xref: /openbmc/qemu/target/arm/helper.c (revision 8d8cb956)
1 #include "qemu/osdep.h"
2 #include "trace.h"
3 #include "cpu.h"
4 #include "internals.h"
5 #include "exec/gdbstub.h"
6 #include "exec/helper-proto.h"
7 #include "qemu/host-utils.h"
8 #include "sysemu/arch_init.h"
9 #include "sysemu/sysemu.h"
10 #include "qemu/bitops.h"
11 #include "qemu/crc32c.h"
12 #include "exec/exec-all.h"
13 #include "exec/cpu_ldst.h"
14 #include "arm_ldst.h"
15 #include <zlib.h> /* For crc32 */
16 #include "exec/semihost.h"
17 #include "sysemu/kvm.h"
18 
19 #define ARM_CPU_FREQ 1000000000 /* FIXME: 1 GHz, should be configurable */
20 
21 #ifndef CONFIG_USER_ONLY
22 /* Cacheability and shareability attributes for a memory access */
23 typedef struct ARMCacheAttrs {
24     unsigned int attrs:8; /* as in the MAIR register encoding */
25     unsigned int shareability:2; /* as in the SH field of the VMSAv8-64 PTEs */
26 } ARMCacheAttrs;
27 
28 static bool get_phys_addr(CPUARMState *env, target_ulong address,
29                           MMUAccessType access_type, ARMMMUIdx mmu_idx,
30                           hwaddr *phys_ptr, MemTxAttrs *attrs, int *prot,
31                           target_ulong *page_size, uint32_t *fsr,
32                           ARMMMUFaultInfo *fi, ARMCacheAttrs *cacheattrs);
33 
34 static bool get_phys_addr_lpae(CPUARMState *env, target_ulong address,
35                                MMUAccessType access_type, ARMMMUIdx mmu_idx,
36                                hwaddr *phys_ptr, MemTxAttrs *txattrs, int *prot,
37                                target_ulong *page_size_ptr, uint32_t *fsr,
38                                ARMMMUFaultInfo *fi, ARMCacheAttrs *cacheattrs);
39 
40 /* Security attributes for an address, as returned by v8m_security_lookup. */
41 typedef struct V8M_SAttributes {
42     bool ns;
43     bool nsc;
44     uint8_t sregion;
45     bool srvalid;
46     uint8_t iregion;
47     bool irvalid;
48 } V8M_SAttributes;
49 
50 static void v8m_security_lookup(CPUARMState *env, uint32_t address,
51                                 MMUAccessType access_type, ARMMMUIdx mmu_idx,
52                                 V8M_SAttributes *sattrs);
53 
54 /* Definitions for the PMCCNTR and PMCR registers */
55 #define PMCRD   0x8
56 #define PMCRC   0x4
57 #define PMCRE   0x1
58 #endif
59 
60 static int vfp_gdb_get_reg(CPUARMState *env, uint8_t *buf, int reg)
61 {
62     int nregs;
63 
64     /* VFP data registers are always little-endian.  */
65     nregs = arm_feature(env, ARM_FEATURE_VFP3) ? 32 : 16;
66     if (reg < nregs) {
67         stfq_le_p(buf, env->vfp.regs[reg]);
68         return 8;
69     }
70     if (arm_feature(env, ARM_FEATURE_NEON)) {
71         /* Aliases for Q regs.  */
72         nregs += 16;
73         if (reg < nregs) {
74             stfq_le_p(buf, env->vfp.regs[(reg - 32) * 2]);
75             stfq_le_p(buf + 8, env->vfp.regs[(reg - 32) * 2 + 1]);
76             return 16;
77         }
78     }
79     switch (reg - nregs) {
80     case 0: stl_p(buf, env->vfp.xregs[ARM_VFP_FPSID]); return 4;
81     case 1: stl_p(buf, env->vfp.xregs[ARM_VFP_FPSCR]); return 4;
82     case 2: stl_p(buf, env->vfp.xregs[ARM_VFP_FPEXC]); return 4;
83     }
84     return 0;
85 }
86 
87 static int vfp_gdb_set_reg(CPUARMState *env, uint8_t *buf, int reg)
88 {
89     int nregs;
90 
91     nregs = arm_feature(env, ARM_FEATURE_VFP3) ? 32 : 16;
92     if (reg < nregs) {
93         env->vfp.regs[reg] = ldfq_le_p(buf);
94         return 8;
95     }
96     if (arm_feature(env, ARM_FEATURE_NEON)) {
97         nregs += 16;
98         if (reg < nregs) {
99             env->vfp.regs[(reg - 32) * 2] = ldfq_le_p(buf);
100             env->vfp.regs[(reg - 32) * 2 + 1] = ldfq_le_p(buf + 8);
101             return 16;
102         }
103     }
104     switch (reg - nregs) {
105     case 0: env->vfp.xregs[ARM_VFP_FPSID] = ldl_p(buf); return 4;
106     case 1: env->vfp.xregs[ARM_VFP_FPSCR] = ldl_p(buf); return 4;
107     case 2: env->vfp.xregs[ARM_VFP_FPEXC] = ldl_p(buf) & (1 << 30); return 4;
108     }
109     return 0;
110 }
111 
112 static int aarch64_fpu_gdb_get_reg(CPUARMState *env, uint8_t *buf, int reg)
113 {
114     switch (reg) {
115     case 0 ... 31:
116         /* 128 bit FP register */
117         stfq_le_p(buf, env->vfp.regs[reg * 2]);
118         stfq_le_p(buf + 8, env->vfp.regs[reg * 2 + 1]);
119         return 16;
120     case 32:
121         /* FPSR */
122         stl_p(buf, vfp_get_fpsr(env));
123         return 4;
124     case 33:
125         /* FPCR */
126         stl_p(buf, vfp_get_fpcr(env));
127         return 4;
128     default:
129         return 0;
130     }
131 }
132 
133 static int aarch64_fpu_gdb_set_reg(CPUARMState *env, uint8_t *buf, int reg)
134 {
135     switch (reg) {
136     case 0 ... 31:
137         /* 128 bit FP register */
138         env->vfp.regs[reg * 2] = ldfq_le_p(buf);
139         env->vfp.regs[reg * 2 + 1] = ldfq_le_p(buf + 8);
140         return 16;
141     case 32:
142         /* FPSR */
143         vfp_set_fpsr(env, ldl_p(buf));
144         return 4;
145     case 33:
146         /* FPCR */
147         vfp_set_fpcr(env, ldl_p(buf));
148         return 4;
149     default:
150         return 0;
151     }
152 }
153 
154 static uint64_t raw_read(CPUARMState *env, const ARMCPRegInfo *ri)
155 {
156     assert(ri->fieldoffset);
157     if (cpreg_field_is_64bit(ri)) {
158         return CPREG_FIELD64(env, ri);
159     } else {
160         return CPREG_FIELD32(env, ri);
161     }
162 }
163 
164 static void raw_write(CPUARMState *env, const ARMCPRegInfo *ri,
165                       uint64_t value)
166 {
167     assert(ri->fieldoffset);
168     if (cpreg_field_is_64bit(ri)) {
169         CPREG_FIELD64(env, ri) = value;
170     } else {
171         CPREG_FIELD32(env, ri) = value;
172     }
173 }
174 
175 static void *raw_ptr(CPUARMState *env, const ARMCPRegInfo *ri)
176 {
177     return (char *)env + ri->fieldoffset;
178 }
179 
180 uint64_t read_raw_cp_reg(CPUARMState *env, const ARMCPRegInfo *ri)
181 {
182     /* Raw read of a coprocessor register (as needed for migration, etc). */
183     if (ri->type & ARM_CP_CONST) {
184         return ri->resetvalue;
185     } else if (ri->raw_readfn) {
186         return ri->raw_readfn(env, ri);
187     } else if (ri->readfn) {
188         return ri->readfn(env, ri);
189     } else {
190         return raw_read(env, ri);
191     }
192 }
193 
194 static void write_raw_cp_reg(CPUARMState *env, const ARMCPRegInfo *ri,
195                              uint64_t v)
196 {
197     /* Raw write of a coprocessor register (as needed for migration, etc).
198      * Note that constant registers are treated as write-ignored; the
199      * caller should check for success by whether a readback gives the
200      * value written.
201      */
202     if (ri->type & ARM_CP_CONST) {
203         return;
204     } else if (ri->raw_writefn) {
205         ri->raw_writefn(env, ri, v);
206     } else if (ri->writefn) {
207         ri->writefn(env, ri, v);
208     } else {
209         raw_write(env, ri, v);
210     }
211 }
212 
213 static bool raw_accessors_invalid(const ARMCPRegInfo *ri)
214 {
215    /* Return true if the regdef would cause an assertion if you called
216     * read_raw_cp_reg() or write_raw_cp_reg() on it (ie if it is a
217     * program bug for it not to have the NO_RAW flag).
218     * NB that returning false here doesn't necessarily mean that calling
219     * read/write_raw_cp_reg() is safe, because we can't distinguish "has
220     * read/write access functions which are safe for raw use" from "has
221     * read/write access functions which have side effects but has forgotten
222     * to provide raw access functions".
223     * The tests here line up with the conditions in read/write_raw_cp_reg()
224     * and assertions in raw_read()/raw_write().
225     */
226     if ((ri->type & ARM_CP_CONST) ||
227         ri->fieldoffset ||
228         ((ri->raw_writefn || ri->writefn) && (ri->raw_readfn || ri->readfn))) {
229         return false;
230     }
231     return true;
232 }
233 
234 bool write_cpustate_to_list(ARMCPU *cpu)
235 {
236     /* Write the coprocessor state from cpu->env to the (index,value) list. */
237     int i;
238     bool ok = true;
239 
240     for (i = 0; i < cpu->cpreg_array_len; i++) {
241         uint32_t regidx = kvm_to_cpreg_id(cpu->cpreg_indexes[i]);
242         const ARMCPRegInfo *ri;
243 
244         ri = get_arm_cp_reginfo(cpu->cp_regs, regidx);
245         if (!ri) {
246             ok = false;
247             continue;
248         }
249         if (ri->type & ARM_CP_NO_RAW) {
250             continue;
251         }
252         cpu->cpreg_values[i] = read_raw_cp_reg(&cpu->env, ri);
253     }
254     return ok;
255 }
256 
257 bool write_list_to_cpustate(ARMCPU *cpu)
258 {
259     int i;
260     bool ok = true;
261 
262     for (i = 0; i < cpu->cpreg_array_len; i++) {
263         uint32_t regidx = kvm_to_cpreg_id(cpu->cpreg_indexes[i]);
264         uint64_t v = cpu->cpreg_values[i];
265         const ARMCPRegInfo *ri;
266 
267         ri = get_arm_cp_reginfo(cpu->cp_regs, regidx);
268         if (!ri) {
269             ok = false;
270             continue;
271         }
272         if (ri->type & ARM_CP_NO_RAW) {
273             continue;
274         }
275         /* Write value and confirm it reads back as written
276          * (to catch read-only registers and partially read-only
277          * registers where the incoming migration value doesn't match)
278          */
279         write_raw_cp_reg(&cpu->env, ri, v);
280         if (read_raw_cp_reg(&cpu->env, ri) != v) {
281             ok = false;
282         }
283     }
284     return ok;
285 }
286 
287 static void add_cpreg_to_list(gpointer key, gpointer opaque)
288 {
289     ARMCPU *cpu = opaque;
290     uint64_t regidx;
291     const ARMCPRegInfo *ri;
292 
293     regidx = *(uint32_t *)key;
294     ri = get_arm_cp_reginfo(cpu->cp_regs, regidx);
295 
296     if (!(ri->type & (ARM_CP_NO_RAW|ARM_CP_ALIAS))) {
297         cpu->cpreg_indexes[cpu->cpreg_array_len] = cpreg_to_kvm_id(regidx);
298         /* The value array need not be initialized at this point */
299         cpu->cpreg_array_len++;
300     }
301 }
302 
303 static void count_cpreg(gpointer key, gpointer opaque)
304 {
305     ARMCPU *cpu = opaque;
306     uint64_t regidx;
307     const ARMCPRegInfo *ri;
308 
309     regidx = *(uint32_t *)key;
310     ri = get_arm_cp_reginfo(cpu->cp_regs, regidx);
311 
312     if (!(ri->type & (ARM_CP_NO_RAW|ARM_CP_ALIAS))) {
313         cpu->cpreg_array_len++;
314     }
315 }
316 
317 static gint cpreg_key_compare(gconstpointer a, gconstpointer b)
318 {
319     uint64_t aidx = cpreg_to_kvm_id(*(uint32_t *)a);
320     uint64_t bidx = cpreg_to_kvm_id(*(uint32_t *)b);
321 
322     if (aidx > bidx) {
323         return 1;
324     }
325     if (aidx < bidx) {
326         return -1;
327     }
328     return 0;
329 }
330 
331 void init_cpreg_list(ARMCPU *cpu)
332 {
333     /* Initialise the cpreg_tuples[] array based on the cp_regs hash.
334      * Note that we require cpreg_tuples[] to be sorted by key ID.
335      */
336     GList *keys;
337     int arraylen;
338 
339     keys = g_hash_table_get_keys(cpu->cp_regs);
340     keys = g_list_sort(keys, cpreg_key_compare);
341 
342     cpu->cpreg_array_len = 0;
343 
344     g_list_foreach(keys, count_cpreg, cpu);
345 
346     arraylen = cpu->cpreg_array_len;
347     cpu->cpreg_indexes = g_new(uint64_t, arraylen);
348     cpu->cpreg_values = g_new(uint64_t, arraylen);
349     cpu->cpreg_vmstate_indexes = g_new(uint64_t, arraylen);
350     cpu->cpreg_vmstate_values = g_new(uint64_t, arraylen);
351     cpu->cpreg_vmstate_array_len = cpu->cpreg_array_len;
352     cpu->cpreg_array_len = 0;
353 
354     g_list_foreach(keys, add_cpreg_to_list, cpu);
355 
356     assert(cpu->cpreg_array_len == arraylen);
357 
358     g_list_free(keys);
359 }
360 
361 /*
362  * Some registers are not accessible if EL3.NS=0 and EL3 is using AArch32 but
363  * they are accessible when EL3 is using AArch64 regardless of EL3.NS.
364  *
365  * access_el3_aa32ns: Used to check AArch32 register views.
366  * access_el3_aa32ns_aa64any: Used to check both AArch32/64 register views.
367  */
368 static CPAccessResult access_el3_aa32ns(CPUARMState *env,
369                                         const ARMCPRegInfo *ri,
370                                         bool isread)
371 {
372     bool secure = arm_is_secure_below_el3(env);
373 
374     assert(!arm_el_is_aa64(env, 3));
375     if (secure) {
376         return CP_ACCESS_TRAP_UNCATEGORIZED;
377     }
378     return CP_ACCESS_OK;
379 }
380 
381 static CPAccessResult access_el3_aa32ns_aa64any(CPUARMState *env,
382                                                 const ARMCPRegInfo *ri,
383                                                 bool isread)
384 {
385     if (!arm_el_is_aa64(env, 3)) {
386         return access_el3_aa32ns(env, ri, isread);
387     }
388     return CP_ACCESS_OK;
389 }
390 
391 /* Some secure-only AArch32 registers trap to EL3 if used from
392  * Secure EL1 (but are just ordinary UNDEF in other non-EL3 contexts).
393  * Note that an access from Secure EL1 can only happen if EL3 is AArch64.
394  * We assume that the .access field is set to PL1_RW.
395  */
396 static CPAccessResult access_trap_aa32s_el1(CPUARMState *env,
397                                             const ARMCPRegInfo *ri,
398                                             bool isread)
399 {
400     if (arm_current_el(env) == 3) {
401         return CP_ACCESS_OK;
402     }
403     if (arm_is_secure_below_el3(env)) {
404         return CP_ACCESS_TRAP_EL3;
405     }
406     /* This will be EL1 NS and EL2 NS, which just UNDEF */
407     return CP_ACCESS_TRAP_UNCATEGORIZED;
408 }
409 
410 /* Check for traps to "powerdown debug" registers, which are controlled
411  * by MDCR.TDOSA
412  */
413 static CPAccessResult access_tdosa(CPUARMState *env, const ARMCPRegInfo *ri,
414                                    bool isread)
415 {
416     int el = arm_current_el(env);
417 
418     if (el < 2 && (env->cp15.mdcr_el2 & MDCR_TDOSA)
419         && !arm_is_secure_below_el3(env)) {
420         return CP_ACCESS_TRAP_EL2;
421     }
422     if (el < 3 && (env->cp15.mdcr_el3 & MDCR_TDOSA)) {
423         return CP_ACCESS_TRAP_EL3;
424     }
425     return CP_ACCESS_OK;
426 }
427 
428 /* Check for traps to "debug ROM" registers, which are controlled
429  * by MDCR_EL2.TDRA for EL2 but by the more general MDCR_EL3.TDA for EL3.
430  */
431 static CPAccessResult access_tdra(CPUARMState *env, const ARMCPRegInfo *ri,
432                                   bool isread)
433 {
434     int el = arm_current_el(env);
435 
436     if (el < 2 && (env->cp15.mdcr_el2 & MDCR_TDRA)
437         && !arm_is_secure_below_el3(env)) {
438         return CP_ACCESS_TRAP_EL2;
439     }
440     if (el < 3 && (env->cp15.mdcr_el3 & MDCR_TDA)) {
441         return CP_ACCESS_TRAP_EL3;
442     }
443     return CP_ACCESS_OK;
444 }
445 
446 /* Check for traps to general debug registers, which are controlled
447  * by MDCR_EL2.TDA for EL2 and MDCR_EL3.TDA for EL3.
448  */
449 static CPAccessResult access_tda(CPUARMState *env, const ARMCPRegInfo *ri,
450                                   bool isread)
451 {
452     int el = arm_current_el(env);
453 
454     if (el < 2 && (env->cp15.mdcr_el2 & MDCR_TDA)
455         && !arm_is_secure_below_el3(env)) {
456         return CP_ACCESS_TRAP_EL2;
457     }
458     if (el < 3 && (env->cp15.mdcr_el3 & MDCR_TDA)) {
459         return CP_ACCESS_TRAP_EL3;
460     }
461     return CP_ACCESS_OK;
462 }
463 
464 /* Check for traps to performance monitor registers, which are controlled
465  * by MDCR_EL2.TPM for EL2 and MDCR_EL3.TPM for EL3.
466  */
467 static CPAccessResult access_tpm(CPUARMState *env, const ARMCPRegInfo *ri,
468                                  bool isread)
469 {
470     int el = arm_current_el(env);
471 
472     if (el < 2 && (env->cp15.mdcr_el2 & MDCR_TPM)
473         && !arm_is_secure_below_el3(env)) {
474         return CP_ACCESS_TRAP_EL2;
475     }
476     if (el < 3 && (env->cp15.mdcr_el3 & MDCR_TPM)) {
477         return CP_ACCESS_TRAP_EL3;
478     }
479     return CP_ACCESS_OK;
480 }
481 
482 static void dacr_write(CPUARMState *env, const ARMCPRegInfo *ri, uint64_t value)
483 {
484     ARMCPU *cpu = arm_env_get_cpu(env);
485 
486     raw_write(env, ri, value);
487     tlb_flush(CPU(cpu)); /* Flush TLB as domain not tracked in TLB */
488 }
489 
490 static void fcse_write(CPUARMState *env, const ARMCPRegInfo *ri, uint64_t value)
491 {
492     ARMCPU *cpu = arm_env_get_cpu(env);
493 
494     if (raw_read(env, ri) != value) {
495         /* Unlike real hardware the qemu TLB uses virtual addresses,
496          * not modified virtual addresses, so this causes a TLB flush.
497          */
498         tlb_flush(CPU(cpu));
499         raw_write(env, ri, value);
500     }
501 }
502 
503 static void contextidr_write(CPUARMState *env, const ARMCPRegInfo *ri,
504                              uint64_t value)
505 {
506     ARMCPU *cpu = arm_env_get_cpu(env);
507 
508     if (raw_read(env, ri) != value && !arm_feature(env, ARM_FEATURE_PMSA)
509         && !extended_addresses_enabled(env)) {
510         /* For VMSA (when not using the LPAE long descriptor page table
511          * format) this register includes the ASID, so do a TLB flush.
512          * For PMSA it is purely a process ID and no action is needed.
513          */
514         tlb_flush(CPU(cpu));
515     }
516     raw_write(env, ri, value);
517 }
518 
519 static void tlbiall_write(CPUARMState *env, const ARMCPRegInfo *ri,
520                           uint64_t value)
521 {
522     /* Invalidate all (TLBIALL) */
523     ARMCPU *cpu = arm_env_get_cpu(env);
524 
525     tlb_flush(CPU(cpu));
526 }
527 
528 static void tlbimva_write(CPUARMState *env, const ARMCPRegInfo *ri,
529                           uint64_t value)
530 {
531     /* Invalidate single TLB entry by MVA and ASID (TLBIMVA) */
532     ARMCPU *cpu = arm_env_get_cpu(env);
533 
534     tlb_flush_page(CPU(cpu), value & TARGET_PAGE_MASK);
535 }
536 
537 static void tlbiasid_write(CPUARMState *env, const ARMCPRegInfo *ri,
538                            uint64_t value)
539 {
540     /* Invalidate by ASID (TLBIASID) */
541     ARMCPU *cpu = arm_env_get_cpu(env);
542 
543     tlb_flush(CPU(cpu));
544 }
545 
546 static void tlbimvaa_write(CPUARMState *env, const ARMCPRegInfo *ri,
547                            uint64_t value)
548 {
549     /* Invalidate single entry by MVA, all ASIDs (TLBIMVAA) */
550     ARMCPU *cpu = arm_env_get_cpu(env);
551 
552     tlb_flush_page(CPU(cpu), value & TARGET_PAGE_MASK);
553 }
554 
555 /* IS variants of TLB operations must affect all cores */
556 static void tlbiall_is_write(CPUARMState *env, const ARMCPRegInfo *ri,
557                              uint64_t value)
558 {
559     CPUState *cs = ENV_GET_CPU(env);
560 
561     tlb_flush_all_cpus_synced(cs);
562 }
563 
564 static void tlbiasid_is_write(CPUARMState *env, const ARMCPRegInfo *ri,
565                              uint64_t value)
566 {
567     CPUState *cs = ENV_GET_CPU(env);
568 
569     tlb_flush_all_cpus_synced(cs);
570 }
571 
572 static void tlbimva_is_write(CPUARMState *env, const ARMCPRegInfo *ri,
573                              uint64_t value)
574 {
575     CPUState *cs = ENV_GET_CPU(env);
576 
577     tlb_flush_page_all_cpus_synced(cs, value & TARGET_PAGE_MASK);
578 }
579 
580 static void tlbimvaa_is_write(CPUARMState *env, const ARMCPRegInfo *ri,
581                              uint64_t value)
582 {
583     CPUState *cs = ENV_GET_CPU(env);
584 
585     tlb_flush_page_all_cpus_synced(cs, value & TARGET_PAGE_MASK);
586 }
587 
588 static void tlbiall_nsnh_write(CPUARMState *env, const ARMCPRegInfo *ri,
589                                uint64_t value)
590 {
591     CPUState *cs = ENV_GET_CPU(env);
592 
593     tlb_flush_by_mmuidx(cs,
594                         ARMMMUIdxBit_S12NSE1 |
595                         ARMMMUIdxBit_S12NSE0 |
596                         ARMMMUIdxBit_S2NS);
597 }
598 
599 static void tlbiall_nsnh_is_write(CPUARMState *env, const ARMCPRegInfo *ri,
600                                   uint64_t value)
601 {
602     CPUState *cs = ENV_GET_CPU(env);
603 
604     tlb_flush_by_mmuidx_all_cpus_synced(cs,
605                                         ARMMMUIdxBit_S12NSE1 |
606                                         ARMMMUIdxBit_S12NSE0 |
607                                         ARMMMUIdxBit_S2NS);
608 }
609 
610 static void tlbiipas2_write(CPUARMState *env, const ARMCPRegInfo *ri,
611                             uint64_t value)
612 {
613     /* Invalidate by IPA. This has to invalidate any structures that
614      * contain only stage 2 translation information, but does not need
615      * to apply to structures that contain combined stage 1 and stage 2
616      * translation information.
617      * This must NOP if EL2 isn't implemented or SCR_EL3.NS is zero.
618      */
619     CPUState *cs = ENV_GET_CPU(env);
620     uint64_t pageaddr;
621 
622     if (!arm_feature(env, ARM_FEATURE_EL2) || !(env->cp15.scr_el3 & SCR_NS)) {
623         return;
624     }
625 
626     pageaddr = sextract64(value << 12, 0, 40);
627 
628     tlb_flush_page_by_mmuidx(cs, pageaddr, ARMMMUIdxBit_S2NS);
629 }
630 
631 static void tlbiipas2_is_write(CPUARMState *env, const ARMCPRegInfo *ri,
632                                uint64_t value)
633 {
634     CPUState *cs = ENV_GET_CPU(env);
635     uint64_t pageaddr;
636 
637     if (!arm_feature(env, ARM_FEATURE_EL2) || !(env->cp15.scr_el3 & SCR_NS)) {
638         return;
639     }
640 
641     pageaddr = sextract64(value << 12, 0, 40);
642 
643     tlb_flush_page_by_mmuidx_all_cpus_synced(cs, pageaddr,
644                                              ARMMMUIdxBit_S2NS);
645 }
646 
647 static void tlbiall_hyp_write(CPUARMState *env, const ARMCPRegInfo *ri,
648                               uint64_t value)
649 {
650     CPUState *cs = ENV_GET_CPU(env);
651 
652     tlb_flush_by_mmuidx(cs, ARMMMUIdxBit_S1E2);
653 }
654 
655 static void tlbiall_hyp_is_write(CPUARMState *env, const ARMCPRegInfo *ri,
656                                  uint64_t value)
657 {
658     CPUState *cs = ENV_GET_CPU(env);
659 
660     tlb_flush_by_mmuidx_all_cpus_synced(cs, ARMMMUIdxBit_S1E2);
661 }
662 
663 static void tlbimva_hyp_write(CPUARMState *env, const ARMCPRegInfo *ri,
664                               uint64_t value)
665 {
666     CPUState *cs = ENV_GET_CPU(env);
667     uint64_t pageaddr = value & ~MAKE_64BIT_MASK(0, 12);
668 
669     tlb_flush_page_by_mmuidx(cs, pageaddr, ARMMMUIdxBit_S1E2);
670 }
671 
672 static void tlbimva_hyp_is_write(CPUARMState *env, const ARMCPRegInfo *ri,
673                                  uint64_t value)
674 {
675     CPUState *cs = ENV_GET_CPU(env);
676     uint64_t pageaddr = value & ~MAKE_64BIT_MASK(0, 12);
677 
678     tlb_flush_page_by_mmuidx_all_cpus_synced(cs, pageaddr,
679                                              ARMMMUIdxBit_S1E2);
680 }
681 
682 static const ARMCPRegInfo cp_reginfo[] = {
683     /* Define the secure and non-secure FCSE identifier CP registers
684      * separately because there is no secure bank in V8 (no _EL3).  This allows
685      * the secure register to be properly reset and migrated. There is also no
686      * v8 EL1 version of the register so the non-secure instance stands alone.
687      */
688     { .name = "FCSEIDR(NS)",
689       .cp = 15, .opc1 = 0, .crn = 13, .crm = 0, .opc2 = 0,
690       .access = PL1_RW, .secure = ARM_CP_SECSTATE_NS,
691       .fieldoffset = offsetof(CPUARMState, cp15.fcseidr_ns),
692       .resetvalue = 0, .writefn = fcse_write, .raw_writefn = raw_write, },
693     { .name = "FCSEIDR(S)",
694       .cp = 15, .opc1 = 0, .crn = 13, .crm = 0, .opc2 = 0,
695       .access = PL1_RW, .secure = ARM_CP_SECSTATE_S,
696       .fieldoffset = offsetof(CPUARMState, cp15.fcseidr_s),
697       .resetvalue = 0, .writefn = fcse_write, .raw_writefn = raw_write, },
698     /* Define the secure and non-secure context identifier CP registers
699      * separately because there is no secure bank in V8 (no _EL3).  This allows
700      * the secure register to be properly reset and migrated.  In the
701      * non-secure case, the 32-bit register will have reset and migration
702      * disabled during registration as it is handled by the 64-bit instance.
703      */
704     { .name = "CONTEXTIDR_EL1", .state = ARM_CP_STATE_BOTH,
705       .opc0 = 3, .opc1 = 0, .crn = 13, .crm = 0, .opc2 = 1,
706       .access = PL1_RW, .secure = ARM_CP_SECSTATE_NS,
707       .fieldoffset = offsetof(CPUARMState, cp15.contextidr_el[1]),
708       .resetvalue = 0, .writefn = contextidr_write, .raw_writefn = raw_write, },
709     { .name = "CONTEXTIDR(S)", .state = ARM_CP_STATE_AA32,
710       .cp = 15, .opc1 = 0, .crn = 13, .crm = 0, .opc2 = 1,
711       .access = PL1_RW, .secure = ARM_CP_SECSTATE_S,
712       .fieldoffset = offsetof(CPUARMState, cp15.contextidr_s),
713       .resetvalue = 0, .writefn = contextidr_write, .raw_writefn = raw_write, },
714     REGINFO_SENTINEL
715 };
716 
717 static const ARMCPRegInfo not_v8_cp_reginfo[] = {
718     /* NB: Some of these registers exist in v8 but with more precise
719      * definitions that don't use CP_ANY wildcards (mostly in v8_cp_reginfo[]).
720      */
721     /* MMU Domain access control / MPU write buffer control */
722     { .name = "DACR",
723       .cp = 15, .opc1 = CP_ANY, .crn = 3, .crm = CP_ANY, .opc2 = CP_ANY,
724       .access = PL1_RW, .resetvalue = 0,
725       .writefn = dacr_write, .raw_writefn = raw_write,
726       .bank_fieldoffsets = { offsetoflow32(CPUARMState, cp15.dacr_s),
727                              offsetoflow32(CPUARMState, cp15.dacr_ns) } },
728     /* ARMv7 allocates a range of implementation defined TLB LOCKDOWN regs.
729      * For v6 and v5, these mappings are overly broad.
730      */
731     { .name = "TLB_LOCKDOWN", .cp = 15, .crn = 10, .crm = 0,
732       .opc1 = CP_ANY, .opc2 = CP_ANY, .access = PL1_RW, .type = ARM_CP_NOP },
733     { .name = "TLB_LOCKDOWN", .cp = 15, .crn = 10, .crm = 1,
734       .opc1 = CP_ANY, .opc2 = CP_ANY, .access = PL1_RW, .type = ARM_CP_NOP },
735     { .name = "TLB_LOCKDOWN", .cp = 15, .crn = 10, .crm = 4,
736       .opc1 = CP_ANY, .opc2 = CP_ANY, .access = PL1_RW, .type = ARM_CP_NOP },
737     { .name = "TLB_LOCKDOWN", .cp = 15, .crn = 10, .crm = 8,
738       .opc1 = CP_ANY, .opc2 = CP_ANY, .access = PL1_RW, .type = ARM_CP_NOP },
739     /* Cache maintenance ops; some of this space may be overridden later. */
740     { .name = "CACHEMAINT", .cp = 15, .crn = 7, .crm = CP_ANY,
741       .opc1 = 0, .opc2 = CP_ANY, .access = PL1_W,
742       .type = ARM_CP_NOP | ARM_CP_OVERRIDE },
743     REGINFO_SENTINEL
744 };
745 
746 static const ARMCPRegInfo not_v6_cp_reginfo[] = {
747     /* Not all pre-v6 cores implemented this WFI, so this is slightly
748      * over-broad.
749      */
750     { .name = "WFI_v5", .cp = 15, .crn = 7, .crm = 8, .opc1 = 0, .opc2 = 2,
751       .access = PL1_W, .type = ARM_CP_WFI },
752     REGINFO_SENTINEL
753 };
754 
755 static const ARMCPRegInfo not_v7_cp_reginfo[] = {
756     /* Standard v6 WFI (also used in some pre-v6 cores); not in v7 (which
757      * is UNPREDICTABLE; we choose to NOP as most implementations do).
758      */
759     { .name = "WFI_v6", .cp = 15, .crn = 7, .crm = 0, .opc1 = 0, .opc2 = 4,
760       .access = PL1_W, .type = ARM_CP_WFI },
761     /* L1 cache lockdown. Not architectural in v6 and earlier but in practice
762      * implemented in 926, 946, 1026, 1136, 1176 and 11MPCore. StrongARM and
763      * OMAPCP will override this space.
764      */
765     { .name = "DLOCKDOWN", .cp = 15, .crn = 9, .crm = 0, .opc1 = 0, .opc2 = 0,
766       .access = PL1_RW, .fieldoffset = offsetof(CPUARMState, cp15.c9_data),
767       .resetvalue = 0 },
768     { .name = "ILOCKDOWN", .cp = 15, .crn = 9, .crm = 0, .opc1 = 0, .opc2 = 1,
769       .access = PL1_RW, .fieldoffset = offsetof(CPUARMState, cp15.c9_insn),
770       .resetvalue = 0 },
771     /* v6 doesn't have the cache ID registers but Linux reads them anyway */
772     { .name = "DUMMY", .cp = 15, .crn = 0, .crm = 0, .opc1 = 1, .opc2 = CP_ANY,
773       .access = PL1_R, .type = ARM_CP_CONST | ARM_CP_NO_RAW,
774       .resetvalue = 0 },
775     /* We don't implement pre-v7 debug but most CPUs had at least a DBGDIDR;
776      * implementing it as RAZ means the "debug architecture version" bits
777      * will read as a reserved value, which should cause Linux to not try
778      * to use the debug hardware.
779      */
780     { .name = "DBGDIDR", .cp = 14, .crn = 0, .crm = 0, .opc1 = 0, .opc2 = 0,
781       .access = PL0_R, .type = ARM_CP_CONST, .resetvalue = 0 },
782     /* MMU TLB control. Note that the wildcarding means we cover not just
783      * the unified TLB ops but also the dside/iside/inner-shareable variants.
784      */
785     { .name = "TLBIALL", .cp = 15, .crn = 8, .crm = CP_ANY,
786       .opc1 = CP_ANY, .opc2 = 0, .access = PL1_W, .writefn = tlbiall_write,
787       .type = ARM_CP_NO_RAW },
788     { .name = "TLBIMVA", .cp = 15, .crn = 8, .crm = CP_ANY,
789       .opc1 = CP_ANY, .opc2 = 1, .access = PL1_W, .writefn = tlbimva_write,
790       .type = ARM_CP_NO_RAW },
791     { .name = "TLBIASID", .cp = 15, .crn = 8, .crm = CP_ANY,
792       .opc1 = CP_ANY, .opc2 = 2, .access = PL1_W, .writefn = tlbiasid_write,
793       .type = ARM_CP_NO_RAW },
794     { .name = "TLBIMVAA", .cp = 15, .crn = 8, .crm = CP_ANY,
795       .opc1 = CP_ANY, .opc2 = 3, .access = PL1_W, .writefn = tlbimvaa_write,
796       .type = ARM_CP_NO_RAW },
797     { .name = "PRRR", .cp = 15, .crn = 10, .crm = 2,
798       .opc1 = 0, .opc2 = 0, .access = PL1_RW, .type = ARM_CP_NOP },
799     { .name = "NMRR", .cp = 15, .crn = 10, .crm = 2,
800       .opc1 = 0, .opc2 = 1, .access = PL1_RW, .type = ARM_CP_NOP },
801     REGINFO_SENTINEL
802 };
803 
804 static void cpacr_write(CPUARMState *env, const ARMCPRegInfo *ri,
805                         uint64_t value)
806 {
807     uint32_t mask = 0;
808 
809     /* In ARMv8 most bits of CPACR_EL1 are RES0. */
810     if (!arm_feature(env, ARM_FEATURE_V8)) {
811         /* ARMv7 defines bits for unimplemented coprocessors as RAZ/WI.
812          * ASEDIS [31] and D32DIS [30] are both UNK/SBZP without VFP.
813          * TRCDIS [28] is RAZ/WI since we do not implement a trace macrocell.
814          */
815         if (arm_feature(env, ARM_FEATURE_VFP)) {
816             /* VFP coprocessor: cp10 & cp11 [23:20] */
817             mask |= (1 << 31) | (1 << 30) | (0xf << 20);
818 
819             if (!arm_feature(env, ARM_FEATURE_NEON)) {
820                 /* ASEDIS [31] bit is RAO/WI */
821                 value |= (1 << 31);
822             }
823 
824             /* VFPv3 and upwards with NEON implement 32 double precision
825              * registers (D0-D31).
826              */
827             if (!arm_feature(env, ARM_FEATURE_NEON) ||
828                     !arm_feature(env, ARM_FEATURE_VFP3)) {
829                 /* D32DIS [30] is RAO/WI if D16-31 are not implemented. */
830                 value |= (1 << 30);
831             }
832         }
833         value &= mask;
834     }
835     env->cp15.cpacr_el1 = value;
836 }
837 
838 static CPAccessResult cpacr_access(CPUARMState *env, const ARMCPRegInfo *ri,
839                                    bool isread)
840 {
841     if (arm_feature(env, ARM_FEATURE_V8)) {
842         /* Check if CPACR accesses are to be trapped to EL2 */
843         if (arm_current_el(env) == 1 &&
844             (env->cp15.cptr_el[2] & CPTR_TCPAC) && !arm_is_secure(env)) {
845             return CP_ACCESS_TRAP_EL2;
846         /* Check if CPACR accesses are to be trapped to EL3 */
847         } else if (arm_current_el(env) < 3 &&
848                    (env->cp15.cptr_el[3] & CPTR_TCPAC)) {
849             return CP_ACCESS_TRAP_EL3;
850         }
851     }
852 
853     return CP_ACCESS_OK;
854 }
855 
856 static CPAccessResult cptr_access(CPUARMState *env, const ARMCPRegInfo *ri,
857                                   bool isread)
858 {
859     /* Check if CPTR accesses are set to trap to EL3 */
860     if (arm_current_el(env) == 2 && (env->cp15.cptr_el[3] & CPTR_TCPAC)) {
861         return CP_ACCESS_TRAP_EL3;
862     }
863 
864     return CP_ACCESS_OK;
865 }
866 
867 static const ARMCPRegInfo v6_cp_reginfo[] = {
868     /* prefetch by MVA in v6, NOP in v7 */
869     { .name = "MVA_prefetch",
870       .cp = 15, .crn = 7, .crm = 13, .opc1 = 0, .opc2 = 1,
871       .access = PL1_W, .type = ARM_CP_NOP },
872     /* We need to break the TB after ISB to execute self-modifying code
873      * correctly and also to take any pending interrupts immediately.
874      * So use arm_cp_write_ignore() function instead of ARM_CP_NOP flag.
875      */
876     { .name = "ISB", .cp = 15, .crn = 7, .crm = 5, .opc1 = 0, .opc2 = 4,
877       .access = PL0_W, .type = ARM_CP_NO_RAW, .writefn = arm_cp_write_ignore },
878     { .name = "DSB", .cp = 15, .crn = 7, .crm = 10, .opc1 = 0, .opc2 = 4,
879       .access = PL0_W, .type = ARM_CP_NOP },
880     { .name = "DMB", .cp = 15, .crn = 7, .crm = 10, .opc1 = 0, .opc2 = 5,
881       .access = PL0_W, .type = ARM_CP_NOP },
882     { .name = "IFAR", .cp = 15, .crn = 6, .crm = 0, .opc1 = 0, .opc2 = 2,
883       .access = PL1_RW,
884       .bank_fieldoffsets = { offsetof(CPUARMState, cp15.ifar_s),
885                              offsetof(CPUARMState, cp15.ifar_ns) },
886       .resetvalue = 0, },
887     /* Watchpoint Fault Address Register : should actually only be present
888      * for 1136, 1176, 11MPCore.
889      */
890     { .name = "WFAR", .cp = 15, .crn = 6, .crm = 0, .opc1 = 0, .opc2 = 1,
891       .access = PL1_RW, .type = ARM_CP_CONST, .resetvalue = 0, },
892     { .name = "CPACR", .state = ARM_CP_STATE_BOTH, .opc0 = 3,
893       .crn = 1, .crm = 0, .opc1 = 0, .opc2 = 2, .accessfn = cpacr_access,
894       .access = PL1_RW, .fieldoffset = offsetof(CPUARMState, cp15.cpacr_el1),
895       .resetvalue = 0, .writefn = cpacr_write },
896     REGINFO_SENTINEL
897 };
898 
899 static CPAccessResult pmreg_access(CPUARMState *env, const ARMCPRegInfo *ri,
900                                    bool isread)
901 {
902     /* Performance monitor registers user accessibility is controlled
903      * by PMUSERENR. MDCR_EL2.TPM and MDCR_EL3.TPM allow configurable
904      * trapping to EL2 or EL3 for other accesses.
905      */
906     int el = arm_current_el(env);
907 
908     if (el == 0 && !(env->cp15.c9_pmuserenr & 1)) {
909         return CP_ACCESS_TRAP;
910     }
911     if (el < 2 && (env->cp15.mdcr_el2 & MDCR_TPM)
912         && !arm_is_secure_below_el3(env)) {
913         return CP_ACCESS_TRAP_EL2;
914     }
915     if (el < 3 && (env->cp15.mdcr_el3 & MDCR_TPM)) {
916         return CP_ACCESS_TRAP_EL3;
917     }
918 
919     return CP_ACCESS_OK;
920 }
921 
922 static CPAccessResult pmreg_access_xevcntr(CPUARMState *env,
923                                            const ARMCPRegInfo *ri,
924                                            bool isread)
925 {
926     /* ER: event counter read trap control */
927     if (arm_feature(env, ARM_FEATURE_V8)
928         && arm_current_el(env) == 0
929         && (env->cp15.c9_pmuserenr & (1 << 3)) != 0
930         && isread) {
931         return CP_ACCESS_OK;
932     }
933 
934     return pmreg_access(env, ri, isread);
935 }
936 
937 static CPAccessResult pmreg_access_swinc(CPUARMState *env,
938                                          const ARMCPRegInfo *ri,
939                                          bool isread)
940 {
941     /* SW: software increment write trap control */
942     if (arm_feature(env, ARM_FEATURE_V8)
943         && arm_current_el(env) == 0
944         && (env->cp15.c9_pmuserenr & (1 << 1)) != 0
945         && !isread) {
946         return CP_ACCESS_OK;
947     }
948 
949     return pmreg_access(env, ri, isread);
950 }
951 
952 #ifndef CONFIG_USER_ONLY
953 
954 static CPAccessResult pmreg_access_selr(CPUARMState *env,
955                                         const ARMCPRegInfo *ri,
956                                         bool isread)
957 {
958     /* ER: event counter read trap control */
959     if (arm_feature(env, ARM_FEATURE_V8)
960         && arm_current_el(env) == 0
961         && (env->cp15.c9_pmuserenr & (1 << 3)) != 0) {
962         return CP_ACCESS_OK;
963     }
964 
965     return pmreg_access(env, ri, isread);
966 }
967 
968 static CPAccessResult pmreg_access_ccntr(CPUARMState *env,
969                                          const ARMCPRegInfo *ri,
970                                          bool isread)
971 {
972     /* CR: cycle counter read trap control */
973     if (arm_feature(env, ARM_FEATURE_V8)
974         && arm_current_el(env) == 0
975         && (env->cp15.c9_pmuserenr & (1 << 2)) != 0
976         && isread) {
977         return CP_ACCESS_OK;
978     }
979 
980     return pmreg_access(env, ri, isread);
981 }
982 
983 static inline bool arm_ccnt_enabled(CPUARMState *env)
984 {
985     /* This does not support checking PMCCFILTR_EL0 register */
986 
987     if (!(env->cp15.c9_pmcr & PMCRE)) {
988         return false;
989     }
990 
991     return true;
992 }
993 
994 void pmccntr_sync(CPUARMState *env)
995 {
996     uint64_t temp_ticks;
997 
998     temp_ticks = muldiv64(qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL),
999                           ARM_CPU_FREQ, NANOSECONDS_PER_SECOND);
1000 
1001     if (env->cp15.c9_pmcr & PMCRD) {
1002         /* Increment once every 64 processor clock cycles */
1003         temp_ticks /= 64;
1004     }
1005 
1006     if (arm_ccnt_enabled(env)) {
1007         env->cp15.c15_ccnt = temp_ticks - env->cp15.c15_ccnt;
1008     }
1009 }
1010 
1011 static void pmcr_write(CPUARMState *env, const ARMCPRegInfo *ri,
1012                        uint64_t value)
1013 {
1014     pmccntr_sync(env);
1015 
1016     if (value & PMCRC) {
1017         /* The counter has been reset */
1018         env->cp15.c15_ccnt = 0;
1019     }
1020 
1021     /* only the DP, X, D and E bits are writable */
1022     env->cp15.c9_pmcr &= ~0x39;
1023     env->cp15.c9_pmcr |= (value & 0x39);
1024 
1025     pmccntr_sync(env);
1026 }
1027 
1028 static uint64_t pmccntr_read(CPUARMState *env, const ARMCPRegInfo *ri)
1029 {
1030     uint64_t total_ticks;
1031 
1032     if (!arm_ccnt_enabled(env)) {
1033         /* Counter is disabled, do not change value */
1034         return env->cp15.c15_ccnt;
1035     }
1036 
1037     total_ticks = muldiv64(qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL),
1038                            ARM_CPU_FREQ, NANOSECONDS_PER_SECOND);
1039 
1040     if (env->cp15.c9_pmcr & PMCRD) {
1041         /* Increment once every 64 processor clock cycles */
1042         total_ticks /= 64;
1043     }
1044     return total_ticks - env->cp15.c15_ccnt;
1045 }
1046 
1047 static void pmselr_write(CPUARMState *env, const ARMCPRegInfo *ri,
1048                          uint64_t value)
1049 {
1050     /* The value of PMSELR.SEL affects the behavior of PMXEVTYPER and
1051      * PMXEVCNTR. We allow [0..31] to be written to PMSELR here; in the
1052      * meanwhile, we check PMSELR.SEL when PMXEVTYPER and PMXEVCNTR are
1053      * accessed.
1054      */
1055     env->cp15.c9_pmselr = value & 0x1f;
1056 }
1057 
1058 static void pmccntr_write(CPUARMState *env, const ARMCPRegInfo *ri,
1059                         uint64_t value)
1060 {
1061     uint64_t total_ticks;
1062 
1063     if (!arm_ccnt_enabled(env)) {
1064         /* Counter is disabled, set the absolute value */
1065         env->cp15.c15_ccnt = value;
1066         return;
1067     }
1068 
1069     total_ticks = muldiv64(qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL),
1070                            ARM_CPU_FREQ, NANOSECONDS_PER_SECOND);
1071 
1072     if (env->cp15.c9_pmcr & PMCRD) {
1073         /* Increment once every 64 processor clock cycles */
1074         total_ticks /= 64;
1075     }
1076     env->cp15.c15_ccnt = total_ticks - value;
1077 }
1078 
1079 static void pmccntr_write32(CPUARMState *env, const ARMCPRegInfo *ri,
1080                             uint64_t value)
1081 {
1082     uint64_t cur_val = pmccntr_read(env, NULL);
1083 
1084     pmccntr_write(env, ri, deposit64(cur_val, 0, 32, value));
1085 }
1086 
1087 #else /* CONFIG_USER_ONLY */
1088 
1089 void pmccntr_sync(CPUARMState *env)
1090 {
1091 }
1092 
1093 #endif
1094 
1095 static void pmccfiltr_write(CPUARMState *env, const ARMCPRegInfo *ri,
1096                             uint64_t value)
1097 {
1098     pmccntr_sync(env);
1099     env->cp15.pmccfiltr_el0 = value & 0x7E000000;
1100     pmccntr_sync(env);
1101 }
1102 
1103 static void pmcntenset_write(CPUARMState *env, const ARMCPRegInfo *ri,
1104                             uint64_t value)
1105 {
1106     value &= (1 << 31);
1107     env->cp15.c9_pmcnten |= value;
1108 }
1109 
1110 static void pmcntenclr_write(CPUARMState *env, const ARMCPRegInfo *ri,
1111                              uint64_t value)
1112 {
1113     value &= (1 << 31);
1114     env->cp15.c9_pmcnten &= ~value;
1115 }
1116 
1117 static void pmovsr_write(CPUARMState *env, const ARMCPRegInfo *ri,
1118                          uint64_t value)
1119 {
1120     env->cp15.c9_pmovsr &= ~value;
1121 }
1122 
1123 static void pmxevtyper_write(CPUARMState *env, const ARMCPRegInfo *ri,
1124                              uint64_t value)
1125 {
1126     /* Attempts to access PMXEVTYPER are CONSTRAINED UNPREDICTABLE when
1127      * PMSELR value is equal to or greater than the number of implemented
1128      * counters, but not equal to 0x1f. We opt to behave as a RAZ/WI.
1129      */
1130     if (env->cp15.c9_pmselr == 0x1f) {
1131         pmccfiltr_write(env, ri, value);
1132     }
1133 }
1134 
1135 static uint64_t pmxevtyper_read(CPUARMState *env, const ARMCPRegInfo *ri)
1136 {
1137     /* We opt to behave as a RAZ/WI when attempts to access PMXEVTYPER
1138      * are CONSTRAINED UNPREDICTABLE. See comments in pmxevtyper_write().
1139      */
1140     if (env->cp15.c9_pmselr == 0x1f) {
1141         return env->cp15.pmccfiltr_el0;
1142     } else {
1143         return 0;
1144     }
1145 }
1146 
1147 static void pmuserenr_write(CPUARMState *env, const ARMCPRegInfo *ri,
1148                             uint64_t value)
1149 {
1150     if (arm_feature(env, ARM_FEATURE_V8)) {
1151         env->cp15.c9_pmuserenr = value & 0xf;
1152     } else {
1153         env->cp15.c9_pmuserenr = value & 1;
1154     }
1155 }
1156 
1157 static void pmintenset_write(CPUARMState *env, const ARMCPRegInfo *ri,
1158                              uint64_t value)
1159 {
1160     /* We have no event counters so only the C bit can be changed */
1161     value &= (1 << 31);
1162     env->cp15.c9_pminten |= value;
1163 }
1164 
1165 static void pmintenclr_write(CPUARMState *env, const ARMCPRegInfo *ri,
1166                              uint64_t value)
1167 {
1168     value &= (1 << 31);
1169     env->cp15.c9_pminten &= ~value;
1170 }
1171 
1172 static void vbar_write(CPUARMState *env, const ARMCPRegInfo *ri,
1173                        uint64_t value)
1174 {
1175     /* Note that even though the AArch64 view of this register has bits
1176      * [10:0] all RES0 we can only mask the bottom 5, to comply with the
1177      * architectural requirements for bits which are RES0 only in some
1178      * contexts. (ARMv8 would permit us to do no masking at all, but ARMv7
1179      * requires the bottom five bits to be RAZ/WI because they're UNK/SBZP.)
1180      */
1181     raw_write(env, ri, value & ~0x1FULL);
1182 }
1183 
1184 static void scr_write(CPUARMState *env, const ARMCPRegInfo *ri, uint64_t value)
1185 {
1186     /* We only mask off bits that are RES0 both for AArch64 and AArch32.
1187      * For bits that vary between AArch32/64, code needs to check the
1188      * current execution mode before directly using the feature bit.
1189      */
1190     uint32_t valid_mask = SCR_AARCH64_MASK | SCR_AARCH32_MASK;
1191 
1192     if (!arm_feature(env, ARM_FEATURE_EL2)) {
1193         valid_mask &= ~SCR_HCE;
1194 
1195         /* On ARMv7, SMD (or SCD as it is called in v7) is only
1196          * supported if EL2 exists. The bit is UNK/SBZP when
1197          * EL2 is unavailable. In QEMU ARMv7, we force it to always zero
1198          * when EL2 is unavailable.
1199          * On ARMv8, this bit is always available.
1200          */
1201         if (arm_feature(env, ARM_FEATURE_V7) &&
1202             !arm_feature(env, ARM_FEATURE_V8)) {
1203             valid_mask &= ~SCR_SMD;
1204         }
1205     }
1206 
1207     /* Clear all-context RES0 bits.  */
1208     value &= valid_mask;
1209     raw_write(env, ri, value);
1210 }
1211 
1212 static uint64_t ccsidr_read(CPUARMState *env, const ARMCPRegInfo *ri)
1213 {
1214     ARMCPU *cpu = arm_env_get_cpu(env);
1215 
1216     /* Acquire the CSSELR index from the bank corresponding to the CCSIDR
1217      * bank
1218      */
1219     uint32_t index = A32_BANKED_REG_GET(env, csselr,
1220                                         ri->secure & ARM_CP_SECSTATE_S);
1221 
1222     return cpu->ccsidr[index];
1223 }
1224 
1225 static void csselr_write(CPUARMState *env, const ARMCPRegInfo *ri,
1226                          uint64_t value)
1227 {
1228     raw_write(env, ri, value & 0xf);
1229 }
1230 
1231 static uint64_t isr_read(CPUARMState *env, const ARMCPRegInfo *ri)
1232 {
1233     CPUState *cs = ENV_GET_CPU(env);
1234     uint64_t ret = 0;
1235 
1236     if (cs->interrupt_request & CPU_INTERRUPT_HARD) {
1237         ret |= CPSR_I;
1238     }
1239     if (cs->interrupt_request & CPU_INTERRUPT_FIQ) {
1240         ret |= CPSR_F;
1241     }
1242     /* External aborts are not possible in QEMU so A bit is always clear */
1243     return ret;
1244 }
1245 
1246 static const ARMCPRegInfo v7_cp_reginfo[] = {
1247     /* the old v6 WFI, UNPREDICTABLE in v7 but we choose to NOP */
1248     { .name = "NOP", .cp = 15, .crn = 7, .crm = 0, .opc1 = 0, .opc2 = 4,
1249       .access = PL1_W, .type = ARM_CP_NOP },
1250     /* Performance monitors are implementation defined in v7,
1251      * but with an ARM recommended set of registers, which we
1252      * follow (although we don't actually implement any counters)
1253      *
1254      * Performance registers fall into three categories:
1255      *  (a) always UNDEF in PL0, RW in PL1 (PMINTENSET, PMINTENCLR)
1256      *  (b) RO in PL0 (ie UNDEF on write), RW in PL1 (PMUSERENR)
1257      *  (c) UNDEF in PL0 if PMUSERENR.EN==0, otherwise accessible (all others)
1258      * For the cases controlled by PMUSERENR we must set .access to PL0_RW
1259      * or PL0_RO as appropriate and then check PMUSERENR in the helper fn.
1260      */
1261     { .name = "PMCNTENSET", .cp = 15, .crn = 9, .crm = 12, .opc1 = 0, .opc2 = 1,
1262       .access = PL0_RW, .type = ARM_CP_ALIAS,
1263       .fieldoffset = offsetoflow32(CPUARMState, cp15.c9_pmcnten),
1264       .writefn = pmcntenset_write,
1265       .accessfn = pmreg_access,
1266       .raw_writefn = raw_write },
1267     { .name = "PMCNTENSET_EL0", .state = ARM_CP_STATE_AA64,
1268       .opc0 = 3, .opc1 = 3, .crn = 9, .crm = 12, .opc2 = 1,
1269       .access = PL0_RW, .accessfn = pmreg_access,
1270       .fieldoffset = offsetof(CPUARMState, cp15.c9_pmcnten), .resetvalue = 0,
1271       .writefn = pmcntenset_write, .raw_writefn = raw_write },
1272     { .name = "PMCNTENCLR", .cp = 15, .crn = 9, .crm = 12, .opc1 = 0, .opc2 = 2,
1273       .access = PL0_RW,
1274       .fieldoffset = offsetoflow32(CPUARMState, cp15.c9_pmcnten),
1275       .accessfn = pmreg_access,
1276       .writefn = pmcntenclr_write,
1277       .type = ARM_CP_ALIAS },
1278     { .name = "PMCNTENCLR_EL0", .state = ARM_CP_STATE_AA64,
1279       .opc0 = 3, .opc1 = 3, .crn = 9, .crm = 12, .opc2 = 2,
1280       .access = PL0_RW, .accessfn = pmreg_access,
1281       .type = ARM_CP_ALIAS,
1282       .fieldoffset = offsetof(CPUARMState, cp15.c9_pmcnten),
1283       .writefn = pmcntenclr_write },
1284     { .name = "PMOVSR", .cp = 15, .crn = 9, .crm = 12, .opc1 = 0, .opc2 = 3,
1285       .access = PL0_RW, .fieldoffset = offsetof(CPUARMState, cp15.c9_pmovsr),
1286       .accessfn = pmreg_access,
1287       .writefn = pmovsr_write,
1288       .raw_writefn = raw_write },
1289     { .name = "PMOVSCLR_EL0", .state = ARM_CP_STATE_AA64,
1290       .opc0 = 3, .opc1 = 3, .crn = 9, .crm = 12, .opc2 = 3,
1291       .access = PL0_RW, .accessfn = pmreg_access,
1292       .type = ARM_CP_ALIAS,
1293       .fieldoffset = offsetof(CPUARMState, cp15.c9_pmovsr),
1294       .writefn = pmovsr_write,
1295       .raw_writefn = raw_write },
1296     /* Unimplemented so WI. */
1297     { .name = "PMSWINC", .cp = 15, .crn = 9, .crm = 12, .opc1 = 0, .opc2 = 4,
1298       .access = PL0_W, .accessfn = pmreg_access_swinc, .type = ARM_CP_NOP },
1299 #ifndef CONFIG_USER_ONLY
1300     { .name = "PMSELR", .cp = 15, .crn = 9, .crm = 12, .opc1 = 0, .opc2 = 5,
1301       .access = PL0_RW, .type = ARM_CP_ALIAS,
1302       .fieldoffset = offsetoflow32(CPUARMState, cp15.c9_pmselr),
1303       .accessfn = pmreg_access_selr, .writefn = pmselr_write,
1304       .raw_writefn = raw_write},
1305     { .name = "PMSELR_EL0", .state = ARM_CP_STATE_AA64,
1306       .opc0 = 3, .opc1 = 3, .crn = 9, .crm = 12, .opc2 = 5,
1307       .access = PL0_RW, .accessfn = pmreg_access_selr,
1308       .fieldoffset = offsetof(CPUARMState, cp15.c9_pmselr),
1309       .writefn = pmselr_write, .raw_writefn = raw_write, },
1310     { .name = "PMCCNTR", .cp = 15, .crn = 9, .crm = 13, .opc1 = 0, .opc2 = 0,
1311       .access = PL0_RW, .resetvalue = 0, .type = ARM_CP_IO,
1312       .readfn = pmccntr_read, .writefn = pmccntr_write32,
1313       .accessfn = pmreg_access_ccntr },
1314     { .name = "PMCCNTR_EL0", .state = ARM_CP_STATE_AA64,
1315       .opc0 = 3, .opc1 = 3, .crn = 9, .crm = 13, .opc2 = 0,
1316       .access = PL0_RW, .accessfn = pmreg_access_ccntr,
1317       .type = ARM_CP_IO,
1318       .readfn = pmccntr_read, .writefn = pmccntr_write, },
1319 #endif
1320     { .name = "PMCCFILTR_EL0", .state = ARM_CP_STATE_AA64,
1321       .opc0 = 3, .opc1 = 3, .crn = 14, .crm = 15, .opc2 = 7,
1322       .writefn = pmccfiltr_write,
1323       .access = PL0_RW, .accessfn = pmreg_access,
1324       .type = ARM_CP_IO,
1325       .fieldoffset = offsetof(CPUARMState, cp15.pmccfiltr_el0),
1326       .resetvalue = 0, },
1327     { .name = "PMXEVTYPER", .cp = 15, .crn = 9, .crm = 13, .opc1 = 0, .opc2 = 1,
1328       .access = PL0_RW, .type = ARM_CP_NO_RAW, .accessfn = pmreg_access,
1329       .writefn = pmxevtyper_write, .readfn = pmxevtyper_read },
1330     { .name = "PMXEVTYPER_EL0", .state = ARM_CP_STATE_AA64,
1331       .opc0 = 3, .opc1 = 3, .crn = 9, .crm = 13, .opc2 = 1,
1332       .access = PL0_RW, .type = ARM_CP_NO_RAW, .accessfn = pmreg_access,
1333       .writefn = pmxevtyper_write, .readfn = pmxevtyper_read },
1334     /* Unimplemented, RAZ/WI. */
1335     { .name = "PMXEVCNTR", .cp = 15, .crn = 9, .crm = 13, .opc1 = 0, .opc2 = 2,
1336       .access = PL0_RW, .type = ARM_CP_CONST, .resetvalue = 0,
1337       .accessfn = pmreg_access_xevcntr },
1338     { .name = "PMUSERENR", .cp = 15, .crn = 9, .crm = 14, .opc1 = 0, .opc2 = 0,
1339       .access = PL0_R | PL1_RW, .accessfn = access_tpm,
1340       .fieldoffset = offsetof(CPUARMState, cp15.c9_pmuserenr),
1341       .resetvalue = 0,
1342       .writefn = pmuserenr_write, .raw_writefn = raw_write },
1343     { .name = "PMUSERENR_EL0", .state = ARM_CP_STATE_AA64,
1344       .opc0 = 3, .opc1 = 3, .crn = 9, .crm = 14, .opc2 = 0,
1345       .access = PL0_R | PL1_RW, .accessfn = access_tpm, .type = ARM_CP_ALIAS,
1346       .fieldoffset = offsetof(CPUARMState, cp15.c9_pmuserenr),
1347       .resetvalue = 0,
1348       .writefn = pmuserenr_write, .raw_writefn = raw_write },
1349     { .name = "PMINTENSET", .cp = 15, .crn = 9, .crm = 14, .opc1 = 0, .opc2 = 1,
1350       .access = PL1_RW, .accessfn = access_tpm,
1351       .type = ARM_CP_ALIAS,
1352       .fieldoffset = offsetoflow32(CPUARMState, cp15.c9_pminten),
1353       .resetvalue = 0,
1354       .writefn = pmintenset_write, .raw_writefn = raw_write },
1355     { .name = "PMINTENSET_EL1", .state = ARM_CP_STATE_AA64,
1356       .opc0 = 3, .opc1 = 0, .crn = 9, .crm = 14, .opc2 = 1,
1357       .access = PL1_RW, .accessfn = access_tpm,
1358       .type = ARM_CP_IO,
1359       .fieldoffset = offsetof(CPUARMState, cp15.c9_pminten),
1360       .writefn = pmintenset_write, .raw_writefn = raw_write,
1361       .resetvalue = 0x0 },
1362     { .name = "PMINTENCLR", .cp = 15, .crn = 9, .crm = 14, .opc1 = 0, .opc2 = 2,
1363       .access = PL1_RW, .accessfn = access_tpm, .type = ARM_CP_ALIAS,
1364       .fieldoffset = offsetof(CPUARMState, cp15.c9_pminten),
1365       .writefn = pmintenclr_write, },
1366     { .name = "PMINTENCLR_EL1", .state = ARM_CP_STATE_AA64,
1367       .opc0 = 3, .opc1 = 0, .crn = 9, .crm = 14, .opc2 = 2,
1368       .access = PL1_RW, .accessfn = access_tpm, .type = ARM_CP_ALIAS,
1369       .fieldoffset = offsetof(CPUARMState, cp15.c9_pminten),
1370       .writefn = pmintenclr_write },
1371     { .name = "CCSIDR", .state = ARM_CP_STATE_BOTH,
1372       .opc0 = 3, .crn = 0, .crm = 0, .opc1 = 1, .opc2 = 0,
1373       .access = PL1_R, .readfn = ccsidr_read, .type = ARM_CP_NO_RAW },
1374     { .name = "CSSELR", .state = ARM_CP_STATE_BOTH,
1375       .opc0 = 3, .crn = 0, .crm = 0, .opc1 = 2, .opc2 = 0,
1376       .access = PL1_RW, .writefn = csselr_write, .resetvalue = 0,
1377       .bank_fieldoffsets = { offsetof(CPUARMState, cp15.csselr_s),
1378                              offsetof(CPUARMState, cp15.csselr_ns) } },
1379     /* Auxiliary ID register: this actually has an IMPDEF value but for now
1380      * just RAZ for all cores:
1381      */
1382     { .name = "AIDR", .state = ARM_CP_STATE_BOTH,
1383       .opc0 = 3, .opc1 = 1, .crn = 0, .crm = 0, .opc2 = 7,
1384       .access = PL1_R, .type = ARM_CP_CONST, .resetvalue = 0 },
1385     /* Auxiliary fault status registers: these also are IMPDEF, and we
1386      * choose to RAZ/WI for all cores.
1387      */
1388     { .name = "AFSR0_EL1", .state = ARM_CP_STATE_BOTH,
1389       .opc0 = 3, .opc1 = 0, .crn = 5, .crm = 1, .opc2 = 0,
1390       .access = PL1_RW, .type = ARM_CP_CONST, .resetvalue = 0 },
1391     { .name = "AFSR1_EL1", .state = ARM_CP_STATE_BOTH,
1392       .opc0 = 3, .opc1 = 0, .crn = 5, .crm = 1, .opc2 = 1,
1393       .access = PL1_RW, .type = ARM_CP_CONST, .resetvalue = 0 },
1394     /* MAIR can just read-as-written because we don't implement caches
1395      * and so don't need to care about memory attributes.
1396      */
1397     { .name = "MAIR_EL1", .state = ARM_CP_STATE_AA64,
1398       .opc0 = 3, .opc1 = 0, .crn = 10, .crm = 2, .opc2 = 0,
1399       .access = PL1_RW, .fieldoffset = offsetof(CPUARMState, cp15.mair_el[1]),
1400       .resetvalue = 0 },
1401     { .name = "MAIR_EL3", .state = ARM_CP_STATE_AA64,
1402       .opc0 = 3, .opc1 = 6, .crn = 10, .crm = 2, .opc2 = 0,
1403       .access = PL3_RW, .fieldoffset = offsetof(CPUARMState, cp15.mair_el[3]),
1404       .resetvalue = 0 },
1405     /* For non-long-descriptor page tables these are PRRR and NMRR;
1406      * regardless they still act as reads-as-written for QEMU.
1407      */
1408      /* MAIR0/1 are defined separately from their 64-bit counterpart which
1409       * allows them to assign the correct fieldoffset based on the endianness
1410       * handled in the field definitions.
1411       */
1412     { .name = "MAIR0", .state = ARM_CP_STATE_AA32,
1413       .cp = 15, .opc1 = 0, .crn = 10, .crm = 2, .opc2 = 0, .access = PL1_RW,
1414       .bank_fieldoffsets = { offsetof(CPUARMState, cp15.mair0_s),
1415                              offsetof(CPUARMState, cp15.mair0_ns) },
1416       .resetfn = arm_cp_reset_ignore },
1417     { .name = "MAIR1", .state = ARM_CP_STATE_AA32,
1418       .cp = 15, .opc1 = 0, .crn = 10, .crm = 2, .opc2 = 1, .access = PL1_RW,
1419       .bank_fieldoffsets = { offsetof(CPUARMState, cp15.mair1_s),
1420                              offsetof(CPUARMState, cp15.mair1_ns) },
1421       .resetfn = arm_cp_reset_ignore },
1422     { .name = "ISR_EL1", .state = ARM_CP_STATE_BOTH,
1423       .opc0 = 3, .opc1 = 0, .crn = 12, .crm = 1, .opc2 = 0,
1424       .type = ARM_CP_NO_RAW, .access = PL1_R, .readfn = isr_read },
1425     /* 32 bit ITLB invalidates */
1426     { .name = "ITLBIALL", .cp = 15, .opc1 = 0, .crn = 8, .crm = 5, .opc2 = 0,
1427       .type = ARM_CP_NO_RAW, .access = PL1_W, .writefn = tlbiall_write },
1428     { .name = "ITLBIMVA", .cp = 15, .opc1 = 0, .crn = 8, .crm = 5, .opc2 = 1,
1429       .type = ARM_CP_NO_RAW, .access = PL1_W, .writefn = tlbimva_write },
1430     { .name = "ITLBIASID", .cp = 15, .opc1 = 0, .crn = 8, .crm = 5, .opc2 = 2,
1431       .type = ARM_CP_NO_RAW, .access = PL1_W, .writefn = tlbiasid_write },
1432     /* 32 bit DTLB invalidates */
1433     { .name = "DTLBIALL", .cp = 15, .opc1 = 0, .crn = 8, .crm = 6, .opc2 = 0,
1434       .type = ARM_CP_NO_RAW, .access = PL1_W, .writefn = tlbiall_write },
1435     { .name = "DTLBIMVA", .cp = 15, .opc1 = 0, .crn = 8, .crm = 6, .opc2 = 1,
1436       .type = ARM_CP_NO_RAW, .access = PL1_W, .writefn = tlbimva_write },
1437     { .name = "DTLBIASID", .cp = 15, .opc1 = 0, .crn = 8, .crm = 6, .opc2 = 2,
1438       .type = ARM_CP_NO_RAW, .access = PL1_W, .writefn = tlbiasid_write },
1439     /* 32 bit TLB invalidates */
1440     { .name = "TLBIALL", .cp = 15, .opc1 = 0, .crn = 8, .crm = 7, .opc2 = 0,
1441       .type = ARM_CP_NO_RAW, .access = PL1_W, .writefn = tlbiall_write },
1442     { .name = "TLBIMVA", .cp = 15, .opc1 = 0, .crn = 8, .crm = 7, .opc2 = 1,
1443       .type = ARM_CP_NO_RAW, .access = PL1_W, .writefn = tlbimva_write },
1444     { .name = "TLBIASID", .cp = 15, .opc1 = 0, .crn = 8, .crm = 7, .opc2 = 2,
1445       .type = ARM_CP_NO_RAW, .access = PL1_W, .writefn = tlbiasid_write },
1446     { .name = "TLBIMVAA", .cp = 15, .opc1 = 0, .crn = 8, .crm = 7, .opc2 = 3,
1447       .type = ARM_CP_NO_RAW, .access = PL1_W, .writefn = tlbimvaa_write },
1448     REGINFO_SENTINEL
1449 };
1450 
1451 static const ARMCPRegInfo v7mp_cp_reginfo[] = {
1452     /* 32 bit TLB invalidates, Inner Shareable */
1453     { .name = "TLBIALLIS", .cp = 15, .opc1 = 0, .crn = 8, .crm = 3, .opc2 = 0,
1454       .type = ARM_CP_NO_RAW, .access = PL1_W, .writefn = tlbiall_is_write },
1455     { .name = "TLBIMVAIS", .cp = 15, .opc1 = 0, .crn = 8, .crm = 3, .opc2 = 1,
1456       .type = ARM_CP_NO_RAW, .access = PL1_W, .writefn = tlbimva_is_write },
1457     { .name = "TLBIASIDIS", .cp = 15, .opc1 = 0, .crn = 8, .crm = 3, .opc2 = 2,
1458       .type = ARM_CP_NO_RAW, .access = PL1_W,
1459       .writefn = tlbiasid_is_write },
1460     { .name = "TLBIMVAAIS", .cp = 15, .opc1 = 0, .crn = 8, .crm = 3, .opc2 = 3,
1461       .type = ARM_CP_NO_RAW, .access = PL1_W,
1462       .writefn = tlbimvaa_is_write },
1463     REGINFO_SENTINEL
1464 };
1465 
1466 static void teecr_write(CPUARMState *env, const ARMCPRegInfo *ri,
1467                         uint64_t value)
1468 {
1469     value &= 1;
1470     env->teecr = value;
1471 }
1472 
1473 static CPAccessResult teehbr_access(CPUARMState *env, const ARMCPRegInfo *ri,
1474                                     bool isread)
1475 {
1476     if (arm_current_el(env) == 0 && (env->teecr & 1)) {
1477         return CP_ACCESS_TRAP;
1478     }
1479     return CP_ACCESS_OK;
1480 }
1481 
1482 static const ARMCPRegInfo t2ee_cp_reginfo[] = {
1483     { .name = "TEECR", .cp = 14, .crn = 0, .crm = 0, .opc1 = 6, .opc2 = 0,
1484       .access = PL1_RW, .fieldoffset = offsetof(CPUARMState, teecr),
1485       .resetvalue = 0,
1486       .writefn = teecr_write },
1487     { .name = "TEEHBR", .cp = 14, .crn = 1, .crm = 0, .opc1 = 6, .opc2 = 0,
1488       .access = PL0_RW, .fieldoffset = offsetof(CPUARMState, teehbr),
1489       .accessfn = teehbr_access, .resetvalue = 0 },
1490     REGINFO_SENTINEL
1491 };
1492 
1493 static const ARMCPRegInfo v6k_cp_reginfo[] = {
1494     { .name = "TPIDR_EL0", .state = ARM_CP_STATE_AA64,
1495       .opc0 = 3, .opc1 = 3, .opc2 = 2, .crn = 13, .crm = 0,
1496       .access = PL0_RW,
1497       .fieldoffset = offsetof(CPUARMState, cp15.tpidr_el[0]), .resetvalue = 0 },
1498     { .name = "TPIDRURW", .cp = 15, .crn = 13, .crm = 0, .opc1 = 0, .opc2 = 2,
1499       .access = PL0_RW,
1500       .bank_fieldoffsets = { offsetoflow32(CPUARMState, cp15.tpidrurw_s),
1501                              offsetoflow32(CPUARMState, cp15.tpidrurw_ns) },
1502       .resetfn = arm_cp_reset_ignore },
1503     { .name = "TPIDRRO_EL0", .state = ARM_CP_STATE_AA64,
1504       .opc0 = 3, .opc1 = 3, .opc2 = 3, .crn = 13, .crm = 0,
1505       .access = PL0_R|PL1_W,
1506       .fieldoffset = offsetof(CPUARMState, cp15.tpidrro_el[0]),
1507       .resetvalue = 0},
1508     { .name = "TPIDRURO", .cp = 15, .crn = 13, .crm = 0, .opc1 = 0, .opc2 = 3,
1509       .access = PL0_R|PL1_W,
1510       .bank_fieldoffsets = { offsetoflow32(CPUARMState, cp15.tpidruro_s),
1511                              offsetoflow32(CPUARMState, cp15.tpidruro_ns) },
1512       .resetfn = arm_cp_reset_ignore },
1513     { .name = "TPIDR_EL1", .state = ARM_CP_STATE_AA64,
1514       .opc0 = 3, .opc1 = 0, .opc2 = 4, .crn = 13, .crm = 0,
1515       .access = PL1_RW,
1516       .fieldoffset = offsetof(CPUARMState, cp15.tpidr_el[1]), .resetvalue = 0 },
1517     { .name = "TPIDRPRW", .opc1 = 0, .cp = 15, .crn = 13, .crm = 0, .opc2 = 4,
1518       .access = PL1_RW,
1519       .bank_fieldoffsets = { offsetoflow32(CPUARMState, cp15.tpidrprw_s),
1520                              offsetoflow32(CPUARMState, cp15.tpidrprw_ns) },
1521       .resetvalue = 0 },
1522     REGINFO_SENTINEL
1523 };
1524 
1525 #ifndef CONFIG_USER_ONLY
1526 
1527 static CPAccessResult gt_cntfrq_access(CPUARMState *env, const ARMCPRegInfo *ri,
1528                                        bool isread)
1529 {
1530     /* CNTFRQ: not visible from PL0 if both PL0PCTEN and PL0VCTEN are zero.
1531      * Writable only at the highest implemented exception level.
1532      */
1533     int el = arm_current_el(env);
1534 
1535     switch (el) {
1536     case 0:
1537         if (!extract32(env->cp15.c14_cntkctl, 0, 2)) {
1538             return CP_ACCESS_TRAP;
1539         }
1540         break;
1541     case 1:
1542         if (!isread && ri->state == ARM_CP_STATE_AA32 &&
1543             arm_is_secure_below_el3(env)) {
1544             /* Accesses from 32-bit Secure EL1 UNDEF (*not* trap to EL3!) */
1545             return CP_ACCESS_TRAP_UNCATEGORIZED;
1546         }
1547         break;
1548     case 2:
1549     case 3:
1550         break;
1551     }
1552 
1553     if (!isread && el < arm_highest_el(env)) {
1554         return CP_ACCESS_TRAP_UNCATEGORIZED;
1555     }
1556 
1557     return CP_ACCESS_OK;
1558 }
1559 
1560 static CPAccessResult gt_counter_access(CPUARMState *env, int timeridx,
1561                                         bool isread)
1562 {
1563     unsigned int cur_el = arm_current_el(env);
1564     bool secure = arm_is_secure(env);
1565 
1566     /* CNT[PV]CT: not visible from PL0 if ELO[PV]CTEN is zero */
1567     if (cur_el == 0 &&
1568         !extract32(env->cp15.c14_cntkctl, timeridx, 1)) {
1569         return CP_ACCESS_TRAP;
1570     }
1571 
1572     if (arm_feature(env, ARM_FEATURE_EL2) &&
1573         timeridx == GTIMER_PHYS && !secure && cur_el < 2 &&
1574         !extract32(env->cp15.cnthctl_el2, 0, 1)) {
1575         return CP_ACCESS_TRAP_EL2;
1576     }
1577     return CP_ACCESS_OK;
1578 }
1579 
1580 static CPAccessResult gt_timer_access(CPUARMState *env, int timeridx,
1581                                       bool isread)
1582 {
1583     unsigned int cur_el = arm_current_el(env);
1584     bool secure = arm_is_secure(env);
1585 
1586     /* CNT[PV]_CVAL, CNT[PV]_CTL, CNT[PV]_TVAL: not visible from PL0 if
1587      * EL0[PV]TEN is zero.
1588      */
1589     if (cur_el == 0 &&
1590         !extract32(env->cp15.c14_cntkctl, 9 - timeridx, 1)) {
1591         return CP_ACCESS_TRAP;
1592     }
1593 
1594     if (arm_feature(env, ARM_FEATURE_EL2) &&
1595         timeridx == GTIMER_PHYS && !secure && cur_el < 2 &&
1596         !extract32(env->cp15.cnthctl_el2, 1, 1)) {
1597         return CP_ACCESS_TRAP_EL2;
1598     }
1599     return CP_ACCESS_OK;
1600 }
1601 
1602 static CPAccessResult gt_pct_access(CPUARMState *env,
1603                                     const ARMCPRegInfo *ri,
1604                                     bool isread)
1605 {
1606     return gt_counter_access(env, GTIMER_PHYS, isread);
1607 }
1608 
1609 static CPAccessResult gt_vct_access(CPUARMState *env,
1610                                     const ARMCPRegInfo *ri,
1611                                     bool isread)
1612 {
1613     return gt_counter_access(env, GTIMER_VIRT, isread);
1614 }
1615 
1616 static CPAccessResult gt_ptimer_access(CPUARMState *env, const ARMCPRegInfo *ri,
1617                                        bool isread)
1618 {
1619     return gt_timer_access(env, GTIMER_PHYS, isread);
1620 }
1621 
1622 static CPAccessResult gt_vtimer_access(CPUARMState *env, const ARMCPRegInfo *ri,
1623                                        bool isread)
1624 {
1625     return gt_timer_access(env, GTIMER_VIRT, isread);
1626 }
1627 
1628 static CPAccessResult gt_stimer_access(CPUARMState *env,
1629                                        const ARMCPRegInfo *ri,
1630                                        bool isread)
1631 {
1632     /* The AArch64 register view of the secure physical timer is
1633      * always accessible from EL3, and configurably accessible from
1634      * Secure EL1.
1635      */
1636     switch (arm_current_el(env)) {
1637     case 1:
1638         if (!arm_is_secure(env)) {
1639             return CP_ACCESS_TRAP;
1640         }
1641         if (!(env->cp15.scr_el3 & SCR_ST)) {
1642             return CP_ACCESS_TRAP_EL3;
1643         }
1644         return CP_ACCESS_OK;
1645     case 0:
1646     case 2:
1647         return CP_ACCESS_TRAP;
1648     case 3:
1649         return CP_ACCESS_OK;
1650     default:
1651         g_assert_not_reached();
1652     }
1653 }
1654 
1655 static uint64_t gt_get_countervalue(CPUARMState *env)
1656 {
1657     return qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL) / GTIMER_SCALE;
1658 }
1659 
1660 static void gt_recalc_timer(ARMCPU *cpu, int timeridx)
1661 {
1662     ARMGenericTimer *gt = &cpu->env.cp15.c14_timer[timeridx];
1663 
1664     if (gt->ctl & 1) {
1665         /* Timer enabled: calculate and set current ISTATUS, irq, and
1666          * reset timer to when ISTATUS next has to change
1667          */
1668         uint64_t offset = timeridx == GTIMER_VIRT ?
1669                                       cpu->env.cp15.cntvoff_el2 : 0;
1670         uint64_t count = gt_get_countervalue(&cpu->env);
1671         /* Note that this must be unsigned 64 bit arithmetic: */
1672         int istatus = count - offset >= gt->cval;
1673         uint64_t nexttick;
1674         int irqstate;
1675 
1676         gt->ctl = deposit32(gt->ctl, 2, 1, istatus);
1677 
1678         irqstate = (istatus && !(gt->ctl & 2));
1679         qemu_set_irq(cpu->gt_timer_outputs[timeridx], irqstate);
1680 
1681         if (istatus) {
1682             /* Next transition is when count rolls back over to zero */
1683             nexttick = UINT64_MAX;
1684         } else {
1685             /* Next transition is when we hit cval */
1686             nexttick = gt->cval + offset;
1687         }
1688         /* Note that the desired next expiry time might be beyond the
1689          * signed-64-bit range of a QEMUTimer -- in this case we just
1690          * set the timer for as far in the future as possible. When the
1691          * timer expires we will reset the timer for any remaining period.
1692          */
1693         if (nexttick > INT64_MAX / GTIMER_SCALE) {
1694             nexttick = INT64_MAX / GTIMER_SCALE;
1695         }
1696         timer_mod(cpu->gt_timer[timeridx], nexttick);
1697         trace_arm_gt_recalc(timeridx, irqstate, nexttick);
1698     } else {
1699         /* Timer disabled: ISTATUS and timer output always clear */
1700         gt->ctl &= ~4;
1701         qemu_set_irq(cpu->gt_timer_outputs[timeridx], 0);
1702         timer_del(cpu->gt_timer[timeridx]);
1703         trace_arm_gt_recalc_disabled(timeridx);
1704     }
1705 }
1706 
1707 static void gt_timer_reset(CPUARMState *env, const ARMCPRegInfo *ri,
1708                            int timeridx)
1709 {
1710     ARMCPU *cpu = arm_env_get_cpu(env);
1711 
1712     timer_del(cpu->gt_timer[timeridx]);
1713 }
1714 
1715 static uint64_t gt_cnt_read(CPUARMState *env, const ARMCPRegInfo *ri)
1716 {
1717     return gt_get_countervalue(env);
1718 }
1719 
1720 static uint64_t gt_virt_cnt_read(CPUARMState *env, const ARMCPRegInfo *ri)
1721 {
1722     return gt_get_countervalue(env) - env->cp15.cntvoff_el2;
1723 }
1724 
1725 static void gt_cval_write(CPUARMState *env, const ARMCPRegInfo *ri,
1726                           int timeridx,
1727                           uint64_t value)
1728 {
1729     trace_arm_gt_cval_write(timeridx, value);
1730     env->cp15.c14_timer[timeridx].cval = value;
1731     gt_recalc_timer(arm_env_get_cpu(env), timeridx);
1732 }
1733 
1734 static uint64_t gt_tval_read(CPUARMState *env, const ARMCPRegInfo *ri,
1735                              int timeridx)
1736 {
1737     uint64_t offset = timeridx == GTIMER_VIRT ? env->cp15.cntvoff_el2 : 0;
1738 
1739     return (uint32_t)(env->cp15.c14_timer[timeridx].cval -
1740                       (gt_get_countervalue(env) - offset));
1741 }
1742 
1743 static void gt_tval_write(CPUARMState *env, const ARMCPRegInfo *ri,
1744                           int timeridx,
1745                           uint64_t value)
1746 {
1747     uint64_t offset = timeridx == GTIMER_VIRT ? env->cp15.cntvoff_el2 : 0;
1748 
1749     trace_arm_gt_tval_write(timeridx, value);
1750     env->cp15.c14_timer[timeridx].cval = gt_get_countervalue(env) - offset +
1751                                          sextract64(value, 0, 32);
1752     gt_recalc_timer(arm_env_get_cpu(env), timeridx);
1753 }
1754 
1755 static void gt_ctl_write(CPUARMState *env, const ARMCPRegInfo *ri,
1756                          int timeridx,
1757                          uint64_t value)
1758 {
1759     ARMCPU *cpu = arm_env_get_cpu(env);
1760     uint32_t oldval = env->cp15.c14_timer[timeridx].ctl;
1761 
1762     trace_arm_gt_ctl_write(timeridx, value);
1763     env->cp15.c14_timer[timeridx].ctl = deposit64(oldval, 0, 2, value);
1764     if ((oldval ^ value) & 1) {
1765         /* Enable toggled */
1766         gt_recalc_timer(cpu, timeridx);
1767     } else if ((oldval ^ value) & 2) {
1768         /* IMASK toggled: don't need to recalculate,
1769          * just set the interrupt line based on ISTATUS
1770          */
1771         int irqstate = (oldval & 4) && !(value & 2);
1772 
1773         trace_arm_gt_imask_toggle(timeridx, irqstate);
1774         qemu_set_irq(cpu->gt_timer_outputs[timeridx], irqstate);
1775     }
1776 }
1777 
1778 static void gt_phys_timer_reset(CPUARMState *env, const ARMCPRegInfo *ri)
1779 {
1780     gt_timer_reset(env, ri, GTIMER_PHYS);
1781 }
1782 
1783 static void gt_phys_cval_write(CPUARMState *env, const ARMCPRegInfo *ri,
1784                                uint64_t value)
1785 {
1786     gt_cval_write(env, ri, GTIMER_PHYS, value);
1787 }
1788 
1789 static uint64_t gt_phys_tval_read(CPUARMState *env, const ARMCPRegInfo *ri)
1790 {
1791     return gt_tval_read(env, ri, GTIMER_PHYS);
1792 }
1793 
1794 static void gt_phys_tval_write(CPUARMState *env, const ARMCPRegInfo *ri,
1795                                uint64_t value)
1796 {
1797     gt_tval_write(env, ri, GTIMER_PHYS, value);
1798 }
1799 
1800 static void gt_phys_ctl_write(CPUARMState *env, const ARMCPRegInfo *ri,
1801                               uint64_t value)
1802 {
1803     gt_ctl_write(env, ri, GTIMER_PHYS, value);
1804 }
1805 
1806 static void gt_virt_timer_reset(CPUARMState *env, const ARMCPRegInfo *ri)
1807 {
1808     gt_timer_reset(env, ri, GTIMER_VIRT);
1809 }
1810 
1811 static void gt_virt_cval_write(CPUARMState *env, const ARMCPRegInfo *ri,
1812                                uint64_t value)
1813 {
1814     gt_cval_write(env, ri, GTIMER_VIRT, value);
1815 }
1816 
1817 static uint64_t gt_virt_tval_read(CPUARMState *env, const ARMCPRegInfo *ri)
1818 {
1819     return gt_tval_read(env, ri, GTIMER_VIRT);
1820 }
1821 
1822 static void gt_virt_tval_write(CPUARMState *env, const ARMCPRegInfo *ri,
1823                                uint64_t value)
1824 {
1825     gt_tval_write(env, ri, GTIMER_VIRT, value);
1826 }
1827 
1828 static void gt_virt_ctl_write(CPUARMState *env, const ARMCPRegInfo *ri,
1829                               uint64_t value)
1830 {
1831     gt_ctl_write(env, ri, GTIMER_VIRT, value);
1832 }
1833 
1834 static void gt_cntvoff_write(CPUARMState *env, const ARMCPRegInfo *ri,
1835                               uint64_t value)
1836 {
1837     ARMCPU *cpu = arm_env_get_cpu(env);
1838 
1839     trace_arm_gt_cntvoff_write(value);
1840     raw_write(env, ri, value);
1841     gt_recalc_timer(cpu, GTIMER_VIRT);
1842 }
1843 
1844 static void gt_hyp_timer_reset(CPUARMState *env, const ARMCPRegInfo *ri)
1845 {
1846     gt_timer_reset(env, ri, GTIMER_HYP);
1847 }
1848 
1849 static void gt_hyp_cval_write(CPUARMState *env, const ARMCPRegInfo *ri,
1850                               uint64_t value)
1851 {
1852     gt_cval_write(env, ri, GTIMER_HYP, value);
1853 }
1854 
1855 static uint64_t gt_hyp_tval_read(CPUARMState *env, const ARMCPRegInfo *ri)
1856 {
1857     return gt_tval_read(env, ri, GTIMER_HYP);
1858 }
1859 
1860 static void gt_hyp_tval_write(CPUARMState *env, const ARMCPRegInfo *ri,
1861                               uint64_t value)
1862 {
1863     gt_tval_write(env, ri, GTIMER_HYP, value);
1864 }
1865 
1866 static void gt_hyp_ctl_write(CPUARMState *env, const ARMCPRegInfo *ri,
1867                               uint64_t value)
1868 {
1869     gt_ctl_write(env, ri, GTIMER_HYP, value);
1870 }
1871 
1872 static void gt_sec_timer_reset(CPUARMState *env, const ARMCPRegInfo *ri)
1873 {
1874     gt_timer_reset(env, ri, GTIMER_SEC);
1875 }
1876 
1877 static void gt_sec_cval_write(CPUARMState *env, const ARMCPRegInfo *ri,
1878                               uint64_t value)
1879 {
1880     gt_cval_write(env, ri, GTIMER_SEC, value);
1881 }
1882 
1883 static uint64_t gt_sec_tval_read(CPUARMState *env, const ARMCPRegInfo *ri)
1884 {
1885     return gt_tval_read(env, ri, GTIMER_SEC);
1886 }
1887 
1888 static void gt_sec_tval_write(CPUARMState *env, const ARMCPRegInfo *ri,
1889                               uint64_t value)
1890 {
1891     gt_tval_write(env, ri, GTIMER_SEC, value);
1892 }
1893 
1894 static void gt_sec_ctl_write(CPUARMState *env, const ARMCPRegInfo *ri,
1895                               uint64_t value)
1896 {
1897     gt_ctl_write(env, ri, GTIMER_SEC, value);
1898 }
1899 
1900 void arm_gt_ptimer_cb(void *opaque)
1901 {
1902     ARMCPU *cpu = opaque;
1903 
1904     gt_recalc_timer(cpu, GTIMER_PHYS);
1905 }
1906 
1907 void arm_gt_vtimer_cb(void *opaque)
1908 {
1909     ARMCPU *cpu = opaque;
1910 
1911     gt_recalc_timer(cpu, GTIMER_VIRT);
1912 }
1913 
1914 void arm_gt_htimer_cb(void *opaque)
1915 {
1916     ARMCPU *cpu = opaque;
1917 
1918     gt_recalc_timer(cpu, GTIMER_HYP);
1919 }
1920 
1921 void arm_gt_stimer_cb(void *opaque)
1922 {
1923     ARMCPU *cpu = opaque;
1924 
1925     gt_recalc_timer(cpu, GTIMER_SEC);
1926 }
1927 
1928 static const ARMCPRegInfo generic_timer_cp_reginfo[] = {
1929     /* Note that CNTFRQ is purely reads-as-written for the benefit
1930      * of software; writing it doesn't actually change the timer frequency.
1931      * Our reset value matches the fixed frequency we implement the timer at.
1932      */
1933     { .name = "CNTFRQ", .cp = 15, .crn = 14, .crm = 0, .opc1 = 0, .opc2 = 0,
1934       .type = ARM_CP_ALIAS,
1935       .access = PL1_RW | PL0_R, .accessfn = gt_cntfrq_access,
1936       .fieldoffset = offsetoflow32(CPUARMState, cp15.c14_cntfrq),
1937     },
1938     { .name = "CNTFRQ_EL0", .state = ARM_CP_STATE_AA64,
1939       .opc0 = 3, .opc1 = 3, .crn = 14, .crm = 0, .opc2 = 0,
1940       .access = PL1_RW | PL0_R, .accessfn = gt_cntfrq_access,
1941       .fieldoffset = offsetof(CPUARMState, cp15.c14_cntfrq),
1942       .resetvalue = (1000 * 1000 * 1000) / GTIMER_SCALE,
1943     },
1944     /* overall control: mostly access permissions */
1945     { .name = "CNTKCTL", .state = ARM_CP_STATE_BOTH,
1946       .opc0 = 3, .opc1 = 0, .crn = 14, .crm = 1, .opc2 = 0,
1947       .access = PL1_RW,
1948       .fieldoffset = offsetof(CPUARMState, cp15.c14_cntkctl),
1949       .resetvalue = 0,
1950     },
1951     /* per-timer control */
1952     { .name = "CNTP_CTL", .cp = 15, .crn = 14, .crm = 2, .opc1 = 0, .opc2 = 1,
1953       .secure = ARM_CP_SECSTATE_NS,
1954       .type = ARM_CP_IO | ARM_CP_ALIAS, .access = PL1_RW | PL0_R,
1955       .accessfn = gt_ptimer_access,
1956       .fieldoffset = offsetoflow32(CPUARMState,
1957                                    cp15.c14_timer[GTIMER_PHYS].ctl),
1958       .writefn = gt_phys_ctl_write, .raw_writefn = raw_write,
1959     },
1960     { .name = "CNTP_CTL(S)",
1961       .cp = 15, .crn = 14, .crm = 2, .opc1 = 0, .opc2 = 1,
1962       .secure = ARM_CP_SECSTATE_S,
1963       .type = ARM_CP_IO | ARM_CP_ALIAS, .access = PL1_RW | PL0_R,
1964       .accessfn = gt_ptimer_access,
1965       .fieldoffset = offsetoflow32(CPUARMState,
1966                                    cp15.c14_timer[GTIMER_SEC].ctl),
1967       .writefn = gt_sec_ctl_write, .raw_writefn = raw_write,
1968     },
1969     { .name = "CNTP_CTL_EL0", .state = ARM_CP_STATE_AA64,
1970       .opc0 = 3, .opc1 = 3, .crn = 14, .crm = 2, .opc2 = 1,
1971       .type = ARM_CP_IO, .access = PL1_RW | PL0_R,
1972       .accessfn = gt_ptimer_access,
1973       .fieldoffset = offsetof(CPUARMState, cp15.c14_timer[GTIMER_PHYS].ctl),
1974       .resetvalue = 0,
1975       .writefn = gt_phys_ctl_write, .raw_writefn = raw_write,
1976     },
1977     { .name = "CNTV_CTL", .cp = 15, .crn = 14, .crm = 3, .opc1 = 0, .opc2 = 1,
1978       .type = ARM_CP_IO | ARM_CP_ALIAS, .access = PL1_RW | PL0_R,
1979       .accessfn = gt_vtimer_access,
1980       .fieldoffset = offsetoflow32(CPUARMState,
1981                                    cp15.c14_timer[GTIMER_VIRT].ctl),
1982       .writefn = gt_virt_ctl_write, .raw_writefn = raw_write,
1983     },
1984     { .name = "CNTV_CTL_EL0", .state = ARM_CP_STATE_AA64,
1985       .opc0 = 3, .opc1 = 3, .crn = 14, .crm = 3, .opc2 = 1,
1986       .type = ARM_CP_IO, .access = PL1_RW | PL0_R,
1987       .accessfn = gt_vtimer_access,
1988       .fieldoffset = offsetof(CPUARMState, cp15.c14_timer[GTIMER_VIRT].ctl),
1989       .resetvalue = 0,
1990       .writefn = gt_virt_ctl_write, .raw_writefn = raw_write,
1991     },
1992     /* TimerValue views: a 32 bit downcounting view of the underlying state */
1993     { .name = "CNTP_TVAL", .cp = 15, .crn = 14, .crm = 2, .opc1 = 0, .opc2 = 0,
1994       .secure = ARM_CP_SECSTATE_NS,
1995       .type = ARM_CP_NO_RAW | ARM_CP_IO, .access = PL1_RW | PL0_R,
1996       .accessfn = gt_ptimer_access,
1997       .readfn = gt_phys_tval_read, .writefn = gt_phys_tval_write,
1998     },
1999     { .name = "CNTP_TVAL(S)",
2000       .cp = 15, .crn = 14, .crm = 2, .opc1 = 0, .opc2 = 0,
2001       .secure = ARM_CP_SECSTATE_S,
2002       .type = ARM_CP_NO_RAW | ARM_CP_IO, .access = PL1_RW | PL0_R,
2003       .accessfn = gt_ptimer_access,
2004       .readfn = gt_sec_tval_read, .writefn = gt_sec_tval_write,
2005     },
2006     { .name = "CNTP_TVAL_EL0", .state = ARM_CP_STATE_AA64,
2007       .opc0 = 3, .opc1 = 3, .crn = 14, .crm = 2, .opc2 = 0,
2008       .type = ARM_CP_NO_RAW | ARM_CP_IO, .access = PL1_RW | PL0_R,
2009       .accessfn = gt_ptimer_access, .resetfn = gt_phys_timer_reset,
2010       .readfn = gt_phys_tval_read, .writefn = gt_phys_tval_write,
2011     },
2012     { .name = "CNTV_TVAL", .cp = 15, .crn = 14, .crm = 3, .opc1 = 0, .opc2 = 0,
2013       .type = ARM_CP_NO_RAW | ARM_CP_IO, .access = PL1_RW | PL0_R,
2014       .accessfn = gt_vtimer_access,
2015       .readfn = gt_virt_tval_read, .writefn = gt_virt_tval_write,
2016     },
2017     { .name = "CNTV_TVAL_EL0", .state = ARM_CP_STATE_AA64,
2018       .opc0 = 3, .opc1 = 3, .crn = 14, .crm = 3, .opc2 = 0,
2019       .type = ARM_CP_NO_RAW | ARM_CP_IO, .access = PL1_RW | PL0_R,
2020       .accessfn = gt_vtimer_access, .resetfn = gt_virt_timer_reset,
2021       .readfn = gt_virt_tval_read, .writefn = gt_virt_tval_write,
2022     },
2023     /* The counter itself */
2024     { .name = "CNTPCT", .cp = 15, .crm = 14, .opc1 = 0,
2025       .access = PL0_R, .type = ARM_CP_64BIT | ARM_CP_NO_RAW | ARM_CP_IO,
2026       .accessfn = gt_pct_access,
2027       .readfn = gt_cnt_read, .resetfn = arm_cp_reset_ignore,
2028     },
2029     { .name = "CNTPCT_EL0", .state = ARM_CP_STATE_AA64,
2030       .opc0 = 3, .opc1 = 3, .crn = 14, .crm = 0, .opc2 = 1,
2031       .access = PL0_R, .type = ARM_CP_NO_RAW | ARM_CP_IO,
2032       .accessfn = gt_pct_access, .readfn = gt_cnt_read,
2033     },
2034     { .name = "CNTVCT", .cp = 15, .crm = 14, .opc1 = 1,
2035       .access = PL0_R, .type = ARM_CP_64BIT | ARM_CP_NO_RAW | ARM_CP_IO,
2036       .accessfn = gt_vct_access,
2037       .readfn = gt_virt_cnt_read, .resetfn = arm_cp_reset_ignore,
2038     },
2039     { .name = "CNTVCT_EL0", .state = ARM_CP_STATE_AA64,
2040       .opc0 = 3, .opc1 = 3, .crn = 14, .crm = 0, .opc2 = 2,
2041       .access = PL0_R, .type = ARM_CP_NO_RAW | ARM_CP_IO,
2042       .accessfn = gt_vct_access, .readfn = gt_virt_cnt_read,
2043     },
2044     /* Comparison value, indicating when the timer goes off */
2045     { .name = "CNTP_CVAL", .cp = 15, .crm = 14, .opc1 = 2,
2046       .secure = ARM_CP_SECSTATE_NS,
2047       .access = PL1_RW | PL0_R,
2048       .type = ARM_CP_64BIT | ARM_CP_IO | ARM_CP_ALIAS,
2049       .fieldoffset = offsetof(CPUARMState, cp15.c14_timer[GTIMER_PHYS].cval),
2050       .accessfn = gt_ptimer_access,
2051       .writefn = gt_phys_cval_write, .raw_writefn = raw_write,
2052     },
2053     { .name = "CNTP_CVAL(S)", .cp = 15, .crm = 14, .opc1 = 2,
2054       .secure = ARM_CP_SECSTATE_S,
2055       .access = PL1_RW | PL0_R,
2056       .type = ARM_CP_64BIT | ARM_CP_IO | ARM_CP_ALIAS,
2057       .fieldoffset = offsetof(CPUARMState, cp15.c14_timer[GTIMER_SEC].cval),
2058       .accessfn = gt_ptimer_access,
2059       .writefn = gt_sec_cval_write, .raw_writefn = raw_write,
2060     },
2061     { .name = "CNTP_CVAL_EL0", .state = ARM_CP_STATE_AA64,
2062       .opc0 = 3, .opc1 = 3, .crn = 14, .crm = 2, .opc2 = 2,
2063       .access = PL1_RW | PL0_R,
2064       .type = ARM_CP_IO,
2065       .fieldoffset = offsetof(CPUARMState, cp15.c14_timer[GTIMER_PHYS].cval),
2066       .resetvalue = 0, .accessfn = gt_ptimer_access,
2067       .writefn = gt_phys_cval_write, .raw_writefn = raw_write,
2068     },
2069     { .name = "CNTV_CVAL", .cp = 15, .crm = 14, .opc1 = 3,
2070       .access = PL1_RW | PL0_R,
2071       .type = ARM_CP_64BIT | ARM_CP_IO | ARM_CP_ALIAS,
2072       .fieldoffset = offsetof(CPUARMState, cp15.c14_timer[GTIMER_VIRT].cval),
2073       .accessfn = gt_vtimer_access,
2074       .writefn = gt_virt_cval_write, .raw_writefn = raw_write,
2075     },
2076     { .name = "CNTV_CVAL_EL0", .state = ARM_CP_STATE_AA64,
2077       .opc0 = 3, .opc1 = 3, .crn = 14, .crm = 3, .opc2 = 2,
2078       .access = PL1_RW | PL0_R,
2079       .type = ARM_CP_IO,
2080       .fieldoffset = offsetof(CPUARMState, cp15.c14_timer[GTIMER_VIRT].cval),
2081       .resetvalue = 0, .accessfn = gt_vtimer_access,
2082       .writefn = gt_virt_cval_write, .raw_writefn = raw_write,
2083     },
2084     /* Secure timer -- this is actually restricted to only EL3
2085      * and configurably Secure-EL1 via the accessfn.
2086      */
2087     { .name = "CNTPS_TVAL_EL1", .state = ARM_CP_STATE_AA64,
2088       .opc0 = 3, .opc1 = 7, .crn = 14, .crm = 2, .opc2 = 0,
2089       .type = ARM_CP_NO_RAW | ARM_CP_IO, .access = PL1_RW,
2090       .accessfn = gt_stimer_access,
2091       .readfn = gt_sec_tval_read,
2092       .writefn = gt_sec_tval_write,
2093       .resetfn = gt_sec_timer_reset,
2094     },
2095     { .name = "CNTPS_CTL_EL1", .state = ARM_CP_STATE_AA64,
2096       .opc0 = 3, .opc1 = 7, .crn = 14, .crm = 2, .opc2 = 1,
2097       .type = ARM_CP_IO, .access = PL1_RW,
2098       .accessfn = gt_stimer_access,
2099       .fieldoffset = offsetof(CPUARMState, cp15.c14_timer[GTIMER_SEC].ctl),
2100       .resetvalue = 0,
2101       .writefn = gt_sec_ctl_write, .raw_writefn = raw_write,
2102     },
2103     { .name = "CNTPS_CVAL_EL1", .state = ARM_CP_STATE_AA64,
2104       .opc0 = 3, .opc1 = 7, .crn = 14, .crm = 2, .opc2 = 2,
2105       .type = ARM_CP_IO, .access = PL1_RW,
2106       .accessfn = gt_stimer_access,
2107       .fieldoffset = offsetof(CPUARMState, cp15.c14_timer[GTIMER_SEC].cval),
2108       .writefn = gt_sec_cval_write, .raw_writefn = raw_write,
2109     },
2110     REGINFO_SENTINEL
2111 };
2112 
2113 #else
2114 /* In user-mode none of the generic timer registers are accessible,
2115  * and their implementation depends on QEMU_CLOCK_VIRTUAL and qdev gpio outputs,
2116  * so instead just don't register any of them.
2117  */
2118 static const ARMCPRegInfo generic_timer_cp_reginfo[] = {
2119     REGINFO_SENTINEL
2120 };
2121 
2122 #endif
2123 
2124 static void par_write(CPUARMState *env, const ARMCPRegInfo *ri, uint64_t value)
2125 {
2126     if (arm_feature(env, ARM_FEATURE_LPAE)) {
2127         raw_write(env, ri, value);
2128     } else if (arm_feature(env, ARM_FEATURE_V7)) {
2129         raw_write(env, ri, value & 0xfffff6ff);
2130     } else {
2131         raw_write(env, ri, value & 0xfffff1ff);
2132     }
2133 }
2134 
2135 #ifndef CONFIG_USER_ONLY
2136 /* get_phys_addr() isn't present for user-mode-only targets */
2137 
2138 static CPAccessResult ats_access(CPUARMState *env, const ARMCPRegInfo *ri,
2139                                  bool isread)
2140 {
2141     if (ri->opc2 & 4) {
2142         /* The ATS12NSO* operations must trap to EL3 if executed in
2143          * Secure EL1 (which can only happen if EL3 is AArch64).
2144          * They are simply UNDEF if executed from NS EL1.
2145          * They function normally from EL2 or EL3.
2146          */
2147         if (arm_current_el(env) == 1) {
2148             if (arm_is_secure_below_el3(env)) {
2149                 return CP_ACCESS_TRAP_UNCATEGORIZED_EL3;
2150             }
2151             return CP_ACCESS_TRAP_UNCATEGORIZED;
2152         }
2153     }
2154     return CP_ACCESS_OK;
2155 }
2156 
2157 static uint64_t do_ats_write(CPUARMState *env, uint64_t value,
2158                              MMUAccessType access_type, ARMMMUIdx mmu_idx)
2159 {
2160     hwaddr phys_addr;
2161     target_ulong page_size;
2162     int prot;
2163     uint32_t fsr;
2164     bool ret;
2165     uint64_t par64;
2166     MemTxAttrs attrs = {};
2167     ARMMMUFaultInfo fi = {};
2168     ARMCacheAttrs cacheattrs = {};
2169 
2170     ret = get_phys_addr(env, value, access_type, mmu_idx, &phys_addr, &attrs,
2171                         &prot, &page_size, &fsr, &fi, &cacheattrs);
2172     if (extended_addresses_enabled(env)) {
2173         /* fsr is a DFSR/IFSR value for the long descriptor
2174          * translation table format, but with WnR always clear.
2175          * Convert it to a 64-bit PAR.
2176          */
2177         par64 = (1 << 11); /* LPAE bit always set */
2178         if (!ret) {
2179             par64 |= phys_addr & ~0xfffULL;
2180             if (!attrs.secure) {
2181                 par64 |= (1 << 9); /* NS */
2182             }
2183             par64 |= (uint64_t)cacheattrs.attrs << 56; /* ATTR */
2184             par64 |= cacheattrs.shareability << 7; /* SH */
2185         } else {
2186             par64 |= 1; /* F */
2187             par64 |= (fsr & 0x3f) << 1; /* FS */
2188             /* Note that S2WLK and FSTAGE are always zero, because we don't
2189              * implement virtualization and therefore there can't be a stage 2
2190              * fault.
2191              */
2192         }
2193     } else {
2194         /* fsr is a DFSR/IFSR value for the short descriptor
2195          * translation table format (with WnR always clear).
2196          * Convert it to a 32-bit PAR.
2197          */
2198         if (!ret) {
2199             /* We do not set any attribute bits in the PAR */
2200             if (page_size == (1 << 24)
2201                 && arm_feature(env, ARM_FEATURE_V7)) {
2202                 par64 = (phys_addr & 0xff000000) | (1 << 1);
2203             } else {
2204                 par64 = phys_addr & 0xfffff000;
2205             }
2206             if (!attrs.secure) {
2207                 par64 |= (1 << 9); /* NS */
2208             }
2209         } else {
2210             par64 = ((fsr & (1 << 10)) >> 5) | ((fsr & (1 << 12)) >> 6) |
2211                     ((fsr & 0xf) << 1) | 1;
2212         }
2213     }
2214     return par64;
2215 }
2216 
2217 static void ats_write(CPUARMState *env, const ARMCPRegInfo *ri, uint64_t value)
2218 {
2219     MMUAccessType access_type = ri->opc2 & 1 ? MMU_DATA_STORE : MMU_DATA_LOAD;
2220     uint64_t par64;
2221     ARMMMUIdx mmu_idx;
2222     int el = arm_current_el(env);
2223     bool secure = arm_is_secure_below_el3(env);
2224 
2225     switch (ri->opc2 & 6) {
2226     case 0:
2227         /* stage 1 current state PL1: ATS1CPR, ATS1CPW */
2228         switch (el) {
2229         case 3:
2230             mmu_idx = ARMMMUIdx_S1E3;
2231             break;
2232         case 2:
2233             mmu_idx = ARMMMUIdx_S1NSE1;
2234             break;
2235         case 1:
2236             mmu_idx = secure ? ARMMMUIdx_S1SE1 : ARMMMUIdx_S1NSE1;
2237             break;
2238         default:
2239             g_assert_not_reached();
2240         }
2241         break;
2242     case 2:
2243         /* stage 1 current state PL0: ATS1CUR, ATS1CUW */
2244         switch (el) {
2245         case 3:
2246             mmu_idx = ARMMMUIdx_S1SE0;
2247             break;
2248         case 2:
2249             mmu_idx = ARMMMUIdx_S1NSE0;
2250             break;
2251         case 1:
2252             mmu_idx = secure ? ARMMMUIdx_S1SE0 : ARMMMUIdx_S1NSE0;
2253             break;
2254         default:
2255             g_assert_not_reached();
2256         }
2257         break;
2258     case 4:
2259         /* stage 1+2 NonSecure PL1: ATS12NSOPR, ATS12NSOPW */
2260         mmu_idx = ARMMMUIdx_S12NSE1;
2261         break;
2262     case 6:
2263         /* stage 1+2 NonSecure PL0: ATS12NSOUR, ATS12NSOUW */
2264         mmu_idx = ARMMMUIdx_S12NSE0;
2265         break;
2266     default:
2267         g_assert_not_reached();
2268     }
2269 
2270     par64 = do_ats_write(env, value, access_type, mmu_idx);
2271 
2272     A32_BANKED_CURRENT_REG_SET(env, par, par64);
2273 }
2274 
2275 static void ats1h_write(CPUARMState *env, const ARMCPRegInfo *ri,
2276                         uint64_t value)
2277 {
2278     MMUAccessType access_type = ri->opc2 & 1 ? MMU_DATA_STORE : MMU_DATA_LOAD;
2279     uint64_t par64;
2280 
2281     par64 = do_ats_write(env, value, access_type, ARMMMUIdx_S2NS);
2282 
2283     A32_BANKED_CURRENT_REG_SET(env, par, par64);
2284 }
2285 
2286 static CPAccessResult at_s1e2_access(CPUARMState *env, const ARMCPRegInfo *ri,
2287                                      bool isread)
2288 {
2289     if (arm_current_el(env) == 3 && !(env->cp15.scr_el3 & SCR_NS)) {
2290         return CP_ACCESS_TRAP;
2291     }
2292     return CP_ACCESS_OK;
2293 }
2294 
2295 static void ats_write64(CPUARMState *env, const ARMCPRegInfo *ri,
2296                         uint64_t value)
2297 {
2298     MMUAccessType access_type = ri->opc2 & 1 ? MMU_DATA_STORE : MMU_DATA_LOAD;
2299     ARMMMUIdx mmu_idx;
2300     int secure = arm_is_secure_below_el3(env);
2301 
2302     switch (ri->opc2 & 6) {
2303     case 0:
2304         switch (ri->opc1) {
2305         case 0: /* AT S1E1R, AT S1E1W */
2306             mmu_idx = secure ? ARMMMUIdx_S1SE1 : ARMMMUIdx_S1NSE1;
2307             break;
2308         case 4: /* AT S1E2R, AT S1E2W */
2309             mmu_idx = ARMMMUIdx_S1E2;
2310             break;
2311         case 6: /* AT S1E3R, AT S1E3W */
2312             mmu_idx = ARMMMUIdx_S1E3;
2313             break;
2314         default:
2315             g_assert_not_reached();
2316         }
2317         break;
2318     case 2: /* AT S1E0R, AT S1E0W */
2319         mmu_idx = secure ? ARMMMUIdx_S1SE0 : ARMMMUIdx_S1NSE0;
2320         break;
2321     case 4: /* AT S12E1R, AT S12E1W */
2322         mmu_idx = secure ? ARMMMUIdx_S1SE1 : ARMMMUIdx_S12NSE1;
2323         break;
2324     case 6: /* AT S12E0R, AT S12E0W */
2325         mmu_idx = secure ? ARMMMUIdx_S1SE0 : ARMMMUIdx_S12NSE0;
2326         break;
2327     default:
2328         g_assert_not_reached();
2329     }
2330 
2331     env->cp15.par_el[1] = do_ats_write(env, value, access_type, mmu_idx);
2332 }
2333 #endif
2334 
2335 static const ARMCPRegInfo vapa_cp_reginfo[] = {
2336     { .name = "PAR", .cp = 15, .crn = 7, .crm = 4, .opc1 = 0, .opc2 = 0,
2337       .access = PL1_RW, .resetvalue = 0,
2338       .bank_fieldoffsets = { offsetoflow32(CPUARMState, cp15.par_s),
2339                              offsetoflow32(CPUARMState, cp15.par_ns) },
2340       .writefn = par_write },
2341 #ifndef CONFIG_USER_ONLY
2342     /* This underdecoding is safe because the reginfo is NO_RAW. */
2343     { .name = "ATS", .cp = 15, .crn = 7, .crm = 8, .opc1 = 0, .opc2 = CP_ANY,
2344       .access = PL1_W, .accessfn = ats_access,
2345       .writefn = ats_write, .type = ARM_CP_NO_RAW },
2346 #endif
2347     REGINFO_SENTINEL
2348 };
2349 
2350 /* Return basic MPU access permission bits.  */
2351 static uint32_t simple_mpu_ap_bits(uint32_t val)
2352 {
2353     uint32_t ret;
2354     uint32_t mask;
2355     int i;
2356     ret = 0;
2357     mask = 3;
2358     for (i = 0; i < 16; i += 2) {
2359         ret |= (val >> i) & mask;
2360         mask <<= 2;
2361     }
2362     return ret;
2363 }
2364 
2365 /* Pad basic MPU access permission bits to extended format.  */
2366 static uint32_t extended_mpu_ap_bits(uint32_t val)
2367 {
2368     uint32_t ret;
2369     uint32_t mask;
2370     int i;
2371     ret = 0;
2372     mask = 3;
2373     for (i = 0; i < 16; i += 2) {
2374         ret |= (val & mask) << i;
2375         mask <<= 2;
2376     }
2377     return ret;
2378 }
2379 
2380 static void pmsav5_data_ap_write(CPUARMState *env, const ARMCPRegInfo *ri,
2381                                  uint64_t value)
2382 {
2383     env->cp15.pmsav5_data_ap = extended_mpu_ap_bits(value);
2384 }
2385 
2386 static uint64_t pmsav5_data_ap_read(CPUARMState *env, const ARMCPRegInfo *ri)
2387 {
2388     return simple_mpu_ap_bits(env->cp15.pmsav5_data_ap);
2389 }
2390 
2391 static void pmsav5_insn_ap_write(CPUARMState *env, const ARMCPRegInfo *ri,
2392                                  uint64_t value)
2393 {
2394     env->cp15.pmsav5_insn_ap = extended_mpu_ap_bits(value);
2395 }
2396 
2397 static uint64_t pmsav5_insn_ap_read(CPUARMState *env, const ARMCPRegInfo *ri)
2398 {
2399     return simple_mpu_ap_bits(env->cp15.pmsav5_insn_ap);
2400 }
2401 
2402 static uint64_t pmsav7_read(CPUARMState *env, const ARMCPRegInfo *ri)
2403 {
2404     uint32_t *u32p = *(uint32_t **)raw_ptr(env, ri);
2405 
2406     if (!u32p) {
2407         return 0;
2408     }
2409 
2410     u32p += env->pmsav7.rnr[M_REG_NS];
2411     return *u32p;
2412 }
2413 
2414 static void pmsav7_write(CPUARMState *env, const ARMCPRegInfo *ri,
2415                          uint64_t value)
2416 {
2417     ARMCPU *cpu = arm_env_get_cpu(env);
2418     uint32_t *u32p = *(uint32_t **)raw_ptr(env, ri);
2419 
2420     if (!u32p) {
2421         return;
2422     }
2423 
2424     u32p += env->pmsav7.rnr[M_REG_NS];
2425     tlb_flush(CPU(cpu)); /* Mappings may have changed - purge! */
2426     *u32p = value;
2427 }
2428 
2429 static void pmsav7_rgnr_write(CPUARMState *env, const ARMCPRegInfo *ri,
2430                               uint64_t value)
2431 {
2432     ARMCPU *cpu = arm_env_get_cpu(env);
2433     uint32_t nrgs = cpu->pmsav7_dregion;
2434 
2435     if (value >= nrgs) {
2436         qemu_log_mask(LOG_GUEST_ERROR,
2437                       "PMSAv7 RGNR write >= # supported regions, %" PRIu32
2438                       " > %" PRIu32 "\n", (uint32_t)value, nrgs);
2439         return;
2440     }
2441 
2442     raw_write(env, ri, value);
2443 }
2444 
2445 static const ARMCPRegInfo pmsav7_cp_reginfo[] = {
2446     /* Reset for all these registers is handled in arm_cpu_reset(),
2447      * because the PMSAv7 is also used by M-profile CPUs, which do
2448      * not register cpregs but still need the state to be reset.
2449      */
2450     { .name = "DRBAR", .cp = 15, .crn = 6, .opc1 = 0, .crm = 1, .opc2 = 0,
2451       .access = PL1_RW, .type = ARM_CP_NO_RAW,
2452       .fieldoffset = offsetof(CPUARMState, pmsav7.drbar),
2453       .readfn = pmsav7_read, .writefn = pmsav7_write,
2454       .resetfn = arm_cp_reset_ignore },
2455     { .name = "DRSR", .cp = 15, .crn = 6, .opc1 = 0, .crm = 1, .opc2 = 2,
2456       .access = PL1_RW, .type = ARM_CP_NO_RAW,
2457       .fieldoffset = offsetof(CPUARMState, pmsav7.drsr),
2458       .readfn = pmsav7_read, .writefn = pmsav7_write,
2459       .resetfn = arm_cp_reset_ignore },
2460     { .name = "DRACR", .cp = 15, .crn = 6, .opc1 = 0, .crm = 1, .opc2 = 4,
2461       .access = PL1_RW, .type = ARM_CP_NO_RAW,
2462       .fieldoffset = offsetof(CPUARMState, pmsav7.dracr),
2463       .readfn = pmsav7_read, .writefn = pmsav7_write,
2464       .resetfn = arm_cp_reset_ignore },
2465     { .name = "RGNR", .cp = 15, .crn = 6, .opc1 = 0, .crm = 2, .opc2 = 0,
2466       .access = PL1_RW,
2467       .fieldoffset = offsetof(CPUARMState, pmsav7.rnr[M_REG_NS]),
2468       .writefn = pmsav7_rgnr_write,
2469       .resetfn = arm_cp_reset_ignore },
2470     REGINFO_SENTINEL
2471 };
2472 
2473 static const ARMCPRegInfo pmsav5_cp_reginfo[] = {
2474     { .name = "DATA_AP", .cp = 15, .crn = 5, .crm = 0, .opc1 = 0, .opc2 = 0,
2475       .access = PL1_RW, .type = ARM_CP_ALIAS,
2476       .fieldoffset = offsetof(CPUARMState, cp15.pmsav5_data_ap),
2477       .readfn = pmsav5_data_ap_read, .writefn = pmsav5_data_ap_write, },
2478     { .name = "INSN_AP", .cp = 15, .crn = 5, .crm = 0, .opc1 = 0, .opc2 = 1,
2479       .access = PL1_RW, .type = ARM_CP_ALIAS,
2480       .fieldoffset = offsetof(CPUARMState, cp15.pmsav5_insn_ap),
2481       .readfn = pmsav5_insn_ap_read, .writefn = pmsav5_insn_ap_write, },
2482     { .name = "DATA_EXT_AP", .cp = 15, .crn = 5, .crm = 0, .opc1 = 0, .opc2 = 2,
2483       .access = PL1_RW,
2484       .fieldoffset = offsetof(CPUARMState, cp15.pmsav5_data_ap),
2485       .resetvalue = 0, },
2486     { .name = "INSN_EXT_AP", .cp = 15, .crn = 5, .crm = 0, .opc1 = 0, .opc2 = 3,
2487       .access = PL1_RW,
2488       .fieldoffset = offsetof(CPUARMState, cp15.pmsav5_insn_ap),
2489       .resetvalue = 0, },
2490     { .name = "DCACHE_CFG", .cp = 15, .crn = 2, .crm = 0, .opc1 = 0, .opc2 = 0,
2491       .access = PL1_RW,
2492       .fieldoffset = offsetof(CPUARMState, cp15.c2_data), .resetvalue = 0, },
2493     { .name = "ICACHE_CFG", .cp = 15, .crn = 2, .crm = 0, .opc1 = 0, .opc2 = 1,
2494       .access = PL1_RW,
2495       .fieldoffset = offsetof(CPUARMState, cp15.c2_insn), .resetvalue = 0, },
2496     /* Protection region base and size registers */
2497     { .name = "946_PRBS0", .cp = 15, .crn = 6, .crm = 0, .opc1 = 0,
2498       .opc2 = CP_ANY, .access = PL1_RW, .resetvalue = 0,
2499       .fieldoffset = offsetof(CPUARMState, cp15.c6_region[0]) },
2500     { .name = "946_PRBS1", .cp = 15, .crn = 6, .crm = 1, .opc1 = 0,
2501       .opc2 = CP_ANY, .access = PL1_RW, .resetvalue = 0,
2502       .fieldoffset = offsetof(CPUARMState, cp15.c6_region[1]) },
2503     { .name = "946_PRBS2", .cp = 15, .crn = 6, .crm = 2, .opc1 = 0,
2504       .opc2 = CP_ANY, .access = PL1_RW, .resetvalue = 0,
2505       .fieldoffset = offsetof(CPUARMState, cp15.c6_region[2]) },
2506     { .name = "946_PRBS3", .cp = 15, .crn = 6, .crm = 3, .opc1 = 0,
2507       .opc2 = CP_ANY, .access = PL1_RW, .resetvalue = 0,
2508       .fieldoffset = offsetof(CPUARMState, cp15.c6_region[3]) },
2509     { .name = "946_PRBS4", .cp = 15, .crn = 6, .crm = 4, .opc1 = 0,
2510       .opc2 = CP_ANY, .access = PL1_RW, .resetvalue = 0,
2511       .fieldoffset = offsetof(CPUARMState, cp15.c6_region[4]) },
2512     { .name = "946_PRBS5", .cp = 15, .crn = 6, .crm = 5, .opc1 = 0,
2513       .opc2 = CP_ANY, .access = PL1_RW, .resetvalue = 0,
2514       .fieldoffset = offsetof(CPUARMState, cp15.c6_region[5]) },
2515     { .name = "946_PRBS6", .cp = 15, .crn = 6, .crm = 6, .opc1 = 0,
2516       .opc2 = CP_ANY, .access = PL1_RW, .resetvalue = 0,
2517       .fieldoffset = offsetof(CPUARMState, cp15.c6_region[6]) },
2518     { .name = "946_PRBS7", .cp = 15, .crn = 6, .crm = 7, .opc1 = 0,
2519       .opc2 = CP_ANY, .access = PL1_RW, .resetvalue = 0,
2520       .fieldoffset = offsetof(CPUARMState, cp15.c6_region[7]) },
2521     REGINFO_SENTINEL
2522 };
2523 
2524 static void vmsa_ttbcr_raw_write(CPUARMState *env, const ARMCPRegInfo *ri,
2525                                  uint64_t value)
2526 {
2527     TCR *tcr = raw_ptr(env, ri);
2528     int maskshift = extract32(value, 0, 3);
2529 
2530     if (!arm_feature(env, ARM_FEATURE_V8)) {
2531         if (arm_feature(env, ARM_FEATURE_LPAE) && (value & TTBCR_EAE)) {
2532             /* Pre ARMv8 bits [21:19], [15:14] and [6:3] are UNK/SBZP when
2533              * using Long-desciptor translation table format */
2534             value &= ~((7 << 19) | (3 << 14) | (0xf << 3));
2535         } else if (arm_feature(env, ARM_FEATURE_EL3)) {
2536             /* In an implementation that includes the Security Extensions
2537              * TTBCR has additional fields PD0 [4] and PD1 [5] for
2538              * Short-descriptor translation table format.
2539              */
2540             value &= TTBCR_PD1 | TTBCR_PD0 | TTBCR_N;
2541         } else {
2542             value &= TTBCR_N;
2543         }
2544     }
2545 
2546     /* Update the masks corresponding to the TCR bank being written
2547      * Note that we always calculate mask and base_mask, but
2548      * they are only used for short-descriptor tables (ie if EAE is 0);
2549      * for long-descriptor tables the TCR fields are used differently
2550      * and the mask and base_mask values are meaningless.
2551      */
2552     tcr->raw_tcr = value;
2553     tcr->mask = ~(((uint32_t)0xffffffffu) >> maskshift);
2554     tcr->base_mask = ~((uint32_t)0x3fffu >> maskshift);
2555 }
2556 
2557 static void vmsa_ttbcr_write(CPUARMState *env, const ARMCPRegInfo *ri,
2558                              uint64_t value)
2559 {
2560     ARMCPU *cpu = arm_env_get_cpu(env);
2561 
2562     if (arm_feature(env, ARM_FEATURE_LPAE)) {
2563         /* With LPAE the TTBCR could result in a change of ASID
2564          * via the TTBCR.A1 bit, so do a TLB flush.
2565          */
2566         tlb_flush(CPU(cpu));
2567     }
2568     vmsa_ttbcr_raw_write(env, ri, value);
2569 }
2570 
2571 static void vmsa_ttbcr_reset(CPUARMState *env, const ARMCPRegInfo *ri)
2572 {
2573     TCR *tcr = raw_ptr(env, ri);
2574 
2575     /* Reset both the TCR as well as the masks corresponding to the bank of
2576      * the TCR being reset.
2577      */
2578     tcr->raw_tcr = 0;
2579     tcr->mask = 0;
2580     tcr->base_mask = 0xffffc000u;
2581 }
2582 
2583 static void vmsa_tcr_el1_write(CPUARMState *env, const ARMCPRegInfo *ri,
2584                                uint64_t value)
2585 {
2586     ARMCPU *cpu = arm_env_get_cpu(env);
2587     TCR *tcr = raw_ptr(env, ri);
2588 
2589     /* For AArch64 the A1 bit could result in a change of ASID, so TLB flush. */
2590     tlb_flush(CPU(cpu));
2591     tcr->raw_tcr = value;
2592 }
2593 
2594 static void vmsa_ttbr_write(CPUARMState *env, const ARMCPRegInfo *ri,
2595                             uint64_t value)
2596 {
2597     /* 64 bit accesses to the TTBRs can change the ASID and so we
2598      * must flush the TLB.
2599      */
2600     if (cpreg_field_is_64bit(ri)) {
2601         ARMCPU *cpu = arm_env_get_cpu(env);
2602 
2603         tlb_flush(CPU(cpu));
2604     }
2605     raw_write(env, ri, value);
2606 }
2607 
2608 static void vttbr_write(CPUARMState *env, const ARMCPRegInfo *ri,
2609                         uint64_t value)
2610 {
2611     ARMCPU *cpu = arm_env_get_cpu(env);
2612     CPUState *cs = CPU(cpu);
2613 
2614     /* Accesses to VTTBR may change the VMID so we must flush the TLB.  */
2615     if (raw_read(env, ri) != value) {
2616         tlb_flush_by_mmuidx(cs,
2617                             ARMMMUIdxBit_S12NSE1 |
2618                             ARMMMUIdxBit_S12NSE0 |
2619                             ARMMMUIdxBit_S2NS);
2620         raw_write(env, ri, value);
2621     }
2622 }
2623 
2624 static const ARMCPRegInfo vmsa_pmsa_cp_reginfo[] = {
2625     { .name = "DFSR", .cp = 15, .crn = 5, .crm = 0, .opc1 = 0, .opc2 = 0,
2626       .access = PL1_RW, .type = ARM_CP_ALIAS,
2627       .bank_fieldoffsets = { offsetoflow32(CPUARMState, cp15.dfsr_s),
2628                              offsetoflow32(CPUARMState, cp15.dfsr_ns) }, },
2629     { .name = "IFSR", .cp = 15, .crn = 5, .crm = 0, .opc1 = 0, .opc2 = 1,
2630       .access = PL1_RW, .resetvalue = 0,
2631       .bank_fieldoffsets = { offsetoflow32(CPUARMState, cp15.ifsr_s),
2632                              offsetoflow32(CPUARMState, cp15.ifsr_ns) } },
2633     { .name = "DFAR", .cp = 15, .opc1 = 0, .crn = 6, .crm = 0, .opc2 = 0,
2634       .access = PL1_RW, .resetvalue = 0,
2635       .bank_fieldoffsets = { offsetof(CPUARMState, cp15.dfar_s),
2636                              offsetof(CPUARMState, cp15.dfar_ns) } },
2637     { .name = "FAR_EL1", .state = ARM_CP_STATE_AA64,
2638       .opc0 = 3, .crn = 6, .crm = 0, .opc1 = 0, .opc2 = 0,
2639       .access = PL1_RW, .fieldoffset = offsetof(CPUARMState, cp15.far_el[1]),
2640       .resetvalue = 0, },
2641     REGINFO_SENTINEL
2642 };
2643 
2644 static const ARMCPRegInfo vmsa_cp_reginfo[] = {
2645     { .name = "ESR_EL1", .state = ARM_CP_STATE_AA64,
2646       .opc0 = 3, .crn = 5, .crm = 2, .opc1 = 0, .opc2 = 0,
2647       .access = PL1_RW,
2648       .fieldoffset = offsetof(CPUARMState, cp15.esr_el[1]), .resetvalue = 0, },
2649     { .name = "TTBR0_EL1", .state = ARM_CP_STATE_BOTH,
2650       .opc0 = 3, .opc1 = 0, .crn = 2, .crm = 0, .opc2 = 0,
2651       .access = PL1_RW, .writefn = vmsa_ttbr_write, .resetvalue = 0,
2652       .bank_fieldoffsets = { offsetof(CPUARMState, cp15.ttbr0_s),
2653                              offsetof(CPUARMState, cp15.ttbr0_ns) } },
2654     { .name = "TTBR1_EL1", .state = ARM_CP_STATE_BOTH,
2655       .opc0 = 3, .opc1 = 0, .crn = 2, .crm = 0, .opc2 = 1,
2656       .access = PL1_RW, .writefn = vmsa_ttbr_write, .resetvalue = 0,
2657       .bank_fieldoffsets = { offsetof(CPUARMState, cp15.ttbr1_s),
2658                              offsetof(CPUARMState, cp15.ttbr1_ns) } },
2659     { .name = "TCR_EL1", .state = ARM_CP_STATE_AA64,
2660       .opc0 = 3, .crn = 2, .crm = 0, .opc1 = 0, .opc2 = 2,
2661       .access = PL1_RW, .writefn = vmsa_tcr_el1_write,
2662       .resetfn = vmsa_ttbcr_reset, .raw_writefn = raw_write,
2663       .fieldoffset = offsetof(CPUARMState, cp15.tcr_el[1]) },
2664     { .name = "TTBCR", .cp = 15, .crn = 2, .crm = 0, .opc1 = 0, .opc2 = 2,
2665       .access = PL1_RW, .type = ARM_CP_ALIAS, .writefn = vmsa_ttbcr_write,
2666       .raw_writefn = vmsa_ttbcr_raw_write,
2667       .bank_fieldoffsets = { offsetoflow32(CPUARMState, cp15.tcr_el[3]),
2668                              offsetoflow32(CPUARMState, cp15.tcr_el[1])} },
2669     REGINFO_SENTINEL
2670 };
2671 
2672 static void omap_ticonfig_write(CPUARMState *env, const ARMCPRegInfo *ri,
2673                                 uint64_t value)
2674 {
2675     env->cp15.c15_ticonfig = value & 0xe7;
2676     /* The OS_TYPE bit in this register changes the reported CPUID! */
2677     env->cp15.c0_cpuid = (value & (1 << 5)) ?
2678         ARM_CPUID_TI915T : ARM_CPUID_TI925T;
2679 }
2680 
2681 static void omap_threadid_write(CPUARMState *env, const ARMCPRegInfo *ri,
2682                                 uint64_t value)
2683 {
2684     env->cp15.c15_threadid = value & 0xffff;
2685 }
2686 
2687 static void omap_wfi_write(CPUARMState *env, const ARMCPRegInfo *ri,
2688                            uint64_t value)
2689 {
2690     /* Wait-for-interrupt (deprecated) */
2691     cpu_interrupt(CPU(arm_env_get_cpu(env)), CPU_INTERRUPT_HALT);
2692 }
2693 
2694 static void omap_cachemaint_write(CPUARMState *env, const ARMCPRegInfo *ri,
2695                                   uint64_t value)
2696 {
2697     /* On OMAP there are registers indicating the max/min index of dcache lines
2698      * containing a dirty line; cache flush operations have to reset these.
2699      */
2700     env->cp15.c15_i_max = 0x000;
2701     env->cp15.c15_i_min = 0xff0;
2702 }
2703 
2704 static const ARMCPRegInfo omap_cp_reginfo[] = {
2705     { .name = "DFSR", .cp = 15, .crn = 5, .crm = CP_ANY,
2706       .opc1 = CP_ANY, .opc2 = CP_ANY, .access = PL1_RW, .type = ARM_CP_OVERRIDE,
2707       .fieldoffset = offsetoflow32(CPUARMState, cp15.esr_el[1]),
2708       .resetvalue = 0, },
2709     { .name = "", .cp = 15, .crn = 15, .crm = 0, .opc1 = 0, .opc2 = 0,
2710       .access = PL1_RW, .type = ARM_CP_NOP },
2711     { .name = "TICONFIG", .cp = 15, .crn = 15, .crm = 1, .opc1 = 0, .opc2 = 0,
2712       .access = PL1_RW,
2713       .fieldoffset = offsetof(CPUARMState, cp15.c15_ticonfig), .resetvalue = 0,
2714       .writefn = omap_ticonfig_write },
2715     { .name = "IMAX", .cp = 15, .crn = 15, .crm = 2, .opc1 = 0, .opc2 = 0,
2716       .access = PL1_RW,
2717       .fieldoffset = offsetof(CPUARMState, cp15.c15_i_max), .resetvalue = 0, },
2718     { .name = "IMIN", .cp = 15, .crn = 15, .crm = 3, .opc1 = 0, .opc2 = 0,
2719       .access = PL1_RW, .resetvalue = 0xff0,
2720       .fieldoffset = offsetof(CPUARMState, cp15.c15_i_min) },
2721     { .name = "THREADID", .cp = 15, .crn = 15, .crm = 4, .opc1 = 0, .opc2 = 0,
2722       .access = PL1_RW,
2723       .fieldoffset = offsetof(CPUARMState, cp15.c15_threadid), .resetvalue = 0,
2724       .writefn = omap_threadid_write },
2725     { .name = "TI925T_STATUS", .cp = 15, .crn = 15,
2726       .crm = 8, .opc1 = 0, .opc2 = 0, .access = PL1_RW,
2727       .type = ARM_CP_NO_RAW,
2728       .readfn = arm_cp_read_zero, .writefn = omap_wfi_write, },
2729     /* TODO: Peripheral port remap register:
2730      * On OMAP2 mcr p15, 0, rn, c15, c2, 4 sets up the interrupt controller
2731      * base address at $rn & ~0xfff and map size of 0x200 << ($rn & 0xfff),
2732      * when MMU is off.
2733      */
2734     { .name = "OMAP_CACHEMAINT", .cp = 15, .crn = 7, .crm = CP_ANY,
2735       .opc1 = 0, .opc2 = CP_ANY, .access = PL1_W,
2736       .type = ARM_CP_OVERRIDE | ARM_CP_NO_RAW,
2737       .writefn = omap_cachemaint_write },
2738     { .name = "C9", .cp = 15, .crn = 9,
2739       .crm = CP_ANY, .opc1 = CP_ANY, .opc2 = CP_ANY, .access = PL1_RW,
2740       .type = ARM_CP_CONST | ARM_CP_OVERRIDE, .resetvalue = 0 },
2741     REGINFO_SENTINEL
2742 };
2743 
2744 static void xscale_cpar_write(CPUARMState *env, const ARMCPRegInfo *ri,
2745                               uint64_t value)
2746 {
2747     env->cp15.c15_cpar = value & 0x3fff;
2748 }
2749 
2750 static const ARMCPRegInfo xscale_cp_reginfo[] = {
2751     { .name = "XSCALE_CPAR",
2752       .cp = 15, .crn = 15, .crm = 1, .opc1 = 0, .opc2 = 0, .access = PL1_RW,
2753       .fieldoffset = offsetof(CPUARMState, cp15.c15_cpar), .resetvalue = 0,
2754       .writefn = xscale_cpar_write, },
2755     { .name = "XSCALE_AUXCR",
2756       .cp = 15, .crn = 1, .crm = 0, .opc1 = 0, .opc2 = 1, .access = PL1_RW,
2757       .fieldoffset = offsetof(CPUARMState, cp15.c1_xscaleauxcr),
2758       .resetvalue = 0, },
2759     /* XScale specific cache-lockdown: since we have no cache we NOP these
2760      * and hope the guest does not really rely on cache behaviour.
2761      */
2762     { .name = "XSCALE_LOCK_ICACHE_LINE",
2763       .cp = 15, .opc1 = 0, .crn = 9, .crm = 1, .opc2 = 0,
2764       .access = PL1_W, .type = ARM_CP_NOP },
2765     { .name = "XSCALE_UNLOCK_ICACHE",
2766       .cp = 15, .opc1 = 0, .crn = 9, .crm = 1, .opc2 = 1,
2767       .access = PL1_W, .type = ARM_CP_NOP },
2768     { .name = "XSCALE_DCACHE_LOCK",
2769       .cp = 15, .opc1 = 0, .crn = 9, .crm = 2, .opc2 = 0,
2770       .access = PL1_RW, .type = ARM_CP_NOP },
2771     { .name = "XSCALE_UNLOCK_DCACHE",
2772       .cp = 15, .opc1 = 0, .crn = 9, .crm = 2, .opc2 = 1,
2773       .access = PL1_W, .type = ARM_CP_NOP },
2774     REGINFO_SENTINEL
2775 };
2776 
2777 static const ARMCPRegInfo dummy_c15_cp_reginfo[] = {
2778     /* RAZ/WI the whole crn=15 space, when we don't have a more specific
2779      * implementation of this implementation-defined space.
2780      * Ideally this should eventually disappear in favour of actually
2781      * implementing the correct behaviour for all cores.
2782      */
2783     { .name = "C15_IMPDEF", .cp = 15, .crn = 15,
2784       .crm = CP_ANY, .opc1 = CP_ANY, .opc2 = CP_ANY,
2785       .access = PL1_RW,
2786       .type = ARM_CP_CONST | ARM_CP_NO_RAW | ARM_CP_OVERRIDE,
2787       .resetvalue = 0 },
2788     REGINFO_SENTINEL
2789 };
2790 
2791 static const ARMCPRegInfo cache_dirty_status_cp_reginfo[] = {
2792     /* Cache status: RAZ because we have no cache so it's always clean */
2793     { .name = "CDSR", .cp = 15, .crn = 7, .crm = 10, .opc1 = 0, .opc2 = 6,
2794       .access = PL1_R, .type = ARM_CP_CONST | ARM_CP_NO_RAW,
2795       .resetvalue = 0 },
2796     REGINFO_SENTINEL
2797 };
2798 
2799 static const ARMCPRegInfo cache_block_ops_cp_reginfo[] = {
2800     /* We never have a a block transfer operation in progress */
2801     { .name = "BXSR", .cp = 15, .crn = 7, .crm = 12, .opc1 = 0, .opc2 = 4,
2802       .access = PL0_R, .type = ARM_CP_CONST | ARM_CP_NO_RAW,
2803       .resetvalue = 0 },
2804     /* The cache ops themselves: these all NOP for QEMU */
2805     { .name = "IICR", .cp = 15, .crm = 5, .opc1 = 0,
2806       .access = PL1_W, .type = ARM_CP_NOP|ARM_CP_64BIT },
2807     { .name = "IDCR", .cp = 15, .crm = 6, .opc1 = 0,
2808       .access = PL1_W, .type = ARM_CP_NOP|ARM_CP_64BIT },
2809     { .name = "CDCR", .cp = 15, .crm = 12, .opc1 = 0,
2810       .access = PL0_W, .type = ARM_CP_NOP|ARM_CP_64BIT },
2811     { .name = "PIR", .cp = 15, .crm = 12, .opc1 = 1,
2812       .access = PL0_W, .type = ARM_CP_NOP|ARM_CP_64BIT },
2813     { .name = "PDR", .cp = 15, .crm = 12, .opc1 = 2,
2814       .access = PL0_W, .type = ARM_CP_NOP|ARM_CP_64BIT },
2815     { .name = "CIDCR", .cp = 15, .crm = 14, .opc1 = 0,
2816       .access = PL1_W, .type = ARM_CP_NOP|ARM_CP_64BIT },
2817     REGINFO_SENTINEL
2818 };
2819 
2820 static const ARMCPRegInfo cache_test_clean_cp_reginfo[] = {
2821     /* The cache test-and-clean instructions always return (1 << 30)
2822      * to indicate that there are no dirty cache lines.
2823      */
2824     { .name = "TC_DCACHE", .cp = 15, .crn = 7, .crm = 10, .opc1 = 0, .opc2 = 3,
2825       .access = PL0_R, .type = ARM_CP_CONST | ARM_CP_NO_RAW,
2826       .resetvalue = (1 << 30) },
2827     { .name = "TCI_DCACHE", .cp = 15, .crn = 7, .crm = 14, .opc1 = 0, .opc2 = 3,
2828       .access = PL0_R, .type = ARM_CP_CONST | ARM_CP_NO_RAW,
2829       .resetvalue = (1 << 30) },
2830     REGINFO_SENTINEL
2831 };
2832 
2833 static const ARMCPRegInfo strongarm_cp_reginfo[] = {
2834     /* Ignore ReadBuffer accesses */
2835     { .name = "C9_READBUFFER", .cp = 15, .crn = 9,
2836       .crm = CP_ANY, .opc1 = CP_ANY, .opc2 = CP_ANY,
2837       .access = PL1_RW, .resetvalue = 0,
2838       .type = ARM_CP_CONST | ARM_CP_OVERRIDE | ARM_CP_NO_RAW },
2839     REGINFO_SENTINEL
2840 };
2841 
2842 static uint64_t midr_read(CPUARMState *env, const ARMCPRegInfo *ri)
2843 {
2844     ARMCPU *cpu = arm_env_get_cpu(env);
2845     unsigned int cur_el = arm_current_el(env);
2846     bool secure = arm_is_secure(env);
2847 
2848     if (arm_feature(&cpu->env, ARM_FEATURE_EL2) && !secure && cur_el == 1) {
2849         return env->cp15.vpidr_el2;
2850     }
2851     return raw_read(env, ri);
2852 }
2853 
2854 static uint64_t mpidr_read_val(CPUARMState *env)
2855 {
2856     ARMCPU *cpu = ARM_CPU(arm_env_get_cpu(env));
2857     uint64_t mpidr = cpu->mp_affinity;
2858 
2859     if (arm_feature(env, ARM_FEATURE_V7MP)) {
2860         mpidr |= (1U << 31);
2861         /* Cores which are uniprocessor (non-coherent)
2862          * but still implement the MP extensions set
2863          * bit 30. (For instance, Cortex-R5).
2864          */
2865         if (cpu->mp_is_up) {
2866             mpidr |= (1u << 30);
2867         }
2868     }
2869     return mpidr;
2870 }
2871 
2872 static uint64_t mpidr_read(CPUARMState *env, const ARMCPRegInfo *ri)
2873 {
2874     unsigned int cur_el = arm_current_el(env);
2875     bool secure = arm_is_secure(env);
2876 
2877     if (arm_feature(env, ARM_FEATURE_EL2) && !secure && cur_el == 1) {
2878         return env->cp15.vmpidr_el2;
2879     }
2880     return mpidr_read_val(env);
2881 }
2882 
2883 static const ARMCPRegInfo mpidr_cp_reginfo[] = {
2884     { .name = "MPIDR", .state = ARM_CP_STATE_BOTH,
2885       .opc0 = 3, .crn = 0, .crm = 0, .opc1 = 0, .opc2 = 5,
2886       .access = PL1_R, .readfn = mpidr_read, .type = ARM_CP_NO_RAW },
2887     REGINFO_SENTINEL
2888 };
2889 
2890 static const ARMCPRegInfo lpae_cp_reginfo[] = {
2891     /* NOP AMAIR0/1 */
2892     { .name = "AMAIR0", .state = ARM_CP_STATE_BOTH,
2893       .opc0 = 3, .crn = 10, .crm = 3, .opc1 = 0, .opc2 = 0,
2894       .access = PL1_RW, .type = ARM_CP_CONST,
2895       .resetvalue = 0 },
2896     /* AMAIR1 is mapped to AMAIR_EL1[63:32] */
2897     { .name = "AMAIR1", .cp = 15, .crn = 10, .crm = 3, .opc1 = 0, .opc2 = 1,
2898       .access = PL1_RW, .type = ARM_CP_CONST,
2899       .resetvalue = 0 },
2900     { .name = "PAR", .cp = 15, .crm = 7, .opc1 = 0,
2901       .access = PL1_RW, .type = ARM_CP_64BIT, .resetvalue = 0,
2902       .bank_fieldoffsets = { offsetof(CPUARMState, cp15.par_s),
2903                              offsetof(CPUARMState, cp15.par_ns)} },
2904     { .name = "TTBR0", .cp = 15, .crm = 2, .opc1 = 0,
2905       .access = PL1_RW, .type = ARM_CP_64BIT | ARM_CP_ALIAS,
2906       .bank_fieldoffsets = { offsetof(CPUARMState, cp15.ttbr0_s),
2907                              offsetof(CPUARMState, cp15.ttbr0_ns) },
2908       .writefn = vmsa_ttbr_write, },
2909     { .name = "TTBR1", .cp = 15, .crm = 2, .opc1 = 1,
2910       .access = PL1_RW, .type = ARM_CP_64BIT | ARM_CP_ALIAS,
2911       .bank_fieldoffsets = { offsetof(CPUARMState, cp15.ttbr1_s),
2912                              offsetof(CPUARMState, cp15.ttbr1_ns) },
2913       .writefn = vmsa_ttbr_write, },
2914     REGINFO_SENTINEL
2915 };
2916 
2917 static uint64_t aa64_fpcr_read(CPUARMState *env, const ARMCPRegInfo *ri)
2918 {
2919     return vfp_get_fpcr(env);
2920 }
2921 
2922 static void aa64_fpcr_write(CPUARMState *env, const ARMCPRegInfo *ri,
2923                             uint64_t value)
2924 {
2925     vfp_set_fpcr(env, value);
2926 }
2927 
2928 static uint64_t aa64_fpsr_read(CPUARMState *env, const ARMCPRegInfo *ri)
2929 {
2930     return vfp_get_fpsr(env);
2931 }
2932 
2933 static void aa64_fpsr_write(CPUARMState *env, const ARMCPRegInfo *ri,
2934                             uint64_t value)
2935 {
2936     vfp_set_fpsr(env, value);
2937 }
2938 
2939 static CPAccessResult aa64_daif_access(CPUARMState *env, const ARMCPRegInfo *ri,
2940                                        bool isread)
2941 {
2942     if (arm_current_el(env) == 0 && !(env->cp15.sctlr_el[1] & SCTLR_UMA)) {
2943         return CP_ACCESS_TRAP;
2944     }
2945     return CP_ACCESS_OK;
2946 }
2947 
2948 static void aa64_daif_write(CPUARMState *env, const ARMCPRegInfo *ri,
2949                             uint64_t value)
2950 {
2951     env->daif = value & PSTATE_DAIF;
2952 }
2953 
2954 static CPAccessResult aa64_cacheop_access(CPUARMState *env,
2955                                           const ARMCPRegInfo *ri,
2956                                           bool isread)
2957 {
2958     /* Cache invalidate/clean: NOP, but EL0 must UNDEF unless
2959      * SCTLR_EL1.UCI is set.
2960      */
2961     if (arm_current_el(env) == 0 && !(env->cp15.sctlr_el[1] & SCTLR_UCI)) {
2962         return CP_ACCESS_TRAP;
2963     }
2964     return CP_ACCESS_OK;
2965 }
2966 
2967 /* See: D4.7.2 TLB maintenance requirements and the TLB maintenance instructions
2968  * Page D4-1736 (DDI0487A.b)
2969  */
2970 
2971 static void tlbi_aa64_vmalle1_write(CPUARMState *env, const ARMCPRegInfo *ri,
2972                                     uint64_t value)
2973 {
2974     CPUState *cs = ENV_GET_CPU(env);
2975 
2976     if (arm_is_secure_below_el3(env)) {
2977         tlb_flush_by_mmuidx(cs,
2978                             ARMMMUIdxBit_S1SE1 |
2979                             ARMMMUIdxBit_S1SE0);
2980     } else {
2981         tlb_flush_by_mmuidx(cs,
2982                             ARMMMUIdxBit_S12NSE1 |
2983                             ARMMMUIdxBit_S12NSE0);
2984     }
2985 }
2986 
2987 static void tlbi_aa64_vmalle1is_write(CPUARMState *env, const ARMCPRegInfo *ri,
2988                                       uint64_t value)
2989 {
2990     CPUState *cs = ENV_GET_CPU(env);
2991     bool sec = arm_is_secure_below_el3(env);
2992 
2993     if (sec) {
2994         tlb_flush_by_mmuidx_all_cpus_synced(cs,
2995                                             ARMMMUIdxBit_S1SE1 |
2996                                             ARMMMUIdxBit_S1SE0);
2997     } else {
2998         tlb_flush_by_mmuidx_all_cpus_synced(cs,
2999                                             ARMMMUIdxBit_S12NSE1 |
3000                                             ARMMMUIdxBit_S12NSE0);
3001     }
3002 }
3003 
3004 static void tlbi_aa64_alle1_write(CPUARMState *env, const ARMCPRegInfo *ri,
3005                                   uint64_t value)
3006 {
3007     /* Note that the 'ALL' scope must invalidate both stage 1 and
3008      * stage 2 translations, whereas most other scopes only invalidate
3009      * stage 1 translations.
3010      */
3011     ARMCPU *cpu = arm_env_get_cpu(env);
3012     CPUState *cs = CPU(cpu);
3013 
3014     if (arm_is_secure_below_el3(env)) {
3015         tlb_flush_by_mmuidx(cs,
3016                             ARMMMUIdxBit_S1SE1 |
3017                             ARMMMUIdxBit_S1SE0);
3018     } else {
3019         if (arm_feature(env, ARM_FEATURE_EL2)) {
3020             tlb_flush_by_mmuidx(cs,
3021                                 ARMMMUIdxBit_S12NSE1 |
3022                                 ARMMMUIdxBit_S12NSE0 |
3023                                 ARMMMUIdxBit_S2NS);
3024         } else {
3025             tlb_flush_by_mmuidx(cs,
3026                                 ARMMMUIdxBit_S12NSE1 |
3027                                 ARMMMUIdxBit_S12NSE0);
3028         }
3029     }
3030 }
3031 
3032 static void tlbi_aa64_alle2_write(CPUARMState *env, const ARMCPRegInfo *ri,
3033                                   uint64_t value)
3034 {
3035     ARMCPU *cpu = arm_env_get_cpu(env);
3036     CPUState *cs = CPU(cpu);
3037 
3038     tlb_flush_by_mmuidx(cs, ARMMMUIdxBit_S1E2);
3039 }
3040 
3041 static void tlbi_aa64_alle3_write(CPUARMState *env, const ARMCPRegInfo *ri,
3042                                   uint64_t value)
3043 {
3044     ARMCPU *cpu = arm_env_get_cpu(env);
3045     CPUState *cs = CPU(cpu);
3046 
3047     tlb_flush_by_mmuidx(cs, ARMMMUIdxBit_S1E3);
3048 }
3049 
3050 static void tlbi_aa64_alle1is_write(CPUARMState *env, const ARMCPRegInfo *ri,
3051                                     uint64_t value)
3052 {
3053     /* Note that the 'ALL' scope must invalidate both stage 1 and
3054      * stage 2 translations, whereas most other scopes only invalidate
3055      * stage 1 translations.
3056      */
3057     CPUState *cs = ENV_GET_CPU(env);
3058     bool sec = arm_is_secure_below_el3(env);
3059     bool has_el2 = arm_feature(env, ARM_FEATURE_EL2);
3060 
3061     if (sec) {
3062         tlb_flush_by_mmuidx_all_cpus_synced(cs,
3063                                             ARMMMUIdxBit_S1SE1 |
3064                                             ARMMMUIdxBit_S1SE0);
3065     } else if (has_el2) {
3066         tlb_flush_by_mmuidx_all_cpus_synced(cs,
3067                                             ARMMMUIdxBit_S12NSE1 |
3068                                             ARMMMUIdxBit_S12NSE0 |
3069                                             ARMMMUIdxBit_S2NS);
3070     } else {
3071           tlb_flush_by_mmuidx_all_cpus_synced(cs,
3072                                               ARMMMUIdxBit_S12NSE1 |
3073                                               ARMMMUIdxBit_S12NSE0);
3074     }
3075 }
3076 
3077 static void tlbi_aa64_alle2is_write(CPUARMState *env, const ARMCPRegInfo *ri,
3078                                     uint64_t value)
3079 {
3080     CPUState *cs = ENV_GET_CPU(env);
3081 
3082     tlb_flush_by_mmuidx_all_cpus_synced(cs, ARMMMUIdxBit_S1E2);
3083 }
3084 
3085 static void tlbi_aa64_alle3is_write(CPUARMState *env, const ARMCPRegInfo *ri,
3086                                     uint64_t value)
3087 {
3088     CPUState *cs = ENV_GET_CPU(env);
3089 
3090     tlb_flush_by_mmuidx_all_cpus_synced(cs, ARMMMUIdxBit_S1E3);
3091 }
3092 
3093 static void tlbi_aa64_vae1_write(CPUARMState *env, const ARMCPRegInfo *ri,
3094                                  uint64_t value)
3095 {
3096     /* Invalidate by VA, EL1&0 (AArch64 version).
3097      * Currently handles all of VAE1, VAAE1, VAALE1 and VALE1,
3098      * since we don't support flush-for-specific-ASID-only or
3099      * flush-last-level-only.
3100      */
3101     ARMCPU *cpu = arm_env_get_cpu(env);
3102     CPUState *cs = CPU(cpu);
3103     uint64_t pageaddr = sextract64(value << 12, 0, 56);
3104 
3105     if (arm_is_secure_below_el3(env)) {
3106         tlb_flush_page_by_mmuidx(cs, pageaddr,
3107                                  ARMMMUIdxBit_S1SE1 |
3108                                  ARMMMUIdxBit_S1SE0);
3109     } else {
3110         tlb_flush_page_by_mmuidx(cs, pageaddr,
3111                                  ARMMMUIdxBit_S12NSE1 |
3112                                  ARMMMUIdxBit_S12NSE0);
3113     }
3114 }
3115 
3116 static void tlbi_aa64_vae2_write(CPUARMState *env, const ARMCPRegInfo *ri,
3117                                  uint64_t value)
3118 {
3119     /* Invalidate by VA, EL2
3120      * Currently handles both VAE2 and VALE2, since we don't support
3121      * flush-last-level-only.
3122      */
3123     ARMCPU *cpu = arm_env_get_cpu(env);
3124     CPUState *cs = CPU(cpu);
3125     uint64_t pageaddr = sextract64(value << 12, 0, 56);
3126 
3127     tlb_flush_page_by_mmuidx(cs, pageaddr, ARMMMUIdxBit_S1E2);
3128 }
3129 
3130 static void tlbi_aa64_vae3_write(CPUARMState *env, const ARMCPRegInfo *ri,
3131                                  uint64_t value)
3132 {
3133     /* Invalidate by VA, EL3
3134      * Currently handles both VAE3 and VALE3, since we don't support
3135      * flush-last-level-only.
3136      */
3137     ARMCPU *cpu = arm_env_get_cpu(env);
3138     CPUState *cs = CPU(cpu);
3139     uint64_t pageaddr = sextract64(value << 12, 0, 56);
3140 
3141     tlb_flush_page_by_mmuidx(cs, pageaddr, ARMMMUIdxBit_S1E3);
3142 }
3143 
3144 static void tlbi_aa64_vae1is_write(CPUARMState *env, const ARMCPRegInfo *ri,
3145                                    uint64_t value)
3146 {
3147     ARMCPU *cpu = arm_env_get_cpu(env);
3148     CPUState *cs = CPU(cpu);
3149     bool sec = arm_is_secure_below_el3(env);
3150     uint64_t pageaddr = sextract64(value << 12, 0, 56);
3151 
3152     if (sec) {
3153         tlb_flush_page_by_mmuidx_all_cpus_synced(cs, pageaddr,
3154                                                  ARMMMUIdxBit_S1SE1 |
3155                                                  ARMMMUIdxBit_S1SE0);
3156     } else {
3157         tlb_flush_page_by_mmuidx_all_cpus_synced(cs, pageaddr,
3158                                                  ARMMMUIdxBit_S12NSE1 |
3159                                                  ARMMMUIdxBit_S12NSE0);
3160     }
3161 }
3162 
3163 static void tlbi_aa64_vae2is_write(CPUARMState *env, const ARMCPRegInfo *ri,
3164                                    uint64_t value)
3165 {
3166     CPUState *cs = ENV_GET_CPU(env);
3167     uint64_t pageaddr = sextract64(value << 12, 0, 56);
3168 
3169     tlb_flush_page_by_mmuidx_all_cpus_synced(cs, pageaddr,
3170                                              ARMMMUIdxBit_S1E2);
3171 }
3172 
3173 static void tlbi_aa64_vae3is_write(CPUARMState *env, const ARMCPRegInfo *ri,
3174                                    uint64_t value)
3175 {
3176     CPUState *cs = ENV_GET_CPU(env);
3177     uint64_t pageaddr = sextract64(value << 12, 0, 56);
3178 
3179     tlb_flush_page_by_mmuidx_all_cpus_synced(cs, pageaddr,
3180                                              ARMMMUIdxBit_S1E3);
3181 }
3182 
3183 static void tlbi_aa64_ipas2e1_write(CPUARMState *env, const ARMCPRegInfo *ri,
3184                                     uint64_t value)
3185 {
3186     /* Invalidate by IPA. This has to invalidate any structures that
3187      * contain only stage 2 translation information, but does not need
3188      * to apply to structures that contain combined stage 1 and stage 2
3189      * translation information.
3190      * This must NOP if EL2 isn't implemented or SCR_EL3.NS is zero.
3191      */
3192     ARMCPU *cpu = arm_env_get_cpu(env);
3193     CPUState *cs = CPU(cpu);
3194     uint64_t pageaddr;
3195 
3196     if (!arm_feature(env, ARM_FEATURE_EL2) || !(env->cp15.scr_el3 & SCR_NS)) {
3197         return;
3198     }
3199 
3200     pageaddr = sextract64(value << 12, 0, 48);
3201 
3202     tlb_flush_page_by_mmuidx(cs, pageaddr, ARMMMUIdxBit_S2NS);
3203 }
3204 
3205 static void tlbi_aa64_ipas2e1is_write(CPUARMState *env, const ARMCPRegInfo *ri,
3206                                       uint64_t value)
3207 {
3208     CPUState *cs = ENV_GET_CPU(env);
3209     uint64_t pageaddr;
3210 
3211     if (!arm_feature(env, ARM_FEATURE_EL2) || !(env->cp15.scr_el3 & SCR_NS)) {
3212         return;
3213     }
3214 
3215     pageaddr = sextract64(value << 12, 0, 48);
3216 
3217     tlb_flush_page_by_mmuidx_all_cpus_synced(cs, pageaddr,
3218                                              ARMMMUIdxBit_S2NS);
3219 }
3220 
3221 static CPAccessResult aa64_zva_access(CPUARMState *env, const ARMCPRegInfo *ri,
3222                                       bool isread)
3223 {
3224     /* We don't implement EL2, so the only control on DC ZVA is the
3225      * bit in the SCTLR which can prohibit access for EL0.
3226      */
3227     if (arm_current_el(env) == 0 && !(env->cp15.sctlr_el[1] & SCTLR_DZE)) {
3228         return CP_ACCESS_TRAP;
3229     }
3230     return CP_ACCESS_OK;
3231 }
3232 
3233 static uint64_t aa64_dczid_read(CPUARMState *env, const ARMCPRegInfo *ri)
3234 {
3235     ARMCPU *cpu = arm_env_get_cpu(env);
3236     int dzp_bit = 1 << 4;
3237 
3238     /* DZP indicates whether DC ZVA access is allowed */
3239     if (aa64_zva_access(env, NULL, false) == CP_ACCESS_OK) {
3240         dzp_bit = 0;
3241     }
3242     return cpu->dcz_blocksize | dzp_bit;
3243 }
3244 
3245 static CPAccessResult sp_el0_access(CPUARMState *env, const ARMCPRegInfo *ri,
3246                                     bool isread)
3247 {
3248     if (!(env->pstate & PSTATE_SP)) {
3249         /* Access to SP_EL0 is undefined if it's being used as
3250          * the stack pointer.
3251          */
3252         return CP_ACCESS_TRAP_UNCATEGORIZED;
3253     }
3254     return CP_ACCESS_OK;
3255 }
3256 
3257 static uint64_t spsel_read(CPUARMState *env, const ARMCPRegInfo *ri)
3258 {
3259     return env->pstate & PSTATE_SP;
3260 }
3261 
3262 static void spsel_write(CPUARMState *env, const ARMCPRegInfo *ri, uint64_t val)
3263 {
3264     update_spsel(env, val);
3265 }
3266 
3267 static void sctlr_write(CPUARMState *env, const ARMCPRegInfo *ri,
3268                         uint64_t value)
3269 {
3270     ARMCPU *cpu = arm_env_get_cpu(env);
3271 
3272     if (raw_read(env, ri) == value) {
3273         /* Skip the TLB flush if nothing actually changed; Linux likes
3274          * to do a lot of pointless SCTLR writes.
3275          */
3276         return;
3277     }
3278 
3279     if (arm_feature(env, ARM_FEATURE_PMSA) && !cpu->has_mpu) {
3280         /* M bit is RAZ/WI for PMSA with no MPU implemented */
3281         value &= ~SCTLR_M;
3282     }
3283 
3284     raw_write(env, ri, value);
3285     /* ??? Lots of these bits are not implemented.  */
3286     /* This may enable/disable the MMU, so do a TLB flush.  */
3287     tlb_flush(CPU(cpu));
3288 }
3289 
3290 static CPAccessResult fpexc32_access(CPUARMState *env, const ARMCPRegInfo *ri,
3291                                      bool isread)
3292 {
3293     if ((env->cp15.cptr_el[2] & CPTR_TFP) && arm_current_el(env) == 2) {
3294         return CP_ACCESS_TRAP_FP_EL2;
3295     }
3296     if (env->cp15.cptr_el[3] & CPTR_TFP) {
3297         return CP_ACCESS_TRAP_FP_EL3;
3298     }
3299     return CP_ACCESS_OK;
3300 }
3301 
3302 static void sdcr_write(CPUARMState *env, const ARMCPRegInfo *ri,
3303                        uint64_t value)
3304 {
3305     env->cp15.mdcr_el3 = value & SDCR_VALID_MASK;
3306 }
3307 
3308 static const ARMCPRegInfo v8_cp_reginfo[] = {
3309     /* Minimal set of EL0-visible registers. This will need to be expanded
3310      * significantly for system emulation of AArch64 CPUs.
3311      */
3312     { .name = "NZCV", .state = ARM_CP_STATE_AA64,
3313       .opc0 = 3, .opc1 = 3, .opc2 = 0, .crn = 4, .crm = 2,
3314       .access = PL0_RW, .type = ARM_CP_NZCV },
3315     { .name = "DAIF", .state = ARM_CP_STATE_AA64,
3316       .opc0 = 3, .opc1 = 3, .opc2 = 1, .crn = 4, .crm = 2,
3317       .type = ARM_CP_NO_RAW,
3318       .access = PL0_RW, .accessfn = aa64_daif_access,
3319       .fieldoffset = offsetof(CPUARMState, daif),
3320       .writefn = aa64_daif_write, .resetfn = arm_cp_reset_ignore },
3321     { .name = "FPCR", .state = ARM_CP_STATE_AA64,
3322       .opc0 = 3, .opc1 = 3, .opc2 = 0, .crn = 4, .crm = 4,
3323       .access = PL0_RW, .readfn = aa64_fpcr_read, .writefn = aa64_fpcr_write },
3324     { .name = "FPSR", .state = ARM_CP_STATE_AA64,
3325       .opc0 = 3, .opc1 = 3, .opc2 = 1, .crn = 4, .crm = 4,
3326       .access = PL0_RW, .readfn = aa64_fpsr_read, .writefn = aa64_fpsr_write },
3327     { .name = "DCZID_EL0", .state = ARM_CP_STATE_AA64,
3328       .opc0 = 3, .opc1 = 3, .opc2 = 7, .crn = 0, .crm = 0,
3329       .access = PL0_R, .type = ARM_CP_NO_RAW,
3330       .readfn = aa64_dczid_read },
3331     { .name = "DC_ZVA", .state = ARM_CP_STATE_AA64,
3332       .opc0 = 1, .opc1 = 3, .crn = 7, .crm = 4, .opc2 = 1,
3333       .access = PL0_W, .type = ARM_CP_DC_ZVA,
3334 #ifndef CONFIG_USER_ONLY
3335       /* Avoid overhead of an access check that always passes in user-mode */
3336       .accessfn = aa64_zva_access,
3337 #endif
3338     },
3339     { .name = "CURRENTEL", .state = ARM_CP_STATE_AA64,
3340       .opc0 = 3, .opc1 = 0, .opc2 = 2, .crn = 4, .crm = 2,
3341       .access = PL1_R, .type = ARM_CP_CURRENTEL },
3342     /* Cache ops: all NOPs since we don't emulate caches */
3343     { .name = "IC_IALLUIS", .state = ARM_CP_STATE_AA64,
3344       .opc0 = 1, .opc1 = 0, .crn = 7, .crm = 1, .opc2 = 0,
3345       .access = PL1_W, .type = ARM_CP_NOP },
3346     { .name = "IC_IALLU", .state = ARM_CP_STATE_AA64,
3347       .opc0 = 1, .opc1 = 0, .crn = 7, .crm = 5, .opc2 = 0,
3348       .access = PL1_W, .type = ARM_CP_NOP },
3349     { .name = "IC_IVAU", .state = ARM_CP_STATE_AA64,
3350       .opc0 = 1, .opc1 = 3, .crn = 7, .crm = 5, .opc2 = 1,
3351       .access = PL0_W, .type = ARM_CP_NOP,
3352       .accessfn = aa64_cacheop_access },
3353     { .name = "DC_IVAC", .state = ARM_CP_STATE_AA64,
3354       .opc0 = 1, .opc1 = 0, .crn = 7, .crm = 6, .opc2 = 1,
3355       .access = PL1_W, .type = ARM_CP_NOP },
3356     { .name = "DC_ISW", .state = ARM_CP_STATE_AA64,
3357       .opc0 = 1, .opc1 = 0, .crn = 7, .crm = 6, .opc2 = 2,
3358       .access = PL1_W, .type = ARM_CP_NOP },
3359     { .name = "DC_CVAC", .state = ARM_CP_STATE_AA64,
3360       .opc0 = 1, .opc1 = 3, .crn = 7, .crm = 10, .opc2 = 1,
3361       .access = PL0_W, .type = ARM_CP_NOP,
3362       .accessfn = aa64_cacheop_access },
3363     { .name = "DC_CSW", .state = ARM_CP_STATE_AA64,
3364       .opc0 = 1, .opc1 = 0, .crn = 7, .crm = 10, .opc2 = 2,
3365       .access = PL1_W, .type = ARM_CP_NOP },
3366     { .name = "DC_CVAU", .state = ARM_CP_STATE_AA64,
3367       .opc0 = 1, .opc1 = 3, .crn = 7, .crm = 11, .opc2 = 1,
3368       .access = PL0_W, .type = ARM_CP_NOP,
3369       .accessfn = aa64_cacheop_access },
3370     { .name = "DC_CIVAC", .state = ARM_CP_STATE_AA64,
3371       .opc0 = 1, .opc1 = 3, .crn = 7, .crm = 14, .opc2 = 1,
3372       .access = PL0_W, .type = ARM_CP_NOP,
3373       .accessfn = aa64_cacheop_access },
3374     { .name = "DC_CISW", .state = ARM_CP_STATE_AA64,
3375       .opc0 = 1, .opc1 = 0, .crn = 7, .crm = 14, .opc2 = 2,
3376       .access = PL1_W, .type = ARM_CP_NOP },
3377     /* TLBI operations */
3378     { .name = "TLBI_VMALLE1IS", .state = ARM_CP_STATE_AA64,
3379       .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 3, .opc2 = 0,
3380       .access = PL1_W, .type = ARM_CP_NO_RAW,
3381       .writefn = tlbi_aa64_vmalle1is_write },
3382     { .name = "TLBI_VAE1IS", .state = ARM_CP_STATE_AA64,
3383       .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 3, .opc2 = 1,
3384       .access = PL1_W, .type = ARM_CP_NO_RAW,
3385       .writefn = tlbi_aa64_vae1is_write },
3386     { .name = "TLBI_ASIDE1IS", .state = ARM_CP_STATE_AA64,
3387       .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 3, .opc2 = 2,
3388       .access = PL1_W, .type = ARM_CP_NO_RAW,
3389       .writefn = tlbi_aa64_vmalle1is_write },
3390     { .name = "TLBI_VAAE1IS", .state = ARM_CP_STATE_AA64,
3391       .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 3, .opc2 = 3,
3392       .access = PL1_W, .type = ARM_CP_NO_RAW,
3393       .writefn = tlbi_aa64_vae1is_write },
3394     { .name = "TLBI_VALE1IS", .state = ARM_CP_STATE_AA64,
3395       .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 3, .opc2 = 5,
3396       .access = PL1_W, .type = ARM_CP_NO_RAW,
3397       .writefn = tlbi_aa64_vae1is_write },
3398     { .name = "TLBI_VAALE1IS", .state = ARM_CP_STATE_AA64,
3399       .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 3, .opc2 = 7,
3400       .access = PL1_W, .type = ARM_CP_NO_RAW,
3401       .writefn = tlbi_aa64_vae1is_write },
3402     { .name = "TLBI_VMALLE1", .state = ARM_CP_STATE_AA64,
3403       .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 7, .opc2 = 0,
3404       .access = PL1_W, .type = ARM_CP_NO_RAW,
3405       .writefn = tlbi_aa64_vmalle1_write },
3406     { .name = "TLBI_VAE1", .state = ARM_CP_STATE_AA64,
3407       .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 7, .opc2 = 1,
3408       .access = PL1_W, .type = ARM_CP_NO_RAW,
3409       .writefn = tlbi_aa64_vae1_write },
3410     { .name = "TLBI_ASIDE1", .state = ARM_CP_STATE_AA64,
3411       .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 7, .opc2 = 2,
3412       .access = PL1_W, .type = ARM_CP_NO_RAW,
3413       .writefn = tlbi_aa64_vmalle1_write },
3414     { .name = "TLBI_VAAE1", .state = ARM_CP_STATE_AA64,
3415       .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 7, .opc2 = 3,
3416       .access = PL1_W, .type = ARM_CP_NO_RAW,
3417       .writefn = tlbi_aa64_vae1_write },
3418     { .name = "TLBI_VALE1", .state = ARM_CP_STATE_AA64,
3419       .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 7, .opc2 = 5,
3420       .access = PL1_W, .type = ARM_CP_NO_RAW,
3421       .writefn = tlbi_aa64_vae1_write },
3422     { .name = "TLBI_VAALE1", .state = ARM_CP_STATE_AA64,
3423       .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 7, .opc2 = 7,
3424       .access = PL1_W, .type = ARM_CP_NO_RAW,
3425       .writefn = tlbi_aa64_vae1_write },
3426     { .name = "TLBI_IPAS2E1IS", .state = ARM_CP_STATE_AA64,
3427       .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 0, .opc2 = 1,
3428       .access = PL2_W, .type = ARM_CP_NO_RAW,
3429       .writefn = tlbi_aa64_ipas2e1is_write },
3430     { .name = "TLBI_IPAS2LE1IS", .state = ARM_CP_STATE_AA64,
3431       .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 0, .opc2 = 5,
3432       .access = PL2_W, .type = ARM_CP_NO_RAW,
3433       .writefn = tlbi_aa64_ipas2e1is_write },
3434     { .name = "TLBI_ALLE1IS", .state = ARM_CP_STATE_AA64,
3435       .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 3, .opc2 = 4,
3436       .access = PL2_W, .type = ARM_CP_NO_RAW,
3437       .writefn = tlbi_aa64_alle1is_write },
3438     { .name = "TLBI_VMALLS12E1IS", .state = ARM_CP_STATE_AA64,
3439       .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 3, .opc2 = 6,
3440       .access = PL2_W, .type = ARM_CP_NO_RAW,
3441       .writefn = tlbi_aa64_alle1is_write },
3442     { .name = "TLBI_IPAS2E1", .state = ARM_CP_STATE_AA64,
3443       .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 4, .opc2 = 1,
3444       .access = PL2_W, .type = ARM_CP_NO_RAW,
3445       .writefn = tlbi_aa64_ipas2e1_write },
3446     { .name = "TLBI_IPAS2LE1", .state = ARM_CP_STATE_AA64,
3447       .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 4, .opc2 = 5,
3448       .access = PL2_W, .type = ARM_CP_NO_RAW,
3449       .writefn = tlbi_aa64_ipas2e1_write },
3450     { .name = "TLBI_ALLE1", .state = ARM_CP_STATE_AA64,
3451       .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 7, .opc2 = 4,
3452       .access = PL2_W, .type = ARM_CP_NO_RAW,
3453       .writefn = tlbi_aa64_alle1_write },
3454     { .name = "TLBI_VMALLS12E1", .state = ARM_CP_STATE_AA64,
3455       .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 7, .opc2 = 6,
3456       .access = PL2_W, .type = ARM_CP_NO_RAW,
3457       .writefn = tlbi_aa64_alle1is_write },
3458 #ifndef CONFIG_USER_ONLY
3459     /* 64 bit address translation operations */
3460     { .name = "AT_S1E1R", .state = ARM_CP_STATE_AA64,
3461       .opc0 = 1, .opc1 = 0, .crn = 7, .crm = 8, .opc2 = 0,
3462       .access = PL1_W, .type = ARM_CP_NO_RAW, .writefn = ats_write64 },
3463     { .name = "AT_S1E1W", .state = ARM_CP_STATE_AA64,
3464       .opc0 = 1, .opc1 = 0, .crn = 7, .crm = 8, .opc2 = 1,
3465       .access = PL1_W, .type = ARM_CP_NO_RAW, .writefn = ats_write64 },
3466     { .name = "AT_S1E0R", .state = ARM_CP_STATE_AA64,
3467       .opc0 = 1, .opc1 = 0, .crn = 7, .crm = 8, .opc2 = 2,
3468       .access = PL1_W, .type = ARM_CP_NO_RAW, .writefn = ats_write64 },
3469     { .name = "AT_S1E0W", .state = ARM_CP_STATE_AA64,
3470       .opc0 = 1, .opc1 = 0, .crn = 7, .crm = 8, .opc2 = 3,
3471       .access = PL1_W, .type = ARM_CP_NO_RAW, .writefn = ats_write64 },
3472     { .name = "AT_S12E1R", .state = ARM_CP_STATE_AA64,
3473       .opc0 = 1, .opc1 = 4, .crn = 7, .crm = 8, .opc2 = 4,
3474       .access = PL2_W, .type = ARM_CP_NO_RAW, .writefn = ats_write64 },
3475     { .name = "AT_S12E1W", .state = ARM_CP_STATE_AA64,
3476       .opc0 = 1, .opc1 = 4, .crn = 7, .crm = 8, .opc2 = 5,
3477       .access = PL2_W, .type = ARM_CP_NO_RAW, .writefn = ats_write64 },
3478     { .name = "AT_S12E0R", .state = ARM_CP_STATE_AA64,
3479       .opc0 = 1, .opc1 = 4, .crn = 7, .crm = 8, .opc2 = 6,
3480       .access = PL2_W, .type = ARM_CP_NO_RAW, .writefn = ats_write64 },
3481     { .name = "AT_S12E0W", .state = ARM_CP_STATE_AA64,
3482       .opc0 = 1, .opc1 = 4, .crn = 7, .crm = 8, .opc2 = 7,
3483       .access = PL2_W, .type = ARM_CP_NO_RAW, .writefn = ats_write64 },
3484     /* AT S1E2* are elsewhere as they UNDEF from EL3 if EL2 is not present */
3485     { .name = "AT_S1E3R", .state = ARM_CP_STATE_AA64,
3486       .opc0 = 1, .opc1 = 6, .crn = 7, .crm = 8, .opc2 = 0,
3487       .access = PL3_W, .type = ARM_CP_NO_RAW, .writefn = ats_write64 },
3488     { .name = "AT_S1E3W", .state = ARM_CP_STATE_AA64,
3489       .opc0 = 1, .opc1 = 6, .crn = 7, .crm = 8, .opc2 = 1,
3490       .access = PL3_W, .type = ARM_CP_NO_RAW, .writefn = ats_write64 },
3491     { .name = "PAR_EL1", .state = ARM_CP_STATE_AA64,
3492       .type = ARM_CP_ALIAS,
3493       .opc0 = 3, .opc1 = 0, .crn = 7, .crm = 4, .opc2 = 0,
3494       .access = PL1_RW, .resetvalue = 0,
3495       .fieldoffset = offsetof(CPUARMState, cp15.par_el[1]),
3496       .writefn = par_write },
3497 #endif
3498     /* TLB invalidate last level of translation table walk */
3499     { .name = "TLBIMVALIS", .cp = 15, .opc1 = 0, .crn = 8, .crm = 3, .opc2 = 5,
3500       .type = ARM_CP_NO_RAW, .access = PL1_W, .writefn = tlbimva_is_write },
3501     { .name = "TLBIMVAALIS", .cp = 15, .opc1 = 0, .crn = 8, .crm = 3, .opc2 = 7,
3502       .type = ARM_CP_NO_RAW, .access = PL1_W,
3503       .writefn = tlbimvaa_is_write },
3504     { .name = "TLBIMVAL", .cp = 15, .opc1 = 0, .crn = 8, .crm = 7, .opc2 = 5,
3505       .type = ARM_CP_NO_RAW, .access = PL1_W, .writefn = tlbimva_write },
3506     { .name = "TLBIMVAAL", .cp = 15, .opc1 = 0, .crn = 8, .crm = 7, .opc2 = 7,
3507       .type = ARM_CP_NO_RAW, .access = PL1_W, .writefn = tlbimvaa_write },
3508     { .name = "TLBIMVALH", .cp = 15, .opc1 = 4, .crn = 8, .crm = 7, .opc2 = 5,
3509       .type = ARM_CP_NO_RAW, .access = PL2_W,
3510       .writefn = tlbimva_hyp_write },
3511     { .name = "TLBIMVALHIS",
3512       .cp = 15, .opc1 = 4, .crn = 8, .crm = 3, .opc2 = 5,
3513       .type = ARM_CP_NO_RAW, .access = PL2_W,
3514       .writefn = tlbimva_hyp_is_write },
3515     { .name = "TLBIIPAS2",
3516       .cp = 15, .opc1 = 4, .crn = 8, .crm = 4, .opc2 = 1,
3517       .type = ARM_CP_NO_RAW, .access = PL2_W,
3518       .writefn = tlbiipas2_write },
3519     { .name = "TLBIIPAS2IS",
3520       .cp = 15, .opc1 = 4, .crn = 8, .crm = 0, .opc2 = 1,
3521       .type = ARM_CP_NO_RAW, .access = PL2_W,
3522       .writefn = tlbiipas2_is_write },
3523     { .name = "TLBIIPAS2L",
3524       .cp = 15, .opc1 = 4, .crn = 8, .crm = 4, .opc2 = 5,
3525       .type = ARM_CP_NO_RAW, .access = PL2_W,
3526       .writefn = tlbiipas2_write },
3527     { .name = "TLBIIPAS2LIS",
3528       .cp = 15, .opc1 = 4, .crn = 8, .crm = 0, .opc2 = 5,
3529       .type = ARM_CP_NO_RAW, .access = PL2_W,
3530       .writefn = tlbiipas2_is_write },
3531     /* 32 bit cache operations */
3532     { .name = "ICIALLUIS", .cp = 15, .opc1 = 0, .crn = 7, .crm = 1, .opc2 = 0,
3533       .type = ARM_CP_NOP, .access = PL1_W },
3534     { .name = "BPIALLUIS", .cp = 15, .opc1 = 0, .crn = 7, .crm = 1, .opc2 = 6,
3535       .type = ARM_CP_NOP, .access = PL1_W },
3536     { .name = "ICIALLU", .cp = 15, .opc1 = 0, .crn = 7, .crm = 5, .opc2 = 0,
3537       .type = ARM_CP_NOP, .access = PL1_W },
3538     { .name = "ICIMVAU", .cp = 15, .opc1 = 0, .crn = 7, .crm = 5, .opc2 = 1,
3539       .type = ARM_CP_NOP, .access = PL1_W },
3540     { .name = "BPIALL", .cp = 15, .opc1 = 0, .crn = 7, .crm = 5, .opc2 = 6,
3541       .type = ARM_CP_NOP, .access = PL1_W },
3542     { .name = "BPIMVA", .cp = 15, .opc1 = 0, .crn = 7, .crm = 5, .opc2 = 7,
3543       .type = ARM_CP_NOP, .access = PL1_W },
3544     { .name = "DCIMVAC", .cp = 15, .opc1 = 0, .crn = 7, .crm = 6, .opc2 = 1,
3545       .type = ARM_CP_NOP, .access = PL1_W },
3546     { .name = "DCISW", .cp = 15, .opc1 = 0, .crn = 7, .crm = 6, .opc2 = 2,
3547       .type = ARM_CP_NOP, .access = PL1_W },
3548     { .name = "DCCMVAC", .cp = 15, .opc1 = 0, .crn = 7, .crm = 10, .opc2 = 1,
3549       .type = ARM_CP_NOP, .access = PL1_W },
3550     { .name = "DCCSW", .cp = 15, .opc1 = 0, .crn = 7, .crm = 10, .opc2 = 2,
3551       .type = ARM_CP_NOP, .access = PL1_W },
3552     { .name = "DCCMVAU", .cp = 15, .opc1 = 0, .crn = 7, .crm = 11, .opc2 = 1,
3553       .type = ARM_CP_NOP, .access = PL1_W },
3554     { .name = "DCCIMVAC", .cp = 15, .opc1 = 0, .crn = 7, .crm = 14, .opc2 = 1,
3555       .type = ARM_CP_NOP, .access = PL1_W },
3556     { .name = "DCCISW", .cp = 15, .opc1 = 0, .crn = 7, .crm = 14, .opc2 = 2,
3557       .type = ARM_CP_NOP, .access = PL1_W },
3558     /* MMU Domain access control / MPU write buffer control */
3559     { .name = "DACR", .cp = 15, .opc1 = 0, .crn = 3, .crm = 0, .opc2 = 0,
3560       .access = PL1_RW, .resetvalue = 0,
3561       .writefn = dacr_write, .raw_writefn = raw_write,
3562       .bank_fieldoffsets = { offsetoflow32(CPUARMState, cp15.dacr_s),
3563                              offsetoflow32(CPUARMState, cp15.dacr_ns) } },
3564     { .name = "ELR_EL1", .state = ARM_CP_STATE_AA64,
3565       .type = ARM_CP_ALIAS,
3566       .opc0 = 3, .opc1 = 0, .crn = 4, .crm = 0, .opc2 = 1,
3567       .access = PL1_RW,
3568       .fieldoffset = offsetof(CPUARMState, elr_el[1]) },
3569     { .name = "SPSR_EL1", .state = ARM_CP_STATE_AA64,
3570       .type = ARM_CP_ALIAS,
3571       .opc0 = 3, .opc1 = 0, .crn = 4, .crm = 0, .opc2 = 0,
3572       .access = PL1_RW,
3573       .fieldoffset = offsetof(CPUARMState, banked_spsr[BANK_SVC]) },
3574     /* We rely on the access checks not allowing the guest to write to the
3575      * state field when SPSel indicates that it's being used as the stack
3576      * pointer.
3577      */
3578     { .name = "SP_EL0", .state = ARM_CP_STATE_AA64,
3579       .opc0 = 3, .opc1 = 0, .crn = 4, .crm = 1, .opc2 = 0,
3580       .access = PL1_RW, .accessfn = sp_el0_access,
3581       .type = ARM_CP_ALIAS,
3582       .fieldoffset = offsetof(CPUARMState, sp_el[0]) },
3583     { .name = "SP_EL1", .state = ARM_CP_STATE_AA64,
3584       .opc0 = 3, .opc1 = 4, .crn = 4, .crm = 1, .opc2 = 0,
3585       .access = PL2_RW, .type = ARM_CP_ALIAS,
3586       .fieldoffset = offsetof(CPUARMState, sp_el[1]) },
3587     { .name = "SPSel", .state = ARM_CP_STATE_AA64,
3588       .opc0 = 3, .opc1 = 0, .crn = 4, .crm = 2, .opc2 = 0,
3589       .type = ARM_CP_NO_RAW,
3590       .access = PL1_RW, .readfn = spsel_read, .writefn = spsel_write },
3591     { .name = "FPEXC32_EL2", .state = ARM_CP_STATE_AA64,
3592       .opc0 = 3, .opc1 = 4, .crn = 5, .crm = 3, .opc2 = 0,
3593       .type = ARM_CP_ALIAS,
3594       .fieldoffset = offsetof(CPUARMState, vfp.xregs[ARM_VFP_FPEXC]),
3595       .access = PL2_RW, .accessfn = fpexc32_access },
3596     { .name = "DACR32_EL2", .state = ARM_CP_STATE_AA64,
3597       .opc0 = 3, .opc1 = 4, .crn = 3, .crm = 0, .opc2 = 0,
3598       .access = PL2_RW, .resetvalue = 0,
3599       .writefn = dacr_write, .raw_writefn = raw_write,
3600       .fieldoffset = offsetof(CPUARMState, cp15.dacr32_el2) },
3601     { .name = "IFSR32_EL2", .state = ARM_CP_STATE_AA64,
3602       .opc0 = 3, .opc1 = 4, .crn = 5, .crm = 0, .opc2 = 1,
3603       .access = PL2_RW, .resetvalue = 0,
3604       .fieldoffset = offsetof(CPUARMState, cp15.ifsr32_el2) },
3605     { .name = "SPSR_IRQ", .state = ARM_CP_STATE_AA64,
3606       .type = ARM_CP_ALIAS,
3607       .opc0 = 3, .opc1 = 4, .crn = 4, .crm = 3, .opc2 = 0,
3608       .access = PL2_RW,
3609       .fieldoffset = offsetof(CPUARMState, banked_spsr[BANK_IRQ]) },
3610     { .name = "SPSR_ABT", .state = ARM_CP_STATE_AA64,
3611       .type = ARM_CP_ALIAS,
3612       .opc0 = 3, .opc1 = 4, .crn = 4, .crm = 3, .opc2 = 1,
3613       .access = PL2_RW,
3614       .fieldoffset = offsetof(CPUARMState, banked_spsr[BANK_ABT]) },
3615     { .name = "SPSR_UND", .state = ARM_CP_STATE_AA64,
3616       .type = ARM_CP_ALIAS,
3617       .opc0 = 3, .opc1 = 4, .crn = 4, .crm = 3, .opc2 = 2,
3618       .access = PL2_RW,
3619       .fieldoffset = offsetof(CPUARMState, banked_spsr[BANK_UND]) },
3620     { .name = "SPSR_FIQ", .state = ARM_CP_STATE_AA64,
3621       .type = ARM_CP_ALIAS,
3622       .opc0 = 3, .opc1 = 4, .crn = 4, .crm = 3, .opc2 = 3,
3623       .access = PL2_RW,
3624       .fieldoffset = offsetof(CPUARMState, banked_spsr[BANK_FIQ]) },
3625     { .name = "MDCR_EL3", .state = ARM_CP_STATE_AA64,
3626       .opc0 = 3, .opc1 = 6, .crn = 1, .crm = 3, .opc2 = 1,
3627       .resetvalue = 0,
3628       .access = PL3_RW, .fieldoffset = offsetof(CPUARMState, cp15.mdcr_el3) },
3629     { .name = "SDCR", .type = ARM_CP_ALIAS,
3630       .cp = 15, .opc1 = 0, .crn = 1, .crm = 3, .opc2 = 1,
3631       .access = PL1_RW, .accessfn = access_trap_aa32s_el1,
3632       .writefn = sdcr_write,
3633       .fieldoffset = offsetoflow32(CPUARMState, cp15.mdcr_el3) },
3634     REGINFO_SENTINEL
3635 };
3636 
3637 /* Used to describe the behaviour of EL2 regs when EL2 does not exist.  */
3638 static const ARMCPRegInfo el3_no_el2_cp_reginfo[] = {
3639     { .name = "VBAR_EL2", .state = ARM_CP_STATE_AA64,
3640       .opc0 = 3, .opc1 = 4, .crn = 12, .crm = 0, .opc2 = 0,
3641       .access = PL2_RW,
3642       .readfn = arm_cp_read_zero, .writefn = arm_cp_write_ignore },
3643     { .name = "HCR_EL2", .state = ARM_CP_STATE_AA64,
3644       .type = ARM_CP_NO_RAW,
3645       .opc0 = 3, .opc1 = 4, .crn = 1, .crm = 1, .opc2 = 0,
3646       .access = PL2_RW,
3647       .readfn = arm_cp_read_zero, .writefn = arm_cp_write_ignore },
3648     { .name = "CPTR_EL2", .state = ARM_CP_STATE_BOTH,
3649       .opc0 = 3, .opc1 = 4, .crn = 1, .crm = 1, .opc2 = 2,
3650       .access = PL2_RW, .type = ARM_CP_CONST, .resetvalue = 0 },
3651     { .name = "MAIR_EL2", .state = ARM_CP_STATE_BOTH,
3652       .opc0 = 3, .opc1 = 4, .crn = 10, .crm = 2, .opc2 = 0,
3653       .access = PL2_RW, .type = ARM_CP_CONST,
3654       .resetvalue = 0 },
3655     { .name = "HMAIR1", .state = ARM_CP_STATE_AA32,
3656       .opc1 = 4, .crn = 10, .crm = 2, .opc2 = 1,
3657       .access = PL2_RW, .type = ARM_CP_CONST, .resetvalue = 0 },
3658     { .name = "AMAIR_EL2", .state = ARM_CP_STATE_BOTH,
3659       .opc0 = 3, .opc1 = 4, .crn = 10, .crm = 3, .opc2 = 0,
3660       .access = PL2_RW, .type = ARM_CP_CONST,
3661       .resetvalue = 0 },
3662     { .name = "HMAIR1", .state = ARM_CP_STATE_AA32,
3663       .opc1 = 4, .crn = 10, .crm = 3, .opc2 = 1,
3664       .access = PL2_RW, .type = ARM_CP_CONST,
3665       .resetvalue = 0 },
3666     { .name = "AFSR0_EL2", .state = ARM_CP_STATE_BOTH,
3667       .opc0 = 3, .opc1 = 4, .crn = 5, .crm = 1, .opc2 = 0,
3668       .access = PL2_RW, .type = ARM_CP_CONST,
3669       .resetvalue = 0 },
3670     { .name = "AFSR1_EL2", .state = ARM_CP_STATE_BOTH,
3671       .opc0 = 3, .opc1 = 4, .crn = 5, .crm = 1, .opc2 = 1,
3672       .access = PL2_RW, .type = ARM_CP_CONST,
3673       .resetvalue = 0 },
3674     { .name = "TCR_EL2", .state = ARM_CP_STATE_BOTH,
3675       .opc0 = 3, .opc1 = 4, .crn = 2, .crm = 0, .opc2 = 2,
3676       .access = PL2_RW, .type = ARM_CP_CONST, .resetvalue = 0 },
3677     { .name = "VTCR_EL2", .state = ARM_CP_STATE_BOTH,
3678       .opc0 = 3, .opc1 = 4, .crn = 2, .crm = 1, .opc2 = 2,
3679       .access = PL2_RW, .accessfn = access_el3_aa32ns_aa64any,
3680       .type = ARM_CP_CONST, .resetvalue = 0 },
3681     { .name = "VTTBR", .state = ARM_CP_STATE_AA32,
3682       .cp = 15, .opc1 = 6, .crm = 2,
3683       .access = PL2_RW, .accessfn = access_el3_aa32ns,
3684       .type = ARM_CP_CONST | ARM_CP_64BIT, .resetvalue = 0 },
3685     { .name = "VTTBR_EL2", .state = ARM_CP_STATE_AA64,
3686       .opc0 = 3, .opc1 = 4, .crn = 2, .crm = 1, .opc2 = 0,
3687       .access = PL2_RW, .type = ARM_CP_CONST, .resetvalue = 0 },
3688     { .name = "SCTLR_EL2", .state = ARM_CP_STATE_BOTH,
3689       .opc0 = 3, .opc1 = 4, .crn = 1, .crm = 0, .opc2 = 0,
3690       .access = PL2_RW, .type = ARM_CP_CONST, .resetvalue = 0 },
3691     { .name = "TPIDR_EL2", .state = ARM_CP_STATE_BOTH,
3692       .opc0 = 3, .opc1 = 4, .crn = 13, .crm = 0, .opc2 = 2,
3693       .access = PL2_RW, .type = ARM_CP_CONST, .resetvalue = 0 },
3694     { .name = "TTBR0_EL2", .state = ARM_CP_STATE_AA64,
3695       .opc0 = 3, .opc1 = 4, .crn = 2, .crm = 0, .opc2 = 0,
3696       .access = PL2_RW, .type = ARM_CP_CONST, .resetvalue = 0 },
3697     { .name = "HTTBR", .cp = 15, .opc1 = 4, .crm = 2,
3698       .access = PL2_RW, .type = ARM_CP_64BIT | ARM_CP_CONST,
3699       .resetvalue = 0 },
3700     { .name = "CNTHCTL_EL2", .state = ARM_CP_STATE_BOTH,
3701       .opc0 = 3, .opc1 = 4, .crn = 14, .crm = 1, .opc2 = 0,
3702       .access = PL2_RW, .type = ARM_CP_CONST, .resetvalue = 0 },
3703     { .name = "CNTVOFF_EL2", .state = ARM_CP_STATE_AA64,
3704       .opc0 = 3, .opc1 = 4, .crn = 14, .crm = 0, .opc2 = 3,
3705       .access = PL2_RW, .type = ARM_CP_CONST, .resetvalue = 0 },
3706     { .name = "CNTVOFF", .cp = 15, .opc1 = 4, .crm = 14,
3707       .access = PL2_RW, .type = ARM_CP_64BIT | ARM_CP_CONST,
3708       .resetvalue = 0 },
3709     { .name = "CNTHP_CVAL_EL2", .state = ARM_CP_STATE_AA64,
3710       .opc0 = 3, .opc1 = 4, .crn = 14, .crm = 2, .opc2 = 2,
3711       .access = PL2_RW, .type = ARM_CP_CONST, .resetvalue = 0 },
3712     { .name = "CNTHP_CVAL", .cp = 15, .opc1 = 6, .crm = 14,
3713       .access = PL2_RW, .type = ARM_CP_64BIT | ARM_CP_CONST,
3714       .resetvalue = 0 },
3715     { .name = "CNTHP_TVAL_EL2", .state = ARM_CP_STATE_BOTH,
3716       .opc0 = 3, .opc1 = 4, .crn = 14, .crm = 2, .opc2 = 0,
3717       .access = PL2_RW, .type = ARM_CP_CONST, .resetvalue = 0 },
3718     { .name = "CNTHP_CTL_EL2", .state = ARM_CP_STATE_BOTH,
3719       .opc0 = 3, .opc1 = 4, .crn = 14, .crm = 2, .opc2 = 1,
3720       .access = PL2_RW, .type = ARM_CP_CONST, .resetvalue = 0 },
3721     { .name = "MDCR_EL2", .state = ARM_CP_STATE_BOTH,
3722       .opc0 = 3, .opc1 = 4, .crn = 1, .crm = 1, .opc2 = 1,
3723       .access = PL2_RW, .accessfn = access_tda,
3724       .type = ARM_CP_CONST, .resetvalue = 0 },
3725     { .name = "HPFAR_EL2", .state = ARM_CP_STATE_BOTH,
3726       .opc0 = 3, .opc1 = 4, .crn = 6, .crm = 0, .opc2 = 4,
3727       .access = PL2_RW, .accessfn = access_el3_aa32ns_aa64any,
3728       .type = ARM_CP_CONST, .resetvalue = 0 },
3729     { .name = "HSTR_EL2", .state = ARM_CP_STATE_BOTH,
3730       .opc0 = 3, .opc1 = 4, .crn = 1, .crm = 1, .opc2 = 3,
3731       .access = PL2_RW, .type = ARM_CP_CONST, .resetvalue = 0 },
3732     REGINFO_SENTINEL
3733 };
3734 
3735 static void hcr_write(CPUARMState *env, const ARMCPRegInfo *ri, uint64_t value)
3736 {
3737     ARMCPU *cpu = arm_env_get_cpu(env);
3738     uint64_t valid_mask = HCR_MASK;
3739 
3740     if (arm_feature(env, ARM_FEATURE_EL3)) {
3741         valid_mask &= ~HCR_HCD;
3742     } else if (cpu->psci_conduit != QEMU_PSCI_CONDUIT_SMC) {
3743         /* Architecturally HCR.TSC is RES0 if EL3 is not implemented.
3744          * However, if we're using the SMC PSCI conduit then QEMU is
3745          * effectively acting like EL3 firmware and so the guest at
3746          * EL2 should retain the ability to prevent EL1 from being
3747          * able to make SMC calls into the ersatz firmware, so in
3748          * that case HCR.TSC should be read/write.
3749          */
3750         valid_mask &= ~HCR_TSC;
3751     }
3752 
3753     /* Clear RES0 bits.  */
3754     value &= valid_mask;
3755 
3756     /* These bits change the MMU setup:
3757      * HCR_VM enables stage 2 translation
3758      * HCR_PTW forbids certain page-table setups
3759      * HCR_DC Disables stage1 and enables stage2 translation
3760      */
3761     if ((raw_read(env, ri) ^ value) & (HCR_VM | HCR_PTW | HCR_DC)) {
3762         tlb_flush(CPU(cpu));
3763     }
3764     raw_write(env, ri, value);
3765 }
3766 
3767 static const ARMCPRegInfo el2_cp_reginfo[] = {
3768     { .name = "HCR_EL2", .state = ARM_CP_STATE_AA64,
3769       .opc0 = 3, .opc1 = 4, .crn = 1, .crm = 1, .opc2 = 0,
3770       .access = PL2_RW, .fieldoffset = offsetof(CPUARMState, cp15.hcr_el2),
3771       .writefn = hcr_write },
3772     { .name = "ELR_EL2", .state = ARM_CP_STATE_AA64,
3773       .type = ARM_CP_ALIAS,
3774       .opc0 = 3, .opc1 = 4, .crn = 4, .crm = 0, .opc2 = 1,
3775       .access = PL2_RW,
3776       .fieldoffset = offsetof(CPUARMState, elr_el[2]) },
3777     { .name = "ESR_EL2", .state = ARM_CP_STATE_AA64,
3778       .opc0 = 3, .opc1 = 4, .crn = 5, .crm = 2, .opc2 = 0,
3779       .access = PL2_RW, .fieldoffset = offsetof(CPUARMState, cp15.esr_el[2]) },
3780     { .name = "FAR_EL2", .state = ARM_CP_STATE_AA64,
3781       .opc0 = 3, .opc1 = 4, .crn = 6, .crm = 0, .opc2 = 0,
3782       .access = PL2_RW, .fieldoffset = offsetof(CPUARMState, cp15.far_el[2]) },
3783     { .name = "SPSR_EL2", .state = ARM_CP_STATE_AA64,
3784       .type = ARM_CP_ALIAS,
3785       .opc0 = 3, .opc1 = 4, .crn = 4, .crm = 0, .opc2 = 0,
3786       .access = PL2_RW,
3787       .fieldoffset = offsetof(CPUARMState, banked_spsr[BANK_HYP]) },
3788     { .name = "VBAR_EL2", .state = ARM_CP_STATE_AA64,
3789       .opc0 = 3, .opc1 = 4, .crn = 12, .crm = 0, .opc2 = 0,
3790       .access = PL2_RW, .writefn = vbar_write,
3791       .fieldoffset = offsetof(CPUARMState, cp15.vbar_el[2]),
3792       .resetvalue = 0 },
3793     { .name = "SP_EL2", .state = ARM_CP_STATE_AA64,
3794       .opc0 = 3, .opc1 = 6, .crn = 4, .crm = 1, .opc2 = 0,
3795       .access = PL3_RW, .type = ARM_CP_ALIAS,
3796       .fieldoffset = offsetof(CPUARMState, sp_el[2]) },
3797     { .name = "CPTR_EL2", .state = ARM_CP_STATE_BOTH,
3798       .opc0 = 3, .opc1 = 4, .crn = 1, .crm = 1, .opc2 = 2,
3799       .access = PL2_RW, .accessfn = cptr_access, .resetvalue = 0,
3800       .fieldoffset = offsetof(CPUARMState, cp15.cptr_el[2]) },
3801     { .name = "MAIR_EL2", .state = ARM_CP_STATE_BOTH,
3802       .opc0 = 3, .opc1 = 4, .crn = 10, .crm = 2, .opc2 = 0,
3803       .access = PL2_RW, .fieldoffset = offsetof(CPUARMState, cp15.mair_el[2]),
3804       .resetvalue = 0 },
3805     { .name = "HMAIR1", .state = ARM_CP_STATE_AA32,
3806       .opc1 = 4, .crn = 10, .crm = 2, .opc2 = 1,
3807       .access = PL2_RW, .type = ARM_CP_ALIAS,
3808       .fieldoffset = offsetofhigh32(CPUARMState, cp15.mair_el[2]) },
3809     { .name = "AMAIR_EL2", .state = ARM_CP_STATE_BOTH,
3810       .opc0 = 3, .opc1 = 4, .crn = 10, .crm = 3, .opc2 = 0,
3811       .access = PL2_RW, .type = ARM_CP_CONST,
3812       .resetvalue = 0 },
3813     /* HAMAIR1 is mapped to AMAIR_EL2[63:32] */
3814     { .name = "HMAIR1", .state = ARM_CP_STATE_AA32,
3815       .opc1 = 4, .crn = 10, .crm = 3, .opc2 = 1,
3816       .access = PL2_RW, .type = ARM_CP_CONST,
3817       .resetvalue = 0 },
3818     { .name = "AFSR0_EL2", .state = ARM_CP_STATE_BOTH,
3819       .opc0 = 3, .opc1 = 4, .crn = 5, .crm = 1, .opc2 = 0,
3820       .access = PL2_RW, .type = ARM_CP_CONST,
3821       .resetvalue = 0 },
3822     { .name = "AFSR1_EL2", .state = ARM_CP_STATE_BOTH,
3823       .opc0 = 3, .opc1 = 4, .crn = 5, .crm = 1, .opc2 = 1,
3824       .access = PL2_RW, .type = ARM_CP_CONST,
3825       .resetvalue = 0 },
3826     { .name = "TCR_EL2", .state = ARM_CP_STATE_BOTH,
3827       .opc0 = 3, .opc1 = 4, .crn = 2, .crm = 0, .opc2 = 2,
3828       .access = PL2_RW,
3829       /* no .writefn needed as this can't cause an ASID change;
3830        * no .raw_writefn or .resetfn needed as we never use mask/base_mask
3831        */
3832       .fieldoffset = offsetof(CPUARMState, cp15.tcr_el[2]) },
3833     { .name = "VTCR", .state = ARM_CP_STATE_AA32,
3834       .cp = 15, .opc1 = 4, .crn = 2, .crm = 1, .opc2 = 2,
3835       .type = ARM_CP_ALIAS,
3836       .access = PL2_RW, .accessfn = access_el3_aa32ns,
3837       .fieldoffset = offsetof(CPUARMState, cp15.vtcr_el2) },
3838     { .name = "VTCR_EL2", .state = ARM_CP_STATE_AA64,
3839       .opc0 = 3, .opc1 = 4, .crn = 2, .crm = 1, .opc2 = 2,
3840       .access = PL2_RW,
3841       /* no .writefn needed as this can't cause an ASID change;
3842        * no .raw_writefn or .resetfn needed as we never use mask/base_mask
3843        */
3844       .fieldoffset = offsetof(CPUARMState, cp15.vtcr_el2) },
3845     { .name = "VTTBR", .state = ARM_CP_STATE_AA32,
3846       .cp = 15, .opc1 = 6, .crm = 2,
3847       .type = ARM_CP_64BIT | ARM_CP_ALIAS,
3848       .access = PL2_RW, .accessfn = access_el3_aa32ns,
3849       .fieldoffset = offsetof(CPUARMState, cp15.vttbr_el2),
3850       .writefn = vttbr_write },
3851     { .name = "VTTBR_EL2", .state = ARM_CP_STATE_AA64,
3852       .opc0 = 3, .opc1 = 4, .crn = 2, .crm = 1, .opc2 = 0,
3853       .access = PL2_RW, .writefn = vttbr_write,
3854       .fieldoffset = offsetof(CPUARMState, cp15.vttbr_el2) },
3855     { .name = "SCTLR_EL2", .state = ARM_CP_STATE_BOTH,
3856       .opc0 = 3, .opc1 = 4, .crn = 1, .crm = 0, .opc2 = 0,
3857       .access = PL2_RW, .raw_writefn = raw_write, .writefn = sctlr_write,
3858       .fieldoffset = offsetof(CPUARMState, cp15.sctlr_el[2]) },
3859     { .name = "TPIDR_EL2", .state = ARM_CP_STATE_BOTH,
3860       .opc0 = 3, .opc1 = 4, .crn = 13, .crm = 0, .opc2 = 2,
3861       .access = PL2_RW, .resetvalue = 0,
3862       .fieldoffset = offsetof(CPUARMState, cp15.tpidr_el[2]) },
3863     { .name = "TTBR0_EL2", .state = ARM_CP_STATE_AA64,
3864       .opc0 = 3, .opc1 = 4, .crn = 2, .crm = 0, .opc2 = 0,
3865       .access = PL2_RW, .resetvalue = 0,
3866       .fieldoffset = offsetof(CPUARMState, cp15.ttbr0_el[2]) },
3867     { .name = "HTTBR", .cp = 15, .opc1 = 4, .crm = 2,
3868       .access = PL2_RW, .type = ARM_CP_64BIT | ARM_CP_ALIAS,
3869       .fieldoffset = offsetof(CPUARMState, cp15.ttbr0_el[2]) },
3870     { .name = "TLBIALLNSNH",
3871       .cp = 15, .opc1 = 4, .crn = 8, .crm = 7, .opc2 = 4,
3872       .type = ARM_CP_NO_RAW, .access = PL2_W,
3873       .writefn = tlbiall_nsnh_write },
3874     { .name = "TLBIALLNSNHIS",
3875       .cp = 15, .opc1 = 4, .crn = 8, .crm = 3, .opc2 = 4,
3876       .type = ARM_CP_NO_RAW, .access = PL2_W,
3877       .writefn = tlbiall_nsnh_is_write },
3878     { .name = "TLBIALLH", .cp = 15, .opc1 = 4, .crn = 8, .crm = 7, .opc2 = 0,
3879       .type = ARM_CP_NO_RAW, .access = PL2_W,
3880       .writefn = tlbiall_hyp_write },
3881     { .name = "TLBIALLHIS", .cp = 15, .opc1 = 4, .crn = 8, .crm = 3, .opc2 = 0,
3882       .type = ARM_CP_NO_RAW, .access = PL2_W,
3883       .writefn = tlbiall_hyp_is_write },
3884     { .name = "TLBIMVAH", .cp = 15, .opc1 = 4, .crn = 8, .crm = 7, .opc2 = 1,
3885       .type = ARM_CP_NO_RAW, .access = PL2_W,
3886       .writefn = tlbimva_hyp_write },
3887     { .name = "TLBIMVAHIS", .cp = 15, .opc1 = 4, .crn = 8, .crm = 3, .opc2 = 1,
3888       .type = ARM_CP_NO_RAW, .access = PL2_W,
3889       .writefn = tlbimva_hyp_is_write },
3890     { .name = "TLBI_ALLE2", .state = ARM_CP_STATE_AA64,
3891       .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 7, .opc2 = 0,
3892       .type = ARM_CP_NO_RAW, .access = PL2_W,
3893       .writefn = tlbi_aa64_alle2_write },
3894     { .name = "TLBI_VAE2", .state = ARM_CP_STATE_AA64,
3895       .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 7, .opc2 = 1,
3896       .type = ARM_CP_NO_RAW, .access = PL2_W,
3897       .writefn = tlbi_aa64_vae2_write },
3898     { .name = "TLBI_VALE2", .state = ARM_CP_STATE_AA64,
3899       .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 7, .opc2 = 5,
3900       .access = PL2_W, .type = ARM_CP_NO_RAW,
3901       .writefn = tlbi_aa64_vae2_write },
3902     { .name = "TLBI_ALLE2IS", .state = ARM_CP_STATE_AA64,
3903       .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 3, .opc2 = 0,
3904       .access = PL2_W, .type = ARM_CP_NO_RAW,
3905       .writefn = tlbi_aa64_alle2is_write },
3906     { .name = "TLBI_VAE2IS", .state = ARM_CP_STATE_AA64,
3907       .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 3, .opc2 = 1,
3908       .type = ARM_CP_NO_RAW, .access = PL2_W,
3909       .writefn = tlbi_aa64_vae2is_write },
3910     { .name = "TLBI_VALE2IS", .state = ARM_CP_STATE_AA64,
3911       .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 3, .opc2 = 5,
3912       .access = PL2_W, .type = ARM_CP_NO_RAW,
3913       .writefn = tlbi_aa64_vae2is_write },
3914 #ifndef CONFIG_USER_ONLY
3915     /* Unlike the other EL2-related AT operations, these must
3916      * UNDEF from EL3 if EL2 is not implemented, which is why we
3917      * define them here rather than with the rest of the AT ops.
3918      */
3919     { .name = "AT_S1E2R", .state = ARM_CP_STATE_AA64,
3920       .opc0 = 1, .opc1 = 4, .crn = 7, .crm = 8, .opc2 = 0,
3921       .access = PL2_W, .accessfn = at_s1e2_access,
3922       .type = ARM_CP_NO_RAW, .writefn = ats_write64 },
3923     { .name = "AT_S1E2W", .state = ARM_CP_STATE_AA64,
3924       .opc0 = 1, .opc1 = 4, .crn = 7, .crm = 8, .opc2 = 1,
3925       .access = PL2_W, .accessfn = at_s1e2_access,
3926       .type = ARM_CP_NO_RAW, .writefn = ats_write64 },
3927     /* The AArch32 ATS1H* operations are CONSTRAINED UNPREDICTABLE
3928      * if EL2 is not implemented; we choose to UNDEF. Behaviour at EL3
3929      * with SCR.NS == 0 outside Monitor mode is UNPREDICTABLE; we choose
3930      * to behave as if SCR.NS was 1.
3931      */
3932     { .name = "ATS1HR", .cp = 15, .opc1 = 4, .crn = 7, .crm = 8, .opc2 = 0,
3933       .access = PL2_W,
3934       .writefn = ats1h_write, .type = ARM_CP_NO_RAW },
3935     { .name = "ATS1HW", .cp = 15, .opc1 = 4, .crn = 7, .crm = 8, .opc2 = 1,
3936       .access = PL2_W,
3937       .writefn = ats1h_write, .type = ARM_CP_NO_RAW },
3938     { .name = "CNTHCTL_EL2", .state = ARM_CP_STATE_BOTH,
3939       .opc0 = 3, .opc1 = 4, .crn = 14, .crm = 1, .opc2 = 0,
3940       /* ARMv7 requires bit 0 and 1 to reset to 1. ARMv8 defines the
3941        * reset values as IMPDEF. We choose to reset to 3 to comply with
3942        * both ARMv7 and ARMv8.
3943        */
3944       .access = PL2_RW, .resetvalue = 3,
3945       .fieldoffset = offsetof(CPUARMState, cp15.cnthctl_el2) },
3946     { .name = "CNTVOFF_EL2", .state = ARM_CP_STATE_AA64,
3947       .opc0 = 3, .opc1 = 4, .crn = 14, .crm = 0, .opc2 = 3,
3948       .access = PL2_RW, .type = ARM_CP_IO, .resetvalue = 0,
3949       .writefn = gt_cntvoff_write,
3950       .fieldoffset = offsetof(CPUARMState, cp15.cntvoff_el2) },
3951     { .name = "CNTVOFF", .cp = 15, .opc1 = 4, .crm = 14,
3952       .access = PL2_RW, .type = ARM_CP_64BIT | ARM_CP_ALIAS | ARM_CP_IO,
3953       .writefn = gt_cntvoff_write,
3954       .fieldoffset = offsetof(CPUARMState, cp15.cntvoff_el2) },
3955     { .name = "CNTHP_CVAL_EL2", .state = ARM_CP_STATE_AA64,
3956       .opc0 = 3, .opc1 = 4, .crn = 14, .crm = 2, .opc2 = 2,
3957       .fieldoffset = offsetof(CPUARMState, cp15.c14_timer[GTIMER_HYP].cval),
3958       .type = ARM_CP_IO, .access = PL2_RW,
3959       .writefn = gt_hyp_cval_write, .raw_writefn = raw_write },
3960     { .name = "CNTHP_CVAL", .cp = 15, .opc1 = 6, .crm = 14,
3961       .fieldoffset = offsetof(CPUARMState, cp15.c14_timer[GTIMER_HYP].cval),
3962       .access = PL2_RW, .type = ARM_CP_64BIT | ARM_CP_IO,
3963       .writefn = gt_hyp_cval_write, .raw_writefn = raw_write },
3964     { .name = "CNTHP_TVAL_EL2", .state = ARM_CP_STATE_BOTH,
3965       .opc0 = 3, .opc1 = 4, .crn = 14, .crm = 2, .opc2 = 0,
3966       .type = ARM_CP_NO_RAW | ARM_CP_IO, .access = PL2_RW,
3967       .resetfn = gt_hyp_timer_reset,
3968       .readfn = gt_hyp_tval_read, .writefn = gt_hyp_tval_write },
3969     { .name = "CNTHP_CTL_EL2", .state = ARM_CP_STATE_BOTH,
3970       .type = ARM_CP_IO,
3971       .opc0 = 3, .opc1 = 4, .crn = 14, .crm = 2, .opc2 = 1,
3972       .access = PL2_RW,
3973       .fieldoffset = offsetof(CPUARMState, cp15.c14_timer[GTIMER_HYP].ctl),
3974       .resetvalue = 0,
3975       .writefn = gt_hyp_ctl_write, .raw_writefn = raw_write },
3976 #endif
3977     /* The only field of MDCR_EL2 that has a defined architectural reset value
3978      * is MDCR_EL2.HPMN which should reset to the value of PMCR_EL0.N; but we
3979      * don't impelment any PMU event counters, so using zero as a reset
3980      * value for MDCR_EL2 is okay
3981      */
3982     { .name = "MDCR_EL2", .state = ARM_CP_STATE_BOTH,
3983       .opc0 = 3, .opc1 = 4, .crn = 1, .crm = 1, .opc2 = 1,
3984       .access = PL2_RW, .resetvalue = 0,
3985       .fieldoffset = offsetof(CPUARMState, cp15.mdcr_el2), },
3986     { .name = "HPFAR", .state = ARM_CP_STATE_AA32,
3987       .cp = 15, .opc1 = 4, .crn = 6, .crm = 0, .opc2 = 4,
3988       .access = PL2_RW, .accessfn = access_el3_aa32ns,
3989       .fieldoffset = offsetof(CPUARMState, cp15.hpfar_el2) },
3990     { .name = "HPFAR_EL2", .state = ARM_CP_STATE_AA64,
3991       .opc0 = 3, .opc1 = 4, .crn = 6, .crm = 0, .opc2 = 4,
3992       .access = PL2_RW,
3993       .fieldoffset = offsetof(CPUARMState, cp15.hpfar_el2) },
3994     { .name = "HSTR_EL2", .state = ARM_CP_STATE_BOTH,
3995       .cp = 15, .opc0 = 3, .opc1 = 4, .crn = 1, .crm = 1, .opc2 = 3,
3996       .access = PL2_RW,
3997       .fieldoffset = offsetof(CPUARMState, cp15.hstr_el2) },
3998     REGINFO_SENTINEL
3999 };
4000 
4001 static CPAccessResult nsacr_access(CPUARMState *env, const ARMCPRegInfo *ri,
4002                                    bool isread)
4003 {
4004     /* The NSACR is RW at EL3, and RO for NS EL1 and NS EL2.
4005      * At Secure EL1 it traps to EL3.
4006      */
4007     if (arm_current_el(env) == 3) {
4008         return CP_ACCESS_OK;
4009     }
4010     if (arm_is_secure_below_el3(env)) {
4011         return CP_ACCESS_TRAP_EL3;
4012     }
4013     /* Accesses from EL1 NS and EL2 NS are UNDEF for write but allow reads. */
4014     if (isread) {
4015         return CP_ACCESS_OK;
4016     }
4017     return CP_ACCESS_TRAP_UNCATEGORIZED;
4018 }
4019 
4020 static const ARMCPRegInfo el3_cp_reginfo[] = {
4021     { .name = "SCR_EL3", .state = ARM_CP_STATE_AA64,
4022       .opc0 = 3, .opc1 = 6, .crn = 1, .crm = 1, .opc2 = 0,
4023       .access = PL3_RW, .fieldoffset = offsetof(CPUARMState, cp15.scr_el3),
4024       .resetvalue = 0, .writefn = scr_write },
4025     { .name = "SCR",  .type = ARM_CP_ALIAS,
4026       .cp = 15, .opc1 = 0, .crn = 1, .crm = 1, .opc2 = 0,
4027       .access = PL1_RW, .accessfn = access_trap_aa32s_el1,
4028       .fieldoffset = offsetoflow32(CPUARMState, cp15.scr_el3),
4029       .writefn = scr_write },
4030     { .name = "SDER32_EL3", .state = ARM_CP_STATE_AA64,
4031       .opc0 = 3, .opc1 = 6, .crn = 1, .crm = 1, .opc2 = 1,
4032       .access = PL3_RW, .resetvalue = 0,
4033       .fieldoffset = offsetof(CPUARMState, cp15.sder) },
4034     { .name = "SDER",
4035       .cp = 15, .opc1 = 0, .crn = 1, .crm = 1, .opc2 = 1,
4036       .access = PL3_RW, .resetvalue = 0,
4037       .fieldoffset = offsetoflow32(CPUARMState, cp15.sder) },
4038     { .name = "MVBAR", .cp = 15, .opc1 = 0, .crn = 12, .crm = 0, .opc2 = 1,
4039       .access = PL1_RW, .accessfn = access_trap_aa32s_el1,
4040       .writefn = vbar_write, .resetvalue = 0,
4041       .fieldoffset = offsetof(CPUARMState, cp15.mvbar) },
4042     { .name = "TTBR0_EL3", .state = ARM_CP_STATE_AA64,
4043       .opc0 = 3, .opc1 = 6, .crn = 2, .crm = 0, .opc2 = 0,
4044       .access = PL3_RW, .writefn = vmsa_ttbr_write, .resetvalue = 0,
4045       .fieldoffset = offsetof(CPUARMState, cp15.ttbr0_el[3]) },
4046     { .name = "TCR_EL3", .state = ARM_CP_STATE_AA64,
4047       .opc0 = 3, .opc1 = 6, .crn = 2, .crm = 0, .opc2 = 2,
4048       .access = PL3_RW,
4049       /* no .writefn needed as this can't cause an ASID change;
4050        * we must provide a .raw_writefn and .resetfn because we handle
4051        * reset and migration for the AArch32 TTBCR(S), which might be
4052        * using mask and base_mask.
4053        */
4054       .resetfn = vmsa_ttbcr_reset, .raw_writefn = vmsa_ttbcr_raw_write,
4055       .fieldoffset = offsetof(CPUARMState, cp15.tcr_el[3]) },
4056     { .name = "ELR_EL3", .state = ARM_CP_STATE_AA64,
4057       .type = ARM_CP_ALIAS,
4058       .opc0 = 3, .opc1 = 6, .crn = 4, .crm = 0, .opc2 = 1,
4059       .access = PL3_RW,
4060       .fieldoffset = offsetof(CPUARMState, elr_el[3]) },
4061     { .name = "ESR_EL3", .state = ARM_CP_STATE_AA64,
4062       .opc0 = 3, .opc1 = 6, .crn = 5, .crm = 2, .opc2 = 0,
4063       .access = PL3_RW, .fieldoffset = offsetof(CPUARMState, cp15.esr_el[3]) },
4064     { .name = "FAR_EL3", .state = ARM_CP_STATE_AA64,
4065       .opc0 = 3, .opc1 = 6, .crn = 6, .crm = 0, .opc2 = 0,
4066       .access = PL3_RW, .fieldoffset = offsetof(CPUARMState, cp15.far_el[3]) },
4067     { .name = "SPSR_EL3", .state = ARM_CP_STATE_AA64,
4068       .type = ARM_CP_ALIAS,
4069       .opc0 = 3, .opc1 = 6, .crn = 4, .crm = 0, .opc2 = 0,
4070       .access = PL3_RW,
4071       .fieldoffset = offsetof(CPUARMState, banked_spsr[BANK_MON]) },
4072     { .name = "VBAR_EL3", .state = ARM_CP_STATE_AA64,
4073       .opc0 = 3, .opc1 = 6, .crn = 12, .crm = 0, .opc2 = 0,
4074       .access = PL3_RW, .writefn = vbar_write,
4075       .fieldoffset = offsetof(CPUARMState, cp15.vbar_el[3]),
4076       .resetvalue = 0 },
4077     { .name = "CPTR_EL3", .state = ARM_CP_STATE_AA64,
4078       .opc0 = 3, .opc1 = 6, .crn = 1, .crm = 1, .opc2 = 2,
4079       .access = PL3_RW, .accessfn = cptr_access, .resetvalue = 0,
4080       .fieldoffset = offsetof(CPUARMState, cp15.cptr_el[3]) },
4081     { .name = "TPIDR_EL3", .state = ARM_CP_STATE_AA64,
4082       .opc0 = 3, .opc1 = 6, .crn = 13, .crm = 0, .opc2 = 2,
4083       .access = PL3_RW, .resetvalue = 0,
4084       .fieldoffset = offsetof(CPUARMState, cp15.tpidr_el[3]) },
4085     { .name = "AMAIR_EL3", .state = ARM_CP_STATE_AA64,
4086       .opc0 = 3, .opc1 = 6, .crn = 10, .crm = 3, .opc2 = 0,
4087       .access = PL3_RW, .type = ARM_CP_CONST,
4088       .resetvalue = 0 },
4089     { .name = "AFSR0_EL3", .state = ARM_CP_STATE_BOTH,
4090       .opc0 = 3, .opc1 = 6, .crn = 5, .crm = 1, .opc2 = 0,
4091       .access = PL3_RW, .type = ARM_CP_CONST,
4092       .resetvalue = 0 },
4093     { .name = "AFSR1_EL3", .state = ARM_CP_STATE_BOTH,
4094       .opc0 = 3, .opc1 = 6, .crn = 5, .crm = 1, .opc2 = 1,
4095       .access = PL3_RW, .type = ARM_CP_CONST,
4096       .resetvalue = 0 },
4097     { .name = "TLBI_ALLE3IS", .state = ARM_CP_STATE_AA64,
4098       .opc0 = 1, .opc1 = 6, .crn = 8, .crm = 3, .opc2 = 0,
4099       .access = PL3_W, .type = ARM_CP_NO_RAW,
4100       .writefn = tlbi_aa64_alle3is_write },
4101     { .name = "TLBI_VAE3IS", .state = ARM_CP_STATE_AA64,
4102       .opc0 = 1, .opc1 = 6, .crn = 8, .crm = 3, .opc2 = 1,
4103       .access = PL3_W, .type = ARM_CP_NO_RAW,
4104       .writefn = tlbi_aa64_vae3is_write },
4105     { .name = "TLBI_VALE3IS", .state = ARM_CP_STATE_AA64,
4106       .opc0 = 1, .opc1 = 6, .crn = 8, .crm = 3, .opc2 = 5,
4107       .access = PL3_W, .type = ARM_CP_NO_RAW,
4108       .writefn = tlbi_aa64_vae3is_write },
4109     { .name = "TLBI_ALLE3", .state = ARM_CP_STATE_AA64,
4110       .opc0 = 1, .opc1 = 6, .crn = 8, .crm = 7, .opc2 = 0,
4111       .access = PL3_W, .type = ARM_CP_NO_RAW,
4112       .writefn = tlbi_aa64_alle3_write },
4113     { .name = "TLBI_VAE3", .state = ARM_CP_STATE_AA64,
4114       .opc0 = 1, .opc1 = 6, .crn = 8, .crm = 7, .opc2 = 1,
4115       .access = PL3_W, .type = ARM_CP_NO_RAW,
4116       .writefn = tlbi_aa64_vae3_write },
4117     { .name = "TLBI_VALE3", .state = ARM_CP_STATE_AA64,
4118       .opc0 = 1, .opc1 = 6, .crn = 8, .crm = 7, .opc2 = 5,
4119       .access = PL3_W, .type = ARM_CP_NO_RAW,
4120       .writefn = tlbi_aa64_vae3_write },
4121     REGINFO_SENTINEL
4122 };
4123 
4124 static CPAccessResult ctr_el0_access(CPUARMState *env, const ARMCPRegInfo *ri,
4125                                      bool isread)
4126 {
4127     /* Only accessible in EL0 if SCTLR.UCT is set (and only in AArch64,
4128      * but the AArch32 CTR has its own reginfo struct)
4129      */
4130     if (arm_current_el(env) == 0 && !(env->cp15.sctlr_el[1] & SCTLR_UCT)) {
4131         return CP_ACCESS_TRAP;
4132     }
4133     return CP_ACCESS_OK;
4134 }
4135 
4136 static void oslar_write(CPUARMState *env, const ARMCPRegInfo *ri,
4137                         uint64_t value)
4138 {
4139     /* Writes to OSLAR_EL1 may update the OS lock status, which can be
4140      * read via a bit in OSLSR_EL1.
4141      */
4142     int oslock;
4143 
4144     if (ri->state == ARM_CP_STATE_AA32) {
4145         oslock = (value == 0xC5ACCE55);
4146     } else {
4147         oslock = value & 1;
4148     }
4149 
4150     env->cp15.oslsr_el1 = deposit32(env->cp15.oslsr_el1, 1, 1, oslock);
4151 }
4152 
4153 static const ARMCPRegInfo debug_cp_reginfo[] = {
4154     /* DBGDRAR, DBGDSAR: always RAZ since we don't implement memory mapped
4155      * debug components. The AArch64 version of DBGDRAR is named MDRAR_EL1;
4156      * unlike DBGDRAR it is never accessible from EL0.
4157      * DBGDSAR is deprecated and must RAZ from v8 anyway, so it has no AArch64
4158      * accessor.
4159      */
4160     { .name = "DBGDRAR", .cp = 14, .crn = 1, .crm = 0, .opc1 = 0, .opc2 = 0,
4161       .access = PL0_R, .accessfn = access_tdra,
4162       .type = ARM_CP_CONST, .resetvalue = 0 },
4163     { .name = "MDRAR_EL1", .state = ARM_CP_STATE_AA64,
4164       .opc0 = 2, .opc1 = 0, .crn = 1, .crm = 0, .opc2 = 0,
4165       .access = PL1_R, .accessfn = access_tdra,
4166       .type = ARM_CP_CONST, .resetvalue = 0 },
4167     { .name = "DBGDSAR", .cp = 14, .crn = 2, .crm = 0, .opc1 = 0, .opc2 = 0,
4168       .access = PL0_R, .accessfn = access_tdra,
4169       .type = ARM_CP_CONST, .resetvalue = 0 },
4170     /* Monitor debug system control register; the 32-bit alias is DBGDSCRext. */
4171     { .name = "MDSCR_EL1", .state = ARM_CP_STATE_BOTH,
4172       .cp = 14, .opc0 = 2, .opc1 = 0, .crn = 0, .crm = 2, .opc2 = 2,
4173       .access = PL1_RW, .accessfn = access_tda,
4174       .fieldoffset = offsetof(CPUARMState, cp15.mdscr_el1),
4175       .resetvalue = 0 },
4176     /* MDCCSR_EL0, aka DBGDSCRint. This is a read-only mirror of MDSCR_EL1.
4177      * We don't implement the configurable EL0 access.
4178      */
4179     { .name = "MDCCSR_EL0", .state = ARM_CP_STATE_BOTH,
4180       .cp = 14, .opc0 = 2, .opc1 = 0, .crn = 0, .crm = 1, .opc2 = 0,
4181       .type = ARM_CP_ALIAS,
4182       .access = PL1_R, .accessfn = access_tda,
4183       .fieldoffset = offsetof(CPUARMState, cp15.mdscr_el1), },
4184     { .name = "OSLAR_EL1", .state = ARM_CP_STATE_BOTH,
4185       .cp = 14, .opc0 = 2, .opc1 = 0, .crn = 1, .crm = 0, .opc2 = 4,
4186       .access = PL1_W, .type = ARM_CP_NO_RAW,
4187       .accessfn = access_tdosa,
4188       .writefn = oslar_write },
4189     { .name = "OSLSR_EL1", .state = ARM_CP_STATE_BOTH,
4190       .cp = 14, .opc0 = 2, .opc1 = 0, .crn = 1, .crm = 1, .opc2 = 4,
4191       .access = PL1_R, .resetvalue = 10,
4192       .accessfn = access_tdosa,
4193       .fieldoffset = offsetof(CPUARMState, cp15.oslsr_el1) },
4194     /* Dummy OSDLR_EL1: 32-bit Linux will read this */
4195     { .name = "OSDLR_EL1", .state = ARM_CP_STATE_BOTH,
4196       .cp = 14, .opc0 = 2, .opc1 = 0, .crn = 1, .crm = 3, .opc2 = 4,
4197       .access = PL1_RW, .accessfn = access_tdosa,
4198       .type = ARM_CP_NOP },
4199     /* Dummy DBGVCR: Linux wants to clear this on startup, but we don't
4200      * implement vector catch debug events yet.
4201      */
4202     { .name = "DBGVCR",
4203       .cp = 14, .opc1 = 0, .crn = 0, .crm = 7, .opc2 = 0,
4204       .access = PL1_RW, .accessfn = access_tda,
4205       .type = ARM_CP_NOP },
4206     /* Dummy DBGVCR32_EL2 (which is only for a 64-bit hypervisor
4207      * to save and restore a 32-bit guest's DBGVCR)
4208      */
4209     { .name = "DBGVCR32_EL2", .state = ARM_CP_STATE_AA64,
4210       .opc0 = 2, .opc1 = 4, .crn = 0, .crm = 7, .opc2 = 0,
4211       .access = PL2_RW, .accessfn = access_tda,
4212       .type = ARM_CP_NOP },
4213     /* Dummy MDCCINT_EL1, since we don't implement the Debug Communications
4214      * Channel but Linux may try to access this register. The 32-bit
4215      * alias is DBGDCCINT.
4216      */
4217     { .name = "MDCCINT_EL1", .state = ARM_CP_STATE_BOTH,
4218       .cp = 14, .opc0 = 2, .opc1 = 0, .crn = 0, .crm = 2, .opc2 = 0,
4219       .access = PL1_RW, .accessfn = access_tda,
4220       .type = ARM_CP_NOP },
4221     REGINFO_SENTINEL
4222 };
4223 
4224 static const ARMCPRegInfo debug_lpae_cp_reginfo[] = {
4225     /* 64 bit access versions of the (dummy) debug registers */
4226     { .name = "DBGDRAR", .cp = 14, .crm = 1, .opc1 = 0,
4227       .access = PL0_R, .type = ARM_CP_CONST|ARM_CP_64BIT, .resetvalue = 0 },
4228     { .name = "DBGDSAR", .cp = 14, .crm = 2, .opc1 = 0,
4229       .access = PL0_R, .type = ARM_CP_CONST|ARM_CP_64BIT, .resetvalue = 0 },
4230     REGINFO_SENTINEL
4231 };
4232 
4233 void hw_watchpoint_update(ARMCPU *cpu, int n)
4234 {
4235     CPUARMState *env = &cpu->env;
4236     vaddr len = 0;
4237     vaddr wvr = env->cp15.dbgwvr[n];
4238     uint64_t wcr = env->cp15.dbgwcr[n];
4239     int mask;
4240     int flags = BP_CPU | BP_STOP_BEFORE_ACCESS;
4241 
4242     if (env->cpu_watchpoint[n]) {
4243         cpu_watchpoint_remove_by_ref(CPU(cpu), env->cpu_watchpoint[n]);
4244         env->cpu_watchpoint[n] = NULL;
4245     }
4246 
4247     if (!extract64(wcr, 0, 1)) {
4248         /* E bit clear : watchpoint disabled */
4249         return;
4250     }
4251 
4252     switch (extract64(wcr, 3, 2)) {
4253     case 0:
4254         /* LSC 00 is reserved and must behave as if the wp is disabled */
4255         return;
4256     case 1:
4257         flags |= BP_MEM_READ;
4258         break;
4259     case 2:
4260         flags |= BP_MEM_WRITE;
4261         break;
4262     case 3:
4263         flags |= BP_MEM_ACCESS;
4264         break;
4265     }
4266 
4267     /* Attempts to use both MASK and BAS fields simultaneously are
4268      * CONSTRAINED UNPREDICTABLE; we opt to ignore BAS in this case,
4269      * thus generating a watchpoint for every byte in the masked region.
4270      */
4271     mask = extract64(wcr, 24, 4);
4272     if (mask == 1 || mask == 2) {
4273         /* Reserved values of MASK; we must act as if the mask value was
4274          * some non-reserved value, or as if the watchpoint were disabled.
4275          * We choose the latter.
4276          */
4277         return;
4278     } else if (mask) {
4279         /* Watchpoint covers an aligned area up to 2GB in size */
4280         len = 1ULL << mask;
4281         /* If masked bits in WVR are not zero it's CONSTRAINED UNPREDICTABLE
4282          * whether the watchpoint fires when the unmasked bits match; we opt
4283          * to generate the exceptions.
4284          */
4285         wvr &= ~(len - 1);
4286     } else {
4287         /* Watchpoint covers bytes defined by the byte address select bits */
4288         int bas = extract64(wcr, 5, 8);
4289         int basstart;
4290 
4291         if (bas == 0) {
4292             /* This must act as if the watchpoint is disabled */
4293             return;
4294         }
4295 
4296         if (extract64(wvr, 2, 1)) {
4297             /* Deprecated case of an only 4-aligned address. BAS[7:4] are
4298              * ignored, and BAS[3:0] define which bytes to watch.
4299              */
4300             bas &= 0xf;
4301         }
4302         /* The BAS bits are supposed to be programmed to indicate a contiguous
4303          * range of bytes. Otherwise it is CONSTRAINED UNPREDICTABLE whether
4304          * we fire for each byte in the word/doubleword addressed by the WVR.
4305          * We choose to ignore any non-zero bits after the first range of 1s.
4306          */
4307         basstart = ctz32(bas);
4308         len = cto32(bas >> basstart);
4309         wvr += basstart;
4310     }
4311 
4312     cpu_watchpoint_insert(CPU(cpu), wvr, len, flags,
4313                           &env->cpu_watchpoint[n]);
4314 }
4315 
4316 void hw_watchpoint_update_all(ARMCPU *cpu)
4317 {
4318     int i;
4319     CPUARMState *env = &cpu->env;
4320 
4321     /* Completely clear out existing QEMU watchpoints and our array, to
4322      * avoid possible stale entries following migration load.
4323      */
4324     cpu_watchpoint_remove_all(CPU(cpu), BP_CPU);
4325     memset(env->cpu_watchpoint, 0, sizeof(env->cpu_watchpoint));
4326 
4327     for (i = 0; i < ARRAY_SIZE(cpu->env.cpu_watchpoint); i++) {
4328         hw_watchpoint_update(cpu, i);
4329     }
4330 }
4331 
4332 static void dbgwvr_write(CPUARMState *env, const ARMCPRegInfo *ri,
4333                          uint64_t value)
4334 {
4335     ARMCPU *cpu = arm_env_get_cpu(env);
4336     int i = ri->crm;
4337 
4338     /* Bits [63:49] are hardwired to the value of bit [48]; that is, the
4339      * register reads and behaves as if values written are sign extended.
4340      * Bits [1:0] are RES0.
4341      */
4342     value = sextract64(value, 0, 49) & ~3ULL;
4343 
4344     raw_write(env, ri, value);
4345     hw_watchpoint_update(cpu, i);
4346 }
4347 
4348 static void dbgwcr_write(CPUARMState *env, const ARMCPRegInfo *ri,
4349                          uint64_t value)
4350 {
4351     ARMCPU *cpu = arm_env_get_cpu(env);
4352     int i = ri->crm;
4353 
4354     raw_write(env, ri, value);
4355     hw_watchpoint_update(cpu, i);
4356 }
4357 
4358 void hw_breakpoint_update(ARMCPU *cpu, int n)
4359 {
4360     CPUARMState *env = &cpu->env;
4361     uint64_t bvr = env->cp15.dbgbvr[n];
4362     uint64_t bcr = env->cp15.dbgbcr[n];
4363     vaddr addr;
4364     int bt;
4365     int flags = BP_CPU;
4366 
4367     if (env->cpu_breakpoint[n]) {
4368         cpu_breakpoint_remove_by_ref(CPU(cpu), env->cpu_breakpoint[n]);
4369         env->cpu_breakpoint[n] = NULL;
4370     }
4371 
4372     if (!extract64(bcr, 0, 1)) {
4373         /* E bit clear : watchpoint disabled */
4374         return;
4375     }
4376 
4377     bt = extract64(bcr, 20, 4);
4378 
4379     switch (bt) {
4380     case 4: /* unlinked address mismatch (reserved if AArch64) */
4381     case 5: /* linked address mismatch (reserved if AArch64) */
4382         qemu_log_mask(LOG_UNIMP,
4383                       "arm: address mismatch breakpoint types not implemented");
4384         return;
4385     case 0: /* unlinked address match */
4386     case 1: /* linked address match */
4387     {
4388         /* Bits [63:49] are hardwired to the value of bit [48]; that is,
4389          * we behave as if the register was sign extended. Bits [1:0] are
4390          * RES0. The BAS field is used to allow setting breakpoints on 16
4391          * bit wide instructions; it is CONSTRAINED UNPREDICTABLE whether
4392          * a bp will fire if the addresses covered by the bp and the addresses
4393          * covered by the insn overlap but the insn doesn't start at the
4394          * start of the bp address range. We choose to require the insn and
4395          * the bp to have the same address. The constraints on writing to
4396          * BAS enforced in dbgbcr_write mean we have only four cases:
4397          *  0b0000  => no breakpoint
4398          *  0b0011  => breakpoint on addr
4399          *  0b1100  => breakpoint on addr + 2
4400          *  0b1111  => breakpoint on addr
4401          * See also figure D2-3 in the v8 ARM ARM (DDI0487A.c).
4402          */
4403         int bas = extract64(bcr, 5, 4);
4404         addr = sextract64(bvr, 0, 49) & ~3ULL;
4405         if (bas == 0) {
4406             return;
4407         }
4408         if (bas == 0xc) {
4409             addr += 2;
4410         }
4411         break;
4412     }
4413     case 2: /* unlinked context ID match */
4414     case 8: /* unlinked VMID match (reserved if no EL2) */
4415     case 10: /* unlinked context ID and VMID match (reserved if no EL2) */
4416         qemu_log_mask(LOG_UNIMP,
4417                       "arm: unlinked context breakpoint types not implemented");
4418         return;
4419     case 9: /* linked VMID match (reserved if no EL2) */
4420     case 11: /* linked context ID and VMID match (reserved if no EL2) */
4421     case 3: /* linked context ID match */
4422     default:
4423         /* We must generate no events for Linked context matches (unless
4424          * they are linked to by some other bp/wp, which is handled in
4425          * updates for the linking bp/wp). We choose to also generate no events
4426          * for reserved values.
4427          */
4428         return;
4429     }
4430 
4431     cpu_breakpoint_insert(CPU(cpu), addr, flags, &env->cpu_breakpoint[n]);
4432 }
4433 
4434 void hw_breakpoint_update_all(ARMCPU *cpu)
4435 {
4436     int i;
4437     CPUARMState *env = &cpu->env;
4438 
4439     /* Completely clear out existing QEMU breakpoints and our array, to
4440      * avoid possible stale entries following migration load.
4441      */
4442     cpu_breakpoint_remove_all(CPU(cpu), BP_CPU);
4443     memset(env->cpu_breakpoint, 0, sizeof(env->cpu_breakpoint));
4444 
4445     for (i = 0; i < ARRAY_SIZE(cpu->env.cpu_breakpoint); i++) {
4446         hw_breakpoint_update(cpu, i);
4447     }
4448 }
4449 
4450 static void dbgbvr_write(CPUARMState *env, const ARMCPRegInfo *ri,
4451                          uint64_t value)
4452 {
4453     ARMCPU *cpu = arm_env_get_cpu(env);
4454     int i = ri->crm;
4455 
4456     raw_write(env, ri, value);
4457     hw_breakpoint_update(cpu, i);
4458 }
4459 
4460 static void dbgbcr_write(CPUARMState *env, const ARMCPRegInfo *ri,
4461                          uint64_t value)
4462 {
4463     ARMCPU *cpu = arm_env_get_cpu(env);
4464     int i = ri->crm;
4465 
4466     /* BAS[3] is a read-only copy of BAS[2], and BAS[1] a read-only
4467      * copy of BAS[0].
4468      */
4469     value = deposit64(value, 6, 1, extract64(value, 5, 1));
4470     value = deposit64(value, 8, 1, extract64(value, 7, 1));
4471 
4472     raw_write(env, ri, value);
4473     hw_breakpoint_update(cpu, i);
4474 }
4475 
4476 static void define_debug_regs(ARMCPU *cpu)
4477 {
4478     /* Define v7 and v8 architectural debug registers.
4479      * These are just dummy implementations for now.
4480      */
4481     int i;
4482     int wrps, brps, ctx_cmps;
4483     ARMCPRegInfo dbgdidr = {
4484         .name = "DBGDIDR", .cp = 14, .crn = 0, .crm = 0, .opc1 = 0, .opc2 = 0,
4485         .access = PL0_R, .accessfn = access_tda,
4486         .type = ARM_CP_CONST, .resetvalue = cpu->dbgdidr,
4487     };
4488 
4489     /* Note that all these register fields hold "number of Xs minus 1". */
4490     brps = extract32(cpu->dbgdidr, 24, 4);
4491     wrps = extract32(cpu->dbgdidr, 28, 4);
4492     ctx_cmps = extract32(cpu->dbgdidr, 20, 4);
4493 
4494     assert(ctx_cmps <= brps);
4495 
4496     /* The DBGDIDR and ID_AA64DFR0_EL1 define various properties
4497      * of the debug registers such as number of breakpoints;
4498      * check that if they both exist then they agree.
4499      */
4500     if (arm_feature(&cpu->env, ARM_FEATURE_AARCH64)) {
4501         assert(extract32(cpu->id_aa64dfr0, 12, 4) == brps);
4502         assert(extract32(cpu->id_aa64dfr0, 20, 4) == wrps);
4503         assert(extract32(cpu->id_aa64dfr0, 28, 4) == ctx_cmps);
4504     }
4505 
4506     define_one_arm_cp_reg(cpu, &dbgdidr);
4507     define_arm_cp_regs(cpu, debug_cp_reginfo);
4508 
4509     if (arm_feature(&cpu->env, ARM_FEATURE_LPAE)) {
4510         define_arm_cp_regs(cpu, debug_lpae_cp_reginfo);
4511     }
4512 
4513     for (i = 0; i < brps + 1; i++) {
4514         ARMCPRegInfo dbgregs[] = {
4515             { .name = "DBGBVR", .state = ARM_CP_STATE_BOTH,
4516               .cp = 14, .opc0 = 2, .opc1 = 0, .crn = 0, .crm = i, .opc2 = 4,
4517               .access = PL1_RW, .accessfn = access_tda,
4518               .fieldoffset = offsetof(CPUARMState, cp15.dbgbvr[i]),
4519               .writefn = dbgbvr_write, .raw_writefn = raw_write
4520             },
4521             { .name = "DBGBCR", .state = ARM_CP_STATE_BOTH,
4522               .cp = 14, .opc0 = 2, .opc1 = 0, .crn = 0, .crm = i, .opc2 = 5,
4523               .access = PL1_RW, .accessfn = access_tda,
4524               .fieldoffset = offsetof(CPUARMState, cp15.dbgbcr[i]),
4525               .writefn = dbgbcr_write, .raw_writefn = raw_write
4526             },
4527             REGINFO_SENTINEL
4528         };
4529         define_arm_cp_regs(cpu, dbgregs);
4530     }
4531 
4532     for (i = 0; i < wrps + 1; i++) {
4533         ARMCPRegInfo dbgregs[] = {
4534             { .name = "DBGWVR", .state = ARM_CP_STATE_BOTH,
4535               .cp = 14, .opc0 = 2, .opc1 = 0, .crn = 0, .crm = i, .opc2 = 6,
4536               .access = PL1_RW, .accessfn = access_tda,
4537               .fieldoffset = offsetof(CPUARMState, cp15.dbgwvr[i]),
4538               .writefn = dbgwvr_write, .raw_writefn = raw_write
4539             },
4540             { .name = "DBGWCR", .state = ARM_CP_STATE_BOTH,
4541               .cp = 14, .opc0 = 2, .opc1 = 0, .crn = 0, .crm = i, .opc2 = 7,
4542               .access = PL1_RW, .accessfn = access_tda,
4543               .fieldoffset = offsetof(CPUARMState, cp15.dbgwcr[i]),
4544               .writefn = dbgwcr_write, .raw_writefn = raw_write
4545             },
4546             REGINFO_SENTINEL
4547         };
4548         define_arm_cp_regs(cpu, dbgregs);
4549     }
4550 }
4551 
4552 void register_cp_regs_for_features(ARMCPU *cpu)
4553 {
4554     /* Register all the coprocessor registers based on feature bits */
4555     CPUARMState *env = &cpu->env;
4556     if (arm_feature(env, ARM_FEATURE_M)) {
4557         /* M profile has no coprocessor registers */
4558         return;
4559     }
4560 
4561     define_arm_cp_regs(cpu, cp_reginfo);
4562     if (!arm_feature(env, ARM_FEATURE_V8)) {
4563         /* Must go early as it is full of wildcards that may be
4564          * overridden by later definitions.
4565          */
4566         define_arm_cp_regs(cpu, not_v8_cp_reginfo);
4567     }
4568 
4569     if (arm_feature(env, ARM_FEATURE_V6)) {
4570         /* The ID registers all have impdef reset values */
4571         ARMCPRegInfo v6_idregs[] = {
4572             { .name = "ID_PFR0", .state = ARM_CP_STATE_BOTH,
4573               .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 1, .opc2 = 0,
4574               .access = PL1_R, .type = ARM_CP_CONST,
4575               .resetvalue = cpu->id_pfr0 },
4576             { .name = "ID_PFR1", .state = ARM_CP_STATE_BOTH,
4577               .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 1, .opc2 = 1,
4578               .access = PL1_R, .type = ARM_CP_CONST,
4579               .resetvalue = cpu->id_pfr1 },
4580             { .name = "ID_DFR0", .state = ARM_CP_STATE_BOTH,
4581               .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 1, .opc2 = 2,
4582               .access = PL1_R, .type = ARM_CP_CONST,
4583               .resetvalue = cpu->id_dfr0 },
4584             { .name = "ID_AFR0", .state = ARM_CP_STATE_BOTH,
4585               .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 1, .opc2 = 3,
4586               .access = PL1_R, .type = ARM_CP_CONST,
4587               .resetvalue = cpu->id_afr0 },
4588             { .name = "ID_MMFR0", .state = ARM_CP_STATE_BOTH,
4589               .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 1, .opc2 = 4,
4590               .access = PL1_R, .type = ARM_CP_CONST,
4591               .resetvalue = cpu->id_mmfr0 },
4592             { .name = "ID_MMFR1", .state = ARM_CP_STATE_BOTH,
4593               .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 1, .opc2 = 5,
4594               .access = PL1_R, .type = ARM_CP_CONST,
4595               .resetvalue = cpu->id_mmfr1 },
4596             { .name = "ID_MMFR2", .state = ARM_CP_STATE_BOTH,
4597               .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 1, .opc2 = 6,
4598               .access = PL1_R, .type = ARM_CP_CONST,
4599               .resetvalue = cpu->id_mmfr2 },
4600             { .name = "ID_MMFR3", .state = ARM_CP_STATE_BOTH,
4601               .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 1, .opc2 = 7,
4602               .access = PL1_R, .type = ARM_CP_CONST,
4603               .resetvalue = cpu->id_mmfr3 },
4604             { .name = "ID_ISAR0", .state = ARM_CP_STATE_BOTH,
4605               .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 2, .opc2 = 0,
4606               .access = PL1_R, .type = ARM_CP_CONST,
4607               .resetvalue = cpu->id_isar0 },
4608             { .name = "ID_ISAR1", .state = ARM_CP_STATE_BOTH,
4609               .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 2, .opc2 = 1,
4610               .access = PL1_R, .type = ARM_CP_CONST,
4611               .resetvalue = cpu->id_isar1 },
4612             { .name = "ID_ISAR2", .state = ARM_CP_STATE_BOTH,
4613               .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 2, .opc2 = 2,
4614               .access = PL1_R, .type = ARM_CP_CONST,
4615               .resetvalue = cpu->id_isar2 },
4616             { .name = "ID_ISAR3", .state = ARM_CP_STATE_BOTH,
4617               .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 2, .opc2 = 3,
4618               .access = PL1_R, .type = ARM_CP_CONST,
4619               .resetvalue = cpu->id_isar3 },
4620             { .name = "ID_ISAR4", .state = ARM_CP_STATE_BOTH,
4621               .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 2, .opc2 = 4,
4622               .access = PL1_R, .type = ARM_CP_CONST,
4623               .resetvalue = cpu->id_isar4 },
4624             { .name = "ID_ISAR5", .state = ARM_CP_STATE_BOTH,
4625               .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 2, .opc2 = 5,
4626               .access = PL1_R, .type = ARM_CP_CONST,
4627               .resetvalue = cpu->id_isar5 },
4628             { .name = "ID_MMFR4", .state = ARM_CP_STATE_BOTH,
4629               .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 2, .opc2 = 6,
4630               .access = PL1_R, .type = ARM_CP_CONST,
4631               .resetvalue = cpu->id_mmfr4 },
4632             /* 7 is as yet unallocated and must RAZ */
4633             { .name = "ID_ISAR7_RESERVED", .state = ARM_CP_STATE_BOTH,
4634               .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 2, .opc2 = 7,
4635               .access = PL1_R, .type = ARM_CP_CONST,
4636               .resetvalue = 0 },
4637             REGINFO_SENTINEL
4638         };
4639         define_arm_cp_regs(cpu, v6_idregs);
4640         define_arm_cp_regs(cpu, v6_cp_reginfo);
4641     } else {
4642         define_arm_cp_regs(cpu, not_v6_cp_reginfo);
4643     }
4644     if (arm_feature(env, ARM_FEATURE_V6K)) {
4645         define_arm_cp_regs(cpu, v6k_cp_reginfo);
4646     }
4647     if (arm_feature(env, ARM_FEATURE_V7MP) &&
4648         !arm_feature(env, ARM_FEATURE_PMSA)) {
4649         define_arm_cp_regs(cpu, v7mp_cp_reginfo);
4650     }
4651     if (arm_feature(env, ARM_FEATURE_V7)) {
4652         /* v7 performance monitor control register: same implementor
4653          * field as main ID register, and we implement only the cycle
4654          * count register.
4655          */
4656 #ifndef CONFIG_USER_ONLY
4657         ARMCPRegInfo pmcr = {
4658             .name = "PMCR", .cp = 15, .crn = 9, .crm = 12, .opc1 = 0, .opc2 = 0,
4659             .access = PL0_RW,
4660             .type = ARM_CP_IO | ARM_CP_ALIAS,
4661             .fieldoffset = offsetoflow32(CPUARMState, cp15.c9_pmcr),
4662             .accessfn = pmreg_access, .writefn = pmcr_write,
4663             .raw_writefn = raw_write,
4664         };
4665         ARMCPRegInfo pmcr64 = {
4666             .name = "PMCR_EL0", .state = ARM_CP_STATE_AA64,
4667             .opc0 = 3, .opc1 = 3, .crn = 9, .crm = 12, .opc2 = 0,
4668             .access = PL0_RW, .accessfn = pmreg_access,
4669             .type = ARM_CP_IO,
4670             .fieldoffset = offsetof(CPUARMState, cp15.c9_pmcr),
4671             .resetvalue = cpu->midr & 0xff000000,
4672             .writefn = pmcr_write, .raw_writefn = raw_write,
4673         };
4674         define_one_arm_cp_reg(cpu, &pmcr);
4675         define_one_arm_cp_reg(cpu, &pmcr64);
4676 #endif
4677         ARMCPRegInfo clidr = {
4678             .name = "CLIDR", .state = ARM_CP_STATE_BOTH,
4679             .opc0 = 3, .crn = 0, .crm = 0, .opc1 = 1, .opc2 = 1,
4680             .access = PL1_R, .type = ARM_CP_CONST, .resetvalue = cpu->clidr
4681         };
4682         define_one_arm_cp_reg(cpu, &clidr);
4683         define_arm_cp_regs(cpu, v7_cp_reginfo);
4684         define_debug_regs(cpu);
4685     } else {
4686         define_arm_cp_regs(cpu, not_v7_cp_reginfo);
4687     }
4688     if (arm_feature(env, ARM_FEATURE_V8)) {
4689         /* AArch64 ID registers, which all have impdef reset values.
4690          * Note that within the ID register ranges the unused slots
4691          * must all RAZ, not UNDEF; future architecture versions may
4692          * define new registers here.
4693          */
4694         ARMCPRegInfo v8_idregs[] = {
4695             { .name = "ID_AA64PFR0_EL1", .state = ARM_CP_STATE_AA64,
4696               .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 4, .opc2 = 0,
4697               .access = PL1_R, .type = ARM_CP_CONST,
4698               .resetvalue = cpu->id_aa64pfr0 },
4699             { .name = "ID_AA64PFR1_EL1", .state = ARM_CP_STATE_AA64,
4700               .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 4, .opc2 = 1,
4701               .access = PL1_R, .type = ARM_CP_CONST,
4702               .resetvalue = cpu->id_aa64pfr1},
4703             { .name = "ID_AA64PFR2_EL1_RESERVED", .state = ARM_CP_STATE_AA64,
4704               .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 4, .opc2 = 2,
4705               .access = PL1_R, .type = ARM_CP_CONST,
4706               .resetvalue = 0 },
4707             { .name = "ID_AA64PFR3_EL1_RESERVED", .state = ARM_CP_STATE_AA64,
4708               .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 4, .opc2 = 3,
4709               .access = PL1_R, .type = ARM_CP_CONST,
4710               .resetvalue = 0 },
4711             { .name = "ID_AA64PFR4_EL1_RESERVED", .state = ARM_CP_STATE_AA64,
4712               .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 4, .opc2 = 4,
4713               .access = PL1_R, .type = ARM_CP_CONST,
4714               .resetvalue = 0 },
4715             { .name = "ID_AA64PFR5_EL1_RESERVED", .state = ARM_CP_STATE_AA64,
4716               .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 4, .opc2 = 5,
4717               .access = PL1_R, .type = ARM_CP_CONST,
4718               .resetvalue = 0 },
4719             { .name = "ID_AA64PFR6_EL1_RESERVED", .state = ARM_CP_STATE_AA64,
4720               .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 4, .opc2 = 6,
4721               .access = PL1_R, .type = ARM_CP_CONST,
4722               .resetvalue = 0 },
4723             { .name = "ID_AA64PFR7_EL1_RESERVED", .state = ARM_CP_STATE_AA64,
4724               .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 4, .opc2 = 7,
4725               .access = PL1_R, .type = ARM_CP_CONST,
4726               .resetvalue = 0 },
4727             { .name = "ID_AA64DFR0_EL1", .state = ARM_CP_STATE_AA64,
4728               .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 5, .opc2 = 0,
4729               .access = PL1_R, .type = ARM_CP_CONST,
4730               .resetvalue = cpu->id_aa64dfr0 },
4731             { .name = "ID_AA64DFR1_EL1", .state = ARM_CP_STATE_AA64,
4732               .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 5, .opc2 = 1,
4733               .access = PL1_R, .type = ARM_CP_CONST,
4734               .resetvalue = cpu->id_aa64dfr1 },
4735             { .name = "ID_AA64DFR2_EL1_RESERVED", .state = ARM_CP_STATE_AA64,
4736               .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 5, .opc2 = 2,
4737               .access = PL1_R, .type = ARM_CP_CONST,
4738               .resetvalue = 0 },
4739             { .name = "ID_AA64DFR3_EL1_RESERVED", .state = ARM_CP_STATE_AA64,
4740               .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 5, .opc2 = 3,
4741               .access = PL1_R, .type = ARM_CP_CONST,
4742               .resetvalue = 0 },
4743             { .name = "ID_AA64AFR0_EL1", .state = ARM_CP_STATE_AA64,
4744               .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 5, .opc2 = 4,
4745               .access = PL1_R, .type = ARM_CP_CONST,
4746               .resetvalue = cpu->id_aa64afr0 },
4747             { .name = "ID_AA64AFR1_EL1", .state = ARM_CP_STATE_AA64,
4748               .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 5, .opc2 = 5,
4749               .access = PL1_R, .type = ARM_CP_CONST,
4750               .resetvalue = cpu->id_aa64afr1 },
4751             { .name = "ID_AA64AFR2_EL1_RESERVED", .state = ARM_CP_STATE_AA64,
4752               .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 5, .opc2 = 6,
4753               .access = PL1_R, .type = ARM_CP_CONST,
4754               .resetvalue = 0 },
4755             { .name = "ID_AA64AFR3_EL1_RESERVED", .state = ARM_CP_STATE_AA64,
4756               .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 5, .opc2 = 7,
4757               .access = PL1_R, .type = ARM_CP_CONST,
4758               .resetvalue = 0 },
4759             { .name = "ID_AA64ISAR0_EL1", .state = ARM_CP_STATE_AA64,
4760               .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 6, .opc2 = 0,
4761               .access = PL1_R, .type = ARM_CP_CONST,
4762               .resetvalue = cpu->id_aa64isar0 },
4763             { .name = "ID_AA64ISAR1_EL1", .state = ARM_CP_STATE_AA64,
4764               .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 6, .opc2 = 1,
4765               .access = PL1_R, .type = ARM_CP_CONST,
4766               .resetvalue = cpu->id_aa64isar1 },
4767             { .name = "ID_AA64ISAR2_EL1_RESERVED", .state = ARM_CP_STATE_AA64,
4768               .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 6, .opc2 = 2,
4769               .access = PL1_R, .type = ARM_CP_CONST,
4770               .resetvalue = 0 },
4771             { .name = "ID_AA64ISAR3_EL1_RESERVED", .state = ARM_CP_STATE_AA64,
4772               .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 6, .opc2 = 3,
4773               .access = PL1_R, .type = ARM_CP_CONST,
4774               .resetvalue = 0 },
4775             { .name = "ID_AA64ISAR4_EL1_RESERVED", .state = ARM_CP_STATE_AA64,
4776               .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 6, .opc2 = 4,
4777               .access = PL1_R, .type = ARM_CP_CONST,
4778               .resetvalue = 0 },
4779             { .name = "ID_AA64ISAR5_EL1_RESERVED", .state = ARM_CP_STATE_AA64,
4780               .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 6, .opc2 = 5,
4781               .access = PL1_R, .type = ARM_CP_CONST,
4782               .resetvalue = 0 },
4783             { .name = "ID_AA64ISAR6_EL1_RESERVED", .state = ARM_CP_STATE_AA64,
4784               .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 6, .opc2 = 6,
4785               .access = PL1_R, .type = ARM_CP_CONST,
4786               .resetvalue = 0 },
4787             { .name = "ID_AA64ISAR7_EL1_RESERVED", .state = ARM_CP_STATE_AA64,
4788               .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 6, .opc2 = 7,
4789               .access = PL1_R, .type = ARM_CP_CONST,
4790               .resetvalue = 0 },
4791             { .name = "ID_AA64MMFR0_EL1", .state = ARM_CP_STATE_AA64,
4792               .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 7, .opc2 = 0,
4793               .access = PL1_R, .type = ARM_CP_CONST,
4794               .resetvalue = cpu->id_aa64mmfr0 },
4795             { .name = "ID_AA64MMFR1_EL1", .state = ARM_CP_STATE_AA64,
4796               .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 7, .opc2 = 1,
4797               .access = PL1_R, .type = ARM_CP_CONST,
4798               .resetvalue = cpu->id_aa64mmfr1 },
4799             { .name = "ID_AA64MMFR2_EL1_RESERVED", .state = ARM_CP_STATE_AA64,
4800               .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 7, .opc2 = 2,
4801               .access = PL1_R, .type = ARM_CP_CONST,
4802               .resetvalue = 0 },
4803             { .name = "ID_AA64MMFR3_EL1_RESERVED", .state = ARM_CP_STATE_AA64,
4804               .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 7, .opc2 = 3,
4805               .access = PL1_R, .type = ARM_CP_CONST,
4806               .resetvalue = 0 },
4807             { .name = "ID_AA64MMFR4_EL1_RESERVED", .state = ARM_CP_STATE_AA64,
4808               .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 7, .opc2 = 4,
4809               .access = PL1_R, .type = ARM_CP_CONST,
4810               .resetvalue = 0 },
4811             { .name = "ID_AA64MMFR5_EL1_RESERVED", .state = ARM_CP_STATE_AA64,
4812               .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 7, .opc2 = 5,
4813               .access = PL1_R, .type = ARM_CP_CONST,
4814               .resetvalue = 0 },
4815             { .name = "ID_AA64MMFR6_EL1_RESERVED", .state = ARM_CP_STATE_AA64,
4816               .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 7, .opc2 = 6,
4817               .access = PL1_R, .type = ARM_CP_CONST,
4818               .resetvalue = 0 },
4819             { .name = "ID_AA64MMFR7_EL1_RESERVED", .state = ARM_CP_STATE_AA64,
4820               .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 7, .opc2 = 7,
4821               .access = PL1_R, .type = ARM_CP_CONST,
4822               .resetvalue = 0 },
4823             { .name = "MVFR0_EL1", .state = ARM_CP_STATE_AA64,
4824               .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 3, .opc2 = 0,
4825               .access = PL1_R, .type = ARM_CP_CONST,
4826               .resetvalue = cpu->mvfr0 },
4827             { .name = "MVFR1_EL1", .state = ARM_CP_STATE_AA64,
4828               .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 3, .opc2 = 1,
4829               .access = PL1_R, .type = ARM_CP_CONST,
4830               .resetvalue = cpu->mvfr1 },
4831             { .name = "MVFR2_EL1", .state = ARM_CP_STATE_AA64,
4832               .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 3, .opc2 = 2,
4833               .access = PL1_R, .type = ARM_CP_CONST,
4834               .resetvalue = cpu->mvfr2 },
4835             { .name = "MVFR3_EL1_RESERVED", .state = ARM_CP_STATE_AA64,
4836               .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 3, .opc2 = 3,
4837               .access = PL1_R, .type = ARM_CP_CONST,
4838               .resetvalue = 0 },
4839             { .name = "MVFR4_EL1_RESERVED", .state = ARM_CP_STATE_AA64,
4840               .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 3, .opc2 = 4,
4841               .access = PL1_R, .type = ARM_CP_CONST,
4842               .resetvalue = 0 },
4843             { .name = "MVFR5_EL1_RESERVED", .state = ARM_CP_STATE_AA64,
4844               .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 3, .opc2 = 5,
4845               .access = PL1_R, .type = ARM_CP_CONST,
4846               .resetvalue = 0 },
4847             { .name = "MVFR6_EL1_RESERVED", .state = ARM_CP_STATE_AA64,
4848               .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 3, .opc2 = 6,
4849               .access = PL1_R, .type = ARM_CP_CONST,
4850               .resetvalue = 0 },
4851             { .name = "MVFR7_EL1_RESERVED", .state = ARM_CP_STATE_AA64,
4852               .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 3, .opc2 = 7,
4853               .access = PL1_R, .type = ARM_CP_CONST,
4854               .resetvalue = 0 },
4855             { .name = "PMCEID0", .state = ARM_CP_STATE_AA32,
4856               .cp = 15, .opc1 = 0, .crn = 9, .crm = 12, .opc2 = 6,
4857               .access = PL0_R, .accessfn = pmreg_access, .type = ARM_CP_CONST,
4858               .resetvalue = cpu->pmceid0 },
4859             { .name = "PMCEID0_EL0", .state = ARM_CP_STATE_AA64,
4860               .opc0 = 3, .opc1 = 3, .crn = 9, .crm = 12, .opc2 = 6,
4861               .access = PL0_R, .accessfn = pmreg_access, .type = ARM_CP_CONST,
4862               .resetvalue = cpu->pmceid0 },
4863             { .name = "PMCEID1", .state = ARM_CP_STATE_AA32,
4864               .cp = 15, .opc1 = 0, .crn = 9, .crm = 12, .opc2 = 7,
4865               .access = PL0_R, .accessfn = pmreg_access, .type = ARM_CP_CONST,
4866               .resetvalue = cpu->pmceid1 },
4867             { .name = "PMCEID1_EL0", .state = ARM_CP_STATE_AA64,
4868               .opc0 = 3, .opc1 = 3, .crn = 9, .crm = 12, .opc2 = 7,
4869               .access = PL0_R, .accessfn = pmreg_access, .type = ARM_CP_CONST,
4870               .resetvalue = cpu->pmceid1 },
4871             REGINFO_SENTINEL
4872         };
4873         /* RVBAR_EL1 is only implemented if EL1 is the highest EL */
4874         if (!arm_feature(env, ARM_FEATURE_EL3) &&
4875             !arm_feature(env, ARM_FEATURE_EL2)) {
4876             ARMCPRegInfo rvbar = {
4877                 .name = "RVBAR_EL1", .state = ARM_CP_STATE_AA64,
4878                 .opc0 = 3, .opc1 = 0, .crn = 12, .crm = 0, .opc2 = 1,
4879                 .type = ARM_CP_CONST, .access = PL1_R, .resetvalue = cpu->rvbar
4880             };
4881             define_one_arm_cp_reg(cpu, &rvbar);
4882         }
4883         define_arm_cp_regs(cpu, v8_idregs);
4884         define_arm_cp_regs(cpu, v8_cp_reginfo);
4885     }
4886     if (arm_feature(env, ARM_FEATURE_EL2)) {
4887         uint64_t vmpidr_def = mpidr_read_val(env);
4888         ARMCPRegInfo vpidr_regs[] = {
4889             { .name = "VPIDR", .state = ARM_CP_STATE_AA32,
4890               .cp = 15, .opc1 = 4, .crn = 0, .crm = 0, .opc2 = 0,
4891               .access = PL2_RW, .accessfn = access_el3_aa32ns,
4892               .resetvalue = cpu->midr,
4893               .fieldoffset = offsetof(CPUARMState, cp15.vpidr_el2) },
4894             { .name = "VPIDR_EL2", .state = ARM_CP_STATE_AA64,
4895               .opc0 = 3, .opc1 = 4, .crn = 0, .crm = 0, .opc2 = 0,
4896               .access = PL2_RW, .resetvalue = cpu->midr,
4897               .fieldoffset = offsetof(CPUARMState, cp15.vpidr_el2) },
4898             { .name = "VMPIDR", .state = ARM_CP_STATE_AA32,
4899               .cp = 15, .opc1 = 4, .crn = 0, .crm = 0, .opc2 = 5,
4900               .access = PL2_RW, .accessfn = access_el3_aa32ns,
4901               .resetvalue = vmpidr_def,
4902               .fieldoffset = offsetof(CPUARMState, cp15.vmpidr_el2) },
4903             { .name = "VMPIDR_EL2", .state = ARM_CP_STATE_AA64,
4904               .opc0 = 3, .opc1 = 4, .crn = 0, .crm = 0, .opc2 = 5,
4905               .access = PL2_RW,
4906               .resetvalue = vmpidr_def,
4907               .fieldoffset = offsetof(CPUARMState, cp15.vmpidr_el2) },
4908             REGINFO_SENTINEL
4909         };
4910         define_arm_cp_regs(cpu, vpidr_regs);
4911         define_arm_cp_regs(cpu, el2_cp_reginfo);
4912         /* RVBAR_EL2 is only implemented if EL2 is the highest EL */
4913         if (!arm_feature(env, ARM_FEATURE_EL3)) {
4914             ARMCPRegInfo rvbar = {
4915                 .name = "RVBAR_EL2", .state = ARM_CP_STATE_AA64,
4916                 .opc0 = 3, .opc1 = 4, .crn = 12, .crm = 0, .opc2 = 1,
4917                 .type = ARM_CP_CONST, .access = PL2_R, .resetvalue = cpu->rvbar
4918             };
4919             define_one_arm_cp_reg(cpu, &rvbar);
4920         }
4921     } else {
4922         /* If EL2 is missing but higher ELs are enabled, we need to
4923          * register the no_el2 reginfos.
4924          */
4925         if (arm_feature(env, ARM_FEATURE_EL3)) {
4926             /* When EL3 exists but not EL2, VPIDR and VMPIDR take the value
4927              * of MIDR_EL1 and MPIDR_EL1.
4928              */
4929             ARMCPRegInfo vpidr_regs[] = {
4930                 { .name = "VPIDR_EL2", .state = ARM_CP_STATE_BOTH,
4931                   .opc0 = 3, .opc1 = 4, .crn = 0, .crm = 0, .opc2 = 0,
4932                   .access = PL2_RW, .accessfn = access_el3_aa32ns_aa64any,
4933                   .type = ARM_CP_CONST, .resetvalue = cpu->midr,
4934                   .fieldoffset = offsetof(CPUARMState, cp15.vpidr_el2) },
4935                 { .name = "VMPIDR_EL2", .state = ARM_CP_STATE_BOTH,
4936                   .opc0 = 3, .opc1 = 4, .crn = 0, .crm = 0, .opc2 = 5,
4937                   .access = PL2_RW, .accessfn = access_el3_aa32ns_aa64any,
4938                   .type = ARM_CP_NO_RAW,
4939                   .writefn = arm_cp_write_ignore, .readfn = mpidr_read },
4940                 REGINFO_SENTINEL
4941             };
4942             define_arm_cp_regs(cpu, vpidr_regs);
4943             define_arm_cp_regs(cpu, el3_no_el2_cp_reginfo);
4944         }
4945     }
4946     if (arm_feature(env, ARM_FEATURE_EL3)) {
4947         define_arm_cp_regs(cpu, el3_cp_reginfo);
4948         ARMCPRegInfo el3_regs[] = {
4949             { .name = "RVBAR_EL3", .state = ARM_CP_STATE_AA64,
4950               .opc0 = 3, .opc1 = 6, .crn = 12, .crm = 0, .opc2 = 1,
4951               .type = ARM_CP_CONST, .access = PL3_R, .resetvalue = cpu->rvbar },
4952             { .name = "SCTLR_EL3", .state = ARM_CP_STATE_AA64,
4953               .opc0 = 3, .opc1 = 6, .crn = 1, .crm = 0, .opc2 = 0,
4954               .access = PL3_RW,
4955               .raw_writefn = raw_write, .writefn = sctlr_write,
4956               .fieldoffset = offsetof(CPUARMState, cp15.sctlr_el[3]),
4957               .resetvalue = cpu->reset_sctlr },
4958             REGINFO_SENTINEL
4959         };
4960 
4961         define_arm_cp_regs(cpu, el3_regs);
4962     }
4963     /* The behaviour of NSACR is sufficiently various that we don't
4964      * try to describe it in a single reginfo:
4965      *  if EL3 is 64 bit, then trap to EL3 from S EL1,
4966      *     reads as constant 0xc00 from NS EL1 and NS EL2
4967      *  if EL3 is 32 bit, then RW at EL3, RO at NS EL1 and NS EL2
4968      *  if v7 without EL3, register doesn't exist
4969      *  if v8 without EL3, reads as constant 0xc00 from NS EL1 and NS EL2
4970      */
4971     if (arm_feature(env, ARM_FEATURE_EL3)) {
4972         if (arm_feature(env, ARM_FEATURE_AARCH64)) {
4973             ARMCPRegInfo nsacr = {
4974                 .name = "NSACR", .type = ARM_CP_CONST,
4975                 .cp = 15, .opc1 = 0, .crn = 1, .crm = 1, .opc2 = 2,
4976                 .access = PL1_RW, .accessfn = nsacr_access,
4977                 .resetvalue = 0xc00
4978             };
4979             define_one_arm_cp_reg(cpu, &nsacr);
4980         } else {
4981             ARMCPRegInfo nsacr = {
4982                 .name = "NSACR",
4983                 .cp = 15, .opc1 = 0, .crn = 1, .crm = 1, .opc2 = 2,
4984                 .access = PL3_RW | PL1_R,
4985                 .resetvalue = 0,
4986                 .fieldoffset = offsetof(CPUARMState, cp15.nsacr)
4987             };
4988             define_one_arm_cp_reg(cpu, &nsacr);
4989         }
4990     } else {
4991         if (arm_feature(env, ARM_FEATURE_V8)) {
4992             ARMCPRegInfo nsacr = {
4993                 .name = "NSACR", .type = ARM_CP_CONST,
4994                 .cp = 15, .opc1 = 0, .crn = 1, .crm = 1, .opc2 = 2,
4995                 .access = PL1_R,
4996                 .resetvalue = 0xc00
4997             };
4998             define_one_arm_cp_reg(cpu, &nsacr);
4999         }
5000     }
5001 
5002     if (arm_feature(env, ARM_FEATURE_PMSA)) {
5003         if (arm_feature(env, ARM_FEATURE_V6)) {
5004             /* PMSAv6 not implemented */
5005             assert(arm_feature(env, ARM_FEATURE_V7));
5006             define_arm_cp_regs(cpu, vmsa_pmsa_cp_reginfo);
5007             define_arm_cp_regs(cpu, pmsav7_cp_reginfo);
5008         } else {
5009             define_arm_cp_regs(cpu, pmsav5_cp_reginfo);
5010         }
5011     } else {
5012         define_arm_cp_regs(cpu, vmsa_pmsa_cp_reginfo);
5013         define_arm_cp_regs(cpu, vmsa_cp_reginfo);
5014     }
5015     if (arm_feature(env, ARM_FEATURE_THUMB2EE)) {
5016         define_arm_cp_regs(cpu, t2ee_cp_reginfo);
5017     }
5018     if (arm_feature(env, ARM_FEATURE_GENERIC_TIMER)) {
5019         define_arm_cp_regs(cpu, generic_timer_cp_reginfo);
5020     }
5021     if (arm_feature(env, ARM_FEATURE_VAPA)) {
5022         define_arm_cp_regs(cpu, vapa_cp_reginfo);
5023     }
5024     if (arm_feature(env, ARM_FEATURE_CACHE_TEST_CLEAN)) {
5025         define_arm_cp_regs(cpu, cache_test_clean_cp_reginfo);
5026     }
5027     if (arm_feature(env, ARM_FEATURE_CACHE_DIRTY_REG)) {
5028         define_arm_cp_regs(cpu, cache_dirty_status_cp_reginfo);
5029     }
5030     if (arm_feature(env, ARM_FEATURE_CACHE_BLOCK_OPS)) {
5031         define_arm_cp_regs(cpu, cache_block_ops_cp_reginfo);
5032     }
5033     if (arm_feature(env, ARM_FEATURE_OMAPCP)) {
5034         define_arm_cp_regs(cpu, omap_cp_reginfo);
5035     }
5036     if (arm_feature(env, ARM_FEATURE_STRONGARM)) {
5037         define_arm_cp_regs(cpu, strongarm_cp_reginfo);
5038     }
5039     if (arm_feature(env, ARM_FEATURE_XSCALE)) {
5040         define_arm_cp_regs(cpu, xscale_cp_reginfo);
5041     }
5042     if (arm_feature(env, ARM_FEATURE_DUMMY_C15_REGS)) {
5043         define_arm_cp_regs(cpu, dummy_c15_cp_reginfo);
5044     }
5045     if (arm_feature(env, ARM_FEATURE_LPAE)) {
5046         define_arm_cp_regs(cpu, lpae_cp_reginfo);
5047     }
5048     /* Slightly awkwardly, the OMAP and StrongARM cores need all of
5049      * cp15 crn=0 to be writes-ignored, whereas for other cores they should
5050      * be read-only (ie write causes UNDEF exception).
5051      */
5052     {
5053         ARMCPRegInfo id_pre_v8_midr_cp_reginfo[] = {
5054             /* Pre-v8 MIDR space.
5055              * Note that the MIDR isn't a simple constant register because
5056              * of the TI925 behaviour where writes to another register can
5057              * cause the MIDR value to change.
5058              *
5059              * Unimplemented registers in the c15 0 0 0 space default to
5060              * MIDR. Define MIDR first as this entire space, then CTR, TCMTR
5061              * and friends override accordingly.
5062              */
5063             { .name = "MIDR",
5064               .cp = 15, .crn = 0, .crm = 0, .opc1 = 0, .opc2 = CP_ANY,
5065               .access = PL1_R, .resetvalue = cpu->midr,
5066               .writefn = arm_cp_write_ignore, .raw_writefn = raw_write,
5067               .readfn = midr_read,
5068               .fieldoffset = offsetof(CPUARMState, cp15.c0_cpuid),
5069               .type = ARM_CP_OVERRIDE },
5070             /* crn = 0 op1 = 0 crm = 3..7 : currently unassigned; we RAZ. */
5071             { .name = "DUMMY",
5072               .cp = 15, .crn = 0, .crm = 3, .opc1 = 0, .opc2 = CP_ANY,
5073               .access = PL1_R, .type = ARM_CP_CONST, .resetvalue = 0 },
5074             { .name = "DUMMY",
5075               .cp = 15, .crn = 0, .crm = 4, .opc1 = 0, .opc2 = CP_ANY,
5076               .access = PL1_R, .type = ARM_CP_CONST, .resetvalue = 0 },
5077             { .name = "DUMMY",
5078               .cp = 15, .crn = 0, .crm = 5, .opc1 = 0, .opc2 = CP_ANY,
5079               .access = PL1_R, .type = ARM_CP_CONST, .resetvalue = 0 },
5080             { .name = "DUMMY",
5081               .cp = 15, .crn = 0, .crm = 6, .opc1 = 0, .opc2 = CP_ANY,
5082               .access = PL1_R, .type = ARM_CP_CONST, .resetvalue = 0 },
5083             { .name = "DUMMY",
5084               .cp = 15, .crn = 0, .crm = 7, .opc1 = 0, .opc2 = CP_ANY,
5085               .access = PL1_R, .type = ARM_CP_CONST, .resetvalue = 0 },
5086             REGINFO_SENTINEL
5087         };
5088         ARMCPRegInfo id_v8_midr_cp_reginfo[] = {
5089             { .name = "MIDR_EL1", .state = ARM_CP_STATE_BOTH,
5090               .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 0, .opc2 = 0,
5091               .access = PL1_R, .type = ARM_CP_NO_RAW, .resetvalue = cpu->midr,
5092               .fieldoffset = offsetof(CPUARMState, cp15.c0_cpuid),
5093               .readfn = midr_read },
5094             /* crn = 0 op1 = 0 crm = 0 op2 = 4,7 : AArch32 aliases of MIDR */
5095             { .name = "MIDR", .type = ARM_CP_ALIAS | ARM_CP_CONST,
5096               .cp = 15, .crn = 0, .crm = 0, .opc1 = 0, .opc2 = 4,
5097               .access = PL1_R, .resetvalue = cpu->midr },
5098             { .name = "MIDR", .type = ARM_CP_ALIAS | ARM_CP_CONST,
5099               .cp = 15, .crn = 0, .crm = 0, .opc1 = 0, .opc2 = 7,
5100               .access = PL1_R, .resetvalue = cpu->midr },
5101             { .name = "REVIDR_EL1", .state = ARM_CP_STATE_BOTH,
5102               .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 0, .opc2 = 6,
5103               .access = PL1_R, .type = ARM_CP_CONST, .resetvalue = cpu->revidr },
5104             REGINFO_SENTINEL
5105         };
5106         ARMCPRegInfo id_cp_reginfo[] = {
5107             /* These are common to v8 and pre-v8 */
5108             { .name = "CTR",
5109               .cp = 15, .crn = 0, .crm = 0, .opc1 = 0, .opc2 = 1,
5110               .access = PL1_R, .type = ARM_CP_CONST, .resetvalue = cpu->ctr },
5111             { .name = "CTR_EL0", .state = ARM_CP_STATE_AA64,
5112               .opc0 = 3, .opc1 = 3, .opc2 = 1, .crn = 0, .crm = 0,
5113               .access = PL0_R, .accessfn = ctr_el0_access,
5114               .type = ARM_CP_CONST, .resetvalue = cpu->ctr },
5115             /* TCMTR and TLBTR exist in v8 but have no 64-bit versions */
5116             { .name = "TCMTR",
5117               .cp = 15, .crn = 0, .crm = 0, .opc1 = 0, .opc2 = 2,
5118               .access = PL1_R, .type = ARM_CP_CONST, .resetvalue = 0 },
5119             REGINFO_SENTINEL
5120         };
5121         /* TLBTR is specific to VMSA */
5122         ARMCPRegInfo id_tlbtr_reginfo = {
5123               .name = "TLBTR",
5124               .cp = 15, .crn = 0, .crm = 0, .opc1 = 0, .opc2 = 3,
5125               .access = PL1_R, .type = ARM_CP_CONST, .resetvalue = 0,
5126         };
5127         /* MPUIR is specific to PMSA V6+ */
5128         ARMCPRegInfo id_mpuir_reginfo = {
5129               .name = "MPUIR",
5130               .cp = 15, .crn = 0, .crm = 0, .opc1 = 0, .opc2 = 4,
5131               .access = PL1_R, .type = ARM_CP_CONST,
5132               .resetvalue = cpu->pmsav7_dregion << 8
5133         };
5134         ARMCPRegInfo crn0_wi_reginfo = {
5135             .name = "CRN0_WI", .cp = 15, .crn = 0, .crm = CP_ANY,
5136             .opc1 = CP_ANY, .opc2 = CP_ANY, .access = PL1_W,
5137             .type = ARM_CP_NOP | ARM_CP_OVERRIDE
5138         };
5139         if (arm_feature(env, ARM_FEATURE_OMAPCP) ||
5140             arm_feature(env, ARM_FEATURE_STRONGARM)) {
5141             ARMCPRegInfo *r;
5142             /* Register the blanket "writes ignored" value first to cover the
5143              * whole space. Then update the specific ID registers to allow write
5144              * access, so that they ignore writes rather than causing them to
5145              * UNDEF.
5146              */
5147             define_one_arm_cp_reg(cpu, &crn0_wi_reginfo);
5148             for (r = id_pre_v8_midr_cp_reginfo;
5149                  r->type != ARM_CP_SENTINEL; r++) {
5150                 r->access = PL1_RW;
5151             }
5152             for (r = id_cp_reginfo; r->type != ARM_CP_SENTINEL; r++) {
5153                 r->access = PL1_RW;
5154             }
5155             id_tlbtr_reginfo.access = PL1_RW;
5156             id_tlbtr_reginfo.access = PL1_RW;
5157         }
5158         if (arm_feature(env, ARM_FEATURE_V8)) {
5159             define_arm_cp_regs(cpu, id_v8_midr_cp_reginfo);
5160         } else {
5161             define_arm_cp_regs(cpu, id_pre_v8_midr_cp_reginfo);
5162         }
5163         define_arm_cp_regs(cpu, id_cp_reginfo);
5164         if (!arm_feature(env, ARM_FEATURE_PMSA)) {
5165             define_one_arm_cp_reg(cpu, &id_tlbtr_reginfo);
5166         } else if (arm_feature(env, ARM_FEATURE_V7)) {
5167             define_one_arm_cp_reg(cpu, &id_mpuir_reginfo);
5168         }
5169     }
5170 
5171     if (arm_feature(env, ARM_FEATURE_MPIDR)) {
5172         define_arm_cp_regs(cpu, mpidr_cp_reginfo);
5173     }
5174 
5175     if (arm_feature(env, ARM_FEATURE_AUXCR)) {
5176         ARMCPRegInfo auxcr_reginfo[] = {
5177             { .name = "ACTLR_EL1", .state = ARM_CP_STATE_BOTH,
5178               .opc0 = 3, .opc1 = 0, .crn = 1, .crm = 0, .opc2 = 1,
5179               .access = PL1_RW, .type = ARM_CP_CONST,
5180               .resetvalue = cpu->reset_auxcr },
5181             { .name = "ACTLR_EL2", .state = ARM_CP_STATE_BOTH,
5182               .opc0 = 3, .opc1 = 4, .crn = 1, .crm = 0, .opc2 = 1,
5183               .access = PL2_RW, .type = ARM_CP_CONST,
5184               .resetvalue = 0 },
5185             { .name = "ACTLR_EL3", .state = ARM_CP_STATE_AA64,
5186               .opc0 = 3, .opc1 = 6, .crn = 1, .crm = 0, .opc2 = 1,
5187               .access = PL3_RW, .type = ARM_CP_CONST,
5188               .resetvalue = 0 },
5189             REGINFO_SENTINEL
5190         };
5191         define_arm_cp_regs(cpu, auxcr_reginfo);
5192     }
5193 
5194     if (arm_feature(env, ARM_FEATURE_CBAR)) {
5195         if (arm_feature(env, ARM_FEATURE_AARCH64)) {
5196             /* 32 bit view is [31:18] 0...0 [43:32]. */
5197             uint32_t cbar32 = (extract64(cpu->reset_cbar, 18, 14) << 18)
5198                 | extract64(cpu->reset_cbar, 32, 12);
5199             ARMCPRegInfo cbar_reginfo[] = {
5200                 { .name = "CBAR",
5201                   .type = ARM_CP_CONST,
5202                   .cp = 15, .crn = 15, .crm = 0, .opc1 = 4, .opc2 = 0,
5203                   .access = PL1_R, .resetvalue = cpu->reset_cbar },
5204                 { .name = "CBAR_EL1", .state = ARM_CP_STATE_AA64,
5205                   .type = ARM_CP_CONST,
5206                   .opc0 = 3, .opc1 = 1, .crn = 15, .crm = 3, .opc2 = 0,
5207                   .access = PL1_R, .resetvalue = cbar32 },
5208                 REGINFO_SENTINEL
5209             };
5210             /* We don't implement a r/w 64 bit CBAR currently */
5211             assert(arm_feature(env, ARM_FEATURE_CBAR_RO));
5212             define_arm_cp_regs(cpu, cbar_reginfo);
5213         } else {
5214             ARMCPRegInfo cbar = {
5215                 .name = "CBAR",
5216                 .cp = 15, .crn = 15, .crm = 0, .opc1 = 4, .opc2 = 0,
5217                 .access = PL1_R|PL3_W, .resetvalue = cpu->reset_cbar,
5218                 .fieldoffset = offsetof(CPUARMState,
5219                                         cp15.c15_config_base_address)
5220             };
5221             if (arm_feature(env, ARM_FEATURE_CBAR_RO)) {
5222                 cbar.access = PL1_R;
5223                 cbar.fieldoffset = 0;
5224                 cbar.type = ARM_CP_CONST;
5225             }
5226             define_one_arm_cp_reg(cpu, &cbar);
5227         }
5228     }
5229 
5230     if (arm_feature(env, ARM_FEATURE_VBAR)) {
5231         ARMCPRegInfo vbar_cp_reginfo[] = {
5232             { .name = "VBAR", .state = ARM_CP_STATE_BOTH,
5233               .opc0 = 3, .crn = 12, .crm = 0, .opc1 = 0, .opc2 = 0,
5234               .access = PL1_RW, .writefn = vbar_write,
5235               .bank_fieldoffsets = { offsetof(CPUARMState, cp15.vbar_s),
5236                                      offsetof(CPUARMState, cp15.vbar_ns) },
5237               .resetvalue = 0 },
5238             REGINFO_SENTINEL
5239         };
5240         define_arm_cp_regs(cpu, vbar_cp_reginfo);
5241     }
5242 
5243     /* Generic registers whose values depend on the implementation */
5244     {
5245         ARMCPRegInfo sctlr = {
5246             .name = "SCTLR", .state = ARM_CP_STATE_BOTH,
5247             .opc0 = 3, .opc1 = 0, .crn = 1, .crm = 0, .opc2 = 0,
5248             .access = PL1_RW,
5249             .bank_fieldoffsets = { offsetof(CPUARMState, cp15.sctlr_s),
5250                                    offsetof(CPUARMState, cp15.sctlr_ns) },
5251             .writefn = sctlr_write, .resetvalue = cpu->reset_sctlr,
5252             .raw_writefn = raw_write,
5253         };
5254         if (arm_feature(env, ARM_FEATURE_XSCALE)) {
5255             /* Normally we would always end the TB on an SCTLR write, but Linux
5256              * arch/arm/mach-pxa/sleep.S expects two instructions following
5257              * an MMU enable to execute from cache.  Imitate this behaviour.
5258              */
5259             sctlr.type |= ARM_CP_SUPPRESS_TB_END;
5260         }
5261         define_one_arm_cp_reg(cpu, &sctlr);
5262     }
5263 }
5264 
5265 void arm_cpu_register_gdb_regs_for_features(ARMCPU *cpu)
5266 {
5267     CPUState *cs = CPU(cpu);
5268     CPUARMState *env = &cpu->env;
5269 
5270     if (arm_feature(env, ARM_FEATURE_AARCH64)) {
5271         gdb_register_coprocessor(cs, aarch64_fpu_gdb_get_reg,
5272                                  aarch64_fpu_gdb_set_reg,
5273                                  34, "aarch64-fpu.xml", 0);
5274     } else if (arm_feature(env, ARM_FEATURE_NEON)) {
5275         gdb_register_coprocessor(cs, vfp_gdb_get_reg, vfp_gdb_set_reg,
5276                                  51, "arm-neon.xml", 0);
5277     } else if (arm_feature(env, ARM_FEATURE_VFP3)) {
5278         gdb_register_coprocessor(cs, vfp_gdb_get_reg, vfp_gdb_set_reg,
5279                                  35, "arm-vfp3.xml", 0);
5280     } else if (arm_feature(env, ARM_FEATURE_VFP)) {
5281         gdb_register_coprocessor(cs, vfp_gdb_get_reg, vfp_gdb_set_reg,
5282                                  19, "arm-vfp.xml", 0);
5283     }
5284 }
5285 
5286 /* Sort alphabetically by type name, except for "any". */
5287 static gint arm_cpu_list_compare(gconstpointer a, gconstpointer b)
5288 {
5289     ObjectClass *class_a = (ObjectClass *)a;
5290     ObjectClass *class_b = (ObjectClass *)b;
5291     const char *name_a, *name_b;
5292 
5293     name_a = object_class_get_name(class_a);
5294     name_b = object_class_get_name(class_b);
5295     if (strcmp(name_a, "any-" TYPE_ARM_CPU) == 0) {
5296         return 1;
5297     } else if (strcmp(name_b, "any-" TYPE_ARM_CPU) == 0) {
5298         return -1;
5299     } else {
5300         return strcmp(name_a, name_b);
5301     }
5302 }
5303 
5304 static void arm_cpu_list_entry(gpointer data, gpointer user_data)
5305 {
5306     ObjectClass *oc = data;
5307     CPUListState *s = user_data;
5308     const char *typename;
5309     char *name;
5310 
5311     typename = object_class_get_name(oc);
5312     name = g_strndup(typename, strlen(typename) - strlen("-" TYPE_ARM_CPU));
5313     (*s->cpu_fprintf)(s->file, "  %s\n",
5314                       name);
5315     g_free(name);
5316 }
5317 
5318 void arm_cpu_list(FILE *f, fprintf_function cpu_fprintf)
5319 {
5320     CPUListState s = {
5321         .file = f,
5322         .cpu_fprintf = cpu_fprintf,
5323     };
5324     GSList *list;
5325 
5326     list = object_class_get_list(TYPE_ARM_CPU, false);
5327     list = g_slist_sort(list, arm_cpu_list_compare);
5328     (*cpu_fprintf)(f, "Available CPUs:\n");
5329     g_slist_foreach(list, arm_cpu_list_entry, &s);
5330     g_slist_free(list);
5331 #ifdef CONFIG_KVM
5332     /* The 'host' CPU type is dynamically registered only if KVM is
5333      * enabled, so we have to special-case it here:
5334      */
5335     (*cpu_fprintf)(f, "  host (only available in KVM mode)\n");
5336 #endif
5337 }
5338 
5339 static void arm_cpu_add_definition(gpointer data, gpointer user_data)
5340 {
5341     ObjectClass *oc = data;
5342     CpuDefinitionInfoList **cpu_list = user_data;
5343     CpuDefinitionInfoList *entry;
5344     CpuDefinitionInfo *info;
5345     const char *typename;
5346 
5347     typename = object_class_get_name(oc);
5348     info = g_malloc0(sizeof(*info));
5349     info->name = g_strndup(typename,
5350                            strlen(typename) - strlen("-" TYPE_ARM_CPU));
5351     info->q_typename = g_strdup(typename);
5352 
5353     entry = g_malloc0(sizeof(*entry));
5354     entry->value = info;
5355     entry->next = *cpu_list;
5356     *cpu_list = entry;
5357 }
5358 
5359 CpuDefinitionInfoList *arch_query_cpu_definitions(Error **errp)
5360 {
5361     CpuDefinitionInfoList *cpu_list = NULL;
5362     GSList *list;
5363 
5364     list = object_class_get_list(TYPE_ARM_CPU, false);
5365     g_slist_foreach(list, arm_cpu_add_definition, &cpu_list);
5366     g_slist_free(list);
5367 
5368     return cpu_list;
5369 }
5370 
5371 static void add_cpreg_to_hashtable(ARMCPU *cpu, const ARMCPRegInfo *r,
5372                                    void *opaque, int state, int secstate,
5373                                    int crm, int opc1, int opc2)
5374 {
5375     /* Private utility function for define_one_arm_cp_reg_with_opaque():
5376      * add a single reginfo struct to the hash table.
5377      */
5378     uint32_t *key = g_new(uint32_t, 1);
5379     ARMCPRegInfo *r2 = g_memdup(r, sizeof(ARMCPRegInfo));
5380     int is64 = (r->type & ARM_CP_64BIT) ? 1 : 0;
5381     int ns = (secstate & ARM_CP_SECSTATE_NS) ? 1 : 0;
5382 
5383     /* Reset the secure state to the specific incoming state.  This is
5384      * necessary as the register may have been defined with both states.
5385      */
5386     r2->secure = secstate;
5387 
5388     if (r->bank_fieldoffsets[0] && r->bank_fieldoffsets[1]) {
5389         /* Register is banked (using both entries in array).
5390          * Overwriting fieldoffset as the array is only used to define
5391          * banked registers but later only fieldoffset is used.
5392          */
5393         r2->fieldoffset = r->bank_fieldoffsets[ns];
5394     }
5395 
5396     if (state == ARM_CP_STATE_AA32) {
5397         if (r->bank_fieldoffsets[0] && r->bank_fieldoffsets[1]) {
5398             /* If the register is banked then we don't need to migrate or
5399              * reset the 32-bit instance in certain cases:
5400              *
5401              * 1) If the register has both 32-bit and 64-bit instances then we
5402              *    can count on the 64-bit instance taking care of the
5403              *    non-secure bank.
5404              * 2) If ARMv8 is enabled then we can count on a 64-bit version
5405              *    taking care of the secure bank.  This requires that separate
5406              *    32 and 64-bit definitions are provided.
5407              */
5408             if ((r->state == ARM_CP_STATE_BOTH && ns) ||
5409                 (arm_feature(&cpu->env, ARM_FEATURE_V8) && !ns)) {
5410                 r2->type |= ARM_CP_ALIAS;
5411             }
5412         } else if ((secstate != r->secure) && !ns) {
5413             /* The register is not banked so we only want to allow migration of
5414              * the non-secure instance.
5415              */
5416             r2->type |= ARM_CP_ALIAS;
5417         }
5418 
5419         if (r->state == ARM_CP_STATE_BOTH) {
5420             /* We assume it is a cp15 register if the .cp field is left unset.
5421              */
5422             if (r2->cp == 0) {
5423                 r2->cp = 15;
5424             }
5425 
5426 #ifdef HOST_WORDS_BIGENDIAN
5427             if (r2->fieldoffset) {
5428                 r2->fieldoffset += sizeof(uint32_t);
5429             }
5430 #endif
5431         }
5432     }
5433     if (state == ARM_CP_STATE_AA64) {
5434         /* To allow abbreviation of ARMCPRegInfo
5435          * definitions, we treat cp == 0 as equivalent to
5436          * the value for "standard guest-visible sysreg".
5437          * STATE_BOTH definitions are also always "standard
5438          * sysreg" in their AArch64 view (the .cp value may
5439          * be non-zero for the benefit of the AArch32 view).
5440          */
5441         if (r->cp == 0 || r->state == ARM_CP_STATE_BOTH) {
5442             r2->cp = CP_REG_ARM64_SYSREG_CP;
5443         }
5444         *key = ENCODE_AA64_CP_REG(r2->cp, r2->crn, crm,
5445                                   r2->opc0, opc1, opc2);
5446     } else {
5447         *key = ENCODE_CP_REG(r2->cp, is64, ns, r2->crn, crm, opc1, opc2);
5448     }
5449     if (opaque) {
5450         r2->opaque = opaque;
5451     }
5452     /* reginfo passed to helpers is correct for the actual access,
5453      * and is never ARM_CP_STATE_BOTH:
5454      */
5455     r2->state = state;
5456     /* Make sure reginfo passed to helpers for wildcarded regs
5457      * has the correct crm/opc1/opc2 for this reg, not CP_ANY:
5458      */
5459     r2->crm = crm;
5460     r2->opc1 = opc1;
5461     r2->opc2 = opc2;
5462     /* By convention, for wildcarded registers only the first
5463      * entry is used for migration; the others are marked as
5464      * ALIAS so we don't try to transfer the register
5465      * multiple times. Special registers (ie NOP/WFI) are
5466      * never migratable and not even raw-accessible.
5467      */
5468     if ((r->type & ARM_CP_SPECIAL)) {
5469         r2->type |= ARM_CP_NO_RAW;
5470     }
5471     if (((r->crm == CP_ANY) && crm != 0) ||
5472         ((r->opc1 == CP_ANY) && opc1 != 0) ||
5473         ((r->opc2 == CP_ANY) && opc2 != 0)) {
5474         r2->type |= ARM_CP_ALIAS;
5475     }
5476 
5477     /* Check that raw accesses are either forbidden or handled. Note that
5478      * we can't assert this earlier because the setup of fieldoffset for
5479      * banked registers has to be done first.
5480      */
5481     if (!(r2->type & ARM_CP_NO_RAW)) {
5482         assert(!raw_accessors_invalid(r2));
5483     }
5484 
5485     /* Overriding of an existing definition must be explicitly
5486      * requested.
5487      */
5488     if (!(r->type & ARM_CP_OVERRIDE)) {
5489         ARMCPRegInfo *oldreg;
5490         oldreg = g_hash_table_lookup(cpu->cp_regs, key);
5491         if (oldreg && !(oldreg->type & ARM_CP_OVERRIDE)) {
5492             fprintf(stderr, "Register redefined: cp=%d %d bit "
5493                     "crn=%d crm=%d opc1=%d opc2=%d, "
5494                     "was %s, now %s\n", r2->cp, 32 + 32 * is64,
5495                     r2->crn, r2->crm, r2->opc1, r2->opc2,
5496                     oldreg->name, r2->name);
5497             g_assert_not_reached();
5498         }
5499     }
5500     g_hash_table_insert(cpu->cp_regs, key, r2);
5501 }
5502 
5503 
5504 void define_one_arm_cp_reg_with_opaque(ARMCPU *cpu,
5505                                        const ARMCPRegInfo *r, void *opaque)
5506 {
5507     /* Define implementations of coprocessor registers.
5508      * We store these in a hashtable because typically
5509      * there are less than 150 registers in a space which
5510      * is 16*16*16*8*8 = 262144 in size.
5511      * Wildcarding is supported for the crm, opc1 and opc2 fields.
5512      * If a register is defined twice then the second definition is
5513      * used, so this can be used to define some generic registers and
5514      * then override them with implementation specific variations.
5515      * At least one of the original and the second definition should
5516      * include ARM_CP_OVERRIDE in its type bits -- this is just a guard
5517      * against accidental use.
5518      *
5519      * The state field defines whether the register is to be
5520      * visible in the AArch32 or AArch64 execution state. If the
5521      * state is set to ARM_CP_STATE_BOTH then we synthesise a
5522      * reginfo structure for the AArch32 view, which sees the lower
5523      * 32 bits of the 64 bit register.
5524      *
5525      * Only registers visible in AArch64 may set r->opc0; opc0 cannot
5526      * be wildcarded. AArch64 registers are always considered to be 64
5527      * bits; the ARM_CP_64BIT* flag applies only to the AArch32 view of
5528      * the register, if any.
5529      */
5530     int crm, opc1, opc2, state;
5531     int crmmin = (r->crm == CP_ANY) ? 0 : r->crm;
5532     int crmmax = (r->crm == CP_ANY) ? 15 : r->crm;
5533     int opc1min = (r->opc1 == CP_ANY) ? 0 : r->opc1;
5534     int opc1max = (r->opc1 == CP_ANY) ? 7 : r->opc1;
5535     int opc2min = (r->opc2 == CP_ANY) ? 0 : r->opc2;
5536     int opc2max = (r->opc2 == CP_ANY) ? 7 : r->opc2;
5537     /* 64 bit registers have only CRm and Opc1 fields */
5538     assert(!((r->type & ARM_CP_64BIT) && (r->opc2 || r->crn)));
5539     /* op0 only exists in the AArch64 encodings */
5540     assert((r->state != ARM_CP_STATE_AA32) || (r->opc0 == 0));
5541     /* AArch64 regs are all 64 bit so ARM_CP_64BIT is meaningless */
5542     assert((r->state != ARM_CP_STATE_AA64) || !(r->type & ARM_CP_64BIT));
5543     /* The AArch64 pseudocode CheckSystemAccess() specifies that op1
5544      * encodes a minimum access level for the register. We roll this
5545      * runtime check into our general permission check code, so check
5546      * here that the reginfo's specified permissions are strict enough
5547      * to encompass the generic architectural permission check.
5548      */
5549     if (r->state != ARM_CP_STATE_AA32) {
5550         int mask = 0;
5551         switch (r->opc1) {
5552         case 0: case 1: case 2:
5553             /* min_EL EL1 */
5554             mask = PL1_RW;
5555             break;
5556         case 3:
5557             /* min_EL EL0 */
5558             mask = PL0_RW;
5559             break;
5560         case 4:
5561             /* min_EL EL2 */
5562             mask = PL2_RW;
5563             break;
5564         case 5:
5565             /* unallocated encoding, so not possible */
5566             assert(false);
5567             break;
5568         case 6:
5569             /* min_EL EL3 */
5570             mask = PL3_RW;
5571             break;
5572         case 7:
5573             /* min_EL EL1, secure mode only (we don't check the latter) */
5574             mask = PL1_RW;
5575             break;
5576         default:
5577             /* broken reginfo with out-of-range opc1 */
5578             assert(false);
5579             break;
5580         }
5581         /* assert our permissions are not too lax (stricter is fine) */
5582         assert((r->access & ~mask) == 0);
5583     }
5584 
5585     /* Check that the register definition has enough info to handle
5586      * reads and writes if they are permitted.
5587      */
5588     if (!(r->type & (ARM_CP_SPECIAL|ARM_CP_CONST))) {
5589         if (r->access & PL3_R) {
5590             assert((r->fieldoffset ||
5591                    (r->bank_fieldoffsets[0] && r->bank_fieldoffsets[1])) ||
5592                    r->readfn);
5593         }
5594         if (r->access & PL3_W) {
5595             assert((r->fieldoffset ||
5596                    (r->bank_fieldoffsets[0] && r->bank_fieldoffsets[1])) ||
5597                    r->writefn);
5598         }
5599     }
5600     /* Bad type field probably means missing sentinel at end of reg list */
5601     assert(cptype_valid(r->type));
5602     for (crm = crmmin; crm <= crmmax; crm++) {
5603         for (opc1 = opc1min; opc1 <= opc1max; opc1++) {
5604             for (opc2 = opc2min; opc2 <= opc2max; opc2++) {
5605                 for (state = ARM_CP_STATE_AA32;
5606                      state <= ARM_CP_STATE_AA64; state++) {
5607                     if (r->state != state && r->state != ARM_CP_STATE_BOTH) {
5608                         continue;
5609                     }
5610                     if (state == ARM_CP_STATE_AA32) {
5611                         /* Under AArch32 CP registers can be common
5612                          * (same for secure and non-secure world) or banked.
5613                          */
5614                         switch (r->secure) {
5615                         case ARM_CP_SECSTATE_S:
5616                         case ARM_CP_SECSTATE_NS:
5617                             add_cpreg_to_hashtable(cpu, r, opaque, state,
5618                                                    r->secure, crm, opc1, opc2);
5619                             break;
5620                         default:
5621                             add_cpreg_to_hashtable(cpu, r, opaque, state,
5622                                                    ARM_CP_SECSTATE_S,
5623                                                    crm, opc1, opc2);
5624                             add_cpreg_to_hashtable(cpu, r, opaque, state,
5625                                                    ARM_CP_SECSTATE_NS,
5626                                                    crm, opc1, opc2);
5627                             break;
5628                         }
5629                     } else {
5630                         /* AArch64 registers get mapped to non-secure instance
5631                          * of AArch32 */
5632                         add_cpreg_to_hashtable(cpu, r, opaque, state,
5633                                                ARM_CP_SECSTATE_NS,
5634                                                crm, opc1, opc2);
5635                     }
5636                 }
5637             }
5638         }
5639     }
5640 }
5641 
5642 void define_arm_cp_regs_with_opaque(ARMCPU *cpu,
5643                                     const ARMCPRegInfo *regs, void *opaque)
5644 {
5645     /* Define a whole list of registers */
5646     const ARMCPRegInfo *r;
5647     for (r = regs; r->type != ARM_CP_SENTINEL; r++) {
5648         define_one_arm_cp_reg_with_opaque(cpu, r, opaque);
5649     }
5650 }
5651 
5652 const ARMCPRegInfo *get_arm_cp_reginfo(GHashTable *cpregs, uint32_t encoded_cp)
5653 {
5654     return g_hash_table_lookup(cpregs, &encoded_cp);
5655 }
5656 
5657 void arm_cp_write_ignore(CPUARMState *env, const ARMCPRegInfo *ri,
5658                          uint64_t value)
5659 {
5660     /* Helper coprocessor write function for write-ignore registers */
5661 }
5662 
5663 uint64_t arm_cp_read_zero(CPUARMState *env, const ARMCPRegInfo *ri)
5664 {
5665     /* Helper coprocessor write function for read-as-zero registers */
5666     return 0;
5667 }
5668 
5669 void arm_cp_reset_ignore(CPUARMState *env, const ARMCPRegInfo *opaque)
5670 {
5671     /* Helper coprocessor reset function for do-nothing-on-reset registers */
5672 }
5673 
5674 static int bad_mode_switch(CPUARMState *env, int mode, CPSRWriteType write_type)
5675 {
5676     /* Return true if it is not valid for us to switch to
5677      * this CPU mode (ie all the UNPREDICTABLE cases in
5678      * the ARM ARM CPSRWriteByInstr pseudocode).
5679      */
5680 
5681     /* Changes to or from Hyp via MSR and CPS are illegal. */
5682     if (write_type == CPSRWriteByInstr &&
5683         ((env->uncached_cpsr & CPSR_M) == ARM_CPU_MODE_HYP ||
5684          mode == ARM_CPU_MODE_HYP)) {
5685         return 1;
5686     }
5687 
5688     switch (mode) {
5689     case ARM_CPU_MODE_USR:
5690         return 0;
5691     case ARM_CPU_MODE_SYS:
5692     case ARM_CPU_MODE_SVC:
5693     case ARM_CPU_MODE_ABT:
5694     case ARM_CPU_MODE_UND:
5695     case ARM_CPU_MODE_IRQ:
5696     case ARM_CPU_MODE_FIQ:
5697         /* Note that we don't implement the IMPDEF NSACR.RFR which in v7
5698          * allows FIQ mode to be Secure-only. (In v8 this doesn't exist.)
5699          */
5700         /* If HCR.TGE is set then changes from Monitor to NS PL1 via MSR
5701          * and CPS are treated as illegal mode changes.
5702          */
5703         if (write_type == CPSRWriteByInstr &&
5704             (env->cp15.hcr_el2 & HCR_TGE) &&
5705             (env->uncached_cpsr & CPSR_M) == ARM_CPU_MODE_MON &&
5706             !arm_is_secure_below_el3(env)) {
5707             return 1;
5708         }
5709         return 0;
5710     case ARM_CPU_MODE_HYP:
5711         return !arm_feature(env, ARM_FEATURE_EL2)
5712             || arm_current_el(env) < 2 || arm_is_secure(env);
5713     case ARM_CPU_MODE_MON:
5714         return arm_current_el(env) < 3;
5715     default:
5716         return 1;
5717     }
5718 }
5719 
5720 uint32_t cpsr_read(CPUARMState *env)
5721 {
5722     int ZF;
5723     ZF = (env->ZF == 0);
5724     return env->uncached_cpsr | (env->NF & 0x80000000) | (ZF << 30) |
5725         (env->CF << 29) | ((env->VF & 0x80000000) >> 3) | (env->QF << 27)
5726         | (env->thumb << 5) | ((env->condexec_bits & 3) << 25)
5727         | ((env->condexec_bits & 0xfc) << 8)
5728         | (env->GE << 16) | (env->daif & CPSR_AIF);
5729 }
5730 
5731 void cpsr_write(CPUARMState *env, uint32_t val, uint32_t mask,
5732                 CPSRWriteType write_type)
5733 {
5734     uint32_t changed_daif;
5735 
5736     if (mask & CPSR_NZCV) {
5737         env->ZF = (~val) & CPSR_Z;
5738         env->NF = val;
5739         env->CF = (val >> 29) & 1;
5740         env->VF = (val << 3) & 0x80000000;
5741     }
5742     if (mask & CPSR_Q)
5743         env->QF = ((val & CPSR_Q) != 0);
5744     if (mask & CPSR_T)
5745         env->thumb = ((val & CPSR_T) != 0);
5746     if (mask & CPSR_IT_0_1) {
5747         env->condexec_bits &= ~3;
5748         env->condexec_bits |= (val >> 25) & 3;
5749     }
5750     if (mask & CPSR_IT_2_7) {
5751         env->condexec_bits &= 3;
5752         env->condexec_bits |= (val >> 8) & 0xfc;
5753     }
5754     if (mask & CPSR_GE) {
5755         env->GE = (val >> 16) & 0xf;
5756     }
5757 
5758     /* In a V7 implementation that includes the security extensions but does
5759      * not include Virtualization Extensions the SCR.FW and SCR.AW bits control
5760      * whether non-secure software is allowed to change the CPSR_F and CPSR_A
5761      * bits respectively.
5762      *
5763      * In a V8 implementation, it is permitted for privileged software to
5764      * change the CPSR A/F bits regardless of the SCR.AW/FW bits.
5765      */
5766     if (write_type != CPSRWriteRaw && !arm_feature(env, ARM_FEATURE_V8) &&
5767         arm_feature(env, ARM_FEATURE_EL3) &&
5768         !arm_feature(env, ARM_FEATURE_EL2) &&
5769         !arm_is_secure(env)) {
5770 
5771         changed_daif = (env->daif ^ val) & mask;
5772 
5773         if (changed_daif & CPSR_A) {
5774             /* Check to see if we are allowed to change the masking of async
5775              * abort exceptions from a non-secure state.
5776              */
5777             if (!(env->cp15.scr_el3 & SCR_AW)) {
5778                 qemu_log_mask(LOG_GUEST_ERROR,
5779                               "Ignoring attempt to switch CPSR_A flag from "
5780                               "non-secure world with SCR.AW bit clear\n");
5781                 mask &= ~CPSR_A;
5782             }
5783         }
5784 
5785         if (changed_daif & CPSR_F) {
5786             /* Check to see if we are allowed to change the masking of FIQ
5787              * exceptions from a non-secure state.
5788              */
5789             if (!(env->cp15.scr_el3 & SCR_FW)) {
5790                 qemu_log_mask(LOG_GUEST_ERROR,
5791                               "Ignoring attempt to switch CPSR_F flag from "
5792                               "non-secure world with SCR.FW bit clear\n");
5793                 mask &= ~CPSR_F;
5794             }
5795 
5796             /* Check whether non-maskable FIQ (NMFI) support is enabled.
5797              * If this bit is set software is not allowed to mask
5798              * FIQs, but is allowed to set CPSR_F to 0.
5799              */
5800             if ((A32_BANKED_CURRENT_REG_GET(env, sctlr) & SCTLR_NMFI) &&
5801                 (val & CPSR_F)) {
5802                 qemu_log_mask(LOG_GUEST_ERROR,
5803                               "Ignoring attempt to enable CPSR_F flag "
5804                               "(non-maskable FIQ [NMFI] support enabled)\n");
5805                 mask &= ~CPSR_F;
5806             }
5807         }
5808     }
5809 
5810     env->daif &= ~(CPSR_AIF & mask);
5811     env->daif |= val & CPSR_AIF & mask;
5812 
5813     if (write_type != CPSRWriteRaw &&
5814         ((env->uncached_cpsr ^ val) & mask & CPSR_M)) {
5815         if ((env->uncached_cpsr & CPSR_M) == ARM_CPU_MODE_USR) {
5816             /* Note that we can only get here in USR mode if this is a
5817              * gdb stub write; for this case we follow the architectural
5818              * behaviour for guest writes in USR mode of ignoring an attempt
5819              * to switch mode. (Those are caught by translate.c for writes
5820              * triggered by guest instructions.)
5821              */
5822             mask &= ~CPSR_M;
5823         } else if (bad_mode_switch(env, val & CPSR_M, write_type)) {
5824             /* Attempt to switch to an invalid mode: this is UNPREDICTABLE in
5825              * v7, and has defined behaviour in v8:
5826              *  + leave CPSR.M untouched
5827              *  + allow changes to the other CPSR fields
5828              *  + set PSTATE.IL
5829              * For user changes via the GDB stub, we don't set PSTATE.IL,
5830              * as this would be unnecessarily harsh for a user error.
5831              */
5832             mask &= ~CPSR_M;
5833             if (write_type != CPSRWriteByGDBStub &&
5834                 arm_feature(env, ARM_FEATURE_V8)) {
5835                 mask |= CPSR_IL;
5836                 val |= CPSR_IL;
5837             }
5838         } else {
5839             switch_mode(env, val & CPSR_M);
5840         }
5841     }
5842     mask &= ~CACHED_CPSR_BITS;
5843     env->uncached_cpsr = (env->uncached_cpsr & ~mask) | (val & mask);
5844 }
5845 
5846 /* Sign/zero extend */
5847 uint32_t HELPER(sxtb16)(uint32_t x)
5848 {
5849     uint32_t res;
5850     res = (uint16_t)(int8_t)x;
5851     res |= (uint32_t)(int8_t)(x >> 16) << 16;
5852     return res;
5853 }
5854 
5855 uint32_t HELPER(uxtb16)(uint32_t x)
5856 {
5857     uint32_t res;
5858     res = (uint16_t)(uint8_t)x;
5859     res |= (uint32_t)(uint8_t)(x >> 16) << 16;
5860     return res;
5861 }
5862 
5863 int32_t HELPER(sdiv)(int32_t num, int32_t den)
5864 {
5865     if (den == 0)
5866       return 0;
5867     if (num == INT_MIN && den == -1)
5868       return INT_MIN;
5869     return num / den;
5870 }
5871 
5872 uint32_t HELPER(udiv)(uint32_t num, uint32_t den)
5873 {
5874     if (den == 0)
5875       return 0;
5876     return num / den;
5877 }
5878 
5879 uint32_t HELPER(rbit)(uint32_t x)
5880 {
5881     return revbit32(x);
5882 }
5883 
5884 #if defined(CONFIG_USER_ONLY)
5885 
5886 /* These should probably raise undefined insn exceptions.  */
5887 void HELPER(v7m_msr)(CPUARMState *env, uint32_t reg, uint32_t val)
5888 {
5889     ARMCPU *cpu = arm_env_get_cpu(env);
5890 
5891     cpu_abort(CPU(cpu), "v7m_msr %d\n", reg);
5892 }
5893 
5894 uint32_t HELPER(v7m_mrs)(CPUARMState *env, uint32_t reg)
5895 {
5896     ARMCPU *cpu = arm_env_get_cpu(env);
5897 
5898     cpu_abort(CPU(cpu), "v7m_mrs %d\n", reg);
5899     return 0;
5900 }
5901 
5902 void HELPER(v7m_bxns)(CPUARMState *env, uint32_t dest)
5903 {
5904     /* translate.c should never generate calls here in user-only mode */
5905     g_assert_not_reached();
5906 }
5907 
5908 void HELPER(v7m_blxns)(CPUARMState *env, uint32_t dest)
5909 {
5910     /* translate.c should never generate calls here in user-only mode */
5911     g_assert_not_reached();
5912 }
5913 
5914 void switch_mode(CPUARMState *env, int mode)
5915 {
5916     ARMCPU *cpu = arm_env_get_cpu(env);
5917 
5918     if (mode != ARM_CPU_MODE_USR) {
5919         cpu_abort(CPU(cpu), "Tried to switch out of user mode\n");
5920     }
5921 }
5922 
5923 uint32_t arm_phys_excp_target_el(CPUState *cs, uint32_t excp_idx,
5924                                  uint32_t cur_el, bool secure)
5925 {
5926     return 1;
5927 }
5928 
5929 void aarch64_sync_64_to_32(CPUARMState *env)
5930 {
5931     g_assert_not_reached();
5932 }
5933 
5934 #else
5935 
5936 void switch_mode(CPUARMState *env, int mode)
5937 {
5938     int old_mode;
5939     int i;
5940 
5941     old_mode = env->uncached_cpsr & CPSR_M;
5942     if (mode == old_mode)
5943         return;
5944 
5945     if (old_mode == ARM_CPU_MODE_FIQ) {
5946         memcpy (env->fiq_regs, env->regs + 8, 5 * sizeof(uint32_t));
5947         memcpy (env->regs + 8, env->usr_regs, 5 * sizeof(uint32_t));
5948     } else if (mode == ARM_CPU_MODE_FIQ) {
5949         memcpy (env->usr_regs, env->regs + 8, 5 * sizeof(uint32_t));
5950         memcpy (env->regs + 8, env->fiq_regs, 5 * sizeof(uint32_t));
5951     }
5952 
5953     i = bank_number(old_mode);
5954     env->banked_r13[i] = env->regs[13];
5955     env->banked_r14[i] = env->regs[14];
5956     env->banked_spsr[i] = env->spsr;
5957 
5958     i = bank_number(mode);
5959     env->regs[13] = env->banked_r13[i];
5960     env->regs[14] = env->banked_r14[i];
5961     env->spsr = env->banked_spsr[i];
5962 }
5963 
5964 /* Physical Interrupt Target EL Lookup Table
5965  *
5966  * [ From ARM ARM section G1.13.4 (Table G1-15) ]
5967  *
5968  * The below multi-dimensional table is used for looking up the target
5969  * exception level given numerous condition criteria.  Specifically, the
5970  * target EL is based on SCR and HCR routing controls as well as the
5971  * currently executing EL and secure state.
5972  *
5973  *    Dimensions:
5974  *    target_el_table[2][2][2][2][2][4]
5975  *                    |  |  |  |  |  +--- Current EL
5976  *                    |  |  |  |  +------ Non-secure(0)/Secure(1)
5977  *                    |  |  |  +--------- HCR mask override
5978  *                    |  |  +------------ SCR exec state control
5979  *                    |  +--------------- SCR mask override
5980  *                    +------------------ 32-bit(0)/64-bit(1) EL3
5981  *
5982  *    The table values are as such:
5983  *    0-3 = EL0-EL3
5984  *     -1 = Cannot occur
5985  *
5986  * The ARM ARM target EL table includes entries indicating that an "exception
5987  * is not taken".  The two cases where this is applicable are:
5988  *    1) An exception is taken from EL3 but the SCR does not have the exception
5989  *    routed to EL3.
5990  *    2) An exception is taken from EL2 but the HCR does not have the exception
5991  *    routed to EL2.
5992  * In these two cases, the below table contain a target of EL1.  This value is
5993  * returned as it is expected that the consumer of the table data will check
5994  * for "target EL >= current EL" to ensure the exception is not taken.
5995  *
5996  *            SCR     HCR
5997  *         64  EA     AMO                 From
5998  *        BIT IRQ     IMO      Non-secure         Secure
5999  *        EL3 FIQ  RW FMO   EL0 EL1 EL2 EL3   EL0 EL1 EL2 EL3
6000  */
6001 static const int8_t target_el_table[2][2][2][2][2][4] = {
6002     {{{{/* 0   0   0   0 */{ 1,  1,  2, -1 },{ 3, -1, -1,  3 },},
6003        {/* 0   0   0   1 */{ 2,  2,  2, -1 },{ 3, -1, -1,  3 },},},
6004       {{/* 0   0   1   0 */{ 1,  1,  2, -1 },{ 3, -1, -1,  3 },},
6005        {/* 0   0   1   1 */{ 2,  2,  2, -1 },{ 3, -1, -1,  3 },},},},
6006      {{{/* 0   1   0   0 */{ 3,  3,  3, -1 },{ 3, -1, -1,  3 },},
6007        {/* 0   1   0   1 */{ 3,  3,  3, -1 },{ 3, -1, -1,  3 },},},
6008       {{/* 0   1   1   0 */{ 3,  3,  3, -1 },{ 3, -1, -1,  3 },},
6009        {/* 0   1   1   1 */{ 3,  3,  3, -1 },{ 3, -1, -1,  3 },},},},},
6010     {{{{/* 1   0   0   0 */{ 1,  1,  2, -1 },{ 1,  1, -1,  1 },},
6011        {/* 1   0   0   1 */{ 2,  2,  2, -1 },{ 1,  1, -1,  1 },},},
6012       {{/* 1   0   1   0 */{ 1,  1,  1, -1 },{ 1,  1, -1,  1 },},
6013        {/* 1   0   1   1 */{ 2,  2,  2, -1 },{ 1,  1, -1,  1 },},},},
6014      {{{/* 1   1   0   0 */{ 3,  3,  3, -1 },{ 3,  3, -1,  3 },},
6015        {/* 1   1   0   1 */{ 3,  3,  3, -1 },{ 3,  3, -1,  3 },},},
6016       {{/* 1   1   1   0 */{ 3,  3,  3, -1 },{ 3,  3, -1,  3 },},
6017        {/* 1   1   1   1 */{ 3,  3,  3, -1 },{ 3,  3, -1,  3 },},},},},
6018 };
6019 
6020 /*
6021  * Determine the target EL for physical exceptions
6022  */
6023 uint32_t arm_phys_excp_target_el(CPUState *cs, uint32_t excp_idx,
6024                                  uint32_t cur_el, bool secure)
6025 {
6026     CPUARMState *env = cs->env_ptr;
6027     int rw;
6028     int scr;
6029     int hcr;
6030     int target_el;
6031     /* Is the highest EL AArch64? */
6032     int is64 = arm_feature(env, ARM_FEATURE_AARCH64);
6033 
6034     if (arm_feature(env, ARM_FEATURE_EL3)) {
6035         rw = ((env->cp15.scr_el3 & SCR_RW) == SCR_RW);
6036     } else {
6037         /* Either EL2 is the highest EL (and so the EL2 register width
6038          * is given by is64); or there is no EL2 or EL3, in which case
6039          * the value of 'rw' does not affect the table lookup anyway.
6040          */
6041         rw = is64;
6042     }
6043 
6044     switch (excp_idx) {
6045     case EXCP_IRQ:
6046         scr = ((env->cp15.scr_el3 & SCR_IRQ) == SCR_IRQ);
6047         hcr = ((env->cp15.hcr_el2 & HCR_IMO) == HCR_IMO);
6048         break;
6049     case EXCP_FIQ:
6050         scr = ((env->cp15.scr_el3 & SCR_FIQ) == SCR_FIQ);
6051         hcr = ((env->cp15.hcr_el2 & HCR_FMO) == HCR_FMO);
6052         break;
6053     default:
6054         scr = ((env->cp15.scr_el3 & SCR_EA) == SCR_EA);
6055         hcr = ((env->cp15.hcr_el2 & HCR_AMO) == HCR_AMO);
6056         break;
6057     };
6058 
6059     /* If HCR.TGE is set then HCR is treated as being 1 */
6060     hcr |= ((env->cp15.hcr_el2 & HCR_TGE) == HCR_TGE);
6061 
6062     /* Perform a table-lookup for the target EL given the current state */
6063     target_el = target_el_table[is64][scr][rw][hcr][secure][cur_el];
6064 
6065     assert(target_el > 0);
6066 
6067     return target_el;
6068 }
6069 
6070 static void v7m_push(CPUARMState *env, uint32_t val)
6071 {
6072     CPUState *cs = CPU(arm_env_get_cpu(env));
6073 
6074     env->regs[13] -= 4;
6075     stl_phys(cs->as, env->regs[13], val);
6076 }
6077 
6078 /* Return true if we're using the process stack pointer (not the MSP) */
6079 static bool v7m_using_psp(CPUARMState *env)
6080 {
6081     /* Handler mode always uses the main stack; for thread mode
6082      * the CONTROL.SPSEL bit determines the answer.
6083      * Note that in v7M it is not possible to be in Handler mode with
6084      * CONTROL.SPSEL non-zero, but in v8M it is, so we must check both.
6085      */
6086     return !arm_v7m_is_handler_mode(env) &&
6087         env->v7m.control[env->v7m.secure] & R_V7M_CONTROL_SPSEL_MASK;
6088 }
6089 
6090 /* Write to v7M CONTROL.SPSEL bit for the specified security bank.
6091  * This may change the current stack pointer between Main and Process
6092  * stack pointers if it is done for the CONTROL register for the current
6093  * security state.
6094  */
6095 static void write_v7m_control_spsel_for_secstate(CPUARMState *env,
6096                                                  bool new_spsel,
6097                                                  bool secstate)
6098 {
6099     bool old_is_psp = v7m_using_psp(env);
6100 
6101     env->v7m.control[secstate] =
6102         deposit32(env->v7m.control[secstate],
6103                   R_V7M_CONTROL_SPSEL_SHIFT,
6104                   R_V7M_CONTROL_SPSEL_LENGTH, new_spsel);
6105 
6106     if (secstate == env->v7m.secure) {
6107         bool new_is_psp = v7m_using_psp(env);
6108         uint32_t tmp;
6109 
6110         if (old_is_psp != new_is_psp) {
6111             tmp = env->v7m.other_sp;
6112             env->v7m.other_sp = env->regs[13];
6113             env->regs[13] = tmp;
6114         }
6115     }
6116 }
6117 
6118 /* Write to v7M CONTROL.SPSEL bit. This may change the current
6119  * stack pointer between Main and Process stack pointers.
6120  */
6121 static void write_v7m_control_spsel(CPUARMState *env, bool new_spsel)
6122 {
6123     write_v7m_control_spsel_for_secstate(env, new_spsel, env->v7m.secure);
6124 }
6125 
6126 void write_v7m_exception(CPUARMState *env, uint32_t new_exc)
6127 {
6128     /* Write a new value to v7m.exception, thus transitioning into or out
6129      * of Handler mode; this may result in a change of active stack pointer.
6130      */
6131     bool new_is_psp, old_is_psp = v7m_using_psp(env);
6132     uint32_t tmp;
6133 
6134     env->v7m.exception = new_exc;
6135 
6136     new_is_psp = v7m_using_psp(env);
6137 
6138     if (old_is_psp != new_is_psp) {
6139         tmp = env->v7m.other_sp;
6140         env->v7m.other_sp = env->regs[13];
6141         env->regs[13] = tmp;
6142     }
6143 }
6144 
6145 /* Switch M profile security state between NS and S */
6146 static void switch_v7m_security_state(CPUARMState *env, bool new_secstate)
6147 {
6148     uint32_t new_ss_msp, new_ss_psp;
6149 
6150     if (env->v7m.secure == new_secstate) {
6151         return;
6152     }
6153 
6154     /* All the banked state is accessed by looking at env->v7m.secure
6155      * except for the stack pointer; rearrange the SP appropriately.
6156      */
6157     new_ss_msp = env->v7m.other_ss_msp;
6158     new_ss_psp = env->v7m.other_ss_psp;
6159 
6160     if (v7m_using_psp(env)) {
6161         env->v7m.other_ss_psp = env->regs[13];
6162         env->v7m.other_ss_msp = env->v7m.other_sp;
6163     } else {
6164         env->v7m.other_ss_msp = env->regs[13];
6165         env->v7m.other_ss_psp = env->v7m.other_sp;
6166     }
6167 
6168     env->v7m.secure = new_secstate;
6169 
6170     if (v7m_using_psp(env)) {
6171         env->regs[13] = new_ss_psp;
6172         env->v7m.other_sp = new_ss_msp;
6173     } else {
6174         env->regs[13] = new_ss_msp;
6175         env->v7m.other_sp = new_ss_psp;
6176     }
6177 }
6178 
6179 void HELPER(v7m_bxns)(CPUARMState *env, uint32_t dest)
6180 {
6181     /* Handle v7M BXNS:
6182      *  - if the return value is a magic value, do exception return (like BX)
6183      *  - otherwise bit 0 of the return value is the target security state
6184      */
6185     uint32_t min_magic;
6186 
6187     if (arm_feature(env, ARM_FEATURE_M_SECURITY)) {
6188         /* Covers FNC_RETURN and EXC_RETURN magic */
6189         min_magic = FNC_RETURN_MIN_MAGIC;
6190     } else {
6191         /* EXC_RETURN magic only */
6192         min_magic = EXC_RETURN_MIN_MAGIC;
6193     }
6194 
6195     if (dest >= min_magic) {
6196         /* This is an exception return magic value; put it where
6197          * do_v7m_exception_exit() expects and raise EXCEPTION_EXIT.
6198          * Note that if we ever add gen_ss_advance() singlestep support to
6199          * M profile this should count as an "instruction execution complete"
6200          * event (compare gen_bx_excret_final_code()).
6201          */
6202         env->regs[15] = dest & ~1;
6203         env->thumb = dest & 1;
6204         HELPER(exception_internal)(env, EXCP_EXCEPTION_EXIT);
6205         /* notreached */
6206     }
6207 
6208     /* translate.c should have made BXNS UNDEF unless we're secure */
6209     assert(env->v7m.secure);
6210 
6211     switch_v7m_security_state(env, dest & 1);
6212     env->thumb = 1;
6213     env->regs[15] = dest & ~1;
6214 }
6215 
6216 void HELPER(v7m_blxns)(CPUARMState *env, uint32_t dest)
6217 {
6218     /* Handle v7M BLXNS:
6219      *  - bit 0 of the destination address is the target security state
6220      */
6221 
6222     /* At this point regs[15] is the address just after the BLXNS */
6223     uint32_t nextinst = env->regs[15] | 1;
6224     uint32_t sp = env->regs[13] - 8;
6225     uint32_t saved_psr;
6226 
6227     /* translate.c will have made BLXNS UNDEF unless we're secure */
6228     assert(env->v7m.secure);
6229 
6230     if (dest & 1) {
6231         /* target is Secure, so this is just a normal BLX,
6232          * except that the low bit doesn't indicate Thumb/not.
6233          */
6234         env->regs[14] = nextinst;
6235         env->thumb = 1;
6236         env->regs[15] = dest & ~1;
6237         return;
6238     }
6239 
6240     /* Target is non-secure: first push a stack frame */
6241     if (!QEMU_IS_ALIGNED(sp, 8)) {
6242         qemu_log_mask(LOG_GUEST_ERROR,
6243                       "BLXNS with misaligned SP is UNPREDICTABLE\n");
6244     }
6245 
6246     saved_psr = env->v7m.exception;
6247     if (env->v7m.control[M_REG_S] & R_V7M_CONTROL_SFPA_MASK) {
6248         saved_psr |= XPSR_SFPA;
6249     }
6250 
6251     /* Note that these stores can throw exceptions on MPU faults */
6252     cpu_stl_data(env, sp, nextinst);
6253     cpu_stl_data(env, sp + 4, saved_psr);
6254 
6255     env->regs[13] = sp;
6256     env->regs[14] = 0xfeffffff;
6257     if (arm_v7m_is_handler_mode(env)) {
6258         /* Write a dummy value to IPSR, to avoid leaking the current secure
6259          * exception number to non-secure code. This is guaranteed not
6260          * to cause write_v7m_exception() to actually change stacks.
6261          */
6262         write_v7m_exception(env, 1);
6263     }
6264     switch_v7m_security_state(env, 0);
6265     env->thumb = 1;
6266     env->regs[15] = dest;
6267 }
6268 
6269 static uint32_t *get_v7m_sp_ptr(CPUARMState *env, bool secure, bool threadmode,
6270                                 bool spsel)
6271 {
6272     /* Return a pointer to the location where we currently store the
6273      * stack pointer for the requested security state and thread mode.
6274      * This pointer will become invalid if the CPU state is updated
6275      * such that the stack pointers are switched around (eg changing
6276      * the SPSEL control bit).
6277      * Compare the v8M ARM ARM pseudocode LookUpSP_with_security_mode().
6278      * Unlike that pseudocode, we require the caller to pass us in the
6279      * SPSEL control bit value; this is because we also use this
6280      * function in handling of pushing of the callee-saves registers
6281      * part of the v8M stack frame (pseudocode PushCalleeStack()),
6282      * and in the tailchain codepath the SPSEL bit comes from the exception
6283      * return magic LR value from the previous exception. The pseudocode
6284      * opencodes the stack-selection in PushCalleeStack(), but we prefer
6285      * to make this utility function generic enough to do the job.
6286      */
6287     bool want_psp = threadmode && spsel;
6288 
6289     if (secure == env->v7m.secure) {
6290         if (want_psp == v7m_using_psp(env)) {
6291             return &env->regs[13];
6292         } else {
6293             return &env->v7m.other_sp;
6294         }
6295     } else {
6296         if (want_psp) {
6297             return &env->v7m.other_ss_psp;
6298         } else {
6299             return &env->v7m.other_ss_msp;
6300         }
6301     }
6302 }
6303 
6304 static uint32_t arm_v7m_load_vector(ARMCPU *cpu, bool targets_secure)
6305 {
6306     CPUState *cs = CPU(cpu);
6307     CPUARMState *env = &cpu->env;
6308     MemTxResult result;
6309     hwaddr vec = env->v7m.vecbase[targets_secure] + env->v7m.exception * 4;
6310     uint32_t addr;
6311 
6312     addr = address_space_ldl(cs->as, vec,
6313                              MEMTXATTRS_UNSPECIFIED, &result);
6314     if (result != MEMTX_OK) {
6315         /* Architecturally this should cause a HardFault setting HSFR.VECTTBL,
6316          * which would then be immediately followed by our failing to load
6317          * the entry vector for that HardFault, which is a Lockup case.
6318          * Since we don't model Lockup, we just report this guest error
6319          * via cpu_abort().
6320          */
6321         cpu_abort(cs, "Failed to read from %s exception vector table "
6322                   "entry %08x\n", targets_secure ? "secure" : "nonsecure",
6323                   (unsigned)vec);
6324     }
6325     return addr;
6326 }
6327 
6328 static void v7m_push_callee_stack(ARMCPU *cpu, uint32_t lr, bool dotailchain)
6329 {
6330     /* For v8M, push the callee-saves register part of the stack frame.
6331      * Compare the v8M pseudocode PushCalleeStack().
6332      * In the tailchaining case this may not be the current stack.
6333      */
6334     CPUARMState *env = &cpu->env;
6335     CPUState *cs = CPU(cpu);
6336     uint32_t *frame_sp_p;
6337     uint32_t frameptr;
6338 
6339     if (dotailchain) {
6340         frame_sp_p = get_v7m_sp_ptr(env, true,
6341                                     lr & R_V7M_EXCRET_MODE_MASK,
6342                                     lr & R_V7M_EXCRET_SPSEL_MASK);
6343     } else {
6344         frame_sp_p = &env->regs[13];
6345     }
6346 
6347     frameptr = *frame_sp_p - 0x28;
6348 
6349     stl_phys(cs->as, frameptr, 0xfefa125b);
6350     stl_phys(cs->as, frameptr + 0x8, env->regs[4]);
6351     stl_phys(cs->as, frameptr + 0xc, env->regs[5]);
6352     stl_phys(cs->as, frameptr + 0x10, env->regs[6]);
6353     stl_phys(cs->as, frameptr + 0x14, env->regs[7]);
6354     stl_phys(cs->as, frameptr + 0x18, env->regs[8]);
6355     stl_phys(cs->as, frameptr + 0x1c, env->regs[9]);
6356     stl_phys(cs->as, frameptr + 0x20, env->regs[10]);
6357     stl_phys(cs->as, frameptr + 0x24, env->regs[11]);
6358 
6359     *frame_sp_p = frameptr;
6360 }
6361 
6362 static void v7m_exception_taken(ARMCPU *cpu, uint32_t lr, bool dotailchain)
6363 {
6364     /* Do the "take the exception" parts of exception entry,
6365      * but not the pushing of state to the stack. This is
6366      * similar to the pseudocode ExceptionTaken() function.
6367      */
6368     CPUARMState *env = &cpu->env;
6369     uint32_t addr;
6370     bool targets_secure;
6371 
6372     targets_secure = armv7m_nvic_acknowledge_irq(env->nvic);
6373 
6374     if (arm_feature(env, ARM_FEATURE_V8)) {
6375         if (arm_feature(env, ARM_FEATURE_M_SECURITY) &&
6376             (lr & R_V7M_EXCRET_S_MASK)) {
6377             /* The background code (the owner of the registers in the
6378              * exception frame) is Secure. This means it may either already
6379              * have or now needs to push callee-saves registers.
6380              */
6381             if (targets_secure) {
6382                 if (dotailchain && !(lr & R_V7M_EXCRET_ES_MASK)) {
6383                     /* We took an exception from Secure to NonSecure
6384                      * (which means the callee-saved registers got stacked)
6385                      * and are now tailchaining to a Secure exception.
6386                      * Clear DCRS so eventual return from this Secure
6387                      * exception unstacks the callee-saved registers.
6388                      */
6389                     lr &= ~R_V7M_EXCRET_DCRS_MASK;
6390                 }
6391             } else {
6392                 /* We're going to a non-secure exception; push the
6393                  * callee-saves registers to the stack now, if they're
6394                  * not already saved.
6395                  */
6396                 if (lr & R_V7M_EXCRET_DCRS_MASK &&
6397                     !(dotailchain && (lr & R_V7M_EXCRET_ES_MASK))) {
6398                     v7m_push_callee_stack(cpu, lr, dotailchain);
6399                 }
6400                 lr |= R_V7M_EXCRET_DCRS_MASK;
6401             }
6402         }
6403 
6404         lr &= ~R_V7M_EXCRET_ES_MASK;
6405         if (targets_secure || !arm_feature(env, ARM_FEATURE_M_SECURITY)) {
6406             lr |= R_V7M_EXCRET_ES_MASK;
6407         }
6408         lr &= ~R_V7M_EXCRET_SPSEL_MASK;
6409         if (env->v7m.control[targets_secure] & R_V7M_CONTROL_SPSEL_MASK) {
6410             lr |= R_V7M_EXCRET_SPSEL_MASK;
6411         }
6412 
6413         /* Clear registers if necessary to prevent non-secure exception
6414          * code being able to see register values from secure code.
6415          * Where register values become architecturally UNKNOWN we leave
6416          * them with their previous values.
6417          */
6418         if (arm_feature(env, ARM_FEATURE_M_SECURITY)) {
6419             if (!targets_secure) {
6420                 /* Always clear the caller-saved registers (they have been
6421                  * pushed to the stack earlier in v7m_push_stack()).
6422                  * Clear callee-saved registers if the background code is
6423                  * Secure (in which case these regs were saved in
6424                  * v7m_push_callee_stack()).
6425                  */
6426                 int i;
6427 
6428                 for (i = 0; i < 13; i++) {
6429                     /* r4..r11 are callee-saves, zero only if EXCRET.S == 1 */
6430                     if (i < 4 || i > 11 || (lr & R_V7M_EXCRET_S_MASK)) {
6431                         env->regs[i] = 0;
6432                     }
6433                 }
6434                 /* Clear EAPSR */
6435                 xpsr_write(env, 0, XPSR_NZCV | XPSR_Q | XPSR_GE | XPSR_IT);
6436             }
6437         }
6438     }
6439 
6440     /* Switch to target security state -- must do this before writing SPSEL */
6441     switch_v7m_security_state(env, targets_secure);
6442     write_v7m_control_spsel(env, 0);
6443     arm_clear_exclusive(env);
6444     /* Clear IT bits */
6445     env->condexec_bits = 0;
6446     env->regs[14] = lr;
6447     addr = arm_v7m_load_vector(cpu, targets_secure);
6448     env->regs[15] = addr & 0xfffffffe;
6449     env->thumb = addr & 1;
6450 }
6451 
6452 static void v7m_push_stack(ARMCPU *cpu)
6453 {
6454     /* Do the "set up stack frame" part of exception entry,
6455      * similar to pseudocode PushStack().
6456      */
6457     CPUARMState *env = &cpu->env;
6458     uint32_t xpsr = xpsr_read(env);
6459 
6460     /* Align stack pointer if the guest wants that */
6461     if ((env->regs[13] & 4) &&
6462         (env->v7m.ccr[env->v7m.secure] & R_V7M_CCR_STKALIGN_MASK)) {
6463         env->regs[13] -= 4;
6464         xpsr |= XPSR_SPREALIGN;
6465     }
6466     /* Switch to the handler mode.  */
6467     v7m_push(env, xpsr);
6468     v7m_push(env, env->regs[15]);
6469     v7m_push(env, env->regs[14]);
6470     v7m_push(env, env->regs[12]);
6471     v7m_push(env, env->regs[3]);
6472     v7m_push(env, env->regs[2]);
6473     v7m_push(env, env->regs[1]);
6474     v7m_push(env, env->regs[0]);
6475 }
6476 
6477 static void do_v7m_exception_exit(ARMCPU *cpu)
6478 {
6479     CPUARMState *env = &cpu->env;
6480     CPUState *cs = CPU(cpu);
6481     uint32_t excret;
6482     uint32_t xpsr;
6483     bool ufault = false;
6484     bool sfault = false;
6485     bool return_to_sp_process;
6486     bool return_to_handler;
6487     bool rettobase = false;
6488     bool exc_secure = false;
6489     bool return_to_secure;
6490 
6491     /* If we're not in Handler mode then jumps to magic exception-exit
6492      * addresses don't have magic behaviour. However for the v8M
6493      * security extensions the magic secure-function-return has to
6494      * work in thread mode too, so to avoid doing an extra check in
6495      * the generated code we allow exception-exit magic to also cause the
6496      * internal exception and bring us here in thread mode. Correct code
6497      * will never try to do this (the following insn fetch will always
6498      * fault) so we the overhead of having taken an unnecessary exception
6499      * doesn't matter.
6500      */
6501     if (!arm_v7m_is_handler_mode(env)) {
6502         return;
6503     }
6504 
6505     /* In the spec pseudocode ExceptionReturn() is called directly
6506      * from BXWritePC() and gets the full target PC value including
6507      * bit zero. In QEMU's implementation we treat it as a normal
6508      * jump-to-register (which is then caught later on), and so split
6509      * the target value up between env->regs[15] and env->thumb in
6510      * gen_bx(). Reconstitute it.
6511      */
6512     excret = env->regs[15];
6513     if (env->thumb) {
6514         excret |= 1;
6515     }
6516 
6517     qemu_log_mask(CPU_LOG_INT, "Exception return: magic PC %" PRIx32
6518                   " previous exception %d\n",
6519                   excret, env->v7m.exception);
6520 
6521     if ((excret & R_V7M_EXCRET_RES1_MASK) != R_V7M_EXCRET_RES1_MASK) {
6522         qemu_log_mask(LOG_GUEST_ERROR, "M profile: zero high bits in exception "
6523                       "exit PC value 0x%" PRIx32 " are UNPREDICTABLE\n",
6524                       excret);
6525     }
6526 
6527     if (arm_feature(env, ARM_FEATURE_M_SECURITY)) {
6528         /* EXC_RETURN.ES validation check (R_SMFL). We must do this before
6529          * we pick which FAULTMASK to clear.
6530          */
6531         if (!env->v7m.secure &&
6532             ((excret & R_V7M_EXCRET_ES_MASK) ||
6533              !(excret & R_V7M_EXCRET_DCRS_MASK))) {
6534             sfault = 1;
6535             /* For all other purposes, treat ES as 0 (R_HXSR) */
6536             excret &= ~R_V7M_EXCRET_ES_MASK;
6537         }
6538     }
6539 
6540     if (env->v7m.exception != ARMV7M_EXCP_NMI) {
6541         /* Auto-clear FAULTMASK on return from other than NMI.
6542          * If the security extension is implemented then this only
6543          * happens if the raw execution priority is >= 0; the
6544          * value of the ES bit in the exception return value indicates
6545          * which security state's faultmask to clear. (v8M ARM ARM R_KBNF.)
6546          */
6547         if (arm_feature(env, ARM_FEATURE_M_SECURITY)) {
6548             exc_secure = excret & R_V7M_EXCRET_ES_MASK;
6549             if (armv7m_nvic_raw_execution_priority(env->nvic) >= 0) {
6550                 env->v7m.faultmask[exc_secure] = 0;
6551             }
6552         } else {
6553             env->v7m.faultmask[M_REG_NS] = 0;
6554         }
6555     }
6556 
6557     switch (armv7m_nvic_complete_irq(env->nvic, env->v7m.exception,
6558                                      exc_secure)) {
6559     case -1:
6560         /* attempt to exit an exception that isn't active */
6561         ufault = true;
6562         break;
6563     case 0:
6564         /* still an irq active now */
6565         break;
6566     case 1:
6567         /* we returned to base exception level, no nesting.
6568          * (In the pseudocode this is written using "NestedActivation != 1"
6569          * where we have 'rettobase == false'.)
6570          */
6571         rettobase = true;
6572         break;
6573     default:
6574         g_assert_not_reached();
6575     }
6576 
6577     return_to_handler = !(excret & R_V7M_EXCRET_MODE_MASK);
6578     return_to_sp_process = excret & R_V7M_EXCRET_SPSEL_MASK;
6579     return_to_secure = arm_feature(env, ARM_FEATURE_M_SECURITY) &&
6580         (excret & R_V7M_EXCRET_S_MASK);
6581 
6582     if (arm_feature(env, ARM_FEATURE_V8)) {
6583         if (!arm_feature(env, ARM_FEATURE_M_SECURITY)) {
6584             /* UNPREDICTABLE if S == 1 or DCRS == 0 or ES == 1 (R_XLCP);
6585              * we choose to take the UsageFault.
6586              */
6587             if ((excret & R_V7M_EXCRET_S_MASK) ||
6588                 (excret & R_V7M_EXCRET_ES_MASK) ||
6589                 !(excret & R_V7M_EXCRET_DCRS_MASK)) {
6590                 ufault = true;
6591             }
6592         }
6593         if (excret & R_V7M_EXCRET_RES0_MASK) {
6594             ufault = true;
6595         }
6596     } else {
6597         /* For v7M we only recognize certain combinations of the low bits */
6598         switch (excret & 0xf) {
6599         case 1: /* Return to Handler */
6600             break;
6601         case 13: /* Return to Thread using Process stack */
6602         case 9: /* Return to Thread using Main stack */
6603             /* We only need to check NONBASETHRDENA for v7M, because in
6604              * v8M this bit does not exist (it is RES1).
6605              */
6606             if (!rettobase &&
6607                 !(env->v7m.ccr[env->v7m.secure] &
6608                   R_V7M_CCR_NONBASETHRDENA_MASK)) {
6609                 ufault = true;
6610             }
6611             break;
6612         default:
6613             ufault = true;
6614         }
6615     }
6616 
6617     if (sfault) {
6618         env->v7m.sfsr |= R_V7M_SFSR_INVER_MASK;
6619         armv7m_nvic_set_pending(env->nvic, ARMV7M_EXCP_SECURE, false);
6620         v7m_exception_taken(cpu, excret, true);
6621         qemu_log_mask(CPU_LOG_INT, "...taking SecureFault on existing "
6622                       "stackframe: failed EXC_RETURN.ES validity check\n");
6623         return;
6624     }
6625 
6626     if (ufault) {
6627         /* Bad exception return: instead of popping the exception
6628          * stack, directly take a usage fault on the current stack.
6629          */
6630         env->v7m.cfsr[env->v7m.secure] |= R_V7M_CFSR_INVPC_MASK;
6631         armv7m_nvic_set_pending(env->nvic, ARMV7M_EXCP_USAGE, env->v7m.secure);
6632         v7m_exception_taken(cpu, excret, true);
6633         qemu_log_mask(CPU_LOG_INT, "...taking UsageFault on existing "
6634                       "stackframe: failed exception return integrity check\n");
6635         return;
6636     }
6637 
6638     /* Set CONTROL.SPSEL from excret.SPSEL. Since we're still in
6639      * Handler mode (and will be until we write the new XPSR.Interrupt
6640      * field) this does not switch around the current stack pointer.
6641      */
6642     write_v7m_control_spsel_for_secstate(env, return_to_sp_process, exc_secure);
6643 
6644     switch_v7m_security_state(env, return_to_secure);
6645 
6646     {
6647         /* The stack pointer we should be reading the exception frame from
6648          * depends on bits in the magic exception return type value (and
6649          * for v8M isn't necessarily the stack pointer we will eventually
6650          * end up resuming execution with). Get a pointer to the location
6651          * in the CPU state struct where the SP we need is currently being
6652          * stored; we will use and modify it in place.
6653          * We use this limited C variable scope so we don't accidentally
6654          * use 'frame_sp_p' after we do something that makes it invalid.
6655          */
6656         uint32_t *frame_sp_p = get_v7m_sp_ptr(env,
6657                                               return_to_secure,
6658                                               !return_to_handler,
6659                                               return_to_sp_process);
6660         uint32_t frameptr = *frame_sp_p;
6661 
6662         if (!QEMU_IS_ALIGNED(frameptr, 8) &&
6663             arm_feature(env, ARM_FEATURE_V8)) {
6664             qemu_log_mask(LOG_GUEST_ERROR,
6665                           "M profile exception return with non-8-aligned SP "
6666                           "for destination state is UNPREDICTABLE\n");
6667         }
6668 
6669         /* Do we need to pop callee-saved registers? */
6670         if (return_to_secure &&
6671             ((excret & R_V7M_EXCRET_ES_MASK) == 0 ||
6672              (excret & R_V7M_EXCRET_DCRS_MASK) == 0)) {
6673             uint32_t expected_sig = 0xfefa125b;
6674             uint32_t actual_sig = ldl_phys(cs->as, frameptr);
6675 
6676             if (expected_sig != actual_sig) {
6677                 /* Take a SecureFault on the current stack */
6678                 env->v7m.sfsr |= R_V7M_SFSR_INVIS_MASK;
6679                 armv7m_nvic_set_pending(env->nvic, ARMV7M_EXCP_SECURE, false);
6680                 v7m_exception_taken(cpu, excret, true);
6681                 qemu_log_mask(CPU_LOG_INT, "...taking SecureFault on existing "
6682                               "stackframe: failed exception return integrity "
6683                               "signature check\n");
6684                 return;
6685             }
6686 
6687             env->regs[4] = ldl_phys(cs->as, frameptr + 0x8);
6688             env->regs[5] = ldl_phys(cs->as, frameptr + 0xc);
6689             env->regs[6] = ldl_phys(cs->as, frameptr + 0x10);
6690             env->regs[7] = ldl_phys(cs->as, frameptr + 0x14);
6691             env->regs[8] = ldl_phys(cs->as, frameptr + 0x18);
6692             env->regs[9] = ldl_phys(cs->as, frameptr + 0x1c);
6693             env->regs[10] = ldl_phys(cs->as, frameptr + 0x20);
6694             env->regs[11] = ldl_phys(cs->as, frameptr + 0x24);
6695 
6696             frameptr += 0x28;
6697         }
6698 
6699         /* Pop registers. TODO: make these accesses use the correct
6700          * attributes and address space (S/NS, priv/unpriv) and handle
6701          * memory transaction failures.
6702          */
6703         env->regs[0] = ldl_phys(cs->as, frameptr);
6704         env->regs[1] = ldl_phys(cs->as, frameptr + 0x4);
6705         env->regs[2] = ldl_phys(cs->as, frameptr + 0x8);
6706         env->regs[3] = ldl_phys(cs->as, frameptr + 0xc);
6707         env->regs[12] = ldl_phys(cs->as, frameptr + 0x10);
6708         env->regs[14] = ldl_phys(cs->as, frameptr + 0x14);
6709         env->regs[15] = ldl_phys(cs->as, frameptr + 0x18);
6710 
6711         /* Returning from an exception with a PC with bit 0 set is defined
6712          * behaviour on v8M (bit 0 is ignored), but for v7M it was specified
6713          * to be UNPREDICTABLE. In practice actual v7M hardware seems to ignore
6714          * the lsbit, and there are several RTOSes out there which incorrectly
6715          * assume the r15 in the stack frame should be a Thumb-style "lsbit
6716          * indicates ARM/Thumb" value, so ignore the bit on v7M as well, but
6717          * complain about the badly behaved guest.
6718          */
6719         if (env->regs[15] & 1) {
6720             env->regs[15] &= ~1U;
6721             if (!arm_feature(env, ARM_FEATURE_V8)) {
6722                 qemu_log_mask(LOG_GUEST_ERROR,
6723                               "M profile return from interrupt with misaligned "
6724                               "PC is UNPREDICTABLE on v7M\n");
6725             }
6726         }
6727 
6728         xpsr = ldl_phys(cs->as, frameptr + 0x1c);
6729 
6730         if (arm_feature(env, ARM_FEATURE_V8)) {
6731             /* For v8M we have to check whether the xPSR exception field
6732              * matches the EXCRET value for return to handler/thread
6733              * before we commit to changing the SP and xPSR.
6734              */
6735             bool will_be_handler = (xpsr & XPSR_EXCP) != 0;
6736             if (return_to_handler != will_be_handler) {
6737                 /* Take an INVPC UsageFault on the current stack.
6738                  * By this point we will have switched to the security state
6739                  * for the background state, so this UsageFault will target
6740                  * that state.
6741                  */
6742                 armv7m_nvic_set_pending(env->nvic, ARMV7M_EXCP_USAGE,
6743                                         env->v7m.secure);
6744                 env->v7m.cfsr[env->v7m.secure] |= R_V7M_CFSR_INVPC_MASK;
6745                 v7m_exception_taken(cpu, excret, true);
6746                 qemu_log_mask(CPU_LOG_INT, "...taking UsageFault on existing "
6747                               "stackframe: failed exception return integrity "
6748                               "check\n");
6749                 return;
6750             }
6751         }
6752 
6753         /* Commit to consuming the stack frame */
6754         frameptr += 0x20;
6755         /* Undo stack alignment (the SPREALIGN bit indicates that the original
6756          * pre-exception SP was not 8-aligned and we added a padding word to
6757          * align it, so we undo this by ORing in the bit that increases it
6758          * from the current 8-aligned value to the 8-unaligned value. (Adding 4
6759          * would work too but a logical OR is how the pseudocode specifies it.)
6760          */
6761         if (xpsr & XPSR_SPREALIGN) {
6762             frameptr |= 4;
6763         }
6764         *frame_sp_p = frameptr;
6765     }
6766     /* This xpsr_write() will invalidate frame_sp_p as it may switch stack */
6767     xpsr_write(env, xpsr, ~XPSR_SPREALIGN);
6768 
6769     /* The restored xPSR exception field will be zero if we're
6770      * resuming in Thread mode. If that doesn't match what the
6771      * exception return excret specified then this is a UsageFault.
6772      * v7M requires we make this check here; v8M did it earlier.
6773      */
6774     if (return_to_handler != arm_v7m_is_handler_mode(env)) {
6775         /* Take an INVPC UsageFault by pushing the stack again;
6776          * we know we're v7M so this is never a Secure UsageFault.
6777          */
6778         assert(!arm_feature(env, ARM_FEATURE_V8));
6779         armv7m_nvic_set_pending(env->nvic, ARMV7M_EXCP_USAGE, false);
6780         env->v7m.cfsr[env->v7m.secure] |= R_V7M_CFSR_INVPC_MASK;
6781         v7m_push_stack(cpu);
6782         v7m_exception_taken(cpu, excret, false);
6783         qemu_log_mask(CPU_LOG_INT, "...taking UsageFault on new stackframe: "
6784                       "failed exception return integrity check\n");
6785         return;
6786     }
6787 
6788     /* Otherwise, we have a successful exception exit. */
6789     arm_clear_exclusive(env);
6790     qemu_log_mask(CPU_LOG_INT, "...successful exception return\n");
6791 }
6792 
6793 static bool do_v7m_function_return(ARMCPU *cpu)
6794 {
6795     /* v8M security extensions magic function return.
6796      * We may either:
6797      *  (1) throw an exception (longjump)
6798      *  (2) return true if we successfully handled the function return
6799      *  (3) return false if we failed a consistency check and have
6800      *      pended a UsageFault that needs to be taken now
6801      *
6802      * At this point the magic return value is split between env->regs[15]
6803      * and env->thumb. We don't bother to reconstitute it because we don't
6804      * need it (all values are handled the same way).
6805      */
6806     CPUARMState *env = &cpu->env;
6807     uint32_t newpc, newpsr, newpsr_exc;
6808 
6809     qemu_log_mask(CPU_LOG_INT, "...really v7M secure function return\n");
6810 
6811     {
6812         bool threadmode, spsel;
6813         TCGMemOpIdx oi;
6814         ARMMMUIdx mmu_idx;
6815         uint32_t *frame_sp_p;
6816         uint32_t frameptr;
6817 
6818         /* Pull the return address and IPSR from the Secure stack */
6819         threadmode = !arm_v7m_is_handler_mode(env);
6820         spsel = env->v7m.control[M_REG_S] & R_V7M_CONTROL_SPSEL_MASK;
6821 
6822         frame_sp_p = get_v7m_sp_ptr(env, true, threadmode, spsel);
6823         frameptr = *frame_sp_p;
6824 
6825         /* These loads may throw an exception (for MPU faults). We want to
6826          * do them as secure, so work out what MMU index that is.
6827          */
6828         mmu_idx = arm_v7m_mmu_idx_for_secstate(env, true);
6829         oi = make_memop_idx(MO_LE, arm_to_core_mmu_idx(mmu_idx));
6830         newpc = helper_le_ldul_mmu(env, frameptr, oi, 0);
6831         newpsr = helper_le_ldul_mmu(env, frameptr + 4, oi, 0);
6832 
6833         /* Consistency checks on new IPSR */
6834         newpsr_exc = newpsr & XPSR_EXCP;
6835         if (!((env->v7m.exception == 0 && newpsr_exc == 0) ||
6836               (env->v7m.exception == 1 && newpsr_exc != 0))) {
6837             /* Pend the fault and tell our caller to take it */
6838             env->v7m.cfsr[env->v7m.secure] |= R_V7M_CFSR_INVPC_MASK;
6839             armv7m_nvic_set_pending(env->nvic, ARMV7M_EXCP_USAGE,
6840                                     env->v7m.secure);
6841             qemu_log_mask(CPU_LOG_INT,
6842                           "...taking INVPC UsageFault: "
6843                           "IPSR consistency check failed\n");
6844             return false;
6845         }
6846 
6847         *frame_sp_p = frameptr + 8;
6848     }
6849 
6850     /* This invalidates frame_sp_p */
6851     switch_v7m_security_state(env, true);
6852     env->v7m.exception = newpsr_exc;
6853     env->v7m.control[M_REG_S] &= ~R_V7M_CONTROL_SFPA_MASK;
6854     if (newpsr & XPSR_SFPA) {
6855         env->v7m.control[M_REG_S] |= R_V7M_CONTROL_SFPA_MASK;
6856     }
6857     xpsr_write(env, 0, XPSR_IT);
6858     env->thumb = newpc & 1;
6859     env->regs[15] = newpc & ~1;
6860 
6861     qemu_log_mask(CPU_LOG_INT, "...function return successful\n");
6862     return true;
6863 }
6864 
6865 static void arm_log_exception(int idx)
6866 {
6867     if (qemu_loglevel_mask(CPU_LOG_INT)) {
6868         const char *exc = NULL;
6869         static const char * const excnames[] = {
6870             [EXCP_UDEF] = "Undefined Instruction",
6871             [EXCP_SWI] = "SVC",
6872             [EXCP_PREFETCH_ABORT] = "Prefetch Abort",
6873             [EXCP_DATA_ABORT] = "Data Abort",
6874             [EXCP_IRQ] = "IRQ",
6875             [EXCP_FIQ] = "FIQ",
6876             [EXCP_BKPT] = "Breakpoint",
6877             [EXCP_EXCEPTION_EXIT] = "QEMU v7M exception exit",
6878             [EXCP_KERNEL_TRAP] = "QEMU intercept of kernel commpage",
6879             [EXCP_HVC] = "Hypervisor Call",
6880             [EXCP_HYP_TRAP] = "Hypervisor Trap",
6881             [EXCP_SMC] = "Secure Monitor Call",
6882             [EXCP_VIRQ] = "Virtual IRQ",
6883             [EXCP_VFIQ] = "Virtual FIQ",
6884             [EXCP_SEMIHOST] = "Semihosting call",
6885             [EXCP_NOCP] = "v7M NOCP UsageFault",
6886             [EXCP_INVSTATE] = "v7M INVSTATE UsageFault",
6887         };
6888 
6889         if (idx >= 0 && idx < ARRAY_SIZE(excnames)) {
6890             exc = excnames[idx];
6891         }
6892         if (!exc) {
6893             exc = "unknown";
6894         }
6895         qemu_log_mask(CPU_LOG_INT, "Taking exception %d [%s]\n", idx, exc);
6896     }
6897 }
6898 
6899 static bool v7m_read_half_insn(ARMCPU *cpu, ARMMMUIdx mmu_idx,
6900                                uint32_t addr, uint16_t *insn)
6901 {
6902     /* Load a 16-bit portion of a v7M instruction, returning true on success,
6903      * or false on failure (in which case we will have pended the appropriate
6904      * exception).
6905      * We need to do the instruction fetch's MPU and SAU checks
6906      * like this because there is no MMU index that would allow
6907      * doing the load with a single function call. Instead we must
6908      * first check that the security attributes permit the load
6909      * and that they don't mismatch on the two halves of the instruction,
6910      * and then we do the load as a secure load (ie using the security
6911      * attributes of the address, not the CPU, as architecturally required).
6912      */
6913     CPUState *cs = CPU(cpu);
6914     CPUARMState *env = &cpu->env;
6915     V8M_SAttributes sattrs = {};
6916     MemTxAttrs attrs = {};
6917     ARMMMUFaultInfo fi = {};
6918     MemTxResult txres;
6919     target_ulong page_size;
6920     hwaddr physaddr;
6921     int prot;
6922     uint32_t fsr;
6923 
6924     v8m_security_lookup(env, addr, MMU_INST_FETCH, mmu_idx, &sattrs);
6925     if (!sattrs.nsc || sattrs.ns) {
6926         /* This must be the second half of the insn, and it straddles a
6927          * region boundary with the second half not being S&NSC.
6928          */
6929         env->v7m.sfsr |= R_V7M_SFSR_INVEP_MASK;
6930         armv7m_nvic_set_pending(env->nvic, ARMV7M_EXCP_SECURE, false);
6931         qemu_log_mask(CPU_LOG_INT,
6932                       "...really SecureFault with SFSR.INVEP\n");
6933         return false;
6934     }
6935     if (get_phys_addr(env, addr, MMU_INST_FETCH, mmu_idx,
6936                       &physaddr, &attrs, &prot, &page_size, &fsr, &fi, NULL)) {
6937         /* the MPU lookup failed */
6938         env->v7m.cfsr[env->v7m.secure] |= R_V7M_CFSR_IACCVIOL_MASK;
6939         armv7m_nvic_set_pending(env->nvic, ARMV7M_EXCP_MEM, env->v7m.secure);
6940         qemu_log_mask(CPU_LOG_INT, "...really MemManage with CFSR.IACCVIOL\n");
6941         return false;
6942     }
6943     *insn = address_space_lduw_le(arm_addressspace(cs, attrs), physaddr,
6944                                  attrs, &txres);
6945     if (txres != MEMTX_OK) {
6946         env->v7m.cfsr[M_REG_NS] |= R_V7M_CFSR_IBUSERR_MASK;
6947         armv7m_nvic_set_pending(env->nvic, ARMV7M_EXCP_BUS, false);
6948         qemu_log_mask(CPU_LOG_INT, "...really BusFault with CFSR.IBUSERR\n");
6949         return false;
6950     }
6951     return true;
6952 }
6953 
6954 static bool v7m_handle_execute_nsc(ARMCPU *cpu)
6955 {
6956     /* Check whether this attempt to execute code in a Secure & NS-Callable
6957      * memory region is for an SG instruction; if so, then emulate the
6958      * effect of the SG instruction and return true. Otherwise pend
6959      * the correct kind of exception and return false.
6960      */
6961     CPUARMState *env = &cpu->env;
6962     ARMMMUIdx mmu_idx;
6963     uint16_t insn;
6964 
6965     /* We should never get here unless get_phys_addr_pmsav8() caused
6966      * an exception for NS executing in S&NSC memory.
6967      */
6968     assert(!env->v7m.secure);
6969     assert(arm_feature(env, ARM_FEATURE_M_SECURITY));
6970 
6971     /* We want to do the MPU lookup as secure; work out what mmu_idx that is */
6972     mmu_idx = arm_v7m_mmu_idx_for_secstate(env, true);
6973 
6974     if (!v7m_read_half_insn(cpu, mmu_idx, env->regs[15], &insn)) {
6975         return false;
6976     }
6977 
6978     if (!env->thumb) {
6979         goto gen_invep;
6980     }
6981 
6982     if (insn != 0xe97f) {
6983         /* Not an SG instruction first half (we choose the IMPDEF
6984          * early-SG-check option).
6985          */
6986         goto gen_invep;
6987     }
6988 
6989     if (!v7m_read_half_insn(cpu, mmu_idx, env->regs[15] + 2, &insn)) {
6990         return false;
6991     }
6992 
6993     if (insn != 0xe97f) {
6994         /* Not an SG instruction second half (yes, both halves of the SG
6995          * insn have the same hex value)
6996          */
6997         goto gen_invep;
6998     }
6999 
7000     /* OK, we have confirmed that we really have an SG instruction.
7001      * We know we're NS in S memory so don't need to repeat those checks.
7002      */
7003     qemu_log_mask(CPU_LOG_INT, "...really an SG instruction at 0x%08" PRIx32
7004                   ", executing it\n", env->regs[15]);
7005     env->regs[14] &= ~1;
7006     switch_v7m_security_state(env, true);
7007     xpsr_write(env, 0, XPSR_IT);
7008     env->regs[15] += 4;
7009     return true;
7010 
7011 gen_invep:
7012     env->v7m.sfsr |= R_V7M_SFSR_INVEP_MASK;
7013     armv7m_nvic_set_pending(env->nvic, ARMV7M_EXCP_SECURE, false);
7014     qemu_log_mask(CPU_LOG_INT,
7015                   "...really SecureFault with SFSR.INVEP\n");
7016     return false;
7017 }
7018 
7019 void arm_v7m_cpu_do_interrupt(CPUState *cs)
7020 {
7021     ARMCPU *cpu = ARM_CPU(cs);
7022     CPUARMState *env = &cpu->env;
7023     uint32_t lr;
7024 
7025     arm_log_exception(cs->exception_index);
7026 
7027     /* For exceptions we just mark as pending on the NVIC, and let that
7028        handle it.  */
7029     switch (cs->exception_index) {
7030     case EXCP_UDEF:
7031         armv7m_nvic_set_pending(env->nvic, ARMV7M_EXCP_USAGE, env->v7m.secure);
7032         env->v7m.cfsr[env->v7m.secure] |= R_V7M_CFSR_UNDEFINSTR_MASK;
7033         break;
7034     case EXCP_NOCP:
7035         armv7m_nvic_set_pending(env->nvic, ARMV7M_EXCP_USAGE, env->v7m.secure);
7036         env->v7m.cfsr[env->v7m.secure] |= R_V7M_CFSR_NOCP_MASK;
7037         break;
7038     case EXCP_INVSTATE:
7039         armv7m_nvic_set_pending(env->nvic, ARMV7M_EXCP_USAGE, env->v7m.secure);
7040         env->v7m.cfsr[env->v7m.secure] |= R_V7M_CFSR_INVSTATE_MASK;
7041         break;
7042     case EXCP_SWI:
7043         /* The PC already points to the next instruction.  */
7044         armv7m_nvic_set_pending(env->nvic, ARMV7M_EXCP_SVC, env->v7m.secure);
7045         break;
7046     case EXCP_PREFETCH_ABORT:
7047     case EXCP_DATA_ABORT:
7048         /* Note that for M profile we don't have a guest facing FSR, but
7049          * the env->exception.fsr will be populated by the code that
7050          * raises the fault, in the A profile short-descriptor format.
7051          */
7052         switch (env->exception.fsr & 0xf) {
7053         case M_FAKE_FSR_NSC_EXEC:
7054             /* Exception generated when we try to execute code at an address
7055              * which is marked as Secure & Non-Secure Callable and the CPU
7056              * is in the Non-Secure state. The only instruction which can
7057              * be executed like this is SG (and that only if both halves of
7058              * the SG instruction have the same security attributes.)
7059              * Everything else must generate an INVEP SecureFault, so we
7060              * emulate the SG instruction here.
7061              */
7062             if (v7m_handle_execute_nsc(cpu)) {
7063                 return;
7064             }
7065             break;
7066         case M_FAKE_FSR_SFAULT:
7067             /* Various flavours of SecureFault for attempts to execute or
7068              * access data in the wrong security state.
7069              */
7070             switch (cs->exception_index) {
7071             case EXCP_PREFETCH_ABORT:
7072                 if (env->v7m.secure) {
7073                     env->v7m.sfsr |= R_V7M_SFSR_INVTRAN_MASK;
7074                     qemu_log_mask(CPU_LOG_INT,
7075                                   "...really SecureFault with SFSR.INVTRAN\n");
7076                 } else {
7077                     env->v7m.sfsr |= R_V7M_SFSR_INVEP_MASK;
7078                     qemu_log_mask(CPU_LOG_INT,
7079                                   "...really SecureFault with SFSR.INVEP\n");
7080                 }
7081                 break;
7082             case EXCP_DATA_ABORT:
7083                 /* This must be an NS access to S memory */
7084                 env->v7m.sfsr |= R_V7M_SFSR_AUVIOL_MASK;
7085                 qemu_log_mask(CPU_LOG_INT,
7086                               "...really SecureFault with SFSR.AUVIOL\n");
7087                 break;
7088             }
7089             armv7m_nvic_set_pending(env->nvic, ARMV7M_EXCP_SECURE, false);
7090             break;
7091         case 0x8: /* External Abort */
7092             switch (cs->exception_index) {
7093             case EXCP_PREFETCH_ABORT:
7094                 env->v7m.cfsr[M_REG_NS] |= R_V7M_CFSR_IBUSERR_MASK;
7095                 qemu_log_mask(CPU_LOG_INT, "...with CFSR.IBUSERR\n");
7096                 break;
7097             case EXCP_DATA_ABORT:
7098                 env->v7m.cfsr[M_REG_NS] |=
7099                     (R_V7M_CFSR_PRECISERR_MASK | R_V7M_CFSR_BFARVALID_MASK);
7100                 env->v7m.bfar = env->exception.vaddress;
7101                 qemu_log_mask(CPU_LOG_INT,
7102                               "...with CFSR.PRECISERR and BFAR 0x%x\n",
7103                               env->v7m.bfar);
7104                 break;
7105             }
7106             armv7m_nvic_set_pending(env->nvic, ARMV7M_EXCP_BUS, false);
7107             break;
7108         default:
7109             /* All other FSR values are either MPU faults or "can't happen
7110              * for M profile" cases.
7111              */
7112             switch (cs->exception_index) {
7113             case EXCP_PREFETCH_ABORT:
7114                 env->v7m.cfsr[env->v7m.secure] |= R_V7M_CFSR_IACCVIOL_MASK;
7115                 qemu_log_mask(CPU_LOG_INT, "...with CFSR.IACCVIOL\n");
7116                 break;
7117             case EXCP_DATA_ABORT:
7118                 env->v7m.cfsr[env->v7m.secure] |=
7119                     (R_V7M_CFSR_DACCVIOL_MASK | R_V7M_CFSR_MMARVALID_MASK);
7120                 env->v7m.mmfar[env->v7m.secure] = env->exception.vaddress;
7121                 qemu_log_mask(CPU_LOG_INT,
7122                               "...with CFSR.DACCVIOL and MMFAR 0x%x\n",
7123                               env->v7m.mmfar[env->v7m.secure]);
7124                 break;
7125             }
7126             armv7m_nvic_set_pending(env->nvic, ARMV7M_EXCP_MEM,
7127                                     env->v7m.secure);
7128             break;
7129         }
7130         break;
7131     case EXCP_BKPT:
7132         if (semihosting_enabled()) {
7133             int nr;
7134             nr = arm_lduw_code(env, env->regs[15], arm_sctlr_b(env)) & 0xff;
7135             if (nr == 0xab) {
7136                 env->regs[15] += 2;
7137                 qemu_log_mask(CPU_LOG_INT,
7138                               "...handling as semihosting call 0x%x\n",
7139                               env->regs[0]);
7140                 env->regs[0] = do_arm_semihosting(env);
7141                 return;
7142             }
7143         }
7144         armv7m_nvic_set_pending(env->nvic, ARMV7M_EXCP_DEBUG, false);
7145         break;
7146     case EXCP_IRQ:
7147         break;
7148     case EXCP_EXCEPTION_EXIT:
7149         if (env->regs[15] < EXC_RETURN_MIN_MAGIC) {
7150             /* Must be v8M security extension function return */
7151             assert(env->regs[15] >= FNC_RETURN_MIN_MAGIC);
7152             assert(arm_feature(env, ARM_FEATURE_M_SECURITY));
7153             if (do_v7m_function_return(cpu)) {
7154                 return;
7155             }
7156         } else {
7157             do_v7m_exception_exit(cpu);
7158             return;
7159         }
7160         break;
7161     default:
7162         cpu_abort(cs, "Unhandled exception 0x%x\n", cs->exception_index);
7163         return; /* Never happens.  Keep compiler happy.  */
7164     }
7165 
7166     if (arm_feature(env, ARM_FEATURE_V8)) {
7167         lr = R_V7M_EXCRET_RES1_MASK |
7168             R_V7M_EXCRET_DCRS_MASK |
7169             R_V7M_EXCRET_FTYPE_MASK;
7170         /* The S bit indicates whether we should return to Secure
7171          * or NonSecure (ie our current state).
7172          * The ES bit indicates whether we're taking this exception
7173          * to Secure or NonSecure (ie our target state). We set it
7174          * later, in v7m_exception_taken().
7175          * The SPSEL bit is also set in v7m_exception_taken() for v8M.
7176          * This corresponds to the ARM ARM pseudocode for v8M setting
7177          * some LR bits in PushStack() and some in ExceptionTaken();
7178          * the distinction matters for the tailchain cases where we
7179          * can take an exception without pushing the stack.
7180          */
7181         if (env->v7m.secure) {
7182             lr |= R_V7M_EXCRET_S_MASK;
7183         }
7184     } else {
7185         lr = R_V7M_EXCRET_RES1_MASK |
7186             R_V7M_EXCRET_S_MASK |
7187             R_V7M_EXCRET_DCRS_MASK |
7188             R_V7M_EXCRET_FTYPE_MASK |
7189             R_V7M_EXCRET_ES_MASK;
7190         if (env->v7m.control[M_REG_NS] & R_V7M_CONTROL_SPSEL_MASK) {
7191             lr |= R_V7M_EXCRET_SPSEL_MASK;
7192         }
7193     }
7194     if (!arm_v7m_is_handler_mode(env)) {
7195         lr |= R_V7M_EXCRET_MODE_MASK;
7196     }
7197 
7198     v7m_push_stack(cpu);
7199     v7m_exception_taken(cpu, lr, false);
7200     qemu_log_mask(CPU_LOG_INT, "... as %d\n", env->v7m.exception);
7201 }
7202 
7203 /* Function used to synchronize QEMU's AArch64 register set with AArch32
7204  * register set.  This is necessary when switching between AArch32 and AArch64
7205  * execution state.
7206  */
7207 void aarch64_sync_32_to_64(CPUARMState *env)
7208 {
7209     int i;
7210     uint32_t mode = env->uncached_cpsr & CPSR_M;
7211 
7212     /* We can blanket copy R[0:7] to X[0:7] */
7213     for (i = 0; i < 8; i++) {
7214         env->xregs[i] = env->regs[i];
7215     }
7216 
7217     /* Unless we are in FIQ mode, x8-x12 come from the user registers r8-r12.
7218      * Otherwise, they come from the banked user regs.
7219      */
7220     if (mode == ARM_CPU_MODE_FIQ) {
7221         for (i = 8; i < 13; i++) {
7222             env->xregs[i] = env->usr_regs[i - 8];
7223         }
7224     } else {
7225         for (i = 8; i < 13; i++) {
7226             env->xregs[i] = env->regs[i];
7227         }
7228     }
7229 
7230     /* Registers x13-x23 are the various mode SP and FP registers. Registers
7231      * r13 and r14 are only copied if we are in that mode, otherwise we copy
7232      * from the mode banked register.
7233      */
7234     if (mode == ARM_CPU_MODE_USR || mode == ARM_CPU_MODE_SYS) {
7235         env->xregs[13] = env->regs[13];
7236         env->xregs[14] = env->regs[14];
7237     } else {
7238         env->xregs[13] = env->banked_r13[bank_number(ARM_CPU_MODE_USR)];
7239         /* HYP is an exception in that it is copied from r14 */
7240         if (mode == ARM_CPU_MODE_HYP) {
7241             env->xregs[14] = env->regs[14];
7242         } else {
7243             env->xregs[14] = env->banked_r14[bank_number(ARM_CPU_MODE_USR)];
7244         }
7245     }
7246 
7247     if (mode == ARM_CPU_MODE_HYP) {
7248         env->xregs[15] = env->regs[13];
7249     } else {
7250         env->xregs[15] = env->banked_r13[bank_number(ARM_CPU_MODE_HYP)];
7251     }
7252 
7253     if (mode == ARM_CPU_MODE_IRQ) {
7254         env->xregs[16] = env->regs[14];
7255         env->xregs[17] = env->regs[13];
7256     } else {
7257         env->xregs[16] = env->banked_r14[bank_number(ARM_CPU_MODE_IRQ)];
7258         env->xregs[17] = env->banked_r13[bank_number(ARM_CPU_MODE_IRQ)];
7259     }
7260 
7261     if (mode == ARM_CPU_MODE_SVC) {
7262         env->xregs[18] = env->regs[14];
7263         env->xregs[19] = env->regs[13];
7264     } else {
7265         env->xregs[18] = env->banked_r14[bank_number(ARM_CPU_MODE_SVC)];
7266         env->xregs[19] = env->banked_r13[bank_number(ARM_CPU_MODE_SVC)];
7267     }
7268 
7269     if (mode == ARM_CPU_MODE_ABT) {
7270         env->xregs[20] = env->regs[14];
7271         env->xregs[21] = env->regs[13];
7272     } else {
7273         env->xregs[20] = env->banked_r14[bank_number(ARM_CPU_MODE_ABT)];
7274         env->xregs[21] = env->banked_r13[bank_number(ARM_CPU_MODE_ABT)];
7275     }
7276 
7277     if (mode == ARM_CPU_MODE_UND) {
7278         env->xregs[22] = env->regs[14];
7279         env->xregs[23] = env->regs[13];
7280     } else {
7281         env->xregs[22] = env->banked_r14[bank_number(ARM_CPU_MODE_UND)];
7282         env->xregs[23] = env->banked_r13[bank_number(ARM_CPU_MODE_UND)];
7283     }
7284 
7285     /* Registers x24-x30 are mapped to r8-r14 in FIQ mode.  If we are in FIQ
7286      * mode, then we can copy from r8-r14.  Otherwise, we copy from the
7287      * FIQ bank for r8-r14.
7288      */
7289     if (mode == ARM_CPU_MODE_FIQ) {
7290         for (i = 24; i < 31; i++) {
7291             env->xregs[i] = env->regs[i - 16];   /* X[24:30] <- R[8:14] */
7292         }
7293     } else {
7294         for (i = 24; i < 29; i++) {
7295             env->xregs[i] = env->fiq_regs[i - 24];
7296         }
7297         env->xregs[29] = env->banked_r13[bank_number(ARM_CPU_MODE_FIQ)];
7298         env->xregs[30] = env->banked_r14[bank_number(ARM_CPU_MODE_FIQ)];
7299     }
7300 
7301     env->pc = env->regs[15];
7302 }
7303 
7304 /* Function used to synchronize QEMU's AArch32 register set with AArch64
7305  * register set.  This is necessary when switching between AArch32 and AArch64
7306  * execution state.
7307  */
7308 void aarch64_sync_64_to_32(CPUARMState *env)
7309 {
7310     int i;
7311     uint32_t mode = env->uncached_cpsr & CPSR_M;
7312 
7313     /* We can blanket copy X[0:7] to R[0:7] */
7314     for (i = 0; i < 8; i++) {
7315         env->regs[i] = env->xregs[i];
7316     }
7317 
7318     /* Unless we are in FIQ mode, r8-r12 come from the user registers x8-x12.
7319      * Otherwise, we copy x8-x12 into the banked user regs.
7320      */
7321     if (mode == ARM_CPU_MODE_FIQ) {
7322         for (i = 8; i < 13; i++) {
7323             env->usr_regs[i - 8] = env->xregs[i];
7324         }
7325     } else {
7326         for (i = 8; i < 13; i++) {
7327             env->regs[i] = env->xregs[i];
7328         }
7329     }
7330 
7331     /* Registers r13 & r14 depend on the current mode.
7332      * If we are in a given mode, we copy the corresponding x registers to r13
7333      * and r14.  Otherwise, we copy the x register to the banked r13 and r14
7334      * for the mode.
7335      */
7336     if (mode == ARM_CPU_MODE_USR || mode == ARM_CPU_MODE_SYS) {
7337         env->regs[13] = env->xregs[13];
7338         env->regs[14] = env->xregs[14];
7339     } else {
7340         env->banked_r13[bank_number(ARM_CPU_MODE_USR)] = env->xregs[13];
7341 
7342         /* HYP is an exception in that it does not have its own banked r14 but
7343          * shares the USR r14
7344          */
7345         if (mode == ARM_CPU_MODE_HYP) {
7346             env->regs[14] = env->xregs[14];
7347         } else {
7348             env->banked_r14[bank_number(ARM_CPU_MODE_USR)] = env->xregs[14];
7349         }
7350     }
7351 
7352     if (mode == ARM_CPU_MODE_HYP) {
7353         env->regs[13] = env->xregs[15];
7354     } else {
7355         env->banked_r13[bank_number(ARM_CPU_MODE_HYP)] = env->xregs[15];
7356     }
7357 
7358     if (mode == ARM_CPU_MODE_IRQ) {
7359         env->regs[14] = env->xregs[16];
7360         env->regs[13] = env->xregs[17];
7361     } else {
7362         env->banked_r14[bank_number(ARM_CPU_MODE_IRQ)] = env->xregs[16];
7363         env->banked_r13[bank_number(ARM_CPU_MODE_IRQ)] = env->xregs[17];
7364     }
7365 
7366     if (mode == ARM_CPU_MODE_SVC) {
7367         env->regs[14] = env->xregs[18];
7368         env->regs[13] = env->xregs[19];
7369     } else {
7370         env->banked_r14[bank_number(ARM_CPU_MODE_SVC)] = env->xregs[18];
7371         env->banked_r13[bank_number(ARM_CPU_MODE_SVC)] = env->xregs[19];
7372     }
7373 
7374     if (mode == ARM_CPU_MODE_ABT) {
7375         env->regs[14] = env->xregs[20];
7376         env->regs[13] = env->xregs[21];
7377     } else {
7378         env->banked_r14[bank_number(ARM_CPU_MODE_ABT)] = env->xregs[20];
7379         env->banked_r13[bank_number(ARM_CPU_MODE_ABT)] = env->xregs[21];
7380     }
7381 
7382     if (mode == ARM_CPU_MODE_UND) {
7383         env->regs[14] = env->xregs[22];
7384         env->regs[13] = env->xregs[23];
7385     } else {
7386         env->banked_r14[bank_number(ARM_CPU_MODE_UND)] = env->xregs[22];
7387         env->banked_r13[bank_number(ARM_CPU_MODE_UND)] = env->xregs[23];
7388     }
7389 
7390     /* Registers x24-x30 are mapped to r8-r14 in FIQ mode.  If we are in FIQ
7391      * mode, then we can copy to r8-r14.  Otherwise, we copy to the
7392      * FIQ bank for r8-r14.
7393      */
7394     if (mode == ARM_CPU_MODE_FIQ) {
7395         for (i = 24; i < 31; i++) {
7396             env->regs[i - 16] = env->xregs[i];   /* X[24:30] -> R[8:14] */
7397         }
7398     } else {
7399         for (i = 24; i < 29; i++) {
7400             env->fiq_regs[i - 24] = env->xregs[i];
7401         }
7402         env->banked_r13[bank_number(ARM_CPU_MODE_FIQ)] = env->xregs[29];
7403         env->banked_r14[bank_number(ARM_CPU_MODE_FIQ)] = env->xregs[30];
7404     }
7405 
7406     env->regs[15] = env->pc;
7407 }
7408 
7409 static void arm_cpu_do_interrupt_aarch32(CPUState *cs)
7410 {
7411     ARMCPU *cpu = ARM_CPU(cs);
7412     CPUARMState *env = &cpu->env;
7413     uint32_t addr;
7414     uint32_t mask;
7415     int new_mode;
7416     uint32_t offset;
7417     uint32_t moe;
7418 
7419     /* If this is a debug exception we must update the DBGDSCR.MOE bits */
7420     switch (env->exception.syndrome >> ARM_EL_EC_SHIFT) {
7421     case EC_BREAKPOINT:
7422     case EC_BREAKPOINT_SAME_EL:
7423         moe = 1;
7424         break;
7425     case EC_WATCHPOINT:
7426     case EC_WATCHPOINT_SAME_EL:
7427         moe = 10;
7428         break;
7429     case EC_AA32_BKPT:
7430         moe = 3;
7431         break;
7432     case EC_VECTORCATCH:
7433         moe = 5;
7434         break;
7435     default:
7436         moe = 0;
7437         break;
7438     }
7439 
7440     if (moe) {
7441         env->cp15.mdscr_el1 = deposit64(env->cp15.mdscr_el1, 2, 4, moe);
7442     }
7443 
7444     /* TODO: Vectored interrupt controller.  */
7445     switch (cs->exception_index) {
7446     case EXCP_UDEF:
7447         new_mode = ARM_CPU_MODE_UND;
7448         addr = 0x04;
7449         mask = CPSR_I;
7450         if (env->thumb)
7451             offset = 2;
7452         else
7453             offset = 4;
7454         break;
7455     case EXCP_SWI:
7456         new_mode = ARM_CPU_MODE_SVC;
7457         addr = 0x08;
7458         mask = CPSR_I;
7459         /* The PC already points to the next instruction.  */
7460         offset = 0;
7461         break;
7462     case EXCP_BKPT:
7463         env->exception.fsr = 2;
7464         /* Fall through to prefetch abort.  */
7465     case EXCP_PREFETCH_ABORT:
7466         A32_BANKED_CURRENT_REG_SET(env, ifsr, env->exception.fsr);
7467         A32_BANKED_CURRENT_REG_SET(env, ifar, env->exception.vaddress);
7468         qemu_log_mask(CPU_LOG_INT, "...with IFSR 0x%x IFAR 0x%x\n",
7469                       env->exception.fsr, (uint32_t)env->exception.vaddress);
7470         new_mode = ARM_CPU_MODE_ABT;
7471         addr = 0x0c;
7472         mask = CPSR_A | CPSR_I;
7473         offset = 4;
7474         break;
7475     case EXCP_DATA_ABORT:
7476         A32_BANKED_CURRENT_REG_SET(env, dfsr, env->exception.fsr);
7477         A32_BANKED_CURRENT_REG_SET(env, dfar, env->exception.vaddress);
7478         qemu_log_mask(CPU_LOG_INT, "...with DFSR 0x%x DFAR 0x%x\n",
7479                       env->exception.fsr,
7480                       (uint32_t)env->exception.vaddress);
7481         new_mode = ARM_CPU_MODE_ABT;
7482         addr = 0x10;
7483         mask = CPSR_A | CPSR_I;
7484         offset = 8;
7485         break;
7486     case EXCP_IRQ:
7487         new_mode = ARM_CPU_MODE_IRQ;
7488         addr = 0x18;
7489         /* Disable IRQ and imprecise data aborts.  */
7490         mask = CPSR_A | CPSR_I;
7491         offset = 4;
7492         if (env->cp15.scr_el3 & SCR_IRQ) {
7493             /* IRQ routed to monitor mode */
7494             new_mode = ARM_CPU_MODE_MON;
7495             mask |= CPSR_F;
7496         }
7497         break;
7498     case EXCP_FIQ:
7499         new_mode = ARM_CPU_MODE_FIQ;
7500         addr = 0x1c;
7501         /* Disable FIQ, IRQ and imprecise data aborts.  */
7502         mask = CPSR_A | CPSR_I | CPSR_F;
7503         if (env->cp15.scr_el3 & SCR_FIQ) {
7504             /* FIQ routed to monitor mode */
7505             new_mode = ARM_CPU_MODE_MON;
7506         }
7507         offset = 4;
7508         break;
7509     case EXCP_VIRQ:
7510         new_mode = ARM_CPU_MODE_IRQ;
7511         addr = 0x18;
7512         /* Disable IRQ and imprecise data aborts.  */
7513         mask = CPSR_A | CPSR_I;
7514         offset = 4;
7515         break;
7516     case EXCP_VFIQ:
7517         new_mode = ARM_CPU_MODE_FIQ;
7518         addr = 0x1c;
7519         /* Disable FIQ, IRQ and imprecise data aborts.  */
7520         mask = CPSR_A | CPSR_I | CPSR_F;
7521         offset = 4;
7522         break;
7523     case EXCP_SMC:
7524         new_mode = ARM_CPU_MODE_MON;
7525         addr = 0x08;
7526         mask = CPSR_A | CPSR_I | CPSR_F;
7527         offset = 0;
7528         break;
7529     default:
7530         cpu_abort(cs, "Unhandled exception 0x%x\n", cs->exception_index);
7531         return; /* Never happens.  Keep compiler happy.  */
7532     }
7533 
7534     if (new_mode == ARM_CPU_MODE_MON) {
7535         addr += env->cp15.mvbar;
7536     } else if (A32_BANKED_CURRENT_REG_GET(env, sctlr) & SCTLR_V) {
7537         /* High vectors. When enabled, base address cannot be remapped. */
7538         addr += 0xffff0000;
7539     } else {
7540         /* ARM v7 architectures provide a vector base address register to remap
7541          * the interrupt vector table.
7542          * This register is only followed in non-monitor mode, and is banked.
7543          * Note: only bits 31:5 are valid.
7544          */
7545         addr += A32_BANKED_CURRENT_REG_GET(env, vbar);
7546     }
7547 
7548     if ((env->uncached_cpsr & CPSR_M) == ARM_CPU_MODE_MON) {
7549         env->cp15.scr_el3 &= ~SCR_NS;
7550     }
7551 
7552     switch_mode (env, new_mode);
7553     /* For exceptions taken to AArch32 we must clear the SS bit in both
7554      * PSTATE and in the old-state value we save to SPSR_<mode>, so zero it now.
7555      */
7556     env->uncached_cpsr &= ~PSTATE_SS;
7557     env->spsr = cpsr_read(env);
7558     /* Clear IT bits.  */
7559     env->condexec_bits = 0;
7560     /* Switch to the new mode, and to the correct instruction set.  */
7561     env->uncached_cpsr = (env->uncached_cpsr & ~CPSR_M) | new_mode;
7562     /* Set new mode endianness */
7563     env->uncached_cpsr &= ~CPSR_E;
7564     if (env->cp15.sctlr_el[arm_current_el(env)] & SCTLR_EE) {
7565         env->uncached_cpsr |= CPSR_E;
7566     }
7567     env->daif |= mask;
7568     /* this is a lie, as the was no c1_sys on V4T/V5, but who cares
7569      * and we should just guard the thumb mode on V4 */
7570     if (arm_feature(env, ARM_FEATURE_V4T)) {
7571         env->thumb = (A32_BANKED_CURRENT_REG_GET(env, sctlr) & SCTLR_TE) != 0;
7572     }
7573     env->regs[14] = env->regs[15] + offset;
7574     env->regs[15] = addr;
7575 }
7576 
7577 /* Handle exception entry to a target EL which is using AArch64 */
7578 static void arm_cpu_do_interrupt_aarch64(CPUState *cs)
7579 {
7580     ARMCPU *cpu = ARM_CPU(cs);
7581     CPUARMState *env = &cpu->env;
7582     unsigned int new_el = env->exception.target_el;
7583     target_ulong addr = env->cp15.vbar_el[new_el];
7584     unsigned int new_mode = aarch64_pstate_mode(new_el, true);
7585 
7586     if (arm_current_el(env) < new_el) {
7587         /* Entry vector offset depends on whether the implemented EL
7588          * immediately lower than the target level is using AArch32 or AArch64
7589          */
7590         bool is_aa64;
7591 
7592         switch (new_el) {
7593         case 3:
7594             is_aa64 = (env->cp15.scr_el3 & SCR_RW) != 0;
7595             break;
7596         case 2:
7597             is_aa64 = (env->cp15.hcr_el2 & HCR_RW) != 0;
7598             break;
7599         case 1:
7600             is_aa64 = is_a64(env);
7601             break;
7602         default:
7603             g_assert_not_reached();
7604         }
7605 
7606         if (is_aa64) {
7607             addr += 0x400;
7608         } else {
7609             addr += 0x600;
7610         }
7611     } else if (pstate_read(env) & PSTATE_SP) {
7612         addr += 0x200;
7613     }
7614 
7615     switch (cs->exception_index) {
7616     case EXCP_PREFETCH_ABORT:
7617     case EXCP_DATA_ABORT:
7618         env->cp15.far_el[new_el] = env->exception.vaddress;
7619         qemu_log_mask(CPU_LOG_INT, "...with FAR 0x%" PRIx64 "\n",
7620                       env->cp15.far_el[new_el]);
7621         /* fall through */
7622     case EXCP_BKPT:
7623     case EXCP_UDEF:
7624     case EXCP_SWI:
7625     case EXCP_HVC:
7626     case EXCP_HYP_TRAP:
7627     case EXCP_SMC:
7628         env->cp15.esr_el[new_el] = env->exception.syndrome;
7629         break;
7630     case EXCP_IRQ:
7631     case EXCP_VIRQ:
7632         addr += 0x80;
7633         break;
7634     case EXCP_FIQ:
7635     case EXCP_VFIQ:
7636         addr += 0x100;
7637         break;
7638     case EXCP_SEMIHOST:
7639         qemu_log_mask(CPU_LOG_INT,
7640                       "...handling as semihosting call 0x%" PRIx64 "\n",
7641                       env->xregs[0]);
7642         env->xregs[0] = do_arm_semihosting(env);
7643         return;
7644     default:
7645         cpu_abort(cs, "Unhandled exception 0x%x\n", cs->exception_index);
7646     }
7647 
7648     if (is_a64(env)) {
7649         env->banked_spsr[aarch64_banked_spsr_index(new_el)] = pstate_read(env);
7650         aarch64_save_sp(env, arm_current_el(env));
7651         env->elr_el[new_el] = env->pc;
7652     } else {
7653         env->banked_spsr[aarch64_banked_spsr_index(new_el)] = cpsr_read(env);
7654         env->elr_el[new_el] = env->regs[15];
7655 
7656         aarch64_sync_32_to_64(env);
7657 
7658         env->condexec_bits = 0;
7659     }
7660     qemu_log_mask(CPU_LOG_INT, "...with ELR 0x%" PRIx64 "\n",
7661                   env->elr_el[new_el]);
7662 
7663     pstate_write(env, PSTATE_DAIF | new_mode);
7664     env->aarch64 = 1;
7665     aarch64_restore_sp(env, new_el);
7666 
7667     env->pc = addr;
7668 
7669     qemu_log_mask(CPU_LOG_INT, "...to EL%d PC 0x%" PRIx64 " PSTATE 0x%x\n",
7670                   new_el, env->pc, pstate_read(env));
7671 }
7672 
7673 static inline bool check_for_semihosting(CPUState *cs)
7674 {
7675     /* Check whether this exception is a semihosting call; if so
7676      * then handle it and return true; otherwise return false.
7677      */
7678     ARMCPU *cpu = ARM_CPU(cs);
7679     CPUARMState *env = &cpu->env;
7680 
7681     if (is_a64(env)) {
7682         if (cs->exception_index == EXCP_SEMIHOST) {
7683             /* This is always the 64-bit semihosting exception.
7684              * The "is this usermode" and "is semihosting enabled"
7685              * checks have been done at translate time.
7686              */
7687             qemu_log_mask(CPU_LOG_INT,
7688                           "...handling as semihosting call 0x%" PRIx64 "\n",
7689                           env->xregs[0]);
7690             env->xregs[0] = do_arm_semihosting(env);
7691             return true;
7692         }
7693         return false;
7694     } else {
7695         uint32_t imm;
7696 
7697         /* Only intercept calls from privileged modes, to provide some
7698          * semblance of security.
7699          */
7700         if (cs->exception_index != EXCP_SEMIHOST &&
7701             (!semihosting_enabled() ||
7702              ((env->uncached_cpsr & CPSR_M) == ARM_CPU_MODE_USR))) {
7703             return false;
7704         }
7705 
7706         switch (cs->exception_index) {
7707         case EXCP_SEMIHOST:
7708             /* This is always a semihosting call; the "is this usermode"
7709              * and "is semihosting enabled" checks have been done at
7710              * translate time.
7711              */
7712             break;
7713         case EXCP_SWI:
7714             /* Check for semihosting interrupt.  */
7715             if (env->thumb) {
7716                 imm = arm_lduw_code(env, env->regs[15] - 2, arm_sctlr_b(env))
7717                     & 0xff;
7718                 if (imm == 0xab) {
7719                     break;
7720                 }
7721             } else {
7722                 imm = arm_ldl_code(env, env->regs[15] - 4, arm_sctlr_b(env))
7723                     & 0xffffff;
7724                 if (imm == 0x123456) {
7725                     break;
7726                 }
7727             }
7728             return false;
7729         case EXCP_BKPT:
7730             /* See if this is a semihosting syscall.  */
7731             if (env->thumb) {
7732                 imm = arm_lduw_code(env, env->regs[15], arm_sctlr_b(env))
7733                     & 0xff;
7734                 if (imm == 0xab) {
7735                     env->regs[15] += 2;
7736                     break;
7737                 }
7738             }
7739             return false;
7740         default:
7741             return false;
7742         }
7743 
7744         qemu_log_mask(CPU_LOG_INT,
7745                       "...handling as semihosting call 0x%x\n",
7746                       env->regs[0]);
7747         env->regs[0] = do_arm_semihosting(env);
7748         return true;
7749     }
7750 }
7751 
7752 /* Handle a CPU exception for A and R profile CPUs.
7753  * Do any appropriate logging, handle PSCI calls, and then hand off
7754  * to the AArch64-entry or AArch32-entry function depending on the
7755  * target exception level's register width.
7756  */
7757 void arm_cpu_do_interrupt(CPUState *cs)
7758 {
7759     ARMCPU *cpu = ARM_CPU(cs);
7760     CPUARMState *env = &cpu->env;
7761     unsigned int new_el = env->exception.target_el;
7762 
7763     assert(!arm_feature(env, ARM_FEATURE_M));
7764 
7765     arm_log_exception(cs->exception_index);
7766     qemu_log_mask(CPU_LOG_INT, "...from EL%d to EL%d\n", arm_current_el(env),
7767                   new_el);
7768     if (qemu_loglevel_mask(CPU_LOG_INT)
7769         && !excp_is_internal(cs->exception_index)) {
7770         qemu_log_mask(CPU_LOG_INT, "...with ESR 0x%x/0x%" PRIx32 "\n",
7771                       env->exception.syndrome >> ARM_EL_EC_SHIFT,
7772                       env->exception.syndrome);
7773     }
7774 
7775     if (arm_is_psci_call(cpu, cs->exception_index)) {
7776         arm_handle_psci_call(cpu);
7777         qemu_log_mask(CPU_LOG_INT, "...handled as PSCI call\n");
7778         return;
7779     }
7780 
7781     /* Semihosting semantics depend on the register width of the
7782      * code that caused the exception, not the target exception level,
7783      * so must be handled here.
7784      */
7785     if (check_for_semihosting(cs)) {
7786         return;
7787     }
7788 
7789     assert(!excp_is_internal(cs->exception_index));
7790     if (arm_el_is_aa64(env, new_el)) {
7791         arm_cpu_do_interrupt_aarch64(cs);
7792     } else {
7793         arm_cpu_do_interrupt_aarch32(cs);
7794     }
7795 
7796     /* Hooks may change global state so BQL should be held, also the
7797      * BQL needs to be held for any modification of
7798      * cs->interrupt_request.
7799      */
7800     g_assert(qemu_mutex_iothread_locked());
7801 
7802     arm_call_el_change_hook(cpu);
7803 
7804     if (!kvm_enabled()) {
7805         cs->interrupt_request |= CPU_INTERRUPT_EXITTB;
7806     }
7807 }
7808 
7809 /* Return the exception level which controls this address translation regime */
7810 static inline uint32_t regime_el(CPUARMState *env, ARMMMUIdx mmu_idx)
7811 {
7812     switch (mmu_idx) {
7813     case ARMMMUIdx_S2NS:
7814     case ARMMMUIdx_S1E2:
7815         return 2;
7816     case ARMMMUIdx_S1E3:
7817         return 3;
7818     case ARMMMUIdx_S1SE0:
7819         return arm_el_is_aa64(env, 3) ? 1 : 3;
7820     case ARMMMUIdx_S1SE1:
7821     case ARMMMUIdx_S1NSE0:
7822     case ARMMMUIdx_S1NSE1:
7823     case ARMMMUIdx_MPriv:
7824     case ARMMMUIdx_MNegPri:
7825     case ARMMMUIdx_MUser:
7826     case ARMMMUIdx_MSPriv:
7827     case ARMMMUIdx_MSNegPri:
7828     case ARMMMUIdx_MSUser:
7829         return 1;
7830     default:
7831         g_assert_not_reached();
7832     }
7833 }
7834 
7835 /* Return the SCTLR value which controls this address translation regime */
7836 static inline uint32_t regime_sctlr(CPUARMState *env, ARMMMUIdx mmu_idx)
7837 {
7838     return env->cp15.sctlr_el[regime_el(env, mmu_idx)];
7839 }
7840 
7841 /* Return true if the specified stage of address translation is disabled */
7842 static inline bool regime_translation_disabled(CPUARMState *env,
7843                                                ARMMMUIdx mmu_idx)
7844 {
7845     if (arm_feature(env, ARM_FEATURE_M)) {
7846         switch (env->v7m.mpu_ctrl[regime_is_secure(env, mmu_idx)] &
7847                 (R_V7M_MPU_CTRL_ENABLE_MASK | R_V7M_MPU_CTRL_HFNMIENA_MASK)) {
7848         case R_V7M_MPU_CTRL_ENABLE_MASK:
7849             /* Enabled, but not for HardFault and NMI */
7850             return mmu_idx == ARMMMUIdx_MNegPri ||
7851                 mmu_idx == ARMMMUIdx_MSNegPri;
7852         case R_V7M_MPU_CTRL_ENABLE_MASK | R_V7M_MPU_CTRL_HFNMIENA_MASK:
7853             /* Enabled for all cases */
7854             return false;
7855         case 0:
7856         default:
7857             /* HFNMIENA set and ENABLE clear is UNPREDICTABLE, but
7858              * we warned about that in armv7m_nvic.c when the guest set it.
7859              */
7860             return true;
7861         }
7862     }
7863 
7864     if (mmu_idx == ARMMMUIdx_S2NS) {
7865         return (env->cp15.hcr_el2 & HCR_VM) == 0;
7866     }
7867     return (regime_sctlr(env, mmu_idx) & SCTLR_M) == 0;
7868 }
7869 
7870 static inline bool regime_translation_big_endian(CPUARMState *env,
7871                                                  ARMMMUIdx mmu_idx)
7872 {
7873     return (regime_sctlr(env, mmu_idx) & SCTLR_EE) != 0;
7874 }
7875 
7876 /* Return the TCR controlling this translation regime */
7877 static inline TCR *regime_tcr(CPUARMState *env, ARMMMUIdx mmu_idx)
7878 {
7879     if (mmu_idx == ARMMMUIdx_S2NS) {
7880         return &env->cp15.vtcr_el2;
7881     }
7882     return &env->cp15.tcr_el[regime_el(env, mmu_idx)];
7883 }
7884 
7885 /* Convert a possible stage1+2 MMU index into the appropriate
7886  * stage 1 MMU index
7887  */
7888 static inline ARMMMUIdx stage_1_mmu_idx(ARMMMUIdx mmu_idx)
7889 {
7890     if (mmu_idx == ARMMMUIdx_S12NSE0 || mmu_idx == ARMMMUIdx_S12NSE1) {
7891         mmu_idx += (ARMMMUIdx_S1NSE0 - ARMMMUIdx_S12NSE0);
7892     }
7893     return mmu_idx;
7894 }
7895 
7896 /* Returns TBI0 value for current regime el */
7897 uint32_t arm_regime_tbi0(CPUARMState *env, ARMMMUIdx mmu_idx)
7898 {
7899     TCR *tcr;
7900     uint32_t el;
7901 
7902     /* For EL0 and EL1, TBI is controlled by stage 1's TCR, so convert
7903      * a stage 1+2 mmu index into the appropriate stage 1 mmu index.
7904      */
7905     mmu_idx = stage_1_mmu_idx(mmu_idx);
7906 
7907     tcr = regime_tcr(env, mmu_idx);
7908     el = regime_el(env, mmu_idx);
7909 
7910     if (el > 1) {
7911         return extract64(tcr->raw_tcr, 20, 1);
7912     } else {
7913         return extract64(tcr->raw_tcr, 37, 1);
7914     }
7915 }
7916 
7917 /* Returns TBI1 value for current regime el */
7918 uint32_t arm_regime_tbi1(CPUARMState *env, ARMMMUIdx mmu_idx)
7919 {
7920     TCR *tcr;
7921     uint32_t el;
7922 
7923     /* For EL0 and EL1, TBI is controlled by stage 1's TCR, so convert
7924      * a stage 1+2 mmu index into the appropriate stage 1 mmu index.
7925      */
7926     mmu_idx = stage_1_mmu_idx(mmu_idx);
7927 
7928     tcr = regime_tcr(env, mmu_idx);
7929     el = regime_el(env, mmu_idx);
7930 
7931     if (el > 1) {
7932         return 0;
7933     } else {
7934         return extract64(tcr->raw_tcr, 38, 1);
7935     }
7936 }
7937 
7938 /* Return the TTBR associated with this translation regime */
7939 static inline uint64_t regime_ttbr(CPUARMState *env, ARMMMUIdx mmu_idx,
7940                                    int ttbrn)
7941 {
7942     if (mmu_idx == ARMMMUIdx_S2NS) {
7943         return env->cp15.vttbr_el2;
7944     }
7945     if (ttbrn == 0) {
7946         return env->cp15.ttbr0_el[regime_el(env, mmu_idx)];
7947     } else {
7948         return env->cp15.ttbr1_el[regime_el(env, mmu_idx)];
7949     }
7950 }
7951 
7952 /* Return true if the translation regime is using LPAE format page tables */
7953 static inline bool regime_using_lpae_format(CPUARMState *env,
7954                                             ARMMMUIdx mmu_idx)
7955 {
7956     int el = regime_el(env, mmu_idx);
7957     if (el == 2 || arm_el_is_aa64(env, el)) {
7958         return true;
7959     }
7960     if (arm_feature(env, ARM_FEATURE_LPAE)
7961         && (regime_tcr(env, mmu_idx)->raw_tcr & TTBCR_EAE)) {
7962         return true;
7963     }
7964     return false;
7965 }
7966 
7967 /* Returns true if the stage 1 translation regime is using LPAE format page
7968  * tables. Used when raising alignment exceptions, whose FSR changes depending
7969  * on whether the long or short descriptor format is in use. */
7970 bool arm_s1_regime_using_lpae_format(CPUARMState *env, ARMMMUIdx mmu_idx)
7971 {
7972     mmu_idx = stage_1_mmu_idx(mmu_idx);
7973 
7974     return regime_using_lpae_format(env, mmu_idx);
7975 }
7976 
7977 static inline bool regime_is_user(CPUARMState *env, ARMMMUIdx mmu_idx)
7978 {
7979     switch (mmu_idx) {
7980     case ARMMMUIdx_S1SE0:
7981     case ARMMMUIdx_S1NSE0:
7982     case ARMMMUIdx_MUser:
7983         return true;
7984     default:
7985         return false;
7986     case ARMMMUIdx_S12NSE0:
7987     case ARMMMUIdx_S12NSE1:
7988         g_assert_not_reached();
7989     }
7990 }
7991 
7992 /* Translate section/page access permissions to page
7993  * R/W protection flags
7994  *
7995  * @env:         CPUARMState
7996  * @mmu_idx:     MMU index indicating required translation regime
7997  * @ap:          The 3-bit access permissions (AP[2:0])
7998  * @domain_prot: The 2-bit domain access permissions
7999  */
8000 static inline int ap_to_rw_prot(CPUARMState *env, ARMMMUIdx mmu_idx,
8001                                 int ap, int domain_prot)
8002 {
8003     bool is_user = regime_is_user(env, mmu_idx);
8004 
8005     if (domain_prot == 3) {
8006         return PAGE_READ | PAGE_WRITE;
8007     }
8008 
8009     switch (ap) {
8010     case 0:
8011         if (arm_feature(env, ARM_FEATURE_V7)) {
8012             return 0;
8013         }
8014         switch (regime_sctlr(env, mmu_idx) & (SCTLR_S | SCTLR_R)) {
8015         case SCTLR_S:
8016             return is_user ? 0 : PAGE_READ;
8017         case SCTLR_R:
8018             return PAGE_READ;
8019         default:
8020             return 0;
8021         }
8022     case 1:
8023         return is_user ? 0 : PAGE_READ | PAGE_WRITE;
8024     case 2:
8025         if (is_user) {
8026             return PAGE_READ;
8027         } else {
8028             return PAGE_READ | PAGE_WRITE;
8029         }
8030     case 3:
8031         return PAGE_READ | PAGE_WRITE;
8032     case 4: /* Reserved.  */
8033         return 0;
8034     case 5:
8035         return is_user ? 0 : PAGE_READ;
8036     case 6:
8037         return PAGE_READ;
8038     case 7:
8039         if (!arm_feature(env, ARM_FEATURE_V6K)) {
8040             return 0;
8041         }
8042         return PAGE_READ;
8043     default:
8044         g_assert_not_reached();
8045     }
8046 }
8047 
8048 /* Translate section/page access permissions to page
8049  * R/W protection flags.
8050  *
8051  * @ap:      The 2-bit simple AP (AP[2:1])
8052  * @is_user: TRUE if accessing from PL0
8053  */
8054 static inline int simple_ap_to_rw_prot_is_user(int ap, bool is_user)
8055 {
8056     switch (ap) {
8057     case 0:
8058         return is_user ? 0 : PAGE_READ | PAGE_WRITE;
8059     case 1:
8060         return PAGE_READ | PAGE_WRITE;
8061     case 2:
8062         return is_user ? 0 : PAGE_READ;
8063     case 3:
8064         return PAGE_READ;
8065     default:
8066         g_assert_not_reached();
8067     }
8068 }
8069 
8070 static inline int
8071 simple_ap_to_rw_prot(CPUARMState *env, ARMMMUIdx mmu_idx, int ap)
8072 {
8073     return simple_ap_to_rw_prot_is_user(ap, regime_is_user(env, mmu_idx));
8074 }
8075 
8076 /* Translate S2 section/page access permissions to protection flags
8077  *
8078  * @env:     CPUARMState
8079  * @s2ap:    The 2-bit stage2 access permissions (S2AP)
8080  * @xn:      XN (execute-never) bit
8081  */
8082 static int get_S2prot(CPUARMState *env, int s2ap, int xn)
8083 {
8084     int prot = 0;
8085 
8086     if (s2ap & 1) {
8087         prot |= PAGE_READ;
8088     }
8089     if (s2ap & 2) {
8090         prot |= PAGE_WRITE;
8091     }
8092     if (!xn) {
8093         if (arm_el_is_aa64(env, 2) || prot & PAGE_READ) {
8094             prot |= PAGE_EXEC;
8095         }
8096     }
8097     return prot;
8098 }
8099 
8100 /* Translate section/page access permissions to protection flags
8101  *
8102  * @env:     CPUARMState
8103  * @mmu_idx: MMU index indicating required translation regime
8104  * @is_aa64: TRUE if AArch64
8105  * @ap:      The 2-bit simple AP (AP[2:1])
8106  * @ns:      NS (non-secure) bit
8107  * @xn:      XN (execute-never) bit
8108  * @pxn:     PXN (privileged execute-never) bit
8109  */
8110 static int get_S1prot(CPUARMState *env, ARMMMUIdx mmu_idx, bool is_aa64,
8111                       int ap, int ns, int xn, int pxn)
8112 {
8113     bool is_user = regime_is_user(env, mmu_idx);
8114     int prot_rw, user_rw;
8115     bool have_wxn;
8116     int wxn = 0;
8117 
8118     assert(mmu_idx != ARMMMUIdx_S2NS);
8119 
8120     user_rw = simple_ap_to_rw_prot_is_user(ap, true);
8121     if (is_user) {
8122         prot_rw = user_rw;
8123     } else {
8124         prot_rw = simple_ap_to_rw_prot_is_user(ap, false);
8125     }
8126 
8127     if (ns && arm_is_secure(env) && (env->cp15.scr_el3 & SCR_SIF)) {
8128         return prot_rw;
8129     }
8130 
8131     /* TODO have_wxn should be replaced with
8132      *   ARM_FEATURE_V8 || (ARM_FEATURE_V7 && ARM_FEATURE_EL2)
8133      * when ARM_FEATURE_EL2 starts getting set. For now we assume all LPAE
8134      * compatible processors have EL2, which is required for [U]WXN.
8135      */
8136     have_wxn = arm_feature(env, ARM_FEATURE_LPAE);
8137 
8138     if (have_wxn) {
8139         wxn = regime_sctlr(env, mmu_idx) & SCTLR_WXN;
8140     }
8141 
8142     if (is_aa64) {
8143         switch (regime_el(env, mmu_idx)) {
8144         case 1:
8145             if (!is_user) {
8146                 xn = pxn || (user_rw & PAGE_WRITE);
8147             }
8148             break;
8149         case 2:
8150         case 3:
8151             break;
8152         }
8153     } else if (arm_feature(env, ARM_FEATURE_V7)) {
8154         switch (regime_el(env, mmu_idx)) {
8155         case 1:
8156         case 3:
8157             if (is_user) {
8158                 xn = xn || !(user_rw & PAGE_READ);
8159             } else {
8160                 int uwxn = 0;
8161                 if (have_wxn) {
8162                     uwxn = regime_sctlr(env, mmu_idx) & SCTLR_UWXN;
8163                 }
8164                 xn = xn || !(prot_rw & PAGE_READ) || pxn ||
8165                      (uwxn && (user_rw & PAGE_WRITE));
8166             }
8167             break;
8168         case 2:
8169             break;
8170         }
8171     } else {
8172         xn = wxn = 0;
8173     }
8174 
8175     if (xn || (wxn && (prot_rw & PAGE_WRITE))) {
8176         return prot_rw;
8177     }
8178     return prot_rw | PAGE_EXEC;
8179 }
8180 
8181 static bool get_level1_table_address(CPUARMState *env, ARMMMUIdx mmu_idx,
8182                                      uint32_t *table, uint32_t address)
8183 {
8184     /* Note that we can only get here for an AArch32 PL0/PL1 lookup */
8185     TCR *tcr = regime_tcr(env, mmu_idx);
8186 
8187     if (address & tcr->mask) {
8188         if (tcr->raw_tcr & TTBCR_PD1) {
8189             /* Translation table walk disabled for TTBR1 */
8190             return false;
8191         }
8192         *table = regime_ttbr(env, mmu_idx, 1) & 0xffffc000;
8193     } else {
8194         if (tcr->raw_tcr & TTBCR_PD0) {
8195             /* Translation table walk disabled for TTBR0 */
8196             return false;
8197         }
8198         *table = regime_ttbr(env, mmu_idx, 0) & tcr->base_mask;
8199     }
8200     *table |= (address >> 18) & 0x3ffc;
8201     return true;
8202 }
8203 
8204 /* Translate a S1 pagetable walk through S2 if needed.  */
8205 static hwaddr S1_ptw_translate(CPUARMState *env, ARMMMUIdx mmu_idx,
8206                                hwaddr addr, MemTxAttrs txattrs,
8207                                uint32_t *fsr,
8208                                ARMMMUFaultInfo *fi)
8209 {
8210     if ((mmu_idx == ARMMMUIdx_S1NSE0 || mmu_idx == ARMMMUIdx_S1NSE1) &&
8211         !regime_translation_disabled(env, ARMMMUIdx_S2NS)) {
8212         target_ulong s2size;
8213         hwaddr s2pa;
8214         int s2prot;
8215         int ret;
8216 
8217         ret = get_phys_addr_lpae(env, addr, 0, ARMMMUIdx_S2NS, &s2pa,
8218                                  &txattrs, &s2prot, &s2size, fsr, fi, NULL);
8219         if (ret) {
8220             fi->s2addr = addr;
8221             fi->stage2 = true;
8222             fi->s1ptw = true;
8223             return ~0;
8224         }
8225         addr = s2pa;
8226     }
8227     return addr;
8228 }
8229 
8230 /* All loads done in the course of a page table walk go through here.
8231  * TODO: rather than ignoring errors from physical memory reads (which
8232  * are external aborts in ARM terminology) we should propagate this
8233  * error out so that we can turn it into a Data Abort if this walk
8234  * was being done for a CPU load/store or an address translation instruction
8235  * (but not if it was for a debug access).
8236  */
8237 static uint32_t arm_ldl_ptw(CPUState *cs, hwaddr addr, bool is_secure,
8238                             ARMMMUIdx mmu_idx, uint32_t *fsr,
8239                             ARMMMUFaultInfo *fi)
8240 {
8241     ARMCPU *cpu = ARM_CPU(cs);
8242     CPUARMState *env = &cpu->env;
8243     MemTxAttrs attrs = {};
8244     AddressSpace *as;
8245 
8246     attrs.secure = is_secure;
8247     as = arm_addressspace(cs, attrs);
8248     addr = S1_ptw_translate(env, mmu_idx, addr, attrs, fsr, fi);
8249     if (fi->s1ptw) {
8250         return 0;
8251     }
8252     if (regime_translation_big_endian(env, mmu_idx)) {
8253         return address_space_ldl_be(as, addr, attrs, NULL);
8254     } else {
8255         return address_space_ldl_le(as, addr, attrs, NULL);
8256     }
8257 }
8258 
8259 static uint64_t arm_ldq_ptw(CPUState *cs, hwaddr addr, bool is_secure,
8260                             ARMMMUIdx mmu_idx, uint32_t *fsr,
8261                             ARMMMUFaultInfo *fi)
8262 {
8263     ARMCPU *cpu = ARM_CPU(cs);
8264     CPUARMState *env = &cpu->env;
8265     MemTxAttrs attrs = {};
8266     AddressSpace *as;
8267 
8268     attrs.secure = is_secure;
8269     as = arm_addressspace(cs, attrs);
8270     addr = S1_ptw_translate(env, mmu_idx, addr, attrs, fsr, fi);
8271     if (fi->s1ptw) {
8272         return 0;
8273     }
8274     if (regime_translation_big_endian(env, mmu_idx)) {
8275         return address_space_ldq_be(as, addr, attrs, NULL);
8276     } else {
8277         return address_space_ldq_le(as, addr, attrs, NULL);
8278     }
8279 }
8280 
8281 static bool get_phys_addr_v5(CPUARMState *env, uint32_t address,
8282                              MMUAccessType access_type, ARMMMUIdx mmu_idx,
8283                              hwaddr *phys_ptr, int *prot,
8284                              target_ulong *page_size, uint32_t *fsr,
8285                              ARMMMUFaultInfo *fi)
8286 {
8287     CPUState *cs = CPU(arm_env_get_cpu(env));
8288     int code;
8289     uint32_t table;
8290     uint32_t desc;
8291     int type;
8292     int ap;
8293     int domain = 0;
8294     int domain_prot;
8295     hwaddr phys_addr;
8296     uint32_t dacr;
8297 
8298     /* Pagetable walk.  */
8299     /* Lookup l1 descriptor.  */
8300     if (!get_level1_table_address(env, mmu_idx, &table, address)) {
8301         /* Section translation fault if page walk is disabled by PD0 or PD1 */
8302         code = 5;
8303         goto do_fault;
8304     }
8305     desc = arm_ldl_ptw(cs, table, regime_is_secure(env, mmu_idx),
8306                        mmu_idx, fsr, fi);
8307     type = (desc & 3);
8308     domain = (desc >> 5) & 0x0f;
8309     if (regime_el(env, mmu_idx) == 1) {
8310         dacr = env->cp15.dacr_ns;
8311     } else {
8312         dacr = env->cp15.dacr_s;
8313     }
8314     domain_prot = (dacr >> (domain * 2)) & 3;
8315     if (type == 0) {
8316         /* Section translation fault.  */
8317         code = 5;
8318         goto do_fault;
8319     }
8320     if (domain_prot == 0 || domain_prot == 2) {
8321         if (type == 2)
8322             code = 9; /* Section domain fault.  */
8323         else
8324             code = 11; /* Page domain fault.  */
8325         goto do_fault;
8326     }
8327     if (type == 2) {
8328         /* 1Mb section.  */
8329         phys_addr = (desc & 0xfff00000) | (address & 0x000fffff);
8330         ap = (desc >> 10) & 3;
8331         code = 13;
8332         *page_size = 1024 * 1024;
8333     } else {
8334         /* Lookup l2 entry.  */
8335         if (type == 1) {
8336             /* Coarse pagetable.  */
8337             table = (desc & 0xfffffc00) | ((address >> 10) & 0x3fc);
8338         } else {
8339             /* Fine pagetable.  */
8340             table = (desc & 0xfffff000) | ((address >> 8) & 0xffc);
8341         }
8342         desc = arm_ldl_ptw(cs, table, regime_is_secure(env, mmu_idx),
8343                            mmu_idx, fsr, fi);
8344         switch (desc & 3) {
8345         case 0: /* Page translation fault.  */
8346             code = 7;
8347             goto do_fault;
8348         case 1: /* 64k page.  */
8349             phys_addr = (desc & 0xffff0000) | (address & 0xffff);
8350             ap = (desc >> (4 + ((address >> 13) & 6))) & 3;
8351             *page_size = 0x10000;
8352             break;
8353         case 2: /* 4k page.  */
8354             phys_addr = (desc & 0xfffff000) | (address & 0xfff);
8355             ap = (desc >> (4 + ((address >> 9) & 6))) & 3;
8356             *page_size = 0x1000;
8357             break;
8358         case 3: /* 1k page, or ARMv6/XScale "extended small (4k) page" */
8359             if (type == 1) {
8360                 /* ARMv6/XScale extended small page format */
8361                 if (arm_feature(env, ARM_FEATURE_XSCALE)
8362                     || arm_feature(env, ARM_FEATURE_V6)) {
8363                     phys_addr = (desc & 0xfffff000) | (address & 0xfff);
8364                     *page_size = 0x1000;
8365                 } else {
8366                     /* UNPREDICTABLE in ARMv5; we choose to take a
8367                      * page translation fault.
8368                      */
8369                     code = 7;
8370                     goto do_fault;
8371                 }
8372             } else {
8373                 phys_addr = (desc & 0xfffffc00) | (address & 0x3ff);
8374                 *page_size = 0x400;
8375             }
8376             ap = (desc >> 4) & 3;
8377             break;
8378         default:
8379             /* Never happens, but compiler isn't smart enough to tell.  */
8380             abort();
8381         }
8382         code = 15;
8383     }
8384     *prot = ap_to_rw_prot(env, mmu_idx, ap, domain_prot);
8385     *prot |= *prot ? PAGE_EXEC : 0;
8386     if (!(*prot & (1 << access_type))) {
8387         /* Access permission fault.  */
8388         goto do_fault;
8389     }
8390     *phys_ptr = phys_addr;
8391     return false;
8392 do_fault:
8393     *fsr = code | (domain << 4);
8394     return true;
8395 }
8396 
8397 static bool get_phys_addr_v6(CPUARMState *env, uint32_t address,
8398                              MMUAccessType access_type, ARMMMUIdx mmu_idx,
8399                              hwaddr *phys_ptr, MemTxAttrs *attrs, int *prot,
8400                              target_ulong *page_size, uint32_t *fsr,
8401                              ARMMMUFaultInfo *fi)
8402 {
8403     CPUState *cs = CPU(arm_env_get_cpu(env));
8404     int code;
8405     uint32_t table;
8406     uint32_t desc;
8407     uint32_t xn;
8408     uint32_t pxn = 0;
8409     int type;
8410     int ap;
8411     int domain = 0;
8412     int domain_prot;
8413     hwaddr phys_addr;
8414     uint32_t dacr;
8415     bool ns;
8416 
8417     /* Pagetable walk.  */
8418     /* Lookup l1 descriptor.  */
8419     if (!get_level1_table_address(env, mmu_idx, &table, address)) {
8420         /* Section translation fault if page walk is disabled by PD0 or PD1 */
8421         code = 5;
8422         goto do_fault;
8423     }
8424     desc = arm_ldl_ptw(cs, table, regime_is_secure(env, mmu_idx),
8425                        mmu_idx, fsr, fi);
8426     type = (desc & 3);
8427     if (type == 0 || (type == 3 && !arm_feature(env, ARM_FEATURE_PXN))) {
8428         /* Section translation fault, or attempt to use the encoding
8429          * which is Reserved on implementations without PXN.
8430          */
8431         code = 5;
8432         goto do_fault;
8433     }
8434     if ((type == 1) || !(desc & (1 << 18))) {
8435         /* Page or Section.  */
8436         domain = (desc >> 5) & 0x0f;
8437     }
8438     if (regime_el(env, mmu_idx) == 1) {
8439         dacr = env->cp15.dacr_ns;
8440     } else {
8441         dacr = env->cp15.dacr_s;
8442     }
8443     domain_prot = (dacr >> (domain * 2)) & 3;
8444     if (domain_prot == 0 || domain_prot == 2) {
8445         if (type != 1) {
8446             code = 9; /* Section domain fault.  */
8447         } else {
8448             code = 11; /* Page domain fault.  */
8449         }
8450         goto do_fault;
8451     }
8452     if (type != 1) {
8453         if (desc & (1 << 18)) {
8454             /* Supersection.  */
8455             phys_addr = (desc & 0xff000000) | (address & 0x00ffffff);
8456             phys_addr |= (uint64_t)extract32(desc, 20, 4) << 32;
8457             phys_addr |= (uint64_t)extract32(desc, 5, 4) << 36;
8458             *page_size = 0x1000000;
8459         } else {
8460             /* Section.  */
8461             phys_addr = (desc & 0xfff00000) | (address & 0x000fffff);
8462             *page_size = 0x100000;
8463         }
8464         ap = ((desc >> 10) & 3) | ((desc >> 13) & 4);
8465         xn = desc & (1 << 4);
8466         pxn = desc & 1;
8467         code = 13;
8468         ns = extract32(desc, 19, 1);
8469     } else {
8470         if (arm_feature(env, ARM_FEATURE_PXN)) {
8471             pxn = (desc >> 2) & 1;
8472         }
8473         ns = extract32(desc, 3, 1);
8474         /* Lookup l2 entry.  */
8475         table = (desc & 0xfffffc00) | ((address >> 10) & 0x3fc);
8476         desc = arm_ldl_ptw(cs, table, regime_is_secure(env, mmu_idx),
8477                            mmu_idx, fsr, fi);
8478         ap = ((desc >> 4) & 3) | ((desc >> 7) & 4);
8479         switch (desc & 3) {
8480         case 0: /* Page translation fault.  */
8481             code = 7;
8482             goto do_fault;
8483         case 1: /* 64k page.  */
8484             phys_addr = (desc & 0xffff0000) | (address & 0xffff);
8485             xn = desc & (1 << 15);
8486             *page_size = 0x10000;
8487             break;
8488         case 2: case 3: /* 4k page.  */
8489             phys_addr = (desc & 0xfffff000) | (address & 0xfff);
8490             xn = desc & 1;
8491             *page_size = 0x1000;
8492             break;
8493         default:
8494             /* Never happens, but compiler isn't smart enough to tell.  */
8495             abort();
8496         }
8497         code = 15;
8498     }
8499     if (domain_prot == 3) {
8500         *prot = PAGE_READ | PAGE_WRITE | PAGE_EXEC;
8501     } else {
8502         if (pxn && !regime_is_user(env, mmu_idx)) {
8503             xn = 1;
8504         }
8505         if (xn && access_type == MMU_INST_FETCH)
8506             goto do_fault;
8507 
8508         if (arm_feature(env, ARM_FEATURE_V6K) &&
8509                 (regime_sctlr(env, mmu_idx) & SCTLR_AFE)) {
8510             /* The simplified model uses AP[0] as an access control bit.  */
8511             if ((ap & 1) == 0) {
8512                 /* Access flag fault.  */
8513                 code = (code == 15) ? 6 : 3;
8514                 goto do_fault;
8515             }
8516             *prot = simple_ap_to_rw_prot(env, mmu_idx, ap >> 1);
8517         } else {
8518             *prot = ap_to_rw_prot(env, mmu_idx, ap, domain_prot);
8519         }
8520         if (*prot && !xn) {
8521             *prot |= PAGE_EXEC;
8522         }
8523         if (!(*prot & (1 << access_type))) {
8524             /* Access permission fault.  */
8525             goto do_fault;
8526         }
8527     }
8528     if (ns) {
8529         /* The NS bit will (as required by the architecture) have no effect if
8530          * the CPU doesn't support TZ or this is a non-secure translation
8531          * regime, because the attribute will already be non-secure.
8532          */
8533         attrs->secure = false;
8534     }
8535     *phys_ptr = phys_addr;
8536     return false;
8537 do_fault:
8538     *fsr = code | (domain << 4);
8539     return true;
8540 }
8541 
8542 /* Fault type for long-descriptor MMU fault reporting; this corresponds
8543  * to bits [5..2] in the STATUS field in long-format DFSR/IFSR.
8544  */
8545 typedef enum {
8546     translation_fault = 1,
8547     access_fault = 2,
8548     permission_fault = 3,
8549 } MMUFaultType;
8550 
8551 /*
8552  * check_s2_mmu_setup
8553  * @cpu:        ARMCPU
8554  * @is_aa64:    True if the translation regime is in AArch64 state
8555  * @startlevel: Suggested starting level
8556  * @inputsize:  Bitsize of IPAs
8557  * @stride:     Page-table stride (See the ARM ARM)
8558  *
8559  * Returns true if the suggested S2 translation parameters are OK and
8560  * false otherwise.
8561  */
8562 static bool check_s2_mmu_setup(ARMCPU *cpu, bool is_aa64, int level,
8563                                int inputsize, int stride)
8564 {
8565     const int grainsize = stride + 3;
8566     int startsizecheck;
8567 
8568     /* Negative levels are never allowed.  */
8569     if (level < 0) {
8570         return false;
8571     }
8572 
8573     startsizecheck = inputsize - ((3 - level) * stride + grainsize);
8574     if (startsizecheck < 1 || startsizecheck > stride + 4) {
8575         return false;
8576     }
8577 
8578     if (is_aa64) {
8579         CPUARMState *env = &cpu->env;
8580         unsigned int pamax = arm_pamax(cpu);
8581 
8582         switch (stride) {
8583         case 13: /* 64KB Pages.  */
8584             if (level == 0 || (level == 1 && pamax <= 42)) {
8585                 return false;
8586             }
8587             break;
8588         case 11: /* 16KB Pages.  */
8589             if (level == 0 || (level == 1 && pamax <= 40)) {
8590                 return false;
8591             }
8592             break;
8593         case 9: /* 4KB Pages.  */
8594             if (level == 0 && pamax <= 42) {
8595                 return false;
8596             }
8597             break;
8598         default:
8599             g_assert_not_reached();
8600         }
8601 
8602         /* Inputsize checks.  */
8603         if (inputsize > pamax &&
8604             (arm_el_is_aa64(env, 1) || inputsize > 40)) {
8605             /* This is CONSTRAINED UNPREDICTABLE and we choose to fault.  */
8606             return false;
8607         }
8608     } else {
8609         /* AArch32 only supports 4KB pages. Assert on that.  */
8610         assert(stride == 9);
8611 
8612         if (level == 0) {
8613             return false;
8614         }
8615     }
8616     return true;
8617 }
8618 
8619 /* Translate from the 4-bit stage 2 representation of
8620  * memory attributes (without cache-allocation hints) to
8621  * the 8-bit representation of the stage 1 MAIR registers
8622  * (which includes allocation hints).
8623  *
8624  * ref: shared/translation/attrs/S2AttrDecode()
8625  *      .../S2ConvertAttrsHints()
8626  */
8627 static uint8_t convert_stage2_attrs(CPUARMState *env, uint8_t s2attrs)
8628 {
8629     uint8_t hiattr = extract32(s2attrs, 2, 2);
8630     uint8_t loattr = extract32(s2attrs, 0, 2);
8631     uint8_t hihint = 0, lohint = 0;
8632 
8633     if (hiattr != 0) { /* normal memory */
8634         if ((env->cp15.hcr_el2 & HCR_CD) != 0) { /* cache disabled */
8635             hiattr = loattr = 1; /* non-cacheable */
8636         } else {
8637             if (hiattr != 1) { /* Write-through or write-back */
8638                 hihint = 3; /* RW allocate */
8639             }
8640             if (loattr != 1) { /* Write-through or write-back */
8641                 lohint = 3; /* RW allocate */
8642             }
8643         }
8644     }
8645 
8646     return (hiattr << 6) | (hihint << 4) | (loattr << 2) | lohint;
8647 }
8648 
8649 static bool get_phys_addr_lpae(CPUARMState *env, target_ulong address,
8650                                MMUAccessType access_type, ARMMMUIdx mmu_idx,
8651                                hwaddr *phys_ptr, MemTxAttrs *txattrs, int *prot,
8652                                target_ulong *page_size_ptr, uint32_t *fsr,
8653                                ARMMMUFaultInfo *fi, ARMCacheAttrs *cacheattrs)
8654 {
8655     ARMCPU *cpu = arm_env_get_cpu(env);
8656     CPUState *cs = CPU(cpu);
8657     /* Read an LPAE long-descriptor translation table. */
8658     MMUFaultType fault_type = translation_fault;
8659     uint32_t level;
8660     uint32_t epd = 0;
8661     int32_t t0sz, t1sz;
8662     uint32_t tg;
8663     uint64_t ttbr;
8664     int ttbr_select;
8665     hwaddr descaddr, indexmask, indexmask_grainsize;
8666     uint32_t tableattrs;
8667     target_ulong page_size;
8668     uint32_t attrs;
8669     int32_t stride = 9;
8670     int32_t addrsize;
8671     int inputsize;
8672     int32_t tbi = 0;
8673     TCR *tcr = regime_tcr(env, mmu_idx);
8674     int ap, ns, xn, pxn;
8675     uint32_t el = regime_el(env, mmu_idx);
8676     bool ttbr1_valid = true;
8677     uint64_t descaddrmask;
8678     bool aarch64 = arm_el_is_aa64(env, el);
8679 
8680     /* TODO:
8681      * This code does not handle the different format TCR for VTCR_EL2.
8682      * This code also does not support shareability levels.
8683      * Attribute and permission bit handling should also be checked when adding
8684      * support for those page table walks.
8685      */
8686     if (aarch64) {
8687         level = 0;
8688         addrsize = 64;
8689         if (el > 1) {
8690             if (mmu_idx != ARMMMUIdx_S2NS) {
8691                 tbi = extract64(tcr->raw_tcr, 20, 1);
8692             }
8693         } else {
8694             if (extract64(address, 55, 1)) {
8695                 tbi = extract64(tcr->raw_tcr, 38, 1);
8696             } else {
8697                 tbi = extract64(tcr->raw_tcr, 37, 1);
8698             }
8699         }
8700         tbi *= 8;
8701 
8702         /* If we are in 64-bit EL2 or EL3 then there is no TTBR1, so mark it
8703          * invalid.
8704          */
8705         if (el > 1) {
8706             ttbr1_valid = false;
8707         }
8708     } else {
8709         level = 1;
8710         addrsize = 32;
8711         /* There is no TTBR1 for EL2 */
8712         if (el == 2) {
8713             ttbr1_valid = false;
8714         }
8715     }
8716 
8717     /* Determine whether this address is in the region controlled by
8718      * TTBR0 or TTBR1 (or if it is in neither region and should fault).
8719      * This is a Non-secure PL0/1 stage 1 translation, so controlled by
8720      * TTBCR/TTBR0/TTBR1 in accordance with ARM ARM DDI0406C table B-32:
8721      */
8722     if (aarch64) {
8723         /* AArch64 translation.  */
8724         t0sz = extract32(tcr->raw_tcr, 0, 6);
8725         t0sz = MIN(t0sz, 39);
8726         t0sz = MAX(t0sz, 16);
8727     } else if (mmu_idx != ARMMMUIdx_S2NS) {
8728         /* AArch32 stage 1 translation.  */
8729         t0sz = extract32(tcr->raw_tcr, 0, 3);
8730     } else {
8731         /* AArch32 stage 2 translation.  */
8732         bool sext = extract32(tcr->raw_tcr, 4, 1);
8733         bool sign = extract32(tcr->raw_tcr, 3, 1);
8734         /* Address size is 40-bit for a stage 2 translation,
8735          * and t0sz can be negative (from -8 to 7),
8736          * so we need to adjust it to use the TTBR selecting logic below.
8737          */
8738         addrsize = 40;
8739         t0sz = sextract32(tcr->raw_tcr, 0, 4) + 8;
8740 
8741         /* If the sign-extend bit is not the same as t0sz[3], the result
8742          * is unpredictable. Flag this as a guest error.  */
8743         if (sign != sext) {
8744             qemu_log_mask(LOG_GUEST_ERROR,
8745                           "AArch32: VTCR.S / VTCR.T0SZ[3] mismatch\n");
8746         }
8747     }
8748     t1sz = extract32(tcr->raw_tcr, 16, 6);
8749     if (aarch64) {
8750         t1sz = MIN(t1sz, 39);
8751         t1sz = MAX(t1sz, 16);
8752     }
8753     if (t0sz && !extract64(address, addrsize - t0sz, t0sz - tbi)) {
8754         /* there is a ttbr0 region and we are in it (high bits all zero) */
8755         ttbr_select = 0;
8756     } else if (ttbr1_valid && t1sz &&
8757                !extract64(~address, addrsize - t1sz, t1sz - tbi)) {
8758         /* there is a ttbr1 region and we are in it (high bits all one) */
8759         ttbr_select = 1;
8760     } else if (!t0sz) {
8761         /* ttbr0 region is "everything not in the ttbr1 region" */
8762         ttbr_select = 0;
8763     } else if (!t1sz && ttbr1_valid) {
8764         /* ttbr1 region is "everything not in the ttbr0 region" */
8765         ttbr_select = 1;
8766     } else {
8767         /* in the gap between the two regions, this is a Translation fault */
8768         fault_type = translation_fault;
8769         goto do_fault;
8770     }
8771 
8772     /* Note that QEMU ignores shareability and cacheability attributes,
8773      * so we don't need to do anything with the SH, ORGN, IRGN fields
8774      * in the TTBCR.  Similarly, TTBCR:A1 selects whether we get the
8775      * ASID from TTBR0 or TTBR1, but QEMU's TLB doesn't currently
8776      * implement any ASID-like capability so we can ignore it (instead
8777      * we will always flush the TLB any time the ASID is changed).
8778      */
8779     if (ttbr_select == 0) {
8780         ttbr = regime_ttbr(env, mmu_idx, 0);
8781         if (el < 2) {
8782             epd = extract32(tcr->raw_tcr, 7, 1);
8783         }
8784         inputsize = addrsize - t0sz;
8785 
8786         tg = extract32(tcr->raw_tcr, 14, 2);
8787         if (tg == 1) { /* 64KB pages */
8788             stride = 13;
8789         }
8790         if (tg == 2) { /* 16KB pages */
8791             stride = 11;
8792         }
8793     } else {
8794         /* We should only be here if TTBR1 is valid */
8795         assert(ttbr1_valid);
8796 
8797         ttbr = regime_ttbr(env, mmu_idx, 1);
8798         epd = extract32(tcr->raw_tcr, 23, 1);
8799         inputsize = addrsize - t1sz;
8800 
8801         tg = extract32(tcr->raw_tcr, 30, 2);
8802         if (tg == 3)  { /* 64KB pages */
8803             stride = 13;
8804         }
8805         if (tg == 1) { /* 16KB pages */
8806             stride = 11;
8807         }
8808     }
8809 
8810     /* Here we should have set up all the parameters for the translation:
8811      * inputsize, ttbr, epd, stride, tbi
8812      */
8813 
8814     if (epd) {
8815         /* Translation table walk disabled => Translation fault on TLB miss
8816          * Note: This is always 0 on 64-bit EL2 and EL3.
8817          */
8818         goto do_fault;
8819     }
8820 
8821     if (mmu_idx != ARMMMUIdx_S2NS) {
8822         /* The starting level depends on the virtual address size (which can
8823          * be up to 48 bits) and the translation granule size. It indicates
8824          * the number of strides (stride bits at a time) needed to
8825          * consume the bits of the input address. In the pseudocode this is:
8826          *  level = 4 - RoundUp((inputsize - grainsize) / stride)
8827          * where their 'inputsize' is our 'inputsize', 'grainsize' is
8828          * our 'stride + 3' and 'stride' is our 'stride'.
8829          * Applying the usual "rounded up m/n is (m+n-1)/n" and simplifying:
8830          * = 4 - (inputsize - stride - 3 + stride - 1) / stride
8831          * = 4 - (inputsize - 4) / stride;
8832          */
8833         level = 4 - (inputsize - 4) / stride;
8834     } else {
8835         /* For stage 2 translations the starting level is specified by the
8836          * VTCR_EL2.SL0 field (whose interpretation depends on the page size)
8837          */
8838         uint32_t sl0 = extract32(tcr->raw_tcr, 6, 2);
8839         uint32_t startlevel;
8840         bool ok;
8841 
8842         if (!aarch64 || stride == 9) {
8843             /* AArch32 or 4KB pages */
8844             startlevel = 2 - sl0;
8845         } else {
8846             /* 16KB or 64KB pages */
8847             startlevel = 3 - sl0;
8848         }
8849 
8850         /* Check that the starting level is valid. */
8851         ok = check_s2_mmu_setup(cpu, aarch64, startlevel,
8852                                 inputsize, stride);
8853         if (!ok) {
8854             fault_type = translation_fault;
8855             goto do_fault;
8856         }
8857         level = startlevel;
8858     }
8859 
8860     indexmask_grainsize = (1ULL << (stride + 3)) - 1;
8861     indexmask = (1ULL << (inputsize - (stride * (4 - level)))) - 1;
8862 
8863     /* Now we can extract the actual base address from the TTBR */
8864     descaddr = extract64(ttbr, 0, 48);
8865     descaddr &= ~indexmask;
8866 
8867     /* The address field in the descriptor goes up to bit 39 for ARMv7
8868      * but up to bit 47 for ARMv8, but we use the descaddrmask
8869      * up to bit 39 for AArch32, because we don't need other bits in that case
8870      * to construct next descriptor address (anyway they should be all zeroes).
8871      */
8872     descaddrmask = ((1ull << (aarch64 ? 48 : 40)) - 1) &
8873                    ~indexmask_grainsize;
8874 
8875     /* Secure accesses start with the page table in secure memory and
8876      * can be downgraded to non-secure at any step. Non-secure accesses
8877      * remain non-secure. We implement this by just ORing in the NSTable/NS
8878      * bits at each step.
8879      */
8880     tableattrs = regime_is_secure(env, mmu_idx) ? 0 : (1 << 4);
8881     for (;;) {
8882         uint64_t descriptor;
8883         bool nstable;
8884 
8885         descaddr |= (address >> (stride * (4 - level))) & indexmask;
8886         descaddr &= ~7ULL;
8887         nstable = extract32(tableattrs, 4, 1);
8888         descriptor = arm_ldq_ptw(cs, descaddr, !nstable, mmu_idx, fsr, fi);
8889         if (fi->s1ptw) {
8890             goto do_fault;
8891         }
8892 
8893         if (!(descriptor & 1) ||
8894             (!(descriptor & 2) && (level == 3))) {
8895             /* Invalid, or the Reserved level 3 encoding */
8896             goto do_fault;
8897         }
8898         descaddr = descriptor & descaddrmask;
8899 
8900         if ((descriptor & 2) && (level < 3)) {
8901             /* Table entry. The top five bits are attributes which  may
8902              * propagate down through lower levels of the table (and
8903              * which are all arranged so that 0 means "no effect", so
8904              * we can gather them up by ORing in the bits at each level).
8905              */
8906             tableattrs |= extract64(descriptor, 59, 5);
8907             level++;
8908             indexmask = indexmask_grainsize;
8909             continue;
8910         }
8911         /* Block entry at level 1 or 2, or page entry at level 3.
8912          * These are basically the same thing, although the number
8913          * of bits we pull in from the vaddr varies.
8914          */
8915         page_size = (1ULL << ((stride * (4 - level)) + 3));
8916         descaddr |= (address & (page_size - 1));
8917         /* Extract attributes from the descriptor */
8918         attrs = extract64(descriptor, 2, 10)
8919             | (extract64(descriptor, 52, 12) << 10);
8920 
8921         if (mmu_idx == ARMMMUIdx_S2NS) {
8922             /* Stage 2 table descriptors do not include any attribute fields */
8923             break;
8924         }
8925         /* Merge in attributes from table descriptors */
8926         attrs |= extract32(tableattrs, 0, 2) << 11; /* XN, PXN */
8927         attrs |= extract32(tableattrs, 3, 1) << 5; /* APTable[1] => AP[2] */
8928         /* The sense of AP[1] vs APTable[0] is reversed, as APTable[0] == 1
8929          * means "force PL1 access only", which means forcing AP[1] to 0.
8930          */
8931         if (extract32(tableattrs, 2, 1)) {
8932             attrs &= ~(1 << 4);
8933         }
8934         attrs |= nstable << 3; /* NS */
8935         break;
8936     }
8937     /* Here descaddr is the final physical address, and attributes
8938      * are all in attrs.
8939      */
8940     fault_type = access_fault;
8941     if ((attrs & (1 << 8)) == 0) {
8942         /* Access flag */
8943         goto do_fault;
8944     }
8945 
8946     ap = extract32(attrs, 4, 2);
8947     xn = extract32(attrs, 12, 1);
8948 
8949     if (mmu_idx == ARMMMUIdx_S2NS) {
8950         ns = true;
8951         *prot = get_S2prot(env, ap, xn);
8952     } else {
8953         ns = extract32(attrs, 3, 1);
8954         pxn = extract32(attrs, 11, 1);
8955         *prot = get_S1prot(env, mmu_idx, aarch64, ap, ns, xn, pxn);
8956     }
8957 
8958     fault_type = permission_fault;
8959     if (!(*prot & (1 << access_type))) {
8960         goto do_fault;
8961     }
8962 
8963     if (ns) {
8964         /* The NS bit will (as required by the architecture) have no effect if
8965          * the CPU doesn't support TZ or this is a non-secure translation
8966          * regime, because the attribute will already be non-secure.
8967          */
8968         txattrs->secure = false;
8969     }
8970 
8971     if (cacheattrs != NULL) {
8972         if (mmu_idx == ARMMMUIdx_S2NS) {
8973             cacheattrs->attrs = convert_stage2_attrs(env,
8974                                                      extract32(attrs, 0, 4));
8975         } else {
8976             /* Index into MAIR registers for cache attributes */
8977             uint8_t attrindx = extract32(attrs, 0, 3);
8978             uint64_t mair = env->cp15.mair_el[regime_el(env, mmu_idx)];
8979             assert(attrindx <= 7);
8980             cacheattrs->attrs = extract64(mair, attrindx * 8, 8);
8981         }
8982         cacheattrs->shareability = extract32(attrs, 6, 2);
8983     }
8984 
8985     *phys_ptr = descaddr;
8986     *page_size_ptr = page_size;
8987     return false;
8988 
8989 do_fault:
8990     /* Long-descriptor format IFSR/DFSR value */
8991     *fsr = (1 << 9) | (fault_type << 2) | level;
8992     /* Tag the error as S2 for failed S1 PTW at S2 or ordinary S2.  */
8993     fi->stage2 = fi->s1ptw || (mmu_idx == ARMMMUIdx_S2NS);
8994     return true;
8995 }
8996 
8997 static inline void get_phys_addr_pmsav7_default(CPUARMState *env,
8998                                                 ARMMMUIdx mmu_idx,
8999                                                 int32_t address, int *prot)
9000 {
9001     if (!arm_feature(env, ARM_FEATURE_M)) {
9002         *prot = PAGE_READ | PAGE_WRITE;
9003         switch (address) {
9004         case 0xF0000000 ... 0xFFFFFFFF:
9005             if (regime_sctlr(env, mmu_idx) & SCTLR_V) {
9006                 /* hivecs execing is ok */
9007                 *prot |= PAGE_EXEC;
9008             }
9009             break;
9010         case 0x00000000 ... 0x7FFFFFFF:
9011             *prot |= PAGE_EXEC;
9012             break;
9013         }
9014     } else {
9015         /* Default system address map for M profile cores.
9016          * The architecture specifies which regions are execute-never;
9017          * at the MPU level no other checks are defined.
9018          */
9019         switch (address) {
9020         case 0x00000000 ... 0x1fffffff: /* ROM */
9021         case 0x20000000 ... 0x3fffffff: /* SRAM */
9022         case 0x60000000 ... 0x7fffffff: /* RAM */
9023         case 0x80000000 ... 0x9fffffff: /* RAM */
9024             *prot = PAGE_READ | PAGE_WRITE | PAGE_EXEC;
9025             break;
9026         case 0x40000000 ... 0x5fffffff: /* Peripheral */
9027         case 0xa0000000 ... 0xbfffffff: /* Device */
9028         case 0xc0000000 ... 0xdfffffff: /* Device */
9029         case 0xe0000000 ... 0xffffffff: /* System */
9030             *prot = PAGE_READ | PAGE_WRITE;
9031             break;
9032         default:
9033             g_assert_not_reached();
9034         }
9035     }
9036 }
9037 
9038 static bool pmsav7_use_background_region(ARMCPU *cpu,
9039                                          ARMMMUIdx mmu_idx, bool is_user)
9040 {
9041     /* Return true if we should use the default memory map as a
9042      * "background" region if there are no hits against any MPU regions.
9043      */
9044     CPUARMState *env = &cpu->env;
9045 
9046     if (is_user) {
9047         return false;
9048     }
9049 
9050     if (arm_feature(env, ARM_FEATURE_M)) {
9051         return env->v7m.mpu_ctrl[regime_is_secure(env, mmu_idx)]
9052             & R_V7M_MPU_CTRL_PRIVDEFENA_MASK;
9053     } else {
9054         return regime_sctlr(env, mmu_idx) & SCTLR_BR;
9055     }
9056 }
9057 
9058 static inline bool m_is_ppb_region(CPUARMState *env, uint32_t address)
9059 {
9060     /* True if address is in the M profile PPB region 0xe0000000 - 0xe00fffff */
9061     return arm_feature(env, ARM_FEATURE_M) &&
9062         extract32(address, 20, 12) == 0xe00;
9063 }
9064 
9065 static inline bool m_is_system_region(CPUARMState *env, uint32_t address)
9066 {
9067     /* True if address is in the M profile system region
9068      * 0xe0000000 - 0xffffffff
9069      */
9070     return arm_feature(env, ARM_FEATURE_M) && extract32(address, 29, 3) == 0x7;
9071 }
9072 
9073 static bool get_phys_addr_pmsav7(CPUARMState *env, uint32_t address,
9074                                  MMUAccessType access_type, ARMMMUIdx mmu_idx,
9075                                  hwaddr *phys_ptr, int *prot, uint32_t *fsr)
9076 {
9077     ARMCPU *cpu = arm_env_get_cpu(env);
9078     int n;
9079     bool is_user = regime_is_user(env, mmu_idx);
9080 
9081     *phys_ptr = address;
9082     *prot = 0;
9083 
9084     if (regime_translation_disabled(env, mmu_idx) ||
9085         m_is_ppb_region(env, address)) {
9086         /* MPU disabled or M profile PPB access: use default memory map.
9087          * The other case which uses the default memory map in the
9088          * v7M ARM ARM pseudocode is exception vector reads from the vector
9089          * table. In QEMU those accesses are done in arm_v7m_load_vector(),
9090          * which always does a direct read using address_space_ldl(), rather
9091          * than going via this function, so we don't need to check that here.
9092          */
9093         get_phys_addr_pmsav7_default(env, mmu_idx, address, prot);
9094     } else { /* MPU enabled */
9095         for (n = (int)cpu->pmsav7_dregion - 1; n >= 0; n--) {
9096             /* region search */
9097             uint32_t base = env->pmsav7.drbar[n];
9098             uint32_t rsize = extract32(env->pmsav7.drsr[n], 1, 5);
9099             uint32_t rmask;
9100             bool srdis = false;
9101 
9102             if (!(env->pmsav7.drsr[n] & 0x1)) {
9103                 continue;
9104             }
9105 
9106             if (!rsize) {
9107                 qemu_log_mask(LOG_GUEST_ERROR,
9108                               "DRSR[%d]: Rsize field cannot be 0\n", n);
9109                 continue;
9110             }
9111             rsize++;
9112             rmask = (1ull << rsize) - 1;
9113 
9114             if (base & rmask) {
9115                 qemu_log_mask(LOG_GUEST_ERROR,
9116                               "DRBAR[%d]: 0x%" PRIx32 " misaligned "
9117                               "to DRSR region size, mask = 0x%" PRIx32 "\n",
9118                               n, base, rmask);
9119                 continue;
9120             }
9121 
9122             if (address < base || address > base + rmask) {
9123                 continue;
9124             }
9125 
9126             /* Region matched */
9127 
9128             if (rsize >= 8) { /* no subregions for regions < 256 bytes */
9129                 int i, snd;
9130                 uint32_t srdis_mask;
9131 
9132                 rsize -= 3; /* sub region size (power of 2) */
9133                 snd = ((address - base) >> rsize) & 0x7;
9134                 srdis = extract32(env->pmsav7.drsr[n], snd + 8, 1);
9135 
9136                 srdis_mask = srdis ? 0x3 : 0x0;
9137                 for (i = 2; i <= 8 && rsize < TARGET_PAGE_BITS; i *= 2) {
9138                     /* This will check in groups of 2, 4 and then 8, whether
9139                      * the subregion bits are consistent. rsize is incremented
9140                      * back up to give the region size, considering consistent
9141                      * adjacent subregions as one region. Stop testing if rsize
9142                      * is already big enough for an entire QEMU page.
9143                      */
9144                     int snd_rounded = snd & ~(i - 1);
9145                     uint32_t srdis_multi = extract32(env->pmsav7.drsr[n],
9146                                                      snd_rounded + 8, i);
9147                     if (srdis_mask ^ srdis_multi) {
9148                         break;
9149                     }
9150                     srdis_mask = (srdis_mask << i) | srdis_mask;
9151                     rsize++;
9152                 }
9153             }
9154             if (rsize < TARGET_PAGE_BITS) {
9155                 qemu_log_mask(LOG_UNIMP,
9156                               "DRSR[%d]: No support for MPU (sub)region "
9157                               "alignment of %" PRIu32 " bits. Minimum is %d\n",
9158                               n, rsize, TARGET_PAGE_BITS);
9159                 continue;
9160             }
9161             if (srdis) {
9162                 continue;
9163             }
9164             break;
9165         }
9166 
9167         if (n == -1) { /* no hits */
9168             if (!pmsav7_use_background_region(cpu, mmu_idx, is_user)) {
9169                 /* background fault */
9170                 *fsr = 0;
9171                 return true;
9172             }
9173             get_phys_addr_pmsav7_default(env, mmu_idx, address, prot);
9174         } else { /* a MPU hit! */
9175             uint32_t ap = extract32(env->pmsav7.dracr[n], 8, 3);
9176             uint32_t xn = extract32(env->pmsav7.dracr[n], 12, 1);
9177 
9178             if (m_is_system_region(env, address)) {
9179                 /* System space is always execute never */
9180                 xn = 1;
9181             }
9182 
9183             if (is_user) { /* User mode AP bit decoding */
9184                 switch (ap) {
9185                 case 0:
9186                 case 1:
9187                 case 5:
9188                     break; /* no access */
9189                 case 3:
9190                     *prot |= PAGE_WRITE;
9191                     /* fall through */
9192                 case 2:
9193                 case 6:
9194                     *prot |= PAGE_READ | PAGE_EXEC;
9195                     break;
9196                 default:
9197                     qemu_log_mask(LOG_GUEST_ERROR,
9198                                   "DRACR[%d]: Bad value for AP bits: 0x%"
9199                                   PRIx32 "\n", n, ap);
9200                 }
9201             } else { /* Priv. mode AP bits decoding */
9202                 switch (ap) {
9203                 case 0:
9204                     break; /* no access */
9205                 case 1:
9206                 case 2:
9207                 case 3:
9208                     *prot |= PAGE_WRITE;
9209                     /* fall through */
9210                 case 5:
9211                 case 6:
9212                     *prot |= PAGE_READ | PAGE_EXEC;
9213                     break;
9214                 default:
9215                     qemu_log_mask(LOG_GUEST_ERROR,
9216                                   "DRACR[%d]: Bad value for AP bits: 0x%"
9217                                   PRIx32 "\n", n, ap);
9218                 }
9219             }
9220 
9221             /* execute never */
9222             if (xn) {
9223                 *prot &= ~PAGE_EXEC;
9224             }
9225         }
9226     }
9227 
9228     *fsr = 0x00d; /* Permission fault */
9229     return !(*prot & (1 << access_type));
9230 }
9231 
9232 static bool v8m_is_sau_exempt(CPUARMState *env,
9233                               uint32_t address, MMUAccessType access_type)
9234 {
9235     /* The architecture specifies that certain address ranges are
9236      * exempt from v8M SAU/IDAU checks.
9237      */
9238     return
9239         (access_type == MMU_INST_FETCH && m_is_system_region(env, address)) ||
9240         (address >= 0xe0000000 && address <= 0xe0002fff) ||
9241         (address >= 0xe000e000 && address <= 0xe000efff) ||
9242         (address >= 0xe002e000 && address <= 0xe002efff) ||
9243         (address >= 0xe0040000 && address <= 0xe0041fff) ||
9244         (address >= 0xe00ff000 && address <= 0xe00fffff);
9245 }
9246 
9247 static void v8m_security_lookup(CPUARMState *env, uint32_t address,
9248                                 MMUAccessType access_type, ARMMMUIdx mmu_idx,
9249                                 V8M_SAttributes *sattrs)
9250 {
9251     /* Look up the security attributes for this address. Compare the
9252      * pseudocode SecurityCheck() function.
9253      * We assume the caller has zero-initialized *sattrs.
9254      */
9255     ARMCPU *cpu = arm_env_get_cpu(env);
9256     int r;
9257 
9258     /* TODO: implement IDAU */
9259 
9260     if (access_type == MMU_INST_FETCH && extract32(address, 28, 4) == 0xf) {
9261         /* 0xf0000000..0xffffffff is always S for insn fetches */
9262         return;
9263     }
9264 
9265     if (v8m_is_sau_exempt(env, address, access_type)) {
9266         sattrs->ns = !regime_is_secure(env, mmu_idx);
9267         return;
9268     }
9269 
9270     switch (env->sau.ctrl & 3) {
9271     case 0: /* SAU.ENABLE == 0, SAU.ALLNS == 0 */
9272         break;
9273     case 2: /* SAU.ENABLE == 0, SAU.ALLNS == 1 */
9274         sattrs->ns = true;
9275         break;
9276     default: /* SAU.ENABLE == 1 */
9277         for (r = 0; r < cpu->sau_sregion; r++) {
9278             if (env->sau.rlar[r] & 1) {
9279                 uint32_t base = env->sau.rbar[r] & ~0x1f;
9280                 uint32_t limit = env->sau.rlar[r] | 0x1f;
9281 
9282                 if (base <= address && limit >= address) {
9283                     if (sattrs->srvalid) {
9284                         /* If we hit in more than one region then we must report
9285                          * as Secure, not NS-Callable, with no valid region
9286                          * number info.
9287                          */
9288                         sattrs->ns = false;
9289                         sattrs->nsc = false;
9290                         sattrs->sregion = 0;
9291                         sattrs->srvalid = false;
9292                         break;
9293                     } else {
9294                         if (env->sau.rlar[r] & 2) {
9295                             sattrs->nsc = true;
9296                         } else {
9297                             sattrs->ns = true;
9298                         }
9299                         sattrs->srvalid = true;
9300                         sattrs->sregion = r;
9301                     }
9302                 }
9303             }
9304         }
9305 
9306         /* TODO when we support the IDAU then it may override the result here */
9307         break;
9308     }
9309 }
9310 
9311 static bool get_phys_addr_pmsav8(CPUARMState *env, uint32_t address,
9312                                  MMUAccessType access_type, ARMMMUIdx mmu_idx,
9313                                  hwaddr *phys_ptr, MemTxAttrs *txattrs,
9314                                  int *prot, uint32_t *fsr)
9315 {
9316     ARMCPU *cpu = arm_env_get_cpu(env);
9317     bool is_user = regime_is_user(env, mmu_idx);
9318     uint32_t secure = regime_is_secure(env, mmu_idx);
9319     int n;
9320     int matchregion = -1;
9321     bool hit = false;
9322     V8M_SAttributes sattrs = {};
9323 
9324     *phys_ptr = address;
9325     *prot = 0;
9326 
9327     if (arm_feature(env, ARM_FEATURE_M_SECURITY)) {
9328         v8m_security_lookup(env, address, access_type, mmu_idx, &sattrs);
9329         if (access_type == MMU_INST_FETCH) {
9330             /* Instruction fetches always use the MMU bank and the
9331              * transaction attribute determined by the fetch address,
9332              * regardless of CPU state. This is painful for QEMU
9333              * to handle, because it would mean we need to encode
9334              * into the mmu_idx not just the (user, negpri) information
9335              * for the current security state but also that for the
9336              * other security state, which would balloon the number
9337              * of mmu_idx values needed alarmingly.
9338              * Fortunately we can avoid this because it's not actually
9339              * possible to arbitrarily execute code from memory with
9340              * the wrong security attribute: it will always generate
9341              * an exception of some kind or another, apart from the
9342              * special case of an NS CPU executing an SG instruction
9343              * in S&NSC memory. So we always just fail the translation
9344              * here and sort things out in the exception handler
9345              * (including possibly emulating an SG instruction).
9346              */
9347             if (sattrs.ns != !secure) {
9348                 *fsr = sattrs.nsc ? M_FAKE_FSR_NSC_EXEC : M_FAKE_FSR_SFAULT;
9349                 return true;
9350             }
9351         } else {
9352             /* For data accesses we always use the MMU bank indicated
9353              * by the current CPU state, but the security attributes
9354              * might downgrade a secure access to nonsecure.
9355              */
9356             if (sattrs.ns) {
9357                 txattrs->secure = false;
9358             } else if (!secure) {
9359                 /* NS access to S memory must fault.
9360                  * Architecturally we should first check whether the
9361                  * MPU information for this address indicates that we
9362                  * are doing an unaligned access to Device memory, which
9363                  * should generate a UsageFault instead. QEMU does not
9364                  * currently check for that kind of unaligned access though.
9365                  * If we added it we would need to do so as a special case
9366                  * for M_FAKE_FSR_SFAULT in arm_v7m_cpu_do_interrupt().
9367                  */
9368                 *fsr = M_FAKE_FSR_SFAULT;
9369                 return true;
9370             }
9371         }
9372     }
9373 
9374     /* Unlike the ARM ARM pseudocode, we don't need to check whether this
9375      * was an exception vector read from the vector table (which is always
9376      * done using the default system address map), because those accesses
9377      * are done in arm_v7m_load_vector(), which always does a direct
9378      * read using address_space_ldl(), rather than going via this function.
9379      */
9380     if (regime_translation_disabled(env, mmu_idx)) { /* MPU disabled */
9381         hit = true;
9382     } else if (m_is_ppb_region(env, address)) {
9383         hit = true;
9384     } else if (pmsav7_use_background_region(cpu, mmu_idx, is_user)) {
9385         hit = true;
9386     } else {
9387         for (n = (int)cpu->pmsav7_dregion - 1; n >= 0; n--) {
9388             /* region search */
9389             /* Note that the base address is bits [31:5] from the register
9390              * with bits [4:0] all zeroes, but the limit address is bits
9391              * [31:5] from the register with bits [4:0] all ones.
9392              */
9393             uint32_t base = env->pmsav8.rbar[secure][n] & ~0x1f;
9394             uint32_t limit = env->pmsav8.rlar[secure][n] | 0x1f;
9395 
9396             if (!(env->pmsav8.rlar[secure][n] & 0x1)) {
9397                 /* Region disabled */
9398                 continue;
9399             }
9400 
9401             if (address < base || address > limit) {
9402                 continue;
9403             }
9404 
9405             if (hit) {
9406                 /* Multiple regions match -- always a failure (unlike
9407                  * PMSAv7 where highest-numbered-region wins)
9408                  */
9409                 *fsr = 0x00d; /* permission fault */
9410                 return true;
9411             }
9412 
9413             matchregion = n;
9414             hit = true;
9415 
9416             if (base & ~TARGET_PAGE_MASK) {
9417                 qemu_log_mask(LOG_UNIMP,
9418                               "MPU_RBAR[%d]: No support for MPU region base"
9419                               "address of 0x%" PRIx32 ". Minimum alignment is "
9420                               "%d\n",
9421                               n, base, TARGET_PAGE_BITS);
9422                 continue;
9423             }
9424             if ((limit + 1) & ~TARGET_PAGE_MASK) {
9425                 qemu_log_mask(LOG_UNIMP,
9426                               "MPU_RBAR[%d]: No support for MPU region limit"
9427                               "address of 0x%" PRIx32 ". Minimum alignment is "
9428                               "%d\n",
9429                               n, limit, TARGET_PAGE_BITS);
9430                 continue;
9431             }
9432         }
9433     }
9434 
9435     if (!hit) {
9436         /* background fault */
9437         *fsr = 0;
9438         return true;
9439     }
9440 
9441     if (matchregion == -1) {
9442         /* hit using the background region */
9443         get_phys_addr_pmsav7_default(env, mmu_idx, address, prot);
9444     } else {
9445         uint32_t ap = extract32(env->pmsav8.rbar[secure][matchregion], 1, 2);
9446         uint32_t xn = extract32(env->pmsav8.rbar[secure][matchregion], 0, 1);
9447 
9448         if (m_is_system_region(env, address)) {
9449             /* System space is always execute never */
9450             xn = 1;
9451         }
9452 
9453         *prot = simple_ap_to_rw_prot(env, mmu_idx, ap);
9454         if (*prot && !xn) {
9455             *prot |= PAGE_EXEC;
9456         }
9457         /* We don't need to look the attribute up in the MAIR0/MAIR1
9458          * registers because that only tells us about cacheability.
9459          */
9460     }
9461 
9462     *fsr = 0x00d; /* Permission fault */
9463     return !(*prot & (1 << access_type));
9464 }
9465 
9466 static bool get_phys_addr_pmsav5(CPUARMState *env, uint32_t address,
9467                                  MMUAccessType access_type, ARMMMUIdx mmu_idx,
9468                                  hwaddr *phys_ptr, int *prot, uint32_t *fsr)
9469 {
9470     int n;
9471     uint32_t mask;
9472     uint32_t base;
9473     bool is_user = regime_is_user(env, mmu_idx);
9474 
9475     if (regime_translation_disabled(env, mmu_idx)) {
9476         /* MPU disabled.  */
9477         *phys_ptr = address;
9478         *prot = PAGE_READ | PAGE_WRITE | PAGE_EXEC;
9479         return false;
9480     }
9481 
9482     *phys_ptr = address;
9483     for (n = 7; n >= 0; n--) {
9484         base = env->cp15.c6_region[n];
9485         if ((base & 1) == 0) {
9486             continue;
9487         }
9488         mask = 1 << ((base >> 1) & 0x1f);
9489         /* Keep this shift separate from the above to avoid an
9490            (undefined) << 32.  */
9491         mask = (mask << 1) - 1;
9492         if (((base ^ address) & ~mask) == 0) {
9493             break;
9494         }
9495     }
9496     if (n < 0) {
9497         *fsr = 2;
9498         return true;
9499     }
9500 
9501     if (access_type == MMU_INST_FETCH) {
9502         mask = env->cp15.pmsav5_insn_ap;
9503     } else {
9504         mask = env->cp15.pmsav5_data_ap;
9505     }
9506     mask = (mask >> (n * 4)) & 0xf;
9507     switch (mask) {
9508     case 0:
9509         *fsr = 1;
9510         return true;
9511     case 1:
9512         if (is_user) {
9513             *fsr = 1;
9514             return true;
9515         }
9516         *prot = PAGE_READ | PAGE_WRITE;
9517         break;
9518     case 2:
9519         *prot = PAGE_READ;
9520         if (!is_user) {
9521             *prot |= PAGE_WRITE;
9522         }
9523         break;
9524     case 3:
9525         *prot = PAGE_READ | PAGE_WRITE;
9526         break;
9527     case 5:
9528         if (is_user) {
9529             *fsr = 1;
9530             return true;
9531         }
9532         *prot = PAGE_READ;
9533         break;
9534     case 6:
9535         *prot = PAGE_READ;
9536         break;
9537     default:
9538         /* Bad permission.  */
9539         *fsr = 1;
9540         return true;
9541     }
9542     *prot |= PAGE_EXEC;
9543     return false;
9544 }
9545 
9546 /* Combine either inner or outer cacheability attributes for normal
9547  * memory, according to table D4-42 and pseudocode procedure
9548  * CombineS1S2AttrHints() of ARM DDI 0487B.b (the ARMv8 ARM).
9549  *
9550  * NB: only stage 1 includes allocation hints (RW bits), leading to
9551  * some asymmetry.
9552  */
9553 static uint8_t combine_cacheattr_nibble(uint8_t s1, uint8_t s2)
9554 {
9555     if (s1 == 4 || s2 == 4) {
9556         /* non-cacheable has precedence */
9557         return 4;
9558     } else if (extract32(s1, 2, 2) == 0 || extract32(s1, 2, 2) == 2) {
9559         /* stage 1 write-through takes precedence */
9560         return s1;
9561     } else if (extract32(s2, 2, 2) == 2) {
9562         /* stage 2 write-through takes precedence, but the allocation hint
9563          * is still taken from stage 1
9564          */
9565         return (2 << 2) | extract32(s1, 0, 2);
9566     } else { /* write-back */
9567         return s1;
9568     }
9569 }
9570 
9571 /* Combine S1 and S2 cacheability/shareability attributes, per D4.5.4
9572  * and CombineS1S2Desc()
9573  *
9574  * @s1:      Attributes from stage 1 walk
9575  * @s2:      Attributes from stage 2 walk
9576  */
9577 static ARMCacheAttrs combine_cacheattrs(ARMCacheAttrs s1, ARMCacheAttrs s2)
9578 {
9579     uint8_t s1lo = extract32(s1.attrs, 0, 4), s2lo = extract32(s2.attrs, 0, 4);
9580     uint8_t s1hi = extract32(s1.attrs, 4, 4), s2hi = extract32(s2.attrs, 4, 4);
9581     ARMCacheAttrs ret;
9582 
9583     /* Combine shareability attributes (table D4-43) */
9584     if (s1.shareability == 2 || s2.shareability == 2) {
9585         /* if either are outer-shareable, the result is outer-shareable */
9586         ret.shareability = 2;
9587     } else if (s1.shareability == 3 || s2.shareability == 3) {
9588         /* if either are inner-shareable, the result is inner-shareable */
9589         ret.shareability = 3;
9590     } else {
9591         /* both non-shareable */
9592         ret.shareability = 0;
9593     }
9594 
9595     /* Combine memory type and cacheability attributes */
9596     if (s1hi == 0 || s2hi == 0) {
9597         /* Device has precedence over normal */
9598         if (s1lo == 0 || s2lo == 0) {
9599             /* nGnRnE has precedence over anything */
9600             ret.attrs = 0;
9601         } else if (s1lo == 4 || s2lo == 4) {
9602             /* non-Reordering has precedence over Reordering */
9603             ret.attrs = 4;  /* nGnRE */
9604         } else if (s1lo == 8 || s2lo == 8) {
9605             /* non-Gathering has precedence over Gathering */
9606             ret.attrs = 8;  /* nGRE */
9607         } else {
9608             ret.attrs = 0xc; /* GRE */
9609         }
9610 
9611         /* Any location for which the resultant memory type is any
9612          * type of Device memory is always treated as Outer Shareable.
9613          */
9614         ret.shareability = 2;
9615     } else { /* Normal memory */
9616         /* Outer/inner cacheability combine independently */
9617         ret.attrs = combine_cacheattr_nibble(s1hi, s2hi) << 4
9618                   | combine_cacheattr_nibble(s1lo, s2lo);
9619 
9620         if (ret.attrs == 0x44) {
9621             /* Any location for which the resultant memory type is Normal
9622              * Inner Non-cacheable, Outer Non-cacheable is always treated
9623              * as Outer Shareable.
9624              */
9625             ret.shareability = 2;
9626         }
9627     }
9628 
9629     return ret;
9630 }
9631 
9632 
9633 /* get_phys_addr - get the physical address for this virtual address
9634  *
9635  * Find the physical address corresponding to the given virtual address,
9636  * by doing a translation table walk on MMU based systems or using the
9637  * MPU state on MPU based systems.
9638  *
9639  * Returns false if the translation was successful. Otherwise, phys_ptr, attrs,
9640  * prot and page_size may not be filled in, and the populated fsr value provides
9641  * information on why the translation aborted, in the format of a
9642  * DFSR/IFSR fault register, with the following caveats:
9643  *  * we honour the short vs long DFSR format differences.
9644  *  * the WnR bit is never set (the caller must do this).
9645  *  * for PSMAv5 based systems we don't bother to return a full FSR format
9646  *    value.
9647  *
9648  * @env: CPUARMState
9649  * @address: virtual address to get physical address for
9650  * @access_type: 0 for read, 1 for write, 2 for execute
9651  * @mmu_idx: MMU index indicating required translation regime
9652  * @phys_ptr: set to the physical address corresponding to the virtual address
9653  * @attrs: set to the memory transaction attributes to use
9654  * @prot: set to the permissions for the page containing phys_ptr
9655  * @page_size: set to the size of the page containing phys_ptr
9656  * @fsr: set to the DFSR/IFSR value on failure
9657  * @fi: set to fault info if the translation fails
9658  * @cacheattrs: (if non-NULL) set to the cacheability/shareability attributes
9659  */
9660 static bool get_phys_addr(CPUARMState *env, target_ulong address,
9661                           MMUAccessType access_type, ARMMMUIdx mmu_idx,
9662                           hwaddr *phys_ptr, MemTxAttrs *attrs, int *prot,
9663                           target_ulong *page_size, uint32_t *fsr,
9664                           ARMMMUFaultInfo *fi, ARMCacheAttrs *cacheattrs)
9665 {
9666     if (mmu_idx == ARMMMUIdx_S12NSE0 || mmu_idx == ARMMMUIdx_S12NSE1) {
9667         /* Call ourselves recursively to do the stage 1 and then stage 2
9668          * translations.
9669          */
9670         if (arm_feature(env, ARM_FEATURE_EL2)) {
9671             hwaddr ipa;
9672             int s2_prot;
9673             int ret;
9674             ARMCacheAttrs cacheattrs2 = {};
9675 
9676             ret = get_phys_addr(env, address, access_type,
9677                                 stage_1_mmu_idx(mmu_idx), &ipa, attrs,
9678                                 prot, page_size, fsr, fi, cacheattrs);
9679 
9680             /* If S1 fails or S2 is disabled, return early.  */
9681             if (ret || regime_translation_disabled(env, ARMMMUIdx_S2NS)) {
9682                 *phys_ptr = ipa;
9683                 return ret;
9684             }
9685 
9686             /* S1 is done. Now do S2 translation.  */
9687             ret = get_phys_addr_lpae(env, ipa, access_type, ARMMMUIdx_S2NS,
9688                                      phys_ptr, attrs, &s2_prot,
9689                                      page_size, fsr, fi,
9690                                      cacheattrs != NULL ? &cacheattrs2 : NULL);
9691             fi->s2addr = ipa;
9692             /* Combine the S1 and S2 perms.  */
9693             *prot &= s2_prot;
9694 
9695             /* Combine the S1 and S2 cache attributes, if needed */
9696             if (!ret && cacheattrs != NULL) {
9697                 *cacheattrs = combine_cacheattrs(*cacheattrs, cacheattrs2);
9698             }
9699 
9700             return ret;
9701         } else {
9702             /*
9703              * For non-EL2 CPUs a stage1+stage2 translation is just stage 1.
9704              */
9705             mmu_idx = stage_1_mmu_idx(mmu_idx);
9706         }
9707     }
9708 
9709     /* The page table entries may downgrade secure to non-secure, but
9710      * cannot upgrade an non-secure translation regime's attributes
9711      * to secure.
9712      */
9713     attrs->secure = regime_is_secure(env, mmu_idx);
9714     attrs->user = regime_is_user(env, mmu_idx);
9715 
9716     /* Fast Context Switch Extension. This doesn't exist at all in v8.
9717      * In v7 and earlier it affects all stage 1 translations.
9718      */
9719     if (address < 0x02000000 && mmu_idx != ARMMMUIdx_S2NS
9720         && !arm_feature(env, ARM_FEATURE_V8)) {
9721         if (regime_el(env, mmu_idx) == 3) {
9722             address += env->cp15.fcseidr_s;
9723         } else {
9724             address += env->cp15.fcseidr_ns;
9725         }
9726     }
9727 
9728     if (arm_feature(env, ARM_FEATURE_PMSA)) {
9729         bool ret;
9730         *page_size = TARGET_PAGE_SIZE;
9731 
9732         if (arm_feature(env, ARM_FEATURE_V8)) {
9733             /* PMSAv8 */
9734             ret = get_phys_addr_pmsav8(env, address, access_type, mmu_idx,
9735                                        phys_ptr, attrs, prot, fsr);
9736         } else if (arm_feature(env, ARM_FEATURE_V7)) {
9737             /* PMSAv7 */
9738             ret = get_phys_addr_pmsav7(env, address, access_type, mmu_idx,
9739                                        phys_ptr, prot, fsr);
9740         } else {
9741             /* Pre-v7 MPU */
9742             ret = get_phys_addr_pmsav5(env, address, access_type, mmu_idx,
9743                                        phys_ptr, prot, fsr);
9744         }
9745         qemu_log_mask(CPU_LOG_MMU, "PMSA MPU lookup for %s at 0x%08" PRIx32
9746                       " mmu_idx %u -> %s (prot %c%c%c)\n",
9747                       access_type == MMU_DATA_LOAD ? "reading" :
9748                       (access_type == MMU_DATA_STORE ? "writing" : "execute"),
9749                       (uint32_t)address, mmu_idx,
9750                       ret ? "Miss" : "Hit",
9751                       *prot & PAGE_READ ? 'r' : '-',
9752                       *prot & PAGE_WRITE ? 'w' : '-',
9753                       *prot & PAGE_EXEC ? 'x' : '-');
9754 
9755         return ret;
9756     }
9757 
9758     /* Definitely a real MMU, not an MPU */
9759 
9760     if (regime_translation_disabled(env, mmu_idx)) {
9761         /* MMU disabled. */
9762         *phys_ptr = address;
9763         *prot = PAGE_READ | PAGE_WRITE | PAGE_EXEC;
9764         *page_size = TARGET_PAGE_SIZE;
9765         return 0;
9766     }
9767 
9768     if (regime_using_lpae_format(env, mmu_idx)) {
9769         return get_phys_addr_lpae(env, address, access_type, mmu_idx, phys_ptr,
9770                                   attrs, prot, page_size, fsr, fi, cacheattrs);
9771     } else if (regime_sctlr(env, mmu_idx) & SCTLR_XP) {
9772         return get_phys_addr_v6(env, address, access_type, mmu_idx, phys_ptr,
9773                                 attrs, prot, page_size, fsr, fi);
9774     } else {
9775         return get_phys_addr_v5(env, address, access_type, mmu_idx, phys_ptr,
9776                                 prot, page_size, fsr, fi);
9777     }
9778 }
9779 
9780 /* Walk the page table and (if the mapping exists) add the page
9781  * to the TLB. Return false on success, or true on failure. Populate
9782  * fsr with ARM DFSR/IFSR fault register format value on failure.
9783  */
9784 bool arm_tlb_fill(CPUState *cs, vaddr address,
9785                   MMUAccessType access_type, int mmu_idx, uint32_t *fsr,
9786                   ARMMMUFaultInfo *fi)
9787 {
9788     ARMCPU *cpu = ARM_CPU(cs);
9789     CPUARMState *env = &cpu->env;
9790     hwaddr phys_addr;
9791     target_ulong page_size;
9792     int prot;
9793     int ret;
9794     MemTxAttrs attrs = {};
9795 
9796     ret = get_phys_addr(env, address, access_type,
9797                         core_to_arm_mmu_idx(env, mmu_idx), &phys_addr,
9798                         &attrs, &prot, &page_size, fsr, fi, NULL);
9799     if (!ret) {
9800         /* Map a single [sub]page.  */
9801         phys_addr &= TARGET_PAGE_MASK;
9802         address &= TARGET_PAGE_MASK;
9803         tlb_set_page_with_attrs(cs, address, phys_addr, attrs,
9804                                 prot, mmu_idx, page_size);
9805         return 0;
9806     }
9807 
9808     return ret;
9809 }
9810 
9811 hwaddr arm_cpu_get_phys_page_attrs_debug(CPUState *cs, vaddr addr,
9812                                          MemTxAttrs *attrs)
9813 {
9814     ARMCPU *cpu = ARM_CPU(cs);
9815     CPUARMState *env = &cpu->env;
9816     hwaddr phys_addr;
9817     target_ulong page_size;
9818     int prot;
9819     bool ret;
9820     uint32_t fsr;
9821     ARMMMUFaultInfo fi = {};
9822     ARMMMUIdx mmu_idx = core_to_arm_mmu_idx(env, cpu_mmu_index(env, false));
9823 
9824     *attrs = (MemTxAttrs) {};
9825 
9826     ret = get_phys_addr(env, addr, 0, mmu_idx, &phys_addr,
9827                         attrs, &prot, &page_size, &fsr, &fi, NULL);
9828 
9829     if (ret) {
9830         return -1;
9831     }
9832     return phys_addr;
9833 }
9834 
9835 uint32_t HELPER(v7m_mrs)(CPUARMState *env, uint32_t reg)
9836 {
9837     uint32_t mask;
9838     unsigned el = arm_current_el(env);
9839 
9840     /* First handle registers which unprivileged can read */
9841 
9842     switch (reg) {
9843     case 0 ... 7: /* xPSR sub-fields */
9844         mask = 0;
9845         if ((reg & 1) && el) {
9846             mask |= XPSR_EXCP; /* IPSR (unpriv. reads as zero) */
9847         }
9848         if (!(reg & 4)) {
9849             mask |= XPSR_NZCV | XPSR_Q; /* APSR */
9850         }
9851         /* EPSR reads as zero */
9852         return xpsr_read(env) & mask;
9853         break;
9854     case 20: /* CONTROL */
9855         return env->v7m.control[env->v7m.secure];
9856     case 0x94: /* CONTROL_NS */
9857         /* We have to handle this here because unprivileged Secure code
9858          * can read the NS CONTROL register.
9859          */
9860         if (!env->v7m.secure) {
9861             return 0;
9862         }
9863         return env->v7m.control[M_REG_NS];
9864     }
9865 
9866     if (el == 0) {
9867         return 0; /* unprivileged reads others as zero */
9868     }
9869 
9870     if (arm_feature(env, ARM_FEATURE_M_SECURITY)) {
9871         switch (reg) {
9872         case 0x88: /* MSP_NS */
9873             if (!env->v7m.secure) {
9874                 return 0;
9875             }
9876             return env->v7m.other_ss_msp;
9877         case 0x89: /* PSP_NS */
9878             if (!env->v7m.secure) {
9879                 return 0;
9880             }
9881             return env->v7m.other_ss_psp;
9882         case 0x90: /* PRIMASK_NS */
9883             if (!env->v7m.secure) {
9884                 return 0;
9885             }
9886             return env->v7m.primask[M_REG_NS];
9887         case 0x91: /* BASEPRI_NS */
9888             if (!env->v7m.secure) {
9889                 return 0;
9890             }
9891             return env->v7m.basepri[M_REG_NS];
9892         case 0x93: /* FAULTMASK_NS */
9893             if (!env->v7m.secure) {
9894                 return 0;
9895             }
9896             return env->v7m.faultmask[M_REG_NS];
9897         case 0x98: /* SP_NS */
9898         {
9899             /* This gives the non-secure SP selected based on whether we're
9900              * currently in handler mode or not, using the NS CONTROL.SPSEL.
9901              */
9902             bool spsel = env->v7m.control[M_REG_NS] & R_V7M_CONTROL_SPSEL_MASK;
9903 
9904             if (!env->v7m.secure) {
9905                 return 0;
9906             }
9907             if (!arm_v7m_is_handler_mode(env) && spsel) {
9908                 return env->v7m.other_ss_psp;
9909             } else {
9910                 return env->v7m.other_ss_msp;
9911             }
9912         }
9913         default:
9914             break;
9915         }
9916     }
9917 
9918     switch (reg) {
9919     case 8: /* MSP */
9920         return (env->v7m.control[env->v7m.secure] & R_V7M_CONTROL_SPSEL_MASK) ?
9921             env->v7m.other_sp : env->regs[13];
9922     case 9: /* PSP */
9923         return (env->v7m.control[env->v7m.secure] & R_V7M_CONTROL_SPSEL_MASK) ?
9924             env->regs[13] : env->v7m.other_sp;
9925     case 16: /* PRIMASK */
9926         return env->v7m.primask[env->v7m.secure];
9927     case 17: /* BASEPRI */
9928     case 18: /* BASEPRI_MAX */
9929         return env->v7m.basepri[env->v7m.secure];
9930     case 19: /* FAULTMASK */
9931         return env->v7m.faultmask[env->v7m.secure];
9932     default:
9933         qemu_log_mask(LOG_GUEST_ERROR, "Attempt to read unknown special"
9934                                        " register %d\n", reg);
9935         return 0;
9936     }
9937 }
9938 
9939 void HELPER(v7m_msr)(CPUARMState *env, uint32_t maskreg, uint32_t val)
9940 {
9941     /* We're passed bits [11..0] of the instruction; extract
9942      * SYSm and the mask bits.
9943      * Invalid combinations of SYSm and mask are UNPREDICTABLE;
9944      * we choose to treat them as if the mask bits were valid.
9945      * NB that the pseudocode 'mask' variable is bits [11..10],
9946      * whereas ours is [11..8].
9947      */
9948     uint32_t mask = extract32(maskreg, 8, 4);
9949     uint32_t reg = extract32(maskreg, 0, 8);
9950 
9951     if (arm_current_el(env) == 0 && reg > 7) {
9952         /* only xPSR sub-fields may be written by unprivileged */
9953         return;
9954     }
9955 
9956     if (arm_feature(env, ARM_FEATURE_M_SECURITY)) {
9957         switch (reg) {
9958         case 0x88: /* MSP_NS */
9959             if (!env->v7m.secure) {
9960                 return;
9961             }
9962             env->v7m.other_ss_msp = val;
9963             return;
9964         case 0x89: /* PSP_NS */
9965             if (!env->v7m.secure) {
9966                 return;
9967             }
9968             env->v7m.other_ss_psp = val;
9969             return;
9970         case 0x90: /* PRIMASK_NS */
9971             if (!env->v7m.secure) {
9972                 return;
9973             }
9974             env->v7m.primask[M_REG_NS] = val & 1;
9975             return;
9976         case 0x91: /* BASEPRI_NS */
9977             if (!env->v7m.secure) {
9978                 return;
9979             }
9980             env->v7m.basepri[M_REG_NS] = val & 0xff;
9981             return;
9982         case 0x93: /* FAULTMASK_NS */
9983             if (!env->v7m.secure) {
9984                 return;
9985             }
9986             env->v7m.faultmask[M_REG_NS] = val & 1;
9987             return;
9988         case 0x98: /* SP_NS */
9989         {
9990             /* This gives the non-secure SP selected based on whether we're
9991              * currently in handler mode or not, using the NS CONTROL.SPSEL.
9992              */
9993             bool spsel = env->v7m.control[M_REG_NS] & R_V7M_CONTROL_SPSEL_MASK;
9994 
9995             if (!env->v7m.secure) {
9996                 return;
9997             }
9998             if (!arm_v7m_is_handler_mode(env) && spsel) {
9999                 env->v7m.other_ss_psp = val;
10000             } else {
10001                 env->v7m.other_ss_msp = val;
10002             }
10003             return;
10004         }
10005         default:
10006             break;
10007         }
10008     }
10009 
10010     switch (reg) {
10011     case 0 ... 7: /* xPSR sub-fields */
10012         /* only APSR is actually writable */
10013         if (!(reg & 4)) {
10014             uint32_t apsrmask = 0;
10015 
10016             if (mask & 8) {
10017                 apsrmask |= XPSR_NZCV | XPSR_Q;
10018             }
10019             if ((mask & 4) && arm_feature(env, ARM_FEATURE_THUMB_DSP)) {
10020                 apsrmask |= XPSR_GE;
10021             }
10022             xpsr_write(env, val, apsrmask);
10023         }
10024         break;
10025     case 8: /* MSP */
10026         if (env->v7m.control[env->v7m.secure] & R_V7M_CONTROL_SPSEL_MASK) {
10027             env->v7m.other_sp = val;
10028         } else {
10029             env->regs[13] = val;
10030         }
10031         break;
10032     case 9: /* PSP */
10033         if (env->v7m.control[env->v7m.secure] & R_V7M_CONTROL_SPSEL_MASK) {
10034             env->regs[13] = val;
10035         } else {
10036             env->v7m.other_sp = val;
10037         }
10038         break;
10039     case 16: /* PRIMASK */
10040         env->v7m.primask[env->v7m.secure] = val & 1;
10041         break;
10042     case 17: /* BASEPRI */
10043         env->v7m.basepri[env->v7m.secure] = val & 0xff;
10044         break;
10045     case 18: /* BASEPRI_MAX */
10046         val &= 0xff;
10047         if (val != 0 && (val < env->v7m.basepri[env->v7m.secure]
10048                          || env->v7m.basepri[env->v7m.secure] == 0)) {
10049             env->v7m.basepri[env->v7m.secure] = val;
10050         }
10051         break;
10052     case 19: /* FAULTMASK */
10053         env->v7m.faultmask[env->v7m.secure] = val & 1;
10054         break;
10055     case 20: /* CONTROL */
10056         /* Writing to the SPSEL bit only has an effect if we are in
10057          * thread mode; other bits can be updated by any privileged code.
10058          * write_v7m_control_spsel() deals with updating the SPSEL bit in
10059          * env->v7m.control, so we only need update the others.
10060          */
10061         if (!arm_v7m_is_handler_mode(env)) {
10062             write_v7m_control_spsel(env, (val & R_V7M_CONTROL_SPSEL_MASK) != 0);
10063         }
10064         env->v7m.control[env->v7m.secure] &= ~R_V7M_CONTROL_NPRIV_MASK;
10065         env->v7m.control[env->v7m.secure] |= val & R_V7M_CONTROL_NPRIV_MASK;
10066         break;
10067     default:
10068         qemu_log_mask(LOG_GUEST_ERROR, "Attempt to write unknown special"
10069                                        " register %d\n", reg);
10070         return;
10071     }
10072 }
10073 
10074 #endif
10075 
10076 void HELPER(dc_zva)(CPUARMState *env, uint64_t vaddr_in)
10077 {
10078     /* Implement DC ZVA, which zeroes a fixed-length block of memory.
10079      * Note that we do not implement the (architecturally mandated)
10080      * alignment fault for attempts to use this on Device memory
10081      * (which matches the usual QEMU behaviour of not implementing either
10082      * alignment faults or any memory attribute handling).
10083      */
10084 
10085     ARMCPU *cpu = arm_env_get_cpu(env);
10086     uint64_t blocklen = 4 << cpu->dcz_blocksize;
10087     uint64_t vaddr = vaddr_in & ~(blocklen - 1);
10088 
10089 #ifndef CONFIG_USER_ONLY
10090     {
10091         /* Slightly awkwardly, QEMU's TARGET_PAGE_SIZE may be less than
10092          * the block size so we might have to do more than one TLB lookup.
10093          * We know that in fact for any v8 CPU the page size is at least 4K
10094          * and the block size must be 2K or less, but TARGET_PAGE_SIZE is only
10095          * 1K as an artefact of legacy v5 subpage support being present in the
10096          * same QEMU executable.
10097          */
10098         int maxidx = DIV_ROUND_UP(blocklen, TARGET_PAGE_SIZE);
10099         void *hostaddr[maxidx];
10100         int try, i;
10101         unsigned mmu_idx = cpu_mmu_index(env, false);
10102         TCGMemOpIdx oi = make_memop_idx(MO_UB, mmu_idx);
10103 
10104         for (try = 0; try < 2; try++) {
10105 
10106             for (i = 0; i < maxidx; i++) {
10107                 hostaddr[i] = tlb_vaddr_to_host(env,
10108                                                 vaddr + TARGET_PAGE_SIZE * i,
10109                                                 1, mmu_idx);
10110                 if (!hostaddr[i]) {
10111                     break;
10112                 }
10113             }
10114             if (i == maxidx) {
10115                 /* If it's all in the TLB it's fair game for just writing to;
10116                  * we know we don't need to update dirty status, etc.
10117                  */
10118                 for (i = 0; i < maxidx - 1; i++) {
10119                     memset(hostaddr[i], 0, TARGET_PAGE_SIZE);
10120                 }
10121                 memset(hostaddr[i], 0, blocklen - (i * TARGET_PAGE_SIZE));
10122                 return;
10123             }
10124             /* OK, try a store and see if we can populate the tlb. This
10125              * might cause an exception if the memory isn't writable,
10126              * in which case we will longjmp out of here. We must for
10127              * this purpose use the actual register value passed to us
10128              * so that we get the fault address right.
10129              */
10130             helper_ret_stb_mmu(env, vaddr_in, 0, oi, GETPC());
10131             /* Now we can populate the other TLB entries, if any */
10132             for (i = 0; i < maxidx; i++) {
10133                 uint64_t va = vaddr + TARGET_PAGE_SIZE * i;
10134                 if (va != (vaddr_in & TARGET_PAGE_MASK)) {
10135                     helper_ret_stb_mmu(env, va, 0, oi, GETPC());
10136                 }
10137             }
10138         }
10139 
10140         /* Slow path (probably attempt to do this to an I/O device or
10141          * similar, or clearing of a block of code we have translations
10142          * cached for). Just do a series of byte writes as the architecture
10143          * demands. It's not worth trying to use a cpu_physical_memory_map(),
10144          * memset(), unmap() sequence here because:
10145          *  + we'd need to account for the blocksize being larger than a page
10146          *  + the direct-RAM access case is almost always going to be dealt
10147          *    with in the fastpath code above, so there's no speed benefit
10148          *  + we would have to deal with the map returning NULL because the
10149          *    bounce buffer was in use
10150          */
10151         for (i = 0; i < blocklen; i++) {
10152             helper_ret_stb_mmu(env, vaddr + i, 0, oi, GETPC());
10153         }
10154     }
10155 #else
10156     memset(g2h(vaddr), 0, blocklen);
10157 #endif
10158 }
10159 
10160 /* Note that signed overflow is undefined in C.  The following routines are
10161    careful to use unsigned types where modulo arithmetic is required.
10162    Failure to do so _will_ break on newer gcc.  */
10163 
10164 /* Signed saturating arithmetic.  */
10165 
10166 /* Perform 16-bit signed saturating addition.  */
10167 static inline uint16_t add16_sat(uint16_t a, uint16_t b)
10168 {
10169     uint16_t res;
10170 
10171     res = a + b;
10172     if (((res ^ a) & 0x8000) && !((a ^ b) & 0x8000)) {
10173         if (a & 0x8000)
10174             res = 0x8000;
10175         else
10176             res = 0x7fff;
10177     }
10178     return res;
10179 }
10180 
10181 /* Perform 8-bit signed saturating addition.  */
10182 static inline uint8_t add8_sat(uint8_t a, uint8_t b)
10183 {
10184     uint8_t res;
10185 
10186     res = a + b;
10187     if (((res ^ a) & 0x80) && !((a ^ b) & 0x80)) {
10188         if (a & 0x80)
10189             res = 0x80;
10190         else
10191             res = 0x7f;
10192     }
10193     return res;
10194 }
10195 
10196 /* Perform 16-bit signed saturating subtraction.  */
10197 static inline uint16_t sub16_sat(uint16_t a, uint16_t b)
10198 {
10199     uint16_t res;
10200 
10201     res = a - b;
10202     if (((res ^ a) & 0x8000) && ((a ^ b) & 0x8000)) {
10203         if (a & 0x8000)
10204             res = 0x8000;
10205         else
10206             res = 0x7fff;
10207     }
10208     return res;
10209 }
10210 
10211 /* Perform 8-bit signed saturating subtraction.  */
10212 static inline uint8_t sub8_sat(uint8_t a, uint8_t b)
10213 {
10214     uint8_t res;
10215 
10216     res = a - b;
10217     if (((res ^ a) & 0x80) && ((a ^ b) & 0x80)) {
10218         if (a & 0x80)
10219             res = 0x80;
10220         else
10221             res = 0x7f;
10222     }
10223     return res;
10224 }
10225 
10226 #define ADD16(a, b, n) RESULT(add16_sat(a, b), n, 16);
10227 #define SUB16(a, b, n) RESULT(sub16_sat(a, b), n, 16);
10228 #define ADD8(a, b, n)  RESULT(add8_sat(a, b), n, 8);
10229 #define SUB8(a, b, n)  RESULT(sub8_sat(a, b), n, 8);
10230 #define PFX q
10231 
10232 #include "op_addsub.h"
10233 
10234 /* Unsigned saturating arithmetic.  */
10235 static inline uint16_t add16_usat(uint16_t a, uint16_t b)
10236 {
10237     uint16_t res;
10238     res = a + b;
10239     if (res < a)
10240         res = 0xffff;
10241     return res;
10242 }
10243 
10244 static inline uint16_t sub16_usat(uint16_t a, uint16_t b)
10245 {
10246     if (a > b)
10247         return a - b;
10248     else
10249         return 0;
10250 }
10251 
10252 static inline uint8_t add8_usat(uint8_t a, uint8_t b)
10253 {
10254     uint8_t res;
10255     res = a + b;
10256     if (res < a)
10257         res = 0xff;
10258     return res;
10259 }
10260 
10261 static inline uint8_t sub8_usat(uint8_t a, uint8_t b)
10262 {
10263     if (a > b)
10264         return a - b;
10265     else
10266         return 0;
10267 }
10268 
10269 #define ADD16(a, b, n) RESULT(add16_usat(a, b), n, 16);
10270 #define SUB16(a, b, n) RESULT(sub16_usat(a, b), n, 16);
10271 #define ADD8(a, b, n)  RESULT(add8_usat(a, b), n, 8);
10272 #define SUB8(a, b, n)  RESULT(sub8_usat(a, b), n, 8);
10273 #define PFX uq
10274 
10275 #include "op_addsub.h"
10276 
10277 /* Signed modulo arithmetic.  */
10278 #define SARITH16(a, b, n, op) do { \
10279     int32_t sum; \
10280     sum = (int32_t)(int16_t)(a) op (int32_t)(int16_t)(b); \
10281     RESULT(sum, n, 16); \
10282     if (sum >= 0) \
10283         ge |= 3 << (n * 2); \
10284     } while(0)
10285 
10286 #define SARITH8(a, b, n, op) do { \
10287     int32_t sum; \
10288     sum = (int32_t)(int8_t)(a) op (int32_t)(int8_t)(b); \
10289     RESULT(sum, n, 8); \
10290     if (sum >= 0) \
10291         ge |= 1 << n; \
10292     } while(0)
10293 
10294 
10295 #define ADD16(a, b, n) SARITH16(a, b, n, +)
10296 #define SUB16(a, b, n) SARITH16(a, b, n, -)
10297 #define ADD8(a, b, n)  SARITH8(a, b, n, +)
10298 #define SUB8(a, b, n)  SARITH8(a, b, n, -)
10299 #define PFX s
10300 #define ARITH_GE
10301 
10302 #include "op_addsub.h"
10303 
10304 /* Unsigned modulo arithmetic.  */
10305 #define ADD16(a, b, n) do { \
10306     uint32_t sum; \
10307     sum = (uint32_t)(uint16_t)(a) + (uint32_t)(uint16_t)(b); \
10308     RESULT(sum, n, 16); \
10309     if ((sum >> 16) == 1) \
10310         ge |= 3 << (n * 2); \
10311     } while(0)
10312 
10313 #define ADD8(a, b, n) do { \
10314     uint32_t sum; \
10315     sum = (uint32_t)(uint8_t)(a) + (uint32_t)(uint8_t)(b); \
10316     RESULT(sum, n, 8); \
10317     if ((sum >> 8) == 1) \
10318         ge |= 1 << n; \
10319     } while(0)
10320 
10321 #define SUB16(a, b, n) do { \
10322     uint32_t sum; \
10323     sum = (uint32_t)(uint16_t)(a) - (uint32_t)(uint16_t)(b); \
10324     RESULT(sum, n, 16); \
10325     if ((sum >> 16) == 0) \
10326         ge |= 3 << (n * 2); \
10327     } while(0)
10328 
10329 #define SUB8(a, b, n) do { \
10330     uint32_t sum; \
10331     sum = (uint32_t)(uint8_t)(a) - (uint32_t)(uint8_t)(b); \
10332     RESULT(sum, n, 8); \
10333     if ((sum >> 8) == 0) \
10334         ge |= 1 << n; \
10335     } while(0)
10336 
10337 #define PFX u
10338 #define ARITH_GE
10339 
10340 #include "op_addsub.h"
10341 
10342 /* Halved signed arithmetic.  */
10343 #define ADD16(a, b, n) \
10344   RESULT(((int32_t)(int16_t)(a) + (int32_t)(int16_t)(b)) >> 1, n, 16)
10345 #define SUB16(a, b, n) \
10346   RESULT(((int32_t)(int16_t)(a) - (int32_t)(int16_t)(b)) >> 1, n, 16)
10347 #define ADD8(a, b, n) \
10348   RESULT(((int32_t)(int8_t)(a) + (int32_t)(int8_t)(b)) >> 1, n, 8)
10349 #define SUB8(a, b, n) \
10350   RESULT(((int32_t)(int8_t)(a) - (int32_t)(int8_t)(b)) >> 1, n, 8)
10351 #define PFX sh
10352 
10353 #include "op_addsub.h"
10354 
10355 /* Halved unsigned arithmetic.  */
10356 #define ADD16(a, b, n) \
10357   RESULT(((uint32_t)(uint16_t)(a) + (uint32_t)(uint16_t)(b)) >> 1, n, 16)
10358 #define SUB16(a, b, n) \
10359   RESULT(((uint32_t)(uint16_t)(a) - (uint32_t)(uint16_t)(b)) >> 1, n, 16)
10360 #define ADD8(a, b, n) \
10361   RESULT(((uint32_t)(uint8_t)(a) + (uint32_t)(uint8_t)(b)) >> 1, n, 8)
10362 #define SUB8(a, b, n) \
10363   RESULT(((uint32_t)(uint8_t)(a) - (uint32_t)(uint8_t)(b)) >> 1, n, 8)
10364 #define PFX uh
10365 
10366 #include "op_addsub.h"
10367 
10368 static inline uint8_t do_usad(uint8_t a, uint8_t b)
10369 {
10370     if (a > b)
10371         return a - b;
10372     else
10373         return b - a;
10374 }
10375 
10376 /* Unsigned sum of absolute byte differences.  */
10377 uint32_t HELPER(usad8)(uint32_t a, uint32_t b)
10378 {
10379     uint32_t sum;
10380     sum = do_usad(a, b);
10381     sum += do_usad(a >> 8, b >> 8);
10382     sum += do_usad(a >> 16, b >>16);
10383     sum += do_usad(a >> 24, b >> 24);
10384     return sum;
10385 }
10386 
10387 /* For ARMv6 SEL instruction.  */
10388 uint32_t HELPER(sel_flags)(uint32_t flags, uint32_t a, uint32_t b)
10389 {
10390     uint32_t mask;
10391 
10392     mask = 0;
10393     if (flags & 1)
10394         mask |= 0xff;
10395     if (flags & 2)
10396         mask |= 0xff00;
10397     if (flags & 4)
10398         mask |= 0xff0000;
10399     if (flags & 8)
10400         mask |= 0xff000000;
10401     return (a & mask) | (b & ~mask);
10402 }
10403 
10404 /* VFP support.  We follow the convention used for VFP instructions:
10405    Single precision routines have a "s" suffix, double precision a
10406    "d" suffix.  */
10407 
10408 /* Convert host exception flags to vfp form.  */
10409 static inline int vfp_exceptbits_from_host(int host_bits)
10410 {
10411     int target_bits = 0;
10412 
10413     if (host_bits & float_flag_invalid)
10414         target_bits |= 1;
10415     if (host_bits & float_flag_divbyzero)
10416         target_bits |= 2;
10417     if (host_bits & float_flag_overflow)
10418         target_bits |= 4;
10419     if (host_bits & (float_flag_underflow | float_flag_output_denormal))
10420         target_bits |= 8;
10421     if (host_bits & float_flag_inexact)
10422         target_bits |= 0x10;
10423     if (host_bits & float_flag_input_denormal)
10424         target_bits |= 0x80;
10425     return target_bits;
10426 }
10427 
10428 uint32_t HELPER(vfp_get_fpscr)(CPUARMState *env)
10429 {
10430     int i;
10431     uint32_t fpscr;
10432 
10433     fpscr = (env->vfp.xregs[ARM_VFP_FPSCR] & 0xffc8ffff)
10434             | (env->vfp.vec_len << 16)
10435             | (env->vfp.vec_stride << 20);
10436     i = get_float_exception_flags(&env->vfp.fp_status);
10437     i |= get_float_exception_flags(&env->vfp.standard_fp_status);
10438     fpscr |= vfp_exceptbits_from_host(i);
10439     return fpscr;
10440 }
10441 
10442 uint32_t vfp_get_fpscr(CPUARMState *env)
10443 {
10444     return HELPER(vfp_get_fpscr)(env);
10445 }
10446 
10447 /* Convert vfp exception flags to target form.  */
10448 static inline int vfp_exceptbits_to_host(int target_bits)
10449 {
10450     int host_bits = 0;
10451 
10452     if (target_bits & 1)
10453         host_bits |= float_flag_invalid;
10454     if (target_bits & 2)
10455         host_bits |= float_flag_divbyzero;
10456     if (target_bits & 4)
10457         host_bits |= float_flag_overflow;
10458     if (target_bits & 8)
10459         host_bits |= float_flag_underflow;
10460     if (target_bits & 0x10)
10461         host_bits |= float_flag_inexact;
10462     if (target_bits & 0x80)
10463         host_bits |= float_flag_input_denormal;
10464     return host_bits;
10465 }
10466 
10467 void HELPER(vfp_set_fpscr)(CPUARMState *env, uint32_t val)
10468 {
10469     int i;
10470     uint32_t changed;
10471 
10472     changed = env->vfp.xregs[ARM_VFP_FPSCR];
10473     env->vfp.xregs[ARM_VFP_FPSCR] = (val & 0xffc8ffff);
10474     env->vfp.vec_len = (val >> 16) & 7;
10475     env->vfp.vec_stride = (val >> 20) & 3;
10476 
10477     changed ^= val;
10478     if (changed & (3 << 22)) {
10479         i = (val >> 22) & 3;
10480         switch (i) {
10481         case FPROUNDING_TIEEVEN:
10482             i = float_round_nearest_even;
10483             break;
10484         case FPROUNDING_POSINF:
10485             i = float_round_up;
10486             break;
10487         case FPROUNDING_NEGINF:
10488             i = float_round_down;
10489             break;
10490         case FPROUNDING_ZERO:
10491             i = float_round_to_zero;
10492             break;
10493         }
10494         set_float_rounding_mode(i, &env->vfp.fp_status);
10495     }
10496     if (changed & (1 << 24)) {
10497         set_flush_to_zero((val & (1 << 24)) != 0, &env->vfp.fp_status);
10498         set_flush_inputs_to_zero((val & (1 << 24)) != 0, &env->vfp.fp_status);
10499     }
10500     if (changed & (1 << 25))
10501         set_default_nan_mode((val & (1 << 25)) != 0, &env->vfp.fp_status);
10502 
10503     i = vfp_exceptbits_to_host(val);
10504     set_float_exception_flags(i, &env->vfp.fp_status);
10505     set_float_exception_flags(0, &env->vfp.standard_fp_status);
10506 }
10507 
10508 void vfp_set_fpscr(CPUARMState *env, uint32_t val)
10509 {
10510     HELPER(vfp_set_fpscr)(env, val);
10511 }
10512 
10513 #define VFP_HELPER(name, p) HELPER(glue(glue(vfp_,name),p))
10514 
10515 #define VFP_BINOP(name) \
10516 float32 VFP_HELPER(name, s)(float32 a, float32 b, void *fpstp) \
10517 { \
10518     float_status *fpst = fpstp; \
10519     return float32_ ## name(a, b, fpst); \
10520 } \
10521 float64 VFP_HELPER(name, d)(float64 a, float64 b, void *fpstp) \
10522 { \
10523     float_status *fpst = fpstp; \
10524     return float64_ ## name(a, b, fpst); \
10525 }
10526 VFP_BINOP(add)
10527 VFP_BINOP(sub)
10528 VFP_BINOP(mul)
10529 VFP_BINOP(div)
10530 VFP_BINOP(min)
10531 VFP_BINOP(max)
10532 VFP_BINOP(minnum)
10533 VFP_BINOP(maxnum)
10534 #undef VFP_BINOP
10535 
10536 float32 VFP_HELPER(neg, s)(float32 a)
10537 {
10538     return float32_chs(a);
10539 }
10540 
10541 float64 VFP_HELPER(neg, d)(float64 a)
10542 {
10543     return float64_chs(a);
10544 }
10545 
10546 float32 VFP_HELPER(abs, s)(float32 a)
10547 {
10548     return float32_abs(a);
10549 }
10550 
10551 float64 VFP_HELPER(abs, d)(float64 a)
10552 {
10553     return float64_abs(a);
10554 }
10555 
10556 float32 VFP_HELPER(sqrt, s)(float32 a, CPUARMState *env)
10557 {
10558     return float32_sqrt(a, &env->vfp.fp_status);
10559 }
10560 
10561 float64 VFP_HELPER(sqrt, d)(float64 a, CPUARMState *env)
10562 {
10563     return float64_sqrt(a, &env->vfp.fp_status);
10564 }
10565 
10566 /* XXX: check quiet/signaling case */
10567 #define DO_VFP_cmp(p, type) \
10568 void VFP_HELPER(cmp, p)(type a, type b, CPUARMState *env)  \
10569 { \
10570     uint32_t flags; \
10571     switch(type ## _compare_quiet(a, b, &env->vfp.fp_status)) { \
10572     case 0: flags = 0x6; break; \
10573     case -1: flags = 0x8; break; \
10574     case 1: flags = 0x2; break; \
10575     default: case 2: flags = 0x3; break; \
10576     } \
10577     env->vfp.xregs[ARM_VFP_FPSCR] = (flags << 28) \
10578         | (env->vfp.xregs[ARM_VFP_FPSCR] & 0x0fffffff); \
10579 } \
10580 void VFP_HELPER(cmpe, p)(type a, type b, CPUARMState *env) \
10581 { \
10582     uint32_t flags; \
10583     switch(type ## _compare(a, b, &env->vfp.fp_status)) { \
10584     case 0: flags = 0x6; break; \
10585     case -1: flags = 0x8; break; \
10586     case 1: flags = 0x2; break; \
10587     default: case 2: flags = 0x3; break; \
10588     } \
10589     env->vfp.xregs[ARM_VFP_FPSCR] = (flags << 28) \
10590         | (env->vfp.xregs[ARM_VFP_FPSCR] & 0x0fffffff); \
10591 }
10592 DO_VFP_cmp(s, float32)
10593 DO_VFP_cmp(d, float64)
10594 #undef DO_VFP_cmp
10595 
10596 /* Integer to float and float to integer conversions */
10597 
10598 #define CONV_ITOF(name, fsz, sign) \
10599     float##fsz HELPER(name)(uint32_t x, void *fpstp) \
10600 { \
10601     float_status *fpst = fpstp; \
10602     return sign##int32_to_##float##fsz((sign##int32_t)x, fpst); \
10603 }
10604 
10605 #define CONV_FTOI(name, fsz, sign, round) \
10606 uint32_t HELPER(name)(float##fsz x, void *fpstp) \
10607 { \
10608     float_status *fpst = fpstp; \
10609     if (float##fsz##_is_any_nan(x)) { \
10610         float_raise(float_flag_invalid, fpst); \
10611         return 0; \
10612     } \
10613     return float##fsz##_to_##sign##int32##round(x, fpst); \
10614 }
10615 
10616 #define FLOAT_CONVS(name, p, fsz, sign) \
10617 CONV_ITOF(vfp_##name##to##p, fsz, sign) \
10618 CONV_FTOI(vfp_to##name##p, fsz, sign, ) \
10619 CONV_FTOI(vfp_to##name##z##p, fsz, sign, _round_to_zero)
10620 
10621 FLOAT_CONVS(si, s, 32, )
10622 FLOAT_CONVS(si, d, 64, )
10623 FLOAT_CONVS(ui, s, 32, u)
10624 FLOAT_CONVS(ui, d, 64, u)
10625 
10626 #undef CONV_ITOF
10627 #undef CONV_FTOI
10628 #undef FLOAT_CONVS
10629 
10630 /* floating point conversion */
10631 float64 VFP_HELPER(fcvtd, s)(float32 x, CPUARMState *env)
10632 {
10633     float64 r = float32_to_float64(x, &env->vfp.fp_status);
10634     /* ARM requires that S<->D conversion of any kind of NaN generates
10635      * a quiet NaN by forcing the most significant frac bit to 1.
10636      */
10637     return float64_maybe_silence_nan(r, &env->vfp.fp_status);
10638 }
10639 
10640 float32 VFP_HELPER(fcvts, d)(float64 x, CPUARMState *env)
10641 {
10642     float32 r =  float64_to_float32(x, &env->vfp.fp_status);
10643     /* ARM requires that S<->D conversion of any kind of NaN generates
10644      * a quiet NaN by forcing the most significant frac bit to 1.
10645      */
10646     return float32_maybe_silence_nan(r, &env->vfp.fp_status);
10647 }
10648 
10649 /* VFP3 fixed point conversion.  */
10650 #define VFP_CONV_FIX_FLOAT(name, p, fsz, isz, itype) \
10651 float##fsz HELPER(vfp_##name##to##p)(uint##isz##_t  x, uint32_t shift, \
10652                                      void *fpstp) \
10653 { \
10654     float_status *fpst = fpstp; \
10655     float##fsz tmp; \
10656     tmp = itype##_to_##float##fsz(x, fpst); \
10657     return float##fsz##_scalbn(tmp, -(int)shift, fpst); \
10658 }
10659 
10660 /* Notice that we want only input-denormal exception flags from the
10661  * scalbn operation: the other possible flags (overflow+inexact if
10662  * we overflow to infinity, output-denormal) aren't correct for the
10663  * complete scale-and-convert operation.
10664  */
10665 #define VFP_CONV_FLOAT_FIX_ROUND(name, p, fsz, isz, itype, round) \
10666 uint##isz##_t HELPER(vfp_to##name##p##round)(float##fsz x, \
10667                                              uint32_t shift, \
10668                                              void *fpstp) \
10669 { \
10670     float_status *fpst = fpstp; \
10671     int old_exc_flags = get_float_exception_flags(fpst); \
10672     float##fsz tmp; \
10673     if (float##fsz##_is_any_nan(x)) { \
10674         float_raise(float_flag_invalid, fpst); \
10675         return 0; \
10676     } \
10677     tmp = float##fsz##_scalbn(x, shift, fpst); \
10678     old_exc_flags |= get_float_exception_flags(fpst) \
10679         & float_flag_input_denormal; \
10680     set_float_exception_flags(old_exc_flags, fpst); \
10681     return float##fsz##_to_##itype##round(tmp, fpst); \
10682 }
10683 
10684 #define VFP_CONV_FIX(name, p, fsz, isz, itype)                   \
10685 VFP_CONV_FIX_FLOAT(name, p, fsz, isz, itype)                     \
10686 VFP_CONV_FLOAT_FIX_ROUND(name, p, fsz, isz, itype, _round_to_zero) \
10687 VFP_CONV_FLOAT_FIX_ROUND(name, p, fsz, isz, itype, )
10688 
10689 #define VFP_CONV_FIX_A64(name, p, fsz, isz, itype)               \
10690 VFP_CONV_FIX_FLOAT(name, p, fsz, isz, itype)                     \
10691 VFP_CONV_FLOAT_FIX_ROUND(name, p, fsz, isz, itype, )
10692 
10693 VFP_CONV_FIX(sh, d, 64, 64, int16)
10694 VFP_CONV_FIX(sl, d, 64, 64, int32)
10695 VFP_CONV_FIX_A64(sq, d, 64, 64, int64)
10696 VFP_CONV_FIX(uh, d, 64, 64, uint16)
10697 VFP_CONV_FIX(ul, d, 64, 64, uint32)
10698 VFP_CONV_FIX_A64(uq, d, 64, 64, uint64)
10699 VFP_CONV_FIX(sh, s, 32, 32, int16)
10700 VFP_CONV_FIX(sl, s, 32, 32, int32)
10701 VFP_CONV_FIX_A64(sq, s, 32, 64, int64)
10702 VFP_CONV_FIX(uh, s, 32, 32, uint16)
10703 VFP_CONV_FIX(ul, s, 32, 32, uint32)
10704 VFP_CONV_FIX_A64(uq, s, 32, 64, uint64)
10705 #undef VFP_CONV_FIX
10706 #undef VFP_CONV_FIX_FLOAT
10707 #undef VFP_CONV_FLOAT_FIX_ROUND
10708 
10709 /* Set the current fp rounding mode and return the old one.
10710  * The argument is a softfloat float_round_ value.
10711  */
10712 uint32_t HELPER(set_rmode)(uint32_t rmode, CPUARMState *env)
10713 {
10714     float_status *fp_status = &env->vfp.fp_status;
10715 
10716     uint32_t prev_rmode = get_float_rounding_mode(fp_status);
10717     set_float_rounding_mode(rmode, fp_status);
10718 
10719     return prev_rmode;
10720 }
10721 
10722 /* Set the current fp rounding mode in the standard fp status and return
10723  * the old one. This is for NEON instructions that need to change the
10724  * rounding mode but wish to use the standard FPSCR values for everything
10725  * else. Always set the rounding mode back to the correct value after
10726  * modifying it.
10727  * The argument is a softfloat float_round_ value.
10728  */
10729 uint32_t HELPER(set_neon_rmode)(uint32_t rmode, CPUARMState *env)
10730 {
10731     float_status *fp_status = &env->vfp.standard_fp_status;
10732 
10733     uint32_t prev_rmode = get_float_rounding_mode(fp_status);
10734     set_float_rounding_mode(rmode, fp_status);
10735 
10736     return prev_rmode;
10737 }
10738 
10739 /* Half precision conversions.  */
10740 static float32 do_fcvt_f16_to_f32(uint32_t a, CPUARMState *env, float_status *s)
10741 {
10742     int ieee = (env->vfp.xregs[ARM_VFP_FPSCR] & (1 << 26)) == 0;
10743     float32 r = float16_to_float32(make_float16(a), ieee, s);
10744     if (ieee) {
10745         return float32_maybe_silence_nan(r, s);
10746     }
10747     return r;
10748 }
10749 
10750 static uint32_t do_fcvt_f32_to_f16(float32 a, CPUARMState *env, float_status *s)
10751 {
10752     int ieee = (env->vfp.xregs[ARM_VFP_FPSCR] & (1 << 26)) == 0;
10753     float16 r = float32_to_float16(a, ieee, s);
10754     if (ieee) {
10755         r = float16_maybe_silence_nan(r, s);
10756     }
10757     return float16_val(r);
10758 }
10759 
10760 float32 HELPER(neon_fcvt_f16_to_f32)(uint32_t a, CPUARMState *env)
10761 {
10762     return do_fcvt_f16_to_f32(a, env, &env->vfp.standard_fp_status);
10763 }
10764 
10765 uint32_t HELPER(neon_fcvt_f32_to_f16)(float32 a, CPUARMState *env)
10766 {
10767     return do_fcvt_f32_to_f16(a, env, &env->vfp.standard_fp_status);
10768 }
10769 
10770 float32 HELPER(vfp_fcvt_f16_to_f32)(uint32_t a, CPUARMState *env)
10771 {
10772     return do_fcvt_f16_to_f32(a, env, &env->vfp.fp_status);
10773 }
10774 
10775 uint32_t HELPER(vfp_fcvt_f32_to_f16)(float32 a, CPUARMState *env)
10776 {
10777     return do_fcvt_f32_to_f16(a, env, &env->vfp.fp_status);
10778 }
10779 
10780 float64 HELPER(vfp_fcvt_f16_to_f64)(uint32_t a, CPUARMState *env)
10781 {
10782     int ieee = (env->vfp.xregs[ARM_VFP_FPSCR] & (1 << 26)) == 0;
10783     float64 r = float16_to_float64(make_float16(a), ieee, &env->vfp.fp_status);
10784     if (ieee) {
10785         return float64_maybe_silence_nan(r, &env->vfp.fp_status);
10786     }
10787     return r;
10788 }
10789 
10790 uint32_t HELPER(vfp_fcvt_f64_to_f16)(float64 a, CPUARMState *env)
10791 {
10792     int ieee = (env->vfp.xregs[ARM_VFP_FPSCR] & (1 << 26)) == 0;
10793     float16 r = float64_to_float16(a, ieee, &env->vfp.fp_status);
10794     if (ieee) {
10795         r = float16_maybe_silence_nan(r, &env->vfp.fp_status);
10796     }
10797     return float16_val(r);
10798 }
10799 
10800 #define float32_two make_float32(0x40000000)
10801 #define float32_three make_float32(0x40400000)
10802 #define float32_one_point_five make_float32(0x3fc00000)
10803 
10804 float32 HELPER(recps_f32)(float32 a, float32 b, CPUARMState *env)
10805 {
10806     float_status *s = &env->vfp.standard_fp_status;
10807     if ((float32_is_infinity(a) && float32_is_zero_or_denormal(b)) ||
10808         (float32_is_infinity(b) && float32_is_zero_or_denormal(a))) {
10809         if (!(float32_is_zero(a) || float32_is_zero(b))) {
10810             float_raise(float_flag_input_denormal, s);
10811         }
10812         return float32_two;
10813     }
10814     return float32_sub(float32_two, float32_mul(a, b, s), s);
10815 }
10816 
10817 float32 HELPER(rsqrts_f32)(float32 a, float32 b, CPUARMState *env)
10818 {
10819     float_status *s = &env->vfp.standard_fp_status;
10820     float32 product;
10821     if ((float32_is_infinity(a) && float32_is_zero_or_denormal(b)) ||
10822         (float32_is_infinity(b) && float32_is_zero_or_denormal(a))) {
10823         if (!(float32_is_zero(a) || float32_is_zero(b))) {
10824             float_raise(float_flag_input_denormal, s);
10825         }
10826         return float32_one_point_five;
10827     }
10828     product = float32_mul(a, b, s);
10829     return float32_div(float32_sub(float32_three, product, s), float32_two, s);
10830 }
10831 
10832 /* NEON helpers.  */
10833 
10834 /* Constants 256 and 512 are used in some helpers; we avoid relying on
10835  * int->float conversions at run-time.  */
10836 #define float64_256 make_float64(0x4070000000000000LL)
10837 #define float64_512 make_float64(0x4080000000000000LL)
10838 #define float32_maxnorm make_float32(0x7f7fffff)
10839 #define float64_maxnorm make_float64(0x7fefffffffffffffLL)
10840 
10841 /* Reciprocal functions
10842  *
10843  * The algorithm that must be used to calculate the estimate
10844  * is specified by the ARM ARM, see FPRecipEstimate()
10845  */
10846 
10847 static float64 recip_estimate(float64 a, float_status *real_fp_status)
10848 {
10849     /* These calculations mustn't set any fp exception flags,
10850      * so we use a local copy of the fp_status.
10851      */
10852     float_status dummy_status = *real_fp_status;
10853     float_status *s = &dummy_status;
10854     /* q = (int)(a * 512.0) */
10855     float64 q = float64_mul(float64_512, a, s);
10856     int64_t q_int = float64_to_int64_round_to_zero(q, s);
10857 
10858     /* r = 1.0 / (((double)q + 0.5) / 512.0) */
10859     q = int64_to_float64(q_int, s);
10860     q = float64_add(q, float64_half, s);
10861     q = float64_div(q, float64_512, s);
10862     q = float64_div(float64_one, q, s);
10863 
10864     /* s = (int)(256.0 * r + 0.5) */
10865     q = float64_mul(q, float64_256, s);
10866     q = float64_add(q, float64_half, s);
10867     q_int = float64_to_int64_round_to_zero(q, s);
10868 
10869     /* return (double)s / 256.0 */
10870     return float64_div(int64_to_float64(q_int, s), float64_256, s);
10871 }
10872 
10873 /* Common wrapper to call recip_estimate */
10874 static float64 call_recip_estimate(float64 num, int off, float_status *fpst)
10875 {
10876     uint64_t val64 = float64_val(num);
10877     uint64_t frac = extract64(val64, 0, 52);
10878     int64_t exp = extract64(val64, 52, 11);
10879     uint64_t sbit;
10880     float64 scaled, estimate;
10881 
10882     /* Generate the scaled number for the estimate function */
10883     if (exp == 0) {
10884         if (extract64(frac, 51, 1) == 0) {
10885             exp = -1;
10886             frac = extract64(frac, 0, 50) << 2;
10887         } else {
10888             frac = extract64(frac, 0, 51) << 1;
10889         }
10890     }
10891 
10892     /* scaled = '0' : '01111111110' : fraction<51:44> : Zeros(44); */
10893     scaled = make_float64((0x3feULL << 52)
10894                           | extract64(frac, 44, 8) << 44);
10895 
10896     estimate = recip_estimate(scaled, fpst);
10897 
10898     /* Build new result */
10899     val64 = float64_val(estimate);
10900     sbit = 0x8000000000000000ULL & val64;
10901     exp = off - exp;
10902     frac = extract64(val64, 0, 52);
10903 
10904     if (exp == 0) {
10905         frac = 1ULL << 51 | extract64(frac, 1, 51);
10906     } else if (exp == -1) {
10907         frac = 1ULL << 50 | extract64(frac, 2, 50);
10908         exp = 0;
10909     }
10910 
10911     return make_float64(sbit | (exp << 52) | frac);
10912 }
10913 
10914 static bool round_to_inf(float_status *fpst, bool sign_bit)
10915 {
10916     switch (fpst->float_rounding_mode) {
10917     case float_round_nearest_even: /* Round to Nearest */
10918         return true;
10919     case float_round_up: /* Round to +Inf */
10920         return !sign_bit;
10921     case float_round_down: /* Round to -Inf */
10922         return sign_bit;
10923     case float_round_to_zero: /* Round to Zero */
10924         return false;
10925     }
10926 
10927     g_assert_not_reached();
10928 }
10929 
10930 float32 HELPER(recpe_f32)(float32 input, void *fpstp)
10931 {
10932     float_status *fpst = fpstp;
10933     float32 f32 = float32_squash_input_denormal(input, fpst);
10934     uint32_t f32_val = float32_val(f32);
10935     uint32_t f32_sbit = 0x80000000ULL & f32_val;
10936     int32_t f32_exp = extract32(f32_val, 23, 8);
10937     uint32_t f32_frac = extract32(f32_val, 0, 23);
10938     float64 f64, r64;
10939     uint64_t r64_val;
10940     int64_t r64_exp;
10941     uint64_t r64_frac;
10942 
10943     if (float32_is_any_nan(f32)) {
10944         float32 nan = f32;
10945         if (float32_is_signaling_nan(f32, fpst)) {
10946             float_raise(float_flag_invalid, fpst);
10947             nan = float32_maybe_silence_nan(f32, fpst);
10948         }
10949         if (fpst->default_nan_mode) {
10950             nan =  float32_default_nan(fpst);
10951         }
10952         return nan;
10953     } else if (float32_is_infinity(f32)) {
10954         return float32_set_sign(float32_zero, float32_is_neg(f32));
10955     } else if (float32_is_zero(f32)) {
10956         float_raise(float_flag_divbyzero, fpst);
10957         return float32_set_sign(float32_infinity, float32_is_neg(f32));
10958     } else if ((f32_val & ~(1ULL << 31)) < (1ULL << 21)) {
10959         /* Abs(value) < 2.0^-128 */
10960         float_raise(float_flag_overflow | float_flag_inexact, fpst);
10961         if (round_to_inf(fpst, f32_sbit)) {
10962             return float32_set_sign(float32_infinity, float32_is_neg(f32));
10963         } else {
10964             return float32_set_sign(float32_maxnorm, float32_is_neg(f32));
10965         }
10966     } else if (f32_exp >= 253 && fpst->flush_to_zero) {
10967         float_raise(float_flag_underflow, fpst);
10968         return float32_set_sign(float32_zero, float32_is_neg(f32));
10969     }
10970 
10971 
10972     f64 = make_float64(((int64_t)(f32_exp) << 52) | (int64_t)(f32_frac) << 29);
10973     r64 = call_recip_estimate(f64, 253, fpst);
10974     r64_val = float64_val(r64);
10975     r64_exp = extract64(r64_val, 52, 11);
10976     r64_frac = extract64(r64_val, 0, 52);
10977 
10978     /* result = sign : result_exp<7:0> : fraction<51:29>; */
10979     return make_float32(f32_sbit |
10980                         (r64_exp & 0xff) << 23 |
10981                         extract64(r64_frac, 29, 24));
10982 }
10983 
10984 float64 HELPER(recpe_f64)(float64 input, void *fpstp)
10985 {
10986     float_status *fpst = fpstp;
10987     float64 f64 = float64_squash_input_denormal(input, fpst);
10988     uint64_t f64_val = float64_val(f64);
10989     uint64_t f64_sbit = 0x8000000000000000ULL & f64_val;
10990     int64_t f64_exp = extract64(f64_val, 52, 11);
10991     float64 r64;
10992     uint64_t r64_val;
10993     int64_t r64_exp;
10994     uint64_t r64_frac;
10995 
10996     /* Deal with any special cases */
10997     if (float64_is_any_nan(f64)) {
10998         float64 nan = f64;
10999         if (float64_is_signaling_nan(f64, fpst)) {
11000             float_raise(float_flag_invalid, fpst);
11001             nan = float64_maybe_silence_nan(f64, fpst);
11002         }
11003         if (fpst->default_nan_mode) {
11004             nan =  float64_default_nan(fpst);
11005         }
11006         return nan;
11007     } else if (float64_is_infinity(f64)) {
11008         return float64_set_sign(float64_zero, float64_is_neg(f64));
11009     } else if (float64_is_zero(f64)) {
11010         float_raise(float_flag_divbyzero, fpst);
11011         return float64_set_sign(float64_infinity, float64_is_neg(f64));
11012     } else if ((f64_val & ~(1ULL << 63)) < (1ULL << 50)) {
11013         /* Abs(value) < 2.0^-1024 */
11014         float_raise(float_flag_overflow | float_flag_inexact, fpst);
11015         if (round_to_inf(fpst, f64_sbit)) {
11016             return float64_set_sign(float64_infinity, float64_is_neg(f64));
11017         } else {
11018             return float64_set_sign(float64_maxnorm, float64_is_neg(f64));
11019         }
11020     } else if (f64_exp >= 2045 && fpst->flush_to_zero) {
11021         float_raise(float_flag_underflow, fpst);
11022         return float64_set_sign(float64_zero, float64_is_neg(f64));
11023     }
11024 
11025     r64 = call_recip_estimate(f64, 2045, fpst);
11026     r64_val = float64_val(r64);
11027     r64_exp = extract64(r64_val, 52, 11);
11028     r64_frac = extract64(r64_val, 0, 52);
11029 
11030     /* result = sign : result_exp<10:0> : fraction<51:0> */
11031     return make_float64(f64_sbit |
11032                         ((r64_exp & 0x7ff) << 52) |
11033                         r64_frac);
11034 }
11035 
11036 /* The algorithm that must be used to calculate the estimate
11037  * is specified by the ARM ARM.
11038  */
11039 static float64 recip_sqrt_estimate(float64 a, float_status *real_fp_status)
11040 {
11041     /* These calculations mustn't set any fp exception flags,
11042      * so we use a local copy of the fp_status.
11043      */
11044     float_status dummy_status = *real_fp_status;
11045     float_status *s = &dummy_status;
11046     float64 q;
11047     int64_t q_int;
11048 
11049     if (float64_lt(a, float64_half, s)) {
11050         /* range 0.25 <= a < 0.5 */
11051 
11052         /* a in units of 1/512 rounded down */
11053         /* q0 = (int)(a * 512.0);  */
11054         q = float64_mul(float64_512, a, s);
11055         q_int = float64_to_int64_round_to_zero(q, s);
11056 
11057         /* reciprocal root r */
11058         /* r = 1.0 / sqrt(((double)q0 + 0.5) / 512.0);  */
11059         q = int64_to_float64(q_int, s);
11060         q = float64_add(q, float64_half, s);
11061         q = float64_div(q, float64_512, s);
11062         q = float64_sqrt(q, s);
11063         q = float64_div(float64_one, q, s);
11064     } else {
11065         /* range 0.5 <= a < 1.0 */
11066 
11067         /* a in units of 1/256 rounded down */
11068         /* q1 = (int)(a * 256.0); */
11069         q = float64_mul(float64_256, a, s);
11070         int64_t q_int = float64_to_int64_round_to_zero(q, s);
11071 
11072         /* reciprocal root r */
11073         /* r = 1.0 /sqrt(((double)q1 + 0.5) / 256); */
11074         q = int64_to_float64(q_int, s);
11075         q = float64_add(q, float64_half, s);
11076         q = float64_div(q, float64_256, s);
11077         q = float64_sqrt(q, s);
11078         q = float64_div(float64_one, q, s);
11079     }
11080     /* r in units of 1/256 rounded to nearest */
11081     /* s = (int)(256.0 * r + 0.5); */
11082 
11083     q = float64_mul(q, float64_256,s );
11084     q = float64_add(q, float64_half, s);
11085     q_int = float64_to_int64_round_to_zero(q, s);
11086 
11087     /* return (double)s / 256.0;*/
11088     return float64_div(int64_to_float64(q_int, s), float64_256, s);
11089 }
11090 
11091 float32 HELPER(rsqrte_f32)(float32 input, void *fpstp)
11092 {
11093     float_status *s = fpstp;
11094     float32 f32 = float32_squash_input_denormal(input, s);
11095     uint32_t val = float32_val(f32);
11096     uint32_t f32_sbit = 0x80000000 & val;
11097     int32_t f32_exp = extract32(val, 23, 8);
11098     uint32_t f32_frac = extract32(val, 0, 23);
11099     uint64_t f64_frac;
11100     uint64_t val64;
11101     int result_exp;
11102     float64 f64;
11103 
11104     if (float32_is_any_nan(f32)) {
11105         float32 nan = f32;
11106         if (float32_is_signaling_nan(f32, s)) {
11107             float_raise(float_flag_invalid, s);
11108             nan = float32_maybe_silence_nan(f32, s);
11109         }
11110         if (s->default_nan_mode) {
11111             nan =  float32_default_nan(s);
11112         }
11113         return nan;
11114     } else if (float32_is_zero(f32)) {
11115         float_raise(float_flag_divbyzero, s);
11116         return float32_set_sign(float32_infinity, float32_is_neg(f32));
11117     } else if (float32_is_neg(f32)) {
11118         float_raise(float_flag_invalid, s);
11119         return float32_default_nan(s);
11120     } else if (float32_is_infinity(f32)) {
11121         return float32_zero;
11122     }
11123 
11124     /* Scale and normalize to a double-precision value between 0.25 and 1.0,
11125      * preserving the parity of the exponent.  */
11126 
11127     f64_frac = ((uint64_t) f32_frac) << 29;
11128     if (f32_exp == 0) {
11129         while (extract64(f64_frac, 51, 1) == 0) {
11130             f64_frac = f64_frac << 1;
11131             f32_exp = f32_exp-1;
11132         }
11133         f64_frac = extract64(f64_frac, 0, 51) << 1;
11134     }
11135 
11136     if (extract64(f32_exp, 0, 1) == 0) {
11137         f64 = make_float64(((uint64_t) f32_sbit) << 32
11138                            | (0x3feULL << 52)
11139                            | f64_frac);
11140     } else {
11141         f64 = make_float64(((uint64_t) f32_sbit) << 32
11142                            | (0x3fdULL << 52)
11143                            | f64_frac);
11144     }
11145 
11146     result_exp = (380 - f32_exp) / 2;
11147 
11148     f64 = recip_sqrt_estimate(f64, s);
11149 
11150     val64 = float64_val(f64);
11151 
11152     val = ((result_exp & 0xff) << 23)
11153         | ((val64 >> 29)  & 0x7fffff);
11154     return make_float32(val);
11155 }
11156 
11157 float64 HELPER(rsqrte_f64)(float64 input, void *fpstp)
11158 {
11159     float_status *s = fpstp;
11160     float64 f64 = float64_squash_input_denormal(input, s);
11161     uint64_t val = float64_val(f64);
11162     uint64_t f64_sbit = 0x8000000000000000ULL & val;
11163     int64_t f64_exp = extract64(val, 52, 11);
11164     uint64_t f64_frac = extract64(val, 0, 52);
11165     int64_t result_exp;
11166     uint64_t result_frac;
11167 
11168     if (float64_is_any_nan(f64)) {
11169         float64 nan = f64;
11170         if (float64_is_signaling_nan(f64, s)) {
11171             float_raise(float_flag_invalid, s);
11172             nan = float64_maybe_silence_nan(f64, s);
11173         }
11174         if (s->default_nan_mode) {
11175             nan =  float64_default_nan(s);
11176         }
11177         return nan;
11178     } else if (float64_is_zero(f64)) {
11179         float_raise(float_flag_divbyzero, s);
11180         return float64_set_sign(float64_infinity, float64_is_neg(f64));
11181     } else if (float64_is_neg(f64)) {
11182         float_raise(float_flag_invalid, s);
11183         return float64_default_nan(s);
11184     } else if (float64_is_infinity(f64)) {
11185         return float64_zero;
11186     }
11187 
11188     /* Scale and normalize to a double-precision value between 0.25 and 1.0,
11189      * preserving the parity of the exponent.  */
11190 
11191     if (f64_exp == 0) {
11192         while (extract64(f64_frac, 51, 1) == 0) {
11193             f64_frac = f64_frac << 1;
11194             f64_exp = f64_exp - 1;
11195         }
11196         f64_frac = extract64(f64_frac, 0, 51) << 1;
11197     }
11198 
11199     if (extract64(f64_exp, 0, 1) == 0) {
11200         f64 = make_float64(f64_sbit
11201                            | (0x3feULL << 52)
11202                            | f64_frac);
11203     } else {
11204         f64 = make_float64(f64_sbit
11205                            | (0x3fdULL << 52)
11206                            | f64_frac);
11207     }
11208 
11209     result_exp = (3068 - f64_exp) / 2;
11210 
11211     f64 = recip_sqrt_estimate(f64, s);
11212 
11213     result_frac = extract64(float64_val(f64), 0, 52);
11214 
11215     return make_float64(f64_sbit |
11216                         ((result_exp & 0x7ff) << 52) |
11217                         result_frac);
11218 }
11219 
11220 uint32_t HELPER(recpe_u32)(uint32_t a, void *fpstp)
11221 {
11222     float_status *s = fpstp;
11223     float64 f64;
11224 
11225     if ((a & 0x80000000) == 0) {
11226         return 0xffffffff;
11227     }
11228 
11229     f64 = make_float64((0x3feULL << 52)
11230                        | ((int64_t)(a & 0x7fffffff) << 21));
11231 
11232     f64 = recip_estimate(f64, s);
11233 
11234     return 0x80000000 | ((float64_val(f64) >> 21) & 0x7fffffff);
11235 }
11236 
11237 uint32_t HELPER(rsqrte_u32)(uint32_t a, void *fpstp)
11238 {
11239     float_status *fpst = fpstp;
11240     float64 f64;
11241 
11242     if ((a & 0xc0000000) == 0) {
11243         return 0xffffffff;
11244     }
11245 
11246     if (a & 0x80000000) {
11247         f64 = make_float64((0x3feULL << 52)
11248                            | ((uint64_t)(a & 0x7fffffff) << 21));
11249     } else { /* bits 31-30 == '01' */
11250         f64 = make_float64((0x3fdULL << 52)
11251                            | ((uint64_t)(a & 0x3fffffff) << 22));
11252     }
11253 
11254     f64 = recip_sqrt_estimate(f64, fpst);
11255 
11256     return 0x80000000 | ((float64_val(f64) >> 21) & 0x7fffffff);
11257 }
11258 
11259 /* VFPv4 fused multiply-accumulate */
11260 float32 VFP_HELPER(muladd, s)(float32 a, float32 b, float32 c, void *fpstp)
11261 {
11262     float_status *fpst = fpstp;
11263     return float32_muladd(a, b, c, 0, fpst);
11264 }
11265 
11266 float64 VFP_HELPER(muladd, d)(float64 a, float64 b, float64 c, void *fpstp)
11267 {
11268     float_status *fpst = fpstp;
11269     return float64_muladd(a, b, c, 0, fpst);
11270 }
11271 
11272 /* ARMv8 round to integral */
11273 float32 HELPER(rints_exact)(float32 x, void *fp_status)
11274 {
11275     return float32_round_to_int(x, fp_status);
11276 }
11277 
11278 float64 HELPER(rintd_exact)(float64 x, void *fp_status)
11279 {
11280     return float64_round_to_int(x, fp_status);
11281 }
11282 
11283 float32 HELPER(rints)(float32 x, void *fp_status)
11284 {
11285     int old_flags = get_float_exception_flags(fp_status), new_flags;
11286     float32 ret;
11287 
11288     ret = float32_round_to_int(x, fp_status);
11289 
11290     /* Suppress any inexact exceptions the conversion produced */
11291     if (!(old_flags & float_flag_inexact)) {
11292         new_flags = get_float_exception_flags(fp_status);
11293         set_float_exception_flags(new_flags & ~float_flag_inexact, fp_status);
11294     }
11295 
11296     return ret;
11297 }
11298 
11299 float64 HELPER(rintd)(float64 x, void *fp_status)
11300 {
11301     int old_flags = get_float_exception_flags(fp_status), new_flags;
11302     float64 ret;
11303 
11304     ret = float64_round_to_int(x, fp_status);
11305 
11306     new_flags = get_float_exception_flags(fp_status);
11307 
11308     /* Suppress any inexact exceptions the conversion produced */
11309     if (!(old_flags & float_flag_inexact)) {
11310         new_flags = get_float_exception_flags(fp_status);
11311         set_float_exception_flags(new_flags & ~float_flag_inexact, fp_status);
11312     }
11313 
11314     return ret;
11315 }
11316 
11317 /* Convert ARM rounding mode to softfloat */
11318 int arm_rmode_to_sf(int rmode)
11319 {
11320     switch (rmode) {
11321     case FPROUNDING_TIEAWAY:
11322         rmode = float_round_ties_away;
11323         break;
11324     case FPROUNDING_ODD:
11325         /* FIXME: add support for TIEAWAY and ODD */
11326         qemu_log_mask(LOG_UNIMP, "arm: unimplemented rounding mode: %d\n",
11327                       rmode);
11328     case FPROUNDING_TIEEVEN:
11329     default:
11330         rmode = float_round_nearest_even;
11331         break;
11332     case FPROUNDING_POSINF:
11333         rmode = float_round_up;
11334         break;
11335     case FPROUNDING_NEGINF:
11336         rmode = float_round_down;
11337         break;
11338     case FPROUNDING_ZERO:
11339         rmode = float_round_to_zero;
11340         break;
11341     }
11342     return rmode;
11343 }
11344 
11345 /* CRC helpers.
11346  * The upper bytes of val (above the number specified by 'bytes') must have
11347  * been zeroed out by the caller.
11348  */
11349 uint32_t HELPER(crc32)(uint32_t acc, uint32_t val, uint32_t bytes)
11350 {
11351     uint8_t buf[4];
11352 
11353     stl_le_p(buf, val);
11354 
11355     /* zlib crc32 converts the accumulator and output to one's complement.  */
11356     return crc32(acc ^ 0xffffffff, buf, bytes) ^ 0xffffffff;
11357 }
11358 
11359 uint32_t HELPER(crc32c)(uint32_t acc, uint32_t val, uint32_t bytes)
11360 {
11361     uint8_t buf[4];
11362 
11363     stl_le_p(buf, val);
11364 
11365     /* Linux crc32c converts the output to one's complement.  */
11366     return crc32c(acc, buf, bytes) ^ 0xffffffff;
11367 }
11368