xref: /openbmc/qemu/target/arm/helper.c (revision 8ff26a3344b6e6d1eeb00b4043232a5bdbc0ebf9)
1 #include "qemu/osdep.h"
2 #include "trace.h"
3 #include "cpu.h"
4 #include "internals.h"
5 #include "exec/gdbstub.h"
6 #include "exec/helper-proto.h"
7 #include "qemu/host-utils.h"
8 #include "sysemu/arch_init.h"
9 #include "sysemu/sysemu.h"
10 #include "qemu/bitops.h"
11 #include "qemu/crc32c.h"
12 #include "exec/exec-all.h"
13 #include "exec/cpu_ldst.h"
14 #include "arm_ldst.h"
15 #include <zlib.h> /* For crc32 */
16 #include "exec/semihost.h"
17 #include "sysemu/kvm.h"
18 
19 #define ARM_CPU_FREQ 1000000000 /* FIXME: 1 GHz, should be configurable */
20 
21 #ifndef CONFIG_USER_ONLY
22 static bool get_phys_addr(CPUARMState *env, target_ulong address,
23                           MMUAccessType access_type, ARMMMUIdx mmu_idx,
24                           hwaddr *phys_ptr, MemTxAttrs *attrs, int *prot,
25                           target_ulong *page_size, uint32_t *fsr,
26                           ARMMMUFaultInfo *fi);
27 
28 static bool get_phys_addr_lpae(CPUARMState *env, target_ulong address,
29                                MMUAccessType access_type, ARMMMUIdx mmu_idx,
30                                hwaddr *phys_ptr, MemTxAttrs *txattrs, int *prot,
31                                target_ulong *page_size_ptr, uint32_t *fsr,
32                                ARMMMUFaultInfo *fi);
33 
34 /* Definitions for the PMCCNTR and PMCR registers */
35 #define PMCRD   0x8
36 #define PMCRC   0x4
37 #define PMCRE   0x1
38 #endif
39 
40 static int vfp_gdb_get_reg(CPUARMState *env, uint8_t *buf, int reg)
41 {
42     int nregs;
43 
44     /* VFP data registers are always little-endian.  */
45     nregs = arm_feature(env, ARM_FEATURE_VFP3) ? 32 : 16;
46     if (reg < nregs) {
47         stfq_le_p(buf, env->vfp.regs[reg]);
48         return 8;
49     }
50     if (arm_feature(env, ARM_FEATURE_NEON)) {
51         /* Aliases for Q regs.  */
52         nregs += 16;
53         if (reg < nregs) {
54             stfq_le_p(buf, env->vfp.regs[(reg - 32) * 2]);
55             stfq_le_p(buf + 8, env->vfp.regs[(reg - 32) * 2 + 1]);
56             return 16;
57         }
58     }
59     switch (reg - nregs) {
60     case 0: stl_p(buf, env->vfp.xregs[ARM_VFP_FPSID]); return 4;
61     case 1: stl_p(buf, env->vfp.xregs[ARM_VFP_FPSCR]); return 4;
62     case 2: stl_p(buf, env->vfp.xregs[ARM_VFP_FPEXC]); return 4;
63     }
64     return 0;
65 }
66 
67 static int vfp_gdb_set_reg(CPUARMState *env, uint8_t *buf, int reg)
68 {
69     int nregs;
70 
71     nregs = arm_feature(env, ARM_FEATURE_VFP3) ? 32 : 16;
72     if (reg < nregs) {
73         env->vfp.regs[reg] = ldfq_le_p(buf);
74         return 8;
75     }
76     if (arm_feature(env, ARM_FEATURE_NEON)) {
77         nregs += 16;
78         if (reg < nregs) {
79             env->vfp.regs[(reg - 32) * 2] = ldfq_le_p(buf);
80             env->vfp.regs[(reg - 32) * 2 + 1] = ldfq_le_p(buf + 8);
81             return 16;
82         }
83     }
84     switch (reg - nregs) {
85     case 0: env->vfp.xregs[ARM_VFP_FPSID] = ldl_p(buf); return 4;
86     case 1: env->vfp.xregs[ARM_VFP_FPSCR] = ldl_p(buf); return 4;
87     case 2: env->vfp.xregs[ARM_VFP_FPEXC] = ldl_p(buf) & (1 << 30); return 4;
88     }
89     return 0;
90 }
91 
92 static int aarch64_fpu_gdb_get_reg(CPUARMState *env, uint8_t *buf, int reg)
93 {
94     switch (reg) {
95     case 0 ... 31:
96         /* 128 bit FP register */
97         stfq_le_p(buf, env->vfp.regs[reg * 2]);
98         stfq_le_p(buf + 8, env->vfp.regs[reg * 2 + 1]);
99         return 16;
100     case 32:
101         /* FPSR */
102         stl_p(buf, vfp_get_fpsr(env));
103         return 4;
104     case 33:
105         /* FPCR */
106         stl_p(buf, vfp_get_fpcr(env));
107         return 4;
108     default:
109         return 0;
110     }
111 }
112 
113 static int aarch64_fpu_gdb_set_reg(CPUARMState *env, uint8_t *buf, int reg)
114 {
115     switch (reg) {
116     case 0 ... 31:
117         /* 128 bit FP register */
118         env->vfp.regs[reg * 2] = ldfq_le_p(buf);
119         env->vfp.regs[reg * 2 + 1] = ldfq_le_p(buf + 8);
120         return 16;
121     case 32:
122         /* FPSR */
123         vfp_set_fpsr(env, ldl_p(buf));
124         return 4;
125     case 33:
126         /* FPCR */
127         vfp_set_fpcr(env, ldl_p(buf));
128         return 4;
129     default:
130         return 0;
131     }
132 }
133 
134 static uint64_t raw_read(CPUARMState *env, const ARMCPRegInfo *ri)
135 {
136     assert(ri->fieldoffset);
137     if (cpreg_field_is_64bit(ri)) {
138         return CPREG_FIELD64(env, ri);
139     } else {
140         return CPREG_FIELD32(env, ri);
141     }
142 }
143 
144 static void raw_write(CPUARMState *env, const ARMCPRegInfo *ri,
145                       uint64_t value)
146 {
147     assert(ri->fieldoffset);
148     if (cpreg_field_is_64bit(ri)) {
149         CPREG_FIELD64(env, ri) = value;
150     } else {
151         CPREG_FIELD32(env, ri) = value;
152     }
153 }
154 
155 static void *raw_ptr(CPUARMState *env, const ARMCPRegInfo *ri)
156 {
157     return (char *)env + ri->fieldoffset;
158 }
159 
160 uint64_t read_raw_cp_reg(CPUARMState *env, const ARMCPRegInfo *ri)
161 {
162     /* Raw read of a coprocessor register (as needed for migration, etc). */
163     if (ri->type & ARM_CP_CONST) {
164         return ri->resetvalue;
165     } else if (ri->raw_readfn) {
166         return ri->raw_readfn(env, ri);
167     } else if (ri->readfn) {
168         return ri->readfn(env, ri);
169     } else {
170         return raw_read(env, ri);
171     }
172 }
173 
174 static void write_raw_cp_reg(CPUARMState *env, const ARMCPRegInfo *ri,
175                              uint64_t v)
176 {
177     /* Raw write of a coprocessor register (as needed for migration, etc).
178      * Note that constant registers are treated as write-ignored; the
179      * caller should check for success by whether a readback gives the
180      * value written.
181      */
182     if (ri->type & ARM_CP_CONST) {
183         return;
184     } else if (ri->raw_writefn) {
185         ri->raw_writefn(env, ri, v);
186     } else if (ri->writefn) {
187         ri->writefn(env, ri, v);
188     } else {
189         raw_write(env, ri, v);
190     }
191 }
192 
193 static bool raw_accessors_invalid(const ARMCPRegInfo *ri)
194 {
195    /* Return true if the regdef would cause an assertion if you called
196     * read_raw_cp_reg() or write_raw_cp_reg() on it (ie if it is a
197     * program bug for it not to have the NO_RAW flag).
198     * NB that returning false here doesn't necessarily mean that calling
199     * read/write_raw_cp_reg() is safe, because we can't distinguish "has
200     * read/write access functions which are safe for raw use" from "has
201     * read/write access functions which have side effects but has forgotten
202     * to provide raw access functions".
203     * The tests here line up with the conditions in read/write_raw_cp_reg()
204     * and assertions in raw_read()/raw_write().
205     */
206     if ((ri->type & ARM_CP_CONST) ||
207         ri->fieldoffset ||
208         ((ri->raw_writefn || ri->writefn) && (ri->raw_readfn || ri->readfn))) {
209         return false;
210     }
211     return true;
212 }
213 
214 bool write_cpustate_to_list(ARMCPU *cpu)
215 {
216     /* Write the coprocessor state from cpu->env to the (index,value) list. */
217     int i;
218     bool ok = true;
219 
220     for (i = 0; i < cpu->cpreg_array_len; i++) {
221         uint32_t regidx = kvm_to_cpreg_id(cpu->cpreg_indexes[i]);
222         const ARMCPRegInfo *ri;
223 
224         ri = get_arm_cp_reginfo(cpu->cp_regs, regidx);
225         if (!ri) {
226             ok = false;
227             continue;
228         }
229         if (ri->type & ARM_CP_NO_RAW) {
230             continue;
231         }
232         cpu->cpreg_values[i] = read_raw_cp_reg(&cpu->env, ri);
233     }
234     return ok;
235 }
236 
237 bool write_list_to_cpustate(ARMCPU *cpu)
238 {
239     int i;
240     bool ok = true;
241 
242     for (i = 0; i < cpu->cpreg_array_len; i++) {
243         uint32_t regidx = kvm_to_cpreg_id(cpu->cpreg_indexes[i]);
244         uint64_t v = cpu->cpreg_values[i];
245         const ARMCPRegInfo *ri;
246 
247         ri = get_arm_cp_reginfo(cpu->cp_regs, regidx);
248         if (!ri) {
249             ok = false;
250             continue;
251         }
252         if (ri->type & ARM_CP_NO_RAW) {
253             continue;
254         }
255         /* Write value and confirm it reads back as written
256          * (to catch read-only registers and partially read-only
257          * registers where the incoming migration value doesn't match)
258          */
259         write_raw_cp_reg(&cpu->env, ri, v);
260         if (read_raw_cp_reg(&cpu->env, ri) != v) {
261             ok = false;
262         }
263     }
264     return ok;
265 }
266 
267 static void add_cpreg_to_list(gpointer key, gpointer opaque)
268 {
269     ARMCPU *cpu = opaque;
270     uint64_t regidx;
271     const ARMCPRegInfo *ri;
272 
273     regidx = *(uint32_t *)key;
274     ri = get_arm_cp_reginfo(cpu->cp_regs, regidx);
275 
276     if (!(ri->type & (ARM_CP_NO_RAW|ARM_CP_ALIAS))) {
277         cpu->cpreg_indexes[cpu->cpreg_array_len] = cpreg_to_kvm_id(regidx);
278         /* The value array need not be initialized at this point */
279         cpu->cpreg_array_len++;
280     }
281 }
282 
283 static void count_cpreg(gpointer key, gpointer opaque)
284 {
285     ARMCPU *cpu = opaque;
286     uint64_t regidx;
287     const ARMCPRegInfo *ri;
288 
289     regidx = *(uint32_t *)key;
290     ri = get_arm_cp_reginfo(cpu->cp_regs, regidx);
291 
292     if (!(ri->type & (ARM_CP_NO_RAW|ARM_CP_ALIAS))) {
293         cpu->cpreg_array_len++;
294     }
295 }
296 
297 static gint cpreg_key_compare(gconstpointer a, gconstpointer b)
298 {
299     uint64_t aidx = cpreg_to_kvm_id(*(uint32_t *)a);
300     uint64_t bidx = cpreg_to_kvm_id(*(uint32_t *)b);
301 
302     if (aidx > bidx) {
303         return 1;
304     }
305     if (aidx < bidx) {
306         return -1;
307     }
308     return 0;
309 }
310 
311 void init_cpreg_list(ARMCPU *cpu)
312 {
313     /* Initialise the cpreg_tuples[] array based on the cp_regs hash.
314      * Note that we require cpreg_tuples[] to be sorted by key ID.
315      */
316     GList *keys;
317     int arraylen;
318 
319     keys = g_hash_table_get_keys(cpu->cp_regs);
320     keys = g_list_sort(keys, cpreg_key_compare);
321 
322     cpu->cpreg_array_len = 0;
323 
324     g_list_foreach(keys, count_cpreg, cpu);
325 
326     arraylen = cpu->cpreg_array_len;
327     cpu->cpreg_indexes = g_new(uint64_t, arraylen);
328     cpu->cpreg_values = g_new(uint64_t, arraylen);
329     cpu->cpreg_vmstate_indexes = g_new(uint64_t, arraylen);
330     cpu->cpreg_vmstate_values = g_new(uint64_t, arraylen);
331     cpu->cpreg_vmstate_array_len = cpu->cpreg_array_len;
332     cpu->cpreg_array_len = 0;
333 
334     g_list_foreach(keys, add_cpreg_to_list, cpu);
335 
336     assert(cpu->cpreg_array_len == arraylen);
337 
338     g_list_free(keys);
339 }
340 
341 /*
342  * Some registers are not accessible if EL3.NS=0 and EL3 is using AArch32 but
343  * they are accessible when EL3 is using AArch64 regardless of EL3.NS.
344  *
345  * access_el3_aa32ns: Used to check AArch32 register views.
346  * access_el3_aa32ns_aa64any: Used to check both AArch32/64 register views.
347  */
348 static CPAccessResult access_el3_aa32ns(CPUARMState *env,
349                                         const ARMCPRegInfo *ri,
350                                         bool isread)
351 {
352     bool secure = arm_is_secure_below_el3(env);
353 
354     assert(!arm_el_is_aa64(env, 3));
355     if (secure) {
356         return CP_ACCESS_TRAP_UNCATEGORIZED;
357     }
358     return CP_ACCESS_OK;
359 }
360 
361 static CPAccessResult access_el3_aa32ns_aa64any(CPUARMState *env,
362                                                 const ARMCPRegInfo *ri,
363                                                 bool isread)
364 {
365     if (!arm_el_is_aa64(env, 3)) {
366         return access_el3_aa32ns(env, ri, isread);
367     }
368     return CP_ACCESS_OK;
369 }
370 
371 /* Some secure-only AArch32 registers trap to EL3 if used from
372  * Secure EL1 (but are just ordinary UNDEF in other non-EL3 contexts).
373  * Note that an access from Secure EL1 can only happen if EL3 is AArch64.
374  * We assume that the .access field is set to PL1_RW.
375  */
376 static CPAccessResult access_trap_aa32s_el1(CPUARMState *env,
377                                             const ARMCPRegInfo *ri,
378                                             bool isread)
379 {
380     if (arm_current_el(env) == 3) {
381         return CP_ACCESS_OK;
382     }
383     if (arm_is_secure_below_el3(env)) {
384         return CP_ACCESS_TRAP_EL3;
385     }
386     /* This will be EL1 NS and EL2 NS, which just UNDEF */
387     return CP_ACCESS_TRAP_UNCATEGORIZED;
388 }
389 
390 /* Check for traps to "powerdown debug" registers, which are controlled
391  * by MDCR.TDOSA
392  */
393 static CPAccessResult access_tdosa(CPUARMState *env, const ARMCPRegInfo *ri,
394                                    bool isread)
395 {
396     int el = arm_current_el(env);
397 
398     if (el < 2 && (env->cp15.mdcr_el2 & MDCR_TDOSA)
399         && !arm_is_secure_below_el3(env)) {
400         return CP_ACCESS_TRAP_EL2;
401     }
402     if (el < 3 && (env->cp15.mdcr_el3 & MDCR_TDOSA)) {
403         return CP_ACCESS_TRAP_EL3;
404     }
405     return CP_ACCESS_OK;
406 }
407 
408 /* Check for traps to "debug ROM" registers, which are controlled
409  * by MDCR_EL2.TDRA for EL2 but by the more general MDCR_EL3.TDA for EL3.
410  */
411 static CPAccessResult access_tdra(CPUARMState *env, const ARMCPRegInfo *ri,
412                                   bool isread)
413 {
414     int el = arm_current_el(env);
415 
416     if (el < 2 && (env->cp15.mdcr_el2 & MDCR_TDRA)
417         && !arm_is_secure_below_el3(env)) {
418         return CP_ACCESS_TRAP_EL2;
419     }
420     if (el < 3 && (env->cp15.mdcr_el3 & MDCR_TDA)) {
421         return CP_ACCESS_TRAP_EL3;
422     }
423     return CP_ACCESS_OK;
424 }
425 
426 /* Check for traps to general debug registers, which are controlled
427  * by MDCR_EL2.TDA for EL2 and MDCR_EL3.TDA for EL3.
428  */
429 static CPAccessResult access_tda(CPUARMState *env, const ARMCPRegInfo *ri,
430                                   bool isread)
431 {
432     int el = arm_current_el(env);
433 
434     if (el < 2 && (env->cp15.mdcr_el2 & MDCR_TDA)
435         && !arm_is_secure_below_el3(env)) {
436         return CP_ACCESS_TRAP_EL2;
437     }
438     if (el < 3 && (env->cp15.mdcr_el3 & MDCR_TDA)) {
439         return CP_ACCESS_TRAP_EL3;
440     }
441     return CP_ACCESS_OK;
442 }
443 
444 /* Check for traps to performance monitor registers, which are controlled
445  * by MDCR_EL2.TPM for EL2 and MDCR_EL3.TPM for EL3.
446  */
447 static CPAccessResult access_tpm(CPUARMState *env, const ARMCPRegInfo *ri,
448                                  bool isread)
449 {
450     int el = arm_current_el(env);
451 
452     if (el < 2 && (env->cp15.mdcr_el2 & MDCR_TPM)
453         && !arm_is_secure_below_el3(env)) {
454         return CP_ACCESS_TRAP_EL2;
455     }
456     if (el < 3 && (env->cp15.mdcr_el3 & MDCR_TPM)) {
457         return CP_ACCESS_TRAP_EL3;
458     }
459     return CP_ACCESS_OK;
460 }
461 
462 static void dacr_write(CPUARMState *env, const ARMCPRegInfo *ri, uint64_t value)
463 {
464     ARMCPU *cpu = arm_env_get_cpu(env);
465 
466     raw_write(env, ri, value);
467     tlb_flush(CPU(cpu)); /* Flush TLB as domain not tracked in TLB */
468 }
469 
470 static void fcse_write(CPUARMState *env, const ARMCPRegInfo *ri, uint64_t value)
471 {
472     ARMCPU *cpu = arm_env_get_cpu(env);
473 
474     if (raw_read(env, ri) != value) {
475         /* Unlike real hardware the qemu TLB uses virtual addresses,
476          * not modified virtual addresses, so this causes a TLB flush.
477          */
478         tlb_flush(CPU(cpu));
479         raw_write(env, ri, value);
480     }
481 }
482 
483 static void contextidr_write(CPUARMState *env, const ARMCPRegInfo *ri,
484                              uint64_t value)
485 {
486     ARMCPU *cpu = arm_env_get_cpu(env);
487 
488     if (raw_read(env, ri) != value && !arm_feature(env, ARM_FEATURE_PMSA)
489         && !extended_addresses_enabled(env)) {
490         /* For VMSA (when not using the LPAE long descriptor page table
491          * format) this register includes the ASID, so do a TLB flush.
492          * For PMSA it is purely a process ID and no action is needed.
493          */
494         tlb_flush(CPU(cpu));
495     }
496     raw_write(env, ri, value);
497 }
498 
499 static void tlbiall_write(CPUARMState *env, const ARMCPRegInfo *ri,
500                           uint64_t value)
501 {
502     /* Invalidate all (TLBIALL) */
503     ARMCPU *cpu = arm_env_get_cpu(env);
504 
505     tlb_flush(CPU(cpu));
506 }
507 
508 static void tlbimva_write(CPUARMState *env, const ARMCPRegInfo *ri,
509                           uint64_t value)
510 {
511     /* Invalidate single TLB entry by MVA and ASID (TLBIMVA) */
512     ARMCPU *cpu = arm_env_get_cpu(env);
513 
514     tlb_flush_page(CPU(cpu), value & TARGET_PAGE_MASK);
515 }
516 
517 static void tlbiasid_write(CPUARMState *env, const ARMCPRegInfo *ri,
518                            uint64_t value)
519 {
520     /* Invalidate by ASID (TLBIASID) */
521     ARMCPU *cpu = arm_env_get_cpu(env);
522 
523     tlb_flush(CPU(cpu));
524 }
525 
526 static void tlbimvaa_write(CPUARMState *env, const ARMCPRegInfo *ri,
527                            uint64_t value)
528 {
529     /* Invalidate single entry by MVA, all ASIDs (TLBIMVAA) */
530     ARMCPU *cpu = arm_env_get_cpu(env);
531 
532     tlb_flush_page(CPU(cpu), value & TARGET_PAGE_MASK);
533 }
534 
535 /* IS variants of TLB operations must affect all cores */
536 static void tlbiall_is_write(CPUARMState *env, const ARMCPRegInfo *ri,
537                              uint64_t value)
538 {
539     CPUState *cs = ENV_GET_CPU(env);
540 
541     tlb_flush_all_cpus_synced(cs);
542 }
543 
544 static void tlbiasid_is_write(CPUARMState *env, const ARMCPRegInfo *ri,
545                              uint64_t value)
546 {
547     CPUState *cs = ENV_GET_CPU(env);
548 
549     tlb_flush_all_cpus_synced(cs);
550 }
551 
552 static void tlbimva_is_write(CPUARMState *env, const ARMCPRegInfo *ri,
553                              uint64_t value)
554 {
555     CPUState *cs = ENV_GET_CPU(env);
556 
557     tlb_flush_page_all_cpus_synced(cs, value & TARGET_PAGE_MASK);
558 }
559 
560 static void tlbimvaa_is_write(CPUARMState *env, const ARMCPRegInfo *ri,
561                              uint64_t value)
562 {
563     CPUState *cs = ENV_GET_CPU(env);
564 
565     tlb_flush_page_all_cpus_synced(cs, value & TARGET_PAGE_MASK);
566 }
567 
568 static void tlbiall_nsnh_write(CPUARMState *env, const ARMCPRegInfo *ri,
569                                uint64_t value)
570 {
571     CPUState *cs = ENV_GET_CPU(env);
572 
573     tlb_flush_by_mmuidx(cs,
574                         ARMMMUIdxBit_S12NSE1 |
575                         ARMMMUIdxBit_S12NSE0 |
576                         ARMMMUIdxBit_S2NS);
577 }
578 
579 static void tlbiall_nsnh_is_write(CPUARMState *env, const ARMCPRegInfo *ri,
580                                   uint64_t value)
581 {
582     CPUState *cs = ENV_GET_CPU(env);
583 
584     tlb_flush_by_mmuidx_all_cpus_synced(cs,
585                                         ARMMMUIdxBit_S12NSE1 |
586                                         ARMMMUIdxBit_S12NSE0 |
587                                         ARMMMUIdxBit_S2NS);
588 }
589 
590 static void tlbiipas2_write(CPUARMState *env, const ARMCPRegInfo *ri,
591                             uint64_t value)
592 {
593     /* Invalidate by IPA. This has to invalidate any structures that
594      * contain only stage 2 translation information, but does not need
595      * to apply to structures that contain combined stage 1 and stage 2
596      * translation information.
597      * This must NOP if EL2 isn't implemented or SCR_EL3.NS is zero.
598      */
599     CPUState *cs = ENV_GET_CPU(env);
600     uint64_t pageaddr;
601 
602     if (!arm_feature(env, ARM_FEATURE_EL2) || !(env->cp15.scr_el3 & SCR_NS)) {
603         return;
604     }
605 
606     pageaddr = sextract64(value << 12, 0, 40);
607 
608     tlb_flush_page_by_mmuidx(cs, pageaddr, ARMMMUIdxBit_S2NS);
609 }
610 
611 static void tlbiipas2_is_write(CPUARMState *env, const ARMCPRegInfo *ri,
612                                uint64_t value)
613 {
614     CPUState *cs = ENV_GET_CPU(env);
615     uint64_t pageaddr;
616 
617     if (!arm_feature(env, ARM_FEATURE_EL2) || !(env->cp15.scr_el3 & SCR_NS)) {
618         return;
619     }
620 
621     pageaddr = sextract64(value << 12, 0, 40);
622 
623     tlb_flush_page_by_mmuidx_all_cpus_synced(cs, pageaddr,
624                                              ARMMMUIdxBit_S2NS);
625 }
626 
627 static void tlbiall_hyp_write(CPUARMState *env, const ARMCPRegInfo *ri,
628                               uint64_t value)
629 {
630     CPUState *cs = ENV_GET_CPU(env);
631 
632     tlb_flush_by_mmuidx(cs, ARMMMUIdxBit_S1E2);
633 }
634 
635 static void tlbiall_hyp_is_write(CPUARMState *env, const ARMCPRegInfo *ri,
636                                  uint64_t value)
637 {
638     CPUState *cs = ENV_GET_CPU(env);
639 
640     tlb_flush_by_mmuidx_all_cpus_synced(cs, ARMMMUIdxBit_S1E2);
641 }
642 
643 static void tlbimva_hyp_write(CPUARMState *env, const ARMCPRegInfo *ri,
644                               uint64_t value)
645 {
646     CPUState *cs = ENV_GET_CPU(env);
647     uint64_t pageaddr = value & ~MAKE_64BIT_MASK(0, 12);
648 
649     tlb_flush_page_by_mmuidx(cs, pageaddr, ARMMMUIdxBit_S1E2);
650 }
651 
652 static void tlbimva_hyp_is_write(CPUARMState *env, const ARMCPRegInfo *ri,
653                                  uint64_t value)
654 {
655     CPUState *cs = ENV_GET_CPU(env);
656     uint64_t pageaddr = value & ~MAKE_64BIT_MASK(0, 12);
657 
658     tlb_flush_page_by_mmuidx_all_cpus_synced(cs, pageaddr,
659                                              ARMMMUIdxBit_S1E2);
660 }
661 
662 static const ARMCPRegInfo cp_reginfo[] = {
663     /* Define the secure and non-secure FCSE identifier CP registers
664      * separately because there is no secure bank in V8 (no _EL3).  This allows
665      * the secure register to be properly reset and migrated. There is also no
666      * v8 EL1 version of the register so the non-secure instance stands alone.
667      */
668     { .name = "FCSEIDR(NS)",
669       .cp = 15, .opc1 = 0, .crn = 13, .crm = 0, .opc2 = 0,
670       .access = PL1_RW, .secure = ARM_CP_SECSTATE_NS,
671       .fieldoffset = offsetof(CPUARMState, cp15.fcseidr_ns),
672       .resetvalue = 0, .writefn = fcse_write, .raw_writefn = raw_write, },
673     { .name = "FCSEIDR(S)",
674       .cp = 15, .opc1 = 0, .crn = 13, .crm = 0, .opc2 = 0,
675       .access = PL1_RW, .secure = ARM_CP_SECSTATE_S,
676       .fieldoffset = offsetof(CPUARMState, cp15.fcseidr_s),
677       .resetvalue = 0, .writefn = fcse_write, .raw_writefn = raw_write, },
678     /* Define the secure and non-secure context identifier CP registers
679      * separately because there is no secure bank in V8 (no _EL3).  This allows
680      * the secure register to be properly reset and migrated.  In the
681      * non-secure case, the 32-bit register will have reset and migration
682      * disabled during registration as it is handled by the 64-bit instance.
683      */
684     { .name = "CONTEXTIDR_EL1", .state = ARM_CP_STATE_BOTH,
685       .opc0 = 3, .opc1 = 0, .crn = 13, .crm = 0, .opc2 = 1,
686       .access = PL1_RW, .secure = ARM_CP_SECSTATE_NS,
687       .fieldoffset = offsetof(CPUARMState, cp15.contextidr_el[1]),
688       .resetvalue = 0, .writefn = contextidr_write, .raw_writefn = raw_write, },
689     { .name = "CONTEXTIDR(S)", .state = ARM_CP_STATE_AA32,
690       .cp = 15, .opc1 = 0, .crn = 13, .crm = 0, .opc2 = 1,
691       .access = PL1_RW, .secure = ARM_CP_SECSTATE_S,
692       .fieldoffset = offsetof(CPUARMState, cp15.contextidr_s),
693       .resetvalue = 0, .writefn = contextidr_write, .raw_writefn = raw_write, },
694     REGINFO_SENTINEL
695 };
696 
697 static const ARMCPRegInfo not_v8_cp_reginfo[] = {
698     /* NB: Some of these registers exist in v8 but with more precise
699      * definitions that don't use CP_ANY wildcards (mostly in v8_cp_reginfo[]).
700      */
701     /* MMU Domain access control / MPU write buffer control */
702     { .name = "DACR",
703       .cp = 15, .opc1 = CP_ANY, .crn = 3, .crm = CP_ANY, .opc2 = CP_ANY,
704       .access = PL1_RW, .resetvalue = 0,
705       .writefn = dacr_write, .raw_writefn = raw_write,
706       .bank_fieldoffsets = { offsetoflow32(CPUARMState, cp15.dacr_s),
707                              offsetoflow32(CPUARMState, cp15.dacr_ns) } },
708     /* ARMv7 allocates a range of implementation defined TLB LOCKDOWN regs.
709      * For v6 and v5, these mappings are overly broad.
710      */
711     { .name = "TLB_LOCKDOWN", .cp = 15, .crn = 10, .crm = 0,
712       .opc1 = CP_ANY, .opc2 = CP_ANY, .access = PL1_RW, .type = ARM_CP_NOP },
713     { .name = "TLB_LOCKDOWN", .cp = 15, .crn = 10, .crm = 1,
714       .opc1 = CP_ANY, .opc2 = CP_ANY, .access = PL1_RW, .type = ARM_CP_NOP },
715     { .name = "TLB_LOCKDOWN", .cp = 15, .crn = 10, .crm = 4,
716       .opc1 = CP_ANY, .opc2 = CP_ANY, .access = PL1_RW, .type = ARM_CP_NOP },
717     { .name = "TLB_LOCKDOWN", .cp = 15, .crn = 10, .crm = 8,
718       .opc1 = CP_ANY, .opc2 = CP_ANY, .access = PL1_RW, .type = ARM_CP_NOP },
719     /* Cache maintenance ops; some of this space may be overridden later. */
720     { .name = "CACHEMAINT", .cp = 15, .crn = 7, .crm = CP_ANY,
721       .opc1 = 0, .opc2 = CP_ANY, .access = PL1_W,
722       .type = ARM_CP_NOP | ARM_CP_OVERRIDE },
723     REGINFO_SENTINEL
724 };
725 
726 static const ARMCPRegInfo not_v6_cp_reginfo[] = {
727     /* Not all pre-v6 cores implemented this WFI, so this is slightly
728      * over-broad.
729      */
730     { .name = "WFI_v5", .cp = 15, .crn = 7, .crm = 8, .opc1 = 0, .opc2 = 2,
731       .access = PL1_W, .type = ARM_CP_WFI },
732     REGINFO_SENTINEL
733 };
734 
735 static const ARMCPRegInfo not_v7_cp_reginfo[] = {
736     /* Standard v6 WFI (also used in some pre-v6 cores); not in v7 (which
737      * is UNPREDICTABLE; we choose to NOP as most implementations do).
738      */
739     { .name = "WFI_v6", .cp = 15, .crn = 7, .crm = 0, .opc1 = 0, .opc2 = 4,
740       .access = PL1_W, .type = ARM_CP_WFI },
741     /* L1 cache lockdown. Not architectural in v6 and earlier but in practice
742      * implemented in 926, 946, 1026, 1136, 1176 and 11MPCore. StrongARM and
743      * OMAPCP will override this space.
744      */
745     { .name = "DLOCKDOWN", .cp = 15, .crn = 9, .crm = 0, .opc1 = 0, .opc2 = 0,
746       .access = PL1_RW, .fieldoffset = offsetof(CPUARMState, cp15.c9_data),
747       .resetvalue = 0 },
748     { .name = "ILOCKDOWN", .cp = 15, .crn = 9, .crm = 0, .opc1 = 0, .opc2 = 1,
749       .access = PL1_RW, .fieldoffset = offsetof(CPUARMState, cp15.c9_insn),
750       .resetvalue = 0 },
751     /* v6 doesn't have the cache ID registers but Linux reads them anyway */
752     { .name = "DUMMY", .cp = 15, .crn = 0, .crm = 0, .opc1 = 1, .opc2 = CP_ANY,
753       .access = PL1_R, .type = ARM_CP_CONST | ARM_CP_NO_RAW,
754       .resetvalue = 0 },
755     /* We don't implement pre-v7 debug but most CPUs had at least a DBGDIDR;
756      * implementing it as RAZ means the "debug architecture version" bits
757      * will read as a reserved value, which should cause Linux to not try
758      * to use the debug hardware.
759      */
760     { .name = "DBGDIDR", .cp = 14, .crn = 0, .crm = 0, .opc1 = 0, .opc2 = 0,
761       .access = PL0_R, .type = ARM_CP_CONST, .resetvalue = 0 },
762     /* MMU TLB control. Note that the wildcarding means we cover not just
763      * the unified TLB ops but also the dside/iside/inner-shareable variants.
764      */
765     { .name = "TLBIALL", .cp = 15, .crn = 8, .crm = CP_ANY,
766       .opc1 = CP_ANY, .opc2 = 0, .access = PL1_W, .writefn = tlbiall_write,
767       .type = ARM_CP_NO_RAW },
768     { .name = "TLBIMVA", .cp = 15, .crn = 8, .crm = CP_ANY,
769       .opc1 = CP_ANY, .opc2 = 1, .access = PL1_W, .writefn = tlbimva_write,
770       .type = ARM_CP_NO_RAW },
771     { .name = "TLBIASID", .cp = 15, .crn = 8, .crm = CP_ANY,
772       .opc1 = CP_ANY, .opc2 = 2, .access = PL1_W, .writefn = tlbiasid_write,
773       .type = ARM_CP_NO_RAW },
774     { .name = "TLBIMVAA", .cp = 15, .crn = 8, .crm = CP_ANY,
775       .opc1 = CP_ANY, .opc2 = 3, .access = PL1_W, .writefn = tlbimvaa_write,
776       .type = ARM_CP_NO_RAW },
777     { .name = "PRRR", .cp = 15, .crn = 10, .crm = 2,
778       .opc1 = 0, .opc2 = 0, .access = PL1_RW, .type = ARM_CP_NOP },
779     { .name = "NMRR", .cp = 15, .crn = 10, .crm = 2,
780       .opc1 = 0, .opc2 = 1, .access = PL1_RW, .type = ARM_CP_NOP },
781     REGINFO_SENTINEL
782 };
783 
784 static void cpacr_write(CPUARMState *env, const ARMCPRegInfo *ri,
785                         uint64_t value)
786 {
787     uint32_t mask = 0;
788 
789     /* In ARMv8 most bits of CPACR_EL1 are RES0. */
790     if (!arm_feature(env, ARM_FEATURE_V8)) {
791         /* ARMv7 defines bits for unimplemented coprocessors as RAZ/WI.
792          * ASEDIS [31] and D32DIS [30] are both UNK/SBZP without VFP.
793          * TRCDIS [28] is RAZ/WI since we do not implement a trace macrocell.
794          */
795         if (arm_feature(env, ARM_FEATURE_VFP)) {
796             /* VFP coprocessor: cp10 & cp11 [23:20] */
797             mask |= (1 << 31) | (1 << 30) | (0xf << 20);
798 
799             if (!arm_feature(env, ARM_FEATURE_NEON)) {
800                 /* ASEDIS [31] bit is RAO/WI */
801                 value |= (1 << 31);
802             }
803 
804             /* VFPv3 and upwards with NEON implement 32 double precision
805              * registers (D0-D31).
806              */
807             if (!arm_feature(env, ARM_FEATURE_NEON) ||
808                     !arm_feature(env, ARM_FEATURE_VFP3)) {
809                 /* D32DIS [30] is RAO/WI if D16-31 are not implemented. */
810                 value |= (1 << 30);
811             }
812         }
813         value &= mask;
814     }
815     env->cp15.cpacr_el1 = value;
816 }
817 
818 static CPAccessResult cpacr_access(CPUARMState *env, const ARMCPRegInfo *ri,
819                                    bool isread)
820 {
821     if (arm_feature(env, ARM_FEATURE_V8)) {
822         /* Check if CPACR accesses are to be trapped to EL2 */
823         if (arm_current_el(env) == 1 &&
824             (env->cp15.cptr_el[2] & CPTR_TCPAC) && !arm_is_secure(env)) {
825             return CP_ACCESS_TRAP_EL2;
826         /* Check if CPACR accesses are to be trapped to EL3 */
827         } else if (arm_current_el(env) < 3 &&
828                    (env->cp15.cptr_el[3] & CPTR_TCPAC)) {
829             return CP_ACCESS_TRAP_EL3;
830         }
831     }
832 
833     return CP_ACCESS_OK;
834 }
835 
836 static CPAccessResult cptr_access(CPUARMState *env, const ARMCPRegInfo *ri,
837                                   bool isread)
838 {
839     /* Check if CPTR accesses are set to trap to EL3 */
840     if (arm_current_el(env) == 2 && (env->cp15.cptr_el[3] & CPTR_TCPAC)) {
841         return CP_ACCESS_TRAP_EL3;
842     }
843 
844     return CP_ACCESS_OK;
845 }
846 
847 static const ARMCPRegInfo v6_cp_reginfo[] = {
848     /* prefetch by MVA in v6, NOP in v7 */
849     { .name = "MVA_prefetch",
850       .cp = 15, .crn = 7, .crm = 13, .opc1 = 0, .opc2 = 1,
851       .access = PL1_W, .type = ARM_CP_NOP },
852     /* We need to break the TB after ISB to execute self-modifying code
853      * correctly and also to take any pending interrupts immediately.
854      * So use arm_cp_write_ignore() function instead of ARM_CP_NOP flag.
855      */
856     { .name = "ISB", .cp = 15, .crn = 7, .crm = 5, .opc1 = 0, .opc2 = 4,
857       .access = PL0_W, .type = ARM_CP_NO_RAW, .writefn = arm_cp_write_ignore },
858     { .name = "DSB", .cp = 15, .crn = 7, .crm = 10, .opc1 = 0, .opc2 = 4,
859       .access = PL0_W, .type = ARM_CP_NOP },
860     { .name = "DMB", .cp = 15, .crn = 7, .crm = 10, .opc1 = 0, .opc2 = 5,
861       .access = PL0_W, .type = ARM_CP_NOP },
862     { .name = "IFAR", .cp = 15, .crn = 6, .crm = 0, .opc1 = 0, .opc2 = 2,
863       .access = PL1_RW,
864       .bank_fieldoffsets = { offsetof(CPUARMState, cp15.ifar_s),
865                              offsetof(CPUARMState, cp15.ifar_ns) },
866       .resetvalue = 0, },
867     /* Watchpoint Fault Address Register : should actually only be present
868      * for 1136, 1176, 11MPCore.
869      */
870     { .name = "WFAR", .cp = 15, .crn = 6, .crm = 0, .opc1 = 0, .opc2 = 1,
871       .access = PL1_RW, .type = ARM_CP_CONST, .resetvalue = 0, },
872     { .name = "CPACR", .state = ARM_CP_STATE_BOTH, .opc0 = 3,
873       .crn = 1, .crm = 0, .opc1 = 0, .opc2 = 2, .accessfn = cpacr_access,
874       .access = PL1_RW, .fieldoffset = offsetof(CPUARMState, cp15.cpacr_el1),
875       .resetvalue = 0, .writefn = cpacr_write },
876     REGINFO_SENTINEL
877 };
878 
879 static CPAccessResult pmreg_access(CPUARMState *env, const ARMCPRegInfo *ri,
880                                    bool isread)
881 {
882     /* Performance monitor registers user accessibility is controlled
883      * by PMUSERENR. MDCR_EL2.TPM and MDCR_EL3.TPM allow configurable
884      * trapping to EL2 or EL3 for other accesses.
885      */
886     int el = arm_current_el(env);
887 
888     if (el == 0 && !(env->cp15.c9_pmuserenr & 1)) {
889         return CP_ACCESS_TRAP;
890     }
891     if (el < 2 && (env->cp15.mdcr_el2 & MDCR_TPM)
892         && !arm_is_secure_below_el3(env)) {
893         return CP_ACCESS_TRAP_EL2;
894     }
895     if (el < 3 && (env->cp15.mdcr_el3 & MDCR_TPM)) {
896         return CP_ACCESS_TRAP_EL3;
897     }
898 
899     return CP_ACCESS_OK;
900 }
901 
902 static CPAccessResult pmreg_access_xevcntr(CPUARMState *env,
903                                            const ARMCPRegInfo *ri,
904                                            bool isread)
905 {
906     /* ER: event counter read trap control */
907     if (arm_feature(env, ARM_FEATURE_V8)
908         && arm_current_el(env) == 0
909         && (env->cp15.c9_pmuserenr & (1 << 3)) != 0
910         && isread) {
911         return CP_ACCESS_OK;
912     }
913 
914     return pmreg_access(env, ri, isread);
915 }
916 
917 static CPAccessResult pmreg_access_swinc(CPUARMState *env,
918                                          const ARMCPRegInfo *ri,
919                                          bool isread)
920 {
921     /* SW: software increment write trap control */
922     if (arm_feature(env, ARM_FEATURE_V8)
923         && arm_current_el(env) == 0
924         && (env->cp15.c9_pmuserenr & (1 << 1)) != 0
925         && !isread) {
926         return CP_ACCESS_OK;
927     }
928 
929     return pmreg_access(env, ri, isread);
930 }
931 
932 #ifndef CONFIG_USER_ONLY
933 
934 static CPAccessResult pmreg_access_selr(CPUARMState *env,
935                                         const ARMCPRegInfo *ri,
936                                         bool isread)
937 {
938     /* ER: event counter read trap control */
939     if (arm_feature(env, ARM_FEATURE_V8)
940         && arm_current_el(env) == 0
941         && (env->cp15.c9_pmuserenr & (1 << 3)) != 0) {
942         return CP_ACCESS_OK;
943     }
944 
945     return pmreg_access(env, ri, isread);
946 }
947 
948 static CPAccessResult pmreg_access_ccntr(CPUARMState *env,
949                                          const ARMCPRegInfo *ri,
950                                          bool isread)
951 {
952     /* CR: cycle counter read trap control */
953     if (arm_feature(env, ARM_FEATURE_V8)
954         && arm_current_el(env) == 0
955         && (env->cp15.c9_pmuserenr & (1 << 2)) != 0
956         && isread) {
957         return CP_ACCESS_OK;
958     }
959 
960     return pmreg_access(env, ri, isread);
961 }
962 
963 static inline bool arm_ccnt_enabled(CPUARMState *env)
964 {
965     /* This does not support checking PMCCFILTR_EL0 register */
966 
967     if (!(env->cp15.c9_pmcr & PMCRE)) {
968         return false;
969     }
970 
971     return true;
972 }
973 
974 void pmccntr_sync(CPUARMState *env)
975 {
976     uint64_t temp_ticks;
977 
978     temp_ticks = muldiv64(qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL),
979                           ARM_CPU_FREQ, NANOSECONDS_PER_SECOND);
980 
981     if (env->cp15.c9_pmcr & PMCRD) {
982         /* Increment once every 64 processor clock cycles */
983         temp_ticks /= 64;
984     }
985 
986     if (arm_ccnt_enabled(env)) {
987         env->cp15.c15_ccnt = temp_ticks - env->cp15.c15_ccnt;
988     }
989 }
990 
991 static void pmcr_write(CPUARMState *env, const ARMCPRegInfo *ri,
992                        uint64_t value)
993 {
994     pmccntr_sync(env);
995 
996     if (value & PMCRC) {
997         /* The counter has been reset */
998         env->cp15.c15_ccnt = 0;
999     }
1000 
1001     /* only the DP, X, D and E bits are writable */
1002     env->cp15.c9_pmcr &= ~0x39;
1003     env->cp15.c9_pmcr |= (value & 0x39);
1004 
1005     pmccntr_sync(env);
1006 }
1007 
1008 static uint64_t pmccntr_read(CPUARMState *env, const ARMCPRegInfo *ri)
1009 {
1010     uint64_t total_ticks;
1011 
1012     if (!arm_ccnt_enabled(env)) {
1013         /* Counter is disabled, do not change value */
1014         return env->cp15.c15_ccnt;
1015     }
1016 
1017     total_ticks = muldiv64(qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL),
1018                            ARM_CPU_FREQ, NANOSECONDS_PER_SECOND);
1019 
1020     if (env->cp15.c9_pmcr & PMCRD) {
1021         /* Increment once every 64 processor clock cycles */
1022         total_ticks /= 64;
1023     }
1024     return total_ticks - env->cp15.c15_ccnt;
1025 }
1026 
1027 static void pmselr_write(CPUARMState *env, const ARMCPRegInfo *ri,
1028                          uint64_t value)
1029 {
1030     /* The value of PMSELR.SEL affects the behavior of PMXEVTYPER and
1031      * PMXEVCNTR. We allow [0..31] to be written to PMSELR here; in the
1032      * meanwhile, we check PMSELR.SEL when PMXEVTYPER and PMXEVCNTR are
1033      * accessed.
1034      */
1035     env->cp15.c9_pmselr = value & 0x1f;
1036 }
1037 
1038 static void pmccntr_write(CPUARMState *env, const ARMCPRegInfo *ri,
1039                         uint64_t value)
1040 {
1041     uint64_t total_ticks;
1042 
1043     if (!arm_ccnt_enabled(env)) {
1044         /* Counter is disabled, set the absolute value */
1045         env->cp15.c15_ccnt = value;
1046         return;
1047     }
1048 
1049     total_ticks = muldiv64(qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL),
1050                            ARM_CPU_FREQ, NANOSECONDS_PER_SECOND);
1051 
1052     if (env->cp15.c9_pmcr & PMCRD) {
1053         /* Increment once every 64 processor clock cycles */
1054         total_ticks /= 64;
1055     }
1056     env->cp15.c15_ccnt = total_ticks - value;
1057 }
1058 
1059 static void pmccntr_write32(CPUARMState *env, const ARMCPRegInfo *ri,
1060                             uint64_t value)
1061 {
1062     uint64_t cur_val = pmccntr_read(env, NULL);
1063 
1064     pmccntr_write(env, ri, deposit64(cur_val, 0, 32, value));
1065 }
1066 
1067 #else /* CONFIG_USER_ONLY */
1068 
1069 void pmccntr_sync(CPUARMState *env)
1070 {
1071 }
1072 
1073 #endif
1074 
1075 static void pmccfiltr_write(CPUARMState *env, const ARMCPRegInfo *ri,
1076                             uint64_t value)
1077 {
1078     pmccntr_sync(env);
1079     env->cp15.pmccfiltr_el0 = value & 0x7E000000;
1080     pmccntr_sync(env);
1081 }
1082 
1083 static void pmcntenset_write(CPUARMState *env, const ARMCPRegInfo *ri,
1084                             uint64_t value)
1085 {
1086     value &= (1 << 31);
1087     env->cp15.c9_pmcnten |= value;
1088 }
1089 
1090 static void pmcntenclr_write(CPUARMState *env, const ARMCPRegInfo *ri,
1091                              uint64_t value)
1092 {
1093     value &= (1 << 31);
1094     env->cp15.c9_pmcnten &= ~value;
1095 }
1096 
1097 static void pmovsr_write(CPUARMState *env, const ARMCPRegInfo *ri,
1098                          uint64_t value)
1099 {
1100     env->cp15.c9_pmovsr &= ~value;
1101 }
1102 
1103 static void pmxevtyper_write(CPUARMState *env, const ARMCPRegInfo *ri,
1104                              uint64_t value)
1105 {
1106     /* Attempts to access PMXEVTYPER are CONSTRAINED UNPREDICTABLE when
1107      * PMSELR value is equal to or greater than the number of implemented
1108      * counters, but not equal to 0x1f. We opt to behave as a RAZ/WI.
1109      */
1110     if (env->cp15.c9_pmselr == 0x1f) {
1111         pmccfiltr_write(env, ri, value);
1112     }
1113 }
1114 
1115 static uint64_t pmxevtyper_read(CPUARMState *env, const ARMCPRegInfo *ri)
1116 {
1117     /* We opt to behave as a RAZ/WI when attempts to access PMXEVTYPER
1118      * are CONSTRAINED UNPREDICTABLE. See comments in pmxevtyper_write().
1119      */
1120     if (env->cp15.c9_pmselr == 0x1f) {
1121         return env->cp15.pmccfiltr_el0;
1122     } else {
1123         return 0;
1124     }
1125 }
1126 
1127 static void pmuserenr_write(CPUARMState *env, const ARMCPRegInfo *ri,
1128                             uint64_t value)
1129 {
1130     if (arm_feature(env, ARM_FEATURE_V8)) {
1131         env->cp15.c9_pmuserenr = value & 0xf;
1132     } else {
1133         env->cp15.c9_pmuserenr = value & 1;
1134     }
1135 }
1136 
1137 static void pmintenset_write(CPUARMState *env, const ARMCPRegInfo *ri,
1138                              uint64_t value)
1139 {
1140     /* We have no event counters so only the C bit can be changed */
1141     value &= (1 << 31);
1142     env->cp15.c9_pminten |= value;
1143 }
1144 
1145 static void pmintenclr_write(CPUARMState *env, const ARMCPRegInfo *ri,
1146                              uint64_t value)
1147 {
1148     value &= (1 << 31);
1149     env->cp15.c9_pminten &= ~value;
1150 }
1151 
1152 static void vbar_write(CPUARMState *env, const ARMCPRegInfo *ri,
1153                        uint64_t value)
1154 {
1155     /* Note that even though the AArch64 view of this register has bits
1156      * [10:0] all RES0 we can only mask the bottom 5, to comply with the
1157      * architectural requirements for bits which are RES0 only in some
1158      * contexts. (ARMv8 would permit us to do no masking at all, but ARMv7
1159      * requires the bottom five bits to be RAZ/WI because they're UNK/SBZP.)
1160      */
1161     raw_write(env, ri, value & ~0x1FULL);
1162 }
1163 
1164 static void scr_write(CPUARMState *env, const ARMCPRegInfo *ri, uint64_t value)
1165 {
1166     /* We only mask off bits that are RES0 both for AArch64 and AArch32.
1167      * For bits that vary between AArch32/64, code needs to check the
1168      * current execution mode before directly using the feature bit.
1169      */
1170     uint32_t valid_mask = SCR_AARCH64_MASK | SCR_AARCH32_MASK;
1171 
1172     if (!arm_feature(env, ARM_FEATURE_EL2)) {
1173         valid_mask &= ~SCR_HCE;
1174 
1175         /* On ARMv7, SMD (or SCD as it is called in v7) is only
1176          * supported if EL2 exists. The bit is UNK/SBZP when
1177          * EL2 is unavailable. In QEMU ARMv7, we force it to always zero
1178          * when EL2 is unavailable.
1179          * On ARMv8, this bit is always available.
1180          */
1181         if (arm_feature(env, ARM_FEATURE_V7) &&
1182             !arm_feature(env, ARM_FEATURE_V8)) {
1183             valid_mask &= ~SCR_SMD;
1184         }
1185     }
1186 
1187     /* Clear all-context RES0 bits.  */
1188     value &= valid_mask;
1189     raw_write(env, ri, value);
1190 }
1191 
1192 static uint64_t ccsidr_read(CPUARMState *env, const ARMCPRegInfo *ri)
1193 {
1194     ARMCPU *cpu = arm_env_get_cpu(env);
1195 
1196     /* Acquire the CSSELR index from the bank corresponding to the CCSIDR
1197      * bank
1198      */
1199     uint32_t index = A32_BANKED_REG_GET(env, csselr,
1200                                         ri->secure & ARM_CP_SECSTATE_S);
1201 
1202     return cpu->ccsidr[index];
1203 }
1204 
1205 static void csselr_write(CPUARMState *env, const ARMCPRegInfo *ri,
1206                          uint64_t value)
1207 {
1208     raw_write(env, ri, value & 0xf);
1209 }
1210 
1211 static uint64_t isr_read(CPUARMState *env, const ARMCPRegInfo *ri)
1212 {
1213     CPUState *cs = ENV_GET_CPU(env);
1214     uint64_t ret = 0;
1215 
1216     if (cs->interrupt_request & CPU_INTERRUPT_HARD) {
1217         ret |= CPSR_I;
1218     }
1219     if (cs->interrupt_request & CPU_INTERRUPT_FIQ) {
1220         ret |= CPSR_F;
1221     }
1222     /* External aborts are not possible in QEMU so A bit is always clear */
1223     return ret;
1224 }
1225 
1226 static const ARMCPRegInfo v7_cp_reginfo[] = {
1227     /* the old v6 WFI, UNPREDICTABLE in v7 but we choose to NOP */
1228     { .name = "NOP", .cp = 15, .crn = 7, .crm = 0, .opc1 = 0, .opc2 = 4,
1229       .access = PL1_W, .type = ARM_CP_NOP },
1230     /* Performance monitors are implementation defined in v7,
1231      * but with an ARM recommended set of registers, which we
1232      * follow (although we don't actually implement any counters)
1233      *
1234      * Performance registers fall into three categories:
1235      *  (a) always UNDEF in PL0, RW in PL1 (PMINTENSET, PMINTENCLR)
1236      *  (b) RO in PL0 (ie UNDEF on write), RW in PL1 (PMUSERENR)
1237      *  (c) UNDEF in PL0 if PMUSERENR.EN==0, otherwise accessible (all others)
1238      * For the cases controlled by PMUSERENR we must set .access to PL0_RW
1239      * or PL0_RO as appropriate and then check PMUSERENR in the helper fn.
1240      */
1241     { .name = "PMCNTENSET", .cp = 15, .crn = 9, .crm = 12, .opc1 = 0, .opc2 = 1,
1242       .access = PL0_RW, .type = ARM_CP_ALIAS,
1243       .fieldoffset = offsetoflow32(CPUARMState, cp15.c9_pmcnten),
1244       .writefn = pmcntenset_write,
1245       .accessfn = pmreg_access,
1246       .raw_writefn = raw_write },
1247     { .name = "PMCNTENSET_EL0", .state = ARM_CP_STATE_AA64,
1248       .opc0 = 3, .opc1 = 3, .crn = 9, .crm = 12, .opc2 = 1,
1249       .access = PL0_RW, .accessfn = pmreg_access,
1250       .fieldoffset = offsetof(CPUARMState, cp15.c9_pmcnten), .resetvalue = 0,
1251       .writefn = pmcntenset_write, .raw_writefn = raw_write },
1252     { .name = "PMCNTENCLR", .cp = 15, .crn = 9, .crm = 12, .opc1 = 0, .opc2 = 2,
1253       .access = PL0_RW,
1254       .fieldoffset = offsetoflow32(CPUARMState, cp15.c9_pmcnten),
1255       .accessfn = pmreg_access,
1256       .writefn = pmcntenclr_write,
1257       .type = ARM_CP_ALIAS },
1258     { .name = "PMCNTENCLR_EL0", .state = ARM_CP_STATE_AA64,
1259       .opc0 = 3, .opc1 = 3, .crn = 9, .crm = 12, .opc2 = 2,
1260       .access = PL0_RW, .accessfn = pmreg_access,
1261       .type = ARM_CP_ALIAS,
1262       .fieldoffset = offsetof(CPUARMState, cp15.c9_pmcnten),
1263       .writefn = pmcntenclr_write },
1264     { .name = "PMOVSR", .cp = 15, .crn = 9, .crm = 12, .opc1 = 0, .opc2 = 3,
1265       .access = PL0_RW, .fieldoffset = offsetof(CPUARMState, cp15.c9_pmovsr),
1266       .accessfn = pmreg_access,
1267       .writefn = pmovsr_write,
1268       .raw_writefn = raw_write },
1269     { .name = "PMOVSCLR_EL0", .state = ARM_CP_STATE_AA64,
1270       .opc0 = 3, .opc1 = 3, .crn = 9, .crm = 12, .opc2 = 3,
1271       .access = PL0_RW, .accessfn = pmreg_access,
1272       .type = ARM_CP_ALIAS,
1273       .fieldoffset = offsetof(CPUARMState, cp15.c9_pmovsr),
1274       .writefn = pmovsr_write,
1275       .raw_writefn = raw_write },
1276     /* Unimplemented so WI. */
1277     { .name = "PMSWINC", .cp = 15, .crn = 9, .crm = 12, .opc1 = 0, .opc2 = 4,
1278       .access = PL0_W, .accessfn = pmreg_access_swinc, .type = ARM_CP_NOP },
1279 #ifndef CONFIG_USER_ONLY
1280     { .name = "PMSELR", .cp = 15, .crn = 9, .crm = 12, .opc1 = 0, .opc2 = 5,
1281       .access = PL0_RW, .type = ARM_CP_ALIAS,
1282       .fieldoffset = offsetoflow32(CPUARMState, cp15.c9_pmselr),
1283       .accessfn = pmreg_access_selr, .writefn = pmselr_write,
1284       .raw_writefn = raw_write},
1285     { .name = "PMSELR_EL0", .state = ARM_CP_STATE_AA64,
1286       .opc0 = 3, .opc1 = 3, .crn = 9, .crm = 12, .opc2 = 5,
1287       .access = PL0_RW, .accessfn = pmreg_access_selr,
1288       .fieldoffset = offsetof(CPUARMState, cp15.c9_pmselr),
1289       .writefn = pmselr_write, .raw_writefn = raw_write, },
1290     { .name = "PMCCNTR", .cp = 15, .crn = 9, .crm = 13, .opc1 = 0, .opc2 = 0,
1291       .access = PL0_RW, .resetvalue = 0, .type = ARM_CP_IO,
1292       .readfn = pmccntr_read, .writefn = pmccntr_write32,
1293       .accessfn = pmreg_access_ccntr },
1294     { .name = "PMCCNTR_EL0", .state = ARM_CP_STATE_AA64,
1295       .opc0 = 3, .opc1 = 3, .crn = 9, .crm = 13, .opc2 = 0,
1296       .access = PL0_RW, .accessfn = pmreg_access_ccntr,
1297       .type = ARM_CP_IO,
1298       .readfn = pmccntr_read, .writefn = pmccntr_write, },
1299 #endif
1300     { .name = "PMCCFILTR_EL0", .state = ARM_CP_STATE_AA64,
1301       .opc0 = 3, .opc1 = 3, .crn = 14, .crm = 15, .opc2 = 7,
1302       .writefn = pmccfiltr_write,
1303       .access = PL0_RW, .accessfn = pmreg_access,
1304       .type = ARM_CP_IO,
1305       .fieldoffset = offsetof(CPUARMState, cp15.pmccfiltr_el0),
1306       .resetvalue = 0, },
1307     { .name = "PMXEVTYPER", .cp = 15, .crn = 9, .crm = 13, .opc1 = 0, .opc2 = 1,
1308       .access = PL0_RW, .type = ARM_CP_NO_RAW, .accessfn = pmreg_access,
1309       .writefn = pmxevtyper_write, .readfn = pmxevtyper_read },
1310     { .name = "PMXEVTYPER_EL0", .state = ARM_CP_STATE_AA64,
1311       .opc0 = 3, .opc1 = 3, .crn = 9, .crm = 13, .opc2 = 1,
1312       .access = PL0_RW, .type = ARM_CP_NO_RAW, .accessfn = pmreg_access,
1313       .writefn = pmxevtyper_write, .readfn = pmxevtyper_read },
1314     /* Unimplemented, RAZ/WI. */
1315     { .name = "PMXEVCNTR", .cp = 15, .crn = 9, .crm = 13, .opc1 = 0, .opc2 = 2,
1316       .access = PL0_RW, .type = ARM_CP_CONST, .resetvalue = 0,
1317       .accessfn = pmreg_access_xevcntr },
1318     { .name = "PMUSERENR", .cp = 15, .crn = 9, .crm = 14, .opc1 = 0, .opc2 = 0,
1319       .access = PL0_R | PL1_RW, .accessfn = access_tpm,
1320       .fieldoffset = offsetof(CPUARMState, cp15.c9_pmuserenr),
1321       .resetvalue = 0,
1322       .writefn = pmuserenr_write, .raw_writefn = raw_write },
1323     { .name = "PMUSERENR_EL0", .state = ARM_CP_STATE_AA64,
1324       .opc0 = 3, .opc1 = 3, .crn = 9, .crm = 14, .opc2 = 0,
1325       .access = PL0_R | PL1_RW, .accessfn = access_tpm, .type = ARM_CP_ALIAS,
1326       .fieldoffset = offsetof(CPUARMState, cp15.c9_pmuserenr),
1327       .resetvalue = 0,
1328       .writefn = pmuserenr_write, .raw_writefn = raw_write },
1329     { .name = "PMINTENSET", .cp = 15, .crn = 9, .crm = 14, .opc1 = 0, .opc2 = 1,
1330       .access = PL1_RW, .accessfn = access_tpm,
1331       .type = ARM_CP_ALIAS,
1332       .fieldoffset = offsetoflow32(CPUARMState, cp15.c9_pminten),
1333       .resetvalue = 0,
1334       .writefn = pmintenset_write, .raw_writefn = raw_write },
1335     { .name = "PMINTENSET_EL1", .state = ARM_CP_STATE_AA64,
1336       .opc0 = 3, .opc1 = 0, .crn = 9, .crm = 14, .opc2 = 1,
1337       .access = PL1_RW, .accessfn = access_tpm,
1338       .type = ARM_CP_IO,
1339       .fieldoffset = offsetof(CPUARMState, cp15.c9_pminten),
1340       .writefn = pmintenset_write, .raw_writefn = raw_write,
1341       .resetvalue = 0x0 },
1342     { .name = "PMINTENCLR", .cp = 15, .crn = 9, .crm = 14, .opc1 = 0, .opc2 = 2,
1343       .access = PL1_RW, .accessfn = access_tpm, .type = ARM_CP_ALIAS,
1344       .fieldoffset = offsetof(CPUARMState, cp15.c9_pminten),
1345       .writefn = pmintenclr_write, },
1346     { .name = "PMINTENCLR_EL1", .state = ARM_CP_STATE_AA64,
1347       .opc0 = 3, .opc1 = 0, .crn = 9, .crm = 14, .opc2 = 2,
1348       .access = PL1_RW, .accessfn = access_tpm, .type = ARM_CP_ALIAS,
1349       .fieldoffset = offsetof(CPUARMState, cp15.c9_pminten),
1350       .writefn = pmintenclr_write },
1351     { .name = "CCSIDR", .state = ARM_CP_STATE_BOTH,
1352       .opc0 = 3, .crn = 0, .crm = 0, .opc1 = 1, .opc2 = 0,
1353       .access = PL1_R, .readfn = ccsidr_read, .type = ARM_CP_NO_RAW },
1354     { .name = "CSSELR", .state = ARM_CP_STATE_BOTH,
1355       .opc0 = 3, .crn = 0, .crm = 0, .opc1 = 2, .opc2 = 0,
1356       .access = PL1_RW, .writefn = csselr_write, .resetvalue = 0,
1357       .bank_fieldoffsets = { offsetof(CPUARMState, cp15.csselr_s),
1358                              offsetof(CPUARMState, cp15.csselr_ns) } },
1359     /* Auxiliary ID register: this actually has an IMPDEF value but for now
1360      * just RAZ for all cores:
1361      */
1362     { .name = "AIDR", .state = ARM_CP_STATE_BOTH,
1363       .opc0 = 3, .opc1 = 1, .crn = 0, .crm = 0, .opc2 = 7,
1364       .access = PL1_R, .type = ARM_CP_CONST, .resetvalue = 0 },
1365     /* Auxiliary fault status registers: these also are IMPDEF, and we
1366      * choose to RAZ/WI for all cores.
1367      */
1368     { .name = "AFSR0_EL1", .state = ARM_CP_STATE_BOTH,
1369       .opc0 = 3, .opc1 = 0, .crn = 5, .crm = 1, .opc2 = 0,
1370       .access = PL1_RW, .type = ARM_CP_CONST, .resetvalue = 0 },
1371     { .name = "AFSR1_EL1", .state = ARM_CP_STATE_BOTH,
1372       .opc0 = 3, .opc1 = 0, .crn = 5, .crm = 1, .opc2 = 1,
1373       .access = PL1_RW, .type = ARM_CP_CONST, .resetvalue = 0 },
1374     /* MAIR can just read-as-written because we don't implement caches
1375      * and so don't need to care about memory attributes.
1376      */
1377     { .name = "MAIR_EL1", .state = ARM_CP_STATE_AA64,
1378       .opc0 = 3, .opc1 = 0, .crn = 10, .crm = 2, .opc2 = 0,
1379       .access = PL1_RW, .fieldoffset = offsetof(CPUARMState, cp15.mair_el[1]),
1380       .resetvalue = 0 },
1381     { .name = "MAIR_EL3", .state = ARM_CP_STATE_AA64,
1382       .opc0 = 3, .opc1 = 6, .crn = 10, .crm = 2, .opc2 = 0,
1383       .access = PL3_RW, .fieldoffset = offsetof(CPUARMState, cp15.mair_el[3]),
1384       .resetvalue = 0 },
1385     /* For non-long-descriptor page tables these are PRRR and NMRR;
1386      * regardless they still act as reads-as-written for QEMU.
1387      */
1388      /* MAIR0/1 are defined separately from their 64-bit counterpart which
1389       * allows them to assign the correct fieldoffset based on the endianness
1390       * handled in the field definitions.
1391       */
1392     { .name = "MAIR0", .state = ARM_CP_STATE_AA32,
1393       .cp = 15, .opc1 = 0, .crn = 10, .crm = 2, .opc2 = 0, .access = PL1_RW,
1394       .bank_fieldoffsets = { offsetof(CPUARMState, cp15.mair0_s),
1395                              offsetof(CPUARMState, cp15.mair0_ns) },
1396       .resetfn = arm_cp_reset_ignore },
1397     { .name = "MAIR1", .state = ARM_CP_STATE_AA32,
1398       .cp = 15, .opc1 = 0, .crn = 10, .crm = 2, .opc2 = 1, .access = PL1_RW,
1399       .bank_fieldoffsets = { offsetof(CPUARMState, cp15.mair1_s),
1400                              offsetof(CPUARMState, cp15.mair1_ns) },
1401       .resetfn = arm_cp_reset_ignore },
1402     { .name = "ISR_EL1", .state = ARM_CP_STATE_BOTH,
1403       .opc0 = 3, .opc1 = 0, .crn = 12, .crm = 1, .opc2 = 0,
1404       .type = ARM_CP_NO_RAW, .access = PL1_R, .readfn = isr_read },
1405     /* 32 bit ITLB invalidates */
1406     { .name = "ITLBIALL", .cp = 15, .opc1 = 0, .crn = 8, .crm = 5, .opc2 = 0,
1407       .type = ARM_CP_NO_RAW, .access = PL1_W, .writefn = tlbiall_write },
1408     { .name = "ITLBIMVA", .cp = 15, .opc1 = 0, .crn = 8, .crm = 5, .opc2 = 1,
1409       .type = ARM_CP_NO_RAW, .access = PL1_W, .writefn = tlbimva_write },
1410     { .name = "ITLBIASID", .cp = 15, .opc1 = 0, .crn = 8, .crm = 5, .opc2 = 2,
1411       .type = ARM_CP_NO_RAW, .access = PL1_W, .writefn = tlbiasid_write },
1412     /* 32 bit DTLB invalidates */
1413     { .name = "DTLBIALL", .cp = 15, .opc1 = 0, .crn = 8, .crm = 6, .opc2 = 0,
1414       .type = ARM_CP_NO_RAW, .access = PL1_W, .writefn = tlbiall_write },
1415     { .name = "DTLBIMVA", .cp = 15, .opc1 = 0, .crn = 8, .crm = 6, .opc2 = 1,
1416       .type = ARM_CP_NO_RAW, .access = PL1_W, .writefn = tlbimva_write },
1417     { .name = "DTLBIASID", .cp = 15, .opc1 = 0, .crn = 8, .crm = 6, .opc2 = 2,
1418       .type = ARM_CP_NO_RAW, .access = PL1_W, .writefn = tlbiasid_write },
1419     /* 32 bit TLB invalidates */
1420     { .name = "TLBIALL", .cp = 15, .opc1 = 0, .crn = 8, .crm = 7, .opc2 = 0,
1421       .type = ARM_CP_NO_RAW, .access = PL1_W, .writefn = tlbiall_write },
1422     { .name = "TLBIMVA", .cp = 15, .opc1 = 0, .crn = 8, .crm = 7, .opc2 = 1,
1423       .type = ARM_CP_NO_RAW, .access = PL1_W, .writefn = tlbimva_write },
1424     { .name = "TLBIASID", .cp = 15, .opc1 = 0, .crn = 8, .crm = 7, .opc2 = 2,
1425       .type = ARM_CP_NO_RAW, .access = PL1_W, .writefn = tlbiasid_write },
1426     { .name = "TLBIMVAA", .cp = 15, .opc1 = 0, .crn = 8, .crm = 7, .opc2 = 3,
1427       .type = ARM_CP_NO_RAW, .access = PL1_W, .writefn = tlbimvaa_write },
1428     REGINFO_SENTINEL
1429 };
1430 
1431 static const ARMCPRegInfo v7mp_cp_reginfo[] = {
1432     /* 32 bit TLB invalidates, Inner Shareable */
1433     { .name = "TLBIALLIS", .cp = 15, .opc1 = 0, .crn = 8, .crm = 3, .opc2 = 0,
1434       .type = ARM_CP_NO_RAW, .access = PL1_W, .writefn = tlbiall_is_write },
1435     { .name = "TLBIMVAIS", .cp = 15, .opc1 = 0, .crn = 8, .crm = 3, .opc2 = 1,
1436       .type = ARM_CP_NO_RAW, .access = PL1_W, .writefn = tlbimva_is_write },
1437     { .name = "TLBIASIDIS", .cp = 15, .opc1 = 0, .crn = 8, .crm = 3, .opc2 = 2,
1438       .type = ARM_CP_NO_RAW, .access = PL1_W,
1439       .writefn = tlbiasid_is_write },
1440     { .name = "TLBIMVAAIS", .cp = 15, .opc1 = 0, .crn = 8, .crm = 3, .opc2 = 3,
1441       .type = ARM_CP_NO_RAW, .access = PL1_W,
1442       .writefn = tlbimvaa_is_write },
1443     REGINFO_SENTINEL
1444 };
1445 
1446 static void teecr_write(CPUARMState *env, const ARMCPRegInfo *ri,
1447                         uint64_t value)
1448 {
1449     value &= 1;
1450     env->teecr = value;
1451 }
1452 
1453 static CPAccessResult teehbr_access(CPUARMState *env, const ARMCPRegInfo *ri,
1454                                     bool isread)
1455 {
1456     if (arm_current_el(env) == 0 && (env->teecr & 1)) {
1457         return CP_ACCESS_TRAP;
1458     }
1459     return CP_ACCESS_OK;
1460 }
1461 
1462 static const ARMCPRegInfo t2ee_cp_reginfo[] = {
1463     { .name = "TEECR", .cp = 14, .crn = 0, .crm = 0, .opc1 = 6, .opc2 = 0,
1464       .access = PL1_RW, .fieldoffset = offsetof(CPUARMState, teecr),
1465       .resetvalue = 0,
1466       .writefn = teecr_write },
1467     { .name = "TEEHBR", .cp = 14, .crn = 1, .crm = 0, .opc1 = 6, .opc2 = 0,
1468       .access = PL0_RW, .fieldoffset = offsetof(CPUARMState, teehbr),
1469       .accessfn = teehbr_access, .resetvalue = 0 },
1470     REGINFO_SENTINEL
1471 };
1472 
1473 static const ARMCPRegInfo v6k_cp_reginfo[] = {
1474     { .name = "TPIDR_EL0", .state = ARM_CP_STATE_AA64,
1475       .opc0 = 3, .opc1 = 3, .opc2 = 2, .crn = 13, .crm = 0,
1476       .access = PL0_RW,
1477       .fieldoffset = offsetof(CPUARMState, cp15.tpidr_el[0]), .resetvalue = 0 },
1478     { .name = "TPIDRURW", .cp = 15, .crn = 13, .crm = 0, .opc1 = 0, .opc2 = 2,
1479       .access = PL0_RW,
1480       .bank_fieldoffsets = { offsetoflow32(CPUARMState, cp15.tpidrurw_s),
1481                              offsetoflow32(CPUARMState, cp15.tpidrurw_ns) },
1482       .resetfn = arm_cp_reset_ignore },
1483     { .name = "TPIDRRO_EL0", .state = ARM_CP_STATE_AA64,
1484       .opc0 = 3, .opc1 = 3, .opc2 = 3, .crn = 13, .crm = 0,
1485       .access = PL0_R|PL1_W,
1486       .fieldoffset = offsetof(CPUARMState, cp15.tpidrro_el[0]),
1487       .resetvalue = 0},
1488     { .name = "TPIDRURO", .cp = 15, .crn = 13, .crm = 0, .opc1 = 0, .opc2 = 3,
1489       .access = PL0_R|PL1_W,
1490       .bank_fieldoffsets = { offsetoflow32(CPUARMState, cp15.tpidruro_s),
1491                              offsetoflow32(CPUARMState, cp15.tpidruro_ns) },
1492       .resetfn = arm_cp_reset_ignore },
1493     { .name = "TPIDR_EL1", .state = ARM_CP_STATE_AA64,
1494       .opc0 = 3, .opc1 = 0, .opc2 = 4, .crn = 13, .crm = 0,
1495       .access = PL1_RW,
1496       .fieldoffset = offsetof(CPUARMState, cp15.tpidr_el[1]), .resetvalue = 0 },
1497     { .name = "TPIDRPRW", .opc1 = 0, .cp = 15, .crn = 13, .crm = 0, .opc2 = 4,
1498       .access = PL1_RW,
1499       .bank_fieldoffsets = { offsetoflow32(CPUARMState, cp15.tpidrprw_s),
1500                              offsetoflow32(CPUARMState, cp15.tpidrprw_ns) },
1501       .resetvalue = 0 },
1502     REGINFO_SENTINEL
1503 };
1504 
1505 #ifndef CONFIG_USER_ONLY
1506 
1507 static CPAccessResult gt_cntfrq_access(CPUARMState *env, const ARMCPRegInfo *ri,
1508                                        bool isread)
1509 {
1510     /* CNTFRQ: not visible from PL0 if both PL0PCTEN and PL0VCTEN are zero.
1511      * Writable only at the highest implemented exception level.
1512      */
1513     int el = arm_current_el(env);
1514 
1515     switch (el) {
1516     case 0:
1517         if (!extract32(env->cp15.c14_cntkctl, 0, 2)) {
1518             return CP_ACCESS_TRAP;
1519         }
1520         break;
1521     case 1:
1522         if (!isread && ri->state == ARM_CP_STATE_AA32 &&
1523             arm_is_secure_below_el3(env)) {
1524             /* Accesses from 32-bit Secure EL1 UNDEF (*not* trap to EL3!) */
1525             return CP_ACCESS_TRAP_UNCATEGORIZED;
1526         }
1527         break;
1528     case 2:
1529     case 3:
1530         break;
1531     }
1532 
1533     if (!isread && el < arm_highest_el(env)) {
1534         return CP_ACCESS_TRAP_UNCATEGORIZED;
1535     }
1536 
1537     return CP_ACCESS_OK;
1538 }
1539 
1540 static CPAccessResult gt_counter_access(CPUARMState *env, int timeridx,
1541                                         bool isread)
1542 {
1543     unsigned int cur_el = arm_current_el(env);
1544     bool secure = arm_is_secure(env);
1545 
1546     /* CNT[PV]CT: not visible from PL0 if ELO[PV]CTEN is zero */
1547     if (cur_el == 0 &&
1548         !extract32(env->cp15.c14_cntkctl, timeridx, 1)) {
1549         return CP_ACCESS_TRAP;
1550     }
1551 
1552     if (arm_feature(env, ARM_FEATURE_EL2) &&
1553         timeridx == GTIMER_PHYS && !secure && cur_el < 2 &&
1554         !extract32(env->cp15.cnthctl_el2, 0, 1)) {
1555         return CP_ACCESS_TRAP_EL2;
1556     }
1557     return CP_ACCESS_OK;
1558 }
1559 
1560 static CPAccessResult gt_timer_access(CPUARMState *env, int timeridx,
1561                                       bool isread)
1562 {
1563     unsigned int cur_el = arm_current_el(env);
1564     bool secure = arm_is_secure(env);
1565 
1566     /* CNT[PV]_CVAL, CNT[PV]_CTL, CNT[PV]_TVAL: not visible from PL0 if
1567      * EL0[PV]TEN is zero.
1568      */
1569     if (cur_el == 0 &&
1570         !extract32(env->cp15.c14_cntkctl, 9 - timeridx, 1)) {
1571         return CP_ACCESS_TRAP;
1572     }
1573 
1574     if (arm_feature(env, ARM_FEATURE_EL2) &&
1575         timeridx == GTIMER_PHYS && !secure && cur_el < 2 &&
1576         !extract32(env->cp15.cnthctl_el2, 1, 1)) {
1577         return CP_ACCESS_TRAP_EL2;
1578     }
1579     return CP_ACCESS_OK;
1580 }
1581 
1582 static CPAccessResult gt_pct_access(CPUARMState *env,
1583                                     const ARMCPRegInfo *ri,
1584                                     bool isread)
1585 {
1586     return gt_counter_access(env, GTIMER_PHYS, isread);
1587 }
1588 
1589 static CPAccessResult gt_vct_access(CPUARMState *env,
1590                                     const ARMCPRegInfo *ri,
1591                                     bool isread)
1592 {
1593     return gt_counter_access(env, GTIMER_VIRT, isread);
1594 }
1595 
1596 static CPAccessResult gt_ptimer_access(CPUARMState *env, const ARMCPRegInfo *ri,
1597                                        bool isread)
1598 {
1599     return gt_timer_access(env, GTIMER_PHYS, isread);
1600 }
1601 
1602 static CPAccessResult gt_vtimer_access(CPUARMState *env, const ARMCPRegInfo *ri,
1603                                        bool isread)
1604 {
1605     return gt_timer_access(env, GTIMER_VIRT, isread);
1606 }
1607 
1608 static CPAccessResult gt_stimer_access(CPUARMState *env,
1609                                        const ARMCPRegInfo *ri,
1610                                        bool isread)
1611 {
1612     /* The AArch64 register view of the secure physical timer is
1613      * always accessible from EL3, and configurably accessible from
1614      * Secure EL1.
1615      */
1616     switch (arm_current_el(env)) {
1617     case 1:
1618         if (!arm_is_secure(env)) {
1619             return CP_ACCESS_TRAP;
1620         }
1621         if (!(env->cp15.scr_el3 & SCR_ST)) {
1622             return CP_ACCESS_TRAP_EL3;
1623         }
1624         return CP_ACCESS_OK;
1625     case 0:
1626     case 2:
1627         return CP_ACCESS_TRAP;
1628     case 3:
1629         return CP_ACCESS_OK;
1630     default:
1631         g_assert_not_reached();
1632     }
1633 }
1634 
1635 static uint64_t gt_get_countervalue(CPUARMState *env)
1636 {
1637     return qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL) / GTIMER_SCALE;
1638 }
1639 
1640 static void gt_recalc_timer(ARMCPU *cpu, int timeridx)
1641 {
1642     ARMGenericTimer *gt = &cpu->env.cp15.c14_timer[timeridx];
1643 
1644     if (gt->ctl & 1) {
1645         /* Timer enabled: calculate and set current ISTATUS, irq, and
1646          * reset timer to when ISTATUS next has to change
1647          */
1648         uint64_t offset = timeridx == GTIMER_VIRT ?
1649                                       cpu->env.cp15.cntvoff_el2 : 0;
1650         uint64_t count = gt_get_countervalue(&cpu->env);
1651         /* Note that this must be unsigned 64 bit arithmetic: */
1652         int istatus = count - offset >= gt->cval;
1653         uint64_t nexttick;
1654         int irqstate;
1655 
1656         gt->ctl = deposit32(gt->ctl, 2, 1, istatus);
1657 
1658         irqstate = (istatus && !(gt->ctl & 2));
1659         qemu_set_irq(cpu->gt_timer_outputs[timeridx], irqstate);
1660 
1661         if (istatus) {
1662             /* Next transition is when count rolls back over to zero */
1663             nexttick = UINT64_MAX;
1664         } else {
1665             /* Next transition is when we hit cval */
1666             nexttick = gt->cval + offset;
1667         }
1668         /* Note that the desired next expiry time might be beyond the
1669          * signed-64-bit range of a QEMUTimer -- in this case we just
1670          * set the timer for as far in the future as possible. When the
1671          * timer expires we will reset the timer for any remaining period.
1672          */
1673         if (nexttick > INT64_MAX / GTIMER_SCALE) {
1674             nexttick = INT64_MAX / GTIMER_SCALE;
1675         }
1676         timer_mod(cpu->gt_timer[timeridx], nexttick);
1677         trace_arm_gt_recalc(timeridx, irqstate, nexttick);
1678     } else {
1679         /* Timer disabled: ISTATUS and timer output always clear */
1680         gt->ctl &= ~4;
1681         qemu_set_irq(cpu->gt_timer_outputs[timeridx], 0);
1682         timer_del(cpu->gt_timer[timeridx]);
1683         trace_arm_gt_recalc_disabled(timeridx);
1684     }
1685 }
1686 
1687 static void gt_timer_reset(CPUARMState *env, const ARMCPRegInfo *ri,
1688                            int timeridx)
1689 {
1690     ARMCPU *cpu = arm_env_get_cpu(env);
1691 
1692     timer_del(cpu->gt_timer[timeridx]);
1693 }
1694 
1695 static uint64_t gt_cnt_read(CPUARMState *env, const ARMCPRegInfo *ri)
1696 {
1697     return gt_get_countervalue(env);
1698 }
1699 
1700 static uint64_t gt_virt_cnt_read(CPUARMState *env, const ARMCPRegInfo *ri)
1701 {
1702     return gt_get_countervalue(env) - env->cp15.cntvoff_el2;
1703 }
1704 
1705 static void gt_cval_write(CPUARMState *env, const ARMCPRegInfo *ri,
1706                           int timeridx,
1707                           uint64_t value)
1708 {
1709     trace_arm_gt_cval_write(timeridx, value);
1710     env->cp15.c14_timer[timeridx].cval = value;
1711     gt_recalc_timer(arm_env_get_cpu(env), timeridx);
1712 }
1713 
1714 static uint64_t gt_tval_read(CPUARMState *env, const ARMCPRegInfo *ri,
1715                              int timeridx)
1716 {
1717     uint64_t offset = timeridx == GTIMER_VIRT ? env->cp15.cntvoff_el2 : 0;
1718 
1719     return (uint32_t)(env->cp15.c14_timer[timeridx].cval -
1720                       (gt_get_countervalue(env) - offset));
1721 }
1722 
1723 static void gt_tval_write(CPUARMState *env, const ARMCPRegInfo *ri,
1724                           int timeridx,
1725                           uint64_t value)
1726 {
1727     uint64_t offset = timeridx == GTIMER_VIRT ? env->cp15.cntvoff_el2 : 0;
1728 
1729     trace_arm_gt_tval_write(timeridx, value);
1730     env->cp15.c14_timer[timeridx].cval = gt_get_countervalue(env) - offset +
1731                                          sextract64(value, 0, 32);
1732     gt_recalc_timer(arm_env_get_cpu(env), timeridx);
1733 }
1734 
1735 static void gt_ctl_write(CPUARMState *env, const ARMCPRegInfo *ri,
1736                          int timeridx,
1737                          uint64_t value)
1738 {
1739     ARMCPU *cpu = arm_env_get_cpu(env);
1740     uint32_t oldval = env->cp15.c14_timer[timeridx].ctl;
1741 
1742     trace_arm_gt_ctl_write(timeridx, value);
1743     env->cp15.c14_timer[timeridx].ctl = deposit64(oldval, 0, 2, value);
1744     if ((oldval ^ value) & 1) {
1745         /* Enable toggled */
1746         gt_recalc_timer(cpu, timeridx);
1747     } else if ((oldval ^ value) & 2) {
1748         /* IMASK toggled: don't need to recalculate,
1749          * just set the interrupt line based on ISTATUS
1750          */
1751         int irqstate = (oldval & 4) && !(value & 2);
1752 
1753         trace_arm_gt_imask_toggle(timeridx, irqstate);
1754         qemu_set_irq(cpu->gt_timer_outputs[timeridx], irqstate);
1755     }
1756 }
1757 
1758 static void gt_phys_timer_reset(CPUARMState *env, const ARMCPRegInfo *ri)
1759 {
1760     gt_timer_reset(env, ri, GTIMER_PHYS);
1761 }
1762 
1763 static void gt_phys_cval_write(CPUARMState *env, const ARMCPRegInfo *ri,
1764                                uint64_t value)
1765 {
1766     gt_cval_write(env, ri, GTIMER_PHYS, value);
1767 }
1768 
1769 static uint64_t gt_phys_tval_read(CPUARMState *env, const ARMCPRegInfo *ri)
1770 {
1771     return gt_tval_read(env, ri, GTIMER_PHYS);
1772 }
1773 
1774 static void gt_phys_tval_write(CPUARMState *env, const ARMCPRegInfo *ri,
1775                                uint64_t value)
1776 {
1777     gt_tval_write(env, ri, GTIMER_PHYS, value);
1778 }
1779 
1780 static void gt_phys_ctl_write(CPUARMState *env, const ARMCPRegInfo *ri,
1781                               uint64_t value)
1782 {
1783     gt_ctl_write(env, ri, GTIMER_PHYS, value);
1784 }
1785 
1786 static void gt_virt_timer_reset(CPUARMState *env, const ARMCPRegInfo *ri)
1787 {
1788     gt_timer_reset(env, ri, GTIMER_VIRT);
1789 }
1790 
1791 static void gt_virt_cval_write(CPUARMState *env, const ARMCPRegInfo *ri,
1792                                uint64_t value)
1793 {
1794     gt_cval_write(env, ri, GTIMER_VIRT, value);
1795 }
1796 
1797 static uint64_t gt_virt_tval_read(CPUARMState *env, const ARMCPRegInfo *ri)
1798 {
1799     return gt_tval_read(env, ri, GTIMER_VIRT);
1800 }
1801 
1802 static void gt_virt_tval_write(CPUARMState *env, const ARMCPRegInfo *ri,
1803                                uint64_t value)
1804 {
1805     gt_tval_write(env, ri, GTIMER_VIRT, value);
1806 }
1807 
1808 static void gt_virt_ctl_write(CPUARMState *env, const ARMCPRegInfo *ri,
1809                               uint64_t value)
1810 {
1811     gt_ctl_write(env, ri, GTIMER_VIRT, value);
1812 }
1813 
1814 static void gt_cntvoff_write(CPUARMState *env, const ARMCPRegInfo *ri,
1815                               uint64_t value)
1816 {
1817     ARMCPU *cpu = arm_env_get_cpu(env);
1818 
1819     trace_arm_gt_cntvoff_write(value);
1820     raw_write(env, ri, value);
1821     gt_recalc_timer(cpu, GTIMER_VIRT);
1822 }
1823 
1824 static void gt_hyp_timer_reset(CPUARMState *env, const ARMCPRegInfo *ri)
1825 {
1826     gt_timer_reset(env, ri, GTIMER_HYP);
1827 }
1828 
1829 static void gt_hyp_cval_write(CPUARMState *env, const ARMCPRegInfo *ri,
1830                               uint64_t value)
1831 {
1832     gt_cval_write(env, ri, GTIMER_HYP, value);
1833 }
1834 
1835 static uint64_t gt_hyp_tval_read(CPUARMState *env, const ARMCPRegInfo *ri)
1836 {
1837     return gt_tval_read(env, ri, GTIMER_HYP);
1838 }
1839 
1840 static void gt_hyp_tval_write(CPUARMState *env, const ARMCPRegInfo *ri,
1841                               uint64_t value)
1842 {
1843     gt_tval_write(env, ri, GTIMER_HYP, value);
1844 }
1845 
1846 static void gt_hyp_ctl_write(CPUARMState *env, const ARMCPRegInfo *ri,
1847                               uint64_t value)
1848 {
1849     gt_ctl_write(env, ri, GTIMER_HYP, value);
1850 }
1851 
1852 static void gt_sec_timer_reset(CPUARMState *env, const ARMCPRegInfo *ri)
1853 {
1854     gt_timer_reset(env, ri, GTIMER_SEC);
1855 }
1856 
1857 static void gt_sec_cval_write(CPUARMState *env, const ARMCPRegInfo *ri,
1858                               uint64_t value)
1859 {
1860     gt_cval_write(env, ri, GTIMER_SEC, value);
1861 }
1862 
1863 static uint64_t gt_sec_tval_read(CPUARMState *env, const ARMCPRegInfo *ri)
1864 {
1865     return gt_tval_read(env, ri, GTIMER_SEC);
1866 }
1867 
1868 static void gt_sec_tval_write(CPUARMState *env, const ARMCPRegInfo *ri,
1869                               uint64_t value)
1870 {
1871     gt_tval_write(env, ri, GTIMER_SEC, value);
1872 }
1873 
1874 static void gt_sec_ctl_write(CPUARMState *env, const ARMCPRegInfo *ri,
1875                               uint64_t value)
1876 {
1877     gt_ctl_write(env, ri, GTIMER_SEC, value);
1878 }
1879 
1880 void arm_gt_ptimer_cb(void *opaque)
1881 {
1882     ARMCPU *cpu = opaque;
1883 
1884     gt_recalc_timer(cpu, GTIMER_PHYS);
1885 }
1886 
1887 void arm_gt_vtimer_cb(void *opaque)
1888 {
1889     ARMCPU *cpu = opaque;
1890 
1891     gt_recalc_timer(cpu, GTIMER_VIRT);
1892 }
1893 
1894 void arm_gt_htimer_cb(void *opaque)
1895 {
1896     ARMCPU *cpu = opaque;
1897 
1898     gt_recalc_timer(cpu, GTIMER_HYP);
1899 }
1900 
1901 void arm_gt_stimer_cb(void *opaque)
1902 {
1903     ARMCPU *cpu = opaque;
1904 
1905     gt_recalc_timer(cpu, GTIMER_SEC);
1906 }
1907 
1908 static const ARMCPRegInfo generic_timer_cp_reginfo[] = {
1909     /* Note that CNTFRQ is purely reads-as-written for the benefit
1910      * of software; writing it doesn't actually change the timer frequency.
1911      * Our reset value matches the fixed frequency we implement the timer at.
1912      */
1913     { .name = "CNTFRQ", .cp = 15, .crn = 14, .crm = 0, .opc1 = 0, .opc2 = 0,
1914       .type = ARM_CP_ALIAS,
1915       .access = PL1_RW | PL0_R, .accessfn = gt_cntfrq_access,
1916       .fieldoffset = offsetoflow32(CPUARMState, cp15.c14_cntfrq),
1917     },
1918     { .name = "CNTFRQ_EL0", .state = ARM_CP_STATE_AA64,
1919       .opc0 = 3, .opc1 = 3, .crn = 14, .crm = 0, .opc2 = 0,
1920       .access = PL1_RW | PL0_R, .accessfn = gt_cntfrq_access,
1921       .fieldoffset = offsetof(CPUARMState, cp15.c14_cntfrq),
1922       .resetvalue = (1000 * 1000 * 1000) / GTIMER_SCALE,
1923     },
1924     /* overall control: mostly access permissions */
1925     { .name = "CNTKCTL", .state = ARM_CP_STATE_BOTH,
1926       .opc0 = 3, .opc1 = 0, .crn = 14, .crm = 1, .opc2 = 0,
1927       .access = PL1_RW,
1928       .fieldoffset = offsetof(CPUARMState, cp15.c14_cntkctl),
1929       .resetvalue = 0,
1930     },
1931     /* per-timer control */
1932     { .name = "CNTP_CTL", .cp = 15, .crn = 14, .crm = 2, .opc1 = 0, .opc2 = 1,
1933       .secure = ARM_CP_SECSTATE_NS,
1934       .type = ARM_CP_IO | ARM_CP_ALIAS, .access = PL1_RW | PL0_R,
1935       .accessfn = gt_ptimer_access,
1936       .fieldoffset = offsetoflow32(CPUARMState,
1937                                    cp15.c14_timer[GTIMER_PHYS].ctl),
1938       .writefn = gt_phys_ctl_write, .raw_writefn = raw_write,
1939     },
1940     { .name = "CNTP_CTL(S)",
1941       .cp = 15, .crn = 14, .crm = 2, .opc1 = 0, .opc2 = 1,
1942       .secure = ARM_CP_SECSTATE_S,
1943       .type = ARM_CP_IO | ARM_CP_ALIAS, .access = PL1_RW | PL0_R,
1944       .accessfn = gt_ptimer_access,
1945       .fieldoffset = offsetoflow32(CPUARMState,
1946                                    cp15.c14_timer[GTIMER_SEC].ctl),
1947       .writefn = gt_sec_ctl_write, .raw_writefn = raw_write,
1948     },
1949     { .name = "CNTP_CTL_EL0", .state = ARM_CP_STATE_AA64,
1950       .opc0 = 3, .opc1 = 3, .crn = 14, .crm = 2, .opc2 = 1,
1951       .type = ARM_CP_IO, .access = PL1_RW | PL0_R,
1952       .accessfn = gt_ptimer_access,
1953       .fieldoffset = offsetof(CPUARMState, cp15.c14_timer[GTIMER_PHYS].ctl),
1954       .resetvalue = 0,
1955       .writefn = gt_phys_ctl_write, .raw_writefn = raw_write,
1956     },
1957     { .name = "CNTV_CTL", .cp = 15, .crn = 14, .crm = 3, .opc1 = 0, .opc2 = 1,
1958       .type = ARM_CP_IO | ARM_CP_ALIAS, .access = PL1_RW | PL0_R,
1959       .accessfn = gt_vtimer_access,
1960       .fieldoffset = offsetoflow32(CPUARMState,
1961                                    cp15.c14_timer[GTIMER_VIRT].ctl),
1962       .writefn = gt_virt_ctl_write, .raw_writefn = raw_write,
1963     },
1964     { .name = "CNTV_CTL_EL0", .state = ARM_CP_STATE_AA64,
1965       .opc0 = 3, .opc1 = 3, .crn = 14, .crm = 3, .opc2 = 1,
1966       .type = ARM_CP_IO, .access = PL1_RW | PL0_R,
1967       .accessfn = gt_vtimer_access,
1968       .fieldoffset = offsetof(CPUARMState, cp15.c14_timer[GTIMER_VIRT].ctl),
1969       .resetvalue = 0,
1970       .writefn = gt_virt_ctl_write, .raw_writefn = raw_write,
1971     },
1972     /* TimerValue views: a 32 bit downcounting view of the underlying state */
1973     { .name = "CNTP_TVAL", .cp = 15, .crn = 14, .crm = 2, .opc1 = 0, .opc2 = 0,
1974       .secure = ARM_CP_SECSTATE_NS,
1975       .type = ARM_CP_NO_RAW | ARM_CP_IO, .access = PL1_RW | PL0_R,
1976       .accessfn = gt_ptimer_access,
1977       .readfn = gt_phys_tval_read, .writefn = gt_phys_tval_write,
1978     },
1979     { .name = "CNTP_TVAL(S)",
1980       .cp = 15, .crn = 14, .crm = 2, .opc1 = 0, .opc2 = 0,
1981       .secure = ARM_CP_SECSTATE_S,
1982       .type = ARM_CP_NO_RAW | ARM_CP_IO, .access = PL1_RW | PL0_R,
1983       .accessfn = gt_ptimer_access,
1984       .readfn = gt_sec_tval_read, .writefn = gt_sec_tval_write,
1985     },
1986     { .name = "CNTP_TVAL_EL0", .state = ARM_CP_STATE_AA64,
1987       .opc0 = 3, .opc1 = 3, .crn = 14, .crm = 2, .opc2 = 0,
1988       .type = ARM_CP_NO_RAW | ARM_CP_IO, .access = PL1_RW | PL0_R,
1989       .accessfn = gt_ptimer_access, .resetfn = gt_phys_timer_reset,
1990       .readfn = gt_phys_tval_read, .writefn = gt_phys_tval_write,
1991     },
1992     { .name = "CNTV_TVAL", .cp = 15, .crn = 14, .crm = 3, .opc1 = 0, .opc2 = 0,
1993       .type = ARM_CP_NO_RAW | ARM_CP_IO, .access = PL1_RW | PL0_R,
1994       .accessfn = gt_vtimer_access,
1995       .readfn = gt_virt_tval_read, .writefn = gt_virt_tval_write,
1996     },
1997     { .name = "CNTV_TVAL_EL0", .state = ARM_CP_STATE_AA64,
1998       .opc0 = 3, .opc1 = 3, .crn = 14, .crm = 3, .opc2 = 0,
1999       .type = ARM_CP_NO_RAW | ARM_CP_IO, .access = PL1_RW | PL0_R,
2000       .accessfn = gt_vtimer_access, .resetfn = gt_virt_timer_reset,
2001       .readfn = gt_virt_tval_read, .writefn = gt_virt_tval_write,
2002     },
2003     /* The counter itself */
2004     { .name = "CNTPCT", .cp = 15, .crm = 14, .opc1 = 0,
2005       .access = PL0_R, .type = ARM_CP_64BIT | ARM_CP_NO_RAW | ARM_CP_IO,
2006       .accessfn = gt_pct_access,
2007       .readfn = gt_cnt_read, .resetfn = arm_cp_reset_ignore,
2008     },
2009     { .name = "CNTPCT_EL0", .state = ARM_CP_STATE_AA64,
2010       .opc0 = 3, .opc1 = 3, .crn = 14, .crm = 0, .opc2 = 1,
2011       .access = PL0_R, .type = ARM_CP_NO_RAW | ARM_CP_IO,
2012       .accessfn = gt_pct_access, .readfn = gt_cnt_read,
2013     },
2014     { .name = "CNTVCT", .cp = 15, .crm = 14, .opc1 = 1,
2015       .access = PL0_R, .type = ARM_CP_64BIT | ARM_CP_NO_RAW | ARM_CP_IO,
2016       .accessfn = gt_vct_access,
2017       .readfn = gt_virt_cnt_read, .resetfn = arm_cp_reset_ignore,
2018     },
2019     { .name = "CNTVCT_EL0", .state = ARM_CP_STATE_AA64,
2020       .opc0 = 3, .opc1 = 3, .crn = 14, .crm = 0, .opc2 = 2,
2021       .access = PL0_R, .type = ARM_CP_NO_RAW | ARM_CP_IO,
2022       .accessfn = gt_vct_access, .readfn = gt_virt_cnt_read,
2023     },
2024     /* Comparison value, indicating when the timer goes off */
2025     { .name = "CNTP_CVAL", .cp = 15, .crm = 14, .opc1 = 2,
2026       .secure = ARM_CP_SECSTATE_NS,
2027       .access = PL1_RW | PL0_R,
2028       .type = ARM_CP_64BIT | ARM_CP_IO | ARM_CP_ALIAS,
2029       .fieldoffset = offsetof(CPUARMState, cp15.c14_timer[GTIMER_PHYS].cval),
2030       .accessfn = gt_ptimer_access,
2031       .writefn = gt_phys_cval_write, .raw_writefn = raw_write,
2032     },
2033     { .name = "CNTP_CVAL(S)", .cp = 15, .crm = 14, .opc1 = 2,
2034       .secure = ARM_CP_SECSTATE_S,
2035       .access = PL1_RW | PL0_R,
2036       .type = ARM_CP_64BIT | ARM_CP_IO | ARM_CP_ALIAS,
2037       .fieldoffset = offsetof(CPUARMState, cp15.c14_timer[GTIMER_SEC].cval),
2038       .accessfn = gt_ptimer_access,
2039       .writefn = gt_sec_cval_write, .raw_writefn = raw_write,
2040     },
2041     { .name = "CNTP_CVAL_EL0", .state = ARM_CP_STATE_AA64,
2042       .opc0 = 3, .opc1 = 3, .crn = 14, .crm = 2, .opc2 = 2,
2043       .access = PL1_RW | PL0_R,
2044       .type = ARM_CP_IO,
2045       .fieldoffset = offsetof(CPUARMState, cp15.c14_timer[GTIMER_PHYS].cval),
2046       .resetvalue = 0, .accessfn = gt_ptimer_access,
2047       .writefn = gt_phys_cval_write, .raw_writefn = raw_write,
2048     },
2049     { .name = "CNTV_CVAL", .cp = 15, .crm = 14, .opc1 = 3,
2050       .access = PL1_RW | PL0_R,
2051       .type = ARM_CP_64BIT | ARM_CP_IO | ARM_CP_ALIAS,
2052       .fieldoffset = offsetof(CPUARMState, cp15.c14_timer[GTIMER_VIRT].cval),
2053       .accessfn = gt_vtimer_access,
2054       .writefn = gt_virt_cval_write, .raw_writefn = raw_write,
2055     },
2056     { .name = "CNTV_CVAL_EL0", .state = ARM_CP_STATE_AA64,
2057       .opc0 = 3, .opc1 = 3, .crn = 14, .crm = 3, .opc2 = 2,
2058       .access = PL1_RW | PL0_R,
2059       .type = ARM_CP_IO,
2060       .fieldoffset = offsetof(CPUARMState, cp15.c14_timer[GTIMER_VIRT].cval),
2061       .resetvalue = 0, .accessfn = gt_vtimer_access,
2062       .writefn = gt_virt_cval_write, .raw_writefn = raw_write,
2063     },
2064     /* Secure timer -- this is actually restricted to only EL3
2065      * and configurably Secure-EL1 via the accessfn.
2066      */
2067     { .name = "CNTPS_TVAL_EL1", .state = ARM_CP_STATE_AA64,
2068       .opc0 = 3, .opc1 = 7, .crn = 14, .crm = 2, .opc2 = 0,
2069       .type = ARM_CP_NO_RAW | ARM_CP_IO, .access = PL1_RW,
2070       .accessfn = gt_stimer_access,
2071       .readfn = gt_sec_tval_read,
2072       .writefn = gt_sec_tval_write,
2073       .resetfn = gt_sec_timer_reset,
2074     },
2075     { .name = "CNTPS_CTL_EL1", .state = ARM_CP_STATE_AA64,
2076       .opc0 = 3, .opc1 = 7, .crn = 14, .crm = 2, .opc2 = 1,
2077       .type = ARM_CP_IO, .access = PL1_RW,
2078       .accessfn = gt_stimer_access,
2079       .fieldoffset = offsetof(CPUARMState, cp15.c14_timer[GTIMER_SEC].ctl),
2080       .resetvalue = 0,
2081       .writefn = gt_sec_ctl_write, .raw_writefn = raw_write,
2082     },
2083     { .name = "CNTPS_CVAL_EL1", .state = ARM_CP_STATE_AA64,
2084       .opc0 = 3, .opc1 = 7, .crn = 14, .crm = 2, .opc2 = 2,
2085       .type = ARM_CP_IO, .access = PL1_RW,
2086       .accessfn = gt_stimer_access,
2087       .fieldoffset = offsetof(CPUARMState, cp15.c14_timer[GTIMER_SEC].cval),
2088       .writefn = gt_sec_cval_write, .raw_writefn = raw_write,
2089     },
2090     REGINFO_SENTINEL
2091 };
2092 
2093 #else
2094 /* In user-mode none of the generic timer registers are accessible,
2095  * and their implementation depends on QEMU_CLOCK_VIRTUAL and qdev gpio outputs,
2096  * so instead just don't register any of them.
2097  */
2098 static const ARMCPRegInfo generic_timer_cp_reginfo[] = {
2099     REGINFO_SENTINEL
2100 };
2101 
2102 #endif
2103 
2104 static void par_write(CPUARMState *env, const ARMCPRegInfo *ri, uint64_t value)
2105 {
2106     if (arm_feature(env, ARM_FEATURE_LPAE)) {
2107         raw_write(env, ri, value);
2108     } else if (arm_feature(env, ARM_FEATURE_V7)) {
2109         raw_write(env, ri, value & 0xfffff6ff);
2110     } else {
2111         raw_write(env, ri, value & 0xfffff1ff);
2112     }
2113 }
2114 
2115 #ifndef CONFIG_USER_ONLY
2116 /* get_phys_addr() isn't present for user-mode-only targets */
2117 
2118 static CPAccessResult ats_access(CPUARMState *env, const ARMCPRegInfo *ri,
2119                                  bool isread)
2120 {
2121     if (ri->opc2 & 4) {
2122         /* The ATS12NSO* operations must trap to EL3 if executed in
2123          * Secure EL1 (which can only happen if EL3 is AArch64).
2124          * They are simply UNDEF if executed from NS EL1.
2125          * They function normally from EL2 or EL3.
2126          */
2127         if (arm_current_el(env) == 1) {
2128             if (arm_is_secure_below_el3(env)) {
2129                 return CP_ACCESS_TRAP_UNCATEGORIZED_EL3;
2130             }
2131             return CP_ACCESS_TRAP_UNCATEGORIZED;
2132         }
2133     }
2134     return CP_ACCESS_OK;
2135 }
2136 
2137 static uint64_t do_ats_write(CPUARMState *env, uint64_t value,
2138                              MMUAccessType access_type, ARMMMUIdx mmu_idx)
2139 {
2140     hwaddr phys_addr;
2141     target_ulong page_size;
2142     int prot;
2143     uint32_t fsr;
2144     bool ret;
2145     uint64_t par64;
2146     MemTxAttrs attrs = {};
2147     ARMMMUFaultInfo fi = {};
2148 
2149     ret = get_phys_addr(env, value, access_type, mmu_idx,
2150                         &phys_addr, &attrs, &prot, &page_size, &fsr, &fi);
2151     if (extended_addresses_enabled(env)) {
2152         /* fsr is a DFSR/IFSR value for the long descriptor
2153          * translation table format, but with WnR always clear.
2154          * Convert it to a 64-bit PAR.
2155          */
2156         par64 = (1 << 11); /* LPAE bit always set */
2157         if (!ret) {
2158             par64 |= phys_addr & ~0xfffULL;
2159             if (!attrs.secure) {
2160                 par64 |= (1 << 9); /* NS */
2161             }
2162             /* We don't set the ATTR or SH fields in the PAR. */
2163         } else {
2164             par64 |= 1; /* F */
2165             par64 |= (fsr & 0x3f) << 1; /* FS */
2166             /* Note that S2WLK and FSTAGE are always zero, because we don't
2167              * implement virtualization and therefore there can't be a stage 2
2168              * fault.
2169              */
2170         }
2171     } else {
2172         /* fsr is a DFSR/IFSR value for the short descriptor
2173          * translation table format (with WnR always clear).
2174          * Convert it to a 32-bit PAR.
2175          */
2176         if (!ret) {
2177             /* We do not set any attribute bits in the PAR */
2178             if (page_size == (1 << 24)
2179                 && arm_feature(env, ARM_FEATURE_V7)) {
2180                 par64 = (phys_addr & 0xff000000) | (1 << 1);
2181             } else {
2182                 par64 = phys_addr & 0xfffff000;
2183             }
2184             if (!attrs.secure) {
2185                 par64 |= (1 << 9); /* NS */
2186             }
2187         } else {
2188             par64 = ((fsr & (1 << 10)) >> 5) | ((fsr & (1 << 12)) >> 6) |
2189                     ((fsr & 0xf) << 1) | 1;
2190         }
2191     }
2192     return par64;
2193 }
2194 
2195 static void ats_write(CPUARMState *env, const ARMCPRegInfo *ri, uint64_t value)
2196 {
2197     MMUAccessType access_type = ri->opc2 & 1 ? MMU_DATA_STORE : MMU_DATA_LOAD;
2198     uint64_t par64;
2199     ARMMMUIdx mmu_idx;
2200     int el = arm_current_el(env);
2201     bool secure = arm_is_secure_below_el3(env);
2202 
2203     switch (ri->opc2 & 6) {
2204     case 0:
2205         /* stage 1 current state PL1: ATS1CPR, ATS1CPW */
2206         switch (el) {
2207         case 3:
2208             mmu_idx = ARMMMUIdx_S1E3;
2209             break;
2210         case 2:
2211             mmu_idx = ARMMMUIdx_S1NSE1;
2212             break;
2213         case 1:
2214             mmu_idx = secure ? ARMMMUIdx_S1SE1 : ARMMMUIdx_S1NSE1;
2215             break;
2216         default:
2217             g_assert_not_reached();
2218         }
2219         break;
2220     case 2:
2221         /* stage 1 current state PL0: ATS1CUR, ATS1CUW */
2222         switch (el) {
2223         case 3:
2224             mmu_idx = ARMMMUIdx_S1SE0;
2225             break;
2226         case 2:
2227             mmu_idx = ARMMMUIdx_S1NSE0;
2228             break;
2229         case 1:
2230             mmu_idx = secure ? ARMMMUIdx_S1SE0 : ARMMMUIdx_S1NSE0;
2231             break;
2232         default:
2233             g_assert_not_reached();
2234         }
2235         break;
2236     case 4:
2237         /* stage 1+2 NonSecure PL1: ATS12NSOPR, ATS12NSOPW */
2238         mmu_idx = ARMMMUIdx_S12NSE1;
2239         break;
2240     case 6:
2241         /* stage 1+2 NonSecure PL0: ATS12NSOUR, ATS12NSOUW */
2242         mmu_idx = ARMMMUIdx_S12NSE0;
2243         break;
2244     default:
2245         g_assert_not_reached();
2246     }
2247 
2248     par64 = do_ats_write(env, value, access_type, mmu_idx);
2249 
2250     A32_BANKED_CURRENT_REG_SET(env, par, par64);
2251 }
2252 
2253 static void ats1h_write(CPUARMState *env, const ARMCPRegInfo *ri,
2254                         uint64_t value)
2255 {
2256     MMUAccessType access_type = ri->opc2 & 1 ? MMU_DATA_STORE : MMU_DATA_LOAD;
2257     uint64_t par64;
2258 
2259     par64 = do_ats_write(env, value, access_type, ARMMMUIdx_S2NS);
2260 
2261     A32_BANKED_CURRENT_REG_SET(env, par, par64);
2262 }
2263 
2264 static CPAccessResult at_s1e2_access(CPUARMState *env, const ARMCPRegInfo *ri,
2265                                      bool isread)
2266 {
2267     if (arm_current_el(env) == 3 && !(env->cp15.scr_el3 & SCR_NS)) {
2268         return CP_ACCESS_TRAP;
2269     }
2270     return CP_ACCESS_OK;
2271 }
2272 
2273 static void ats_write64(CPUARMState *env, const ARMCPRegInfo *ri,
2274                         uint64_t value)
2275 {
2276     MMUAccessType access_type = ri->opc2 & 1 ? MMU_DATA_STORE : MMU_DATA_LOAD;
2277     ARMMMUIdx mmu_idx;
2278     int secure = arm_is_secure_below_el3(env);
2279 
2280     switch (ri->opc2 & 6) {
2281     case 0:
2282         switch (ri->opc1) {
2283         case 0: /* AT S1E1R, AT S1E1W */
2284             mmu_idx = secure ? ARMMMUIdx_S1SE1 : ARMMMUIdx_S1NSE1;
2285             break;
2286         case 4: /* AT S1E2R, AT S1E2W */
2287             mmu_idx = ARMMMUIdx_S1E2;
2288             break;
2289         case 6: /* AT S1E3R, AT S1E3W */
2290             mmu_idx = ARMMMUIdx_S1E3;
2291             break;
2292         default:
2293             g_assert_not_reached();
2294         }
2295         break;
2296     case 2: /* AT S1E0R, AT S1E0W */
2297         mmu_idx = secure ? ARMMMUIdx_S1SE0 : ARMMMUIdx_S1NSE0;
2298         break;
2299     case 4: /* AT S12E1R, AT S12E1W */
2300         mmu_idx = secure ? ARMMMUIdx_S1SE1 : ARMMMUIdx_S12NSE1;
2301         break;
2302     case 6: /* AT S12E0R, AT S12E0W */
2303         mmu_idx = secure ? ARMMMUIdx_S1SE0 : ARMMMUIdx_S12NSE0;
2304         break;
2305     default:
2306         g_assert_not_reached();
2307     }
2308 
2309     env->cp15.par_el[1] = do_ats_write(env, value, access_type, mmu_idx);
2310 }
2311 #endif
2312 
2313 static const ARMCPRegInfo vapa_cp_reginfo[] = {
2314     { .name = "PAR", .cp = 15, .crn = 7, .crm = 4, .opc1 = 0, .opc2 = 0,
2315       .access = PL1_RW, .resetvalue = 0,
2316       .bank_fieldoffsets = { offsetoflow32(CPUARMState, cp15.par_s),
2317                              offsetoflow32(CPUARMState, cp15.par_ns) },
2318       .writefn = par_write },
2319 #ifndef CONFIG_USER_ONLY
2320     /* This underdecoding is safe because the reginfo is NO_RAW. */
2321     { .name = "ATS", .cp = 15, .crn = 7, .crm = 8, .opc1 = 0, .opc2 = CP_ANY,
2322       .access = PL1_W, .accessfn = ats_access,
2323       .writefn = ats_write, .type = ARM_CP_NO_RAW },
2324 #endif
2325     REGINFO_SENTINEL
2326 };
2327 
2328 /* Return basic MPU access permission bits.  */
2329 static uint32_t simple_mpu_ap_bits(uint32_t val)
2330 {
2331     uint32_t ret;
2332     uint32_t mask;
2333     int i;
2334     ret = 0;
2335     mask = 3;
2336     for (i = 0; i < 16; i += 2) {
2337         ret |= (val >> i) & mask;
2338         mask <<= 2;
2339     }
2340     return ret;
2341 }
2342 
2343 /* Pad basic MPU access permission bits to extended format.  */
2344 static uint32_t extended_mpu_ap_bits(uint32_t val)
2345 {
2346     uint32_t ret;
2347     uint32_t mask;
2348     int i;
2349     ret = 0;
2350     mask = 3;
2351     for (i = 0; i < 16; i += 2) {
2352         ret |= (val & mask) << i;
2353         mask <<= 2;
2354     }
2355     return ret;
2356 }
2357 
2358 static void pmsav5_data_ap_write(CPUARMState *env, const ARMCPRegInfo *ri,
2359                                  uint64_t value)
2360 {
2361     env->cp15.pmsav5_data_ap = extended_mpu_ap_bits(value);
2362 }
2363 
2364 static uint64_t pmsav5_data_ap_read(CPUARMState *env, const ARMCPRegInfo *ri)
2365 {
2366     return simple_mpu_ap_bits(env->cp15.pmsav5_data_ap);
2367 }
2368 
2369 static void pmsav5_insn_ap_write(CPUARMState *env, const ARMCPRegInfo *ri,
2370                                  uint64_t value)
2371 {
2372     env->cp15.pmsav5_insn_ap = extended_mpu_ap_bits(value);
2373 }
2374 
2375 static uint64_t pmsav5_insn_ap_read(CPUARMState *env, const ARMCPRegInfo *ri)
2376 {
2377     return simple_mpu_ap_bits(env->cp15.pmsav5_insn_ap);
2378 }
2379 
2380 static uint64_t pmsav7_read(CPUARMState *env, const ARMCPRegInfo *ri)
2381 {
2382     uint32_t *u32p = *(uint32_t **)raw_ptr(env, ri);
2383 
2384     if (!u32p) {
2385         return 0;
2386     }
2387 
2388     u32p += env->pmsav7.rnr[M_REG_NS];
2389     return *u32p;
2390 }
2391 
2392 static void pmsav7_write(CPUARMState *env, const ARMCPRegInfo *ri,
2393                          uint64_t value)
2394 {
2395     ARMCPU *cpu = arm_env_get_cpu(env);
2396     uint32_t *u32p = *(uint32_t **)raw_ptr(env, ri);
2397 
2398     if (!u32p) {
2399         return;
2400     }
2401 
2402     u32p += env->pmsav7.rnr[M_REG_NS];
2403     tlb_flush(CPU(cpu)); /* Mappings may have changed - purge! */
2404     *u32p = value;
2405 }
2406 
2407 static void pmsav7_rgnr_write(CPUARMState *env, const ARMCPRegInfo *ri,
2408                               uint64_t value)
2409 {
2410     ARMCPU *cpu = arm_env_get_cpu(env);
2411     uint32_t nrgs = cpu->pmsav7_dregion;
2412 
2413     if (value >= nrgs) {
2414         qemu_log_mask(LOG_GUEST_ERROR,
2415                       "PMSAv7 RGNR write >= # supported regions, %" PRIu32
2416                       " > %" PRIu32 "\n", (uint32_t)value, nrgs);
2417         return;
2418     }
2419 
2420     raw_write(env, ri, value);
2421 }
2422 
2423 static const ARMCPRegInfo pmsav7_cp_reginfo[] = {
2424     /* Reset for all these registers is handled in arm_cpu_reset(),
2425      * because the PMSAv7 is also used by M-profile CPUs, which do
2426      * not register cpregs but still need the state to be reset.
2427      */
2428     { .name = "DRBAR", .cp = 15, .crn = 6, .opc1 = 0, .crm = 1, .opc2 = 0,
2429       .access = PL1_RW, .type = ARM_CP_NO_RAW,
2430       .fieldoffset = offsetof(CPUARMState, pmsav7.drbar),
2431       .readfn = pmsav7_read, .writefn = pmsav7_write,
2432       .resetfn = arm_cp_reset_ignore },
2433     { .name = "DRSR", .cp = 15, .crn = 6, .opc1 = 0, .crm = 1, .opc2 = 2,
2434       .access = PL1_RW, .type = ARM_CP_NO_RAW,
2435       .fieldoffset = offsetof(CPUARMState, pmsav7.drsr),
2436       .readfn = pmsav7_read, .writefn = pmsav7_write,
2437       .resetfn = arm_cp_reset_ignore },
2438     { .name = "DRACR", .cp = 15, .crn = 6, .opc1 = 0, .crm = 1, .opc2 = 4,
2439       .access = PL1_RW, .type = ARM_CP_NO_RAW,
2440       .fieldoffset = offsetof(CPUARMState, pmsav7.dracr),
2441       .readfn = pmsav7_read, .writefn = pmsav7_write,
2442       .resetfn = arm_cp_reset_ignore },
2443     { .name = "RGNR", .cp = 15, .crn = 6, .opc1 = 0, .crm = 2, .opc2 = 0,
2444       .access = PL1_RW,
2445       .fieldoffset = offsetof(CPUARMState, pmsav7.rnr[M_REG_NS]),
2446       .writefn = pmsav7_rgnr_write,
2447       .resetfn = arm_cp_reset_ignore },
2448     REGINFO_SENTINEL
2449 };
2450 
2451 static const ARMCPRegInfo pmsav5_cp_reginfo[] = {
2452     { .name = "DATA_AP", .cp = 15, .crn = 5, .crm = 0, .opc1 = 0, .opc2 = 0,
2453       .access = PL1_RW, .type = ARM_CP_ALIAS,
2454       .fieldoffset = offsetof(CPUARMState, cp15.pmsav5_data_ap),
2455       .readfn = pmsav5_data_ap_read, .writefn = pmsav5_data_ap_write, },
2456     { .name = "INSN_AP", .cp = 15, .crn = 5, .crm = 0, .opc1 = 0, .opc2 = 1,
2457       .access = PL1_RW, .type = ARM_CP_ALIAS,
2458       .fieldoffset = offsetof(CPUARMState, cp15.pmsav5_insn_ap),
2459       .readfn = pmsav5_insn_ap_read, .writefn = pmsav5_insn_ap_write, },
2460     { .name = "DATA_EXT_AP", .cp = 15, .crn = 5, .crm = 0, .opc1 = 0, .opc2 = 2,
2461       .access = PL1_RW,
2462       .fieldoffset = offsetof(CPUARMState, cp15.pmsav5_data_ap),
2463       .resetvalue = 0, },
2464     { .name = "INSN_EXT_AP", .cp = 15, .crn = 5, .crm = 0, .opc1 = 0, .opc2 = 3,
2465       .access = PL1_RW,
2466       .fieldoffset = offsetof(CPUARMState, cp15.pmsav5_insn_ap),
2467       .resetvalue = 0, },
2468     { .name = "DCACHE_CFG", .cp = 15, .crn = 2, .crm = 0, .opc1 = 0, .opc2 = 0,
2469       .access = PL1_RW,
2470       .fieldoffset = offsetof(CPUARMState, cp15.c2_data), .resetvalue = 0, },
2471     { .name = "ICACHE_CFG", .cp = 15, .crn = 2, .crm = 0, .opc1 = 0, .opc2 = 1,
2472       .access = PL1_RW,
2473       .fieldoffset = offsetof(CPUARMState, cp15.c2_insn), .resetvalue = 0, },
2474     /* Protection region base and size registers */
2475     { .name = "946_PRBS0", .cp = 15, .crn = 6, .crm = 0, .opc1 = 0,
2476       .opc2 = CP_ANY, .access = PL1_RW, .resetvalue = 0,
2477       .fieldoffset = offsetof(CPUARMState, cp15.c6_region[0]) },
2478     { .name = "946_PRBS1", .cp = 15, .crn = 6, .crm = 1, .opc1 = 0,
2479       .opc2 = CP_ANY, .access = PL1_RW, .resetvalue = 0,
2480       .fieldoffset = offsetof(CPUARMState, cp15.c6_region[1]) },
2481     { .name = "946_PRBS2", .cp = 15, .crn = 6, .crm = 2, .opc1 = 0,
2482       .opc2 = CP_ANY, .access = PL1_RW, .resetvalue = 0,
2483       .fieldoffset = offsetof(CPUARMState, cp15.c6_region[2]) },
2484     { .name = "946_PRBS3", .cp = 15, .crn = 6, .crm = 3, .opc1 = 0,
2485       .opc2 = CP_ANY, .access = PL1_RW, .resetvalue = 0,
2486       .fieldoffset = offsetof(CPUARMState, cp15.c6_region[3]) },
2487     { .name = "946_PRBS4", .cp = 15, .crn = 6, .crm = 4, .opc1 = 0,
2488       .opc2 = CP_ANY, .access = PL1_RW, .resetvalue = 0,
2489       .fieldoffset = offsetof(CPUARMState, cp15.c6_region[4]) },
2490     { .name = "946_PRBS5", .cp = 15, .crn = 6, .crm = 5, .opc1 = 0,
2491       .opc2 = CP_ANY, .access = PL1_RW, .resetvalue = 0,
2492       .fieldoffset = offsetof(CPUARMState, cp15.c6_region[5]) },
2493     { .name = "946_PRBS6", .cp = 15, .crn = 6, .crm = 6, .opc1 = 0,
2494       .opc2 = CP_ANY, .access = PL1_RW, .resetvalue = 0,
2495       .fieldoffset = offsetof(CPUARMState, cp15.c6_region[6]) },
2496     { .name = "946_PRBS7", .cp = 15, .crn = 6, .crm = 7, .opc1 = 0,
2497       .opc2 = CP_ANY, .access = PL1_RW, .resetvalue = 0,
2498       .fieldoffset = offsetof(CPUARMState, cp15.c6_region[7]) },
2499     REGINFO_SENTINEL
2500 };
2501 
2502 static void vmsa_ttbcr_raw_write(CPUARMState *env, const ARMCPRegInfo *ri,
2503                                  uint64_t value)
2504 {
2505     TCR *tcr = raw_ptr(env, ri);
2506     int maskshift = extract32(value, 0, 3);
2507 
2508     if (!arm_feature(env, ARM_FEATURE_V8)) {
2509         if (arm_feature(env, ARM_FEATURE_LPAE) && (value & TTBCR_EAE)) {
2510             /* Pre ARMv8 bits [21:19], [15:14] and [6:3] are UNK/SBZP when
2511              * using Long-desciptor translation table format */
2512             value &= ~((7 << 19) | (3 << 14) | (0xf << 3));
2513         } else if (arm_feature(env, ARM_FEATURE_EL3)) {
2514             /* In an implementation that includes the Security Extensions
2515              * TTBCR has additional fields PD0 [4] and PD1 [5] for
2516              * Short-descriptor translation table format.
2517              */
2518             value &= TTBCR_PD1 | TTBCR_PD0 | TTBCR_N;
2519         } else {
2520             value &= TTBCR_N;
2521         }
2522     }
2523 
2524     /* Update the masks corresponding to the TCR bank being written
2525      * Note that we always calculate mask and base_mask, but
2526      * they are only used for short-descriptor tables (ie if EAE is 0);
2527      * for long-descriptor tables the TCR fields are used differently
2528      * and the mask and base_mask values are meaningless.
2529      */
2530     tcr->raw_tcr = value;
2531     tcr->mask = ~(((uint32_t)0xffffffffu) >> maskshift);
2532     tcr->base_mask = ~((uint32_t)0x3fffu >> maskshift);
2533 }
2534 
2535 static void vmsa_ttbcr_write(CPUARMState *env, const ARMCPRegInfo *ri,
2536                              uint64_t value)
2537 {
2538     ARMCPU *cpu = arm_env_get_cpu(env);
2539 
2540     if (arm_feature(env, ARM_FEATURE_LPAE)) {
2541         /* With LPAE the TTBCR could result in a change of ASID
2542          * via the TTBCR.A1 bit, so do a TLB flush.
2543          */
2544         tlb_flush(CPU(cpu));
2545     }
2546     vmsa_ttbcr_raw_write(env, ri, value);
2547 }
2548 
2549 static void vmsa_ttbcr_reset(CPUARMState *env, const ARMCPRegInfo *ri)
2550 {
2551     TCR *tcr = raw_ptr(env, ri);
2552 
2553     /* Reset both the TCR as well as the masks corresponding to the bank of
2554      * the TCR being reset.
2555      */
2556     tcr->raw_tcr = 0;
2557     tcr->mask = 0;
2558     tcr->base_mask = 0xffffc000u;
2559 }
2560 
2561 static void vmsa_tcr_el1_write(CPUARMState *env, const ARMCPRegInfo *ri,
2562                                uint64_t value)
2563 {
2564     ARMCPU *cpu = arm_env_get_cpu(env);
2565     TCR *tcr = raw_ptr(env, ri);
2566 
2567     /* For AArch64 the A1 bit could result in a change of ASID, so TLB flush. */
2568     tlb_flush(CPU(cpu));
2569     tcr->raw_tcr = value;
2570 }
2571 
2572 static void vmsa_ttbr_write(CPUARMState *env, const ARMCPRegInfo *ri,
2573                             uint64_t value)
2574 {
2575     /* 64 bit accesses to the TTBRs can change the ASID and so we
2576      * must flush the TLB.
2577      */
2578     if (cpreg_field_is_64bit(ri)) {
2579         ARMCPU *cpu = arm_env_get_cpu(env);
2580 
2581         tlb_flush(CPU(cpu));
2582     }
2583     raw_write(env, ri, value);
2584 }
2585 
2586 static void vttbr_write(CPUARMState *env, const ARMCPRegInfo *ri,
2587                         uint64_t value)
2588 {
2589     ARMCPU *cpu = arm_env_get_cpu(env);
2590     CPUState *cs = CPU(cpu);
2591 
2592     /* Accesses to VTTBR may change the VMID so we must flush the TLB.  */
2593     if (raw_read(env, ri) != value) {
2594         tlb_flush_by_mmuidx(cs,
2595                             ARMMMUIdxBit_S12NSE1 |
2596                             ARMMMUIdxBit_S12NSE0 |
2597                             ARMMMUIdxBit_S2NS);
2598         raw_write(env, ri, value);
2599     }
2600 }
2601 
2602 static const ARMCPRegInfo vmsa_pmsa_cp_reginfo[] = {
2603     { .name = "DFSR", .cp = 15, .crn = 5, .crm = 0, .opc1 = 0, .opc2 = 0,
2604       .access = PL1_RW, .type = ARM_CP_ALIAS,
2605       .bank_fieldoffsets = { offsetoflow32(CPUARMState, cp15.dfsr_s),
2606                              offsetoflow32(CPUARMState, cp15.dfsr_ns) }, },
2607     { .name = "IFSR", .cp = 15, .crn = 5, .crm = 0, .opc1 = 0, .opc2 = 1,
2608       .access = PL1_RW, .resetvalue = 0,
2609       .bank_fieldoffsets = { offsetoflow32(CPUARMState, cp15.ifsr_s),
2610                              offsetoflow32(CPUARMState, cp15.ifsr_ns) } },
2611     { .name = "DFAR", .cp = 15, .opc1 = 0, .crn = 6, .crm = 0, .opc2 = 0,
2612       .access = PL1_RW, .resetvalue = 0,
2613       .bank_fieldoffsets = { offsetof(CPUARMState, cp15.dfar_s),
2614                              offsetof(CPUARMState, cp15.dfar_ns) } },
2615     { .name = "FAR_EL1", .state = ARM_CP_STATE_AA64,
2616       .opc0 = 3, .crn = 6, .crm = 0, .opc1 = 0, .opc2 = 0,
2617       .access = PL1_RW, .fieldoffset = offsetof(CPUARMState, cp15.far_el[1]),
2618       .resetvalue = 0, },
2619     REGINFO_SENTINEL
2620 };
2621 
2622 static const ARMCPRegInfo vmsa_cp_reginfo[] = {
2623     { .name = "ESR_EL1", .state = ARM_CP_STATE_AA64,
2624       .opc0 = 3, .crn = 5, .crm = 2, .opc1 = 0, .opc2 = 0,
2625       .access = PL1_RW,
2626       .fieldoffset = offsetof(CPUARMState, cp15.esr_el[1]), .resetvalue = 0, },
2627     { .name = "TTBR0_EL1", .state = ARM_CP_STATE_BOTH,
2628       .opc0 = 3, .opc1 = 0, .crn = 2, .crm = 0, .opc2 = 0,
2629       .access = PL1_RW, .writefn = vmsa_ttbr_write, .resetvalue = 0,
2630       .bank_fieldoffsets = { offsetof(CPUARMState, cp15.ttbr0_s),
2631                              offsetof(CPUARMState, cp15.ttbr0_ns) } },
2632     { .name = "TTBR1_EL1", .state = ARM_CP_STATE_BOTH,
2633       .opc0 = 3, .opc1 = 0, .crn = 2, .crm = 0, .opc2 = 1,
2634       .access = PL1_RW, .writefn = vmsa_ttbr_write, .resetvalue = 0,
2635       .bank_fieldoffsets = { offsetof(CPUARMState, cp15.ttbr1_s),
2636                              offsetof(CPUARMState, cp15.ttbr1_ns) } },
2637     { .name = "TCR_EL1", .state = ARM_CP_STATE_AA64,
2638       .opc0 = 3, .crn = 2, .crm = 0, .opc1 = 0, .opc2 = 2,
2639       .access = PL1_RW, .writefn = vmsa_tcr_el1_write,
2640       .resetfn = vmsa_ttbcr_reset, .raw_writefn = raw_write,
2641       .fieldoffset = offsetof(CPUARMState, cp15.tcr_el[1]) },
2642     { .name = "TTBCR", .cp = 15, .crn = 2, .crm = 0, .opc1 = 0, .opc2 = 2,
2643       .access = PL1_RW, .type = ARM_CP_ALIAS, .writefn = vmsa_ttbcr_write,
2644       .raw_writefn = vmsa_ttbcr_raw_write,
2645       .bank_fieldoffsets = { offsetoflow32(CPUARMState, cp15.tcr_el[3]),
2646                              offsetoflow32(CPUARMState, cp15.tcr_el[1])} },
2647     REGINFO_SENTINEL
2648 };
2649 
2650 static void omap_ticonfig_write(CPUARMState *env, const ARMCPRegInfo *ri,
2651                                 uint64_t value)
2652 {
2653     env->cp15.c15_ticonfig = value & 0xe7;
2654     /* The OS_TYPE bit in this register changes the reported CPUID! */
2655     env->cp15.c0_cpuid = (value & (1 << 5)) ?
2656         ARM_CPUID_TI915T : ARM_CPUID_TI925T;
2657 }
2658 
2659 static void omap_threadid_write(CPUARMState *env, const ARMCPRegInfo *ri,
2660                                 uint64_t value)
2661 {
2662     env->cp15.c15_threadid = value & 0xffff;
2663 }
2664 
2665 static void omap_wfi_write(CPUARMState *env, const ARMCPRegInfo *ri,
2666                            uint64_t value)
2667 {
2668     /* Wait-for-interrupt (deprecated) */
2669     cpu_interrupt(CPU(arm_env_get_cpu(env)), CPU_INTERRUPT_HALT);
2670 }
2671 
2672 static void omap_cachemaint_write(CPUARMState *env, const ARMCPRegInfo *ri,
2673                                   uint64_t value)
2674 {
2675     /* On OMAP there are registers indicating the max/min index of dcache lines
2676      * containing a dirty line; cache flush operations have to reset these.
2677      */
2678     env->cp15.c15_i_max = 0x000;
2679     env->cp15.c15_i_min = 0xff0;
2680 }
2681 
2682 static const ARMCPRegInfo omap_cp_reginfo[] = {
2683     { .name = "DFSR", .cp = 15, .crn = 5, .crm = CP_ANY,
2684       .opc1 = CP_ANY, .opc2 = CP_ANY, .access = PL1_RW, .type = ARM_CP_OVERRIDE,
2685       .fieldoffset = offsetoflow32(CPUARMState, cp15.esr_el[1]),
2686       .resetvalue = 0, },
2687     { .name = "", .cp = 15, .crn = 15, .crm = 0, .opc1 = 0, .opc2 = 0,
2688       .access = PL1_RW, .type = ARM_CP_NOP },
2689     { .name = "TICONFIG", .cp = 15, .crn = 15, .crm = 1, .opc1 = 0, .opc2 = 0,
2690       .access = PL1_RW,
2691       .fieldoffset = offsetof(CPUARMState, cp15.c15_ticonfig), .resetvalue = 0,
2692       .writefn = omap_ticonfig_write },
2693     { .name = "IMAX", .cp = 15, .crn = 15, .crm = 2, .opc1 = 0, .opc2 = 0,
2694       .access = PL1_RW,
2695       .fieldoffset = offsetof(CPUARMState, cp15.c15_i_max), .resetvalue = 0, },
2696     { .name = "IMIN", .cp = 15, .crn = 15, .crm = 3, .opc1 = 0, .opc2 = 0,
2697       .access = PL1_RW, .resetvalue = 0xff0,
2698       .fieldoffset = offsetof(CPUARMState, cp15.c15_i_min) },
2699     { .name = "THREADID", .cp = 15, .crn = 15, .crm = 4, .opc1 = 0, .opc2 = 0,
2700       .access = PL1_RW,
2701       .fieldoffset = offsetof(CPUARMState, cp15.c15_threadid), .resetvalue = 0,
2702       .writefn = omap_threadid_write },
2703     { .name = "TI925T_STATUS", .cp = 15, .crn = 15,
2704       .crm = 8, .opc1 = 0, .opc2 = 0, .access = PL1_RW,
2705       .type = ARM_CP_NO_RAW,
2706       .readfn = arm_cp_read_zero, .writefn = omap_wfi_write, },
2707     /* TODO: Peripheral port remap register:
2708      * On OMAP2 mcr p15, 0, rn, c15, c2, 4 sets up the interrupt controller
2709      * base address at $rn & ~0xfff and map size of 0x200 << ($rn & 0xfff),
2710      * when MMU is off.
2711      */
2712     { .name = "OMAP_CACHEMAINT", .cp = 15, .crn = 7, .crm = CP_ANY,
2713       .opc1 = 0, .opc2 = CP_ANY, .access = PL1_W,
2714       .type = ARM_CP_OVERRIDE | ARM_CP_NO_RAW,
2715       .writefn = omap_cachemaint_write },
2716     { .name = "C9", .cp = 15, .crn = 9,
2717       .crm = CP_ANY, .opc1 = CP_ANY, .opc2 = CP_ANY, .access = PL1_RW,
2718       .type = ARM_CP_CONST | ARM_CP_OVERRIDE, .resetvalue = 0 },
2719     REGINFO_SENTINEL
2720 };
2721 
2722 static void xscale_cpar_write(CPUARMState *env, const ARMCPRegInfo *ri,
2723                               uint64_t value)
2724 {
2725     env->cp15.c15_cpar = value & 0x3fff;
2726 }
2727 
2728 static const ARMCPRegInfo xscale_cp_reginfo[] = {
2729     { .name = "XSCALE_CPAR",
2730       .cp = 15, .crn = 15, .crm = 1, .opc1 = 0, .opc2 = 0, .access = PL1_RW,
2731       .fieldoffset = offsetof(CPUARMState, cp15.c15_cpar), .resetvalue = 0,
2732       .writefn = xscale_cpar_write, },
2733     { .name = "XSCALE_AUXCR",
2734       .cp = 15, .crn = 1, .crm = 0, .opc1 = 0, .opc2 = 1, .access = PL1_RW,
2735       .fieldoffset = offsetof(CPUARMState, cp15.c1_xscaleauxcr),
2736       .resetvalue = 0, },
2737     /* XScale specific cache-lockdown: since we have no cache we NOP these
2738      * and hope the guest does not really rely on cache behaviour.
2739      */
2740     { .name = "XSCALE_LOCK_ICACHE_LINE",
2741       .cp = 15, .opc1 = 0, .crn = 9, .crm = 1, .opc2 = 0,
2742       .access = PL1_W, .type = ARM_CP_NOP },
2743     { .name = "XSCALE_UNLOCK_ICACHE",
2744       .cp = 15, .opc1 = 0, .crn = 9, .crm = 1, .opc2 = 1,
2745       .access = PL1_W, .type = ARM_CP_NOP },
2746     { .name = "XSCALE_DCACHE_LOCK",
2747       .cp = 15, .opc1 = 0, .crn = 9, .crm = 2, .opc2 = 0,
2748       .access = PL1_RW, .type = ARM_CP_NOP },
2749     { .name = "XSCALE_UNLOCK_DCACHE",
2750       .cp = 15, .opc1 = 0, .crn = 9, .crm = 2, .opc2 = 1,
2751       .access = PL1_W, .type = ARM_CP_NOP },
2752     REGINFO_SENTINEL
2753 };
2754 
2755 static const ARMCPRegInfo dummy_c15_cp_reginfo[] = {
2756     /* RAZ/WI the whole crn=15 space, when we don't have a more specific
2757      * implementation of this implementation-defined space.
2758      * Ideally this should eventually disappear in favour of actually
2759      * implementing the correct behaviour for all cores.
2760      */
2761     { .name = "C15_IMPDEF", .cp = 15, .crn = 15,
2762       .crm = CP_ANY, .opc1 = CP_ANY, .opc2 = CP_ANY,
2763       .access = PL1_RW,
2764       .type = ARM_CP_CONST | ARM_CP_NO_RAW | ARM_CP_OVERRIDE,
2765       .resetvalue = 0 },
2766     REGINFO_SENTINEL
2767 };
2768 
2769 static const ARMCPRegInfo cache_dirty_status_cp_reginfo[] = {
2770     /* Cache status: RAZ because we have no cache so it's always clean */
2771     { .name = "CDSR", .cp = 15, .crn = 7, .crm = 10, .opc1 = 0, .opc2 = 6,
2772       .access = PL1_R, .type = ARM_CP_CONST | ARM_CP_NO_RAW,
2773       .resetvalue = 0 },
2774     REGINFO_SENTINEL
2775 };
2776 
2777 static const ARMCPRegInfo cache_block_ops_cp_reginfo[] = {
2778     /* We never have a a block transfer operation in progress */
2779     { .name = "BXSR", .cp = 15, .crn = 7, .crm = 12, .opc1 = 0, .opc2 = 4,
2780       .access = PL0_R, .type = ARM_CP_CONST | ARM_CP_NO_RAW,
2781       .resetvalue = 0 },
2782     /* The cache ops themselves: these all NOP for QEMU */
2783     { .name = "IICR", .cp = 15, .crm = 5, .opc1 = 0,
2784       .access = PL1_W, .type = ARM_CP_NOP|ARM_CP_64BIT },
2785     { .name = "IDCR", .cp = 15, .crm = 6, .opc1 = 0,
2786       .access = PL1_W, .type = ARM_CP_NOP|ARM_CP_64BIT },
2787     { .name = "CDCR", .cp = 15, .crm = 12, .opc1 = 0,
2788       .access = PL0_W, .type = ARM_CP_NOP|ARM_CP_64BIT },
2789     { .name = "PIR", .cp = 15, .crm = 12, .opc1 = 1,
2790       .access = PL0_W, .type = ARM_CP_NOP|ARM_CP_64BIT },
2791     { .name = "PDR", .cp = 15, .crm = 12, .opc1 = 2,
2792       .access = PL0_W, .type = ARM_CP_NOP|ARM_CP_64BIT },
2793     { .name = "CIDCR", .cp = 15, .crm = 14, .opc1 = 0,
2794       .access = PL1_W, .type = ARM_CP_NOP|ARM_CP_64BIT },
2795     REGINFO_SENTINEL
2796 };
2797 
2798 static const ARMCPRegInfo cache_test_clean_cp_reginfo[] = {
2799     /* The cache test-and-clean instructions always return (1 << 30)
2800      * to indicate that there are no dirty cache lines.
2801      */
2802     { .name = "TC_DCACHE", .cp = 15, .crn = 7, .crm = 10, .opc1 = 0, .opc2 = 3,
2803       .access = PL0_R, .type = ARM_CP_CONST | ARM_CP_NO_RAW,
2804       .resetvalue = (1 << 30) },
2805     { .name = "TCI_DCACHE", .cp = 15, .crn = 7, .crm = 14, .opc1 = 0, .opc2 = 3,
2806       .access = PL0_R, .type = ARM_CP_CONST | ARM_CP_NO_RAW,
2807       .resetvalue = (1 << 30) },
2808     REGINFO_SENTINEL
2809 };
2810 
2811 static const ARMCPRegInfo strongarm_cp_reginfo[] = {
2812     /* Ignore ReadBuffer accesses */
2813     { .name = "C9_READBUFFER", .cp = 15, .crn = 9,
2814       .crm = CP_ANY, .opc1 = CP_ANY, .opc2 = CP_ANY,
2815       .access = PL1_RW, .resetvalue = 0,
2816       .type = ARM_CP_CONST | ARM_CP_OVERRIDE | ARM_CP_NO_RAW },
2817     REGINFO_SENTINEL
2818 };
2819 
2820 static uint64_t midr_read(CPUARMState *env, const ARMCPRegInfo *ri)
2821 {
2822     ARMCPU *cpu = arm_env_get_cpu(env);
2823     unsigned int cur_el = arm_current_el(env);
2824     bool secure = arm_is_secure(env);
2825 
2826     if (arm_feature(&cpu->env, ARM_FEATURE_EL2) && !secure && cur_el == 1) {
2827         return env->cp15.vpidr_el2;
2828     }
2829     return raw_read(env, ri);
2830 }
2831 
2832 static uint64_t mpidr_read_val(CPUARMState *env)
2833 {
2834     ARMCPU *cpu = ARM_CPU(arm_env_get_cpu(env));
2835     uint64_t mpidr = cpu->mp_affinity;
2836 
2837     if (arm_feature(env, ARM_FEATURE_V7MP)) {
2838         mpidr |= (1U << 31);
2839         /* Cores which are uniprocessor (non-coherent)
2840          * but still implement the MP extensions set
2841          * bit 30. (For instance, Cortex-R5).
2842          */
2843         if (cpu->mp_is_up) {
2844             mpidr |= (1u << 30);
2845         }
2846     }
2847     return mpidr;
2848 }
2849 
2850 static uint64_t mpidr_read(CPUARMState *env, const ARMCPRegInfo *ri)
2851 {
2852     unsigned int cur_el = arm_current_el(env);
2853     bool secure = arm_is_secure(env);
2854 
2855     if (arm_feature(env, ARM_FEATURE_EL2) && !secure && cur_el == 1) {
2856         return env->cp15.vmpidr_el2;
2857     }
2858     return mpidr_read_val(env);
2859 }
2860 
2861 static const ARMCPRegInfo mpidr_cp_reginfo[] = {
2862     { .name = "MPIDR", .state = ARM_CP_STATE_BOTH,
2863       .opc0 = 3, .crn = 0, .crm = 0, .opc1 = 0, .opc2 = 5,
2864       .access = PL1_R, .readfn = mpidr_read, .type = ARM_CP_NO_RAW },
2865     REGINFO_SENTINEL
2866 };
2867 
2868 static const ARMCPRegInfo lpae_cp_reginfo[] = {
2869     /* NOP AMAIR0/1 */
2870     { .name = "AMAIR0", .state = ARM_CP_STATE_BOTH,
2871       .opc0 = 3, .crn = 10, .crm = 3, .opc1 = 0, .opc2 = 0,
2872       .access = PL1_RW, .type = ARM_CP_CONST,
2873       .resetvalue = 0 },
2874     /* AMAIR1 is mapped to AMAIR_EL1[63:32] */
2875     { .name = "AMAIR1", .cp = 15, .crn = 10, .crm = 3, .opc1 = 0, .opc2 = 1,
2876       .access = PL1_RW, .type = ARM_CP_CONST,
2877       .resetvalue = 0 },
2878     { .name = "PAR", .cp = 15, .crm = 7, .opc1 = 0,
2879       .access = PL1_RW, .type = ARM_CP_64BIT, .resetvalue = 0,
2880       .bank_fieldoffsets = { offsetof(CPUARMState, cp15.par_s),
2881                              offsetof(CPUARMState, cp15.par_ns)} },
2882     { .name = "TTBR0", .cp = 15, .crm = 2, .opc1 = 0,
2883       .access = PL1_RW, .type = ARM_CP_64BIT | ARM_CP_ALIAS,
2884       .bank_fieldoffsets = { offsetof(CPUARMState, cp15.ttbr0_s),
2885                              offsetof(CPUARMState, cp15.ttbr0_ns) },
2886       .writefn = vmsa_ttbr_write, },
2887     { .name = "TTBR1", .cp = 15, .crm = 2, .opc1 = 1,
2888       .access = PL1_RW, .type = ARM_CP_64BIT | ARM_CP_ALIAS,
2889       .bank_fieldoffsets = { offsetof(CPUARMState, cp15.ttbr1_s),
2890                              offsetof(CPUARMState, cp15.ttbr1_ns) },
2891       .writefn = vmsa_ttbr_write, },
2892     REGINFO_SENTINEL
2893 };
2894 
2895 static uint64_t aa64_fpcr_read(CPUARMState *env, const ARMCPRegInfo *ri)
2896 {
2897     return vfp_get_fpcr(env);
2898 }
2899 
2900 static void aa64_fpcr_write(CPUARMState *env, const ARMCPRegInfo *ri,
2901                             uint64_t value)
2902 {
2903     vfp_set_fpcr(env, value);
2904 }
2905 
2906 static uint64_t aa64_fpsr_read(CPUARMState *env, const ARMCPRegInfo *ri)
2907 {
2908     return vfp_get_fpsr(env);
2909 }
2910 
2911 static void aa64_fpsr_write(CPUARMState *env, const ARMCPRegInfo *ri,
2912                             uint64_t value)
2913 {
2914     vfp_set_fpsr(env, value);
2915 }
2916 
2917 static CPAccessResult aa64_daif_access(CPUARMState *env, const ARMCPRegInfo *ri,
2918                                        bool isread)
2919 {
2920     if (arm_current_el(env) == 0 && !(env->cp15.sctlr_el[1] & SCTLR_UMA)) {
2921         return CP_ACCESS_TRAP;
2922     }
2923     return CP_ACCESS_OK;
2924 }
2925 
2926 static void aa64_daif_write(CPUARMState *env, const ARMCPRegInfo *ri,
2927                             uint64_t value)
2928 {
2929     env->daif = value & PSTATE_DAIF;
2930 }
2931 
2932 static CPAccessResult aa64_cacheop_access(CPUARMState *env,
2933                                           const ARMCPRegInfo *ri,
2934                                           bool isread)
2935 {
2936     /* Cache invalidate/clean: NOP, but EL0 must UNDEF unless
2937      * SCTLR_EL1.UCI is set.
2938      */
2939     if (arm_current_el(env) == 0 && !(env->cp15.sctlr_el[1] & SCTLR_UCI)) {
2940         return CP_ACCESS_TRAP;
2941     }
2942     return CP_ACCESS_OK;
2943 }
2944 
2945 /* See: D4.7.2 TLB maintenance requirements and the TLB maintenance instructions
2946  * Page D4-1736 (DDI0487A.b)
2947  */
2948 
2949 static void tlbi_aa64_vmalle1_write(CPUARMState *env, const ARMCPRegInfo *ri,
2950                                     uint64_t value)
2951 {
2952     CPUState *cs = ENV_GET_CPU(env);
2953 
2954     if (arm_is_secure_below_el3(env)) {
2955         tlb_flush_by_mmuidx(cs,
2956                             ARMMMUIdxBit_S1SE1 |
2957                             ARMMMUIdxBit_S1SE0);
2958     } else {
2959         tlb_flush_by_mmuidx(cs,
2960                             ARMMMUIdxBit_S12NSE1 |
2961                             ARMMMUIdxBit_S12NSE0);
2962     }
2963 }
2964 
2965 static void tlbi_aa64_vmalle1is_write(CPUARMState *env, const ARMCPRegInfo *ri,
2966                                       uint64_t value)
2967 {
2968     CPUState *cs = ENV_GET_CPU(env);
2969     bool sec = arm_is_secure_below_el3(env);
2970 
2971     if (sec) {
2972         tlb_flush_by_mmuidx_all_cpus_synced(cs,
2973                                             ARMMMUIdxBit_S1SE1 |
2974                                             ARMMMUIdxBit_S1SE0);
2975     } else {
2976         tlb_flush_by_mmuidx_all_cpus_synced(cs,
2977                                             ARMMMUIdxBit_S12NSE1 |
2978                                             ARMMMUIdxBit_S12NSE0);
2979     }
2980 }
2981 
2982 static void tlbi_aa64_alle1_write(CPUARMState *env, const ARMCPRegInfo *ri,
2983                                   uint64_t value)
2984 {
2985     /* Note that the 'ALL' scope must invalidate both stage 1 and
2986      * stage 2 translations, whereas most other scopes only invalidate
2987      * stage 1 translations.
2988      */
2989     ARMCPU *cpu = arm_env_get_cpu(env);
2990     CPUState *cs = CPU(cpu);
2991 
2992     if (arm_is_secure_below_el3(env)) {
2993         tlb_flush_by_mmuidx(cs,
2994                             ARMMMUIdxBit_S1SE1 |
2995                             ARMMMUIdxBit_S1SE0);
2996     } else {
2997         if (arm_feature(env, ARM_FEATURE_EL2)) {
2998             tlb_flush_by_mmuidx(cs,
2999                                 ARMMMUIdxBit_S12NSE1 |
3000                                 ARMMMUIdxBit_S12NSE0 |
3001                                 ARMMMUIdxBit_S2NS);
3002         } else {
3003             tlb_flush_by_mmuidx(cs,
3004                                 ARMMMUIdxBit_S12NSE1 |
3005                                 ARMMMUIdxBit_S12NSE0);
3006         }
3007     }
3008 }
3009 
3010 static void tlbi_aa64_alle2_write(CPUARMState *env, const ARMCPRegInfo *ri,
3011                                   uint64_t value)
3012 {
3013     ARMCPU *cpu = arm_env_get_cpu(env);
3014     CPUState *cs = CPU(cpu);
3015 
3016     tlb_flush_by_mmuidx(cs, ARMMMUIdxBit_S1E2);
3017 }
3018 
3019 static void tlbi_aa64_alle3_write(CPUARMState *env, const ARMCPRegInfo *ri,
3020                                   uint64_t value)
3021 {
3022     ARMCPU *cpu = arm_env_get_cpu(env);
3023     CPUState *cs = CPU(cpu);
3024 
3025     tlb_flush_by_mmuidx(cs, ARMMMUIdxBit_S1E3);
3026 }
3027 
3028 static void tlbi_aa64_alle1is_write(CPUARMState *env, const ARMCPRegInfo *ri,
3029                                     uint64_t value)
3030 {
3031     /* Note that the 'ALL' scope must invalidate both stage 1 and
3032      * stage 2 translations, whereas most other scopes only invalidate
3033      * stage 1 translations.
3034      */
3035     CPUState *cs = ENV_GET_CPU(env);
3036     bool sec = arm_is_secure_below_el3(env);
3037     bool has_el2 = arm_feature(env, ARM_FEATURE_EL2);
3038 
3039     if (sec) {
3040         tlb_flush_by_mmuidx_all_cpus_synced(cs,
3041                                             ARMMMUIdxBit_S1SE1 |
3042                                             ARMMMUIdxBit_S1SE0);
3043     } else if (has_el2) {
3044         tlb_flush_by_mmuidx_all_cpus_synced(cs,
3045                                             ARMMMUIdxBit_S12NSE1 |
3046                                             ARMMMUIdxBit_S12NSE0 |
3047                                             ARMMMUIdxBit_S2NS);
3048     } else {
3049           tlb_flush_by_mmuidx_all_cpus_synced(cs,
3050                                               ARMMMUIdxBit_S12NSE1 |
3051                                               ARMMMUIdxBit_S12NSE0);
3052     }
3053 }
3054 
3055 static void tlbi_aa64_alle2is_write(CPUARMState *env, const ARMCPRegInfo *ri,
3056                                     uint64_t value)
3057 {
3058     CPUState *cs = ENV_GET_CPU(env);
3059 
3060     tlb_flush_by_mmuidx_all_cpus_synced(cs, ARMMMUIdxBit_S1E2);
3061 }
3062 
3063 static void tlbi_aa64_alle3is_write(CPUARMState *env, const ARMCPRegInfo *ri,
3064                                     uint64_t value)
3065 {
3066     CPUState *cs = ENV_GET_CPU(env);
3067 
3068     tlb_flush_by_mmuidx_all_cpus_synced(cs, ARMMMUIdxBit_S1E3);
3069 }
3070 
3071 static void tlbi_aa64_vae1_write(CPUARMState *env, const ARMCPRegInfo *ri,
3072                                  uint64_t value)
3073 {
3074     /* Invalidate by VA, EL1&0 (AArch64 version).
3075      * Currently handles all of VAE1, VAAE1, VAALE1 and VALE1,
3076      * since we don't support flush-for-specific-ASID-only or
3077      * flush-last-level-only.
3078      */
3079     ARMCPU *cpu = arm_env_get_cpu(env);
3080     CPUState *cs = CPU(cpu);
3081     uint64_t pageaddr = sextract64(value << 12, 0, 56);
3082 
3083     if (arm_is_secure_below_el3(env)) {
3084         tlb_flush_page_by_mmuidx(cs, pageaddr,
3085                                  ARMMMUIdxBit_S1SE1 |
3086                                  ARMMMUIdxBit_S1SE0);
3087     } else {
3088         tlb_flush_page_by_mmuidx(cs, pageaddr,
3089                                  ARMMMUIdxBit_S12NSE1 |
3090                                  ARMMMUIdxBit_S12NSE0);
3091     }
3092 }
3093 
3094 static void tlbi_aa64_vae2_write(CPUARMState *env, const ARMCPRegInfo *ri,
3095                                  uint64_t value)
3096 {
3097     /* Invalidate by VA, EL2
3098      * Currently handles both VAE2 and VALE2, since we don't support
3099      * flush-last-level-only.
3100      */
3101     ARMCPU *cpu = arm_env_get_cpu(env);
3102     CPUState *cs = CPU(cpu);
3103     uint64_t pageaddr = sextract64(value << 12, 0, 56);
3104 
3105     tlb_flush_page_by_mmuidx(cs, pageaddr, ARMMMUIdxBit_S1E2);
3106 }
3107 
3108 static void tlbi_aa64_vae3_write(CPUARMState *env, const ARMCPRegInfo *ri,
3109                                  uint64_t value)
3110 {
3111     /* Invalidate by VA, EL3
3112      * Currently handles both VAE3 and VALE3, since we don't support
3113      * flush-last-level-only.
3114      */
3115     ARMCPU *cpu = arm_env_get_cpu(env);
3116     CPUState *cs = CPU(cpu);
3117     uint64_t pageaddr = sextract64(value << 12, 0, 56);
3118 
3119     tlb_flush_page_by_mmuidx(cs, pageaddr, ARMMMUIdxBit_S1E3);
3120 }
3121 
3122 static void tlbi_aa64_vae1is_write(CPUARMState *env, const ARMCPRegInfo *ri,
3123                                    uint64_t value)
3124 {
3125     ARMCPU *cpu = arm_env_get_cpu(env);
3126     CPUState *cs = CPU(cpu);
3127     bool sec = arm_is_secure_below_el3(env);
3128     uint64_t pageaddr = sextract64(value << 12, 0, 56);
3129 
3130     if (sec) {
3131         tlb_flush_page_by_mmuidx_all_cpus_synced(cs, pageaddr,
3132                                                  ARMMMUIdxBit_S1SE1 |
3133                                                  ARMMMUIdxBit_S1SE0);
3134     } else {
3135         tlb_flush_page_by_mmuidx_all_cpus_synced(cs, pageaddr,
3136                                                  ARMMMUIdxBit_S12NSE1 |
3137                                                  ARMMMUIdxBit_S12NSE0);
3138     }
3139 }
3140 
3141 static void tlbi_aa64_vae2is_write(CPUARMState *env, const ARMCPRegInfo *ri,
3142                                    uint64_t value)
3143 {
3144     CPUState *cs = ENV_GET_CPU(env);
3145     uint64_t pageaddr = sextract64(value << 12, 0, 56);
3146 
3147     tlb_flush_page_by_mmuidx_all_cpus_synced(cs, pageaddr,
3148                                              ARMMMUIdxBit_S1E2);
3149 }
3150 
3151 static void tlbi_aa64_vae3is_write(CPUARMState *env, const ARMCPRegInfo *ri,
3152                                    uint64_t value)
3153 {
3154     CPUState *cs = ENV_GET_CPU(env);
3155     uint64_t pageaddr = sextract64(value << 12, 0, 56);
3156 
3157     tlb_flush_page_by_mmuidx_all_cpus_synced(cs, pageaddr,
3158                                              ARMMMUIdxBit_S1E3);
3159 }
3160 
3161 static void tlbi_aa64_ipas2e1_write(CPUARMState *env, const ARMCPRegInfo *ri,
3162                                     uint64_t value)
3163 {
3164     /* Invalidate by IPA. This has to invalidate any structures that
3165      * contain only stage 2 translation information, but does not need
3166      * to apply to structures that contain combined stage 1 and stage 2
3167      * translation information.
3168      * This must NOP if EL2 isn't implemented or SCR_EL3.NS is zero.
3169      */
3170     ARMCPU *cpu = arm_env_get_cpu(env);
3171     CPUState *cs = CPU(cpu);
3172     uint64_t pageaddr;
3173 
3174     if (!arm_feature(env, ARM_FEATURE_EL2) || !(env->cp15.scr_el3 & SCR_NS)) {
3175         return;
3176     }
3177 
3178     pageaddr = sextract64(value << 12, 0, 48);
3179 
3180     tlb_flush_page_by_mmuidx(cs, pageaddr, ARMMMUIdxBit_S2NS);
3181 }
3182 
3183 static void tlbi_aa64_ipas2e1is_write(CPUARMState *env, const ARMCPRegInfo *ri,
3184                                       uint64_t value)
3185 {
3186     CPUState *cs = ENV_GET_CPU(env);
3187     uint64_t pageaddr;
3188 
3189     if (!arm_feature(env, ARM_FEATURE_EL2) || !(env->cp15.scr_el3 & SCR_NS)) {
3190         return;
3191     }
3192 
3193     pageaddr = sextract64(value << 12, 0, 48);
3194 
3195     tlb_flush_page_by_mmuidx_all_cpus_synced(cs, pageaddr,
3196                                              ARMMMUIdxBit_S2NS);
3197 }
3198 
3199 static CPAccessResult aa64_zva_access(CPUARMState *env, const ARMCPRegInfo *ri,
3200                                       bool isread)
3201 {
3202     /* We don't implement EL2, so the only control on DC ZVA is the
3203      * bit in the SCTLR which can prohibit access for EL0.
3204      */
3205     if (arm_current_el(env) == 0 && !(env->cp15.sctlr_el[1] & SCTLR_DZE)) {
3206         return CP_ACCESS_TRAP;
3207     }
3208     return CP_ACCESS_OK;
3209 }
3210 
3211 static uint64_t aa64_dczid_read(CPUARMState *env, const ARMCPRegInfo *ri)
3212 {
3213     ARMCPU *cpu = arm_env_get_cpu(env);
3214     int dzp_bit = 1 << 4;
3215 
3216     /* DZP indicates whether DC ZVA access is allowed */
3217     if (aa64_zva_access(env, NULL, false) == CP_ACCESS_OK) {
3218         dzp_bit = 0;
3219     }
3220     return cpu->dcz_blocksize | dzp_bit;
3221 }
3222 
3223 static CPAccessResult sp_el0_access(CPUARMState *env, const ARMCPRegInfo *ri,
3224                                     bool isread)
3225 {
3226     if (!(env->pstate & PSTATE_SP)) {
3227         /* Access to SP_EL0 is undefined if it's being used as
3228          * the stack pointer.
3229          */
3230         return CP_ACCESS_TRAP_UNCATEGORIZED;
3231     }
3232     return CP_ACCESS_OK;
3233 }
3234 
3235 static uint64_t spsel_read(CPUARMState *env, const ARMCPRegInfo *ri)
3236 {
3237     return env->pstate & PSTATE_SP;
3238 }
3239 
3240 static void spsel_write(CPUARMState *env, const ARMCPRegInfo *ri, uint64_t val)
3241 {
3242     update_spsel(env, val);
3243 }
3244 
3245 static void sctlr_write(CPUARMState *env, const ARMCPRegInfo *ri,
3246                         uint64_t value)
3247 {
3248     ARMCPU *cpu = arm_env_get_cpu(env);
3249 
3250     if (raw_read(env, ri) == value) {
3251         /* Skip the TLB flush if nothing actually changed; Linux likes
3252          * to do a lot of pointless SCTLR writes.
3253          */
3254         return;
3255     }
3256 
3257     if (arm_feature(env, ARM_FEATURE_PMSA) && !cpu->has_mpu) {
3258         /* M bit is RAZ/WI for PMSA with no MPU implemented */
3259         value &= ~SCTLR_M;
3260     }
3261 
3262     raw_write(env, ri, value);
3263     /* ??? Lots of these bits are not implemented.  */
3264     /* This may enable/disable the MMU, so do a TLB flush.  */
3265     tlb_flush(CPU(cpu));
3266 }
3267 
3268 static CPAccessResult fpexc32_access(CPUARMState *env, const ARMCPRegInfo *ri,
3269                                      bool isread)
3270 {
3271     if ((env->cp15.cptr_el[2] & CPTR_TFP) && arm_current_el(env) == 2) {
3272         return CP_ACCESS_TRAP_FP_EL2;
3273     }
3274     if (env->cp15.cptr_el[3] & CPTR_TFP) {
3275         return CP_ACCESS_TRAP_FP_EL3;
3276     }
3277     return CP_ACCESS_OK;
3278 }
3279 
3280 static void sdcr_write(CPUARMState *env, const ARMCPRegInfo *ri,
3281                        uint64_t value)
3282 {
3283     env->cp15.mdcr_el3 = value & SDCR_VALID_MASK;
3284 }
3285 
3286 static const ARMCPRegInfo v8_cp_reginfo[] = {
3287     /* Minimal set of EL0-visible registers. This will need to be expanded
3288      * significantly for system emulation of AArch64 CPUs.
3289      */
3290     { .name = "NZCV", .state = ARM_CP_STATE_AA64,
3291       .opc0 = 3, .opc1 = 3, .opc2 = 0, .crn = 4, .crm = 2,
3292       .access = PL0_RW, .type = ARM_CP_NZCV },
3293     { .name = "DAIF", .state = ARM_CP_STATE_AA64,
3294       .opc0 = 3, .opc1 = 3, .opc2 = 1, .crn = 4, .crm = 2,
3295       .type = ARM_CP_NO_RAW,
3296       .access = PL0_RW, .accessfn = aa64_daif_access,
3297       .fieldoffset = offsetof(CPUARMState, daif),
3298       .writefn = aa64_daif_write, .resetfn = arm_cp_reset_ignore },
3299     { .name = "FPCR", .state = ARM_CP_STATE_AA64,
3300       .opc0 = 3, .opc1 = 3, .opc2 = 0, .crn = 4, .crm = 4,
3301       .access = PL0_RW, .readfn = aa64_fpcr_read, .writefn = aa64_fpcr_write },
3302     { .name = "FPSR", .state = ARM_CP_STATE_AA64,
3303       .opc0 = 3, .opc1 = 3, .opc2 = 1, .crn = 4, .crm = 4,
3304       .access = PL0_RW, .readfn = aa64_fpsr_read, .writefn = aa64_fpsr_write },
3305     { .name = "DCZID_EL0", .state = ARM_CP_STATE_AA64,
3306       .opc0 = 3, .opc1 = 3, .opc2 = 7, .crn = 0, .crm = 0,
3307       .access = PL0_R, .type = ARM_CP_NO_RAW,
3308       .readfn = aa64_dczid_read },
3309     { .name = "DC_ZVA", .state = ARM_CP_STATE_AA64,
3310       .opc0 = 1, .opc1 = 3, .crn = 7, .crm = 4, .opc2 = 1,
3311       .access = PL0_W, .type = ARM_CP_DC_ZVA,
3312 #ifndef CONFIG_USER_ONLY
3313       /* Avoid overhead of an access check that always passes in user-mode */
3314       .accessfn = aa64_zva_access,
3315 #endif
3316     },
3317     { .name = "CURRENTEL", .state = ARM_CP_STATE_AA64,
3318       .opc0 = 3, .opc1 = 0, .opc2 = 2, .crn = 4, .crm = 2,
3319       .access = PL1_R, .type = ARM_CP_CURRENTEL },
3320     /* Cache ops: all NOPs since we don't emulate caches */
3321     { .name = "IC_IALLUIS", .state = ARM_CP_STATE_AA64,
3322       .opc0 = 1, .opc1 = 0, .crn = 7, .crm = 1, .opc2 = 0,
3323       .access = PL1_W, .type = ARM_CP_NOP },
3324     { .name = "IC_IALLU", .state = ARM_CP_STATE_AA64,
3325       .opc0 = 1, .opc1 = 0, .crn = 7, .crm = 5, .opc2 = 0,
3326       .access = PL1_W, .type = ARM_CP_NOP },
3327     { .name = "IC_IVAU", .state = ARM_CP_STATE_AA64,
3328       .opc0 = 1, .opc1 = 3, .crn = 7, .crm = 5, .opc2 = 1,
3329       .access = PL0_W, .type = ARM_CP_NOP,
3330       .accessfn = aa64_cacheop_access },
3331     { .name = "DC_IVAC", .state = ARM_CP_STATE_AA64,
3332       .opc0 = 1, .opc1 = 0, .crn = 7, .crm = 6, .opc2 = 1,
3333       .access = PL1_W, .type = ARM_CP_NOP },
3334     { .name = "DC_ISW", .state = ARM_CP_STATE_AA64,
3335       .opc0 = 1, .opc1 = 0, .crn = 7, .crm = 6, .opc2 = 2,
3336       .access = PL1_W, .type = ARM_CP_NOP },
3337     { .name = "DC_CVAC", .state = ARM_CP_STATE_AA64,
3338       .opc0 = 1, .opc1 = 3, .crn = 7, .crm = 10, .opc2 = 1,
3339       .access = PL0_W, .type = ARM_CP_NOP,
3340       .accessfn = aa64_cacheop_access },
3341     { .name = "DC_CSW", .state = ARM_CP_STATE_AA64,
3342       .opc0 = 1, .opc1 = 0, .crn = 7, .crm = 10, .opc2 = 2,
3343       .access = PL1_W, .type = ARM_CP_NOP },
3344     { .name = "DC_CVAU", .state = ARM_CP_STATE_AA64,
3345       .opc0 = 1, .opc1 = 3, .crn = 7, .crm = 11, .opc2 = 1,
3346       .access = PL0_W, .type = ARM_CP_NOP,
3347       .accessfn = aa64_cacheop_access },
3348     { .name = "DC_CIVAC", .state = ARM_CP_STATE_AA64,
3349       .opc0 = 1, .opc1 = 3, .crn = 7, .crm = 14, .opc2 = 1,
3350       .access = PL0_W, .type = ARM_CP_NOP,
3351       .accessfn = aa64_cacheop_access },
3352     { .name = "DC_CISW", .state = ARM_CP_STATE_AA64,
3353       .opc0 = 1, .opc1 = 0, .crn = 7, .crm = 14, .opc2 = 2,
3354       .access = PL1_W, .type = ARM_CP_NOP },
3355     /* TLBI operations */
3356     { .name = "TLBI_VMALLE1IS", .state = ARM_CP_STATE_AA64,
3357       .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 3, .opc2 = 0,
3358       .access = PL1_W, .type = ARM_CP_NO_RAW,
3359       .writefn = tlbi_aa64_vmalle1is_write },
3360     { .name = "TLBI_VAE1IS", .state = ARM_CP_STATE_AA64,
3361       .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 3, .opc2 = 1,
3362       .access = PL1_W, .type = ARM_CP_NO_RAW,
3363       .writefn = tlbi_aa64_vae1is_write },
3364     { .name = "TLBI_ASIDE1IS", .state = ARM_CP_STATE_AA64,
3365       .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 3, .opc2 = 2,
3366       .access = PL1_W, .type = ARM_CP_NO_RAW,
3367       .writefn = tlbi_aa64_vmalle1is_write },
3368     { .name = "TLBI_VAAE1IS", .state = ARM_CP_STATE_AA64,
3369       .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 3, .opc2 = 3,
3370       .access = PL1_W, .type = ARM_CP_NO_RAW,
3371       .writefn = tlbi_aa64_vae1is_write },
3372     { .name = "TLBI_VALE1IS", .state = ARM_CP_STATE_AA64,
3373       .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 3, .opc2 = 5,
3374       .access = PL1_W, .type = ARM_CP_NO_RAW,
3375       .writefn = tlbi_aa64_vae1is_write },
3376     { .name = "TLBI_VAALE1IS", .state = ARM_CP_STATE_AA64,
3377       .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 3, .opc2 = 7,
3378       .access = PL1_W, .type = ARM_CP_NO_RAW,
3379       .writefn = tlbi_aa64_vae1is_write },
3380     { .name = "TLBI_VMALLE1", .state = ARM_CP_STATE_AA64,
3381       .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 7, .opc2 = 0,
3382       .access = PL1_W, .type = ARM_CP_NO_RAW,
3383       .writefn = tlbi_aa64_vmalle1_write },
3384     { .name = "TLBI_VAE1", .state = ARM_CP_STATE_AA64,
3385       .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 7, .opc2 = 1,
3386       .access = PL1_W, .type = ARM_CP_NO_RAW,
3387       .writefn = tlbi_aa64_vae1_write },
3388     { .name = "TLBI_ASIDE1", .state = ARM_CP_STATE_AA64,
3389       .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 7, .opc2 = 2,
3390       .access = PL1_W, .type = ARM_CP_NO_RAW,
3391       .writefn = tlbi_aa64_vmalle1_write },
3392     { .name = "TLBI_VAAE1", .state = ARM_CP_STATE_AA64,
3393       .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 7, .opc2 = 3,
3394       .access = PL1_W, .type = ARM_CP_NO_RAW,
3395       .writefn = tlbi_aa64_vae1_write },
3396     { .name = "TLBI_VALE1", .state = ARM_CP_STATE_AA64,
3397       .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 7, .opc2 = 5,
3398       .access = PL1_W, .type = ARM_CP_NO_RAW,
3399       .writefn = tlbi_aa64_vae1_write },
3400     { .name = "TLBI_VAALE1", .state = ARM_CP_STATE_AA64,
3401       .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 7, .opc2 = 7,
3402       .access = PL1_W, .type = ARM_CP_NO_RAW,
3403       .writefn = tlbi_aa64_vae1_write },
3404     { .name = "TLBI_IPAS2E1IS", .state = ARM_CP_STATE_AA64,
3405       .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 0, .opc2 = 1,
3406       .access = PL2_W, .type = ARM_CP_NO_RAW,
3407       .writefn = tlbi_aa64_ipas2e1is_write },
3408     { .name = "TLBI_IPAS2LE1IS", .state = ARM_CP_STATE_AA64,
3409       .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 0, .opc2 = 5,
3410       .access = PL2_W, .type = ARM_CP_NO_RAW,
3411       .writefn = tlbi_aa64_ipas2e1is_write },
3412     { .name = "TLBI_ALLE1IS", .state = ARM_CP_STATE_AA64,
3413       .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 3, .opc2 = 4,
3414       .access = PL2_W, .type = ARM_CP_NO_RAW,
3415       .writefn = tlbi_aa64_alle1is_write },
3416     { .name = "TLBI_VMALLS12E1IS", .state = ARM_CP_STATE_AA64,
3417       .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 3, .opc2 = 6,
3418       .access = PL2_W, .type = ARM_CP_NO_RAW,
3419       .writefn = tlbi_aa64_alle1is_write },
3420     { .name = "TLBI_IPAS2E1", .state = ARM_CP_STATE_AA64,
3421       .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 4, .opc2 = 1,
3422       .access = PL2_W, .type = ARM_CP_NO_RAW,
3423       .writefn = tlbi_aa64_ipas2e1_write },
3424     { .name = "TLBI_IPAS2LE1", .state = ARM_CP_STATE_AA64,
3425       .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 4, .opc2 = 5,
3426       .access = PL2_W, .type = ARM_CP_NO_RAW,
3427       .writefn = tlbi_aa64_ipas2e1_write },
3428     { .name = "TLBI_ALLE1", .state = ARM_CP_STATE_AA64,
3429       .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 7, .opc2 = 4,
3430       .access = PL2_W, .type = ARM_CP_NO_RAW,
3431       .writefn = tlbi_aa64_alle1_write },
3432     { .name = "TLBI_VMALLS12E1", .state = ARM_CP_STATE_AA64,
3433       .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 7, .opc2 = 6,
3434       .access = PL2_W, .type = ARM_CP_NO_RAW,
3435       .writefn = tlbi_aa64_alle1is_write },
3436 #ifndef CONFIG_USER_ONLY
3437     /* 64 bit address translation operations */
3438     { .name = "AT_S1E1R", .state = ARM_CP_STATE_AA64,
3439       .opc0 = 1, .opc1 = 0, .crn = 7, .crm = 8, .opc2 = 0,
3440       .access = PL1_W, .type = ARM_CP_NO_RAW, .writefn = ats_write64 },
3441     { .name = "AT_S1E1W", .state = ARM_CP_STATE_AA64,
3442       .opc0 = 1, .opc1 = 0, .crn = 7, .crm = 8, .opc2 = 1,
3443       .access = PL1_W, .type = ARM_CP_NO_RAW, .writefn = ats_write64 },
3444     { .name = "AT_S1E0R", .state = ARM_CP_STATE_AA64,
3445       .opc0 = 1, .opc1 = 0, .crn = 7, .crm = 8, .opc2 = 2,
3446       .access = PL1_W, .type = ARM_CP_NO_RAW, .writefn = ats_write64 },
3447     { .name = "AT_S1E0W", .state = ARM_CP_STATE_AA64,
3448       .opc0 = 1, .opc1 = 0, .crn = 7, .crm = 8, .opc2 = 3,
3449       .access = PL1_W, .type = ARM_CP_NO_RAW, .writefn = ats_write64 },
3450     { .name = "AT_S12E1R", .state = ARM_CP_STATE_AA64,
3451       .opc0 = 1, .opc1 = 4, .crn = 7, .crm = 8, .opc2 = 4,
3452       .access = PL2_W, .type = ARM_CP_NO_RAW, .writefn = ats_write64 },
3453     { .name = "AT_S12E1W", .state = ARM_CP_STATE_AA64,
3454       .opc0 = 1, .opc1 = 4, .crn = 7, .crm = 8, .opc2 = 5,
3455       .access = PL2_W, .type = ARM_CP_NO_RAW, .writefn = ats_write64 },
3456     { .name = "AT_S12E0R", .state = ARM_CP_STATE_AA64,
3457       .opc0 = 1, .opc1 = 4, .crn = 7, .crm = 8, .opc2 = 6,
3458       .access = PL2_W, .type = ARM_CP_NO_RAW, .writefn = ats_write64 },
3459     { .name = "AT_S12E0W", .state = ARM_CP_STATE_AA64,
3460       .opc0 = 1, .opc1 = 4, .crn = 7, .crm = 8, .opc2 = 7,
3461       .access = PL2_W, .type = ARM_CP_NO_RAW, .writefn = ats_write64 },
3462     /* AT S1E2* are elsewhere as they UNDEF from EL3 if EL2 is not present */
3463     { .name = "AT_S1E3R", .state = ARM_CP_STATE_AA64,
3464       .opc0 = 1, .opc1 = 6, .crn = 7, .crm = 8, .opc2 = 0,
3465       .access = PL3_W, .type = ARM_CP_NO_RAW, .writefn = ats_write64 },
3466     { .name = "AT_S1E3W", .state = ARM_CP_STATE_AA64,
3467       .opc0 = 1, .opc1 = 6, .crn = 7, .crm = 8, .opc2 = 1,
3468       .access = PL3_W, .type = ARM_CP_NO_RAW, .writefn = ats_write64 },
3469     { .name = "PAR_EL1", .state = ARM_CP_STATE_AA64,
3470       .type = ARM_CP_ALIAS,
3471       .opc0 = 3, .opc1 = 0, .crn = 7, .crm = 4, .opc2 = 0,
3472       .access = PL1_RW, .resetvalue = 0,
3473       .fieldoffset = offsetof(CPUARMState, cp15.par_el[1]),
3474       .writefn = par_write },
3475 #endif
3476     /* TLB invalidate last level of translation table walk */
3477     { .name = "TLBIMVALIS", .cp = 15, .opc1 = 0, .crn = 8, .crm = 3, .opc2 = 5,
3478       .type = ARM_CP_NO_RAW, .access = PL1_W, .writefn = tlbimva_is_write },
3479     { .name = "TLBIMVAALIS", .cp = 15, .opc1 = 0, .crn = 8, .crm = 3, .opc2 = 7,
3480       .type = ARM_CP_NO_RAW, .access = PL1_W,
3481       .writefn = tlbimvaa_is_write },
3482     { .name = "TLBIMVAL", .cp = 15, .opc1 = 0, .crn = 8, .crm = 7, .opc2 = 5,
3483       .type = ARM_CP_NO_RAW, .access = PL1_W, .writefn = tlbimva_write },
3484     { .name = "TLBIMVAAL", .cp = 15, .opc1 = 0, .crn = 8, .crm = 7, .opc2 = 7,
3485       .type = ARM_CP_NO_RAW, .access = PL1_W, .writefn = tlbimvaa_write },
3486     { .name = "TLBIMVALH", .cp = 15, .opc1 = 4, .crn = 8, .crm = 7, .opc2 = 5,
3487       .type = ARM_CP_NO_RAW, .access = PL2_W,
3488       .writefn = tlbimva_hyp_write },
3489     { .name = "TLBIMVALHIS",
3490       .cp = 15, .opc1 = 4, .crn = 8, .crm = 3, .opc2 = 5,
3491       .type = ARM_CP_NO_RAW, .access = PL2_W,
3492       .writefn = tlbimva_hyp_is_write },
3493     { .name = "TLBIIPAS2",
3494       .cp = 15, .opc1 = 4, .crn = 8, .crm = 4, .opc2 = 1,
3495       .type = ARM_CP_NO_RAW, .access = PL2_W,
3496       .writefn = tlbiipas2_write },
3497     { .name = "TLBIIPAS2IS",
3498       .cp = 15, .opc1 = 4, .crn = 8, .crm = 0, .opc2 = 1,
3499       .type = ARM_CP_NO_RAW, .access = PL2_W,
3500       .writefn = tlbiipas2_is_write },
3501     { .name = "TLBIIPAS2L",
3502       .cp = 15, .opc1 = 4, .crn = 8, .crm = 4, .opc2 = 5,
3503       .type = ARM_CP_NO_RAW, .access = PL2_W,
3504       .writefn = tlbiipas2_write },
3505     { .name = "TLBIIPAS2LIS",
3506       .cp = 15, .opc1 = 4, .crn = 8, .crm = 0, .opc2 = 5,
3507       .type = ARM_CP_NO_RAW, .access = PL2_W,
3508       .writefn = tlbiipas2_is_write },
3509     /* 32 bit cache operations */
3510     { .name = "ICIALLUIS", .cp = 15, .opc1 = 0, .crn = 7, .crm = 1, .opc2 = 0,
3511       .type = ARM_CP_NOP, .access = PL1_W },
3512     { .name = "BPIALLUIS", .cp = 15, .opc1 = 0, .crn = 7, .crm = 1, .opc2 = 6,
3513       .type = ARM_CP_NOP, .access = PL1_W },
3514     { .name = "ICIALLU", .cp = 15, .opc1 = 0, .crn = 7, .crm = 5, .opc2 = 0,
3515       .type = ARM_CP_NOP, .access = PL1_W },
3516     { .name = "ICIMVAU", .cp = 15, .opc1 = 0, .crn = 7, .crm = 5, .opc2 = 1,
3517       .type = ARM_CP_NOP, .access = PL1_W },
3518     { .name = "BPIALL", .cp = 15, .opc1 = 0, .crn = 7, .crm = 5, .opc2 = 6,
3519       .type = ARM_CP_NOP, .access = PL1_W },
3520     { .name = "BPIMVA", .cp = 15, .opc1 = 0, .crn = 7, .crm = 5, .opc2 = 7,
3521       .type = ARM_CP_NOP, .access = PL1_W },
3522     { .name = "DCIMVAC", .cp = 15, .opc1 = 0, .crn = 7, .crm = 6, .opc2 = 1,
3523       .type = ARM_CP_NOP, .access = PL1_W },
3524     { .name = "DCISW", .cp = 15, .opc1 = 0, .crn = 7, .crm = 6, .opc2 = 2,
3525       .type = ARM_CP_NOP, .access = PL1_W },
3526     { .name = "DCCMVAC", .cp = 15, .opc1 = 0, .crn = 7, .crm = 10, .opc2 = 1,
3527       .type = ARM_CP_NOP, .access = PL1_W },
3528     { .name = "DCCSW", .cp = 15, .opc1 = 0, .crn = 7, .crm = 10, .opc2 = 2,
3529       .type = ARM_CP_NOP, .access = PL1_W },
3530     { .name = "DCCMVAU", .cp = 15, .opc1 = 0, .crn = 7, .crm = 11, .opc2 = 1,
3531       .type = ARM_CP_NOP, .access = PL1_W },
3532     { .name = "DCCIMVAC", .cp = 15, .opc1 = 0, .crn = 7, .crm = 14, .opc2 = 1,
3533       .type = ARM_CP_NOP, .access = PL1_W },
3534     { .name = "DCCISW", .cp = 15, .opc1 = 0, .crn = 7, .crm = 14, .opc2 = 2,
3535       .type = ARM_CP_NOP, .access = PL1_W },
3536     /* MMU Domain access control / MPU write buffer control */
3537     { .name = "DACR", .cp = 15, .opc1 = 0, .crn = 3, .crm = 0, .opc2 = 0,
3538       .access = PL1_RW, .resetvalue = 0,
3539       .writefn = dacr_write, .raw_writefn = raw_write,
3540       .bank_fieldoffsets = { offsetoflow32(CPUARMState, cp15.dacr_s),
3541                              offsetoflow32(CPUARMState, cp15.dacr_ns) } },
3542     { .name = "ELR_EL1", .state = ARM_CP_STATE_AA64,
3543       .type = ARM_CP_ALIAS,
3544       .opc0 = 3, .opc1 = 0, .crn = 4, .crm = 0, .opc2 = 1,
3545       .access = PL1_RW,
3546       .fieldoffset = offsetof(CPUARMState, elr_el[1]) },
3547     { .name = "SPSR_EL1", .state = ARM_CP_STATE_AA64,
3548       .type = ARM_CP_ALIAS,
3549       .opc0 = 3, .opc1 = 0, .crn = 4, .crm = 0, .opc2 = 0,
3550       .access = PL1_RW,
3551       .fieldoffset = offsetof(CPUARMState, banked_spsr[BANK_SVC]) },
3552     /* We rely on the access checks not allowing the guest to write to the
3553      * state field when SPSel indicates that it's being used as the stack
3554      * pointer.
3555      */
3556     { .name = "SP_EL0", .state = ARM_CP_STATE_AA64,
3557       .opc0 = 3, .opc1 = 0, .crn = 4, .crm = 1, .opc2 = 0,
3558       .access = PL1_RW, .accessfn = sp_el0_access,
3559       .type = ARM_CP_ALIAS,
3560       .fieldoffset = offsetof(CPUARMState, sp_el[0]) },
3561     { .name = "SP_EL1", .state = ARM_CP_STATE_AA64,
3562       .opc0 = 3, .opc1 = 4, .crn = 4, .crm = 1, .opc2 = 0,
3563       .access = PL2_RW, .type = ARM_CP_ALIAS,
3564       .fieldoffset = offsetof(CPUARMState, sp_el[1]) },
3565     { .name = "SPSel", .state = ARM_CP_STATE_AA64,
3566       .opc0 = 3, .opc1 = 0, .crn = 4, .crm = 2, .opc2 = 0,
3567       .type = ARM_CP_NO_RAW,
3568       .access = PL1_RW, .readfn = spsel_read, .writefn = spsel_write },
3569     { .name = "FPEXC32_EL2", .state = ARM_CP_STATE_AA64,
3570       .opc0 = 3, .opc1 = 4, .crn = 5, .crm = 3, .opc2 = 0,
3571       .type = ARM_CP_ALIAS,
3572       .fieldoffset = offsetof(CPUARMState, vfp.xregs[ARM_VFP_FPEXC]),
3573       .access = PL2_RW, .accessfn = fpexc32_access },
3574     { .name = "DACR32_EL2", .state = ARM_CP_STATE_AA64,
3575       .opc0 = 3, .opc1 = 4, .crn = 3, .crm = 0, .opc2 = 0,
3576       .access = PL2_RW, .resetvalue = 0,
3577       .writefn = dacr_write, .raw_writefn = raw_write,
3578       .fieldoffset = offsetof(CPUARMState, cp15.dacr32_el2) },
3579     { .name = "IFSR32_EL2", .state = ARM_CP_STATE_AA64,
3580       .opc0 = 3, .opc1 = 4, .crn = 5, .crm = 0, .opc2 = 1,
3581       .access = PL2_RW, .resetvalue = 0,
3582       .fieldoffset = offsetof(CPUARMState, cp15.ifsr32_el2) },
3583     { .name = "SPSR_IRQ", .state = ARM_CP_STATE_AA64,
3584       .type = ARM_CP_ALIAS,
3585       .opc0 = 3, .opc1 = 4, .crn = 4, .crm = 3, .opc2 = 0,
3586       .access = PL2_RW,
3587       .fieldoffset = offsetof(CPUARMState, banked_spsr[BANK_IRQ]) },
3588     { .name = "SPSR_ABT", .state = ARM_CP_STATE_AA64,
3589       .type = ARM_CP_ALIAS,
3590       .opc0 = 3, .opc1 = 4, .crn = 4, .crm = 3, .opc2 = 1,
3591       .access = PL2_RW,
3592       .fieldoffset = offsetof(CPUARMState, banked_spsr[BANK_ABT]) },
3593     { .name = "SPSR_UND", .state = ARM_CP_STATE_AA64,
3594       .type = ARM_CP_ALIAS,
3595       .opc0 = 3, .opc1 = 4, .crn = 4, .crm = 3, .opc2 = 2,
3596       .access = PL2_RW,
3597       .fieldoffset = offsetof(CPUARMState, banked_spsr[BANK_UND]) },
3598     { .name = "SPSR_FIQ", .state = ARM_CP_STATE_AA64,
3599       .type = ARM_CP_ALIAS,
3600       .opc0 = 3, .opc1 = 4, .crn = 4, .crm = 3, .opc2 = 3,
3601       .access = PL2_RW,
3602       .fieldoffset = offsetof(CPUARMState, banked_spsr[BANK_FIQ]) },
3603     { .name = "MDCR_EL3", .state = ARM_CP_STATE_AA64,
3604       .opc0 = 3, .opc1 = 6, .crn = 1, .crm = 3, .opc2 = 1,
3605       .resetvalue = 0,
3606       .access = PL3_RW, .fieldoffset = offsetof(CPUARMState, cp15.mdcr_el3) },
3607     { .name = "SDCR", .type = ARM_CP_ALIAS,
3608       .cp = 15, .opc1 = 0, .crn = 1, .crm = 3, .opc2 = 1,
3609       .access = PL1_RW, .accessfn = access_trap_aa32s_el1,
3610       .writefn = sdcr_write,
3611       .fieldoffset = offsetoflow32(CPUARMState, cp15.mdcr_el3) },
3612     REGINFO_SENTINEL
3613 };
3614 
3615 /* Used to describe the behaviour of EL2 regs when EL2 does not exist.  */
3616 static const ARMCPRegInfo el3_no_el2_cp_reginfo[] = {
3617     { .name = "VBAR_EL2", .state = ARM_CP_STATE_AA64,
3618       .opc0 = 3, .opc1 = 4, .crn = 12, .crm = 0, .opc2 = 0,
3619       .access = PL2_RW,
3620       .readfn = arm_cp_read_zero, .writefn = arm_cp_write_ignore },
3621     { .name = "HCR_EL2", .state = ARM_CP_STATE_AA64,
3622       .type = ARM_CP_NO_RAW,
3623       .opc0 = 3, .opc1 = 4, .crn = 1, .crm = 1, .opc2 = 0,
3624       .access = PL2_RW,
3625       .readfn = arm_cp_read_zero, .writefn = arm_cp_write_ignore },
3626     { .name = "CPTR_EL2", .state = ARM_CP_STATE_BOTH,
3627       .opc0 = 3, .opc1 = 4, .crn = 1, .crm = 1, .opc2 = 2,
3628       .access = PL2_RW, .type = ARM_CP_CONST, .resetvalue = 0 },
3629     { .name = "MAIR_EL2", .state = ARM_CP_STATE_BOTH,
3630       .opc0 = 3, .opc1 = 4, .crn = 10, .crm = 2, .opc2 = 0,
3631       .access = PL2_RW, .type = ARM_CP_CONST,
3632       .resetvalue = 0 },
3633     { .name = "HMAIR1", .state = ARM_CP_STATE_AA32,
3634       .opc1 = 4, .crn = 10, .crm = 2, .opc2 = 1,
3635       .access = PL2_RW, .type = ARM_CP_CONST, .resetvalue = 0 },
3636     { .name = "AMAIR_EL2", .state = ARM_CP_STATE_BOTH,
3637       .opc0 = 3, .opc1 = 4, .crn = 10, .crm = 3, .opc2 = 0,
3638       .access = PL2_RW, .type = ARM_CP_CONST,
3639       .resetvalue = 0 },
3640     { .name = "HMAIR1", .state = ARM_CP_STATE_AA32,
3641       .opc1 = 4, .crn = 10, .crm = 3, .opc2 = 1,
3642       .access = PL2_RW, .type = ARM_CP_CONST,
3643       .resetvalue = 0 },
3644     { .name = "AFSR0_EL2", .state = ARM_CP_STATE_BOTH,
3645       .opc0 = 3, .opc1 = 4, .crn = 5, .crm = 1, .opc2 = 0,
3646       .access = PL2_RW, .type = ARM_CP_CONST,
3647       .resetvalue = 0 },
3648     { .name = "AFSR1_EL2", .state = ARM_CP_STATE_BOTH,
3649       .opc0 = 3, .opc1 = 4, .crn = 5, .crm = 1, .opc2 = 1,
3650       .access = PL2_RW, .type = ARM_CP_CONST,
3651       .resetvalue = 0 },
3652     { .name = "TCR_EL2", .state = ARM_CP_STATE_BOTH,
3653       .opc0 = 3, .opc1 = 4, .crn = 2, .crm = 0, .opc2 = 2,
3654       .access = PL2_RW, .type = ARM_CP_CONST, .resetvalue = 0 },
3655     { .name = "VTCR_EL2", .state = ARM_CP_STATE_BOTH,
3656       .opc0 = 3, .opc1 = 4, .crn = 2, .crm = 1, .opc2 = 2,
3657       .access = PL2_RW, .accessfn = access_el3_aa32ns_aa64any,
3658       .type = ARM_CP_CONST, .resetvalue = 0 },
3659     { .name = "VTTBR", .state = ARM_CP_STATE_AA32,
3660       .cp = 15, .opc1 = 6, .crm = 2,
3661       .access = PL2_RW, .accessfn = access_el3_aa32ns,
3662       .type = ARM_CP_CONST | ARM_CP_64BIT, .resetvalue = 0 },
3663     { .name = "VTTBR_EL2", .state = ARM_CP_STATE_AA64,
3664       .opc0 = 3, .opc1 = 4, .crn = 2, .crm = 1, .opc2 = 0,
3665       .access = PL2_RW, .type = ARM_CP_CONST, .resetvalue = 0 },
3666     { .name = "SCTLR_EL2", .state = ARM_CP_STATE_BOTH,
3667       .opc0 = 3, .opc1 = 4, .crn = 1, .crm = 0, .opc2 = 0,
3668       .access = PL2_RW, .type = ARM_CP_CONST, .resetvalue = 0 },
3669     { .name = "TPIDR_EL2", .state = ARM_CP_STATE_BOTH,
3670       .opc0 = 3, .opc1 = 4, .crn = 13, .crm = 0, .opc2 = 2,
3671       .access = PL2_RW, .type = ARM_CP_CONST, .resetvalue = 0 },
3672     { .name = "TTBR0_EL2", .state = ARM_CP_STATE_AA64,
3673       .opc0 = 3, .opc1 = 4, .crn = 2, .crm = 0, .opc2 = 0,
3674       .access = PL2_RW, .type = ARM_CP_CONST, .resetvalue = 0 },
3675     { .name = "HTTBR", .cp = 15, .opc1 = 4, .crm = 2,
3676       .access = PL2_RW, .type = ARM_CP_64BIT | ARM_CP_CONST,
3677       .resetvalue = 0 },
3678     { .name = "CNTHCTL_EL2", .state = ARM_CP_STATE_BOTH,
3679       .opc0 = 3, .opc1 = 4, .crn = 14, .crm = 1, .opc2 = 0,
3680       .access = PL2_RW, .type = ARM_CP_CONST, .resetvalue = 0 },
3681     { .name = "CNTVOFF_EL2", .state = ARM_CP_STATE_AA64,
3682       .opc0 = 3, .opc1 = 4, .crn = 14, .crm = 0, .opc2 = 3,
3683       .access = PL2_RW, .type = ARM_CP_CONST, .resetvalue = 0 },
3684     { .name = "CNTVOFF", .cp = 15, .opc1 = 4, .crm = 14,
3685       .access = PL2_RW, .type = ARM_CP_64BIT | ARM_CP_CONST,
3686       .resetvalue = 0 },
3687     { .name = "CNTHP_CVAL_EL2", .state = ARM_CP_STATE_AA64,
3688       .opc0 = 3, .opc1 = 4, .crn = 14, .crm = 2, .opc2 = 2,
3689       .access = PL2_RW, .type = ARM_CP_CONST, .resetvalue = 0 },
3690     { .name = "CNTHP_CVAL", .cp = 15, .opc1 = 6, .crm = 14,
3691       .access = PL2_RW, .type = ARM_CP_64BIT | ARM_CP_CONST,
3692       .resetvalue = 0 },
3693     { .name = "CNTHP_TVAL_EL2", .state = ARM_CP_STATE_BOTH,
3694       .opc0 = 3, .opc1 = 4, .crn = 14, .crm = 2, .opc2 = 0,
3695       .access = PL2_RW, .type = ARM_CP_CONST, .resetvalue = 0 },
3696     { .name = "CNTHP_CTL_EL2", .state = ARM_CP_STATE_BOTH,
3697       .opc0 = 3, .opc1 = 4, .crn = 14, .crm = 2, .opc2 = 1,
3698       .access = PL2_RW, .type = ARM_CP_CONST, .resetvalue = 0 },
3699     { .name = "MDCR_EL2", .state = ARM_CP_STATE_BOTH,
3700       .opc0 = 3, .opc1 = 4, .crn = 1, .crm = 1, .opc2 = 1,
3701       .access = PL2_RW, .accessfn = access_tda,
3702       .type = ARM_CP_CONST, .resetvalue = 0 },
3703     { .name = "HPFAR_EL2", .state = ARM_CP_STATE_BOTH,
3704       .opc0 = 3, .opc1 = 4, .crn = 6, .crm = 0, .opc2 = 4,
3705       .access = PL2_RW, .accessfn = access_el3_aa32ns_aa64any,
3706       .type = ARM_CP_CONST, .resetvalue = 0 },
3707     { .name = "HSTR_EL2", .state = ARM_CP_STATE_BOTH,
3708       .opc0 = 3, .opc1 = 4, .crn = 1, .crm = 1, .opc2 = 3,
3709       .access = PL2_RW, .type = ARM_CP_CONST, .resetvalue = 0 },
3710     REGINFO_SENTINEL
3711 };
3712 
3713 static void hcr_write(CPUARMState *env, const ARMCPRegInfo *ri, uint64_t value)
3714 {
3715     ARMCPU *cpu = arm_env_get_cpu(env);
3716     uint64_t valid_mask = HCR_MASK;
3717 
3718     if (arm_feature(env, ARM_FEATURE_EL3)) {
3719         valid_mask &= ~HCR_HCD;
3720     } else if (cpu->psci_conduit != QEMU_PSCI_CONDUIT_SMC) {
3721         /* Architecturally HCR.TSC is RES0 if EL3 is not implemented.
3722          * However, if we're using the SMC PSCI conduit then QEMU is
3723          * effectively acting like EL3 firmware and so the guest at
3724          * EL2 should retain the ability to prevent EL1 from being
3725          * able to make SMC calls into the ersatz firmware, so in
3726          * that case HCR.TSC should be read/write.
3727          */
3728         valid_mask &= ~HCR_TSC;
3729     }
3730 
3731     /* Clear RES0 bits.  */
3732     value &= valid_mask;
3733 
3734     /* These bits change the MMU setup:
3735      * HCR_VM enables stage 2 translation
3736      * HCR_PTW forbids certain page-table setups
3737      * HCR_DC Disables stage1 and enables stage2 translation
3738      */
3739     if ((raw_read(env, ri) ^ value) & (HCR_VM | HCR_PTW | HCR_DC)) {
3740         tlb_flush(CPU(cpu));
3741     }
3742     raw_write(env, ri, value);
3743 }
3744 
3745 static const ARMCPRegInfo el2_cp_reginfo[] = {
3746     { .name = "HCR_EL2", .state = ARM_CP_STATE_AA64,
3747       .opc0 = 3, .opc1 = 4, .crn = 1, .crm = 1, .opc2 = 0,
3748       .access = PL2_RW, .fieldoffset = offsetof(CPUARMState, cp15.hcr_el2),
3749       .writefn = hcr_write },
3750     { .name = "ELR_EL2", .state = ARM_CP_STATE_AA64,
3751       .type = ARM_CP_ALIAS,
3752       .opc0 = 3, .opc1 = 4, .crn = 4, .crm = 0, .opc2 = 1,
3753       .access = PL2_RW,
3754       .fieldoffset = offsetof(CPUARMState, elr_el[2]) },
3755     { .name = "ESR_EL2", .state = ARM_CP_STATE_AA64,
3756       .opc0 = 3, .opc1 = 4, .crn = 5, .crm = 2, .opc2 = 0,
3757       .access = PL2_RW, .fieldoffset = offsetof(CPUARMState, cp15.esr_el[2]) },
3758     { .name = "FAR_EL2", .state = ARM_CP_STATE_AA64,
3759       .opc0 = 3, .opc1 = 4, .crn = 6, .crm = 0, .opc2 = 0,
3760       .access = PL2_RW, .fieldoffset = offsetof(CPUARMState, cp15.far_el[2]) },
3761     { .name = "SPSR_EL2", .state = ARM_CP_STATE_AA64,
3762       .type = ARM_CP_ALIAS,
3763       .opc0 = 3, .opc1 = 4, .crn = 4, .crm = 0, .opc2 = 0,
3764       .access = PL2_RW,
3765       .fieldoffset = offsetof(CPUARMState, banked_spsr[BANK_HYP]) },
3766     { .name = "VBAR_EL2", .state = ARM_CP_STATE_AA64,
3767       .opc0 = 3, .opc1 = 4, .crn = 12, .crm = 0, .opc2 = 0,
3768       .access = PL2_RW, .writefn = vbar_write,
3769       .fieldoffset = offsetof(CPUARMState, cp15.vbar_el[2]),
3770       .resetvalue = 0 },
3771     { .name = "SP_EL2", .state = ARM_CP_STATE_AA64,
3772       .opc0 = 3, .opc1 = 6, .crn = 4, .crm = 1, .opc2 = 0,
3773       .access = PL3_RW, .type = ARM_CP_ALIAS,
3774       .fieldoffset = offsetof(CPUARMState, sp_el[2]) },
3775     { .name = "CPTR_EL2", .state = ARM_CP_STATE_BOTH,
3776       .opc0 = 3, .opc1 = 4, .crn = 1, .crm = 1, .opc2 = 2,
3777       .access = PL2_RW, .accessfn = cptr_access, .resetvalue = 0,
3778       .fieldoffset = offsetof(CPUARMState, cp15.cptr_el[2]) },
3779     { .name = "MAIR_EL2", .state = ARM_CP_STATE_BOTH,
3780       .opc0 = 3, .opc1 = 4, .crn = 10, .crm = 2, .opc2 = 0,
3781       .access = PL2_RW, .fieldoffset = offsetof(CPUARMState, cp15.mair_el[2]),
3782       .resetvalue = 0 },
3783     { .name = "HMAIR1", .state = ARM_CP_STATE_AA32,
3784       .opc1 = 4, .crn = 10, .crm = 2, .opc2 = 1,
3785       .access = PL2_RW, .type = ARM_CP_ALIAS,
3786       .fieldoffset = offsetofhigh32(CPUARMState, cp15.mair_el[2]) },
3787     { .name = "AMAIR_EL2", .state = ARM_CP_STATE_BOTH,
3788       .opc0 = 3, .opc1 = 4, .crn = 10, .crm = 3, .opc2 = 0,
3789       .access = PL2_RW, .type = ARM_CP_CONST,
3790       .resetvalue = 0 },
3791     /* HAMAIR1 is mapped to AMAIR_EL2[63:32] */
3792     { .name = "HMAIR1", .state = ARM_CP_STATE_AA32,
3793       .opc1 = 4, .crn = 10, .crm = 3, .opc2 = 1,
3794       .access = PL2_RW, .type = ARM_CP_CONST,
3795       .resetvalue = 0 },
3796     { .name = "AFSR0_EL2", .state = ARM_CP_STATE_BOTH,
3797       .opc0 = 3, .opc1 = 4, .crn = 5, .crm = 1, .opc2 = 0,
3798       .access = PL2_RW, .type = ARM_CP_CONST,
3799       .resetvalue = 0 },
3800     { .name = "AFSR1_EL2", .state = ARM_CP_STATE_BOTH,
3801       .opc0 = 3, .opc1 = 4, .crn = 5, .crm = 1, .opc2 = 1,
3802       .access = PL2_RW, .type = ARM_CP_CONST,
3803       .resetvalue = 0 },
3804     { .name = "TCR_EL2", .state = ARM_CP_STATE_BOTH,
3805       .opc0 = 3, .opc1 = 4, .crn = 2, .crm = 0, .opc2 = 2,
3806       .access = PL2_RW,
3807       /* no .writefn needed as this can't cause an ASID change;
3808        * no .raw_writefn or .resetfn needed as we never use mask/base_mask
3809        */
3810       .fieldoffset = offsetof(CPUARMState, cp15.tcr_el[2]) },
3811     { .name = "VTCR", .state = ARM_CP_STATE_AA32,
3812       .cp = 15, .opc1 = 4, .crn = 2, .crm = 1, .opc2 = 2,
3813       .type = ARM_CP_ALIAS,
3814       .access = PL2_RW, .accessfn = access_el3_aa32ns,
3815       .fieldoffset = offsetof(CPUARMState, cp15.vtcr_el2) },
3816     { .name = "VTCR_EL2", .state = ARM_CP_STATE_AA64,
3817       .opc0 = 3, .opc1 = 4, .crn = 2, .crm = 1, .opc2 = 2,
3818       .access = PL2_RW,
3819       /* no .writefn needed as this can't cause an ASID change;
3820        * no .raw_writefn or .resetfn needed as we never use mask/base_mask
3821        */
3822       .fieldoffset = offsetof(CPUARMState, cp15.vtcr_el2) },
3823     { .name = "VTTBR", .state = ARM_CP_STATE_AA32,
3824       .cp = 15, .opc1 = 6, .crm = 2,
3825       .type = ARM_CP_64BIT | ARM_CP_ALIAS,
3826       .access = PL2_RW, .accessfn = access_el3_aa32ns,
3827       .fieldoffset = offsetof(CPUARMState, cp15.vttbr_el2),
3828       .writefn = vttbr_write },
3829     { .name = "VTTBR_EL2", .state = ARM_CP_STATE_AA64,
3830       .opc0 = 3, .opc1 = 4, .crn = 2, .crm = 1, .opc2 = 0,
3831       .access = PL2_RW, .writefn = vttbr_write,
3832       .fieldoffset = offsetof(CPUARMState, cp15.vttbr_el2) },
3833     { .name = "SCTLR_EL2", .state = ARM_CP_STATE_BOTH,
3834       .opc0 = 3, .opc1 = 4, .crn = 1, .crm = 0, .opc2 = 0,
3835       .access = PL2_RW, .raw_writefn = raw_write, .writefn = sctlr_write,
3836       .fieldoffset = offsetof(CPUARMState, cp15.sctlr_el[2]) },
3837     { .name = "TPIDR_EL2", .state = ARM_CP_STATE_BOTH,
3838       .opc0 = 3, .opc1 = 4, .crn = 13, .crm = 0, .opc2 = 2,
3839       .access = PL2_RW, .resetvalue = 0,
3840       .fieldoffset = offsetof(CPUARMState, cp15.tpidr_el[2]) },
3841     { .name = "TTBR0_EL2", .state = ARM_CP_STATE_AA64,
3842       .opc0 = 3, .opc1 = 4, .crn = 2, .crm = 0, .opc2 = 0,
3843       .access = PL2_RW, .resetvalue = 0,
3844       .fieldoffset = offsetof(CPUARMState, cp15.ttbr0_el[2]) },
3845     { .name = "HTTBR", .cp = 15, .opc1 = 4, .crm = 2,
3846       .access = PL2_RW, .type = ARM_CP_64BIT | ARM_CP_ALIAS,
3847       .fieldoffset = offsetof(CPUARMState, cp15.ttbr0_el[2]) },
3848     { .name = "TLBIALLNSNH",
3849       .cp = 15, .opc1 = 4, .crn = 8, .crm = 7, .opc2 = 4,
3850       .type = ARM_CP_NO_RAW, .access = PL2_W,
3851       .writefn = tlbiall_nsnh_write },
3852     { .name = "TLBIALLNSNHIS",
3853       .cp = 15, .opc1 = 4, .crn = 8, .crm = 3, .opc2 = 4,
3854       .type = ARM_CP_NO_RAW, .access = PL2_W,
3855       .writefn = tlbiall_nsnh_is_write },
3856     { .name = "TLBIALLH", .cp = 15, .opc1 = 4, .crn = 8, .crm = 7, .opc2 = 0,
3857       .type = ARM_CP_NO_RAW, .access = PL2_W,
3858       .writefn = tlbiall_hyp_write },
3859     { .name = "TLBIALLHIS", .cp = 15, .opc1 = 4, .crn = 8, .crm = 3, .opc2 = 0,
3860       .type = ARM_CP_NO_RAW, .access = PL2_W,
3861       .writefn = tlbiall_hyp_is_write },
3862     { .name = "TLBIMVAH", .cp = 15, .opc1 = 4, .crn = 8, .crm = 7, .opc2 = 1,
3863       .type = ARM_CP_NO_RAW, .access = PL2_W,
3864       .writefn = tlbimva_hyp_write },
3865     { .name = "TLBIMVAHIS", .cp = 15, .opc1 = 4, .crn = 8, .crm = 3, .opc2 = 1,
3866       .type = ARM_CP_NO_RAW, .access = PL2_W,
3867       .writefn = tlbimva_hyp_is_write },
3868     { .name = "TLBI_ALLE2", .state = ARM_CP_STATE_AA64,
3869       .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 7, .opc2 = 0,
3870       .type = ARM_CP_NO_RAW, .access = PL2_W,
3871       .writefn = tlbi_aa64_alle2_write },
3872     { .name = "TLBI_VAE2", .state = ARM_CP_STATE_AA64,
3873       .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 7, .opc2 = 1,
3874       .type = ARM_CP_NO_RAW, .access = PL2_W,
3875       .writefn = tlbi_aa64_vae2_write },
3876     { .name = "TLBI_VALE2", .state = ARM_CP_STATE_AA64,
3877       .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 7, .opc2 = 5,
3878       .access = PL2_W, .type = ARM_CP_NO_RAW,
3879       .writefn = tlbi_aa64_vae2_write },
3880     { .name = "TLBI_ALLE2IS", .state = ARM_CP_STATE_AA64,
3881       .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 3, .opc2 = 0,
3882       .access = PL2_W, .type = ARM_CP_NO_RAW,
3883       .writefn = tlbi_aa64_alle2is_write },
3884     { .name = "TLBI_VAE2IS", .state = ARM_CP_STATE_AA64,
3885       .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 3, .opc2 = 1,
3886       .type = ARM_CP_NO_RAW, .access = PL2_W,
3887       .writefn = tlbi_aa64_vae2is_write },
3888     { .name = "TLBI_VALE2IS", .state = ARM_CP_STATE_AA64,
3889       .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 3, .opc2 = 5,
3890       .access = PL2_W, .type = ARM_CP_NO_RAW,
3891       .writefn = tlbi_aa64_vae2is_write },
3892 #ifndef CONFIG_USER_ONLY
3893     /* Unlike the other EL2-related AT operations, these must
3894      * UNDEF from EL3 if EL2 is not implemented, which is why we
3895      * define them here rather than with the rest of the AT ops.
3896      */
3897     { .name = "AT_S1E2R", .state = ARM_CP_STATE_AA64,
3898       .opc0 = 1, .opc1 = 4, .crn = 7, .crm = 8, .opc2 = 0,
3899       .access = PL2_W, .accessfn = at_s1e2_access,
3900       .type = ARM_CP_NO_RAW, .writefn = ats_write64 },
3901     { .name = "AT_S1E2W", .state = ARM_CP_STATE_AA64,
3902       .opc0 = 1, .opc1 = 4, .crn = 7, .crm = 8, .opc2 = 1,
3903       .access = PL2_W, .accessfn = at_s1e2_access,
3904       .type = ARM_CP_NO_RAW, .writefn = ats_write64 },
3905     /* The AArch32 ATS1H* operations are CONSTRAINED UNPREDICTABLE
3906      * if EL2 is not implemented; we choose to UNDEF. Behaviour at EL3
3907      * with SCR.NS == 0 outside Monitor mode is UNPREDICTABLE; we choose
3908      * to behave as if SCR.NS was 1.
3909      */
3910     { .name = "ATS1HR", .cp = 15, .opc1 = 4, .crn = 7, .crm = 8, .opc2 = 0,
3911       .access = PL2_W,
3912       .writefn = ats1h_write, .type = ARM_CP_NO_RAW },
3913     { .name = "ATS1HW", .cp = 15, .opc1 = 4, .crn = 7, .crm = 8, .opc2 = 1,
3914       .access = PL2_W,
3915       .writefn = ats1h_write, .type = ARM_CP_NO_RAW },
3916     { .name = "CNTHCTL_EL2", .state = ARM_CP_STATE_BOTH,
3917       .opc0 = 3, .opc1 = 4, .crn = 14, .crm = 1, .opc2 = 0,
3918       /* ARMv7 requires bit 0 and 1 to reset to 1. ARMv8 defines the
3919        * reset values as IMPDEF. We choose to reset to 3 to comply with
3920        * both ARMv7 and ARMv8.
3921        */
3922       .access = PL2_RW, .resetvalue = 3,
3923       .fieldoffset = offsetof(CPUARMState, cp15.cnthctl_el2) },
3924     { .name = "CNTVOFF_EL2", .state = ARM_CP_STATE_AA64,
3925       .opc0 = 3, .opc1 = 4, .crn = 14, .crm = 0, .opc2 = 3,
3926       .access = PL2_RW, .type = ARM_CP_IO, .resetvalue = 0,
3927       .writefn = gt_cntvoff_write,
3928       .fieldoffset = offsetof(CPUARMState, cp15.cntvoff_el2) },
3929     { .name = "CNTVOFF", .cp = 15, .opc1 = 4, .crm = 14,
3930       .access = PL2_RW, .type = ARM_CP_64BIT | ARM_CP_ALIAS | ARM_CP_IO,
3931       .writefn = gt_cntvoff_write,
3932       .fieldoffset = offsetof(CPUARMState, cp15.cntvoff_el2) },
3933     { .name = "CNTHP_CVAL_EL2", .state = ARM_CP_STATE_AA64,
3934       .opc0 = 3, .opc1 = 4, .crn = 14, .crm = 2, .opc2 = 2,
3935       .fieldoffset = offsetof(CPUARMState, cp15.c14_timer[GTIMER_HYP].cval),
3936       .type = ARM_CP_IO, .access = PL2_RW,
3937       .writefn = gt_hyp_cval_write, .raw_writefn = raw_write },
3938     { .name = "CNTHP_CVAL", .cp = 15, .opc1 = 6, .crm = 14,
3939       .fieldoffset = offsetof(CPUARMState, cp15.c14_timer[GTIMER_HYP].cval),
3940       .access = PL2_RW, .type = ARM_CP_64BIT | ARM_CP_IO,
3941       .writefn = gt_hyp_cval_write, .raw_writefn = raw_write },
3942     { .name = "CNTHP_TVAL_EL2", .state = ARM_CP_STATE_BOTH,
3943       .opc0 = 3, .opc1 = 4, .crn = 14, .crm = 2, .opc2 = 0,
3944       .type = ARM_CP_NO_RAW | ARM_CP_IO, .access = PL2_RW,
3945       .resetfn = gt_hyp_timer_reset,
3946       .readfn = gt_hyp_tval_read, .writefn = gt_hyp_tval_write },
3947     { .name = "CNTHP_CTL_EL2", .state = ARM_CP_STATE_BOTH,
3948       .type = ARM_CP_IO,
3949       .opc0 = 3, .opc1 = 4, .crn = 14, .crm = 2, .opc2 = 1,
3950       .access = PL2_RW,
3951       .fieldoffset = offsetof(CPUARMState, cp15.c14_timer[GTIMER_HYP].ctl),
3952       .resetvalue = 0,
3953       .writefn = gt_hyp_ctl_write, .raw_writefn = raw_write },
3954 #endif
3955     /* The only field of MDCR_EL2 that has a defined architectural reset value
3956      * is MDCR_EL2.HPMN which should reset to the value of PMCR_EL0.N; but we
3957      * don't impelment any PMU event counters, so using zero as a reset
3958      * value for MDCR_EL2 is okay
3959      */
3960     { .name = "MDCR_EL2", .state = ARM_CP_STATE_BOTH,
3961       .opc0 = 3, .opc1 = 4, .crn = 1, .crm = 1, .opc2 = 1,
3962       .access = PL2_RW, .resetvalue = 0,
3963       .fieldoffset = offsetof(CPUARMState, cp15.mdcr_el2), },
3964     { .name = "HPFAR", .state = ARM_CP_STATE_AA32,
3965       .cp = 15, .opc1 = 4, .crn = 6, .crm = 0, .opc2 = 4,
3966       .access = PL2_RW, .accessfn = access_el3_aa32ns,
3967       .fieldoffset = offsetof(CPUARMState, cp15.hpfar_el2) },
3968     { .name = "HPFAR_EL2", .state = ARM_CP_STATE_AA64,
3969       .opc0 = 3, .opc1 = 4, .crn = 6, .crm = 0, .opc2 = 4,
3970       .access = PL2_RW,
3971       .fieldoffset = offsetof(CPUARMState, cp15.hpfar_el2) },
3972     { .name = "HSTR_EL2", .state = ARM_CP_STATE_BOTH,
3973       .cp = 15, .opc0 = 3, .opc1 = 4, .crn = 1, .crm = 1, .opc2 = 3,
3974       .access = PL2_RW,
3975       .fieldoffset = offsetof(CPUARMState, cp15.hstr_el2) },
3976     REGINFO_SENTINEL
3977 };
3978 
3979 static CPAccessResult nsacr_access(CPUARMState *env, const ARMCPRegInfo *ri,
3980                                    bool isread)
3981 {
3982     /* The NSACR is RW at EL3, and RO for NS EL1 and NS EL2.
3983      * At Secure EL1 it traps to EL3.
3984      */
3985     if (arm_current_el(env) == 3) {
3986         return CP_ACCESS_OK;
3987     }
3988     if (arm_is_secure_below_el3(env)) {
3989         return CP_ACCESS_TRAP_EL3;
3990     }
3991     /* Accesses from EL1 NS and EL2 NS are UNDEF for write but allow reads. */
3992     if (isread) {
3993         return CP_ACCESS_OK;
3994     }
3995     return CP_ACCESS_TRAP_UNCATEGORIZED;
3996 }
3997 
3998 static const ARMCPRegInfo el3_cp_reginfo[] = {
3999     { .name = "SCR_EL3", .state = ARM_CP_STATE_AA64,
4000       .opc0 = 3, .opc1 = 6, .crn = 1, .crm = 1, .opc2 = 0,
4001       .access = PL3_RW, .fieldoffset = offsetof(CPUARMState, cp15.scr_el3),
4002       .resetvalue = 0, .writefn = scr_write },
4003     { .name = "SCR",  .type = ARM_CP_ALIAS,
4004       .cp = 15, .opc1 = 0, .crn = 1, .crm = 1, .opc2 = 0,
4005       .access = PL1_RW, .accessfn = access_trap_aa32s_el1,
4006       .fieldoffset = offsetoflow32(CPUARMState, cp15.scr_el3),
4007       .writefn = scr_write },
4008     { .name = "SDER32_EL3", .state = ARM_CP_STATE_AA64,
4009       .opc0 = 3, .opc1 = 6, .crn = 1, .crm = 1, .opc2 = 1,
4010       .access = PL3_RW, .resetvalue = 0,
4011       .fieldoffset = offsetof(CPUARMState, cp15.sder) },
4012     { .name = "SDER",
4013       .cp = 15, .opc1 = 0, .crn = 1, .crm = 1, .opc2 = 1,
4014       .access = PL3_RW, .resetvalue = 0,
4015       .fieldoffset = offsetoflow32(CPUARMState, cp15.sder) },
4016     { .name = "MVBAR", .cp = 15, .opc1 = 0, .crn = 12, .crm = 0, .opc2 = 1,
4017       .access = PL1_RW, .accessfn = access_trap_aa32s_el1,
4018       .writefn = vbar_write, .resetvalue = 0,
4019       .fieldoffset = offsetof(CPUARMState, cp15.mvbar) },
4020     { .name = "TTBR0_EL3", .state = ARM_CP_STATE_AA64,
4021       .opc0 = 3, .opc1 = 6, .crn = 2, .crm = 0, .opc2 = 0,
4022       .access = PL3_RW, .writefn = vmsa_ttbr_write, .resetvalue = 0,
4023       .fieldoffset = offsetof(CPUARMState, cp15.ttbr0_el[3]) },
4024     { .name = "TCR_EL3", .state = ARM_CP_STATE_AA64,
4025       .opc0 = 3, .opc1 = 6, .crn = 2, .crm = 0, .opc2 = 2,
4026       .access = PL3_RW,
4027       /* no .writefn needed as this can't cause an ASID change;
4028        * we must provide a .raw_writefn and .resetfn because we handle
4029        * reset and migration for the AArch32 TTBCR(S), which might be
4030        * using mask and base_mask.
4031        */
4032       .resetfn = vmsa_ttbcr_reset, .raw_writefn = vmsa_ttbcr_raw_write,
4033       .fieldoffset = offsetof(CPUARMState, cp15.tcr_el[3]) },
4034     { .name = "ELR_EL3", .state = ARM_CP_STATE_AA64,
4035       .type = ARM_CP_ALIAS,
4036       .opc0 = 3, .opc1 = 6, .crn = 4, .crm = 0, .opc2 = 1,
4037       .access = PL3_RW,
4038       .fieldoffset = offsetof(CPUARMState, elr_el[3]) },
4039     { .name = "ESR_EL3", .state = ARM_CP_STATE_AA64,
4040       .opc0 = 3, .opc1 = 6, .crn = 5, .crm = 2, .opc2 = 0,
4041       .access = PL3_RW, .fieldoffset = offsetof(CPUARMState, cp15.esr_el[3]) },
4042     { .name = "FAR_EL3", .state = ARM_CP_STATE_AA64,
4043       .opc0 = 3, .opc1 = 6, .crn = 6, .crm = 0, .opc2 = 0,
4044       .access = PL3_RW, .fieldoffset = offsetof(CPUARMState, cp15.far_el[3]) },
4045     { .name = "SPSR_EL3", .state = ARM_CP_STATE_AA64,
4046       .type = ARM_CP_ALIAS,
4047       .opc0 = 3, .opc1 = 6, .crn = 4, .crm = 0, .opc2 = 0,
4048       .access = PL3_RW,
4049       .fieldoffset = offsetof(CPUARMState, banked_spsr[BANK_MON]) },
4050     { .name = "VBAR_EL3", .state = ARM_CP_STATE_AA64,
4051       .opc0 = 3, .opc1 = 6, .crn = 12, .crm = 0, .opc2 = 0,
4052       .access = PL3_RW, .writefn = vbar_write,
4053       .fieldoffset = offsetof(CPUARMState, cp15.vbar_el[3]),
4054       .resetvalue = 0 },
4055     { .name = "CPTR_EL3", .state = ARM_CP_STATE_AA64,
4056       .opc0 = 3, .opc1 = 6, .crn = 1, .crm = 1, .opc2 = 2,
4057       .access = PL3_RW, .accessfn = cptr_access, .resetvalue = 0,
4058       .fieldoffset = offsetof(CPUARMState, cp15.cptr_el[3]) },
4059     { .name = "TPIDR_EL3", .state = ARM_CP_STATE_AA64,
4060       .opc0 = 3, .opc1 = 6, .crn = 13, .crm = 0, .opc2 = 2,
4061       .access = PL3_RW, .resetvalue = 0,
4062       .fieldoffset = offsetof(CPUARMState, cp15.tpidr_el[3]) },
4063     { .name = "AMAIR_EL3", .state = ARM_CP_STATE_AA64,
4064       .opc0 = 3, .opc1 = 6, .crn = 10, .crm = 3, .opc2 = 0,
4065       .access = PL3_RW, .type = ARM_CP_CONST,
4066       .resetvalue = 0 },
4067     { .name = "AFSR0_EL3", .state = ARM_CP_STATE_BOTH,
4068       .opc0 = 3, .opc1 = 6, .crn = 5, .crm = 1, .opc2 = 0,
4069       .access = PL3_RW, .type = ARM_CP_CONST,
4070       .resetvalue = 0 },
4071     { .name = "AFSR1_EL3", .state = ARM_CP_STATE_BOTH,
4072       .opc0 = 3, .opc1 = 6, .crn = 5, .crm = 1, .opc2 = 1,
4073       .access = PL3_RW, .type = ARM_CP_CONST,
4074       .resetvalue = 0 },
4075     { .name = "TLBI_ALLE3IS", .state = ARM_CP_STATE_AA64,
4076       .opc0 = 1, .opc1 = 6, .crn = 8, .crm = 3, .opc2 = 0,
4077       .access = PL3_W, .type = ARM_CP_NO_RAW,
4078       .writefn = tlbi_aa64_alle3is_write },
4079     { .name = "TLBI_VAE3IS", .state = ARM_CP_STATE_AA64,
4080       .opc0 = 1, .opc1 = 6, .crn = 8, .crm = 3, .opc2 = 1,
4081       .access = PL3_W, .type = ARM_CP_NO_RAW,
4082       .writefn = tlbi_aa64_vae3is_write },
4083     { .name = "TLBI_VALE3IS", .state = ARM_CP_STATE_AA64,
4084       .opc0 = 1, .opc1 = 6, .crn = 8, .crm = 3, .opc2 = 5,
4085       .access = PL3_W, .type = ARM_CP_NO_RAW,
4086       .writefn = tlbi_aa64_vae3is_write },
4087     { .name = "TLBI_ALLE3", .state = ARM_CP_STATE_AA64,
4088       .opc0 = 1, .opc1 = 6, .crn = 8, .crm = 7, .opc2 = 0,
4089       .access = PL3_W, .type = ARM_CP_NO_RAW,
4090       .writefn = tlbi_aa64_alle3_write },
4091     { .name = "TLBI_VAE3", .state = ARM_CP_STATE_AA64,
4092       .opc0 = 1, .opc1 = 6, .crn = 8, .crm = 7, .opc2 = 1,
4093       .access = PL3_W, .type = ARM_CP_NO_RAW,
4094       .writefn = tlbi_aa64_vae3_write },
4095     { .name = "TLBI_VALE3", .state = ARM_CP_STATE_AA64,
4096       .opc0 = 1, .opc1 = 6, .crn = 8, .crm = 7, .opc2 = 5,
4097       .access = PL3_W, .type = ARM_CP_NO_RAW,
4098       .writefn = tlbi_aa64_vae3_write },
4099     REGINFO_SENTINEL
4100 };
4101 
4102 static CPAccessResult ctr_el0_access(CPUARMState *env, const ARMCPRegInfo *ri,
4103                                      bool isread)
4104 {
4105     /* Only accessible in EL0 if SCTLR.UCT is set (and only in AArch64,
4106      * but the AArch32 CTR has its own reginfo struct)
4107      */
4108     if (arm_current_el(env) == 0 && !(env->cp15.sctlr_el[1] & SCTLR_UCT)) {
4109         return CP_ACCESS_TRAP;
4110     }
4111     return CP_ACCESS_OK;
4112 }
4113 
4114 static void oslar_write(CPUARMState *env, const ARMCPRegInfo *ri,
4115                         uint64_t value)
4116 {
4117     /* Writes to OSLAR_EL1 may update the OS lock status, which can be
4118      * read via a bit in OSLSR_EL1.
4119      */
4120     int oslock;
4121 
4122     if (ri->state == ARM_CP_STATE_AA32) {
4123         oslock = (value == 0xC5ACCE55);
4124     } else {
4125         oslock = value & 1;
4126     }
4127 
4128     env->cp15.oslsr_el1 = deposit32(env->cp15.oslsr_el1, 1, 1, oslock);
4129 }
4130 
4131 static const ARMCPRegInfo debug_cp_reginfo[] = {
4132     /* DBGDRAR, DBGDSAR: always RAZ since we don't implement memory mapped
4133      * debug components. The AArch64 version of DBGDRAR is named MDRAR_EL1;
4134      * unlike DBGDRAR it is never accessible from EL0.
4135      * DBGDSAR is deprecated and must RAZ from v8 anyway, so it has no AArch64
4136      * accessor.
4137      */
4138     { .name = "DBGDRAR", .cp = 14, .crn = 1, .crm = 0, .opc1 = 0, .opc2 = 0,
4139       .access = PL0_R, .accessfn = access_tdra,
4140       .type = ARM_CP_CONST, .resetvalue = 0 },
4141     { .name = "MDRAR_EL1", .state = ARM_CP_STATE_AA64,
4142       .opc0 = 2, .opc1 = 0, .crn = 1, .crm = 0, .opc2 = 0,
4143       .access = PL1_R, .accessfn = access_tdra,
4144       .type = ARM_CP_CONST, .resetvalue = 0 },
4145     { .name = "DBGDSAR", .cp = 14, .crn = 2, .crm = 0, .opc1 = 0, .opc2 = 0,
4146       .access = PL0_R, .accessfn = access_tdra,
4147       .type = ARM_CP_CONST, .resetvalue = 0 },
4148     /* Monitor debug system control register; the 32-bit alias is DBGDSCRext. */
4149     { .name = "MDSCR_EL1", .state = ARM_CP_STATE_BOTH,
4150       .cp = 14, .opc0 = 2, .opc1 = 0, .crn = 0, .crm = 2, .opc2 = 2,
4151       .access = PL1_RW, .accessfn = access_tda,
4152       .fieldoffset = offsetof(CPUARMState, cp15.mdscr_el1),
4153       .resetvalue = 0 },
4154     /* MDCCSR_EL0, aka DBGDSCRint. This is a read-only mirror of MDSCR_EL1.
4155      * We don't implement the configurable EL0 access.
4156      */
4157     { .name = "MDCCSR_EL0", .state = ARM_CP_STATE_BOTH,
4158       .cp = 14, .opc0 = 2, .opc1 = 0, .crn = 0, .crm = 1, .opc2 = 0,
4159       .type = ARM_CP_ALIAS,
4160       .access = PL1_R, .accessfn = access_tda,
4161       .fieldoffset = offsetof(CPUARMState, cp15.mdscr_el1), },
4162     { .name = "OSLAR_EL1", .state = ARM_CP_STATE_BOTH,
4163       .cp = 14, .opc0 = 2, .opc1 = 0, .crn = 1, .crm = 0, .opc2 = 4,
4164       .access = PL1_W, .type = ARM_CP_NO_RAW,
4165       .accessfn = access_tdosa,
4166       .writefn = oslar_write },
4167     { .name = "OSLSR_EL1", .state = ARM_CP_STATE_BOTH,
4168       .cp = 14, .opc0 = 2, .opc1 = 0, .crn = 1, .crm = 1, .opc2 = 4,
4169       .access = PL1_R, .resetvalue = 10,
4170       .accessfn = access_tdosa,
4171       .fieldoffset = offsetof(CPUARMState, cp15.oslsr_el1) },
4172     /* Dummy OSDLR_EL1: 32-bit Linux will read this */
4173     { .name = "OSDLR_EL1", .state = ARM_CP_STATE_BOTH,
4174       .cp = 14, .opc0 = 2, .opc1 = 0, .crn = 1, .crm = 3, .opc2 = 4,
4175       .access = PL1_RW, .accessfn = access_tdosa,
4176       .type = ARM_CP_NOP },
4177     /* Dummy DBGVCR: Linux wants to clear this on startup, but we don't
4178      * implement vector catch debug events yet.
4179      */
4180     { .name = "DBGVCR",
4181       .cp = 14, .opc1 = 0, .crn = 0, .crm = 7, .opc2 = 0,
4182       .access = PL1_RW, .accessfn = access_tda,
4183       .type = ARM_CP_NOP },
4184     /* Dummy DBGVCR32_EL2 (which is only for a 64-bit hypervisor
4185      * to save and restore a 32-bit guest's DBGVCR)
4186      */
4187     { .name = "DBGVCR32_EL2", .state = ARM_CP_STATE_AA64,
4188       .opc0 = 2, .opc1 = 4, .crn = 0, .crm = 7, .opc2 = 0,
4189       .access = PL2_RW, .accessfn = access_tda,
4190       .type = ARM_CP_NOP },
4191     /* Dummy MDCCINT_EL1, since we don't implement the Debug Communications
4192      * Channel but Linux may try to access this register. The 32-bit
4193      * alias is DBGDCCINT.
4194      */
4195     { .name = "MDCCINT_EL1", .state = ARM_CP_STATE_BOTH,
4196       .cp = 14, .opc0 = 2, .opc1 = 0, .crn = 0, .crm = 2, .opc2 = 0,
4197       .access = PL1_RW, .accessfn = access_tda,
4198       .type = ARM_CP_NOP },
4199     REGINFO_SENTINEL
4200 };
4201 
4202 static const ARMCPRegInfo debug_lpae_cp_reginfo[] = {
4203     /* 64 bit access versions of the (dummy) debug registers */
4204     { .name = "DBGDRAR", .cp = 14, .crm = 1, .opc1 = 0,
4205       .access = PL0_R, .type = ARM_CP_CONST|ARM_CP_64BIT, .resetvalue = 0 },
4206     { .name = "DBGDSAR", .cp = 14, .crm = 2, .opc1 = 0,
4207       .access = PL0_R, .type = ARM_CP_CONST|ARM_CP_64BIT, .resetvalue = 0 },
4208     REGINFO_SENTINEL
4209 };
4210 
4211 void hw_watchpoint_update(ARMCPU *cpu, int n)
4212 {
4213     CPUARMState *env = &cpu->env;
4214     vaddr len = 0;
4215     vaddr wvr = env->cp15.dbgwvr[n];
4216     uint64_t wcr = env->cp15.dbgwcr[n];
4217     int mask;
4218     int flags = BP_CPU | BP_STOP_BEFORE_ACCESS;
4219 
4220     if (env->cpu_watchpoint[n]) {
4221         cpu_watchpoint_remove_by_ref(CPU(cpu), env->cpu_watchpoint[n]);
4222         env->cpu_watchpoint[n] = NULL;
4223     }
4224 
4225     if (!extract64(wcr, 0, 1)) {
4226         /* E bit clear : watchpoint disabled */
4227         return;
4228     }
4229 
4230     switch (extract64(wcr, 3, 2)) {
4231     case 0:
4232         /* LSC 00 is reserved and must behave as if the wp is disabled */
4233         return;
4234     case 1:
4235         flags |= BP_MEM_READ;
4236         break;
4237     case 2:
4238         flags |= BP_MEM_WRITE;
4239         break;
4240     case 3:
4241         flags |= BP_MEM_ACCESS;
4242         break;
4243     }
4244 
4245     /* Attempts to use both MASK and BAS fields simultaneously are
4246      * CONSTRAINED UNPREDICTABLE; we opt to ignore BAS in this case,
4247      * thus generating a watchpoint for every byte in the masked region.
4248      */
4249     mask = extract64(wcr, 24, 4);
4250     if (mask == 1 || mask == 2) {
4251         /* Reserved values of MASK; we must act as if the mask value was
4252          * some non-reserved value, or as if the watchpoint were disabled.
4253          * We choose the latter.
4254          */
4255         return;
4256     } else if (mask) {
4257         /* Watchpoint covers an aligned area up to 2GB in size */
4258         len = 1ULL << mask;
4259         /* If masked bits in WVR are not zero it's CONSTRAINED UNPREDICTABLE
4260          * whether the watchpoint fires when the unmasked bits match; we opt
4261          * to generate the exceptions.
4262          */
4263         wvr &= ~(len - 1);
4264     } else {
4265         /* Watchpoint covers bytes defined by the byte address select bits */
4266         int bas = extract64(wcr, 5, 8);
4267         int basstart;
4268 
4269         if (bas == 0) {
4270             /* This must act as if the watchpoint is disabled */
4271             return;
4272         }
4273 
4274         if (extract64(wvr, 2, 1)) {
4275             /* Deprecated case of an only 4-aligned address. BAS[7:4] are
4276              * ignored, and BAS[3:0] define which bytes to watch.
4277              */
4278             bas &= 0xf;
4279         }
4280         /* The BAS bits are supposed to be programmed to indicate a contiguous
4281          * range of bytes. Otherwise it is CONSTRAINED UNPREDICTABLE whether
4282          * we fire for each byte in the word/doubleword addressed by the WVR.
4283          * We choose to ignore any non-zero bits after the first range of 1s.
4284          */
4285         basstart = ctz32(bas);
4286         len = cto32(bas >> basstart);
4287         wvr += basstart;
4288     }
4289 
4290     cpu_watchpoint_insert(CPU(cpu), wvr, len, flags,
4291                           &env->cpu_watchpoint[n]);
4292 }
4293 
4294 void hw_watchpoint_update_all(ARMCPU *cpu)
4295 {
4296     int i;
4297     CPUARMState *env = &cpu->env;
4298 
4299     /* Completely clear out existing QEMU watchpoints and our array, to
4300      * avoid possible stale entries following migration load.
4301      */
4302     cpu_watchpoint_remove_all(CPU(cpu), BP_CPU);
4303     memset(env->cpu_watchpoint, 0, sizeof(env->cpu_watchpoint));
4304 
4305     for (i = 0; i < ARRAY_SIZE(cpu->env.cpu_watchpoint); i++) {
4306         hw_watchpoint_update(cpu, i);
4307     }
4308 }
4309 
4310 static void dbgwvr_write(CPUARMState *env, const ARMCPRegInfo *ri,
4311                          uint64_t value)
4312 {
4313     ARMCPU *cpu = arm_env_get_cpu(env);
4314     int i = ri->crm;
4315 
4316     /* Bits [63:49] are hardwired to the value of bit [48]; that is, the
4317      * register reads and behaves as if values written are sign extended.
4318      * Bits [1:0] are RES0.
4319      */
4320     value = sextract64(value, 0, 49) & ~3ULL;
4321 
4322     raw_write(env, ri, value);
4323     hw_watchpoint_update(cpu, i);
4324 }
4325 
4326 static void dbgwcr_write(CPUARMState *env, const ARMCPRegInfo *ri,
4327                          uint64_t value)
4328 {
4329     ARMCPU *cpu = arm_env_get_cpu(env);
4330     int i = ri->crm;
4331 
4332     raw_write(env, ri, value);
4333     hw_watchpoint_update(cpu, i);
4334 }
4335 
4336 void hw_breakpoint_update(ARMCPU *cpu, int n)
4337 {
4338     CPUARMState *env = &cpu->env;
4339     uint64_t bvr = env->cp15.dbgbvr[n];
4340     uint64_t bcr = env->cp15.dbgbcr[n];
4341     vaddr addr;
4342     int bt;
4343     int flags = BP_CPU;
4344 
4345     if (env->cpu_breakpoint[n]) {
4346         cpu_breakpoint_remove_by_ref(CPU(cpu), env->cpu_breakpoint[n]);
4347         env->cpu_breakpoint[n] = NULL;
4348     }
4349 
4350     if (!extract64(bcr, 0, 1)) {
4351         /* E bit clear : watchpoint disabled */
4352         return;
4353     }
4354 
4355     bt = extract64(bcr, 20, 4);
4356 
4357     switch (bt) {
4358     case 4: /* unlinked address mismatch (reserved if AArch64) */
4359     case 5: /* linked address mismatch (reserved if AArch64) */
4360         qemu_log_mask(LOG_UNIMP,
4361                       "arm: address mismatch breakpoint types not implemented");
4362         return;
4363     case 0: /* unlinked address match */
4364     case 1: /* linked address match */
4365     {
4366         /* Bits [63:49] are hardwired to the value of bit [48]; that is,
4367          * we behave as if the register was sign extended. Bits [1:0] are
4368          * RES0. The BAS field is used to allow setting breakpoints on 16
4369          * bit wide instructions; it is CONSTRAINED UNPREDICTABLE whether
4370          * a bp will fire if the addresses covered by the bp and the addresses
4371          * covered by the insn overlap but the insn doesn't start at the
4372          * start of the bp address range. We choose to require the insn and
4373          * the bp to have the same address. The constraints on writing to
4374          * BAS enforced in dbgbcr_write mean we have only four cases:
4375          *  0b0000  => no breakpoint
4376          *  0b0011  => breakpoint on addr
4377          *  0b1100  => breakpoint on addr + 2
4378          *  0b1111  => breakpoint on addr
4379          * See also figure D2-3 in the v8 ARM ARM (DDI0487A.c).
4380          */
4381         int bas = extract64(bcr, 5, 4);
4382         addr = sextract64(bvr, 0, 49) & ~3ULL;
4383         if (bas == 0) {
4384             return;
4385         }
4386         if (bas == 0xc) {
4387             addr += 2;
4388         }
4389         break;
4390     }
4391     case 2: /* unlinked context ID match */
4392     case 8: /* unlinked VMID match (reserved if no EL2) */
4393     case 10: /* unlinked context ID and VMID match (reserved if no EL2) */
4394         qemu_log_mask(LOG_UNIMP,
4395                       "arm: unlinked context breakpoint types not implemented");
4396         return;
4397     case 9: /* linked VMID match (reserved if no EL2) */
4398     case 11: /* linked context ID and VMID match (reserved if no EL2) */
4399     case 3: /* linked context ID match */
4400     default:
4401         /* We must generate no events for Linked context matches (unless
4402          * they are linked to by some other bp/wp, which is handled in
4403          * updates for the linking bp/wp). We choose to also generate no events
4404          * for reserved values.
4405          */
4406         return;
4407     }
4408 
4409     cpu_breakpoint_insert(CPU(cpu), addr, flags, &env->cpu_breakpoint[n]);
4410 }
4411 
4412 void hw_breakpoint_update_all(ARMCPU *cpu)
4413 {
4414     int i;
4415     CPUARMState *env = &cpu->env;
4416 
4417     /* Completely clear out existing QEMU breakpoints and our array, to
4418      * avoid possible stale entries following migration load.
4419      */
4420     cpu_breakpoint_remove_all(CPU(cpu), BP_CPU);
4421     memset(env->cpu_breakpoint, 0, sizeof(env->cpu_breakpoint));
4422 
4423     for (i = 0; i < ARRAY_SIZE(cpu->env.cpu_breakpoint); i++) {
4424         hw_breakpoint_update(cpu, i);
4425     }
4426 }
4427 
4428 static void dbgbvr_write(CPUARMState *env, const ARMCPRegInfo *ri,
4429                          uint64_t value)
4430 {
4431     ARMCPU *cpu = arm_env_get_cpu(env);
4432     int i = ri->crm;
4433 
4434     raw_write(env, ri, value);
4435     hw_breakpoint_update(cpu, i);
4436 }
4437 
4438 static void dbgbcr_write(CPUARMState *env, const ARMCPRegInfo *ri,
4439                          uint64_t value)
4440 {
4441     ARMCPU *cpu = arm_env_get_cpu(env);
4442     int i = ri->crm;
4443 
4444     /* BAS[3] is a read-only copy of BAS[2], and BAS[1] a read-only
4445      * copy of BAS[0].
4446      */
4447     value = deposit64(value, 6, 1, extract64(value, 5, 1));
4448     value = deposit64(value, 8, 1, extract64(value, 7, 1));
4449 
4450     raw_write(env, ri, value);
4451     hw_breakpoint_update(cpu, i);
4452 }
4453 
4454 static void define_debug_regs(ARMCPU *cpu)
4455 {
4456     /* Define v7 and v8 architectural debug registers.
4457      * These are just dummy implementations for now.
4458      */
4459     int i;
4460     int wrps, brps, ctx_cmps;
4461     ARMCPRegInfo dbgdidr = {
4462         .name = "DBGDIDR", .cp = 14, .crn = 0, .crm = 0, .opc1 = 0, .opc2 = 0,
4463         .access = PL0_R, .accessfn = access_tda,
4464         .type = ARM_CP_CONST, .resetvalue = cpu->dbgdidr,
4465     };
4466 
4467     /* Note that all these register fields hold "number of Xs minus 1". */
4468     brps = extract32(cpu->dbgdidr, 24, 4);
4469     wrps = extract32(cpu->dbgdidr, 28, 4);
4470     ctx_cmps = extract32(cpu->dbgdidr, 20, 4);
4471 
4472     assert(ctx_cmps <= brps);
4473 
4474     /* The DBGDIDR and ID_AA64DFR0_EL1 define various properties
4475      * of the debug registers such as number of breakpoints;
4476      * check that if they both exist then they agree.
4477      */
4478     if (arm_feature(&cpu->env, ARM_FEATURE_AARCH64)) {
4479         assert(extract32(cpu->id_aa64dfr0, 12, 4) == brps);
4480         assert(extract32(cpu->id_aa64dfr0, 20, 4) == wrps);
4481         assert(extract32(cpu->id_aa64dfr0, 28, 4) == ctx_cmps);
4482     }
4483 
4484     define_one_arm_cp_reg(cpu, &dbgdidr);
4485     define_arm_cp_regs(cpu, debug_cp_reginfo);
4486 
4487     if (arm_feature(&cpu->env, ARM_FEATURE_LPAE)) {
4488         define_arm_cp_regs(cpu, debug_lpae_cp_reginfo);
4489     }
4490 
4491     for (i = 0; i < brps + 1; i++) {
4492         ARMCPRegInfo dbgregs[] = {
4493             { .name = "DBGBVR", .state = ARM_CP_STATE_BOTH,
4494               .cp = 14, .opc0 = 2, .opc1 = 0, .crn = 0, .crm = i, .opc2 = 4,
4495               .access = PL1_RW, .accessfn = access_tda,
4496               .fieldoffset = offsetof(CPUARMState, cp15.dbgbvr[i]),
4497               .writefn = dbgbvr_write, .raw_writefn = raw_write
4498             },
4499             { .name = "DBGBCR", .state = ARM_CP_STATE_BOTH,
4500               .cp = 14, .opc0 = 2, .opc1 = 0, .crn = 0, .crm = i, .opc2 = 5,
4501               .access = PL1_RW, .accessfn = access_tda,
4502               .fieldoffset = offsetof(CPUARMState, cp15.dbgbcr[i]),
4503               .writefn = dbgbcr_write, .raw_writefn = raw_write
4504             },
4505             REGINFO_SENTINEL
4506         };
4507         define_arm_cp_regs(cpu, dbgregs);
4508     }
4509 
4510     for (i = 0; i < wrps + 1; i++) {
4511         ARMCPRegInfo dbgregs[] = {
4512             { .name = "DBGWVR", .state = ARM_CP_STATE_BOTH,
4513               .cp = 14, .opc0 = 2, .opc1 = 0, .crn = 0, .crm = i, .opc2 = 6,
4514               .access = PL1_RW, .accessfn = access_tda,
4515               .fieldoffset = offsetof(CPUARMState, cp15.dbgwvr[i]),
4516               .writefn = dbgwvr_write, .raw_writefn = raw_write
4517             },
4518             { .name = "DBGWCR", .state = ARM_CP_STATE_BOTH,
4519               .cp = 14, .opc0 = 2, .opc1 = 0, .crn = 0, .crm = i, .opc2 = 7,
4520               .access = PL1_RW, .accessfn = access_tda,
4521               .fieldoffset = offsetof(CPUARMState, cp15.dbgwcr[i]),
4522               .writefn = dbgwcr_write, .raw_writefn = raw_write
4523             },
4524             REGINFO_SENTINEL
4525         };
4526         define_arm_cp_regs(cpu, dbgregs);
4527     }
4528 }
4529 
4530 void register_cp_regs_for_features(ARMCPU *cpu)
4531 {
4532     /* Register all the coprocessor registers based on feature bits */
4533     CPUARMState *env = &cpu->env;
4534     if (arm_feature(env, ARM_FEATURE_M)) {
4535         /* M profile has no coprocessor registers */
4536         return;
4537     }
4538 
4539     define_arm_cp_regs(cpu, cp_reginfo);
4540     if (!arm_feature(env, ARM_FEATURE_V8)) {
4541         /* Must go early as it is full of wildcards that may be
4542          * overridden by later definitions.
4543          */
4544         define_arm_cp_regs(cpu, not_v8_cp_reginfo);
4545     }
4546 
4547     if (arm_feature(env, ARM_FEATURE_V6)) {
4548         /* The ID registers all have impdef reset values */
4549         ARMCPRegInfo v6_idregs[] = {
4550             { .name = "ID_PFR0", .state = ARM_CP_STATE_BOTH,
4551               .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 1, .opc2 = 0,
4552               .access = PL1_R, .type = ARM_CP_CONST,
4553               .resetvalue = cpu->id_pfr0 },
4554             { .name = "ID_PFR1", .state = ARM_CP_STATE_BOTH,
4555               .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 1, .opc2 = 1,
4556               .access = PL1_R, .type = ARM_CP_CONST,
4557               .resetvalue = cpu->id_pfr1 },
4558             { .name = "ID_DFR0", .state = ARM_CP_STATE_BOTH,
4559               .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 1, .opc2 = 2,
4560               .access = PL1_R, .type = ARM_CP_CONST,
4561               .resetvalue = cpu->id_dfr0 },
4562             { .name = "ID_AFR0", .state = ARM_CP_STATE_BOTH,
4563               .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 1, .opc2 = 3,
4564               .access = PL1_R, .type = ARM_CP_CONST,
4565               .resetvalue = cpu->id_afr0 },
4566             { .name = "ID_MMFR0", .state = ARM_CP_STATE_BOTH,
4567               .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 1, .opc2 = 4,
4568               .access = PL1_R, .type = ARM_CP_CONST,
4569               .resetvalue = cpu->id_mmfr0 },
4570             { .name = "ID_MMFR1", .state = ARM_CP_STATE_BOTH,
4571               .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 1, .opc2 = 5,
4572               .access = PL1_R, .type = ARM_CP_CONST,
4573               .resetvalue = cpu->id_mmfr1 },
4574             { .name = "ID_MMFR2", .state = ARM_CP_STATE_BOTH,
4575               .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 1, .opc2 = 6,
4576               .access = PL1_R, .type = ARM_CP_CONST,
4577               .resetvalue = cpu->id_mmfr2 },
4578             { .name = "ID_MMFR3", .state = ARM_CP_STATE_BOTH,
4579               .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 1, .opc2 = 7,
4580               .access = PL1_R, .type = ARM_CP_CONST,
4581               .resetvalue = cpu->id_mmfr3 },
4582             { .name = "ID_ISAR0", .state = ARM_CP_STATE_BOTH,
4583               .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 2, .opc2 = 0,
4584               .access = PL1_R, .type = ARM_CP_CONST,
4585               .resetvalue = cpu->id_isar0 },
4586             { .name = "ID_ISAR1", .state = ARM_CP_STATE_BOTH,
4587               .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 2, .opc2 = 1,
4588               .access = PL1_R, .type = ARM_CP_CONST,
4589               .resetvalue = cpu->id_isar1 },
4590             { .name = "ID_ISAR2", .state = ARM_CP_STATE_BOTH,
4591               .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 2, .opc2 = 2,
4592               .access = PL1_R, .type = ARM_CP_CONST,
4593               .resetvalue = cpu->id_isar2 },
4594             { .name = "ID_ISAR3", .state = ARM_CP_STATE_BOTH,
4595               .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 2, .opc2 = 3,
4596               .access = PL1_R, .type = ARM_CP_CONST,
4597               .resetvalue = cpu->id_isar3 },
4598             { .name = "ID_ISAR4", .state = ARM_CP_STATE_BOTH,
4599               .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 2, .opc2 = 4,
4600               .access = PL1_R, .type = ARM_CP_CONST,
4601               .resetvalue = cpu->id_isar4 },
4602             { .name = "ID_ISAR5", .state = ARM_CP_STATE_BOTH,
4603               .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 2, .opc2 = 5,
4604               .access = PL1_R, .type = ARM_CP_CONST,
4605               .resetvalue = cpu->id_isar5 },
4606             { .name = "ID_MMFR4", .state = ARM_CP_STATE_BOTH,
4607               .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 2, .opc2 = 6,
4608               .access = PL1_R, .type = ARM_CP_CONST,
4609               .resetvalue = cpu->id_mmfr4 },
4610             /* 7 is as yet unallocated and must RAZ */
4611             { .name = "ID_ISAR7_RESERVED", .state = ARM_CP_STATE_BOTH,
4612               .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 2, .opc2 = 7,
4613               .access = PL1_R, .type = ARM_CP_CONST,
4614               .resetvalue = 0 },
4615             REGINFO_SENTINEL
4616         };
4617         define_arm_cp_regs(cpu, v6_idregs);
4618         define_arm_cp_regs(cpu, v6_cp_reginfo);
4619     } else {
4620         define_arm_cp_regs(cpu, not_v6_cp_reginfo);
4621     }
4622     if (arm_feature(env, ARM_FEATURE_V6K)) {
4623         define_arm_cp_regs(cpu, v6k_cp_reginfo);
4624     }
4625     if (arm_feature(env, ARM_FEATURE_V7MP) &&
4626         !arm_feature(env, ARM_FEATURE_PMSA)) {
4627         define_arm_cp_regs(cpu, v7mp_cp_reginfo);
4628     }
4629     if (arm_feature(env, ARM_FEATURE_V7)) {
4630         /* v7 performance monitor control register: same implementor
4631          * field as main ID register, and we implement only the cycle
4632          * count register.
4633          */
4634 #ifndef CONFIG_USER_ONLY
4635         ARMCPRegInfo pmcr = {
4636             .name = "PMCR", .cp = 15, .crn = 9, .crm = 12, .opc1 = 0, .opc2 = 0,
4637             .access = PL0_RW,
4638             .type = ARM_CP_IO | ARM_CP_ALIAS,
4639             .fieldoffset = offsetoflow32(CPUARMState, cp15.c9_pmcr),
4640             .accessfn = pmreg_access, .writefn = pmcr_write,
4641             .raw_writefn = raw_write,
4642         };
4643         ARMCPRegInfo pmcr64 = {
4644             .name = "PMCR_EL0", .state = ARM_CP_STATE_AA64,
4645             .opc0 = 3, .opc1 = 3, .crn = 9, .crm = 12, .opc2 = 0,
4646             .access = PL0_RW, .accessfn = pmreg_access,
4647             .type = ARM_CP_IO,
4648             .fieldoffset = offsetof(CPUARMState, cp15.c9_pmcr),
4649             .resetvalue = cpu->midr & 0xff000000,
4650             .writefn = pmcr_write, .raw_writefn = raw_write,
4651         };
4652         define_one_arm_cp_reg(cpu, &pmcr);
4653         define_one_arm_cp_reg(cpu, &pmcr64);
4654 #endif
4655         ARMCPRegInfo clidr = {
4656             .name = "CLIDR", .state = ARM_CP_STATE_BOTH,
4657             .opc0 = 3, .crn = 0, .crm = 0, .opc1 = 1, .opc2 = 1,
4658             .access = PL1_R, .type = ARM_CP_CONST, .resetvalue = cpu->clidr
4659         };
4660         define_one_arm_cp_reg(cpu, &clidr);
4661         define_arm_cp_regs(cpu, v7_cp_reginfo);
4662         define_debug_regs(cpu);
4663     } else {
4664         define_arm_cp_regs(cpu, not_v7_cp_reginfo);
4665     }
4666     if (arm_feature(env, ARM_FEATURE_V8)) {
4667         /* AArch64 ID registers, which all have impdef reset values.
4668          * Note that within the ID register ranges the unused slots
4669          * must all RAZ, not UNDEF; future architecture versions may
4670          * define new registers here.
4671          */
4672         ARMCPRegInfo v8_idregs[] = {
4673             { .name = "ID_AA64PFR0_EL1", .state = ARM_CP_STATE_AA64,
4674               .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 4, .opc2 = 0,
4675               .access = PL1_R, .type = ARM_CP_CONST,
4676               .resetvalue = cpu->id_aa64pfr0 },
4677             { .name = "ID_AA64PFR1_EL1", .state = ARM_CP_STATE_AA64,
4678               .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 4, .opc2 = 1,
4679               .access = PL1_R, .type = ARM_CP_CONST,
4680               .resetvalue = cpu->id_aa64pfr1},
4681             { .name = "ID_AA64PFR2_EL1_RESERVED", .state = ARM_CP_STATE_AA64,
4682               .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 4, .opc2 = 2,
4683               .access = PL1_R, .type = ARM_CP_CONST,
4684               .resetvalue = 0 },
4685             { .name = "ID_AA64PFR3_EL1_RESERVED", .state = ARM_CP_STATE_AA64,
4686               .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 4, .opc2 = 3,
4687               .access = PL1_R, .type = ARM_CP_CONST,
4688               .resetvalue = 0 },
4689             { .name = "ID_AA64PFR4_EL1_RESERVED", .state = ARM_CP_STATE_AA64,
4690               .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 4, .opc2 = 4,
4691               .access = PL1_R, .type = ARM_CP_CONST,
4692               .resetvalue = 0 },
4693             { .name = "ID_AA64PFR5_EL1_RESERVED", .state = ARM_CP_STATE_AA64,
4694               .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 4, .opc2 = 5,
4695               .access = PL1_R, .type = ARM_CP_CONST,
4696               .resetvalue = 0 },
4697             { .name = "ID_AA64PFR6_EL1_RESERVED", .state = ARM_CP_STATE_AA64,
4698               .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 4, .opc2 = 6,
4699               .access = PL1_R, .type = ARM_CP_CONST,
4700               .resetvalue = 0 },
4701             { .name = "ID_AA64PFR7_EL1_RESERVED", .state = ARM_CP_STATE_AA64,
4702               .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 4, .opc2 = 7,
4703               .access = PL1_R, .type = ARM_CP_CONST,
4704               .resetvalue = 0 },
4705             { .name = "ID_AA64DFR0_EL1", .state = ARM_CP_STATE_AA64,
4706               .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 5, .opc2 = 0,
4707               .access = PL1_R, .type = ARM_CP_CONST,
4708               .resetvalue = cpu->id_aa64dfr0 },
4709             { .name = "ID_AA64DFR1_EL1", .state = ARM_CP_STATE_AA64,
4710               .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 5, .opc2 = 1,
4711               .access = PL1_R, .type = ARM_CP_CONST,
4712               .resetvalue = cpu->id_aa64dfr1 },
4713             { .name = "ID_AA64DFR2_EL1_RESERVED", .state = ARM_CP_STATE_AA64,
4714               .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 5, .opc2 = 2,
4715               .access = PL1_R, .type = ARM_CP_CONST,
4716               .resetvalue = 0 },
4717             { .name = "ID_AA64DFR3_EL1_RESERVED", .state = ARM_CP_STATE_AA64,
4718               .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 5, .opc2 = 3,
4719               .access = PL1_R, .type = ARM_CP_CONST,
4720               .resetvalue = 0 },
4721             { .name = "ID_AA64AFR0_EL1", .state = ARM_CP_STATE_AA64,
4722               .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 5, .opc2 = 4,
4723               .access = PL1_R, .type = ARM_CP_CONST,
4724               .resetvalue = cpu->id_aa64afr0 },
4725             { .name = "ID_AA64AFR1_EL1", .state = ARM_CP_STATE_AA64,
4726               .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 5, .opc2 = 5,
4727               .access = PL1_R, .type = ARM_CP_CONST,
4728               .resetvalue = cpu->id_aa64afr1 },
4729             { .name = "ID_AA64AFR2_EL1_RESERVED", .state = ARM_CP_STATE_AA64,
4730               .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 5, .opc2 = 6,
4731               .access = PL1_R, .type = ARM_CP_CONST,
4732               .resetvalue = 0 },
4733             { .name = "ID_AA64AFR3_EL1_RESERVED", .state = ARM_CP_STATE_AA64,
4734               .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 5, .opc2 = 7,
4735               .access = PL1_R, .type = ARM_CP_CONST,
4736               .resetvalue = 0 },
4737             { .name = "ID_AA64ISAR0_EL1", .state = ARM_CP_STATE_AA64,
4738               .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 6, .opc2 = 0,
4739               .access = PL1_R, .type = ARM_CP_CONST,
4740               .resetvalue = cpu->id_aa64isar0 },
4741             { .name = "ID_AA64ISAR1_EL1", .state = ARM_CP_STATE_AA64,
4742               .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 6, .opc2 = 1,
4743               .access = PL1_R, .type = ARM_CP_CONST,
4744               .resetvalue = cpu->id_aa64isar1 },
4745             { .name = "ID_AA64ISAR2_EL1_RESERVED", .state = ARM_CP_STATE_AA64,
4746               .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 6, .opc2 = 2,
4747               .access = PL1_R, .type = ARM_CP_CONST,
4748               .resetvalue = 0 },
4749             { .name = "ID_AA64ISAR3_EL1_RESERVED", .state = ARM_CP_STATE_AA64,
4750               .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 6, .opc2 = 3,
4751               .access = PL1_R, .type = ARM_CP_CONST,
4752               .resetvalue = 0 },
4753             { .name = "ID_AA64ISAR4_EL1_RESERVED", .state = ARM_CP_STATE_AA64,
4754               .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 6, .opc2 = 4,
4755               .access = PL1_R, .type = ARM_CP_CONST,
4756               .resetvalue = 0 },
4757             { .name = "ID_AA64ISAR5_EL1_RESERVED", .state = ARM_CP_STATE_AA64,
4758               .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 6, .opc2 = 5,
4759               .access = PL1_R, .type = ARM_CP_CONST,
4760               .resetvalue = 0 },
4761             { .name = "ID_AA64ISAR6_EL1_RESERVED", .state = ARM_CP_STATE_AA64,
4762               .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 6, .opc2 = 6,
4763               .access = PL1_R, .type = ARM_CP_CONST,
4764               .resetvalue = 0 },
4765             { .name = "ID_AA64ISAR7_EL1_RESERVED", .state = ARM_CP_STATE_AA64,
4766               .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 6, .opc2 = 7,
4767               .access = PL1_R, .type = ARM_CP_CONST,
4768               .resetvalue = 0 },
4769             { .name = "ID_AA64MMFR0_EL1", .state = ARM_CP_STATE_AA64,
4770               .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 7, .opc2 = 0,
4771               .access = PL1_R, .type = ARM_CP_CONST,
4772               .resetvalue = cpu->id_aa64mmfr0 },
4773             { .name = "ID_AA64MMFR1_EL1", .state = ARM_CP_STATE_AA64,
4774               .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 7, .opc2 = 1,
4775               .access = PL1_R, .type = ARM_CP_CONST,
4776               .resetvalue = cpu->id_aa64mmfr1 },
4777             { .name = "ID_AA64MMFR2_EL1_RESERVED", .state = ARM_CP_STATE_AA64,
4778               .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 7, .opc2 = 2,
4779               .access = PL1_R, .type = ARM_CP_CONST,
4780               .resetvalue = 0 },
4781             { .name = "ID_AA64MMFR3_EL1_RESERVED", .state = ARM_CP_STATE_AA64,
4782               .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 7, .opc2 = 3,
4783               .access = PL1_R, .type = ARM_CP_CONST,
4784               .resetvalue = 0 },
4785             { .name = "ID_AA64MMFR4_EL1_RESERVED", .state = ARM_CP_STATE_AA64,
4786               .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 7, .opc2 = 4,
4787               .access = PL1_R, .type = ARM_CP_CONST,
4788               .resetvalue = 0 },
4789             { .name = "ID_AA64MMFR5_EL1_RESERVED", .state = ARM_CP_STATE_AA64,
4790               .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 7, .opc2 = 5,
4791               .access = PL1_R, .type = ARM_CP_CONST,
4792               .resetvalue = 0 },
4793             { .name = "ID_AA64MMFR6_EL1_RESERVED", .state = ARM_CP_STATE_AA64,
4794               .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 7, .opc2 = 6,
4795               .access = PL1_R, .type = ARM_CP_CONST,
4796               .resetvalue = 0 },
4797             { .name = "ID_AA64MMFR7_EL1_RESERVED", .state = ARM_CP_STATE_AA64,
4798               .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 7, .opc2 = 7,
4799               .access = PL1_R, .type = ARM_CP_CONST,
4800               .resetvalue = 0 },
4801             { .name = "MVFR0_EL1", .state = ARM_CP_STATE_AA64,
4802               .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 3, .opc2 = 0,
4803               .access = PL1_R, .type = ARM_CP_CONST,
4804               .resetvalue = cpu->mvfr0 },
4805             { .name = "MVFR1_EL1", .state = ARM_CP_STATE_AA64,
4806               .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 3, .opc2 = 1,
4807               .access = PL1_R, .type = ARM_CP_CONST,
4808               .resetvalue = cpu->mvfr1 },
4809             { .name = "MVFR2_EL1", .state = ARM_CP_STATE_AA64,
4810               .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 3, .opc2 = 2,
4811               .access = PL1_R, .type = ARM_CP_CONST,
4812               .resetvalue = cpu->mvfr2 },
4813             { .name = "MVFR3_EL1_RESERVED", .state = ARM_CP_STATE_AA64,
4814               .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 3, .opc2 = 3,
4815               .access = PL1_R, .type = ARM_CP_CONST,
4816               .resetvalue = 0 },
4817             { .name = "MVFR4_EL1_RESERVED", .state = ARM_CP_STATE_AA64,
4818               .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 3, .opc2 = 4,
4819               .access = PL1_R, .type = ARM_CP_CONST,
4820               .resetvalue = 0 },
4821             { .name = "MVFR5_EL1_RESERVED", .state = ARM_CP_STATE_AA64,
4822               .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 3, .opc2 = 5,
4823               .access = PL1_R, .type = ARM_CP_CONST,
4824               .resetvalue = 0 },
4825             { .name = "MVFR6_EL1_RESERVED", .state = ARM_CP_STATE_AA64,
4826               .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 3, .opc2 = 6,
4827               .access = PL1_R, .type = ARM_CP_CONST,
4828               .resetvalue = 0 },
4829             { .name = "MVFR7_EL1_RESERVED", .state = ARM_CP_STATE_AA64,
4830               .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 3, .opc2 = 7,
4831               .access = PL1_R, .type = ARM_CP_CONST,
4832               .resetvalue = 0 },
4833             { .name = "PMCEID0", .state = ARM_CP_STATE_AA32,
4834               .cp = 15, .opc1 = 0, .crn = 9, .crm = 12, .opc2 = 6,
4835               .access = PL0_R, .accessfn = pmreg_access, .type = ARM_CP_CONST,
4836               .resetvalue = cpu->pmceid0 },
4837             { .name = "PMCEID0_EL0", .state = ARM_CP_STATE_AA64,
4838               .opc0 = 3, .opc1 = 3, .crn = 9, .crm = 12, .opc2 = 6,
4839               .access = PL0_R, .accessfn = pmreg_access, .type = ARM_CP_CONST,
4840               .resetvalue = cpu->pmceid0 },
4841             { .name = "PMCEID1", .state = ARM_CP_STATE_AA32,
4842               .cp = 15, .opc1 = 0, .crn = 9, .crm = 12, .opc2 = 7,
4843               .access = PL0_R, .accessfn = pmreg_access, .type = ARM_CP_CONST,
4844               .resetvalue = cpu->pmceid1 },
4845             { .name = "PMCEID1_EL0", .state = ARM_CP_STATE_AA64,
4846               .opc0 = 3, .opc1 = 3, .crn = 9, .crm = 12, .opc2 = 7,
4847               .access = PL0_R, .accessfn = pmreg_access, .type = ARM_CP_CONST,
4848               .resetvalue = cpu->pmceid1 },
4849             REGINFO_SENTINEL
4850         };
4851         /* RVBAR_EL1 is only implemented if EL1 is the highest EL */
4852         if (!arm_feature(env, ARM_FEATURE_EL3) &&
4853             !arm_feature(env, ARM_FEATURE_EL2)) {
4854             ARMCPRegInfo rvbar = {
4855                 .name = "RVBAR_EL1", .state = ARM_CP_STATE_AA64,
4856                 .opc0 = 3, .opc1 = 0, .crn = 12, .crm = 0, .opc2 = 1,
4857                 .type = ARM_CP_CONST, .access = PL1_R, .resetvalue = cpu->rvbar
4858             };
4859             define_one_arm_cp_reg(cpu, &rvbar);
4860         }
4861         define_arm_cp_regs(cpu, v8_idregs);
4862         define_arm_cp_regs(cpu, v8_cp_reginfo);
4863     }
4864     if (arm_feature(env, ARM_FEATURE_EL2)) {
4865         uint64_t vmpidr_def = mpidr_read_val(env);
4866         ARMCPRegInfo vpidr_regs[] = {
4867             { .name = "VPIDR", .state = ARM_CP_STATE_AA32,
4868               .cp = 15, .opc1 = 4, .crn = 0, .crm = 0, .opc2 = 0,
4869               .access = PL2_RW, .accessfn = access_el3_aa32ns,
4870               .resetvalue = cpu->midr,
4871               .fieldoffset = offsetof(CPUARMState, cp15.vpidr_el2) },
4872             { .name = "VPIDR_EL2", .state = ARM_CP_STATE_AA64,
4873               .opc0 = 3, .opc1 = 4, .crn = 0, .crm = 0, .opc2 = 0,
4874               .access = PL2_RW, .resetvalue = cpu->midr,
4875               .fieldoffset = offsetof(CPUARMState, cp15.vpidr_el2) },
4876             { .name = "VMPIDR", .state = ARM_CP_STATE_AA32,
4877               .cp = 15, .opc1 = 4, .crn = 0, .crm = 0, .opc2 = 5,
4878               .access = PL2_RW, .accessfn = access_el3_aa32ns,
4879               .resetvalue = vmpidr_def,
4880               .fieldoffset = offsetof(CPUARMState, cp15.vmpidr_el2) },
4881             { .name = "VMPIDR_EL2", .state = ARM_CP_STATE_AA64,
4882               .opc0 = 3, .opc1 = 4, .crn = 0, .crm = 0, .opc2 = 5,
4883               .access = PL2_RW,
4884               .resetvalue = vmpidr_def,
4885               .fieldoffset = offsetof(CPUARMState, cp15.vmpidr_el2) },
4886             REGINFO_SENTINEL
4887         };
4888         define_arm_cp_regs(cpu, vpidr_regs);
4889         define_arm_cp_regs(cpu, el2_cp_reginfo);
4890         /* RVBAR_EL2 is only implemented if EL2 is the highest EL */
4891         if (!arm_feature(env, ARM_FEATURE_EL3)) {
4892             ARMCPRegInfo rvbar = {
4893                 .name = "RVBAR_EL2", .state = ARM_CP_STATE_AA64,
4894                 .opc0 = 3, .opc1 = 4, .crn = 12, .crm = 0, .opc2 = 1,
4895                 .type = ARM_CP_CONST, .access = PL2_R, .resetvalue = cpu->rvbar
4896             };
4897             define_one_arm_cp_reg(cpu, &rvbar);
4898         }
4899     } else {
4900         /* If EL2 is missing but higher ELs are enabled, we need to
4901          * register the no_el2 reginfos.
4902          */
4903         if (arm_feature(env, ARM_FEATURE_EL3)) {
4904             /* When EL3 exists but not EL2, VPIDR and VMPIDR take the value
4905              * of MIDR_EL1 and MPIDR_EL1.
4906              */
4907             ARMCPRegInfo vpidr_regs[] = {
4908                 { .name = "VPIDR_EL2", .state = ARM_CP_STATE_BOTH,
4909                   .opc0 = 3, .opc1 = 4, .crn = 0, .crm = 0, .opc2 = 0,
4910                   .access = PL2_RW, .accessfn = access_el3_aa32ns_aa64any,
4911                   .type = ARM_CP_CONST, .resetvalue = cpu->midr,
4912                   .fieldoffset = offsetof(CPUARMState, cp15.vpidr_el2) },
4913                 { .name = "VMPIDR_EL2", .state = ARM_CP_STATE_BOTH,
4914                   .opc0 = 3, .opc1 = 4, .crn = 0, .crm = 0, .opc2 = 5,
4915                   .access = PL2_RW, .accessfn = access_el3_aa32ns_aa64any,
4916                   .type = ARM_CP_NO_RAW,
4917                   .writefn = arm_cp_write_ignore, .readfn = mpidr_read },
4918                 REGINFO_SENTINEL
4919             };
4920             define_arm_cp_regs(cpu, vpidr_regs);
4921             define_arm_cp_regs(cpu, el3_no_el2_cp_reginfo);
4922         }
4923     }
4924     if (arm_feature(env, ARM_FEATURE_EL3)) {
4925         define_arm_cp_regs(cpu, el3_cp_reginfo);
4926         ARMCPRegInfo el3_regs[] = {
4927             { .name = "RVBAR_EL3", .state = ARM_CP_STATE_AA64,
4928               .opc0 = 3, .opc1 = 6, .crn = 12, .crm = 0, .opc2 = 1,
4929               .type = ARM_CP_CONST, .access = PL3_R, .resetvalue = cpu->rvbar },
4930             { .name = "SCTLR_EL3", .state = ARM_CP_STATE_AA64,
4931               .opc0 = 3, .opc1 = 6, .crn = 1, .crm = 0, .opc2 = 0,
4932               .access = PL3_RW,
4933               .raw_writefn = raw_write, .writefn = sctlr_write,
4934               .fieldoffset = offsetof(CPUARMState, cp15.sctlr_el[3]),
4935               .resetvalue = cpu->reset_sctlr },
4936             REGINFO_SENTINEL
4937         };
4938 
4939         define_arm_cp_regs(cpu, el3_regs);
4940     }
4941     /* The behaviour of NSACR is sufficiently various that we don't
4942      * try to describe it in a single reginfo:
4943      *  if EL3 is 64 bit, then trap to EL3 from S EL1,
4944      *     reads as constant 0xc00 from NS EL1 and NS EL2
4945      *  if EL3 is 32 bit, then RW at EL3, RO at NS EL1 and NS EL2
4946      *  if v7 without EL3, register doesn't exist
4947      *  if v8 without EL3, reads as constant 0xc00 from NS EL1 and NS EL2
4948      */
4949     if (arm_feature(env, ARM_FEATURE_EL3)) {
4950         if (arm_feature(env, ARM_FEATURE_AARCH64)) {
4951             ARMCPRegInfo nsacr = {
4952                 .name = "NSACR", .type = ARM_CP_CONST,
4953                 .cp = 15, .opc1 = 0, .crn = 1, .crm = 1, .opc2 = 2,
4954                 .access = PL1_RW, .accessfn = nsacr_access,
4955                 .resetvalue = 0xc00
4956             };
4957             define_one_arm_cp_reg(cpu, &nsacr);
4958         } else {
4959             ARMCPRegInfo nsacr = {
4960                 .name = "NSACR",
4961                 .cp = 15, .opc1 = 0, .crn = 1, .crm = 1, .opc2 = 2,
4962                 .access = PL3_RW | PL1_R,
4963                 .resetvalue = 0,
4964                 .fieldoffset = offsetof(CPUARMState, cp15.nsacr)
4965             };
4966             define_one_arm_cp_reg(cpu, &nsacr);
4967         }
4968     } else {
4969         if (arm_feature(env, ARM_FEATURE_V8)) {
4970             ARMCPRegInfo nsacr = {
4971                 .name = "NSACR", .type = ARM_CP_CONST,
4972                 .cp = 15, .opc1 = 0, .crn = 1, .crm = 1, .opc2 = 2,
4973                 .access = PL1_R,
4974                 .resetvalue = 0xc00
4975             };
4976             define_one_arm_cp_reg(cpu, &nsacr);
4977         }
4978     }
4979 
4980     if (arm_feature(env, ARM_FEATURE_PMSA)) {
4981         if (arm_feature(env, ARM_FEATURE_V6)) {
4982             /* PMSAv6 not implemented */
4983             assert(arm_feature(env, ARM_FEATURE_V7));
4984             define_arm_cp_regs(cpu, vmsa_pmsa_cp_reginfo);
4985             define_arm_cp_regs(cpu, pmsav7_cp_reginfo);
4986         } else {
4987             define_arm_cp_regs(cpu, pmsav5_cp_reginfo);
4988         }
4989     } else {
4990         define_arm_cp_regs(cpu, vmsa_pmsa_cp_reginfo);
4991         define_arm_cp_regs(cpu, vmsa_cp_reginfo);
4992     }
4993     if (arm_feature(env, ARM_FEATURE_THUMB2EE)) {
4994         define_arm_cp_regs(cpu, t2ee_cp_reginfo);
4995     }
4996     if (arm_feature(env, ARM_FEATURE_GENERIC_TIMER)) {
4997         define_arm_cp_regs(cpu, generic_timer_cp_reginfo);
4998     }
4999     if (arm_feature(env, ARM_FEATURE_VAPA)) {
5000         define_arm_cp_regs(cpu, vapa_cp_reginfo);
5001     }
5002     if (arm_feature(env, ARM_FEATURE_CACHE_TEST_CLEAN)) {
5003         define_arm_cp_regs(cpu, cache_test_clean_cp_reginfo);
5004     }
5005     if (arm_feature(env, ARM_FEATURE_CACHE_DIRTY_REG)) {
5006         define_arm_cp_regs(cpu, cache_dirty_status_cp_reginfo);
5007     }
5008     if (arm_feature(env, ARM_FEATURE_CACHE_BLOCK_OPS)) {
5009         define_arm_cp_regs(cpu, cache_block_ops_cp_reginfo);
5010     }
5011     if (arm_feature(env, ARM_FEATURE_OMAPCP)) {
5012         define_arm_cp_regs(cpu, omap_cp_reginfo);
5013     }
5014     if (arm_feature(env, ARM_FEATURE_STRONGARM)) {
5015         define_arm_cp_regs(cpu, strongarm_cp_reginfo);
5016     }
5017     if (arm_feature(env, ARM_FEATURE_XSCALE)) {
5018         define_arm_cp_regs(cpu, xscale_cp_reginfo);
5019     }
5020     if (arm_feature(env, ARM_FEATURE_DUMMY_C15_REGS)) {
5021         define_arm_cp_regs(cpu, dummy_c15_cp_reginfo);
5022     }
5023     if (arm_feature(env, ARM_FEATURE_LPAE)) {
5024         define_arm_cp_regs(cpu, lpae_cp_reginfo);
5025     }
5026     /* Slightly awkwardly, the OMAP and StrongARM cores need all of
5027      * cp15 crn=0 to be writes-ignored, whereas for other cores they should
5028      * be read-only (ie write causes UNDEF exception).
5029      */
5030     {
5031         ARMCPRegInfo id_pre_v8_midr_cp_reginfo[] = {
5032             /* Pre-v8 MIDR space.
5033              * Note that the MIDR isn't a simple constant register because
5034              * of the TI925 behaviour where writes to another register can
5035              * cause the MIDR value to change.
5036              *
5037              * Unimplemented registers in the c15 0 0 0 space default to
5038              * MIDR. Define MIDR first as this entire space, then CTR, TCMTR
5039              * and friends override accordingly.
5040              */
5041             { .name = "MIDR",
5042               .cp = 15, .crn = 0, .crm = 0, .opc1 = 0, .opc2 = CP_ANY,
5043               .access = PL1_R, .resetvalue = cpu->midr,
5044               .writefn = arm_cp_write_ignore, .raw_writefn = raw_write,
5045               .readfn = midr_read,
5046               .fieldoffset = offsetof(CPUARMState, cp15.c0_cpuid),
5047               .type = ARM_CP_OVERRIDE },
5048             /* crn = 0 op1 = 0 crm = 3..7 : currently unassigned; we RAZ. */
5049             { .name = "DUMMY",
5050               .cp = 15, .crn = 0, .crm = 3, .opc1 = 0, .opc2 = CP_ANY,
5051               .access = PL1_R, .type = ARM_CP_CONST, .resetvalue = 0 },
5052             { .name = "DUMMY",
5053               .cp = 15, .crn = 0, .crm = 4, .opc1 = 0, .opc2 = CP_ANY,
5054               .access = PL1_R, .type = ARM_CP_CONST, .resetvalue = 0 },
5055             { .name = "DUMMY",
5056               .cp = 15, .crn = 0, .crm = 5, .opc1 = 0, .opc2 = CP_ANY,
5057               .access = PL1_R, .type = ARM_CP_CONST, .resetvalue = 0 },
5058             { .name = "DUMMY",
5059               .cp = 15, .crn = 0, .crm = 6, .opc1 = 0, .opc2 = CP_ANY,
5060               .access = PL1_R, .type = ARM_CP_CONST, .resetvalue = 0 },
5061             { .name = "DUMMY",
5062               .cp = 15, .crn = 0, .crm = 7, .opc1 = 0, .opc2 = CP_ANY,
5063               .access = PL1_R, .type = ARM_CP_CONST, .resetvalue = 0 },
5064             REGINFO_SENTINEL
5065         };
5066         ARMCPRegInfo id_v8_midr_cp_reginfo[] = {
5067             { .name = "MIDR_EL1", .state = ARM_CP_STATE_BOTH,
5068               .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 0, .opc2 = 0,
5069               .access = PL1_R, .type = ARM_CP_NO_RAW, .resetvalue = cpu->midr,
5070               .fieldoffset = offsetof(CPUARMState, cp15.c0_cpuid),
5071               .readfn = midr_read },
5072             /* crn = 0 op1 = 0 crm = 0 op2 = 4,7 : AArch32 aliases of MIDR */
5073             { .name = "MIDR", .type = ARM_CP_ALIAS | ARM_CP_CONST,
5074               .cp = 15, .crn = 0, .crm = 0, .opc1 = 0, .opc2 = 4,
5075               .access = PL1_R, .resetvalue = cpu->midr },
5076             { .name = "MIDR", .type = ARM_CP_ALIAS | ARM_CP_CONST,
5077               .cp = 15, .crn = 0, .crm = 0, .opc1 = 0, .opc2 = 7,
5078               .access = PL1_R, .resetvalue = cpu->midr },
5079             { .name = "REVIDR_EL1", .state = ARM_CP_STATE_BOTH,
5080               .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 0, .opc2 = 6,
5081               .access = PL1_R, .type = ARM_CP_CONST, .resetvalue = cpu->revidr },
5082             REGINFO_SENTINEL
5083         };
5084         ARMCPRegInfo id_cp_reginfo[] = {
5085             /* These are common to v8 and pre-v8 */
5086             { .name = "CTR",
5087               .cp = 15, .crn = 0, .crm = 0, .opc1 = 0, .opc2 = 1,
5088               .access = PL1_R, .type = ARM_CP_CONST, .resetvalue = cpu->ctr },
5089             { .name = "CTR_EL0", .state = ARM_CP_STATE_AA64,
5090               .opc0 = 3, .opc1 = 3, .opc2 = 1, .crn = 0, .crm = 0,
5091               .access = PL0_R, .accessfn = ctr_el0_access,
5092               .type = ARM_CP_CONST, .resetvalue = cpu->ctr },
5093             /* TCMTR and TLBTR exist in v8 but have no 64-bit versions */
5094             { .name = "TCMTR",
5095               .cp = 15, .crn = 0, .crm = 0, .opc1 = 0, .opc2 = 2,
5096               .access = PL1_R, .type = ARM_CP_CONST, .resetvalue = 0 },
5097             REGINFO_SENTINEL
5098         };
5099         /* TLBTR is specific to VMSA */
5100         ARMCPRegInfo id_tlbtr_reginfo = {
5101               .name = "TLBTR",
5102               .cp = 15, .crn = 0, .crm = 0, .opc1 = 0, .opc2 = 3,
5103               .access = PL1_R, .type = ARM_CP_CONST, .resetvalue = 0,
5104         };
5105         /* MPUIR is specific to PMSA V6+ */
5106         ARMCPRegInfo id_mpuir_reginfo = {
5107               .name = "MPUIR",
5108               .cp = 15, .crn = 0, .crm = 0, .opc1 = 0, .opc2 = 4,
5109               .access = PL1_R, .type = ARM_CP_CONST,
5110               .resetvalue = cpu->pmsav7_dregion << 8
5111         };
5112         ARMCPRegInfo crn0_wi_reginfo = {
5113             .name = "CRN0_WI", .cp = 15, .crn = 0, .crm = CP_ANY,
5114             .opc1 = CP_ANY, .opc2 = CP_ANY, .access = PL1_W,
5115             .type = ARM_CP_NOP | ARM_CP_OVERRIDE
5116         };
5117         if (arm_feature(env, ARM_FEATURE_OMAPCP) ||
5118             arm_feature(env, ARM_FEATURE_STRONGARM)) {
5119             ARMCPRegInfo *r;
5120             /* Register the blanket "writes ignored" value first to cover the
5121              * whole space. Then update the specific ID registers to allow write
5122              * access, so that they ignore writes rather than causing them to
5123              * UNDEF.
5124              */
5125             define_one_arm_cp_reg(cpu, &crn0_wi_reginfo);
5126             for (r = id_pre_v8_midr_cp_reginfo;
5127                  r->type != ARM_CP_SENTINEL; r++) {
5128                 r->access = PL1_RW;
5129             }
5130             for (r = id_cp_reginfo; r->type != ARM_CP_SENTINEL; r++) {
5131                 r->access = PL1_RW;
5132             }
5133             id_tlbtr_reginfo.access = PL1_RW;
5134             id_tlbtr_reginfo.access = PL1_RW;
5135         }
5136         if (arm_feature(env, ARM_FEATURE_V8)) {
5137             define_arm_cp_regs(cpu, id_v8_midr_cp_reginfo);
5138         } else {
5139             define_arm_cp_regs(cpu, id_pre_v8_midr_cp_reginfo);
5140         }
5141         define_arm_cp_regs(cpu, id_cp_reginfo);
5142         if (!arm_feature(env, ARM_FEATURE_PMSA)) {
5143             define_one_arm_cp_reg(cpu, &id_tlbtr_reginfo);
5144         } else if (arm_feature(env, ARM_FEATURE_V7)) {
5145             define_one_arm_cp_reg(cpu, &id_mpuir_reginfo);
5146         }
5147     }
5148 
5149     if (arm_feature(env, ARM_FEATURE_MPIDR)) {
5150         define_arm_cp_regs(cpu, mpidr_cp_reginfo);
5151     }
5152 
5153     if (arm_feature(env, ARM_FEATURE_AUXCR)) {
5154         ARMCPRegInfo auxcr_reginfo[] = {
5155             { .name = "ACTLR_EL1", .state = ARM_CP_STATE_BOTH,
5156               .opc0 = 3, .opc1 = 0, .crn = 1, .crm = 0, .opc2 = 1,
5157               .access = PL1_RW, .type = ARM_CP_CONST,
5158               .resetvalue = cpu->reset_auxcr },
5159             { .name = "ACTLR_EL2", .state = ARM_CP_STATE_BOTH,
5160               .opc0 = 3, .opc1 = 4, .crn = 1, .crm = 0, .opc2 = 1,
5161               .access = PL2_RW, .type = ARM_CP_CONST,
5162               .resetvalue = 0 },
5163             { .name = "ACTLR_EL3", .state = ARM_CP_STATE_AA64,
5164               .opc0 = 3, .opc1 = 6, .crn = 1, .crm = 0, .opc2 = 1,
5165               .access = PL3_RW, .type = ARM_CP_CONST,
5166               .resetvalue = 0 },
5167             REGINFO_SENTINEL
5168         };
5169         define_arm_cp_regs(cpu, auxcr_reginfo);
5170     }
5171 
5172     if (arm_feature(env, ARM_FEATURE_CBAR)) {
5173         if (arm_feature(env, ARM_FEATURE_AARCH64)) {
5174             /* 32 bit view is [31:18] 0...0 [43:32]. */
5175             uint32_t cbar32 = (extract64(cpu->reset_cbar, 18, 14) << 18)
5176                 | extract64(cpu->reset_cbar, 32, 12);
5177             ARMCPRegInfo cbar_reginfo[] = {
5178                 { .name = "CBAR",
5179                   .type = ARM_CP_CONST,
5180                   .cp = 15, .crn = 15, .crm = 0, .opc1 = 4, .opc2 = 0,
5181                   .access = PL1_R, .resetvalue = cpu->reset_cbar },
5182                 { .name = "CBAR_EL1", .state = ARM_CP_STATE_AA64,
5183                   .type = ARM_CP_CONST,
5184                   .opc0 = 3, .opc1 = 1, .crn = 15, .crm = 3, .opc2 = 0,
5185                   .access = PL1_R, .resetvalue = cbar32 },
5186                 REGINFO_SENTINEL
5187             };
5188             /* We don't implement a r/w 64 bit CBAR currently */
5189             assert(arm_feature(env, ARM_FEATURE_CBAR_RO));
5190             define_arm_cp_regs(cpu, cbar_reginfo);
5191         } else {
5192             ARMCPRegInfo cbar = {
5193                 .name = "CBAR",
5194                 .cp = 15, .crn = 15, .crm = 0, .opc1 = 4, .opc2 = 0,
5195                 .access = PL1_R|PL3_W, .resetvalue = cpu->reset_cbar,
5196                 .fieldoffset = offsetof(CPUARMState,
5197                                         cp15.c15_config_base_address)
5198             };
5199             if (arm_feature(env, ARM_FEATURE_CBAR_RO)) {
5200                 cbar.access = PL1_R;
5201                 cbar.fieldoffset = 0;
5202                 cbar.type = ARM_CP_CONST;
5203             }
5204             define_one_arm_cp_reg(cpu, &cbar);
5205         }
5206     }
5207 
5208     if (arm_feature(env, ARM_FEATURE_VBAR)) {
5209         ARMCPRegInfo vbar_cp_reginfo[] = {
5210             { .name = "VBAR", .state = ARM_CP_STATE_BOTH,
5211               .opc0 = 3, .crn = 12, .crm = 0, .opc1 = 0, .opc2 = 0,
5212               .access = PL1_RW, .writefn = vbar_write,
5213               .bank_fieldoffsets = { offsetof(CPUARMState, cp15.vbar_s),
5214                                      offsetof(CPUARMState, cp15.vbar_ns) },
5215               .resetvalue = 0 },
5216             REGINFO_SENTINEL
5217         };
5218         define_arm_cp_regs(cpu, vbar_cp_reginfo);
5219     }
5220 
5221     /* Generic registers whose values depend on the implementation */
5222     {
5223         ARMCPRegInfo sctlr = {
5224             .name = "SCTLR", .state = ARM_CP_STATE_BOTH,
5225             .opc0 = 3, .opc1 = 0, .crn = 1, .crm = 0, .opc2 = 0,
5226             .access = PL1_RW,
5227             .bank_fieldoffsets = { offsetof(CPUARMState, cp15.sctlr_s),
5228                                    offsetof(CPUARMState, cp15.sctlr_ns) },
5229             .writefn = sctlr_write, .resetvalue = cpu->reset_sctlr,
5230             .raw_writefn = raw_write,
5231         };
5232         if (arm_feature(env, ARM_FEATURE_XSCALE)) {
5233             /* Normally we would always end the TB on an SCTLR write, but Linux
5234              * arch/arm/mach-pxa/sleep.S expects two instructions following
5235              * an MMU enable to execute from cache.  Imitate this behaviour.
5236              */
5237             sctlr.type |= ARM_CP_SUPPRESS_TB_END;
5238         }
5239         define_one_arm_cp_reg(cpu, &sctlr);
5240     }
5241 }
5242 
5243 void arm_cpu_register_gdb_regs_for_features(ARMCPU *cpu)
5244 {
5245     CPUState *cs = CPU(cpu);
5246     CPUARMState *env = &cpu->env;
5247 
5248     if (arm_feature(env, ARM_FEATURE_AARCH64)) {
5249         gdb_register_coprocessor(cs, aarch64_fpu_gdb_get_reg,
5250                                  aarch64_fpu_gdb_set_reg,
5251                                  34, "aarch64-fpu.xml", 0);
5252     } else if (arm_feature(env, ARM_FEATURE_NEON)) {
5253         gdb_register_coprocessor(cs, vfp_gdb_get_reg, vfp_gdb_set_reg,
5254                                  51, "arm-neon.xml", 0);
5255     } else if (arm_feature(env, ARM_FEATURE_VFP3)) {
5256         gdb_register_coprocessor(cs, vfp_gdb_get_reg, vfp_gdb_set_reg,
5257                                  35, "arm-vfp3.xml", 0);
5258     } else if (arm_feature(env, ARM_FEATURE_VFP)) {
5259         gdb_register_coprocessor(cs, vfp_gdb_get_reg, vfp_gdb_set_reg,
5260                                  19, "arm-vfp.xml", 0);
5261     }
5262 }
5263 
5264 /* Sort alphabetically by type name, except for "any". */
5265 static gint arm_cpu_list_compare(gconstpointer a, gconstpointer b)
5266 {
5267     ObjectClass *class_a = (ObjectClass *)a;
5268     ObjectClass *class_b = (ObjectClass *)b;
5269     const char *name_a, *name_b;
5270 
5271     name_a = object_class_get_name(class_a);
5272     name_b = object_class_get_name(class_b);
5273     if (strcmp(name_a, "any-" TYPE_ARM_CPU) == 0) {
5274         return 1;
5275     } else if (strcmp(name_b, "any-" TYPE_ARM_CPU) == 0) {
5276         return -1;
5277     } else {
5278         return strcmp(name_a, name_b);
5279     }
5280 }
5281 
5282 static void arm_cpu_list_entry(gpointer data, gpointer user_data)
5283 {
5284     ObjectClass *oc = data;
5285     CPUListState *s = user_data;
5286     const char *typename;
5287     char *name;
5288 
5289     typename = object_class_get_name(oc);
5290     name = g_strndup(typename, strlen(typename) - strlen("-" TYPE_ARM_CPU));
5291     (*s->cpu_fprintf)(s->file, "  %s\n",
5292                       name);
5293     g_free(name);
5294 }
5295 
5296 void arm_cpu_list(FILE *f, fprintf_function cpu_fprintf)
5297 {
5298     CPUListState s = {
5299         .file = f,
5300         .cpu_fprintf = cpu_fprintf,
5301     };
5302     GSList *list;
5303 
5304     list = object_class_get_list(TYPE_ARM_CPU, false);
5305     list = g_slist_sort(list, arm_cpu_list_compare);
5306     (*cpu_fprintf)(f, "Available CPUs:\n");
5307     g_slist_foreach(list, arm_cpu_list_entry, &s);
5308     g_slist_free(list);
5309 #ifdef CONFIG_KVM
5310     /* The 'host' CPU type is dynamically registered only if KVM is
5311      * enabled, so we have to special-case it here:
5312      */
5313     (*cpu_fprintf)(f, "  host (only available in KVM mode)\n");
5314 #endif
5315 }
5316 
5317 static void arm_cpu_add_definition(gpointer data, gpointer user_data)
5318 {
5319     ObjectClass *oc = data;
5320     CpuDefinitionInfoList **cpu_list = user_data;
5321     CpuDefinitionInfoList *entry;
5322     CpuDefinitionInfo *info;
5323     const char *typename;
5324 
5325     typename = object_class_get_name(oc);
5326     info = g_malloc0(sizeof(*info));
5327     info->name = g_strndup(typename,
5328                            strlen(typename) - strlen("-" TYPE_ARM_CPU));
5329     info->q_typename = g_strdup(typename);
5330 
5331     entry = g_malloc0(sizeof(*entry));
5332     entry->value = info;
5333     entry->next = *cpu_list;
5334     *cpu_list = entry;
5335 }
5336 
5337 CpuDefinitionInfoList *arch_query_cpu_definitions(Error **errp)
5338 {
5339     CpuDefinitionInfoList *cpu_list = NULL;
5340     GSList *list;
5341 
5342     list = object_class_get_list(TYPE_ARM_CPU, false);
5343     g_slist_foreach(list, arm_cpu_add_definition, &cpu_list);
5344     g_slist_free(list);
5345 
5346     return cpu_list;
5347 }
5348 
5349 static void add_cpreg_to_hashtable(ARMCPU *cpu, const ARMCPRegInfo *r,
5350                                    void *opaque, int state, int secstate,
5351                                    int crm, int opc1, int opc2)
5352 {
5353     /* Private utility function for define_one_arm_cp_reg_with_opaque():
5354      * add a single reginfo struct to the hash table.
5355      */
5356     uint32_t *key = g_new(uint32_t, 1);
5357     ARMCPRegInfo *r2 = g_memdup(r, sizeof(ARMCPRegInfo));
5358     int is64 = (r->type & ARM_CP_64BIT) ? 1 : 0;
5359     int ns = (secstate & ARM_CP_SECSTATE_NS) ? 1 : 0;
5360 
5361     /* Reset the secure state to the specific incoming state.  This is
5362      * necessary as the register may have been defined with both states.
5363      */
5364     r2->secure = secstate;
5365 
5366     if (r->bank_fieldoffsets[0] && r->bank_fieldoffsets[1]) {
5367         /* Register is banked (using both entries in array).
5368          * Overwriting fieldoffset as the array is only used to define
5369          * banked registers but later only fieldoffset is used.
5370          */
5371         r2->fieldoffset = r->bank_fieldoffsets[ns];
5372     }
5373 
5374     if (state == ARM_CP_STATE_AA32) {
5375         if (r->bank_fieldoffsets[0] && r->bank_fieldoffsets[1]) {
5376             /* If the register is banked then we don't need to migrate or
5377              * reset the 32-bit instance in certain cases:
5378              *
5379              * 1) If the register has both 32-bit and 64-bit instances then we
5380              *    can count on the 64-bit instance taking care of the
5381              *    non-secure bank.
5382              * 2) If ARMv8 is enabled then we can count on a 64-bit version
5383              *    taking care of the secure bank.  This requires that separate
5384              *    32 and 64-bit definitions are provided.
5385              */
5386             if ((r->state == ARM_CP_STATE_BOTH && ns) ||
5387                 (arm_feature(&cpu->env, ARM_FEATURE_V8) && !ns)) {
5388                 r2->type |= ARM_CP_ALIAS;
5389             }
5390         } else if ((secstate != r->secure) && !ns) {
5391             /* The register is not banked so we only want to allow migration of
5392              * the non-secure instance.
5393              */
5394             r2->type |= ARM_CP_ALIAS;
5395         }
5396 
5397         if (r->state == ARM_CP_STATE_BOTH) {
5398             /* We assume it is a cp15 register if the .cp field is left unset.
5399              */
5400             if (r2->cp == 0) {
5401                 r2->cp = 15;
5402             }
5403 
5404 #ifdef HOST_WORDS_BIGENDIAN
5405             if (r2->fieldoffset) {
5406                 r2->fieldoffset += sizeof(uint32_t);
5407             }
5408 #endif
5409         }
5410     }
5411     if (state == ARM_CP_STATE_AA64) {
5412         /* To allow abbreviation of ARMCPRegInfo
5413          * definitions, we treat cp == 0 as equivalent to
5414          * the value for "standard guest-visible sysreg".
5415          * STATE_BOTH definitions are also always "standard
5416          * sysreg" in their AArch64 view (the .cp value may
5417          * be non-zero for the benefit of the AArch32 view).
5418          */
5419         if (r->cp == 0 || r->state == ARM_CP_STATE_BOTH) {
5420             r2->cp = CP_REG_ARM64_SYSREG_CP;
5421         }
5422         *key = ENCODE_AA64_CP_REG(r2->cp, r2->crn, crm,
5423                                   r2->opc0, opc1, opc2);
5424     } else {
5425         *key = ENCODE_CP_REG(r2->cp, is64, ns, r2->crn, crm, opc1, opc2);
5426     }
5427     if (opaque) {
5428         r2->opaque = opaque;
5429     }
5430     /* reginfo passed to helpers is correct for the actual access,
5431      * and is never ARM_CP_STATE_BOTH:
5432      */
5433     r2->state = state;
5434     /* Make sure reginfo passed to helpers for wildcarded regs
5435      * has the correct crm/opc1/opc2 for this reg, not CP_ANY:
5436      */
5437     r2->crm = crm;
5438     r2->opc1 = opc1;
5439     r2->opc2 = opc2;
5440     /* By convention, for wildcarded registers only the first
5441      * entry is used for migration; the others are marked as
5442      * ALIAS so we don't try to transfer the register
5443      * multiple times. Special registers (ie NOP/WFI) are
5444      * never migratable and not even raw-accessible.
5445      */
5446     if ((r->type & ARM_CP_SPECIAL)) {
5447         r2->type |= ARM_CP_NO_RAW;
5448     }
5449     if (((r->crm == CP_ANY) && crm != 0) ||
5450         ((r->opc1 == CP_ANY) && opc1 != 0) ||
5451         ((r->opc2 == CP_ANY) && opc2 != 0)) {
5452         r2->type |= ARM_CP_ALIAS;
5453     }
5454 
5455     /* Check that raw accesses are either forbidden or handled. Note that
5456      * we can't assert this earlier because the setup of fieldoffset for
5457      * banked registers has to be done first.
5458      */
5459     if (!(r2->type & ARM_CP_NO_RAW)) {
5460         assert(!raw_accessors_invalid(r2));
5461     }
5462 
5463     /* Overriding of an existing definition must be explicitly
5464      * requested.
5465      */
5466     if (!(r->type & ARM_CP_OVERRIDE)) {
5467         ARMCPRegInfo *oldreg;
5468         oldreg = g_hash_table_lookup(cpu->cp_regs, key);
5469         if (oldreg && !(oldreg->type & ARM_CP_OVERRIDE)) {
5470             fprintf(stderr, "Register redefined: cp=%d %d bit "
5471                     "crn=%d crm=%d opc1=%d opc2=%d, "
5472                     "was %s, now %s\n", r2->cp, 32 + 32 * is64,
5473                     r2->crn, r2->crm, r2->opc1, r2->opc2,
5474                     oldreg->name, r2->name);
5475             g_assert_not_reached();
5476         }
5477     }
5478     g_hash_table_insert(cpu->cp_regs, key, r2);
5479 }
5480 
5481 
5482 void define_one_arm_cp_reg_with_opaque(ARMCPU *cpu,
5483                                        const ARMCPRegInfo *r, void *opaque)
5484 {
5485     /* Define implementations of coprocessor registers.
5486      * We store these in a hashtable because typically
5487      * there are less than 150 registers in a space which
5488      * is 16*16*16*8*8 = 262144 in size.
5489      * Wildcarding is supported for the crm, opc1 and opc2 fields.
5490      * If a register is defined twice then the second definition is
5491      * used, so this can be used to define some generic registers and
5492      * then override them with implementation specific variations.
5493      * At least one of the original and the second definition should
5494      * include ARM_CP_OVERRIDE in its type bits -- this is just a guard
5495      * against accidental use.
5496      *
5497      * The state field defines whether the register is to be
5498      * visible in the AArch32 or AArch64 execution state. If the
5499      * state is set to ARM_CP_STATE_BOTH then we synthesise a
5500      * reginfo structure for the AArch32 view, which sees the lower
5501      * 32 bits of the 64 bit register.
5502      *
5503      * Only registers visible in AArch64 may set r->opc0; opc0 cannot
5504      * be wildcarded. AArch64 registers are always considered to be 64
5505      * bits; the ARM_CP_64BIT* flag applies only to the AArch32 view of
5506      * the register, if any.
5507      */
5508     int crm, opc1, opc2, state;
5509     int crmmin = (r->crm == CP_ANY) ? 0 : r->crm;
5510     int crmmax = (r->crm == CP_ANY) ? 15 : r->crm;
5511     int opc1min = (r->opc1 == CP_ANY) ? 0 : r->opc1;
5512     int opc1max = (r->opc1 == CP_ANY) ? 7 : r->opc1;
5513     int opc2min = (r->opc2 == CP_ANY) ? 0 : r->opc2;
5514     int opc2max = (r->opc2 == CP_ANY) ? 7 : r->opc2;
5515     /* 64 bit registers have only CRm and Opc1 fields */
5516     assert(!((r->type & ARM_CP_64BIT) && (r->opc2 || r->crn)));
5517     /* op0 only exists in the AArch64 encodings */
5518     assert((r->state != ARM_CP_STATE_AA32) || (r->opc0 == 0));
5519     /* AArch64 regs are all 64 bit so ARM_CP_64BIT is meaningless */
5520     assert((r->state != ARM_CP_STATE_AA64) || !(r->type & ARM_CP_64BIT));
5521     /* The AArch64 pseudocode CheckSystemAccess() specifies that op1
5522      * encodes a minimum access level for the register. We roll this
5523      * runtime check into our general permission check code, so check
5524      * here that the reginfo's specified permissions are strict enough
5525      * to encompass the generic architectural permission check.
5526      */
5527     if (r->state != ARM_CP_STATE_AA32) {
5528         int mask = 0;
5529         switch (r->opc1) {
5530         case 0: case 1: case 2:
5531             /* min_EL EL1 */
5532             mask = PL1_RW;
5533             break;
5534         case 3:
5535             /* min_EL EL0 */
5536             mask = PL0_RW;
5537             break;
5538         case 4:
5539             /* min_EL EL2 */
5540             mask = PL2_RW;
5541             break;
5542         case 5:
5543             /* unallocated encoding, so not possible */
5544             assert(false);
5545             break;
5546         case 6:
5547             /* min_EL EL3 */
5548             mask = PL3_RW;
5549             break;
5550         case 7:
5551             /* min_EL EL1, secure mode only (we don't check the latter) */
5552             mask = PL1_RW;
5553             break;
5554         default:
5555             /* broken reginfo with out-of-range opc1 */
5556             assert(false);
5557             break;
5558         }
5559         /* assert our permissions are not too lax (stricter is fine) */
5560         assert((r->access & ~mask) == 0);
5561     }
5562 
5563     /* Check that the register definition has enough info to handle
5564      * reads and writes if they are permitted.
5565      */
5566     if (!(r->type & (ARM_CP_SPECIAL|ARM_CP_CONST))) {
5567         if (r->access & PL3_R) {
5568             assert((r->fieldoffset ||
5569                    (r->bank_fieldoffsets[0] && r->bank_fieldoffsets[1])) ||
5570                    r->readfn);
5571         }
5572         if (r->access & PL3_W) {
5573             assert((r->fieldoffset ||
5574                    (r->bank_fieldoffsets[0] && r->bank_fieldoffsets[1])) ||
5575                    r->writefn);
5576         }
5577     }
5578     /* Bad type field probably means missing sentinel at end of reg list */
5579     assert(cptype_valid(r->type));
5580     for (crm = crmmin; crm <= crmmax; crm++) {
5581         for (opc1 = opc1min; opc1 <= opc1max; opc1++) {
5582             for (opc2 = opc2min; opc2 <= opc2max; opc2++) {
5583                 for (state = ARM_CP_STATE_AA32;
5584                      state <= ARM_CP_STATE_AA64; state++) {
5585                     if (r->state != state && r->state != ARM_CP_STATE_BOTH) {
5586                         continue;
5587                     }
5588                     if (state == ARM_CP_STATE_AA32) {
5589                         /* Under AArch32 CP registers can be common
5590                          * (same for secure and non-secure world) or banked.
5591                          */
5592                         switch (r->secure) {
5593                         case ARM_CP_SECSTATE_S:
5594                         case ARM_CP_SECSTATE_NS:
5595                             add_cpreg_to_hashtable(cpu, r, opaque, state,
5596                                                    r->secure, crm, opc1, opc2);
5597                             break;
5598                         default:
5599                             add_cpreg_to_hashtable(cpu, r, opaque, state,
5600                                                    ARM_CP_SECSTATE_S,
5601                                                    crm, opc1, opc2);
5602                             add_cpreg_to_hashtable(cpu, r, opaque, state,
5603                                                    ARM_CP_SECSTATE_NS,
5604                                                    crm, opc1, opc2);
5605                             break;
5606                         }
5607                     } else {
5608                         /* AArch64 registers get mapped to non-secure instance
5609                          * of AArch32 */
5610                         add_cpreg_to_hashtable(cpu, r, opaque, state,
5611                                                ARM_CP_SECSTATE_NS,
5612                                                crm, opc1, opc2);
5613                     }
5614                 }
5615             }
5616         }
5617     }
5618 }
5619 
5620 void define_arm_cp_regs_with_opaque(ARMCPU *cpu,
5621                                     const ARMCPRegInfo *regs, void *opaque)
5622 {
5623     /* Define a whole list of registers */
5624     const ARMCPRegInfo *r;
5625     for (r = regs; r->type != ARM_CP_SENTINEL; r++) {
5626         define_one_arm_cp_reg_with_opaque(cpu, r, opaque);
5627     }
5628 }
5629 
5630 const ARMCPRegInfo *get_arm_cp_reginfo(GHashTable *cpregs, uint32_t encoded_cp)
5631 {
5632     return g_hash_table_lookup(cpregs, &encoded_cp);
5633 }
5634 
5635 void arm_cp_write_ignore(CPUARMState *env, const ARMCPRegInfo *ri,
5636                          uint64_t value)
5637 {
5638     /* Helper coprocessor write function for write-ignore registers */
5639 }
5640 
5641 uint64_t arm_cp_read_zero(CPUARMState *env, const ARMCPRegInfo *ri)
5642 {
5643     /* Helper coprocessor write function for read-as-zero registers */
5644     return 0;
5645 }
5646 
5647 void arm_cp_reset_ignore(CPUARMState *env, const ARMCPRegInfo *opaque)
5648 {
5649     /* Helper coprocessor reset function for do-nothing-on-reset registers */
5650 }
5651 
5652 static int bad_mode_switch(CPUARMState *env, int mode, CPSRWriteType write_type)
5653 {
5654     /* Return true if it is not valid for us to switch to
5655      * this CPU mode (ie all the UNPREDICTABLE cases in
5656      * the ARM ARM CPSRWriteByInstr pseudocode).
5657      */
5658 
5659     /* Changes to or from Hyp via MSR and CPS are illegal. */
5660     if (write_type == CPSRWriteByInstr &&
5661         ((env->uncached_cpsr & CPSR_M) == ARM_CPU_MODE_HYP ||
5662          mode == ARM_CPU_MODE_HYP)) {
5663         return 1;
5664     }
5665 
5666     switch (mode) {
5667     case ARM_CPU_MODE_USR:
5668         return 0;
5669     case ARM_CPU_MODE_SYS:
5670     case ARM_CPU_MODE_SVC:
5671     case ARM_CPU_MODE_ABT:
5672     case ARM_CPU_MODE_UND:
5673     case ARM_CPU_MODE_IRQ:
5674     case ARM_CPU_MODE_FIQ:
5675         /* Note that we don't implement the IMPDEF NSACR.RFR which in v7
5676          * allows FIQ mode to be Secure-only. (In v8 this doesn't exist.)
5677          */
5678         /* If HCR.TGE is set then changes from Monitor to NS PL1 via MSR
5679          * and CPS are treated as illegal mode changes.
5680          */
5681         if (write_type == CPSRWriteByInstr &&
5682             (env->cp15.hcr_el2 & HCR_TGE) &&
5683             (env->uncached_cpsr & CPSR_M) == ARM_CPU_MODE_MON &&
5684             !arm_is_secure_below_el3(env)) {
5685             return 1;
5686         }
5687         return 0;
5688     case ARM_CPU_MODE_HYP:
5689         return !arm_feature(env, ARM_FEATURE_EL2)
5690             || arm_current_el(env) < 2 || arm_is_secure(env);
5691     case ARM_CPU_MODE_MON:
5692         return arm_current_el(env) < 3;
5693     default:
5694         return 1;
5695     }
5696 }
5697 
5698 uint32_t cpsr_read(CPUARMState *env)
5699 {
5700     int ZF;
5701     ZF = (env->ZF == 0);
5702     return env->uncached_cpsr | (env->NF & 0x80000000) | (ZF << 30) |
5703         (env->CF << 29) | ((env->VF & 0x80000000) >> 3) | (env->QF << 27)
5704         | (env->thumb << 5) | ((env->condexec_bits & 3) << 25)
5705         | ((env->condexec_bits & 0xfc) << 8)
5706         | (env->GE << 16) | (env->daif & CPSR_AIF);
5707 }
5708 
5709 void cpsr_write(CPUARMState *env, uint32_t val, uint32_t mask,
5710                 CPSRWriteType write_type)
5711 {
5712     uint32_t changed_daif;
5713 
5714     if (mask & CPSR_NZCV) {
5715         env->ZF = (~val) & CPSR_Z;
5716         env->NF = val;
5717         env->CF = (val >> 29) & 1;
5718         env->VF = (val << 3) & 0x80000000;
5719     }
5720     if (mask & CPSR_Q)
5721         env->QF = ((val & CPSR_Q) != 0);
5722     if (mask & CPSR_T)
5723         env->thumb = ((val & CPSR_T) != 0);
5724     if (mask & CPSR_IT_0_1) {
5725         env->condexec_bits &= ~3;
5726         env->condexec_bits |= (val >> 25) & 3;
5727     }
5728     if (mask & CPSR_IT_2_7) {
5729         env->condexec_bits &= 3;
5730         env->condexec_bits |= (val >> 8) & 0xfc;
5731     }
5732     if (mask & CPSR_GE) {
5733         env->GE = (val >> 16) & 0xf;
5734     }
5735 
5736     /* In a V7 implementation that includes the security extensions but does
5737      * not include Virtualization Extensions the SCR.FW and SCR.AW bits control
5738      * whether non-secure software is allowed to change the CPSR_F and CPSR_A
5739      * bits respectively.
5740      *
5741      * In a V8 implementation, it is permitted for privileged software to
5742      * change the CPSR A/F bits regardless of the SCR.AW/FW bits.
5743      */
5744     if (write_type != CPSRWriteRaw && !arm_feature(env, ARM_FEATURE_V8) &&
5745         arm_feature(env, ARM_FEATURE_EL3) &&
5746         !arm_feature(env, ARM_FEATURE_EL2) &&
5747         !arm_is_secure(env)) {
5748 
5749         changed_daif = (env->daif ^ val) & mask;
5750 
5751         if (changed_daif & CPSR_A) {
5752             /* Check to see if we are allowed to change the masking of async
5753              * abort exceptions from a non-secure state.
5754              */
5755             if (!(env->cp15.scr_el3 & SCR_AW)) {
5756                 qemu_log_mask(LOG_GUEST_ERROR,
5757                               "Ignoring attempt to switch CPSR_A flag from "
5758                               "non-secure world with SCR.AW bit clear\n");
5759                 mask &= ~CPSR_A;
5760             }
5761         }
5762 
5763         if (changed_daif & CPSR_F) {
5764             /* Check to see if we are allowed to change the masking of FIQ
5765              * exceptions from a non-secure state.
5766              */
5767             if (!(env->cp15.scr_el3 & SCR_FW)) {
5768                 qemu_log_mask(LOG_GUEST_ERROR,
5769                               "Ignoring attempt to switch CPSR_F flag from "
5770                               "non-secure world with SCR.FW bit clear\n");
5771                 mask &= ~CPSR_F;
5772             }
5773 
5774             /* Check whether non-maskable FIQ (NMFI) support is enabled.
5775              * If this bit is set software is not allowed to mask
5776              * FIQs, but is allowed to set CPSR_F to 0.
5777              */
5778             if ((A32_BANKED_CURRENT_REG_GET(env, sctlr) & SCTLR_NMFI) &&
5779                 (val & CPSR_F)) {
5780                 qemu_log_mask(LOG_GUEST_ERROR,
5781                               "Ignoring attempt to enable CPSR_F flag "
5782                               "(non-maskable FIQ [NMFI] support enabled)\n");
5783                 mask &= ~CPSR_F;
5784             }
5785         }
5786     }
5787 
5788     env->daif &= ~(CPSR_AIF & mask);
5789     env->daif |= val & CPSR_AIF & mask;
5790 
5791     if (write_type != CPSRWriteRaw &&
5792         ((env->uncached_cpsr ^ val) & mask & CPSR_M)) {
5793         if ((env->uncached_cpsr & CPSR_M) == ARM_CPU_MODE_USR) {
5794             /* Note that we can only get here in USR mode if this is a
5795              * gdb stub write; for this case we follow the architectural
5796              * behaviour for guest writes in USR mode of ignoring an attempt
5797              * to switch mode. (Those are caught by translate.c for writes
5798              * triggered by guest instructions.)
5799              */
5800             mask &= ~CPSR_M;
5801         } else if (bad_mode_switch(env, val & CPSR_M, write_type)) {
5802             /* Attempt to switch to an invalid mode: this is UNPREDICTABLE in
5803              * v7, and has defined behaviour in v8:
5804              *  + leave CPSR.M untouched
5805              *  + allow changes to the other CPSR fields
5806              *  + set PSTATE.IL
5807              * For user changes via the GDB stub, we don't set PSTATE.IL,
5808              * as this would be unnecessarily harsh for a user error.
5809              */
5810             mask &= ~CPSR_M;
5811             if (write_type != CPSRWriteByGDBStub &&
5812                 arm_feature(env, ARM_FEATURE_V8)) {
5813                 mask |= CPSR_IL;
5814                 val |= CPSR_IL;
5815             }
5816         } else {
5817             switch_mode(env, val & CPSR_M);
5818         }
5819     }
5820     mask &= ~CACHED_CPSR_BITS;
5821     env->uncached_cpsr = (env->uncached_cpsr & ~mask) | (val & mask);
5822 }
5823 
5824 /* Sign/zero extend */
5825 uint32_t HELPER(sxtb16)(uint32_t x)
5826 {
5827     uint32_t res;
5828     res = (uint16_t)(int8_t)x;
5829     res |= (uint32_t)(int8_t)(x >> 16) << 16;
5830     return res;
5831 }
5832 
5833 uint32_t HELPER(uxtb16)(uint32_t x)
5834 {
5835     uint32_t res;
5836     res = (uint16_t)(uint8_t)x;
5837     res |= (uint32_t)(uint8_t)(x >> 16) << 16;
5838     return res;
5839 }
5840 
5841 int32_t HELPER(sdiv)(int32_t num, int32_t den)
5842 {
5843     if (den == 0)
5844       return 0;
5845     if (num == INT_MIN && den == -1)
5846       return INT_MIN;
5847     return num / den;
5848 }
5849 
5850 uint32_t HELPER(udiv)(uint32_t num, uint32_t den)
5851 {
5852     if (den == 0)
5853       return 0;
5854     return num / den;
5855 }
5856 
5857 uint32_t HELPER(rbit)(uint32_t x)
5858 {
5859     return revbit32(x);
5860 }
5861 
5862 #if defined(CONFIG_USER_ONLY)
5863 
5864 /* These should probably raise undefined insn exceptions.  */
5865 void HELPER(v7m_msr)(CPUARMState *env, uint32_t reg, uint32_t val)
5866 {
5867     ARMCPU *cpu = arm_env_get_cpu(env);
5868 
5869     cpu_abort(CPU(cpu), "v7m_msr %d\n", reg);
5870 }
5871 
5872 uint32_t HELPER(v7m_mrs)(CPUARMState *env, uint32_t reg)
5873 {
5874     ARMCPU *cpu = arm_env_get_cpu(env);
5875 
5876     cpu_abort(CPU(cpu), "v7m_mrs %d\n", reg);
5877     return 0;
5878 }
5879 
5880 void HELPER(v7m_bxns)(CPUARMState *env, uint32_t dest)
5881 {
5882     /* translate.c should never generate calls here in user-only mode */
5883     g_assert_not_reached();
5884 }
5885 
5886 void switch_mode(CPUARMState *env, int mode)
5887 {
5888     ARMCPU *cpu = arm_env_get_cpu(env);
5889 
5890     if (mode != ARM_CPU_MODE_USR) {
5891         cpu_abort(CPU(cpu), "Tried to switch out of user mode\n");
5892     }
5893 }
5894 
5895 uint32_t arm_phys_excp_target_el(CPUState *cs, uint32_t excp_idx,
5896                                  uint32_t cur_el, bool secure)
5897 {
5898     return 1;
5899 }
5900 
5901 void aarch64_sync_64_to_32(CPUARMState *env)
5902 {
5903     g_assert_not_reached();
5904 }
5905 
5906 #else
5907 
5908 void switch_mode(CPUARMState *env, int mode)
5909 {
5910     int old_mode;
5911     int i;
5912 
5913     old_mode = env->uncached_cpsr & CPSR_M;
5914     if (mode == old_mode)
5915         return;
5916 
5917     if (old_mode == ARM_CPU_MODE_FIQ) {
5918         memcpy (env->fiq_regs, env->regs + 8, 5 * sizeof(uint32_t));
5919         memcpy (env->regs + 8, env->usr_regs, 5 * sizeof(uint32_t));
5920     } else if (mode == ARM_CPU_MODE_FIQ) {
5921         memcpy (env->usr_regs, env->regs + 8, 5 * sizeof(uint32_t));
5922         memcpy (env->regs + 8, env->fiq_regs, 5 * sizeof(uint32_t));
5923     }
5924 
5925     i = bank_number(old_mode);
5926     env->banked_r13[i] = env->regs[13];
5927     env->banked_r14[i] = env->regs[14];
5928     env->banked_spsr[i] = env->spsr;
5929 
5930     i = bank_number(mode);
5931     env->regs[13] = env->banked_r13[i];
5932     env->regs[14] = env->banked_r14[i];
5933     env->spsr = env->banked_spsr[i];
5934 }
5935 
5936 /* Physical Interrupt Target EL Lookup Table
5937  *
5938  * [ From ARM ARM section G1.13.4 (Table G1-15) ]
5939  *
5940  * The below multi-dimensional table is used for looking up the target
5941  * exception level given numerous condition criteria.  Specifically, the
5942  * target EL is based on SCR and HCR routing controls as well as the
5943  * currently executing EL and secure state.
5944  *
5945  *    Dimensions:
5946  *    target_el_table[2][2][2][2][2][4]
5947  *                    |  |  |  |  |  +--- Current EL
5948  *                    |  |  |  |  +------ Non-secure(0)/Secure(1)
5949  *                    |  |  |  +--------- HCR mask override
5950  *                    |  |  +------------ SCR exec state control
5951  *                    |  +--------------- SCR mask override
5952  *                    +------------------ 32-bit(0)/64-bit(1) EL3
5953  *
5954  *    The table values are as such:
5955  *    0-3 = EL0-EL3
5956  *     -1 = Cannot occur
5957  *
5958  * The ARM ARM target EL table includes entries indicating that an "exception
5959  * is not taken".  The two cases where this is applicable are:
5960  *    1) An exception is taken from EL3 but the SCR does not have the exception
5961  *    routed to EL3.
5962  *    2) An exception is taken from EL2 but the HCR does not have the exception
5963  *    routed to EL2.
5964  * In these two cases, the below table contain a target of EL1.  This value is
5965  * returned as it is expected that the consumer of the table data will check
5966  * for "target EL >= current EL" to ensure the exception is not taken.
5967  *
5968  *            SCR     HCR
5969  *         64  EA     AMO                 From
5970  *        BIT IRQ     IMO      Non-secure         Secure
5971  *        EL3 FIQ  RW FMO   EL0 EL1 EL2 EL3   EL0 EL1 EL2 EL3
5972  */
5973 static const int8_t target_el_table[2][2][2][2][2][4] = {
5974     {{{{/* 0   0   0   0 */{ 1,  1,  2, -1 },{ 3, -1, -1,  3 },},
5975        {/* 0   0   0   1 */{ 2,  2,  2, -1 },{ 3, -1, -1,  3 },},},
5976       {{/* 0   0   1   0 */{ 1,  1,  2, -1 },{ 3, -1, -1,  3 },},
5977        {/* 0   0   1   1 */{ 2,  2,  2, -1 },{ 3, -1, -1,  3 },},},},
5978      {{{/* 0   1   0   0 */{ 3,  3,  3, -1 },{ 3, -1, -1,  3 },},
5979        {/* 0   1   0   1 */{ 3,  3,  3, -1 },{ 3, -1, -1,  3 },},},
5980       {{/* 0   1   1   0 */{ 3,  3,  3, -1 },{ 3, -1, -1,  3 },},
5981        {/* 0   1   1   1 */{ 3,  3,  3, -1 },{ 3, -1, -1,  3 },},},},},
5982     {{{{/* 1   0   0   0 */{ 1,  1,  2, -1 },{ 1,  1, -1,  1 },},
5983        {/* 1   0   0   1 */{ 2,  2,  2, -1 },{ 1,  1, -1,  1 },},},
5984       {{/* 1   0   1   0 */{ 1,  1,  1, -1 },{ 1,  1, -1,  1 },},
5985        {/* 1   0   1   1 */{ 2,  2,  2, -1 },{ 1,  1, -1,  1 },},},},
5986      {{{/* 1   1   0   0 */{ 3,  3,  3, -1 },{ 3,  3, -1,  3 },},
5987        {/* 1   1   0   1 */{ 3,  3,  3, -1 },{ 3,  3, -1,  3 },},},
5988       {{/* 1   1   1   0 */{ 3,  3,  3, -1 },{ 3,  3, -1,  3 },},
5989        {/* 1   1   1   1 */{ 3,  3,  3, -1 },{ 3,  3, -1,  3 },},},},},
5990 };
5991 
5992 /*
5993  * Determine the target EL for physical exceptions
5994  */
5995 uint32_t arm_phys_excp_target_el(CPUState *cs, uint32_t excp_idx,
5996                                  uint32_t cur_el, bool secure)
5997 {
5998     CPUARMState *env = cs->env_ptr;
5999     int rw;
6000     int scr;
6001     int hcr;
6002     int target_el;
6003     /* Is the highest EL AArch64? */
6004     int is64 = arm_feature(env, ARM_FEATURE_AARCH64);
6005 
6006     if (arm_feature(env, ARM_FEATURE_EL3)) {
6007         rw = ((env->cp15.scr_el3 & SCR_RW) == SCR_RW);
6008     } else {
6009         /* Either EL2 is the highest EL (and so the EL2 register width
6010          * is given by is64); or there is no EL2 or EL3, in which case
6011          * the value of 'rw' does not affect the table lookup anyway.
6012          */
6013         rw = is64;
6014     }
6015 
6016     switch (excp_idx) {
6017     case EXCP_IRQ:
6018         scr = ((env->cp15.scr_el3 & SCR_IRQ) == SCR_IRQ);
6019         hcr = ((env->cp15.hcr_el2 & HCR_IMO) == HCR_IMO);
6020         break;
6021     case EXCP_FIQ:
6022         scr = ((env->cp15.scr_el3 & SCR_FIQ) == SCR_FIQ);
6023         hcr = ((env->cp15.hcr_el2 & HCR_FMO) == HCR_FMO);
6024         break;
6025     default:
6026         scr = ((env->cp15.scr_el3 & SCR_EA) == SCR_EA);
6027         hcr = ((env->cp15.hcr_el2 & HCR_AMO) == HCR_AMO);
6028         break;
6029     };
6030 
6031     /* If HCR.TGE is set then HCR is treated as being 1 */
6032     hcr |= ((env->cp15.hcr_el2 & HCR_TGE) == HCR_TGE);
6033 
6034     /* Perform a table-lookup for the target EL given the current state */
6035     target_el = target_el_table[is64][scr][rw][hcr][secure][cur_el];
6036 
6037     assert(target_el > 0);
6038 
6039     return target_el;
6040 }
6041 
6042 static void v7m_push(CPUARMState *env, uint32_t val)
6043 {
6044     CPUState *cs = CPU(arm_env_get_cpu(env));
6045 
6046     env->regs[13] -= 4;
6047     stl_phys(cs->as, env->regs[13], val);
6048 }
6049 
6050 static uint32_t v7m_pop(CPUARMState *env)
6051 {
6052     CPUState *cs = CPU(arm_env_get_cpu(env));
6053     uint32_t val;
6054 
6055     val = ldl_phys(cs->as, env->regs[13]);
6056     env->regs[13] += 4;
6057     return val;
6058 }
6059 
6060 /* Return true if we're using the process stack pointer (not the MSP) */
6061 static bool v7m_using_psp(CPUARMState *env)
6062 {
6063     /* Handler mode always uses the main stack; for thread mode
6064      * the CONTROL.SPSEL bit determines the answer.
6065      * Note that in v7M it is not possible to be in Handler mode with
6066      * CONTROL.SPSEL non-zero, but in v8M it is, so we must check both.
6067      */
6068     return !arm_v7m_is_handler_mode(env) &&
6069         env->v7m.control[env->v7m.secure] & R_V7M_CONTROL_SPSEL_MASK;
6070 }
6071 
6072 /* Switch to V7M main or process stack pointer.  */
6073 static void switch_v7m_sp(CPUARMState *env, bool new_spsel)
6074 {
6075     uint32_t tmp;
6076     uint32_t old_control = env->v7m.control[env->v7m.secure];
6077     bool old_spsel = old_control & R_V7M_CONTROL_SPSEL_MASK;
6078 
6079     if (old_spsel != new_spsel) {
6080         tmp = env->v7m.other_sp;
6081         env->v7m.other_sp = env->regs[13];
6082         env->regs[13] = tmp;
6083 
6084         env->v7m.control[env->v7m.secure] = deposit32(old_control,
6085                                      R_V7M_CONTROL_SPSEL_SHIFT,
6086                                      R_V7M_CONTROL_SPSEL_LENGTH, new_spsel);
6087     }
6088 }
6089 
6090 /* Switch M profile security state between NS and S */
6091 static void switch_v7m_security_state(CPUARMState *env, bool new_secstate)
6092 {
6093     uint32_t new_ss_msp, new_ss_psp;
6094 
6095     if (env->v7m.secure == new_secstate) {
6096         return;
6097     }
6098 
6099     /* All the banked state is accessed by looking at env->v7m.secure
6100      * except for the stack pointer; rearrange the SP appropriately.
6101      */
6102     new_ss_msp = env->v7m.other_ss_msp;
6103     new_ss_psp = env->v7m.other_ss_psp;
6104 
6105     if (v7m_using_psp(env)) {
6106         env->v7m.other_ss_psp = env->regs[13];
6107         env->v7m.other_ss_msp = env->v7m.other_sp;
6108     } else {
6109         env->v7m.other_ss_msp = env->regs[13];
6110         env->v7m.other_ss_psp = env->v7m.other_sp;
6111     }
6112 
6113     env->v7m.secure = new_secstate;
6114 
6115     if (v7m_using_psp(env)) {
6116         env->regs[13] = new_ss_psp;
6117         env->v7m.other_sp = new_ss_msp;
6118     } else {
6119         env->regs[13] = new_ss_msp;
6120         env->v7m.other_sp = new_ss_psp;
6121     }
6122 }
6123 
6124 void HELPER(v7m_bxns)(CPUARMState *env, uint32_t dest)
6125 {
6126     /* Handle v7M BXNS:
6127      *  - if the return value is a magic value, do exception return (like BX)
6128      *  - otherwise bit 0 of the return value is the target security state
6129      */
6130     if (dest >= 0xff000000) {
6131         /* This is an exception return magic value; put it where
6132          * do_v7m_exception_exit() expects and raise EXCEPTION_EXIT.
6133          * Note that if we ever add gen_ss_advance() singlestep support to
6134          * M profile this should count as an "instruction execution complete"
6135          * event (compare gen_bx_excret_final_code()).
6136          */
6137         env->regs[15] = dest & ~1;
6138         env->thumb = dest & 1;
6139         HELPER(exception_internal)(env, EXCP_EXCEPTION_EXIT);
6140         /* notreached */
6141     }
6142 
6143     /* translate.c should have made BXNS UNDEF unless we're secure */
6144     assert(env->v7m.secure);
6145 
6146     switch_v7m_security_state(env, dest & 1);
6147     env->thumb = 1;
6148     env->regs[15] = dest & ~1;
6149 }
6150 
6151 static uint32_t arm_v7m_load_vector(ARMCPU *cpu)
6152 {
6153     CPUState *cs = CPU(cpu);
6154     CPUARMState *env = &cpu->env;
6155     MemTxResult result;
6156     hwaddr vec = env->v7m.vecbase[env->v7m.secure] + env->v7m.exception * 4;
6157     uint32_t addr;
6158 
6159     addr = address_space_ldl(cs->as, vec,
6160                              MEMTXATTRS_UNSPECIFIED, &result);
6161     if (result != MEMTX_OK) {
6162         /* Architecturally this should cause a HardFault setting HSFR.VECTTBL,
6163          * which would then be immediately followed by our failing to load
6164          * the entry vector for that HardFault, which is a Lockup case.
6165          * Since we don't model Lockup, we just report this guest error
6166          * via cpu_abort().
6167          */
6168         cpu_abort(cs, "Failed to read from exception vector table "
6169                   "entry %08x\n", (unsigned)vec);
6170     }
6171     return addr;
6172 }
6173 
6174 static void v7m_exception_taken(ARMCPU *cpu, uint32_t lr)
6175 {
6176     /* Do the "take the exception" parts of exception entry,
6177      * but not the pushing of state to the stack. This is
6178      * similar to the pseudocode ExceptionTaken() function.
6179      */
6180     CPUARMState *env = &cpu->env;
6181     uint32_t addr;
6182 
6183     armv7m_nvic_acknowledge_irq(env->nvic);
6184     switch_v7m_sp(env, 0);
6185     arm_clear_exclusive(env);
6186     /* Clear IT bits */
6187     env->condexec_bits = 0;
6188     env->regs[14] = lr;
6189     addr = arm_v7m_load_vector(cpu);
6190     env->regs[15] = addr & 0xfffffffe;
6191     env->thumb = addr & 1;
6192 }
6193 
6194 static void v7m_push_stack(ARMCPU *cpu)
6195 {
6196     /* Do the "set up stack frame" part of exception entry,
6197      * similar to pseudocode PushStack().
6198      */
6199     CPUARMState *env = &cpu->env;
6200     uint32_t xpsr = xpsr_read(env);
6201 
6202     /* Align stack pointer if the guest wants that */
6203     if ((env->regs[13] & 4) &&
6204         (env->v7m.ccr[env->v7m.secure] & R_V7M_CCR_STKALIGN_MASK)) {
6205         env->regs[13] -= 4;
6206         xpsr |= XPSR_SPREALIGN;
6207     }
6208     /* Switch to the handler mode.  */
6209     v7m_push(env, xpsr);
6210     v7m_push(env, env->regs[15]);
6211     v7m_push(env, env->regs[14]);
6212     v7m_push(env, env->regs[12]);
6213     v7m_push(env, env->regs[3]);
6214     v7m_push(env, env->regs[2]);
6215     v7m_push(env, env->regs[1]);
6216     v7m_push(env, env->regs[0]);
6217 }
6218 
6219 static void do_v7m_exception_exit(ARMCPU *cpu)
6220 {
6221     CPUARMState *env = &cpu->env;
6222     uint32_t excret;
6223     uint32_t xpsr;
6224     bool ufault = false;
6225     bool return_to_sp_process = false;
6226     bool return_to_handler = false;
6227     bool rettobase = false;
6228     bool exc_secure = false;
6229 
6230     /* We can only get here from an EXCP_EXCEPTION_EXIT, and
6231      * gen_bx_excret() enforces the architectural rule
6232      * that jumps to magic addresses don't have magic behaviour unless
6233      * we're in Handler mode (compare pseudocode BXWritePC()).
6234      */
6235     assert(arm_v7m_is_handler_mode(env));
6236 
6237     /* In the spec pseudocode ExceptionReturn() is called directly
6238      * from BXWritePC() and gets the full target PC value including
6239      * bit zero. In QEMU's implementation we treat it as a normal
6240      * jump-to-register (which is then caught later on), and so split
6241      * the target value up between env->regs[15] and env->thumb in
6242      * gen_bx(). Reconstitute it.
6243      */
6244     excret = env->regs[15];
6245     if (env->thumb) {
6246         excret |= 1;
6247     }
6248 
6249     qemu_log_mask(CPU_LOG_INT, "Exception return: magic PC %" PRIx32
6250                   " previous exception %d\n",
6251                   excret, env->v7m.exception);
6252 
6253     if ((excret & R_V7M_EXCRET_RES1_MASK) != R_V7M_EXCRET_RES1_MASK) {
6254         qemu_log_mask(LOG_GUEST_ERROR, "M profile: zero high bits in exception "
6255                       "exit PC value 0x%" PRIx32 " are UNPREDICTABLE\n",
6256                       excret);
6257     }
6258 
6259     if (env->v7m.exception != ARMV7M_EXCP_NMI) {
6260         /* Auto-clear FAULTMASK on return from other than NMI.
6261          * If the security extension is implemented then this only
6262          * happens if the raw execution priority is >= 0; the
6263          * value of the ES bit in the exception return value indicates
6264          * which security state's faultmask to clear. (v8M ARM ARM R_KBNF.)
6265          */
6266         if (arm_feature(env, ARM_FEATURE_M_SECURITY)) {
6267             exc_secure = excret & R_V7M_EXCRET_ES_MASK;
6268             if (armv7m_nvic_raw_execution_priority(env->nvic) >= 0) {
6269                 env->v7m.faultmask[exc_secure] = 0;
6270             }
6271         } else {
6272             env->v7m.faultmask[M_REG_NS] = 0;
6273         }
6274     }
6275 
6276     switch (armv7m_nvic_complete_irq(env->nvic, env->v7m.exception,
6277                                      exc_secure)) {
6278     case -1:
6279         /* attempt to exit an exception that isn't active */
6280         ufault = true;
6281         break;
6282     case 0:
6283         /* still an irq active now */
6284         break;
6285     case 1:
6286         /* we returned to base exception level, no nesting.
6287          * (In the pseudocode this is written using "NestedActivation != 1"
6288          * where we have 'rettobase == false'.)
6289          */
6290         rettobase = true;
6291         break;
6292     default:
6293         g_assert_not_reached();
6294     }
6295 
6296     switch (excret & 0xf) {
6297     case 1: /* Return to Handler */
6298         return_to_handler = true;
6299         break;
6300     case 13: /* Return to Thread using Process stack */
6301         return_to_sp_process = true;
6302         /* fall through */
6303     case 9: /* Return to Thread using Main stack */
6304         if (!rettobase &&
6305             !(env->v7m.ccr[env->v7m.secure] & R_V7M_CCR_NONBASETHRDENA_MASK)) {
6306             ufault = true;
6307         }
6308         break;
6309     default:
6310         ufault = true;
6311     }
6312 
6313     if (ufault) {
6314         /* Bad exception return: instead of popping the exception
6315          * stack, directly take a usage fault on the current stack.
6316          */
6317         env->v7m.cfsr[env->v7m.secure] |= R_V7M_CFSR_INVPC_MASK;
6318         armv7m_nvic_set_pending(env->nvic, ARMV7M_EXCP_USAGE, env->v7m.secure);
6319         v7m_exception_taken(cpu, excret);
6320         qemu_log_mask(CPU_LOG_INT, "...taking UsageFault on existing "
6321                       "stackframe: failed exception return integrity check\n");
6322         return;
6323     }
6324 
6325     /* Switch to the target stack.  */
6326     switch_v7m_sp(env, return_to_sp_process);
6327     /* Pop registers.  */
6328     env->regs[0] = v7m_pop(env);
6329     env->regs[1] = v7m_pop(env);
6330     env->regs[2] = v7m_pop(env);
6331     env->regs[3] = v7m_pop(env);
6332     env->regs[12] = v7m_pop(env);
6333     env->regs[14] = v7m_pop(env);
6334     env->regs[15] = v7m_pop(env);
6335     if (env->regs[15] & 1) {
6336         qemu_log_mask(LOG_GUEST_ERROR,
6337                       "M profile return from interrupt with misaligned "
6338                       "PC is UNPREDICTABLE\n");
6339         /* Actual hardware seems to ignore the lsbit, and there are several
6340          * RTOSes out there which incorrectly assume the r15 in the stack
6341          * frame should be a Thumb-style "lsbit indicates ARM/Thumb" value.
6342          */
6343         env->regs[15] &= ~1U;
6344     }
6345     xpsr = v7m_pop(env);
6346     xpsr_write(env, xpsr, ~XPSR_SPREALIGN);
6347     /* Undo stack alignment.  */
6348     if (xpsr & XPSR_SPREALIGN) {
6349         env->regs[13] |= 4;
6350     }
6351 
6352     /* The restored xPSR exception field will be zero if we're
6353      * resuming in Thread mode. If that doesn't match what the
6354      * exception return excret specified then this is a UsageFault.
6355      */
6356     if (return_to_handler != arm_v7m_is_handler_mode(env)) {
6357         /* Take an INVPC UsageFault by pushing the stack again.
6358          * TODO: the v8M version of this code should target the
6359          * background state for this exception.
6360          */
6361         armv7m_nvic_set_pending(env->nvic, ARMV7M_EXCP_USAGE, false);
6362         env->v7m.cfsr[env->v7m.secure] |= R_V7M_CFSR_INVPC_MASK;
6363         v7m_push_stack(cpu);
6364         v7m_exception_taken(cpu, excret);
6365         qemu_log_mask(CPU_LOG_INT, "...taking UsageFault on new stackframe: "
6366                       "failed exception return integrity check\n");
6367         return;
6368     }
6369 
6370     /* Otherwise, we have a successful exception exit. */
6371     arm_clear_exclusive(env);
6372     qemu_log_mask(CPU_LOG_INT, "...successful exception return\n");
6373 }
6374 
6375 static void arm_log_exception(int idx)
6376 {
6377     if (qemu_loglevel_mask(CPU_LOG_INT)) {
6378         const char *exc = NULL;
6379         static const char * const excnames[] = {
6380             [EXCP_UDEF] = "Undefined Instruction",
6381             [EXCP_SWI] = "SVC",
6382             [EXCP_PREFETCH_ABORT] = "Prefetch Abort",
6383             [EXCP_DATA_ABORT] = "Data Abort",
6384             [EXCP_IRQ] = "IRQ",
6385             [EXCP_FIQ] = "FIQ",
6386             [EXCP_BKPT] = "Breakpoint",
6387             [EXCP_EXCEPTION_EXIT] = "QEMU v7M exception exit",
6388             [EXCP_KERNEL_TRAP] = "QEMU intercept of kernel commpage",
6389             [EXCP_HVC] = "Hypervisor Call",
6390             [EXCP_HYP_TRAP] = "Hypervisor Trap",
6391             [EXCP_SMC] = "Secure Monitor Call",
6392             [EXCP_VIRQ] = "Virtual IRQ",
6393             [EXCP_VFIQ] = "Virtual FIQ",
6394             [EXCP_SEMIHOST] = "Semihosting call",
6395             [EXCP_NOCP] = "v7M NOCP UsageFault",
6396             [EXCP_INVSTATE] = "v7M INVSTATE UsageFault",
6397         };
6398 
6399         if (idx >= 0 && idx < ARRAY_SIZE(excnames)) {
6400             exc = excnames[idx];
6401         }
6402         if (!exc) {
6403             exc = "unknown";
6404         }
6405         qemu_log_mask(CPU_LOG_INT, "Taking exception %d [%s]\n", idx, exc);
6406     }
6407 }
6408 
6409 void arm_v7m_cpu_do_interrupt(CPUState *cs)
6410 {
6411     ARMCPU *cpu = ARM_CPU(cs);
6412     CPUARMState *env = &cpu->env;
6413     uint32_t lr;
6414 
6415     arm_log_exception(cs->exception_index);
6416 
6417     /* For exceptions we just mark as pending on the NVIC, and let that
6418        handle it.  */
6419     switch (cs->exception_index) {
6420     case EXCP_UDEF:
6421         armv7m_nvic_set_pending(env->nvic, ARMV7M_EXCP_USAGE, env->v7m.secure);
6422         env->v7m.cfsr[env->v7m.secure] |= R_V7M_CFSR_UNDEFINSTR_MASK;
6423         break;
6424     case EXCP_NOCP:
6425         armv7m_nvic_set_pending(env->nvic, ARMV7M_EXCP_USAGE, env->v7m.secure);
6426         env->v7m.cfsr[env->v7m.secure] |= R_V7M_CFSR_NOCP_MASK;
6427         break;
6428     case EXCP_INVSTATE:
6429         armv7m_nvic_set_pending(env->nvic, ARMV7M_EXCP_USAGE, env->v7m.secure);
6430         env->v7m.cfsr[env->v7m.secure] |= R_V7M_CFSR_INVSTATE_MASK;
6431         break;
6432     case EXCP_SWI:
6433         /* The PC already points to the next instruction.  */
6434         armv7m_nvic_set_pending(env->nvic, ARMV7M_EXCP_SVC, env->v7m.secure);
6435         break;
6436     case EXCP_PREFETCH_ABORT:
6437     case EXCP_DATA_ABORT:
6438         /* Note that for M profile we don't have a guest facing FSR, but
6439          * the env->exception.fsr will be populated by the code that
6440          * raises the fault, in the A profile short-descriptor format.
6441          */
6442         switch (env->exception.fsr & 0xf) {
6443         case 0x8: /* External Abort */
6444             switch (cs->exception_index) {
6445             case EXCP_PREFETCH_ABORT:
6446                 env->v7m.cfsr[M_REG_NS] |= R_V7M_CFSR_IBUSERR_MASK;
6447                 qemu_log_mask(CPU_LOG_INT, "...with CFSR.IBUSERR\n");
6448                 break;
6449             case EXCP_DATA_ABORT:
6450                 env->v7m.cfsr[M_REG_NS] |=
6451                     (R_V7M_CFSR_PRECISERR_MASK | R_V7M_CFSR_BFARVALID_MASK);
6452                 env->v7m.bfar = env->exception.vaddress;
6453                 qemu_log_mask(CPU_LOG_INT,
6454                               "...with CFSR.PRECISERR and BFAR 0x%x\n",
6455                               env->v7m.bfar);
6456                 break;
6457             }
6458             armv7m_nvic_set_pending(env->nvic, ARMV7M_EXCP_BUS, false);
6459             break;
6460         default:
6461             /* All other FSR values are either MPU faults or "can't happen
6462              * for M profile" cases.
6463              */
6464             switch (cs->exception_index) {
6465             case EXCP_PREFETCH_ABORT:
6466                 env->v7m.cfsr[env->v7m.secure] |= R_V7M_CFSR_IACCVIOL_MASK;
6467                 qemu_log_mask(CPU_LOG_INT, "...with CFSR.IACCVIOL\n");
6468                 break;
6469             case EXCP_DATA_ABORT:
6470                 env->v7m.cfsr[env->v7m.secure] |=
6471                     (R_V7M_CFSR_DACCVIOL_MASK | R_V7M_CFSR_MMARVALID_MASK);
6472                 env->v7m.mmfar[env->v7m.secure] = env->exception.vaddress;
6473                 qemu_log_mask(CPU_LOG_INT,
6474                               "...with CFSR.DACCVIOL and MMFAR 0x%x\n",
6475                               env->v7m.mmfar[env->v7m.secure]);
6476                 break;
6477             }
6478             armv7m_nvic_set_pending(env->nvic, ARMV7M_EXCP_MEM,
6479                                     env->v7m.secure);
6480             break;
6481         }
6482         break;
6483     case EXCP_BKPT:
6484         if (semihosting_enabled()) {
6485             int nr;
6486             nr = arm_lduw_code(env, env->regs[15], arm_sctlr_b(env)) & 0xff;
6487             if (nr == 0xab) {
6488                 env->regs[15] += 2;
6489                 qemu_log_mask(CPU_LOG_INT,
6490                               "...handling as semihosting call 0x%x\n",
6491                               env->regs[0]);
6492                 env->regs[0] = do_arm_semihosting(env);
6493                 return;
6494             }
6495         }
6496         armv7m_nvic_set_pending(env->nvic, ARMV7M_EXCP_DEBUG, false);
6497         break;
6498     case EXCP_IRQ:
6499         break;
6500     case EXCP_EXCEPTION_EXIT:
6501         do_v7m_exception_exit(cpu);
6502         return;
6503     default:
6504         cpu_abort(cs, "Unhandled exception 0x%x\n", cs->exception_index);
6505         return; /* Never happens.  Keep compiler happy.  */
6506     }
6507 
6508     lr = R_V7M_EXCRET_RES1_MASK |
6509         R_V7M_EXCRET_S_MASK |
6510         R_V7M_EXCRET_DCRS_MASK |
6511         R_V7M_EXCRET_FTYPE_MASK |
6512         R_V7M_EXCRET_ES_MASK;
6513     if (env->v7m.control[env->v7m.secure] & R_V7M_CONTROL_SPSEL_MASK) {
6514         lr |= R_V7M_EXCRET_SPSEL_MASK;
6515     }
6516     if (!arm_v7m_is_handler_mode(env)) {
6517         lr |= R_V7M_EXCRET_MODE_MASK;
6518     }
6519 
6520     v7m_push_stack(cpu);
6521     v7m_exception_taken(cpu, lr);
6522     qemu_log_mask(CPU_LOG_INT, "... as %d\n", env->v7m.exception);
6523 }
6524 
6525 /* Function used to synchronize QEMU's AArch64 register set with AArch32
6526  * register set.  This is necessary when switching between AArch32 and AArch64
6527  * execution state.
6528  */
6529 void aarch64_sync_32_to_64(CPUARMState *env)
6530 {
6531     int i;
6532     uint32_t mode = env->uncached_cpsr & CPSR_M;
6533 
6534     /* We can blanket copy R[0:7] to X[0:7] */
6535     for (i = 0; i < 8; i++) {
6536         env->xregs[i] = env->regs[i];
6537     }
6538 
6539     /* Unless we are in FIQ mode, x8-x12 come from the user registers r8-r12.
6540      * Otherwise, they come from the banked user regs.
6541      */
6542     if (mode == ARM_CPU_MODE_FIQ) {
6543         for (i = 8; i < 13; i++) {
6544             env->xregs[i] = env->usr_regs[i - 8];
6545         }
6546     } else {
6547         for (i = 8; i < 13; i++) {
6548             env->xregs[i] = env->regs[i];
6549         }
6550     }
6551 
6552     /* Registers x13-x23 are the various mode SP and FP registers. Registers
6553      * r13 and r14 are only copied if we are in that mode, otherwise we copy
6554      * from the mode banked register.
6555      */
6556     if (mode == ARM_CPU_MODE_USR || mode == ARM_CPU_MODE_SYS) {
6557         env->xregs[13] = env->regs[13];
6558         env->xregs[14] = env->regs[14];
6559     } else {
6560         env->xregs[13] = env->banked_r13[bank_number(ARM_CPU_MODE_USR)];
6561         /* HYP is an exception in that it is copied from r14 */
6562         if (mode == ARM_CPU_MODE_HYP) {
6563             env->xregs[14] = env->regs[14];
6564         } else {
6565             env->xregs[14] = env->banked_r14[bank_number(ARM_CPU_MODE_USR)];
6566         }
6567     }
6568 
6569     if (mode == ARM_CPU_MODE_HYP) {
6570         env->xregs[15] = env->regs[13];
6571     } else {
6572         env->xregs[15] = env->banked_r13[bank_number(ARM_CPU_MODE_HYP)];
6573     }
6574 
6575     if (mode == ARM_CPU_MODE_IRQ) {
6576         env->xregs[16] = env->regs[14];
6577         env->xregs[17] = env->regs[13];
6578     } else {
6579         env->xregs[16] = env->banked_r14[bank_number(ARM_CPU_MODE_IRQ)];
6580         env->xregs[17] = env->banked_r13[bank_number(ARM_CPU_MODE_IRQ)];
6581     }
6582 
6583     if (mode == ARM_CPU_MODE_SVC) {
6584         env->xregs[18] = env->regs[14];
6585         env->xregs[19] = env->regs[13];
6586     } else {
6587         env->xregs[18] = env->banked_r14[bank_number(ARM_CPU_MODE_SVC)];
6588         env->xregs[19] = env->banked_r13[bank_number(ARM_CPU_MODE_SVC)];
6589     }
6590 
6591     if (mode == ARM_CPU_MODE_ABT) {
6592         env->xregs[20] = env->regs[14];
6593         env->xregs[21] = env->regs[13];
6594     } else {
6595         env->xregs[20] = env->banked_r14[bank_number(ARM_CPU_MODE_ABT)];
6596         env->xregs[21] = env->banked_r13[bank_number(ARM_CPU_MODE_ABT)];
6597     }
6598 
6599     if (mode == ARM_CPU_MODE_UND) {
6600         env->xregs[22] = env->regs[14];
6601         env->xregs[23] = env->regs[13];
6602     } else {
6603         env->xregs[22] = env->banked_r14[bank_number(ARM_CPU_MODE_UND)];
6604         env->xregs[23] = env->banked_r13[bank_number(ARM_CPU_MODE_UND)];
6605     }
6606 
6607     /* Registers x24-x30 are mapped to r8-r14 in FIQ mode.  If we are in FIQ
6608      * mode, then we can copy from r8-r14.  Otherwise, we copy from the
6609      * FIQ bank for r8-r14.
6610      */
6611     if (mode == ARM_CPU_MODE_FIQ) {
6612         for (i = 24; i < 31; i++) {
6613             env->xregs[i] = env->regs[i - 16];   /* X[24:30] <- R[8:14] */
6614         }
6615     } else {
6616         for (i = 24; i < 29; i++) {
6617             env->xregs[i] = env->fiq_regs[i - 24];
6618         }
6619         env->xregs[29] = env->banked_r13[bank_number(ARM_CPU_MODE_FIQ)];
6620         env->xregs[30] = env->banked_r14[bank_number(ARM_CPU_MODE_FIQ)];
6621     }
6622 
6623     env->pc = env->regs[15];
6624 }
6625 
6626 /* Function used to synchronize QEMU's AArch32 register set with AArch64
6627  * register set.  This is necessary when switching between AArch32 and AArch64
6628  * execution state.
6629  */
6630 void aarch64_sync_64_to_32(CPUARMState *env)
6631 {
6632     int i;
6633     uint32_t mode = env->uncached_cpsr & CPSR_M;
6634 
6635     /* We can blanket copy X[0:7] to R[0:7] */
6636     for (i = 0; i < 8; i++) {
6637         env->regs[i] = env->xregs[i];
6638     }
6639 
6640     /* Unless we are in FIQ mode, r8-r12 come from the user registers x8-x12.
6641      * Otherwise, we copy x8-x12 into the banked user regs.
6642      */
6643     if (mode == ARM_CPU_MODE_FIQ) {
6644         for (i = 8; i < 13; i++) {
6645             env->usr_regs[i - 8] = env->xregs[i];
6646         }
6647     } else {
6648         for (i = 8; i < 13; i++) {
6649             env->regs[i] = env->xregs[i];
6650         }
6651     }
6652 
6653     /* Registers r13 & r14 depend on the current mode.
6654      * If we are in a given mode, we copy the corresponding x registers to r13
6655      * and r14.  Otherwise, we copy the x register to the banked r13 and r14
6656      * for the mode.
6657      */
6658     if (mode == ARM_CPU_MODE_USR || mode == ARM_CPU_MODE_SYS) {
6659         env->regs[13] = env->xregs[13];
6660         env->regs[14] = env->xregs[14];
6661     } else {
6662         env->banked_r13[bank_number(ARM_CPU_MODE_USR)] = env->xregs[13];
6663 
6664         /* HYP is an exception in that it does not have its own banked r14 but
6665          * shares the USR r14
6666          */
6667         if (mode == ARM_CPU_MODE_HYP) {
6668             env->regs[14] = env->xregs[14];
6669         } else {
6670             env->banked_r14[bank_number(ARM_CPU_MODE_USR)] = env->xregs[14];
6671         }
6672     }
6673 
6674     if (mode == ARM_CPU_MODE_HYP) {
6675         env->regs[13] = env->xregs[15];
6676     } else {
6677         env->banked_r13[bank_number(ARM_CPU_MODE_HYP)] = env->xregs[15];
6678     }
6679 
6680     if (mode == ARM_CPU_MODE_IRQ) {
6681         env->regs[14] = env->xregs[16];
6682         env->regs[13] = env->xregs[17];
6683     } else {
6684         env->banked_r14[bank_number(ARM_CPU_MODE_IRQ)] = env->xregs[16];
6685         env->banked_r13[bank_number(ARM_CPU_MODE_IRQ)] = env->xregs[17];
6686     }
6687 
6688     if (mode == ARM_CPU_MODE_SVC) {
6689         env->regs[14] = env->xregs[18];
6690         env->regs[13] = env->xregs[19];
6691     } else {
6692         env->banked_r14[bank_number(ARM_CPU_MODE_SVC)] = env->xregs[18];
6693         env->banked_r13[bank_number(ARM_CPU_MODE_SVC)] = env->xregs[19];
6694     }
6695 
6696     if (mode == ARM_CPU_MODE_ABT) {
6697         env->regs[14] = env->xregs[20];
6698         env->regs[13] = env->xregs[21];
6699     } else {
6700         env->banked_r14[bank_number(ARM_CPU_MODE_ABT)] = env->xregs[20];
6701         env->banked_r13[bank_number(ARM_CPU_MODE_ABT)] = env->xregs[21];
6702     }
6703 
6704     if (mode == ARM_CPU_MODE_UND) {
6705         env->regs[14] = env->xregs[22];
6706         env->regs[13] = env->xregs[23];
6707     } else {
6708         env->banked_r14[bank_number(ARM_CPU_MODE_UND)] = env->xregs[22];
6709         env->banked_r13[bank_number(ARM_CPU_MODE_UND)] = env->xregs[23];
6710     }
6711 
6712     /* Registers x24-x30 are mapped to r8-r14 in FIQ mode.  If we are in FIQ
6713      * mode, then we can copy to r8-r14.  Otherwise, we copy to the
6714      * FIQ bank for r8-r14.
6715      */
6716     if (mode == ARM_CPU_MODE_FIQ) {
6717         for (i = 24; i < 31; i++) {
6718             env->regs[i - 16] = env->xregs[i];   /* X[24:30] -> R[8:14] */
6719         }
6720     } else {
6721         for (i = 24; i < 29; i++) {
6722             env->fiq_regs[i - 24] = env->xregs[i];
6723         }
6724         env->banked_r13[bank_number(ARM_CPU_MODE_FIQ)] = env->xregs[29];
6725         env->banked_r14[bank_number(ARM_CPU_MODE_FIQ)] = env->xregs[30];
6726     }
6727 
6728     env->regs[15] = env->pc;
6729 }
6730 
6731 static void arm_cpu_do_interrupt_aarch32(CPUState *cs)
6732 {
6733     ARMCPU *cpu = ARM_CPU(cs);
6734     CPUARMState *env = &cpu->env;
6735     uint32_t addr;
6736     uint32_t mask;
6737     int new_mode;
6738     uint32_t offset;
6739     uint32_t moe;
6740 
6741     /* If this is a debug exception we must update the DBGDSCR.MOE bits */
6742     switch (env->exception.syndrome >> ARM_EL_EC_SHIFT) {
6743     case EC_BREAKPOINT:
6744     case EC_BREAKPOINT_SAME_EL:
6745         moe = 1;
6746         break;
6747     case EC_WATCHPOINT:
6748     case EC_WATCHPOINT_SAME_EL:
6749         moe = 10;
6750         break;
6751     case EC_AA32_BKPT:
6752         moe = 3;
6753         break;
6754     case EC_VECTORCATCH:
6755         moe = 5;
6756         break;
6757     default:
6758         moe = 0;
6759         break;
6760     }
6761 
6762     if (moe) {
6763         env->cp15.mdscr_el1 = deposit64(env->cp15.mdscr_el1, 2, 4, moe);
6764     }
6765 
6766     /* TODO: Vectored interrupt controller.  */
6767     switch (cs->exception_index) {
6768     case EXCP_UDEF:
6769         new_mode = ARM_CPU_MODE_UND;
6770         addr = 0x04;
6771         mask = CPSR_I;
6772         if (env->thumb)
6773             offset = 2;
6774         else
6775             offset = 4;
6776         break;
6777     case EXCP_SWI:
6778         new_mode = ARM_CPU_MODE_SVC;
6779         addr = 0x08;
6780         mask = CPSR_I;
6781         /* The PC already points to the next instruction.  */
6782         offset = 0;
6783         break;
6784     case EXCP_BKPT:
6785         env->exception.fsr = 2;
6786         /* Fall through to prefetch abort.  */
6787     case EXCP_PREFETCH_ABORT:
6788         A32_BANKED_CURRENT_REG_SET(env, ifsr, env->exception.fsr);
6789         A32_BANKED_CURRENT_REG_SET(env, ifar, env->exception.vaddress);
6790         qemu_log_mask(CPU_LOG_INT, "...with IFSR 0x%x IFAR 0x%x\n",
6791                       env->exception.fsr, (uint32_t)env->exception.vaddress);
6792         new_mode = ARM_CPU_MODE_ABT;
6793         addr = 0x0c;
6794         mask = CPSR_A | CPSR_I;
6795         offset = 4;
6796         break;
6797     case EXCP_DATA_ABORT:
6798         A32_BANKED_CURRENT_REG_SET(env, dfsr, env->exception.fsr);
6799         A32_BANKED_CURRENT_REG_SET(env, dfar, env->exception.vaddress);
6800         qemu_log_mask(CPU_LOG_INT, "...with DFSR 0x%x DFAR 0x%x\n",
6801                       env->exception.fsr,
6802                       (uint32_t)env->exception.vaddress);
6803         new_mode = ARM_CPU_MODE_ABT;
6804         addr = 0x10;
6805         mask = CPSR_A | CPSR_I;
6806         offset = 8;
6807         break;
6808     case EXCP_IRQ:
6809         new_mode = ARM_CPU_MODE_IRQ;
6810         addr = 0x18;
6811         /* Disable IRQ and imprecise data aborts.  */
6812         mask = CPSR_A | CPSR_I;
6813         offset = 4;
6814         if (env->cp15.scr_el3 & SCR_IRQ) {
6815             /* IRQ routed to monitor mode */
6816             new_mode = ARM_CPU_MODE_MON;
6817             mask |= CPSR_F;
6818         }
6819         break;
6820     case EXCP_FIQ:
6821         new_mode = ARM_CPU_MODE_FIQ;
6822         addr = 0x1c;
6823         /* Disable FIQ, IRQ and imprecise data aborts.  */
6824         mask = CPSR_A | CPSR_I | CPSR_F;
6825         if (env->cp15.scr_el3 & SCR_FIQ) {
6826             /* FIQ routed to monitor mode */
6827             new_mode = ARM_CPU_MODE_MON;
6828         }
6829         offset = 4;
6830         break;
6831     case EXCP_VIRQ:
6832         new_mode = ARM_CPU_MODE_IRQ;
6833         addr = 0x18;
6834         /* Disable IRQ and imprecise data aborts.  */
6835         mask = CPSR_A | CPSR_I;
6836         offset = 4;
6837         break;
6838     case EXCP_VFIQ:
6839         new_mode = ARM_CPU_MODE_FIQ;
6840         addr = 0x1c;
6841         /* Disable FIQ, IRQ and imprecise data aborts.  */
6842         mask = CPSR_A | CPSR_I | CPSR_F;
6843         offset = 4;
6844         break;
6845     case EXCP_SMC:
6846         new_mode = ARM_CPU_MODE_MON;
6847         addr = 0x08;
6848         mask = CPSR_A | CPSR_I | CPSR_F;
6849         offset = 0;
6850         break;
6851     default:
6852         cpu_abort(cs, "Unhandled exception 0x%x\n", cs->exception_index);
6853         return; /* Never happens.  Keep compiler happy.  */
6854     }
6855 
6856     if (new_mode == ARM_CPU_MODE_MON) {
6857         addr += env->cp15.mvbar;
6858     } else if (A32_BANKED_CURRENT_REG_GET(env, sctlr) & SCTLR_V) {
6859         /* High vectors. When enabled, base address cannot be remapped. */
6860         addr += 0xffff0000;
6861     } else {
6862         /* ARM v7 architectures provide a vector base address register to remap
6863          * the interrupt vector table.
6864          * This register is only followed in non-monitor mode, and is banked.
6865          * Note: only bits 31:5 are valid.
6866          */
6867         addr += A32_BANKED_CURRENT_REG_GET(env, vbar);
6868     }
6869 
6870     if ((env->uncached_cpsr & CPSR_M) == ARM_CPU_MODE_MON) {
6871         env->cp15.scr_el3 &= ~SCR_NS;
6872     }
6873 
6874     switch_mode (env, new_mode);
6875     /* For exceptions taken to AArch32 we must clear the SS bit in both
6876      * PSTATE and in the old-state value we save to SPSR_<mode>, so zero it now.
6877      */
6878     env->uncached_cpsr &= ~PSTATE_SS;
6879     env->spsr = cpsr_read(env);
6880     /* Clear IT bits.  */
6881     env->condexec_bits = 0;
6882     /* Switch to the new mode, and to the correct instruction set.  */
6883     env->uncached_cpsr = (env->uncached_cpsr & ~CPSR_M) | new_mode;
6884     /* Set new mode endianness */
6885     env->uncached_cpsr &= ~CPSR_E;
6886     if (env->cp15.sctlr_el[arm_current_el(env)] & SCTLR_EE) {
6887         env->uncached_cpsr |= CPSR_E;
6888     }
6889     env->daif |= mask;
6890     /* this is a lie, as the was no c1_sys on V4T/V5, but who cares
6891      * and we should just guard the thumb mode on V4 */
6892     if (arm_feature(env, ARM_FEATURE_V4T)) {
6893         env->thumb = (A32_BANKED_CURRENT_REG_GET(env, sctlr) & SCTLR_TE) != 0;
6894     }
6895     env->regs[14] = env->regs[15] + offset;
6896     env->regs[15] = addr;
6897 }
6898 
6899 /* Handle exception entry to a target EL which is using AArch64 */
6900 static void arm_cpu_do_interrupt_aarch64(CPUState *cs)
6901 {
6902     ARMCPU *cpu = ARM_CPU(cs);
6903     CPUARMState *env = &cpu->env;
6904     unsigned int new_el = env->exception.target_el;
6905     target_ulong addr = env->cp15.vbar_el[new_el];
6906     unsigned int new_mode = aarch64_pstate_mode(new_el, true);
6907 
6908     if (arm_current_el(env) < new_el) {
6909         /* Entry vector offset depends on whether the implemented EL
6910          * immediately lower than the target level is using AArch32 or AArch64
6911          */
6912         bool is_aa64;
6913 
6914         switch (new_el) {
6915         case 3:
6916             is_aa64 = (env->cp15.scr_el3 & SCR_RW) != 0;
6917             break;
6918         case 2:
6919             is_aa64 = (env->cp15.hcr_el2 & HCR_RW) != 0;
6920             break;
6921         case 1:
6922             is_aa64 = is_a64(env);
6923             break;
6924         default:
6925             g_assert_not_reached();
6926         }
6927 
6928         if (is_aa64) {
6929             addr += 0x400;
6930         } else {
6931             addr += 0x600;
6932         }
6933     } else if (pstate_read(env) & PSTATE_SP) {
6934         addr += 0x200;
6935     }
6936 
6937     switch (cs->exception_index) {
6938     case EXCP_PREFETCH_ABORT:
6939     case EXCP_DATA_ABORT:
6940         env->cp15.far_el[new_el] = env->exception.vaddress;
6941         qemu_log_mask(CPU_LOG_INT, "...with FAR 0x%" PRIx64 "\n",
6942                       env->cp15.far_el[new_el]);
6943         /* fall through */
6944     case EXCP_BKPT:
6945     case EXCP_UDEF:
6946     case EXCP_SWI:
6947     case EXCP_HVC:
6948     case EXCP_HYP_TRAP:
6949     case EXCP_SMC:
6950         env->cp15.esr_el[new_el] = env->exception.syndrome;
6951         break;
6952     case EXCP_IRQ:
6953     case EXCP_VIRQ:
6954         addr += 0x80;
6955         break;
6956     case EXCP_FIQ:
6957     case EXCP_VFIQ:
6958         addr += 0x100;
6959         break;
6960     case EXCP_SEMIHOST:
6961         qemu_log_mask(CPU_LOG_INT,
6962                       "...handling as semihosting call 0x%" PRIx64 "\n",
6963                       env->xregs[0]);
6964         env->xregs[0] = do_arm_semihosting(env);
6965         return;
6966     default:
6967         cpu_abort(cs, "Unhandled exception 0x%x\n", cs->exception_index);
6968     }
6969 
6970     if (is_a64(env)) {
6971         env->banked_spsr[aarch64_banked_spsr_index(new_el)] = pstate_read(env);
6972         aarch64_save_sp(env, arm_current_el(env));
6973         env->elr_el[new_el] = env->pc;
6974     } else {
6975         env->banked_spsr[aarch64_banked_spsr_index(new_el)] = cpsr_read(env);
6976         env->elr_el[new_el] = env->regs[15];
6977 
6978         aarch64_sync_32_to_64(env);
6979 
6980         env->condexec_bits = 0;
6981     }
6982     qemu_log_mask(CPU_LOG_INT, "...with ELR 0x%" PRIx64 "\n",
6983                   env->elr_el[new_el]);
6984 
6985     pstate_write(env, PSTATE_DAIF | new_mode);
6986     env->aarch64 = 1;
6987     aarch64_restore_sp(env, new_el);
6988 
6989     env->pc = addr;
6990 
6991     qemu_log_mask(CPU_LOG_INT, "...to EL%d PC 0x%" PRIx64 " PSTATE 0x%x\n",
6992                   new_el, env->pc, pstate_read(env));
6993 }
6994 
6995 static inline bool check_for_semihosting(CPUState *cs)
6996 {
6997     /* Check whether this exception is a semihosting call; if so
6998      * then handle it and return true; otherwise return false.
6999      */
7000     ARMCPU *cpu = ARM_CPU(cs);
7001     CPUARMState *env = &cpu->env;
7002 
7003     if (is_a64(env)) {
7004         if (cs->exception_index == EXCP_SEMIHOST) {
7005             /* This is always the 64-bit semihosting exception.
7006              * The "is this usermode" and "is semihosting enabled"
7007              * checks have been done at translate time.
7008              */
7009             qemu_log_mask(CPU_LOG_INT,
7010                           "...handling as semihosting call 0x%" PRIx64 "\n",
7011                           env->xregs[0]);
7012             env->xregs[0] = do_arm_semihosting(env);
7013             return true;
7014         }
7015         return false;
7016     } else {
7017         uint32_t imm;
7018 
7019         /* Only intercept calls from privileged modes, to provide some
7020          * semblance of security.
7021          */
7022         if (cs->exception_index != EXCP_SEMIHOST &&
7023             (!semihosting_enabled() ||
7024              ((env->uncached_cpsr & CPSR_M) == ARM_CPU_MODE_USR))) {
7025             return false;
7026         }
7027 
7028         switch (cs->exception_index) {
7029         case EXCP_SEMIHOST:
7030             /* This is always a semihosting call; the "is this usermode"
7031              * and "is semihosting enabled" checks have been done at
7032              * translate time.
7033              */
7034             break;
7035         case EXCP_SWI:
7036             /* Check for semihosting interrupt.  */
7037             if (env->thumb) {
7038                 imm = arm_lduw_code(env, env->regs[15] - 2, arm_sctlr_b(env))
7039                     & 0xff;
7040                 if (imm == 0xab) {
7041                     break;
7042                 }
7043             } else {
7044                 imm = arm_ldl_code(env, env->regs[15] - 4, arm_sctlr_b(env))
7045                     & 0xffffff;
7046                 if (imm == 0x123456) {
7047                     break;
7048                 }
7049             }
7050             return false;
7051         case EXCP_BKPT:
7052             /* See if this is a semihosting syscall.  */
7053             if (env->thumb) {
7054                 imm = arm_lduw_code(env, env->regs[15], arm_sctlr_b(env))
7055                     & 0xff;
7056                 if (imm == 0xab) {
7057                     env->regs[15] += 2;
7058                     break;
7059                 }
7060             }
7061             return false;
7062         default:
7063             return false;
7064         }
7065 
7066         qemu_log_mask(CPU_LOG_INT,
7067                       "...handling as semihosting call 0x%x\n",
7068                       env->regs[0]);
7069         env->regs[0] = do_arm_semihosting(env);
7070         return true;
7071     }
7072 }
7073 
7074 /* Handle a CPU exception for A and R profile CPUs.
7075  * Do any appropriate logging, handle PSCI calls, and then hand off
7076  * to the AArch64-entry or AArch32-entry function depending on the
7077  * target exception level's register width.
7078  */
7079 void arm_cpu_do_interrupt(CPUState *cs)
7080 {
7081     ARMCPU *cpu = ARM_CPU(cs);
7082     CPUARMState *env = &cpu->env;
7083     unsigned int new_el = env->exception.target_el;
7084 
7085     assert(!arm_feature(env, ARM_FEATURE_M));
7086 
7087     arm_log_exception(cs->exception_index);
7088     qemu_log_mask(CPU_LOG_INT, "...from EL%d to EL%d\n", arm_current_el(env),
7089                   new_el);
7090     if (qemu_loglevel_mask(CPU_LOG_INT)
7091         && !excp_is_internal(cs->exception_index)) {
7092         qemu_log_mask(CPU_LOG_INT, "...with ESR 0x%x/0x%" PRIx32 "\n",
7093                       env->exception.syndrome >> ARM_EL_EC_SHIFT,
7094                       env->exception.syndrome);
7095     }
7096 
7097     if (arm_is_psci_call(cpu, cs->exception_index)) {
7098         arm_handle_psci_call(cpu);
7099         qemu_log_mask(CPU_LOG_INT, "...handled as PSCI call\n");
7100         return;
7101     }
7102 
7103     /* Semihosting semantics depend on the register width of the
7104      * code that caused the exception, not the target exception level,
7105      * so must be handled here.
7106      */
7107     if (check_for_semihosting(cs)) {
7108         return;
7109     }
7110 
7111     assert(!excp_is_internal(cs->exception_index));
7112     if (arm_el_is_aa64(env, new_el)) {
7113         arm_cpu_do_interrupt_aarch64(cs);
7114     } else {
7115         arm_cpu_do_interrupt_aarch32(cs);
7116     }
7117 
7118     /* Hooks may change global state so BQL should be held, also the
7119      * BQL needs to be held for any modification of
7120      * cs->interrupt_request.
7121      */
7122     g_assert(qemu_mutex_iothread_locked());
7123 
7124     arm_call_el_change_hook(cpu);
7125 
7126     if (!kvm_enabled()) {
7127         cs->interrupt_request |= CPU_INTERRUPT_EXITTB;
7128     }
7129 }
7130 
7131 /* Return the exception level which controls this address translation regime */
7132 static inline uint32_t regime_el(CPUARMState *env, ARMMMUIdx mmu_idx)
7133 {
7134     switch (mmu_idx) {
7135     case ARMMMUIdx_S2NS:
7136     case ARMMMUIdx_S1E2:
7137         return 2;
7138     case ARMMMUIdx_S1E3:
7139         return 3;
7140     case ARMMMUIdx_S1SE0:
7141         return arm_el_is_aa64(env, 3) ? 1 : 3;
7142     case ARMMMUIdx_S1SE1:
7143     case ARMMMUIdx_S1NSE0:
7144     case ARMMMUIdx_S1NSE1:
7145     case ARMMMUIdx_MPriv:
7146     case ARMMMUIdx_MNegPri:
7147     case ARMMMUIdx_MUser:
7148     case ARMMMUIdx_MSPriv:
7149     case ARMMMUIdx_MSNegPri:
7150     case ARMMMUIdx_MSUser:
7151         return 1;
7152     default:
7153         g_assert_not_reached();
7154     }
7155 }
7156 
7157 /* Return the SCTLR value which controls this address translation regime */
7158 static inline uint32_t regime_sctlr(CPUARMState *env, ARMMMUIdx mmu_idx)
7159 {
7160     return env->cp15.sctlr_el[regime_el(env, mmu_idx)];
7161 }
7162 
7163 /* Return true if the specified stage of address translation is disabled */
7164 static inline bool regime_translation_disabled(CPUARMState *env,
7165                                                ARMMMUIdx mmu_idx)
7166 {
7167     if (arm_feature(env, ARM_FEATURE_M)) {
7168         switch (env->v7m.mpu_ctrl[regime_is_secure(env, mmu_idx)] &
7169                 (R_V7M_MPU_CTRL_ENABLE_MASK | R_V7M_MPU_CTRL_HFNMIENA_MASK)) {
7170         case R_V7M_MPU_CTRL_ENABLE_MASK:
7171             /* Enabled, but not for HardFault and NMI */
7172             return mmu_idx == ARMMMUIdx_MNegPri ||
7173                 mmu_idx == ARMMMUIdx_MSNegPri;
7174         case R_V7M_MPU_CTRL_ENABLE_MASK | R_V7M_MPU_CTRL_HFNMIENA_MASK:
7175             /* Enabled for all cases */
7176             return false;
7177         case 0:
7178         default:
7179             /* HFNMIENA set and ENABLE clear is UNPREDICTABLE, but
7180              * we warned about that in armv7m_nvic.c when the guest set it.
7181              */
7182             return true;
7183         }
7184     }
7185 
7186     if (mmu_idx == ARMMMUIdx_S2NS) {
7187         return (env->cp15.hcr_el2 & HCR_VM) == 0;
7188     }
7189     return (regime_sctlr(env, mmu_idx) & SCTLR_M) == 0;
7190 }
7191 
7192 static inline bool regime_translation_big_endian(CPUARMState *env,
7193                                                  ARMMMUIdx mmu_idx)
7194 {
7195     return (regime_sctlr(env, mmu_idx) & SCTLR_EE) != 0;
7196 }
7197 
7198 /* Return the TCR controlling this translation regime */
7199 static inline TCR *regime_tcr(CPUARMState *env, ARMMMUIdx mmu_idx)
7200 {
7201     if (mmu_idx == ARMMMUIdx_S2NS) {
7202         return &env->cp15.vtcr_el2;
7203     }
7204     return &env->cp15.tcr_el[regime_el(env, mmu_idx)];
7205 }
7206 
7207 /* Convert a possible stage1+2 MMU index into the appropriate
7208  * stage 1 MMU index
7209  */
7210 static inline ARMMMUIdx stage_1_mmu_idx(ARMMMUIdx mmu_idx)
7211 {
7212     if (mmu_idx == ARMMMUIdx_S12NSE0 || mmu_idx == ARMMMUIdx_S12NSE1) {
7213         mmu_idx += (ARMMMUIdx_S1NSE0 - ARMMMUIdx_S12NSE0);
7214     }
7215     return mmu_idx;
7216 }
7217 
7218 /* Returns TBI0 value for current regime el */
7219 uint32_t arm_regime_tbi0(CPUARMState *env, ARMMMUIdx mmu_idx)
7220 {
7221     TCR *tcr;
7222     uint32_t el;
7223 
7224     /* For EL0 and EL1, TBI is controlled by stage 1's TCR, so convert
7225      * a stage 1+2 mmu index into the appropriate stage 1 mmu index.
7226      */
7227     mmu_idx = stage_1_mmu_idx(mmu_idx);
7228 
7229     tcr = regime_tcr(env, mmu_idx);
7230     el = regime_el(env, mmu_idx);
7231 
7232     if (el > 1) {
7233         return extract64(tcr->raw_tcr, 20, 1);
7234     } else {
7235         return extract64(tcr->raw_tcr, 37, 1);
7236     }
7237 }
7238 
7239 /* Returns TBI1 value for current regime el */
7240 uint32_t arm_regime_tbi1(CPUARMState *env, ARMMMUIdx mmu_idx)
7241 {
7242     TCR *tcr;
7243     uint32_t el;
7244 
7245     /* For EL0 and EL1, TBI is controlled by stage 1's TCR, so convert
7246      * a stage 1+2 mmu index into the appropriate stage 1 mmu index.
7247      */
7248     mmu_idx = stage_1_mmu_idx(mmu_idx);
7249 
7250     tcr = regime_tcr(env, mmu_idx);
7251     el = regime_el(env, mmu_idx);
7252 
7253     if (el > 1) {
7254         return 0;
7255     } else {
7256         return extract64(tcr->raw_tcr, 38, 1);
7257     }
7258 }
7259 
7260 /* Return the TTBR associated with this translation regime */
7261 static inline uint64_t regime_ttbr(CPUARMState *env, ARMMMUIdx mmu_idx,
7262                                    int ttbrn)
7263 {
7264     if (mmu_idx == ARMMMUIdx_S2NS) {
7265         return env->cp15.vttbr_el2;
7266     }
7267     if (ttbrn == 0) {
7268         return env->cp15.ttbr0_el[regime_el(env, mmu_idx)];
7269     } else {
7270         return env->cp15.ttbr1_el[regime_el(env, mmu_idx)];
7271     }
7272 }
7273 
7274 /* Return true if the translation regime is using LPAE format page tables */
7275 static inline bool regime_using_lpae_format(CPUARMState *env,
7276                                             ARMMMUIdx mmu_idx)
7277 {
7278     int el = regime_el(env, mmu_idx);
7279     if (el == 2 || arm_el_is_aa64(env, el)) {
7280         return true;
7281     }
7282     if (arm_feature(env, ARM_FEATURE_LPAE)
7283         && (regime_tcr(env, mmu_idx)->raw_tcr & TTBCR_EAE)) {
7284         return true;
7285     }
7286     return false;
7287 }
7288 
7289 /* Returns true if the stage 1 translation regime is using LPAE format page
7290  * tables. Used when raising alignment exceptions, whose FSR changes depending
7291  * on whether the long or short descriptor format is in use. */
7292 bool arm_s1_regime_using_lpae_format(CPUARMState *env, ARMMMUIdx mmu_idx)
7293 {
7294     mmu_idx = stage_1_mmu_idx(mmu_idx);
7295 
7296     return regime_using_lpae_format(env, mmu_idx);
7297 }
7298 
7299 static inline bool regime_is_user(CPUARMState *env, ARMMMUIdx mmu_idx)
7300 {
7301     switch (mmu_idx) {
7302     case ARMMMUIdx_S1SE0:
7303     case ARMMMUIdx_S1NSE0:
7304     case ARMMMUIdx_MUser:
7305         return true;
7306     default:
7307         return false;
7308     case ARMMMUIdx_S12NSE0:
7309     case ARMMMUIdx_S12NSE1:
7310         g_assert_not_reached();
7311     }
7312 }
7313 
7314 /* Translate section/page access permissions to page
7315  * R/W protection flags
7316  *
7317  * @env:         CPUARMState
7318  * @mmu_idx:     MMU index indicating required translation regime
7319  * @ap:          The 3-bit access permissions (AP[2:0])
7320  * @domain_prot: The 2-bit domain access permissions
7321  */
7322 static inline int ap_to_rw_prot(CPUARMState *env, ARMMMUIdx mmu_idx,
7323                                 int ap, int domain_prot)
7324 {
7325     bool is_user = regime_is_user(env, mmu_idx);
7326 
7327     if (domain_prot == 3) {
7328         return PAGE_READ | PAGE_WRITE;
7329     }
7330 
7331     switch (ap) {
7332     case 0:
7333         if (arm_feature(env, ARM_FEATURE_V7)) {
7334             return 0;
7335         }
7336         switch (regime_sctlr(env, mmu_idx) & (SCTLR_S | SCTLR_R)) {
7337         case SCTLR_S:
7338             return is_user ? 0 : PAGE_READ;
7339         case SCTLR_R:
7340             return PAGE_READ;
7341         default:
7342             return 0;
7343         }
7344     case 1:
7345         return is_user ? 0 : PAGE_READ | PAGE_WRITE;
7346     case 2:
7347         if (is_user) {
7348             return PAGE_READ;
7349         } else {
7350             return PAGE_READ | PAGE_WRITE;
7351         }
7352     case 3:
7353         return PAGE_READ | PAGE_WRITE;
7354     case 4: /* Reserved.  */
7355         return 0;
7356     case 5:
7357         return is_user ? 0 : PAGE_READ;
7358     case 6:
7359         return PAGE_READ;
7360     case 7:
7361         if (!arm_feature(env, ARM_FEATURE_V6K)) {
7362             return 0;
7363         }
7364         return PAGE_READ;
7365     default:
7366         g_assert_not_reached();
7367     }
7368 }
7369 
7370 /* Translate section/page access permissions to page
7371  * R/W protection flags.
7372  *
7373  * @ap:      The 2-bit simple AP (AP[2:1])
7374  * @is_user: TRUE if accessing from PL0
7375  */
7376 static inline int simple_ap_to_rw_prot_is_user(int ap, bool is_user)
7377 {
7378     switch (ap) {
7379     case 0:
7380         return is_user ? 0 : PAGE_READ | PAGE_WRITE;
7381     case 1:
7382         return PAGE_READ | PAGE_WRITE;
7383     case 2:
7384         return is_user ? 0 : PAGE_READ;
7385     case 3:
7386         return PAGE_READ;
7387     default:
7388         g_assert_not_reached();
7389     }
7390 }
7391 
7392 static inline int
7393 simple_ap_to_rw_prot(CPUARMState *env, ARMMMUIdx mmu_idx, int ap)
7394 {
7395     return simple_ap_to_rw_prot_is_user(ap, regime_is_user(env, mmu_idx));
7396 }
7397 
7398 /* Translate S2 section/page access permissions to protection flags
7399  *
7400  * @env:     CPUARMState
7401  * @s2ap:    The 2-bit stage2 access permissions (S2AP)
7402  * @xn:      XN (execute-never) bit
7403  */
7404 static int get_S2prot(CPUARMState *env, int s2ap, int xn)
7405 {
7406     int prot = 0;
7407 
7408     if (s2ap & 1) {
7409         prot |= PAGE_READ;
7410     }
7411     if (s2ap & 2) {
7412         prot |= PAGE_WRITE;
7413     }
7414     if (!xn) {
7415         if (arm_el_is_aa64(env, 2) || prot & PAGE_READ) {
7416             prot |= PAGE_EXEC;
7417         }
7418     }
7419     return prot;
7420 }
7421 
7422 /* Translate section/page access permissions to protection flags
7423  *
7424  * @env:     CPUARMState
7425  * @mmu_idx: MMU index indicating required translation regime
7426  * @is_aa64: TRUE if AArch64
7427  * @ap:      The 2-bit simple AP (AP[2:1])
7428  * @ns:      NS (non-secure) bit
7429  * @xn:      XN (execute-never) bit
7430  * @pxn:     PXN (privileged execute-never) bit
7431  */
7432 static int get_S1prot(CPUARMState *env, ARMMMUIdx mmu_idx, bool is_aa64,
7433                       int ap, int ns, int xn, int pxn)
7434 {
7435     bool is_user = regime_is_user(env, mmu_idx);
7436     int prot_rw, user_rw;
7437     bool have_wxn;
7438     int wxn = 0;
7439 
7440     assert(mmu_idx != ARMMMUIdx_S2NS);
7441 
7442     user_rw = simple_ap_to_rw_prot_is_user(ap, true);
7443     if (is_user) {
7444         prot_rw = user_rw;
7445     } else {
7446         prot_rw = simple_ap_to_rw_prot_is_user(ap, false);
7447     }
7448 
7449     if (ns && arm_is_secure(env) && (env->cp15.scr_el3 & SCR_SIF)) {
7450         return prot_rw;
7451     }
7452 
7453     /* TODO have_wxn should be replaced with
7454      *   ARM_FEATURE_V8 || (ARM_FEATURE_V7 && ARM_FEATURE_EL2)
7455      * when ARM_FEATURE_EL2 starts getting set. For now we assume all LPAE
7456      * compatible processors have EL2, which is required for [U]WXN.
7457      */
7458     have_wxn = arm_feature(env, ARM_FEATURE_LPAE);
7459 
7460     if (have_wxn) {
7461         wxn = regime_sctlr(env, mmu_idx) & SCTLR_WXN;
7462     }
7463 
7464     if (is_aa64) {
7465         switch (regime_el(env, mmu_idx)) {
7466         case 1:
7467             if (!is_user) {
7468                 xn = pxn || (user_rw & PAGE_WRITE);
7469             }
7470             break;
7471         case 2:
7472         case 3:
7473             break;
7474         }
7475     } else if (arm_feature(env, ARM_FEATURE_V7)) {
7476         switch (regime_el(env, mmu_idx)) {
7477         case 1:
7478         case 3:
7479             if (is_user) {
7480                 xn = xn || !(user_rw & PAGE_READ);
7481             } else {
7482                 int uwxn = 0;
7483                 if (have_wxn) {
7484                     uwxn = regime_sctlr(env, mmu_idx) & SCTLR_UWXN;
7485                 }
7486                 xn = xn || !(prot_rw & PAGE_READ) || pxn ||
7487                      (uwxn && (user_rw & PAGE_WRITE));
7488             }
7489             break;
7490         case 2:
7491             break;
7492         }
7493     } else {
7494         xn = wxn = 0;
7495     }
7496 
7497     if (xn || (wxn && (prot_rw & PAGE_WRITE))) {
7498         return prot_rw;
7499     }
7500     return prot_rw | PAGE_EXEC;
7501 }
7502 
7503 static bool get_level1_table_address(CPUARMState *env, ARMMMUIdx mmu_idx,
7504                                      uint32_t *table, uint32_t address)
7505 {
7506     /* Note that we can only get here for an AArch32 PL0/PL1 lookup */
7507     TCR *tcr = regime_tcr(env, mmu_idx);
7508 
7509     if (address & tcr->mask) {
7510         if (tcr->raw_tcr & TTBCR_PD1) {
7511             /* Translation table walk disabled for TTBR1 */
7512             return false;
7513         }
7514         *table = regime_ttbr(env, mmu_idx, 1) & 0xffffc000;
7515     } else {
7516         if (tcr->raw_tcr & TTBCR_PD0) {
7517             /* Translation table walk disabled for TTBR0 */
7518             return false;
7519         }
7520         *table = regime_ttbr(env, mmu_idx, 0) & tcr->base_mask;
7521     }
7522     *table |= (address >> 18) & 0x3ffc;
7523     return true;
7524 }
7525 
7526 /* Translate a S1 pagetable walk through S2 if needed.  */
7527 static hwaddr S1_ptw_translate(CPUARMState *env, ARMMMUIdx mmu_idx,
7528                                hwaddr addr, MemTxAttrs txattrs,
7529                                uint32_t *fsr,
7530                                ARMMMUFaultInfo *fi)
7531 {
7532     if ((mmu_idx == ARMMMUIdx_S1NSE0 || mmu_idx == ARMMMUIdx_S1NSE1) &&
7533         !regime_translation_disabled(env, ARMMMUIdx_S2NS)) {
7534         target_ulong s2size;
7535         hwaddr s2pa;
7536         int s2prot;
7537         int ret;
7538 
7539         ret = get_phys_addr_lpae(env, addr, 0, ARMMMUIdx_S2NS, &s2pa,
7540                                  &txattrs, &s2prot, &s2size, fsr, fi);
7541         if (ret) {
7542             fi->s2addr = addr;
7543             fi->stage2 = true;
7544             fi->s1ptw = true;
7545             return ~0;
7546         }
7547         addr = s2pa;
7548     }
7549     return addr;
7550 }
7551 
7552 /* All loads done in the course of a page table walk go through here.
7553  * TODO: rather than ignoring errors from physical memory reads (which
7554  * are external aborts in ARM terminology) we should propagate this
7555  * error out so that we can turn it into a Data Abort if this walk
7556  * was being done for a CPU load/store or an address translation instruction
7557  * (but not if it was for a debug access).
7558  */
7559 static uint32_t arm_ldl_ptw(CPUState *cs, hwaddr addr, bool is_secure,
7560                             ARMMMUIdx mmu_idx, uint32_t *fsr,
7561                             ARMMMUFaultInfo *fi)
7562 {
7563     ARMCPU *cpu = ARM_CPU(cs);
7564     CPUARMState *env = &cpu->env;
7565     MemTxAttrs attrs = {};
7566     AddressSpace *as;
7567 
7568     attrs.secure = is_secure;
7569     as = arm_addressspace(cs, attrs);
7570     addr = S1_ptw_translate(env, mmu_idx, addr, attrs, fsr, fi);
7571     if (fi->s1ptw) {
7572         return 0;
7573     }
7574     if (regime_translation_big_endian(env, mmu_idx)) {
7575         return address_space_ldl_be(as, addr, attrs, NULL);
7576     } else {
7577         return address_space_ldl_le(as, addr, attrs, NULL);
7578     }
7579 }
7580 
7581 static uint64_t arm_ldq_ptw(CPUState *cs, hwaddr addr, bool is_secure,
7582                             ARMMMUIdx mmu_idx, uint32_t *fsr,
7583                             ARMMMUFaultInfo *fi)
7584 {
7585     ARMCPU *cpu = ARM_CPU(cs);
7586     CPUARMState *env = &cpu->env;
7587     MemTxAttrs attrs = {};
7588     AddressSpace *as;
7589 
7590     attrs.secure = is_secure;
7591     as = arm_addressspace(cs, attrs);
7592     addr = S1_ptw_translate(env, mmu_idx, addr, attrs, fsr, fi);
7593     if (fi->s1ptw) {
7594         return 0;
7595     }
7596     if (regime_translation_big_endian(env, mmu_idx)) {
7597         return address_space_ldq_be(as, addr, attrs, NULL);
7598     } else {
7599         return address_space_ldq_le(as, addr, attrs, NULL);
7600     }
7601 }
7602 
7603 static bool get_phys_addr_v5(CPUARMState *env, uint32_t address,
7604                              MMUAccessType access_type, ARMMMUIdx mmu_idx,
7605                              hwaddr *phys_ptr, int *prot,
7606                              target_ulong *page_size, uint32_t *fsr,
7607                              ARMMMUFaultInfo *fi)
7608 {
7609     CPUState *cs = CPU(arm_env_get_cpu(env));
7610     int code;
7611     uint32_t table;
7612     uint32_t desc;
7613     int type;
7614     int ap;
7615     int domain = 0;
7616     int domain_prot;
7617     hwaddr phys_addr;
7618     uint32_t dacr;
7619 
7620     /* Pagetable walk.  */
7621     /* Lookup l1 descriptor.  */
7622     if (!get_level1_table_address(env, mmu_idx, &table, address)) {
7623         /* Section translation fault if page walk is disabled by PD0 or PD1 */
7624         code = 5;
7625         goto do_fault;
7626     }
7627     desc = arm_ldl_ptw(cs, table, regime_is_secure(env, mmu_idx),
7628                        mmu_idx, fsr, fi);
7629     type = (desc & 3);
7630     domain = (desc >> 5) & 0x0f;
7631     if (regime_el(env, mmu_idx) == 1) {
7632         dacr = env->cp15.dacr_ns;
7633     } else {
7634         dacr = env->cp15.dacr_s;
7635     }
7636     domain_prot = (dacr >> (domain * 2)) & 3;
7637     if (type == 0) {
7638         /* Section translation fault.  */
7639         code = 5;
7640         goto do_fault;
7641     }
7642     if (domain_prot == 0 || domain_prot == 2) {
7643         if (type == 2)
7644             code = 9; /* Section domain fault.  */
7645         else
7646             code = 11; /* Page domain fault.  */
7647         goto do_fault;
7648     }
7649     if (type == 2) {
7650         /* 1Mb section.  */
7651         phys_addr = (desc & 0xfff00000) | (address & 0x000fffff);
7652         ap = (desc >> 10) & 3;
7653         code = 13;
7654         *page_size = 1024 * 1024;
7655     } else {
7656         /* Lookup l2 entry.  */
7657         if (type == 1) {
7658             /* Coarse pagetable.  */
7659             table = (desc & 0xfffffc00) | ((address >> 10) & 0x3fc);
7660         } else {
7661             /* Fine pagetable.  */
7662             table = (desc & 0xfffff000) | ((address >> 8) & 0xffc);
7663         }
7664         desc = arm_ldl_ptw(cs, table, regime_is_secure(env, mmu_idx),
7665                            mmu_idx, fsr, fi);
7666         switch (desc & 3) {
7667         case 0: /* Page translation fault.  */
7668             code = 7;
7669             goto do_fault;
7670         case 1: /* 64k page.  */
7671             phys_addr = (desc & 0xffff0000) | (address & 0xffff);
7672             ap = (desc >> (4 + ((address >> 13) & 6))) & 3;
7673             *page_size = 0x10000;
7674             break;
7675         case 2: /* 4k page.  */
7676             phys_addr = (desc & 0xfffff000) | (address & 0xfff);
7677             ap = (desc >> (4 + ((address >> 9) & 6))) & 3;
7678             *page_size = 0x1000;
7679             break;
7680         case 3: /* 1k page, or ARMv6/XScale "extended small (4k) page" */
7681             if (type == 1) {
7682                 /* ARMv6/XScale extended small page format */
7683                 if (arm_feature(env, ARM_FEATURE_XSCALE)
7684                     || arm_feature(env, ARM_FEATURE_V6)) {
7685                     phys_addr = (desc & 0xfffff000) | (address & 0xfff);
7686                     *page_size = 0x1000;
7687                 } else {
7688                     /* UNPREDICTABLE in ARMv5; we choose to take a
7689                      * page translation fault.
7690                      */
7691                     code = 7;
7692                     goto do_fault;
7693                 }
7694             } else {
7695                 phys_addr = (desc & 0xfffffc00) | (address & 0x3ff);
7696                 *page_size = 0x400;
7697             }
7698             ap = (desc >> 4) & 3;
7699             break;
7700         default:
7701             /* Never happens, but compiler isn't smart enough to tell.  */
7702             abort();
7703         }
7704         code = 15;
7705     }
7706     *prot = ap_to_rw_prot(env, mmu_idx, ap, domain_prot);
7707     *prot |= *prot ? PAGE_EXEC : 0;
7708     if (!(*prot & (1 << access_type))) {
7709         /* Access permission fault.  */
7710         goto do_fault;
7711     }
7712     *phys_ptr = phys_addr;
7713     return false;
7714 do_fault:
7715     *fsr = code | (domain << 4);
7716     return true;
7717 }
7718 
7719 static bool get_phys_addr_v6(CPUARMState *env, uint32_t address,
7720                              MMUAccessType access_type, ARMMMUIdx mmu_idx,
7721                              hwaddr *phys_ptr, MemTxAttrs *attrs, int *prot,
7722                              target_ulong *page_size, uint32_t *fsr,
7723                              ARMMMUFaultInfo *fi)
7724 {
7725     CPUState *cs = CPU(arm_env_get_cpu(env));
7726     int code;
7727     uint32_t table;
7728     uint32_t desc;
7729     uint32_t xn;
7730     uint32_t pxn = 0;
7731     int type;
7732     int ap;
7733     int domain = 0;
7734     int domain_prot;
7735     hwaddr phys_addr;
7736     uint32_t dacr;
7737     bool ns;
7738 
7739     /* Pagetable walk.  */
7740     /* Lookup l1 descriptor.  */
7741     if (!get_level1_table_address(env, mmu_idx, &table, address)) {
7742         /* Section translation fault if page walk is disabled by PD0 or PD1 */
7743         code = 5;
7744         goto do_fault;
7745     }
7746     desc = arm_ldl_ptw(cs, table, regime_is_secure(env, mmu_idx),
7747                        mmu_idx, fsr, fi);
7748     type = (desc & 3);
7749     if (type == 0 || (type == 3 && !arm_feature(env, ARM_FEATURE_PXN))) {
7750         /* Section translation fault, or attempt to use the encoding
7751          * which is Reserved on implementations without PXN.
7752          */
7753         code = 5;
7754         goto do_fault;
7755     }
7756     if ((type == 1) || !(desc & (1 << 18))) {
7757         /* Page or Section.  */
7758         domain = (desc >> 5) & 0x0f;
7759     }
7760     if (regime_el(env, mmu_idx) == 1) {
7761         dacr = env->cp15.dacr_ns;
7762     } else {
7763         dacr = env->cp15.dacr_s;
7764     }
7765     domain_prot = (dacr >> (domain * 2)) & 3;
7766     if (domain_prot == 0 || domain_prot == 2) {
7767         if (type != 1) {
7768             code = 9; /* Section domain fault.  */
7769         } else {
7770             code = 11; /* Page domain fault.  */
7771         }
7772         goto do_fault;
7773     }
7774     if (type != 1) {
7775         if (desc & (1 << 18)) {
7776             /* Supersection.  */
7777             phys_addr = (desc & 0xff000000) | (address & 0x00ffffff);
7778             phys_addr |= (uint64_t)extract32(desc, 20, 4) << 32;
7779             phys_addr |= (uint64_t)extract32(desc, 5, 4) << 36;
7780             *page_size = 0x1000000;
7781         } else {
7782             /* Section.  */
7783             phys_addr = (desc & 0xfff00000) | (address & 0x000fffff);
7784             *page_size = 0x100000;
7785         }
7786         ap = ((desc >> 10) & 3) | ((desc >> 13) & 4);
7787         xn = desc & (1 << 4);
7788         pxn = desc & 1;
7789         code = 13;
7790         ns = extract32(desc, 19, 1);
7791     } else {
7792         if (arm_feature(env, ARM_FEATURE_PXN)) {
7793             pxn = (desc >> 2) & 1;
7794         }
7795         ns = extract32(desc, 3, 1);
7796         /* Lookup l2 entry.  */
7797         table = (desc & 0xfffffc00) | ((address >> 10) & 0x3fc);
7798         desc = arm_ldl_ptw(cs, table, regime_is_secure(env, mmu_idx),
7799                            mmu_idx, fsr, fi);
7800         ap = ((desc >> 4) & 3) | ((desc >> 7) & 4);
7801         switch (desc & 3) {
7802         case 0: /* Page translation fault.  */
7803             code = 7;
7804             goto do_fault;
7805         case 1: /* 64k page.  */
7806             phys_addr = (desc & 0xffff0000) | (address & 0xffff);
7807             xn = desc & (1 << 15);
7808             *page_size = 0x10000;
7809             break;
7810         case 2: case 3: /* 4k page.  */
7811             phys_addr = (desc & 0xfffff000) | (address & 0xfff);
7812             xn = desc & 1;
7813             *page_size = 0x1000;
7814             break;
7815         default:
7816             /* Never happens, but compiler isn't smart enough to tell.  */
7817             abort();
7818         }
7819         code = 15;
7820     }
7821     if (domain_prot == 3) {
7822         *prot = PAGE_READ | PAGE_WRITE | PAGE_EXEC;
7823     } else {
7824         if (pxn && !regime_is_user(env, mmu_idx)) {
7825             xn = 1;
7826         }
7827         if (xn && access_type == MMU_INST_FETCH)
7828             goto do_fault;
7829 
7830         if (arm_feature(env, ARM_FEATURE_V6K) &&
7831                 (regime_sctlr(env, mmu_idx) & SCTLR_AFE)) {
7832             /* The simplified model uses AP[0] as an access control bit.  */
7833             if ((ap & 1) == 0) {
7834                 /* Access flag fault.  */
7835                 code = (code == 15) ? 6 : 3;
7836                 goto do_fault;
7837             }
7838             *prot = simple_ap_to_rw_prot(env, mmu_idx, ap >> 1);
7839         } else {
7840             *prot = ap_to_rw_prot(env, mmu_idx, ap, domain_prot);
7841         }
7842         if (*prot && !xn) {
7843             *prot |= PAGE_EXEC;
7844         }
7845         if (!(*prot & (1 << access_type))) {
7846             /* Access permission fault.  */
7847             goto do_fault;
7848         }
7849     }
7850     if (ns) {
7851         /* The NS bit will (as required by the architecture) have no effect if
7852          * the CPU doesn't support TZ or this is a non-secure translation
7853          * regime, because the attribute will already be non-secure.
7854          */
7855         attrs->secure = false;
7856     }
7857     *phys_ptr = phys_addr;
7858     return false;
7859 do_fault:
7860     *fsr = code | (domain << 4);
7861     return true;
7862 }
7863 
7864 /* Fault type for long-descriptor MMU fault reporting; this corresponds
7865  * to bits [5..2] in the STATUS field in long-format DFSR/IFSR.
7866  */
7867 typedef enum {
7868     translation_fault = 1,
7869     access_fault = 2,
7870     permission_fault = 3,
7871 } MMUFaultType;
7872 
7873 /*
7874  * check_s2_mmu_setup
7875  * @cpu:        ARMCPU
7876  * @is_aa64:    True if the translation regime is in AArch64 state
7877  * @startlevel: Suggested starting level
7878  * @inputsize:  Bitsize of IPAs
7879  * @stride:     Page-table stride (See the ARM ARM)
7880  *
7881  * Returns true if the suggested S2 translation parameters are OK and
7882  * false otherwise.
7883  */
7884 static bool check_s2_mmu_setup(ARMCPU *cpu, bool is_aa64, int level,
7885                                int inputsize, int stride)
7886 {
7887     const int grainsize = stride + 3;
7888     int startsizecheck;
7889 
7890     /* Negative levels are never allowed.  */
7891     if (level < 0) {
7892         return false;
7893     }
7894 
7895     startsizecheck = inputsize - ((3 - level) * stride + grainsize);
7896     if (startsizecheck < 1 || startsizecheck > stride + 4) {
7897         return false;
7898     }
7899 
7900     if (is_aa64) {
7901         CPUARMState *env = &cpu->env;
7902         unsigned int pamax = arm_pamax(cpu);
7903 
7904         switch (stride) {
7905         case 13: /* 64KB Pages.  */
7906             if (level == 0 || (level == 1 && pamax <= 42)) {
7907                 return false;
7908             }
7909             break;
7910         case 11: /* 16KB Pages.  */
7911             if (level == 0 || (level == 1 && pamax <= 40)) {
7912                 return false;
7913             }
7914             break;
7915         case 9: /* 4KB Pages.  */
7916             if (level == 0 && pamax <= 42) {
7917                 return false;
7918             }
7919             break;
7920         default:
7921             g_assert_not_reached();
7922         }
7923 
7924         /* Inputsize checks.  */
7925         if (inputsize > pamax &&
7926             (arm_el_is_aa64(env, 1) || inputsize > 40)) {
7927             /* This is CONSTRAINED UNPREDICTABLE and we choose to fault.  */
7928             return false;
7929         }
7930     } else {
7931         /* AArch32 only supports 4KB pages. Assert on that.  */
7932         assert(stride == 9);
7933 
7934         if (level == 0) {
7935             return false;
7936         }
7937     }
7938     return true;
7939 }
7940 
7941 static bool get_phys_addr_lpae(CPUARMState *env, target_ulong address,
7942                                MMUAccessType access_type, ARMMMUIdx mmu_idx,
7943                                hwaddr *phys_ptr, MemTxAttrs *txattrs, int *prot,
7944                                target_ulong *page_size_ptr, uint32_t *fsr,
7945                                ARMMMUFaultInfo *fi)
7946 {
7947     ARMCPU *cpu = arm_env_get_cpu(env);
7948     CPUState *cs = CPU(cpu);
7949     /* Read an LPAE long-descriptor translation table. */
7950     MMUFaultType fault_type = translation_fault;
7951     uint32_t level;
7952     uint32_t epd = 0;
7953     int32_t t0sz, t1sz;
7954     uint32_t tg;
7955     uint64_t ttbr;
7956     int ttbr_select;
7957     hwaddr descaddr, indexmask, indexmask_grainsize;
7958     uint32_t tableattrs;
7959     target_ulong page_size;
7960     uint32_t attrs;
7961     int32_t stride = 9;
7962     int32_t addrsize;
7963     int inputsize;
7964     int32_t tbi = 0;
7965     TCR *tcr = regime_tcr(env, mmu_idx);
7966     int ap, ns, xn, pxn;
7967     uint32_t el = regime_el(env, mmu_idx);
7968     bool ttbr1_valid = true;
7969     uint64_t descaddrmask;
7970     bool aarch64 = arm_el_is_aa64(env, el);
7971 
7972     /* TODO:
7973      * This code does not handle the different format TCR for VTCR_EL2.
7974      * This code also does not support shareability levels.
7975      * Attribute and permission bit handling should also be checked when adding
7976      * support for those page table walks.
7977      */
7978     if (aarch64) {
7979         level = 0;
7980         addrsize = 64;
7981         if (el > 1) {
7982             if (mmu_idx != ARMMMUIdx_S2NS) {
7983                 tbi = extract64(tcr->raw_tcr, 20, 1);
7984             }
7985         } else {
7986             if (extract64(address, 55, 1)) {
7987                 tbi = extract64(tcr->raw_tcr, 38, 1);
7988             } else {
7989                 tbi = extract64(tcr->raw_tcr, 37, 1);
7990             }
7991         }
7992         tbi *= 8;
7993 
7994         /* If we are in 64-bit EL2 or EL3 then there is no TTBR1, so mark it
7995          * invalid.
7996          */
7997         if (el > 1) {
7998             ttbr1_valid = false;
7999         }
8000     } else {
8001         level = 1;
8002         addrsize = 32;
8003         /* There is no TTBR1 for EL2 */
8004         if (el == 2) {
8005             ttbr1_valid = false;
8006         }
8007     }
8008 
8009     /* Determine whether this address is in the region controlled by
8010      * TTBR0 or TTBR1 (or if it is in neither region and should fault).
8011      * This is a Non-secure PL0/1 stage 1 translation, so controlled by
8012      * TTBCR/TTBR0/TTBR1 in accordance with ARM ARM DDI0406C table B-32:
8013      */
8014     if (aarch64) {
8015         /* AArch64 translation.  */
8016         t0sz = extract32(tcr->raw_tcr, 0, 6);
8017         t0sz = MIN(t0sz, 39);
8018         t0sz = MAX(t0sz, 16);
8019     } else if (mmu_idx != ARMMMUIdx_S2NS) {
8020         /* AArch32 stage 1 translation.  */
8021         t0sz = extract32(tcr->raw_tcr, 0, 3);
8022     } else {
8023         /* AArch32 stage 2 translation.  */
8024         bool sext = extract32(tcr->raw_tcr, 4, 1);
8025         bool sign = extract32(tcr->raw_tcr, 3, 1);
8026         /* Address size is 40-bit for a stage 2 translation,
8027          * and t0sz can be negative (from -8 to 7),
8028          * so we need to adjust it to use the TTBR selecting logic below.
8029          */
8030         addrsize = 40;
8031         t0sz = sextract32(tcr->raw_tcr, 0, 4) + 8;
8032 
8033         /* If the sign-extend bit is not the same as t0sz[3], the result
8034          * is unpredictable. Flag this as a guest error.  */
8035         if (sign != sext) {
8036             qemu_log_mask(LOG_GUEST_ERROR,
8037                           "AArch32: VTCR.S / VTCR.T0SZ[3] mismatch\n");
8038         }
8039     }
8040     t1sz = extract32(tcr->raw_tcr, 16, 6);
8041     if (aarch64) {
8042         t1sz = MIN(t1sz, 39);
8043         t1sz = MAX(t1sz, 16);
8044     }
8045     if (t0sz && !extract64(address, addrsize - t0sz, t0sz - tbi)) {
8046         /* there is a ttbr0 region and we are in it (high bits all zero) */
8047         ttbr_select = 0;
8048     } else if (ttbr1_valid && t1sz &&
8049                !extract64(~address, addrsize - t1sz, t1sz - tbi)) {
8050         /* there is a ttbr1 region and we are in it (high bits all one) */
8051         ttbr_select = 1;
8052     } else if (!t0sz) {
8053         /* ttbr0 region is "everything not in the ttbr1 region" */
8054         ttbr_select = 0;
8055     } else if (!t1sz && ttbr1_valid) {
8056         /* ttbr1 region is "everything not in the ttbr0 region" */
8057         ttbr_select = 1;
8058     } else {
8059         /* in the gap between the two regions, this is a Translation fault */
8060         fault_type = translation_fault;
8061         goto do_fault;
8062     }
8063 
8064     /* Note that QEMU ignores shareability and cacheability attributes,
8065      * so we don't need to do anything with the SH, ORGN, IRGN fields
8066      * in the TTBCR.  Similarly, TTBCR:A1 selects whether we get the
8067      * ASID from TTBR0 or TTBR1, but QEMU's TLB doesn't currently
8068      * implement any ASID-like capability so we can ignore it (instead
8069      * we will always flush the TLB any time the ASID is changed).
8070      */
8071     if (ttbr_select == 0) {
8072         ttbr = regime_ttbr(env, mmu_idx, 0);
8073         if (el < 2) {
8074             epd = extract32(tcr->raw_tcr, 7, 1);
8075         }
8076         inputsize = addrsize - t0sz;
8077 
8078         tg = extract32(tcr->raw_tcr, 14, 2);
8079         if (tg == 1) { /* 64KB pages */
8080             stride = 13;
8081         }
8082         if (tg == 2) { /* 16KB pages */
8083             stride = 11;
8084         }
8085     } else {
8086         /* We should only be here if TTBR1 is valid */
8087         assert(ttbr1_valid);
8088 
8089         ttbr = regime_ttbr(env, mmu_idx, 1);
8090         epd = extract32(tcr->raw_tcr, 23, 1);
8091         inputsize = addrsize - t1sz;
8092 
8093         tg = extract32(tcr->raw_tcr, 30, 2);
8094         if (tg == 3)  { /* 64KB pages */
8095             stride = 13;
8096         }
8097         if (tg == 1) { /* 16KB pages */
8098             stride = 11;
8099         }
8100     }
8101 
8102     /* Here we should have set up all the parameters for the translation:
8103      * inputsize, ttbr, epd, stride, tbi
8104      */
8105 
8106     if (epd) {
8107         /* Translation table walk disabled => Translation fault on TLB miss
8108          * Note: This is always 0 on 64-bit EL2 and EL3.
8109          */
8110         goto do_fault;
8111     }
8112 
8113     if (mmu_idx != ARMMMUIdx_S2NS) {
8114         /* The starting level depends on the virtual address size (which can
8115          * be up to 48 bits) and the translation granule size. It indicates
8116          * the number of strides (stride bits at a time) needed to
8117          * consume the bits of the input address. In the pseudocode this is:
8118          *  level = 4 - RoundUp((inputsize - grainsize) / stride)
8119          * where their 'inputsize' is our 'inputsize', 'grainsize' is
8120          * our 'stride + 3' and 'stride' is our 'stride'.
8121          * Applying the usual "rounded up m/n is (m+n-1)/n" and simplifying:
8122          * = 4 - (inputsize - stride - 3 + stride - 1) / stride
8123          * = 4 - (inputsize - 4) / stride;
8124          */
8125         level = 4 - (inputsize - 4) / stride;
8126     } else {
8127         /* For stage 2 translations the starting level is specified by the
8128          * VTCR_EL2.SL0 field (whose interpretation depends on the page size)
8129          */
8130         uint32_t sl0 = extract32(tcr->raw_tcr, 6, 2);
8131         uint32_t startlevel;
8132         bool ok;
8133 
8134         if (!aarch64 || stride == 9) {
8135             /* AArch32 or 4KB pages */
8136             startlevel = 2 - sl0;
8137         } else {
8138             /* 16KB or 64KB pages */
8139             startlevel = 3 - sl0;
8140         }
8141 
8142         /* Check that the starting level is valid. */
8143         ok = check_s2_mmu_setup(cpu, aarch64, startlevel,
8144                                 inputsize, stride);
8145         if (!ok) {
8146             fault_type = translation_fault;
8147             goto do_fault;
8148         }
8149         level = startlevel;
8150     }
8151 
8152     indexmask_grainsize = (1ULL << (stride + 3)) - 1;
8153     indexmask = (1ULL << (inputsize - (stride * (4 - level)))) - 1;
8154 
8155     /* Now we can extract the actual base address from the TTBR */
8156     descaddr = extract64(ttbr, 0, 48);
8157     descaddr &= ~indexmask;
8158 
8159     /* The address field in the descriptor goes up to bit 39 for ARMv7
8160      * but up to bit 47 for ARMv8, but we use the descaddrmask
8161      * up to bit 39 for AArch32, because we don't need other bits in that case
8162      * to construct next descriptor address (anyway they should be all zeroes).
8163      */
8164     descaddrmask = ((1ull << (aarch64 ? 48 : 40)) - 1) &
8165                    ~indexmask_grainsize;
8166 
8167     /* Secure accesses start with the page table in secure memory and
8168      * can be downgraded to non-secure at any step. Non-secure accesses
8169      * remain non-secure. We implement this by just ORing in the NSTable/NS
8170      * bits at each step.
8171      */
8172     tableattrs = regime_is_secure(env, mmu_idx) ? 0 : (1 << 4);
8173     for (;;) {
8174         uint64_t descriptor;
8175         bool nstable;
8176 
8177         descaddr |= (address >> (stride * (4 - level))) & indexmask;
8178         descaddr &= ~7ULL;
8179         nstable = extract32(tableattrs, 4, 1);
8180         descriptor = arm_ldq_ptw(cs, descaddr, !nstable, mmu_idx, fsr, fi);
8181         if (fi->s1ptw) {
8182             goto do_fault;
8183         }
8184 
8185         if (!(descriptor & 1) ||
8186             (!(descriptor & 2) && (level == 3))) {
8187             /* Invalid, or the Reserved level 3 encoding */
8188             goto do_fault;
8189         }
8190         descaddr = descriptor & descaddrmask;
8191 
8192         if ((descriptor & 2) && (level < 3)) {
8193             /* Table entry. The top five bits are attributes which  may
8194              * propagate down through lower levels of the table (and
8195              * which are all arranged so that 0 means "no effect", so
8196              * we can gather them up by ORing in the bits at each level).
8197              */
8198             tableattrs |= extract64(descriptor, 59, 5);
8199             level++;
8200             indexmask = indexmask_grainsize;
8201             continue;
8202         }
8203         /* Block entry at level 1 or 2, or page entry at level 3.
8204          * These are basically the same thing, although the number
8205          * of bits we pull in from the vaddr varies.
8206          */
8207         page_size = (1ULL << ((stride * (4 - level)) + 3));
8208         descaddr |= (address & (page_size - 1));
8209         /* Extract attributes from the descriptor */
8210         attrs = extract64(descriptor, 2, 10)
8211             | (extract64(descriptor, 52, 12) << 10);
8212 
8213         if (mmu_idx == ARMMMUIdx_S2NS) {
8214             /* Stage 2 table descriptors do not include any attribute fields */
8215             break;
8216         }
8217         /* Merge in attributes from table descriptors */
8218         attrs |= extract32(tableattrs, 0, 2) << 11; /* XN, PXN */
8219         attrs |= extract32(tableattrs, 3, 1) << 5; /* APTable[1] => AP[2] */
8220         /* The sense of AP[1] vs APTable[0] is reversed, as APTable[0] == 1
8221          * means "force PL1 access only", which means forcing AP[1] to 0.
8222          */
8223         if (extract32(tableattrs, 2, 1)) {
8224             attrs &= ~(1 << 4);
8225         }
8226         attrs |= nstable << 3; /* NS */
8227         break;
8228     }
8229     /* Here descaddr is the final physical address, and attributes
8230      * are all in attrs.
8231      */
8232     fault_type = access_fault;
8233     if ((attrs & (1 << 8)) == 0) {
8234         /* Access flag */
8235         goto do_fault;
8236     }
8237 
8238     ap = extract32(attrs, 4, 2);
8239     xn = extract32(attrs, 12, 1);
8240 
8241     if (mmu_idx == ARMMMUIdx_S2NS) {
8242         ns = true;
8243         *prot = get_S2prot(env, ap, xn);
8244     } else {
8245         ns = extract32(attrs, 3, 1);
8246         pxn = extract32(attrs, 11, 1);
8247         *prot = get_S1prot(env, mmu_idx, aarch64, ap, ns, xn, pxn);
8248     }
8249 
8250     fault_type = permission_fault;
8251     if (!(*prot & (1 << access_type))) {
8252         goto do_fault;
8253     }
8254 
8255     if (ns) {
8256         /* The NS bit will (as required by the architecture) have no effect if
8257          * the CPU doesn't support TZ or this is a non-secure translation
8258          * regime, because the attribute will already be non-secure.
8259          */
8260         txattrs->secure = false;
8261     }
8262     *phys_ptr = descaddr;
8263     *page_size_ptr = page_size;
8264     return false;
8265 
8266 do_fault:
8267     /* Long-descriptor format IFSR/DFSR value */
8268     *fsr = (1 << 9) | (fault_type << 2) | level;
8269     /* Tag the error as S2 for failed S1 PTW at S2 or ordinary S2.  */
8270     fi->stage2 = fi->s1ptw || (mmu_idx == ARMMMUIdx_S2NS);
8271     return true;
8272 }
8273 
8274 static inline void get_phys_addr_pmsav7_default(CPUARMState *env,
8275                                                 ARMMMUIdx mmu_idx,
8276                                                 int32_t address, int *prot)
8277 {
8278     if (!arm_feature(env, ARM_FEATURE_M)) {
8279         *prot = PAGE_READ | PAGE_WRITE;
8280         switch (address) {
8281         case 0xF0000000 ... 0xFFFFFFFF:
8282             if (regime_sctlr(env, mmu_idx) & SCTLR_V) {
8283                 /* hivecs execing is ok */
8284                 *prot |= PAGE_EXEC;
8285             }
8286             break;
8287         case 0x00000000 ... 0x7FFFFFFF:
8288             *prot |= PAGE_EXEC;
8289             break;
8290         }
8291     } else {
8292         /* Default system address map for M profile cores.
8293          * The architecture specifies which regions are execute-never;
8294          * at the MPU level no other checks are defined.
8295          */
8296         switch (address) {
8297         case 0x00000000 ... 0x1fffffff: /* ROM */
8298         case 0x20000000 ... 0x3fffffff: /* SRAM */
8299         case 0x60000000 ... 0x7fffffff: /* RAM */
8300         case 0x80000000 ... 0x9fffffff: /* RAM */
8301             *prot = PAGE_READ | PAGE_WRITE | PAGE_EXEC;
8302             break;
8303         case 0x40000000 ... 0x5fffffff: /* Peripheral */
8304         case 0xa0000000 ... 0xbfffffff: /* Device */
8305         case 0xc0000000 ... 0xdfffffff: /* Device */
8306         case 0xe0000000 ... 0xffffffff: /* System */
8307             *prot = PAGE_READ | PAGE_WRITE;
8308             break;
8309         default:
8310             g_assert_not_reached();
8311         }
8312     }
8313 }
8314 
8315 static bool pmsav7_use_background_region(ARMCPU *cpu,
8316                                          ARMMMUIdx mmu_idx, bool is_user)
8317 {
8318     /* Return true if we should use the default memory map as a
8319      * "background" region if there are no hits against any MPU regions.
8320      */
8321     CPUARMState *env = &cpu->env;
8322 
8323     if (is_user) {
8324         return false;
8325     }
8326 
8327     if (arm_feature(env, ARM_FEATURE_M)) {
8328         return env->v7m.mpu_ctrl[regime_is_secure(env, mmu_idx)]
8329             & R_V7M_MPU_CTRL_PRIVDEFENA_MASK;
8330     } else {
8331         return regime_sctlr(env, mmu_idx) & SCTLR_BR;
8332     }
8333 }
8334 
8335 static inline bool m_is_ppb_region(CPUARMState *env, uint32_t address)
8336 {
8337     /* True if address is in the M profile PPB region 0xe0000000 - 0xe00fffff */
8338     return arm_feature(env, ARM_FEATURE_M) &&
8339         extract32(address, 20, 12) == 0xe00;
8340 }
8341 
8342 static inline bool m_is_system_region(CPUARMState *env, uint32_t address)
8343 {
8344     /* True if address is in the M profile system region
8345      * 0xe0000000 - 0xffffffff
8346      */
8347     return arm_feature(env, ARM_FEATURE_M) && extract32(address, 29, 3) == 0x7;
8348 }
8349 
8350 static bool get_phys_addr_pmsav7(CPUARMState *env, uint32_t address,
8351                                  MMUAccessType access_type, ARMMMUIdx mmu_idx,
8352                                  hwaddr *phys_ptr, int *prot, uint32_t *fsr)
8353 {
8354     ARMCPU *cpu = arm_env_get_cpu(env);
8355     int n;
8356     bool is_user = regime_is_user(env, mmu_idx);
8357 
8358     *phys_ptr = address;
8359     *prot = 0;
8360 
8361     if (regime_translation_disabled(env, mmu_idx) ||
8362         m_is_ppb_region(env, address)) {
8363         /* MPU disabled or M profile PPB access: use default memory map.
8364          * The other case which uses the default memory map in the
8365          * v7M ARM ARM pseudocode is exception vector reads from the vector
8366          * table. In QEMU those accesses are done in arm_v7m_load_vector(),
8367          * which always does a direct read using address_space_ldl(), rather
8368          * than going via this function, so we don't need to check that here.
8369          */
8370         get_phys_addr_pmsav7_default(env, mmu_idx, address, prot);
8371     } else { /* MPU enabled */
8372         for (n = (int)cpu->pmsav7_dregion - 1; n >= 0; n--) {
8373             /* region search */
8374             uint32_t base = env->pmsav7.drbar[n];
8375             uint32_t rsize = extract32(env->pmsav7.drsr[n], 1, 5);
8376             uint32_t rmask;
8377             bool srdis = false;
8378 
8379             if (!(env->pmsav7.drsr[n] & 0x1)) {
8380                 continue;
8381             }
8382 
8383             if (!rsize) {
8384                 qemu_log_mask(LOG_GUEST_ERROR,
8385                               "DRSR[%d]: Rsize field cannot be 0\n", n);
8386                 continue;
8387             }
8388             rsize++;
8389             rmask = (1ull << rsize) - 1;
8390 
8391             if (base & rmask) {
8392                 qemu_log_mask(LOG_GUEST_ERROR,
8393                               "DRBAR[%d]: 0x%" PRIx32 " misaligned "
8394                               "to DRSR region size, mask = 0x%" PRIx32 "\n",
8395                               n, base, rmask);
8396                 continue;
8397             }
8398 
8399             if (address < base || address > base + rmask) {
8400                 continue;
8401             }
8402 
8403             /* Region matched */
8404 
8405             if (rsize >= 8) { /* no subregions for regions < 256 bytes */
8406                 int i, snd;
8407                 uint32_t srdis_mask;
8408 
8409                 rsize -= 3; /* sub region size (power of 2) */
8410                 snd = ((address - base) >> rsize) & 0x7;
8411                 srdis = extract32(env->pmsav7.drsr[n], snd + 8, 1);
8412 
8413                 srdis_mask = srdis ? 0x3 : 0x0;
8414                 for (i = 2; i <= 8 && rsize < TARGET_PAGE_BITS; i *= 2) {
8415                     /* This will check in groups of 2, 4 and then 8, whether
8416                      * the subregion bits are consistent. rsize is incremented
8417                      * back up to give the region size, considering consistent
8418                      * adjacent subregions as one region. Stop testing if rsize
8419                      * is already big enough for an entire QEMU page.
8420                      */
8421                     int snd_rounded = snd & ~(i - 1);
8422                     uint32_t srdis_multi = extract32(env->pmsav7.drsr[n],
8423                                                      snd_rounded + 8, i);
8424                     if (srdis_mask ^ srdis_multi) {
8425                         break;
8426                     }
8427                     srdis_mask = (srdis_mask << i) | srdis_mask;
8428                     rsize++;
8429                 }
8430             }
8431             if (rsize < TARGET_PAGE_BITS) {
8432                 qemu_log_mask(LOG_UNIMP,
8433                               "DRSR[%d]: No support for MPU (sub)region "
8434                               "alignment of %" PRIu32 " bits. Minimum is %d\n",
8435                               n, rsize, TARGET_PAGE_BITS);
8436                 continue;
8437             }
8438             if (srdis) {
8439                 continue;
8440             }
8441             break;
8442         }
8443 
8444         if (n == -1) { /* no hits */
8445             if (!pmsav7_use_background_region(cpu, mmu_idx, is_user)) {
8446                 /* background fault */
8447                 *fsr = 0;
8448                 return true;
8449             }
8450             get_phys_addr_pmsav7_default(env, mmu_idx, address, prot);
8451         } else { /* a MPU hit! */
8452             uint32_t ap = extract32(env->pmsav7.dracr[n], 8, 3);
8453             uint32_t xn = extract32(env->pmsav7.dracr[n], 12, 1);
8454 
8455             if (m_is_system_region(env, address)) {
8456                 /* System space is always execute never */
8457                 xn = 1;
8458             }
8459 
8460             if (is_user) { /* User mode AP bit decoding */
8461                 switch (ap) {
8462                 case 0:
8463                 case 1:
8464                 case 5:
8465                     break; /* no access */
8466                 case 3:
8467                     *prot |= PAGE_WRITE;
8468                     /* fall through */
8469                 case 2:
8470                 case 6:
8471                     *prot |= PAGE_READ | PAGE_EXEC;
8472                     break;
8473                 default:
8474                     qemu_log_mask(LOG_GUEST_ERROR,
8475                                   "DRACR[%d]: Bad value for AP bits: 0x%"
8476                                   PRIx32 "\n", n, ap);
8477                 }
8478             } else { /* Priv. mode AP bits decoding */
8479                 switch (ap) {
8480                 case 0:
8481                     break; /* no access */
8482                 case 1:
8483                 case 2:
8484                 case 3:
8485                     *prot |= PAGE_WRITE;
8486                     /* fall through */
8487                 case 5:
8488                 case 6:
8489                     *prot |= PAGE_READ | PAGE_EXEC;
8490                     break;
8491                 default:
8492                     qemu_log_mask(LOG_GUEST_ERROR,
8493                                   "DRACR[%d]: Bad value for AP bits: 0x%"
8494                                   PRIx32 "\n", n, ap);
8495                 }
8496             }
8497 
8498             /* execute never */
8499             if (xn) {
8500                 *prot &= ~PAGE_EXEC;
8501             }
8502         }
8503     }
8504 
8505     *fsr = 0x00d; /* Permission fault */
8506     return !(*prot & (1 << access_type));
8507 }
8508 
8509 static bool get_phys_addr_pmsav8(CPUARMState *env, uint32_t address,
8510                                  MMUAccessType access_type, ARMMMUIdx mmu_idx,
8511                                  hwaddr *phys_ptr, int *prot, uint32_t *fsr)
8512 {
8513     ARMCPU *cpu = arm_env_get_cpu(env);
8514     bool is_user = regime_is_user(env, mmu_idx);
8515     uint32_t secure = regime_is_secure(env, mmu_idx);
8516     int n;
8517     int matchregion = -1;
8518     bool hit = false;
8519 
8520     *phys_ptr = address;
8521     *prot = 0;
8522 
8523     /* Unlike the ARM ARM pseudocode, we don't need to check whether this
8524      * was an exception vector read from the vector table (which is always
8525      * done using the default system address map), because those accesses
8526      * are done in arm_v7m_load_vector(), which always does a direct
8527      * read using address_space_ldl(), rather than going via this function.
8528      */
8529     if (regime_translation_disabled(env, mmu_idx)) { /* MPU disabled */
8530         hit = true;
8531     } else if (m_is_ppb_region(env, address)) {
8532         hit = true;
8533     } else if (pmsav7_use_background_region(cpu, mmu_idx, is_user)) {
8534         hit = true;
8535     } else {
8536         for (n = (int)cpu->pmsav7_dregion - 1; n >= 0; n--) {
8537             /* region search */
8538             /* Note that the base address is bits [31:5] from the register
8539              * with bits [4:0] all zeroes, but the limit address is bits
8540              * [31:5] from the register with bits [4:0] all ones.
8541              */
8542             uint32_t base = env->pmsav8.rbar[secure][n] & ~0x1f;
8543             uint32_t limit = env->pmsav8.rlar[secure][n] | 0x1f;
8544 
8545             if (!(env->pmsav8.rlar[secure][n] & 0x1)) {
8546                 /* Region disabled */
8547                 continue;
8548             }
8549 
8550             if (address < base || address > limit) {
8551                 continue;
8552             }
8553 
8554             if (hit) {
8555                 /* Multiple regions match -- always a failure (unlike
8556                  * PMSAv7 where highest-numbered-region wins)
8557                  */
8558                 *fsr = 0x00d; /* permission fault */
8559                 return true;
8560             }
8561 
8562             matchregion = n;
8563             hit = true;
8564 
8565             if (base & ~TARGET_PAGE_MASK) {
8566                 qemu_log_mask(LOG_UNIMP,
8567                               "MPU_RBAR[%d]: No support for MPU region base"
8568                               "address of 0x%" PRIx32 ". Minimum alignment is "
8569                               "%d\n",
8570                               n, base, TARGET_PAGE_BITS);
8571                 continue;
8572             }
8573             if ((limit + 1) & ~TARGET_PAGE_MASK) {
8574                 qemu_log_mask(LOG_UNIMP,
8575                               "MPU_RBAR[%d]: No support for MPU region limit"
8576                               "address of 0x%" PRIx32 ". Minimum alignment is "
8577                               "%d\n",
8578                               n, limit, TARGET_PAGE_BITS);
8579                 continue;
8580             }
8581         }
8582     }
8583 
8584     if (!hit) {
8585         /* background fault */
8586         *fsr = 0;
8587         return true;
8588     }
8589 
8590     if (matchregion == -1) {
8591         /* hit using the background region */
8592         get_phys_addr_pmsav7_default(env, mmu_idx, address, prot);
8593     } else {
8594         uint32_t ap = extract32(env->pmsav8.rbar[secure][matchregion], 1, 2);
8595         uint32_t xn = extract32(env->pmsav8.rbar[secure][matchregion], 0, 1);
8596 
8597         if (m_is_system_region(env, address)) {
8598             /* System space is always execute never */
8599             xn = 1;
8600         }
8601 
8602         *prot = simple_ap_to_rw_prot(env, mmu_idx, ap);
8603         if (*prot && !xn) {
8604             *prot |= PAGE_EXEC;
8605         }
8606         /* We don't need to look the attribute up in the MAIR0/MAIR1
8607          * registers because that only tells us about cacheability.
8608          */
8609     }
8610 
8611     *fsr = 0x00d; /* Permission fault */
8612     return !(*prot & (1 << access_type));
8613 }
8614 
8615 static bool get_phys_addr_pmsav5(CPUARMState *env, uint32_t address,
8616                                  MMUAccessType access_type, ARMMMUIdx mmu_idx,
8617                                  hwaddr *phys_ptr, int *prot, uint32_t *fsr)
8618 {
8619     int n;
8620     uint32_t mask;
8621     uint32_t base;
8622     bool is_user = regime_is_user(env, mmu_idx);
8623 
8624     if (regime_translation_disabled(env, mmu_idx)) {
8625         /* MPU disabled.  */
8626         *phys_ptr = address;
8627         *prot = PAGE_READ | PAGE_WRITE | PAGE_EXEC;
8628         return false;
8629     }
8630 
8631     *phys_ptr = address;
8632     for (n = 7; n >= 0; n--) {
8633         base = env->cp15.c6_region[n];
8634         if ((base & 1) == 0) {
8635             continue;
8636         }
8637         mask = 1 << ((base >> 1) & 0x1f);
8638         /* Keep this shift separate from the above to avoid an
8639            (undefined) << 32.  */
8640         mask = (mask << 1) - 1;
8641         if (((base ^ address) & ~mask) == 0) {
8642             break;
8643         }
8644     }
8645     if (n < 0) {
8646         *fsr = 2;
8647         return true;
8648     }
8649 
8650     if (access_type == MMU_INST_FETCH) {
8651         mask = env->cp15.pmsav5_insn_ap;
8652     } else {
8653         mask = env->cp15.pmsav5_data_ap;
8654     }
8655     mask = (mask >> (n * 4)) & 0xf;
8656     switch (mask) {
8657     case 0:
8658         *fsr = 1;
8659         return true;
8660     case 1:
8661         if (is_user) {
8662             *fsr = 1;
8663             return true;
8664         }
8665         *prot = PAGE_READ | PAGE_WRITE;
8666         break;
8667     case 2:
8668         *prot = PAGE_READ;
8669         if (!is_user) {
8670             *prot |= PAGE_WRITE;
8671         }
8672         break;
8673     case 3:
8674         *prot = PAGE_READ | PAGE_WRITE;
8675         break;
8676     case 5:
8677         if (is_user) {
8678             *fsr = 1;
8679             return true;
8680         }
8681         *prot = PAGE_READ;
8682         break;
8683     case 6:
8684         *prot = PAGE_READ;
8685         break;
8686     default:
8687         /* Bad permission.  */
8688         *fsr = 1;
8689         return true;
8690     }
8691     *prot |= PAGE_EXEC;
8692     return false;
8693 }
8694 
8695 /* get_phys_addr - get the physical address for this virtual address
8696  *
8697  * Find the physical address corresponding to the given virtual address,
8698  * by doing a translation table walk on MMU based systems or using the
8699  * MPU state on MPU based systems.
8700  *
8701  * Returns false if the translation was successful. Otherwise, phys_ptr, attrs,
8702  * prot and page_size may not be filled in, and the populated fsr value provides
8703  * information on why the translation aborted, in the format of a
8704  * DFSR/IFSR fault register, with the following caveats:
8705  *  * we honour the short vs long DFSR format differences.
8706  *  * the WnR bit is never set (the caller must do this).
8707  *  * for PSMAv5 based systems we don't bother to return a full FSR format
8708  *    value.
8709  *
8710  * @env: CPUARMState
8711  * @address: virtual address to get physical address for
8712  * @access_type: 0 for read, 1 for write, 2 for execute
8713  * @mmu_idx: MMU index indicating required translation regime
8714  * @phys_ptr: set to the physical address corresponding to the virtual address
8715  * @attrs: set to the memory transaction attributes to use
8716  * @prot: set to the permissions for the page containing phys_ptr
8717  * @page_size: set to the size of the page containing phys_ptr
8718  * @fsr: set to the DFSR/IFSR value on failure
8719  */
8720 static bool get_phys_addr(CPUARMState *env, target_ulong address,
8721                           MMUAccessType access_type, ARMMMUIdx mmu_idx,
8722                           hwaddr *phys_ptr, MemTxAttrs *attrs, int *prot,
8723                           target_ulong *page_size, uint32_t *fsr,
8724                           ARMMMUFaultInfo *fi)
8725 {
8726     if (mmu_idx == ARMMMUIdx_S12NSE0 || mmu_idx == ARMMMUIdx_S12NSE1) {
8727         /* Call ourselves recursively to do the stage 1 and then stage 2
8728          * translations.
8729          */
8730         if (arm_feature(env, ARM_FEATURE_EL2)) {
8731             hwaddr ipa;
8732             int s2_prot;
8733             int ret;
8734 
8735             ret = get_phys_addr(env, address, access_type,
8736                                 stage_1_mmu_idx(mmu_idx), &ipa, attrs,
8737                                 prot, page_size, fsr, fi);
8738 
8739             /* If S1 fails or S2 is disabled, return early.  */
8740             if (ret || regime_translation_disabled(env, ARMMMUIdx_S2NS)) {
8741                 *phys_ptr = ipa;
8742                 return ret;
8743             }
8744 
8745             /* S1 is done. Now do S2 translation.  */
8746             ret = get_phys_addr_lpae(env, ipa, access_type, ARMMMUIdx_S2NS,
8747                                      phys_ptr, attrs, &s2_prot,
8748                                      page_size, fsr, fi);
8749             fi->s2addr = ipa;
8750             /* Combine the S1 and S2 perms.  */
8751             *prot &= s2_prot;
8752             return ret;
8753         } else {
8754             /*
8755              * For non-EL2 CPUs a stage1+stage2 translation is just stage 1.
8756              */
8757             mmu_idx = stage_1_mmu_idx(mmu_idx);
8758         }
8759     }
8760 
8761     /* The page table entries may downgrade secure to non-secure, but
8762      * cannot upgrade an non-secure translation regime's attributes
8763      * to secure.
8764      */
8765     attrs->secure = regime_is_secure(env, mmu_idx);
8766     attrs->user = regime_is_user(env, mmu_idx);
8767 
8768     /* Fast Context Switch Extension. This doesn't exist at all in v8.
8769      * In v7 and earlier it affects all stage 1 translations.
8770      */
8771     if (address < 0x02000000 && mmu_idx != ARMMMUIdx_S2NS
8772         && !arm_feature(env, ARM_FEATURE_V8)) {
8773         if (regime_el(env, mmu_idx) == 3) {
8774             address += env->cp15.fcseidr_s;
8775         } else {
8776             address += env->cp15.fcseidr_ns;
8777         }
8778     }
8779 
8780     if (arm_feature(env, ARM_FEATURE_PMSA)) {
8781         bool ret;
8782         *page_size = TARGET_PAGE_SIZE;
8783 
8784         if (arm_feature(env, ARM_FEATURE_V8)) {
8785             /* PMSAv8 */
8786             ret = get_phys_addr_pmsav8(env, address, access_type, mmu_idx,
8787                                        phys_ptr, prot, fsr);
8788         } else if (arm_feature(env, ARM_FEATURE_V7)) {
8789             /* PMSAv7 */
8790             ret = get_phys_addr_pmsav7(env, address, access_type, mmu_idx,
8791                                        phys_ptr, prot, fsr);
8792         } else {
8793             /* Pre-v7 MPU */
8794             ret = get_phys_addr_pmsav5(env, address, access_type, mmu_idx,
8795                                        phys_ptr, prot, fsr);
8796         }
8797         qemu_log_mask(CPU_LOG_MMU, "PMSA MPU lookup for %s at 0x%08" PRIx32
8798                       " mmu_idx %u -> %s (prot %c%c%c)\n",
8799                       access_type == MMU_DATA_LOAD ? "reading" :
8800                       (access_type == MMU_DATA_STORE ? "writing" : "execute"),
8801                       (uint32_t)address, mmu_idx,
8802                       ret ? "Miss" : "Hit",
8803                       *prot & PAGE_READ ? 'r' : '-',
8804                       *prot & PAGE_WRITE ? 'w' : '-',
8805                       *prot & PAGE_EXEC ? 'x' : '-');
8806 
8807         return ret;
8808     }
8809 
8810     /* Definitely a real MMU, not an MPU */
8811 
8812     if (regime_translation_disabled(env, mmu_idx)) {
8813         /* MMU disabled. */
8814         *phys_ptr = address;
8815         *prot = PAGE_READ | PAGE_WRITE | PAGE_EXEC;
8816         *page_size = TARGET_PAGE_SIZE;
8817         return 0;
8818     }
8819 
8820     if (regime_using_lpae_format(env, mmu_idx)) {
8821         return get_phys_addr_lpae(env, address, access_type, mmu_idx, phys_ptr,
8822                                   attrs, prot, page_size, fsr, fi);
8823     } else if (regime_sctlr(env, mmu_idx) & SCTLR_XP) {
8824         return get_phys_addr_v6(env, address, access_type, mmu_idx, phys_ptr,
8825                                 attrs, prot, page_size, fsr, fi);
8826     } else {
8827         return get_phys_addr_v5(env, address, access_type, mmu_idx, phys_ptr,
8828                                 prot, page_size, fsr, fi);
8829     }
8830 }
8831 
8832 /* Walk the page table and (if the mapping exists) add the page
8833  * to the TLB. Return false on success, or true on failure. Populate
8834  * fsr with ARM DFSR/IFSR fault register format value on failure.
8835  */
8836 bool arm_tlb_fill(CPUState *cs, vaddr address,
8837                   MMUAccessType access_type, int mmu_idx, uint32_t *fsr,
8838                   ARMMMUFaultInfo *fi)
8839 {
8840     ARMCPU *cpu = ARM_CPU(cs);
8841     CPUARMState *env = &cpu->env;
8842     hwaddr phys_addr;
8843     target_ulong page_size;
8844     int prot;
8845     int ret;
8846     MemTxAttrs attrs = {};
8847 
8848     ret = get_phys_addr(env, address, access_type,
8849                         core_to_arm_mmu_idx(env, mmu_idx), &phys_addr,
8850                         &attrs, &prot, &page_size, fsr, fi);
8851     if (!ret) {
8852         /* Map a single [sub]page.  */
8853         phys_addr &= TARGET_PAGE_MASK;
8854         address &= TARGET_PAGE_MASK;
8855         tlb_set_page_with_attrs(cs, address, phys_addr, attrs,
8856                                 prot, mmu_idx, page_size);
8857         return 0;
8858     }
8859 
8860     return ret;
8861 }
8862 
8863 hwaddr arm_cpu_get_phys_page_attrs_debug(CPUState *cs, vaddr addr,
8864                                          MemTxAttrs *attrs)
8865 {
8866     ARMCPU *cpu = ARM_CPU(cs);
8867     CPUARMState *env = &cpu->env;
8868     hwaddr phys_addr;
8869     target_ulong page_size;
8870     int prot;
8871     bool ret;
8872     uint32_t fsr;
8873     ARMMMUFaultInfo fi = {};
8874     ARMMMUIdx mmu_idx = core_to_arm_mmu_idx(env, cpu_mmu_index(env, false));
8875 
8876     *attrs = (MemTxAttrs) {};
8877 
8878     ret = get_phys_addr(env, addr, 0, mmu_idx, &phys_addr,
8879                         attrs, &prot, &page_size, &fsr, &fi);
8880 
8881     if (ret) {
8882         return -1;
8883     }
8884     return phys_addr;
8885 }
8886 
8887 uint32_t HELPER(v7m_mrs)(CPUARMState *env, uint32_t reg)
8888 {
8889     uint32_t mask;
8890     unsigned el = arm_current_el(env);
8891 
8892     /* First handle registers which unprivileged can read */
8893 
8894     switch (reg) {
8895     case 0 ... 7: /* xPSR sub-fields */
8896         mask = 0;
8897         if ((reg & 1) && el) {
8898             mask |= XPSR_EXCP; /* IPSR (unpriv. reads as zero) */
8899         }
8900         if (!(reg & 4)) {
8901             mask |= XPSR_NZCV | XPSR_Q; /* APSR */
8902         }
8903         /* EPSR reads as zero */
8904         return xpsr_read(env) & mask;
8905         break;
8906     case 20: /* CONTROL */
8907         return env->v7m.control[env->v7m.secure];
8908     case 0x94: /* CONTROL_NS */
8909         /* We have to handle this here because unprivileged Secure code
8910          * can read the NS CONTROL register.
8911          */
8912         if (!env->v7m.secure) {
8913             return 0;
8914         }
8915         return env->v7m.control[M_REG_NS];
8916     }
8917 
8918     if (el == 0) {
8919         return 0; /* unprivileged reads others as zero */
8920     }
8921 
8922     if (arm_feature(env, ARM_FEATURE_M_SECURITY)) {
8923         switch (reg) {
8924         case 0x88: /* MSP_NS */
8925             if (!env->v7m.secure) {
8926                 return 0;
8927             }
8928             return env->v7m.other_ss_msp;
8929         case 0x89: /* PSP_NS */
8930             if (!env->v7m.secure) {
8931                 return 0;
8932             }
8933             return env->v7m.other_ss_psp;
8934         case 0x90: /* PRIMASK_NS */
8935             if (!env->v7m.secure) {
8936                 return 0;
8937             }
8938             return env->v7m.primask[M_REG_NS];
8939         case 0x91: /* BASEPRI_NS */
8940             if (!env->v7m.secure) {
8941                 return 0;
8942             }
8943             return env->v7m.basepri[M_REG_NS];
8944         case 0x93: /* FAULTMASK_NS */
8945             if (!env->v7m.secure) {
8946                 return 0;
8947             }
8948             return env->v7m.faultmask[M_REG_NS];
8949         case 0x98: /* SP_NS */
8950         {
8951             /* This gives the non-secure SP selected based on whether we're
8952              * currently in handler mode or not, using the NS CONTROL.SPSEL.
8953              */
8954             bool spsel = env->v7m.control[M_REG_NS] & R_V7M_CONTROL_SPSEL_MASK;
8955 
8956             if (!env->v7m.secure) {
8957                 return 0;
8958             }
8959             if (!arm_v7m_is_handler_mode(env) && spsel) {
8960                 return env->v7m.other_ss_psp;
8961             } else {
8962                 return env->v7m.other_ss_msp;
8963             }
8964         }
8965         default:
8966             break;
8967         }
8968     }
8969 
8970     switch (reg) {
8971     case 8: /* MSP */
8972         return (env->v7m.control[env->v7m.secure] & R_V7M_CONTROL_SPSEL_MASK) ?
8973             env->v7m.other_sp : env->regs[13];
8974     case 9: /* PSP */
8975         return (env->v7m.control[env->v7m.secure] & R_V7M_CONTROL_SPSEL_MASK) ?
8976             env->regs[13] : env->v7m.other_sp;
8977     case 16: /* PRIMASK */
8978         return env->v7m.primask[env->v7m.secure];
8979     case 17: /* BASEPRI */
8980     case 18: /* BASEPRI_MAX */
8981         return env->v7m.basepri[env->v7m.secure];
8982     case 19: /* FAULTMASK */
8983         return env->v7m.faultmask[env->v7m.secure];
8984     default:
8985         qemu_log_mask(LOG_GUEST_ERROR, "Attempt to read unknown special"
8986                                        " register %d\n", reg);
8987         return 0;
8988     }
8989 }
8990 
8991 void HELPER(v7m_msr)(CPUARMState *env, uint32_t maskreg, uint32_t val)
8992 {
8993     /* We're passed bits [11..0] of the instruction; extract
8994      * SYSm and the mask bits.
8995      * Invalid combinations of SYSm and mask are UNPREDICTABLE;
8996      * we choose to treat them as if the mask bits were valid.
8997      * NB that the pseudocode 'mask' variable is bits [11..10],
8998      * whereas ours is [11..8].
8999      */
9000     uint32_t mask = extract32(maskreg, 8, 4);
9001     uint32_t reg = extract32(maskreg, 0, 8);
9002 
9003     if (arm_current_el(env) == 0 && reg > 7) {
9004         /* only xPSR sub-fields may be written by unprivileged */
9005         return;
9006     }
9007 
9008     if (arm_feature(env, ARM_FEATURE_M_SECURITY)) {
9009         switch (reg) {
9010         case 0x88: /* MSP_NS */
9011             if (!env->v7m.secure) {
9012                 return;
9013             }
9014             env->v7m.other_ss_msp = val;
9015             return;
9016         case 0x89: /* PSP_NS */
9017             if (!env->v7m.secure) {
9018                 return;
9019             }
9020             env->v7m.other_ss_psp = val;
9021             return;
9022         case 0x90: /* PRIMASK_NS */
9023             if (!env->v7m.secure) {
9024                 return;
9025             }
9026             env->v7m.primask[M_REG_NS] = val & 1;
9027             return;
9028         case 0x91: /* BASEPRI_NS */
9029             if (!env->v7m.secure) {
9030                 return;
9031             }
9032             env->v7m.basepri[M_REG_NS] = val & 0xff;
9033             return;
9034         case 0x93: /* FAULTMASK_NS */
9035             if (!env->v7m.secure) {
9036                 return;
9037             }
9038             env->v7m.faultmask[M_REG_NS] = val & 1;
9039             return;
9040         case 0x98: /* SP_NS */
9041         {
9042             /* This gives the non-secure SP selected based on whether we're
9043              * currently in handler mode or not, using the NS CONTROL.SPSEL.
9044              */
9045             bool spsel = env->v7m.control[M_REG_NS] & R_V7M_CONTROL_SPSEL_MASK;
9046 
9047             if (!env->v7m.secure) {
9048                 return;
9049             }
9050             if (!arm_v7m_is_handler_mode(env) && spsel) {
9051                 env->v7m.other_ss_psp = val;
9052             } else {
9053                 env->v7m.other_ss_msp = val;
9054             }
9055             return;
9056         }
9057         default:
9058             break;
9059         }
9060     }
9061 
9062     switch (reg) {
9063     case 0 ... 7: /* xPSR sub-fields */
9064         /* only APSR is actually writable */
9065         if (!(reg & 4)) {
9066             uint32_t apsrmask = 0;
9067 
9068             if (mask & 8) {
9069                 apsrmask |= XPSR_NZCV | XPSR_Q;
9070             }
9071             if ((mask & 4) && arm_feature(env, ARM_FEATURE_THUMB_DSP)) {
9072                 apsrmask |= XPSR_GE;
9073             }
9074             xpsr_write(env, val, apsrmask);
9075         }
9076         break;
9077     case 8: /* MSP */
9078         if (env->v7m.control[env->v7m.secure] & R_V7M_CONTROL_SPSEL_MASK) {
9079             env->v7m.other_sp = val;
9080         } else {
9081             env->regs[13] = val;
9082         }
9083         break;
9084     case 9: /* PSP */
9085         if (env->v7m.control[env->v7m.secure] & R_V7M_CONTROL_SPSEL_MASK) {
9086             env->regs[13] = val;
9087         } else {
9088             env->v7m.other_sp = val;
9089         }
9090         break;
9091     case 16: /* PRIMASK */
9092         env->v7m.primask[env->v7m.secure] = val & 1;
9093         break;
9094     case 17: /* BASEPRI */
9095         env->v7m.basepri[env->v7m.secure] = val & 0xff;
9096         break;
9097     case 18: /* BASEPRI_MAX */
9098         val &= 0xff;
9099         if (val != 0 && (val < env->v7m.basepri[env->v7m.secure]
9100                          || env->v7m.basepri[env->v7m.secure] == 0)) {
9101             env->v7m.basepri[env->v7m.secure] = val;
9102         }
9103         break;
9104     case 19: /* FAULTMASK */
9105         env->v7m.faultmask[env->v7m.secure] = val & 1;
9106         break;
9107     case 20: /* CONTROL */
9108         /* Writing to the SPSEL bit only has an effect if we are in
9109          * thread mode; other bits can be updated by any privileged code.
9110          * switch_v7m_sp() deals with updating the SPSEL bit in
9111          * env->v7m.control, so we only need update the others.
9112          */
9113         if (!arm_v7m_is_handler_mode(env)) {
9114             switch_v7m_sp(env, (val & R_V7M_CONTROL_SPSEL_MASK) != 0);
9115         }
9116         env->v7m.control[env->v7m.secure] &= ~R_V7M_CONTROL_NPRIV_MASK;
9117         env->v7m.control[env->v7m.secure] |= val & R_V7M_CONTROL_NPRIV_MASK;
9118         break;
9119     default:
9120         qemu_log_mask(LOG_GUEST_ERROR, "Attempt to write unknown special"
9121                                        " register %d\n", reg);
9122         return;
9123     }
9124 }
9125 
9126 #endif
9127 
9128 void HELPER(dc_zva)(CPUARMState *env, uint64_t vaddr_in)
9129 {
9130     /* Implement DC ZVA, which zeroes a fixed-length block of memory.
9131      * Note that we do not implement the (architecturally mandated)
9132      * alignment fault for attempts to use this on Device memory
9133      * (which matches the usual QEMU behaviour of not implementing either
9134      * alignment faults or any memory attribute handling).
9135      */
9136 
9137     ARMCPU *cpu = arm_env_get_cpu(env);
9138     uint64_t blocklen = 4 << cpu->dcz_blocksize;
9139     uint64_t vaddr = vaddr_in & ~(blocklen - 1);
9140 
9141 #ifndef CONFIG_USER_ONLY
9142     {
9143         /* Slightly awkwardly, QEMU's TARGET_PAGE_SIZE may be less than
9144          * the block size so we might have to do more than one TLB lookup.
9145          * We know that in fact for any v8 CPU the page size is at least 4K
9146          * and the block size must be 2K or less, but TARGET_PAGE_SIZE is only
9147          * 1K as an artefact of legacy v5 subpage support being present in the
9148          * same QEMU executable.
9149          */
9150         int maxidx = DIV_ROUND_UP(blocklen, TARGET_PAGE_SIZE);
9151         void *hostaddr[maxidx];
9152         int try, i;
9153         unsigned mmu_idx = cpu_mmu_index(env, false);
9154         TCGMemOpIdx oi = make_memop_idx(MO_UB, mmu_idx);
9155 
9156         for (try = 0; try < 2; try++) {
9157 
9158             for (i = 0; i < maxidx; i++) {
9159                 hostaddr[i] = tlb_vaddr_to_host(env,
9160                                                 vaddr + TARGET_PAGE_SIZE * i,
9161                                                 1, mmu_idx);
9162                 if (!hostaddr[i]) {
9163                     break;
9164                 }
9165             }
9166             if (i == maxidx) {
9167                 /* If it's all in the TLB it's fair game for just writing to;
9168                  * we know we don't need to update dirty status, etc.
9169                  */
9170                 for (i = 0; i < maxidx - 1; i++) {
9171                     memset(hostaddr[i], 0, TARGET_PAGE_SIZE);
9172                 }
9173                 memset(hostaddr[i], 0, blocklen - (i * TARGET_PAGE_SIZE));
9174                 return;
9175             }
9176             /* OK, try a store and see if we can populate the tlb. This
9177              * might cause an exception if the memory isn't writable,
9178              * in which case we will longjmp out of here. We must for
9179              * this purpose use the actual register value passed to us
9180              * so that we get the fault address right.
9181              */
9182             helper_ret_stb_mmu(env, vaddr_in, 0, oi, GETPC());
9183             /* Now we can populate the other TLB entries, if any */
9184             for (i = 0; i < maxidx; i++) {
9185                 uint64_t va = vaddr + TARGET_PAGE_SIZE * i;
9186                 if (va != (vaddr_in & TARGET_PAGE_MASK)) {
9187                     helper_ret_stb_mmu(env, va, 0, oi, GETPC());
9188                 }
9189             }
9190         }
9191 
9192         /* Slow path (probably attempt to do this to an I/O device or
9193          * similar, or clearing of a block of code we have translations
9194          * cached for). Just do a series of byte writes as the architecture
9195          * demands. It's not worth trying to use a cpu_physical_memory_map(),
9196          * memset(), unmap() sequence here because:
9197          *  + we'd need to account for the blocksize being larger than a page
9198          *  + the direct-RAM access case is almost always going to be dealt
9199          *    with in the fastpath code above, so there's no speed benefit
9200          *  + we would have to deal with the map returning NULL because the
9201          *    bounce buffer was in use
9202          */
9203         for (i = 0; i < blocklen; i++) {
9204             helper_ret_stb_mmu(env, vaddr + i, 0, oi, GETPC());
9205         }
9206     }
9207 #else
9208     memset(g2h(vaddr), 0, blocklen);
9209 #endif
9210 }
9211 
9212 /* Note that signed overflow is undefined in C.  The following routines are
9213    careful to use unsigned types where modulo arithmetic is required.
9214    Failure to do so _will_ break on newer gcc.  */
9215 
9216 /* Signed saturating arithmetic.  */
9217 
9218 /* Perform 16-bit signed saturating addition.  */
9219 static inline uint16_t add16_sat(uint16_t a, uint16_t b)
9220 {
9221     uint16_t res;
9222 
9223     res = a + b;
9224     if (((res ^ a) & 0x8000) && !((a ^ b) & 0x8000)) {
9225         if (a & 0x8000)
9226             res = 0x8000;
9227         else
9228             res = 0x7fff;
9229     }
9230     return res;
9231 }
9232 
9233 /* Perform 8-bit signed saturating addition.  */
9234 static inline uint8_t add8_sat(uint8_t a, uint8_t b)
9235 {
9236     uint8_t res;
9237 
9238     res = a + b;
9239     if (((res ^ a) & 0x80) && !((a ^ b) & 0x80)) {
9240         if (a & 0x80)
9241             res = 0x80;
9242         else
9243             res = 0x7f;
9244     }
9245     return res;
9246 }
9247 
9248 /* Perform 16-bit signed saturating subtraction.  */
9249 static inline uint16_t sub16_sat(uint16_t a, uint16_t b)
9250 {
9251     uint16_t res;
9252 
9253     res = a - b;
9254     if (((res ^ a) & 0x8000) && ((a ^ b) & 0x8000)) {
9255         if (a & 0x8000)
9256             res = 0x8000;
9257         else
9258             res = 0x7fff;
9259     }
9260     return res;
9261 }
9262 
9263 /* Perform 8-bit signed saturating subtraction.  */
9264 static inline uint8_t sub8_sat(uint8_t a, uint8_t b)
9265 {
9266     uint8_t res;
9267 
9268     res = a - b;
9269     if (((res ^ a) & 0x80) && ((a ^ b) & 0x80)) {
9270         if (a & 0x80)
9271             res = 0x80;
9272         else
9273             res = 0x7f;
9274     }
9275     return res;
9276 }
9277 
9278 #define ADD16(a, b, n) RESULT(add16_sat(a, b), n, 16);
9279 #define SUB16(a, b, n) RESULT(sub16_sat(a, b), n, 16);
9280 #define ADD8(a, b, n)  RESULT(add8_sat(a, b), n, 8);
9281 #define SUB8(a, b, n)  RESULT(sub8_sat(a, b), n, 8);
9282 #define PFX q
9283 
9284 #include "op_addsub.h"
9285 
9286 /* Unsigned saturating arithmetic.  */
9287 static inline uint16_t add16_usat(uint16_t a, uint16_t b)
9288 {
9289     uint16_t res;
9290     res = a + b;
9291     if (res < a)
9292         res = 0xffff;
9293     return res;
9294 }
9295 
9296 static inline uint16_t sub16_usat(uint16_t a, uint16_t b)
9297 {
9298     if (a > b)
9299         return a - b;
9300     else
9301         return 0;
9302 }
9303 
9304 static inline uint8_t add8_usat(uint8_t a, uint8_t b)
9305 {
9306     uint8_t res;
9307     res = a + b;
9308     if (res < a)
9309         res = 0xff;
9310     return res;
9311 }
9312 
9313 static inline uint8_t sub8_usat(uint8_t a, uint8_t b)
9314 {
9315     if (a > b)
9316         return a - b;
9317     else
9318         return 0;
9319 }
9320 
9321 #define ADD16(a, b, n) RESULT(add16_usat(a, b), n, 16);
9322 #define SUB16(a, b, n) RESULT(sub16_usat(a, b), n, 16);
9323 #define ADD8(a, b, n)  RESULT(add8_usat(a, b), n, 8);
9324 #define SUB8(a, b, n)  RESULT(sub8_usat(a, b), n, 8);
9325 #define PFX uq
9326 
9327 #include "op_addsub.h"
9328 
9329 /* Signed modulo arithmetic.  */
9330 #define SARITH16(a, b, n, op) do { \
9331     int32_t sum; \
9332     sum = (int32_t)(int16_t)(a) op (int32_t)(int16_t)(b); \
9333     RESULT(sum, n, 16); \
9334     if (sum >= 0) \
9335         ge |= 3 << (n * 2); \
9336     } while(0)
9337 
9338 #define SARITH8(a, b, n, op) do { \
9339     int32_t sum; \
9340     sum = (int32_t)(int8_t)(a) op (int32_t)(int8_t)(b); \
9341     RESULT(sum, n, 8); \
9342     if (sum >= 0) \
9343         ge |= 1 << n; \
9344     } while(0)
9345 
9346 
9347 #define ADD16(a, b, n) SARITH16(a, b, n, +)
9348 #define SUB16(a, b, n) SARITH16(a, b, n, -)
9349 #define ADD8(a, b, n)  SARITH8(a, b, n, +)
9350 #define SUB8(a, b, n)  SARITH8(a, b, n, -)
9351 #define PFX s
9352 #define ARITH_GE
9353 
9354 #include "op_addsub.h"
9355 
9356 /* Unsigned modulo arithmetic.  */
9357 #define ADD16(a, b, n) do { \
9358     uint32_t sum; \
9359     sum = (uint32_t)(uint16_t)(a) + (uint32_t)(uint16_t)(b); \
9360     RESULT(sum, n, 16); \
9361     if ((sum >> 16) == 1) \
9362         ge |= 3 << (n * 2); \
9363     } while(0)
9364 
9365 #define ADD8(a, b, n) do { \
9366     uint32_t sum; \
9367     sum = (uint32_t)(uint8_t)(a) + (uint32_t)(uint8_t)(b); \
9368     RESULT(sum, n, 8); \
9369     if ((sum >> 8) == 1) \
9370         ge |= 1 << n; \
9371     } while(0)
9372 
9373 #define SUB16(a, b, n) do { \
9374     uint32_t sum; \
9375     sum = (uint32_t)(uint16_t)(a) - (uint32_t)(uint16_t)(b); \
9376     RESULT(sum, n, 16); \
9377     if ((sum >> 16) == 0) \
9378         ge |= 3 << (n * 2); \
9379     } while(0)
9380 
9381 #define SUB8(a, b, n) do { \
9382     uint32_t sum; \
9383     sum = (uint32_t)(uint8_t)(a) - (uint32_t)(uint8_t)(b); \
9384     RESULT(sum, n, 8); \
9385     if ((sum >> 8) == 0) \
9386         ge |= 1 << n; \
9387     } while(0)
9388 
9389 #define PFX u
9390 #define ARITH_GE
9391 
9392 #include "op_addsub.h"
9393 
9394 /* Halved signed arithmetic.  */
9395 #define ADD16(a, b, n) \
9396   RESULT(((int32_t)(int16_t)(a) + (int32_t)(int16_t)(b)) >> 1, n, 16)
9397 #define SUB16(a, b, n) \
9398   RESULT(((int32_t)(int16_t)(a) - (int32_t)(int16_t)(b)) >> 1, n, 16)
9399 #define ADD8(a, b, n) \
9400   RESULT(((int32_t)(int8_t)(a) + (int32_t)(int8_t)(b)) >> 1, n, 8)
9401 #define SUB8(a, b, n) \
9402   RESULT(((int32_t)(int8_t)(a) - (int32_t)(int8_t)(b)) >> 1, n, 8)
9403 #define PFX sh
9404 
9405 #include "op_addsub.h"
9406 
9407 /* Halved unsigned arithmetic.  */
9408 #define ADD16(a, b, n) \
9409   RESULT(((uint32_t)(uint16_t)(a) + (uint32_t)(uint16_t)(b)) >> 1, n, 16)
9410 #define SUB16(a, b, n) \
9411   RESULT(((uint32_t)(uint16_t)(a) - (uint32_t)(uint16_t)(b)) >> 1, n, 16)
9412 #define ADD8(a, b, n) \
9413   RESULT(((uint32_t)(uint8_t)(a) + (uint32_t)(uint8_t)(b)) >> 1, n, 8)
9414 #define SUB8(a, b, n) \
9415   RESULT(((uint32_t)(uint8_t)(a) - (uint32_t)(uint8_t)(b)) >> 1, n, 8)
9416 #define PFX uh
9417 
9418 #include "op_addsub.h"
9419 
9420 static inline uint8_t do_usad(uint8_t a, uint8_t b)
9421 {
9422     if (a > b)
9423         return a - b;
9424     else
9425         return b - a;
9426 }
9427 
9428 /* Unsigned sum of absolute byte differences.  */
9429 uint32_t HELPER(usad8)(uint32_t a, uint32_t b)
9430 {
9431     uint32_t sum;
9432     sum = do_usad(a, b);
9433     sum += do_usad(a >> 8, b >> 8);
9434     sum += do_usad(a >> 16, b >>16);
9435     sum += do_usad(a >> 24, b >> 24);
9436     return sum;
9437 }
9438 
9439 /* For ARMv6 SEL instruction.  */
9440 uint32_t HELPER(sel_flags)(uint32_t flags, uint32_t a, uint32_t b)
9441 {
9442     uint32_t mask;
9443 
9444     mask = 0;
9445     if (flags & 1)
9446         mask |= 0xff;
9447     if (flags & 2)
9448         mask |= 0xff00;
9449     if (flags & 4)
9450         mask |= 0xff0000;
9451     if (flags & 8)
9452         mask |= 0xff000000;
9453     return (a & mask) | (b & ~mask);
9454 }
9455 
9456 /* VFP support.  We follow the convention used for VFP instructions:
9457    Single precision routines have a "s" suffix, double precision a
9458    "d" suffix.  */
9459 
9460 /* Convert host exception flags to vfp form.  */
9461 static inline int vfp_exceptbits_from_host(int host_bits)
9462 {
9463     int target_bits = 0;
9464 
9465     if (host_bits & float_flag_invalid)
9466         target_bits |= 1;
9467     if (host_bits & float_flag_divbyzero)
9468         target_bits |= 2;
9469     if (host_bits & float_flag_overflow)
9470         target_bits |= 4;
9471     if (host_bits & (float_flag_underflow | float_flag_output_denormal))
9472         target_bits |= 8;
9473     if (host_bits & float_flag_inexact)
9474         target_bits |= 0x10;
9475     if (host_bits & float_flag_input_denormal)
9476         target_bits |= 0x80;
9477     return target_bits;
9478 }
9479 
9480 uint32_t HELPER(vfp_get_fpscr)(CPUARMState *env)
9481 {
9482     int i;
9483     uint32_t fpscr;
9484 
9485     fpscr = (env->vfp.xregs[ARM_VFP_FPSCR] & 0xffc8ffff)
9486             | (env->vfp.vec_len << 16)
9487             | (env->vfp.vec_stride << 20);
9488     i = get_float_exception_flags(&env->vfp.fp_status);
9489     i |= get_float_exception_flags(&env->vfp.standard_fp_status);
9490     fpscr |= vfp_exceptbits_from_host(i);
9491     return fpscr;
9492 }
9493 
9494 uint32_t vfp_get_fpscr(CPUARMState *env)
9495 {
9496     return HELPER(vfp_get_fpscr)(env);
9497 }
9498 
9499 /* Convert vfp exception flags to target form.  */
9500 static inline int vfp_exceptbits_to_host(int target_bits)
9501 {
9502     int host_bits = 0;
9503 
9504     if (target_bits & 1)
9505         host_bits |= float_flag_invalid;
9506     if (target_bits & 2)
9507         host_bits |= float_flag_divbyzero;
9508     if (target_bits & 4)
9509         host_bits |= float_flag_overflow;
9510     if (target_bits & 8)
9511         host_bits |= float_flag_underflow;
9512     if (target_bits & 0x10)
9513         host_bits |= float_flag_inexact;
9514     if (target_bits & 0x80)
9515         host_bits |= float_flag_input_denormal;
9516     return host_bits;
9517 }
9518 
9519 void HELPER(vfp_set_fpscr)(CPUARMState *env, uint32_t val)
9520 {
9521     int i;
9522     uint32_t changed;
9523 
9524     changed = env->vfp.xregs[ARM_VFP_FPSCR];
9525     env->vfp.xregs[ARM_VFP_FPSCR] = (val & 0xffc8ffff);
9526     env->vfp.vec_len = (val >> 16) & 7;
9527     env->vfp.vec_stride = (val >> 20) & 3;
9528 
9529     changed ^= val;
9530     if (changed & (3 << 22)) {
9531         i = (val >> 22) & 3;
9532         switch (i) {
9533         case FPROUNDING_TIEEVEN:
9534             i = float_round_nearest_even;
9535             break;
9536         case FPROUNDING_POSINF:
9537             i = float_round_up;
9538             break;
9539         case FPROUNDING_NEGINF:
9540             i = float_round_down;
9541             break;
9542         case FPROUNDING_ZERO:
9543             i = float_round_to_zero;
9544             break;
9545         }
9546         set_float_rounding_mode(i, &env->vfp.fp_status);
9547     }
9548     if (changed & (1 << 24)) {
9549         set_flush_to_zero((val & (1 << 24)) != 0, &env->vfp.fp_status);
9550         set_flush_inputs_to_zero((val & (1 << 24)) != 0, &env->vfp.fp_status);
9551     }
9552     if (changed & (1 << 25))
9553         set_default_nan_mode((val & (1 << 25)) != 0, &env->vfp.fp_status);
9554 
9555     i = vfp_exceptbits_to_host(val);
9556     set_float_exception_flags(i, &env->vfp.fp_status);
9557     set_float_exception_flags(0, &env->vfp.standard_fp_status);
9558 }
9559 
9560 void vfp_set_fpscr(CPUARMState *env, uint32_t val)
9561 {
9562     HELPER(vfp_set_fpscr)(env, val);
9563 }
9564 
9565 #define VFP_HELPER(name, p) HELPER(glue(glue(vfp_,name),p))
9566 
9567 #define VFP_BINOP(name) \
9568 float32 VFP_HELPER(name, s)(float32 a, float32 b, void *fpstp) \
9569 { \
9570     float_status *fpst = fpstp; \
9571     return float32_ ## name(a, b, fpst); \
9572 } \
9573 float64 VFP_HELPER(name, d)(float64 a, float64 b, void *fpstp) \
9574 { \
9575     float_status *fpst = fpstp; \
9576     return float64_ ## name(a, b, fpst); \
9577 }
9578 VFP_BINOP(add)
9579 VFP_BINOP(sub)
9580 VFP_BINOP(mul)
9581 VFP_BINOP(div)
9582 VFP_BINOP(min)
9583 VFP_BINOP(max)
9584 VFP_BINOP(minnum)
9585 VFP_BINOP(maxnum)
9586 #undef VFP_BINOP
9587 
9588 float32 VFP_HELPER(neg, s)(float32 a)
9589 {
9590     return float32_chs(a);
9591 }
9592 
9593 float64 VFP_HELPER(neg, d)(float64 a)
9594 {
9595     return float64_chs(a);
9596 }
9597 
9598 float32 VFP_HELPER(abs, s)(float32 a)
9599 {
9600     return float32_abs(a);
9601 }
9602 
9603 float64 VFP_HELPER(abs, d)(float64 a)
9604 {
9605     return float64_abs(a);
9606 }
9607 
9608 float32 VFP_HELPER(sqrt, s)(float32 a, CPUARMState *env)
9609 {
9610     return float32_sqrt(a, &env->vfp.fp_status);
9611 }
9612 
9613 float64 VFP_HELPER(sqrt, d)(float64 a, CPUARMState *env)
9614 {
9615     return float64_sqrt(a, &env->vfp.fp_status);
9616 }
9617 
9618 /* XXX: check quiet/signaling case */
9619 #define DO_VFP_cmp(p, type) \
9620 void VFP_HELPER(cmp, p)(type a, type b, CPUARMState *env)  \
9621 { \
9622     uint32_t flags; \
9623     switch(type ## _compare_quiet(a, b, &env->vfp.fp_status)) { \
9624     case 0: flags = 0x6; break; \
9625     case -1: flags = 0x8; break; \
9626     case 1: flags = 0x2; break; \
9627     default: case 2: flags = 0x3; break; \
9628     } \
9629     env->vfp.xregs[ARM_VFP_FPSCR] = (flags << 28) \
9630         | (env->vfp.xregs[ARM_VFP_FPSCR] & 0x0fffffff); \
9631 } \
9632 void VFP_HELPER(cmpe, p)(type a, type b, CPUARMState *env) \
9633 { \
9634     uint32_t flags; \
9635     switch(type ## _compare(a, b, &env->vfp.fp_status)) { \
9636     case 0: flags = 0x6; break; \
9637     case -1: flags = 0x8; break; \
9638     case 1: flags = 0x2; break; \
9639     default: case 2: flags = 0x3; break; \
9640     } \
9641     env->vfp.xregs[ARM_VFP_FPSCR] = (flags << 28) \
9642         | (env->vfp.xregs[ARM_VFP_FPSCR] & 0x0fffffff); \
9643 }
9644 DO_VFP_cmp(s, float32)
9645 DO_VFP_cmp(d, float64)
9646 #undef DO_VFP_cmp
9647 
9648 /* Integer to float and float to integer conversions */
9649 
9650 #define CONV_ITOF(name, fsz, sign) \
9651     float##fsz HELPER(name)(uint32_t x, void *fpstp) \
9652 { \
9653     float_status *fpst = fpstp; \
9654     return sign##int32_to_##float##fsz((sign##int32_t)x, fpst); \
9655 }
9656 
9657 #define CONV_FTOI(name, fsz, sign, round) \
9658 uint32_t HELPER(name)(float##fsz x, void *fpstp) \
9659 { \
9660     float_status *fpst = fpstp; \
9661     if (float##fsz##_is_any_nan(x)) { \
9662         float_raise(float_flag_invalid, fpst); \
9663         return 0; \
9664     } \
9665     return float##fsz##_to_##sign##int32##round(x, fpst); \
9666 }
9667 
9668 #define FLOAT_CONVS(name, p, fsz, sign) \
9669 CONV_ITOF(vfp_##name##to##p, fsz, sign) \
9670 CONV_FTOI(vfp_to##name##p, fsz, sign, ) \
9671 CONV_FTOI(vfp_to##name##z##p, fsz, sign, _round_to_zero)
9672 
9673 FLOAT_CONVS(si, s, 32, )
9674 FLOAT_CONVS(si, d, 64, )
9675 FLOAT_CONVS(ui, s, 32, u)
9676 FLOAT_CONVS(ui, d, 64, u)
9677 
9678 #undef CONV_ITOF
9679 #undef CONV_FTOI
9680 #undef FLOAT_CONVS
9681 
9682 /* floating point conversion */
9683 float64 VFP_HELPER(fcvtd, s)(float32 x, CPUARMState *env)
9684 {
9685     float64 r = float32_to_float64(x, &env->vfp.fp_status);
9686     /* ARM requires that S<->D conversion of any kind of NaN generates
9687      * a quiet NaN by forcing the most significant frac bit to 1.
9688      */
9689     return float64_maybe_silence_nan(r, &env->vfp.fp_status);
9690 }
9691 
9692 float32 VFP_HELPER(fcvts, d)(float64 x, CPUARMState *env)
9693 {
9694     float32 r =  float64_to_float32(x, &env->vfp.fp_status);
9695     /* ARM requires that S<->D conversion of any kind of NaN generates
9696      * a quiet NaN by forcing the most significant frac bit to 1.
9697      */
9698     return float32_maybe_silence_nan(r, &env->vfp.fp_status);
9699 }
9700 
9701 /* VFP3 fixed point conversion.  */
9702 #define VFP_CONV_FIX_FLOAT(name, p, fsz, isz, itype) \
9703 float##fsz HELPER(vfp_##name##to##p)(uint##isz##_t  x, uint32_t shift, \
9704                                      void *fpstp) \
9705 { \
9706     float_status *fpst = fpstp; \
9707     float##fsz tmp; \
9708     tmp = itype##_to_##float##fsz(x, fpst); \
9709     return float##fsz##_scalbn(tmp, -(int)shift, fpst); \
9710 }
9711 
9712 /* Notice that we want only input-denormal exception flags from the
9713  * scalbn operation: the other possible flags (overflow+inexact if
9714  * we overflow to infinity, output-denormal) aren't correct for the
9715  * complete scale-and-convert operation.
9716  */
9717 #define VFP_CONV_FLOAT_FIX_ROUND(name, p, fsz, isz, itype, round) \
9718 uint##isz##_t HELPER(vfp_to##name##p##round)(float##fsz x, \
9719                                              uint32_t shift, \
9720                                              void *fpstp) \
9721 { \
9722     float_status *fpst = fpstp; \
9723     int old_exc_flags = get_float_exception_flags(fpst); \
9724     float##fsz tmp; \
9725     if (float##fsz##_is_any_nan(x)) { \
9726         float_raise(float_flag_invalid, fpst); \
9727         return 0; \
9728     } \
9729     tmp = float##fsz##_scalbn(x, shift, fpst); \
9730     old_exc_flags |= get_float_exception_flags(fpst) \
9731         & float_flag_input_denormal; \
9732     set_float_exception_flags(old_exc_flags, fpst); \
9733     return float##fsz##_to_##itype##round(tmp, fpst); \
9734 }
9735 
9736 #define VFP_CONV_FIX(name, p, fsz, isz, itype)                   \
9737 VFP_CONV_FIX_FLOAT(name, p, fsz, isz, itype)                     \
9738 VFP_CONV_FLOAT_FIX_ROUND(name, p, fsz, isz, itype, _round_to_zero) \
9739 VFP_CONV_FLOAT_FIX_ROUND(name, p, fsz, isz, itype, )
9740 
9741 #define VFP_CONV_FIX_A64(name, p, fsz, isz, itype)               \
9742 VFP_CONV_FIX_FLOAT(name, p, fsz, isz, itype)                     \
9743 VFP_CONV_FLOAT_FIX_ROUND(name, p, fsz, isz, itype, )
9744 
9745 VFP_CONV_FIX(sh, d, 64, 64, int16)
9746 VFP_CONV_FIX(sl, d, 64, 64, int32)
9747 VFP_CONV_FIX_A64(sq, d, 64, 64, int64)
9748 VFP_CONV_FIX(uh, d, 64, 64, uint16)
9749 VFP_CONV_FIX(ul, d, 64, 64, uint32)
9750 VFP_CONV_FIX_A64(uq, d, 64, 64, uint64)
9751 VFP_CONV_FIX(sh, s, 32, 32, int16)
9752 VFP_CONV_FIX(sl, s, 32, 32, int32)
9753 VFP_CONV_FIX_A64(sq, s, 32, 64, int64)
9754 VFP_CONV_FIX(uh, s, 32, 32, uint16)
9755 VFP_CONV_FIX(ul, s, 32, 32, uint32)
9756 VFP_CONV_FIX_A64(uq, s, 32, 64, uint64)
9757 #undef VFP_CONV_FIX
9758 #undef VFP_CONV_FIX_FLOAT
9759 #undef VFP_CONV_FLOAT_FIX_ROUND
9760 
9761 /* Set the current fp rounding mode and return the old one.
9762  * The argument is a softfloat float_round_ value.
9763  */
9764 uint32_t HELPER(set_rmode)(uint32_t rmode, CPUARMState *env)
9765 {
9766     float_status *fp_status = &env->vfp.fp_status;
9767 
9768     uint32_t prev_rmode = get_float_rounding_mode(fp_status);
9769     set_float_rounding_mode(rmode, fp_status);
9770 
9771     return prev_rmode;
9772 }
9773 
9774 /* Set the current fp rounding mode in the standard fp status and return
9775  * the old one. This is for NEON instructions that need to change the
9776  * rounding mode but wish to use the standard FPSCR values for everything
9777  * else. Always set the rounding mode back to the correct value after
9778  * modifying it.
9779  * The argument is a softfloat float_round_ value.
9780  */
9781 uint32_t HELPER(set_neon_rmode)(uint32_t rmode, CPUARMState *env)
9782 {
9783     float_status *fp_status = &env->vfp.standard_fp_status;
9784 
9785     uint32_t prev_rmode = get_float_rounding_mode(fp_status);
9786     set_float_rounding_mode(rmode, fp_status);
9787 
9788     return prev_rmode;
9789 }
9790 
9791 /* Half precision conversions.  */
9792 static float32 do_fcvt_f16_to_f32(uint32_t a, CPUARMState *env, float_status *s)
9793 {
9794     int ieee = (env->vfp.xregs[ARM_VFP_FPSCR] & (1 << 26)) == 0;
9795     float32 r = float16_to_float32(make_float16(a), ieee, s);
9796     if (ieee) {
9797         return float32_maybe_silence_nan(r, s);
9798     }
9799     return r;
9800 }
9801 
9802 static uint32_t do_fcvt_f32_to_f16(float32 a, CPUARMState *env, float_status *s)
9803 {
9804     int ieee = (env->vfp.xregs[ARM_VFP_FPSCR] & (1 << 26)) == 0;
9805     float16 r = float32_to_float16(a, ieee, s);
9806     if (ieee) {
9807         r = float16_maybe_silence_nan(r, s);
9808     }
9809     return float16_val(r);
9810 }
9811 
9812 float32 HELPER(neon_fcvt_f16_to_f32)(uint32_t a, CPUARMState *env)
9813 {
9814     return do_fcvt_f16_to_f32(a, env, &env->vfp.standard_fp_status);
9815 }
9816 
9817 uint32_t HELPER(neon_fcvt_f32_to_f16)(float32 a, CPUARMState *env)
9818 {
9819     return do_fcvt_f32_to_f16(a, env, &env->vfp.standard_fp_status);
9820 }
9821 
9822 float32 HELPER(vfp_fcvt_f16_to_f32)(uint32_t a, CPUARMState *env)
9823 {
9824     return do_fcvt_f16_to_f32(a, env, &env->vfp.fp_status);
9825 }
9826 
9827 uint32_t HELPER(vfp_fcvt_f32_to_f16)(float32 a, CPUARMState *env)
9828 {
9829     return do_fcvt_f32_to_f16(a, env, &env->vfp.fp_status);
9830 }
9831 
9832 float64 HELPER(vfp_fcvt_f16_to_f64)(uint32_t a, CPUARMState *env)
9833 {
9834     int ieee = (env->vfp.xregs[ARM_VFP_FPSCR] & (1 << 26)) == 0;
9835     float64 r = float16_to_float64(make_float16(a), ieee, &env->vfp.fp_status);
9836     if (ieee) {
9837         return float64_maybe_silence_nan(r, &env->vfp.fp_status);
9838     }
9839     return r;
9840 }
9841 
9842 uint32_t HELPER(vfp_fcvt_f64_to_f16)(float64 a, CPUARMState *env)
9843 {
9844     int ieee = (env->vfp.xregs[ARM_VFP_FPSCR] & (1 << 26)) == 0;
9845     float16 r = float64_to_float16(a, ieee, &env->vfp.fp_status);
9846     if (ieee) {
9847         r = float16_maybe_silence_nan(r, &env->vfp.fp_status);
9848     }
9849     return float16_val(r);
9850 }
9851 
9852 #define float32_two make_float32(0x40000000)
9853 #define float32_three make_float32(0x40400000)
9854 #define float32_one_point_five make_float32(0x3fc00000)
9855 
9856 float32 HELPER(recps_f32)(float32 a, float32 b, CPUARMState *env)
9857 {
9858     float_status *s = &env->vfp.standard_fp_status;
9859     if ((float32_is_infinity(a) && float32_is_zero_or_denormal(b)) ||
9860         (float32_is_infinity(b) && float32_is_zero_or_denormal(a))) {
9861         if (!(float32_is_zero(a) || float32_is_zero(b))) {
9862             float_raise(float_flag_input_denormal, s);
9863         }
9864         return float32_two;
9865     }
9866     return float32_sub(float32_two, float32_mul(a, b, s), s);
9867 }
9868 
9869 float32 HELPER(rsqrts_f32)(float32 a, float32 b, CPUARMState *env)
9870 {
9871     float_status *s = &env->vfp.standard_fp_status;
9872     float32 product;
9873     if ((float32_is_infinity(a) && float32_is_zero_or_denormal(b)) ||
9874         (float32_is_infinity(b) && float32_is_zero_or_denormal(a))) {
9875         if (!(float32_is_zero(a) || float32_is_zero(b))) {
9876             float_raise(float_flag_input_denormal, s);
9877         }
9878         return float32_one_point_five;
9879     }
9880     product = float32_mul(a, b, s);
9881     return float32_div(float32_sub(float32_three, product, s), float32_two, s);
9882 }
9883 
9884 /* NEON helpers.  */
9885 
9886 /* Constants 256 and 512 are used in some helpers; we avoid relying on
9887  * int->float conversions at run-time.  */
9888 #define float64_256 make_float64(0x4070000000000000LL)
9889 #define float64_512 make_float64(0x4080000000000000LL)
9890 #define float32_maxnorm make_float32(0x7f7fffff)
9891 #define float64_maxnorm make_float64(0x7fefffffffffffffLL)
9892 
9893 /* Reciprocal functions
9894  *
9895  * The algorithm that must be used to calculate the estimate
9896  * is specified by the ARM ARM, see FPRecipEstimate()
9897  */
9898 
9899 static float64 recip_estimate(float64 a, float_status *real_fp_status)
9900 {
9901     /* These calculations mustn't set any fp exception flags,
9902      * so we use a local copy of the fp_status.
9903      */
9904     float_status dummy_status = *real_fp_status;
9905     float_status *s = &dummy_status;
9906     /* q = (int)(a * 512.0) */
9907     float64 q = float64_mul(float64_512, a, s);
9908     int64_t q_int = float64_to_int64_round_to_zero(q, s);
9909 
9910     /* r = 1.0 / (((double)q + 0.5) / 512.0) */
9911     q = int64_to_float64(q_int, s);
9912     q = float64_add(q, float64_half, s);
9913     q = float64_div(q, float64_512, s);
9914     q = float64_div(float64_one, q, s);
9915 
9916     /* s = (int)(256.0 * r + 0.5) */
9917     q = float64_mul(q, float64_256, s);
9918     q = float64_add(q, float64_half, s);
9919     q_int = float64_to_int64_round_to_zero(q, s);
9920 
9921     /* return (double)s / 256.0 */
9922     return float64_div(int64_to_float64(q_int, s), float64_256, s);
9923 }
9924 
9925 /* Common wrapper to call recip_estimate */
9926 static float64 call_recip_estimate(float64 num, int off, float_status *fpst)
9927 {
9928     uint64_t val64 = float64_val(num);
9929     uint64_t frac = extract64(val64, 0, 52);
9930     int64_t exp = extract64(val64, 52, 11);
9931     uint64_t sbit;
9932     float64 scaled, estimate;
9933 
9934     /* Generate the scaled number for the estimate function */
9935     if (exp == 0) {
9936         if (extract64(frac, 51, 1) == 0) {
9937             exp = -1;
9938             frac = extract64(frac, 0, 50) << 2;
9939         } else {
9940             frac = extract64(frac, 0, 51) << 1;
9941         }
9942     }
9943 
9944     /* scaled = '0' : '01111111110' : fraction<51:44> : Zeros(44); */
9945     scaled = make_float64((0x3feULL << 52)
9946                           | extract64(frac, 44, 8) << 44);
9947 
9948     estimate = recip_estimate(scaled, fpst);
9949 
9950     /* Build new result */
9951     val64 = float64_val(estimate);
9952     sbit = 0x8000000000000000ULL & val64;
9953     exp = off - exp;
9954     frac = extract64(val64, 0, 52);
9955 
9956     if (exp == 0) {
9957         frac = 1ULL << 51 | extract64(frac, 1, 51);
9958     } else if (exp == -1) {
9959         frac = 1ULL << 50 | extract64(frac, 2, 50);
9960         exp = 0;
9961     }
9962 
9963     return make_float64(sbit | (exp << 52) | frac);
9964 }
9965 
9966 static bool round_to_inf(float_status *fpst, bool sign_bit)
9967 {
9968     switch (fpst->float_rounding_mode) {
9969     case float_round_nearest_even: /* Round to Nearest */
9970         return true;
9971     case float_round_up: /* Round to +Inf */
9972         return !sign_bit;
9973     case float_round_down: /* Round to -Inf */
9974         return sign_bit;
9975     case float_round_to_zero: /* Round to Zero */
9976         return false;
9977     }
9978 
9979     g_assert_not_reached();
9980 }
9981 
9982 float32 HELPER(recpe_f32)(float32 input, void *fpstp)
9983 {
9984     float_status *fpst = fpstp;
9985     float32 f32 = float32_squash_input_denormal(input, fpst);
9986     uint32_t f32_val = float32_val(f32);
9987     uint32_t f32_sbit = 0x80000000ULL & f32_val;
9988     int32_t f32_exp = extract32(f32_val, 23, 8);
9989     uint32_t f32_frac = extract32(f32_val, 0, 23);
9990     float64 f64, r64;
9991     uint64_t r64_val;
9992     int64_t r64_exp;
9993     uint64_t r64_frac;
9994 
9995     if (float32_is_any_nan(f32)) {
9996         float32 nan = f32;
9997         if (float32_is_signaling_nan(f32, fpst)) {
9998             float_raise(float_flag_invalid, fpst);
9999             nan = float32_maybe_silence_nan(f32, fpst);
10000         }
10001         if (fpst->default_nan_mode) {
10002             nan =  float32_default_nan(fpst);
10003         }
10004         return nan;
10005     } else if (float32_is_infinity(f32)) {
10006         return float32_set_sign(float32_zero, float32_is_neg(f32));
10007     } else if (float32_is_zero(f32)) {
10008         float_raise(float_flag_divbyzero, fpst);
10009         return float32_set_sign(float32_infinity, float32_is_neg(f32));
10010     } else if ((f32_val & ~(1ULL << 31)) < (1ULL << 21)) {
10011         /* Abs(value) < 2.0^-128 */
10012         float_raise(float_flag_overflow | float_flag_inexact, fpst);
10013         if (round_to_inf(fpst, f32_sbit)) {
10014             return float32_set_sign(float32_infinity, float32_is_neg(f32));
10015         } else {
10016             return float32_set_sign(float32_maxnorm, float32_is_neg(f32));
10017         }
10018     } else if (f32_exp >= 253 && fpst->flush_to_zero) {
10019         float_raise(float_flag_underflow, fpst);
10020         return float32_set_sign(float32_zero, float32_is_neg(f32));
10021     }
10022 
10023 
10024     f64 = make_float64(((int64_t)(f32_exp) << 52) | (int64_t)(f32_frac) << 29);
10025     r64 = call_recip_estimate(f64, 253, fpst);
10026     r64_val = float64_val(r64);
10027     r64_exp = extract64(r64_val, 52, 11);
10028     r64_frac = extract64(r64_val, 0, 52);
10029 
10030     /* result = sign : result_exp<7:0> : fraction<51:29>; */
10031     return make_float32(f32_sbit |
10032                         (r64_exp & 0xff) << 23 |
10033                         extract64(r64_frac, 29, 24));
10034 }
10035 
10036 float64 HELPER(recpe_f64)(float64 input, void *fpstp)
10037 {
10038     float_status *fpst = fpstp;
10039     float64 f64 = float64_squash_input_denormal(input, fpst);
10040     uint64_t f64_val = float64_val(f64);
10041     uint64_t f64_sbit = 0x8000000000000000ULL & f64_val;
10042     int64_t f64_exp = extract64(f64_val, 52, 11);
10043     float64 r64;
10044     uint64_t r64_val;
10045     int64_t r64_exp;
10046     uint64_t r64_frac;
10047 
10048     /* Deal with any special cases */
10049     if (float64_is_any_nan(f64)) {
10050         float64 nan = f64;
10051         if (float64_is_signaling_nan(f64, fpst)) {
10052             float_raise(float_flag_invalid, fpst);
10053             nan = float64_maybe_silence_nan(f64, fpst);
10054         }
10055         if (fpst->default_nan_mode) {
10056             nan =  float64_default_nan(fpst);
10057         }
10058         return nan;
10059     } else if (float64_is_infinity(f64)) {
10060         return float64_set_sign(float64_zero, float64_is_neg(f64));
10061     } else if (float64_is_zero(f64)) {
10062         float_raise(float_flag_divbyzero, fpst);
10063         return float64_set_sign(float64_infinity, float64_is_neg(f64));
10064     } else if ((f64_val & ~(1ULL << 63)) < (1ULL << 50)) {
10065         /* Abs(value) < 2.0^-1024 */
10066         float_raise(float_flag_overflow | float_flag_inexact, fpst);
10067         if (round_to_inf(fpst, f64_sbit)) {
10068             return float64_set_sign(float64_infinity, float64_is_neg(f64));
10069         } else {
10070             return float64_set_sign(float64_maxnorm, float64_is_neg(f64));
10071         }
10072     } else if (f64_exp >= 2045 && fpst->flush_to_zero) {
10073         float_raise(float_flag_underflow, fpst);
10074         return float64_set_sign(float64_zero, float64_is_neg(f64));
10075     }
10076 
10077     r64 = call_recip_estimate(f64, 2045, fpst);
10078     r64_val = float64_val(r64);
10079     r64_exp = extract64(r64_val, 52, 11);
10080     r64_frac = extract64(r64_val, 0, 52);
10081 
10082     /* result = sign : result_exp<10:0> : fraction<51:0> */
10083     return make_float64(f64_sbit |
10084                         ((r64_exp & 0x7ff) << 52) |
10085                         r64_frac);
10086 }
10087 
10088 /* The algorithm that must be used to calculate the estimate
10089  * is specified by the ARM ARM.
10090  */
10091 static float64 recip_sqrt_estimate(float64 a, float_status *real_fp_status)
10092 {
10093     /* These calculations mustn't set any fp exception flags,
10094      * so we use a local copy of the fp_status.
10095      */
10096     float_status dummy_status = *real_fp_status;
10097     float_status *s = &dummy_status;
10098     float64 q;
10099     int64_t q_int;
10100 
10101     if (float64_lt(a, float64_half, s)) {
10102         /* range 0.25 <= a < 0.5 */
10103 
10104         /* a in units of 1/512 rounded down */
10105         /* q0 = (int)(a * 512.0);  */
10106         q = float64_mul(float64_512, a, s);
10107         q_int = float64_to_int64_round_to_zero(q, s);
10108 
10109         /* reciprocal root r */
10110         /* r = 1.0 / sqrt(((double)q0 + 0.5) / 512.0);  */
10111         q = int64_to_float64(q_int, s);
10112         q = float64_add(q, float64_half, s);
10113         q = float64_div(q, float64_512, s);
10114         q = float64_sqrt(q, s);
10115         q = float64_div(float64_one, q, s);
10116     } else {
10117         /* range 0.5 <= a < 1.0 */
10118 
10119         /* a in units of 1/256 rounded down */
10120         /* q1 = (int)(a * 256.0); */
10121         q = float64_mul(float64_256, a, s);
10122         int64_t q_int = float64_to_int64_round_to_zero(q, s);
10123 
10124         /* reciprocal root r */
10125         /* r = 1.0 /sqrt(((double)q1 + 0.5) / 256); */
10126         q = int64_to_float64(q_int, s);
10127         q = float64_add(q, float64_half, s);
10128         q = float64_div(q, float64_256, s);
10129         q = float64_sqrt(q, s);
10130         q = float64_div(float64_one, q, s);
10131     }
10132     /* r in units of 1/256 rounded to nearest */
10133     /* s = (int)(256.0 * r + 0.5); */
10134 
10135     q = float64_mul(q, float64_256,s );
10136     q = float64_add(q, float64_half, s);
10137     q_int = float64_to_int64_round_to_zero(q, s);
10138 
10139     /* return (double)s / 256.0;*/
10140     return float64_div(int64_to_float64(q_int, s), float64_256, s);
10141 }
10142 
10143 float32 HELPER(rsqrte_f32)(float32 input, void *fpstp)
10144 {
10145     float_status *s = fpstp;
10146     float32 f32 = float32_squash_input_denormal(input, s);
10147     uint32_t val = float32_val(f32);
10148     uint32_t f32_sbit = 0x80000000 & val;
10149     int32_t f32_exp = extract32(val, 23, 8);
10150     uint32_t f32_frac = extract32(val, 0, 23);
10151     uint64_t f64_frac;
10152     uint64_t val64;
10153     int result_exp;
10154     float64 f64;
10155 
10156     if (float32_is_any_nan(f32)) {
10157         float32 nan = f32;
10158         if (float32_is_signaling_nan(f32, s)) {
10159             float_raise(float_flag_invalid, s);
10160             nan = float32_maybe_silence_nan(f32, s);
10161         }
10162         if (s->default_nan_mode) {
10163             nan =  float32_default_nan(s);
10164         }
10165         return nan;
10166     } else if (float32_is_zero(f32)) {
10167         float_raise(float_flag_divbyzero, s);
10168         return float32_set_sign(float32_infinity, float32_is_neg(f32));
10169     } else if (float32_is_neg(f32)) {
10170         float_raise(float_flag_invalid, s);
10171         return float32_default_nan(s);
10172     } else if (float32_is_infinity(f32)) {
10173         return float32_zero;
10174     }
10175 
10176     /* Scale and normalize to a double-precision value between 0.25 and 1.0,
10177      * preserving the parity of the exponent.  */
10178 
10179     f64_frac = ((uint64_t) f32_frac) << 29;
10180     if (f32_exp == 0) {
10181         while (extract64(f64_frac, 51, 1) == 0) {
10182             f64_frac = f64_frac << 1;
10183             f32_exp = f32_exp-1;
10184         }
10185         f64_frac = extract64(f64_frac, 0, 51) << 1;
10186     }
10187 
10188     if (extract64(f32_exp, 0, 1) == 0) {
10189         f64 = make_float64(((uint64_t) f32_sbit) << 32
10190                            | (0x3feULL << 52)
10191                            | f64_frac);
10192     } else {
10193         f64 = make_float64(((uint64_t) f32_sbit) << 32
10194                            | (0x3fdULL << 52)
10195                            | f64_frac);
10196     }
10197 
10198     result_exp = (380 - f32_exp) / 2;
10199 
10200     f64 = recip_sqrt_estimate(f64, s);
10201 
10202     val64 = float64_val(f64);
10203 
10204     val = ((result_exp & 0xff) << 23)
10205         | ((val64 >> 29)  & 0x7fffff);
10206     return make_float32(val);
10207 }
10208 
10209 float64 HELPER(rsqrte_f64)(float64 input, void *fpstp)
10210 {
10211     float_status *s = fpstp;
10212     float64 f64 = float64_squash_input_denormal(input, s);
10213     uint64_t val = float64_val(f64);
10214     uint64_t f64_sbit = 0x8000000000000000ULL & val;
10215     int64_t f64_exp = extract64(val, 52, 11);
10216     uint64_t f64_frac = extract64(val, 0, 52);
10217     int64_t result_exp;
10218     uint64_t result_frac;
10219 
10220     if (float64_is_any_nan(f64)) {
10221         float64 nan = f64;
10222         if (float64_is_signaling_nan(f64, s)) {
10223             float_raise(float_flag_invalid, s);
10224             nan = float64_maybe_silence_nan(f64, s);
10225         }
10226         if (s->default_nan_mode) {
10227             nan =  float64_default_nan(s);
10228         }
10229         return nan;
10230     } else if (float64_is_zero(f64)) {
10231         float_raise(float_flag_divbyzero, s);
10232         return float64_set_sign(float64_infinity, float64_is_neg(f64));
10233     } else if (float64_is_neg(f64)) {
10234         float_raise(float_flag_invalid, s);
10235         return float64_default_nan(s);
10236     } else if (float64_is_infinity(f64)) {
10237         return float64_zero;
10238     }
10239 
10240     /* Scale and normalize to a double-precision value between 0.25 and 1.0,
10241      * preserving the parity of the exponent.  */
10242 
10243     if (f64_exp == 0) {
10244         while (extract64(f64_frac, 51, 1) == 0) {
10245             f64_frac = f64_frac << 1;
10246             f64_exp = f64_exp - 1;
10247         }
10248         f64_frac = extract64(f64_frac, 0, 51) << 1;
10249     }
10250 
10251     if (extract64(f64_exp, 0, 1) == 0) {
10252         f64 = make_float64(f64_sbit
10253                            | (0x3feULL << 52)
10254                            | f64_frac);
10255     } else {
10256         f64 = make_float64(f64_sbit
10257                            | (0x3fdULL << 52)
10258                            | f64_frac);
10259     }
10260 
10261     result_exp = (3068 - f64_exp) / 2;
10262 
10263     f64 = recip_sqrt_estimate(f64, s);
10264 
10265     result_frac = extract64(float64_val(f64), 0, 52);
10266 
10267     return make_float64(f64_sbit |
10268                         ((result_exp & 0x7ff) << 52) |
10269                         result_frac);
10270 }
10271 
10272 uint32_t HELPER(recpe_u32)(uint32_t a, void *fpstp)
10273 {
10274     float_status *s = fpstp;
10275     float64 f64;
10276 
10277     if ((a & 0x80000000) == 0) {
10278         return 0xffffffff;
10279     }
10280 
10281     f64 = make_float64((0x3feULL << 52)
10282                        | ((int64_t)(a & 0x7fffffff) << 21));
10283 
10284     f64 = recip_estimate(f64, s);
10285 
10286     return 0x80000000 | ((float64_val(f64) >> 21) & 0x7fffffff);
10287 }
10288 
10289 uint32_t HELPER(rsqrte_u32)(uint32_t a, void *fpstp)
10290 {
10291     float_status *fpst = fpstp;
10292     float64 f64;
10293 
10294     if ((a & 0xc0000000) == 0) {
10295         return 0xffffffff;
10296     }
10297 
10298     if (a & 0x80000000) {
10299         f64 = make_float64((0x3feULL << 52)
10300                            | ((uint64_t)(a & 0x7fffffff) << 21));
10301     } else { /* bits 31-30 == '01' */
10302         f64 = make_float64((0x3fdULL << 52)
10303                            | ((uint64_t)(a & 0x3fffffff) << 22));
10304     }
10305 
10306     f64 = recip_sqrt_estimate(f64, fpst);
10307 
10308     return 0x80000000 | ((float64_val(f64) >> 21) & 0x7fffffff);
10309 }
10310 
10311 /* VFPv4 fused multiply-accumulate */
10312 float32 VFP_HELPER(muladd, s)(float32 a, float32 b, float32 c, void *fpstp)
10313 {
10314     float_status *fpst = fpstp;
10315     return float32_muladd(a, b, c, 0, fpst);
10316 }
10317 
10318 float64 VFP_HELPER(muladd, d)(float64 a, float64 b, float64 c, void *fpstp)
10319 {
10320     float_status *fpst = fpstp;
10321     return float64_muladd(a, b, c, 0, fpst);
10322 }
10323 
10324 /* ARMv8 round to integral */
10325 float32 HELPER(rints_exact)(float32 x, void *fp_status)
10326 {
10327     return float32_round_to_int(x, fp_status);
10328 }
10329 
10330 float64 HELPER(rintd_exact)(float64 x, void *fp_status)
10331 {
10332     return float64_round_to_int(x, fp_status);
10333 }
10334 
10335 float32 HELPER(rints)(float32 x, void *fp_status)
10336 {
10337     int old_flags = get_float_exception_flags(fp_status), new_flags;
10338     float32 ret;
10339 
10340     ret = float32_round_to_int(x, fp_status);
10341 
10342     /* Suppress any inexact exceptions the conversion produced */
10343     if (!(old_flags & float_flag_inexact)) {
10344         new_flags = get_float_exception_flags(fp_status);
10345         set_float_exception_flags(new_flags & ~float_flag_inexact, fp_status);
10346     }
10347 
10348     return ret;
10349 }
10350 
10351 float64 HELPER(rintd)(float64 x, void *fp_status)
10352 {
10353     int old_flags = get_float_exception_flags(fp_status), new_flags;
10354     float64 ret;
10355 
10356     ret = float64_round_to_int(x, fp_status);
10357 
10358     new_flags = get_float_exception_flags(fp_status);
10359 
10360     /* Suppress any inexact exceptions the conversion produced */
10361     if (!(old_flags & float_flag_inexact)) {
10362         new_flags = get_float_exception_flags(fp_status);
10363         set_float_exception_flags(new_flags & ~float_flag_inexact, fp_status);
10364     }
10365 
10366     return ret;
10367 }
10368 
10369 /* Convert ARM rounding mode to softfloat */
10370 int arm_rmode_to_sf(int rmode)
10371 {
10372     switch (rmode) {
10373     case FPROUNDING_TIEAWAY:
10374         rmode = float_round_ties_away;
10375         break;
10376     case FPROUNDING_ODD:
10377         /* FIXME: add support for TIEAWAY and ODD */
10378         qemu_log_mask(LOG_UNIMP, "arm: unimplemented rounding mode: %d\n",
10379                       rmode);
10380     case FPROUNDING_TIEEVEN:
10381     default:
10382         rmode = float_round_nearest_even;
10383         break;
10384     case FPROUNDING_POSINF:
10385         rmode = float_round_up;
10386         break;
10387     case FPROUNDING_NEGINF:
10388         rmode = float_round_down;
10389         break;
10390     case FPROUNDING_ZERO:
10391         rmode = float_round_to_zero;
10392         break;
10393     }
10394     return rmode;
10395 }
10396 
10397 /* CRC helpers.
10398  * The upper bytes of val (above the number specified by 'bytes') must have
10399  * been zeroed out by the caller.
10400  */
10401 uint32_t HELPER(crc32)(uint32_t acc, uint32_t val, uint32_t bytes)
10402 {
10403     uint8_t buf[4];
10404 
10405     stl_le_p(buf, val);
10406 
10407     /* zlib crc32 converts the accumulator and output to one's complement.  */
10408     return crc32(acc ^ 0xffffffff, buf, bytes) ^ 0xffffffff;
10409 }
10410 
10411 uint32_t HELPER(crc32c)(uint32_t acc, uint32_t val, uint32_t bytes)
10412 {
10413     uint8_t buf[4];
10414 
10415     stl_le_p(buf, val);
10416 
10417     /* Linux crc32c converts the output to one's complement.  */
10418     return crc32c(acc, buf, bytes) ^ 0xffffffff;
10419 }
10420