1 #include "qemu/osdep.h" 2 #include "trace.h" 3 #include "cpu.h" 4 #include "internals.h" 5 #include "exec/gdbstub.h" 6 #include "exec/helper-proto.h" 7 #include "qemu/host-utils.h" 8 #include "sysemu/arch_init.h" 9 #include "sysemu/sysemu.h" 10 #include "qemu/bitops.h" 11 #include "qemu/crc32c.h" 12 #include "exec/exec-all.h" 13 #include "exec/cpu_ldst.h" 14 #include "arm_ldst.h" 15 #include <zlib.h> /* For crc32 */ 16 #include "exec/semihost.h" 17 #include "sysemu/kvm.h" 18 19 #define ARM_CPU_FREQ 1000000000 /* FIXME: 1 GHz, should be configurable */ 20 21 #ifndef CONFIG_USER_ONLY 22 /* Cacheability and shareability attributes for a memory access */ 23 typedef struct ARMCacheAttrs { 24 unsigned int attrs:8; /* as in the MAIR register encoding */ 25 unsigned int shareability:2; /* as in the SH field of the VMSAv8-64 PTEs */ 26 } ARMCacheAttrs; 27 28 static bool get_phys_addr(CPUARMState *env, target_ulong address, 29 MMUAccessType access_type, ARMMMUIdx mmu_idx, 30 hwaddr *phys_ptr, MemTxAttrs *attrs, int *prot, 31 target_ulong *page_size, uint32_t *fsr, 32 ARMMMUFaultInfo *fi, ARMCacheAttrs *cacheattrs); 33 34 static bool get_phys_addr_lpae(CPUARMState *env, target_ulong address, 35 MMUAccessType access_type, ARMMMUIdx mmu_idx, 36 hwaddr *phys_ptr, MemTxAttrs *txattrs, int *prot, 37 target_ulong *page_size_ptr, uint32_t *fsr, 38 ARMMMUFaultInfo *fi, ARMCacheAttrs *cacheattrs); 39 40 /* Security attributes for an address, as returned by v8m_security_lookup. */ 41 typedef struct V8M_SAttributes { 42 bool ns; 43 bool nsc; 44 uint8_t sregion; 45 bool srvalid; 46 uint8_t iregion; 47 bool irvalid; 48 } V8M_SAttributes; 49 50 static void v8m_security_lookup(CPUARMState *env, uint32_t address, 51 MMUAccessType access_type, ARMMMUIdx mmu_idx, 52 V8M_SAttributes *sattrs); 53 54 /* Definitions for the PMCCNTR and PMCR registers */ 55 #define PMCRD 0x8 56 #define PMCRC 0x4 57 #define PMCRE 0x1 58 #endif 59 60 static int vfp_gdb_get_reg(CPUARMState *env, uint8_t *buf, int reg) 61 { 62 int nregs; 63 64 /* VFP data registers are always little-endian. */ 65 nregs = arm_feature(env, ARM_FEATURE_VFP3) ? 32 : 16; 66 if (reg < nregs) { 67 stfq_le_p(buf, env->vfp.regs[reg]); 68 return 8; 69 } 70 if (arm_feature(env, ARM_FEATURE_NEON)) { 71 /* Aliases for Q regs. */ 72 nregs += 16; 73 if (reg < nregs) { 74 stfq_le_p(buf, env->vfp.regs[(reg - 32) * 2]); 75 stfq_le_p(buf + 8, env->vfp.regs[(reg - 32) * 2 + 1]); 76 return 16; 77 } 78 } 79 switch (reg - nregs) { 80 case 0: stl_p(buf, env->vfp.xregs[ARM_VFP_FPSID]); return 4; 81 case 1: stl_p(buf, env->vfp.xregs[ARM_VFP_FPSCR]); return 4; 82 case 2: stl_p(buf, env->vfp.xregs[ARM_VFP_FPEXC]); return 4; 83 } 84 return 0; 85 } 86 87 static int vfp_gdb_set_reg(CPUARMState *env, uint8_t *buf, int reg) 88 { 89 int nregs; 90 91 nregs = arm_feature(env, ARM_FEATURE_VFP3) ? 32 : 16; 92 if (reg < nregs) { 93 env->vfp.regs[reg] = ldfq_le_p(buf); 94 return 8; 95 } 96 if (arm_feature(env, ARM_FEATURE_NEON)) { 97 nregs += 16; 98 if (reg < nregs) { 99 env->vfp.regs[(reg - 32) * 2] = ldfq_le_p(buf); 100 env->vfp.regs[(reg - 32) * 2 + 1] = ldfq_le_p(buf + 8); 101 return 16; 102 } 103 } 104 switch (reg - nregs) { 105 case 0: env->vfp.xregs[ARM_VFP_FPSID] = ldl_p(buf); return 4; 106 case 1: env->vfp.xregs[ARM_VFP_FPSCR] = ldl_p(buf); return 4; 107 case 2: env->vfp.xregs[ARM_VFP_FPEXC] = ldl_p(buf) & (1 << 30); return 4; 108 } 109 return 0; 110 } 111 112 static int aarch64_fpu_gdb_get_reg(CPUARMState *env, uint8_t *buf, int reg) 113 { 114 switch (reg) { 115 case 0 ... 31: 116 /* 128 bit FP register */ 117 stfq_le_p(buf, env->vfp.regs[reg * 2]); 118 stfq_le_p(buf + 8, env->vfp.regs[reg * 2 + 1]); 119 return 16; 120 case 32: 121 /* FPSR */ 122 stl_p(buf, vfp_get_fpsr(env)); 123 return 4; 124 case 33: 125 /* FPCR */ 126 stl_p(buf, vfp_get_fpcr(env)); 127 return 4; 128 default: 129 return 0; 130 } 131 } 132 133 static int aarch64_fpu_gdb_set_reg(CPUARMState *env, uint8_t *buf, int reg) 134 { 135 switch (reg) { 136 case 0 ... 31: 137 /* 128 bit FP register */ 138 env->vfp.regs[reg * 2] = ldfq_le_p(buf); 139 env->vfp.regs[reg * 2 + 1] = ldfq_le_p(buf + 8); 140 return 16; 141 case 32: 142 /* FPSR */ 143 vfp_set_fpsr(env, ldl_p(buf)); 144 return 4; 145 case 33: 146 /* FPCR */ 147 vfp_set_fpcr(env, ldl_p(buf)); 148 return 4; 149 default: 150 return 0; 151 } 152 } 153 154 static uint64_t raw_read(CPUARMState *env, const ARMCPRegInfo *ri) 155 { 156 assert(ri->fieldoffset); 157 if (cpreg_field_is_64bit(ri)) { 158 return CPREG_FIELD64(env, ri); 159 } else { 160 return CPREG_FIELD32(env, ri); 161 } 162 } 163 164 static void raw_write(CPUARMState *env, const ARMCPRegInfo *ri, 165 uint64_t value) 166 { 167 assert(ri->fieldoffset); 168 if (cpreg_field_is_64bit(ri)) { 169 CPREG_FIELD64(env, ri) = value; 170 } else { 171 CPREG_FIELD32(env, ri) = value; 172 } 173 } 174 175 static void *raw_ptr(CPUARMState *env, const ARMCPRegInfo *ri) 176 { 177 return (char *)env + ri->fieldoffset; 178 } 179 180 uint64_t read_raw_cp_reg(CPUARMState *env, const ARMCPRegInfo *ri) 181 { 182 /* Raw read of a coprocessor register (as needed for migration, etc). */ 183 if (ri->type & ARM_CP_CONST) { 184 return ri->resetvalue; 185 } else if (ri->raw_readfn) { 186 return ri->raw_readfn(env, ri); 187 } else if (ri->readfn) { 188 return ri->readfn(env, ri); 189 } else { 190 return raw_read(env, ri); 191 } 192 } 193 194 static void write_raw_cp_reg(CPUARMState *env, const ARMCPRegInfo *ri, 195 uint64_t v) 196 { 197 /* Raw write of a coprocessor register (as needed for migration, etc). 198 * Note that constant registers are treated as write-ignored; the 199 * caller should check for success by whether a readback gives the 200 * value written. 201 */ 202 if (ri->type & ARM_CP_CONST) { 203 return; 204 } else if (ri->raw_writefn) { 205 ri->raw_writefn(env, ri, v); 206 } else if (ri->writefn) { 207 ri->writefn(env, ri, v); 208 } else { 209 raw_write(env, ri, v); 210 } 211 } 212 213 static bool raw_accessors_invalid(const ARMCPRegInfo *ri) 214 { 215 /* Return true if the regdef would cause an assertion if you called 216 * read_raw_cp_reg() or write_raw_cp_reg() on it (ie if it is a 217 * program bug for it not to have the NO_RAW flag). 218 * NB that returning false here doesn't necessarily mean that calling 219 * read/write_raw_cp_reg() is safe, because we can't distinguish "has 220 * read/write access functions which are safe for raw use" from "has 221 * read/write access functions which have side effects but has forgotten 222 * to provide raw access functions". 223 * The tests here line up with the conditions in read/write_raw_cp_reg() 224 * and assertions in raw_read()/raw_write(). 225 */ 226 if ((ri->type & ARM_CP_CONST) || 227 ri->fieldoffset || 228 ((ri->raw_writefn || ri->writefn) && (ri->raw_readfn || ri->readfn))) { 229 return false; 230 } 231 return true; 232 } 233 234 bool write_cpustate_to_list(ARMCPU *cpu) 235 { 236 /* Write the coprocessor state from cpu->env to the (index,value) list. */ 237 int i; 238 bool ok = true; 239 240 for (i = 0; i < cpu->cpreg_array_len; i++) { 241 uint32_t regidx = kvm_to_cpreg_id(cpu->cpreg_indexes[i]); 242 const ARMCPRegInfo *ri; 243 244 ri = get_arm_cp_reginfo(cpu->cp_regs, regidx); 245 if (!ri) { 246 ok = false; 247 continue; 248 } 249 if (ri->type & ARM_CP_NO_RAW) { 250 continue; 251 } 252 cpu->cpreg_values[i] = read_raw_cp_reg(&cpu->env, ri); 253 } 254 return ok; 255 } 256 257 bool write_list_to_cpustate(ARMCPU *cpu) 258 { 259 int i; 260 bool ok = true; 261 262 for (i = 0; i < cpu->cpreg_array_len; i++) { 263 uint32_t regidx = kvm_to_cpreg_id(cpu->cpreg_indexes[i]); 264 uint64_t v = cpu->cpreg_values[i]; 265 const ARMCPRegInfo *ri; 266 267 ri = get_arm_cp_reginfo(cpu->cp_regs, regidx); 268 if (!ri) { 269 ok = false; 270 continue; 271 } 272 if (ri->type & ARM_CP_NO_RAW) { 273 continue; 274 } 275 /* Write value and confirm it reads back as written 276 * (to catch read-only registers and partially read-only 277 * registers where the incoming migration value doesn't match) 278 */ 279 write_raw_cp_reg(&cpu->env, ri, v); 280 if (read_raw_cp_reg(&cpu->env, ri) != v) { 281 ok = false; 282 } 283 } 284 return ok; 285 } 286 287 static void add_cpreg_to_list(gpointer key, gpointer opaque) 288 { 289 ARMCPU *cpu = opaque; 290 uint64_t regidx; 291 const ARMCPRegInfo *ri; 292 293 regidx = *(uint32_t *)key; 294 ri = get_arm_cp_reginfo(cpu->cp_regs, regidx); 295 296 if (!(ri->type & (ARM_CP_NO_RAW|ARM_CP_ALIAS))) { 297 cpu->cpreg_indexes[cpu->cpreg_array_len] = cpreg_to_kvm_id(regidx); 298 /* The value array need not be initialized at this point */ 299 cpu->cpreg_array_len++; 300 } 301 } 302 303 static void count_cpreg(gpointer key, gpointer opaque) 304 { 305 ARMCPU *cpu = opaque; 306 uint64_t regidx; 307 const ARMCPRegInfo *ri; 308 309 regidx = *(uint32_t *)key; 310 ri = get_arm_cp_reginfo(cpu->cp_regs, regidx); 311 312 if (!(ri->type & (ARM_CP_NO_RAW|ARM_CP_ALIAS))) { 313 cpu->cpreg_array_len++; 314 } 315 } 316 317 static gint cpreg_key_compare(gconstpointer a, gconstpointer b) 318 { 319 uint64_t aidx = cpreg_to_kvm_id(*(uint32_t *)a); 320 uint64_t bidx = cpreg_to_kvm_id(*(uint32_t *)b); 321 322 if (aidx > bidx) { 323 return 1; 324 } 325 if (aidx < bidx) { 326 return -1; 327 } 328 return 0; 329 } 330 331 void init_cpreg_list(ARMCPU *cpu) 332 { 333 /* Initialise the cpreg_tuples[] array based on the cp_regs hash. 334 * Note that we require cpreg_tuples[] to be sorted by key ID. 335 */ 336 GList *keys; 337 int arraylen; 338 339 keys = g_hash_table_get_keys(cpu->cp_regs); 340 keys = g_list_sort(keys, cpreg_key_compare); 341 342 cpu->cpreg_array_len = 0; 343 344 g_list_foreach(keys, count_cpreg, cpu); 345 346 arraylen = cpu->cpreg_array_len; 347 cpu->cpreg_indexes = g_new(uint64_t, arraylen); 348 cpu->cpreg_values = g_new(uint64_t, arraylen); 349 cpu->cpreg_vmstate_indexes = g_new(uint64_t, arraylen); 350 cpu->cpreg_vmstate_values = g_new(uint64_t, arraylen); 351 cpu->cpreg_vmstate_array_len = cpu->cpreg_array_len; 352 cpu->cpreg_array_len = 0; 353 354 g_list_foreach(keys, add_cpreg_to_list, cpu); 355 356 assert(cpu->cpreg_array_len == arraylen); 357 358 g_list_free(keys); 359 } 360 361 /* 362 * Some registers are not accessible if EL3.NS=0 and EL3 is using AArch32 but 363 * they are accessible when EL3 is using AArch64 regardless of EL3.NS. 364 * 365 * access_el3_aa32ns: Used to check AArch32 register views. 366 * access_el3_aa32ns_aa64any: Used to check both AArch32/64 register views. 367 */ 368 static CPAccessResult access_el3_aa32ns(CPUARMState *env, 369 const ARMCPRegInfo *ri, 370 bool isread) 371 { 372 bool secure = arm_is_secure_below_el3(env); 373 374 assert(!arm_el_is_aa64(env, 3)); 375 if (secure) { 376 return CP_ACCESS_TRAP_UNCATEGORIZED; 377 } 378 return CP_ACCESS_OK; 379 } 380 381 static CPAccessResult access_el3_aa32ns_aa64any(CPUARMState *env, 382 const ARMCPRegInfo *ri, 383 bool isread) 384 { 385 if (!arm_el_is_aa64(env, 3)) { 386 return access_el3_aa32ns(env, ri, isread); 387 } 388 return CP_ACCESS_OK; 389 } 390 391 /* Some secure-only AArch32 registers trap to EL3 if used from 392 * Secure EL1 (but are just ordinary UNDEF in other non-EL3 contexts). 393 * Note that an access from Secure EL1 can only happen if EL3 is AArch64. 394 * We assume that the .access field is set to PL1_RW. 395 */ 396 static CPAccessResult access_trap_aa32s_el1(CPUARMState *env, 397 const ARMCPRegInfo *ri, 398 bool isread) 399 { 400 if (arm_current_el(env) == 3) { 401 return CP_ACCESS_OK; 402 } 403 if (arm_is_secure_below_el3(env)) { 404 return CP_ACCESS_TRAP_EL3; 405 } 406 /* This will be EL1 NS and EL2 NS, which just UNDEF */ 407 return CP_ACCESS_TRAP_UNCATEGORIZED; 408 } 409 410 /* Check for traps to "powerdown debug" registers, which are controlled 411 * by MDCR.TDOSA 412 */ 413 static CPAccessResult access_tdosa(CPUARMState *env, const ARMCPRegInfo *ri, 414 bool isread) 415 { 416 int el = arm_current_el(env); 417 418 if (el < 2 && (env->cp15.mdcr_el2 & MDCR_TDOSA) 419 && !arm_is_secure_below_el3(env)) { 420 return CP_ACCESS_TRAP_EL2; 421 } 422 if (el < 3 && (env->cp15.mdcr_el3 & MDCR_TDOSA)) { 423 return CP_ACCESS_TRAP_EL3; 424 } 425 return CP_ACCESS_OK; 426 } 427 428 /* Check for traps to "debug ROM" registers, which are controlled 429 * by MDCR_EL2.TDRA for EL2 but by the more general MDCR_EL3.TDA for EL3. 430 */ 431 static CPAccessResult access_tdra(CPUARMState *env, const ARMCPRegInfo *ri, 432 bool isread) 433 { 434 int el = arm_current_el(env); 435 436 if (el < 2 && (env->cp15.mdcr_el2 & MDCR_TDRA) 437 && !arm_is_secure_below_el3(env)) { 438 return CP_ACCESS_TRAP_EL2; 439 } 440 if (el < 3 && (env->cp15.mdcr_el3 & MDCR_TDA)) { 441 return CP_ACCESS_TRAP_EL3; 442 } 443 return CP_ACCESS_OK; 444 } 445 446 /* Check for traps to general debug registers, which are controlled 447 * by MDCR_EL2.TDA for EL2 and MDCR_EL3.TDA for EL3. 448 */ 449 static CPAccessResult access_tda(CPUARMState *env, const ARMCPRegInfo *ri, 450 bool isread) 451 { 452 int el = arm_current_el(env); 453 454 if (el < 2 && (env->cp15.mdcr_el2 & MDCR_TDA) 455 && !arm_is_secure_below_el3(env)) { 456 return CP_ACCESS_TRAP_EL2; 457 } 458 if (el < 3 && (env->cp15.mdcr_el3 & MDCR_TDA)) { 459 return CP_ACCESS_TRAP_EL3; 460 } 461 return CP_ACCESS_OK; 462 } 463 464 /* Check for traps to performance monitor registers, which are controlled 465 * by MDCR_EL2.TPM for EL2 and MDCR_EL3.TPM for EL3. 466 */ 467 static CPAccessResult access_tpm(CPUARMState *env, const ARMCPRegInfo *ri, 468 bool isread) 469 { 470 int el = arm_current_el(env); 471 472 if (el < 2 && (env->cp15.mdcr_el2 & MDCR_TPM) 473 && !arm_is_secure_below_el3(env)) { 474 return CP_ACCESS_TRAP_EL2; 475 } 476 if (el < 3 && (env->cp15.mdcr_el3 & MDCR_TPM)) { 477 return CP_ACCESS_TRAP_EL3; 478 } 479 return CP_ACCESS_OK; 480 } 481 482 static void dacr_write(CPUARMState *env, const ARMCPRegInfo *ri, uint64_t value) 483 { 484 ARMCPU *cpu = arm_env_get_cpu(env); 485 486 raw_write(env, ri, value); 487 tlb_flush(CPU(cpu)); /* Flush TLB as domain not tracked in TLB */ 488 } 489 490 static void fcse_write(CPUARMState *env, const ARMCPRegInfo *ri, uint64_t value) 491 { 492 ARMCPU *cpu = arm_env_get_cpu(env); 493 494 if (raw_read(env, ri) != value) { 495 /* Unlike real hardware the qemu TLB uses virtual addresses, 496 * not modified virtual addresses, so this causes a TLB flush. 497 */ 498 tlb_flush(CPU(cpu)); 499 raw_write(env, ri, value); 500 } 501 } 502 503 static void contextidr_write(CPUARMState *env, const ARMCPRegInfo *ri, 504 uint64_t value) 505 { 506 ARMCPU *cpu = arm_env_get_cpu(env); 507 508 if (raw_read(env, ri) != value && !arm_feature(env, ARM_FEATURE_PMSA) 509 && !extended_addresses_enabled(env)) { 510 /* For VMSA (when not using the LPAE long descriptor page table 511 * format) this register includes the ASID, so do a TLB flush. 512 * For PMSA it is purely a process ID and no action is needed. 513 */ 514 tlb_flush(CPU(cpu)); 515 } 516 raw_write(env, ri, value); 517 } 518 519 static void tlbiall_write(CPUARMState *env, const ARMCPRegInfo *ri, 520 uint64_t value) 521 { 522 /* Invalidate all (TLBIALL) */ 523 ARMCPU *cpu = arm_env_get_cpu(env); 524 525 tlb_flush(CPU(cpu)); 526 } 527 528 static void tlbimva_write(CPUARMState *env, const ARMCPRegInfo *ri, 529 uint64_t value) 530 { 531 /* Invalidate single TLB entry by MVA and ASID (TLBIMVA) */ 532 ARMCPU *cpu = arm_env_get_cpu(env); 533 534 tlb_flush_page(CPU(cpu), value & TARGET_PAGE_MASK); 535 } 536 537 static void tlbiasid_write(CPUARMState *env, const ARMCPRegInfo *ri, 538 uint64_t value) 539 { 540 /* Invalidate by ASID (TLBIASID) */ 541 ARMCPU *cpu = arm_env_get_cpu(env); 542 543 tlb_flush(CPU(cpu)); 544 } 545 546 static void tlbimvaa_write(CPUARMState *env, const ARMCPRegInfo *ri, 547 uint64_t value) 548 { 549 /* Invalidate single entry by MVA, all ASIDs (TLBIMVAA) */ 550 ARMCPU *cpu = arm_env_get_cpu(env); 551 552 tlb_flush_page(CPU(cpu), value & TARGET_PAGE_MASK); 553 } 554 555 /* IS variants of TLB operations must affect all cores */ 556 static void tlbiall_is_write(CPUARMState *env, const ARMCPRegInfo *ri, 557 uint64_t value) 558 { 559 CPUState *cs = ENV_GET_CPU(env); 560 561 tlb_flush_all_cpus_synced(cs); 562 } 563 564 static void tlbiasid_is_write(CPUARMState *env, const ARMCPRegInfo *ri, 565 uint64_t value) 566 { 567 CPUState *cs = ENV_GET_CPU(env); 568 569 tlb_flush_all_cpus_synced(cs); 570 } 571 572 static void tlbimva_is_write(CPUARMState *env, const ARMCPRegInfo *ri, 573 uint64_t value) 574 { 575 CPUState *cs = ENV_GET_CPU(env); 576 577 tlb_flush_page_all_cpus_synced(cs, value & TARGET_PAGE_MASK); 578 } 579 580 static void tlbimvaa_is_write(CPUARMState *env, const ARMCPRegInfo *ri, 581 uint64_t value) 582 { 583 CPUState *cs = ENV_GET_CPU(env); 584 585 tlb_flush_page_all_cpus_synced(cs, value & TARGET_PAGE_MASK); 586 } 587 588 static void tlbiall_nsnh_write(CPUARMState *env, const ARMCPRegInfo *ri, 589 uint64_t value) 590 { 591 CPUState *cs = ENV_GET_CPU(env); 592 593 tlb_flush_by_mmuidx(cs, 594 ARMMMUIdxBit_S12NSE1 | 595 ARMMMUIdxBit_S12NSE0 | 596 ARMMMUIdxBit_S2NS); 597 } 598 599 static void tlbiall_nsnh_is_write(CPUARMState *env, const ARMCPRegInfo *ri, 600 uint64_t value) 601 { 602 CPUState *cs = ENV_GET_CPU(env); 603 604 tlb_flush_by_mmuidx_all_cpus_synced(cs, 605 ARMMMUIdxBit_S12NSE1 | 606 ARMMMUIdxBit_S12NSE0 | 607 ARMMMUIdxBit_S2NS); 608 } 609 610 static void tlbiipas2_write(CPUARMState *env, const ARMCPRegInfo *ri, 611 uint64_t value) 612 { 613 /* Invalidate by IPA. This has to invalidate any structures that 614 * contain only stage 2 translation information, but does not need 615 * to apply to structures that contain combined stage 1 and stage 2 616 * translation information. 617 * This must NOP if EL2 isn't implemented or SCR_EL3.NS is zero. 618 */ 619 CPUState *cs = ENV_GET_CPU(env); 620 uint64_t pageaddr; 621 622 if (!arm_feature(env, ARM_FEATURE_EL2) || !(env->cp15.scr_el3 & SCR_NS)) { 623 return; 624 } 625 626 pageaddr = sextract64(value << 12, 0, 40); 627 628 tlb_flush_page_by_mmuidx(cs, pageaddr, ARMMMUIdxBit_S2NS); 629 } 630 631 static void tlbiipas2_is_write(CPUARMState *env, const ARMCPRegInfo *ri, 632 uint64_t value) 633 { 634 CPUState *cs = ENV_GET_CPU(env); 635 uint64_t pageaddr; 636 637 if (!arm_feature(env, ARM_FEATURE_EL2) || !(env->cp15.scr_el3 & SCR_NS)) { 638 return; 639 } 640 641 pageaddr = sextract64(value << 12, 0, 40); 642 643 tlb_flush_page_by_mmuidx_all_cpus_synced(cs, pageaddr, 644 ARMMMUIdxBit_S2NS); 645 } 646 647 static void tlbiall_hyp_write(CPUARMState *env, const ARMCPRegInfo *ri, 648 uint64_t value) 649 { 650 CPUState *cs = ENV_GET_CPU(env); 651 652 tlb_flush_by_mmuidx(cs, ARMMMUIdxBit_S1E2); 653 } 654 655 static void tlbiall_hyp_is_write(CPUARMState *env, const ARMCPRegInfo *ri, 656 uint64_t value) 657 { 658 CPUState *cs = ENV_GET_CPU(env); 659 660 tlb_flush_by_mmuidx_all_cpus_synced(cs, ARMMMUIdxBit_S1E2); 661 } 662 663 static void tlbimva_hyp_write(CPUARMState *env, const ARMCPRegInfo *ri, 664 uint64_t value) 665 { 666 CPUState *cs = ENV_GET_CPU(env); 667 uint64_t pageaddr = value & ~MAKE_64BIT_MASK(0, 12); 668 669 tlb_flush_page_by_mmuidx(cs, pageaddr, ARMMMUIdxBit_S1E2); 670 } 671 672 static void tlbimva_hyp_is_write(CPUARMState *env, const ARMCPRegInfo *ri, 673 uint64_t value) 674 { 675 CPUState *cs = ENV_GET_CPU(env); 676 uint64_t pageaddr = value & ~MAKE_64BIT_MASK(0, 12); 677 678 tlb_flush_page_by_mmuidx_all_cpus_synced(cs, pageaddr, 679 ARMMMUIdxBit_S1E2); 680 } 681 682 static const ARMCPRegInfo cp_reginfo[] = { 683 /* Define the secure and non-secure FCSE identifier CP registers 684 * separately because there is no secure bank in V8 (no _EL3). This allows 685 * the secure register to be properly reset and migrated. There is also no 686 * v8 EL1 version of the register so the non-secure instance stands alone. 687 */ 688 { .name = "FCSEIDR(NS)", 689 .cp = 15, .opc1 = 0, .crn = 13, .crm = 0, .opc2 = 0, 690 .access = PL1_RW, .secure = ARM_CP_SECSTATE_NS, 691 .fieldoffset = offsetof(CPUARMState, cp15.fcseidr_ns), 692 .resetvalue = 0, .writefn = fcse_write, .raw_writefn = raw_write, }, 693 { .name = "FCSEIDR(S)", 694 .cp = 15, .opc1 = 0, .crn = 13, .crm = 0, .opc2 = 0, 695 .access = PL1_RW, .secure = ARM_CP_SECSTATE_S, 696 .fieldoffset = offsetof(CPUARMState, cp15.fcseidr_s), 697 .resetvalue = 0, .writefn = fcse_write, .raw_writefn = raw_write, }, 698 /* Define the secure and non-secure context identifier CP registers 699 * separately because there is no secure bank in V8 (no _EL3). This allows 700 * the secure register to be properly reset and migrated. In the 701 * non-secure case, the 32-bit register will have reset and migration 702 * disabled during registration as it is handled by the 64-bit instance. 703 */ 704 { .name = "CONTEXTIDR_EL1", .state = ARM_CP_STATE_BOTH, 705 .opc0 = 3, .opc1 = 0, .crn = 13, .crm = 0, .opc2 = 1, 706 .access = PL1_RW, .secure = ARM_CP_SECSTATE_NS, 707 .fieldoffset = offsetof(CPUARMState, cp15.contextidr_el[1]), 708 .resetvalue = 0, .writefn = contextidr_write, .raw_writefn = raw_write, }, 709 { .name = "CONTEXTIDR(S)", .state = ARM_CP_STATE_AA32, 710 .cp = 15, .opc1 = 0, .crn = 13, .crm = 0, .opc2 = 1, 711 .access = PL1_RW, .secure = ARM_CP_SECSTATE_S, 712 .fieldoffset = offsetof(CPUARMState, cp15.contextidr_s), 713 .resetvalue = 0, .writefn = contextidr_write, .raw_writefn = raw_write, }, 714 REGINFO_SENTINEL 715 }; 716 717 static const ARMCPRegInfo not_v8_cp_reginfo[] = { 718 /* NB: Some of these registers exist in v8 but with more precise 719 * definitions that don't use CP_ANY wildcards (mostly in v8_cp_reginfo[]). 720 */ 721 /* MMU Domain access control / MPU write buffer control */ 722 { .name = "DACR", 723 .cp = 15, .opc1 = CP_ANY, .crn = 3, .crm = CP_ANY, .opc2 = CP_ANY, 724 .access = PL1_RW, .resetvalue = 0, 725 .writefn = dacr_write, .raw_writefn = raw_write, 726 .bank_fieldoffsets = { offsetoflow32(CPUARMState, cp15.dacr_s), 727 offsetoflow32(CPUARMState, cp15.dacr_ns) } }, 728 /* ARMv7 allocates a range of implementation defined TLB LOCKDOWN regs. 729 * For v6 and v5, these mappings are overly broad. 730 */ 731 { .name = "TLB_LOCKDOWN", .cp = 15, .crn = 10, .crm = 0, 732 .opc1 = CP_ANY, .opc2 = CP_ANY, .access = PL1_RW, .type = ARM_CP_NOP }, 733 { .name = "TLB_LOCKDOWN", .cp = 15, .crn = 10, .crm = 1, 734 .opc1 = CP_ANY, .opc2 = CP_ANY, .access = PL1_RW, .type = ARM_CP_NOP }, 735 { .name = "TLB_LOCKDOWN", .cp = 15, .crn = 10, .crm = 4, 736 .opc1 = CP_ANY, .opc2 = CP_ANY, .access = PL1_RW, .type = ARM_CP_NOP }, 737 { .name = "TLB_LOCKDOWN", .cp = 15, .crn = 10, .crm = 8, 738 .opc1 = CP_ANY, .opc2 = CP_ANY, .access = PL1_RW, .type = ARM_CP_NOP }, 739 /* Cache maintenance ops; some of this space may be overridden later. */ 740 { .name = "CACHEMAINT", .cp = 15, .crn = 7, .crm = CP_ANY, 741 .opc1 = 0, .opc2 = CP_ANY, .access = PL1_W, 742 .type = ARM_CP_NOP | ARM_CP_OVERRIDE }, 743 REGINFO_SENTINEL 744 }; 745 746 static const ARMCPRegInfo not_v6_cp_reginfo[] = { 747 /* Not all pre-v6 cores implemented this WFI, so this is slightly 748 * over-broad. 749 */ 750 { .name = "WFI_v5", .cp = 15, .crn = 7, .crm = 8, .opc1 = 0, .opc2 = 2, 751 .access = PL1_W, .type = ARM_CP_WFI }, 752 REGINFO_SENTINEL 753 }; 754 755 static const ARMCPRegInfo not_v7_cp_reginfo[] = { 756 /* Standard v6 WFI (also used in some pre-v6 cores); not in v7 (which 757 * is UNPREDICTABLE; we choose to NOP as most implementations do). 758 */ 759 { .name = "WFI_v6", .cp = 15, .crn = 7, .crm = 0, .opc1 = 0, .opc2 = 4, 760 .access = PL1_W, .type = ARM_CP_WFI }, 761 /* L1 cache lockdown. Not architectural in v6 and earlier but in practice 762 * implemented in 926, 946, 1026, 1136, 1176 and 11MPCore. StrongARM and 763 * OMAPCP will override this space. 764 */ 765 { .name = "DLOCKDOWN", .cp = 15, .crn = 9, .crm = 0, .opc1 = 0, .opc2 = 0, 766 .access = PL1_RW, .fieldoffset = offsetof(CPUARMState, cp15.c9_data), 767 .resetvalue = 0 }, 768 { .name = "ILOCKDOWN", .cp = 15, .crn = 9, .crm = 0, .opc1 = 0, .opc2 = 1, 769 .access = PL1_RW, .fieldoffset = offsetof(CPUARMState, cp15.c9_insn), 770 .resetvalue = 0 }, 771 /* v6 doesn't have the cache ID registers but Linux reads them anyway */ 772 { .name = "DUMMY", .cp = 15, .crn = 0, .crm = 0, .opc1 = 1, .opc2 = CP_ANY, 773 .access = PL1_R, .type = ARM_CP_CONST | ARM_CP_NO_RAW, 774 .resetvalue = 0 }, 775 /* We don't implement pre-v7 debug but most CPUs had at least a DBGDIDR; 776 * implementing it as RAZ means the "debug architecture version" bits 777 * will read as a reserved value, which should cause Linux to not try 778 * to use the debug hardware. 779 */ 780 { .name = "DBGDIDR", .cp = 14, .crn = 0, .crm = 0, .opc1 = 0, .opc2 = 0, 781 .access = PL0_R, .type = ARM_CP_CONST, .resetvalue = 0 }, 782 /* MMU TLB control. Note that the wildcarding means we cover not just 783 * the unified TLB ops but also the dside/iside/inner-shareable variants. 784 */ 785 { .name = "TLBIALL", .cp = 15, .crn = 8, .crm = CP_ANY, 786 .opc1 = CP_ANY, .opc2 = 0, .access = PL1_W, .writefn = tlbiall_write, 787 .type = ARM_CP_NO_RAW }, 788 { .name = "TLBIMVA", .cp = 15, .crn = 8, .crm = CP_ANY, 789 .opc1 = CP_ANY, .opc2 = 1, .access = PL1_W, .writefn = tlbimva_write, 790 .type = ARM_CP_NO_RAW }, 791 { .name = "TLBIASID", .cp = 15, .crn = 8, .crm = CP_ANY, 792 .opc1 = CP_ANY, .opc2 = 2, .access = PL1_W, .writefn = tlbiasid_write, 793 .type = ARM_CP_NO_RAW }, 794 { .name = "TLBIMVAA", .cp = 15, .crn = 8, .crm = CP_ANY, 795 .opc1 = CP_ANY, .opc2 = 3, .access = PL1_W, .writefn = tlbimvaa_write, 796 .type = ARM_CP_NO_RAW }, 797 { .name = "PRRR", .cp = 15, .crn = 10, .crm = 2, 798 .opc1 = 0, .opc2 = 0, .access = PL1_RW, .type = ARM_CP_NOP }, 799 { .name = "NMRR", .cp = 15, .crn = 10, .crm = 2, 800 .opc1 = 0, .opc2 = 1, .access = PL1_RW, .type = ARM_CP_NOP }, 801 REGINFO_SENTINEL 802 }; 803 804 static void cpacr_write(CPUARMState *env, const ARMCPRegInfo *ri, 805 uint64_t value) 806 { 807 uint32_t mask = 0; 808 809 /* In ARMv8 most bits of CPACR_EL1 are RES0. */ 810 if (!arm_feature(env, ARM_FEATURE_V8)) { 811 /* ARMv7 defines bits for unimplemented coprocessors as RAZ/WI. 812 * ASEDIS [31] and D32DIS [30] are both UNK/SBZP without VFP. 813 * TRCDIS [28] is RAZ/WI since we do not implement a trace macrocell. 814 */ 815 if (arm_feature(env, ARM_FEATURE_VFP)) { 816 /* VFP coprocessor: cp10 & cp11 [23:20] */ 817 mask |= (1 << 31) | (1 << 30) | (0xf << 20); 818 819 if (!arm_feature(env, ARM_FEATURE_NEON)) { 820 /* ASEDIS [31] bit is RAO/WI */ 821 value |= (1 << 31); 822 } 823 824 /* VFPv3 and upwards with NEON implement 32 double precision 825 * registers (D0-D31). 826 */ 827 if (!arm_feature(env, ARM_FEATURE_NEON) || 828 !arm_feature(env, ARM_FEATURE_VFP3)) { 829 /* D32DIS [30] is RAO/WI if D16-31 are not implemented. */ 830 value |= (1 << 30); 831 } 832 } 833 value &= mask; 834 } 835 env->cp15.cpacr_el1 = value; 836 } 837 838 static CPAccessResult cpacr_access(CPUARMState *env, const ARMCPRegInfo *ri, 839 bool isread) 840 { 841 if (arm_feature(env, ARM_FEATURE_V8)) { 842 /* Check if CPACR accesses are to be trapped to EL2 */ 843 if (arm_current_el(env) == 1 && 844 (env->cp15.cptr_el[2] & CPTR_TCPAC) && !arm_is_secure(env)) { 845 return CP_ACCESS_TRAP_EL2; 846 /* Check if CPACR accesses are to be trapped to EL3 */ 847 } else if (arm_current_el(env) < 3 && 848 (env->cp15.cptr_el[3] & CPTR_TCPAC)) { 849 return CP_ACCESS_TRAP_EL3; 850 } 851 } 852 853 return CP_ACCESS_OK; 854 } 855 856 static CPAccessResult cptr_access(CPUARMState *env, const ARMCPRegInfo *ri, 857 bool isread) 858 { 859 /* Check if CPTR accesses are set to trap to EL3 */ 860 if (arm_current_el(env) == 2 && (env->cp15.cptr_el[3] & CPTR_TCPAC)) { 861 return CP_ACCESS_TRAP_EL3; 862 } 863 864 return CP_ACCESS_OK; 865 } 866 867 static const ARMCPRegInfo v6_cp_reginfo[] = { 868 /* prefetch by MVA in v6, NOP in v7 */ 869 { .name = "MVA_prefetch", 870 .cp = 15, .crn = 7, .crm = 13, .opc1 = 0, .opc2 = 1, 871 .access = PL1_W, .type = ARM_CP_NOP }, 872 /* We need to break the TB after ISB to execute self-modifying code 873 * correctly and also to take any pending interrupts immediately. 874 * So use arm_cp_write_ignore() function instead of ARM_CP_NOP flag. 875 */ 876 { .name = "ISB", .cp = 15, .crn = 7, .crm = 5, .opc1 = 0, .opc2 = 4, 877 .access = PL0_W, .type = ARM_CP_NO_RAW, .writefn = arm_cp_write_ignore }, 878 { .name = "DSB", .cp = 15, .crn = 7, .crm = 10, .opc1 = 0, .opc2 = 4, 879 .access = PL0_W, .type = ARM_CP_NOP }, 880 { .name = "DMB", .cp = 15, .crn = 7, .crm = 10, .opc1 = 0, .opc2 = 5, 881 .access = PL0_W, .type = ARM_CP_NOP }, 882 { .name = "IFAR", .cp = 15, .crn = 6, .crm = 0, .opc1 = 0, .opc2 = 2, 883 .access = PL1_RW, 884 .bank_fieldoffsets = { offsetof(CPUARMState, cp15.ifar_s), 885 offsetof(CPUARMState, cp15.ifar_ns) }, 886 .resetvalue = 0, }, 887 /* Watchpoint Fault Address Register : should actually only be present 888 * for 1136, 1176, 11MPCore. 889 */ 890 { .name = "WFAR", .cp = 15, .crn = 6, .crm = 0, .opc1 = 0, .opc2 = 1, 891 .access = PL1_RW, .type = ARM_CP_CONST, .resetvalue = 0, }, 892 { .name = "CPACR", .state = ARM_CP_STATE_BOTH, .opc0 = 3, 893 .crn = 1, .crm = 0, .opc1 = 0, .opc2 = 2, .accessfn = cpacr_access, 894 .access = PL1_RW, .fieldoffset = offsetof(CPUARMState, cp15.cpacr_el1), 895 .resetvalue = 0, .writefn = cpacr_write }, 896 REGINFO_SENTINEL 897 }; 898 899 static CPAccessResult pmreg_access(CPUARMState *env, const ARMCPRegInfo *ri, 900 bool isread) 901 { 902 /* Performance monitor registers user accessibility is controlled 903 * by PMUSERENR. MDCR_EL2.TPM and MDCR_EL3.TPM allow configurable 904 * trapping to EL2 or EL3 for other accesses. 905 */ 906 int el = arm_current_el(env); 907 908 if (el == 0 && !(env->cp15.c9_pmuserenr & 1)) { 909 return CP_ACCESS_TRAP; 910 } 911 if (el < 2 && (env->cp15.mdcr_el2 & MDCR_TPM) 912 && !arm_is_secure_below_el3(env)) { 913 return CP_ACCESS_TRAP_EL2; 914 } 915 if (el < 3 && (env->cp15.mdcr_el3 & MDCR_TPM)) { 916 return CP_ACCESS_TRAP_EL3; 917 } 918 919 return CP_ACCESS_OK; 920 } 921 922 static CPAccessResult pmreg_access_xevcntr(CPUARMState *env, 923 const ARMCPRegInfo *ri, 924 bool isread) 925 { 926 /* ER: event counter read trap control */ 927 if (arm_feature(env, ARM_FEATURE_V8) 928 && arm_current_el(env) == 0 929 && (env->cp15.c9_pmuserenr & (1 << 3)) != 0 930 && isread) { 931 return CP_ACCESS_OK; 932 } 933 934 return pmreg_access(env, ri, isread); 935 } 936 937 static CPAccessResult pmreg_access_swinc(CPUARMState *env, 938 const ARMCPRegInfo *ri, 939 bool isread) 940 { 941 /* SW: software increment write trap control */ 942 if (arm_feature(env, ARM_FEATURE_V8) 943 && arm_current_el(env) == 0 944 && (env->cp15.c9_pmuserenr & (1 << 1)) != 0 945 && !isread) { 946 return CP_ACCESS_OK; 947 } 948 949 return pmreg_access(env, ri, isread); 950 } 951 952 #ifndef CONFIG_USER_ONLY 953 954 static CPAccessResult pmreg_access_selr(CPUARMState *env, 955 const ARMCPRegInfo *ri, 956 bool isread) 957 { 958 /* ER: event counter read trap control */ 959 if (arm_feature(env, ARM_FEATURE_V8) 960 && arm_current_el(env) == 0 961 && (env->cp15.c9_pmuserenr & (1 << 3)) != 0) { 962 return CP_ACCESS_OK; 963 } 964 965 return pmreg_access(env, ri, isread); 966 } 967 968 static CPAccessResult pmreg_access_ccntr(CPUARMState *env, 969 const ARMCPRegInfo *ri, 970 bool isread) 971 { 972 /* CR: cycle counter read trap control */ 973 if (arm_feature(env, ARM_FEATURE_V8) 974 && arm_current_el(env) == 0 975 && (env->cp15.c9_pmuserenr & (1 << 2)) != 0 976 && isread) { 977 return CP_ACCESS_OK; 978 } 979 980 return pmreg_access(env, ri, isread); 981 } 982 983 static inline bool arm_ccnt_enabled(CPUARMState *env) 984 { 985 /* This does not support checking PMCCFILTR_EL0 register */ 986 987 if (!(env->cp15.c9_pmcr & PMCRE)) { 988 return false; 989 } 990 991 return true; 992 } 993 994 void pmccntr_sync(CPUARMState *env) 995 { 996 uint64_t temp_ticks; 997 998 temp_ticks = muldiv64(qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL), 999 ARM_CPU_FREQ, NANOSECONDS_PER_SECOND); 1000 1001 if (env->cp15.c9_pmcr & PMCRD) { 1002 /* Increment once every 64 processor clock cycles */ 1003 temp_ticks /= 64; 1004 } 1005 1006 if (arm_ccnt_enabled(env)) { 1007 env->cp15.c15_ccnt = temp_ticks - env->cp15.c15_ccnt; 1008 } 1009 } 1010 1011 static void pmcr_write(CPUARMState *env, const ARMCPRegInfo *ri, 1012 uint64_t value) 1013 { 1014 pmccntr_sync(env); 1015 1016 if (value & PMCRC) { 1017 /* The counter has been reset */ 1018 env->cp15.c15_ccnt = 0; 1019 } 1020 1021 /* only the DP, X, D and E bits are writable */ 1022 env->cp15.c9_pmcr &= ~0x39; 1023 env->cp15.c9_pmcr |= (value & 0x39); 1024 1025 pmccntr_sync(env); 1026 } 1027 1028 static uint64_t pmccntr_read(CPUARMState *env, const ARMCPRegInfo *ri) 1029 { 1030 uint64_t total_ticks; 1031 1032 if (!arm_ccnt_enabled(env)) { 1033 /* Counter is disabled, do not change value */ 1034 return env->cp15.c15_ccnt; 1035 } 1036 1037 total_ticks = muldiv64(qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL), 1038 ARM_CPU_FREQ, NANOSECONDS_PER_SECOND); 1039 1040 if (env->cp15.c9_pmcr & PMCRD) { 1041 /* Increment once every 64 processor clock cycles */ 1042 total_ticks /= 64; 1043 } 1044 return total_ticks - env->cp15.c15_ccnt; 1045 } 1046 1047 static void pmselr_write(CPUARMState *env, const ARMCPRegInfo *ri, 1048 uint64_t value) 1049 { 1050 /* The value of PMSELR.SEL affects the behavior of PMXEVTYPER and 1051 * PMXEVCNTR. We allow [0..31] to be written to PMSELR here; in the 1052 * meanwhile, we check PMSELR.SEL when PMXEVTYPER and PMXEVCNTR are 1053 * accessed. 1054 */ 1055 env->cp15.c9_pmselr = value & 0x1f; 1056 } 1057 1058 static void pmccntr_write(CPUARMState *env, const ARMCPRegInfo *ri, 1059 uint64_t value) 1060 { 1061 uint64_t total_ticks; 1062 1063 if (!arm_ccnt_enabled(env)) { 1064 /* Counter is disabled, set the absolute value */ 1065 env->cp15.c15_ccnt = value; 1066 return; 1067 } 1068 1069 total_ticks = muldiv64(qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL), 1070 ARM_CPU_FREQ, NANOSECONDS_PER_SECOND); 1071 1072 if (env->cp15.c9_pmcr & PMCRD) { 1073 /* Increment once every 64 processor clock cycles */ 1074 total_ticks /= 64; 1075 } 1076 env->cp15.c15_ccnt = total_ticks - value; 1077 } 1078 1079 static void pmccntr_write32(CPUARMState *env, const ARMCPRegInfo *ri, 1080 uint64_t value) 1081 { 1082 uint64_t cur_val = pmccntr_read(env, NULL); 1083 1084 pmccntr_write(env, ri, deposit64(cur_val, 0, 32, value)); 1085 } 1086 1087 #else /* CONFIG_USER_ONLY */ 1088 1089 void pmccntr_sync(CPUARMState *env) 1090 { 1091 } 1092 1093 #endif 1094 1095 static void pmccfiltr_write(CPUARMState *env, const ARMCPRegInfo *ri, 1096 uint64_t value) 1097 { 1098 pmccntr_sync(env); 1099 env->cp15.pmccfiltr_el0 = value & 0x7E000000; 1100 pmccntr_sync(env); 1101 } 1102 1103 static void pmcntenset_write(CPUARMState *env, const ARMCPRegInfo *ri, 1104 uint64_t value) 1105 { 1106 value &= (1 << 31); 1107 env->cp15.c9_pmcnten |= value; 1108 } 1109 1110 static void pmcntenclr_write(CPUARMState *env, const ARMCPRegInfo *ri, 1111 uint64_t value) 1112 { 1113 value &= (1 << 31); 1114 env->cp15.c9_pmcnten &= ~value; 1115 } 1116 1117 static void pmovsr_write(CPUARMState *env, const ARMCPRegInfo *ri, 1118 uint64_t value) 1119 { 1120 env->cp15.c9_pmovsr &= ~value; 1121 } 1122 1123 static void pmxevtyper_write(CPUARMState *env, const ARMCPRegInfo *ri, 1124 uint64_t value) 1125 { 1126 /* Attempts to access PMXEVTYPER are CONSTRAINED UNPREDICTABLE when 1127 * PMSELR value is equal to or greater than the number of implemented 1128 * counters, but not equal to 0x1f. We opt to behave as a RAZ/WI. 1129 */ 1130 if (env->cp15.c9_pmselr == 0x1f) { 1131 pmccfiltr_write(env, ri, value); 1132 } 1133 } 1134 1135 static uint64_t pmxevtyper_read(CPUARMState *env, const ARMCPRegInfo *ri) 1136 { 1137 /* We opt to behave as a RAZ/WI when attempts to access PMXEVTYPER 1138 * are CONSTRAINED UNPREDICTABLE. See comments in pmxevtyper_write(). 1139 */ 1140 if (env->cp15.c9_pmselr == 0x1f) { 1141 return env->cp15.pmccfiltr_el0; 1142 } else { 1143 return 0; 1144 } 1145 } 1146 1147 static void pmuserenr_write(CPUARMState *env, const ARMCPRegInfo *ri, 1148 uint64_t value) 1149 { 1150 if (arm_feature(env, ARM_FEATURE_V8)) { 1151 env->cp15.c9_pmuserenr = value & 0xf; 1152 } else { 1153 env->cp15.c9_pmuserenr = value & 1; 1154 } 1155 } 1156 1157 static void pmintenset_write(CPUARMState *env, const ARMCPRegInfo *ri, 1158 uint64_t value) 1159 { 1160 /* We have no event counters so only the C bit can be changed */ 1161 value &= (1 << 31); 1162 env->cp15.c9_pminten |= value; 1163 } 1164 1165 static void pmintenclr_write(CPUARMState *env, const ARMCPRegInfo *ri, 1166 uint64_t value) 1167 { 1168 value &= (1 << 31); 1169 env->cp15.c9_pminten &= ~value; 1170 } 1171 1172 static void vbar_write(CPUARMState *env, const ARMCPRegInfo *ri, 1173 uint64_t value) 1174 { 1175 /* Note that even though the AArch64 view of this register has bits 1176 * [10:0] all RES0 we can only mask the bottom 5, to comply with the 1177 * architectural requirements for bits which are RES0 only in some 1178 * contexts. (ARMv8 would permit us to do no masking at all, but ARMv7 1179 * requires the bottom five bits to be RAZ/WI because they're UNK/SBZP.) 1180 */ 1181 raw_write(env, ri, value & ~0x1FULL); 1182 } 1183 1184 static void scr_write(CPUARMState *env, const ARMCPRegInfo *ri, uint64_t value) 1185 { 1186 /* We only mask off bits that are RES0 both for AArch64 and AArch32. 1187 * For bits that vary between AArch32/64, code needs to check the 1188 * current execution mode before directly using the feature bit. 1189 */ 1190 uint32_t valid_mask = SCR_AARCH64_MASK | SCR_AARCH32_MASK; 1191 1192 if (!arm_feature(env, ARM_FEATURE_EL2)) { 1193 valid_mask &= ~SCR_HCE; 1194 1195 /* On ARMv7, SMD (or SCD as it is called in v7) is only 1196 * supported if EL2 exists. The bit is UNK/SBZP when 1197 * EL2 is unavailable. In QEMU ARMv7, we force it to always zero 1198 * when EL2 is unavailable. 1199 * On ARMv8, this bit is always available. 1200 */ 1201 if (arm_feature(env, ARM_FEATURE_V7) && 1202 !arm_feature(env, ARM_FEATURE_V8)) { 1203 valid_mask &= ~SCR_SMD; 1204 } 1205 } 1206 1207 /* Clear all-context RES0 bits. */ 1208 value &= valid_mask; 1209 raw_write(env, ri, value); 1210 } 1211 1212 static uint64_t ccsidr_read(CPUARMState *env, const ARMCPRegInfo *ri) 1213 { 1214 ARMCPU *cpu = arm_env_get_cpu(env); 1215 1216 /* Acquire the CSSELR index from the bank corresponding to the CCSIDR 1217 * bank 1218 */ 1219 uint32_t index = A32_BANKED_REG_GET(env, csselr, 1220 ri->secure & ARM_CP_SECSTATE_S); 1221 1222 return cpu->ccsidr[index]; 1223 } 1224 1225 static void csselr_write(CPUARMState *env, const ARMCPRegInfo *ri, 1226 uint64_t value) 1227 { 1228 raw_write(env, ri, value & 0xf); 1229 } 1230 1231 static uint64_t isr_read(CPUARMState *env, const ARMCPRegInfo *ri) 1232 { 1233 CPUState *cs = ENV_GET_CPU(env); 1234 uint64_t ret = 0; 1235 1236 if (cs->interrupt_request & CPU_INTERRUPT_HARD) { 1237 ret |= CPSR_I; 1238 } 1239 if (cs->interrupt_request & CPU_INTERRUPT_FIQ) { 1240 ret |= CPSR_F; 1241 } 1242 /* External aborts are not possible in QEMU so A bit is always clear */ 1243 return ret; 1244 } 1245 1246 static const ARMCPRegInfo v7_cp_reginfo[] = { 1247 /* the old v6 WFI, UNPREDICTABLE in v7 but we choose to NOP */ 1248 { .name = "NOP", .cp = 15, .crn = 7, .crm = 0, .opc1 = 0, .opc2 = 4, 1249 .access = PL1_W, .type = ARM_CP_NOP }, 1250 /* Performance monitors are implementation defined in v7, 1251 * but with an ARM recommended set of registers, which we 1252 * follow (although we don't actually implement any counters) 1253 * 1254 * Performance registers fall into three categories: 1255 * (a) always UNDEF in PL0, RW in PL1 (PMINTENSET, PMINTENCLR) 1256 * (b) RO in PL0 (ie UNDEF on write), RW in PL1 (PMUSERENR) 1257 * (c) UNDEF in PL0 if PMUSERENR.EN==0, otherwise accessible (all others) 1258 * For the cases controlled by PMUSERENR we must set .access to PL0_RW 1259 * or PL0_RO as appropriate and then check PMUSERENR in the helper fn. 1260 */ 1261 { .name = "PMCNTENSET", .cp = 15, .crn = 9, .crm = 12, .opc1 = 0, .opc2 = 1, 1262 .access = PL0_RW, .type = ARM_CP_ALIAS, 1263 .fieldoffset = offsetoflow32(CPUARMState, cp15.c9_pmcnten), 1264 .writefn = pmcntenset_write, 1265 .accessfn = pmreg_access, 1266 .raw_writefn = raw_write }, 1267 { .name = "PMCNTENSET_EL0", .state = ARM_CP_STATE_AA64, 1268 .opc0 = 3, .opc1 = 3, .crn = 9, .crm = 12, .opc2 = 1, 1269 .access = PL0_RW, .accessfn = pmreg_access, 1270 .fieldoffset = offsetof(CPUARMState, cp15.c9_pmcnten), .resetvalue = 0, 1271 .writefn = pmcntenset_write, .raw_writefn = raw_write }, 1272 { .name = "PMCNTENCLR", .cp = 15, .crn = 9, .crm = 12, .opc1 = 0, .opc2 = 2, 1273 .access = PL0_RW, 1274 .fieldoffset = offsetoflow32(CPUARMState, cp15.c9_pmcnten), 1275 .accessfn = pmreg_access, 1276 .writefn = pmcntenclr_write, 1277 .type = ARM_CP_ALIAS }, 1278 { .name = "PMCNTENCLR_EL0", .state = ARM_CP_STATE_AA64, 1279 .opc0 = 3, .opc1 = 3, .crn = 9, .crm = 12, .opc2 = 2, 1280 .access = PL0_RW, .accessfn = pmreg_access, 1281 .type = ARM_CP_ALIAS, 1282 .fieldoffset = offsetof(CPUARMState, cp15.c9_pmcnten), 1283 .writefn = pmcntenclr_write }, 1284 { .name = "PMOVSR", .cp = 15, .crn = 9, .crm = 12, .opc1 = 0, .opc2 = 3, 1285 .access = PL0_RW, .fieldoffset = offsetof(CPUARMState, cp15.c9_pmovsr), 1286 .accessfn = pmreg_access, 1287 .writefn = pmovsr_write, 1288 .raw_writefn = raw_write }, 1289 { .name = "PMOVSCLR_EL0", .state = ARM_CP_STATE_AA64, 1290 .opc0 = 3, .opc1 = 3, .crn = 9, .crm = 12, .opc2 = 3, 1291 .access = PL0_RW, .accessfn = pmreg_access, 1292 .type = ARM_CP_ALIAS, 1293 .fieldoffset = offsetof(CPUARMState, cp15.c9_pmovsr), 1294 .writefn = pmovsr_write, 1295 .raw_writefn = raw_write }, 1296 /* Unimplemented so WI. */ 1297 { .name = "PMSWINC", .cp = 15, .crn = 9, .crm = 12, .opc1 = 0, .opc2 = 4, 1298 .access = PL0_W, .accessfn = pmreg_access_swinc, .type = ARM_CP_NOP }, 1299 #ifndef CONFIG_USER_ONLY 1300 { .name = "PMSELR", .cp = 15, .crn = 9, .crm = 12, .opc1 = 0, .opc2 = 5, 1301 .access = PL0_RW, .type = ARM_CP_ALIAS, 1302 .fieldoffset = offsetoflow32(CPUARMState, cp15.c9_pmselr), 1303 .accessfn = pmreg_access_selr, .writefn = pmselr_write, 1304 .raw_writefn = raw_write}, 1305 { .name = "PMSELR_EL0", .state = ARM_CP_STATE_AA64, 1306 .opc0 = 3, .opc1 = 3, .crn = 9, .crm = 12, .opc2 = 5, 1307 .access = PL0_RW, .accessfn = pmreg_access_selr, 1308 .fieldoffset = offsetof(CPUARMState, cp15.c9_pmselr), 1309 .writefn = pmselr_write, .raw_writefn = raw_write, }, 1310 { .name = "PMCCNTR", .cp = 15, .crn = 9, .crm = 13, .opc1 = 0, .opc2 = 0, 1311 .access = PL0_RW, .resetvalue = 0, .type = ARM_CP_IO, 1312 .readfn = pmccntr_read, .writefn = pmccntr_write32, 1313 .accessfn = pmreg_access_ccntr }, 1314 { .name = "PMCCNTR_EL0", .state = ARM_CP_STATE_AA64, 1315 .opc0 = 3, .opc1 = 3, .crn = 9, .crm = 13, .opc2 = 0, 1316 .access = PL0_RW, .accessfn = pmreg_access_ccntr, 1317 .type = ARM_CP_IO, 1318 .readfn = pmccntr_read, .writefn = pmccntr_write, }, 1319 #endif 1320 { .name = "PMCCFILTR_EL0", .state = ARM_CP_STATE_AA64, 1321 .opc0 = 3, .opc1 = 3, .crn = 14, .crm = 15, .opc2 = 7, 1322 .writefn = pmccfiltr_write, 1323 .access = PL0_RW, .accessfn = pmreg_access, 1324 .type = ARM_CP_IO, 1325 .fieldoffset = offsetof(CPUARMState, cp15.pmccfiltr_el0), 1326 .resetvalue = 0, }, 1327 { .name = "PMXEVTYPER", .cp = 15, .crn = 9, .crm = 13, .opc1 = 0, .opc2 = 1, 1328 .access = PL0_RW, .type = ARM_CP_NO_RAW, .accessfn = pmreg_access, 1329 .writefn = pmxevtyper_write, .readfn = pmxevtyper_read }, 1330 { .name = "PMXEVTYPER_EL0", .state = ARM_CP_STATE_AA64, 1331 .opc0 = 3, .opc1 = 3, .crn = 9, .crm = 13, .opc2 = 1, 1332 .access = PL0_RW, .type = ARM_CP_NO_RAW, .accessfn = pmreg_access, 1333 .writefn = pmxevtyper_write, .readfn = pmxevtyper_read }, 1334 /* Unimplemented, RAZ/WI. */ 1335 { .name = "PMXEVCNTR", .cp = 15, .crn = 9, .crm = 13, .opc1 = 0, .opc2 = 2, 1336 .access = PL0_RW, .type = ARM_CP_CONST, .resetvalue = 0, 1337 .accessfn = pmreg_access_xevcntr }, 1338 { .name = "PMUSERENR", .cp = 15, .crn = 9, .crm = 14, .opc1 = 0, .opc2 = 0, 1339 .access = PL0_R | PL1_RW, .accessfn = access_tpm, 1340 .fieldoffset = offsetof(CPUARMState, cp15.c9_pmuserenr), 1341 .resetvalue = 0, 1342 .writefn = pmuserenr_write, .raw_writefn = raw_write }, 1343 { .name = "PMUSERENR_EL0", .state = ARM_CP_STATE_AA64, 1344 .opc0 = 3, .opc1 = 3, .crn = 9, .crm = 14, .opc2 = 0, 1345 .access = PL0_R | PL1_RW, .accessfn = access_tpm, .type = ARM_CP_ALIAS, 1346 .fieldoffset = offsetof(CPUARMState, cp15.c9_pmuserenr), 1347 .resetvalue = 0, 1348 .writefn = pmuserenr_write, .raw_writefn = raw_write }, 1349 { .name = "PMINTENSET", .cp = 15, .crn = 9, .crm = 14, .opc1 = 0, .opc2 = 1, 1350 .access = PL1_RW, .accessfn = access_tpm, 1351 .type = ARM_CP_ALIAS, 1352 .fieldoffset = offsetoflow32(CPUARMState, cp15.c9_pminten), 1353 .resetvalue = 0, 1354 .writefn = pmintenset_write, .raw_writefn = raw_write }, 1355 { .name = "PMINTENSET_EL1", .state = ARM_CP_STATE_AA64, 1356 .opc0 = 3, .opc1 = 0, .crn = 9, .crm = 14, .opc2 = 1, 1357 .access = PL1_RW, .accessfn = access_tpm, 1358 .type = ARM_CP_IO, 1359 .fieldoffset = offsetof(CPUARMState, cp15.c9_pminten), 1360 .writefn = pmintenset_write, .raw_writefn = raw_write, 1361 .resetvalue = 0x0 }, 1362 { .name = "PMINTENCLR", .cp = 15, .crn = 9, .crm = 14, .opc1 = 0, .opc2 = 2, 1363 .access = PL1_RW, .accessfn = access_tpm, .type = ARM_CP_ALIAS, 1364 .fieldoffset = offsetof(CPUARMState, cp15.c9_pminten), 1365 .writefn = pmintenclr_write, }, 1366 { .name = "PMINTENCLR_EL1", .state = ARM_CP_STATE_AA64, 1367 .opc0 = 3, .opc1 = 0, .crn = 9, .crm = 14, .opc2 = 2, 1368 .access = PL1_RW, .accessfn = access_tpm, .type = ARM_CP_ALIAS, 1369 .fieldoffset = offsetof(CPUARMState, cp15.c9_pminten), 1370 .writefn = pmintenclr_write }, 1371 { .name = "CCSIDR", .state = ARM_CP_STATE_BOTH, 1372 .opc0 = 3, .crn = 0, .crm = 0, .opc1 = 1, .opc2 = 0, 1373 .access = PL1_R, .readfn = ccsidr_read, .type = ARM_CP_NO_RAW }, 1374 { .name = "CSSELR", .state = ARM_CP_STATE_BOTH, 1375 .opc0 = 3, .crn = 0, .crm = 0, .opc1 = 2, .opc2 = 0, 1376 .access = PL1_RW, .writefn = csselr_write, .resetvalue = 0, 1377 .bank_fieldoffsets = { offsetof(CPUARMState, cp15.csselr_s), 1378 offsetof(CPUARMState, cp15.csselr_ns) } }, 1379 /* Auxiliary ID register: this actually has an IMPDEF value but for now 1380 * just RAZ for all cores: 1381 */ 1382 { .name = "AIDR", .state = ARM_CP_STATE_BOTH, 1383 .opc0 = 3, .opc1 = 1, .crn = 0, .crm = 0, .opc2 = 7, 1384 .access = PL1_R, .type = ARM_CP_CONST, .resetvalue = 0 }, 1385 /* Auxiliary fault status registers: these also are IMPDEF, and we 1386 * choose to RAZ/WI for all cores. 1387 */ 1388 { .name = "AFSR0_EL1", .state = ARM_CP_STATE_BOTH, 1389 .opc0 = 3, .opc1 = 0, .crn = 5, .crm = 1, .opc2 = 0, 1390 .access = PL1_RW, .type = ARM_CP_CONST, .resetvalue = 0 }, 1391 { .name = "AFSR1_EL1", .state = ARM_CP_STATE_BOTH, 1392 .opc0 = 3, .opc1 = 0, .crn = 5, .crm = 1, .opc2 = 1, 1393 .access = PL1_RW, .type = ARM_CP_CONST, .resetvalue = 0 }, 1394 /* MAIR can just read-as-written because we don't implement caches 1395 * and so don't need to care about memory attributes. 1396 */ 1397 { .name = "MAIR_EL1", .state = ARM_CP_STATE_AA64, 1398 .opc0 = 3, .opc1 = 0, .crn = 10, .crm = 2, .opc2 = 0, 1399 .access = PL1_RW, .fieldoffset = offsetof(CPUARMState, cp15.mair_el[1]), 1400 .resetvalue = 0 }, 1401 { .name = "MAIR_EL3", .state = ARM_CP_STATE_AA64, 1402 .opc0 = 3, .opc1 = 6, .crn = 10, .crm = 2, .opc2 = 0, 1403 .access = PL3_RW, .fieldoffset = offsetof(CPUARMState, cp15.mair_el[3]), 1404 .resetvalue = 0 }, 1405 /* For non-long-descriptor page tables these are PRRR and NMRR; 1406 * regardless they still act as reads-as-written for QEMU. 1407 */ 1408 /* MAIR0/1 are defined separately from their 64-bit counterpart which 1409 * allows them to assign the correct fieldoffset based on the endianness 1410 * handled in the field definitions. 1411 */ 1412 { .name = "MAIR0", .state = ARM_CP_STATE_AA32, 1413 .cp = 15, .opc1 = 0, .crn = 10, .crm = 2, .opc2 = 0, .access = PL1_RW, 1414 .bank_fieldoffsets = { offsetof(CPUARMState, cp15.mair0_s), 1415 offsetof(CPUARMState, cp15.mair0_ns) }, 1416 .resetfn = arm_cp_reset_ignore }, 1417 { .name = "MAIR1", .state = ARM_CP_STATE_AA32, 1418 .cp = 15, .opc1 = 0, .crn = 10, .crm = 2, .opc2 = 1, .access = PL1_RW, 1419 .bank_fieldoffsets = { offsetof(CPUARMState, cp15.mair1_s), 1420 offsetof(CPUARMState, cp15.mair1_ns) }, 1421 .resetfn = arm_cp_reset_ignore }, 1422 { .name = "ISR_EL1", .state = ARM_CP_STATE_BOTH, 1423 .opc0 = 3, .opc1 = 0, .crn = 12, .crm = 1, .opc2 = 0, 1424 .type = ARM_CP_NO_RAW, .access = PL1_R, .readfn = isr_read }, 1425 /* 32 bit ITLB invalidates */ 1426 { .name = "ITLBIALL", .cp = 15, .opc1 = 0, .crn = 8, .crm = 5, .opc2 = 0, 1427 .type = ARM_CP_NO_RAW, .access = PL1_W, .writefn = tlbiall_write }, 1428 { .name = "ITLBIMVA", .cp = 15, .opc1 = 0, .crn = 8, .crm = 5, .opc2 = 1, 1429 .type = ARM_CP_NO_RAW, .access = PL1_W, .writefn = tlbimva_write }, 1430 { .name = "ITLBIASID", .cp = 15, .opc1 = 0, .crn = 8, .crm = 5, .opc2 = 2, 1431 .type = ARM_CP_NO_RAW, .access = PL1_W, .writefn = tlbiasid_write }, 1432 /* 32 bit DTLB invalidates */ 1433 { .name = "DTLBIALL", .cp = 15, .opc1 = 0, .crn = 8, .crm = 6, .opc2 = 0, 1434 .type = ARM_CP_NO_RAW, .access = PL1_W, .writefn = tlbiall_write }, 1435 { .name = "DTLBIMVA", .cp = 15, .opc1 = 0, .crn = 8, .crm = 6, .opc2 = 1, 1436 .type = ARM_CP_NO_RAW, .access = PL1_W, .writefn = tlbimva_write }, 1437 { .name = "DTLBIASID", .cp = 15, .opc1 = 0, .crn = 8, .crm = 6, .opc2 = 2, 1438 .type = ARM_CP_NO_RAW, .access = PL1_W, .writefn = tlbiasid_write }, 1439 /* 32 bit TLB invalidates */ 1440 { .name = "TLBIALL", .cp = 15, .opc1 = 0, .crn = 8, .crm = 7, .opc2 = 0, 1441 .type = ARM_CP_NO_RAW, .access = PL1_W, .writefn = tlbiall_write }, 1442 { .name = "TLBIMVA", .cp = 15, .opc1 = 0, .crn = 8, .crm = 7, .opc2 = 1, 1443 .type = ARM_CP_NO_RAW, .access = PL1_W, .writefn = tlbimva_write }, 1444 { .name = "TLBIASID", .cp = 15, .opc1 = 0, .crn = 8, .crm = 7, .opc2 = 2, 1445 .type = ARM_CP_NO_RAW, .access = PL1_W, .writefn = tlbiasid_write }, 1446 { .name = "TLBIMVAA", .cp = 15, .opc1 = 0, .crn = 8, .crm = 7, .opc2 = 3, 1447 .type = ARM_CP_NO_RAW, .access = PL1_W, .writefn = tlbimvaa_write }, 1448 REGINFO_SENTINEL 1449 }; 1450 1451 static const ARMCPRegInfo v7mp_cp_reginfo[] = { 1452 /* 32 bit TLB invalidates, Inner Shareable */ 1453 { .name = "TLBIALLIS", .cp = 15, .opc1 = 0, .crn = 8, .crm = 3, .opc2 = 0, 1454 .type = ARM_CP_NO_RAW, .access = PL1_W, .writefn = tlbiall_is_write }, 1455 { .name = "TLBIMVAIS", .cp = 15, .opc1 = 0, .crn = 8, .crm = 3, .opc2 = 1, 1456 .type = ARM_CP_NO_RAW, .access = PL1_W, .writefn = tlbimva_is_write }, 1457 { .name = "TLBIASIDIS", .cp = 15, .opc1 = 0, .crn = 8, .crm = 3, .opc2 = 2, 1458 .type = ARM_CP_NO_RAW, .access = PL1_W, 1459 .writefn = tlbiasid_is_write }, 1460 { .name = "TLBIMVAAIS", .cp = 15, .opc1 = 0, .crn = 8, .crm = 3, .opc2 = 3, 1461 .type = ARM_CP_NO_RAW, .access = PL1_W, 1462 .writefn = tlbimvaa_is_write }, 1463 REGINFO_SENTINEL 1464 }; 1465 1466 static void teecr_write(CPUARMState *env, const ARMCPRegInfo *ri, 1467 uint64_t value) 1468 { 1469 value &= 1; 1470 env->teecr = value; 1471 } 1472 1473 static CPAccessResult teehbr_access(CPUARMState *env, const ARMCPRegInfo *ri, 1474 bool isread) 1475 { 1476 if (arm_current_el(env) == 0 && (env->teecr & 1)) { 1477 return CP_ACCESS_TRAP; 1478 } 1479 return CP_ACCESS_OK; 1480 } 1481 1482 static const ARMCPRegInfo t2ee_cp_reginfo[] = { 1483 { .name = "TEECR", .cp = 14, .crn = 0, .crm = 0, .opc1 = 6, .opc2 = 0, 1484 .access = PL1_RW, .fieldoffset = offsetof(CPUARMState, teecr), 1485 .resetvalue = 0, 1486 .writefn = teecr_write }, 1487 { .name = "TEEHBR", .cp = 14, .crn = 1, .crm = 0, .opc1 = 6, .opc2 = 0, 1488 .access = PL0_RW, .fieldoffset = offsetof(CPUARMState, teehbr), 1489 .accessfn = teehbr_access, .resetvalue = 0 }, 1490 REGINFO_SENTINEL 1491 }; 1492 1493 static const ARMCPRegInfo v6k_cp_reginfo[] = { 1494 { .name = "TPIDR_EL0", .state = ARM_CP_STATE_AA64, 1495 .opc0 = 3, .opc1 = 3, .opc2 = 2, .crn = 13, .crm = 0, 1496 .access = PL0_RW, 1497 .fieldoffset = offsetof(CPUARMState, cp15.tpidr_el[0]), .resetvalue = 0 }, 1498 { .name = "TPIDRURW", .cp = 15, .crn = 13, .crm = 0, .opc1 = 0, .opc2 = 2, 1499 .access = PL0_RW, 1500 .bank_fieldoffsets = { offsetoflow32(CPUARMState, cp15.tpidrurw_s), 1501 offsetoflow32(CPUARMState, cp15.tpidrurw_ns) }, 1502 .resetfn = arm_cp_reset_ignore }, 1503 { .name = "TPIDRRO_EL0", .state = ARM_CP_STATE_AA64, 1504 .opc0 = 3, .opc1 = 3, .opc2 = 3, .crn = 13, .crm = 0, 1505 .access = PL0_R|PL1_W, 1506 .fieldoffset = offsetof(CPUARMState, cp15.tpidrro_el[0]), 1507 .resetvalue = 0}, 1508 { .name = "TPIDRURO", .cp = 15, .crn = 13, .crm = 0, .opc1 = 0, .opc2 = 3, 1509 .access = PL0_R|PL1_W, 1510 .bank_fieldoffsets = { offsetoflow32(CPUARMState, cp15.tpidruro_s), 1511 offsetoflow32(CPUARMState, cp15.tpidruro_ns) }, 1512 .resetfn = arm_cp_reset_ignore }, 1513 { .name = "TPIDR_EL1", .state = ARM_CP_STATE_AA64, 1514 .opc0 = 3, .opc1 = 0, .opc2 = 4, .crn = 13, .crm = 0, 1515 .access = PL1_RW, 1516 .fieldoffset = offsetof(CPUARMState, cp15.tpidr_el[1]), .resetvalue = 0 }, 1517 { .name = "TPIDRPRW", .opc1 = 0, .cp = 15, .crn = 13, .crm = 0, .opc2 = 4, 1518 .access = PL1_RW, 1519 .bank_fieldoffsets = { offsetoflow32(CPUARMState, cp15.tpidrprw_s), 1520 offsetoflow32(CPUARMState, cp15.tpidrprw_ns) }, 1521 .resetvalue = 0 }, 1522 REGINFO_SENTINEL 1523 }; 1524 1525 #ifndef CONFIG_USER_ONLY 1526 1527 static CPAccessResult gt_cntfrq_access(CPUARMState *env, const ARMCPRegInfo *ri, 1528 bool isread) 1529 { 1530 /* CNTFRQ: not visible from PL0 if both PL0PCTEN and PL0VCTEN are zero. 1531 * Writable only at the highest implemented exception level. 1532 */ 1533 int el = arm_current_el(env); 1534 1535 switch (el) { 1536 case 0: 1537 if (!extract32(env->cp15.c14_cntkctl, 0, 2)) { 1538 return CP_ACCESS_TRAP; 1539 } 1540 break; 1541 case 1: 1542 if (!isread && ri->state == ARM_CP_STATE_AA32 && 1543 arm_is_secure_below_el3(env)) { 1544 /* Accesses from 32-bit Secure EL1 UNDEF (*not* trap to EL3!) */ 1545 return CP_ACCESS_TRAP_UNCATEGORIZED; 1546 } 1547 break; 1548 case 2: 1549 case 3: 1550 break; 1551 } 1552 1553 if (!isread && el < arm_highest_el(env)) { 1554 return CP_ACCESS_TRAP_UNCATEGORIZED; 1555 } 1556 1557 return CP_ACCESS_OK; 1558 } 1559 1560 static CPAccessResult gt_counter_access(CPUARMState *env, int timeridx, 1561 bool isread) 1562 { 1563 unsigned int cur_el = arm_current_el(env); 1564 bool secure = arm_is_secure(env); 1565 1566 /* CNT[PV]CT: not visible from PL0 if ELO[PV]CTEN is zero */ 1567 if (cur_el == 0 && 1568 !extract32(env->cp15.c14_cntkctl, timeridx, 1)) { 1569 return CP_ACCESS_TRAP; 1570 } 1571 1572 if (arm_feature(env, ARM_FEATURE_EL2) && 1573 timeridx == GTIMER_PHYS && !secure && cur_el < 2 && 1574 !extract32(env->cp15.cnthctl_el2, 0, 1)) { 1575 return CP_ACCESS_TRAP_EL2; 1576 } 1577 return CP_ACCESS_OK; 1578 } 1579 1580 static CPAccessResult gt_timer_access(CPUARMState *env, int timeridx, 1581 bool isread) 1582 { 1583 unsigned int cur_el = arm_current_el(env); 1584 bool secure = arm_is_secure(env); 1585 1586 /* CNT[PV]_CVAL, CNT[PV]_CTL, CNT[PV]_TVAL: not visible from PL0 if 1587 * EL0[PV]TEN is zero. 1588 */ 1589 if (cur_el == 0 && 1590 !extract32(env->cp15.c14_cntkctl, 9 - timeridx, 1)) { 1591 return CP_ACCESS_TRAP; 1592 } 1593 1594 if (arm_feature(env, ARM_FEATURE_EL2) && 1595 timeridx == GTIMER_PHYS && !secure && cur_el < 2 && 1596 !extract32(env->cp15.cnthctl_el2, 1, 1)) { 1597 return CP_ACCESS_TRAP_EL2; 1598 } 1599 return CP_ACCESS_OK; 1600 } 1601 1602 static CPAccessResult gt_pct_access(CPUARMState *env, 1603 const ARMCPRegInfo *ri, 1604 bool isread) 1605 { 1606 return gt_counter_access(env, GTIMER_PHYS, isread); 1607 } 1608 1609 static CPAccessResult gt_vct_access(CPUARMState *env, 1610 const ARMCPRegInfo *ri, 1611 bool isread) 1612 { 1613 return gt_counter_access(env, GTIMER_VIRT, isread); 1614 } 1615 1616 static CPAccessResult gt_ptimer_access(CPUARMState *env, const ARMCPRegInfo *ri, 1617 bool isread) 1618 { 1619 return gt_timer_access(env, GTIMER_PHYS, isread); 1620 } 1621 1622 static CPAccessResult gt_vtimer_access(CPUARMState *env, const ARMCPRegInfo *ri, 1623 bool isread) 1624 { 1625 return gt_timer_access(env, GTIMER_VIRT, isread); 1626 } 1627 1628 static CPAccessResult gt_stimer_access(CPUARMState *env, 1629 const ARMCPRegInfo *ri, 1630 bool isread) 1631 { 1632 /* The AArch64 register view of the secure physical timer is 1633 * always accessible from EL3, and configurably accessible from 1634 * Secure EL1. 1635 */ 1636 switch (arm_current_el(env)) { 1637 case 1: 1638 if (!arm_is_secure(env)) { 1639 return CP_ACCESS_TRAP; 1640 } 1641 if (!(env->cp15.scr_el3 & SCR_ST)) { 1642 return CP_ACCESS_TRAP_EL3; 1643 } 1644 return CP_ACCESS_OK; 1645 case 0: 1646 case 2: 1647 return CP_ACCESS_TRAP; 1648 case 3: 1649 return CP_ACCESS_OK; 1650 default: 1651 g_assert_not_reached(); 1652 } 1653 } 1654 1655 static uint64_t gt_get_countervalue(CPUARMState *env) 1656 { 1657 return qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL) / GTIMER_SCALE; 1658 } 1659 1660 static void gt_recalc_timer(ARMCPU *cpu, int timeridx) 1661 { 1662 ARMGenericTimer *gt = &cpu->env.cp15.c14_timer[timeridx]; 1663 1664 if (gt->ctl & 1) { 1665 /* Timer enabled: calculate and set current ISTATUS, irq, and 1666 * reset timer to when ISTATUS next has to change 1667 */ 1668 uint64_t offset = timeridx == GTIMER_VIRT ? 1669 cpu->env.cp15.cntvoff_el2 : 0; 1670 uint64_t count = gt_get_countervalue(&cpu->env); 1671 /* Note that this must be unsigned 64 bit arithmetic: */ 1672 int istatus = count - offset >= gt->cval; 1673 uint64_t nexttick; 1674 int irqstate; 1675 1676 gt->ctl = deposit32(gt->ctl, 2, 1, istatus); 1677 1678 irqstate = (istatus && !(gt->ctl & 2)); 1679 qemu_set_irq(cpu->gt_timer_outputs[timeridx], irqstate); 1680 1681 if (istatus) { 1682 /* Next transition is when count rolls back over to zero */ 1683 nexttick = UINT64_MAX; 1684 } else { 1685 /* Next transition is when we hit cval */ 1686 nexttick = gt->cval + offset; 1687 } 1688 /* Note that the desired next expiry time might be beyond the 1689 * signed-64-bit range of a QEMUTimer -- in this case we just 1690 * set the timer for as far in the future as possible. When the 1691 * timer expires we will reset the timer for any remaining period. 1692 */ 1693 if (nexttick > INT64_MAX / GTIMER_SCALE) { 1694 nexttick = INT64_MAX / GTIMER_SCALE; 1695 } 1696 timer_mod(cpu->gt_timer[timeridx], nexttick); 1697 trace_arm_gt_recalc(timeridx, irqstate, nexttick); 1698 } else { 1699 /* Timer disabled: ISTATUS and timer output always clear */ 1700 gt->ctl &= ~4; 1701 qemu_set_irq(cpu->gt_timer_outputs[timeridx], 0); 1702 timer_del(cpu->gt_timer[timeridx]); 1703 trace_arm_gt_recalc_disabled(timeridx); 1704 } 1705 } 1706 1707 static void gt_timer_reset(CPUARMState *env, const ARMCPRegInfo *ri, 1708 int timeridx) 1709 { 1710 ARMCPU *cpu = arm_env_get_cpu(env); 1711 1712 timer_del(cpu->gt_timer[timeridx]); 1713 } 1714 1715 static uint64_t gt_cnt_read(CPUARMState *env, const ARMCPRegInfo *ri) 1716 { 1717 return gt_get_countervalue(env); 1718 } 1719 1720 static uint64_t gt_virt_cnt_read(CPUARMState *env, const ARMCPRegInfo *ri) 1721 { 1722 return gt_get_countervalue(env) - env->cp15.cntvoff_el2; 1723 } 1724 1725 static void gt_cval_write(CPUARMState *env, const ARMCPRegInfo *ri, 1726 int timeridx, 1727 uint64_t value) 1728 { 1729 trace_arm_gt_cval_write(timeridx, value); 1730 env->cp15.c14_timer[timeridx].cval = value; 1731 gt_recalc_timer(arm_env_get_cpu(env), timeridx); 1732 } 1733 1734 static uint64_t gt_tval_read(CPUARMState *env, const ARMCPRegInfo *ri, 1735 int timeridx) 1736 { 1737 uint64_t offset = timeridx == GTIMER_VIRT ? env->cp15.cntvoff_el2 : 0; 1738 1739 return (uint32_t)(env->cp15.c14_timer[timeridx].cval - 1740 (gt_get_countervalue(env) - offset)); 1741 } 1742 1743 static void gt_tval_write(CPUARMState *env, const ARMCPRegInfo *ri, 1744 int timeridx, 1745 uint64_t value) 1746 { 1747 uint64_t offset = timeridx == GTIMER_VIRT ? env->cp15.cntvoff_el2 : 0; 1748 1749 trace_arm_gt_tval_write(timeridx, value); 1750 env->cp15.c14_timer[timeridx].cval = gt_get_countervalue(env) - offset + 1751 sextract64(value, 0, 32); 1752 gt_recalc_timer(arm_env_get_cpu(env), timeridx); 1753 } 1754 1755 static void gt_ctl_write(CPUARMState *env, const ARMCPRegInfo *ri, 1756 int timeridx, 1757 uint64_t value) 1758 { 1759 ARMCPU *cpu = arm_env_get_cpu(env); 1760 uint32_t oldval = env->cp15.c14_timer[timeridx].ctl; 1761 1762 trace_arm_gt_ctl_write(timeridx, value); 1763 env->cp15.c14_timer[timeridx].ctl = deposit64(oldval, 0, 2, value); 1764 if ((oldval ^ value) & 1) { 1765 /* Enable toggled */ 1766 gt_recalc_timer(cpu, timeridx); 1767 } else if ((oldval ^ value) & 2) { 1768 /* IMASK toggled: don't need to recalculate, 1769 * just set the interrupt line based on ISTATUS 1770 */ 1771 int irqstate = (oldval & 4) && !(value & 2); 1772 1773 trace_arm_gt_imask_toggle(timeridx, irqstate); 1774 qemu_set_irq(cpu->gt_timer_outputs[timeridx], irqstate); 1775 } 1776 } 1777 1778 static void gt_phys_timer_reset(CPUARMState *env, const ARMCPRegInfo *ri) 1779 { 1780 gt_timer_reset(env, ri, GTIMER_PHYS); 1781 } 1782 1783 static void gt_phys_cval_write(CPUARMState *env, const ARMCPRegInfo *ri, 1784 uint64_t value) 1785 { 1786 gt_cval_write(env, ri, GTIMER_PHYS, value); 1787 } 1788 1789 static uint64_t gt_phys_tval_read(CPUARMState *env, const ARMCPRegInfo *ri) 1790 { 1791 return gt_tval_read(env, ri, GTIMER_PHYS); 1792 } 1793 1794 static void gt_phys_tval_write(CPUARMState *env, const ARMCPRegInfo *ri, 1795 uint64_t value) 1796 { 1797 gt_tval_write(env, ri, GTIMER_PHYS, value); 1798 } 1799 1800 static void gt_phys_ctl_write(CPUARMState *env, const ARMCPRegInfo *ri, 1801 uint64_t value) 1802 { 1803 gt_ctl_write(env, ri, GTIMER_PHYS, value); 1804 } 1805 1806 static void gt_virt_timer_reset(CPUARMState *env, const ARMCPRegInfo *ri) 1807 { 1808 gt_timer_reset(env, ri, GTIMER_VIRT); 1809 } 1810 1811 static void gt_virt_cval_write(CPUARMState *env, const ARMCPRegInfo *ri, 1812 uint64_t value) 1813 { 1814 gt_cval_write(env, ri, GTIMER_VIRT, value); 1815 } 1816 1817 static uint64_t gt_virt_tval_read(CPUARMState *env, const ARMCPRegInfo *ri) 1818 { 1819 return gt_tval_read(env, ri, GTIMER_VIRT); 1820 } 1821 1822 static void gt_virt_tval_write(CPUARMState *env, const ARMCPRegInfo *ri, 1823 uint64_t value) 1824 { 1825 gt_tval_write(env, ri, GTIMER_VIRT, value); 1826 } 1827 1828 static void gt_virt_ctl_write(CPUARMState *env, const ARMCPRegInfo *ri, 1829 uint64_t value) 1830 { 1831 gt_ctl_write(env, ri, GTIMER_VIRT, value); 1832 } 1833 1834 static void gt_cntvoff_write(CPUARMState *env, const ARMCPRegInfo *ri, 1835 uint64_t value) 1836 { 1837 ARMCPU *cpu = arm_env_get_cpu(env); 1838 1839 trace_arm_gt_cntvoff_write(value); 1840 raw_write(env, ri, value); 1841 gt_recalc_timer(cpu, GTIMER_VIRT); 1842 } 1843 1844 static void gt_hyp_timer_reset(CPUARMState *env, const ARMCPRegInfo *ri) 1845 { 1846 gt_timer_reset(env, ri, GTIMER_HYP); 1847 } 1848 1849 static void gt_hyp_cval_write(CPUARMState *env, const ARMCPRegInfo *ri, 1850 uint64_t value) 1851 { 1852 gt_cval_write(env, ri, GTIMER_HYP, value); 1853 } 1854 1855 static uint64_t gt_hyp_tval_read(CPUARMState *env, const ARMCPRegInfo *ri) 1856 { 1857 return gt_tval_read(env, ri, GTIMER_HYP); 1858 } 1859 1860 static void gt_hyp_tval_write(CPUARMState *env, const ARMCPRegInfo *ri, 1861 uint64_t value) 1862 { 1863 gt_tval_write(env, ri, GTIMER_HYP, value); 1864 } 1865 1866 static void gt_hyp_ctl_write(CPUARMState *env, const ARMCPRegInfo *ri, 1867 uint64_t value) 1868 { 1869 gt_ctl_write(env, ri, GTIMER_HYP, value); 1870 } 1871 1872 static void gt_sec_timer_reset(CPUARMState *env, const ARMCPRegInfo *ri) 1873 { 1874 gt_timer_reset(env, ri, GTIMER_SEC); 1875 } 1876 1877 static void gt_sec_cval_write(CPUARMState *env, const ARMCPRegInfo *ri, 1878 uint64_t value) 1879 { 1880 gt_cval_write(env, ri, GTIMER_SEC, value); 1881 } 1882 1883 static uint64_t gt_sec_tval_read(CPUARMState *env, const ARMCPRegInfo *ri) 1884 { 1885 return gt_tval_read(env, ri, GTIMER_SEC); 1886 } 1887 1888 static void gt_sec_tval_write(CPUARMState *env, const ARMCPRegInfo *ri, 1889 uint64_t value) 1890 { 1891 gt_tval_write(env, ri, GTIMER_SEC, value); 1892 } 1893 1894 static void gt_sec_ctl_write(CPUARMState *env, const ARMCPRegInfo *ri, 1895 uint64_t value) 1896 { 1897 gt_ctl_write(env, ri, GTIMER_SEC, value); 1898 } 1899 1900 void arm_gt_ptimer_cb(void *opaque) 1901 { 1902 ARMCPU *cpu = opaque; 1903 1904 gt_recalc_timer(cpu, GTIMER_PHYS); 1905 } 1906 1907 void arm_gt_vtimer_cb(void *opaque) 1908 { 1909 ARMCPU *cpu = opaque; 1910 1911 gt_recalc_timer(cpu, GTIMER_VIRT); 1912 } 1913 1914 void arm_gt_htimer_cb(void *opaque) 1915 { 1916 ARMCPU *cpu = opaque; 1917 1918 gt_recalc_timer(cpu, GTIMER_HYP); 1919 } 1920 1921 void arm_gt_stimer_cb(void *opaque) 1922 { 1923 ARMCPU *cpu = opaque; 1924 1925 gt_recalc_timer(cpu, GTIMER_SEC); 1926 } 1927 1928 static const ARMCPRegInfo generic_timer_cp_reginfo[] = { 1929 /* Note that CNTFRQ is purely reads-as-written for the benefit 1930 * of software; writing it doesn't actually change the timer frequency. 1931 * Our reset value matches the fixed frequency we implement the timer at. 1932 */ 1933 { .name = "CNTFRQ", .cp = 15, .crn = 14, .crm = 0, .opc1 = 0, .opc2 = 0, 1934 .type = ARM_CP_ALIAS, 1935 .access = PL1_RW | PL0_R, .accessfn = gt_cntfrq_access, 1936 .fieldoffset = offsetoflow32(CPUARMState, cp15.c14_cntfrq), 1937 }, 1938 { .name = "CNTFRQ_EL0", .state = ARM_CP_STATE_AA64, 1939 .opc0 = 3, .opc1 = 3, .crn = 14, .crm = 0, .opc2 = 0, 1940 .access = PL1_RW | PL0_R, .accessfn = gt_cntfrq_access, 1941 .fieldoffset = offsetof(CPUARMState, cp15.c14_cntfrq), 1942 .resetvalue = (1000 * 1000 * 1000) / GTIMER_SCALE, 1943 }, 1944 /* overall control: mostly access permissions */ 1945 { .name = "CNTKCTL", .state = ARM_CP_STATE_BOTH, 1946 .opc0 = 3, .opc1 = 0, .crn = 14, .crm = 1, .opc2 = 0, 1947 .access = PL1_RW, 1948 .fieldoffset = offsetof(CPUARMState, cp15.c14_cntkctl), 1949 .resetvalue = 0, 1950 }, 1951 /* per-timer control */ 1952 { .name = "CNTP_CTL", .cp = 15, .crn = 14, .crm = 2, .opc1 = 0, .opc2 = 1, 1953 .secure = ARM_CP_SECSTATE_NS, 1954 .type = ARM_CP_IO | ARM_CP_ALIAS, .access = PL1_RW | PL0_R, 1955 .accessfn = gt_ptimer_access, 1956 .fieldoffset = offsetoflow32(CPUARMState, 1957 cp15.c14_timer[GTIMER_PHYS].ctl), 1958 .writefn = gt_phys_ctl_write, .raw_writefn = raw_write, 1959 }, 1960 { .name = "CNTP_CTL(S)", 1961 .cp = 15, .crn = 14, .crm = 2, .opc1 = 0, .opc2 = 1, 1962 .secure = ARM_CP_SECSTATE_S, 1963 .type = ARM_CP_IO | ARM_CP_ALIAS, .access = PL1_RW | PL0_R, 1964 .accessfn = gt_ptimer_access, 1965 .fieldoffset = offsetoflow32(CPUARMState, 1966 cp15.c14_timer[GTIMER_SEC].ctl), 1967 .writefn = gt_sec_ctl_write, .raw_writefn = raw_write, 1968 }, 1969 { .name = "CNTP_CTL_EL0", .state = ARM_CP_STATE_AA64, 1970 .opc0 = 3, .opc1 = 3, .crn = 14, .crm = 2, .opc2 = 1, 1971 .type = ARM_CP_IO, .access = PL1_RW | PL0_R, 1972 .accessfn = gt_ptimer_access, 1973 .fieldoffset = offsetof(CPUARMState, cp15.c14_timer[GTIMER_PHYS].ctl), 1974 .resetvalue = 0, 1975 .writefn = gt_phys_ctl_write, .raw_writefn = raw_write, 1976 }, 1977 { .name = "CNTV_CTL", .cp = 15, .crn = 14, .crm = 3, .opc1 = 0, .opc2 = 1, 1978 .type = ARM_CP_IO | ARM_CP_ALIAS, .access = PL1_RW | PL0_R, 1979 .accessfn = gt_vtimer_access, 1980 .fieldoffset = offsetoflow32(CPUARMState, 1981 cp15.c14_timer[GTIMER_VIRT].ctl), 1982 .writefn = gt_virt_ctl_write, .raw_writefn = raw_write, 1983 }, 1984 { .name = "CNTV_CTL_EL0", .state = ARM_CP_STATE_AA64, 1985 .opc0 = 3, .opc1 = 3, .crn = 14, .crm = 3, .opc2 = 1, 1986 .type = ARM_CP_IO, .access = PL1_RW | PL0_R, 1987 .accessfn = gt_vtimer_access, 1988 .fieldoffset = offsetof(CPUARMState, cp15.c14_timer[GTIMER_VIRT].ctl), 1989 .resetvalue = 0, 1990 .writefn = gt_virt_ctl_write, .raw_writefn = raw_write, 1991 }, 1992 /* TimerValue views: a 32 bit downcounting view of the underlying state */ 1993 { .name = "CNTP_TVAL", .cp = 15, .crn = 14, .crm = 2, .opc1 = 0, .opc2 = 0, 1994 .secure = ARM_CP_SECSTATE_NS, 1995 .type = ARM_CP_NO_RAW | ARM_CP_IO, .access = PL1_RW | PL0_R, 1996 .accessfn = gt_ptimer_access, 1997 .readfn = gt_phys_tval_read, .writefn = gt_phys_tval_write, 1998 }, 1999 { .name = "CNTP_TVAL(S)", 2000 .cp = 15, .crn = 14, .crm = 2, .opc1 = 0, .opc2 = 0, 2001 .secure = ARM_CP_SECSTATE_S, 2002 .type = ARM_CP_NO_RAW | ARM_CP_IO, .access = PL1_RW | PL0_R, 2003 .accessfn = gt_ptimer_access, 2004 .readfn = gt_sec_tval_read, .writefn = gt_sec_tval_write, 2005 }, 2006 { .name = "CNTP_TVAL_EL0", .state = ARM_CP_STATE_AA64, 2007 .opc0 = 3, .opc1 = 3, .crn = 14, .crm = 2, .opc2 = 0, 2008 .type = ARM_CP_NO_RAW | ARM_CP_IO, .access = PL1_RW | PL0_R, 2009 .accessfn = gt_ptimer_access, .resetfn = gt_phys_timer_reset, 2010 .readfn = gt_phys_tval_read, .writefn = gt_phys_tval_write, 2011 }, 2012 { .name = "CNTV_TVAL", .cp = 15, .crn = 14, .crm = 3, .opc1 = 0, .opc2 = 0, 2013 .type = ARM_CP_NO_RAW | ARM_CP_IO, .access = PL1_RW | PL0_R, 2014 .accessfn = gt_vtimer_access, 2015 .readfn = gt_virt_tval_read, .writefn = gt_virt_tval_write, 2016 }, 2017 { .name = "CNTV_TVAL_EL0", .state = ARM_CP_STATE_AA64, 2018 .opc0 = 3, .opc1 = 3, .crn = 14, .crm = 3, .opc2 = 0, 2019 .type = ARM_CP_NO_RAW | ARM_CP_IO, .access = PL1_RW | PL0_R, 2020 .accessfn = gt_vtimer_access, .resetfn = gt_virt_timer_reset, 2021 .readfn = gt_virt_tval_read, .writefn = gt_virt_tval_write, 2022 }, 2023 /* The counter itself */ 2024 { .name = "CNTPCT", .cp = 15, .crm = 14, .opc1 = 0, 2025 .access = PL0_R, .type = ARM_CP_64BIT | ARM_CP_NO_RAW | ARM_CP_IO, 2026 .accessfn = gt_pct_access, 2027 .readfn = gt_cnt_read, .resetfn = arm_cp_reset_ignore, 2028 }, 2029 { .name = "CNTPCT_EL0", .state = ARM_CP_STATE_AA64, 2030 .opc0 = 3, .opc1 = 3, .crn = 14, .crm = 0, .opc2 = 1, 2031 .access = PL0_R, .type = ARM_CP_NO_RAW | ARM_CP_IO, 2032 .accessfn = gt_pct_access, .readfn = gt_cnt_read, 2033 }, 2034 { .name = "CNTVCT", .cp = 15, .crm = 14, .opc1 = 1, 2035 .access = PL0_R, .type = ARM_CP_64BIT | ARM_CP_NO_RAW | ARM_CP_IO, 2036 .accessfn = gt_vct_access, 2037 .readfn = gt_virt_cnt_read, .resetfn = arm_cp_reset_ignore, 2038 }, 2039 { .name = "CNTVCT_EL0", .state = ARM_CP_STATE_AA64, 2040 .opc0 = 3, .opc1 = 3, .crn = 14, .crm = 0, .opc2 = 2, 2041 .access = PL0_R, .type = ARM_CP_NO_RAW | ARM_CP_IO, 2042 .accessfn = gt_vct_access, .readfn = gt_virt_cnt_read, 2043 }, 2044 /* Comparison value, indicating when the timer goes off */ 2045 { .name = "CNTP_CVAL", .cp = 15, .crm = 14, .opc1 = 2, 2046 .secure = ARM_CP_SECSTATE_NS, 2047 .access = PL1_RW | PL0_R, 2048 .type = ARM_CP_64BIT | ARM_CP_IO | ARM_CP_ALIAS, 2049 .fieldoffset = offsetof(CPUARMState, cp15.c14_timer[GTIMER_PHYS].cval), 2050 .accessfn = gt_ptimer_access, 2051 .writefn = gt_phys_cval_write, .raw_writefn = raw_write, 2052 }, 2053 { .name = "CNTP_CVAL(S)", .cp = 15, .crm = 14, .opc1 = 2, 2054 .secure = ARM_CP_SECSTATE_S, 2055 .access = PL1_RW | PL0_R, 2056 .type = ARM_CP_64BIT | ARM_CP_IO | ARM_CP_ALIAS, 2057 .fieldoffset = offsetof(CPUARMState, cp15.c14_timer[GTIMER_SEC].cval), 2058 .accessfn = gt_ptimer_access, 2059 .writefn = gt_sec_cval_write, .raw_writefn = raw_write, 2060 }, 2061 { .name = "CNTP_CVAL_EL0", .state = ARM_CP_STATE_AA64, 2062 .opc0 = 3, .opc1 = 3, .crn = 14, .crm = 2, .opc2 = 2, 2063 .access = PL1_RW | PL0_R, 2064 .type = ARM_CP_IO, 2065 .fieldoffset = offsetof(CPUARMState, cp15.c14_timer[GTIMER_PHYS].cval), 2066 .resetvalue = 0, .accessfn = gt_ptimer_access, 2067 .writefn = gt_phys_cval_write, .raw_writefn = raw_write, 2068 }, 2069 { .name = "CNTV_CVAL", .cp = 15, .crm = 14, .opc1 = 3, 2070 .access = PL1_RW | PL0_R, 2071 .type = ARM_CP_64BIT | ARM_CP_IO | ARM_CP_ALIAS, 2072 .fieldoffset = offsetof(CPUARMState, cp15.c14_timer[GTIMER_VIRT].cval), 2073 .accessfn = gt_vtimer_access, 2074 .writefn = gt_virt_cval_write, .raw_writefn = raw_write, 2075 }, 2076 { .name = "CNTV_CVAL_EL0", .state = ARM_CP_STATE_AA64, 2077 .opc0 = 3, .opc1 = 3, .crn = 14, .crm = 3, .opc2 = 2, 2078 .access = PL1_RW | PL0_R, 2079 .type = ARM_CP_IO, 2080 .fieldoffset = offsetof(CPUARMState, cp15.c14_timer[GTIMER_VIRT].cval), 2081 .resetvalue = 0, .accessfn = gt_vtimer_access, 2082 .writefn = gt_virt_cval_write, .raw_writefn = raw_write, 2083 }, 2084 /* Secure timer -- this is actually restricted to only EL3 2085 * and configurably Secure-EL1 via the accessfn. 2086 */ 2087 { .name = "CNTPS_TVAL_EL1", .state = ARM_CP_STATE_AA64, 2088 .opc0 = 3, .opc1 = 7, .crn = 14, .crm = 2, .opc2 = 0, 2089 .type = ARM_CP_NO_RAW | ARM_CP_IO, .access = PL1_RW, 2090 .accessfn = gt_stimer_access, 2091 .readfn = gt_sec_tval_read, 2092 .writefn = gt_sec_tval_write, 2093 .resetfn = gt_sec_timer_reset, 2094 }, 2095 { .name = "CNTPS_CTL_EL1", .state = ARM_CP_STATE_AA64, 2096 .opc0 = 3, .opc1 = 7, .crn = 14, .crm = 2, .opc2 = 1, 2097 .type = ARM_CP_IO, .access = PL1_RW, 2098 .accessfn = gt_stimer_access, 2099 .fieldoffset = offsetof(CPUARMState, cp15.c14_timer[GTIMER_SEC].ctl), 2100 .resetvalue = 0, 2101 .writefn = gt_sec_ctl_write, .raw_writefn = raw_write, 2102 }, 2103 { .name = "CNTPS_CVAL_EL1", .state = ARM_CP_STATE_AA64, 2104 .opc0 = 3, .opc1 = 7, .crn = 14, .crm = 2, .opc2 = 2, 2105 .type = ARM_CP_IO, .access = PL1_RW, 2106 .accessfn = gt_stimer_access, 2107 .fieldoffset = offsetof(CPUARMState, cp15.c14_timer[GTIMER_SEC].cval), 2108 .writefn = gt_sec_cval_write, .raw_writefn = raw_write, 2109 }, 2110 REGINFO_SENTINEL 2111 }; 2112 2113 #else 2114 /* In user-mode none of the generic timer registers are accessible, 2115 * and their implementation depends on QEMU_CLOCK_VIRTUAL and qdev gpio outputs, 2116 * so instead just don't register any of them. 2117 */ 2118 static const ARMCPRegInfo generic_timer_cp_reginfo[] = { 2119 REGINFO_SENTINEL 2120 }; 2121 2122 #endif 2123 2124 static void par_write(CPUARMState *env, const ARMCPRegInfo *ri, uint64_t value) 2125 { 2126 if (arm_feature(env, ARM_FEATURE_LPAE)) { 2127 raw_write(env, ri, value); 2128 } else if (arm_feature(env, ARM_FEATURE_V7)) { 2129 raw_write(env, ri, value & 0xfffff6ff); 2130 } else { 2131 raw_write(env, ri, value & 0xfffff1ff); 2132 } 2133 } 2134 2135 #ifndef CONFIG_USER_ONLY 2136 /* get_phys_addr() isn't present for user-mode-only targets */ 2137 2138 static CPAccessResult ats_access(CPUARMState *env, const ARMCPRegInfo *ri, 2139 bool isread) 2140 { 2141 if (ri->opc2 & 4) { 2142 /* The ATS12NSO* operations must trap to EL3 if executed in 2143 * Secure EL1 (which can only happen if EL3 is AArch64). 2144 * They are simply UNDEF if executed from NS EL1. 2145 * They function normally from EL2 or EL3. 2146 */ 2147 if (arm_current_el(env) == 1) { 2148 if (arm_is_secure_below_el3(env)) { 2149 return CP_ACCESS_TRAP_UNCATEGORIZED_EL3; 2150 } 2151 return CP_ACCESS_TRAP_UNCATEGORIZED; 2152 } 2153 } 2154 return CP_ACCESS_OK; 2155 } 2156 2157 static uint64_t do_ats_write(CPUARMState *env, uint64_t value, 2158 MMUAccessType access_type, ARMMMUIdx mmu_idx) 2159 { 2160 hwaddr phys_addr; 2161 target_ulong page_size; 2162 int prot; 2163 uint32_t fsr; 2164 bool ret; 2165 uint64_t par64; 2166 MemTxAttrs attrs = {}; 2167 ARMMMUFaultInfo fi = {}; 2168 ARMCacheAttrs cacheattrs = {}; 2169 2170 ret = get_phys_addr(env, value, access_type, mmu_idx, &phys_addr, &attrs, 2171 &prot, &page_size, &fsr, &fi, &cacheattrs); 2172 if (extended_addresses_enabled(env)) { 2173 /* fsr is a DFSR/IFSR value for the long descriptor 2174 * translation table format, but with WnR always clear. 2175 * Convert it to a 64-bit PAR. 2176 */ 2177 par64 = (1 << 11); /* LPAE bit always set */ 2178 if (!ret) { 2179 par64 |= phys_addr & ~0xfffULL; 2180 if (!attrs.secure) { 2181 par64 |= (1 << 9); /* NS */ 2182 } 2183 par64 |= (uint64_t)cacheattrs.attrs << 56; /* ATTR */ 2184 par64 |= cacheattrs.shareability << 7; /* SH */ 2185 } else { 2186 par64 |= 1; /* F */ 2187 par64 |= (fsr & 0x3f) << 1; /* FS */ 2188 /* Note that S2WLK and FSTAGE are always zero, because we don't 2189 * implement virtualization and therefore there can't be a stage 2 2190 * fault. 2191 */ 2192 } 2193 } else { 2194 /* fsr is a DFSR/IFSR value for the short descriptor 2195 * translation table format (with WnR always clear). 2196 * Convert it to a 32-bit PAR. 2197 */ 2198 if (!ret) { 2199 /* We do not set any attribute bits in the PAR */ 2200 if (page_size == (1 << 24) 2201 && arm_feature(env, ARM_FEATURE_V7)) { 2202 par64 = (phys_addr & 0xff000000) | (1 << 1); 2203 } else { 2204 par64 = phys_addr & 0xfffff000; 2205 } 2206 if (!attrs.secure) { 2207 par64 |= (1 << 9); /* NS */ 2208 } 2209 } else { 2210 par64 = ((fsr & (1 << 10)) >> 5) | ((fsr & (1 << 12)) >> 6) | 2211 ((fsr & 0xf) << 1) | 1; 2212 } 2213 } 2214 return par64; 2215 } 2216 2217 static void ats_write(CPUARMState *env, const ARMCPRegInfo *ri, uint64_t value) 2218 { 2219 MMUAccessType access_type = ri->opc2 & 1 ? MMU_DATA_STORE : MMU_DATA_LOAD; 2220 uint64_t par64; 2221 ARMMMUIdx mmu_idx; 2222 int el = arm_current_el(env); 2223 bool secure = arm_is_secure_below_el3(env); 2224 2225 switch (ri->opc2 & 6) { 2226 case 0: 2227 /* stage 1 current state PL1: ATS1CPR, ATS1CPW */ 2228 switch (el) { 2229 case 3: 2230 mmu_idx = ARMMMUIdx_S1E3; 2231 break; 2232 case 2: 2233 mmu_idx = ARMMMUIdx_S1NSE1; 2234 break; 2235 case 1: 2236 mmu_idx = secure ? ARMMMUIdx_S1SE1 : ARMMMUIdx_S1NSE1; 2237 break; 2238 default: 2239 g_assert_not_reached(); 2240 } 2241 break; 2242 case 2: 2243 /* stage 1 current state PL0: ATS1CUR, ATS1CUW */ 2244 switch (el) { 2245 case 3: 2246 mmu_idx = ARMMMUIdx_S1SE0; 2247 break; 2248 case 2: 2249 mmu_idx = ARMMMUIdx_S1NSE0; 2250 break; 2251 case 1: 2252 mmu_idx = secure ? ARMMMUIdx_S1SE0 : ARMMMUIdx_S1NSE0; 2253 break; 2254 default: 2255 g_assert_not_reached(); 2256 } 2257 break; 2258 case 4: 2259 /* stage 1+2 NonSecure PL1: ATS12NSOPR, ATS12NSOPW */ 2260 mmu_idx = ARMMMUIdx_S12NSE1; 2261 break; 2262 case 6: 2263 /* stage 1+2 NonSecure PL0: ATS12NSOUR, ATS12NSOUW */ 2264 mmu_idx = ARMMMUIdx_S12NSE0; 2265 break; 2266 default: 2267 g_assert_not_reached(); 2268 } 2269 2270 par64 = do_ats_write(env, value, access_type, mmu_idx); 2271 2272 A32_BANKED_CURRENT_REG_SET(env, par, par64); 2273 } 2274 2275 static void ats1h_write(CPUARMState *env, const ARMCPRegInfo *ri, 2276 uint64_t value) 2277 { 2278 MMUAccessType access_type = ri->opc2 & 1 ? MMU_DATA_STORE : MMU_DATA_LOAD; 2279 uint64_t par64; 2280 2281 par64 = do_ats_write(env, value, access_type, ARMMMUIdx_S2NS); 2282 2283 A32_BANKED_CURRENT_REG_SET(env, par, par64); 2284 } 2285 2286 static CPAccessResult at_s1e2_access(CPUARMState *env, const ARMCPRegInfo *ri, 2287 bool isread) 2288 { 2289 if (arm_current_el(env) == 3 && !(env->cp15.scr_el3 & SCR_NS)) { 2290 return CP_ACCESS_TRAP; 2291 } 2292 return CP_ACCESS_OK; 2293 } 2294 2295 static void ats_write64(CPUARMState *env, const ARMCPRegInfo *ri, 2296 uint64_t value) 2297 { 2298 MMUAccessType access_type = ri->opc2 & 1 ? MMU_DATA_STORE : MMU_DATA_LOAD; 2299 ARMMMUIdx mmu_idx; 2300 int secure = arm_is_secure_below_el3(env); 2301 2302 switch (ri->opc2 & 6) { 2303 case 0: 2304 switch (ri->opc1) { 2305 case 0: /* AT S1E1R, AT S1E1W */ 2306 mmu_idx = secure ? ARMMMUIdx_S1SE1 : ARMMMUIdx_S1NSE1; 2307 break; 2308 case 4: /* AT S1E2R, AT S1E2W */ 2309 mmu_idx = ARMMMUIdx_S1E2; 2310 break; 2311 case 6: /* AT S1E3R, AT S1E3W */ 2312 mmu_idx = ARMMMUIdx_S1E3; 2313 break; 2314 default: 2315 g_assert_not_reached(); 2316 } 2317 break; 2318 case 2: /* AT S1E0R, AT S1E0W */ 2319 mmu_idx = secure ? ARMMMUIdx_S1SE0 : ARMMMUIdx_S1NSE0; 2320 break; 2321 case 4: /* AT S12E1R, AT S12E1W */ 2322 mmu_idx = secure ? ARMMMUIdx_S1SE1 : ARMMMUIdx_S12NSE1; 2323 break; 2324 case 6: /* AT S12E0R, AT S12E0W */ 2325 mmu_idx = secure ? ARMMMUIdx_S1SE0 : ARMMMUIdx_S12NSE0; 2326 break; 2327 default: 2328 g_assert_not_reached(); 2329 } 2330 2331 env->cp15.par_el[1] = do_ats_write(env, value, access_type, mmu_idx); 2332 } 2333 #endif 2334 2335 static const ARMCPRegInfo vapa_cp_reginfo[] = { 2336 { .name = "PAR", .cp = 15, .crn = 7, .crm = 4, .opc1 = 0, .opc2 = 0, 2337 .access = PL1_RW, .resetvalue = 0, 2338 .bank_fieldoffsets = { offsetoflow32(CPUARMState, cp15.par_s), 2339 offsetoflow32(CPUARMState, cp15.par_ns) }, 2340 .writefn = par_write }, 2341 #ifndef CONFIG_USER_ONLY 2342 /* This underdecoding is safe because the reginfo is NO_RAW. */ 2343 { .name = "ATS", .cp = 15, .crn = 7, .crm = 8, .opc1 = 0, .opc2 = CP_ANY, 2344 .access = PL1_W, .accessfn = ats_access, 2345 .writefn = ats_write, .type = ARM_CP_NO_RAW }, 2346 #endif 2347 REGINFO_SENTINEL 2348 }; 2349 2350 /* Return basic MPU access permission bits. */ 2351 static uint32_t simple_mpu_ap_bits(uint32_t val) 2352 { 2353 uint32_t ret; 2354 uint32_t mask; 2355 int i; 2356 ret = 0; 2357 mask = 3; 2358 for (i = 0; i < 16; i += 2) { 2359 ret |= (val >> i) & mask; 2360 mask <<= 2; 2361 } 2362 return ret; 2363 } 2364 2365 /* Pad basic MPU access permission bits to extended format. */ 2366 static uint32_t extended_mpu_ap_bits(uint32_t val) 2367 { 2368 uint32_t ret; 2369 uint32_t mask; 2370 int i; 2371 ret = 0; 2372 mask = 3; 2373 for (i = 0; i < 16; i += 2) { 2374 ret |= (val & mask) << i; 2375 mask <<= 2; 2376 } 2377 return ret; 2378 } 2379 2380 static void pmsav5_data_ap_write(CPUARMState *env, const ARMCPRegInfo *ri, 2381 uint64_t value) 2382 { 2383 env->cp15.pmsav5_data_ap = extended_mpu_ap_bits(value); 2384 } 2385 2386 static uint64_t pmsav5_data_ap_read(CPUARMState *env, const ARMCPRegInfo *ri) 2387 { 2388 return simple_mpu_ap_bits(env->cp15.pmsav5_data_ap); 2389 } 2390 2391 static void pmsav5_insn_ap_write(CPUARMState *env, const ARMCPRegInfo *ri, 2392 uint64_t value) 2393 { 2394 env->cp15.pmsav5_insn_ap = extended_mpu_ap_bits(value); 2395 } 2396 2397 static uint64_t pmsav5_insn_ap_read(CPUARMState *env, const ARMCPRegInfo *ri) 2398 { 2399 return simple_mpu_ap_bits(env->cp15.pmsav5_insn_ap); 2400 } 2401 2402 static uint64_t pmsav7_read(CPUARMState *env, const ARMCPRegInfo *ri) 2403 { 2404 uint32_t *u32p = *(uint32_t **)raw_ptr(env, ri); 2405 2406 if (!u32p) { 2407 return 0; 2408 } 2409 2410 u32p += env->pmsav7.rnr[M_REG_NS]; 2411 return *u32p; 2412 } 2413 2414 static void pmsav7_write(CPUARMState *env, const ARMCPRegInfo *ri, 2415 uint64_t value) 2416 { 2417 ARMCPU *cpu = arm_env_get_cpu(env); 2418 uint32_t *u32p = *(uint32_t **)raw_ptr(env, ri); 2419 2420 if (!u32p) { 2421 return; 2422 } 2423 2424 u32p += env->pmsav7.rnr[M_REG_NS]; 2425 tlb_flush(CPU(cpu)); /* Mappings may have changed - purge! */ 2426 *u32p = value; 2427 } 2428 2429 static void pmsav7_rgnr_write(CPUARMState *env, const ARMCPRegInfo *ri, 2430 uint64_t value) 2431 { 2432 ARMCPU *cpu = arm_env_get_cpu(env); 2433 uint32_t nrgs = cpu->pmsav7_dregion; 2434 2435 if (value >= nrgs) { 2436 qemu_log_mask(LOG_GUEST_ERROR, 2437 "PMSAv7 RGNR write >= # supported regions, %" PRIu32 2438 " > %" PRIu32 "\n", (uint32_t)value, nrgs); 2439 return; 2440 } 2441 2442 raw_write(env, ri, value); 2443 } 2444 2445 static const ARMCPRegInfo pmsav7_cp_reginfo[] = { 2446 /* Reset for all these registers is handled in arm_cpu_reset(), 2447 * because the PMSAv7 is also used by M-profile CPUs, which do 2448 * not register cpregs but still need the state to be reset. 2449 */ 2450 { .name = "DRBAR", .cp = 15, .crn = 6, .opc1 = 0, .crm = 1, .opc2 = 0, 2451 .access = PL1_RW, .type = ARM_CP_NO_RAW, 2452 .fieldoffset = offsetof(CPUARMState, pmsav7.drbar), 2453 .readfn = pmsav7_read, .writefn = pmsav7_write, 2454 .resetfn = arm_cp_reset_ignore }, 2455 { .name = "DRSR", .cp = 15, .crn = 6, .opc1 = 0, .crm = 1, .opc2 = 2, 2456 .access = PL1_RW, .type = ARM_CP_NO_RAW, 2457 .fieldoffset = offsetof(CPUARMState, pmsav7.drsr), 2458 .readfn = pmsav7_read, .writefn = pmsav7_write, 2459 .resetfn = arm_cp_reset_ignore }, 2460 { .name = "DRACR", .cp = 15, .crn = 6, .opc1 = 0, .crm = 1, .opc2 = 4, 2461 .access = PL1_RW, .type = ARM_CP_NO_RAW, 2462 .fieldoffset = offsetof(CPUARMState, pmsav7.dracr), 2463 .readfn = pmsav7_read, .writefn = pmsav7_write, 2464 .resetfn = arm_cp_reset_ignore }, 2465 { .name = "RGNR", .cp = 15, .crn = 6, .opc1 = 0, .crm = 2, .opc2 = 0, 2466 .access = PL1_RW, 2467 .fieldoffset = offsetof(CPUARMState, pmsav7.rnr[M_REG_NS]), 2468 .writefn = pmsav7_rgnr_write, 2469 .resetfn = arm_cp_reset_ignore }, 2470 REGINFO_SENTINEL 2471 }; 2472 2473 static const ARMCPRegInfo pmsav5_cp_reginfo[] = { 2474 { .name = "DATA_AP", .cp = 15, .crn = 5, .crm = 0, .opc1 = 0, .opc2 = 0, 2475 .access = PL1_RW, .type = ARM_CP_ALIAS, 2476 .fieldoffset = offsetof(CPUARMState, cp15.pmsav5_data_ap), 2477 .readfn = pmsav5_data_ap_read, .writefn = pmsav5_data_ap_write, }, 2478 { .name = "INSN_AP", .cp = 15, .crn = 5, .crm = 0, .opc1 = 0, .opc2 = 1, 2479 .access = PL1_RW, .type = ARM_CP_ALIAS, 2480 .fieldoffset = offsetof(CPUARMState, cp15.pmsav5_insn_ap), 2481 .readfn = pmsav5_insn_ap_read, .writefn = pmsav5_insn_ap_write, }, 2482 { .name = "DATA_EXT_AP", .cp = 15, .crn = 5, .crm = 0, .opc1 = 0, .opc2 = 2, 2483 .access = PL1_RW, 2484 .fieldoffset = offsetof(CPUARMState, cp15.pmsav5_data_ap), 2485 .resetvalue = 0, }, 2486 { .name = "INSN_EXT_AP", .cp = 15, .crn = 5, .crm = 0, .opc1 = 0, .opc2 = 3, 2487 .access = PL1_RW, 2488 .fieldoffset = offsetof(CPUARMState, cp15.pmsav5_insn_ap), 2489 .resetvalue = 0, }, 2490 { .name = "DCACHE_CFG", .cp = 15, .crn = 2, .crm = 0, .opc1 = 0, .opc2 = 0, 2491 .access = PL1_RW, 2492 .fieldoffset = offsetof(CPUARMState, cp15.c2_data), .resetvalue = 0, }, 2493 { .name = "ICACHE_CFG", .cp = 15, .crn = 2, .crm = 0, .opc1 = 0, .opc2 = 1, 2494 .access = PL1_RW, 2495 .fieldoffset = offsetof(CPUARMState, cp15.c2_insn), .resetvalue = 0, }, 2496 /* Protection region base and size registers */ 2497 { .name = "946_PRBS0", .cp = 15, .crn = 6, .crm = 0, .opc1 = 0, 2498 .opc2 = CP_ANY, .access = PL1_RW, .resetvalue = 0, 2499 .fieldoffset = offsetof(CPUARMState, cp15.c6_region[0]) }, 2500 { .name = "946_PRBS1", .cp = 15, .crn = 6, .crm = 1, .opc1 = 0, 2501 .opc2 = CP_ANY, .access = PL1_RW, .resetvalue = 0, 2502 .fieldoffset = offsetof(CPUARMState, cp15.c6_region[1]) }, 2503 { .name = "946_PRBS2", .cp = 15, .crn = 6, .crm = 2, .opc1 = 0, 2504 .opc2 = CP_ANY, .access = PL1_RW, .resetvalue = 0, 2505 .fieldoffset = offsetof(CPUARMState, cp15.c6_region[2]) }, 2506 { .name = "946_PRBS3", .cp = 15, .crn = 6, .crm = 3, .opc1 = 0, 2507 .opc2 = CP_ANY, .access = PL1_RW, .resetvalue = 0, 2508 .fieldoffset = offsetof(CPUARMState, cp15.c6_region[3]) }, 2509 { .name = "946_PRBS4", .cp = 15, .crn = 6, .crm = 4, .opc1 = 0, 2510 .opc2 = CP_ANY, .access = PL1_RW, .resetvalue = 0, 2511 .fieldoffset = offsetof(CPUARMState, cp15.c6_region[4]) }, 2512 { .name = "946_PRBS5", .cp = 15, .crn = 6, .crm = 5, .opc1 = 0, 2513 .opc2 = CP_ANY, .access = PL1_RW, .resetvalue = 0, 2514 .fieldoffset = offsetof(CPUARMState, cp15.c6_region[5]) }, 2515 { .name = "946_PRBS6", .cp = 15, .crn = 6, .crm = 6, .opc1 = 0, 2516 .opc2 = CP_ANY, .access = PL1_RW, .resetvalue = 0, 2517 .fieldoffset = offsetof(CPUARMState, cp15.c6_region[6]) }, 2518 { .name = "946_PRBS7", .cp = 15, .crn = 6, .crm = 7, .opc1 = 0, 2519 .opc2 = CP_ANY, .access = PL1_RW, .resetvalue = 0, 2520 .fieldoffset = offsetof(CPUARMState, cp15.c6_region[7]) }, 2521 REGINFO_SENTINEL 2522 }; 2523 2524 static void vmsa_ttbcr_raw_write(CPUARMState *env, const ARMCPRegInfo *ri, 2525 uint64_t value) 2526 { 2527 TCR *tcr = raw_ptr(env, ri); 2528 int maskshift = extract32(value, 0, 3); 2529 2530 if (!arm_feature(env, ARM_FEATURE_V8)) { 2531 if (arm_feature(env, ARM_FEATURE_LPAE) && (value & TTBCR_EAE)) { 2532 /* Pre ARMv8 bits [21:19], [15:14] and [6:3] are UNK/SBZP when 2533 * using Long-desciptor translation table format */ 2534 value &= ~((7 << 19) | (3 << 14) | (0xf << 3)); 2535 } else if (arm_feature(env, ARM_FEATURE_EL3)) { 2536 /* In an implementation that includes the Security Extensions 2537 * TTBCR has additional fields PD0 [4] and PD1 [5] for 2538 * Short-descriptor translation table format. 2539 */ 2540 value &= TTBCR_PD1 | TTBCR_PD0 | TTBCR_N; 2541 } else { 2542 value &= TTBCR_N; 2543 } 2544 } 2545 2546 /* Update the masks corresponding to the TCR bank being written 2547 * Note that we always calculate mask and base_mask, but 2548 * they are only used for short-descriptor tables (ie if EAE is 0); 2549 * for long-descriptor tables the TCR fields are used differently 2550 * and the mask and base_mask values are meaningless. 2551 */ 2552 tcr->raw_tcr = value; 2553 tcr->mask = ~(((uint32_t)0xffffffffu) >> maskshift); 2554 tcr->base_mask = ~((uint32_t)0x3fffu >> maskshift); 2555 } 2556 2557 static void vmsa_ttbcr_write(CPUARMState *env, const ARMCPRegInfo *ri, 2558 uint64_t value) 2559 { 2560 ARMCPU *cpu = arm_env_get_cpu(env); 2561 2562 if (arm_feature(env, ARM_FEATURE_LPAE)) { 2563 /* With LPAE the TTBCR could result in a change of ASID 2564 * via the TTBCR.A1 bit, so do a TLB flush. 2565 */ 2566 tlb_flush(CPU(cpu)); 2567 } 2568 vmsa_ttbcr_raw_write(env, ri, value); 2569 } 2570 2571 static void vmsa_ttbcr_reset(CPUARMState *env, const ARMCPRegInfo *ri) 2572 { 2573 TCR *tcr = raw_ptr(env, ri); 2574 2575 /* Reset both the TCR as well as the masks corresponding to the bank of 2576 * the TCR being reset. 2577 */ 2578 tcr->raw_tcr = 0; 2579 tcr->mask = 0; 2580 tcr->base_mask = 0xffffc000u; 2581 } 2582 2583 static void vmsa_tcr_el1_write(CPUARMState *env, const ARMCPRegInfo *ri, 2584 uint64_t value) 2585 { 2586 ARMCPU *cpu = arm_env_get_cpu(env); 2587 TCR *tcr = raw_ptr(env, ri); 2588 2589 /* For AArch64 the A1 bit could result in a change of ASID, so TLB flush. */ 2590 tlb_flush(CPU(cpu)); 2591 tcr->raw_tcr = value; 2592 } 2593 2594 static void vmsa_ttbr_write(CPUARMState *env, const ARMCPRegInfo *ri, 2595 uint64_t value) 2596 { 2597 /* 64 bit accesses to the TTBRs can change the ASID and so we 2598 * must flush the TLB. 2599 */ 2600 if (cpreg_field_is_64bit(ri)) { 2601 ARMCPU *cpu = arm_env_get_cpu(env); 2602 2603 tlb_flush(CPU(cpu)); 2604 } 2605 raw_write(env, ri, value); 2606 } 2607 2608 static void vttbr_write(CPUARMState *env, const ARMCPRegInfo *ri, 2609 uint64_t value) 2610 { 2611 ARMCPU *cpu = arm_env_get_cpu(env); 2612 CPUState *cs = CPU(cpu); 2613 2614 /* Accesses to VTTBR may change the VMID so we must flush the TLB. */ 2615 if (raw_read(env, ri) != value) { 2616 tlb_flush_by_mmuidx(cs, 2617 ARMMMUIdxBit_S12NSE1 | 2618 ARMMMUIdxBit_S12NSE0 | 2619 ARMMMUIdxBit_S2NS); 2620 raw_write(env, ri, value); 2621 } 2622 } 2623 2624 static const ARMCPRegInfo vmsa_pmsa_cp_reginfo[] = { 2625 { .name = "DFSR", .cp = 15, .crn = 5, .crm = 0, .opc1 = 0, .opc2 = 0, 2626 .access = PL1_RW, .type = ARM_CP_ALIAS, 2627 .bank_fieldoffsets = { offsetoflow32(CPUARMState, cp15.dfsr_s), 2628 offsetoflow32(CPUARMState, cp15.dfsr_ns) }, }, 2629 { .name = "IFSR", .cp = 15, .crn = 5, .crm = 0, .opc1 = 0, .opc2 = 1, 2630 .access = PL1_RW, .resetvalue = 0, 2631 .bank_fieldoffsets = { offsetoflow32(CPUARMState, cp15.ifsr_s), 2632 offsetoflow32(CPUARMState, cp15.ifsr_ns) } }, 2633 { .name = "DFAR", .cp = 15, .opc1 = 0, .crn = 6, .crm = 0, .opc2 = 0, 2634 .access = PL1_RW, .resetvalue = 0, 2635 .bank_fieldoffsets = { offsetof(CPUARMState, cp15.dfar_s), 2636 offsetof(CPUARMState, cp15.dfar_ns) } }, 2637 { .name = "FAR_EL1", .state = ARM_CP_STATE_AA64, 2638 .opc0 = 3, .crn = 6, .crm = 0, .opc1 = 0, .opc2 = 0, 2639 .access = PL1_RW, .fieldoffset = offsetof(CPUARMState, cp15.far_el[1]), 2640 .resetvalue = 0, }, 2641 REGINFO_SENTINEL 2642 }; 2643 2644 static const ARMCPRegInfo vmsa_cp_reginfo[] = { 2645 { .name = "ESR_EL1", .state = ARM_CP_STATE_AA64, 2646 .opc0 = 3, .crn = 5, .crm = 2, .opc1 = 0, .opc2 = 0, 2647 .access = PL1_RW, 2648 .fieldoffset = offsetof(CPUARMState, cp15.esr_el[1]), .resetvalue = 0, }, 2649 { .name = "TTBR0_EL1", .state = ARM_CP_STATE_BOTH, 2650 .opc0 = 3, .opc1 = 0, .crn = 2, .crm = 0, .opc2 = 0, 2651 .access = PL1_RW, .writefn = vmsa_ttbr_write, .resetvalue = 0, 2652 .bank_fieldoffsets = { offsetof(CPUARMState, cp15.ttbr0_s), 2653 offsetof(CPUARMState, cp15.ttbr0_ns) } }, 2654 { .name = "TTBR1_EL1", .state = ARM_CP_STATE_BOTH, 2655 .opc0 = 3, .opc1 = 0, .crn = 2, .crm = 0, .opc2 = 1, 2656 .access = PL1_RW, .writefn = vmsa_ttbr_write, .resetvalue = 0, 2657 .bank_fieldoffsets = { offsetof(CPUARMState, cp15.ttbr1_s), 2658 offsetof(CPUARMState, cp15.ttbr1_ns) } }, 2659 { .name = "TCR_EL1", .state = ARM_CP_STATE_AA64, 2660 .opc0 = 3, .crn = 2, .crm = 0, .opc1 = 0, .opc2 = 2, 2661 .access = PL1_RW, .writefn = vmsa_tcr_el1_write, 2662 .resetfn = vmsa_ttbcr_reset, .raw_writefn = raw_write, 2663 .fieldoffset = offsetof(CPUARMState, cp15.tcr_el[1]) }, 2664 { .name = "TTBCR", .cp = 15, .crn = 2, .crm = 0, .opc1 = 0, .opc2 = 2, 2665 .access = PL1_RW, .type = ARM_CP_ALIAS, .writefn = vmsa_ttbcr_write, 2666 .raw_writefn = vmsa_ttbcr_raw_write, 2667 .bank_fieldoffsets = { offsetoflow32(CPUARMState, cp15.tcr_el[3]), 2668 offsetoflow32(CPUARMState, cp15.tcr_el[1])} }, 2669 REGINFO_SENTINEL 2670 }; 2671 2672 static void omap_ticonfig_write(CPUARMState *env, const ARMCPRegInfo *ri, 2673 uint64_t value) 2674 { 2675 env->cp15.c15_ticonfig = value & 0xe7; 2676 /* The OS_TYPE bit in this register changes the reported CPUID! */ 2677 env->cp15.c0_cpuid = (value & (1 << 5)) ? 2678 ARM_CPUID_TI915T : ARM_CPUID_TI925T; 2679 } 2680 2681 static void omap_threadid_write(CPUARMState *env, const ARMCPRegInfo *ri, 2682 uint64_t value) 2683 { 2684 env->cp15.c15_threadid = value & 0xffff; 2685 } 2686 2687 static void omap_wfi_write(CPUARMState *env, const ARMCPRegInfo *ri, 2688 uint64_t value) 2689 { 2690 /* Wait-for-interrupt (deprecated) */ 2691 cpu_interrupt(CPU(arm_env_get_cpu(env)), CPU_INTERRUPT_HALT); 2692 } 2693 2694 static void omap_cachemaint_write(CPUARMState *env, const ARMCPRegInfo *ri, 2695 uint64_t value) 2696 { 2697 /* On OMAP there are registers indicating the max/min index of dcache lines 2698 * containing a dirty line; cache flush operations have to reset these. 2699 */ 2700 env->cp15.c15_i_max = 0x000; 2701 env->cp15.c15_i_min = 0xff0; 2702 } 2703 2704 static const ARMCPRegInfo omap_cp_reginfo[] = { 2705 { .name = "DFSR", .cp = 15, .crn = 5, .crm = CP_ANY, 2706 .opc1 = CP_ANY, .opc2 = CP_ANY, .access = PL1_RW, .type = ARM_CP_OVERRIDE, 2707 .fieldoffset = offsetoflow32(CPUARMState, cp15.esr_el[1]), 2708 .resetvalue = 0, }, 2709 { .name = "", .cp = 15, .crn = 15, .crm = 0, .opc1 = 0, .opc2 = 0, 2710 .access = PL1_RW, .type = ARM_CP_NOP }, 2711 { .name = "TICONFIG", .cp = 15, .crn = 15, .crm = 1, .opc1 = 0, .opc2 = 0, 2712 .access = PL1_RW, 2713 .fieldoffset = offsetof(CPUARMState, cp15.c15_ticonfig), .resetvalue = 0, 2714 .writefn = omap_ticonfig_write }, 2715 { .name = "IMAX", .cp = 15, .crn = 15, .crm = 2, .opc1 = 0, .opc2 = 0, 2716 .access = PL1_RW, 2717 .fieldoffset = offsetof(CPUARMState, cp15.c15_i_max), .resetvalue = 0, }, 2718 { .name = "IMIN", .cp = 15, .crn = 15, .crm = 3, .opc1 = 0, .opc2 = 0, 2719 .access = PL1_RW, .resetvalue = 0xff0, 2720 .fieldoffset = offsetof(CPUARMState, cp15.c15_i_min) }, 2721 { .name = "THREADID", .cp = 15, .crn = 15, .crm = 4, .opc1 = 0, .opc2 = 0, 2722 .access = PL1_RW, 2723 .fieldoffset = offsetof(CPUARMState, cp15.c15_threadid), .resetvalue = 0, 2724 .writefn = omap_threadid_write }, 2725 { .name = "TI925T_STATUS", .cp = 15, .crn = 15, 2726 .crm = 8, .opc1 = 0, .opc2 = 0, .access = PL1_RW, 2727 .type = ARM_CP_NO_RAW, 2728 .readfn = arm_cp_read_zero, .writefn = omap_wfi_write, }, 2729 /* TODO: Peripheral port remap register: 2730 * On OMAP2 mcr p15, 0, rn, c15, c2, 4 sets up the interrupt controller 2731 * base address at $rn & ~0xfff and map size of 0x200 << ($rn & 0xfff), 2732 * when MMU is off. 2733 */ 2734 { .name = "OMAP_CACHEMAINT", .cp = 15, .crn = 7, .crm = CP_ANY, 2735 .opc1 = 0, .opc2 = CP_ANY, .access = PL1_W, 2736 .type = ARM_CP_OVERRIDE | ARM_CP_NO_RAW, 2737 .writefn = omap_cachemaint_write }, 2738 { .name = "C9", .cp = 15, .crn = 9, 2739 .crm = CP_ANY, .opc1 = CP_ANY, .opc2 = CP_ANY, .access = PL1_RW, 2740 .type = ARM_CP_CONST | ARM_CP_OVERRIDE, .resetvalue = 0 }, 2741 REGINFO_SENTINEL 2742 }; 2743 2744 static void xscale_cpar_write(CPUARMState *env, const ARMCPRegInfo *ri, 2745 uint64_t value) 2746 { 2747 env->cp15.c15_cpar = value & 0x3fff; 2748 } 2749 2750 static const ARMCPRegInfo xscale_cp_reginfo[] = { 2751 { .name = "XSCALE_CPAR", 2752 .cp = 15, .crn = 15, .crm = 1, .opc1 = 0, .opc2 = 0, .access = PL1_RW, 2753 .fieldoffset = offsetof(CPUARMState, cp15.c15_cpar), .resetvalue = 0, 2754 .writefn = xscale_cpar_write, }, 2755 { .name = "XSCALE_AUXCR", 2756 .cp = 15, .crn = 1, .crm = 0, .opc1 = 0, .opc2 = 1, .access = PL1_RW, 2757 .fieldoffset = offsetof(CPUARMState, cp15.c1_xscaleauxcr), 2758 .resetvalue = 0, }, 2759 /* XScale specific cache-lockdown: since we have no cache we NOP these 2760 * and hope the guest does not really rely on cache behaviour. 2761 */ 2762 { .name = "XSCALE_LOCK_ICACHE_LINE", 2763 .cp = 15, .opc1 = 0, .crn = 9, .crm = 1, .opc2 = 0, 2764 .access = PL1_W, .type = ARM_CP_NOP }, 2765 { .name = "XSCALE_UNLOCK_ICACHE", 2766 .cp = 15, .opc1 = 0, .crn = 9, .crm = 1, .opc2 = 1, 2767 .access = PL1_W, .type = ARM_CP_NOP }, 2768 { .name = "XSCALE_DCACHE_LOCK", 2769 .cp = 15, .opc1 = 0, .crn = 9, .crm = 2, .opc2 = 0, 2770 .access = PL1_RW, .type = ARM_CP_NOP }, 2771 { .name = "XSCALE_UNLOCK_DCACHE", 2772 .cp = 15, .opc1 = 0, .crn = 9, .crm = 2, .opc2 = 1, 2773 .access = PL1_W, .type = ARM_CP_NOP }, 2774 REGINFO_SENTINEL 2775 }; 2776 2777 static const ARMCPRegInfo dummy_c15_cp_reginfo[] = { 2778 /* RAZ/WI the whole crn=15 space, when we don't have a more specific 2779 * implementation of this implementation-defined space. 2780 * Ideally this should eventually disappear in favour of actually 2781 * implementing the correct behaviour for all cores. 2782 */ 2783 { .name = "C15_IMPDEF", .cp = 15, .crn = 15, 2784 .crm = CP_ANY, .opc1 = CP_ANY, .opc2 = CP_ANY, 2785 .access = PL1_RW, 2786 .type = ARM_CP_CONST | ARM_CP_NO_RAW | ARM_CP_OVERRIDE, 2787 .resetvalue = 0 }, 2788 REGINFO_SENTINEL 2789 }; 2790 2791 static const ARMCPRegInfo cache_dirty_status_cp_reginfo[] = { 2792 /* Cache status: RAZ because we have no cache so it's always clean */ 2793 { .name = "CDSR", .cp = 15, .crn = 7, .crm = 10, .opc1 = 0, .opc2 = 6, 2794 .access = PL1_R, .type = ARM_CP_CONST | ARM_CP_NO_RAW, 2795 .resetvalue = 0 }, 2796 REGINFO_SENTINEL 2797 }; 2798 2799 static const ARMCPRegInfo cache_block_ops_cp_reginfo[] = { 2800 /* We never have a a block transfer operation in progress */ 2801 { .name = "BXSR", .cp = 15, .crn = 7, .crm = 12, .opc1 = 0, .opc2 = 4, 2802 .access = PL0_R, .type = ARM_CP_CONST | ARM_CP_NO_RAW, 2803 .resetvalue = 0 }, 2804 /* The cache ops themselves: these all NOP for QEMU */ 2805 { .name = "IICR", .cp = 15, .crm = 5, .opc1 = 0, 2806 .access = PL1_W, .type = ARM_CP_NOP|ARM_CP_64BIT }, 2807 { .name = "IDCR", .cp = 15, .crm = 6, .opc1 = 0, 2808 .access = PL1_W, .type = ARM_CP_NOP|ARM_CP_64BIT }, 2809 { .name = "CDCR", .cp = 15, .crm = 12, .opc1 = 0, 2810 .access = PL0_W, .type = ARM_CP_NOP|ARM_CP_64BIT }, 2811 { .name = "PIR", .cp = 15, .crm = 12, .opc1 = 1, 2812 .access = PL0_W, .type = ARM_CP_NOP|ARM_CP_64BIT }, 2813 { .name = "PDR", .cp = 15, .crm = 12, .opc1 = 2, 2814 .access = PL0_W, .type = ARM_CP_NOP|ARM_CP_64BIT }, 2815 { .name = "CIDCR", .cp = 15, .crm = 14, .opc1 = 0, 2816 .access = PL1_W, .type = ARM_CP_NOP|ARM_CP_64BIT }, 2817 REGINFO_SENTINEL 2818 }; 2819 2820 static const ARMCPRegInfo cache_test_clean_cp_reginfo[] = { 2821 /* The cache test-and-clean instructions always return (1 << 30) 2822 * to indicate that there are no dirty cache lines. 2823 */ 2824 { .name = "TC_DCACHE", .cp = 15, .crn = 7, .crm = 10, .opc1 = 0, .opc2 = 3, 2825 .access = PL0_R, .type = ARM_CP_CONST | ARM_CP_NO_RAW, 2826 .resetvalue = (1 << 30) }, 2827 { .name = "TCI_DCACHE", .cp = 15, .crn = 7, .crm = 14, .opc1 = 0, .opc2 = 3, 2828 .access = PL0_R, .type = ARM_CP_CONST | ARM_CP_NO_RAW, 2829 .resetvalue = (1 << 30) }, 2830 REGINFO_SENTINEL 2831 }; 2832 2833 static const ARMCPRegInfo strongarm_cp_reginfo[] = { 2834 /* Ignore ReadBuffer accesses */ 2835 { .name = "C9_READBUFFER", .cp = 15, .crn = 9, 2836 .crm = CP_ANY, .opc1 = CP_ANY, .opc2 = CP_ANY, 2837 .access = PL1_RW, .resetvalue = 0, 2838 .type = ARM_CP_CONST | ARM_CP_OVERRIDE | ARM_CP_NO_RAW }, 2839 REGINFO_SENTINEL 2840 }; 2841 2842 static uint64_t midr_read(CPUARMState *env, const ARMCPRegInfo *ri) 2843 { 2844 ARMCPU *cpu = arm_env_get_cpu(env); 2845 unsigned int cur_el = arm_current_el(env); 2846 bool secure = arm_is_secure(env); 2847 2848 if (arm_feature(&cpu->env, ARM_FEATURE_EL2) && !secure && cur_el == 1) { 2849 return env->cp15.vpidr_el2; 2850 } 2851 return raw_read(env, ri); 2852 } 2853 2854 static uint64_t mpidr_read_val(CPUARMState *env) 2855 { 2856 ARMCPU *cpu = ARM_CPU(arm_env_get_cpu(env)); 2857 uint64_t mpidr = cpu->mp_affinity; 2858 2859 if (arm_feature(env, ARM_FEATURE_V7MP)) { 2860 mpidr |= (1U << 31); 2861 /* Cores which are uniprocessor (non-coherent) 2862 * but still implement the MP extensions set 2863 * bit 30. (For instance, Cortex-R5). 2864 */ 2865 if (cpu->mp_is_up) { 2866 mpidr |= (1u << 30); 2867 } 2868 } 2869 return mpidr; 2870 } 2871 2872 static uint64_t mpidr_read(CPUARMState *env, const ARMCPRegInfo *ri) 2873 { 2874 unsigned int cur_el = arm_current_el(env); 2875 bool secure = arm_is_secure(env); 2876 2877 if (arm_feature(env, ARM_FEATURE_EL2) && !secure && cur_el == 1) { 2878 return env->cp15.vmpidr_el2; 2879 } 2880 return mpidr_read_val(env); 2881 } 2882 2883 static const ARMCPRegInfo mpidr_cp_reginfo[] = { 2884 { .name = "MPIDR", .state = ARM_CP_STATE_BOTH, 2885 .opc0 = 3, .crn = 0, .crm = 0, .opc1 = 0, .opc2 = 5, 2886 .access = PL1_R, .readfn = mpidr_read, .type = ARM_CP_NO_RAW }, 2887 REGINFO_SENTINEL 2888 }; 2889 2890 static const ARMCPRegInfo lpae_cp_reginfo[] = { 2891 /* NOP AMAIR0/1 */ 2892 { .name = "AMAIR0", .state = ARM_CP_STATE_BOTH, 2893 .opc0 = 3, .crn = 10, .crm = 3, .opc1 = 0, .opc2 = 0, 2894 .access = PL1_RW, .type = ARM_CP_CONST, 2895 .resetvalue = 0 }, 2896 /* AMAIR1 is mapped to AMAIR_EL1[63:32] */ 2897 { .name = "AMAIR1", .cp = 15, .crn = 10, .crm = 3, .opc1 = 0, .opc2 = 1, 2898 .access = PL1_RW, .type = ARM_CP_CONST, 2899 .resetvalue = 0 }, 2900 { .name = "PAR", .cp = 15, .crm = 7, .opc1 = 0, 2901 .access = PL1_RW, .type = ARM_CP_64BIT, .resetvalue = 0, 2902 .bank_fieldoffsets = { offsetof(CPUARMState, cp15.par_s), 2903 offsetof(CPUARMState, cp15.par_ns)} }, 2904 { .name = "TTBR0", .cp = 15, .crm = 2, .opc1 = 0, 2905 .access = PL1_RW, .type = ARM_CP_64BIT | ARM_CP_ALIAS, 2906 .bank_fieldoffsets = { offsetof(CPUARMState, cp15.ttbr0_s), 2907 offsetof(CPUARMState, cp15.ttbr0_ns) }, 2908 .writefn = vmsa_ttbr_write, }, 2909 { .name = "TTBR1", .cp = 15, .crm = 2, .opc1 = 1, 2910 .access = PL1_RW, .type = ARM_CP_64BIT | ARM_CP_ALIAS, 2911 .bank_fieldoffsets = { offsetof(CPUARMState, cp15.ttbr1_s), 2912 offsetof(CPUARMState, cp15.ttbr1_ns) }, 2913 .writefn = vmsa_ttbr_write, }, 2914 REGINFO_SENTINEL 2915 }; 2916 2917 static uint64_t aa64_fpcr_read(CPUARMState *env, const ARMCPRegInfo *ri) 2918 { 2919 return vfp_get_fpcr(env); 2920 } 2921 2922 static void aa64_fpcr_write(CPUARMState *env, const ARMCPRegInfo *ri, 2923 uint64_t value) 2924 { 2925 vfp_set_fpcr(env, value); 2926 } 2927 2928 static uint64_t aa64_fpsr_read(CPUARMState *env, const ARMCPRegInfo *ri) 2929 { 2930 return vfp_get_fpsr(env); 2931 } 2932 2933 static void aa64_fpsr_write(CPUARMState *env, const ARMCPRegInfo *ri, 2934 uint64_t value) 2935 { 2936 vfp_set_fpsr(env, value); 2937 } 2938 2939 static CPAccessResult aa64_daif_access(CPUARMState *env, const ARMCPRegInfo *ri, 2940 bool isread) 2941 { 2942 if (arm_current_el(env) == 0 && !(env->cp15.sctlr_el[1] & SCTLR_UMA)) { 2943 return CP_ACCESS_TRAP; 2944 } 2945 return CP_ACCESS_OK; 2946 } 2947 2948 static void aa64_daif_write(CPUARMState *env, const ARMCPRegInfo *ri, 2949 uint64_t value) 2950 { 2951 env->daif = value & PSTATE_DAIF; 2952 } 2953 2954 static CPAccessResult aa64_cacheop_access(CPUARMState *env, 2955 const ARMCPRegInfo *ri, 2956 bool isread) 2957 { 2958 /* Cache invalidate/clean: NOP, but EL0 must UNDEF unless 2959 * SCTLR_EL1.UCI is set. 2960 */ 2961 if (arm_current_el(env) == 0 && !(env->cp15.sctlr_el[1] & SCTLR_UCI)) { 2962 return CP_ACCESS_TRAP; 2963 } 2964 return CP_ACCESS_OK; 2965 } 2966 2967 /* See: D4.7.2 TLB maintenance requirements and the TLB maintenance instructions 2968 * Page D4-1736 (DDI0487A.b) 2969 */ 2970 2971 static void tlbi_aa64_vmalle1_write(CPUARMState *env, const ARMCPRegInfo *ri, 2972 uint64_t value) 2973 { 2974 CPUState *cs = ENV_GET_CPU(env); 2975 2976 if (arm_is_secure_below_el3(env)) { 2977 tlb_flush_by_mmuidx(cs, 2978 ARMMMUIdxBit_S1SE1 | 2979 ARMMMUIdxBit_S1SE0); 2980 } else { 2981 tlb_flush_by_mmuidx(cs, 2982 ARMMMUIdxBit_S12NSE1 | 2983 ARMMMUIdxBit_S12NSE0); 2984 } 2985 } 2986 2987 static void tlbi_aa64_vmalle1is_write(CPUARMState *env, const ARMCPRegInfo *ri, 2988 uint64_t value) 2989 { 2990 CPUState *cs = ENV_GET_CPU(env); 2991 bool sec = arm_is_secure_below_el3(env); 2992 2993 if (sec) { 2994 tlb_flush_by_mmuidx_all_cpus_synced(cs, 2995 ARMMMUIdxBit_S1SE1 | 2996 ARMMMUIdxBit_S1SE0); 2997 } else { 2998 tlb_flush_by_mmuidx_all_cpus_synced(cs, 2999 ARMMMUIdxBit_S12NSE1 | 3000 ARMMMUIdxBit_S12NSE0); 3001 } 3002 } 3003 3004 static void tlbi_aa64_alle1_write(CPUARMState *env, const ARMCPRegInfo *ri, 3005 uint64_t value) 3006 { 3007 /* Note that the 'ALL' scope must invalidate both stage 1 and 3008 * stage 2 translations, whereas most other scopes only invalidate 3009 * stage 1 translations. 3010 */ 3011 ARMCPU *cpu = arm_env_get_cpu(env); 3012 CPUState *cs = CPU(cpu); 3013 3014 if (arm_is_secure_below_el3(env)) { 3015 tlb_flush_by_mmuidx(cs, 3016 ARMMMUIdxBit_S1SE1 | 3017 ARMMMUIdxBit_S1SE0); 3018 } else { 3019 if (arm_feature(env, ARM_FEATURE_EL2)) { 3020 tlb_flush_by_mmuidx(cs, 3021 ARMMMUIdxBit_S12NSE1 | 3022 ARMMMUIdxBit_S12NSE0 | 3023 ARMMMUIdxBit_S2NS); 3024 } else { 3025 tlb_flush_by_mmuidx(cs, 3026 ARMMMUIdxBit_S12NSE1 | 3027 ARMMMUIdxBit_S12NSE0); 3028 } 3029 } 3030 } 3031 3032 static void tlbi_aa64_alle2_write(CPUARMState *env, const ARMCPRegInfo *ri, 3033 uint64_t value) 3034 { 3035 ARMCPU *cpu = arm_env_get_cpu(env); 3036 CPUState *cs = CPU(cpu); 3037 3038 tlb_flush_by_mmuidx(cs, ARMMMUIdxBit_S1E2); 3039 } 3040 3041 static void tlbi_aa64_alle3_write(CPUARMState *env, const ARMCPRegInfo *ri, 3042 uint64_t value) 3043 { 3044 ARMCPU *cpu = arm_env_get_cpu(env); 3045 CPUState *cs = CPU(cpu); 3046 3047 tlb_flush_by_mmuidx(cs, ARMMMUIdxBit_S1E3); 3048 } 3049 3050 static void tlbi_aa64_alle1is_write(CPUARMState *env, const ARMCPRegInfo *ri, 3051 uint64_t value) 3052 { 3053 /* Note that the 'ALL' scope must invalidate both stage 1 and 3054 * stage 2 translations, whereas most other scopes only invalidate 3055 * stage 1 translations. 3056 */ 3057 CPUState *cs = ENV_GET_CPU(env); 3058 bool sec = arm_is_secure_below_el3(env); 3059 bool has_el2 = arm_feature(env, ARM_FEATURE_EL2); 3060 3061 if (sec) { 3062 tlb_flush_by_mmuidx_all_cpus_synced(cs, 3063 ARMMMUIdxBit_S1SE1 | 3064 ARMMMUIdxBit_S1SE0); 3065 } else if (has_el2) { 3066 tlb_flush_by_mmuidx_all_cpus_synced(cs, 3067 ARMMMUIdxBit_S12NSE1 | 3068 ARMMMUIdxBit_S12NSE0 | 3069 ARMMMUIdxBit_S2NS); 3070 } else { 3071 tlb_flush_by_mmuidx_all_cpus_synced(cs, 3072 ARMMMUIdxBit_S12NSE1 | 3073 ARMMMUIdxBit_S12NSE0); 3074 } 3075 } 3076 3077 static void tlbi_aa64_alle2is_write(CPUARMState *env, const ARMCPRegInfo *ri, 3078 uint64_t value) 3079 { 3080 CPUState *cs = ENV_GET_CPU(env); 3081 3082 tlb_flush_by_mmuidx_all_cpus_synced(cs, ARMMMUIdxBit_S1E2); 3083 } 3084 3085 static void tlbi_aa64_alle3is_write(CPUARMState *env, const ARMCPRegInfo *ri, 3086 uint64_t value) 3087 { 3088 CPUState *cs = ENV_GET_CPU(env); 3089 3090 tlb_flush_by_mmuidx_all_cpus_synced(cs, ARMMMUIdxBit_S1E3); 3091 } 3092 3093 static void tlbi_aa64_vae1_write(CPUARMState *env, const ARMCPRegInfo *ri, 3094 uint64_t value) 3095 { 3096 /* Invalidate by VA, EL1&0 (AArch64 version). 3097 * Currently handles all of VAE1, VAAE1, VAALE1 and VALE1, 3098 * since we don't support flush-for-specific-ASID-only or 3099 * flush-last-level-only. 3100 */ 3101 ARMCPU *cpu = arm_env_get_cpu(env); 3102 CPUState *cs = CPU(cpu); 3103 uint64_t pageaddr = sextract64(value << 12, 0, 56); 3104 3105 if (arm_is_secure_below_el3(env)) { 3106 tlb_flush_page_by_mmuidx(cs, pageaddr, 3107 ARMMMUIdxBit_S1SE1 | 3108 ARMMMUIdxBit_S1SE0); 3109 } else { 3110 tlb_flush_page_by_mmuidx(cs, pageaddr, 3111 ARMMMUIdxBit_S12NSE1 | 3112 ARMMMUIdxBit_S12NSE0); 3113 } 3114 } 3115 3116 static void tlbi_aa64_vae2_write(CPUARMState *env, const ARMCPRegInfo *ri, 3117 uint64_t value) 3118 { 3119 /* Invalidate by VA, EL2 3120 * Currently handles both VAE2 and VALE2, since we don't support 3121 * flush-last-level-only. 3122 */ 3123 ARMCPU *cpu = arm_env_get_cpu(env); 3124 CPUState *cs = CPU(cpu); 3125 uint64_t pageaddr = sextract64(value << 12, 0, 56); 3126 3127 tlb_flush_page_by_mmuidx(cs, pageaddr, ARMMMUIdxBit_S1E2); 3128 } 3129 3130 static void tlbi_aa64_vae3_write(CPUARMState *env, const ARMCPRegInfo *ri, 3131 uint64_t value) 3132 { 3133 /* Invalidate by VA, EL3 3134 * Currently handles both VAE3 and VALE3, since we don't support 3135 * flush-last-level-only. 3136 */ 3137 ARMCPU *cpu = arm_env_get_cpu(env); 3138 CPUState *cs = CPU(cpu); 3139 uint64_t pageaddr = sextract64(value << 12, 0, 56); 3140 3141 tlb_flush_page_by_mmuidx(cs, pageaddr, ARMMMUIdxBit_S1E3); 3142 } 3143 3144 static void tlbi_aa64_vae1is_write(CPUARMState *env, const ARMCPRegInfo *ri, 3145 uint64_t value) 3146 { 3147 ARMCPU *cpu = arm_env_get_cpu(env); 3148 CPUState *cs = CPU(cpu); 3149 bool sec = arm_is_secure_below_el3(env); 3150 uint64_t pageaddr = sextract64(value << 12, 0, 56); 3151 3152 if (sec) { 3153 tlb_flush_page_by_mmuidx_all_cpus_synced(cs, pageaddr, 3154 ARMMMUIdxBit_S1SE1 | 3155 ARMMMUIdxBit_S1SE0); 3156 } else { 3157 tlb_flush_page_by_mmuidx_all_cpus_synced(cs, pageaddr, 3158 ARMMMUIdxBit_S12NSE1 | 3159 ARMMMUIdxBit_S12NSE0); 3160 } 3161 } 3162 3163 static void tlbi_aa64_vae2is_write(CPUARMState *env, const ARMCPRegInfo *ri, 3164 uint64_t value) 3165 { 3166 CPUState *cs = ENV_GET_CPU(env); 3167 uint64_t pageaddr = sextract64(value << 12, 0, 56); 3168 3169 tlb_flush_page_by_mmuidx_all_cpus_synced(cs, pageaddr, 3170 ARMMMUIdxBit_S1E2); 3171 } 3172 3173 static void tlbi_aa64_vae3is_write(CPUARMState *env, const ARMCPRegInfo *ri, 3174 uint64_t value) 3175 { 3176 CPUState *cs = ENV_GET_CPU(env); 3177 uint64_t pageaddr = sextract64(value << 12, 0, 56); 3178 3179 tlb_flush_page_by_mmuidx_all_cpus_synced(cs, pageaddr, 3180 ARMMMUIdxBit_S1E3); 3181 } 3182 3183 static void tlbi_aa64_ipas2e1_write(CPUARMState *env, const ARMCPRegInfo *ri, 3184 uint64_t value) 3185 { 3186 /* Invalidate by IPA. This has to invalidate any structures that 3187 * contain only stage 2 translation information, but does not need 3188 * to apply to structures that contain combined stage 1 and stage 2 3189 * translation information. 3190 * This must NOP if EL2 isn't implemented or SCR_EL3.NS is zero. 3191 */ 3192 ARMCPU *cpu = arm_env_get_cpu(env); 3193 CPUState *cs = CPU(cpu); 3194 uint64_t pageaddr; 3195 3196 if (!arm_feature(env, ARM_FEATURE_EL2) || !(env->cp15.scr_el3 & SCR_NS)) { 3197 return; 3198 } 3199 3200 pageaddr = sextract64(value << 12, 0, 48); 3201 3202 tlb_flush_page_by_mmuidx(cs, pageaddr, ARMMMUIdxBit_S2NS); 3203 } 3204 3205 static void tlbi_aa64_ipas2e1is_write(CPUARMState *env, const ARMCPRegInfo *ri, 3206 uint64_t value) 3207 { 3208 CPUState *cs = ENV_GET_CPU(env); 3209 uint64_t pageaddr; 3210 3211 if (!arm_feature(env, ARM_FEATURE_EL2) || !(env->cp15.scr_el3 & SCR_NS)) { 3212 return; 3213 } 3214 3215 pageaddr = sextract64(value << 12, 0, 48); 3216 3217 tlb_flush_page_by_mmuidx_all_cpus_synced(cs, pageaddr, 3218 ARMMMUIdxBit_S2NS); 3219 } 3220 3221 static CPAccessResult aa64_zva_access(CPUARMState *env, const ARMCPRegInfo *ri, 3222 bool isread) 3223 { 3224 /* We don't implement EL2, so the only control on DC ZVA is the 3225 * bit in the SCTLR which can prohibit access for EL0. 3226 */ 3227 if (arm_current_el(env) == 0 && !(env->cp15.sctlr_el[1] & SCTLR_DZE)) { 3228 return CP_ACCESS_TRAP; 3229 } 3230 return CP_ACCESS_OK; 3231 } 3232 3233 static uint64_t aa64_dczid_read(CPUARMState *env, const ARMCPRegInfo *ri) 3234 { 3235 ARMCPU *cpu = arm_env_get_cpu(env); 3236 int dzp_bit = 1 << 4; 3237 3238 /* DZP indicates whether DC ZVA access is allowed */ 3239 if (aa64_zva_access(env, NULL, false) == CP_ACCESS_OK) { 3240 dzp_bit = 0; 3241 } 3242 return cpu->dcz_blocksize | dzp_bit; 3243 } 3244 3245 static CPAccessResult sp_el0_access(CPUARMState *env, const ARMCPRegInfo *ri, 3246 bool isread) 3247 { 3248 if (!(env->pstate & PSTATE_SP)) { 3249 /* Access to SP_EL0 is undefined if it's being used as 3250 * the stack pointer. 3251 */ 3252 return CP_ACCESS_TRAP_UNCATEGORIZED; 3253 } 3254 return CP_ACCESS_OK; 3255 } 3256 3257 static uint64_t spsel_read(CPUARMState *env, const ARMCPRegInfo *ri) 3258 { 3259 return env->pstate & PSTATE_SP; 3260 } 3261 3262 static void spsel_write(CPUARMState *env, const ARMCPRegInfo *ri, uint64_t val) 3263 { 3264 update_spsel(env, val); 3265 } 3266 3267 static void sctlr_write(CPUARMState *env, const ARMCPRegInfo *ri, 3268 uint64_t value) 3269 { 3270 ARMCPU *cpu = arm_env_get_cpu(env); 3271 3272 if (raw_read(env, ri) == value) { 3273 /* Skip the TLB flush if nothing actually changed; Linux likes 3274 * to do a lot of pointless SCTLR writes. 3275 */ 3276 return; 3277 } 3278 3279 if (arm_feature(env, ARM_FEATURE_PMSA) && !cpu->has_mpu) { 3280 /* M bit is RAZ/WI for PMSA with no MPU implemented */ 3281 value &= ~SCTLR_M; 3282 } 3283 3284 raw_write(env, ri, value); 3285 /* ??? Lots of these bits are not implemented. */ 3286 /* This may enable/disable the MMU, so do a TLB flush. */ 3287 tlb_flush(CPU(cpu)); 3288 } 3289 3290 static CPAccessResult fpexc32_access(CPUARMState *env, const ARMCPRegInfo *ri, 3291 bool isread) 3292 { 3293 if ((env->cp15.cptr_el[2] & CPTR_TFP) && arm_current_el(env) == 2) { 3294 return CP_ACCESS_TRAP_FP_EL2; 3295 } 3296 if (env->cp15.cptr_el[3] & CPTR_TFP) { 3297 return CP_ACCESS_TRAP_FP_EL3; 3298 } 3299 return CP_ACCESS_OK; 3300 } 3301 3302 static void sdcr_write(CPUARMState *env, const ARMCPRegInfo *ri, 3303 uint64_t value) 3304 { 3305 env->cp15.mdcr_el3 = value & SDCR_VALID_MASK; 3306 } 3307 3308 static const ARMCPRegInfo v8_cp_reginfo[] = { 3309 /* Minimal set of EL0-visible registers. This will need to be expanded 3310 * significantly for system emulation of AArch64 CPUs. 3311 */ 3312 { .name = "NZCV", .state = ARM_CP_STATE_AA64, 3313 .opc0 = 3, .opc1 = 3, .opc2 = 0, .crn = 4, .crm = 2, 3314 .access = PL0_RW, .type = ARM_CP_NZCV }, 3315 { .name = "DAIF", .state = ARM_CP_STATE_AA64, 3316 .opc0 = 3, .opc1 = 3, .opc2 = 1, .crn = 4, .crm = 2, 3317 .type = ARM_CP_NO_RAW, 3318 .access = PL0_RW, .accessfn = aa64_daif_access, 3319 .fieldoffset = offsetof(CPUARMState, daif), 3320 .writefn = aa64_daif_write, .resetfn = arm_cp_reset_ignore }, 3321 { .name = "FPCR", .state = ARM_CP_STATE_AA64, 3322 .opc0 = 3, .opc1 = 3, .opc2 = 0, .crn = 4, .crm = 4, 3323 .access = PL0_RW, .readfn = aa64_fpcr_read, .writefn = aa64_fpcr_write }, 3324 { .name = "FPSR", .state = ARM_CP_STATE_AA64, 3325 .opc0 = 3, .opc1 = 3, .opc2 = 1, .crn = 4, .crm = 4, 3326 .access = PL0_RW, .readfn = aa64_fpsr_read, .writefn = aa64_fpsr_write }, 3327 { .name = "DCZID_EL0", .state = ARM_CP_STATE_AA64, 3328 .opc0 = 3, .opc1 = 3, .opc2 = 7, .crn = 0, .crm = 0, 3329 .access = PL0_R, .type = ARM_CP_NO_RAW, 3330 .readfn = aa64_dczid_read }, 3331 { .name = "DC_ZVA", .state = ARM_CP_STATE_AA64, 3332 .opc0 = 1, .opc1 = 3, .crn = 7, .crm = 4, .opc2 = 1, 3333 .access = PL0_W, .type = ARM_CP_DC_ZVA, 3334 #ifndef CONFIG_USER_ONLY 3335 /* Avoid overhead of an access check that always passes in user-mode */ 3336 .accessfn = aa64_zva_access, 3337 #endif 3338 }, 3339 { .name = "CURRENTEL", .state = ARM_CP_STATE_AA64, 3340 .opc0 = 3, .opc1 = 0, .opc2 = 2, .crn = 4, .crm = 2, 3341 .access = PL1_R, .type = ARM_CP_CURRENTEL }, 3342 /* Cache ops: all NOPs since we don't emulate caches */ 3343 { .name = "IC_IALLUIS", .state = ARM_CP_STATE_AA64, 3344 .opc0 = 1, .opc1 = 0, .crn = 7, .crm = 1, .opc2 = 0, 3345 .access = PL1_W, .type = ARM_CP_NOP }, 3346 { .name = "IC_IALLU", .state = ARM_CP_STATE_AA64, 3347 .opc0 = 1, .opc1 = 0, .crn = 7, .crm = 5, .opc2 = 0, 3348 .access = PL1_W, .type = ARM_CP_NOP }, 3349 { .name = "IC_IVAU", .state = ARM_CP_STATE_AA64, 3350 .opc0 = 1, .opc1 = 3, .crn = 7, .crm = 5, .opc2 = 1, 3351 .access = PL0_W, .type = ARM_CP_NOP, 3352 .accessfn = aa64_cacheop_access }, 3353 { .name = "DC_IVAC", .state = ARM_CP_STATE_AA64, 3354 .opc0 = 1, .opc1 = 0, .crn = 7, .crm = 6, .opc2 = 1, 3355 .access = PL1_W, .type = ARM_CP_NOP }, 3356 { .name = "DC_ISW", .state = ARM_CP_STATE_AA64, 3357 .opc0 = 1, .opc1 = 0, .crn = 7, .crm = 6, .opc2 = 2, 3358 .access = PL1_W, .type = ARM_CP_NOP }, 3359 { .name = "DC_CVAC", .state = ARM_CP_STATE_AA64, 3360 .opc0 = 1, .opc1 = 3, .crn = 7, .crm = 10, .opc2 = 1, 3361 .access = PL0_W, .type = ARM_CP_NOP, 3362 .accessfn = aa64_cacheop_access }, 3363 { .name = "DC_CSW", .state = ARM_CP_STATE_AA64, 3364 .opc0 = 1, .opc1 = 0, .crn = 7, .crm = 10, .opc2 = 2, 3365 .access = PL1_W, .type = ARM_CP_NOP }, 3366 { .name = "DC_CVAU", .state = ARM_CP_STATE_AA64, 3367 .opc0 = 1, .opc1 = 3, .crn = 7, .crm = 11, .opc2 = 1, 3368 .access = PL0_W, .type = ARM_CP_NOP, 3369 .accessfn = aa64_cacheop_access }, 3370 { .name = "DC_CIVAC", .state = ARM_CP_STATE_AA64, 3371 .opc0 = 1, .opc1 = 3, .crn = 7, .crm = 14, .opc2 = 1, 3372 .access = PL0_W, .type = ARM_CP_NOP, 3373 .accessfn = aa64_cacheop_access }, 3374 { .name = "DC_CISW", .state = ARM_CP_STATE_AA64, 3375 .opc0 = 1, .opc1 = 0, .crn = 7, .crm = 14, .opc2 = 2, 3376 .access = PL1_W, .type = ARM_CP_NOP }, 3377 /* TLBI operations */ 3378 { .name = "TLBI_VMALLE1IS", .state = ARM_CP_STATE_AA64, 3379 .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 3, .opc2 = 0, 3380 .access = PL1_W, .type = ARM_CP_NO_RAW, 3381 .writefn = tlbi_aa64_vmalle1is_write }, 3382 { .name = "TLBI_VAE1IS", .state = ARM_CP_STATE_AA64, 3383 .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 3, .opc2 = 1, 3384 .access = PL1_W, .type = ARM_CP_NO_RAW, 3385 .writefn = tlbi_aa64_vae1is_write }, 3386 { .name = "TLBI_ASIDE1IS", .state = ARM_CP_STATE_AA64, 3387 .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 3, .opc2 = 2, 3388 .access = PL1_W, .type = ARM_CP_NO_RAW, 3389 .writefn = tlbi_aa64_vmalle1is_write }, 3390 { .name = "TLBI_VAAE1IS", .state = ARM_CP_STATE_AA64, 3391 .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 3, .opc2 = 3, 3392 .access = PL1_W, .type = ARM_CP_NO_RAW, 3393 .writefn = tlbi_aa64_vae1is_write }, 3394 { .name = "TLBI_VALE1IS", .state = ARM_CP_STATE_AA64, 3395 .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 3, .opc2 = 5, 3396 .access = PL1_W, .type = ARM_CP_NO_RAW, 3397 .writefn = tlbi_aa64_vae1is_write }, 3398 { .name = "TLBI_VAALE1IS", .state = ARM_CP_STATE_AA64, 3399 .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 3, .opc2 = 7, 3400 .access = PL1_W, .type = ARM_CP_NO_RAW, 3401 .writefn = tlbi_aa64_vae1is_write }, 3402 { .name = "TLBI_VMALLE1", .state = ARM_CP_STATE_AA64, 3403 .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 7, .opc2 = 0, 3404 .access = PL1_W, .type = ARM_CP_NO_RAW, 3405 .writefn = tlbi_aa64_vmalle1_write }, 3406 { .name = "TLBI_VAE1", .state = ARM_CP_STATE_AA64, 3407 .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 7, .opc2 = 1, 3408 .access = PL1_W, .type = ARM_CP_NO_RAW, 3409 .writefn = tlbi_aa64_vae1_write }, 3410 { .name = "TLBI_ASIDE1", .state = ARM_CP_STATE_AA64, 3411 .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 7, .opc2 = 2, 3412 .access = PL1_W, .type = ARM_CP_NO_RAW, 3413 .writefn = tlbi_aa64_vmalle1_write }, 3414 { .name = "TLBI_VAAE1", .state = ARM_CP_STATE_AA64, 3415 .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 7, .opc2 = 3, 3416 .access = PL1_W, .type = ARM_CP_NO_RAW, 3417 .writefn = tlbi_aa64_vae1_write }, 3418 { .name = "TLBI_VALE1", .state = ARM_CP_STATE_AA64, 3419 .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 7, .opc2 = 5, 3420 .access = PL1_W, .type = ARM_CP_NO_RAW, 3421 .writefn = tlbi_aa64_vae1_write }, 3422 { .name = "TLBI_VAALE1", .state = ARM_CP_STATE_AA64, 3423 .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 7, .opc2 = 7, 3424 .access = PL1_W, .type = ARM_CP_NO_RAW, 3425 .writefn = tlbi_aa64_vae1_write }, 3426 { .name = "TLBI_IPAS2E1IS", .state = ARM_CP_STATE_AA64, 3427 .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 0, .opc2 = 1, 3428 .access = PL2_W, .type = ARM_CP_NO_RAW, 3429 .writefn = tlbi_aa64_ipas2e1is_write }, 3430 { .name = "TLBI_IPAS2LE1IS", .state = ARM_CP_STATE_AA64, 3431 .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 0, .opc2 = 5, 3432 .access = PL2_W, .type = ARM_CP_NO_RAW, 3433 .writefn = tlbi_aa64_ipas2e1is_write }, 3434 { .name = "TLBI_ALLE1IS", .state = ARM_CP_STATE_AA64, 3435 .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 3, .opc2 = 4, 3436 .access = PL2_W, .type = ARM_CP_NO_RAW, 3437 .writefn = tlbi_aa64_alle1is_write }, 3438 { .name = "TLBI_VMALLS12E1IS", .state = ARM_CP_STATE_AA64, 3439 .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 3, .opc2 = 6, 3440 .access = PL2_W, .type = ARM_CP_NO_RAW, 3441 .writefn = tlbi_aa64_alle1is_write }, 3442 { .name = "TLBI_IPAS2E1", .state = ARM_CP_STATE_AA64, 3443 .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 4, .opc2 = 1, 3444 .access = PL2_W, .type = ARM_CP_NO_RAW, 3445 .writefn = tlbi_aa64_ipas2e1_write }, 3446 { .name = "TLBI_IPAS2LE1", .state = ARM_CP_STATE_AA64, 3447 .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 4, .opc2 = 5, 3448 .access = PL2_W, .type = ARM_CP_NO_RAW, 3449 .writefn = tlbi_aa64_ipas2e1_write }, 3450 { .name = "TLBI_ALLE1", .state = ARM_CP_STATE_AA64, 3451 .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 7, .opc2 = 4, 3452 .access = PL2_W, .type = ARM_CP_NO_RAW, 3453 .writefn = tlbi_aa64_alle1_write }, 3454 { .name = "TLBI_VMALLS12E1", .state = ARM_CP_STATE_AA64, 3455 .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 7, .opc2 = 6, 3456 .access = PL2_W, .type = ARM_CP_NO_RAW, 3457 .writefn = tlbi_aa64_alle1is_write }, 3458 #ifndef CONFIG_USER_ONLY 3459 /* 64 bit address translation operations */ 3460 { .name = "AT_S1E1R", .state = ARM_CP_STATE_AA64, 3461 .opc0 = 1, .opc1 = 0, .crn = 7, .crm = 8, .opc2 = 0, 3462 .access = PL1_W, .type = ARM_CP_NO_RAW, .writefn = ats_write64 }, 3463 { .name = "AT_S1E1W", .state = ARM_CP_STATE_AA64, 3464 .opc0 = 1, .opc1 = 0, .crn = 7, .crm = 8, .opc2 = 1, 3465 .access = PL1_W, .type = ARM_CP_NO_RAW, .writefn = ats_write64 }, 3466 { .name = "AT_S1E0R", .state = ARM_CP_STATE_AA64, 3467 .opc0 = 1, .opc1 = 0, .crn = 7, .crm = 8, .opc2 = 2, 3468 .access = PL1_W, .type = ARM_CP_NO_RAW, .writefn = ats_write64 }, 3469 { .name = "AT_S1E0W", .state = ARM_CP_STATE_AA64, 3470 .opc0 = 1, .opc1 = 0, .crn = 7, .crm = 8, .opc2 = 3, 3471 .access = PL1_W, .type = ARM_CP_NO_RAW, .writefn = ats_write64 }, 3472 { .name = "AT_S12E1R", .state = ARM_CP_STATE_AA64, 3473 .opc0 = 1, .opc1 = 4, .crn = 7, .crm = 8, .opc2 = 4, 3474 .access = PL2_W, .type = ARM_CP_NO_RAW, .writefn = ats_write64 }, 3475 { .name = "AT_S12E1W", .state = ARM_CP_STATE_AA64, 3476 .opc0 = 1, .opc1 = 4, .crn = 7, .crm = 8, .opc2 = 5, 3477 .access = PL2_W, .type = ARM_CP_NO_RAW, .writefn = ats_write64 }, 3478 { .name = "AT_S12E0R", .state = ARM_CP_STATE_AA64, 3479 .opc0 = 1, .opc1 = 4, .crn = 7, .crm = 8, .opc2 = 6, 3480 .access = PL2_W, .type = ARM_CP_NO_RAW, .writefn = ats_write64 }, 3481 { .name = "AT_S12E0W", .state = ARM_CP_STATE_AA64, 3482 .opc0 = 1, .opc1 = 4, .crn = 7, .crm = 8, .opc2 = 7, 3483 .access = PL2_W, .type = ARM_CP_NO_RAW, .writefn = ats_write64 }, 3484 /* AT S1E2* are elsewhere as they UNDEF from EL3 if EL2 is not present */ 3485 { .name = "AT_S1E3R", .state = ARM_CP_STATE_AA64, 3486 .opc0 = 1, .opc1 = 6, .crn = 7, .crm = 8, .opc2 = 0, 3487 .access = PL3_W, .type = ARM_CP_NO_RAW, .writefn = ats_write64 }, 3488 { .name = "AT_S1E3W", .state = ARM_CP_STATE_AA64, 3489 .opc0 = 1, .opc1 = 6, .crn = 7, .crm = 8, .opc2 = 1, 3490 .access = PL3_W, .type = ARM_CP_NO_RAW, .writefn = ats_write64 }, 3491 { .name = "PAR_EL1", .state = ARM_CP_STATE_AA64, 3492 .type = ARM_CP_ALIAS, 3493 .opc0 = 3, .opc1 = 0, .crn = 7, .crm = 4, .opc2 = 0, 3494 .access = PL1_RW, .resetvalue = 0, 3495 .fieldoffset = offsetof(CPUARMState, cp15.par_el[1]), 3496 .writefn = par_write }, 3497 #endif 3498 /* TLB invalidate last level of translation table walk */ 3499 { .name = "TLBIMVALIS", .cp = 15, .opc1 = 0, .crn = 8, .crm = 3, .opc2 = 5, 3500 .type = ARM_CP_NO_RAW, .access = PL1_W, .writefn = tlbimva_is_write }, 3501 { .name = "TLBIMVAALIS", .cp = 15, .opc1 = 0, .crn = 8, .crm = 3, .opc2 = 7, 3502 .type = ARM_CP_NO_RAW, .access = PL1_W, 3503 .writefn = tlbimvaa_is_write }, 3504 { .name = "TLBIMVAL", .cp = 15, .opc1 = 0, .crn = 8, .crm = 7, .opc2 = 5, 3505 .type = ARM_CP_NO_RAW, .access = PL1_W, .writefn = tlbimva_write }, 3506 { .name = "TLBIMVAAL", .cp = 15, .opc1 = 0, .crn = 8, .crm = 7, .opc2 = 7, 3507 .type = ARM_CP_NO_RAW, .access = PL1_W, .writefn = tlbimvaa_write }, 3508 { .name = "TLBIMVALH", .cp = 15, .opc1 = 4, .crn = 8, .crm = 7, .opc2 = 5, 3509 .type = ARM_CP_NO_RAW, .access = PL2_W, 3510 .writefn = tlbimva_hyp_write }, 3511 { .name = "TLBIMVALHIS", 3512 .cp = 15, .opc1 = 4, .crn = 8, .crm = 3, .opc2 = 5, 3513 .type = ARM_CP_NO_RAW, .access = PL2_W, 3514 .writefn = tlbimva_hyp_is_write }, 3515 { .name = "TLBIIPAS2", 3516 .cp = 15, .opc1 = 4, .crn = 8, .crm = 4, .opc2 = 1, 3517 .type = ARM_CP_NO_RAW, .access = PL2_W, 3518 .writefn = tlbiipas2_write }, 3519 { .name = "TLBIIPAS2IS", 3520 .cp = 15, .opc1 = 4, .crn = 8, .crm = 0, .opc2 = 1, 3521 .type = ARM_CP_NO_RAW, .access = PL2_W, 3522 .writefn = tlbiipas2_is_write }, 3523 { .name = "TLBIIPAS2L", 3524 .cp = 15, .opc1 = 4, .crn = 8, .crm = 4, .opc2 = 5, 3525 .type = ARM_CP_NO_RAW, .access = PL2_W, 3526 .writefn = tlbiipas2_write }, 3527 { .name = "TLBIIPAS2LIS", 3528 .cp = 15, .opc1 = 4, .crn = 8, .crm = 0, .opc2 = 5, 3529 .type = ARM_CP_NO_RAW, .access = PL2_W, 3530 .writefn = tlbiipas2_is_write }, 3531 /* 32 bit cache operations */ 3532 { .name = "ICIALLUIS", .cp = 15, .opc1 = 0, .crn = 7, .crm = 1, .opc2 = 0, 3533 .type = ARM_CP_NOP, .access = PL1_W }, 3534 { .name = "BPIALLUIS", .cp = 15, .opc1 = 0, .crn = 7, .crm = 1, .opc2 = 6, 3535 .type = ARM_CP_NOP, .access = PL1_W }, 3536 { .name = "ICIALLU", .cp = 15, .opc1 = 0, .crn = 7, .crm = 5, .opc2 = 0, 3537 .type = ARM_CP_NOP, .access = PL1_W }, 3538 { .name = "ICIMVAU", .cp = 15, .opc1 = 0, .crn = 7, .crm = 5, .opc2 = 1, 3539 .type = ARM_CP_NOP, .access = PL1_W }, 3540 { .name = "BPIALL", .cp = 15, .opc1 = 0, .crn = 7, .crm = 5, .opc2 = 6, 3541 .type = ARM_CP_NOP, .access = PL1_W }, 3542 { .name = "BPIMVA", .cp = 15, .opc1 = 0, .crn = 7, .crm = 5, .opc2 = 7, 3543 .type = ARM_CP_NOP, .access = PL1_W }, 3544 { .name = "DCIMVAC", .cp = 15, .opc1 = 0, .crn = 7, .crm = 6, .opc2 = 1, 3545 .type = ARM_CP_NOP, .access = PL1_W }, 3546 { .name = "DCISW", .cp = 15, .opc1 = 0, .crn = 7, .crm = 6, .opc2 = 2, 3547 .type = ARM_CP_NOP, .access = PL1_W }, 3548 { .name = "DCCMVAC", .cp = 15, .opc1 = 0, .crn = 7, .crm = 10, .opc2 = 1, 3549 .type = ARM_CP_NOP, .access = PL1_W }, 3550 { .name = "DCCSW", .cp = 15, .opc1 = 0, .crn = 7, .crm = 10, .opc2 = 2, 3551 .type = ARM_CP_NOP, .access = PL1_W }, 3552 { .name = "DCCMVAU", .cp = 15, .opc1 = 0, .crn = 7, .crm = 11, .opc2 = 1, 3553 .type = ARM_CP_NOP, .access = PL1_W }, 3554 { .name = "DCCIMVAC", .cp = 15, .opc1 = 0, .crn = 7, .crm = 14, .opc2 = 1, 3555 .type = ARM_CP_NOP, .access = PL1_W }, 3556 { .name = "DCCISW", .cp = 15, .opc1 = 0, .crn = 7, .crm = 14, .opc2 = 2, 3557 .type = ARM_CP_NOP, .access = PL1_W }, 3558 /* MMU Domain access control / MPU write buffer control */ 3559 { .name = "DACR", .cp = 15, .opc1 = 0, .crn = 3, .crm = 0, .opc2 = 0, 3560 .access = PL1_RW, .resetvalue = 0, 3561 .writefn = dacr_write, .raw_writefn = raw_write, 3562 .bank_fieldoffsets = { offsetoflow32(CPUARMState, cp15.dacr_s), 3563 offsetoflow32(CPUARMState, cp15.dacr_ns) } }, 3564 { .name = "ELR_EL1", .state = ARM_CP_STATE_AA64, 3565 .type = ARM_CP_ALIAS, 3566 .opc0 = 3, .opc1 = 0, .crn = 4, .crm = 0, .opc2 = 1, 3567 .access = PL1_RW, 3568 .fieldoffset = offsetof(CPUARMState, elr_el[1]) }, 3569 { .name = "SPSR_EL1", .state = ARM_CP_STATE_AA64, 3570 .type = ARM_CP_ALIAS, 3571 .opc0 = 3, .opc1 = 0, .crn = 4, .crm = 0, .opc2 = 0, 3572 .access = PL1_RW, 3573 .fieldoffset = offsetof(CPUARMState, banked_spsr[BANK_SVC]) }, 3574 /* We rely on the access checks not allowing the guest to write to the 3575 * state field when SPSel indicates that it's being used as the stack 3576 * pointer. 3577 */ 3578 { .name = "SP_EL0", .state = ARM_CP_STATE_AA64, 3579 .opc0 = 3, .opc1 = 0, .crn = 4, .crm = 1, .opc2 = 0, 3580 .access = PL1_RW, .accessfn = sp_el0_access, 3581 .type = ARM_CP_ALIAS, 3582 .fieldoffset = offsetof(CPUARMState, sp_el[0]) }, 3583 { .name = "SP_EL1", .state = ARM_CP_STATE_AA64, 3584 .opc0 = 3, .opc1 = 4, .crn = 4, .crm = 1, .opc2 = 0, 3585 .access = PL2_RW, .type = ARM_CP_ALIAS, 3586 .fieldoffset = offsetof(CPUARMState, sp_el[1]) }, 3587 { .name = "SPSel", .state = ARM_CP_STATE_AA64, 3588 .opc0 = 3, .opc1 = 0, .crn = 4, .crm = 2, .opc2 = 0, 3589 .type = ARM_CP_NO_RAW, 3590 .access = PL1_RW, .readfn = spsel_read, .writefn = spsel_write }, 3591 { .name = "FPEXC32_EL2", .state = ARM_CP_STATE_AA64, 3592 .opc0 = 3, .opc1 = 4, .crn = 5, .crm = 3, .opc2 = 0, 3593 .type = ARM_CP_ALIAS, 3594 .fieldoffset = offsetof(CPUARMState, vfp.xregs[ARM_VFP_FPEXC]), 3595 .access = PL2_RW, .accessfn = fpexc32_access }, 3596 { .name = "DACR32_EL2", .state = ARM_CP_STATE_AA64, 3597 .opc0 = 3, .opc1 = 4, .crn = 3, .crm = 0, .opc2 = 0, 3598 .access = PL2_RW, .resetvalue = 0, 3599 .writefn = dacr_write, .raw_writefn = raw_write, 3600 .fieldoffset = offsetof(CPUARMState, cp15.dacr32_el2) }, 3601 { .name = "IFSR32_EL2", .state = ARM_CP_STATE_AA64, 3602 .opc0 = 3, .opc1 = 4, .crn = 5, .crm = 0, .opc2 = 1, 3603 .access = PL2_RW, .resetvalue = 0, 3604 .fieldoffset = offsetof(CPUARMState, cp15.ifsr32_el2) }, 3605 { .name = "SPSR_IRQ", .state = ARM_CP_STATE_AA64, 3606 .type = ARM_CP_ALIAS, 3607 .opc0 = 3, .opc1 = 4, .crn = 4, .crm = 3, .opc2 = 0, 3608 .access = PL2_RW, 3609 .fieldoffset = offsetof(CPUARMState, banked_spsr[BANK_IRQ]) }, 3610 { .name = "SPSR_ABT", .state = ARM_CP_STATE_AA64, 3611 .type = ARM_CP_ALIAS, 3612 .opc0 = 3, .opc1 = 4, .crn = 4, .crm = 3, .opc2 = 1, 3613 .access = PL2_RW, 3614 .fieldoffset = offsetof(CPUARMState, banked_spsr[BANK_ABT]) }, 3615 { .name = "SPSR_UND", .state = ARM_CP_STATE_AA64, 3616 .type = ARM_CP_ALIAS, 3617 .opc0 = 3, .opc1 = 4, .crn = 4, .crm = 3, .opc2 = 2, 3618 .access = PL2_RW, 3619 .fieldoffset = offsetof(CPUARMState, banked_spsr[BANK_UND]) }, 3620 { .name = "SPSR_FIQ", .state = ARM_CP_STATE_AA64, 3621 .type = ARM_CP_ALIAS, 3622 .opc0 = 3, .opc1 = 4, .crn = 4, .crm = 3, .opc2 = 3, 3623 .access = PL2_RW, 3624 .fieldoffset = offsetof(CPUARMState, banked_spsr[BANK_FIQ]) }, 3625 { .name = "MDCR_EL3", .state = ARM_CP_STATE_AA64, 3626 .opc0 = 3, .opc1 = 6, .crn = 1, .crm = 3, .opc2 = 1, 3627 .resetvalue = 0, 3628 .access = PL3_RW, .fieldoffset = offsetof(CPUARMState, cp15.mdcr_el3) }, 3629 { .name = "SDCR", .type = ARM_CP_ALIAS, 3630 .cp = 15, .opc1 = 0, .crn = 1, .crm = 3, .opc2 = 1, 3631 .access = PL1_RW, .accessfn = access_trap_aa32s_el1, 3632 .writefn = sdcr_write, 3633 .fieldoffset = offsetoflow32(CPUARMState, cp15.mdcr_el3) }, 3634 REGINFO_SENTINEL 3635 }; 3636 3637 /* Used to describe the behaviour of EL2 regs when EL2 does not exist. */ 3638 static const ARMCPRegInfo el3_no_el2_cp_reginfo[] = { 3639 { .name = "VBAR_EL2", .state = ARM_CP_STATE_AA64, 3640 .opc0 = 3, .opc1 = 4, .crn = 12, .crm = 0, .opc2 = 0, 3641 .access = PL2_RW, 3642 .readfn = arm_cp_read_zero, .writefn = arm_cp_write_ignore }, 3643 { .name = "HCR_EL2", .state = ARM_CP_STATE_AA64, 3644 .type = ARM_CP_NO_RAW, 3645 .opc0 = 3, .opc1 = 4, .crn = 1, .crm = 1, .opc2 = 0, 3646 .access = PL2_RW, 3647 .readfn = arm_cp_read_zero, .writefn = arm_cp_write_ignore }, 3648 { .name = "CPTR_EL2", .state = ARM_CP_STATE_BOTH, 3649 .opc0 = 3, .opc1 = 4, .crn = 1, .crm = 1, .opc2 = 2, 3650 .access = PL2_RW, .type = ARM_CP_CONST, .resetvalue = 0 }, 3651 { .name = "MAIR_EL2", .state = ARM_CP_STATE_BOTH, 3652 .opc0 = 3, .opc1 = 4, .crn = 10, .crm = 2, .opc2 = 0, 3653 .access = PL2_RW, .type = ARM_CP_CONST, 3654 .resetvalue = 0 }, 3655 { .name = "HMAIR1", .state = ARM_CP_STATE_AA32, 3656 .opc1 = 4, .crn = 10, .crm = 2, .opc2 = 1, 3657 .access = PL2_RW, .type = ARM_CP_CONST, .resetvalue = 0 }, 3658 { .name = "AMAIR_EL2", .state = ARM_CP_STATE_BOTH, 3659 .opc0 = 3, .opc1 = 4, .crn = 10, .crm = 3, .opc2 = 0, 3660 .access = PL2_RW, .type = ARM_CP_CONST, 3661 .resetvalue = 0 }, 3662 { .name = "HMAIR1", .state = ARM_CP_STATE_AA32, 3663 .opc1 = 4, .crn = 10, .crm = 3, .opc2 = 1, 3664 .access = PL2_RW, .type = ARM_CP_CONST, 3665 .resetvalue = 0 }, 3666 { .name = "AFSR0_EL2", .state = ARM_CP_STATE_BOTH, 3667 .opc0 = 3, .opc1 = 4, .crn = 5, .crm = 1, .opc2 = 0, 3668 .access = PL2_RW, .type = ARM_CP_CONST, 3669 .resetvalue = 0 }, 3670 { .name = "AFSR1_EL2", .state = ARM_CP_STATE_BOTH, 3671 .opc0 = 3, .opc1 = 4, .crn = 5, .crm = 1, .opc2 = 1, 3672 .access = PL2_RW, .type = ARM_CP_CONST, 3673 .resetvalue = 0 }, 3674 { .name = "TCR_EL2", .state = ARM_CP_STATE_BOTH, 3675 .opc0 = 3, .opc1 = 4, .crn = 2, .crm = 0, .opc2 = 2, 3676 .access = PL2_RW, .type = ARM_CP_CONST, .resetvalue = 0 }, 3677 { .name = "VTCR_EL2", .state = ARM_CP_STATE_BOTH, 3678 .opc0 = 3, .opc1 = 4, .crn = 2, .crm = 1, .opc2 = 2, 3679 .access = PL2_RW, .accessfn = access_el3_aa32ns_aa64any, 3680 .type = ARM_CP_CONST, .resetvalue = 0 }, 3681 { .name = "VTTBR", .state = ARM_CP_STATE_AA32, 3682 .cp = 15, .opc1 = 6, .crm = 2, 3683 .access = PL2_RW, .accessfn = access_el3_aa32ns, 3684 .type = ARM_CP_CONST | ARM_CP_64BIT, .resetvalue = 0 }, 3685 { .name = "VTTBR_EL2", .state = ARM_CP_STATE_AA64, 3686 .opc0 = 3, .opc1 = 4, .crn = 2, .crm = 1, .opc2 = 0, 3687 .access = PL2_RW, .type = ARM_CP_CONST, .resetvalue = 0 }, 3688 { .name = "SCTLR_EL2", .state = ARM_CP_STATE_BOTH, 3689 .opc0 = 3, .opc1 = 4, .crn = 1, .crm = 0, .opc2 = 0, 3690 .access = PL2_RW, .type = ARM_CP_CONST, .resetvalue = 0 }, 3691 { .name = "TPIDR_EL2", .state = ARM_CP_STATE_BOTH, 3692 .opc0 = 3, .opc1 = 4, .crn = 13, .crm = 0, .opc2 = 2, 3693 .access = PL2_RW, .type = ARM_CP_CONST, .resetvalue = 0 }, 3694 { .name = "TTBR0_EL2", .state = ARM_CP_STATE_AA64, 3695 .opc0 = 3, .opc1 = 4, .crn = 2, .crm = 0, .opc2 = 0, 3696 .access = PL2_RW, .type = ARM_CP_CONST, .resetvalue = 0 }, 3697 { .name = "HTTBR", .cp = 15, .opc1 = 4, .crm = 2, 3698 .access = PL2_RW, .type = ARM_CP_64BIT | ARM_CP_CONST, 3699 .resetvalue = 0 }, 3700 { .name = "CNTHCTL_EL2", .state = ARM_CP_STATE_BOTH, 3701 .opc0 = 3, .opc1 = 4, .crn = 14, .crm = 1, .opc2 = 0, 3702 .access = PL2_RW, .type = ARM_CP_CONST, .resetvalue = 0 }, 3703 { .name = "CNTVOFF_EL2", .state = ARM_CP_STATE_AA64, 3704 .opc0 = 3, .opc1 = 4, .crn = 14, .crm = 0, .opc2 = 3, 3705 .access = PL2_RW, .type = ARM_CP_CONST, .resetvalue = 0 }, 3706 { .name = "CNTVOFF", .cp = 15, .opc1 = 4, .crm = 14, 3707 .access = PL2_RW, .type = ARM_CP_64BIT | ARM_CP_CONST, 3708 .resetvalue = 0 }, 3709 { .name = "CNTHP_CVAL_EL2", .state = ARM_CP_STATE_AA64, 3710 .opc0 = 3, .opc1 = 4, .crn = 14, .crm = 2, .opc2 = 2, 3711 .access = PL2_RW, .type = ARM_CP_CONST, .resetvalue = 0 }, 3712 { .name = "CNTHP_CVAL", .cp = 15, .opc1 = 6, .crm = 14, 3713 .access = PL2_RW, .type = ARM_CP_64BIT | ARM_CP_CONST, 3714 .resetvalue = 0 }, 3715 { .name = "CNTHP_TVAL_EL2", .state = ARM_CP_STATE_BOTH, 3716 .opc0 = 3, .opc1 = 4, .crn = 14, .crm = 2, .opc2 = 0, 3717 .access = PL2_RW, .type = ARM_CP_CONST, .resetvalue = 0 }, 3718 { .name = "CNTHP_CTL_EL2", .state = ARM_CP_STATE_BOTH, 3719 .opc0 = 3, .opc1 = 4, .crn = 14, .crm = 2, .opc2 = 1, 3720 .access = PL2_RW, .type = ARM_CP_CONST, .resetvalue = 0 }, 3721 { .name = "MDCR_EL2", .state = ARM_CP_STATE_BOTH, 3722 .opc0 = 3, .opc1 = 4, .crn = 1, .crm = 1, .opc2 = 1, 3723 .access = PL2_RW, .accessfn = access_tda, 3724 .type = ARM_CP_CONST, .resetvalue = 0 }, 3725 { .name = "HPFAR_EL2", .state = ARM_CP_STATE_BOTH, 3726 .opc0 = 3, .opc1 = 4, .crn = 6, .crm = 0, .opc2 = 4, 3727 .access = PL2_RW, .accessfn = access_el3_aa32ns_aa64any, 3728 .type = ARM_CP_CONST, .resetvalue = 0 }, 3729 { .name = "HSTR_EL2", .state = ARM_CP_STATE_BOTH, 3730 .opc0 = 3, .opc1 = 4, .crn = 1, .crm = 1, .opc2 = 3, 3731 .access = PL2_RW, .type = ARM_CP_CONST, .resetvalue = 0 }, 3732 REGINFO_SENTINEL 3733 }; 3734 3735 static void hcr_write(CPUARMState *env, const ARMCPRegInfo *ri, uint64_t value) 3736 { 3737 ARMCPU *cpu = arm_env_get_cpu(env); 3738 uint64_t valid_mask = HCR_MASK; 3739 3740 if (arm_feature(env, ARM_FEATURE_EL3)) { 3741 valid_mask &= ~HCR_HCD; 3742 } else if (cpu->psci_conduit != QEMU_PSCI_CONDUIT_SMC) { 3743 /* Architecturally HCR.TSC is RES0 if EL3 is not implemented. 3744 * However, if we're using the SMC PSCI conduit then QEMU is 3745 * effectively acting like EL3 firmware and so the guest at 3746 * EL2 should retain the ability to prevent EL1 from being 3747 * able to make SMC calls into the ersatz firmware, so in 3748 * that case HCR.TSC should be read/write. 3749 */ 3750 valid_mask &= ~HCR_TSC; 3751 } 3752 3753 /* Clear RES0 bits. */ 3754 value &= valid_mask; 3755 3756 /* These bits change the MMU setup: 3757 * HCR_VM enables stage 2 translation 3758 * HCR_PTW forbids certain page-table setups 3759 * HCR_DC Disables stage1 and enables stage2 translation 3760 */ 3761 if ((raw_read(env, ri) ^ value) & (HCR_VM | HCR_PTW | HCR_DC)) { 3762 tlb_flush(CPU(cpu)); 3763 } 3764 raw_write(env, ri, value); 3765 } 3766 3767 static const ARMCPRegInfo el2_cp_reginfo[] = { 3768 { .name = "HCR_EL2", .state = ARM_CP_STATE_AA64, 3769 .opc0 = 3, .opc1 = 4, .crn = 1, .crm = 1, .opc2 = 0, 3770 .access = PL2_RW, .fieldoffset = offsetof(CPUARMState, cp15.hcr_el2), 3771 .writefn = hcr_write }, 3772 { .name = "ELR_EL2", .state = ARM_CP_STATE_AA64, 3773 .type = ARM_CP_ALIAS, 3774 .opc0 = 3, .opc1 = 4, .crn = 4, .crm = 0, .opc2 = 1, 3775 .access = PL2_RW, 3776 .fieldoffset = offsetof(CPUARMState, elr_el[2]) }, 3777 { .name = "ESR_EL2", .state = ARM_CP_STATE_AA64, 3778 .opc0 = 3, .opc1 = 4, .crn = 5, .crm = 2, .opc2 = 0, 3779 .access = PL2_RW, .fieldoffset = offsetof(CPUARMState, cp15.esr_el[2]) }, 3780 { .name = "FAR_EL2", .state = ARM_CP_STATE_AA64, 3781 .opc0 = 3, .opc1 = 4, .crn = 6, .crm = 0, .opc2 = 0, 3782 .access = PL2_RW, .fieldoffset = offsetof(CPUARMState, cp15.far_el[2]) }, 3783 { .name = "SPSR_EL2", .state = ARM_CP_STATE_AA64, 3784 .type = ARM_CP_ALIAS, 3785 .opc0 = 3, .opc1 = 4, .crn = 4, .crm = 0, .opc2 = 0, 3786 .access = PL2_RW, 3787 .fieldoffset = offsetof(CPUARMState, banked_spsr[BANK_HYP]) }, 3788 { .name = "VBAR_EL2", .state = ARM_CP_STATE_AA64, 3789 .opc0 = 3, .opc1 = 4, .crn = 12, .crm = 0, .opc2 = 0, 3790 .access = PL2_RW, .writefn = vbar_write, 3791 .fieldoffset = offsetof(CPUARMState, cp15.vbar_el[2]), 3792 .resetvalue = 0 }, 3793 { .name = "SP_EL2", .state = ARM_CP_STATE_AA64, 3794 .opc0 = 3, .opc1 = 6, .crn = 4, .crm = 1, .opc2 = 0, 3795 .access = PL3_RW, .type = ARM_CP_ALIAS, 3796 .fieldoffset = offsetof(CPUARMState, sp_el[2]) }, 3797 { .name = "CPTR_EL2", .state = ARM_CP_STATE_BOTH, 3798 .opc0 = 3, .opc1 = 4, .crn = 1, .crm = 1, .opc2 = 2, 3799 .access = PL2_RW, .accessfn = cptr_access, .resetvalue = 0, 3800 .fieldoffset = offsetof(CPUARMState, cp15.cptr_el[2]) }, 3801 { .name = "MAIR_EL2", .state = ARM_CP_STATE_BOTH, 3802 .opc0 = 3, .opc1 = 4, .crn = 10, .crm = 2, .opc2 = 0, 3803 .access = PL2_RW, .fieldoffset = offsetof(CPUARMState, cp15.mair_el[2]), 3804 .resetvalue = 0 }, 3805 { .name = "HMAIR1", .state = ARM_CP_STATE_AA32, 3806 .opc1 = 4, .crn = 10, .crm = 2, .opc2 = 1, 3807 .access = PL2_RW, .type = ARM_CP_ALIAS, 3808 .fieldoffset = offsetofhigh32(CPUARMState, cp15.mair_el[2]) }, 3809 { .name = "AMAIR_EL2", .state = ARM_CP_STATE_BOTH, 3810 .opc0 = 3, .opc1 = 4, .crn = 10, .crm = 3, .opc2 = 0, 3811 .access = PL2_RW, .type = ARM_CP_CONST, 3812 .resetvalue = 0 }, 3813 /* HAMAIR1 is mapped to AMAIR_EL2[63:32] */ 3814 { .name = "HMAIR1", .state = ARM_CP_STATE_AA32, 3815 .opc1 = 4, .crn = 10, .crm = 3, .opc2 = 1, 3816 .access = PL2_RW, .type = ARM_CP_CONST, 3817 .resetvalue = 0 }, 3818 { .name = "AFSR0_EL2", .state = ARM_CP_STATE_BOTH, 3819 .opc0 = 3, .opc1 = 4, .crn = 5, .crm = 1, .opc2 = 0, 3820 .access = PL2_RW, .type = ARM_CP_CONST, 3821 .resetvalue = 0 }, 3822 { .name = "AFSR1_EL2", .state = ARM_CP_STATE_BOTH, 3823 .opc0 = 3, .opc1 = 4, .crn = 5, .crm = 1, .opc2 = 1, 3824 .access = PL2_RW, .type = ARM_CP_CONST, 3825 .resetvalue = 0 }, 3826 { .name = "TCR_EL2", .state = ARM_CP_STATE_BOTH, 3827 .opc0 = 3, .opc1 = 4, .crn = 2, .crm = 0, .opc2 = 2, 3828 .access = PL2_RW, 3829 /* no .writefn needed as this can't cause an ASID change; 3830 * no .raw_writefn or .resetfn needed as we never use mask/base_mask 3831 */ 3832 .fieldoffset = offsetof(CPUARMState, cp15.tcr_el[2]) }, 3833 { .name = "VTCR", .state = ARM_CP_STATE_AA32, 3834 .cp = 15, .opc1 = 4, .crn = 2, .crm = 1, .opc2 = 2, 3835 .type = ARM_CP_ALIAS, 3836 .access = PL2_RW, .accessfn = access_el3_aa32ns, 3837 .fieldoffset = offsetof(CPUARMState, cp15.vtcr_el2) }, 3838 { .name = "VTCR_EL2", .state = ARM_CP_STATE_AA64, 3839 .opc0 = 3, .opc1 = 4, .crn = 2, .crm = 1, .opc2 = 2, 3840 .access = PL2_RW, 3841 /* no .writefn needed as this can't cause an ASID change; 3842 * no .raw_writefn or .resetfn needed as we never use mask/base_mask 3843 */ 3844 .fieldoffset = offsetof(CPUARMState, cp15.vtcr_el2) }, 3845 { .name = "VTTBR", .state = ARM_CP_STATE_AA32, 3846 .cp = 15, .opc1 = 6, .crm = 2, 3847 .type = ARM_CP_64BIT | ARM_CP_ALIAS, 3848 .access = PL2_RW, .accessfn = access_el3_aa32ns, 3849 .fieldoffset = offsetof(CPUARMState, cp15.vttbr_el2), 3850 .writefn = vttbr_write }, 3851 { .name = "VTTBR_EL2", .state = ARM_CP_STATE_AA64, 3852 .opc0 = 3, .opc1 = 4, .crn = 2, .crm = 1, .opc2 = 0, 3853 .access = PL2_RW, .writefn = vttbr_write, 3854 .fieldoffset = offsetof(CPUARMState, cp15.vttbr_el2) }, 3855 { .name = "SCTLR_EL2", .state = ARM_CP_STATE_BOTH, 3856 .opc0 = 3, .opc1 = 4, .crn = 1, .crm = 0, .opc2 = 0, 3857 .access = PL2_RW, .raw_writefn = raw_write, .writefn = sctlr_write, 3858 .fieldoffset = offsetof(CPUARMState, cp15.sctlr_el[2]) }, 3859 { .name = "TPIDR_EL2", .state = ARM_CP_STATE_BOTH, 3860 .opc0 = 3, .opc1 = 4, .crn = 13, .crm = 0, .opc2 = 2, 3861 .access = PL2_RW, .resetvalue = 0, 3862 .fieldoffset = offsetof(CPUARMState, cp15.tpidr_el[2]) }, 3863 { .name = "TTBR0_EL2", .state = ARM_CP_STATE_AA64, 3864 .opc0 = 3, .opc1 = 4, .crn = 2, .crm = 0, .opc2 = 0, 3865 .access = PL2_RW, .resetvalue = 0, 3866 .fieldoffset = offsetof(CPUARMState, cp15.ttbr0_el[2]) }, 3867 { .name = "HTTBR", .cp = 15, .opc1 = 4, .crm = 2, 3868 .access = PL2_RW, .type = ARM_CP_64BIT | ARM_CP_ALIAS, 3869 .fieldoffset = offsetof(CPUARMState, cp15.ttbr0_el[2]) }, 3870 { .name = "TLBIALLNSNH", 3871 .cp = 15, .opc1 = 4, .crn = 8, .crm = 7, .opc2 = 4, 3872 .type = ARM_CP_NO_RAW, .access = PL2_W, 3873 .writefn = tlbiall_nsnh_write }, 3874 { .name = "TLBIALLNSNHIS", 3875 .cp = 15, .opc1 = 4, .crn = 8, .crm = 3, .opc2 = 4, 3876 .type = ARM_CP_NO_RAW, .access = PL2_W, 3877 .writefn = tlbiall_nsnh_is_write }, 3878 { .name = "TLBIALLH", .cp = 15, .opc1 = 4, .crn = 8, .crm = 7, .opc2 = 0, 3879 .type = ARM_CP_NO_RAW, .access = PL2_W, 3880 .writefn = tlbiall_hyp_write }, 3881 { .name = "TLBIALLHIS", .cp = 15, .opc1 = 4, .crn = 8, .crm = 3, .opc2 = 0, 3882 .type = ARM_CP_NO_RAW, .access = PL2_W, 3883 .writefn = tlbiall_hyp_is_write }, 3884 { .name = "TLBIMVAH", .cp = 15, .opc1 = 4, .crn = 8, .crm = 7, .opc2 = 1, 3885 .type = ARM_CP_NO_RAW, .access = PL2_W, 3886 .writefn = tlbimva_hyp_write }, 3887 { .name = "TLBIMVAHIS", .cp = 15, .opc1 = 4, .crn = 8, .crm = 3, .opc2 = 1, 3888 .type = ARM_CP_NO_RAW, .access = PL2_W, 3889 .writefn = tlbimva_hyp_is_write }, 3890 { .name = "TLBI_ALLE2", .state = ARM_CP_STATE_AA64, 3891 .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 7, .opc2 = 0, 3892 .type = ARM_CP_NO_RAW, .access = PL2_W, 3893 .writefn = tlbi_aa64_alle2_write }, 3894 { .name = "TLBI_VAE2", .state = ARM_CP_STATE_AA64, 3895 .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 7, .opc2 = 1, 3896 .type = ARM_CP_NO_RAW, .access = PL2_W, 3897 .writefn = tlbi_aa64_vae2_write }, 3898 { .name = "TLBI_VALE2", .state = ARM_CP_STATE_AA64, 3899 .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 7, .opc2 = 5, 3900 .access = PL2_W, .type = ARM_CP_NO_RAW, 3901 .writefn = tlbi_aa64_vae2_write }, 3902 { .name = "TLBI_ALLE2IS", .state = ARM_CP_STATE_AA64, 3903 .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 3, .opc2 = 0, 3904 .access = PL2_W, .type = ARM_CP_NO_RAW, 3905 .writefn = tlbi_aa64_alle2is_write }, 3906 { .name = "TLBI_VAE2IS", .state = ARM_CP_STATE_AA64, 3907 .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 3, .opc2 = 1, 3908 .type = ARM_CP_NO_RAW, .access = PL2_W, 3909 .writefn = tlbi_aa64_vae2is_write }, 3910 { .name = "TLBI_VALE2IS", .state = ARM_CP_STATE_AA64, 3911 .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 3, .opc2 = 5, 3912 .access = PL2_W, .type = ARM_CP_NO_RAW, 3913 .writefn = tlbi_aa64_vae2is_write }, 3914 #ifndef CONFIG_USER_ONLY 3915 /* Unlike the other EL2-related AT operations, these must 3916 * UNDEF from EL3 if EL2 is not implemented, which is why we 3917 * define them here rather than with the rest of the AT ops. 3918 */ 3919 { .name = "AT_S1E2R", .state = ARM_CP_STATE_AA64, 3920 .opc0 = 1, .opc1 = 4, .crn = 7, .crm = 8, .opc2 = 0, 3921 .access = PL2_W, .accessfn = at_s1e2_access, 3922 .type = ARM_CP_NO_RAW, .writefn = ats_write64 }, 3923 { .name = "AT_S1E2W", .state = ARM_CP_STATE_AA64, 3924 .opc0 = 1, .opc1 = 4, .crn = 7, .crm = 8, .opc2 = 1, 3925 .access = PL2_W, .accessfn = at_s1e2_access, 3926 .type = ARM_CP_NO_RAW, .writefn = ats_write64 }, 3927 /* The AArch32 ATS1H* operations are CONSTRAINED UNPREDICTABLE 3928 * if EL2 is not implemented; we choose to UNDEF. Behaviour at EL3 3929 * with SCR.NS == 0 outside Monitor mode is UNPREDICTABLE; we choose 3930 * to behave as if SCR.NS was 1. 3931 */ 3932 { .name = "ATS1HR", .cp = 15, .opc1 = 4, .crn = 7, .crm = 8, .opc2 = 0, 3933 .access = PL2_W, 3934 .writefn = ats1h_write, .type = ARM_CP_NO_RAW }, 3935 { .name = "ATS1HW", .cp = 15, .opc1 = 4, .crn = 7, .crm = 8, .opc2 = 1, 3936 .access = PL2_W, 3937 .writefn = ats1h_write, .type = ARM_CP_NO_RAW }, 3938 { .name = "CNTHCTL_EL2", .state = ARM_CP_STATE_BOTH, 3939 .opc0 = 3, .opc1 = 4, .crn = 14, .crm = 1, .opc2 = 0, 3940 /* ARMv7 requires bit 0 and 1 to reset to 1. ARMv8 defines the 3941 * reset values as IMPDEF. We choose to reset to 3 to comply with 3942 * both ARMv7 and ARMv8. 3943 */ 3944 .access = PL2_RW, .resetvalue = 3, 3945 .fieldoffset = offsetof(CPUARMState, cp15.cnthctl_el2) }, 3946 { .name = "CNTVOFF_EL2", .state = ARM_CP_STATE_AA64, 3947 .opc0 = 3, .opc1 = 4, .crn = 14, .crm = 0, .opc2 = 3, 3948 .access = PL2_RW, .type = ARM_CP_IO, .resetvalue = 0, 3949 .writefn = gt_cntvoff_write, 3950 .fieldoffset = offsetof(CPUARMState, cp15.cntvoff_el2) }, 3951 { .name = "CNTVOFF", .cp = 15, .opc1 = 4, .crm = 14, 3952 .access = PL2_RW, .type = ARM_CP_64BIT | ARM_CP_ALIAS | ARM_CP_IO, 3953 .writefn = gt_cntvoff_write, 3954 .fieldoffset = offsetof(CPUARMState, cp15.cntvoff_el2) }, 3955 { .name = "CNTHP_CVAL_EL2", .state = ARM_CP_STATE_AA64, 3956 .opc0 = 3, .opc1 = 4, .crn = 14, .crm = 2, .opc2 = 2, 3957 .fieldoffset = offsetof(CPUARMState, cp15.c14_timer[GTIMER_HYP].cval), 3958 .type = ARM_CP_IO, .access = PL2_RW, 3959 .writefn = gt_hyp_cval_write, .raw_writefn = raw_write }, 3960 { .name = "CNTHP_CVAL", .cp = 15, .opc1 = 6, .crm = 14, 3961 .fieldoffset = offsetof(CPUARMState, cp15.c14_timer[GTIMER_HYP].cval), 3962 .access = PL2_RW, .type = ARM_CP_64BIT | ARM_CP_IO, 3963 .writefn = gt_hyp_cval_write, .raw_writefn = raw_write }, 3964 { .name = "CNTHP_TVAL_EL2", .state = ARM_CP_STATE_BOTH, 3965 .opc0 = 3, .opc1 = 4, .crn = 14, .crm = 2, .opc2 = 0, 3966 .type = ARM_CP_NO_RAW | ARM_CP_IO, .access = PL2_RW, 3967 .resetfn = gt_hyp_timer_reset, 3968 .readfn = gt_hyp_tval_read, .writefn = gt_hyp_tval_write }, 3969 { .name = "CNTHP_CTL_EL2", .state = ARM_CP_STATE_BOTH, 3970 .type = ARM_CP_IO, 3971 .opc0 = 3, .opc1 = 4, .crn = 14, .crm = 2, .opc2 = 1, 3972 .access = PL2_RW, 3973 .fieldoffset = offsetof(CPUARMState, cp15.c14_timer[GTIMER_HYP].ctl), 3974 .resetvalue = 0, 3975 .writefn = gt_hyp_ctl_write, .raw_writefn = raw_write }, 3976 #endif 3977 /* The only field of MDCR_EL2 that has a defined architectural reset value 3978 * is MDCR_EL2.HPMN which should reset to the value of PMCR_EL0.N; but we 3979 * don't impelment any PMU event counters, so using zero as a reset 3980 * value for MDCR_EL2 is okay 3981 */ 3982 { .name = "MDCR_EL2", .state = ARM_CP_STATE_BOTH, 3983 .opc0 = 3, .opc1 = 4, .crn = 1, .crm = 1, .opc2 = 1, 3984 .access = PL2_RW, .resetvalue = 0, 3985 .fieldoffset = offsetof(CPUARMState, cp15.mdcr_el2), }, 3986 { .name = "HPFAR", .state = ARM_CP_STATE_AA32, 3987 .cp = 15, .opc1 = 4, .crn = 6, .crm = 0, .opc2 = 4, 3988 .access = PL2_RW, .accessfn = access_el3_aa32ns, 3989 .fieldoffset = offsetof(CPUARMState, cp15.hpfar_el2) }, 3990 { .name = "HPFAR_EL2", .state = ARM_CP_STATE_AA64, 3991 .opc0 = 3, .opc1 = 4, .crn = 6, .crm = 0, .opc2 = 4, 3992 .access = PL2_RW, 3993 .fieldoffset = offsetof(CPUARMState, cp15.hpfar_el2) }, 3994 { .name = "HSTR_EL2", .state = ARM_CP_STATE_BOTH, 3995 .cp = 15, .opc0 = 3, .opc1 = 4, .crn = 1, .crm = 1, .opc2 = 3, 3996 .access = PL2_RW, 3997 .fieldoffset = offsetof(CPUARMState, cp15.hstr_el2) }, 3998 REGINFO_SENTINEL 3999 }; 4000 4001 static CPAccessResult nsacr_access(CPUARMState *env, const ARMCPRegInfo *ri, 4002 bool isread) 4003 { 4004 /* The NSACR is RW at EL3, and RO for NS EL1 and NS EL2. 4005 * At Secure EL1 it traps to EL3. 4006 */ 4007 if (arm_current_el(env) == 3) { 4008 return CP_ACCESS_OK; 4009 } 4010 if (arm_is_secure_below_el3(env)) { 4011 return CP_ACCESS_TRAP_EL3; 4012 } 4013 /* Accesses from EL1 NS and EL2 NS are UNDEF for write but allow reads. */ 4014 if (isread) { 4015 return CP_ACCESS_OK; 4016 } 4017 return CP_ACCESS_TRAP_UNCATEGORIZED; 4018 } 4019 4020 static const ARMCPRegInfo el3_cp_reginfo[] = { 4021 { .name = "SCR_EL3", .state = ARM_CP_STATE_AA64, 4022 .opc0 = 3, .opc1 = 6, .crn = 1, .crm = 1, .opc2 = 0, 4023 .access = PL3_RW, .fieldoffset = offsetof(CPUARMState, cp15.scr_el3), 4024 .resetvalue = 0, .writefn = scr_write }, 4025 { .name = "SCR", .type = ARM_CP_ALIAS, 4026 .cp = 15, .opc1 = 0, .crn = 1, .crm = 1, .opc2 = 0, 4027 .access = PL1_RW, .accessfn = access_trap_aa32s_el1, 4028 .fieldoffset = offsetoflow32(CPUARMState, cp15.scr_el3), 4029 .writefn = scr_write }, 4030 { .name = "SDER32_EL3", .state = ARM_CP_STATE_AA64, 4031 .opc0 = 3, .opc1 = 6, .crn = 1, .crm = 1, .opc2 = 1, 4032 .access = PL3_RW, .resetvalue = 0, 4033 .fieldoffset = offsetof(CPUARMState, cp15.sder) }, 4034 { .name = "SDER", 4035 .cp = 15, .opc1 = 0, .crn = 1, .crm = 1, .opc2 = 1, 4036 .access = PL3_RW, .resetvalue = 0, 4037 .fieldoffset = offsetoflow32(CPUARMState, cp15.sder) }, 4038 { .name = "MVBAR", .cp = 15, .opc1 = 0, .crn = 12, .crm = 0, .opc2 = 1, 4039 .access = PL1_RW, .accessfn = access_trap_aa32s_el1, 4040 .writefn = vbar_write, .resetvalue = 0, 4041 .fieldoffset = offsetof(CPUARMState, cp15.mvbar) }, 4042 { .name = "TTBR0_EL3", .state = ARM_CP_STATE_AA64, 4043 .opc0 = 3, .opc1 = 6, .crn = 2, .crm = 0, .opc2 = 0, 4044 .access = PL3_RW, .writefn = vmsa_ttbr_write, .resetvalue = 0, 4045 .fieldoffset = offsetof(CPUARMState, cp15.ttbr0_el[3]) }, 4046 { .name = "TCR_EL3", .state = ARM_CP_STATE_AA64, 4047 .opc0 = 3, .opc1 = 6, .crn = 2, .crm = 0, .opc2 = 2, 4048 .access = PL3_RW, 4049 /* no .writefn needed as this can't cause an ASID change; 4050 * we must provide a .raw_writefn and .resetfn because we handle 4051 * reset and migration for the AArch32 TTBCR(S), which might be 4052 * using mask and base_mask. 4053 */ 4054 .resetfn = vmsa_ttbcr_reset, .raw_writefn = vmsa_ttbcr_raw_write, 4055 .fieldoffset = offsetof(CPUARMState, cp15.tcr_el[3]) }, 4056 { .name = "ELR_EL3", .state = ARM_CP_STATE_AA64, 4057 .type = ARM_CP_ALIAS, 4058 .opc0 = 3, .opc1 = 6, .crn = 4, .crm = 0, .opc2 = 1, 4059 .access = PL3_RW, 4060 .fieldoffset = offsetof(CPUARMState, elr_el[3]) }, 4061 { .name = "ESR_EL3", .state = ARM_CP_STATE_AA64, 4062 .opc0 = 3, .opc1 = 6, .crn = 5, .crm = 2, .opc2 = 0, 4063 .access = PL3_RW, .fieldoffset = offsetof(CPUARMState, cp15.esr_el[3]) }, 4064 { .name = "FAR_EL3", .state = ARM_CP_STATE_AA64, 4065 .opc0 = 3, .opc1 = 6, .crn = 6, .crm = 0, .opc2 = 0, 4066 .access = PL3_RW, .fieldoffset = offsetof(CPUARMState, cp15.far_el[3]) }, 4067 { .name = "SPSR_EL3", .state = ARM_CP_STATE_AA64, 4068 .type = ARM_CP_ALIAS, 4069 .opc0 = 3, .opc1 = 6, .crn = 4, .crm = 0, .opc2 = 0, 4070 .access = PL3_RW, 4071 .fieldoffset = offsetof(CPUARMState, banked_spsr[BANK_MON]) }, 4072 { .name = "VBAR_EL3", .state = ARM_CP_STATE_AA64, 4073 .opc0 = 3, .opc1 = 6, .crn = 12, .crm = 0, .opc2 = 0, 4074 .access = PL3_RW, .writefn = vbar_write, 4075 .fieldoffset = offsetof(CPUARMState, cp15.vbar_el[3]), 4076 .resetvalue = 0 }, 4077 { .name = "CPTR_EL3", .state = ARM_CP_STATE_AA64, 4078 .opc0 = 3, .opc1 = 6, .crn = 1, .crm = 1, .opc2 = 2, 4079 .access = PL3_RW, .accessfn = cptr_access, .resetvalue = 0, 4080 .fieldoffset = offsetof(CPUARMState, cp15.cptr_el[3]) }, 4081 { .name = "TPIDR_EL3", .state = ARM_CP_STATE_AA64, 4082 .opc0 = 3, .opc1 = 6, .crn = 13, .crm = 0, .opc2 = 2, 4083 .access = PL3_RW, .resetvalue = 0, 4084 .fieldoffset = offsetof(CPUARMState, cp15.tpidr_el[3]) }, 4085 { .name = "AMAIR_EL3", .state = ARM_CP_STATE_AA64, 4086 .opc0 = 3, .opc1 = 6, .crn = 10, .crm = 3, .opc2 = 0, 4087 .access = PL3_RW, .type = ARM_CP_CONST, 4088 .resetvalue = 0 }, 4089 { .name = "AFSR0_EL3", .state = ARM_CP_STATE_BOTH, 4090 .opc0 = 3, .opc1 = 6, .crn = 5, .crm = 1, .opc2 = 0, 4091 .access = PL3_RW, .type = ARM_CP_CONST, 4092 .resetvalue = 0 }, 4093 { .name = "AFSR1_EL3", .state = ARM_CP_STATE_BOTH, 4094 .opc0 = 3, .opc1 = 6, .crn = 5, .crm = 1, .opc2 = 1, 4095 .access = PL3_RW, .type = ARM_CP_CONST, 4096 .resetvalue = 0 }, 4097 { .name = "TLBI_ALLE3IS", .state = ARM_CP_STATE_AA64, 4098 .opc0 = 1, .opc1 = 6, .crn = 8, .crm = 3, .opc2 = 0, 4099 .access = PL3_W, .type = ARM_CP_NO_RAW, 4100 .writefn = tlbi_aa64_alle3is_write }, 4101 { .name = "TLBI_VAE3IS", .state = ARM_CP_STATE_AA64, 4102 .opc0 = 1, .opc1 = 6, .crn = 8, .crm = 3, .opc2 = 1, 4103 .access = PL3_W, .type = ARM_CP_NO_RAW, 4104 .writefn = tlbi_aa64_vae3is_write }, 4105 { .name = "TLBI_VALE3IS", .state = ARM_CP_STATE_AA64, 4106 .opc0 = 1, .opc1 = 6, .crn = 8, .crm = 3, .opc2 = 5, 4107 .access = PL3_W, .type = ARM_CP_NO_RAW, 4108 .writefn = tlbi_aa64_vae3is_write }, 4109 { .name = "TLBI_ALLE3", .state = ARM_CP_STATE_AA64, 4110 .opc0 = 1, .opc1 = 6, .crn = 8, .crm = 7, .opc2 = 0, 4111 .access = PL3_W, .type = ARM_CP_NO_RAW, 4112 .writefn = tlbi_aa64_alle3_write }, 4113 { .name = "TLBI_VAE3", .state = ARM_CP_STATE_AA64, 4114 .opc0 = 1, .opc1 = 6, .crn = 8, .crm = 7, .opc2 = 1, 4115 .access = PL3_W, .type = ARM_CP_NO_RAW, 4116 .writefn = tlbi_aa64_vae3_write }, 4117 { .name = "TLBI_VALE3", .state = ARM_CP_STATE_AA64, 4118 .opc0 = 1, .opc1 = 6, .crn = 8, .crm = 7, .opc2 = 5, 4119 .access = PL3_W, .type = ARM_CP_NO_RAW, 4120 .writefn = tlbi_aa64_vae3_write }, 4121 REGINFO_SENTINEL 4122 }; 4123 4124 static CPAccessResult ctr_el0_access(CPUARMState *env, const ARMCPRegInfo *ri, 4125 bool isread) 4126 { 4127 /* Only accessible in EL0 if SCTLR.UCT is set (and only in AArch64, 4128 * but the AArch32 CTR has its own reginfo struct) 4129 */ 4130 if (arm_current_el(env) == 0 && !(env->cp15.sctlr_el[1] & SCTLR_UCT)) { 4131 return CP_ACCESS_TRAP; 4132 } 4133 return CP_ACCESS_OK; 4134 } 4135 4136 static void oslar_write(CPUARMState *env, const ARMCPRegInfo *ri, 4137 uint64_t value) 4138 { 4139 /* Writes to OSLAR_EL1 may update the OS lock status, which can be 4140 * read via a bit in OSLSR_EL1. 4141 */ 4142 int oslock; 4143 4144 if (ri->state == ARM_CP_STATE_AA32) { 4145 oslock = (value == 0xC5ACCE55); 4146 } else { 4147 oslock = value & 1; 4148 } 4149 4150 env->cp15.oslsr_el1 = deposit32(env->cp15.oslsr_el1, 1, 1, oslock); 4151 } 4152 4153 static const ARMCPRegInfo debug_cp_reginfo[] = { 4154 /* DBGDRAR, DBGDSAR: always RAZ since we don't implement memory mapped 4155 * debug components. The AArch64 version of DBGDRAR is named MDRAR_EL1; 4156 * unlike DBGDRAR it is never accessible from EL0. 4157 * DBGDSAR is deprecated and must RAZ from v8 anyway, so it has no AArch64 4158 * accessor. 4159 */ 4160 { .name = "DBGDRAR", .cp = 14, .crn = 1, .crm = 0, .opc1 = 0, .opc2 = 0, 4161 .access = PL0_R, .accessfn = access_tdra, 4162 .type = ARM_CP_CONST, .resetvalue = 0 }, 4163 { .name = "MDRAR_EL1", .state = ARM_CP_STATE_AA64, 4164 .opc0 = 2, .opc1 = 0, .crn = 1, .crm = 0, .opc2 = 0, 4165 .access = PL1_R, .accessfn = access_tdra, 4166 .type = ARM_CP_CONST, .resetvalue = 0 }, 4167 { .name = "DBGDSAR", .cp = 14, .crn = 2, .crm = 0, .opc1 = 0, .opc2 = 0, 4168 .access = PL0_R, .accessfn = access_tdra, 4169 .type = ARM_CP_CONST, .resetvalue = 0 }, 4170 /* Monitor debug system control register; the 32-bit alias is DBGDSCRext. */ 4171 { .name = "MDSCR_EL1", .state = ARM_CP_STATE_BOTH, 4172 .cp = 14, .opc0 = 2, .opc1 = 0, .crn = 0, .crm = 2, .opc2 = 2, 4173 .access = PL1_RW, .accessfn = access_tda, 4174 .fieldoffset = offsetof(CPUARMState, cp15.mdscr_el1), 4175 .resetvalue = 0 }, 4176 /* MDCCSR_EL0, aka DBGDSCRint. This is a read-only mirror of MDSCR_EL1. 4177 * We don't implement the configurable EL0 access. 4178 */ 4179 { .name = "MDCCSR_EL0", .state = ARM_CP_STATE_BOTH, 4180 .cp = 14, .opc0 = 2, .opc1 = 0, .crn = 0, .crm = 1, .opc2 = 0, 4181 .type = ARM_CP_ALIAS, 4182 .access = PL1_R, .accessfn = access_tda, 4183 .fieldoffset = offsetof(CPUARMState, cp15.mdscr_el1), }, 4184 { .name = "OSLAR_EL1", .state = ARM_CP_STATE_BOTH, 4185 .cp = 14, .opc0 = 2, .opc1 = 0, .crn = 1, .crm = 0, .opc2 = 4, 4186 .access = PL1_W, .type = ARM_CP_NO_RAW, 4187 .accessfn = access_tdosa, 4188 .writefn = oslar_write }, 4189 { .name = "OSLSR_EL1", .state = ARM_CP_STATE_BOTH, 4190 .cp = 14, .opc0 = 2, .opc1 = 0, .crn = 1, .crm = 1, .opc2 = 4, 4191 .access = PL1_R, .resetvalue = 10, 4192 .accessfn = access_tdosa, 4193 .fieldoffset = offsetof(CPUARMState, cp15.oslsr_el1) }, 4194 /* Dummy OSDLR_EL1: 32-bit Linux will read this */ 4195 { .name = "OSDLR_EL1", .state = ARM_CP_STATE_BOTH, 4196 .cp = 14, .opc0 = 2, .opc1 = 0, .crn = 1, .crm = 3, .opc2 = 4, 4197 .access = PL1_RW, .accessfn = access_tdosa, 4198 .type = ARM_CP_NOP }, 4199 /* Dummy DBGVCR: Linux wants to clear this on startup, but we don't 4200 * implement vector catch debug events yet. 4201 */ 4202 { .name = "DBGVCR", 4203 .cp = 14, .opc1 = 0, .crn = 0, .crm = 7, .opc2 = 0, 4204 .access = PL1_RW, .accessfn = access_tda, 4205 .type = ARM_CP_NOP }, 4206 /* Dummy DBGVCR32_EL2 (which is only for a 64-bit hypervisor 4207 * to save and restore a 32-bit guest's DBGVCR) 4208 */ 4209 { .name = "DBGVCR32_EL2", .state = ARM_CP_STATE_AA64, 4210 .opc0 = 2, .opc1 = 4, .crn = 0, .crm = 7, .opc2 = 0, 4211 .access = PL2_RW, .accessfn = access_tda, 4212 .type = ARM_CP_NOP }, 4213 /* Dummy MDCCINT_EL1, since we don't implement the Debug Communications 4214 * Channel but Linux may try to access this register. The 32-bit 4215 * alias is DBGDCCINT. 4216 */ 4217 { .name = "MDCCINT_EL1", .state = ARM_CP_STATE_BOTH, 4218 .cp = 14, .opc0 = 2, .opc1 = 0, .crn = 0, .crm = 2, .opc2 = 0, 4219 .access = PL1_RW, .accessfn = access_tda, 4220 .type = ARM_CP_NOP }, 4221 REGINFO_SENTINEL 4222 }; 4223 4224 static const ARMCPRegInfo debug_lpae_cp_reginfo[] = { 4225 /* 64 bit access versions of the (dummy) debug registers */ 4226 { .name = "DBGDRAR", .cp = 14, .crm = 1, .opc1 = 0, 4227 .access = PL0_R, .type = ARM_CP_CONST|ARM_CP_64BIT, .resetvalue = 0 }, 4228 { .name = "DBGDSAR", .cp = 14, .crm = 2, .opc1 = 0, 4229 .access = PL0_R, .type = ARM_CP_CONST|ARM_CP_64BIT, .resetvalue = 0 }, 4230 REGINFO_SENTINEL 4231 }; 4232 4233 void hw_watchpoint_update(ARMCPU *cpu, int n) 4234 { 4235 CPUARMState *env = &cpu->env; 4236 vaddr len = 0; 4237 vaddr wvr = env->cp15.dbgwvr[n]; 4238 uint64_t wcr = env->cp15.dbgwcr[n]; 4239 int mask; 4240 int flags = BP_CPU | BP_STOP_BEFORE_ACCESS; 4241 4242 if (env->cpu_watchpoint[n]) { 4243 cpu_watchpoint_remove_by_ref(CPU(cpu), env->cpu_watchpoint[n]); 4244 env->cpu_watchpoint[n] = NULL; 4245 } 4246 4247 if (!extract64(wcr, 0, 1)) { 4248 /* E bit clear : watchpoint disabled */ 4249 return; 4250 } 4251 4252 switch (extract64(wcr, 3, 2)) { 4253 case 0: 4254 /* LSC 00 is reserved and must behave as if the wp is disabled */ 4255 return; 4256 case 1: 4257 flags |= BP_MEM_READ; 4258 break; 4259 case 2: 4260 flags |= BP_MEM_WRITE; 4261 break; 4262 case 3: 4263 flags |= BP_MEM_ACCESS; 4264 break; 4265 } 4266 4267 /* Attempts to use both MASK and BAS fields simultaneously are 4268 * CONSTRAINED UNPREDICTABLE; we opt to ignore BAS in this case, 4269 * thus generating a watchpoint for every byte in the masked region. 4270 */ 4271 mask = extract64(wcr, 24, 4); 4272 if (mask == 1 || mask == 2) { 4273 /* Reserved values of MASK; we must act as if the mask value was 4274 * some non-reserved value, or as if the watchpoint were disabled. 4275 * We choose the latter. 4276 */ 4277 return; 4278 } else if (mask) { 4279 /* Watchpoint covers an aligned area up to 2GB in size */ 4280 len = 1ULL << mask; 4281 /* If masked bits in WVR are not zero it's CONSTRAINED UNPREDICTABLE 4282 * whether the watchpoint fires when the unmasked bits match; we opt 4283 * to generate the exceptions. 4284 */ 4285 wvr &= ~(len - 1); 4286 } else { 4287 /* Watchpoint covers bytes defined by the byte address select bits */ 4288 int bas = extract64(wcr, 5, 8); 4289 int basstart; 4290 4291 if (bas == 0) { 4292 /* This must act as if the watchpoint is disabled */ 4293 return; 4294 } 4295 4296 if (extract64(wvr, 2, 1)) { 4297 /* Deprecated case of an only 4-aligned address. BAS[7:4] are 4298 * ignored, and BAS[3:0] define which bytes to watch. 4299 */ 4300 bas &= 0xf; 4301 } 4302 /* The BAS bits are supposed to be programmed to indicate a contiguous 4303 * range of bytes. Otherwise it is CONSTRAINED UNPREDICTABLE whether 4304 * we fire for each byte in the word/doubleword addressed by the WVR. 4305 * We choose to ignore any non-zero bits after the first range of 1s. 4306 */ 4307 basstart = ctz32(bas); 4308 len = cto32(bas >> basstart); 4309 wvr += basstart; 4310 } 4311 4312 cpu_watchpoint_insert(CPU(cpu), wvr, len, flags, 4313 &env->cpu_watchpoint[n]); 4314 } 4315 4316 void hw_watchpoint_update_all(ARMCPU *cpu) 4317 { 4318 int i; 4319 CPUARMState *env = &cpu->env; 4320 4321 /* Completely clear out existing QEMU watchpoints and our array, to 4322 * avoid possible stale entries following migration load. 4323 */ 4324 cpu_watchpoint_remove_all(CPU(cpu), BP_CPU); 4325 memset(env->cpu_watchpoint, 0, sizeof(env->cpu_watchpoint)); 4326 4327 for (i = 0; i < ARRAY_SIZE(cpu->env.cpu_watchpoint); i++) { 4328 hw_watchpoint_update(cpu, i); 4329 } 4330 } 4331 4332 static void dbgwvr_write(CPUARMState *env, const ARMCPRegInfo *ri, 4333 uint64_t value) 4334 { 4335 ARMCPU *cpu = arm_env_get_cpu(env); 4336 int i = ri->crm; 4337 4338 /* Bits [63:49] are hardwired to the value of bit [48]; that is, the 4339 * register reads and behaves as if values written are sign extended. 4340 * Bits [1:0] are RES0. 4341 */ 4342 value = sextract64(value, 0, 49) & ~3ULL; 4343 4344 raw_write(env, ri, value); 4345 hw_watchpoint_update(cpu, i); 4346 } 4347 4348 static void dbgwcr_write(CPUARMState *env, const ARMCPRegInfo *ri, 4349 uint64_t value) 4350 { 4351 ARMCPU *cpu = arm_env_get_cpu(env); 4352 int i = ri->crm; 4353 4354 raw_write(env, ri, value); 4355 hw_watchpoint_update(cpu, i); 4356 } 4357 4358 void hw_breakpoint_update(ARMCPU *cpu, int n) 4359 { 4360 CPUARMState *env = &cpu->env; 4361 uint64_t bvr = env->cp15.dbgbvr[n]; 4362 uint64_t bcr = env->cp15.dbgbcr[n]; 4363 vaddr addr; 4364 int bt; 4365 int flags = BP_CPU; 4366 4367 if (env->cpu_breakpoint[n]) { 4368 cpu_breakpoint_remove_by_ref(CPU(cpu), env->cpu_breakpoint[n]); 4369 env->cpu_breakpoint[n] = NULL; 4370 } 4371 4372 if (!extract64(bcr, 0, 1)) { 4373 /* E bit clear : watchpoint disabled */ 4374 return; 4375 } 4376 4377 bt = extract64(bcr, 20, 4); 4378 4379 switch (bt) { 4380 case 4: /* unlinked address mismatch (reserved if AArch64) */ 4381 case 5: /* linked address mismatch (reserved if AArch64) */ 4382 qemu_log_mask(LOG_UNIMP, 4383 "arm: address mismatch breakpoint types not implemented"); 4384 return; 4385 case 0: /* unlinked address match */ 4386 case 1: /* linked address match */ 4387 { 4388 /* Bits [63:49] are hardwired to the value of bit [48]; that is, 4389 * we behave as if the register was sign extended. Bits [1:0] are 4390 * RES0. The BAS field is used to allow setting breakpoints on 16 4391 * bit wide instructions; it is CONSTRAINED UNPREDICTABLE whether 4392 * a bp will fire if the addresses covered by the bp and the addresses 4393 * covered by the insn overlap but the insn doesn't start at the 4394 * start of the bp address range. We choose to require the insn and 4395 * the bp to have the same address. The constraints on writing to 4396 * BAS enforced in dbgbcr_write mean we have only four cases: 4397 * 0b0000 => no breakpoint 4398 * 0b0011 => breakpoint on addr 4399 * 0b1100 => breakpoint on addr + 2 4400 * 0b1111 => breakpoint on addr 4401 * See also figure D2-3 in the v8 ARM ARM (DDI0487A.c). 4402 */ 4403 int bas = extract64(bcr, 5, 4); 4404 addr = sextract64(bvr, 0, 49) & ~3ULL; 4405 if (bas == 0) { 4406 return; 4407 } 4408 if (bas == 0xc) { 4409 addr += 2; 4410 } 4411 break; 4412 } 4413 case 2: /* unlinked context ID match */ 4414 case 8: /* unlinked VMID match (reserved if no EL2) */ 4415 case 10: /* unlinked context ID and VMID match (reserved if no EL2) */ 4416 qemu_log_mask(LOG_UNIMP, 4417 "arm: unlinked context breakpoint types not implemented"); 4418 return; 4419 case 9: /* linked VMID match (reserved if no EL2) */ 4420 case 11: /* linked context ID and VMID match (reserved if no EL2) */ 4421 case 3: /* linked context ID match */ 4422 default: 4423 /* We must generate no events for Linked context matches (unless 4424 * they are linked to by some other bp/wp, which is handled in 4425 * updates for the linking bp/wp). We choose to also generate no events 4426 * for reserved values. 4427 */ 4428 return; 4429 } 4430 4431 cpu_breakpoint_insert(CPU(cpu), addr, flags, &env->cpu_breakpoint[n]); 4432 } 4433 4434 void hw_breakpoint_update_all(ARMCPU *cpu) 4435 { 4436 int i; 4437 CPUARMState *env = &cpu->env; 4438 4439 /* Completely clear out existing QEMU breakpoints and our array, to 4440 * avoid possible stale entries following migration load. 4441 */ 4442 cpu_breakpoint_remove_all(CPU(cpu), BP_CPU); 4443 memset(env->cpu_breakpoint, 0, sizeof(env->cpu_breakpoint)); 4444 4445 for (i = 0; i < ARRAY_SIZE(cpu->env.cpu_breakpoint); i++) { 4446 hw_breakpoint_update(cpu, i); 4447 } 4448 } 4449 4450 static void dbgbvr_write(CPUARMState *env, const ARMCPRegInfo *ri, 4451 uint64_t value) 4452 { 4453 ARMCPU *cpu = arm_env_get_cpu(env); 4454 int i = ri->crm; 4455 4456 raw_write(env, ri, value); 4457 hw_breakpoint_update(cpu, i); 4458 } 4459 4460 static void dbgbcr_write(CPUARMState *env, const ARMCPRegInfo *ri, 4461 uint64_t value) 4462 { 4463 ARMCPU *cpu = arm_env_get_cpu(env); 4464 int i = ri->crm; 4465 4466 /* BAS[3] is a read-only copy of BAS[2], and BAS[1] a read-only 4467 * copy of BAS[0]. 4468 */ 4469 value = deposit64(value, 6, 1, extract64(value, 5, 1)); 4470 value = deposit64(value, 8, 1, extract64(value, 7, 1)); 4471 4472 raw_write(env, ri, value); 4473 hw_breakpoint_update(cpu, i); 4474 } 4475 4476 static void define_debug_regs(ARMCPU *cpu) 4477 { 4478 /* Define v7 and v8 architectural debug registers. 4479 * These are just dummy implementations for now. 4480 */ 4481 int i; 4482 int wrps, brps, ctx_cmps; 4483 ARMCPRegInfo dbgdidr = { 4484 .name = "DBGDIDR", .cp = 14, .crn = 0, .crm = 0, .opc1 = 0, .opc2 = 0, 4485 .access = PL0_R, .accessfn = access_tda, 4486 .type = ARM_CP_CONST, .resetvalue = cpu->dbgdidr, 4487 }; 4488 4489 /* Note that all these register fields hold "number of Xs minus 1". */ 4490 brps = extract32(cpu->dbgdidr, 24, 4); 4491 wrps = extract32(cpu->dbgdidr, 28, 4); 4492 ctx_cmps = extract32(cpu->dbgdidr, 20, 4); 4493 4494 assert(ctx_cmps <= brps); 4495 4496 /* The DBGDIDR and ID_AA64DFR0_EL1 define various properties 4497 * of the debug registers such as number of breakpoints; 4498 * check that if they both exist then they agree. 4499 */ 4500 if (arm_feature(&cpu->env, ARM_FEATURE_AARCH64)) { 4501 assert(extract32(cpu->id_aa64dfr0, 12, 4) == brps); 4502 assert(extract32(cpu->id_aa64dfr0, 20, 4) == wrps); 4503 assert(extract32(cpu->id_aa64dfr0, 28, 4) == ctx_cmps); 4504 } 4505 4506 define_one_arm_cp_reg(cpu, &dbgdidr); 4507 define_arm_cp_regs(cpu, debug_cp_reginfo); 4508 4509 if (arm_feature(&cpu->env, ARM_FEATURE_LPAE)) { 4510 define_arm_cp_regs(cpu, debug_lpae_cp_reginfo); 4511 } 4512 4513 for (i = 0; i < brps + 1; i++) { 4514 ARMCPRegInfo dbgregs[] = { 4515 { .name = "DBGBVR", .state = ARM_CP_STATE_BOTH, 4516 .cp = 14, .opc0 = 2, .opc1 = 0, .crn = 0, .crm = i, .opc2 = 4, 4517 .access = PL1_RW, .accessfn = access_tda, 4518 .fieldoffset = offsetof(CPUARMState, cp15.dbgbvr[i]), 4519 .writefn = dbgbvr_write, .raw_writefn = raw_write 4520 }, 4521 { .name = "DBGBCR", .state = ARM_CP_STATE_BOTH, 4522 .cp = 14, .opc0 = 2, .opc1 = 0, .crn = 0, .crm = i, .opc2 = 5, 4523 .access = PL1_RW, .accessfn = access_tda, 4524 .fieldoffset = offsetof(CPUARMState, cp15.dbgbcr[i]), 4525 .writefn = dbgbcr_write, .raw_writefn = raw_write 4526 }, 4527 REGINFO_SENTINEL 4528 }; 4529 define_arm_cp_regs(cpu, dbgregs); 4530 } 4531 4532 for (i = 0; i < wrps + 1; i++) { 4533 ARMCPRegInfo dbgregs[] = { 4534 { .name = "DBGWVR", .state = ARM_CP_STATE_BOTH, 4535 .cp = 14, .opc0 = 2, .opc1 = 0, .crn = 0, .crm = i, .opc2 = 6, 4536 .access = PL1_RW, .accessfn = access_tda, 4537 .fieldoffset = offsetof(CPUARMState, cp15.dbgwvr[i]), 4538 .writefn = dbgwvr_write, .raw_writefn = raw_write 4539 }, 4540 { .name = "DBGWCR", .state = ARM_CP_STATE_BOTH, 4541 .cp = 14, .opc0 = 2, .opc1 = 0, .crn = 0, .crm = i, .opc2 = 7, 4542 .access = PL1_RW, .accessfn = access_tda, 4543 .fieldoffset = offsetof(CPUARMState, cp15.dbgwcr[i]), 4544 .writefn = dbgwcr_write, .raw_writefn = raw_write 4545 }, 4546 REGINFO_SENTINEL 4547 }; 4548 define_arm_cp_regs(cpu, dbgregs); 4549 } 4550 } 4551 4552 void register_cp_regs_for_features(ARMCPU *cpu) 4553 { 4554 /* Register all the coprocessor registers based on feature bits */ 4555 CPUARMState *env = &cpu->env; 4556 if (arm_feature(env, ARM_FEATURE_M)) { 4557 /* M profile has no coprocessor registers */ 4558 return; 4559 } 4560 4561 define_arm_cp_regs(cpu, cp_reginfo); 4562 if (!arm_feature(env, ARM_FEATURE_V8)) { 4563 /* Must go early as it is full of wildcards that may be 4564 * overridden by later definitions. 4565 */ 4566 define_arm_cp_regs(cpu, not_v8_cp_reginfo); 4567 } 4568 4569 if (arm_feature(env, ARM_FEATURE_V6)) { 4570 /* The ID registers all have impdef reset values */ 4571 ARMCPRegInfo v6_idregs[] = { 4572 { .name = "ID_PFR0", .state = ARM_CP_STATE_BOTH, 4573 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 1, .opc2 = 0, 4574 .access = PL1_R, .type = ARM_CP_CONST, 4575 .resetvalue = cpu->id_pfr0 }, 4576 { .name = "ID_PFR1", .state = ARM_CP_STATE_BOTH, 4577 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 1, .opc2 = 1, 4578 .access = PL1_R, .type = ARM_CP_CONST, 4579 .resetvalue = cpu->id_pfr1 }, 4580 { .name = "ID_DFR0", .state = ARM_CP_STATE_BOTH, 4581 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 1, .opc2 = 2, 4582 .access = PL1_R, .type = ARM_CP_CONST, 4583 .resetvalue = cpu->id_dfr0 }, 4584 { .name = "ID_AFR0", .state = ARM_CP_STATE_BOTH, 4585 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 1, .opc2 = 3, 4586 .access = PL1_R, .type = ARM_CP_CONST, 4587 .resetvalue = cpu->id_afr0 }, 4588 { .name = "ID_MMFR0", .state = ARM_CP_STATE_BOTH, 4589 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 1, .opc2 = 4, 4590 .access = PL1_R, .type = ARM_CP_CONST, 4591 .resetvalue = cpu->id_mmfr0 }, 4592 { .name = "ID_MMFR1", .state = ARM_CP_STATE_BOTH, 4593 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 1, .opc2 = 5, 4594 .access = PL1_R, .type = ARM_CP_CONST, 4595 .resetvalue = cpu->id_mmfr1 }, 4596 { .name = "ID_MMFR2", .state = ARM_CP_STATE_BOTH, 4597 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 1, .opc2 = 6, 4598 .access = PL1_R, .type = ARM_CP_CONST, 4599 .resetvalue = cpu->id_mmfr2 }, 4600 { .name = "ID_MMFR3", .state = ARM_CP_STATE_BOTH, 4601 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 1, .opc2 = 7, 4602 .access = PL1_R, .type = ARM_CP_CONST, 4603 .resetvalue = cpu->id_mmfr3 }, 4604 { .name = "ID_ISAR0", .state = ARM_CP_STATE_BOTH, 4605 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 2, .opc2 = 0, 4606 .access = PL1_R, .type = ARM_CP_CONST, 4607 .resetvalue = cpu->id_isar0 }, 4608 { .name = "ID_ISAR1", .state = ARM_CP_STATE_BOTH, 4609 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 2, .opc2 = 1, 4610 .access = PL1_R, .type = ARM_CP_CONST, 4611 .resetvalue = cpu->id_isar1 }, 4612 { .name = "ID_ISAR2", .state = ARM_CP_STATE_BOTH, 4613 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 2, .opc2 = 2, 4614 .access = PL1_R, .type = ARM_CP_CONST, 4615 .resetvalue = cpu->id_isar2 }, 4616 { .name = "ID_ISAR3", .state = ARM_CP_STATE_BOTH, 4617 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 2, .opc2 = 3, 4618 .access = PL1_R, .type = ARM_CP_CONST, 4619 .resetvalue = cpu->id_isar3 }, 4620 { .name = "ID_ISAR4", .state = ARM_CP_STATE_BOTH, 4621 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 2, .opc2 = 4, 4622 .access = PL1_R, .type = ARM_CP_CONST, 4623 .resetvalue = cpu->id_isar4 }, 4624 { .name = "ID_ISAR5", .state = ARM_CP_STATE_BOTH, 4625 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 2, .opc2 = 5, 4626 .access = PL1_R, .type = ARM_CP_CONST, 4627 .resetvalue = cpu->id_isar5 }, 4628 { .name = "ID_MMFR4", .state = ARM_CP_STATE_BOTH, 4629 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 2, .opc2 = 6, 4630 .access = PL1_R, .type = ARM_CP_CONST, 4631 .resetvalue = cpu->id_mmfr4 }, 4632 /* 7 is as yet unallocated and must RAZ */ 4633 { .name = "ID_ISAR7_RESERVED", .state = ARM_CP_STATE_BOTH, 4634 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 2, .opc2 = 7, 4635 .access = PL1_R, .type = ARM_CP_CONST, 4636 .resetvalue = 0 }, 4637 REGINFO_SENTINEL 4638 }; 4639 define_arm_cp_regs(cpu, v6_idregs); 4640 define_arm_cp_regs(cpu, v6_cp_reginfo); 4641 } else { 4642 define_arm_cp_regs(cpu, not_v6_cp_reginfo); 4643 } 4644 if (arm_feature(env, ARM_FEATURE_V6K)) { 4645 define_arm_cp_regs(cpu, v6k_cp_reginfo); 4646 } 4647 if (arm_feature(env, ARM_FEATURE_V7MP) && 4648 !arm_feature(env, ARM_FEATURE_PMSA)) { 4649 define_arm_cp_regs(cpu, v7mp_cp_reginfo); 4650 } 4651 if (arm_feature(env, ARM_FEATURE_V7)) { 4652 /* v7 performance monitor control register: same implementor 4653 * field as main ID register, and we implement only the cycle 4654 * count register. 4655 */ 4656 #ifndef CONFIG_USER_ONLY 4657 ARMCPRegInfo pmcr = { 4658 .name = "PMCR", .cp = 15, .crn = 9, .crm = 12, .opc1 = 0, .opc2 = 0, 4659 .access = PL0_RW, 4660 .type = ARM_CP_IO | ARM_CP_ALIAS, 4661 .fieldoffset = offsetoflow32(CPUARMState, cp15.c9_pmcr), 4662 .accessfn = pmreg_access, .writefn = pmcr_write, 4663 .raw_writefn = raw_write, 4664 }; 4665 ARMCPRegInfo pmcr64 = { 4666 .name = "PMCR_EL0", .state = ARM_CP_STATE_AA64, 4667 .opc0 = 3, .opc1 = 3, .crn = 9, .crm = 12, .opc2 = 0, 4668 .access = PL0_RW, .accessfn = pmreg_access, 4669 .type = ARM_CP_IO, 4670 .fieldoffset = offsetof(CPUARMState, cp15.c9_pmcr), 4671 .resetvalue = cpu->midr & 0xff000000, 4672 .writefn = pmcr_write, .raw_writefn = raw_write, 4673 }; 4674 define_one_arm_cp_reg(cpu, &pmcr); 4675 define_one_arm_cp_reg(cpu, &pmcr64); 4676 #endif 4677 ARMCPRegInfo clidr = { 4678 .name = "CLIDR", .state = ARM_CP_STATE_BOTH, 4679 .opc0 = 3, .crn = 0, .crm = 0, .opc1 = 1, .opc2 = 1, 4680 .access = PL1_R, .type = ARM_CP_CONST, .resetvalue = cpu->clidr 4681 }; 4682 define_one_arm_cp_reg(cpu, &clidr); 4683 define_arm_cp_regs(cpu, v7_cp_reginfo); 4684 define_debug_regs(cpu); 4685 } else { 4686 define_arm_cp_regs(cpu, not_v7_cp_reginfo); 4687 } 4688 if (arm_feature(env, ARM_FEATURE_V8)) { 4689 /* AArch64 ID registers, which all have impdef reset values. 4690 * Note that within the ID register ranges the unused slots 4691 * must all RAZ, not UNDEF; future architecture versions may 4692 * define new registers here. 4693 */ 4694 ARMCPRegInfo v8_idregs[] = { 4695 { .name = "ID_AA64PFR0_EL1", .state = ARM_CP_STATE_AA64, 4696 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 4, .opc2 = 0, 4697 .access = PL1_R, .type = ARM_CP_CONST, 4698 .resetvalue = cpu->id_aa64pfr0 }, 4699 { .name = "ID_AA64PFR1_EL1", .state = ARM_CP_STATE_AA64, 4700 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 4, .opc2 = 1, 4701 .access = PL1_R, .type = ARM_CP_CONST, 4702 .resetvalue = cpu->id_aa64pfr1}, 4703 { .name = "ID_AA64PFR2_EL1_RESERVED", .state = ARM_CP_STATE_AA64, 4704 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 4, .opc2 = 2, 4705 .access = PL1_R, .type = ARM_CP_CONST, 4706 .resetvalue = 0 }, 4707 { .name = "ID_AA64PFR3_EL1_RESERVED", .state = ARM_CP_STATE_AA64, 4708 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 4, .opc2 = 3, 4709 .access = PL1_R, .type = ARM_CP_CONST, 4710 .resetvalue = 0 }, 4711 { .name = "ID_AA64PFR4_EL1_RESERVED", .state = ARM_CP_STATE_AA64, 4712 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 4, .opc2 = 4, 4713 .access = PL1_R, .type = ARM_CP_CONST, 4714 .resetvalue = 0 }, 4715 { .name = "ID_AA64PFR5_EL1_RESERVED", .state = ARM_CP_STATE_AA64, 4716 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 4, .opc2 = 5, 4717 .access = PL1_R, .type = ARM_CP_CONST, 4718 .resetvalue = 0 }, 4719 { .name = "ID_AA64PFR6_EL1_RESERVED", .state = ARM_CP_STATE_AA64, 4720 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 4, .opc2 = 6, 4721 .access = PL1_R, .type = ARM_CP_CONST, 4722 .resetvalue = 0 }, 4723 { .name = "ID_AA64PFR7_EL1_RESERVED", .state = ARM_CP_STATE_AA64, 4724 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 4, .opc2 = 7, 4725 .access = PL1_R, .type = ARM_CP_CONST, 4726 .resetvalue = 0 }, 4727 { .name = "ID_AA64DFR0_EL1", .state = ARM_CP_STATE_AA64, 4728 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 5, .opc2 = 0, 4729 .access = PL1_R, .type = ARM_CP_CONST, 4730 .resetvalue = cpu->id_aa64dfr0 }, 4731 { .name = "ID_AA64DFR1_EL1", .state = ARM_CP_STATE_AA64, 4732 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 5, .opc2 = 1, 4733 .access = PL1_R, .type = ARM_CP_CONST, 4734 .resetvalue = cpu->id_aa64dfr1 }, 4735 { .name = "ID_AA64DFR2_EL1_RESERVED", .state = ARM_CP_STATE_AA64, 4736 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 5, .opc2 = 2, 4737 .access = PL1_R, .type = ARM_CP_CONST, 4738 .resetvalue = 0 }, 4739 { .name = "ID_AA64DFR3_EL1_RESERVED", .state = ARM_CP_STATE_AA64, 4740 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 5, .opc2 = 3, 4741 .access = PL1_R, .type = ARM_CP_CONST, 4742 .resetvalue = 0 }, 4743 { .name = "ID_AA64AFR0_EL1", .state = ARM_CP_STATE_AA64, 4744 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 5, .opc2 = 4, 4745 .access = PL1_R, .type = ARM_CP_CONST, 4746 .resetvalue = cpu->id_aa64afr0 }, 4747 { .name = "ID_AA64AFR1_EL1", .state = ARM_CP_STATE_AA64, 4748 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 5, .opc2 = 5, 4749 .access = PL1_R, .type = ARM_CP_CONST, 4750 .resetvalue = cpu->id_aa64afr1 }, 4751 { .name = "ID_AA64AFR2_EL1_RESERVED", .state = ARM_CP_STATE_AA64, 4752 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 5, .opc2 = 6, 4753 .access = PL1_R, .type = ARM_CP_CONST, 4754 .resetvalue = 0 }, 4755 { .name = "ID_AA64AFR3_EL1_RESERVED", .state = ARM_CP_STATE_AA64, 4756 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 5, .opc2 = 7, 4757 .access = PL1_R, .type = ARM_CP_CONST, 4758 .resetvalue = 0 }, 4759 { .name = "ID_AA64ISAR0_EL1", .state = ARM_CP_STATE_AA64, 4760 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 6, .opc2 = 0, 4761 .access = PL1_R, .type = ARM_CP_CONST, 4762 .resetvalue = cpu->id_aa64isar0 }, 4763 { .name = "ID_AA64ISAR1_EL1", .state = ARM_CP_STATE_AA64, 4764 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 6, .opc2 = 1, 4765 .access = PL1_R, .type = ARM_CP_CONST, 4766 .resetvalue = cpu->id_aa64isar1 }, 4767 { .name = "ID_AA64ISAR2_EL1_RESERVED", .state = ARM_CP_STATE_AA64, 4768 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 6, .opc2 = 2, 4769 .access = PL1_R, .type = ARM_CP_CONST, 4770 .resetvalue = 0 }, 4771 { .name = "ID_AA64ISAR3_EL1_RESERVED", .state = ARM_CP_STATE_AA64, 4772 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 6, .opc2 = 3, 4773 .access = PL1_R, .type = ARM_CP_CONST, 4774 .resetvalue = 0 }, 4775 { .name = "ID_AA64ISAR4_EL1_RESERVED", .state = ARM_CP_STATE_AA64, 4776 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 6, .opc2 = 4, 4777 .access = PL1_R, .type = ARM_CP_CONST, 4778 .resetvalue = 0 }, 4779 { .name = "ID_AA64ISAR5_EL1_RESERVED", .state = ARM_CP_STATE_AA64, 4780 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 6, .opc2 = 5, 4781 .access = PL1_R, .type = ARM_CP_CONST, 4782 .resetvalue = 0 }, 4783 { .name = "ID_AA64ISAR6_EL1_RESERVED", .state = ARM_CP_STATE_AA64, 4784 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 6, .opc2 = 6, 4785 .access = PL1_R, .type = ARM_CP_CONST, 4786 .resetvalue = 0 }, 4787 { .name = "ID_AA64ISAR7_EL1_RESERVED", .state = ARM_CP_STATE_AA64, 4788 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 6, .opc2 = 7, 4789 .access = PL1_R, .type = ARM_CP_CONST, 4790 .resetvalue = 0 }, 4791 { .name = "ID_AA64MMFR0_EL1", .state = ARM_CP_STATE_AA64, 4792 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 7, .opc2 = 0, 4793 .access = PL1_R, .type = ARM_CP_CONST, 4794 .resetvalue = cpu->id_aa64mmfr0 }, 4795 { .name = "ID_AA64MMFR1_EL1", .state = ARM_CP_STATE_AA64, 4796 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 7, .opc2 = 1, 4797 .access = PL1_R, .type = ARM_CP_CONST, 4798 .resetvalue = cpu->id_aa64mmfr1 }, 4799 { .name = "ID_AA64MMFR2_EL1_RESERVED", .state = ARM_CP_STATE_AA64, 4800 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 7, .opc2 = 2, 4801 .access = PL1_R, .type = ARM_CP_CONST, 4802 .resetvalue = 0 }, 4803 { .name = "ID_AA64MMFR3_EL1_RESERVED", .state = ARM_CP_STATE_AA64, 4804 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 7, .opc2 = 3, 4805 .access = PL1_R, .type = ARM_CP_CONST, 4806 .resetvalue = 0 }, 4807 { .name = "ID_AA64MMFR4_EL1_RESERVED", .state = ARM_CP_STATE_AA64, 4808 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 7, .opc2 = 4, 4809 .access = PL1_R, .type = ARM_CP_CONST, 4810 .resetvalue = 0 }, 4811 { .name = "ID_AA64MMFR5_EL1_RESERVED", .state = ARM_CP_STATE_AA64, 4812 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 7, .opc2 = 5, 4813 .access = PL1_R, .type = ARM_CP_CONST, 4814 .resetvalue = 0 }, 4815 { .name = "ID_AA64MMFR6_EL1_RESERVED", .state = ARM_CP_STATE_AA64, 4816 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 7, .opc2 = 6, 4817 .access = PL1_R, .type = ARM_CP_CONST, 4818 .resetvalue = 0 }, 4819 { .name = "ID_AA64MMFR7_EL1_RESERVED", .state = ARM_CP_STATE_AA64, 4820 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 7, .opc2 = 7, 4821 .access = PL1_R, .type = ARM_CP_CONST, 4822 .resetvalue = 0 }, 4823 { .name = "MVFR0_EL1", .state = ARM_CP_STATE_AA64, 4824 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 3, .opc2 = 0, 4825 .access = PL1_R, .type = ARM_CP_CONST, 4826 .resetvalue = cpu->mvfr0 }, 4827 { .name = "MVFR1_EL1", .state = ARM_CP_STATE_AA64, 4828 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 3, .opc2 = 1, 4829 .access = PL1_R, .type = ARM_CP_CONST, 4830 .resetvalue = cpu->mvfr1 }, 4831 { .name = "MVFR2_EL1", .state = ARM_CP_STATE_AA64, 4832 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 3, .opc2 = 2, 4833 .access = PL1_R, .type = ARM_CP_CONST, 4834 .resetvalue = cpu->mvfr2 }, 4835 { .name = "MVFR3_EL1_RESERVED", .state = ARM_CP_STATE_AA64, 4836 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 3, .opc2 = 3, 4837 .access = PL1_R, .type = ARM_CP_CONST, 4838 .resetvalue = 0 }, 4839 { .name = "MVFR4_EL1_RESERVED", .state = ARM_CP_STATE_AA64, 4840 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 3, .opc2 = 4, 4841 .access = PL1_R, .type = ARM_CP_CONST, 4842 .resetvalue = 0 }, 4843 { .name = "MVFR5_EL1_RESERVED", .state = ARM_CP_STATE_AA64, 4844 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 3, .opc2 = 5, 4845 .access = PL1_R, .type = ARM_CP_CONST, 4846 .resetvalue = 0 }, 4847 { .name = "MVFR6_EL1_RESERVED", .state = ARM_CP_STATE_AA64, 4848 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 3, .opc2 = 6, 4849 .access = PL1_R, .type = ARM_CP_CONST, 4850 .resetvalue = 0 }, 4851 { .name = "MVFR7_EL1_RESERVED", .state = ARM_CP_STATE_AA64, 4852 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 3, .opc2 = 7, 4853 .access = PL1_R, .type = ARM_CP_CONST, 4854 .resetvalue = 0 }, 4855 { .name = "PMCEID0", .state = ARM_CP_STATE_AA32, 4856 .cp = 15, .opc1 = 0, .crn = 9, .crm = 12, .opc2 = 6, 4857 .access = PL0_R, .accessfn = pmreg_access, .type = ARM_CP_CONST, 4858 .resetvalue = cpu->pmceid0 }, 4859 { .name = "PMCEID0_EL0", .state = ARM_CP_STATE_AA64, 4860 .opc0 = 3, .opc1 = 3, .crn = 9, .crm = 12, .opc2 = 6, 4861 .access = PL0_R, .accessfn = pmreg_access, .type = ARM_CP_CONST, 4862 .resetvalue = cpu->pmceid0 }, 4863 { .name = "PMCEID1", .state = ARM_CP_STATE_AA32, 4864 .cp = 15, .opc1 = 0, .crn = 9, .crm = 12, .opc2 = 7, 4865 .access = PL0_R, .accessfn = pmreg_access, .type = ARM_CP_CONST, 4866 .resetvalue = cpu->pmceid1 }, 4867 { .name = "PMCEID1_EL0", .state = ARM_CP_STATE_AA64, 4868 .opc0 = 3, .opc1 = 3, .crn = 9, .crm = 12, .opc2 = 7, 4869 .access = PL0_R, .accessfn = pmreg_access, .type = ARM_CP_CONST, 4870 .resetvalue = cpu->pmceid1 }, 4871 REGINFO_SENTINEL 4872 }; 4873 /* RVBAR_EL1 is only implemented if EL1 is the highest EL */ 4874 if (!arm_feature(env, ARM_FEATURE_EL3) && 4875 !arm_feature(env, ARM_FEATURE_EL2)) { 4876 ARMCPRegInfo rvbar = { 4877 .name = "RVBAR_EL1", .state = ARM_CP_STATE_AA64, 4878 .opc0 = 3, .opc1 = 0, .crn = 12, .crm = 0, .opc2 = 1, 4879 .type = ARM_CP_CONST, .access = PL1_R, .resetvalue = cpu->rvbar 4880 }; 4881 define_one_arm_cp_reg(cpu, &rvbar); 4882 } 4883 define_arm_cp_regs(cpu, v8_idregs); 4884 define_arm_cp_regs(cpu, v8_cp_reginfo); 4885 } 4886 if (arm_feature(env, ARM_FEATURE_EL2)) { 4887 uint64_t vmpidr_def = mpidr_read_val(env); 4888 ARMCPRegInfo vpidr_regs[] = { 4889 { .name = "VPIDR", .state = ARM_CP_STATE_AA32, 4890 .cp = 15, .opc1 = 4, .crn = 0, .crm = 0, .opc2 = 0, 4891 .access = PL2_RW, .accessfn = access_el3_aa32ns, 4892 .resetvalue = cpu->midr, 4893 .fieldoffset = offsetof(CPUARMState, cp15.vpidr_el2) }, 4894 { .name = "VPIDR_EL2", .state = ARM_CP_STATE_AA64, 4895 .opc0 = 3, .opc1 = 4, .crn = 0, .crm = 0, .opc2 = 0, 4896 .access = PL2_RW, .resetvalue = cpu->midr, 4897 .fieldoffset = offsetof(CPUARMState, cp15.vpidr_el2) }, 4898 { .name = "VMPIDR", .state = ARM_CP_STATE_AA32, 4899 .cp = 15, .opc1 = 4, .crn = 0, .crm = 0, .opc2 = 5, 4900 .access = PL2_RW, .accessfn = access_el3_aa32ns, 4901 .resetvalue = vmpidr_def, 4902 .fieldoffset = offsetof(CPUARMState, cp15.vmpidr_el2) }, 4903 { .name = "VMPIDR_EL2", .state = ARM_CP_STATE_AA64, 4904 .opc0 = 3, .opc1 = 4, .crn = 0, .crm = 0, .opc2 = 5, 4905 .access = PL2_RW, 4906 .resetvalue = vmpidr_def, 4907 .fieldoffset = offsetof(CPUARMState, cp15.vmpidr_el2) }, 4908 REGINFO_SENTINEL 4909 }; 4910 define_arm_cp_regs(cpu, vpidr_regs); 4911 define_arm_cp_regs(cpu, el2_cp_reginfo); 4912 /* RVBAR_EL2 is only implemented if EL2 is the highest EL */ 4913 if (!arm_feature(env, ARM_FEATURE_EL3)) { 4914 ARMCPRegInfo rvbar = { 4915 .name = "RVBAR_EL2", .state = ARM_CP_STATE_AA64, 4916 .opc0 = 3, .opc1 = 4, .crn = 12, .crm = 0, .opc2 = 1, 4917 .type = ARM_CP_CONST, .access = PL2_R, .resetvalue = cpu->rvbar 4918 }; 4919 define_one_arm_cp_reg(cpu, &rvbar); 4920 } 4921 } else { 4922 /* If EL2 is missing but higher ELs are enabled, we need to 4923 * register the no_el2 reginfos. 4924 */ 4925 if (arm_feature(env, ARM_FEATURE_EL3)) { 4926 /* When EL3 exists but not EL2, VPIDR and VMPIDR take the value 4927 * of MIDR_EL1 and MPIDR_EL1. 4928 */ 4929 ARMCPRegInfo vpidr_regs[] = { 4930 { .name = "VPIDR_EL2", .state = ARM_CP_STATE_BOTH, 4931 .opc0 = 3, .opc1 = 4, .crn = 0, .crm = 0, .opc2 = 0, 4932 .access = PL2_RW, .accessfn = access_el3_aa32ns_aa64any, 4933 .type = ARM_CP_CONST, .resetvalue = cpu->midr, 4934 .fieldoffset = offsetof(CPUARMState, cp15.vpidr_el2) }, 4935 { .name = "VMPIDR_EL2", .state = ARM_CP_STATE_BOTH, 4936 .opc0 = 3, .opc1 = 4, .crn = 0, .crm = 0, .opc2 = 5, 4937 .access = PL2_RW, .accessfn = access_el3_aa32ns_aa64any, 4938 .type = ARM_CP_NO_RAW, 4939 .writefn = arm_cp_write_ignore, .readfn = mpidr_read }, 4940 REGINFO_SENTINEL 4941 }; 4942 define_arm_cp_regs(cpu, vpidr_regs); 4943 define_arm_cp_regs(cpu, el3_no_el2_cp_reginfo); 4944 } 4945 } 4946 if (arm_feature(env, ARM_FEATURE_EL3)) { 4947 define_arm_cp_regs(cpu, el3_cp_reginfo); 4948 ARMCPRegInfo el3_regs[] = { 4949 { .name = "RVBAR_EL3", .state = ARM_CP_STATE_AA64, 4950 .opc0 = 3, .opc1 = 6, .crn = 12, .crm = 0, .opc2 = 1, 4951 .type = ARM_CP_CONST, .access = PL3_R, .resetvalue = cpu->rvbar }, 4952 { .name = "SCTLR_EL3", .state = ARM_CP_STATE_AA64, 4953 .opc0 = 3, .opc1 = 6, .crn = 1, .crm = 0, .opc2 = 0, 4954 .access = PL3_RW, 4955 .raw_writefn = raw_write, .writefn = sctlr_write, 4956 .fieldoffset = offsetof(CPUARMState, cp15.sctlr_el[3]), 4957 .resetvalue = cpu->reset_sctlr }, 4958 REGINFO_SENTINEL 4959 }; 4960 4961 define_arm_cp_regs(cpu, el3_regs); 4962 } 4963 /* The behaviour of NSACR is sufficiently various that we don't 4964 * try to describe it in a single reginfo: 4965 * if EL3 is 64 bit, then trap to EL3 from S EL1, 4966 * reads as constant 0xc00 from NS EL1 and NS EL2 4967 * if EL3 is 32 bit, then RW at EL3, RO at NS EL1 and NS EL2 4968 * if v7 without EL3, register doesn't exist 4969 * if v8 without EL3, reads as constant 0xc00 from NS EL1 and NS EL2 4970 */ 4971 if (arm_feature(env, ARM_FEATURE_EL3)) { 4972 if (arm_feature(env, ARM_FEATURE_AARCH64)) { 4973 ARMCPRegInfo nsacr = { 4974 .name = "NSACR", .type = ARM_CP_CONST, 4975 .cp = 15, .opc1 = 0, .crn = 1, .crm = 1, .opc2 = 2, 4976 .access = PL1_RW, .accessfn = nsacr_access, 4977 .resetvalue = 0xc00 4978 }; 4979 define_one_arm_cp_reg(cpu, &nsacr); 4980 } else { 4981 ARMCPRegInfo nsacr = { 4982 .name = "NSACR", 4983 .cp = 15, .opc1 = 0, .crn = 1, .crm = 1, .opc2 = 2, 4984 .access = PL3_RW | PL1_R, 4985 .resetvalue = 0, 4986 .fieldoffset = offsetof(CPUARMState, cp15.nsacr) 4987 }; 4988 define_one_arm_cp_reg(cpu, &nsacr); 4989 } 4990 } else { 4991 if (arm_feature(env, ARM_FEATURE_V8)) { 4992 ARMCPRegInfo nsacr = { 4993 .name = "NSACR", .type = ARM_CP_CONST, 4994 .cp = 15, .opc1 = 0, .crn = 1, .crm = 1, .opc2 = 2, 4995 .access = PL1_R, 4996 .resetvalue = 0xc00 4997 }; 4998 define_one_arm_cp_reg(cpu, &nsacr); 4999 } 5000 } 5001 5002 if (arm_feature(env, ARM_FEATURE_PMSA)) { 5003 if (arm_feature(env, ARM_FEATURE_V6)) { 5004 /* PMSAv6 not implemented */ 5005 assert(arm_feature(env, ARM_FEATURE_V7)); 5006 define_arm_cp_regs(cpu, vmsa_pmsa_cp_reginfo); 5007 define_arm_cp_regs(cpu, pmsav7_cp_reginfo); 5008 } else { 5009 define_arm_cp_regs(cpu, pmsav5_cp_reginfo); 5010 } 5011 } else { 5012 define_arm_cp_regs(cpu, vmsa_pmsa_cp_reginfo); 5013 define_arm_cp_regs(cpu, vmsa_cp_reginfo); 5014 } 5015 if (arm_feature(env, ARM_FEATURE_THUMB2EE)) { 5016 define_arm_cp_regs(cpu, t2ee_cp_reginfo); 5017 } 5018 if (arm_feature(env, ARM_FEATURE_GENERIC_TIMER)) { 5019 define_arm_cp_regs(cpu, generic_timer_cp_reginfo); 5020 } 5021 if (arm_feature(env, ARM_FEATURE_VAPA)) { 5022 define_arm_cp_regs(cpu, vapa_cp_reginfo); 5023 } 5024 if (arm_feature(env, ARM_FEATURE_CACHE_TEST_CLEAN)) { 5025 define_arm_cp_regs(cpu, cache_test_clean_cp_reginfo); 5026 } 5027 if (arm_feature(env, ARM_FEATURE_CACHE_DIRTY_REG)) { 5028 define_arm_cp_regs(cpu, cache_dirty_status_cp_reginfo); 5029 } 5030 if (arm_feature(env, ARM_FEATURE_CACHE_BLOCK_OPS)) { 5031 define_arm_cp_regs(cpu, cache_block_ops_cp_reginfo); 5032 } 5033 if (arm_feature(env, ARM_FEATURE_OMAPCP)) { 5034 define_arm_cp_regs(cpu, omap_cp_reginfo); 5035 } 5036 if (arm_feature(env, ARM_FEATURE_STRONGARM)) { 5037 define_arm_cp_regs(cpu, strongarm_cp_reginfo); 5038 } 5039 if (arm_feature(env, ARM_FEATURE_XSCALE)) { 5040 define_arm_cp_regs(cpu, xscale_cp_reginfo); 5041 } 5042 if (arm_feature(env, ARM_FEATURE_DUMMY_C15_REGS)) { 5043 define_arm_cp_regs(cpu, dummy_c15_cp_reginfo); 5044 } 5045 if (arm_feature(env, ARM_FEATURE_LPAE)) { 5046 define_arm_cp_regs(cpu, lpae_cp_reginfo); 5047 } 5048 /* Slightly awkwardly, the OMAP and StrongARM cores need all of 5049 * cp15 crn=0 to be writes-ignored, whereas for other cores they should 5050 * be read-only (ie write causes UNDEF exception). 5051 */ 5052 { 5053 ARMCPRegInfo id_pre_v8_midr_cp_reginfo[] = { 5054 /* Pre-v8 MIDR space. 5055 * Note that the MIDR isn't a simple constant register because 5056 * of the TI925 behaviour where writes to another register can 5057 * cause the MIDR value to change. 5058 * 5059 * Unimplemented registers in the c15 0 0 0 space default to 5060 * MIDR. Define MIDR first as this entire space, then CTR, TCMTR 5061 * and friends override accordingly. 5062 */ 5063 { .name = "MIDR", 5064 .cp = 15, .crn = 0, .crm = 0, .opc1 = 0, .opc2 = CP_ANY, 5065 .access = PL1_R, .resetvalue = cpu->midr, 5066 .writefn = arm_cp_write_ignore, .raw_writefn = raw_write, 5067 .readfn = midr_read, 5068 .fieldoffset = offsetof(CPUARMState, cp15.c0_cpuid), 5069 .type = ARM_CP_OVERRIDE }, 5070 /* crn = 0 op1 = 0 crm = 3..7 : currently unassigned; we RAZ. */ 5071 { .name = "DUMMY", 5072 .cp = 15, .crn = 0, .crm = 3, .opc1 = 0, .opc2 = CP_ANY, 5073 .access = PL1_R, .type = ARM_CP_CONST, .resetvalue = 0 }, 5074 { .name = "DUMMY", 5075 .cp = 15, .crn = 0, .crm = 4, .opc1 = 0, .opc2 = CP_ANY, 5076 .access = PL1_R, .type = ARM_CP_CONST, .resetvalue = 0 }, 5077 { .name = "DUMMY", 5078 .cp = 15, .crn = 0, .crm = 5, .opc1 = 0, .opc2 = CP_ANY, 5079 .access = PL1_R, .type = ARM_CP_CONST, .resetvalue = 0 }, 5080 { .name = "DUMMY", 5081 .cp = 15, .crn = 0, .crm = 6, .opc1 = 0, .opc2 = CP_ANY, 5082 .access = PL1_R, .type = ARM_CP_CONST, .resetvalue = 0 }, 5083 { .name = "DUMMY", 5084 .cp = 15, .crn = 0, .crm = 7, .opc1 = 0, .opc2 = CP_ANY, 5085 .access = PL1_R, .type = ARM_CP_CONST, .resetvalue = 0 }, 5086 REGINFO_SENTINEL 5087 }; 5088 ARMCPRegInfo id_v8_midr_cp_reginfo[] = { 5089 { .name = "MIDR_EL1", .state = ARM_CP_STATE_BOTH, 5090 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 0, .opc2 = 0, 5091 .access = PL1_R, .type = ARM_CP_NO_RAW, .resetvalue = cpu->midr, 5092 .fieldoffset = offsetof(CPUARMState, cp15.c0_cpuid), 5093 .readfn = midr_read }, 5094 /* crn = 0 op1 = 0 crm = 0 op2 = 4,7 : AArch32 aliases of MIDR */ 5095 { .name = "MIDR", .type = ARM_CP_ALIAS | ARM_CP_CONST, 5096 .cp = 15, .crn = 0, .crm = 0, .opc1 = 0, .opc2 = 4, 5097 .access = PL1_R, .resetvalue = cpu->midr }, 5098 { .name = "MIDR", .type = ARM_CP_ALIAS | ARM_CP_CONST, 5099 .cp = 15, .crn = 0, .crm = 0, .opc1 = 0, .opc2 = 7, 5100 .access = PL1_R, .resetvalue = cpu->midr }, 5101 { .name = "REVIDR_EL1", .state = ARM_CP_STATE_BOTH, 5102 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 0, .opc2 = 6, 5103 .access = PL1_R, .type = ARM_CP_CONST, .resetvalue = cpu->revidr }, 5104 REGINFO_SENTINEL 5105 }; 5106 ARMCPRegInfo id_cp_reginfo[] = { 5107 /* These are common to v8 and pre-v8 */ 5108 { .name = "CTR", 5109 .cp = 15, .crn = 0, .crm = 0, .opc1 = 0, .opc2 = 1, 5110 .access = PL1_R, .type = ARM_CP_CONST, .resetvalue = cpu->ctr }, 5111 { .name = "CTR_EL0", .state = ARM_CP_STATE_AA64, 5112 .opc0 = 3, .opc1 = 3, .opc2 = 1, .crn = 0, .crm = 0, 5113 .access = PL0_R, .accessfn = ctr_el0_access, 5114 .type = ARM_CP_CONST, .resetvalue = cpu->ctr }, 5115 /* TCMTR and TLBTR exist in v8 but have no 64-bit versions */ 5116 { .name = "TCMTR", 5117 .cp = 15, .crn = 0, .crm = 0, .opc1 = 0, .opc2 = 2, 5118 .access = PL1_R, .type = ARM_CP_CONST, .resetvalue = 0 }, 5119 REGINFO_SENTINEL 5120 }; 5121 /* TLBTR is specific to VMSA */ 5122 ARMCPRegInfo id_tlbtr_reginfo = { 5123 .name = "TLBTR", 5124 .cp = 15, .crn = 0, .crm = 0, .opc1 = 0, .opc2 = 3, 5125 .access = PL1_R, .type = ARM_CP_CONST, .resetvalue = 0, 5126 }; 5127 /* MPUIR is specific to PMSA V6+ */ 5128 ARMCPRegInfo id_mpuir_reginfo = { 5129 .name = "MPUIR", 5130 .cp = 15, .crn = 0, .crm = 0, .opc1 = 0, .opc2 = 4, 5131 .access = PL1_R, .type = ARM_CP_CONST, 5132 .resetvalue = cpu->pmsav7_dregion << 8 5133 }; 5134 ARMCPRegInfo crn0_wi_reginfo = { 5135 .name = "CRN0_WI", .cp = 15, .crn = 0, .crm = CP_ANY, 5136 .opc1 = CP_ANY, .opc2 = CP_ANY, .access = PL1_W, 5137 .type = ARM_CP_NOP | ARM_CP_OVERRIDE 5138 }; 5139 if (arm_feature(env, ARM_FEATURE_OMAPCP) || 5140 arm_feature(env, ARM_FEATURE_STRONGARM)) { 5141 ARMCPRegInfo *r; 5142 /* Register the blanket "writes ignored" value first to cover the 5143 * whole space. Then update the specific ID registers to allow write 5144 * access, so that they ignore writes rather than causing them to 5145 * UNDEF. 5146 */ 5147 define_one_arm_cp_reg(cpu, &crn0_wi_reginfo); 5148 for (r = id_pre_v8_midr_cp_reginfo; 5149 r->type != ARM_CP_SENTINEL; r++) { 5150 r->access = PL1_RW; 5151 } 5152 for (r = id_cp_reginfo; r->type != ARM_CP_SENTINEL; r++) { 5153 r->access = PL1_RW; 5154 } 5155 id_tlbtr_reginfo.access = PL1_RW; 5156 id_tlbtr_reginfo.access = PL1_RW; 5157 } 5158 if (arm_feature(env, ARM_FEATURE_V8)) { 5159 define_arm_cp_regs(cpu, id_v8_midr_cp_reginfo); 5160 } else { 5161 define_arm_cp_regs(cpu, id_pre_v8_midr_cp_reginfo); 5162 } 5163 define_arm_cp_regs(cpu, id_cp_reginfo); 5164 if (!arm_feature(env, ARM_FEATURE_PMSA)) { 5165 define_one_arm_cp_reg(cpu, &id_tlbtr_reginfo); 5166 } else if (arm_feature(env, ARM_FEATURE_V7)) { 5167 define_one_arm_cp_reg(cpu, &id_mpuir_reginfo); 5168 } 5169 } 5170 5171 if (arm_feature(env, ARM_FEATURE_MPIDR)) { 5172 define_arm_cp_regs(cpu, mpidr_cp_reginfo); 5173 } 5174 5175 if (arm_feature(env, ARM_FEATURE_AUXCR)) { 5176 ARMCPRegInfo auxcr_reginfo[] = { 5177 { .name = "ACTLR_EL1", .state = ARM_CP_STATE_BOTH, 5178 .opc0 = 3, .opc1 = 0, .crn = 1, .crm = 0, .opc2 = 1, 5179 .access = PL1_RW, .type = ARM_CP_CONST, 5180 .resetvalue = cpu->reset_auxcr }, 5181 { .name = "ACTLR_EL2", .state = ARM_CP_STATE_BOTH, 5182 .opc0 = 3, .opc1 = 4, .crn = 1, .crm = 0, .opc2 = 1, 5183 .access = PL2_RW, .type = ARM_CP_CONST, 5184 .resetvalue = 0 }, 5185 { .name = "ACTLR_EL3", .state = ARM_CP_STATE_AA64, 5186 .opc0 = 3, .opc1 = 6, .crn = 1, .crm = 0, .opc2 = 1, 5187 .access = PL3_RW, .type = ARM_CP_CONST, 5188 .resetvalue = 0 }, 5189 REGINFO_SENTINEL 5190 }; 5191 define_arm_cp_regs(cpu, auxcr_reginfo); 5192 } 5193 5194 if (arm_feature(env, ARM_FEATURE_CBAR)) { 5195 if (arm_feature(env, ARM_FEATURE_AARCH64)) { 5196 /* 32 bit view is [31:18] 0...0 [43:32]. */ 5197 uint32_t cbar32 = (extract64(cpu->reset_cbar, 18, 14) << 18) 5198 | extract64(cpu->reset_cbar, 32, 12); 5199 ARMCPRegInfo cbar_reginfo[] = { 5200 { .name = "CBAR", 5201 .type = ARM_CP_CONST, 5202 .cp = 15, .crn = 15, .crm = 0, .opc1 = 4, .opc2 = 0, 5203 .access = PL1_R, .resetvalue = cpu->reset_cbar }, 5204 { .name = "CBAR_EL1", .state = ARM_CP_STATE_AA64, 5205 .type = ARM_CP_CONST, 5206 .opc0 = 3, .opc1 = 1, .crn = 15, .crm = 3, .opc2 = 0, 5207 .access = PL1_R, .resetvalue = cbar32 }, 5208 REGINFO_SENTINEL 5209 }; 5210 /* We don't implement a r/w 64 bit CBAR currently */ 5211 assert(arm_feature(env, ARM_FEATURE_CBAR_RO)); 5212 define_arm_cp_regs(cpu, cbar_reginfo); 5213 } else { 5214 ARMCPRegInfo cbar = { 5215 .name = "CBAR", 5216 .cp = 15, .crn = 15, .crm = 0, .opc1 = 4, .opc2 = 0, 5217 .access = PL1_R|PL3_W, .resetvalue = cpu->reset_cbar, 5218 .fieldoffset = offsetof(CPUARMState, 5219 cp15.c15_config_base_address) 5220 }; 5221 if (arm_feature(env, ARM_FEATURE_CBAR_RO)) { 5222 cbar.access = PL1_R; 5223 cbar.fieldoffset = 0; 5224 cbar.type = ARM_CP_CONST; 5225 } 5226 define_one_arm_cp_reg(cpu, &cbar); 5227 } 5228 } 5229 5230 if (arm_feature(env, ARM_FEATURE_VBAR)) { 5231 ARMCPRegInfo vbar_cp_reginfo[] = { 5232 { .name = "VBAR", .state = ARM_CP_STATE_BOTH, 5233 .opc0 = 3, .crn = 12, .crm = 0, .opc1 = 0, .opc2 = 0, 5234 .access = PL1_RW, .writefn = vbar_write, 5235 .bank_fieldoffsets = { offsetof(CPUARMState, cp15.vbar_s), 5236 offsetof(CPUARMState, cp15.vbar_ns) }, 5237 .resetvalue = 0 }, 5238 REGINFO_SENTINEL 5239 }; 5240 define_arm_cp_regs(cpu, vbar_cp_reginfo); 5241 } 5242 5243 /* Generic registers whose values depend on the implementation */ 5244 { 5245 ARMCPRegInfo sctlr = { 5246 .name = "SCTLR", .state = ARM_CP_STATE_BOTH, 5247 .opc0 = 3, .opc1 = 0, .crn = 1, .crm = 0, .opc2 = 0, 5248 .access = PL1_RW, 5249 .bank_fieldoffsets = { offsetof(CPUARMState, cp15.sctlr_s), 5250 offsetof(CPUARMState, cp15.sctlr_ns) }, 5251 .writefn = sctlr_write, .resetvalue = cpu->reset_sctlr, 5252 .raw_writefn = raw_write, 5253 }; 5254 if (arm_feature(env, ARM_FEATURE_XSCALE)) { 5255 /* Normally we would always end the TB on an SCTLR write, but Linux 5256 * arch/arm/mach-pxa/sleep.S expects two instructions following 5257 * an MMU enable to execute from cache. Imitate this behaviour. 5258 */ 5259 sctlr.type |= ARM_CP_SUPPRESS_TB_END; 5260 } 5261 define_one_arm_cp_reg(cpu, &sctlr); 5262 } 5263 } 5264 5265 void arm_cpu_register_gdb_regs_for_features(ARMCPU *cpu) 5266 { 5267 CPUState *cs = CPU(cpu); 5268 CPUARMState *env = &cpu->env; 5269 5270 if (arm_feature(env, ARM_FEATURE_AARCH64)) { 5271 gdb_register_coprocessor(cs, aarch64_fpu_gdb_get_reg, 5272 aarch64_fpu_gdb_set_reg, 5273 34, "aarch64-fpu.xml", 0); 5274 } else if (arm_feature(env, ARM_FEATURE_NEON)) { 5275 gdb_register_coprocessor(cs, vfp_gdb_get_reg, vfp_gdb_set_reg, 5276 51, "arm-neon.xml", 0); 5277 } else if (arm_feature(env, ARM_FEATURE_VFP3)) { 5278 gdb_register_coprocessor(cs, vfp_gdb_get_reg, vfp_gdb_set_reg, 5279 35, "arm-vfp3.xml", 0); 5280 } else if (arm_feature(env, ARM_FEATURE_VFP)) { 5281 gdb_register_coprocessor(cs, vfp_gdb_get_reg, vfp_gdb_set_reg, 5282 19, "arm-vfp.xml", 0); 5283 } 5284 } 5285 5286 /* Sort alphabetically by type name, except for "any". */ 5287 static gint arm_cpu_list_compare(gconstpointer a, gconstpointer b) 5288 { 5289 ObjectClass *class_a = (ObjectClass *)a; 5290 ObjectClass *class_b = (ObjectClass *)b; 5291 const char *name_a, *name_b; 5292 5293 name_a = object_class_get_name(class_a); 5294 name_b = object_class_get_name(class_b); 5295 if (strcmp(name_a, "any-" TYPE_ARM_CPU) == 0) { 5296 return 1; 5297 } else if (strcmp(name_b, "any-" TYPE_ARM_CPU) == 0) { 5298 return -1; 5299 } else { 5300 return strcmp(name_a, name_b); 5301 } 5302 } 5303 5304 static void arm_cpu_list_entry(gpointer data, gpointer user_data) 5305 { 5306 ObjectClass *oc = data; 5307 CPUListState *s = user_data; 5308 const char *typename; 5309 char *name; 5310 5311 typename = object_class_get_name(oc); 5312 name = g_strndup(typename, strlen(typename) - strlen("-" TYPE_ARM_CPU)); 5313 (*s->cpu_fprintf)(s->file, " %s\n", 5314 name); 5315 g_free(name); 5316 } 5317 5318 void arm_cpu_list(FILE *f, fprintf_function cpu_fprintf) 5319 { 5320 CPUListState s = { 5321 .file = f, 5322 .cpu_fprintf = cpu_fprintf, 5323 }; 5324 GSList *list; 5325 5326 list = object_class_get_list(TYPE_ARM_CPU, false); 5327 list = g_slist_sort(list, arm_cpu_list_compare); 5328 (*cpu_fprintf)(f, "Available CPUs:\n"); 5329 g_slist_foreach(list, arm_cpu_list_entry, &s); 5330 g_slist_free(list); 5331 #ifdef CONFIG_KVM 5332 /* The 'host' CPU type is dynamically registered only if KVM is 5333 * enabled, so we have to special-case it here: 5334 */ 5335 (*cpu_fprintf)(f, " host (only available in KVM mode)\n"); 5336 #endif 5337 } 5338 5339 static void arm_cpu_add_definition(gpointer data, gpointer user_data) 5340 { 5341 ObjectClass *oc = data; 5342 CpuDefinitionInfoList **cpu_list = user_data; 5343 CpuDefinitionInfoList *entry; 5344 CpuDefinitionInfo *info; 5345 const char *typename; 5346 5347 typename = object_class_get_name(oc); 5348 info = g_malloc0(sizeof(*info)); 5349 info->name = g_strndup(typename, 5350 strlen(typename) - strlen("-" TYPE_ARM_CPU)); 5351 info->q_typename = g_strdup(typename); 5352 5353 entry = g_malloc0(sizeof(*entry)); 5354 entry->value = info; 5355 entry->next = *cpu_list; 5356 *cpu_list = entry; 5357 } 5358 5359 CpuDefinitionInfoList *arch_query_cpu_definitions(Error **errp) 5360 { 5361 CpuDefinitionInfoList *cpu_list = NULL; 5362 GSList *list; 5363 5364 list = object_class_get_list(TYPE_ARM_CPU, false); 5365 g_slist_foreach(list, arm_cpu_add_definition, &cpu_list); 5366 g_slist_free(list); 5367 5368 return cpu_list; 5369 } 5370 5371 static void add_cpreg_to_hashtable(ARMCPU *cpu, const ARMCPRegInfo *r, 5372 void *opaque, int state, int secstate, 5373 int crm, int opc1, int opc2) 5374 { 5375 /* Private utility function for define_one_arm_cp_reg_with_opaque(): 5376 * add a single reginfo struct to the hash table. 5377 */ 5378 uint32_t *key = g_new(uint32_t, 1); 5379 ARMCPRegInfo *r2 = g_memdup(r, sizeof(ARMCPRegInfo)); 5380 int is64 = (r->type & ARM_CP_64BIT) ? 1 : 0; 5381 int ns = (secstate & ARM_CP_SECSTATE_NS) ? 1 : 0; 5382 5383 /* Reset the secure state to the specific incoming state. This is 5384 * necessary as the register may have been defined with both states. 5385 */ 5386 r2->secure = secstate; 5387 5388 if (r->bank_fieldoffsets[0] && r->bank_fieldoffsets[1]) { 5389 /* Register is banked (using both entries in array). 5390 * Overwriting fieldoffset as the array is only used to define 5391 * banked registers but later only fieldoffset is used. 5392 */ 5393 r2->fieldoffset = r->bank_fieldoffsets[ns]; 5394 } 5395 5396 if (state == ARM_CP_STATE_AA32) { 5397 if (r->bank_fieldoffsets[0] && r->bank_fieldoffsets[1]) { 5398 /* If the register is banked then we don't need to migrate or 5399 * reset the 32-bit instance in certain cases: 5400 * 5401 * 1) If the register has both 32-bit and 64-bit instances then we 5402 * can count on the 64-bit instance taking care of the 5403 * non-secure bank. 5404 * 2) If ARMv8 is enabled then we can count on a 64-bit version 5405 * taking care of the secure bank. This requires that separate 5406 * 32 and 64-bit definitions are provided. 5407 */ 5408 if ((r->state == ARM_CP_STATE_BOTH && ns) || 5409 (arm_feature(&cpu->env, ARM_FEATURE_V8) && !ns)) { 5410 r2->type |= ARM_CP_ALIAS; 5411 } 5412 } else if ((secstate != r->secure) && !ns) { 5413 /* The register is not banked so we only want to allow migration of 5414 * the non-secure instance. 5415 */ 5416 r2->type |= ARM_CP_ALIAS; 5417 } 5418 5419 if (r->state == ARM_CP_STATE_BOTH) { 5420 /* We assume it is a cp15 register if the .cp field is left unset. 5421 */ 5422 if (r2->cp == 0) { 5423 r2->cp = 15; 5424 } 5425 5426 #ifdef HOST_WORDS_BIGENDIAN 5427 if (r2->fieldoffset) { 5428 r2->fieldoffset += sizeof(uint32_t); 5429 } 5430 #endif 5431 } 5432 } 5433 if (state == ARM_CP_STATE_AA64) { 5434 /* To allow abbreviation of ARMCPRegInfo 5435 * definitions, we treat cp == 0 as equivalent to 5436 * the value for "standard guest-visible sysreg". 5437 * STATE_BOTH definitions are also always "standard 5438 * sysreg" in their AArch64 view (the .cp value may 5439 * be non-zero for the benefit of the AArch32 view). 5440 */ 5441 if (r->cp == 0 || r->state == ARM_CP_STATE_BOTH) { 5442 r2->cp = CP_REG_ARM64_SYSREG_CP; 5443 } 5444 *key = ENCODE_AA64_CP_REG(r2->cp, r2->crn, crm, 5445 r2->opc0, opc1, opc2); 5446 } else { 5447 *key = ENCODE_CP_REG(r2->cp, is64, ns, r2->crn, crm, opc1, opc2); 5448 } 5449 if (opaque) { 5450 r2->opaque = opaque; 5451 } 5452 /* reginfo passed to helpers is correct for the actual access, 5453 * and is never ARM_CP_STATE_BOTH: 5454 */ 5455 r2->state = state; 5456 /* Make sure reginfo passed to helpers for wildcarded regs 5457 * has the correct crm/opc1/opc2 for this reg, not CP_ANY: 5458 */ 5459 r2->crm = crm; 5460 r2->opc1 = opc1; 5461 r2->opc2 = opc2; 5462 /* By convention, for wildcarded registers only the first 5463 * entry is used for migration; the others are marked as 5464 * ALIAS so we don't try to transfer the register 5465 * multiple times. Special registers (ie NOP/WFI) are 5466 * never migratable and not even raw-accessible. 5467 */ 5468 if ((r->type & ARM_CP_SPECIAL)) { 5469 r2->type |= ARM_CP_NO_RAW; 5470 } 5471 if (((r->crm == CP_ANY) && crm != 0) || 5472 ((r->opc1 == CP_ANY) && opc1 != 0) || 5473 ((r->opc2 == CP_ANY) && opc2 != 0)) { 5474 r2->type |= ARM_CP_ALIAS; 5475 } 5476 5477 /* Check that raw accesses are either forbidden or handled. Note that 5478 * we can't assert this earlier because the setup of fieldoffset for 5479 * banked registers has to be done first. 5480 */ 5481 if (!(r2->type & ARM_CP_NO_RAW)) { 5482 assert(!raw_accessors_invalid(r2)); 5483 } 5484 5485 /* Overriding of an existing definition must be explicitly 5486 * requested. 5487 */ 5488 if (!(r->type & ARM_CP_OVERRIDE)) { 5489 ARMCPRegInfo *oldreg; 5490 oldreg = g_hash_table_lookup(cpu->cp_regs, key); 5491 if (oldreg && !(oldreg->type & ARM_CP_OVERRIDE)) { 5492 fprintf(stderr, "Register redefined: cp=%d %d bit " 5493 "crn=%d crm=%d opc1=%d opc2=%d, " 5494 "was %s, now %s\n", r2->cp, 32 + 32 * is64, 5495 r2->crn, r2->crm, r2->opc1, r2->opc2, 5496 oldreg->name, r2->name); 5497 g_assert_not_reached(); 5498 } 5499 } 5500 g_hash_table_insert(cpu->cp_regs, key, r2); 5501 } 5502 5503 5504 void define_one_arm_cp_reg_with_opaque(ARMCPU *cpu, 5505 const ARMCPRegInfo *r, void *opaque) 5506 { 5507 /* Define implementations of coprocessor registers. 5508 * We store these in a hashtable because typically 5509 * there are less than 150 registers in a space which 5510 * is 16*16*16*8*8 = 262144 in size. 5511 * Wildcarding is supported for the crm, opc1 and opc2 fields. 5512 * If a register is defined twice then the second definition is 5513 * used, so this can be used to define some generic registers and 5514 * then override them with implementation specific variations. 5515 * At least one of the original and the second definition should 5516 * include ARM_CP_OVERRIDE in its type bits -- this is just a guard 5517 * against accidental use. 5518 * 5519 * The state field defines whether the register is to be 5520 * visible in the AArch32 or AArch64 execution state. If the 5521 * state is set to ARM_CP_STATE_BOTH then we synthesise a 5522 * reginfo structure for the AArch32 view, which sees the lower 5523 * 32 bits of the 64 bit register. 5524 * 5525 * Only registers visible in AArch64 may set r->opc0; opc0 cannot 5526 * be wildcarded. AArch64 registers are always considered to be 64 5527 * bits; the ARM_CP_64BIT* flag applies only to the AArch32 view of 5528 * the register, if any. 5529 */ 5530 int crm, opc1, opc2, state; 5531 int crmmin = (r->crm == CP_ANY) ? 0 : r->crm; 5532 int crmmax = (r->crm == CP_ANY) ? 15 : r->crm; 5533 int opc1min = (r->opc1 == CP_ANY) ? 0 : r->opc1; 5534 int opc1max = (r->opc1 == CP_ANY) ? 7 : r->opc1; 5535 int opc2min = (r->opc2 == CP_ANY) ? 0 : r->opc2; 5536 int opc2max = (r->opc2 == CP_ANY) ? 7 : r->opc2; 5537 /* 64 bit registers have only CRm and Opc1 fields */ 5538 assert(!((r->type & ARM_CP_64BIT) && (r->opc2 || r->crn))); 5539 /* op0 only exists in the AArch64 encodings */ 5540 assert((r->state != ARM_CP_STATE_AA32) || (r->opc0 == 0)); 5541 /* AArch64 regs are all 64 bit so ARM_CP_64BIT is meaningless */ 5542 assert((r->state != ARM_CP_STATE_AA64) || !(r->type & ARM_CP_64BIT)); 5543 /* The AArch64 pseudocode CheckSystemAccess() specifies that op1 5544 * encodes a minimum access level for the register. We roll this 5545 * runtime check into our general permission check code, so check 5546 * here that the reginfo's specified permissions are strict enough 5547 * to encompass the generic architectural permission check. 5548 */ 5549 if (r->state != ARM_CP_STATE_AA32) { 5550 int mask = 0; 5551 switch (r->opc1) { 5552 case 0: case 1: case 2: 5553 /* min_EL EL1 */ 5554 mask = PL1_RW; 5555 break; 5556 case 3: 5557 /* min_EL EL0 */ 5558 mask = PL0_RW; 5559 break; 5560 case 4: 5561 /* min_EL EL2 */ 5562 mask = PL2_RW; 5563 break; 5564 case 5: 5565 /* unallocated encoding, so not possible */ 5566 assert(false); 5567 break; 5568 case 6: 5569 /* min_EL EL3 */ 5570 mask = PL3_RW; 5571 break; 5572 case 7: 5573 /* min_EL EL1, secure mode only (we don't check the latter) */ 5574 mask = PL1_RW; 5575 break; 5576 default: 5577 /* broken reginfo with out-of-range opc1 */ 5578 assert(false); 5579 break; 5580 } 5581 /* assert our permissions are not too lax (stricter is fine) */ 5582 assert((r->access & ~mask) == 0); 5583 } 5584 5585 /* Check that the register definition has enough info to handle 5586 * reads and writes if they are permitted. 5587 */ 5588 if (!(r->type & (ARM_CP_SPECIAL|ARM_CP_CONST))) { 5589 if (r->access & PL3_R) { 5590 assert((r->fieldoffset || 5591 (r->bank_fieldoffsets[0] && r->bank_fieldoffsets[1])) || 5592 r->readfn); 5593 } 5594 if (r->access & PL3_W) { 5595 assert((r->fieldoffset || 5596 (r->bank_fieldoffsets[0] && r->bank_fieldoffsets[1])) || 5597 r->writefn); 5598 } 5599 } 5600 /* Bad type field probably means missing sentinel at end of reg list */ 5601 assert(cptype_valid(r->type)); 5602 for (crm = crmmin; crm <= crmmax; crm++) { 5603 for (opc1 = opc1min; opc1 <= opc1max; opc1++) { 5604 for (opc2 = opc2min; opc2 <= opc2max; opc2++) { 5605 for (state = ARM_CP_STATE_AA32; 5606 state <= ARM_CP_STATE_AA64; state++) { 5607 if (r->state != state && r->state != ARM_CP_STATE_BOTH) { 5608 continue; 5609 } 5610 if (state == ARM_CP_STATE_AA32) { 5611 /* Under AArch32 CP registers can be common 5612 * (same for secure and non-secure world) or banked. 5613 */ 5614 switch (r->secure) { 5615 case ARM_CP_SECSTATE_S: 5616 case ARM_CP_SECSTATE_NS: 5617 add_cpreg_to_hashtable(cpu, r, opaque, state, 5618 r->secure, crm, opc1, opc2); 5619 break; 5620 default: 5621 add_cpreg_to_hashtable(cpu, r, opaque, state, 5622 ARM_CP_SECSTATE_S, 5623 crm, opc1, opc2); 5624 add_cpreg_to_hashtable(cpu, r, opaque, state, 5625 ARM_CP_SECSTATE_NS, 5626 crm, opc1, opc2); 5627 break; 5628 } 5629 } else { 5630 /* AArch64 registers get mapped to non-secure instance 5631 * of AArch32 */ 5632 add_cpreg_to_hashtable(cpu, r, opaque, state, 5633 ARM_CP_SECSTATE_NS, 5634 crm, opc1, opc2); 5635 } 5636 } 5637 } 5638 } 5639 } 5640 } 5641 5642 void define_arm_cp_regs_with_opaque(ARMCPU *cpu, 5643 const ARMCPRegInfo *regs, void *opaque) 5644 { 5645 /* Define a whole list of registers */ 5646 const ARMCPRegInfo *r; 5647 for (r = regs; r->type != ARM_CP_SENTINEL; r++) { 5648 define_one_arm_cp_reg_with_opaque(cpu, r, opaque); 5649 } 5650 } 5651 5652 const ARMCPRegInfo *get_arm_cp_reginfo(GHashTable *cpregs, uint32_t encoded_cp) 5653 { 5654 return g_hash_table_lookup(cpregs, &encoded_cp); 5655 } 5656 5657 void arm_cp_write_ignore(CPUARMState *env, const ARMCPRegInfo *ri, 5658 uint64_t value) 5659 { 5660 /* Helper coprocessor write function for write-ignore registers */ 5661 } 5662 5663 uint64_t arm_cp_read_zero(CPUARMState *env, const ARMCPRegInfo *ri) 5664 { 5665 /* Helper coprocessor write function for read-as-zero registers */ 5666 return 0; 5667 } 5668 5669 void arm_cp_reset_ignore(CPUARMState *env, const ARMCPRegInfo *opaque) 5670 { 5671 /* Helper coprocessor reset function for do-nothing-on-reset registers */ 5672 } 5673 5674 static int bad_mode_switch(CPUARMState *env, int mode, CPSRWriteType write_type) 5675 { 5676 /* Return true if it is not valid for us to switch to 5677 * this CPU mode (ie all the UNPREDICTABLE cases in 5678 * the ARM ARM CPSRWriteByInstr pseudocode). 5679 */ 5680 5681 /* Changes to or from Hyp via MSR and CPS are illegal. */ 5682 if (write_type == CPSRWriteByInstr && 5683 ((env->uncached_cpsr & CPSR_M) == ARM_CPU_MODE_HYP || 5684 mode == ARM_CPU_MODE_HYP)) { 5685 return 1; 5686 } 5687 5688 switch (mode) { 5689 case ARM_CPU_MODE_USR: 5690 return 0; 5691 case ARM_CPU_MODE_SYS: 5692 case ARM_CPU_MODE_SVC: 5693 case ARM_CPU_MODE_ABT: 5694 case ARM_CPU_MODE_UND: 5695 case ARM_CPU_MODE_IRQ: 5696 case ARM_CPU_MODE_FIQ: 5697 /* Note that we don't implement the IMPDEF NSACR.RFR which in v7 5698 * allows FIQ mode to be Secure-only. (In v8 this doesn't exist.) 5699 */ 5700 /* If HCR.TGE is set then changes from Monitor to NS PL1 via MSR 5701 * and CPS are treated as illegal mode changes. 5702 */ 5703 if (write_type == CPSRWriteByInstr && 5704 (env->cp15.hcr_el2 & HCR_TGE) && 5705 (env->uncached_cpsr & CPSR_M) == ARM_CPU_MODE_MON && 5706 !arm_is_secure_below_el3(env)) { 5707 return 1; 5708 } 5709 return 0; 5710 case ARM_CPU_MODE_HYP: 5711 return !arm_feature(env, ARM_FEATURE_EL2) 5712 || arm_current_el(env) < 2 || arm_is_secure(env); 5713 case ARM_CPU_MODE_MON: 5714 return arm_current_el(env) < 3; 5715 default: 5716 return 1; 5717 } 5718 } 5719 5720 uint32_t cpsr_read(CPUARMState *env) 5721 { 5722 int ZF; 5723 ZF = (env->ZF == 0); 5724 return env->uncached_cpsr | (env->NF & 0x80000000) | (ZF << 30) | 5725 (env->CF << 29) | ((env->VF & 0x80000000) >> 3) | (env->QF << 27) 5726 | (env->thumb << 5) | ((env->condexec_bits & 3) << 25) 5727 | ((env->condexec_bits & 0xfc) << 8) 5728 | (env->GE << 16) | (env->daif & CPSR_AIF); 5729 } 5730 5731 void cpsr_write(CPUARMState *env, uint32_t val, uint32_t mask, 5732 CPSRWriteType write_type) 5733 { 5734 uint32_t changed_daif; 5735 5736 if (mask & CPSR_NZCV) { 5737 env->ZF = (~val) & CPSR_Z; 5738 env->NF = val; 5739 env->CF = (val >> 29) & 1; 5740 env->VF = (val << 3) & 0x80000000; 5741 } 5742 if (mask & CPSR_Q) 5743 env->QF = ((val & CPSR_Q) != 0); 5744 if (mask & CPSR_T) 5745 env->thumb = ((val & CPSR_T) != 0); 5746 if (mask & CPSR_IT_0_1) { 5747 env->condexec_bits &= ~3; 5748 env->condexec_bits |= (val >> 25) & 3; 5749 } 5750 if (mask & CPSR_IT_2_7) { 5751 env->condexec_bits &= 3; 5752 env->condexec_bits |= (val >> 8) & 0xfc; 5753 } 5754 if (mask & CPSR_GE) { 5755 env->GE = (val >> 16) & 0xf; 5756 } 5757 5758 /* In a V7 implementation that includes the security extensions but does 5759 * not include Virtualization Extensions the SCR.FW and SCR.AW bits control 5760 * whether non-secure software is allowed to change the CPSR_F and CPSR_A 5761 * bits respectively. 5762 * 5763 * In a V8 implementation, it is permitted for privileged software to 5764 * change the CPSR A/F bits regardless of the SCR.AW/FW bits. 5765 */ 5766 if (write_type != CPSRWriteRaw && !arm_feature(env, ARM_FEATURE_V8) && 5767 arm_feature(env, ARM_FEATURE_EL3) && 5768 !arm_feature(env, ARM_FEATURE_EL2) && 5769 !arm_is_secure(env)) { 5770 5771 changed_daif = (env->daif ^ val) & mask; 5772 5773 if (changed_daif & CPSR_A) { 5774 /* Check to see if we are allowed to change the masking of async 5775 * abort exceptions from a non-secure state. 5776 */ 5777 if (!(env->cp15.scr_el3 & SCR_AW)) { 5778 qemu_log_mask(LOG_GUEST_ERROR, 5779 "Ignoring attempt to switch CPSR_A flag from " 5780 "non-secure world with SCR.AW bit clear\n"); 5781 mask &= ~CPSR_A; 5782 } 5783 } 5784 5785 if (changed_daif & CPSR_F) { 5786 /* Check to see if we are allowed to change the masking of FIQ 5787 * exceptions from a non-secure state. 5788 */ 5789 if (!(env->cp15.scr_el3 & SCR_FW)) { 5790 qemu_log_mask(LOG_GUEST_ERROR, 5791 "Ignoring attempt to switch CPSR_F flag from " 5792 "non-secure world with SCR.FW bit clear\n"); 5793 mask &= ~CPSR_F; 5794 } 5795 5796 /* Check whether non-maskable FIQ (NMFI) support is enabled. 5797 * If this bit is set software is not allowed to mask 5798 * FIQs, but is allowed to set CPSR_F to 0. 5799 */ 5800 if ((A32_BANKED_CURRENT_REG_GET(env, sctlr) & SCTLR_NMFI) && 5801 (val & CPSR_F)) { 5802 qemu_log_mask(LOG_GUEST_ERROR, 5803 "Ignoring attempt to enable CPSR_F flag " 5804 "(non-maskable FIQ [NMFI] support enabled)\n"); 5805 mask &= ~CPSR_F; 5806 } 5807 } 5808 } 5809 5810 env->daif &= ~(CPSR_AIF & mask); 5811 env->daif |= val & CPSR_AIF & mask; 5812 5813 if (write_type != CPSRWriteRaw && 5814 ((env->uncached_cpsr ^ val) & mask & CPSR_M)) { 5815 if ((env->uncached_cpsr & CPSR_M) == ARM_CPU_MODE_USR) { 5816 /* Note that we can only get here in USR mode if this is a 5817 * gdb stub write; for this case we follow the architectural 5818 * behaviour for guest writes in USR mode of ignoring an attempt 5819 * to switch mode. (Those are caught by translate.c for writes 5820 * triggered by guest instructions.) 5821 */ 5822 mask &= ~CPSR_M; 5823 } else if (bad_mode_switch(env, val & CPSR_M, write_type)) { 5824 /* Attempt to switch to an invalid mode: this is UNPREDICTABLE in 5825 * v7, and has defined behaviour in v8: 5826 * + leave CPSR.M untouched 5827 * + allow changes to the other CPSR fields 5828 * + set PSTATE.IL 5829 * For user changes via the GDB stub, we don't set PSTATE.IL, 5830 * as this would be unnecessarily harsh for a user error. 5831 */ 5832 mask &= ~CPSR_M; 5833 if (write_type != CPSRWriteByGDBStub && 5834 arm_feature(env, ARM_FEATURE_V8)) { 5835 mask |= CPSR_IL; 5836 val |= CPSR_IL; 5837 } 5838 } else { 5839 switch_mode(env, val & CPSR_M); 5840 } 5841 } 5842 mask &= ~CACHED_CPSR_BITS; 5843 env->uncached_cpsr = (env->uncached_cpsr & ~mask) | (val & mask); 5844 } 5845 5846 /* Sign/zero extend */ 5847 uint32_t HELPER(sxtb16)(uint32_t x) 5848 { 5849 uint32_t res; 5850 res = (uint16_t)(int8_t)x; 5851 res |= (uint32_t)(int8_t)(x >> 16) << 16; 5852 return res; 5853 } 5854 5855 uint32_t HELPER(uxtb16)(uint32_t x) 5856 { 5857 uint32_t res; 5858 res = (uint16_t)(uint8_t)x; 5859 res |= (uint32_t)(uint8_t)(x >> 16) << 16; 5860 return res; 5861 } 5862 5863 int32_t HELPER(sdiv)(int32_t num, int32_t den) 5864 { 5865 if (den == 0) 5866 return 0; 5867 if (num == INT_MIN && den == -1) 5868 return INT_MIN; 5869 return num / den; 5870 } 5871 5872 uint32_t HELPER(udiv)(uint32_t num, uint32_t den) 5873 { 5874 if (den == 0) 5875 return 0; 5876 return num / den; 5877 } 5878 5879 uint32_t HELPER(rbit)(uint32_t x) 5880 { 5881 return revbit32(x); 5882 } 5883 5884 #if defined(CONFIG_USER_ONLY) 5885 5886 /* These should probably raise undefined insn exceptions. */ 5887 void HELPER(v7m_msr)(CPUARMState *env, uint32_t reg, uint32_t val) 5888 { 5889 ARMCPU *cpu = arm_env_get_cpu(env); 5890 5891 cpu_abort(CPU(cpu), "v7m_msr %d\n", reg); 5892 } 5893 5894 uint32_t HELPER(v7m_mrs)(CPUARMState *env, uint32_t reg) 5895 { 5896 ARMCPU *cpu = arm_env_get_cpu(env); 5897 5898 cpu_abort(CPU(cpu), "v7m_mrs %d\n", reg); 5899 return 0; 5900 } 5901 5902 void HELPER(v7m_bxns)(CPUARMState *env, uint32_t dest) 5903 { 5904 /* translate.c should never generate calls here in user-only mode */ 5905 g_assert_not_reached(); 5906 } 5907 5908 void HELPER(v7m_blxns)(CPUARMState *env, uint32_t dest) 5909 { 5910 /* translate.c should never generate calls here in user-only mode */ 5911 g_assert_not_reached(); 5912 } 5913 5914 void switch_mode(CPUARMState *env, int mode) 5915 { 5916 ARMCPU *cpu = arm_env_get_cpu(env); 5917 5918 if (mode != ARM_CPU_MODE_USR) { 5919 cpu_abort(CPU(cpu), "Tried to switch out of user mode\n"); 5920 } 5921 } 5922 5923 uint32_t arm_phys_excp_target_el(CPUState *cs, uint32_t excp_idx, 5924 uint32_t cur_el, bool secure) 5925 { 5926 return 1; 5927 } 5928 5929 void aarch64_sync_64_to_32(CPUARMState *env) 5930 { 5931 g_assert_not_reached(); 5932 } 5933 5934 #else 5935 5936 void switch_mode(CPUARMState *env, int mode) 5937 { 5938 int old_mode; 5939 int i; 5940 5941 old_mode = env->uncached_cpsr & CPSR_M; 5942 if (mode == old_mode) 5943 return; 5944 5945 if (old_mode == ARM_CPU_MODE_FIQ) { 5946 memcpy (env->fiq_regs, env->regs + 8, 5 * sizeof(uint32_t)); 5947 memcpy (env->regs + 8, env->usr_regs, 5 * sizeof(uint32_t)); 5948 } else if (mode == ARM_CPU_MODE_FIQ) { 5949 memcpy (env->usr_regs, env->regs + 8, 5 * sizeof(uint32_t)); 5950 memcpy (env->regs + 8, env->fiq_regs, 5 * sizeof(uint32_t)); 5951 } 5952 5953 i = bank_number(old_mode); 5954 env->banked_r13[i] = env->regs[13]; 5955 env->banked_r14[i] = env->regs[14]; 5956 env->banked_spsr[i] = env->spsr; 5957 5958 i = bank_number(mode); 5959 env->regs[13] = env->banked_r13[i]; 5960 env->regs[14] = env->banked_r14[i]; 5961 env->spsr = env->banked_spsr[i]; 5962 } 5963 5964 /* Physical Interrupt Target EL Lookup Table 5965 * 5966 * [ From ARM ARM section G1.13.4 (Table G1-15) ] 5967 * 5968 * The below multi-dimensional table is used for looking up the target 5969 * exception level given numerous condition criteria. Specifically, the 5970 * target EL is based on SCR and HCR routing controls as well as the 5971 * currently executing EL and secure state. 5972 * 5973 * Dimensions: 5974 * target_el_table[2][2][2][2][2][4] 5975 * | | | | | +--- Current EL 5976 * | | | | +------ Non-secure(0)/Secure(1) 5977 * | | | +--------- HCR mask override 5978 * | | +------------ SCR exec state control 5979 * | +--------------- SCR mask override 5980 * +------------------ 32-bit(0)/64-bit(1) EL3 5981 * 5982 * The table values are as such: 5983 * 0-3 = EL0-EL3 5984 * -1 = Cannot occur 5985 * 5986 * The ARM ARM target EL table includes entries indicating that an "exception 5987 * is not taken". The two cases where this is applicable are: 5988 * 1) An exception is taken from EL3 but the SCR does not have the exception 5989 * routed to EL3. 5990 * 2) An exception is taken from EL2 but the HCR does not have the exception 5991 * routed to EL2. 5992 * In these two cases, the below table contain a target of EL1. This value is 5993 * returned as it is expected that the consumer of the table data will check 5994 * for "target EL >= current EL" to ensure the exception is not taken. 5995 * 5996 * SCR HCR 5997 * 64 EA AMO From 5998 * BIT IRQ IMO Non-secure Secure 5999 * EL3 FIQ RW FMO EL0 EL1 EL2 EL3 EL0 EL1 EL2 EL3 6000 */ 6001 static const int8_t target_el_table[2][2][2][2][2][4] = { 6002 {{{{/* 0 0 0 0 */{ 1, 1, 2, -1 },{ 3, -1, -1, 3 },}, 6003 {/* 0 0 0 1 */{ 2, 2, 2, -1 },{ 3, -1, -1, 3 },},}, 6004 {{/* 0 0 1 0 */{ 1, 1, 2, -1 },{ 3, -1, -1, 3 },}, 6005 {/* 0 0 1 1 */{ 2, 2, 2, -1 },{ 3, -1, -1, 3 },},},}, 6006 {{{/* 0 1 0 0 */{ 3, 3, 3, -1 },{ 3, -1, -1, 3 },}, 6007 {/* 0 1 0 1 */{ 3, 3, 3, -1 },{ 3, -1, -1, 3 },},}, 6008 {{/* 0 1 1 0 */{ 3, 3, 3, -1 },{ 3, -1, -1, 3 },}, 6009 {/* 0 1 1 1 */{ 3, 3, 3, -1 },{ 3, -1, -1, 3 },},},},}, 6010 {{{{/* 1 0 0 0 */{ 1, 1, 2, -1 },{ 1, 1, -1, 1 },}, 6011 {/* 1 0 0 1 */{ 2, 2, 2, -1 },{ 1, 1, -1, 1 },},}, 6012 {{/* 1 0 1 0 */{ 1, 1, 1, -1 },{ 1, 1, -1, 1 },}, 6013 {/* 1 0 1 1 */{ 2, 2, 2, -1 },{ 1, 1, -1, 1 },},},}, 6014 {{{/* 1 1 0 0 */{ 3, 3, 3, -1 },{ 3, 3, -1, 3 },}, 6015 {/* 1 1 0 1 */{ 3, 3, 3, -1 },{ 3, 3, -1, 3 },},}, 6016 {{/* 1 1 1 0 */{ 3, 3, 3, -1 },{ 3, 3, -1, 3 },}, 6017 {/* 1 1 1 1 */{ 3, 3, 3, -1 },{ 3, 3, -1, 3 },},},},}, 6018 }; 6019 6020 /* 6021 * Determine the target EL for physical exceptions 6022 */ 6023 uint32_t arm_phys_excp_target_el(CPUState *cs, uint32_t excp_idx, 6024 uint32_t cur_el, bool secure) 6025 { 6026 CPUARMState *env = cs->env_ptr; 6027 int rw; 6028 int scr; 6029 int hcr; 6030 int target_el; 6031 /* Is the highest EL AArch64? */ 6032 int is64 = arm_feature(env, ARM_FEATURE_AARCH64); 6033 6034 if (arm_feature(env, ARM_FEATURE_EL3)) { 6035 rw = ((env->cp15.scr_el3 & SCR_RW) == SCR_RW); 6036 } else { 6037 /* Either EL2 is the highest EL (and so the EL2 register width 6038 * is given by is64); or there is no EL2 or EL3, in which case 6039 * the value of 'rw' does not affect the table lookup anyway. 6040 */ 6041 rw = is64; 6042 } 6043 6044 switch (excp_idx) { 6045 case EXCP_IRQ: 6046 scr = ((env->cp15.scr_el3 & SCR_IRQ) == SCR_IRQ); 6047 hcr = ((env->cp15.hcr_el2 & HCR_IMO) == HCR_IMO); 6048 break; 6049 case EXCP_FIQ: 6050 scr = ((env->cp15.scr_el3 & SCR_FIQ) == SCR_FIQ); 6051 hcr = ((env->cp15.hcr_el2 & HCR_FMO) == HCR_FMO); 6052 break; 6053 default: 6054 scr = ((env->cp15.scr_el3 & SCR_EA) == SCR_EA); 6055 hcr = ((env->cp15.hcr_el2 & HCR_AMO) == HCR_AMO); 6056 break; 6057 }; 6058 6059 /* If HCR.TGE is set then HCR is treated as being 1 */ 6060 hcr |= ((env->cp15.hcr_el2 & HCR_TGE) == HCR_TGE); 6061 6062 /* Perform a table-lookup for the target EL given the current state */ 6063 target_el = target_el_table[is64][scr][rw][hcr][secure][cur_el]; 6064 6065 assert(target_el > 0); 6066 6067 return target_el; 6068 } 6069 6070 static void v7m_push(CPUARMState *env, uint32_t val) 6071 { 6072 CPUState *cs = CPU(arm_env_get_cpu(env)); 6073 6074 env->regs[13] -= 4; 6075 stl_phys(cs->as, env->regs[13], val); 6076 } 6077 6078 /* Return true if we're using the process stack pointer (not the MSP) */ 6079 static bool v7m_using_psp(CPUARMState *env) 6080 { 6081 /* Handler mode always uses the main stack; for thread mode 6082 * the CONTROL.SPSEL bit determines the answer. 6083 * Note that in v7M it is not possible to be in Handler mode with 6084 * CONTROL.SPSEL non-zero, but in v8M it is, so we must check both. 6085 */ 6086 return !arm_v7m_is_handler_mode(env) && 6087 env->v7m.control[env->v7m.secure] & R_V7M_CONTROL_SPSEL_MASK; 6088 } 6089 6090 /* Write to v7M CONTROL.SPSEL bit for the specified security bank. 6091 * This may change the current stack pointer between Main and Process 6092 * stack pointers if it is done for the CONTROL register for the current 6093 * security state. 6094 */ 6095 static void write_v7m_control_spsel_for_secstate(CPUARMState *env, 6096 bool new_spsel, 6097 bool secstate) 6098 { 6099 bool old_is_psp = v7m_using_psp(env); 6100 6101 env->v7m.control[secstate] = 6102 deposit32(env->v7m.control[secstate], 6103 R_V7M_CONTROL_SPSEL_SHIFT, 6104 R_V7M_CONTROL_SPSEL_LENGTH, new_spsel); 6105 6106 if (secstate == env->v7m.secure) { 6107 bool new_is_psp = v7m_using_psp(env); 6108 uint32_t tmp; 6109 6110 if (old_is_psp != new_is_psp) { 6111 tmp = env->v7m.other_sp; 6112 env->v7m.other_sp = env->regs[13]; 6113 env->regs[13] = tmp; 6114 } 6115 } 6116 } 6117 6118 /* Write to v7M CONTROL.SPSEL bit. This may change the current 6119 * stack pointer between Main and Process stack pointers. 6120 */ 6121 static void write_v7m_control_spsel(CPUARMState *env, bool new_spsel) 6122 { 6123 write_v7m_control_spsel_for_secstate(env, new_spsel, env->v7m.secure); 6124 } 6125 6126 void write_v7m_exception(CPUARMState *env, uint32_t new_exc) 6127 { 6128 /* Write a new value to v7m.exception, thus transitioning into or out 6129 * of Handler mode; this may result in a change of active stack pointer. 6130 */ 6131 bool new_is_psp, old_is_psp = v7m_using_psp(env); 6132 uint32_t tmp; 6133 6134 env->v7m.exception = new_exc; 6135 6136 new_is_psp = v7m_using_psp(env); 6137 6138 if (old_is_psp != new_is_psp) { 6139 tmp = env->v7m.other_sp; 6140 env->v7m.other_sp = env->regs[13]; 6141 env->regs[13] = tmp; 6142 } 6143 } 6144 6145 /* Switch M profile security state between NS and S */ 6146 static void switch_v7m_security_state(CPUARMState *env, bool new_secstate) 6147 { 6148 uint32_t new_ss_msp, new_ss_psp; 6149 6150 if (env->v7m.secure == new_secstate) { 6151 return; 6152 } 6153 6154 /* All the banked state is accessed by looking at env->v7m.secure 6155 * except for the stack pointer; rearrange the SP appropriately. 6156 */ 6157 new_ss_msp = env->v7m.other_ss_msp; 6158 new_ss_psp = env->v7m.other_ss_psp; 6159 6160 if (v7m_using_psp(env)) { 6161 env->v7m.other_ss_psp = env->regs[13]; 6162 env->v7m.other_ss_msp = env->v7m.other_sp; 6163 } else { 6164 env->v7m.other_ss_msp = env->regs[13]; 6165 env->v7m.other_ss_psp = env->v7m.other_sp; 6166 } 6167 6168 env->v7m.secure = new_secstate; 6169 6170 if (v7m_using_psp(env)) { 6171 env->regs[13] = new_ss_psp; 6172 env->v7m.other_sp = new_ss_msp; 6173 } else { 6174 env->regs[13] = new_ss_msp; 6175 env->v7m.other_sp = new_ss_psp; 6176 } 6177 } 6178 6179 void HELPER(v7m_bxns)(CPUARMState *env, uint32_t dest) 6180 { 6181 /* Handle v7M BXNS: 6182 * - if the return value is a magic value, do exception return (like BX) 6183 * - otherwise bit 0 of the return value is the target security state 6184 */ 6185 uint32_t min_magic; 6186 6187 if (arm_feature(env, ARM_FEATURE_M_SECURITY)) { 6188 /* Covers FNC_RETURN and EXC_RETURN magic */ 6189 min_magic = FNC_RETURN_MIN_MAGIC; 6190 } else { 6191 /* EXC_RETURN magic only */ 6192 min_magic = EXC_RETURN_MIN_MAGIC; 6193 } 6194 6195 if (dest >= min_magic) { 6196 /* This is an exception return magic value; put it where 6197 * do_v7m_exception_exit() expects and raise EXCEPTION_EXIT. 6198 * Note that if we ever add gen_ss_advance() singlestep support to 6199 * M profile this should count as an "instruction execution complete" 6200 * event (compare gen_bx_excret_final_code()). 6201 */ 6202 env->regs[15] = dest & ~1; 6203 env->thumb = dest & 1; 6204 HELPER(exception_internal)(env, EXCP_EXCEPTION_EXIT); 6205 /* notreached */ 6206 } 6207 6208 /* translate.c should have made BXNS UNDEF unless we're secure */ 6209 assert(env->v7m.secure); 6210 6211 switch_v7m_security_state(env, dest & 1); 6212 env->thumb = 1; 6213 env->regs[15] = dest & ~1; 6214 } 6215 6216 void HELPER(v7m_blxns)(CPUARMState *env, uint32_t dest) 6217 { 6218 /* Handle v7M BLXNS: 6219 * - bit 0 of the destination address is the target security state 6220 */ 6221 6222 /* At this point regs[15] is the address just after the BLXNS */ 6223 uint32_t nextinst = env->regs[15] | 1; 6224 uint32_t sp = env->regs[13] - 8; 6225 uint32_t saved_psr; 6226 6227 /* translate.c will have made BLXNS UNDEF unless we're secure */ 6228 assert(env->v7m.secure); 6229 6230 if (dest & 1) { 6231 /* target is Secure, so this is just a normal BLX, 6232 * except that the low bit doesn't indicate Thumb/not. 6233 */ 6234 env->regs[14] = nextinst; 6235 env->thumb = 1; 6236 env->regs[15] = dest & ~1; 6237 return; 6238 } 6239 6240 /* Target is non-secure: first push a stack frame */ 6241 if (!QEMU_IS_ALIGNED(sp, 8)) { 6242 qemu_log_mask(LOG_GUEST_ERROR, 6243 "BLXNS with misaligned SP is UNPREDICTABLE\n"); 6244 } 6245 6246 saved_psr = env->v7m.exception; 6247 if (env->v7m.control[M_REG_S] & R_V7M_CONTROL_SFPA_MASK) { 6248 saved_psr |= XPSR_SFPA; 6249 } 6250 6251 /* Note that these stores can throw exceptions on MPU faults */ 6252 cpu_stl_data(env, sp, nextinst); 6253 cpu_stl_data(env, sp + 4, saved_psr); 6254 6255 env->regs[13] = sp; 6256 env->regs[14] = 0xfeffffff; 6257 if (arm_v7m_is_handler_mode(env)) { 6258 /* Write a dummy value to IPSR, to avoid leaking the current secure 6259 * exception number to non-secure code. This is guaranteed not 6260 * to cause write_v7m_exception() to actually change stacks. 6261 */ 6262 write_v7m_exception(env, 1); 6263 } 6264 switch_v7m_security_state(env, 0); 6265 env->thumb = 1; 6266 env->regs[15] = dest; 6267 } 6268 6269 static uint32_t *get_v7m_sp_ptr(CPUARMState *env, bool secure, bool threadmode, 6270 bool spsel) 6271 { 6272 /* Return a pointer to the location where we currently store the 6273 * stack pointer for the requested security state and thread mode. 6274 * This pointer will become invalid if the CPU state is updated 6275 * such that the stack pointers are switched around (eg changing 6276 * the SPSEL control bit). 6277 * Compare the v8M ARM ARM pseudocode LookUpSP_with_security_mode(). 6278 * Unlike that pseudocode, we require the caller to pass us in the 6279 * SPSEL control bit value; this is because we also use this 6280 * function in handling of pushing of the callee-saves registers 6281 * part of the v8M stack frame (pseudocode PushCalleeStack()), 6282 * and in the tailchain codepath the SPSEL bit comes from the exception 6283 * return magic LR value from the previous exception. The pseudocode 6284 * opencodes the stack-selection in PushCalleeStack(), but we prefer 6285 * to make this utility function generic enough to do the job. 6286 */ 6287 bool want_psp = threadmode && spsel; 6288 6289 if (secure == env->v7m.secure) { 6290 if (want_psp == v7m_using_psp(env)) { 6291 return &env->regs[13]; 6292 } else { 6293 return &env->v7m.other_sp; 6294 } 6295 } else { 6296 if (want_psp) { 6297 return &env->v7m.other_ss_psp; 6298 } else { 6299 return &env->v7m.other_ss_msp; 6300 } 6301 } 6302 } 6303 6304 static uint32_t arm_v7m_load_vector(ARMCPU *cpu, bool targets_secure) 6305 { 6306 CPUState *cs = CPU(cpu); 6307 CPUARMState *env = &cpu->env; 6308 MemTxResult result; 6309 hwaddr vec = env->v7m.vecbase[targets_secure] + env->v7m.exception * 4; 6310 uint32_t addr; 6311 6312 addr = address_space_ldl(cs->as, vec, 6313 MEMTXATTRS_UNSPECIFIED, &result); 6314 if (result != MEMTX_OK) { 6315 /* Architecturally this should cause a HardFault setting HSFR.VECTTBL, 6316 * which would then be immediately followed by our failing to load 6317 * the entry vector for that HardFault, which is a Lockup case. 6318 * Since we don't model Lockup, we just report this guest error 6319 * via cpu_abort(). 6320 */ 6321 cpu_abort(cs, "Failed to read from %s exception vector table " 6322 "entry %08x\n", targets_secure ? "secure" : "nonsecure", 6323 (unsigned)vec); 6324 } 6325 return addr; 6326 } 6327 6328 static void v7m_push_callee_stack(ARMCPU *cpu, uint32_t lr, bool dotailchain) 6329 { 6330 /* For v8M, push the callee-saves register part of the stack frame. 6331 * Compare the v8M pseudocode PushCalleeStack(). 6332 * In the tailchaining case this may not be the current stack. 6333 */ 6334 CPUARMState *env = &cpu->env; 6335 CPUState *cs = CPU(cpu); 6336 uint32_t *frame_sp_p; 6337 uint32_t frameptr; 6338 6339 if (dotailchain) { 6340 frame_sp_p = get_v7m_sp_ptr(env, true, 6341 lr & R_V7M_EXCRET_MODE_MASK, 6342 lr & R_V7M_EXCRET_SPSEL_MASK); 6343 } else { 6344 frame_sp_p = &env->regs[13]; 6345 } 6346 6347 frameptr = *frame_sp_p - 0x28; 6348 6349 stl_phys(cs->as, frameptr, 0xfefa125b); 6350 stl_phys(cs->as, frameptr + 0x8, env->regs[4]); 6351 stl_phys(cs->as, frameptr + 0xc, env->regs[5]); 6352 stl_phys(cs->as, frameptr + 0x10, env->regs[6]); 6353 stl_phys(cs->as, frameptr + 0x14, env->regs[7]); 6354 stl_phys(cs->as, frameptr + 0x18, env->regs[8]); 6355 stl_phys(cs->as, frameptr + 0x1c, env->regs[9]); 6356 stl_phys(cs->as, frameptr + 0x20, env->regs[10]); 6357 stl_phys(cs->as, frameptr + 0x24, env->regs[11]); 6358 6359 *frame_sp_p = frameptr; 6360 } 6361 6362 static void v7m_exception_taken(ARMCPU *cpu, uint32_t lr, bool dotailchain) 6363 { 6364 /* Do the "take the exception" parts of exception entry, 6365 * but not the pushing of state to the stack. This is 6366 * similar to the pseudocode ExceptionTaken() function. 6367 */ 6368 CPUARMState *env = &cpu->env; 6369 uint32_t addr; 6370 bool targets_secure; 6371 6372 targets_secure = armv7m_nvic_acknowledge_irq(env->nvic); 6373 6374 if (arm_feature(env, ARM_FEATURE_V8)) { 6375 if (arm_feature(env, ARM_FEATURE_M_SECURITY) && 6376 (lr & R_V7M_EXCRET_S_MASK)) { 6377 /* The background code (the owner of the registers in the 6378 * exception frame) is Secure. This means it may either already 6379 * have or now needs to push callee-saves registers. 6380 */ 6381 if (targets_secure) { 6382 if (dotailchain && !(lr & R_V7M_EXCRET_ES_MASK)) { 6383 /* We took an exception from Secure to NonSecure 6384 * (which means the callee-saved registers got stacked) 6385 * and are now tailchaining to a Secure exception. 6386 * Clear DCRS so eventual return from this Secure 6387 * exception unstacks the callee-saved registers. 6388 */ 6389 lr &= ~R_V7M_EXCRET_DCRS_MASK; 6390 } 6391 } else { 6392 /* We're going to a non-secure exception; push the 6393 * callee-saves registers to the stack now, if they're 6394 * not already saved. 6395 */ 6396 if (lr & R_V7M_EXCRET_DCRS_MASK && 6397 !(dotailchain && (lr & R_V7M_EXCRET_ES_MASK))) { 6398 v7m_push_callee_stack(cpu, lr, dotailchain); 6399 } 6400 lr |= R_V7M_EXCRET_DCRS_MASK; 6401 } 6402 } 6403 6404 lr &= ~R_V7M_EXCRET_ES_MASK; 6405 if (targets_secure || !arm_feature(env, ARM_FEATURE_M_SECURITY)) { 6406 lr |= R_V7M_EXCRET_ES_MASK; 6407 } 6408 lr &= ~R_V7M_EXCRET_SPSEL_MASK; 6409 if (env->v7m.control[targets_secure] & R_V7M_CONTROL_SPSEL_MASK) { 6410 lr |= R_V7M_EXCRET_SPSEL_MASK; 6411 } 6412 6413 /* Clear registers if necessary to prevent non-secure exception 6414 * code being able to see register values from secure code. 6415 * Where register values become architecturally UNKNOWN we leave 6416 * them with their previous values. 6417 */ 6418 if (arm_feature(env, ARM_FEATURE_M_SECURITY)) { 6419 if (!targets_secure) { 6420 /* Always clear the caller-saved registers (they have been 6421 * pushed to the stack earlier in v7m_push_stack()). 6422 * Clear callee-saved registers if the background code is 6423 * Secure (in which case these regs were saved in 6424 * v7m_push_callee_stack()). 6425 */ 6426 int i; 6427 6428 for (i = 0; i < 13; i++) { 6429 /* r4..r11 are callee-saves, zero only if EXCRET.S == 1 */ 6430 if (i < 4 || i > 11 || (lr & R_V7M_EXCRET_S_MASK)) { 6431 env->regs[i] = 0; 6432 } 6433 } 6434 /* Clear EAPSR */ 6435 xpsr_write(env, 0, XPSR_NZCV | XPSR_Q | XPSR_GE | XPSR_IT); 6436 } 6437 } 6438 } 6439 6440 /* Switch to target security state -- must do this before writing SPSEL */ 6441 switch_v7m_security_state(env, targets_secure); 6442 write_v7m_control_spsel(env, 0); 6443 arm_clear_exclusive(env); 6444 /* Clear IT bits */ 6445 env->condexec_bits = 0; 6446 env->regs[14] = lr; 6447 addr = arm_v7m_load_vector(cpu, targets_secure); 6448 env->regs[15] = addr & 0xfffffffe; 6449 env->thumb = addr & 1; 6450 } 6451 6452 static void v7m_push_stack(ARMCPU *cpu) 6453 { 6454 /* Do the "set up stack frame" part of exception entry, 6455 * similar to pseudocode PushStack(). 6456 */ 6457 CPUARMState *env = &cpu->env; 6458 uint32_t xpsr = xpsr_read(env); 6459 6460 /* Align stack pointer if the guest wants that */ 6461 if ((env->regs[13] & 4) && 6462 (env->v7m.ccr[env->v7m.secure] & R_V7M_CCR_STKALIGN_MASK)) { 6463 env->regs[13] -= 4; 6464 xpsr |= XPSR_SPREALIGN; 6465 } 6466 /* Switch to the handler mode. */ 6467 v7m_push(env, xpsr); 6468 v7m_push(env, env->regs[15]); 6469 v7m_push(env, env->regs[14]); 6470 v7m_push(env, env->regs[12]); 6471 v7m_push(env, env->regs[3]); 6472 v7m_push(env, env->regs[2]); 6473 v7m_push(env, env->regs[1]); 6474 v7m_push(env, env->regs[0]); 6475 } 6476 6477 static void do_v7m_exception_exit(ARMCPU *cpu) 6478 { 6479 CPUARMState *env = &cpu->env; 6480 CPUState *cs = CPU(cpu); 6481 uint32_t excret; 6482 uint32_t xpsr; 6483 bool ufault = false; 6484 bool sfault = false; 6485 bool return_to_sp_process; 6486 bool return_to_handler; 6487 bool rettobase = false; 6488 bool exc_secure = false; 6489 bool return_to_secure; 6490 6491 /* If we're not in Handler mode then jumps to magic exception-exit 6492 * addresses don't have magic behaviour. However for the v8M 6493 * security extensions the magic secure-function-return has to 6494 * work in thread mode too, so to avoid doing an extra check in 6495 * the generated code we allow exception-exit magic to also cause the 6496 * internal exception and bring us here in thread mode. Correct code 6497 * will never try to do this (the following insn fetch will always 6498 * fault) so we the overhead of having taken an unnecessary exception 6499 * doesn't matter. 6500 */ 6501 if (!arm_v7m_is_handler_mode(env)) { 6502 return; 6503 } 6504 6505 /* In the spec pseudocode ExceptionReturn() is called directly 6506 * from BXWritePC() and gets the full target PC value including 6507 * bit zero. In QEMU's implementation we treat it as a normal 6508 * jump-to-register (which is then caught later on), and so split 6509 * the target value up between env->regs[15] and env->thumb in 6510 * gen_bx(). Reconstitute it. 6511 */ 6512 excret = env->regs[15]; 6513 if (env->thumb) { 6514 excret |= 1; 6515 } 6516 6517 qemu_log_mask(CPU_LOG_INT, "Exception return: magic PC %" PRIx32 6518 " previous exception %d\n", 6519 excret, env->v7m.exception); 6520 6521 if ((excret & R_V7M_EXCRET_RES1_MASK) != R_V7M_EXCRET_RES1_MASK) { 6522 qemu_log_mask(LOG_GUEST_ERROR, "M profile: zero high bits in exception " 6523 "exit PC value 0x%" PRIx32 " are UNPREDICTABLE\n", 6524 excret); 6525 } 6526 6527 if (arm_feature(env, ARM_FEATURE_M_SECURITY)) { 6528 /* EXC_RETURN.ES validation check (R_SMFL). We must do this before 6529 * we pick which FAULTMASK to clear. 6530 */ 6531 if (!env->v7m.secure && 6532 ((excret & R_V7M_EXCRET_ES_MASK) || 6533 !(excret & R_V7M_EXCRET_DCRS_MASK))) { 6534 sfault = 1; 6535 /* For all other purposes, treat ES as 0 (R_HXSR) */ 6536 excret &= ~R_V7M_EXCRET_ES_MASK; 6537 } 6538 } 6539 6540 if (env->v7m.exception != ARMV7M_EXCP_NMI) { 6541 /* Auto-clear FAULTMASK on return from other than NMI. 6542 * If the security extension is implemented then this only 6543 * happens if the raw execution priority is >= 0; the 6544 * value of the ES bit in the exception return value indicates 6545 * which security state's faultmask to clear. (v8M ARM ARM R_KBNF.) 6546 */ 6547 if (arm_feature(env, ARM_FEATURE_M_SECURITY)) { 6548 exc_secure = excret & R_V7M_EXCRET_ES_MASK; 6549 if (armv7m_nvic_raw_execution_priority(env->nvic) >= 0) { 6550 env->v7m.faultmask[exc_secure] = 0; 6551 } 6552 } else { 6553 env->v7m.faultmask[M_REG_NS] = 0; 6554 } 6555 } 6556 6557 switch (armv7m_nvic_complete_irq(env->nvic, env->v7m.exception, 6558 exc_secure)) { 6559 case -1: 6560 /* attempt to exit an exception that isn't active */ 6561 ufault = true; 6562 break; 6563 case 0: 6564 /* still an irq active now */ 6565 break; 6566 case 1: 6567 /* we returned to base exception level, no nesting. 6568 * (In the pseudocode this is written using "NestedActivation != 1" 6569 * where we have 'rettobase == false'.) 6570 */ 6571 rettobase = true; 6572 break; 6573 default: 6574 g_assert_not_reached(); 6575 } 6576 6577 return_to_handler = !(excret & R_V7M_EXCRET_MODE_MASK); 6578 return_to_sp_process = excret & R_V7M_EXCRET_SPSEL_MASK; 6579 return_to_secure = arm_feature(env, ARM_FEATURE_M_SECURITY) && 6580 (excret & R_V7M_EXCRET_S_MASK); 6581 6582 if (arm_feature(env, ARM_FEATURE_V8)) { 6583 if (!arm_feature(env, ARM_FEATURE_M_SECURITY)) { 6584 /* UNPREDICTABLE if S == 1 or DCRS == 0 or ES == 1 (R_XLCP); 6585 * we choose to take the UsageFault. 6586 */ 6587 if ((excret & R_V7M_EXCRET_S_MASK) || 6588 (excret & R_V7M_EXCRET_ES_MASK) || 6589 !(excret & R_V7M_EXCRET_DCRS_MASK)) { 6590 ufault = true; 6591 } 6592 } 6593 if (excret & R_V7M_EXCRET_RES0_MASK) { 6594 ufault = true; 6595 } 6596 } else { 6597 /* For v7M we only recognize certain combinations of the low bits */ 6598 switch (excret & 0xf) { 6599 case 1: /* Return to Handler */ 6600 break; 6601 case 13: /* Return to Thread using Process stack */ 6602 case 9: /* Return to Thread using Main stack */ 6603 /* We only need to check NONBASETHRDENA for v7M, because in 6604 * v8M this bit does not exist (it is RES1). 6605 */ 6606 if (!rettobase && 6607 !(env->v7m.ccr[env->v7m.secure] & 6608 R_V7M_CCR_NONBASETHRDENA_MASK)) { 6609 ufault = true; 6610 } 6611 break; 6612 default: 6613 ufault = true; 6614 } 6615 } 6616 6617 if (sfault) { 6618 env->v7m.sfsr |= R_V7M_SFSR_INVER_MASK; 6619 armv7m_nvic_set_pending(env->nvic, ARMV7M_EXCP_SECURE, false); 6620 v7m_exception_taken(cpu, excret, true); 6621 qemu_log_mask(CPU_LOG_INT, "...taking SecureFault on existing " 6622 "stackframe: failed EXC_RETURN.ES validity check\n"); 6623 return; 6624 } 6625 6626 if (ufault) { 6627 /* Bad exception return: instead of popping the exception 6628 * stack, directly take a usage fault on the current stack. 6629 */ 6630 env->v7m.cfsr[env->v7m.secure] |= R_V7M_CFSR_INVPC_MASK; 6631 armv7m_nvic_set_pending(env->nvic, ARMV7M_EXCP_USAGE, env->v7m.secure); 6632 v7m_exception_taken(cpu, excret, true); 6633 qemu_log_mask(CPU_LOG_INT, "...taking UsageFault on existing " 6634 "stackframe: failed exception return integrity check\n"); 6635 return; 6636 } 6637 6638 /* Set CONTROL.SPSEL from excret.SPSEL. Since we're still in 6639 * Handler mode (and will be until we write the new XPSR.Interrupt 6640 * field) this does not switch around the current stack pointer. 6641 */ 6642 write_v7m_control_spsel_for_secstate(env, return_to_sp_process, exc_secure); 6643 6644 switch_v7m_security_state(env, return_to_secure); 6645 6646 { 6647 /* The stack pointer we should be reading the exception frame from 6648 * depends on bits in the magic exception return type value (and 6649 * for v8M isn't necessarily the stack pointer we will eventually 6650 * end up resuming execution with). Get a pointer to the location 6651 * in the CPU state struct where the SP we need is currently being 6652 * stored; we will use and modify it in place. 6653 * We use this limited C variable scope so we don't accidentally 6654 * use 'frame_sp_p' after we do something that makes it invalid. 6655 */ 6656 uint32_t *frame_sp_p = get_v7m_sp_ptr(env, 6657 return_to_secure, 6658 !return_to_handler, 6659 return_to_sp_process); 6660 uint32_t frameptr = *frame_sp_p; 6661 6662 if (!QEMU_IS_ALIGNED(frameptr, 8) && 6663 arm_feature(env, ARM_FEATURE_V8)) { 6664 qemu_log_mask(LOG_GUEST_ERROR, 6665 "M profile exception return with non-8-aligned SP " 6666 "for destination state is UNPREDICTABLE\n"); 6667 } 6668 6669 /* Do we need to pop callee-saved registers? */ 6670 if (return_to_secure && 6671 ((excret & R_V7M_EXCRET_ES_MASK) == 0 || 6672 (excret & R_V7M_EXCRET_DCRS_MASK) == 0)) { 6673 uint32_t expected_sig = 0xfefa125b; 6674 uint32_t actual_sig = ldl_phys(cs->as, frameptr); 6675 6676 if (expected_sig != actual_sig) { 6677 /* Take a SecureFault on the current stack */ 6678 env->v7m.sfsr |= R_V7M_SFSR_INVIS_MASK; 6679 armv7m_nvic_set_pending(env->nvic, ARMV7M_EXCP_SECURE, false); 6680 v7m_exception_taken(cpu, excret, true); 6681 qemu_log_mask(CPU_LOG_INT, "...taking SecureFault on existing " 6682 "stackframe: failed exception return integrity " 6683 "signature check\n"); 6684 return; 6685 } 6686 6687 env->regs[4] = ldl_phys(cs->as, frameptr + 0x8); 6688 env->regs[5] = ldl_phys(cs->as, frameptr + 0xc); 6689 env->regs[6] = ldl_phys(cs->as, frameptr + 0x10); 6690 env->regs[7] = ldl_phys(cs->as, frameptr + 0x14); 6691 env->regs[8] = ldl_phys(cs->as, frameptr + 0x18); 6692 env->regs[9] = ldl_phys(cs->as, frameptr + 0x1c); 6693 env->regs[10] = ldl_phys(cs->as, frameptr + 0x20); 6694 env->regs[11] = ldl_phys(cs->as, frameptr + 0x24); 6695 6696 frameptr += 0x28; 6697 } 6698 6699 /* Pop registers. TODO: make these accesses use the correct 6700 * attributes and address space (S/NS, priv/unpriv) and handle 6701 * memory transaction failures. 6702 */ 6703 env->regs[0] = ldl_phys(cs->as, frameptr); 6704 env->regs[1] = ldl_phys(cs->as, frameptr + 0x4); 6705 env->regs[2] = ldl_phys(cs->as, frameptr + 0x8); 6706 env->regs[3] = ldl_phys(cs->as, frameptr + 0xc); 6707 env->regs[12] = ldl_phys(cs->as, frameptr + 0x10); 6708 env->regs[14] = ldl_phys(cs->as, frameptr + 0x14); 6709 env->regs[15] = ldl_phys(cs->as, frameptr + 0x18); 6710 6711 /* Returning from an exception with a PC with bit 0 set is defined 6712 * behaviour on v8M (bit 0 is ignored), but for v7M it was specified 6713 * to be UNPREDICTABLE. In practice actual v7M hardware seems to ignore 6714 * the lsbit, and there are several RTOSes out there which incorrectly 6715 * assume the r15 in the stack frame should be a Thumb-style "lsbit 6716 * indicates ARM/Thumb" value, so ignore the bit on v7M as well, but 6717 * complain about the badly behaved guest. 6718 */ 6719 if (env->regs[15] & 1) { 6720 env->regs[15] &= ~1U; 6721 if (!arm_feature(env, ARM_FEATURE_V8)) { 6722 qemu_log_mask(LOG_GUEST_ERROR, 6723 "M profile return from interrupt with misaligned " 6724 "PC is UNPREDICTABLE on v7M\n"); 6725 } 6726 } 6727 6728 xpsr = ldl_phys(cs->as, frameptr + 0x1c); 6729 6730 if (arm_feature(env, ARM_FEATURE_V8)) { 6731 /* For v8M we have to check whether the xPSR exception field 6732 * matches the EXCRET value for return to handler/thread 6733 * before we commit to changing the SP and xPSR. 6734 */ 6735 bool will_be_handler = (xpsr & XPSR_EXCP) != 0; 6736 if (return_to_handler != will_be_handler) { 6737 /* Take an INVPC UsageFault on the current stack. 6738 * By this point we will have switched to the security state 6739 * for the background state, so this UsageFault will target 6740 * that state. 6741 */ 6742 armv7m_nvic_set_pending(env->nvic, ARMV7M_EXCP_USAGE, 6743 env->v7m.secure); 6744 env->v7m.cfsr[env->v7m.secure] |= R_V7M_CFSR_INVPC_MASK; 6745 v7m_exception_taken(cpu, excret, true); 6746 qemu_log_mask(CPU_LOG_INT, "...taking UsageFault on existing " 6747 "stackframe: failed exception return integrity " 6748 "check\n"); 6749 return; 6750 } 6751 } 6752 6753 /* Commit to consuming the stack frame */ 6754 frameptr += 0x20; 6755 /* Undo stack alignment (the SPREALIGN bit indicates that the original 6756 * pre-exception SP was not 8-aligned and we added a padding word to 6757 * align it, so we undo this by ORing in the bit that increases it 6758 * from the current 8-aligned value to the 8-unaligned value. (Adding 4 6759 * would work too but a logical OR is how the pseudocode specifies it.) 6760 */ 6761 if (xpsr & XPSR_SPREALIGN) { 6762 frameptr |= 4; 6763 } 6764 *frame_sp_p = frameptr; 6765 } 6766 /* This xpsr_write() will invalidate frame_sp_p as it may switch stack */ 6767 xpsr_write(env, xpsr, ~XPSR_SPREALIGN); 6768 6769 /* The restored xPSR exception field will be zero if we're 6770 * resuming in Thread mode. If that doesn't match what the 6771 * exception return excret specified then this is a UsageFault. 6772 * v7M requires we make this check here; v8M did it earlier. 6773 */ 6774 if (return_to_handler != arm_v7m_is_handler_mode(env)) { 6775 /* Take an INVPC UsageFault by pushing the stack again; 6776 * we know we're v7M so this is never a Secure UsageFault. 6777 */ 6778 assert(!arm_feature(env, ARM_FEATURE_V8)); 6779 armv7m_nvic_set_pending(env->nvic, ARMV7M_EXCP_USAGE, false); 6780 env->v7m.cfsr[env->v7m.secure] |= R_V7M_CFSR_INVPC_MASK; 6781 v7m_push_stack(cpu); 6782 v7m_exception_taken(cpu, excret, false); 6783 qemu_log_mask(CPU_LOG_INT, "...taking UsageFault on new stackframe: " 6784 "failed exception return integrity check\n"); 6785 return; 6786 } 6787 6788 /* Otherwise, we have a successful exception exit. */ 6789 arm_clear_exclusive(env); 6790 qemu_log_mask(CPU_LOG_INT, "...successful exception return\n"); 6791 } 6792 6793 static bool do_v7m_function_return(ARMCPU *cpu) 6794 { 6795 /* v8M security extensions magic function return. 6796 * We may either: 6797 * (1) throw an exception (longjump) 6798 * (2) return true if we successfully handled the function return 6799 * (3) return false if we failed a consistency check and have 6800 * pended a UsageFault that needs to be taken now 6801 * 6802 * At this point the magic return value is split between env->regs[15] 6803 * and env->thumb. We don't bother to reconstitute it because we don't 6804 * need it (all values are handled the same way). 6805 */ 6806 CPUARMState *env = &cpu->env; 6807 uint32_t newpc, newpsr, newpsr_exc; 6808 6809 qemu_log_mask(CPU_LOG_INT, "...really v7M secure function return\n"); 6810 6811 { 6812 bool threadmode, spsel; 6813 TCGMemOpIdx oi; 6814 ARMMMUIdx mmu_idx; 6815 uint32_t *frame_sp_p; 6816 uint32_t frameptr; 6817 6818 /* Pull the return address and IPSR from the Secure stack */ 6819 threadmode = !arm_v7m_is_handler_mode(env); 6820 spsel = env->v7m.control[M_REG_S] & R_V7M_CONTROL_SPSEL_MASK; 6821 6822 frame_sp_p = get_v7m_sp_ptr(env, true, threadmode, spsel); 6823 frameptr = *frame_sp_p; 6824 6825 /* These loads may throw an exception (for MPU faults). We want to 6826 * do them as secure, so work out what MMU index that is. 6827 */ 6828 mmu_idx = arm_v7m_mmu_idx_for_secstate(env, true); 6829 oi = make_memop_idx(MO_LE, arm_to_core_mmu_idx(mmu_idx)); 6830 newpc = helper_le_ldul_mmu(env, frameptr, oi, 0); 6831 newpsr = helper_le_ldul_mmu(env, frameptr + 4, oi, 0); 6832 6833 /* Consistency checks on new IPSR */ 6834 newpsr_exc = newpsr & XPSR_EXCP; 6835 if (!((env->v7m.exception == 0 && newpsr_exc == 0) || 6836 (env->v7m.exception == 1 && newpsr_exc != 0))) { 6837 /* Pend the fault and tell our caller to take it */ 6838 env->v7m.cfsr[env->v7m.secure] |= R_V7M_CFSR_INVPC_MASK; 6839 armv7m_nvic_set_pending(env->nvic, ARMV7M_EXCP_USAGE, 6840 env->v7m.secure); 6841 qemu_log_mask(CPU_LOG_INT, 6842 "...taking INVPC UsageFault: " 6843 "IPSR consistency check failed\n"); 6844 return false; 6845 } 6846 6847 *frame_sp_p = frameptr + 8; 6848 } 6849 6850 /* This invalidates frame_sp_p */ 6851 switch_v7m_security_state(env, true); 6852 env->v7m.exception = newpsr_exc; 6853 env->v7m.control[M_REG_S] &= ~R_V7M_CONTROL_SFPA_MASK; 6854 if (newpsr & XPSR_SFPA) { 6855 env->v7m.control[M_REG_S] |= R_V7M_CONTROL_SFPA_MASK; 6856 } 6857 xpsr_write(env, 0, XPSR_IT); 6858 env->thumb = newpc & 1; 6859 env->regs[15] = newpc & ~1; 6860 6861 qemu_log_mask(CPU_LOG_INT, "...function return successful\n"); 6862 return true; 6863 } 6864 6865 static void arm_log_exception(int idx) 6866 { 6867 if (qemu_loglevel_mask(CPU_LOG_INT)) { 6868 const char *exc = NULL; 6869 static const char * const excnames[] = { 6870 [EXCP_UDEF] = "Undefined Instruction", 6871 [EXCP_SWI] = "SVC", 6872 [EXCP_PREFETCH_ABORT] = "Prefetch Abort", 6873 [EXCP_DATA_ABORT] = "Data Abort", 6874 [EXCP_IRQ] = "IRQ", 6875 [EXCP_FIQ] = "FIQ", 6876 [EXCP_BKPT] = "Breakpoint", 6877 [EXCP_EXCEPTION_EXIT] = "QEMU v7M exception exit", 6878 [EXCP_KERNEL_TRAP] = "QEMU intercept of kernel commpage", 6879 [EXCP_HVC] = "Hypervisor Call", 6880 [EXCP_HYP_TRAP] = "Hypervisor Trap", 6881 [EXCP_SMC] = "Secure Monitor Call", 6882 [EXCP_VIRQ] = "Virtual IRQ", 6883 [EXCP_VFIQ] = "Virtual FIQ", 6884 [EXCP_SEMIHOST] = "Semihosting call", 6885 [EXCP_NOCP] = "v7M NOCP UsageFault", 6886 [EXCP_INVSTATE] = "v7M INVSTATE UsageFault", 6887 }; 6888 6889 if (idx >= 0 && idx < ARRAY_SIZE(excnames)) { 6890 exc = excnames[idx]; 6891 } 6892 if (!exc) { 6893 exc = "unknown"; 6894 } 6895 qemu_log_mask(CPU_LOG_INT, "Taking exception %d [%s]\n", idx, exc); 6896 } 6897 } 6898 6899 static bool v7m_read_half_insn(ARMCPU *cpu, ARMMMUIdx mmu_idx, 6900 uint32_t addr, uint16_t *insn) 6901 { 6902 /* Load a 16-bit portion of a v7M instruction, returning true on success, 6903 * or false on failure (in which case we will have pended the appropriate 6904 * exception). 6905 * We need to do the instruction fetch's MPU and SAU checks 6906 * like this because there is no MMU index that would allow 6907 * doing the load with a single function call. Instead we must 6908 * first check that the security attributes permit the load 6909 * and that they don't mismatch on the two halves of the instruction, 6910 * and then we do the load as a secure load (ie using the security 6911 * attributes of the address, not the CPU, as architecturally required). 6912 */ 6913 CPUState *cs = CPU(cpu); 6914 CPUARMState *env = &cpu->env; 6915 V8M_SAttributes sattrs = {}; 6916 MemTxAttrs attrs = {}; 6917 ARMMMUFaultInfo fi = {}; 6918 MemTxResult txres; 6919 target_ulong page_size; 6920 hwaddr physaddr; 6921 int prot; 6922 uint32_t fsr; 6923 6924 v8m_security_lookup(env, addr, MMU_INST_FETCH, mmu_idx, &sattrs); 6925 if (!sattrs.nsc || sattrs.ns) { 6926 /* This must be the second half of the insn, and it straddles a 6927 * region boundary with the second half not being S&NSC. 6928 */ 6929 env->v7m.sfsr |= R_V7M_SFSR_INVEP_MASK; 6930 armv7m_nvic_set_pending(env->nvic, ARMV7M_EXCP_SECURE, false); 6931 qemu_log_mask(CPU_LOG_INT, 6932 "...really SecureFault with SFSR.INVEP\n"); 6933 return false; 6934 } 6935 if (get_phys_addr(env, addr, MMU_INST_FETCH, mmu_idx, 6936 &physaddr, &attrs, &prot, &page_size, &fsr, &fi, NULL)) { 6937 /* the MPU lookup failed */ 6938 env->v7m.cfsr[env->v7m.secure] |= R_V7M_CFSR_IACCVIOL_MASK; 6939 armv7m_nvic_set_pending(env->nvic, ARMV7M_EXCP_MEM, env->v7m.secure); 6940 qemu_log_mask(CPU_LOG_INT, "...really MemManage with CFSR.IACCVIOL\n"); 6941 return false; 6942 } 6943 *insn = address_space_lduw_le(arm_addressspace(cs, attrs), physaddr, 6944 attrs, &txres); 6945 if (txres != MEMTX_OK) { 6946 env->v7m.cfsr[M_REG_NS] |= R_V7M_CFSR_IBUSERR_MASK; 6947 armv7m_nvic_set_pending(env->nvic, ARMV7M_EXCP_BUS, false); 6948 qemu_log_mask(CPU_LOG_INT, "...really BusFault with CFSR.IBUSERR\n"); 6949 return false; 6950 } 6951 return true; 6952 } 6953 6954 static bool v7m_handle_execute_nsc(ARMCPU *cpu) 6955 { 6956 /* Check whether this attempt to execute code in a Secure & NS-Callable 6957 * memory region is for an SG instruction; if so, then emulate the 6958 * effect of the SG instruction and return true. Otherwise pend 6959 * the correct kind of exception and return false. 6960 */ 6961 CPUARMState *env = &cpu->env; 6962 ARMMMUIdx mmu_idx; 6963 uint16_t insn; 6964 6965 /* We should never get here unless get_phys_addr_pmsav8() caused 6966 * an exception for NS executing in S&NSC memory. 6967 */ 6968 assert(!env->v7m.secure); 6969 assert(arm_feature(env, ARM_FEATURE_M_SECURITY)); 6970 6971 /* We want to do the MPU lookup as secure; work out what mmu_idx that is */ 6972 mmu_idx = arm_v7m_mmu_idx_for_secstate(env, true); 6973 6974 if (!v7m_read_half_insn(cpu, mmu_idx, env->regs[15], &insn)) { 6975 return false; 6976 } 6977 6978 if (!env->thumb) { 6979 goto gen_invep; 6980 } 6981 6982 if (insn != 0xe97f) { 6983 /* Not an SG instruction first half (we choose the IMPDEF 6984 * early-SG-check option). 6985 */ 6986 goto gen_invep; 6987 } 6988 6989 if (!v7m_read_half_insn(cpu, mmu_idx, env->regs[15] + 2, &insn)) { 6990 return false; 6991 } 6992 6993 if (insn != 0xe97f) { 6994 /* Not an SG instruction second half (yes, both halves of the SG 6995 * insn have the same hex value) 6996 */ 6997 goto gen_invep; 6998 } 6999 7000 /* OK, we have confirmed that we really have an SG instruction. 7001 * We know we're NS in S memory so don't need to repeat those checks. 7002 */ 7003 qemu_log_mask(CPU_LOG_INT, "...really an SG instruction at 0x%08" PRIx32 7004 ", executing it\n", env->regs[15]); 7005 env->regs[14] &= ~1; 7006 switch_v7m_security_state(env, true); 7007 xpsr_write(env, 0, XPSR_IT); 7008 env->regs[15] += 4; 7009 return true; 7010 7011 gen_invep: 7012 env->v7m.sfsr |= R_V7M_SFSR_INVEP_MASK; 7013 armv7m_nvic_set_pending(env->nvic, ARMV7M_EXCP_SECURE, false); 7014 qemu_log_mask(CPU_LOG_INT, 7015 "...really SecureFault with SFSR.INVEP\n"); 7016 return false; 7017 } 7018 7019 void arm_v7m_cpu_do_interrupt(CPUState *cs) 7020 { 7021 ARMCPU *cpu = ARM_CPU(cs); 7022 CPUARMState *env = &cpu->env; 7023 uint32_t lr; 7024 7025 arm_log_exception(cs->exception_index); 7026 7027 /* For exceptions we just mark as pending on the NVIC, and let that 7028 handle it. */ 7029 switch (cs->exception_index) { 7030 case EXCP_UDEF: 7031 armv7m_nvic_set_pending(env->nvic, ARMV7M_EXCP_USAGE, env->v7m.secure); 7032 env->v7m.cfsr[env->v7m.secure] |= R_V7M_CFSR_UNDEFINSTR_MASK; 7033 break; 7034 case EXCP_NOCP: 7035 armv7m_nvic_set_pending(env->nvic, ARMV7M_EXCP_USAGE, env->v7m.secure); 7036 env->v7m.cfsr[env->v7m.secure] |= R_V7M_CFSR_NOCP_MASK; 7037 break; 7038 case EXCP_INVSTATE: 7039 armv7m_nvic_set_pending(env->nvic, ARMV7M_EXCP_USAGE, env->v7m.secure); 7040 env->v7m.cfsr[env->v7m.secure] |= R_V7M_CFSR_INVSTATE_MASK; 7041 break; 7042 case EXCP_SWI: 7043 /* The PC already points to the next instruction. */ 7044 armv7m_nvic_set_pending(env->nvic, ARMV7M_EXCP_SVC, env->v7m.secure); 7045 break; 7046 case EXCP_PREFETCH_ABORT: 7047 case EXCP_DATA_ABORT: 7048 /* Note that for M profile we don't have a guest facing FSR, but 7049 * the env->exception.fsr will be populated by the code that 7050 * raises the fault, in the A profile short-descriptor format. 7051 */ 7052 switch (env->exception.fsr & 0xf) { 7053 case M_FAKE_FSR_NSC_EXEC: 7054 /* Exception generated when we try to execute code at an address 7055 * which is marked as Secure & Non-Secure Callable and the CPU 7056 * is in the Non-Secure state. The only instruction which can 7057 * be executed like this is SG (and that only if both halves of 7058 * the SG instruction have the same security attributes.) 7059 * Everything else must generate an INVEP SecureFault, so we 7060 * emulate the SG instruction here. 7061 */ 7062 if (v7m_handle_execute_nsc(cpu)) { 7063 return; 7064 } 7065 break; 7066 case M_FAKE_FSR_SFAULT: 7067 /* Various flavours of SecureFault for attempts to execute or 7068 * access data in the wrong security state. 7069 */ 7070 switch (cs->exception_index) { 7071 case EXCP_PREFETCH_ABORT: 7072 if (env->v7m.secure) { 7073 env->v7m.sfsr |= R_V7M_SFSR_INVTRAN_MASK; 7074 qemu_log_mask(CPU_LOG_INT, 7075 "...really SecureFault with SFSR.INVTRAN\n"); 7076 } else { 7077 env->v7m.sfsr |= R_V7M_SFSR_INVEP_MASK; 7078 qemu_log_mask(CPU_LOG_INT, 7079 "...really SecureFault with SFSR.INVEP\n"); 7080 } 7081 break; 7082 case EXCP_DATA_ABORT: 7083 /* This must be an NS access to S memory */ 7084 env->v7m.sfsr |= R_V7M_SFSR_AUVIOL_MASK; 7085 qemu_log_mask(CPU_LOG_INT, 7086 "...really SecureFault with SFSR.AUVIOL\n"); 7087 break; 7088 } 7089 armv7m_nvic_set_pending(env->nvic, ARMV7M_EXCP_SECURE, false); 7090 break; 7091 case 0x8: /* External Abort */ 7092 switch (cs->exception_index) { 7093 case EXCP_PREFETCH_ABORT: 7094 env->v7m.cfsr[M_REG_NS] |= R_V7M_CFSR_IBUSERR_MASK; 7095 qemu_log_mask(CPU_LOG_INT, "...with CFSR.IBUSERR\n"); 7096 break; 7097 case EXCP_DATA_ABORT: 7098 env->v7m.cfsr[M_REG_NS] |= 7099 (R_V7M_CFSR_PRECISERR_MASK | R_V7M_CFSR_BFARVALID_MASK); 7100 env->v7m.bfar = env->exception.vaddress; 7101 qemu_log_mask(CPU_LOG_INT, 7102 "...with CFSR.PRECISERR and BFAR 0x%x\n", 7103 env->v7m.bfar); 7104 break; 7105 } 7106 armv7m_nvic_set_pending(env->nvic, ARMV7M_EXCP_BUS, false); 7107 break; 7108 default: 7109 /* All other FSR values are either MPU faults or "can't happen 7110 * for M profile" cases. 7111 */ 7112 switch (cs->exception_index) { 7113 case EXCP_PREFETCH_ABORT: 7114 env->v7m.cfsr[env->v7m.secure] |= R_V7M_CFSR_IACCVIOL_MASK; 7115 qemu_log_mask(CPU_LOG_INT, "...with CFSR.IACCVIOL\n"); 7116 break; 7117 case EXCP_DATA_ABORT: 7118 env->v7m.cfsr[env->v7m.secure] |= 7119 (R_V7M_CFSR_DACCVIOL_MASK | R_V7M_CFSR_MMARVALID_MASK); 7120 env->v7m.mmfar[env->v7m.secure] = env->exception.vaddress; 7121 qemu_log_mask(CPU_LOG_INT, 7122 "...with CFSR.DACCVIOL and MMFAR 0x%x\n", 7123 env->v7m.mmfar[env->v7m.secure]); 7124 break; 7125 } 7126 armv7m_nvic_set_pending(env->nvic, ARMV7M_EXCP_MEM, 7127 env->v7m.secure); 7128 break; 7129 } 7130 break; 7131 case EXCP_BKPT: 7132 if (semihosting_enabled()) { 7133 int nr; 7134 nr = arm_lduw_code(env, env->regs[15], arm_sctlr_b(env)) & 0xff; 7135 if (nr == 0xab) { 7136 env->regs[15] += 2; 7137 qemu_log_mask(CPU_LOG_INT, 7138 "...handling as semihosting call 0x%x\n", 7139 env->regs[0]); 7140 env->regs[0] = do_arm_semihosting(env); 7141 return; 7142 } 7143 } 7144 armv7m_nvic_set_pending(env->nvic, ARMV7M_EXCP_DEBUG, false); 7145 break; 7146 case EXCP_IRQ: 7147 break; 7148 case EXCP_EXCEPTION_EXIT: 7149 if (env->regs[15] < EXC_RETURN_MIN_MAGIC) { 7150 /* Must be v8M security extension function return */ 7151 assert(env->regs[15] >= FNC_RETURN_MIN_MAGIC); 7152 assert(arm_feature(env, ARM_FEATURE_M_SECURITY)); 7153 if (do_v7m_function_return(cpu)) { 7154 return; 7155 } 7156 } else { 7157 do_v7m_exception_exit(cpu); 7158 return; 7159 } 7160 break; 7161 default: 7162 cpu_abort(cs, "Unhandled exception 0x%x\n", cs->exception_index); 7163 return; /* Never happens. Keep compiler happy. */ 7164 } 7165 7166 if (arm_feature(env, ARM_FEATURE_V8)) { 7167 lr = R_V7M_EXCRET_RES1_MASK | 7168 R_V7M_EXCRET_DCRS_MASK | 7169 R_V7M_EXCRET_FTYPE_MASK; 7170 /* The S bit indicates whether we should return to Secure 7171 * or NonSecure (ie our current state). 7172 * The ES bit indicates whether we're taking this exception 7173 * to Secure or NonSecure (ie our target state). We set it 7174 * later, in v7m_exception_taken(). 7175 * The SPSEL bit is also set in v7m_exception_taken() for v8M. 7176 * This corresponds to the ARM ARM pseudocode for v8M setting 7177 * some LR bits in PushStack() and some in ExceptionTaken(); 7178 * the distinction matters for the tailchain cases where we 7179 * can take an exception without pushing the stack. 7180 */ 7181 if (env->v7m.secure) { 7182 lr |= R_V7M_EXCRET_S_MASK; 7183 } 7184 } else { 7185 lr = R_V7M_EXCRET_RES1_MASK | 7186 R_V7M_EXCRET_S_MASK | 7187 R_V7M_EXCRET_DCRS_MASK | 7188 R_V7M_EXCRET_FTYPE_MASK | 7189 R_V7M_EXCRET_ES_MASK; 7190 if (env->v7m.control[M_REG_NS] & R_V7M_CONTROL_SPSEL_MASK) { 7191 lr |= R_V7M_EXCRET_SPSEL_MASK; 7192 } 7193 } 7194 if (!arm_v7m_is_handler_mode(env)) { 7195 lr |= R_V7M_EXCRET_MODE_MASK; 7196 } 7197 7198 v7m_push_stack(cpu); 7199 v7m_exception_taken(cpu, lr, false); 7200 qemu_log_mask(CPU_LOG_INT, "... as %d\n", env->v7m.exception); 7201 } 7202 7203 /* Function used to synchronize QEMU's AArch64 register set with AArch32 7204 * register set. This is necessary when switching between AArch32 and AArch64 7205 * execution state. 7206 */ 7207 void aarch64_sync_32_to_64(CPUARMState *env) 7208 { 7209 int i; 7210 uint32_t mode = env->uncached_cpsr & CPSR_M; 7211 7212 /* We can blanket copy R[0:7] to X[0:7] */ 7213 for (i = 0; i < 8; i++) { 7214 env->xregs[i] = env->regs[i]; 7215 } 7216 7217 /* Unless we are in FIQ mode, x8-x12 come from the user registers r8-r12. 7218 * Otherwise, they come from the banked user regs. 7219 */ 7220 if (mode == ARM_CPU_MODE_FIQ) { 7221 for (i = 8; i < 13; i++) { 7222 env->xregs[i] = env->usr_regs[i - 8]; 7223 } 7224 } else { 7225 for (i = 8; i < 13; i++) { 7226 env->xregs[i] = env->regs[i]; 7227 } 7228 } 7229 7230 /* Registers x13-x23 are the various mode SP and FP registers. Registers 7231 * r13 and r14 are only copied if we are in that mode, otherwise we copy 7232 * from the mode banked register. 7233 */ 7234 if (mode == ARM_CPU_MODE_USR || mode == ARM_CPU_MODE_SYS) { 7235 env->xregs[13] = env->regs[13]; 7236 env->xregs[14] = env->regs[14]; 7237 } else { 7238 env->xregs[13] = env->banked_r13[bank_number(ARM_CPU_MODE_USR)]; 7239 /* HYP is an exception in that it is copied from r14 */ 7240 if (mode == ARM_CPU_MODE_HYP) { 7241 env->xregs[14] = env->regs[14]; 7242 } else { 7243 env->xregs[14] = env->banked_r14[bank_number(ARM_CPU_MODE_USR)]; 7244 } 7245 } 7246 7247 if (mode == ARM_CPU_MODE_HYP) { 7248 env->xregs[15] = env->regs[13]; 7249 } else { 7250 env->xregs[15] = env->banked_r13[bank_number(ARM_CPU_MODE_HYP)]; 7251 } 7252 7253 if (mode == ARM_CPU_MODE_IRQ) { 7254 env->xregs[16] = env->regs[14]; 7255 env->xregs[17] = env->regs[13]; 7256 } else { 7257 env->xregs[16] = env->banked_r14[bank_number(ARM_CPU_MODE_IRQ)]; 7258 env->xregs[17] = env->banked_r13[bank_number(ARM_CPU_MODE_IRQ)]; 7259 } 7260 7261 if (mode == ARM_CPU_MODE_SVC) { 7262 env->xregs[18] = env->regs[14]; 7263 env->xregs[19] = env->regs[13]; 7264 } else { 7265 env->xregs[18] = env->banked_r14[bank_number(ARM_CPU_MODE_SVC)]; 7266 env->xregs[19] = env->banked_r13[bank_number(ARM_CPU_MODE_SVC)]; 7267 } 7268 7269 if (mode == ARM_CPU_MODE_ABT) { 7270 env->xregs[20] = env->regs[14]; 7271 env->xregs[21] = env->regs[13]; 7272 } else { 7273 env->xregs[20] = env->banked_r14[bank_number(ARM_CPU_MODE_ABT)]; 7274 env->xregs[21] = env->banked_r13[bank_number(ARM_CPU_MODE_ABT)]; 7275 } 7276 7277 if (mode == ARM_CPU_MODE_UND) { 7278 env->xregs[22] = env->regs[14]; 7279 env->xregs[23] = env->regs[13]; 7280 } else { 7281 env->xregs[22] = env->banked_r14[bank_number(ARM_CPU_MODE_UND)]; 7282 env->xregs[23] = env->banked_r13[bank_number(ARM_CPU_MODE_UND)]; 7283 } 7284 7285 /* Registers x24-x30 are mapped to r8-r14 in FIQ mode. If we are in FIQ 7286 * mode, then we can copy from r8-r14. Otherwise, we copy from the 7287 * FIQ bank for r8-r14. 7288 */ 7289 if (mode == ARM_CPU_MODE_FIQ) { 7290 for (i = 24; i < 31; i++) { 7291 env->xregs[i] = env->regs[i - 16]; /* X[24:30] <- R[8:14] */ 7292 } 7293 } else { 7294 for (i = 24; i < 29; i++) { 7295 env->xregs[i] = env->fiq_regs[i - 24]; 7296 } 7297 env->xregs[29] = env->banked_r13[bank_number(ARM_CPU_MODE_FIQ)]; 7298 env->xregs[30] = env->banked_r14[bank_number(ARM_CPU_MODE_FIQ)]; 7299 } 7300 7301 env->pc = env->regs[15]; 7302 } 7303 7304 /* Function used to synchronize QEMU's AArch32 register set with AArch64 7305 * register set. This is necessary when switching between AArch32 and AArch64 7306 * execution state. 7307 */ 7308 void aarch64_sync_64_to_32(CPUARMState *env) 7309 { 7310 int i; 7311 uint32_t mode = env->uncached_cpsr & CPSR_M; 7312 7313 /* We can blanket copy X[0:7] to R[0:7] */ 7314 for (i = 0; i < 8; i++) { 7315 env->regs[i] = env->xregs[i]; 7316 } 7317 7318 /* Unless we are in FIQ mode, r8-r12 come from the user registers x8-x12. 7319 * Otherwise, we copy x8-x12 into the banked user regs. 7320 */ 7321 if (mode == ARM_CPU_MODE_FIQ) { 7322 for (i = 8; i < 13; i++) { 7323 env->usr_regs[i - 8] = env->xregs[i]; 7324 } 7325 } else { 7326 for (i = 8; i < 13; i++) { 7327 env->regs[i] = env->xregs[i]; 7328 } 7329 } 7330 7331 /* Registers r13 & r14 depend on the current mode. 7332 * If we are in a given mode, we copy the corresponding x registers to r13 7333 * and r14. Otherwise, we copy the x register to the banked r13 and r14 7334 * for the mode. 7335 */ 7336 if (mode == ARM_CPU_MODE_USR || mode == ARM_CPU_MODE_SYS) { 7337 env->regs[13] = env->xregs[13]; 7338 env->regs[14] = env->xregs[14]; 7339 } else { 7340 env->banked_r13[bank_number(ARM_CPU_MODE_USR)] = env->xregs[13]; 7341 7342 /* HYP is an exception in that it does not have its own banked r14 but 7343 * shares the USR r14 7344 */ 7345 if (mode == ARM_CPU_MODE_HYP) { 7346 env->regs[14] = env->xregs[14]; 7347 } else { 7348 env->banked_r14[bank_number(ARM_CPU_MODE_USR)] = env->xregs[14]; 7349 } 7350 } 7351 7352 if (mode == ARM_CPU_MODE_HYP) { 7353 env->regs[13] = env->xregs[15]; 7354 } else { 7355 env->banked_r13[bank_number(ARM_CPU_MODE_HYP)] = env->xregs[15]; 7356 } 7357 7358 if (mode == ARM_CPU_MODE_IRQ) { 7359 env->regs[14] = env->xregs[16]; 7360 env->regs[13] = env->xregs[17]; 7361 } else { 7362 env->banked_r14[bank_number(ARM_CPU_MODE_IRQ)] = env->xregs[16]; 7363 env->banked_r13[bank_number(ARM_CPU_MODE_IRQ)] = env->xregs[17]; 7364 } 7365 7366 if (mode == ARM_CPU_MODE_SVC) { 7367 env->regs[14] = env->xregs[18]; 7368 env->regs[13] = env->xregs[19]; 7369 } else { 7370 env->banked_r14[bank_number(ARM_CPU_MODE_SVC)] = env->xregs[18]; 7371 env->banked_r13[bank_number(ARM_CPU_MODE_SVC)] = env->xregs[19]; 7372 } 7373 7374 if (mode == ARM_CPU_MODE_ABT) { 7375 env->regs[14] = env->xregs[20]; 7376 env->regs[13] = env->xregs[21]; 7377 } else { 7378 env->banked_r14[bank_number(ARM_CPU_MODE_ABT)] = env->xregs[20]; 7379 env->banked_r13[bank_number(ARM_CPU_MODE_ABT)] = env->xregs[21]; 7380 } 7381 7382 if (mode == ARM_CPU_MODE_UND) { 7383 env->regs[14] = env->xregs[22]; 7384 env->regs[13] = env->xregs[23]; 7385 } else { 7386 env->banked_r14[bank_number(ARM_CPU_MODE_UND)] = env->xregs[22]; 7387 env->banked_r13[bank_number(ARM_CPU_MODE_UND)] = env->xregs[23]; 7388 } 7389 7390 /* Registers x24-x30 are mapped to r8-r14 in FIQ mode. If we are in FIQ 7391 * mode, then we can copy to r8-r14. Otherwise, we copy to the 7392 * FIQ bank for r8-r14. 7393 */ 7394 if (mode == ARM_CPU_MODE_FIQ) { 7395 for (i = 24; i < 31; i++) { 7396 env->regs[i - 16] = env->xregs[i]; /* X[24:30] -> R[8:14] */ 7397 } 7398 } else { 7399 for (i = 24; i < 29; i++) { 7400 env->fiq_regs[i - 24] = env->xregs[i]; 7401 } 7402 env->banked_r13[bank_number(ARM_CPU_MODE_FIQ)] = env->xregs[29]; 7403 env->banked_r14[bank_number(ARM_CPU_MODE_FIQ)] = env->xregs[30]; 7404 } 7405 7406 env->regs[15] = env->pc; 7407 } 7408 7409 static void arm_cpu_do_interrupt_aarch32(CPUState *cs) 7410 { 7411 ARMCPU *cpu = ARM_CPU(cs); 7412 CPUARMState *env = &cpu->env; 7413 uint32_t addr; 7414 uint32_t mask; 7415 int new_mode; 7416 uint32_t offset; 7417 uint32_t moe; 7418 7419 /* If this is a debug exception we must update the DBGDSCR.MOE bits */ 7420 switch (env->exception.syndrome >> ARM_EL_EC_SHIFT) { 7421 case EC_BREAKPOINT: 7422 case EC_BREAKPOINT_SAME_EL: 7423 moe = 1; 7424 break; 7425 case EC_WATCHPOINT: 7426 case EC_WATCHPOINT_SAME_EL: 7427 moe = 10; 7428 break; 7429 case EC_AA32_BKPT: 7430 moe = 3; 7431 break; 7432 case EC_VECTORCATCH: 7433 moe = 5; 7434 break; 7435 default: 7436 moe = 0; 7437 break; 7438 } 7439 7440 if (moe) { 7441 env->cp15.mdscr_el1 = deposit64(env->cp15.mdscr_el1, 2, 4, moe); 7442 } 7443 7444 /* TODO: Vectored interrupt controller. */ 7445 switch (cs->exception_index) { 7446 case EXCP_UDEF: 7447 new_mode = ARM_CPU_MODE_UND; 7448 addr = 0x04; 7449 mask = CPSR_I; 7450 if (env->thumb) 7451 offset = 2; 7452 else 7453 offset = 4; 7454 break; 7455 case EXCP_SWI: 7456 new_mode = ARM_CPU_MODE_SVC; 7457 addr = 0x08; 7458 mask = CPSR_I; 7459 /* The PC already points to the next instruction. */ 7460 offset = 0; 7461 break; 7462 case EXCP_BKPT: 7463 env->exception.fsr = 2; 7464 /* Fall through to prefetch abort. */ 7465 case EXCP_PREFETCH_ABORT: 7466 A32_BANKED_CURRENT_REG_SET(env, ifsr, env->exception.fsr); 7467 A32_BANKED_CURRENT_REG_SET(env, ifar, env->exception.vaddress); 7468 qemu_log_mask(CPU_LOG_INT, "...with IFSR 0x%x IFAR 0x%x\n", 7469 env->exception.fsr, (uint32_t)env->exception.vaddress); 7470 new_mode = ARM_CPU_MODE_ABT; 7471 addr = 0x0c; 7472 mask = CPSR_A | CPSR_I; 7473 offset = 4; 7474 break; 7475 case EXCP_DATA_ABORT: 7476 A32_BANKED_CURRENT_REG_SET(env, dfsr, env->exception.fsr); 7477 A32_BANKED_CURRENT_REG_SET(env, dfar, env->exception.vaddress); 7478 qemu_log_mask(CPU_LOG_INT, "...with DFSR 0x%x DFAR 0x%x\n", 7479 env->exception.fsr, 7480 (uint32_t)env->exception.vaddress); 7481 new_mode = ARM_CPU_MODE_ABT; 7482 addr = 0x10; 7483 mask = CPSR_A | CPSR_I; 7484 offset = 8; 7485 break; 7486 case EXCP_IRQ: 7487 new_mode = ARM_CPU_MODE_IRQ; 7488 addr = 0x18; 7489 /* Disable IRQ and imprecise data aborts. */ 7490 mask = CPSR_A | CPSR_I; 7491 offset = 4; 7492 if (env->cp15.scr_el3 & SCR_IRQ) { 7493 /* IRQ routed to monitor mode */ 7494 new_mode = ARM_CPU_MODE_MON; 7495 mask |= CPSR_F; 7496 } 7497 break; 7498 case EXCP_FIQ: 7499 new_mode = ARM_CPU_MODE_FIQ; 7500 addr = 0x1c; 7501 /* Disable FIQ, IRQ and imprecise data aborts. */ 7502 mask = CPSR_A | CPSR_I | CPSR_F; 7503 if (env->cp15.scr_el3 & SCR_FIQ) { 7504 /* FIQ routed to monitor mode */ 7505 new_mode = ARM_CPU_MODE_MON; 7506 } 7507 offset = 4; 7508 break; 7509 case EXCP_VIRQ: 7510 new_mode = ARM_CPU_MODE_IRQ; 7511 addr = 0x18; 7512 /* Disable IRQ and imprecise data aborts. */ 7513 mask = CPSR_A | CPSR_I; 7514 offset = 4; 7515 break; 7516 case EXCP_VFIQ: 7517 new_mode = ARM_CPU_MODE_FIQ; 7518 addr = 0x1c; 7519 /* Disable FIQ, IRQ and imprecise data aborts. */ 7520 mask = CPSR_A | CPSR_I | CPSR_F; 7521 offset = 4; 7522 break; 7523 case EXCP_SMC: 7524 new_mode = ARM_CPU_MODE_MON; 7525 addr = 0x08; 7526 mask = CPSR_A | CPSR_I | CPSR_F; 7527 offset = 0; 7528 break; 7529 default: 7530 cpu_abort(cs, "Unhandled exception 0x%x\n", cs->exception_index); 7531 return; /* Never happens. Keep compiler happy. */ 7532 } 7533 7534 if (new_mode == ARM_CPU_MODE_MON) { 7535 addr += env->cp15.mvbar; 7536 } else if (A32_BANKED_CURRENT_REG_GET(env, sctlr) & SCTLR_V) { 7537 /* High vectors. When enabled, base address cannot be remapped. */ 7538 addr += 0xffff0000; 7539 } else { 7540 /* ARM v7 architectures provide a vector base address register to remap 7541 * the interrupt vector table. 7542 * This register is only followed in non-monitor mode, and is banked. 7543 * Note: only bits 31:5 are valid. 7544 */ 7545 addr += A32_BANKED_CURRENT_REG_GET(env, vbar); 7546 } 7547 7548 if ((env->uncached_cpsr & CPSR_M) == ARM_CPU_MODE_MON) { 7549 env->cp15.scr_el3 &= ~SCR_NS; 7550 } 7551 7552 switch_mode (env, new_mode); 7553 /* For exceptions taken to AArch32 we must clear the SS bit in both 7554 * PSTATE and in the old-state value we save to SPSR_<mode>, so zero it now. 7555 */ 7556 env->uncached_cpsr &= ~PSTATE_SS; 7557 env->spsr = cpsr_read(env); 7558 /* Clear IT bits. */ 7559 env->condexec_bits = 0; 7560 /* Switch to the new mode, and to the correct instruction set. */ 7561 env->uncached_cpsr = (env->uncached_cpsr & ~CPSR_M) | new_mode; 7562 /* Set new mode endianness */ 7563 env->uncached_cpsr &= ~CPSR_E; 7564 if (env->cp15.sctlr_el[arm_current_el(env)] & SCTLR_EE) { 7565 env->uncached_cpsr |= CPSR_E; 7566 } 7567 env->daif |= mask; 7568 /* this is a lie, as the was no c1_sys on V4T/V5, but who cares 7569 * and we should just guard the thumb mode on V4 */ 7570 if (arm_feature(env, ARM_FEATURE_V4T)) { 7571 env->thumb = (A32_BANKED_CURRENT_REG_GET(env, sctlr) & SCTLR_TE) != 0; 7572 } 7573 env->regs[14] = env->regs[15] + offset; 7574 env->regs[15] = addr; 7575 } 7576 7577 /* Handle exception entry to a target EL which is using AArch64 */ 7578 static void arm_cpu_do_interrupt_aarch64(CPUState *cs) 7579 { 7580 ARMCPU *cpu = ARM_CPU(cs); 7581 CPUARMState *env = &cpu->env; 7582 unsigned int new_el = env->exception.target_el; 7583 target_ulong addr = env->cp15.vbar_el[new_el]; 7584 unsigned int new_mode = aarch64_pstate_mode(new_el, true); 7585 7586 if (arm_current_el(env) < new_el) { 7587 /* Entry vector offset depends on whether the implemented EL 7588 * immediately lower than the target level is using AArch32 or AArch64 7589 */ 7590 bool is_aa64; 7591 7592 switch (new_el) { 7593 case 3: 7594 is_aa64 = (env->cp15.scr_el3 & SCR_RW) != 0; 7595 break; 7596 case 2: 7597 is_aa64 = (env->cp15.hcr_el2 & HCR_RW) != 0; 7598 break; 7599 case 1: 7600 is_aa64 = is_a64(env); 7601 break; 7602 default: 7603 g_assert_not_reached(); 7604 } 7605 7606 if (is_aa64) { 7607 addr += 0x400; 7608 } else { 7609 addr += 0x600; 7610 } 7611 } else if (pstate_read(env) & PSTATE_SP) { 7612 addr += 0x200; 7613 } 7614 7615 switch (cs->exception_index) { 7616 case EXCP_PREFETCH_ABORT: 7617 case EXCP_DATA_ABORT: 7618 env->cp15.far_el[new_el] = env->exception.vaddress; 7619 qemu_log_mask(CPU_LOG_INT, "...with FAR 0x%" PRIx64 "\n", 7620 env->cp15.far_el[new_el]); 7621 /* fall through */ 7622 case EXCP_BKPT: 7623 case EXCP_UDEF: 7624 case EXCP_SWI: 7625 case EXCP_HVC: 7626 case EXCP_HYP_TRAP: 7627 case EXCP_SMC: 7628 env->cp15.esr_el[new_el] = env->exception.syndrome; 7629 break; 7630 case EXCP_IRQ: 7631 case EXCP_VIRQ: 7632 addr += 0x80; 7633 break; 7634 case EXCP_FIQ: 7635 case EXCP_VFIQ: 7636 addr += 0x100; 7637 break; 7638 case EXCP_SEMIHOST: 7639 qemu_log_mask(CPU_LOG_INT, 7640 "...handling as semihosting call 0x%" PRIx64 "\n", 7641 env->xregs[0]); 7642 env->xregs[0] = do_arm_semihosting(env); 7643 return; 7644 default: 7645 cpu_abort(cs, "Unhandled exception 0x%x\n", cs->exception_index); 7646 } 7647 7648 if (is_a64(env)) { 7649 env->banked_spsr[aarch64_banked_spsr_index(new_el)] = pstate_read(env); 7650 aarch64_save_sp(env, arm_current_el(env)); 7651 env->elr_el[new_el] = env->pc; 7652 } else { 7653 env->banked_spsr[aarch64_banked_spsr_index(new_el)] = cpsr_read(env); 7654 env->elr_el[new_el] = env->regs[15]; 7655 7656 aarch64_sync_32_to_64(env); 7657 7658 env->condexec_bits = 0; 7659 } 7660 qemu_log_mask(CPU_LOG_INT, "...with ELR 0x%" PRIx64 "\n", 7661 env->elr_el[new_el]); 7662 7663 pstate_write(env, PSTATE_DAIF | new_mode); 7664 env->aarch64 = 1; 7665 aarch64_restore_sp(env, new_el); 7666 7667 env->pc = addr; 7668 7669 qemu_log_mask(CPU_LOG_INT, "...to EL%d PC 0x%" PRIx64 " PSTATE 0x%x\n", 7670 new_el, env->pc, pstate_read(env)); 7671 } 7672 7673 static inline bool check_for_semihosting(CPUState *cs) 7674 { 7675 /* Check whether this exception is a semihosting call; if so 7676 * then handle it and return true; otherwise return false. 7677 */ 7678 ARMCPU *cpu = ARM_CPU(cs); 7679 CPUARMState *env = &cpu->env; 7680 7681 if (is_a64(env)) { 7682 if (cs->exception_index == EXCP_SEMIHOST) { 7683 /* This is always the 64-bit semihosting exception. 7684 * The "is this usermode" and "is semihosting enabled" 7685 * checks have been done at translate time. 7686 */ 7687 qemu_log_mask(CPU_LOG_INT, 7688 "...handling as semihosting call 0x%" PRIx64 "\n", 7689 env->xregs[0]); 7690 env->xregs[0] = do_arm_semihosting(env); 7691 return true; 7692 } 7693 return false; 7694 } else { 7695 uint32_t imm; 7696 7697 /* Only intercept calls from privileged modes, to provide some 7698 * semblance of security. 7699 */ 7700 if (cs->exception_index != EXCP_SEMIHOST && 7701 (!semihosting_enabled() || 7702 ((env->uncached_cpsr & CPSR_M) == ARM_CPU_MODE_USR))) { 7703 return false; 7704 } 7705 7706 switch (cs->exception_index) { 7707 case EXCP_SEMIHOST: 7708 /* This is always a semihosting call; the "is this usermode" 7709 * and "is semihosting enabled" checks have been done at 7710 * translate time. 7711 */ 7712 break; 7713 case EXCP_SWI: 7714 /* Check for semihosting interrupt. */ 7715 if (env->thumb) { 7716 imm = arm_lduw_code(env, env->regs[15] - 2, arm_sctlr_b(env)) 7717 & 0xff; 7718 if (imm == 0xab) { 7719 break; 7720 } 7721 } else { 7722 imm = arm_ldl_code(env, env->regs[15] - 4, arm_sctlr_b(env)) 7723 & 0xffffff; 7724 if (imm == 0x123456) { 7725 break; 7726 } 7727 } 7728 return false; 7729 case EXCP_BKPT: 7730 /* See if this is a semihosting syscall. */ 7731 if (env->thumb) { 7732 imm = arm_lduw_code(env, env->regs[15], arm_sctlr_b(env)) 7733 & 0xff; 7734 if (imm == 0xab) { 7735 env->regs[15] += 2; 7736 break; 7737 } 7738 } 7739 return false; 7740 default: 7741 return false; 7742 } 7743 7744 qemu_log_mask(CPU_LOG_INT, 7745 "...handling as semihosting call 0x%x\n", 7746 env->regs[0]); 7747 env->regs[0] = do_arm_semihosting(env); 7748 return true; 7749 } 7750 } 7751 7752 /* Handle a CPU exception for A and R profile CPUs. 7753 * Do any appropriate logging, handle PSCI calls, and then hand off 7754 * to the AArch64-entry or AArch32-entry function depending on the 7755 * target exception level's register width. 7756 */ 7757 void arm_cpu_do_interrupt(CPUState *cs) 7758 { 7759 ARMCPU *cpu = ARM_CPU(cs); 7760 CPUARMState *env = &cpu->env; 7761 unsigned int new_el = env->exception.target_el; 7762 7763 assert(!arm_feature(env, ARM_FEATURE_M)); 7764 7765 arm_log_exception(cs->exception_index); 7766 qemu_log_mask(CPU_LOG_INT, "...from EL%d to EL%d\n", arm_current_el(env), 7767 new_el); 7768 if (qemu_loglevel_mask(CPU_LOG_INT) 7769 && !excp_is_internal(cs->exception_index)) { 7770 qemu_log_mask(CPU_LOG_INT, "...with ESR 0x%x/0x%" PRIx32 "\n", 7771 env->exception.syndrome >> ARM_EL_EC_SHIFT, 7772 env->exception.syndrome); 7773 } 7774 7775 if (arm_is_psci_call(cpu, cs->exception_index)) { 7776 arm_handle_psci_call(cpu); 7777 qemu_log_mask(CPU_LOG_INT, "...handled as PSCI call\n"); 7778 return; 7779 } 7780 7781 /* Semihosting semantics depend on the register width of the 7782 * code that caused the exception, not the target exception level, 7783 * so must be handled here. 7784 */ 7785 if (check_for_semihosting(cs)) { 7786 return; 7787 } 7788 7789 assert(!excp_is_internal(cs->exception_index)); 7790 if (arm_el_is_aa64(env, new_el)) { 7791 arm_cpu_do_interrupt_aarch64(cs); 7792 } else { 7793 arm_cpu_do_interrupt_aarch32(cs); 7794 } 7795 7796 /* Hooks may change global state so BQL should be held, also the 7797 * BQL needs to be held for any modification of 7798 * cs->interrupt_request. 7799 */ 7800 g_assert(qemu_mutex_iothread_locked()); 7801 7802 arm_call_el_change_hook(cpu); 7803 7804 if (!kvm_enabled()) { 7805 cs->interrupt_request |= CPU_INTERRUPT_EXITTB; 7806 } 7807 } 7808 7809 /* Return the exception level which controls this address translation regime */ 7810 static inline uint32_t regime_el(CPUARMState *env, ARMMMUIdx mmu_idx) 7811 { 7812 switch (mmu_idx) { 7813 case ARMMMUIdx_S2NS: 7814 case ARMMMUIdx_S1E2: 7815 return 2; 7816 case ARMMMUIdx_S1E3: 7817 return 3; 7818 case ARMMMUIdx_S1SE0: 7819 return arm_el_is_aa64(env, 3) ? 1 : 3; 7820 case ARMMMUIdx_S1SE1: 7821 case ARMMMUIdx_S1NSE0: 7822 case ARMMMUIdx_S1NSE1: 7823 case ARMMMUIdx_MPriv: 7824 case ARMMMUIdx_MNegPri: 7825 case ARMMMUIdx_MUser: 7826 case ARMMMUIdx_MSPriv: 7827 case ARMMMUIdx_MSNegPri: 7828 case ARMMMUIdx_MSUser: 7829 return 1; 7830 default: 7831 g_assert_not_reached(); 7832 } 7833 } 7834 7835 /* Return the SCTLR value which controls this address translation regime */ 7836 static inline uint32_t regime_sctlr(CPUARMState *env, ARMMMUIdx mmu_idx) 7837 { 7838 return env->cp15.sctlr_el[regime_el(env, mmu_idx)]; 7839 } 7840 7841 /* Return true if the specified stage of address translation is disabled */ 7842 static inline bool regime_translation_disabled(CPUARMState *env, 7843 ARMMMUIdx mmu_idx) 7844 { 7845 if (arm_feature(env, ARM_FEATURE_M)) { 7846 switch (env->v7m.mpu_ctrl[regime_is_secure(env, mmu_idx)] & 7847 (R_V7M_MPU_CTRL_ENABLE_MASK | R_V7M_MPU_CTRL_HFNMIENA_MASK)) { 7848 case R_V7M_MPU_CTRL_ENABLE_MASK: 7849 /* Enabled, but not for HardFault and NMI */ 7850 return mmu_idx == ARMMMUIdx_MNegPri || 7851 mmu_idx == ARMMMUIdx_MSNegPri; 7852 case R_V7M_MPU_CTRL_ENABLE_MASK | R_V7M_MPU_CTRL_HFNMIENA_MASK: 7853 /* Enabled for all cases */ 7854 return false; 7855 case 0: 7856 default: 7857 /* HFNMIENA set and ENABLE clear is UNPREDICTABLE, but 7858 * we warned about that in armv7m_nvic.c when the guest set it. 7859 */ 7860 return true; 7861 } 7862 } 7863 7864 if (mmu_idx == ARMMMUIdx_S2NS) { 7865 return (env->cp15.hcr_el2 & HCR_VM) == 0; 7866 } 7867 return (regime_sctlr(env, mmu_idx) & SCTLR_M) == 0; 7868 } 7869 7870 static inline bool regime_translation_big_endian(CPUARMState *env, 7871 ARMMMUIdx mmu_idx) 7872 { 7873 return (regime_sctlr(env, mmu_idx) & SCTLR_EE) != 0; 7874 } 7875 7876 /* Return the TCR controlling this translation regime */ 7877 static inline TCR *regime_tcr(CPUARMState *env, ARMMMUIdx mmu_idx) 7878 { 7879 if (mmu_idx == ARMMMUIdx_S2NS) { 7880 return &env->cp15.vtcr_el2; 7881 } 7882 return &env->cp15.tcr_el[regime_el(env, mmu_idx)]; 7883 } 7884 7885 /* Convert a possible stage1+2 MMU index into the appropriate 7886 * stage 1 MMU index 7887 */ 7888 static inline ARMMMUIdx stage_1_mmu_idx(ARMMMUIdx mmu_idx) 7889 { 7890 if (mmu_idx == ARMMMUIdx_S12NSE0 || mmu_idx == ARMMMUIdx_S12NSE1) { 7891 mmu_idx += (ARMMMUIdx_S1NSE0 - ARMMMUIdx_S12NSE0); 7892 } 7893 return mmu_idx; 7894 } 7895 7896 /* Returns TBI0 value for current regime el */ 7897 uint32_t arm_regime_tbi0(CPUARMState *env, ARMMMUIdx mmu_idx) 7898 { 7899 TCR *tcr; 7900 uint32_t el; 7901 7902 /* For EL0 and EL1, TBI is controlled by stage 1's TCR, so convert 7903 * a stage 1+2 mmu index into the appropriate stage 1 mmu index. 7904 */ 7905 mmu_idx = stage_1_mmu_idx(mmu_idx); 7906 7907 tcr = regime_tcr(env, mmu_idx); 7908 el = regime_el(env, mmu_idx); 7909 7910 if (el > 1) { 7911 return extract64(tcr->raw_tcr, 20, 1); 7912 } else { 7913 return extract64(tcr->raw_tcr, 37, 1); 7914 } 7915 } 7916 7917 /* Returns TBI1 value for current regime el */ 7918 uint32_t arm_regime_tbi1(CPUARMState *env, ARMMMUIdx mmu_idx) 7919 { 7920 TCR *tcr; 7921 uint32_t el; 7922 7923 /* For EL0 and EL1, TBI is controlled by stage 1's TCR, so convert 7924 * a stage 1+2 mmu index into the appropriate stage 1 mmu index. 7925 */ 7926 mmu_idx = stage_1_mmu_idx(mmu_idx); 7927 7928 tcr = regime_tcr(env, mmu_idx); 7929 el = regime_el(env, mmu_idx); 7930 7931 if (el > 1) { 7932 return 0; 7933 } else { 7934 return extract64(tcr->raw_tcr, 38, 1); 7935 } 7936 } 7937 7938 /* Return the TTBR associated with this translation regime */ 7939 static inline uint64_t regime_ttbr(CPUARMState *env, ARMMMUIdx mmu_idx, 7940 int ttbrn) 7941 { 7942 if (mmu_idx == ARMMMUIdx_S2NS) { 7943 return env->cp15.vttbr_el2; 7944 } 7945 if (ttbrn == 0) { 7946 return env->cp15.ttbr0_el[regime_el(env, mmu_idx)]; 7947 } else { 7948 return env->cp15.ttbr1_el[regime_el(env, mmu_idx)]; 7949 } 7950 } 7951 7952 /* Return true if the translation regime is using LPAE format page tables */ 7953 static inline bool regime_using_lpae_format(CPUARMState *env, 7954 ARMMMUIdx mmu_idx) 7955 { 7956 int el = regime_el(env, mmu_idx); 7957 if (el == 2 || arm_el_is_aa64(env, el)) { 7958 return true; 7959 } 7960 if (arm_feature(env, ARM_FEATURE_LPAE) 7961 && (regime_tcr(env, mmu_idx)->raw_tcr & TTBCR_EAE)) { 7962 return true; 7963 } 7964 return false; 7965 } 7966 7967 /* Returns true if the stage 1 translation regime is using LPAE format page 7968 * tables. Used when raising alignment exceptions, whose FSR changes depending 7969 * on whether the long or short descriptor format is in use. */ 7970 bool arm_s1_regime_using_lpae_format(CPUARMState *env, ARMMMUIdx mmu_idx) 7971 { 7972 mmu_idx = stage_1_mmu_idx(mmu_idx); 7973 7974 return regime_using_lpae_format(env, mmu_idx); 7975 } 7976 7977 static inline bool regime_is_user(CPUARMState *env, ARMMMUIdx mmu_idx) 7978 { 7979 switch (mmu_idx) { 7980 case ARMMMUIdx_S1SE0: 7981 case ARMMMUIdx_S1NSE0: 7982 case ARMMMUIdx_MUser: 7983 return true; 7984 default: 7985 return false; 7986 case ARMMMUIdx_S12NSE0: 7987 case ARMMMUIdx_S12NSE1: 7988 g_assert_not_reached(); 7989 } 7990 } 7991 7992 /* Translate section/page access permissions to page 7993 * R/W protection flags 7994 * 7995 * @env: CPUARMState 7996 * @mmu_idx: MMU index indicating required translation regime 7997 * @ap: The 3-bit access permissions (AP[2:0]) 7998 * @domain_prot: The 2-bit domain access permissions 7999 */ 8000 static inline int ap_to_rw_prot(CPUARMState *env, ARMMMUIdx mmu_idx, 8001 int ap, int domain_prot) 8002 { 8003 bool is_user = regime_is_user(env, mmu_idx); 8004 8005 if (domain_prot == 3) { 8006 return PAGE_READ | PAGE_WRITE; 8007 } 8008 8009 switch (ap) { 8010 case 0: 8011 if (arm_feature(env, ARM_FEATURE_V7)) { 8012 return 0; 8013 } 8014 switch (regime_sctlr(env, mmu_idx) & (SCTLR_S | SCTLR_R)) { 8015 case SCTLR_S: 8016 return is_user ? 0 : PAGE_READ; 8017 case SCTLR_R: 8018 return PAGE_READ; 8019 default: 8020 return 0; 8021 } 8022 case 1: 8023 return is_user ? 0 : PAGE_READ | PAGE_WRITE; 8024 case 2: 8025 if (is_user) { 8026 return PAGE_READ; 8027 } else { 8028 return PAGE_READ | PAGE_WRITE; 8029 } 8030 case 3: 8031 return PAGE_READ | PAGE_WRITE; 8032 case 4: /* Reserved. */ 8033 return 0; 8034 case 5: 8035 return is_user ? 0 : PAGE_READ; 8036 case 6: 8037 return PAGE_READ; 8038 case 7: 8039 if (!arm_feature(env, ARM_FEATURE_V6K)) { 8040 return 0; 8041 } 8042 return PAGE_READ; 8043 default: 8044 g_assert_not_reached(); 8045 } 8046 } 8047 8048 /* Translate section/page access permissions to page 8049 * R/W protection flags. 8050 * 8051 * @ap: The 2-bit simple AP (AP[2:1]) 8052 * @is_user: TRUE if accessing from PL0 8053 */ 8054 static inline int simple_ap_to_rw_prot_is_user(int ap, bool is_user) 8055 { 8056 switch (ap) { 8057 case 0: 8058 return is_user ? 0 : PAGE_READ | PAGE_WRITE; 8059 case 1: 8060 return PAGE_READ | PAGE_WRITE; 8061 case 2: 8062 return is_user ? 0 : PAGE_READ; 8063 case 3: 8064 return PAGE_READ; 8065 default: 8066 g_assert_not_reached(); 8067 } 8068 } 8069 8070 static inline int 8071 simple_ap_to_rw_prot(CPUARMState *env, ARMMMUIdx mmu_idx, int ap) 8072 { 8073 return simple_ap_to_rw_prot_is_user(ap, regime_is_user(env, mmu_idx)); 8074 } 8075 8076 /* Translate S2 section/page access permissions to protection flags 8077 * 8078 * @env: CPUARMState 8079 * @s2ap: The 2-bit stage2 access permissions (S2AP) 8080 * @xn: XN (execute-never) bit 8081 */ 8082 static int get_S2prot(CPUARMState *env, int s2ap, int xn) 8083 { 8084 int prot = 0; 8085 8086 if (s2ap & 1) { 8087 prot |= PAGE_READ; 8088 } 8089 if (s2ap & 2) { 8090 prot |= PAGE_WRITE; 8091 } 8092 if (!xn) { 8093 if (arm_el_is_aa64(env, 2) || prot & PAGE_READ) { 8094 prot |= PAGE_EXEC; 8095 } 8096 } 8097 return prot; 8098 } 8099 8100 /* Translate section/page access permissions to protection flags 8101 * 8102 * @env: CPUARMState 8103 * @mmu_idx: MMU index indicating required translation regime 8104 * @is_aa64: TRUE if AArch64 8105 * @ap: The 2-bit simple AP (AP[2:1]) 8106 * @ns: NS (non-secure) bit 8107 * @xn: XN (execute-never) bit 8108 * @pxn: PXN (privileged execute-never) bit 8109 */ 8110 static int get_S1prot(CPUARMState *env, ARMMMUIdx mmu_idx, bool is_aa64, 8111 int ap, int ns, int xn, int pxn) 8112 { 8113 bool is_user = regime_is_user(env, mmu_idx); 8114 int prot_rw, user_rw; 8115 bool have_wxn; 8116 int wxn = 0; 8117 8118 assert(mmu_idx != ARMMMUIdx_S2NS); 8119 8120 user_rw = simple_ap_to_rw_prot_is_user(ap, true); 8121 if (is_user) { 8122 prot_rw = user_rw; 8123 } else { 8124 prot_rw = simple_ap_to_rw_prot_is_user(ap, false); 8125 } 8126 8127 if (ns && arm_is_secure(env) && (env->cp15.scr_el3 & SCR_SIF)) { 8128 return prot_rw; 8129 } 8130 8131 /* TODO have_wxn should be replaced with 8132 * ARM_FEATURE_V8 || (ARM_FEATURE_V7 && ARM_FEATURE_EL2) 8133 * when ARM_FEATURE_EL2 starts getting set. For now we assume all LPAE 8134 * compatible processors have EL2, which is required for [U]WXN. 8135 */ 8136 have_wxn = arm_feature(env, ARM_FEATURE_LPAE); 8137 8138 if (have_wxn) { 8139 wxn = regime_sctlr(env, mmu_idx) & SCTLR_WXN; 8140 } 8141 8142 if (is_aa64) { 8143 switch (regime_el(env, mmu_idx)) { 8144 case 1: 8145 if (!is_user) { 8146 xn = pxn || (user_rw & PAGE_WRITE); 8147 } 8148 break; 8149 case 2: 8150 case 3: 8151 break; 8152 } 8153 } else if (arm_feature(env, ARM_FEATURE_V7)) { 8154 switch (regime_el(env, mmu_idx)) { 8155 case 1: 8156 case 3: 8157 if (is_user) { 8158 xn = xn || !(user_rw & PAGE_READ); 8159 } else { 8160 int uwxn = 0; 8161 if (have_wxn) { 8162 uwxn = regime_sctlr(env, mmu_idx) & SCTLR_UWXN; 8163 } 8164 xn = xn || !(prot_rw & PAGE_READ) || pxn || 8165 (uwxn && (user_rw & PAGE_WRITE)); 8166 } 8167 break; 8168 case 2: 8169 break; 8170 } 8171 } else { 8172 xn = wxn = 0; 8173 } 8174 8175 if (xn || (wxn && (prot_rw & PAGE_WRITE))) { 8176 return prot_rw; 8177 } 8178 return prot_rw | PAGE_EXEC; 8179 } 8180 8181 static bool get_level1_table_address(CPUARMState *env, ARMMMUIdx mmu_idx, 8182 uint32_t *table, uint32_t address) 8183 { 8184 /* Note that we can only get here for an AArch32 PL0/PL1 lookup */ 8185 TCR *tcr = regime_tcr(env, mmu_idx); 8186 8187 if (address & tcr->mask) { 8188 if (tcr->raw_tcr & TTBCR_PD1) { 8189 /* Translation table walk disabled for TTBR1 */ 8190 return false; 8191 } 8192 *table = regime_ttbr(env, mmu_idx, 1) & 0xffffc000; 8193 } else { 8194 if (tcr->raw_tcr & TTBCR_PD0) { 8195 /* Translation table walk disabled for TTBR0 */ 8196 return false; 8197 } 8198 *table = regime_ttbr(env, mmu_idx, 0) & tcr->base_mask; 8199 } 8200 *table |= (address >> 18) & 0x3ffc; 8201 return true; 8202 } 8203 8204 /* Translate a S1 pagetable walk through S2 if needed. */ 8205 static hwaddr S1_ptw_translate(CPUARMState *env, ARMMMUIdx mmu_idx, 8206 hwaddr addr, MemTxAttrs txattrs, 8207 uint32_t *fsr, 8208 ARMMMUFaultInfo *fi) 8209 { 8210 if ((mmu_idx == ARMMMUIdx_S1NSE0 || mmu_idx == ARMMMUIdx_S1NSE1) && 8211 !regime_translation_disabled(env, ARMMMUIdx_S2NS)) { 8212 target_ulong s2size; 8213 hwaddr s2pa; 8214 int s2prot; 8215 int ret; 8216 8217 ret = get_phys_addr_lpae(env, addr, 0, ARMMMUIdx_S2NS, &s2pa, 8218 &txattrs, &s2prot, &s2size, fsr, fi, NULL); 8219 if (ret) { 8220 fi->s2addr = addr; 8221 fi->stage2 = true; 8222 fi->s1ptw = true; 8223 return ~0; 8224 } 8225 addr = s2pa; 8226 } 8227 return addr; 8228 } 8229 8230 /* All loads done in the course of a page table walk go through here. 8231 * TODO: rather than ignoring errors from physical memory reads (which 8232 * are external aborts in ARM terminology) we should propagate this 8233 * error out so that we can turn it into a Data Abort if this walk 8234 * was being done for a CPU load/store or an address translation instruction 8235 * (but not if it was for a debug access). 8236 */ 8237 static uint32_t arm_ldl_ptw(CPUState *cs, hwaddr addr, bool is_secure, 8238 ARMMMUIdx mmu_idx, uint32_t *fsr, 8239 ARMMMUFaultInfo *fi) 8240 { 8241 ARMCPU *cpu = ARM_CPU(cs); 8242 CPUARMState *env = &cpu->env; 8243 MemTxAttrs attrs = {}; 8244 AddressSpace *as; 8245 8246 attrs.secure = is_secure; 8247 as = arm_addressspace(cs, attrs); 8248 addr = S1_ptw_translate(env, mmu_idx, addr, attrs, fsr, fi); 8249 if (fi->s1ptw) { 8250 return 0; 8251 } 8252 if (regime_translation_big_endian(env, mmu_idx)) { 8253 return address_space_ldl_be(as, addr, attrs, NULL); 8254 } else { 8255 return address_space_ldl_le(as, addr, attrs, NULL); 8256 } 8257 } 8258 8259 static uint64_t arm_ldq_ptw(CPUState *cs, hwaddr addr, bool is_secure, 8260 ARMMMUIdx mmu_idx, uint32_t *fsr, 8261 ARMMMUFaultInfo *fi) 8262 { 8263 ARMCPU *cpu = ARM_CPU(cs); 8264 CPUARMState *env = &cpu->env; 8265 MemTxAttrs attrs = {}; 8266 AddressSpace *as; 8267 8268 attrs.secure = is_secure; 8269 as = arm_addressspace(cs, attrs); 8270 addr = S1_ptw_translate(env, mmu_idx, addr, attrs, fsr, fi); 8271 if (fi->s1ptw) { 8272 return 0; 8273 } 8274 if (regime_translation_big_endian(env, mmu_idx)) { 8275 return address_space_ldq_be(as, addr, attrs, NULL); 8276 } else { 8277 return address_space_ldq_le(as, addr, attrs, NULL); 8278 } 8279 } 8280 8281 static bool get_phys_addr_v5(CPUARMState *env, uint32_t address, 8282 MMUAccessType access_type, ARMMMUIdx mmu_idx, 8283 hwaddr *phys_ptr, int *prot, 8284 target_ulong *page_size, uint32_t *fsr, 8285 ARMMMUFaultInfo *fi) 8286 { 8287 CPUState *cs = CPU(arm_env_get_cpu(env)); 8288 int code; 8289 uint32_t table; 8290 uint32_t desc; 8291 int type; 8292 int ap; 8293 int domain = 0; 8294 int domain_prot; 8295 hwaddr phys_addr; 8296 uint32_t dacr; 8297 8298 /* Pagetable walk. */ 8299 /* Lookup l1 descriptor. */ 8300 if (!get_level1_table_address(env, mmu_idx, &table, address)) { 8301 /* Section translation fault if page walk is disabled by PD0 or PD1 */ 8302 code = 5; 8303 goto do_fault; 8304 } 8305 desc = arm_ldl_ptw(cs, table, regime_is_secure(env, mmu_idx), 8306 mmu_idx, fsr, fi); 8307 type = (desc & 3); 8308 domain = (desc >> 5) & 0x0f; 8309 if (regime_el(env, mmu_idx) == 1) { 8310 dacr = env->cp15.dacr_ns; 8311 } else { 8312 dacr = env->cp15.dacr_s; 8313 } 8314 domain_prot = (dacr >> (domain * 2)) & 3; 8315 if (type == 0) { 8316 /* Section translation fault. */ 8317 code = 5; 8318 goto do_fault; 8319 } 8320 if (domain_prot == 0 || domain_prot == 2) { 8321 if (type == 2) 8322 code = 9; /* Section domain fault. */ 8323 else 8324 code = 11; /* Page domain fault. */ 8325 goto do_fault; 8326 } 8327 if (type == 2) { 8328 /* 1Mb section. */ 8329 phys_addr = (desc & 0xfff00000) | (address & 0x000fffff); 8330 ap = (desc >> 10) & 3; 8331 code = 13; 8332 *page_size = 1024 * 1024; 8333 } else { 8334 /* Lookup l2 entry. */ 8335 if (type == 1) { 8336 /* Coarse pagetable. */ 8337 table = (desc & 0xfffffc00) | ((address >> 10) & 0x3fc); 8338 } else { 8339 /* Fine pagetable. */ 8340 table = (desc & 0xfffff000) | ((address >> 8) & 0xffc); 8341 } 8342 desc = arm_ldl_ptw(cs, table, regime_is_secure(env, mmu_idx), 8343 mmu_idx, fsr, fi); 8344 switch (desc & 3) { 8345 case 0: /* Page translation fault. */ 8346 code = 7; 8347 goto do_fault; 8348 case 1: /* 64k page. */ 8349 phys_addr = (desc & 0xffff0000) | (address & 0xffff); 8350 ap = (desc >> (4 + ((address >> 13) & 6))) & 3; 8351 *page_size = 0x10000; 8352 break; 8353 case 2: /* 4k page. */ 8354 phys_addr = (desc & 0xfffff000) | (address & 0xfff); 8355 ap = (desc >> (4 + ((address >> 9) & 6))) & 3; 8356 *page_size = 0x1000; 8357 break; 8358 case 3: /* 1k page, or ARMv6/XScale "extended small (4k) page" */ 8359 if (type == 1) { 8360 /* ARMv6/XScale extended small page format */ 8361 if (arm_feature(env, ARM_FEATURE_XSCALE) 8362 || arm_feature(env, ARM_FEATURE_V6)) { 8363 phys_addr = (desc & 0xfffff000) | (address & 0xfff); 8364 *page_size = 0x1000; 8365 } else { 8366 /* UNPREDICTABLE in ARMv5; we choose to take a 8367 * page translation fault. 8368 */ 8369 code = 7; 8370 goto do_fault; 8371 } 8372 } else { 8373 phys_addr = (desc & 0xfffffc00) | (address & 0x3ff); 8374 *page_size = 0x400; 8375 } 8376 ap = (desc >> 4) & 3; 8377 break; 8378 default: 8379 /* Never happens, but compiler isn't smart enough to tell. */ 8380 abort(); 8381 } 8382 code = 15; 8383 } 8384 *prot = ap_to_rw_prot(env, mmu_idx, ap, domain_prot); 8385 *prot |= *prot ? PAGE_EXEC : 0; 8386 if (!(*prot & (1 << access_type))) { 8387 /* Access permission fault. */ 8388 goto do_fault; 8389 } 8390 *phys_ptr = phys_addr; 8391 return false; 8392 do_fault: 8393 *fsr = code | (domain << 4); 8394 return true; 8395 } 8396 8397 static bool get_phys_addr_v6(CPUARMState *env, uint32_t address, 8398 MMUAccessType access_type, ARMMMUIdx mmu_idx, 8399 hwaddr *phys_ptr, MemTxAttrs *attrs, int *prot, 8400 target_ulong *page_size, uint32_t *fsr, 8401 ARMMMUFaultInfo *fi) 8402 { 8403 CPUState *cs = CPU(arm_env_get_cpu(env)); 8404 int code; 8405 uint32_t table; 8406 uint32_t desc; 8407 uint32_t xn; 8408 uint32_t pxn = 0; 8409 int type; 8410 int ap; 8411 int domain = 0; 8412 int domain_prot; 8413 hwaddr phys_addr; 8414 uint32_t dacr; 8415 bool ns; 8416 8417 /* Pagetable walk. */ 8418 /* Lookup l1 descriptor. */ 8419 if (!get_level1_table_address(env, mmu_idx, &table, address)) { 8420 /* Section translation fault if page walk is disabled by PD0 or PD1 */ 8421 code = 5; 8422 goto do_fault; 8423 } 8424 desc = arm_ldl_ptw(cs, table, regime_is_secure(env, mmu_idx), 8425 mmu_idx, fsr, fi); 8426 type = (desc & 3); 8427 if (type == 0 || (type == 3 && !arm_feature(env, ARM_FEATURE_PXN))) { 8428 /* Section translation fault, or attempt to use the encoding 8429 * which is Reserved on implementations without PXN. 8430 */ 8431 code = 5; 8432 goto do_fault; 8433 } 8434 if ((type == 1) || !(desc & (1 << 18))) { 8435 /* Page or Section. */ 8436 domain = (desc >> 5) & 0x0f; 8437 } 8438 if (regime_el(env, mmu_idx) == 1) { 8439 dacr = env->cp15.dacr_ns; 8440 } else { 8441 dacr = env->cp15.dacr_s; 8442 } 8443 domain_prot = (dacr >> (domain * 2)) & 3; 8444 if (domain_prot == 0 || domain_prot == 2) { 8445 if (type != 1) { 8446 code = 9; /* Section domain fault. */ 8447 } else { 8448 code = 11; /* Page domain fault. */ 8449 } 8450 goto do_fault; 8451 } 8452 if (type != 1) { 8453 if (desc & (1 << 18)) { 8454 /* Supersection. */ 8455 phys_addr = (desc & 0xff000000) | (address & 0x00ffffff); 8456 phys_addr |= (uint64_t)extract32(desc, 20, 4) << 32; 8457 phys_addr |= (uint64_t)extract32(desc, 5, 4) << 36; 8458 *page_size = 0x1000000; 8459 } else { 8460 /* Section. */ 8461 phys_addr = (desc & 0xfff00000) | (address & 0x000fffff); 8462 *page_size = 0x100000; 8463 } 8464 ap = ((desc >> 10) & 3) | ((desc >> 13) & 4); 8465 xn = desc & (1 << 4); 8466 pxn = desc & 1; 8467 code = 13; 8468 ns = extract32(desc, 19, 1); 8469 } else { 8470 if (arm_feature(env, ARM_FEATURE_PXN)) { 8471 pxn = (desc >> 2) & 1; 8472 } 8473 ns = extract32(desc, 3, 1); 8474 /* Lookup l2 entry. */ 8475 table = (desc & 0xfffffc00) | ((address >> 10) & 0x3fc); 8476 desc = arm_ldl_ptw(cs, table, regime_is_secure(env, mmu_idx), 8477 mmu_idx, fsr, fi); 8478 ap = ((desc >> 4) & 3) | ((desc >> 7) & 4); 8479 switch (desc & 3) { 8480 case 0: /* Page translation fault. */ 8481 code = 7; 8482 goto do_fault; 8483 case 1: /* 64k page. */ 8484 phys_addr = (desc & 0xffff0000) | (address & 0xffff); 8485 xn = desc & (1 << 15); 8486 *page_size = 0x10000; 8487 break; 8488 case 2: case 3: /* 4k page. */ 8489 phys_addr = (desc & 0xfffff000) | (address & 0xfff); 8490 xn = desc & 1; 8491 *page_size = 0x1000; 8492 break; 8493 default: 8494 /* Never happens, but compiler isn't smart enough to tell. */ 8495 abort(); 8496 } 8497 code = 15; 8498 } 8499 if (domain_prot == 3) { 8500 *prot = PAGE_READ | PAGE_WRITE | PAGE_EXEC; 8501 } else { 8502 if (pxn && !regime_is_user(env, mmu_idx)) { 8503 xn = 1; 8504 } 8505 if (xn && access_type == MMU_INST_FETCH) 8506 goto do_fault; 8507 8508 if (arm_feature(env, ARM_FEATURE_V6K) && 8509 (regime_sctlr(env, mmu_idx) & SCTLR_AFE)) { 8510 /* The simplified model uses AP[0] as an access control bit. */ 8511 if ((ap & 1) == 0) { 8512 /* Access flag fault. */ 8513 code = (code == 15) ? 6 : 3; 8514 goto do_fault; 8515 } 8516 *prot = simple_ap_to_rw_prot(env, mmu_idx, ap >> 1); 8517 } else { 8518 *prot = ap_to_rw_prot(env, mmu_idx, ap, domain_prot); 8519 } 8520 if (*prot && !xn) { 8521 *prot |= PAGE_EXEC; 8522 } 8523 if (!(*prot & (1 << access_type))) { 8524 /* Access permission fault. */ 8525 goto do_fault; 8526 } 8527 } 8528 if (ns) { 8529 /* The NS bit will (as required by the architecture) have no effect if 8530 * the CPU doesn't support TZ or this is a non-secure translation 8531 * regime, because the attribute will already be non-secure. 8532 */ 8533 attrs->secure = false; 8534 } 8535 *phys_ptr = phys_addr; 8536 return false; 8537 do_fault: 8538 *fsr = code | (domain << 4); 8539 return true; 8540 } 8541 8542 /* Fault type for long-descriptor MMU fault reporting; this corresponds 8543 * to bits [5..2] in the STATUS field in long-format DFSR/IFSR. 8544 */ 8545 typedef enum { 8546 translation_fault = 1, 8547 access_fault = 2, 8548 permission_fault = 3, 8549 } MMUFaultType; 8550 8551 /* 8552 * check_s2_mmu_setup 8553 * @cpu: ARMCPU 8554 * @is_aa64: True if the translation regime is in AArch64 state 8555 * @startlevel: Suggested starting level 8556 * @inputsize: Bitsize of IPAs 8557 * @stride: Page-table stride (See the ARM ARM) 8558 * 8559 * Returns true if the suggested S2 translation parameters are OK and 8560 * false otherwise. 8561 */ 8562 static bool check_s2_mmu_setup(ARMCPU *cpu, bool is_aa64, int level, 8563 int inputsize, int stride) 8564 { 8565 const int grainsize = stride + 3; 8566 int startsizecheck; 8567 8568 /* Negative levels are never allowed. */ 8569 if (level < 0) { 8570 return false; 8571 } 8572 8573 startsizecheck = inputsize - ((3 - level) * stride + grainsize); 8574 if (startsizecheck < 1 || startsizecheck > stride + 4) { 8575 return false; 8576 } 8577 8578 if (is_aa64) { 8579 CPUARMState *env = &cpu->env; 8580 unsigned int pamax = arm_pamax(cpu); 8581 8582 switch (stride) { 8583 case 13: /* 64KB Pages. */ 8584 if (level == 0 || (level == 1 && pamax <= 42)) { 8585 return false; 8586 } 8587 break; 8588 case 11: /* 16KB Pages. */ 8589 if (level == 0 || (level == 1 && pamax <= 40)) { 8590 return false; 8591 } 8592 break; 8593 case 9: /* 4KB Pages. */ 8594 if (level == 0 && pamax <= 42) { 8595 return false; 8596 } 8597 break; 8598 default: 8599 g_assert_not_reached(); 8600 } 8601 8602 /* Inputsize checks. */ 8603 if (inputsize > pamax && 8604 (arm_el_is_aa64(env, 1) || inputsize > 40)) { 8605 /* This is CONSTRAINED UNPREDICTABLE and we choose to fault. */ 8606 return false; 8607 } 8608 } else { 8609 /* AArch32 only supports 4KB pages. Assert on that. */ 8610 assert(stride == 9); 8611 8612 if (level == 0) { 8613 return false; 8614 } 8615 } 8616 return true; 8617 } 8618 8619 /* Translate from the 4-bit stage 2 representation of 8620 * memory attributes (without cache-allocation hints) to 8621 * the 8-bit representation of the stage 1 MAIR registers 8622 * (which includes allocation hints). 8623 * 8624 * ref: shared/translation/attrs/S2AttrDecode() 8625 * .../S2ConvertAttrsHints() 8626 */ 8627 static uint8_t convert_stage2_attrs(CPUARMState *env, uint8_t s2attrs) 8628 { 8629 uint8_t hiattr = extract32(s2attrs, 2, 2); 8630 uint8_t loattr = extract32(s2attrs, 0, 2); 8631 uint8_t hihint = 0, lohint = 0; 8632 8633 if (hiattr != 0) { /* normal memory */ 8634 if ((env->cp15.hcr_el2 & HCR_CD) != 0) { /* cache disabled */ 8635 hiattr = loattr = 1; /* non-cacheable */ 8636 } else { 8637 if (hiattr != 1) { /* Write-through or write-back */ 8638 hihint = 3; /* RW allocate */ 8639 } 8640 if (loattr != 1) { /* Write-through or write-back */ 8641 lohint = 3; /* RW allocate */ 8642 } 8643 } 8644 } 8645 8646 return (hiattr << 6) | (hihint << 4) | (loattr << 2) | lohint; 8647 } 8648 8649 static bool get_phys_addr_lpae(CPUARMState *env, target_ulong address, 8650 MMUAccessType access_type, ARMMMUIdx mmu_idx, 8651 hwaddr *phys_ptr, MemTxAttrs *txattrs, int *prot, 8652 target_ulong *page_size_ptr, uint32_t *fsr, 8653 ARMMMUFaultInfo *fi, ARMCacheAttrs *cacheattrs) 8654 { 8655 ARMCPU *cpu = arm_env_get_cpu(env); 8656 CPUState *cs = CPU(cpu); 8657 /* Read an LPAE long-descriptor translation table. */ 8658 MMUFaultType fault_type = translation_fault; 8659 uint32_t level; 8660 uint32_t epd = 0; 8661 int32_t t0sz, t1sz; 8662 uint32_t tg; 8663 uint64_t ttbr; 8664 int ttbr_select; 8665 hwaddr descaddr, indexmask, indexmask_grainsize; 8666 uint32_t tableattrs; 8667 target_ulong page_size; 8668 uint32_t attrs; 8669 int32_t stride = 9; 8670 int32_t addrsize; 8671 int inputsize; 8672 int32_t tbi = 0; 8673 TCR *tcr = regime_tcr(env, mmu_idx); 8674 int ap, ns, xn, pxn; 8675 uint32_t el = regime_el(env, mmu_idx); 8676 bool ttbr1_valid = true; 8677 uint64_t descaddrmask; 8678 bool aarch64 = arm_el_is_aa64(env, el); 8679 8680 /* TODO: 8681 * This code does not handle the different format TCR for VTCR_EL2. 8682 * This code also does not support shareability levels. 8683 * Attribute and permission bit handling should also be checked when adding 8684 * support for those page table walks. 8685 */ 8686 if (aarch64) { 8687 level = 0; 8688 addrsize = 64; 8689 if (el > 1) { 8690 if (mmu_idx != ARMMMUIdx_S2NS) { 8691 tbi = extract64(tcr->raw_tcr, 20, 1); 8692 } 8693 } else { 8694 if (extract64(address, 55, 1)) { 8695 tbi = extract64(tcr->raw_tcr, 38, 1); 8696 } else { 8697 tbi = extract64(tcr->raw_tcr, 37, 1); 8698 } 8699 } 8700 tbi *= 8; 8701 8702 /* If we are in 64-bit EL2 or EL3 then there is no TTBR1, so mark it 8703 * invalid. 8704 */ 8705 if (el > 1) { 8706 ttbr1_valid = false; 8707 } 8708 } else { 8709 level = 1; 8710 addrsize = 32; 8711 /* There is no TTBR1 for EL2 */ 8712 if (el == 2) { 8713 ttbr1_valid = false; 8714 } 8715 } 8716 8717 /* Determine whether this address is in the region controlled by 8718 * TTBR0 or TTBR1 (or if it is in neither region and should fault). 8719 * This is a Non-secure PL0/1 stage 1 translation, so controlled by 8720 * TTBCR/TTBR0/TTBR1 in accordance with ARM ARM DDI0406C table B-32: 8721 */ 8722 if (aarch64) { 8723 /* AArch64 translation. */ 8724 t0sz = extract32(tcr->raw_tcr, 0, 6); 8725 t0sz = MIN(t0sz, 39); 8726 t0sz = MAX(t0sz, 16); 8727 } else if (mmu_idx != ARMMMUIdx_S2NS) { 8728 /* AArch32 stage 1 translation. */ 8729 t0sz = extract32(tcr->raw_tcr, 0, 3); 8730 } else { 8731 /* AArch32 stage 2 translation. */ 8732 bool sext = extract32(tcr->raw_tcr, 4, 1); 8733 bool sign = extract32(tcr->raw_tcr, 3, 1); 8734 /* Address size is 40-bit for a stage 2 translation, 8735 * and t0sz can be negative (from -8 to 7), 8736 * so we need to adjust it to use the TTBR selecting logic below. 8737 */ 8738 addrsize = 40; 8739 t0sz = sextract32(tcr->raw_tcr, 0, 4) + 8; 8740 8741 /* If the sign-extend bit is not the same as t0sz[3], the result 8742 * is unpredictable. Flag this as a guest error. */ 8743 if (sign != sext) { 8744 qemu_log_mask(LOG_GUEST_ERROR, 8745 "AArch32: VTCR.S / VTCR.T0SZ[3] mismatch\n"); 8746 } 8747 } 8748 t1sz = extract32(tcr->raw_tcr, 16, 6); 8749 if (aarch64) { 8750 t1sz = MIN(t1sz, 39); 8751 t1sz = MAX(t1sz, 16); 8752 } 8753 if (t0sz && !extract64(address, addrsize - t0sz, t0sz - tbi)) { 8754 /* there is a ttbr0 region and we are in it (high bits all zero) */ 8755 ttbr_select = 0; 8756 } else if (ttbr1_valid && t1sz && 8757 !extract64(~address, addrsize - t1sz, t1sz - tbi)) { 8758 /* there is a ttbr1 region and we are in it (high bits all one) */ 8759 ttbr_select = 1; 8760 } else if (!t0sz) { 8761 /* ttbr0 region is "everything not in the ttbr1 region" */ 8762 ttbr_select = 0; 8763 } else if (!t1sz && ttbr1_valid) { 8764 /* ttbr1 region is "everything not in the ttbr0 region" */ 8765 ttbr_select = 1; 8766 } else { 8767 /* in the gap between the two regions, this is a Translation fault */ 8768 fault_type = translation_fault; 8769 goto do_fault; 8770 } 8771 8772 /* Note that QEMU ignores shareability and cacheability attributes, 8773 * so we don't need to do anything with the SH, ORGN, IRGN fields 8774 * in the TTBCR. Similarly, TTBCR:A1 selects whether we get the 8775 * ASID from TTBR0 or TTBR1, but QEMU's TLB doesn't currently 8776 * implement any ASID-like capability so we can ignore it (instead 8777 * we will always flush the TLB any time the ASID is changed). 8778 */ 8779 if (ttbr_select == 0) { 8780 ttbr = regime_ttbr(env, mmu_idx, 0); 8781 if (el < 2) { 8782 epd = extract32(tcr->raw_tcr, 7, 1); 8783 } 8784 inputsize = addrsize - t0sz; 8785 8786 tg = extract32(tcr->raw_tcr, 14, 2); 8787 if (tg == 1) { /* 64KB pages */ 8788 stride = 13; 8789 } 8790 if (tg == 2) { /* 16KB pages */ 8791 stride = 11; 8792 } 8793 } else { 8794 /* We should only be here if TTBR1 is valid */ 8795 assert(ttbr1_valid); 8796 8797 ttbr = regime_ttbr(env, mmu_idx, 1); 8798 epd = extract32(tcr->raw_tcr, 23, 1); 8799 inputsize = addrsize - t1sz; 8800 8801 tg = extract32(tcr->raw_tcr, 30, 2); 8802 if (tg == 3) { /* 64KB pages */ 8803 stride = 13; 8804 } 8805 if (tg == 1) { /* 16KB pages */ 8806 stride = 11; 8807 } 8808 } 8809 8810 /* Here we should have set up all the parameters for the translation: 8811 * inputsize, ttbr, epd, stride, tbi 8812 */ 8813 8814 if (epd) { 8815 /* Translation table walk disabled => Translation fault on TLB miss 8816 * Note: This is always 0 on 64-bit EL2 and EL3. 8817 */ 8818 goto do_fault; 8819 } 8820 8821 if (mmu_idx != ARMMMUIdx_S2NS) { 8822 /* The starting level depends on the virtual address size (which can 8823 * be up to 48 bits) and the translation granule size. It indicates 8824 * the number of strides (stride bits at a time) needed to 8825 * consume the bits of the input address. In the pseudocode this is: 8826 * level = 4 - RoundUp((inputsize - grainsize) / stride) 8827 * where their 'inputsize' is our 'inputsize', 'grainsize' is 8828 * our 'stride + 3' and 'stride' is our 'stride'. 8829 * Applying the usual "rounded up m/n is (m+n-1)/n" and simplifying: 8830 * = 4 - (inputsize - stride - 3 + stride - 1) / stride 8831 * = 4 - (inputsize - 4) / stride; 8832 */ 8833 level = 4 - (inputsize - 4) / stride; 8834 } else { 8835 /* For stage 2 translations the starting level is specified by the 8836 * VTCR_EL2.SL0 field (whose interpretation depends on the page size) 8837 */ 8838 uint32_t sl0 = extract32(tcr->raw_tcr, 6, 2); 8839 uint32_t startlevel; 8840 bool ok; 8841 8842 if (!aarch64 || stride == 9) { 8843 /* AArch32 or 4KB pages */ 8844 startlevel = 2 - sl0; 8845 } else { 8846 /* 16KB or 64KB pages */ 8847 startlevel = 3 - sl0; 8848 } 8849 8850 /* Check that the starting level is valid. */ 8851 ok = check_s2_mmu_setup(cpu, aarch64, startlevel, 8852 inputsize, stride); 8853 if (!ok) { 8854 fault_type = translation_fault; 8855 goto do_fault; 8856 } 8857 level = startlevel; 8858 } 8859 8860 indexmask_grainsize = (1ULL << (stride + 3)) - 1; 8861 indexmask = (1ULL << (inputsize - (stride * (4 - level)))) - 1; 8862 8863 /* Now we can extract the actual base address from the TTBR */ 8864 descaddr = extract64(ttbr, 0, 48); 8865 descaddr &= ~indexmask; 8866 8867 /* The address field in the descriptor goes up to bit 39 for ARMv7 8868 * but up to bit 47 for ARMv8, but we use the descaddrmask 8869 * up to bit 39 for AArch32, because we don't need other bits in that case 8870 * to construct next descriptor address (anyway they should be all zeroes). 8871 */ 8872 descaddrmask = ((1ull << (aarch64 ? 48 : 40)) - 1) & 8873 ~indexmask_grainsize; 8874 8875 /* Secure accesses start with the page table in secure memory and 8876 * can be downgraded to non-secure at any step. Non-secure accesses 8877 * remain non-secure. We implement this by just ORing in the NSTable/NS 8878 * bits at each step. 8879 */ 8880 tableattrs = regime_is_secure(env, mmu_idx) ? 0 : (1 << 4); 8881 for (;;) { 8882 uint64_t descriptor; 8883 bool nstable; 8884 8885 descaddr |= (address >> (stride * (4 - level))) & indexmask; 8886 descaddr &= ~7ULL; 8887 nstable = extract32(tableattrs, 4, 1); 8888 descriptor = arm_ldq_ptw(cs, descaddr, !nstable, mmu_idx, fsr, fi); 8889 if (fi->s1ptw) { 8890 goto do_fault; 8891 } 8892 8893 if (!(descriptor & 1) || 8894 (!(descriptor & 2) && (level == 3))) { 8895 /* Invalid, or the Reserved level 3 encoding */ 8896 goto do_fault; 8897 } 8898 descaddr = descriptor & descaddrmask; 8899 8900 if ((descriptor & 2) && (level < 3)) { 8901 /* Table entry. The top five bits are attributes which may 8902 * propagate down through lower levels of the table (and 8903 * which are all arranged so that 0 means "no effect", so 8904 * we can gather them up by ORing in the bits at each level). 8905 */ 8906 tableattrs |= extract64(descriptor, 59, 5); 8907 level++; 8908 indexmask = indexmask_grainsize; 8909 continue; 8910 } 8911 /* Block entry at level 1 or 2, or page entry at level 3. 8912 * These are basically the same thing, although the number 8913 * of bits we pull in from the vaddr varies. 8914 */ 8915 page_size = (1ULL << ((stride * (4 - level)) + 3)); 8916 descaddr |= (address & (page_size - 1)); 8917 /* Extract attributes from the descriptor */ 8918 attrs = extract64(descriptor, 2, 10) 8919 | (extract64(descriptor, 52, 12) << 10); 8920 8921 if (mmu_idx == ARMMMUIdx_S2NS) { 8922 /* Stage 2 table descriptors do not include any attribute fields */ 8923 break; 8924 } 8925 /* Merge in attributes from table descriptors */ 8926 attrs |= extract32(tableattrs, 0, 2) << 11; /* XN, PXN */ 8927 attrs |= extract32(tableattrs, 3, 1) << 5; /* APTable[1] => AP[2] */ 8928 /* The sense of AP[1] vs APTable[0] is reversed, as APTable[0] == 1 8929 * means "force PL1 access only", which means forcing AP[1] to 0. 8930 */ 8931 if (extract32(tableattrs, 2, 1)) { 8932 attrs &= ~(1 << 4); 8933 } 8934 attrs |= nstable << 3; /* NS */ 8935 break; 8936 } 8937 /* Here descaddr is the final physical address, and attributes 8938 * are all in attrs. 8939 */ 8940 fault_type = access_fault; 8941 if ((attrs & (1 << 8)) == 0) { 8942 /* Access flag */ 8943 goto do_fault; 8944 } 8945 8946 ap = extract32(attrs, 4, 2); 8947 xn = extract32(attrs, 12, 1); 8948 8949 if (mmu_idx == ARMMMUIdx_S2NS) { 8950 ns = true; 8951 *prot = get_S2prot(env, ap, xn); 8952 } else { 8953 ns = extract32(attrs, 3, 1); 8954 pxn = extract32(attrs, 11, 1); 8955 *prot = get_S1prot(env, mmu_idx, aarch64, ap, ns, xn, pxn); 8956 } 8957 8958 fault_type = permission_fault; 8959 if (!(*prot & (1 << access_type))) { 8960 goto do_fault; 8961 } 8962 8963 if (ns) { 8964 /* The NS bit will (as required by the architecture) have no effect if 8965 * the CPU doesn't support TZ or this is a non-secure translation 8966 * regime, because the attribute will already be non-secure. 8967 */ 8968 txattrs->secure = false; 8969 } 8970 8971 if (cacheattrs != NULL) { 8972 if (mmu_idx == ARMMMUIdx_S2NS) { 8973 cacheattrs->attrs = convert_stage2_attrs(env, 8974 extract32(attrs, 0, 4)); 8975 } else { 8976 /* Index into MAIR registers for cache attributes */ 8977 uint8_t attrindx = extract32(attrs, 0, 3); 8978 uint64_t mair = env->cp15.mair_el[regime_el(env, mmu_idx)]; 8979 assert(attrindx <= 7); 8980 cacheattrs->attrs = extract64(mair, attrindx * 8, 8); 8981 } 8982 cacheattrs->shareability = extract32(attrs, 6, 2); 8983 } 8984 8985 *phys_ptr = descaddr; 8986 *page_size_ptr = page_size; 8987 return false; 8988 8989 do_fault: 8990 /* Long-descriptor format IFSR/DFSR value */ 8991 *fsr = (1 << 9) | (fault_type << 2) | level; 8992 /* Tag the error as S2 for failed S1 PTW at S2 or ordinary S2. */ 8993 fi->stage2 = fi->s1ptw || (mmu_idx == ARMMMUIdx_S2NS); 8994 return true; 8995 } 8996 8997 static inline void get_phys_addr_pmsav7_default(CPUARMState *env, 8998 ARMMMUIdx mmu_idx, 8999 int32_t address, int *prot) 9000 { 9001 if (!arm_feature(env, ARM_FEATURE_M)) { 9002 *prot = PAGE_READ | PAGE_WRITE; 9003 switch (address) { 9004 case 0xF0000000 ... 0xFFFFFFFF: 9005 if (regime_sctlr(env, mmu_idx) & SCTLR_V) { 9006 /* hivecs execing is ok */ 9007 *prot |= PAGE_EXEC; 9008 } 9009 break; 9010 case 0x00000000 ... 0x7FFFFFFF: 9011 *prot |= PAGE_EXEC; 9012 break; 9013 } 9014 } else { 9015 /* Default system address map for M profile cores. 9016 * The architecture specifies which regions are execute-never; 9017 * at the MPU level no other checks are defined. 9018 */ 9019 switch (address) { 9020 case 0x00000000 ... 0x1fffffff: /* ROM */ 9021 case 0x20000000 ... 0x3fffffff: /* SRAM */ 9022 case 0x60000000 ... 0x7fffffff: /* RAM */ 9023 case 0x80000000 ... 0x9fffffff: /* RAM */ 9024 *prot = PAGE_READ | PAGE_WRITE | PAGE_EXEC; 9025 break; 9026 case 0x40000000 ... 0x5fffffff: /* Peripheral */ 9027 case 0xa0000000 ... 0xbfffffff: /* Device */ 9028 case 0xc0000000 ... 0xdfffffff: /* Device */ 9029 case 0xe0000000 ... 0xffffffff: /* System */ 9030 *prot = PAGE_READ | PAGE_WRITE; 9031 break; 9032 default: 9033 g_assert_not_reached(); 9034 } 9035 } 9036 } 9037 9038 static bool pmsav7_use_background_region(ARMCPU *cpu, 9039 ARMMMUIdx mmu_idx, bool is_user) 9040 { 9041 /* Return true if we should use the default memory map as a 9042 * "background" region if there are no hits against any MPU regions. 9043 */ 9044 CPUARMState *env = &cpu->env; 9045 9046 if (is_user) { 9047 return false; 9048 } 9049 9050 if (arm_feature(env, ARM_FEATURE_M)) { 9051 return env->v7m.mpu_ctrl[regime_is_secure(env, mmu_idx)] 9052 & R_V7M_MPU_CTRL_PRIVDEFENA_MASK; 9053 } else { 9054 return regime_sctlr(env, mmu_idx) & SCTLR_BR; 9055 } 9056 } 9057 9058 static inline bool m_is_ppb_region(CPUARMState *env, uint32_t address) 9059 { 9060 /* True if address is in the M profile PPB region 0xe0000000 - 0xe00fffff */ 9061 return arm_feature(env, ARM_FEATURE_M) && 9062 extract32(address, 20, 12) == 0xe00; 9063 } 9064 9065 static inline bool m_is_system_region(CPUARMState *env, uint32_t address) 9066 { 9067 /* True if address is in the M profile system region 9068 * 0xe0000000 - 0xffffffff 9069 */ 9070 return arm_feature(env, ARM_FEATURE_M) && extract32(address, 29, 3) == 0x7; 9071 } 9072 9073 static bool get_phys_addr_pmsav7(CPUARMState *env, uint32_t address, 9074 MMUAccessType access_type, ARMMMUIdx mmu_idx, 9075 hwaddr *phys_ptr, int *prot, uint32_t *fsr) 9076 { 9077 ARMCPU *cpu = arm_env_get_cpu(env); 9078 int n; 9079 bool is_user = regime_is_user(env, mmu_idx); 9080 9081 *phys_ptr = address; 9082 *prot = 0; 9083 9084 if (regime_translation_disabled(env, mmu_idx) || 9085 m_is_ppb_region(env, address)) { 9086 /* MPU disabled or M profile PPB access: use default memory map. 9087 * The other case which uses the default memory map in the 9088 * v7M ARM ARM pseudocode is exception vector reads from the vector 9089 * table. In QEMU those accesses are done in arm_v7m_load_vector(), 9090 * which always does a direct read using address_space_ldl(), rather 9091 * than going via this function, so we don't need to check that here. 9092 */ 9093 get_phys_addr_pmsav7_default(env, mmu_idx, address, prot); 9094 } else { /* MPU enabled */ 9095 for (n = (int)cpu->pmsav7_dregion - 1; n >= 0; n--) { 9096 /* region search */ 9097 uint32_t base = env->pmsav7.drbar[n]; 9098 uint32_t rsize = extract32(env->pmsav7.drsr[n], 1, 5); 9099 uint32_t rmask; 9100 bool srdis = false; 9101 9102 if (!(env->pmsav7.drsr[n] & 0x1)) { 9103 continue; 9104 } 9105 9106 if (!rsize) { 9107 qemu_log_mask(LOG_GUEST_ERROR, 9108 "DRSR[%d]: Rsize field cannot be 0\n", n); 9109 continue; 9110 } 9111 rsize++; 9112 rmask = (1ull << rsize) - 1; 9113 9114 if (base & rmask) { 9115 qemu_log_mask(LOG_GUEST_ERROR, 9116 "DRBAR[%d]: 0x%" PRIx32 " misaligned " 9117 "to DRSR region size, mask = 0x%" PRIx32 "\n", 9118 n, base, rmask); 9119 continue; 9120 } 9121 9122 if (address < base || address > base + rmask) { 9123 continue; 9124 } 9125 9126 /* Region matched */ 9127 9128 if (rsize >= 8) { /* no subregions for regions < 256 bytes */ 9129 int i, snd; 9130 uint32_t srdis_mask; 9131 9132 rsize -= 3; /* sub region size (power of 2) */ 9133 snd = ((address - base) >> rsize) & 0x7; 9134 srdis = extract32(env->pmsav7.drsr[n], snd + 8, 1); 9135 9136 srdis_mask = srdis ? 0x3 : 0x0; 9137 for (i = 2; i <= 8 && rsize < TARGET_PAGE_BITS; i *= 2) { 9138 /* This will check in groups of 2, 4 and then 8, whether 9139 * the subregion bits are consistent. rsize is incremented 9140 * back up to give the region size, considering consistent 9141 * adjacent subregions as one region. Stop testing if rsize 9142 * is already big enough for an entire QEMU page. 9143 */ 9144 int snd_rounded = snd & ~(i - 1); 9145 uint32_t srdis_multi = extract32(env->pmsav7.drsr[n], 9146 snd_rounded + 8, i); 9147 if (srdis_mask ^ srdis_multi) { 9148 break; 9149 } 9150 srdis_mask = (srdis_mask << i) | srdis_mask; 9151 rsize++; 9152 } 9153 } 9154 if (rsize < TARGET_PAGE_BITS) { 9155 qemu_log_mask(LOG_UNIMP, 9156 "DRSR[%d]: No support for MPU (sub)region " 9157 "alignment of %" PRIu32 " bits. Minimum is %d\n", 9158 n, rsize, TARGET_PAGE_BITS); 9159 continue; 9160 } 9161 if (srdis) { 9162 continue; 9163 } 9164 break; 9165 } 9166 9167 if (n == -1) { /* no hits */ 9168 if (!pmsav7_use_background_region(cpu, mmu_idx, is_user)) { 9169 /* background fault */ 9170 *fsr = 0; 9171 return true; 9172 } 9173 get_phys_addr_pmsav7_default(env, mmu_idx, address, prot); 9174 } else { /* a MPU hit! */ 9175 uint32_t ap = extract32(env->pmsav7.dracr[n], 8, 3); 9176 uint32_t xn = extract32(env->pmsav7.dracr[n], 12, 1); 9177 9178 if (m_is_system_region(env, address)) { 9179 /* System space is always execute never */ 9180 xn = 1; 9181 } 9182 9183 if (is_user) { /* User mode AP bit decoding */ 9184 switch (ap) { 9185 case 0: 9186 case 1: 9187 case 5: 9188 break; /* no access */ 9189 case 3: 9190 *prot |= PAGE_WRITE; 9191 /* fall through */ 9192 case 2: 9193 case 6: 9194 *prot |= PAGE_READ | PAGE_EXEC; 9195 break; 9196 default: 9197 qemu_log_mask(LOG_GUEST_ERROR, 9198 "DRACR[%d]: Bad value for AP bits: 0x%" 9199 PRIx32 "\n", n, ap); 9200 } 9201 } else { /* Priv. mode AP bits decoding */ 9202 switch (ap) { 9203 case 0: 9204 break; /* no access */ 9205 case 1: 9206 case 2: 9207 case 3: 9208 *prot |= PAGE_WRITE; 9209 /* fall through */ 9210 case 5: 9211 case 6: 9212 *prot |= PAGE_READ | PAGE_EXEC; 9213 break; 9214 default: 9215 qemu_log_mask(LOG_GUEST_ERROR, 9216 "DRACR[%d]: Bad value for AP bits: 0x%" 9217 PRIx32 "\n", n, ap); 9218 } 9219 } 9220 9221 /* execute never */ 9222 if (xn) { 9223 *prot &= ~PAGE_EXEC; 9224 } 9225 } 9226 } 9227 9228 *fsr = 0x00d; /* Permission fault */ 9229 return !(*prot & (1 << access_type)); 9230 } 9231 9232 static bool v8m_is_sau_exempt(CPUARMState *env, 9233 uint32_t address, MMUAccessType access_type) 9234 { 9235 /* The architecture specifies that certain address ranges are 9236 * exempt from v8M SAU/IDAU checks. 9237 */ 9238 return 9239 (access_type == MMU_INST_FETCH && m_is_system_region(env, address)) || 9240 (address >= 0xe0000000 && address <= 0xe0002fff) || 9241 (address >= 0xe000e000 && address <= 0xe000efff) || 9242 (address >= 0xe002e000 && address <= 0xe002efff) || 9243 (address >= 0xe0040000 && address <= 0xe0041fff) || 9244 (address >= 0xe00ff000 && address <= 0xe00fffff); 9245 } 9246 9247 static void v8m_security_lookup(CPUARMState *env, uint32_t address, 9248 MMUAccessType access_type, ARMMMUIdx mmu_idx, 9249 V8M_SAttributes *sattrs) 9250 { 9251 /* Look up the security attributes for this address. Compare the 9252 * pseudocode SecurityCheck() function. 9253 * We assume the caller has zero-initialized *sattrs. 9254 */ 9255 ARMCPU *cpu = arm_env_get_cpu(env); 9256 int r; 9257 9258 /* TODO: implement IDAU */ 9259 9260 if (access_type == MMU_INST_FETCH && extract32(address, 28, 4) == 0xf) { 9261 /* 0xf0000000..0xffffffff is always S for insn fetches */ 9262 return; 9263 } 9264 9265 if (v8m_is_sau_exempt(env, address, access_type)) { 9266 sattrs->ns = !regime_is_secure(env, mmu_idx); 9267 return; 9268 } 9269 9270 switch (env->sau.ctrl & 3) { 9271 case 0: /* SAU.ENABLE == 0, SAU.ALLNS == 0 */ 9272 break; 9273 case 2: /* SAU.ENABLE == 0, SAU.ALLNS == 1 */ 9274 sattrs->ns = true; 9275 break; 9276 default: /* SAU.ENABLE == 1 */ 9277 for (r = 0; r < cpu->sau_sregion; r++) { 9278 if (env->sau.rlar[r] & 1) { 9279 uint32_t base = env->sau.rbar[r] & ~0x1f; 9280 uint32_t limit = env->sau.rlar[r] | 0x1f; 9281 9282 if (base <= address && limit >= address) { 9283 if (sattrs->srvalid) { 9284 /* If we hit in more than one region then we must report 9285 * as Secure, not NS-Callable, with no valid region 9286 * number info. 9287 */ 9288 sattrs->ns = false; 9289 sattrs->nsc = false; 9290 sattrs->sregion = 0; 9291 sattrs->srvalid = false; 9292 break; 9293 } else { 9294 if (env->sau.rlar[r] & 2) { 9295 sattrs->nsc = true; 9296 } else { 9297 sattrs->ns = true; 9298 } 9299 sattrs->srvalid = true; 9300 sattrs->sregion = r; 9301 } 9302 } 9303 } 9304 } 9305 9306 /* TODO when we support the IDAU then it may override the result here */ 9307 break; 9308 } 9309 } 9310 9311 static bool get_phys_addr_pmsav8(CPUARMState *env, uint32_t address, 9312 MMUAccessType access_type, ARMMMUIdx mmu_idx, 9313 hwaddr *phys_ptr, MemTxAttrs *txattrs, 9314 int *prot, uint32_t *fsr) 9315 { 9316 ARMCPU *cpu = arm_env_get_cpu(env); 9317 bool is_user = regime_is_user(env, mmu_idx); 9318 uint32_t secure = regime_is_secure(env, mmu_idx); 9319 int n; 9320 int matchregion = -1; 9321 bool hit = false; 9322 V8M_SAttributes sattrs = {}; 9323 9324 *phys_ptr = address; 9325 *prot = 0; 9326 9327 if (arm_feature(env, ARM_FEATURE_M_SECURITY)) { 9328 v8m_security_lookup(env, address, access_type, mmu_idx, &sattrs); 9329 if (access_type == MMU_INST_FETCH) { 9330 /* Instruction fetches always use the MMU bank and the 9331 * transaction attribute determined by the fetch address, 9332 * regardless of CPU state. This is painful for QEMU 9333 * to handle, because it would mean we need to encode 9334 * into the mmu_idx not just the (user, negpri) information 9335 * for the current security state but also that for the 9336 * other security state, which would balloon the number 9337 * of mmu_idx values needed alarmingly. 9338 * Fortunately we can avoid this because it's not actually 9339 * possible to arbitrarily execute code from memory with 9340 * the wrong security attribute: it will always generate 9341 * an exception of some kind or another, apart from the 9342 * special case of an NS CPU executing an SG instruction 9343 * in S&NSC memory. So we always just fail the translation 9344 * here and sort things out in the exception handler 9345 * (including possibly emulating an SG instruction). 9346 */ 9347 if (sattrs.ns != !secure) { 9348 *fsr = sattrs.nsc ? M_FAKE_FSR_NSC_EXEC : M_FAKE_FSR_SFAULT; 9349 return true; 9350 } 9351 } else { 9352 /* For data accesses we always use the MMU bank indicated 9353 * by the current CPU state, but the security attributes 9354 * might downgrade a secure access to nonsecure. 9355 */ 9356 if (sattrs.ns) { 9357 txattrs->secure = false; 9358 } else if (!secure) { 9359 /* NS access to S memory must fault. 9360 * Architecturally we should first check whether the 9361 * MPU information for this address indicates that we 9362 * are doing an unaligned access to Device memory, which 9363 * should generate a UsageFault instead. QEMU does not 9364 * currently check for that kind of unaligned access though. 9365 * If we added it we would need to do so as a special case 9366 * for M_FAKE_FSR_SFAULT in arm_v7m_cpu_do_interrupt(). 9367 */ 9368 *fsr = M_FAKE_FSR_SFAULT; 9369 return true; 9370 } 9371 } 9372 } 9373 9374 /* Unlike the ARM ARM pseudocode, we don't need to check whether this 9375 * was an exception vector read from the vector table (which is always 9376 * done using the default system address map), because those accesses 9377 * are done in arm_v7m_load_vector(), which always does a direct 9378 * read using address_space_ldl(), rather than going via this function. 9379 */ 9380 if (regime_translation_disabled(env, mmu_idx)) { /* MPU disabled */ 9381 hit = true; 9382 } else if (m_is_ppb_region(env, address)) { 9383 hit = true; 9384 } else if (pmsav7_use_background_region(cpu, mmu_idx, is_user)) { 9385 hit = true; 9386 } else { 9387 for (n = (int)cpu->pmsav7_dregion - 1; n >= 0; n--) { 9388 /* region search */ 9389 /* Note that the base address is bits [31:5] from the register 9390 * with bits [4:0] all zeroes, but the limit address is bits 9391 * [31:5] from the register with bits [4:0] all ones. 9392 */ 9393 uint32_t base = env->pmsav8.rbar[secure][n] & ~0x1f; 9394 uint32_t limit = env->pmsav8.rlar[secure][n] | 0x1f; 9395 9396 if (!(env->pmsav8.rlar[secure][n] & 0x1)) { 9397 /* Region disabled */ 9398 continue; 9399 } 9400 9401 if (address < base || address > limit) { 9402 continue; 9403 } 9404 9405 if (hit) { 9406 /* Multiple regions match -- always a failure (unlike 9407 * PMSAv7 where highest-numbered-region wins) 9408 */ 9409 *fsr = 0x00d; /* permission fault */ 9410 return true; 9411 } 9412 9413 matchregion = n; 9414 hit = true; 9415 9416 if (base & ~TARGET_PAGE_MASK) { 9417 qemu_log_mask(LOG_UNIMP, 9418 "MPU_RBAR[%d]: No support for MPU region base" 9419 "address of 0x%" PRIx32 ". Minimum alignment is " 9420 "%d\n", 9421 n, base, TARGET_PAGE_BITS); 9422 continue; 9423 } 9424 if ((limit + 1) & ~TARGET_PAGE_MASK) { 9425 qemu_log_mask(LOG_UNIMP, 9426 "MPU_RBAR[%d]: No support for MPU region limit" 9427 "address of 0x%" PRIx32 ". Minimum alignment is " 9428 "%d\n", 9429 n, limit, TARGET_PAGE_BITS); 9430 continue; 9431 } 9432 } 9433 } 9434 9435 if (!hit) { 9436 /* background fault */ 9437 *fsr = 0; 9438 return true; 9439 } 9440 9441 if (matchregion == -1) { 9442 /* hit using the background region */ 9443 get_phys_addr_pmsav7_default(env, mmu_idx, address, prot); 9444 } else { 9445 uint32_t ap = extract32(env->pmsav8.rbar[secure][matchregion], 1, 2); 9446 uint32_t xn = extract32(env->pmsav8.rbar[secure][matchregion], 0, 1); 9447 9448 if (m_is_system_region(env, address)) { 9449 /* System space is always execute never */ 9450 xn = 1; 9451 } 9452 9453 *prot = simple_ap_to_rw_prot(env, mmu_idx, ap); 9454 if (*prot && !xn) { 9455 *prot |= PAGE_EXEC; 9456 } 9457 /* We don't need to look the attribute up in the MAIR0/MAIR1 9458 * registers because that only tells us about cacheability. 9459 */ 9460 } 9461 9462 *fsr = 0x00d; /* Permission fault */ 9463 return !(*prot & (1 << access_type)); 9464 } 9465 9466 static bool get_phys_addr_pmsav5(CPUARMState *env, uint32_t address, 9467 MMUAccessType access_type, ARMMMUIdx mmu_idx, 9468 hwaddr *phys_ptr, int *prot, uint32_t *fsr) 9469 { 9470 int n; 9471 uint32_t mask; 9472 uint32_t base; 9473 bool is_user = regime_is_user(env, mmu_idx); 9474 9475 if (regime_translation_disabled(env, mmu_idx)) { 9476 /* MPU disabled. */ 9477 *phys_ptr = address; 9478 *prot = PAGE_READ | PAGE_WRITE | PAGE_EXEC; 9479 return false; 9480 } 9481 9482 *phys_ptr = address; 9483 for (n = 7; n >= 0; n--) { 9484 base = env->cp15.c6_region[n]; 9485 if ((base & 1) == 0) { 9486 continue; 9487 } 9488 mask = 1 << ((base >> 1) & 0x1f); 9489 /* Keep this shift separate from the above to avoid an 9490 (undefined) << 32. */ 9491 mask = (mask << 1) - 1; 9492 if (((base ^ address) & ~mask) == 0) { 9493 break; 9494 } 9495 } 9496 if (n < 0) { 9497 *fsr = 2; 9498 return true; 9499 } 9500 9501 if (access_type == MMU_INST_FETCH) { 9502 mask = env->cp15.pmsav5_insn_ap; 9503 } else { 9504 mask = env->cp15.pmsav5_data_ap; 9505 } 9506 mask = (mask >> (n * 4)) & 0xf; 9507 switch (mask) { 9508 case 0: 9509 *fsr = 1; 9510 return true; 9511 case 1: 9512 if (is_user) { 9513 *fsr = 1; 9514 return true; 9515 } 9516 *prot = PAGE_READ | PAGE_WRITE; 9517 break; 9518 case 2: 9519 *prot = PAGE_READ; 9520 if (!is_user) { 9521 *prot |= PAGE_WRITE; 9522 } 9523 break; 9524 case 3: 9525 *prot = PAGE_READ | PAGE_WRITE; 9526 break; 9527 case 5: 9528 if (is_user) { 9529 *fsr = 1; 9530 return true; 9531 } 9532 *prot = PAGE_READ; 9533 break; 9534 case 6: 9535 *prot = PAGE_READ; 9536 break; 9537 default: 9538 /* Bad permission. */ 9539 *fsr = 1; 9540 return true; 9541 } 9542 *prot |= PAGE_EXEC; 9543 return false; 9544 } 9545 9546 /* Combine either inner or outer cacheability attributes for normal 9547 * memory, according to table D4-42 and pseudocode procedure 9548 * CombineS1S2AttrHints() of ARM DDI 0487B.b (the ARMv8 ARM). 9549 * 9550 * NB: only stage 1 includes allocation hints (RW bits), leading to 9551 * some asymmetry. 9552 */ 9553 static uint8_t combine_cacheattr_nibble(uint8_t s1, uint8_t s2) 9554 { 9555 if (s1 == 4 || s2 == 4) { 9556 /* non-cacheable has precedence */ 9557 return 4; 9558 } else if (extract32(s1, 2, 2) == 0 || extract32(s1, 2, 2) == 2) { 9559 /* stage 1 write-through takes precedence */ 9560 return s1; 9561 } else if (extract32(s2, 2, 2) == 2) { 9562 /* stage 2 write-through takes precedence, but the allocation hint 9563 * is still taken from stage 1 9564 */ 9565 return (2 << 2) | extract32(s1, 0, 2); 9566 } else { /* write-back */ 9567 return s1; 9568 } 9569 } 9570 9571 /* Combine S1 and S2 cacheability/shareability attributes, per D4.5.4 9572 * and CombineS1S2Desc() 9573 * 9574 * @s1: Attributes from stage 1 walk 9575 * @s2: Attributes from stage 2 walk 9576 */ 9577 static ARMCacheAttrs combine_cacheattrs(ARMCacheAttrs s1, ARMCacheAttrs s2) 9578 { 9579 uint8_t s1lo = extract32(s1.attrs, 0, 4), s2lo = extract32(s2.attrs, 0, 4); 9580 uint8_t s1hi = extract32(s1.attrs, 4, 4), s2hi = extract32(s2.attrs, 4, 4); 9581 ARMCacheAttrs ret; 9582 9583 /* Combine shareability attributes (table D4-43) */ 9584 if (s1.shareability == 2 || s2.shareability == 2) { 9585 /* if either are outer-shareable, the result is outer-shareable */ 9586 ret.shareability = 2; 9587 } else if (s1.shareability == 3 || s2.shareability == 3) { 9588 /* if either are inner-shareable, the result is inner-shareable */ 9589 ret.shareability = 3; 9590 } else { 9591 /* both non-shareable */ 9592 ret.shareability = 0; 9593 } 9594 9595 /* Combine memory type and cacheability attributes */ 9596 if (s1hi == 0 || s2hi == 0) { 9597 /* Device has precedence over normal */ 9598 if (s1lo == 0 || s2lo == 0) { 9599 /* nGnRnE has precedence over anything */ 9600 ret.attrs = 0; 9601 } else if (s1lo == 4 || s2lo == 4) { 9602 /* non-Reordering has precedence over Reordering */ 9603 ret.attrs = 4; /* nGnRE */ 9604 } else if (s1lo == 8 || s2lo == 8) { 9605 /* non-Gathering has precedence over Gathering */ 9606 ret.attrs = 8; /* nGRE */ 9607 } else { 9608 ret.attrs = 0xc; /* GRE */ 9609 } 9610 9611 /* Any location for which the resultant memory type is any 9612 * type of Device memory is always treated as Outer Shareable. 9613 */ 9614 ret.shareability = 2; 9615 } else { /* Normal memory */ 9616 /* Outer/inner cacheability combine independently */ 9617 ret.attrs = combine_cacheattr_nibble(s1hi, s2hi) << 4 9618 | combine_cacheattr_nibble(s1lo, s2lo); 9619 9620 if (ret.attrs == 0x44) { 9621 /* Any location for which the resultant memory type is Normal 9622 * Inner Non-cacheable, Outer Non-cacheable is always treated 9623 * as Outer Shareable. 9624 */ 9625 ret.shareability = 2; 9626 } 9627 } 9628 9629 return ret; 9630 } 9631 9632 9633 /* get_phys_addr - get the physical address for this virtual address 9634 * 9635 * Find the physical address corresponding to the given virtual address, 9636 * by doing a translation table walk on MMU based systems or using the 9637 * MPU state on MPU based systems. 9638 * 9639 * Returns false if the translation was successful. Otherwise, phys_ptr, attrs, 9640 * prot and page_size may not be filled in, and the populated fsr value provides 9641 * information on why the translation aborted, in the format of a 9642 * DFSR/IFSR fault register, with the following caveats: 9643 * * we honour the short vs long DFSR format differences. 9644 * * the WnR bit is never set (the caller must do this). 9645 * * for PSMAv5 based systems we don't bother to return a full FSR format 9646 * value. 9647 * 9648 * @env: CPUARMState 9649 * @address: virtual address to get physical address for 9650 * @access_type: 0 for read, 1 for write, 2 for execute 9651 * @mmu_idx: MMU index indicating required translation regime 9652 * @phys_ptr: set to the physical address corresponding to the virtual address 9653 * @attrs: set to the memory transaction attributes to use 9654 * @prot: set to the permissions for the page containing phys_ptr 9655 * @page_size: set to the size of the page containing phys_ptr 9656 * @fsr: set to the DFSR/IFSR value on failure 9657 * @fi: set to fault info if the translation fails 9658 * @cacheattrs: (if non-NULL) set to the cacheability/shareability attributes 9659 */ 9660 static bool get_phys_addr(CPUARMState *env, target_ulong address, 9661 MMUAccessType access_type, ARMMMUIdx mmu_idx, 9662 hwaddr *phys_ptr, MemTxAttrs *attrs, int *prot, 9663 target_ulong *page_size, uint32_t *fsr, 9664 ARMMMUFaultInfo *fi, ARMCacheAttrs *cacheattrs) 9665 { 9666 if (mmu_idx == ARMMMUIdx_S12NSE0 || mmu_idx == ARMMMUIdx_S12NSE1) { 9667 /* Call ourselves recursively to do the stage 1 and then stage 2 9668 * translations. 9669 */ 9670 if (arm_feature(env, ARM_FEATURE_EL2)) { 9671 hwaddr ipa; 9672 int s2_prot; 9673 int ret; 9674 ARMCacheAttrs cacheattrs2 = {}; 9675 9676 ret = get_phys_addr(env, address, access_type, 9677 stage_1_mmu_idx(mmu_idx), &ipa, attrs, 9678 prot, page_size, fsr, fi, cacheattrs); 9679 9680 /* If S1 fails or S2 is disabled, return early. */ 9681 if (ret || regime_translation_disabled(env, ARMMMUIdx_S2NS)) { 9682 *phys_ptr = ipa; 9683 return ret; 9684 } 9685 9686 /* S1 is done. Now do S2 translation. */ 9687 ret = get_phys_addr_lpae(env, ipa, access_type, ARMMMUIdx_S2NS, 9688 phys_ptr, attrs, &s2_prot, 9689 page_size, fsr, fi, 9690 cacheattrs != NULL ? &cacheattrs2 : NULL); 9691 fi->s2addr = ipa; 9692 /* Combine the S1 and S2 perms. */ 9693 *prot &= s2_prot; 9694 9695 /* Combine the S1 and S2 cache attributes, if needed */ 9696 if (!ret && cacheattrs != NULL) { 9697 *cacheattrs = combine_cacheattrs(*cacheattrs, cacheattrs2); 9698 } 9699 9700 return ret; 9701 } else { 9702 /* 9703 * For non-EL2 CPUs a stage1+stage2 translation is just stage 1. 9704 */ 9705 mmu_idx = stage_1_mmu_idx(mmu_idx); 9706 } 9707 } 9708 9709 /* The page table entries may downgrade secure to non-secure, but 9710 * cannot upgrade an non-secure translation regime's attributes 9711 * to secure. 9712 */ 9713 attrs->secure = regime_is_secure(env, mmu_idx); 9714 attrs->user = regime_is_user(env, mmu_idx); 9715 9716 /* Fast Context Switch Extension. This doesn't exist at all in v8. 9717 * In v7 and earlier it affects all stage 1 translations. 9718 */ 9719 if (address < 0x02000000 && mmu_idx != ARMMMUIdx_S2NS 9720 && !arm_feature(env, ARM_FEATURE_V8)) { 9721 if (regime_el(env, mmu_idx) == 3) { 9722 address += env->cp15.fcseidr_s; 9723 } else { 9724 address += env->cp15.fcseidr_ns; 9725 } 9726 } 9727 9728 if (arm_feature(env, ARM_FEATURE_PMSA)) { 9729 bool ret; 9730 *page_size = TARGET_PAGE_SIZE; 9731 9732 if (arm_feature(env, ARM_FEATURE_V8)) { 9733 /* PMSAv8 */ 9734 ret = get_phys_addr_pmsav8(env, address, access_type, mmu_idx, 9735 phys_ptr, attrs, prot, fsr); 9736 } else if (arm_feature(env, ARM_FEATURE_V7)) { 9737 /* PMSAv7 */ 9738 ret = get_phys_addr_pmsav7(env, address, access_type, mmu_idx, 9739 phys_ptr, prot, fsr); 9740 } else { 9741 /* Pre-v7 MPU */ 9742 ret = get_phys_addr_pmsav5(env, address, access_type, mmu_idx, 9743 phys_ptr, prot, fsr); 9744 } 9745 qemu_log_mask(CPU_LOG_MMU, "PMSA MPU lookup for %s at 0x%08" PRIx32 9746 " mmu_idx %u -> %s (prot %c%c%c)\n", 9747 access_type == MMU_DATA_LOAD ? "reading" : 9748 (access_type == MMU_DATA_STORE ? "writing" : "execute"), 9749 (uint32_t)address, mmu_idx, 9750 ret ? "Miss" : "Hit", 9751 *prot & PAGE_READ ? 'r' : '-', 9752 *prot & PAGE_WRITE ? 'w' : '-', 9753 *prot & PAGE_EXEC ? 'x' : '-'); 9754 9755 return ret; 9756 } 9757 9758 /* Definitely a real MMU, not an MPU */ 9759 9760 if (regime_translation_disabled(env, mmu_idx)) { 9761 /* MMU disabled. */ 9762 *phys_ptr = address; 9763 *prot = PAGE_READ | PAGE_WRITE | PAGE_EXEC; 9764 *page_size = TARGET_PAGE_SIZE; 9765 return 0; 9766 } 9767 9768 if (regime_using_lpae_format(env, mmu_idx)) { 9769 return get_phys_addr_lpae(env, address, access_type, mmu_idx, phys_ptr, 9770 attrs, prot, page_size, fsr, fi, cacheattrs); 9771 } else if (regime_sctlr(env, mmu_idx) & SCTLR_XP) { 9772 return get_phys_addr_v6(env, address, access_type, mmu_idx, phys_ptr, 9773 attrs, prot, page_size, fsr, fi); 9774 } else { 9775 return get_phys_addr_v5(env, address, access_type, mmu_idx, phys_ptr, 9776 prot, page_size, fsr, fi); 9777 } 9778 } 9779 9780 /* Walk the page table and (if the mapping exists) add the page 9781 * to the TLB. Return false on success, or true on failure. Populate 9782 * fsr with ARM DFSR/IFSR fault register format value on failure. 9783 */ 9784 bool arm_tlb_fill(CPUState *cs, vaddr address, 9785 MMUAccessType access_type, int mmu_idx, uint32_t *fsr, 9786 ARMMMUFaultInfo *fi) 9787 { 9788 ARMCPU *cpu = ARM_CPU(cs); 9789 CPUARMState *env = &cpu->env; 9790 hwaddr phys_addr; 9791 target_ulong page_size; 9792 int prot; 9793 int ret; 9794 MemTxAttrs attrs = {}; 9795 9796 ret = get_phys_addr(env, address, access_type, 9797 core_to_arm_mmu_idx(env, mmu_idx), &phys_addr, 9798 &attrs, &prot, &page_size, fsr, fi, NULL); 9799 if (!ret) { 9800 /* Map a single [sub]page. */ 9801 phys_addr &= TARGET_PAGE_MASK; 9802 address &= TARGET_PAGE_MASK; 9803 tlb_set_page_with_attrs(cs, address, phys_addr, attrs, 9804 prot, mmu_idx, page_size); 9805 return 0; 9806 } 9807 9808 return ret; 9809 } 9810 9811 hwaddr arm_cpu_get_phys_page_attrs_debug(CPUState *cs, vaddr addr, 9812 MemTxAttrs *attrs) 9813 { 9814 ARMCPU *cpu = ARM_CPU(cs); 9815 CPUARMState *env = &cpu->env; 9816 hwaddr phys_addr; 9817 target_ulong page_size; 9818 int prot; 9819 bool ret; 9820 uint32_t fsr; 9821 ARMMMUFaultInfo fi = {}; 9822 ARMMMUIdx mmu_idx = core_to_arm_mmu_idx(env, cpu_mmu_index(env, false)); 9823 9824 *attrs = (MemTxAttrs) {}; 9825 9826 ret = get_phys_addr(env, addr, 0, mmu_idx, &phys_addr, 9827 attrs, &prot, &page_size, &fsr, &fi, NULL); 9828 9829 if (ret) { 9830 return -1; 9831 } 9832 return phys_addr; 9833 } 9834 9835 uint32_t HELPER(v7m_mrs)(CPUARMState *env, uint32_t reg) 9836 { 9837 uint32_t mask; 9838 unsigned el = arm_current_el(env); 9839 9840 /* First handle registers which unprivileged can read */ 9841 9842 switch (reg) { 9843 case 0 ... 7: /* xPSR sub-fields */ 9844 mask = 0; 9845 if ((reg & 1) && el) { 9846 mask |= XPSR_EXCP; /* IPSR (unpriv. reads as zero) */ 9847 } 9848 if (!(reg & 4)) { 9849 mask |= XPSR_NZCV | XPSR_Q; /* APSR */ 9850 } 9851 /* EPSR reads as zero */ 9852 return xpsr_read(env) & mask; 9853 break; 9854 case 20: /* CONTROL */ 9855 return env->v7m.control[env->v7m.secure]; 9856 case 0x94: /* CONTROL_NS */ 9857 /* We have to handle this here because unprivileged Secure code 9858 * can read the NS CONTROL register. 9859 */ 9860 if (!env->v7m.secure) { 9861 return 0; 9862 } 9863 return env->v7m.control[M_REG_NS]; 9864 } 9865 9866 if (el == 0) { 9867 return 0; /* unprivileged reads others as zero */ 9868 } 9869 9870 if (arm_feature(env, ARM_FEATURE_M_SECURITY)) { 9871 switch (reg) { 9872 case 0x88: /* MSP_NS */ 9873 if (!env->v7m.secure) { 9874 return 0; 9875 } 9876 return env->v7m.other_ss_msp; 9877 case 0x89: /* PSP_NS */ 9878 if (!env->v7m.secure) { 9879 return 0; 9880 } 9881 return env->v7m.other_ss_psp; 9882 case 0x90: /* PRIMASK_NS */ 9883 if (!env->v7m.secure) { 9884 return 0; 9885 } 9886 return env->v7m.primask[M_REG_NS]; 9887 case 0x91: /* BASEPRI_NS */ 9888 if (!env->v7m.secure) { 9889 return 0; 9890 } 9891 return env->v7m.basepri[M_REG_NS]; 9892 case 0x93: /* FAULTMASK_NS */ 9893 if (!env->v7m.secure) { 9894 return 0; 9895 } 9896 return env->v7m.faultmask[M_REG_NS]; 9897 case 0x98: /* SP_NS */ 9898 { 9899 /* This gives the non-secure SP selected based on whether we're 9900 * currently in handler mode or not, using the NS CONTROL.SPSEL. 9901 */ 9902 bool spsel = env->v7m.control[M_REG_NS] & R_V7M_CONTROL_SPSEL_MASK; 9903 9904 if (!env->v7m.secure) { 9905 return 0; 9906 } 9907 if (!arm_v7m_is_handler_mode(env) && spsel) { 9908 return env->v7m.other_ss_psp; 9909 } else { 9910 return env->v7m.other_ss_msp; 9911 } 9912 } 9913 default: 9914 break; 9915 } 9916 } 9917 9918 switch (reg) { 9919 case 8: /* MSP */ 9920 return (env->v7m.control[env->v7m.secure] & R_V7M_CONTROL_SPSEL_MASK) ? 9921 env->v7m.other_sp : env->regs[13]; 9922 case 9: /* PSP */ 9923 return (env->v7m.control[env->v7m.secure] & R_V7M_CONTROL_SPSEL_MASK) ? 9924 env->regs[13] : env->v7m.other_sp; 9925 case 16: /* PRIMASK */ 9926 return env->v7m.primask[env->v7m.secure]; 9927 case 17: /* BASEPRI */ 9928 case 18: /* BASEPRI_MAX */ 9929 return env->v7m.basepri[env->v7m.secure]; 9930 case 19: /* FAULTMASK */ 9931 return env->v7m.faultmask[env->v7m.secure]; 9932 default: 9933 qemu_log_mask(LOG_GUEST_ERROR, "Attempt to read unknown special" 9934 " register %d\n", reg); 9935 return 0; 9936 } 9937 } 9938 9939 void HELPER(v7m_msr)(CPUARMState *env, uint32_t maskreg, uint32_t val) 9940 { 9941 /* We're passed bits [11..0] of the instruction; extract 9942 * SYSm and the mask bits. 9943 * Invalid combinations of SYSm and mask are UNPREDICTABLE; 9944 * we choose to treat them as if the mask bits were valid. 9945 * NB that the pseudocode 'mask' variable is bits [11..10], 9946 * whereas ours is [11..8]. 9947 */ 9948 uint32_t mask = extract32(maskreg, 8, 4); 9949 uint32_t reg = extract32(maskreg, 0, 8); 9950 9951 if (arm_current_el(env) == 0 && reg > 7) { 9952 /* only xPSR sub-fields may be written by unprivileged */ 9953 return; 9954 } 9955 9956 if (arm_feature(env, ARM_FEATURE_M_SECURITY)) { 9957 switch (reg) { 9958 case 0x88: /* MSP_NS */ 9959 if (!env->v7m.secure) { 9960 return; 9961 } 9962 env->v7m.other_ss_msp = val; 9963 return; 9964 case 0x89: /* PSP_NS */ 9965 if (!env->v7m.secure) { 9966 return; 9967 } 9968 env->v7m.other_ss_psp = val; 9969 return; 9970 case 0x90: /* PRIMASK_NS */ 9971 if (!env->v7m.secure) { 9972 return; 9973 } 9974 env->v7m.primask[M_REG_NS] = val & 1; 9975 return; 9976 case 0x91: /* BASEPRI_NS */ 9977 if (!env->v7m.secure) { 9978 return; 9979 } 9980 env->v7m.basepri[M_REG_NS] = val & 0xff; 9981 return; 9982 case 0x93: /* FAULTMASK_NS */ 9983 if (!env->v7m.secure) { 9984 return; 9985 } 9986 env->v7m.faultmask[M_REG_NS] = val & 1; 9987 return; 9988 case 0x98: /* SP_NS */ 9989 { 9990 /* This gives the non-secure SP selected based on whether we're 9991 * currently in handler mode or not, using the NS CONTROL.SPSEL. 9992 */ 9993 bool spsel = env->v7m.control[M_REG_NS] & R_V7M_CONTROL_SPSEL_MASK; 9994 9995 if (!env->v7m.secure) { 9996 return; 9997 } 9998 if (!arm_v7m_is_handler_mode(env) && spsel) { 9999 env->v7m.other_ss_psp = val; 10000 } else { 10001 env->v7m.other_ss_msp = val; 10002 } 10003 return; 10004 } 10005 default: 10006 break; 10007 } 10008 } 10009 10010 switch (reg) { 10011 case 0 ... 7: /* xPSR sub-fields */ 10012 /* only APSR is actually writable */ 10013 if (!(reg & 4)) { 10014 uint32_t apsrmask = 0; 10015 10016 if (mask & 8) { 10017 apsrmask |= XPSR_NZCV | XPSR_Q; 10018 } 10019 if ((mask & 4) && arm_feature(env, ARM_FEATURE_THUMB_DSP)) { 10020 apsrmask |= XPSR_GE; 10021 } 10022 xpsr_write(env, val, apsrmask); 10023 } 10024 break; 10025 case 8: /* MSP */ 10026 if (env->v7m.control[env->v7m.secure] & R_V7M_CONTROL_SPSEL_MASK) { 10027 env->v7m.other_sp = val; 10028 } else { 10029 env->regs[13] = val; 10030 } 10031 break; 10032 case 9: /* PSP */ 10033 if (env->v7m.control[env->v7m.secure] & R_V7M_CONTROL_SPSEL_MASK) { 10034 env->regs[13] = val; 10035 } else { 10036 env->v7m.other_sp = val; 10037 } 10038 break; 10039 case 16: /* PRIMASK */ 10040 env->v7m.primask[env->v7m.secure] = val & 1; 10041 break; 10042 case 17: /* BASEPRI */ 10043 env->v7m.basepri[env->v7m.secure] = val & 0xff; 10044 break; 10045 case 18: /* BASEPRI_MAX */ 10046 val &= 0xff; 10047 if (val != 0 && (val < env->v7m.basepri[env->v7m.secure] 10048 || env->v7m.basepri[env->v7m.secure] == 0)) { 10049 env->v7m.basepri[env->v7m.secure] = val; 10050 } 10051 break; 10052 case 19: /* FAULTMASK */ 10053 env->v7m.faultmask[env->v7m.secure] = val & 1; 10054 break; 10055 case 20: /* CONTROL */ 10056 /* Writing to the SPSEL bit only has an effect if we are in 10057 * thread mode; other bits can be updated by any privileged code. 10058 * write_v7m_control_spsel() deals with updating the SPSEL bit in 10059 * env->v7m.control, so we only need update the others. 10060 */ 10061 if (!arm_v7m_is_handler_mode(env)) { 10062 write_v7m_control_spsel(env, (val & R_V7M_CONTROL_SPSEL_MASK) != 0); 10063 } 10064 env->v7m.control[env->v7m.secure] &= ~R_V7M_CONTROL_NPRIV_MASK; 10065 env->v7m.control[env->v7m.secure] |= val & R_V7M_CONTROL_NPRIV_MASK; 10066 break; 10067 default: 10068 qemu_log_mask(LOG_GUEST_ERROR, "Attempt to write unknown special" 10069 " register %d\n", reg); 10070 return; 10071 } 10072 } 10073 10074 #endif 10075 10076 void HELPER(dc_zva)(CPUARMState *env, uint64_t vaddr_in) 10077 { 10078 /* Implement DC ZVA, which zeroes a fixed-length block of memory. 10079 * Note that we do not implement the (architecturally mandated) 10080 * alignment fault for attempts to use this on Device memory 10081 * (which matches the usual QEMU behaviour of not implementing either 10082 * alignment faults or any memory attribute handling). 10083 */ 10084 10085 ARMCPU *cpu = arm_env_get_cpu(env); 10086 uint64_t blocklen = 4 << cpu->dcz_blocksize; 10087 uint64_t vaddr = vaddr_in & ~(blocklen - 1); 10088 10089 #ifndef CONFIG_USER_ONLY 10090 { 10091 /* Slightly awkwardly, QEMU's TARGET_PAGE_SIZE may be less than 10092 * the block size so we might have to do more than one TLB lookup. 10093 * We know that in fact for any v8 CPU the page size is at least 4K 10094 * and the block size must be 2K or less, but TARGET_PAGE_SIZE is only 10095 * 1K as an artefact of legacy v5 subpage support being present in the 10096 * same QEMU executable. 10097 */ 10098 int maxidx = DIV_ROUND_UP(blocklen, TARGET_PAGE_SIZE); 10099 void *hostaddr[maxidx]; 10100 int try, i; 10101 unsigned mmu_idx = cpu_mmu_index(env, false); 10102 TCGMemOpIdx oi = make_memop_idx(MO_UB, mmu_idx); 10103 10104 for (try = 0; try < 2; try++) { 10105 10106 for (i = 0; i < maxidx; i++) { 10107 hostaddr[i] = tlb_vaddr_to_host(env, 10108 vaddr + TARGET_PAGE_SIZE * i, 10109 1, mmu_idx); 10110 if (!hostaddr[i]) { 10111 break; 10112 } 10113 } 10114 if (i == maxidx) { 10115 /* If it's all in the TLB it's fair game for just writing to; 10116 * we know we don't need to update dirty status, etc. 10117 */ 10118 for (i = 0; i < maxidx - 1; i++) { 10119 memset(hostaddr[i], 0, TARGET_PAGE_SIZE); 10120 } 10121 memset(hostaddr[i], 0, blocklen - (i * TARGET_PAGE_SIZE)); 10122 return; 10123 } 10124 /* OK, try a store and see if we can populate the tlb. This 10125 * might cause an exception if the memory isn't writable, 10126 * in which case we will longjmp out of here. We must for 10127 * this purpose use the actual register value passed to us 10128 * so that we get the fault address right. 10129 */ 10130 helper_ret_stb_mmu(env, vaddr_in, 0, oi, GETPC()); 10131 /* Now we can populate the other TLB entries, if any */ 10132 for (i = 0; i < maxidx; i++) { 10133 uint64_t va = vaddr + TARGET_PAGE_SIZE * i; 10134 if (va != (vaddr_in & TARGET_PAGE_MASK)) { 10135 helper_ret_stb_mmu(env, va, 0, oi, GETPC()); 10136 } 10137 } 10138 } 10139 10140 /* Slow path (probably attempt to do this to an I/O device or 10141 * similar, or clearing of a block of code we have translations 10142 * cached for). Just do a series of byte writes as the architecture 10143 * demands. It's not worth trying to use a cpu_physical_memory_map(), 10144 * memset(), unmap() sequence here because: 10145 * + we'd need to account for the blocksize being larger than a page 10146 * + the direct-RAM access case is almost always going to be dealt 10147 * with in the fastpath code above, so there's no speed benefit 10148 * + we would have to deal with the map returning NULL because the 10149 * bounce buffer was in use 10150 */ 10151 for (i = 0; i < blocklen; i++) { 10152 helper_ret_stb_mmu(env, vaddr + i, 0, oi, GETPC()); 10153 } 10154 } 10155 #else 10156 memset(g2h(vaddr), 0, blocklen); 10157 #endif 10158 } 10159 10160 /* Note that signed overflow is undefined in C. The following routines are 10161 careful to use unsigned types where modulo arithmetic is required. 10162 Failure to do so _will_ break on newer gcc. */ 10163 10164 /* Signed saturating arithmetic. */ 10165 10166 /* Perform 16-bit signed saturating addition. */ 10167 static inline uint16_t add16_sat(uint16_t a, uint16_t b) 10168 { 10169 uint16_t res; 10170 10171 res = a + b; 10172 if (((res ^ a) & 0x8000) && !((a ^ b) & 0x8000)) { 10173 if (a & 0x8000) 10174 res = 0x8000; 10175 else 10176 res = 0x7fff; 10177 } 10178 return res; 10179 } 10180 10181 /* Perform 8-bit signed saturating addition. */ 10182 static inline uint8_t add8_sat(uint8_t a, uint8_t b) 10183 { 10184 uint8_t res; 10185 10186 res = a + b; 10187 if (((res ^ a) & 0x80) && !((a ^ b) & 0x80)) { 10188 if (a & 0x80) 10189 res = 0x80; 10190 else 10191 res = 0x7f; 10192 } 10193 return res; 10194 } 10195 10196 /* Perform 16-bit signed saturating subtraction. */ 10197 static inline uint16_t sub16_sat(uint16_t a, uint16_t b) 10198 { 10199 uint16_t res; 10200 10201 res = a - b; 10202 if (((res ^ a) & 0x8000) && ((a ^ b) & 0x8000)) { 10203 if (a & 0x8000) 10204 res = 0x8000; 10205 else 10206 res = 0x7fff; 10207 } 10208 return res; 10209 } 10210 10211 /* Perform 8-bit signed saturating subtraction. */ 10212 static inline uint8_t sub8_sat(uint8_t a, uint8_t b) 10213 { 10214 uint8_t res; 10215 10216 res = a - b; 10217 if (((res ^ a) & 0x80) && ((a ^ b) & 0x80)) { 10218 if (a & 0x80) 10219 res = 0x80; 10220 else 10221 res = 0x7f; 10222 } 10223 return res; 10224 } 10225 10226 #define ADD16(a, b, n) RESULT(add16_sat(a, b), n, 16); 10227 #define SUB16(a, b, n) RESULT(sub16_sat(a, b), n, 16); 10228 #define ADD8(a, b, n) RESULT(add8_sat(a, b), n, 8); 10229 #define SUB8(a, b, n) RESULT(sub8_sat(a, b), n, 8); 10230 #define PFX q 10231 10232 #include "op_addsub.h" 10233 10234 /* Unsigned saturating arithmetic. */ 10235 static inline uint16_t add16_usat(uint16_t a, uint16_t b) 10236 { 10237 uint16_t res; 10238 res = a + b; 10239 if (res < a) 10240 res = 0xffff; 10241 return res; 10242 } 10243 10244 static inline uint16_t sub16_usat(uint16_t a, uint16_t b) 10245 { 10246 if (a > b) 10247 return a - b; 10248 else 10249 return 0; 10250 } 10251 10252 static inline uint8_t add8_usat(uint8_t a, uint8_t b) 10253 { 10254 uint8_t res; 10255 res = a + b; 10256 if (res < a) 10257 res = 0xff; 10258 return res; 10259 } 10260 10261 static inline uint8_t sub8_usat(uint8_t a, uint8_t b) 10262 { 10263 if (a > b) 10264 return a - b; 10265 else 10266 return 0; 10267 } 10268 10269 #define ADD16(a, b, n) RESULT(add16_usat(a, b), n, 16); 10270 #define SUB16(a, b, n) RESULT(sub16_usat(a, b), n, 16); 10271 #define ADD8(a, b, n) RESULT(add8_usat(a, b), n, 8); 10272 #define SUB8(a, b, n) RESULT(sub8_usat(a, b), n, 8); 10273 #define PFX uq 10274 10275 #include "op_addsub.h" 10276 10277 /* Signed modulo arithmetic. */ 10278 #define SARITH16(a, b, n, op) do { \ 10279 int32_t sum; \ 10280 sum = (int32_t)(int16_t)(a) op (int32_t)(int16_t)(b); \ 10281 RESULT(sum, n, 16); \ 10282 if (sum >= 0) \ 10283 ge |= 3 << (n * 2); \ 10284 } while(0) 10285 10286 #define SARITH8(a, b, n, op) do { \ 10287 int32_t sum; \ 10288 sum = (int32_t)(int8_t)(a) op (int32_t)(int8_t)(b); \ 10289 RESULT(sum, n, 8); \ 10290 if (sum >= 0) \ 10291 ge |= 1 << n; \ 10292 } while(0) 10293 10294 10295 #define ADD16(a, b, n) SARITH16(a, b, n, +) 10296 #define SUB16(a, b, n) SARITH16(a, b, n, -) 10297 #define ADD8(a, b, n) SARITH8(a, b, n, +) 10298 #define SUB8(a, b, n) SARITH8(a, b, n, -) 10299 #define PFX s 10300 #define ARITH_GE 10301 10302 #include "op_addsub.h" 10303 10304 /* Unsigned modulo arithmetic. */ 10305 #define ADD16(a, b, n) do { \ 10306 uint32_t sum; \ 10307 sum = (uint32_t)(uint16_t)(a) + (uint32_t)(uint16_t)(b); \ 10308 RESULT(sum, n, 16); \ 10309 if ((sum >> 16) == 1) \ 10310 ge |= 3 << (n * 2); \ 10311 } while(0) 10312 10313 #define ADD8(a, b, n) do { \ 10314 uint32_t sum; \ 10315 sum = (uint32_t)(uint8_t)(a) + (uint32_t)(uint8_t)(b); \ 10316 RESULT(sum, n, 8); \ 10317 if ((sum >> 8) == 1) \ 10318 ge |= 1 << n; \ 10319 } while(0) 10320 10321 #define SUB16(a, b, n) do { \ 10322 uint32_t sum; \ 10323 sum = (uint32_t)(uint16_t)(a) - (uint32_t)(uint16_t)(b); \ 10324 RESULT(sum, n, 16); \ 10325 if ((sum >> 16) == 0) \ 10326 ge |= 3 << (n * 2); \ 10327 } while(0) 10328 10329 #define SUB8(a, b, n) do { \ 10330 uint32_t sum; \ 10331 sum = (uint32_t)(uint8_t)(a) - (uint32_t)(uint8_t)(b); \ 10332 RESULT(sum, n, 8); \ 10333 if ((sum >> 8) == 0) \ 10334 ge |= 1 << n; \ 10335 } while(0) 10336 10337 #define PFX u 10338 #define ARITH_GE 10339 10340 #include "op_addsub.h" 10341 10342 /* Halved signed arithmetic. */ 10343 #define ADD16(a, b, n) \ 10344 RESULT(((int32_t)(int16_t)(a) + (int32_t)(int16_t)(b)) >> 1, n, 16) 10345 #define SUB16(a, b, n) \ 10346 RESULT(((int32_t)(int16_t)(a) - (int32_t)(int16_t)(b)) >> 1, n, 16) 10347 #define ADD8(a, b, n) \ 10348 RESULT(((int32_t)(int8_t)(a) + (int32_t)(int8_t)(b)) >> 1, n, 8) 10349 #define SUB8(a, b, n) \ 10350 RESULT(((int32_t)(int8_t)(a) - (int32_t)(int8_t)(b)) >> 1, n, 8) 10351 #define PFX sh 10352 10353 #include "op_addsub.h" 10354 10355 /* Halved unsigned arithmetic. */ 10356 #define ADD16(a, b, n) \ 10357 RESULT(((uint32_t)(uint16_t)(a) + (uint32_t)(uint16_t)(b)) >> 1, n, 16) 10358 #define SUB16(a, b, n) \ 10359 RESULT(((uint32_t)(uint16_t)(a) - (uint32_t)(uint16_t)(b)) >> 1, n, 16) 10360 #define ADD8(a, b, n) \ 10361 RESULT(((uint32_t)(uint8_t)(a) + (uint32_t)(uint8_t)(b)) >> 1, n, 8) 10362 #define SUB8(a, b, n) \ 10363 RESULT(((uint32_t)(uint8_t)(a) - (uint32_t)(uint8_t)(b)) >> 1, n, 8) 10364 #define PFX uh 10365 10366 #include "op_addsub.h" 10367 10368 static inline uint8_t do_usad(uint8_t a, uint8_t b) 10369 { 10370 if (a > b) 10371 return a - b; 10372 else 10373 return b - a; 10374 } 10375 10376 /* Unsigned sum of absolute byte differences. */ 10377 uint32_t HELPER(usad8)(uint32_t a, uint32_t b) 10378 { 10379 uint32_t sum; 10380 sum = do_usad(a, b); 10381 sum += do_usad(a >> 8, b >> 8); 10382 sum += do_usad(a >> 16, b >>16); 10383 sum += do_usad(a >> 24, b >> 24); 10384 return sum; 10385 } 10386 10387 /* For ARMv6 SEL instruction. */ 10388 uint32_t HELPER(sel_flags)(uint32_t flags, uint32_t a, uint32_t b) 10389 { 10390 uint32_t mask; 10391 10392 mask = 0; 10393 if (flags & 1) 10394 mask |= 0xff; 10395 if (flags & 2) 10396 mask |= 0xff00; 10397 if (flags & 4) 10398 mask |= 0xff0000; 10399 if (flags & 8) 10400 mask |= 0xff000000; 10401 return (a & mask) | (b & ~mask); 10402 } 10403 10404 /* VFP support. We follow the convention used for VFP instructions: 10405 Single precision routines have a "s" suffix, double precision a 10406 "d" suffix. */ 10407 10408 /* Convert host exception flags to vfp form. */ 10409 static inline int vfp_exceptbits_from_host(int host_bits) 10410 { 10411 int target_bits = 0; 10412 10413 if (host_bits & float_flag_invalid) 10414 target_bits |= 1; 10415 if (host_bits & float_flag_divbyzero) 10416 target_bits |= 2; 10417 if (host_bits & float_flag_overflow) 10418 target_bits |= 4; 10419 if (host_bits & (float_flag_underflow | float_flag_output_denormal)) 10420 target_bits |= 8; 10421 if (host_bits & float_flag_inexact) 10422 target_bits |= 0x10; 10423 if (host_bits & float_flag_input_denormal) 10424 target_bits |= 0x80; 10425 return target_bits; 10426 } 10427 10428 uint32_t HELPER(vfp_get_fpscr)(CPUARMState *env) 10429 { 10430 int i; 10431 uint32_t fpscr; 10432 10433 fpscr = (env->vfp.xregs[ARM_VFP_FPSCR] & 0xffc8ffff) 10434 | (env->vfp.vec_len << 16) 10435 | (env->vfp.vec_stride << 20); 10436 i = get_float_exception_flags(&env->vfp.fp_status); 10437 i |= get_float_exception_flags(&env->vfp.standard_fp_status); 10438 fpscr |= vfp_exceptbits_from_host(i); 10439 return fpscr; 10440 } 10441 10442 uint32_t vfp_get_fpscr(CPUARMState *env) 10443 { 10444 return HELPER(vfp_get_fpscr)(env); 10445 } 10446 10447 /* Convert vfp exception flags to target form. */ 10448 static inline int vfp_exceptbits_to_host(int target_bits) 10449 { 10450 int host_bits = 0; 10451 10452 if (target_bits & 1) 10453 host_bits |= float_flag_invalid; 10454 if (target_bits & 2) 10455 host_bits |= float_flag_divbyzero; 10456 if (target_bits & 4) 10457 host_bits |= float_flag_overflow; 10458 if (target_bits & 8) 10459 host_bits |= float_flag_underflow; 10460 if (target_bits & 0x10) 10461 host_bits |= float_flag_inexact; 10462 if (target_bits & 0x80) 10463 host_bits |= float_flag_input_denormal; 10464 return host_bits; 10465 } 10466 10467 void HELPER(vfp_set_fpscr)(CPUARMState *env, uint32_t val) 10468 { 10469 int i; 10470 uint32_t changed; 10471 10472 changed = env->vfp.xregs[ARM_VFP_FPSCR]; 10473 env->vfp.xregs[ARM_VFP_FPSCR] = (val & 0xffc8ffff); 10474 env->vfp.vec_len = (val >> 16) & 7; 10475 env->vfp.vec_stride = (val >> 20) & 3; 10476 10477 changed ^= val; 10478 if (changed & (3 << 22)) { 10479 i = (val >> 22) & 3; 10480 switch (i) { 10481 case FPROUNDING_TIEEVEN: 10482 i = float_round_nearest_even; 10483 break; 10484 case FPROUNDING_POSINF: 10485 i = float_round_up; 10486 break; 10487 case FPROUNDING_NEGINF: 10488 i = float_round_down; 10489 break; 10490 case FPROUNDING_ZERO: 10491 i = float_round_to_zero; 10492 break; 10493 } 10494 set_float_rounding_mode(i, &env->vfp.fp_status); 10495 } 10496 if (changed & (1 << 24)) { 10497 set_flush_to_zero((val & (1 << 24)) != 0, &env->vfp.fp_status); 10498 set_flush_inputs_to_zero((val & (1 << 24)) != 0, &env->vfp.fp_status); 10499 } 10500 if (changed & (1 << 25)) 10501 set_default_nan_mode((val & (1 << 25)) != 0, &env->vfp.fp_status); 10502 10503 i = vfp_exceptbits_to_host(val); 10504 set_float_exception_flags(i, &env->vfp.fp_status); 10505 set_float_exception_flags(0, &env->vfp.standard_fp_status); 10506 } 10507 10508 void vfp_set_fpscr(CPUARMState *env, uint32_t val) 10509 { 10510 HELPER(vfp_set_fpscr)(env, val); 10511 } 10512 10513 #define VFP_HELPER(name, p) HELPER(glue(glue(vfp_,name),p)) 10514 10515 #define VFP_BINOP(name) \ 10516 float32 VFP_HELPER(name, s)(float32 a, float32 b, void *fpstp) \ 10517 { \ 10518 float_status *fpst = fpstp; \ 10519 return float32_ ## name(a, b, fpst); \ 10520 } \ 10521 float64 VFP_HELPER(name, d)(float64 a, float64 b, void *fpstp) \ 10522 { \ 10523 float_status *fpst = fpstp; \ 10524 return float64_ ## name(a, b, fpst); \ 10525 } 10526 VFP_BINOP(add) 10527 VFP_BINOP(sub) 10528 VFP_BINOP(mul) 10529 VFP_BINOP(div) 10530 VFP_BINOP(min) 10531 VFP_BINOP(max) 10532 VFP_BINOP(minnum) 10533 VFP_BINOP(maxnum) 10534 #undef VFP_BINOP 10535 10536 float32 VFP_HELPER(neg, s)(float32 a) 10537 { 10538 return float32_chs(a); 10539 } 10540 10541 float64 VFP_HELPER(neg, d)(float64 a) 10542 { 10543 return float64_chs(a); 10544 } 10545 10546 float32 VFP_HELPER(abs, s)(float32 a) 10547 { 10548 return float32_abs(a); 10549 } 10550 10551 float64 VFP_HELPER(abs, d)(float64 a) 10552 { 10553 return float64_abs(a); 10554 } 10555 10556 float32 VFP_HELPER(sqrt, s)(float32 a, CPUARMState *env) 10557 { 10558 return float32_sqrt(a, &env->vfp.fp_status); 10559 } 10560 10561 float64 VFP_HELPER(sqrt, d)(float64 a, CPUARMState *env) 10562 { 10563 return float64_sqrt(a, &env->vfp.fp_status); 10564 } 10565 10566 /* XXX: check quiet/signaling case */ 10567 #define DO_VFP_cmp(p, type) \ 10568 void VFP_HELPER(cmp, p)(type a, type b, CPUARMState *env) \ 10569 { \ 10570 uint32_t flags; \ 10571 switch(type ## _compare_quiet(a, b, &env->vfp.fp_status)) { \ 10572 case 0: flags = 0x6; break; \ 10573 case -1: flags = 0x8; break; \ 10574 case 1: flags = 0x2; break; \ 10575 default: case 2: flags = 0x3; break; \ 10576 } \ 10577 env->vfp.xregs[ARM_VFP_FPSCR] = (flags << 28) \ 10578 | (env->vfp.xregs[ARM_VFP_FPSCR] & 0x0fffffff); \ 10579 } \ 10580 void VFP_HELPER(cmpe, p)(type a, type b, CPUARMState *env) \ 10581 { \ 10582 uint32_t flags; \ 10583 switch(type ## _compare(a, b, &env->vfp.fp_status)) { \ 10584 case 0: flags = 0x6; break; \ 10585 case -1: flags = 0x8; break; \ 10586 case 1: flags = 0x2; break; \ 10587 default: case 2: flags = 0x3; break; \ 10588 } \ 10589 env->vfp.xregs[ARM_VFP_FPSCR] = (flags << 28) \ 10590 | (env->vfp.xregs[ARM_VFP_FPSCR] & 0x0fffffff); \ 10591 } 10592 DO_VFP_cmp(s, float32) 10593 DO_VFP_cmp(d, float64) 10594 #undef DO_VFP_cmp 10595 10596 /* Integer to float and float to integer conversions */ 10597 10598 #define CONV_ITOF(name, fsz, sign) \ 10599 float##fsz HELPER(name)(uint32_t x, void *fpstp) \ 10600 { \ 10601 float_status *fpst = fpstp; \ 10602 return sign##int32_to_##float##fsz((sign##int32_t)x, fpst); \ 10603 } 10604 10605 #define CONV_FTOI(name, fsz, sign, round) \ 10606 uint32_t HELPER(name)(float##fsz x, void *fpstp) \ 10607 { \ 10608 float_status *fpst = fpstp; \ 10609 if (float##fsz##_is_any_nan(x)) { \ 10610 float_raise(float_flag_invalid, fpst); \ 10611 return 0; \ 10612 } \ 10613 return float##fsz##_to_##sign##int32##round(x, fpst); \ 10614 } 10615 10616 #define FLOAT_CONVS(name, p, fsz, sign) \ 10617 CONV_ITOF(vfp_##name##to##p, fsz, sign) \ 10618 CONV_FTOI(vfp_to##name##p, fsz, sign, ) \ 10619 CONV_FTOI(vfp_to##name##z##p, fsz, sign, _round_to_zero) 10620 10621 FLOAT_CONVS(si, s, 32, ) 10622 FLOAT_CONVS(si, d, 64, ) 10623 FLOAT_CONVS(ui, s, 32, u) 10624 FLOAT_CONVS(ui, d, 64, u) 10625 10626 #undef CONV_ITOF 10627 #undef CONV_FTOI 10628 #undef FLOAT_CONVS 10629 10630 /* floating point conversion */ 10631 float64 VFP_HELPER(fcvtd, s)(float32 x, CPUARMState *env) 10632 { 10633 float64 r = float32_to_float64(x, &env->vfp.fp_status); 10634 /* ARM requires that S<->D conversion of any kind of NaN generates 10635 * a quiet NaN by forcing the most significant frac bit to 1. 10636 */ 10637 return float64_maybe_silence_nan(r, &env->vfp.fp_status); 10638 } 10639 10640 float32 VFP_HELPER(fcvts, d)(float64 x, CPUARMState *env) 10641 { 10642 float32 r = float64_to_float32(x, &env->vfp.fp_status); 10643 /* ARM requires that S<->D conversion of any kind of NaN generates 10644 * a quiet NaN by forcing the most significant frac bit to 1. 10645 */ 10646 return float32_maybe_silence_nan(r, &env->vfp.fp_status); 10647 } 10648 10649 /* VFP3 fixed point conversion. */ 10650 #define VFP_CONV_FIX_FLOAT(name, p, fsz, isz, itype) \ 10651 float##fsz HELPER(vfp_##name##to##p)(uint##isz##_t x, uint32_t shift, \ 10652 void *fpstp) \ 10653 { \ 10654 float_status *fpst = fpstp; \ 10655 float##fsz tmp; \ 10656 tmp = itype##_to_##float##fsz(x, fpst); \ 10657 return float##fsz##_scalbn(tmp, -(int)shift, fpst); \ 10658 } 10659 10660 /* Notice that we want only input-denormal exception flags from the 10661 * scalbn operation: the other possible flags (overflow+inexact if 10662 * we overflow to infinity, output-denormal) aren't correct for the 10663 * complete scale-and-convert operation. 10664 */ 10665 #define VFP_CONV_FLOAT_FIX_ROUND(name, p, fsz, isz, itype, round) \ 10666 uint##isz##_t HELPER(vfp_to##name##p##round)(float##fsz x, \ 10667 uint32_t shift, \ 10668 void *fpstp) \ 10669 { \ 10670 float_status *fpst = fpstp; \ 10671 int old_exc_flags = get_float_exception_flags(fpst); \ 10672 float##fsz tmp; \ 10673 if (float##fsz##_is_any_nan(x)) { \ 10674 float_raise(float_flag_invalid, fpst); \ 10675 return 0; \ 10676 } \ 10677 tmp = float##fsz##_scalbn(x, shift, fpst); \ 10678 old_exc_flags |= get_float_exception_flags(fpst) \ 10679 & float_flag_input_denormal; \ 10680 set_float_exception_flags(old_exc_flags, fpst); \ 10681 return float##fsz##_to_##itype##round(tmp, fpst); \ 10682 } 10683 10684 #define VFP_CONV_FIX(name, p, fsz, isz, itype) \ 10685 VFP_CONV_FIX_FLOAT(name, p, fsz, isz, itype) \ 10686 VFP_CONV_FLOAT_FIX_ROUND(name, p, fsz, isz, itype, _round_to_zero) \ 10687 VFP_CONV_FLOAT_FIX_ROUND(name, p, fsz, isz, itype, ) 10688 10689 #define VFP_CONV_FIX_A64(name, p, fsz, isz, itype) \ 10690 VFP_CONV_FIX_FLOAT(name, p, fsz, isz, itype) \ 10691 VFP_CONV_FLOAT_FIX_ROUND(name, p, fsz, isz, itype, ) 10692 10693 VFP_CONV_FIX(sh, d, 64, 64, int16) 10694 VFP_CONV_FIX(sl, d, 64, 64, int32) 10695 VFP_CONV_FIX_A64(sq, d, 64, 64, int64) 10696 VFP_CONV_FIX(uh, d, 64, 64, uint16) 10697 VFP_CONV_FIX(ul, d, 64, 64, uint32) 10698 VFP_CONV_FIX_A64(uq, d, 64, 64, uint64) 10699 VFP_CONV_FIX(sh, s, 32, 32, int16) 10700 VFP_CONV_FIX(sl, s, 32, 32, int32) 10701 VFP_CONV_FIX_A64(sq, s, 32, 64, int64) 10702 VFP_CONV_FIX(uh, s, 32, 32, uint16) 10703 VFP_CONV_FIX(ul, s, 32, 32, uint32) 10704 VFP_CONV_FIX_A64(uq, s, 32, 64, uint64) 10705 #undef VFP_CONV_FIX 10706 #undef VFP_CONV_FIX_FLOAT 10707 #undef VFP_CONV_FLOAT_FIX_ROUND 10708 10709 /* Set the current fp rounding mode and return the old one. 10710 * The argument is a softfloat float_round_ value. 10711 */ 10712 uint32_t HELPER(set_rmode)(uint32_t rmode, CPUARMState *env) 10713 { 10714 float_status *fp_status = &env->vfp.fp_status; 10715 10716 uint32_t prev_rmode = get_float_rounding_mode(fp_status); 10717 set_float_rounding_mode(rmode, fp_status); 10718 10719 return prev_rmode; 10720 } 10721 10722 /* Set the current fp rounding mode in the standard fp status and return 10723 * the old one. This is for NEON instructions that need to change the 10724 * rounding mode but wish to use the standard FPSCR values for everything 10725 * else. Always set the rounding mode back to the correct value after 10726 * modifying it. 10727 * The argument is a softfloat float_round_ value. 10728 */ 10729 uint32_t HELPER(set_neon_rmode)(uint32_t rmode, CPUARMState *env) 10730 { 10731 float_status *fp_status = &env->vfp.standard_fp_status; 10732 10733 uint32_t prev_rmode = get_float_rounding_mode(fp_status); 10734 set_float_rounding_mode(rmode, fp_status); 10735 10736 return prev_rmode; 10737 } 10738 10739 /* Half precision conversions. */ 10740 static float32 do_fcvt_f16_to_f32(uint32_t a, CPUARMState *env, float_status *s) 10741 { 10742 int ieee = (env->vfp.xregs[ARM_VFP_FPSCR] & (1 << 26)) == 0; 10743 float32 r = float16_to_float32(make_float16(a), ieee, s); 10744 if (ieee) { 10745 return float32_maybe_silence_nan(r, s); 10746 } 10747 return r; 10748 } 10749 10750 static uint32_t do_fcvt_f32_to_f16(float32 a, CPUARMState *env, float_status *s) 10751 { 10752 int ieee = (env->vfp.xregs[ARM_VFP_FPSCR] & (1 << 26)) == 0; 10753 float16 r = float32_to_float16(a, ieee, s); 10754 if (ieee) { 10755 r = float16_maybe_silence_nan(r, s); 10756 } 10757 return float16_val(r); 10758 } 10759 10760 float32 HELPER(neon_fcvt_f16_to_f32)(uint32_t a, CPUARMState *env) 10761 { 10762 return do_fcvt_f16_to_f32(a, env, &env->vfp.standard_fp_status); 10763 } 10764 10765 uint32_t HELPER(neon_fcvt_f32_to_f16)(float32 a, CPUARMState *env) 10766 { 10767 return do_fcvt_f32_to_f16(a, env, &env->vfp.standard_fp_status); 10768 } 10769 10770 float32 HELPER(vfp_fcvt_f16_to_f32)(uint32_t a, CPUARMState *env) 10771 { 10772 return do_fcvt_f16_to_f32(a, env, &env->vfp.fp_status); 10773 } 10774 10775 uint32_t HELPER(vfp_fcvt_f32_to_f16)(float32 a, CPUARMState *env) 10776 { 10777 return do_fcvt_f32_to_f16(a, env, &env->vfp.fp_status); 10778 } 10779 10780 float64 HELPER(vfp_fcvt_f16_to_f64)(uint32_t a, CPUARMState *env) 10781 { 10782 int ieee = (env->vfp.xregs[ARM_VFP_FPSCR] & (1 << 26)) == 0; 10783 float64 r = float16_to_float64(make_float16(a), ieee, &env->vfp.fp_status); 10784 if (ieee) { 10785 return float64_maybe_silence_nan(r, &env->vfp.fp_status); 10786 } 10787 return r; 10788 } 10789 10790 uint32_t HELPER(vfp_fcvt_f64_to_f16)(float64 a, CPUARMState *env) 10791 { 10792 int ieee = (env->vfp.xregs[ARM_VFP_FPSCR] & (1 << 26)) == 0; 10793 float16 r = float64_to_float16(a, ieee, &env->vfp.fp_status); 10794 if (ieee) { 10795 r = float16_maybe_silence_nan(r, &env->vfp.fp_status); 10796 } 10797 return float16_val(r); 10798 } 10799 10800 #define float32_two make_float32(0x40000000) 10801 #define float32_three make_float32(0x40400000) 10802 #define float32_one_point_five make_float32(0x3fc00000) 10803 10804 float32 HELPER(recps_f32)(float32 a, float32 b, CPUARMState *env) 10805 { 10806 float_status *s = &env->vfp.standard_fp_status; 10807 if ((float32_is_infinity(a) && float32_is_zero_or_denormal(b)) || 10808 (float32_is_infinity(b) && float32_is_zero_or_denormal(a))) { 10809 if (!(float32_is_zero(a) || float32_is_zero(b))) { 10810 float_raise(float_flag_input_denormal, s); 10811 } 10812 return float32_two; 10813 } 10814 return float32_sub(float32_two, float32_mul(a, b, s), s); 10815 } 10816 10817 float32 HELPER(rsqrts_f32)(float32 a, float32 b, CPUARMState *env) 10818 { 10819 float_status *s = &env->vfp.standard_fp_status; 10820 float32 product; 10821 if ((float32_is_infinity(a) && float32_is_zero_or_denormal(b)) || 10822 (float32_is_infinity(b) && float32_is_zero_or_denormal(a))) { 10823 if (!(float32_is_zero(a) || float32_is_zero(b))) { 10824 float_raise(float_flag_input_denormal, s); 10825 } 10826 return float32_one_point_five; 10827 } 10828 product = float32_mul(a, b, s); 10829 return float32_div(float32_sub(float32_three, product, s), float32_two, s); 10830 } 10831 10832 /* NEON helpers. */ 10833 10834 /* Constants 256 and 512 are used in some helpers; we avoid relying on 10835 * int->float conversions at run-time. */ 10836 #define float64_256 make_float64(0x4070000000000000LL) 10837 #define float64_512 make_float64(0x4080000000000000LL) 10838 #define float32_maxnorm make_float32(0x7f7fffff) 10839 #define float64_maxnorm make_float64(0x7fefffffffffffffLL) 10840 10841 /* Reciprocal functions 10842 * 10843 * The algorithm that must be used to calculate the estimate 10844 * is specified by the ARM ARM, see FPRecipEstimate() 10845 */ 10846 10847 static float64 recip_estimate(float64 a, float_status *real_fp_status) 10848 { 10849 /* These calculations mustn't set any fp exception flags, 10850 * so we use a local copy of the fp_status. 10851 */ 10852 float_status dummy_status = *real_fp_status; 10853 float_status *s = &dummy_status; 10854 /* q = (int)(a * 512.0) */ 10855 float64 q = float64_mul(float64_512, a, s); 10856 int64_t q_int = float64_to_int64_round_to_zero(q, s); 10857 10858 /* r = 1.0 / (((double)q + 0.5) / 512.0) */ 10859 q = int64_to_float64(q_int, s); 10860 q = float64_add(q, float64_half, s); 10861 q = float64_div(q, float64_512, s); 10862 q = float64_div(float64_one, q, s); 10863 10864 /* s = (int)(256.0 * r + 0.5) */ 10865 q = float64_mul(q, float64_256, s); 10866 q = float64_add(q, float64_half, s); 10867 q_int = float64_to_int64_round_to_zero(q, s); 10868 10869 /* return (double)s / 256.0 */ 10870 return float64_div(int64_to_float64(q_int, s), float64_256, s); 10871 } 10872 10873 /* Common wrapper to call recip_estimate */ 10874 static float64 call_recip_estimate(float64 num, int off, float_status *fpst) 10875 { 10876 uint64_t val64 = float64_val(num); 10877 uint64_t frac = extract64(val64, 0, 52); 10878 int64_t exp = extract64(val64, 52, 11); 10879 uint64_t sbit; 10880 float64 scaled, estimate; 10881 10882 /* Generate the scaled number for the estimate function */ 10883 if (exp == 0) { 10884 if (extract64(frac, 51, 1) == 0) { 10885 exp = -1; 10886 frac = extract64(frac, 0, 50) << 2; 10887 } else { 10888 frac = extract64(frac, 0, 51) << 1; 10889 } 10890 } 10891 10892 /* scaled = '0' : '01111111110' : fraction<51:44> : Zeros(44); */ 10893 scaled = make_float64((0x3feULL << 52) 10894 | extract64(frac, 44, 8) << 44); 10895 10896 estimate = recip_estimate(scaled, fpst); 10897 10898 /* Build new result */ 10899 val64 = float64_val(estimate); 10900 sbit = 0x8000000000000000ULL & val64; 10901 exp = off - exp; 10902 frac = extract64(val64, 0, 52); 10903 10904 if (exp == 0) { 10905 frac = 1ULL << 51 | extract64(frac, 1, 51); 10906 } else if (exp == -1) { 10907 frac = 1ULL << 50 | extract64(frac, 2, 50); 10908 exp = 0; 10909 } 10910 10911 return make_float64(sbit | (exp << 52) | frac); 10912 } 10913 10914 static bool round_to_inf(float_status *fpst, bool sign_bit) 10915 { 10916 switch (fpst->float_rounding_mode) { 10917 case float_round_nearest_even: /* Round to Nearest */ 10918 return true; 10919 case float_round_up: /* Round to +Inf */ 10920 return !sign_bit; 10921 case float_round_down: /* Round to -Inf */ 10922 return sign_bit; 10923 case float_round_to_zero: /* Round to Zero */ 10924 return false; 10925 } 10926 10927 g_assert_not_reached(); 10928 } 10929 10930 float32 HELPER(recpe_f32)(float32 input, void *fpstp) 10931 { 10932 float_status *fpst = fpstp; 10933 float32 f32 = float32_squash_input_denormal(input, fpst); 10934 uint32_t f32_val = float32_val(f32); 10935 uint32_t f32_sbit = 0x80000000ULL & f32_val; 10936 int32_t f32_exp = extract32(f32_val, 23, 8); 10937 uint32_t f32_frac = extract32(f32_val, 0, 23); 10938 float64 f64, r64; 10939 uint64_t r64_val; 10940 int64_t r64_exp; 10941 uint64_t r64_frac; 10942 10943 if (float32_is_any_nan(f32)) { 10944 float32 nan = f32; 10945 if (float32_is_signaling_nan(f32, fpst)) { 10946 float_raise(float_flag_invalid, fpst); 10947 nan = float32_maybe_silence_nan(f32, fpst); 10948 } 10949 if (fpst->default_nan_mode) { 10950 nan = float32_default_nan(fpst); 10951 } 10952 return nan; 10953 } else if (float32_is_infinity(f32)) { 10954 return float32_set_sign(float32_zero, float32_is_neg(f32)); 10955 } else if (float32_is_zero(f32)) { 10956 float_raise(float_flag_divbyzero, fpst); 10957 return float32_set_sign(float32_infinity, float32_is_neg(f32)); 10958 } else if ((f32_val & ~(1ULL << 31)) < (1ULL << 21)) { 10959 /* Abs(value) < 2.0^-128 */ 10960 float_raise(float_flag_overflow | float_flag_inexact, fpst); 10961 if (round_to_inf(fpst, f32_sbit)) { 10962 return float32_set_sign(float32_infinity, float32_is_neg(f32)); 10963 } else { 10964 return float32_set_sign(float32_maxnorm, float32_is_neg(f32)); 10965 } 10966 } else if (f32_exp >= 253 && fpst->flush_to_zero) { 10967 float_raise(float_flag_underflow, fpst); 10968 return float32_set_sign(float32_zero, float32_is_neg(f32)); 10969 } 10970 10971 10972 f64 = make_float64(((int64_t)(f32_exp) << 52) | (int64_t)(f32_frac) << 29); 10973 r64 = call_recip_estimate(f64, 253, fpst); 10974 r64_val = float64_val(r64); 10975 r64_exp = extract64(r64_val, 52, 11); 10976 r64_frac = extract64(r64_val, 0, 52); 10977 10978 /* result = sign : result_exp<7:0> : fraction<51:29>; */ 10979 return make_float32(f32_sbit | 10980 (r64_exp & 0xff) << 23 | 10981 extract64(r64_frac, 29, 24)); 10982 } 10983 10984 float64 HELPER(recpe_f64)(float64 input, void *fpstp) 10985 { 10986 float_status *fpst = fpstp; 10987 float64 f64 = float64_squash_input_denormal(input, fpst); 10988 uint64_t f64_val = float64_val(f64); 10989 uint64_t f64_sbit = 0x8000000000000000ULL & f64_val; 10990 int64_t f64_exp = extract64(f64_val, 52, 11); 10991 float64 r64; 10992 uint64_t r64_val; 10993 int64_t r64_exp; 10994 uint64_t r64_frac; 10995 10996 /* Deal with any special cases */ 10997 if (float64_is_any_nan(f64)) { 10998 float64 nan = f64; 10999 if (float64_is_signaling_nan(f64, fpst)) { 11000 float_raise(float_flag_invalid, fpst); 11001 nan = float64_maybe_silence_nan(f64, fpst); 11002 } 11003 if (fpst->default_nan_mode) { 11004 nan = float64_default_nan(fpst); 11005 } 11006 return nan; 11007 } else if (float64_is_infinity(f64)) { 11008 return float64_set_sign(float64_zero, float64_is_neg(f64)); 11009 } else if (float64_is_zero(f64)) { 11010 float_raise(float_flag_divbyzero, fpst); 11011 return float64_set_sign(float64_infinity, float64_is_neg(f64)); 11012 } else if ((f64_val & ~(1ULL << 63)) < (1ULL << 50)) { 11013 /* Abs(value) < 2.0^-1024 */ 11014 float_raise(float_flag_overflow | float_flag_inexact, fpst); 11015 if (round_to_inf(fpst, f64_sbit)) { 11016 return float64_set_sign(float64_infinity, float64_is_neg(f64)); 11017 } else { 11018 return float64_set_sign(float64_maxnorm, float64_is_neg(f64)); 11019 } 11020 } else if (f64_exp >= 2045 && fpst->flush_to_zero) { 11021 float_raise(float_flag_underflow, fpst); 11022 return float64_set_sign(float64_zero, float64_is_neg(f64)); 11023 } 11024 11025 r64 = call_recip_estimate(f64, 2045, fpst); 11026 r64_val = float64_val(r64); 11027 r64_exp = extract64(r64_val, 52, 11); 11028 r64_frac = extract64(r64_val, 0, 52); 11029 11030 /* result = sign : result_exp<10:0> : fraction<51:0> */ 11031 return make_float64(f64_sbit | 11032 ((r64_exp & 0x7ff) << 52) | 11033 r64_frac); 11034 } 11035 11036 /* The algorithm that must be used to calculate the estimate 11037 * is specified by the ARM ARM. 11038 */ 11039 static float64 recip_sqrt_estimate(float64 a, float_status *real_fp_status) 11040 { 11041 /* These calculations mustn't set any fp exception flags, 11042 * so we use a local copy of the fp_status. 11043 */ 11044 float_status dummy_status = *real_fp_status; 11045 float_status *s = &dummy_status; 11046 float64 q; 11047 int64_t q_int; 11048 11049 if (float64_lt(a, float64_half, s)) { 11050 /* range 0.25 <= a < 0.5 */ 11051 11052 /* a in units of 1/512 rounded down */ 11053 /* q0 = (int)(a * 512.0); */ 11054 q = float64_mul(float64_512, a, s); 11055 q_int = float64_to_int64_round_to_zero(q, s); 11056 11057 /* reciprocal root r */ 11058 /* r = 1.0 / sqrt(((double)q0 + 0.5) / 512.0); */ 11059 q = int64_to_float64(q_int, s); 11060 q = float64_add(q, float64_half, s); 11061 q = float64_div(q, float64_512, s); 11062 q = float64_sqrt(q, s); 11063 q = float64_div(float64_one, q, s); 11064 } else { 11065 /* range 0.5 <= a < 1.0 */ 11066 11067 /* a in units of 1/256 rounded down */ 11068 /* q1 = (int)(a * 256.0); */ 11069 q = float64_mul(float64_256, a, s); 11070 int64_t q_int = float64_to_int64_round_to_zero(q, s); 11071 11072 /* reciprocal root r */ 11073 /* r = 1.0 /sqrt(((double)q1 + 0.5) / 256); */ 11074 q = int64_to_float64(q_int, s); 11075 q = float64_add(q, float64_half, s); 11076 q = float64_div(q, float64_256, s); 11077 q = float64_sqrt(q, s); 11078 q = float64_div(float64_one, q, s); 11079 } 11080 /* r in units of 1/256 rounded to nearest */ 11081 /* s = (int)(256.0 * r + 0.5); */ 11082 11083 q = float64_mul(q, float64_256,s ); 11084 q = float64_add(q, float64_half, s); 11085 q_int = float64_to_int64_round_to_zero(q, s); 11086 11087 /* return (double)s / 256.0;*/ 11088 return float64_div(int64_to_float64(q_int, s), float64_256, s); 11089 } 11090 11091 float32 HELPER(rsqrte_f32)(float32 input, void *fpstp) 11092 { 11093 float_status *s = fpstp; 11094 float32 f32 = float32_squash_input_denormal(input, s); 11095 uint32_t val = float32_val(f32); 11096 uint32_t f32_sbit = 0x80000000 & val; 11097 int32_t f32_exp = extract32(val, 23, 8); 11098 uint32_t f32_frac = extract32(val, 0, 23); 11099 uint64_t f64_frac; 11100 uint64_t val64; 11101 int result_exp; 11102 float64 f64; 11103 11104 if (float32_is_any_nan(f32)) { 11105 float32 nan = f32; 11106 if (float32_is_signaling_nan(f32, s)) { 11107 float_raise(float_flag_invalid, s); 11108 nan = float32_maybe_silence_nan(f32, s); 11109 } 11110 if (s->default_nan_mode) { 11111 nan = float32_default_nan(s); 11112 } 11113 return nan; 11114 } else if (float32_is_zero(f32)) { 11115 float_raise(float_flag_divbyzero, s); 11116 return float32_set_sign(float32_infinity, float32_is_neg(f32)); 11117 } else if (float32_is_neg(f32)) { 11118 float_raise(float_flag_invalid, s); 11119 return float32_default_nan(s); 11120 } else if (float32_is_infinity(f32)) { 11121 return float32_zero; 11122 } 11123 11124 /* Scale and normalize to a double-precision value between 0.25 and 1.0, 11125 * preserving the parity of the exponent. */ 11126 11127 f64_frac = ((uint64_t) f32_frac) << 29; 11128 if (f32_exp == 0) { 11129 while (extract64(f64_frac, 51, 1) == 0) { 11130 f64_frac = f64_frac << 1; 11131 f32_exp = f32_exp-1; 11132 } 11133 f64_frac = extract64(f64_frac, 0, 51) << 1; 11134 } 11135 11136 if (extract64(f32_exp, 0, 1) == 0) { 11137 f64 = make_float64(((uint64_t) f32_sbit) << 32 11138 | (0x3feULL << 52) 11139 | f64_frac); 11140 } else { 11141 f64 = make_float64(((uint64_t) f32_sbit) << 32 11142 | (0x3fdULL << 52) 11143 | f64_frac); 11144 } 11145 11146 result_exp = (380 - f32_exp) / 2; 11147 11148 f64 = recip_sqrt_estimate(f64, s); 11149 11150 val64 = float64_val(f64); 11151 11152 val = ((result_exp & 0xff) << 23) 11153 | ((val64 >> 29) & 0x7fffff); 11154 return make_float32(val); 11155 } 11156 11157 float64 HELPER(rsqrte_f64)(float64 input, void *fpstp) 11158 { 11159 float_status *s = fpstp; 11160 float64 f64 = float64_squash_input_denormal(input, s); 11161 uint64_t val = float64_val(f64); 11162 uint64_t f64_sbit = 0x8000000000000000ULL & val; 11163 int64_t f64_exp = extract64(val, 52, 11); 11164 uint64_t f64_frac = extract64(val, 0, 52); 11165 int64_t result_exp; 11166 uint64_t result_frac; 11167 11168 if (float64_is_any_nan(f64)) { 11169 float64 nan = f64; 11170 if (float64_is_signaling_nan(f64, s)) { 11171 float_raise(float_flag_invalid, s); 11172 nan = float64_maybe_silence_nan(f64, s); 11173 } 11174 if (s->default_nan_mode) { 11175 nan = float64_default_nan(s); 11176 } 11177 return nan; 11178 } else if (float64_is_zero(f64)) { 11179 float_raise(float_flag_divbyzero, s); 11180 return float64_set_sign(float64_infinity, float64_is_neg(f64)); 11181 } else if (float64_is_neg(f64)) { 11182 float_raise(float_flag_invalid, s); 11183 return float64_default_nan(s); 11184 } else if (float64_is_infinity(f64)) { 11185 return float64_zero; 11186 } 11187 11188 /* Scale and normalize to a double-precision value between 0.25 and 1.0, 11189 * preserving the parity of the exponent. */ 11190 11191 if (f64_exp == 0) { 11192 while (extract64(f64_frac, 51, 1) == 0) { 11193 f64_frac = f64_frac << 1; 11194 f64_exp = f64_exp - 1; 11195 } 11196 f64_frac = extract64(f64_frac, 0, 51) << 1; 11197 } 11198 11199 if (extract64(f64_exp, 0, 1) == 0) { 11200 f64 = make_float64(f64_sbit 11201 | (0x3feULL << 52) 11202 | f64_frac); 11203 } else { 11204 f64 = make_float64(f64_sbit 11205 | (0x3fdULL << 52) 11206 | f64_frac); 11207 } 11208 11209 result_exp = (3068 - f64_exp) / 2; 11210 11211 f64 = recip_sqrt_estimate(f64, s); 11212 11213 result_frac = extract64(float64_val(f64), 0, 52); 11214 11215 return make_float64(f64_sbit | 11216 ((result_exp & 0x7ff) << 52) | 11217 result_frac); 11218 } 11219 11220 uint32_t HELPER(recpe_u32)(uint32_t a, void *fpstp) 11221 { 11222 float_status *s = fpstp; 11223 float64 f64; 11224 11225 if ((a & 0x80000000) == 0) { 11226 return 0xffffffff; 11227 } 11228 11229 f64 = make_float64((0x3feULL << 52) 11230 | ((int64_t)(a & 0x7fffffff) << 21)); 11231 11232 f64 = recip_estimate(f64, s); 11233 11234 return 0x80000000 | ((float64_val(f64) >> 21) & 0x7fffffff); 11235 } 11236 11237 uint32_t HELPER(rsqrte_u32)(uint32_t a, void *fpstp) 11238 { 11239 float_status *fpst = fpstp; 11240 float64 f64; 11241 11242 if ((a & 0xc0000000) == 0) { 11243 return 0xffffffff; 11244 } 11245 11246 if (a & 0x80000000) { 11247 f64 = make_float64((0x3feULL << 52) 11248 | ((uint64_t)(a & 0x7fffffff) << 21)); 11249 } else { /* bits 31-30 == '01' */ 11250 f64 = make_float64((0x3fdULL << 52) 11251 | ((uint64_t)(a & 0x3fffffff) << 22)); 11252 } 11253 11254 f64 = recip_sqrt_estimate(f64, fpst); 11255 11256 return 0x80000000 | ((float64_val(f64) >> 21) & 0x7fffffff); 11257 } 11258 11259 /* VFPv4 fused multiply-accumulate */ 11260 float32 VFP_HELPER(muladd, s)(float32 a, float32 b, float32 c, void *fpstp) 11261 { 11262 float_status *fpst = fpstp; 11263 return float32_muladd(a, b, c, 0, fpst); 11264 } 11265 11266 float64 VFP_HELPER(muladd, d)(float64 a, float64 b, float64 c, void *fpstp) 11267 { 11268 float_status *fpst = fpstp; 11269 return float64_muladd(a, b, c, 0, fpst); 11270 } 11271 11272 /* ARMv8 round to integral */ 11273 float32 HELPER(rints_exact)(float32 x, void *fp_status) 11274 { 11275 return float32_round_to_int(x, fp_status); 11276 } 11277 11278 float64 HELPER(rintd_exact)(float64 x, void *fp_status) 11279 { 11280 return float64_round_to_int(x, fp_status); 11281 } 11282 11283 float32 HELPER(rints)(float32 x, void *fp_status) 11284 { 11285 int old_flags = get_float_exception_flags(fp_status), new_flags; 11286 float32 ret; 11287 11288 ret = float32_round_to_int(x, fp_status); 11289 11290 /* Suppress any inexact exceptions the conversion produced */ 11291 if (!(old_flags & float_flag_inexact)) { 11292 new_flags = get_float_exception_flags(fp_status); 11293 set_float_exception_flags(new_flags & ~float_flag_inexact, fp_status); 11294 } 11295 11296 return ret; 11297 } 11298 11299 float64 HELPER(rintd)(float64 x, void *fp_status) 11300 { 11301 int old_flags = get_float_exception_flags(fp_status), new_flags; 11302 float64 ret; 11303 11304 ret = float64_round_to_int(x, fp_status); 11305 11306 new_flags = get_float_exception_flags(fp_status); 11307 11308 /* Suppress any inexact exceptions the conversion produced */ 11309 if (!(old_flags & float_flag_inexact)) { 11310 new_flags = get_float_exception_flags(fp_status); 11311 set_float_exception_flags(new_flags & ~float_flag_inexact, fp_status); 11312 } 11313 11314 return ret; 11315 } 11316 11317 /* Convert ARM rounding mode to softfloat */ 11318 int arm_rmode_to_sf(int rmode) 11319 { 11320 switch (rmode) { 11321 case FPROUNDING_TIEAWAY: 11322 rmode = float_round_ties_away; 11323 break; 11324 case FPROUNDING_ODD: 11325 /* FIXME: add support for TIEAWAY and ODD */ 11326 qemu_log_mask(LOG_UNIMP, "arm: unimplemented rounding mode: %d\n", 11327 rmode); 11328 case FPROUNDING_TIEEVEN: 11329 default: 11330 rmode = float_round_nearest_even; 11331 break; 11332 case FPROUNDING_POSINF: 11333 rmode = float_round_up; 11334 break; 11335 case FPROUNDING_NEGINF: 11336 rmode = float_round_down; 11337 break; 11338 case FPROUNDING_ZERO: 11339 rmode = float_round_to_zero; 11340 break; 11341 } 11342 return rmode; 11343 } 11344 11345 /* CRC helpers. 11346 * The upper bytes of val (above the number specified by 'bytes') must have 11347 * been zeroed out by the caller. 11348 */ 11349 uint32_t HELPER(crc32)(uint32_t acc, uint32_t val, uint32_t bytes) 11350 { 11351 uint8_t buf[4]; 11352 11353 stl_le_p(buf, val); 11354 11355 /* zlib crc32 converts the accumulator and output to one's complement. */ 11356 return crc32(acc ^ 0xffffffff, buf, bytes) ^ 0xffffffff; 11357 } 11358 11359 uint32_t HELPER(crc32c)(uint32_t acc, uint32_t val, uint32_t bytes) 11360 { 11361 uint8_t buf[4]; 11362 11363 stl_le_p(buf, val); 11364 11365 /* Linux crc32c converts the output to one's complement. */ 11366 return crc32c(acc, buf, bytes) ^ 0xffffffff; 11367 } 11368