) }, 4173 { .name = "THREADID", .cp = 15, .crn = 15, .crm = 4, .opc1 = 0, .opc2 = 0, 4174 .access = PL1_RW, 4175 .fieldoffset = offsetof(CPUARMState, cp15.c15_threadid), .resetvalue = 0, 4176 .writefn = omap_threadid_write }, 4177 { .name = "TI925T_STATUS", .cp = 15, .crn = 15, 4178 .crm = 8, .opc1 = 0, .opc2 = 0, .access = PL1_RW, 4179 .type = ARM_CP_NO_RAW, 4180 .readfn = arm_cp_read_zero, .writefn = omap_wfi_write, }, 4181 /* TODO: Peripheral port remap register: 4182 * On OMAP2 mcr p15, 0, rn, c15, c2, 4 sets up the interrupt controller 4183 * base address at $rn & ~0xfff and map size of 0x200 << ($rn & 0xfff), 4184 * when MMU is off. 4185 */ 4186 { .name = "OMAP_CACHEMAINT", .cp = 15, .crn = 7, .crm = CP_ANY, 4187 .opc1 = 0, .opc2 = CP_ANY, .access = PL1_W, 4188 .type = ARM_CP_OVERRIDE | ARM_CP_NO_RAW, 4189 .writefn = omap_cachemaint_write }, 4190 { .name = "C9", .cp = 15, .crn = 9, 4191 .crm = CP_ANY, .opc1 = CP_ANY, .opc2 = CP_ANY, .access = PL1_RW, 4192 .type = ARM_CP_CONST | ARM_CP_OVERRIDE, .resetvalue = 0 }, 4193 REGINFO_SENTINEL 4194 }; 4195 4196 static void xscale_cpar_write(CPUARMState *env, const ARMCPRegInfo *ri, 4197 uint64_t value) 4198 { 4199 env->cp15.c15_cpar = value & 0x3fff; 4200 } 4201 4202 static const ARMCPRegInfo xscale_cp_reginfo[] = { 4203 { .name = "XSCALE_CPAR", 4204 .cp = 15, .crn = 15, .crm = 1, .opc1 = 0, .opc2 = 0, .access = PL1_RW, 4205 .fieldoffset = offsetof(CPUARMState, cp15.c15_cpar), .resetvalue = 0, 4206 .writefn = xscale_cpar_write, }, 4207 { .name = "XSCALE_AUXCR", 4208 .cp = 15, .crn = 1, .crm = 0, .opc1 = 0, .opc2 = 1, .access = PL1_RW, 4209 .fieldoffset = offsetof(CPUARMState, cp15.c1_xscaleauxcr), 4210 .resetvalue = 0, }, 4211 /* XScale specific cache-lockdown: since we have no cache we NOP these 4212 * and hope the guest does not really rely on cache behaviour. 4213 */ 4214 { .name = "XSCALE_LOCK_ICACHE_LINE", 4215 .cp = 15, .opc1 = 0, .crn = 9, .crm = 1, .opc2 = 0, 4216 .access = PL1_W, .type = ARM_CP_NOP }, 4217 { .name = "XSCALE_UNLOCK_ICACHE", 4218 .cp = 15, .opc1 = 0, .crn = 9, .crm = 1, .opc2 = 1, 4219 .access = PL1_W, .type = ARM_CP_NOP }, 4220 { .name = "XSCALE_DCACHE_LOCK", 4221 .cp = 15, .opc1 = 0, .crn = 9, .crm = 2, .opc2 = 0, 4222 .access = PL1_RW, .type = ARM_CP_NOP }, 4223 { .name = "XSCALE_UNLOCK_DCACHE", 4224 .cp = 15, .opc1 = 0, .crn = 9, .crm = 2, .opc2 = 1, 4225 .access = PL1_W, .type = ARM_CP_NOP }, 4226 REGINFO_SENTINEL 4227 }; 4228 4229 static const ARMCPRegInfo dummy_c15_cp_reginfo[] = { 4230 /* RAZ/WI the whole crn=15 space, when we don't have a more specific 4231 * implementation of this implementation-defined space. 4232 * Ideally this should eventually disappear in favour of actually 4233 * implementing the correct behaviour for all cores. 4234 */ 4235 { .name = "C15_IMPDEF", .cp = 15, .crn = 15, 4236 .crm = CP_ANY, .opc1 = CP_ANY, .opc2 = CP_ANY, 4237 .access = PL1_RW, 4238 .type = ARM_CP_CONST | ARM_CP_NO_RAW | ARM_CP_OVERRIDE, 4239 .resetvalue = 0 }, 4240 REGINFO_SENTINEL 4241 }; 4242 4243 static const ARMCPRegInfo cache_dirty_status_cp_reginfo[] = { 4244 /* Cache status: RAZ because we have no cache so it's always clean */ 4245 { .name = "CDSR", .cp = 15, .crn = 7, .crm = 10, .opc1 = 0, .opc2 = 6, 4246 .access = PL1_R, .type = ARM_CP_CONST | ARM_CP_NO_RAW, 4247 .resetvalue = 0 }, 4248 REGINFO_SENTINEL 4249 }; 4250 4251 static const ARMCPRegInfo cache_block_ops_cp_reginfo[] = { 4252 /* We never have a a block transfer operation in progress */ 4253 { .name = "BXSR", .cp = 15, .crn = 7, .crm = 12, .opc1 = 0, .opc2 = 4, 4254 .access = PL0_R, .type = ARM_CP_CONST | ARM_CP_NO_RAW, 4255 .resetvalue = 0 }, 4256 /* The cache ops themselves: these all NOP for QEMU */ 4257 { .name = "IICR", .cp = 15, .crm = 5, .opc1 = 0, 4258 .access = PL1_W, .type = ARM_CP_NOP|ARM_CP_64BIT }, 4259 { .name = "IDCR", .cp = 15, .crm = 6, .opc1 = 0, 4260 .access = PL1_W, .type = ARM_CP_NOP|ARM_CP_64BIT }, 4261 { .name = "CDCR", .cp = 15, .crm = 12, .opc1 = 0, 4262 .access = PL0_W, .type = ARM_CP_NOP|ARM_CP_64BIT }, 4263 { .name = "PIR", .cp = 15, .crm = 12, .opc1 = 1, 4264 .access = PL0_W, .type = ARM_CP_NOP|ARM_CP_64BIT }, 4265 { .name = "PDR", .cp = 15, .crm = 12, .opc1 = 2, 4266 .access = PL0_W, .type = ARM_CP_NOP|ARM_CP_64BIT }, 4267 { .name = "CIDCR", .cp = 15, .crm = 14, .opc1 = 0, 4268 .access = PL1_W, .type = ARM_CP_NOP|ARM_CP_64BIT }, 4269 REGINFO_SENTINEL 4270 }; 4271 4272 static const ARMCPRegInfo cache_test_clean_cp_reginfo[] = { 4273 /* The cache test-and-clean instructions always return (1 << 30) 4274 * to indicate that there are no dirty cache lines. 4275 */ 4276 { .name = "TC_DCACHE", .cp = 15, .crn = 7, .crm = 10, .opc1 = 0, .opc2 = 3, 4277 .access = PL0_R, .type = ARM_CP_CONST | ARM_CP_NO_RAW, 4278 .resetvalue = (1 << 30) }, 4279 { .name = "TCI_DCACHE", .cp = 15, .crn = 7, .crm = 14, .opc1 = 0, .opc2 = 3, 4280 .access = PL0_R, .type = ARM_CP_CONST | ARM_CP_NO_RAW, 4281 .resetvalue = (1 << 30) }, 4282 REGINFO_SENTINEL 4283 }; 4284 4285 static const ARMCPRegInfo strongarm_cp_reginfo[] = { 4286 /* Ignore ReadBuffer accesses */ 4287 { .name = "C9_READBUFFER", .cp = 15, .crn = 9, 4288 .crm = CP_ANY, .opc1 = CP_ANY, .opc2 = CP_ANY, 4289 .access = PL1_RW, .resetvalue = 0, 4290 .type = ARM_CP_CONST | ARM_CP_OVERRIDE | ARM_CP_NO_RAW }, 4291 REGINFO_SENTINEL 4292 }; 4293 4294 static uint64_t midr_read(CPUARMState *env, const ARMCPRegInfo *ri) 4295 { 4296 unsigned int cur_el = arm_current_el(env); 4297 4298 if (arm_is_el2_enabled(env) && cur_el == 1) { 4299 return env->cp15.vpidr_el2; 4300 } 4301 return raw_read(env, ri); 4302 } 4303 4304 static uint64_t mpidr_read_val(CPUARMState *env) 4305 { 4306 ARMCPU *cpu = env_archcpu(env); 4307 uint64_t mpidr = cpu->mp_affinity; 4308 4309 if (arm_feature(env, ARM_FEATURE_V7MP)) { 4310 mpidr |= (1U << 31); 4311 /* Cores which are uniprocessor (non-coherent) 4312 * but still implement the MP extensions set 4313 * bit 30. (For instance, Cortex-R5). 4314 */ 4315 if (cpu->mp_is_up) { 4316 mpidr |= (1u << 30); 4317 } 4318 } 4319 return mpidr; 4320 } 4321 4322 static uint64_t mpidr_read(CPUARMState *env, const ARMCPRegInfo *ri) 4323 { 4324 unsigned int cur_el = arm_current_el(env); 4325 4326 if (arm_is_el2_enabled(env) && cur_el == 1) { 4327 return env->cp15.vmpidr_el2; 4328 } 4329 return mpidr_read_val(env); 4330 } 4331 4332 static const ARMCPRegInfo lpae_cp_reginfo[] = { 4333 /* NOP AMAIR0/1 */ 4334 { .name = "AMAIR0", .state = ARM_CP_STATE_BOTH, 4335 .opc0 = 3, .crn = 10, .crm = 3, .opc1 = 0, .opc2 = 0, 4336 .access = PL1_RW, .accessfn = access_tvm_trvm, 4337 .type = ARM_CP_CONST, .resetvalue = 0 }, 4338 /* AMAIR1 is mapped to AMAIR_EL1[63:32] */ 4339 { .name = "AMAIR1", .cp = 15, .crn = 10, .crm = 3, .opc1 = 0, .opc2 = 1, 4340 .access = PL1_RW, .accessfn = access_tvm_trvm, 4341 .type = ARM_CP_CONST, .resetvalue = 0 }, 4342 { .name = "PAR", .cp = 15, .crm = 7, .opc1 = 0, 4343 .access = PL1_RW, .type = ARM_CP_64BIT, .resetvalue = 0, 4344 .bank_fieldoffsets = { offsetof(CPUARMState, cp15.par_s), 4345 offsetof(CPUARMState, cp15.par_ns)} }, 4346 { .name = "TTBR0", .cp = 15, .crm = 2, .opc1 = 0, 4347 .access = PL1_RW, .accessfn = access_tvm_trvm, 4348 .type = ARM_CP_64BIT | ARM_CP_ALIAS, 4349 .bank_fieldoffsets = { offsetof(CPUARMState, cp15.ttbr0_s), 4350 offsetof(CPUARMState, cp15.ttbr0_ns) }, 4351 .writefn = vmsa_ttbr_write, }, 4352 { .name = "TTBR1", .cp = 15, .crm = 2, .opc1 = 1, 4353 .access = PL1_RW, .accessfn = access_tvm_trvm, 4354 .type = ARM_CP_64BIT | ARM_CP_ALIAS, 4355 .bank_fieldoffsets = { offsetof(CPUARMState, cp15.ttbr1_s), 4356 offsetof(CPUARMState, cp15.ttbr1_ns) }, 4357 .writefn = vmsa_ttbr_write, }, 4358 REGINFO_SENTINEL 4359 }; 4360 4361 static uint64_t aa64_fpcr_read(CPUARMState *env, const ARMCPRegInfo *ri) 4362 { 4363 return vfp_get_fpcr(env); 4364 } 4365 4366 static void aa64_fpcr_write(CPUARMState *env, const ARMCPRegInfo *ri, 4367 uint64_t value) 4368 { 4369 vfp_set_fpcr(env, value); 4370 } 4371 4372 static uint64_t aa64_fpsr_read(CPUARMState *env, const ARMCPRegInfo *ri) 4373 { 4374 return vfp_get_fpsr(env); 4375 } 4376 4377 static void aa64_fpsr_write(CPUARMState *env, const ARMCPRegInfo *ri, 4378 uint64_t value) 4379 { 4380 vfp_set_fpsr(env, value); 4381 } 4382 4383 static CPAccessResult aa64_daif_access(CPUARMState *env, const ARMCPRegInfo *ri, 4384 bool isread) 4385 { 4386 if (arm_current_el(env) == 0 && !(arm_sctlr(env, 0) & SCTLR_UMA)) { 4387 return CP_ACCESS_TRAP; 4388 } 4389 return CP_ACCESS_OK; 4390 } 4391 4392 static void aa64_daif_write(CPUARMState *env, const ARMCPRegInfo *ri, 4393 uint64_t value) 4394 { 4395 env->daif = value & PSTATE_DAIF; 4396 } 4397 4398 static uint64_t aa64_pan_read(CPUARMState *env, const ARMCPRegInfo *ri) 4399 { 4400 return env->pstate & PSTATE_PAN; 4401 } 4402 4403 static void aa64_pan_write(CPUARMState *env, const ARMCPRegInfo *ri, 4404 uint64_t value) 4405 { 4406 env->pstate = (env->pstate & ~PSTATE_PAN) | (value & PSTATE_PAN); 4407 } 4408 4409 static const ARMCPRegInfo pan_reginfo = { 4410 .name = "PAN", .state = ARM_CP_STATE_AA64, 4411 .opc0 = 3, .opc1 = 0, .crn = 4, .crm = 2, .opc2 = 3, 4412 .type = ARM_CP_NO_RAW, .access = PL1_RW, 4413 .readfn = aa64_pan_read, .writefn = aa64_pan_write 4414 }; 4415 4416 static uint64_t aa64_uao_read(CPUARMState *env, const ARMCPRegInfo *ri) 4417 { 4418 return env->pstate & PSTATE_UAO; 4419 } 4420 4421 static void aa64_uao_write(CPUARMState *env, const ARMCPRegInfo *ri, 4422 uint64_t value) 4423 { 4424 env->pstate = (env->pstate & ~PSTATE_UAO) | (value & PSTATE_UAO); 4425 } 4426 4427 static const ARMCPRegInfo uao_reginfo = { 4428 .name = "UAO", .state = ARM_CP_STATE_AA64, 4429 .opc0 = 3, .opc1 = 0, .crn = 4, .crm = 2, .opc2 = 4, 4430 .type = ARM_CP_NO_RAW, .access = PL1_RW, 4431 .readfn = aa64_uao_read, .writefn = aa64_uao_write 4432 }; 4433 4434 static uint64_t aa64_dit_read(CPUARMState *env, const ARMCPRegInfo *ri) 4435 { 4436 return env->pstate & PSTATE_DIT; 4437 } 4438 4439 static void aa64_dit_write(CPUARMState *env, const ARMCPRegInfo *ri, 4440 uint64_t value) 4441 { 4442 env->pstate = (env->pstate & ~PSTATE_DIT) | (value & PSTATE_DIT); 4443 } 4444 4445 static const ARMCPRegInfo dit_reginfo = { 4446 .name = "DIT", .state = ARM_CP_STATE_AA64, 4447 .opc0 = 3, .opc1 = 3, .crn = 4, .crm = 2, .opc2 = 5, 4448 .type = ARM_CP_NO_RAW, .access = PL0_RW, 4449 .readfn = aa64_dit_read, .writefn = aa64_dit_write 4450 }; 4451 4452 static CPAccessResult aa64_cacheop_poc_access(CPUARMState *env, 4453 const ARMCPRegInfo *ri, 4454 bool isread) 4455 { 4456 /* Cache invalidate/clean to Point of Coherency or Persistence... */ 4457 switch (arm_current_el(env)) { 4458 case 0: 4459 /* ... EL0 must UNDEF unless SCTLR_EL1.UCI is set. */ 4460 if (!(arm_sctlr(env, 0) & SCTLR_UCI)) { 4461 return CP_ACCESS_TRAP; 4462 } 4463 /* fall through */ 4464 case 1: 4465 /* ... EL1 must trap to EL2 if HCR_EL2.TPCP is set. */ 4466 if (arm_hcr_el2_eff(env) & HCR_TPCP) { 4467 return CP_ACCESS_TRAP_EL2; 4468 } 4469 break; 4470 } 4471 return CP_ACCESS_OK; 4472 } 4473 4474 static CPAccessResult aa64_cacheop_pou_access(CPUARMState *env, 4475 const ARMCPRegInfo *ri, 4476 bool isread) 4477 { 4478 /* Cache invalidate/clean to Point of Unification... */ 4479 switch (arm_current_el(env)) { 4480 case 0: 4481 /* ... EL0 must UNDEF unless SCTLR_EL1.UCI is set. */ 4482 if (!(arm_sctlr(env, 0) & SCTLR_UCI)) { 4483 return CP_ACCESS_TRAP; 4484 } 4485 /* fall through */ 4486 case 1: 4487 /* ... EL1 must trap to EL2 if HCR_EL2.TPU is set. */ 4488 if (arm_hcr_el2_eff(env) & HCR_TPU) { 4489 return CP_ACCESS_TRAP_EL2; 4490 } 4491 break; 4492 } 4493 return CP_ACCESS_OK; 4494 } 4495 4496 /* See: D4.7.2 TLB maintenance requirements and the TLB maintenance instructions 4497 * Page D4-1736 (DDI0487A.b) 4498 */ 4499 4500 static int vae1_tlbmask(CPUARMState *env) 4501 { 4502 uint64_t hcr = arm_hcr_el2_eff(env); 4503 uint16_t mask; 4504 4505 if ((hcr & (HCR_E2H | HCR_TGE)) == (HCR_E2H | HCR_TGE)) { 4506 mask = ARMMMUIdxBit_E20_2 | 4507 ARMMMUIdxBit_E20_2_PAN | 4508 ARMMMUIdxBit_E20_0; 4509 } else { 4510 mask = ARMMMUIdxBit_E10_1 | 4511 ARMMMUIdxBit_E10_1_PAN | 4512 ARMMMUIdxBit_E10_0; 4513 } 4514 4515 if (arm_is_secure_below_el3(env)) { 4516 mask >>= ARM_MMU_IDX_A_NS; 4517 } 4518 4519 return mask; 4520 } 4521 4522 /* Return 56 if TBI is enabled, 64 otherwise. */ 4523 static int tlbbits_for_regime(CPUARMState *env, ARMMMUIdx mmu_idx, 4524 uint64_t addr) 4525 { 4526 uint64_t tcr = regime_tcr(env, mmu_idx)->raw_tcr; 4527 int tbi = aa64_va_parameter_tbi(tcr, mmu_idx); 4528 int select = extract64(addr, 55, 1); 4529 4530 return (tbi >> select) & 1 ? 56 : 64; 4531 } 4532 4533 static int vae1_tlbbits(CPUARMState *env, uint64_t addr) 4534 { 4535 uint64_t hcr = arm_hcr_el2_eff(env); 4536 ARMMMUIdx mmu_idx; 4537 4538 /* Only the regime of the mmu_idx below is significant. */ 4539 if ((hcr & (HCR_E2H | HCR_TGE)) == (HCR_E2H | HCR_TGE)) { 4540 mmu_idx = ARMMMUIdx_E20_0; 4541 } else { 4542 mmu_idx = ARMMMUIdx_E10_0; 4543 } 4544 4545 if (arm_is_secure_below_el3(env)) { 4546 mmu_idx &= ~ARM_MMU_IDX_A_NS; 4547 } 4548 4549 return tlbbits_for_regime(env, mmu_idx, addr); 4550 } 4551 4552 static void tlbi_aa64_vmalle1is_write(CPUARMState *env, const ARMCPRegInfo *ri, 4553 uint64_t value) 4554 { 4555 CPUState *cs = env_cpu(env); 4556 int mask = vae1_tlbmask(env); 4557 4558 tlb_flush_by_mmuidx_all_cpus_synced(cs, mask); 4559 } 4560 4561 static void tlbi_aa64_vmalle1_write(CPUARMState *env, const ARMCPRegInfo *ri, 4562 uint64_t value) 4563 { 4564 CPUState *cs = env_cpu(env); 4565 int mask = vae1_tlbmask(env); 4566 4567 if (tlb_force_broadcast(env)) { 4568 tlb_flush_by_mmuidx_all_cpus_synced(cs, mask); 4569 } else { 4570 tlb_flush_by_mmuidx(cs, mask); 4571 } 4572 } 4573 4574 static int alle1_tlbmask(CPUARMState *env) 4575 { 4576 /* 4577 * Note that the 'ALL' scope must invalidate both stage 1 and 4578 * stage 2 translations, whereas most other scopes only invalidate 4579 * stage 1 translations. 4580 */ 4581 if (arm_is_secure_below_el3(env)) { 4582 return ARMMMUIdxBit_SE10_1 | 4583 ARMMMUIdxBit_SE10_1_PAN | 4584 ARMMMUIdxBit_SE10_0; 4585 } else { 4586 return ARMMMUIdxBit_E10_1 | 4587 ARMMMUIdxBit_E10_1_PAN | 4588 ARMMMUIdxBit_E10_0; 4589 } 4590 } 4591 4592 static int e2_tlbmask(CPUARMState *env) 4593 { 4594 if (arm_is_secure_below_el3(env)) { 4595 return ARMMMUIdxBit_SE20_0 | 4596 ARMMMUIdxBit_SE20_2 | 4597 ARMMMUIdxBit_SE20_2_PAN | 4598 ARMMMUIdxBit_SE2; 4599 } else { 4600 return ARMMMUIdxBit_E20_0 | 4601 ARMMMUIdxBit_E20_2 | 4602 ARMMMUIdxBit_E20_2_PAN | 4603 ARMMMUIdxBit_E2; 4604 } 4605 } 4606 4607 static void tlbi_aa64_alle1_write(CPUARMState *env, const ARMCPRegInfo *ri, 4608 uint64_t value) 4609 { 4610 CPUState *cs = env_cpu(env); 4611 int mask = alle1_tlbmask(env); 4612 4613 tlb_flush_by_mmuidx(cs, mask); 4614 } 4615 4616 static void tlbi_aa64_alle2_write(CPUARMState *env, const ARMCPRegInfo *ri, 4617 uint64_t value) 4618 { 4619 CPUState *cs = env_cpu(env); 4620 int mask = e2_tlbmask(env); 4621 4622 tlb_flush_by_mmuidx(cs, mask); 4623 } 4624 4625 static void tlbi_aa64_alle3_write(CPUARMState *env, const ARMCPRegInfo *ri, 4626 uint64_t value) 4627 { 4628 ARMCPU *cpu = env_archcpu(env); 4629 CPUState *cs = CPU(cpu); 4630 4631 tlb_flush_by_mmuidx(cs, ARMMMUIdxBit_SE3); 4632 } 4633 4634 static void tlbi_aa64_alle1is_write(CPUARMState *env, const ARMCPRegInfo *ri, 4635 uint64_t value) 4636 { 4637 CPUState *cs = env_cpu(env); 4638 int mask = alle1_tlbmask(env); 4639 4640 tlb_flush_by_mmuidx_all_cpus_synced(cs, mask); 4641 } 4642 4643 static void tlbi_aa64_alle2is_write(CPUARMState *env, const ARMCPRegInfo *ri, 4644 uint64_t value) 4645 { 4646 CPUState *cs = env_cpu(env); 4647 int mask = e2_tlbmask(env); 4648 4649 tlb_flush_by_mmuidx_all_cpus_synced(cs, mask); 4650 } 4651 4652 static void tlbi_aa64_alle3is_write(CPUARMState *env, const ARMCPRegInfo *ri, 4653 uint64_t value) 4654 { 4655 CPUState *cs = env_cpu(env); 4656 4657 tlb_flush_by_mmuidx_all_cpus_synced(cs, ARMMMUIdxBit_SE3); 4658 } 4659 4660 static void tlbi_aa64_vae2_write(CPUARMState *env, const ARMCPRegInfo *ri, 4661 uint64_t value) 4662 { 4663 /* Invalidate by VA, EL2 4664 * Currently handles both VAE2 and VALE2, since we don't support 4665 * flush-last-level-only. 4666 */ 4667 CPUState *cs = env_cpu(env); 4668 int mask = e2_tlbmask(env); 4669 uint64_t pageaddr = sextract64(value << 12, 0, 56); 4670 4671 tlb_flush_page_by_mmuidx(cs, pageaddr, mask); 4672 } 4673 4674 static void tlbi_aa64_vae3_write(CPUARMState *env, const ARMCPRegInfo *ri, 4675 uint64_t value) 4676 { 4677 /* Invalidate by VA, EL3 4678 * Currently handles both VAE3 and VALE3, since we don't support 4679 * flush-last-level-only. 4680 */ 4681 ARMCPU *cpu = env_archcpu(env); 4682 CPUState *cs = CPU(cpu); 4683 uint64_t pageaddr = sextract64(value << 12, 0, 56); 4684 4685 tlb_flush_page_by_mmuidx(cs, pageaddr, ARMMMUIdxBit_SE3); 4686 } 4687 4688 static void tlbi_aa64_vae1is_write(CPUARMState *env, const ARMCPRegInfo *ri, 4689 uint64_t value) 4690 { 4691 CPUState *cs = env_cpu(env); 4692 int mask = vae1_tlbmask(env); 4693 uint64_t pageaddr = sextract64(value << 12, 0, 56); 4694 int bits = vae1_tlbbits(env, pageaddr); 4695 4696 tlb_flush_page_bits_by_mmuidx_all_cpus_synced(cs, pageaddr, mask, bits); 4697 } 4698 4699 static void tlbi_aa64_vae1_write(CPUARMState *env, const ARMCPRegInfo *ri, 4700 uint64_t value) 4701 { 4702 /* Invalidate by VA, EL1&0 (AArch64 version). 4703 * Currently handles all of VAE1, VAAE1, VAALE1 and VALE1, 4704 * since we don't support flush-for-specific-ASID-only or 4705 * flush-last-level-only. 4706 */ 4707 CPUState *cs = env_cpu(env); 4708 int mask = vae1_tlbmask(env); 4709 uint64_t pageaddr = sextract64(value << 12, 0, 56); 4710 int bits = vae1_tlbbits(env, pageaddr); 4711 4712 if (tlb_force_broadcast(env)) { 4713 tlb_flush_page_bits_by_mmuidx_all_cpus_synced(cs, pageaddr, mask, bits); 4714 } else { 4715 tlb_flush_page_bits_by_mmuidx(cs, pageaddr, mask, bits); 4716 } 4717 } 4718 4719 static void tlbi_aa64_vae2is_write(CPUARMState *env, const ARMCPRegInfo *ri, 4720 uint64_t value) 4721 { 4722 CPUState *cs = env_cpu(env); 4723 uint64_t pageaddr = sextract64(value << 12, 0, 56); 4724 bool secure = arm_is_secure_below_el3(env); 4725 int mask = secure ? ARMMMUIdxBit_SE2 : ARMMMUIdxBit_E2; 4726 int bits = tlbbits_for_regime(env, secure ? ARMMMUIdx_E2 : ARMMMUIdx_SE2, 4727 pageaddr); 4728 4729 tlb_flush_page_bits_by_mmuidx_all_cpus_synced(cs, pageaddr, mask, bits); 4730 } 4731 4732 static void tlbi_aa64_vae3is_write(CPUARMState *env, const ARMCPRegInfo *ri, 4733 uint64_t value) 4734 { 4735 CPUState *cs = env_cpu(env); 4736 uint64_t pageaddr = sextract64(value << 12, 0, 56); 4737 int bits = tlbbits_for_regime(env, ARMMMUIdx_SE3, pageaddr); 4738 4739 tlb_flush_page_bits_by_mmuidx_all_cpus_synced(cs, pageaddr, 4740 ARMMMUIdxBit_SE3, bits); 4741 } 4742 4743 static CPAccessResult aa64_zva_access(CPUARMState *env, const ARMCPRegInfo *ri, 4744 bool isread) 4745 { 4746 int cur_el = arm_current_el(env); 4747 4748 if (cur_el < 2) { 4749 uint64_t hcr = arm_hcr_el2_eff(env); 4750 4751 if (cur_el == 0) { 4752 if ((hcr & (HCR_E2H | HCR_TGE)) == (HCR_E2H | HCR_TGE)) { 4753 if (!(env->cp15.sctlr_el[2] & SCTLR_DZE)) { 4754 return CP_ACCESS_TRAP_EL2; 4755 } 4756 } else { 4757 if (!(env->cp15.sctlr_el[1] & SCTLR_DZE)) { 4758 return CP_ACCESS_TRAP; 4759 } 4760 if (hcr & HCR_TDZ) { 4761 return CP_ACCESS_TRAP_EL2; 4762 } 4763 } 4764 } else if (hcr & HCR_TDZ) { 4765 return CP_ACCESS_TRAP_EL2; 4766 } 4767 } 4768 return CP_ACCESS_OK; 4769 } 4770 4771 static uint64_t aa64_dczid_read(CPUARMState *env, const ARMCPRegInfo *ri) 4772 { 4773 ARMCPU *cpu = env_archcpu(env); 4774 int dzp_bit = 1 << 4; 4775 4776 /* DZP indicates whether DC ZVA access is allowed */ 4777 if (aa64_zva_access(env, NULL, false) == CP_ACCESS_OK) { 4778 dzp_bit = 0; 4779 } 4780 return cpu->dcz_blocksize | dzp_bit; 4781 } 4782 4783 static CPAccessResult sp_el0_access(CPUARMState *env, const ARMCPRegInfo *ri, 4784 bool isread) 4785 { 4786 if (!(env->pstate & PSTATE_SP)) { 4787 /* Access to SP_EL0 is undefined if it's being used as 4788 * the stack pointer. 4789 */ 4790 return CP_ACCESS_TRAP_UNCATEGORIZED; 4791 } 4792 return CP_ACCESS_OK; 4793 } 4794 4795 static uint64_t spsel_read(CPUARMState *env, const ARMCPRegInfo *ri) 4796 { 4797 return env->pstate & PSTATE_SP; 4798 } 4799 4800 static void spsel_write(CPUARMState *env, const ARMCPRegInfo *ri, uint64_t val) 4801 { 4802 update_spsel(env, val); 4803 } 4804 4805 static void sctlr_write(CPUARMState *env, const ARMCPRegInfo *ri, 4806 uint64_t value) 4807 { 4808 ARMCPU *cpu = env_archcpu(env); 4809 4810 if (arm_feature(env, ARM_FEATURE_PMSA) && !cpu->has_mpu) { 4811 /* M bit is RAZ/WI for PMSA with no MPU implemented */ 4812 value &= ~SCTLR_M; 4813 } 4814 4815 /* ??? Lots of these bits are not implemented. */ 4816 4817 if (ri->state == ARM_CP_STATE_AA64 && !cpu_isar_feature(aa64_mte, cpu)) { 4818 if (ri->opc1 == 6) { /* SCTLR_EL3 */ 4819 value &= ~(SCTLR_ITFSB | SCTLR_TCF | SCTLR_ATA); 4820 } else { 4821 value &= ~(SCTLR_ITFSB | SCTLR_TCF0 | SCTLR_TCF | 4822 SCTLR_ATA0 | SCTLR_ATA); 4823 } 4824 } 4825 4826 if (raw_read(env, ri) == value) { 4827 /* Skip the TLB flush if nothing actually changed; Linux likes 4828 * to do a lot of pointless SCTLR writes. 4829 */ 4830 return; 4831 } 4832 4833 raw_write(env, ri, value); 4834 4835 /* This may enable/disable the MMU, so do a TLB flush. */ 4836 tlb_flush(CPU(cpu)); 4837 4838 if (ri->type & ARM_CP_SUPPRESS_TB_END) { 4839 /* 4840 * Normally we would always end the TB on an SCTLR write; see the 4841 * comment in ARMCPRegInfo sctlr initialization below for why Xscale 4842 * is special. Setting ARM_CP_SUPPRESS_TB_END also stops the rebuild 4843 * of hflags from the translator, so do it here. 4844 */ 4845 arm_rebuild_hflags(env); 4846 } 4847 } 4848 4849 static CPAccessResult fpexc32_access(CPUARMState *env, const ARMCPRegInfo *ri, 4850 bool isread) 4851 { 4852 if ((env->cp15.cptr_el[2] & CPTR_TFP) && arm_current_el(env) == 2) { 4853 return CP_ACCESS_TRAP_FP_EL2; 4854 } 4855 if (env->cp15.cptr_el[3] & CPTR_TFP) { 4856 return CP_ACCESS_TRAP_FP_EL3; 4857 } 4858 return CP_ACCESS_OK; 4859 } 4860 4861 static void sdcr_write(CPUARMState *env, const ARMCPRegInfo *ri, 4862 uint64_t value) 4863 { 4864 env->cp15.mdcr_el3 = value & SDCR_VALID_MASK; 4865 } 4866 4867 static const ARMCPRegInfo v8_cp_reginfo[] = { 4868 /* Minimal set of EL0-visible registers. This will need to be expanded 4869 * significantly for system emulation of AArch64 CPUs. 4870 */ 4871 { .name = "NZCV", .state = ARM_CP_STATE_AA64, 4872 .opc0 = 3, .opc1 = 3, .opc2 = 0, .crn = 4, .crm = 2, 4873 .access = PL0_RW, .type = ARM_CP_NZCV }, 4874 { .name = "DAIF", .state = ARM_CP_STATE_AA64, 4875 .opc0 = 3, .opc1 = 3, .opc2 = 1, .crn = 4, .crm = 2, 4876 .type = ARM_CP_NO_RAW, 4877 .access = PL0_RW, .accessfn = aa64_daif_access, 4878 .fieldoffset = offsetof(CPUARMState, daif), 4879 .writefn = aa64_daif_write, .resetfn = arm_cp_reset_ignore }, 4880 { .name = "FPCR", .state = ARM_CP_STATE_AA64, 4881 .opc0 = 3, .opc1 = 3, .opc2 = 0, .crn = 4, .crm = 4, 4882 .access = PL0_RW, .type = ARM_CP_FPU | ARM_CP_SUPPRESS_TB_END, 4883 .readfn = aa64_fpcr_read, .writefn = aa64_fpcr_write }, 4884 { .name = "FPSR", .state = ARM_CP_STATE_AA64, 4885 .opc0 = 3, .opc1 = 3, .opc2 = 1, .crn = 4, .crm = 4, 4886 .access = PL0_RW, .type = ARM_CP_FPU | ARM_CP_SUPPRESS_TB_END, 4887 .readfn = aa64_fpsr_read, .writefn = aa64_fpsr_write }, 4888 { .name = "DCZID_EL0", .state = ARM_CP_STATE_AA64, 4889 .opc0 = 3, .opc1 = 3, .opc2 = 7, .crn = 0, .crm = 0, 4890 .access = PL0_R, .type = ARM_CP_NO_RAW, 4891 .readfn = aa64_dczid_read }, 4892 { .name = "DC_ZVA", .state = ARM_CP_STATE_AA64, 4893 .opc0 = 1, .opc1 = 3, .crn = 7, .crm = 4, .opc2 = 1, 4894 .access = PL0_W, .type = ARM_CP_DC_ZVA, 4895 #ifndef CONFIG_USER_ONLY 4896 /* Avoid overhead of an access check that always passes in user-mode */ 4897 .accessfn = aa64_zva_access, 4898 #endif 4899 }, 4900 { .name = "CURRENTEL", .state = ARM_CP_STATE_AA64, 4901 .opc0 = 3, .opc1 = 0, .opc2 = 2, .crn = 4, .crm = 2, 4902 .access = PL1_R, .type = ARM_CP_CURRENTEL }, 4903 /* Cache ops: all NOPs since we don't emulate caches */ 4904 { .name = "IC_IALLUIS", .state = ARM_CP_STATE_AA64, 4905 .opc0 = 1, .opc1 = 0, .crn = 7, .crm = 1, .opc2 = 0, 4906 .access = PL1_W, .type = ARM_CP_NOP, 4907 .accessfn = aa64_cacheop_pou_access }, 4908 { .name = "IC_IALLU", .state = ARM_CP_STATE_AA64, 4909 .opc0 = 1, .opc1 = 0, .crn = 7, .crm = 5, .opc2 = 0, 4910 .access = PL1_W, .type = ARM_CP_NOP, 4911 .accessfn = aa64_cacheop_pou_access }, 4912 { .name = "IC_IVAU", .state = ARM_CP_STATE_AA64, 4913 .opc0 = 1, .opc1 = 3, .crn = 7, .crm = 5, .opc2 = 1, 4914 .access = PL0_W, .type = ARM_CP_NOP, 4915 .accessfn = aa64_cacheop_pou_access }, 4916 { .name = "DC_IVAC", .state = ARM_CP_STATE_AA64, 4917 .opc0 = 1, .opc1 = 0, .crn = 7, .crm = 6, .opc2 = 1, 4918 .access = PL1_W, .accessfn = aa64_cacheop_poc_access, 4919 .type = ARM_CP_NOP }, 4920 { .name = "DC_ISW", .state = ARM_CP_STATE_AA64, 4921 .opc0 = 1, .opc1 = 0, .crn = 7, .crm = 6, .opc2 = 2, 4922 .access = PL1_W, .accessfn = access_tsw, .type = ARM_CP_NOP }, 4923 { .name = "DC_CVAC", .state = ARM_CP_STATE_AA64, 4924 .opc0 = 1, .opc1 = 3, .crn = 7, .crm = 10, .opc2 = 1, 4925 .access = PL0_W, .type = ARM_CP_NOP, 4926 .accessfn = aa64_cacheop_poc_access }, 4927 { .name = "DC_CSW", .state = ARM_CP_STATE_AA64, 4928 .opc0 = 1, .opc1 = 0, .crn = 7, .crm = 10, .opc2 = 2, 4929 .access = PL1_W, .accessfn = access_tsw, .type = ARM_CP_NOP }, 4930 { .name = "DC_CVAU", .state = ARM_CP_STATE_AA64, 4931 .opc0 = 1, .opc1 = 3, .crn = 7, .crm = 11, .opc2 = 1, 4932 .access = PL0_W, .type = ARM_CP_NOP, 4933 .accessfn = aa64_cacheop_pou_access }, 4934 { .name = "DC_CIVAC", .state = ARM_CP_STATE_AA64, 4935 .opc0 = 1, .opc1 = 3, .crn = 7, .crm = 14, .opc2 = 1, 4936 .access = PL0_W, .type = ARM_CP_NOP, 4937 .accessfn = aa64_cacheop_poc_access }, 4938 { .name = "DC_CISW", .state = ARM_CP_STATE_AA64, 4939 .opc0 = 1, .opc1 = 0, .crn = 7, .crm = 14, .opc2 = 2, 4940 .access = PL1_W, .accessfn = access_tsw, .type = ARM_CP_NOP }, 4941 /* TLBI operations */ 4942 { .name = "TLBI_VMALLE1IS", .state = ARM_CP_STATE_AA64, 4943 .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 3, .opc2 = 0, 4944 .access = PL1_W, .accessfn = access_ttlb, .type = ARM_CP_NO_RAW, 4945 .writefn = tlbi_aa64_vmalle1is_write }, 4946 { .name = "TLBI_VAE1IS", .state = ARM_CP_STATE_AA64, 4947 .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 3, .opc2 = 1, 4948 .access = PL1_W, .accessfn = access_ttlb, .type = ARM_CP_NO_RAW, 4949 .writefn = tlbi_aa64_vae1is_write }, 4950 { .name = "TLBI_ASIDE1IS", .state = ARM_CP_STATE_AA64, 4951 .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 3, .opc2 = 2, 4952 .access = PL1_W, .accessfn = access_ttlb, .type = ARM_CP_NO_RAW, 4953 .writefn = tlbi_aa64_vmalle1is_write }, 4954 { .name = "TLBI_VAAE1IS", .state = ARM_CP_STATE_AA64, 4955 .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 3, .opc2 = 3, 4956 .access = PL1_W, .accessfn = access_ttlb, .type = ARM_CP_NO_RAW, 4957 .writefn = tlbi_aa64_vae1is_write }, 4958 { .name = "TLBI_VALE1IS", .state = ARM_CP_STATE_AA64, 4959 .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 3, .opc2 = 5, 4960 .access = PL1_W, .accessfn = access_ttlb, .type = ARM_CP_NO_RAW, 4961 .writefn = tlbi_aa64_vae1is_write }, 4962 { .name = "TLBI_VAALE1IS", .state = ARM_CP_STATE_AA64, 4963 .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 3, .opc2 = 7, 4964 .access = PL1_W, .accessfn = access_ttlb, .type = ARM_CP_NO_RAW, 4965 .writefn = tlbi_aa64_vae1is_write }, 4966 { .name = "TLBI_VMALLE1", .state = ARM_CP_STATE_AA64, 4967 .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 7, .opc2 = 0, 4968 .access = PL1_W, .accessfn = access_ttlb, .type = ARM_CP_NO_RAW, 4969 .writefn = tlbi_aa64_vmalle1_write }, 4970 { .name = "TLBI_VAE1", .state = ARM_CP_STATE_AA64, 4971 .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 7, .opc2 = 1, 4972 .access = PL1_W, .accessfn = access_ttlb, .type = ARM_CP_NO_RAW, 4973 .writefn = tlbi_aa64_vae1_write }, 4974 { .name = "TLBI_ASIDE1", .state = ARM_CP_STATE_AA64, 4975 .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 7, .opc2 = 2, 4976 .access = PL1_W, .accessfn = access_ttlb, .type = ARM_CP_NO_RAW, 4977 .writefn = tlbi_aa64_vmalle1_write }, 4978 { .name = "TLBI_VAAE1", .state = ARM_CP_STATE_AA64, 4979 .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 7, .opc2 = 3, 4980 .access = PL1_W, .accessfn = access_ttlb, .type = ARM_CP_NO_RAW, 4981 .writefn = tlbi_aa64_vae1_write }, 4982 { .name = "TLBI_VALE1", .state = ARM_CP_STATE_AA64, 4983 .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 7, .opc2 = 5, 4984 .access = PL1_W, .accessfn = access_ttlb, .type = ARM_CP_NO_RAW, 4985 .writefn = tlbi_aa64_vae1_write }, 4986 { .name = "TLBI_VAALE1", .state = ARM_CP_STATE_AA64, 4987 .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 7, .opc2 = 7, 4988 .access = PL1_W, .accessfn = access_ttlb, .type = ARM_CP_NO_RAW, 4989 .writefn = tlbi_aa64_vae1_write }, 4990 { .name = "TLBI_IPAS2E1IS", .state = ARM_CP_STATE_AA64, 4991 .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 0, .opc2 = 1, 4992 .access = PL2_W, .type = ARM_CP_NOP }, 4993 { .name = "TLBI_IPAS2LE1IS", .state = ARM_CP_STATE_AA64, 4994 .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 0, .opc2 = 5, 4995 .access = PL2_W, .type = ARM_CP_NOP }, 4996 { .name = "TLBI_ALLE1IS", .state = ARM_CP_STATE_AA64, 4997 .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 3, .opc2 = 4, 4998 .access = PL2_W, .type = ARM_CP_NO_RAW, 4999 .writefn = tlbi_aa64_alle1is_write }, 5000 { .name = "TLBI_VMALLS12E1IS", .state = ARM_CP_STATE_AA64, 5001 .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 3, .opc2 = 6, 5002 .access = PL2_W, .type = ARM_CP_NO_RAW, 5003 .writefn = tlbi_aa64_alle1is_write }, 5004 { .name = "TLBI_IPAS2E1", .state = ARM_CP_STATE_AA64, 5005 .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 4, .opc2 = 1, 5006 .access = PL2_W, .type = ARM_CP_NOP }, 5007 { .name = "TLBI_IPAS2LE1", .state = ARM_CP_STATE_AA64, 5008 .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 4, .opc2 = 5, 5009 .access = PL2_W, .type = ARM_CP_NOP }, 5010 { .name = "TLBI_ALLE1", .state = ARM_CP_STATE_AA64, 5011 .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 7, .opc2 = 4, 5012 .access = PL2_W, .type = ARM_CP_NO_RAW, 5013 .writefn = tlbi_aa64_alle1_write }, 5014 { .name = "TLBI_VMALLS12E1", .state = ARM_CP_STATE_AA64, 5015 .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 7, .opc2 = 6, 5016 .access = PL2_W, .type = ARM_CP_NO_RAW, 5017 .writefn = tlbi_aa64_alle1is_write }, 5018 #ifndef CONFIG_USER_ONLY 5019 /* 64 bit address translation operations */ 5020 { .name = "AT_S1E1R", .state = ARM_CP_STATE_AA64, 5021 .opc0 = 1, .opc1 = 0, .crn = 7, .crm = 8, .opc2 = 0, 5022 .access = PL1_W, .type = ARM_CP_NO_RAW | ARM_CP_RAISES_EXC, 5023 .writefn = ats_write64 }, 5024 { .name = "AT_S1E1W", .state = ARM_CP_STATE_AA64, 5025 .opc0 = 1, .opc1 = 0, .crn = 7, .crm = 8, .opc2 = 1, 5026 .access = PL1_W, .type = ARM_CP_NO_RAW | ARM_CP_RAISES_EXC, 5027 .writefn = ats_write64 }, 5028 { .name = "AT_S1E0R", .state = ARM_CP_STATE_AA64, 5029 .opc0 = 1, .opc1 = 0, .crn = 7, .crm = 8, .opc2 = 2, 5030 .access = PL1_W, .type = ARM_CP_NO_RAW | ARM_CP_RAISES_EXC, 5031 .writefn = ats_write64 }, 5032 { .name = "AT_S1E0W", .state = ARM_CP_STATE_AA64, 5033 .opc0 = 1, .opc1 = 0, .crn = 7, .crm = 8, .opc2 = 3, 5034 .access = PL1_W, .type = ARM_CP_NO_RAW | ARM_CP_RAISES_EXC, 5035 .writefn = ats_write64 }, 5036 { .name = "AT_S12E1R", .state = ARM_CP_STATE_AA64, 5037 .opc0 = 1, .opc1 = 4, .crn = 7, .crm = 8, .opc2 = 4, 5038 .access = PL2_W, .type = ARM_CP_NO_RAW | ARM_CP_RAISES_EXC, 5039 .writefn = ats_write64 }, 5040 { .name = "AT_S12E1W", .state = ARM_CP_STATE_AA64, 5041 .opc0 = 1, .opc1 = 4, .crn = 7, .crm = 8, .opc2 = 5, 5042 .access = PL2_W, .type = ARM_CP_NO_RAW | ARM_CP_RAISES_EXC, 5043 .writefn = ats_write64 }, 5044 { .name = "AT_S12E0R", .state = ARM_CP_STATE_AA64, 5045 .opc0 = 1, .opc1 = 4, .crn = 7, .crm = 8, .opc2 = 6, 5046 .access = PL2_W, .type = ARM_CP_NO_RAW | ARM_CP_RAISES_EXC, 5047 .writefn = ats_write64 }, 5048 { .name = "AT_S12E0W", .state = ARM_CP_STATE_AA64, 5049 .opc0 = 1, .opc1 = 4, .crn = 7, .crm = 8, .opc2 = 7, 5050 .access = PL2_W, .type = ARM_CP_NO_RAW | ARM_CP_RAISES_EXC, 5051 .writefn = ats_write64 }, 5052 /* AT S1E2* are elsewhere as they UNDEF from EL3 if EL2 is not present */ 5053 { .name = "AT_S1E3R", .state = ARM_CP_STATE_AA64, 5054 .opc0 = 1, .opc1 = 6, .crn = 7, .crm = 8, .opc2 = 0, 5055 .access = PL3_W, .type = ARM_CP_NO_RAW | ARM_CP_RAISES_EXC, 5056 .writefn = ats_write64 }, 5057 { .name = "AT_S1E3W", .state = ARM_CP_STATE_AA64, 5058 .opc0 = 1, .opc1 = 6, .crn = 7, .crm = 8, .opc2 = 1, 5059 .access = PL3_W, .type = ARM_CP_NO_RAW | ARM_CP_RAISES_EXC, 5060 .writefn = ats_write64 }, 5061 { .name = "PAR_EL1", .state = ARM_CP_STATE_AA64, 5062 .type = ARM_CP_ALIAS, 5063 .opc0 = 3, .opc1 = 0, .crn = 7, .crm = 4, .opc2 = 0, 5064 .access = PL1_RW, .resetvalue = 0, 5065 .fieldoffset = offsetof(CPUARMState, cp15.par_el[1]), 5066 .writefn = par_write }, 5067 #endif 5068 /* TLB invalidate last level of translation table walk */ 5069 { .name = "TLBIMVALIS", .cp = 15, .opc1 = 0, .crn = 8, .crm = 3, .opc2 = 5, 5070 .type = ARM_CP_NO_RAW, .access = PL1_W, .accessfn = access_ttlb, 5071 .writefn = tlbimva_is_write }, 5072 { .name = "TLBIMVAALIS", .cp = 15, .opc1 = 0, .crn = 8, .crm = 3, .opc2 = 7, 5073 .type = ARM_CP_NO_RAW, .access = PL1_W, .accessfn = access_ttlb, 5074 .writefn = tlbimvaa_is_write }, 5075 { .name = "TLBIMVAL", .cp = 15, .opc1 = 0, .crn = 8, .crm = 7, .opc2 = 5, 5076 .type = ARM_CP_NO_RAW, .access = PL1_W, .accessfn = access_ttlb, 5077 .writefn = tlbimva_write }, 5078 { .name = "TLBIMVAAL", .cp = 15, .opc1 = 0, .crn = 8, .crm = 7, .opc2 = 7, 5079 .type = ARM_CP_NO_RAW, .access = PL1_W, .accessfn = access_ttlb, 5080 .writefn = tlbimvaa_write }, 5081 { .name = "TLBIMVALH", .cp = 15, .opc1 = 4, .crn = 8, .crm = 7, .opc2 = 5, 5082 .type = ARM_CP_NO_RAW, .access = PL2_W, 5083 .writefn = tlbimva_hyp_write }, 5084 { .name = "TLBIMVALHIS", 5085 .cp = 15, .opc1 = 4, .crn = 8, .crm = 3, .opc2 = 5, 5086 .type = ARM_CP_NO_RAW, .access = PL2_W, 5087 .writefn = tlbimva_hyp_is_write }, 5088 { .name = "TLBIIPAS2", 5089 .cp = 15, .opc1 = 4, .crn = 8, .crm = 4, .opc2 = 1, 5090 .type = ARM_CP_NOP, .access = PL2_W }, 5091 { .name = "TLBIIPAS2IS", 5092 .cp = 15, .opc1 = 4, .crn = 8, .crm = 0, .opc2 = 1, 5093 .type = ARM_CP_NOP, .access = PL2_W }, 5094 { .name = "TLBIIPAS2L", 5095 .cp = 15, .opc1 = 4, .crn = 8, .crm = 4, .opc2 = 5, 5096 .type = ARM_CP_NOP, .access = PL2_W }, 5097 { .name = "TLBIIPAS2LIS", 5098 .cp = 15, .opc1 = 4, .crn = 8, .crm = 0, .opc2 = 5, 5099 .type = ARM_CP_NOP, .access = PL2_W }, 5100 /* 32 bit cache operations */ 5101 { .name = "ICIALLUIS", .cp = 15, .opc1 = 0, .crn = 7, .crm = 1, .opc2 = 0, 5102 .type = ARM_CP_NOP, .access = PL1_W, .accessfn = aa64_cacheop_pou_access }, 5103 { .name = "BPIALLUIS", .cp = 15, .opc1 = 0, .crn = 7, .crm = 1, .opc2 = 6, 5104 .type = ARM_CP_NOP, .access = PL1_W }, 5105 { .name = "ICIALLU", .cp = 15, .opc1 = 0, .crn = 7, .crm = 5, .opc2 = 0, 5106 .type = ARM_CP_NOP, .access = PL1_W, .accessfn = aa64_cacheop_pou_access }, 5107 { .name = "ICIMVAU", .cp = 15, .opc1 = 0, .crn = 7, .crm = 5, .opc2 = 1, 5108 .type = ARM_CP_NOP, .access = PL1_W, .accessfn = aa64_cacheop_pou_access }, 5109 { .name = "BPIALL", .cp = 15, .opc1 = 0, .crn = 7, .crm = 5, .opc2 = 6, 5110 .type = ARM_CP_NOP, .access = PL1_W }, 5111 { .name = "BPIMVA", .cp = 15, .opc1 = 0, .crn = 7, .crm = 5, .opc2 = 7, 5112 .type = ARM_CP_NOP, .access = PL1_W }, 5113 { .name = "DCIMVAC", .cp = 15, .opc1 = 0, .crn = 7, .crm = 6, .opc2 = 1, 5114 .type = ARM_CP_NOP, .access = PL1_W, .accessfn = aa64_cacheop_poc_access }, 5115 { .name = "DCISW", .cp = 15, .opc1 = 0, .crn = 7, .crm = 6, .opc2 = 2, 5116 .type = ARM_CP_NOP, .access = PL1_W, .accessfn = access_tsw }, 5117 { .name = "DCCMVAC", .cp = 15, .opc1 = 0, .crn = 7, .crm = 10, .opc2 = 1, 5118 .type = ARM_CP_NOP, .access = PL1_W, .accessfn = aa64_cacheop_poc_access }, 5119 { .name = "DCCSW", .cp = 15, .opc1 = 0, .crn = 7, .crm = 10, .opc2 = 2, 5120 .type = ARM_CP_NOP, .access = PL1_W, .accessfn = access_tsw }, 5121 { .name = "DCCMVAU", .cp = 15, .opc1 = 0, .crn = 7, .crm = 11, .opc2 = 1, 5122 .type = ARM_CP_NOP, .access = PL1_W, .accessfn = aa64_cacheop_pou_access }, 5123 { .name = "DCCIMVAC", .cp = 15, .opc1 = 0, .crn = 7, .crm = 14, .opc2 = 1, 5124 .type = ARM_CP_NOP, .access = PL1_W, .accessfn = aa64_cacheop_poc_access }, 5125 { .name = "DCCISW", .cp = 15, .opc1 = 0, .crn = 7, .crm = 14, .opc2 = 2, 5126 .type = ARM_CP_NOP, .access = PL1_W, .accessfn = access_tsw }, 5127 /* MMU Domain access control / MPU write buffer control */ 5128 { .name = "DACR", .cp = 15, .opc1 = 0, .crn = 3, .crm = 0, .opc2 = 0, 5129 .access = PL1_RW, .accessfn = access_tvm_trvm, .resetvalue = 0, 5130 .writefn = dacr_write, .raw_writefn = raw_write, 5131 .bank_fieldoffsets = { offsetoflow32(CPUARMState, cp15.dacr_s), 5132 offsetoflow32(CPUARMState, cp15.dacr_ns) } }, 5133 { .name = "ELR_EL1", .state = ARM_CP_STATE_AA64, 5134 .type = ARM_CP_ALIAS, 5135 .opc0 = 3, .opc1 = 0, .crn = 4, .crm = 0, .opc2 = 1, 5136 .access = PL1_RW, 5137 .fieldoffset = offsetof(CPUARMState, elr_el[1]) }, 5138 { .name = "SPSR_EL1", .state = ARM_CP_STATE_AA64, 5139 .type = ARM_CP_ALIAS, 5140 .opc0 = 3, .opc1 = 0, .crn = 4, .crm = 0, .opc2 = 0, 5141 .access = PL1_RW, 5142 .fieldoffset = offsetof(CPUARMState, banked_spsr[BANK_SVC]) }, 5143 /* We rely on the access checks not allowing the guest to write to the 5144 * state field when SPSel indicates that it's being used as the stack 5145 * pointer. 5146 */ 5147 { .name = "SP_EL0", .state = ARM_CP_STATE_AA64, 5148 .opc0 = 3, .opc1 = 0, .crn = 4, .crm = 1, .opc2 = 0, 5149 .access = PL1_RW, .accessfn = sp_el0_access, 5150 .type = ARM_CP_ALIAS, 5151 .fieldoffset = offsetof(CPUARMState, sp_el[0]) }, 5152 { .name = "SP_EL1", .state = ARM_CP_STATE_AA64, 5153 .opc0 = 3, .opc1 = 4, .crn = 4, .crm = 1, .opc2 = 0, 5154 .access = PL2_RW, .type = ARM_CP_ALIAS, 5155 .fieldoffset = offsetof(CPUARMState, sp_el[1]) }, 5156 { .name = "SPSel", .state = ARM_CP_STATE_AA64, 5157 .opc0 = 3, .opc1 = 0, .crn = 4, .crm = 2, .opc2 = 0, 5158 .type = ARM_CP_NO_RAW, 5159 .access = PL1_RW, .readfn = spsel_read, .writefn = spsel_write }, 5160 { .name = "FPEXC32_EL2", .state = ARM_CP_STATE_AA64, 5161 .opc0 = 3, .opc1 = 4, .crn = 5, .crm = 3, .opc2 = 0, 5162 .type = ARM_CP_ALIAS, 5163 .fieldoffset = offsetof(CPUARMState, vfp.xregs[ARM_VFP_FPEXC]), 5164 .access = PL2_RW, .accessfn = fpexc32_access }, 5165 { .name = "DACR32_EL2", .state = ARM_CP_STATE_AA64, 5166 .opc0 = 3, .opc1 = 4, .crn = 3, .crm = 0, .opc2 = 0, 5167 .access = PL2_RW, .resetvalue = 0, 5168 .writefn = dacr_write, .raw_writefn = raw_write, 5169 .fieldoffset = offsetof(CPUARMState, cp15.dacr32_el2) }, 5170 { .name = "IFSR32_EL2", .state = ARM_CP_STATE_AA64, 5171 .opc0 = 3, .opc1 = 4, .crn = 5, .crm = 0, .opc2 = 1, 5172 .access = PL2_RW, .resetvalue = 0, 5173 .fieldoffset = offsetof(CPUARMState, cp15.ifsr32_el2) }, 5174 { .name = "SPSR_IRQ", .state = ARM_CP_STATE_AA64, 5175 .type = ARM_CP_ALIAS, 5176 .opc0 = 3, .opc1 = 4, .crn = 4, .crm = 3, .opc2 = 0, 5177 .access = PL2_RW, 5178 .fieldoffset = offsetof(CPUARMState, banked_spsr[BANK_IRQ]) }, 5179 { .name = "SPSR_ABT", .state = ARM_CP_STATE_AA64, 5180 .type = ARM_CP_ALIAS, 5181 .opc0 = 3, .opc1 = 4, .crn = 4, .crm = 3, .opc2 = 1, 5182 .access = PL2_RW, 5183 .fieldoffset = offsetof(CPUARMState, banked_spsr[BANK_ABT]) }, 5184 { .name = "SPSR_UND", .state = ARM_CP_STATE_AA64, 5185 .type = ARM_CP_ALIAS, 5186 .opc0 = 3, .opc1 = 4, .crn = 4, .crm = 3, .opc2 = 2, 5187 .access = PL2_RW, 5188 .fieldoffset = offsetof(CPUARMState, banked_spsr[BANK_UND]) }, 5189 { .name = "SPSR_FIQ", .state = ARM_CP_STATE_AA64, 5190 .type = ARM_CP_ALIAS, 5191 .opc0 = 3, .opc1 = 4, .crn = 4, .crm = 3, .opc2 = 3, 5192 .access = PL2_RW, 5193 .fieldoffset = offsetof(CPUARMState, banked_spsr[BANK_FIQ]) }, 5194 { .name = "MDCR_EL3", .state = ARM_CP_STATE_AA64, 5195 .opc0 = 3, .opc1 = 6, .crn = 1, .crm = 3, .opc2 = 1, 5196 .resetvalue = 0, 5197 .access = PL3_RW, .fieldoffset = offsetof(CPUARMState, cp15.mdcr_el3) }, 5198 { .name = "SDCR", .type = ARM_CP_ALIAS, 5199 .cp = 15, .opc1 = 0, .crn = 1, .crm = 3, .opc2 = 1, 5200 .access = PL1_RW, .accessfn = access_trap_aa32s_el1, 5201 .writefn = sdcr_write, 5202 .fieldoffset = offsetoflow32(CPUARMState, cp15.mdcr_el3) }, 5203 REGINFO_SENTINEL 5204 }; 5205 5206 /* Used to describe the behaviour of EL2 regs when EL2 does not exist. */ 5207 static const ARMCPRegInfo el3_no_el2_cp_reginfo[] = { 5208 { .name = "VBAR_EL2", .state = ARM_CP_STATE_BOTH, 5209 .opc0 = 3, .opc1 = 4, .crn = 12, .crm = 0, .opc2 = 0, 5210 .access = PL2_RW, 5211 .readfn = arm_cp_read_zero, .writefn = arm_cp_write_ignore }, 5212 { .name = "HCR_EL2", .state = ARM_CP_STATE_BOTH, 5213 .opc0 = 3, .opc1 = 4, .crn = 1, .crm = 1, .opc2 = 0, 5214 .access = PL2_RW, 5215 .type = ARM_CP_CONST, .resetvalue = 0 }, 5216 { .name = "HACR_EL2", .state = ARM_CP_STATE_BOTH, 5217 .opc0 = 3, .opc1 = 4, .crn = 1, .crm = 1, .opc2 = 7, 5218 .access = PL2_RW, .type = ARM_CP_CONST, .resetvalue = 0 }, 5219 { .name = "ESR_EL2", .state = ARM_CP_STATE_BOTH, 5220 .opc0 = 3, .opc1 = 4, .crn = 5, .crm = 2, .opc2 = 0, 5221 .access = PL2_RW, 5222 .type = ARM_CP_CONST, .resetvalue = 0 }, 5223 { .name = "CPTR_EL2", .state = ARM_CP_STATE_BOTH, 5224 .opc0 = 3, .opc1 = 4, .crn = 1, .crm = 1, .opc2 = 2, 5225 .access = PL2_RW, .type = ARM_CP_CONST, .resetvalue = 0 }, 5226 { .name = "MAIR_EL2", .state = ARM_CP_STATE_BOTH, 5227 .opc0 = 3, .opc1 = 4, .crn = 10, .crm = 2, .opc2 = 0, 5228 .access = PL2_RW, .type = ARM_CP_CONST, 5229 .resetvalue = 0 }, 5230 { .name = "HMAIR1", .state = ARM_CP_STATE_AA32, 5231 .cp = 15, .opc1 = 4, .crn = 10, .crm = 2, .opc2 = 1, 5232 .access = PL2_RW, .type = ARM_CP_CONST, .resetvalue = 0 }, 5233 { .name = "AMAIR_EL2", .state = ARM_CP_STATE_BOTH, 5234 .opc0 = 3, .opc1 = 4, .crn = 10, .crm = 3, .opc2 = 0, 5235 .access = PL2_RW, .type = ARM_CP_CONST, 5236 .resetvalue = 0 }, 5237 { .name = "HAMAIR1", .state = ARM_CP_STATE_AA32, 5238 .cp = 15, .opc1 = 4, .crn = 10, .crm = 3, .opc2 = 1, 5239 .access = PL2_RW, .type = ARM_CP_CONST, 5240 .resetvalue = 0 }, 5241 { .name = "AFSR0_EL2", .state = ARM_CP_STATE_BOTH, 5242 .opc0 = 3, .opc1 = 4, .crn = 5, .crm = 1, .opc2 = 0, 5243 .access = PL2_RW, .type = ARM_CP_CONST, 5244 .resetvalue = 0 }, 5245 { .name = "AFSR1_EL2", .state = ARM_CP_STATE_BOTH, 5246 .opc0 = 3, .opc1 = 4, .crn = 5, .crm = 1, .opc2 = 1, 5247 .access = PL2_RW, .type = ARM_CP_CONST, 5248 .resetvalue = 0 }, 5249 { .name = "TCR_EL2", .state = ARM_CP_STATE_BOTH, 5250 .opc0 = 3, .opc1 = 4, .crn = 2, .crm = 0, .opc2 = 2, 5251 .access = PL2_RW, .type = ARM_CP_CONST, .resetvalue = 0 }, 5252 { .name = "VTCR_EL2", .state = ARM_CP_STATE_BOTH, 5253 .opc0 = 3, .opc1 = 4, .crn = 2, .crm = 1, .opc2 = 2, 5254 .access = PL2_RW, .accessfn = access_el3_aa32ns, 5255 .type = ARM_CP_CONST, .resetvalue = 0 }, 5256 { .name = "VTTBR", .state = ARM_CP_STATE_AA32, 5257 .cp = 15, .opc1 = 6, .crm = 2, 5258 .access = PL2_RW, .accessfn = access_el3_aa32ns, 5259 .type = ARM_CP_CONST | ARM_CP_64BIT, .resetvalue = 0 }, 5260 { .name = "VTTBR_EL2", .state = ARM_CP_STATE_AA64, 5261 .opc0 = 3, .opc1 = 4, .crn = 2, .crm = 1, .opc2 = 0, 5262 .access = PL2_RW, .type = ARM_CP_CONST, .resetvalue = 0 }, 5263 { .name = "SCTLR_EL2", .state = ARM_CP_STATE_BOTH, 5264 .opc0 = 3, .opc1 = 4, .crn = 1, .crm = 0, .opc2 = 0, 5265 .access = PL2_RW, .type = ARM_CP_CONST, .resetvalue = 0 }, 5266 { .name = "TPIDR_EL2", .state = ARM_CP_STATE_BOTH, 5267 .opc0 = 3, .opc1 = 4, .crn = 13, .crm = 0, .opc2 = 2, 5268 .access = PL2_RW, .type = ARM_CP_CONST, .resetvalue = 0 }, 5269 { .name = "TTBR0_EL2", .state = ARM_CP_STATE_AA64, 5270 .opc0 = 3, .opc1 = 4, .crn = 2, .crm = 0, .opc2 = 0, 5271 .access = PL2_RW, .type = ARM_CP_CONST, .resetvalue = 0 }, 5272 { .name = "HTTBR", .cp = 15, .opc1 = 4, .crm = 2, 5273 .access = PL2_RW, .type = ARM_CP_64BIT | ARM_CP_CONST, 5274 .resetvalue = 0 }, 5275 { .name = "CNTHCTL_EL2", .state = ARM_CP_STATE_BOTH, 5276 .opc0 = 3, .opc1 = 4, .crn = 14, .crm = 1, .opc2 = 0, 5277 .access = PL2_RW, .type = ARM_CP_CONST, .resetvalue = 0 }, 5278 { .name = "CNTVOFF_EL2", .state = ARM_CP_STATE_AA64, 5279 .opc0 = 3, .opc1 = 4, .crn = 14, .crm = 0, .opc2 = 3, 5280 .access = PL2_RW, .type = ARM_CP_CONST, .resetvalue = 0 }, 5281 { .name = "CNTVOFF", .cp = 15, .opc1 = 4, .crm = 14, 5282 .access = PL2_RW, .type = ARM_CP_64BIT | ARM_CP_CONST, 5283 .resetvalue = 0 }, 5284 { .name = "CNTHP_CVAL_EL2", .state = ARM_CP_STATE_AA64, 5285 .opc0 = 3, .opc1 = 4, .crn = 14, .crm = 2, .opc2 = 2, 5286 .access = PL2_RW, .type = ARM_CP_CONST, .resetvalue = 0 }, 5287 { .name = "CNTHP_CVAL", .cp = 15, .opc1 = 6, .crm = 14, 5288 .access = PL2_RW, .type = ARM_CP_64BIT | ARM_CP_CONST, 5289 .resetvalue = 0 }, 5290 { .name = "CNTHP_TVAL_EL2", .state = ARM_CP_STATE_BOTH, 5291 .opc0 = 3, .opc1 = 4, .crn = 14, .crm = 2, .opc2 = 0, 5292 .access = PL2_RW, .type = ARM_CP_CONST, .resetvalue = 0 }, 5293 { .name = "CNTHP_CTL_EL2", .state = ARM_CP_STATE_BOTH, 5294 .opc0 = 3, .opc1 = 4, .crn = 14, .crm = 2, .opc2 = 1, 5295 .access = PL2_RW, .type = ARM_CP_CONST, .resetvalue = 0 }, 5296 { .name = "MDCR_EL2", .state = ARM_CP_STATE_BOTH, 5297 .opc0 = 3, .opc1 = 4, .crn = 1, .crm = 1, .opc2 = 1, 5298 .access = PL2_RW, .accessfn = access_tda, 5299 .type = ARM_CP_CONST, .resetvalue = 0 }, 5300 { .name = "HPFAR_EL2", .state = ARM_CP_STATE_BOTH, 5301 .opc0 = 3, .opc1 = 4, .crn = 6, .crm = 0, .opc2 = 4, 5302 .access = PL2_RW, .accessfn = access_el3_aa32ns, 5303 .type = ARM_CP_CONST, .resetvalue = 0 }, 5304 { .name = "HSTR_EL2", .state = ARM_CP_STATE_BOTH, 5305 .opc0 = 3, .opc1 = 4, .crn = 1, .crm = 1, .opc2 = 3, 5306 .access = PL2_RW, .type = ARM_CP_CONST, .resetvalue = 0 }, 5307 { .name = "FAR_EL2", .state = ARM_CP_STATE_BOTH, 5308 .opc0 = 3, .opc1 = 4, .crn = 6, .crm = 0, .opc2 = 0, 5309 .access = PL2_RW, .type = ARM_CP_CONST, .resetvalue = 0 }, 5310 { .name = "HIFAR", .state = ARM_CP_STATE_AA32, 5311 .type = ARM_CP_CONST, 5312 .cp = 15, .opc1 = 4, .crn = 6, .crm = 0, .opc2 = 2, 5313 .access = PL2_RW, .resetvalue = 0 }, 5314 REGINFO_SENTINEL 5315 }; 5316 5317 /* Ditto, but for registers which exist in ARMv8 but not v7 */ 5318 static const ARMCPRegInfo el3_no_el2_v8_cp_reginfo[] = { 5319 { .name = "HCR2", .state = ARM_CP_STATE_AA32, 5320 .cp = 15, .opc1 = 4, .crn = 1, .crm = 1, .opc2 = 4, 5321 .access = PL2_RW, 5322 .type = ARM_CP_CONST, .resetvalue = 0 }, 5323 REGINFO_SENTINEL 5324 }; 5325 5326 static void do_hcr_write(CPUARMState *env, uint64_t value, uint64_t valid_mask) 5327 { 5328 ARMCPU *cpu = env_archcpu(env); 5329 5330 if (arm_feature(env, ARM_FEATURE_V8)) { 5331 valid_mask |= MAKE_64BIT_MASK(0, 34); /* ARMv8.0 */ 5332 } else { 5333 valid_mask |= MAKE_64BIT_MASK(0, 28); /* ARMv7VE */ 5334 } 5335 5336 if (arm_feature(env, ARM_FEATURE_EL3)) { 5337 valid_mask &= ~HCR_HCD; 5338 } else if (cpu->psci_conduit != QEMU_PSCI_CONDUIT_SMC) { 5339 /* Architecturally HCR.TSC is RES0 if EL3 is not implemented. 5340 * However, if we're using the SMC PSCI conduit then QEMU is 5341 * effectively acting like EL3 firmware and so the guest at 5342 * EL2 should retain the ability to prevent EL1 from being 5343 * able to make SMC calls into the ersatz firmware, so in 5344 * that case HCR.TSC should be read/write. 5345 */ 5346 valid_mask &= ~HCR_TSC; 5347 } 5348 5349 if (arm_feature(env, ARM_FEATURE_AARCH64)) { 5350 if (cpu_isar_feature(aa64_vh, cpu)) { 5351 valid_mask |= HCR_E2H; 5352 } 5353 if (cpu_isar_feature(aa64_lor, cpu)) { 5354 valid_mask |= HCR_TLOR; 5355 } 5356 if (cpu_isar_feature(aa64_pauth, cpu)) { 5357 valid_mask |= HCR_API | HCR_APK; 5358 } 5359 if (cpu_isar_feature(aa64_mte, cpu)) { 5360 valid_mask |= HCR_ATA | HCR_DCT | HCR_TID5; 5361 } 5362 } 5363 5364 /* Clear RES0 bits. */ 5365 value &= valid_mask; 5366 5367 /* 5368 * These bits change the MMU setup: 5369 * HCR_VM enables stage 2 translation 5370 * HCR_PTW forbids certain page-table setups 5371 * HCR_DC disables stage1 and enables stage2 translation 5372 * HCR_DCT enables tagging on (disabled) stage1 translation 5373 */ 5374 if ((env->cp15.hcr_el2 ^ value) & (HCR_VM | HCR_PTW | HCR_DC | HCR_DCT)) { 5375 tlb_flush(CPU(cpu)); 5376 } 5377 env->cp15.hcr_el2 = value; 5378 5379 /* 5380 * Updates to VI and VF require us to update the status of 5381 * virtual interrupts, which are the logical OR of these bits 5382 * and the state of the input lines from the GIC. (This requires 5383 * that we have the iothread lock, which is done by marking the 5384 * reginfo structs as ARM_CP_IO.) 5385 * Note that if a write to HCR pends a VIRQ or VFIQ it is never 5386 * possible for it to be taken immediately, because VIRQ and 5387 * VFIQ are masked unless running at EL0 or EL1, and HCR 5388 * can only be written at EL2. 5389 */ 5390 g_assert(qemu_mutex_iothread_locked()); 5391 arm_cpu_update_virq(cpu); 5392 arm_cpu_update_vfiq(cpu); 5393 } 5394 5395 static void hcr_write(CPUARMState *env, const ARMCPRegInfo *ri, uint64_t value) 5396 { 5397 do_hcr_write(env, value, 0); 5398 } 5399 5400 static void hcr_writehigh(CPUARMState *env, const ARMCPRegInfo *ri, 5401 uint64_t value) 5402 { 5403 /* Handle HCR2 write, i.e. write to high half of HCR_EL2 */ 5404 value = deposit64(env->cp15.hcr_el2, 32, 32, value); 5405 do_hcr_write(env, value, MAKE_64BIT_MASK(0, 32)); 5406 } 5407 5408 static void hcr_writelow(CPUARMState *env, const ARMCPRegInfo *ri, 5409 uint64_t value) 5410 { 5411 /* Handle HCR write, i.e. write to low half of HCR_EL2 */ 5412 value = deposit64(env->cp15.hcr_el2, 0, 32, value); 5413 do_hcr_write(env, value, MAKE_64BIT_MASK(32, 32)); 5414 } 5415 5416 /* 5417 * Return the effective value of HCR_EL2. 5418 * Bits that are not included here: 5419 * RW (read from SCR_EL3.RW as needed) 5420 */ 5421 uint64_t arm_hcr_el2_eff(CPUARMState *env) 5422 { 5423 uint64_t ret = env->cp15.hcr_el2; 5424 5425 if (!arm_is_el2_enabled(env)) { 5426 /* 5427 * "This register has no effect if EL2 is not enabled in the 5428 * current Security state". This is ARMv8.4-SecEL2 speak for 5429 * !(SCR_EL3.NS==1 || SCR_EL3.EEL2==1). 5430 * 5431 * Prior to that, the language was "In an implementation that 5432 * includes EL3, when the value of SCR_EL3.NS is 0 the PE behaves 5433 * as if this field is 0 for all purposes other than a direct 5434 * read or write access of HCR_EL2". With lots of enumeration 5435 * on a per-field basis. In current QEMU, this is condition 5436 * is arm_is_secure_below_el3. 5437 * 5438 * Since the v8.4 language applies to the entire register, and 5439 * appears to be backward compatible, use that. 5440 */ 5441 return 0; 5442 } 5443 5444 /* 5445 * For a cpu that supports both aarch64 and aarch32, we can set bits 5446 * in HCR_EL2 (e.g. via EL3) that are RES0 when we enter EL2 as aa32. 5447 * Ignore all of the bits in HCR+HCR2 that are not valid for aarch32. 5448 */ 5449 if (!arm_el_is_aa64(env, 2)) { 5450 uint64_t aa32_valid; 5451 5452 /* 5453 * These bits are up-to-date as of ARMv8.6. 5454 * For HCR, it's easiest to list just the 2 bits that are invalid. 5455 * For HCR2, list those that are valid. 5456 */ 5457 aa32_valid = MAKE_64BIT_MASK(0, 32) & ~(HCR_RW | HCR_TDZ); 5458 aa32_valid |= (HCR_CD | HCR_ID | HCR_TERR | HCR_TEA | HCR_MIOCNCE | 5459 HCR_TID4 | HCR_TICAB | HCR_TOCU | HCR_TTLBIS); 5460 ret &= aa32_valid; 5461 } 5462 5463 if (ret & HCR_TGE) { 5464 /* These bits are up-to-date as of ARMv8.6. */ 5465 if (ret & HCR_E2H) { 5466 ret &= ~(HCR_VM | HCR_FMO | HCR_IMO | HCR_AMO | 5467 HCR_BSU_MASK | HCR_DC | HCR_TWI | HCR_TWE | 5468 HCR_TID0 | HCR_TID2 | HCR_TPCP | HCR_TPU | 5469 HCR_TDZ | HCR_CD | HCR_ID | HCR_MIOCNCE | 5470 HCR_TID4 | HCR_TICAB | HCR_TOCU | HCR_ENSCXT | 5471 HCR_TTLBIS | HCR_TTLBOS | HCR_TID5); 5472 } else { 5473 ret |= HCR_FMO | HCR_IMO | HCR_AMO; 5474 } 5475 ret &= ~(HCR_SWIO | HCR_PTW | HCR_VF | HCR_VI | HCR_VSE | 5476 HCR_FB | HCR_TID1 | HCR_TID3 | HCR_TSC | HCR_TACR | 5477 HCR_TSW | HCR_TTLB | HCR_TVM | HCR_HCD | HCR_TRVM | 5478 HCR_TLOR); 5479 } 5480 5481 return ret; 5482 } 5483 5484 static void cptr_el2_write(CPUARMState *env, const ARMCPRegInfo *ri, 5485 uint64_t value) 5486 { 5487 /* 5488 * For A-profile AArch32 EL3, if NSACR.CP10 5489 * is 0 then HCPTR.{TCP11,TCP10} ignore writes and read as 1. 5490 */ 5491 if (arm_feature(env, ARM_FEATURE_EL3) && !arm_el_is_aa64(env, 3) && 5492 !arm_is_secure(env) && !extract32(env->cp15.nsacr, 10, 1)) { 5493 value &= ~(0x3 << 10); 5494 value |= env->cp15.cptr_el[2] & (0x3 << 10); 5495 } 5496 env->cp15.cptr_el[2] = value; 5497 } 5498 5499 static uint64_t cptr_el2_read(CPUARMState *env, const ARMCPRegInfo *ri) 5500 { 5501 /* 5502 * For A-profile AArch32 EL3, if NSACR.CP10 5503 * is 0 then HCPTR.{TCP11,TCP10} ignore writes and read as 1. 5504 */ 5505 uint64_t value = env->cp15.cptr_el[2]; 5506 5507 if (arm_feature(env, ARM_FEATURE_EL3) && !arm_el_is_aa64(env, 3) && 5508 !arm_is_secure(env) && !extract32(env->cp15.nsacr, 10, 1)) { 5509 value |= 0x3 << 10; 5510 } 5511 return value; 5512 } 5513 5514 static const ARMCPRegInfo el2_cp_reginfo[] = { 5515 { .name = "HCR_EL2", .state = ARM_CP_STATE_AA64, 5516 .type = ARM_CP_IO, 5517 .opc0 = 3, .opc1 = 4, .crn = 1, .crm = 1, .opc2 = 0, 5518 .access = PL2_RW, .fieldoffset = offsetof(CPUARMState, cp15.hcr_el2), 5519 .writefn = hcr_write }, 5520 { .name = "HCR", .state = ARM_CP_STATE_AA32, 5521 .type = ARM_CP_ALIAS | ARM_CP_IO, 5522 .cp = 15, .opc1 = 4, .crn = 1, .crm = 1, .opc2 = 0, 5523 .access = PL2_RW, .fieldoffset = offsetof(CPUARMState, cp15.hcr_el2), 5524 .writefn = hcr_writelow }, 5525 { .name = "HACR_EL2", .state = ARM_CP_STATE_BOTH, 5526 .opc0 = 3, .opc1 = 4, .crn = 1, .crm = 1, .opc2 = 7, 5527 .access = PL2_RW, .type = ARM_CP_CONST, .resetvalue = 0 }, 5528 { .name = "ELR_EL2", .state = ARM_CP_STATE_AA64, 5529 .type = ARM_CP_ALIAS, 5530 .opc0 = 3, .opc1 = 4, .crn = 4, .crm = 0, .opc2 = 1, 5531 .access = PL2_RW, 5532 .fieldoffset = offsetof(CPUARMState, elr_el[2]) }, 5533 { .name = "ESR_EL2", .state = ARM_CP_STATE_BOTH, 5534 .opc0 = 3, .opc1 = 4, .crn = 5, .crm = 2, .opc2 = 0, 5535 .access = PL2_RW, .fieldoffset = offsetof(CPUARMState, cp15.esr_el[2]) }, 5536 { .name = "FAR_EL2", .state = ARM_CP_STATE_BOTH, 5537 .opc0 = 3, .opc1 = 4, .crn = 6, .crm = 0, .opc2 = 0, 5538 .access = PL2_RW, .fieldoffset = offsetof(CPUARMState, cp15.far_el[2]) }, 5539 { .name = "HIFAR", .state = ARM_CP_STATE_AA32, 5540 .type = ARM_CP_ALIAS, 5541 .cp = 15, .opc1 = 4, .crn = 6, .crm = 0, .opc2 = 2, 5542 .access = PL2_RW, 5543 .fieldoffset = offsetofhigh32(CPUARMState, cp15.far_el[2]) }, 5544 { .name = "SPSR_EL2", .state = ARM_CP_STATE_AA64, 5545 .type = ARM_CP_ALIAS, 5546 .opc0 = 3, .opc1 = 4, .crn = 4, .crm = 0, .opc2 = 0, 5547 .access = PL2_RW, 5548 .fieldoffset = offsetof(CPUARMState, banked_spsr[BANK_HYP]) }, 5549 { .name = "VBAR_EL2", .state = ARM_CP_STATE_BOTH, 5550 .opc0 = 3, .opc1 = 4, .crn = 12, .crm = 0, .opc2 = 0, 5551 .access = PL2_RW, .writefn = vbar_write, 5552 .fieldoffset = offsetof(CPUARMState, cp15.vbar_el[2]), 5553 .resetvalue = 0 }, 5554 { .name = "SP_EL2", .state = ARM_CP_STATE_AA64, 5555 .opc0 = 3, .opc1 = 6, .crn = 4, .crm = 1, .opc2 = 0, 5556 .access = PL3_RW, .type = ARM_CP_ALIAS, 5557 .fieldoffset = offsetof(CPUARMState, sp_el[2]) }, 5558 { .name = "CPTR_EL2", .state = ARM_CP_STATE_BOTH, 5559 .opc0 = 3, .opc1 = 4, .crn = 1, .crm = 1, .opc2 = 2, 5560 .access = PL2_RW, .accessfn = cptr_access, .resetvalue = 0, 5561 .fieldoffset = offsetof(CPUARMState, cp15.cptr_el[2]), 5562 .readfn = cptr_el2_read, .writefn = cptr_el2_write }, 5563 { .name = "MAIR_EL2", .state = ARM_CP_STATE_BOTH, 5564 .opc0 = 3, .opc1 = 4, .crn = 10, .crm = 2, .opc2 = 0, 5565 .access = PL2_RW, .fieldoffset = offsetof(CPUARMState, cp15.mair_el[2]), 5566 .resetvalue = 0 }, 5567 { .name = "HMAIR1", .state = ARM_CP_STATE_AA32, 5568 .cp = 15, .opc1 = 4, .crn = 10, .crm = 2, .opc2 = 1, 5569 .access = PL2_RW, .type = ARM_CP_ALIAS, 5570 .fieldoffset = offsetofhigh32(CPUARMState, cp15.mair_el[2]) }, 5571 { .name = "AMAIR_EL2", .state = ARM_CP_STATE_BOTH, 5572 .opc0 = 3, .opc1 = 4, .crn = 10, .crm = 3, .opc2 = 0, 5573 .access = PL2_RW, .type = ARM_CP_CONST, 5574 .resetvalue = 0 }, 5575 /* HAMAIR1 is mapped to AMAIR_EL2[63:32] */ 5576 { .name = "HAMAIR1", .state = ARM_CP_STATE_AA32, 5577 .cp = 15, .opc1 = 4, .crn = 10, .crm = 3, .opc2 = 1, 5578 .access = PL2_RW, .type = ARM_CP_CONST, 5579 .resetvalue = 0 }, 5580 { .name = "AFSR0_EL2", .state = ARM_CP_STATE_BOTH, 5581 .opc0 = 3, .opc1 = 4, .crn = 5, .crm = 1, .opc2 = 0, 5582 .access = PL2_RW, .type = ARM_CP_CONST, 5583 .resetvalue = 0 }, 5584 { .name = "AFSR1_EL2", .state = ARM_CP_STATE_BOTH, 5585 .opc0 = 3, .opc1 = 4, .crn = 5, .crm = 1, .opc2 = 1, 5586 .access = PL2_RW, .type = ARM_CP_CONST, 5587 .resetvalue = 0 }, 5588 { .name = "TCR_EL2", .state = ARM_CP_STATE_BOTH, 5589 .opc0 = 3, .opc1 = 4, .crn = 2, .crm = 0, .opc2 = 2, 5590 .access = PL2_RW, .writefn = vmsa_tcr_el12_write, 5591 /* no .raw_writefn or .resetfn needed as we never use mask/base_mask */ 5592 .fieldoffset = offsetof(CPUARMState, cp15.tcr_el[2]) }, 5593 { .name = "VTCR", .state = ARM_CP_STATE_AA32, 5594 .cp = 15, .opc1 = 4, .crn = 2, .crm = 1, .opc2 = 2, 5595 .type = ARM_CP_ALIAS, 5596 .access = PL2_RW, .accessfn = access_el3_aa32ns, 5597 .fieldoffset = offsetof(CPUARMState, cp15.vtcr_el2) }, 5598 { .name = "VTCR_EL2", .state = ARM_CP_STATE_AA64, 5599 .opc0 = 3, .opc1 = 4, .crn = 2, .crm = 1, .opc2 = 2, 5600 .access = PL2_RW, 5601 /* no .writefn needed as this can't cause an ASID change; 5602 * no .raw_writefn or .resetfn needed as we never use mask/base_mask 5603 */ 5604 .fieldoffset = offsetof(CPUARMState, cp15.vtcr_el2) }, 5605 { .name = "VTTBR", .state = ARM_CP_STATE_AA32, 5606 .cp = 15, .opc1 = 6, .crm = 2, 5607 .type = ARM_CP_64BIT | ARM_CP_ALIAS, 5608 .access = PL2_RW, .accessfn = access_el3_aa32ns, 5609 .fieldoffset = offsetof(CPUARMState, cp15.vttbr_el2), 5610 .writefn = vttbr_write }, 5611 { .name = "VTTBR_EL2", .state = ARM_CP_STATE_AA64, 5612 .opc0 = 3, .opc1 = 4, .crn = 2, .crm = 1, .opc2 = 0, 5613 .access = PL2_RW, .writefn = vttbr_write, 5614 .fieldoffset = offsetof(CPUARMState, cp15.vttbr_el2) }, 5615 { .name = "SCTLR_EL2", .state = ARM_CP_STATE_BOTH, 5616 .opc0 = 3, .opc1 = 4, .crn = 1, .crm = 0, .opc2 = 0, 5617 .access = PL2_RW, .raw_writefn = raw_write, .writefn = sctlr_write, 5618 .fieldoffset = offsetof(CPUARMState, cp15.sctlr_el[2]) }, 5619 { .name = "TPIDR_EL2", .state = ARM_CP_STATE_BOTH, 5620 .opc0 = 3, .opc1 = 4, .crn = 13, .crm = 0, .opc2 = 2, 5621 .access = PL2_RW, .resetvalue = 0, 5622 .fieldoffset = offsetof(CPUARMState, cp15.tpidr_el[2]) }, 5623 { .name = "TTBR0_EL2", .state = ARM_CP_STATE_AA64, 5624 .opc0 = 3, .opc1 = 4, .crn = 2, .crm = 0, .opc2 = 0, 5625 .access = PL2_RW, .resetvalue = 0, .writefn = vmsa_tcr_ttbr_el2_write, 5626 .fieldoffset = offsetof(CPUARMState, cp15.ttbr0_el[2]) }, 5627 { .name = "HTTBR", .cp = 15, .opc1 = 4, .crm = 2, 5628 .access = PL2_RW, .type = ARM_CP_64BIT | ARM_CP_ALIAS, 5629 .fieldoffset = offsetof(CPUARMState, cp15.ttbr0_el[2]) }, 5630 { .name = "TLBIALLNSNH", 5631 .cp = 15, .opc1 = 4, .crn = 8, .crm = 7, .opc2 = 4, 5632 .type = ARM_CP_NO_RAW, .access = PL2_W, 5633 .writefn = tlbiall_nsnh_write }, 5634 { .name = "TLBIALLNSNHIS", 5635 .cp = 15, .opc1 = 4, .crn = 8, .crm = 3, .opc2 = 4, 5636 .type = ARM_CP_NO_RAW, .access = PL2_W, 5637 .writefn = tlbiall_nsnh_is_write }, 5638 { .name = "TLBIALLH", .cp = 15, .opc1 = 4, .crn = 8, .crm = 7, .opc2 = 0, 5639 .type = ARM_CP_NO_RAW, .access = PL2_W, 5640 .writefn = tlbiall_hyp_write }, 5641 { .name = "TLBIALLHIS", .cp = 15, .opc1 = 4, .crn = 8, .crm = 3, .opc2 = 0, 5642 .type = ARM_CP_NO_RAW, .access = PL2_W, 5643 .writefn = tlbiall_hyp_is_write }, 5644 { .name = "TLBIMVAH", .cp = 15, .opc1 = 4, .crn = 8, .crm = 7, .opc2 = 1, 5645 .type = ARM_CP_NO_RAW, .access = PL2_W, 5646 .writefn = tlbimva_hyp_write }, 5647 { .name = "TLBIMVAHIS", .cp = 15, .opc1 = 4, .crn = 8, .crm = 3, .opc2 = 1, 5648 .type = ARM_CP_NO_RAW, .access = PL2_W, 5649 .writefn = tlbimva_hyp_is_write }, 5650 { .name = "TLBI_ALLE2", .state = ARM_CP_STATE_AA64, 5651 .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 7, .opc2 = 0, 5652 .type = ARM_CP_NO_RAW, .access = PL2_W, 5653 .writefn = tlbi_aa64_alle2_write }, 5654 { .name = "TLBI_VAE2", .state = ARM_CP_STATE_AA64, 5655 .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 7, .opc2 = 1, 5656 .type = ARM_CP_NO_RAW, .access = PL2_W, 5657 .writefn = tlbi_aa64_vae2_write }, 5658 { .name = "TLBI_VALE2", .state = ARM_CP_STATE_AA64, 5659 .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 7, .opc2 = 5, 5660 .access = PL2_W, .type = ARM_CP_NO_RAW, 5661 .writefn = tlbi_aa64_vae2_write }, 5662 { .name = "TLBI_ALLE2IS", .state = ARM_CP_STATE_AA64, 5663 .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 3, .opc2 = 0, 5664 .access = PL2_W, .type = ARM_CP_NO_RAW, 5665 .writefn = tlbi_aa64_alle2is_write }, 5666 { .name = "TLBI_VAE2IS", .state = ARM_CP_STATE_AA64, 5667 .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 3, .opc2 = 1, 5668 .type = ARM_CP_NO_RAW, .access = PL2_W, 5669 .writefn = tlbi_aa64_vae2is_write }, 5670 { .name = "TLBI_VALE2IS", .state = ARM_CP_STATE_AA64, 5671 .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 3, .opc2 = 5, 5672 .access = PL2_W, .type = ARM_CP_NO_RAW, 5673 .writefn = tlbi_aa64_vae2is_write }, 5674 #ifndef CONFIG_USER_ONLY 5675 /* Unlike the other EL2-related AT operations, these must 5676 * UNDEF from EL3 if EL2 is not implemented, which is why we 5677 * define them here rather than with the rest of the AT ops. 5678 */ 5679 { .name = "AT_S1E2R", .state = ARM_CP_STATE_AA64, 5680 .opc0 = 1, .opc1 = 4, .crn = 7, .crm = 8, .opc2 = 0, 5681 .access = PL2_W, .accessfn = at_s1e2_access, 5682 .type = ARM_CP_NO_RAW | ARM_CP_RAISES_EXC, .writefn = ats_write64 }, 5683 { .name = "AT_S1E2W", .state = ARM_CP_STATE_AA64, 5684 .opc0 = 1, .opc1 = 4, .crn = 7, .crm = 8, .opc2 = 1, 5685 .access = PL2_W, .accessfn = at_s1e2_access, 5686 .type = ARM_CP_NO_RAW | ARM_CP_RAISES_EXC, .writefn = ats_write64 }, 5687 /* The AArch32 ATS1H* operations are CONSTRAINED UNPREDICTABLE 5688 * if EL2 is not implemented; we choose to UNDEF. Behaviour at EL3 5689 * with SCR.NS == 0 outside Monitor mode is UNPREDICTABLE; we choose 5690 * to behave as if SCR.NS was 1. 5691 */ 5692 { .name = "ATS1HR", .cp = 15, .opc1 = 4, .crn = 7, .crm = 8, .opc2 = 0, 5693 .access = PL2_W, 5694 .writefn = ats1h_write, .type = ARM_CP_NO_RAW | ARM_CP_RAISES_EXC }, 5695 { .name = "ATS1HW", .cp = 15, .opc1 = 4, .crn = 7, .crm = 8, .opc2 = 1, 5696 .access = PL2_W, 5697 .writefn = ats1h_write, .type = ARM_CP_NO_RAW | ARM_CP_RAISES_EXC }, 5698 { .name = "CNTHCTL_EL2", .state = ARM_CP_STATE_BOTH, 5699 .opc0 = 3, .opc1 = 4, .crn = 14, .crm = 1, .opc2 = 0, 5700 /* ARMv7 requires bit 0 and 1 to reset to 1. ARMv8 defines the 5701 * reset values as IMPDEF. We choose to reset to 3 to comply with 5702 * both ARMv7 and ARMv8. 5703 */ 5704 .access = PL2_RW, .resetvalue = 3, 5705 .fieldoffset = offsetof(CPUARMState, cp15.cnthctl_el2) }, 5706 { .name = "CNTVOFF_EL2", .state = ARM_CP_STATE_AA64, 5707 .opc0 = 3, .opc1 = 4, .crn = 14, .crm = 0, .opc2 = 3, 5708 .access = PL2_RW, .type = ARM_CP_IO, .resetvalue = 0, 5709 .writefn = gt_cntvoff_write, 5710 .fieldoffset = offsetof(CPUARMState, cp15.cntvoff_el2) }, 5711 { .name = "CNTVOFF", .cp = 15, .opc1 = 4, .crm = 14, 5712 .access = PL2_RW, .type = ARM_CP_64BIT | ARM_CP_ALIAS | ARM_CP_IO, 5713 .writefn = gt_cntvoff_write, 5714 .fieldoffset = offsetof(CPUARMState, cp15.cntvoff_el2) }, 5715 { .name = "CNTHP_CVAL_EL2", .state = ARM_CP_STATE_AA64, 5716 .opc0 = 3, .opc1 = 4, .crn = 14, .crm = 2, .opc2 = 2, 5717 .fieldoffset = offsetof(CPUARMState, cp15.c14_timer[GTIMER_HYP].cval), 5718 .type = ARM_CP_IO, .access = PL2_RW, 5719 .writefn = gt_hyp_cval_write, .raw_writefn = raw_write }, 5720 { .name = "CNTHP_CVAL", .cp = 15, .opc1 = 6, .crm = 14, 5721 .fieldoffset = offsetof(CPUARMState, cp15.c14_timer[GTIMER_HYP].cval), 5722 .access = PL2_RW, .type = ARM_CP_64BIT | ARM_CP_IO, 5723 .writefn = gt_hyp_cval_write, .raw_writefn = raw_write }, 5724 { .name = "CNTHP_TVAL_EL2", .state = ARM_CP_STATE_BOTH, 5725 .opc0 = 3, .opc1 = 4, .crn = 14, .crm = 2, .opc2 = 0, 5726 .type = ARM_CP_NO_RAW | ARM_CP_IO, .access = PL2_RW, 5727 .resetfn = gt_hyp_timer_reset, 5728 .readfn = gt_hyp_tval_read, .writefn = gt_hyp_tval_write }, 5729 { .name = "CNTHP_CTL_EL2", .state = ARM_CP_STATE_BOTH, 5730 .type = ARM_CP_IO, 5731 .opc0 = 3, .opc1 = 4, .crn = 14, .crm = 2, .opc2 = 1, 5732 .access = PL2_RW, 5733 .fieldoffset = offsetof(CPUARMState, cp15.c14_timer[GTIMER_HYP].ctl), 5734 .resetvalue = 0, 5735 .writefn = gt_hyp_ctl_write, .raw_writefn = raw_write }, 5736 #endif 5737 /* The only field of MDCR_EL2 that has a defined architectural reset value 5738 * is MDCR_EL2.HPMN which should reset to the value of PMCR_EL0.N; but we 5739 * don't implement any PMU event counters, so using zero as a reset 5740 * value for MDCR_EL2 is okay 5741 */ 5742 { .name = "MDCR_EL2", .state = ARM_CP_STATE_BOTH, 5743 .opc0 = 3, .opc1 = 4, .crn = 1, .crm = 1, .opc2 = 1, 5744 .access = PL2_RW, .resetvalue = 0, 5745 .fieldoffset = offsetof(CPUARMState, cp15.mdcr_el2), }, 5746 { .name = "HPFAR", .state = ARM_CP_STATE_AA32, 5747 .cp = 15, .opc1 = 4, .crn = 6, .crm = 0, .opc2 = 4, 5748 .access = PL2_RW, .accessfn = access_el3_aa32ns, 5749 .fieldoffset = offsetof(CPUARMState, cp15.hpfar_el2) }, 5750 { .name = "HPFAR_EL2", .state = ARM_CP_STATE_AA64, 5751 .opc0 = 3, .opc1 = 4, .crn = 6, .crm = 0, .opc2 = 4, 5752 .access = PL2_RW, 5753 .fieldoffset = offsetof(CPUARMState, cp15.hpfar_el2) }, 5754 { .name = "HSTR_EL2", .state = ARM_CP_STATE_BOTH, 5755 .cp = 15, .opc0 = 3, .opc1 = 4, .crn = 1, .crm = 1, .opc2 = 3, 5756 .access = PL2_RW, 5757 .fieldoffset = offsetof(CPUARMState, cp15.hstr_el2) }, 5758 REGINFO_SENTINEL 5759 }; 5760 5761 static const ARMCPRegInfo el2_v8_cp_reginfo[] = { 5762 { .name = "HCR2", .state = ARM_CP_STATE_AA32, 5763 .type = ARM_CP_ALIAS | ARM_CP_IO, 5764 .cp = 15, .opc1 = 4, .crn = 1, .crm = 1, .opc2 = 4, 5765 .access = PL2_RW, 5766 .fieldoffset = offsetofhigh32(CPUARMState, cp15.hcr_el2), 5767 .writefn = hcr_writehigh }, 5768 REGINFO_SENTINEL 5769 }; 5770 5771 static CPAccessResult sel2_access(CPUARMState *env, const ARMCPRegInfo *ri, 5772 bool isread) 5773 { 5774 if (arm_current_el(env) == 3 || arm_is_secure_below_el3(env)) { 5775 return CP_ACCESS_OK; 5776 } 5777 return CP_ACCESS_TRAP_UNCATEGORIZED; 5778 } 5779 5780 static const ARMCPRegInfo el2_sec_cp_reginfo[] = { 5781 { .name = "VSTTBR_EL2", .state = ARM_CP_STATE_AA64, 5782 .opc0 = 3, .opc1 = 4, .crn = 2, .crm = 6, .opc2 = 0, 5783 .access = PL2_RW, .accessfn = sel2_access, 5784 .fieldoffset = offsetof(CPUARMState, cp15.vsttbr_el2) }, 5785 { .name = "VSTCR_EL2", .state = ARM_CP_STATE_AA64, 5786 .opc0 = 3, .opc1 = 4, .crn = 2, .crm = 6, .opc2 = 2, 5787 .access = PL2_RW, .accessfn = sel2_access, 5788 .fieldoffset = offsetof(CPUARMState, cp15.vstcr_el2) }, 5789 REGINFO_SENTINEL 5790 }; 5791 5792 static CPAccessResult nsacr_access(CPUARMState *env, const ARMCPRegInfo *ri, 5793 bool isread) 5794 { 5795 /* The NSACR is RW at EL3, and RO for NS EL1 and NS EL2. 5796 * At Secure EL1 it traps to EL3 or EL2. 5797 */ 5798 if (arm_current_el(env) == 3) { 5799 return CP_ACCESS_OK; 5800 } 5801 if (arm_is_secure_below_el3(env)) { 5802 if (env->cp15.scr_el3 & SCR_EEL2) { 5803 return CP_ACCESS_TRAP_EL2; 5804 } 5805 return CP_ACCESS_TRAP_EL3; 5806 } 5807 /* Accesses from EL1 NS and EL2 NS are UNDEF for write but allow reads. */ 5808 if (isread) { 5809 return CP_ACCESS_OK; 5810 } 5811 return CP_ACCESS_TRAP_UNCATEGORIZED; 5812 } 5813 5814 static const ARMCPRegInfo el3_cp_reginfo[] = { 5815 { .name = "SCR_EL3", .state = ARM_CP_STATE_AA64, 5816 .opc0 = 3, .opc1 = 6, .crn = 1, .crm = 1, .opc2 = 0, 5817 .access = PL3_RW, .fieldoffset = offsetof(CPUARMState, cp15.scr_el3), 5818 .resetfn = scr_reset, .writefn = scr_write }, 5819 { .name = "SCR", .type = ARM_CP_ALIAS | ARM_CP_NEWEL, 5820 .cp = 15, .opc1 = 0, .crn = 1, .crm = 1, .opc2 = 0, 5821 .access = PL1_RW, .accessfn = access_trap_aa32s_el1, 5822 .fieldoffset = offsetoflow32(CPUARMState, cp15.scr_el3), 5823 .writefn = scr_write }, 5824 { .name = "SDER32_EL3", .state = ARM_CP_STATE_AA64, 5825 .opc0 = 3, .opc1 = 6, .crn = 1, .crm = 1, .opc2 = 1, 5826 .access = PL3_RW, .resetvalue = 0, 5827 .fieldoffset = offsetof(CPUARMState, cp15.sder) }, 5828 { .name = "SDER", 5829 .cp = 15, .opc1 = 0, .crn = 1, .crm = 1, .opc2 = 1, 5830 .access = PL3_RW, .resetvalue = 0, 5831 .fieldoffset = offsetoflow32(CPUARMState, cp15.sder) }, 5832 { .name = "MVBAR", .cp = 15, .opc1 = 0, .crn = 12, .crm = 0, .opc2 = 1, 5833 .access = PL1_RW, .accessfn = access_trap_aa32s_el1, 5834 .writefn = vbar_write, .resetvalue = 0, 5835 .fieldoffset = offsetof(CPUARMState, cp15.mvbar) }, 5836 { .name = "TTBR0_EL3", .state = ARM_CP_STATE_AA64, 5837 .opc0 = 3, .opc1 = 6, .crn = 2, .crm = 0, .opc2 = 0, 5838 .access = PL3_RW, .resetvalue = 0, 5839 .fieldoffset = offsetof(CPUARMState, cp15.ttbr0_el[3]) }, 5840 { .name = "TCR_EL3", .state = ARM_CP_STATE_AA64, 5841 .opc0 = 3, .opc1 = 6, .crn = 2, .crm = 0, .opc2 = 2, 5842 .access = PL3_RW, 5843 /* no .writefn needed as this can't cause an ASID change; 5844 * we must provide a .raw_writefn and .resetfn because we handle 5845 * reset and migration for the AArch32 TTBCR(S), which might be 5846 * using mask and base_mask. 5847 */ 5848 .resetfn = vmsa_ttbcr_reset, .raw_writefn = vmsa_ttbcr_raw_write, 5849 .fieldoffset = offsetof(CPUARMState, cp15.tcr_el[3]) }, 5850 { .name = "ELR_EL3", .state = ARM_CP_STATE_AA64, 5851 .type = ARM_CP_ALIAS, 5852 .opc0 = 3, .opc1 = 6, .crn = 4, .crm = 0, .opc2 = 1, 5853 .access = PL3_RW, 5854 .fieldoffset = offsetof(CPUARMState, elr_el[3]) }, 5855 { .name = "ESR_EL3", .state = ARM_CP_STATE_AA64, 5856 .opc0 = 3, .opc1 = 6, .crn = 5, .crm = 2, .opc2 = 0, 5857 .access = PL3_RW, .fieldoffset = offsetof(CPUARMState, cp15.esr_el[3]) }, 5858 { .name = "FAR_EL3", .state = ARM_CP_STATE_AA64, 5859 .opc0 = 3, .opc1 = 6, .crn = 6, .crm = 0, .opc2 = 0, 5860 .access = PL3_RW, .fieldoffset = offsetof(CPUARMState, cp15.far_el[3]) }, 5861 { .name = "SPSR_EL3", .state = ARM_CP_STATE_AA64, 5862 .type = ARM_CP_ALIAS, 5863 .opc0 = 3, .opc1 = 6, .crn = 4, .crm = 0, .opc2 = 0, 5864 .access = PL3_RW, 5865 .fieldoffset = offsetof(CPUARMState, banked_spsr[BANK_MON]) }, 5866 { .name = "VBAR_EL3", .state = ARM_CP_STATE_AA64, 5867 .opc0 = 3, .opc1 = 6, .crn = 12, .crm = 0, .opc2 = 0, 5868 .access = PL3_RW, .writefn = vbar_write, 5869 .fieldoffset = offsetof(CPUARMState, cp15.vbar_el[3]), 5870 .resetvalue = 0 }, 5871 { .name = "CPTR_EL3", .state = ARM_CP_STATE_AA64, 5872 .opc0 = 3, .opc1 = 6, .crn = 1, .crm = 1, .opc2 = 2, 5873 .access = PL3_RW, .accessfn = cptr_access, .resetvalue = 0, 5874 .fieldoffset = offsetof(CPUARMState, cp15.cptr_el[3]) }, 5875 { .name = "TPIDR_EL3", .state = ARM_CP_STATE_AA64, 5876 .opc0 = 3, .opc1 = 6, .crn = 13, .crm = 0, .opc2 = 2, 5877 .access = PL3_RW, .resetvalue = 0, 5878 .fieldoffset = offsetof(CPUARMState, cp15.tpidr_el[3]) }, 5879 { .name = "AMAIR_EL3", .state = ARM_CP_STATE_AA64, 5880 .opc0 = 3, .opc1 = 6, .crn = 10, .crm = 3, .opc2 = 0, 5881 .access = PL3_RW, .type = ARM_CP_CONST, 5882 .resetvalue = 0 }, 5883 { .name = "AFSR0_EL3", .state = ARM_CP_STATE_BOTH, 5884 .opc0 = 3, .opc1 = 6, .crn = 5, .crm = 1, .opc2 = 0, 5885 .access = PL3_RW, .type = ARM_CP_CONST, 5886 .resetvalue = 0 }, 5887 { .name = "AFSR1_EL3", .state = ARM_CP_STATE_BOTH, 5888 .opc0 = 3, .opc1 = 6, .crn = 5, .crm = 1, .opc2 = 1, 5889 .access = PL3_RW, .type = ARM_CP_CONST, 5890 .resetvalue = 0 }, 5891 { .name = "TLBI_ALLE3IS", .state = ARM_CP_STATE_AA64, 5892 .opc0 = 1, .opc1 = 6, .crn = 8, .crm = 3, .opc2 = 0, 5893 .access = PL3_W, .type = ARM_CP_NO_RAW, 5894 .writefn = tlbi_aa64_alle3is_write }, 5895 { .name = "TLBI_VAE3IS", .state = ARM_CP_STATE_AA64, 5896 .opc0 = 1, .opc1 = 6, .crn = 8, .crm = 3, .opc2 = 1, 5897 .access = PL3_W, .type = ARM_CP_NO_RAW, 5898 .writefn = tlbi_aa64_vae3is_write }, 5899 { .name = "TLBI_VALE3IS", .state = ARM_CP_STATE_AA64, 5900 .opc0 = 1, .opc1 = 6, .crn = 8, .crm = 3, .opc2 = 5, 5901 .access = PL3_W, .type = ARM_CP_NO_RAW, 5902 .writefn = tlbi_aa64_vae3is_write }, 5903 { .name = "TLBI_ALLE3", .state = ARM_CP_STATE_AA64, 5904 .opc0 = 1, .opc1 = 6, .crn = 8, .crm = 7, .opc2 = 0, 5905 .access = PL3_W, .type = ARM_CP_NO_RAW, 5906 .writefn = tlbi_aa64_alle3_write }, 5907 { .name = "TLBI_VAE3", .state = ARM_CP_STATE_AA64, 5908 .opc0 = 1, .opc1 = 6, .crn = 8, .crm = 7, .opc2 = 1, 5909 .access = PL3_W, .type = ARM_CP_NO_RAW, 5910 .writefn = tlbi_aa64_vae3_write }, 5911 { .name = "TLBI_VALE3", .state = ARM_CP_STATE_AA64, 5912 .opc0 = 1, .opc1 = 6, .crn = 8, .crm = 7, .opc2 = 5, 5913 .access = PL3_W, .type = ARM_CP_NO_RAW, 5914 .writefn = tlbi_aa64_vae3_write }, 5915 REGINFO_SENTINEL 5916 }; 5917 5918 #ifndef CONFIG_USER_ONLY 5919 /* Test if system register redirection is to occur in the current state. */ 5920 static bool redirect_for_e2h(CPUARMState *env) 5921 { 5922 return arm_current_el(env) == 2 && (arm_hcr_el2_eff(env) & HCR_E2H); 5923 } 5924 5925 static uint64_t el2_e2h_read(CPUARMState *env, const ARMCPRegInfo *ri) 5926 { 5927 CPReadFn *readfn; 5928 5929 if (redirect_for_e2h(env)) { 5930 /* Switch to the saved EL2 version of the register. */ 5931 ri = ri->opaque; 5932 readfn = ri->readfn; 5933 } else { 5934 readfn = ri->orig_readfn; 5935 } 5936 if (readfn == NULL) { 5937 readfn = raw_read; 5938 } 5939 return readfn(env, ri); 5940 } 5941 5942 static void el2_e2h_write(CPUARMState *env, const ARMCPRegInfo *ri, 5943 uint64_t value) 5944 { 5945 CPWriteFn *writefn; 5946 5947 if (redirect_for_e2h(env)) { 5948 /* Switch to the saved EL2 version of the register. */ 5949 ri = ri->opaque; 5950 writefn = ri->writefn; 5951 } else { 5952 writefn = ri->orig_writefn; 5953 } 5954 if (writefn == NULL) { 5955 writefn = raw_write; 5956 } 5957 writefn(env, ri, value); 5958 } 5959 5960 static void define_arm_vh_e2h_redirects_aliases(ARMCPU *cpu) 5961 { 5962 struct E2HAlias { 5963 uint32_t src_key, dst_key, new_key; 5964 const char *src_name, *dst_name, *new_name; 5965 bool (*feature)(const ARMISARegisters *id); 5966 }; 5967 5968 #define K(op0, op1, crn, crm, op2) \ 5969 ENCODE_AA64_CP_REG(CP_REG_ARM64_SYSREG_CP, crn, crm, op0, op1, op2) 5970 5971 static const struct E2HAlias aliases[] = { 5972 { K(3, 0, 1, 0, 0), K(3, 4, 1, 0, 0), K(3, 5, 1, 0, 0), 5973 "SCTLR", "SCTLR_EL2", "SCTLR_EL12" }, 5974 { K(3, 0, 1, 0, 2), K(3, 4, 1, 1, 2), K(3, 5, 1, 0, 2), 5975 "CPACR", "CPTR_EL2", "CPACR_EL12" }, 5976 { K(3, 0, 2, 0, 0), K(3, 4, 2, 0, 0), K(3, 5, 2, 0, 0), 5977 "TTBR0_EL1", "TTBR0_EL2", "TTBR0_EL12" }, 5978 { K(3, 0, 2, 0, 1), K(3, 4, 2, 0, 1), K(3, 5, 2, 0, 1), 5979 "TTBR1_EL1", "TTBR1_EL2", "TTBR1_EL12" }, 5980 { K(3, 0, 2, 0, 2), K(3, 4, 2, 0, 2), K(3, 5, 2, 0, 2), 5981 "TCR_EL1", "TCR_EL2", "TCR_EL12" }, 5982 { K(3, 0, 4, 0, 0), K(3, 4, 4, 0, 0), K(3, 5, 4, 0, 0), 5983 "SPSR_EL1", "SPSR_EL2", "SPSR_EL12" }, 5984 { K(3, 0, 4, 0, 1), K(3, 4, 4, 0, 1), K(3, 5, 4, 0, 1), 5985 "ELR_EL1", "ELR_EL2", "ELR_EL12" }, 5986 { K(3, 0, 5, 1, 0), K(3, 4, 5, 1, 0), K(3, 5, 5, 1, 0), 5987 "AFSR0_EL1", "AFSR0_EL2", "AFSR0_EL12" }, 5988 { K(3, 0, 5, 1, 1), K(3, 4, 5, 1, 1), K(3, 5, 5, 1, 1), 5989 "AFSR1_EL1", "AFSR1_EL2", "AFSR1_EL12" }, 5990 { K(3, 0, 5, 2, 0), K(3, 4, 5, 2, 0), K(3, 5, 5, 2, 0), 5991 "ESR_EL1", "ESR_EL2", "ESR_EL12" }, 5992 { K(3, 0, 6, 0, 0), K(3, 4, 6, 0, 0), K(3, 5, 6, 0, 0), 5993 "FAR_EL1", "FAR_EL2", "FAR_EL12" }, 5994 { K(3, 0, 10, 2, 0), K(3, 4, 10, 2, 0), K(3, 5, 10, 2, 0), 5995 "MAIR_EL1", "MAIR_EL2", "MAIR_EL12" }, 5996 { K(3, 0, 10, 3, 0), K(3, 4, 10, 3, 0), K(3, 5, 10, 3, 0), 5997 "AMAIR0", "AMAIR_EL2", "AMAIR_EL12" }, 5998 { K(3, 0, 12, 0, 0), K(3, 4, 12, 0, 0), K(3, 5, 12, 0, 0), 5999 "VBAR", "VBAR_EL2", "VBAR_EL12" }, 6000 { K(3, 0, 13, 0, 1), K(3, 4, 13, 0, 1), K(3, 5, 13, 0, 1), 6001 "CONTEXTIDR_EL1", "CONTEXTIDR_EL2", "CONTEXTIDR_EL12" }, 6002 { K(3, 0, 14, 1, 0), K(3, 4, 14, 1, 0), K(3, 5, 14, 1, 0), 6003 "CNTKCTL", "CNTHCTL_EL2", "CNTKCTL_EL12" }, 6004 6005 /* 6006 * Note that redirection of ZCR is mentioned in the description 6007 * of ZCR_EL2, and aliasing in the description of ZCR_EL1, but 6008 * not in the summary table. 6009 */ 6010 { K(3, 0, 1, 2, 0), K(3, 4, 1, 2, 0), K(3, 5, 1, 2, 0), 6011 "ZCR_EL1", "ZCR_EL2", "ZCR_EL12", isar_feature_aa64_sve }, 6012 6013 { K(3, 0, 5, 6, 0), K(3, 4, 5, 6, 0), K(3, 5, 5, 6, 0), 6014 "TFSR_EL1", "TFSR_EL2", "TFSR_EL12", isar_feature_aa64_mte }, 6015 6016 /* TODO: ARMv8.2-SPE -- PMSCR_EL2 */ 6017 /* TODO: ARMv8.4-Trace -- TRFCR_EL2 */ 6018 }; 6019 #undef K 6020 6021 size_t i; 6022 6023 for (i = 0; i < ARRAY_SIZE(aliases); i++) { 6024 const struct E2HAlias *a = &aliases[i]; 6025 ARMCPRegInfo *src_reg, *dst_reg; 6026 6027 if (a->feature && !a->feature(&cpu->isar)) { 6028 continue; 6029 } 6030 6031 src_reg = g_hash_table_lookup(cpu->cp_regs, &a->src_key); 6032 dst_reg = g_hash_table_lookup(cpu->cp_regs, &a->dst_key); 6033 g_assert(src_reg != NULL); 6034 g_assert(dst_reg != NULL); 6035 6036 /* Cross-compare names to detect typos in the keys. */ 6037 g_assert(strcmp(src_reg->name, a->src_name) == 0); 6038 g_assert(strcmp(dst_reg->name, a->dst_name) == 0); 6039 6040 /* None of the core system registers use opaque; we will. */ 6041 g_assert(src_reg->opaque == NULL); 6042 6043 /* Create alias before redirection so we dup the right data. */ 6044 if (a->new_key) { 6045 ARMCPRegInfo *new_reg = g_memdup(src_reg, sizeof(ARMCPRegInfo)); 6046 uint32_t *new_key = g_memdup(&a->new_key, sizeof(uint32_t)); 6047 bool ok; 6048 6049 new_reg->name = a->new_name; 6050 new_reg->type |= ARM_CP_ALIAS; 6051 /* Remove PL1/PL0 access, leaving PL2/PL3 R/W in place. */ 6052 new_reg->access &= PL2_RW | PL3_RW; 6053 6054 ok = g_hash_table_insert(cpu->cp_regs, new_key, new_reg); 6055 g_assert(ok); 6056 } 6057 6058 src_reg->opaque = dst_reg; 6059 src_reg->orig_readfn = src_reg->readfn ?: raw_read; 6060 src_reg->orig_writefn = src_reg->writefn ?: raw_write; 6061 if (!src_reg->raw_readfn) { 6062 src_reg->raw_readfn = raw_read; 6063 } 6064 if (!src_reg->raw_writefn) { 6065 src_reg->raw_writefn = raw_write; 6066 } 6067 src_reg->readfn = el2_e2h_read; 6068 src_reg->writefn = el2_e2h_write; 6069 } 6070 } 6071 #endif 6072 6073 static CPAccessResult ctr_el0_access(CPUARMState *env, const ARMCPRegInfo *ri, 6074 bool isread) 6075 { 6076 int cur_el = arm_current_el(env); 6077 6078 if (cur_el < 2) { 6079 uint64_t hcr = arm_hcr_el2_eff(env); 6080 6081 if (cur_el == 0) { 6082 if ((hcr & (HCR_E2H | HCR_TGE)) == (HCR_E2H | HCR_TGE)) { 6083 if (!(env->cp15.sctlr_el[2] & SCTLR_UCT)) { 6084 return CP_ACCESS_TRAP_EL2; 6085 } 6086 } else { 6087 if (!(env->cp15.sctlr_el[1] & SCTLR_UCT)) { 6088 return CP_ACCESS_TRAP; 6089 } 6090 if (hcr & HCR_TID2) { 6091 return CP_ACCESS_TRAP_EL2; 6092 } 6093 } 6094 } else if (hcr & HCR_TID2) { 6095 return CP_ACCESS_TRAP_EL2; 6096 } 6097 } 6098 6099 if (arm_current_el(env) < 2 && arm_hcr_el2_eff(env) & HCR_TID2) { 6100 return CP_ACCESS_TRAP_EL2; 6101 } 6102 6103 return CP_ACCESS_OK; 6104 } 6105 6106 static void oslar_write(CPUARMState *env, const ARMCPRegInfo *ri, 6107 uint64_t value) 6108 { 6109 /* Writes to OSLAR_EL1 may update the OS lock status, which can be 6110 * read via a bit in OSLSR_EL1. 6111 */ 6112 int oslock; 6113 6114 if (ri->state == ARM_CP_STATE_AA32) { 6115 oslock = (value == 0xC5ACCE55); 6116 } else { 6117 oslock = value & 1; 6118 } 6119 6120 env->cp15.oslsr_el1 = deposit32(env->cp15.oslsr_el1, 1, 1, oslock); 6121 } 6122 6123 static const ARMCPRegInfo debug_cp_reginfo[] = { 6124 /* DBGDRAR, DBGDSAR: always RAZ since we don't implement memory mapped 6125 * debug components. The AArch64 version of DBGDRAR is named MDRAR_EL1; 6126 * unlike DBGDRAR it is never accessible from EL0. 6127 * DBGDSAR is deprecated and must RAZ from v8 anyway, so it has no AArch64 6128 * accessor. 6129 */ 6130 { .name = "DBGDRAR", .cp = 14, .crn = 1, .crm = 0, .opc1 = 0, .opc2 = 0, 6131 .access = PL0_R, .accessfn = access_tdra, 6132 .type = ARM_CP_CONST, .resetvalue = 0 }, 6133 { .name = "MDRAR_EL1", .state = ARM_CP_STATE_AA64, 6134 .opc0 = 2, .opc1 = 0, .crn = 1, .crm = 0, .opc2 = 0, 6135 .access = PL1_R, .accessfn = access_tdra, 6136 .type = ARM_CP_CONST, .resetvalue = 0 }, 6137 { .name = "DBGDSAR", .cp = 14, .crn = 2, .crm = 0, .opc1 = 0, .opc2 = 0, 6138 .access = PL0_R, .accessfn = access_tdra, 6139 .type = ARM_CP_CONST, .resetvalue = 0 }, 6140 /* Monitor debug system control register; the 32-bit alias is DBGDSCRext. */ 6141 { .name = "MDSCR_EL1", .state = ARM_CP_STATE_BOTH, 6142 .cp = 14, .opc0 = 2, .opc1 = 0, .crn = 0, .crm = 2, .opc2 = 2, 6143 .access = PL1_RW, .accessfn = access_tda, 6144 .fieldoffset = offsetof(CPUARMState, cp15.mdscr_el1), 6145 .resetvalue = 0 }, 6146 /* MDCCSR_EL0, aka DBGDSCRint. This is a read-only mirror of MDSCR_EL1. 6147 * We don't implement the configurable EL0 access. 6148 */ 6149 { .name = "MDCCSR_EL0", .state = ARM_CP_STATE_BOTH, 6150 .cp = 14, .opc0 = 2, .opc1 = 0, .crn = 0, .crm = 1, .opc2 = 0, 6151 .type = ARM_CP_ALIAS, 6152 .access = PL1_R, .accessfn = access_tda, 6153 .fieldoffset = offsetof(CPUARMState, cp15.mdscr_el1), }, 6154 { .name = "OSLAR_EL1", .state = ARM_CP_STATE_BOTH, 6155 .cp = 14, .opc0 = 2, .opc1 = 0, .crn = 1, .crm = 0, .opc2 = 4, 6156 .access = PL1_W, .type = ARM_CP_NO_RAW, 6157 .accessfn = access_tdosa, 6158 .writefn = oslar_write }, 6159 { .name = "OSLSR_EL1", .state = ARM_CP_STATE_BOTH, 6160 .cp = 14, .opc0 = 2, .opc1 = 0, .crn = 1, .crm = 1, .opc2 = 4, 6161 .access = PL1_R, .resetvalue = 10, 6162 .accessfn = access_tdosa, 6163 .fieldoffset = offsetof(CPUARMState, cp15.oslsr_el1) }, 6164 /* Dummy OSDLR_EL1: 32-bit Linux will read this */ 6165 { .name = "OSDLR_EL1", .state = ARM_CP_STATE_BOTH, 6166 .cp = 14, .opc0 = 2, .opc1 = 0, .crn = 1, .crm = 3, .opc2 = 4, 6167 .access = PL1_RW, .accessfn = access_tdosa, 6168 .type = ARM_CP_NOP }, 6169 /* Dummy DBGVCR: Linux wants to clear this on startup, but we don't 6170 * implement vector catch debug events yet. 6171 */ 6172 { .name = "DBGVCR", 6173 .cp = 14, .opc1 = 0, .crn = 0, .crm = 7, .opc2 = 0, 6174 .access = PL1_RW, .accessfn = access_tda, 6175 .type = ARM_CP_NOP }, 6176 /* Dummy DBGVCR32_EL2 (which is only for a 64-bit hypervisor 6177 * to save and restore a 32-bit guest's DBGVCR) 6178 */ 6179 { .name = "DBGVCR32_EL2", .state = ARM_CP_STATE_AA64, 6180 .opc0 = 2, .opc1 = 4, .crn = 0, .crm = 7, .opc2 = 0, 6181 .access = PL2_RW, .accessfn = access_tda, 6182 .type = ARM_CP_NOP }, 6183 /* Dummy MDCCINT_EL1, since we don't implement the Debug Communications 6184 * Channel but Linux may try to access this register. The 32-bit 6185 * alias is DBGDCCINT. 6186 */ 6187 { .name = "MDCCINT_EL1", .state = ARM_CP_STATE_BOTH, 6188 .cp = 14, .opc0 = 2, .opc1 = 0, .crn = 0, .crm = 2, .opc2 = 0, 6189 .access = PL1_RW, .accessfn = access_tda, 6190 .type = ARM_CP_NOP }, 6191 REGINFO_SENTINEL 6192 }; 6193 6194 static const ARMCPRegInfo debug_lpae_cp_reginfo[] = { 6195 /* 64 bit access versions of the (dummy) debug registers */ 6196 { .name = "DBGDRAR", .cp = 14, .crm = 1, .opc1 = 0, 6197 .access = PL0_R, .type = ARM_CP_CONST|ARM_CP_64BIT, .resetvalue = 0 }, 6198 { .name = "DBGDSAR", .cp = 14, .crm = 2, .opc1 = 0, 6199 .access = PL0_R, .type = ARM_CP_CONST|ARM_CP_64BIT, .resetvalue = 0 }, 6200 REGINFO_SENTINEL 6201 }; 6202 6203 /* Return the exception level to which exceptions should be taken 6204 * via SVEAccessTrap. If an exception should be routed through 6205 * AArch64.AdvSIMDFPAccessTrap, return 0; fp_exception_el should 6206 * take care of raising that exception. 6207 * C.f. the ARM pseudocode function CheckSVEEnabled. 6208 */ 6209 int sve_exception_el(CPUARMState *env, int el) 6210 { 6211 #ifndef CONFIG_USER_ONLY 6212 uint64_t hcr_el2 = arm_hcr_el2_eff(env); 6213 6214 if (el <= 1 && (hcr_el2 & (HCR_E2H | HCR_TGE)) != (HCR_E2H | HCR_TGE)) { 6215 bool disabled = false; 6216 6217 /* The CPACR.ZEN controls traps to EL1: 6218 * 0, 2 : trap EL0 and EL1 accesses 6219 * 1 : trap only EL0 accesses 6220 * 3 : trap no accesses 6221 */ 6222 if (!extract32(env->cp15.cpacr_el1, 16, 1)) { 6223 disabled = true; 6224 } else if (!extract32(env->cp15.cpacr_el1, 17, 1)) { 6225 disabled = el == 0; 6226 } 6227 if (disabled) { 6228 /* route_to_el2 */ 6229 return hcr_el2 & HCR_TGE ? 2 : 1; 6230 } 6231 6232 /* Check CPACR.FPEN. */ 6233 if (!extract32(env->cp15.cpacr_el1, 20, 1)) { 6234 disabled = true; 6235 } else if (!extract32(env->cp15.cpacr_el1, 21, 1)) { 6236 disabled = el == 0; 6237 } 6238 if (disabled) { 6239 return 0; 6240 } 6241 } 6242 6243 /* CPTR_EL2. Since TZ and TFP are positive, 6244 * they will be zero when EL2 is not present. 6245 */ 6246 if (el <= 2 && arm_is_el2_enabled(env)) { 6247 if (env->cp15.cptr_el[2] & CPTR_TZ) { 6248 return 2; 6249 } 6250 if (env->cp15.cptr_el[2] & CPTR_TFP) { 6251 return 0; 6252 } 6253 } 6254 6255 /* CPTR_EL3. Since EZ is negative we must check for EL3. */ 6256 if (arm_feature(env, ARM_FEATURE_EL3) 6257 && !(env->cp15.cptr_el[3] & CPTR_EZ)) { 6258 return 3; 6259 } 6260 #endif 6261 return 0; 6262 } 6263 6264 static uint32_t sve_zcr_get_valid_len(ARMCPU *cpu, uint32_t start_len) 6265 { 6266 uint32_t end_len; 6267 6268 end_len = start_len &= 0xf; 6269 if (!test_bit(start_len, cpu->sve_vq_map)) { 6270 end_len = find_last_bit(cpu->sve_vq_map, start_len); 6271 assert(end_len < start_len); 6272 } 6273 return end_len; 6274 } 6275 6276 /* 6277 * Given that SVE is enabled, return the vector length for EL. 6278 */ 6279 uint32_t sve_zcr_len_for_el(CPUARMState *env, int el) 6280 { 6281 ARMCPU *cpu = env_archcpu(env); 6282 uint32_t zcr_len = cpu->sve_max_vq - 1; 6283 6284 if (el <= 1) { 6285 zcr_len = MIN(zcr_len, 0xf & (uint32_t)env->vfp.zcr_el[1]); 6286 } 6287 if (el <= 2 && arm_feature(env, ARM_FEATURE_EL2)) { 6288 zcr_len = MIN(zcr_len, 0xf & (uint32_t)env->vfp.zcr_el[2]); 6289 } 6290 if (arm_feature(env, ARM_FEATURE_EL3)) { 6291 zcr_len = MIN(zcr_len, 0xf & (uint32_t)env->vfp.zcr_el[3]); 6292 } 6293 6294 return sve_zcr_get_valid_len(cpu, zcr_len); 6295 } 6296 6297 static void zcr_write(CPUARMState *env, const ARMCPRegInfo *ri, 6298 uint64_t value) 6299 { 6300 int cur_el = arm_current_el(env); 6301 int old_len = sve_zcr_len_for_el(env, cur_el); 6302 int new_len; 6303 6304 /* Bits other than [3:0] are RAZ/WI. */ 6305 QEMU_BUILD_BUG_ON(ARM_MAX_VQ > 16); 6306 raw_write(env, ri, value & 0xf); 6307 6308 /* 6309 * Because we arrived here, we know both FP and SVE are enabled; 6310 * otherwise we would have trapped access to the ZCR_ELn register. 6311 */ 6312 new_len = sve_zcr_len_for_el(env, cur_el); 6313 if (new_len < old_len) { 6314 aarch64_sve_narrow_vq(env, new_len + 1); 6315 } 6316 } 6317 6318 static const ARMCPRegInfo zcr_el1_reginfo = { 6319 .name = "ZCR_EL1", .state = ARM_CP_STATE_AA64, 6320 .opc0 = 3, .opc1 = 0, .crn = 1, .crm = 2, .opc2 = 0, 6321 .access = PL1_RW, .type = ARM_CP_SVE, 6322 .fieldoffset = offsetof(CPUARMState, vfp.zcr_el[1]), 6323 .writefn = zcr_write, .raw_writefn = raw_write 6324 }; 6325 6326 static const ARMCPRegInfo zcr_el2_reginfo = { 6327 .name = "ZCR_EL2", .state = ARM_CP_STATE_AA64, 6328 .opc0 = 3, .opc1 = 4, .crn = 1, .crm = 2, .opc2 = 0, 6329 .access = PL2_RW, .type = ARM_CP_SVE, 6330 .fieldoffset = offsetof(CPUARMState, vfp.zcr_el[2]), 6331 .writefn = zcr_write, .raw_writefn = raw_write 6332 }; 6333 6334 static const ARMCPRegInfo zcr_no_el2_reginfo = { 6335 .name = "ZCR_EL2", .state = ARM_CP_STATE_AA64, 6336 .opc0 = 3, .opc1 = 4, .crn = 1, .crm = 2, .opc2 = 0, 6337 .access = PL2_RW, .type = ARM_CP_SVE, 6338 .readfn = arm_cp_read_zero, .writefn = arm_cp_write_ignore 6339 }; 6340 6341 static const ARMCPRegInfo zcr_el3_reginfo = { 6342 .name = "ZCR_EL3", .state = ARM_CP_STATE_AA64, 6343 .opc0 = 3, .opc1 = 6, .crn = 1, .crm = 2, .opc2 = 0, 6344 .access = PL3_RW, .type = ARM_CP_SVE, 6345 .fieldoffset = offsetof(CPUARMState, vfp.zcr_el[3]), 6346 .writefn = zcr_write, .raw_writefn = raw_write 6347 }; 6348 6349 void hw_watchpoint_update(ARMCPU *cpu, int n) 6350 { 6351 CPUARMState *env = &cpu->env; 6352 vaddr len = 0; 6353 vaddr wvr = env->cp15.dbgwvr[n]; 6354 uint64_t wcr = env->cp15.dbgwcr[n]; 6355 int mask; 6356 int flags = BP_CPU | BP_STOP_BEFORE_ACCESS; 6357 6358 if (env->cpu_watchpoint[n]) { 6359 cpu_watchpoint_remove_by_ref(CPU(cpu), env->cpu_watchpoint[n]); 6360 env->cpu_watchpoint[n] = NULL; 6361 } 6362 6363 if (!extract64(wcr, 0, 1)) { 6364 /* E bit clear : watchpoint disabled */ 6365 return; 6366 } 6367 6368 switch (extract64(wcr, 3, 2)) { 6369 case 0: 6370 /* LSC 00 is reserved and must behave as if the wp is disabled */ 6371 return; 6372 case 1: 6373 flags |= BP_MEM_READ; 6374 break; 6375 case 2: 6376 flags |= BP_MEM_WRITE; 6377 break; 6378 case 3: 6379 flags |= BP_MEM_ACCESS; 6380 break; 6381 } 6382 6383 /* Attempts to use both MASK and BAS fields simultaneously are 6384 * CONSTRAINED UNPREDICTABLE; we opt to ignore BAS in this case, 6385 * thus generating a watchpoint for every byte in the masked region. 6386 */ 6387 mask = extract64(wcr, 24, 4); 6388 if (mask == 1 || mask == 2) { 6389 /* Reserved values of MASK; we must act as if the mask value was 6390 * some non-reserved value, or as if the watchpoint were disabled. 6391 * We choose the latter. 6392 */ 6393 return; 6394 } else if (mask) { 6395 /* Watchpoint covers an aligned area up to 2GB in size */ 6396 len = 1ULL << mask; 6397 /* If masked bits in WVR are not zero it's CONSTRAINED UNPREDICTABLE 6398 * whether the watchpoint fires when the unmasked bits match; we opt 6399 * to generate the exceptions. 6400 */ 6401 wvr &= ~(len - 1); 6402 } else { 6403 /* Watchpoint covers bytes defined by the byte address select bits */ 6404 int bas = extract64(wcr, 5, 8); 6405 int basstart; 6406 6407 if (extract64(wvr, 2, 1)) { 6408 /* Deprecated case of an only 4-aligned address. BAS[7:4] are 6409 * ignored, and BAS[3:0] define which bytes to watch. 6410 */ 6411 bas &= 0xf; 6412 } 6413 6414 if (bas == 0) { 6415 /* This must act as if the watchpoint is disabled */ 6416 return; 6417 } 6418 6419 /* The BAS bits are supposed to be programmed to indicate a contiguous 6420 * range of bytes. Otherwise it is CONSTRAINED UNPREDICTABLE whether 6421 * we fire for each byte in the word/doubleword addressed by the WVR. 6422 * We choose to ignore any non-zero bits after the first range of 1s. 6423 */ 6424 basstart = ctz32(bas); 6425 len = cto32(bas >> basstart); 6426 wvr += basstart; 6427 } 6428 6429 cpu_watchpoint_insert(CPU(cpu), wvr, len, flags, 6430 &env->cpu_watchpoint[n]); 6431 } 6432 6433 void hw_watchpoint_update_all(ARMCPU *cpu) 6434 { 6435 int i; 6436 CPUARMState *env = &cpu->env; 6437 6438 /* Completely clear out existing QEMU watchpoints and our array, to 6439 * avoid possible stale entries following migration load. 6440 */ 6441 cpu_watchpoint_remove_all(CPU(cpu), BP_CPU); 6442 memset(env->cpu_watchpoint, 0, sizeof(env->cpu_watchpoint)); 6443 6444 for (i = 0; i < ARRAY_SIZE(cpu->env.cpu_watchpoint); i++) { 6445 hw_watchpoint_update(cpu, i); 6446 } 6447 } 6448 6449 static void dbgwvr_write(CPUARMState *env, const ARMCPRegInfo *ri, 6450 uint64_t value) 6451 { 6452 ARMCPU *cpu = env_archcpu(env); 6453 int i = ri->crm; 6454 6455 /* Bits [63:49] are hardwired to the value of bit [48]; that is, the 6456 * register reads and behaves as if values written are sign extended. 6457 * Bits [1:0] are RES0. 6458 */ 6459 value = sextract64(value, 0, 49) & ~3ULL; 6460 6461 raw_write(env, ri, value); 6462 hw_watchpoint_update(cpu, i); 6463 } 6464 6465 static void dbgwcr_write(CPUARMState *env, const ARMCPRegInfo *ri, 6466 uint64_t value) 6467 { 6468 ARMCPU *cpu = env_archcpu(env); 6469 int i = ri->crm; 6470 6471 raw_write(env, ri, value); 6472 hw_watchpoint_update(cpu, i); 6473 } 6474 6475 void hw_breakpoint_update(ARMCPU *cpu, int n) 6476 { 6477 CPUARMState *env = &cpu->env; 6478 uint64_t bvr = env->cp15.dbgbvr[n]; 6479 uint64_t bcr = env->cp15.dbgbcr[n]; 6480 vaddr addr; 6481 int bt; 6482 int flags = BP_CPU; 6483 6484 if (env->cpu_breakpoint[n]) { 6485 cpu_breakpoint_remove_by_ref(CPU(cpu), env->cpu_breakpoint[n]); 6486 env->cpu_breakpoint[n] = NULL; 6487 } 6488 6489 if (!extract64(bcr, 0, 1)) { 6490 /* E bit clear : watchpoint disabled */ 6491 return; 6492 } 6493 6494 bt = extract64(bcr, 20, 4); 6495 6496 switch (bt) { 6497 case 4: /* unlinked address mismatch (reserved if AArch64) */ 6498 case 5: /* linked address mismatch (reserved if AArch64) */ 6499 qemu_log_mask(LOG_UNIMP, 6500 "arm: address mismatch breakpoint types not implemented\n"); 6501 return; 6502 case 0: /* unlinked address match */ 6503 case 1: /* linked address match */ 6504 { 6505 /* Bits [63:49] are hardwired to the value of bit [48]; that is, 6506 * we behave as if the register was sign extended. Bits [1:0] are 6507 * RES0. The BAS field is used to allow setting breakpoints on 16 6508 * bit wide instructions; it is CONSTRAINED UNPREDICTABLE whether 6509 * a bp will fire if the addresses covered by the bp and the addresses 6510 * covered by the insn overlap but the insn doesn't start at the 6511 * start of the bp address range. We choose to require the insn and 6512 * the bp to have the same address. The constraints on writing to 6513 * BAS enforced in dbgbcr_write mean we have only four cases: 6514 * 0b0000 => no breakpoint 6515 * 0b0011 => breakpoint on addr 6516 * 0b1100 => breakpoint on addr + 2 6517 * 0b1111 => breakpoint on addr 6518 * See also figure D2-3 in the v8 ARM ARM (DDI0487A.c). 6519 */ 6520 int bas = extract64(bcr, 5, 4); 6521 addr = sextract64(bvr, 0, 49) & ~3ULL; 6522 if (bas == 0) { 6523 return; 6524 } 6525 if (bas == 0xc) { 6526 addr += 2; 6527 } 6528 break; 6529 } 6530 case 2: /* unlinked context ID match */ 6531 case 8: /* unlinked VMID match (reserved if no EL2) */ 6532 case 10: /* unlinked context ID and VMID match (reserved if no EL2) */ 6533 qemu_log_mask(LOG_UNIMP, 6534 "arm: unlinked context breakpoint types not implemented\n"); 6535 return; 6536 case 9: /* linked VMID match (reserved if no EL2) */ 6537 case 11: /* linked context ID and VMID match (reserved if no EL2) */ 6538 case 3: /* linked context ID match */ 6539 default: 6540 /* We must generate no events for Linked context matches (unless 6541 * they are linked to by some other bp/wp, which is handled in 6542 * updates for the linking bp/wp). We choose to also generate no events 6543 * for reserved values. 6544 */ 6545 return; 6546 } 6547 6548 cpu_breakpoint_insert(CPU(cpu), addr, flags, &env->cpu_breakpoint[n]); 6549 } 6550 6551 void hw_breakpoint_update_all(ARMCPU *cpu) 6552 { 6553 int i; 6554 CPUARMState *env = &cpu->env; 6555 6556 /* Completely clear out existing QEMU breakpoints and our array, to 6557 * avoid possible stale entries following migration load. 6558 */ 6559 cpu_breakpoint_remove_all(CPU(cpu), BP_CPU); 6560 memset(env->cpu_breakpoint, 0, sizeof(env->cpu_breakpoint)); 6561 6562 for (i = 0; i < ARRAY_SIZE(cpu->env.cpu_breakpoint); i++) { 6563 hw_breakpoint_update(cpu, i); 6564 } 6565 } 6566 6567 static void dbgbvr_write(CPUARMState *env, const ARMCPRegInfo *ri, 6568 uint64_t value) 6569 { 6570 ARMCPU *cpu = env_archcpu(env); 6571 int i = ri->crm; 6572 6573 raw_write(env, ri, value); 6574 hw_breakpoint_update(cpu, i); 6575 } 6576 6577 static void dbgbcr_write(CPUARMState *env, const ARMCPRegInfo *ri, 6578 uint64_t value) 6579 { 6580 ARMCPU *cpu = env_archcpu(env); 6581 int i = ri->crm; 6582 6583 /* BAS[3] is a read-only copy of BAS[2], and BAS[1] a read-only 6584 * copy of BAS[0]. 6585 */ 6586 value = deposit64(value, 6, 1, extract64(value, 5, 1)); 6587 value = deposit64(value, 8, 1, extract64(value, 7, 1)); 6588 6589 raw_write(env, ri, value); 6590 hw_breakpoint_update(cpu, i); 6591 } 6592 6593 static void define_debug_regs(ARMCPU *cpu) 6594 { 6595 /* Define v7 and v8 architectural debug registers. 6596 * These are just dummy implementations for now. 6597 */ 6598 int i; 6599 int wrps, brps, ctx_cmps; 6600 6601 /* 6602 * The Arm ARM says DBGDIDR is optional and deprecated if EL1 cannot 6603 * use AArch32. Given that bit 15 is RES1, if the value is 0 then 6604 * the register must not exist for this cpu. 6605 */ 6606 if (cpu->isar.dbgdidr != 0) { 6607 ARMCPRegInfo dbgdidr = { 6608 .name = "DBGDIDR", .cp = 14, .crn = 0, .crm = 0, 6609 .opc1 = 0, .opc2 = 0, 6610 .access = PL0_R, .accessfn = access_tda, 6611 .type = ARM_CP_CONST, .resetvalue = cpu->isar.dbgdidr, 6612 }; 6613 define_one_arm_cp_reg(cpu, &dbgdidr); 6614 } 6615 6616 /* Note that all these register fields hold "number of Xs minus 1". */ 6617 brps = arm_num_brps(cpu); 6618 wrps = arm_num_wrps(cpu); 6619 ctx_cmps = arm_num_ctx_cmps(cpu); 6620 6621 assert(ctx_cmps <= brps); 6622 6623 define_arm_cp_regs(cpu, debug_cp_reginfo); 6624 6625 if (arm_feature(&cpu->env, ARM_FEATURE_LPAE)) { 6626 define_arm_cp_regs(cpu, debug_lpae_cp_reginfo); 6627 } 6628 6629 for (i = 0; i < brps; i++) { 6630 ARMCPRegInfo dbgregs[] = { 6631 { .name = "DBGBVR", .state = ARM_CP_STATE_BOTH, 6632 .cp = 14, .opc0 = 2, .opc1 = 0, .crn = 0, .crm = i, .opc2 = 4, 6633 .access = PL1_RW, .accessfn = access_tda, 6634 .fieldoffset = offsetof(CPUARMState, cp15.dbgbvr[i]), 6635 .writefn = dbgbvr_write, .raw_writefn = raw_write 6636 }, 6637 { .name = "DBGBCR", .state = ARM_CP_STATE_BOTH, 6638 .cp = 14, .opc0 = 2, .opc1 = 0, .crn = 0, .crm = i, .opc2 = 5, 6639 .access = PL1_RW, .accessfn = access_tda, 6640 .fieldoffset = offsetof(CPUARMState, cp15.dbgbcr[i]), 6641 .writefn = dbgbcr_write, .raw_writefn = raw_write 6642 }, 6643 REGINFO_SENTINEL 6644 }; 6645 define_arm_cp_regs(cpu, dbgregs); 6646 } 6647 6648 for (i = 0; i < wrps; i++) { 6649 ARMCPRegInfo dbgregs[] = { 6650 { .name = "DBGWVR", .state = ARM_CP_STATE_BOTH, 6651 .cp = 14, .opc0 = 2, .opc1 = 0, .crn = 0, .crm = i, .opc2 = 6, 6652 .access = PL1_RW, .accessfn = access_tda, 6653 .fieldoffset = offsetof(CPUARMState, cp15.dbgwvr[i]), 6654 .writefn = dbgwvr_write, .raw_writefn = raw_write 6655 }, 6656 { .name = "DBGWCR", .state = ARM_CP_STATE_BOTH, 6657 .cp = 14, .opc0 = 2, .opc1 = 0, .crn = 0, .crm = i, .opc2 = 7, 6658 .access = PL1_RW, .accessfn = access_tda, 6659 .fieldoffset = offsetof(CPUARMState, cp15.dbgwcr[i]), 6660 .writefn = dbgwcr_write, .raw_writefn = raw_write 6661 }, 6662 REGINFO_SENTINEL 6663 }; 6664 define_arm_cp_regs(cpu, dbgregs); 6665 } 6666 } 6667 6668 static void define_pmu_regs(ARMCPU *cpu) 6669 { 6670 /* 6671 * v7 performance monitor control register: same implementor 6672 * field as main ID register, and we implement four counters in 6673 * addition to the cycle count register. 6674 */ 6675 unsigned int i, pmcrn = 4; 6676 ARMCPRegInfo pmcr = { 6677 .name = "PMCR", .cp = 15, .crn = 9, .crm = 12, .opc1 = 0, .opc2 = 0, 6678 .access = PL0_RW, 6679 .type = ARM_CP_IO | ARM_CP_ALIAS, 6680 .fieldoffset = offsetoflow32(CPUARMState, cp15.c9_pmcr), 6681 .accessfn = pmreg_access, .writefn = pmcr_write, 6682 .raw_writefn = raw_write, 6683 }; 6684 ARMCPRegInfo pmcr64 = { 6685 .name = "PMCR_EL0", .state = ARM_CP_STATE_AA64, 6686 .opc0 = 3, .opc1 = 3, .crn = 9, .crm = 12, .opc2 = 0, 6687 .access = PL0_RW, .accessfn = pmreg_access, 6688 .type = ARM_CP_IO, 6689 .fieldoffset = offsetof(CPUARMState, cp15.c9_pmcr), 6690 .resetvalue = (cpu->midr & 0xff000000) | (pmcrn << PMCRN_SHIFT) | 6691 PMCRLC, 6692 .writefn = pmcr_write, .raw_writefn = raw_write, 6693 }; 6694 define_one_arm_cp_reg(cpu, &pmcr); 6695 define_one_arm_cp_reg(cpu, &pmcr64); 6696 for (i = 0; i < pmcrn; i++) { 6697 char *pmevcntr_name = g_strdup_printf("PMEVCNTR%d", i); 6698 char *pmevcntr_el0_name = g_strdup_printf("PMEVCNTR%d_EL0", i); 6699 char *pmevtyper_name = g_strdup_printf("PMEVTYPER%d", i); 6700 char *pmevtyper_el0_name = g_strdup_printf("PMEVTYPER%d_EL0", i); 6701 ARMCPRegInfo pmev_regs[] = { 6702 { .name = pmevcntr_name, .cp = 15, .crn = 14, 6703 .crm = 8 | (3 & (i >> 3)), .opc1 = 0, .opc2 = i & 7, 6704 .access = PL0_RW, .type = ARM_CP_IO | ARM_CP_ALIAS, 6705 .readfn = pmevcntr_readfn, .writefn = pmevcntr_writefn, 6706 .accessfn = pmreg_access }, 6707 { .name = pmevcntr_el0_name, .state = ARM_CP_STATE_AA64, 6708 .opc0 = 3, .opc1 = 3, .crn = 14, .crm = 8 | (3 & (i >> 3)), 6709 .opc2 = i & 7, .access = PL0_RW, .accessfn = pmreg_access, 6710 .type = ARM_CP_IO, 6711 .readfn = pmevcntr_readfn, .writefn = pmevcntr_writefn, 6712 .raw_readfn = pmevcntr_rawread, 6713 .raw_writefn = pmevcntr_rawwrite }, 6714 { .name = pmevtyper_name, .cp = 15, .crn = 14, 6715 .crm = 12 | (3 & (i >> 3)), .opc1 = 0, .opc2 = i & 7, 6716 .access = PL0_RW, .type = ARM_CP_IO | ARM_CP_ALIAS, 6717 .readfn = pmevtyper_readfn, .writefn = pmevtyper_writefn, 6718 .accessfn = pmreg_access }, 6719 { .name = pmevtyper_el0_name, .state = ARM_CP_STATE_AA64, 6720 .opc0 = 3, .opc1 = 3, .crn = 14, .crm = 12 | (3 & (i >> 3)), 6721 .opc2 = i & 7, .access = PL0_RW, .accessfn = pmreg_access, 6722 .type = ARM_CP_IO, 6723 .readfn = pmevtyper_readfn, .writefn = pmevtyper_writefn, 6724 .raw_writefn = pmevtyper_rawwrite }, 6725 REGINFO_SENTINEL 6726 }; 6727 define_arm_cp_regs(cpu, pmev_regs); 6728 g_free(pmevcntr_name); 6729 g_free(pmevcntr_el0_name); 6730 g_free(pmevtyper_name); 6731 g_free(pmevtyper_el0_name); 6732 } 6733 if (cpu_isar_feature(aa32_pmu_8_1, cpu)) { 6734 ARMCPRegInfo v81_pmu_regs[] = { 6735 { .name = "PMCEID2", .state = ARM_CP_STATE_AA32, 6736 .cp = 15, .opc1 = 0, .crn = 9, .crm = 14, .opc2 = 4, 6737 .access = PL0_R, .accessfn = pmreg_access, .type = ARM_CP_CONST, 6738 .resetvalue = extract64(cpu->pmceid0, 32, 32) }, 6739 { .name = "PMCEID3", .state = ARM_CP_STATE_AA32, 6740 .cp = 15, .opc1 = 0, .crn = 9, .crm = 14, .opc2 = 5, 6741 .access = PL0_R, .accessfn = pmreg_access, .type = ARM_CP_CONST, 6742 .resetvalue = extract64(cpu->pmceid1, 32, 32) }, 6743 REGINFO_SENTINEL 6744 }; 6745 define_arm_cp_regs(cpu, v81_pmu_regs); 6746 } 6747 if (cpu_isar_feature(any_pmu_8_4, cpu)) { 6748 static const ARMCPRegInfo v84_pmmir = { 6749 .name = "PMMIR_EL1", .state = ARM_CP_STATE_BOTH, 6750 .opc0 = 3, .opc1 = 0, .crn = 9, .crm = 14, .opc2 = 6, 6751 .access = PL1_R, .accessfn = pmreg_access, .type = ARM_CP_CONST, 6752 .resetvalue = 0 6753 }; 6754 define_one_arm_cp_reg(cpu, &v84_pmmir); 6755 } 6756 } 6757 6758 /* We don't know until after realize whether there's a GICv3 6759 * attached, and that is what registers the gicv3 sysregs. 6760 * So we have to fill in the GIC fields in ID_PFR/ID_PFR1_EL1/ID_AA64PFR0_EL1 6761 * at runtime. 6762 */ 6763 static uint64_t id_pfr1_read(CPUARMState *env, const ARMCPRegInfo *ri) 6764 { 6765 ARMCPU *cpu = env_archcpu(env); 6766 uint64_t pfr1 = cpu->isar.id_pfr1; 6767 6768 if (env->gicv3state) { 6769 pfr1 |= 1 << 28; 6770 } 6771 return pfr1; 6772 } 6773 6774 #ifndef CONFIG_USER_ONLY 6775 static uint64_t id_aa64pfr0_read(CPUARMState *env, const ARMCPRegInfo *ri) 6776 { 6777 ARMCPU *cpu = env_archcpu(env); 6778 uint64_t pfr0 = cpu->isar.id_aa64pfr0; 6779 6780 if (env->gicv3state) { 6781 pfr0 |= 1 << 24; 6782 } 6783 return pfr0; 6784 } 6785 #endif 6786 6787 /* Shared logic between LORID and the rest of the LOR* registers. 6788 * Secure state exclusion has already been dealt with. 6789 */ 6790 static CPAccessResult access_lor_ns(CPUARMState *env, 6791 const ARMCPRegInfo *ri, bool isread) 6792 { 6793 int el = arm_current_el(env); 6794 6795 if (el < 2 && (arm_hcr_el2_eff(env) & HCR_TLOR)) { 6796 return CP_ACCESS_TRAP_EL2; 6797 } 6798 if (el < 3 && (env->cp15.scr_el3 & SCR_TLOR)) { 6799 return CP_ACCESS_TRAP_EL3; 6800 } 6801 return CP_ACCESS_OK; 6802 } 6803 6804 static CPAccessResult access_lor_other(CPUARMState *env, 6805 const ARMCPRegInfo *ri, bool isread) 6806 { 6807 if (arm_is_secure_below_el3(env)) { 6808 /* Access denied in secure mode. */ 6809 return CP_ACCESS_TRAP; 6810 } 6811 return access_lor_ns(env, ri, isread); 6812 } 6813 6814 /* 6815 * A trivial implementation of ARMv8.1-LOR leaves all of these 6816 * registers fixed at 0, which indicates that there are zero 6817 * supported Limited Ordering regions. 6818 */ 6819 static const ARMCPRegInfo lor_reginfo[] = { 6820 { .name = "LORSA_EL1", .state = ARM_CP_STATE_AA64, 6821 .opc0 = 3, .opc1 = 0, .crn = 10, .crm = 4, .opc2 = 0, 6822 .access = PL1_RW, .accessfn = access_lor_other, 6823 .type = ARM_CP_CONST, .resetvalue = 0 }, 6824 { .name = "LOREA_EL1", .state = ARM_CP_STATE_AA64, 6825 .opc0 = 3, .opc1 = 0, .crn = 10, .crm = 4, .opc2 = 1, 6826 .access = PL1_RW, .accessfn = access_lor_other, 6827 .type = ARM_CP_CONST, .resetvalue = 0 }, 6828 { .name = "LORN_EL1", .state = ARM_CP_STATE_AA64, 6829 .opc0 = 3, .opc1 = 0, .crn = 10, .crm = 4, .opc2 = 2, 6830 .access = PL1_RW, .accessfn = access_lor_other, 6831 .type = ARM_CP_CONST, .resetvalue = 0 }, 6832 { .name = "LORC_EL1", .state = ARM_CP_STATE_AA64, 6833 .opc0 = 3, .opc1 = 0, .crn = 10, .crm = 4, .opc2 = 3, 6834 .access = PL1_RW, .accessfn = access_lor_other, 6835 .type = ARM_CP_CONST, .resetvalue = 0 }, 6836 { .name = "LORID_EL1", .state = ARM_CP_STATE_AA64, 6837 .opc0 = 3, .opc1 = 0, .crn = 10, .crm = 4, .opc2 = 7, 6838 .access = PL1_R, .accessfn = access_lor_ns, 6839 .type = ARM_CP_CONST, .resetvalue = 0 }, 6840 REGINFO_SENTINEL 6841 }; 6842 6843 #ifdef TARGET_AARCH64 6844 static CPAccessResult access_pauth(CPUARMState *env, const ARMCPRegInfo *ri, 6845 bool isread) 6846 { 6847 int el = arm_current_el(env); 6848 6849 if (el < 2 && 6850 arm_feature(env, ARM_FEATURE_EL2) && 6851 !(arm_hcr_el2_eff(env) & HCR_APK)) { 6852 return CP_ACCESS_TRAP_EL2; 6853 } 6854 if (el < 3 && 6855 arm_feature(env, ARM_FEATURE_EL3) && 6856 !(env->cp15.scr_el3 & SCR_APK)) { 6857 return CP_ACCESS_TRAP_EL3; 6858 } 6859 return CP_ACCESS_OK; 6860 } 6861 6862 static const ARMCPRegInfo pauth_reginfo[] = { 6863 { .name = "APDAKEYLO_EL1", .state = ARM_CP_STATE_AA64, 6864 .opc0 = 3, .opc1 = 0, .crn = 2, .crm = 2, .opc2 = 0, 6865 .access = PL1_RW, .accessfn = access_pauth, 6866 .fieldoffset = offsetof(CPUARMState, keys.apda.lo) }, 6867 { .name = "APDAKEYHI_EL1", .state = ARM_CP_STATE_AA64, 6868 .opc0 = 3, .opc1 = 0, .crn = 2, .crm = 2, .opc2 = 1, 6869 .access = PL1_RW, .accessfn = access_pauth, 6870 .fieldoffset = offsetof(CPUARMState, keys.apda.hi) }, 6871 { .name = "APDBKEYLO_EL1", .state = ARM_CP_STATE_AA64, 6872 .opc0 = 3, .opc1 = 0, .crn = 2, .crm = 2, .opc2 = 2, 6873 .access = PL1_RW, .accessfn = access_pauth, 6874 .fieldoffset = offsetof(CPUARMState, keys.apdb.lo) }, 6875 { .name = "APDBKEYHI_EL1", .state = ARM_CP_STATE_AA64, 6876 .opc0 = 3, .opc1 = 0, .crn = 2, .crm = 2, .opc2 = 3, 6877 .access = PL1_RW, .accessfn = access_pauth, 6878 .fieldoffset = offsetof(CPUARMState, keys.apdb.hi) }, 6879 { .name = "APGAKEYLO_EL1", .state = ARM_CP_STATE_AA64, 6880 .opc0 = 3, .opc1 = 0, .crn = 2, .crm = 3, .opc2 = 0, 6881 .access = PL1_RW, .accessfn = access_pauth, 6882 .fieldoffset = offsetof(CPUARMState, keys.apga.lo) }, 6883 { .name = "APGAKEYHI_EL1", .state = ARM_CP_STATE_AA64, 6884 .opc0 = 3, .opc1 = 0, .crn = 2, .crm = 3, .opc2 = 1, 6885 .access = PL1_RW, .accessfn = access_pauth, 6886 .fieldoffset = offsetof(CPUARMState, keys.apga.hi) }, 6887 { .name = "APIAKEYLO_EL1", .state = ARM_CP_STATE_AA64, 6888 .opc0 = 3, .opc1 = 0, .crn = 2, .crm = 1, .opc2 = 0, 6889 .access = PL1_RW, .accessfn = access_pauth, 6890 .fieldoffset = offsetof(CPUARMState, keys.apia.lo) }, 6891 { .name = "APIAKEYHI_EL1", .state = ARM_CP_STATE_AA64, 6892 .opc0 = 3, .opc1 = 0, .crn = 2, .crm = 1, .opc2 = 1, 6893 .access = PL1_RW, .accessfn = access_pauth, 6894 .fieldoffset = offsetof(CPUARMState, keys.apia.hi) }, 6895 { .name = "APIBKEYLO_EL1", .state = ARM_CP_STATE_AA64, 6896 .opc0 = 3, .opc1 = 0, .crn = 2, .crm = 1, .opc2 = 2, 6897 .access = PL1_RW, .accessfn = access_pauth, 6898 .fieldoffset = offsetof(CPUARMState, keys.apib.lo) }, 6899 { .name = "APIBKEYHI_EL1", .state = ARM_CP_STATE_AA64, 6900 .opc0 = 3, .opc1 = 0, .crn = 2, .crm = 1, .opc2 = 3, 6901 .access = PL1_RW, .accessfn = access_pauth, 6902 .fieldoffset = offsetof(CPUARMState, keys.apib.hi) }, 6903 REGINFO_SENTINEL 6904 }; 6905 6906 static uint64_t rndr_readfn(CPUARMState *env, const ARMCPRegInfo *ri) 6907 { 6908 Error *err = NULL; 6909 uint64_t ret; 6910 6911 /* Success sets NZCV = 0000. */ 6912 env->NF = env->CF = env->VF = 0, env->ZF = 1; 6913 6914 if (qemu_guest_getrandom(&ret, sizeof(ret), &err) < 0) { 6915 /* 6916 * ??? Failed, for unknown reasons in the crypto subsystem. 6917 * The best we can do is log the reason and return the 6918 * timed-out indication to the guest. There is no reason 6919 * we know to expect this failure to be transitory, so the 6920 * guest may well hang retrying the operation. 6921 */ 6922 qemu_log_mask(LOG_UNIMP, "%s: Crypto failure: %s", 6923 ri->name, error_get_pretty(err)); 6924 error_free(err); 6925 6926 env->ZF = 0; /* NZCF = 0100 */ 6927 return 0; 6928 } 6929 return ret; 6930 } 6931 6932 /* We do not support re-seeding, so the two registers operate the same. */ 6933 static const ARMCPRegInfo rndr_reginfo[] = { 6934 { .name = "RNDR", .state = ARM_CP_STATE_AA64, 6935 .type = ARM_CP_NO_RAW | ARM_CP_SUPPRESS_TB_END | ARM_CP_IO, 6936 .opc0 = 3, .opc1 = 3, .crn = 2, .crm = 4, .opc2 = 0, 6937 .access = PL0_R, .readfn = rndr_readfn }, 6938 { .name = "RNDRRS", .state = ARM_CP_STATE_AA64, 6939 .type = ARM_CP_NO_RAW | ARM_CP_SUPPRESS_TB_END | ARM_CP_IO, 6940 .opc0 = 3, .opc1 = 3, .crn = 2, .crm = 4, .opc2 = 1, 6941 .access = PL0_R, .readfn = rndr_readfn }, 6942 REGINFO_SENTINEL 6943 }; 6944 6945 #ifndef CONFIG_USER_ONLY 6946 static void dccvap_writefn(CPUARMState *env, const ARMCPRegInfo *opaque, 6947 uint64_t value) 6948 { 6949 ARMCPU *cpu = env_archcpu(env); 6950 /* CTR_EL0 System register -> DminLine, bits [19:16] */ 6951 uint64_t dline_size = 4 << ((cpu->ctr >> 16) & 0xF); 6952 uint64_t vaddr_in = (uint64_t) value; 6953 uint64_t vaddr = vaddr_in & ~(dline_size - 1); 6954 void *haddr; 6955 int mem_idx = cpu_mmu_index(env, false); 6956 6957 /* This won't be crossing page boundaries */ 6958 haddr = probe_read(env, vaddr, dline_size, mem_idx, GETPC()); 6959 if (haddr) { 6960 6961 ram_addr_t offset; 6962 MemoryRegion *mr; 6963 6964 /* RCU lock is already being held */ 6965 mr = memory_region_from_host(haddr, &offset); 6966 6967 if (mr) { 6968 memory_region_writeback(mr, offset, dline_size); 6969 } 6970 } 6971 } 6972 6973 static const ARMCPRegInfo dcpop_reg[] = { 6974 { .name = "DC_CVAP", .state = ARM_CP_STATE_AA64, 6975 .opc0 = 1, .opc1 = 3, .crn = 7, .crm = 12, .opc2 = 1, 6976 .access = PL0_W, .type = ARM_CP_NO_RAW | ARM_CP_SUPPRESS_TB_END, 6977 .accessfn = aa64_cacheop_poc_access, .writefn = dccvap_writefn }, 6978 REGINFO_SENTINEL 6979 }; 6980 6981 static const ARMCPRegInfo dcpodp_reg[] = { 6982 { .name = "DC_CVADP", .state = ARM_CP_STATE_AA64, 6983 .opc0 = 1, .opc1 = 3, .crn = 7, .crm = 13, .opc2 = 1, 6984 .access = PL0_W, .type = ARM_CP_NO_RAW | ARM_CP_SUPPRESS_TB_END, 6985 .accessfn = aa64_cacheop_poc_access, .writefn = dccvap_writefn }, 6986 REGINFO_SENTINEL 6987 }; 6988 #endif /*CONFIG_USER_ONLY*/ 6989 6990 static CPAccessResult access_aa64_tid5(CPUARMState *env, const ARMCPRegInfo *ri, 6991 bool isread) 6992 { 6993 if ((arm_current_el(env) < 2) && (arm_hcr_el2_eff(env) & HCR_TID5)) { 6994 return CP_ACCESS_TRAP_EL2; 6995 } 6996 6997 return CP_ACCESS_OK; 6998 } 6999 7000 static CPAccessResult access_mte(CPUARMState *env, const ARMCPRegInfo *ri, 7001 bool isread) 7002 { 7003 int el = arm_current_el(env); 7004 7005 if (el < 2 && arm_feature(env, ARM_FEATURE_EL2)) { 7006 uint64_t hcr = arm_hcr_el2_eff(env); 7007 if (!(hcr & HCR_ATA) && (!(hcr & HCR_E2H) || !(hcr & HCR_TGE))) { 7008 return CP_ACCESS_TRAP_EL2; 7009 } 7010 } 7011 if (el < 3 && 7012 arm_feature(env, ARM_FEATURE_EL3) && 7013 !(env->cp15.scr_el3 & SCR_ATA)) { 7014 return CP_ACCESS_TRAP_EL3; 7015 } 7016 return CP_ACCESS_OK; 7017 } 7018 7019 static uint64_t tco_read(CPUARMState *env, const ARMCPRegInfo *ri) 7020 { 7021 return env->pstate & PSTATE_TCO; 7022 } 7023 7024 static void tco_write(CPUARMState *env, const ARMCPRegInfo *ri, uint64_t val) 7025 { 7026 env->pstate = (env->pstate & ~PSTATE_TCO) | (val & PSTATE_TCO); 7027 } 7028 7029 static const ARMCPRegInfo mte_reginfo[] = { 7030 { .name = "TFSRE0_EL1", .state = ARM_CP_STATE_AA64, 7031 .opc0 = 3, .opc1 = 0, .crn = 5, .crm = 6, .opc2 = 1, 7032 .access = PL1_RW, .accessfn = access_mte, 7033 .fieldoffset = offsetof(CPUARMState, cp15.tfsr_el[0]) }, 7034 { .name = "TFSR_EL1", .state = ARM_CP_STATE_AA64, 7035 .opc0 = 3, .opc1 = 0, .crn = 5, .crm = 6, .opc2 = 0, 7036 .access = PL1_RW, .accessfn = access_mte, 7037 .fieldoffset = offsetof(CPUARMState, cp15.tfsr_el[1]) }, 7038 { .name = "TFSR_EL2", .state = ARM_CP_STATE_AA64, 7039 .opc0 = 3, .opc1 = 4, .crn = 5, .crm = 6, .opc2 = 0, 7040 .access = PL2_RW, .accessfn = access_mte, 7041 .fieldoffset = offsetof(CPUARMState, cp15.tfsr_el[2]) }, 7042 { .name = "TFSR_EL3", .state = ARM_CP_STATE_AA64, 7043 .opc0 = 3, .opc1 = 6, .crn = 5, .crm = 6, .opc2 = 0, 7044 .access = PL3_RW, 7045 .fieldoffset = offsetof(CPUARMState, cp15.tfsr_el[3]) }, 7046 { .name = "RGSR_EL1", .state = ARM_CP_STATE_AA64, 7047 .opc0 = 3, .opc1 = 0, .crn = 1, .crm = 0, .opc2 = 5, 7048 .access = PL1_RW, .accessfn = access_mte, 7049 .fieldoffset = offsetof(CPUARMState, cp15.rgsr_el1) }, 7050 { .name = "GCR_EL1", .state = ARM_CP_STATE_AA64, 7051 .opc0 = 3, .opc1 = 0, .crn = 1, .crm = 0, .opc2 = 6, 7052 .access = PL1_RW, .accessfn = access_mte, 7053 .fieldoffset = offsetof(CPUARMState, cp15.gcr_el1) }, 7054 { .name = "GMID_EL1", .state = ARM_CP_STATE_AA64, 7055 .opc0 = 3, .opc1 = 1, .crn = 0, .crm = 0, .opc2 = 4, 7056 .access = PL1_R, .accessfn = access_aa64_tid5, 7057 .type = ARM_CP_CONST, .resetvalue = GMID_EL1_BS }, 7058 { .name = "TCO", .state = ARM_CP_STATE_AA64, 7059 .opc0 = 3, .opc1 = 3, .crn = 4, .crm = 2, .opc2 = 7, 7060 .type = ARM_CP_NO_RAW, 7061 .access = PL0_RW, .readfn = tco_read, .writefn = tco_write }, 7062 { .name = "DC_IGVAC", .state = ARM_CP_STATE_AA64, 7063 .opc0 = 1, .opc1 = 0, .crn = 7, .crm = 6, .opc2 = 3, 7064 .type = ARM_CP_NOP, .access = PL1_W, 7065 .accessfn = aa64_cacheop_poc_access }, 7066 { .name = "DC_IGSW", .state = ARM_CP_STATE_AA64, 7067 .opc0 = 1, .opc1 = 0, .crn = 7, .crm = 6, .opc2 = 4, 7068 .type = ARM_CP_NOP, .access = PL1_W, .accessfn = access_tsw }, 7069 { .name = "DC_IGDVAC", .state = ARM_CP_STATE_AA64, 7070 .opc0 = 1, .opc1 = 0, .crn = 7, .crm = 6, .opc2 = 5, 7071 .type = ARM_CP_NOP, .access = PL1_W, 7072 .accessfn = aa64_cacheop_poc_access }, 7073 { .name = "DC_IGDSW", .state = ARM_CP_STATE_AA64, 7074 .opc0 = 1, .opc1 = 0, .crn = 7, .crm = 6, .opc2 = 6, 7075 .type = ARM_CP_NOP, .access = PL1_W, .accessfn = access_tsw }, 7076 { .name = "DC_CGSW", .state = ARM_CP_STATE_AA64, 7077 .opc0 = 1, .opc1 = 0, .crn = 7, .crm = 10, .opc2 = 4, 7078 .type = ARM_CP_NOP, .access = PL1_W, .accessfn = access_tsw }, 7079 { .name = "DC_CGDSW", .state = ARM_CP_STATE_AA64, 7080 .opc0 = 1, .opc1 = 0, .crn = 7, .crm = 10, .opc2 = 6, 7081 .type = ARM_CP_NOP, .access = PL1_W, .accessfn = access_tsw }, 7082 { .name = "DC_CIGSW", .state = ARM_CP_STATE_AA64, 7083 .opc0 = 1, .opc1 = 0, .crn = 7, .crm = 14, .opc2 = 4, 7084 .type = ARM_CP_NOP, .access = PL1_W, .accessfn = access_tsw }, 7085 { .name = "DC_CIGDSW", .state = ARM_CP_STATE_AA64, 7086 .opc0 = 1, .opc1 = 0, .crn = 7, .crm = 14, .opc2 = 6, 7087 .type = ARM_CP_NOP, .access = PL1_W, .accessfn = access_tsw }, 7088 REGINFO_SENTINEL 7089 }; 7090 7091 static const ARMCPRegInfo mte_tco_ro_reginfo[] = { 7092 { .name = "TCO", .state = ARM_CP_STATE_AA64, 7093 .opc0 = 3, .opc1 = 3, .crn = 4, .crm = 2, .opc2 = 7, 7094 .type = ARM_CP_CONST, .access = PL0_RW, }, 7095 REGINFO_SENTINEL 7096 }; 7097 7098 static const ARMCPRegInfo mte_el0_cacheop_reginfo[] = { 7099 { .name = "DC_CGVAC", .state = ARM_CP_STATE_AA64, 7100 .opc0 = 1, .opc1 = 3, .crn = 7, .crm = 10, .opc2 = 3, 7101 .type = ARM_CP_NOP, .access = PL0_W, 7102 .accessfn = aa64_cacheop_poc_access }, 7103 { .name = "DC_CGDVAC", .state = ARM_CP_STATE_AA64, 7104 .opc0 = 1, .opc1 = 3, .crn = 7, .crm = 10, .opc2 = 5, 7105 .type = ARM_CP_NOP, .access = PL0_W, 7106 .accessfn = aa64_cacheop_poc_access }, 7107 { .name = "DC_CGVAP", .state = ARM_CP_STATE_AA64, 7108 .opc0 = 1, .opc1 = 3, .crn = 7, .crm = 12, .opc2 = 3, 7109 .type = ARM_CP_NOP, .access = PL0_W, 7110 .accessfn = aa64_cacheop_poc_access }, 7111 { .name = "DC_CGDVAP", .state = ARM_CP_STATE_AA64, 7112 .opc0 = 1, .opc1 = 3, .crn = 7, .crm = 12, .opc2 = 5, 7113 .type = ARM_CP_NOP, .access = PL0_W, 7114 .accessfn = aa64_cacheop_poc_access }, 7115 { .name = "DC_CGVADP", .state = ARM_CP_STATE_AA64, 7116 .opc0 = 1, .opc1 = 3, .crn = 7, .crm = 13, .opc2 = 3, 7117 .type = ARM_CP_NOP, .access = PL0_W, 7118 .accessfn = aa64_cacheop_poc_access }, 7119 { .name = "DC_CGDVADP", .state = ARM_CP_STATE_AA64, 7120 .opc0 = 1, .opc1 = 3, .crn = 7, .crm = 13, .opc2 = 5, 7121 .type = ARM_CP_NOP, .access = PL0_W, 7122 .accessfn = aa64_cacheop_poc_access }, 7123 { .name = "DC_CIGVAC", .state = ARM_CP_STATE_AA64, 7124 .opc0 = 1, .opc1 = 3, .crn = 7, .crm = 14, .opc2 = 3, 7125 .type = ARM_CP_NOP, .access = PL0_W, 7126 .accessfn = aa64_cacheop_poc_access }, 7127 { .name = "DC_CIGDVAC", .state = ARM_CP_STATE_AA64, 7128 .opc0 = 1, .opc1 = 3, .crn = 7, .crm = 14, .opc2 = 5, 7129 .type = ARM_CP_NOP, .access = PL0_W, 7130 .accessfn = aa64_cacheop_poc_access }, 7131 { .name = "DC_GVA", .state = ARM_CP_STATE_AA64, 7132 .opc0 = 1, .opc1 = 3, .crn = 7, .crm = 4, .opc2 = 3, 7133 .access = PL0_W, .type = ARM_CP_DC_GVA, 7134 #ifndef CONFIG_USER_ONLY 7135 /* Avoid overhead of an access check that always passes in user-mode */ 7136 .accessfn = aa64_zva_access, 7137 #endif 7138 }, 7139 { .name = "DC_GZVA", .state = ARM_CP_STATE_AA64, 7140 .opc0 = 1, .opc1 = 3, .crn = 7, .crm = 4, .opc2 = 4, 7141 .access = PL0_W, .type = ARM_CP_DC_GZVA, 7142 #ifndef CONFIG_USER_ONLY 7143 /* Avoid overhead of an access check that always passes in user-mode */ 7144 .accessfn = aa64_zva_access, 7145 #endif 7146 }, 7147 REGINFO_SENTINEL 7148 }; 7149 7150 #endif 7151 7152 static CPAccessResult access_predinv(CPUARMState *env, const ARMCPRegInfo *ri, 7153 bool isread) 7154 { 7155 int el = arm_current_el(env); 7156 7157 if (el == 0) { 7158 uint64_t sctlr = arm_sctlr(env, el); 7159 if (!(sctlr & SCTLR_EnRCTX)) { 7160 return CP_ACCESS_TRAP; 7161 } 7162 } else if (el == 1) { 7163 uint64_t hcr = arm_hcr_el2_eff(env); 7164 if (hcr & HCR_NV) { 7165 return CP_ACCESS_TRAP_EL2; 7166 } 7167 } 7168 return CP_ACCESS_OK; 7169 } 7170 7171 static const ARMCPRegInfo predinv_reginfo[] = { 7172 { .name = "CFP_RCTX", .state = ARM_CP_STATE_AA64, 7173 .opc0 = 1, .opc1 = 3, .crn = 7, .crm = 3, .opc2 = 4, 7174 .type = ARM_CP_NOP, .access = PL0_W, .accessfn = access_predinv }, 7175 { .name = "DVP_RCTX", .state = ARM_CP_STATE_AA64, 7176 .opc0 = 1, .opc1 = 3, .crn = 7, .crm = 3, .opc2 = 5, 7177 .type = ARM_CP_NOP, .access = PL0_W, .accessfn = access_predinv }, 7178 { .name = "CPP_RCTX", .state = ARM_CP_STATE_AA64, 7179 .opc0 = 1, .opc1 = 3, .crn = 7, .crm = 3, .opc2 = 7, 7180 .type = ARM_CP_NOP, .access = PL0_W, .accessfn = access_predinv }, 7181 /* 7182 * Note the AArch32 opcodes have a different OPC1. 7183 */ 7184 { .name = "CFPRCTX", .state = ARM_CP_STATE_AA32, 7185 .cp = 15, .opc1 = 0, .crn = 7, .crm = 3, .opc2 = 4, 7186 .type = ARM_CP_NOP, .access = PL0_W, .accessfn = access_predinv }, 7187 { .name = "DVPRCTX", .state = ARM_CP_STATE_AA32, 7188 .cp = 15, .opc1 = 0, .crn = 7, .crm = 3, .opc2 = 5, 7189 .type = ARM_CP_NOP, .access = PL0_W, .accessfn = access_predinv }, 7190 { .name = "CPPRCTX", .state = ARM_CP_STATE_AA32, 7191 .cp = 15, .opc1 = 0, .crn = 7, .crm = 3, .opc2 = 7, 7192 .type = ARM_CP_NOP, .access = PL0_W, .accessfn = access_predinv }, 7193 REGINFO_SENTINEL 7194 }; 7195 7196 static uint64_t ccsidr2_read(CPUARMState *env, const ARMCPRegInfo *ri) 7197 { 7198 /* Read the high 32 bits of the current CCSIDR */ 7199 return extract64(ccsidr_read(env, ri), 32, 32); 7200 } 7201 7202 static const ARMCPRegInfo ccsidr2_reginfo[] = { 7203 { .name = "CCSIDR2", .state = ARM_CP_STATE_BOTH, 7204 .opc0 = 3, .opc1 = 1, .crn = 0, .crm = 0, .opc2 = 2, 7205 .access = PL1_R, 7206 .accessfn = access_aa64_tid2, 7207 .readfn = ccsidr2_read, .type = ARM_CP_NO_RAW }, 7208 REGINFO_SENTINEL 7209 }; 7210 7211 static CPAccessResult access_aa64_tid3(CPUARMState *env, const ARMCPRegInfo *ri, 7212 bool isread) 7213 { 7214 if ((arm_current_el(env) < 2) && (arm_hcr_el2_eff(env) & HCR_TID3)) { 7215 return CP_ACCESS_TRAP_EL2; 7216 } 7217 7218 return CP_ACCESS_OK; 7219 } 7220 7221 static CPAccessResult access_aa32_tid3(CPUARMState *env, const ARMCPRegInfo *ri, 7222 bool isread) 7223 { 7224 if (arm_feature(env, ARM_FEATURE_V8)) { 7225 return access_aa64_tid3(env, ri, isread); 7226 } 7227 7228 return CP_ACCESS_OK; 7229 } 7230 7231 static CPAccessResult access_jazelle(CPUARMState *env, const ARMCPRegInfo *ri, 7232 bool isread) 7233 { 7234 if (arm_current_el(env) == 1 && (arm_hcr_el2_eff(env) & HCR_TID0)) { 7235 return CP_ACCESS_TRAP_EL2; 7236 } 7237 7238 return CP_ACCESS_OK; 7239 } 7240 7241 static const ARMCPRegInfo jazelle_regs[] = { 7242 { .name = "JIDR", 7243 .cp = 14, .crn = 0, .crm = 0, .opc1 = 7, .opc2 = 0, 7244 .access = PL1_R, .accessfn = access_jazelle, 7245 .type = ARM_CP_CONST, .resetvalue = 0 }, 7246 { .name = "JOSCR", 7247 .cp = 14, .crn = 1, .crm = 0, .opc1 = 7, .opc2 = 0, 7248 .access = PL1_RW, .type = ARM_CP_CONST, .resetvalue = 0 }, 7249 { .name = "JMCR", 7250 .cp = 14, .crn = 2, .crm = 0, .opc1 = 7, .opc2 = 0, 7251 .access = PL1_RW, .type = ARM_CP_CONST, .resetvalue = 0 }, 7252 REGINFO_SENTINEL 7253 }; 7254 7255 static const ARMCPRegInfo vhe_reginfo[] = { 7256 { .name = "CONTEXTIDR_EL2", .state = ARM_CP_STATE_AA64, 7257 .opc0 = 3, .opc1 = 4, .crn = 13, .crm = 0, .opc2 = 1, 7258 .access = PL2_RW, 7259 .fieldoffset = offsetof(CPUARMState, cp15.contextidr_el[2]) }, 7260 { .name = "TTBR1_EL2", .state = ARM_CP_STATE_AA64, 7261 .opc0 = 3, .opc1 = 4, .crn = 2, .crm = 0, .opc2 = 1, 7262 .access = PL2_RW, .writefn = vmsa_tcr_ttbr_el2_write, 7263 .fieldoffset = offsetof(CPUARMState, cp15.ttbr1_el[2]) }, 7264 #ifndef CONFIG_USER_ONLY 7265 { .name = "CNTHV_CVAL_EL2", .state = ARM_CP_STATE_AA64, 7266 .opc0 = 3, .opc1 = 4, .crn = 14, .crm = 3, .opc2 = 2, 7267 .fieldoffset = 7268 offsetof(CPUARMState, cp15.c14_timer[GTIMER_HYPVIRT].cval), 7269 .type = ARM_CP_IO, .access = PL2_RW, 7270 .writefn = gt_hv_cval_write, .raw_writefn = raw_write }, 7271 { .name = "CNTHV_TVAL_EL2", .state = ARM_CP_STATE_BOTH, 7272 .opc0 = 3, .opc1 = 4, .crn = 14, .crm = 3, .opc2 = 0, 7273 .type = ARM_CP_NO_RAW | ARM_CP_IO, .access = PL2_RW, 7274 .resetfn = gt_hv_timer_reset, 7275 .readfn = gt_hv_tval_read, .writefn = gt_hv_tval_write }, 7276 { .name = "CNTHV_CTL_EL2", .state = ARM_CP_STATE_BOTH, 7277 .type = ARM_CP_IO, 7278 .opc0 = 3, .opc1 = 4, .crn = 14, .crm = 3, .opc2 = 1, 7279 .access = PL2_RW, 7280 .fieldoffset = offsetof(CPUARMState, cp15.c14_timer[GTIMER_HYPVIRT].ctl), 7281 .writefn = gt_hv_ctl_write, .raw_writefn = raw_write }, 7282 { .name = "CNTP_CTL_EL02", .state = ARM_CP_STATE_AA64, 7283 .opc0 = 3, .opc1 = 5, .crn = 14, .crm = 2, .opc2 = 1, 7284 .type = ARM_CP_IO | ARM_CP_ALIAS, 7285 .access = PL2_RW, .accessfn = e2h_access, 7286 .fieldoffset = offsetof(CPUARMState, cp15.c14_timer[GTIMER_PHYS].ctl), 7287 .writefn = gt_phys_ctl_write, .raw_writefn = raw_write }, 7288 { .name = "CNTV_CTL_EL02", .state = ARM_CP_STATE_AA64, 7289 .opc0 = 3, .opc1 = 5, .crn = 14, .crm = 3, .opc2 = 1, 7290 .type = ARM_CP_IO | ARM_CP_ALIAS, 7291 .access = PL2_RW, .accessfn = e2h_access, 7292 .fieldoffset = offsetof(CPUARMState, cp15.c14_timer[GTIMER_VIRT].ctl), 7293 .writefn = gt_virt_ctl_write, .raw_writefn = raw_write }, 7294 { .name = "CNTP_TVAL_EL02", .state = ARM_CP_STATE_AA64, 7295 .opc0 = 3, .opc1 = 5, .crn = 14, .crm = 2, .opc2 = 0, 7296 .type = ARM_CP_NO_RAW | ARM_CP_IO | ARM_CP_ALIAS, 7297 .access = PL2_RW, .accessfn = e2h_access, 7298 .readfn = gt_phys_tval_read, .writefn = gt_phys_tval_write }, 7299 { .name = "CNTV_TVAL_EL02", .state = ARM_CP_STATE_AA64, 7300 .opc0 = 3, .opc1 = 5, .crn = 14, .crm = 3, .opc2 = 0, 7301 .type = ARM_CP_NO_RAW | ARM_CP_IO | ARM_CP_ALIAS, 7302 .access = PL2_RW, .accessfn = e2h_access, 7303 .readfn = gt_virt_tval_read, .writefn = gt_virt_tval_write }, 7304 { .name = "CNTP_CVAL_EL02", .state = ARM_CP_STATE_AA64, 7305 .opc0 = 3, .opc1 = 5, .crn = 14, .crm = 2, .opc2 = 2, 7306 .type = ARM_CP_IO | ARM_CP_ALIAS, 7307 .fieldoffset = offsetof(CPUARMState, cp15.c14_timer[GTIMER_PHYS].cval), 7308 .access = PL2_RW, .accessfn = e2h_access, 7309 .writefn = gt_phys_cval_write, .raw_writefn = raw_write }, 7310 { .name = "CNTV_CVAL_EL02", .state = ARM_CP_STATE_AA64, 7311 .opc0 = 3, .opc1 = 5, .crn = 14, .crm = 3, .opc2 = 2, 7312 .type = ARM_CP_IO | ARM_CP_ALIAS, 7313 .fieldoffset = offsetof(CPUARMState, cp15.c14_timer[GTIMER_VIRT].cval), 7314 .access = PL2_RW, .accessfn = e2h_access, 7315 .writefn = gt_virt_cval_write, .raw_writefn = raw_write }, 7316 #endif 7317 REGINFO_SENTINEL 7318 }; 7319 7320 #ifndef CONFIG_USER_ONLY 7321 static const ARMCPRegInfo ats1e1_reginfo[] = { 7322 { .name = "AT_S1E1R", .state = ARM_CP_STATE_AA64, 7323 .opc0 = 1, .opc1 = 0, .crn = 7, .crm = 9, .opc2 = 0, 7324 .access = PL1_W, .type = ARM_CP_NO_RAW | ARM_CP_RAISES_EXC, 7325 .writefn = ats_write64 }, 7326 { .name = "AT_S1E1W", .state = ARM_CP_STATE_AA64, 7327 .opc0 = 1, .opc1 = 0, .crn = 7, .crm = 9, .opc2 = 1, 7328 .access = PL1_W, .type = ARM_CP_NO_RAW | ARM_CP_RAISES_EXC, 7329 .writefn = ats_write64 }, 7330 REGINFO_SENTINEL 7331 }; 7332 7333 static const ARMCPRegInfo ats1cp_reginfo[] = { 7334 { .name = "ATS1CPRP", 7335 .cp = 15, .opc1 = 0, .crn = 7, .crm = 9, .opc2 = 0, 7336 .access = PL1_W, .type = ARM_CP_NO_RAW | ARM_CP_RAISES_EXC, 7337 .writefn = ats_write }, 7338 { .name = "ATS1CPWP", 7339 .cp = 15, .opc1 = 0, .crn = 7, .crm = 9, .opc2 = 1, 7340 .access = PL1_W, .type = ARM_CP_NO_RAW | ARM_CP_RAISES_EXC, 7341 .writefn = ats_write }, 7342 REGINFO_SENTINEL 7343 }; 7344 #endif 7345 7346 /* 7347 * ACTLR2 and HACTLR2 map to ACTLR_EL1[63:32] and 7348 * ACTLR_EL2[63:32]. They exist only if the ID_MMFR4.AC2 field 7349 * is non-zero, which is never for ARMv7, optionally in ARMv8 7350 * and mandatorily for ARMv8.2 and up. 7351 * ACTLR2 is banked for S and NS if EL3 is AArch32. Since QEMU's 7352 * implementation is RAZ/WI we can ignore this detail, as we 7353 * do for ACTLR. 7354 */ 7355 static const ARMCPRegInfo actlr2_hactlr2_reginfo[] = { 7356 { .name = "ACTLR2", .state = ARM_CP_STATE_AA32, 7357 .cp = 15, .opc1 = 0, .crn = 1, .crm = 0, .opc2 = 3, 7358 .access = PL1_RW, .accessfn = access_tacr, 7359 .type = ARM_CP_CONST, .resetvalue = 0 }, 7360 { .name = "HACTLR2", .state = ARM_CP_STATE_AA32, 7361 .cp = 15, .opc1 = 4, .crn = 1, .crm = 0, .opc2 = 3, 7362 .access = PL2_RW, .type = ARM_CP_CONST, 7363 .resetvalue = 0 }, 7364 REGINFO_SENTINEL 7365 }; 7366 7367 void register_cp_regs_for_features(ARMCPU *cpu) 7368 { 7369 /* Register all the coprocessor registers based on feature bits */ 7370 CPUARMState *env = &cpu->env; 7371 if (arm_feature(env, ARM_FEATURE_M)) { 7372 /* M profile has no coprocessor registers */ 7373 return; 7374 } 7375 7376 define_arm_cp_regs(cpu, cp_reginfo); 7377 if (!arm_feature(env, ARM_FEATURE_V8)) { 7378 /* Must go early as it is full of wildcards that may be 7379 * overridden by later definitions. 7380 */ 7381 define_arm_cp_regs(cpu, not_v8_cp_reginfo); 7382 } 7383 7384 if (arm_feature(env, ARM_FEATURE_V6)) { 7385 /* The ID registers all have impdef reset values */ 7386 ARMCPRegInfo v6_idregs[] = { 7387 { .name = "ID_PFR0", .state = ARM_CP_STATE_BOTH, 7388 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 1, .opc2 = 0, 7389 .access = PL1_R, .type = ARM_CP_CONST, 7390 .accessfn = access_aa32_tid3, 7391 .resetvalue = cpu->isar.id_pfr0 }, 7392 /* ID_PFR1 is not a plain ARM_CP_CONST because we don't know 7393 * the value of the GIC field until after we define these regs. 7394 */ 7395 { .name = "ID_PFR1", .state = ARM_CP_STATE_BOTH, 7396 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 1, .opc2 = 1, 7397 .access = PL1_R, .type = ARM_CP_NO_RAW, 7398 .accessfn = access_aa32_tid3, 7399 .readfn = id_pfr1_read, 7400 .writefn = arm_cp_write_ignore }, 7401 { .name = "ID_DFR0", .state = ARM_CP_STATE_BOTH, 7402 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 1, .opc2 = 2, 7403 .access = PL1_R, .type = ARM_CP_CONST, 7404 .accessfn = access_aa32_tid3, 7405 .resetvalue = cpu->isar.id_dfr0 }, 7406 { .name = "ID_AFR0", .state = ARM_CP_STATE_BOTH, 7407 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 1, .opc2 = 3, 7408 .access = PL1_R, .type = ARM_CP_CONST, 7409 .accessfn = access_aa32_tid3, 7410 .resetvalue = cpu->id_afr0 }, 7411 { .name = "ID_MMFR0", .state = ARM_CP_STATE_BOTH, 7412 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 1, .opc2 = 4, 7413 .access = PL1_R, .type = ARM_CP_CONST, 7414 .accessfn = access_aa32_tid3, 7415 .resetvalue = cpu->isar.id_mmfr0 }, 7416 { .name = "ID_MMFR1", .state = ARM_CP_STATE_BOTH, 7417 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 1, .opc2 = 5, 7418 .access = PL1_R, .type = ARM_CP_CONST, 7419 .accessfn = access_aa32_tid3, 7420 .resetvalue = cpu->isar.id_mmfr1 }, 7421 { .name = "ID_MMFR2", .state = ARM_CP_STATE_BOTH, 7422 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 1, .opc2 = 6, 7423 .access = PL1_R, .type = ARM_CP_CONST, 7424 .accessfn = access_aa32_tid3, 7425 .resetvalue = cpu->isar.id_mmfr2 }, 7426 { .name = "ID_MMFR3", .state = ARM_CP_STATE_BOTH, 7427 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 1, .opc2 = 7, 7428 .access = PL1_R, .type = ARM_CP_CONST, 7429 .accessfn = access_aa32_tid3, 7430 .resetvalue = cpu->isar.id_mmfr3 }, 7431 { .name = "ID_ISAR0", .state = ARM_CP_STATE_BOTH, 7432 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 2, .opc2 = 0, 7433 .access = PL1_R, .type = ARM_CP_CONST, 7434 .accessfn = access_aa32_tid3, 7435 .resetvalue = cpu->isar.id_isar0 }, 7436 { .name = "ID_ISAR1", .state = ARM_CP_STATE_BOTH, 7437 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 2, .opc2 = 1, 7438 .access = PL1_R, .type = ARM_CP_CONST, 7439 .accessfn = access_aa32_tid3, 7440 .resetvalue = cpu->isar.id_isar1 }, 7441 { .name = "ID_ISAR2", .state = ARM_CP_STATE_BOTH, 7442 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 2, .opc2 = 2, 7443 .access = PL1_R, .type = ARM_CP_CONST, 7444 .accessfn = access_aa32_tid3, 7445 .resetvalue = cpu->isar.id_isar2 }, 7446 { .name = "ID_ISAR3", .state = ARM_CP_STATE_BOTH, 7447 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 2, .opc2 = 3, 7448 .access = PL1_R, .type = ARM_CP_CONST, 7449 .accessfn = access_aa32_tid3, 7450 .resetvalue = cpu->isar.id_isar3 }, 7451 { .name = "ID_ISAR4", .state = ARM_CP_STATE_BOTH, 7452 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 2, .opc2 = 4, 7453 .access = PL1_R, .type = ARM_CP_CONST, 7454 .accessfn = access_aa32_tid3, 7455 .resetvalue = cpu->isar.id_isar4 }, 7456 { .name = "ID_ISAR5", .state = ARM_CP_STATE_BOTH, 7457 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 2, .opc2 = 5, 7458 .access = PL1_R, .type = ARM_CP_CONST, 7459 .accessfn = access_aa32_tid3, 7460 .resetvalue = cpu->isar.id_isar5 }, 7461 { .name = "ID_MMFR4", .state = ARM_CP_STATE_BOTH, 7462 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 2, .opc2 = 6, 7463 .access = PL1_R, .type = ARM_CP_CONST, 7464 .accessfn = access_aa32_tid3, 7465 .resetvalue = cpu->isar.id_mmfr4 }, 7466 { .name = "ID_ISAR6", .state = ARM_CP_STATE_BOTH, 7467 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 2, .opc2 = 7, 7468 .access = PL1_R, .type = ARM_CP_CONST, 7469 .accessfn = access_aa32_tid3, 7470 .resetvalue = cpu->isar.id_isar6 }, 7471 REGINFO_SENTINEL 7472 }; 7473 define_arm_cp_regs(cpu, v6_idregs); 7474 define_arm_cp_regs(cpu, v6_cp_reginfo); 7475 } else { 7476 define_arm_cp_regs(cpu, not_v6_cp_reginfo); 7477 } 7478 if (arm_feature(env, ARM_FEATURE_V6K)) { 7479 define_arm_cp_regs(cpu, v6k_cp_reginfo); 7480 } 7481 if (arm_feature(env, ARM_FEATURE_V7MP) && 7482 !arm_feature(env, ARM_FEATURE_PMSA)) { 7483 define_arm_cp_regs(cpu, v7mp_cp_reginfo); 7484 } 7485 if (arm_feature(env, ARM_FEATURE_V7VE)) { 7486 define_arm_cp_regs(cpu, pmovsset_cp_reginfo); 7487 } 7488 if (arm_feature(env, ARM_FEATURE_V7)) { 7489 ARMCPRegInfo clidr = { 7490 .name = "CLIDR", .state = ARM_CP_STATE_BOTH, 7491 .opc0 = 3, .crn = 0, .crm = 0, .opc1 = 1, .opc2 = 1, 7492 .access = PL1_R, .type = ARM_CP_CONST, 7493 .accessfn = access_aa64_tid2, 7494 .resetvalue = cpu->clidr 7495 }; 7496 define_one_arm_cp_reg(cpu, &clidr); 7497 define_arm_cp_regs(cpu, v7_cp_reginfo); 7498 define_debug_regs(cpu); 7499 define_pmu_regs(cpu); 7500 } else { 7501 define_arm_cp_regs(cpu, not_v7_cp_reginfo); 7502 } 7503 if (arm_feature(env, ARM_FEATURE_V8)) { 7504 /* AArch64 ID registers, which all have impdef reset values. 7505 * Note that within the ID register ranges the unused slots 7506 * must all RAZ, not UNDEF; future architecture versions may 7507 * define new registers here. 7508 */ 7509 ARMCPRegInfo v8_idregs[] = { 7510 /* 7511 * ID_AA64PFR0_EL1 is not a plain ARM_CP_CONST in system 7512 * emulation because we don't know the right value for the 7513 * GIC field until after we define these regs. 7514 */ 7515 { .name = "ID_AA64PFR0_EL1", .state = ARM_CP_STATE_AA64, 7516 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 4, .opc2 = 0, 7517 .access = PL1_R, 7518 #ifdef CONFIG_USER_ONLY 7519 .type = ARM_CP_CONST, 7520 .resetvalue = cpu->isar.id_aa64pfr0 7521 #else 7522 .type = ARM_CP_NO_RAW, 7523 .accessfn = access_aa64_tid3, 7524 .readfn = id_aa64pfr0_read, 7525 .writefn = arm_cp_write_ignore 7526 #endif 7527 }, 7528 { .name = "ID_AA64PFR1_EL1", .state = ARM_CP_STATE_AA64, 7529 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 4, .opc2 = 1, 7530 .access = PL1_R, .type = ARM_CP_CONST, 7531 .accessfn = access_aa64_tid3, 7532 .resetvalue = cpu->isar.id_aa64pfr1}, 7533 { .name = "ID_AA64PFR2_EL1_RESERVED", .state = ARM_CP_STATE_AA64, 7534 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 4, .opc2 = 2, 7535 .access = PL1_R, .type = ARM_CP_CONST, 7536 .accessfn = access_aa64_tid3, 7537 .resetvalue = 0 }, 7538 { .name = "ID_AA64PFR3_EL1_RESERVED", .state = ARM_CP_STATE_AA64, 7539 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 4, .opc2 = 3, 7540 .access = PL1_R, .type = ARM_CP_CONST, 7541 .accessfn = access_aa64_tid3, 7542 .resetvalue = 0 }, 7543 { .name = "ID_AA64ZFR0_EL1", .state = ARM_CP_STATE_AA64, 7544 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 4, .opc2 = 4, 7545 .access = PL1_R, .type = ARM_CP_CONST, 7546 .accessfn = access_aa64_tid3, 7547 /* At present, only SVEver == 0 is defined anyway. */ 7548 .resetvalue = 0 }, 7549 { .name = "ID_AA64PFR5_EL1_RESERVED", .state = ARM_CP_STATE_AA64, 7550 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 4, .opc2 = 5, 7551 .access = PL1_R, .type = ARM_CP_CONST, 7552 .accessfn = access_aa64_tid3, 7553 .resetvalue = 0 }, 7554 { .name = "ID_AA64PFR6_EL1_RESERVED", .state = ARM_CP_STATE_AA64, 7555 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 4, .opc2 = 6, 7556 .access = PL1_R, .type = ARM_CP_CONST, 7557 .accessfn = access_aa64_tid3, 7558 .resetvalue = 0 }, 7559 { .name = "ID_AA64PFR7_EL1_RESERVED", .state = ARM_CP_STATE_AA64, 7560 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 4, .opc2 = 7, 7561 .access = PL1_R, .type = ARM_CP_CONST, 7562 .accessfn = access_aa64_tid3, 7563 .resetvalue = 0 }, 7564 { .name = "ID_AA64DFR0_EL1", .state = ARM_CP_STATE_AA64, 7565 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 5, .opc2 = 0, 7566 .access = PL1_R, .type = ARM_CP_CONST, 7567 .accessfn = access_aa64_tid3, 7568 .resetvalue = cpu->isar.id_aa64dfr0 }, 7569 { .name = "ID_AA64DFR1_EL1", .state = ARM_CP_STATE_AA64, 7570 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 5, .opc2 = 1, 7571 .access = PL1_R, .type = ARM_CP_CONST, 7572 .accessfn = access_aa64_tid3, 7573 .resetvalue = cpu->isar.id_aa64dfr1 }, 7574 { .name = "ID_AA64DFR2_EL1_RESERVED", .state = ARM_CP_STATE_AA64, 7575 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 5, .opc2 = 2, 7576 .access = PL1_R, .type = ARM_CP_CONST, 7577 .accessfn = access_aa64_tid3, 7578 .resetvalue = 0 }, 7579 { .name = "ID_AA64DFR3_EL1_RESERVED", .state = ARM_CP_STATE_AA64, 7580 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 5, .opc2 = 3, 7581 .access = PL1_R, .type = ARM_CP_CONST, 7582 .accessfn = access_aa64_tid3, 7583 .resetvalue = 0 }, 7584 { .name = "ID_AA64AFR0_EL1", .state = ARM_CP_STATE_AA64, 7585 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 5, .opc2 = 4, 7586 .access = PL1_R, .type = ARM_CP_CONST, 7587 .accessfn = access_aa64_tid3, 7588 .resetvalue = cpu->id_aa64afr0 }, 7589 { .name = "ID_AA64AFR1_EL1", .state = ARM_CP_STATE_AA64, 7590 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 5, .opc2 = 5, 7591 .access = PL1_R, .type = ARM_CP_CONST, 7592 .accessfn = access_aa64_tid3, 7593 .resetvalue = cpu->id_aa64afr1 }, 7594 { .name = "ID_AA64AFR2_EL1_RESERVED", .state = ARM_CP_STATE_AA64, 7595 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 5, .opc2 = 6, 7596 .access = PL1_R, .type = ARM_CP_CONST, 7597 .accessfn = access_aa64_tid3, 7598 .resetvalue = 0 }, 7599 { .name = "ID_AA64AFR3_EL1_RESERVED", .state = ARM_CP_STATE_AA64, 7600 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 5, .opc2 = 7, 7601 .access = PL1_R, .type = ARM_CP_CONST, 7602 .accessfn = access_aa64_tid3, 7603 .resetvalue = 0 }, 7604 { .name = "ID_AA64ISAR0_EL1", .state = ARM_CP_STATE_AA64, 7605 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 6, .opc2 = 0, 7606 .access = PL1_R, .type = ARM_CP_CONST, 7607 .accessfn = access_aa64_tid3, 7608 .resetvalue = cpu->isar.id_aa64isar0 }, 7609 { .name = "ID_AA64ISAR1_EL1", .state = ARM_CP_STATE_AA64, 7610 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 6, .opc2 = 1, 7611 .access = PL1_R, .type = ARM_CP_CONST, 7612 .accessfn = access_aa64_tid3, 7613 .resetvalue = cpu->isar.id_aa64isar1 }, 7614 { .name = "ID_AA64ISAR2_EL1_RESERVED", .state = ARM_CP_STATE_AA64, 7615 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 6, .opc2 = 2, 7616 .access = PL1_R, .type = ARM_CP_CONST, 7617 .accessfn = access_aa64_tid3, 7618 .resetvalue = 0 }, 7619 { .name = "ID_AA64ISAR3_EL1_RESERVED", .state = ARM_CP_STATE_AA64, 7620 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 6, .opc2 = 3, 7621 .access = PL1_R, .type = ARM_CP_CONST, 7622 .accessfn = access_aa64_tid3, 7623 .resetvalue = 0 }, 7624 { .name = "ID_AA64ISAR4_EL1_RESERVED", .state = ARM_CP_STATE_AA64, 7625 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 6, .opc2 = 4, 7626 .access = PL1_R, .type = ARM_CP_CONST, 7627 .accessfn = access_aa64_tid3, 7628 .resetvalue = 0 }, 7629 { .name = "ID_AA64ISAR5_EL1_RESERVED", .state = ARM_CP_STATE_AA64, 7630 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 6, .opc2 = 5, 7631 .access = PL1_R, .type = ARM_CP_CONST, 7632 .accessfn = access_aa64_tid3, 7633 .resetvalue = 0 }, 7634 { .name = "ID_AA64ISAR6_EL1_RESERVED", .state = ARM_CP_STATE_AA64, 7635 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 6, .opc2 = 6, 7636 .access = PL1_R, .type = ARM_CP_CONST, 7637 .accessfn = access_aa64_tid3, 7638 .resetvalue = 0 }, 7639 { .name = "ID_AA64ISAR7_EL1_RESERVED", .state = ARM_CP_STATE_AA64, 7640 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 6, .opc2 = 7, 7641 .access = PL1_R, .type = ARM_CP_CONST, 7642 .accessfn = access_aa64_tid3, 7643 .resetvalue = 0 }, 7644 { .name = "ID_AA64MMFR0_EL1", .state = ARM_CP_STATE_AA64, 7645 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 7, .opc2 = 0, 7646 .access = PL1_R, .type = ARM_CP_CONST, 7647 .accessfn = access_aa64_tid3, 7648 .resetvalue = cpu->isar.id_aa64mmfr0 }, 7649 { .name = "ID_AA64MMFR1_EL1", .state = ARM_CP_STATE_AA64, 7650 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 7, .opc2 = 1, 7651 .access = PL1_R, .type = ARM_CP_CONST, 7652 .accessfn = access_aa64_tid3, 7653 .resetvalue = cpu->isar.id_aa64mmfr1 }, 7654 { .name = "ID_AA64MMFR2_EL1", .state = ARM_CP_STATE_AA64, 7655 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 7, .opc2 = 2, 7656 .access = PL1_R, .type = ARM_CP_CONST, 7657 .accessfn = access_aa64_tid3, 7658 .resetvalue = cpu->isar.id_aa64mmfr2 }, 7659 { .name = "ID_AA64MMFR3_EL1_RESERVED", .state = ARM_CP_STATE_AA64, 7660 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 7, .opc2 = 3, 7661 .access = PL1_R, .type = ARM_CP_CONST, 7662 .accessfn = access_aa64_tid3, 7663 .resetvalue = 0 }, 7664 { .name = "ID_AA64MMFR4_EL1_RESERVED", .state = ARM_CP_STATE_AA64, 7665 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 7, .opc2 = 4, 7666 .access = PL1_R, .type = ARM_CP_CONST, 7667 .accessfn = access_aa64_tid3, 7668 .resetvalue = 0 }, 7669 { .name = "ID_AA64MMFR5_EL1_RESERVED", .state = ARM_CP_STATE_AA64, 7670 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 7, .opc2 = 5, 7671 .access = PL1_R, .type = ARM_CP_CONST, 7672 .accessfn = access_aa64_tid3, 7673 .resetvalue = 0 }, 7674 { .name = "ID_AA64MMFR6_EL1_RESERVED", .state = ARM_CP_STATE_AA64, 7675 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 7, .opc2 = 6, 7676 .access = PL1_R, .type = ARM_CP_CONST, 7677 .accessfn = access_aa64_tid3, 7678 .resetvalue = 0 }, 7679 { .name = "ID_AA64MMFR7_EL1_RESERVED", .state = ARM_CP_STATE_AA64, 7680 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 7, .opc2 = 7, 7681 .access = PL1_R, .type = ARM_CP_CONST, 7682 .accessfn = access_aa64_tid3, 7683 .resetvalue = 0 }, 7684 { .name = "MVFR0_EL1", .state = ARM_CP_STATE_AA64, 7685 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 3, .opc2 = 0, 7686 .access = PL1_R, .type = ARM_CP_CONST, 7687 .accessfn = access_aa64_tid3, 7688 .resetvalue = cpu->isar.mvfr0 }, 7689 { .name = "MVFR1_EL1", .state = ARM_CP_STATE_AA64, 7690 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 3, .opc2 = 1, 7691 .access = PL1_R, .type = ARM_CP_CONST, 7692 .accessfn = access_aa64_tid3, 7693 .resetvalue = cpu->isar.mvfr1 }, 7694 { .name = "MVFR2_EL1", .state = ARM_CP_STATE_AA64, 7695 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 3, .opc2 = 2, 7696 .access = PL1_R, .type = ARM_CP_CONST, 7697 .accessfn = access_aa64_tid3, 7698 .resetvalue = cpu->isar.mvfr2 }, 7699 { .name = "MVFR3_EL1_RESERVED", .state = ARM_CP_STATE_AA64, 7700 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 3, .opc2 = 3, 7701 .access = PL1_R, .type = ARM_CP_CONST, 7702 .accessfn = access_aa64_tid3, 7703 .resetvalue = 0 }, 7704 { .name = "ID_PFR2", .state = ARM_CP_STATE_BOTH, 7705 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 3, .opc2 = 4, 7706 .access = PL1_R, .type = ARM_CP_CONST, 7707 .accessfn = access_aa64_tid3, 7708 .resetvalue = cpu->isar.id_pfr2 }, 7709 { .name = "MVFR5_EL1_RESERVED", .state = ARM_CP_STATE_AA64, 7710 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 3, .opc2 = 5, 7711 .access = PL1_R, .type = ARM_CP_CONST, 7712 .accessfn = access_aa64_tid3, 7713 .resetvalue = 0 }, 7714 { .name = "MVFR6_EL1_RESERVED", .state = ARM_CP_STATE_AA64, 7715 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 3, .opc2 = 6, 7716 .access = PL1_R, .type = ARM_CP_CONST, 7717 .accessfn = access_aa64_tid3, 7718 .resetvalue = 0 }, 7719 { .name = "MVFR7_EL1_RESERVED", .state = ARM_CP_STATE_AA64, 7720 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 3, .opc2 = 7, 7721 .access = PL1_R, .type = ARM_CP_CONST, 7722 .accessfn = access_aa64_tid3, 7723 .resetvalue = 0 }, 7724 { .name = "PMCEID0", .state = ARM_CP_STATE_AA32, 7725 .cp = 15, .opc1 = 0, .crn = 9, .crm = 12, .opc2 = 6, 7726 .access = PL0_R, .accessfn = pmreg_access, .type = ARM_CP_CONST, 7727 .resetvalue = extract64(cpu->pmceid0, 0, 32) }, 7728 { .name = "PMCEID0_EL0", .state = ARM_CP_STATE_AA64, 7729 .opc0 = 3, .opc1 = 3, .crn = 9, .crm = 12, .opc2 = 6, 7730 .access = PL0_R, .accessfn = pmreg_access, .type = ARM_CP_CONST, 7731 .resetvalue = cpu->pmceid0 }, 7732 { .name = "PMCEID1", .state = ARM_CP_STATE_AA32, 7733 .cp = 15, .opc1 = 0, .crn = 9, .crm = 12, .opc2 = 7, 7734 .access = PL0_R, .accessfn = pmreg_access, .type = ARM_CP_CONST, 7735 .resetvalue = extract64(cpu->pmceid1, 0, 32) }, 7736 { .name = "PMCEID1_EL0", .state = ARM_CP_STATE_AA64, 7737 .opc0 = 3, .opc1 = 3, .crn = 9, .crm = 12, .opc2 = 7, 7738 .access = PL0_R, .accessfn = pmreg_access, .type = ARM_CP_CONST, 7739 .resetvalue = cpu->pmceid1 }, 7740 REGINFO_SENTINEL 7741 }; 7742 #ifdef CONFIG_USER_ONLY 7743 ARMCPRegUserSpaceInfo v8_user_idregs[] = { 7744 { .name = "ID_AA64PFR0_EL1", 7745 .exported_bits = 0x000f000f00ff0000, 7746 .fixed_bits = 0x0000000000000011 }, 7747 { .name = "ID_AA64PFR1_EL1", 7748 .exported_bits = 0x00000000000000f0 }, 7749 { .name = "ID_AA64PFR*_EL1_RESERVED", 7750 .is_glob = true }, 7751 { .name = "ID_AA64ZFR0_EL1" }, 7752 { .name = "ID_AA64MMFR0_EL1", 7753 .fixed_bits = 0x00000000ff000000 }, 7754 { .name = "ID_AA64MMFR1_EL1" }, 7755 { .name = "ID_AA64MMFR*_EL1_RESERVED", 7756 .is_glob = true }, 7757 { .name = "ID_AA64DFR0_EL1", 7758 .fixed_bits = 0x0000000000000006 }, 7759 { .name = "ID_AA64DFR1_EL1" }, 7760 { .name = "ID_AA64DFR*_EL1_RESERVED", 7761 .is_glob = true }, 7762 { .name = "ID_AA64AFR*", 7763 .is_glob = true }, 7764 { .name = "ID_AA64ISAR0_EL1", 7765 .exported_bits = 0x00fffffff0fffff0 }, 7766 { .name = "ID_AA64ISAR1_EL1", 7767 .exported_bits = 0x000000f0ffffffff }, 7768 { .name = "ID_AA64ISAR*_EL1_RESERVED", 7769 .is_glob = true }, 7770 REGUSERINFO_SENTINEL 7771 }; 7772 modify_arm_cp_regs(v8_idregs, v8_user_idregs); 7773 #endif 7774 /* RVBAR_EL1 is only implemented if EL1 is the highest EL */ 7775 if (!arm_feature(env, ARM_FEATURE_EL3) && 7776 !arm_feature(env, ARM_FEATURE_EL2)) { 7777 ARMCPRegInfo rvbar = { 7778 .name = "RVBAR_EL1", .state = ARM_CP_STATE_AA64, 7779 .opc0 = 3, .opc1 = 0, .crn = 12, .crm = 0, .opc2 = 1, 7780 .type = ARM_CP_CONST, .access = PL1_R, .resetvalue = cpu->rvbar 7781 }; 7782 define_one_arm_cp_reg(cpu, &rvbar); 7783 } 7784 define_arm_cp_regs(cpu, v8_idregs); 7785 define_arm_cp_regs(cpu, v8_cp_reginfo); 7786 } 7787 if (arm_feature(env, ARM_FEATURE_EL2)) { 7788 uint64_t vmpidr_def = mpidr_read_val(env); 7789 ARMCPRegInfo vpidr_regs[] = { 7790 { .name = "VPIDR", .state = ARM_CP_STATE_AA32, 7791 .cp = 15, .opc1 = 4, .crn = 0, .crm = 0, .opc2 = 0, 7792 .access = PL2_RW, .accessfn = access_el3_aa32ns, 7793 .resetvalue = cpu->midr, .type = ARM_CP_ALIAS, 7794 .fieldoffset = offsetoflow32(CPUARMState, cp15.vpidr_el2) }, 7795 { .name = "VPIDR_EL2", .state = ARM_CP_STATE_AA64, 7796 .opc0 = 3, .opc1 = 4, .crn = 0, .crm = 0, .opc2 = 0, 7797 .access = PL2_RW, .resetvalue = cpu->midr, 7798 .fieldoffset = offsetof(CPUARMState, cp15.vpidr_el2) }, 7799 { .name = "VMPIDR", .state = ARM_CP_STATE_AA32, 7800 .cp = 15, .opc1 = 4, .crn = 0, .crm = 0, .opc2 = 5, 7801 .access = PL2_RW, .accessfn = access_el3_aa32ns, 7802 .resetvalue = vmpidr_def, .type = ARM_CP_ALIAS, 7803 .fieldoffset = offsetoflow32(CPUARMState, cp15.vmpidr_el2) }, 7804 { .name = "VMPIDR_EL2", .state = ARM_CP_STATE_AA64, 7805 .opc0 = 3, .opc1 = 4, .crn = 0, .crm = 0, .opc2 = 5, 7806 .access = PL2_RW, 7807 .resetvalue = vmpidr_def, 7808 .fieldoffset = offsetof(CPUARMState, cp15.vmpidr_el2) }, 7809 REGINFO_SENTINEL 7810 }; 7811 define_arm_cp_regs(cpu, vpidr_regs); 7812 define_arm_cp_regs(cpu, el2_cp_reginfo); 7813 if (arm_feature(env, ARM_FEATURE_V8)) { 7814 define_arm_cp_regs(cpu, el2_v8_cp_reginfo); 7815 } 7816 if (cpu_isar_feature(aa64_sel2, cpu)) { 7817 define_arm_cp_regs(cpu, el2_sec_cp_reginfo); 7818 } 7819 /* RVBAR_EL2 is only implemented if EL2 is the highest EL */ 7820 if (!arm_feature(env, ARM_FEATURE_EL3)) { 7821 ARMCPRegInfo rvbar = { 7822 .name = "RVBAR_EL2", .state = ARM_CP_STATE_AA64, 7823 .opc0 = 3, .opc1 = 4, .crn = 12, .crm = 0, .opc2 = 1, 7824 .type = ARM_CP_CONST, .access = PL2_R, .resetvalue = cpu->rvbar 7825 }; 7826 define_one_arm_cp_reg(cpu, &rvbar); 7827 } 7828 } else { 7829 /* If EL2 is missing but higher ELs are enabled, we need to 7830 * register the no_el2 reginfos. 7831 */ 7832 if (arm_feature(env, ARM_FEATURE_EL3)) { 7833 /* When EL3 exists but not EL2, VPIDR and VMPIDR take the value 7834 * of MIDR_EL1 and MPIDR_EL1. 7835 */ 7836 ARMCPRegInfo vpidr_regs[] = { 7837 { .name = "VPIDR_EL2", .state = ARM_CP_STATE_BOTH, 7838 .opc0 = 3, .opc1 = 4, .crn = 0, .crm = 0, .opc2 = 0, 7839 .access = PL2_RW, .accessfn = access_el3_aa32ns, 7840 .type = ARM_CP_CONST, .resetvalue = cpu->midr, 7841 .fieldoffset = offsetof(CPUARMState, cp15.vpidr_el2) }, 7842 { .name = "VMPIDR_EL2", .state = ARM_CP_STATE_BOTH, 7843 .opc0 = 3, .opc1 = 4, .crn = 0, .crm = 0, .opc2 = 5, 7844 .access = PL2_RW, .accessfn = access_el3_aa32ns, 7845 .type = ARM_CP_NO_RAW, 7846 .writefn = arm_cp_write_ignore, .readfn = mpidr_read }, 7847 REGINFO_SENTINEL 7848 }; 7849 define_arm_cp_regs(cpu, vpidr_regs); 7850 define_arm_cp_regs(cpu, el3_no_el2_cp_reginfo); 7851 if (arm_feature(env, ARM_FEATURE_V8)) { 7852 define_arm_cp_regs(cpu, el3_no_el2_v8_cp_reginfo); 7853 } 7854 } 7855 } 7856 if (arm_feature(env, ARM_FEATURE_EL3)) { 7857 define_arm_cp_regs(cpu, el3_cp_reginfo); 7858 ARMCPRegInfo el3_regs[] = { 7859 { .name = "RVBAR_EL3", .state = ARM_CP_STATE_AA64, 7860 .opc0 = 3, .opc1 = 6, .crn = 12, .crm = 0, .opc2 = 1, 7861 .type = ARM_CP_CONST, .access = PL3_R, .resetvalue = cpu->rvbar }, 7862 { .name = "SCTLR_EL3", .state = ARM_CP_STATE_AA64, 7863 .opc0 = 3, .opc1 = 6, .crn = 1, .crm = 0, .opc2 = 0, 7864 .access = PL3_RW, 7865 .raw_writefn = raw_write, .writefn = sctlr_write, 7866 .fieldoffset = offsetof(CPUARMState, cp15.sctlr_el[3]), 7867 .resetvalue = cpu->reset_sctlr }, 7868 REGINFO_SENTINEL 7869 }; 7870 7871 define_arm_cp_regs(cpu, el3_regs); 7872 } 7873 /* The behaviour of NSACR is sufficiently various that we don't 7874 * try to describe it in a single reginfo: 7875 * if EL3 is 64 bit, then trap to EL3 from S EL1, 7876 * reads as constant 0xc00 from NS EL1 and NS EL2 7877 * if EL3 is 32 bit, then RW at EL3, RO at NS EL1 and NS EL2 7878 * if v7 without EL3, register doesn't exist 7879 * if v8 without EL3, reads as constant 0xc00 from NS EL1 and NS EL2 7880 */ 7881 if (arm_feature(env, ARM_FEATURE_EL3)) { 7882 if (arm_feature(env, ARM_FEATURE_AARCH64)) { 7883 ARMCPRegInfo nsacr = { 7884 .name = "NSACR", .type = ARM_CP_CONST, 7885 .cp = 15, .opc1 = 0, .crn = 1, .crm = 1, .opc2 = 2, 7886 .access = PL1_RW, .accessfn = nsacr_access, 7887 .resetvalue = 0xc00 7888 }; 7889 define_one_arm_cp_reg(cpu, &nsacr); 7890 } else { 7891 ARMCPRegInfo nsacr = { 7892 .name = "NSACR", 7893 .cp = 15, .opc1 = 0, .crn = 1, .crm = 1, .opc2 = 2, 7894 .access = PL3_RW | PL1_R, 7895 .resetvalue = 0, 7896 .fieldoffset = offsetof(CPUARMState, cp15.nsacr) 7897 }; 7898 define_one_arm_cp_reg(cpu, &nsacr); 7899 } 7900 } else { 7901 if (arm_feature(env, ARM_FEATURE_V8)) { 7902 ARMCPRegInfo nsacr = { 7903 .name = "NSACR", .type = ARM_CP_CONST, 7904 .cp = 15, .opc1 = 0, .crn = 1, .crm = 1, .opc2 = 2, 7905 .access = PL1_R, 7906 .resetvalue = 0xc00 7907 }; 7908 define_one_arm_cp_reg(cpu, &nsacr); 7909 } 7910 } 7911 7912 if (arm_feature(env, ARM_FEATURE_PMSA)) { 7913 if (arm_feature(env, ARM_FEATURE_V6)) { 7914 /* PMSAv6 not implemented */ 7915 assert(arm_feature(env, ARM_FEATURE_V7)); 7916 define_arm_cp_regs(cpu, vmsa_pmsa_cp_reginfo); 7917 define_arm_cp_regs(cpu, pmsav7_cp_reginfo); 7918 } else { 7919 define_arm_cp_regs(cpu, pmsav5_cp_reginfo); 7920 } 7921 } else { 7922 define_arm_cp_regs(cpu, vmsa_pmsa_cp_reginfo); 7923 define_arm_cp_regs(cpu, vmsa_cp_reginfo); 7924 /* TTCBR2 is introduced with ARMv8.2-AA32HPD. */ 7925 if (cpu_isar_feature(aa32_hpd, cpu)) { 7926 define_one_arm_cp_reg(cpu, &ttbcr2_reginfo); 7927 } 7928 } 7929 if (arm_feature(env, ARM_FEATURE_THUMB2EE)) { 7930 define_arm_cp_regs(cpu, t2ee_cp_reginfo); 7931 } 7932 if (arm_feature(env, ARM_FEATURE_GENERIC_TIMER)) { 7933 define_arm_cp_regs(cpu, generic_timer_cp_reginfo); 7934 } 7935 if (arm_feature(env, ARM_FEATURE_VAPA)) { 7936 define_arm_cp_regs(cpu, vapa_cp_reginfo); 7937 } 7938 if (arm_feature(env, ARM_FEATURE_CACHE_TEST_CLEAN)) { 7939 define_arm_cp_regs(cpu, cache_test_clean_cp_reginfo); 7940 } 7941 if (arm_feature(env, ARM_FEATURE_CACHE_DIRTY_REG)) { 7942 define_arm_cp_regs(cpu, cache_dirty_status_cp_reginfo); 7943 } 7944 if (arm_feature(env, ARM_FEATURE_CACHE_BLOCK_OPS)) { 7945 define_arm_cp_regs(cpu, cache_block_ops_cp_reginfo); 7946 } 7947 if (arm_feature(env, ARM_FEATURE_OMAPCP)) { 7948 define_arm_cp_regs(cpu, omap_cp_reginfo); 7949 } 7950 if (arm_feature(env, ARM_FEATURE_STRONGARM)) { 7951 define_arm_cp_regs(cpu, strongarm_cp_reginfo); 7952 } 7953 if (arm_feature(env, ARM_FEATURE_XSCALE)) { 7954 define_arm_cp_regs(cpu, xscale_cp_reginfo); 7955 } 7956 if (arm_feature(env, ARM_FEATURE_DUMMY_C15_REGS)) { 7957 define_arm_cp_regs(cpu, dummy_c15_cp_reginfo); 7958 } 7959 if (arm_feature(env, ARM_FEATURE_LPAE)) { 7960 define_arm_cp_regs(cpu, lpae_cp_reginfo); 7961 } 7962 if (cpu_isar_feature(aa32_jazelle, cpu)) { 7963 define_arm_cp_regs(cpu, jazelle_regs); 7964 } 7965 /* Slightly awkwardly, the OMAP and StrongARM cores need all of 7966 * cp15 crn=0 to be writes-ignored, whereas for other cores they should 7967 * be read-only (ie write causes UNDEF exception). 7968 */ 7969 { 7970 ARMCPRegInfo id_pre_v8_midr_cp_reginfo[] = { 7971 /* Pre-v8 MIDR space. 7972 * Note that the MIDR isn't a simple constant register because 7973 * of the TI925 behaviour where writes to another register can 7974 * cause the MIDR value to change. 7975 * 7976 * Unimplemented registers in the c15 0 0 0 space default to 7977 * MIDR. Define MIDR first as this entire space, then CTR, TCMTR 7978 * and friends override accordingly. 7979 */ 7980 { .name = "MIDR", 7981 .cp = 15, .crn = 0, .crm = 0, .opc1 = 0, .opc2 = CP_ANY, 7982 .access = PL1_R, .resetvalue = cpu->midr, 7983 .writefn = arm_cp_write_ignore, .raw_writefn = raw_write, 7984 .readfn = midr_read, 7985 .fieldoffset = offsetof(CPUARMState, cp15.c0_cpuid), 7986 .type = ARM_CP_OVERRIDE }, 7987 /* crn = 0 op1 = 0 crm = 3..7 : currently unassigned; we RAZ. */ 7988 { .name = "DUMMY", 7989 .cp = 15, .crn = 0, .crm = 3, .opc1 = 0, .opc2 = CP_ANY, 7990 .access = PL1_R, .type = ARM_CP_CONST, .resetvalue = 0 }, 7991 { .name = "DUMMY", 7992 .cp = 15, .crn = 0, .crm = 4, .opc1 = 0, .opc2 = CP_ANY, 7993 .access = PL1_R, .type = ARM_CP_CONST, .resetvalue = 0 }, 7994 { .name = "DUMMY", 7995 .cp = 15, .crn = 0, .crm = 5, .opc1 = 0, .opc2 = CP_ANY, 7996 .access = PL1_R, .type = ARM_CP_CONST, .resetvalue = 0 }, 7997 { .name = "DUMMY", 7998 .cp = 15, .crn = 0, .crm = 6, .opc1 = 0, .opc2 = CP_ANY, 7999 .access = PL1_R, .type = ARM_CP_CONST, .resetvalue = 0 }, 8000 { .name = "DUMMY", 8001 .cp = 15, .crn = 0, .crm = 7, .opc1 = 0, .opc2 = CP_ANY, 8002 .access = PL1_R, .type = ARM_CP_CONST, .resetvalue = 0 }, 8003 REGINFO_SENTINEL 8004 }; 8005 ARMCPRegInfo id_v8_midr_cp_reginfo[] = { 8006 { .name = "MIDR_EL1", .state = ARM_CP_STATE_BOTH, 8007 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 0, .opc2 = 0, 8008 .access = PL1_R, .type = ARM_CP_NO_RAW, .resetvalue = cpu->midr, 8009 .fieldoffset = offsetof(CPUARMState, cp15.c0_cpuid), 8010 .readfn = midr_read }, 8011 /* crn = 0 op1 = 0 crm = 0 op2 = 4,7 : AArch32 aliases of MIDR */ 8012 { .name = "MIDR", .type = ARM_CP_ALIAS | ARM_CP_CONST, 8013 .cp = 15, .crn = 0, .crm = 0, .opc1 = 0, .opc2 = 4, 8014 .access = PL1_R, .resetvalue = cpu->midr }, 8015 { .name = "MIDR", .type = ARM_CP_ALIAS | ARM_CP_CONST, 8016 .cp = 15, .crn = 0, .crm = 0, .opc1 = 0, .opc2 = 7, 8017 .access = PL1_R, .resetvalue = cpu->midr }, 8018 { .name = "REVIDR_EL1", .state = ARM_CP_STATE_BOTH, 8019 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 0, .opc2 = 6, 8020 .access = PL1_R, 8021 .accessfn = access_aa64_tid1, 8022 .type = ARM_CP_CONST, .resetvalue = cpu->revidr }, 8023 REGINFO_SENTINEL 8024 }; 8025 ARMCPRegInfo id_cp_reginfo[] = { 8026 /* These are common to v8 and pre-v8 */ 8027 { .name = "CTR", 8028 .cp = 15, .crn = 0, .crm = 0, .opc1 = 0, .opc2 = 1, 8029 .access = PL1_R, .accessfn = ctr_el0_access, 8030 .type = ARM_CP_CONST, .resetvalue = cpu->ctr }, 8031 { .name = "CTR_EL0", .state = ARM_CP_STATE_AA64, 8032 .opc0 = 3, .opc1 = 3, .opc2 = 1, .crn = 0, .crm = 0, 8033 .access = PL0_R, .accessfn = ctr_el0_access, 8034 .type = ARM_CP_CONST, .resetvalue = cpu->ctr }, 8035 /* TCMTR and TLBTR exist in v8 but have no 64-bit versions */ 8036 { .name = "TCMTR", 8037 .cp = 15, .crn = 0, .crm = 0, .opc1 = 0, .opc2 = 2, 8038 .access = PL1_R, 8039 .accessfn = access_aa32_tid1, 8040 .type = ARM_CP_CONST, .resetvalue = 0 }, 8041 REGINFO_SENTINEL 8042 }; 8043 /* TLBTR is specific to VMSA */ 8044 ARMCPRegInfo id_tlbtr_reginfo = { 8045 .name = "TLBTR", 8046 .cp = 15, .crn = 0, .crm = 0, .opc1 = 0, .opc2 = 3, 8047 .access = PL1_R, 8048 .accessfn = access_aa32_tid1, 8049 .type = ARM_CP_CONST, .resetvalue = 0, 8050 }; 8051 /* MPUIR is specific to PMSA V6+ */ 8052 ARMCPRegInfo id_mpuir_reginfo = { 8053 .name = "MPUIR", 8054 .cp = 15, .crn = 0, .crm = 0, .opc1 = 0, .opc2 = 4, 8055 .access = PL1_R, .type = ARM_CP_CONST, 8056 .resetvalue = cpu->pmsav7_dregion << 8 8057 }; 8058 ARMCPRegInfo crn0_wi_reginfo = { 8059 .name = "CRN0_WI", .cp = 15, .crn = 0, .crm = CP_ANY, 8060 .opc1 = CP_ANY, .opc2 = CP_ANY, .access = PL1_W, 8061 .type = ARM_CP_NOP | ARM_CP_OVERRIDE 8062 }; 8063 #ifdef CONFIG_USER_ONLY 8064 ARMCPRegUserSpaceInfo id_v8_user_midr_cp_reginfo[] = { 8065 { .name = "MIDR_EL1", 8066 .exported_bits = 0x00000000ffffffff }, 8067 { .name = "REVIDR_EL1" }, 8068 REGUSERINFO_SENTINEL 8069 }; 8070 modify_arm_cp_regs(id_v8_midr_cp_reginfo, id_v8_user_midr_cp_reginfo); 8071 #endif 8072 if (arm_feature(env, ARM_FEATURE_OMAPCP) || 8073 arm_feature(env, ARM_FEATURE_STRONGARM)) { 8074 ARMCPRegInfo *r; 8075 /* Register the blanket "writes ignored" value first to cover the 8076 * whole space. Then update the specific ID registers to allow write 8077 * access, so that they ignore writes rather than causing them to 8078 * UNDEF. 8079 */ 8080 define_one_arm_cp_reg(cpu, &crn0_wi_reginfo); 8081 for (r = id_pre_v8_midr_cp_reginfo; 8082 r->type != ARM_CP_SENTINEL; r++) { 8083 r->access = PL1_RW; 8084 } 8085 for (r = id_cp_reginfo; r->type != ARM_CP_SENTINEL; r++) { 8086 r->access = PL1_RW; 8087 } 8088 id_mpuir_reginfo.access = PL1_RW; 8089 id_tlbtr_reginfo.access = PL1_RW; 8090 } 8091 if (arm_feature(env, ARM_FEATURE_V8)) { 8092 define_arm_cp_regs(cpu, id_v8_midr_cp_reginfo); 8093 } else { 8094 define_arm_cp_regs(cpu, id_pre_v8_midr_cp_reginfo); 8095 } 8096 define_arm_cp_regs(cpu, id_cp_reginfo); 8097 if (!arm_feature(env, ARM_FEATURE_PMSA)) { 8098 define_one_arm_cp_reg(cpu, &id_tlbtr_reginfo); 8099 } else if (arm_feature(env, ARM_FEATURE_V7)) { 8100 define_one_arm_cp_reg(cpu, &id_mpuir_reginfo); 8101 } 8102 } 8103 8104 if (arm_feature(env, ARM_FEATURE_MPIDR)) { 8105 ARMCPRegInfo mpidr_cp_reginfo[] = { 8106 { .name = "MPIDR_EL1", .state = ARM_CP_STATE_BOTH, 8107 .opc0 = 3, .crn = 0, .crm = 0, .opc1 = 0, .opc2 = 5, 8108 .access = PL1_R, .readfn = mpidr_read, .type = ARM_CP_NO_RAW }, 8109 REGINFO_SENTINEL 8110 }; 8111 #ifdef CONFIG_USER_ONLY 8112 ARMCPRegUserSpaceInfo mpidr_user_cp_reginfo[] = { 8113 { .name = "MPIDR_EL1", 8114 .fixed_bits = 0x0000000080000000 }, 8115 REGUSERINFO_SENTINEL 8116 }; 8117 modify_arm_cp_regs(mpidr_cp_reginfo, mpidr_user_cp_reginfo); 8118 #endif 8119 define_arm_cp_regs(cpu, mpidr_cp_reginfo); 8120 } 8121 8122 if (arm_feature(env, ARM_FEATURE_AUXCR)) { 8123 ARMCPRegInfo auxcr_reginfo[] = { 8124 { .name = "ACTLR_EL1", .state = ARM_CP_STATE_BOTH, 8125 .opc0 = 3, .opc1 = 0, .crn = 1, .crm = 0, .opc2 = 1, 8126 .access = PL1_RW, .accessfn = access_tacr, 8127 .type = ARM_CP_CONST, .resetvalue = cpu->reset_auxcr }, 8128 { .name = "ACTLR_EL2", .state = ARM_CP_STATE_BOTH, 8129 .opc0 = 3, .opc1 = 4, .crn = 1, .crm = 0, .opc2 = 1, 8130 .access = PL2_RW, .type = ARM_CP_CONST, 8131 .resetvalue = 0 }, 8132 { .name = "ACTLR_EL3", .state = ARM_CP_STATE_AA64, 8133 .opc0 = 3, .opc1 = 6, .crn = 1, .crm = 0, .opc2 = 1, 8134 .access = PL3_RW, .type = ARM_CP_CONST, 8135 .resetvalue = 0 }, 8136 REGINFO_SENTINEL 8137 }; 8138 define_arm_cp_regs(cpu, auxcr_reginfo); 8139 if (cpu_isar_feature(aa32_ac2, cpu)) { 8140 define_arm_cp_regs(cpu, actlr2_hactlr2_reginfo); 8141 } 8142 } 8143 8144 if (arm_feature(env, ARM_FEATURE_CBAR)) { 8145 /* 8146 * CBAR is IMPDEF, but common on Arm Cortex-A implementations. 8147 * There are two flavours: 8148 * (1) older 32-bit only cores have a simple 32-bit CBAR 8149 * (2) 64-bit cores have a 64-bit CBAR visible to AArch64, plus a 8150 * 32-bit register visible to AArch32 at a different encoding 8151 * to the "flavour 1" register and with the bits rearranged to 8152 * be able to squash a 64-bit address into the 32-bit view. 8153 * We distinguish the two via the ARM_FEATURE_AARCH64 flag, but 8154 * in future if we support AArch32-only configs of some of the 8155 * AArch64 cores we might need to add a specific feature flag 8156 * to indicate cores with "flavour 2" CBAR. 8157 */ 8158 if (arm_feature(env, ARM_FEATURE_AARCH64)) { 8159 /* 32 bit view is [31:18] 0...0 [43:32]. */ 8160 uint32_t cbar32 = (extract64(cpu->reset_cbar, 18, 14) << 18) 8161 | extract64(cpu->reset_cbar, 32, 12); 8162 ARMCPRegInfo cbar_reginfo[] = { 8163 { .name = "CBAR", 8164 .type = ARM_CP_CONST, 8165 .cp = 15, .crn = 15, .crm = 3, .opc1 = 1, .opc2 = 0, 8166 .access = PL1_R, .resetvalue = cbar32 }, 8167 { .name = "CBAR_EL1", .state = ARM_CP_STATE_AA64, 8168 .type = ARM_CP_CONST, 8169 .opc0 = 3, .opc1 = 1, .crn = 15, .crm = 3, .opc2 = 0, 8170 .access = PL1_R, .resetvalue = cpu->reset_cbar }, 8171 REGINFO_SENTINEL 8172 }; 8173 /* We don't implement a r/w 64 bit CBAR currently */ 8174 assert(arm_feature(env, ARM_FEATURE_CBAR_RO)); 8175 define_arm_cp_regs(cpu, cbar_reginfo); 8176 } else { 8177 ARMCPRegInfo cbar = { 8178 .name = "CBAR", 8179 .cp = 15, .crn = 15, .crm = 0, .opc1 = 4, .opc2 = 0, 8180 .access = PL1_R|PL3_W, .resetvalue = cpu->reset_cbar, 8181 .fieldoffset = offsetof(CPUARMState, 8182 cp15.c15_config_base_address) 8183 }; 8184 if (arm_feature(env, ARM_FEATURE_CBAR_RO)) { 8185 cbar.access = PL1_R; 8186 cbar.fieldoffset = 0; 8187 cbar.type = ARM_CP_CONST; 8188 } 8189 define_one_arm_cp_reg(cpu, &cbar); 8190 } 8191 } 8192 8193 if (arm_feature(env, ARM_FEATURE_VBAR)) { 8194 ARMCPRegInfo vbar_cp_reginfo[] = { 8195 { .name = "VBAR", .state = ARM_CP_STATE_BOTH, 8196 .opc0 = 3, .crn = 12, .crm = 0, .opc1 = 0, .opc2 = 0, 8197 .access = PL1_RW, .writefn = vbar_write, 8198 .bank_fieldoffsets = { offsetof(CPUARMState, cp15.vbar_s), 8199 offsetof(CPUARMState, cp15.vbar_ns) }, 8200 .resetvalue = 0 }, 8201 REGINFO_SENTINEL 8202 }; 8203 define_arm_cp_regs(cpu, vbar_cp_reginfo); 8204 } 8205 8206 /* Generic registers whose values depend on the implementation */ 8207 { 8208 ARMCPRegInfo sctlr = { 8209 .name = "SCTLR", .state = ARM_CP_STATE_BOTH, 8210 .opc0 = 3, .opc1 = 0, .crn = 1, .crm = 0, .opc2 = 0, 8211 .access = PL1_RW, .accessfn = access_tvm_trvm, 8212 .bank_fieldoffsets = { offsetof(CPUARMState, cp15.sctlr_s), 8213 offsetof(CPUARMState, cp15.sctlr_ns) }, 8214 .writefn = sctlr_write, .resetvalue = cpu->reset_sctlr, 8215 .raw_writefn = raw_write, 8216 }; 8217 if (arm_feature(env, ARM_FEATURE_XSCALE)) { 8218 /* Normally we would always end the TB on an SCTLR write, but Linux 8219 * arch/arm/mach-pxa/sleep.S expects two instructions following 8220 * an MMU enable to execute from cache. Imitate this behaviour. 8221 */ 8222 sctlr.type |= ARM_CP_SUPPRESS_TB_END; 8223 } 8224 define_one_arm_cp_reg(cpu, &sctlr); 8225 } 8226 8227 if (cpu_isar_feature(aa64_lor, cpu)) { 8228 define_arm_cp_regs(cpu, lor_reginfo); 8229 } 8230 if (cpu_isar_feature(aa64_pan, cpu)) { 8231 define_one_arm_cp_reg(cpu, &pan_reginfo); 8232 } 8233 #ifndef CONFIG_USER_ONLY 8234 if (cpu_isar_feature(aa64_ats1e1, cpu)) { 8235 define_arm_cp_regs(cpu, ats1e1_reginfo); 8236 } 8237 if (cpu_isar_feature(aa32_ats1e1, cpu)) { 8238 define_arm_cp_regs(cpu, ats1cp_reginfo); 8239 } 8240 #endif 8241 if (cpu_isar_feature(aa64_uao, cpu)) { 8242 define_one_arm_cp_reg(cpu, &uao_reginfo); 8243 } 8244 8245 if (cpu_isar_feature(aa64_dit, cpu)) { 8246 define_one_arm_cp_reg(cpu, &dit_reginfo); 8247 } 8248 8249 if (arm_feature(env, ARM_FEATURE_EL2) && cpu_isar_feature(aa64_vh, cpu)) { 8250 define_arm_cp_regs(cpu, vhe_reginfo); 8251 } 8252 8253 if (cpu_isar_feature(aa64_sve, cpu)) { 8254 define_one_arm_cp_reg(cpu, &zcr_el1_reginfo); 8255 if (arm_feature(env, ARM_FEATURE_EL2)) { 8256 define_one_arm_cp_reg(cpu, &zcr_el2_reginfo); 8257 } else { 8258 define_one_arm_cp_reg(cpu, &zcr_no_el2_reginfo); 8259 } 8260 if (arm_feature(env, ARM_FEATURE_EL3)) { 8261 define_one_arm_cp_reg(cpu, &zcr_el3_reginfo); 8262 } 8263 } 8264 8265 #ifdef TARGET_AARCH64 8266 if (cpu_isar_feature(aa64_pauth, cpu)) { 8267 define_arm_cp_regs(cpu, pauth_reginfo); 8268 } 8269 if (cpu_isar_feature(aa64_rndr, cpu)) { 8270 define_arm_cp_regs(cpu, rndr_reginfo); 8271 } 8272 #ifndef CONFIG_USER_ONLY 8273 /* Data Cache clean instructions up to PoP */ 8274 if (cpu_isar_feature(aa64_dcpop, cpu)) { 8275 define_one_arm_cp_reg(cpu, dcpop_reg); 8276 8277 if (cpu_isar_feature(aa64_dcpodp, cpu)) { 8278 define_one_arm_cp_reg(cpu, dcpodp_reg); 8279 } 8280 } 8281 #endif /*CONFIG_USER_ONLY*/ 8282 8283 /* 8284 * If full MTE is enabled, add all of the system registers. 8285 * If only "instructions available at EL0" are enabled, 8286 * then define only a RAZ/WI version of PSTATE.TCO. 8287 */ 8288 if (cpu_isar_feature(aa64_mte, cpu)) { 8289 define_arm_cp_regs(cpu, mte_reginfo); 8290 define_arm_cp_regs(cpu, mte_el0_cacheop_reginfo); 8291 } else if (cpu_isar_feature(aa64_mte_insn_reg, cpu)) { 8292 define_arm_cp_regs(cpu, mte_tco_ro_reginfo); 8293 define_arm_cp_regs(cpu, mte_el0_cacheop_reginfo); 8294 } 8295 #endif 8296 8297 if (cpu_isar_feature(any_predinv, cpu)) { 8298 define_arm_cp_regs(cpu, predinv_reginfo); 8299 } 8300 8301 if (cpu_isar_feature(any_ccidx, cpu)) { 8302 define_arm_cp_regs(cpu, ccsidr2_reginfo); 8303 } 8304 8305 #ifndef CONFIG_USER_ONLY 8306 /* 8307 * Register redirections and aliases must be done last, 8308 * after the registers from the other extensions have been defined. 8309 */ 8310 if (arm_feature(env, ARM_FEATURE_EL2) && cpu_isar_feature(aa64_vh, cpu)) { 8311 define_arm_vh_e2h_redirects_aliases(cpu); 8312 } 8313 #endif 8314 } 8315 8316 void arm_cpu_register_gdb_regs_for_features(ARMCPU *cpu) 8317 { 8318 CPUState *cs = CPU(cpu); 8319 CPUARMState *env = &cpu->env; 8320 8321 if (arm_feature(env, ARM_FEATURE_AARCH64)) { 8322 /* 8323 * The lower part of each SVE register aliases to the FPU 8324 * registers so we don't need to include both. 8325 */ 8326 #ifdef TARGET_AARCH64 8327 if (isar_feature_aa64_sve(&cpu->isar)) { 8328 gdb_register_coprocessor(cs, arm_gdb_get_svereg, arm_gdb_set_svereg, 8329 arm_gen_dynamic_svereg_xml(cs, cs->gdb_num_regs), 8330 "sve-registers.xml", 0); 8331 } else 8332 #endif 8333 { 8334 gdb_register_coprocessor(cs, aarch64_fpu_gdb_get_reg, 8335 aarch64_fpu_gdb_set_reg, 8336 34, "aarch64-fpu.xml", 0); 8337 } 8338 } else if (arm_feature(env, ARM_FEATURE_NEON)) { 8339 gdb_register_coprocessor(cs, vfp_gdb_get_reg, vfp_gdb_set_reg, 8340 51, "arm-neon.xml", 0); 8341 } else if (cpu_isar_feature(aa32_simd_r32, cpu)) { 8342 gdb_register_coprocessor(cs, vfp_gdb_get_reg, vfp_gdb_set_reg, 8343 35, "arm-vfp3.xml", 0); 8344 } else if (cpu_isar_feature(aa32_vfp_simd, cpu)) { 8345 gdb_register_coprocessor(cs, vfp_gdb_get_reg, vfp_gdb_set_reg, 8346 19, "arm-vfp.xml", 0); 8347 } 8348 gdb_register_coprocessor(cs, arm_gdb_get_sysreg, arm_gdb_set_sysreg, 8349 arm_gen_dynamic_sysreg_xml(cs, cs->gdb_num_regs), 8350 "system-registers.xml", 0); 8351 8352 } 8353 8354 /* Sort alphabetically by type name, except for "any". */ 8355 static gint arm_cpu_list_compare(gconstpointer a, gconstpointer b) 8356 { 8357 ObjectClass *class_a = (ObjectClass *)a; 8358 ObjectClass *class_b = (ObjectClass *)b; 8359 const char *name_a, *name_b; 8360 8361 name_a = object_class_get_name(class_a); 8362 name_b = object_class_get_name(class_b); 8363 if (strcmp(name_a, "any-" TYPE_ARM_CPU) == 0) { 8364 return 1; 8365 } else if (strcmp(name_b, "any-" TYPE_ARM_CPU) == 0) { 8366 return -1; 8367 } else { 8368 return strcmp(name_a, name_b); 8369 } 8370 } 8371 8372 static void arm_cpu_list_entry(gpointer data, gpointer user_data) 8373 { 8374 ObjectClass *oc = data; 8375 const char *typename; 8376 char *name; 8377 8378 typename = object_class_get_name(oc); 8379 name = g_strndup(typename, strlen(typename) - strlen("-" TYPE_ARM_CPU)); 8380 qemu_printf(" %s\n", name); 8381 g_free(name); 8382 } 8383 8384 void arm_cpu_list(void) 8385 { 8386 GSList *list; 8387 8388 list = object_class_get_list(TYPE_ARM_CPU, false); 8389 list = g_slist_sort(list, arm_cpu_list_compare); 8390 qemu_printf("Available CPUs:\n"); 8391 g_slist_foreach(list, arm_cpu_list_entry, NULL); 8392 g_slist_free(list); 8393 } 8394 8395 static void arm_cpu_add_definition(gpointer data, gpointer user_data) 8396 { 8397 ObjectClass *oc = data; 8398 CpuDefinitionInfoList **cpu_list = user_data; 8399 CpuDefinitionInfo *info; 8400 const char *typename; 8401 8402 typename = object_class_get_name(oc); 8403 info = g_malloc0(sizeof(*info)); 8404 info->name = g_strndup(typename, 8405 strlen(typename) - strlen("-" TYPE_ARM_CPU)); 8406 info->q_typename = g_strdup(typename); 8407 8408 QAPI_LIST_PREPEND(*cpu_list, info); 8409 } 8410 8411 CpuDefinitionInfoList *qmp_query_cpu_definitions(Error **errp) 8412 { 8413 CpuDefinitionInfoList *cpu_list = NULL; 8414 GSList *list; 8415 8416 list = object_class_get_list(TYPE_ARM_CPU, false); 8417 g_slist_foreach(list, arm_cpu_add_definition, &cpu_list); 8418 g_slist_free(list); 8419 8420 return cpu_list; 8421 } 8422 8423 static void add_cpreg_to_hashtable(ARMCPU *cpu, const ARMCPRegInfo *r, 8424 void *opaque, int state, int secstate, 8425 int crm, int opc1, int opc2, 8426 const char *name) 8427 { 8428 /* Private utility function for define_one_arm_cp_reg_with_opaque(): 8429 * add a single reginfo struct to the hash table. 8430 */ 8431 uint32_t *key = g_new(uint32_t, 1); 8432 ARMCPRegInfo *r2 = g_memdup(r, sizeof(ARMCPRegInfo)); 8433 int is64 = (r->type & ARM_CP_64BIT) ? 1 : 0; 8434 int ns = (secstate & ARM_CP_SECSTATE_NS) ? 1 : 0; 8435 8436 r2->name = g_strdup(name); 8437 /* Reset the secure state to the specific incoming state. This is 8438 * necessary as the register may have been defined with both states. 8439 */ 8440 r2->secure = secstate; 8441 8442 if (r->bank_fieldoffsets[0] && r->bank_fieldoffsets[1]) { 8443 /* Register is banked (using both entries in array). 8444 * Overwriting fieldoffset as the array is only used to define 8445 * banked registers but later only fieldoffset is used. 8446 */ 8447 r2->fieldoffset = r->bank_fieldoffsets[ns]; 8448 } 8449 8450 if (state == ARM_CP_STATE_AA32) { 8451 if (r->bank_fieldoffsets[0] && r->bank_fieldoffsets[1]) { 8452 /* If the register is banked then we don't need to migrate or 8453 * reset the 32-bit instance in certain cases: 8454 * 8455 * 1) If the register has both 32-bit and 64-bit instances then we 8456 * can count on the 64-bit instance taking care of the 8457 * non-secure bank. 8458 * 2) If ARMv8 is enabled then we can count on a 64-bit version 8459 * taking care of the secure bank. This requires that separate 8460 * 32 and 64-bit definitions are provided. 8461 */ 8462 if ((r->state == ARM_CP_STATE_BOTH && ns) || 8463 (arm_feature(&cpu->env, ARM_FEATURE_V8) && !ns)) { 8464 r2->type |= ARM_CP_ALIAS; 8465 } 8466 } else if ((secstate != r->secure) && !ns) { 8467 /* The register is not banked so we only want to allow migration of 8468 * the non-secure instance. 8469 */ 8470 r2->type |= ARM_CP_ALIAS; 8471 } 8472 8473 if (r->state == ARM_CP_STATE_BOTH) { 8474 /* We assume it is a cp15 register if the .cp field is left unset. 8475 */ 8476 if (r2->cp == 0) { 8477 r2->cp = 15; 8478 } 8479 8480 #ifdef HOST_WORDS_BIGENDIAN 8481 if (r2->fieldoffset) { 8482 r2->fieldoffset += sizeof(uint32_t); 8483 } 8484 #endif 8485 } 8486 } 8487 if (state == ARM_CP_STATE_AA64) { 8488 /* To allow abbreviation of ARMCPRegInfo 8489 * definitions, we treat cp == 0 as equivalent to 8490 * the value for "standard guest-visible sysreg". 8491 * STATE_BOTH definitions are also always "standard 8492 * sysreg" in their AArch64 view (the .cp value may 8493 * be non-zero for the benefit of the AArch32 view). 8494 */ 8495 if (r->cp == 0 || r->state == ARM_CP_STATE_BOTH) { 8496 r2->cp = CP_REG_ARM64_SYSREG_CP; 8497 } 8498 *key = ENCODE_AA64_CP_REG(r2->cp, r2->crn, crm, 8499 r2->opc0, opc1, opc2); 8500 } else { 8501 *key = ENCODE_CP_REG(r2->cp, is64, ns, r2->crn, crm, opc1, opc2); 8502 } 8503 if (opaque) { 8504 r2->opaque = opaque; 8505 } 8506 /* reginfo passed to helpers is correct for the actual access, 8507 * and is never ARM_CP_STATE_BOTH: 8508 */ 8509 r2->state = state; 8510 /* Make sure reginfo passed to helpers for wildcarded regs 8511 * has the correct crm/opc1/opc2 for this reg, not CP_ANY: 8512 */ 8513 r2->crm = crm; 8514 r2->opc1 = opc1; 8515 r2->opc2 = opc2; 8516 /* By convention, for wildcarded registers only the first 8517 * entry is used for migration; the others are marked as 8518 * ALIAS so we don't try to transfer the register 8519 * multiple times. Special registers (ie NOP/WFI) are 8520 * never migratable and not even raw-accessible. 8521 */ 8522 if ((r->type & ARM_CP_SPECIAL)) { 8523 r2->type |= ARM_CP_NO_RAW; 8524 } 8525 if (((r->crm == CP_ANY) && crm != 0) || 8526 ((r->opc1 == CP_ANY) && opc1 != 0) || 8527 ((r->opc2 == CP_ANY) && opc2 != 0)) { 8528 r2->type |= ARM_CP_ALIAS | ARM_CP_NO_GDB; 8529 } 8530 8531 /* Check that raw accesses are either forbidden or handled. Note that 8532 * we can't assert this earlier because the setup of fieldoffset for 8533 * banked registers has to be done first. 8534 */ 8535 if (!(r2->type & ARM_CP_NO_RAW)) { 8536 assert(!raw_accessors_invalid(r2)); 8537 } 8538 8539 /* Overriding of an existing definition must be explicitly 8540 * requested. 8541 */ 8542 if (!(r->type & ARM_CP_OVERRIDE)) { 8543 ARMCPRegInfo *oldreg; 8544 oldreg = g_hash_table_lookup(cpu->cp_regs, key); 8545 if (oldreg && !(oldreg->type & ARM_CP_OVERRIDE)) { 8546 fprintf(stderr, "Register redefined: cp=%d %d bit " 8547 "crn=%d crm=%d opc1=%d opc2=%d, " 8548 "was %s, now %s\n", r2->cp, 32 + 32 * is64, 8549 r2->crn, r2->crm, r2->opc1, r2->opc2, 8550 oldreg->name, r2->name); 8551 g_assert_not_reached(); 8552 } 8553 } 8554 g_hash_table_insert(cpu->cp_regs, key, r2); 8555 } 8556 8557 8558 void define_one_arm_cp_reg_with_opaque(ARMCPU *cpu, 8559 const ARMCPRegInfo *r, void *opaque) 8560 { 8561 /* Define implementations of coprocessor registers. 8562 * We store these in a hashtable because typically 8563 * there are less than 150 registers in a space which 8564 * is 16*16*16*8*8 = 262144 in size. 8565 * Wildcarding is supported for the crm, opc1 and opc2 fields. 8566 * If a register is defined twice then the second definition is 8567 * used, so this can be used to define some generic registers and 8568 * then override them with implementation specific variations. 8569 * At least one of the original and the second definition should 8570 * include ARM_CP_OVERRIDE in its type bits -- this is just a guard 8571 * against accidental use. 8572 * 8573 * The state field defines whether the register is to be 8574 * visible in the AArch32 or AArch64 execution state. If the 8575 * state is set to ARM_CP_STATE_BOTH then we synthesise a 8576 * reginfo structure for the AArch32 view, which sees the lower 8577 * 32 bits of the 64 bit register. 8578 * 8579 * Only registers visible in AArch64 may set r->opc0; opc0 cannot 8580 * be wildcarded. AArch64 registers are always considered to be 64 8581 * bits; the ARM_CP_64BIT* flag applies only to the AArch32 view of 8582 * the register, if any. 8583 */ 8584 int crm, opc1, opc2, state; 8585 int crmmin = (r->crm == CP_ANY) ? 0 : r->crm; 8586 int crmmax = (r->crm == CP_ANY) ? 15 : r->crm; 8587 int opc1min = (r->opc1 == CP_ANY) ? 0 : r->opc1; 8588 int opc1max = (r->opc1 == CP_ANY) ? 7 : r->opc1; 8589 int opc2min = (r->opc2 == CP_ANY) ? 0 : r->opc2; 8590 int opc2max = (r->opc2 == CP_ANY) ? 7 : r->opc2; 8591 /* 64 bit registers have only CRm and Opc1 fields */ 8592 assert(!((r->type & ARM_CP_64BIT) && (r->opc2 || r->crn))); 8593 /* op0 only exists in the AArch64 encodings */ 8594 assert((r->state != ARM_CP_STATE_AA32) || (r->opc0 == 0)); 8595 /* AArch64 regs are all 64 bit so ARM_CP_64BIT is meaningless */ 8596 assert((r->state != ARM_CP_STATE_AA64) || !(r->type & ARM_CP_64BIT)); 8597 /* 8598 * This API is only for Arm's system coprocessors (14 and 15) or 8599 * (M-profile or v7A-and-earlier only) for implementation defined 8600 * coprocessors in the range 0..7. Our decode assumes this, since 8601 * 8..13 can be used for other insns including VFP and Neon. See 8602 * valid_cp() in translate.c. Assert here that we haven't tried 8603 * to use an invalid coprocessor number. 8604 */ 8605 switch (r->state) { 8606 case ARM_CP_STATE_BOTH: 8607 /* 0 has a special meaning, but otherwise the same rules as AA32. */ 8608 if (r->cp == 0) { 8609 break; 8610 } 8611 /* fall through */ 8612 case ARM_CP_STATE_AA32: 8613 if (arm_feature(&cpu->env, ARM_FEATURE_V8) && 8614 !arm_feature(&cpu->env, ARM_FEATURE_M)) { 8615 assert(r->cp >= 14 && r->cp <= 15); 8616 } else { 8617 assert(r->cp < 8 || (r->cp >= 14 && r->cp <= 15)); 8618 } 8619 break; 8620 case ARM_CP_STATE_AA64: 8621 assert(r->cp == 0 || r->cp == CP_REG_ARM64_SYSREG_CP); 8622 break; 8623 default: 8624 g_assert_not_reached(); 8625 } 8626 /* The AArch64 pseudocode CheckSystemAccess() specifies that op1 8627 * encodes a minimum access level for the register. We roll this 8628 * runtime check into our general permission check code, so check 8629 * here that the reginfo's specified permissions are strict enough 8630 * to encompass the generic architectural permission check. 8631 */ 8632 if (r->state != ARM_CP_STATE_AA32) { 8633 int mask = 0; 8634 switch (r->opc1) { 8635 case 0: 8636 /* min_EL EL1, but some accessible to EL0 via kernel ABI */ 8637 mask = PL0U_R | PL1_RW; 8638 break; 8639 case 1: case 2: 8640 /* min_EL EL1 */ 8641 mask = PL1_RW; 8642 break; 8643 case 3: 8644 /* min_EL EL0 */ 8645 mask = PL0_RW; 8646 break; 8647 case 4: 8648 case 5: 8649 /* min_EL EL2 */ 8650 mask = PL2_RW; 8651 break; 8652 case 6: 8653 /* min_EL EL3 */ 8654 mask = PL3_RW; 8655 break; 8656 case 7: 8657 /* min_EL EL1, secure mode only (we don't check the latter) */ 8658 mask = PL1_RW; 8659 break; 8660 default: 8661 /* broken reginfo with out-of-range opc1 */ 8662 assert(false); 8663 break; 8664 } 8665 /* assert our permissions are not too lax (stricter is fine) */ 8666 assert((r->access & ~mask) == 0); 8667 } 8668 8669 /* Check that the register definition has enough info to handle 8670 * reads and writes if they are permitted. 8671 */ 8672 if (!(r->type & (ARM_CP_SPECIAL|ARM_CP_CONST))) { 8673 if (r->access & PL3_R) { 8674 assert((r->fieldoffset || 8675 (r->bank_fieldoffsets[0] && r->bank_fieldoffsets[1])) || 8676 r->readfn); 8677 } 8678 if (r->access & PL3_W) { 8679 assert((r->fieldoffset || 8680 (r->bank_fieldoffsets[0] && r->bank_fieldoffsets[1])) || 8681 r->writefn); 8682 } 8683 } 8684 /* Bad type field probably means missing sentinel at end of reg list */ 8685 assert(cptype_valid(r->type)); 8686 for (crm = crmmin; crm <= crmmax; crm++) { 8687 for (opc1 = opc1min; opc1 <= opc1max; opc1++) { 8688 for (opc2 = opc2min; opc2 <= opc2max; opc2++) { 8689 for (state = ARM_CP_STATE_AA32; 8690 state <= ARM_CP_STATE_AA64; state++) { 8691 if (r->state != state && r->state != ARM_CP_STATE_BOTH) { 8692 continue; 8693 } 8694 if (state == ARM_CP_STATE_AA32) { 8695 /* Under AArch32 CP registers can be common 8696 * (same for secure and non-secure world) or banked. 8697 */ 8698 char *name; 8699 8700 switch (r->secure) { 8701 case ARM_CP_SECSTATE_S: 8702 case ARM_CP_SECSTATE_NS: 8703 add_cpreg_to_hashtable(cpu, r, opaque, state, 8704 r->secure, crm, opc1, opc2, 8705 r->name); 8706 break; 8707 default: 8708 name = g_strdup_printf("%s_S", r->name); 8709 add_cpreg_to_hashtable(cpu, r, opaque, state, 8710 ARM_CP_SECSTATE_S, 8711 crm, opc1, opc2, name); 8712 g_free(name); 8713 add_cpreg_to_hashtable(cpu, r, opaque, state, 8714 ARM_CP_SECSTATE_NS, 8715 crm, opc1, opc2, r->name); 8716 break; 8717 } 8718 } else { 8719 /* AArch64 registers get mapped to non-secure instance 8720 * of AArch32 */ 8721 add_cpreg_to_hashtable(cpu, r, opaque, state, 8722 ARM_CP_SECSTATE_NS, 8723 crm, opc1, opc2, r->name); 8724 } 8725 } 8726 } 8727 } 8728 } 8729 } 8730 8731 void define_arm_cp_regs_with_opaque(ARMCPU *cpu, 8732 const ARMCPRegInfo *regs, void *opaque) 8733 { 8734 /* Define a whole list of registers */ 8735 const ARMCPRegInfo *r; 8736 for (r = regs; r->type != ARM_CP_SENTINEL; r++) { 8737 define_one_arm_cp_reg_with_opaque(cpu, r, opaque); 8738 } 8739 } 8740 8741 /* 8742 * Modify ARMCPRegInfo for access from userspace. 8743 * 8744 * This is a data driven modification directed by 8745 * ARMCPRegUserSpaceInfo. All registers become ARM_CP_CONST as 8746 * user-space cannot alter any values and dynamic values pertaining to 8747 * execution state are hidden from user space view anyway. 8748 */ 8749 void modify_arm_cp_regs(ARMCPRegInfo *regs, const ARMCPRegUserSpaceInfo *mods) 8750 { 8751 const ARMCPRegUserSpaceInfo *m; 8752 ARMCPRegInfo *r; 8753 8754 for (m = mods; m->name; m++) { 8755 GPatternSpec *pat = NULL; 8756 if (m->is_glob) { 8757 pat = g_pattern_spec_new(m->name); 8758 } 8759 for (r = regs; r->type != ARM_CP_SENTINEL; r++) { 8760 if (pat && g_pattern_match_string(pat, r->name)) { 8761 r->type = ARM_CP_CONST; 8762 r->access = PL0U_R; 8763 r->resetvalue = 0; 8764 /* continue */ 8765 } else if (strcmp(r->name, m->name) == 0) { 8766 r->type = ARM_CP_CONST; 8767 r->access = PL0U_R; 8768 r->resetvalue &= m->exported_bits; 8769 r->resetvalue |= m->fixed_bits; 8770 break; 8771 } 8772 } 8773 if (pat) { 8774 g_pattern_spec_free(pat); 8775 } 8776 } 8777 } 8778 8779 const ARMCPRegInfo *get_arm_cp_reginfo(GHashTable *cpregs, uint32_t encoded_cp) 8780 { 8781 return g_hash_table_lookup(cpregs, &encoded_cp); 8782 } 8783 8784 void arm_cp_write_ignore(CPUARMState *env, const ARMCPRegInfo *ri, 8785 uint64_t value) 8786 { 8787 /* Helper coprocessor write function for write-ignore registers */ 8788 } 8789 8790 uint64_t arm_cp_read_zero(CPUARMState *env, const ARMCPRegInfo *ri) 8791 { 8792 /* Helper coprocessor write function for read-as-zero registers */ 8793 return 0; 8794 } 8795 8796 void arm_cp_reset_ignore(CPUARMState *env, const ARMCPRegInfo *opaque) 8797 { 8798 /* Helper coprocessor reset function for do-nothing-on-reset registers */ 8799 } 8800 8801 static int bad_mode_switch(CPUARMState *env, int mode, CPSRWriteType write_type) 8802 { 8803 /* Return true if it is not valid for us to switch to 8804 * this CPU mode (ie all the UNPREDICTABLE cases in 8805 * the ARM ARM CPSRWriteByInstr pseudocode). 8806 */ 8807 8808 /* Changes to or from Hyp via MSR and CPS are illegal. */ 8809 if (write_type == CPSRWriteByInstr && 8810 ((env->uncached_cpsr & CPSR_M) == ARM_CPU_MODE_HYP || 8811 mode == ARM_CPU_MODE_HYP)) { 8812 return 1; 8813 } 8814 8815 switch (mode) { 8816 case ARM_CPU_MODE_USR: 8817 return 0; 8818 case ARM_CPU_MODE_SYS: 8819 case ARM_CPU_MODE_SVC: 8820 case ARM_CPU_MODE_ABT: 8821 case ARM_CPU_MODE_UND: 8822 case ARM_CPU_MODE_IRQ: 8823 case ARM_CPU_MODE_FIQ: 8824 /* Note that we don't implement the IMPDEF NSACR.RFR which in v7 8825 * allows FIQ mode to be Secure-only. (In v8 this doesn't exist.) 8826 */ 8827 /* If HCR.TGE is set then changes from Monitor to NS PL1 via MSR 8828 * and CPS are treated as illegal mode changes. 8829 */ 8830 if (write_type == CPSRWriteByInstr && 8831 (env->uncached_cpsr & CPSR_M) == ARM_CPU_MODE_MON && 8832 (arm_hcr_el2_eff(env) & HCR_TGE)) { 8833 return 1; 8834 } 8835 return 0; 8836 case ARM_CPU_MODE_HYP: 8837 return !arm_is_el2_enabled(env) || arm_current_el(env) < 2; 8838 case ARM_CPU_MODE_MON: 8839 return arm_current_el(env) < 3; 8840 default: 8841 return 1; 8842 } 8843 } 8844 8845 uint32_t cpsr_read(CPUARMState *env) 8846 { 8847 int ZF; 8848 ZF = (env->ZF == 0); 8849 return env->uncached_cpsr | (env->NF & 0x80000000) | (ZF << 30) | 8850 (env->CF << 29) | ((env->VF & 0x80000000) >> 3) | (env->QF << 27) 8851 | (env->thumb << 5) | ((env->condexec_bits & 3) << 25) 8852 | ((env->condexec_bits & 0xfc) << 8) 8853 | (env->GE << 16) | (env->daif & CPSR_AIF); 8854 } 8855 8856 void cpsr_write(CPUARMState *env, uint32_t val, uint32_t mask, 8857 CPSRWriteType write_type) 8858 { 8859 uint32_t changed_daif; 8860 8861 if (mask & CPSR_NZCV) { 8862 env->ZF = (~val) & CPSR_Z; 8863 env->NF = val; 8864 env->CF = (val >> 29) & 1; 8865 env->VF = (val << 3) & 0x80000000; 8866 } 8867 if (mask & CPSR_Q) 8868 env->QF = ((val & CPSR_Q) != 0); 8869 if (mask & CPSR_T) 8870 env->thumb = ((val & CPSR_T) != 0); 8871 if (mask & CPSR_IT_0_1) { 8872 env->condexec_bits &= ~3; 8873 env->condexec_bits |= (val >> 25) & 3; 8874 } 8875 if (mask & CPSR_IT_2_7) { 8876 env->condexec_bits &= 3; 8877 env->condexec_bits |= (val >> 8) & 0xfc; 8878 } 8879 if (mask & CPSR_GE) { 8880 env->GE = (val >> 16) & 0xf; 8881 } 8882 8883 /* In a V7 implementation that includes the security extensions but does 8884 * not include Virtualization Extensions the SCR.FW and SCR.AW bits control 8885 * whether non-secure software is allowed to change the CPSR_F and CPSR_A 8886 * bits respectively. 8887 * 8888 * In a V8 implementation, it is permitted for privileged software to 8889 * change the CPSR A/F bits regardless of the SCR.AW/FW bits. 8890 */ 8891 if (write_type != CPSRWriteRaw && !arm_feature(env, ARM_FEATURE_V8) && 8892 arm_feature(env, ARM_FEATURE_EL3) && 8893 !arm_feature(env, ARM_FEATURE_EL2) && 8894 !arm_is_secure(env)) { 8895 8896 changed_daif = (env->daif ^ val) & mask; 8897 8898 if (changed_daif & CPSR_A) { 8899 /* Check to see if we are allowed to change the masking of async 8900 * abort exceptions from a non-secure state. 8901 */ 8902 if (!(env->cp15.scr_el3 & SCR_AW)) { 8903 qemu_log_mask(LOG_GUEST_ERROR, 8904 "Ignoring attempt to switch CPSR_A flag from " 8905 "non-secure world with SCR.AW bit clear\n"); 8906 mask &= ~CPSR_A; 8907 } 8908 } 8909 8910 if (changed_daif & CPSR_F) { 8911 /* Check to see if we are allowed to change the masking of FIQ 8912 * exceptions from a non-secure state. 8913 */ 8914 if (!(env->cp15.scr_el3 & SCR_FW)) { 8915 qemu_log_mask(LOG_GUEST_ERROR, 8916 "Ignoring attempt to switch CPSR_F flag from " 8917 "non-secure world with SCR.FW bit clear\n"); 8918 mask &= ~CPSR_F; 8919 } 8920 8921 /* Check whether non-maskable FIQ (NMFI) support is enabled. 8922 * If this bit is set software is not allowed to mask 8923 * FIQs, but is allowed to set CPSR_F to 0. 8924 */ 8925 if ((A32_BANKED_CURRENT_REG_GET(env, sctlr) & SCTLR_NMFI) && 8926 (val & CPSR_F)) { 8927 qemu_log_mask(LOG_GUEST_ERROR, 8928 "Ignoring attempt to enable CPSR_F flag " 8929 "(non-maskable FIQ [NMFI] support enabled)\n"); 8930 mask &= ~CPSR_F; 8931 } 8932 } 8933 } 8934 8935 env->daif &= ~(CPSR_AIF & mask); 8936 env->daif |= val & CPSR_AIF & mask; 8937 8938 if (write_type != CPSRWriteRaw && 8939 ((env->uncached_cpsr ^ val) & mask & CPSR_M)) { 8940 if ((env->uncached_cpsr & CPSR_M) == ARM_CPU_MODE_USR) { 8941 /* Note that we can only get here in USR mode if this is a 8942 * gdb stub write; for this case we follow the architectural 8943 * behaviour for guest writes in USR mode of ignoring an attempt 8944 * to switch mode. (Those are caught by translate.c for writes 8945 * triggered by guest instructions.) 8946 */ 8947 mask &= ~CPSR_M; 8948 } else if (bad_mode_switch(env, val & CPSR_M, write_type)) { 8949 /* Attempt to switch to an invalid mode: this is UNPREDICTABLE in 8950 * v7, and has defined behaviour in v8: 8951 * + leave CPSR.M untouched 8952 * + allow changes to the other CPSR fields 8953 * + set PSTATE.IL 8954 * For user changes via the GDB stub, we don't set PSTATE.IL, 8955 * as this would be unnecessarily harsh for a user error. 8956 */ 8957 mask &= ~CPSR_M; 8958 if (write_type != CPSRWriteByGDBStub && 8959 arm_feature(env, ARM_FEATURE_V8)) { 8960 mask |= CPSR_IL; 8961 val |= CPSR_IL; 8962 } 8963 qemu_log_mask(LOG_GUEST_ERROR, 8964 "Illegal AArch32 mode switch attempt from %s to %s\n", 8965 aarch32_mode_name(env->uncached_cpsr), 8966 aarch32_mode_name(val)); 8967 } else { 8968 qemu_log_mask(CPU_LOG_INT, "%s %s to %s PC 0x%" PRIx32 "\n", 8969 write_type == CPSRWriteExceptionReturn ? 8970 "Exception return from AArch32" : 8971 "AArch32 mode switch from", 8972 aarch32_mode_name(env->uncached_cpsr), 8973 aarch32_mode_name(val), env->regs[15]); 8974 switch_mode(env, val & CPSR_M); 8975 } 8976 } 8977 mask &= ~CACHED_CPSR_BITS; 8978 env->uncached_cpsr = (env->uncached_cpsr & ~mask) | (val & mask); 8979 } 8980 8981 /* Sign/zero extend */ 8982 uint32_t HELPER(sxtb16)(uint32_t x) 8983 { 8984 uint32_t res; 8985 res = (uint16_t)(int8_t)x; 8986 res |= (uint32_t)(int8_t)(x >> 16) << 16; 8987 return res; 8988 } 8989 8990 uint32_t HELPER(uxtb16)(uint32_t x) 8991 { 8992 uint32_t res; 8993 res = (uint16_t)(uint8_t)x; 8994 res |= (uint32_t)(uint8_t)(x >> 16) << 16; 8995 return res; 8996 } 8997 8998 int32_t HELPER(sdiv)(int32_t num, int32_t den) 8999 { 9000 if (den == 0) 9001 return 0; 9002 if (num == INT_MIN && den == -1) 9003 return INT_MIN; 9004 return num / den; 9005 } 9006 9007 uint32_t HELPER(udiv)(uint32_t num, uint32_t den) 9008 { 9009 if (den == 0) 9010 return 0; 9011 return num / den; 9012 } 9013 9014 uint32_t HELPER(rbit)(uint32_t x) 9015 { 9016 return revbit32(x); 9017 } 9018 9019 #ifdef CONFIG_USER_ONLY 9020 9021 static void switch_mode(CPUARMState *env, int mode) 9022 { 9023 ARMCPU *cpu = env_archcpu(env); 9024 9025 if (mode != ARM_CPU_MODE_USR) { 9026 cpu_abort(CPU(cpu), "Tried to switch out of user mode\n"); 9027 } 9028 } 9029 9030 uint32_t arm_phys_excp_target_el(CPUState *cs, uint32_t excp_idx, 9031 uint32_t cur_el, bool secure) 9032 { 9033 return 1; 9034 } 9035 9036 void aarch64_sync_64_to_32(CPUARMState *env) 9037 { 9038 g_assert_not_reached(); 9039 } 9040 9041 #else 9042 9043 static void switch_mode(CPUARMState *env, int mode) 9044 { 9045 int old_mode; 9046 int i; 9047 9048 old_mode = env->uncached_cpsr & CPSR_M; 9049 if (mode == old_mode) 9050 return; 9051 9052 if (old_mode == ARM_CPU_MODE_FIQ) { 9053 memcpy (env->fiq_regs, env->regs + 8, 5 * sizeof(uint32_t)); 9054 memcpy (env->regs + 8, env->usr_regs, 5 * sizeof(uint32_t)); 9055 } else if (mode == ARM_CPU_MODE_FIQ) { 9056 memcpy (env->usr_regs, env->regs + 8, 5 * sizeof(uint32_t)); 9057 memcpy (env->regs + 8, env->fiq_regs, 5 * sizeof(uint32_t)); 9058 } 9059 9060 i = bank_number(old_mode); 9061 env->banked_r13[i] = env->regs[13]; 9062 env->banked_spsr[i] = env->spsr; 9063 9064 i = bank_number(mode); 9065 env->regs[13] = env->banked_r13[i]; 9066 env->spsr = env->banked_spsr[i]; 9067 9068 env->banked_r14[r14_bank_number(old_mode)] = env->regs[14]; 9069 env->regs[14] = env->banked_r14[r14_bank_number(mode)]; 9070 } 9071 9072 /* Physical Interrupt Target EL Lookup Table 9073 * 9074 * [ From ARM ARM section G1.13.4 (Table G1-15) ] 9075 * 9076 * The below multi-dimensional table is used for looking up the target 9077 * exception level given numerous condition criteria. Specifically, the 9078 * target EL is based on SCR and HCR routing controls as well as the 9079 * currently executing EL and secure state. 9080 * 9081 * Dimensions: 9082 * target_el_table[2][2][2][2][2][4] 9083 * | | | | | +--- Current EL 9084 * | | | | +------ Non-secure(0)/Secure(1) 9085 * | | | +--------- HCR mask override 9086 * | | +------------ SCR exec state control 9087 * | +--------------- SCR mask override 9088 * +------------------ 32-bit(0)/64-bit(1) EL3 9089 * 9090 * The table values are as such: 9091 * 0-3 = EL0-EL3 9092 * -1 = Cannot occur 9093 * 9094 * The ARM ARM target EL table includes entries indicating that an "exception 9095 * is not taken". The two cases where this is applicable are: 9096 * 1) An exception is taken from EL3 but the SCR does not have the exception 9097 * routed to EL3. 9098 * 2) An exception is taken from EL2 but the HCR does not have the exception 9099 * routed to EL2. 9100 * In these two cases, the below table contain a target of EL1. This value is 9101 * returned as it is expected that the consumer of the table data will check 9102 * for "target EL >= current EL" to ensure the exception is not taken. 9103 * 9104 * SCR HCR 9105 * 64 EA AMO From 9106 * BIT IRQ IMO Non-secure Secure 9107 * EL3 FIQ RW FMO EL0 EL1 EL2 EL3 EL0 EL1 EL2 EL3 9108 */ 9109 static const int8_t target_el_table[2][2][2][2][2][4] = { 9110 {{{{/* 0 0 0 0 */{ 1, 1, 2, -1 },{ 3, -1, -1, 3 },}, 9111 {/* 0 0 0 1 */{ 2, 2, 2, -1 },{ 3, -1, -1, 3 },},}, 9112 {{/* 0 0 1 0 */{ 1, 1, 2, -1 },{ 3, -1, -1, 3 },}, 9113 {/* 0 0 1 1 */{ 2, 2, 2, -1 },{ 3, -1, -1, 3 },},},}, 9114 {{{/* 0 1 0 0 */{ 3, 3, 3, -1 },{ 3, -1, -1, 3 },}, 9115 {/* 0 1 0 1 */{ 3, 3, 3, -1 },{ 3, -1, -1, 3 },},}, 9116 {{/* 0 1 1 0 */{ 3, 3, 3, -1 },{ 3, -1, -1, 3 },}, 9117 {/* 0 1 1 1 */{ 3, 3, 3, -1 },{ 3, -1, -1, 3 },},},},}, 9118 {{{{/* 1 0 0 0 */{ 1, 1, 2, -1 },{ 1, 1, -1, 1 },}, 9119 {/* 1 0 0 1 */{ 2, 2, 2, -1 },{ 2, 2, -1, 1 },},}, 9120 {{/* 1 0 1 0 */{ 1, 1, 1, -1 },{ 1, 1, 1, 1 },}, 9121 {/* 1 0 1 1 */{ 2, 2, 2, -1 },{ 2, 2, 2, 1 },},},}, 9122 {{{/* 1 1 0 0 */{ 3, 3, 3, -1 },{ 3, 3, -1, 3 },}, 9123 {/* 1 1 0 1 */{ 3, 3, 3, -1 },{ 3, 3, -1, 3 },},}, 9124 {{/* 1 1 1 0 */{ 3, 3, 3, -1 },{ 3, 3, 3, 3 },}, 9125 {/* 1 1 1 1 */{ 3, 3, 3, -1 },{ 3, 3, 3, 3 },},},},}, 9126 }; 9127 9128 /* 9129 * Determine the target EL for physical exceptions 9130 */ 9131 uint32_t arm_phys_excp_target_el(CPUState *cs, uint32_t excp_idx, 9132 uint32_t cur_el, bool secure) 9133 { 9134 CPUARMState *env = cs->env_ptr; 9135 bool rw; 9136 bool scr; 9137 bool hcr; 9138 int target_el; 9139 /* Is the highest EL AArch64? */ 9140 bool is64 = arm_feature(env, ARM_FEATURE_AARCH64); 9141 uint64_t hcr_el2; 9142 9143 if (arm_feature(env, ARM_FEATURE_EL3)) { 9144 rw = ((env->cp15.scr_el3 & SCR_RW) == SCR_RW); 9145 } else { 9146 /* Either EL2 is the highest EL (and so the EL2 register width 9147 * is given by is64); or there is no EL2 or EL3, in which case 9148 * the value of 'rw' does not affect the table lookup anyway. 9149 */ 9150 rw = is64; 9151 } 9152 9153 hcr_el2 = arm_hcr_el2_eff(env); 9154 switch (excp_idx) { 9155 case EXCP_IRQ: 9156 scr = ((env->cp15.scr_el3 & SCR_IRQ) == SCR_IRQ); 9157 hcr = hcr_el2 & HCR_IMO; 9158 break; 9159 case EXCP_FIQ: 9160 scr = ((env->cp15.scr_el3 & SCR_FIQ) == SCR_FIQ); 9161 hcr = hcr_el2 & HCR_FMO; 9162 break; 9163 default: 9164 scr = ((env->cp15.scr_el3 & SCR_EA) == SCR_EA); 9165 hcr = hcr_el2 & HCR_AMO; 9166 break; 9167 }; 9168 9169 /* 9170 * For these purposes, TGE and AMO/IMO/FMO both force the 9171 * interrupt to EL2. Fold TGE into the bit extracted above. 9172 */ 9173 hcr |= (hcr_el2 & HCR_TGE) != 0; 9174 9175 /* Perform a table-lookup for the target EL given the current state */ 9176 target_el = target_el_table[is64][scr][rw][hcr][secure][cur_el]; 9177 9178 assert(target_el > 0); 9179 9180 return target_el; 9181 } 9182 9183 void arm_log_exception(int idx) 9184 { 9185 if (qemu_loglevel_mask(CPU_LOG_INT)) { 9186 const char *exc = NULL; 9187 static const char * const excnames[] = { 9188 [EXCP_UDEF] = "Undefined Instruction", 9189 [EXCP_SWI] = "SVC", 9190 [EXCP_PREFETCH_ABORT] = "Prefetch Abort", 9191 [EXCP_DATA_ABORT] = "Data Abort", 9192 [EXCP_IRQ] = "IRQ", 9193 [EXCP_FIQ] = "FIQ", 9194 [EXCP_BKPT] = "Breakpoint", 9195 [EXCP_EXCEPTION_EXIT] = "QEMU v7M exception exit", 9196 [EXCP_KERNEL_TRAP] = "QEMU intercept of kernel commpage", 9197 [EXCP_HVC] = "Hypervisor Call", 9198 [EXCP_HYP_TRAP] = "Hypervisor Trap", 9199 [EXCP_SMC] = "Secure Monitor Call", 9200 [EXCP_VIRQ] = "Virtual IRQ", 9201 [EXCP_VFIQ] = "Virtual FIQ", 9202 [EXCP_SEMIHOST] = "Semihosting call", 9203 [EXCP_NOCP] = "v7M NOCP UsageFault", 9204 [EXCP_INVSTATE] = "v7M INVSTATE UsageFault", 9205 [EXCP_STKOF] = "v8M STKOF UsageFault", 9206 [EXCP_LAZYFP] = "v7M exception during lazy FP stacking", 9207 [EXCP_LSERR] = "v8M LSERR UsageFault", 9208 [EXCP_UNALIGNED] = "v7M UNALIGNED UsageFault", 9209 }; 9210 9211 if (idx >= 0 && idx < ARRAY_SIZE(excnames)) { 9212 exc = excnames[idx]; 9213 } 9214 if (!exc) { 9215 exc = "unknown"; 9216 } 9217 qemu_log_mask(CPU_LOG_INT, "Taking exception %d [%s]\n", idx, exc); 9218 } 9219 } 9220 9221 /* 9222 * Function used to synchronize QEMU's AArch64 register set with AArch32 9223 * register set. This is necessary when switching between AArch32 and AArch64 9224 * execution state. 9225 */ 9226 void aarch64_sync_32_to_64(CPUARMState *env) 9227 { 9228 int i; 9229 uint32_t mode = env->uncached_cpsr & CPSR_M; 9230 9231 /* We can blanket copy R[0:7] to X[0:7] */ 9232 for (i = 0; i < 8; i++) { 9233 env->xregs[i] = env->regs[i]; 9234 } 9235 9236 /* 9237 * Unless we are in FIQ mode, x8-x12 come from the user registers r8-r12. 9238 * Otherwise, they come from the banked user regs. 9239 */ 9240 if (mode == ARM_CPU_MODE_FIQ) { 9241 for (i = 8; i < 13; i++) { 9242 env->xregs[i] = env->usr_regs[i - 8]; 9243 } 9244 } else { 9245 for (i = 8; i < 13; i++) { 9246 env->xregs[i] = env->regs[i]; 9247 } 9248 } 9249 9250 /* 9251 * Registers x13-x23 are the various mode SP and FP registers. Registers 9252 * r13 and r14 are only copied if we are in that mode, otherwise we copy 9253 * from the mode banked register. 9254 */ 9255 if (mode == ARM_CPU_MODE_USR || mode == ARM_CPU_MODE_SYS) { 9256 env->xregs[13] = env->regs[13]; 9257 env->xregs[14] = env->regs[14]; 9258 } else { 9259 env->xregs[13] = env->banked_r13[bank_number(ARM_CPU_MODE_USR)]; 9260 /* HYP is an exception in that it is copied from r14 */ 9261 if (mode == ARM_CPU_MODE_HYP) { 9262 env->xregs[14] = env->regs[14]; 9263 } else { 9264 env->xregs[14] = env->banked_r14[r14_bank_number(ARM_CPU_MODE_USR)]; 9265 } 9266 } 9267 9268 if (mode == ARM_CPU_MODE_HYP) { 9269 env->xregs[15] = env->regs[13]; 9270 } else { 9271 env->xregs[15] = env->banked_r13[bank_number(ARM_CPU_MODE_HYP)]; 9272 } 9273 9274 if (mode == ARM_CPU_MODE_IRQ) { 9275 env->xregs[16] = env->regs[14]; 9276 env->xregs[17] = env->regs[13]; 9277 } else { 9278 env->xregs[16] = env->banked_r14[r14_bank_number(ARM_CPU_MODE_IRQ)]; 9279 env->xregs[17] = env->banked_r13[bank_number(ARM_CPU_MODE_IRQ)]; 9280 } 9281 9282 if (mode == ARM_CPU_MODE_SVC) { 9283 env->xregs[18] = env->regs[14]; 9284 env->xregs[19] = env->regs[13]; 9285 } else { 9286 env->xregs[18] = env->banked_r14[r14_bank_number(ARM_CPU_MODE_SVC)]; 9287 env->xregs[19] = env->banked_r13[bank_number(ARM_CPU_MODE_SVC)]; 9288 } 9289 9290 if (mode == ARM_CPU_MODE_ABT) { 9291 env->xregs[20] = env->regs[14]; 9292 env->xregs[21] = env->regs[13]; 9293 } else { 9294 env->xregs[20] = env->banked_r14[r14_bank_number(ARM_CPU_MODE_ABT)]; 9295 env->xregs[21] = env->banked_r13[bank_number(ARM_CPU_MODE_ABT)]; 9296 } 9297 9298 if (mode == ARM_CPU_MODE_UND) { 9299 env->xregs[22] = env->regs[14]; 9300 env->xregs[23] = env->regs[13]; 9301 } else { 9302 env->xregs[22] = env->banked_r14[r14_bank_number(ARM_CPU_MODE_UND)]; 9303 env->xregs[23] = env->banked_r13[bank_number(ARM_CPU_MODE_UND)]; 9304 } 9305 9306 /* 9307 * Registers x24-x30 are mapped to r8-r14 in FIQ mode. If we are in FIQ 9308 * mode, then we can copy from r8-r14. Otherwise, we copy from the 9309 * FIQ bank for r8-r14. 9310 */ 9311 if (mode == ARM_CPU_MODE_FIQ) { 9312 for (i = 24; i < 31; i++) { 9313 env->xregs[i] = env->regs[i - 16]; /* X[24:30] <- R[8:14] */ 9314 } 9315 } else { 9316 for (i = 24; i < 29; i++) { 9317 env->xregs[i] = env->fiq_regs[i - 24]; 9318 } 9319 env->xregs[29] = env->banked_r13[bank_number(ARM_CPU_MODE_FIQ)]; 9320 env->xregs[30] = env->banked_r14[r14_bank_number(ARM_CPU_MODE_FIQ)]; 9321 } 9322 9323 env->pc = env->regs[15]; 9324 } 9325 9326 /* 9327 * Function used to synchronize QEMU's AArch32 register set with AArch64 9328 * register set. This is necessary when switching between AArch32 and AArch64 9329 * execution state. 9330 */ 9331 void aarch64_sync_64_to_32(CPUARMState *env) 9332 { 9333 int i; 9334 uint32_t mode = env->uncached_cpsr & CPSR_M; 9335 9336 /* We can blanket copy X[0:7] to R[0:7] */ 9337 for (i = 0; i < 8; i++) { 9338 env->regs[i] = env->xregs[i]; 9339 } 9340 9341 /* 9342 * Unless we are in FIQ mode, r8-r12 come from the user registers x8-x12. 9343 * Otherwise, we copy x8-x12 into the banked user regs. 9344 */ 9345 if (mode == ARM_CPU_MODE_FIQ) { 9346 for (i = 8; i < 13; i++) { 9347 env->usr_regs[i - 8] = env->xregs[i]; 9348 } 9349 } else { 9350 for (i = 8; i < 13; i++) { 9351 env->regs[i] = env->xregs[i]; 9352 } 9353 } 9354 9355 /* 9356 * Registers r13 & r14 depend on the current mode. 9357 * If we are in a given mode, we copy the corresponding x registers to r13 9358 * and r14. Otherwise, we copy the x register to the banked r13 and r14 9359 * for the mode. 9360 */ 9361 if (mode == ARM_CPU_MODE_USR || mode == ARM_CPU_MODE_SYS) { 9362 env->regs[13] = env->xregs[13]; 9363 env->regs[14] = env->xregs[14]; 9364 } else { 9365 env->banked_r13[bank_number(ARM_CPU_MODE_USR)] = env->xregs[13]; 9366 9367 /* 9368 * HYP is an exception in that it does not have its own banked r14 but 9369 * shares the USR r14 9370 */ 9371 if (mode == ARM_CPU_MODE_HYP) { 9372 env->regs[14] = env->xregs[14]; 9373 } else { 9374 env->banked_r14[r14_bank_number(ARM_CPU_MODE_USR)] = env->xregs[14]; 9375 } 9376 } 9377 9378 if (mode == ARM_CPU_MODE_HYP) { 9379 env->regs[13] = env->xregs[15]; 9380 } else { 9381 env->banked_r13[bank_number(ARM_CPU_MODE_HYP)] = env->xregs[15]; 9382 } 9383 9384 if (mode == ARM_CPU_MODE_IRQ) { 9385 env->regs[14] = env->xregs[16]; 9386 env->regs[13] = env->xregs[17]; 9387 } else { 9388 env->banked_r14[r14_bank_number(ARM_CPU_MODE_IRQ)] = env->xregs[16]; 9389 env->banked_r13[bank_number(ARM_CPU_MODE_IRQ)] = env->xregs[17]; 9390 } 9391 9392 if (mode == ARM_CPU_MODE_SVC) { 9393 env->regs[14] = env->xregs[18]; 9394 env->regs[13] = env->xregs[19]; 9395 } else { 9396 env->banked_r14[r14_bank_number(ARM_CPU_MODE_SVC)] = env->xregs[18]; 9397 env->banked_r13[bank_number(ARM_CPU_MODE_SVC)] = env->xregs[19]; 9398 } 9399 9400 if (mode == ARM_CPU_MODE_ABT) { 9401 env->regs[14] = env->xregs[20]; 9402 env->regs[13] = env->xregs[21]; 9403 } else { 9404 env->banked_r14[r14_bank_number(ARM_CPU_MODE_ABT)] = env->xregs[20]; 9405 env->banked_r13[bank_number(ARM_CPU_MODE_ABT)] = env->xregs[21]; 9406 } 9407 9408 if (mode == ARM_CPU_MODE_UND) { 9409 env->regs[14] = env->xregs[22]; 9410 env->regs[13] = env->xregs[23]; 9411 } else { 9412 env->banked_r14[r14_bank_number(ARM_CPU_MODE_UND)] = env->xregs[22]; 9413 env->banked_r13[bank_number(ARM_CPU_MODE_UND)] = env->xregs[23]; 9414 } 9415 9416 /* Registers x24-x30 are mapped to r8-r14 in FIQ mode. If we are in FIQ 9417 * mode, then we can copy to r8-r14. Otherwise, we copy to the 9418 * FIQ bank for r8-r14. 9419 */ 9420 if (mode == ARM_CPU_MODE_FIQ) { 9421 for (i = 24; i < 31; i++) { 9422 env->regs[i - 16] = env->xregs[i]; /* X[24:30] -> R[8:14] */ 9423 } 9424 } else { 9425 for (i = 24; i < 29; i++) { 9426 env->fiq_regs[i - 24] = env->xregs[i]; 9427 } 9428 env->banked_r13[bank_number(ARM_CPU_MODE_FIQ)] = env->xregs[29]; 9429 env->banked_r14[r14_bank_number(ARM_CPU_MODE_FIQ)] = env->xregs[30]; 9430 } 9431 9432 env->regs[15] = env->pc; 9433 } 9434 9435 static void take_aarch32_exception(CPUARMState *env, int new_mode, 9436 uint32_t mask, uint32_t offset, 9437 uint32_t newpc) 9438 { 9439 int new_el; 9440 9441 /* Change the CPU state so as to actually take the exception. */ 9442 switch_mode(env, new_mode); 9443 9444 /* 9445 * For exceptions taken to AArch32 we must clear the SS bit in both 9446 * PSTATE and in the old-state value we save to SPSR_<mode>, so zero it now. 9447 */ 9448 env->pstate &= ~PSTATE_SS; 9449 env->spsr = cpsr_read(env); 9450 /* Clear IT bits. */ 9451 env->condexec_bits = 0; 9452 /* Switch to the new mode, and to the correct instruction set. */ 9453 env->uncached_cpsr = (env->uncached_cpsr & ~CPSR_M) | new_mode; 9454 9455 /* This must be after mode switching. */ 9456 new_el = arm_current_el(env); 9457 9458 /* Set new mode endianness */ 9459 env->uncached_cpsr &= ~CPSR_E; 9460 if (env->cp15.sctlr_el[new_el] & SCTLR_EE) { 9461 env->uncached_cpsr |= CPSR_E; 9462 } 9463 /* J and IL must always be cleared for exception entry */ 9464 env->uncached_cpsr &= ~(CPSR_IL | CPSR_J); 9465 env->daif |= mask; 9466 9467 if (new_mode == ARM_CPU_MODE_HYP) { 9468 env->thumb = (env->cp15.sctlr_el[2] & SCTLR_TE) != 0; 9469 env->elr_el[2] = env->regs[15]; 9470 } else { 9471 /* CPSR.PAN is normally preserved preserved unless... */ 9472 if (cpu_isar_feature(aa32_pan, env_archcpu(env))) { 9473 switch (new_el) { 9474 case 3: 9475 if (!arm_is_secure_below_el3(env)) { 9476 /* ... the target is EL3, from non-secure state. */ 9477 env->uncached_cpsr &= ~CPSR_PAN; 9478 break; 9479 } 9480 /* ... the target is EL3, from secure state ... */ 9481 /* fall through */ 9482 case 1: 9483 /* ... the target is EL1 and SCTLR.SPAN is 0. */ 9484 if (!(env->cp15.sctlr_el[new_el] & SCTLR_SPAN)) { 9485 env->uncached_cpsr |= CPSR_PAN; 9486 } 9487 break; 9488 } 9489 } 9490 /* 9491 * this is a lie, as there was no c1_sys on V4T/V5, but who cares 9492 * and we should just guard the thumb mode on V4 9493 */ 9494 if (arm_feature(env, ARM_FEATURE_V4T)) { 9495 env->thumb = 9496 (A32_BANKED_CURRENT_REG_GET(env, sctlr) & SCTLR_TE) != 0; 9497 } 9498 env->regs[14] = env->regs[15] + offset; 9499 } 9500 env->regs[15] = newpc; 9501 arm_rebuild_hflags(env); 9502 } 9503 9504 static void arm_cpu_do_interrupt_aarch32_hyp(CPUState *cs) 9505 { 9506 /* 9507 * Handle exception entry to Hyp mode; this is sufficiently 9508 * different to entry to other AArch32 modes that we handle it 9509 * separately here. 9510 * 9511 * The vector table entry used is always the 0x14 Hyp mode entry point, 9512 * unless this is an UNDEF/HVC/abort taken from Hyp to Hyp. 9513 * The offset applied to the preferred return address is always zero 9514 * (see DDI0487C.a section G1.12.3). 9515 * PSTATE A/I/F masks are set based only on the SCR.EA/IRQ/FIQ values. 9516 */ 9517 uint32_t addr, mask; 9518 ARMCPU *cpu = ARM_CPU(cs); 9519 CPUARMState *env = &cpu->env; 9520 9521 switch (cs->exception_index) { 9522 case EXCP_UDEF: 9523 addr = 0x04; 9524 break; 9525 case EXCP_SWI: 9526 addr = 0x14; 9527 break; 9528 case EXCP_BKPT: 9529 /* Fall through to prefetch abort. */ 9530 case EXCP_PREFETCH_ABORT: 9531 env->cp15.ifar_s = env->exception.vaddress; 9532 qemu_log_mask(CPU_LOG_INT, "...with HIFAR 0x%x\n", 9533 (uint32_t)env->exception.vaddress); 9534 addr = 0x0c; 9535 break; 9536 case EXCP_DATA_ABORT: 9537 env->cp15.dfar_s = env->exception.vaddress; 9538 qemu_log_mask(CPU_LOG_INT, "...with HDFAR 0x%x\n", 9539 (uint32_t)env->exception.vaddress); 9540 addr = 0x10; 9541 break; 9542 case EXCP_IRQ: 9543 addr = 0x18; 9544 break; 9545 case EXCP_FIQ: 9546 addr = 0x1c; 9547 break; 9548 case EXCP_HVC: 9549 addr = 0x08; 9550 break; 9551 case EXCP_HYP_TRAP: 9552 addr = 0x14; 9553 break; 9554 default: 9555 cpu_abort(cs, "Unhandled exception 0x%x\n", cs->exception_index); 9556 } 9557 9558 if (cs->exception_index != EXCP_IRQ && cs->exception_index != EXCP_FIQ) { 9559 if (!arm_feature(env, ARM_FEATURE_V8)) { 9560 /* 9561 * QEMU syndrome values are v8-style. v7 has the IL bit 9562 * UNK/SBZP for "field not valid" cases, where v8 uses RES1. 9563 * If this is a v7 CPU, squash the IL bit in those cases. 9564 */ 9565 if (cs->exception_index == EXCP_PREFETCH_ABORT || 9566 (cs->exception_index == EXCP_DATA_ABORT && 9567 !(env->exception.syndrome & ARM_EL_ISV)) || 9568 syn_get_ec(env->exception.syndrome) == EC_UNCATEGORIZED) { 9569 env->exception.syndrome &= ~ARM_EL_IL; 9570 } 9571 } 9572 env->cp15.esr_el[2] = env->exception.syndrome; 9573 } 9574 9575 if (arm_current_el(env) != 2 && addr < 0x14) { 9576 addr = 0x14; 9577 } 9578 9579 mask = 0; 9580 if (!(env->cp15.scr_el3 & SCR_EA)) { 9581 mask |= CPSR_A; 9582 } 9583 if (!(env->cp15.scr_el3 & SCR_IRQ)) { 9584 mask |= CPSR_I; 9585 } 9586 if (!(env->cp15.scr_el3 & SCR_FIQ)) { 9587 mask |= CPSR_F; 9588 } 9589 9590 addr += env->cp15.hvbar; 9591 9592 take_aarch32_exception(env, ARM_CPU_MODE_HYP, mask, 0, addr); 9593 } 9594 9595 static void arm_cpu_do_interrupt_aarch32(CPUState *cs) 9596 { 9597 ARMCPU *cpu = ARM_CPU(cs); 9598 CPUARMState *env = &cpu->env; 9599 uint32_t addr; 9600 uint32_t mask; 9601 int new_mode; 9602 uint32_t offset; 9603 uint32_t moe; 9604 9605 /* If this is a debug exception we must update the DBGDSCR.MOE bits */ 9606 switch (syn_get_ec(env->exception.syndrome)) { 9607 case EC_BREAKPOINT: 9608 case EC_BREAKPOINT_SAME_EL: 9609 moe = 1; 9610 break; 9611 case EC_WATCHPOINT: 9612 case EC_WATCHPOINT_SAME_EL: 9613 moe = 10; 9614 break; 9615 case EC_AA32_BKPT: 9616 moe = 3; 9617 break; 9618 case EC_VECTORCATCH: 9619 moe = 5; 9620 break; 9621 default: 9622 moe = 0; 9623 break; 9624 } 9625 9626 if (moe) { 9627 env->cp15.mdscr_el1 = deposit64(env->cp15.mdscr_el1, 2, 4, moe); 9628 } 9629 9630 if (env->exception.target_el == 2) { 9631 arm_cpu_do_interrupt_aarch32_hyp(cs); 9632 return; 9633 } 9634 9635 switch (cs->exception_index) { 9636 case EXCP_UDEF: 9637 new_mode = ARM_CPU_MODE_UND; 9638 addr = 0x04; 9639 mask = CPSR_I; 9640 if (env->thumb) 9641 offset = 2; 9642 else 9643 offset = 4; 9644 break; 9645 case EXCP_SWI: 9646 new_mode = ARM_CPU_MODE_SVC; 9647 addr = 0x08; 9648 mask = CPSR_I; 9649 /* The PC already points to the next instruction. */ 9650 offset = 0; 9651 break; 9652 case EXCP_BKPT: 9653 /* Fall through to prefetch abort. */ 9654 case EXCP_PREFETCH_ABORT: 9655 A32_BANKED_CURRENT_REG_SET(env, ifsr, env->exception.fsr); 9656 A32_BANKED_CURRENT_REG_SET(env, ifar, env->exception.vaddress); 9657 qemu_log_mask(CPU_LOG_INT, "...with IFSR 0x%x IFAR 0x%x\n", 9658 env->exception.fsr, (uint32_t)env->exception.vaddress); 9659 new_mode = ARM_CPU_MODE_ABT; 9660 addr = 0x0c; 9661 mask = CPSR_A | CPSR_I; 9662 offset = 4; 9663 break; 9664 case EXCP_DATA_ABORT: 9665 A32_BANKED_CURRENT_REG_SET(env, dfsr, env->exception.fsr); 9666 A32_BANKED_CURRENT_REG_SET(env, dfar, env->exception.vaddress); 9667 qemu_log_mask(CPU_LOG_INT, "...with DFSR 0x%x DFAR 0x%x\n", 9668 env->exception.fsr, 9669 (uint32_t)env->exception.vaddress); 9670 new_mode = ARM_CPU_MODE_ABT; 9671 addr = 0x10; 9672 mask = CPSR_A | CPSR_I; 9673 offset = 8; 9674 break; 9675 case EXCP_IRQ: 9676 new_mode = ARM_CPU_MODE_IRQ; 9677 addr = 0x18; 9678 /* Disable IRQ and imprecise data aborts. */ 9679 mask = CPSR_A | CPSR_I; 9680 offset = 4; 9681 if (env->cp15.scr_el3 & SCR_IRQ) { 9682 /* IRQ routed to monitor mode */ 9683 new_mode = ARM_CPU_MODE_MON; 9684 mask |= CPSR_F; 9685 } 9686 break; 9687 case EXCP_FIQ: 9688 new_mode = ARM_CPU_MODE_FIQ; 9689 addr = 0x1c; 9690 /* Disable FIQ, IRQ and imprecise data aborts. */ 9691 mask = CPSR_A | CPSR_I | CPSR_F; 9692 if (env->cp15.scr_el3 & SCR_FIQ) { 9693 /* FIQ routed to monitor mode */ 9694 new_mode = ARM_CPU_MODE_MON; 9695 } 9696 offset = 4; 9697 break; 9698 case EXCP_VIRQ: 9699 new_mode = ARM_CPU_MODE_IRQ; 9700 addr = 0x18; 9701 /* Disable IRQ and imprecise data aborts. */ 9702 mask = CPSR_A | CPSR_I; 9703 offset = 4; 9704 break; 9705 case EXCP_VFIQ: 9706 new_mode = ARM_CPU_MODE_FIQ; 9707 addr = 0x1c; 9708 /* Disable FIQ, IRQ and imprecise data aborts. */ 9709 mask = CPSR_A | CPSR_I | CPSR_F; 9710 offset = 4; 9711 break; 9712 case EXCP_SMC: 9713 new_mode = ARM_CPU_MODE_MON; 9714 addr = 0x08; 9715 mask = CPSR_A | CPSR_I | CPSR_F; 9716 offset = 0; 9717 break; 9718 default: 9719 cpu_abort(cs, "Unhandled exception 0x%x\n", cs->exception_index); 9720 return; /* Never happens. Keep compiler happy. */ 9721 } 9722 9723 if (new_mode == ARM_CPU_MODE_MON) { 9724 addr += env->cp15.mvbar; 9725 } else if (A32_BANKED_CURRENT_REG_GET(env, sctlr) & SCTLR_V) { 9726 /* High vectors. When enabled, base address cannot be remapped. */ 9727 addr += 0xffff0000; 9728 } else { 9729 /* ARM v7 architectures provide a vector base address register to remap 9730 * the interrupt vector table. 9731 * This register is only followed in non-monitor mode, and is banked. 9732 * Note: only bits 31:5 are valid. 9733 */ 9734 addr += A32_BANKED_CURRENT_REG_GET(env, vbar); 9735 } 9736 9737 if ((env->uncached_cpsr & CPSR_M) == ARM_CPU_MODE_MON) { 9738 env->cp15.scr_el3 &= ~SCR_NS; 9739 } 9740 9741 take_aarch32_exception(env, new_mode, mask, offset, addr); 9742 } 9743 9744 static int aarch64_regnum(CPUARMState *env, int aarch32_reg) 9745 { 9746 /* 9747 * Return the register number of the AArch64 view of the AArch32 9748 * register @aarch32_reg. The CPUARMState CPSR is assumed to still 9749 * be that of the AArch32 mode the exception came from. 9750 */ 9751 int mode = env->uncached_cpsr & CPSR_M; 9752 9753 switch (aarch32_reg) { 9754 case 0 ... 7: 9755 return aarch32_reg; 9756 case 8 ... 12: 9757 return mode == ARM_CPU_MODE_FIQ ? aarch32_reg + 16 : aarch32_reg; 9758 case 13: 9759 switch (mode) { 9760 case ARM_CPU_MODE_USR: 9761 case ARM_CPU_MODE_SYS: 9762 return 13; 9763 case ARM_CPU_MODE_HYP: 9764 return 15; 9765 case ARM_CPU_MODE_IRQ: 9766 return 17; 9767 case ARM_CPU_MODE_SVC: 9768 return 19; 9769 case ARM_CPU_MODE_ABT: 9770 return 21; 9771 case ARM_CPU_MODE_UND: 9772 return 23; 9773 case ARM_CPU_MODE_FIQ: 9774 return 29; 9775 default: 9776 g_assert_not_reached(); 9777 } 9778 case 14: 9779 switch (mode) { 9780 case ARM_CPU_MODE_USR: 9781 case ARM_CPU_MODE_SYS: 9782 case ARM_CPU_MODE_HYP: 9783 return 14; 9784 case ARM_CPU_MODE_IRQ: 9785 return 16; 9786 case ARM_CPU_MODE_SVC: 9787 return 18; 9788 case ARM_CPU_MODE_ABT: 9789 return 20; 9790 case ARM_CPU_MODE_UND: 9791 return 22; 9792 case ARM_CPU_MODE_FIQ: 9793 return 30; 9794 default: 9795 g_assert_not_reached(); 9796 } 9797 case 15: 9798 return 31; 9799 default: 9800 g_assert_not_reached(); 9801 } 9802 } 9803 9804 static uint32_t cpsr_read_for_spsr_elx(CPUARMState *env) 9805 { 9806 uint32_t ret = cpsr_read(env); 9807 9808 /* Move DIT to the correct location for SPSR_ELx */ 9809 if (ret & CPSR_DIT) { 9810 ret &= ~CPSR_DIT; 9811 ret |= PSTATE_DIT; 9812 } 9813 /* Merge PSTATE.SS into SPSR_ELx */ 9814 ret |= env->pstate & PSTATE_SS; 9815 9816 return ret; 9817 } 9818 9819 /* Handle exception entry to a target EL which is using AArch64 */ 9820 static void arm_cpu_do_interrupt_aarch64(CPUState *cs) 9821 { 9822 ARMCPU *cpu = ARM_CPU(cs); 9823 CPUARMState *env = &cpu->env; 9824 unsigned int new_el = env->exception.target_el; 9825 target_ulong addr = env->cp15.vbar_el[new_el]; 9826 unsigned int new_mode = aarch64_pstate_mode(new_el, true); 9827 unsigned int old_mode; 9828 unsigned int cur_el = arm_current_el(env); 9829 int rt; 9830 9831 /* 9832 * Note that new_el can never be 0. If cur_el is 0, then 9833 * el0_a64 is is_a64(), else el0_a64 is ignored. 9834 */ 9835 aarch64_sve_change_el(env, cur_el, new_el, is_a64(env)); 9836 9837 if (cur_el < new_el) { 9838 /* Entry vector offset depends on whether the implemented EL 9839 * immediately lower than the target level is using AArch32 or AArch64 9840 */ 9841 bool is_aa64; 9842 uint64_t hcr; 9843 9844 switch (new_el) { 9845 case 3: 9846 is_aa64 = (env->cp15.scr_el3 & SCR_RW) != 0; 9847 break; 9848 case 2: 9849 hcr = arm_hcr_el2_eff(env); 9850 if ((hcr & (HCR_E2H | HCR_TGE)) != (HCR_E2H | HCR_TGE)) { 9851 is_aa64 = (hcr & HCR_RW) != 0; 9852 break; 9853 } 9854 /* fall through */ 9855 case 1: 9856 is_aa64 = is_a64(env); 9857 break; 9858 default: 9859 g_assert_not_reached(); 9860 } 9861 9862 if (is_aa64) { 9863 addr += 0x400; 9864 } else { 9865 addr += 0x600; 9866 } 9867 } else if (pstate_read(env) & PSTATE_SP) { 9868 addr += 0x200; 9869 } 9870 9871 switch (cs->exception_index) { 9872 case EXCP_PREFETCH_ABORT: 9873 case EXCP_DATA_ABORT: 9874 env->cp15.far_el[new_el] = env->exception.vaddress; 9875 qemu_log_mask(CPU_LOG_INT, "...with FAR 0x%" PRIx64 "\n", 9876 env->cp15.far_el[new_el]); 9877 /* fall through */ 9878 case EXCP_BKPT: 9879 case EXCP_UDEF: 9880 case EXCP_SWI: 9881 case EXCP_HVC: 9882 case EXCP_HYP_TRAP: 9883 case EXCP_SMC: 9884 switch (syn_get_ec(env->exception.syndrome)) { 9885 case EC_ADVSIMDFPACCESSTRAP: 9886 /* 9887 * QEMU internal FP/SIMD syndromes from AArch32 include the 9888 * TA and coproc fields which are only exposed if the exception 9889 * is taken to AArch32 Hyp mode. Mask them out to get a valid 9890 * AArch64 format syndrome. 9891 */ 9892 env->exception.syndrome &= ~MAKE_64BIT_MASK(0, 20); 9893 break; 9894 case EC_CP14RTTRAP: 9895 case EC_CP15RTTRAP: 9896 case EC_CP14DTTRAP: 9897 /* 9898 * For a trap on AArch32 MRC/MCR/LDC/STC the Rt field is currently 9899 * the raw register field from the insn; when taking this to 9900 * AArch64 we must convert it to the AArch64 view of the register 9901 * number. Notice that we read a 4-bit AArch32 register number and 9902 * write back a 5-bit AArch64 one. 9903 */ 9904 rt = extract32(env->exception.syndrome, 5, 4); 9905 rt = aarch64_regnum(env, rt); 9906 env->exception.syndrome = deposit32(env->exception.syndrome, 9907 5, 5, rt); 9908 break; 9909 case EC_CP15RRTTRAP: 9910 case EC_CP14RRTTRAP: 9911 /* Similarly for MRRC/MCRR traps for Rt and Rt2 fields */ 9912 rt = extract32(env->exception.syndrome, 5, 4); 9913 rt = aarch64_regnum(env, rt); 9914 env->exception.syndrome = deposit32(env->exception.syndrome, 9915 5, 5, rt); 9916 rt = extract32(env->exception.syndrome, 10, 4); 9917 rt = aarch64_regnum(env, rt); 9918 env->exception.syndrome = deposit32(env->exception.syndrome, 9919 10, 5, rt); 9920 break; 9921 } 9922 env->cp15.esr_el[new_el] = env->exception.syndrome; 9923 break; 9924 case EXCP_IRQ: 9925 case EXCP_VIRQ: 9926 addr += 0x80; 9927 break; 9928 case EXCP_FIQ: 9929 case EXCP_VFIQ: 9930 addr += 0x100; 9931 break; 9932 default: 9933 cpu_abort(cs, "Unhandled exception 0x%x\n", cs->exception_index); 9934 } 9935 9936 if (is_a64(env)) { 9937 old_mode = pstate_read(env); 9938 aarch64_save_sp(env, arm_current_el(env)); 9939 env->elr_el[new_el] = env->pc; 9940 } else { 9941 old_mode = cpsr_read_for_spsr_elx(env); 9942 env->elr_el[new_el] = env->regs[15]; 9943 9944 aarch64_sync_32_to_64(env); 9945 9946 env->condexec_bits = 0; 9947 } 9948 env->banked_spsr[aarch64_banked_spsr_index(new_el)] = old_mode; 9949 9950 qemu_log_mask(CPU_LOG_INT, "...with ELR 0x%" PRIx64 "\n", 9951 env->elr_el[new_el]); 9952 9953 if (cpu_isar_feature(aa64_pan, cpu)) { 9954 /* The value of PSTATE.PAN is normally preserved, except when ... */ 9955 new_mode |= old_mode & PSTATE_PAN; 9956 switch (new_el) { 9957 case 2: 9958 /* ... the target is EL2 with HCR_EL2.{E2H,TGE} == '11' ... */ 9959 if ((arm_hcr_el2_eff(env) & (HCR_E2H | HCR_TGE)) 9960 != (HCR_E2H | HCR_TGE)) { 9961 break; 9962 } 9963 /* fall through */ 9964 case 1: 9965 /* ... the target is EL1 ... */ 9966 /* ... and SCTLR_ELx.SPAN == 0, then set to 1. */ 9967 if ((env->cp15.sctlr_el[new_el] & SCTLR_SPAN) == 0) { 9968 new_mode |= PSTATE_PAN; 9969 } 9970 break; 9971 } 9972 } 9973 if (cpu_isar_feature(aa64_mte, cpu)) { 9974 new_mode |= PSTATE_TCO; 9975 } 9976 9977 pstate_write(env, PSTATE_DAIF | new_mode); 9978 env->aarch64 = 1; 9979 aarch64_restore_sp(env, new_el); 9980 helper_rebuild_hflags_a64(env, new_el); 9981 9982 env->pc = addr; 9983 9984 qemu_log_mask(CPU_LOG_INT, "...to EL%d PC 0x%" PRIx64 " PSTATE 0x%x\n", 9985 new_el, env->pc, pstate_read(env)); 9986 } 9987 9988 /* 9989 * Do semihosting call and set the appropriate return value. All the 9990 * permission and validity checks have been done at translate time. 9991 * 9992 * We only see semihosting exceptions in TCG only as they are not 9993 * trapped to the hypervisor in KVM. 9994 */ 9995 #ifdef CONFIG_TCG 9996 static void handle_semihosting(CPUState *cs) 9997 { 9998 ARMCPU *cpu = ARM_CPU(cs); 9999 CPUARMState *env = &cpu->env; 10000 10001 if (is_a64(env)) { 10002 qemu_log_mask(CPU_LOG_INT, 10003 "...handling as semihosting call 0x%" PRIx64 "\n", 10004 env->xregs[0]); 10005 env->xregs[0] = do_common_semihosting(cs); 10006 env->pc += 4; 10007 } else { 10008 qemu_log_mask(CPU_LOG_INT, 10009 "...handling as semihosting call 0x%x\n", 10010 env->regs[0]); 10011 env->regs[0] = do_common_semihosting(cs); 10012 env->regs[15] += env->thumb ? 2 : 4; 10013 } 10014 } 10015 #endif 10016 10017 /* Handle a CPU exception for A and R profile CPUs. 10018 * Do any appropriate logging, handle PSCI calls, and then hand off 10019 * to the AArch64-entry or AArch32-entry function depending on the 10020 * target exception level's register width. 10021 * 10022 * Note: this is used for both TCG (as the do_interrupt tcg op), 10023 * and KVM to re-inject guest debug exceptions, and to 10024 * inject a Synchronous-External-Abort. 10025 */ 10026 void arm_cpu_do_interrupt(CPUState *cs) 10027 { 10028 ARMCPU *cpu = ARM_CPU(cs); 10029 CPUARMState *env = &cpu->env; 10030 unsigned int new_el = env->exception.target_el; 10031 10032 assert(!arm_feature(env, ARM_FEATURE_M)); 10033 10034 arm_log_exception(cs->exception_index); 10035 qemu_log_mask(CPU_LOG_INT, "...from EL%d to EL%d\n", arm_current_el(env), 10036 new_el); 10037 if (qemu_loglevel_mask(CPU_LOG_INT) 10038 && !excp_is_internal(cs->exception_index)) { 10039 qemu_log_mask(CPU_LOG_INT, "...with ESR 0x%x/0x%" PRIx32 "\n", 10040 syn_get_ec(env->exception.syndrome), 10041 env->exception.syndrome); 10042 } 10043 10044 if (arm_is_psci_call(cpu, cs->exception_index)) { 10045 arm_handle_psci_call(cpu); 10046 qemu_log_mask(CPU_LOG_INT, "...handled as PSCI call\n"); 10047 return; 10048 } 10049 10050 /* 10051 * Semihosting semantics depend on the register width of the code 10052 * that caused the exception, not the target exception level, so 10053 * must be handled here. 10054 */ 10055 #ifdef CONFIG_TCG 10056 if (cs->exception_index == EXCP_SEMIHOST) { 10057 handle_semihosting(cs); 10058 return; 10059 } 10060 #endif 10061 10062 /* Hooks may change global state so BQL should be held, also the 10063 * BQL needs to be held for any modification of 10064 * cs->interrupt_request. 10065 */ 10066 g_assert(qemu_mutex_iothread_locked()); 10067 10068 arm_call_pre_el_change_hook(cpu); 10069 10070 assert(!excp_is_internal(cs->exception_index)); 10071 if (arm_el_is_aa64(env, new_el)) { 10072 arm_cpu_do_interrupt_aarch64(cs); 10073 } else { 10074 arm_cpu_do_interrupt_aarch32(cs); 10075 } 10076 10077 arm_call_el_change_hook(cpu); 10078 10079 if (!kvm_enabled()) { 10080 cs->interrupt_request |= CPU_INTERRUPT_EXITTB; 10081 } 10082 } 10083 #endif /* !CONFIG_USER_ONLY */ 10084 10085 uint64_t arm_sctlr(CPUARMState *env, int el) 10086 { 10087 /* Only EL0 needs to be adjusted for EL1&0 or EL2&0. */ 10088 if (el == 0) { 10089 ARMMMUIdx mmu_idx = arm_mmu_idx_el(env, 0); 10090 el = (mmu_idx == ARMMMUIdx_E20_0 || mmu_idx == ARMMMUIdx_SE20_0) 10091 ? 2 : 1; 10092 } 10093 return env->cp15.sctlr_el[el]; 10094 } 10095 10096 /* Return the SCTLR value which controls this address translation regime */ 10097 static inline uint64_t regime_sctlr(CPUARMState *env, ARMMMUIdx mmu_idx) 10098 { 10099 return env->cp15.sctlr_el[regime_el(env, mmu_idx)]; 10100 } 10101 10102 #ifndef CONFIG_USER_ONLY 10103 10104 /* Return true if the specified stage of address translation is disabled */ 10105 static inline bool regime_translation_disabled(CPUARMState *env, 10106 ARMMMUIdx mmu_idx) 10107 { 10108 uint64_t hcr_el2; 10109 10110 if (arm_feature(env, ARM_FEATURE_M)) { 10111 switch (env->v7m.mpu_ctrl[regime_is_secure(env, mmu_idx)] & 10112 (R_V7M_MPU_CTRL_ENABLE_MASK | R_V7M_MPU_CTRL_HFNMIENA_MASK)) { 10113 case R_V7M_MPU_CTRL_ENABLE_MASK: 10114 /* Enabled, but not for HardFault and NMI */ 10115 return mmu_idx & ARM_MMU_IDX_M_NEGPRI; 10116 case R_V7M_MPU_CTRL_ENABLE_MASK | R_V7M_MPU_CTRL_HFNMIENA_MASK: 10117 /* Enabled for all cases */ 10118 return false; 10119 case 0: 10120 default: 10121 /* HFNMIENA set and ENABLE clear is UNPREDICTABLE, but 10122 * we warned about that in armv7m_nvic.c when the guest set it. 10123 */ 10124 return true; 10125 } 10126 } 10127 10128 hcr_el2 = arm_hcr_el2_eff(env); 10129 10130 if (mmu_idx == ARMMMUIdx_Stage2 || mmu_idx == ARMMMUIdx_Stage2_S) { 10131 /* HCR.DC means HCR.VM behaves as 1 */ 10132 return (hcr_el2 & (HCR_DC | HCR_VM)) == 0; 10133 } 10134 10135 if (hcr_el2 & HCR_TGE) { 10136 /* TGE means that NS EL0/1 act as if SCTLR_EL1.M is zero */ 10137 if (!regime_is_secure(env, mmu_idx) && regime_el(env, mmu_idx) == 1) { 10138 return true; 10139 } 10140 } 10141 10142 if ((hcr_el2 & HCR_DC) && arm_mmu_idx_is_stage1_of_2(mmu_idx)) { 10143 /* HCR.DC means SCTLR_EL1.M behaves as 0 */ 10144 return true; 10145 } 10146 10147 return (regime_sctlr(env, mmu_idx) & SCTLR_M) == 0; 10148 } 10149 10150 static inline bool regime_translation_big_endian(CPUARMState *env, 10151 ARMMMUIdx mmu_idx) 10152 { 10153 return (regime_sctlr(env, mmu_idx) & SCTLR_EE) != 0; 10154 } 10155 10156 /* Return the TTBR associated with this translation regime */ 10157 static inline uint64_t regime_ttbr(CPUARMState *env, ARMMMUIdx mmu_idx, 10158 int ttbrn) 10159 { 10160 if (mmu_idx == ARMMMUIdx_Stage2) { 10161 return env->cp15.vttbr_el2; 10162 } 10163 if (mmu_idx == ARMMMUIdx_Stage2_S) { 10164 return env->cp15.vsttbr_el2; 10165 } 10166 if (ttbrn == 0) { 10167 return env->cp15.ttbr0_el[regime_el(env, mmu_idx)]; 10168 } else { 10169 return env->cp15.ttbr1_el[regime_el(env, mmu_idx)]; 10170 } 10171 } 10172 10173 #endif /* !CONFIG_USER_ONLY */ 10174 10175 /* Convert a possible stage1+2 MMU index into the appropriate 10176 * stage 1 MMU index 10177 */ 10178 static inline ARMMMUIdx stage_1_mmu_idx(ARMMMUIdx mmu_idx) 10179 { 10180 switch (mmu_idx) { 10181 case ARMMMUIdx_SE10_0: 10182 return ARMMMUIdx_Stage1_SE0; 10183 case ARMMMUIdx_SE10_1: 10184 return ARMMMUIdx_Stage1_SE1; 10185 case ARMMMUIdx_SE10_1_PAN: 10186 return ARMMMUIdx_Stage1_SE1_PAN; 10187 case ARMMMUIdx_E10_0: 10188 return ARMMMUIdx_Stage1_E0; 10189 case ARMMMUIdx_E10_1: 10190 return ARMMMUIdx_Stage1_E1; 10191 case ARMMMUIdx_E10_1_PAN: 10192 return ARMMMUIdx_Stage1_E1_PAN; 10193 default: 10194 return mmu_idx; 10195 } 10196 } 10197 10198 /* Return true if the translation regime is using LPAE format page tables */ 10199 static inline bool regime_using_lpae_format(CPUARMState *env, 10200 ARMMMUIdx mmu_idx) 10201 { 10202 int el = regime_el(env, mmu_idx); 10203 if (el == 2 || arm_el_is_aa64(env, el)) { 10204 return true; 10205 } 10206 if (arm_feature(env, ARM_FEATURE_LPAE) 10207 && (regime_tcr(env, mmu_idx)->raw_tcr & TTBCR_EAE)) { 10208 return true; 10209 } 10210 return false; 10211 } 10212 10213 /* Returns true if the stage 1 translation regime is using LPAE format page 10214 * tables. Used when raising alignment exceptions, whose FSR changes depending 10215 * on whether the long or short descriptor format is in use. */ 10216 bool arm_s1_regime_using_lpae_format(CPUARMState *env, ARMMMUIdx mmu_idx) 10217 { 10218 mmu_idx = stage_1_mmu_idx(mmu_idx); 10219 10220 return regime_using_lpae_format(env, mmu_idx); 10221 } 10222 10223 #ifndef CONFIG_USER_ONLY 10224 static inline bool regime_is_user(CPUARMState *env, ARMMMUIdx mmu_idx) 10225 { 10226 switch (mmu_idx) { 10227 case ARMMMUIdx_SE10_0: 10228 case ARMMMUIdx_E20_0: 10229 case ARMMMUIdx_SE20_0: 10230 case ARMMMUIdx_Stage1_E0: 10231 case ARMMMUIdx_Stage1_SE0: 10232 case ARMMMUIdx_MUser: 10233 case ARMMMUIdx_MSUser: 10234 case ARMMMUIdx_MUserNegPri: 10235 case ARMMMUIdx_MSUserNegPri: 10236 return true; 10237 default: 10238 return false; 10239 case ARMMMUIdx_E10_0: 10240 case ARMMMUIdx_E10_1: 10241 case ARMMMUIdx_E10_1_PAN: 10242 g_assert_not_reached(); 10243 } 10244 } 10245 10246 /* Translate section/page access permissions to page 10247 * R/W protection flags 10248 * 10249 * @env: CPUARMState 10250 * @mmu_idx: MMU index indicating required translation regime 10251 * @ap: The 3-bit access permissions (AP[2:0]) 10252 * @domain_prot: The 2-bit domain access permissions 10253 */ 10254 static inline int ap_to_rw_prot(CPUARMState *env, ARMMMUIdx mmu_idx, 10255 int ap, int domain_prot) 10256 { 10257 bool is_user = regime_is_user(env, mmu_idx); 10258 10259 if (domain_prot == 3) { 10260 return PAGE_READ | PAGE_WRITE; 10261 } 10262 10263 switch (ap) { 10264 case 0: 10265 if (arm_feature(env, ARM_FEATURE_V7)) { 10266 return 0; 10267 } 10268 switch (regime_sctlr(env, mmu_idx) & (SCTLR_S | SCTLR_R)) { 10269 case SCTLR_S: 10270 return is_user ? 0 : PAGE_READ; 10271 case SCTLR_R: 10272 return PAGE_READ; 10273 default: 10274 return 0; 10275 } 10276 case 1: 10277 return is_user ? 0 : PAGE_READ | PAGE_WRITE; 10278 case 2: 10279 if (is_user) { 10280 return PAGE_READ; 10281 } else { 10282 return PAGE_READ | PAGE_WRITE; 10283 } 10284 case 3: 10285 return PAGE_READ | PAGE_WRITE; 10286 case 4: /* Reserved. */ 10287 return 0; 10288 case 5: 10289 return is_user ? 0 : PAGE_READ; 10290 case 6: 10291 return PAGE_READ; 10292 case 7: 10293 if (!arm_feature(env, ARM_FEATURE_V6K)) { 10294 return 0; 10295 } 10296 return PAGE_READ; 10297 default: 10298 g_assert_not_reached(); 10299 } 10300 } 10301 10302 /* Translate section/page access permissions to page 10303 * R/W protection flags. 10304 * 10305 * @ap: The 2-bit simple AP (AP[2:1]) 10306 * @is_user: TRUE if accessing from PL0 10307 */ 10308 static inline int simple_ap_to_rw_prot_is_user(int ap, bool is_user) 10309 { 10310 switch (ap) { 10311 case 0: 10312 return is_user ? 0 : PAGE_READ | PAGE_WRITE; 10313 case 1: 10314 return PAGE_READ | PAGE_WRITE; 10315 case 2: 10316 return is_user ? 0 : PAGE_READ; 10317 case 3: 10318 return PAGE_READ; 10319 default: 10320 g_assert_not_reached(); 10321 } 10322 } 10323 10324 static inline int 10325 simple_ap_to_rw_prot(CPUARMState *env, ARMMMUIdx mmu_idx, int ap) 10326 { 10327 return simple_ap_to_rw_prot_is_user(ap, regime_is_user(env, mmu_idx)); 10328 } 10329 10330 /* Translate S2 section/page access permissions to protection flags 10331 * 10332 * @env: CPUARMState 10333 * @s2ap: The 2-bit stage2 access permissions (S2AP) 10334 * @xn: XN (execute-never) bits 10335 * @s1_is_el0: true if this is S2 of an S1+2 walk for EL0 10336 */ 10337 static int get_S2prot(CPUARMState *env, int s2ap, int xn, bool s1_is_el0) 10338 { 10339 int prot = 0; 10340 10341 if (s2ap & 1) { 10342 prot |= PAGE_READ; 10343 } 10344 if (s2ap & 2) { 10345 prot |= PAGE_WRITE; 10346 } 10347 10348 if (cpu_isar_feature(any_tts2uxn, env_archcpu(env))) { 10349 switch (xn) { 10350 case 0: 10351 prot |= PAGE_EXEC; 10352 break; 10353 case 1: 10354 if (s1_is_el0) { 10355 prot |= PAGE_EXEC; 10356 } 10357 break; 10358 case 2: 10359 break; 10360 case 3: 10361 if (!s1_is_el0) { 10362 prot |= PAGE_EXEC; 10363 } 10364 break; 10365 default: 10366 g_assert_not_reached(); 10367 } 10368 } else { 10369 if (!extract32(xn, 1, 1)) { 10370 if (arm_el_is_aa64(env, 2) || prot & PAGE_READ) { 10371 prot |= PAGE_EXEC; 10372 } 10373 } 10374 } 10375 return prot; 10376 } 10377 10378 /* Translate section/page access permissions to protection flags 10379 * 10380 * @env: CPUARMState 10381 * @mmu_idx: MMU index indicating required translation regime 10382 * @is_aa64: TRUE if AArch64 10383 * @ap: The 2-bit simple AP (AP[2:1]) 10384 * @ns: NS (non-secure) bit 10385 * @xn: XN (execute-never) bit 10386 * @pxn: PXN (privileged execute-never) bit 10387 */ 10388 static int get_S1prot(CPUARMState *env, ARMMMUIdx mmu_idx, bool is_aa64, 10389 int ap, int ns, int xn, int pxn) 10390 { 10391 bool is_user = regime_is_user(env, mmu_idx); 10392 int prot_rw, user_rw; 10393 bool have_wxn; 10394 int wxn = 0; 10395 10396 assert(mmu_idx != ARMMMUIdx_Stage2); 10397 assert(mmu_idx != ARMMMUIdx_Stage2_S); 10398 10399 user_rw = simple_ap_to_rw_prot_is_user(ap, true); 10400 if (is_user) { 10401 prot_rw = user_rw; 10402 } else { 10403 if (user_rw && regime_is_pan(env, mmu_idx)) { 10404 /* PAN forbids data accesses but doesn't affect insn fetch */ 10405 prot_rw = 0; 10406 } else { 10407 prot_rw = simple_ap_to_rw_prot_is_user(ap, false); 10408 } 10409 } 10410 10411 if (ns && arm_is_secure(env) && (env->cp15.scr_el3 & SCR_SIF)) { 10412 return prot_rw; 10413 } 10414 10415 /* TODO have_wxn should be replaced with 10416 * ARM_FEATURE_V8 || (ARM_FEATURE_V7 && ARM_FEATURE_EL2) 10417 * when ARM_FEATURE_EL2 starts getting set. For now we assume all LPAE 10418 * compatible processors have EL2, which is required for [U]WXN. 10419 */ 10420 have_wxn = arm_feature(env, ARM_FEATURE_LPAE); 10421 10422 if (have_wxn) { 10423 wxn = regime_sctlr(env, mmu_idx) & SCTLR_WXN; 10424 } 10425 10426 if (is_aa64) { 10427 if (regime_has_2_ranges(mmu_idx) && !is_user) { 10428 xn = pxn || (user_rw & PAGE_WRITE); 10429 } 10430 } else if (arm_feature(env, ARM_FEATURE_V7)) { 10431 switch (regime_el(env, mmu_idx)) { 10432 case 1: 10433 case 3: 10434 if (is_user) { 10435 xn = xn || !(user_rw & PAGE_READ); 10436 } else { 10437 int uwxn = 0; 10438 if (have_wxn) { 10439 uwxn = regime_sctlr(env, mmu_idx) & SCTLR_UWXN; 10440 } 10441 xn = xn || !(prot_rw & PAGE_READ) || pxn || 10442 (uwxn && (user_rw & PAGE_WRITE)); 10443 } 10444 break; 10445 case 2: 10446 break; 10447 } 10448 } else { 10449 xn = wxn = 0; 10450 } 10451 10452 if (xn || (wxn && (prot_rw & PAGE_WRITE))) { 10453 return prot_rw; 10454 } 10455 return prot_rw | PAGE_EXEC; 10456 } 10457 10458 static bool get_level1_table_address(CPUARMState *env, ARMMMUIdx mmu_idx, 10459 uint32_t *table, uint32_t address) 10460 { 10461 /* Note that we can only get here for an AArch32 PL0/PL1 lookup */ 10462 TCR *tcr = regime_tcr(env, mmu_idx); 10463 10464 if (address & tcr->mask) { 10465 if (tcr->raw_tcr & TTBCR_PD1) { 10466 /* Translation table walk disabled for TTBR1 */ 10467 return false; 10468 } 10469 *table = regime_ttbr(env, mmu_idx, 1) & 0xffffc000; 10470 } else { 10471 if (tcr->raw_tcr & TTBCR_PD0) { 10472 /* Translation table walk disabled for TTBR0 */ 10473 return false; 10474 } 10475 *table = regime_ttbr(env, mmu_idx, 0) & tcr->base_mask; 10476 } 10477 *table |= (address >> 18) & 0x3ffc; 10478 return true; 10479 } 10480 10481 /* Translate a S1 pagetable walk through S2 if needed. */ 10482 static hwaddr S1_ptw_translate(CPUARMState *env, ARMMMUIdx mmu_idx, 10483 hwaddr addr, bool *is_secure, 10484 ARMMMUFaultInfo *fi) 10485 { 10486 if (arm_mmu_idx_is_stage1_of_2(mmu_idx) && 10487 !regime_translation_disabled(env, ARMMMUIdx_Stage2)) { 10488 target_ulong s2size; 10489 hwaddr s2pa; 10490 int s2prot; 10491 int ret; 10492 ARMMMUIdx s2_mmu_idx = *is_secure ? ARMMMUIdx_Stage2_S 10493 : ARMMMUIdx_Stage2; 10494 ARMCacheAttrs cacheattrs = {}; 10495 MemTxAttrs txattrs = {}; 10496 10497 ret = get_phys_addr_lpae(env, addr, MMU_DATA_LOAD, s2_mmu_idx, false, 10498 &s2pa, &txattrs, &s2prot, &s2size, fi, 10499 &cacheattrs); 10500 if (ret) { 10501 assert(fi->type != ARMFault_None); 10502 fi->s2addr = addr; 10503 fi->stage2 = true; 10504 fi->s1ptw = true; 10505 fi->s1ns = !*is_secure; 10506 return ~0; 10507 } 10508 if ((arm_hcr_el2_eff(env) & HCR_PTW) && 10509 (cacheattrs.attrs & 0xf0) == 0) { 10510 /* 10511 * PTW set and S1 walk touched S2 Device memory: 10512 * generate Permission fault. 10513 */ 10514 fi->type = ARMFault_Permission; 10515 fi->s2addr = addr; 10516 fi->stage2 = true; 10517 fi->s1ptw = true; 10518 fi->s1ns = !*is_secure; 10519 return ~0; 10520 } 10521 10522 if (arm_is_secure_below_el3(env)) { 10523 /* Check if page table walk is to secure or non-secure PA space. */ 10524 if (*is_secure) { 10525 *is_secure = !(env->cp15.vstcr_el2.raw_tcr & VSTCR_SW); 10526 } else { 10527 *is_secure = !(env->cp15.vtcr_el2.raw_tcr & VTCR_NSW); 10528 } 10529 } else { 10530 assert(!*is_secure); 10531 } 10532 10533 addr = s2pa; 10534 } 10535 return addr; 10536 } 10537 10538 /* All loads done in the course of a page table walk go through here. */ 10539 static uint32_t arm_ldl_ptw(CPUState *cs, hwaddr addr, bool is_secure, 10540 ARMMMUIdx mmu_idx, ARMMMUFaultInfo *fi) 10541 { 10542 ARMCPU *cpu = ARM_CPU(cs); 10543 CPUARMState *env = &cpu->env; 10544 MemTxAttrs attrs = {}; 10545 MemTxResult result = MEMTX_OK; 10546 AddressSpace *as; 10547 uint32_t data; 10548 10549 addr = S1_ptw_translate(env, mmu_idx, addr, &is_secure, fi); 10550 attrs.secure = is_secure; 10551 as = arm_addressspace(cs, attrs); 10552 if (fi->s1ptw) { 10553 return 0; 10554 } 10555 if (regime_translation_big_endian(env, mmu_idx)) { 10556 data = address_space_ldl_be(as, addr, attrs, &result); 10557 } else { 10558 data = address_space_ldl_le(as, addr, attrs, &result); 10559 } 10560 if (result == MEMTX_OK) { 10561 return data; 10562 } 10563 fi->type = ARMFault_SyncExternalOnWalk; 10564 fi->ea = arm_extabort_type(result); 10565 return 0; 10566 } 10567 10568 static uint64_t arm_ldq_ptw(CPUState *cs, hwaddr addr, bool is_secure, 10569 ARMMMUIdx mmu_idx, ARMMMUFaultInfo *fi) 10570 { 10571 ARMCPU *cpu = ARM_CPU(cs); 10572 CPUARMState *env = &cpu->env; 10573 MemTxAttrs attrs = {}; 10574 MemTxResult result = MEMTX_OK; 10575 AddressSpace *as; 10576 uint64_t data; 10577 10578 addr = S1_ptw_translate(env, mmu_idx, addr, &is_secure, fi); 10579 attrs.secure = is_secure; 10580 as = arm_addressspace(cs, attrs); 10581 if (fi->s1ptw) { 10582 return 0; 10583 } 10584 if (regime_translation_big_endian(env, mmu_idx)) { 10585 data = address_space_ldq_be(as, addr, attrs, &result); 10586 } else { 10587 data = address_space_ldq_le(as, addr, attrs, &result); 10588 } 10589 if (result == MEMTX_OK) { 10590 return data; 10591 } 10592 fi->type = ARMFault_SyncExternalOnWalk; 10593 fi->ea = arm_extabort_type(result); 10594 return 0; 10595 } 10596 10597 static bool get_phys_addr_v5(CPUARMState *env, uint32_t address, 10598 MMUAccessType access_type, ARMMMUIdx mmu_idx, 10599 hwaddr *phys_ptr, int *prot, 10600 target_ulong *page_size, 10601 ARMMMUFaultInfo *fi) 10602 { 10603 CPUState *cs = env_cpu(env); 10604 int level = 1; 10605 uint32_t table; 10606 uint32_t desc; 10607 int type; 10608 int ap; 10609 int domain = 0; 10610 int domain_prot; 10611 hwaddr phys_addr; 10612 uint32_t dacr; 10613 10614 /* Pagetable walk. */ 10615 /* Lookup l1 descriptor. */ 10616 if (!get_level1_table_address(env, mmu_idx, &table, address)) { 10617 /* Section translation fault if page walk is disabled by PD0 or PD1 */ 10618 fi->type = ARMFault_Translation; 10619 goto do_fault; 10620 } 10621 desc = arm_ldl_ptw(cs, table, regime_is_secure(env, mmu_idx), 10622 mmu_idx, fi); 10623 if (fi->type != ARMFault_None) { 10624 goto do_fault; 10625 } 10626 type = (desc & 3); 10627 domain = (desc >> 5) & 0x0f; 10628 if (regime_el(env, mmu_idx) == 1) { 10629 dacr = env->cp15.dacr_ns; 10630 } else { 10631 dacr = env->cp15.dacr_s; 10632 } 10633 domain_prot = (dacr >> (domain * 2)) & 3; 10634 if (type == 0) { 10635 /* Section translation fault. */ 10636 fi->type = ARMFault_Translation; 10637 goto do_fault; 10638 } 10639 if (type != 2) { 10640 level = 2; 10641 } 10642 if (domain_prot == 0 || domain_prot == 2) { 10643 fi->type = ARMFault_Domain; 10644 goto do_fault; 10645 } 10646 if (type == 2) { 10647 /* 1Mb section. */ 10648 phys_addr = (desc & 0xfff00000) | (address & 0x000fffff); 10649 ap = (desc >> 10) & 3; 10650 *page_size = 1024 * 1024; 10651 } else { 10652 /* Lookup l2 entry. */ 10653 if (type == 1) { 10654 /* Coarse pagetable. */ 10655 table = (desc & 0xfffffc00) | ((address >> 10) & 0x3fc); 10656 } else { 10657 /* Fine pagetable. */ 10658 table = (desc & 0xfffff000) | ((address >> 8) & 0xffc); 10659 } 10660 desc = arm_ldl_ptw(cs, table, regime_is_secure(env, mmu_idx), 10661 mmu_idx, fi); 10662 if (fi->type != ARMFault_None) { 10663 goto do_fault; 10664 } 10665 switch (desc & 3) { 10666 case 0: /* Page translation fault. */ 10667 fi->type = ARMFault_Translation; 10668 goto do_fault; 10669 case 1: /* 64k page. */ 10670 phys_addr = (desc & 0xffff0000) | (address & 0xffff); 10671 ap = (desc >> (4 + ((address >> 13) & 6))) & 3; 10672 *page_size = 0x10000; 10673 break; 10674 case 2: /* 4k page. */ 10675 phys_addr = (desc & 0xfffff000) | (address & 0xfff); 10676 ap = (desc >> (4 + ((address >> 9) & 6))) & 3; 10677 *page_size = 0x1000; 10678 break; 10679 case 3: /* 1k page, or ARMv6/XScale "extended small (4k) page" */ 10680 if (type == 1) { 10681 /* ARMv6/XScale extended small page format */ 10682 if (arm_feature(env, ARM_FEATURE_XSCALE) 10683 || arm_feature(env, ARM_FEATURE_V6)) { 10684 phys_addr = (desc & 0xfffff000) | (address & 0xfff); 10685 *page_size = 0x1000; 10686 } else { 10687 /* UNPREDICTABLE in ARMv5; we choose to take a 10688 * page translation fault. 10689 */ 10690 fi->type = ARMFault_Translation; 10691 goto do_fault; 10692 } 10693 } else { 10694 phys_addr = (desc & 0xfffffc00) | (address & 0x3ff); 10695 *page_size = 0x400; 10696 } 10697 ap = (desc >> 4) & 3; 10698 break; 10699 default: 10700 /* Never happens, but compiler isn't smart enough to tell. */ 10701 abort(); 10702 } 10703 } 10704 *prot = ap_to_rw_prot(env, mmu_idx, ap, domain_prot); 10705 *prot |= *prot ? PAGE_EXEC : 0; 10706 if (!(*prot & (1 << access_type))) { 10707 /* Access permission fault. */ 10708 fi->type = ARMFault_Permission; 10709 goto do_fault; 10710 } 10711 *phys_ptr = phys_addr; 10712 return false; 10713 do_fault: 10714 fi->domain = domain; 10715 fi->level = level; 10716 return true; 10717 } 10718 10719 static bool get_phys_addr_v6(CPUARMState *env, uint32_t address, 10720 MMUAccessType access_type, ARMMMUIdx mmu_idx, 10721 hwaddr *phys_ptr, MemTxAttrs *attrs, int *prot, 10722 target_ulong *page_size, ARMMMUFaultInfo *fi) 10723 { 10724 CPUState *cs = env_cpu(env); 10725 ARMCPU *cpu = env_archcpu(env); 10726 int level = 1; 10727 uint32_t table; 10728 uint32_t desc; 10729 uint32_t xn; 10730 uint32_t pxn = 0; 10731 int type; 10732 int ap; 10733 int domain = 0; 10734 int domain_prot; 10735 hwaddr phys_addr; 10736 uint32_t dacr; 10737 bool ns; 10738 10739 /* Pagetable walk. */ 10740 /* Lookup l1 descriptor. */ 10741 if (!get_level1_table_address(env, mmu_idx, &table, address)) { 10742 /* Section translation fault if page walk is disabled by PD0 or PD1 */ 10743 fi->type = ARMFault_Translation; 10744 goto do_fault; 10745 } 10746 desc = arm_ldl_ptw(cs, table, regime_is_secure(env, mmu_idx), 10747 mmu_idx, fi); 10748 if (fi->type != ARMFault_None) { 10749 goto do_fault; 10750 } 10751 type = (desc & 3); 10752 if (type == 0 || (type == 3 && !cpu_isar_feature(aa32_pxn, cpu))) { 10753 /* Section translation fault, or attempt to use the encoding 10754 * which is Reserved on implementations without PXN. 10755 */ 10756 fi->type = ARMFault_Translation; 10757 goto do_fault; 10758 } 10759 if ((type == 1) || !(desc & (1 << 18))) { 10760 /* Page or Section. */ 10761 domain = (desc >> 5) & 0x0f; 10762 } 10763 if (regime_el(env, mmu_idx) == 1) { 10764 dacr = env->cp15.dacr_ns; 10765 } else { 10766 dacr = env->cp15.dacr_s; 10767 } 10768 if (type == 1) { 10769 level = 2; 10770 } 10771 domain_prot = (dacr >> (domain * 2)) & 3; 10772 if (domain_prot == 0 || domain_prot == 2) { 10773 /* Section or Page domain fault */ 10774 fi->type = ARMFault_Domain; 10775 goto do_fault; 10776 } 10777 if (type != 1) { 10778 if (desc & (1 << 18)) { 10779 /* Supersection. */ 10780 phys_addr = (desc & 0xff000000) | (address & 0x00ffffff); 10781 phys_addr |= (uint64_t)extract32(desc, 20, 4) << 32; 10782 phys_addr |= (uint64_t)extract32(desc, 5, 4) << 36; 10783 *page_size = 0x1000000; 10784 } else { 10785 /* Section. */ 10786 phys_addr = (desc & 0xfff00000) | (address & 0x000fffff); 10787 *page_size = 0x100000; 10788 } 10789 ap = ((desc >> 10) & 3) | ((desc >> 13) & 4); 10790 xn = desc & (1 << 4); 10791 pxn = desc & 1; 10792 ns = extract32(desc, 19, 1); 10793 } else { 10794 if (cpu_isar_feature(aa32_pxn, cpu)) { 10795 pxn = (desc >> 2) & 1; 10796 } 10797 ns = extract32(desc, 3, 1); 10798 /* Lookup l2 entry. */ 10799 table = (desc & 0xfffffc00) | ((address >> 10) & 0x3fc); 10800 desc = arm_ldl_ptw(cs, table, regime_is_secure(env, mmu_idx), 10801 mmu_idx, fi); 10802 if (fi->type != ARMFault_None) { 10803 goto do_fault; 10804 } 10805 ap = ((desc >> 4) & 3) | ((desc >> 7) & 4); 10806 switch (desc & 3) { 10807 case 0: /* Page translation fault. */ 10808 fi->type = ARMFault_Translation; 10809 goto do_fault; 10810 case 1: /* 64k page. */ 10811 phys_addr = (desc & 0xffff0000) | (address & 0xffff); 10812 xn = desc & (1 << 15); 10813 *page_size = 0x10000; 10814 break; 10815 case 2: case 3: /* 4k page. */ 10816 phys_addr = (desc & 0xfffff000) | (address & 0xfff); 10817 xn = desc & 1; 10818 *page_size = 0x1000; 10819 break; 10820 default: 10821 /* Never happens, but compiler isn't smart enough to tell. */ 10822 abort(); 10823 } 10824 } 10825 if (domain_prot == 3) { 10826 *prot = PAGE_READ | PAGE_WRITE | PAGE_EXEC; 10827 } else { 10828 if (pxn && !regime_is_user(env, mmu_idx)) { 10829 xn = 1; 10830 } 10831 if (xn && access_type == MMU_INST_FETCH) { 10832 fi->type = ARMFault_Permission; 10833 goto do_fault; 10834 } 10835 10836 if (arm_feature(env, ARM_FEATURE_V6K) && 10837 (regime_sctlr(env, mmu_idx) & SCTLR_AFE)) { 10838 /* The simplified model uses AP[0] as an access control bit. */ 10839 if ((ap & 1) == 0) { 10840 /* Access flag fault. */ 10841 fi->type = ARMFault_AccessFlag; 10842 goto do_fault; 10843 } 10844 *prot = simple_ap_to_rw_prot(env, mmu_idx, ap >> 1); 10845 } else { 10846 *prot = ap_to_rw_prot(env, mmu_idx, ap, domain_prot); 10847 } 10848 if (*prot && !xn) { 10849 *prot |= PAGE_EXEC; 10850 } 10851 if (!(*prot & (1 << access_type))) { 10852 /* Access permission fault. */ 10853 fi->type = ARMFault_Permission; 10854 goto do_fault; 10855 } 10856 } 10857 if (ns) { 10858 /* The NS bit will (as required by the architecture) have no effect if 10859 * the CPU doesn't support TZ or this is a non-secure translation 10860 * regime, because the attribute will already be non-secure. 10861 */ 10862 attrs->secure = false; 10863 } 10864 *phys_ptr = phys_addr; 10865 return false; 10866 do_fault: 10867 fi->domain = domain; 10868 fi->level = level; 10869 return true; 10870 } 10871 10872 /* 10873 * check_s2_mmu_setup 10874 * @cpu: ARMCPU 10875 * @is_aa64: True if the translation regime is in AArch64 state 10876 * @startlevel: Suggested starting level 10877 * @inputsize: Bitsize of IPAs 10878 * @stride: Page-table stride (See the ARM ARM) 10879 * 10880 * Returns true if the suggested S2 translation parameters are OK and 10881 * false otherwise. 10882 */ 10883 static bool check_s2_mmu_setup(ARMCPU *cpu, bool is_aa64, int level, 10884 int inputsize, int stride) 10885 { 10886 const int grainsize = stride + 3; 10887 int startsizecheck; 10888 10889 /* Negative levels are never allowed. */ 10890 if (level < 0) { 10891 return false; 10892 } 10893 10894 startsizecheck = inputsize - ((3 - level) * stride + grainsize); 10895 if (startsizecheck < 1 || startsizecheck > stride + 4) { 10896 return false; 10897 } 10898 10899 if (is_aa64) { 10900 CPUARMState *env = &cpu->env; 10901 unsigned int pamax = arm_pamax(cpu); 10902 10903 switch (stride) { 10904 case 13: /* 64KB Pages. */ 10905 if (level == 0 || (level == 1 && pamax <= 42)) { 10906 return false; 10907 } 10908 break; 10909 case 11: /* 16KB Pages. */ 10910 if (level == 0 || (level == 1 && pamax <= 40)) { 10911 return false; 10912 } 10913 break; 10914 case 9: /* 4KB Pages. */ 10915 if (level == 0 && pamax <= 42) { 10916 return false; 10917 } 10918 break; 10919 default: 10920 g_assert_not_reached(); 10921 } 10922 10923 /* Inputsize checks. */ 10924 if (inputsize > pamax && 10925 (arm_el_is_aa64(env, 1) || inputsize > 40)) { 10926 /* This is CONSTRAINED UNPREDICTABLE and we choose to fault. */ 10927 return false; 10928 } 10929 } else { 10930 /* AArch32 only supports 4KB pages. Assert on that. */ 10931 assert(stride == 9); 10932 10933 if (level == 0) { 10934 return false; 10935 } 10936 } 10937 return true; 10938 } 10939 10940 /* Translate from the 4-bit stage 2 representation of 10941 * memory attributes (without cache-allocation hints) to 10942 * the 8-bit representation of the stage 1 MAIR registers 10943 * (which includes allocation hints). 10944 * 10945 * ref: shared/translation/attrs/S2AttrDecode() 10946 * .../S2ConvertAttrsHints() 10947 */ 10948 static uint8_t convert_stage2_attrs(CPUARMState *env, uint8_t s2attrs) 10949 { 10950 uint8_t hiattr = extract32(s2attrs, 2, 2); 10951 uint8_t loattr = extract32(s2attrs, 0, 2); 10952 uint8_t hihint = 0, lohint = 0; 10953 10954 if (hiattr != 0) { /* normal memory */ 10955 if (arm_hcr_el2_eff(env) & HCR_CD) { /* cache disabled */ 10956 hiattr = loattr = 1; /* non-cacheable */ 10957 } else { 10958 if (hiattr != 1) { /* Write-through or write-back */ 10959 hihint = 3; /* RW allocate */ 10960 } 10961 if (loattr != 1) { /* Write-through or write-back */ 10962 lohint = 3; /* RW allocate */ 10963 } 10964 } 10965 } 10966 10967 return (hiattr << 6) | (hihint << 4) | (loattr << 2) | lohint; 10968 } 10969 #endif /* !CONFIG_USER_ONLY */ 10970 10971 static int aa64_va_parameter_tbi(uint64_t tcr, ARMMMUIdx mmu_idx) 10972 { 10973 if (regime_has_2_ranges(mmu_idx)) { 10974 return extract64(tcr, 37, 2); 10975 } else if (mmu_idx == ARMMMUIdx_Stage2 || mmu_idx == ARMMMUIdx_Stage2_S) { 10976 return 0; /* VTCR_EL2 */ 10977 } else { 10978 /* Replicate the single TBI bit so we always have 2 bits. */ 10979 return extract32(tcr, 20, 1) * 3; 10980 } 10981 } 10982 10983 static int aa64_va_parameter_tbid(uint64_t tcr, ARMMMUIdx mmu_idx) 10984 { 10985 if (regime_has_2_ranges(mmu_idx)) { 10986 return extract64(tcr, 51, 2); 10987 } else if (mmu_idx == ARMMMUIdx_Stage2 || mmu_idx == ARMMMUIdx_Stage2_S) { 10988 return 0; /* VTCR_EL2 */ 10989 } else { 10990 /* Replicate the single TBID bit so we always have 2 bits. */ 10991 return extract32(tcr, 29, 1) * 3; 10992 } 10993 } 10994 10995 static int aa64_va_parameter_tcma(uint64_t tcr, ARMMMUIdx mmu_idx) 10996 { 10997 if (regime_has_2_ranges(mmu_idx)) { 10998 return extract64(tcr, 57, 2); 10999 } else { 11000 /* Replicate the single TCMA bit so we always have 2 bits. */ 11001 return extract32(tcr, 30, 1) * 3; 11002 } 11003 } 11004 11005 ARMVAParameters aa64_va_parameters(CPUARMState *env, uint64_t va, 11006 ARMMMUIdx mmu_idx, bool data) 11007 { 11008 uint64_t tcr = regime_tcr(env, mmu_idx)->raw_tcr; 11009 bool epd, hpd, using16k, using64k; 11010 int select, tsz, tbi, max_tsz; 11011 11012 if (!regime_has_2_ranges(mmu_idx)) { 11013 select = 0; 11014 tsz = extract32(tcr, 0, 6); 11015 using64k = extract32(tcr, 14, 1); 11016 using16k = extract32(tcr, 15, 1); 11017 if (mmu_idx == ARMMMUIdx_Stage2 || mmu_idx == ARMMMUIdx_Stage2_S) { 11018 /* VTCR_EL2 */ 11019 hpd = false; 11020 } else { 11021 hpd = extract32(tcr, 24, 1); 11022 } 11023 epd = false; 11024 } else { 11025 /* 11026 * Bit 55 is always between the two regions, and is canonical for 11027 * determining if address tagging is enabled. 11028 */ 11029 select = extract64(va, 55, 1); 11030 if (!select) { 11031 tsz = extract32(tcr, 0, 6); 11032 epd = extract32(tcr, 7, 1); 11033 using64k = extract32(tcr, 14, 1); 11034 using16k = extract32(tcr, 15, 1); 11035 hpd = extract64(tcr, 41, 1); 11036 } else { 11037 int tg = extract32(tcr, 30, 2); 11038 using16k = tg == 1; 11039 using64k = tg == 3; 11040 tsz = extract32(tcr, 16, 6); 11041 epd = extract32(tcr, 23, 1); 11042 hpd = extract64(tcr, 42, 1); 11043 } 11044 } 11045 11046 if (cpu_isar_feature(aa64_st, env_archcpu(env))) { 11047 max_tsz = 48 - using64k; 11048 } else { 11049 max_tsz = 39; 11050 } 11051 11052 tsz = MIN(tsz, max_tsz); 11053 tsz = MAX(tsz, 16); /* TODO: ARMv8.2-LVA */ 11054 11055 /* Present TBI as a composite with TBID. */ 11056 tbi = aa64_va_parameter_tbi(tcr, mmu_idx); 11057 if (!data) { 11058 tbi &= ~aa64_va_parameter_tbid(tcr, mmu_idx); 11059 } 11060 tbi = (tbi >> select) & 1; 11061 11062 return (ARMVAParameters) { 11063 .tsz = tsz, 11064 .select = select, 11065 .tbi = tbi, 11066 .epd = epd, 11067 .hpd = hpd, 11068 .using16k = using16k, 11069 .using64k = using64k, 11070 }; 11071 } 11072 11073 #ifndef CONFIG_USER_ONLY 11074 static ARMVAParameters aa32_va_parameters(CPUARMState *env, uint32_t va, 11075 ARMMMUIdx mmu_idx) 11076 { 11077 uint64_t tcr = regime_tcr(env, mmu_idx)->raw_tcr; 11078 uint32_t el = regime_el(env, mmu_idx); 11079 int select, tsz; 11080 bool epd, hpd; 11081 11082 assert(mmu_idx != ARMMMUIdx_Stage2_S); 11083 11084 if (mmu_idx == ARMMMUIdx_Stage2) { 11085 /* VTCR */ 11086 bool sext = extract32(tcr, 4, 1); 11087 bool sign = extract32(tcr, 3, 1); 11088 11089 /* 11090 * If the sign-extend bit is not the same as t0sz[3], the result 11091 * is unpredictable. Flag this as a guest error. 11092 */ 11093 if (sign != sext) { 11094 qemu_log_mask(LOG_GUEST_ERROR, 11095 "AArch32: VTCR.S / VTCR.T0SZ[3] mismatch\n"); 11096 } 11097 tsz = sextract32(tcr, 0, 4) + 8; 11098 select = 0; 11099 hpd = false; 11100 epd = false; 11101 } else if (el == 2) { 11102 /* HTCR */ 11103 tsz = extract32(tcr, 0, 3); 11104 select = 0; 11105 hpd = extract64(tcr, 24, 1); 11106 epd = false; 11107 } else { 11108 int t0sz = extract32(tcr, 0, 3); 11109 int t1sz = extract32(tcr, 16, 3); 11110 11111 if (t1sz == 0) { 11112 select = va > (0xffffffffu >> t0sz); 11113 } else { 11114 /* Note that we will detect errors later. */ 11115 select = va >= ~(0xffffffffu >> t1sz); 11116 } 11117 if (!select) { 11118 tsz = t0sz; 11119 epd = extract32(tcr, 7, 1); 11120 hpd = extract64(tcr, 41, 1); 11121 } else { 11122 tsz = t1sz; 11123 epd = extract32(tcr, 23, 1); 11124 hpd = extract64(tcr, 42, 1); 11125 } 11126 /* For aarch32, hpd0 is not enabled without t2e as well. */ 11127 hpd &= extract32(tcr, 6, 1); 11128 } 11129 11130 return (ARMVAParameters) { 11131 .tsz = tsz, 11132 .select = select, 11133 .epd = epd, 11134 .hpd = hpd, 11135 }; 11136 } 11137 11138 /** 11139 * get_phys_addr_lpae: perform one stage of page table walk, LPAE format 11140 * 11141 * Returns false if the translation was successful. Otherwise, phys_ptr, attrs, 11142 * prot and page_size may not be filled in, and the populated fsr value provides 11143 * information on why the translation aborted, in the format of a long-format 11144 * DFSR/IFSR fault register, with the following caveats: 11145 * * the WnR bit is never set (the caller must do this). 11146 * 11147 * @env: CPUARMState 11148 * @address: virtual address to get physical address for 11149 * @access_type: MMU_DATA_LOAD, MMU_DATA_STORE or MMU_INST_FETCH 11150 * @mmu_idx: MMU index indicating required translation regime 11151 * @s1_is_el0: if @mmu_idx is ARMMMUIdx_Stage2 (so this is a stage 2 page table 11152 * walk), must be true if this is stage 2 of a stage 1+2 walk for an 11153 * EL0 access). If @mmu_idx is anything else, @s1_is_el0 is ignored. 11154 * @phys_ptr: set to the physical address corresponding to the virtual address 11155 * @attrs: set to the memory transaction attributes to use 11156 * @prot: set to the permissions for the page containing phys_ptr 11157 * @page_size_ptr: set to the size of the page containing phys_ptr 11158 * @fi: set to fault info if the translation fails 11159 * @cacheattrs: (if non-NULL) set to the cacheability/shareability attributes 11160 */ 11161 static bool get_phys_addr_lpae(CPUARMState *env, uint64_t address, 11162 MMUAccessType access_type, ARMMMUIdx mmu_idx, 11163 bool s1_is_el0, 11164 hwaddr *phys_ptr, MemTxAttrs *txattrs, int *prot, 11165 target_ulong *page_size_ptr, 11166 ARMMMUFaultInfo *fi, ARMCacheAttrs *cacheattrs) 11167 { 11168 ARMCPU *cpu = env_archcpu(env); 11169 CPUState *cs = CPU(cpu); 11170 /* Read an LPAE long-descriptor translation table. */ 11171 ARMFaultType fault_type = ARMFault_Translation; 11172 uint32_t level; 11173 ARMVAParameters param; 11174 uint64_t ttbr; 11175 hwaddr descaddr, indexmask, indexmask_grainsize; 11176 uint32_t tableattrs; 11177 target_ulong page_size; 11178 uint32_t attrs; 11179 int32_t stride; 11180 int addrsize, inputsize; 11181 TCR *tcr = regime_tcr(env, mmu_idx); 11182 int ap, ns, xn, pxn; 11183 uint32_t el = regime_el(env, mmu_idx); 11184 uint64_t descaddrmask; 11185 bool aarch64 = arm_el_is_aa64(env, el); 11186 bool guarded = false; 11187 11188 /* TODO: This code does not support shareability levels. */ 11189 if (aarch64) { 11190 param = aa64_va_parameters(env, address, mmu_idx, 11191 access_type != MMU_INST_FETCH); 11192 level = 0; 11193 addrsize = 64 - 8 * param.tbi; 11194 inputsize = 64 - param.tsz; 11195 } else { 11196 param = aa32_va_parameters(env, address, mmu_idx); 11197 level = 1; 11198 addrsize = (mmu_idx == ARMMMUIdx_Stage2 ? 40 : 32); 11199 inputsize = addrsize - param.tsz; 11200 } 11201 11202 /* 11203 * We determined the region when collecting the parameters, but we 11204 * have not yet validated that the address is valid for the region. 11205 * Extract the top bits and verify that they all match select. 11206 * 11207 * For aa32, if inputsize == addrsize, then we have selected the 11208 * region by exclusion in aa32_va_parameters and there is no more 11209 * validation to do here. 11210 */ 11211 if (inputsize < addrsize) { 11212 target_ulong top_bits = sextract64(address, inputsize, 11213 addrsize - inputsize); 11214 if (-top_bits != param.select) { 11215 /* The gap between the two regions is a Translation fault */ 11216 fault_type = ARMFault_Translation; 11217 goto do_fault; 11218 } 11219 } 11220 11221 if (param.using64k) { 11222 stride = 13; 11223 } else if (param.using16k) { 11224 stride = 11; 11225 } else { 11226 stride = 9; 11227 } 11228 11229 /* Note that QEMU ignores shareability and cacheability attributes, 11230 * so we don't need to do anything with the SH, ORGN, IRGN fields 11231 * in the TTBCR. Similarly, TTBCR:A1 selects whether we get the 11232 * ASID from TTBR0 or TTBR1, but QEMU's TLB doesn't currently 11233 * implement any ASID-like capability so we can ignore it (instead 11234 * we will always flush the TLB any time the ASID is changed). 11235 */ 11236 ttbr = regime_ttbr(env, mmu_idx, param.select); 11237 11238 /* Here we should have set up all the parameters for the translation: 11239 * inputsize, ttbr, epd, stride, tbi 11240 */ 11241 11242 if (param.epd) { 11243 /* Translation table walk disabled => Translation fault on TLB miss 11244 * Note: This is always 0 on 64-bit EL2 and EL3. 11245 */ 11246 goto do_fault; 11247 } 11248 11249 if (mmu_idx != ARMMMUIdx_Stage2 && mmu_idx != ARMMMUIdx_Stage2_S) { 11250 /* The starting level depends on the virtual address size (which can 11251 * be up to 48 bits) and the translation granule size. It indicates 11252 * the number of strides (stride bits at a time) needed to 11253 * consume the bits of the input address. In the pseudocode this is: 11254 * level = 4 - RoundUp((inputsize - grainsize) / stride) 11255 * where their 'inputsize' is our 'inputsize', 'grainsize' is 11256 * our 'stride + 3' and 'stride' is our 'stride'. 11257 * Applying the usual "rounded up m/n is (m+n-1)/n" and simplifying: 11258 * = 4 - (inputsize - stride - 3 + stride - 1) / stride 11259 * = 4 - (inputsize - 4) / stride; 11260 */ 11261 level = 4 - (inputsize - 4) / stride; 11262 } else { 11263 /* For stage 2 translations the starting level is specified by the 11264 * VTCR_EL2.SL0 field (whose interpretation depends on the page size) 11265 */ 11266 uint32_t sl0 = extract32(tcr->raw_tcr, 6, 2); 11267 uint32_t startlevel; 11268 bool ok; 11269 11270 if (!aarch64 || stride == 9) { 11271 /* AArch32 or 4KB pages */ 11272 startlevel = 2 - sl0; 11273 11274 if (cpu_isar_feature(aa64_st, cpu)) { 11275 startlevel &= 3; 11276 } 11277 } else { 11278 /* 16KB or 64KB pages */ 11279 startlevel = 3 - sl0; 11280 } 11281 11282 /* Check that the starting level is valid. */ 11283 ok = check_s2_mmu_setup(cpu, aarch64, startlevel, 11284 inputsize, stride); 11285 if (!ok) { 11286 fault_type = ARMFault_Translation; 11287 goto do_fault; 11288 } 11289 level = startlevel; 11290 } 11291 11292 indexmask_grainsize = (1ULL << (stride + 3)) - 1; 11293 indexmask = (1ULL << (inputsize - (stride * (4 - level)))) - 1; 11294 11295 /* Now we can extract the actual base address from the TTBR */ 11296 descaddr = extract64(ttbr, 0, 48); 11297 /* 11298 * We rely on this masking to clear the RES0 bits at the bottom of the TTBR 11299 * and also to mask out CnP (bit 0) which could validly be non-zero. 11300 */ 11301 descaddr &= ~indexmask; 11302 11303 /* The address field in the descriptor goes up to bit 39 for ARMv7 11304 * but up to bit 47 for ARMv8, but we use the descaddrmask 11305 * up to bit 39 for AArch32, because we don't need other bits in that case 11306 * to construct next descriptor address (anyway they should be all zeroes). 11307 */ 11308 descaddrmask = ((1ull << (aarch64 ? 48 : 40)) - 1) & 11309 ~indexmask_grainsize; 11310 11311 /* Secure accesses start with the page table in secure memory and 11312 * can be downgraded to non-secure at any step. Non-secure accesses 11313 * remain non-secure. We implement this by just ORing in the NSTable/NS 11314 * bits at each step. 11315 */ 11316 tableattrs = regime_is_secure(env, mmu_idx) ? 0 : (1 << 4); 11317 for (;;) { 11318 uint64_t descriptor; 11319 bool nstable; 11320 11321 descaddr |= (address >> (stride * (4 - level))) & indexmask; 11322 descaddr &= ~7ULL; 11323 nstable = extract32(tableattrs, 4, 1); 11324 descriptor = arm_ldq_ptw(cs, descaddr, !nstable, mmu_idx, fi); 11325 if (fi->type != ARMFault_None) { 11326 goto do_fault; 11327 } 11328 11329 if (!(descriptor & 1) || 11330 (!(descriptor & 2) && (level == 3))) { 11331 /* Invalid, or the Reserved level 3 encoding */ 11332 goto do_fault; 11333 } 11334 descaddr = descriptor & descaddrmask; 11335 11336 if ((descriptor & 2) && (level < 3)) { 11337 /* Table entry. The top five bits are attributes which may 11338 * propagate down through lower levels of the table (and 11339 * which are all arranged so that 0 means "no effect", so 11340 * we can gather them up by ORing in the bits at each level). 11341 */ 11342 tableattrs |= extract64(descriptor, 59, 5); 11343 level++; 11344 indexmask = indexmask_grainsize; 11345 continue; 11346 } 11347 /* Block entry at level 1 or 2, or page entry at level 3. 11348 * These are basically the same thing, although the number 11349 * of bits we pull in from the vaddr varies. 11350 */ 11351 page_size = (1ULL << ((stride * (4 - level)) + 3)); 11352 descaddr |= (address & (page_size - 1)); 11353 /* Extract attributes from the descriptor */ 11354 attrs = extract64(descriptor, 2, 10) 11355 | (extract64(descriptor, 52, 12) << 10); 11356 11357 if (mmu_idx == ARMMMUIdx_Stage2 || mmu_idx == ARMMMUIdx_Stage2_S) { 11358 /* Stage 2 table descriptors do not include any attribute fields */ 11359 break; 11360 } 11361 /* Merge in attributes from table descriptors */ 11362 attrs |= nstable << 3; /* NS */ 11363 guarded = extract64(descriptor, 50, 1); /* GP */ 11364 if (param.hpd) { 11365 /* HPD disables all the table attributes except NSTable. */ 11366 break; 11367 } 11368 attrs |= extract32(tableattrs, 0, 2) << 11; /* XN, PXN */ 11369 /* The sense of AP[1] vs APTable[0] is reversed, as APTable[0] == 1 11370 * means "force PL1 access only", which means forcing AP[1] to 0. 11371 */ 11372 attrs &= ~(extract32(tableattrs, 2, 1) << 4); /* !APT[0] => AP[1] */ 11373 attrs |= extract32(tableattrs, 3, 1) << 5; /* APT[1] => AP[2] */ 11374 break; 11375 } 11376 /* Here descaddr is the final physical address, and attributes 11377 * are all in attrs. 11378 */ 11379 fault_type = ARMFault_AccessFlag; 11380 if ((attrs & (1 << 8)) == 0) { 11381 /* Access flag */ 11382 goto do_fault; 11383 } 11384 11385 ap = extract32(attrs, 4, 2); 11386 11387 if (mmu_idx == ARMMMUIdx_Stage2 || mmu_idx == ARMMMUIdx_Stage2_S) { 11388 ns = mmu_idx == ARMMMUIdx_Stage2; 11389 xn = extract32(attrs, 11, 2); 11390 *prot = get_S2prot(env, ap, xn, s1_is_el0); 11391 } else { 11392 ns = extract32(attrs, 3, 1); 11393 xn = extract32(attrs, 12, 1); 11394 pxn = extract32(attrs, 11, 1); 11395 *prot = get_S1prot(env, mmu_idx, aarch64, ap, ns, xn, pxn); 11396 } 11397 11398 fault_type = ARMFault_Permission; 11399 if (!(*prot & (1 << access_type))) { 11400 goto do_fault; 11401 } 11402 11403 if (ns) { 11404 /* The NS bit will (as required by the architecture) have no effect if 11405 * the CPU doesn't support TZ or this is a non-secure translation 11406 * regime, because the attribute will already be non-secure. 11407 */ 11408 txattrs->secure = false; 11409 } 11410 /* When in aarch64 mode, and BTI is enabled, remember GP in the IOTLB. */ 11411 if (aarch64 && guarded && cpu_isar_feature(aa64_bti, cpu)) { 11412 arm_tlb_bti_gp(txattrs) = true; 11413 } 11414 11415 if (mmu_idx == ARMMMUIdx_Stage2 || mmu_idx == ARMMMUIdx_Stage2_S) { 11416 cacheattrs->attrs = convert_stage2_attrs(env, extract32(attrs, 0, 4)); 11417 } else { 11418 /* Index into MAIR registers for cache attributes */ 11419 uint8_t attrindx = extract32(attrs, 0, 3); 11420 uint64_t mair = env->cp15.mair_el[regime_el(env, mmu_idx)]; 11421 assert(attrindx <= 7); 11422 cacheattrs->attrs = extract64(mair, attrindx * 8, 8); 11423 } 11424 cacheattrs->shareability = extract32(attrs, 6, 2); 11425 11426 *phys_ptr = descaddr; 11427 *page_size_ptr = page_size; 11428 return false; 11429 11430 do_fault: 11431 fi->type = fault_type; 11432 fi->level = level; 11433 /* Tag the error as S2 for failed S1 PTW at S2 or ordinary S2. */ 11434 fi->stage2 = fi->s1ptw || (mmu_idx == ARMMMUIdx_Stage2 || 11435 mmu_idx == ARMMMUIdx_Stage2_S); 11436 fi->s1ns = mmu_idx == ARMMMUIdx_Stage2; 11437 return true; 11438 } 11439 11440 static inline void get_phys_addr_pmsav7_default(CPUARMState *env, 11441 ARMMMUIdx mmu_idx, 11442 int32_t address, int *prot) 11443 { 11444 if (!arm_feature(env, ARM_FEATURE_M)) { 11445 *prot = PAGE_READ | PAGE_WRITE; 11446 switch (address) { 11447 case 0xF0000000 ... 0xFFFFFFFF: 11448 if (regime_sctlr(env, mmu_idx) & SCTLR_V) { 11449 /* hivecs execing is ok */ 11450 *prot |= PAGE_EXEC; 11451 } 11452 break; 11453 case 0x00000000 ... 0x7FFFFFFF: 11454 *prot |= PAGE_EXEC; 11455 break; 11456 } 11457 } else { 11458 /* Default system address map for M profile cores. 11459 * The architecture specifies which regions are execute-never; 11460 * at the MPU level no other checks are defined. 11461 */ 11462 switch (address) { 11463 case 0x00000000 ... 0x1fffffff: /* ROM */ 11464 case 0x20000000 ... 0x3fffffff: /* SRAM */ 11465 case 0x60000000 ... 0x7fffffff: /* RAM */ 11466 case 0x80000000 ... 0x9fffffff: /* RAM */ 11467 *prot = PAGE_READ | PAGE_WRITE | PAGE_EXEC; 11468 break; 11469 case 0x40000000 ... 0x5fffffff: /* Peripheral */ 11470 case 0xa0000000 ... 0xbfffffff: /* Device */ 11471 case 0xc0000000 ... 0xdfffffff: /* Device */ 11472 case 0xe0000000 ... 0xffffffff: /* System */ 11473 *prot = PAGE_READ | PAGE_WRITE; 11474 break; 11475 default: 11476 g_assert_not_reached(); 11477 } 11478 } 11479 } 11480 11481 static bool pmsav7_use_background_region(ARMCPU *cpu, 11482 ARMMMUIdx mmu_idx, bool is_user) 11483 { 11484 /* Return true if we should use the default memory map as a 11485 * "background" region if there are no hits against any MPU regions. 11486 */ 11487 CPUARMState *env = &cpu->env; 11488 11489 if (is_user) { 11490 return false; 11491 } 11492 11493 if (arm_feature(env, ARM_FEATURE_M)) { 11494 return env->v7m.mpu_ctrl[regime_is_secure(env, mmu_idx)] 11495 & R_V7M_MPU_CTRL_PRIVDEFENA_MASK; 11496 } else { 11497 return regime_sctlr(env, mmu_idx) & SCTLR_BR; 11498 } 11499 } 11500 11501 static inline bool m_is_ppb_region(CPUARMState *env, uint32_t address) 11502 { 11503 /* True if address is in the M profile PPB region 0xe0000000 - 0xe00fffff */ 11504 return arm_feature(env, ARM_FEATURE_M) && 11505 extract32(address, 20, 12) == 0xe00; 11506 } 11507 11508 static inline bool m_is_system_region(CPUARMState *env, uint32_t address) 11509 { 11510 /* True if address is in the M profile system region 11511 * 0xe0000000 - 0xffffffff 11512 */ 11513 return arm_feature(env, ARM_FEATURE_M) && extract32(address, 29, 3) == 0x7; 11514 } 11515 11516 static bool get_phys_addr_pmsav7(CPUARMState *env, uint32_t address, 11517 MMUAccessType access_type, ARMMMUIdx mmu_idx, 11518 hwaddr *phys_ptr, int *prot, 11519 target_ulong *page_size, 11520 ARMMMUFaultInfo *fi) 11521 { 11522 ARMCPU *cpu = env_archcpu(env); 11523 int n; 11524 bool is_user = regime_is_user(env, mmu_idx); 11525 11526 *phys_ptr = address; 11527 *page_size = TARGET_PAGE_SIZE; 11528 *prot = 0; 11529 11530 if (regime_translation_disabled(env, mmu_idx) || 11531 m_is_ppb_region(env, address)) { 11532 /* MPU disabled or M profile PPB access: use default memory map. 11533 * The other case which uses the default memory map in the 11534 * v7M ARM ARM pseudocode is exception vector reads from the vector 11535 * table. In QEMU those accesses are done in arm_v7m_load_vector(), 11536 * which always does a direct read using address_space_ldl(), rather 11537 * than going via this function, so we don't need to check that here. 11538 */ 11539 get_phys_addr_pmsav7_default(env, mmu_idx, address, prot); 11540 } else { /* MPU enabled */ 11541 for (n = (int)cpu->pmsav7_dregion - 1; n >= 0; n--) { 11542 /* region search */ 11543 uint32_t base = env->pmsav7.drbar[n]; 11544 uint32_t rsize = extract32(env->pmsav7.drsr[n], 1, 5); 11545 uint32_t rmask; 11546 bool srdis = false; 11547 11548 if (!(env->pmsav7.drsr[n] & 0x1)) { 11549 continue; 11550 } 11551 11552 if (!rsize) { 11553 qemu_log_mask(LOG_GUEST_ERROR, 11554 "DRSR[%d]: Rsize field cannot be 0\n", n); 11555 continue; 11556 } 11557 rsize++; 11558 rmask = (1ull << rsize) - 1; 11559 11560 if (base & rmask) { 11561 qemu_log_mask(LOG_GUEST_ERROR, 11562 "DRBAR[%d]: 0x%" PRIx32 " misaligned " 11563 "to DRSR region size, mask = 0x%" PRIx32 "\n", 11564 n, base, rmask); 11565 continue; 11566 } 11567 11568 if (address < base || address > base + rmask) { 11569 /* 11570 * Address not in this region. We must check whether the 11571 * region covers addresses in the same page as our address. 11572 * In that case we must not report a size that covers the 11573 * whole page for a subsequent hit against a different MPU 11574 * region or the background region, because it would result in 11575 * incorrect TLB hits for subsequent accesses to addresses that 11576 * are in this MPU region. 11577 */ 11578 if (ranges_overlap(base, rmask, 11579 address & TARGET_PAGE_MASK, 11580 TARGET_PAGE_SIZE)) { 11581 *page_size = 1; 11582 } 11583 continue; 11584 } 11585 11586 /* Region matched */ 11587 11588 if (rsize >= 8) { /* no subregions for regions < 256 bytes */ 11589 int i, snd; 11590 uint32_t srdis_mask; 11591 11592 rsize -= 3; /* sub region size (power of 2) */ 11593 snd = ((address - base) >> rsize) & 0x7; 11594 srdis = extract32(env->pmsav7.drsr[n], snd + 8, 1); 11595 11596 srdis_mask = srdis ? 0x3 : 0x0; 11597 for (i = 2; i <= 8 && rsize < TARGET_PAGE_BITS; i *= 2) { 11598 /* This will check in groups of 2, 4 and then 8, whether 11599 * the subregion bits are consistent. rsize is incremented 11600 * back up to give the region size, considering consistent 11601 * adjacent subregions as one region. Stop testing if rsize 11602 * is already big enough for an entire QEMU page. 11603 */ 11604 int snd_rounded = snd & ~(i - 1); 11605 uint32_t srdis_multi = extract32(env->pmsav7.drsr[n], 11606 snd_rounded + 8, i); 11607 if (srdis_mask ^ srdis_multi) { 11608 break; 11609 } 11610 srdis_mask = (srdis_mask << i) | srdis_mask; 11611 rsize++; 11612 } 11613 } 11614 if (srdis) { 11615 continue; 11616 } 11617 if (rsize < TARGET_PAGE_BITS) { 11618 *page_size = 1 << rsize; 11619 } 11620 break; 11621 } 11622 11623 if (n == -1) { /* no hits */ 11624 if (!pmsav7_use_background_region(cpu, mmu_idx, is_user)) { 11625 /* background fault */ 11626 fi->type = ARMFault_Background; 11627 return true; 11628 } 11629 get_phys_addr_pmsav7_default(env, mmu_idx, address, prot); 11630 } else { /* a MPU hit! */ 11631 uint32_t ap = extract32(env->pmsav7.dracr[n], 8, 3); 11632 uint32_t xn = extract32(env->pmsav7.dracr[n], 12, 1); 11633 11634 if (m_is_system_region(env, address)) { 11635 /* System space is always execute never */ 11636 xn = 1; 11637 } 11638 11639 if (is_user) { /* User mode AP bit decoding */ 11640 switch (ap) { 11641 case 0: 11642 case 1: 11643 case 5: 11644 break; /* no access */ 11645 case 3: 11646 *prot |= PAGE_WRITE; 11647 /* fall through */ 11648 case 2: 11649 case 6: 11650 *prot |= PAGE_READ | PAGE_EXEC; 11651 break; 11652 case 7: 11653 /* for v7M, same as 6; for R profile a reserved value */ 11654 if (arm_feature(env, ARM_FEATURE_M)) { 11655 *prot |= PAGE_READ | PAGE_EXEC; 11656 break; 11657 } 11658 /* fall through */ 11659 default: 11660 qemu_log_mask(LOG_GUEST_ERROR, 11661 "DRACR[%d]: Bad value for AP bits: 0x%" 11662 PRIx32 "\n", n, ap); 11663 } 11664 } else { /* Priv. mode AP bits decoding */ 11665 switch (ap) { 11666 case 0: 11667 break; /* no access */ 11668 case 1: 11669 case 2: 11670 case 3: 11671 *prot |= PAGE_WRITE; 11672 /* fall through */ 11673 case 5: 11674 case 6: 11675 *prot |= PAGE_READ | PAGE_EXEC; 11676 break; 11677 case 7: 11678 /* for v7M, same as 6; for R profile a reserved value */ 11679 if (arm_feature(env, ARM_FEATURE_M)) { 11680 *prot |= PAGE_READ | PAGE_EXEC; 11681 break; 11682 } 11683 /* fall through */ 11684 default: 11685 qemu_log_mask(LOG_GUEST_ERROR, 11686 "DRACR[%d]: Bad value for AP bits: 0x%" 11687 PRIx32 "\n", n, ap); 11688 } 11689 } 11690 11691 /* execute never */ 11692 if (xn) { 11693 *prot &= ~PAGE_EXEC; 11694 } 11695 } 11696 } 11697 11698 fi->type = ARMFault_Permission; 11699 fi->level = 1; 11700 return !(*prot & (1 << access_type)); 11701 } 11702 11703 static bool v8m_is_sau_exempt(CPUARMState *env, 11704 uint32_t address, MMUAccessType access_type) 11705 { 11706 /* The architecture specifies that certain address ranges are 11707 * exempt from v8M SAU/IDAU checks. 11708 */ 11709 return 11710 (access_type == MMU_INST_FETCH && m_is_system_region(env, address)) || 11711 (address >= 0xe0000000 && address <= 0xe0002fff) || 11712 (address >= 0xe000e000 && address <= 0xe000efff) || 11713 (address >= 0xe002e000 && address <= 0xe002efff) || 11714 (address >= 0xe0040000 && address <= 0xe0041fff) || 11715 (address >= 0xe00ff000 && address <= 0xe00fffff); 11716 } 11717 11718 void v8m_security_lookup(CPUARMState *env, uint32_t address, 11719 MMUAccessType access_type, ARMMMUIdx mmu_idx, 11720 V8M_SAttributes *sattrs) 11721 { 11722 /* Look up the security attributes for this address. Compare the 11723 * pseudocode SecurityCheck() function. 11724 * We assume the caller has zero-initialized *sattrs. 11725 */ 11726 ARMCPU *cpu = env_archcpu(env); 11727 int r; 11728 bool idau_exempt = false, idau_ns = true, idau_nsc = true; 11729 int idau_region = IREGION_NOTVALID; 11730 uint32_t addr_page_base = address & TARGET_PAGE_MASK; 11731 uint32_t addr_page_limit = addr_page_base + (TARGET_PAGE_SIZE - 1); 11732 11733 if (cpu->idau) { 11734 IDAUInterfaceClass *iic = IDAU_INTERFACE_GET_CLASS(cpu->idau); 11735 IDAUInterface *ii = IDAU_INTERFACE(cpu->idau); 11736 11737 iic->check(ii, address, &idau_region, &idau_exempt, &idau_ns, 11738 &idau_nsc); 11739 } 11740 11741 if (access_type == MMU_INST_FETCH && extract32(address, 28, 4) == 0xf) { 11742 /* 0xf0000000..0xffffffff is always S for insn fetches */ 11743 return; 11744 } 11745 11746 if (idau_exempt || v8m_is_sau_exempt(env, address, access_type)) { 11747 sattrs->ns = !regime_is_secure(env, mmu_idx); 11748 return; 11749 } 11750 11751 if (idau_region != IREGION_NOTVALID) { 11752 sattrs->irvalid = true; 11753 sattrs->iregion = idau_region; 11754 } 11755 11756 switch (env->sau.ctrl & 3) { 11757 case 0: /* SAU.ENABLE == 0, SAU.ALLNS == 0 */ 11758 break; 11759 case 2: /* SAU.ENABLE == 0, SAU.ALLNS == 1 */ 11760 sattrs->ns = true; 11761 break; 11762 default: /* SAU.ENABLE == 1 */ 11763 for (r = 0; r < cpu->sau_sregion; r++) { 11764 if (env->sau.rlar[r] & 1) { 11765 uint32_t base = env->sau.rbar[r] & ~0x1f; 11766 uint32_t limit = env->sau.rlar[r] | 0x1f; 11767 11768 if (base <= address && limit >= address) { 11769 if (base > addr_page_base || limit < addr_page_limit) { 11770 sattrs->subpage = true; 11771 } 11772 if (sattrs->srvalid) { 11773 /* If we hit in more than one region then we must report 11774 * as Secure, not NS-Callable, with no valid region 11775 * number info. 11776 */ 11777 sattrs->ns = false; 11778 sattrs->nsc = false; 11779 sattrs->sregion = 0; 11780 sattrs->srvalid = false; 11781 break; 11782 } else { 11783 if (env->sau.rlar[r] & 2) { 11784 sattrs->nsc = true; 11785 } else { 11786 sattrs->ns = true; 11787 } 11788 sattrs->srvalid = true; 11789 sattrs->sregion = r; 11790 } 11791 } else { 11792 /* 11793 * Address not in this region. We must check whether the 11794 * region covers addresses in the same page as our address. 11795 * In that case we must not report a size that covers the 11796 * whole page for a subsequent hit against a different MPU 11797 * region or the background region, because it would result 11798 * in incorrect TLB hits for subsequent accesses to 11799 * addresses that are in this MPU region. 11800 */ 11801 if (limit >= base && 11802 ranges_overlap(base, limit - base + 1, 11803 addr_page_base, 11804 TARGET_PAGE_SIZE)) { 11805 sattrs->subpage = true; 11806 } 11807 } 11808 } 11809 } 11810 break; 11811 } 11812 11813 /* 11814 * The IDAU will override the SAU lookup results if it specifies 11815 * higher security than the SAU does. 11816 */ 11817 if (!idau_ns) { 11818 if (sattrs->ns || (!idau_nsc && sattrs->nsc)) { 11819 sattrs->ns = false; 11820 sattrs->nsc = idau_nsc; 11821 } 11822 } 11823 } 11824 11825 bool pmsav8_mpu_lookup(CPUARMState *env, uint32_t address, 11826 MMUAccessType access_type, ARMMMUIdx mmu_idx, 11827 hwaddr *phys_ptr, MemTxAttrs *txattrs, 11828 int *prot, bool *is_subpage, 11829 ARMMMUFaultInfo *fi, uint32_t *mregion) 11830 { 11831 /* Perform a PMSAv8 MPU lookup (without also doing the SAU check 11832 * that a full phys-to-virt translation does). 11833 * mregion is (if not NULL) set to the region number which matched, 11834 * or -1 if no region number is returned (MPU off, address did not 11835 * hit a region, address hit in multiple regions). 11836 * We set is_subpage to true if the region hit doesn't cover the 11837 * entire TARGET_PAGE the address is within. 11838 */ 11839 ARMCPU *cpu = env_archcpu(env); 11840 bool is_user = regime_is_user(env, mmu_idx); 11841 uint32_t secure = regime_is_secure(env, mmu_idx); 11842 int n; 11843 int matchregion = -1; 11844 bool hit = false; 11845 uint32_t addr_page_base = address & TARGET_PAGE_MASK; 11846 uint32_t addr_page_limit = addr_page_base + (TARGET_PAGE_SIZE - 1); 11847 11848 *is_subpage = false; 11849 *phys_ptr = address; 11850 *prot = 0; 11851 if (mregion) { 11852 *mregion = -1; 11853 } 11854 11855 /* Unlike the ARM ARM pseudocode, we don't need to check whether this 11856 * was an exception vector read from the vector table (which is always 11857 * done using the default system address map), because those accesses 11858 * are done in arm_v7m_load_vector(), which always does a direct 11859 * read using address_space_ldl(), rather than going via this function. 11860 */ 11861 if (regime_translation_disabled(env, mmu_idx)) { /* MPU disabled */ 11862 hit = true; 11863 } else if (m_is_ppb_region(env, address)) { 11864 hit = true; 11865 } else { 11866 if (pmsav7_use_background_region(cpu, mmu_idx, is_user)) { 11867 hit = true; 11868 } 11869 11870 for (n = (int)cpu->pmsav7_dregion - 1; n >= 0; n--) { 11871 /* region search */ 11872 /* Note that the base address is bits [31:5] from the register 11873 * with bits [4:0] all zeroes, but the limit address is bits 11874 * [31:5] from the register with bits [4:0] all ones. 11875 */ 11876 uint32_t base = env->pmsav8.rbar[secure][n] & ~0x1f; 11877 uint32_t limit = env->pmsav8.rlar[secure][n] | 0x1f; 11878 11879 if (!(env->pmsav8.rlar[secure][n] & 0x1)) { 11880 /* Region disabled */ 11881 continue; 11882 } 11883 11884 if (address < base || address > limit) { 11885 /* 11886 * Address not in this region. We must check whether the 11887 * region covers addresses in the same page as our address. 11888 * In that case we must not report a size that covers the 11889 * whole page for a subsequent hit against a different MPU 11890 * region or the background region, because it would result in 11891 * incorrect TLB hits for subsequent accesses to addresses that 11892 * are in this MPU region. 11893 */ 11894 if (limit >= base && 11895 ranges_overlap(base, limit - base + 1, 11896 addr_page_base, 11897 TARGET_PAGE_SIZE)) { 11898 *is_subpage = true; 11899 } 11900 continue; 11901 } 11902 11903 if (base > addr_page_base || limit < addr_page_limit) { 11904 *is_subpage = true; 11905 } 11906 11907 if (matchregion != -1) { 11908 /* Multiple regions match -- always a failure (unlike 11909 * PMSAv7 where highest-numbered-region wins) 11910 */ 11911 fi->type = ARMFault_Permission; 11912 fi->level = 1; 11913 return true; 11914 } 11915 11916 matchregion = n; 11917 hit = true; 11918 } 11919 } 11920 11921 if (!hit) { 11922 /* background fault */ 11923 fi->type = ARMFault_Background; 11924 return true; 11925 } 11926 11927 if (matchregion == -1) { 11928 /* hit using the background region */ 11929 get_phys_addr_pmsav7_default(env, mmu_idx, address, prot); 11930 } else { 11931 uint32_t ap = extract32(env->pmsav8.rbar[secure][matchregion], 1, 2); 11932 uint32_t xn = extract32(env->pmsav8.rbar[secure][matchregion], 0, 1); 11933 bool pxn = false; 11934 11935 if (arm_feature(env, ARM_FEATURE_V8_1M)) { 11936 pxn = extract32(env->pmsav8.rlar[secure][matchregion], 4, 1); 11937 } 11938 11939 if (m_is_system_region(env, address)) { 11940 /* System space is always execute never */ 11941 xn = 1; 11942 } 11943 11944 *prot = simple_ap_to_rw_prot(env, mmu_idx, ap); 11945 if (*prot && !xn && !(pxn && !is_user)) { 11946 *prot |= PAGE_EXEC; 11947 } 11948 /* We don't need to look the attribute up in the MAIR0/MAIR1 11949 * registers because that only tells us about cacheability. 11950 */ 11951 if (mregion) { 11952 *mregion = matchregion; 11953 } 11954 } 11955 11956 fi->type = ARMFault_Permission; 11957 fi->level = 1; 11958 return !(*prot & (1 << access_type)); 11959 } 11960 11961 11962 static bool get_phys_addr_pmsav8(CPUARMState *env, uint32_t address, 11963 MMUAccessType access_type, ARMMMUIdx mmu_idx, 11964 hwaddr *phys_ptr, MemTxAttrs *txattrs, 11965 int *prot, target_ulong *page_size, 11966 ARMMMUFaultInfo *fi) 11967 { 11968 uint32_t secure = regime_is_secure(env, mmu_idx); 11969 V8M_SAttributes sattrs = {}; 11970 bool ret; 11971 bool mpu_is_subpage; 11972 11973 if (arm_feature(env, ARM_FEATURE_M_SECURITY)) { 11974 v8m_security_lookup(env, address, access_type, mmu_idx, &sattrs); 11975 if (access_type == MMU_INST_FETCH) { 11976 /* Instruction fetches always use the MMU bank and the 11977 * transaction attribute determined by the fetch address, 11978 * regardless of CPU state. This is painful for QEMU 11979 * to handle, because it would mean we need to encode 11980 * into the mmu_idx not just the (user, negpri) information 11981 * for the current security state but also that for the 11982 * other security state, which would balloon the number 11983 * of mmu_idx values needed alarmingly. 11984 * Fortunately we can avoid this because it's not actually 11985 * possible to arbitrarily execute code from memory with 11986 * the wrong security attribute: it will always generate 11987 * an exception of some kind or another, apart from the 11988 * special case of an NS CPU executing an SG instruction 11989 * in S&NSC memory. So we always just fail the translation 11990 * here and sort things out in the exception handler 11991 * (including possibly emulating an SG instruction). 11992 */ 11993 if (sattrs.ns != !secure) { 11994 if (sattrs.nsc) { 11995 fi->type = ARMFault_QEMU_NSCExec; 11996 } else { 11997 fi->type = ARMFault_QEMU_SFault; 11998 } 11999 *page_size = sattrs.subpage ? 1 : TARGET_PAGE_SIZE; 12000 *phys_ptr = address; 12001 *prot = 0; 12002 return true; 12003 } 12004 } else { 12005 /* For data accesses we always use the MMU bank indicated 12006 * by the current CPU state, but the security attributes 12007 * might downgrade a secure access to nonsecure. 12008 */ 12009 if (sattrs.ns) { 12010 txattrs->secure = false; 12011 } else if (!secure) { 12012 /* NS access to S memory must fault. 12013 * Architecturally we should first check whether the 12014 * MPU information for this address indicates that we 12015 * are doing an unaligned access to Device memory, which 12016 * should generate a UsageFault instead. QEMU does not 12017 * currently check for that kind of unaligned access though. 12018 * If we added it we would need to do so as a special case 12019 * for M_FAKE_FSR_SFAULT in arm_v7m_cpu_do_interrupt(). 12020 */ 12021 fi->type = ARMFault_QEMU_SFault; 12022 *page_size = sattrs.subpage ? 1 : TARGET_PAGE_SIZE; 12023 *phys_ptr = address; 12024 *prot = 0; 12025 return true; 12026 } 12027 } 12028 } 12029 12030 ret = pmsav8_mpu_lookup(env, address, access_type, mmu_idx, phys_ptr, 12031 txattrs, prot, &mpu_is_subpage, fi, NULL); 12032 *page_size = sattrs.subpage || mpu_is_subpage ? 1 : TARGET_PAGE_SIZE; 12033 return ret; 12034 } 12035 12036 static bool get_phys_addr_pmsav5(CPUARMState *env, uint32_t address, 12037 MMUAccessType access_type, ARMMMUIdx mmu_idx, 12038 hwaddr *phys_ptr, int *prot, 12039 ARMMMUFaultInfo *fi) 12040 { 12041 int n; 12042 uint32_t mask; 12043 uint32_t base; 12044 bool is_user = regime_is_user(env, mmu_idx); 12045 12046 if (regime_translation_disabled(env, mmu_idx)) { 12047 /* MPU disabled. */ 12048 *phys_ptr = address; 12049 *prot = PAGE_READ | PAGE_WRITE | PAGE_EXEC; 12050 return false; 12051 } 12052 12053 *phys_ptr = address; 12054 for (n = 7; n >= 0; n--) { 12055 base = env->cp15.c6_region[n]; 12056 if ((base & 1) == 0) { 12057 continue; 12058 } 12059 mask = 1 << ((base >> 1) & 0x1f); 12060 /* Keep this shift separate from the above to avoid an 12061 (undefined) << 32. */ 12062 mask = (mask << 1) - 1; 12063 if (((base ^ address) & ~mask) == 0) { 12064 break; 12065 } 12066 } 12067 if (n < 0) { 12068 fi->type = ARMFault_Background; 12069 return true; 12070 } 12071 12072 if (access_type == MMU_INST_FETCH) { 12073 mask = env->cp15.pmsav5_insn_ap; 12074 } else { 12075 mask = env->cp15.pmsav5_data_ap; 12076 } 12077 mask = (mask >> (n * 4)) & 0xf; 12078 switch (mask) { 12079 case 0: 12080 fi->type = ARMFault_Permission; 12081 fi->level = 1; 12082 return true; 12083 case 1: 12084 if (is_user) { 12085 fi->type = ARMFault_Permission; 12086 fi->level = 1; 12087 return true; 12088 } 12089 *prot = PAGE_READ | PAGE_WRITE; 12090 break; 12091 case 2: 12092 *prot = PAGE_READ; 12093 if (!is_user) { 12094 *prot |= PAGE_WRITE; 12095 } 12096 break; 12097 case 3: 12098 *prot = PAGE_READ | PAGE_WRITE; 12099 break; 12100 case 5: 12101 if (is_user) { 12102 fi->type = ARMFault_Permission; 12103 fi->level = 1; 12104 return true; 12105 } 12106 *prot = PAGE_READ; 12107 break; 12108 case 6: 12109 *prot = PAGE_READ; 12110 break; 12111 default: 12112 /* Bad permission. */ 12113 fi->type = ARMFault_Permission; 12114 fi->level = 1; 12115 return true; 12116 } 12117 *prot |= PAGE_EXEC; 12118 return false; 12119 } 12120 12121 /* Combine either inner or outer cacheability attributes for normal 12122 * memory, according to table D4-42 and pseudocode procedure 12123 * CombineS1S2AttrHints() of ARM DDI 0487B.b (the ARMv8 ARM). 12124 * 12125 * NB: only stage 1 includes allocation hints (RW bits), leading to 12126 * some asymmetry. 12127 */ 12128 static uint8_t combine_cacheattr_nibble(uint8_t s1, uint8_t s2) 12129 { 12130 if (s1 == 4 || s2 == 4) { 12131 /* non-cacheable has precedence */ 12132 return 4; 12133 } else if (extract32(s1, 2, 2) == 0 || extract32(s1, 2, 2) == 2) { 12134 /* stage 1 write-through takes precedence */ 12135 return s1; 12136 } else if (extract32(s2, 2, 2) == 2) { 12137 /* stage 2 write-through takes precedence, but the allocation hint 12138 * is still taken from stage 1 12139 */ 12140 return (2 << 2) | extract32(s1, 0, 2); 12141 } else { /* write-back */ 12142 return s1; 12143 } 12144 } 12145 12146 /* Combine S1 and S2 cacheability/shareability attributes, per D4.5.4 12147 * and CombineS1S2Desc() 12148 * 12149 * @s1: Attributes from stage 1 walk 12150 * @s2: Attributes from stage 2 walk 12151 */ 12152 static ARMCacheAttrs combine_cacheattrs(ARMCacheAttrs s1, ARMCacheAttrs s2) 12153 { 12154 uint8_t s1lo, s2lo, s1hi, s2hi; 12155 ARMCacheAttrs ret; 12156 bool tagged = false; 12157 12158 if (s1.attrs == 0xf0) { 12159 tagged = true; 12160 s1.attrs = 0xff; 12161 } 12162 12163 s1lo = extract32(s1.attrs, 0, 4); 12164 s2lo = extract32(s2.attrs, 0, 4); 12165 s1hi = extract32(s1.attrs, 4, 4); 12166 s2hi = extract32(s2.attrs, 4, 4); 12167 12168 /* Combine shareability attributes (table D4-43) */ 12169 if (s1.shareability == 2 || s2.shareability == 2) { 12170 /* if either are outer-shareable, the result is outer-shareable */ 12171 ret.shareability = 2; 12172 } else if (s1.shareability == 3 || s2.shareability == 3) { 12173 /* if either are inner-shareable, the result is inner-shareable */ 12174 ret.shareability = 3; 12175 } else { 12176 /* both non-shareable */ 12177 ret.shareability = 0; 12178 } 12179 12180 /* Combine memory type and cacheability attributes */ 12181 if (s1hi == 0 || s2hi == 0) { 12182 /* Device has precedence over normal */ 12183 if (s1lo == 0 || s2lo == 0) { 12184 /* nGnRnE has precedence over anything */ 12185 ret.attrs = 0; 12186 } else if (s1lo == 4 || s2lo == 4) { 12187 /* non-Reordering has precedence over Reordering */ 12188 ret.attrs = 4; /* nGnRE */ 12189 } else if (s1lo == 8 || s2lo == 8) { 12190 /* non-Gathering has precedence over Gathering */ 12191 ret.attrs = 8; /* nGRE */ 12192 } else { 12193 ret.attrs = 0xc; /* GRE */ 12194 } 12195 12196 /* Any location for which the resultant memory type is any 12197 * type of Device memory is always treated as Outer Shareable. 12198 */ 12199 ret.shareability = 2; 12200 } else { /* Normal memory */ 12201 /* Outer/inner cacheability combine independently */ 12202 ret.attrs = combine_cacheattr_nibble(s1hi, s2hi) << 4 12203 | combine_cacheattr_nibble(s1lo, s2lo); 12204 12205 if (ret.attrs == 0x44) { 12206 /* Any location for which the resultant memory type is Normal 12207 * Inner Non-cacheable, Outer Non-cacheable is always treated 12208 * as Outer Shareable. 12209 */ 12210 ret.shareability = 2; 12211 } 12212 } 12213 12214 /* TODO: CombineS1S2Desc does not consider transient, only WB, RWA. */ 12215 if (tagged && ret.attrs == 0xff) { 12216 ret.attrs = 0xf0; 12217 } 12218 12219 return ret; 12220 } 12221 12222 12223 /* get_phys_addr - get the physical address for this virtual address 12224 * 12225 * Find the physical address corresponding to the given virtual address, 12226 * by doing a translation table walk on MMU based systems or using the 12227 * MPU state on MPU based systems. 12228 * 12229 * Returns false if the translation was successful. Otherwise, phys_ptr, attrs, 12230 * prot and page_size may not be filled in, and the populated fsr value provides 12231 * information on why the translation aborted, in the format of a 12232 * DFSR/IFSR fault register, with the following caveats: 12233 * * we honour the short vs long DFSR format differences. 12234 * * the WnR bit is never set (the caller must do this). 12235 * * for PSMAv5 based systems we don't bother to return a full FSR format 12236 * value. 12237 * 12238 * @env: CPUARMState 12239 * @address: virtual address to get physical address for 12240 * @access_type: 0 for read, 1 for write, 2 for execute 12241 * @mmu_idx: MMU index indicating required translation regime 12242 * @phys_ptr: set to the physical address corresponding to the virtual address 12243 * @attrs: set to the memory transaction attributes to use 12244 * @prot: set to the permissions for the page containing phys_ptr 12245 * @page_size: set to the size of the page containing phys_ptr 12246 * @fi: set to fault info if the translation fails 12247 * @cacheattrs: (if non-NULL) set to the cacheability/shareability attributes 12248 */ 12249 bool get_phys_addr(CPUARMState *env, target_ulong address, 12250 MMUAccessType access_type, ARMMMUIdx mmu_idx, 12251 hwaddr *phys_ptr, MemTxAttrs *attrs, int *prot, 12252 target_ulong *page_size, 12253 ARMMMUFaultInfo *fi, ARMCacheAttrs *cacheattrs) 12254 { 12255 ARMMMUIdx s1_mmu_idx = stage_1_mmu_idx(mmu_idx); 12256 12257 if (mmu_idx != s1_mmu_idx) { 12258 /* Call ourselves recursively to do the stage 1 and then stage 2 12259 * translations if mmu_idx is a two-stage regime. 12260 */ 12261 if (arm_feature(env, ARM_FEATURE_EL2)) { 12262 hwaddr ipa; 12263 int s2_prot; 12264 int ret; 12265 ARMCacheAttrs cacheattrs2 = {}; 12266 ARMMMUIdx s2_mmu_idx; 12267 bool is_el0; 12268 12269 ret = get_phys_addr(env, address, access_type, s1_mmu_idx, &ipa, 12270 attrs, prot, page_size, fi, cacheattrs); 12271 12272 /* If S1 fails or S2 is disabled, return early. */ 12273 if (ret || regime_translation_disabled(env, ARMMMUIdx_Stage2)) { 12274 *phys_ptr = ipa; 12275 return ret; 12276 } 12277 12278 s2_mmu_idx = attrs->secure ? ARMMMUIdx_Stage2_S : ARMMMUIdx_Stage2; 12279 is_el0 = mmu_idx == ARMMMUIdx_E10_0 || mmu_idx == ARMMMUIdx_SE10_0; 12280 12281 /* S1 is done. Now do S2 translation. */ 12282 ret = get_phys_addr_lpae(env, ipa, access_type, s2_mmu_idx, is_el0, 12283 phys_ptr, attrs, &s2_prot, 12284 page_size, fi, &cacheattrs2); 12285 fi->s2addr = ipa; 12286 /* Combine the S1 and S2 perms. */ 12287 *prot &= s2_prot; 12288 12289 /* If S2 fails, return early. */ 12290 if (ret) { 12291 return ret; 12292 } 12293 12294 /* Combine the S1 and S2 cache attributes. */ 12295 if (arm_hcr_el2_eff(env) & HCR_DC) { 12296 /* 12297 * HCR.DC forces the first stage attributes to 12298 * Normal Non-Shareable, 12299 * Inner Write-Back Read-Allocate Write-Allocate, 12300 * Outer Write-Back Read-Allocate Write-Allocate. 12301 * Do not overwrite Tagged within attrs. 12302 */ 12303 if (cacheattrs->attrs != 0xf0) { 12304 cacheattrs->attrs = 0xff; 12305 } 12306 cacheattrs->shareability = 0; 12307 } 12308 *cacheattrs = combine_cacheattrs(*cacheattrs, cacheattrs2); 12309 12310 /* Check if IPA translates to secure or non-secure PA space. */ 12311 if (arm_is_secure_below_el3(env)) { 12312 if (attrs->secure) { 12313 attrs->secure = 12314 !(env->cp15.vstcr_el2.raw_tcr & (VSTCR_SA | VSTCR_SW)); 12315 } else { 12316 attrs->secure = 12317 !((env->cp15.vtcr_el2.raw_tcr & (VTCR_NSA | VTCR_NSW)) 12318 || (env->cp15.vstcr_el2.raw_tcr & VSTCR_SA)); 12319 } 12320 } 12321 return 0; 12322 } else { 12323 /* 12324 * For non-EL2 CPUs a stage1+stage2 translation is just stage 1. 12325 */ 12326 mmu_idx = stage_1_mmu_idx(mmu_idx); 12327 } 12328 } 12329 12330 /* The page table entries may downgrade secure to non-secure, but 12331 * cannot upgrade an non-secure translation regime's attributes 12332 * to secure. 12333 */ 12334 attrs->secure = regime_is_secure(env, mmu_idx); 12335 attrs->user = regime_is_user(env, mmu_idx); 12336 12337 /* Fast Context Switch Extension. This doesn't exist at all in v8. 12338 * In v7 and earlier it affects all stage 1 translations. 12339 */ 12340 if (address < 0x02000000 && mmu_idx != ARMMMUIdx_Stage2 12341 && !arm_feature(env, ARM_FEATURE_V8)) { 12342 if (regime_el(env, mmu_idx) == 3) { 12343 address += env->cp15.fcseidr_s; 12344 } else { 12345 address += env->cp15.fcseidr_ns; 12346 } 12347 } 12348 12349 if (arm_feature(env, ARM_FEATURE_PMSA)) { 12350 bool ret; 12351 *page_size = TARGET_PAGE_SIZE; 12352 12353 if (arm_feature(env, ARM_FEATURE_V8)) { 12354 /* PMSAv8 */ 12355 ret = get_phys_addr_pmsav8(env, address, access_type, mmu_idx, 12356 phys_ptr, attrs, prot, page_size, fi); 12357 } else if (arm_feature(env, ARM_FEATURE_V7)) { 12358 /* PMSAv7 */ 12359 ret = get_phys_addr_pmsav7(env, address, access_type, mmu_idx, 12360 phys_ptr, prot, page_size, fi); 12361 } else { 12362 /* Pre-v7 MPU */ 12363 ret = get_phys_addr_pmsav5(env, address, access_type, mmu_idx, 12364 phys_ptr, prot, fi); 12365 } 12366 qemu_log_mask(CPU_LOG_MMU, "PMSA MPU lookup for %s at 0x%08" PRIx32 12367 " mmu_idx %u -> %s (prot %c%c%c)\n", 12368 access_type == MMU_DATA_LOAD ? "reading" : 12369 (access_type == MMU_DATA_STORE ? "writing" : "execute"), 12370 (uint32_t)address, mmu_idx, 12371 ret ? "Miss" : "Hit", 12372 *prot & PAGE_READ ? 'r' : '-', 12373 *prot & PAGE_WRITE ? 'w' : '-', 12374 *prot & PAGE_EXEC ? 'x' : '-'); 12375 12376 return ret; 12377 } 12378 12379 /* Definitely a real MMU, not an MPU */ 12380 12381 if (regime_translation_disabled(env, mmu_idx)) { 12382 uint64_t hcr; 12383 uint8_t memattr; 12384 12385 /* 12386 * MMU disabled. S1 addresses within aa64 translation regimes are 12387 * still checked for bounds -- see AArch64.TranslateAddressS1Off. 12388 */ 12389 if (mmu_idx != ARMMMUIdx_Stage2 && mmu_idx != ARMMMUIdx_Stage2_S) { 12390 int r_el = regime_el(env, mmu_idx); 12391 if (arm_el_is_aa64(env, r_el)) { 12392 int pamax = arm_pamax(env_archcpu(env)); 12393 uint64_t tcr = env->cp15.tcr_el[r_el].raw_tcr; 12394 int addrtop, tbi; 12395 12396 tbi = aa64_va_parameter_tbi(tcr, mmu_idx); 12397 if (access_type == MMU_INST_FETCH) { 12398 tbi &= ~aa64_va_parameter_tbid(tcr, mmu_idx); 12399 } 12400 tbi = (tbi >> extract64(address, 55, 1)) & 1; 12401 addrtop = (tbi ? 55 : 63); 12402 12403 if (extract64(address, pamax, addrtop - pamax + 1) != 0) { 12404 fi->type = ARMFault_AddressSize; 12405 fi->level = 0; 12406 fi->stage2 = false; 12407 return 1; 12408 } 12409 12410 /* 12411 * When TBI is disabled, we've just validated that all of the 12412 * bits above PAMax are zero, so logically we only need to 12413 * clear the top byte for TBI. But it's clearer to follow 12414 * the pseudocode set of addrdesc.paddress. 12415 */ 12416 address = extract64(address, 0, 52); 12417 } 12418 } 12419 *phys_ptr = address; 12420 *prot = PAGE_READ | PAGE_WRITE | PAGE_EXEC; 12421 *page_size = TARGET_PAGE_SIZE; 12422 12423 /* Fill in cacheattr a-la AArch64.TranslateAddressS1Off. */ 12424 hcr = arm_hcr_el2_eff(env); 12425 cacheattrs->shareability = 0; 12426 if (hcr & HCR_DC) { 12427 if (hcr & HCR_DCT) { 12428 memattr = 0xf0; /* Tagged, Normal, WB, RWA */ 12429 } else { 12430 memattr = 0xff; /* Normal, WB, RWA */ 12431 } 12432 } else if (access_type == MMU_INST_FETCH) { 12433 if (regime_sctlr(env, mmu_idx) & SCTLR_I) { 12434 memattr = 0xee; /* Normal, WT, RA, NT */ 12435 } else { 12436 memattr = 0x44; /* Normal, NC, No */ 12437 } 12438 cacheattrs->shareability = 2; /* outer sharable */ 12439 } else { 12440 memattr = 0x00; /* Device, nGnRnE */ 12441 } 12442 cacheattrs->attrs = memattr; 12443 return 0; 12444 } 12445 12446 if (regime_using_lpae_format(env, mmu_idx)) { 12447 return get_phys_addr_lpae(env, address, access_type, mmu_idx, false, 12448 phys_ptr, attrs, prot, page_size, 12449 fi, cacheattrs); 12450 } else if (regime_sctlr(env, mmu_idx) & SCTLR_XP) { 12451 return get_phys_addr_v6(env, address, access_type, mmu_idx, 12452 phys_ptr, attrs, prot, page_size, fi); 12453 } else { 12454 return get_phys_addr_v5(env, address, access_type, mmu_idx, 12455 phys_ptr, prot, page_size, fi); 12456 } 12457 } 12458 12459 hwaddr arm_cpu_get_phys_page_attrs_debug(CPUState *cs, vaddr addr, 12460 MemTxAttrs *attrs) 12461 { 12462 ARMCPU *cpu = ARM_CPU(cs); 12463 CPUARMState *env = &cpu->env; 12464 hwaddr phys_addr; 12465 target_ulong page_size; 12466 int prot; 12467 bool ret; 12468 ARMMMUFaultInfo fi = {}; 12469 ARMMMUIdx mmu_idx = arm_mmu_idx(env); 12470 ARMCacheAttrs cacheattrs = {}; 12471 12472 *attrs = (MemTxAttrs) {}; 12473 12474 ret = get_phys_addr(env, addr, MMU_DATA_LOAD, mmu_idx, &phys_addr, 12475 attrs, &prot, &page_size, &fi, &cacheattrs); 12476 12477 if (ret) { 12478 return -1; 12479 } 12480 return phys_addr; 12481 } 12482 12483 #endif 12484 12485 /* Note that signed overflow is undefined in C. The following routines are 12486 careful to use unsigned types where modulo arithmetic is required. 12487 Failure to do so _will_ break on newer gcc. */ 12488 12489 /* Signed saturating arithmetic. */ 12490 12491 /* Perform 16-bit signed saturating addition. */ 12492 static inline uint16_t add16_sat(uint16_t a, uint16_t b) 12493 { 12494 uint16_t res; 12495 12496 res = a + b; 12497 if (((res ^ a) & 0x8000) && !((a ^ b) & 0x8000)) { 12498 if (a & 0x8000) 12499 res = 0x8000; 12500 else 12501 res = 0x7fff; 12502 } 12503 return res; 12504 } 12505 12506 /* Perform 8-bit signed saturating addition. */ 12507 static inline uint8_t add8_sat(uint8_t a, uint8_t b) 12508 { 12509 uint8_t res; 12510 12511 res = a + b; 12512 if (((res ^ a) & 0x80) && !((a ^ b) & 0x80)) { 12513 if (a & 0x80) 12514 res = 0x80; 12515 else 12516 res = 0x7f; 12517 } 12518 return res; 12519 } 12520 12521 /* Perform 16-bit signed saturating subtraction. */ 12522 static inline uint16_t sub16_sat(uint16_t a, uint16_t b) 12523 { 12524 uint16_t res; 12525 12526 res = a - b; 12527 if (((res ^ a) & 0x8000) && ((a ^ b) & 0x8000)) { 12528 if (a & 0x8000) 12529 res = 0x8000; 12530 else 12531 res = 0x7fff; 12532 } 12533 return res; 12534 } 12535 12536 /* Perform 8-bit signed saturating subtraction. */ 12537 static inline uint8_t sub8_sat(uint8_t a, uint8_t b) 12538 { 12539 uint8_t res; 12540 12541 res = a - b; 12542 if (((res ^ a) & 0x80) && ((a ^ b) & 0x80)) { 12543 if (a & 0x80) 12544 res = 0x80; 12545 else 12546 res = 0x7f; 12547 } 12548 return res; 12549 } 12550 12551 #define ADD16(a, b, n) RESULT(add16_sat(a, b), n, 16); 12552 #define SUB16(a, b, n) RESULT(sub16_sat(a, b), n, 16); 12553 #define ADD8(a, b, n) RESULT(add8_sat(a, b), n, 8); 12554 #define SUB8(a, b, n) RESULT(sub8_sat(a, b), n, 8); 12555 #define PFX q 12556 12557 #include "op_addsub.h" 12558 12559 /* Unsigned saturating arithmetic. */ 12560 static inline uint16_t add16_usat(uint16_t a, uint16_t b) 12561 { 12562 uint16_t res; 12563 res = a + b; 12564 if (res < a) 12565 res = 0xffff; 12566 return res; 12567 } 12568 12569 static inline uint16_t sub16_usat(uint16_t a, uint16_t b) 12570 { 12571 if (a > b) 12572 return a - b; 12573 else 12574 return 0; 12575 } 12576 12577 static inline uint8_t add8_usat(uint8_t a, uint8_t b) 12578 { 12579 uint8_t res; 12580 res = a + b; 12581 if (res < a) 12582 res = 0xff; 12583 return res; 12584 } 12585 12586 static inline uint8_t sub8_usat(uint8_t a, uint8_t b) 12587 { 12588 if (a > b) 12589 return a - b; 12590 else 12591 return 0; 12592 } 12593 12594 #define ADD16(a, b, n) RESULT(add16_usat(a, b), n, 16); 12595 #define SUB16(a, b, n) RESULT(sub16_usat(a, b), n, 16); 12596 #define ADD8(a, b, n) RESULT(add8_usat(a, b), n, 8); 12597 #define SUB8(a, b, n) RESULT(sub8_usat(a, b), n, 8); 12598 #define PFX uq 12599 12600 #include "op_addsub.h" 12601 12602 /* Signed modulo arithmetic. */ 12603 #define SARITH16(a, b, n, op) do { \ 12604 int32_t sum; \ 12605 sum = (int32_t)(int16_t)(a) op (int32_t)(int16_t)(b); \ 12606 RESULT(sum, n, 16); \ 12607 if (sum >= 0) \ 12608 ge |= 3 << (n * 2); \ 12609 } while(0) 12610 12611 #define SARITH8(a, b, n, op) do { \ 12612 int32_t sum; \ 12613 sum = (int32_t)(int8_t)(a) op (int32_t)(int8_t)(b); \ 12614 RESULT(sum, n, 8); \ 12615 if (sum >= 0) \ 12616 ge |= 1 << n; \ 12617 } while(0) 12618 12619 12620 #define ADD16(a, b, n) SARITH16(a, b, n, +) 12621 #define SUB16(a, b, n) SARITH16(a, b, n, -) 12622 #define ADD8(a, b, n) SARITH8(a, b, n, +) 12623 #define SUB8(a, b, n) SARITH8(a, b, n, -) 12624 #define PFX s 12625 #define ARITH_GE 12626 12627 #include "op_addsub.h" 12628 12629 /* Unsigned modulo arithmetic. */ 12630 #define ADD16(a, b, n) do { \ 12631 uint32_t sum; \ 12632 sum = (uint32_t)(uint16_t)(a) + (uint32_t)(uint16_t)(b); \ 12633 RESULT(sum, n, 16); \ 12634 if ((sum >> 16) == 1) \ 12635 ge |= 3 << (n * 2); \ 12636 } while(0) 12637 12638 #define ADD8(a, b, n) do { \ 12639 uint32_t sum; \ 12640 sum = (uint32_t)(uint8_t)(a) + (uint32_t)(uint8_t)(b); \ 12641 RESULT(sum, n, 8); \ 12642 if ((sum >> 8) == 1) \ 12643 ge |= 1 << n; \ 12644 } while(0) 12645 12646 #define SUB16(a, b, n) do { \ 12647 uint32_t sum; \ 12648 sum = (uint32_t)(uint16_t)(a) - (uint32_t)(uint16_t)(b); \ 12649 RESULT(sum, n, 16); \ 12650 if ((sum >> 16) == 0) \ 12651 ge |= 3 << (n * 2); \ 12652 } while(0) 12653 12654 #define SUB8(a, b, n) do { \ 12655 uint32_t sum; \ 12656 sum = (uint32_t)(uint8_t)(a) - (uint32_t)(uint8_t)(b); \ 12657 RESULT(sum, n, 8); \ 12658 if ((sum >> 8) == 0) \ 12659 ge |= 1 << n; \ 12660 } while(0) 12661 12662 #define PFX u 12663 #define ARITH_GE 12664 12665 #include "op_addsub.h" 12666 12667 /* Halved signed arithmetic. */ 12668 #define ADD16(a, b, n) \ 12669 RESULT(((int32_t)(int16_t)(a) + (int32_t)(int16_t)(b)) >> 1, n, 16) 12670 #define SUB16(a, b, n) \ 12671 RESULT(((int32_t)(int16_t)(a) - (int32_t)(int16_t)(b)) >> 1, n, 16) 12672 #define ADD8(a, b, n) \ 12673 RESULT(((int32_t)(int8_t)(a) + (int32_t)(int8_t)(b)) >> 1, n, 8) 12674 #define SUB8(a, b, n) \ 12675 RESULT(((int32_t)(int8_t)(a) - (int32_t)(int8_t)(b)) >> 1, n, 8) 12676 #define PFX sh 12677 12678 #include "op_addsub.h" 12679 12680 /* Halved unsigned arithmetic. */ 12681 #define ADD16(a, b, n) \ 12682 RESULT(((uint32_t)(uint16_t)(a) + (uint32_t)(uint16_t)(b)) >> 1, n, 16) 12683 #define SUB16(a, b, n) \ 12684 RESULT(((uint32_t)(uint16_t)(a) - (uint32_t)(uint16_t)(b)) >> 1, n, 16) 12685 #define ADD8(a, b, n) \ 12686 RESULT(((uint32_t)(uint8_t)(a) + (uint32_t)(uint8_t)(b)) >> 1, n, 8) 12687 #define SUB8(a, b, n) \ 12688 RESULT(((uint32_t)(uint8_t)(a) - (uint32_t)(uint8_t)(b)) >> 1, n, 8) 12689 #define PFX uh 12690 12691 #include "op_addsub.h" 12692 12693 static inline uint8_t do_usad(uint8_t a, uint8_t b) 12694 { 12695 if (a > b) 12696 return a - b; 12697 else 12698 return b - a; 12699 } 12700 12701 /* Unsigned sum of absolute byte differences. */ 12702 uint32_t HELPER(usad8)(uint32_t a, uint32_t b) 12703 { 12704 uint32_t sum; 12705 sum = do_usad(a, b); 12706 sum += do_usad(a >> 8, b >> 8); 12707 sum += do_usad(a >> 16, b >> 16); 12708 sum += do_usad(a >> 24, b >> 24); 12709 return sum; 12710 } 12711 12712 /* For ARMv6 SEL instruction. */ 12713 uint32_t HELPER(sel_flags)(uint32_t flags, uint32_t a, uint32_t b) 12714 { 12715 uint32_t mask; 12716 12717 mask = 0; 12718 if (flags & 1) 12719 mask |= 0xff; 12720 if (flags & 2) 12721 mask |= 0xff00; 12722 if (flags & 4) 12723 mask |= 0xff0000; 12724 if (flags & 8) 12725 mask |= 0xff000000; 12726 return (a & mask) | (b & ~mask); 12727 } 12728 12729 /* CRC helpers. 12730 * The upper bytes of val (above the number specified by 'bytes') must have 12731 * been zeroed out by the caller. 12732 */ 12733 uint32_t HELPER(crc32)(uint32_t acc, uint32_t val, uint32_t bytes) 12734 { 12735 uint8_t buf[4]; 12736 12737 stl_le_p(buf, val); 12738 12739 /* zlib crc32 converts the accumulator and output to one's complement. */ 12740 return crc32(acc ^ 0xffffffff, buf, bytes) ^ 0xffffffff; 12741 } 12742 12743 uint32_t HELPER(crc32c)(uint32_t acc, uint32_t val, uint32_t bytes) 12744 { 12745 uint8_t buf[4]; 12746 12747 stl_le_p(buf, val); 12748 12749 /* Linux crc32c converts the output to one's complement. */ 12750 return crc32c(acc, buf, bytes) ^ 0xffffffff; 12751 } 12752 12753 /* Return the exception level to which FP-disabled exceptions should 12754 * be taken, or 0 if FP is enabled. 12755 */ 12756 int fp_exception_el(CPUARMState *env, int cur_el) 12757 { 12758 #ifndef CONFIG_USER_ONLY 12759 /* CPACR and the CPTR registers don't exist before v6, so FP is 12760 * always accessible 12761 */ 12762 if (!arm_feature(env, ARM_FEATURE_V6)) { 12763 return 0; 12764 } 12765 12766 if (arm_feature(env, ARM_FEATURE_M)) { 12767 /* CPACR can cause a NOCP UsageFault taken to current security state */ 12768 if (!v7m_cpacr_pass(env, env->v7m.secure, cur_el != 0)) { 12769 return 1; 12770 } 12771 12772 if (arm_feature(env, ARM_FEATURE_M_SECURITY) && !env->v7m.secure) { 12773 if (!extract32(env->v7m.nsacr, 10, 1)) { 12774 /* FP insns cause a NOCP UsageFault taken to Secure */ 12775 return 3; 12776 } 12777 } 12778 12779 return 0; 12780 } 12781 12782 /* The CPACR controls traps to EL1, or PL1 if we're 32 bit: 12783 * 0, 2 : trap EL0 and EL1/PL1 accesses 12784 * 1 : trap only EL0 accesses 12785 * 3 : trap no accesses 12786 * This register is ignored if E2H+TGE are both set. 12787 */ 12788 if ((arm_hcr_el2_eff(env) & (HCR_E2H | HCR_TGE)) != (HCR_E2H | HCR_TGE)) { 12789 int fpen = extract32(env->cp15.cpacr_el1, 20, 2); 12790 12791 switch (fpen) { 12792 case 0: 12793 case 2: 12794 if (cur_el == 0 || cur_el == 1) { 12795 /* Trap to PL1, which might be EL1 or EL3 */ 12796 if (arm_is_secure(env) && !arm_el_is_aa64(env, 3)) { 12797 return 3; 12798 } 12799 return 1; 12800 } 12801 if (cur_el == 3 && !is_a64(env)) { 12802 /* Secure PL1 running at EL3 */ 12803 return 3; 12804 } 12805 break; 12806 case 1: 12807 if (cur_el == 0) { 12808 return 1; 12809 } 12810 break; 12811 case 3: 12812 break; 12813 } 12814 } 12815 12816 /* 12817 * The NSACR allows A-profile AArch32 EL3 and M-profile secure mode 12818 * to control non-secure access to the FPU. It doesn't have any 12819 * effect if EL3 is AArch64 or if EL3 doesn't exist at all. 12820 */ 12821 if ((arm_feature(env, ARM_FEATURE_EL3) && !arm_el_is_aa64(env, 3) && 12822 cur_el <= 2 && !arm_is_secure_below_el3(env))) { 12823 if (!extract32(env->cp15.nsacr, 10, 1)) { 12824 /* FP insns act as UNDEF */ 12825 return cur_el == 2 ? 2 : 1; 12826 } 12827 } 12828 12829 /* For the CPTR registers we don't need to guard with an ARM_FEATURE 12830 * check because zero bits in the registers mean "don't trap". 12831 */ 12832 12833 /* CPTR_EL2 : present in v7VE or v8 */ 12834 if (cur_el <= 2 && extract32(env->cp15.cptr_el[2], 10, 1) 12835 && arm_is_el2_enabled(env)) { 12836 /* Trap FP ops at EL2, NS-EL1 or NS-EL0 to EL2 */ 12837 return 2; 12838 } 12839 12840 /* CPTR_EL3 : present in v8 */ 12841 if (extract32(env->cp15.cptr_el[3], 10, 1)) { 12842 /* Trap all FP ops to EL3 */ 12843 return 3; 12844 } 12845 #endif 12846 return 0; 12847 } 12848 12849 /* Return the exception level we're running at if this is our mmu_idx */ 12850 int arm_mmu_idx_to_el(ARMMMUIdx mmu_idx) 12851 { 12852 if (mmu_idx & ARM_MMU_IDX_M) { 12853 return mmu_idx & ARM_MMU_IDX_M_PRIV; 12854 } 12855 12856 switch (mmu_idx) { 12857 case ARMMMUIdx_E10_0: 12858 case ARMMMUIdx_E20_0: 12859 case ARMMMUIdx_SE10_0: 12860 case ARMMMUIdx_SE20_0: 12861 return 0; 12862 case ARMMMUIdx_E10_1: 12863 case ARMMMUIdx_E10_1_PAN: 12864 case ARMMMUIdx_SE10_1: 12865 case ARMMMUIdx_SE10_1_PAN: 12866 return 1; 12867 case ARMMMUIdx_E2: 12868 case ARMMMUIdx_E20_2: 12869 case ARMMMUIdx_E20_2_PAN: 12870 case ARMMMUIdx_SE2: 12871 case ARMMMUIdx_SE20_2: 12872 case ARMMMUIdx_SE20_2_PAN: 12873 return 2; 12874 case ARMMMUIdx_SE3: 12875 return 3; 12876 default: 12877 g_assert_not_reached(); 12878 } 12879 } 12880 12881 #ifndef CONFIG_TCG 12882 ARMMMUIdx arm_v7m_mmu_idx_for_secstate(CPUARMState *env, bool secstate) 12883 { 12884 g_assert_not_reached(); 12885 } 12886 #endif 12887 12888 ARMMMUIdx arm_mmu_idx_el(CPUARMState *env, int el) 12889 { 12890 ARMMMUIdx idx; 12891 uint64_t hcr; 12892 12893 if (arm_feature(env, ARM_FEATURE_M)) { 12894 return arm_v7m_mmu_idx_for_secstate(env, env->v7m.secure); 12895 } 12896 12897 /* See ARM pseudo-function ELIsInHost. */ 12898 switch (el) { 12899 case 0: 12900 hcr = arm_hcr_el2_eff(env); 12901 if ((hcr & (HCR_E2H | HCR_TGE)) == (HCR_E2H | HCR_TGE)) { 12902 idx = ARMMMUIdx_E20_0; 12903 } else { 12904 idx = ARMMMUIdx_E10_0; 12905 } 12906 break; 12907 case 1: 12908 if (env->pstate & PSTATE_PAN) { 12909 idx = ARMMMUIdx_E10_1_PAN; 12910 } else { 12911 idx = ARMMMUIdx_E10_1; 12912 } 12913 break; 12914 case 2: 12915 /* Note that TGE does not apply at EL2. */ 12916 if (arm_hcr_el2_eff(env) & HCR_E2H) { 12917 if (env->pstate & PSTATE_PAN) { 12918 idx = ARMMMUIdx_E20_2_PAN; 12919 } else { 12920 idx = ARMMMUIdx_E20_2; 12921 } 12922 } else { 12923 idx = ARMMMUIdx_E2; 12924 } 12925 break; 12926 case 3: 12927 return ARMMMUIdx_SE3; 12928 default: 12929 g_assert_not_reached(); 12930 } 12931 12932 if (arm_is_secure_below_el3(env)) { 12933 idx &= ~ARM_MMU_IDX_A_NS; 12934 } 12935 12936 return idx; 12937 } 12938 12939 ARMMMUIdx arm_mmu_idx(CPUARMState *env) 12940 { 12941 return arm_mmu_idx_el(env, arm_current_el(env)); 12942 } 12943 12944 #ifndef CONFIG_USER_ONLY 12945 ARMMMUIdx arm_stage1_mmu_idx(CPUARMState *env) 12946 { 12947 return stage_1_mmu_idx(arm_mmu_idx(env)); 12948 } 12949 #endif 12950 12951 static uint32_t rebuild_hflags_common(CPUARMState *env, int fp_el, 12952 ARMMMUIdx mmu_idx, uint32_t flags) 12953 { 12954 flags = FIELD_DP32(flags, TBFLAG_ANY, FPEXC_EL, fp_el); 12955 flags = FIELD_DP32(flags, TBFLAG_ANY, MMUIDX, 12956 arm_to_core_mmu_idx(mmu_idx)); 12957 12958 if (arm_singlestep_active(env)) { 12959 flags = FIELD_DP32(flags, TBFLAG_ANY, SS_ACTIVE, 1); 12960 } 12961 return flags; 12962 } 12963 12964 static uint32_t rebuild_hflags_common_32(CPUARMState *env, int fp_el, 12965 ARMMMUIdx mmu_idx, uint32_t flags) 12966 { 12967 bool sctlr_b = arm_sctlr_b(env); 12968 12969 if (sctlr_b) { 12970 flags = FIELD_DP32(flags, TBFLAG_A32, SCTLR_B, 1); 12971 } 12972 if (arm_cpu_data_is_big_endian_a32(env, sctlr_b)) { 12973 flags = FIELD_DP32(flags, TBFLAG_ANY, BE_DATA, 1); 12974 } 12975 flags = FIELD_DP32(flags, TBFLAG_A32, NS, !access_secure_reg(env)); 12976 12977 return rebuild_hflags_common(env, fp_el, mmu_idx, flags); 12978 } 12979 12980 static uint32_t rebuild_hflags_m32(CPUARMState *env, int fp_el, 12981 ARMMMUIdx mmu_idx) 12982 { 12983 uint32_t flags = 0; 12984 12985 if (arm_v7m_is_handler_mode(env)) { 12986 flags = FIELD_DP32(flags, TBFLAG_M32, HANDLER, 1); 12987 } 12988 12989 /* 12990 * v8M always applies stack limit checks unless CCR.STKOFHFNMIGN 12991 * is suppressing them because the requested execution priority 12992 * is less than 0. 12993 */ 12994 if (arm_feature(env, ARM_FEATURE_V8) && 12995 !((mmu_idx & ARM_MMU_IDX_M_NEGPRI) && 12996 (env->v7m.ccr[env->v7m.secure] & R_V7M_CCR_STKOFHFNMIGN_MASK))) { 12997 flags = FIELD_DP32(flags, TBFLAG_M32, STACKCHECK, 1); 12998 } 12999 13000 return rebuild_hflags_common_32(env, fp_el, mmu_idx, flags); 13001 } 13002 13003 static uint32_t rebuild_hflags_aprofile(CPUARMState *env) 13004 { 13005 int flags = 0; 13006 13007 flags = FIELD_DP32(flags, TBFLAG_ANY, DEBUG_TARGET_EL, 13008 arm_debug_target_el(env)); 13009 return flags; 13010 } 13011 13012 static uint32_t rebuild_hflags_a32(CPUARMState *env, int fp_el, 13013 ARMMMUIdx mmu_idx) 13014 { 13015 uint32_t flags = rebuild_hflags_aprofile(env); 13016 13017 if (arm_el_is_aa64(env, 1)) { 13018 flags = FIELD_DP32(flags, TBFLAG_A32, VFPEN, 1); 13019 } 13020 13021 if (arm_current_el(env) < 2 && env->cp15.hstr_el2 && 13022 (arm_hcr_el2_eff(env) & (HCR_E2H | HCR_TGE)) != (HCR_E2H | HCR_TGE)) { 13023 flags = FIELD_DP32(flags, TBFLAG_A32, HSTR_ACTIVE, 1); 13024 } 13025 13026 return rebuild_hflags_common_32(env, fp_el, mmu_idx, flags); 13027 } 13028 13029 static uint32_t rebuild_hflags_a64(CPUARMState *env, int el, int fp_el, 13030 ARMMMUIdx mmu_idx) 13031 { 13032 uint32_t flags = rebuild_hflags_aprofile(env); 13033 ARMMMUIdx stage1 = stage_1_mmu_idx(mmu_idx); 13034 uint64_t tcr = regime_tcr(env, mmu_idx)->raw_tcr; 13035 uint64_t sctlr; 13036 int tbii, tbid; 13037 13038 flags = FIELD_DP32(flags, TBFLAG_ANY, AARCH64_STATE, 1); 13039 13040 /* Get control bits for tagged addresses. */ 13041 tbid = aa64_va_parameter_tbi(tcr, mmu_idx); 13042 tbii = tbid & ~aa64_va_parameter_tbid(tcr, mmu_idx); 13043 13044 flags = FIELD_DP32(flags, TBFLAG_A64, TBII, tbii); 13045 flags = FIELD_DP32(flags, TBFLAG_A64, TBID, tbid); 13046 13047 if (cpu_isar_feature(aa64_sve, env_archcpu(env))) { 13048 int sve_el = sve_exception_el(env, el); 13049 uint32_t zcr_len; 13050 13051 /* 13052 * If SVE is disabled, but FP is enabled, 13053 * then the effective len is 0. 13054 */ 13055 if (sve_el != 0 && fp_el == 0) { 13056 zcr_len = 0; 13057 } else { 13058 zcr_len = sve_zcr_len_for_el(env, el); 13059 } 13060 flags = FIELD_DP32(flags, TBFLAG_A64, SVEEXC_EL, sve_el); 13061 flags = FIELD_DP32(flags, TBFLAG_A64, ZCR_LEN, zcr_len); 13062 } 13063 13064 sctlr = regime_sctlr(env, stage1); 13065 13066 if (arm_cpu_data_is_big_endian_a64(el, sctlr)) { 13067 flags = FIELD_DP32(flags, TBFLAG_ANY, BE_DATA, 1); 13068 } 13069 13070 if (cpu_isar_feature(aa64_pauth, env_archcpu(env))) { 13071 /* 13072 * In order to save space in flags, we record only whether 13073 * pauth is "inactive", meaning all insns are implemented as 13074 * a nop, or "active" when some action must be performed. 13075 * The decision of which action to take is left to a helper. 13076 */ 13077 if (sctlr & (SCTLR_EnIA | SCTLR_EnIB | SCTLR_EnDA | SCTLR_EnDB)) { 13078 flags = FIELD_DP32(flags, TBFLAG_A64, PAUTH_ACTIVE, 1); 13079 } 13080 } 13081 13082 if (cpu_isar_feature(aa64_bti, env_archcpu(env))) { 13083 /* Note that SCTLR_EL[23].BT == SCTLR_BT1. */ 13084 if (sctlr & (el == 0 ? SCTLR_BT0 : SCTLR_BT1)) { 13085 flags = FIELD_DP32(flags, TBFLAG_A64, BT, 1); 13086 } 13087 } 13088 13089 /* Compute the condition for using AccType_UNPRIV for LDTR et al. */ 13090 if (!(env->pstate & PSTATE_UAO)) { 13091 switch (mmu_idx) { 13092 case ARMMMUIdx_E10_1: 13093 case ARMMMUIdx_E10_1_PAN: 13094 case ARMMMUIdx_SE10_1: 13095 case ARMMMUIdx_SE10_1_PAN: 13096 /* TODO: ARMv8.3-NV */ 13097 flags = FIELD_DP32(flags, TBFLAG_A64, UNPRIV, 1); 13098 break; 13099 case ARMMMUIdx_E20_2: 13100 case ARMMMUIdx_E20_2_PAN: 13101 case ARMMMUIdx_SE20_2: 13102 case ARMMMUIdx_SE20_2_PAN: 13103 /* 13104 * Note that EL20_2 is gated by HCR_EL2.E2H == 1, but EL20_0 is 13105 * gated by HCR_EL2.<E2H,TGE> == '11', and so is LDTR. 13106 */ 13107 if (env->cp15.hcr_el2 & HCR_TGE) { 13108 flags = FIELD_DP32(flags, TBFLAG_A64, UNPRIV, 1); 13109 } 13110 break; 13111 default: 13112 break; 13113 } 13114 } 13115 13116 if (cpu_isar_feature(aa64_mte, env_archcpu(env))) { 13117 /* 13118 * Set MTE_ACTIVE if any access may be Checked, and leave clear 13119 * if all accesses must be Unchecked: 13120 * 1) If no TBI, then there are no tags in the address to check, 13121 * 2) If Tag Check Override, then all accesses are Unchecked, 13122 * 3) If Tag Check Fail == 0, then Checked access have no effect, 13123 * 4) If no Allocation Tag Access, then all accesses are Unchecked. 13124 */ 13125 if (allocation_tag_access_enabled(env, el, sctlr)) { 13126 flags = FIELD_DP32(flags, TBFLAG_A64, ATA, 1); 13127 if (tbid 13128 && !(env->pstate & PSTATE_TCO) 13129 && (sctlr & (el == 0 ? SCTLR_TCF0 : SCTLR_TCF))) { 13130 flags = FIELD_DP32(flags, TBFLAG_A64, MTE_ACTIVE, 1); 13131 } 13132 } 13133 /* And again for unprivileged accesses, if required. */ 13134 if (FIELD_EX32(flags, TBFLAG_A64, UNPRIV) 13135 && tbid 13136 && !(env->pstate & PSTATE_TCO) 13137 && (sctlr & SCTLR_TCF) 13138 && allocation_tag_access_enabled(env, 0, sctlr)) { 13139 flags = FIELD_DP32(flags, TBFLAG_A64, MTE0_ACTIVE, 1); 13140 } 13141 /* Cache TCMA as well as TBI. */ 13142 flags = FIELD_DP32(flags, TBFLAG_A64, TCMA, 13143 aa64_va_parameter_tcma(tcr, mmu_idx)); 13144 } 13145 13146 return rebuild_hflags_common(env, fp_el, mmu_idx, flags); 13147 } 13148 13149 static uint32_t rebuild_hflags_internal(CPUARMState *env) 13150 { 13151 int el = arm_current_el(env); 13152 int fp_el = fp_exception_el(env, el); 13153 ARMMMUIdx mmu_idx = arm_mmu_idx_el(env, el); 13154 13155 if (is_a64(env)) { 13156 return rebuild_hflags_a64(env, el, fp_el, mmu_idx); 13157 } else if (arm_feature(env, ARM_FEATURE_M)) { 13158 return rebuild_hflags_m32(env, fp_el, mmu_idx); 13159 } else { 13160 return rebuild_hflags_a32(env, fp_el, mmu_idx); 13161 } 13162 } 13163 13164 void arm_rebuild_hflags(CPUARMState *env) 13165 { 13166 env->hflags = rebuild_hflags_internal(env); 13167 } 13168 13169 /* 13170 * If we have triggered a EL state change we can't rely on the 13171 * translator having passed it to us, we need to recompute. 13172 */ 13173 void HELPER(rebuild_hflags_m32_newel)(CPUARMState *env) 13174 { 13175 int el = arm_current_el(env); 13176 int fp_el = fp_exception_el(env, el); 13177 ARMMMUIdx mmu_idx = arm_mmu_idx_el(env, el); 13178 env->hflags = rebuild_hflags_m32(env, fp_el, mmu_idx); 13179 } 13180 13181 void HELPER(rebuild_hflags_m32)(CPUARMState *env, int el) 13182 { 13183 int fp_el = fp_exception_el(env, el); 13184 ARMMMUIdx mmu_idx = arm_mmu_idx_el(env, el); 13185 13186 env->hflags = rebuild_hflags_m32(env, fp_el, mmu_idx); 13187 } 13188 13189 /* 13190 * If we have triggered a EL state change we can't rely on the 13191 * translator having passed it to us, we need to recompute. 13192 */ 13193 void HELPER(rebuild_hflags_a32_newel)(CPUARMState *env) 13194 { 13195 int el = arm_current_el(env); 13196 int fp_el = fp_exception_el(env, el); 13197 ARMMMUIdx mmu_idx = arm_mmu_idx_el(env, el); 13198 env->hflags = rebuild_hflags_a32(env, fp_el, mmu_idx); 13199 } 13200 13201 void HELPER(rebuild_hflags_a32)(CPUARMState *env, int el) 13202 { 13203 int fp_el = fp_exception_el(env, el); 13204 ARMMMUIdx mmu_idx = arm_mmu_idx_el(env, el); 13205 13206 env->hflags = rebuild_hflags_a32(env, fp_el, mmu_idx); 13207 } 13208 13209 void HELPER(rebuild_hflags_a64)(CPUARMState *env, int el) 13210 { 13211 int fp_el = fp_exception_el(env, el); 13212 ARMMMUIdx mmu_idx = arm_mmu_idx_el(env, el); 13213 13214 env->hflags = rebuild_hflags_a64(env, el, fp_el, mmu_idx); 13215 } 13216 13217 static inline void assert_hflags_rebuild_correctly(CPUARMState *env) 13218 { 13219 #ifdef CONFIG_DEBUG_TCG 13220 uint32_t env_flags_current = env->hflags; 13221 uint32_t env_flags_rebuilt = rebuild_hflags_internal(env); 13222 13223 if (unlikely(env_flags_current != env_flags_rebuilt)) { 13224 fprintf(stderr, "TCG hflags mismatch (current:0x%08x rebuilt:0x%08x)\n", 13225 env_flags_current, env_flags_rebuilt); 13226 abort(); 13227 } 13228 #endif 13229 } 13230 13231 void cpu_get_tb_cpu_state(CPUARMState *env, target_ulong *pc, 13232 target_ulong *cs_base, uint32_t *pflags) 13233 { 13234 uint32_t flags = env->hflags; 13235 13236 *cs_base = 0; 13237 assert_hflags_rebuild_correctly(env); 13238 13239 if (FIELD_EX32(flags, TBFLAG_ANY, AARCH64_STATE)) { 13240 *pc = env->pc; 13241 if (cpu_isar_feature(aa64_bti, env_archcpu(env))) { 13242 flags = FIELD_DP32(flags, TBFLAG_A64, BTYPE, env->btype); 13243 } 13244 } else { 13245 *pc = env->regs[15]; 13246 13247 if (arm_feature(env, ARM_FEATURE_M)) { 13248 if (arm_feature(env, ARM_FEATURE_M_SECURITY) && 13249 FIELD_EX32(env->v7m.fpccr[M_REG_S], V7M_FPCCR, S) 13250 != env->v7m.secure) { 13251 flags = FIELD_DP32(flags, TBFLAG_M32, FPCCR_S_WRONG, 1); 13252 } 13253 13254 if ((env->v7m.fpccr[env->v7m.secure] & R_V7M_FPCCR_ASPEN_MASK) && 13255 (!(env->v7m.control[M_REG_S] & R_V7M_CONTROL_FPCA_MASK) || 13256 (env->v7m.secure && 13257 !(env->v7m.control[M_REG_S] & R_V7M_CONTROL_SFPA_MASK)))) { 13258 /* 13259 * ASPEN is set, but FPCA/SFPA indicate that there is no 13260 * active FP context; we must create a new FP context before 13261 * executing any FP insn. 13262 */ 13263 flags = FIELD_DP32(flags, TBFLAG_M32, NEW_FP_CTXT_NEEDED, 1); 13264 } 13265 13266 bool is_secure = env->v7m.fpccr[M_REG_S] & R_V7M_FPCCR_S_MASK; 13267 if (env->v7m.fpccr[is_secure] & R_V7M_FPCCR_LSPACT_MASK) { 13268 flags = FIELD_DP32(flags, TBFLAG_M32, LSPACT, 1); 13269 } 13270 } else { 13271 /* 13272 * Note that XSCALE_CPAR shares bits with VECSTRIDE. 13273 * Note that VECLEN+VECSTRIDE are RES0 for M-profile. 13274 */ 13275 if (arm_feature(env, ARM_FEATURE_XSCALE)) { 13276 flags = FIELD_DP32(flags, TBFLAG_A32, 13277 XSCALE_CPAR, env->cp15.c15_cpar); 13278 } else { 13279 flags = FIELD_DP32(flags, TBFLAG_A32, VECLEN, 13280 env->vfp.vec_len); 13281 flags = FIELD_DP32(flags, TBFLAG_A32, VECSTRIDE, 13282 env->vfp.vec_stride); 13283 } 13284 if (env->vfp.xregs[ARM_VFP_FPEXC] & (1 << 30)) { 13285 flags = FIELD_DP32(flags, TBFLAG_A32, VFPEN, 1); 13286 } 13287 } 13288 13289 flags = FIELD_DP32(flags, TBFLAG_AM32, THUMB, env->thumb); 13290 flags = FIELD_DP32(flags, TBFLAG_AM32, CONDEXEC, env->condexec_bits); 13291 } 13292 13293 /* 13294 * The SS_ACTIVE and PSTATE_SS bits correspond to the state machine 13295 * states defined in the ARM ARM for software singlestep: 13296 * SS_ACTIVE PSTATE.SS State 13297 * 0 x Inactive (the TB flag for SS is always 0) 13298 * 1 0 Active-pending 13299 * 1 1 Active-not-pending 13300 * SS_ACTIVE is set in hflags; PSTATE_SS is computed every TB. 13301 */ 13302 if (FIELD_EX32(flags, TBFLAG_ANY, SS_ACTIVE) && 13303 (env->pstate & PSTATE_SS)) { 13304 flags = FIELD_DP32(flags, TBFLAG_ANY, PSTATE_SS, 1); 13305 } 13306 13307 *pflags = flags; 13308 } 13309 13310 #ifdef TARGET_AARCH64 13311 /* 13312 * The manual says that when SVE is enabled and VQ is widened the 13313 * implementation is allowed to zero the previously inaccessible 13314 * portion of the registers. The corollary to that is that when 13315 * SVE is enabled and VQ is narrowed we are also allowed to zero 13316 * the now inaccessible portion of the registers. 13317 * 13318 * The intent of this is that no predicate bit beyond VQ is ever set. 13319 * Which means that some operations on predicate registers themselves 13320 * may operate on full uint64_t or even unrolled across the maximum 13321 * uint64_t[4]. Performing 4 bits of host arithmetic unconditionally 13322 * may well be cheaper than conditionals to restrict the operation 13323 * to the relevant portion of a uint16_t[16]. 13324 */ 13325 void aarch64_sve_narrow_vq(CPUARMState *env, unsigned vq) 13326 { 13327 int i, j; 13328 uint64_t pmask; 13329 13330 assert(vq >= 1 && vq <= ARM_MAX_VQ); 13331 assert(vq <= env_archcpu(env)->sve_max_vq); 13332 13333 /* Zap the high bits of the zregs. */ 13334 for (i = 0; i < 32; i++) { 13335 memset(&env->vfp.zregs[i].d[2 * vq], 0, 16 * (ARM_MAX_VQ - vq)); 13336 } 13337 13338 /* Zap the high bits of the pregs and ffr. */ 13339 pmask = 0; 13340 if (vq & 3) { 13341 pmask = ~(-1ULL << (16 * (vq & 3))); 13342 } 13343 for (j = vq / 4; j < ARM_MAX_VQ / 4; j++) { 13344 for (i = 0; i < 17; ++i) { 13345 env->vfp.pregs[i].p[j] &= pmask; 13346 } 13347 pmask = 0; 13348 } 13349 } 13350 13351 /* 13352 * Notice a change in SVE vector size when changing EL. 13353 */ 13354 void aarch64_sve_change_el(CPUARMState *env, int old_el, 13355 int new_el, bool el0_a64) 13356 { 13357 ARMCPU *cpu = env_archcpu(env); 13358 int old_len, new_len; 13359 bool old_a64, new_a64; 13360 13361 /* Nothing to do if no SVE. */ 13362 if (!cpu_isar_feature(aa64_sve, cpu)) { 13363 return; 13364 } 13365 13366 /* Nothing to do if FP is disabled in either EL. */ 13367 if (fp_exception_el(env, old_el) || fp_exception_el(env, new_el)) { 13368 return; 13369 } 13370 13371 /* 13372 * DDI0584A.d sec 3.2: "If SVE instructions are disabled or trapped 13373 * at ELx, or not available because the EL is in AArch32 state, then 13374 * for all purposes other than a direct read, the ZCR_ELx.LEN field 13375 * has an effective value of 0". 13376 * 13377 * Consider EL2 (aa64, vq=4) -> EL0 (aa32) -> EL1 (aa64, vq=0). 13378 * If we ignore aa32 state, we would fail to see the vq4->vq0 transition 13379 * from EL2->EL1. Thus we go ahead and narrow when entering aa32 so that 13380 * we already have the correct register contents when encountering the 13381 * vq0->vq0 transition between EL0->EL1. 13382 */ 13383 old_a64 = old_el ? arm_el_is_aa64(env, old_el) : el0_a64; 13384 old_len = (old_a64 && !sve_exception_el(env, old_el) 13385 ? sve_zcr_len_for_el(env, old_el) : 0); 13386 new_a64 = new_el ? arm_el_is_aa64(env, new_el) : el0_a64; 13387 new_len = (new_a64 && !sve_exception_el(env, new_el) 13388 ? sve_zcr_len_for_el(env, new_el) : 0); 13389 13390 /* When changing vector length, clear inaccessible state. */ 13391 if (new_len < old_len) { 13392 aarch64_sve_narrow_vq(env, new_len + 1); 13393 } 13394 } 13395 #endif 13396