1 #include "qemu/osdep.h" 2 #include "trace.h" 3 #include "cpu.h" 4 #include "internals.h" 5 #include "exec/gdbstub.h" 6 #include "exec/helper-proto.h" 7 #include "qemu/host-utils.h" 8 #include "sysemu/arch_init.h" 9 #include "sysemu/sysemu.h" 10 #include "qemu/bitops.h" 11 #include "qemu/crc32c.h" 12 #include "exec/exec-all.h" 13 #include "exec/cpu_ldst.h" 14 #include "arm_ldst.h" 15 #include <zlib.h> /* For crc32 */ 16 #include "exec/semihost.h" 17 #include "sysemu/kvm.h" 18 19 #define ARM_CPU_FREQ 1000000000 /* FIXME: 1 GHz, should be configurable */ 20 21 #ifndef CONFIG_USER_ONLY 22 /* Cacheability and shareability attributes for a memory access */ 23 typedef struct ARMCacheAttrs { 24 unsigned int attrs:8; /* as in the MAIR register encoding */ 25 unsigned int shareability:2; /* as in the SH field of the VMSAv8-64 PTEs */ 26 } ARMCacheAttrs; 27 28 static bool get_phys_addr(CPUARMState *env, target_ulong address, 29 MMUAccessType access_type, ARMMMUIdx mmu_idx, 30 hwaddr *phys_ptr, MemTxAttrs *attrs, int *prot, 31 target_ulong *page_size, 32 ARMMMUFaultInfo *fi, ARMCacheAttrs *cacheattrs); 33 34 static bool get_phys_addr_lpae(CPUARMState *env, target_ulong address, 35 MMUAccessType access_type, ARMMMUIdx mmu_idx, 36 hwaddr *phys_ptr, MemTxAttrs *txattrs, int *prot, 37 target_ulong *page_size_ptr, 38 ARMMMUFaultInfo *fi, ARMCacheAttrs *cacheattrs); 39 40 /* Security attributes for an address, as returned by v8m_security_lookup. */ 41 typedef struct V8M_SAttributes { 42 bool ns; 43 bool nsc; 44 uint8_t sregion; 45 bool srvalid; 46 uint8_t iregion; 47 bool irvalid; 48 } V8M_SAttributes; 49 50 static void v8m_security_lookup(CPUARMState *env, uint32_t address, 51 MMUAccessType access_type, ARMMMUIdx mmu_idx, 52 V8M_SAttributes *sattrs); 53 54 /* Definitions for the PMCCNTR and PMCR registers */ 55 #define PMCRD 0x8 56 #define PMCRC 0x4 57 #define PMCRE 0x1 58 #endif 59 60 static int vfp_gdb_get_reg(CPUARMState *env, uint8_t *buf, int reg) 61 { 62 int nregs; 63 64 /* VFP data registers are always little-endian. */ 65 nregs = arm_feature(env, ARM_FEATURE_VFP3) ? 32 : 16; 66 if (reg < nregs) { 67 stq_le_p(buf, *aa32_vfp_dreg(env, reg)); 68 return 8; 69 } 70 if (arm_feature(env, ARM_FEATURE_NEON)) { 71 /* Aliases for Q regs. */ 72 nregs += 16; 73 if (reg < nregs) { 74 uint64_t *q = aa32_vfp_qreg(env, reg - 32); 75 stq_le_p(buf, q[0]); 76 stq_le_p(buf + 8, q[1]); 77 return 16; 78 } 79 } 80 switch (reg - nregs) { 81 case 0: stl_p(buf, env->vfp.xregs[ARM_VFP_FPSID]); return 4; 82 case 1: stl_p(buf, env->vfp.xregs[ARM_VFP_FPSCR]); return 4; 83 case 2: stl_p(buf, env->vfp.xregs[ARM_VFP_FPEXC]); return 4; 84 } 85 return 0; 86 } 87 88 static int vfp_gdb_set_reg(CPUARMState *env, uint8_t *buf, int reg) 89 { 90 int nregs; 91 92 nregs = arm_feature(env, ARM_FEATURE_VFP3) ? 32 : 16; 93 if (reg < nregs) { 94 *aa32_vfp_dreg(env, reg) = ldq_le_p(buf); 95 return 8; 96 } 97 if (arm_feature(env, ARM_FEATURE_NEON)) { 98 nregs += 16; 99 if (reg < nregs) { 100 uint64_t *q = aa32_vfp_qreg(env, reg - 32); 101 q[0] = ldq_le_p(buf); 102 q[1] = ldq_le_p(buf + 8); 103 return 16; 104 } 105 } 106 switch (reg - nregs) { 107 case 0: env->vfp.xregs[ARM_VFP_FPSID] = ldl_p(buf); return 4; 108 case 1: env->vfp.xregs[ARM_VFP_FPSCR] = ldl_p(buf); return 4; 109 case 2: env->vfp.xregs[ARM_VFP_FPEXC] = ldl_p(buf) & (1 << 30); return 4; 110 } 111 return 0; 112 } 113 114 static int aarch64_fpu_gdb_get_reg(CPUARMState *env, uint8_t *buf, int reg) 115 { 116 switch (reg) { 117 case 0 ... 31: 118 /* 128 bit FP register */ 119 { 120 uint64_t *q = aa64_vfp_qreg(env, reg); 121 stq_le_p(buf, q[0]); 122 stq_le_p(buf + 8, q[1]); 123 return 16; 124 } 125 case 32: 126 /* FPSR */ 127 stl_p(buf, vfp_get_fpsr(env)); 128 return 4; 129 case 33: 130 /* FPCR */ 131 stl_p(buf, vfp_get_fpcr(env)); 132 return 4; 133 default: 134 return 0; 135 } 136 } 137 138 static int aarch64_fpu_gdb_set_reg(CPUARMState *env, uint8_t *buf, int reg) 139 { 140 switch (reg) { 141 case 0 ... 31: 142 /* 128 bit FP register */ 143 { 144 uint64_t *q = aa64_vfp_qreg(env, reg); 145 q[0] = ldq_le_p(buf); 146 q[1] = ldq_le_p(buf + 8); 147 return 16; 148 } 149 case 32: 150 /* FPSR */ 151 vfp_set_fpsr(env, ldl_p(buf)); 152 return 4; 153 case 33: 154 /* FPCR */ 155 vfp_set_fpcr(env, ldl_p(buf)); 156 return 4; 157 default: 158 return 0; 159 } 160 } 161 162 static uint64_t raw_read(CPUARMState *env, const ARMCPRegInfo *ri) 163 { 164 assert(ri->fieldoffset); 165 if (cpreg_field_is_64bit(ri)) { 166 return CPREG_FIELD64(env, ri); 167 } else { 168 return CPREG_FIELD32(env, ri); 169 } 170 } 171 172 static void raw_write(CPUARMState *env, const ARMCPRegInfo *ri, 173 uint64_t value) 174 { 175 assert(ri->fieldoffset); 176 if (cpreg_field_is_64bit(ri)) { 177 CPREG_FIELD64(env, ri) = value; 178 } else { 179 CPREG_FIELD32(env, ri) = value; 180 } 181 } 182 183 static void *raw_ptr(CPUARMState *env, const ARMCPRegInfo *ri) 184 { 185 return (char *)env + ri->fieldoffset; 186 } 187 188 uint64_t read_raw_cp_reg(CPUARMState *env, const ARMCPRegInfo *ri) 189 { 190 /* Raw read of a coprocessor register (as needed for migration, etc). */ 191 if (ri->type & ARM_CP_CONST) { 192 return ri->resetvalue; 193 } else if (ri->raw_readfn) { 194 return ri->raw_readfn(env, ri); 195 } else if (ri->readfn) { 196 return ri->readfn(env, ri); 197 } else { 198 return raw_read(env, ri); 199 } 200 } 201 202 static void write_raw_cp_reg(CPUARMState *env, const ARMCPRegInfo *ri, 203 uint64_t v) 204 { 205 /* Raw write of a coprocessor register (as needed for migration, etc). 206 * Note that constant registers are treated as write-ignored; the 207 * caller should check for success by whether a readback gives the 208 * value written. 209 */ 210 if (ri->type & ARM_CP_CONST) { 211 return; 212 } else if (ri->raw_writefn) { 213 ri->raw_writefn(env, ri, v); 214 } else if (ri->writefn) { 215 ri->writefn(env, ri, v); 216 } else { 217 raw_write(env, ri, v); 218 } 219 } 220 221 static bool raw_accessors_invalid(const ARMCPRegInfo *ri) 222 { 223 /* Return true if the regdef would cause an assertion if you called 224 * read_raw_cp_reg() or write_raw_cp_reg() on it (ie if it is a 225 * program bug for it not to have the NO_RAW flag). 226 * NB that returning false here doesn't necessarily mean that calling 227 * read/write_raw_cp_reg() is safe, because we can't distinguish "has 228 * read/write access functions which are safe for raw use" from "has 229 * read/write access functions which have side effects but has forgotten 230 * to provide raw access functions". 231 * The tests here line up with the conditions in read/write_raw_cp_reg() 232 * and assertions in raw_read()/raw_write(). 233 */ 234 if ((ri->type & ARM_CP_CONST) || 235 ri->fieldoffset || 236 ((ri->raw_writefn || ri->writefn) && (ri->raw_readfn || ri->readfn))) { 237 return false; 238 } 239 return true; 240 } 241 242 bool write_cpustate_to_list(ARMCPU *cpu) 243 { 244 /* Write the coprocessor state from cpu->env to the (index,value) list. */ 245 int i; 246 bool ok = true; 247 248 for (i = 0; i < cpu->cpreg_array_len; i++) { 249 uint32_t regidx = kvm_to_cpreg_id(cpu->cpreg_indexes[i]); 250 const ARMCPRegInfo *ri; 251 252 ri = get_arm_cp_reginfo(cpu->cp_regs, regidx); 253 if (!ri) { 254 ok = false; 255 continue; 256 } 257 if (ri->type & ARM_CP_NO_RAW) { 258 continue; 259 } 260 cpu->cpreg_values[i] = read_raw_cp_reg(&cpu->env, ri); 261 } 262 return ok; 263 } 264 265 bool write_list_to_cpustate(ARMCPU *cpu) 266 { 267 int i; 268 bool ok = true; 269 270 for (i = 0; i < cpu->cpreg_array_len; i++) { 271 uint32_t regidx = kvm_to_cpreg_id(cpu->cpreg_indexes[i]); 272 uint64_t v = cpu->cpreg_values[i]; 273 const ARMCPRegInfo *ri; 274 275 ri = get_arm_cp_reginfo(cpu->cp_regs, regidx); 276 if (!ri) { 277 ok = false; 278 continue; 279 } 280 if (ri->type & ARM_CP_NO_RAW) { 281 continue; 282 } 283 /* Write value and confirm it reads back as written 284 * (to catch read-only registers and partially read-only 285 * registers where the incoming migration value doesn't match) 286 */ 287 write_raw_cp_reg(&cpu->env, ri, v); 288 if (read_raw_cp_reg(&cpu->env, ri) != v) { 289 ok = false; 290 } 291 } 292 return ok; 293 } 294 295 static void add_cpreg_to_list(gpointer key, gpointer opaque) 296 { 297 ARMCPU *cpu = opaque; 298 uint64_t regidx; 299 const ARMCPRegInfo *ri; 300 301 regidx = *(uint32_t *)key; 302 ri = get_arm_cp_reginfo(cpu->cp_regs, regidx); 303 304 if (!(ri->type & (ARM_CP_NO_RAW|ARM_CP_ALIAS))) { 305 cpu->cpreg_indexes[cpu->cpreg_array_len] = cpreg_to_kvm_id(regidx); 306 /* The value array need not be initialized at this point */ 307 cpu->cpreg_array_len++; 308 } 309 } 310 311 static void count_cpreg(gpointer key, gpointer opaque) 312 { 313 ARMCPU *cpu = opaque; 314 uint64_t regidx; 315 const ARMCPRegInfo *ri; 316 317 regidx = *(uint32_t *)key; 318 ri = get_arm_cp_reginfo(cpu->cp_regs, regidx); 319 320 if (!(ri->type & (ARM_CP_NO_RAW|ARM_CP_ALIAS))) { 321 cpu->cpreg_array_len++; 322 } 323 } 324 325 static gint cpreg_key_compare(gconstpointer a, gconstpointer b) 326 { 327 uint64_t aidx = cpreg_to_kvm_id(*(uint32_t *)a); 328 uint64_t bidx = cpreg_to_kvm_id(*(uint32_t *)b); 329 330 if (aidx > bidx) { 331 return 1; 332 } 333 if (aidx < bidx) { 334 return -1; 335 } 336 return 0; 337 } 338 339 void init_cpreg_list(ARMCPU *cpu) 340 { 341 /* Initialise the cpreg_tuples[] array based on the cp_regs hash. 342 * Note that we require cpreg_tuples[] to be sorted by key ID. 343 */ 344 GList *keys; 345 int arraylen; 346 347 keys = g_hash_table_get_keys(cpu->cp_regs); 348 keys = g_list_sort(keys, cpreg_key_compare); 349 350 cpu->cpreg_array_len = 0; 351 352 g_list_foreach(keys, count_cpreg, cpu); 353 354 arraylen = cpu->cpreg_array_len; 355 cpu->cpreg_indexes = g_new(uint64_t, arraylen); 356 cpu->cpreg_values = g_new(uint64_t, arraylen); 357 cpu->cpreg_vmstate_indexes = g_new(uint64_t, arraylen); 358 cpu->cpreg_vmstate_values = g_new(uint64_t, arraylen); 359 cpu->cpreg_vmstate_array_len = cpu->cpreg_array_len; 360 cpu->cpreg_array_len = 0; 361 362 g_list_foreach(keys, add_cpreg_to_list, cpu); 363 364 assert(cpu->cpreg_array_len == arraylen); 365 366 g_list_free(keys); 367 } 368 369 /* 370 * Some registers are not accessible if EL3.NS=0 and EL3 is using AArch32 but 371 * they are accessible when EL3 is using AArch64 regardless of EL3.NS. 372 * 373 * access_el3_aa32ns: Used to check AArch32 register views. 374 * access_el3_aa32ns_aa64any: Used to check both AArch32/64 register views. 375 */ 376 static CPAccessResult access_el3_aa32ns(CPUARMState *env, 377 const ARMCPRegInfo *ri, 378 bool isread) 379 { 380 bool secure = arm_is_secure_below_el3(env); 381 382 assert(!arm_el_is_aa64(env, 3)); 383 if (secure) { 384 return CP_ACCESS_TRAP_UNCATEGORIZED; 385 } 386 return CP_ACCESS_OK; 387 } 388 389 static CPAccessResult access_el3_aa32ns_aa64any(CPUARMState *env, 390 const ARMCPRegInfo *ri, 391 bool isread) 392 { 393 if (!arm_el_is_aa64(env, 3)) { 394 return access_el3_aa32ns(env, ri, isread); 395 } 396 return CP_ACCESS_OK; 397 } 398 399 /* Some secure-only AArch32 registers trap to EL3 if used from 400 * Secure EL1 (but are just ordinary UNDEF in other non-EL3 contexts). 401 * Note that an access from Secure EL1 can only happen if EL3 is AArch64. 402 * We assume that the .access field is set to PL1_RW. 403 */ 404 static CPAccessResult access_trap_aa32s_el1(CPUARMState *env, 405 const ARMCPRegInfo *ri, 406 bool isread) 407 { 408 if (arm_current_el(env) == 3) { 409 return CP_ACCESS_OK; 410 } 411 if (arm_is_secure_below_el3(env)) { 412 return CP_ACCESS_TRAP_EL3; 413 } 414 /* This will be EL1 NS and EL2 NS, which just UNDEF */ 415 return CP_ACCESS_TRAP_UNCATEGORIZED; 416 } 417 418 /* Check for traps to "powerdown debug" registers, which are controlled 419 * by MDCR.TDOSA 420 */ 421 static CPAccessResult access_tdosa(CPUARMState *env, const ARMCPRegInfo *ri, 422 bool isread) 423 { 424 int el = arm_current_el(env); 425 426 if (el < 2 && (env->cp15.mdcr_el2 & MDCR_TDOSA) 427 && !arm_is_secure_below_el3(env)) { 428 return CP_ACCESS_TRAP_EL2; 429 } 430 if (el < 3 && (env->cp15.mdcr_el3 & MDCR_TDOSA)) { 431 return CP_ACCESS_TRAP_EL3; 432 } 433 return CP_ACCESS_OK; 434 } 435 436 /* Check for traps to "debug ROM" registers, which are controlled 437 * by MDCR_EL2.TDRA for EL2 but by the more general MDCR_EL3.TDA for EL3. 438 */ 439 static CPAccessResult access_tdra(CPUARMState *env, const ARMCPRegInfo *ri, 440 bool isread) 441 { 442 int el = arm_current_el(env); 443 444 if (el < 2 && (env->cp15.mdcr_el2 & MDCR_TDRA) 445 && !arm_is_secure_below_el3(env)) { 446 return CP_ACCESS_TRAP_EL2; 447 } 448 if (el < 3 && (env->cp15.mdcr_el3 & MDCR_TDA)) { 449 return CP_ACCESS_TRAP_EL3; 450 } 451 return CP_ACCESS_OK; 452 } 453 454 /* Check for traps to general debug registers, which are controlled 455 * by MDCR_EL2.TDA for EL2 and MDCR_EL3.TDA for EL3. 456 */ 457 static CPAccessResult access_tda(CPUARMState *env, const ARMCPRegInfo *ri, 458 bool isread) 459 { 460 int el = arm_current_el(env); 461 462 if (el < 2 && (env->cp15.mdcr_el2 & MDCR_TDA) 463 && !arm_is_secure_below_el3(env)) { 464 return CP_ACCESS_TRAP_EL2; 465 } 466 if (el < 3 && (env->cp15.mdcr_el3 & MDCR_TDA)) { 467 return CP_ACCESS_TRAP_EL3; 468 } 469 return CP_ACCESS_OK; 470 } 471 472 /* Check for traps to performance monitor registers, which are controlled 473 * by MDCR_EL2.TPM for EL2 and MDCR_EL3.TPM for EL3. 474 */ 475 static CPAccessResult access_tpm(CPUARMState *env, const ARMCPRegInfo *ri, 476 bool isread) 477 { 478 int el = arm_current_el(env); 479 480 if (el < 2 && (env->cp15.mdcr_el2 & MDCR_TPM) 481 && !arm_is_secure_below_el3(env)) { 482 return CP_ACCESS_TRAP_EL2; 483 } 484 if (el < 3 && (env->cp15.mdcr_el3 & MDCR_TPM)) { 485 return CP_ACCESS_TRAP_EL3; 486 } 487 return CP_ACCESS_OK; 488 } 489 490 static void dacr_write(CPUARMState *env, const ARMCPRegInfo *ri, uint64_t value) 491 { 492 ARMCPU *cpu = arm_env_get_cpu(env); 493 494 raw_write(env, ri, value); 495 tlb_flush(CPU(cpu)); /* Flush TLB as domain not tracked in TLB */ 496 } 497 498 static void fcse_write(CPUARMState *env, const ARMCPRegInfo *ri, uint64_t value) 499 { 500 ARMCPU *cpu = arm_env_get_cpu(env); 501 502 if (raw_read(env, ri) != value) { 503 /* Unlike real hardware the qemu TLB uses virtual addresses, 504 * not modified virtual addresses, so this causes a TLB flush. 505 */ 506 tlb_flush(CPU(cpu)); 507 raw_write(env, ri, value); 508 } 509 } 510 511 static void contextidr_write(CPUARMState *env, const ARMCPRegInfo *ri, 512 uint64_t value) 513 { 514 ARMCPU *cpu = arm_env_get_cpu(env); 515 516 if (raw_read(env, ri) != value && !arm_feature(env, ARM_FEATURE_PMSA) 517 && !extended_addresses_enabled(env)) { 518 /* For VMSA (when not using the LPAE long descriptor page table 519 * format) this register includes the ASID, so do a TLB flush. 520 * For PMSA it is purely a process ID and no action is needed. 521 */ 522 tlb_flush(CPU(cpu)); 523 } 524 raw_write(env, ri, value); 525 } 526 527 static void tlbiall_write(CPUARMState *env, const ARMCPRegInfo *ri, 528 uint64_t value) 529 { 530 /* Invalidate all (TLBIALL) */ 531 ARMCPU *cpu = arm_env_get_cpu(env); 532 533 tlb_flush(CPU(cpu)); 534 } 535 536 static void tlbimva_write(CPUARMState *env, const ARMCPRegInfo *ri, 537 uint64_t value) 538 { 539 /* Invalidate single TLB entry by MVA and ASID (TLBIMVA) */ 540 ARMCPU *cpu = arm_env_get_cpu(env); 541 542 tlb_flush_page(CPU(cpu), value & TARGET_PAGE_MASK); 543 } 544 545 static void tlbiasid_write(CPUARMState *env, const ARMCPRegInfo *ri, 546 uint64_t value) 547 { 548 /* Invalidate by ASID (TLBIASID) */ 549 ARMCPU *cpu = arm_env_get_cpu(env); 550 551 tlb_flush(CPU(cpu)); 552 } 553 554 static void tlbimvaa_write(CPUARMState *env, const ARMCPRegInfo *ri, 555 uint64_t value) 556 { 557 /* Invalidate single entry by MVA, all ASIDs (TLBIMVAA) */ 558 ARMCPU *cpu = arm_env_get_cpu(env); 559 560 tlb_flush_page(CPU(cpu), value & TARGET_PAGE_MASK); 561 } 562 563 /* IS variants of TLB operations must affect all cores */ 564 static void tlbiall_is_write(CPUARMState *env, const ARMCPRegInfo *ri, 565 uint64_t value) 566 { 567 CPUState *cs = ENV_GET_CPU(env); 568 569 tlb_flush_all_cpus_synced(cs); 570 } 571 572 static void tlbiasid_is_write(CPUARMState *env, const ARMCPRegInfo *ri, 573 uint64_t value) 574 { 575 CPUState *cs = ENV_GET_CPU(env); 576 577 tlb_flush_all_cpus_synced(cs); 578 } 579 580 static void tlbimva_is_write(CPUARMState *env, const ARMCPRegInfo *ri, 581 uint64_t value) 582 { 583 CPUState *cs = ENV_GET_CPU(env); 584 585 tlb_flush_page_all_cpus_synced(cs, value & TARGET_PAGE_MASK); 586 } 587 588 static void tlbimvaa_is_write(CPUARMState *env, const ARMCPRegInfo *ri, 589 uint64_t value) 590 { 591 CPUState *cs = ENV_GET_CPU(env); 592 593 tlb_flush_page_all_cpus_synced(cs, value & TARGET_PAGE_MASK); 594 } 595 596 static void tlbiall_nsnh_write(CPUARMState *env, const ARMCPRegInfo *ri, 597 uint64_t value) 598 { 599 CPUState *cs = ENV_GET_CPU(env); 600 601 tlb_flush_by_mmuidx(cs, 602 ARMMMUIdxBit_S12NSE1 | 603 ARMMMUIdxBit_S12NSE0 | 604 ARMMMUIdxBit_S2NS); 605 } 606 607 static void tlbiall_nsnh_is_write(CPUARMState *env, const ARMCPRegInfo *ri, 608 uint64_t value) 609 { 610 CPUState *cs = ENV_GET_CPU(env); 611 612 tlb_flush_by_mmuidx_all_cpus_synced(cs, 613 ARMMMUIdxBit_S12NSE1 | 614 ARMMMUIdxBit_S12NSE0 | 615 ARMMMUIdxBit_S2NS); 616 } 617 618 static void tlbiipas2_write(CPUARMState *env, const ARMCPRegInfo *ri, 619 uint64_t value) 620 { 621 /* Invalidate by IPA. This has to invalidate any structures that 622 * contain only stage 2 translation information, but does not need 623 * to apply to structures that contain combined stage 1 and stage 2 624 * translation information. 625 * This must NOP if EL2 isn't implemented or SCR_EL3.NS is zero. 626 */ 627 CPUState *cs = ENV_GET_CPU(env); 628 uint64_t pageaddr; 629 630 if (!arm_feature(env, ARM_FEATURE_EL2) || !(env->cp15.scr_el3 & SCR_NS)) { 631 return; 632 } 633 634 pageaddr = sextract64(value << 12, 0, 40); 635 636 tlb_flush_page_by_mmuidx(cs, pageaddr, ARMMMUIdxBit_S2NS); 637 } 638 639 static void tlbiipas2_is_write(CPUARMState *env, const ARMCPRegInfo *ri, 640 uint64_t value) 641 { 642 CPUState *cs = ENV_GET_CPU(env); 643 uint64_t pageaddr; 644 645 if (!arm_feature(env, ARM_FEATURE_EL2) || !(env->cp15.scr_el3 & SCR_NS)) { 646 return; 647 } 648 649 pageaddr = sextract64(value << 12, 0, 40); 650 651 tlb_flush_page_by_mmuidx_all_cpus_synced(cs, pageaddr, 652 ARMMMUIdxBit_S2NS); 653 } 654 655 static void tlbiall_hyp_write(CPUARMState *env, const ARMCPRegInfo *ri, 656 uint64_t value) 657 { 658 CPUState *cs = ENV_GET_CPU(env); 659 660 tlb_flush_by_mmuidx(cs, ARMMMUIdxBit_S1E2); 661 } 662 663 static void tlbiall_hyp_is_write(CPUARMState *env, const ARMCPRegInfo *ri, 664 uint64_t value) 665 { 666 CPUState *cs = ENV_GET_CPU(env); 667 668 tlb_flush_by_mmuidx_all_cpus_synced(cs, ARMMMUIdxBit_S1E2); 669 } 670 671 static void tlbimva_hyp_write(CPUARMState *env, const ARMCPRegInfo *ri, 672 uint64_t value) 673 { 674 CPUState *cs = ENV_GET_CPU(env); 675 uint64_t pageaddr = value & ~MAKE_64BIT_MASK(0, 12); 676 677 tlb_flush_page_by_mmuidx(cs, pageaddr, ARMMMUIdxBit_S1E2); 678 } 679 680 static void tlbimva_hyp_is_write(CPUARMState *env, const ARMCPRegInfo *ri, 681 uint64_t value) 682 { 683 CPUState *cs = ENV_GET_CPU(env); 684 uint64_t pageaddr = value & ~MAKE_64BIT_MASK(0, 12); 685 686 tlb_flush_page_by_mmuidx_all_cpus_synced(cs, pageaddr, 687 ARMMMUIdxBit_S1E2); 688 } 689 690 static const ARMCPRegInfo cp_reginfo[] = { 691 /* Define the secure and non-secure FCSE identifier CP registers 692 * separately because there is no secure bank in V8 (no _EL3). This allows 693 * the secure register to be properly reset and migrated. There is also no 694 * v8 EL1 version of the register so the non-secure instance stands alone. 695 */ 696 { .name = "FCSEIDR(NS)", 697 .cp = 15, .opc1 = 0, .crn = 13, .crm = 0, .opc2 = 0, 698 .access = PL1_RW, .secure = ARM_CP_SECSTATE_NS, 699 .fieldoffset = offsetof(CPUARMState, cp15.fcseidr_ns), 700 .resetvalue = 0, .writefn = fcse_write, .raw_writefn = raw_write, }, 701 { .name = "FCSEIDR(S)", 702 .cp = 15, .opc1 = 0, .crn = 13, .crm = 0, .opc2 = 0, 703 .access = PL1_RW, .secure = ARM_CP_SECSTATE_S, 704 .fieldoffset = offsetof(CPUARMState, cp15.fcseidr_s), 705 .resetvalue = 0, .writefn = fcse_write, .raw_writefn = raw_write, }, 706 /* Define the secure and non-secure context identifier CP registers 707 * separately because there is no secure bank in V8 (no _EL3). This allows 708 * the secure register to be properly reset and migrated. In the 709 * non-secure case, the 32-bit register will have reset and migration 710 * disabled during registration as it is handled by the 64-bit instance. 711 */ 712 { .name = "CONTEXTIDR_EL1", .state = ARM_CP_STATE_BOTH, 713 .opc0 = 3, .opc1 = 0, .crn = 13, .crm = 0, .opc2 = 1, 714 .access = PL1_RW, .secure = ARM_CP_SECSTATE_NS, 715 .fieldoffset = offsetof(CPUARMState, cp15.contextidr_el[1]), 716 .resetvalue = 0, .writefn = contextidr_write, .raw_writefn = raw_write, }, 717 { .name = "CONTEXTIDR(S)", .state = ARM_CP_STATE_AA32, 718 .cp = 15, .opc1 = 0, .crn = 13, .crm = 0, .opc2 = 1, 719 .access = PL1_RW, .secure = ARM_CP_SECSTATE_S, 720 .fieldoffset = offsetof(CPUARMState, cp15.contextidr_s), 721 .resetvalue = 0, .writefn = contextidr_write, .raw_writefn = raw_write, }, 722 REGINFO_SENTINEL 723 }; 724 725 static const ARMCPRegInfo not_v8_cp_reginfo[] = { 726 /* NB: Some of these registers exist in v8 but with more precise 727 * definitions that don't use CP_ANY wildcards (mostly in v8_cp_reginfo[]). 728 */ 729 /* MMU Domain access control / MPU write buffer control */ 730 { .name = "DACR", 731 .cp = 15, .opc1 = CP_ANY, .crn = 3, .crm = CP_ANY, .opc2 = CP_ANY, 732 .access = PL1_RW, .resetvalue = 0, 733 .writefn = dacr_write, .raw_writefn = raw_write, 734 .bank_fieldoffsets = { offsetoflow32(CPUARMState, cp15.dacr_s), 735 offsetoflow32(CPUARMState, cp15.dacr_ns) } }, 736 /* ARMv7 allocates a range of implementation defined TLB LOCKDOWN regs. 737 * For v6 and v5, these mappings are overly broad. 738 */ 739 { .name = "TLB_LOCKDOWN", .cp = 15, .crn = 10, .crm = 0, 740 .opc1 = CP_ANY, .opc2 = CP_ANY, .access = PL1_RW, .type = ARM_CP_NOP }, 741 { .name = "TLB_LOCKDOWN", .cp = 15, .crn = 10, .crm = 1, 742 .opc1 = CP_ANY, .opc2 = CP_ANY, .access = PL1_RW, .type = ARM_CP_NOP }, 743 { .name = "TLB_LOCKDOWN", .cp = 15, .crn = 10, .crm = 4, 744 .opc1 = CP_ANY, .opc2 = CP_ANY, .access = PL1_RW, .type = ARM_CP_NOP }, 745 { .name = "TLB_LOCKDOWN", .cp = 15, .crn = 10, .crm = 8, 746 .opc1 = CP_ANY, .opc2 = CP_ANY, .access = PL1_RW, .type = ARM_CP_NOP }, 747 /* Cache maintenance ops; some of this space may be overridden later. */ 748 { .name = "CACHEMAINT", .cp = 15, .crn = 7, .crm = CP_ANY, 749 .opc1 = 0, .opc2 = CP_ANY, .access = PL1_W, 750 .type = ARM_CP_NOP | ARM_CP_OVERRIDE }, 751 REGINFO_SENTINEL 752 }; 753 754 static const ARMCPRegInfo not_v6_cp_reginfo[] = { 755 /* Not all pre-v6 cores implemented this WFI, so this is slightly 756 * over-broad. 757 */ 758 { .name = "WFI_v5", .cp = 15, .crn = 7, .crm = 8, .opc1 = 0, .opc2 = 2, 759 .access = PL1_W, .type = ARM_CP_WFI }, 760 REGINFO_SENTINEL 761 }; 762 763 static const ARMCPRegInfo not_v7_cp_reginfo[] = { 764 /* Standard v6 WFI (also used in some pre-v6 cores); not in v7 (which 765 * is UNPREDICTABLE; we choose to NOP as most implementations do). 766 */ 767 { .name = "WFI_v6", .cp = 15, .crn = 7, .crm = 0, .opc1 = 0, .opc2 = 4, 768 .access = PL1_W, .type = ARM_CP_WFI }, 769 /* L1 cache lockdown. Not architectural in v6 and earlier but in practice 770 * implemented in 926, 946, 1026, 1136, 1176 and 11MPCore. StrongARM and 771 * OMAPCP will override this space. 772 */ 773 { .name = "DLOCKDOWN", .cp = 15, .crn = 9, .crm = 0, .opc1 = 0, .opc2 = 0, 774 .access = PL1_RW, .fieldoffset = offsetof(CPUARMState, cp15.c9_data), 775 .resetvalue = 0 }, 776 { .name = "ILOCKDOWN", .cp = 15, .crn = 9, .crm = 0, .opc1 = 0, .opc2 = 1, 777 .access = PL1_RW, .fieldoffset = offsetof(CPUARMState, cp15.c9_insn), 778 .resetvalue = 0 }, 779 /* v6 doesn't have the cache ID registers but Linux reads them anyway */ 780 { .name = "DUMMY", .cp = 15, .crn = 0, .crm = 0, .opc1 = 1, .opc2 = CP_ANY, 781 .access = PL1_R, .type = ARM_CP_CONST | ARM_CP_NO_RAW, 782 .resetvalue = 0 }, 783 /* We don't implement pre-v7 debug but most CPUs had at least a DBGDIDR; 784 * implementing it as RAZ means the "debug architecture version" bits 785 * will read as a reserved value, which should cause Linux to not try 786 * to use the debug hardware. 787 */ 788 { .name = "DBGDIDR", .cp = 14, .crn = 0, .crm = 0, .opc1 = 0, .opc2 = 0, 789 .access = PL0_R, .type = ARM_CP_CONST, .resetvalue = 0 }, 790 /* MMU TLB control. Note that the wildcarding means we cover not just 791 * the unified TLB ops but also the dside/iside/inner-shareable variants. 792 */ 793 { .name = "TLBIALL", .cp = 15, .crn = 8, .crm = CP_ANY, 794 .opc1 = CP_ANY, .opc2 = 0, .access = PL1_W, .writefn = tlbiall_write, 795 .type = ARM_CP_NO_RAW }, 796 { .name = "TLBIMVA", .cp = 15, .crn = 8, .crm = CP_ANY, 797 .opc1 = CP_ANY, .opc2 = 1, .access = PL1_W, .writefn = tlbimva_write, 798 .type = ARM_CP_NO_RAW }, 799 { .name = "TLBIASID", .cp = 15, .crn = 8, .crm = CP_ANY, 800 .opc1 = CP_ANY, .opc2 = 2, .access = PL1_W, .writefn = tlbiasid_write, 801 .type = ARM_CP_NO_RAW }, 802 { .name = "TLBIMVAA", .cp = 15, .crn = 8, .crm = CP_ANY, 803 .opc1 = CP_ANY, .opc2 = 3, .access = PL1_W, .writefn = tlbimvaa_write, 804 .type = ARM_CP_NO_RAW }, 805 { .name = "PRRR", .cp = 15, .crn = 10, .crm = 2, 806 .opc1 = 0, .opc2 = 0, .access = PL1_RW, .type = ARM_CP_NOP }, 807 { .name = "NMRR", .cp = 15, .crn = 10, .crm = 2, 808 .opc1 = 0, .opc2 = 1, .access = PL1_RW, .type = ARM_CP_NOP }, 809 REGINFO_SENTINEL 810 }; 811 812 static void cpacr_write(CPUARMState *env, const ARMCPRegInfo *ri, 813 uint64_t value) 814 { 815 uint32_t mask = 0; 816 817 /* In ARMv8 most bits of CPACR_EL1 are RES0. */ 818 if (!arm_feature(env, ARM_FEATURE_V8)) { 819 /* ARMv7 defines bits for unimplemented coprocessors as RAZ/WI. 820 * ASEDIS [31] and D32DIS [30] are both UNK/SBZP without VFP. 821 * TRCDIS [28] is RAZ/WI since we do not implement a trace macrocell. 822 */ 823 if (arm_feature(env, ARM_FEATURE_VFP)) { 824 /* VFP coprocessor: cp10 & cp11 [23:20] */ 825 mask |= (1 << 31) | (1 << 30) | (0xf << 20); 826 827 if (!arm_feature(env, ARM_FEATURE_NEON)) { 828 /* ASEDIS [31] bit is RAO/WI */ 829 value |= (1 << 31); 830 } 831 832 /* VFPv3 and upwards with NEON implement 32 double precision 833 * registers (D0-D31). 834 */ 835 if (!arm_feature(env, ARM_FEATURE_NEON) || 836 !arm_feature(env, ARM_FEATURE_VFP3)) { 837 /* D32DIS [30] is RAO/WI if D16-31 are not implemented. */ 838 value |= (1 << 30); 839 } 840 } 841 value &= mask; 842 } 843 env->cp15.cpacr_el1 = value; 844 } 845 846 static CPAccessResult cpacr_access(CPUARMState *env, const ARMCPRegInfo *ri, 847 bool isread) 848 { 849 if (arm_feature(env, ARM_FEATURE_V8)) { 850 /* Check if CPACR accesses are to be trapped to EL2 */ 851 if (arm_current_el(env) == 1 && 852 (env->cp15.cptr_el[2] & CPTR_TCPAC) && !arm_is_secure(env)) { 853 return CP_ACCESS_TRAP_EL2; 854 /* Check if CPACR accesses are to be trapped to EL3 */ 855 } else if (arm_current_el(env) < 3 && 856 (env->cp15.cptr_el[3] & CPTR_TCPAC)) { 857 return CP_ACCESS_TRAP_EL3; 858 } 859 } 860 861 return CP_ACCESS_OK; 862 } 863 864 static CPAccessResult cptr_access(CPUARMState *env, const ARMCPRegInfo *ri, 865 bool isread) 866 { 867 /* Check if CPTR accesses are set to trap to EL3 */ 868 if (arm_current_el(env) == 2 && (env->cp15.cptr_el[3] & CPTR_TCPAC)) { 869 return CP_ACCESS_TRAP_EL3; 870 } 871 872 return CP_ACCESS_OK; 873 } 874 875 static const ARMCPRegInfo v6_cp_reginfo[] = { 876 /* prefetch by MVA in v6, NOP in v7 */ 877 { .name = "MVA_prefetch", 878 .cp = 15, .crn = 7, .crm = 13, .opc1 = 0, .opc2 = 1, 879 .access = PL1_W, .type = ARM_CP_NOP }, 880 /* We need to break the TB after ISB to execute self-modifying code 881 * correctly and also to take any pending interrupts immediately. 882 * So use arm_cp_write_ignore() function instead of ARM_CP_NOP flag. 883 */ 884 { .name = "ISB", .cp = 15, .crn = 7, .crm = 5, .opc1 = 0, .opc2 = 4, 885 .access = PL0_W, .type = ARM_CP_NO_RAW, .writefn = arm_cp_write_ignore }, 886 { .name = "DSB", .cp = 15, .crn = 7, .crm = 10, .opc1 = 0, .opc2 = 4, 887 .access = PL0_W, .type = ARM_CP_NOP }, 888 { .name = "DMB", .cp = 15, .crn = 7, .crm = 10, .opc1 = 0, .opc2 = 5, 889 .access = PL0_W, .type = ARM_CP_NOP }, 890 { .name = "IFAR", .cp = 15, .crn = 6, .crm = 0, .opc1 = 0, .opc2 = 2, 891 .access = PL1_RW, 892 .bank_fieldoffsets = { offsetof(CPUARMState, cp15.ifar_s), 893 offsetof(CPUARMState, cp15.ifar_ns) }, 894 .resetvalue = 0, }, 895 /* Watchpoint Fault Address Register : should actually only be present 896 * for 1136, 1176, 11MPCore. 897 */ 898 { .name = "WFAR", .cp = 15, .crn = 6, .crm = 0, .opc1 = 0, .opc2 = 1, 899 .access = PL1_RW, .type = ARM_CP_CONST, .resetvalue = 0, }, 900 { .name = "CPACR", .state = ARM_CP_STATE_BOTH, .opc0 = 3, 901 .crn = 1, .crm = 0, .opc1 = 0, .opc2 = 2, .accessfn = cpacr_access, 902 .access = PL1_RW, .fieldoffset = offsetof(CPUARMState, cp15.cpacr_el1), 903 .resetvalue = 0, .writefn = cpacr_write }, 904 REGINFO_SENTINEL 905 }; 906 907 static CPAccessResult pmreg_access(CPUARMState *env, const ARMCPRegInfo *ri, 908 bool isread) 909 { 910 /* Performance monitor registers user accessibility is controlled 911 * by PMUSERENR. MDCR_EL2.TPM and MDCR_EL3.TPM allow configurable 912 * trapping to EL2 or EL3 for other accesses. 913 */ 914 int el = arm_current_el(env); 915 916 if (el == 0 && !(env->cp15.c9_pmuserenr & 1)) { 917 return CP_ACCESS_TRAP; 918 } 919 if (el < 2 && (env->cp15.mdcr_el2 & MDCR_TPM) 920 && !arm_is_secure_below_el3(env)) { 921 return CP_ACCESS_TRAP_EL2; 922 } 923 if (el < 3 && (env->cp15.mdcr_el3 & MDCR_TPM)) { 924 return CP_ACCESS_TRAP_EL3; 925 } 926 927 return CP_ACCESS_OK; 928 } 929 930 static CPAccessResult pmreg_access_xevcntr(CPUARMState *env, 931 const ARMCPRegInfo *ri, 932 bool isread) 933 { 934 /* ER: event counter read trap control */ 935 if (arm_feature(env, ARM_FEATURE_V8) 936 && arm_current_el(env) == 0 937 && (env->cp15.c9_pmuserenr & (1 << 3)) != 0 938 && isread) { 939 return CP_ACCESS_OK; 940 } 941 942 return pmreg_access(env, ri, isread); 943 } 944 945 static CPAccessResult pmreg_access_swinc(CPUARMState *env, 946 const ARMCPRegInfo *ri, 947 bool isread) 948 { 949 /* SW: software increment write trap control */ 950 if (arm_feature(env, ARM_FEATURE_V8) 951 && arm_current_el(env) == 0 952 && (env->cp15.c9_pmuserenr & (1 << 1)) != 0 953 && !isread) { 954 return CP_ACCESS_OK; 955 } 956 957 return pmreg_access(env, ri, isread); 958 } 959 960 #ifndef CONFIG_USER_ONLY 961 962 static CPAccessResult pmreg_access_selr(CPUARMState *env, 963 const ARMCPRegInfo *ri, 964 bool isread) 965 { 966 /* ER: event counter read trap control */ 967 if (arm_feature(env, ARM_FEATURE_V8) 968 && arm_current_el(env) == 0 969 && (env->cp15.c9_pmuserenr & (1 << 3)) != 0) { 970 return CP_ACCESS_OK; 971 } 972 973 return pmreg_access(env, ri, isread); 974 } 975 976 static CPAccessResult pmreg_access_ccntr(CPUARMState *env, 977 const ARMCPRegInfo *ri, 978 bool isread) 979 { 980 /* CR: cycle counter read trap control */ 981 if (arm_feature(env, ARM_FEATURE_V8) 982 && arm_current_el(env) == 0 983 && (env->cp15.c9_pmuserenr & (1 << 2)) != 0 984 && isread) { 985 return CP_ACCESS_OK; 986 } 987 988 return pmreg_access(env, ri, isread); 989 } 990 991 static inline bool arm_ccnt_enabled(CPUARMState *env) 992 { 993 /* This does not support checking PMCCFILTR_EL0 register */ 994 995 if (!(env->cp15.c9_pmcr & PMCRE)) { 996 return false; 997 } 998 999 return true; 1000 } 1001 1002 void pmccntr_sync(CPUARMState *env) 1003 { 1004 uint64_t temp_ticks; 1005 1006 temp_ticks = muldiv64(qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL), 1007 ARM_CPU_FREQ, NANOSECONDS_PER_SECOND); 1008 1009 if (env->cp15.c9_pmcr & PMCRD) { 1010 /* Increment once every 64 processor clock cycles */ 1011 temp_ticks /= 64; 1012 } 1013 1014 if (arm_ccnt_enabled(env)) { 1015 env->cp15.c15_ccnt = temp_ticks - env->cp15.c15_ccnt; 1016 } 1017 } 1018 1019 static void pmcr_write(CPUARMState *env, const ARMCPRegInfo *ri, 1020 uint64_t value) 1021 { 1022 pmccntr_sync(env); 1023 1024 if (value & PMCRC) { 1025 /* The counter has been reset */ 1026 env->cp15.c15_ccnt = 0; 1027 } 1028 1029 /* only the DP, X, D and E bits are writable */ 1030 env->cp15.c9_pmcr &= ~0x39; 1031 env->cp15.c9_pmcr |= (value & 0x39); 1032 1033 pmccntr_sync(env); 1034 } 1035 1036 static uint64_t pmccntr_read(CPUARMState *env, const ARMCPRegInfo *ri) 1037 { 1038 uint64_t total_ticks; 1039 1040 if (!arm_ccnt_enabled(env)) { 1041 /* Counter is disabled, do not change value */ 1042 return env->cp15.c15_ccnt; 1043 } 1044 1045 total_ticks = muldiv64(qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL), 1046 ARM_CPU_FREQ, NANOSECONDS_PER_SECOND); 1047 1048 if (env->cp15.c9_pmcr & PMCRD) { 1049 /* Increment once every 64 processor clock cycles */ 1050 total_ticks /= 64; 1051 } 1052 return total_ticks - env->cp15.c15_ccnt; 1053 } 1054 1055 static void pmselr_write(CPUARMState *env, const ARMCPRegInfo *ri, 1056 uint64_t value) 1057 { 1058 /* The value of PMSELR.SEL affects the behavior of PMXEVTYPER and 1059 * PMXEVCNTR. We allow [0..31] to be written to PMSELR here; in the 1060 * meanwhile, we check PMSELR.SEL when PMXEVTYPER and PMXEVCNTR are 1061 * accessed. 1062 */ 1063 env->cp15.c9_pmselr = value & 0x1f; 1064 } 1065 1066 static void pmccntr_write(CPUARMState *env, const ARMCPRegInfo *ri, 1067 uint64_t value) 1068 { 1069 uint64_t total_ticks; 1070 1071 if (!arm_ccnt_enabled(env)) { 1072 /* Counter is disabled, set the absolute value */ 1073 env->cp15.c15_ccnt = value; 1074 return; 1075 } 1076 1077 total_ticks = muldiv64(qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL), 1078 ARM_CPU_FREQ, NANOSECONDS_PER_SECOND); 1079 1080 if (env->cp15.c9_pmcr & PMCRD) { 1081 /* Increment once every 64 processor clock cycles */ 1082 total_ticks /= 64; 1083 } 1084 env->cp15.c15_ccnt = total_ticks - value; 1085 } 1086 1087 static void pmccntr_write32(CPUARMState *env, const ARMCPRegInfo *ri, 1088 uint64_t value) 1089 { 1090 uint64_t cur_val = pmccntr_read(env, NULL); 1091 1092 pmccntr_write(env, ri, deposit64(cur_val, 0, 32, value)); 1093 } 1094 1095 #else /* CONFIG_USER_ONLY */ 1096 1097 void pmccntr_sync(CPUARMState *env) 1098 { 1099 } 1100 1101 #endif 1102 1103 static void pmccfiltr_write(CPUARMState *env, const ARMCPRegInfo *ri, 1104 uint64_t value) 1105 { 1106 pmccntr_sync(env); 1107 env->cp15.pmccfiltr_el0 = value & 0x7E000000; 1108 pmccntr_sync(env); 1109 } 1110 1111 static void pmcntenset_write(CPUARMState *env, const ARMCPRegInfo *ri, 1112 uint64_t value) 1113 { 1114 value &= (1 << 31); 1115 env->cp15.c9_pmcnten |= value; 1116 } 1117 1118 static void pmcntenclr_write(CPUARMState *env, const ARMCPRegInfo *ri, 1119 uint64_t value) 1120 { 1121 value &= (1 << 31); 1122 env->cp15.c9_pmcnten &= ~value; 1123 } 1124 1125 static void pmovsr_write(CPUARMState *env, const ARMCPRegInfo *ri, 1126 uint64_t value) 1127 { 1128 env->cp15.c9_pmovsr &= ~value; 1129 } 1130 1131 static void pmxevtyper_write(CPUARMState *env, const ARMCPRegInfo *ri, 1132 uint64_t value) 1133 { 1134 /* Attempts to access PMXEVTYPER are CONSTRAINED UNPREDICTABLE when 1135 * PMSELR value is equal to or greater than the number of implemented 1136 * counters, but not equal to 0x1f. We opt to behave as a RAZ/WI. 1137 */ 1138 if (env->cp15.c9_pmselr == 0x1f) { 1139 pmccfiltr_write(env, ri, value); 1140 } 1141 } 1142 1143 static uint64_t pmxevtyper_read(CPUARMState *env, const ARMCPRegInfo *ri) 1144 { 1145 /* We opt to behave as a RAZ/WI when attempts to access PMXEVTYPER 1146 * are CONSTRAINED UNPREDICTABLE. See comments in pmxevtyper_write(). 1147 */ 1148 if (env->cp15.c9_pmselr == 0x1f) { 1149 return env->cp15.pmccfiltr_el0; 1150 } else { 1151 return 0; 1152 } 1153 } 1154 1155 static void pmuserenr_write(CPUARMState *env, const ARMCPRegInfo *ri, 1156 uint64_t value) 1157 { 1158 if (arm_feature(env, ARM_FEATURE_V8)) { 1159 env->cp15.c9_pmuserenr = value & 0xf; 1160 } else { 1161 env->cp15.c9_pmuserenr = value & 1; 1162 } 1163 } 1164 1165 static void pmintenset_write(CPUARMState *env, const ARMCPRegInfo *ri, 1166 uint64_t value) 1167 { 1168 /* We have no event counters so only the C bit can be changed */ 1169 value &= (1 << 31); 1170 env->cp15.c9_pminten |= value; 1171 } 1172 1173 static void pmintenclr_write(CPUARMState *env, const ARMCPRegInfo *ri, 1174 uint64_t value) 1175 { 1176 value &= (1 << 31); 1177 env->cp15.c9_pminten &= ~value; 1178 } 1179 1180 static void vbar_write(CPUARMState *env, const ARMCPRegInfo *ri, 1181 uint64_t value) 1182 { 1183 /* Note that even though the AArch64 view of this register has bits 1184 * [10:0] all RES0 we can only mask the bottom 5, to comply with the 1185 * architectural requirements for bits which are RES0 only in some 1186 * contexts. (ARMv8 would permit us to do no masking at all, but ARMv7 1187 * requires the bottom five bits to be RAZ/WI because they're UNK/SBZP.) 1188 */ 1189 raw_write(env, ri, value & ~0x1FULL); 1190 } 1191 1192 static void scr_write(CPUARMState *env, const ARMCPRegInfo *ri, uint64_t value) 1193 { 1194 /* We only mask off bits that are RES0 both for AArch64 and AArch32. 1195 * For bits that vary between AArch32/64, code needs to check the 1196 * current execution mode before directly using the feature bit. 1197 */ 1198 uint32_t valid_mask = SCR_AARCH64_MASK | SCR_AARCH32_MASK; 1199 1200 if (!arm_feature(env, ARM_FEATURE_EL2)) { 1201 valid_mask &= ~SCR_HCE; 1202 1203 /* On ARMv7, SMD (or SCD as it is called in v7) is only 1204 * supported if EL2 exists. The bit is UNK/SBZP when 1205 * EL2 is unavailable. In QEMU ARMv7, we force it to always zero 1206 * when EL2 is unavailable. 1207 * On ARMv8, this bit is always available. 1208 */ 1209 if (arm_feature(env, ARM_FEATURE_V7) && 1210 !arm_feature(env, ARM_FEATURE_V8)) { 1211 valid_mask &= ~SCR_SMD; 1212 } 1213 } 1214 1215 /* Clear all-context RES0 bits. */ 1216 value &= valid_mask; 1217 raw_write(env, ri, value); 1218 } 1219 1220 static uint64_t ccsidr_read(CPUARMState *env, const ARMCPRegInfo *ri) 1221 { 1222 ARMCPU *cpu = arm_env_get_cpu(env); 1223 1224 /* Acquire the CSSELR index from the bank corresponding to the CCSIDR 1225 * bank 1226 */ 1227 uint32_t index = A32_BANKED_REG_GET(env, csselr, 1228 ri->secure & ARM_CP_SECSTATE_S); 1229 1230 return cpu->ccsidr[index]; 1231 } 1232 1233 static void csselr_write(CPUARMState *env, const ARMCPRegInfo *ri, 1234 uint64_t value) 1235 { 1236 raw_write(env, ri, value & 0xf); 1237 } 1238 1239 static uint64_t isr_read(CPUARMState *env, const ARMCPRegInfo *ri) 1240 { 1241 CPUState *cs = ENV_GET_CPU(env); 1242 uint64_t ret = 0; 1243 1244 if (cs->interrupt_request & CPU_INTERRUPT_HARD) { 1245 ret |= CPSR_I; 1246 } 1247 if (cs->interrupt_request & CPU_INTERRUPT_FIQ) { 1248 ret |= CPSR_F; 1249 } 1250 /* External aborts are not possible in QEMU so A bit is always clear */ 1251 return ret; 1252 } 1253 1254 static const ARMCPRegInfo v7_cp_reginfo[] = { 1255 /* the old v6 WFI, UNPREDICTABLE in v7 but we choose to NOP */ 1256 { .name = "NOP", .cp = 15, .crn = 7, .crm = 0, .opc1 = 0, .opc2 = 4, 1257 .access = PL1_W, .type = ARM_CP_NOP }, 1258 /* Performance monitors are implementation defined in v7, 1259 * but with an ARM recommended set of registers, which we 1260 * follow (although we don't actually implement any counters) 1261 * 1262 * Performance registers fall into three categories: 1263 * (a) always UNDEF in PL0, RW in PL1 (PMINTENSET, PMINTENCLR) 1264 * (b) RO in PL0 (ie UNDEF on write), RW in PL1 (PMUSERENR) 1265 * (c) UNDEF in PL0 if PMUSERENR.EN==0, otherwise accessible (all others) 1266 * For the cases controlled by PMUSERENR we must set .access to PL0_RW 1267 * or PL0_RO as appropriate and then check PMUSERENR in the helper fn. 1268 */ 1269 { .name = "PMCNTENSET", .cp = 15, .crn = 9, .crm = 12, .opc1 = 0, .opc2 = 1, 1270 .access = PL0_RW, .type = ARM_CP_ALIAS, 1271 .fieldoffset = offsetoflow32(CPUARMState, cp15.c9_pmcnten), 1272 .writefn = pmcntenset_write, 1273 .accessfn = pmreg_access, 1274 .raw_writefn = raw_write }, 1275 { .name = "PMCNTENSET_EL0", .state = ARM_CP_STATE_AA64, 1276 .opc0 = 3, .opc1 = 3, .crn = 9, .crm = 12, .opc2 = 1, 1277 .access = PL0_RW, .accessfn = pmreg_access, 1278 .fieldoffset = offsetof(CPUARMState, cp15.c9_pmcnten), .resetvalue = 0, 1279 .writefn = pmcntenset_write, .raw_writefn = raw_write }, 1280 { .name = "PMCNTENCLR", .cp = 15, .crn = 9, .crm = 12, .opc1 = 0, .opc2 = 2, 1281 .access = PL0_RW, 1282 .fieldoffset = offsetoflow32(CPUARMState, cp15.c9_pmcnten), 1283 .accessfn = pmreg_access, 1284 .writefn = pmcntenclr_write, 1285 .type = ARM_CP_ALIAS }, 1286 { .name = "PMCNTENCLR_EL0", .state = ARM_CP_STATE_AA64, 1287 .opc0 = 3, .opc1 = 3, .crn = 9, .crm = 12, .opc2 = 2, 1288 .access = PL0_RW, .accessfn = pmreg_access, 1289 .type = ARM_CP_ALIAS, 1290 .fieldoffset = offsetof(CPUARMState, cp15.c9_pmcnten), 1291 .writefn = pmcntenclr_write }, 1292 { .name = "PMOVSR", .cp = 15, .crn = 9, .crm = 12, .opc1 = 0, .opc2 = 3, 1293 .access = PL0_RW, .fieldoffset = offsetof(CPUARMState, cp15.c9_pmovsr), 1294 .accessfn = pmreg_access, 1295 .writefn = pmovsr_write, 1296 .raw_writefn = raw_write }, 1297 { .name = "PMOVSCLR_EL0", .state = ARM_CP_STATE_AA64, 1298 .opc0 = 3, .opc1 = 3, .crn = 9, .crm = 12, .opc2 = 3, 1299 .access = PL0_RW, .accessfn = pmreg_access, 1300 .type = ARM_CP_ALIAS, 1301 .fieldoffset = offsetof(CPUARMState, cp15.c9_pmovsr), 1302 .writefn = pmovsr_write, 1303 .raw_writefn = raw_write }, 1304 /* Unimplemented so WI. */ 1305 { .name = "PMSWINC", .cp = 15, .crn = 9, .crm = 12, .opc1 = 0, .opc2 = 4, 1306 .access = PL0_W, .accessfn = pmreg_access_swinc, .type = ARM_CP_NOP }, 1307 #ifndef CONFIG_USER_ONLY 1308 { .name = "PMSELR", .cp = 15, .crn = 9, .crm = 12, .opc1 = 0, .opc2 = 5, 1309 .access = PL0_RW, .type = ARM_CP_ALIAS, 1310 .fieldoffset = offsetoflow32(CPUARMState, cp15.c9_pmselr), 1311 .accessfn = pmreg_access_selr, .writefn = pmselr_write, 1312 .raw_writefn = raw_write}, 1313 { .name = "PMSELR_EL0", .state = ARM_CP_STATE_AA64, 1314 .opc0 = 3, .opc1 = 3, .crn = 9, .crm = 12, .opc2 = 5, 1315 .access = PL0_RW, .accessfn = pmreg_access_selr, 1316 .fieldoffset = offsetof(CPUARMState, cp15.c9_pmselr), 1317 .writefn = pmselr_write, .raw_writefn = raw_write, }, 1318 { .name = "PMCCNTR", .cp = 15, .crn = 9, .crm = 13, .opc1 = 0, .opc2 = 0, 1319 .access = PL0_RW, .resetvalue = 0, .type = ARM_CP_IO, 1320 .readfn = pmccntr_read, .writefn = pmccntr_write32, 1321 .accessfn = pmreg_access_ccntr }, 1322 { .name = "PMCCNTR_EL0", .state = ARM_CP_STATE_AA64, 1323 .opc0 = 3, .opc1 = 3, .crn = 9, .crm = 13, .opc2 = 0, 1324 .access = PL0_RW, .accessfn = pmreg_access_ccntr, 1325 .type = ARM_CP_IO, 1326 .readfn = pmccntr_read, .writefn = pmccntr_write, }, 1327 #endif 1328 { .name = "PMCCFILTR_EL0", .state = ARM_CP_STATE_AA64, 1329 .opc0 = 3, .opc1 = 3, .crn = 14, .crm = 15, .opc2 = 7, 1330 .writefn = pmccfiltr_write, 1331 .access = PL0_RW, .accessfn = pmreg_access, 1332 .type = ARM_CP_IO, 1333 .fieldoffset = offsetof(CPUARMState, cp15.pmccfiltr_el0), 1334 .resetvalue = 0, }, 1335 { .name = "PMXEVTYPER", .cp = 15, .crn = 9, .crm = 13, .opc1 = 0, .opc2 = 1, 1336 .access = PL0_RW, .type = ARM_CP_NO_RAW, .accessfn = pmreg_access, 1337 .writefn = pmxevtyper_write, .readfn = pmxevtyper_read }, 1338 { .name = "PMXEVTYPER_EL0", .state = ARM_CP_STATE_AA64, 1339 .opc0 = 3, .opc1 = 3, .crn = 9, .crm = 13, .opc2 = 1, 1340 .access = PL0_RW, .type = ARM_CP_NO_RAW, .accessfn = pmreg_access, 1341 .writefn = pmxevtyper_write, .readfn = pmxevtyper_read }, 1342 /* Unimplemented, RAZ/WI. */ 1343 { .name = "PMXEVCNTR", .cp = 15, .crn = 9, .crm = 13, .opc1 = 0, .opc2 = 2, 1344 .access = PL0_RW, .type = ARM_CP_CONST, .resetvalue = 0, 1345 .accessfn = pmreg_access_xevcntr }, 1346 { .name = "PMUSERENR", .cp = 15, .crn = 9, .crm = 14, .opc1 = 0, .opc2 = 0, 1347 .access = PL0_R | PL1_RW, .accessfn = access_tpm, 1348 .fieldoffset = offsetof(CPUARMState, cp15.c9_pmuserenr), 1349 .resetvalue = 0, 1350 .writefn = pmuserenr_write, .raw_writefn = raw_write }, 1351 { .name = "PMUSERENR_EL0", .state = ARM_CP_STATE_AA64, 1352 .opc0 = 3, .opc1 = 3, .crn = 9, .crm = 14, .opc2 = 0, 1353 .access = PL0_R | PL1_RW, .accessfn = access_tpm, .type = ARM_CP_ALIAS, 1354 .fieldoffset = offsetof(CPUARMState, cp15.c9_pmuserenr), 1355 .resetvalue = 0, 1356 .writefn = pmuserenr_write, .raw_writefn = raw_write }, 1357 { .name = "PMINTENSET", .cp = 15, .crn = 9, .crm = 14, .opc1 = 0, .opc2 = 1, 1358 .access = PL1_RW, .accessfn = access_tpm, 1359 .type = ARM_CP_ALIAS, 1360 .fieldoffset = offsetoflow32(CPUARMState, cp15.c9_pminten), 1361 .resetvalue = 0, 1362 .writefn = pmintenset_write, .raw_writefn = raw_write }, 1363 { .name = "PMINTENSET_EL1", .state = ARM_CP_STATE_AA64, 1364 .opc0 = 3, .opc1 = 0, .crn = 9, .crm = 14, .opc2 = 1, 1365 .access = PL1_RW, .accessfn = access_tpm, 1366 .type = ARM_CP_IO, 1367 .fieldoffset = offsetof(CPUARMState, cp15.c9_pminten), 1368 .writefn = pmintenset_write, .raw_writefn = raw_write, 1369 .resetvalue = 0x0 }, 1370 { .name = "PMINTENCLR", .cp = 15, .crn = 9, .crm = 14, .opc1 = 0, .opc2 = 2, 1371 .access = PL1_RW, .accessfn = access_tpm, .type = ARM_CP_ALIAS, 1372 .fieldoffset = offsetof(CPUARMState, cp15.c9_pminten), 1373 .writefn = pmintenclr_write, }, 1374 { .name = "PMINTENCLR_EL1", .state = ARM_CP_STATE_AA64, 1375 .opc0 = 3, .opc1 = 0, .crn = 9, .crm = 14, .opc2 = 2, 1376 .access = PL1_RW, .accessfn = access_tpm, .type = ARM_CP_ALIAS, 1377 .fieldoffset = offsetof(CPUARMState, cp15.c9_pminten), 1378 .writefn = pmintenclr_write }, 1379 { .name = "CCSIDR", .state = ARM_CP_STATE_BOTH, 1380 .opc0 = 3, .crn = 0, .crm = 0, .opc1 = 1, .opc2 = 0, 1381 .access = PL1_R, .readfn = ccsidr_read, .type = ARM_CP_NO_RAW }, 1382 { .name = "CSSELR", .state = ARM_CP_STATE_BOTH, 1383 .opc0 = 3, .crn = 0, .crm = 0, .opc1 = 2, .opc2 = 0, 1384 .access = PL1_RW, .writefn = csselr_write, .resetvalue = 0, 1385 .bank_fieldoffsets = { offsetof(CPUARMState, cp15.csselr_s), 1386 offsetof(CPUARMState, cp15.csselr_ns) } }, 1387 /* Auxiliary ID register: this actually has an IMPDEF value but for now 1388 * just RAZ for all cores: 1389 */ 1390 { .name = "AIDR", .state = ARM_CP_STATE_BOTH, 1391 .opc0 = 3, .opc1 = 1, .crn = 0, .crm = 0, .opc2 = 7, 1392 .access = PL1_R, .type = ARM_CP_CONST, .resetvalue = 0 }, 1393 /* Auxiliary fault status registers: these also are IMPDEF, and we 1394 * choose to RAZ/WI for all cores. 1395 */ 1396 { .name = "AFSR0_EL1", .state = ARM_CP_STATE_BOTH, 1397 .opc0 = 3, .opc1 = 0, .crn = 5, .crm = 1, .opc2 = 0, 1398 .access = PL1_RW, .type = ARM_CP_CONST, .resetvalue = 0 }, 1399 { .name = "AFSR1_EL1", .state = ARM_CP_STATE_BOTH, 1400 .opc0 = 3, .opc1 = 0, .crn = 5, .crm = 1, .opc2 = 1, 1401 .access = PL1_RW, .type = ARM_CP_CONST, .resetvalue = 0 }, 1402 /* MAIR can just read-as-written because we don't implement caches 1403 * and so don't need to care about memory attributes. 1404 */ 1405 { .name = "MAIR_EL1", .state = ARM_CP_STATE_AA64, 1406 .opc0 = 3, .opc1 = 0, .crn = 10, .crm = 2, .opc2 = 0, 1407 .access = PL1_RW, .fieldoffset = offsetof(CPUARMState, cp15.mair_el[1]), 1408 .resetvalue = 0 }, 1409 { .name = "MAIR_EL3", .state = ARM_CP_STATE_AA64, 1410 .opc0 = 3, .opc1 = 6, .crn = 10, .crm = 2, .opc2 = 0, 1411 .access = PL3_RW, .fieldoffset = offsetof(CPUARMState, cp15.mair_el[3]), 1412 .resetvalue = 0 }, 1413 /* For non-long-descriptor page tables these are PRRR and NMRR; 1414 * regardless they still act as reads-as-written for QEMU. 1415 */ 1416 /* MAIR0/1 are defined separately from their 64-bit counterpart which 1417 * allows them to assign the correct fieldoffset based on the endianness 1418 * handled in the field definitions. 1419 */ 1420 { .name = "MAIR0", .state = ARM_CP_STATE_AA32, 1421 .cp = 15, .opc1 = 0, .crn = 10, .crm = 2, .opc2 = 0, .access = PL1_RW, 1422 .bank_fieldoffsets = { offsetof(CPUARMState, cp15.mair0_s), 1423 offsetof(CPUARMState, cp15.mair0_ns) }, 1424 .resetfn = arm_cp_reset_ignore }, 1425 { .name = "MAIR1", .state = ARM_CP_STATE_AA32, 1426 .cp = 15, .opc1 = 0, .crn = 10, .crm = 2, .opc2 = 1, .access = PL1_RW, 1427 .bank_fieldoffsets = { offsetof(CPUARMState, cp15.mair1_s), 1428 offsetof(CPUARMState, cp15.mair1_ns) }, 1429 .resetfn = arm_cp_reset_ignore }, 1430 { .name = "ISR_EL1", .state = ARM_CP_STATE_BOTH, 1431 .opc0 = 3, .opc1 = 0, .crn = 12, .crm = 1, .opc2 = 0, 1432 .type = ARM_CP_NO_RAW, .access = PL1_R, .readfn = isr_read }, 1433 /* 32 bit ITLB invalidates */ 1434 { .name = "ITLBIALL", .cp = 15, .opc1 = 0, .crn = 8, .crm = 5, .opc2 = 0, 1435 .type = ARM_CP_NO_RAW, .access = PL1_W, .writefn = tlbiall_write }, 1436 { .name = "ITLBIMVA", .cp = 15, .opc1 = 0, .crn = 8, .crm = 5, .opc2 = 1, 1437 .type = ARM_CP_NO_RAW, .access = PL1_W, .writefn = tlbimva_write }, 1438 { .name = "ITLBIASID", .cp = 15, .opc1 = 0, .crn = 8, .crm = 5, .opc2 = 2, 1439 .type = ARM_CP_NO_RAW, .access = PL1_W, .writefn = tlbiasid_write }, 1440 /* 32 bit DTLB invalidates */ 1441 { .name = "DTLBIALL", .cp = 15, .opc1 = 0, .crn = 8, .crm = 6, .opc2 = 0, 1442 .type = ARM_CP_NO_RAW, .access = PL1_W, .writefn = tlbiall_write }, 1443 { .name = "DTLBIMVA", .cp = 15, .opc1 = 0, .crn = 8, .crm = 6, .opc2 = 1, 1444 .type = ARM_CP_NO_RAW, .access = PL1_W, .writefn = tlbimva_write }, 1445 { .name = "DTLBIASID", .cp = 15, .opc1 = 0, .crn = 8, .crm = 6, .opc2 = 2, 1446 .type = ARM_CP_NO_RAW, .access = PL1_W, .writefn = tlbiasid_write }, 1447 /* 32 bit TLB invalidates */ 1448 { .name = "TLBIALL", .cp = 15, .opc1 = 0, .crn = 8, .crm = 7, .opc2 = 0, 1449 .type = ARM_CP_NO_RAW, .access = PL1_W, .writefn = tlbiall_write }, 1450 { .name = "TLBIMVA", .cp = 15, .opc1 = 0, .crn = 8, .crm = 7, .opc2 = 1, 1451 .type = ARM_CP_NO_RAW, .access = PL1_W, .writefn = tlbimva_write }, 1452 { .name = "TLBIASID", .cp = 15, .opc1 = 0, .crn = 8, .crm = 7, .opc2 = 2, 1453 .type = ARM_CP_NO_RAW, .access = PL1_W, .writefn = tlbiasid_write }, 1454 { .name = "TLBIMVAA", .cp = 15, .opc1 = 0, .crn = 8, .crm = 7, .opc2 = 3, 1455 .type = ARM_CP_NO_RAW, .access = PL1_W, .writefn = tlbimvaa_write }, 1456 REGINFO_SENTINEL 1457 }; 1458 1459 static const ARMCPRegInfo v7mp_cp_reginfo[] = { 1460 /* 32 bit TLB invalidates, Inner Shareable */ 1461 { .name = "TLBIALLIS", .cp = 15, .opc1 = 0, .crn = 8, .crm = 3, .opc2 = 0, 1462 .type = ARM_CP_NO_RAW, .access = PL1_W, .writefn = tlbiall_is_write }, 1463 { .name = "TLBIMVAIS", .cp = 15, .opc1 = 0, .crn = 8, .crm = 3, .opc2 = 1, 1464 .type = ARM_CP_NO_RAW, .access = PL1_W, .writefn = tlbimva_is_write }, 1465 { .name = "TLBIASIDIS", .cp = 15, .opc1 = 0, .crn = 8, .crm = 3, .opc2 = 2, 1466 .type = ARM_CP_NO_RAW, .access = PL1_W, 1467 .writefn = tlbiasid_is_write }, 1468 { .name = "TLBIMVAAIS", .cp = 15, .opc1 = 0, .crn = 8, .crm = 3, .opc2 = 3, 1469 .type = ARM_CP_NO_RAW, .access = PL1_W, 1470 .writefn = tlbimvaa_is_write }, 1471 REGINFO_SENTINEL 1472 }; 1473 1474 static void teecr_write(CPUARMState *env, const ARMCPRegInfo *ri, 1475 uint64_t value) 1476 { 1477 value &= 1; 1478 env->teecr = value; 1479 } 1480 1481 static CPAccessResult teehbr_access(CPUARMState *env, const ARMCPRegInfo *ri, 1482 bool isread) 1483 { 1484 if (arm_current_el(env) == 0 && (env->teecr & 1)) { 1485 return CP_ACCESS_TRAP; 1486 } 1487 return CP_ACCESS_OK; 1488 } 1489 1490 static const ARMCPRegInfo t2ee_cp_reginfo[] = { 1491 { .name = "TEECR", .cp = 14, .crn = 0, .crm = 0, .opc1 = 6, .opc2 = 0, 1492 .access = PL1_RW, .fieldoffset = offsetof(CPUARMState, teecr), 1493 .resetvalue = 0, 1494 .writefn = teecr_write }, 1495 { .name = "TEEHBR", .cp = 14, .crn = 1, .crm = 0, .opc1 = 6, .opc2 = 0, 1496 .access = PL0_RW, .fieldoffset = offsetof(CPUARMState, teehbr), 1497 .accessfn = teehbr_access, .resetvalue = 0 }, 1498 REGINFO_SENTINEL 1499 }; 1500 1501 static const ARMCPRegInfo v6k_cp_reginfo[] = { 1502 { .name = "TPIDR_EL0", .state = ARM_CP_STATE_AA64, 1503 .opc0 = 3, .opc1 = 3, .opc2 = 2, .crn = 13, .crm = 0, 1504 .access = PL0_RW, 1505 .fieldoffset = offsetof(CPUARMState, cp15.tpidr_el[0]), .resetvalue = 0 }, 1506 { .name = "TPIDRURW", .cp = 15, .crn = 13, .crm = 0, .opc1 = 0, .opc2 = 2, 1507 .access = PL0_RW, 1508 .bank_fieldoffsets = { offsetoflow32(CPUARMState, cp15.tpidrurw_s), 1509 offsetoflow32(CPUARMState, cp15.tpidrurw_ns) }, 1510 .resetfn = arm_cp_reset_ignore }, 1511 { .name = "TPIDRRO_EL0", .state = ARM_CP_STATE_AA64, 1512 .opc0 = 3, .opc1 = 3, .opc2 = 3, .crn = 13, .crm = 0, 1513 .access = PL0_R|PL1_W, 1514 .fieldoffset = offsetof(CPUARMState, cp15.tpidrro_el[0]), 1515 .resetvalue = 0}, 1516 { .name = "TPIDRURO", .cp = 15, .crn = 13, .crm = 0, .opc1 = 0, .opc2 = 3, 1517 .access = PL0_R|PL1_W, 1518 .bank_fieldoffsets = { offsetoflow32(CPUARMState, cp15.tpidruro_s), 1519 offsetoflow32(CPUARMState, cp15.tpidruro_ns) }, 1520 .resetfn = arm_cp_reset_ignore }, 1521 { .name = "TPIDR_EL1", .state = ARM_CP_STATE_AA64, 1522 .opc0 = 3, .opc1 = 0, .opc2 = 4, .crn = 13, .crm = 0, 1523 .access = PL1_RW, 1524 .fieldoffset = offsetof(CPUARMState, cp15.tpidr_el[1]), .resetvalue = 0 }, 1525 { .name = "TPIDRPRW", .opc1 = 0, .cp = 15, .crn = 13, .crm = 0, .opc2 = 4, 1526 .access = PL1_RW, 1527 .bank_fieldoffsets = { offsetoflow32(CPUARMState, cp15.tpidrprw_s), 1528 offsetoflow32(CPUARMState, cp15.tpidrprw_ns) }, 1529 .resetvalue = 0 }, 1530 REGINFO_SENTINEL 1531 }; 1532 1533 #ifndef CONFIG_USER_ONLY 1534 1535 static CPAccessResult gt_cntfrq_access(CPUARMState *env, const ARMCPRegInfo *ri, 1536 bool isread) 1537 { 1538 /* CNTFRQ: not visible from PL0 if both PL0PCTEN and PL0VCTEN are zero. 1539 * Writable only at the highest implemented exception level. 1540 */ 1541 int el = arm_current_el(env); 1542 1543 switch (el) { 1544 case 0: 1545 if (!extract32(env->cp15.c14_cntkctl, 0, 2)) { 1546 return CP_ACCESS_TRAP; 1547 } 1548 break; 1549 case 1: 1550 if (!isread && ri->state == ARM_CP_STATE_AA32 && 1551 arm_is_secure_below_el3(env)) { 1552 /* Accesses from 32-bit Secure EL1 UNDEF (*not* trap to EL3!) */ 1553 return CP_ACCESS_TRAP_UNCATEGORIZED; 1554 } 1555 break; 1556 case 2: 1557 case 3: 1558 break; 1559 } 1560 1561 if (!isread && el < arm_highest_el(env)) { 1562 return CP_ACCESS_TRAP_UNCATEGORIZED; 1563 } 1564 1565 return CP_ACCESS_OK; 1566 } 1567 1568 static CPAccessResult gt_counter_access(CPUARMState *env, int timeridx, 1569 bool isread) 1570 { 1571 unsigned int cur_el = arm_current_el(env); 1572 bool secure = arm_is_secure(env); 1573 1574 /* CNT[PV]CT: not visible from PL0 if ELO[PV]CTEN is zero */ 1575 if (cur_el == 0 && 1576 !extract32(env->cp15.c14_cntkctl, timeridx, 1)) { 1577 return CP_ACCESS_TRAP; 1578 } 1579 1580 if (arm_feature(env, ARM_FEATURE_EL2) && 1581 timeridx == GTIMER_PHYS && !secure && cur_el < 2 && 1582 !extract32(env->cp15.cnthctl_el2, 0, 1)) { 1583 return CP_ACCESS_TRAP_EL2; 1584 } 1585 return CP_ACCESS_OK; 1586 } 1587 1588 static CPAccessResult gt_timer_access(CPUARMState *env, int timeridx, 1589 bool isread) 1590 { 1591 unsigned int cur_el = arm_current_el(env); 1592 bool secure = arm_is_secure(env); 1593 1594 /* CNT[PV]_CVAL, CNT[PV]_CTL, CNT[PV]_TVAL: not visible from PL0 if 1595 * EL0[PV]TEN is zero. 1596 */ 1597 if (cur_el == 0 && 1598 !extract32(env->cp15.c14_cntkctl, 9 - timeridx, 1)) { 1599 return CP_ACCESS_TRAP; 1600 } 1601 1602 if (arm_feature(env, ARM_FEATURE_EL2) && 1603 timeridx == GTIMER_PHYS && !secure && cur_el < 2 && 1604 !extract32(env->cp15.cnthctl_el2, 1, 1)) { 1605 return CP_ACCESS_TRAP_EL2; 1606 } 1607 return CP_ACCESS_OK; 1608 } 1609 1610 static CPAccessResult gt_pct_access(CPUARMState *env, 1611 const ARMCPRegInfo *ri, 1612 bool isread) 1613 { 1614 return gt_counter_access(env, GTIMER_PHYS, isread); 1615 } 1616 1617 static CPAccessResult gt_vct_access(CPUARMState *env, 1618 const ARMCPRegInfo *ri, 1619 bool isread) 1620 { 1621 return gt_counter_access(env, GTIMER_VIRT, isread); 1622 } 1623 1624 static CPAccessResult gt_ptimer_access(CPUARMState *env, const ARMCPRegInfo *ri, 1625 bool isread) 1626 { 1627 return gt_timer_access(env, GTIMER_PHYS, isread); 1628 } 1629 1630 static CPAccessResult gt_vtimer_access(CPUARMState *env, const ARMCPRegInfo *ri, 1631 bool isread) 1632 { 1633 return gt_timer_access(env, GTIMER_VIRT, isread); 1634 } 1635 1636 static CPAccessResult gt_stimer_access(CPUARMState *env, 1637 const ARMCPRegInfo *ri, 1638 bool isread) 1639 { 1640 /* The AArch64 register view of the secure physical timer is 1641 * always accessible from EL3, and configurably accessible from 1642 * Secure EL1. 1643 */ 1644 switch (arm_current_el(env)) { 1645 case 1: 1646 if (!arm_is_secure(env)) { 1647 return CP_ACCESS_TRAP; 1648 } 1649 if (!(env->cp15.scr_el3 & SCR_ST)) { 1650 return CP_ACCESS_TRAP_EL3; 1651 } 1652 return CP_ACCESS_OK; 1653 case 0: 1654 case 2: 1655 return CP_ACCESS_TRAP; 1656 case 3: 1657 return CP_ACCESS_OK; 1658 default: 1659 g_assert_not_reached(); 1660 } 1661 } 1662 1663 static uint64_t gt_get_countervalue(CPUARMState *env) 1664 { 1665 return qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL) / GTIMER_SCALE; 1666 } 1667 1668 static void gt_recalc_timer(ARMCPU *cpu, int timeridx) 1669 { 1670 ARMGenericTimer *gt = &cpu->env.cp15.c14_timer[timeridx]; 1671 1672 if (gt->ctl & 1) { 1673 /* Timer enabled: calculate and set current ISTATUS, irq, and 1674 * reset timer to when ISTATUS next has to change 1675 */ 1676 uint64_t offset = timeridx == GTIMER_VIRT ? 1677 cpu->env.cp15.cntvoff_el2 : 0; 1678 uint64_t count = gt_get_countervalue(&cpu->env); 1679 /* Note that this must be unsigned 64 bit arithmetic: */ 1680 int istatus = count - offset >= gt->cval; 1681 uint64_t nexttick; 1682 int irqstate; 1683 1684 gt->ctl = deposit32(gt->ctl, 2, 1, istatus); 1685 1686 irqstate = (istatus && !(gt->ctl & 2)); 1687 qemu_set_irq(cpu->gt_timer_outputs[timeridx], irqstate); 1688 1689 if (istatus) { 1690 /* Next transition is when count rolls back over to zero */ 1691 nexttick = UINT64_MAX; 1692 } else { 1693 /* Next transition is when we hit cval */ 1694 nexttick = gt->cval + offset; 1695 } 1696 /* Note that the desired next expiry time might be beyond the 1697 * signed-64-bit range of a QEMUTimer -- in this case we just 1698 * set the timer for as far in the future as possible. When the 1699 * timer expires we will reset the timer for any remaining period. 1700 */ 1701 if (nexttick > INT64_MAX / GTIMER_SCALE) { 1702 nexttick = INT64_MAX / GTIMER_SCALE; 1703 } 1704 timer_mod(cpu->gt_timer[timeridx], nexttick); 1705 trace_arm_gt_recalc(timeridx, irqstate, nexttick); 1706 } else { 1707 /* Timer disabled: ISTATUS and timer output always clear */ 1708 gt->ctl &= ~4; 1709 qemu_set_irq(cpu->gt_timer_outputs[timeridx], 0); 1710 timer_del(cpu->gt_timer[timeridx]); 1711 trace_arm_gt_recalc_disabled(timeridx); 1712 } 1713 } 1714 1715 static void gt_timer_reset(CPUARMState *env, const ARMCPRegInfo *ri, 1716 int timeridx) 1717 { 1718 ARMCPU *cpu = arm_env_get_cpu(env); 1719 1720 timer_del(cpu->gt_timer[timeridx]); 1721 } 1722 1723 static uint64_t gt_cnt_read(CPUARMState *env, const ARMCPRegInfo *ri) 1724 { 1725 return gt_get_countervalue(env); 1726 } 1727 1728 static uint64_t gt_virt_cnt_read(CPUARMState *env, const ARMCPRegInfo *ri) 1729 { 1730 return gt_get_countervalue(env) - env->cp15.cntvoff_el2; 1731 } 1732 1733 static void gt_cval_write(CPUARMState *env, const ARMCPRegInfo *ri, 1734 int timeridx, 1735 uint64_t value) 1736 { 1737 trace_arm_gt_cval_write(timeridx, value); 1738 env->cp15.c14_timer[timeridx].cval = value; 1739 gt_recalc_timer(arm_env_get_cpu(env), timeridx); 1740 } 1741 1742 static uint64_t gt_tval_read(CPUARMState *env, const ARMCPRegInfo *ri, 1743 int timeridx) 1744 { 1745 uint64_t offset = timeridx == GTIMER_VIRT ? env->cp15.cntvoff_el2 : 0; 1746 1747 return (uint32_t)(env->cp15.c14_timer[timeridx].cval - 1748 (gt_get_countervalue(env) - offset)); 1749 } 1750 1751 static void gt_tval_write(CPUARMState *env, const ARMCPRegInfo *ri, 1752 int timeridx, 1753 uint64_t value) 1754 { 1755 uint64_t offset = timeridx == GTIMER_VIRT ? env->cp15.cntvoff_el2 : 0; 1756 1757 trace_arm_gt_tval_write(timeridx, value); 1758 env->cp15.c14_timer[timeridx].cval = gt_get_countervalue(env) - offset + 1759 sextract64(value, 0, 32); 1760 gt_recalc_timer(arm_env_get_cpu(env), timeridx); 1761 } 1762 1763 static void gt_ctl_write(CPUARMState *env, const ARMCPRegInfo *ri, 1764 int timeridx, 1765 uint64_t value) 1766 { 1767 ARMCPU *cpu = arm_env_get_cpu(env); 1768 uint32_t oldval = env->cp15.c14_timer[timeridx].ctl; 1769 1770 trace_arm_gt_ctl_write(timeridx, value); 1771 env->cp15.c14_timer[timeridx].ctl = deposit64(oldval, 0, 2, value); 1772 if ((oldval ^ value) & 1) { 1773 /* Enable toggled */ 1774 gt_recalc_timer(cpu, timeridx); 1775 } else if ((oldval ^ value) & 2) { 1776 /* IMASK toggled: don't need to recalculate, 1777 * just set the interrupt line based on ISTATUS 1778 */ 1779 int irqstate = (oldval & 4) && !(value & 2); 1780 1781 trace_arm_gt_imask_toggle(timeridx, irqstate); 1782 qemu_set_irq(cpu->gt_timer_outputs[timeridx], irqstate); 1783 } 1784 } 1785 1786 static void gt_phys_timer_reset(CPUARMState *env, const ARMCPRegInfo *ri) 1787 { 1788 gt_timer_reset(env, ri, GTIMER_PHYS); 1789 } 1790 1791 static void gt_phys_cval_write(CPUARMState *env, const ARMCPRegInfo *ri, 1792 uint64_t value) 1793 { 1794 gt_cval_write(env, ri, GTIMER_PHYS, value); 1795 } 1796 1797 static uint64_t gt_phys_tval_read(CPUARMState *env, const ARMCPRegInfo *ri) 1798 { 1799 return gt_tval_read(env, ri, GTIMER_PHYS); 1800 } 1801 1802 static void gt_phys_tval_write(CPUARMState *env, const ARMCPRegInfo *ri, 1803 uint64_t value) 1804 { 1805 gt_tval_write(env, ri, GTIMER_PHYS, value); 1806 } 1807 1808 static void gt_phys_ctl_write(CPUARMState *env, const ARMCPRegInfo *ri, 1809 uint64_t value) 1810 { 1811 gt_ctl_write(env, ri, GTIMER_PHYS, value); 1812 } 1813 1814 static void gt_virt_timer_reset(CPUARMState *env, const ARMCPRegInfo *ri) 1815 { 1816 gt_timer_reset(env, ri, GTIMER_VIRT); 1817 } 1818 1819 static void gt_virt_cval_write(CPUARMState *env, const ARMCPRegInfo *ri, 1820 uint64_t value) 1821 { 1822 gt_cval_write(env, ri, GTIMER_VIRT, value); 1823 } 1824 1825 static uint64_t gt_virt_tval_read(CPUARMState *env, const ARMCPRegInfo *ri) 1826 { 1827 return gt_tval_read(env, ri, GTIMER_VIRT); 1828 } 1829 1830 static void gt_virt_tval_write(CPUARMState *env, const ARMCPRegInfo *ri, 1831 uint64_t value) 1832 { 1833 gt_tval_write(env, ri, GTIMER_VIRT, value); 1834 } 1835 1836 static void gt_virt_ctl_write(CPUARMState *env, const ARMCPRegInfo *ri, 1837 uint64_t value) 1838 { 1839 gt_ctl_write(env, ri, GTIMER_VIRT, value); 1840 } 1841 1842 static void gt_cntvoff_write(CPUARMState *env, const ARMCPRegInfo *ri, 1843 uint64_t value) 1844 { 1845 ARMCPU *cpu = arm_env_get_cpu(env); 1846 1847 trace_arm_gt_cntvoff_write(value); 1848 raw_write(env, ri, value); 1849 gt_recalc_timer(cpu, GTIMER_VIRT); 1850 } 1851 1852 static void gt_hyp_timer_reset(CPUARMState *env, const ARMCPRegInfo *ri) 1853 { 1854 gt_timer_reset(env, ri, GTIMER_HYP); 1855 } 1856 1857 static void gt_hyp_cval_write(CPUARMState *env, const ARMCPRegInfo *ri, 1858 uint64_t value) 1859 { 1860 gt_cval_write(env, ri, GTIMER_HYP, value); 1861 } 1862 1863 static uint64_t gt_hyp_tval_read(CPUARMState *env, const ARMCPRegInfo *ri) 1864 { 1865 return gt_tval_read(env, ri, GTIMER_HYP); 1866 } 1867 1868 static void gt_hyp_tval_write(CPUARMState *env, const ARMCPRegInfo *ri, 1869 uint64_t value) 1870 { 1871 gt_tval_write(env, ri, GTIMER_HYP, value); 1872 } 1873 1874 static void gt_hyp_ctl_write(CPUARMState *env, const ARMCPRegInfo *ri, 1875 uint64_t value) 1876 { 1877 gt_ctl_write(env, ri, GTIMER_HYP, value); 1878 } 1879 1880 static void gt_sec_timer_reset(CPUARMState *env, const ARMCPRegInfo *ri) 1881 { 1882 gt_timer_reset(env, ri, GTIMER_SEC); 1883 } 1884 1885 static void gt_sec_cval_write(CPUARMState *env, const ARMCPRegInfo *ri, 1886 uint64_t value) 1887 { 1888 gt_cval_write(env, ri, GTIMER_SEC, value); 1889 } 1890 1891 static uint64_t gt_sec_tval_read(CPUARMState *env, const ARMCPRegInfo *ri) 1892 { 1893 return gt_tval_read(env, ri, GTIMER_SEC); 1894 } 1895 1896 static void gt_sec_tval_write(CPUARMState *env, const ARMCPRegInfo *ri, 1897 uint64_t value) 1898 { 1899 gt_tval_write(env, ri, GTIMER_SEC, value); 1900 } 1901 1902 static void gt_sec_ctl_write(CPUARMState *env, const ARMCPRegInfo *ri, 1903 uint64_t value) 1904 { 1905 gt_ctl_write(env, ri, GTIMER_SEC, value); 1906 } 1907 1908 void arm_gt_ptimer_cb(void *opaque) 1909 { 1910 ARMCPU *cpu = opaque; 1911 1912 gt_recalc_timer(cpu, GTIMER_PHYS); 1913 } 1914 1915 void arm_gt_vtimer_cb(void *opaque) 1916 { 1917 ARMCPU *cpu = opaque; 1918 1919 gt_recalc_timer(cpu, GTIMER_VIRT); 1920 } 1921 1922 void arm_gt_htimer_cb(void *opaque) 1923 { 1924 ARMCPU *cpu = opaque; 1925 1926 gt_recalc_timer(cpu, GTIMER_HYP); 1927 } 1928 1929 void arm_gt_stimer_cb(void *opaque) 1930 { 1931 ARMCPU *cpu = opaque; 1932 1933 gt_recalc_timer(cpu, GTIMER_SEC); 1934 } 1935 1936 static const ARMCPRegInfo generic_timer_cp_reginfo[] = { 1937 /* Note that CNTFRQ is purely reads-as-written for the benefit 1938 * of software; writing it doesn't actually change the timer frequency. 1939 * Our reset value matches the fixed frequency we implement the timer at. 1940 */ 1941 { .name = "CNTFRQ", .cp = 15, .crn = 14, .crm = 0, .opc1 = 0, .opc2 = 0, 1942 .type = ARM_CP_ALIAS, 1943 .access = PL1_RW | PL0_R, .accessfn = gt_cntfrq_access, 1944 .fieldoffset = offsetoflow32(CPUARMState, cp15.c14_cntfrq), 1945 }, 1946 { .name = "CNTFRQ_EL0", .state = ARM_CP_STATE_AA64, 1947 .opc0 = 3, .opc1 = 3, .crn = 14, .crm = 0, .opc2 = 0, 1948 .access = PL1_RW | PL0_R, .accessfn = gt_cntfrq_access, 1949 .fieldoffset = offsetof(CPUARMState, cp15.c14_cntfrq), 1950 .resetvalue = (1000 * 1000 * 1000) / GTIMER_SCALE, 1951 }, 1952 /* overall control: mostly access permissions */ 1953 { .name = "CNTKCTL", .state = ARM_CP_STATE_BOTH, 1954 .opc0 = 3, .opc1 = 0, .crn = 14, .crm = 1, .opc2 = 0, 1955 .access = PL1_RW, 1956 .fieldoffset = offsetof(CPUARMState, cp15.c14_cntkctl), 1957 .resetvalue = 0, 1958 }, 1959 /* per-timer control */ 1960 { .name = "CNTP_CTL", .cp = 15, .crn = 14, .crm = 2, .opc1 = 0, .opc2 = 1, 1961 .secure = ARM_CP_SECSTATE_NS, 1962 .type = ARM_CP_IO | ARM_CP_ALIAS, .access = PL1_RW | PL0_R, 1963 .accessfn = gt_ptimer_access, 1964 .fieldoffset = offsetoflow32(CPUARMState, 1965 cp15.c14_timer[GTIMER_PHYS].ctl), 1966 .writefn = gt_phys_ctl_write, .raw_writefn = raw_write, 1967 }, 1968 { .name = "CNTP_CTL(S)", 1969 .cp = 15, .crn = 14, .crm = 2, .opc1 = 0, .opc2 = 1, 1970 .secure = ARM_CP_SECSTATE_S, 1971 .type = ARM_CP_IO | ARM_CP_ALIAS, .access = PL1_RW | PL0_R, 1972 .accessfn = gt_ptimer_access, 1973 .fieldoffset = offsetoflow32(CPUARMState, 1974 cp15.c14_timer[GTIMER_SEC].ctl), 1975 .writefn = gt_sec_ctl_write, .raw_writefn = raw_write, 1976 }, 1977 { .name = "CNTP_CTL_EL0", .state = ARM_CP_STATE_AA64, 1978 .opc0 = 3, .opc1 = 3, .crn = 14, .crm = 2, .opc2 = 1, 1979 .type = ARM_CP_IO, .access = PL1_RW | PL0_R, 1980 .accessfn = gt_ptimer_access, 1981 .fieldoffset = offsetof(CPUARMState, cp15.c14_timer[GTIMER_PHYS].ctl), 1982 .resetvalue = 0, 1983 .writefn = gt_phys_ctl_write, .raw_writefn = raw_write, 1984 }, 1985 { .name = "CNTV_CTL", .cp = 15, .crn = 14, .crm = 3, .opc1 = 0, .opc2 = 1, 1986 .type = ARM_CP_IO | ARM_CP_ALIAS, .access = PL1_RW | PL0_R, 1987 .accessfn = gt_vtimer_access, 1988 .fieldoffset = offsetoflow32(CPUARMState, 1989 cp15.c14_timer[GTIMER_VIRT].ctl), 1990 .writefn = gt_virt_ctl_write, .raw_writefn = raw_write, 1991 }, 1992 { .name = "CNTV_CTL_EL0", .state = ARM_CP_STATE_AA64, 1993 .opc0 = 3, .opc1 = 3, .crn = 14, .crm = 3, .opc2 = 1, 1994 .type = ARM_CP_IO, .access = PL1_RW | PL0_R, 1995 .accessfn = gt_vtimer_access, 1996 .fieldoffset = offsetof(CPUARMState, cp15.c14_timer[GTIMER_VIRT].ctl), 1997 .resetvalue = 0, 1998 .writefn = gt_virt_ctl_write, .raw_writefn = raw_write, 1999 }, 2000 /* TimerValue views: a 32 bit downcounting view of the underlying state */ 2001 { .name = "CNTP_TVAL", .cp = 15, .crn = 14, .crm = 2, .opc1 = 0, .opc2 = 0, 2002 .secure = ARM_CP_SECSTATE_NS, 2003 .type = ARM_CP_NO_RAW | ARM_CP_IO, .access = PL1_RW | PL0_R, 2004 .accessfn = gt_ptimer_access, 2005 .readfn = gt_phys_tval_read, .writefn = gt_phys_tval_write, 2006 }, 2007 { .name = "CNTP_TVAL(S)", 2008 .cp = 15, .crn = 14, .crm = 2, .opc1 = 0, .opc2 = 0, 2009 .secure = ARM_CP_SECSTATE_S, 2010 .type = ARM_CP_NO_RAW | ARM_CP_IO, .access = PL1_RW | PL0_R, 2011 .accessfn = gt_ptimer_access, 2012 .readfn = gt_sec_tval_read, .writefn = gt_sec_tval_write, 2013 }, 2014 { .name = "CNTP_TVAL_EL0", .state = ARM_CP_STATE_AA64, 2015 .opc0 = 3, .opc1 = 3, .crn = 14, .crm = 2, .opc2 = 0, 2016 .type = ARM_CP_NO_RAW | ARM_CP_IO, .access = PL1_RW | PL0_R, 2017 .accessfn = gt_ptimer_access, .resetfn = gt_phys_timer_reset, 2018 .readfn = gt_phys_tval_read, .writefn = gt_phys_tval_write, 2019 }, 2020 { .name = "CNTV_TVAL", .cp = 15, .crn = 14, .crm = 3, .opc1 = 0, .opc2 = 0, 2021 .type = ARM_CP_NO_RAW | ARM_CP_IO, .access = PL1_RW | PL0_R, 2022 .accessfn = gt_vtimer_access, 2023 .readfn = gt_virt_tval_read, .writefn = gt_virt_tval_write, 2024 }, 2025 { .name = "CNTV_TVAL_EL0", .state = ARM_CP_STATE_AA64, 2026 .opc0 = 3, .opc1 = 3, .crn = 14, .crm = 3, .opc2 = 0, 2027 .type = ARM_CP_NO_RAW | ARM_CP_IO, .access = PL1_RW | PL0_R, 2028 .accessfn = gt_vtimer_access, .resetfn = gt_virt_timer_reset, 2029 .readfn = gt_virt_tval_read, .writefn = gt_virt_tval_write, 2030 }, 2031 /* The counter itself */ 2032 { .name = "CNTPCT", .cp = 15, .crm = 14, .opc1 = 0, 2033 .access = PL0_R, .type = ARM_CP_64BIT | ARM_CP_NO_RAW | ARM_CP_IO, 2034 .accessfn = gt_pct_access, 2035 .readfn = gt_cnt_read, .resetfn = arm_cp_reset_ignore, 2036 }, 2037 { .name = "CNTPCT_EL0", .state = ARM_CP_STATE_AA64, 2038 .opc0 = 3, .opc1 = 3, .crn = 14, .crm = 0, .opc2 = 1, 2039 .access = PL0_R, .type = ARM_CP_NO_RAW | ARM_CP_IO, 2040 .accessfn = gt_pct_access, .readfn = gt_cnt_read, 2041 }, 2042 { .name = "CNTVCT", .cp = 15, .crm = 14, .opc1 = 1, 2043 .access = PL0_R, .type = ARM_CP_64BIT | ARM_CP_NO_RAW | ARM_CP_IO, 2044 .accessfn = gt_vct_access, 2045 .readfn = gt_virt_cnt_read, .resetfn = arm_cp_reset_ignore, 2046 }, 2047 { .name = "CNTVCT_EL0", .state = ARM_CP_STATE_AA64, 2048 .opc0 = 3, .opc1 = 3, .crn = 14, .crm = 0, .opc2 = 2, 2049 .access = PL0_R, .type = ARM_CP_NO_RAW | ARM_CP_IO, 2050 .accessfn = gt_vct_access, .readfn = gt_virt_cnt_read, 2051 }, 2052 /* Comparison value, indicating when the timer goes off */ 2053 { .name = "CNTP_CVAL", .cp = 15, .crm = 14, .opc1 = 2, 2054 .secure = ARM_CP_SECSTATE_NS, 2055 .access = PL1_RW | PL0_R, 2056 .type = ARM_CP_64BIT | ARM_CP_IO | ARM_CP_ALIAS, 2057 .fieldoffset = offsetof(CPUARMState, cp15.c14_timer[GTIMER_PHYS].cval), 2058 .accessfn = gt_ptimer_access, 2059 .writefn = gt_phys_cval_write, .raw_writefn = raw_write, 2060 }, 2061 { .name = "CNTP_CVAL(S)", .cp = 15, .crm = 14, .opc1 = 2, 2062 .secure = ARM_CP_SECSTATE_S, 2063 .access = PL1_RW | PL0_R, 2064 .type = ARM_CP_64BIT | ARM_CP_IO | ARM_CP_ALIAS, 2065 .fieldoffset = offsetof(CPUARMState, cp15.c14_timer[GTIMER_SEC].cval), 2066 .accessfn = gt_ptimer_access, 2067 .writefn = gt_sec_cval_write, .raw_writefn = raw_write, 2068 }, 2069 { .name = "CNTP_CVAL_EL0", .state = ARM_CP_STATE_AA64, 2070 .opc0 = 3, .opc1 = 3, .crn = 14, .crm = 2, .opc2 = 2, 2071 .access = PL1_RW | PL0_R, 2072 .type = ARM_CP_IO, 2073 .fieldoffset = offsetof(CPUARMState, cp15.c14_timer[GTIMER_PHYS].cval), 2074 .resetvalue = 0, .accessfn = gt_ptimer_access, 2075 .writefn = gt_phys_cval_write, .raw_writefn = raw_write, 2076 }, 2077 { .name = "CNTV_CVAL", .cp = 15, .crm = 14, .opc1 = 3, 2078 .access = PL1_RW | PL0_R, 2079 .type = ARM_CP_64BIT | ARM_CP_IO | ARM_CP_ALIAS, 2080 .fieldoffset = offsetof(CPUARMState, cp15.c14_timer[GTIMER_VIRT].cval), 2081 .accessfn = gt_vtimer_access, 2082 .writefn = gt_virt_cval_write, .raw_writefn = raw_write, 2083 }, 2084 { .name = "CNTV_CVAL_EL0", .state = ARM_CP_STATE_AA64, 2085 .opc0 = 3, .opc1 = 3, .crn = 14, .crm = 3, .opc2 = 2, 2086 .access = PL1_RW | PL0_R, 2087 .type = ARM_CP_IO, 2088 .fieldoffset = offsetof(CPUARMState, cp15.c14_timer[GTIMER_VIRT].cval), 2089 .resetvalue = 0, .accessfn = gt_vtimer_access, 2090 .writefn = gt_virt_cval_write, .raw_writefn = raw_write, 2091 }, 2092 /* Secure timer -- this is actually restricted to only EL3 2093 * and configurably Secure-EL1 via the accessfn. 2094 */ 2095 { .name = "CNTPS_TVAL_EL1", .state = ARM_CP_STATE_AA64, 2096 .opc0 = 3, .opc1 = 7, .crn = 14, .crm = 2, .opc2 = 0, 2097 .type = ARM_CP_NO_RAW | ARM_CP_IO, .access = PL1_RW, 2098 .accessfn = gt_stimer_access, 2099 .readfn = gt_sec_tval_read, 2100 .writefn = gt_sec_tval_write, 2101 .resetfn = gt_sec_timer_reset, 2102 }, 2103 { .name = "CNTPS_CTL_EL1", .state = ARM_CP_STATE_AA64, 2104 .opc0 = 3, .opc1 = 7, .crn = 14, .crm = 2, .opc2 = 1, 2105 .type = ARM_CP_IO, .access = PL1_RW, 2106 .accessfn = gt_stimer_access, 2107 .fieldoffset = offsetof(CPUARMState, cp15.c14_timer[GTIMER_SEC].ctl), 2108 .resetvalue = 0, 2109 .writefn = gt_sec_ctl_write, .raw_writefn = raw_write, 2110 }, 2111 { .name = "CNTPS_CVAL_EL1", .state = ARM_CP_STATE_AA64, 2112 .opc0 = 3, .opc1 = 7, .crn = 14, .crm = 2, .opc2 = 2, 2113 .type = ARM_CP_IO, .access = PL1_RW, 2114 .accessfn = gt_stimer_access, 2115 .fieldoffset = offsetof(CPUARMState, cp15.c14_timer[GTIMER_SEC].cval), 2116 .writefn = gt_sec_cval_write, .raw_writefn = raw_write, 2117 }, 2118 REGINFO_SENTINEL 2119 }; 2120 2121 #else 2122 /* In user-mode none of the generic timer registers are accessible, 2123 * and their implementation depends on QEMU_CLOCK_VIRTUAL and qdev gpio outputs, 2124 * so instead just don't register any of them. 2125 */ 2126 static const ARMCPRegInfo generic_timer_cp_reginfo[] = { 2127 REGINFO_SENTINEL 2128 }; 2129 2130 #endif 2131 2132 static void par_write(CPUARMState *env, const ARMCPRegInfo *ri, uint64_t value) 2133 { 2134 if (arm_feature(env, ARM_FEATURE_LPAE)) { 2135 raw_write(env, ri, value); 2136 } else if (arm_feature(env, ARM_FEATURE_V7)) { 2137 raw_write(env, ri, value & 0xfffff6ff); 2138 } else { 2139 raw_write(env, ri, value & 0xfffff1ff); 2140 } 2141 } 2142 2143 #ifndef CONFIG_USER_ONLY 2144 /* get_phys_addr() isn't present for user-mode-only targets */ 2145 2146 static CPAccessResult ats_access(CPUARMState *env, const ARMCPRegInfo *ri, 2147 bool isread) 2148 { 2149 if (ri->opc2 & 4) { 2150 /* The ATS12NSO* operations must trap to EL3 if executed in 2151 * Secure EL1 (which can only happen if EL3 is AArch64). 2152 * They are simply UNDEF if executed from NS EL1. 2153 * They function normally from EL2 or EL3. 2154 */ 2155 if (arm_current_el(env) == 1) { 2156 if (arm_is_secure_below_el3(env)) { 2157 return CP_ACCESS_TRAP_UNCATEGORIZED_EL3; 2158 } 2159 return CP_ACCESS_TRAP_UNCATEGORIZED; 2160 } 2161 } 2162 return CP_ACCESS_OK; 2163 } 2164 2165 static uint64_t do_ats_write(CPUARMState *env, uint64_t value, 2166 MMUAccessType access_type, ARMMMUIdx mmu_idx) 2167 { 2168 hwaddr phys_addr; 2169 target_ulong page_size; 2170 int prot; 2171 bool ret; 2172 uint64_t par64; 2173 bool format64 = false; 2174 MemTxAttrs attrs = {}; 2175 ARMMMUFaultInfo fi = {}; 2176 ARMCacheAttrs cacheattrs = {}; 2177 2178 ret = get_phys_addr(env, value, access_type, mmu_idx, &phys_addr, &attrs, 2179 &prot, &page_size, &fi, &cacheattrs); 2180 2181 if (is_a64(env)) { 2182 format64 = true; 2183 } else if (arm_feature(env, ARM_FEATURE_LPAE)) { 2184 /* 2185 * ATS1Cxx: 2186 * * TTBCR.EAE determines whether the result is returned using the 2187 * 32-bit or the 64-bit PAR format 2188 * * Instructions executed in Hyp mode always use the 64bit format 2189 * 2190 * ATS1S2NSOxx uses the 64bit format if any of the following is true: 2191 * * The Non-secure TTBCR.EAE bit is set to 1 2192 * * The implementation includes EL2, and the value of HCR.VM is 1 2193 * 2194 * ATS1Hx always uses the 64bit format (not supported yet). 2195 */ 2196 format64 = arm_s1_regime_using_lpae_format(env, mmu_idx); 2197 2198 if (arm_feature(env, ARM_FEATURE_EL2)) { 2199 if (mmu_idx == ARMMMUIdx_S12NSE0 || mmu_idx == ARMMMUIdx_S12NSE1) { 2200 format64 |= env->cp15.hcr_el2 & HCR_VM; 2201 } else { 2202 format64 |= arm_current_el(env) == 2; 2203 } 2204 } 2205 } 2206 2207 if (format64) { 2208 /* Create a 64-bit PAR */ 2209 par64 = (1 << 11); /* LPAE bit always set */ 2210 if (!ret) { 2211 par64 |= phys_addr & ~0xfffULL; 2212 if (!attrs.secure) { 2213 par64 |= (1 << 9); /* NS */ 2214 } 2215 par64 |= (uint64_t)cacheattrs.attrs << 56; /* ATTR */ 2216 par64 |= cacheattrs.shareability << 7; /* SH */ 2217 } else { 2218 uint32_t fsr = arm_fi_to_lfsc(&fi); 2219 2220 par64 |= 1; /* F */ 2221 par64 |= (fsr & 0x3f) << 1; /* FS */ 2222 /* Note that S2WLK and FSTAGE are always zero, because we don't 2223 * implement virtualization and therefore there can't be a stage 2 2224 * fault. 2225 */ 2226 } 2227 } else { 2228 /* fsr is a DFSR/IFSR value for the short descriptor 2229 * translation table format (with WnR always clear). 2230 * Convert it to a 32-bit PAR. 2231 */ 2232 if (!ret) { 2233 /* We do not set any attribute bits in the PAR */ 2234 if (page_size == (1 << 24) 2235 && arm_feature(env, ARM_FEATURE_V7)) { 2236 par64 = (phys_addr & 0xff000000) | (1 << 1); 2237 } else { 2238 par64 = phys_addr & 0xfffff000; 2239 } 2240 if (!attrs.secure) { 2241 par64 |= (1 << 9); /* NS */ 2242 } 2243 } else { 2244 uint32_t fsr = arm_fi_to_sfsc(&fi); 2245 2246 par64 = ((fsr & (1 << 10)) >> 5) | ((fsr & (1 << 12)) >> 6) | 2247 ((fsr & 0xf) << 1) | 1; 2248 } 2249 } 2250 return par64; 2251 } 2252 2253 static void ats_write(CPUARMState *env, const ARMCPRegInfo *ri, uint64_t value) 2254 { 2255 MMUAccessType access_type = ri->opc2 & 1 ? MMU_DATA_STORE : MMU_DATA_LOAD; 2256 uint64_t par64; 2257 ARMMMUIdx mmu_idx; 2258 int el = arm_current_el(env); 2259 bool secure = arm_is_secure_below_el3(env); 2260 2261 switch (ri->opc2 & 6) { 2262 case 0: 2263 /* stage 1 current state PL1: ATS1CPR, ATS1CPW */ 2264 switch (el) { 2265 case 3: 2266 mmu_idx = ARMMMUIdx_S1E3; 2267 break; 2268 case 2: 2269 mmu_idx = ARMMMUIdx_S1NSE1; 2270 break; 2271 case 1: 2272 mmu_idx = secure ? ARMMMUIdx_S1SE1 : ARMMMUIdx_S1NSE1; 2273 break; 2274 default: 2275 g_assert_not_reached(); 2276 } 2277 break; 2278 case 2: 2279 /* stage 1 current state PL0: ATS1CUR, ATS1CUW */ 2280 switch (el) { 2281 case 3: 2282 mmu_idx = ARMMMUIdx_S1SE0; 2283 break; 2284 case 2: 2285 mmu_idx = ARMMMUIdx_S1NSE0; 2286 break; 2287 case 1: 2288 mmu_idx = secure ? ARMMMUIdx_S1SE0 : ARMMMUIdx_S1NSE0; 2289 break; 2290 default: 2291 g_assert_not_reached(); 2292 } 2293 break; 2294 case 4: 2295 /* stage 1+2 NonSecure PL1: ATS12NSOPR, ATS12NSOPW */ 2296 mmu_idx = ARMMMUIdx_S12NSE1; 2297 break; 2298 case 6: 2299 /* stage 1+2 NonSecure PL0: ATS12NSOUR, ATS12NSOUW */ 2300 mmu_idx = ARMMMUIdx_S12NSE0; 2301 break; 2302 default: 2303 g_assert_not_reached(); 2304 } 2305 2306 par64 = do_ats_write(env, value, access_type, mmu_idx); 2307 2308 A32_BANKED_CURRENT_REG_SET(env, par, par64); 2309 } 2310 2311 static void ats1h_write(CPUARMState *env, const ARMCPRegInfo *ri, 2312 uint64_t value) 2313 { 2314 MMUAccessType access_type = ri->opc2 & 1 ? MMU_DATA_STORE : MMU_DATA_LOAD; 2315 uint64_t par64; 2316 2317 par64 = do_ats_write(env, value, access_type, ARMMMUIdx_S2NS); 2318 2319 A32_BANKED_CURRENT_REG_SET(env, par, par64); 2320 } 2321 2322 static CPAccessResult at_s1e2_access(CPUARMState *env, const ARMCPRegInfo *ri, 2323 bool isread) 2324 { 2325 if (arm_current_el(env) == 3 && !(env->cp15.scr_el3 & SCR_NS)) { 2326 return CP_ACCESS_TRAP; 2327 } 2328 return CP_ACCESS_OK; 2329 } 2330 2331 static void ats_write64(CPUARMState *env, const ARMCPRegInfo *ri, 2332 uint64_t value) 2333 { 2334 MMUAccessType access_type = ri->opc2 & 1 ? MMU_DATA_STORE : MMU_DATA_LOAD; 2335 ARMMMUIdx mmu_idx; 2336 int secure = arm_is_secure_below_el3(env); 2337 2338 switch (ri->opc2 & 6) { 2339 case 0: 2340 switch (ri->opc1) { 2341 case 0: /* AT S1E1R, AT S1E1W */ 2342 mmu_idx = secure ? ARMMMUIdx_S1SE1 : ARMMMUIdx_S1NSE1; 2343 break; 2344 case 4: /* AT S1E2R, AT S1E2W */ 2345 mmu_idx = ARMMMUIdx_S1E2; 2346 break; 2347 case 6: /* AT S1E3R, AT S1E3W */ 2348 mmu_idx = ARMMMUIdx_S1E3; 2349 break; 2350 default: 2351 g_assert_not_reached(); 2352 } 2353 break; 2354 case 2: /* AT S1E0R, AT S1E0W */ 2355 mmu_idx = secure ? ARMMMUIdx_S1SE0 : ARMMMUIdx_S1NSE0; 2356 break; 2357 case 4: /* AT S12E1R, AT S12E1W */ 2358 mmu_idx = secure ? ARMMMUIdx_S1SE1 : ARMMMUIdx_S12NSE1; 2359 break; 2360 case 6: /* AT S12E0R, AT S12E0W */ 2361 mmu_idx = secure ? ARMMMUIdx_S1SE0 : ARMMMUIdx_S12NSE0; 2362 break; 2363 default: 2364 g_assert_not_reached(); 2365 } 2366 2367 env->cp15.par_el[1] = do_ats_write(env, value, access_type, mmu_idx); 2368 } 2369 #endif 2370 2371 static const ARMCPRegInfo vapa_cp_reginfo[] = { 2372 { .name = "PAR", .cp = 15, .crn = 7, .crm = 4, .opc1 = 0, .opc2 = 0, 2373 .access = PL1_RW, .resetvalue = 0, 2374 .bank_fieldoffsets = { offsetoflow32(CPUARMState, cp15.par_s), 2375 offsetoflow32(CPUARMState, cp15.par_ns) }, 2376 .writefn = par_write }, 2377 #ifndef CONFIG_USER_ONLY 2378 /* This underdecoding is safe because the reginfo is NO_RAW. */ 2379 { .name = "ATS", .cp = 15, .crn = 7, .crm = 8, .opc1 = 0, .opc2 = CP_ANY, 2380 .access = PL1_W, .accessfn = ats_access, 2381 .writefn = ats_write, .type = ARM_CP_NO_RAW }, 2382 #endif 2383 REGINFO_SENTINEL 2384 }; 2385 2386 /* Return basic MPU access permission bits. */ 2387 static uint32_t simple_mpu_ap_bits(uint32_t val) 2388 { 2389 uint32_t ret; 2390 uint32_t mask; 2391 int i; 2392 ret = 0; 2393 mask = 3; 2394 for (i = 0; i < 16; i += 2) { 2395 ret |= (val >> i) & mask; 2396 mask <<= 2; 2397 } 2398 return ret; 2399 } 2400 2401 /* Pad basic MPU access permission bits to extended format. */ 2402 static uint32_t extended_mpu_ap_bits(uint32_t val) 2403 { 2404 uint32_t ret; 2405 uint32_t mask; 2406 int i; 2407 ret = 0; 2408 mask = 3; 2409 for (i = 0; i < 16; i += 2) { 2410 ret |= (val & mask) << i; 2411 mask <<= 2; 2412 } 2413 return ret; 2414 } 2415 2416 static void pmsav5_data_ap_write(CPUARMState *env, const ARMCPRegInfo *ri, 2417 uint64_t value) 2418 { 2419 env->cp15.pmsav5_data_ap = extended_mpu_ap_bits(value); 2420 } 2421 2422 static uint64_t pmsav5_data_ap_read(CPUARMState *env, const ARMCPRegInfo *ri) 2423 { 2424 return simple_mpu_ap_bits(env->cp15.pmsav5_data_ap); 2425 } 2426 2427 static void pmsav5_insn_ap_write(CPUARMState *env, const ARMCPRegInfo *ri, 2428 uint64_t value) 2429 { 2430 env->cp15.pmsav5_insn_ap = extended_mpu_ap_bits(value); 2431 } 2432 2433 static uint64_t pmsav5_insn_ap_read(CPUARMState *env, const ARMCPRegInfo *ri) 2434 { 2435 return simple_mpu_ap_bits(env->cp15.pmsav5_insn_ap); 2436 } 2437 2438 static uint64_t pmsav7_read(CPUARMState *env, const ARMCPRegInfo *ri) 2439 { 2440 uint32_t *u32p = *(uint32_t **)raw_ptr(env, ri); 2441 2442 if (!u32p) { 2443 return 0; 2444 } 2445 2446 u32p += env->pmsav7.rnr[M_REG_NS]; 2447 return *u32p; 2448 } 2449 2450 static void pmsav7_write(CPUARMState *env, const ARMCPRegInfo *ri, 2451 uint64_t value) 2452 { 2453 ARMCPU *cpu = arm_env_get_cpu(env); 2454 uint32_t *u32p = *(uint32_t **)raw_ptr(env, ri); 2455 2456 if (!u32p) { 2457 return; 2458 } 2459 2460 u32p += env->pmsav7.rnr[M_REG_NS]; 2461 tlb_flush(CPU(cpu)); /* Mappings may have changed - purge! */ 2462 *u32p = value; 2463 } 2464 2465 static void pmsav7_rgnr_write(CPUARMState *env, const ARMCPRegInfo *ri, 2466 uint64_t value) 2467 { 2468 ARMCPU *cpu = arm_env_get_cpu(env); 2469 uint32_t nrgs = cpu->pmsav7_dregion; 2470 2471 if (value >= nrgs) { 2472 qemu_log_mask(LOG_GUEST_ERROR, 2473 "PMSAv7 RGNR write >= # supported regions, %" PRIu32 2474 " > %" PRIu32 "\n", (uint32_t)value, nrgs); 2475 return; 2476 } 2477 2478 raw_write(env, ri, value); 2479 } 2480 2481 static const ARMCPRegInfo pmsav7_cp_reginfo[] = { 2482 /* Reset for all these registers is handled in arm_cpu_reset(), 2483 * because the PMSAv7 is also used by M-profile CPUs, which do 2484 * not register cpregs but still need the state to be reset. 2485 */ 2486 { .name = "DRBAR", .cp = 15, .crn = 6, .opc1 = 0, .crm = 1, .opc2 = 0, 2487 .access = PL1_RW, .type = ARM_CP_NO_RAW, 2488 .fieldoffset = offsetof(CPUARMState, pmsav7.drbar), 2489 .readfn = pmsav7_read, .writefn = pmsav7_write, 2490 .resetfn = arm_cp_reset_ignore }, 2491 { .name = "DRSR", .cp = 15, .crn = 6, .opc1 = 0, .crm = 1, .opc2 = 2, 2492 .access = PL1_RW, .type = ARM_CP_NO_RAW, 2493 .fieldoffset = offsetof(CPUARMState, pmsav7.drsr), 2494 .readfn = pmsav7_read, .writefn = pmsav7_write, 2495 .resetfn = arm_cp_reset_ignore }, 2496 { .name = "DRACR", .cp = 15, .crn = 6, .opc1 = 0, .crm = 1, .opc2 = 4, 2497 .access = PL1_RW, .type = ARM_CP_NO_RAW, 2498 .fieldoffset = offsetof(CPUARMState, pmsav7.dracr), 2499 .readfn = pmsav7_read, .writefn = pmsav7_write, 2500 .resetfn = arm_cp_reset_ignore }, 2501 { .name = "RGNR", .cp = 15, .crn = 6, .opc1 = 0, .crm = 2, .opc2 = 0, 2502 .access = PL1_RW, 2503 .fieldoffset = offsetof(CPUARMState, pmsav7.rnr[M_REG_NS]), 2504 .writefn = pmsav7_rgnr_write, 2505 .resetfn = arm_cp_reset_ignore }, 2506 REGINFO_SENTINEL 2507 }; 2508 2509 static const ARMCPRegInfo pmsav5_cp_reginfo[] = { 2510 { .name = "DATA_AP", .cp = 15, .crn = 5, .crm = 0, .opc1 = 0, .opc2 = 0, 2511 .access = PL1_RW, .type = ARM_CP_ALIAS, 2512 .fieldoffset = offsetof(CPUARMState, cp15.pmsav5_data_ap), 2513 .readfn = pmsav5_data_ap_read, .writefn = pmsav5_data_ap_write, }, 2514 { .name = "INSN_AP", .cp = 15, .crn = 5, .crm = 0, .opc1 = 0, .opc2 = 1, 2515 .access = PL1_RW, .type = ARM_CP_ALIAS, 2516 .fieldoffset = offsetof(CPUARMState, cp15.pmsav5_insn_ap), 2517 .readfn = pmsav5_insn_ap_read, .writefn = pmsav5_insn_ap_write, }, 2518 { .name = "DATA_EXT_AP", .cp = 15, .crn = 5, .crm = 0, .opc1 = 0, .opc2 = 2, 2519 .access = PL1_RW, 2520 .fieldoffset = offsetof(CPUARMState, cp15.pmsav5_data_ap), 2521 .resetvalue = 0, }, 2522 { .name = "INSN_EXT_AP", .cp = 15, .crn = 5, .crm = 0, .opc1 = 0, .opc2 = 3, 2523 .access = PL1_RW, 2524 .fieldoffset = offsetof(CPUARMState, cp15.pmsav5_insn_ap), 2525 .resetvalue = 0, }, 2526 { .name = "DCACHE_CFG", .cp = 15, .crn = 2, .crm = 0, .opc1 = 0, .opc2 = 0, 2527 .access = PL1_RW, 2528 .fieldoffset = offsetof(CPUARMState, cp15.c2_data), .resetvalue = 0, }, 2529 { .name = "ICACHE_CFG", .cp = 15, .crn = 2, .crm = 0, .opc1 = 0, .opc2 = 1, 2530 .access = PL1_RW, 2531 .fieldoffset = offsetof(CPUARMState, cp15.c2_insn), .resetvalue = 0, }, 2532 /* Protection region base and size registers */ 2533 { .name = "946_PRBS0", .cp = 15, .crn = 6, .crm = 0, .opc1 = 0, 2534 .opc2 = CP_ANY, .access = PL1_RW, .resetvalue = 0, 2535 .fieldoffset = offsetof(CPUARMState, cp15.c6_region[0]) }, 2536 { .name = "946_PRBS1", .cp = 15, .crn = 6, .crm = 1, .opc1 = 0, 2537 .opc2 = CP_ANY, .access = PL1_RW, .resetvalue = 0, 2538 .fieldoffset = offsetof(CPUARMState, cp15.c6_region[1]) }, 2539 { .name = "946_PRBS2", .cp = 15, .crn = 6, .crm = 2, .opc1 = 0, 2540 .opc2 = CP_ANY, .access = PL1_RW, .resetvalue = 0, 2541 .fieldoffset = offsetof(CPUARMState, cp15.c6_region[2]) }, 2542 { .name = "946_PRBS3", .cp = 15, .crn = 6, .crm = 3, .opc1 = 0, 2543 .opc2 = CP_ANY, .access = PL1_RW, .resetvalue = 0, 2544 .fieldoffset = offsetof(CPUARMState, cp15.c6_region[3]) }, 2545 { .name = "946_PRBS4", .cp = 15, .crn = 6, .crm = 4, .opc1 = 0, 2546 .opc2 = CP_ANY, .access = PL1_RW, .resetvalue = 0, 2547 .fieldoffset = offsetof(CPUARMState, cp15.c6_region[4]) }, 2548 { .name = "946_PRBS5", .cp = 15, .crn = 6, .crm = 5, .opc1 = 0, 2549 .opc2 = CP_ANY, .access = PL1_RW, .resetvalue = 0, 2550 .fieldoffset = offsetof(CPUARMState, cp15.c6_region[5]) }, 2551 { .name = "946_PRBS6", .cp = 15, .crn = 6, .crm = 6, .opc1 = 0, 2552 .opc2 = CP_ANY, .access = PL1_RW, .resetvalue = 0, 2553 .fieldoffset = offsetof(CPUARMState, cp15.c6_region[6]) }, 2554 { .name = "946_PRBS7", .cp = 15, .crn = 6, .crm = 7, .opc1 = 0, 2555 .opc2 = CP_ANY, .access = PL1_RW, .resetvalue = 0, 2556 .fieldoffset = offsetof(CPUARMState, cp15.c6_region[7]) }, 2557 REGINFO_SENTINEL 2558 }; 2559 2560 static void vmsa_ttbcr_raw_write(CPUARMState *env, const ARMCPRegInfo *ri, 2561 uint64_t value) 2562 { 2563 TCR *tcr = raw_ptr(env, ri); 2564 int maskshift = extract32(value, 0, 3); 2565 2566 if (!arm_feature(env, ARM_FEATURE_V8)) { 2567 if (arm_feature(env, ARM_FEATURE_LPAE) && (value & TTBCR_EAE)) { 2568 /* Pre ARMv8 bits [21:19], [15:14] and [6:3] are UNK/SBZP when 2569 * using Long-desciptor translation table format */ 2570 value &= ~((7 << 19) | (3 << 14) | (0xf << 3)); 2571 } else if (arm_feature(env, ARM_FEATURE_EL3)) { 2572 /* In an implementation that includes the Security Extensions 2573 * TTBCR has additional fields PD0 [4] and PD1 [5] for 2574 * Short-descriptor translation table format. 2575 */ 2576 value &= TTBCR_PD1 | TTBCR_PD0 | TTBCR_N; 2577 } else { 2578 value &= TTBCR_N; 2579 } 2580 } 2581 2582 /* Update the masks corresponding to the TCR bank being written 2583 * Note that we always calculate mask and base_mask, but 2584 * they are only used for short-descriptor tables (ie if EAE is 0); 2585 * for long-descriptor tables the TCR fields are used differently 2586 * and the mask and base_mask values are meaningless. 2587 */ 2588 tcr->raw_tcr = value; 2589 tcr->mask = ~(((uint32_t)0xffffffffu) >> maskshift); 2590 tcr->base_mask = ~((uint32_t)0x3fffu >> maskshift); 2591 } 2592 2593 static void vmsa_ttbcr_write(CPUARMState *env, const ARMCPRegInfo *ri, 2594 uint64_t value) 2595 { 2596 ARMCPU *cpu = arm_env_get_cpu(env); 2597 2598 if (arm_feature(env, ARM_FEATURE_LPAE)) { 2599 /* With LPAE the TTBCR could result in a change of ASID 2600 * via the TTBCR.A1 bit, so do a TLB flush. 2601 */ 2602 tlb_flush(CPU(cpu)); 2603 } 2604 vmsa_ttbcr_raw_write(env, ri, value); 2605 } 2606 2607 static void vmsa_ttbcr_reset(CPUARMState *env, const ARMCPRegInfo *ri) 2608 { 2609 TCR *tcr = raw_ptr(env, ri); 2610 2611 /* Reset both the TCR as well as the masks corresponding to the bank of 2612 * the TCR being reset. 2613 */ 2614 tcr->raw_tcr = 0; 2615 tcr->mask = 0; 2616 tcr->base_mask = 0xffffc000u; 2617 } 2618 2619 static void vmsa_tcr_el1_write(CPUARMState *env, const ARMCPRegInfo *ri, 2620 uint64_t value) 2621 { 2622 ARMCPU *cpu = arm_env_get_cpu(env); 2623 TCR *tcr = raw_ptr(env, ri); 2624 2625 /* For AArch64 the A1 bit could result in a change of ASID, so TLB flush. */ 2626 tlb_flush(CPU(cpu)); 2627 tcr->raw_tcr = value; 2628 } 2629 2630 static void vmsa_ttbr_write(CPUARMState *env, const ARMCPRegInfo *ri, 2631 uint64_t value) 2632 { 2633 /* 64 bit accesses to the TTBRs can change the ASID and so we 2634 * must flush the TLB. 2635 */ 2636 if (cpreg_field_is_64bit(ri)) { 2637 ARMCPU *cpu = arm_env_get_cpu(env); 2638 2639 tlb_flush(CPU(cpu)); 2640 } 2641 raw_write(env, ri, value); 2642 } 2643 2644 static void vttbr_write(CPUARMState *env, const ARMCPRegInfo *ri, 2645 uint64_t value) 2646 { 2647 ARMCPU *cpu = arm_env_get_cpu(env); 2648 CPUState *cs = CPU(cpu); 2649 2650 /* Accesses to VTTBR may change the VMID so we must flush the TLB. */ 2651 if (raw_read(env, ri) != value) { 2652 tlb_flush_by_mmuidx(cs, 2653 ARMMMUIdxBit_S12NSE1 | 2654 ARMMMUIdxBit_S12NSE0 | 2655 ARMMMUIdxBit_S2NS); 2656 raw_write(env, ri, value); 2657 } 2658 } 2659 2660 static const ARMCPRegInfo vmsa_pmsa_cp_reginfo[] = { 2661 { .name = "DFSR", .cp = 15, .crn = 5, .crm = 0, .opc1 = 0, .opc2 = 0, 2662 .access = PL1_RW, .type = ARM_CP_ALIAS, 2663 .bank_fieldoffsets = { offsetoflow32(CPUARMState, cp15.dfsr_s), 2664 offsetoflow32(CPUARMState, cp15.dfsr_ns) }, }, 2665 { .name = "IFSR", .cp = 15, .crn = 5, .crm = 0, .opc1 = 0, .opc2 = 1, 2666 .access = PL1_RW, .resetvalue = 0, 2667 .bank_fieldoffsets = { offsetoflow32(CPUARMState, cp15.ifsr_s), 2668 offsetoflow32(CPUARMState, cp15.ifsr_ns) } }, 2669 { .name = "DFAR", .cp = 15, .opc1 = 0, .crn = 6, .crm = 0, .opc2 = 0, 2670 .access = PL1_RW, .resetvalue = 0, 2671 .bank_fieldoffsets = { offsetof(CPUARMState, cp15.dfar_s), 2672 offsetof(CPUARMState, cp15.dfar_ns) } }, 2673 { .name = "FAR_EL1", .state = ARM_CP_STATE_AA64, 2674 .opc0 = 3, .crn = 6, .crm = 0, .opc1 = 0, .opc2 = 0, 2675 .access = PL1_RW, .fieldoffset = offsetof(CPUARMState, cp15.far_el[1]), 2676 .resetvalue = 0, }, 2677 REGINFO_SENTINEL 2678 }; 2679 2680 static const ARMCPRegInfo vmsa_cp_reginfo[] = { 2681 { .name = "ESR_EL1", .state = ARM_CP_STATE_AA64, 2682 .opc0 = 3, .crn = 5, .crm = 2, .opc1 = 0, .opc2 = 0, 2683 .access = PL1_RW, 2684 .fieldoffset = offsetof(CPUARMState, cp15.esr_el[1]), .resetvalue = 0, }, 2685 { .name = "TTBR0_EL1", .state = ARM_CP_STATE_BOTH, 2686 .opc0 = 3, .opc1 = 0, .crn = 2, .crm = 0, .opc2 = 0, 2687 .access = PL1_RW, .writefn = vmsa_ttbr_write, .resetvalue = 0, 2688 .bank_fieldoffsets = { offsetof(CPUARMState, cp15.ttbr0_s), 2689 offsetof(CPUARMState, cp15.ttbr0_ns) } }, 2690 { .name = "TTBR1_EL1", .state = ARM_CP_STATE_BOTH, 2691 .opc0 = 3, .opc1 = 0, .crn = 2, .crm = 0, .opc2 = 1, 2692 .access = PL1_RW, .writefn = vmsa_ttbr_write, .resetvalue = 0, 2693 .bank_fieldoffsets = { offsetof(CPUARMState, cp15.ttbr1_s), 2694 offsetof(CPUARMState, cp15.ttbr1_ns) } }, 2695 { .name = "TCR_EL1", .state = ARM_CP_STATE_AA64, 2696 .opc0 = 3, .crn = 2, .crm = 0, .opc1 = 0, .opc2 = 2, 2697 .access = PL1_RW, .writefn = vmsa_tcr_el1_write, 2698 .resetfn = vmsa_ttbcr_reset, .raw_writefn = raw_write, 2699 .fieldoffset = offsetof(CPUARMState, cp15.tcr_el[1]) }, 2700 { .name = "TTBCR", .cp = 15, .crn = 2, .crm = 0, .opc1 = 0, .opc2 = 2, 2701 .access = PL1_RW, .type = ARM_CP_ALIAS, .writefn = vmsa_ttbcr_write, 2702 .raw_writefn = vmsa_ttbcr_raw_write, 2703 .bank_fieldoffsets = { offsetoflow32(CPUARMState, cp15.tcr_el[3]), 2704 offsetoflow32(CPUARMState, cp15.tcr_el[1])} }, 2705 REGINFO_SENTINEL 2706 }; 2707 2708 static void omap_ticonfig_write(CPUARMState *env, const ARMCPRegInfo *ri, 2709 uint64_t value) 2710 { 2711 env->cp15.c15_ticonfig = value & 0xe7; 2712 /* The OS_TYPE bit in this register changes the reported CPUID! */ 2713 env->cp15.c0_cpuid = (value & (1 << 5)) ? 2714 ARM_CPUID_TI915T : ARM_CPUID_TI925T; 2715 } 2716 2717 static void omap_threadid_write(CPUARMState *env, const ARMCPRegInfo *ri, 2718 uint64_t value) 2719 { 2720 env->cp15.c15_threadid = value & 0xffff; 2721 } 2722 2723 static void omap_wfi_write(CPUARMState *env, const ARMCPRegInfo *ri, 2724 uint64_t value) 2725 { 2726 /* Wait-for-interrupt (deprecated) */ 2727 cpu_interrupt(CPU(arm_env_get_cpu(env)), CPU_INTERRUPT_HALT); 2728 } 2729 2730 static void omap_cachemaint_write(CPUARMState *env, const ARMCPRegInfo *ri, 2731 uint64_t value) 2732 { 2733 /* On OMAP there are registers indicating the max/min index of dcache lines 2734 * containing a dirty line; cache flush operations have to reset these. 2735 */ 2736 env->cp15.c15_i_max = 0x000; 2737 env->cp15.c15_i_min = 0xff0; 2738 } 2739 2740 static const ARMCPRegInfo omap_cp_reginfo[] = { 2741 { .name = "DFSR", .cp = 15, .crn = 5, .crm = CP_ANY, 2742 .opc1 = CP_ANY, .opc2 = CP_ANY, .access = PL1_RW, .type = ARM_CP_OVERRIDE, 2743 .fieldoffset = offsetoflow32(CPUARMState, cp15.esr_el[1]), 2744 .resetvalue = 0, }, 2745 { .name = "", .cp = 15, .crn = 15, .crm = 0, .opc1 = 0, .opc2 = 0, 2746 .access = PL1_RW, .type = ARM_CP_NOP }, 2747 { .name = "TICONFIG", .cp = 15, .crn = 15, .crm = 1, .opc1 = 0, .opc2 = 0, 2748 .access = PL1_RW, 2749 .fieldoffset = offsetof(CPUARMState, cp15.c15_ticonfig), .resetvalue = 0, 2750 .writefn = omap_ticonfig_write }, 2751 { .name = "IMAX", .cp = 15, .crn = 15, .crm = 2, .opc1 = 0, .opc2 = 0, 2752 .access = PL1_RW, 2753 .fieldoffset = offsetof(CPUARMState, cp15.c15_i_max), .resetvalue = 0, }, 2754 { .name = "IMIN", .cp = 15, .crn = 15, .crm = 3, .opc1 = 0, .opc2 = 0, 2755 .access = PL1_RW, .resetvalue = 0xff0, 2756 .fieldoffset = offsetof(CPUARMState, cp15.c15_i_min) }, 2757 { .name = "THREADID", .cp = 15, .crn = 15, .crm = 4, .opc1 = 0, .opc2 = 0, 2758 .access = PL1_RW, 2759 .fieldoffset = offsetof(CPUARMState, cp15.c15_threadid), .resetvalue = 0, 2760 .writefn = omap_threadid_write }, 2761 { .name = "TI925T_STATUS", .cp = 15, .crn = 15, 2762 .crm = 8, .opc1 = 0, .opc2 = 0, .access = PL1_RW, 2763 .type = ARM_CP_NO_RAW, 2764 .readfn = arm_cp_read_zero, .writefn = omap_wfi_write, }, 2765 /* TODO: Peripheral port remap register: 2766 * On OMAP2 mcr p15, 0, rn, c15, c2, 4 sets up the interrupt controller 2767 * base address at $rn & ~0xfff and map size of 0x200 << ($rn & 0xfff), 2768 * when MMU is off. 2769 */ 2770 { .name = "OMAP_CACHEMAINT", .cp = 15, .crn = 7, .crm = CP_ANY, 2771 .opc1 = 0, .opc2 = CP_ANY, .access = PL1_W, 2772 .type = ARM_CP_OVERRIDE | ARM_CP_NO_RAW, 2773 .writefn = omap_cachemaint_write }, 2774 { .name = "C9", .cp = 15, .crn = 9, 2775 .crm = CP_ANY, .opc1 = CP_ANY, .opc2 = CP_ANY, .access = PL1_RW, 2776 .type = ARM_CP_CONST | ARM_CP_OVERRIDE, .resetvalue = 0 }, 2777 REGINFO_SENTINEL 2778 }; 2779 2780 static void xscale_cpar_write(CPUARMState *env, const ARMCPRegInfo *ri, 2781 uint64_t value) 2782 { 2783 env->cp15.c15_cpar = value & 0x3fff; 2784 } 2785 2786 static const ARMCPRegInfo xscale_cp_reginfo[] = { 2787 { .name = "XSCALE_CPAR", 2788 .cp = 15, .crn = 15, .crm = 1, .opc1 = 0, .opc2 = 0, .access = PL1_RW, 2789 .fieldoffset = offsetof(CPUARMState, cp15.c15_cpar), .resetvalue = 0, 2790 .writefn = xscale_cpar_write, }, 2791 { .name = "XSCALE_AUXCR", 2792 .cp = 15, .crn = 1, .crm = 0, .opc1 = 0, .opc2 = 1, .access = PL1_RW, 2793 .fieldoffset = offsetof(CPUARMState, cp15.c1_xscaleauxcr), 2794 .resetvalue = 0, }, 2795 /* XScale specific cache-lockdown: since we have no cache we NOP these 2796 * and hope the guest does not really rely on cache behaviour. 2797 */ 2798 { .name = "XSCALE_LOCK_ICACHE_LINE", 2799 .cp = 15, .opc1 = 0, .crn = 9, .crm = 1, .opc2 = 0, 2800 .access = PL1_W, .type = ARM_CP_NOP }, 2801 { .name = "XSCALE_UNLOCK_ICACHE", 2802 .cp = 15, .opc1 = 0, .crn = 9, .crm = 1, .opc2 = 1, 2803 .access = PL1_W, .type = ARM_CP_NOP }, 2804 { .name = "XSCALE_DCACHE_LOCK", 2805 .cp = 15, .opc1 = 0, .crn = 9, .crm = 2, .opc2 = 0, 2806 .access = PL1_RW, .type = ARM_CP_NOP }, 2807 { .name = "XSCALE_UNLOCK_DCACHE", 2808 .cp = 15, .opc1 = 0, .crn = 9, .crm = 2, .opc2 = 1, 2809 .access = PL1_W, .type = ARM_CP_NOP }, 2810 REGINFO_SENTINEL 2811 }; 2812 2813 static const ARMCPRegInfo dummy_c15_cp_reginfo[] = { 2814 /* RAZ/WI the whole crn=15 space, when we don't have a more specific 2815 * implementation of this implementation-defined space. 2816 * Ideally this should eventually disappear in favour of actually 2817 * implementing the correct behaviour for all cores. 2818 */ 2819 { .name = "C15_IMPDEF", .cp = 15, .crn = 15, 2820 .crm = CP_ANY, .opc1 = CP_ANY, .opc2 = CP_ANY, 2821 .access = PL1_RW, 2822 .type = ARM_CP_CONST | ARM_CP_NO_RAW | ARM_CP_OVERRIDE, 2823 .resetvalue = 0 }, 2824 REGINFO_SENTINEL 2825 }; 2826 2827 static const ARMCPRegInfo cache_dirty_status_cp_reginfo[] = { 2828 /* Cache status: RAZ because we have no cache so it's always clean */ 2829 { .name = "CDSR", .cp = 15, .crn = 7, .crm = 10, .opc1 = 0, .opc2 = 6, 2830 .access = PL1_R, .type = ARM_CP_CONST | ARM_CP_NO_RAW, 2831 .resetvalue = 0 }, 2832 REGINFO_SENTINEL 2833 }; 2834 2835 static const ARMCPRegInfo cache_block_ops_cp_reginfo[] = { 2836 /* We never have a a block transfer operation in progress */ 2837 { .name = "BXSR", .cp = 15, .crn = 7, .crm = 12, .opc1 = 0, .opc2 = 4, 2838 .access = PL0_R, .type = ARM_CP_CONST | ARM_CP_NO_RAW, 2839 .resetvalue = 0 }, 2840 /* The cache ops themselves: these all NOP for QEMU */ 2841 { .name = "IICR", .cp = 15, .crm = 5, .opc1 = 0, 2842 .access = PL1_W, .type = ARM_CP_NOP|ARM_CP_64BIT }, 2843 { .name = "IDCR", .cp = 15, .crm = 6, .opc1 = 0, 2844 .access = PL1_W, .type = ARM_CP_NOP|ARM_CP_64BIT }, 2845 { .name = "CDCR", .cp = 15, .crm = 12, .opc1 = 0, 2846 .access = PL0_W, .type = ARM_CP_NOP|ARM_CP_64BIT }, 2847 { .name = "PIR", .cp = 15, .crm = 12, .opc1 = 1, 2848 .access = PL0_W, .type = ARM_CP_NOP|ARM_CP_64BIT }, 2849 { .name = "PDR", .cp = 15, .crm = 12, .opc1 = 2, 2850 .access = PL0_W, .type = ARM_CP_NOP|ARM_CP_64BIT }, 2851 { .name = "CIDCR", .cp = 15, .crm = 14, .opc1 = 0, 2852 .access = PL1_W, .type = ARM_CP_NOP|ARM_CP_64BIT }, 2853 REGINFO_SENTINEL 2854 }; 2855 2856 static const ARMCPRegInfo cache_test_clean_cp_reginfo[] = { 2857 /* The cache test-and-clean instructions always return (1 << 30) 2858 * to indicate that there are no dirty cache lines. 2859 */ 2860 { .name = "TC_DCACHE", .cp = 15, .crn = 7, .crm = 10, .opc1 = 0, .opc2 = 3, 2861 .access = PL0_R, .type = ARM_CP_CONST | ARM_CP_NO_RAW, 2862 .resetvalue = (1 << 30) }, 2863 { .name = "TCI_DCACHE", .cp = 15, .crn = 7, .crm = 14, .opc1 = 0, .opc2 = 3, 2864 .access = PL0_R, .type = ARM_CP_CONST | ARM_CP_NO_RAW, 2865 .resetvalue = (1 << 30) }, 2866 REGINFO_SENTINEL 2867 }; 2868 2869 static const ARMCPRegInfo strongarm_cp_reginfo[] = { 2870 /* Ignore ReadBuffer accesses */ 2871 { .name = "C9_READBUFFER", .cp = 15, .crn = 9, 2872 .crm = CP_ANY, .opc1 = CP_ANY, .opc2 = CP_ANY, 2873 .access = PL1_RW, .resetvalue = 0, 2874 .type = ARM_CP_CONST | ARM_CP_OVERRIDE | ARM_CP_NO_RAW }, 2875 REGINFO_SENTINEL 2876 }; 2877 2878 static uint64_t midr_read(CPUARMState *env, const ARMCPRegInfo *ri) 2879 { 2880 ARMCPU *cpu = arm_env_get_cpu(env); 2881 unsigned int cur_el = arm_current_el(env); 2882 bool secure = arm_is_secure(env); 2883 2884 if (arm_feature(&cpu->env, ARM_FEATURE_EL2) && !secure && cur_el == 1) { 2885 return env->cp15.vpidr_el2; 2886 } 2887 return raw_read(env, ri); 2888 } 2889 2890 static uint64_t mpidr_read_val(CPUARMState *env) 2891 { 2892 ARMCPU *cpu = ARM_CPU(arm_env_get_cpu(env)); 2893 uint64_t mpidr = cpu->mp_affinity; 2894 2895 if (arm_feature(env, ARM_FEATURE_V7MP)) { 2896 mpidr |= (1U << 31); 2897 /* Cores which are uniprocessor (non-coherent) 2898 * but still implement the MP extensions set 2899 * bit 30. (For instance, Cortex-R5). 2900 */ 2901 if (cpu->mp_is_up) { 2902 mpidr |= (1u << 30); 2903 } 2904 } 2905 return mpidr; 2906 } 2907 2908 static uint64_t mpidr_read(CPUARMState *env, const ARMCPRegInfo *ri) 2909 { 2910 unsigned int cur_el = arm_current_el(env); 2911 bool secure = arm_is_secure(env); 2912 2913 if (arm_feature(env, ARM_FEATURE_EL2) && !secure && cur_el == 1) { 2914 return env->cp15.vmpidr_el2; 2915 } 2916 return mpidr_read_val(env); 2917 } 2918 2919 static const ARMCPRegInfo mpidr_cp_reginfo[] = { 2920 { .name = "MPIDR", .state = ARM_CP_STATE_BOTH, 2921 .opc0 = 3, .crn = 0, .crm = 0, .opc1 = 0, .opc2 = 5, 2922 .access = PL1_R, .readfn = mpidr_read, .type = ARM_CP_NO_RAW }, 2923 REGINFO_SENTINEL 2924 }; 2925 2926 static const ARMCPRegInfo lpae_cp_reginfo[] = { 2927 /* NOP AMAIR0/1 */ 2928 { .name = "AMAIR0", .state = ARM_CP_STATE_BOTH, 2929 .opc0 = 3, .crn = 10, .crm = 3, .opc1 = 0, .opc2 = 0, 2930 .access = PL1_RW, .type = ARM_CP_CONST, 2931 .resetvalue = 0 }, 2932 /* AMAIR1 is mapped to AMAIR_EL1[63:32] */ 2933 { .name = "AMAIR1", .cp = 15, .crn = 10, .crm = 3, .opc1 = 0, .opc2 = 1, 2934 .access = PL1_RW, .type = ARM_CP_CONST, 2935 .resetvalue = 0 }, 2936 { .name = "PAR", .cp = 15, .crm = 7, .opc1 = 0, 2937 .access = PL1_RW, .type = ARM_CP_64BIT, .resetvalue = 0, 2938 .bank_fieldoffsets = { offsetof(CPUARMState, cp15.par_s), 2939 offsetof(CPUARMState, cp15.par_ns)} }, 2940 { .name = "TTBR0", .cp = 15, .crm = 2, .opc1 = 0, 2941 .access = PL1_RW, .type = ARM_CP_64BIT | ARM_CP_ALIAS, 2942 .bank_fieldoffsets = { offsetof(CPUARMState, cp15.ttbr0_s), 2943 offsetof(CPUARMState, cp15.ttbr0_ns) }, 2944 .writefn = vmsa_ttbr_write, }, 2945 { .name = "TTBR1", .cp = 15, .crm = 2, .opc1 = 1, 2946 .access = PL1_RW, .type = ARM_CP_64BIT | ARM_CP_ALIAS, 2947 .bank_fieldoffsets = { offsetof(CPUARMState, cp15.ttbr1_s), 2948 offsetof(CPUARMState, cp15.ttbr1_ns) }, 2949 .writefn = vmsa_ttbr_write, }, 2950 REGINFO_SENTINEL 2951 }; 2952 2953 static uint64_t aa64_fpcr_read(CPUARMState *env, const ARMCPRegInfo *ri) 2954 { 2955 return vfp_get_fpcr(env); 2956 } 2957 2958 static void aa64_fpcr_write(CPUARMState *env, const ARMCPRegInfo *ri, 2959 uint64_t value) 2960 { 2961 vfp_set_fpcr(env, value); 2962 } 2963 2964 static uint64_t aa64_fpsr_read(CPUARMState *env, const ARMCPRegInfo *ri) 2965 { 2966 return vfp_get_fpsr(env); 2967 } 2968 2969 static void aa64_fpsr_write(CPUARMState *env, const ARMCPRegInfo *ri, 2970 uint64_t value) 2971 { 2972 vfp_set_fpsr(env, value); 2973 } 2974 2975 static CPAccessResult aa64_daif_access(CPUARMState *env, const ARMCPRegInfo *ri, 2976 bool isread) 2977 { 2978 if (arm_current_el(env) == 0 && !(env->cp15.sctlr_el[1] & SCTLR_UMA)) { 2979 return CP_ACCESS_TRAP; 2980 } 2981 return CP_ACCESS_OK; 2982 } 2983 2984 static void aa64_daif_write(CPUARMState *env, const ARMCPRegInfo *ri, 2985 uint64_t value) 2986 { 2987 env->daif = value & PSTATE_DAIF; 2988 } 2989 2990 static CPAccessResult aa64_cacheop_access(CPUARMState *env, 2991 const ARMCPRegInfo *ri, 2992 bool isread) 2993 { 2994 /* Cache invalidate/clean: NOP, but EL0 must UNDEF unless 2995 * SCTLR_EL1.UCI is set. 2996 */ 2997 if (arm_current_el(env) == 0 && !(env->cp15.sctlr_el[1] & SCTLR_UCI)) { 2998 return CP_ACCESS_TRAP; 2999 } 3000 return CP_ACCESS_OK; 3001 } 3002 3003 /* See: D4.7.2 TLB maintenance requirements and the TLB maintenance instructions 3004 * Page D4-1736 (DDI0487A.b) 3005 */ 3006 3007 static void tlbi_aa64_vmalle1_write(CPUARMState *env, const ARMCPRegInfo *ri, 3008 uint64_t value) 3009 { 3010 CPUState *cs = ENV_GET_CPU(env); 3011 3012 if (arm_is_secure_below_el3(env)) { 3013 tlb_flush_by_mmuidx(cs, 3014 ARMMMUIdxBit_S1SE1 | 3015 ARMMMUIdxBit_S1SE0); 3016 } else { 3017 tlb_flush_by_mmuidx(cs, 3018 ARMMMUIdxBit_S12NSE1 | 3019 ARMMMUIdxBit_S12NSE0); 3020 } 3021 } 3022 3023 static void tlbi_aa64_vmalle1is_write(CPUARMState *env, const ARMCPRegInfo *ri, 3024 uint64_t value) 3025 { 3026 CPUState *cs = ENV_GET_CPU(env); 3027 bool sec = arm_is_secure_below_el3(env); 3028 3029 if (sec) { 3030 tlb_flush_by_mmuidx_all_cpus_synced(cs, 3031 ARMMMUIdxBit_S1SE1 | 3032 ARMMMUIdxBit_S1SE0); 3033 } else { 3034 tlb_flush_by_mmuidx_all_cpus_synced(cs, 3035 ARMMMUIdxBit_S12NSE1 | 3036 ARMMMUIdxBit_S12NSE0); 3037 } 3038 } 3039 3040 static void tlbi_aa64_alle1_write(CPUARMState *env, const ARMCPRegInfo *ri, 3041 uint64_t value) 3042 { 3043 /* Note that the 'ALL' scope must invalidate both stage 1 and 3044 * stage 2 translations, whereas most other scopes only invalidate 3045 * stage 1 translations. 3046 */ 3047 ARMCPU *cpu = arm_env_get_cpu(env); 3048 CPUState *cs = CPU(cpu); 3049 3050 if (arm_is_secure_below_el3(env)) { 3051 tlb_flush_by_mmuidx(cs, 3052 ARMMMUIdxBit_S1SE1 | 3053 ARMMMUIdxBit_S1SE0); 3054 } else { 3055 if (arm_feature(env, ARM_FEATURE_EL2)) { 3056 tlb_flush_by_mmuidx(cs, 3057 ARMMMUIdxBit_S12NSE1 | 3058 ARMMMUIdxBit_S12NSE0 | 3059 ARMMMUIdxBit_S2NS); 3060 } else { 3061 tlb_flush_by_mmuidx(cs, 3062 ARMMMUIdxBit_S12NSE1 | 3063 ARMMMUIdxBit_S12NSE0); 3064 } 3065 } 3066 } 3067 3068 static void tlbi_aa64_alle2_write(CPUARMState *env, const ARMCPRegInfo *ri, 3069 uint64_t value) 3070 { 3071 ARMCPU *cpu = arm_env_get_cpu(env); 3072 CPUState *cs = CPU(cpu); 3073 3074 tlb_flush_by_mmuidx(cs, ARMMMUIdxBit_S1E2); 3075 } 3076 3077 static void tlbi_aa64_alle3_write(CPUARMState *env, const ARMCPRegInfo *ri, 3078 uint64_t value) 3079 { 3080 ARMCPU *cpu = arm_env_get_cpu(env); 3081 CPUState *cs = CPU(cpu); 3082 3083 tlb_flush_by_mmuidx(cs, ARMMMUIdxBit_S1E3); 3084 } 3085 3086 static void tlbi_aa64_alle1is_write(CPUARMState *env, const ARMCPRegInfo *ri, 3087 uint64_t value) 3088 { 3089 /* Note that the 'ALL' scope must invalidate both stage 1 and 3090 * stage 2 translations, whereas most other scopes only invalidate 3091 * stage 1 translations. 3092 */ 3093 CPUState *cs = ENV_GET_CPU(env); 3094 bool sec = arm_is_secure_below_el3(env); 3095 bool has_el2 = arm_feature(env, ARM_FEATURE_EL2); 3096 3097 if (sec) { 3098 tlb_flush_by_mmuidx_all_cpus_synced(cs, 3099 ARMMMUIdxBit_S1SE1 | 3100 ARMMMUIdxBit_S1SE0); 3101 } else if (has_el2) { 3102 tlb_flush_by_mmuidx_all_cpus_synced(cs, 3103 ARMMMUIdxBit_S12NSE1 | 3104 ARMMMUIdxBit_S12NSE0 | 3105 ARMMMUIdxBit_S2NS); 3106 } else { 3107 tlb_flush_by_mmuidx_all_cpus_synced(cs, 3108 ARMMMUIdxBit_S12NSE1 | 3109 ARMMMUIdxBit_S12NSE0); 3110 } 3111 } 3112 3113 static void tlbi_aa64_alle2is_write(CPUARMState *env, const ARMCPRegInfo *ri, 3114 uint64_t value) 3115 { 3116 CPUState *cs = ENV_GET_CPU(env); 3117 3118 tlb_flush_by_mmuidx_all_cpus_synced(cs, ARMMMUIdxBit_S1E2); 3119 } 3120 3121 static void tlbi_aa64_alle3is_write(CPUARMState *env, const ARMCPRegInfo *ri, 3122 uint64_t value) 3123 { 3124 CPUState *cs = ENV_GET_CPU(env); 3125 3126 tlb_flush_by_mmuidx_all_cpus_synced(cs, ARMMMUIdxBit_S1E3); 3127 } 3128 3129 static void tlbi_aa64_vae1_write(CPUARMState *env, const ARMCPRegInfo *ri, 3130 uint64_t value) 3131 { 3132 /* Invalidate by VA, EL1&0 (AArch64 version). 3133 * Currently handles all of VAE1, VAAE1, VAALE1 and VALE1, 3134 * since we don't support flush-for-specific-ASID-only or 3135 * flush-last-level-only. 3136 */ 3137 ARMCPU *cpu = arm_env_get_cpu(env); 3138 CPUState *cs = CPU(cpu); 3139 uint64_t pageaddr = sextract64(value << 12, 0, 56); 3140 3141 if (arm_is_secure_below_el3(env)) { 3142 tlb_flush_page_by_mmuidx(cs, pageaddr, 3143 ARMMMUIdxBit_S1SE1 | 3144 ARMMMUIdxBit_S1SE0); 3145 } else { 3146 tlb_flush_page_by_mmuidx(cs, pageaddr, 3147 ARMMMUIdxBit_S12NSE1 | 3148 ARMMMUIdxBit_S12NSE0); 3149 } 3150 } 3151 3152 static void tlbi_aa64_vae2_write(CPUARMState *env, const ARMCPRegInfo *ri, 3153 uint64_t value) 3154 { 3155 /* Invalidate by VA, EL2 3156 * Currently handles both VAE2 and VALE2, since we don't support 3157 * flush-last-level-only. 3158 */ 3159 ARMCPU *cpu = arm_env_get_cpu(env); 3160 CPUState *cs = CPU(cpu); 3161 uint64_t pageaddr = sextract64(value << 12, 0, 56); 3162 3163 tlb_flush_page_by_mmuidx(cs, pageaddr, ARMMMUIdxBit_S1E2); 3164 } 3165 3166 static void tlbi_aa64_vae3_write(CPUARMState *env, const ARMCPRegInfo *ri, 3167 uint64_t value) 3168 { 3169 /* Invalidate by VA, EL3 3170 * Currently handles both VAE3 and VALE3, since we don't support 3171 * flush-last-level-only. 3172 */ 3173 ARMCPU *cpu = arm_env_get_cpu(env); 3174 CPUState *cs = CPU(cpu); 3175 uint64_t pageaddr = sextract64(value << 12, 0, 56); 3176 3177 tlb_flush_page_by_mmuidx(cs, pageaddr, ARMMMUIdxBit_S1E3); 3178 } 3179 3180 static void tlbi_aa64_vae1is_write(CPUARMState *env, const ARMCPRegInfo *ri, 3181 uint64_t value) 3182 { 3183 ARMCPU *cpu = arm_env_get_cpu(env); 3184 CPUState *cs = CPU(cpu); 3185 bool sec = arm_is_secure_below_el3(env); 3186 uint64_t pageaddr = sextract64(value << 12, 0, 56); 3187 3188 if (sec) { 3189 tlb_flush_page_by_mmuidx_all_cpus_synced(cs, pageaddr, 3190 ARMMMUIdxBit_S1SE1 | 3191 ARMMMUIdxBit_S1SE0); 3192 } else { 3193 tlb_flush_page_by_mmuidx_all_cpus_synced(cs, pageaddr, 3194 ARMMMUIdxBit_S12NSE1 | 3195 ARMMMUIdxBit_S12NSE0); 3196 } 3197 } 3198 3199 static void tlbi_aa64_vae2is_write(CPUARMState *env, const ARMCPRegInfo *ri, 3200 uint64_t value) 3201 { 3202 CPUState *cs = ENV_GET_CPU(env); 3203 uint64_t pageaddr = sextract64(value << 12, 0, 56); 3204 3205 tlb_flush_page_by_mmuidx_all_cpus_synced(cs, pageaddr, 3206 ARMMMUIdxBit_S1E2); 3207 } 3208 3209 static void tlbi_aa64_vae3is_write(CPUARMState *env, const ARMCPRegInfo *ri, 3210 uint64_t value) 3211 { 3212 CPUState *cs = ENV_GET_CPU(env); 3213 uint64_t pageaddr = sextract64(value << 12, 0, 56); 3214 3215 tlb_flush_page_by_mmuidx_all_cpus_synced(cs, pageaddr, 3216 ARMMMUIdxBit_S1E3); 3217 } 3218 3219 static void tlbi_aa64_ipas2e1_write(CPUARMState *env, const ARMCPRegInfo *ri, 3220 uint64_t value) 3221 { 3222 /* Invalidate by IPA. This has to invalidate any structures that 3223 * contain only stage 2 translation information, but does not need 3224 * to apply to structures that contain combined stage 1 and stage 2 3225 * translation information. 3226 * This must NOP if EL2 isn't implemented or SCR_EL3.NS is zero. 3227 */ 3228 ARMCPU *cpu = arm_env_get_cpu(env); 3229 CPUState *cs = CPU(cpu); 3230 uint64_t pageaddr; 3231 3232 if (!arm_feature(env, ARM_FEATURE_EL2) || !(env->cp15.scr_el3 & SCR_NS)) { 3233 return; 3234 } 3235 3236 pageaddr = sextract64(value << 12, 0, 48); 3237 3238 tlb_flush_page_by_mmuidx(cs, pageaddr, ARMMMUIdxBit_S2NS); 3239 } 3240 3241 static void tlbi_aa64_ipas2e1is_write(CPUARMState *env, const ARMCPRegInfo *ri, 3242 uint64_t value) 3243 { 3244 CPUState *cs = ENV_GET_CPU(env); 3245 uint64_t pageaddr; 3246 3247 if (!arm_feature(env, ARM_FEATURE_EL2) || !(env->cp15.scr_el3 & SCR_NS)) { 3248 return; 3249 } 3250 3251 pageaddr = sextract64(value << 12, 0, 48); 3252 3253 tlb_flush_page_by_mmuidx_all_cpus_synced(cs, pageaddr, 3254 ARMMMUIdxBit_S2NS); 3255 } 3256 3257 static CPAccessResult aa64_zva_access(CPUARMState *env, const ARMCPRegInfo *ri, 3258 bool isread) 3259 { 3260 /* We don't implement EL2, so the only control on DC ZVA is the 3261 * bit in the SCTLR which can prohibit access for EL0. 3262 */ 3263 if (arm_current_el(env) == 0 && !(env->cp15.sctlr_el[1] & SCTLR_DZE)) { 3264 return CP_ACCESS_TRAP; 3265 } 3266 return CP_ACCESS_OK; 3267 } 3268 3269 static uint64_t aa64_dczid_read(CPUARMState *env, const ARMCPRegInfo *ri) 3270 { 3271 ARMCPU *cpu = arm_env_get_cpu(env); 3272 int dzp_bit = 1 << 4; 3273 3274 /* DZP indicates whether DC ZVA access is allowed */ 3275 if (aa64_zva_access(env, NULL, false) == CP_ACCESS_OK) { 3276 dzp_bit = 0; 3277 } 3278 return cpu->dcz_blocksize | dzp_bit; 3279 } 3280 3281 static CPAccessResult sp_el0_access(CPUARMState *env, const ARMCPRegInfo *ri, 3282 bool isread) 3283 { 3284 if (!(env->pstate & PSTATE_SP)) { 3285 /* Access to SP_EL0 is undefined if it's being used as 3286 * the stack pointer. 3287 */ 3288 return CP_ACCESS_TRAP_UNCATEGORIZED; 3289 } 3290 return CP_ACCESS_OK; 3291 } 3292 3293 static uint64_t spsel_read(CPUARMState *env, const ARMCPRegInfo *ri) 3294 { 3295 return env->pstate & PSTATE_SP; 3296 } 3297 3298 static void spsel_write(CPUARMState *env, const ARMCPRegInfo *ri, uint64_t val) 3299 { 3300 update_spsel(env, val); 3301 } 3302 3303 static void sctlr_write(CPUARMState *env, const ARMCPRegInfo *ri, 3304 uint64_t value) 3305 { 3306 ARMCPU *cpu = arm_env_get_cpu(env); 3307 3308 if (raw_read(env, ri) == value) { 3309 /* Skip the TLB flush if nothing actually changed; Linux likes 3310 * to do a lot of pointless SCTLR writes. 3311 */ 3312 return; 3313 } 3314 3315 if (arm_feature(env, ARM_FEATURE_PMSA) && !cpu->has_mpu) { 3316 /* M bit is RAZ/WI for PMSA with no MPU implemented */ 3317 value &= ~SCTLR_M; 3318 } 3319 3320 raw_write(env, ri, value); 3321 /* ??? Lots of these bits are not implemented. */ 3322 /* This may enable/disable the MMU, so do a TLB flush. */ 3323 tlb_flush(CPU(cpu)); 3324 } 3325 3326 static CPAccessResult fpexc32_access(CPUARMState *env, const ARMCPRegInfo *ri, 3327 bool isread) 3328 { 3329 if ((env->cp15.cptr_el[2] & CPTR_TFP) && arm_current_el(env) == 2) { 3330 return CP_ACCESS_TRAP_FP_EL2; 3331 } 3332 if (env->cp15.cptr_el[3] & CPTR_TFP) { 3333 return CP_ACCESS_TRAP_FP_EL3; 3334 } 3335 return CP_ACCESS_OK; 3336 } 3337 3338 static void sdcr_write(CPUARMState *env, const ARMCPRegInfo *ri, 3339 uint64_t value) 3340 { 3341 env->cp15.mdcr_el3 = value & SDCR_VALID_MASK; 3342 } 3343 3344 static const ARMCPRegInfo v8_cp_reginfo[] = { 3345 /* Minimal set of EL0-visible registers. This will need to be expanded 3346 * significantly for system emulation of AArch64 CPUs. 3347 */ 3348 { .name = "NZCV", .state = ARM_CP_STATE_AA64, 3349 .opc0 = 3, .opc1 = 3, .opc2 = 0, .crn = 4, .crm = 2, 3350 .access = PL0_RW, .type = ARM_CP_NZCV }, 3351 { .name = "DAIF", .state = ARM_CP_STATE_AA64, 3352 .opc0 = 3, .opc1 = 3, .opc2 = 1, .crn = 4, .crm = 2, 3353 .type = ARM_CP_NO_RAW, 3354 .access = PL0_RW, .accessfn = aa64_daif_access, 3355 .fieldoffset = offsetof(CPUARMState, daif), 3356 .writefn = aa64_daif_write, .resetfn = arm_cp_reset_ignore }, 3357 { .name = "FPCR", .state = ARM_CP_STATE_AA64, 3358 .opc0 = 3, .opc1 = 3, .opc2 = 0, .crn = 4, .crm = 4, 3359 .access = PL0_RW, .readfn = aa64_fpcr_read, .writefn = aa64_fpcr_write }, 3360 { .name = "FPSR", .state = ARM_CP_STATE_AA64, 3361 .opc0 = 3, .opc1 = 3, .opc2 = 1, .crn = 4, .crm = 4, 3362 .access = PL0_RW, .readfn = aa64_fpsr_read, .writefn = aa64_fpsr_write }, 3363 { .name = "DCZID_EL0", .state = ARM_CP_STATE_AA64, 3364 .opc0 = 3, .opc1 = 3, .opc2 = 7, .crn = 0, .crm = 0, 3365 .access = PL0_R, .type = ARM_CP_NO_RAW, 3366 .readfn = aa64_dczid_read }, 3367 { .name = "DC_ZVA", .state = ARM_CP_STATE_AA64, 3368 .opc0 = 1, .opc1 = 3, .crn = 7, .crm = 4, .opc2 = 1, 3369 .access = PL0_W, .type = ARM_CP_DC_ZVA, 3370 #ifndef CONFIG_USER_ONLY 3371 /* Avoid overhead of an access check that always passes in user-mode */ 3372 .accessfn = aa64_zva_access, 3373 #endif 3374 }, 3375 { .name = "CURRENTEL", .state = ARM_CP_STATE_AA64, 3376 .opc0 = 3, .opc1 = 0, .opc2 = 2, .crn = 4, .crm = 2, 3377 .access = PL1_R, .type = ARM_CP_CURRENTEL }, 3378 /* Cache ops: all NOPs since we don't emulate caches */ 3379 { .name = "IC_IALLUIS", .state = ARM_CP_STATE_AA64, 3380 .opc0 = 1, .opc1 = 0, .crn = 7, .crm = 1, .opc2 = 0, 3381 .access = PL1_W, .type = ARM_CP_NOP }, 3382 { .name = "IC_IALLU", .state = ARM_CP_STATE_AA64, 3383 .opc0 = 1, .opc1 = 0, .crn = 7, .crm = 5, .opc2 = 0, 3384 .access = PL1_W, .type = ARM_CP_NOP }, 3385 { .name = "IC_IVAU", .state = ARM_CP_STATE_AA64, 3386 .opc0 = 1, .opc1 = 3, .crn = 7, .crm = 5, .opc2 = 1, 3387 .access = PL0_W, .type = ARM_CP_NOP, 3388 .accessfn = aa64_cacheop_access }, 3389 { .name = "DC_IVAC", .state = ARM_CP_STATE_AA64, 3390 .opc0 = 1, .opc1 = 0, .crn = 7, .crm = 6, .opc2 = 1, 3391 .access = PL1_W, .type = ARM_CP_NOP }, 3392 { .name = "DC_ISW", .state = ARM_CP_STATE_AA64, 3393 .opc0 = 1, .opc1 = 0, .crn = 7, .crm = 6, .opc2 = 2, 3394 .access = PL1_W, .type = ARM_CP_NOP }, 3395 { .name = "DC_CVAC", .state = ARM_CP_STATE_AA64, 3396 .opc0 = 1, .opc1 = 3, .crn = 7, .crm = 10, .opc2 = 1, 3397 .access = PL0_W, .type = ARM_CP_NOP, 3398 .accessfn = aa64_cacheop_access }, 3399 { .name = "DC_CSW", .state = ARM_CP_STATE_AA64, 3400 .opc0 = 1, .opc1 = 0, .crn = 7, .crm = 10, .opc2 = 2, 3401 .access = PL1_W, .type = ARM_CP_NOP }, 3402 { .name = "DC_CVAU", .state = ARM_CP_STATE_AA64, 3403 .opc0 = 1, .opc1 = 3, .crn = 7, .crm = 11, .opc2 = 1, 3404 .access = PL0_W, .type = ARM_CP_NOP, 3405 .accessfn = aa64_cacheop_access }, 3406 { .name = "DC_CIVAC", .state = ARM_CP_STATE_AA64, 3407 .opc0 = 1, .opc1 = 3, .crn = 7, .crm = 14, .opc2 = 1, 3408 .access = PL0_W, .type = ARM_CP_NOP, 3409 .accessfn = aa64_cacheop_access }, 3410 { .name = "DC_CISW", .state = ARM_CP_STATE_AA64, 3411 .opc0 = 1, .opc1 = 0, .crn = 7, .crm = 14, .opc2 = 2, 3412 .access = PL1_W, .type = ARM_CP_NOP }, 3413 /* TLBI operations */ 3414 { .name = "TLBI_VMALLE1IS", .state = ARM_CP_STATE_AA64, 3415 .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 3, .opc2 = 0, 3416 .access = PL1_W, .type = ARM_CP_NO_RAW, 3417 .writefn = tlbi_aa64_vmalle1is_write }, 3418 { .name = "TLBI_VAE1IS", .state = ARM_CP_STATE_AA64, 3419 .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 3, .opc2 = 1, 3420 .access = PL1_W, .type = ARM_CP_NO_RAW, 3421 .writefn = tlbi_aa64_vae1is_write }, 3422 { .name = "TLBI_ASIDE1IS", .state = ARM_CP_STATE_AA64, 3423 .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 3, .opc2 = 2, 3424 .access = PL1_W, .type = ARM_CP_NO_RAW, 3425 .writefn = tlbi_aa64_vmalle1is_write }, 3426 { .name = "TLBI_VAAE1IS", .state = ARM_CP_STATE_AA64, 3427 .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 3, .opc2 = 3, 3428 .access = PL1_W, .type = ARM_CP_NO_RAW, 3429 .writefn = tlbi_aa64_vae1is_write }, 3430 { .name = "TLBI_VALE1IS", .state = ARM_CP_STATE_AA64, 3431 .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 3, .opc2 = 5, 3432 .access = PL1_W, .type = ARM_CP_NO_RAW, 3433 .writefn = tlbi_aa64_vae1is_write }, 3434 { .name = "TLBI_VAALE1IS", .state = ARM_CP_STATE_AA64, 3435 .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 3, .opc2 = 7, 3436 .access = PL1_W, .type = ARM_CP_NO_RAW, 3437 .writefn = tlbi_aa64_vae1is_write }, 3438 { .name = "TLBI_VMALLE1", .state = ARM_CP_STATE_AA64, 3439 .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 7, .opc2 = 0, 3440 .access = PL1_W, .type = ARM_CP_NO_RAW, 3441 .writefn = tlbi_aa64_vmalle1_write }, 3442 { .name = "TLBI_VAE1", .state = ARM_CP_STATE_AA64, 3443 .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 7, .opc2 = 1, 3444 .access = PL1_W, .type = ARM_CP_NO_RAW, 3445 .writefn = tlbi_aa64_vae1_write }, 3446 { .name = "TLBI_ASIDE1", .state = ARM_CP_STATE_AA64, 3447 .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 7, .opc2 = 2, 3448 .access = PL1_W, .type = ARM_CP_NO_RAW, 3449 .writefn = tlbi_aa64_vmalle1_write }, 3450 { .name = "TLBI_VAAE1", .state = ARM_CP_STATE_AA64, 3451 .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 7, .opc2 = 3, 3452 .access = PL1_W, .type = ARM_CP_NO_RAW, 3453 .writefn = tlbi_aa64_vae1_write }, 3454 { .name = "TLBI_VALE1", .state = ARM_CP_STATE_AA64, 3455 .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 7, .opc2 = 5, 3456 .access = PL1_W, .type = ARM_CP_NO_RAW, 3457 .writefn = tlbi_aa64_vae1_write }, 3458 { .name = "TLBI_VAALE1", .state = ARM_CP_STATE_AA64, 3459 .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 7, .opc2 = 7, 3460 .access = PL1_W, .type = ARM_CP_NO_RAW, 3461 .writefn = tlbi_aa64_vae1_write }, 3462 { .name = "TLBI_IPAS2E1IS", .state = ARM_CP_STATE_AA64, 3463 .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 0, .opc2 = 1, 3464 .access = PL2_W, .type = ARM_CP_NO_RAW, 3465 .writefn = tlbi_aa64_ipas2e1is_write }, 3466 { .name = "TLBI_IPAS2LE1IS", .state = ARM_CP_STATE_AA64, 3467 .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 0, .opc2 = 5, 3468 .access = PL2_W, .type = ARM_CP_NO_RAW, 3469 .writefn = tlbi_aa64_ipas2e1is_write }, 3470 { .name = "TLBI_ALLE1IS", .state = ARM_CP_STATE_AA64, 3471 .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 3, .opc2 = 4, 3472 .access = PL2_W, .type = ARM_CP_NO_RAW, 3473 .writefn = tlbi_aa64_alle1is_write }, 3474 { .name = "TLBI_VMALLS12E1IS", .state = ARM_CP_STATE_AA64, 3475 .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 3, .opc2 = 6, 3476 .access = PL2_W, .type = ARM_CP_NO_RAW, 3477 .writefn = tlbi_aa64_alle1is_write }, 3478 { .name = "TLBI_IPAS2E1", .state = ARM_CP_STATE_AA64, 3479 .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 4, .opc2 = 1, 3480 .access = PL2_W, .type = ARM_CP_NO_RAW, 3481 .writefn = tlbi_aa64_ipas2e1_write }, 3482 { .name = "TLBI_IPAS2LE1", .state = ARM_CP_STATE_AA64, 3483 .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 4, .opc2 = 5, 3484 .access = PL2_W, .type = ARM_CP_NO_RAW, 3485 .writefn = tlbi_aa64_ipas2e1_write }, 3486 { .name = "TLBI_ALLE1", .state = ARM_CP_STATE_AA64, 3487 .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 7, .opc2 = 4, 3488 .access = PL2_W, .type = ARM_CP_NO_RAW, 3489 .writefn = tlbi_aa64_alle1_write }, 3490 { .name = "TLBI_VMALLS12E1", .state = ARM_CP_STATE_AA64, 3491 .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 7, .opc2 = 6, 3492 .access = PL2_W, .type = ARM_CP_NO_RAW, 3493 .writefn = tlbi_aa64_alle1is_write }, 3494 #ifndef CONFIG_USER_ONLY 3495 /* 64 bit address translation operations */ 3496 { .name = "AT_S1E1R", .state = ARM_CP_STATE_AA64, 3497 .opc0 = 1, .opc1 = 0, .crn = 7, .crm = 8, .opc2 = 0, 3498 .access = PL1_W, .type = ARM_CP_NO_RAW, .writefn = ats_write64 }, 3499 { .name = "AT_S1E1W", .state = ARM_CP_STATE_AA64, 3500 .opc0 = 1, .opc1 = 0, .crn = 7, .crm = 8, .opc2 = 1, 3501 .access = PL1_W, .type = ARM_CP_NO_RAW, .writefn = ats_write64 }, 3502 { .name = "AT_S1E0R", .state = ARM_CP_STATE_AA64, 3503 .opc0 = 1, .opc1 = 0, .crn = 7, .crm = 8, .opc2 = 2, 3504 .access = PL1_W, .type = ARM_CP_NO_RAW, .writefn = ats_write64 }, 3505 { .name = "AT_S1E0W", .state = ARM_CP_STATE_AA64, 3506 .opc0 = 1, .opc1 = 0, .crn = 7, .crm = 8, .opc2 = 3, 3507 .access = PL1_W, .type = ARM_CP_NO_RAW, .writefn = ats_write64 }, 3508 { .name = "AT_S12E1R", .state = ARM_CP_STATE_AA64, 3509 .opc0 = 1, .opc1 = 4, .crn = 7, .crm = 8, .opc2 = 4, 3510 .access = PL2_W, .type = ARM_CP_NO_RAW, .writefn = ats_write64 }, 3511 { .name = "AT_S12E1W", .state = ARM_CP_STATE_AA64, 3512 .opc0 = 1, .opc1 = 4, .crn = 7, .crm = 8, .opc2 = 5, 3513 .access = PL2_W, .type = ARM_CP_NO_RAW, .writefn = ats_write64 }, 3514 { .name = "AT_S12E0R", .state = ARM_CP_STATE_AA64, 3515 .opc0 = 1, .opc1 = 4, .crn = 7, .crm = 8, .opc2 = 6, 3516 .access = PL2_W, .type = ARM_CP_NO_RAW, .writefn = ats_write64 }, 3517 { .name = "AT_S12E0W", .state = ARM_CP_STATE_AA64, 3518 .opc0 = 1, .opc1 = 4, .crn = 7, .crm = 8, .opc2 = 7, 3519 .access = PL2_W, .type = ARM_CP_NO_RAW, .writefn = ats_write64 }, 3520 /* AT S1E2* are elsewhere as they UNDEF from EL3 if EL2 is not present */ 3521 { .name = "AT_S1E3R", .state = ARM_CP_STATE_AA64, 3522 .opc0 = 1, .opc1 = 6, .crn = 7, .crm = 8, .opc2 = 0, 3523 .access = PL3_W, .type = ARM_CP_NO_RAW, .writefn = ats_write64 }, 3524 { .name = "AT_S1E3W", .state = ARM_CP_STATE_AA64, 3525 .opc0 = 1, .opc1 = 6, .crn = 7, .crm = 8, .opc2 = 1, 3526 .access = PL3_W, .type = ARM_CP_NO_RAW, .writefn = ats_write64 }, 3527 { .name = "PAR_EL1", .state = ARM_CP_STATE_AA64, 3528 .type = ARM_CP_ALIAS, 3529 .opc0 = 3, .opc1 = 0, .crn = 7, .crm = 4, .opc2 = 0, 3530 .access = PL1_RW, .resetvalue = 0, 3531 .fieldoffset = offsetof(CPUARMState, cp15.par_el[1]), 3532 .writefn = par_write }, 3533 #endif 3534 /* TLB invalidate last level of translation table walk */ 3535 { .name = "TLBIMVALIS", .cp = 15, .opc1 = 0, .crn = 8, .crm = 3, .opc2 = 5, 3536 .type = ARM_CP_NO_RAW, .access = PL1_W, .writefn = tlbimva_is_write }, 3537 { .name = "TLBIMVAALIS", .cp = 15, .opc1 = 0, .crn = 8, .crm = 3, .opc2 = 7, 3538 .type = ARM_CP_NO_RAW, .access = PL1_W, 3539 .writefn = tlbimvaa_is_write }, 3540 { .name = "TLBIMVAL", .cp = 15, .opc1 = 0, .crn = 8, .crm = 7, .opc2 = 5, 3541 .type = ARM_CP_NO_RAW, .access = PL1_W, .writefn = tlbimva_write }, 3542 { .name = "TLBIMVAAL", .cp = 15, .opc1 = 0, .crn = 8, .crm = 7, .opc2 = 7, 3543 .type = ARM_CP_NO_RAW, .access = PL1_W, .writefn = tlbimvaa_write }, 3544 { .name = "TLBIMVALH", .cp = 15, .opc1 = 4, .crn = 8, .crm = 7, .opc2 = 5, 3545 .type = ARM_CP_NO_RAW, .access = PL2_W, 3546 .writefn = tlbimva_hyp_write }, 3547 { .name = "TLBIMVALHIS", 3548 .cp = 15, .opc1 = 4, .crn = 8, .crm = 3, .opc2 = 5, 3549 .type = ARM_CP_NO_RAW, .access = PL2_W, 3550 .writefn = tlbimva_hyp_is_write }, 3551 { .name = "TLBIIPAS2", 3552 .cp = 15, .opc1 = 4, .crn = 8, .crm = 4, .opc2 = 1, 3553 .type = ARM_CP_NO_RAW, .access = PL2_W, 3554 .writefn = tlbiipas2_write }, 3555 { .name = "TLBIIPAS2IS", 3556 .cp = 15, .opc1 = 4, .crn = 8, .crm = 0, .opc2 = 1, 3557 .type = ARM_CP_NO_RAW, .access = PL2_W, 3558 .writefn = tlbiipas2_is_write }, 3559 { .name = "TLBIIPAS2L", 3560 .cp = 15, .opc1 = 4, .crn = 8, .crm = 4, .opc2 = 5, 3561 .type = ARM_CP_NO_RAW, .access = PL2_W, 3562 .writefn = tlbiipas2_write }, 3563 { .name = "TLBIIPAS2LIS", 3564 .cp = 15, .opc1 = 4, .crn = 8, .crm = 0, .opc2 = 5, 3565 .type = ARM_CP_NO_RAW, .access = PL2_W, 3566 .writefn = tlbiipas2_is_write }, 3567 /* 32 bit cache operations */ 3568 { .name = "ICIALLUIS", .cp = 15, .opc1 = 0, .crn = 7, .crm = 1, .opc2 = 0, 3569 .type = ARM_CP_NOP, .access = PL1_W }, 3570 { .name = "BPIALLUIS", .cp = 15, .opc1 = 0, .crn = 7, .crm = 1, .opc2 = 6, 3571 .type = ARM_CP_NOP, .access = PL1_W }, 3572 { .name = "ICIALLU", .cp = 15, .opc1 = 0, .crn = 7, .crm = 5, .opc2 = 0, 3573 .type = ARM_CP_NOP, .access = PL1_W }, 3574 { .name = "ICIMVAU", .cp = 15, .opc1 = 0, .crn = 7, .crm = 5, .opc2 = 1, 3575 .type = ARM_CP_NOP, .access = PL1_W }, 3576 { .name = "BPIALL", .cp = 15, .opc1 = 0, .crn = 7, .crm = 5, .opc2 = 6, 3577 .type = ARM_CP_NOP, .access = PL1_W }, 3578 { .name = "BPIMVA", .cp = 15, .opc1 = 0, .crn = 7, .crm = 5, .opc2 = 7, 3579 .type = ARM_CP_NOP, .access = PL1_W }, 3580 { .name = "DCIMVAC", .cp = 15, .opc1 = 0, .crn = 7, .crm = 6, .opc2 = 1, 3581 .type = ARM_CP_NOP, .access = PL1_W }, 3582 { .name = "DCISW", .cp = 15, .opc1 = 0, .crn = 7, .crm = 6, .opc2 = 2, 3583 .type = ARM_CP_NOP, .access = PL1_W }, 3584 { .name = "DCCMVAC", .cp = 15, .opc1 = 0, .crn = 7, .crm = 10, .opc2 = 1, 3585 .type = ARM_CP_NOP, .access = PL1_W }, 3586 { .name = "DCCSW", .cp = 15, .opc1 = 0, .crn = 7, .crm = 10, .opc2 = 2, 3587 .type = ARM_CP_NOP, .access = PL1_W }, 3588 { .name = "DCCMVAU", .cp = 15, .opc1 = 0, .crn = 7, .crm = 11, .opc2 = 1, 3589 .type = ARM_CP_NOP, .access = PL1_W }, 3590 { .name = "DCCIMVAC", .cp = 15, .opc1 = 0, .crn = 7, .crm = 14, .opc2 = 1, 3591 .type = ARM_CP_NOP, .access = PL1_W }, 3592 { .name = "DCCISW", .cp = 15, .opc1 = 0, .crn = 7, .crm = 14, .opc2 = 2, 3593 .type = ARM_CP_NOP, .access = PL1_W }, 3594 /* MMU Domain access control / MPU write buffer control */ 3595 { .name = "DACR", .cp = 15, .opc1 = 0, .crn = 3, .crm = 0, .opc2 = 0, 3596 .access = PL1_RW, .resetvalue = 0, 3597 .writefn = dacr_write, .raw_writefn = raw_write, 3598 .bank_fieldoffsets = { offsetoflow32(CPUARMState, cp15.dacr_s), 3599 offsetoflow32(CPUARMState, cp15.dacr_ns) } }, 3600 { .name = "ELR_EL1", .state = ARM_CP_STATE_AA64, 3601 .type = ARM_CP_ALIAS, 3602 .opc0 = 3, .opc1 = 0, .crn = 4, .crm = 0, .opc2 = 1, 3603 .access = PL1_RW, 3604 .fieldoffset = offsetof(CPUARMState, elr_el[1]) }, 3605 { .name = "SPSR_EL1", .state = ARM_CP_STATE_AA64, 3606 .type = ARM_CP_ALIAS, 3607 .opc0 = 3, .opc1 = 0, .crn = 4, .crm = 0, .opc2 = 0, 3608 .access = PL1_RW, 3609 .fieldoffset = offsetof(CPUARMState, banked_spsr[BANK_SVC]) }, 3610 /* We rely on the access checks not allowing the guest to write to the 3611 * state field when SPSel indicates that it's being used as the stack 3612 * pointer. 3613 */ 3614 { .name = "SP_EL0", .state = ARM_CP_STATE_AA64, 3615 .opc0 = 3, .opc1 = 0, .crn = 4, .crm = 1, .opc2 = 0, 3616 .access = PL1_RW, .accessfn = sp_el0_access, 3617 .type = ARM_CP_ALIAS, 3618 .fieldoffset = offsetof(CPUARMState, sp_el[0]) }, 3619 { .name = "SP_EL1", .state = ARM_CP_STATE_AA64, 3620 .opc0 = 3, .opc1 = 4, .crn = 4, .crm = 1, .opc2 = 0, 3621 .access = PL2_RW, .type = ARM_CP_ALIAS, 3622 .fieldoffset = offsetof(CPUARMState, sp_el[1]) }, 3623 { .name = "SPSel", .state = ARM_CP_STATE_AA64, 3624 .opc0 = 3, .opc1 = 0, .crn = 4, .crm = 2, .opc2 = 0, 3625 .type = ARM_CP_NO_RAW, 3626 .access = PL1_RW, .readfn = spsel_read, .writefn = spsel_write }, 3627 { .name = "FPEXC32_EL2", .state = ARM_CP_STATE_AA64, 3628 .opc0 = 3, .opc1 = 4, .crn = 5, .crm = 3, .opc2 = 0, 3629 .type = ARM_CP_ALIAS, 3630 .fieldoffset = offsetof(CPUARMState, vfp.xregs[ARM_VFP_FPEXC]), 3631 .access = PL2_RW, .accessfn = fpexc32_access }, 3632 { .name = "DACR32_EL2", .state = ARM_CP_STATE_AA64, 3633 .opc0 = 3, .opc1 = 4, .crn = 3, .crm = 0, .opc2 = 0, 3634 .access = PL2_RW, .resetvalue = 0, 3635 .writefn = dacr_write, .raw_writefn = raw_write, 3636 .fieldoffset = offsetof(CPUARMState, cp15.dacr32_el2) }, 3637 { .name = "IFSR32_EL2", .state = ARM_CP_STATE_AA64, 3638 .opc0 = 3, .opc1 = 4, .crn = 5, .crm = 0, .opc2 = 1, 3639 .access = PL2_RW, .resetvalue = 0, 3640 .fieldoffset = offsetof(CPUARMState, cp15.ifsr32_el2) }, 3641 { .name = "SPSR_IRQ", .state = ARM_CP_STATE_AA64, 3642 .type = ARM_CP_ALIAS, 3643 .opc0 = 3, .opc1 = 4, .crn = 4, .crm = 3, .opc2 = 0, 3644 .access = PL2_RW, 3645 .fieldoffset = offsetof(CPUARMState, banked_spsr[BANK_IRQ]) }, 3646 { .name = "SPSR_ABT", .state = ARM_CP_STATE_AA64, 3647 .type = ARM_CP_ALIAS, 3648 .opc0 = 3, .opc1 = 4, .crn = 4, .crm = 3, .opc2 = 1, 3649 .access = PL2_RW, 3650 .fieldoffset = offsetof(CPUARMState, banked_spsr[BANK_ABT]) }, 3651 { .name = "SPSR_UND", .state = ARM_CP_STATE_AA64, 3652 .type = ARM_CP_ALIAS, 3653 .opc0 = 3, .opc1 = 4, .crn = 4, .crm = 3, .opc2 = 2, 3654 .access = PL2_RW, 3655 .fieldoffset = offsetof(CPUARMState, banked_spsr[BANK_UND]) }, 3656 { .name = "SPSR_FIQ", .state = ARM_CP_STATE_AA64, 3657 .type = ARM_CP_ALIAS, 3658 .opc0 = 3, .opc1 = 4, .crn = 4, .crm = 3, .opc2 = 3, 3659 .access = PL2_RW, 3660 .fieldoffset = offsetof(CPUARMState, banked_spsr[BANK_FIQ]) }, 3661 { .name = "MDCR_EL3", .state = ARM_CP_STATE_AA64, 3662 .opc0 = 3, .opc1 = 6, .crn = 1, .crm = 3, .opc2 = 1, 3663 .resetvalue = 0, 3664 .access = PL3_RW, .fieldoffset = offsetof(CPUARMState, cp15.mdcr_el3) }, 3665 { .name = "SDCR", .type = ARM_CP_ALIAS, 3666 .cp = 15, .opc1 = 0, .crn = 1, .crm = 3, .opc2 = 1, 3667 .access = PL1_RW, .accessfn = access_trap_aa32s_el1, 3668 .writefn = sdcr_write, 3669 .fieldoffset = offsetoflow32(CPUARMState, cp15.mdcr_el3) }, 3670 REGINFO_SENTINEL 3671 }; 3672 3673 /* Used to describe the behaviour of EL2 regs when EL2 does not exist. */ 3674 static const ARMCPRegInfo el3_no_el2_cp_reginfo[] = { 3675 { .name = "VBAR_EL2", .state = ARM_CP_STATE_AA64, 3676 .opc0 = 3, .opc1 = 4, .crn = 12, .crm = 0, .opc2 = 0, 3677 .access = PL2_RW, 3678 .readfn = arm_cp_read_zero, .writefn = arm_cp_write_ignore }, 3679 { .name = "HCR_EL2", .state = ARM_CP_STATE_AA64, 3680 .type = ARM_CP_NO_RAW, 3681 .opc0 = 3, .opc1 = 4, .crn = 1, .crm = 1, .opc2 = 0, 3682 .access = PL2_RW, 3683 .readfn = arm_cp_read_zero, .writefn = arm_cp_write_ignore }, 3684 { .name = "CPTR_EL2", .state = ARM_CP_STATE_BOTH, 3685 .opc0 = 3, .opc1 = 4, .crn = 1, .crm = 1, .opc2 = 2, 3686 .access = PL2_RW, .type = ARM_CP_CONST, .resetvalue = 0 }, 3687 { .name = "MAIR_EL2", .state = ARM_CP_STATE_BOTH, 3688 .opc0 = 3, .opc1 = 4, .crn = 10, .crm = 2, .opc2 = 0, 3689 .access = PL2_RW, .type = ARM_CP_CONST, 3690 .resetvalue = 0 }, 3691 { .name = "HMAIR1", .state = ARM_CP_STATE_AA32, 3692 .opc1 = 4, .crn = 10, .crm = 2, .opc2 = 1, 3693 .access = PL2_RW, .type = ARM_CP_CONST, .resetvalue = 0 }, 3694 { .name = "AMAIR_EL2", .state = ARM_CP_STATE_BOTH, 3695 .opc0 = 3, .opc1 = 4, .crn = 10, .crm = 3, .opc2 = 0, 3696 .access = PL2_RW, .type = ARM_CP_CONST, 3697 .resetvalue = 0 }, 3698 { .name = "HMAIR1", .state = ARM_CP_STATE_AA32, 3699 .opc1 = 4, .crn = 10, .crm = 3, .opc2 = 1, 3700 .access = PL2_RW, .type = ARM_CP_CONST, 3701 .resetvalue = 0 }, 3702 { .name = "AFSR0_EL2", .state = ARM_CP_STATE_BOTH, 3703 .opc0 = 3, .opc1 = 4, .crn = 5, .crm = 1, .opc2 = 0, 3704 .access = PL2_RW, .type = ARM_CP_CONST, 3705 .resetvalue = 0 }, 3706 { .name = "AFSR1_EL2", .state = ARM_CP_STATE_BOTH, 3707 .opc0 = 3, .opc1 = 4, .crn = 5, .crm = 1, .opc2 = 1, 3708 .access = PL2_RW, .type = ARM_CP_CONST, 3709 .resetvalue = 0 }, 3710 { .name = "TCR_EL2", .state = ARM_CP_STATE_BOTH, 3711 .opc0 = 3, .opc1 = 4, .crn = 2, .crm = 0, .opc2 = 2, 3712 .access = PL2_RW, .type = ARM_CP_CONST, .resetvalue = 0 }, 3713 { .name = "VTCR_EL2", .state = ARM_CP_STATE_BOTH, 3714 .opc0 = 3, .opc1 = 4, .crn = 2, .crm = 1, .opc2 = 2, 3715 .access = PL2_RW, .accessfn = access_el3_aa32ns_aa64any, 3716 .type = ARM_CP_CONST, .resetvalue = 0 }, 3717 { .name = "VTTBR", .state = ARM_CP_STATE_AA32, 3718 .cp = 15, .opc1 = 6, .crm = 2, 3719 .access = PL2_RW, .accessfn = access_el3_aa32ns, 3720 .type = ARM_CP_CONST | ARM_CP_64BIT, .resetvalue = 0 }, 3721 { .name = "VTTBR_EL2", .state = ARM_CP_STATE_AA64, 3722 .opc0 = 3, .opc1 = 4, .crn = 2, .crm = 1, .opc2 = 0, 3723 .access = PL2_RW, .type = ARM_CP_CONST, .resetvalue = 0 }, 3724 { .name = "SCTLR_EL2", .state = ARM_CP_STATE_BOTH, 3725 .opc0 = 3, .opc1 = 4, .crn = 1, .crm = 0, .opc2 = 0, 3726 .access = PL2_RW, .type = ARM_CP_CONST, .resetvalue = 0 }, 3727 { .name = "TPIDR_EL2", .state = ARM_CP_STATE_BOTH, 3728 .opc0 = 3, .opc1 = 4, .crn = 13, .crm = 0, .opc2 = 2, 3729 .access = PL2_RW, .type = ARM_CP_CONST, .resetvalue = 0 }, 3730 { .name = "TTBR0_EL2", .state = ARM_CP_STATE_AA64, 3731 .opc0 = 3, .opc1 = 4, .crn = 2, .crm = 0, .opc2 = 0, 3732 .access = PL2_RW, .type = ARM_CP_CONST, .resetvalue = 0 }, 3733 { .name = "HTTBR", .cp = 15, .opc1 = 4, .crm = 2, 3734 .access = PL2_RW, .type = ARM_CP_64BIT | ARM_CP_CONST, 3735 .resetvalue = 0 }, 3736 { .name = "CNTHCTL_EL2", .state = ARM_CP_STATE_BOTH, 3737 .opc0 = 3, .opc1 = 4, .crn = 14, .crm = 1, .opc2 = 0, 3738 .access = PL2_RW, .type = ARM_CP_CONST, .resetvalue = 0 }, 3739 { .name = "CNTVOFF_EL2", .state = ARM_CP_STATE_AA64, 3740 .opc0 = 3, .opc1 = 4, .crn = 14, .crm = 0, .opc2 = 3, 3741 .access = PL2_RW, .type = ARM_CP_CONST, .resetvalue = 0 }, 3742 { .name = "CNTVOFF", .cp = 15, .opc1 = 4, .crm = 14, 3743 .access = PL2_RW, .type = ARM_CP_64BIT | ARM_CP_CONST, 3744 .resetvalue = 0 }, 3745 { .name = "CNTHP_CVAL_EL2", .state = ARM_CP_STATE_AA64, 3746 .opc0 = 3, .opc1 = 4, .crn = 14, .crm = 2, .opc2 = 2, 3747 .access = PL2_RW, .type = ARM_CP_CONST, .resetvalue = 0 }, 3748 { .name = "CNTHP_CVAL", .cp = 15, .opc1 = 6, .crm = 14, 3749 .access = PL2_RW, .type = ARM_CP_64BIT | ARM_CP_CONST, 3750 .resetvalue = 0 }, 3751 { .name = "CNTHP_TVAL_EL2", .state = ARM_CP_STATE_BOTH, 3752 .opc0 = 3, .opc1 = 4, .crn = 14, .crm = 2, .opc2 = 0, 3753 .access = PL2_RW, .type = ARM_CP_CONST, .resetvalue = 0 }, 3754 { .name = "CNTHP_CTL_EL2", .state = ARM_CP_STATE_BOTH, 3755 .opc0 = 3, .opc1 = 4, .crn = 14, .crm = 2, .opc2 = 1, 3756 .access = PL2_RW, .type = ARM_CP_CONST, .resetvalue = 0 }, 3757 { .name = "MDCR_EL2", .state = ARM_CP_STATE_BOTH, 3758 .opc0 = 3, .opc1 = 4, .crn = 1, .crm = 1, .opc2 = 1, 3759 .access = PL2_RW, .accessfn = access_tda, 3760 .type = ARM_CP_CONST, .resetvalue = 0 }, 3761 { .name = "HPFAR_EL2", .state = ARM_CP_STATE_BOTH, 3762 .opc0 = 3, .opc1 = 4, .crn = 6, .crm = 0, .opc2 = 4, 3763 .access = PL2_RW, .accessfn = access_el3_aa32ns_aa64any, 3764 .type = ARM_CP_CONST, .resetvalue = 0 }, 3765 { .name = "HSTR_EL2", .state = ARM_CP_STATE_BOTH, 3766 .opc0 = 3, .opc1 = 4, .crn = 1, .crm = 1, .opc2 = 3, 3767 .access = PL2_RW, .type = ARM_CP_CONST, .resetvalue = 0 }, 3768 REGINFO_SENTINEL 3769 }; 3770 3771 static void hcr_write(CPUARMState *env, const ARMCPRegInfo *ri, uint64_t value) 3772 { 3773 ARMCPU *cpu = arm_env_get_cpu(env); 3774 uint64_t valid_mask = HCR_MASK; 3775 3776 if (arm_feature(env, ARM_FEATURE_EL3)) { 3777 valid_mask &= ~HCR_HCD; 3778 } else if (cpu->psci_conduit != QEMU_PSCI_CONDUIT_SMC) { 3779 /* Architecturally HCR.TSC is RES0 if EL3 is not implemented. 3780 * However, if we're using the SMC PSCI conduit then QEMU is 3781 * effectively acting like EL3 firmware and so the guest at 3782 * EL2 should retain the ability to prevent EL1 from being 3783 * able to make SMC calls into the ersatz firmware, so in 3784 * that case HCR.TSC should be read/write. 3785 */ 3786 valid_mask &= ~HCR_TSC; 3787 } 3788 3789 /* Clear RES0 bits. */ 3790 value &= valid_mask; 3791 3792 /* These bits change the MMU setup: 3793 * HCR_VM enables stage 2 translation 3794 * HCR_PTW forbids certain page-table setups 3795 * HCR_DC Disables stage1 and enables stage2 translation 3796 */ 3797 if ((raw_read(env, ri) ^ value) & (HCR_VM | HCR_PTW | HCR_DC)) { 3798 tlb_flush(CPU(cpu)); 3799 } 3800 raw_write(env, ri, value); 3801 } 3802 3803 static const ARMCPRegInfo el2_cp_reginfo[] = { 3804 { .name = "HCR_EL2", .state = ARM_CP_STATE_AA64, 3805 .opc0 = 3, .opc1 = 4, .crn = 1, .crm = 1, .opc2 = 0, 3806 .access = PL2_RW, .fieldoffset = offsetof(CPUARMState, cp15.hcr_el2), 3807 .writefn = hcr_write }, 3808 { .name = "ELR_EL2", .state = ARM_CP_STATE_AA64, 3809 .type = ARM_CP_ALIAS, 3810 .opc0 = 3, .opc1 = 4, .crn = 4, .crm = 0, .opc2 = 1, 3811 .access = PL2_RW, 3812 .fieldoffset = offsetof(CPUARMState, elr_el[2]) }, 3813 { .name = "ESR_EL2", .state = ARM_CP_STATE_AA64, 3814 .opc0 = 3, .opc1 = 4, .crn = 5, .crm = 2, .opc2 = 0, 3815 .access = PL2_RW, .fieldoffset = offsetof(CPUARMState, cp15.esr_el[2]) }, 3816 { .name = "FAR_EL2", .state = ARM_CP_STATE_AA64, 3817 .opc0 = 3, .opc1 = 4, .crn = 6, .crm = 0, .opc2 = 0, 3818 .access = PL2_RW, .fieldoffset = offsetof(CPUARMState, cp15.far_el[2]) }, 3819 { .name = "SPSR_EL2", .state = ARM_CP_STATE_AA64, 3820 .type = ARM_CP_ALIAS, 3821 .opc0 = 3, .opc1 = 4, .crn = 4, .crm = 0, .opc2 = 0, 3822 .access = PL2_RW, 3823 .fieldoffset = offsetof(CPUARMState, banked_spsr[BANK_HYP]) }, 3824 { .name = "VBAR_EL2", .state = ARM_CP_STATE_AA64, 3825 .opc0 = 3, .opc1 = 4, .crn = 12, .crm = 0, .opc2 = 0, 3826 .access = PL2_RW, .writefn = vbar_write, 3827 .fieldoffset = offsetof(CPUARMState, cp15.vbar_el[2]), 3828 .resetvalue = 0 }, 3829 { .name = "SP_EL2", .state = ARM_CP_STATE_AA64, 3830 .opc0 = 3, .opc1 = 6, .crn = 4, .crm = 1, .opc2 = 0, 3831 .access = PL3_RW, .type = ARM_CP_ALIAS, 3832 .fieldoffset = offsetof(CPUARMState, sp_el[2]) }, 3833 { .name = "CPTR_EL2", .state = ARM_CP_STATE_BOTH, 3834 .opc0 = 3, .opc1 = 4, .crn = 1, .crm = 1, .opc2 = 2, 3835 .access = PL2_RW, .accessfn = cptr_access, .resetvalue = 0, 3836 .fieldoffset = offsetof(CPUARMState, cp15.cptr_el[2]) }, 3837 { .name = "MAIR_EL2", .state = ARM_CP_STATE_BOTH, 3838 .opc0 = 3, .opc1 = 4, .crn = 10, .crm = 2, .opc2 = 0, 3839 .access = PL2_RW, .fieldoffset = offsetof(CPUARMState, cp15.mair_el[2]), 3840 .resetvalue = 0 }, 3841 { .name = "HMAIR1", .state = ARM_CP_STATE_AA32, 3842 .opc1 = 4, .crn = 10, .crm = 2, .opc2 = 1, 3843 .access = PL2_RW, .type = ARM_CP_ALIAS, 3844 .fieldoffset = offsetofhigh32(CPUARMState, cp15.mair_el[2]) }, 3845 { .name = "AMAIR_EL2", .state = ARM_CP_STATE_BOTH, 3846 .opc0 = 3, .opc1 = 4, .crn = 10, .crm = 3, .opc2 = 0, 3847 .access = PL2_RW, .type = ARM_CP_CONST, 3848 .resetvalue = 0 }, 3849 /* HAMAIR1 is mapped to AMAIR_EL2[63:32] */ 3850 { .name = "HMAIR1", .state = ARM_CP_STATE_AA32, 3851 .opc1 = 4, .crn = 10, .crm = 3, .opc2 = 1, 3852 .access = PL2_RW, .type = ARM_CP_CONST, 3853 .resetvalue = 0 }, 3854 { .name = "AFSR0_EL2", .state = ARM_CP_STATE_BOTH, 3855 .opc0 = 3, .opc1 = 4, .crn = 5, .crm = 1, .opc2 = 0, 3856 .access = PL2_RW, .type = ARM_CP_CONST, 3857 .resetvalue = 0 }, 3858 { .name = "AFSR1_EL2", .state = ARM_CP_STATE_BOTH, 3859 .opc0 = 3, .opc1 = 4, .crn = 5, .crm = 1, .opc2 = 1, 3860 .access = PL2_RW, .type = ARM_CP_CONST, 3861 .resetvalue = 0 }, 3862 { .name = "TCR_EL2", .state = ARM_CP_STATE_BOTH, 3863 .opc0 = 3, .opc1 = 4, .crn = 2, .crm = 0, .opc2 = 2, 3864 .access = PL2_RW, 3865 /* no .writefn needed as this can't cause an ASID change; 3866 * no .raw_writefn or .resetfn needed as we never use mask/base_mask 3867 */ 3868 .fieldoffset = offsetof(CPUARMState, cp15.tcr_el[2]) }, 3869 { .name = "VTCR", .state = ARM_CP_STATE_AA32, 3870 .cp = 15, .opc1 = 4, .crn = 2, .crm = 1, .opc2 = 2, 3871 .type = ARM_CP_ALIAS, 3872 .access = PL2_RW, .accessfn = access_el3_aa32ns, 3873 .fieldoffset = offsetof(CPUARMState, cp15.vtcr_el2) }, 3874 { .name = "VTCR_EL2", .state = ARM_CP_STATE_AA64, 3875 .opc0 = 3, .opc1 = 4, .crn = 2, .crm = 1, .opc2 = 2, 3876 .access = PL2_RW, 3877 /* no .writefn needed as this can't cause an ASID change; 3878 * no .raw_writefn or .resetfn needed as we never use mask/base_mask 3879 */ 3880 .fieldoffset = offsetof(CPUARMState, cp15.vtcr_el2) }, 3881 { .name = "VTTBR", .state = ARM_CP_STATE_AA32, 3882 .cp = 15, .opc1 = 6, .crm = 2, 3883 .type = ARM_CP_64BIT | ARM_CP_ALIAS, 3884 .access = PL2_RW, .accessfn = access_el3_aa32ns, 3885 .fieldoffset = offsetof(CPUARMState, cp15.vttbr_el2), 3886 .writefn = vttbr_write }, 3887 { .name = "VTTBR_EL2", .state = ARM_CP_STATE_AA64, 3888 .opc0 = 3, .opc1 = 4, .crn = 2, .crm = 1, .opc2 = 0, 3889 .access = PL2_RW, .writefn = vttbr_write, 3890 .fieldoffset = offsetof(CPUARMState, cp15.vttbr_el2) }, 3891 { .name = "SCTLR_EL2", .state = ARM_CP_STATE_BOTH, 3892 .opc0 = 3, .opc1 = 4, .crn = 1, .crm = 0, .opc2 = 0, 3893 .access = PL2_RW, .raw_writefn = raw_write, .writefn = sctlr_write, 3894 .fieldoffset = offsetof(CPUARMState, cp15.sctlr_el[2]) }, 3895 { .name = "TPIDR_EL2", .state = ARM_CP_STATE_BOTH, 3896 .opc0 = 3, .opc1 = 4, .crn = 13, .crm = 0, .opc2 = 2, 3897 .access = PL2_RW, .resetvalue = 0, 3898 .fieldoffset = offsetof(CPUARMState, cp15.tpidr_el[2]) }, 3899 { .name = "TTBR0_EL2", .state = ARM_CP_STATE_AA64, 3900 .opc0 = 3, .opc1 = 4, .crn = 2, .crm = 0, .opc2 = 0, 3901 .access = PL2_RW, .resetvalue = 0, 3902 .fieldoffset = offsetof(CPUARMState, cp15.ttbr0_el[2]) }, 3903 { .name = "HTTBR", .cp = 15, .opc1 = 4, .crm = 2, 3904 .access = PL2_RW, .type = ARM_CP_64BIT | ARM_CP_ALIAS, 3905 .fieldoffset = offsetof(CPUARMState, cp15.ttbr0_el[2]) }, 3906 { .name = "TLBIALLNSNH", 3907 .cp = 15, .opc1 = 4, .crn = 8, .crm = 7, .opc2 = 4, 3908 .type = ARM_CP_NO_RAW, .access = PL2_W, 3909 .writefn = tlbiall_nsnh_write }, 3910 { .name = "TLBIALLNSNHIS", 3911 .cp = 15, .opc1 = 4, .crn = 8, .crm = 3, .opc2 = 4, 3912 .type = ARM_CP_NO_RAW, .access = PL2_W, 3913 .writefn = tlbiall_nsnh_is_write }, 3914 { .name = "TLBIALLH", .cp = 15, .opc1 = 4, .crn = 8, .crm = 7, .opc2 = 0, 3915 .type = ARM_CP_NO_RAW, .access = PL2_W, 3916 .writefn = tlbiall_hyp_write }, 3917 { .name = "TLBIALLHIS", .cp = 15, .opc1 = 4, .crn = 8, .crm = 3, .opc2 = 0, 3918 .type = ARM_CP_NO_RAW, .access = PL2_W, 3919 .writefn = tlbiall_hyp_is_write }, 3920 { .name = "TLBIMVAH", .cp = 15, .opc1 = 4, .crn = 8, .crm = 7, .opc2 = 1, 3921 .type = ARM_CP_NO_RAW, .access = PL2_W, 3922 .writefn = tlbimva_hyp_write }, 3923 { .name = "TLBIMVAHIS", .cp = 15, .opc1 = 4, .crn = 8, .crm = 3, .opc2 = 1, 3924 .type = ARM_CP_NO_RAW, .access = PL2_W, 3925 .writefn = tlbimva_hyp_is_write }, 3926 { .name = "TLBI_ALLE2", .state = ARM_CP_STATE_AA64, 3927 .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 7, .opc2 = 0, 3928 .type = ARM_CP_NO_RAW, .access = PL2_W, 3929 .writefn = tlbi_aa64_alle2_write }, 3930 { .name = "TLBI_VAE2", .state = ARM_CP_STATE_AA64, 3931 .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 7, .opc2 = 1, 3932 .type = ARM_CP_NO_RAW, .access = PL2_W, 3933 .writefn = tlbi_aa64_vae2_write }, 3934 { .name = "TLBI_VALE2", .state = ARM_CP_STATE_AA64, 3935 .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 7, .opc2 = 5, 3936 .access = PL2_W, .type = ARM_CP_NO_RAW, 3937 .writefn = tlbi_aa64_vae2_write }, 3938 { .name = "TLBI_ALLE2IS", .state = ARM_CP_STATE_AA64, 3939 .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 3, .opc2 = 0, 3940 .access = PL2_W, .type = ARM_CP_NO_RAW, 3941 .writefn = tlbi_aa64_alle2is_write }, 3942 { .name = "TLBI_VAE2IS", .state = ARM_CP_STATE_AA64, 3943 .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 3, .opc2 = 1, 3944 .type = ARM_CP_NO_RAW, .access = PL2_W, 3945 .writefn = tlbi_aa64_vae2is_write }, 3946 { .name = "TLBI_VALE2IS", .state = ARM_CP_STATE_AA64, 3947 .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 3, .opc2 = 5, 3948 .access = PL2_W, .type = ARM_CP_NO_RAW, 3949 .writefn = tlbi_aa64_vae2is_write }, 3950 #ifndef CONFIG_USER_ONLY 3951 /* Unlike the other EL2-related AT operations, these must 3952 * UNDEF from EL3 if EL2 is not implemented, which is why we 3953 * define them here rather than with the rest of the AT ops. 3954 */ 3955 { .name = "AT_S1E2R", .state = ARM_CP_STATE_AA64, 3956 .opc0 = 1, .opc1 = 4, .crn = 7, .crm = 8, .opc2 = 0, 3957 .access = PL2_W, .accessfn = at_s1e2_access, 3958 .type = ARM_CP_NO_RAW, .writefn = ats_write64 }, 3959 { .name = "AT_S1E2W", .state = ARM_CP_STATE_AA64, 3960 .opc0 = 1, .opc1 = 4, .crn = 7, .crm = 8, .opc2 = 1, 3961 .access = PL2_W, .accessfn = at_s1e2_access, 3962 .type = ARM_CP_NO_RAW, .writefn = ats_write64 }, 3963 /* The AArch32 ATS1H* operations are CONSTRAINED UNPREDICTABLE 3964 * if EL2 is not implemented; we choose to UNDEF. Behaviour at EL3 3965 * with SCR.NS == 0 outside Monitor mode is UNPREDICTABLE; we choose 3966 * to behave as if SCR.NS was 1. 3967 */ 3968 { .name = "ATS1HR", .cp = 15, .opc1 = 4, .crn = 7, .crm = 8, .opc2 = 0, 3969 .access = PL2_W, 3970 .writefn = ats1h_write, .type = ARM_CP_NO_RAW }, 3971 { .name = "ATS1HW", .cp = 15, .opc1 = 4, .crn = 7, .crm = 8, .opc2 = 1, 3972 .access = PL2_W, 3973 .writefn = ats1h_write, .type = ARM_CP_NO_RAW }, 3974 { .name = "CNTHCTL_EL2", .state = ARM_CP_STATE_BOTH, 3975 .opc0 = 3, .opc1 = 4, .crn = 14, .crm = 1, .opc2 = 0, 3976 /* ARMv7 requires bit 0 and 1 to reset to 1. ARMv8 defines the 3977 * reset values as IMPDEF. We choose to reset to 3 to comply with 3978 * both ARMv7 and ARMv8. 3979 */ 3980 .access = PL2_RW, .resetvalue = 3, 3981 .fieldoffset = offsetof(CPUARMState, cp15.cnthctl_el2) }, 3982 { .name = "CNTVOFF_EL2", .state = ARM_CP_STATE_AA64, 3983 .opc0 = 3, .opc1 = 4, .crn = 14, .crm = 0, .opc2 = 3, 3984 .access = PL2_RW, .type = ARM_CP_IO, .resetvalue = 0, 3985 .writefn = gt_cntvoff_write, 3986 .fieldoffset = offsetof(CPUARMState, cp15.cntvoff_el2) }, 3987 { .name = "CNTVOFF", .cp = 15, .opc1 = 4, .crm = 14, 3988 .access = PL2_RW, .type = ARM_CP_64BIT | ARM_CP_ALIAS | ARM_CP_IO, 3989 .writefn = gt_cntvoff_write, 3990 .fieldoffset = offsetof(CPUARMState, cp15.cntvoff_el2) }, 3991 { .name = "CNTHP_CVAL_EL2", .state = ARM_CP_STATE_AA64, 3992 .opc0 = 3, .opc1 = 4, .crn = 14, .crm = 2, .opc2 = 2, 3993 .fieldoffset = offsetof(CPUARMState, cp15.c14_timer[GTIMER_HYP].cval), 3994 .type = ARM_CP_IO, .access = PL2_RW, 3995 .writefn = gt_hyp_cval_write, .raw_writefn = raw_write }, 3996 { .name = "CNTHP_CVAL", .cp = 15, .opc1 = 6, .crm = 14, 3997 .fieldoffset = offsetof(CPUARMState, cp15.c14_timer[GTIMER_HYP].cval), 3998 .access = PL2_RW, .type = ARM_CP_64BIT | ARM_CP_IO, 3999 .writefn = gt_hyp_cval_write, .raw_writefn = raw_write }, 4000 { .name = "CNTHP_TVAL_EL2", .state = ARM_CP_STATE_BOTH, 4001 .opc0 = 3, .opc1 = 4, .crn = 14, .crm = 2, .opc2 = 0, 4002 .type = ARM_CP_NO_RAW | ARM_CP_IO, .access = PL2_RW, 4003 .resetfn = gt_hyp_timer_reset, 4004 .readfn = gt_hyp_tval_read, .writefn = gt_hyp_tval_write }, 4005 { .name = "CNTHP_CTL_EL2", .state = ARM_CP_STATE_BOTH, 4006 .type = ARM_CP_IO, 4007 .opc0 = 3, .opc1 = 4, .crn = 14, .crm = 2, .opc2 = 1, 4008 .access = PL2_RW, 4009 .fieldoffset = offsetof(CPUARMState, cp15.c14_timer[GTIMER_HYP].ctl), 4010 .resetvalue = 0, 4011 .writefn = gt_hyp_ctl_write, .raw_writefn = raw_write }, 4012 #endif 4013 /* The only field of MDCR_EL2 that has a defined architectural reset value 4014 * is MDCR_EL2.HPMN which should reset to the value of PMCR_EL0.N; but we 4015 * don't impelment any PMU event counters, so using zero as a reset 4016 * value for MDCR_EL2 is okay 4017 */ 4018 { .name = "MDCR_EL2", .state = ARM_CP_STATE_BOTH, 4019 .opc0 = 3, .opc1 = 4, .crn = 1, .crm = 1, .opc2 = 1, 4020 .access = PL2_RW, .resetvalue = 0, 4021 .fieldoffset = offsetof(CPUARMState, cp15.mdcr_el2), }, 4022 { .name = "HPFAR", .state = ARM_CP_STATE_AA32, 4023 .cp = 15, .opc1 = 4, .crn = 6, .crm = 0, .opc2 = 4, 4024 .access = PL2_RW, .accessfn = access_el3_aa32ns, 4025 .fieldoffset = offsetof(CPUARMState, cp15.hpfar_el2) }, 4026 { .name = "HPFAR_EL2", .state = ARM_CP_STATE_AA64, 4027 .opc0 = 3, .opc1 = 4, .crn = 6, .crm = 0, .opc2 = 4, 4028 .access = PL2_RW, 4029 .fieldoffset = offsetof(CPUARMState, cp15.hpfar_el2) }, 4030 { .name = "HSTR_EL2", .state = ARM_CP_STATE_BOTH, 4031 .cp = 15, .opc0 = 3, .opc1 = 4, .crn = 1, .crm = 1, .opc2 = 3, 4032 .access = PL2_RW, 4033 .fieldoffset = offsetof(CPUARMState, cp15.hstr_el2) }, 4034 REGINFO_SENTINEL 4035 }; 4036 4037 static CPAccessResult nsacr_access(CPUARMState *env, const ARMCPRegInfo *ri, 4038 bool isread) 4039 { 4040 /* The NSACR is RW at EL3, and RO for NS EL1 and NS EL2. 4041 * At Secure EL1 it traps to EL3. 4042 */ 4043 if (arm_current_el(env) == 3) { 4044 return CP_ACCESS_OK; 4045 } 4046 if (arm_is_secure_below_el3(env)) { 4047 return CP_ACCESS_TRAP_EL3; 4048 } 4049 /* Accesses from EL1 NS and EL2 NS are UNDEF for write but allow reads. */ 4050 if (isread) { 4051 return CP_ACCESS_OK; 4052 } 4053 return CP_ACCESS_TRAP_UNCATEGORIZED; 4054 } 4055 4056 static const ARMCPRegInfo el3_cp_reginfo[] = { 4057 { .name = "SCR_EL3", .state = ARM_CP_STATE_AA64, 4058 .opc0 = 3, .opc1 = 6, .crn = 1, .crm = 1, .opc2 = 0, 4059 .access = PL3_RW, .fieldoffset = offsetof(CPUARMState, cp15.scr_el3), 4060 .resetvalue = 0, .writefn = scr_write }, 4061 { .name = "SCR", .type = ARM_CP_ALIAS, 4062 .cp = 15, .opc1 = 0, .crn = 1, .crm = 1, .opc2 = 0, 4063 .access = PL1_RW, .accessfn = access_trap_aa32s_el1, 4064 .fieldoffset = offsetoflow32(CPUARMState, cp15.scr_el3), 4065 .writefn = scr_write }, 4066 { .name = "SDER32_EL3", .state = ARM_CP_STATE_AA64, 4067 .opc0 = 3, .opc1 = 6, .crn = 1, .crm = 1, .opc2 = 1, 4068 .access = PL3_RW, .resetvalue = 0, 4069 .fieldoffset = offsetof(CPUARMState, cp15.sder) }, 4070 { .name = "SDER", 4071 .cp = 15, .opc1 = 0, .crn = 1, .crm = 1, .opc2 = 1, 4072 .access = PL3_RW, .resetvalue = 0, 4073 .fieldoffset = offsetoflow32(CPUARMState, cp15.sder) }, 4074 { .name = "MVBAR", .cp = 15, .opc1 = 0, .crn = 12, .crm = 0, .opc2 = 1, 4075 .access = PL1_RW, .accessfn = access_trap_aa32s_el1, 4076 .writefn = vbar_write, .resetvalue = 0, 4077 .fieldoffset = offsetof(CPUARMState, cp15.mvbar) }, 4078 { .name = "TTBR0_EL3", .state = ARM_CP_STATE_AA64, 4079 .opc0 = 3, .opc1 = 6, .crn = 2, .crm = 0, .opc2 = 0, 4080 .access = PL3_RW, .writefn = vmsa_ttbr_write, .resetvalue = 0, 4081 .fieldoffset = offsetof(CPUARMState, cp15.ttbr0_el[3]) }, 4082 { .name = "TCR_EL3", .state = ARM_CP_STATE_AA64, 4083 .opc0 = 3, .opc1 = 6, .crn = 2, .crm = 0, .opc2 = 2, 4084 .access = PL3_RW, 4085 /* no .writefn needed as this can't cause an ASID change; 4086 * we must provide a .raw_writefn and .resetfn because we handle 4087 * reset and migration for the AArch32 TTBCR(S), which might be 4088 * using mask and base_mask. 4089 */ 4090 .resetfn = vmsa_ttbcr_reset, .raw_writefn = vmsa_ttbcr_raw_write, 4091 .fieldoffset = offsetof(CPUARMState, cp15.tcr_el[3]) }, 4092 { .name = "ELR_EL3", .state = ARM_CP_STATE_AA64, 4093 .type = ARM_CP_ALIAS, 4094 .opc0 = 3, .opc1 = 6, .crn = 4, .crm = 0, .opc2 = 1, 4095 .access = PL3_RW, 4096 .fieldoffset = offsetof(CPUARMState, elr_el[3]) }, 4097 { .name = "ESR_EL3", .state = ARM_CP_STATE_AA64, 4098 .opc0 = 3, .opc1 = 6, .crn = 5, .crm = 2, .opc2 = 0, 4099 .access = PL3_RW, .fieldoffset = offsetof(CPUARMState, cp15.esr_el[3]) }, 4100 { .name = "FAR_EL3", .state = ARM_CP_STATE_AA64, 4101 .opc0 = 3, .opc1 = 6, .crn = 6, .crm = 0, .opc2 = 0, 4102 .access = PL3_RW, .fieldoffset = offsetof(CPUARMState, cp15.far_el[3]) }, 4103 { .name = "SPSR_EL3", .state = ARM_CP_STATE_AA64, 4104 .type = ARM_CP_ALIAS, 4105 .opc0 = 3, .opc1 = 6, .crn = 4, .crm = 0, .opc2 = 0, 4106 .access = PL3_RW, 4107 .fieldoffset = offsetof(CPUARMState, banked_spsr[BANK_MON]) }, 4108 { .name = "VBAR_EL3", .state = ARM_CP_STATE_AA64, 4109 .opc0 = 3, .opc1 = 6, .crn = 12, .crm = 0, .opc2 = 0, 4110 .access = PL3_RW, .writefn = vbar_write, 4111 .fieldoffset = offsetof(CPUARMState, cp15.vbar_el[3]), 4112 .resetvalue = 0 }, 4113 { .name = "CPTR_EL3", .state = ARM_CP_STATE_AA64, 4114 .opc0 = 3, .opc1 = 6, .crn = 1, .crm = 1, .opc2 = 2, 4115 .access = PL3_RW, .accessfn = cptr_access, .resetvalue = 0, 4116 .fieldoffset = offsetof(CPUARMState, cp15.cptr_el[3]) }, 4117 { .name = "TPIDR_EL3", .state = ARM_CP_STATE_AA64, 4118 .opc0 = 3, .opc1 = 6, .crn = 13, .crm = 0, .opc2 = 2, 4119 .access = PL3_RW, .resetvalue = 0, 4120 .fieldoffset = offsetof(CPUARMState, cp15.tpidr_el[3]) }, 4121 { .name = "AMAIR_EL3", .state = ARM_CP_STATE_AA64, 4122 .opc0 = 3, .opc1 = 6, .crn = 10, .crm = 3, .opc2 = 0, 4123 .access = PL3_RW, .type = ARM_CP_CONST, 4124 .resetvalue = 0 }, 4125 { .name = "AFSR0_EL3", .state = ARM_CP_STATE_BOTH, 4126 .opc0 = 3, .opc1 = 6, .crn = 5, .crm = 1, .opc2 = 0, 4127 .access = PL3_RW, .type = ARM_CP_CONST, 4128 .resetvalue = 0 }, 4129 { .name = "AFSR1_EL3", .state = ARM_CP_STATE_BOTH, 4130 .opc0 = 3, .opc1 = 6, .crn = 5, .crm = 1, .opc2 = 1, 4131 .access = PL3_RW, .type = ARM_CP_CONST, 4132 .resetvalue = 0 }, 4133 { .name = "TLBI_ALLE3IS", .state = ARM_CP_STATE_AA64, 4134 .opc0 = 1, .opc1 = 6, .crn = 8, .crm = 3, .opc2 = 0, 4135 .access = PL3_W, .type = ARM_CP_NO_RAW, 4136 .writefn = tlbi_aa64_alle3is_write }, 4137 { .name = "TLBI_VAE3IS", .state = ARM_CP_STATE_AA64, 4138 .opc0 = 1, .opc1 = 6, .crn = 8, .crm = 3, .opc2 = 1, 4139 .access = PL3_W, .type = ARM_CP_NO_RAW, 4140 .writefn = tlbi_aa64_vae3is_write }, 4141 { .name = "TLBI_VALE3IS", .state = ARM_CP_STATE_AA64, 4142 .opc0 = 1, .opc1 = 6, .crn = 8, .crm = 3, .opc2 = 5, 4143 .access = PL3_W, .type = ARM_CP_NO_RAW, 4144 .writefn = tlbi_aa64_vae3is_write }, 4145 { .name = "TLBI_ALLE3", .state = ARM_CP_STATE_AA64, 4146 .opc0 = 1, .opc1 = 6, .crn = 8, .crm = 7, .opc2 = 0, 4147 .access = PL3_W, .type = ARM_CP_NO_RAW, 4148 .writefn = tlbi_aa64_alle3_write }, 4149 { .name = "TLBI_VAE3", .state = ARM_CP_STATE_AA64, 4150 .opc0 = 1, .opc1 = 6, .crn = 8, .crm = 7, .opc2 = 1, 4151 .access = PL3_W, .type = ARM_CP_NO_RAW, 4152 .writefn = tlbi_aa64_vae3_write }, 4153 { .name = "TLBI_VALE3", .state = ARM_CP_STATE_AA64, 4154 .opc0 = 1, .opc1 = 6, .crn = 8, .crm = 7, .opc2 = 5, 4155 .access = PL3_W, .type = ARM_CP_NO_RAW, 4156 .writefn = tlbi_aa64_vae3_write }, 4157 REGINFO_SENTINEL 4158 }; 4159 4160 static CPAccessResult ctr_el0_access(CPUARMState *env, const ARMCPRegInfo *ri, 4161 bool isread) 4162 { 4163 /* Only accessible in EL0 if SCTLR.UCT is set (and only in AArch64, 4164 * but the AArch32 CTR has its own reginfo struct) 4165 */ 4166 if (arm_current_el(env) == 0 && !(env->cp15.sctlr_el[1] & SCTLR_UCT)) { 4167 return CP_ACCESS_TRAP; 4168 } 4169 return CP_ACCESS_OK; 4170 } 4171 4172 static void oslar_write(CPUARMState *env, const ARMCPRegInfo *ri, 4173 uint64_t value) 4174 { 4175 /* Writes to OSLAR_EL1 may update the OS lock status, which can be 4176 * read via a bit in OSLSR_EL1. 4177 */ 4178 int oslock; 4179 4180 if (ri->state == ARM_CP_STATE_AA32) { 4181 oslock = (value == 0xC5ACCE55); 4182 } else { 4183 oslock = value & 1; 4184 } 4185 4186 env->cp15.oslsr_el1 = deposit32(env->cp15.oslsr_el1, 1, 1, oslock); 4187 } 4188 4189 static const ARMCPRegInfo debug_cp_reginfo[] = { 4190 /* DBGDRAR, DBGDSAR: always RAZ since we don't implement memory mapped 4191 * debug components. The AArch64 version of DBGDRAR is named MDRAR_EL1; 4192 * unlike DBGDRAR it is never accessible from EL0. 4193 * DBGDSAR is deprecated and must RAZ from v8 anyway, so it has no AArch64 4194 * accessor. 4195 */ 4196 { .name = "DBGDRAR", .cp = 14, .crn = 1, .crm = 0, .opc1 = 0, .opc2 = 0, 4197 .access = PL0_R, .accessfn = access_tdra, 4198 .type = ARM_CP_CONST, .resetvalue = 0 }, 4199 { .name = "MDRAR_EL1", .state = ARM_CP_STATE_AA64, 4200 .opc0 = 2, .opc1 = 0, .crn = 1, .crm = 0, .opc2 = 0, 4201 .access = PL1_R, .accessfn = access_tdra, 4202 .type = ARM_CP_CONST, .resetvalue = 0 }, 4203 { .name = "DBGDSAR", .cp = 14, .crn = 2, .crm = 0, .opc1 = 0, .opc2 = 0, 4204 .access = PL0_R, .accessfn = access_tdra, 4205 .type = ARM_CP_CONST, .resetvalue = 0 }, 4206 /* Monitor debug system control register; the 32-bit alias is DBGDSCRext. */ 4207 { .name = "MDSCR_EL1", .state = ARM_CP_STATE_BOTH, 4208 .cp = 14, .opc0 = 2, .opc1 = 0, .crn = 0, .crm = 2, .opc2 = 2, 4209 .access = PL1_RW, .accessfn = access_tda, 4210 .fieldoffset = offsetof(CPUARMState, cp15.mdscr_el1), 4211 .resetvalue = 0 }, 4212 /* MDCCSR_EL0, aka DBGDSCRint. This is a read-only mirror of MDSCR_EL1. 4213 * We don't implement the configurable EL0 access. 4214 */ 4215 { .name = "MDCCSR_EL0", .state = ARM_CP_STATE_BOTH, 4216 .cp = 14, .opc0 = 2, .opc1 = 0, .crn = 0, .crm = 1, .opc2 = 0, 4217 .type = ARM_CP_ALIAS, 4218 .access = PL1_R, .accessfn = access_tda, 4219 .fieldoffset = offsetof(CPUARMState, cp15.mdscr_el1), }, 4220 { .name = "OSLAR_EL1", .state = ARM_CP_STATE_BOTH, 4221 .cp = 14, .opc0 = 2, .opc1 = 0, .crn = 1, .crm = 0, .opc2 = 4, 4222 .access = PL1_W, .type = ARM_CP_NO_RAW, 4223 .accessfn = access_tdosa, 4224 .writefn = oslar_write }, 4225 { .name = "OSLSR_EL1", .state = ARM_CP_STATE_BOTH, 4226 .cp = 14, .opc0 = 2, .opc1 = 0, .crn = 1, .crm = 1, .opc2 = 4, 4227 .access = PL1_R, .resetvalue = 10, 4228 .accessfn = access_tdosa, 4229 .fieldoffset = offsetof(CPUARMState, cp15.oslsr_el1) }, 4230 /* Dummy OSDLR_EL1: 32-bit Linux will read this */ 4231 { .name = "OSDLR_EL1", .state = ARM_CP_STATE_BOTH, 4232 .cp = 14, .opc0 = 2, .opc1 = 0, .crn = 1, .crm = 3, .opc2 = 4, 4233 .access = PL1_RW, .accessfn = access_tdosa, 4234 .type = ARM_CP_NOP }, 4235 /* Dummy DBGVCR: Linux wants to clear this on startup, but we don't 4236 * implement vector catch debug events yet. 4237 */ 4238 { .name = "DBGVCR", 4239 .cp = 14, .opc1 = 0, .crn = 0, .crm = 7, .opc2 = 0, 4240 .access = PL1_RW, .accessfn = access_tda, 4241 .type = ARM_CP_NOP }, 4242 /* Dummy DBGVCR32_EL2 (which is only for a 64-bit hypervisor 4243 * to save and restore a 32-bit guest's DBGVCR) 4244 */ 4245 { .name = "DBGVCR32_EL2", .state = ARM_CP_STATE_AA64, 4246 .opc0 = 2, .opc1 = 4, .crn = 0, .crm = 7, .opc2 = 0, 4247 .access = PL2_RW, .accessfn = access_tda, 4248 .type = ARM_CP_NOP }, 4249 /* Dummy MDCCINT_EL1, since we don't implement the Debug Communications 4250 * Channel but Linux may try to access this register. The 32-bit 4251 * alias is DBGDCCINT. 4252 */ 4253 { .name = "MDCCINT_EL1", .state = ARM_CP_STATE_BOTH, 4254 .cp = 14, .opc0 = 2, .opc1 = 0, .crn = 0, .crm = 2, .opc2 = 0, 4255 .access = PL1_RW, .accessfn = access_tda, 4256 .type = ARM_CP_NOP }, 4257 REGINFO_SENTINEL 4258 }; 4259 4260 static const ARMCPRegInfo debug_lpae_cp_reginfo[] = { 4261 /* 64 bit access versions of the (dummy) debug registers */ 4262 { .name = "DBGDRAR", .cp = 14, .crm = 1, .opc1 = 0, 4263 .access = PL0_R, .type = ARM_CP_CONST|ARM_CP_64BIT, .resetvalue = 0 }, 4264 { .name = "DBGDSAR", .cp = 14, .crm = 2, .opc1 = 0, 4265 .access = PL0_R, .type = ARM_CP_CONST|ARM_CP_64BIT, .resetvalue = 0 }, 4266 REGINFO_SENTINEL 4267 }; 4268 4269 void hw_watchpoint_update(ARMCPU *cpu, int n) 4270 { 4271 CPUARMState *env = &cpu->env; 4272 vaddr len = 0; 4273 vaddr wvr = env->cp15.dbgwvr[n]; 4274 uint64_t wcr = env->cp15.dbgwcr[n]; 4275 int mask; 4276 int flags = BP_CPU | BP_STOP_BEFORE_ACCESS; 4277 4278 if (env->cpu_watchpoint[n]) { 4279 cpu_watchpoint_remove_by_ref(CPU(cpu), env->cpu_watchpoint[n]); 4280 env->cpu_watchpoint[n] = NULL; 4281 } 4282 4283 if (!extract64(wcr, 0, 1)) { 4284 /* E bit clear : watchpoint disabled */ 4285 return; 4286 } 4287 4288 switch (extract64(wcr, 3, 2)) { 4289 case 0: 4290 /* LSC 00 is reserved and must behave as if the wp is disabled */ 4291 return; 4292 case 1: 4293 flags |= BP_MEM_READ; 4294 break; 4295 case 2: 4296 flags |= BP_MEM_WRITE; 4297 break; 4298 case 3: 4299 flags |= BP_MEM_ACCESS; 4300 break; 4301 } 4302 4303 /* Attempts to use both MASK and BAS fields simultaneously are 4304 * CONSTRAINED UNPREDICTABLE; we opt to ignore BAS in this case, 4305 * thus generating a watchpoint for every byte in the masked region. 4306 */ 4307 mask = extract64(wcr, 24, 4); 4308 if (mask == 1 || mask == 2) { 4309 /* Reserved values of MASK; we must act as if the mask value was 4310 * some non-reserved value, or as if the watchpoint were disabled. 4311 * We choose the latter. 4312 */ 4313 return; 4314 } else if (mask) { 4315 /* Watchpoint covers an aligned area up to 2GB in size */ 4316 len = 1ULL << mask; 4317 /* If masked bits in WVR are not zero it's CONSTRAINED UNPREDICTABLE 4318 * whether the watchpoint fires when the unmasked bits match; we opt 4319 * to generate the exceptions. 4320 */ 4321 wvr &= ~(len - 1); 4322 } else { 4323 /* Watchpoint covers bytes defined by the byte address select bits */ 4324 int bas = extract64(wcr, 5, 8); 4325 int basstart; 4326 4327 if (bas == 0) { 4328 /* This must act as if the watchpoint is disabled */ 4329 return; 4330 } 4331 4332 if (extract64(wvr, 2, 1)) { 4333 /* Deprecated case of an only 4-aligned address. BAS[7:4] are 4334 * ignored, and BAS[3:0] define which bytes to watch. 4335 */ 4336 bas &= 0xf; 4337 } 4338 /* The BAS bits are supposed to be programmed to indicate a contiguous 4339 * range of bytes. Otherwise it is CONSTRAINED UNPREDICTABLE whether 4340 * we fire for each byte in the word/doubleword addressed by the WVR. 4341 * We choose to ignore any non-zero bits after the first range of 1s. 4342 */ 4343 basstart = ctz32(bas); 4344 len = cto32(bas >> basstart); 4345 wvr += basstart; 4346 } 4347 4348 cpu_watchpoint_insert(CPU(cpu), wvr, len, flags, 4349 &env->cpu_watchpoint[n]); 4350 } 4351 4352 void hw_watchpoint_update_all(ARMCPU *cpu) 4353 { 4354 int i; 4355 CPUARMState *env = &cpu->env; 4356 4357 /* Completely clear out existing QEMU watchpoints and our array, to 4358 * avoid possible stale entries following migration load. 4359 */ 4360 cpu_watchpoint_remove_all(CPU(cpu), BP_CPU); 4361 memset(env->cpu_watchpoint, 0, sizeof(env->cpu_watchpoint)); 4362 4363 for (i = 0; i < ARRAY_SIZE(cpu->env.cpu_watchpoint); i++) { 4364 hw_watchpoint_update(cpu, i); 4365 } 4366 } 4367 4368 static void dbgwvr_write(CPUARMState *env, const ARMCPRegInfo *ri, 4369 uint64_t value) 4370 { 4371 ARMCPU *cpu = arm_env_get_cpu(env); 4372 int i = ri->crm; 4373 4374 /* Bits [63:49] are hardwired to the value of bit [48]; that is, the 4375 * register reads and behaves as if values written are sign extended. 4376 * Bits [1:0] are RES0. 4377 */ 4378 value = sextract64(value, 0, 49) & ~3ULL; 4379 4380 raw_write(env, ri, value); 4381 hw_watchpoint_update(cpu, i); 4382 } 4383 4384 static void dbgwcr_write(CPUARMState *env, const ARMCPRegInfo *ri, 4385 uint64_t value) 4386 { 4387 ARMCPU *cpu = arm_env_get_cpu(env); 4388 int i = ri->crm; 4389 4390 raw_write(env, ri, value); 4391 hw_watchpoint_update(cpu, i); 4392 } 4393 4394 void hw_breakpoint_update(ARMCPU *cpu, int n) 4395 { 4396 CPUARMState *env = &cpu->env; 4397 uint64_t bvr = env->cp15.dbgbvr[n]; 4398 uint64_t bcr = env->cp15.dbgbcr[n]; 4399 vaddr addr; 4400 int bt; 4401 int flags = BP_CPU; 4402 4403 if (env->cpu_breakpoint[n]) { 4404 cpu_breakpoint_remove_by_ref(CPU(cpu), env->cpu_breakpoint[n]); 4405 env->cpu_breakpoint[n] = NULL; 4406 } 4407 4408 if (!extract64(bcr, 0, 1)) { 4409 /* E bit clear : watchpoint disabled */ 4410 return; 4411 } 4412 4413 bt = extract64(bcr, 20, 4); 4414 4415 switch (bt) { 4416 case 4: /* unlinked address mismatch (reserved if AArch64) */ 4417 case 5: /* linked address mismatch (reserved if AArch64) */ 4418 qemu_log_mask(LOG_UNIMP, 4419 "arm: address mismatch breakpoint types not implemented"); 4420 return; 4421 case 0: /* unlinked address match */ 4422 case 1: /* linked address match */ 4423 { 4424 /* Bits [63:49] are hardwired to the value of bit [48]; that is, 4425 * we behave as if the register was sign extended. Bits [1:0] are 4426 * RES0. The BAS field is used to allow setting breakpoints on 16 4427 * bit wide instructions; it is CONSTRAINED UNPREDICTABLE whether 4428 * a bp will fire if the addresses covered by the bp and the addresses 4429 * covered by the insn overlap but the insn doesn't start at the 4430 * start of the bp address range. We choose to require the insn and 4431 * the bp to have the same address. The constraints on writing to 4432 * BAS enforced in dbgbcr_write mean we have only four cases: 4433 * 0b0000 => no breakpoint 4434 * 0b0011 => breakpoint on addr 4435 * 0b1100 => breakpoint on addr + 2 4436 * 0b1111 => breakpoint on addr 4437 * See also figure D2-3 in the v8 ARM ARM (DDI0487A.c). 4438 */ 4439 int bas = extract64(bcr, 5, 4); 4440 addr = sextract64(bvr, 0, 49) & ~3ULL; 4441 if (bas == 0) { 4442 return; 4443 } 4444 if (bas == 0xc) { 4445 addr += 2; 4446 } 4447 break; 4448 } 4449 case 2: /* unlinked context ID match */ 4450 case 8: /* unlinked VMID match (reserved if no EL2) */ 4451 case 10: /* unlinked context ID and VMID match (reserved if no EL2) */ 4452 qemu_log_mask(LOG_UNIMP, 4453 "arm: unlinked context breakpoint types not implemented"); 4454 return; 4455 case 9: /* linked VMID match (reserved if no EL2) */ 4456 case 11: /* linked context ID and VMID match (reserved if no EL2) */ 4457 case 3: /* linked context ID match */ 4458 default: 4459 /* We must generate no events for Linked context matches (unless 4460 * they are linked to by some other bp/wp, which is handled in 4461 * updates for the linking bp/wp). We choose to also generate no events 4462 * for reserved values. 4463 */ 4464 return; 4465 } 4466 4467 cpu_breakpoint_insert(CPU(cpu), addr, flags, &env->cpu_breakpoint[n]); 4468 } 4469 4470 void hw_breakpoint_update_all(ARMCPU *cpu) 4471 { 4472 int i; 4473 CPUARMState *env = &cpu->env; 4474 4475 /* Completely clear out existing QEMU breakpoints and our array, to 4476 * avoid possible stale entries following migration load. 4477 */ 4478 cpu_breakpoint_remove_all(CPU(cpu), BP_CPU); 4479 memset(env->cpu_breakpoint, 0, sizeof(env->cpu_breakpoint)); 4480 4481 for (i = 0; i < ARRAY_SIZE(cpu->env.cpu_breakpoint); i++) { 4482 hw_breakpoint_update(cpu, i); 4483 } 4484 } 4485 4486 static void dbgbvr_write(CPUARMState *env, const ARMCPRegInfo *ri, 4487 uint64_t value) 4488 { 4489 ARMCPU *cpu = arm_env_get_cpu(env); 4490 int i = ri->crm; 4491 4492 raw_write(env, ri, value); 4493 hw_breakpoint_update(cpu, i); 4494 } 4495 4496 static void dbgbcr_write(CPUARMState *env, const ARMCPRegInfo *ri, 4497 uint64_t value) 4498 { 4499 ARMCPU *cpu = arm_env_get_cpu(env); 4500 int i = ri->crm; 4501 4502 /* BAS[3] is a read-only copy of BAS[2], and BAS[1] a read-only 4503 * copy of BAS[0]. 4504 */ 4505 value = deposit64(value, 6, 1, extract64(value, 5, 1)); 4506 value = deposit64(value, 8, 1, extract64(value, 7, 1)); 4507 4508 raw_write(env, ri, value); 4509 hw_breakpoint_update(cpu, i); 4510 } 4511 4512 static void define_debug_regs(ARMCPU *cpu) 4513 { 4514 /* Define v7 and v8 architectural debug registers. 4515 * These are just dummy implementations for now. 4516 */ 4517 int i; 4518 int wrps, brps, ctx_cmps; 4519 ARMCPRegInfo dbgdidr = { 4520 .name = "DBGDIDR", .cp = 14, .crn = 0, .crm = 0, .opc1 = 0, .opc2 = 0, 4521 .access = PL0_R, .accessfn = access_tda, 4522 .type = ARM_CP_CONST, .resetvalue = cpu->dbgdidr, 4523 }; 4524 4525 /* Note that all these register fields hold "number of Xs minus 1". */ 4526 brps = extract32(cpu->dbgdidr, 24, 4); 4527 wrps = extract32(cpu->dbgdidr, 28, 4); 4528 ctx_cmps = extract32(cpu->dbgdidr, 20, 4); 4529 4530 assert(ctx_cmps <= brps); 4531 4532 /* The DBGDIDR and ID_AA64DFR0_EL1 define various properties 4533 * of the debug registers such as number of breakpoints; 4534 * check that if they both exist then they agree. 4535 */ 4536 if (arm_feature(&cpu->env, ARM_FEATURE_AARCH64)) { 4537 assert(extract32(cpu->id_aa64dfr0, 12, 4) == brps); 4538 assert(extract32(cpu->id_aa64dfr0, 20, 4) == wrps); 4539 assert(extract32(cpu->id_aa64dfr0, 28, 4) == ctx_cmps); 4540 } 4541 4542 define_one_arm_cp_reg(cpu, &dbgdidr); 4543 define_arm_cp_regs(cpu, debug_cp_reginfo); 4544 4545 if (arm_feature(&cpu->env, ARM_FEATURE_LPAE)) { 4546 define_arm_cp_regs(cpu, debug_lpae_cp_reginfo); 4547 } 4548 4549 for (i = 0; i < brps + 1; i++) { 4550 ARMCPRegInfo dbgregs[] = { 4551 { .name = "DBGBVR", .state = ARM_CP_STATE_BOTH, 4552 .cp = 14, .opc0 = 2, .opc1 = 0, .crn = 0, .crm = i, .opc2 = 4, 4553 .access = PL1_RW, .accessfn = access_tda, 4554 .fieldoffset = offsetof(CPUARMState, cp15.dbgbvr[i]), 4555 .writefn = dbgbvr_write, .raw_writefn = raw_write 4556 }, 4557 { .name = "DBGBCR", .state = ARM_CP_STATE_BOTH, 4558 .cp = 14, .opc0 = 2, .opc1 = 0, .crn = 0, .crm = i, .opc2 = 5, 4559 .access = PL1_RW, .accessfn = access_tda, 4560 .fieldoffset = offsetof(CPUARMState, cp15.dbgbcr[i]), 4561 .writefn = dbgbcr_write, .raw_writefn = raw_write 4562 }, 4563 REGINFO_SENTINEL 4564 }; 4565 define_arm_cp_regs(cpu, dbgregs); 4566 } 4567 4568 for (i = 0; i < wrps + 1; i++) { 4569 ARMCPRegInfo dbgregs[] = { 4570 { .name = "DBGWVR", .state = ARM_CP_STATE_BOTH, 4571 .cp = 14, .opc0 = 2, .opc1 = 0, .crn = 0, .crm = i, .opc2 = 6, 4572 .access = PL1_RW, .accessfn = access_tda, 4573 .fieldoffset = offsetof(CPUARMState, cp15.dbgwvr[i]), 4574 .writefn = dbgwvr_write, .raw_writefn = raw_write 4575 }, 4576 { .name = "DBGWCR", .state = ARM_CP_STATE_BOTH, 4577 .cp = 14, .opc0 = 2, .opc1 = 0, .crn = 0, .crm = i, .opc2 = 7, 4578 .access = PL1_RW, .accessfn = access_tda, 4579 .fieldoffset = offsetof(CPUARMState, cp15.dbgwcr[i]), 4580 .writefn = dbgwcr_write, .raw_writefn = raw_write 4581 }, 4582 REGINFO_SENTINEL 4583 }; 4584 define_arm_cp_regs(cpu, dbgregs); 4585 } 4586 } 4587 4588 /* We don't know until after realize whether there's a GICv3 4589 * attached, and that is what registers the gicv3 sysregs. 4590 * So we have to fill in the GIC fields in ID_PFR/ID_PFR1_EL1/ID_AA64PFR0_EL1 4591 * at runtime. 4592 */ 4593 static uint64_t id_pfr1_read(CPUARMState *env, const ARMCPRegInfo *ri) 4594 { 4595 ARMCPU *cpu = arm_env_get_cpu(env); 4596 uint64_t pfr1 = cpu->id_pfr1; 4597 4598 if (env->gicv3state) { 4599 pfr1 |= 1 << 28; 4600 } 4601 return pfr1; 4602 } 4603 4604 static uint64_t id_aa64pfr0_read(CPUARMState *env, const ARMCPRegInfo *ri) 4605 { 4606 ARMCPU *cpu = arm_env_get_cpu(env); 4607 uint64_t pfr0 = cpu->id_aa64pfr0; 4608 4609 if (env->gicv3state) { 4610 pfr0 |= 1 << 24; 4611 } 4612 return pfr0; 4613 } 4614 4615 void register_cp_regs_for_features(ARMCPU *cpu) 4616 { 4617 /* Register all the coprocessor registers based on feature bits */ 4618 CPUARMState *env = &cpu->env; 4619 if (arm_feature(env, ARM_FEATURE_M)) { 4620 /* M profile has no coprocessor registers */ 4621 return; 4622 } 4623 4624 define_arm_cp_regs(cpu, cp_reginfo); 4625 if (!arm_feature(env, ARM_FEATURE_V8)) { 4626 /* Must go early as it is full of wildcards that may be 4627 * overridden by later definitions. 4628 */ 4629 define_arm_cp_regs(cpu, not_v8_cp_reginfo); 4630 } 4631 4632 if (arm_feature(env, ARM_FEATURE_V6)) { 4633 /* The ID registers all have impdef reset values */ 4634 ARMCPRegInfo v6_idregs[] = { 4635 { .name = "ID_PFR0", .state = ARM_CP_STATE_BOTH, 4636 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 1, .opc2 = 0, 4637 .access = PL1_R, .type = ARM_CP_CONST, 4638 .resetvalue = cpu->id_pfr0 }, 4639 /* ID_PFR1 is not a plain ARM_CP_CONST because we don't know 4640 * the value of the GIC field until after we define these regs. 4641 */ 4642 { .name = "ID_PFR1", .state = ARM_CP_STATE_BOTH, 4643 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 1, .opc2 = 1, 4644 .access = PL1_R, .type = ARM_CP_NO_RAW, 4645 .readfn = id_pfr1_read, 4646 .writefn = arm_cp_write_ignore }, 4647 { .name = "ID_DFR0", .state = ARM_CP_STATE_BOTH, 4648 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 1, .opc2 = 2, 4649 .access = PL1_R, .type = ARM_CP_CONST, 4650 .resetvalue = cpu->id_dfr0 }, 4651 { .name = "ID_AFR0", .state = ARM_CP_STATE_BOTH, 4652 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 1, .opc2 = 3, 4653 .access = PL1_R, .type = ARM_CP_CONST, 4654 .resetvalue = cpu->id_afr0 }, 4655 { .name = "ID_MMFR0", .state = ARM_CP_STATE_BOTH, 4656 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 1, .opc2 = 4, 4657 .access = PL1_R, .type = ARM_CP_CONST, 4658 .resetvalue = cpu->id_mmfr0 }, 4659 { .name = "ID_MMFR1", .state = ARM_CP_STATE_BOTH, 4660 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 1, .opc2 = 5, 4661 .access = PL1_R, .type = ARM_CP_CONST, 4662 .resetvalue = cpu->id_mmfr1 }, 4663 { .name = "ID_MMFR2", .state = ARM_CP_STATE_BOTH, 4664 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 1, .opc2 = 6, 4665 .access = PL1_R, .type = ARM_CP_CONST, 4666 .resetvalue = cpu->id_mmfr2 }, 4667 { .name = "ID_MMFR3", .state = ARM_CP_STATE_BOTH, 4668 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 1, .opc2 = 7, 4669 .access = PL1_R, .type = ARM_CP_CONST, 4670 .resetvalue = cpu->id_mmfr3 }, 4671 { .name = "ID_ISAR0", .state = ARM_CP_STATE_BOTH, 4672 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 2, .opc2 = 0, 4673 .access = PL1_R, .type = ARM_CP_CONST, 4674 .resetvalue = cpu->id_isar0 }, 4675 { .name = "ID_ISAR1", .state = ARM_CP_STATE_BOTH, 4676 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 2, .opc2 = 1, 4677 .access = PL1_R, .type = ARM_CP_CONST, 4678 .resetvalue = cpu->id_isar1 }, 4679 { .name = "ID_ISAR2", .state = ARM_CP_STATE_BOTH, 4680 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 2, .opc2 = 2, 4681 .access = PL1_R, .type = ARM_CP_CONST, 4682 .resetvalue = cpu->id_isar2 }, 4683 { .name = "ID_ISAR3", .state = ARM_CP_STATE_BOTH, 4684 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 2, .opc2 = 3, 4685 .access = PL1_R, .type = ARM_CP_CONST, 4686 .resetvalue = cpu->id_isar3 }, 4687 { .name = "ID_ISAR4", .state = ARM_CP_STATE_BOTH, 4688 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 2, .opc2 = 4, 4689 .access = PL1_R, .type = ARM_CP_CONST, 4690 .resetvalue = cpu->id_isar4 }, 4691 { .name = "ID_ISAR5", .state = ARM_CP_STATE_BOTH, 4692 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 2, .opc2 = 5, 4693 .access = PL1_R, .type = ARM_CP_CONST, 4694 .resetvalue = cpu->id_isar5 }, 4695 { .name = "ID_MMFR4", .state = ARM_CP_STATE_BOTH, 4696 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 2, .opc2 = 6, 4697 .access = PL1_R, .type = ARM_CP_CONST, 4698 .resetvalue = cpu->id_mmfr4 }, 4699 /* 7 is as yet unallocated and must RAZ */ 4700 { .name = "ID_ISAR7_RESERVED", .state = ARM_CP_STATE_BOTH, 4701 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 2, .opc2 = 7, 4702 .access = PL1_R, .type = ARM_CP_CONST, 4703 .resetvalue = 0 }, 4704 REGINFO_SENTINEL 4705 }; 4706 define_arm_cp_regs(cpu, v6_idregs); 4707 define_arm_cp_regs(cpu, v6_cp_reginfo); 4708 } else { 4709 define_arm_cp_regs(cpu, not_v6_cp_reginfo); 4710 } 4711 if (arm_feature(env, ARM_FEATURE_V6K)) { 4712 define_arm_cp_regs(cpu, v6k_cp_reginfo); 4713 } 4714 if (arm_feature(env, ARM_FEATURE_V7MP) && 4715 !arm_feature(env, ARM_FEATURE_PMSA)) { 4716 define_arm_cp_regs(cpu, v7mp_cp_reginfo); 4717 } 4718 if (arm_feature(env, ARM_FEATURE_V7)) { 4719 /* v7 performance monitor control register: same implementor 4720 * field as main ID register, and we implement only the cycle 4721 * count register. 4722 */ 4723 #ifndef CONFIG_USER_ONLY 4724 ARMCPRegInfo pmcr = { 4725 .name = "PMCR", .cp = 15, .crn = 9, .crm = 12, .opc1 = 0, .opc2 = 0, 4726 .access = PL0_RW, 4727 .type = ARM_CP_IO | ARM_CP_ALIAS, 4728 .fieldoffset = offsetoflow32(CPUARMState, cp15.c9_pmcr), 4729 .accessfn = pmreg_access, .writefn = pmcr_write, 4730 .raw_writefn = raw_write, 4731 }; 4732 ARMCPRegInfo pmcr64 = { 4733 .name = "PMCR_EL0", .state = ARM_CP_STATE_AA64, 4734 .opc0 = 3, .opc1 = 3, .crn = 9, .crm = 12, .opc2 = 0, 4735 .access = PL0_RW, .accessfn = pmreg_access, 4736 .type = ARM_CP_IO, 4737 .fieldoffset = offsetof(CPUARMState, cp15.c9_pmcr), 4738 .resetvalue = cpu->midr & 0xff000000, 4739 .writefn = pmcr_write, .raw_writefn = raw_write, 4740 }; 4741 define_one_arm_cp_reg(cpu, &pmcr); 4742 define_one_arm_cp_reg(cpu, &pmcr64); 4743 #endif 4744 ARMCPRegInfo clidr = { 4745 .name = "CLIDR", .state = ARM_CP_STATE_BOTH, 4746 .opc0 = 3, .crn = 0, .crm = 0, .opc1 = 1, .opc2 = 1, 4747 .access = PL1_R, .type = ARM_CP_CONST, .resetvalue = cpu->clidr 4748 }; 4749 define_one_arm_cp_reg(cpu, &clidr); 4750 define_arm_cp_regs(cpu, v7_cp_reginfo); 4751 define_debug_regs(cpu); 4752 } else { 4753 define_arm_cp_regs(cpu, not_v7_cp_reginfo); 4754 } 4755 if (arm_feature(env, ARM_FEATURE_V8)) { 4756 /* AArch64 ID registers, which all have impdef reset values. 4757 * Note that within the ID register ranges the unused slots 4758 * must all RAZ, not UNDEF; future architecture versions may 4759 * define new registers here. 4760 */ 4761 ARMCPRegInfo v8_idregs[] = { 4762 /* ID_AA64PFR0_EL1 is not a plain ARM_CP_CONST because we don't 4763 * know the right value for the GIC field until after we 4764 * define these regs. 4765 */ 4766 { .name = "ID_AA64PFR0_EL1", .state = ARM_CP_STATE_AA64, 4767 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 4, .opc2 = 0, 4768 .access = PL1_R, .type = ARM_CP_NO_RAW, 4769 .readfn = id_aa64pfr0_read, 4770 .writefn = arm_cp_write_ignore }, 4771 { .name = "ID_AA64PFR1_EL1", .state = ARM_CP_STATE_AA64, 4772 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 4, .opc2 = 1, 4773 .access = PL1_R, .type = ARM_CP_CONST, 4774 .resetvalue = cpu->id_aa64pfr1}, 4775 { .name = "ID_AA64PFR2_EL1_RESERVED", .state = ARM_CP_STATE_AA64, 4776 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 4, .opc2 = 2, 4777 .access = PL1_R, .type = ARM_CP_CONST, 4778 .resetvalue = 0 }, 4779 { .name = "ID_AA64PFR3_EL1_RESERVED", .state = ARM_CP_STATE_AA64, 4780 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 4, .opc2 = 3, 4781 .access = PL1_R, .type = ARM_CP_CONST, 4782 .resetvalue = 0 }, 4783 { .name = "ID_AA64PFR4_EL1_RESERVED", .state = ARM_CP_STATE_AA64, 4784 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 4, .opc2 = 4, 4785 .access = PL1_R, .type = ARM_CP_CONST, 4786 .resetvalue = 0 }, 4787 { .name = "ID_AA64PFR5_EL1_RESERVED", .state = ARM_CP_STATE_AA64, 4788 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 4, .opc2 = 5, 4789 .access = PL1_R, .type = ARM_CP_CONST, 4790 .resetvalue = 0 }, 4791 { .name = "ID_AA64PFR6_EL1_RESERVED", .state = ARM_CP_STATE_AA64, 4792 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 4, .opc2 = 6, 4793 .access = PL1_R, .type = ARM_CP_CONST, 4794 .resetvalue = 0 }, 4795 { .name = "ID_AA64PFR7_EL1_RESERVED", .state = ARM_CP_STATE_AA64, 4796 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 4, .opc2 = 7, 4797 .access = PL1_R, .type = ARM_CP_CONST, 4798 .resetvalue = 0 }, 4799 { .name = "ID_AA64DFR0_EL1", .state = ARM_CP_STATE_AA64, 4800 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 5, .opc2 = 0, 4801 .access = PL1_R, .type = ARM_CP_CONST, 4802 .resetvalue = cpu->id_aa64dfr0 }, 4803 { .name = "ID_AA64DFR1_EL1", .state = ARM_CP_STATE_AA64, 4804 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 5, .opc2 = 1, 4805 .access = PL1_R, .type = ARM_CP_CONST, 4806 .resetvalue = cpu->id_aa64dfr1 }, 4807 { .name = "ID_AA64DFR2_EL1_RESERVED", .state = ARM_CP_STATE_AA64, 4808 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 5, .opc2 = 2, 4809 .access = PL1_R, .type = ARM_CP_CONST, 4810 .resetvalue = 0 }, 4811 { .name = "ID_AA64DFR3_EL1_RESERVED", .state = ARM_CP_STATE_AA64, 4812 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 5, .opc2 = 3, 4813 .access = PL1_R, .type = ARM_CP_CONST, 4814 .resetvalue = 0 }, 4815 { .name = "ID_AA64AFR0_EL1", .state = ARM_CP_STATE_AA64, 4816 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 5, .opc2 = 4, 4817 .access = PL1_R, .type = ARM_CP_CONST, 4818 .resetvalue = cpu->id_aa64afr0 }, 4819 { .name = "ID_AA64AFR1_EL1", .state = ARM_CP_STATE_AA64, 4820 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 5, .opc2 = 5, 4821 .access = PL1_R, .type = ARM_CP_CONST, 4822 .resetvalue = cpu->id_aa64afr1 }, 4823 { .name = "ID_AA64AFR2_EL1_RESERVED", .state = ARM_CP_STATE_AA64, 4824 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 5, .opc2 = 6, 4825 .access = PL1_R, .type = ARM_CP_CONST, 4826 .resetvalue = 0 }, 4827 { .name = "ID_AA64AFR3_EL1_RESERVED", .state = ARM_CP_STATE_AA64, 4828 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 5, .opc2 = 7, 4829 .access = PL1_R, .type = ARM_CP_CONST, 4830 .resetvalue = 0 }, 4831 { .name = "ID_AA64ISAR0_EL1", .state = ARM_CP_STATE_AA64, 4832 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 6, .opc2 = 0, 4833 .access = PL1_R, .type = ARM_CP_CONST, 4834 .resetvalue = cpu->id_aa64isar0 }, 4835 { .name = "ID_AA64ISAR1_EL1", .state = ARM_CP_STATE_AA64, 4836 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 6, .opc2 = 1, 4837 .access = PL1_R, .type = ARM_CP_CONST, 4838 .resetvalue = cpu->id_aa64isar1 }, 4839 { .name = "ID_AA64ISAR2_EL1_RESERVED", .state = ARM_CP_STATE_AA64, 4840 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 6, .opc2 = 2, 4841 .access = PL1_R, .type = ARM_CP_CONST, 4842 .resetvalue = 0 }, 4843 { .name = "ID_AA64ISAR3_EL1_RESERVED", .state = ARM_CP_STATE_AA64, 4844 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 6, .opc2 = 3, 4845 .access = PL1_R, .type = ARM_CP_CONST, 4846 .resetvalue = 0 }, 4847 { .name = "ID_AA64ISAR4_EL1_RESERVED", .state = ARM_CP_STATE_AA64, 4848 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 6, .opc2 = 4, 4849 .access = PL1_R, .type = ARM_CP_CONST, 4850 .resetvalue = 0 }, 4851 { .name = "ID_AA64ISAR5_EL1_RESERVED", .state = ARM_CP_STATE_AA64, 4852 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 6, .opc2 = 5, 4853 .access = PL1_R, .type = ARM_CP_CONST, 4854 .resetvalue = 0 }, 4855 { .name = "ID_AA64ISAR6_EL1_RESERVED", .state = ARM_CP_STATE_AA64, 4856 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 6, .opc2 = 6, 4857 .access = PL1_R, .type = ARM_CP_CONST, 4858 .resetvalue = 0 }, 4859 { .name = "ID_AA64ISAR7_EL1_RESERVED", .state = ARM_CP_STATE_AA64, 4860 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 6, .opc2 = 7, 4861 .access = PL1_R, .type = ARM_CP_CONST, 4862 .resetvalue = 0 }, 4863 { .name = "ID_AA64MMFR0_EL1", .state = ARM_CP_STATE_AA64, 4864 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 7, .opc2 = 0, 4865 .access = PL1_R, .type = ARM_CP_CONST, 4866 .resetvalue = cpu->id_aa64mmfr0 }, 4867 { .name = "ID_AA64MMFR1_EL1", .state = ARM_CP_STATE_AA64, 4868 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 7, .opc2 = 1, 4869 .access = PL1_R, .type = ARM_CP_CONST, 4870 .resetvalue = cpu->id_aa64mmfr1 }, 4871 { .name = "ID_AA64MMFR2_EL1_RESERVED", .state = ARM_CP_STATE_AA64, 4872 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 7, .opc2 = 2, 4873 .access = PL1_R, .type = ARM_CP_CONST, 4874 .resetvalue = 0 }, 4875 { .name = "ID_AA64MMFR3_EL1_RESERVED", .state = ARM_CP_STATE_AA64, 4876 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 7, .opc2 = 3, 4877 .access = PL1_R, .type = ARM_CP_CONST, 4878 .resetvalue = 0 }, 4879 { .name = "ID_AA64MMFR4_EL1_RESERVED", .state = ARM_CP_STATE_AA64, 4880 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 7, .opc2 = 4, 4881 .access = PL1_R, .type = ARM_CP_CONST, 4882 .resetvalue = 0 }, 4883 { .name = "ID_AA64MMFR5_EL1_RESERVED", .state = ARM_CP_STATE_AA64, 4884 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 7, .opc2 = 5, 4885 .access = PL1_R, .type = ARM_CP_CONST, 4886 .resetvalue = 0 }, 4887 { .name = "ID_AA64MMFR6_EL1_RESERVED", .state = ARM_CP_STATE_AA64, 4888 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 7, .opc2 = 6, 4889 .access = PL1_R, .type = ARM_CP_CONST, 4890 .resetvalue = 0 }, 4891 { .name = "ID_AA64MMFR7_EL1_RESERVED", .state = ARM_CP_STATE_AA64, 4892 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 7, .opc2 = 7, 4893 .access = PL1_R, .type = ARM_CP_CONST, 4894 .resetvalue = 0 }, 4895 { .name = "MVFR0_EL1", .state = ARM_CP_STATE_AA64, 4896 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 3, .opc2 = 0, 4897 .access = PL1_R, .type = ARM_CP_CONST, 4898 .resetvalue = cpu->mvfr0 }, 4899 { .name = "MVFR1_EL1", .state = ARM_CP_STATE_AA64, 4900 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 3, .opc2 = 1, 4901 .access = PL1_R, .type = ARM_CP_CONST, 4902 .resetvalue = cpu->mvfr1 }, 4903 { .name = "MVFR2_EL1", .state = ARM_CP_STATE_AA64, 4904 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 3, .opc2 = 2, 4905 .access = PL1_R, .type = ARM_CP_CONST, 4906 .resetvalue = cpu->mvfr2 }, 4907 { .name = "MVFR3_EL1_RESERVED", .state = ARM_CP_STATE_AA64, 4908 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 3, .opc2 = 3, 4909 .access = PL1_R, .type = ARM_CP_CONST, 4910 .resetvalue = 0 }, 4911 { .name = "MVFR4_EL1_RESERVED", .state = ARM_CP_STATE_AA64, 4912 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 3, .opc2 = 4, 4913 .access = PL1_R, .type = ARM_CP_CONST, 4914 .resetvalue = 0 }, 4915 { .name = "MVFR5_EL1_RESERVED", .state = ARM_CP_STATE_AA64, 4916 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 3, .opc2 = 5, 4917 .access = PL1_R, .type = ARM_CP_CONST, 4918 .resetvalue = 0 }, 4919 { .name = "MVFR6_EL1_RESERVED", .state = ARM_CP_STATE_AA64, 4920 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 3, .opc2 = 6, 4921 .access = PL1_R, .type = ARM_CP_CONST, 4922 .resetvalue = 0 }, 4923 { .name = "MVFR7_EL1_RESERVED", .state = ARM_CP_STATE_AA64, 4924 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 3, .opc2 = 7, 4925 .access = PL1_R, .type = ARM_CP_CONST, 4926 .resetvalue = 0 }, 4927 { .name = "PMCEID0", .state = ARM_CP_STATE_AA32, 4928 .cp = 15, .opc1 = 0, .crn = 9, .crm = 12, .opc2 = 6, 4929 .access = PL0_R, .accessfn = pmreg_access, .type = ARM_CP_CONST, 4930 .resetvalue = cpu->pmceid0 }, 4931 { .name = "PMCEID0_EL0", .state = ARM_CP_STATE_AA64, 4932 .opc0 = 3, .opc1 = 3, .crn = 9, .crm = 12, .opc2 = 6, 4933 .access = PL0_R, .accessfn = pmreg_access, .type = ARM_CP_CONST, 4934 .resetvalue = cpu->pmceid0 }, 4935 { .name = "PMCEID1", .state = ARM_CP_STATE_AA32, 4936 .cp = 15, .opc1 = 0, .crn = 9, .crm = 12, .opc2 = 7, 4937 .access = PL0_R, .accessfn = pmreg_access, .type = ARM_CP_CONST, 4938 .resetvalue = cpu->pmceid1 }, 4939 { .name = "PMCEID1_EL0", .state = ARM_CP_STATE_AA64, 4940 .opc0 = 3, .opc1 = 3, .crn = 9, .crm = 12, .opc2 = 7, 4941 .access = PL0_R, .accessfn = pmreg_access, .type = ARM_CP_CONST, 4942 .resetvalue = cpu->pmceid1 }, 4943 REGINFO_SENTINEL 4944 }; 4945 /* RVBAR_EL1 is only implemented if EL1 is the highest EL */ 4946 if (!arm_feature(env, ARM_FEATURE_EL3) && 4947 !arm_feature(env, ARM_FEATURE_EL2)) { 4948 ARMCPRegInfo rvbar = { 4949 .name = "RVBAR_EL1", .state = ARM_CP_STATE_AA64, 4950 .opc0 = 3, .opc1 = 0, .crn = 12, .crm = 0, .opc2 = 1, 4951 .type = ARM_CP_CONST, .access = PL1_R, .resetvalue = cpu->rvbar 4952 }; 4953 define_one_arm_cp_reg(cpu, &rvbar); 4954 } 4955 define_arm_cp_regs(cpu, v8_idregs); 4956 define_arm_cp_regs(cpu, v8_cp_reginfo); 4957 } 4958 if (arm_feature(env, ARM_FEATURE_EL2)) { 4959 uint64_t vmpidr_def = mpidr_read_val(env); 4960 ARMCPRegInfo vpidr_regs[] = { 4961 { .name = "VPIDR", .state = ARM_CP_STATE_AA32, 4962 .cp = 15, .opc1 = 4, .crn = 0, .crm = 0, .opc2 = 0, 4963 .access = PL2_RW, .accessfn = access_el3_aa32ns, 4964 .resetvalue = cpu->midr, 4965 .fieldoffset = offsetof(CPUARMState, cp15.vpidr_el2) }, 4966 { .name = "VPIDR_EL2", .state = ARM_CP_STATE_AA64, 4967 .opc0 = 3, .opc1 = 4, .crn = 0, .crm = 0, .opc2 = 0, 4968 .access = PL2_RW, .resetvalue = cpu->midr, 4969 .fieldoffset = offsetof(CPUARMState, cp15.vpidr_el2) }, 4970 { .name = "VMPIDR", .state = ARM_CP_STATE_AA32, 4971 .cp = 15, .opc1 = 4, .crn = 0, .crm = 0, .opc2 = 5, 4972 .access = PL2_RW, .accessfn = access_el3_aa32ns, 4973 .resetvalue = vmpidr_def, 4974 .fieldoffset = offsetof(CPUARMState, cp15.vmpidr_el2) }, 4975 { .name = "VMPIDR_EL2", .state = ARM_CP_STATE_AA64, 4976 .opc0 = 3, .opc1 = 4, .crn = 0, .crm = 0, .opc2 = 5, 4977 .access = PL2_RW, 4978 .resetvalue = vmpidr_def, 4979 .fieldoffset = offsetof(CPUARMState, cp15.vmpidr_el2) }, 4980 REGINFO_SENTINEL 4981 }; 4982 define_arm_cp_regs(cpu, vpidr_regs); 4983 define_arm_cp_regs(cpu, el2_cp_reginfo); 4984 /* RVBAR_EL2 is only implemented if EL2 is the highest EL */ 4985 if (!arm_feature(env, ARM_FEATURE_EL3)) { 4986 ARMCPRegInfo rvbar = { 4987 .name = "RVBAR_EL2", .state = ARM_CP_STATE_AA64, 4988 .opc0 = 3, .opc1 = 4, .crn = 12, .crm = 0, .opc2 = 1, 4989 .type = ARM_CP_CONST, .access = PL2_R, .resetvalue = cpu->rvbar 4990 }; 4991 define_one_arm_cp_reg(cpu, &rvbar); 4992 } 4993 } else { 4994 /* If EL2 is missing but higher ELs are enabled, we need to 4995 * register the no_el2 reginfos. 4996 */ 4997 if (arm_feature(env, ARM_FEATURE_EL3)) { 4998 /* When EL3 exists but not EL2, VPIDR and VMPIDR take the value 4999 * of MIDR_EL1 and MPIDR_EL1. 5000 */ 5001 ARMCPRegInfo vpidr_regs[] = { 5002 { .name = "VPIDR_EL2", .state = ARM_CP_STATE_BOTH, 5003 .opc0 = 3, .opc1 = 4, .crn = 0, .crm = 0, .opc2 = 0, 5004 .access = PL2_RW, .accessfn = access_el3_aa32ns_aa64any, 5005 .type = ARM_CP_CONST, .resetvalue = cpu->midr, 5006 .fieldoffset = offsetof(CPUARMState, cp15.vpidr_el2) }, 5007 { .name = "VMPIDR_EL2", .state = ARM_CP_STATE_BOTH, 5008 .opc0 = 3, .opc1 = 4, .crn = 0, .crm = 0, .opc2 = 5, 5009 .access = PL2_RW, .accessfn = access_el3_aa32ns_aa64any, 5010 .type = ARM_CP_NO_RAW, 5011 .writefn = arm_cp_write_ignore, .readfn = mpidr_read }, 5012 REGINFO_SENTINEL 5013 }; 5014 define_arm_cp_regs(cpu, vpidr_regs); 5015 define_arm_cp_regs(cpu, el3_no_el2_cp_reginfo); 5016 } 5017 } 5018 if (arm_feature(env, ARM_FEATURE_EL3)) { 5019 define_arm_cp_regs(cpu, el3_cp_reginfo); 5020 ARMCPRegInfo el3_regs[] = { 5021 { .name = "RVBAR_EL3", .state = ARM_CP_STATE_AA64, 5022 .opc0 = 3, .opc1 = 6, .crn = 12, .crm = 0, .opc2 = 1, 5023 .type = ARM_CP_CONST, .access = PL3_R, .resetvalue = cpu->rvbar }, 5024 { .name = "SCTLR_EL3", .state = ARM_CP_STATE_AA64, 5025 .opc0 = 3, .opc1 = 6, .crn = 1, .crm = 0, .opc2 = 0, 5026 .access = PL3_RW, 5027 .raw_writefn = raw_write, .writefn = sctlr_write, 5028 .fieldoffset = offsetof(CPUARMState, cp15.sctlr_el[3]), 5029 .resetvalue = cpu->reset_sctlr }, 5030 REGINFO_SENTINEL 5031 }; 5032 5033 define_arm_cp_regs(cpu, el3_regs); 5034 } 5035 /* The behaviour of NSACR is sufficiently various that we don't 5036 * try to describe it in a single reginfo: 5037 * if EL3 is 64 bit, then trap to EL3 from S EL1, 5038 * reads as constant 0xc00 from NS EL1 and NS EL2 5039 * if EL3 is 32 bit, then RW at EL3, RO at NS EL1 and NS EL2 5040 * if v7 without EL3, register doesn't exist 5041 * if v8 without EL3, reads as constant 0xc00 from NS EL1 and NS EL2 5042 */ 5043 if (arm_feature(env, ARM_FEATURE_EL3)) { 5044 if (arm_feature(env, ARM_FEATURE_AARCH64)) { 5045 ARMCPRegInfo nsacr = { 5046 .name = "NSACR", .type = ARM_CP_CONST, 5047 .cp = 15, .opc1 = 0, .crn = 1, .crm = 1, .opc2 = 2, 5048 .access = PL1_RW, .accessfn = nsacr_access, 5049 .resetvalue = 0xc00 5050 }; 5051 define_one_arm_cp_reg(cpu, &nsacr); 5052 } else { 5053 ARMCPRegInfo nsacr = { 5054 .name = "NSACR", 5055 .cp = 15, .opc1 = 0, .crn = 1, .crm = 1, .opc2 = 2, 5056 .access = PL3_RW | PL1_R, 5057 .resetvalue = 0, 5058 .fieldoffset = offsetof(CPUARMState, cp15.nsacr) 5059 }; 5060 define_one_arm_cp_reg(cpu, &nsacr); 5061 } 5062 } else { 5063 if (arm_feature(env, ARM_FEATURE_V8)) { 5064 ARMCPRegInfo nsacr = { 5065 .name = "NSACR", .type = ARM_CP_CONST, 5066 .cp = 15, .opc1 = 0, .crn = 1, .crm = 1, .opc2 = 2, 5067 .access = PL1_R, 5068 .resetvalue = 0xc00 5069 }; 5070 define_one_arm_cp_reg(cpu, &nsacr); 5071 } 5072 } 5073 5074 if (arm_feature(env, ARM_FEATURE_PMSA)) { 5075 if (arm_feature(env, ARM_FEATURE_V6)) { 5076 /* PMSAv6 not implemented */ 5077 assert(arm_feature(env, ARM_FEATURE_V7)); 5078 define_arm_cp_regs(cpu, vmsa_pmsa_cp_reginfo); 5079 define_arm_cp_regs(cpu, pmsav7_cp_reginfo); 5080 } else { 5081 define_arm_cp_regs(cpu, pmsav5_cp_reginfo); 5082 } 5083 } else { 5084 define_arm_cp_regs(cpu, vmsa_pmsa_cp_reginfo); 5085 define_arm_cp_regs(cpu, vmsa_cp_reginfo); 5086 } 5087 if (arm_feature(env, ARM_FEATURE_THUMB2EE)) { 5088 define_arm_cp_regs(cpu, t2ee_cp_reginfo); 5089 } 5090 if (arm_feature(env, ARM_FEATURE_GENERIC_TIMER)) { 5091 define_arm_cp_regs(cpu, generic_timer_cp_reginfo); 5092 } 5093 if (arm_feature(env, ARM_FEATURE_VAPA)) { 5094 define_arm_cp_regs(cpu, vapa_cp_reginfo); 5095 } 5096 if (arm_feature(env, ARM_FEATURE_CACHE_TEST_CLEAN)) { 5097 define_arm_cp_regs(cpu, cache_test_clean_cp_reginfo); 5098 } 5099 if (arm_feature(env, ARM_FEATURE_CACHE_DIRTY_REG)) { 5100 define_arm_cp_regs(cpu, cache_dirty_status_cp_reginfo); 5101 } 5102 if (arm_feature(env, ARM_FEATURE_CACHE_BLOCK_OPS)) { 5103 define_arm_cp_regs(cpu, cache_block_ops_cp_reginfo); 5104 } 5105 if (arm_feature(env, ARM_FEATURE_OMAPCP)) { 5106 define_arm_cp_regs(cpu, omap_cp_reginfo); 5107 } 5108 if (arm_feature(env, ARM_FEATURE_STRONGARM)) { 5109 define_arm_cp_regs(cpu, strongarm_cp_reginfo); 5110 } 5111 if (arm_feature(env, ARM_FEATURE_XSCALE)) { 5112 define_arm_cp_regs(cpu, xscale_cp_reginfo); 5113 } 5114 if (arm_feature(env, ARM_FEATURE_DUMMY_C15_REGS)) { 5115 define_arm_cp_regs(cpu, dummy_c15_cp_reginfo); 5116 } 5117 if (arm_feature(env, ARM_FEATURE_LPAE)) { 5118 define_arm_cp_regs(cpu, lpae_cp_reginfo); 5119 } 5120 /* Slightly awkwardly, the OMAP and StrongARM cores need all of 5121 * cp15 crn=0 to be writes-ignored, whereas for other cores they should 5122 * be read-only (ie write causes UNDEF exception). 5123 */ 5124 { 5125 ARMCPRegInfo id_pre_v8_midr_cp_reginfo[] = { 5126 /* Pre-v8 MIDR space. 5127 * Note that the MIDR isn't a simple constant register because 5128 * of the TI925 behaviour where writes to another register can 5129 * cause the MIDR value to change. 5130 * 5131 * Unimplemented registers in the c15 0 0 0 space default to 5132 * MIDR. Define MIDR first as this entire space, then CTR, TCMTR 5133 * and friends override accordingly. 5134 */ 5135 { .name = "MIDR", 5136 .cp = 15, .crn = 0, .crm = 0, .opc1 = 0, .opc2 = CP_ANY, 5137 .access = PL1_R, .resetvalue = cpu->midr, 5138 .writefn = arm_cp_write_ignore, .raw_writefn = raw_write, 5139 .readfn = midr_read, 5140 .fieldoffset = offsetof(CPUARMState, cp15.c0_cpuid), 5141 .type = ARM_CP_OVERRIDE }, 5142 /* crn = 0 op1 = 0 crm = 3..7 : currently unassigned; we RAZ. */ 5143 { .name = "DUMMY", 5144 .cp = 15, .crn = 0, .crm = 3, .opc1 = 0, .opc2 = CP_ANY, 5145 .access = PL1_R, .type = ARM_CP_CONST, .resetvalue = 0 }, 5146 { .name = "DUMMY", 5147 .cp = 15, .crn = 0, .crm = 4, .opc1 = 0, .opc2 = CP_ANY, 5148 .access = PL1_R, .type = ARM_CP_CONST, .resetvalue = 0 }, 5149 { .name = "DUMMY", 5150 .cp = 15, .crn = 0, .crm = 5, .opc1 = 0, .opc2 = CP_ANY, 5151 .access = PL1_R, .type = ARM_CP_CONST, .resetvalue = 0 }, 5152 { .name = "DUMMY", 5153 .cp = 15, .crn = 0, .crm = 6, .opc1 = 0, .opc2 = CP_ANY, 5154 .access = PL1_R, .type = ARM_CP_CONST, .resetvalue = 0 }, 5155 { .name = "DUMMY", 5156 .cp = 15, .crn = 0, .crm = 7, .opc1 = 0, .opc2 = CP_ANY, 5157 .access = PL1_R, .type = ARM_CP_CONST, .resetvalue = 0 }, 5158 REGINFO_SENTINEL 5159 }; 5160 ARMCPRegInfo id_v8_midr_cp_reginfo[] = { 5161 { .name = "MIDR_EL1", .state = ARM_CP_STATE_BOTH, 5162 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 0, .opc2 = 0, 5163 .access = PL1_R, .type = ARM_CP_NO_RAW, .resetvalue = cpu->midr, 5164 .fieldoffset = offsetof(CPUARMState, cp15.c0_cpuid), 5165 .readfn = midr_read }, 5166 /* crn = 0 op1 = 0 crm = 0 op2 = 4,7 : AArch32 aliases of MIDR */ 5167 { .name = "MIDR", .type = ARM_CP_ALIAS | ARM_CP_CONST, 5168 .cp = 15, .crn = 0, .crm = 0, .opc1 = 0, .opc2 = 4, 5169 .access = PL1_R, .resetvalue = cpu->midr }, 5170 { .name = "MIDR", .type = ARM_CP_ALIAS | ARM_CP_CONST, 5171 .cp = 15, .crn = 0, .crm = 0, .opc1 = 0, .opc2 = 7, 5172 .access = PL1_R, .resetvalue = cpu->midr }, 5173 { .name = "REVIDR_EL1", .state = ARM_CP_STATE_BOTH, 5174 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 0, .opc2 = 6, 5175 .access = PL1_R, .type = ARM_CP_CONST, .resetvalue = cpu->revidr }, 5176 REGINFO_SENTINEL 5177 }; 5178 ARMCPRegInfo id_cp_reginfo[] = { 5179 /* These are common to v8 and pre-v8 */ 5180 { .name = "CTR", 5181 .cp = 15, .crn = 0, .crm = 0, .opc1 = 0, .opc2 = 1, 5182 .access = PL1_R, .type = ARM_CP_CONST, .resetvalue = cpu->ctr }, 5183 { .name = "CTR_EL0", .state = ARM_CP_STATE_AA64, 5184 .opc0 = 3, .opc1 = 3, .opc2 = 1, .crn = 0, .crm = 0, 5185 .access = PL0_R, .accessfn = ctr_el0_access, 5186 .type = ARM_CP_CONST, .resetvalue = cpu->ctr }, 5187 /* TCMTR and TLBTR exist in v8 but have no 64-bit versions */ 5188 { .name = "TCMTR", 5189 .cp = 15, .crn = 0, .crm = 0, .opc1 = 0, .opc2 = 2, 5190 .access = PL1_R, .type = ARM_CP_CONST, .resetvalue = 0 }, 5191 REGINFO_SENTINEL 5192 }; 5193 /* TLBTR is specific to VMSA */ 5194 ARMCPRegInfo id_tlbtr_reginfo = { 5195 .name = "TLBTR", 5196 .cp = 15, .crn = 0, .crm = 0, .opc1 = 0, .opc2 = 3, 5197 .access = PL1_R, .type = ARM_CP_CONST, .resetvalue = 0, 5198 }; 5199 /* MPUIR is specific to PMSA V6+ */ 5200 ARMCPRegInfo id_mpuir_reginfo = { 5201 .name = "MPUIR", 5202 .cp = 15, .crn = 0, .crm = 0, .opc1 = 0, .opc2 = 4, 5203 .access = PL1_R, .type = ARM_CP_CONST, 5204 .resetvalue = cpu->pmsav7_dregion << 8 5205 }; 5206 ARMCPRegInfo crn0_wi_reginfo = { 5207 .name = "CRN0_WI", .cp = 15, .crn = 0, .crm = CP_ANY, 5208 .opc1 = CP_ANY, .opc2 = CP_ANY, .access = PL1_W, 5209 .type = ARM_CP_NOP | ARM_CP_OVERRIDE 5210 }; 5211 if (arm_feature(env, ARM_FEATURE_OMAPCP) || 5212 arm_feature(env, ARM_FEATURE_STRONGARM)) { 5213 ARMCPRegInfo *r; 5214 /* Register the blanket "writes ignored" value first to cover the 5215 * whole space. Then update the specific ID registers to allow write 5216 * access, so that they ignore writes rather than causing them to 5217 * UNDEF. 5218 */ 5219 define_one_arm_cp_reg(cpu, &crn0_wi_reginfo); 5220 for (r = id_pre_v8_midr_cp_reginfo; 5221 r->type != ARM_CP_SENTINEL; r++) { 5222 r->access = PL1_RW; 5223 } 5224 for (r = id_cp_reginfo; r->type != ARM_CP_SENTINEL; r++) { 5225 r->access = PL1_RW; 5226 } 5227 id_tlbtr_reginfo.access = PL1_RW; 5228 id_tlbtr_reginfo.access = PL1_RW; 5229 } 5230 if (arm_feature(env, ARM_FEATURE_V8)) { 5231 define_arm_cp_regs(cpu, id_v8_midr_cp_reginfo); 5232 } else { 5233 define_arm_cp_regs(cpu, id_pre_v8_midr_cp_reginfo); 5234 } 5235 define_arm_cp_regs(cpu, id_cp_reginfo); 5236 if (!arm_feature(env, ARM_FEATURE_PMSA)) { 5237 define_one_arm_cp_reg(cpu, &id_tlbtr_reginfo); 5238 } else if (arm_feature(env, ARM_FEATURE_V7)) { 5239 define_one_arm_cp_reg(cpu, &id_mpuir_reginfo); 5240 } 5241 } 5242 5243 if (arm_feature(env, ARM_FEATURE_MPIDR)) { 5244 define_arm_cp_regs(cpu, mpidr_cp_reginfo); 5245 } 5246 5247 if (arm_feature(env, ARM_FEATURE_AUXCR)) { 5248 ARMCPRegInfo auxcr_reginfo[] = { 5249 { .name = "ACTLR_EL1", .state = ARM_CP_STATE_BOTH, 5250 .opc0 = 3, .opc1 = 0, .crn = 1, .crm = 0, .opc2 = 1, 5251 .access = PL1_RW, .type = ARM_CP_CONST, 5252 .resetvalue = cpu->reset_auxcr }, 5253 { .name = "ACTLR_EL2", .state = ARM_CP_STATE_BOTH, 5254 .opc0 = 3, .opc1 = 4, .crn = 1, .crm = 0, .opc2 = 1, 5255 .access = PL2_RW, .type = ARM_CP_CONST, 5256 .resetvalue = 0 }, 5257 { .name = "ACTLR_EL3", .state = ARM_CP_STATE_AA64, 5258 .opc0 = 3, .opc1 = 6, .crn = 1, .crm = 0, .opc2 = 1, 5259 .access = PL3_RW, .type = ARM_CP_CONST, 5260 .resetvalue = 0 }, 5261 REGINFO_SENTINEL 5262 }; 5263 define_arm_cp_regs(cpu, auxcr_reginfo); 5264 } 5265 5266 if (arm_feature(env, ARM_FEATURE_CBAR)) { 5267 if (arm_feature(env, ARM_FEATURE_AARCH64)) { 5268 /* 32 bit view is [31:18] 0...0 [43:32]. */ 5269 uint32_t cbar32 = (extract64(cpu->reset_cbar, 18, 14) << 18) 5270 | extract64(cpu->reset_cbar, 32, 12); 5271 ARMCPRegInfo cbar_reginfo[] = { 5272 { .name = "CBAR", 5273 .type = ARM_CP_CONST, 5274 .cp = 15, .crn = 15, .crm = 0, .opc1 = 4, .opc2 = 0, 5275 .access = PL1_R, .resetvalue = cpu->reset_cbar }, 5276 { .name = "CBAR_EL1", .state = ARM_CP_STATE_AA64, 5277 .type = ARM_CP_CONST, 5278 .opc0 = 3, .opc1 = 1, .crn = 15, .crm = 3, .opc2 = 0, 5279 .access = PL1_R, .resetvalue = cbar32 }, 5280 REGINFO_SENTINEL 5281 }; 5282 /* We don't implement a r/w 64 bit CBAR currently */ 5283 assert(arm_feature(env, ARM_FEATURE_CBAR_RO)); 5284 define_arm_cp_regs(cpu, cbar_reginfo); 5285 } else { 5286 ARMCPRegInfo cbar = { 5287 .name = "CBAR", 5288 .cp = 15, .crn = 15, .crm = 0, .opc1 = 4, .opc2 = 0, 5289 .access = PL1_R|PL3_W, .resetvalue = cpu->reset_cbar, 5290 .fieldoffset = offsetof(CPUARMState, 5291 cp15.c15_config_base_address) 5292 }; 5293 if (arm_feature(env, ARM_FEATURE_CBAR_RO)) { 5294 cbar.access = PL1_R; 5295 cbar.fieldoffset = 0; 5296 cbar.type = ARM_CP_CONST; 5297 } 5298 define_one_arm_cp_reg(cpu, &cbar); 5299 } 5300 } 5301 5302 if (arm_feature(env, ARM_FEATURE_VBAR)) { 5303 ARMCPRegInfo vbar_cp_reginfo[] = { 5304 { .name = "VBAR", .state = ARM_CP_STATE_BOTH, 5305 .opc0 = 3, .crn = 12, .crm = 0, .opc1 = 0, .opc2 = 0, 5306 .access = PL1_RW, .writefn = vbar_write, 5307 .bank_fieldoffsets = { offsetof(CPUARMState, cp15.vbar_s), 5308 offsetof(CPUARMState, cp15.vbar_ns) }, 5309 .resetvalue = 0 }, 5310 REGINFO_SENTINEL 5311 }; 5312 define_arm_cp_regs(cpu, vbar_cp_reginfo); 5313 } 5314 5315 /* Generic registers whose values depend on the implementation */ 5316 { 5317 ARMCPRegInfo sctlr = { 5318 .name = "SCTLR", .state = ARM_CP_STATE_BOTH, 5319 .opc0 = 3, .opc1 = 0, .crn = 1, .crm = 0, .opc2 = 0, 5320 .access = PL1_RW, 5321 .bank_fieldoffsets = { offsetof(CPUARMState, cp15.sctlr_s), 5322 offsetof(CPUARMState, cp15.sctlr_ns) }, 5323 .writefn = sctlr_write, .resetvalue = cpu->reset_sctlr, 5324 .raw_writefn = raw_write, 5325 }; 5326 if (arm_feature(env, ARM_FEATURE_XSCALE)) { 5327 /* Normally we would always end the TB on an SCTLR write, but Linux 5328 * arch/arm/mach-pxa/sleep.S expects two instructions following 5329 * an MMU enable to execute from cache. Imitate this behaviour. 5330 */ 5331 sctlr.type |= ARM_CP_SUPPRESS_TB_END; 5332 } 5333 define_one_arm_cp_reg(cpu, &sctlr); 5334 } 5335 } 5336 5337 void arm_cpu_register_gdb_regs_for_features(ARMCPU *cpu) 5338 { 5339 CPUState *cs = CPU(cpu); 5340 CPUARMState *env = &cpu->env; 5341 5342 if (arm_feature(env, ARM_FEATURE_AARCH64)) { 5343 gdb_register_coprocessor(cs, aarch64_fpu_gdb_get_reg, 5344 aarch64_fpu_gdb_set_reg, 5345 34, "aarch64-fpu.xml", 0); 5346 } else if (arm_feature(env, ARM_FEATURE_NEON)) { 5347 gdb_register_coprocessor(cs, vfp_gdb_get_reg, vfp_gdb_set_reg, 5348 51, "arm-neon.xml", 0); 5349 } else if (arm_feature(env, ARM_FEATURE_VFP3)) { 5350 gdb_register_coprocessor(cs, vfp_gdb_get_reg, vfp_gdb_set_reg, 5351 35, "arm-vfp3.xml", 0); 5352 } else if (arm_feature(env, ARM_FEATURE_VFP)) { 5353 gdb_register_coprocessor(cs, vfp_gdb_get_reg, vfp_gdb_set_reg, 5354 19, "arm-vfp.xml", 0); 5355 } 5356 } 5357 5358 /* Sort alphabetically by type name, except for "any". */ 5359 static gint arm_cpu_list_compare(gconstpointer a, gconstpointer b) 5360 { 5361 ObjectClass *class_a = (ObjectClass *)a; 5362 ObjectClass *class_b = (ObjectClass *)b; 5363 const char *name_a, *name_b; 5364 5365 name_a = object_class_get_name(class_a); 5366 name_b = object_class_get_name(class_b); 5367 if (strcmp(name_a, "any-" TYPE_ARM_CPU) == 0) { 5368 return 1; 5369 } else if (strcmp(name_b, "any-" TYPE_ARM_CPU) == 0) { 5370 return -1; 5371 } else { 5372 return strcmp(name_a, name_b); 5373 } 5374 } 5375 5376 static void arm_cpu_list_entry(gpointer data, gpointer user_data) 5377 { 5378 ObjectClass *oc = data; 5379 CPUListState *s = user_data; 5380 const char *typename; 5381 char *name; 5382 5383 typename = object_class_get_name(oc); 5384 name = g_strndup(typename, strlen(typename) - strlen("-" TYPE_ARM_CPU)); 5385 (*s->cpu_fprintf)(s->file, " %s\n", 5386 name); 5387 g_free(name); 5388 } 5389 5390 void arm_cpu_list(FILE *f, fprintf_function cpu_fprintf) 5391 { 5392 CPUListState s = { 5393 .file = f, 5394 .cpu_fprintf = cpu_fprintf, 5395 }; 5396 GSList *list; 5397 5398 list = object_class_get_list(TYPE_ARM_CPU, false); 5399 list = g_slist_sort(list, arm_cpu_list_compare); 5400 (*cpu_fprintf)(f, "Available CPUs:\n"); 5401 g_slist_foreach(list, arm_cpu_list_entry, &s); 5402 g_slist_free(list); 5403 #ifdef CONFIG_KVM 5404 /* The 'host' CPU type is dynamically registered only if KVM is 5405 * enabled, so we have to special-case it here: 5406 */ 5407 (*cpu_fprintf)(f, " host (only available in KVM mode)\n"); 5408 #endif 5409 } 5410 5411 static void arm_cpu_add_definition(gpointer data, gpointer user_data) 5412 { 5413 ObjectClass *oc = data; 5414 CpuDefinitionInfoList **cpu_list = user_data; 5415 CpuDefinitionInfoList *entry; 5416 CpuDefinitionInfo *info; 5417 const char *typename; 5418 5419 typename = object_class_get_name(oc); 5420 info = g_malloc0(sizeof(*info)); 5421 info->name = g_strndup(typename, 5422 strlen(typename) - strlen("-" TYPE_ARM_CPU)); 5423 info->q_typename = g_strdup(typename); 5424 5425 entry = g_malloc0(sizeof(*entry)); 5426 entry->value = info; 5427 entry->next = *cpu_list; 5428 *cpu_list = entry; 5429 } 5430 5431 CpuDefinitionInfoList *arch_query_cpu_definitions(Error **errp) 5432 { 5433 CpuDefinitionInfoList *cpu_list = NULL; 5434 GSList *list; 5435 5436 list = object_class_get_list(TYPE_ARM_CPU, false); 5437 g_slist_foreach(list, arm_cpu_add_definition, &cpu_list); 5438 g_slist_free(list); 5439 5440 return cpu_list; 5441 } 5442 5443 static void add_cpreg_to_hashtable(ARMCPU *cpu, const ARMCPRegInfo *r, 5444 void *opaque, int state, int secstate, 5445 int crm, int opc1, int opc2) 5446 { 5447 /* Private utility function for define_one_arm_cp_reg_with_opaque(): 5448 * add a single reginfo struct to the hash table. 5449 */ 5450 uint32_t *key = g_new(uint32_t, 1); 5451 ARMCPRegInfo *r2 = g_memdup(r, sizeof(ARMCPRegInfo)); 5452 int is64 = (r->type & ARM_CP_64BIT) ? 1 : 0; 5453 int ns = (secstate & ARM_CP_SECSTATE_NS) ? 1 : 0; 5454 5455 /* Reset the secure state to the specific incoming state. This is 5456 * necessary as the register may have been defined with both states. 5457 */ 5458 r2->secure = secstate; 5459 5460 if (r->bank_fieldoffsets[0] && r->bank_fieldoffsets[1]) { 5461 /* Register is banked (using both entries in array). 5462 * Overwriting fieldoffset as the array is only used to define 5463 * banked registers but later only fieldoffset is used. 5464 */ 5465 r2->fieldoffset = r->bank_fieldoffsets[ns]; 5466 } 5467 5468 if (state == ARM_CP_STATE_AA32) { 5469 if (r->bank_fieldoffsets[0] && r->bank_fieldoffsets[1]) { 5470 /* If the register is banked then we don't need to migrate or 5471 * reset the 32-bit instance in certain cases: 5472 * 5473 * 1) If the register has both 32-bit and 64-bit instances then we 5474 * can count on the 64-bit instance taking care of the 5475 * non-secure bank. 5476 * 2) If ARMv8 is enabled then we can count on a 64-bit version 5477 * taking care of the secure bank. This requires that separate 5478 * 32 and 64-bit definitions are provided. 5479 */ 5480 if ((r->state == ARM_CP_STATE_BOTH && ns) || 5481 (arm_feature(&cpu->env, ARM_FEATURE_V8) && !ns)) { 5482 r2->type |= ARM_CP_ALIAS; 5483 } 5484 } else if ((secstate != r->secure) && !ns) { 5485 /* The register is not banked so we only want to allow migration of 5486 * the non-secure instance. 5487 */ 5488 r2->type |= ARM_CP_ALIAS; 5489 } 5490 5491 if (r->state == ARM_CP_STATE_BOTH) { 5492 /* We assume it is a cp15 register if the .cp field is left unset. 5493 */ 5494 if (r2->cp == 0) { 5495 r2->cp = 15; 5496 } 5497 5498 #ifdef HOST_WORDS_BIGENDIAN 5499 if (r2->fieldoffset) { 5500 r2->fieldoffset += sizeof(uint32_t); 5501 } 5502 #endif 5503 } 5504 } 5505 if (state == ARM_CP_STATE_AA64) { 5506 /* To allow abbreviation of ARMCPRegInfo 5507 * definitions, we treat cp == 0 as equivalent to 5508 * the value for "standard guest-visible sysreg". 5509 * STATE_BOTH definitions are also always "standard 5510 * sysreg" in their AArch64 view (the .cp value may 5511 * be non-zero for the benefit of the AArch32 view). 5512 */ 5513 if (r->cp == 0 || r->state == ARM_CP_STATE_BOTH) { 5514 r2->cp = CP_REG_ARM64_SYSREG_CP; 5515 } 5516 *key = ENCODE_AA64_CP_REG(r2->cp, r2->crn, crm, 5517 r2->opc0, opc1, opc2); 5518 } else { 5519 *key = ENCODE_CP_REG(r2->cp, is64, ns, r2->crn, crm, opc1, opc2); 5520 } 5521 if (opaque) { 5522 r2->opaque = opaque; 5523 } 5524 /* reginfo passed to helpers is correct for the actual access, 5525 * and is never ARM_CP_STATE_BOTH: 5526 */ 5527 r2->state = state; 5528 /* Make sure reginfo passed to helpers for wildcarded regs 5529 * has the correct crm/opc1/opc2 for this reg, not CP_ANY: 5530 */ 5531 r2->crm = crm; 5532 r2->opc1 = opc1; 5533 r2->opc2 = opc2; 5534 /* By convention, for wildcarded registers only the first 5535 * entry is used for migration; the others are marked as 5536 * ALIAS so we don't try to transfer the register 5537 * multiple times. Special registers (ie NOP/WFI) are 5538 * never migratable and not even raw-accessible. 5539 */ 5540 if ((r->type & ARM_CP_SPECIAL)) { 5541 r2->type |= ARM_CP_NO_RAW; 5542 } 5543 if (((r->crm == CP_ANY) && crm != 0) || 5544 ((r->opc1 == CP_ANY) && opc1 != 0) || 5545 ((r->opc2 == CP_ANY) && opc2 != 0)) { 5546 r2->type |= ARM_CP_ALIAS; 5547 } 5548 5549 /* Check that raw accesses are either forbidden or handled. Note that 5550 * we can't assert this earlier because the setup of fieldoffset for 5551 * banked registers has to be done first. 5552 */ 5553 if (!(r2->type & ARM_CP_NO_RAW)) { 5554 assert(!raw_accessors_invalid(r2)); 5555 } 5556 5557 /* Overriding of an existing definition must be explicitly 5558 * requested. 5559 */ 5560 if (!(r->type & ARM_CP_OVERRIDE)) { 5561 ARMCPRegInfo *oldreg; 5562 oldreg = g_hash_table_lookup(cpu->cp_regs, key); 5563 if (oldreg && !(oldreg->type & ARM_CP_OVERRIDE)) { 5564 fprintf(stderr, "Register redefined: cp=%d %d bit " 5565 "crn=%d crm=%d opc1=%d opc2=%d, " 5566 "was %s, now %s\n", r2->cp, 32 + 32 * is64, 5567 r2->crn, r2->crm, r2->opc1, r2->opc2, 5568 oldreg->name, r2->name); 5569 g_assert_not_reached(); 5570 } 5571 } 5572 g_hash_table_insert(cpu->cp_regs, key, r2); 5573 } 5574 5575 5576 void define_one_arm_cp_reg_with_opaque(ARMCPU *cpu, 5577 const ARMCPRegInfo *r, void *opaque) 5578 { 5579 /* Define implementations of coprocessor registers. 5580 * We store these in a hashtable because typically 5581 * there are less than 150 registers in a space which 5582 * is 16*16*16*8*8 = 262144 in size. 5583 * Wildcarding is supported for the crm, opc1 and opc2 fields. 5584 * If a register is defined twice then the second definition is 5585 * used, so this can be used to define some generic registers and 5586 * then override them with implementation specific variations. 5587 * At least one of the original and the second definition should 5588 * include ARM_CP_OVERRIDE in its type bits -- this is just a guard 5589 * against accidental use. 5590 * 5591 * The state field defines whether the register is to be 5592 * visible in the AArch32 or AArch64 execution state. If the 5593 * state is set to ARM_CP_STATE_BOTH then we synthesise a 5594 * reginfo structure for the AArch32 view, which sees the lower 5595 * 32 bits of the 64 bit register. 5596 * 5597 * Only registers visible in AArch64 may set r->opc0; opc0 cannot 5598 * be wildcarded. AArch64 registers are always considered to be 64 5599 * bits; the ARM_CP_64BIT* flag applies only to the AArch32 view of 5600 * the register, if any. 5601 */ 5602 int crm, opc1, opc2, state; 5603 int crmmin = (r->crm == CP_ANY) ? 0 : r->crm; 5604 int crmmax = (r->crm == CP_ANY) ? 15 : r->crm; 5605 int opc1min = (r->opc1 == CP_ANY) ? 0 : r->opc1; 5606 int opc1max = (r->opc1 == CP_ANY) ? 7 : r->opc1; 5607 int opc2min = (r->opc2 == CP_ANY) ? 0 : r->opc2; 5608 int opc2max = (r->opc2 == CP_ANY) ? 7 : r->opc2; 5609 /* 64 bit registers have only CRm and Opc1 fields */ 5610 assert(!((r->type & ARM_CP_64BIT) && (r->opc2 || r->crn))); 5611 /* op0 only exists in the AArch64 encodings */ 5612 assert((r->state != ARM_CP_STATE_AA32) || (r->opc0 == 0)); 5613 /* AArch64 regs are all 64 bit so ARM_CP_64BIT is meaningless */ 5614 assert((r->state != ARM_CP_STATE_AA64) || !(r->type & ARM_CP_64BIT)); 5615 /* The AArch64 pseudocode CheckSystemAccess() specifies that op1 5616 * encodes a minimum access level for the register. We roll this 5617 * runtime check into our general permission check code, so check 5618 * here that the reginfo's specified permissions are strict enough 5619 * to encompass the generic architectural permission check. 5620 */ 5621 if (r->state != ARM_CP_STATE_AA32) { 5622 int mask = 0; 5623 switch (r->opc1) { 5624 case 0: case 1: case 2: 5625 /* min_EL EL1 */ 5626 mask = PL1_RW; 5627 break; 5628 case 3: 5629 /* min_EL EL0 */ 5630 mask = PL0_RW; 5631 break; 5632 case 4: 5633 /* min_EL EL2 */ 5634 mask = PL2_RW; 5635 break; 5636 case 5: 5637 /* unallocated encoding, so not possible */ 5638 assert(false); 5639 break; 5640 case 6: 5641 /* min_EL EL3 */ 5642 mask = PL3_RW; 5643 break; 5644 case 7: 5645 /* min_EL EL1, secure mode only (we don't check the latter) */ 5646 mask = PL1_RW; 5647 break; 5648 default: 5649 /* broken reginfo with out-of-range opc1 */ 5650 assert(false); 5651 break; 5652 } 5653 /* assert our permissions are not too lax (stricter is fine) */ 5654 assert((r->access & ~mask) == 0); 5655 } 5656 5657 /* Check that the register definition has enough info to handle 5658 * reads and writes if they are permitted. 5659 */ 5660 if (!(r->type & (ARM_CP_SPECIAL|ARM_CP_CONST))) { 5661 if (r->access & PL3_R) { 5662 assert((r->fieldoffset || 5663 (r->bank_fieldoffsets[0] && r->bank_fieldoffsets[1])) || 5664 r->readfn); 5665 } 5666 if (r->access & PL3_W) { 5667 assert((r->fieldoffset || 5668 (r->bank_fieldoffsets[0] && r->bank_fieldoffsets[1])) || 5669 r->writefn); 5670 } 5671 } 5672 /* Bad type field probably means missing sentinel at end of reg list */ 5673 assert(cptype_valid(r->type)); 5674 for (crm = crmmin; crm <= crmmax; crm++) { 5675 for (opc1 = opc1min; opc1 <= opc1max; opc1++) { 5676 for (opc2 = opc2min; opc2 <= opc2max; opc2++) { 5677 for (state = ARM_CP_STATE_AA32; 5678 state <= ARM_CP_STATE_AA64; state++) { 5679 if (r->state != state && r->state != ARM_CP_STATE_BOTH) { 5680 continue; 5681 } 5682 if (state == ARM_CP_STATE_AA32) { 5683 /* Under AArch32 CP registers can be common 5684 * (same for secure and non-secure world) or banked. 5685 */ 5686 switch (r->secure) { 5687 case ARM_CP_SECSTATE_S: 5688 case ARM_CP_SECSTATE_NS: 5689 add_cpreg_to_hashtable(cpu, r, opaque, state, 5690 r->secure, crm, opc1, opc2); 5691 break; 5692 default: 5693 add_cpreg_to_hashtable(cpu, r, opaque, state, 5694 ARM_CP_SECSTATE_S, 5695 crm, opc1, opc2); 5696 add_cpreg_to_hashtable(cpu, r, opaque, state, 5697 ARM_CP_SECSTATE_NS, 5698 crm, opc1, opc2); 5699 break; 5700 } 5701 } else { 5702 /* AArch64 registers get mapped to non-secure instance 5703 * of AArch32 */ 5704 add_cpreg_to_hashtable(cpu, r, opaque, state, 5705 ARM_CP_SECSTATE_NS, 5706 crm, opc1, opc2); 5707 } 5708 } 5709 } 5710 } 5711 } 5712 } 5713 5714 void define_arm_cp_regs_with_opaque(ARMCPU *cpu, 5715 const ARMCPRegInfo *regs, void *opaque) 5716 { 5717 /* Define a whole list of registers */ 5718 const ARMCPRegInfo *r; 5719 for (r = regs; r->type != ARM_CP_SENTINEL; r++) { 5720 define_one_arm_cp_reg_with_opaque(cpu, r, opaque); 5721 } 5722 } 5723 5724 const ARMCPRegInfo *get_arm_cp_reginfo(GHashTable *cpregs, uint32_t encoded_cp) 5725 { 5726 return g_hash_table_lookup(cpregs, &encoded_cp); 5727 } 5728 5729 void arm_cp_write_ignore(CPUARMState *env, const ARMCPRegInfo *ri, 5730 uint64_t value) 5731 { 5732 /* Helper coprocessor write function for write-ignore registers */ 5733 } 5734 5735 uint64_t arm_cp_read_zero(CPUARMState *env, const ARMCPRegInfo *ri) 5736 { 5737 /* Helper coprocessor write function for read-as-zero registers */ 5738 return 0; 5739 } 5740 5741 void arm_cp_reset_ignore(CPUARMState *env, const ARMCPRegInfo *opaque) 5742 { 5743 /* Helper coprocessor reset function for do-nothing-on-reset registers */ 5744 } 5745 5746 static int bad_mode_switch(CPUARMState *env, int mode, CPSRWriteType write_type) 5747 { 5748 /* Return true if it is not valid for us to switch to 5749 * this CPU mode (ie all the UNPREDICTABLE cases in 5750 * the ARM ARM CPSRWriteByInstr pseudocode). 5751 */ 5752 5753 /* Changes to or from Hyp via MSR and CPS are illegal. */ 5754 if (write_type == CPSRWriteByInstr && 5755 ((env->uncached_cpsr & CPSR_M) == ARM_CPU_MODE_HYP || 5756 mode == ARM_CPU_MODE_HYP)) { 5757 return 1; 5758 } 5759 5760 switch (mode) { 5761 case ARM_CPU_MODE_USR: 5762 return 0; 5763 case ARM_CPU_MODE_SYS: 5764 case ARM_CPU_MODE_SVC: 5765 case ARM_CPU_MODE_ABT: 5766 case ARM_CPU_MODE_UND: 5767 case ARM_CPU_MODE_IRQ: 5768 case ARM_CPU_MODE_FIQ: 5769 /* Note that we don't implement the IMPDEF NSACR.RFR which in v7 5770 * allows FIQ mode to be Secure-only. (In v8 this doesn't exist.) 5771 */ 5772 /* If HCR.TGE is set then changes from Monitor to NS PL1 via MSR 5773 * and CPS are treated as illegal mode changes. 5774 */ 5775 if (write_type == CPSRWriteByInstr && 5776 (env->cp15.hcr_el2 & HCR_TGE) && 5777 (env->uncached_cpsr & CPSR_M) == ARM_CPU_MODE_MON && 5778 !arm_is_secure_below_el3(env)) { 5779 return 1; 5780 } 5781 return 0; 5782 case ARM_CPU_MODE_HYP: 5783 return !arm_feature(env, ARM_FEATURE_EL2) 5784 || arm_current_el(env) < 2 || arm_is_secure(env); 5785 case ARM_CPU_MODE_MON: 5786 return arm_current_el(env) < 3; 5787 default: 5788 return 1; 5789 } 5790 } 5791 5792 uint32_t cpsr_read(CPUARMState *env) 5793 { 5794 int ZF; 5795 ZF = (env->ZF == 0); 5796 return env->uncached_cpsr | (env->NF & 0x80000000) | (ZF << 30) | 5797 (env->CF << 29) | ((env->VF & 0x80000000) >> 3) | (env->QF << 27) 5798 | (env->thumb << 5) | ((env->condexec_bits & 3) << 25) 5799 | ((env->condexec_bits & 0xfc) << 8) 5800 | (env->GE << 16) | (env->daif & CPSR_AIF); 5801 } 5802 5803 void cpsr_write(CPUARMState *env, uint32_t val, uint32_t mask, 5804 CPSRWriteType write_type) 5805 { 5806 uint32_t changed_daif; 5807 5808 if (mask & CPSR_NZCV) { 5809 env->ZF = (~val) & CPSR_Z; 5810 env->NF = val; 5811 env->CF = (val >> 29) & 1; 5812 env->VF = (val << 3) & 0x80000000; 5813 } 5814 if (mask & CPSR_Q) 5815 env->QF = ((val & CPSR_Q) != 0); 5816 if (mask & CPSR_T) 5817 env->thumb = ((val & CPSR_T) != 0); 5818 if (mask & CPSR_IT_0_1) { 5819 env->condexec_bits &= ~3; 5820 env->condexec_bits |= (val >> 25) & 3; 5821 } 5822 if (mask & CPSR_IT_2_7) { 5823 env->condexec_bits &= 3; 5824 env->condexec_bits |= (val >> 8) & 0xfc; 5825 } 5826 if (mask & CPSR_GE) { 5827 env->GE = (val >> 16) & 0xf; 5828 } 5829 5830 /* In a V7 implementation that includes the security extensions but does 5831 * not include Virtualization Extensions the SCR.FW and SCR.AW bits control 5832 * whether non-secure software is allowed to change the CPSR_F and CPSR_A 5833 * bits respectively. 5834 * 5835 * In a V8 implementation, it is permitted for privileged software to 5836 * change the CPSR A/F bits regardless of the SCR.AW/FW bits. 5837 */ 5838 if (write_type != CPSRWriteRaw && !arm_feature(env, ARM_FEATURE_V8) && 5839 arm_feature(env, ARM_FEATURE_EL3) && 5840 !arm_feature(env, ARM_FEATURE_EL2) && 5841 !arm_is_secure(env)) { 5842 5843 changed_daif = (env->daif ^ val) & mask; 5844 5845 if (changed_daif & CPSR_A) { 5846 /* Check to see if we are allowed to change the masking of async 5847 * abort exceptions from a non-secure state. 5848 */ 5849 if (!(env->cp15.scr_el3 & SCR_AW)) { 5850 qemu_log_mask(LOG_GUEST_ERROR, 5851 "Ignoring attempt to switch CPSR_A flag from " 5852 "non-secure world with SCR.AW bit clear\n"); 5853 mask &= ~CPSR_A; 5854 } 5855 } 5856 5857 if (changed_daif & CPSR_F) { 5858 /* Check to see if we are allowed to change the masking of FIQ 5859 * exceptions from a non-secure state. 5860 */ 5861 if (!(env->cp15.scr_el3 & SCR_FW)) { 5862 qemu_log_mask(LOG_GUEST_ERROR, 5863 "Ignoring attempt to switch CPSR_F flag from " 5864 "non-secure world with SCR.FW bit clear\n"); 5865 mask &= ~CPSR_F; 5866 } 5867 5868 /* Check whether non-maskable FIQ (NMFI) support is enabled. 5869 * If this bit is set software is not allowed to mask 5870 * FIQs, but is allowed to set CPSR_F to 0. 5871 */ 5872 if ((A32_BANKED_CURRENT_REG_GET(env, sctlr) & SCTLR_NMFI) && 5873 (val & CPSR_F)) { 5874 qemu_log_mask(LOG_GUEST_ERROR, 5875 "Ignoring attempt to enable CPSR_F flag " 5876 "(non-maskable FIQ [NMFI] support enabled)\n"); 5877 mask &= ~CPSR_F; 5878 } 5879 } 5880 } 5881 5882 env->daif &= ~(CPSR_AIF & mask); 5883 env->daif |= val & CPSR_AIF & mask; 5884 5885 if (write_type != CPSRWriteRaw && 5886 ((env->uncached_cpsr ^ val) & mask & CPSR_M)) { 5887 if ((env->uncached_cpsr & CPSR_M) == ARM_CPU_MODE_USR) { 5888 /* Note that we can only get here in USR mode if this is a 5889 * gdb stub write; for this case we follow the architectural 5890 * behaviour for guest writes in USR mode of ignoring an attempt 5891 * to switch mode. (Those are caught by translate.c for writes 5892 * triggered by guest instructions.) 5893 */ 5894 mask &= ~CPSR_M; 5895 } else if (bad_mode_switch(env, val & CPSR_M, write_type)) { 5896 /* Attempt to switch to an invalid mode: this is UNPREDICTABLE in 5897 * v7, and has defined behaviour in v8: 5898 * + leave CPSR.M untouched 5899 * + allow changes to the other CPSR fields 5900 * + set PSTATE.IL 5901 * For user changes via the GDB stub, we don't set PSTATE.IL, 5902 * as this would be unnecessarily harsh for a user error. 5903 */ 5904 mask &= ~CPSR_M; 5905 if (write_type != CPSRWriteByGDBStub && 5906 arm_feature(env, ARM_FEATURE_V8)) { 5907 mask |= CPSR_IL; 5908 val |= CPSR_IL; 5909 } 5910 } else { 5911 switch_mode(env, val & CPSR_M); 5912 } 5913 } 5914 mask &= ~CACHED_CPSR_BITS; 5915 env->uncached_cpsr = (env->uncached_cpsr & ~mask) | (val & mask); 5916 } 5917 5918 /* Sign/zero extend */ 5919 uint32_t HELPER(sxtb16)(uint32_t x) 5920 { 5921 uint32_t res; 5922 res = (uint16_t)(int8_t)x; 5923 res |= (uint32_t)(int8_t)(x >> 16) << 16; 5924 return res; 5925 } 5926 5927 uint32_t HELPER(uxtb16)(uint32_t x) 5928 { 5929 uint32_t res; 5930 res = (uint16_t)(uint8_t)x; 5931 res |= (uint32_t)(uint8_t)(x >> 16) << 16; 5932 return res; 5933 } 5934 5935 int32_t HELPER(sdiv)(int32_t num, int32_t den) 5936 { 5937 if (den == 0) 5938 return 0; 5939 if (num == INT_MIN && den == -1) 5940 return INT_MIN; 5941 return num / den; 5942 } 5943 5944 uint32_t HELPER(udiv)(uint32_t num, uint32_t den) 5945 { 5946 if (den == 0) 5947 return 0; 5948 return num / den; 5949 } 5950 5951 uint32_t HELPER(rbit)(uint32_t x) 5952 { 5953 return revbit32(x); 5954 } 5955 5956 #if defined(CONFIG_USER_ONLY) 5957 5958 /* These should probably raise undefined insn exceptions. */ 5959 void HELPER(v7m_msr)(CPUARMState *env, uint32_t reg, uint32_t val) 5960 { 5961 ARMCPU *cpu = arm_env_get_cpu(env); 5962 5963 cpu_abort(CPU(cpu), "v7m_msr %d\n", reg); 5964 } 5965 5966 uint32_t HELPER(v7m_mrs)(CPUARMState *env, uint32_t reg) 5967 { 5968 ARMCPU *cpu = arm_env_get_cpu(env); 5969 5970 cpu_abort(CPU(cpu), "v7m_mrs %d\n", reg); 5971 return 0; 5972 } 5973 5974 void HELPER(v7m_bxns)(CPUARMState *env, uint32_t dest) 5975 { 5976 /* translate.c should never generate calls here in user-only mode */ 5977 g_assert_not_reached(); 5978 } 5979 5980 void HELPER(v7m_blxns)(CPUARMState *env, uint32_t dest) 5981 { 5982 /* translate.c should never generate calls here in user-only mode */ 5983 g_assert_not_reached(); 5984 } 5985 5986 uint32_t HELPER(v7m_tt)(CPUARMState *env, uint32_t addr, uint32_t op) 5987 { 5988 /* The TT instructions can be used by unprivileged code, but in 5989 * user-only emulation we don't have the MPU. 5990 * Luckily since we know we are NonSecure unprivileged (and that in 5991 * turn means that the A flag wasn't specified), all the bits in the 5992 * register must be zero: 5993 * IREGION: 0 because IRVALID is 0 5994 * IRVALID: 0 because NS 5995 * S: 0 because NS 5996 * NSRW: 0 because NS 5997 * NSR: 0 because NS 5998 * RW: 0 because unpriv and A flag not set 5999 * R: 0 because unpriv and A flag not set 6000 * SRVALID: 0 because NS 6001 * MRVALID: 0 because unpriv and A flag not set 6002 * SREGION: 0 becaus SRVALID is 0 6003 * MREGION: 0 because MRVALID is 0 6004 */ 6005 return 0; 6006 } 6007 6008 void switch_mode(CPUARMState *env, int mode) 6009 { 6010 ARMCPU *cpu = arm_env_get_cpu(env); 6011 6012 if (mode != ARM_CPU_MODE_USR) { 6013 cpu_abort(CPU(cpu), "Tried to switch out of user mode\n"); 6014 } 6015 } 6016 6017 uint32_t arm_phys_excp_target_el(CPUState *cs, uint32_t excp_idx, 6018 uint32_t cur_el, bool secure) 6019 { 6020 return 1; 6021 } 6022 6023 void aarch64_sync_64_to_32(CPUARMState *env) 6024 { 6025 g_assert_not_reached(); 6026 } 6027 6028 #else 6029 6030 void switch_mode(CPUARMState *env, int mode) 6031 { 6032 int old_mode; 6033 int i; 6034 6035 old_mode = env->uncached_cpsr & CPSR_M; 6036 if (mode == old_mode) 6037 return; 6038 6039 if (old_mode == ARM_CPU_MODE_FIQ) { 6040 memcpy (env->fiq_regs, env->regs + 8, 5 * sizeof(uint32_t)); 6041 memcpy (env->regs + 8, env->usr_regs, 5 * sizeof(uint32_t)); 6042 } else if (mode == ARM_CPU_MODE_FIQ) { 6043 memcpy (env->usr_regs, env->regs + 8, 5 * sizeof(uint32_t)); 6044 memcpy (env->regs + 8, env->fiq_regs, 5 * sizeof(uint32_t)); 6045 } 6046 6047 i = bank_number(old_mode); 6048 env->banked_r13[i] = env->regs[13]; 6049 env->banked_r14[i] = env->regs[14]; 6050 env->banked_spsr[i] = env->spsr; 6051 6052 i = bank_number(mode); 6053 env->regs[13] = env->banked_r13[i]; 6054 env->regs[14] = env->banked_r14[i]; 6055 env->spsr = env->banked_spsr[i]; 6056 } 6057 6058 /* Physical Interrupt Target EL Lookup Table 6059 * 6060 * [ From ARM ARM section G1.13.4 (Table G1-15) ] 6061 * 6062 * The below multi-dimensional table is used for looking up the target 6063 * exception level given numerous condition criteria. Specifically, the 6064 * target EL is based on SCR and HCR routing controls as well as the 6065 * currently executing EL and secure state. 6066 * 6067 * Dimensions: 6068 * target_el_table[2][2][2][2][2][4] 6069 * | | | | | +--- Current EL 6070 * | | | | +------ Non-secure(0)/Secure(1) 6071 * | | | +--------- HCR mask override 6072 * | | +------------ SCR exec state control 6073 * | +--------------- SCR mask override 6074 * +------------------ 32-bit(0)/64-bit(1) EL3 6075 * 6076 * The table values are as such: 6077 * 0-3 = EL0-EL3 6078 * -1 = Cannot occur 6079 * 6080 * The ARM ARM target EL table includes entries indicating that an "exception 6081 * is not taken". The two cases where this is applicable are: 6082 * 1) An exception is taken from EL3 but the SCR does not have the exception 6083 * routed to EL3. 6084 * 2) An exception is taken from EL2 but the HCR does not have the exception 6085 * routed to EL2. 6086 * In these two cases, the below table contain a target of EL1. This value is 6087 * returned as it is expected that the consumer of the table data will check 6088 * for "target EL >= current EL" to ensure the exception is not taken. 6089 * 6090 * SCR HCR 6091 * 64 EA AMO From 6092 * BIT IRQ IMO Non-secure Secure 6093 * EL3 FIQ RW FMO EL0 EL1 EL2 EL3 EL0 EL1 EL2 EL3 6094 */ 6095 static const int8_t target_el_table[2][2][2][2][2][4] = { 6096 {{{{/* 0 0 0 0 */{ 1, 1, 2, -1 },{ 3, -1, -1, 3 },}, 6097 {/* 0 0 0 1 */{ 2, 2, 2, -1 },{ 3, -1, -1, 3 },},}, 6098 {{/* 0 0 1 0 */{ 1, 1, 2, -1 },{ 3, -1, -1, 3 },}, 6099 {/* 0 0 1 1 */{ 2, 2, 2, -1 },{ 3, -1, -1, 3 },},},}, 6100 {{{/* 0 1 0 0 */{ 3, 3, 3, -1 },{ 3, -1, -1, 3 },}, 6101 {/* 0 1 0 1 */{ 3, 3, 3, -1 },{ 3, -1, -1, 3 },},}, 6102 {{/* 0 1 1 0 */{ 3, 3, 3, -1 },{ 3, -1, -1, 3 },}, 6103 {/* 0 1 1 1 */{ 3, 3, 3, -1 },{ 3, -1, -1, 3 },},},},}, 6104 {{{{/* 1 0 0 0 */{ 1, 1, 2, -1 },{ 1, 1, -1, 1 },}, 6105 {/* 1 0 0 1 */{ 2, 2, 2, -1 },{ 1, 1, -1, 1 },},}, 6106 {{/* 1 0 1 0 */{ 1, 1, 1, -1 },{ 1, 1, -1, 1 },}, 6107 {/* 1 0 1 1 */{ 2, 2, 2, -1 },{ 1, 1, -1, 1 },},},}, 6108 {{{/* 1 1 0 0 */{ 3, 3, 3, -1 },{ 3, 3, -1, 3 },}, 6109 {/* 1 1 0 1 */{ 3, 3, 3, -1 },{ 3, 3, -1, 3 },},}, 6110 {{/* 1 1 1 0 */{ 3, 3, 3, -1 },{ 3, 3, -1, 3 },}, 6111 {/* 1 1 1 1 */{ 3, 3, 3, -1 },{ 3, 3, -1, 3 },},},},}, 6112 }; 6113 6114 /* 6115 * Determine the target EL for physical exceptions 6116 */ 6117 uint32_t arm_phys_excp_target_el(CPUState *cs, uint32_t excp_idx, 6118 uint32_t cur_el, bool secure) 6119 { 6120 CPUARMState *env = cs->env_ptr; 6121 int rw; 6122 int scr; 6123 int hcr; 6124 int target_el; 6125 /* Is the highest EL AArch64? */ 6126 int is64 = arm_feature(env, ARM_FEATURE_AARCH64); 6127 6128 if (arm_feature(env, ARM_FEATURE_EL3)) { 6129 rw = ((env->cp15.scr_el3 & SCR_RW) == SCR_RW); 6130 } else { 6131 /* Either EL2 is the highest EL (and so the EL2 register width 6132 * is given by is64); or there is no EL2 or EL3, in which case 6133 * the value of 'rw' does not affect the table lookup anyway. 6134 */ 6135 rw = is64; 6136 } 6137 6138 switch (excp_idx) { 6139 case EXCP_IRQ: 6140 scr = ((env->cp15.scr_el3 & SCR_IRQ) == SCR_IRQ); 6141 hcr = ((env->cp15.hcr_el2 & HCR_IMO) == HCR_IMO); 6142 break; 6143 case EXCP_FIQ: 6144 scr = ((env->cp15.scr_el3 & SCR_FIQ) == SCR_FIQ); 6145 hcr = ((env->cp15.hcr_el2 & HCR_FMO) == HCR_FMO); 6146 break; 6147 default: 6148 scr = ((env->cp15.scr_el3 & SCR_EA) == SCR_EA); 6149 hcr = ((env->cp15.hcr_el2 & HCR_AMO) == HCR_AMO); 6150 break; 6151 }; 6152 6153 /* If HCR.TGE is set then HCR is treated as being 1 */ 6154 hcr |= ((env->cp15.hcr_el2 & HCR_TGE) == HCR_TGE); 6155 6156 /* Perform a table-lookup for the target EL given the current state */ 6157 target_el = target_el_table[is64][scr][rw][hcr][secure][cur_el]; 6158 6159 assert(target_el > 0); 6160 6161 return target_el; 6162 } 6163 6164 static void v7m_push(CPUARMState *env, uint32_t val) 6165 { 6166 CPUState *cs = CPU(arm_env_get_cpu(env)); 6167 6168 env->regs[13] -= 4; 6169 stl_phys(cs->as, env->regs[13], val); 6170 } 6171 6172 /* Return true if we're using the process stack pointer (not the MSP) */ 6173 static bool v7m_using_psp(CPUARMState *env) 6174 { 6175 /* Handler mode always uses the main stack; for thread mode 6176 * the CONTROL.SPSEL bit determines the answer. 6177 * Note that in v7M it is not possible to be in Handler mode with 6178 * CONTROL.SPSEL non-zero, but in v8M it is, so we must check both. 6179 */ 6180 return !arm_v7m_is_handler_mode(env) && 6181 env->v7m.control[env->v7m.secure] & R_V7M_CONTROL_SPSEL_MASK; 6182 } 6183 6184 /* Write to v7M CONTROL.SPSEL bit for the specified security bank. 6185 * This may change the current stack pointer between Main and Process 6186 * stack pointers if it is done for the CONTROL register for the current 6187 * security state. 6188 */ 6189 static void write_v7m_control_spsel_for_secstate(CPUARMState *env, 6190 bool new_spsel, 6191 bool secstate) 6192 { 6193 bool old_is_psp = v7m_using_psp(env); 6194 6195 env->v7m.control[secstate] = 6196 deposit32(env->v7m.control[secstate], 6197 R_V7M_CONTROL_SPSEL_SHIFT, 6198 R_V7M_CONTROL_SPSEL_LENGTH, new_spsel); 6199 6200 if (secstate == env->v7m.secure) { 6201 bool new_is_psp = v7m_using_psp(env); 6202 uint32_t tmp; 6203 6204 if (old_is_psp != new_is_psp) { 6205 tmp = env->v7m.other_sp; 6206 env->v7m.other_sp = env->regs[13]; 6207 env->regs[13] = tmp; 6208 } 6209 } 6210 } 6211 6212 /* Write to v7M CONTROL.SPSEL bit. This may change the current 6213 * stack pointer between Main and Process stack pointers. 6214 */ 6215 static void write_v7m_control_spsel(CPUARMState *env, bool new_spsel) 6216 { 6217 write_v7m_control_spsel_for_secstate(env, new_spsel, env->v7m.secure); 6218 } 6219 6220 void write_v7m_exception(CPUARMState *env, uint32_t new_exc) 6221 { 6222 /* Write a new value to v7m.exception, thus transitioning into or out 6223 * of Handler mode; this may result in a change of active stack pointer. 6224 */ 6225 bool new_is_psp, old_is_psp = v7m_using_psp(env); 6226 uint32_t tmp; 6227 6228 env->v7m.exception = new_exc; 6229 6230 new_is_psp = v7m_using_psp(env); 6231 6232 if (old_is_psp != new_is_psp) { 6233 tmp = env->v7m.other_sp; 6234 env->v7m.other_sp = env->regs[13]; 6235 env->regs[13] = tmp; 6236 } 6237 } 6238 6239 /* Switch M profile security state between NS and S */ 6240 static void switch_v7m_security_state(CPUARMState *env, bool new_secstate) 6241 { 6242 uint32_t new_ss_msp, new_ss_psp; 6243 6244 if (env->v7m.secure == new_secstate) { 6245 return; 6246 } 6247 6248 /* All the banked state is accessed by looking at env->v7m.secure 6249 * except for the stack pointer; rearrange the SP appropriately. 6250 */ 6251 new_ss_msp = env->v7m.other_ss_msp; 6252 new_ss_psp = env->v7m.other_ss_psp; 6253 6254 if (v7m_using_psp(env)) { 6255 env->v7m.other_ss_psp = env->regs[13]; 6256 env->v7m.other_ss_msp = env->v7m.other_sp; 6257 } else { 6258 env->v7m.other_ss_msp = env->regs[13]; 6259 env->v7m.other_ss_psp = env->v7m.other_sp; 6260 } 6261 6262 env->v7m.secure = new_secstate; 6263 6264 if (v7m_using_psp(env)) { 6265 env->regs[13] = new_ss_psp; 6266 env->v7m.other_sp = new_ss_msp; 6267 } else { 6268 env->regs[13] = new_ss_msp; 6269 env->v7m.other_sp = new_ss_psp; 6270 } 6271 } 6272 6273 void HELPER(v7m_bxns)(CPUARMState *env, uint32_t dest) 6274 { 6275 /* Handle v7M BXNS: 6276 * - if the return value is a magic value, do exception return (like BX) 6277 * - otherwise bit 0 of the return value is the target security state 6278 */ 6279 uint32_t min_magic; 6280 6281 if (arm_feature(env, ARM_FEATURE_M_SECURITY)) { 6282 /* Covers FNC_RETURN and EXC_RETURN magic */ 6283 min_magic = FNC_RETURN_MIN_MAGIC; 6284 } else { 6285 /* EXC_RETURN magic only */ 6286 min_magic = EXC_RETURN_MIN_MAGIC; 6287 } 6288 6289 if (dest >= min_magic) { 6290 /* This is an exception return magic value; put it where 6291 * do_v7m_exception_exit() expects and raise EXCEPTION_EXIT. 6292 * Note that if we ever add gen_ss_advance() singlestep support to 6293 * M profile this should count as an "instruction execution complete" 6294 * event (compare gen_bx_excret_final_code()). 6295 */ 6296 env->regs[15] = dest & ~1; 6297 env->thumb = dest & 1; 6298 HELPER(exception_internal)(env, EXCP_EXCEPTION_EXIT); 6299 /* notreached */ 6300 } 6301 6302 /* translate.c should have made BXNS UNDEF unless we're secure */ 6303 assert(env->v7m.secure); 6304 6305 switch_v7m_security_state(env, dest & 1); 6306 env->thumb = 1; 6307 env->regs[15] = dest & ~1; 6308 } 6309 6310 void HELPER(v7m_blxns)(CPUARMState *env, uint32_t dest) 6311 { 6312 /* Handle v7M BLXNS: 6313 * - bit 0 of the destination address is the target security state 6314 */ 6315 6316 /* At this point regs[15] is the address just after the BLXNS */ 6317 uint32_t nextinst = env->regs[15] | 1; 6318 uint32_t sp = env->regs[13] - 8; 6319 uint32_t saved_psr; 6320 6321 /* translate.c will have made BLXNS UNDEF unless we're secure */ 6322 assert(env->v7m.secure); 6323 6324 if (dest & 1) { 6325 /* target is Secure, so this is just a normal BLX, 6326 * except that the low bit doesn't indicate Thumb/not. 6327 */ 6328 env->regs[14] = nextinst; 6329 env->thumb = 1; 6330 env->regs[15] = dest & ~1; 6331 return; 6332 } 6333 6334 /* Target is non-secure: first push a stack frame */ 6335 if (!QEMU_IS_ALIGNED(sp, 8)) { 6336 qemu_log_mask(LOG_GUEST_ERROR, 6337 "BLXNS with misaligned SP is UNPREDICTABLE\n"); 6338 } 6339 6340 saved_psr = env->v7m.exception; 6341 if (env->v7m.control[M_REG_S] & R_V7M_CONTROL_SFPA_MASK) { 6342 saved_psr |= XPSR_SFPA; 6343 } 6344 6345 /* Note that these stores can throw exceptions on MPU faults */ 6346 cpu_stl_data(env, sp, nextinst); 6347 cpu_stl_data(env, sp + 4, saved_psr); 6348 6349 env->regs[13] = sp; 6350 env->regs[14] = 0xfeffffff; 6351 if (arm_v7m_is_handler_mode(env)) { 6352 /* Write a dummy value to IPSR, to avoid leaking the current secure 6353 * exception number to non-secure code. This is guaranteed not 6354 * to cause write_v7m_exception() to actually change stacks. 6355 */ 6356 write_v7m_exception(env, 1); 6357 } 6358 switch_v7m_security_state(env, 0); 6359 env->thumb = 1; 6360 env->regs[15] = dest; 6361 } 6362 6363 static uint32_t *get_v7m_sp_ptr(CPUARMState *env, bool secure, bool threadmode, 6364 bool spsel) 6365 { 6366 /* Return a pointer to the location where we currently store the 6367 * stack pointer for the requested security state and thread mode. 6368 * This pointer will become invalid if the CPU state is updated 6369 * such that the stack pointers are switched around (eg changing 6370 * the SPSEL control bit). 6371 * Compare the v8M ARM ARM pseudocode LookUpSP_with_security_mode(). 6372 * Unlike that pseudocode, we require the caller to pass us in the 6373 * SPSEL control bit value; this is because we also use this 6374 * function in handling of pushing of the callee-saves registers 6375 * part of the v8M stack frame (pseudocode PushCalleeStack()), 6376 * and in the tailchain codepath the SPSEL bit comes from the exception 6377 * return magic LR value from the previous exception. The pseudocode 6378 * opencodes the stack-selection in PushCalleeStack(), but we prefer 6379 * to make this utility function generic enough to do the job. 6380 */ 6381 bool want_psp = threadmode && spsel; 6382 6383 if (secure == env->v7m.secure) { 6384 if (want_psp == v7m_using_psp(env)) { 6385 return &env->regs[13]; 6386 } else { 6387 return &env->v7m.other_sp; 6388 } 6389 } else { 6390 if (want_psp) { 6391 return &env->v7m.other_ss_psp; 6392 } else { 6393 return &env->v7m.other_ss_msp; 6394 } 6395 } 6396 } 6397 6398 static uint32_t arm_v7m_load_vector(ARMCPU *cpu, bool targets_secure) 6399 { 6400 CPUState *cs = CPU(cpu); 6401 CPUARMState *env = &cpu->env; 6402 MemTxResult result; 6403 hwaddr vec = env->v7m.vecbase[targets_secure] + env->v7m.exception * 4; 6404 uint32_t addr; 6405 6406 addr = address_space_ldl(cs->as, vec, 6407 MEMTXATTRS_UNSPECIFIED, &result); 6408 if (result != MEMTX_OK) { 6409 /* Architecturally this should cause a HardFault setting HSFR.VECTTBL, 6410 * which would then be immediately followed by our failing to load 6411 * the entry vector for that HardFault, which is a Lockup case. 6412 * Since we don't model Lockup, we just report this guest error 6413 * via cpu_abort(). 6414 */ 6415 cpu_abort(cs, "Failed to read from %s exception vector table " 6416 "entry %08x\n", targets_secure ? "secure" : "nonsecure", 6417 (unsigned)vec); 6418 } 6419 return addr; 6420 } 6421 6422 static void v7m_push_callee_stack(ARMCPU *cpu, uint32_t lr, bool dotailchain) 6423 { 6424 /* For v8M, push the callee-saves register part of the stack frame. 6425 * Compare the v8M pseudocode PushCalleeStack(). 6426 * In the tailchaining case this may not be the current stack. 6427 */ 6428 CPUARMState *env = &cpu->env; 6429 CPUState *cs = CPU(cpu); 6430 uint32_t *frame_sp_p; 6431 uint32_t frameptr; 6432 6433 if (dotailchain) { 6434 frame_sp_p = get_v7m_sp_ptr(env, true, 6435 lr & R_V7M_EXCRET_MODE_MASK, 6436 lr & R_V7M_EXCRET_SPSEL_MASK); 6437 } else { 6438 frame_sp_p = &env->regs[13]; 6439 } 6440 6441 frameptr = *frame_sp_p - 0x28; 6442 6443 stl_phys(cs->as, frameptr, 0xfefa125b); 6444 stl_phys(cs->as, frameptr + 0x8, env->regs[4]); 6445 stl_phys(cs->as, frameptr + 0xc, env->regs[5]); 6446 stl_phys(cs->as, frameptr + 0x10, env->regs[6]); 6447 stl_phys(cs->as, frameptr + 0x14, env->regs[7]); 6448 stl_phys(cs->as, frameptr + 0x18, env->regs[8]); 6449 stl_phys(cs->as, frameptr + 0x1c, env->regs[9]); 6450 stl_phys(cs->as, frameptr + 0x20, env->regs[10]); 6451 stl_phys(cs->as, frameptr + 0x24, env->regs[11]); 6452 6453 *frame_sp_p = frameptr; 6454 } 6455 6456 static void v7m_exception_taken(ARMCPU *cpu, uint32_t lr, bool dotailchain) 6457 { 6458 /* Do the "take the exception" parts of exception entry, 6459 * but not the pushing of state to the stack. This is 6460 * similar to the pseudocode ExceptionTaken() function. 6461 */ 6462 CPUARMState *env = &cpu->env; 6463 uint32_t addr; 6464 bool targets_secure; 6465 6466 targets_secure = armv7m_nvic_acknowledge_irq(env->nvic); 6467 6468 if (arm_feature(env, ARM_FEATURE_V8)) { 6469 if (arm_feature(env, ARM_FEATURE_M_SECURITY) && 6470 (lr & R_V7M_EXCRET_S_MASK)) { 6471 /* The background code (the owner of the registers in the 6472 * exception frame) is Secure. This means it may either already 6473 * have or now needs to push callee-saves registers. 6474 */ 6475 if (targets_secure) { 6476 if (dotailchain && !(lr & R_V7M_EXCRET_ES_MASK)) { 6477 /* We took an exception from Secure to NonSecure 6478 * (which means the callee-saved registers got stacked) 6479 * and are now tailchaining to a Secure exception. 6480 * Clear DCRS so eventual return from this Secure 6481 * exception unstacks the callee-saved registers. 6482 */ 6483 lr &= ~R_V7M_EXCRET_DCRS_MASK; 6484 } 6485 } else { 6486 /* We're going to a non-secure exception; push the 6487 * callee-saves registers to the stack now, if they're 6488 * not already saved. 6489 */ 6490 if (lr & R_V7M_EXCRET_DCRS_MASK && 6491 !(dotailchain && (lr & R_V7M_EXCRET_ES_MASK))) { 6492 v7m_push_callee_stack(cpu, lr, dotailchain); 6493 } 6494 lr |= R_V7M_EXCRET_DCRS_MASK; 6495 } 6496 } 6497 6498 lr &= ~R_V7M_EXCRET_ES_MASK; 6499 if (targets_secure || !arm_feature(env, ARM_FEATURE_M_SECURITY)) { 6500 lr |= R_V7M_EXCRET_ES_MASK; 6501 } 6502 lr &= ~R_V7M_EXCRET_SPSEL_MASK; 6503 if (env->v7m.control[targets_secure] & R_V7M_CONTROL_SPSEL_MASK) { 6504 lr |= R_V7M_EXCRET_SPSEL_MASK; 6505 } 6506 6507 /* Clear registers if necessary to prevent non-secure exception 6508 * code being able to see register values from secure code. 6509 * Where register values become architecturally UNKNOWN we leave 6510 * them with their previous values. 6511 */ 6512 if (arm_feature(env, ARM_FEATURE_M_SECURITY)) { 6513 if (!targets_secure) { 6514 /* Always clear the caller-saved registers (they have been 6515 * pushed to the stack earlier in v7m_push_stack()). 6516 * Clear callee-saved registers if the background code is 6517 * Secure (in which case these regs were saved in 6518 * v7m_push_callee_stack()). 6519 */ 6520 int i; 6521 6522 for (i = 0; i < 13; i++) { 6523 /* r4..r11 are callee-saves, zero only if EXCRET.S == 1 */ 6524 if (i < 4 || i > 11 || (lr & R_V7M_EXCRET_S_MASK)) { 6525 env->regs[i] = 0; 6526 } 6527 } 6528 /* Clear EAPSR */ 6529 xpsr_write(env, 0, XPSR_NZCV | XPSR_Q | XPSR_GE | XPSR_IT); 6530 } 6531 } 6532 } 6533 6534 /* Switch to target security state -- must do this before writing SPSEL */ 6535 switch_v7m_security_state(env, targets_secure); 6536 write_v7m_control_spsel(env, 0); 6537 arm_clear_exclusive(env); 6538 /* Clear IT bits */ 6539 env->condexec_bits = 0; 6540 env->regs[14] = lr; 6541 addr = arm_v7m_load_vector(cpu, targets_secure); 6542 env->regs[15] = addr & 0xfffffffe; 6543 env->thumb = addr & 1; 6544 } 6545 6546 static void v7m_push_stack(ARMCPU *cpu) 6547 { 6548 /* Do the "set up stack frame" part of exception entry, 6549 * similar to pseudocode PushStack(). 6550 */ 6551 CPUARMState *env = &cpu->env; 6552 uint32_t xpsr = xpsr_read(env); 6553 6554 /* Align stack pointer if the guest wants that */ 6555 if ((env->regs[13] & 4) && 6556 (env->v7m.ccr[env->v7m.secure] & R_V7M_CCR_STKALIGN_MASK)) { 6557 env->regs[13] -= 4; 6558 xpsr |= XPSR_SPREALIGN; 6559 } 6560 /* Switch to the handler mode. */ 6561 v7m_push(env, xpsr); 6562 v7m_push(env, env->regs[15]); 6563 v7m_push(env, env->regs[14]); 6564 v7m_push(env, env->regs[12]); 6565 v7m_push(env, env->regs[3]); 6566 v7m_push(env, env->regs[2]); 6567 v7m_push(env, env->regs[1]); 6568 v7m_push(env, env->regs[0]); 6569 } 6570 6571 static void do_v7m_exception_exit(ARMCPU *cpu) 6572 { 6573 CPUARMState *env = &cpu->env; 6574 CPUState *cs = CPU(cpu); 6575 uint32_t excret; 6576 uint32_t xpsr; 6577 bool ufault = false; 6578 bool sfault = false; 6579 bool return_to_sp_process; 6580 bool return_to_handler; 6581 bool rettobase = false; 6582 bool exc_secure = false; 6583 bool return_to_secure; 6584 6585 /* If we're not in Handler mode then jumps to magic exception-exit 6586 * addresses don't have magic behaviour. However for the v8M 6587 * security extensions the magic secure-function-return has to 6588 * work in thread mode too, so to avoid doing an extra check in 6589 * the generated code we allow exception-exit magic to also cause the 6590 * internal exception and bring us here in thread mode. Correct code 6591 * will never try to do this (the following insn fetch will always 6592 * fault) so we the overhead of having taken an unnecessary exception 6593 * doesn't matter. 6594 */ 6595 if (!arm_v7m_is_handler_mode(env)) { 6596 return; 6597 } 6598 6599 /* In the spec pseudocode ExceptionReturn() is called directly 6600 * from BXWritePC() and gets the full target PC value including 6601 * bit zero. In QEMU's implementation we treat it as a normal 6602 * jump-to-register (which is then caught later on), and so split 6603 * the target value up between env->regs[15] and env->thumb in 6604 * gen_bx(). Reconstitute it. 6605 */ 6606 excret = env->regs[15]; 6607 if (env->thumb) { 6608 excret |= 1; 6609 } 6610 6611 qemu_log_mask(CPU_LOG_INT, "Exception return: magic PC %" PRIx32 6612 " previous exception %d\n", 6613 excret, env->v7m.exception); 6614 6615 if ((excret & R_V7M_EXCRET_RES1_MASK) != R_V7M_EXCRET_RES1_MASK) { 6616 qemu_log_mask(LOG_GUEST_ERROR, "M profile: zero high bits in exception " 6617 "exit PC value 0x%" PRIx32 " are UNPREDICTABLE\n", 6618 excret); 6619 } 6620 6621 if (arm_feature(env, ARM_FEATURE_M_SECURITY)) { 6622 /* EXC_RETURN.ES validation check (R_SMFL). We must do this before 6623 * we pick which FAULTMASK to clear. 6624 */ 6625 if (!env->v7m.secure && 6626 ((excret & R_V7M_EXCRET_ES_MASK) || 6627 !(excret & R_V7M_EXCRET_DCRS_MASK))) { 6628 sfault = 1; 6629 /* For all other purposes, treat ES as 0 (R_HXSR) */ 6630 excret &= ~R_V7M_EXCRET_ES_MASK; 6631 } 6632 } 6633 6634 if (env->v7m.exception != ARMV7M_EXCP_NMI) { 6635 /* Auto-clear FAULTMASK on return from other than NMI. 6636 * If the security extension is implemented then this only 6637 * happens if the raw execution priority is >= 0; the 6638 * value of the ES bit in the exception return value indicates 6639 * which security state's faultmask to clear. (v8M ARM ARM R_KBNF.) 6640 */ 6641 if (arm_feature(env, ARM_FEATURE_M_SECURITY)) { 6642 exc_secure = excret & R_V7M_EXCRET_ES_MASK; 6643 if (armv7m_nvic_raw_execution_priority(env->nvic) >= 0) { 6644 env->v7m.faultmask[exc_secure] = 0; 6645 } 6646 } else { 6647 env->v7m.faultmask[M_REG_NS] = 0; 6648 } 6649 } 6650 6651 switch (armv7m_nvic_complete_irq(env->nvic, env->v7m.exception, 6652 exc_secure)) { 6653 case -1: 6654 /* attempt to exit an exception that isn't active */ 6655 ufault = true; 6656 break; 6657 case 0: 6658 /* still an irq active now */ 6659 break; 6660 case 1: 6661 /* we returned to base exception level, no nesting. 6662 * (In the pseudocode this is written using "NestedActivation != 1" 6663 * where we have 'rettobase == false'.) 6664 */ 6665 rettobase = true; 6666 break; 6667 default: 6668 g_assert_not_reached(); 6669 } 6670 6671 return_to_handler = !(excret & R_V7M_EXCRET_MODE_MASK); 6672 return_to_sp_process = excret & R_V7M_EXCRET_SPSEL_MASK; 6673 return_to_secure = arm_feature(env, ARM_FEATURE_M_SECURITY) && 6674 (excret & R_V7M_EXCRET_S_MASK); 6675 6676 if (arm_feature(env, ARM_FEATURE_V8)) { 6677 if (!arm_feature(env, ARM_FEATURE_M_SECURITY)) { 6678 /* UNPREDICTABLE if S == 1 or DCRS == 0 or ES == 1 (R_XLCP); 6679 * we choose to take the UsageFault. 6680 */ 6681 if ((excret & R_V7M_EXCRET_S_MASK) || 6682 (excret & R_V7M_EXCRET_ES_MASK) || 6683 !(excret & R_V7M_EXCRET_DCRS_MASK)) { 6684 ufault = true; 6685 } 6686 } 6687 if (excret & R_V7M_EXCRET_RES0_MASK) { 6688 ufault = true; 6689 } 6690 } else { 6691 /* For v7M we only recognize certain combinations of the low bits */ 6692 switch (excret & 0xf) { 6693 case 1: /* Return to Handler */ 6694 break; 6695 case 13: /* Return to Thread using Process stack */ 6696 case 9: /* Return to Thread using Main stack */ 6697 /* We only need to check NONBASETHRDENA for v7M, because in 6698 * v8M this bit does not exist (it is RES1). 6699 */ 6700 if (!rettobase && 6701 !(env->v7m.ccr[env->v7m.secure] & 6702 R_V7M_CCR_NONBASETHRDENA_MASK)) { 6703 ufault = true; 6704 } 6705 break; 6706 default: 6707 ufault = true; 6708 } 6709 } 6710 6711 if (sfault) { 6712 env->v7m.sfsr |= R_V7M_SFSR_INVER_MASK; 6713 armv7m_nvic_set_pending(env->nvic, ARMV7M_EXCP_SECURE, false); 6714 v7m_exception_taken(cpu, excret, true); 6715 qemu_log_mask(CPU_LOG_INT, "...taking SecureFault on existing " 6716 "stackframe: failed EXC_RETURN.ES validity check\n"); 6717 return; 6718 } 6719 6720 if (ufault) { 6721 /* Bad exception return: instead of popping the exception 6722 * stack, directly take a usage fault on the current stack. 6723 */ 6724 env->v7m.cfsr[env->v7m.secure] |= R_V7M_CFSR_INVPC_MASK; 6725 armv7m_nvic_set_pending(env->nvic, ARMV7M_EXCP_USAGE, env->v7m.secure); 6726 v7m_exception_taken(cpu, excret, true); 6727 qemu_log_mask(CPU_LOG_INT, "...taking UsageFault on existing " 6728 "stackframe: failed exception return integrity check\n"); 6729 return; 6730 } 6731 6732 /* Set CONTROL.SPSEL from excret.SPSEL. Since we're still in 6733 * Handler mode (and will be until we write the new XPSR.Interrupt 6734 * field) this does not switch around the current stack pointer. 6735 */ 6736 write_v7m_control_spsel_for_secstate(env, return_to_sp_process, exc_secure); 6737 6738 switch_v7m_security_state(env, return_to_secure); 6739 6740 { 6741 /* The stack pointer we should be reading the exception frame from 6742 * depends on bits in the magic exception return type value (and 6743 * for v8M isn't necessarily the stack pointer we will eventually 6744 * end up resuming execution with). Get a pointer to the location 6745 * in the CPU state struct where the SP we need is currently being 6746 * stored; we will use and modify it in place. 6747 * We use this limited C variable scope so we don't accidentally 6748 * use 'frame_sp_p' after we do something that makes it invalid. 6749 */ 6750 uint32_t *frame_sp_p = get_v7m_sp_ptr(env, 6751 return_to_secure, 6752 !return_to_handler, 6753 return_to_sp_process); 6754 uint32_t frameptr = *frame_sp_p; 6755 6756 if (!QEMU_IS_ALIGNED(frameptr, 8) && 6757 arm_feature(env, ARM_FEATURE_V8)) { 6758 qemu_log_mask(LOG_GUEST_ERROR, 6759 "M profile exception return with non-8-aligned SP " 6760 "for destination state is UNPREDICTABLE\n"); 6761 } 6762 6763 /* Do we need to pop callee-saved registers? */ 6764 if (return_to_secure && 6765 ((excret & R_V7M_EXCRET_ES_MASK) == 0 || 6766 (excret & R_V7M_EXCRET_DCRS_MASK) == 0)) { 6767 uint32_t expected_sig = 0xfefa125b; 6768 uint32_t actual_sig = ldl_phys(cs->as, frameptr); 6769 6770 if (expected_sig != actual_sig) { 6771 /* Take a SecureFault on the current stack */ 6772 env->v7m.sfsr |= R_V7M_SFSR_INVIS_MASK; 6773 armv7m_nvic_set_pending(env->nvic, ARMV7M_EXCP_SECURE, false); 6774 v7m_exception_taken(cpu, excret, true); 6775 qemu_log_mask(CPU_LOG_INT, "...taking SecureFault on existing " 6776 "stackframe: failed exception return integrity " 6777 "signature check\n"); 6778 return; 6779 } 6780 6781 env->regs[4] = ldl_phys(cs->as, frameptr + 0x8); 6782 env->regs[5] = ldl_phys(cs->as, frameptr + 0xc); 6783 env->regs[6] = ldl_phys(cs->as, frameptr + 0x10); 6784 env->regs[7] = ldl_phys(cs->as, frameptr + 0x14); 6785 env->regs[8] = ldl_phys(cs->as, frameptr + 0x18); 6786 env->regs[9] = ldl_phys(cs->as, frameptr + 0x1c); 6787 env->regs[10] = ldl_phys(cs->as, frameptr + 0x20); 6788 env->regs[11] = ldl_phys(cs->as, frameptr + 0x24); 6789 6790 frameptr += 0x28; 6791 } 6792 6793 /* Pop registers. TODO: make these accesses use the correct 6794 * attributes and address space (S/NS, priv/unpriv) and handle 6795 * memory transaction failures. 6796 */ 6797 env->regs[0] = ldl_phys(cs->as, frameptr); 6798 env->regs[1] = ldl_phys(cs->as, frameptr + 0x4); 6799 env->regs[2] = ldl_phys(cs->as, frameptr + 0x8); 6800 env->regs[3] = ldl_phys(cs->as, frameptr + 0xc); 6801 env->regs[12] = ldl_phys(cs->as, frameptr + 0x10); 6802 env->regs[14] = ldl_phys(cs->as, frameptr + 0x14); 6803 env->regs[15] = ldl_phys(cs->as, frameptr + 0x18); 6804 6805 /* Returning from an exception with a PC with bit 0 set is defined 6806 * behaviour on v8M (bit 0 is ignored), but for v7M it was specified 6807 * to be UNPREDICTABLE. In practice actual v7M hardware seems to ignore 6808 * the lsbit, and there are several RTOSes out there which incorrectly 6809 * assume the r15 in the stack frame should be a Thumb-style "lsbit 6810 * indicates ARM/Thumb" value, so ignore the bit on v7M as well, but 6811 * complain about the badly behaved guest. 6812 */ 6813 if (env->regs[15] & 1) { 6814 env->regs[15] &= ~1U; 6815 if (!arm_feature(env, ARM_FEATURE_V8)) { 6816 qemu_log_mask(LOG_GUEST_ERROR, 6817 "M profile return from interrupt with misaligned " 6818 "PC is UNPREDICTABLE on v7M\n"); 6819 } 6820 } 6821 6822 xpsr = ldl_phys(cs->as, frameptr + 0x1c); 6823 6824 if (arm_feature(env, ARM_FEATURE_V8)) { 6825 /* For v8M we have to check whether the xPSR exception field 6826 * matches the EXCRET value for return to handler/thread 6827 * before we commit to changing the SP and xPSR. 6828 */ 6829 bool will_be_handler = (xpsr & XPSR_EXCP) != 0; 6830 if (return_to_handler != will_be_handler) { 6831 /* Take an INVPC UsageFault on the current stack. 6832 * By this point we will have switched to the security state 6833 * for the background state, so this UsageFault will target 6834 * that state. 6835 */ 6836 armv7m_nvic_set_pending(env->nvic, ARMV7M_EXCP_USAGE, 6837 env->v7m.secure); 6838 env->v7m.cfsr[env->v7m.secure] |= R_V7M_CFSR_INVPC_MASK; 6839 v7m_exception_taken(cpu, excret, true); 6840 qemu_log_mask(CPU_LOG_INT, "...taking UsageFault on existing " 6841 "stackframe: failed exception return integrity " 6842 "check\n"); 6843 return; 6844 } 6845 } 6846 6847 /* Commit to consuming the stack frame */ 6848 frameptr += 0x20; 6849 /* Undo stack alignment (the SPREALIGN bit indicates that the original 6850 * pre-exception SP was not 8-aligned and we added a padding word to 6851 * align it, so we undo this by ORing in the bit that increases it 6852 * from the current 8-aligned value to the 8-unaligned value. (Adding 4 6853 * would work too but a logical OR is how the pseudocode specifies it.) 6854 */ 6855 if (xpsr & XPSR_SPREALIGN) { 6856 frameptr |= 4; 6857 } 6858 *frame_sp_p = frameptr; 6859 } 6860 /* This xpsr_write() will invalidate frame_sp_p as it may switch stack */ 6861 xpsr_write(env, xpsr, ~XPSR_SPREALIGN); 6862 6863 /* The restored xPSR exception field will be zero if we're 6864 * resuming in Thread mode. If that doesn't match what the 6865 * exception return excret specified then this is a UsageFault. 6866 * v7M requires we make this check here; v8M did it earlier. 6867 */ 6868 if (return_to_handler != arm_v7m_is_handler_mode(env)) { 6869 /* Take an INVPC UsageFault by pushing the stack again; 6870 * we know we're v7M so this is never a Secure UsageFault. 6871 */ 6872 assert(!arm_feature(env, ARM_FEATURE_V8)); 6873 armv7m_nvic_set_pending(env->nvic, ARMV7M_EXCP_USAGE, false); 6874 env->v7m.cfsr[env->v7m.secure] |= R_V7M_CFSR_INVPC_MASK; 6875 v7m_push_stack(cpu); 6876 v7m_exception_taken(cpu, excret, false); 6877 qemu_log_mask(CPU_LOG_INT, "...taking UsageFault on new stackframe: " 6878 "failed exception return integrity check\n"); 6879 return; 6880 } 6881 6882 /* Otherwise, we have a successful exception exit. */ 6883 arm_clear_exclusive(env); 6884 qemu_log_mask(CPU_LOG_INT, "...successful exception return\n"); 6885 } 6886 6887 static bool do_v7m_function_return(ARMCPU *cpu) 6888 { 6889 /* v8M security extensions magic function return. 6890 * We may either: 6891 * (1) throw an exception (longjump) 6892 * (2) return true if we successfully handled the function return 6893 * (3) return false if we failed a consistency check and have 6894 * pended a UsageFault that needs to be taken now 6895 * 6896 * At this point the magic return value is split between env->regs[15] 6897 * and env->thumb. We don't bother to reconstitute it because we don't 6898 * need it (all values are handled the same way). 6899 */ 6900 CPUARMState *env = &cpu->env; 6901 uint32_t newpc, newpsr, newpsr_exc; 6902 6903 qemu_log_mask(CPU_LOG_INT, "...really v7M secure function return\n"); 6904 6905 { 6906 bool threadmode, spsel; 6907 TCGMemOpIdx oi; 6908 ARMMMUIdx mmu_idx; 6909 uint32_t *frame_sp_p; 6910 uint32_t frameptr; 6911 6912 /* Pull the return address and IPSR from the Secure stack */ 6913 threadmode = !arm_v7m_is_handler_mode(env); 6914 spsel = env->v7m.control[M_REG_S] & R_V7M_CONTROL_SPSEL_MASK; 6915 6916 frame_sp_p = get_v7m_sp_ptr(env, true, threadmode, spsel); 6917 frameptr = *frame_sp_p; 6918 6919 /* These loads may throw an exception (for MPU faults). We want to 6920 * do them as secure, so work out what MMU index that is. 6921 */ 6922 mmu_idx = arm_v7m_mmu_idx_for_secstate(env, true); 6923 oi = make_memop_idx(MO_LE, arm_to_core_mmu_idx(mmu_idx)); 6924 newpc = helper_le_ldul_mmu(env, frameptr, oi, 0); 6925 newpsr = helper_le_ldul_mmu(env, frameptr + 4, oi, 0); 6926 6927 /* Consistency checks on new IPSR */ 6928 newpsr_exc = newpsr & XPSR_EXCP; 6929 if (!((env->v7m.exception == 0 && newpsr_exc == 0) || 6930 (env->v7m.exception == 1 && newpsr_exc != 0))) { 6931 /* Pend the fault and tell our caller to take it */ 6932 env->v7m.cfsr[env->v7m.secure] |= R_V7M_CFSR_INVPC_MASK; 6933 armv7m_nvic_set_pending(env->nvic, ARMV7M_EXCP_USAGE, 6934 env->v7m.secure); 6935 qemu_log_mask(CPU_LOG_INT, 6936 "...taking INVPC UsageFault: " 6937 "IPSR consistency check failed\n"); 6938 return false; 6939 } 6940 6941 *frame_sp_p = frameptr + 8; 6942 } 6943 6944 /* This invalidates frame_sp_p */ 6945 switch_v7m_security_state(env, true); 6946 env->v7m.exception = newpsr_exc; 6947 env->v7m.control[M_REG_S] &= ~R_V7M_CONTROL_SFPA_MASK; 6948 if (newpsr & XPSR_SFPA) { 6949 env->v7m.control[M_REG_S] |= R_V7M_CONTROL_SFPA_MASK; 6950 } 6951 xpsr_write(env, 0, XPSR_IT); 6952 env->thumb = newpc & 1; 6953 env->regs[15] = newpc & ~1; 6954 6955 qemu_log_mask(CPU_LOG_INT, "...function return successful\n"); 6956 return true; 6957 } 6958 6959 static void arm_log_exception(int idx) 6960 { 6961 if (qemu_loglevel_mask(CPU_LOG_INT)) { 6962 const char *exc = NULL; 6963 static const char * const excnames[] = { 6964 [EXCP_UDEF] = "Undefined Instruction", 6965 [EXCP_SWI] = "SVC", 6966 [EXCP_PREFETCH_ABORT] = "Prefetch Abort", 6967 [EXCP_DATA_ABORT] = "Data Abort", 6968 [EXCP_IRQ] = "IRQ", 6969 [EXCP_FIQ] = "FIQ", 6970 [EXCP_BKPT] = "Breakpoint", 6971 [EXCP_EXCEPTION_EXIT] = "QEMU v7M exception exit", 6972 [EXCP_KERNEL_TRAP] = "QEMU intercept of kernel commpage", 6973 [EXCP_HVC] = "Hypervisor Call", 6974 [EXCP_HYP_TRAP] = "Hypervisor Trap", 6975 [EXCP_SMC] = "Secure Monitor Call", 6976 [EXCP_VIRQ] = "Virtual IRQ", 6977 [EXCP_VFIQ] = "Virtual FIQ", 6978 [EXCP_SEMIHOST] = "Semihosting call", 6979 [EXCP_NOCP] = "v7M NOCP UsageFault", 6980 [EXCP_INVSTATE] = "v7M INVSTATE UsageFault", 6981 }; 6982 6983 if (idx >= 0 && idx < ARRAY_SIZE(excnames)) { 6984 exc = excnames[idx]; 6985 } 6986 if (!exc) { 6987 exc = "unknown"; 6988 } 6989 qemu_log_mask(CPU_LOG_INT, "Taking exception %d [%s]\n", idx, exc); 6990 } 6991 } 6992 6993 static bool v7m_read_half_insn(ARMCPU *cpu, ARMMMUIdx mmu_idx, 6994 uint32_t addr, uint16_t *insn) 6995 { 6996 /* Load a 16-bit portion of a v7M instruction, returning true on success, 6997 * or false on failure (in which case we will have pended the appropriate 6998 * exception). 6999 * We need to do the instruction fetch's MPU and SAU checks 7000 * like this because there is no MMU index that would allow 7001 * doing the load with a single function call. Instead we must 7002 * first check that the security attributes permit the load 7003 * and that they don't mismatch on the two halves of the instruction, 7004 * and then we do the load as a secure load (ie using the security 7005 * attributes of the address, not the CPU, as architecturally required). 7006 */ 7007 CPUState *cs = CPU(cpu); 7008 CPUARMState *env = &cpu->env; 7009 V8M_SAttributes sattrs = {}; 7010 MemTxAttrs attrs = {}; 7011 ARMMMUFaultInfo fi = {}; 7012 MemTxResult txres; 7013 target_ulong page_size; 7014 hwaddr physaddr; 7015 int prot; 7016 7017 v8m_security_lookup(env, addr, MMU_INST_FETCH, mmu_idx, &sattrs); 7018 if (!sattrs.nsc || sattrs.ns) { 7019 /* This must be the second half of the insn, and it straddles a 7020 * region boundary with the second half not being S&NSC. 7021 */ 7022 env->v7m.sfsr |= R_V7M_SFSR_INVEP_MASK; 7023 armv7m_nvic_set_pending(env->nvic, ARMV7M_EXCP_SECURE, false); 7024 qemu_log_mask(CPU_LOG_INT, 7025 "...really SecureFault with SFSR.INVEP\n"); 7026 return false; 7027 } 7028 if (get_phys_addr(env, addr, MMU_INST_FETCH, mmu_idx, 7029 &physaddr, &attrs, &prot, &page_size, &fi, NULL)) { 7030 /* the MPU lookup failed */ 7031 env->v7m.cfsr[env->v7m.secure] |= R_V7M_CFSR_IACCVIOL_MASK; 7032 armv7m_nvic_set_pending(env->nvic, ARMV7M_EXCP_MEM, env->v7m.secure); 7033 qemu_log_mask(CPU_LOG_INT, "...really MemManage with CFSR.IACCVIOL\n"); 7034 return false; 7035 } 7036 *insn = address_space_lduw_le(arm_addressspace(cs, attrs), physaddr, 7037 attrs, &txres); 7038 if (txres != MEMTX_OK) { 7039 env->v7m.cfsr[M_REG_NS] |= R_V7M_CFSR_IBUSERR_MASK; 7040 armv7m_nvic_set_pending(env->nvic, ARMV7M_EXCP_BUS, false); 7041 qemu_log_mask(CPU_LOG_INT, "...really BusFault with CFSR.IBUSERR\n"); 7042 return false; 7043 } 7044 return true; 7045 } 7046 7047 static bool v7m_handle_execute_nsc(ARMCPU *cpu) 7048 { 7049 /* Check whether this attempt to execute code in a Secure & NS-Callable 7050 * memory region is for an SG instruction; if so, then emulate the 7051 * effect of the SG instruction and return true. Otherwise pend 7052 * the correct kind of exception and return false. 7053 */ 7054 CPUARMState *env = &cpu->env; 7055 ARMMMUIdx mmu_idx; 7056 uint16_t insn; 7057 7058 /* We should never get here unless get_phys_addr_pmsav8() caused 7059 * an exception for NS executing in S&NSC memory. 7060 */ 7061 assert(!env->v7m.secure); 7062 assert(arm_feature(env, ARM_FEATURE_M_SECURITY)); 7063 7064 /* We want to do the MPU lookup as secure; work out what mmu_idx that is */ 7065 mmu_idx = arm_v7m_mmu_idx_for_secstate(env, true); 7066 7067 if (!v7m_read_half_insn(cpu, mmu_idx, env->regs[15], &insn)) { 7068 return false; 7069 } 7070 7071 if (!env->thumb) { 7072 goto gen_invep; 7073 } 7074 7075 if (insn != 0xe97f) { 7076 /* Not an SG instruction first half (we choose the IMPDEF 7077 * early-SG-check option). 7078 */ 7079 goto gen_invep; 7080 } 7081 7082 if (!v7m_read_half_insn(cpu, mmu_idx, env->regs[15] + 2, &insn)) { 7083 return false; 7084 } 7085 7086 if (insn != 0xe97f) { 7087 /* Not an SG instruction second half (yes, both halves of the SG 7088 * insn have the same hex value) 7089 */ 7090 goto gen_invep; 7091 } 7092 7093 /* OK, we have confirmed that we really have an SG instruction. 7094 * We know we're NS in S memory so don't need to repeat those checks. 7095 */ 7096 qemu_log_mask(CPU_LOG_INT, "...really an SG instruction at 0x%08" PRIx32 7097 ", executing it\n", env->regs[15]); 7098 env->regs[14] &= ~1; 7099 switch_v7m_security_state(env, true); 7100 xpsr_write(env, 0, XPSR_IT); 7101 env->regs[15] += 4; 7102 return true; 7103 7104 gen_invep: 7105 env->v7m.sfsr |= R_V7M_SFSR_INVEP_MASK; 7106 armv7m_nvic_set_pending(env->nvic, ARMV7M_EXCP_SECURE, false); 7107 qemu_log_mask(CPU_LOG_INT, 7108 "...really SecureFault with SFSR.INVEP\n"); 7109 return false; 7110 } 7111 7112 void arm_v7m_cpu_do_interrupt(CPUState *cs) 7113 { 7114 ARMCPU *cpu = ARM_CPU(cs); 7115 CPUARMState *env = &cpu->env; 7116 uint32_t lr; 7117 7118 arm_log_exception(cs->exception_index); 7119 7120 /* For exceptions we just mark as pending on the NVIC, and let that 7121 handle it. */ 7122 switch (cs->exception_index) { 7123 case EXCP_UDEF: 7124 armv7m_nvic_set_pending(env->nvic, ARMV7M_EXCP_USAGE, env->v7m.secure); 7125 env->v7m.cfsr[env->v7m.secure] |= R_V7M_CFSR_UNDEFINSTR_MASK; 7126 break; 7127 case EXCP_NOCP: 7128 armv7m_nvic_set_pending(env->nvic, ARMV7M_EXCP_USAGE, env->v7m.secure); 7129 env->v7m.cfsr[env->v7m.secure] |= R_V7M_CFSR_NOCP_MASK; 7130 break; 7131 case EXCP_INVSTATE: 7132 armv7m_nvic_set_pending(env->nvic, ARMV7M_EXCP_USAGE, env->v7m.secure); 7133 env->v7m.cfsr[env->v7m.secure] |= R_V7M_CFSR_INVSTATE_MASK; 7134 break; 7135 case EXCP_SWI: 7136 /* The PC already points to the next instruction. */ 7137 armv7m_nvic_set_pending(env->nvic, ARMV7M_EXCP_SVC, env->v7m.secure); 7138 break; 7139 case EXCP_PREFETCH_ABORT: 7140 case EXCP_DATA_ABORT: 7141 /* Note that for M profile we don't have a guest facing FSR, but 7142 * the env->exception.fsr will be populated by the code that 7143 * raises the fault, in the A profile short-descriptor format. 7144 */ 7145 switch (env->exception.fsr & 0xf) { 7146 case M_FAKE_FSR_NSC_EXEC: 7147 /* Exception generated when we try to execute code at an address 7148 * which is marked as Secure & Non-Secure Callable and the CPU 7149 * is in the Non-Secure state. The only instruction which can 7150 * be executed like this is SG (and that only if both halves of 7151 * the SG instruction have the same security attributes.) 7152 * Everything else must generate an INVEP SecureFault, so we 7153 * emulate the SG instruction here. 7154 */ 7155 if (v7m_handle_execute_nsc(cpu)) { 7156 return; 7157 } 7158 break; 7159 case M_FAKE_FSR_SFAULT: 7160 /* Various flavours of SecureFault for attempts to execute or 7161 * access data in the wrong security state. 7162 */ 7163 switch (cs->exception_index) { 7164 case EXCP_PREFETCH_ABORT: 7165 if (env->v7m.secure) { 7166 env->v7m.sfsr |= R_V7M_SFSR_INVTRAN_MASK; 7167 qemu_log_mask(CPU_LOG_INT, 7168 "...really SecureFault with SFSR.INVTRAN\n"); 7169 } else { 7170 env->v7m.sfsr |= R_V7M_SFSR_INVEP_MASK; 7171 qemu_log_mask(CPU_LOG_INT, 7172 "...really SecureFault with SFSR.INVEP\n"); 7173 } 7174 break; 7175 case EXCP_DATA_ABORT: 7176 /* This must be an NS access to S memory */ 7177 env->v7m.sfsr |= R_V7M_SFSR_AUVIOL_MASK; 7178 qemu_log_mask(CPU_LOG_INT, 7179 "...really SecureFault with SFSR.AUVIOL\n"); 7180 break; 7181 } 7182 armv7m_nvic_set_pending(env->nvic, ARMV7M_EXCP_SECURE, false); 7183 break; 7184 case 0x8: /* External Abort */ 7185 switch (cs->exception_index) { 7186 case EXCP_PREFETCH_ABORT: 7187 env->v7m.cfsr[M_REG_NS] |= R_V7M_CFSR_IBUSERR_MASK; 7188 qemu_log_mask(CPU_LOG_INT, "...with CFSR.IBUSERR\n"); 7189 break; 7190 case EXCP_DATA_ABORT: 7191 env->v7m.cfsr[M_REG_NS] |= 7192 (R_V7M_CFSR_PRECISERR_MASK | R_V7M_CFSR_BFARVALID_MASK); 7193 env->v7m.bfar = env->exception.vaddress; 7194 qemu_log_mask(CPU_LOG_INT, 7195 "...with CFSR.PRECISERR and BFAR 0x%x\n", 7196 env->v7m.bfar); 7197 break; 7198 } 7199 armv7m_nvic_set_pending(env->nvic, ARMV7M_EXCP_BUS, false); 7200 break; 7201 default: 7202 /* All other FSR values are either MPU faults or "can't happen 7203 * for M profile" cases. 7204 */ 7205 switch (cs->exception_index) { 7206 case EXCP_PREFETCH_ABORT: 7207 env->v7m.cfsr[env->v7m.secure] |= R_V7M_CFSR_IACCVIOL_MASK; 7208 qemu_log_mask(CPU_LOG_INT, "...with CFSR.IACCVIOL\n"); 7209 break; 7210 case EXCP_DATA_ABORT: 7211 env->v7m.cfsr[env->v7m.secure] |= 7212 (R_V7M_CFSR_DACCVIOL_MASK | R_V7M_CFSR_MMARVALID_MASK); 7213 env->v7m.mmfar[env->v7m.secure] = env->exception.vaddress; 7214 qemu_log_mask(CPU_LOG_INT, 7215 "...with CFSR.DACCVIOL and MMFAR 0x%x\n", 7216 env->v7m.mmfar[env->v7m.secure]); 7217 break; 7218 } 7219 armv7m_nvic_set_pending(env->nvic, ARMV7M_EXCP_MEM, 7220 env->v7m.secure); 7221 break; 7222 } 7223 break; 7224 case EXCP_BKPT: 7225 if (semihosting_enabled()) { 7226 int nr; 7227 nr = arm_lduw_code(env, env->regs[15], arm_sctlr_b(env)) & 0xff; 7228 if (nr == 0xab) { 7229 env->regs[15] += 2; 7230 qemu_log_mask(CPU_LOG_INT, 7231 "...handling as semihosting call 0x%x\n", 7232 env->regs[0]); 7233 env->regs[0] = do_arm_semihosting(env); 7234 return; 7235 } 7236 } 7237 armv7m_nvic_set_pending(env->nvic, ARMV7M_EXCP_DEBUG, false); 7238 break; 7239 case EXCP_IRQ: 7240 break; 7241 case EXCP_EXCEPTION_EXIT: 7242 if (env->regs[15] < EXC_RETURN_MIN_MAGIC) { 7243 /* Must be v8M security extension function return */ 7244 assert(env->regs[15] >= FNC_RETURN_MIN_MAGIC); 7245 assert(arm_feature(env, ARM_FEATURE_M_SECURITY)); 7246 if (do_v7m_function_return(cpu)) { 7247 return; 7248 } 7249 } else { 7250 do_v7m_exception_exit(cpu); 7251 return; 7252 } 7253 break; 7254 default: 7255 cpu_abort(cs, "Unhandled exception 0x%x\n", cs->exception_index); 7256 return; /* Never happens. Keep compiler happy. */ 7257 } 7258 7259 if (arm_feature(env, ARM_FEATURE_V8)) { 7260 lr = R_V7M_EXCRET_RES1_MASK | 7261 R_V7M_EXCRET_DCRS_MASK | 7262 R_V7M_EXCRET_FTYPE_MASK; 7263 /* The S bit indicates whether we should return to Secure 7264 * or NonSecure (ie our current state). 7265 * The ES bit indicates whether we're taking this exception 7266 * to Secure or NonSecure (ie our target state). We set it 7267 * later, in v7m_exception_taken(). 7268 * The SPSEL bit is also set in v7m_exception_taken() for v8M. 7269 * This corresponds to the ARM ARM pseudocode for v8M setting 7270 * some LR bits in PushStack() and some in ExceptionTaken(); 7271 * the distinction matters for the tailchain cases where we 7272 * can take an exception without pushing the stack. 7273 */ 7274 if (env->v7m.secure) { 7275 lr |= R_V7M_EXCRET_S_MASK; 7276 } 7277 } else { 7278 lr = R_V7M_EXCRET_RES1_MASK | 7279 R_V7M_EXCRET_S_MASK | 7280 R_V7M_EXCRET_DCRS_MASK | 7281 R_V7M_EXCRET_FTYPE_MASK | 7282 R_V7M_EXCRET_ES_MASK; 7283 if (env->v7m.control[M_REG_NS] & R_V7M_CONTROL_SPSEL_MASK) { 7284 lr |= R_V7M_EXCRET_SPSEL_MASK; 7285 } 7286 } 7287 if (!arm_v7m_is_handler_mode(env)) { 7288 lr |= R_V7M_EXCRET_MODE_MASK; 7289 } 7290 7291 v7m_push_stack(cpu); 7292 v7m_exception_taken(cpu, lr, false); 7293 qemu_log_mask(CPU_LOG_INT, "... as %d\n", env->v7m.exception); 7294 } 7295 7296 /* Function used to synchronize QEMU's AArch64 register set with AArch32 7297 * register set. This is necessary when switching between AArch32 and AArch64 7298 * execution state. 7299 */ 7300 void aarch64_sync_32_to_64(CPUARMState *env) 7301 { 7302 int i; 7303 uint32_t mode = env->uncached_cpsr & CPSR_M; 7304 7305 /* We can blanket copy R[0:7] to X[0:7] */ 7306 for (i = 0; i < 8; i++) { 7307 env->xregs[i] = env->regs[i]; 7308 } 7309 7310 /* Unless we are in FIQ mode, x8-x12 come from the user registers r8-r12. 7311 * Otherwise, they come from the banked user regs. 7312 */ 7313 if (mode == ARM_CPU_MODE_FIQ) { 7314 for (i = 8; i < 13; i++) { 7315 env->xregs[i] = env->usr_regs[i - 8]; 7316 } 7317 } else { 7318 for (i = 8; i < 13; i++) { 7319 env->xregs[i] = env->regs[i]; 7320 } 7321 } 7322 7323 /* Registers x13-x23 are the various mode SP and FP registers. Registers 7324 * r13 and r14 are only copied if we are in that mode, otherwise we copy 7325 * from the mode banked register. 7326 */ 7327 if (mode == ARM_CPU_MODE_USR || mode == ARM_CPU_MODE_SYS) { 7328 env->xregs[13] = env->regs[13]; 7329 env->xregs[14] = env->regs[14]; 7330 } else { 7331 env->xregs[13] = env->banked_r13[bank_number(ARM_CPU_MODE_USR)]; 7332 /* HYP is an exception in that it is copied from r14 */ 7333 if (mode == ARM_CPU_MODE_HYP) { 7334 env->xregs[14] = env->regs[14]; 7335 } else { 7336 env->xregs[14] = env->banked_r14[bank_number(ARM_CPU_MODE_USR)]; 7337 } 7338 } 7339 7340 if (mode == ARM_CPU_MODE_HYP) { 7341 env->xregs[15] = env->regs[13]; 7342 } else { 7343 env->xregs[15] = env->banked_r13[bank_number(ARM_CPU_MODE_HYP)]; 7344 } 7345 7346 if (mode == ARM_CPU_MODE_IRQ) { 7347 env->xregs[16] = env->regs[14]; 7348 env->xregs[17] = env->regs[13]; 7349 } else { 7350 env->xregs[16] = env->banked_r14[bank_number(ARM_CPU_MODE_IRQ)]; 7351 env->xregs[17] = env->banked_r13[bank_number(ARM_CPU_MODE_IRQ)]; 7352 } 7353 7354 if (mode == ARM_CPU_MODE_SVC) { 7355 env->xregs[18] = env->regs[14]; 7356 env->xregs[19] = env->regs[13]; 7357 } else { 7358 env->xregs[18] = env->banked_r14[bank_number(ARM_CPU_MODE_SVC)]; 7359 env->xregs[19] = env->banked_r13[bank_number(ARM_CPU_MODE_SVC)]; 7360 } 7361 7362 if (mode == ARM_CPU_MODE_ABT) { 7363 env->xregs[20] = env->regs[14]; 7364 env->xregs[21] = env->regs[13]; 7365 } else { 7366 env->xregs[20] = env->banked_r14[bank_number(ARM_CPU_MODE_ABT)]; 7367 env->xregs[21] = env->banked_r13[bank_number(ARM_CPU_MODE_ABT)]; 7368 } 7369 7370 if (mode == ARM_CPU_MODE_UND) { 7371 env->xregs[22] = env->regs[14]; 7372 env->xregs[23] = env->regs[13]; 7373 } else { 7374 env->xregs[22] = env->banked_r14[bank_number(ARM_CPU_MODE_UND)]; 7375 env->xregs[23] = env->banked_r13[bank_number(ARM_CPU_MODE_UND)]; 7376 } 7377 7378 /* Registers x24-x30 are mapped to r8-r14 in FIQ mode. If we are in FIQ 7379 * mode, then we can copy from r8-r14. Otherwise, we copy from the 7380 * FIQ bank for r8-r14. 7381 */ 7382 if (mode == ARM_CPU_MODE_FIQ) { 7383 for (i = 24; i < 31; i++) { 7384 env->xregs[i] = env->regs[i - 16]; /* X[24:30] <- R[8:14] */ 7385 } 7386 } else { 7387 for (i = 24; i < 29; i++) { 7388 env->xregs[i] = env->fiq_regs[i - 24]; 7389 } 7390 env->xregs[29] = env->banked_r13[bank_number(ARM_CPU_MODE_FIQ)]; 7391 env->xregs[30] = env->banked_r14[bank_number(ARM_CPU_MODE_FIQ)]; 7392 } 7393 7394 env->pc = env->regs[15]; 7395 } 7396 7397 /* Function used to synchronize QEMU's AArch32 register set with AArch64 7398 * register set. This is necessary when switching between AArch32 and AArch64 7399 * execution state. 7400 */ 7401 void aarch64_sync_64_to_32(CPUARMState *env) 7402 { 7403 int i; 7404 uint32_t mode = env->uncached_cpsr & CPSR_M; 7405 7406 /* We can blanket copy X[0:7] to R[0:7] */ 7407 for (i = 0; i < 8; i++) { 7408 env->regs[i] = env->xregs[i]; 7409 } 7410 7411 /* Unless we are in FIQ mode, r8-r12 come from the user registers x8-x12. 7412 * Otherwise, we copy x8-x12 into the banked user regs. 7413 */ 7414 if (mode == ARM_CPU_MODE_FIQ) { 7415 for (i = 8; i < 13; i++) { 7416 env->usr_regs[i - 8] = env->xregs[i]; 7417 } 7418 } else { 7419 for (i = 8; i < 13; i++) { 7420 env->regs[i] = env->xregs[i]; 7421 } 7422 } 7423 7424 /* Registers r13 & r14 depend on the current mode. 7425 * If we are in a given mode, we copy the corresponding x registers to r13 7426 * and r14. Otherwise, we copy the x register to the banked r13 and r14 7427 * for the mode. 7428 */ 7429 if (mode == ARM_CPU_MODE_USR || mode == ARM_CPU_MODE_SYS) { 7430 env->regs[13] = env->xregs[13]; 7431 env->regs[14] = env->xregs[14]; 7432 } else { 7433 env->banked_r13[bank_number(ARM_CPU_MODE_USR)] = env->xregs[13]; 7434 7435 /* HYP is an exception in that it does not have its own banked r14 but 7436 * shares the USR r14 7437 */ 7438 if (mode == ARM_CPU_MODE_HYP) { 7439 env->regs[14] = env->xregs[14]; 7440 } else { 7441 env->banked_r14[bank_number(ARM_CPU_MODE_USR)] = env->xregs[14]; 7442 } 7443 } 7444 7445 if (mode == ARM_CPU_MODE_HYP) { 7446 env->regs[13] = env->xregs[15]; 7447 } else { 7448 env->banked_r13[bank_number(ARM_CPU_MODE_HYP)] = env->xregs[15]; 7449 } 7450 7451 if (mode == ARM_CPU_MODE_IRQ) { 7452 env->regs[14] = env->xregs[16]; 7453 env->regs[13] = env->xregs[17]; 7454 } else { 7455 env->banked_r14[bank_number(ARM_CPU_MODE_IRQ)] = env->xregs[16]; 7456 env->banked_r13[bank_number(ARM_CPU_MODE_IRQ)] = env->xregs[17]; 7457 } 7458 7459 if (mode == ARM_CPU_MODE_SVC) { 7460 env->regs[14] = env->xregs[18]; 7461 env->regs[13] = env->xregs[19]; 7462 } else { 7463 env->banked_r14[bank_number(ARM_CPU_MODE_SVC)] = env->xregs[18]; 7464 env->banked_r13[bank_number(ARM_CPU_MODE_SVC)] = env->xregs[19]; 7465 } 7466 7467 if (mode == ARM_CPU_MODE_ABT) { 7468 env->regs[14] = env->xregs[20]; 7469 env->regs[13] = env->xregs[21]; 7470 } else { 7471 env->banked_r14[bank_number(ARM_CPU_MODE_ABT)] = env->xregs[20]; 7472 env->banked_r13[bank_number(ARM_CPU_MODE_ABT)] = env->xregs[21]; 7473 } 7474 7475 if (mode == ARM_CPU_MODE_UND) { 7476 env->regs[14] = env->xregs[22]; 7477 env->regs[13] = env->xregs[23]; 7478 } else { 7479 env->banked_r14[bank_number(ARM_CPU_MODE_UND)] = env->xregs[22]; 7480 env->banked_r13[bank_number(ARM_CPU_MODE_UND)] = env->xregs[23]; 7481 } 7482 7483 /* Registers x24-x30 are mapped to r8-r14 in FIQ mode. If we are in FIQ 7484 * mode, then we can copy to r8-r14. Otherwise, we copy to the 7485 * FIQ bank for r8-r14. 7486 */ 7487 if (mode == ARM_CPU_MODE_FIQ) { 7488 for (i = 24; i < 31; i++) { 7489 env->regs[i - 16] = env->xregs[i]; /* X[24:30] -> R[8:14] */ 7490 } 7491 } else { 7492 for (i = 24; i < 29; i++) { 7493 env->fiq_regs[i - 24] = env->xregs[i]; 7494 } 7495 env->banked_r13[bank_number(ARM_CPU_MODE_FIQ)] = env->xregs[29]; 7496 env->banked_r14[bank_number(ARM_CPU_MODE_FIQ)] = env->xregs[30]; 7497 } 7498 7499 env->regs[15] = env->pc; 7500 } 7501 7502 static void arm_cpu_do_interrupt_aarch32(CPUState *cs) 7503 { 7504 ARMCPU *cpu = ARM_CPU(cs); 7505 CPUARMState *env = &cpu->env; 7506 uint32_t addr; 7507 uint32_t mask; 7508 int new_mode; 7509 uint32_t offset; 7510 uint32_t moe; 7511 7512 /* If this is a debug exception we must update the DBGDSCR.MOE bits */ 7513 switch (env->exception.syndrome >> ARM_EL_EC_SHIFT) { 7514 case EC_BREAKPOINT: 7515 case EC_BREAKPOINT_SAME_EL: 7516 moe = 1; 7517 break; 7518 case EC_WATCHPOINT: 7519 case EC_WATCHPOINT_SAME_EL: 7520 moe = 10; 7521 break; 7522 case EC_AA32_BKPT: 7523 moe = 3; 7524 break; 7525 case EC_VECTORCATCH: 7526 moe = 5; 7527 break; 7528 default: 7529 moe = 0; 7530 break; 7531 } 7532 7533 if (moe) { 7534 env->cp15.mdscr_el1 = deposit64(env->cp15.mdscr_el1, 2, 4, moe); 7535 } 7536 7537 /* TODO: Vectored interrupt controller. */ 7538 switch (cs->exception_index) { 7539 case EXCP_UDEF: 7540 new_mode = ARM_CPU_MODE_UND; 7541 addr = 0x04; 7542 mask = CPSR_I; 7543 if (env->thumb) 7544 offset = 2; 7545 else 7546 offset = 4; 7547 break; 7548 case EXCP_SWI: 7549 new_mode = ARM_CPU_MODE_SVC; 7550 addr = 0x08; 7551 mask = CPSR_I; 7552 /* The PC already points to the next instruction. */ 7553 offset = 0; 7554 break; 7555 case EXCP_BKPT: 7556 env->exception.fsr = 2; 7557 /* Fall through to prefetch abort. */ 7558 case EXCP_PREFETCH_ABORT: 7559 A32_BANKED_CURRENT_REG_SET(env, ifsr, env->exception.fsr); 7560 A32_BANKED_CURRENT_REG_SET(env, ifar, env->exception.vaddress); 7561 qemu_log_mask(CPU_LOG_INT, "...with IFSR 0x%x IFAR 0x%x\n", 7562 env->exception.fsr, (uint32_t)env->exception.vaddress); 7563 new_mode = ARM_CPU_MODE_ABT; 7564 addr = 0x0c; 7565 mask = CPSR_A | CPSR_I; 7566 offset = 4; 7567 break; 7568 case EXCP_DATA_ABORT: 7569 A32_BANKED_CURRENT_REG_SET(env, dfsr, env->exception.fsr); 7570 A32_BANKED_CURRENT_REG_SET(env, dfar, env->exception.vaddress); 7571 qemu_log_mask(CPU_LOG_INT, "...with DFSR 0x%x DFAR 0x%x\n", 7572 env->exception.fsr, 7573 (uint32_t)env->exception.vaddress); 7574 new_mode = ARM_CPU_MODE_ABT; 7575 addr = 0x10; 7576 mask = CPSR_A | CPSR_I; 7577 offset = 8; 7578 break; 7579 case EXCP_IRQ: 7580 new_mode = ARM_CPU_MODE_IRQ; 7581 addr = 0x18; 7582 /* Disable IRQ and imprecise data aborts. */ 7583 mask = CPSR_A | CPSR_I; 7584 offset = 4; 7585 if (env->cp15.scr_el3 & SCR_IRQ) { 7586 /* IRQ routed to monitor mode */ 7587 new_mode = ARM_CPU_MODE_MON; 7588 mask |= CPSR_F; 7589 } 7590 break; 7591 case EXCP_FIQ: 7592 new_mode = ARM_CPU_MODE_FIQ; 7593 addr = 0x1c; 7594 /* Disable FIQ, IRQ and imprecise data aborts. */ 7595 mask = CPSR_A | CPSR_I | CPSR_F; 7596 if (env->cp15.scr_el3 & SCR_FIQ) { 7597 /* FIQ routed to monitor mode */ 7598 new_mode = ARM_CPU_MODE_MON; 7599 } 7600 offset = 4; 7601 break; 7602 case EXCP_VIRQ: 7603 new_mode = ARM_CPU_MODE_IRQ; 7604 addr = 0x18; 7605 /* Disable IRQ and imprecise data aborts. */ 7606 mask = CPSR_A | CPSR_I; 7607 offset = 4; 7608 break; 7609 case EXCP_VFIQ: 7610 new_mode = ARM_CPU_MODE_FIQ; 7611 addr = 0x1c; 7612 /* Disable FIQ, IRQ and imprecise data aborts. */ 7613 mask = CPSR_A | CPSR_I | CPSR_F; 7614 offset = 4; 7615 break; 7616 case EXCP_SMC: 7617 new_mode = ARM_CPU_MODE_MON; 7618 addr = 0x08; 7619 mask = CPSR_A | CPSR_I | CPSR_F; 7620 offset = 0; 7621 break; 7622 default: 7623 cpu_abort(cs, "Unhandled exception 0x%x\n", cs->exception_index); 7624 return; /* Never happens. Keep compiler happy. */ 7625 } 7626 7627 if (new_mode == ARM_CPU_MODE_MON) { 7628 addr += env->cp15.mvbar; 7629 } else if (A32_BANKED_CURRENT_REG_GET(env, sctlr) & SCTLR_V) { 7630 /* High vectors. When enabled, base address cannot be remapped. */ 7631 addr += 0xffff0000; 7632 } else { 7633 /* ARM v7 architectures provide a vector base address register to remap 7634 * the interrupt vector table. 7635 * This register is only followed in non-monitor mode, and is banked. 7636 * Note: only bits 31:5 are valid. 7637 */ 7638 addr += A32_BANKED_CURRENT_REG_GET(env, vbar); 7639 } 7640 7641 if ((env->uncached_cpsr & CPSR_M) == ARM_CPU_MODE_MON) { 7642 env->cp15.scr_el3 &= ~SCR_NS; 7643 } 7644 7645 switch_mode (env, new_mode); 7646 /* For exceptions taken to AArch32 we must clear the SS bit in both 7647 * PSTATE and in the old-state value we save to SPSR_<mode>, so zero it now. 7648 */ 7649 env->uncached_cpsr &= ~PSTATE_SS; 7650 env->spsr = cpsr_read(env); 7651 /* Clear IT bits. */ 7652 env->condexec_bits = 0; 7653 /* Switch to the new mode, and to the correct instruction set. */ 7654 env->uncached_cpsr = (env->uncached_cpsr & ~CPSR_M) | new_mode; 7655 /* Set new mode endianness */ 7656 env->uncached_cpsr &= ~CPSR_E; 7657 if (env->cp15.sctlr_el[arm_current_el(env)] & SCTLR_EE) { 7658 env->uncached_cpsr |= CPSR_E; 7659 } 7660 env->daif |= mask; 7661 /* this is a lie, as the was no c1_sys on V4T/V5, but who cares 7662 * and we should just guard the thumb mode on V4 */ 7663 if (arm_feature(env, ARM_FEATURE_V4T)) { 7664 env->thumb = (A32_BANKED_CURRENT_REG_GET(env, sctlr) & SCTLR_TE) != 0; 7665 } 7666 env->regs[14] = env->regs[15] + offset; 7667 env->regs[15] = addr; 7668 } 7669 7670 /* Handle exception entry to a target EL which is using AArch64 */ 7671 static void arm_cpu_do_interrupt_aarch64(CPUState *cs) 7672 { 7673 ARMCPU *cpu = ARM_CPU(cs); 7674 CPUARMState *env = &cpu->env; 7675 unsigned int new_el = env->exception.target_el; 7676 target_ulong addr = env->cp15.vbar_el[new_el]; 7677 unsigned int new_mode = aarch64_pstate_mode(new_el, true); 7678 7679 if (arm_current_el(env) < new_el) { 7680 /* Entry vector offset depends on whether the implemented EL 7681 * immediately lower than the target level is using AArch32 or AArch64 7682 */ 7683 bool is_aa64; 7684 7685 switch (new_el) { 7686 case 3: 7687 is_aa64 = (env->cp15.scr_el3 & SCR_RW) != 0; 7688 break; 7689 case 2: 7690 is_aa64 = (env->cp15.hcr_el2 & HCR_RW) != 0; 7691 break; 7692 case 1: 7693 is_aa64 = is_a64(env); 7694 break; 7695 default: 7696 g_assert_not_reached(); 7697 } 7698 7699 if (is_aa64) { 7700 addr += 0x400; 7701 } else { 7702 addr += 0x600; 7703 } 7704 } else if (pstate_read(env) & PSTATE_SP) { 7705 addr += 0x200; 7706 } 7707 7708 switch (cs->exception_index) { 7709 case EXCP_PREFETCH_ABORT: 7710 case EXCP_DATA_ABORT: 7711 env->cp15.far_el[new_el] = env->exception.vaddress; 7712 qemu_log_mask(CPU_LOG_INT, "...with FAR 0x%" PRIx64 "\n", 7713 env->cp15.far_el[new_el]); 7714 /* fall through */ 7715 case EXCP_BKPT: 7716 case EXCP_UDEF: 7717 case EXCP_SWI: 7718 case EXCP_HVC: 7719 case EXCP_HYP_TRAP: 7720 case EXCP_SMC: 7721 env->cp15.esr_el[new_el] = env->exception.syndrome; 7722 break; 7723 case EXCP_IRQ: 7724 case EXCP_VIRQ: 7725 addr += 0x80; 7726 break; 7727 case EXCP_FIQ: 7728 case EXCP_VFIQ: 7729 addr += 0x100; 7730 break; 7731 case EXCP_SEMIHOST: 7732 qemu_log_mask(CPU_LOG_INT, 7733 "...handling as semihosting call 0x%" PRIx64 "\n", 7734 env->xregs[0]); 7735 env->xregs[0] = do_arm_semihosting(env); 7736 return; 7737 default: 7738 cpu_abort(cs, "Unhandled exception 0x%x\n", cs->exception_index); 7739 } 7740 7741 if (is_a64(env)) { 7742 env->banked_spsr[aarch64_banked_spsr_index(new_el)] = pstate_read(env); 7743 aarch64_save_sp(env, arm_current_el(env)); 7744 env->elr_el[new_el] = env->pc; 7745 } else { 7746 env->banked_spsr[aarch64_banked_spsr_index(new_el)] = cpsr_read(env); 7747 env->elr_el[new_el] = env->regs[15]; 7748 7749 aarch64_sync_32_to_64(env); 7750 7751 env->condexec_bits = 0; 7752 } 7753 qemu_log_mask(CPU_LOG_INT, "...with ELR 0x%" PRIx64 "\n", 7754 env->elr_el[new_el]); 7755 7756 pstate_write(env, PSTATE_DAIF | new_mode); 7757 env->aarch64 = 1; 7758 aarch64_restore_sp(env, new_el); 7759 7760 env->pc = addr; 7761 7762 qemu_log_mask(CPU_LOG_INT, "...to EL%d PC 0x%" PRIx64 " PSTATE 0x%x\n", 7763 new_el, env->pc, pstate_read(env)); 7764 } 7765 7766 static inline bool check_for_semihosting(CPUState *cs) 7767 { 7768 /* Check whether this exception is a semihosting call; if so 7769 * then handle it and return true; otherwise return false. 7770 */ 7771 ARMCPU *cpu = ARM_CPU(cs); 7772 CPUARMState *env = &cpu->env; 7773 7774 if (is_a64(env)) { 7775 if (cs->exception_index == EXCP_SEMIHOST) { 7776 /* This is always the 64-bit semihosting exception. 7777 * The "is this usermode" and "is semihosting enabled" 7778 * checks have been done at translate time. 7779 */ 7780 qemu_log_mask(CPU_LOG_INT, 7781 "...handling as semihosting call 0x%" PRIx64 "\n", 7782 env->xregs[0]); 7783 env->xregs[0] = do_arm_semihosting(env); 7784 return true; 7785 } 7786 return false; 7787 } else { 7788 uint32_t imm; 7789 7790 /* Only intercept calls from privileged modes, to provide some 7791 * semblance of security. 7792 */ 7793 if (cs->exception_index != EXCP_SEMIHOST && 7794 (!semihosting_enabled() || 7795 ((env->uncached_cpsr & CPSR_M) == ARM_CPU_MODE_USR))) { 7796 return false; 7797 } 7798 7799 switch (cs->exception_index) { 7800 case EXCP_SEMIHOST: 7801 /* This is always a semihosting call; the "is this usermode" 7802 * and "is semihosting enabled" checks have been done at 7803 * translate time. 7804 */ 7805 break; 7806 case EXCP_SWI: 7807 /* Check for semihosting interrupt. */ 7808 if (env->thumb) { 7809 imm = arm_lduw_code(env, env->regs[15] - 2, arm_sctlr_b(env)) 7810 & 0xff; 7811 if (imm == 0xab) { 7812 break; 7813 } 7814 } else { 7815 imm = arm_ldl_code(env, env->regs[15] - 4, arm_sctlr_b(env)) 7816 & 0xffffff; 7817 if (imm == 0x123456) { 7818 break; 7819 } 7820 } 7821 return false; 7822 case EXCP_BKPT: 7823 /* See if this is a semihosting syscall. */ 7824 if (env->thumb) { 7825 imm = arm_lduw_code(env, env->regs[15], arm_sctlr_b(env)) 7826 & 0xff; 7827 if (imm == 0xab) { 7828 env->regs[15] += 2; 7829 break; 7830 } 7831 } 7832 return false; 7833 default: 7834 return false; 7835 } 7836 7837 qemu_log_mask(CPU_LOG_INT, 7838 "...handling as semihosting call 0x%x\n", 7839 env->regs[0]); 7840 env->regs[0] = do_arm_semihosting(env); 7841 return true; 7842 } 7843 } 7844 7845 /* Handle a CPU exception for A and R profile CPUs. 7846 * Do any appropriate logging, handle PSCI calls, and then hand off 7847 * to the AArch64-entry or AArch32-entry function depending on the 7848 * target exception level's register width. 7849 */ 7850 void arm_cpu_do_interrupt(CPUState *cs) 7851 { 7852 ARMCPU *cpu = ARM_CPU(cs); 7853 CPUARMState *env = &cpu->env; 7854 unsigned int new_el = env->exception.target_el; 7855 7856 assert(!arm_feature(env, ARM_FEATURE_M)); 7857 7858 arm_log_exception(cs->exception_index); 7859 qemu_log_mask(CPU_LOG_INT, "...from EL%d to EL%d\n", arm_current_el(env), 7860 new_el); 7861 if (qemu_loglevel_mask(CPU_LOG_INT) 7862 && !excp_is_internal(cs->exception_index)) { 7863 qemu_log_mask(CPU_LOG_INT, "...with ESR 0x%x/0x%" PRIx32 "\n", 7864 env->exception.syndrome >> ARM_EL_EC_SHIFT, 7865 env->exception.syndrome); 7866 } 7867 7868 if (arm_is_psci_call(cpu, cs->exception_index)) { 7869 arm_handle_psci_call(cpu); 7870 qemu_log_mask(CPU_LOG_INT, "...handled as PSCI call\n"); 7871 return; 7872 } 7873 7874 /* Semihosting semantics depend on the register width of the 7875 * code that caused the exception, not the target exception level, 7876 * so must be handled here. 7877 */ 7878 if (check_for_semihosting(cs)) { 7879 return; 7880 } 7881 7882 assert(!excp_is_internal(cs->exception_index)); 7883 if (arm_el_is_aa64(env, new_el)) { 7884 arm_cpu_do_interrupt_aarch64(cs); 7885 } else { 7886 arm_cpu_do_interrupt_aarch32(cs); 7887 } 7888 7889 /* Hooks may change global state so BQL should be held, also the 7890 * BQL needs to be held for any modification of 7891 * cs->interrupt_request. 7892 */ 7893 g_assert(qemu_mutex_iothread_locked()); 7894 7895 arm_call_el_change_hook(cpu); 7896 7897 if (!kvm_enabled()) { 7898 cs->interrupt_request |= CPU_INTERRUPT_EXITTB; 7899 } 7900 } 7901 7902 /* Return the exception level which controls this address translation regime */ 7903 static inline uint32_t regime_el(CPUARMState *env, ARMMMUIdx mmu_idx) 7904 { 7905 switch (mmu_idx) { 7906 case ARMMMUIdx_S2NS: 7907 case ARMMMUIdx_S1E2: 7908 return 2; 7909 case ARMMMUIdx_S1E3: 7910 return 3; 7911 case ARMMMUIdx_S1SE0: 7912 return arm_el_is_aa64(env, 3) ? 1 : 3; 7913 case ARMMMUIdx_S1SE1: 7914 case ARMMMUIdx_S1NSE0: 7915 case ARMMMUIdx_S1NSE1: 7916 case ARMMMUIdx_MPrivNegPri: 7917 case ARMMMUIdx_MUserNegPri: 7918 case ARMMMUIdx_MPriv: 7919 case ARMMMUIdx_MUser: 7920 case ARMMMUIdx_MSPrivNegPri: 7921 case ARMMMUIdx_MSUserNegPri: 7922 case ARMMMUIdx_MSPriv: 7923 case ARMMMUIdx_MSUser: 7924 return 1; 7925 default: 7926 g_assert_not_reached(); 7927 } 7928 } 7929 7930 /* Return the SCTLR value which controls this address translation regime */ 7931 static inline uint32_t regime_sctlr(CPUARMState *env, ARMMMUIdx mmu_idx) 7932 { 7933 return env->cp15.sctlr_el[regime_el(env, mmu_idx)]; 7934 } 7935 7936 /* Return true if the specified stage of address translation is disabled */ 7937 static inline bool regime_translation_disabled(CPUARMState *env, 7938 ARMMMUIdx mmu_idx) 7939 { 7940 if (arm_feature(env, ARM_FEATURE_M)) { 7941 switch (env->v7m.mpu_ctrl[regime_is_secure(env, mmu_idx)] & 7942 (R_V7M_MPU_CTRL_ENABLE_MASK | R_V7M_MPU_CTRL_HFNMIENA_MASK)) { 7943 case R_V7M_MPU_CTRL_ENABLE_MASK: 7944 /* Enabled, but not for HardFault and NMI */ 7945 return mmu_idx & ARM_MMU_IDX_M_NEGPRI; 7946 case R_V7M_MPU_CTRL_ENABLE_MASK | R_V7M_MPU_CTRL_HFNMIENA_MASK: 7947 /* Enabled for all cases */ 7948 return false; 7949 case 0: 7950 default: 7951 /* HFNMIENA set and ENABLE clear is UNPREDICTABLE, but 7952 * we warned about that in armv7m_nvic.c when the guest set it. 7953 */ 7954 return true; 7955 } 7956 } 7957 7958 if (mmu_idx == ARMMMUIdx_S2NS) { 7959 return (env->cp15.hcr_el2 & HCR_VM) == 0; 7960 } 7961 return (regime_sctlr(env, mmu_idx) & SCTLR_M) == 0; 7962 } 7963 7964 static inline bool regime_translation_big_endian(CPUARMState *env, 7965 ARMMMUIdx mmu_idx) 7966 { 7967 return (regime_sctlr(env, mmu_idx) & SCTLR_EE) != 0; 7968 } 7969 7970 /* Return the TCR controlling this translation regime */ 7971 static inline TCR *regime_tcr(CPUARMState *env, ARMMMUIdx mmu_idx) 7972 { 7973 if (mmu_idx == ARMMMUIdx_S2NS) { 7974 return &env->cp15.vtcr_el2; 7975 } 7976 return &env->cp15.tcr_el[regime_el(env, mmu_idx)]; 7977 } 7978 7979 /* Convert a possible stage1+2 MMU index into the appropriate 7980 * stage 1 MMU index 7981 */ 7982 static inline ARMMMUIdx stage_1_mmu_idx(ARMMMUIdx mmu_idx) 7983 { 7984 if (mmu_idx == ARMMMUIdx_S12NSE0 || mmu_idx == ARMMMUIdx_S12NSE1) { 7985 mmu_idx += (ARMMMUIdx_S1NSE0 - ARMMMUIdx_S12NSE0); 7986 } 7987 return mmu_idx; 7988 } 7989 7990 /* Returns TBI0 value for current regime el */ 7991 uint32_t arm_regime_tbi0(CPUARMState *env, ARMMMUIdx mmu_idx) 7992 { 7993 TCR *tcr; 7994 uint32_t el; 7995 7996 /* For EL0 and EL1, TBI is controlled by stage 1's TCR, so convert 7997 * a stage 1+2 mmu index into the appropriate stage 1 mmu index. 7998 */ 7999 mmu_idx = stage_1_mmu_idx(mmu_idx); 8000 8001 tcr = regime_tcr(env, mmu_idx); 8002 el = regime_el(env, mmu_idx); 8003 8004 if (el > 1) { 8005 return extract64(tcr->raw_tcr, 20, 1); 8006 } else { 8007 return extract64(tcr->raw_tcr, 37, 1); 8008 } 8009 } 8010 8011 /* Returns TBI1 value for current regime el */ 8012 uint32_t arm_regime_tbi1(CPUARMState *env, ARMMMUIdx mmu_idx) 8013 { 8014 TCR *tcr; 8015 uint32_t el; 8016 8017 /* For EL0 and EL1, TBI is controlled by stage 1's TCR, so convert 8018 * a stage 1+2 mmu index into the appropriate stage 1 mmu index. 8019 */ 8020 mmu_idx = stage_1_mmu_idx(mmu_idx); 8021 8022 tcr = regime_tcr(env, mmu_idx); 8023 el = regime_el(env, mmu_idx); 8024 8025 if (el > 1) { 8026 return 0; 8027 } else { 8028 return extract64(tcr->raw_tcr, 38, 1); 8029 } 8030 } 8031 8032 /* Return the TTBR associated with this translation regime */ 8033 static inline uint64_t regime_ttbr(CPUARMState *env, ARMMMUIdx mmu_idx, 8034 int ttbrn) 8035 { 8036 if (mmu_idx == ARMMMUIdx_S2NS) { 8037 return env->cp15.vttbr_el2; 8038 } 8039 if (ttbrn == 0) { 8040 return env->cp15.ttbr0_el[regime_el(env, mmu_idx)]; 8041 } else { 8042 return env->cp15.ttbr1_el[regime_el(env, mmu_idx)]; 8043 } 8044 } 8045 8046 /* Return true if the translation regime is using LPAE format page tables */ 8047 static inline bool regime_using_lpae_format(CPUARMState *env, 8048 ARMMMUIdx mmu_idx) 8049 { 8050 int el = regime_el(env, mmu_idx); 8051 if (el == 2 || arm_el_is_aa64(env, el)) { 8052 return true; 8053 } 8054 if (arm_feature(env, ARM_FEATURE_LPAE) 8055 && (regime_tcr(env, mmu_idx)->raw_tcr & TTBCR_EAE)) { 8056 return true; 8057 } 8058 return false; 8059 } 8060 8061 /* Returns true if the stage 1 translation regime is using LPAE format page 8062 * tables. Used when raising alignment exceptions, whose FSR changes depending 8063 * on whether the long or short descriptor format is in use. */ 8064 bool arm_s1_regime_using_lpae_format(CPUARMState *env, ARMMMUIdx mmu_idx) 8065 { 8066 mmu_idx = stage_1_mmu_idx(mmu_idx); 8067 8068 return regime_using_lpae_format(env, mmu_idx); 8069 } 8070 8071 static inline bool regime_is_user(CPUARMState *env, ARMMMUIdx mmu_idx) 8072 { 8073 switch (mmu_idx) { 8074 case ARMMMUIdx_S1SE0: 8075 case ARMMMUIdx_S1NSE0: 8076 case ARMMMUIdx_MUser: 8077 case ARMMMUIdx_MSUser: 8078 case ARMMMUIdx_MUserNegPri: 8079 case ARMMMUIdx_MSUserNegPri: 8080 return true; 8081 default: 8082 return false; 8083 case ARMMMUIdx_S12NSE0: 8084 case ARMMMUIdx_S12NSE1: 8085 g_assert_not_reached(); 8086 } 8087 } 8088 8089 /* Translate section/page access permissions to page 8090 * R/W protection flags 8091 * 8092 * @env: CPUARMState 8093 * @mmu_idx: MMU index indicating required translation regime 8094 * @ap: The 3-bit access permissions (AP[2:0]) 8095 * @domain_prot: The 2-bit domain access permissions 8096 */ 8097 static inline int ap_to_rw_prot(CPUARMState *env, ARMMMUIdx mmu_idx, 8098 int ap, int domain_prot) 8099 { 8100 bool is_user = regime_is_user(env, mmu_idx); 8101 8102 if (domain_prot == 3) { 8103 return PAGE_READ | PAGE_WRITE; 8104 } 8105 8106 switch (ap) { 8107 case 0: 8108 if (arm_feature(env, ARM_FEATURE_V7)) { 8109 return 0; 8110 } 8111 switch (regime_sctlr(env, mmu_idx) & (SCTLR_S | SCTLR_R)) { 8112 case SCTLR_S: 8113 return is_user ? 0 : PAGE_READ; 8114 case SCTLR_R: 8115 return PAGE_READ; 8116 default: 8117 return 0; 8118 } 8119 case 1: 8120 return is_user ? 0 : PAGE_READ | PAGE_WRITE; 8121 case 2: 8122 if (is_user) { 8123 return PAGE_READ; 8124 } else { 8125 return PAGE_READ | PAGE_WRITE; 8126 } 8127 case 3: 8128 return PAGE_READ | PAGE_WRITE; 8129 case 4: /* Reserved. */ 8130 return 0; 8131 case 5: 8132 return is_user ? 0 : PAGE_READ; 8133 case 6: 8134 return PAGE_READ; 8135 case 7: 8136 if (!arm_feature(env, ARM_FEATURE_V6K)) { 8137 return 0; 8138 } 8139 return PAGE_READ; 8140 default: 8141 g_assert_not_reached(); 8142 } 8143 } 8144 8145 /* Translate section/page access permissions to page 8146 * R/W protection flags. 8147 * 8148 * @ap: The 2-bit simple AP (AP[2:1]) 8149 * @is_user: TRUE if accessing from PL0 8150 */ 8151 static inline int simple_ap_to_rw_prot_is_user(int ap, bool is_user) 8152 { 8153 switch (ap) { 8154 case 0: 8155 return is_user ? 0 : PAGE_READ | PAGE_WRITE; 8156 case 1: 8157 return PAGE_READ | PAGE_WRITE; 8158 case 2: 8159 return is_user ? 0 : PAGE_READ; 8160 case 3: 8161 return PAGE_READ; 8162 default: 8163 g_assert_not_reached(); 8164 } 8165 } 8166 8167 static inline int 8168 simple_ap_to_rw_prot(CPUARMState *env, ARMMMUIdx mmu_idx, int ap) 8169 { 8170 return simple_ap_to_rw_prot_is_user(ap, regime_is_user(env, mmu_idx)); 8171 } 8172 8173 /* Translate S2 section/page access permissions to protection flags 8174 * 8175 * @env: CPUARMState 8176 * @s2ap: The 2-bit stage2 access permissions (S2AP) 8177 * @xn: XN (execute-never) bit 8178 */ 8179 static int get_S2prot(CPUARMState *env, int s2ap, int xn) 8180 { 8181 int prot = 0; 8182 8183 if (s2ap & 1) { 8184 prot |= PAGE_READ; 8185 } 8186 if (s2ap & 2) { 8187 prot |= PAGE_WRITE; 8188 } 8189 if (!xn) { 8190 if (arm_el_is_aa64(env, 2) || prot & PAGE_READ) { 8191 prot |= PAGE_EXEC; 8192 } 8193 } 8194 return prot; 8195 } 8196 8197 /* Translate section/page access permissions to protection flags 8198 * 8199 * @env: CPUARMState 8200 * @mmu_idx: MMU index indicating required translation regime 8201 * @is_aa64: TRUE if AArch64 8202 * @ap: The 2-bit simple AP (AP[2:1]) 8203 * @ns: NS (non-secure) bit 8204 * @xn: XN (execute-never) bit 8205 * @pxn: PXN (privileged execute-never) bit 8206 */ 8207 static int get_S1prot(CPUARMState *env, ARMMMUIdx mmu_idx, bool is_aa64, 8208 int ap, int ns, int xn, int pxn) 8209 { 8210 bool is_user = regime_is_user(env, mmu_idx); 8211 int prot_rw, user_rw; 8212 bool have_wxn; 8213 int wxn = 0; 8214 8215 assert(mmu_idx != ARMMMUIdx_S2NS); 8216 8217 user_rw = simple_ap_to_rw_prot_is_user(ap, true); 8218 if (is_user) { 8219 prot_rw = user_rw; 8220 } else { 8221 prot_rw = simple_ap_to_rw_prot_is_user(ap, false); 8222 } 8223 8224 if (ns && arm_is_secure(env) && (env->cp15.scr_el3 & SCR_SIF)) { 8225 return prot_rw; 8226 } 8227 8228 /* TODO have_wxn should be replaced with 8229 * ARM_FEATURE_V8 || (ARM_FEATURE_V7 && ARM_FEATURE_EL2) 8230 * when ARM_FEATURE_EL2 starts getting set. For now we assume all LPAE 8231 * compatible processors have EL2, which is required for [U]WXN. 8232 */ 8233 have_wxn = arm_feature(env, ARM_FEATURE_LPAE); 8234 8235 if (have_wxn) { 8236 wxn = regime_sctlr(env, mmu_idx) & SCTLR_WXN; 8237 } 8238 8239 if (is_aa64) { 8240 switch (regime_el(env, mmu_idx)) { 8241 case 1: 8242 if (!is_user) { 8243 xn = pxn || (user_rw & PAGE_WRITE); 8244 } 8245 break; 8246 case 2: 8247 case 3: 8248 break; 8249 } 8250 } else if (arm_feature(env, ARM_FEATURE_V7)) { 8251 switch (regime_el(env, mmu_idx)) { 8252 case 1: 8253 case 3: 8254 if (is_user) { 8255 xn = xn || !(user_rw & PAGE_READ); 8256 } else { 8257 int uwxn = 0; 8258 if (have_wxn) { 8259 uwxn = regime_sctlr(env, mmu_idx) & SCTLR_UWXN; 8260 } 8261 xn = xn || !(prot_rw & PAGE_READ) || pxn || 8262 (uwxn && (user_rw & PAGE_WRITE)); 8263 } 8264 break; 8265 case 2: 8266 break; 8267 } 8268 } else { 8269 xn = wxn = 0; 8270 } 8271 8272 if (xn || (wxn && (prot_rw & PAGE_WRITE))) { 8273 return prot_rw; 8274 } 8275 return prot_rw | PAGE_EXEC; 8276 } 8277 8278 static bool get_level1_table_address(CPUARMState *env, ARMMMUIdx mmu_idx, 8279 uint32_t *table, uint32_t address) 8280 { 8281 /* Note that we can only get here for an AArch32 PL0/PL1 lookup */ 8282 TCR *tcr = regime_tcr(env, mmu_idx); 8283 8284 if (address & tcr->mask) { 8285 if (tcr->raw_tcr & TTBCR_PD1) { 8286 /* Translation table walk disabled for TTBR1 */ 8287 return false; 8288 } 8289 *table = regime_ttbr(env, mmu_idx, 1) & 0xffffc000; 8290 } else { 8291 if (tcr->raw_tcr & TTBCR_PD0) { 8292 /* Translation table walk disabled for TTBR0 */ 8293 return false; 8294 } 8295 *table = regime_ttbr(env, mmu_idx, 0) & tcr->base_mask; 8296 } 8297 *table |= (address >> 18) & 0x3ffc; 8298 return true; 8299 } 8300 8301 /* Translate a S1 pagetable walk through S2 if needed. */ 8302 static hwaddr S1_ptw_translate(CPUARMState *env, ARMMMUIdx mmu_idx, 8303 hwaddr addr, MemTxAttrs txattrs, 8304 ARMMMUFaultInfo *fi) 8305 { 8306 if ((mmu_idx == ARMMMUIdx_S1NSE0 || mmu_idx == ARMMMUIdx_S1NSE1) && 8307 !regime_translation_disabled(env, ARMMMUIdx_S2NS)) { 8308 target_ulong s2size; 8309 hwaddr s2pa; 8310 int s2prot; 8311 int ret; 8312 8313 ret = get_phys_addr_lpae(env, addr, 0, ARMMMUIdx_S2NS, &s2pa, 8314 &txattrs, &s2prot, &s2size, fi, NULL); 8315 if (ret) { 8316 assert(fi->type != ARMFault_None); 8317 fi->s2addr = addr; 8318 fi->stage2 = true; 8319 fi->s1ptw = true; 8320 return ~0; 8321 } 8322 addr = s2pa; 8323 } 8324 return addr; 8325 } 8326 8327 /* All loads done in the course of a page table walk go through here. 8328 * TODO: rather than ignoring errors from physical memory reads (which 8329 * are external aborts in ARM terminology) we should propagate this 8330 * error out so that we can turn it into a Data Abort if this walk 8331 * was being done for a CPU load/store or an address translation instruction 8332 * (but not if it was for a debug access). 8333 */ 8334 static uint32_t arm_ldl_ptw(CPUState *cs, hwaddr addr, bool is_secure, 8335 ARMMMUIdx mmu_idx, ARMMMUFaultInfo *fi) 8336 { 8337 ARMCPU *cpu = ARM_CPU(cs); 8338 CPUARMState *env = &cpu->env; 8339 MemTxAttrs attrs = {}; 8340 MemTxResult result = MEMTX_OK; 8341 AddressSpace *as; 8342 uint32_t data; 8343 8344 attrs.secure = is_secure; 8345 as = arm_addressspace(cs, attrs); 8346 addr = S1_ptw_translate(env, mmu_idx, addr, attrs, fi); 8347 if (fi->s1ptw) { 8348 return 0; 8349 } 8350 if (regime_translation_big_endian(env, mmu_idx)) { 8351 data = address_space_ldl_be(as, addr, attrs, &result); 8352 } else { 8353 data = address_space_ldl_le(as, addr, attrs, &result); 8354 } 8355 if (result == MEMTX_OK) { 8356 return data; 8357 } 8358 fi->type = ARMFault_SyncExternalOnWalk; 8359 fi->ea = arm_extabort_type(result); 8360 return 0; 8361 } 8362 8363 static uint64_t arm_ldq_ptw(CPUState *cs, hwaddr addr, bool is_secure, 8364 ARMMMUIdx mmu_idx, ARMMMUFaultInfo *fi) 8365 { 8366 ARMCPU *cpu = ARM_CPU(cs); 8367 CPUARMState *env = &cpu->env; 8368 MemTxAttrs attrs = {}; 8369 MemTxResult result = MEMTX_OK; 8370 AddressSpace *as; 8371 uint64_t data; 8372 8373 attrs.secure = is_secure; 8374 as = arm_addressspace(cs, attrs); 8375 addr = S1_ptw_translate(env, mmu_idx, addr, attrs, fi); 8376 if (fi->s1ptw) { 8377 return 0; 8378 } 8379 if (regime_translation_big_endian(env, mmu_idx)) { 8380 data = address_space_ldq_be(as, addr, attrs, &result); 8381 } else { 8382 data = address_space_ldq_le(as, addr, attrs, &result); 8383 } 8384 if (result == MEMTX_OK) { 8385 return data; 8386 } 8387 fi->type = ARMFault_SyncExternalOnWalk; 8388 fi->ea = arm_extabort_type(result); 8389 return 0; 8390 } 8391 8392 static bool get_phys_addr_v5(CPUARMState *env, uint32_t address, 8393 MMUAccessType access_type, ARMMMUIdx mmu_idx, 8394 hwaddr *phys_ptr, int *prot, 8395 target_ulong *page_size, 8396 ARMMMUFaultInfo *fi) 8397 { 8398 CPUState *cs = CPU(arm_env_get_cpu(env)); 8399 int level = 1; 8400 uint32_t table; 8401 uint32_t desc; 8402 int type; 8403 int ap; 8404 int domain = 0; 8405 int domain_prot; 8406 hwaddr phys_addr; 8407 uint32_t dacr; 8408 8409 /* Pagetable walk. */ 8410 /* Lookup l1 descriptor. */ 8411 if (!get_level1_table_address(env, mmu_idx, &table, address)) { 8412 /* Section translation fault if page walk is disabled by PD0 or PD1 */ 8413 fi->type = ARMFault_Translation; 8414 goto do_fault; 8415 } 8416 desc = arm_ldl_ptw(cs, table, regime_is_secure(env, mmu_idx), 8417 mmu_idx, fi); 8418 if (fi->type != ARMFault_None) { 8419 goto do_fault; 8420 } 8421 type = (desc & 3); 8422 domain = (desc >> 5) & 0x0f; 8423 if (regime_el(env, mmu_idx) == 1) { 8424 dacr = env->cp15.dacr_ns; 8425 } else { 8426 dacr = env->cp15.dacr_s; 8427 } 8428 domain_prot = (dacr >> (domain * 2)) & 3; 8429 if (type == 0) { 8430 /* Section translation fault. */ 8431 fi->type = ARMFault_Translation; 8432 goto do_fault; 8433 } 8434 if (type != 2) { 8435 level = 2; 8436 } 8437 if (domain_prot == 0 || domain_prot == 2) { 8438 fi->type = ARMFault_Domain; 8439 goto do_fault; 8440 } 8441 if (type == 2) { 8442 /* 1Mb section. */ 8443 phys_addr = (desc & 0xfff00000) | (address & 0x000fffff); 8444 ap = (desc >> 10) & 3; 8445 *page_size = 1024 * 1024; 8446 } else { 8447 /* Lookup l2 entry. */ 8448 if (type == 1) { 8449 /* Coarse pagetable. */ 8450 table = (desc & 0xfffffc00) | ((address >> 10) & 0x3fc); 8451 } else { 8452 /* Fine pagetable. */ 8453 table = (desc & 0xfffff000) | ((address >> 8) & 0xffc); 8454 } 8455 desc = arm_ldl_ptw(cs, table, regime_is_secure(env, mmu_idx), 8456 mmu_idx, fi); 8457 if (fi->type != ARMFault_None) { 8458 goto do_fault; 8459 } 8460 switch (desc & 3) { 8461 case 0: /* Page translation fault. */ 8462 fi->type = ARMFault_Translation; 8463 goto do_fault; 8464 case 1: /* 64k page. */ 8465 phys_addr = (desc & 0xffff0000) | (address & 0xffff); 8466 ap = (desc >> (4 + ((address >> 13) & 6))) & 3; 8467 *page_size = 0x10000; 8468 break; 8469 case 2: /* 4k page. */ 8470 phys_addr = (desc & 0xfffff000) | (address & 0xfff); 8471 ap = (desc >> (4 + ((address >> 9) & 6))) & 3; 8472 *page_size = 0x1000; 8473 break; 8474 case 3: /* 1k page, or ARMv6/XScale "extended small (4k) page" */ 8475 if (type == 1) { 8476 /* ARMv6/XScale extended small page format */ 8477 if (arm_feature(env, ARM_FEATURE_XSCALE) 8478 || arm_feature(env, ARM_FEATURE_V6)) { 8479 phys_addr = (desc & 0xfffff000) | (address & 0xfff); 8480 *page_size = 0x1000; 8481 } else { 8482 /* UNPREDICTABLE in ARMv5; we choose to take a 8483 * page translation fault. 8484 */ 8485 fi->type = ARMFault_Translation; 8486 goto do_fault; 8487 } 8488 } else { 8489 phys_addr = (desc & 0xfffffc00) | (address & 0x3ff); 8490 *page_size = 0x400; 8491 } 8492 ap = (desc >> 4) & 3; 8493 break; 8494 default: 8495 /* Never happens, but compiler isn't smart enough to tell. */ 8496 abort(); 8497 } 8498 } 8499 *prot = ap_to_rw_prot(env, mmu_idx, ap, domain_prot); 8500 *prot |= *prot ? PAGE_EXEC : 0; 8501 if (!(*prot & (1 << access_type))) { 8502 /* Access permission fault. */ 8503 fi->type = ARMFault_Permission; 8504 goto do_fault; 8505 } 8506 *phys_ptr = phys_addr; 8507 return false; 8508 do_fault: 8509 fi->domain = domain; 8510 fi->level = level; 8511 return true; 8512 } 8513 8514 static bool get_phys_addr_v6(CPUARMState *env, uint32_t address, 8515 MMUAccessType access_type, ARMMMUIdx mmu_idx, 8516 hwaddr *phys_ptr, MemTxAttrs *attrs, int *prot, 8517 target_ulong *page_size, ARMMMUFaultInfo *fi) 8518 { 8519 CPUState *cs = CPU(arm_env_get_cpu(env)); 8520 int level = 1; 8521 uint32_t table; 8522 uint32_t desc; 8523 uint32_t xn; 8524 uint32_t pxn = 0; 8525 int type; 8526 int ap; 8527 int domain = 0; 8528 int domain_prot; 8529 hwaddr phys_addr; 8530 uint32_t dacr; 8531 bool ns; 8532 8533 /* Pagetable walk. */ 8534 /* Lookup l1 descriptor. */ 8535 if (!get_level1_table_address(env, mmu_idx, &table, address)) { 8536 /* Section translation fault if page walk is disabled by PD0 or PD1 */ 8537 fi->type = ARMFault_Translation; 8538 goto do_fault; 8539 } 8540 desc = arm_ldl_ptw(cs, table, regime_is_secure(env, mmu_idx), 8541 mmu_idx, fi); 8542 if (fi->type != ARMFault_None) { 8543 goto do_fault; 8544 } 8545 type = (desc & 3); 8546 if (type == 0 || (type == 3 && !arm_feature(env, ARM_FEATURE_PXN))) { 8547 /* Section translation fault, or attempt to use the encoding 8548 * which is Reserved on implementations without PXN. 8549 */ 8550 fi->type = ARMFault_Translation; 8551 goto do_fault; 8552 } 8553 if ((type == 1) || !(desc & (1 << 18))) { 8554 /* Page or Section. */ 8555 domain = (desc >> 5) & 0x0f; 8556 } 8557 if (regime_el(env, mmu_idx) == 1) { 8558 dacr = env->cp15.dacr_ns; 8559 } else { 8560 dacr = env->cp15.dacr_s; 8561 } 8562 if (type == 1) { 8563 level = 2; 8564 } 8565 domain_prot = (dacr >> (domain * 2)) & 3; 8566 if (domain_prot == 0 || domain_prot == 2) { 8567 /* Section or Page domain fault */ 8568 fi->type = ARMFault_Domain; 8569 goto do_fault; 8570 } 8571 if (type != 1) { 8572 if (desc & (1 << 18)) { 8573 /* Supersection. */ 8574 phys_addr = (desc & 0xff000000) | (address & 0x00ffffff); 8575 phys_addr |= (uint64_t)extract32(desc, 20, 4) << 32; 8576 phys_addr |= (uint64_t)extract32(desc, 5, 4) << 36; 8577 *page_size = 0x1000000; 8578 } else { 8579 /* Section. */ 8580 phys_addr = (desc & 0xfff00000) | (address & 0x000fffff); 8581 *page_size = 0x100000; 8582 } 8583 ap = ((desc >> 10) & 3) | ((desc >> 13) & 4); 8584 xn = desc & (1 << 4); 8585 pxn = desc & 1; 8586 ns = extract32(desc, 19, 1); 8587 } else { 8588 if (arm_feature(env, ARM_FEATURE_PXN)) { 8589 pxn = (desc >> 2) & 1; 8590 } 8591 ns = extract32(desc, 3, 1); 8592 /* Lookup l2 entry. */ 8593 table = (desc & 0xfffffc00) | ((address >> 10) & 0x3fc); 8594 desc = arm_ldl_ptw(cs, table, regime_is_secure(env, mmu_idx), 8595 mmu_idx, fi); 8596 if (fi->type != ARMFault_None) { 8597 goto do_fault; 8598 } 8599 ap = ((desc >> 4) & 3) | ((desc >> 7) & 4); 8600 switch (desc & 3) { 8601 case 0: /* Page translation fault. */ 8602 fi->type = ARMFault_Translation; 8603 goto do_fault; 8604 case 1: /* 64k page. */ 8605 phys_addr = (desc & 0xffff0000) | (address & 0xffff); 8606 xn = desc & (1 << 15); 8607 *page_size = 0x10000; 8608 break; 8609 case 2: case 3: /* 4k page. */ 8610 phys_addr = (desc & 0xfffff000) | (address & 0xfff); 8611 xn = desc & 1; 8612 *page_size = 0x1000; 8613 break; 8614 default: 8615 /* Never happens, but compiler isn't smart enough to tell. */ 8616 abort(); 8617 } 8618 } 8619 if (domain_prot == 3) { 8620 *prot = PAGE_READ | PAGE_WRITE | PAGE_EXEC; 8621 } else { 8622 if (pxn && !regime_is_user(env, mmu_idx)) { 8623 xn = 1; 8624 } 8625 if (xn && access_type == MMU_INST_FETCH) { 8626 fi->type = ARMFault_Permission; 8627 goto do_fault; 8628 } 8629 8630 if (arm_feature(env, ARM_FEATURE_V6K) && 8631 (regime_sctlr(env, mmu_idx) & SCTLR_AFE)) { 8632 /* The simplified model uses AP[0] as an access control bit. */ 8633 if ((ap & 1) == 0) { 8634 /* Access flag fault. */ 8635 fi->type = ARMFault_AccessFlag; 8636 goto do_fault; 8637 } 8638 *prot = simple_ap_to_rw_prot(env, mmu_idx, ap >> 1); 8639 } else { 8640 *prot = ap_to_rw_prot(env, mmu_idx, ap, domain_prot); 8641 } 8642 if (*prot && !xn) { 8643 *prot |= PAGE_EXEC; 8644 } 8645 if (!(*prot & (1 << access_type))) { 8646 /* Access permission fault. */ 8647 fi->type = ARMFault_Permission; 8648 goto do_fault; 8649 } 8650 } 8651 if (ns) { 8652 /* The NS bit will (as required by the architecture) have no effect if 8653 * the CPU doesn't support TZ or this is a non-secure translation 8654 * regime, because the attribute will already be non-secure. 8655 */ 8656 attrs->secure = false; 8657 } 8658 *phys_ptr = phys_addr; 8659 return false; 8660 do_fault: 8661 fi->domain = domain; 8662 fi->level = level; 8663 return true; 8664 } 8665 8666 /* 8667 * check_s2_mmu_setup 8668 * @cpu: ARMCPU 8669 * @is_aa64: True if the translation regime is in AArch64 state 8670 * @startlevel: Suggested starting level 8671 * @inputsize: Bitsize of IPAs 8672 * @stride: Page-table stride (See the ARM ARM) 8673 * 8674 * Returns true if the suggested S2 translation parameters are OK and 8675 * false otherwise. 8676 */ 8677 static bool check_s2_mmu_setup(ARMCPU *cpu, bool is_aa64, int level, 8678 int inputsize, int stride) 8679 { 8680 const int grainsize = stride + 3; 8681 int startsizecheck; 8682 8683 /* Negative levels are never allowed. */ 8684 if (level < 0) { 8685 return false; 8686 } 8687 8688 startsizecheck = inputsize - ((3 - level) * stride + grainsize); 8689 if (startsizecheck < 1 || startsizecheck > stride + 4) { 8690 return false; 8691 } 8692 8693 if (is_aa64) { 8694 CPUARMState *env = &cpu->env; 8695 unsigned int pamax = arm_pamax(cpu); 8696 8697 switch (stride) { 8698 case 13: /* 64KB Pages. */ 8699 if (level == 0 || (level == 1 && pamax <= 42)) { 8700 return false; 8701 } 8702 break; 8703 case 11: /* 16KB Pages. */ 8704 if (level == 0 || (level == 1 && pamax <= 40)) { 8705 return false; 8706 } 8707 break; 8708 case 9: /* 4KB Pages. */ 8709 if (level == 0 && pamax <= 42) { 8710 return false; 8711 } 8712 break; 8713 default: 8714 g_assert_not_reached(); 8715 } 8716 8717 /* Inputsize checks. */ 8718 if (inputsize > pamax && 8719 (arm_el_is_aa64(env, 1) || inputsize > 40)) { 8720 /* This is CONSTRAINED UNPREDICTABLE and we choose to fault. */ 8721 return false; 8722 } 8723 } else { 8724 /* AArch32 only supports 4KB pages. Assert on that. */ 8725 assert(stride == 9); 8726 8727 if (level == 0) { 8728 return false; 8729 } 8730 } 8731 return true; 8732 } 8733 8734 /* Translate from the 4-bit stage 2 representation of 8735 * memory attributes (without cache-allocation hints) to 8736 * the 8-bit representation of the stage 1 MAIR registers 8737 * (which includes allocation hints). 8738 * 8739 * ref: shared/translation/attrs/S2AttrDecode() 8740 * .../S2ConvertAttrsHints() 8741 */ 8742 static uint8_t convert_stage2_attrs(CPUARMState *env, uint8_t s2attrs) 8743 { 8744 uint8_t hiattr = extract32(s2attrs, 2, 2); 8745 uint8_t loattr = extract32(s2attrs, 0, 2); 8746 uint8_t hihint = 0, lohint = 0; 8747 8748 if (hiattr != 0) { /* normal memory */ 8749 if ((env->cp15.hcr_el2 & HCR_CD) != 0) { /* cache disabled */ 8750 hiattr = loattr = 1; /* non-cacheable */ 8751 } else { 8752 if (hiattr != 1) { /* Write-through or write-back */ 8753 hihint = 3; /* RW allocate */ 8754 } 8755 if (loattr != 1) { /* Write-through or write-back */ 8756 lohint = 3; /* RW allocate */ 8757 } 8758 } 8759 } 8760 8761 return (hiattr << 6) | (hihint << 4) | (loattr << 2) | lohint; 8762 } 8763 8764 static bool get_phys_addr_lpae(CPUARMState *env, target_ulong address, 8765 MMUAccessType access_type, ARMMMUIdx mmu_idx, 8766 hwaddr *phys_ptr, MemTxAttrs *txattrs, int *prot, 8767 target_ulong *page_size_ptr, 8768 ARMMMUFaultInfo *fi, ARMCacheAttrs *cacheattrs) 8769 { 8770 ARMCPU *cpu = arm_env_get_cpu(env); 8771 CPUState *cs = CPU(cpu); 8772 /* Read an LPAE long-descriptor translation table. */ 8773 ARMFaultType fault_type = ARMFault_Translation; 8774 uint32_t level; 8775 uint32_t epd = 0; 8776 int32_t t0sz, t1sz; 8777 uint32_t tg; 8778 uint64_t ttbr; 8779 int ttbr_select; 8780 hwaddr descaddr, indexmask, indexmask_grainsize; 8781 uint32_t tableattrs; 8782 target_ulong page_size; 8783 uint32_t attrs; 8784 int32_t stride = 9; 8785 int32_t addrsize; 8786 int inputsize; 8787 int32_t tbi = 0; 8788 TCR *tcr = regime_tcr(env, mmu_idx); 8789 int ap, ns, xn, pxn; 8790 uint32_t el = regime_el(env, mmu_idx); 8791 bool ttbr1_valid = true; 8792 uint64_t descaddrmask; 8793 bool aarch64 = arm_el_is_aa64(env, el); 8794 8795 /* TODO: 8796 * This code does not handle the different format TCR for VTCR_EL2. 8797 * This code also does not support shareability levels. 8798 * Attribute and permission bit handling should also be checked when adding 8799 * support for those page table walks. 8800 */ 8801 if (aarch64) { 8802 level = 0; 8803 addrsize = 64; 8804 if (el > 1) { 8805 if (mmu_idx != ARMMMUIdx_S2NS) { 8806 tbi = extract64(tcr->raw_tcr, 20, 1); 8807 } 8808 } else { 8809 if (extract64(address, 55, 1)) { 8810 tbi = extract64(tcr->raw_tcr, 38, 1); 8811 } else { 8812 tbi = extract64(tcr->raw_tcr, 37, 1); 8813 } 8814 } 8815 tbi *= 8; 8816 8817 /* If we are in 64-bit EL2 or EL3 then there is no TTBR1, so mark it 8818 * invalid. 8819 */ 8820 if (el > 1) { 8821 ttbr1_valid = false; 8822 } 8823 } else { 8824 level = 1; 8825 addrsize = 32; 8826 /* There is no TTBR1 for EL2 */ 8827 if (el == 2) { 8828 ttbr1_valid = false; 8829 } 8830 } 8831 8832 /* Determine whether this address is in the region controlled by 8833 * TTBR0 or TTBR1 (or if it is in neither region and should fault). 8834 * This is a Non-secure PL0/1 stage 1 translation, so controlled by 8835 * TTBCR/TTBR0/TTBR1 in accordance with ARM ARM DDI0406C table B-32: 8836 */ 8837 if (aarch64) { 8838 /* AArch64 translation. */ 8839 t0sz = extract32(tcr->raw_tcr, 0, 6); 8840 t0sz = MIN(t0sz, 39); 8841 t0sz = MAX(t0sz, 16); 8842 } else if (mmu_idx != ARMMMUIdx_S2NS) { 8843 /* AArch32 stage 1 translation. */ 8844 t0sz = extract32(tcr->raw_tcr, 0, 3); 8845 } else { 8846 /* AArch32 stage 2 translation. */ 8847 bool sext = extract32(tcr->raw_tcr, 4, 1); 8848 bool sign = extract32(tcr->raw_tcr, 3, 1); 8849 /* Address size is 40-bit for a stage 2 translation, 8850 * and t0sz can be negative (from -8 to 7), 8851 * so we need to adjust it to use the TTBR selecting logic below. 8852 */ 8853 addrsize = 40; 8854 t0sz = sextract32(tcr->raw_tcr, 0, 4) + 8; 8855 8856 /* If the sign-extend bit is not the same as t0sz[3], the result 8857 * is unpredictable. Flag this as a guest error. */ 8858 if (sign != sext) { 8859 qemu_log_mask(LOG_GUEST_ERROR, 8860 "AArch32: VTCR.S / VTCR.T0SZ[3] mismatch\n"); 8861 } 8862 } 8863 t1sz = extract32(tcr->raw_tcr, 16, 6); 8864 if (aarch64) { 8865 t1sz = MIN(t1sz, 39); 8866 t1sz = MAX(t1sz, 16); 8867 } 8868 if (t0sz && !extract64(address, addrsize - t0sz, t0sz - tbi)) { 8869 /* there is a ttbr0 region and we are in it (high bits all zero) */ 8870 ttbr_select = 0; 8871 } else if (ttbr1_valid && t1sz && 8872 !extract64(~address, addrsize - t1sz, t1sz - tbi)) { 8873 /* there is a ttbr1 region and we are in it (high bits all one) */ 8874 ttbr_select = 1; 8875 } else if (!t0sz) { 8876 /* ttbr0 region is "everything not in the ttbr1 region" */ 8877 ttbr_select = 0; 8878 } else if (!t1sz && ttbr1_valid) { 8879 /* ttbr1 region is "everything not in the ttbr0 region" */ 8880 ttbr_select = 1; 8881 } else { 8882 /* in the gap between the two regions, this is a Translation fault */ 8883 fault_type = ARMFault_Translation; 8884 goto do_fault; 8885 } 8886 8887 /* Note that QEMU ignores shareability and cacheability attributes, 8888 * so we don't need to do anything with the SH, ORGN, IRGN fields 8889 * in the TTBCR. Similarly, TTBCR:A1 selects whether we get the 8890 * ASID from TTBR0 or TTBR1, but QEMU's TLB doesn't currently 8891 * implement any ASID-like capability so we can ignore it (instead 8892 * we will always flush the TLB any time the ASID is changed). 8893 */ 8894 if (ttbr_select == 0) { 8895 ttbr = regime_ttbr(env, mmu_idx, 0); 8896 if (el < 2) { 8897 epd = extract32(tcr->raw_tcr, 7, 1); 8898 } 8899 inputsize = addrsize - t0sz; 8900 8901 tg = extract32(tcr->raw_tcr, 14, 2); 8902 if (tg == 1) { /* 64KB pages */ 8903 stride = 13; 8904 } 8905 if (tg == 2) { /* 16KB pages */ 8906 stride = 11; 8907 } 8908 } else { 8909 /* We should only be here if TTBR1 is valid */ 8910 assert(ttbr1_valid); 8911 8912 ttbr = regime_ttbr(env, mmu_idx, 1); 8913 epd = extract32(tcr->raw_tcr, 23, 1); 8914 inputsize = addrsize - t1sz; 8915 8916 tg = extract32(tcr->raw_tcr, 30, 2); 8917 if (tg == 3) { /* 64KB pages */ 8918 stride = 13; 8919 } 8920 if (tg == 1) { /* 16KB pages */ 8921 stride = 11; 8922 } 8923 } 8924 8925 /* Here we should have set up all the parameters for the translation: 8926 * inputsize, ttbr, epd, stride, tbi 8927 */ 8928 8929 if (epd) { 8930 /* Translation table walk disabled => Translation fault on TLB miss 8931 * Note: This is always 0 on 64-bit EL2 and EL3. 8932 */ 8933 goto do_fault; 8934 } 8935 8936 if (mmu_idx != ARMMMUIdx_S2NS) { 8937 /* The starting level depends on the virtual address size (which can 8938 * be up to 48 bits) and the translation granule size. It indicates 8939 * the number of strides (stride bits at a time) needed to 8940 * consume the bits of the input address. In the pseudocode this is: 8941 * level = 4 - RoundUp((inputsize - grainsize) / stride) 8942 * where their 'inputsize' is our 'inputsize', 'grainsize' is 8943 * our 'stride + 3' and 'stride' is our 'stride'. 8944 * Applying the usual "rounded up m/n is (m+n-1)/n" and simplifying: 8945 * = 4 - (inputsize - stride - 3 + stride - 1) / stride 8946 * = 4 - (inputsize - 4) / stride; 8947 */ 8948 level = 4 - (inputsize - 4) / stride; 8949 } else { 8950 /* For stage 2 translations the starting level is specified by the 8951 * VTCR_EL2.SL0 field (whose interpretation depends on the page size) 8952 */ 8953 uint32_t sl0 = extract32(tcr->raw_tcr, 6, 2); 8954 uint32_t startlevel; 8955 bool ok; 8956 8957 if (!aarch64 || stride == 9) { 8958 /* AArch32 or 4KB pages */ 8959 startlevel = 2 - sl0; 8960 } else { 8961 /* 16KB or 64KB pages */ 8962 startlevel = 3 - sl0; 8963 } 8964 8965 /* Check that the starting level is valid. */ 8966 ok = check_s2_mmu_setup(cpu, aarch64, startlevel, 8967 inputsize, stride); 8968 if (!ok) { 8969 fault_type = ARMFault_Translation; 8970 goto do_fault; 8971 } 8972 level = startlevel; 8973 } 8974 8975 indexmask_grainsize = (1ULL << (stride + 3)) - 1; 8976 indexmask = (1ULL << (inputsize - (stride * (4 - level)))) - 1; 8977 8978 /* Now we can extract the actual base address from the TTBR */ 8979 descaddr = extract64(ttbr, 0, 48); 8980 descaddr &= ~indexmask; 8981 8982 /* The address field in the descriptor goes up to bit 39 for ARMv7 8983 * but up to bit 47 for ARMv8, but we use the descaddrmask 8984 * up to bit 39 for AArch32, because we don't need other bits in that case 8985 * to construct next descriptor address (anyway they should be all zeroes). 8986 */ 8987 descaddrmask = ((1ull << (aarch64 ? 48 : 40)) - 1) & 8988 ~indexmask_grainsize; 8989 8990 /* Secure accesses start with the page table in secure memory and 8991 * can be downgraded to non-secure at any step. Non-secure accesses 8992 * remain non-secure. We implement this by just ORing in the NSTable/NS 8993 * bits at each step. 8994 */ 8995 tableattrs = regime_is_secure(env, mmu_idx) ? 0 : (1 << 4); 8996 for (;;) { 8997 uint64_t descriptor; 8998 bool nstable; 8999 9000 descaddr |= (address >> (stride * (4 - level))) & indexmask; 9001 descaddr &= ~7ULL; 9002 nstable = extract32(tableattrs, 4, 1); 9003 descriptor = arm_ldq_ptw(cs, descaddr, !nstable, mmu_idx, fi); 9004 if (fi->type != ARMFault_None) { 9005 goto do_fault; 9006 } 9007 9008 if (!(descriptor & 1) || 9009 (!(descriptor & 2) && (level == 3))) { 9010 /* Invalid, or the Reserved level 3 encoding */ 9011 goto do_fault; 9012 } 9013 descaddr = descriptor & descaddrmask; 9014 9015 if ((descriptor & 2) && (level < 3)) { 9016 /* Table entry. The top five bits are attributes which may 9017 * propagate down through lower levels of the table (and 9018 * which are all arranged so that 0 means "no effect", so 9019 * we can gather them up by ORing in the bits at each level). 9020 */ 9021 tableattrs |= extract64(descriptor, 59, 5); 9022 level++; 9023 indexmask = indexmask_grainsize; 9024 continue; 9025 } 9026 /* Block entry at level 1 or 2, or page entry at level 3. 9027 * These are basically the same thing, although the number 9028 * of bits we pull in from the vaddr varies. 9029 */ 9030 page_size = (1ULL << ((stride * (4 - level)) + 3)); 9031 descaddr |= (address & (page_size - 1)); 9032 /* Extract attributes from the descriptor */ 9033 attrs = extract64(descriptor, 2, 10) 9034 | (extract64(descriptor, 52, 12) << 10); 9035 9036 if (mmu_idx == ARMMMUIdx_S2NS) { 9037 /* Stage 2 table descriptors do not include any attribute fields */ 9038 break; 9039 } 9040 /* Merge in attributes from table descriptors */ 9041 attrs |= extract32(tableattrs, 0, 2) << 11; /* XN, PXN */ 9042 attrs |= extract32(tableattrs, 3, 1) << 5; /* APTable[1] => AP[2] */ 9043 /* The sense of AP[1] vs APTable[0] is reversed, as APTable[0] == 1 9044 * means "force PL1 access only", which means forcing AP[1] to 0. 9045 */ 9046 if (extract32(tableattrs, 2, 1)) { 9047 attrs &= ~(1 << 4); 9048 } 9049 attrs |= nstable << 3; /* NS */ 9050 break; 9051 } 9052 /* Here descaddr is the final physical address, and attributes 9053 * are all in attrs. 9054 */ 9055 fault_type = ARMFault_AccessFlag; 9056 if ((attrs & (1 << 8)) == 0) { 9057 /* Access flag */ 9058 goto do_fault; 9059 } 9060 9061 ap = extract32(attrs, 4, 2); 9062 xn = extract32(attrs, 12, 1); 9063 9064 if (mmu_idx == ARMMMUIdx_S2NS) { 9065 ns = true; 9066 *prot = get_S2prot(env, ap, xn); 9067 } else { 9068 ns = extract32(attrs, 3, 1); 9069 pxn = extract32(attrs, 11, 1); 9070 *prot = get_S1prot(env, mmu_idx, aarch64, ap, ns, xn, pxn); 9071 } 9072 9073 fault_type = ARMFault_Permission; 9074 if (!(*prot & (1 << access_type))) { 9075 goto do_fault; 9076 } 9077 9078 if (ns) { 9079 /* The NS bit will (as required by the architecture) have no effect if 9080 * the CPU doesn't support TZ or this is a non-secure translation 9081 * regime, because the attribute will already be non-secure. 9082 */ 9083 txattrs->secure = false; 9084 } 9085 9086 if (cacheattrs != NULL) { 9087 if (mmu_idx == ARMMMUIdx_S2NS) { 9088 cacheattrs->attrs = convert_stage2_attrs(env, 9089 extract32(attrs, 0, 4)); 9090 } else { 9091 /* Index into MAIR registers for cache attributes */ 9092 uint8_t attrindx = extract32(attrs, 0, 3); 9093 uint64_t mair = env->cp15.mair_el[regime_el(env, mmu_idx)]; 9094 assert(attrindx <= 7); 9095 cacheattrs->attrs = extract64(mair, attrindx * 8, 8); 9096 } 9097 cacheattrs->shareability = extract32(attrs, 6, 2); 9098 } 9099 9100 *phys_ptr = descaddr; 9101 *page_size_ptr = page_size; 9102 return false; 9103 9104 do_fault: 9105 fi->type = fault_type; 9106 fi->level = level; 9107 /* Tag the error as S2 for failed S1 PTW at S2 or ordinary S2. */ 9108 fi->stage2 = fi->s1ptw || (mmu_idx == ARMMMUIdx_S2NS); 9109 return true; 9110 } 9111 9112 static inline void get_phys_addr_pmsav7_default(CPUARMState *env, 9113 ARMMMUIdx mmu_idx, 9114 int32_t address, int *prot) 9115 { 9116 if (!arm_feature(env, ARM_FEATURE_M)) { 9117 *prot = PAGE_READ | PAGE_WRITE; 9118 switch (address) { 9119 case 0xF0000000 ... 0xFFFFFFFF: 9120 if (regime_sctlr(env, mmu_idx) & SCTLR_V) { 9121 /* hivecs execing is ok */ 9122 *prot |= PAGE_EXEC; 9123 } 9124 break; 9125 case 0x00000000 ... 0x7FFFFFFF: 9126 *prot |= PAGE_EXEC; 9127 break; 9128 } 9129 } else { 9130 /* Default system address map for M profile cores. 9131 * The architecture specifies which regions are execute-never; 9132 * at the MPU level no other checks are defined. 9133 */ 9134 switch (address) { 9135 case 0x00000000 ... 0x1fffffff: /* ROM */ 9136 case 0x20000000 ... 0x3fffffff: /* SRAM */ 9137 case 0x60000000 ... 0x7fffffff: /* RAM */ 9138 case 0x80000000 ... 0x9fffffff: /* RAM */ 9139 *prot = PAGE_READ | PAGE_WRITE | PAGE_EXEC; 9140 break; 9141 case 0x40000000 ... 0x5fffffff: /* Peripheral */ 9142 case 0xa0000000 ... 0xbfffffff: /* Device */ 9143 case 0xc0000000 ... 0xdfffffff: /* Device */ 9144 case 0xe0000000 ... 0xffffffff: /* System */ 9145 *prot = PAGE_READ | PAGE_WRITE; 9146 break; 9147 default: 9148 g_assert_not_reached(); 9149 } 9150 } 9151 } 9152 9153 static bool pmsav7_use_background_region(ARMCPU *cpu, 9154 ARMMMUIdx mmu_idx, bool is_user) 9155 { 9156 /* Return true if we should use the default memory map as a 9157 * "background" region if there are no hits against any MPU regions. 9158 */ 9159 CPUARMState *env = &cpu->env; 9160 9161 if (is_user) { 9162 return false; 9163 } 9164 9165 if (arm_feature(env, ARM_FEATURE_M)) { 9166 return env->v7m.mpu_ctrl[regime_is_secure(env, mmu_idx)] 9167 & R_V7M_MPU_CTRL_PRIVDEFENA_MASK; 9168 } else { 9169 return regime_sctlr(env, mmu_idx) & SCTLR_BR; 9170 } 9171 } 9172 9173 static inline bool m_is_ppb_region(CPUARMState *env, uint32_t address) 9174 { 9175 /* True if address is in the M profile PPB region 0xe0000000 - 0xe00fffff */ 9176 return arm_feature(env, ARM_FEATURE_M) && 9177 extract32(address, 20, 12) == 0xe00; 9178 } 9179 9180 static inline bool m_is_system_region(CPUARMState *env, uint32_t address) 9181 { 9182 /* True if address is in the M profile system region 9183 * 0xe0000000 - 0xffffffff 9184 */ 9185 return arm_feature(env, ARM_FEATURE_M) && extract32(address, 29, 3) == 0x7; 9186 } 9187 9188 static bool get_phys_addr_pmsav7(CPUARMState *env, uint32_t address, 9189 MMUAccessType access_type, ARMMMUIdx mmu_idx, 9190 hwaddr *phys_ptr, int *prot, 9191 ARMMMUFaultInfo *fi) 9192 { 9193 ARMCPU *cpu = arm_env_get_cpu(env); 9194 int n; 9195 bool is_user = regime_is_user(env, mmu_idx); 9196 9197 *phys_ptr = address; 9198 *prot = 0; 9199 9200 if (regime_translation_disabled(env, mmu_idx) || 9201 m_is_ppb_region(env, address)) { 9202 /* MPU disabled or M profile PPB access: use default memory map. 9203 * The other case which uses the default memory map in the 9204 * v7M ARM ARM pseudocode is exception vector reads from the vector 9205 * table. In QEMU those accesses are done in arm_v7m_load_vector(), 9206 * which always does a direct read using address_space_ldl(), rather 9207 * than going via this function, so we don't need to check that here. 9208 */ 9209 get_phys_addr_pmsav7_default(env, mmu_idx, address, prot); 9210 } else { /* MPU enabled */ 9211 for (n = (int)cpu->pmsav7_dregion - 1; n >= 0; n--) { 9212 /* region search */ 9213 uint32_t base = env->pmsav7.drbar[n]; 9214 uint32_t rsize = extract32(env->pmsav7.drsr[n], 1, 5); 9215 uint32_t rmask; 9216 bool srdis = false; 9217 9218 if (!(env->pmsav7.drsr[n] & 0x1)) { 9219 continue; 9220 } 9221 9222 if (!rsize) { 9223 qemu_log_mask(LOG_GUEST_ERROR, 9224 "DRSR[%d]: Rsize field cannot be 0\n", n); 9225 continue; 9226 } 9227 rsize++; 9228 rmask = (1ull << rsize) - 1; 9229 9230 if (base & rmask) { 9231 qemu_log_mask(LOG_GUEST_ERROR, 9232 "DRBAR[%d]: 0x%" PRIx32 " misaligned " 9233 "to DRSR region size, mask = 0x%" PRIx32 "\n", 9234 n, base, rmask); 9235 continue; 9236 } 9237 9238 if (address < base || address > base + rmask) { 9239 continue; 9240 } 9241 9242 /* Region matched */ 9243 9244 if (rsize >= 8) { /* no subregions for regions < 256 bytes */ 9245 int i, snd; 9246 uint32_t srdis_mask; 9247 9248 rsize -= 3; /* sub region size (power of 2) */ 9249 snd = ((address - base) >> rsize) & 0x7; 9250 srdis = extract32(env->pmsav7.drsr[n], snd + 8, 1); 9251 9252 srdis_mask = srdis ? 0x3 : 0x0; 9253 for (i = 2; i <= 8 && rsize < TARGET_PAGE_BITS; i *= 2) { 9254 /* This will check in groups of 2, 4 and then 8, whether 9255 * the subregion bits are consistent. rsize is incremented 9256 * back up to give the region size, considering consistent 9257 * adjacent subregions as one region. Stop testing if rsize 9258 * is already big enough for an entire QEMU page. 9259 */ 9260 int snd_rounded = snd & ~(i - 1); 9261 uint32_t srdis_multi = extract32(env->pmsav7.drsr[n], 9262 snd_rounded + 8, i); 9263 if (srdis_mask ^ srdis_multi) { 9264 break; 9265 } 9266 srdis_mask = (srdis_mask << i) | srdis_mask; 9267 rsize++; 9268 } 9269 } 9270 if (rsize < TARGET_PAGE_BITS) { 9271 qemu_log_mask(LOG_UNIMP, 9272 "DRSR[%d]: No support for MPU (sub)region " 9273 "alignment of %" PRIu32 " bits. Minimum is %d\n", 9274 n, rsize, TARGET_PAGE_BITS); 9275 continue; 9276 } 9277 if (srdis) { 9278 continue; 9279 } 9280 break; 9281 } 9282 9283 if (n == -1) { /* no hits */ 9284 if (!pmsav7_use_background_region(cpu, mmu_idx, is_user)) { 9285 /* background fault */ 9286 fi->type = ARMFault_Background; 9287 return true; 9288 } 9289 get_phys_addr_pmsav7_default(env, mmu_idx, address, prot); 9290 } else { /* a MPU hit! */ 9291 uint32_t ap = extract32(env->pmsav7.dracr[n], 8, 3); 9292 uint32_t xn = extract32(env->pmsav7.dracr[n], 12, 1); 9293 9294 if (m_is_system_region(env, address)) { 9295 /* System space is always execute never */ 9296 xn = 1; 9297 } 9298 9299 if (is_user) { /* User mode AP bit decoding */ 9300 switch (ap) { 9301 case 0: 9302 case 1: 9303 case 5: 9304 break; /* no access */ 9305 case 3: 9306 *prot |= PAGE_WRITE; 9307 /* fall through */ 9308 case 2: 9309 case 6: 9310 *prot |= PAGE_READ | PAGE_EXEC; 9311 break; 9312 case 7: 9313 /* for v7M, same as 6; for R profile a reserved value */ 9314 if (arm_feature(env, ARM_FEATURE_M)) { 9315 *prot |= PAGE_READ | PAGE_EXEC; 9316 break; 9317 } 9318 /* fall through */ 9319 default: 9320 qemu_log_mask(LOG_GUEST_ERROR, 9321 "DRACR[%d]: Bad value for AP bits: 0x%" 9322 PRIx32 "\n", n, ap); 9323 } 9324 } else { /* Priv. mode AP bits decoding */ 9325 switch (ap) { 9326 case 0: 9327 break; /* no access */ 9328 case 1: 9329 case 2: 9330 case 3: 9331 *prot |= PAGE_WRITE; 9332 /* fall through */ 9333 case 5: 9334 case 6: 9335 *prot |= PAGE_READ | PAGE_EXEC; 9336 break; 9337 case 7: 9338 /* for v7M, same as 6; for R profile a reserved value */ 9339 if (arm_feature(env, ARM_FEATURE_M)) { 9340 *prot |= PAGE_READ | PAGE_EXEC; 9341 break; 9342 } 9343 /* fall through */ 9344 default: 9345 qemu_log_mask(LOG_GUEST_ERROR, 9346 "DRACR[%d]: Bad value for AP bits: 0x%" 9347 PRIx32 "\n", n, ap); 9348 } 9349 } 9350 9351 /* execute never */ 9352 if (xn) { 9353 *prot &= ~PAGE_EXEC; 9354 } 9355 } 9356 } 9357 9358 fi->type = ARMFault_Permission; 9359 fi->level = 1; 9360 return !(*prot & (1 << access_type)); 9361 } 9362 9363 static bool v8m_is_sau_exempt(CPUARMState *env, 9364 uint32_t address, MMUAccessType access_type) 9365 { 9366 /* The architecture specifies that certain address ranges are 9367 * exempt from v8M SAU/IDAU checks. 9368 */ 9369 return 9370 (access_type == MMU_INST_FETCH && m_is_system_region(env, address)) || 9371 (address >= 0xe0000000 && address <= 0xe0002fff) || 9372 (address >= 0xe000e000 && address <= 0xe000efff) || 9373 (address >= 0xe002e000 && address <= 0xe002efff) || 9374 (address >= 0xe0040000 && address <= 0xe0041fff) || 9375 (address >= 0xe00ff000 && address <= 0xe00fffff); 9376 } 9377 9378 static void v8m_security_lookup(CPUARMState *env, uint32_t address, 9379 MMUAccessType access_type, ARMMMUIdx mmu_idx, 9380 V8M_SAttributes *sattrs) 9381 { 9382 /* Look up the security attributes for this address. Compare the 9383 * pseudocode SecurityCheck() function. 9384 * We assume the caller has zero-initialized *sattrs. 9385 */ 9386 ARMCPU *cpu = arm_env_get_cpu(env); 9387 int r; 9388 9389 /* TODO: implement IDAU */ 9390 9391 if (access_type == MMU_INST_FETCH && extract32(address, 28, 4) == 0xf) { 9392 /* 0xf0000000..0xffffffff is always S for insn fetches */ 9393 return; 9394 } 9395 9396 if (v8m_is_sau_exempt(env, address, access_type)) { 9397 sattrs->ns = !regime_is_secure(env, mmu_idx); 9398 return; 9399 } 9400 9401 switch (env->sau.ctrl & 3) { 9402 case 0: /* SAU.ENABLE == 0, SAU.ALLNS == 0 */ 9403 break; 9404 case 2: /* SAU.ENABLE == 0, SAU.ALLNS == 1 */ 9405 sattrs->ns = true; 9406 break; 9407 default: /* SAU.ENABLE == 1 */ 9408 for (r = 0; r < cpu->sau_sregion; r++) { 9409 if (env->sau.rlar[r] & 1) { 9410 uint32_t base = env->sau.rbar[r] & ~0x1f; 9411 uint32_t limit = env->sau.rlar[r] | 0x1f; 9412 9413 if (base <= address && limit >= address) { 9414 if (sattrs->srvalid) { 9415 /* If we hit in more than one region then we must report 9416 * as Secure, not NS-Callable, with no valid region 9417 * number info. 9418 */ 9419 sattrs->ns = false; 9420 sattrs->nsc = false; 9421 sattrs->sregion = 0; 9422 sattrs->srvalid = false; 9423 break; 9424 } else { 9425 if (env->sau.rlar[r] & 2) { 9426 sattrs->nsc = true; 9427 } else { 9428 sattrs->ns = true; 9429 } 9430 sattrs->srvalid = true; 9431 sattrs->sregion = r; 9432 } 9433 } 9434 } 9435 } 9436 9437 /* TODO when we support the IDAU then it may override the result here */ 9438 break; 9439 } 9440 } 9441 9442 static bool pmsav8_mpu_lookup(CPUARMState *env, uint32_t address, 9443 MMUAccessType access_type, ARMMMUIdx mmu_idx, 9444 hwaddr *phys_ptr, MemTxAttrs *txattrs, 9445 int *prot, ARMMMUFaultInfo *fi, uint32_t *mregion) 9446 { 9447 /* Perform a PMSAv8 MPU lookup (without also doing the SAU check 9448 * that a full phys-to-virt translation does). 9449 * mregion is (if not NULL) set to the region number which matched, 9450 * or -1 if no region number is returned (MPU off, address did not 9451 * hit a region, address hit in multiple regions). 9452 */ 9453 ARMCPU *cpu = arm_env_get_cpu(env); 9454 bool is_user = regime_is_user(env, mmu_idx); 9455 uint32_t secure = regime_is_secure(env, mmu_idx); 9456 int n; 9457 int matchregion = -1; 9458 bool hit = false; 9459 9460 *phys_ptr = address; 9461 *prot = 0; 9462 if (mregion) { 9463 *mregion = -1; 9464 } 9465 9466 /* Unlike the ARM ARM pseudocode, we don't need to check whether this 9467 * was an exception vector read from the vector table (which is always 9468 * done using the default system address map), because those accesses 9469 * are done in arm_v7m_load_vector(), which always does a direct 9470 * read using address_space_ldl(), rather than going via this function. 9471 */ 9472 if (regime_translation_disabled(env, mmu_idx)) { /* MPU disabled */ 9473 hit = true; 9474 } else if (m_is_ppb_region(env, address)) { 9475 hit = true; 9476 } else if (pmsav7_use_background_region(cpu, mmu_idx, is_user)) { 9477 hit = true; 9478 } else { 9479 for (n = (int)cpu->pmsav7_dregion - 1; n >= 0; n--) { 9480 /* region search */ 9481 /* Note that the base address is bits [31:5] from the register 9482 * with bits [4:0] all zeroes, but the limit address is bits 9483 * [31:5] from the register with bits [4:0] all ones. 9484 */ 9485 uint32_t base = env->pmsav8.rbar[secure][n] & ~0x1f; 9486 uint32_t limit = env->pmsav8.rlar[secure][n] | 0x1f; 9487 9488 if (!(env->pmsav8.rlar[secure][n] & 0x1)) { 9489 /* Region disabled */ 9490 continue; 9491 } 9492 9493 if (address < base || address > limit) { 9494 continue; 9495 } 9496 9497 if (hit) { 9498 /* Multiple regions match -- always a failure (unlike 9499 * PMSAv7 where highest-numbered-region wins) 9500 */ 9501 fi->type = ARMFault_Permission; 9502 fi->level = 1; 9503 return true; 9504 } 9505 9506 matchregion = n; 9507 hit = true; 9508 9509 if (base & ~TARGET_PAGE_MASK) { 9510 qemu_log_mask(LOG_UNIMP, 9511 "MPU_RBAR[%d]: No support for MPU region base" 9512 "address of 0x%" PRIx32 ". Minimum alignment is " 9513 "%d\n", 9514 n, base, TARGET_PAGE_BITS); 9515 continue; 9516 } 9517 if ((limit + 1) & ~TARGET_PAGE_MASK) { 9518 qemu_log_mask(LOG_UNIMP, 9519 "MPU_RBAR[%d]: No support for MPU region limit" 9520 "address of 0x%" PRIx32 ". Minimum alignment is " 9521 "%d\n", 9522 n, limit, TARGET_PAGE_BITS); 9523 continue; 9524 } 9525 } 9526 } 9527 9528 if (!hit) { 9529 /* background fault */ 9530 fi->type = ARMFault_Background; 9531 return true; 9532 } 9533 9534 if (matchregion == -1) { 9535 /* hit using the background region */ 9536 get_phys_addr_pmsav7_default(env, mmu_idx, address, prot); 9537 } else { 9538 uint32_t ap = extract32(env->pmsav8.rbar[secure][matchregion], 1, 2); 9539 uint32_t xn = extract32(env->pmsav8.rbar[secure][matchregion], 0, 1); 9540 9541 if (m_is_system_region(env, address)) { 9542 /* System space is always execute never */ 9543 xn = 1; 9544 } 9545 9546 *prot = simple_ap_to_rw_prot(env, mmu_idx, ap); 9547 if (*prot && !xn) { 9548 *prot |= PAGE_EXEC; 9549 } 9550 /* We don't need to look the attribute up in the MAIR0/MAIR1 9551 * registers because that only tells us about cacheability. 9552 */ 9553 if (mregion) { 9554 *mregion = matchregion; 9555 } 9556 } 9557 9558 fi->type = ARMFault_Permission; 9559 fi->level = 1; 9560 return !(*prot & (1 << access_type)); 9561 } 9562 9563 9564 static bool get_phys_addr_pmsav8(CPUARMState *env, uint32_t address, 9565 MMUAccessType access_type, ARMMMUIdx mmu_idx, 9566 hwaddr *phys_ptr, MemTxAttrs *txattrs, 9567 int *prot, ARMMMUFaultInfo *fi) 9568 { 9569 uint32_t secure = regime_is_secure(env, mmu_idx); 9570 V8M_SAttributes sattrs = {}; 9571 9572 if (arm_feature(env, ARM_FEATURE_M_SECURITY)) { 9573 v8m_security_lookup(env, address, access_type, mmu_idx, &sattrs); 9574 if (access_type == MMU_INST_FETCH) { 9575 /* Instruction fetches always use the MMU bank and the 9576 * transaction attribute determined by the fetch address, 9577 * regardless of CPU state. This is painful for QEMU 9578 * to handle, because it would mean we need to encode 9579 * into the mmu_idx not just the (user, negpri) information 9580 * for the current security state but also that for the 9581 * other security state, which would balloon the number 9582 * of mmu_idx values needed alarmingly. 9583 * Fortunately we can avoid this because it's not actually 9584 * possible to arbitrarily execute code from memory with 9585 * the wrong security attribute: it will always generate 9586 * an exception of some kind or another, apart from the 9587 * special case of an NS CPU executing an SG instruction 9588 * in S&NSC memory. So we always just fail the translation 9589 * here and sort things out in the exception handler 9590 * (including possibly emulating an SG instruction). 9591 */ 9592 if (sattrs.ns != !secure) { 9593 if (sattrs.nsc) { 9594 fi->type = ARMFault_QEMU_NSCExec; 9595 } else { 9596 fi->type = ARMFault_QEMU_SFault; 9597 } 9598 *phys_ptr = address; 9599 *prot = 0; 9600 return true; 9601 } 9602 } else { 9603 /* For data accesses we always use the MMU bank indicated 9604 * by the current CPU state, but the security attributes 9605 * might downgrade a secure access to nonsecure. 9606 */ 9607 if (sattrs.ns) { 9608 txattrs->secure = false; 9609 } else if (!secure) { 9610 /* NS access to S memory must fault. 9611 * Architecturally we should first check whether the 9612 * MPU information for this address indicates that we 9613 * are doing an unaligned access to Device memory, which 9614 * should generate a UsageFault instead. QEMU does not 9615 * currently check for that kind of unaligned access though. 9616 * If we added it we would need to do so as a special case 9617 * for M_FAKE_FSR_SFAULT in arm_v7m_cpu_do_interrupt(). 9618 */ 9619 fi->type = ARMFault_QEMU_SFault; 9620 *phys_ptr = address; 9621 *prot = 0; 9622 return true; 9623 } 9624 } 9625 } 9626 9627 return pmsav8_mpu_lookup(env, address, access_type, mmu_idx, phys_ptr, 9628 txattrs, prot, fi, NULL); 9629 } 9630 9631 static bool get_phys_addr_pmsav5(CPUARMState *env, uint32_t address, 9632 MMUAccessType access_type, ARMMMUIdx mmu_idx, 9633 hwaddr *phys_ptr, int *prot, 9634 ARMMMUFaultInfo *fi) 9635 { 9636 int n; 9637 uint32_t mask; 9638 uint32_t base; 9639 bool is_user = regime_is_user(env, mmu_idx); 9640 9641 if (regime_translation_disabled(env, mmu_idx)) { 9642 /* MPU disabled. */ 9643 *phys_ptr = address; 9644 *prot = PAGE_READ | PAGE_WRITE | PAGE_EXEC; 9645 return false; 9646 } 9647 9648 *phys_ptr = address; 9649 for (n = 7; n >= 0; n--) { 9650 base = env->cp15.c6_region[n]; 9651 if ((base & 1) == 0) { 9652 continue; 9653 } 9654 mask = 1 << ((base >> 1) & 0x1f); 9655 /* Keep this shift separate from the above to avoid an 9656 (undefined) << 32. */ 9657 mask = (mask << 1) - 1; 9658 if (((base ^ address) & ~mask) == 0) { 9659 break; 9660 } 9661 } 9662 if (n < 0) { 9663 fi->type = ARMFault_Background; 9664 return true; 9665 } 9666 9667 if (access_type == MMU_INST_FETCH) { 9668 mask = env->cp15.pmsav5_insn_ap; 9669 } else { 9670 mask = env->cp15.pmsav5_data_ap; 9671 } 9672 mask = (mask >> (n * 4)) & 0xf; 9673 switch (mask) { 9674 case 0: 9675 fi->type = ARMFault_Permission; 9676 fi->level = 1; 9677 return true; 9678 case 1: 9679 if (is_user) { 9680 fi->type = ARMFault_Permission; 9681 fi->level = 1; 9682 return true; 9683 } 9684 *prot = PAGE_READ | PAGE_WRITE; 9685 break; 9686 case 2: 9687 *prot = PAGE_READ; 9688 if (!is_user) { 9689 *prot |= PAGE_WRITE; 9690 } 9691 break; 9692 case 3: 9693 *prot = PAGE_READ | PAGE_WRITE; 9694 break; 9695 case 5: 9696 if (is_user) { 9697 fi->type = ARMFault_Permission; 9698 fi->level = 1; 9699 return true; 9700 } 9701 *prot = PAGE_READ; 9702 break; 9703 case 6: 9704 *prot = PAGE_READ; 9705 break; 9706 default: 9707 /* Bad permission. */ 9708 fi->type = ARMFault_Permission; 9709 fi->level = 1; 9710 return true; 9711 } 9712 *prot |= PAGE_EXEC; 9713 return false; 9714 } 9715 9716 /* Combine either inner or outer cacheability attributes for normal 9717 * memory, according to table D4-42 and pseudocode procedure 9718 * CombineS1S2AttrHints() of ARM DDI 0487B.b (the ARMv8 ARM). 9719 * 9720 * NB: only stage 1 includes allocation hints (RW bits), leading to 9721 * some asymmetry. 9722 */ 9723 static uint8_t combine_cacheattr_nibble(uint8_t s1, uint8_t s2) 9724 { 9725 if (s1 == 4 || s2 == 4) { 9726 /* non-cacheable has precedence */ 9727 return 4; 9728 } else if (extract32(s1, 2, 2) == 0 || extract32(s1, 2, 2) == 2) { 9729 /* stage 1 write-through takes precedence */ 9730 return s1; 9731 } else if (extract32(s2, 2, 2) == 2) { 9732 /* stage 2 write-through takes precedence, but the allocation hint 9733 * is still taken from stage 1 9734 */ 9735 return (2 << 2) | extract32(s1, 0, 2); 9736 } else { /* write-back */ 9737 return s1; 9738 } 9739 } 9740 9741 /* Combine S1 and S2 cacheability/shareability attributes, per D4.5.4 9742 * and CombineS1S2Desc() 9743 * 9744 * @s1: Attributes from stage 1 walk 9745 * @s2: Attributes from stage 2 walk 9746 */ 9747 static ARMCacheAttrs combine_cacheattrs(ARMCacheAttrs s1, ARMCacheAttrs s2) 9748 { 9749 uint8_t s1lo = extract32(s1.attrs, 0, 4), s2lo = extract32(s2.attrs, 0, 4); 9750 uint8_t s1hi = extract32(s1.attrs, 4, 4), s2hi = extract32(s2.attrs, 4, 4); 9751 ARMCacheAttrs ret; 9752 9753 /* Combine shareability attributes (table D4-43) */ 9754 if (s1.shareability == 2 || s2.shareability == 2) { 9755 /* if either are outer-shareable, the result is outer-shareable */ 9756 ret.shareability = 2; 9757 } else if (s1.shareability == 3 || s2.shareability == 3) { 9758 /* if either are inner-shareable, the result is inner-shareable */ 9759 ret.shareability = 3; 9760 } else { 9761 /* both non-shareable */ 9762 ret.shareability = 0; 9763 } 9764 9765 /* Combine memory type and cacheability attributes */ 9766 if (s1hi == 0 || s2hi == 0) { 9767 /* Device has precedence over normal */ 9768 if (s1lo == 0 || s2lo == 0) { 9769 /* nGnRnE has precedence over anything */ 9770 ret.attrs = 0; 9771 } else if (s1lo == 4 || s2lo == 4) { 9772 /* non-Reordering has precedence over Reordering */ 9773 ret.attrs = 4; /* nGnRE */ 9774 } else if (s1lo == 8 || s2lo == 8) { 9775 /* non-Gathering has precedence over Gathering */ 9776 ret.attrs = 8; /* nGRE */ 9777 } else { 9778 ret.attrs = 0xc; /* GRE */ 9779 } 9780 9781 /* Any location for which the resultant memory type is any 9782 * type of Device memory is always treated as Outer Shareable. 9783 */ 9784 ret.shareability = 2; 9785 } else { /* Normal memory */ 9786 /* Outer/inner cacheability combine independently */ 9787 ret.attrs = combine_cacheattr_nibble(s1hi, s2hi) << 4 9788 | combine_cacheattr_nibble(s1lo, s2lo); 9789 9790 if (ret.attrs == 0x44) { 9791 /* Any location for which the resultant memory type is Normal 9792 * Inner Non-cacheable, Outer Non-cacheable is always treated 9793 * as Outer Shareable. 9794 */ 9795 ret.shareability = 2; 9796 } 9797 } 9798 9799 return ret; 9800 } 9801 9802 9803 /* get_phys_addr - get the physical address for this virtual address 9804 * 9805 * Find the physical address corresponding to the given virtual address, 9806 * by doing a translation table walk on MMU based systems or using the 9807 * MPU state on MPU based systems. 9808 * 9809 * Returns false if the translation was successful. Otherwise, phys_ptr, attrs, 9810 * prot and page_size may not be filled in, and the populated fsr value provides 9811 * information on why the translation aborted, in the format of a 9812 * DFSR/IFSR fault register, with the following caveats: 9813 * * we honour the short vs long DFSR format differences. 9814 * * the WnR bit is never set (the caller must do this). 9815 * * for PSMAv5 based systems we don't bother to return a full FSR format 9816 * value. 9817 * 9818 * @env: CPUARMState 9819 * @address: virtual address to get physical address for 9820 * @access_type: 0 for read, 1 for write, 2 for execute 9821 * @mmu_idx: MMU index indicating required translation regime 9822 * @phys_ptr: set to the physical address corresponding to the virtual address 9823 * @attrs: set to the memory transaction attributes to use 9824 * @prot: set to the permissions for the page containing phys_ptr 9825 * @page_size: set to the size of the page containing phys_ptr 9826 * @fi: set to fault info if the translation fails 9827 * @cacheattrs: (if non-NULL) set to the cacheability/shareability attributes 9828 */ 9829 static bool get_phys_addr(CPUARMState *env, target_ulong address, 9830 MMUAccessType access_type, ARMMMUIdx mmu_idx, 9831 hwaddr *phys_ptr, MemTxAttrs *attrs, int *prot, 9832 target_ulong *page_size, 9833 ARMMMUFaultInfo *fi, ARMCacheAttrs *cacheattrs) 9834 { 9835 if (mmu_idx == ARMMMUIdx_S12NSE0 || mmu_idx == ARMMMUIdx_S12NSE1) { 9836 /* Call ourselves recursively to do the stage 1 and then stage 2 9837 * translations. 9838 */ 9839 if (arm_feature(env, ARM_FEATURE_EL2)) { 9840 hwaddr ipa; 9841 int s2_prot; 9842 int ret; 9843 ARMCacheAttrs cacheattrs2 = {}; 9844 9845 ret = get_phys_addr(env, address, access_type, 9846 stage_1_mmu_idx(mmu_idx), &ipa, attrs, 9847 prot, page_size, fi, cacheattrs); 9848 9849 /* If S1 fails or S2 is disabled, return early. */ 9850 if (ret || regime_translation_disabled(env, ARMMMUIdx_S2NS)) { 9851 *phys_ptr = ipa; 9852 return ret; 9853 } 9854 9855 /* S1 is done. Now do S2 translation. */ 9856 ret = get_phys_addr_lpae(env, ipa, access_type, ARMMMUIdx_S2NS, 9857 phys_ptr, attrs, &s2_prot, 9858 page_size, fi, 9859 cacheattrs != NULL ? &cacheattrs2 : NULL); 9860 fi->s2addr = ipa; 9861 /* Combine the S1 and S2 perms. */ 9862 *prot &= s2_prot; 9863 9864 /* Combine the S1 and S2 cache attributes, if needed */ 9865 if (!ret && cacheattrs != NULL) { 9866 *cacheattrs = combine_cacheattrs(*cacheattrs, cacheattrs2); 9867 } 9868 9869 return ret; 9870 } else { 9871 /* 9872 * For non-EL2 CPUs a stage1+stage2 translation is just stage 1. 9873 */ 9874 mmu_idx = stage_1_mmu_idx(mmu_idx); 9875 } 9876 } 9877 9878 /* The page table entries may downgrade secure to non-secure, but 9879 * cannot upgrade an non-secure translation regime's attributes 9880 * to secure. 9881 */ 9882 attrs->secure = regime_is_secure(env, mmu_idx); 9883 attrs->user = regime_is_user(env, mmu_idx); 9884 9885 /* Fast Context Switch Extension. This doesn't exist at all in v8. 9886 * In v7 and earlier it affects all stage 1 translations. 9887 */ 9888 if (address < 0x02000000 && mmu_idx != ARMMMUIdx_S2NS 9889 && !arm_feature(env, ARM_FEATURE_V8)) { 9890 if (regime_el(env, mmu_idx) == 3) { 9891 address += env->cp15.fcseidr_s; 9892 } else { 9893 address += env->cp15.fcseidr_ns; 9894 } 9895 } 9896 9897 if (arm_feature(env, ARM_FEATURE_PMSA)) { 9898 bool ret; 9899 *page_size = TARGET_PAGE_SIZE; 9900 9901 if (arm_feature(env, ARM_FEATURE_V8)) { 9902 /* PMSAv8 */ 9903 ret = get_phys_addr_pmsav8(env, address, access_type, mmu_idx, 9904 phys_ptr, attrs, prot, fi); 9905 } else if (arm_feature(env, ARM_FEATURE_V7)) { 9906 /* PMSAv7 */ 9907 ret = get_phys_addr_pmsav7(env, address, access_type, mmu_idx, 9908 phys_ptr, prot, fi); 9909 } else { 9910 /* Pre-v7 MPU */ 9911 ret = get_phys_addr_pmsav5(env, address, access_type, mmu_idx, 9912 phys_ptr, prot, fi); 9913 } 9914 qemu_log_mask(CPU_LOG_MMU, "PMSA MPU lookup for %s at 0x%08" PRIx32 9915 " mmu_idx %u -> %s (prot %c%c%c)\n", 9916 access_type == MMU_DATA_LOAD ? "reading" : 9917 (access_type == MMU_DATA_STORE ? "writing" : "execute"), 9918 (uint32_t)address, mmu_idx, 9919 ret ? "Miss" : "Hit", 9920 *prot & PAGE_READ ? 'r' : '-', 9921 *prot & PAGE_WRITE ? 'w' : '-', 9922 *prot & PAGE_EXEC ? 'x' : '-'); 9923 9924 return ret; 9925 } 9926 9927 /* Definitely a real MMU, not an MPU */ 9928 9929 if (regime_translation_disabled(env, mmu_idx)) { 9930 /* MMU disabled. */ 9931 *phys_ptr = address; 9932 *prot = PAGE_READ | PAGE_WRITE | PAGE_EXEC; 9933 *page_size = TARGET_PAGE_SIZE; 9934 return 0; 9935 } 9936 9937 if (regime_using_lpae_format(env, mmu_idx)) { 9938 return get_phys_addr_lpae(env, address, access_type, mmu_idx, 9939 phys_ptr, attrs, prot, page_size, 9940 fi, cacheattrs); 9941 } else if (regime_sctlr(env, mmu_idx) & SCTLR_XP) { 9942 return get_phys_addr_v6(env, address, access_type, mmu_idx, 9943 phys_ptr, attrs, prot, page_size, fi); 9944 } else { 9945 return get_phys_addr_v5(env, address, access_type, mmu_idx, 9946 phys_ptr, prot, page_size, fi); 9947 } 9948 } 9949 9950 /* Walk the page table and (if the mapping exists) add the page 9951 * to the TLB. Return false on success, or true on failure. Populate 9952 * fsr with ARM DFSR/IFSR fault register format value on failure. 9953 */ 9954 bool arm_tlb_fill(CPUState *cs, vaddr address, 9955 MMUAccessType access_type, int mmu_idx, 9956 ARMMMUFaultInfo *fi) 9957 { 9958 ARMCPU *cpu = ARM_CPU(cs); 9959 CPUARMState *env = &cpu->env; 9960 hwaddr phys_addr; 9961 target_ulong page_size; 9962 int prot; 9963 int ret; 9964 MemTxAttrs attrs = {}; 9965 9966 ret = get_phys_addr(env, address, access_type, 9967 core_to_arm_mmu_idx(env, mmu_idx), &phys_addr, 9968 &attrs, &prot, &page_size, fi, NULL); 9969 if (!ret) { 9970 /* Map a single [sub]page. */ 9971 phys_addr &= TARGET_PAGE_MASK; 9972 address &= TARGET_PAGE_MASK; 9973 tlb_set_page_with_attrs(cs, address, phys_addr, attrs, 9974 prot, mmu_idx, page_size); 9975 return 0; 9976 } 9977 9978 return ret; 9979 } 9980 9981 hwaddr arm_cpu_get_phys_page_attrs_debug(CPUState *cs, vaddr addr, 9982 MemTxAttrs *attrs) 9983 { 9984 ARMCPU *cpu = ARM_CPU(cs); 9985 CPUARMState *env = &cpu->env; 9986 hwaddr phys_addr; 9987 target_ulong page_size; 9988 int prot; 9989 bool ret; 9990 ARMMMUFaultInfo fi = {}; 9991 ARMMMUIdx mmu_idx = core_to_arm_mmu_idx(env, cpu_mmu_index(env, false)); 9992 9993 *attrs = (MemTxAttrs) {}; 9994 9995 ret = get_phys_addr(env, addr, 0, mmu_idx, &phys_addr, 9996 attrs, &prot, &page_size, &fi, NULL); 9997 9998 if (ret) { 9999 return -1; 10000 } 10001 return phys_addr; 10002 } 10003 10004 uint32_t HELPER(v7m_mrs)(CPUARMState *env, uint32_t reg) 10005 { 10006 uint32_t mask; 10007 unsigned el = arm_current_el(env); 10008 10009 /* First handle registers which unprivileged can read */ 10010 10011 switch (reg) { 10012 case 0 ... 7: /* xPSR sub-fields */ 10013 mask = 0; 10014 if ((reg & 1) && el) { 10015 mask |= XPSR_EXCP; /* IPSR (unpriv. reads as zero) */ 10016 } 10017 if (!(reg & 4)) { 10018 mask |= XPSR_NZCV | XPSR_Q; /* APSR */ 10019 } 10020 /* EPSR reads as zero */ 10021 return xpsr_read(env) & mask; 10022 break; 10023 case 20: /* CONTROL */ 10024 return env->v7m.control[env->v7m.secure]; 10025 case 0x94: /* CONTROL_NS */ 10026 /* We have to handle this here because unprivileged Secure code 10027 * can read the NS CONTROL register. 10028 */ 10029 if (!env->v7m.secure) { 10030 return 0; 10031 } 10032 return env->v7m.control[M_REG_NS]; 10033 } 10034 10035 if (el == 0) { 10036 return 0; /* unprivileged reads others as zero */ 10037 } 10038 10039 if (arm_feature(env, ARM_FEATURE_M_SECURITY)) { 10040 switch (reg) { 10041 case 0x88: /* MSP_NS */ 10042 if (!env->v7m.secure) { 10043 return 0; 10044 } 10045 return env->v7m.other_ss_msp; 10046 case 0x89: /* PSP_NS */ 10047 if (!env->v7m.secure) { 10048 return 0; 10049 } 10050 return env->v7m.other_ss_psp; 10051 case 0x90: /* PRIMASK_NS */ 10052 if (!env->v7m.secure) { 10053 return 0; 10054 } 10055 return env->v7m.primask[M_REG_NS]; 10056 case 0x91: /* BASEPRI_NS */ 10057 if (!env->v7m.secure) { 10058 return 0; 10059 } 10060 return env->v7m.basepri[M_REG_NS]; 10061 case 0x93: /* FAULTMASK_NS */ 10062 if (!env->v7m.secure) { 10063 return 0; 10064 } 10065 return env->v7m.faultmask[M_REG_NS]; 10066 case 0x98: /* SP_NS */ 10067 { 10068 /* This gives the non-secure SP selected based on whether we're 10069 * currently in handler mode or not, using the NS CONTROL.SPSEL. 10070 */ 10071 bool spsel = env->v7m.control[M_REG_NS] & R_V7M_CONTROL_SPSEL_MASK; 10072 10073 if (!env->v7m.secure) { 10074 return 0; 10075 } 10076 if (!arm_v7m_is_handler_mode(env) && spsel) { 10077 return env->v7m.other_ss_psp; 10078 } else { 10079 return env->v7m.other_ss_msp; 10080 } 10081 } 10082 default: 10083 break; 10084 } 10085 } 10086 10087 switch (reg) { 10088 case 8: /* MSP */ 10089 return v7m_using_psp(env) ? env->v7m.other_sp : env->regs[13]; 10090 case 9: /* PSP */ 10091 return v7m_using_psp(env) ? env->regs[13] : env->v7m.other_sp; 10092 case 16: /* PRIMASK */ 10093 return env->v7m.primask[env->v7m.secure]; 10094 case 17: /* BASEPRI */ 10095 case 18: /* BASEPRI_MAX */ 10096 return env->v7m.basepri[env->v7m.secure]; 10097 case 19: /* FAULTMASK */ 10098 return env->v7m.faultmask[env->v7m.secure]; 10099 default: 10100 qemu_log_mask(LOG_GUEST_ERROR, "Attempt to read unknown special" 10101 " register %d\n", reg); 10102 return 0; 10103 } 10104 } 10105 10106 void HELPER(v7m_msr)(CPUARMState *env, uint32_t maskreg, uint32_t val) 10107 { 10108 /* We're passed bits [11..0] of the instruction; extract 10109 * SYSm and the mask bits. 10110 * Invalid combinations of SYSm and mask are UNPREDICTABLE; 10111 * we choose to treat them as if the mask bits were valid. 10112 * NB that the pseudocode 'mask' variable is bits [11..10], 10113 * whereas ours is [11..8]. 10114 */ 10115 uint32_t mask = extract32(maskreg, 8, 4); 10116 uint32_t reg = extract32(maskreg, 0, 8); 10117 10118 if (arm_current_el(env) == 0 && reg > 7) { 10119 /* only xPSR sub-fields may be written by unprivileged */ 10120 return; 10121 } 10122 10123 if (arm_feature(env, ARM_FEATURE_M_SECURITY)) { 10124 switch (reg) { 10125 case 0x88: /* MSP_NS */ 10126 if (!env->v7m.secure) { 10127 return; 10128 } 10129 env->v7m.other_ss_msp = val; 10130 return; 10131 case 0x89: /* PSP_NS */ 10132 if (!env->v7m.secure) { 10133 return; 10134 } 10135 env->v7m.other_ss_psp = val; 10136 return; 10137 case 0x90: /* PRIMASK_NS */ 10138 if (!env->v7m.secure) { 10139 return; 10140 } 10141 env->v7m.primask[M_REG_NS] = val & 1; 10142 return; 10143 case 0x91: /* BASEPRI_NS */ 10144 if (!env->v7m.secure) { 10145 return; 10146 } 10147 env->v7m.basepri[M_REG_NS] = val & 0xff; 10148 return; 10149 case 0x93: /* FAULTMASK_NS */ 10150 if (!env->v7m.secure) { 10151 return; 10152 } 10153 env->v7m.faultmask[M_REG_NS] = val & 1; 10154 return; 10155 case 0x98: /* SP_NS */ 10156 { 10157 /* This gives the non-secure SP selected based on whether we're 10158 * currently in handler mode or not, using the NS CONTROL.SPSEL. 10159 */ 10160 bool spsel = env->v7m.control[M_REG_NS] & R_V7M_CONTROL_SPSEL_MASK; 10161 10162 if (!env->v7m.secure) { 10163 return; 10164 } 10165 if (!arm_v7m_is_handler_mode(env) && spsel) { 10166 env->v7m.other_ss_psp = val; 10167 } else { 10168 env->v7m.other_ss_msp = val; 10169 } 10170 return; 10171 } 10172 default: 10173 break; 10174 } 10175 } 10176 10177 switch (reg) { 10178 case 0 ... 7: /* xPSR sub-fields */ 10179 /* only APSR is actually writable */ 10180 if (!(reg & 4)) { 10181 uint32_t apsrmask = 0; 10182 10183 if (mask & 8) { 10184 apsrmask |= XPSR_NZCV | XPSR_Q; 10185 } 10186 if ((mask & 4) && arm_feature(env, ARM_FEATURE_THUMB_DSP)) { 10187 apsrmask |= XPSR_GE; 10188 } 10189 xpsr_write(env, val, apsrmask); 10190 } 10191 break; 10192 case 8: /* MSP */ 10193 if (v7m_using_psp(env)) { 10194 env->v7m.other_sp = val; 10195 } else { 10196 env->regs[13] = val; 10197 } 10198 break; 10199 case 9: /* PSP */ 10200 if (v7m_using_psp(env)) { 10201 env->regs[13] = val; 10202 } else { 10203 env->v7m.other_sp = val; 10204 } 10205 break; 10206 case 16: /* PRIMASK */ 10207 env->v7m.primask[env->v7m.secure] = val & 1; 10208 break; 10209 case 17: /* BASEPRI */ 10210 env->v7m.basepri[env->v7m.secure] = val & 0xff; 10211 break; 10212 case 18: /* BASEPRI_MAX */ 10213 val &= 0xff; 10214 if (val != 0 && (val < env->v7m.basepri[env->v7m.secure] 10215 || env->v7m.basepri[env->v7m.secure] == 0)) { 10216 env->v7m.basepri[env->v7m.secure] = val; 10217 } 10218 break; 10219 case 19: /* FAULTMASK */ 10220 env->v7m.faultmask[env->v7m.secure] = val & 1; 10221 break; 10222 case 20: /* CONTROL */ 10223 /* Writing to the SPSEL bit only has an effect if we are in 10224 * thread mode; other bits can be updated by any privileged code. 10225 * write_v7m_control_spsel() deals with updating the SPSEL bit in 10226 * env->v7m.control, so we only need update the others. 10227 * For v7M, we must just ignore explicit writes to SPSEL in handler 10228 * mode; for v8M the write is permitted but will have no effect. 10229 */ 10230 if (arm_feature(env, ARM_FEATURE_V8) || 10231 !arm_v7m_is_handler_mode(env)) { 10232 write_v7m_control_spsel(env, (val & R_V7M_CONTROL_SPSEL_MASK) != 0); 10233 } 10234 env->v7m.control[env->v7m.secure] &= ~R_V7M_CONTROL_NPRIV_MASK; 10235 env->v7m.control[env->v7m.secure] |= val & R_V7M_CONTROL_NPRIV_MASK; 10236 break; 10237 default: 10238 qemu_log_mask(LOG_GUEST_ERROR, "Attempt to write unknown special" 10239 " register %d\n", reg); 10240 return; 10241 } 10242 } 10243 10244 uint32_t HELPER(v7m_tt)(CPUARMState *env, uint32_t addr, uint32_t op) 10245 { 10246 /* Implement the TT instruction. op is bits [7:6] of the insn. */ 10247 bool forceunpriv = op & 1; 10248 bool alt = op & 2; 10249 V8M_SAttributes sattrs = {}; 10250 uint32_t tt_resp; 10251 bool r, rw, nsr, nsrw, mrvalid; 10252 int prot; 10253 ARMMMUFaultInfo fi = {}; 10254 MemTxAttrs attrs = {}; 10255 hwaddr phys_addr; 10256 ARMMMUIdx mmu_idx; 10257 uint32_t mregion; 10258 bool targetpriv; 10259 bool targetsec = env->v7m.secure; 10260 10261 /* Work out what the security state and privilege level we're 10262 * interested in is... 10263 */ 10264 if (alt) { 10265 targetsec = !targetsec; 10266 } 10267 10268 if (forceunpriv) { 10269 targetpriv = false; 10270 } else { 10271 targetpriv = arm_v7m_is_handler_mode(env) || 10272 !(env->v7m.control[targetsec] & R_V7M_CONTROL_NPRIV_MASK); 10273 } 10274 10275 /* ...and then figure out which MMU index this is */ 10276 mmu_idx = arm_v7m_mmu_idx_for_secstate_and_priv(env, targetsec, targetpriv); 10277 10278 /* We know that the MPU and SAU don't care about the access type 10279 * for our purposes beyond that we don't want to claim to be 10280 * an insn fetch, so we arbitrarily call this a read. 10281 */ 10282 10283 /* MPU region info only available for privileged or if 10284 * inspecting the other MPU state. 10285 */ 10286 if (arm_current_el(env) != 0 || alt) { 10287 /* We can ignore the return value as prot is always set */ 10288 pmsav8_mpu_lookup(env, addr, MMU_DATA_LOAD, mmu_idx, 10289 &phys_addr, &attrs, &prot, &fi, &mregion); 10290 if (mregion == -1) { 10291 mrvalid = false; 10292 mregion = 0; 10293 } else { 10294 mrvalid = true; 10295 } 10296 r = prot & PAGE_READ; 10297 rw = prot & PAGE_WRITE; 10298 } else { 10299 r = false; 10300 rw = false; 10301 mrvalid = false; 10302 mregion = 0; 10303 } 10304 10305 if (env->v7m.secure) { 10306 v8m_security_lookup(env, addr, MMU_DATA_LOAD, mmu_idx, &sattrs); 10307 nsr = sattrs.ns && r; 10308 nsrw = sattrs.ns && rw; 10309 } else { 10310 sattrs.ns = true; 10311 nsr = false; 10312 nsrw = false; 10313 } 10314 10315 tt_resp = (sattrs.iregion << 24) | 10316 (sattrs.irvalid << 23) | 10317 ((!sattrs.ns) << 22) | 10318 (nsrw << 21) | 10319 (nsr << 20) | 10320 (rw << 19) | 10321 (r << 18) | 10322 (sattrs.srvalid << 17) | 10323 (mrvalid << 16) | 10324 (sattrs.sregion << 8) | 10325 mregion; 10326 10327 return tt_resp; 10328 } 10329 10330 #endif 10331 10332 void HELPER(dc_zva)(CPUARMState *env, uint64_t vaddr_in) 10333 { 10334 /* Implement DC ZVA, which zeroes a fixed-length block of memory. 10335 * Note that we do not implement the (architecturally mandated) 10336 * alignment fault for attempts to use this on Device memory 10337 * (which matches the usual QEMU behaviour of not implementing either 10338 * alignment faults or any memory attribute handling). 10339 */ 10340 10341 ARMCPU *cpu = arm_env_get_cpu(env); 10342 uint64_t blocklen = 4 << cpu->dcz_blocksize; 10343 uint64_t vaddr = vaddr_in & ~(blocklen - 1); 10344 10345 #ifndef CONFIG_USER_ONLY 10346 { 10347 /* Slightly awkwardly, QEMU's TARGET_PAGE_SIZE may be less than 10348 * the block size so we might have to do more than one TLB lookup. 10349 * We know that in fact for any v8 CPU the page size is at least 4K 10350 * and the block size must be 2K or less, but TARGET_PAGE_SIZE is only 10351 * 1K as an artefact of legacy v5 subpage support being present in the 10352 * same QEMU executable. 10353 */ 10354 int maxidx = DIV_ROUND_UP(blocklen, TARGET_PAGE_SIZE); 10355 void *hostaddr[maxidx]; 10356 int try, i; 10357 unsigned mmu_idx = cpu_mmu_index(env, false); 10358 TCGMemOpIdx oi = make_memop_idx(MO_UB, mmu_idx); 10359 10360 for (try = 0; try < 2; try++) { 10361 10362 for (i = 0; i < maxidx; i++) { 10363 hostaddr[i] = tlb_vaddr_to_host(env, 10364 vaddr + TARGET_PAGE_SIZE * i, 10365 1, mmu_idx); 10366 if (!hostaddr[i]) { 10367 break; 10368 } 10369 } 10370 if (i == maxidx) { 10371 /* If it's all in the TLB it's fair game for just writing to; 10372 * we know we don't need to update dirty status, etc. 10373 */ 10374 for (i = 0; i < maxidx - 1; i++) { 10375 memset(hostaddr[i], 0, TARGET_PAGE_SIZE); 10376 } 10377 memset(hostaddr[i], 0, blocklen - (i * TARGET_PAGE_SIZE)); 10378 return; 10379 } 10380 /* OK, try a store and see if we can populate the tlb. This 10381 * might cause an exception if the memory isn't writable, 10382 * in which case we will longjmp out of here. We must for 10383 * this purpose use the actual register value passed to us 10384 * so that we get the fault address right. 10385 */ 10386 helper_ret_stb_mmu(env, vaddr_in, 0, oi, GETPC()); 10387 /* Now we can populate the other TLB entries, if any */ 10388 for (i = 0; i < maxidx; i++) { 10389 uint64_t va = vaddr + TARGET_PAGE_SIZE * i; 10390 if (va != (vaddr_in & TARGET_PAGE_MASK)) { 10391 helper_ret_stb_mmu(env, va, 0, oi, GETPC()); 10392 } 10393 } 10394 } 10395 10396 /* Slow path (probably attempt to do this to an I/O device or 10397 * similar, or clearing of a block of code we have translations 10398 * cached for). Just do a series of byte writes as the architecture 10399 * demands. It's not worth trying to use a cpu_physical_memory_map(), 10400 * memset(), unmap() sequence here because: 10401 * + we'd need to account for the blocksize being larger than a page 10402 * + the direct-RAM access case is almost always going to be dealt 10403 * with in the fastpath code above, so there's no speed benefit 10404 * + we would have to deal with the map returning NULL because the 10405 * bounce buffer was in use 10406 */ 10407 for (i = 0; i < blocklen; i++) { 10408 helper_ret_stb_mmu(env, vaddr + i, 0, oi, GETPC()); 10409 } 10410 } 10411 #else 10412 memset(g2h(vaddr), 0, blocklen); 10413 #endif 10414 } 10415 10416 /* Note that signed overflow is undefined in C. The following routines are 10417 careful to use unsigned types where modulo arithmetic is required. 10418 Failure to do so _will_ break on newer gcc. */ 10419 10420 /* Signed saturating arithmetic. */ 10421 10422 /* Perform 16-bit signed saturating addition. */ 10423 static inline uint16_t add16_sat(uint16_t a, uint16_t b) 10424 { 10425 uint16_t res; 10426 10427 res = a + b; 10428 if (((res ^ a) & 0x8000) && !((a ^ b) & 0x8000)) { 10429 if (a & 0x8000) 10430 res = 0x8000; 10431 else 10432 res = 0x7fff; 10433 } 10434 return res; 10435 } 10436 10437 /* Perform 8-bit signed saturating addition. */ 10438 static inline uint8_t add8_sat(uint8_t a, uint8_t b) 10439 { 10440 uint8_t res; 10441 10442 res = a + b; 10443 if (((res ^ a) & 0x80) && !((a ^ b) & 0x80)) { 10444 if (a & 0x80) 10445 res = 0x80; 10446 else 10447 res = 0x7f; 10448 } 10449 return res; 10450 } 10451 10452 /* Perform 16-bit signed saturating subtraction. */ 10453 static inline uint16_t sub16_sat(uint16_t a, uint16_t b) 10454 { 10455 uint16_t res; 10456 10457 res = a - b; 10458 if (((res ^ a) & 0x8000) && ((a ^ b) & 0x8000)) { 10459 if (a & 0x8000) 10460 res = 0x8000; 10461 else 10462 res = 0x7fff; 10463 } 10464 return res; 10465 } 10466 10467 /* Perform 8-bit signed saturating subtraction. */ 10468 static inline uint8_t sub8_sat(uint8_t a, uint8_t b) 10469 { 10470 uint8_t res; 10471 10472 res = a - b; 10473 if (((res ^ a) & 0x80) && ((a ^ b) & 0x80)) { 10474 if (a & 0x80) 10475 res = 0x80; 10476 else 10477 res = 0x7f; 10478 } 10479 return res; 10480 } 10481 10482 #define ADD16(a, b, n) RESULT(add16_sat(a, b), n, 16); 10483 #define SUB16(a, b, n) RESULT(sub16_sat(a, b), n, 16); 10484 #define ADD8(a, b, n) RESULT(add8_sat(a, b), n, 8); 10485 #define SUB8(a, b, n) RESULT(sub8_sat(a, b), n, 8); 10486 #define PFX q 10487 10488 #include "op_addsub.h" 10489 10490 /* Unsigned saturating arithmetic. */ 10491 static inline uint16_t add16_usat(uint16_t a, uint16_t b) 10492 { 10493 uint16_t res; 10494 res = a + b; 10495 if (res < a) 10496 res = 0xffff; 10497 return res; 10498 } 10499 10500 static inline uint16_t sub16_usat(uint16_t a, uint16_t b) 10501 { 10502 if (a > b) 10503 return a - b; 10504 else 10505 return 0; 10506 } 10507 10508 static inline uint8_t add8_usat(uint8_t a, uint8_t b) 10509 { 10510 uint8_t res; 10511 res = a + b; 10512 if (res < a) 10513 res = 0xff; 10514 return res; 10515 } 10516 10517 static inline uint8_t sub8_usat(uint8_t a, uint8_t b) 10518 { 10519 if (a > b) 10520 return a - b; 10521 else 10522 return 0; 10523 } 10524 10525 #define ADD16(a, b, n) RESULT(add16_usat(a, b), n, 16); 10526 #define SUB16(a, b, n) RESULT(sub16_usat(a, b), n, 16); 10527 #define ADD8(a, b, n) RESULT(add8_usat(a, b), n, 8); 10528 #define SUB8(a, b, n) RESULT(sub8_usat(a, b), n, 8); 10529 #define PFX uq 10530 10531 #include "op_addsub.h" 10532 10533 /* Signed modulo arithmetic. */ 10534 #define SARITH16(a, b, n, op) do { \ 10535 int32_t sum; \ 10536 sum = (int32_t)(int16_t)(a) op (int32_t)(int16_t)(b); \ 10537 RESULT(sum, n, 16); \ 10538 if (sum >= 0) \ 10539 ge |= 3 << (n * 2); \ 10540 } while(0) 10541 10542 #define SARITH8(a, b, n, op) do { \ 10543 int32_t sum; \ 10544 sum = (int32_t)(int8_t)(a) op (int32_t)(int8_t)(b); \ 10545 RESULT(sum, n, 8); \ 10546 if (sum >= 0) \ 10547 ge |= 1 << n; \ 10548 } while(0) 10549 10550 10551 #define ADD16(a, b, n) SARITH16(a, b, n, +) 10552 #define SUB16(a, b, n) SARITH16(a, b, n, -) 10553 #define ADD8(a, b, n) SARITH8(a, b, n, +) 10554 #define SUB8(a, b, n) SARITH8(a, b, n, -) 10555 #define PFX s 10556 #define ARITH_GE 10557 10558 #include "op_addsub.h" 10559 10560 /* Unsigned modulo arithmetic. */ 10561 #define ADD16(a, b, n) do { \ 10562 uint32_t sum; \ 10563 sum = (uint32_t)(uint16_t)(a) + (uint32_t)(uint16_t)(b); \ 10564 RESULT(sum, n, 16); \ 10565 if ((sum >> 16) == 1) \ 10566 ge |= 3 << (n * 2); \ 10567 } while(0) 10568 10569 #define ADD8(a, b, n) do { \ 10570 uint32_t sum; \ 10571 sum = (uint32_t)(uint8_t)(a) + (uint32_t)(uint8_t)(b); \ 10572 RESULT(sum, n, 8); \ 10573 if ((sum >> 8) == 1) \ 10574 ge |= 1 << n; \ 10575 } while(0) 10576 10577 #define SUB16(a, b, n) do { \ 10578 uint32_t sum; \ 10579 sum = (uint32_t)(uint16_t)(a) - (uint32_t)(uint16_t)(b); \ 10580 RESULT(sum, n, 16); \ 10581 if ((sum >> 16) == 0) \ 10582 ge |= 3 << (n * 2); \ 10583 } while(0) 10584 10585 #define SUB8(a, b, n) do { \ 10586 uint32_t sum; \ 10587 sum = (uint32_t)(uint8_t)(a) - (uint32_t)(uint8_t)(b); \ 10588 RESULT(sum, n, 8); \ 10589 if ((sum >> 8) == 0) \ 10590 ge |= 1 << n; \ 10591 } while(0) 10592 10593 #define PFX u 10594 #define ARITH_GE 10595 10596 #include "op_addsub.h" 10597 10598 /* Halved signed arithmetic. */ 10599 #define ADD16(a, b, n) \ 10600 RESULT(((int32_t)(int16_t)(a) + (int32_t)(int16_t)(b)) >> 1, n, 16) 10601 #define SUB16(a, b, n) \ 10602 RESULT(((int32_t)(int16_t)(a) - (int32_t)(int16_t)(b)) >> 1, n, 16) 10603 #define ADD8(a, b, n) \ 10604 RESULT(((int32_t)(int8_t)(a) + (int32_t)(int8_t)(b)) >> 1, n, 8) 10605 #define SUB8(a, b, n) \ 10606 RESULT(((int32_t)(int8_t)(a) - (int32_t)(int8_t)(b)) >> 1, n, 8) 10607 #define PFX sh 10608 10609 #include "op_addsub.h" 10610 10611 /* Halved unsigned arithmetic. */ 10612 #define ADD16(a, b, n) \ 10613 RESULT(((uint32_t)(uint16_t)(a) + (uint32_t)(uint16_t)(b)) >> 1, n, 16) 10614 #define SUB16(a, b, n) \ 10615 RESULT(((uint32_t)(uint16_t)(a) - (uint32_t)(uint16_t)(b)) >> 1, n, 16) 10616 #define ADD8(a, b, n) \ 10617 RESULT(((uint32_t)(uint8_t)(a) + (uint32_t)(uint8_t)(b)) >> 1, n, 8) 10618 #define SUB8(a, b, n) \ 10619 RESULT(((uint32_t)(uint8_t)(a) - (uint32_t)(uint8_t)(b)) >> 1, n, 8) 10620 #define PFX uh 10621 10622 #include "op_addsub.h" 10623 10624 static inline uint8_t do_usad(uint8_t a, uint8_t b) 10625 { 10626 if (a > b) 10627 return a - b; 10628 else 10629 return b - a; 10630 } 10631 10632 /* Unsigned sum of absolute byte differences. */ 10633 uint32_t HELPER(usad8)(uint32_t a, uint32_t b) 10634 { 10635 uint32_t sum; 10636 sum = do_usad(a, b); 10637 sum += do_usad(a >> 8, b >> 8); 10638 sum += do_usad(a >> 16, b >>16); 10639 sum += do_usad(a >> 24, b >> 24); 10640 return sum; 10641 } 10642 10643 /* For ARMv6 SEL instruction. */ 10644 uint32_t HELPER(sel_flags)(uint32_t flags, uint32_t a, uint32_t b) 10645 { 10646 uint32_t mask; 10647 10648 mask = 0; 10649 if (flags & 1) 10650 mask |= 0xff; 10651 if (flags & 2) 10652 mask |= 0xff00; 10653 if (flags & 4) 10654 mask |= 0xff0000; 10655 if (flags & 8) 10656 mask |= 0xff000000; 10657 return (a & mask) | (b & ~mask); 10658 } 10659 10660 /* VFP support. We follow the convention used for VFP instructions: 10661 Single precision routines have a "s" suffix, double precision a 10662 "d" suffix. */ 10663 10664 /* Convert host exception flags to vfp form. */ 10665 static inline int vfp_exceptbits_from_host(int host_bits) 10666 { 10667 int target_bits = 0; 10668 10669 if (host_bits & float_flag_invalid) 10670 target_bits |= 1; 10671 if (host_bits & float_flag_divbyzero) 10672 target_bits |= 2; 10673 if (host_bits & float_flag_overflow) 10674 target_bits |= 4; 10675 if (host_bits & (float_flag_underflow | float_flag_output_denormal)) 10676 target_bits |= 8; 10677 if (host_bits & float_flag_inexact) 10678 target_bits |= 0x10; 10679 if (host_bits & float_flag_input_denormal) 10680 target_bits |= 0x80; 10681 return target_bits; 10682 } 10683 10684 uint32_t HELPER(vfp_get_fpscr)(CPUARMState *env) 10685 { 10686 int i; 10687 uint32_t fpscr; 10688 10689 fpscr = (env->vfp.xregs[ARM_VFP_FPSCR] & 0xffc8ffff) 10690 | (env->vfp.vec_len << 16) 10691 | (env->vfp.vec_stride << 20); 10692 i = get_float_exception_flags(&env->vfp.fp_status); 10693 i |= get_float_exception_flags(&env->vfp.standard_fp_status); 10694 fpscr |= vfp_exceptbits_from_host(i); 10695 return fpscr; 10696 } 10697 10698 uint32_t vfp_get_fpscr(CPUARMState *env) 10699 { 10700 return HELPER(vfp_get_fpscr)(env); 10701 } 10702 10703 /* Convert vfp exception flags to target form. */ 10704 static inline int vfp_exceptbits_to_host(int target_bits) 10705 { 10706 int host_bits = 0; 10707 10708 if (target_bits & 1) 10709 host_bits |= float_flag_invalid; 10710 if (target_bits & 2) 10711 host_bits |= float_flag_divbyzero; 10712 if (target_bits & 4) 10713 host_bits |= float_flag_overflow; 10714 if (target_bits & 8) 10715 host_bits |= float_flag_underflow; 10716 if (target_bits & 0x10) 10717 host_bits |= float_flag_inexact; 10718 if (target_bits & 0x80) 10719 host_bits |= float_flag_input_denormal; 10720 return host_bits; 10721 } 10722 10723 void HELPER(vfp_set_fpscr)(CPUARMState *env, uint32_t val) 10724 { 10725 int i; 10726 uint32_t changed; 10727 10728 changed = env->vfp.xregs[ARM_VFP_FPSCR]; 10729 env->vfp.xregs[ARM_VFP_FPSCR] = (val & 0xffc8ffff); 10730 env->vfp.vec_len = (val >> 16) & 7; 10731 env->vfp.vec_stride = (val >> 20) & 3; 10732 10733 changed ^= val; 10734 if (changed & (3 << 22)) { 10735 i = (val >> 22) & 3; 10736 switch (i) { 10737 case FPROUNDING_TIEEVEN: 10738 i = float_round_nearest_even; 10739 break; 10740 case FPROUNDING_POSINF: 10741 i = float_round_up; 10742 break; 10743 case FPROUNDING_NEGINF: 10744 i = float_round_down; 10745 break; 10746 case FPROUNDING_ZERO: 10747 i = float_round_to_zero; 10748 break; 10749 } 10750 set_float_rounding_mode(i, &env->vfp.fp_status); 10751 } 10752 if (changed & (1 << 24)) { 10753 set_flush_to_zero((val & (1 << 24)) != 0, &env->vfp.fp_status); 10754 set_flush_inputs_to_zero((val & (1 << 24)) != 0, &env->vfp.fp_status); 10755 } 10756 if (changed & (1 << 25)) 10757 set_default_nan_mode((val & (1 << 25)) != 0, &env->vfp.fp_status); 10758 10759 i = vfp_exceptbits_to_host(val); 10760 set_float_exception_flags(i, &env->vfp.fp_status); 10761 set_float_exception_flags(0, &env->vfp.standard_fp_status); 10762 } 10763 10764 void vfp_set_fpscr(CPUARMState *env, uint32_t val) 10765 { 10766 HELPER(vfp_set_fpscr)(env, val); 10767 } 10768 10769 #define VFP_HELPER(name, p) HELPER(glue(glue(vfp_,name),p)) 10770 10771 #define VFP_BINOP(name) \ 10772 float32 VFP_HELPER(name, s)(float32 a, float32 b, void *fpstp) \ 10773 { \ 10774 float_status *fpst = fpstp; \ 10775 return float32_ ## name(a, b, fpst); \ 10776 } \ 10777 float64 VFP_HELPER(name, d)(float64 a, float64 b, void *fpstp) \ 10778 { \ 10779 float_status *fpst = fpstp; \ 10780 return float64_ ## name(a, b, fpst); \ 10781 } 10782 VFP_BINOP(add) 10783 VFP_BINOP(sub) 10784 VFP_BINOP(mul) 10785 VFP_BINOP(div) 10786 VFP_BINOP(min) 10787 VFP_BINOP(max) 10788 VFP_BINOP(minnum) 10789 VFP_BINOP(maxnum) 10790 #undef VFP_BINOP 10791 10792 float32 VFP_HELPER(neg, s)(float32 a) 10793 { 10794 return float32_chs(a); 10795 } 10796 10797 float64 VFP_HELPER(neg, d)(float64 a) 10798 { 10799 return float64_chs(a); 10800 } 10801 10802 float32 VFP_HELPER(abs, s)(float32 a) 10803 { 10804 return float32_abs(a); 10805 } 10806 10807 float64 VFP_HELPER(abs, d)(float64 a) 10808 { 10809 return float64_abs(a); 10810 } 10811 10812 float32 VFP_HELPER(sqrt, s)(float32 a, CPUARMState *env) 10813 { 10814 return float32_sqrt(a, &env->vfp.fp_status); 10815 } 10816 10817 float64 VFP_HELPER(sqrt, d)(float64 a, CPUARMState *env) 10818 { 10819 return float64_sqrt(a, &env->vfp.fp_status); 10820 } 10821 10822 /* XXX: check quiet/signaling case */ 10823 #define DO_VFP_cmp(p, type) \ 10824 void VFP_HELPER(cmp, p)(type a, type b, CPUARMState *env) \ 10825 { \ 10826 uint32_t flags; \ 10827 switch(type ## _compare_quiet(a, b, &env->vfp.fp_status)) { \ 10828 case 0: flags = 0x6; break; \ 10829 case -1: flags = 0x8; break; \ 10830 case 1: flags = 0x2; break; \ 10831 default: case 2: flags = 0x3; break; \ 10832 } \ 10833 env->vfp.xregs[ARM_VFP_FPSCR] = (flags << 28) \ 10834 | (env->vfp.xregs[ARM_VFP_FPSCR] & 0x0fffffff); \ 10835 } \ 10836 void VFP_HELPER(cmpe, p)(type a, type b, CPUARMState *env) \ 10837 { \ 10838 uint32_t flags; \ 10839 switch(type ## _compare(a, b, &env->vfp.fp_status)) { \ 10840 case 0: flags = 0x6; break; \ 10841 case -1: flags = 0x8; break; \ 10842 case 1: flags = 0x2; break; \ 10843 default: case 2: flags = 0x3; break; \ 10844 } \ 10845 env->vfp.xregs[ARM_VFP_FPSCR] = (flags << 28) \ 10846 | (env->vfp.xregs[ARM_VFP_FPSCR] & 0x0fffffff); \ 10847 } 10848 DO_VFP_cmp(s, float32) 10849 DO_VFP_cmp(d, float64) 10850 #undef DO_VFP_cmp 10851 10852 /* Integer to float and float to integer conversions */ 10853 10854 #define CONV_ITOF(name, fsz, sign) \ 10855 float##fsz HELPER(name)(uint32_t x, void *fpstp) \ 10856 { \ 10857 float_status *fpst = fpstp; \ 10858 return sign##int32_to_##float##fsz((sign##int32_t)x, fpst); \ 10859 } 10860 10861 #define CONV_FTOI(name, fsz, sign, round) \ 10862 uint32_t HELPER(name)(float##fsz x, void *fpstp) \ 10863 { \ 10864 float_status *fpst = fpstp; \ 10865 if (float##fsz##_is_any_nan(x)) { \ 10866 float_raise(float_flag_invalid, fpst); \ 10867 return 0; \ 10868 } \ 10869 return float##fsz##_to_##sign##int32##round(x, fpst); \ 10870 } 10871 10872 #define FLOAT_CONVS(name, p, fsz, sign) \ 10873 CONV_ITOF(vfp_##name##to##p, fsz, sign) \ 10874 CONV_FTOI(vfp_to##name##p, fsz, sign, ) \ 10875 CONV_FTOI(vfp_to##name##z##p, fsz, sign, _round_to_zero) 10876 10877 FLOAT_CONVS(si, s, 32, ) 10878 FLOAT_CONVS(si, d, 64, ) 10879 FLOAT_CONVS(ui, s, 32, u) 10880 FLOAT_CONVS(ui, d, 64, u) 10881 10882 #undef CONV_ITOF 10883 #undef CONV_FTOI 10884 #undef FLOAT_CONVS 10885 10886 /* floating point conversion */ 10887 float64 VFP_HELPER(fcvtd, s)(float32 x, CPUARMState *env) 10888 { 10889 float64 r = float32_to_float64(x, &env->vfp.fp_status); 10890 /* ARM requires that S<->D conversion of any kind of NaN generates 10891 * a quiet NaN by forcing the most significant frac bit to 1. 10892 */ 10893 return float64_maybe_silence_nan(r, &env->vfp.fp_status); 10894 } 10895 10896 float32 VFP_HELPER(fcvts, d)(float64 x, CPUARMState *env) 10897 { 10898 float32 r = float64_to_float32(x, &env->vfp.fp_status); 10899 /* ARM requires that S<->D conversion of any kind of NaN generates 10900 * a quiet NaN by forcing the most significant frac bit to 1. 10901 */ 10902 return float32_maybe_silence_nan(r, &env->vfp.fp_status); 10903 } 10904 10905 /* VFP3 fixed point conversion. */ 10906 #define VFP_CONV_FIX_FLOAT(name, p, fsz, isz, itype) \ 10907 float##fsz HELPER(vfp_##name##to##p)(uint##isz##_t x, uint32_t shift, \ 10908 void *fpstp) \ 10909 { \ 10910 float_status *fpst = fpstp; \ 10911 float##fsz tmp; \ 10912 tmp = itype##_to_##float##fsz(x, fpst); \ 10913 return float##fsz##_scalbn(tmp, -(int)shift, fpst); \ 10914 } 10915 10916 /* Notice that we want only input-denormal exception flags from the 10917 * scalbn operation: the other possible flags (overflow+inexact if 10918 * we overflow to infinity, output-denormal) aren't correct for the 10919 * complete scale-and-convert operation. 10920 */ 10921 #define VFP_CONV_FLOAT_FIX_ROUND(name, p, fsz, isz, itype, round) \ 10922 uint##isz##_t HELPER(vfp_to##name##p##round)(float##fsz x, \ 10923 uint32_t shift, \ 10924 void *fpstp) \ 10925 { \ 10926 float_status *fpst = fpstp; \ 10927 int old_exc_flags = get_float_exception_flags(fpst); \ 10928 float##fsz tmp; \ 10929 if (float##fsz##_is_any_nan(x)) { \ 10930 float_raise(float_flag_invalid, fpst); \ 10931 return 0; \ 10932 } \ 10933 tmp = float##fsz##_scalbn(x, shift, fpst); \ 10934 old_exc_flags |= get_float_exception_flags(fpst) \ 10935 & float_flag_input_denormal; \ 10936 set_float_exception_flags(old_exc_flags, fpst); \ 10937 return float##fsz##_to_##itype##round(tmp, fpst); \ 10938 } 10939 10940 #define VFP_CONV_FIX(name, p, fsz, isz, itype) \ 10941 VFP_CONV_FIX_FLOAT(name, p, fsz, isz, itype) \ 10942 VFP_CONV_FLOAT_FIX_ROUND(name, p, fsz, isz, itype, _round_to_zero) \ 10943 VFP_CONV_FLOAT_FIX_ROUND(name, p, fsz, isz, itype, ) 10944 10945 #define VFP_CONV_FIX_A64(name, p, fsz, isz, itype) \ 10946 VFP_CONV_FIX_FLOAT(name, p, fsz, isz, itype) \ 10947 VFP_CONV_FLOAT_FIX_ROUND(name, p, fsz, isz, itype, ) 10948 10949 VFP_CONV_FIX(sh, d, 64, 64, int16) 10950 VFP_CONV_FIX(sl, d, 64, 64, int32) 10951 VFP_CONV_FIX_A64(sq, d, 64, 64, int64) 10952 VFP_CONV_FIX(uh, d, 64, 64, uint16) 10953 VFP_CONV_FIX(ul, d, 64, 64, uint32) 10954 VFP_CONV_FIX_A64(uq, d, 64, 64, uint64) 10955 VFP_CONV_FIX(sh, s, 32, 32, int16) 10956 VFP_CONV_FIX(sl, s, 32, 32, int32) 10957 VFP_CONV_FIX_A64(sq, s, 32, 64, int64) 10958 VFP_CONV_FIX(uh, s, 32, 32, uint16) 10959 VFP_CONV_FIX(ul, s, 32, 32, uint32) 10960 VFP_CONV_FIX_A64(uq, s, 32, 64, uint64) 10961 #undef VFP_CONV_FIX 10962 #undef VFP_CONV_FIX_FLOAT 10963 #undef VFP_CONV_FLOAT_FIX_ROUND 10964 10965 /* Set the current fp rounding mode and return the old one. 10966 * The argument is a softfloat float_round_ value. 10967 */ 10968 uint32_t HELPER(set_rmode)(uint32_t rmode, CPUARMState *env) 10969 { 10970 float_status *fp_status = &env->vfp.fp_status; 10971 10972 uint32_t prev_rmode = get_float_rounding_mode(fp_status); 10973 set_float_rounding_mode(rmode, fp_status); 10974 10975 return prev_rmode; 10976 } 10977 10978 /* Set the current fp rounding mode in the standard fp status and return 10979 * the old one. This is for NEON instructions that need to change the 10980 * rounding mode but wish to use the standard FPSCR values for everything 10981 * else. Always set the rounding mode back to the correct value after 10982 * modifying it. 10983 * The argument is a softfloat float_round_ value. 10984 */ 10985 uint32_t HELPER(set_neon_rmode)(uint32_t rmode, CPUARMState *env) 10986 { 10987 float_status *fp_status = &env->vfp.standard_fp_status; 10988 10989 uint32_t prev_rmode = get_float_rounding_mode(fp_status); 10990 set_float_rounding_mode(rmode, fp_status); 10991 10992 return prev_rmode; 10993 } 10994 10995 /* Half precision conversions. */ 10996 static float32 do_fcvt_f16_to_f32(uint32_t a, CPUARMState *env, float_status *s) 10997 { 10998 int ieee = (env->vfp.xregs[ARM_VFP_FPSCR] & (1 << 26)) == 0; 10999 float32 r = float16_to_float32(make_float16(a), ieee, s); 11000 if (ieee) { 11001 return float32_maybe_silence_nan(r, s); 11002 } 11003 return r; 11004 } 11005 11006 static uint32_t do_fcvt_f32_to_f16(float32 a, CPUARMState *env, float_status *s) 11007 { 11008 int ieee = (env->vfp.xregs[ARM_VFP_FPSCR] & (1 << 26)) == 0; 11009 float16 r = float32_to_float16(a, ieee, s); 11010 if (ieee) { 11011 r = float16_maybe_silence_nan(r, s); 11012 } 11013 return float16_val(r); 11014 } 11015 11016 float32 HELPER(neon_fcvt_f16_to_f32)(uint32_t a, CPUARMState *env) 11017 { 11018 return do_fcvt_f16_to_f32(a, env, &env->vfp.standard_fp_status); 11019 } 11020 11021 uint32_t HELPER(neon_fcvt_f32_to_f16)(float32 a, CPUARMState *env) 11022 { 11023 return do_fcvt_f32_to_f16(a, env, &env->vfp.standard_fp_status); 11024 } 11025 11026 float32 HELPER(vfp_fcvt_f16_to_f32)(uint32_t a, CPUARMState *env) 11027 { 11028 return do_fcvt_f16_to_f32(a, env, &env->vfp.fp_status); 11029 } 11030 11031 uint32_t HELPER(vfp_fcvt_f32_to_f16)(float32 a, CPUARMState *env) 11032 { 11033 return do_fcvt_f32_to_f16(a, env, &env->vfp.fp_status); 11034 } 11035 11036 float64 HELPER(vfp_fcvt_f16_to_f64)(uint32_t a, CPUARMState *env) 11037 { 11038 int ieee = (env->vfp.xregs[ARM_VFP_FPSCR] & (1 << 26)) == 0; 11039 float64 r = float16_to_float64(make_float16(a), ieee, &env->vfp.fp_status); 11040 if (ieee) { 11041 return float64_maybe_silence_nan(r, &env->vfp.fp_status); 11042 } 11043 return r; 11044 } 11045 11046 uint32_t HELPER(vfp_fcvt_f64_to_f16)(float64 a, CPUARMState *env) 11047 { 11048 int ieee = (env->vfp.xregs[ARM_VFP_FPSCR] & (1 << 26)) == 0; 11049 float16 r = float64_to_float16(a, ieee, &env->vfp.fp_status); 11050 if (ieee) { 11051 r = float16_maybe_silence_nan(r, &env->vfp.fp_status); 11052 } 11053 return float16_val(r); 11054 } 11055 11056 #define float32_two make_float32(0x40000000) 11057 #define float32_three make_float32(0x40400000) 11058 #define float32_one_point_five make_float32(0x3fc00000) 11059 11060 float32 HELPER(recps_f32)(float32 a, float32 b, CPUARMState *env) 11061 { 11062 float_status *s = &env->vfp.standard_fp_status; 11063 if ((float32_is_infinity(a) && float32_is_zero_or_denormal(b)) || 11064 (float32_is_infinity(b) && float32_is_zero_or_denormal(a))) { 11065 if (!(float32_is_zero(a) || float32_is_zero(b))) { 11066 float_raise(float_flag_input_denormal, s); 11067 } 11068 return float32_two; 11069 } 11070 return float32_sub(float32_two, float32_mul(a, b, s), s); 11071 } 11072 11073 float32 HELPER(rsqrts_f32)(float32 a, float32 b, CPUARMState *env) 11074 { 11075 float_status *s = &env->vfp.standard_fp_status; 11076 float32 product; 11077 if ((float32_is_infinity(a) && float32_is_zero_or_denormal(b)) || 11078 (float32_is_infinity(b) && float32_is_zero_or_denormal(a))) { 11079 if (!(float32_is_zero(a) || float32_is_zero(b))) { 11080 float_raise(float_flag_input_denormal, s); 11081 } 11082 return float32_one_point_five; 11083 } 11084 product = float32_mul(a, b, s); 11085 return float32_div(float32_sub(float32_three, product, s), float32_two, s); 11086 } 11087 11088 /* NEON helpers. */ 11089 11090 /* Constants 256 and 512 are used in some helpers; we avoid relying on 11091 * int->float conversions at run-time. */ 11092 #define float64_256 make_float64(0x4070000000000000LL) 11093 #define float64_512 make_float64(0x4080000000000000LL) 11094 #define float32_maxnorm make_float32(0x7f7fffff) 11095 #define float64_maxnorm make_float64(0x7fefffffffffffffLL) 11096 11097 /* Reciprocal functions 11098 * 11099 * The algorithm that must be used to calculate the estimate 11100 * is specified by the ARM ARM, see FPRecipEstimate() 11101 */ 11102 11103 static float64 recip_estimate(float64 a, float_status *real_fp_status) 11104 { 11105 /* These calculations mustn't set any fp exception flags, 11106 * so we use a local copy of the fp_status. 11107 */ 11108 float_status dummy_status = *real_fp_status; 11109 float_status *s = &dummy_status; 11110 /* q = (int)(a * 512.0) */ 11111 float64 q = float64_mul(float64_512, a, s); 11112 int64_t q_int = float64_to_int64_round_to_zero(q, s); 11113 11114 /* r = 1.0 / (((double)q + 0.5) / 512.0) */ 11115 q = int64_to_float64(q_int, s); 11116 q = float64_add(q, float64_half, s); 11117 q = float64_div(q, float64_512, s); 11118 q = float64_div(float64_one, q, s); 11119 11120 /* s = (int)(256.0 * r + 0.5) */ 11121 q = float64_mul(q, float64_256, s); 11122 q = float64_add(q, float64_half, s); 11123 q_int = float64_to_int64_round_to_zero(q, s); 11124 11125 /* return (double)s / 256.0 */ 11126 return float64_div(int64_to_float64(q_int, s), float64_256, s); 11127 } 11128 11129 /* Common wrapper to call recip_estimate */ 11130 static float64 call_recip_estimate(float64 num, int off, float_status *fpst) 11131 { 11132 uint64_t val64 = float64_val(num); 11133 uint64_t frac = extract64(val64, 0, 52); 11134 int64_t exp = extract64(val64, 52, 11); 11135 uint64_t sbit; 11136 float64 scaled, estimate; 11137 11138 /* Generate the scaled number for the estimate function */ 11139 if (exp == 0) { 11140 if (extract64(frac, 51, 1) == 0) { 11141 exp = -1; 11142 frac = extract64(frac, 0, 50) << 2; 11143 } else { 11144 frac = extract64(frac, 0, 51) << 1; 11145 } 11146 } 11147 11148 /* scaled = '0' : '01111111110' : fraction<51:44> : Zeros(44); */ 11149 scaled = make_float64((0x3feULL << 52) 11150 | extract64(frac, 44, 8) << 44); 11151 11152 estimate = recip_estimate(scaled, fpst); 11153 11154 /* Build new result */ 11155 val64 = float64_val(estimate); 11156 sbit = 0x8000000000000000ULL & val64; 11157 exp = off - exp; 11158 frac = extract64(val64, 0, 52); 11159 11160 if (exp == 0) { 11161 frac = 1ULL << 51 | extract64(frac, 1, 51); 11162 } else if (exp == -1) { 11163 frac = 1ULL << 50 | extract64(frac, 2, 50); 11164 exp = 0; 11165 } 11166 11167 return make_float64(sbit | (exp << 52) | frac); 11168 } 11169 11170 static bool round_to_inf(float_status *fpst, bool sign_bit) 11171 { 11172 switch (fpst->float_rounding_mode) { 11173 case float_round_nearest_even: /* Round to Nearest */ 11174 return true; 11175 case float_round_up: /* Round to +Inf */ 11176 return !sign_bit; 11177 case float_round_down: /* Round to -Inf */ 11178 return sign_bit; 11179 case float_round_to_zero: /* Round to Zero */ 11180 return false; 11181 } 11182 11183 g_assert_not_reached(); 11184 } 11185 11186 float32 HELPER(recpe_f32)(float32 input, void *fpstp) 11187 { 11188 float_status *fpst = fpstp; 11189 float32 f32 = float32_squash_input_denormal(input, fpst); 11190 uint32_t f32_val = float32_val(f32); 11191 uint32_t f32_sbit = 0x80000000ULL & f32_val; 11192 int32_t f32_exp = extract32(f32_val, 23, 8); 11193 uint32_t f32_frac = extract32(f32_val, 0, 23); 11194 float64 f64, r64; 11195 uint64_t r64_val; 11196 int64_t r64_exp; 11197 uint64_t r64_frac; 11198 11199 if (float32_is_any_nan(f32)) { 11200 float32 nan = f32; 11201 if (float32_is_signaling_nan(f32, fpst)) { 11202 float_raise(float_flag_invalid, fpst); 11203 nan = float32_maybe_silence_nan(f32, fpst); 11204 } 11205 if (fpst->default_nan_mode) { 11206 nan = float32_default_nan(fpst); 11207 } 11208 return nan; 11209 } else if (float32_is_infinity(f32)) { 11210 return float32_set_sign(float32_zero, float32_is_neg(f32)); 11211 } else if (float32_is_zero(f32)) { 11212 float_raise(float_flag_divbyzero, fpst); 11213 return float32_set_sign(float32_infinity, float32_is_neg(f32)); 11214 } else if ((f32_val & ~(1ULL << 31)) < (1ULL << 21)) { 11215 /* Abs(value) < 2.0^-128 */ 11216 float_raise(float_flag_overflow | float_flag_inexact, fpst); 11217 if (round_to_inf(fpst, f32_sbit)) { 11218 return float32_set_sign(float32_infinity, float32_is_neg(f32)); 11219 } else { 11220 return float32_set_sign(float32_maxnorm, float32_is_neg(f32)); 11221 } 11222 } else if (f32_exp >= 253 && fpst->flush_to_zero) { 11223 float_raise(float_flag_underflow, fpst); 11224 return float32_set_sign(float32_zero, float32_is_neg(f32)); 11225 } 11226 11227 11228 f64 = make_float64(((int64_t)(f32_exp) << 52) | (int64_t)(f32_frac) << 29); 11229 r64 = call_recip_estimate(f64, 253, fpst); 11230 r64_val = float64_val(r64); 11231 r64_exp = extract64(r64_val, 52, 11); 11232 r64_frac = extract64(r64_val, 0, 52); 11233 11234 /* result = sign : result_exp<7:0> : fraction<51:29>; */ 11235 return make_float32(f32_sbit | 11236 (r64_exp & 0xff) << 23 | 11237 extract64(r64_frac, 29, 24)); 11238 } 11239 11240 float64 HELPER(recpe_f64)(float64 input, void *fpstp) 11241 { 11242 float_status *fpst = fpstp; 11243 float64 f64 = float64_squash_input_denormal(input, fpst); 11244 uint64_t f64_val = float64_val(f64); 11245 uint64_t f64_sbit = 0x8000000000000000ULL & f64_val; 11246 int64_t f64_exp = extract64(f64_val, 52, 11); 11247 float64 r64; 11248 uint64_t r64_val; 11249 int64_t r64_exp; 11250 uint64_t r64_frac; 11251 11252 /* Deal with any special cases */ 11253 if (float64_is_any_nan(f64)) { 11254 float64 nan = f64; 11255 if (float64_is_signaling_nan(f64, fpst)) { 11256 float_raise(float_flag_invalid, fpst); 11257 nan = float64_maybe_silence_nan(f64, fpst); 11258 } 11259 if (fpst->default_nan_mode) { 11260 nan = float64_default_nan(fpst); 11261 } 11262 return nan; 11263 } else if (float64_is_infinity(f64)) { 11264 return float64_set_sign(float64_zero, float64_is_neg(f64)); 11265 } else if (float64_is_zero(f64)) { 11266 float_raise(float_flag_divbyzero, fpst); 11267 return float64_set_sign(float64_infinity, float64_is_neg(f64)); 11268 } else if ((f64_val & ~(1ULL << 63)) < (1ULL << 50)) { 11269 /* Abs(value) < 2.0^-1024 */ 11270 float_raise(float_flag_overflow | float_flag_inexact, fpst); 11271 if (round_to_inf(fpst, f64_sbit)) { 11272 return float64_set_sign(float64_infinity, float64_is_neg(f64)); 11273 } else { 11274 return float64_set_sign(float64_maxnorm, float64_is_neg(f64)); 11275 } 11276 } else if (f64_exp >= 2045 && fpst->flush_to_zero) { 11277 float_raise(float_flag_underflow, fpst); 11278 return float64_set_sign(float64_zero, float64_is_neg(f64)); 11279 } 11280 11281 r64 = call_recip_estimate(f64, 2045, fpst); 11282 r64_val = float64_val(r64); 11283 r64_exp = extract64(r64_val, 52, 11); 11284 r64_frac = extract64(r64_val, 0, 52); 11285 11286 /* result = sign : result_exp<10:0> : fraction<51:0> */ 11287 return make_float64(f64_sbit | 11288 ((r64_exp & 0x7ff) << 52) | 11289 r64_frac); 11290 } 11291 11292 /* The algorithm that must be used to calculate the estimate 11293 * is specified by the ARM ARM. 11294 */ 11295 static float64 recip_sqrt_estimate(float64 a, float_status *real_fp_status) 11296 { 11297 /* These calculations mustn't set any fp exception flags, 11298 * so we use a local copy of the fp_status. 11299 */ 11300 float_status dummy_status = *real_fp_status; 11301 float_status *s = &dummy_status; 11302 float64 q; 11303 int64_t q_int; 11304 11305 if (float64_lt(a, float64_half, s)) { 11306 /* range 0.25 <= a < 0.5 */ 11307 11308 /* a in units of 1/512 rounded down */ 11309 /* q0 = (int)(a * 512.0); */ 11310 q = float64_mul(float64_512, a, s); 11311 q_int = float64_to_int64_round_to_zero(q, s); 11312 11313 /* reciprocal root r */ 11314 /* r = 1.0 / sqrt(((double)q0 + 0.5) / 512.0); */ 11315 q = int64_to_float64(q_int, s); 11316 q = float64_add(q, float64_half, s); 11317 q = float64_div(q, float64_512, s); 11318 q = float64_sqrt(q, s); 11319 q = float64_div(float64_one, q, s); 11320 } else { 11321 /* range 0.5 <= a < 1.0 */ 11322 11323 /* a in units of 1/256 rounded down */ 11324 /* q1 = (int)(a * 256.0); */ 11325 q = float64_mul(float64_256, a, s); 11326 int64_t q_int = float64_to_int64_round_to_zero(q, s); 11327 11328 /* reciprocal root r */ 11329 /* r = 1.0 /sqrt(((double)q1 + 0.5) / 256); */ 11330 q = int64_to_float64(q_int, s); 11331 q = float64_add(q, float64_half, s); 11332 q = float64_div(q, float64_256, s); 11333 q = float64_sqrt(q, s); 11334 q = float64_div(float64_one, q, s); 11335 } 11336 /* r in units of 1/256 rounded to nearest */ 11337 /* s = (int)(256.0 * r + 0.5); */ 11338 11339 q = float64_mul(q, float64_256,s ); 11340 q = float64_add(q, float64_half, s); 11341 q_int = float64_to_int64_round_to_zero(q, s); 11342 11343 /* return (double)s / 256.0;*/ 11344 return float64_div(int64_to_float64(q_int, s), float64_256, s); 11345 } 11346 11347 float32 HELPER(rsqrte_f32)(float32 input, void *fpstp) 11348 { 11349 float_status *s = fpstp; 11350 float32 f32 = float32_squash_input_denormal(input, s); 11351 uint32_t val = float32_val(f32); 11352 uint32_t f32_sbit = 0x80000000 & val; 11353 int32_t f32_exp = extract32(val, 23, 8); 11354 uint32_t f32_frac = extract32(val, 0, 23); 11355 uint64_t f64_frac; 11356 uint64_t val64; 11357 int result_exp; 11358 float64 f64; 11359 11360 if (float32_is_any_nan(f32)) { 11361 float32 nan = f32; 11362 if (float32_is_signaling_nan(f32, s)) { 11363 float_raise(float_flag_invalid, s); 11364 nan = float32_maybe_silence_nan(f32, s); 11365 } 11366 if (s->default_nan_mode) { 11367 nan = float32_default_nan(s); 11368 } 11369 return nan; 11370 } else if (float32_is_zero(f32)) { 11371 float_raise(float_flag_divbyzero, s); 11372 return float32_set_sign(float32_infinity, float32_is_neg(f32)); 11373 } else if (float32_is_neg(f32)) { 11374 float_raise(float_flag_invalid, s); 11375 return float32_default_nan(s); 11376 } else if (float32_is_infinity(f32)) { 11377 return float32_zero; 11378 } 11379 11380 /* Scale and normalize to a double-precision value between 0.25 and 1.0, 11381 * preserving the parity of the exponent. */ 11382 11383 f64_frac = ((uint64_t) f32_frac) << 29; 11384 if (f32_exp == 0) { 11385 while (extract64(f64_frac, 51, 1) == 0) { 11386 f64_frac = f64_frac << 1; 11387 f32_exp = f32_exp-1; 11388 } 11389 f64_frac = extract64(f64_frac, 0, 51) << 1; 11390 } 11391 11392 if (extract64(f32_exp, 0, 1) == 0) { 11393 f64 = make_float64(((uint64_t) f32_sbit) << 32 11394 | (0x3feULL << 52) 11395 | f64_frac); 11396 } else { 11397 f64 = make_float64(((uint64_t) f32_sbit) << 32 11398 | (0x3fdULL << 52) 11399 | f64_frac); 11400 } 11401 11402 result_exp = (380 - f32_exp) / 2; 11403 11404 f64 = recip_sqrt_estimate(f64, s); 11405 11406 val64 = float64_val(f64); 11407 11408 val = ((result_exp & 0xff) << 23) 11409 | ((val64 >> 29) & 0x7fffff); 11410 return make_float32(val); 11411 } 11412 11413 float64 HELPER(rsqrte_f64)(float64 input, void *fpstp) 11414 { 11415 float_status *s = fpstp; 11416 float64 f64 = float64_squash_input_denormal(input, s); 11417 uint64_t val = float64_val(f64); 11418 uint64_t f64_sbit = 0x8000000000000000ULL & val; 11419 int64_t f64_exp = extract64(val, 52, 11); 11420 uint64_t f64_frac = extract64(val, 0, 52); 11421 int64_t result_exp; 11422 uint64_t result_frac; 11423 11424 if (float64_is_any_nan(f64)) { 11425 float64 nan = f64; 11426 if (float64_is_signaling_nan(f64, s)) { 11427 float_raise(float_flag_invalid, s); 11428 nan = float64_maybe_silence_nan(f64, s); 11429 } 11430 if (s->default_nan_mode) { 11431 nan = float64_default_nan(s); 11432 } 11433 return nan; 11434 } else if (float64_is_zero(f64)) { 11435 float_raise(float_flag_divbyzero, s); 11436 return float64_set_sign(float64_infinity, float64_is_neg(f64)); 11437 } else if (float64_is_neg(f64)) { 11438 float_raise(float_flag_invalid, s); 11439 return float64_default_nan(s); 11440 } else if (float64_is_infinity(f64)) { 11441 return float64_zero; 11442 } 11443 11444 /* Scale and normalize to a double-precision value between 0.25 and 1.0, 11445 * preserving the parity of the exponent. */ 11446 11447 if (f64_exp == 0) { 11448 while (extract64(f64_frac, 51, 1) == 0) { 11449 f64_frac = f64_frac << 1; 11450 f64_exp = f64_exp - 1; 11451 } 11452 f64_frac = extract64(f64_frac, 0, 51) << 1; 11453 } 11454 11455 if (extract64(f64_exp, 0, 1) == 0) { 11456 f64 = make_float64(f64_sbit 11457 | (0x3feULL << 52) 11458 | f64_frac); 11459 } else { 11460 f64 = make_float64(f64_sbit 11461 | (0x3fdULL << 52) 11462 | f64_frac); 11463 } 11464 11465 result_exp = (3068 - f64_exp) / 2; 11466 11467 f64 = recip_sqrt_estimate(f64, s); 11468 11469 result_frac = extract64(float64_val(f64), 0, 52); 11470 11471 return make_float64(f64_sbit | 11472 ((result_exp & 0x7ff) << 52) | 11473 result_frac); 11474 } 11475 11476 uint32_t HELPER(recpe_u32)(uint32_t a, void *fpstp) 11477 { 11478 float_status *s = fpstp; 11479 float64 f64; 11480 11481 if ((a & 0x80000000) == 0) { 11482 return 0xffffffff; 11483 } 11484 11485 f64 = make_float64((0x3feULL << 52) 11486 | ((int64_t)(a & 0x7fffffff) << 21)); 11487 11488 f64 = recip_estimate(f64, s); 11489 11490 return 0x80000000 | ((float64_val(f64) >> 21) & 0x7fffffff); 11491 } 11492 11493 uint32_t HELPER(rsqrte_u32)(uint32_t a, void *fpstp) 11494 { 11495 float_status *fpst = fpstp; 11496 float64 f64; 11497 11498 if ((a & 0xc0000000) == 0) { 11499 return 0xffffffff; 11500 } 11501 11502 if (a & 0x80000000) { 11503 f64 = make_float64((0x3feULL << 52) 11504 | ((uint64_t)(a & 0x7fffffff) << 21)); 11505 } else { /* bits 31-30 == '01' */ 11506 f64 = make_float64((0x3fdULL << 52) 11507 | ((uint64_t)(a & 0x3fffffff) << 22)); 11508 } 11509 11510 f64 = recip_sqrt_estimate(f64, fpst); 11511 11512 return 0x80000000 | ((float64_val(f64) >> 21) & 0x7fffffff); 11513 } 11514 11515 /* VFPv4 fused multiply-accumulate */ 11516 float32 VFP_HELPER(muladd, s)(float32 a, float32 b, float32 c, void *fpstp) 11517 { 11518 float_status *fpst = fpstp; 11519 return float32_muladd(a, b, c, 0, fpst); 11520 } 11521 11522 float64 VFP_HELPER(muladd, d)(float64 a, float64 b, float64 c, void *fpstp) 11523 { 11524 float_status *fpst = fpstp; 11525 return float64_muladd(a, b, c, 0, fpst); 11526 } 11527 11528 /* ARMv8 round to integral */ 11529 float32 HELPER(rints_exact)(float32 x, void *fp_status) 11530 { 11531 return float32_round_to_int(x, fp_status); 11532 } 11533 11534 float64 HELPER(rintd_exact)(float64 x, void *fp_status) 11535 { 11536 return float64_round_to_int(x, fp_status); 11537 } 11538 11539 float32 HELPER(rints)(float32 x, void *fp_status) 11540 { 11541 int old_flags = get_float_exception_flags(fp_status), new_flags; 11542 float32 ret; 11543 11544 ret = float32_round_to_int(x, fp_status); 11545 11546 /* Suppress any inexact exceptions the conversion produced */ 11547 if (!(old_flags & float_flag_inexact)) { 11548 new_flags = get_float_exception_flags(fp_status); 11549 set_float_exception_flags(new_flags & ~float_flag_inexact, fp_status); 11550 } 11551 11552 return ret; 11553 } 11554 11555 float64 HELPER(rintd)(float64 x, void *fp_status) 11556 { 11557 int old_flags = get_float_exception_flags(fp_status), new_flags; 11558 float64 ret; 11559 11560 ret = float64_round_to_int(x, fp_status); 11561 11562 new_flags = get_float_exception_flags(fp_status); 11563 11564 /* Suppress any inexact exceptions the conversion produced */ 11565 if (!(old_flags & float_flag_inexact)) { 11566 new_flags = get_float_exception_flags(fp_status); 11567 set_float_exception_flags(new_flags & ~float_flag_inexact, fp_status); 11568 } 11569 11570 return ret; 11571 } 11572 11573 /* Convert ARM rounding mode to softfloat */ 11574 int arm_rmode_to_sf(int rmode) 11575 { 11576 switch (rmode) { 11577 case FPROUNDING_TIEAWAY: 11578 rmode = float_round_ties_away; 11579 break; 11580 case FPROUNDING_ODD: 11581 /* FIXME: add support for TIEAWAY and ODD */ 11582 qemu_log_mask(LOG_UNIMP, "arm: unimplemented rounding mode: %d\n", 11583 rmode); 11584 case FPROUNDING_TIEEVEN: 11585 default: 11586 rmode = float_round_nearest_even; 11587 break; 11588 case FPROUNDING_POSINF: 11589 rmode = float_round_up; 11590 break; 11591 case FPROUNDING_NEGINF: 11592 rmode = float_round_down; 11593 break; 11594 case FPROUNDING_ZERO: 11595 rmode = float_round_to_zero; 11596 break; 11597 } 11598 return rmode; 11599 } 11600 11601 /* CRC helpers. 11602 * The upper bytes of val (above the number specified by 'bytes') must have 11603 * been zeroed out by the caller. 11604 */ 11605 uint32_t HELPER(crc32)(uint32_t acc, uint32_t val, uint32_t bytes) 11606 { 11607 uint8_t buf[4]; 11608 11609 stl_le_p(buf, val); 11610 11611 /* zlib crc32 converts the accumulator and output to one's complement. */ 11612 return crc32(acc ^ 0xffffffff, buf, bytes) ^ 0xffffffff; 11613 } 11614 11615 uint32_t HELPER(crc32c)(uint32_t acc, uint32_t val, uint32_t bytes) 11616 { 11617 uint8_t buf[4]; 11618 11619 stl_le_p(buf, val); 11620 11621 /* Linux crc32c converts the output to one's complement. */ 11622 return crc32c(acc, buf, bytes) ^ 0xffffffff; 11623 } 11624 11625 /* Return the exception level to which FP-disabled exceptions should 11626 * be taken, or 0 if FP is enabled. 11627 */ 11628 static inline int fp_exception_el(CPUARMState *env) 11629 { 11630 #ifndef CONFIG_USER_ONLY 11631 int fpen; 11632 int cur_el = arm_current_el(env); 11633 11634 /* CPACR and the CPTR registers don't exist before v6, so FP is 11635 * always accessible 11636 */ 11637 if (!arm_feature(env, ARM_FEATURE_V6)) { 11638 return 0; 11639 } 11640 11641 /* The CPACR controls traps to EL1, or PL1 if we're 32 bit: 11642 * 0, 2 : trap EL0 and EL1/PL1 accesses 11643 * 1 : trap only EL0 accesses 11644 * 3 : trap no accesses 11645 */ 11646 fpen = extract32(env->cp15.cpacr_el1, 20, 2); 11647 switch (fpen) { 11648 case 0: 11649 case 2: 11650 if (cur_el == 0 || cur_el == 1) { 11651 /* Trap to PL1, which might be EL1 or EL3 */ 11652 if (arm_is_secure(env) && !arm_el_is_aa64(env, 3)) { 11653 return 3; 11654 } 11655 return 1; 11656 } 11657 if (cur_el == 3 && !is_a64(env)) { 11658 /* Secure PL1 running at EL3 */ 11659 return 3; 11660 } 11661 break; 11662 case 1: 11663 if (cur_el == 0) { 11664 return 1; 11665 } 11666 break; 11667 case 3: 11668 break; 11669 } 11670 11671 /* For the CPTR registers we don't need to guard with an ARM_FEATURE 11672 * check because zero bits in the registers mean "don't trap". 11673 */ 11674 11675 /* CPTR_EL2 : present in v7VE or v8 */ 11676 if (cur_el <= 2 && extract32(env->cp15.cptr_el[2], 10, 1) 11677 && !arm_is_secure_below_el3(env)) { 11678 /* Trap FP ops at EL2, NS-EL1 or NS-EL0 to EL2 */ 11679 return 2; 11680 } 11681 11682 /* CPTR_EL3 : present in v8 */ 11683 if (extract32(env->cp15.cptr_el[3], 10, 1)) { 11684 /* Trap all FP ops to EL3 */ 11685 return 3; 11686 } 11687 #endif 11688 return 0; 11689 } 11690 11691 void cpu_get_tb_cpu_state(CPUARMState *env, target_ulong *pc, 11692 target_ulong *cs_base, uint32_t *pflags) 11693 { 11694 ARMMMUIdx mmu_idx = core_to_arm_mmu_idx(env, cpu_mmu_index(env, false)); 11695 uint32_t flags; 11696 11697 if (is_a64(env)) { 11698 *pc = env->pc; 11699 flags = ARM_TBFLAG_AARCH64_STATE_MASK; 11700 /* Get control bits for tagged addresses */ 11701 flags |= (arm_regime_tbi0(env, mmu_idx) << ARM_TBFLAG_TBI0_SHIFT); 11702 flags |= (arm_regime_tbi1(env, mmu_idx) << ARM_TBFLAG_TBI1_SHIFT); 11703 } else { 11704 *pc = env->regs[15]; 11705 flags = (env->thumb << ARM_TBFLAG_THUMB_SHIFT) 11706 | (env->vfp.vec_len << ARM_TBFLAG_VECLEN_SHIFT) 11707 | (env->vfp.vec_stride << ARM_TBFLAG_VECSTRIDE_SHIFT) 11708 | (env->condexec_bits << ARM_TBFLAG_CONDEXEC_SHIFT) 11709 | (arm_sctlr_b(env) << ARM_TBFLAG_SCTLR_B_SHIFT); 11710 if (!(access_secure_reg(env))) { 11711 flags |= ARM_TBFLAG_NS_MASK; 11712 } 11713 if (env->vfp.xregs[ARM_VFP_FPEXC] & (1 << 30) 11714 || arm_el_is_aa64(env, 1)) { 11715 flags |= ARM_TBFLAG_VFPEN_MASK; 11716 } 11717 flags |= (extract32(env->cp15.c15_cpar, 0, 2) 11718 << ARM_TBFLAG_XSCALE_CPAR_SHIFT); 11719 } 11720 11721 flags |= (arm_to_core_mmu_idx(mmu_idx) << ARM_TBFLAG_MMUIDX_SHIFT); 11722 11723 /* The SS_ACTIVE and PSTATE_SS bits correspond to the state machine 11724 * states defined in the ARM ARM for software singlestep: 11725 * SS_ACTIVE PSTATE.SS State 11726 * 0 x Inactive (the TB flag for SS is always 0) 11727 * 1 0 Active-pending 11728 * 1 1 Active-not-pending 11729 */ 11730 if (arm_singlestep_active(env)) { 11731 flags |= ARM_TBFLAG_SS_ACTIVE_MASK; 11732 if (is_a64(env)) { 11733 if (env->pstate & PSTATE_SS) { 11734 flags |= ARM_TBFLAG_PSTATE_SS_MASK; 11735 } 11736 } else { 11737 if (env->uncached_cpsr & PSTATE_SS) { 11738 flags |= ARM_TBFLAG_PSTATE_SS_MASK; 11739 } 11740 } 11741 } 11742 if (arm_cpu_data_is_big_endian(env)) { 11743 flags |= ARM_TBFLAG_BE_DATA_MASK; 11744 } 11745 flags |= fp_exception_el(env) << ARM_TBFLAG_FPEXC_EL_SHIFT; 11746 11747 if (arm_v7m_is_handler_mode(env)) { 11748 flags |= ARM_TBFLAG_HANDLER_MASK; 11749 } 11750 11751 *pflags = flags; 11752 *cs_base = 0; 11753 } 11754